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Abstract
The wide-scale adoption of electronic health records (EHRs) provides extensive
information to support precisionmedicine and personalized health care. In addi-
tion to structuredEHRs,we leverage free-text clinical information extraction (IE)
techniques to estimate optimal dynamic treatment regimes (DTRs), a sequence
of decision rules that dictate how to individualize treatments to patients based
on treatment and covariate history. The proposed IE of patient characteristics
closely resembles “The clinical Text Analysis and Knowledge Extraction Sys-
tem” and employs named entity recognition, boundary detection, and nega-
tion annotation. It also utilizes regular expressions to extract numerical infor-
mation. Combining the proposed IE with optimal DTR estimation, we extract
derived patient characteristics and use tree-based reinforcement learning (T-RL)
to estimatemultistage optimal DTRs. IE significantly improved the estimation in
counterfactual outcome models compared to using structured EHR data alone,
which often include incomplete data, data entry errors, and other potentially
unobserved risk factors. Moreover, including IE in optimal DTR estimation pro-
vides larger study cohorts and a broader pool of candidate tailoring variables.
We demonstrate the performance of our proposed method via simulations and
an application using clinical records to guide blood pressure control treatments
among critically ill patients with severe acute hypertension. This joint estimation
approach improves the accuracy of identifying the optimal treatment sequence
by 14–24% compared to traditional inference without using IE, based on our sim-
ulations over various scenarios. In the blood pressure control application, we
successfully extracted significant blood pressure predictors that are unobserved
or partially missing from structured EHR.
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1 INTRODUCTION

Personalized medicine provides individualized patient treatment recommendations by tailoring specific treatments to
heterogeneous patients with various characteristics, unlike the one-size-fits-all model of care. Dynamic treatment regime
(DTR) represents an effective vehicle under the umbrella of personalizedmedicine that offers adaptive treatment strategies
(Chakraborty & Murphy, 2014). Especially for chronic conditions, a course of medical intervention containing multiple
treatment stages is often needed for patients. A driving motivational challenge in this study is the time-varying treatment
decision to control patients’ blood pressure during the first two days in intensive care units (ICU). We consider four
potential classes of antihypertensive agents—angiotensin-converting enzyme inhibitors (ACEI), beta-blockers, calcium
channel blockers (CCB), and diuretics. The first treatmentwill be assigned to patients based onmedical history and clinical
evidence immediately after the ICU admission. If the treatment gets the elevated blood pressure controlled, no further
action is needed on day 2. Otherwise, a subsequent treatment is recommended to nonresponders in order to bettermanage
the patient’s blood pressure. In this example, we have two sequential treatment decision stages, and one possible DTR
example is to treat patients younger than 55 years of age with ACEI and treat the rest of patients with CCB on day 1; then
provide CCB to nonresponders on day 2.
To guide evidence-based effective treatment decisions, researchers have developed various statistical methods to eval-

uate and identify the optimal DTR, tailoring the optimal treatment choice to each individual to maximize their expected
clinical outcome given current disease status and medical history. Abundant patient information is needed to obtain
accurate estimations for desired clinical outcomes and provide various candidate tailoring variables while constructing
treatment rules.
Many statistical methods have been developed for identifying optimal DTRs using observational data. Commonly used

parametric and semiparametric methods include marginal structural models with inverse probability weighting (Hernán
et al., 2001; Murphy et al., 2001; Wang et al., 2012), G-estimation of structural nested mean models (Robins, 1994, 1997,
2004), and targeted maximum likelihood estimations (Laan & Rubin, 2006). These methods provide high interpretability
but make specific modeling assumptions for a sequence of conditional models, which may be practically unattainable
in certain cases. To alleviate strict modeling assumptions and maintain interpretability, Laber and Zhao proposed a tree-
basedmethod for estimating optimal treatment regimes (Laber&Zhao, 2015). Tao andWang generalized themethod using
the doubly robust approach and developed tree-based reinforcement learning (T-RL) that supports multistage treatment
decision making (Tao & Wang, 2017; Tao et al., 2018).
Electronic health records (EHRs) are major data sources for observational studies in the biomedical field, including

detailed information about patients’medical histories (e.g., diagnoses,medications, and test results). As EHRs are adopted
widely across different healthcare institutions, an increasing amount of health information is available to develop and
fine-tune optimal DTRs. To the best of our knowledge, existing methods only consider using information from structured
data. In EHR, structured data are designed for the management of care or billing purposes. Therefore, critical patient
characteristics might not be available in the structured format when studying a specific disease. For example, tobacco
use is a risk factor for many chronic diseases, including vascular diseases and lung cancer (Bartal, 2001; Doll, 1998), but
some structured EHR archives may not include smoking status as a regular entry. Moreover, structured EHR data are
often sparse and partial missingness can occur in many variables. In addition, manual transcription errors may occur
in 1–10% of the structured EHR data (Mays & Mathias, 2019). For these reasons, it is challenging to collect various and
accurate patient characteristics from structured EHR, which is essential for selecting the correct tailoring variables in
optimal DTR. However, extracting additional information from unstructured EHR data may offer a solution.
Narrative content in EHR, like clinical notes, represents a supplementary data resource for patient characterization.

Such text information is recorded by healthcare providers describing patient summary, reason of hospital visits, and activ-
ities arising from episodes of patient care. Information extraction (IE) techniques in clinical notes were well studied in
many disease-specific investigations for identifying unique disease conditions (Wang et al., 2018). Most of the IE tech-
niques are rule-based, depending on regular expression matching. The clinical Text Analysis and Knowledge Extraction
System (cTAKES) is the most popular IE method facilitating biomedical studies based on clinical free-text data (Savova
et al., 2010). cTAKES includes many individual tools, including sentence boundary detection, tokenization, named entity
recognition, and negation annotation. These individual components can be grouped to handle the extraction of patient-
specific characteristics.
Nevertheless, no existing work has evaluated the benefit of performing IE using clinical notes to enhance the accuracy

of the estimated optimal DTR systematically. In this paper, we developed a technique for extracting patient characteristics
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from the EHR narrative contents to improve the estimation of optimal DTR, which adopts T-RL as the treatment strategy
estimating approach and employs cTAKES components as the IE tool. Our extended simulations demonstrate the benefits
of the proposed method under different circumstances. Applying the proposed joint approach to the Medical Information
Mart for Intensive Care III (MIMIC-III) database, we exhibit the effective use of IE on estimating an optimal two-stage
DTR that guides hypertensive drug use among critically ill patients with severe acute hypertension.

2 METHODS

2.1 Notations and problem formalization

In this section, we formally define the problem of optimal DTR estimation using EHR data. Using the general DTR frame-
work, let 𝑛 denote the number of patients, 𝑇 denote the number of treatment stages, and 𝑗 = {1, … , 𝐾𝑗} represent the
observed treatment options at the 𝑗th treatment stage, where 𝑗 = 1, 2, … , 𝑇 and 𝐾𝑗 ≥ 2. For the ICU blood pressure
management example, we have 𝑇 = 2, 𝐾1 = 𝐾2 = 4. In observational data, patients are observed to follow one of the
treatments available at each stage. Let 𝐴𝑗 denote the treatment at the 𝑗th treatment stage that may take a value 𝑎𝑗 , where
𝑎𝑗 ∈ 𝑗 = {1, … , 𝐾𝑗}. Let �̄�𝑇 = (𝐴1, … ,𝐴𝑇) denote the sequence of treatments until stage 𝑇. Similarly, we denote the
observed treatment routes with �̄�𝑇 = (𝑎1, … , 𝑎𝑇). We use 𝑅𝑗 to denote the clinical outcome observed following 𝐴𝑗 , which
varies under different patient characteristics 𝐗𝑗 and prior treatments received �̄�𝑗−1. The overall clinical outcome at stage
𝑇 is considered a functional of the reward history, 𝑌 = 𝑓(𝑅1, … , 𝑅𝑇), where 𝑓(⋅) is a prespecified function (e.g., sum). We
assume 𝑌 is bounded and larger values of 𝑌 is associated with better health outcomes. Stagewise individualized treat-
ment recommendations are inferred from the observed final outcome 𝑌, the current candidate treatments 𝑎𝑗 ∈ 𝑗 , and
the patient medical history𝐇𝑗 = (�̄�𝑗−1, 𝐗

𝑇
𝑗
)𝑇 ∈ 𝑗 .

When estimating optimal DTR using EHR data, patient characteristics can be observed from two data components:
structured data elements and unstructured free-text.We denote the patient characteristics at stage 𝑗 observed in structured
EHR data by 𝐒𝑗 , which describes 𝑛𝑠 patients with 𝑞𝑠 covariates. 𝐒𝑗 might contain sporadic missing values and entry errors.
Let 𝐓𝑗 denote the patient characteristics at stage 𝑗 extracted from the free-text data, which contain 𝑛𝑡 patients and 𝑞𝑡
covariates. After combining the two components, we obtain 𝐗𝑗 with 𝑛 patients and 𝑞 covariates having potentially more
patients and covariates than the structured data 𝐒𝑗 . The addition of 𝐓𝑗 can help handle missingness and adding extra
(derived) features that are not directly observed from 𝐒𝑗 and correct entry errors. With the observed data, we aim to find
a sequence of personalized treatment rules 𝐠 = (𝑔1, … , 𝑔𝑇) that maximizes the expectation of the counterfactual clinical
outcome 𝑌∗(𝐠) when 𝐠 is followed to make treatment decisions, where 𝑔𝑗 is the decision rule at stage 𝑗 and it maps from
patient history𝐇𝑗 to potential treatments 𝑎𝑗 ∈ 𝑗 . That is, we aim to find the optimal treatment regime 𝐠opt, such that

𝐠opt = argmax
𝐠

𝐸{𝑌∗(𝐠)}. (1)

2.2 IE from EHRs

Below we describe the proposed technique to extract information and construct structured target variables from clinical
free-text for optimal DTR estimation. We consider using rule-based IE tools that rely on regular expressions (Karttunen
et al., 1996), which provide a standard mechanism to select specific strings using a bit pattern. With regular expressions,
we can successfully search for patient information consisting of specific keywords and punctuation. Specifically, the pro-
posed protocol closely follows the cTAKES system (Savova et al., 2010) and employs the following individual components:
(i) Named entity recognition, which is the core component to identify and locate the target information; (ii) Boundary
detection, which detects the start and end location of the desired informative substring; and (iii) Negation annotation,
which helps determine the binary status referring to an identified named entity. The extraction procedure adapts to dif-
ferent types of variables. Numeric variables can be extracted using (i) and (ii), whereas (i) and (iii) may be used to extract
binary and categorical variables.
For each target variable, the method takes the following four steps to extract derived patient characteristics from EHR

clinical notes using cTAKES components and regular expressions:
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I. Identify the type and section of the clinical note that might contain the target information and limit the text materi-
als for extraction accordingly. For example, we search among “discharge summary” or “physician notes” to extract
information regarding hospital stay and among “pharmacy” sections for medication usage.

II. Detect boundaries of the target information using (ii). Patient information is usually contained in one sentence or a
number surrounded by words. Identifying the boundaries of the target information helps to further fine prune the
target string. Punctuation, including periods and colons andunits like “lb,” “cm,” and “kg,” can indicate the beginning
of or the end of the target string.

III. Search for named entities or target keywords. After obtaining the candidate strings in specific sections of the clinical
notes, we search for relevant keywords in those strings with (i). For example, if we are extracting patient height, we
can search for “height,” “ht,” or “hgt.”

IV. Convert target strings into structured data. For numerical information, we use an ad hoc process by analyzing the
possible structures of the target strings and use regular expressions to extract the numerical values and corresponding
units. For binary or categorical information, we employ (iii) to search for negative tags around (within five tokens of)
the target keyword. The default status is truth. If a negative tag is identified, the status of the corresponding condition
is mapped to false.

2.3 The estimation of DTR using T-RL

After combining structured and free-text EHR data, we utilize T-RL (Tao et al., 2018) to estimate the optimal DTR. T-
RL is a nonparametric optimization method that outputs an unsupervised decision tree for treatment guidance at each
stage, where each fork is a split in a tailoring variable, and each leaf node contains a recommended treatment for the
corresponding patient subgroup.
When estimating the optimal DTR, we adopt the counterfactual framework for causal inference defined in Robins

(1986). Under the three standard assumptions: consistency, no unmeasured confounding, and positivity, we can link the
mean of counterfactual outcomes with the observed information. More specifically, the consistency assumption implies
that the observed outcome agrees with the counterfactual outcome for any individual patient had the patient been given
this specific observed treatment. The no unmeasured confounding assumption guarantees that the treatment assignment
is independent of future outcomes given patient history. Due to the nature of observational studies, these assumptions
are not testable when using EHR data to estimate optimal DTRs. However, they may be plausible if we have collected
sufficient patient information and the data cover a wide variety of patients.
At stage 𝑇, we denote𝑌∗(𝐴1, 𝐴2, … ,𝐴𝑇−1, 𝑎𝑇) or𝑌∗(𝑎𝑇) as the counterfactual outcome for patients receiving treatment

𝑎𝑇 given previous treatments.We aim to search for an optimal treatment regime 𝑔opt𝑇 thatmaximizes the expected counter-
factual outcome.Using backward induction, at stage 𝑗(𝑗 < 𝑇), wemaximize the expected counterfactual outcomewhen all
future treatments are optimized, which is denoted by 𝑌∗(𝐀𝑗−1, 𝑎𝑗, 𝑔

opt

𝑗+1
, … , 𝑔

opt
𝑇
). However, such counterfactual outcomes

are not observable for all patients.We estimate stagewise pseudo-outcomedenoted as𝑃𝑂𝑗 = �̂�[𝑌(𝐴1, … ,𝐴𝑗, 𝑔
opt

𝑗+1
, … , 𝑔

opt
𝑇
)]

to approximate the target outcome and obtain 𝑔opt
𝑗
. T-RL uses doubly robust augmented inverse probability weighted esti-

mates to predict patients’ counterfactual outcomes under all possible treatments.
The T-RL algorithm seeks the optimal regime with a sequence of treatment decision rules at each stage by constructing

a binary tree. At any stage, we use �̂�[𝑌𝑖(𝑎)] to denote the estimated pseudo-outcome for patient 𝑖 = 1, 2, … , 𝑛 given
treatment 𝑎 ∈ . For considering each split that separates patient group Ω into 𝜔 and 𝜔𝑐, the T-RL compares the parent
node expectation:

(Ω, 𝜙) = max
𝑎∈

1

𝑛

𝑛∑
𝑖=1

�̂�[𝑌𝑖(𝑎)] (2)

with the aggregate expectation of the proposed split-pair of children nodes:

(Ω, 𝜔) = max
𝑎′, 𝑎′′∈

1

𝑛

(
𝑛∑
𝑖=1

�̂�
[
𝑌𝑖
(
𝑎′
)]
𝐼(𝑖 ∈ 𝜔) +

𝑛∑
𝑖=1

�̂�
[
𝑌𝑖
(
𝑎′′

)]
𝐼(𝑖 ∈ 𝜔𝑐)

)
, (3)
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where 𝜙 denotes no partition of the patient group Ω. This comparison determines if the proposed (parent) node split is
beneficial. When 𝑃(Ω, 𝜔) − 𝑃(Ω, 𝜙) ≫ 0, the algorithm will make the partition with the corresponding tailoring variable
and optimal treatments. To avoid overfitting by pruning the tree, we use stopping rules that consider the minimal node
size, minimal improvement for 𝑃(Ω, 𝜔) − 𝑃(Ω, 𝜙), and the maximum depth of the tree.

3 SIMULATION

We conducted two simulation studies in this section. First, we simulated a two-stage (𝑇 = 2) with three treatments per
stage (𝐾1 = 𝐾2 = 3) observational study and its corresponding EHR data to compare the performance of our method with
the traditional T-RL method without IE in estimating optimal DTRs. The full data contained stagewise rewards (𝑅1, 𝑅2),
treatments received (𝐴1,𝐴2), three complete structured patient characteristics (𝑋1, 𝑋2, 𝑋3), and two patient characteristics
that can be extracted from the clinical narratives: weight in pounds (𝑋4) and smoking status (𝑋5), where 𝑋5 is binary.
We considered cases where 𝑋4 contained missing values or had entry errors and 𝑋5 was not observed in the structured
entries. In addition, we conducted a three-stage (𝑇 = 3) study that has 𝐾1 = 𝐾2 = 3 and 𝐾3 = 2 for stagewise treatments.
The patient characteristics, stagewise rewards and treatments set up for its first two stages were identical to the first study.
The third stage with potential treatments𝐴3 and reward 𝑅3 added complexity to optimal DTR estimation. In both studies,
we compared the performance of the estimated optimal DTRs with and without IE under the above cases.
To create a scenario with simulated clinical text, we first sampled 27707 discharge summaries from the MIMIC-III data

(Johnson et al., 2016) that contained information about patients’ weight and had no information about smoking status.
According to original MIMIC-III clinical notes, patient smoking status were often described in short phrases throughout
the discharge summaries. Thus, we randomly inserted smoking status information in a subset of text documents to sim-
ulate smokers and nonsmokers. The inserted information included smoker tags like “10 pack-year smoking” and “heavy
smoking,” and nonsmoker tags like “tobacco: denies.” As a result, we simulated 45% of smokers in our study population.
For all simulation cases,𝑋1, 𝑋2, 𝑋3 were sampled independently from𝑁(0, 1). Whenwe observedweight information in

text, the true 𝑋4 values agreed with the text information; otherwise, it was sampled from𝑁(195, 51), which approximates
the weight distribution observed in the original text. The true 𝑋5 is 1 when a smoker tag was assigned and 0 otherwise.
We set1 = 2 = {0, 1, 2}. In the first stage, the treatments 𝐴1 followed a Multinomial(𝜋01, 𝜋11, 𝜋21) distribution where

𝜋01 =
1

exp (0.005𝑋4 + 0.5𝑋5) + exp (0.5𝑋3 − 0.5𝑋5) + 1
,

𝜋11 =
exp (0.005𝑋4 + 0.5𝑋5)

exp (0.005𝑋4 + 0.5𝑋5) + exp (0.5𝑋3 − 0.5𝑋5) + 1
,

𝜋21 =
exp (0.5𝑋3 − 0.5𝑋5)

exp (0.005𝑋4 + 0.5𝑋5) + exp (0.5𝑋3 − 0.5𝑋5) + 1
. (4)

We considered a tree-structured true optimal regime such that

𝑔
opt
1 (𝐇1) = 𝐼(𝑋5 > 0) × 𝐼(𝑋1 > −0.5) + 𝐼(𝑋1 > 0.5). (5)

Correspondingly, the stagewise reward was generated by

𝑅1 = exp

{
1.5 + 0.003𝑋4 − |1.5𝑋5 − 2| × [

𝐴1 − 𝑔
opt
1 (𝐇1)

]2}
+ 𝜖1, (6)

where 𝜖1 ∼ 𝑁(0, 1). For stage 2, the treatments were distributed as Multinomial(𝜋02, 𝜋12, 𝜋22), where

𝜋02 =
1

exp (0.2𝑅1 − 0.5) + exp (0.5𝑋1) + 1
,

𝜋12 =
exp (0.2𝑅1 − 0.5)

exp (0.2𝑅1 − 0.5) + exp (0.5𝑋1) + 1
,
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𝜋22 =
exp (0.5𝑋1)

exp (0.2𝑅1 − 0.5) + exp (0.5𝑋1) + 1
. (7)

The optimal decision rule for the second stage depends on the first treatment response

𝑔
opt
2 (𝐇2) = 𝐼(𝑋2 > −1) × [𝐼(𝑅1 > 0) + 𝐼(𝑅1 > 2)]. (8)

The second-stage reward was generated by

𝑅2 = exp {1.18 + 0.2𝑋1 − |1.5𝑋2 + 2| × [
𝐴2 − 𝑔

opt
2 (𝐇2)

]2
} + 𝜖2, (9)

where 𝜖2 ∼ 𝑁(0, 1). For the two-stage simulation study, the target clinical outcome is the sum of two stage rewards 𝑌 =

𝑅1 + 𝑅2.
In the three-stage scenario, data for the first two stages were simulated using the above setting, and treatments 𝐴3 ∈

{0, 1} in the third stage followed 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋13), where

𝜋13 =
exp(0.1𝑅2 + 0.3𝑋3)

exp(0.1𝑅2 + 0.3𝑋3) + 1
(10)

was the probability of getting 𝐴3 = 1. We define the third-stage true optimal as

𝑔
opt
3 (𝐇3) = 𝐼(𝑅2 > 0). (11)

The corresponding reward function was generated by

𝑅3 = exp{0.1𝑋2 −
[
𝐴3 − 𝑔

opt
3 (𝐇3)

]2
} + 𝜖3, (12)

where 𝜖3 ∼ 𝑁(0, 1). The target clinical outcome for the three-stage simulation study is the sum of stagewise rewards 𝑌 =

𝑅1 + 𝑅2 + 𝑅3.
We considered two possible cases of the observed data. For Case 1, some of the 𝑋4 entries contained errors that the

observed values were 100 times larger than the true values. The errors were introduced with the following probability:

𝑃(𝑋4 contains entry error) = 0.1 × 𝐼(𝑋5 = 0) × 𝐼(weight observed in text). (13)

In Case 1, 𝑋4 contained entry errors and 𝑋5 was not observed in structured EHR. When using IE, we obtained the full
complete data via combining information. For Case 2, the structured data contained missing values such that 𝑋4 was
missing at random (MAR). The probability of missing was assigned based on 𝑋5 and if weight information was included
in the clinical notes:

𝑃(𝑋4 = 𝑁𝐴) = 0.1 + 0.5 × 𝐼(𝑋5 = 0) × 𝐼(weight observed in text). (14)

In Case 2, 𝑋4 was MAR in the structured data but missing completely at random with 10% missing when combining
information extracted from clinical text. Also,𝑋5 was not observed in structured data. Since imputationmight alleviate the
missing data problem, we also considered imputing𝑋4 usingmissForest (Stekhoven & Bühlmann, 2012) under the default
setting with all other variables as potential predictors, which created a single complete data set under each setting. Thus,
under Case 2, we also compare the performances between the imputed data set and the subset of complete observations.
We replicated the simulation 1000 times with training samples of size 𝑛 = 500 or 𝑛 = 1000 and test samples of size

𝑛 = 1000 and applied both methods (with or without IE). The estimated DTRs (�̂�opt) were evaluated by the percentage
of optimal two-stage treatment recommendations (opt%) given to the patients in the test set and the estimated expected
counterfactual outcome (�̂�{𝑌∗(�̂�opt)}) in the test set using the true rewards model.
Table 1 summarizes the simulation results. Our IE method successfully extracted the true smoking status from the text

messages for all patients. Thus, all data sets with IE observed the true 𝑋5 whereas the data sets without IE did not contain
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TABLE 1 Simulation results from 1000 replications

Two-stage study
𝒏 = 500 𝒏 = 1000

Scenario opt % �̂�{𝒀∗(�̂�opt)} opt % �̂�{𝒀∗(�̂�opt)}

Case 1 with text 91.5 (13.4) 11.10 (0.76) 97.2 (7.4) 11.35 (0.44)
Case 1 without text 58.8 (8.3) 9.08 (0.39) 63.1 (7.1) 9.31 (0.30)
Case 2 with text, complete observations only 90.1(13.9) 10.93 (0.93) 96.3 (8.8) 11.23 (0.62)
Case 2 with text, missing imputed 91.7 (13.1) 11.11 (0.75) 97.2 (7.4) 11.35 (0.44)
Case 2 without text, complete observations only 57.4 (10.2) 8.75 (0.77) 64.5 (7.0) 9.25 (0.53)
Case 2 without text, missing imputed 61.0 (7.8) 9.22 (0.31) 65.4 (5.6) 9.43 (0.24)
Three-stage study

𝒏 = 500 𝒏 = 1000
Scenario opt % �̂�{𝒀∗(�̂�opt)} opt % �̂�{𝒀∗(�̂�opt)}

Case 1 with text 86.8 (16.1) 12.03 (0.80) 95.8 (8.1) 12.39 (0.47)
Case 1 without text 54.2 (11.5) 9.63 (0.80) 63.7 (7.1) 10.25 (0.49)
Case 2 with text, missing imputed 86.7 (15.9) 12.05 (0.91) 95.3 (8.3) 12.32 (0.56)
Case 2 without text, missing imputed 57.5 (9.8) 10.10 (0.34) 64.1 (6.0) 10.30 (0.24)

Note: The weight variable (𝑋4) in structured EHR contained entry errors in Case 1 and had missing values in Case 2. Under both cases, the current smoking
status (𝑋5) was not observed in structured EHR data. opt% is the percentage of correctly identifying the optimal treatment combinations among the test sample.
�̂�{𝑌∗(�̂�opt)} shows the estimated expected counterfactual outcome. Standard deviations are recorded in parenthesis.

𝑋5. Case 1 mimicked the scenario when entry errors are present for some structured variables. As shown in Table 1, when
𝑛 = 500, for both simulation studies, our proposedmethodwith IE under Case 1 greatly improved the accuracy to identify
the optimal treatment for study subjects (91.5% vs. 58.8% in the two-stage and 86.8% vs. 54.2% in the three-stage study).
The estimated mean counterfactual outcome had increased over 20% compared to the traditional method without IE.
Increasing sample size to 1000 had improved the performance of both the proposed method and the traditional method,
while the advantage of using our proposed method remained similar. For Case 2, where missingness was involved in 𝑋4,
applying our proposed method on the imputed data provided similar opt% and �̂�{𝑌∗(�̂�opt)} compared to the full data
without missingness (Case 1 with IE). We also noticed that the improvements compared to the naive method were similar
between the two-stage and three-stage simulation scenarios. Not surprisingly, the three-stage example required slightly
larger sample sizes to achieve the same accuracy level using our method. In general, simulation cases using the imputed
data sets outperformed the cases using a subset with only complete observations. However, our proposed method with IE
always significantly outperformed the naive method across different sample sizes and scenarios.
The empirical distribution of �̂�{𝑌∗(�̂�opt)} is shown in Figure 1. We observed that using the additional information

extracted from clinical text, most of �̂�{𝑌∗(�̂�opt)}were closer to their optimal values. With a larger sample size (𝑛 = 1000),
the values were more centralized toward the optimal counterfactual outcome mean. When using the method without
IE, the values of �̂�{𝑌∗(�̂�opt)} were more disperse and failed to approach the optimal counterfactual outcome even with a
reasonably large sample size 𝑛 = 1000.

4 CLINICAL CASE STUDY

Now we consider a specific clinical case study involving personalized antihypertensive agents for critically ill patients
with severe acute arterial hypertension.
Severe acute arterial hypertension can cause significant consequences on various organs, including the heart, kidneys,

brain, and lungs (Styron et al., 2009; Szczech et al., 2010), leading to life-threatening complications. Acute arterial hyper-
tension is commonly encountered in ICU and acute care settings (Shafi, 2004). Patients with a marked increase in blood
pressure and acute severe target-organ injuries (hypertensive emergencies) often require hospitalization in an ICU for
immediate blood pressure control (Salgado et al., 2013). In “hypertensive emergencies,” the therapeutic strategy requires
achieving careful and staged blood pressure lowering goals within 24 h in order to avoid sudden, excessive reductions.
“Hypertensive urgencies” describe the scenario when patients have severely elevated blood pressure but are not in danger
of immediate acute end-organ injury. In this scenario, while blood pressure reduction is warranted, there are no specific



812 ZHOU et al.

n n

n n

n

n n

E Y

n

g

E Y g

F IGURE 1 Empirical distribution of �̂�{𝑌∗(�̂�opt)} from 1000 simulation replications across different simulation scenarios. The weight
variable (𝑋4) in structured EHR contained entry errors in Case 1 and had missing values in Case 2 but got imputed. Under both cases, the
current smoking status (𝑋5) was not observed in structured EHR data. Senarios with information extraction (IE) have updated weight and
current smoking status variables using clinical text information 𝑋4

evidence-based guidelines on treatment goals. As such, clinical recommendations typically suggest lowering blood pres-
sure less aggressively and to aim for control over the ensuing few days. However, there are no absolute blood pressure
thresholds that define hypertensive emergencies or urgencies, as the actual levels differ among individuals depending on
a number of characteristics. In general, a clinically ill patient with systolic blood pressure (SBP) levels greater than 180
mmHg or diastolic blood pressures greater than 110 mmHg may require intervention (Marik & Varon, 2007).
Four classes of antihypertensive agents, including ACEI, beta-blockers, CCB, and diuretics, are commonly used to treat

hypertension. Studies suggest that antihypertensive drug responses are heterogeneous across patients (Mahmud & Feely,
2007).We estimated a two-stage DTR to guide antihypertensive treatment for critically ill patients with severe acute hyper-
tension using IE and T-RL. The DTR was constructed using The Medical Information Mart for Intensive Care III data
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(Johnson et al., 2016), a deidentified EHR data with over 40000 patients who stayed in critical care units at a large tertiary
care hospital.
Patients with the following conditions were included in the study population: (i) admitted to the ICU for at least 3 days;

(ii) had a first-day maximum SBP higher than 180 mmHg; and (iii) had been prescribed only one type of antihypertensive
agent during each stage. These inclusion criteria were selected to exclude patients with shock, significant hypotension,
and those who do not require or cannot tolerate antihypertensive therapies. Also, we limited our population to single
hypertensive agent receivers to remove the interaction of background antihypertensive medications. Although the major-
ity of patients were not admitted with hypertensive emergency as the principal diagnosis, they had severely elevated blood
pressure levels and received antihypertensive treatments. Thus, we assumed that achieving tighter BP control following
the intervention is a more successful outcome.
We selected the decrease in SBP as our target clinical endpoint, which is preferablewith a higher value.We also assumed

excessive reductions of patients’ blood pressure are not achievable by any single antihypertensive agent. We considered
ACEI, beta-blockers, CCB, and diuretics as possible treatments for each patient in both stages, where ACEI, beta-blockers,
and CCB were introduced orally, and diuretics were given intravenously (IV). Our goal is to estimate a two-stage DTR on
patients’ blood pressure control during their first two days in ICU. Immediately after the ICU admission, the DTR will
recommend the most effective antihypertensive class for the patient with severe acute arterial hypertension to use on day
1 based on their own clinical characteristics at ICU admission (stage 1). If the maximum SBP is still over 140 mmHg on
day 2, the DTRwill further adjust the hypertension treatment based on patient history and the outcomes will be examined
based on patient’s SBP on day 3 (stage 2).
Studies have shown that many clinical factors, including age, race, smoking status, and weight, are salient predictors of

SBP and significant risk factors for developing hypertension (Wang et al., 2006). However, the MIMIC-III structured data
have no information regarding patients’ smoking status. In addition, many patients had missing values for their body-
weight upon hospital admission. Without controlling for smoking and bodyweight, the drug effects toward SBP reduction
might be biased in the counterfactual outcomemodel when estimatingDTRs. Thus, we utilized the proposed IEmethod to
extract smoking and bodyweight information from physician notes, discharge summaries, and general notes. We detected
common patterns in the notes for smoking status by using the named boundary detection, named entity recognition,
and negation annotation. For example, “X years smoking history” and “encouraged smoking cessation” indicate current
smokers, “quit smoking X years ago” indicates former smokers, and “does not smoke” and “denies any smoking” sug-
gest nonsmokers. We assumed patients to be nonsmokers when the smoking status was not mentioned in the notes. For
bodyweight, we extracted numerical information from patterns like “weight (lb),” “wt,” and “(current): X kg.”
After adding supplemental information from clinical notes, the study population was summarized with 778 complete

observations (see Table 2). The majority of patients were in their 60s or 70s when admitted to the hospital. During the first
day, beta-blockers (42.4%)was themost commonly prescribed hypertension drug class, followed by diuretics (31.0%), ACEI
(17.6%), and CCB (9.0%). Four hundred and forty-two patients had their blood pressure successfully controlled or stopped
taking antihypertensive drugs by the end of the first day. During the second day, a larger proportion of the remaining
patients had IV diuretics compared to the first day.
All patient characteristics listed inTable 2were considered as potential tailoring variables for theDTRandwere included

in the counterfactual outcomemodel. Supplemental information from clinical notes allowed us to obtain additional body-
weight observations and the whole study population’s smoking status information. Smoking status is an important pre-
dictor in the counterfactual outcomemodels, which provides extra precision. For both stages, we utilized random forest to
model the counterfactual outcomes, as previous studies shown that the method accommodates complex individual treat-
ment effect estimation and provides accurate predictions for counterfactual outcomes (Foster et al., 2011; Lu et al., 2018;
Su et al., 2009). Removing smoking status was associated with a 1.2% and 4.5% increase in out-of-bag mean squared error
for models at stage 1 and stage 2, respectively.
We apply our proposed method with IE with this study cohort. For stage 1 (day 1 in ICU), our estimate suggests that the

optimal treatment was oral CCB for patients with maximum baseline SBP larger than 190 mmHg and minimal creatinine
larger than 2 Mg/dL. Otherwise, stage 1 optimal treatment strategy should be ACEI. If we failed to control patients’ blood
pressure during the first day in ICU, patients younger than 70 years of age should receive oral ACEI during the second day,
while beta-blockers was the best hypertensive agent for patients older than 70 years. The estimated personalized treatment
decision tree is illustrated in Figure 2. In fact, this DTR aligns with the guidelines for the treatment of hypertension by the
British Hypertension Society that ACEIs are the most recommended step one antihypertensive agent for younger patients
(Williams et al., 2004). Younger patients often respond better to ACEI therapy, potentially due to several factors (e.g., high
renin status). In addition, high creatinine indicates possible acute or ongoing kidney function decline, and in this setting,
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TABLE 2 Descriptive statistics of the variables among the study cohort

Stage 1 2
Total number of patients 778 336
Treatment
Oral ACEI 137 (17.6) 38 (11.3)
Oral beta-blockers 330 (42.4) 128 (38.1)
Oral CCB 70 (9.0) 23 (10.5)
IV diuretics 241 (31.0) 147 (43.8)
Age at admission* 68.1 (14.8) 68.8 (13.9)
Female 380 (48.8) 175 (52.1)
Black 138 (17.7) 59 (17.6)
Current or former smoker 506 (65.1) 217 (64.6)
Weight (lb)* 176.5 (59.7) 173.2 (55.1)
Kidney disease 140 (18.0) 59 (17.6)
Diabetes 336 (43.2) 142 (42.3)
COPD 38 (4.9) 20 (6.0)
Chronic hypertension 369 (47.4) 150 (44.6)
Daily max systolic BP* 196.6 (16.0) 181.6 (26.7)
Daily max diastolic BP* 100.6 (24.1) 91.9 (24.2)
Heart rate* 80.8 (15.3) 81.3 (14.8)
Temperature (C)* 36.9 (0.6) 37.0 (0.6)
Oxygen saturation* 97.1 (1.9) 97.0 (1.8)
Daily maximum hemoglobin* 11.7 (2.0) 11.6 (13.9)
Daily minimum creatinine (Mg/dL)* 1.8 (2.0) 1.6 (1.6)

Note: * mean (standard deviation) for continuous variables. Otherwise listed as 𝑛 (%).

F IGURE 2 Estimated optimal dynamic treatment regime for blood pressure management among critically ill patients with severe acute
hypertension. The optimal DTR was estimated using T-RL with extra information extracted from IE. Stage 1 indicates the time from the first
day to the second in ICU and stage 2 indicates the time from the second day to the third day in ICU

it is not surprising that ACEI therapy might be less effective or safe for acute blood pressure lowering given their potential
to further drop glomerular filtration rate (Schoolwerth et al., 2001). Thus, our results show that patients with creatinine
higher than normal levels and baseline SBP higher than 190 mmHg might benefit more from CCB. These results can
inform clinical practice with selected tailoring variables and meaningful cutoffs.
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We further compared the decrease in SBP for the study population under the estimated DTR versus the observed treat-
ment experiences. If the estimated treatment regime were followed, 67.8% of the patients in our study sample would have
better control of SBP compared to the observed values during their first two days in ICU.

5 DISCUSSION

In this paper, we proposed a joint estimation approach pairing T-RLwith IE from free-text clinical observations to estimate
the optimal DTR. Our approach can effectively alleviate data quality problems in the structured EHR data, including
missing values, erroneous entries, and unobserved risk factors. The reported simulation and clinical-data experiments
show that T-RL techniques significantly benefit from the use of IE. This strategy enables clinical decision support for larger
study populations, provides more accurate counterfactual outcome modeling, and supports a wider pool of candidate
tailoring variables.
The proposed algorithm fills missing values in structured data using clinical text information before the analysis. How-

ever, we might still have missingness after the filling completes when information is unavailable in either structured or
unstructured data. Depending on the study goals and potential variables involved, we might encounter different miss-
ing mechanisms. After merging structured and unstructured data, if we have missing completely at random or MAR,
our method provides valid estimation and inference with imputation. For cases when we have missing not at random
(MNAR), without any other prior constraints, it is very difficult to use data-driven approaches to account for systematic
differences between missing and observed values. In certain situations with MNAR, analytical bias from imputed data
might even exceed the potential bias estimated using the complete observations. We refer readers to the pattern-mixture
modeling and sensitivity analysis literature for potential solutions (Little, 1993; National Research Council and others,
2010; Permutt, 2016; Rubin, 2004).
Measurement error is another crucial issue in many empirical applications using EHR data. It may arise as a result of

data entry errors, inconsistent documentation of health conditions among physicians, no documentation for out-of-facility
services, and inability to capture information in unstructured fields (Chan et al., 2018). In this paper, we have discussed
the structured data entry error scenario where clinical text might offer an extra validation source. In our method, we
treat structured EHR data as the primary information source. When data are missing or potentially containing errors
in the primary source, we seek additional information from clinical text. However, we might have measurement errors
in both observed structured variables and clinical text when one of the two data sources is not available. In these situa-
tions, we cannot confirm the results by comparing and contrasting two data sources. Hence, the DTR estimation might
be biased when the errors are differential. In the existing literature for handling measurement error, popular methods
assume additive error in observed variables and suggest modeling the error-prone information using latent variables (Car-
roll, 1998; Carroll et al., 1993, 2006). While this is beyond the scope of the current study, it is a valuable future research
topic.
The proposed method is a promising remedy for several problems regarding estimating optimal DTR using EHR data.

However, the improvement of DTR estimation largely depends on the quality of unstructured clinical notes. The benefit
of IEmay be limited when there is little additional informative content embedded in the clinical free-text. Moreover, since
optimal IE is difficult to attain, some of the extracted information may potentially introduce bias in the final treatment
regime. Therefore, cautiously validating the derived information from the original text is recommended. For the rule-
based IE techniques, scalability can be a potential issue when the number of variables to extract is large. Future studies
might consider more advanced or scalable methods such as deep learning for extensive IE in a large text corpus when
estimating optimal DTRs.
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