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The wide-scale adoption of Electronic Health Records (EHRs) provides extensive information to support
precision medicine and personalized health care. In addition to structured EHRs, we leverage free-text
clinical information extraction (IE) techniques to estimate optimal dynamic treatment regimes (DTR), a
sequence of decision rules that dictate how to individualize treatments to patients based on treatment and
covariate history. The proposed IE of patient characteristics closely resembles “The clinical Text Anal-
ysis and Knowledge Extraction System” and employs named entity recognition, boundary detection, and
negation annotation. It also utilizes regular expressions to extract numerical information. Combining the
proposed IE with optimal DTR estimation, we extract derived patient characteristics and use Tree-based
Reinforcement Learning (T-RL) to estimate multi-stage optimal DTRs. Information extraction significantly
improved the estimation in counterfactual outcome models compared to using structured EHR data alone,
which often includes incomplete data, data entry errors, and other potentially unobserved risk factors. More-
over, including IE in optimal DTR estimation provides larger study cohorts and a broader pool of candidate
tailoring variables. We demonstrate the performance of our proposed method via simulations and an ap-
plication using clinical records to guide blood pressure control treatments among critically ill patients with
severe acute hypertension. This joint estimation approach improves the accuracy of identifying the opti-
mal treatment sequence by 14-24% compared to traditional inference without using information extraction,
based on our simulations over various scenarios. In the blood pressure control application, we success-
fully extracted significant blood pressure predictors that are unobserved or partially missing from structured
EHR.
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1 Introduction

Personalized medicine provides individualized patient treatment recommendations by tailoring specific
treatments to heterogeneous patients with various characteristics, unlike the one-size-fits-all model of care.
Dynamic treatment regime represents an effective vehicle under the umbrella of personalized medicine that
offers adaptive treatment strategies (Chakraborty and Murphy, 2014). Especially for chronic conditions,
a course of medical intervention containing multiple treatment stages is often needed for patients. A
driving motivational challenge in this study is the time-varying treatment decision to control patients blood
pressure during the first two days in intensive care units (ICU). We consider four potential classes of
antihypertensive agents angiotensin-converting enzyme inhibitors (ACEI), beta-blockers, calcium channel
blockers (CCB), and diuretics. The first treatment will be assigned to patients based on medical history and
clinical evidence immediately after the ICU admission. If the treatment gets the elevated blood pressure
controlled, no further action is needed on day two. Otherwise, a subsequent treatment is recommended
to non-responders in order to better manage the patients blood pressure. In this example, we have two
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2 Zhou et al.: Optimal DTR estimation using IE from clinical text

sequential treatment decision stages, and one possible DTR example is to treat patients younger than 55
years of age with ACEI and treat the rest of patients with CCB on day one; then provide CCB to non-
responders on day two.

To guide evidence-based effective treatment decisions, researchers have developed various statistical
methods to evaluate and identify the optimal DTR, tailoring the optimal treatment choice to each individual
to maximize their expected clinical outcome given current disease status and medical history. Abundant
patient information is needed to obtain accurate estimations for desired clinical outcomes and provide
various candidate tailoring variables while constructing treatment rules.

Many statistical methods have been developed for identifying optimal DTRs using observational data.
Commonly used parametric and semi-parametric methods include marginal structural models with inverse
probability weighting (Murphy et al., 2001; Hernn, Brumback, and Robins, 2001; Wang et al., 2012),
G-estimation of structural nested mean models (Robins, 1994; Robins, 1997; Robins, 2004), and targeted
maximum likelihood estimations (Laan and Rubin, 2006). These methods provide high interpretability
but make specific modeling assumptions for a sequence of conditional models, which may be practically
unattainable in certain cases. To alleviate strict modeling assumptions and maintain interpretability, Laber
and Zhao proposed a tree-based method for estimating optimal treatment regimes (Laber and Zhao, 2015).
Tao and Wang generalized the method using the doubly robust approach and developed Tree-based Re-
inforcement Learning (T-RL) that supports multi-stage treatment decision making (Tao and Wang, 2017;
Tao, Wang, and Almirall, 2018).

Electronic Health Records (EHRs) are major data sources for observational studies in the biomedical
field, including detailed information about patients medical histories (e.g., diagnoses, medications, and
test results). As EHRs are adopted widely across different healthcare institutions, an increasing amount
of health information is available to develop and fine-tune optimal DTRs. To the best of our knowledge,
existing methods only consider using information from structured data. In EHR, structured data is designed
for the management of care or billing purposes. Therefore, critical patient characteristics might not be
available in the structured format when studying a specific disease. For example, tobacco use is a risk factor
for many chronic diseases, including vascular diseases and lung cancer (Bartal, 2001; Doll, 1998), but some
structured EHR archives may not include smoking status as a regular entry. Moreover, structured EHR
data is often sparse and partial missingness can occur in many variables. In addition, manual transcription
errors may occur in 1-10% of the structured EHR data (Mays and Mathias, 2019). For these reasons, it is
challenging to collect various and accurate patient characteristics from structured EHR, which is essential
for selecting the correct tailoring variables in optimal DTR. However, extracting additional information
from unstructured EHR data may offer a solution.

Narrative content in EHR, like clinical notes, represents a supplementary data resource for patient char-
acterization. Such text information is recorded by healthcare providers describing patient summary, reason
of hospital visits, and activities arising from episodes of patient care. Information extraction techniques
in clinical notes were well studied in many disease-specific investigations for identifying unique disease
conditions (Wang et al., 2018). Most of the information extraction techniques are rule-based, depending on
regular expression matching. The clinical Text Analysis and Knowledge Extraction System (cTAKES) is
the most popular Information extraction method facilitating biomedical studies based on clinical free-text
data (Savova et al., 2010). cTAKES includes many individual tools, including sentence boundary detec-
tion, tokenization, named entity recognition, and negation annotation. These individual components can
be grouped to handle the extraction of patient-specific characteristics.

Nevertheless, no existing work has evaluated the benefit of performing information extraction using
clinical notes to enhance the accuracy of the estimated optimal DTR systematically. In this paper, we
developed a technique for extracting patient characteristics from the EHR narrative contents to improve
the estimation of optimal DTR, which adopts T-RL as the treatment strategy estimating approach and
employs cTAKES components as the IE tool. Our extended simulations demonstrate the benefits of the
proposed method under different circumstances. Applying the proposed joint approach to the Medical
Information Mart for Intensive Care III (MIMIC-III) database, we exhibit the effective use of information
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extraction on estimating an optimal two-stage DTR that guides hypertensive drug use among critically ill
patients with severe acute hypertension.

2 Methods

2.1 Notations and problem formalization

In this section, we formally define the problem of optimal DTR estimation using EHR data. Using
the general DTR framework, let n denote the number of patients, 7' denote the number of treatment
stages, and A; = {1,..., K} represent the observed treatment options at the 4" treatment stage, where
Jj = 1,2,--- T and K; > 2. For the ICU blood pressure management example, we have T' = 2,
K1 = Ky = 4. In observational data, patients are observed to follow one of the treatments available
at each stage. Let A; denote the treatment at the jt" treatment stage that may take a value aj, where
aj € Aj = {1,...,K,}. Let Ay = (Aj,...,Ar) denote the sequence of treatments until stage 7.
Similarly, we denote the observed treatment routes with ar = (a1,...,ar). We use R; to denote the
clinical outcome observed following A;, which varies under different patient characteristics X ; and prior
treatments received Aj_l. The overall clinical outcome at stage 7" is considered a functional of the reward
history, Y = f (Ry, ..., Rr), where f (-) is a pre-specified function (e.g., sum). We assume Y is bounded
and larger values of Y is associated with better health outcomes. Stage-wise individualized treatment rec-
ommendations are inferred from the observed final outcome Y, the current candidate treatments a; € A,
and the patient medical history H; = (A;_1, X;‘-F)T € H,;.

When estimating optimal DTR using EHR data, patient characteristics can be observed from two data
components: structured data elements and unstructured free-text. We denote the patient characteristics
at stage j observed in structured EHR data by S;, which describes n, patients with g, covariates. S;
might contain sporadic missing values and entry errors. Let T'; denote the patient characteristics at stage
j extracted from the free-text data, which contains n; patients and ¢, covariates. After combining the two
components we obtain X; with n patients and ¢ covariates having potentially more patients and covariates
than the structured data S;. The addition of T; can help handle missingness and adding extra (derived)
features that are not directly observed from S; and correct entry errors. With the observed data, we aim
to find a sequence of personalized treatment rules g = (g1, .. ., gr) that maximizes the expectation of the
counterfactual clinical outcome Y*(g) if the g is followed to make treatment decisions, where g; is the
decision rule at stage j and it maps from patient history H; to potential treatments a; € A;. That is, we
aim to find the optimal treatment regime g°P?, such that

g = argmaxE{Y*(g)}.
g

2.2 Information extraction from EHRs

Below we describe the proposed technique to extract information and construct structured target variables
from clinical free text for optimal DTR estimation. We consider using rule-based information extraction
tools that rely on regular expressions (Karttunen et al., 1996), which provide a standard mechanism to
select specific strings using a bit pattern. With regular expressions, we can successfully search for patient
information consisting of specific keywords and punctuation. Specifically, the proposed protocol closely
follows the cTAKES system (Savova et al., 2010) and employs the following individual components: (1)
Named entity recognition, which is the core component to identify and locate the target information; (2)
Boundary detection, which detects the start and end location of the desired informative substring; and (3)
Negation annotation, which helps determine the binary status referring to an identified named entity. The
extraction procedure adapts to different types of variables. Numeric variables can be extracted using (1)
and (2), whereas (1) and (3) may be used to extract binary and categorical variables.
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For each target variable, the method takes the following four steps to extract derived patient character-
istics from EHR clinical notes using cTAKES components and regular expressions:

I. Identify the type and section of the clinical note that might contain the target information and limit the
text materials for extraction accordingly. For example, we search among “discharge summary” or “physi-
cian notes” to extract information regarding hospital stay and among “pharmacy” sections for medication
usage.

II. Detect boundaries of the target information using (2). Patient information is usually contained in
one sentence or a number surrounded by words. Identifying the boundaries of the target information helps
to further fine prune the target string. Punctuation, including periods and colons and units like “Ib,” “cm,”
and “kg,” can indicate the beginning of or the end of the target string.

III. Search for named entities or target keywords. After obtaining the candidate strings in specific
sections of the clinical notes, we search for relevant keywords in those strings with (1). For example, if we
are extracting patient height, we can search for “height,” “ht,” or “hgt.”

IV. Convert target strings into structured data. For numerical information, we use an ad hoc process by
analyzing the possible structures of the target strings and use regular expressions to extract the numerical
values and corresponding units. For binary or categorical information, we employ (3) to search for negative
tags around (within five tokens of) the target keyword. The default status is truth. If a negative tag is
identified, the status of the corresponding condition is mapped to false.

2.3 The estimation of DTR using Tree-based Reinforcement Learning (T-RL)

After combining structured and free-text EHR data, we utilize T-RL (Tao, Wang, and Almirall, 2018) to
estimate the optimal DTR. T-RL is a non-parametric optimization method that outputs an unsupervised
decision tree for treatment guidance at each stage, where each fork is a split in a tailoring variable, and
each leaf node contains a recommended treatment for the corresponding patient subgroup.

When estimating the optimal DTR, we adopt the counterfactual framework for causal inference defined
in Robins 1986. Under the three standard assumptions: consistency, no unmeasured confounding, and pos-
itivity, we can link the mean of counterfactual outcomes with the observed information. More specifically,
the consistency assumption implies that the observed outcome agrees with the counterfactual outcome for
any individual patient had the patient been given this specific observed treatment. The no unmeasured
confounding assumption guarantees that the treatment assignment is independent of future outcomes given
patient history. Due to the nature of observational studies, these assumptions are not testable when using
EHR data to estimate optimal DTRs. However, they may be plausible if we have collected sufficient patient
information and the data covers a wide variety of patients.

At stage T, we denote Y* (A1, A, -+ , Ap_1,ar) or Y* (ar) as the counterfactual outcome for pa-
tients receiving treatment a7 given previous treatments. We aim to search for an optimal treatment regime
97 * that maximizes the expected counterfactual outcome. Using backward induction, at stage j (j<T),
we maximize the expected counterfactual outcome when all future treatments are optimized, which is de-

noted by Y* (A;_1, aj, g;-’fl, e g%pt). However, such counterfactual outcomes are not observable for all
patients. We estimate stage-wise pseudo-outcome denoted as PO; = E [V (4y,..., Aj, g;itl, g

to approximate the target outcome and obtain g;’p " T-RL uses doubly robust augmented inverse probability

weighted estimates to predict patients counterfactual outcomes under all possible treatments.

The T-RL algorithm seeks the optimal regime with a sequence of treatment decision rules at each stage
by constructing a binary tree. At any stage, we use E [Y; (a)] to denote the estimated pseudo outcome for
patienti = 1,2,---,n given treatment a € A. For considering each split that separates patient group 2
into w and w®, the T-RL compares the parent node expectation:

P(9.6) = max ~ SB[V (o)
=1

acA n
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with the aggregate expectation of the proposed split-pair of children nodes:
P(Quw)= max — (Z EY; (@) (icw)+ > E[Y;(a")I(ie m) ,
’ ‘ i=1

where ¢ denotes no partition of the patient group (2. This comparison determines if the proposed (parent)
node split is beneficial. When P(Q,w) — P(, ¢) > 0, the algorithm will make the partition with the
corresponding tailoring variable and optimal treatments. To avoid overfitting by pruning the tree, we use
stopping rules that consider the minimal node size, minimal improvement for P({2, w) — P(£2, ¢) and the
maximum depth of the tree.

3 Simulation

We conducted two simulation studies in this section. First, we simulated a two-stage (I'" = 2) with
three treatments per stage (K; = K3 = 3) observational study and its corresponding EHR data to compare
the performance of our method with the traditional tree-based reinforcement learning method without
information extraction in estimating optimal DTRs. The full data contained stage-wise rewards (11, RR2),
treatments received (A1, As), 3 complete structured patient characteristics (X1, X2, X3), and 2 patient
characteristics that can be extracted from the clinical narratives: weight in pounds (X4) and smoking status
(X5), where X5 is binary. We considered cases where X4 contained missing values or had entry errors and
X5 was not observed in the structured entries. Additionally, we conducted a three-stage (7" = 3) study that
has K1 = Ko = 3 and K3 = 2 for stage-wise treatments. The patient characteristics, stage-wise rewards
and treatments set up for its first two stages were identical to the first study. The third stage with potential
treatments Az and reward R3 added complexity to optimal DTR estimation. In both studies, we compared
the performance of the estimated optimal DTRs with and without information extraction under the above
cases for X4 and X5.

To create a scenario with simulated clinical text, we first sampled 27,707 discharge summaries from
the MIMIC-III data (Johnson et al., 2016) that contained information about patients weight and had no
information about smoking. According to original MIMIC-III clinical notes, patient smoking status were
often described in short phrases throughout the discharge summaries. Thus, we randomly inserted smoking
status information in a subset of text documents to simulate smokers and non-smokers. The inserted
information included smoker tags like “10 pack-year smoking” and “heavy smoking,” and non-smoker
tags like “tobacco: denies.” As a result, we simulated 45% of smokers in our study population.

For all simulation cases, X7, X2, X3 were sampled independently from N (0,1). When we observed
weight information in text, the true X4 values agreed with the text information; otherwise, it was sampled
from N (195, 51), which approximates the weight distribution observed in the original text. The true X5 is
1 when a smoker tag was assigned and 0 otherwise. We set A; = Ay = {0, 1,2}. In the first stage, the
treatments A; followed a Multinomial(7gy, 711, 721) distribution where

1
TO1 = exp (0.005X4 + 0.5X5) + exp (0.5X5 — 0.5X5) + 1
B exp (0.005X4 + 0.5X5)
M= exp (0.005X4 + 0.5X5) + exp (0.5X5 — 0.5X5) + 1
exp (0.5X3 — 0.5X5)
21 =

exp (0.0056X4 + 0.5X5) + exp (0.5X3 — 0.5X5) + 1 °

We considered a tree-structured true optimal regime such that

g (Hy) = I (X5 > 0) x I (X; > —0.5) + I (X1 > 0.5).
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Correspondingly, the stage-wise reward was generated by
Ry = exp {1.5 +0.003X, — [1.5X5 — 2| x [4; — g7 (Hl)]g} tel,

where €; ~ N (0, 1). For stage 2, the treatments were distributed as Multinomial(mgz, 712, T22), where

1
027 xp (0.2R; — 0.5) + exp (0.5X1) + 1
- exp (0.2R; — 0.5)
exp (0.2R; — 0.5) + exp (0.5X) + 1
exp (0.5X7)
22 =

exp (0.2R; — 0.5) +exp (0.5X7) +1

The optimal decision rule for the second stage depends on the first treatment response
g3 (Hy) = I (Xy > —1) x [[ (Ry > 0) + I (R, > 2)].

The second stage reward was generated by

Ry = exp {118 + 0.2X, — [L.5X, + 2| x [Ay — g3 (Ho)]"} + €2,

where e2 ~ N (0,1). For the two-stage simulation study, the target clinical outcome is the sum of two
stage rewards Y = R; + Rs.

In the 3-stage scenario, data for the first two stages was simulated using the above setting, and treatments
Az € {0, 1} in the third stage followed Bernoulli(m3), where

exp(0.1Ry + 0.3X3)
exp(O.le + 03X3) +1

™3 =

was the probability of getting A3 = 1. We define the third stage true optimal as
957" (H3) = I(Ry > 0).
The corresponding reward function was generated by
o 2
R3 = exp{0.1X; — [A3 — g5t (Hs)] "} + €3,

where €5 ~ N (0, 1). The target clinical outcome for the three-stage simulation study is the sum of stage-
wise rewards Y = Ry + Ry + R3.

We considered 2 possible cases of the observed data. For Case I, some of the X, entries contained
errors that the observed values were 100 times larger than the true values. The errors were introduced with
the following probability

P (X4 contains entry error) = 0.1 x I (X5 = 0) x I (weight observed in text) .

In Case 1, X4 contained entry errors and X5 was not observed in structured EHR. When using information
extraction, we obtained the full complete data via combining information. For Case 2, the structured data
contained missing values such that X, was missing at random (MAR). The probability of missing was
assigned based on X5 and if weight information was included in the clinical notes:

P(Xy=NA)=0.1+0.5x1I(X5=0) x I(weight observed in text) .
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In Case 2, X4 was MAR in the structured data but missing completely at random with 10% missing when
combining information extracted from clinical text. Also, X5 was not observed in structured data. Since
imputation might alleviate the missing data problem, we also considered imputing X, using missForest
(Stekhoven and Biihlmann, 2012) under the default setting with all other variables as potential predictors,
which created a single complete dataset under each setting. Thus, under Case 2, we also compare the
performances between the imputed dataset and the subset of complete observations.

We replicated the simulation 1,000 times with training samples of size n = 500 orn = 1,000
and test samples of size n = 1,000 and applied both methods (with or without information extraction).
The estimated DTRs (§°P%) were evaluated by the percentage of optimal two-stage treatment recommen-
dations (opt%) given to the patients in the test set and the estimated expected counterfactual outcome
(E{Y™* (§°P")}) in the test set using the true rewards model.

Table 1 summarizes the simulation results. Our IE method successfully extracted the true smoking sta-
tus from the text messages for all patients. Thus, all datasets with IE observed the true X5 whereas the
datasets without information extraction did not contain X5. Case 1 mimicked the scenario when entry
errors are present for some structured variables. As shown in Table 1, when n = 500, for both simulation
studies, our proposed method with information extraction under Case 1 greatly improved the accuracy to
identify the optimal treatment for study subjects (91.5% vs. 58.8% in the two-stage and 86.8% vs 54.2%
in the three-stage study). The estimated mean counterfactual outcome had increased over 20% compared
to the traditional method without information extraction. Increasing sample size to 1,000 had improved
the performance of both the proposed method and the traditional method, while the advantage of using
our proposed method remained similar. For Case 2, where missingness was involved in X, applying our
proposed method on the imputed data provided similar opt% and E {Y* (g°P*)} compared to the full data
without missingness (Case 1 with information extraction). We also noticed that the improvements com-
pared to the naive method were similar between the two-stage and three-stage simulation scenarios. Not
surprisingly, the three-stage example required slightly larger sample sizes to achieve the same accuracy
level using our method. In general, simulation cases using the imputed datasets outperformed the cases us-
ing a subset with only complete observations. However, our proposed method with information extraction
always significantly outperformed the naive method across different sample sizes and scenarios.

The empirical distribution of E{Y™* (§°P*)} is shown in Figure 1. We observed that using the additional
information extracted from clinical text, most of E{Y* (g°?*)} were closer to their optimal values. With
a larger sample size (n = 1,000), the values were more centralized towards the optimal counterfactual
outcome mean. When using the method without information extraction, the values of E{Y* (§°?*)} were
more disperse and failed to approach the optimal counterfactual outcome even with a reasonably large
sample size n = 1,000.

4 Clinical case-study

Now we consider a specific clinical case-study involving personalized antihypertensive agents for critically
ill patients with severe acute arterial hypertension.

Severe acute arterial hypertension can cause significant consequences on various organs, including the
heart, kidneys, brain, and lungs (Styron et al., 2009; Szczech et al., 2010), leading to life-threatening com-
plications. Acute arterial hypertension is commonly encountered in ICU and acute care settings (Shafi,
2004). Patients with a marked increase in blood pressure and acute severe target-organ injuries (hyperten-
sive emergencies) often require hospitalization in an ICU for immediate blood pressure control (Salgado,
Silva, and Vincent, 2013). In “hypertensive emergencies”, the therapeutic strategy requires achieving care-
ful and staged blood pressure lowering goals within 24 hours in order to avoid sudden, excessive reductions.
“Hypertensive urgencies” describes the scenario when patients have severely elevated blood pressure but
are not in danger of immediate acute end-organ injury. In this scenario, while blood pressure reduction is
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Table 1 Simulation results from 1,000 replications. The weight variable (X,) in structured EHR con-
tained entry errors in Case 1 and had missing values in Case 2. Under both cases, the current smoking
status (X5) was not observed in structured EHR data. opt% is the percentage of correctly identifying
the optimal treatment combinations among the test sample. E {Y* (g°P*)} shows the estimated expected
counterfactual outcome. Standard deviations are recorded in parenthesis.

Two-stage Study

Scenario n =500 n = 1,000

opt%  E{Y*(g")} opt%  E{Y*(g")}
Case 1 with text 91.5(13.4) 11.10(0.76) 97.2(7.4) 11.35(0.44)
Case 1 without text 58.8 (8.3) 9.08 (0.39) 63.1(7.1) 9.31 (0.30)

Case 2 with text,
90.1(13.9) 10.93(0.93) 96.3(8.8) 11.23(0.62)

complete observations only

Case 2 with text, missing imputed 91.7(13.1) 11.11(0.75) 97.2(7.4) 1135 (0.44)

Case 2 without text,
57.4 (10.2) 8.75 (0.77) 64.5 (7.0) 9.25 (0.53)

complete observations only

Case 2 without text, missing imputed  61.0 (7.8) 9.22 (0.31) 65.4 (5.6) 9.43 (0.24)

Three-stage study

Scenario n =500 n = 1,000

opt%  E{Y'(g™)} opt%  E{Y*(57)}
Case 1 with text 86.8 (16.1)  12.03(0.80) 95.8(8.1) 12.39(0.47)
Case 1 without text 542 (11.5)  9.63(0.80)  63.7(7.1) 10.25(0.49)

Case 2 with text, missing imputed 86.7 (15.9) 12.05(0.91) 953(8.3) 12.32(0.56)
Case 2 without text, missing imputed ~ 57.5 (9.8) 10.10 (0.34)  64.1(6.0) 10.30(0.24)

warranted, there are no specific evidence-based guidelines on treatment goals. As such, clinical recommen-
dations typically suggest lowering blood pressure less aggressively and to aim for control over the ensuing
few days. However, there are no absolute blood pressure thresholds that define hypertensive emergencies
or urgencies, as the actual levels differ among individuals depending on a number of characteristics. In
general, a clinically ill patient with systolic blood pressure (SBP) levels greater than 180 mmHg or diastolic
blood pressures greater than 110 mmHg may require intervention (Marik and Varon, 2007).

Four classes of antihypertensive agents, including angiotensin-converting enzyme inhibitors (ACEI),
beta-blockers, calcium channel blockers (CCB), and diuretics, are commonly used to treat hypertension.
Studies suggest that antihypertensive drug responses are heterogeneous across patients (Mahmud and
Feely, 2007). We estimated a two-stage dynamic treatment regime to guide antihypertensive treatment
for critically ill patients with severe acute hypertension using IE and T-RL. The DTR was constructed us-
ing The Medical Information Mart for Intensive Care III data (Johnson et al., 2016), a de-identified EHR
data with over 40,000 patients who stayed in critical care units at a large tertiary care hospital.
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Figure 1 Empirical distribution of E{Y™* (g°*)} from 1,000 simulation replications across different
simulation scenarios. The weight variable (X,) in structured EHR contained entry errors in Case 1 and
had missing values in Case 2 but got imputed. Under both cases, the current smoking status (X5) was not

observed in structured EHR data.

Patients with the following conditions were included in the study population: (1) admitted to the ICU for
at least 3 days; (2) had a first-day maximum SBP higher than 180 mmHg; and (3) had been prescribed only
one type of antihypertensive agent during each stage. These inclusion criteria were selected to exclude pa-
tients with shock, significant hypotension, and those who do not require or cannot tolerate antihypertensive
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therapies. Also, we limited our population to single hypertensive agent receivers to remove the interaction
of background antihypertensive medications. Although the majority of patients were not admitted with
hypertensive emergency as the principal diagnosis, they had severely elevated blood pressure levels and
received antihypertensive treatments. Thus, we assumed that achieving tighter BP control following the
intervention is a more successful outcome.

We selected the decrease in SBP as our target clinical endpoint, which is preferable with a higher
value. We also assumed excessive reductions of patients blood pressure are not achievable by any single
antihypertensive agent. We considered ACEI, beta-blockers, CCB, and diuretics as possible treatments for
each patient in both stages, where ACEI, beta-blockers, and CCB were introduced orally, and diuretics
were given intravenously (IV). Our goal is to estimate a two-stage DTR on patients blood pressure control
during their first two days in ICU. Immediately after the ICU admission, the DTR will recommend the
most effective antihypertensive class for the patient with severe acute arterial hypertension to use on day
one based on their own clinical characteristics at ICU admission (stage 1). If the maximum SBP is still over
140 mmHg on day two, the DTR will further adjust the hypertension treatment based on patient history
and the outcomes will be examined based on patients SBP on day 3 (stage 2).

Studies have shown that many clinical factors, including age, race, smoking status, and weight, are
salient predictors of systolic blood pressure and significant risk factors for developing hypertension (Wang
et al., 2006). However, the MIMIC-III structured data had no information regarding patients smoking sta-
tus. In addition, many patients had missing values for their bodyweight upon hospital admission. Without
controlling for smoking and bodyweight, the drug effects towards SBP reduction might be biased in the
counterfactual outcome model when estimating DTRs. Thus, we utilized the proposed IE method to ex-
tract smoking and bodyweight information from physician notes, discharge summaries, and general notes.
We detected common patterns in the notes for smoking status by using the named boundary detection,
named entity recognition, and negation annotation. For example, “X years smoking history” and “encour-
aged smoking cessation” indicates current smokers, “quit smoking X years ago” indicates former smokers,
and “does not smoke” and “denies any smoking” suggests non-smokers. We assumed patients to be non-
smokers when the smoking status was not mentioned in the notes. For bodyweight, we extracted numerical
information from patterns like “weight (Ib),” “wt,” and “(current): X kg.”

After adding supplemental information from clinical notes, the study population was summarized with
778 complete observations (see Table 2). The majority of patients were in their 60s or 70s when admitted to
the hospital. During the first day, beta-blockers (42.4%) was the most commonly prescribed hypertension
drug class, followed by diuretics (31.0%), ACEI (17.6%), and CCB (9.0%). Four hundred and forty-two
patients had their blood pressure successfully controlled or stopped taking antihypertensive drugs by the
end of the first day. During the second day, a larger proportion of the remaining patients had IV diuretics
compared to the first day.

All patient characteristics listed in Table 2 were considered as potential tailoring variables for the dy-
namic treatment regime and were included in the counterfactual outcome model. Supplemental information
from clinical notes allowed us to obtain additional bodyweight observations and the whole study popula-
tion’s smoking status information. Smoking status is an important predictor in the counterfactual outcome
models, which provides extra precision. For both stages, we utilized random forest to model the counter-
factual outcomes, as previous studies shown that the method accommodates complex individual treatment
effect estimation and provides accurate predictions for counterfactual outcomes (Lu et al., 2018; Su et al.,
2009; Foster, Taylor, and Ruberg, 2011). Removing smoking status was associated with a 1.2% and 4.5%
increase in out-of-bag mean squared error for models at stage 1 and stage 2, respectively.

We apply our proposed method with information extraction with this study cohort. For stage 1 (day
one in ICU), our estimate suggests that the optimal treatment was oral CCB for patients with maximum
baseline SBP larger than 190 mmHg and minimal creatinine larger than 2 Mg/dL. Otherwise, stage 1 op-
timal treatment strategy should be ACEIL. If we failed to control patients blood pressure during the first
day in ICU, patients younger than 70 years of age should receive oral ACEI during the second day, while
beta-blockers was the best hypertensive agent for patients older than 70 years. The estimated personalized
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Table 2 Descriptive statistics of the variables among the study cohort. Note: * mean (standard deviation)

for continuous variables. Otherwise listed as n (%).

Stage 1 2
Total number of patients 778 336
Treatment
Oral ACEI 137 (17.6) 38 (11.3)
Oral beta-blockers 330 (42.4) 128 (38.1)
Oral CCB 70 (9.0) 23 (10.5)
IV diuretics 241 (31.0) 147 (43.8)
Age at Admission* 68.1 (14.8) 68.8 (13.9)
Female 380 (48.8) 175 (52.1)
Black 138 (17.7) 59 (17.6)
Current or Former Smoker 506 (65.1) 217 (64.6)
Weight (Ib)* 176.5 (59.7) 173.2(55.1)
Kidney disease 140 (18.0) 59 (17.6)
Diabetes 336 (43.2) 142 (42.3)
COPD 38 (4.9) 20 (6.0)
Chronic Hypertension 369 (47.4) 150 (44.6)
Daily Max Systolic BP* 196.6 (16.0) 181.6 (26.7)
Daily Max Diastolic BP* 100.6 (24.1) 919 (24.2)
Heart Rate* 80.8 (15.3)  81.3(14.8)
Temperature (C)* 36.9 (0.6) 37.0 (0.6)
Oxygen Saturation* 97.1 (1.9) 97.0 (1.8)
Daily Maximum Hemoglobin* 11.7 (2.0) 11.6 (13.9)
Daily Minimum

1.8 (2.0) 1.6 (1.6)

creatinine (Mg/dL)*

treatment decision tree is illustrated in Figure 2. In fact, this DTR aligns with the guidelines for the treat-
ment of hypertension by the British Hypertension Society that ACEIs are the most recommended step one
antihypertensive agent for younger patients (Williams et al., 2004). Younger patients often respond better
to ACEI therapy, potentially due to several factors (e.g., high renin status). Additionally, high creatinine
indicates possible acute or ongoing kidney function decline, and in this setting, it is not surprising that
ACEI therapy might be less effective or safe for acute blood pressure-lowering given their potential to
further drop glomerular filtration rate (Schoolwerth et al., 2001). Thus, our results show that patients with
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creatinine higher than normal levels and baseline SBP higher than 190 mmHg might benefit more from
CCB. These results can inform clinical practice with selected tailoring variables and meaningful cutoffs.

We further compared the decrease in SBP for the study population under the estimated dynamic treat-
ment regime versus the observed treatment experiences. If the estimated treatment regime were followed,
67.8% of the patients in our study sample would have better control of SBP compared to the observed
values during their first two days in ICU.

e —_
| Age <70 |
i Yes No :
' I
| :
: Use ACEI Max SBP <190 Use ACEI Use |
| Beta-blockers

. Yes No |
| i
i Use ACEI Use CCB |
| .
i Stage 1 Stage 2 |
: I
\ Y

Figure 2 Estimated optimal dynamic treatment regime for blood pressure management among critically
ill patients with severe acute hypertension. The optimal DTR was estimated using T-RL with extra infor-
mation extracted from IE. Stage 1 indicates the time from the first day to the second in ICU and stage 2
indicates the time from the second day to the third day in ICU.

5 Discussion

In this paper, we proposed a joint estimation approach pairing tree-based reinforcement learning with
information extraction from free-text clinical observations to estimate the optimal DTR. Our approach can
effectively alleviate data quality problems in the structured EHR data, including missing values, erroneous
entries, and unobserved risk factors. The reported simulation and clinical-data experiments show that T-RL
techniques significantly benefit from the use of IE. This strategy enables clinical decision support for larger
study populations, provides more accurate counterfactual outcome modeling, and supports a wider pool of
candidate tailoring variables.

The proposed algorithm fills missing values in structured data using clinical text information before
the analysis. However, we might still have missingness after the filling completes when information is
unavailable in either structured or unstructured data. Depending on the study goals and potential variables
involved, we might encounter different missing mechanisms. After merging structured and unstructured
data, if we have missing completely at random or missing at random, our method provides valid estimation
and inference with imputation. For cases when we have missing not at random (MNAR), without any other
prior constraints, it is very difficult to use data-driven approaches to account for systematic differences
between missing and observed values. In certain situations with MNAR, analytical bias from imputed data
might even exceed the potential bias estimated using the complete observations. We refer readers to the
pattern-mixture modeling and sensitivity analysis literature for potential solutions (Little, 1993; National
Research Council and others, 2010; Rubin, 2004; Permutt, 2016).
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Measurement error is another crucial issue in many empirical applications using EHR data. It may
arise as a result of data entry errors, inconsistent documentation of health conditions among physicians,
no documentation for out-of-facility services, and inability to capture information in unstructured fields
(Chan et al., 2018). In this paper, we have discussed the structured data entry error scenario where clinical
text might offer an extra validation source. In our method, we treat structured EHR data as the primary
information source. When data is missing or potentially containing errors in the primary source, we seek
additional information from clinical text. However, we might have measurement errors in both observed
structured variables and clinical text when one of the two data sources is not available. In these situations,
we cannot confirm the results by comparing and contrasting two data sources. Hence, the DTR estimation
might be biased when the errors are differential. In the existing literature for handling measurement error,
popular methods assume additive error in observed variables and suggest modeling the error-prone infor-
mation using latent variables (Carroll, Gail, and Lubin, 1993; Carroll, 1998; Carroll et al., 2006). While
this is beyond the scope of the current study, it is a valuable future research topic.

The proposed method is a promising remedy for several problems regarding estimating optimal DTR
using EHR data. However, the improvement of DTR estimation largely depends on the quality of unstruc-
tured clinical notes. The benefit of information extraction may be limited when there is little additional
informative content embedded in the clinical free-text. Moreover, since optimal information extraction is
difficult to attain, some of the extracted information may potentially introduce bias in the final treatment
regime. Therefore, cautiously validating the derived information from the original text is recommended.
For the rule-based information extraction techniques, scalability can be a potential issue when the number
of variables to extract is large. Future studies might consider more advanced or scalable methods such as
deep learning for extensive information extraction in a large text corpus when estimating optimal DTRs.
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