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1 | INTRODUCTION

Abstract

We present an adaptive algorithm for constructing surrogate models of multi-
disciplinary systems composed of a set of coupled components. With this goal we
introduce ‘coupling’ variables with a priori unknown distributions that allow surro-
gates of each component to be built independently. Once built, the surrogates of the
components are combined to form an integrated-surrogate that can be used to pre-
dict system-level quantities of interest (Qol) at a fraction of the cost of the original
model. The error in the integrated-surrogate is greedily minimized using an experi-
mental design procedure that allocates the amount of training data, used to construct
each component-surrogate, based on the contribution of those surrogates to the error
of the integrated-surrogate. The multi-fidelity procedure presented is a generaliza-
tion of Multi-Index Stochastic Collocation (MISC) that can leverage ensembles of
models of varying cost and accuracy, for one or more components, to reduce the com-
putational cost of constructing the integrated-surrogate. Extensive numerical results
demonstrate that, for a fixed computational budget, our algorithm is able to produce
surrogates that are orders of magnitude more accurate than methods that treat the
integrated system as a black-box.

KEYWORDS:
Uncertainty quantification, integrated systems, surrogate, experimental design, dimension reduction,

multi-disciplinary, multi-physics, multi-fidelity

Modeling complex systems often involves integrating numerous components from multiple disciplines. The components of
the system can be coupled by either feed-forward or feed-back coupling. For a single evaluation of the system inputs, feed-
forward coupling requires passing the outputs of upstream components to downstream components, whereas feedback coupling
requires relaxation methods, such as fixed point iteration (FPI), to determine the component outputs that are interdependent.
Consequently, outer-loop problems such as uncertainty quantification and design, which require repeated interrogation of the
coupled system, can be intractable when one or more component-models are computationally expensive to simulate.

Surrogate methods, such as polynomial chaos!'?, Gaussian processes*>, low-rank decompositions”%2, sparse grid interpo-
102 reduced basis approximations 3141510 and neural networks 718 have all been used successfully to reduce the cost
of analyzing computationally expensive models. However, these methods can be inefficient when applied to integrated systems
because they treat the system-model as a black-box and do not exploit the coupling structure linking components.
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Several recent works122U21221232% have demonstrated the benefits of exploiting the structure of coupled systems for reducing
the cost of outer-loop applications. These methods decompose system analysis into analyses of individual components that
are then combined to make system-level predictions. Decoupling of the integrated system is achieved by expressing each of
the K component-models of a system as a function of both exogeneous inputs z controlled by the user/modeler, e.g. random
or design variables, and inputs £ that we call coupling variables, whose values are determined by the outputs y of the other
components (Figure[I). Two classes of approaches are then used to interrogate each component and combine the evaluations to
make predictions of the integrated system.

The first class of methods build a single surrogate that maps all the system inputs z to all the coupling variables 222027 The
training data used to build the surrogate is obtained by evaluating the coupled system at realizations of the exogeneous variables
and collecting the values of the coupling variables computed by fixed point iteration during each simulation. Once constructed,
the surrogate of the coupling variables removes the need to use FPI when evaluating a multi-disciplinary model with feedback
coupling. This can substantially reduce the cost of predicting system level outputs, but gains are ultimately limited because the
expensive component-models still must be evaluated using values of the coupling variables obtained from the surrogate.

The second class of approaches builds multiple surrogates, each one approximating a map from the local inputs of a compo-
nent (z,, &;) to the local component outputs y,, k = 1, ..., K. The training data used to build each surrogate is obtained via
independent evaluations of the associated component-model and does not require evaluation of the coupled system. Once con-
structed, the inexpensive component-surrogates are used in place of the original expensive numerical component-models when
evaluating the multi-disciplinary system. For example,282? build surrogates of each component in a feed-forward system consist-
ing of a chain of one-directional couplings and pass the outputs from an upstream component-surrogate to the next downstream
component-surrogate. Such so called integrated-surrogates have also been used in a similar fashion for systems with feedback
coupling®2123 Unlike the first class of methods, the second class of methods still require FPI to determine the value of the
coupling variables when feedback-coupling is present, however FPI is only performed using the surrogates at negligible cost.

Class-two methods are typically more efficient than black box (and even class-one) approaches because: they construct several
low-dimensional surrogate models of the system components instead of a single high-dimensional surrogate of a black-box
system; they can take advantage of simpler mappings from component inputs to outputs which can be less non-linear than the
coupled system map, which is the composition of the component maps; and unlike the first class of methods, relaxation methods
are never applied to the original expensive component-models. However, the accuracy of class two integrated-surrogates is
heavily dependent on the amount of training data used to train each component-surrogate because not all components impact the
prediction of system quantities of interest (Qol) equally. Thus, experimental design strategies are needed to reduce the error in
each component-surrogate commensurate with its impact on the accuracy of system Qol predictions. But to date, experimental
design algorithms have only been developed for refining class-two surrogates of systems consisting of a chain of purely feed-
forward couplings?.

In this work, we propose a novel adaptive surrogate and experimental design strategy for building class-two system surrogates,
based on Multi-Index Stochastic Collocation (MISC)3%311321333% \hich can be used for systems with either, or both, feed-forward
and feedback coupling. Every iteration of the sequential algorithm greedily generates candidate training data from the single
component predicted to produce the greatest change in the integrated-surrogate, relative to the cost incurred by evaluating the
candidate data set. Optimizing the investment in the constituent components significantly reduces the cumulative computational
cost of building surrogates of each component, which, to the authors’ knowledge, has never been demonstrated for class-one
or class-two methods. Indeed, such an approach is not even possible when building class-one surrogates because they require
evaluations of the integrated system to generate training data. However, building surrogates of component outputs typically
requires defining ranges for the coupling variables which are not known a priori. This limits the practical application of class-
two methods. To address this challenge we embed an iterative procedure to estimate the ranges of the coupling variables within
our experimental design algorithm. Our approach significantly improves the efficiency of building component-surrogates when
compared to procedures that use conservative estimates of the coupling variable ranges.

The algorithm proposed in this paper significantly reduces the cost of building surrogates for integrated system-models when
one model is available for each component. These gains are further amplified when a selection of simulators of varying fidelity
and computational cost are available for one or more of these system components. In such situations, our experimental design
algorithm enriches a small number of high-fidelity simulations with larger numbers of simulations from models of lower accu-
racy and cost, to enable greater exploration and resolution of uncertainty while maintaining deterministic prediction accuracy.
Our method for using multiple models of varying fidelity to increase the accuracy of integrated component-surrogates is the
first of its kind.
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The single-fidelity version of the method we propose, and the preceding works we cited, possess similarities to domain decom-
position33BB7538 and Jocalized model reduction (LMR)BZH04IE2. These methods efficiently solve partial differential equations
(PDEs) by solving independent local problems on subdomains and computing a global solution via an appropriate coupling of
the subdomains; LMR is domain decomposition technique that uses a localized reduced basis in each subdomain. In contrast to
domain decomposition which is used to approximate the entire solution of a PDE and is able to set the number of subdomains
(components) to reduce computational cost, our approach targets estimation of a small number of Qol of a multi-disciplinary
system, with a fixed number of components, which may or may not involve the solving PDEs.

The remainder of this paper is organized as follows. Section[2]discusses the procedures used to evaluate an integrated system
of coupled components. In Section [3| we discuss how to use surrogates of each component to predict system-level Qol and the
approximation error this induces. Section [ presents a greedy experimental design procedure that minimizes the error in the
surrogate of each component in a manner that minimizes error in predictions of system-level Qol for a fixed budget. Finally,
the efficacy of the proposed approach is demonstrated using a number of numerical examples in Section [5]and conclusions are
presented in Section[6]

Attitude

' bl

Orbit

- Daa sl WG 71207141
—

FIGURE 1 A fire detection satellite system consisting of three components. Coupling variables are depicted in red, external
inputs in gray and system-level Qol in black. Here z; Nz, = @,2, N 23 = [z,], 2, N 23 = [z;] and &, N &5 = [y ,].

*

2 | EVALUATING COUPLED SYSTEMS

2.1 | Problem formulation

This paper is concerned with efficiently predicting Qol obtained from models of integrated systems with coupled components.
With this goal, let

y=fz):I'->7Y (1)

denote the map from exogeneous parameters z = [z, ...,zp]" € I' C R? with probability density (PDF) p,(z), to a set of Q
outputs y = [y, ..., yp1" € Y CR?, where the Qol g C y, g € R?™, we wish to predict are a subset of the system-outputs.
The so-called system-model (T)) consists of K component-models of the form

Vi =FiZnE) T XE > Y,, k=1, K. )
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Each component-model returns a vector of Q, outputs y, = [y, 1, ..., yk’Qk]T €Y, CR%, Y, CY,andis afunction of a vector
of D, exogeneous random variables z, € I', € RP%, with support I', C I and joint PDF p,, , and of a set of .S, coupling random
variables &, € E, C RS, with support =, C Y, and joint (unknown) PDF p ¢.x» Which are a subset of the outputs produced by
other components Ule‘j 4 Y- In the following, it will sometimes be useful to refer to the inputs of the k-th component without

distinction between exogenous and coupling variables. To this end, we further introduce the notation
. T -
w, 1=[z,,& 1" €T, X B, c RP*5% A3)
to denote the concatenation of z, and &, so that the k-th component-model in (Z)) can be compactly rewritten as

Yi = fi(uy).

We will refer to u,, as the parameters of the component-model. The notation for the aforementioned quantities and all that follow
is summarized in Appendix [B]

Figure[I|graphically depicts an example of a multi-disciplinary system comprised of coupled components. The system outputs
are y = [y, Y12, Y13 Y14 Va.1» Y220 Y23» Yoas Y31 V3211, where the first index denotes the component and the second index
denotes the Qol from that component. Three of these outputs are Qol, specifically g = [y, 3, ¥, 4, y3’2]T, such that Q% = 3.
Components k = 1,2,3 have 2, 2 and 6 exogeneous variables respectively, specifically z; = [z, zQ]T, Z, = [z3, z4]T, Z; =
[z, 24 Zs5» Zg» Z75 Z3] |- Some exogeneous system-model variables z are unique to a single component and others are shared
between components so that D < Z,’f:l D,. For example, components 1 and 2 share no common exogeneous variables, i.e.
Z, N 2, = @, whereas components 2 and 3 share one common exogeneous variable, i.e. z, N z; = [z,], as do components 1 and
3,ie.z;Nz3 =[z]

For general systems, the coupling variables &, of the k-th component are determined by subsets of the system-outputs y of con-
nected component models. In Figure the subset [y, ,] of the outputs of the first component is used to provide input, in the form
of feed-forward coupling to the second and third components, such that £, N&; = [y, ,]. Feedback coupling exists between com-
ponents 2 and 3, indicated by the fact that some outputs of component 2 are inputs to component 3 and vice-versa. In summary,
&, = [#] (i.e., component 1 has no incoming coupling variables), &, = [y, 5, y,3.¥3,1", and & = [y} 1, V12, V14> V2.1 Y22l

Following?* we use extraction matrices to encode the relationships between the inputs, outputs, and coupling variables of the
component-models. Specifically, the exogeneous variables, coupling variables, and outputs of the k-th component satisfy

2z, = Alz & =Ay, i = Ay,

where A7 € RPP, Ai € R5*C and Ai € R2€ consist of unit row vectors that select a subset of entries from the vectors
they are applied to. Similarly, we extract these system-level Qol via

g= A’y e R®” Al € RO, )
Letting e ;= [0,...,0,1,0...,0]" denote the unit vector of length i with the j-th entry equal to 1, the extraction matrices of
the multi-disciplinary system in Figure[I]are
roT ] L
€p1 el
el 0.1
D4 el el
ey e e) ¢ o o
z _ | D1 z_ |®D3 z _|“ps _ _ _
Al T el Az T |eT A3 el A1 - [ﬂ] Az - eQ,S A3 - eQ,4
D2 D4 D.6 el el
el 09 05
27 e; 6
[€p3] -
T T
€01 €05 ol
e’ 5 el el . Q7
y_170 y | 06 y = 0, q —
A1_ o Az— o A3— o Al = €,s
2 g7 Q.10 €510
€4 €5 ,

2.2 | Evaluating systems of components

Different approaches are needed to combine components linked by feed-forward coupling and those linked by feedback coupling.
In this section we review the approaches we employ.
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2.2.1 | Feed-forward coupling

Feed-forward coupling refers to the situation when the output(s) of a component are input(s) to another component; the coupling
between components 1 and 2 in Figure [I]is an example of such a coupling. Without loss of generality, consider feed-forward
coupling between two components coupled in the following way:

Vi = [z, i) & = Yie1 = i1z,

such that the output of f,_, is input to f;. To evaluate the output of the k-th component at a sample z, we simply evaluate f,_,;
at z,_,; C z and then evaluate f, using the values y,_, along with z, C z. This procedure can naturally be extended to a chain
of components, that is when f = fgofg_,0 - of;. It is common for multiple components to be inputs to another component.
For these general situations we pass information through the system of components by traversing a directed acyclic graph.

2.2.2 | Feedback coupling

Without loss of generality, consider two components with feedback coupling

{yj = [z, 8), &=y

5
Vi = iz 8), &=

The coupling between components 2 and 3 in Figure([T]is an example of feedback coupling, where in (3)) we have for simplicity
ignored any dependencies on any feed-forward coupling variables. To solve this system of non-linear equations we use fixed-
point iteration (FPI). For a given realization of the random variables z, FPI iteratively finds the values of the coupling variables
that produce consistent solutions*?. Using the iteration function

f‘(z io 5 ) T
F&=|/"77% =[&,, 6
t3 [ o gk)] =148 ®)
and starting from an initial guess £° we evaluate
& =FE™

until ||E” — E77|| < n, for some accuracy tolerance # > 0. In this paper we assume that the iterating function F in (@) is a
contraction, which guarantees convergence of FPI#3,

When a system consists of both feed-forward and feedback coupling, we proceed by partitioning the components into groups
that, when considered together as a single “macro-component”, transform the system-model into a purely feed-forward system;
FPI is needed to exchange information within a subgroup. Such system grouping can be achieved using methods such as Design
Manager’s Aid for Intelligent Decomposition (DeMAID)#4, For the system depicted in Figure (1} there are two groups: one
containing model 1 and the other containing models 2 and 3, for which we feed the output of group 1 to the second group and
then use FPI to determine the remaining coupling variables.

3 | INTEGRATED-SURROGATES OF COUPLED SYSTEMS

The goal of this paper is to present a method for designing the computer experiments need to construct a surrogate of the
coupled system-model in (I)). With this goal, we seek an approximation (surrogate model) of each component-model ) in
the system, with explicit functional dependence on the coupling variables. Once built, these surrogates can replace the true
component-models when evaluating the system using the strategies presented in Sections[2.2.T)and[2.2.2] We refer to the resulting
approximation as an integrated-surrogate.

Gaussian processes 2?2843 and polynomial chaos expansions“® have been used to generate decoupled surrogates in the past.
In this work, we choose instead to use an approach based upon adaptive versions?%33 of MISCH2313% because it provides the
features necessary to develop an experimental design strategy for allocating resources to components of integrated systems. The
details of our specific algorithm are presented in Section [4] but first, in this section we discuss important considerations that
impact the accuracy of predictions made using surrogates of components.
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3.1 | Multi-fidelity modeling

For many practical applications, a number of viable models of varying cost and accuracy may be available to simulate each
component in an integrated system. In this paper, we assume each component can be simulated using a numerical model that
approximates the solution of some governing equations for a given fixed z and £. We also assume that this model has a set of
hyper-parameters — mesh size, time step, maximum number of iterations, convergence tolerance, etc. — that can be used to
simulate the component with varying accuracy and cost. Changing the values of these hyper-parameters produces simulations
of varying fidelities (resolution) and computational cost. We refer to approaches that leverage only one model or solver setting
as single-fidelity methods, and approaches that leverage multiple models and settings as multi-fidelity methods.

Formally, we assume that each component k = 1 ..., K of a coupled system has R, hyper-parameters and introduce the
multi-index @ = [a),...,ag | € NR« to distinguish between the different model fidelities of the k-th component, which we
denote

fra(2.8) ~ fi(2,8).

The entries @; € N are integer values that dictate the value of each hyper-parameter; for example, a time-step size proportional
to 2% and a mesh discretization proportional to 27*. In the following we assume that as the entries of a increase, the model
fidelity increases and the error in the successive approximations of f decreases, i.e. || f o+ — fill < || fi.q — fi |l in some suitable
norm if a* > af]

To provide further intuition on the role of the multi-index e, consider a model that simulates heat transfer within a cooled
turbine in the path of heated gas flow using a finite element model (FEM); we use this model as a component in a system-model
presented in Section [5.3] For this model, we use a single hyper-parameter that dictates the mesh resolution used to solve the
governing equations, i.e. R; = 1, @ = [,]. Three meshes of increasing resolution are available, thus «; € {1,2,3}. The FEM
solution on the coarsest mesh is plotted in Figure[2} Here the subscript 1 of R, is used because the heat-transfer model is the first
component of the system. The computational cost of evaluating the heat transfer model is dependent on the number of degrees
of freedom used by the FEM. The number of degrees of freedom and cost (in seconds) is presented in Table [T]

TABLE 1 The computational cost (seconds) of
solving the heat transfer model for varying dis-
cretizations.

m Cost (sec) 0.26388454 1.1500591 4.41993904
> DOF 4998 17435 66549

FIGURE 2 Finite element solution and parameterization of the turbine
component-model.

3.2 | Surrogate modeling

In this paper we construct surrogates of each component of a system-model so as to reduce the cost of repeated interrogation of
the system. Recalling the compact notation for the inputs of the k-th component in (3], we denote the single-fidelity surrogate
of the fidelity at level a of the k-th component by

fk,[a,p](uk) ~ [fraWg), (7

where the multi-index B controls the number of samples used to construct the surrogate and thus its computational cost and
accuracy. Given a specified model fidelity a and surrogate fidelity B, we construct this surrogate using a set of M , 5 samples

1% : P * P * _ ; ;
a ZaleIjs.t.aj >a;and af = a; fori # j.
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M, . M, .
of u, denoted by U, 1 5 = {uﬁ{”’)}mz"i‘"‘”J , and evaluations Yy 1, 51 = {f k,a(uim))}m:'l[“'ﬂ‘ at those samples. In the following we

assume B € NN, N 1= D, + S so that, each entry of B specifies the density of samples allocated to each dimension of u,.
The total error in the surrogate f 4 5(#;) of a component-model f can be decomposed into two components

1fe = Friapll S Wfk = frall + 1 fia = Figapll- ®)

The first term on the right-hand side represents the so-called deterministic error and quantifies the discretization error introduced
by the numerical model used to solve the governing equations of the component-model for any fixed value of the parameters.
The second term on the right represents the parametric error which quantifies the error of approximating the numerical model
of the governing equations with a surrogate intended for fast evaluation of the governing equation at different values of the
parameters. The previous inequality implies that a cost-effective experimental design strategy must balance these two sources
of error. Simply fixing the fidelity of a numerical model a priori , as often done in the literature, is inefficient.

Figure [3] depicts the impact of parameteric and deterministic errors for a simple example. The surrogates (dotted black)
approximate the true function (solid red) with different numbers of evaluations of either a low-fidelity model f [, or a high-
fidelity model f 5, (both dashed blue). As f increases, we add two additional training data (i.e., evaluations of f} ,), which
allows the surrogate f} |, 5 to more accurately approximate f , and thus the parametric error to decrease. Whena = 1, =3
the surrogate f} | 5 approximates f ; well, but does not approximate f) as accurately, that is the deterministic error dominates.
In comparison, when a = 2, § = 1 the surrogate f |, ) is also poor, but this time it is because the parametric error dominates.

leterministic model (o) —

Accuracy of d

Number of samples (5) —

FIGURE 3 Approximations f |, 5 (dotted black) of the one-dimensional function f7(u) = cos(%zr(u1 +e€)+ %ﬂ'). The true
model (solid red) corresponds to € = 0, and the two fidelities f,,a € {1,2}, (both plotted in dashed blue) are obtained by
setting € = 0.2 (low-fidelity f,) and € = 0.05 (high-fidelity f,). Red dots depict samples used to build the interpolants. The cost
of constructing f |, 5 increases with a and p.

Ideally we would use the approximation f} , 3 in the top right panel; however, that surrogate uses numerous high-fidelity
model evaluations, that are typically more expensive than lower-fidelity evaluations. Cost-effective experimental design strate-
gies for constructing a component-surrogate are therefore needed to balance the parameteric and deterministic errors. With
this goal, in SectionE| we propose a strategy that combines multiple surrogates f 4 g of each component built using differing
numbers of evaluations and fidelities (e.g. fj [;3; and f} 5,))- The number of samples, that is the different f, used to build the
surrogates of a given model fidelity is dependent on the predictive utility of each model fidelity, dictated by a, relative to the
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FIGURE 4 Lagrange polynomial interpolants of the Runge function f(&) = (1 + 25&2)7! constructed using five function
evaluations on different intervals él =[-1.0,1.0], éz =[-0.75,0.75], and §.3 =[-0.9,0.9].

cost of evaluating the model. Typically, less samples are assigned to higher model fidelities, that is a with larger entries. To
facilitate the use of multi-fideltiy approaches for building component-models, moving forward we will denote the surrogate of
a component by

fk,zk(uk) ~ fi(uy)

where T, is a set of concatenated multi-indices [a, B].

3.3 | Characterizing the coupling variables

Constructing a surrogate f ; (u,) of a component requires specifying the ranges of the coupling variables. The coupling vari-
ables &, are functions of the exogeneous variables z (either explicitly or via their dependence on other components) and are
thus themselves random, but their distribution are unknown prior to simulation. Consequently, following a procedure proposed
4745 we construct an approximation of each component of the system utilizing a prior distribution v(&,)
defined over an estimated range =,

The following lemma characterizes the accuracy of a surrogate model in a w-weighted norm, associated with the correct
unknown distribution of the coupling variables, when the surrogate is built minimizing a prior v-weighted norm.

for black-box models

Lemma 1 (Strong convergence®3), Letv : 2 - R and @ : E — R denote two densities which satisfy

6=1- / w(u)du.

N

m
[

Given an approximation f, of f with approximation error ¢, i.e.,

€:=||f_fV||L55), p=1, )
then, if f is bounded with C; = || f|| z«(g), it holds that

Wf=Fllere < Cr'/"e + Cfél/”, provided C, := max @) < oo. (10)
© uezuz V(u)

The second term in (I0)) comes from truncating the tails of the true distribution of the coupling variables. In many cases, the
coupling variables are bounded and so this term can be eliminated by using conservative estimates of the range. For unbounded
domains, the tail truncation error can be made arbitrarily small by choosing a sufficiently large range Z, .

Provided the simpler v is chosen to be non-zero wherever the original w is non-zero, such that § = 0, Lemma [I| suggests that
shape of the distribution v used for the coupling variables does not affect the rate at which the error converges in a component-

surrogate. Consequently, in the following we set v to be the PDF of the uniform distribution over a pre-defined range = - For



242

243

244

245

246

247

251

252

253

254

255

260

261

262

264

272

273

274

275

276

278

J.D. Jakeman ET AL | 9

some integrated systems, the ranges can be determined from analysis of the system components. However, for other systems,
the ranges of the coupling variables must be estimated. Figure 4] demonstrates the importance of correctly estimating the range;
underestimating the range, such that 6 > 0 can lead to large approximation errors outside Z.

In this paper, we use an adaptive algorithm, presented in Section [.6] to estimate the range of the coupling variables. We
investigate the performance of this algorithm and the impact of over-estimating and under-estimating the range of the coupling
variables in Section[5.T.T1

3.4 | Error analysis of integrated-surrogates

Once surrogates of each component have been constructed, they can be combined to make predictions of system-level Qol using
the procedures discussed in Section[2] We denote the integrated-surrogate

Yy =172~ f(2).

Here J = {1,, ..., Ix} are the index sets associated with each component-surrogates f, ; k = 1,..., K. The accuracy of the
integrated-surrogate’s prediction of the system-level Qol g ; = A?y ; depends on the accuracy of each component-surrogate. In
this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback coupling. For simplicity,
we consider errors in systems with only single-fidelity component-models.

3.4.1 | Feed-forward coupling

For a system comprising a chain of feed-forward couplings (Section[2.2.T), the error in the system-level approximation is given
by the following proposition. The proof of this proposition is given in Appendix [A]

Proposition 1 (Feed-forward surrogate error). Assume that each component f}(z, &) is Lipschitz continuous with respect to
the coupling variables &, with uniform Lipschitz constant L, for all §, € E,. Furthermore, let f} ,(z,&,) denote the g-th output
of the k-th component and let f, kL. (2, &) denote the associated surrogate output. If the trained surrogates satisty || f; ,(z, &) —
Ji1,.q(Z € Loy S €¥q =1,..., 0y, then we have for f = frofx_jo--of and f; = fy 7 ofk 17, ©of g that

sup max |f.(z2)—f (z)|<eﬂ
i R L A

where L = max,_; g L, and e = max,_; g €.

,,,,,

This result can be applied to any directed acyclic graph structure by applying the proposition to each branch of the graph and
setting €, to be the largest of the errors in the surrogates for all upstream components providing inputs to the component under
consideration. Lastly, note that €, can include both the deterministic and parametric errors of the k-th component-surrogate.

3.4.2 | Feedback coupling

By recognizing that FPI (Section [2.2.2)) can be formulated as the composition of F from (6) with itself and that the coupling
variables £(z) are subsets of the system-model outputs f(z), we can modify the proof of Proposition [I] (see Appendix [A) to
guarantee convergence and to arrive at the following result.

Proposition 2 (Feedback surrogate error). Let L be the Lipschitz constant of the fixed point iteration function (@), then under
the assumptions of Proposition the error in the coupling variables &” after P fixed-point iterations, when approximated using
the surrogate values & 5, satisfies

1—LP

P
sup max zZ) — z)| <e ,
zelrﬂq_ ’’’’’ Qlf() 5 LEI] I T—1

where

€=knllax Sugq_max | frq(Zis Ex) — fk’lk!q(zk7§k)|
ZpoSk

is the worst-case error over all outputs of all component-surrogates.
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4 | GREEDY EXPERIMENTAL DESIGN FOR INTEGRATED-SURROGATES

Proposition [I| shows that the error in predictions of system-level Qol obtained using surrogates for each component can be
decomposed into errors proportional to the errors in each component-surrogate. This section introduces a greedy algorithm
that allocates resources to components and their varying fidelities in a manner that is commensurate with their impact on the
system-level Qol g. Pseudocode for this novel algorithm is presented in Algorithm|[I]

We formally discuss each step of Algorithm [I]in the following subsections, but first we first provide a conceptual overview
here. With this goal, consider Figure [5] which depicts two steps of Algorithm [I] applied to to a purely feed-forward system
comprised of two algebraic component-models. The two component-models f,(z) = zsin(zz) and f,(&) = 1/(1 + 255;)
are coupled via & = f,(z) so that the system-model is given by f(z) = f,(f,(z,)); single-fidelity models are used for the
component-models solely to facilitate visualization.

Given a set of component-models, Algorithm([I]is initialized by building constant (degree-zero polynomial) surrogates of each
component; this initialization procedure is discussed in Section[4.2] and is performed on Line 2 of Algorithm[I] The accuracy
of each component-surrogate is then improved by sequentially incrementing the amount of training data used. Figure [5) depicts
the second and third iteration of Algorithm [I]after initialization. Each iteration begins with a current and a refined surrogate of
each component-model; the construction of the surrogates is discussed in Section 4.1} The models and surrogates of the first
and second components are depicted in the first (from left) and second columns, respectively. The solid-red lines represent the
component-models, the black-dashed lines represent the current surrogates constructed using the data depicted by the black discs,
and the refined surrogates, trained using the data depicted by the cyan or lime-green crosses, are depicted by the dotted-blue and
dash-dotted-green lines.

When the component-surrogates are coupled together they produce the integrated-surrogates depicted in the third column. In
this plot, the dashed-black line is produced by coupling the current surrogates of each component, the dotted-blue line is obtained
by coupling the refined surrogate of the first component with the current surrogate of the second, and the dashed-dotted-green
is constructed by coupling the current surrogate of the first component with the refined surrogate of the second component. No
training data are plotted in this column because no evaluations of the true coupled system are required.

Once the integrated surrogates have been constructed, Line 8 of Algorithm[I]estimates the contribution of the error in each
component-surrogate to the error in the integrated-surrogate. This is achieved by measuring the difference between the new-
integrated-surrogates and the current integrated surrogate, that is between the dotted-blue and dash-dotted-green lines and the
black-dashed depicted in the third column, respectively. This estimation procedure is discussed in Section[4.4] Estimating error,
based on changes to the integrated surrogate, ensures the algorithm adds data to each component-surrogate based upon its impact
on predictions of system-level Qol.

Once errors have been estimated, the component with the largest estimated error (shaded with a blue background) is identified
(Line 5 of Algorithm([I)) and then refined (Line 6). The refinement procedure is discussed in detail in Section4.3] but in summary
it collects the data needed to update the current and new surrogates of the component selected for refinement. For example in
the first step (first-row), the second component is selected for refinement, consequently in the next step (second row) the current
surrogate of component two is now built using three points (instead of one) and the new surrogate of that component is built
with five points (instead of three). In contrast, the current and new component-surrogates of the first component remain the
same. However, the contribution of the first component-surrogate to the error in the integrated surrogate changes because the
down-stream component has changed. This leads to the first component being selected for refinement in the second step and is
the reason that the error contributions (indicators) of all components is re-estimated every iteration on Line 8.

In the following sections we provide a more detailed discussion of each step of Algorithm 1, referring to Figure [5] when
appropriate. Note the right most column of this figure have not yet been discussed because they are specific to the implementation
details introduced below.

4.1 | Multi-index stochastic collocation (MISC)

The ability to accurately construct an integrated-surrogate depends on the accuracy of the surrogates of each component. MISC
provides an effective mechanism to create a multi-fidelity surrogate of each component f, by combining evaluations of varying
fidelity f k‘a.30. More specifically, MISC approximates each component-model as a linear combination of multiple surrogates



3;

N

5

326

3;

N

7

328

J.D. Jakeman ET AL 11

N\ [at, 87
I
Ry,

o

[}

NS
0 I
—
|

k

FIGURE 5 Two steps of Algorithmapplied to a system with two component-models f,(z) = zsin(zz), f,(&) = 1/(1 +25§12).
From left to right, each row depicts: (first panel) the first component-model f;, the current component-surrogate f, 7 , and
a new surrogate [, g that can be used to improve f,;; (second panel) the second component-model f,, the current
component-surrogate f, 7 , and a new surrogate f, 4 4 that can be used to improve f; ; ; (third panel) the system model f,
the current integrated surrogate f;, and the new integrated surrogates that are obtained by updating either the first f I

or second component-surrogate f ;2 o and (final panel) the index sets defining the integrated surrogates. Here J[Ja 5]
[a.p] s

{Z, le,k 4 Y (I i Ulla, ﬁ]}). Discs and crosses represent training data used to respectively build the current and refined
component-surrogates. Gray boxes represent the indices in the sets T, and gray boxes reprsent the set R, of possible indices
[a, B] to add to the component-surrogate. The striped box represents the index [a*, f*] with the largest error indicator. Gray
shaded panels indicate that the associated component-surrogate has been chosen for refinement. Because each component only
has a single fidelity model the index « is redundant but we keep it here for consistency with our more general multi-fidelity

formulation. Also note that the dotted-blue and dashed-black lines are identical in the third panel of the first row.

Algorithm 1 CONSTRUCT _COMPONENT_SURROGATES[{F }X_ .z.W, ... {5, }X . p.1- /;
:fork=1,...,K do

2: 1., R, €Uy, Yy, C, = INITIALIZE_SURROGATE(F,, ék, p) > Initialize k-th component-surrogates
3. end for

4: while not TERMINATE[{Z, }{_ ,z,W,,,,] do

5 {I,[a*, "]} := argmaxye(; k1 (a.pler, Yk, [a.p] > Find component with largest error indicator y (4 4)
6:  I1,R.,E,V,, Y, C, :=REFINE[[a*, B*1.1,, R, €.V, Y, Con F1 By p, |

7: forj=1,...,K do > Recompute indicators of candidate indices of all K components
8: &.{E,}X = COMPUTE_ERROR_INDICATORS[{Z,}X R, & (V)X (VK (EIE . p.]

9: end for

10: end while

Sila, Bl that is

fk(uk) ~ fk,lk (uk) = Z Ck.[a.p] fk,[a,ﬂ](uk)' (11)

la.BlET,

Formula (TT) uses multiple model fidelities f; [, 4, to balance deterministic and parametric errors (see (8)) and to reduce the
computational cost of achieving a specified level of accuracy. The accuracy of the MISC approximation (IT)) is dictated by the
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set, C NR«*+Ni which contains multiple concatenated multi-indices [, B]. The index set 7, must be downward-closed, that is

if [y,6] <[e,fl and [, Bl € I, = [y, 6] € 1,. 12)
Under this assumption, the coefficients ¢, , g are given by the so-called combination technique formuldﬂ
Cefaf) = 2 (_1)||[i,j]||1 . (13)
[1, 1€{0,1} RN
Lo+, f+j1ET,

We use a greedy procedure to construct the index-sets Z,, which is outlined in Sections 4.3 and 4.4} In the remainder of this
section we discuss construction of the individual f 4 g (uy).

The single fidelity surrogates f 4 g(4,) are tensor-product Lagrangian interpolants, constructed using evaluations of the
a-fidelity model f; ,(u) on a Cartesian grid defined on the parametric domain I'; X E,. The sizes of the univariate sets of
coordinates used to construct the grid are prescribed by the components of the multi-index . The use of a multi-index S,
instead of a scalar, allows the MISC approximation to exploit anisotropy in a component-model by assigning different numbers
of samples to resolve each dimension commensurate with the sensitivity of the function to each dimension. Lettingm : N — N
be an increasing function, used for all K components, we construct a set of m(f,) univariate interpolation points

) m(p,)
Vinap, = {uk,n,a,ﬂn b (14)

and build m(p,) univariate Lagrange polynomials that are given by

' m) oy, — u?
e =[] o2 =1, m,).
I=11#j uk,n,a,ﬁn - uk,n,a,ﬁn
Note a does not influence the number or locations of the points in these univariate sets, but we annotate these sets with this
multi-index to make clear different sets can be used for different fidelities.

In the following we use univariate weighted Leja sequences®! tailored to the probability distribution function of Uy, as
univariate interpolation points in (14). Leja sequences U} , 4. p, are nested, thatis, U}, 5 5 C Uy g, pr if §, < p¥. We also define
m(p) = 2p + 1 in (I4) and set the maximum level of the univariate sequence to f = 15. For more details on the construction of
Leja sequences, refer to Section[4.6] .

Given a set of univariate Leja sequences, we construct a multivariate set of samples of taking the Cartesian product of the
univariate sets Uy ,, 4 , yielding

_ Nk . 0)]
Vitapt = X1 Vienap, *= U514 g1} j<mep)> (15)
hich : f M _ Ny : ()] _ 1) (J2) (ij) h _
which consists o klapl = anl m(f,) points Uilap = [“k,l,a,ﬂl’”k,z,a,ﬂz’""”k,Nk,a,ﬂNk]’ where m(f) =

[m(B)), m(p,), -+, m(f Nk))]' For each point in V) |, g We construct a multi-variate Lagrange polynomial via

Ny
i Uw) i
ﬁgﬁu,ﬂ](uk) = I I Ekj,n,a,ﬂn(uk,n)’ J < m(p),
n=1

and finally define the tensor-product interpolant appearing in as

_ 0 )
Sifap () = 2 FreaW jq gL o (Wi)-
Jj<m(p)

Two different MISC surrogates, f; ; (I, = [0,0],[0, 11) and £} 7, y((a,2);» are shown in each of the upper-left panel of Figure@
The Leja sequences used to build these interpolants are depicted by discs and crosses, respectively.

Note that for univariate MISC approximations, such as those shown, the combination coefficients (T3] of all but the largest §
become zero (this is typically not true for higher dimensional functions), such that f} ; is simply the most accurate tensor-product
interpolant, for example in the top left panel f, ; = f| 4], Where a is redundant because we are only considering single fidelity
functions in this example. Also note that, while we use tensor product interpolants for our single-fidelity surrogates f , g the
MISC approximation (TI]) uses a combination of these tensor products, which when selected judicously via specification of the
index I, does not suffer the curse of dimensionality.

2{0, 1}* is the set of s-dimensional vectors containing all combinations of zero and one and ||8]|; = Y,|8;]|
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4.2 | Initialization

Now that the form of the component-surrogates has been defined, we can discuss each step of Algorithm[I} Letting 7, denote
the set of all model fidelities f; , for the k-th component, Algorithmtakes as input, the set {F, I’;] containing all the model
fidelities used to model each component, a maximum computational budget W, a desired error tolerance 7, estimated ranges
for the coupling variables of each component {Z, }szl, and the joint probability density p, of the exogeneous variables z. The
algorithm then begins by initializing a set of surrogates f ; for each component in the system. The initialization routine is
summarized in Algorithm 2]

The first step of the initialization algorithm sets Z, = @. The second step specifies a set R, of possible indices [a, f] to
add to the component-surrogate. This set grows as the algorithm advances, but initially only contains a single index [a, B] :=
[1,1,---]. The next two steps construct the set U, containing the training points used to build the interpolants corresponding
to the indices in both Z, and R, and the set of evaluations Y, at the points in V. Having set [a, ] :=[1, 1, ---] implies that
the initial sets of training data U}, Y, consist solely of the lowest fidelity model for each component evaluated at the center
of T', X £y, i.e., the midpoint of the ranges of u,. Step 6 defines the set C, containing the combinations coefficients Cifap) OF
the MISC approximation, see (I3). This set is empty because I, is empty. In the last step, we define the set &, that contains
error indicators y; |, g estimating the reduction in error of the system-level Qol obtained by adding each candidate index in R ;..
During initialization, we artificially set the posteriori error indicators y, |, g in the set & to be infinitely large to ensure that the
initial index [1, 1, ---] is added to I, in the refinement step we describe nextE]

Algorithm 2 INITIALIZE_SURROGATE[F}, 5, p,] = I,, Ry, & Uy, ViuCy

1: Ik =0

2 [a, B] :=[1,1,---] € RRAN:

3 Ry = {la, Bl} > Define the candidates to be added to 7,
4 Uy =V ap B> Determine the initial training samples using Z,, p,
50 Vi '= fraUkap) > Evaluate the component-model at the training samples
6: C, :=0 > Initialize empty combination coefficients of MISC approximation
7. &, 1= {o0} > Set error indicators infinitely large to ensure initial index [, ] is added to T, before all others

4.3 | Refinement

Once initialized, Line 5] of Algorithm [T]chooses the best individual component-surrogate to refine. Each component-surrogate
has a set of indices R, (depicted by red-boxes in the right-most panels of Figure 5)) associated with tensor-product interpolants
S a,p) (depicted by the blue-dotted and green-dash-dotted lines in Figure EI), which can be added to the MISC approximation.
Each of these candidate indices is also associated with error indicators y, |, g € &, that estimate the change in the error in the
system-level Qol obtained from refinement of each surrogate. Thus, Line [5|determines the component-surrogate whose largest
error indicator is larger than all other indicators in all sets &, k = 1, ..., K (this index is depicted by the striped box in Figure[3)) .

When the surrogate of component / is selected for refinement, the REFINE routine (see Algorithm [3) removes the chosen
index [a*, B*] and associated error indicator from the sets R, and &, respectively. The chosen index is then added to 7, (the
striped box in the right panel of the first row in Figure [5|becomes shaded gray in the next iteration depicted in the second row)
and the combination coefficients of the MISC approximation are computed using (I3). New candidate indices [y, 8] are obtained
by incrementing each element of the multi-index [a*, #*] in turn (by adding the unit vector er, ; on Line 7). Candidate indices
that satisfy the downward closed admissibility criterion (I2) are then added to R, (e.g. the fourth panel of the second row of
Figure[5|has a new red box in the index set R, not present in the fourth panel of the first row). In Figure[5|only one new index can
be added to either component surrogate because the component-models are one-dimensional. However, for higher-dimensional
functions multiple new indices may be added, as determined by the index set admissibility criterion (12)).

The training samples U] |, 5 needed to build the new approximation f, |, 5 and the associated evaluations of f; , are generated
for each admissible candidate index (e.g. in the second-from-left panel of Figure[5]there are two new samples in the second row

3The set R, is dependent on Z, and &, is dependent on R, however we do not explicitly include this dependence in the notation of these sets for simplicity.
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that are not in the first row). The samples of the exogeneous and coupling variables are generated according to the PDF p, of
the exogeneous variables and the estimated range of the coupling variables ék, respectively. The exact number of new samples
in UV, 5 is dictated by 6 and Equations and (I3). When using nested Leja sequences, many points in U, 1y, Needed to
construct f; |, 5, may have already been evaluated and can simply be reused. Consequently the function f; , is evaluated on the
set of new points U} |, 5 \ V-

Algorithm 3 REFINE[[a*, B*1.1,. Ry, £ U, Vs Cos Fis B £ = Lo R €40 Vs Vi

2 Ry =R\ [a*, p*] > Remove selected index from candidate set
3 & 1= E \ Viar g1 > Remove selected error indicator
4 I, :=T,Ula*, B*] > Add selected index from MISC approximation
50 Cp = {Clap}apler, > Compute MISC combination coefficients using (13)
6. fori=1,...,T, do

7: ly,8] :=[a*, ] + er; > Refine index in one coordinate direction to increase deterministic or parametric fidelity
8 if [y,6] —e; ; €I, Vj=1,...,T then > Check downwards closed condition (I2)
9: Ry =R, U{ly,ol} > Add new refinement candidate
10: Uy :=V Uy s > Add new training points using Z,, p,
11: Vi =YV [, Wity \ Vi) > Add evaluations of the component-model on the new points
12: end if

13: end for

4.4 | Estimating Error

Once new candidate indices have been generated by refining the /-th component-surrogate, we must estimate their impact on
the error in predictions of the system-model Qol. We quantify this impact via error indicators that measure the change in
error in system Qol caused by adding a new single-fidelity surrogate to the multi-fidelity MISC approximation of a compo-
nent, relative to the cost of training the new surrogate. The coupled nature of the integrated-surrogate means that changes in
one component-surrogate impact some or all other components. Consequently, the final steps of the adaptive algorithm use
COMPUTE_ERROR_INDICATORS (see Algorithm [ to compute the error indicators associated with all the candidate indices of
all K components, not just the newly added candidates of the selected /-th component.

To construct our error indicator, we generate a set Z,pine = {2 }IL:I“nc of L .ine realizations of the input random variables z.
We then evaluate the integrated-surrogate at these samples, using the current set of component-surrogates, yielding y ; = f;(z)
and, for each new possible f} (4 5/, compare these evaluations with the output of the refined surrogate y Ty = f T (2z) obtained

by adding f} |4 to (LT), where

J . K
Tiwp =1L kzl’k#u(lju{[a,ﬂ]}).
These evaluations are carried out using the EVALUATE_INTEGRATED_SURROGATE procedure (not shown) which integrates the

predictions of each component-surrogate, obtained from (TT)), using the algorithms outlined in Section[2.2]
0}

Focusing on the prediction of system Qol, that is qj[,; . = Aly Ty and qg) = A%y, and recalling that g; denotes the i-th
entry of Qol vector g, we use the error indicators
otam = Sl (16)
k.[a.p]
uniquely defined by the two quantities
1 & o " 2\ 2
AEjap = R (Lrefine ; <q‘7[:;.m,,- - qJ,i) > AW, lap = Work[YJ[;m] — Work[Y]], (17)

which respectively denote the worst-case root mean squared error (over all system-level Qol) between two successive approxima-
tions, and the work needed to update the approximation. Here AEy |, 5 is a measure of the “difference” between the black-dashed
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approximation and the blue-dotted and green-dash-dotted approximations of the system Qol in the 3rd panels of both rows in
Figure@ Due to the nestedness of the Leja points and making the often reasonable assumption that the cost of a simulation W ,
for a given fidelity a is fixed (i.e. does not change with ), the quantity AW, , 5 has the closed form expression

AW tapt = WiaCatdUy (o 51 \ Vi) (18)

where Uy 14 g \ U is the set of new evaluations needed to complete the construction of f 4 5. The evaluation of the error
indicator in (I6) is implemented by the ERROR_INDICATOR function (not shown).

The refinement indicator (T6) ranks component-surrogates based upon their contribution to the error in the approximation
of the system-level Qol. Unfortunately, using (T6) will give misleading results when the surrogate of a downstream component
L is a constant function (which happens after initializing Algorithm[I)) and no outputs from the k-th component are present in
the system Qol g. In these situations the indicator of the k-th component will predict no system improvement when improving
the surrogate of the upstream component k, i.e. AE, |, 5 Will be zero. Such a situation occurs in the first row of Figure E]; the
current approximation of the second component (black dashed line in second panel) is a constant so improvements in the first
component surrogate (i.e. moving from black-dashed approximation to blue-dotted approximation in first panel) yield no change
in the integrated-surrogate (the black-dashed and blue-dotted lines are the same in the third panel of Figure [3)). To avoid this
pathological issue associated with initialization, we compute the following local component-based error indicator (which is a
measure of the difference between the current and new component-surrogates in the two left-most panels of Figure [5)

_ 1 u
y"’[“’ﬂ]_m@AEk[ mtd G)AEk[am> 0 €[0,1] (19)
1
o e [E[fk,kuna,ﬂn] —E[fez]]-
At = |f k00|\/’ f“ku““ﬂ”] \/[f“k

until all downstream surrogates are no longer constants. Here the operator E [-] denotes expectation with respect to both the
external inputs z, of the current model as well as to its coupling variables &,; the normalization factor | f, g4| is the value of
the coarsest fidelity at the center of the parametric domain I';, X E, and thus can be understood as a coarse approximation of
E [ f k]; and the operator V [-] denotes variance with respect to the same variables. In the numerical tests to follow, we always
use € = 0.5. Heuristics, such as the one used here, are often employed to overcoming initialization of single-fidelity sparse grid
approaches which form the basis of the algorithm presented here.

Algorithm 4 COMPUTE_ERROR_INDICATORS[{Z,}K R, &, (UK AV (EIK 01> E.{E K

L& =0 > Clear current error indicators so they can be overwritten
2 Zreﬁne := RANDOM_SAMPLE[p,, L, fine]
3: =1{I, K > Define index set of current MISC approximation of j-th component
4y, = EVALUATE INTEGRATED_SURROGATELT, { U} }f_ | AV AC | Zoetine]
5:qg 1= Alys > Extract system Qol
6: for [a ﬁ] ER,; do
7: [a R {Ik} k=1 ko (I i Ulle, ﬁ]}) > Define index set of refined MISC approximation of j-th component
8 Cla, ﬁ] ={cy 5 }[y sle,ulla.pl) > Compute coefficients of refined j-th MISC approximation using (13)
% g i=EVALUATE_INTEGRATED_SURROGATELJ, ;. UV G sy Y Criapys Zetine]
10: a5, = = Ay T > Extract system Qol
11 Vijap) - = ERROR INDICATOR[q , a ] > Use (16)

12: & =& {yj?[aﬁ]}

13: {Ek},’f_1 := UPDATE_COUPLING_VARIABLE_RANGES[y, .{&,}K 1
- [, B] -

14: end for
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4.5 | Termination

Steps [4}{9]of Algorithm |I|are repeated until a computational budget W, is exceeded or the pre-specified accuracy tolerance z,
specified by the user based upon their accuracy requirements, is met. For example, one could stop as soon as all error indicators
are below such tolerance, max,¢; g MaX4 gier, Yk ap) < T- Such exit conditions are encapsulated by the TERMINATE routine
(not shown).

The final output of Algorithmis a set of surrogates f kL, defined by the index sets J = {1, ..., Ix}, which can be used to

accurately predict the system-level Qol by evaluating the joint surrogate f ;. In practice the sets 7, € J returned by Algorithm

.....

EI are I; U Ry rather than I,. This is because AlgorithmE—Ican compute the error indicator of a multi-index only after having

added it to the approximation. Thus, a final post-processing step augments the final approximation with all remaining candidates
that have been evaluated but not yet selected.

4.6 | Building Leja sequences and estimating the range of the coupling variables

Lemmallndlcates that the estimated ranges =, of the coupling variables can significantly impact the accuracy of a component-
surrogate and thus the integrated surrogate. In this section we present an adaptive algorithm to iteratively learn the ranges of
the coupling variables of component-surrogates constructed using tensor-product interpolation, The algorithm leverages the
nested property of Leja sequences to dynamically adjust the quadrature rules used to construct the MISC approximation for each
component.

Univariate weighted Leja sequences over a range I C R are constructed sequentially. Given a sequence of m(f,) points

Vinap, = {”ZL,a, 5 }';ﬁ”), the sequence with m(f,) + 1 points is obtained adding to the current sequence the following point:

m(B,)
* )
u” = argmax v(u) |lu—u | (20)
el 1:[ k.a.n.p,

for some weight function v(u). In this paper, we follow” and set v(u) = \/@ where v(u) is the PDF of the variable u. For
uniform variables used to represent coupling variables (cf. Section [3.3), the PDF is a constant and does not affect the Leja
sequence. However, the PDF does effect the Leja sequences used for the exogeneous variables.

By construction, Leja sequences are nested, that is Uy, 4 5 C Uy 4.5 +1- Moreover, the initial point u) may be arbitrarily
chosen. Indeed, we can extend any set of initial points Uy , 4 5 . Thus, given a Leja sequence V), , 5 constructed on a range
I, we can generate the next point u* of the Leja sequence over a larger range I’ by simply searching for the next point in the
interval I’ instead of I. We can utilize this approach to adapt the surrogates of system components to dynamically changing
estimates of the coupling variable ranges.

Iteratively  estimating the ranges of the coupling variables requires the introduction of the
UPDATE_COUPLING_VARIABLE_RANGES routine in Algorithm ] (not shown). This routine estimates the ranges of & using the
values y ; and of y T computed on Lines! and |9} respectively. Specifically, consider the i-th coupling variable of the k-th
component &, ; and assume that its value is determmed by the ¢- th output of the m-th component, i.e., & ; = y,, .. Then using

=, wi = Lag» by ;] to denote the current range of & ;, the new range =2 ] is updated as follows:

_[ kl’ kl

ro . _ ;o _
@, ; = min (ak,i,mm (yJ’yJ[’u,m» bk’l. = max <bk,i,max (yg,y‘%{lyﬁ])) .

In the numerical examples to follow, we evaluate the entire system at L ;. = 100 random realizations of the input z, and
set the initial ranges E :'0 ; of each coupling variable to be the minimum and maximum values over the 100 samples. Despite the
inaccuracy of this 1n1t1al guess, the performance obtained using this approach along with the subsequent learning procedure was
found to be very similar to that obtained using more carefully constructed bounds that were set a priori.

4.7 | Remarks

Algorithm [1]is a generalization of the adaptive MISC algorithm developed for black box-models proposed in®*33. When K = 1
Algorithm [I] recovers the original algorithm as a special case. This original algorithm can be applied to system-models by
ignoring the coupled nature of the system-level input-output map (I)) and treating the system model as a single component. When
used in this way, the original algorithm must employ a multi-index a controlling the physical fidelities of the system-model,
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such that

a=la,a,,....,ag].

is the concatenation of the hyper-parameters ¢, for each component. In the numerical examples that follow we will refer to this
specialized case as the black-box approach.

Unfortunately, to date we have been unable to make strong theoretical statements about convergence of Algorithm [T} This
is partly to be expected, since convergence has only been partially addressed even for the black-box variant3!3% These initial
results focus on application of MISC to elliptic PDEs with random coefficients. The machinery to prove convergence borrows
from the tools used to prove convergence of (single-fidelity) sparse grids approximations (see e.g.”122235%) and requires certain
regularity (boundedness of mixed spatial-parametric derivatives) of the function to be approximated, as well as suitable choices
of the error-indicators (slightly different from the one we use here, since our choice is tailored to multi-component systems).

S | NUMERICAL EXAMPLES

In this section, we investigate the performance of the proposed method using several numerical examples. In all examples, we
build surrogates of each component and report the error in the predictions of the integrated surrogate against the total cost of
running the algorithm. For comparison purposes, we also report error vs cost of the black-box version of the MISC algorithm
discussed in Section All the numerical results were produced using the PyApprox software package®>.

Error is measured by drawing 1000 random samples from the PDF of the exogeneous variables z and computing the relative
£? (root mean squared) error between the exact system output and the surrogate approximation, normalized by the #? norm
of the validation data. For computationally expensive component-models, the computational cost of constructing integrated
surrogates using Algorithm [T|dominates the cost of evaluating the resulting surrogate at validation samples, which we therefore
consider negligible. Consequently, the total cost W, of the algorithm is the computational cost required to generate the training
data V|, Y,, ..., Y. More formally, the total cost is the sum of the AVVk,[a’ Al computed for the indices [, f] visited during the
execution of the algorithm(see (I8)), that is

K
W=, Y AWiap
k=1 [a,lET,UR,

The cost of propagating samples through feed-forward coupling and FPI used to resolve feedback-coupling is negligible
because both tasks are performed on the surrogates. In contrast, the black-box MISC algorithm requires evaluations of the
system-model. Consequently the cost of fixed-point iterations must be included, because they require evaluations of the expensive
component-models. Assuming that a fixed number of fixed point iterations P are performed, the total cost of the black-box
approach is

W= . (PAW,p), forblack-box MISC. @n

[a,fl€ETIUR

Here we have dropped the dependence on k from W,T and R to emphasize the black-box approach does not consider the
existence of components. In the following examples we report the total cost in terms of the number of equivalent highest-fidelity
evaluations.

5.1 | Algebraic single-fidelity feed-forward system

Consider the coupled system depicted in Figure[6] The system consists of three components in a chain with vector-valued feed-
forward coupling, where f(z;) = (¥, ... ,ylle)T, f2(25,85) = a5 -+ ,J’z,QZ)T and f3(z3,&3) = [y3,], and the expressions
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B = = g

FIGURE 6 A feed-forward system consisting of three components. Coupling variables are depicted in red, external inputs in
gray and system-level Qol in black. The first and third components share the same random variables, i.e. z; = z5, and the inputs
to the second component are unique to that componenti.e. z, Nz, =@, k = 1,3.

of the outputs y, ; are given by

Dl
— — A —
Vg = f1,,,],q(zl) =z, sin <Z Zy g+ €a,) , q=1,...,0

d=1
S, D,
y2,a2,q = f2,a2,q(z2’ 52) = <H(§g+1 - 602 ) <H Zz’d> s q= 19 ey Q2 (22)
s=1 d=1
S, ]
Vsapg = f3.0,(%3:83) = exp | = Z(fs - €a3)2 5
s=1 1+2(3% 2
16 d=1734d
with &, = (y1,.... ¥ 0, L& =, .. ,y2,Q2)T and the discretization parameters a; = 1,2, ... control the values of ¢, and thus

the accuracy of f} , .

The coupled system is parameterized by D, + D, independent and identically distributed uniform random variables on [0, 1].
The first and third components are parameterized by the same two random variables, that is z; = z; and D, = D5 in 22).
The second component is parameterized by another two variables such that z; N z, = @. The number of random variables and
outputs of each component is scalable. Here we set Q; = 1 and consider three cases: Case 1 withQ;, =0, =1, D; = D, =1,
€, =0Vk,Case2withQ, =0, =4,D, =D, =2,¢, =0Vk,andCase3withQ, =0, =2,D, = D, =2,¢, >0Vk).The
first two cases use single-fidelity models for each system component, and are devised to analyze the impact of range estimation
(Case 1), and of dimension reduction and non-linearity (Case 2). We set a, — oo such that ¢, = 0, k = 1, ... K and assume
that evaluating each component has the same computational cost, which means evaluating the entire system costs three times
as much as evaluating a single component. Conversely, Case 3 is designed to investigate the effectiveness of the multi-fidelity
approach and therefore utilizes models of varying accuracy cost for each component.

5.1.1 | Case 1: The impact of range estimation

In Figure[7] (left), we plot the error in the predictions of f; for Case 1 using different ranges for the coupling variables; the true
PDF of the coupling variables and the output of the third component are shown in Figure[7] (right). The intervals in the legend
denote the a priori fixed range of the coupling variables, while the legend element “Estimated” refers to the approximation
obtained when using the adaptive range estimation procedure outlined in Section [#.6] Note that in this example the true range
of the coupling variables can be determined from inspection of the component functions. The exact ranges of the coupling
are all [0, 1], therefore the corresponding convergence curve can be considered the best possible performance that any method
employing range estimation can achieve. Figure[7)also plots the convergence of error in a single surrogate that treats the system
as a black-box.
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FIGURE 7 Error vs cost for the feed-forward system for (left) Case 1 with (O, = Q, = 1, D; = D, = 1) and (middle)
Case 2 with (Q, = Q, =4, D| = D, = 2). (Right) True PDFs of the coupling variables p; , and output p,, of the integrated
system for Case 1. The dominating measure (v from LemmalI]), used to compute the Leja sequences for the coupling variables
on [0, 1], is depicted in gray.

All integrated-surrogates converge much faster than the case of a single black-box surrogate. However, the error in the
integrated-surrogates is impacted by the ranges used for the coupling variables. The errors for all surrogate cases that under-
estimate the range of the coupling variables, saturate at a level proportional to 6 in Lemmal[I] where 6 reflects the severity of the
under-estimation. When the range of the coupling variables is over-estimated, the errors do not saturate; however, the constant
of convergence is increased, that is the curve shifts right relative to the black curve based on the true ranges.

The dynamic estimation of the coupling ranges is effective. It identifies the coupling ranges of &, and &, to be [—0.02, 1.00]
and [—0.23,0.92], respectively. The error saturates because we only use L., = 100 samples to estimate the ranges of the
coupling variables and thus under-estimate the upper bound of &,. Although not shown, the saturation of error can be removed
by increasing the number of samples L,;,.. Again, we emphasize that this does not increase the number of evaluation of the
true component functions. We choose such a small value of L_;,. to show that, even for very crude estimates of the ranges, the
dynamic estimation of the ranges works well. We also remark that the algorithm can sometimes over-estimate the ranges of the
coupling variables, as was the case here. This is because the estimation procedure is based on evaluations of the component-
surrogates and not the true components. Thus, at early stages of the algorithm, an inaccurate approximation can lead to the bounds
being over-estimated. However, for this example and all that follow, we found that any over-estimation did not significantly affect
results. Under-estimation is more important to avoid and the algorithm does this effectively. In all remaining numerical studies,
we dynamically estimate the range of the coupling variables.

Note that in Figure [/} when the range of the coupling variables is under-estimated, the error in the integrated-surrogates
decreases before rapidly increasing and finally saturating. This behavior occurs when the polynomial degree of the third com-
ponent f5 surrogate is increased. The third component is based upon a scaled version of the Runge function and so exhibits
a “Runge type phenomena”, where oscillations in the approximation occur outside the ranges of the coupling variables. Some
samples used to estimate the errors reported in Figure[7|require extrapolation in these oscillatory regions. Consequently error, in
the approximation of the system-level Qol, decreases until oscillations in the surrogate of the third component start to dominate
estimates of error.

5.1.2 | Case 2: dimension reduction and non-linearity

The middle plot of Figure[/|compares the accuracy of integrated-surrogates with system-level black-box surrogates for Case 2.
At lower levels of total cost, the system-level black-box surrogate is much more competitive than when used for Case 1. However,
the rate of convergence is still much slower than for the integrated-surrogates. In general, there are two reasons for the increased
convergence rate of integrated component-surrogates: (i) the components may be lower-dimensional than the entire system and
(ii) the components may be less non-linear than the entire system. We expand on both these points below.

Dimension reduction.

The number of evaluations needed to build a component-surrogate increases with the dimension of the component and not the
dimensionality of the system. In many cases the number of inputs (coupling and random variables) of a component is smaller than
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the number of random variables for the entire system, that is D, + .5} < D. In these situations, constructing approximations for
components of a system can be cheaper than a surrogate that treats the system as a black-box. To explain this behavior, consider
a tensor-product interpolation of a function, which requires O (e‘D) black-box evaluations of the entire systenﬂ to achieve an
error €. The cost of using this method to build component-surrogates over both the coupling and random variables satisfies

K

log(K
0 Z e @S0 | < 0 (e_D) if max D, + S, <D+ 0g(X)
&~ k=1,...K log(e)

(23)

Here we used O <Zf:1 e‘(DkaSk)) <O (KeT), were T = max,_, _x D +S,.

Non-linearity.

As discussed previously, integrated-surrogates can be represented as a composition of functions. Thus, the composition of the
system-level Qol can be more non-linear than any single component. For example, consider a composition of K quadratic
functions; the system-level Qol will have degree 2K and so will be much more difficult to evaluate than any component. Note
that it is theoretically possible for the system-level Qol to be less non-linear than a component; however this phenomenon did
not occur in any of our numerical examples.

Case 1 and Case 2 were specifically tailored to highlight the improved expressivity of treating systems as compositions of
functions. The difference in performance between system-level black-box and integrated component-surrogates will decrease
as the non-linearity of the components decrease. However, several of the following examples show the benefits of our approach
even on systems that were not tailored to amplify its benefits.

5.1.3 | Case 3: multi-fidelity approximation

In this section, we investigate the use of an ensemble of models, of varying fidelity, within our integrated-surrogate framework.
Specifically, we consider Case 3, that is (22) with Q, = O, = 2 and D, = D, = 2. By varying a;, we can produce an ensemble
of models of varying cost and accuracy. With this goal, we set €, = 10~%. The effectiveness of multi-fidelity methods is strongly
dependent on the cost-to-accuracy ratio and the true cost of evaluating each algebraic component is negligible. For demonstration
purposes, however, we define the work needed to evaluate f} , to be W, = 1.25%, enabling illustration of the impact of the
proposed multi-fidelity sampling algorithm for a cost model that is representative of what might be encountered in practice.

The left graphic of Figure [§] plots the error in the predictions of the integrated multi-fidelity component-surrogates (“MF
Integrated”). We also compare that approach with single-fidelity integrated component-surrogates (“SF Integrated™) for fixed
a; = 6 and single-fidelity and multi-fidelity system-level black-box surrogates, labeled “SF Black-box” and “MF Black-box”
respectively. Both integrated approaches are more accurate than their black-box counterparts. However, the greatest gains are
made from introducing multiple models and using our multi-fidelity approach.

The middle and right plots of Figure [8] depict the percentage of the computational work allocated to the various model dis-
cretizations of each component when the total work is ~ 484 and = 1005, respectively. The two numbered boxes in the left plot
indicate the points on the convergence curve that are associated respectively with the middle and right plots. In the middle plot,
evaluations of the second and third components contribute a similar amount to the total work. In the later stages of the algorithm
(right plot), more resources are allocated to the third component. This behavior cannot be achieved without considering the effect
of each component on the system-level Qol, which is one of the novel aspects of our proposed approach. These two plots also
show how work is distributed among each model fidelity for each component. In the early stages of the algorithm, lower-fidelity
model evaluations are predominant. However, as the total work increases, the algorithm identifies that increasing amounts of
higher-fidelity model evaluations are required to further reduce error. For example, the middle plot shows only four fidelities
have been used for component 2 but in the right plot, six fidelities have been evaluated. Higher-fidelity (larger a, ) evaluations
are needed when the parametric error || f; , — f) kI, || of a component-surrogate becomes commensurate with the deterministic
error || fy — fy.|l induced by using the model approximation f ,.

4Note the error estimate here is for tensor-product methods. The complexity of sparse grids, upon which MISC is based, grows more slowly with dimension. The
exact rate depends on the regularity of the function and so we focus our exposition on tensor-product interpolants. Furthermore, adaptive MISC can produce tensor-product
interpolants if all variables and all their combinations are important for the Qol.
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FIGURE 8 (Left) Error vs cost for the feed-forward multi-fidelity system (22). Evaluations allocated by the MF Integrated
sampling procedure to the varying fidelity models of each component when the total cost is approximately 484 (middle) and 1005
(right). The two numbered boxes in the left plot indicate the points on the convergence curve that are associated respectively
with the middle and right plots.

5.2

In this section we apply the proposed methodology to a fire detection satellite designed to detect, identify and monitor forest
fires. Figure[I]depicts a conceptual diagram of the system-model and its couplings. The definitions of the coupling variables are
given in Table[3] The system consists of three components with both feed-forward and feedback coupling. The model equations
of these components are documented in°. The system has eight random variables (see Table [2) and seven coupling variables
(see Table . Model constants are reported in>>. In the following, we use integrated-surrogates to accurately approximate three
outputs of the system: the total torque 7., (y3,) coming from the attitude control component, the total power output Py (¥, 3),
and the area of the solar array A, (y,4) coming from the power component. We use fixed-point iteration (see Section @ to
solve for the feedback coupling variables.

| Fire detection satellite

TABLE 2 Random variables of the fire detection satellite system depicted in Figure The System Index denotes the index of
the variable in the aggregated set of system random variables z. Each variable enters the component variables z, in the column
entitled Component Variables. Arguments of the Gaussian distributions are mean and standard deviation.

System Index Random Parameter Name Symbol Component Variables Distribution
1 Satellite altitude H Z,, 23 N (18 % 10%, 1 x 10°)
2 Target diameter 103 iz N (235, 10)
3 Other power sources P, Z, N (1000, 50)
4 Solar flux F, T 7 N (1400, 20)
5 Moment arm for solar radiation torque L, Z3 N (2,0.4)
6 Reflectance factor q Z N (0.5,0.1)
7 Moment arm for aecrodynamic torque L, Z3 N (2,0.4)
8 Drag coefficient C, i N (1,0.2))

The left plot of Figure[9]plots the error in the integrated component-surrogates (“Integrated”) as the total cost of building the
three surrogates increases. For a given cost, the error is much smaller than the error of the surrogate that treats the system as a
black-box (“Black-box”). The black-box approach requires P = 3 fixed-point iterations to estimate the coupling variables, cf.
Equation (21)). Assuming the cost of each component is one unit, the evaluation of the black-box requires one evaluation of the
first component and three evaluations of the remaining components, that is 1 + 3 X 2 = 7 units. In comparison, the integrated
component-surrogate approach assigns evaluations to each component individually, using estimates of the impact of component
error on the approximation error of system-level Qol. The number of evaluations allocated to each component is depicted in
the middle and right graphics of Figure 0] when the total cost is 131 and 229 respectively. The two numbered boxes in the left
plot indicate the points on the convergence curve that are associated respectively with the middle and right plots. The algorithm
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TABLE 3 Component outputs of the fire detection satellite system depicted in Figure The System Index denotes the index of
the output in the aggregated set of system outputs y. Each output is present in the coupling variables &, in the column entitled
Coupling Variables. A dash in the coupling variable column indicates the output is a system-level Qol.

System Index Output Name Output Variable Coupling variables
1 Satellite velocity Y11 s
Orbit period YVi2 £.83
3 Eclipse period Y13 &
4 Max slewing angle V14 &3
5 Minimum moment of inertia Va1 &5
6 Maximum moment of inertia Va2 &
7 Total power output Y23 —
8 Area of solar array Y24 -
9 Attitude control power V3] &
10 Total torque V32 —

allocates more computational resources to approximating the second and third component. Note, as previously mentioned at the
beginning of Section [3] the total costs reported do not include the cost of the FPI needed to integrate the surrogates, which is
negligible relative to evaluation of the true components. Also note that the saturation of the errors, present for both approaches
depicted in the left plot of Figure[9] is due to numerical precision issues with solving the Attitude component. It is not due to
FPI, which computes the values of the coupling variables to machine precision in three iterations.

—— Integrated

== Black-box
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FIGURE 9 (Left) Error vs cost for the Qol P, , obtained from the fire detection satellite system-model. (Middle) The percentage
of the computational work allocated to evaluating each component when building the integrated-surrogates when total cost is
131 and (Right) 229. The two numbered boxes in the left plot indicate the points on the convergence curve that are associated
respectively with the middle and right plots. Numbers inside the bars represent the absolute number of component evaluations.

5.3 | Economics-turbine model

In this section we investigate the performance of our methodology on a coupled financial model for a gas turbine as depicted in
Figure Em The system consists of four component-models and is parameterized by 11 random variables. The distribution
of the random variables is given in Table 4 where z, = [T, .T,,T, K, hy,, hel'.zy = [P,1", 25 = [m, T,, Fpe,f]T and
z, = [F

Leonl |- In the following, we provide details on the models used for each component.
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FIGURE 10 A multi-fidelity economics model of a turbine consisting of four components. Coupling variables are depicted
in red, external inputs in gray and system-level Qol in black. The random variables are z, = [T, . T, .T. . K, hy,, helT,z, =
[P,]", 23 = [, T,, F,, 1" and z, = [F,,,,]". The coupling variables are &, =y, = [T}, ] and & = [y, ¥317 = [Poert o]’
No random variables are shared between components, that is z; Nz, = # Vj, k.

Heat transfer model.

The heat transfer model is used to predict the bulk temperature of a cooled turbine in the path of heated gas flow. We use quadratic
finite elements to solve the stationary heat equation

Vk-Vh(x)=0 xe€Q
h(x)=T, x€0Q, j=1273

x2
h(x) = h,, + (h,, — h,,) exp (—4m) x € 0Q,

on the blade geometry shown in Figure 2] Here we use Dirichlet boundary conditions to specify the effects of coolant running
through the three blade passages. Heat transfer is imposed along the outer boundary as a function of the spatial chord-wise
coordinate x. The output of this model is the bulk metal temperature

Tyuire = V_l/h(x)dx,
o

where V is the volume of the blade.

‘We can solve the heat transfer model using three different meshes of increasing resolution. The number of degrees of freedom
and cost (in seconds) is presented in Table[I] The other three components do not have models of varying fidelity, and we assume
the cost of evaluating these components to be 0.1 seconds.

Lifetime model

The lifetime model predicts the expected time until blade failure assuming a Larson-Miller>® nickel superalloy stress-to-failure
ratio. The expected time until failure is given by

Trq = exp (le/ Tk — 20)

where P, is the Larson-Miller parameter.
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Performance model

We use a simplified model to evaluate the maximum power of the turbine. Specifically, the engine performance is given by

P, = Fyp (titg = Niit) C, Ty (1 + T, /Ty — 2/ T,/ Ty)

eng

where the inlet compressor temperature 7;, = 300, the inlet compressor flow rate r, = 30, the number of gas turbine blades
N =90, and the specific heat C, = 1003.5 are constants, and the performance factor F,, ,, the external gas temperature T, and
the coolant mass flow m are random parameters. The model penalizes coolant flow usage and rewards high external gas path

temperatures.

Economics model

The economics model predicts the revenue from operating the gas turbine via

r =F con tfail Peng (00/1000)

econ e

where ¢, = 0.07. The model penalizes a turbine that has a high-risk of failure and rewards high engine performance. The
economic factor F,.,, is a random parameter accounting for the variability with other gas turbine components not represented
in the model.

TABLE 4 Random variables of the economics-turbine system depicted in Figure The System Index denotes the index of
the variable in the aggregated set of system random variables z. Each variable enters the component variables z, in the column
entitled Component Variables. Arguments of the Uniform distributions are lower and upper bounds.

System Index Random Parameter Name Symbol Component Variable Distribution
1 First passage coolant temperature T, zZ; U[590, 610]
2 Second passage coolant temperature T, z, U'[640, 660]
3 Third passage coolant temperature T, Z; U690, 710]
4 Thermal conductivity K Z, U[29,31]
5 Leading edge heat transfer coefficient hy, Z U[1975,2025]
6 Tail edge heat transfer coefficient hy, 4} U’[975,1025]
7 Lars-Miller parameter P, 4 U[2.45 x 10%,2.55 x 10%]
8 Coolant mass flow rate m Z3 U°[0.108,0.132]
9 External gas temperature Ts Z3 U[1225,1275]
10 Performance factor F perf Z3 U[0.85,0.95]
11 Economic factor F,.,, z, U10.9,1.1]

The left plot of Figure[TT|compares the performance of adaptive multi-fidelity component-surrogates (“MF Integrated”) with
single-fidelity component-surrogates (“SF Integrated”) and multi-fidelity and single-fidelity black-box models (“MF Black-
box” and “SF Black-box”). Even though only one component has an ensemble of models available (unlike the previous multi-
fidelity example), the multi-fidelity integrated procedure produces a significantly more accurate surrogate than the alternative
approaches. As seen by comparing the resource allocations, depicted in the middle and right plots and associated respectively
with the points indicated by the boxes labeled 1 and 2 in the left plot, the procedure only evaluates the finite element heat-
transfer model until the error in the surrogate of that component is dominated by the errors of the other components. At that
point, the error drops sharply because the costs of evaluating the other components are much smaller than the cost of running
the heat transfer model. This is a major advantage of decoupling the component-models: the accuracy to which any component
is resolved is commensurate with its impact on the system-level Qol. In situations when simple empirical models, such as the
economic model used here, are used to inform decisions, this result suggests that the incorporation of high-resolution multi-
physics models does not necessarily need to cause an explosion in system-analysis cost; rather, the computational resources used
to run expensive component models can be limited to only those necessary to approximate other cheaper component models.
Moreover, the required precision can be automatically determined.
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FIGURE 11 (Left) Error vs cost for the economics-turbine system-model. (Middle) Allocation of work for the MF integrated-
surrogates when total cost is approximately 44 and (Right) 51. The two numbered boxes in the left plot indicate the points on

the convergence curve that are associated respectively with the middle and right plots.

6 | CONCLUSIONS

This paper presented an algorithm for efficiently building surrogates for coupled/integrated multi-disciplinary systems. These
surrogates can be used to significantly reduce the cost of outer-loop analyses, such as uncertainty quantification and design, which
require repeated interrogation of the coupled system. The procedure introduces coupling variables with unknown distributions
to allow the independent construction of surrogates for each component of a system. An adaptive sampling procedure is then
used to allocate resources for training each component-surrogate in a manner that minimizes prediction error per unit cost. The
proposed methodology was successfully applied to systems consisting solely of feed-forward coupling and systems with mixed
feed-forward and feedback coupling.

Analysis was provided to bound the error predictions of system-level quantities of interest obtained from the integrated
component-surrogates. Moreover, extensive numerical examples demonstrated that building approximations over the individ-
ual components can reduce the dimensionality and non-linearity of the surrogates being built. These properties, along with our
method for adaptively allocating resources to the most important components, reduced the cost of system analysis by orders of
magnitude on the examples tested. These gains were amplified when multi-fidelity models of varying accuracy and cost were
available for at least one system component.

In this work we focused on scalar couplings between multi-disciplinary components. In future work we will investigate the use
of our framework for coupling multi-scale, multi-physics problems that possess couplings that are infinite-dimensional random
fields, for example that arise when coupling partial differential equations with a shared physical boundary. To be successful we
will need to represent the field with a finite-dimensional basis, e.g., associated with a Karhunen-Loeéve expansion, and balance
the truncation error of this expansion with the various approximation errors considered in this paper.
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APPENDIX
A PROOF OF PROPOSITIONS

The following outlines the proof of Proposition [I]

Proof. First, for any &, é: € E;, and z;, € I';, we have

||fk(zk, {fk) - fk,zk(zk»é:)” < ”fk(zk, fk) - fk(zk, 5;)” + ”fk(zk»f;:) - fk,zk(zk»f;:)”

SLllg - &xll +e (AD)
where in the last step we have used the assumption of Lipschitz continuity to bound the first term and the definition of € to bound
the second one. Now without loss of generality set z, = z and card(§,) = S, = S, Vk, then by repeated use of (AT), where
&= fim()and & = fi_; 7 (), we have

I/ 2) = f@I = I fxo - of1(2) = fxg,0 = ofir, 2
Seg+ Lgllfgoi0--0f1(2) = fxo11,_ 0 of11,Dl
Sex + Ly (ex_y + Lyl fxp0 - of 1 (2) = Sfrka,,°ofir, @)
S ees

K
fex+ex | Lx+ex s LgLg |+ +¢ HLk
k=2

K
< e<1 +Lg+LLg_ +- +HLk>

k=2
Se(l+L+L*+- LK

1- LK
—] 6—’
1-L
where L = max,_, =y L, and e = max;_, g €,. The last equality uses the well-known expression for the sum of a geometric
series. O

The following outlines the proof of Proposition [2]

Proof. Recall that
fi(z;, g/)
Sz, €4

denotes the fixed point iteration function using the true component-models and F; similarly denotes the FPI function using the
component-surrogates. Also let £’ and &”* respectively denote the estimate of the coupling variables obtained after the p-th
fixed point iteration, p = 1, ..., P, using the true component-model and its surrogate. If we initialize each FPI with the same
guess so that £ — €% = 0, without loss of generality drop the dependence on z, we obtain

”51 _ g*,l” — ”F(g()) _ Fj(é*,o)”
<IFE) = FEO + | FE) - Fy (€|
<LIE - +e=e

F(&) = [ ] E=1&,. &1
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then for the second iteration we get
167 = &1l = I1F(E") = F7 (gDl
<NIFE) = FEDI+IFED = Fr&hll
<L|E -&'+e=Le+e,
and finally, repeating for P iterations we obtain

IEF —&* Pl <e(l+L+ L+ + L")

=€ 1- LP .
1-L
O
B NOMENCLATURE

Notation Definition
D The number of all unique exogeneous inputs to the system
r The range of all unique exogeneous inputs to the system
z All exogeneous inputs to the system, z € I' ¢ R?
p,(2) The joint density of all exogeneous inputs
f(z) The black-box model returning all component outputs
y Union of all component outputs y = f(z)
0] The number of combined outputs from all components, y € R€
Y The range of all component outputs, y € Y C R?
Qs The number of system-level Quantities of Interest (Qol), O < QO
q The system-level Qol, g C y
K The number of components in an integrated system
D, The number of exogeneous inputs to the k-th component
I, The range of all exogeneous inputs to the k-th component
Z; The exogeneous variables of the k-th component, z, € I', C R
Pz The joint PDF of the exogenous inputs of the k-th component
Sy The number of coupling variables of the k-th component
B The range of all coupling variables of the k-th component
&, The coupling variables of the k-th component, &, € E, C RS
Pk The joint PDF of the input coupling variables of the k-th component
Sz &r) The model of the k-th component
O, The number of outputs of the k-th component
Y, The range of the outputs of the k-th component
Vi Outputs of the k-th component y, = f(z;, &)
u; Combined exogeneous and coupling variables of k-th component, u;, = [z;, §Z]T
Uy, n-th dimensional coordinate of u,
N, Number of variable in the combined variable u,, N, = D, + 5,
L, Lipschitz constant of the k-th component-model
e The unit vector of length i with the j-th entry non-zero, [0, ...,0,1,0... ,017
AZ Extraction matrix indexing component outputs y, into system Qol g
A Extraction matrix indexing component exogeneous inputs z, into system inputs z
Ai Extraction matrix indexing component coupling variables &, into system outputs y
F(¢) Fixed point iteration function used to solve for consistent coupling variables &
34 Value of the coupling variables at the p-th fixed point iteration
P number of FP iterations

n Fixed point iteration tolerance
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