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Abstract

We present an adaptive algorithm for constructing surrogate models of multi-
disciplinary systems composed of a set of coupled components. With this goal we
introduce ‘coupling’ variables with a priori unknown distributions that allow surro-
gates of each component to be built independently. Once built, the surrogates of the
components are combined to form an integrated-surrogate that can be used to pre-
dict system-level quantities of interest (QoI) at a fraction of the cost of the original
model. The error in the integrated-surrogate is greedily minimized using an experi-
mental design procedure that allocates the amount of training data, used to construct
each component-surrogate, based on the contribution of those surrogates to the error
of the integrated-surrogate. The multi-fidelity procedure presented is a generaliza-
tion of Multi-Index Stochastic Collocation (MISC) that can leverage ensembles of
models of varying cost and accuracy, for one or more components, to reduce the com-
putational cost of constructing the integrated-surrogate. Extensive numerical results
demonstrate that, for a fixed computational budget, our algorithm is able to produce
surrogates that are orders of magnitude more accurate than methods that treat the
integrated system as a black-box.
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1 INTRODUCTION6

Modeling complex systems often involves integrating numerous components from multiple disciplines. The components of7

the system can be coupled by either feed-forward or feed-back coupling. For a single evaluation of the system inputs, feed-8

forward coupling requires passing the outputs of upstream components to downstream components, whereas feedback coupling9

requires relaxation methods, such as fixed point iteration (FPI), to determine the component outputs that are interdependent.10

Consequently, outer-loop problems such as uncertainty quantification and design, which require repeated interrogation of the11

coupled system, can be intractable when one or more component-models are computationally expensive to simulate.12

Surrogate methods, such as polynomial chaos1,2,3, Gaussian processes4,5,6, low-rank decompositions7,8,9, sparse grid interpo-13

lation10,11,12, reduced basis approximations13,14,15,16 and neural networks17,18 have all been used successfully to reduce the cost14

of analyzing computationally expensive models. However, these methods can be inefficient when applied to integrated systems15

because they treat the system-model as a black-box and do not exploit the coupling structure linking components.16
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Several recent works19,20,21,22,23,24 have demonstrated the benefits of exploiting the structure of coupled systems for reducing17

the cost of outer-loop applications. These methods decompose system analysis into analyses of individual components that18

are then combined to make system-level predictions. Decoupling of the integrated system is achieved by expressing each of19

the K component-models of a system as a function of both exogeneous inputs z controlled by the user/modeler, e.g. random20

or design variables, and inputs � that we call coupling variables, whose values are determined by the outputs y of the other21

components (Figure 1). Two classes of approaches are then used to interrogate each component and combine the evaluations to22

make predictions of the integrated system.23

The first class of methods build a single surrogate that maps all the system inputs z to all the coupling variables � 25,26,27. The24

training data used to build the surrogate is obtained by evaluating the coupled system at realizations of the exogeneous variables25

and collecting the values of the coupling variables computed by fixed point iteration during each simulation. Once constructed,26

the surrogate of the coupling variables removes the need to use FPI when evaluating a multi-disciplinary model with feedback27

coupling. This can substantially reduce the cost of predicting system level outputs, but gains are ultimately limited because the28

expensive component-models still must be evaluated using values of the coupling variables obtained from the surrogate.29

The second class of approaches builds multiple surrogates, each one approximating a map from the local inputs of a compo-30

nent (zk, �k) to the local component outputs yk, k = 1,… , K . The training data used to build each surrogate is obtained via31

independent evaluations of the associated component-model and does not require evaluation of the coupled system. Once con-32

structed, the inexpensive component-surrogates are used in place of the original expensive numerical component-models when33

evaluating the multi-disciplinary system. For example,28,29 build surrogates of each component in a feed-forward system consist-34

ing of a chain of one-directional couplings and pass the outputs from an upstream component-surrogate to the next downstream35

component-surrogate. Such so called integrated-surrogates have also been used in a similar fashion for systems with feedback36

coupling19,21,23. Unlike the first class of methods, the second class of methods still require FPI to determine the value of the37

coupling variables when feedback-coupling is present, however FPI is only performed using the surrogates at negligible cost.38

Class-two methods are typically more efficient than black box (and even class-one) approaches because: they construct several39

low-dimensional surrogate models of the system components instead of a single high-dimensional surrogate of a black-box40

system; they can take advantage of simpler mappings from component inputs to outputs which can be less non-linear than the41

coupled system map, which is the composition of the component maps; and unlike the first class of methods, relaxation methods42

are never applied to the original expensive component-models. However, the accuracy of class two integrated-surrogates is43

heavily dependent on the amount of training data used to train each component-surrogate because not all components impact the44

prediction of system quantities of interest (QoI) equally. Thus, experimental design strategies are needed to reduce the error in45

each component-surrogate commensurate with its impact on the accuracy of system QoI predictions. But to date, experimental46

design algorithms have only been developed for refining class-two surrogates of systems consisting of a chain of purely feed-47

forward couplings29.48

In this work, we propose a novel adaptive surrogate and experimental design strategy for building class-two system surrogates,49

based onMulti-Index Stochastic Collocation (MISC)30,31,32,33,34, which can be used for systemswith either, or both, feed-forward50

and feedback coupling. Every iteration of the sequential algorithm greedily generates candidate training data from the single51

component predicted to produce the greatest change in the integrated-surrogate, relative to the cost incurred by evaluating the52

candidate data set. Optimizing the investment in the constituent components significantly reduces the cumulative computational53

cost of building surrogates of each component, which, to the authors’ knowledge, has never been demonstrated for class-one54

or class-two methods. Indeed, such an approach is not even possible when building class-one surrogates because they require55

evaluations of the integrated system to generate training data. However, building surrogates of component outputs typically56

requires defining ranges for the coupling variables which are not known a priori. This limits the practical application of class-57

two methods. To address this challenge we embed an iterative procedure to estimate the ranges of the coupling variables within58

our experimental design algorithm. Our approach significantly improves the efficiency of building component-surrogates when59

compared to procedures that use conservative estimates of the coupling variable ranges.60

The algorithm proposed in this paper significantly reduces the cost of building surrogates for integrated system-models when61

one model is available for each component. These gains are further amplified when a selection of simulators of varying fidelity62

and computational cost are available for one or more of these system components. In such situations, our experimental design63

algorithm enriches a small number of high-fidelity simulations with larger numbers of simulations from models of lower accu-64

racy and cost, to enable greater exploration and resolution of uncertainty while maintaining deterministic prediction accuracy.65

Our method for using multiple models of varying fidelity to increase the accuracy of integrated component-surrogates is the66

first of its kind.67
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The single-fidelity version of the method we propose, and the preceding works we cited, possess similarities to domain decom-68

position35,36,37,38 and localized model reduction (LMR)39,40,41,42. These methods efficiently solve partial differential equations69

(PDEs) by solving independent local problems on subdomains and computing a global solution via an appropriate coupling of70

the subdomains; LMR is domain decomposition technique that uses a localized reduced basis in each subdomain. In contrast to71

domain decomposition which is used to approximate the entire solution of a PDE and is able to set the number of subdomains72

(components) to reduce computational cost, our approach targets estimation of a small number of QoI of a multi-disciplinary73

system, with a fixed number of components, which may or may not involve the solving PDEs.74

The remainder of this paper is organized as follows. Section 2 discusses the procedures used to evaluate an integrated system75

of coupled components. In Section 3 we discuss how to use surrogates of each component to predict system-level QoI and the76

approximation error this induces. Section 4 presents a greedy experimental design procedure that minimizes the error in the77

surrogate of each component in a manner that minimizes error in predictions of system-level QoI for a fixed budget. Finally,78

the efficacy of the proposed approach is demonstrated using a number of numerical examples in Section 5 and conclusions are79

presented in Section 6.80
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FIGURE 1 A fire detection satellite system consisting of three components. Coupling variables are depicted in red, external
inputs in gray and system-level QoI in black. Here z1 ∩ z2 = ∅, z2 ∩ z3 = [z4], z1 ∩ z3 = [z1] and �2 ∩ �3 = [y1,2].

2 EVALUATING COUPLED SYSTEMS81

2.1 Problem formulation82

This paper is concerned with efficiently predicting QoI obtained from models of integrated systems with coupled components.83

With this goal, let84

y = f (z) ∶ Γ→ Υ (1)85

denote the map from exogeneous parameters z = [z1,… , zD]⊤ ∈ Γ ⊆ ℝD with probability density (PDF) �z(z), to a set of Q86

outputs y = [y1,… , yQ]⊤ ∈ Υ ⊆ ℝQ, where the QoI q ⊆ y, q ∈ ℝQsys , we wish to predict are a subset of the system-outputs.87

The so-called system-model (1) consists of K component-models of the form88

yk = fk(zk, �k) ∶ Γk × Ξk → Υk, k = 1,… , K. (2)89
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Each component-model returns a vector ofQk outputs yk = [yk,1,… , yk,Qk
]⊤ ∈ Υk ⊆ ℝQk ,Υk ⊆ Υ, and is a function of a vector90

ofDk exogeneous random variables zk ∈ Γk ⊆ ℝDk , with support Γk ⊆ Γ and joint PDF �z,k and of a set of Sk coupling random91

variables �k ∈ Ξk ⊆ ℝSk , with support Ξk ⊆ Υ, and joint (unknown) PDF ��,k, which are a subset of the outputs produced by92

other components
⋃K
j=1,j≠k yj . In the following, it will sometimes be useful to refer to the inputs of the k-th component without93

distinction between exogenous and coupling variables. To this end, we further introduce the notation94

uk ∶= [z⊤k , �
⊤
k ]
⊤ ∈ Γk × Ξk ⊂ ℝDk+Sk (3)95

to denote the concatenation of zk and �k, so that the k-th component-model in (2) can be compactly rewritten as96

yk = fk(uk).97

Wewill refer to uk as the parameters of the component-model. The notation for the aforementioned quantities and all that follow98

is summarized in Appendix B.99

Figure 1 graphically depicts an example of a multi-disciplinary system comprised of coupled components. The system outputs100

are y = [y1,1, y1,2, y1,3, y1,4, y2,1, y2,2, y2,3, y2,4, y3,1, y3,2]⊤, where the first index denotes the component and the second index101

denotes the QoI from that component. Three of these outputs are QoI, specifically q = [y2,3, y2,4, y3,2]⊤, such that Qsys = 3.102

Components k = 1, 2, 3 have 2, 2 and 6 exogeneous variables respectively, specifically z1 = [z1, z2]⊤, z2 = [z3, z4]⊤, z3 =103

[z1, z4, z5, z6, z7, z8]⊤. Some exogeneous system-model variables z are unique to a single component and others are shared104

between components so that D ≤
∑K
k=1Dk. For example, components 1 and 2 share no common exogeneous variables, i.e.105

z1 ∩ z2 = ∅, whereas components 2 and 3 share one common exogeneous variable, i.e. z2 ∩ z3 = [z4], as do components 1 and106

3, i.e. z1 ∩ z3 = [z1].107

For general systems, the coupling variables �k of the k-th component are determined by subsets of the system-outputs y of con-108

nected component models. In Figure 1, the subset [y1,2] of the outputs of the first component is used to provide input, in the form109

of feed-forward coupling to the second and third components, such that �2∩�3 = [y1,2]. Feedback coupling exists between com-110

ponents 2 and 3, indicated by the fact that some outputs of component 2 are inputs to component 3 and vice-versa. In summary,111

�1 = [∅] (i.e., component 1 has no incoming coupling variables), �2 = [y1,2, y1,3, y3,1]⊤, and �3 = [y1,1, y1,2, y1,4, y2,1, y2,2]⊤.112

Following24 we use extraction matrices to encode the relationships between the inputs, outputs, and coupling variables of the113

component-models. Specifically, the exogeneous variables, coupling variables, and outputs of the k-th component satisfy114

zk = Az
kz �k = A

�
ky, yk = A

y
ky,115

where Az
k ∈ ℝDk×D, A�

k ∈ ℝSk×Q, and Ay
k ∈ ℝQk×Q consist of unit row vectors that select a subset of entries from the vectors116

they are applied to. Similarly, we extract these system-level QoI via117

q = Aqy ∈ ℝQsys Aq ∈ ℝQsys×Q. (4)118

Letting ei,j = [0,… , 0, 1, 0… , 0]⊤ denote the unit vector of length i with the j-th entry equal to 1, the extraction matrices of119

the multi-disciplinary system in Figure 1 are120

Az
1 =

[

e⊤D,1
e⊤D,2

]

Az
2 =

[

e⊤D,3
e⊤D,4

]

Az
3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e⊤D,1
e⊤D,4
e⊤D,5
e⊤D,6
e⊤D,7
e⊤D,8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

A�
1 =

[

∅
]

A�
2 =

⎡

⎢

⎢

⎢

⎣

e⊤Q,2
e⊤Q,3
e⊤Q,9

⎤

⎥

⎥

⎥

⎦

A�
3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e⊤Q,1
e⊤Q,2
e⊤Q,4
e⊤Q,5
e⊤Q,6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

121

122

Ay
1 =

⎡

⎢

⎢

⎢

⎢

⎣

e⊤Q,1
e⊤Q,2
e⊤Q,3
e⊤Q,4

⎤

⎥

⎥

⎥

⎥

⎦

Ay
2 =

⎡

⎢

⎢

⎢

⎢

⎣

e⊤Q,5
e⊤Q,6
e⊤Q,7
e⊤Q,8

⎤

⎥

⎥

⎥

⎥

⎦

Ay
3 =

[

e⊤Q,9
e⊤Q,10

]

Aq =

⎡

⎢

⎢

⎢

⎣

e⊤Q,7
e⊤Q,8
e⊤Q,10

⎤

⎥

⎥

⎥

⎦

123

2.2 Evaluating systems of components124

Different approaches are needed to combine components linked by feed-forward coupling and those linked by feedback coupling.125

In this section we review the approaches we employ.126
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2.2.1 Feed-forward coupling127

Feed-forward coupling refers to the situation when the output(s) of a component are input(s) to another component; the coupling128

between components 1 and 2 in Figure 1 is an example of such a coupling. Without loss of generality, consider feed-forward129

coupling between two components coupled in the following way:130

yk = fk(zk, �k) �k = yk−1 = fk−1(zk−1),131

such that the output of fk−1 is input to fk. To evaluate the output of the k-th component at a sample z, we simply evaluate fk−1132

at zk−1 ⊆ z and then evaluate fk using the values yk−1 along with zk ⊆ z. This procedure can naturally be extended to a chain133

of components, that is when f = fK◦fK−1◦⋯◦f1. It is common for multiple components to be inputs to another component.134

For these general situations we pass information through the system of components by traversing a directed acyclic graph.135

2.2.2 Feedback coupling136

Without loss of generality, consider two components with feedback coupling137

{

yj = fj(zj , �j), �j = yk
yk = fk(zk, �k), �k = yj .

(5)138

The coupling between components 2 and 3 in Figure 1 is an example of feedback coupling, where in (5) we have for simplicity139

ignored any dependencies on any feed-forward coupling variables. To solve this system of non-linear equations we use fixed-140

point iteration (FPI). For a given realization of the random variables z, FPI iteratively finds the values of the coupling variables141

that produce consistent solutions43. Using the iteration function142

F (�) =
[

fj(zj , �j)
fk(zk, �k)

]

� = [�j , �k]⊤ (6)143

and starting from an initial guess �0 we evaluate144

�p = F (�p−1)145

until ‖�p − �p−1‖ < �, for some accuracy tolerance � ≥ 0. In this paper we assume that the iterating function F in (6) is a146

contraction, which guarantees convergence of FPI43.147

When a system consists of both feed-forward and feedback coupling, we proceed by partitioning the components into groups148

that, when considered together as a single “macro-component”, transform the system-model into a purely feed-forward system;149

FPI is needed to exchange information within a subgroup. Such system grouping can be achieved using methods such as Design150

Manager’s Aid for Intelligent Decomposition (DeMAID)44. For the system depicted in Figure 1, there are two groups: one151

containing model 1 and the other containing models 2 and 3, for which we feed the output of group 1 to the second group and152

then use FPI to determine the remaining coupling variables.153

3 INTEGRATED-SURROGATES OF COUPLED SYSTEMS154

The goal of this paper is to present a method for designing the computer experiments need to construct a surrogate of the155

coupled system-model in (1). With this goal, we seek an approximation (surrogate model) of each component-model (2) in156

the system, with explicit functional dependence on the coupling variables. Once built, these surrogates can replace the true157

component-models when evaluating the system using the strategies presented in Sections 2.2.1 and 2.2.2.We refer to the resulting158

approximation as an integrated-surrogate.159

Gaussian processes29,28,45 and polynomial chaos expansions46 have been used to generate decoupled surrogates in the past.160

In this work, we choose instead to use an approach based upon adaptive versions30,33 of MISC32,31,34, because it provides the161

features necessary to develop an experimental design strategy for allocating resources to components of integrated systems. The162

details of our specific algorithm are presented in Section 4, but first, in this section we discuss important considerations that163

impact the accuracy of predictions made using surrogates of components.164
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3.1 Multi-fidelity modeling165

For many practical applications, a number of viable models of varying cost and accuracy may be available to simulate each166

component in an integrated system. In this paper, we assume each component can be simulated using a numerical model that167

approximates the solution of some governing equations for a given fixed z and �. We also assume that this model has a set of168

hyper-parameters — mesh size, time step, maximum number of iterations, convergence tolerance, etc. — that can be used to169

simulate the component with varying accuracy and cost. Changing the values of these hyper-parameters produces simulations170

of varying fidelities (resolution) and computational cost. We refer to approaches that leverage only one model or solver setting171

as single-fidelity methods, and approaches that leverage multiple models and settings as multi-fidelity methods.172

Formally, we assume that each component k = 1 … , K of a coupled system has Rk hyper-parameters and introduce the173

multi-index � = [�1,… , �Rk] ∈ ℕRk to distinguish between the different model fidelities of the k-th component, which we174

denote175

fk,�(z, �) ≈ fk(z, �).176

The entries �i ∈ ℕ are integer values that dictate the value of each hyper-parameter; for example, a time-step size proportional177

to 2−�1 and a mesh discretization proportional to 2−�2 . In the following we assume that as the entries of � increase, the model178

fidelity increases and the error in the successive approximations of fk decreases, i.e. ‖fk,�⋆−fk‖ ≤ ‖fk,�−fk‖ in some suitable179

norm if �⋆ ≥ �.1180

To provide further intuition on the role of the multi-index �, consider a model that simulates heat transfer within a cooled181

turbine in the path of heated gas flow using a finite element model (FEM); we use this model as a component in a system-model182

presented in Section 5.3. For this model, we use a single hyper-parameter that dictates the mesh resolution used to solve the183

governing equations, i.e. R1 = 1, � = [�1]. Three meshes of increasing resolution are available, thus �1 ∈ {1, 2, 3}. The FEM184

solution on the coarsest mesh is plotted in Figure 2. Here the subscript 1 ofR1 is used because the heat-transfer model is the first185

component of the system. The computational cost of evaluating the heat transfer model is dependent on the number of degrees186

of freedom used by the FEM. The number of degrees of freedom and cost (in seconds) is presented in Table 1.

𝑇!! 𝑇!" 𝑇!#

𝐾

ℎ"#ℎ$#
�̇� 𝑥

𝑇%

FIGURE 2 Finite element solution and parameterization of the turbine
component-model.

TABLE 1 The computational cost (seconds) of
solving the heat transfer model for varying dis-
cretizations.

�1 1 2 3
Cost (sec) 0.26388454 1.1500591 4.41993904

DOF 4998 17435 66549

187

3.2 Surrogate modeling188

In this paper we construct surrogates of each component of a system-model so as to reduce the cost of repeated interrogation of189

the system. Recalling the compact notation for the inputs of the k-th component in (3), we denote the single-fidelity surrogate190

of the fidelity at level � of the k-th component by191

fk,[�,�](uk) ≈ fk,�(uk), (7)192

where the multi-index � controls the number of samples used to construct the surrogate and thus its computational cost and193

accuracy. Given a specified model fidelity � and surrogate fidelity �, we construct this surrogate using a set ofMk,[�,�] samples194

1�⋆ ≥ � if ∃j s.t. �⋆j > �j and �
⋆
i = �i for i ≠ j.
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of uk, denoted by k,[�,�] = {u(m)k }Mk,[�,�]

m=1 , and evaluations k,[�,�] = {fk,�(u
(m)
k )}Mk,[�,�]

m=1 at those samples. In the following we195

assume � ∈ ℕNk ,Nk ∶= Dk + Sk so that, each entry of � specifies the density of samples allocated to each dimension of uk.196

The total error in the surrogate fk,[�,�](uk) of a component-model fk can be decomposed into two components197

‖fk − fk,[�,�]‖ ≤ ‖fk − fk,�‖ + ‖fk,� − fk,[�,�]‖. (8)198

The first term on the right-hand side represents the so-called deterministic error and quantifies the discretization error introduced199

by the numerical model used to solve the governing equations of the component-model for any fixed value of the parameters.200

The second term on the right represents the parametric error which quantifies the error of approximating the numerical model201

of the governing equations with a surrogate intended for fast evaluation of the governing equation at different values of the202

parameters. The previous inequality implies that a cost-effective experimental design strategy must balance these two sources203

of error. Simply fixing the fidelity of a numerical model a priori , as often done in the literature, is inefficient.204

Figure 3 depicts the impact of parameteric and deterministic errors for a simple example. The surrogates (dotted black)205

approximate the true function (solid red) with different numbers of evaluations of either a low-fidelity model fk,[1] or a high-206

fidelity model fk,[2] (both dashed blue). As � increases, we add two additional training data (i.e., evaluations of fk,�), which207

allows the surrogate fk,[�,�] to more accurately approximate fk,� and thus the parametric error to decrease. When � = 1, � = 3208

the surrogate fk,[1,3] approximates fk,1 well, but does not approximate fk as accurately, that is the deterministic error dominates.209

In comparison, when � = 2, � = 1 the surrogate fk,[2,1] is also poor, but this time it is because the parametric error dominates.210
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FIGURE 3 Approximations fk,[�,�] (dotted black) of the one-dimensional function f �k (u) = cos( 1
2
�(u1 + �) +

2
5
�). The true

model (solid red) corresponds to � = 0, and the two fidelities f� , � ∈ {1, 2}, (both plotted in dashed blue) are obtained by
setting � = 0.2 (low-fidelity f1) and � = 0.05 (high-fidelity f2). Red dots depict samples used to build the interpolants. The cost
of constructing fk,[�,�] increases with � and �.

Ideally we would use the approximation fk,[2,3] in the top right panel; however, that surrogate uses numerous high-fidelity211

model evaluations, that are typically more expensive than lower-fidelity evaluations. Cost-effective experimental design strate-212

gies for constructing a component-surrogate are therefore needed to balance the parameteric and deterministic errors. With213

this goal, in Section 4 we propose a strategy that combines multiple surrogates fk,[�,�] of each component built using differing214

numbers of evaluations and fidelities (e.g. fk,[1,3] and fk,[2,2]). The number of samples, that is the different �, used to build the215

surrogates of a given model fidelity is dependent on the predictive utility of each model fidelity, dictated by �, relative to the216
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FIGURE 4 Lagrange polynomial interpolants of the Runge function f (�) = (1 + 25�2)−1 constructed using five function
evaluations on different intervals Ξ̂1 = [−1.0, 1.0], Ξ̂2 = [−0.75, 0.75], and Ξ̂3 = [−0.9, 0.9].

cost of evaluating the model. Typically, less samples are assigned to higher model fidelities, that is � with larger entries. To217

facilitate the use of multi-fideltiy approaches for building component-models, moving forward we will denote the surrogate of218

a component by219

fk,k(uk) ≈ fk(uk)220

where k is a set of concatenated multi-indices [�, �].221

3.3 Characterizing the coupling variables222

Constructing a surrogate fk,k(uk) of a component requires specifying the ranges of the coupling variables. The coupling vari-223

ables �k are functions of the exogeneous variables z (either explicitly or via their dependence on other components) and are224

thus themselves random, but their distribution are unknown prior to simulation. Consequently, following a procedure proposed225

for black-box models47,48, we construct an approximation of each component of the system utilizing a prior distribution �(�k)226

defined over an estimated range Ξ̂k.227

The following lemma characterizes the accuracy of a surrogate model in a !-weighted norm, associated with the correct228

unknown distribution of the coupling variables, when the surrogate is built minimizing a prior �-weighted norm.229

Lemma 1 (Strong convergence48). Let � ∶ Ξ̂→ ℝ and ! ∶ Ξ→ ℝ denote two densities which satisfy230

� = 1 − ∫
Ξ∩Ξ̂

!(u)du.231

Given an approximation f� of f with approximation error �, i.e.,232

� ∶= ‖f − f�‖Lp� (Ξ), p ≥ 1, (9)233

then, if f is bounded with Cf = ‖f‖L∞(Ξ), it holds that234

‖f − f�‖Lp!(Ξ) ≤ C1∕pr � + Cf�1∕p, provided Cr ∶= max
u∈Ξ∪Ξ̂

!(u)
�(u)

<∞. (10)235

The second term in (10) comes from truncating the tails of the true distribution of the coupling variables. In many cases, the236

coupling variables are bounded and so this term can be eliminated by using conservative estimates of the range. For unbounded237

domains, the tail truncation error can be made arbitrarily small by choosing a sufficiently large range Ξ̂k.238

Provided the simpler � is chosen to be non-zero wherever the original ! is non-zero, such that � = 0, Lemma 1 suggests that239

shape of the distribution � used for the coupling variables does not affect the rate at which the error converges in a component-240

surrogate. Consequently, in the following we set � to be the PDF of the uniform distribution over a pre-defined range Ξ̂k. For241
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some integrated systems, the ranges can be determined from analysis of the system components. However, for other systems,242

the ranges of the coupling variables must be estimated. Figure 4 demonstrates the importance of correctly estimating the range;243

underestimating the range, such that � > 0 can lead to large approximation errors outside Ξ̂.244

In this paper, we use an adaptive algorithm, presented in Section 4.6, to estimate the range of the coupling variables. We245

investigate the performance of this algorithm and the impact of over-estimating and under-estimating the range of the coupling246

variables in Section 5.1.1.247

3.4 Error analysis of integrated-surrogates248

Once surrogates of each component have been constructed, they can be combined to make predictions of system-level QoI using249

the procedures discussed in Section 2. We denote the integrated-surrogate250

y = f (z) ≈ f (z).251

Here  = {1,… ,K} are the index sets associated with each component-surrogates fk,k k = 1,… , K . The accuracy of the252

integrated-surrogate’s prediction of the system-level QoI q = Aqy depends on the accuracy of each component-surrogate. In253

this section, we provide theoretical bounds on the error for systems involving feed-forward and feedback coupling. For simplicity,254

we consider errors in systems with only single-fidelity component-models.255

3.4.1 Feed-forward coupling256

For a system comprising a chain of feed-forward couplings (Section 2.2.1), the error in the system-level approximation is given257

by the following proposition. The proof of this proposition is given in Appendix A.258

Proposition 1 (Feed-forward surrogate error). Assume that each component fk(z, �k) is Lipschitz continuous with respect to259

the coupling variables �k with uniform Lipschitz constant Lk for all �k ∈ Ξk. Furthermore, let fk,q(z, �k) denote the q-th output260

of the k-th component and let fk,k,q(z, �k) denote the associated surrogate output. If the trained surrogates satisfy ‖fk,q(z, �k)−261

fk,k,q(z, �k)‖L∞(Γ) ≤ �k∀q = 1,… , Qk, then we have for f = fK◦fK−1◦⋯◦f1 and f = fK,K◦fK−1,K−1◦⋯◦f1,1 that262

sup
z∈Γ

max
q=1,…,Qsys

|fq(z) − f ,q(z)| ≤ � 1 − L
K

1 − L
,263

where L = maxk=1,…,K Lk and � = maxk=1,…,K �k.264

This result can be applied to any directed acyclic graph structure by applying the proposition to each branch of the graph and265

setting �k to be the largest of the errors in the surrogates for all upstream components providing inputs to the component under266

consideration. Lastly, note that �k can include both the deterministic and parametric errors of the k-th component-surrogate.267

3.4.2 Feedback coupling268

By recognizing that FPI (Section 2.2.2) can be formulated as the composition of F from (6) with itself and that the coupling269

variables �(z) are subsets of the system-model outputs f (z), we can modify the proof of Proposition 1 (see Appendix A) to270

guarantee convergence and to arrive at the following result.271

Proposition 2 (Feedback surrogate error). Let L be the Lipschitz constant of the fixed point iteration function (6), then under272

the assumptions of Proposition 1, the error in the coupling variables �P after P fixed-point iterations, when approximated using273

the surrogate values �P , satisfies274

sup
z∈Γ

max
q=1,…,Q

|�Pq (z) − �
P
 ,q(z)| ≤ � 1 − L

P

1 − L
,275

where276

� = max
k=1,…,K

sup
zk,�k

max
q=1,…,Qk

|fk,q(zk, �k) − fk,k,q(zk, �k)|277

is the worst-case error over all outputs of all component-surrogates.278
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4 GREEDY EXPERIMENTAL DESIGN FOR INTEGRATED-SURROGATES279

Proposition 1 shows that the error in predictions of system-level QoI obtained using surrogates for each component can be280

decomposed into errors proportional to the errors in each component-surrogate. This section introduces a greedy algorithm281

that allocates resources to components and their varying fidelities in a manner that is commensurate with their impact on the282

system-level QoI q. Pseudocode for this novel algorithm is presented in Algorithm 1.283

We formally discuss each step of Algorithm 1 in the following subsections, but first we first provide a conceptual overview284

here. With this goal, consider Figure 5 which depicts two steps of Algorithm 1 applied to to a purely feed-forward system285

comprised of two algebraic component-models. The two component-models f1(z) = z sin(�z) and f2(�2) = 1∕(1 + 25�22)286

are coupled via �2 = f1(z) so that the system-model is given by f (z) = f2(f1(z1)); single-fidelity models are used for the287

component-models solely to facilitate visualization.288

Given a set of component-models, Algorithm 1 is initialized by building constant (degree-zero polynomial) surrogates of each289

component; this initialization procedure is discussed in Section 4.2. and is performed on Line 2 of Algorithm 1. The accuracy290

of each component-surrogate is then improved by sequentially incrementing the amount of training data used. Figure 5 depicts291

the second and third iteration of Algorithm 1 after initialization. Each iteration begins with a current and a refined surrogate of292

each component-model; the construction of the surrogates is discussed in Section 4.1. The models and surrogates of the first293

and second components are depicted in the first (from left) and second columns, respectively. The solid-red lines represent the294

component-models, the black-dashed lines represent the current surrogates constructed using the data depicted by the black discs,295

and the refined surrogates, trained using the data depicted by the cyan or lime-green crosses, are depicted by the dotted-blue and296

dash-dotted-green lines.297

When the component-surrogates are coupled together they produce the integrated-surrogates depicted in the third column. In298

this plot, the dashed-black line is produced by coupling the current surrogates of each component, the dotted-blue line is obtained299

by coupling the refined surrogate of the first component with the current surrogate of the second, and the dashed-dotted-green300

is constructed by coupling the current surrogate of the first component with the refined surrogate of the second component. No301

training data are plotted in this column because no evaluations of the true coupled system are required.302

Once the integrated surrogates have been constructed, Line 8 of Algorithm 1 estimates the contribution of the error in each303

component-surrogate to the error in the integrated-surrogate. This is achieved by measuring the difference between the new-304

integrated-surrogates and the current integrated surrogate, that is between the dotted-blue and dash-dotted-green lines and the305

black-dashed depicted in the third column, respectively. This estimation procedure is discussed in Section 4.4. Estimating error,306

based on changes to the integrated surrogate, ensures the algorithm adds data to each component-surrogate based upon its impact307

on predictions of system-level QoI.308

Once errors have been estimated, the component with the largest estimated error (shaded with a blue background) is identified309

(Line 5 of Algorithm 1) and then refined (Line 6). The refinement procedure is discussed in detail in Section 4.3, but in summary310

it collects the data needed to update the current and new surrogates of the component selected for refinement. For example in311

the first step (first-row), the second component is selected for refinement, consequently in the next step (second row) the current312

surrogate of component two is now built using three points (instead of one) and the new surrogate of that component is built313

with five points (instead of three). In contrast, the current and new component-surrogates of the first component remain the314

same. However, the contribution of the first component-surrogate to the error in the integrated surrogate changes because the315

down-stream component has changed. This leads to the first component being selected for refinement in the second step and is316

the reason that the error contributions (indicators) of all components is re-estimated every iteration on Line 8.317

In the following sections we provide a more detailed discussion of each step of Algorithm 1, referring to Figure 5 when318

appropriate. Note the right most column of this figure have not yet been discussed because they are specific to the implementation319

details introduced below.320

4.1 Multi-index stochastic collocation (MISC)321

The ability to accurately construct an integrated-surrogate depends on the accuracy of the surrogates of each component. MISC322

provides an effective mechanism to create a multi-fidelity surrogate of each component fk by combining evaluations of varying323

fidelity fk,� .30. More specifically, MISC approximates each component-model as a linear combination of multiple surrogates324
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FIGURE 5 Two steps of Algorithm 1 applied to a system with two component-models f1(z) = z sin(�z), f2(�1) = 1∕(1+25�21).
From left to right, each row depicts: (first panel) the first component-model f1, the current component-surrogate f1,1 , and
a new surrogate f1,[�,�] that can be used to improve f1,1 ; (second panel) the second component-model f2, the current
component-surrogate f2,2 , and a new surrogate f2,[�,�] that can be used to improve f2,2 ; (third panel) the system model f ,
the current integrated surrogate f , and the new integrated surrogates that are obtained by updating either the first f 1

[�,�]

or second component-surrogate f 2
[�,�]

; and (final panel) the index sets defining the integrated surrogates. Here  j
[�,�] ∶=

{k}Kk=1,k≠j ∪
(

j ∪ {[�, �]}
)

. Discs and crosses represent training data used to respectively build the current and refined
component-surrogates. Gray boxes represent the indices in the sets k and gray boxes reprsent the set k of possible indices
[�, �] to add to the component-surrogate. The striped box represents the index [�⋆, �⋆] with the largest error indicator. Gray
shaded panels indicate that the associated component-surrogate has been chosen for refinement. Because each component only
has a single fidelity model the index � is redundant but we keep it here for consistency with our more general multi-fidelity
formulation. Also note that the dotted-blue and dashed-black lines are identical in the third panel of the first row.

Algorithm 1 CONSTRUCT_COMPONENT_SURROGATES[{k}Kk=1,�,Wmax, {Ξ̂k}Kk=1, �z]→ f
1: for k = 1,… , K do
2: k,k, k,k,k,k ∶= INITIALIZE_SURROGATE(k, Ξ̂k, �z) ⊳ Initialize k-th component-surrogates
3: end for
4: while not TERMINATE[{k}Kk=1,�,Wmax] do
5: {l, [�⋆, �⋆]} ∶= argmaxk∈[1,K],[�,�]∈k

k,[�,�] ⊳ Find component with largest error indicator k,[�,�]
6: l,l, l,l,l,k ∶= REFINE[[�⋆, �⋆],l,l, l,l,l,k,l, Ξ̂l, �z ]
7: for j = 1,… , K do ⊳ Recompute indicators of candidate indices of all K components
8: j , {Ξ̂k}Kk=1 ∶= COMPUTE_ERROR_INDICATORS[{k}Kk=1,j , j , {k}Kk=1, {k}Kk=1, {Ξ̂k}

K
k=1, �z]

9: end for
10: end while

fk,[�,�], that is325

fk(uk) ≈ fk,k(uk) =
∑

[�,�]∈k

ck,[�,�] fk,[�,�](uk). (11)326

Formula (11) uses multiple model fidelities fk,[�,�] to balance deterministic and parametric errors (see (8)) and to reduce the327

computational cost of achieving a specified level of accuracy. The accuracy of the MISC approximation (11) is dictated by the328
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set k ⊂ ℕRk+Nk , which contains multiple concatenated multi-indices [�, �]. The index set k must be downward-closed, that is329

if [, �] ≤ [�, �] and [�, �] ∈ k ⇒ [, �] ∈ k. (12)330

Under this assumption, the coefficients ck,[�,�] are given by the so-called combination technique formula2331

ck,[�,�] =
∑

[i, j]∈{0,1}Rk+Nk
[�+i, �+j]∈k

(−1)‖[i, j]‖1 . (13)332

We use a greedy procedure to construct the index-sets k, which is outlined in Sections 4.3 and 4.4. In the remainder of this333

section we discuss construction of the individual fk,[�,�](uk).334

The single fidelity surrogates fk,[�,�](uk) are tensor-product Lagrangian interpolants, constructed using evaluations of the335

�-fidelity model fk,�(u) on a Cartesian grid defined on the parametric domain Γk × Ξk. The sizes of the univariate sets of336

coordinates used to construct the grid are prescribed by the components of the multi-index �. The use of a multi-index �,337

instead of a scalar, allows the MISC approximation to exploit anisotropy in a component-model by assigning different numbers338

of samples to resolve each dimension commensurate with the sensitivity of the function to each dimension. Letting m ∶ ℕ → ℕ339

be an increasing function, used for all K components, we construct a set of m(�n) univariate interpolation points340

k,n,�,�n = {u
(j)
k,n,�,�n

}m(�n)j=1 , (14)341

and build m(�n) univariate Lagrange polynomials that are given by342

(j)k,n,�,�n(uk,n) =
m(�n)
∏

l=1,l≠j

uk,n − u
(l)
k,n,�,�n

u(j)k,n,�,�n − u
(l)
k,n,�,�n

, j = 1,… , m(�n).343

Note � does not influence the number or locations of the points in these univariate sets, but we annotate these sets with this344

multi-index to make clear different sets can be used for different fidelities.345

In the following we use univariate weighted Leja sequences49,50 tailored to the probability distribution function of uk,n as346

univariate interpolation points in (14). Leja sequencesk,n,�,�n are nested, that is,k,n,�,�n ⊂ k,n,�,�⋆n
if �n < �⋆n . We also define347

m(�) = 2� + 1 in (14) and set the maximum level of the univariate sequence to � = 15. For more details on the construction of348

Leja sequences, refer to Section 4.6. .349

Given a set of univariate Leja sequences, we construct a multivariate set of samples of taking the Cartesian product of the350

univariate sets k,n,�,�n , yielding351

k,[�,�] = ×
Nk
n=1k,n,�,�n ∶= {u

(j)
k,[�,�]}j≤m(�), (15)352

which consists of Mk,[�,�] =
∏Nk

n=1 m(�n) points u(j)k,[�,�] = [u(j1)k,1,�,�1
, u(j2)k,2,�,�2

,⋯ , u
(jNk )
k,Nk,�,�Nk

], where m(�) =353

[m(�1), m(�2),⋯ , m(�Nk
))]. For each point in k,[�,�] we construct a multi-variate Lagrange polynomial via354

(j)k,[�,�](uk) =
Nk
∏

n=1
(jn)k,n,�,�n

(uk,n), j ≤ m(�),355

and finally define the tensor-product interpolant appearing in (11) as356

fk,[�,�](uk) =
∑

j≤m(�)
fk,�(u

(j)
k,[�,�])

(j)
k,[�,�](uk).357

Two different MISC surrogates, f1,1 (1 = [0, 0], [0, 1]) and f1,1∪{[�,2]}, are shown in each of the upper-left panel of Figure 5.358

The Leja sequences used to build these interpolants are depicted by discs and crosses, respectively.359

Note that for univariate MISC approximations, such as those shown, the combination coefficients (13) of all but the largest �360

become zero (this is typically not true for higher dimensional functions), such that fk,k is simply themost accurate tensor-product361

interpolant, for example in the top left panel f1,1 = f1,[�,2], where � is redundant because we are only considering single fidelity362

functions in this example. Also note that, while we use tensor product interpolants for our single-fidelity surrogates fk,[�,�] the363

MISC approximation (11) uses a combination of these tensor products, which when selected judicously via specification of the364

index k, does not suffer the curse of dimensionality.365

2{0, 1}s is the set of s-dimensional vectors containing all combinations of zero and one and ‖�‖1 =
∑

i|�i|
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4.2 Initialization366

Now that the form of the component-surrogates has been defined, we can discuss each step of Algorithm 1. Letting k denote367

the set of all model fidelities fk,� for the k-th component, Algorithm 1 takes as input, the set {k}Kk=1 containing all the model368

fidelities used to model each component, a maximum computational budgetWmax, a desired error tolerance �, estimated ranges369

for the coupling variables of each component {Ξ̂k}Kk=1, and the joint probability density �z of the exogeneous variables z. The370

algorithm then begins by initializing a set of surrogates fk,k for each component in the system. The initialization routine is371

summarized in Algorithm 2.372

The first step of the initialization algorithm sets k = ∅. The second step specifies a set k of possible indices [�, �] to373

add to the component-surrogate. This set grows as the algorithm advances, but initially only contains a single index [�, �] ∶=374

[1, 1,⋯]. The next two steps construct the set k containing the training points used to build the interpolants corresponding375

to the indices in both k and k and the set of evaluations k at the points in k. Having set [�, �] ∶= [1, 1,⋯] implies that376

the initial sets of training data k,k consist solely of the lowest fidelity model for each component evaluated at the center377

of Γk × Ξ̂k, i.e., the midpoint of the ranges of uk. Step 6 defines the set k containing the combinations coefficients ck,[�,�] of378

the MISC approximation, see (13). This set is empty because k is empty. In the last step, we define the set k that contains379

error indicators k,[�,�] estimating the reduction in error of the system-level QoI obtained by adding each candidate index ink.380

During initialization, we artificially set the posteriori error indicators k,[�,�] in the set k to be infinitely large to ensure that the381

initial index [1, 1,⋯] is added to k in the refinement step we describe next.3382

Algorithm 2 INITIALIZE_SURROGATE[k, Ξ̂k, �z]→ k,k, k,k,k,k
1: k ∶= ∅
2: [�, �] ∶= [1, 1,⋯] ∈ ℝRk+Nk

3: k ∶= {[�, �]} ⊳ Define the candidates to be added to k
4: k ∶= k,[�,�] ⊳ Determine the initial training samples using Ξ̂k, �z
5: k ∶= fk,�(k,[�,�]) ⊳ Evaluate the component-model at the training samples
6: k ∶= ∅ ⊳ Initialize empty combination coefficients of MISC approximation
7: k ∶= {∞} ⊳ Set error indicators infinitely large to ensure initial index [�, �] is added to k before all others

4.3 Refinement383

Once initialized, Line 5 of Algorithm 1 chooses the best individual component-surrogate to refine. Each component-surrogate384

has a set of indicesk (depicted by red-boxes in the right-most panels of Figure 5) associated with tensor-product interpolants385

fk,[�,�] (depicted by the blue-dotted and green-dash-dotted lines in Figure 5), which can be added to the MISC approximation.386

Each of these candidate indices is also associated with error indicators k,[�,�] ∈ k that estimate the change in the error in the387

system-level QoI obtained from refinement of each surrogate. Thus, Line 5 determines the component-surrogate whose largest388

error indicator is larger than all other indicators in all sets k, k = 1,… , K (this index is depicted by the striped box in Figure 5) .389

When the surrogate of component l is selected for refinement, the REFINE routine (see Algorithm 3) removes the chosen390

index [�⋆, �⋆] and associated error indicator from the sets l and l, respectively. The chosen index is then added to l (the391

striped box in the right panel of the first row in Figure 5 becomes shaded gray in the next iteration depicted in the second row)392

and the combination coefficients of the MISC approximation are computed using (13). New candidate indices [, �] are obtained393

by incrementing each element of the multi-index [�⋆, �⋆] in turn (by adding the unit vector eTk,i on Line 7). Candidate indices394

that satisfy the downward closed admissibility criterion (12) are then added to l (e.g. the fourth panel of the second row of395

Figure 5 has a new red box in the index set2 not present in the fourth panel of the first row). In Figure 5 only one new index can396

be added to either component surrogate because the component-models are one-dimensional. However, for higher-dimensional397

functions multiple new indices may be added, as determined by the index set admissibility criterion (12).398

The training samplesl,[,�] needed to build the new approximation fl,[,�] and the associated evaluations of fl, are generated399

for each admissible candidate index (e.g. in the second-from-left panel of Figure 5 there are two new samples in the second row400

3The setk is dependent on k and k is dependent on k, however we do not explicitly include this dependence in the notation of these sets for simplicity.
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that are not in the first row). The samples of the exogeneous and coupling variables are generated according to the PDF �z of401

the exogeneous variables and the estimated range of the coupling variables Ξ̂k, respectively. The exact number of new samples402

in l,[,�] is dictated by � and Equations (14) and (15). When using nested Leja sequences, many points in l,[,�], needed to403

construct fl,[,�], may have already been evaluated and can simply be reused. Consequently the function fl, is evaluated on the404

set of new points k,[,�] ⧵k.405

Algorithm 3 REFINE[[�⋆, �⋆],k,k, k,k,k,k,k, Ξ̂k, �z]→ k,k, k,k,k,k
1: Tk ∶= Rk +Nk
2: k ∶= k ⧵ [�⋆, �⋆] ⊳ Remove selected index from candidate set
3: k ∶= k ⧵ k,[�⋆,�⋆] ⊳ Remove selected error indicator
4: k ∶= k ∪ [�⋆, �⋆] ⊳ Add selected index from MISC approximation
5: k ∶= {c[�,�]}[�,�]∈k ⊳ Compute MISC combination coefficients using (13)
6: for i = 1,… , Tk do
7: [, �] ∶= [�⋆, �⋆] + eTk,i ⊳ Refine index in one coordinate direction to increase deterministic or parametric fidelity
8: if [, �] − eTk,j ∈ k ∀j = 1,… , Tk then ⊳ Check downwards closed condition (12)
9: k ∶= k ∪ {[, �]} ⊳ Add new refinement candidate
10: k ∶= k ∪k,[,�] ⊳ Add new training points using Ξ̂k, �z
11: k ∶= k ∪ fk,(k,[,�] ⧵k) ⊳ Add evaluations of the component-model on the new points
12: end if
13: end for

4.4 Estimating Error406

Once new candidate indices have been generated by refining the l-th component-surrogate, we must estimate their impact on407

the error in predictions of the system-model QoI. We quantify this impact via error indicators that measure the change in408

error in system QoI caused by adding a new single-fidelity surrogate to the multi-fidelity MISC approximation of a compo-409

nent, relative to the cost of training the new surrogate. The coupled nature of the integrated-surrogate means that changes in410

one component-surrogate impact some or all other components. Consequently, the final steps of the adaptive algorithm use411

COMPUTE_ERROR_INDICATORS (see Algorithm 4) to compute the error indicators associated with all the candidate indices of412

all K components, not just the newly added candidates of the selected l-th component.413

To construct our error indicator, we generate a set ref ine = {z(l)}
Lref ine
l=1 of Lref ine realizations of the input random variables z.414

We then evaluate the integrated-surrogate at these samples, using the current set of component-surrogates, yielding y = f (z)415

and, for each new possible fk,[�,�], compare these evaluations with the output of the refined surrogate y k
[�,�]

= f k
[�,�]
(z) obtained416

by adding fk,[�,�] to (11), where417

 j
[�,�] ∶= {k}

K
k=1,k≠j ∪

(

j ∪ {[�, �]}
)

.418

These evaluations are carried out using the EVALUATE_INTEGRATED_SURROGATE procedure (not shown) which integrates the419

predictions of each component-surrogate, obtained from (11), using the algorithms outlined in Section 2.2.420

Focusing on the prediction of system QoI, that is q(l)
 k
[�,�]

= Aqy k
[�,�]

and q(l) = Aqy , and recalling that qi denotes the i-th421

entry of QoI vector q, we use the error indicators422

k,[�,�] =
ΔEk,[�,�]
ΔWk,[�,�]

, (16)423

uniquely defined by the two quantities424

ΔEk,[�,�] = max
i=1,…,Qsys

(

1
Lref ine

Lref ine
∑

l=1

(

q(l)
 k
[�,�],i

− q(l) ,i

)2
)

1
2

ΔWk,[�,�] =
|

|

|

Work[Y k
[�,�]
] − Work[Y ]

|

|

|

, (17)425

which respectively denote the worst-case root mean squared error (over all system-level QoI) between two successive approxima-426

tions, and the work needed to update the approximation. HereΔEk,[�,�] is a measure of the “difference” between the black-dashed427
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approximation and the blue-dotted and green-dash-dotted approximations of the system QoI in the 3rd panels of both rows in428

Figure 5. Due to the nestedness of the Leja points and making the often reasonable assumption that the cost of a simulationWk,�429

for a given fidelity � is fixed (i.e. does not change with u), the quantity ΔWk,[�,�] has the closed form expression430

ΔWk,[�,�] = Wk,�card(k,[�,�] ⧵k), (18)431

where k,[�,�] ⧵ k is the set of new evaluations needed to complete the construction of fk,[�,�]. The evaluation of the error432

indicator in (16) is implemented by the ERROR_INDICATOR function (not shown).433

The refinement indicator (16) ranks component-surrogates based upon their contribution to the error in the approximation434

of the system-level QoI. Unfortunately, using (16) will give misleading results when the surrogate of a downstream component435

l is a constant function (which happens after initializing Algorithm 1) and no outputs from the k-th component are present in436

the system QoI q. In these situations the indicator of the k-th component will predict no system improvement when improving437

the surrogate of the upstream component k, i.e. ΔEk,[�,�] will be zero. Such a situation occurs in the first row of Figure 5; the438

current approximation of the second component (black dashed line in second panel) is a constant so improvements in the first439

component surrogate (i.e. moving from black-dashed approximation to blue-dotted approximation in first panel) yield no change440

in the integrated-surrogate (the black-dashed and blue-dotted lines are the same in the third panel of Figure 5). To avoid this441

pathological issue associated with initialization, we compute the following local component-based error indicator (which is a442

measure of the difference between the current and new component-surrogates in the two left-most panels of Figure 5)443

k,[�,�] =
1

ΔWk,[�,�]

(

�ΔE�
k,[�,�] + (1 − �)ΔE

�
k,[�,�]

)

, � ∈ [0, 1] (19)444

ΔE�
k,[�,�] =

1
|

|

fk,0,0||

|

|

|

|

E
[

fk,k
⋃

{[�,�]}

]

− E
[

fk,k
]|

|

|

|

,445

ΔE�
k,[�,�] =

1
|

|

fk,0,0||

√

|

|

|

|

V
[

fk,k
⋃

{[�,�]}

]

− V
[

fk,k
]|

|

|

|

,446

until all downstream surrogates are no longer constants. Here the operator E [⋅] denotes expectation with respect to both the447

external inputs zk of the current model as well as to its coupling variables �k; the normalization factor |
|

fk,0,0|| is the value of448

the coarsest fidelity at the center of the parametric domain Γk × Ξ̂k and thus can be understood as a coarse approximation of449

E
[

fk
]

; and the operator V [⋅] denotes variance with respect to the same variables. In the numerical tests to follow, we always450

use � = 0.5. Heuristics, such as the one used here, are often employed to overcoming initialization of single-fidelity sparse grid451

approaches which form the basis of the algorithm presented here.452

Algorithm 4 COMPUTE_ERROR_INDICATORS[{k}Kk=1,j , j , {k}Kk=1, {k}Kk=1, {Ξ̂k}
K
k=1, �z]→ j , {Ξ̂k}Kk=1

1: j ∶= ∅ ⊳ Clear current error indicators so they can be overwritten
2: ref ine := RANDOM_SAMPLE[�z, Lref ine]
3:  ∶= {k}Kk=1 ⊳ Define index set of current MISC approximation of j-th component
4: y := EVALUATE_INTEGRATED_SURROGATE[ , {k}Kk=1, {k}Kk=1, {k}

K
k=1,ref ine]

5: q ∶= Aqy ⊳ Extract system QoI
6: for [�, �] ∈ j do
7:  j

[�,�] ∶= {k}
K
k=1,k≠j ∪

(

j ∪ {[�, �]}
)

⊳ Define index set of refined MISC approximation of j-th component
8: j,[�,�] ∶= {c[,�]}[,�]∈j∪{[�,�]} ⊳ Compute coefficients of refined j-th MISC approximation using (13)
9: y j

[�,�]
:= EVALUATE_INTEGRATED_SURROGATE[ j

[�,�], {k}Kk=1, {k}Kk=1, {k}
K
k=1,k≠j ∪ j,[�,�],ref ine]

10: q j
[�,�]

∶= Aqy j
[�,�]

⊳ Extract system QoI
11: j,[�,�] ∶= ERROR_INDICATOR[q , q j

[�,�]
] ⊳ Use (16)

12: j ∶= j ∪ {j,[�,�]}
13: {Ξ̂k}Kk=1 ∶= UPDATE_COUPLING_VARIABLE_RANGES[y j

[�,�]
, {Ξ̂k}Kk=1]

14: end for
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4.5 Termination453

Steps 4-9 of Algorithm 1 are repeated until a computational budgetWmax is exceeded or the pre-specified accuracy tolerance �,454

specified by the user based upon their accuracy requirements, is met. For example, one could stop as soon as all error indicators455

are below such tolerance, maxk∈1,…,K max[�,�]∈k
k,[�,�] ≤ �. Such exit conditions are encapsulated by the TERMINATE routine456

(not shown).457

The final output of Algorithm 1 is a set of surrogates fk,k , defined by the index sets  = {1,… ,K}, which can be used to458

accurately predict the system-level QoI by evaluating the joint surrogate f . In practice the sets k ∈  returned by Algorithm459

1 are k ∪k rather than k. This is because Algorithm 1 can compute the error indicator of a multi-index only after having460

added it to the approximation. Thus, a final post-processing step augments the final approximation with all remaining candidates461

that have been evaluated but not yet selected.462

4.6 Building Leja sequences and estimating the range of the coupling variables463

Lemma 1 indicates that the estimated ranges Ξ̂k of the coupling variables can significantly impact the accuracy of a component-464

surrogate and thus the integrated surrogate. In this section we present an adaptive algorithm to iteratively learn the ranges of465

the coupling variables of component-surrogates constructed using tensor-product interpolation, The algorithm leverages the466

nested property of Leja sequences to dynamically adjust the quadrature rules used to construct the MISC approximation for each467

component.468

Univariate weighted Leja sequences over a range I ⊂ ℝ are constructed sequentially. Given a sequence of m(�n) points469

k,n,�,�n = {u
(j)
k,n,�,�n

}m(�n)j=1 , the sequence with m(�n) + 1 points is obtained adding to the current sequence the following point:470

u⋆ = argmax
u∈I

v(u)
m(�n)
∏

j=1
|u − u(j)k,�,n,�n | (20)471

for some weight function v(u). In this paper, we follow49 and set v(u) =
√

�(u) where �(u) is the PDF of the variable u. For472

uniform variables used to represent coupling variables (cf. Section 3.3), the PDF is a constant and does not affect the Leja473

sequence. However, the PDF does effect the Leja sequences used for the exogeneous variables.474

By construction, Leja sequences are nested, that is k,n,�,�n ⊂ k,n,�,�n+1. Moreover, the initial point u(1) may be arbitrarily475

chosen. Indeed, we can extend any set of initial points k,n,�,�n . Thus, given a Leja sequence k,n,�,�n constructed on a range476

I , we can generate the next point u⋆ of the Leja sequence over a larger range I ′ by simply searching for the next point in the477

interval I ′ instead of I . We can utilize this approach to adapt the surrogates of system components to dynamically changing478

estimates of the coupling variable ranges.479

Iteratively estimating the ranges of the coupling variables requires the introduction of the480

UPDATE_COUPLING_VARIABLE_RANGES routine in Algorithm 4 (not shown). This routine estimates the ranges of � using the481

values y and of y j
[�,�]

computed on Lines 4 and 9, respectively. Specifically, consider the i-th coupling variable of the k-th482

component �k,i and assume that its value is determined by the q-th output of the m-th component, i.e., �k,i = ym,q . Then using483

Ξ̂k,i = [ak,i, bk,i] to denote the current range of �k,i, the new range Ξ̂′k,i = [a
′
k,i, b

′
k,i] is updated as follows:484

a′k,i = min
(

ak,i,min
(

y , y j
[�,�]

))

b′k,i = max
(

bk,i,max
(

y , y j
[�,�]

))

.485

In the numerical examples to follow, we evaluate the entire system at Lref ine = 100 random realizations of the input z, and486

set the initial ranges Ξ0k,i of each coupling variable to be the minimum and maximum values over the 100 samples. Despite the487

inaccuracy of this initial guess, the performance obtained using this approach along with the subsequent learning procedure was488

found to be very similar to that obtained using more carefully constructed bounds that were set a priori.489

4.7 Remarks490

Algorithm 1 is a generalization of the adaptive MISC algorithm developed for black box-models proposed in30,33. When K = 1491

Algorithm 1 recovers the original algorithm as a special case. This original algorithm can be applied to system-models by492

ignoring the coupled nature of the system-level input-output map (1) and treating the systemmodel as a single component. When493

used in this way, the original algorithm must employ a multi-index � controlling the physical fidelities of the system-model,494
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such that495

� = [�1,�2,… ,�K ].496

is the concatenation of the hyper-parameters �k for each component. In the numerical examples that follow we will refer to this497

specialized case as the black-box approach.498

Unfortunately, to date we have been unable to make strong theoretical statements about convergence of Algorithm 1. This499

is partly to be expected, since convergence has only been partially addressed even for the black-box variant31,34. These initial500

results focus on application of MISC to elliptic PDEs with random coefficients. The machinery to prove convergence borrows501

from the tools used to prove convergence of (single-fidelity) sparse grids approximations (see e.g.51,52,53,54) and requires certain502

regularity (boundedness of mixed spatial-parametric derivatives) of the function to be approximated, as well as suitable choices503

of the error-indicators (slightly different from the one we use here, since our choice is tailored to multi-component systems).504

5 NUMERICAL EXAMPLES505

In this section, we investigate the performance of the proposed method using several numerical examples. In all examples, we506

build surrogates of each component and report the error in the predictions of the integrated surrogate against the total cost of507

running the algorithm. For comparison purposes, we also report error vs cost of the black-box version of the MISC algorithm508

discussed in Section 4.7. All the numerical results were produced using the PyApprox software package55.509

Error is measured by drawing 1000 random samples from the PDF of the exogeneous variables z and computing the relative510

l2 (root mean squared) error between the exact system output and the surrogate approximation, normalized by the l2 norm511

of the validation data. For computationally expensive component-models, the computational cost of constructing integrated512

surrogates using Algorithm 1 dominates the cost of evaluating the resulting surrogate at validation samples, which we therefore513

consider negligible. Consequently, the total costWtot of the algorithm is the computational cost required to generate the training514

data 1,2,… ,K . More formally, the total cost is the sum of the ΔWk,[�,�] computed for the indices [�, �] visited during the515

execution of the algorithm(see (18)), that is516

Wtot =
K
∑

k=1

∑

[�,�]∈k∪k

ΔWk,[�,�].517

The cost of propagating samples through feed-forward coupling and FPI used to resolve feedback-coupling is negligible518

because both tasks are performed on the surrogates. In contrast, the black-box MISC algorithm requires evaluations of the519

system-model. Consequently the cost of fixed-point iterationsmust be included, because they require evaluations of the expensive520

component-models. Assuming that a fixed number of fixed point iterations P are performed, the total cost of the black-box521

approach is522

Wtot =
∑

[�,�]∈∪

(

PΔW[�,�]
)

, for black-box MISC. (21)523

Here we have dropped the dependence on k from W , and  to emphasize the black-box approach does not consider the524

existence of components. In the following examples we report the total cost in terms of the number of equivalent highest-fidelity525

evaluations.526

5.1 Algebraic single-fidelity feed-forward system527

Consider the coupled system depicted in Figure 6. The system consists of three components in a chain with vector-valued feed-528

forward coupling, where f1(z1) = (y1,1,… , y1,Q1)
⊤, f2(z2, �2) = (y2,1,… , y2,Q2)

⊤ and f3(z3, �3) = [y3,1], and the expressions529
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FIGURE 6 A feed-forward system consisting of three components. Coupling variables are depicted in red, external inputs in
gray and system-level QoI in black. The first and third components share the same random variables, i.e. z1 = z3, and the inputs
to the second component are unique to that component i.e. z2 ∩ zk = ∅, k = 1, 3.

of the outputs yi,j are given by530

y1,�1,q = f1,�1,q(z1) = z
q
1 sin

( D1
∑

d=1
z1,d + ��1

)

, q = 1,… , Q1531

y2,�2,q = f2,�2,q(z2, �2) =

( S2
∏

s=1
(�q+1s − ��2)

)( D2
∏

d=1
z2,d

)

, q = 1,… , Q2 (22)532

y3,�3,q = f3,�3(z3, �3) = exp

[

−
S3
∑

s=1
(�s − ��3)

2

]

1

1 + 25
16

(

∑D3
d=1 z3,d

)2
,533

with �2 = (y1,… , y1,Q1)
⊤, �3 = (y2,… , y2,Q2)

⊤ and the discretization parameters �k = 1, 2,… control the values of ��k and thus534

the accuracy of fk,�k .535

The coupled system is parameterized byD1+D2 independent and identically distributed uniform random variables on [0, 1].536

The first and third components are parameterized by the same two random variables, that is z1 = z3 and D1 = D3 in (22).537

The second component is parameterized by another two variables such that z1 ∩ z2 = ∅. The number of random variables and538

outputs of each component is scalable. Here we set Q3 = 1 and consider three cases: Case 1 with Q1 = Q2 = 1, D1 = D2 = 1,539

��k = 0 ∀k, Case 2 withQ1 = Q2 = 4,D1 = D2 = 2, ��k = 0 ∀k, and Case 3 withQ1 = Q2 = 2,D1 = D2 = 2, ��k ≥ 0 ∀k). The540

first two cases use single-fidelity models for each system component, and are devised to analyze the impact of range estimation541

(Case 1), and of dimension reduction and non-linearity (Case 2). We set �k → ∞ such that �k = 0, k = 1,…K and assume542

that evaluating each component has the same computational cost, which means evaluating the entire system costs three times543

as much as evaluating a single component. Conversely, Case 3 is designed to investigate the effectiveness of the multi-fidelity544

approach and therefore utilizes models of varying accuracy cost for each component.545

5.1.1 Case 1: The impact of range estimation546

In Figure 7 (left), we plot the error in the predictions of f3 for Case 1 using different ranges for the coupling variables; the true547

PDF of the coupling variables and the output of the third component are shown in Figure 7 (right). The intervals in the legend548

denote the a priori fixed range of the coupling variables, while the legend element “Estimated” refers to the approximation549

obtained when using the adaptive range estimation procedure outlined in Section 4.6. Note that in this example the true range550

of the coupling variables can be determined from inspection of the component functions. The exact ranges of the coupling551

are all [0, 1], therefore the corresponding convergence curve can be considered the best possible performance that any method552

employing range estimation can achieve. Figure 7 also plots the convergence of error in a single surrogate that treats the system553

as a black-box.554
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FIGURE 7 Error vs cost for the feed-forward system (22) for (left) Case 1 with (Q1 = Q2 = 1, D1 = D2 = 1) and (middle)
Case 2 with (Q1 = Q2 = 4, D1 = D2 = 2). (Right) True PDFs of the coupling variables ��,k and output �y,k of the integrated
system for Case 1. The dominating measure (� from Lemma 1), used to compute the Leja sequences for the coupling variables
on [0, 1], is depicted in gray.

All integrated-surrogates converge much faster than the case of a single black-box surrogate. However, the error in the555

integrated-surrogates is impacted by the ranges used for the coupling variables. The errors for all surrogate cases that under-556

estimate the range of the coupling variables, saturate at a level proportional to � in Lemma 1, where � reflects the severity of the557

under-estimation. When the range of the coupling variables is over-estimated, the errors do not saturate; however, the constant558

of convergence is increased, that is the curve shifts right relative to the black curve based on the true ranges.559

The dynamic estimation of the coupling ranges is effective. It identifies the coupling ranges of �1 and �2 to be [−0.02, 1.00]560

and [−0.23, 0.92], respectively. The error saturates because we only use Lref ine = 100 samples to estimate the ranges of the561

coupling variables and thus under-estimate the upper bound of �2. Although not shown, the saturation of error can be removed562

by increasing the number of samples Lref ine. Again, we emphasize that this does not increase the number of evaluation of the563

true component functions. We choose such a small value of Lref ine to show that, even for very crude estimates of the ranges, the564

dynamic estimation of the ranges works well. We also remark that the algorithm can sometimes over-estimate the ranges of the565

coupling variables, as was the case here. This is because the estimation procedure is based on evaluations of the component-566

surrogates and not the true components. Thus, at early stages of the algorithm, an inaccurate approximation can lead to the bounds567

being over-estimated. However, for this example and all that follow, we found that any over-estimation did not significantly affect568

results. Under-estimation is more important to avoid and the algorithm does this effectively. In all remaining numerical studies,569

we dynamically estimate the range of the coupling variables.570

Note that in Figure 7, when the range of the coupling variables is under-estimated, the error in the integrated-surrogates571

decreases before rapidly increasing and finally saturating. This behavior occurs when the polynomial degree of the third com-572

ponent f3 surrogate is increased. The third component is based upon a scaled version of the Runge function and so exhibits573

a “Runge type phenomena”, where oscillations in the approximation occur outside the ranges of the coupling variables. Some574

samples used to estimate the errors reported in Figure 7 require extrapolation in these oscillatory regions. Consequently error, in575

the approximation of the system-level QoI, decreases until oscillations in the surrogate of the third component start to dominate576

estimates of error.577

5.1.2 Case 2: dimension reduction and non-linearity578

The middle plot of Figure 7 compares the accuracy of integrated-surrogates with system-level black-box surrogates for Case 2.579

At lower levels of total cost, the system-level black-box surrogate is muchmore competitive than when used for Case 1. However,580

the rate of convergence is still much slower than for the integrated-surrogates. In general, there are two reasons for the increased581

convergence rate of integrated component-surrogates: (i) the components may be lower-dimensional than the entire system and582

(ii) the components may be less non-linear than the entire system. We expand on both these points below.583

Dimension reduction.584

The number of evaluations needed to build a component-surrogate increases with the dimension of the component and not the585

dimensionality of the system. Inmany cases the number of inputs (coupling and random variables) of a component is smaller than586
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the number of random variables for the entire system, that is Dk +Sk < D. In these situations, constructing approximations for587

components of a system can be cheaper than a surrogate that treats the system as a black-box. To explain this behavior, consider588

a tensor-product interpolation of a function, which requires O
(

�−D
)

black-box evaluations of the entire system4 to achieve an589

error �. The cost of using this method to build component-surrogates over both the coupling and random variables satisfies590

O

( K
∑

k=1
�−(Dk+Sk)

)

< O
(

�−D
)

if max
k=1,…,K

Dk + Sk < D +
log(K)
log(�)

(23)591

Here we used O
(

∑K
k=1 �

−(Dk+Sk)
)

< O
(

K�−T
)

, were T = maxk=1,…,K Dk + Sk.592

Non-linearity.593

As discussed previously, integrated-surrogates can be represented as a composition of functions. Thus, the composition of the594

system-level QoI can be more non-linear than any single component. For example, consider a composition of K quadratic595

functions; the system-level QoI will have degree 2K and so will be much more difficult to evaluate than any component. Note596

that it is theoretically possible for the system-level QoI to be less non-linear than a component; however this phenomenon did597

not occur in any of our numerical examples.598

Case 1 and Case 2 were specifically tailored to highlight the improved expressivity of treating systems as compositions of599

functions. The difference in performance between system-level black-box and integrated component-surrogates will decrease600

as the non-linearity of the components decrease. However, several of the following examples show the benefits of our approach601

even on systems that were not tailored to amplify its benefits.602

5.1.3 Case 3: multi-fidelity approximation603

In this section, we investigate the use of an ensemble of models, of varying fidelity, within our integrated-surrogate framework.604

Specifically, we consider Case 3, that is (22) with Q1 = Q2 = 2 and D1 = D2 = 2. By varying �k, we can produce an ensemble605

of models of varying cost and accuracy. With this goal, we set �k = 10−�k . The effectiveness of multi-fidelity methods is strongly606

dependent on the cost-to-accuracy ratio and the true cost of evaluating each algebraic component is negligible. For demonstration607

purposes, however, we define the work needed to evaluate fk,�k to beWk,�k = 1.25
�k , enabling illustration of the impact of the608

proposed multi-fidelity sampling algorithm for a cost model that is representative of what might be encountered in practice.609

The left graphic of Figure 8 plots the error in the predictions of the integrated multi-fidelity component-surrogates (“MF610

Integrated”). We also compare that approach with single-fidelity integrated component-surrogates (“SF Integrated”) for fixed611

�k = 6 and single-fidelity and multi-fidelity system-level black-box surrogates, labeled “SF Black-box” and “MF Black-box”612

respectively. Both integrated approaches are more accurate than their black-box counterparts. However, the greatest gains are613

made from introducing multiple models and using our multi-fidelity approach.614

The middle and right plots of Figure 8 depict the percentage of the computational work allocated to the various model dis-615

cretizations of each component when the total work is ≈ 484 and ≈ 1005, respectively. The two numbered boxes in the left plot616

indicate the points on the convergence curve that are associated respectively with the middle and right plots. In the middle plot,617

evaluations of the second and third components contribute a similar amount to the total work. In the later stages of the algorithm618

(right plot), more resources are allocated to the third component. This behavior cannot be achieved without considering the effect619

of each component on the system-level QoI, which is one of the novel aspects of our proposed approach. These two plots also620

show how work is distributed among each model fidelity for each component. In the early stages of the algorithm, lower-fidelity621

model evaluations are predominant. However, as the total work increases, the algorithm identifies that increasing amounts of622

higher-fidelity model evaluations are required to further reduce error. For example, the middle plot shows only four fidelities623

have been used for component 2 but in the right plot, six fidelities have been evaluated. Higher-fidelity (larger �k) evaluations624

are needed when the parametric error ‖fk,� − fk,k‖ of a component-surrogate becomes commensurate with the deterministic625

error ‖fk − fk,�‖ induced by using the model approximation fk,� .626

4Note the error estimate here is for tensor-product methods. The complexity of sparse grids, upon which MISC is based, grows more slowly with dimension. The
exact rate depends on the regularity of the function and so we focus our exposition on tensor-product interpolants. Furthermore, adaptive MISC can produce tensor-product
interpolants if all variables and all their combinations are important for the QoI.
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FIGURE 8 (Left) Error vs cost for the feed-forward multi-fidelity system (22). Evaluations allocated by the MF Integrated
sampling procedure to the varying fidelity models of each component when the total cost is approximately 484 (middle) and 1005
(right). The two numbered boxes in the left plot indicate the points on the convergence curve that are associated respectively
with the middle and right plots.

5.2 Fire detection satellite627

In this section we apply the proposed methodology to a fire detection satellite designed to detect, identify and monitor forest628

fires. Figure 1 depicts a conceptual diagram of the system-model and its couplings. The definitions of the coupling variables are629

given in Table 3. The system consists of three components with both feed-forward and feedback coupling. The model equations630

of these components are documented in56. The system has eight random variables (see Table 2) and seven coupling variables631

(see Table 3). Model constants are reported in25. In the following, we use integrated-surrogates to accurately approximate three632

outputs of the system: the total torque �tot (y3,2) coming from the attitude control component, the total power output Ptot (y2,3),633

and the area of the solar array Asa (y2,4) coming from the power component. We use fixed-point iteration (see Section 2.2.2) to634

solve for the feedback coupling variables.

TABLE 2 Random variables of the fire detection satellite system depicted in Figure 1. The System Index denotes the index of
the variable in the aggregated set of system random variables z. Each variable enters the component variables zk in the column
entitled Component Variables. Arguments of the Gaussian distributions are mean and standard deviation.

System Index Random Parameter Name Symbol Component Variables Distribution
1 Satellite altitude H z1, z3 

(

18 × 106, 1 × 106
)

2 Target diameter � z1  (235, 10)
3 Other power sources Po z2  (1000, 50)
4 Solar flux Fs z2, z3  (1400, 20)
5 Moment arm for solar radiation torque Lsp z3  (2, 0.4)
6 Reflectance factor q z3  (0.5, 0.1)
7 Moment arm for aerodynamic torque La z3  (2, 0.4)
8 Drag coefficient Cd z3  (1, 0.2))

635

The left plot of Figure 9 plots the error in the integrated component-surrogates (“Integrated”) as the total cost of building the636

three surrogates increases. For a given cost, the error is much smaller than the error of the surrogate that treats the system as a637

black-box (“Black-box”). The black-box approach requires P = 3 fixed-point iterations to estimate the coupling variables, cf.638

Equation (21). Assuming the cost of each component is one unit, the evaluation of the black-box requires one evaluation of the639

first component and three evaluations of the remaining components, that is 1 + 3 × 2 = 7 units. In comparison, the integrated640

component-surrogate approach assigns evaluations to each component individually, using estimates of the impact of component641

error on the approximation error of system-level QoI. The number of evaluations allocated to each component is depicted in642

the middle and right graphics of Figure 9 when the total cost is 131 and 229 respectively. The two numbered boxes in the left643

plot indicate the points on the convergence curve that are associated respectively with the middle and right plots. The algorithm644
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TABLE 3 Component outputs of the fire detection satellite system depicted in Figure 1. The System Index denotes the index of
the output in the aggregated set of system outputs y. Each output is present in the coupling variables �k in the column entitled
Coupling Variables. A dash in the coupling variable column indicates the output is a system-level QoI.

System Index Output Name Output Variable Coupling variables
1 Satellite velocity y1,1 �3
2 Orbit period y1,2 �2, �3
3 Eclipse period y1,3 �2
4 Max slewing angle y1,4 �3
5 Minimum moment of inertia y2,1 �3
6 Maximum moment of inertia y2,2 �3
7 Total power output y2,3 —
8 Area of solar array y2,4 —
9 Attitude control power y3,1 �2
10 Total torque y3,2 —

allocates more computational resources to approximating the second and third component. Note, as previously mentioned at the645

beginning of Section 5, the total costs reported do not include the cost of the FPI needed to integrate the surrogates, which is646

negligible relative to evaluation of the true components. Also note that the saturation of the errors, present for both approaches647

depicted in the left plot of Figure 9, is due to numerical precision issues with solving the Attitude component. It is not due to648

FPI, which computes the values of the coupling variables to machine precision in three iterations.649
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FIGURE 9 (Left) Error vs cost for the QoI Ptot obtained from the fire detection satellite system-model. (Middle) The percentage
of the computational work allocated to evaluating each component when building the integrated-surrogates when total cost is
131 and (Right) 229. The two numbered boxes in the left plot indicate the points on the convergence curve that are associated
respectively with the middle and right plots. Numbers inside the bars represent the absolute number of component evaluations.

5.3 Economics-turbine model650

In this section we investigate the performance of our methodology on a coupled financial model for a gas turbine as depicted in651

Figure 1020,57. The system consists of four component-models and is parameterized by 11 random variables. The distribution652

of the random variables is given in Table 4, where z1 = [Tc1 , Tc2 , Tc3 , K, ℎle, ℎte]
⊤, z2 = [Plm]⊤, z3 = [ṁ, Tg , Fperf ]⊤ and653

z4 = [Fecon]⊤. In the following, we provide details on the models used for each component.654
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FIGURE 10 A multi-fidelity economics model of a turbine consisting of four components. Coupling variables are depicted
in red, external inputs in gray and system-level QoI in black. The random variables are z1 = [Tc1 , Tc2 , Tc3 , K, ℎle, ℎte]

⊤, z2 =
[Plm]⊤, z3 = [ṁ, Tg , Fperf ]⊤ and z4 = [Fecon]⊤. The coupling variables are �2 = y1 = [Tbulk] and �3 = [y⊤2 , y

⊤
3 ]
⊤ = [Peng , tfail]⊤.

No random variables are shared between components, that is zj ∩ zk = ∅ ∀j, k.

Heat transfer model.655

The heat transfer model is used to predict the bulk temperature of a cooled turbine in the path of heated gas flow.We use quadratic656

finite elements to solve the stationary heat equation657

∇(k ⋅ ∇ℎ(x)) = 0 x ∈ Ω658

ℎ(x) = Tcj x ∈ )Ωj , j = 1, 2, 3659

ℎ(x) = ℎte + (ℎle − ℎte) exp

(

−4
x21

4 × 10−6

)

x ∈ )Ω4660

on the blade geometry shown in Figure 2. Here we use Dirichlet boundary conditions to specify the effects of coolant running661

through the three blade passages. Heat transfer is imposed along the outer boundary as a function of the spatial chord-wise662

coordinate x. The output of this model is the bulk metal temperature663

Tbulk = V −1
∫
Ω

ℎ(x)dx,664

where V is the volume of the blade.665

We can solve the heat transfer model using three different meshes of increasing resolution. The number of degrees of freedom666

and cost (in seconds) is presented in Table 1. The other three components do not have models of varying fidelity, and we assume667

the cost of evaluating these components to be 0.1 seconds.668

Lifetime model669

The lifetime model predicts the expected time until blade failure assuming a Larson-Miller58 nickel superalloy stress-to-failure670

ratio. The expected time until failure is given by671

Tfail = exp
(

Plm∕Tbulk − 20
)

672

where Plm is the Larson-Miller parameter.673
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Performance model674

We use a simplified model to evaluate the maximum power of the turbine. Specifically, the engine performance is given by675

Peng = Fperf (ṁ0 −Nṁ)Cp T0 (1 + Tg∕T0 − 2
√

Tg∕T0)676

where the inlet compressor temperature T0 = 300, the inlet compressor flow rate ṁ0 = 30, the number of gas turbine blades677

N = 90, and the specific heat Cp = 1003.5 are constants, and the performance factor Fperf , the external gas temperature Tg and678

the coolant mass flow ṁ are random parameters. The model penalizes coolant flow usage and rewards high external gas path679

temperatures.680

Economics model681

The economics model predicts the revenue from operating the gas turbine via682

recon = Fecon tfail Peng (c0∕1000)683

where c0 = 0.07. The model penalizes a turbine that has a high-risk of failure and rewards high engine performance. The684

economic factor Fecon is a random parameter accounting for the variability with other gas turbine components not represented685

in the model.686

TABLE 4 Random variables of the economics-turbine system depicted in Figure 10. The System Index denotes the index of
the variable in the aggregated set of system random variables z. Each variable enters the component variables zk in the column
entitled Component Variables. Arguments of the Uniform distributions are lower and upper bounds.

System Index Random Parameter Name Symbol Component Variable Distribution
1 First passage coolant temperature Tc1 z1  [590, 610]
2 Second passage coolant temperature Tc2 z1  [640, 660]
3 Third passage coolant temperature Tc3 z1  [690, 710]
4 Thermal conductivity K z1  [29, 31]
5 Leading edge heat transfer coefficient ℎle z1  [1975, 2025]
6 Tail edge heat transfer coefficient ℎte z1  [975, 1025]
7 Lars-Miller parameter Plm z2  [2.45 × 104, 2.55 × 104]
8 Coolant mass flow rate ṁ z3  [0.108, 0.132]
9 External gas temperature TG z3  [1225, 1275]
10 Performance factor Fperf z3  [0.85, 0.95]
11 Economic factor Fecon z4  [0.9, 1.1]

The left plot of Figure 11 compares the performance of adaptive multi-fidelity component-surrogates (“MF Integrated”) with687

single-fidelity component-surrogates (“SF Integrated”) and multi-fidelity and single-fidelity black-box models (“MF Black-688

box” and “SF Black-box”). Even though only one component has an ensemble of models available (unlike the previous multi-689

fidelity example), the multi-fidelity integrated procedure produces a significantly more accurate surrogate than the alternative690

approaches. As seen by comparing the resource allocations, depicted in the middle and right plots and associated respectively691

with the points indicated by the boxes labeled 1 and 2 in the left plot, the procedure only evaluates the finite element heat-692

transfer model until the error in the surrogate of that component is dominated by the errors of the other components. At that693

point, the error drops sharply because the costs of evaluating the other components are much smaller than the cost of running694

the heat transfer model. This is a major advantage of decoupling the component-models: the accuracy to which any component695

is resolved is commensurate with its impact on the system-level QoI. In situations when simple empirical models, such as the696

economic model used here, are used to inform decisions, this result suggests that the incorporation of high-resolution multi-697

physics models does not necessarily need to cause an explosion in system-analysis cost; rather, the computational resources used698

to run expensive component models can be limited to only those necessary to approximate other cheaper component models.699

Moreover, the required precision can be automatically determined.700
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FIGURE 11 (Left) Error vs cost for the economics-turbine system-model. (Middle) Allocation of work for the MF integrated-
surrogates when total cost is approximately 44 and (Right) 51. The two numbered boxes in the left plot indicate the points on
the convergence curve that are associated respectively with the middle and right plots.

6 CONCLUSIONS701

This paper presented an algorithm for efficiently building surrogates for coupled/integrated multi-disciplinary systems. These702

surrogates can be used to significantly reduce the cost of outer-loop analyses, such as uncertainty quantification and design, which703

require repeated interrogation of the coupled system. The procedure introduces coupling variables with unknown distributions704

to allow the independent construction of surrogates for each component of a system. An adaptive sampling procedure is then705

used to allocate resources for training each component-surrogate in a manner that minimizes prediction error per unit cost. The706

proposed methodology was successfully applied to systems consisting solely of feed-forward coupling and systems with mixed707

feed-forward and feedback coupling.708

Analysis was provided to bound the error predictions of system-level quantities of interest obtained from the integrated709

component-surrogates. Moreover, extensive numerical examples demonstrated that building approximations over the individ-710

ual components can reduce the dimensionality and non-linearity of the surrogates being built. These properties, along with our711

method for adaptively allocating resources to the most important components, reduced the cost of system analysis by orders of712

magnitude on the examples tested. These gains were amplified when multi-fidelity models of varying accuracy and cost were713

available for at least one system component.714

In this work we focused on scalar couplings between multi-disciplinary components. In future work we will investigate the use715

of our framework for coupling multi-scale, multi-physics problems that possess couplings that are infinite-dimensional random716

fields, for example that arise when coupling partial differential equations with a shared physical boundary. To be successful we717

will need to represent the field with a finite-dimensional basis, e.g., associated with a Karhunen-Loève expansion, and balance718

the truncation error of this expansion with the various approximation errors considered in this paper.719
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APPENDIX735

A PROOF OF PROPOSITIONS736

The following outlines the proof of Proposition 1.737

Proof. First, for any �k, �⋆k ∈ Ξk, and zk ∈ Γk, we have738

‖fk(zk, �k) − fk,k(zk, �
⋆
k )‖ ≤ ‖fk(zk, �k) − fk(zk, �⋆k )‖ + ‖fk(zk, �⋆k ) − fk,k(zk, �

⋆
k )‖739

≤ Lk‖�k − �⋆k ‖ + � (A1)740

where in the last step we have used the assumption of Lipschitz continuity to bound the first term and the definition of � to bound741

the second one. Now without loss of generality set zk = z and card(�k) = Sk = S, ∀k, then by repeated use of (A1), where742

�k = fk−1(⋅) and �⋆k = fk−1,k−1(⋅), we have743

‖f (z) − f̂ (z)‖ = ‖fK◦⋯◦f1(z) − fK,K◦⋯◦f1,1(z)‖744

≤ �K + LK‖fK−1◦⋯◦f1(z) − fK−1,K−1◦⋯◦f1,1(z)‖745

≤ �K + LK
(

�K−1 + LK−1‖fK−2◦⋯◦f1(z) − fK−2,K−2◦⋯◦f1,1(z)‖
)

746

≤⋯747

≤ �K + �K−1LK + �K−2LKLK−1 +⋯ + �1
K
∏

k=2
Lk748

≤ �

(

1 + LK + LKLK−1 +⋯ +
K
∏

k=2
Lk

)

749

≤ �
(

1 + L + L2 +⋯LK−1
)

750

= � 1 − L
K

1 − L
,751

where L = maxk=1,…,K Lk and � = maxk=1,…,K �k. The last equality uses the well-known expression for the sum of a geometric752

series.753

The following outlines the proof of Proposition 2.754

Proof. Recall that755

F (�) =
[

fj(zj , �j)
fk(zk, �k)

]

� = [�j , �k]⊤756

denotes the fixed point iteration function using the true component-models and F similarly denotes the FPI function using the757

component-surrogates. Also let �p and �p,⋆ respectively denote the estimate of the coupling variables obtained after the p-th758

fixed point iteration, p = 1,… , P , using the true component-model and its surrogate. If we initialize each FPI with the same759

guess so that �0 − �⋆,0 = 0, without loss of generality drop the dependence on z, we obtain760

‖�1 − �⋆,1‖ = ‖F (�0) − F (�⋆,0)‖761

≤ ‖F (�0) − F (�⋆,0)‖ + ‖F (�⋆,0) − F (�⋆,0)‖762

≤ L‖�0 − �⋆,0‖ + � = �,763
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then for the second iteration we get764

‖�2 − �⋆,2‖ = ‖F (�1) − F (�⋆,1)‖765

≤ ‖F (�1) − F (�⋆,1)‖ + ‖F (�⋆,1) − F (�⋆,1)‖766

≤ L‖�1 − �⋆,1‖ + � = L� + �,767

and finally, repeating for P iterations we obtain768

‖�P − �⋆,P‖ ≤ �
(

1 + L + L2 +⋯ + LP−1
)

769

= � 1 − L
P

1 − L
.770

771

B NOMENCLATURE772

Notation Definition
D The number of all unique exogeneous inputs to the system
Γ The range of all unique exogeneous inputs to the system
z All exogeneous inputs to the system, z ∈ Γ ⊂ ℝD

�z(z) The joint density of all exogeneous inputs
f (z) The black-box model returning all component outputs
y Union of all component outputs y = f (z)
Q The number of combined outputs from all components, y ∈ ℝQ

Υ The range of all component outputs, y ∈ Υ ⊂ ℝQ

Qsys The number of system-level Quantities of Interest (QoI), Qsys ≤ Q
q The system-level QoI, q ⊆ y
K The number of components in an integrated system
Dk The number of exogeneous inputs to the k-th component
Γk The range of all exogeneous inputs to the k-th component
zk The exogeneous variables of the k-th component, zk ∈ Γk ⊂ ℝDk

�z,k The joint PDF of the exogenous inputs of the k-th component
Sk The number of coupling variables of the k-th component
Ξk The range of all coupling variables of the k-th component
�k The coupling variables of the k-th component, �k ∈ Ξk ⊂ ℝSk

��,k The joint PDF of the input coupling variables of the k-th component
fk(zk, �k) The model of the k-th component
Qk The number of outputs of the k-th component
Υk The range of the outputs of the k-th component
yk Outputs of the k-th component yk = f (zk, �k)
uk Combined exogeneous and coupling variables of k-th component, uk = [z⊤k , �

⊤
k ]
⊤

uk,n n-th dimensional coordinate of uk
Nk Number of variable in the combined variable uk,Nk = Dk + Sk
Lk Lipschitz constant of the k-th component-model
eij The unit vector of length i with the j-th entry non-zero, [0,… , 0, 1, 0… , 0]⊤

Aq
k Extraction matrix indexing component outputs yk into system QoI q

Az
k Extraction matrix indexing component exogeneous inputs zk into system inputs z

A�
k Extraction matrix indexing component coupling variables �k into system outputs y

F (�) Fixed point iteration function used to solve for consistent coupling variables �
�p Value of the coupling variables at the p-th fixed point iteration
P number of FP iterations
� Fixed point iteration tolerance
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Rk Number of hyper-parameters controlling deterministic fidelity of k-th component-model
� Multi-index specifying the deterministic fidelity of a model, � ∈ ℕRk
� ≤  component-wise inequality between vectors: � ≤  if ∃j s.t. �j < j and �i = i for i ≠ j.
fk,�(zk, �k) k-th component-model with deterministic fidelity �.
� Multi-index specifying the parametric fidelity of a single-fidelity surrogate
[�, �] Concatenation of indices � and �
fk,[�,�](zk, �k) Single-fidelity surrogate of k-th component with deterministic/parametric fidelities �, �
u(m)k,[�,�] Sample of the combined inputs to the k-th component used to build fk,[�,�](zk, �k)
k,[�,�] Set of samples used to construct fk,[�,�](uk)
k,[�,�] Evaluations of fk,[�,�] at each sample in k,[�,�]
Mk,[�,�] Number of samples in k,[�,�] which is independent of �
k Set of indices [�, �], specifying fidelities of multiple surrogates of k-th component
fk,k(zk, �k) Multi-fidelity surrogate of k-th combining fidelities specified by k
Ξ̂k Estimated ranges of the coupling variables used to build surrogate of the k-th component
yk,q q-th output of the k-th component-model
yk,k,q q-th output of the k-th component-surrogate
fk,q(zk, �k) the single-fidelity (� ignored) function returning the q-th output of the k-th component-model
fk,k,q(zk, �k) the single-fidelity (� ignored) function returning the q-th output of the k-th component-surrogate
ck,[�,�] A coefficient of the MISC approximation for the k-th component
k The set of all coefficients of the MISC approximation of the k-th component
{0, 1}N Set consisting of sizeN consisting of ones or zeros
m(�n) Function determining number of univariate interpolation points from �n
u(j)n,�,�n Univariate interpolation point for fixed �, �
k,n,�,�n Set of univariate interpolation points, k,n,�,�n = {u

(j)
n,�,�n

}m(�n)j=1 for fixed �, �
(j)k,n,�,�n(un) Univariate Lagrange polynomial for for fixed �, �
k,[�,�] Tensor-product grid of univariate interpolation point sets needed to construct fk,[�,�]
� Accuracy termination tolerance for Algorithm 1
Wmax Maximum work allowed for Algorithm 1
k,[�,�] Error indicator quantifying effect of adding surrogate the fk,[�,�] of the k-th component
k Set of possible indices [�, �] to add to the multi-fidelity surrogate of the k-th component
k Set of error indicators associated with each [�, �] ink
k Set of all model fidelities fk,� for the k-th component
 Set of multi-fidelity index sets,  = {1,… ,K}
Tk total size of the concatenated multi-indices [� �]
f (z) Multi-fidelity surrogate of the system outputs model f (z)
ΔEk,[�,�] Change in estimates of system output incurred by updating surrogate of k-th component
ΔWk,[�,�] Work needed to update the surrogate of the k-th component
‖⋅‖1 l1 norm
card(⋅) Cardinality (number of elements) of a set
Ik interval over which a generic Leja sequence is built
ref ine Samples of system exogeneous variables used to compute error indicator
Lref ine Number of samples of system exogeneous variables used to compute error indicator, i.e., cardinality of ref ine
f k

�,�
Multi-fidelity system surrogate with the index [�, �] added to the k-th component-surrogate

References773

1. Ghanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach. New York, NY, USA: Springer-Verlag New York,774

Inc. . 1991.775

2. Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety 2008;776

93(7): 964–979. doi: 10.1016/i.ress.2007.04.002777

http://dx.doi.org/{10.1016/i.ress.2007.04.002}


J.D. Jakeman ET AL 29

3. Xiu D, Karniadakis G. The Wiener-Askey Polynomial Chaos for stochastic differential equations. SIAM J. Sci. Comput.778

2002; 24(2): 619–644. doi: 10.1137/S1064827501387826779

4. Rasmussen CE, Williams CKI.Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning).780

The MIT Press . 2005.781

5. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and Analysis of Computer Experiments. Statistical Science 1989; 4(4):782

409–423.783

6. Harbrecht H, Jakeman J, Zaspel P. Cholesky-Based Experimental Design for Gaussian Process and Kernel-Based Emulation784

and Calibration. Communications in Computational Physics 2021; 29(4): 1152–1185. doi: 10.4208/cicp.OA-2020-0060785

7. Doostan A, Validi A, Iaccarino G. Non-intrusive low-rank separated approximation of high-dimensional stochastic models.786

Computer Methods in Applied Mechanics and Engineering 2013; 263: 42-55. doi: 10.1016/j.cma.2013.04.003787

8. Gorodetsky A, Jakeman J. Gradient-based optimization for regression in the functional tensor-train format. Journal of788

Computational Physics 2018; 374: 1219 - 1238. doi: 10.1016/j.jcp.2018.08.010789

9. Oseledets IV. Tensor-Train Decomposition. SIAM Journal on Scientific Computing 2011; 33(5): 2295-2317. doi:790

10.1137/090752286791

10. Nobile F, Tempone R, Webster C. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with792

Random Input Data. SIAM Journal on Numerical Analysis 2008; 46(5): 2309–2345. doi: 10.1137/060663660793

11. Xiu D, Hesthaven J. High-Order Collocation Methods for Differential Equations with Random Inputs. SIAM Journal on794

Scientific Computing 2005; 27(3): 1118-1139. doi: 10.1137/040615201795

12. Jakeman J, Roberts S. Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification. In: Garcke J,796

Griebel M., eds. Sparse Grids and Applications. 88 of Lecture Notes in Computational Science and Engineering. Springer797

Berlin Heidelberg. 2013 (pp. 181-203)798

13. Chen P, Quarteroni A, Rozza G. Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic799

Problems. Journal of Scientific Computing 2014; 59(1): 187–216. doi: 10.1007/s10915-013-9764-2800

14. Elman HC, Liao Q. Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients.801

SIAM/ASA Journal on Uncertainty Quantification 2013; 1(1): 192-217. doi: 10.1137/120881841802

15. Manzoni A, Pagani S, Lassila T. Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems Combining803

Reduced Basis Methods and Reduction Error Models. SIAM/ASA Journal on Uncertainty Quantification 2016; 4(1): 380-804

412. doi: 10.1137/140995817805

16. Rozza G, HuynhDBP, Patera AT. Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized806

Elliptic Coercive Partial Differential Equations. Archives of Computational Methods in Engineering 2008; 15(3): 229. doi:807

10.1007/s11831-008-9019-9808

17. Zhu Y, Zabaras N. Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty809

quantification. Journal of Computational Physics 2018; 366: 415-447. doi: 10.1016/j.jcp.2018.04.018810

18. Qin T, Chen Z, Jakeman J, Xiu D. DEEP LEARNING OF PARAMETERIZED EQUATIONS WITH APPLICATIONS811

TO UNCERTAINTY QUANTIFICATION. International Journal for Uncertainty Quantification 2021; 11(2): 63–82. doi:812

10.1615/Int.J.UncertaintyQuantification.2020034123813

19. Arnst M, Ghanem R, Phipps E, Red-Horse J. Measure transformation and efficient quadrature in reduced-dimensional814

stochastic modeling of coupled problems. International Journal for NumericalMethods in Engineering 2012; 92(12): 1044–815

1080. doi: 10.1002/nme.4368816

20. Amaral S, Allaire D, Willcox K. A decomposition-based approach to uncertainty analysis of feed-forward multicomponent817

systems. International Journal for Numerical Methods in Engineering 2014; 100(13): 982–1005. doi: 10.1002/nme.4779818

http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.4208/cicp.OA-2020-0060
http://dx.doi.org/10.1016/j.cma.2013.04.003
http://dx.doi.org/10.1016/j.jcp.2018.08.010
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/060663660
http://dx.doi.org/10.1137/040615201
http://dx.doi.org/10.1007/s10915-013-9764-2
http://dx.doi.org/10.1137/120881841
http://dx.doi.org/10.1137/140995817
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1016/j.jcp.2018.04.018
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2020034123
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2020034123
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2020034123
http://dx.doi.org/10.1002/nme.4368
http://dx.doi.org/10.1002/nme.4779


30 J.D. Jakeman ET AL

21. Constantine P, Phipps E, Wildey T. Efficient uncertainty propagation for network multiphysics systems. International819

Journal for Numerical Methods in Engineering 2014; 99(3): 183–202. doi: 10.1002/nme.4667820

22. Sankararaman S, Mahadevan S. Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty. Journal of821

Mechanical Design 2012; 134(3). doi: 10.1115/1.4005619822

23. Mittal A, ChenX, TongCH, IaccarinoG. A Flexible Uncertainty Propagation Framework for GeneralMultiphysics Systems.823

SIAM/ASA Journal on Uncertainty Quantification 2016; 4(1): 218-243. doi: 10.1137/140981411824

24. Carlberg K, Guzzetti S, Khalil M, Sargsyan K. The network uncertainty quantification method for propagating uncertainties825

in component-based systems. arXiv 2020.826

25. Chaudhuri A, Lam R, Willcox K. Multifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled Multidisci-827

plinary Systems. AIAA Journal 2018; 56(1): 235-249. doi: 10.2514/1.J055678828

26. Friedman S, Isaac B, Ghoreishi SF, Allaire DL. Efficient decoupling of multiphysics systems for uncertainty propagation.829

Proceedings of the AIAA SciTech Forum 2018. doi: 10.2514/6.2018-1661830

27. Isaac B, Friedman S, Allaire DL. Efficient approximation of coupling variable fixed point sets for decoupling multidisci-831

plinary systems. Proceedings of the AIAA SciTech Forum 2018. doi: 10.2514/6.2018-1908832

28. Kyzyurova KN, Berger JO, Wolpert RL. Coupling Computer Models through Linking Their Statistical Emulators.833

SIAM/ASA Journal on Uncertainty Quantification 2018; 6(3): 1151-1171. doi: 10.1137/17M1157702834

29. Sanson F, Maitre OL, Congedo PM. Systems of Gaussian process models for directed chains of solvers. Computer Methods835

in Applied Mechanics and Engineering 2019; 352: 32 - 55. doi: 10.1016/j.cma.2019.04.013836

30. Jakeman J, Eldred M, Geraci G, Gorodetsky A. Adaptive Multi-index Collocation for Uncertainty Quantification and837

Sensitivity Analysis. International Journal for Numerical Methods in Engineering 2019. doi: 10.1002/nme.6268838

31. Haji-Ali A, Nobile F, Tamellini L, Tempone R. Multi-Index Stochastic Collocation for random PDEs. Computer Methods839

in Applied Mechanics and Engineering 2016; 306: 95 - 122. doi: 10.1016/j.cma.2016.03.029840

32. Beck J, Tamellini L, Tempone R. IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains.841

Computer Methods in Applied Mechanics and Engineering 2019; 351: 330-350. doi: 10.1016/j.cma.2019.03.042842

33. Piazzola C, Tamellini L, Pellegrini R, Broglia R, Serani A, Diez M. Comparing Multi-Index Stochastic Collocation and843

Multi-Fidelity Stochastic Radial Basis Functions for Forward Uncertainty Quantification of Ship Resistance. Arxiv e-prints844

2021(2106.00591).845

34. Haji-Ali AL, Nobile F, Tamellini L, Tempone R. Multi-index Stochastic Collocation convergence rates for random PDEs846

with parametric regularity. Foundations of Computational Mathematics 2016; 16(6): 1555–1605. doi: 10.1007/s10208-847

016-9327-7848

35. Smetana K, Patera AT. Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures. SIAM849

Journal on Scientific Computing 2016; 38(5): A3318-A3356. doi: 10.1137/15M1009603850

36. Eigel M, Gruhlke R. A local hybrid surrogate-based finite element tearing interconnecting dual-primal method for nons-851

mooth random partial differential equations. International Journal for Numerical Methods in Engineering 2021; 122(4):852

1001-1030. doi: 10.1002/nme.6571853

37. Mu L, Zhang G. A Domain Decomposition Model Reduction Method for Linear Convection-Diffusion Equations with854

Random Coefficients. SIAM Journal on Scientific Computing 2019; 41(3): A1984-A2011. doi: 10.1137/18M1170601855

38. Contreras AA, Mycek P, Le Maître OP, Rizzi F, Debusschere B, Knio OM. Parallel Domain Decomposition Strategies856

for Stochastic Elliptic Equations Part B: Accelerated Monte Carlo Sampling with Local PC Expansions. SIAM Journal on857

Scientific Computing 2018; 40(4): C547-C580. doi: 10.1137/17M1132197858

http://dx.doi.org/10.1002/nme.4667
http://dx.doi.org/10.1115/1.4005619
http://dx.doi.org/10.1137/140981411
http://dx.doi.org/10.2514/1.J055678
http://dx.doi.org/10.2514/6.2018-1661
http://dx.doi.org/10.2514/6.2018-1908
http://dx.doi.org/10.1137/17M1157702
http://dx.doi.org/10.1016/j.cma.2019.04.013
http://dx.doi.org/10.1002/nme.6268
http://dx.doi.org/10.1016/j.cma.2016.03.029
http://dx.doi.org/10.1016/j.cma.2019.03.042
http://dx.doi.org/10.1007/s10208-016-9327-7
http://dx.doi.org/10.1007/s10208-016-9327-7
http://dx.doi.org/10.1007/s10208-016-9327-7
http://dx.doi.org/10.1137/15M1009603
http://dx.doi.org/10.1002/nme.6571
http://dx.doi.org/10.1137/18M1170601
http://dx.doi.org/10.1137/17M1132197


J.D. Jakeman ET AL 31

39. AmsallemD, ZahrMJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. International Journal859

for Numerical Methods in Engineering 2012; 92(10): 891–916. doi: 10.1002/nme.437860

40. Peherstorfer B, Butnaru D, Willcox K, Bungartz HJ. Localized Discrete Empirical Interpolation Method. SIAM Journal on861

Scientific Computing 2014; 36(1): A168-A192. doi: 10.1137/130924408862

41. Buhr A, Iapichino L, OhlbergerM, Rave S, Schindler F, Smetana K. Localized model reduction for parameterized problems;863

Germany: Walter De Gruyter . 2019.864

42. Chen Y, Jakeman J, Gittelson C, Xiu D. Local Polynomial Chaos Expansion for Linear Differential Equations with High865

Dimensional Random Inputs. SIAM Journal on Scientific Computing 2015; 37(1): A79-A102. doi: 10.1137/140970100866

43. Granas A, Dugundji J. Fixed Point Theory. Springer Monographs in Mathematics 2003. doi: 10.1007/978-0-387-21593-8867

44. Rogers J. DeMAID/GA - An enhanced design manager’s aid for intelligent decomposition; 2012868

45. Marque-Pucheu, Sophie , Perrin, Guillaume , Garnier, Josselin . Efficient sequential experimental design for surrogate869

modeling of nested codes. ESAIM: PS 2019; 23: 245-270. doi: 10.1051/ps/2018011870

46. Chen X, Ng B, Sun Y, Tong C. A flexible uncertainty quantification method for linearly coupled multi-physics systems.871

Journal of Computational Physics 2013; 248: 383 - 401. doi: 10.1016/j.jcp.2013.04.009872

47. Jakeman J, Eldred M, Xiu D. Numerical approach for quantification of epistemic uncertainty. Journal of Computational873

Physics 2010; 229(12): 4648–4663. doi: DOI: 10.1016/j.jcp.2010.03.003874

48. ChenX, Park EJ, XiuD. A flexible numerical approach for quantification of epistemic uncertainty. Journal of Computational875

Physics 2013; 240: 211 - 224. doi: 10.1016/j.jcp.2013.01.018876

49. Narayan A, Jakeman JD. Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approxi-877

mation. SIAM/J. Sci. Comput 2014; 36(6): 2952–2983. doi: 10.1137/140966368878

50. Ernst OG, Sprungk B, Tamellini L. On Expansions and Nodes for Sparse Grid Collocation of Lognormal Elliptic PDEs.879

Arxiv e-prints 2019(1906.01252).880

51. Bungartz HJ, Griebel M. Sparse grids. Acta Numerica 2004; 13: 1–123. doi: 10.1017/S0962492904000182881

52. Nobile F, Tamellini L, Tempone R. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued882

functions: application to random elliptic PDEs. Numerische Mathematik 2016; 134(2): 343–388. doi: 10.1007/s00211-015-883

0773-y884

53. Eigel M, Ernst OG, Sprungk B, Tamellini L. On the convergence of adaptive stochastic collocation for elliptic partial885

differential equations with affine diffusion. Arxiv e-prints 2020(2008.07186).886

54. Chkifa A, CohenA, SchwabC.High-Dimensional Adaptive Sparse Polynomial Interpolation andApplications to Parametric887

PDEs. Foundations of Computational Mathematics 2014; 14(4): 601-633. doi: 10.1007/s10208-013-9154-z888

55. Jakeman JD. PyApprox: Probabilistic analysis and approximation of data and simulation.889

https://sandialabs.github.io/pyapprox/index.html; 2021.890

56. ZamanK,Mahadevan S. Robustness-BasedDesignOptimization ofMultidisciplinary SystemUnder Epistemic Uncertainty.891

AIAA Journal 2013; 51(5): 1021-1031. doi: 10.2514/1.J051372892

57. Li K, Allaire D. A compressed sensing approach to uncertainty propagation for approximately additive functions. Proceed-893

ings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering894

Conference 2016. doi: 10.1115/DETC2016-60195895

58. Reed R. The Superalloys: Fundamentals and applications. New York: Cambridge University Press . 2006.896

http://dx.doi.org/10.1002/nme.437
http://dx.doi.org/10.1137/130924408
http://dx.doi.org/10.1137/140970100
http://dx.doi.org/10.1007/978-0-387-21593-8
http://dx.doi.org/10.1051/ps/2018011
http://dx.doi.org/10.1016/j.jcp.2013.04.009
http://dx.doi.org/DOI: 10.1016/j.jcp.2010.03.003
http://dx.doi.org/10.1016/j.jcp.2013.01.018
http://dx.doi.org/10.1137/140966368
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1007/s00211-015-0773-y
http://dx.doi.org/10.1007/s00211-015-0773-y
http://dx.doi.org/10.1007/s00211-015-0773-y
http://dx.doi.org/10.1007/s10208-013-9154-z
http://dx.doi.org/10.2514/1.J051372
http://dx.doi.org/10.1115/DETC2016-60195


102 103 104

Total Cost

10−7

10−6

10−5

10−4

10−3

E
rr

or

1

2

Integrated

Black-box

f1 f2 f3

Components

0.0

0.1

0.2

0.3

0.4

0.5

P
er

ce
nt

ag
e

of
T

ot
al

C
os

t

7

63 61

f1 f2 f3

Components

0.0

0.1

0.2

0.3

0.4

0.5

P
er

ce
nt

ag
e

of
T

ot
al

C
os

t

9

117
103



𝒚! = 𝑓!(𝒛!)

[𝑦",!]

[𝑦$,!, 𝑦$,$]	

Orbit

Power Attitude

[𝑦!,$, 𝑦!,"] [𝑦!,!, 𝑦!,$, 𝑦!,%]

𝒛$

𝒒 = [𝑦$,", 𝑦$,%] ∪ [𝑦",$]

𝒚$ = 𝑓$ 𝒛$, 𝝃$	 𝒚" = 𝑓"(𝒛", 𝝃") 𝒛"

𝒛!

𝝃! = 𝑦",!, 𝑦",$, 𝑦$,"
% 𝝃$ = 𝑦",", 𝑦",!, 𝑦",&, 𝑦!,", 𝑦!,!

%	



−1.0 −0.5 0.0 0.5 1.0
ξ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

f
(ξ

)

f

fΞ̂1

fΞ̂2

fΞ̂3



101 102 103

Total Cost

10−14

10−12

10−10

10−8

10−6

10−4

10−2

E
rr

or

[0, 1]

Black-box

[−1, 2]

[0.2, 0.8]

[0.1, 0.9]

[0.05, 0.95]

Estimated



101 102 103

Total Cost

10−3

10−2

E
rr

or

Estimated

Black-box



𝒛! = 𝒛"

𝒚# 𝒒 = 𝒚"𝒚!

𝒛#

𝒚! = 𝑓!(𝒛!) 𝒚# = 𝑓#(𝒛#,𝝃#) 𝒚" = 𝑓"(𝒛", 𝝃")



102 103 104

Total Cost

10−4

10−3

10−2

E
rr

or

1

2

MF Integrated

SF Integrated

SF Black-box

MF Black-box

f1 f2 f3

Components

0.0

0.1

0.2

0.3

0.4

0.5

P
er

ce
nt

ag
e

of
T

ot
al

C
os

t

19

11
1

89

65

33

1

129

41

19

7
1

f1 f2 f3

Components

0.0

0.1

0.2

0.3

0.4

0.5

P
er

ce
nt

ag
e

of
T

ot
al

C
os

t

35

23

21
1

89

81

81

33

9
1

217

101

51

27

9
1



−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

fk,[2,1]

fk,[2]

fk

−1.0 −0.5 0.0 0.5 1.0

fk,[2,2]

fk,[2]

fk

−1.0 −0.5 0.0 0.5 1.0

fk,[2,3]

fk,[2]

fk

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

fk,[1,1]

fk,[1]

fk

−1.0 −0.5 0.0 0.5 1.0

fk,[1,2]

fk,[1]

fk

−1.0 −0.5 0.0 0.5 1.0

fk,[1,3]

fk,[1]

fk

Number of samples (β)→

A
cc

u
ra

cy
of

d
et

er
m

in
is

ti
c

m
od

el
(α

)
→



𝑇!! 𝑇!" 𝑇!#

𝐾

ℎ"#ℎ$#
�̇� 𝑥

𝑇%



100 101 102 103 104

Total Cost

10−12

10−10

10−8

10−6

10−4

10−2

E
rr

or

1

2

MF Integrated

SF Integrated

SF Black-box

MF Black-box

f1 f2 f3 f4

Components

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
er

ce
nt

ag
e

of
T

ot
al

C
os

t

63

11

9

33 35 33

f1 f2 f3 f4

Components

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
er

ce
nt

ag
e

of
T

ot
al

C
os

t

63

11

11

61

109

33



𝒚! 𝒒 = 𝒚"𝒚#

𝒛!

𝒚# = 𝑓#(𝒛#) 𝒚! = 𝑓!(𝒛!,𝝃!) 𝒚" = 𝑓"(𝒛", 𝝃")

Heat Transfer Lifetime Economics

𝒚% = 𝑓%(𝒛%)

Performance

𝒚%

𝒛# 𝒛"

𝒛%


	Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems
	Abstract
	Introduction
	Evaluating coupled systems
	Problem formulation
	Evaluating systems of components
	Feed-forward coupling
	Feedback coupling


	Integrated-surrogates of coupled systems
	Multi-fidelity modeling
	Surrogate modeling
	Characterizing the coupling variables
	Error analysis of integrated-surrogates
	Feed-forward coupling
	Feedback coupling


	Greedy experimental design for integrated-surrogates
	Multi-index stochastic collocation (MISC)
	Initialization
	Refinement
	Estimating Error
	Termination
	Building Leja sequences and estimating the range of the coupling variables
	Remarks

	Numerical examples
	Algebraic single-fidelity feed-forward system
	Case 1: The impact of range estimation
	Case 2: dimension reduction and non-linearity
	Case 3: multi-fidelity approximation

	Fire detection satellite
	Economics-turbine model

	Conclusions
	Acknowledgments
	Appendix
	Proof of Propositions
	Nomenclature
	References




