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Web Figure 1: Illustration of measurement error mechanism for subjects with and
without ZIP centroid within their buffer
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(a) Absence of ZIP-code centroid
in a buffer zone and the buffer is
contained in a ZIP polygon: If all
the businesses (triangular dots)
are coarsened, a subject (circular
dot) loses four businesses.

(b) Presence of ZIP-code centroid
in a buffer zone and the buffer is
contained in ZIP polygon: If all
the businesses are coarsened, a
subject gains three more
businesses.

(c) Presence of ZIP-code centroid
in a buffer zone and ZIP
boundary (long dashed line)
crosses the buffer: If all the
businesses are coarsened, a
subject gains two more business
and loses one business.



Web Figure 2: Percent bias in health effect estimates from naive multiple linear re-
gression by coarsening level and food outlet type. Error-prone exposures to six outlet
types are regressed in the same regression model. True effect size in the simulation is
3.2 for all outlet types.
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Web Figure 4: Sample mean of individual level measurement error variance by coars-
ening level, for a single randomly selected school. Error variance on each subject was
estimated from 50 replications.
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Web Table 1: Number of schools by urbanicity and number of ZIP centroids within 1
mile of the school. The majority of the schools do not have any ZIP centroids within
their 1 mile circular buffer. Presence of at least one ZIP centroid within the buffer
around school implies that school is likely to be located in urbanized area. However,
absence of ZIP centroid does not necessarily imply rurality. Therefore, urbanization
level and number of ZIP centroids within 1 mile buffer of school are not interchangeable
characteristics of school location, although they are moderately correlated.

Number of ZIP centroids within 1 mile buffer of school

Urbanization Level 0 1 2 or more
Rural 2,571 270 0
Second city 1,836 372 1
Sub-Urban 1,691 645 13
Urban 1,924 2,562 485
Total 8,022 3,849 499




Web Table 2: Extension of Table 2 in the main paper, showing the performance of
different extrapolation functions: Quadratic (Quad), weighted quadratic (Quad (wt)),
and cubic regressions are used for extrapolation f(-) for the SIMEX-based approaches.
N=1,000 schools are randomly sampled. Results are from 1,000 Monte Carlo simula-
tions with B=20, K=100, and S=30.

Criteria/ Method f) BAK CON FFN GRO FFC NAL
Percent Bias
Naive -12.6%  -12.7%  2.6%  4.6% 5.7% 10.3%
Naive + centroid 03% -4.7% 32% 62% 232% 2.6%
Traditional SIMEX Quad 6.4% 14.9% 3.3% -4.1% 82% -4.5%
Quad (wt) 4.0% 9.0% 2.5% -2.9% 3. 7% -3.2%
Cubic -04%  -1.1% 21% 0.5% -6.8% -0.7%
Traditional SIMEX Quad -2.0% 1.4%  4.2% -1.6% -13.3% -0.5%
+centroid Quad (wt) -1.5%  03% 2.7% -1.0% -94% -0.3%
Cubic -0.9%  -25% 02% 0.7% -29% 0.5%
Split-combine SIMEX Quad 4.8% 4.7%  2.6% 2.7% 83%  0.6%
Quad (wt)  2.8%  2.8% 1.6% 1.8%  47%  0.2%
Cubic -1.7%  -1.3%  -04% -12%  -34% -1.1%
Mean Squared Error x 100
Naive 18.1 22.4 5.1 2.6 4.9 12.5
Naive + centroid 1.6 7.1 4.9 4.3 56.4 2.2
Traditional SIMEX Quad 8.9 374 12.5 2.8 12.3 7.0
Quad (wt) 4.9 18.6 8.6 1.7 4.9 4.8
Cubic 4.8 16.9 11.7 1.2 5.2 5.1
Traditional SIMEX Quad 4.6 12.5 11.8 1.2 22.5 4.6
+centroid Quad (wt) 3.3 92 81 09 121 36
Cubic 4.5 15.5 11.2 1.1 4.8 4.9
Split-combine SIMEX Quad 3.8 6.7 4.6 1.2 8.4 1.8
Quad (wt) 2.2 50 41 0.8 36 1.8
Cubic 1.8 5.3 4.1 0.6 2.7 2.0
Coverage
Naive 25% 73% 98% 52% 88% 51%
Naive + centroid 96% 89%  93% 9% 0%  92%
Traditional SIMEX Quad 86% 67%  98% 2% 83% 94%
Quad (wt)  84% 3%  94% 5%  91% = 92%
Cubic 100%  100% 100% 100%  100%  100%
Traditional SIMEX Quad 98% 99% 96% 94% 25% 99%
+centroid Quad (wt) 94% 93%  93%  93% 32% 97%
Cubic 100% 100% 100% 100% 100%  100%
Split-combine SIMEX Quad 83% 91%  96%  81% 55%  98%
Quad (wt) 8%  89%  92%  82%  73%  94%
Cubic 100% 100% 100% 100% 100%  100%




Web Table 3: Simulation results comparing naive, traditional SIMEX, adjusted
SIMEX, and split-combine SIMEX; weighted cubic regression is used for extrapolation
f(+). Compared to Table 2 in the main paper, this table includes a large sample size
consisting of all schools (N=12,370); results from 1,000 Monte Carlo simulations with
B=20, K=30, and S=30.

Criteria / Method BAK CON FFN GRO FFC NAL
Percent Bias

Naive -15.1% -92%  9.9% 55%  1.7% 11.0%
Naive + centroid 1.0% 3.1% 14.4% 5.7% 14.4% 1.8%
Traditional SIMEX 0.3% -21% 1.0% 04% -54% -0.2%
Traditional SIMEX+centroid — -1.1% -2.3% 02% 0.9% -1.4% 0.6%
Split-combine SIMEX -1.2% -09% -12% -1.0% -2.0% -0.2%
Mean Squared Error x 100

Naive 23.9 10.6 11.9 3.3 0.8 12.8
Naive + centroid 0.7 2.8 22.7 3.5 21.8 0.8
Traditional SIMEX 1.5 4.7 4.2 0.5 4.3 1.3
Traditional SIMEX+-centroid 1.6 4.3 3.7 0.5 1.4 1.3
Split-combine SIMEX 1.0 3.1 2.7 0.2 1.7 0.7
Coverage Probability

Naive 0% 15% 9% 0%  68% 0%
Naive + centroid 63%  49% 1% 0% 0%  55%
Traditional SIMEX 9% 9% 98%  99% 64% 98%
Traditional SIMEX+centroid 98%  95% 9% 9%  98%  98%
Split-combine SIMEX 9%5%  93% 9%5%  95% 90% 98%




Web Table 4: Simulation results comparing naive, traditional SIMEX, adjusted
SIMEX, and split-combine SIMEX; weighted cubic regression is used for extrapo-
lation f(-). Compared to Table 2 in the main paper, the schools in this simulation
are a random sample (N=1,000) of 7th grade schools. The comparison of Table 2 and
this table illustrates that the direction and magnitude of bias in health effect estimate
depends on the spatial distribution of study locations. Results are from 1,000 Monte
Carlo simulations with B=20, K=30, and S=30.

Criteria / Method BAK CON FFN GRO FFC NAL
Percent Bias

Naive 02% -01% -10.7% -22% -0.8% 7.3%
Naive + centroid 11.3% 11.1% 04% 0.4% 9.6% 6.2%
Traditional SIMEX -0.3%  -2.8% 1.5% 0.5% -5.0% -0.8%
Traditional SIMEX+centroid -0.4% -1.6% 1.0% 0.3% -5.0% -0.2%
Split-combine SIMEX -1.6%  -1.1%  -12% -0.6% -2.7% -0.4%
Mean Squared Error x 100

Naive 1.9 5.1 17.4 0.9 1.4 7.4
Nalve + centroid 30.7 10.2 7.0 0.4 2.5 51.7
Traditional SIMEX 1.2 4.4 3.7 0.3 3.6 1.7
Traditional SIMEX+centroid 1.4 4.5 3.9 0.4 3.7 1.8
Split-combine SIMEX 1.4 3.4 3.6 0.4 1.2 1.5
Coverage Probability

Naive 99% 99% 83% 9%  99% 7%
Naive + centroid 0%  79% 8%  95%  8™% 0%
Traditional SIMEX 100% 100%  100% 100%  98% 100%
Traditional SIMEX+centroid 100%  100% 100% 100% 9%  99%
Split-combine SIMEX 100% 100%  100% 100% 100% 100%

Web Table 5: Sample standard deviation of the estimates (SE) and the average of
bootstrapped standard error estimates (ESE) of SIMEX methods in Table 2 in the
main paper. Considering that all SIMEX methods that are presented in our paper
generate pseudo-data directly without generating random measurement errors from
any specified distribution, it is expected to observe ESE larger than SE.

SE BAK CON FFN GRO FFC NAL
Traditional SIMEX 0.193 0.318 0.286 0.104 0.189 0.181

Traditional SIMEX 176 989 0950 0.006 0.173 0.170

+ centroid
SC-SIMEX 0.121 0.213 0.196 0.066 0.116 0.133
ESE BAK CON FFN GRO FFC NAL

Traditional SIMEX 0.211 0.368 0.333 0.106 0.207 0.211

Traditional SIMEX 6 106 334 0307 0,009 0.192 0201
+ centroid

SC-SIMEX 0.157 0.261 0.249 0.088 0.159 0.172




A.1. Derivation of measurement error properties

For each school i, define four mutually exclusive sets of businesses according to whether or not
businesses are included in subject i’s buffer when their addresses are coarsened: S} (always
correctly included), S (correctly excluded), SI° (incorrectly excluded), S?* (incorrectly
included).

Conditioning on whether a business address is coarsened or not and taking into account
that businesses belong to only one of the above sets, the number of outlets that are incorrectly
excluded from the exposure count of school i is

J

J
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j=1

j=1

J
= {Iij = Lwy = 0]4; = 1)I(A; = 1)
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Similarly, U?! = > jeso I(Aj = 0). Since coarsening is assumed to occur at random, the
indicators I(A; = 0) are #id Bernoulli random variables with probability p equal to the prob-
ability of coarsening. Thus, Ui? and UP! follow Binomial distributions: U!? ~ Bin(|S1°|, p)
and similarly UM ~ Bin(|SM|,p). Moreover, these two binomial random variables are
independent, given the coarsening at random assumption and that the sets are mutually ex-
clusive. If coarsening is not equally likely for all businesses, U’ and U}? will have mixture of
Bernoulli distributions, instead of Binomial distributions, making the derivations that follow
more complex, but the overall concepts apply to this more general scenario as well.

Thus, we have py, = E(U;) = E(UX' — U?) = p(|S?] + |S}°]) and 02, = Var(U;) =
Var(UPt — U1%) = Var(UY) + Var(U°) — 2Cov(UPY,UL%) = p(1 — p)C;; where Cy; =
(|SY| + |S#°]). Let p, denote the vector of measurement error means for all subjects, and

3y denote the variance-covariance matrix of measurement errors, with diagonal entries equal
2

(7%
The remaining entries of 3y can be derived by considering the intersections of the union

of sets of businesses that can introduce errors U; and U, in the exposure measures for two
different subjects, ¢ and r:

to o

(87 US) N (ST USY) = (8 NS U S NSO U (SN ST U (S NS

_ 01,01 01,10 10,01 10,10
- Sir U Sir U Sir U Sir ’

where 82}’01 is the set of businesses that can incorrectly enter the buffers for subject ¢ and

subject r simultaneously, when coarsened; 52,1’10 is the set of businesses that can incorrectly
enter the ith subject’s buffer, but incorrectly leave the rth subject’s buffer; and analo-

gously for Silro’m and S;le,()l. Let UZZ(lfm)’l(lfl)

{Sg(l_m)’l(l_l)},m,l € {0,1}, i.e., Ug(l_m)’l(l_l) ~ Binom(|8§?(1_m)’l(1_”\,p). Businesses
that belong to any of these sets could give correlation among U; and U, as these businesses

represents a random variable connected to



introduce errors for both subjects. Therefore,

Cov(U;, Uy) = Cov(UPT — U, UM = U)
= Cov(UP",U) — Cov(UP, UJ?) — Cov(U°, UY) + Cov(U°, U;°)
= Var(Ug}’Ol) — Var(Ug,l’lo) — Va'r(UlO’Ol) + Var(U-lO’lo)

r r
01,01 01,10 10,01 10,10
=p(L=p){IS;; 7 | = IS 1 = 1S5 1+ 1871}
=p(1 —p)Ci, (1)

where Cir = {5377 = |8,7'] = 18,7 + 15,1

Naturally, the sizes of these sets, and therefore the correlation among measurement errors,
depend on the overlap of their respective buffers which is related to their spatial proximity.
In particular, the sets are empty for subjects whose buffers do not intersect with each other,
nor with the same ZIP polygons; correspondingly the correlation is zero for those pairs
of subjects. Thus, in large geographical extents, such as the state-wide analysis in the
motivating data, 3y will be a sparse matrix.

In summary, 3, = p(1—p)C, with the entries of C given above. Given X’s dependence
on p, it is clear that replicating the coarsening process with increasing p (within the interval
(0,0.5)) simulates measurement error with inflated variance, even though we do not know
the value of the measurement error variance for any one subject, Ufm. Also, even when
manipulating only the coarsening proportion p, the heteroscedasticity of the measurement
error variance will be preserved, since C is a constant. Clearly p — 0 implies Xy — 0.
Web Figure [4| shows the measurement error variance 6371. for each store type, for a single
randomly selected school, whereas the figures in the main paper showed the total variance
of measurement error (o2 (p), defined below).

Following analogous computations of the intersections of sets, the entries of the covariance
matrix between the measurement errors and the true exposure, Xy, can be shown to be:

COU(Ui,Xi) = —p(l _p)Eii
CO'U(UZ‘,XT) = —p(l _p)Eir

Hence, yx = —p(1 — p)E where E is a square matrix with E;; = |S}°| in diagonal and
10,10 10,11 01,10 01,117 - .
E,={S, | +|S;, | —IS;;, | — IS, |} in off-diagonal.
Because the measurement errors are heteroskedastic, it is also useful to define the follow-

ing total variances and covariances, o2(p) and ¢2,(p). Let U be the vector of measurement

10



errors for all subjects, and uw = %1%U be the mean of the error across subjects. Then:

(N = Doy(p) = B[(U - 1y0)" (U — 1) (2)
1
= E[lUTAU|, where A=1 — NuT
= tr{AS} + pg Apy
= p(1 —p)tr{AC} + p’d* Ad
where d is a N-dimensional vector with ith entry |SYt| — S|

=p(1 = p)er +pea.
Similarly,

(N = 1)ow(p) = E[(X — 157)" (U — 1y7)] = E[X " AU]| (3)
= tr{ASu} + py Ap,
= —p(1 - p)tr{AE} + puy Ad
where g is a N-dimensional vector with ith entry S}t + S|
= —p(1 — p)es + pea.

The quantity (N — 1)ouw(p) = E[(U — 15u)T (W — 1yw)] can similarly be shown to equal
(N - 1)[0-121(]9) + Uum(p)]'

A.2. Bias in naive estimate

We use a simple linear regression model to analytically illustrate that bias can be positive
or negative. Suppose the model of interest is

E:/BO+/BIXZ+6“Z:177N (4)

where ¢; is independent of X; and the measurement error U; is independent of Y; given Xj;.
Instead of unobservable true exposure X;, we have W; = X; + U;. Then,

_ U% + Oux (p)
02 +02(p) + 20uz(p)

plim B, (p) Ba, (5)

with the quantities o2 (p) and o,.(p) as defined above. The total variance of X is similarly
written as (N — 1)o2 = E[(x — 15y%)"(x — 157)]. Given the quadratic nature of the depen-
dence of ai(p) and o, (p) on p, it is obvious that ¢2(p) — 0 and oy, (p) — 0 as p — 0, and
that plimf,(p) is a continuous, differentiable function of p. Therefore, the naive estimates
will follow a predictable pattern that can be fitted with a smooth extrapolation curve. When
evaluated at p = 0, the extrapolation will yield an unbiased estimate of the 5.

Equation shows that the direction of bias in the naive coefficient estimate can be
positive or negative. Whereas in the classical error assumption the independence between
the measurement error and the true covariate makes the reliability ratio <1, in our case the

o2+ 0uz (p)
S e oy s B be greater or less than one due to non-zero o, (p).
2

The reliability ratio is greater than 1 (i.e., bias away from the null) when o, (p) = o5 (p) +
ouz(p) < 0, and less than 1 otherwise (attenuation bias). Whether the inequality o2(p) +
ouz(p) < 0 is satisfied depends on p (which can vary), and the constants ci,..., ¢4, which
are fixed. Thus, in general, the direction of bias could be different for different values of p,
as shown for three of the outlets in Figure 1(b) of the main paper where the bias changes
direction from first being positive and subsequently negative. However, when stratifying
subjects according to the presence of ZIP centroids in the subject’s buffers, the reliability

reliability ratio
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ratio in has a more predictable pattern as a function of p, as shown empirically in Figure
3 of the main paper.

For the strata without ZIP centroids in their buffer, the bias is always away from the
null independent of p. This is because when subject ¢ and r do not have ZIP centroids in
the buffer, SZQI,SZ»H, 8% and S!! are empty sets. Thus,

Cii =15, Ci=15,"",
d; = _’Silo‘v Mxi; = ‘Silo|7
E; =|S)°, Eu;=S5""

From this, it can be shown that, ¢; = c3, co > 0 and ¢4 = —co. Thus,

(N = 1)(02(p) + ouz(p)) = (c1 — c3)p(1 — p) + c2p® + cap
=plp—1)e2 <0 for0<p<l.

Therefore, the naive coefficient estimate is inflated when subjects do not have any ZIP
centroids in their buffers. Moreover, it can be shown that the reliability ratio is monotonic
increasing in p. Specifically, the first derivative of the reliability ratio evaluated at p = 0 is
positive, thus the reliability ratio is increasing for at least small values of p. In addition, it can
be shown that the derivative of the reliability ratio is a quotient with a quadratic polynomial
in the numerator, which has roots at p = +1. Thus, the derivative of the reliability ratio is
positive for 0 < p < 1.
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