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Summary

A major challenge in studies relating built environment features to health is measure-
ment error in exposure due to geocoding errors. Faulty geocodes in built environment
data introduce errors to exposure assessments that may induce bias in the corre-
sponding health effect estimates. In this study, we examine the distribution of the
measurement error in measures constructed from point-referenced exposures, quan-
tify the extent of bias in exposure effect estimates due to geocode coarsening, and
extend the simulation extrapolation (SIMEX) method to correct the bias. The moti-
vating example focuses on the association between children’s body mass index and
exposure to the junk food environment, represented by the number of junk food
outlets within a buffer area near their schools. We show, algebraically and through
simulation studies, that coarsening of food outlet coordinates results in exposure
measurement errors that have heterogeneous variance and non-zero mean, and that
the resulting bias in the health effect can be away from the null. The proposed SC-
SIMEX procedure accommodates the non-standard measurement error distribution,
without requiring external data, and provides the best bias correction compared to
other SIMEX approaches.
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1 INTRODUCTION

In built-environment health research, health outcomes are examined in relation to exposure to characteristics of the physical
environment. Relatively recent research in this area focuses on whether the availability of specific amenities is detrimental or
supportive to health. In the project motivating this paper and detailed in Section 2, a question is whether the availability of junk
food outlets near schools influences child obesity. Amenities can be thought of as point-referenced built environment features,
and accuracy in their recorded location is required to obtain correct exposure measures and estimate unbiased associations of
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interest. Large-scale databases of environmental features, such as listings of commercial establishments, are widely used to
characterize exposure. However, such listings are known to have errors, including inaccurate geocodes.1

Research into the impact of geocoding errors is especially important given the prevalence of these errors and because the bias
in health effect estimates arising from geocoding errors is not always toward the null. Figure 1a shows the percent of food outlet
locations in a database of business establishments where instead of the exact latitude and longitude (lat-lon) of the business,
the lat-lon of the centroid of the business ZIP Code is recorded (ZIP centroid). Although accuracy has improved over time or
other technologies such as GPS could be used to characterize exposure, many longitudinal cohort studies, including MESA,2,3

REGARDS,4,5 CARDIA,6 the Jackson Heart Study,7 among others,8 use historical records dating back to 1990 to quantify
cumulative exposure. Based on simulations, Figure 1b shows that the bias in estimated health effects estimated via a naïve linear
regression that uses the observed exposure in place of true exposure can be either toward or away from zero.

Prior research about the impact of geocoding accuracy on study results has been divided into two broad types according
to the type of geocoding error. One type of error is called “positional error,” where the latitude and/or longitude may be off
by an unknown distance of often a few meters. Another type is area-level “coarsening,” where the centroid of a ZIP Code
(or other area-level units) is obtained as the output of the geocoding software, instead of the lat-lon of the address. Existing
literature has explored the properties and impact of both of these geocoding errors on exposure measures.9 Positional geocoding
errors tend to be spatially autocorrelated and the magnitude of the error is related to urban-rural gradients and local street
network characteristics10,11 and can impact exposure measures.12,13 For area-level coarsening, Zimmerman1 developed methods
to estimate the spatial intensity of a point process by applying the coarsened-data methodology. While geocoding errors that
arise from automated (software-based) geocoding of addresses could potentially be avoided by using global positioning system
(GPS) devices,14,11 use of GPS has several limitations: it would incur additional costs; it is likely to be feasible only in a subset
of locations, i.e., a validation sample; and it is impossible for both historical datasets and those covering large geographical
extents, like the cohorts described previously.

In this paper, we focus on the estimation of the health effect of environmental exposures derived from point-referenced built
environment features that are subject to area-level coarsening, which has not been previously studied. We first examine the
measurement error structure in exposure counts associated with coarsened geocodes, both analytically and via simulation. We
demonstrate that the measurement error leads to bias in the health effect estimates that can be away from or toward zero. Second,
we propose a simulation-extrapolation (SIMEX) approach to correct bias in health effect estimates due to geocode coarsening.
Our implementation of SIMEX relies on readily available indicators about the coarsening level of individual amenities. Although
bias in the naive estimate can be positive or negative (Figure 1b) depending on the outlet, the bias of the naive estimator follows
a predictable pattern as a function of the percent of businesses with coarsened addresses, making SIMEX feasible. Thus, our
proposed method is a practical approach to correct for the spatial imprecision in coordinates because it does not require external
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validation data, nor does it impose distributional assumptions about the measurement error distribution or assumes a known
measurement error variance.

Originally developed to correct the bias in the regression coefficient of a continuous regressor contaminated by zero-mean
Gaussian measurement error,15 the SIMEX method has now been extended in several directions. For example, MC-SIMEX
can be applied to misclassification in a categorical response or categorical discrete regressors, or both. Before applying MC-
SIMEX, misclassification probabilities need to be estimated from independent validation data.16,17 Parveen and others relax
the assumptions of the measurement error distribution to include a covariate-dependent measurement error with a non-zero
mean.18,19 However, they require that the measurement error variance be constant and known or that it be reliably estimated.
Heteroskedasticity of the measurement error variance has also been studied for SIMEX, and obtaining a consistent SIMEX-based
estimate was found to be difficult unless simulated errors in the simulation-step matched the true errors closely in distribution.20

The SIMEX method has also been used in a spatial context to correct bias in the health effect of air pollution exposure.21 The
authors assumed the measurement error followed a multivariate Gaussian distribution with a zero mean and a spatial covariance
approximated by external validation data.

In Section 2, we use simulations, derivations, and data related to the location of food outlets and public schools in the state
of California to illustrate the structure of the measurement error induced by geocode coarsening. In Section 3, we introduce
the notation and the newly proposed method. The results of simulations used to evaluate the proposed method are included in
Section 4, followed by the application of the methodology to the motivating study data in Section 5. Final remarks are given in
Section 6.

2 FOOD ENVIRONMENT DATA AND MEASUREMENT ERROR STRUCTURE

2.1 Food environment near California public schools

Several available data sources contain point-referenced data on commercial establishments.22,23 One of these sources is the
widely-used National Establishment Time-Series (NETS) database22 which contains information on over 44.2 million unique
US establishments updated annually between 1990 and the present. The NETS database is a compilation of annual data sets
originally collected by Dun and Bradstreet (Short Hills, NJ).24 The information collected includes company names, addresses,
sales, and Standard Industrial Classification Codes25; this information is used to categorize each entity (e.g., restaurant vs.
convenience store).

Importantly, NETS also has the latitude and longitude of each establishment and a categorical variable that indicates the
accuracy level of the coordinates (e.g., whether the lat-lon is coarsened to the ZIP centroid or not). This indicator variable is part
of the default output of geocoding software and is thus available in any geocoded dataset. Changes in the geocoding practices of
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FIGURE 1 (a) Annual percent of food retail outlets (standard industry codes 54 and 58) in California with coarsened addresses
by year of entry into the National Establishment Time-Series (NETS) database; (b) Percent bias in health effect estimates from
naïve regression depends on coarsening level and food outlet type. Bias is either positive or negative since measurement error
induced by coarsening is not classical measurement error (see Section 4 for details about the simulation used to obtain this
figure); (c) For each outlet type, the average number of food outlets is shown for schools overall (N=12,370 schools), and by
whether schools have at least one ZIP centroid within their buffers (N=4,348 schools).
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Dun and Bradstreet, as well as the historical nature of the data, has resulted in varying degrees of geocoding coarsening across
time (Figure 1a). In this paper, we use two years of NETS data for different purposes. For simulation experiments where the true
geocodes are needed to produce error-free exposures (Section 2-4), we use 2010 NETS data, which has very high geocoding
quality. In analyses for our motivating study (Section 5), however, we use exposure measurements from 2000 NETS data, the
year where child obesity data is also available.

In our motivating study, specific food retail outlets are of interest: small grocery stores (GRO), convenience stores (CON),
bakeries (BAK), non-alcohol drinking places (NAL), fast food restaurant chains (FFC), and non-chain fast food restaurants
(FFN). These food outlets are considered as a source of junk food more accessible for children, and their availability near schools
can influence children’s junk food consumption directly through purchasing or indirectly through advertising, and eventually
influence childhood obesity. In 2010 in California, the most prevalent outlet type was small grocery stores, 14,297 out of 50,627
food outlets, followed by bakeries and fast food chain outlets (Figure 1c).

Data on school locations were downloaded from the California Department of Education (CDE) website. Per these data, there
were 12,370 public schools open in California in 2010. As done in many built environment studies (e.g., Athens et al.26), we
defined the neighborhood around a school as a one-mile radius circular buffer centered on each school location and obtained
the number of each of the types of food outlets within the buffer of each school. Using this circular buffer around each school,
Figure 1c shows the availability of food stores by outlet type in the school neighborhood. The relative prevalence of each of the
food outlet types near schools follows the total distribution of the businesses in California.

2.2 Exposure measure and measurement error distribution

Exposure measure

For simplicity, first assume there is only one type of food outlet of interest, and coordinates for both subjects and businesses are
fully accurate. Let  be an 𝑁 × 𝐽 matrix where 𝑁 is the total number of subjects (e.g. schools) and 𝐽 is the number of food
outlets. Define each element x𝑖𝑗 of  as a binary indicator for whether business 𝑗 is inside the buffer around subject 𝑖. Then, the
true exposure of the 𝑖th subject, denoted by 𝑋𝑖, is the sum of indicators x𝑖𝑗 : 𝑋𝑖 =

∑𝐽
𝑗=1 x𝑖𝑗 .

Geocode coarsening

The geocoding accuracy level for each establishment is given as part of the automated geocoding process. In the NETS data,
the coarsest geocode is given as the lat-lon of the ZIP centroid for the business, instead of the lat-lon of its street address. Let
𝐴𝑗 be an accuracy indicator for the 𝑗th establishment, 𝑗 = 1,… , 𝐽 , which takes a value 1 if the 𝑗th business’s geocode is
accurate to the street address level and 0 if the geocode is coarsened. Denote the observed proportion of coarsened addresses as
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𝑝0 =
∑𝐽

𝑗=1 𝐼(𝐴𝑗 = 0)∕𝐽 . Values of 𝑝0 for NETS are given in Figure 1a. Naturally, coarsened geocodes may introduce exposure
measurement error.

Measurement error

To describe how the observed exposure is measured and define the measurement error, let (𝑝) be an observed version of 
when 100𝑝% of businesses have coarsened addresses. (𝑝) has entries w𝑖𝑗 that indicate if the observed (possibly coarsened)
business geocode is within the buffer for subject 𝑖. The observed exposure for subject 𝑖 is then computed as 𝑊𝑖 =

∑𝐽
𝑗=1 w𝑖𝑗 ,

and the measurement error is 𝑈𝑖 = 𝑊𝑖 − 𝑋𝑖. The measurement error is a count that, as shown below and further detailed in
the Appendix A.1, follows a mixture distribution and violates all classical measurement error assumptions such as a zero mean,
constant variance, and independence from the true exposure.

To more rigorously describe the properties of the measurement error 𝑈𝑖 and enable us to define an approach to correct the
resulting bias, for the 𝑗th business in the neighborhood of the 𝑖th subject, we define indicators of whether its corresponding w𝑖𝑗

matches x𝑖𝑗 :

𝐼11
𝑖𝑗 = 1{x𝑖𝑗 = 1,w𝑖𝑗 = 1}, 𝐼00

𝑖𝑗 = 1{x𝑖𝑗 = 0,w𝑖𝑗 = 0}

𝐼10
𝑖𝑗 = 1{x𝑖𝑗 = 1,w𝑖𝑗 = 0}, 𝐼01

𝑖𝑗 = 1{x𝑖𝑗 = 0,w𝑖𝑗 = 1}.

When the 𝑗th business’s address has been accurately geocoded, i.e., 𝐴𝑗 = 1, then the observed w𝑖𝑗 will match x𝑖𝑗 , and thus either
𝐼11
𝑖𝑗 or 𝐼00

𝑖𝑗 will be 1, depending on the location of the school and business. However, when the business 𝑗 has been coarsened
(𝐴𝑗 = 0), then the possibility arises that 𝐼01

𝑖𝑗 = 1 (when without coarsening 𝐼00
𝑖𝑗 = 1), leading to the 𝑗th outlet being incorrectly

included in 𝑊𝑖. Similarly, if without coarsening 𝐼11
𝑖𝑗 = 1, then the possibility arises that 𝐼10

𝑖𝑗 = 1 with coarsening. Whether or
not 𝐼10

𝑖𝑗 or 𝐼01
𝑖𝑗 is 1 when the address is coarsened depends on the location of the ZIP centroid for the ZIP Code corresponding to

the 𝑗th business. The indicator 𝐼00
𝑖𝑗 may still be 1 if business 𝑗 and its corresponding ZIP centroid both lie outside the buffer of

subject 𝑖. Likewise, 𝐼11
𝑖𝑗 may still be 1 if the ZIP centroid corresponding to business 𝑗 is located inside the 𝑖th subject’s buffer.

Utilizing these indicators, we can write the true and observed exposure as 𝑋𝑖 =
∑𝐽

𝑗=1 x𝑖𝑗 =
∑𝐽

𝑗=1(𝐼
10
𝑖𝑗 + 𝐼11

𝑖𝑗 ) and 𝑊𝑖 =
∑𝐽

𝑗=1 w𝑖𝑗 =
∑𝐽

𝑗=1(𝐼
01
𝑖𝑗 + 𝐼11

𝑖𝑗 ). Hence 𝑈𝑖 = 𝑊𝑖 − 𝑋𝑖 =
∑𝐽

𝑗=1(𝐼
01
𝑖𝑗 − 𝐼10

𝑖𝑗 ) is a mixture of binary indicators. As discussed in the
Appendix A.1, upon conditioning on the locations of schools, true addresses of businesses, the locations of ZIP centroids, and
under the assumption of coarsening at random (i.e., 𝑃 (𝐴𝑗 = 0) = 𝑝), the measurement error has 𝐸(𝑈𝑖) = (|01

𝑖 | − |10
𝑖 |)𝑝 and

𝑉 𝑎𝑟(𝑈𝑖) = (|01
𝑖 | + |10

𝑖 |)𝑝(1 − 𝑝), where 𝑆01
𝑖 is a set of businesses that, when coarsened, will be incorrectly included in the

exposure count for subject 𝑖, and 10
𝑖 is a set of businesses that will be incorrectly excluded from the exposure count for subject

𝑖 when coarsened, and | ⋅ | denotes set cardinality. In general, the cardinality of these sets is unknown since the true business
locations are not known for all businesses, thus the mean and variance of the measurement error are unknown.
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Measurement error distribution depends on the location of ZIP centroids near the subject

The measurement error 𝑈𝑖 can also be seen as the difference between the total number of businesses that newly “enter” the
buffer, ∑𝐽

𝑗=1 𝐼
01
𝑖𝑗 , and the number of businesses that are “excluded”, ∑𝐽

𝑗=1 𝐼
10
𝑖𝑗 , due to the coarsening. This difference depends on

whether or not the subject’s buffer area contains any ZIP centroids. When there are no ZIP centroids within the subject’s buffer,
businesses cannot enter the buffer due to coarsening, i.e., ∑𝐽

𝑗=1(𝐼
01
𝑖𝑗 ) = 0, as depicted in Web Figure 1a. Thus, the measurement

error for subjects without ZIP centroids within their buffers will be non-positive. Otherwise, when ≥ 1 ZIP centroids are located
inside the buffer, there are more possibilities, depending on whether ZIP Code boundaries are cut across the school buffer. The
count can increase, decrease or stay the same (Web Figure 1b, c). Note also that multiple ZIP centroids can lie in the school
buffer when the school is located near ZIP Code boundaries, or when some ZIP Code polygons are smaller than the buffer as
may occur in dense urban areas.

Therefore, the measurement error can be formulated according to the presence of ZIP centroids in the subject’s buffer:

𝑈𝑖 = 𝑊𝑖 −𝑋𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑𝐽
𝑗=1(−𝐼

10
𝑖𝑗 ) ≤ 0, no ZIP centroid within subject’s buffer

∑𝐽
𝑗=1(𝐼

01
𝑖𝑗 − 𝐼10

𝑖𝑗 ), ZIP centroid within the subject’s buffer.
(1)

From (1), regardless of a subject’s location, 𝑈𝑖 violates the classical measurement error assumption that the measurement error is
independent of the true value 𝑋𝑖. This is shown analytically in Appendix A.1 and illustrated empirically in Table 1. In addition,
𝐶𝑜𝑟𝑟(𝑈𝑖,𝑊𝑖) ≠ 0 thus the error is not Berkson error either. Moreover, the measurement errors 𝑈𝑖 and 𝑈𝑟 for 𝑖 ≠ 𝑟 are also
correlated when subjects are geographically close to each other (see technical arguments in Appendix A.1).

In summary, the measurement error due to coarsening is a mixture of binomial components; errors are spatially correlated
across subjects and are correlated with both the observed and true exposures. The measurement error distribution depends on
whether the subject’s buffer has a ZIP centroid within it and this complex measurement error structure violates both the classical
and Berkson measurement error model assumptions.

Multivariate measurement error distribution: multiple outlet types

The extension to multiple types of food outlets is straightforward. Following the notation above, suppose there are 𝑄 differ-
ent types of food outlets (e.g., fast food restaurants, convenience stores). Assuming each business type has 𝑚𝑞 establishments
for 𝑞=1,… , 𝑄, the grand total number of outlets is 𝐽 =

∑𝑄
𝑞=1 𝑚𝑞 . Then, the 𝑖th subject’s true exposure to the 𝑞th food outlet

type is 𝑋𝑞
𝑖 =

∑𝐽
𝑗=1(𝐼

10
𝑖𝑗 + 𝐼11

𝑖𝑗 ) ∗ 𝐼(business 𝑗 is of type 𝑞), while 𝑊𝑖𝑞 =
∑𝐽

𝑗=1(𝐼
01
𝑖𝑗 + 𝐼11

𝑖𝑗 ) ∗ 𝐼(business 𝑗 is of type 𝑞). There-
fore, the measurement error for the count of the 𝑞th business type for subject 𝑖 is 𝑈𝑖𝑞 = 𝑊𝑖𝑞 − 𝑋𝑖𝑞 =

∑𝐽
𝑗=1(𝐼

10
𝑖𝑗 − 𝐼10

𝑖𝑗 ) ∗

𝐼(business 𝑗 is of type 𝑞).
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It is possible that a correlation exists between measurement errors of different business types (e.g., measurement error of
exposure to fast food chains is correlated with a measurement error of exposure to groceries). This relationship is due to the
potential similarity of business locations, as food outlets of different types are sometimes clustered. Hence, since true exposures
are correlated, measurement errors will be as well (Table 1). The correlations among the errors in multivariate exposures result
in either negative or positive bias in regression coefficients, even in the case of classical measurement error.27 Similarly, the
pattern of bias may also be different in our case when a single outlet type is considered in a regression model compared to when
multivariate exposures are considered (compare Figure 1b and Web Figure 2).

Carroll et al. (2006)27 emphasize that the error distribution is a key factor that determines the effects of measurement error on
coefficient estimation. In our case, the measurement error due to geocode coarsening can have different distributions not only
between subjects, as shown in equation (1), but also across business categories. The measurement error distribution depends on
more complex factors such as the buffer radius and the spatial distribution of schools and/or businesses. The following subsection
empirically shows the distribution of the measurement error through simulations.

2.3 Empirical illustration of measurement error distribution

We illustrate the distribution of the measurement error through simulations. In order to make the simulations as realistic as
possible, we base the simulations on the actual spatial locations of schools and food outlets in California in 2010. While using
the actual spatial locations of schools and food outlets has the significant advantage of making the simulation results more
realistic, a small disadvantage is that there is a small percentage of businesses that have coarsened geocodes. For California in
2010, 3% of all food-related businesses have coarsened geocodes (Figure 1a), whereas there were 1.5% ( 745 businesses) with
coarsened geocodes among the six business types of interest. Hence, in order to be able to calculate the ‘true’ exposure for all
schools in the simulations, we remove the businesses (1.5%) with coarsened geocodes (i.e., with 𝐴𝑗 = 0). The true geocodes of
the remaining 49,882 outlets are used to calculate  and the true exposure 𝑋𝑖 around each of the 12,370 schools. Given (1) and
that Figure 1c shows that schools that have one or more ZIP centroids within their one-mile buffers have more food outlets near
them, we examine measurement errors for schools with and without ZIP centroids in their buffers.

To create samples of the measurement errors 𝑈𝑖, we first create  and then calculate the observed exposure 𝑊𝑖, by replacing a
proportion 𝑝0 of accurate business coordinates with their ZIP centroid coordinates. For each subject, the error is then computed as
the difference 𝑊𝑖−𝑋𝑖. To investigate how the measurement error distribution and resultant bias in the health outcome regression
depend on the initial coarsening proportion, 𝑝0, we vary it from 𝑝0 = 0% to 30%, in 5% increments. For each proportion 𝑝0,
businesses were coarsened-at-random. This process is repeated 50 times to stabilize the Monte Carlo error.

Figures 2(a) and (b) illustrate the overall mean of the measurement errors from the simulations, showing that it differs accord-
ing to whether the school has at least one ZIP centroid nearby. As the proportion of coarsened businesses increases, the overall
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mean of the measurement error for schools with at least one ZIP centroid in their neighborhoods also increases, reflecting an
‘overcount’ compared to the truth (i.e., averaging 𝐸(𝑈𝑖) among these schools). On the other hand, among schools with no ZIP
centroid nearby, the overall mean of the measurement error is negative, with an increase in magnitude as more geocodes are
contaminated–i.e., an under-count. Web Figure 3 shows histograms of 𝐸(𝑈𝑖) for schools with and without ZIP centroids within
their buffers.

Figures 2(c) and (d) show the measurement error variance averaged across schools. As expected, the variance of the measure-
ment error also increases as the proportion of coarsened businesses increases. This is an important finding because the SIMEX
procedure requires having an approach to replicate measurement error with an increasing magnitude of measurement error vari-
ance. Since schools that have a ZIP centroid in their neighborhood also have a higher number of businesses nearby (Figure 1c),
the variance of the measurement error is also higher among that subset of schools (Figure 2d).

Measurement errors also have different distributions by food store type, and the errors are correlated among different food
store types. Figure 2 and Table 1 show that the absolute magnitude of the measurement error means and variances follow the
prevalence of food store types. Groceries have the largest error variance, bakeries have the second largest, and the least variance
is for non-chain fast food restaurants. Table 1 also illustrates the previously described positive correlation among measurement
errors across different food store types, as well as non-zero covariance among the measurement errors and the observed counts.

The question might arise as to whether the relationship between the presence or absence of ZIP centroid and the measurement
error distribution could be explained by factors that increase the likelihood that a ZIP centroid is in the subject’s buffer and also
related to the overall true exposure, however, this is not the case. For instance, urbanicity is arguably one of the most potent
predictors of both of these. There is both a greater availability of food outlets in urban areas and a greater number of urban schools
are likely to have ZIP centroid(s) in their one-mile buffer due to the smaller size of urban ZIP Codes. However, the diverging
pattern of the measurement error distribution between absence and presence of the ZIP centroid in the school buffer does not
vanish even if we stratify the schools by whether they are in an urban area or not (Figure 2e and f). Thus, although there may
be other factors that impact the absolute magnitude of the mean and variance of the measurement errors, such as urbanicity, the
direction of the mean and variance of the measurement error are driven by the presence or absence of ZIP centroid in the buffer.

3 SPLIT-COMBINE SIMEX

3.1 Notation and assumptions

Let 𝒀 be a vector of continuous outcomes for 𝑁 subjects, which can be modeled with linear regression: 𝒀 = 𝑿𝜷𝒙 +𝒁𝜷𝒛 + 𝝐.
The 𝑁 ×𝑄 exposure matrix 𝑿 is a matrix of true unmeasured exposure, where the 𝑞th column of 𝑿 denotes subject’s exposures
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FIGURE 2 (a) - (d) Overall mean and variance of measurement errors by presence or absence of ZIP centroid within 1 mile of
school, and (e)-(f) mean of measurement errors stratified by urbanization level. See Figure 1c for outlet abbreviations.

to the 𝑞th environment feature, and 𝑋𝑖𝑞 is as described in Section 2.2. The 𝒁 is a matrix of error-free covariates including an
intercept and a corresponding parameter is 𝜷𝒛. The residual 𝝐 = (𝜖1,… , 𝜖𝑁 )𝑇 is a vector of random errors with mean zero and
variance 𝜎2

𝜖 . We define 𝜷 = (𝜷𝑇
𝒙 , 𝜷

𝑇
𝒛 )

𝑇 and our primary interest is estimating 𝜷𝒙, the association between a continuous health
outcome 𝒀 and unobserved count exposure 𝑿.



Jung Y. Won ET AL 11

TABLE 1 Average of variances of measurement errors 𝑈𝑖𝑘, observed exposures, 𝑊𝑖, and true exposures, 𝑋𝑖𝑘, for 𝑘 =
GRO, CON, BAK, NAL, FFC, FFN, and correlations them, in the presence of 15% of geocode coarsening for each business
type. Values are based on 1,000 Monte Carlo simulations, among N=1,000 randomly selected schools.

Food outlet type Var(𝑈𝑘) Corr(𝑈𝑘, 𝑈𝑘′)

GRO CON BAK NAL FFC FFN
Grocery (GRO) 3.66 1 0.41 0.50 0.38 0.40 0.38
Convenience store (CON) 0.61 0.41 1 0.37 0.27 0.36 0.29
Bakery (BAK) 1.90 0.50 0.37 1 0.42 0.46 0.40
Non-Alcohol drinking place (NAL) 0.78 0.38 0.27 0.42 1 0.37 0.35
Fast food chain (FFC) 1.45 0.40 0.36 0.46 0.37 1 0.36
Fast food non-chain (FFN) 0.59 0.38 0.29 0.40 0.35 0.36 1

Var(𝑊𝑘) Corr(𝑊𝑘, 𝑈𝑘′)
GRO CON BAK NAL FFC FFN

Grocery (GRO) 209.76 -0.12 -0.03 -0.05 -0.08 0.00 -0.05
Convenience store (CON) 10.21 -0.08 0.06 -0.01 -0.05 0.01 -0.03
Bakery (BAK) 60.98 -0.08 0.01 0.00 -0.07 0.01 -0.03
Non-Alcohol drinking place (NAL) 37.59 -0.14 -0.03 -0.07 -0.09 -0.02 -0.07
Fast food chain (FFC) 20.56 -0.05 0.01 -0.02 -0.04 0.02 -0.01
Fast food non-chain (FFN) 16.62 -0.13 -0.02 -0.06 -0.10 -0.01 -0.01

Var(𝑋𝑘) Corr(𝑋𝑘, 𝑈𝑘′)
GRO CON BAK NAL FFC FFN

Grocery (GRO) 220.14 -0.25 -0.08 -0.11 -0.13 -0.05 -0.10
Convenience store (CON) 10.52 -0.18 -0.18 -0.10 -0.12 -0.08 -0.10
Bakery (BAK) 62.71 -0.17 -0.05 -0.17 -0.15 -0.07 -0.10
Non-Alcohol drinking place (NAL) 39.36 -0.19 -0.06 -0.13 -0.23 -0.07 -0.12
Fast food chain (FFC) 21.76 -0.15 -0.08 -0.14 -0.14 -0.24 -0.11
Fast food non-chain (FFN) 17.31 -0.20 -0.07 -0.14 -0.16 -0.07 -0.19

In the presence of geocoding coarsening, we observe  instead of  , and thus the analysis dataset will have observe data
(𝒀 ,𝑾 ,𝒁,𝑨) instead of true data (𝒀 ,𝑿,𝒁). Here 𝑾 = 𝑿 + 𝑼 with measurement error 𝑼 , and 𝑨 = (𝐴1,… , 𝐴𝐽 )𝑇 , where 𝐴𝑗

denotes whether the geocode for food outlet 𝑗 has been coarsened, as described in Section 2. We propose a method to correct a
bias in the estimation of 𝜷𝒙 due to measurement error 𝑼 incurred by geocode coarsening. We briefly describe the classic SIMEX
method to enable us to draw analogies in the description of our proposed method.

3.2 Brief review of classic SIMEX

The simulation-extrapolation (SIMEX) procedure15 consists of two steps: First, in the simulation step, a computer-simulated
error that mimics the measurement error is added to the observed {𝑊𝑖}𝑛𝑖=1, as follows. A grid of constants 𝜆𝑠, 𝑠 = 1,… , 𝑆 is
chosen (typically 0 = 𝜆0 < 𝜆1 < ⋯ < 𝜆𝑠 = 2,15) and used to progressively magnify the variance of the computer-simulated
error. Let 𝑈𝑖𝑏 represent the simulated error, then the simulated exposure is 𝑊𝑖,𝑏(𝜆𝑠) = 𝑊𝑖+

√

𝜆𝑠𝑈𝑖𝑏. 𝑈𝑖𝑏 is assumed to follow the
same distribution as the original measurement error distribution𝑁(0, 𝜎2

𝑢 ), where 𝜎2
𝑢 is assumed to be a known and finite variance.
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For a given value of 𝜆𝑠, 𝑠 = 1,… , 𝑆, the simulation is repeated 𝑏 = 1,… , 𝐵 times to reduce sampling variability. For each 𝜆𝑠

and each 𝑏, the model of interest is estimated using 𝑊𝑖,𝑏 as the exposure. For each 𝜆𝑠, the estimated regression coefficients are
averaged across 𝑏 = 1,… , 𝐵. Second, in the extrapolation step, a trend between the averaged estimated regression coefficients
and the values of 𝜆𝑠 is fitted. The fitted trend is used to predict the estimator for the case with no measurement error (𝜆 = −1).

In the classic SIMEX method, the classical measurement error assumption enables the expectation of simulated covariate
𝑊𝑖,𝑏 to be the same as the expectation of 𝑊𝑖, and the assumption of known 𝜎2

𝑢 enables the simulation of 𝑊𝑖,𝑏. Theoretically,
however, the SIMEX method is not limited to a known measurement error distributions. If we can replicate the measurement
error process, we can still apply SIMEX to correct bias in coefficient estimates.27

3.3 Proposed split-combine SIMEX method (SC-SIMEX) for geocode coarsened data

Unlike assumptions used in the traditional SIMEX procedure, the measurement error induced by geocode coarsening is a count
that does not adhere to either classical or Berkson measurement error assumptions. However, given available indicators 𝐴𝑗 , we
can replicate the geocoding coarsening process in order to generate exposure measures that have progressively larger measure-
ment error. In contrast to typical SIMEX that simulates pseudo-errors from the assumed measurement error distribution, we
instead directly generate (𝑝) by simulating additional coarsening of individual business addresses and use it to obtain more
contaminated 𝑾 . After this simulation step, we stratify the subjects into two groups, defined by the presence of one or more ZIP
centroids in the subjects buffers, and run separate estimation steps. This is because, as was shown in the prior section, the mea-
surement error distribution depends on the presence of ZIP centroids within the buffer of the subject, and in turn it has a different
impact on the bias of the estimated coefficients (Appendix A.2 and Section 4). Then, separate extrapolation steps produce two
SIMEX estimates, 𝜷SIMEX,1 and 𝜷SIMEX,2, one for each strata, that are then combined to obtain the final estimates. Although strati-
fication does not make measurement errors satisfy classical or Berkson error assumptions, within strata the naïve estimates have
a less complex and more predictable pattern when plotted against the coarsening proportion facilitating the extrapolation step.

3.3.1 Simulation step

We use the proportion (𝑝𝑠) of the coarsened businesses in place of 𝜆𝑠 in the traditional SIMEX approach. We assume 𝑝0×100%
of each business type have coordinates coarsened to their ZIP centroids, where 𝑝0 =

∑𝐽
𝑗=1 𝐼(𝐴𝑗 = 0)∕𝐽 is the proportion

of coarsened geocodes in the observed data. Observed exposures for the 𝑖th school 𝑾 𝑖 = (𝑊𝑖1,… ,𝑊𝑖𝑄) are computed with
these data, using the observed matrix of indicators (𝑝0) as described in Section 2.2. In the simulation step, an independent
coarsening procedure replaces accurate geocodes with coarsened geocodes for an additional (𝑝𝑠− 𝑝0)% businesses, for a total of
𝑝𝑠% coarsened business addresses. The resulting simulated matrix of indicators (𝑝𝑠), is used to obtain the pseudo-covariates
𝑾 𝑖,𝑏(𝑝𝑠) = (𝑊𝑖1(𝑝𝑠),… ,𝑊𝑖𝑄(𝑝𝑠)) at coarsening level 𝑝𝑠. This preserves the spatial dependence of measurement errors that
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may arise, for example, when a coarsened business drops out of the buffer for one school and spuriously enters that of another.
This process is repeated for 𝑠 = 1, . . . , 𝑆; 0 < 𝑝0 < 𝑝1 < ⋯ < 𝑝𝑆 , where 𝑆 denotes the number of coarsening levels to
be simulated, and for 𝑏 = 1, . . . , 𝐵 replications within each level 𝑠 to reduce Monte Carlo error. By increasing the number
of coarsened geocodes, 𝑾 𝑖,𝑏(𝑝𝑠) will accordingly have greater amount of measurement errors. After obtaining 𝑾 𝑖,𝑏(𝑝𝑠), the
observations (e.g., schools) are stratified according to presence or absence of a ZIP centroid in the subject’s buffer for strata-
specific estimation and extrapolation steps. For simplicity of notation, we drop the index for stratum. For each 𝑏 and 𝑠, we fit
the model 𝒀 = 𝑾 𝑏(𝑝𝑠)𝜷𝑥 +𝒁𝜷𝒛 + 𝝐 within each stratum. The estimate of 𝜷𝑥 using contaminated exposure 𝑾 𝑏(𝑝𝑠) is denoted
by 𝜷𝑥𝑏(𝑝𝑠). In each stratum, we compute the average of the estimates from the 𝐵 simulated pseudo-data for each proportion 𝑝𝑠,
𝜷(𝑝𝑠) =

1
𝐵

∑𝐵
𝑏=1 𝜷𝑏(𝑝𝑠), where 𝜷𝑏(𝑝𝑠) = (𝜷

𝑇
𝑥𝑏(𝑝𝑠), 𝜷

𝑇
𝑧𝑏(𝑝𝑠)).

3.3.2 Weighted extrapolation step

For each stratum, we carry out the extrapolation step separately. First we plot each element 𝑞 of the vector 𝜷(𝑝𝑠), 𝑠 = 1,… , 𝑆

against 𝑝𝑠 and fit an extrapolation function 𝑓 (𝑝) using regression methods. The SIMEX estimator for the exposure effect of
the 𝑞th food outlet is obtained as the intercept of the extrapolation function, 𝛽SIMEX𝑞

= 𝑓𝑞(0), which provides an estimate for
when the ideal case is available, i.e., no geocode coarsening 𝑝 = 0%. The extrapolation function can be any continuous curve,
although quadratic or cubic polynomials have been shown to work well in practice.28 In our simulations we explore both of
these polynomials as extrapolation functions. The same extrapolation procedure is repeated for each element of the vector of
coefficients for the error-free covariates 𝒁, since they also need bias correction when they are correlated with the true exposure.

To take the variability of estimates into account, we propose using weighted quadratic or cubic regressions where the weight is
the inverse of the empirical variance of estimates at each coarsening level, i.e. 1∕𝑉𝑠,𝑞 where 𝑉𝑠,𝑞 =

1
𝐵−1

∑𝐵
𝑏=1(𝛽𝑞,𝑏(𝑝𝑠)− 𝛽𝑞(𝑝𝑠))2.

Naturally, an unweighted version of the extrapolation function can also be fitted. However, as shown in the simulation section,
the performance of the weighted extrapolation function is better. This weighting takes into account the fact that as 𝑝𝑠 increases,
𝑉𝑠,𝑞 tends to increase as well.

For each stratum, the covariance matrix of 𝜷SIMEX = (𝜷𝒙
𝑇
SIMEX, 𝜷𝒛

𝑇
SIMEX)

𝑇 can be obtained by a standard boot-
strap approach. We resample the subjects with replacement and repeat entire SIMEX procedure to obtain 𝜷

(𝑘)
SIMEX for

𝑘 = 1,… , 𝐾 boostrapped samples. Thus, for each stratum, the boostrap variance estimator is 𝑉 𝑎𝑟(𝜷SIMEX) =

1
𝐾−1

∑𝐾
𝑘=1

(

𝜷
(𝑘)
SIMEX − 𝜷SIMEX

)(

𝜷
(𝑘)
SIMEX − 𝜷SIMEX

)𝑇

.
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3.3.3 Inverse-variance weighted combination of estimates

Since the strata defined by presence or absence of a ZIP centroid in the subject’s neighborhood are independent, we propose
using an inverse-variance weighted average to combine 𝜷SIMEX,1 and 𝜷SIMEX,2 ∶

𝜷SIMEX,combined = 𝜸𝟏 ⊙ 𝜷SIMEX,1 + 𝜸𝟐 ⊙ 𝜷SIMEX,2. (2)

where ⊙ denotes element-wise product operation, and 𝜸𝟏 and 𝜸𝟐 are 𝑄-dimensional weight vectors. Each element of the weight
vector is proportional to the inverse variance of the SIMEX estimator for each element of the regression coefficient vector within
each stratum. That is, the weights for the 𝑞th coefficient are

𝛾1𝑞 =

1
𝑉 𝑎𝑟(𝛽SIMEX,1𝑞 )

1
𝑉 𝑎𝑟(𝛽SIMEX,1𝑞 )

+ 1
𝑉 𝑎𝑟(𝛽SIMEX,2𝑞 )

, 𝛾2𝑞 =

1
𝑉 𝑎𝑟(𝛽SIMEX,2𝑞 )

1
𝑉 𝑎𝑟(𝛽SIMEX,1𝑞 )

+ 1
𝑉 𝑎𝑟(𝛽SIMEX,2𝑞 )

. (3)

If 𝜸𝟏 and 𝜸𝟐 are known, then

𝑉 𝑎𝑟(𝜷SIMEX,combined) = 𝑑𝑖𝑎𝑔(𝜸⊙2
𝟏 )𝑉 𝑎𝑟(𝜷SIMEX,1) + 𝑑𝑖𝑎𝑔(𝜸⊙2

𝟐 )𝑉 𝑎𝑟(𝜷SIMEX,2). (4)

The operation ⊙2 denotes that each element of a vector is raised to the 2nd power, and 𝑑𝑖𝑎𝑔() turns a vector into a diagonal
matrix. However, the variance of the SIMEX estimator in each stratum is estimated empirically, using the standard bootstrap
method described in the previous section. Thus, weights 𝜸𝟏 and 𝜸𝟐 can be also estimated by the empirical bootstrap variance of
SIMEX estimates. Then, the 𝑄-dimensional vector of variances of combined SIMEX estimators can be estimated by

𝑉 𝑎𝑟(𝜷SIMEX,combined) = 𝑑𝑖𝑎𝑔(𝜸𝟏
⊙2)𝑉 𝑎𝑟(𝜷SIMEX,1) + 𝑑𝑖𝑎𝑔(𝜸𝟐

⊙2)𝑉 𝑎𝑟(𝜷SIMEX,2). (5)

We show in simulations that (5) is an adequate variance estimator.

4 BIAS ANALYSIS AND SIMULATION STUDY

In this section, we examine the bias of the naïve estimator and evaluate the performance of our proposed method through
simulation, and compare it with alternative methods. For both of these goals, we use a subset of data that has ‘true’ street-level
geocodes as described in Section 2.3 and then set 15% of the businesses to have ZIP centroid geocodes. We considered a linear
regression to generate the response variable 𝑌 following assumptions in Section 3.1. We generated a subject-specific covariate
𝑍𝑖 using a Bernoulli distribution with probability 1

2
, we assume 𝑄=6 distinct outlet types within 1 mile from subject 𝑖, and

generated a standard normal residual error 𝜖𝑖. We let 𝛽0 = 20, 𝛽𝑧 = 2, and we use the same value of the coefficient, 𝛽𝑥 = 3.2 for
all business types. In the regression model with multiple error-prone covariates, having equal true coefficients for𝑿 enables us to
identify the impact of the (potentially) different measurement error distributions across outlet types. With a constant coefficient,
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FIGURE 3 Percent bias in health estimate against each coarsening level 𝑝𝑠, stratified by whether schools do not have a ZIP
centroid within their buffers (a) or have at least one (b). The naïve estimates occur at 𝑝0= 15% in both strata. Additional coarsening
to original observed data magnifies bias, as expected. SIMEX estimators at 𝑝 = 0% are obtained by fitting the extrapolation
curve (dashed curve) using weighted cubic regression. Other simulation parameters for this experiment are S=30, B=20, and
1,000 Monte Carlo samples. Presented outlet types are: Grocery (GRO), Convenience store (CON), Bakery (BAK), Non-Alcohol
drinking place (NAL), Fast food chain (FFC), Fast food non-chain (FFN).

any differences in the observed percent bias can be attributed to differences in the measurement error distribution, not different
coefficient values.

We generated a total of 1,000 datasets of size 𝑁=1,000, by sampling the locations of 1,000 schools. Other simulation
parameters for each dataset are 𝐵=20, 𝐾=100, and 𝑆=30 levels of coarsening from 𝑝0 = 15% to 𝑝𝑆 = 50%.

4.1 Different patterns of bias by presence of ZIP centroid in the buffer

Figure 3 displays the different pattern of average estimates 𝜷𝒙(𝑝𝑠) against each coarsening level 𝑝𝑠 between subjects with and
without ZIP centroids within one-mile circular regions, illustrating the benefit of two independent SIMEX procedures instead of
single simulation and extrapolation steps. Compared with Figure 1b which is an all-subject combined analysis, Figure 3 shows
qualitatively different patterns of bias after stratifying subjects. In the case of no ZIP centroid, estimates are inflated given the
systematic undercounting, whereas in the case of at least one ZIP centroid in the buffer, the bias can be either positive or negative
for a particular business. However, in both strata, the bias remains in a consistent direction for each business type.
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To see the how the differences in the direction of bias arise, consider the ordinary least square (OLS)-estimators. Omitting
𝒁 for simplicity, the estimate of 𝜷𝑥 can be derived as 𝜷𝑥 = 𝚺−1

𝑊 𝑐𝑜𝑣(𝑾 , 𝒀 ) ≈ 𝚺−1
𝑊 𝑐𝑜𝑣(𝑾 ,𝑿𝛽𝑥) = 𝚺−1

𝑊 (𝚺𝑋 + 𝚺𝑋𝑈 )𝜷𝒙 =
[

𝑰 − 𝚺−1
𝑊 𝚺𝑊𝑈

]

𝜷𝒙 ≡ [𝑰 −𝛀] 𝜷𝒙. Attenuation or inflation in estimates is determined by [𝑰 −𝛀]. As shown in Table 1, generally
𝛀 can not be null because 𝚺𝑊𝑈 (= 𝚺𝑋𝑈 +𝚺𝑈 ) is not zero. Furthermore, as Table 1 shows, there are non-zero positive or negative
covariances. The sign and magnitude of covariance matrices are determined by spatial locations of subjects and businesses.
Appendix A.2 shows algebraic justifications for the varying directions of bias shown in Figure 3, for the case of regressions with
a single exposure.

4.2 Comparison of methods

We compared our SC-SIMEX method with an adapted SIMEX that uses our newly proposed simulation strategy as defined
above but does not stratify the data (labeled ‘Traditional’), and a covariate-adjusted SIMEX that includes a binary indicator of
the presence of ZIP centroid within each subject’s buffer as a covariate in the outcome model (‘Traditional + centroid’) but does
not stratify. For the SIMEX extrapolation functions, we use quadratic, weighed quadratic, cubic, and weighted cubic regression
due to the curvature in the pattern of the estimated health effect by coarsening level.

Table 2 presents the percent bias, coverage probabilities of their 95% Wald confidence intervals (CI), and mean squared
error×100 (MSE) for the naïve estimates, and the SIMEX estimates that use a weighted cubic extrapolation function. The
naïve estimates have a mix of attenuated and inflated estimates depending on the outlet type. The estimates for bakeries and
convenience stores are underestimated, while those for fast food chains, groceries, fast food non-chains, and non-alcohol drink
places are overestimated. Compared with the naïve estimate, corrected estimates using traditional, adjusted SIMEX, and split-
combine SIMEX all substantially reduced the bias. However, in addition, the split-combine SIMEX has the lowest mean squared
error.

As shown in the literature,27 the properties of the SIMEX estimator depend on the extrapolation functions. As in prior work,
we also note that cubic regression works well in all cases, correcting for more bias than quadratic regression (Web Table 2). In
Table 2, we have a wide confidence interval due to overly conservative bootstrap standard errors of SIMEX methods. However,
similar amount of difference between the sample standard deviation of the estimates and the average of bootstrapped standard
error estimates has been generally shown in other SIMEX literature (see for examples21,29). Despite this difference, SC-SIMEX
produces smaller standard error estimates than other SIMEX methods (Web Table 5). To increase the Monte Carlo precision,
increasing 𝐵 could be helpful, as recommended by Carroll,27 although it comes at a price of the computational burden. In our
simulations, we kept 𝐵 relatively small (𝐵=20) to alleviate this computational burden, however, in the following data analysis,
we use B=100.
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TABLE 2 Simulation results comparing naïve, traditional SIMEX, adjusted SIMEX, and split-combine SIMEX; Weighted
cubic regression is used for extrapolation 𝑓 (⋅). We used randomly sampled N=1,000 schools. The results are from 1,000 Monte
Carlo simulations with B=20, K=100, and S=30. True coefficient value is 3.2 for all store types. Results are presented in the
ascending order of naïve bias; Bakery (BAK), Convenience store (CON), Fast food non-chain (FFN), Grocery (GRO), Fast food
chain (FFC), Non-Alcohol drinking place (NAL).

Criteria / Method BAK CON FFN GRO FFC NAL
Estimate (Percent Bias)
Naïve 2.80 (-12.6%) 2.79 (-12.7%) 3.28 (2.6%) 3.35 (4.6%) 3.38 (5.7%) 3.53 (10.3%)
Naïve + centroid 3.21 (0.3%) 3.05 (-4.7%) 3.30 (3.2%) 3.40 (6.2%) 3.94 (23.2%) 3.28 (2.6%)
Traditional SIMEX 3.19 (-0.5%) 3.15 (-1.4%) 3.22 (1.1%) 3.23 (0.5%) 3.04 (-5.0%) 3.19 (-0.4%)
Traditional SIMEX+centroid 3.18 (-0.5%) 3.15 (-1.7%) 3.22 (-0.1%) 3.20 (0.5%) 3.15 (-1.5%) 3.21 (0.3%)
Split-combine SIMEX 3.16 (-1.1%) 3.17 (-0.9%) 3.19 (-0.4%) 3.17 (-0.9%) 3.13 (-2.3%) 3.17 (-0.8%)
Mean Squared Error x 100
Naïve 18.1 22.4 5.1 2.6 4.9 12.5
Naïve + centroid 1.6 7.1 4.9 4.3 56.4 2.2
Traditional SIMEX 3.7 10.3 8.3 1.1 6.1 3.3
Traditional SIMEX+centroid 3.1 8.3 6.7 0.9 3.2 2.9
Split-combine SIMEX 1.6 4.6 3.9 0.5 1.9 1.8
Coverage Probability
Naïve 25% 73% 98% 52% 88% 51%
Naïve + centroid 96% 89% 93% 9% 0% 92%
Traditional SIMEX 100% 100% 100% 100% 97% 100%
Traditional SIMEX+centroid 100% 100% 100% 100% 100% 100%
Split-combine SIMEX 99% 99% 100% 99% 98% 99%

4.3 Impact of the spatial distribution of subjects and outlet locations

We examined the impact of the spatial distribution of subjects and businesses on the performance of the split-combine SIMEX
and other methods, in two ways. First, we conducted simulations using 400 subjects uniformly distributed on a 10 x 10 grid,
and 400 environment features. The ZIP centroids were assumed to be the centroid of each 1 unit square on the grid. Even in
this simple scenario, the split-combine SIMEX has better MSE and lower bias compared to the other SIMEX-based approaches.
However, the differences among the methods are small as the other methods also perform well in this simple scenario (results
not shown).

We also used a more realistic alternate scenario for the distribution of study locations. Specifically, we considered only the
location of 1,000 schools for 7th-grade children. Children in 7th grade typically attend middle school, which typically consists of
grades 6-8. In contrast to elementary schools (grades 1-5) which often serve a more localized residential neighborhood, middle
schools draw from a larger geographical area and thus tend to have a different spatial distribution. The results of this simulation
(Web Table 3 and 4) show that the extent of the bias of the naïve approach depends on the spatial location of subjects. For
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instance, while the bias for the naïve estimate was positive for non-chain fast food (FFN) when considering all schools, the bias
is negative when considering only the location of schools for 7th-grade children.

5 APPLICATION TO FITNESSGRAM DATA

Data

We implement our proposed method to investigate the association between the availability of six types of food stores near schools
(40,476 outlets) and the body mass index of children who attended California public schools during 2001. On average, 7.2% of
the food outlets were coarsened to their ZIP centroid. Grocery stores had the highest coarsening percentage (8.8%), followed
by bakeries (8.1%), non-chain fast food restaurants (7.4%), non-alcohol drinking places (6.9%), convenience stores (5.4%), and
fast food restaurant chains (5.1%).

Our outcome measure is child-level body mass index z-scores (BMIz) that were collected using the Fitnessgram®assessment
in California in 2001. Fitnessgram®is a widely used youth fitness test; its use is state-mandated in California for grades 5, 7, and
9 in public schools as part of the state’s broader assessment and reporting programs.30 In contrast to adults where adiposity is
measured and BMI computed as weight in kilograms divided by height in meters squared, age- and sex-specific BMIz scores are
used to report given that they are still growing. To obtain the BMIz, each child’s BMI is standardized according to an age- and
sex-specific reference distribution published by the US Center for Disease Control (CDC).31 In all analyses, we adjust for child
and school-level confounders. Specifically, in addition to child-level control variables such as sex and age, we also adjusted for
school characteristics, including the level of urbanization near the school,32 the proportion of adults with a college degree or
higher within the school’s census tract, median household income of residents in the school census tract, the school’s enrollment
by race/ethnicity, and percent of students eligible for free and reduced-price meals.

We focus our analysis on BMIz scores for N=53,239 Asian children in 5th, 7th, or 9th grade, who attended one of 1,166
schools. We focus the analysis on Asian children because previous research had documented a counter-intuitive finding among
this population subgroup (Sanchez et al.33). More specifically, prior research showed a significant negative association between
exposure to fast food restaurants near schools and obesity among Asian children. We hypothesize that this counterintuitive result
is at least partly due to errors in measuring exposure due to geocode coarsening.

Given that children are nested in schools, we use a mixed model with a random intercept of schools to examine the association
between food outlets and child-level BMIz. The SIMEX procedure is known to also perform well in linear mixed measurement
error models.34 Exposure to each outlet type was measured by the count of businesses within a one-mile buffer around the
school. Because initial exploratory analysis revealed a lack of linearity in the association between exposure to food outlets and
BMIz, we use the 𝑙𝑜𝑔2 transformation in our analysis (adding one to all outlet counts to ensure inclusion of schools with 0
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outlets nearby). Note that, the use of the 𝑙𝑜𝑔2 transformation does not create challenges for the SC-SIMEX approach, for several
reasons. First, given its monotonicity, the 𝑙𝑜𝑔2 transformation does not fundamentally change the measurement error properties
that motivates the SC-SIMEX, such as non-positive mean and negative covariance between the measurement error and the true
exposure among subjects without ZIP centroids in their buffers. Second, the SIMEX algorithm, more broadly, retains its bias-
correction properties for monotone transformations.35 Third, given that our simulation procedure directly generates  instead
of measurement errors 𝑈 in a conventional SIMEX approach, changes to the distribution of 𝑈 due to the 𝑙𝑜𝑔2 transformation
do not impede the simulation step. Moreover, the transformation takes place at the estimation step once the error-prone count
exposure 𝑾 (𝑝) has been simulated. Hence, we take advantage of direct simulation of  to generate log2(𝑾 (𝑝) + 1).

Our primary analysis runs separate ‘single outlet’ models for each food outlet type since one of our goals was to examine if
measurement error was a reason for counterintuitive findings in previously published single outlet models. However, we also
present results from a model that simultaneously includes exposure to all outlet types (i.e., six separate predictors) to highlight
efficiency gains of SC-SIMEX when multiple outlets are included, as demonstrated from the simulation study in Section 4.

For each model, we compare the naïve results with corrected estimates from traditional SIMEX, a traditional SIMEX adjusted
for the presence of ZIP centroid within the school buffer, and our proposed split-combine SIMEX. We use 𝐵 = 100, 𝐾 = 100,
and 𝑆 = 10, and 𝑝0 is specific to the outlet type (as shown above) and 𝑝𝑆 = 50%. Final inferences were derived by trimming the
top and bottom 2% of the 𝐾 bootstrap samples to remove outliers. Given the simulation results, in this analysis, we only used
weighted cubic extrapolation functions.

Results

Figure 4 shows coefficient estimates and confidence intervals of the association between exposure to different food outlet types
and children’s BMIz score, estimated from models that included one store type at a time. The naïve regression analysis shows
a negative association between BMIz and exposure to any one type of food outlet, including replication of the prior finding
of fast food restaurants. However, the corrected estimates obtained from the SIMEX methods do not support the naïve results.
The corrected estimates for all outlet types show an overall attenuation compared to the naïve coefficients, and all confidence
intervals include 0. The figure thus demonstrates the usefulness of correction for geocode coarsening and points to measurement
error as a possible explanation for the counter-intuitive effects shown in prior research.

In addition to the primary analysis, Table 3 highlights that SC-SIMEX offers an efficiency advantage for the multiple-store
model, compared to other SIMEX approaches. The table shows that SC-SIMEX estimates have the lowest standard errors for
all outlet types.
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FIGURE 4 Single outlet models. Coefficient estimates and 95% confidence intervals from the naïve, traditional, covariate-
adjusted, and SC-SIMEX approaches, illustrating the impact of geocode coarsening on the naïve regression. The estimates
represent the difference in BMIz per each two-fold higher exposure to a given food outlet type. Each sub-panel represents the
results of separate models, one for each food outlet type, among a sample of Asian children attending California public schools.
See Figure 1 for outlet abbreviations.

6 DISCUSSION

In this paper, we focused on two major objectives. First, we examined the measurement error distribution and bias in estimating
the health impact of point-referenced built environment exposure that results from the presence of geocode coarsening. We
showed analytically and via simulation that measurement error that occurs from inaccurate geocodes does not follow classical
measurement assumptions nor known parametric distributions. We also showed that bias in the estimation of the health effect
is not always towards the null. The second objective was to correct the bias incurred by coarsened geocodes. Based on our
finding that the measurement error distribution is a mixture that can be decomposed by whether or not the location of the subject
had a ZIP centroid within a circular buffer, we proposed a new split-combine SIMEX approach which takes the mixture of the
measurement error distributions into account. Our simulation for evaluating the method shows that the SC-SIMEX reduces the
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TABLE 3 Multiple outlet model. Coefficient estimates and standard error (SE) of the estimates from naïve, traditional, covariate-
adjusted, and SC-SIMEX approaches, showing lower standard errors for the SC-SIMEX for all outlet types. The estimates
represent the difference in BMIz per each two-fold higher exposure to a given food outlet type. Estimates and standard errors
were multiplied by 100 to improve readability. The results are from a single model that simultaneously includes all outlet types,
among a sample of Asian children attending California public schools. See Figure 1 for outlet abbreviations.

Naïve Traditional Trad+Centroid SC-SIMEX
Outlet Type 𝛽(𝑆𝐸) 𝛽(𝑆𝐸) 𝛽(𝑆𝐸) 𝛽(𝑆𝐸)

GRO -0.96 (1.17) -0.20 (0.77) -0.20 (0.77) -0.14 (0.71)
CON 0.59 (1.05) -0.05 (0.71) -0.04 (0.71) 0.06 (0.61)
BAK 0.18 (1.17) 0.06 (0.73) 0.06 (0.73) -0.07 (0.70)
NAL -1.92 (1.06) -0.14 (0.67) -0.14 (0.67) 0.21 (0.52)
FFC -1.50 (1.09) 0.10 (0.69) 0.09 (0.69) -0.14 (0.58)
FFN -0.60 (1.16) -0.04 (0.79) -0.05 (0.79) -0.11 (0.66)

bias considerably and is more efficient than traditional and covariate-adjusted SIMEX methods. After we addressed our two
objectives, we were able to apply our new approach to Fitnessgram®data to estimate the association between food environment
around schools and childhood BMI, and demonstrated that qualitative differences in study results could occur when we account
for the measurement error due to geocode coarsening.

One advantage of SIMEX is that it is a general methodology that can be adapted to cases where the measurement error
biases cannot be derived in closed-form.27 However, its applications were until now limited to parametric measurement error
distributions where estimated parameter values were available (e.g., measurement error variances). The split-combine SIMEX
fits in the broader SIMEX literature by extending the SIMEX to cases where the measurement errors have a more complex,
heteroscedastic distribution but are still replicable by computer simulations. In our case, replication of the measurement error
distribution is achieved by using an indicator of the accuracy of the geocodes, which is a readily available by-product of the
geocoding process.

While a large amount of measurement error literature has focused on continuous measurement error and misclasification
error, there has been much less attention for mismeasurement of a count covariate and its effect on bias in regression coefficient
estimates. Error-prone count predictors are typically transformed so that their distributions are normalized (or at least more
symmetric),27 or a normal approximation is used when the count is large such as in population estimation studies.36 There are
other works that use Poisson regression models for count outcomes with continuous erroneous predictors.37,38 Other discrete
error distributions such as misclassification errors have been studied for categorical predictors.39,40,41 Our extension of SIMEX
will provide a method to tackle measurement errors in count exposure.

Our work points to several areas for future research of SC-SIMEX applications. First, we suggest further investigation of
different coarsening probabilities according to covariates. Our work here considers that businesses are coarsened-at-random
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(CAR) so that we randomly sampled businesses to be coarsened during pseudo-error generation. However, it may be possible
to assign a different probability of being coarsened according to the characteristics of business locations. For example, NETS
data for California shows that rural businesses have a 2 to 4 times higher proportion of coarsening to ZIP centroids than urban
businesses, depending on the year in which the data are recorded. Another potential improvement can be achieved by partitioning
samples into more strata so that we can define homogeneous measurement error distribution within the strata. If a subject’s
buffer is fully contained by one large ZIP polygon and its centroid is within the buffer, then the exposure of the subject will
always be equal to or overcounted compared to the true exposure. This type of location will only have nonnegative measurement
errors. Splitting subjects into more strata will improve the performance, but it is also complicated because each stratum should
have enough sample size for consistent estimation. Additional research is needed to extend the implementation of SC-SIMEX
to different measures of exposures, such as distance to establishments or density-based clustering.

Our proposed method of dividing the sample in this paper is motivated by studies that use counts in a buffer which is one of
the widely used exposure methods. There are a large number of public health studies that use count exposures to investigate the
health effects of environmental features, for which the split-combine SIMEX provides one possible measurement error correction
strategy which may be beneficial to correct bias induced by geocoding coarsening and result in qualitatively different findings.
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SUPPORTING INFORMATION

Web figures and tables, referenced in Section 2.2 and Section 4.2 are available with this paper at the Statistics
in Medicine website on Wiley Online Library. Data analysis example with R code is given at the GitHub page
(https://biostatistics4socialimpact.github.io/).
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