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S1. Methodology

S1.1. Phonon transport

As given in Eq. (1) in the main text, the phonon thermal conductivity tensor (καβph ) can

be written as a summation over all phonon modes λ = (q, ν) of polarization ν, wave vector

q and frequency ωλ [1–4] by solving the Boltzmann transport equation (BTE) combining

with Fourier’s law of heat conduction [5],

καβph =
1

Nq

∑
λ

cλvλ,αvλ,βτ
ph
λ . (S1)

Here, α and β are indexing the Cartesian directions, Nq is the total number of q-points

sampled in the first Brillouin zone, while cλ, vλ and τph
λ denote the volumetric heat

capacity, phonon group velocity, and phonon relaxation time, respectively. Note that

cλ = (~ωλ/V )(∂n0
λ/∂T ), where n0

λ is the Bose-Einstein distribution function and V the

volume of the primitive cell, and vλ,α = ∂ωλ/∂qα. Phonons can be scattered on other

phonons, electrons, impurities, or grain boundaries. With the Matthiessen’s rule [5], the

phonon scattering rate (τph
λ ) is a summation of the phonon-phonon (1/τph-ph

λ ), phonon-

electron (1/τph-el
λ ), phonon-impurity (1/τph-im

λ ), phonon-isotope (1/τph-iso
λ ), and phonon-grain

boundary (1/τph-gb
λ ) scattering rates. Here we predict the κph of two-dimensional (2D) BeN4

based on ab initio computed 1/τph-ph
λ with three-phonon (3ph), four-phonon (4ph), phonon-

isotope, and phonon-electron (ph-el) scattering rates

1

τph
λ

=
1

τ 3ph
λ

+
1

τ 4ph
λ

+
1

τph-iso
λ

+
1

τph-el
λ

, (S2)

3ph scattering rates: 1/τ 3ph
λ can be obtained by Fermi’s golden rule (FGR) [5, 6] as

1

τ 3ph
λ

=
∑
λ1λ2

(
1

2
Γλ1λ2λ + Γλ2λλ1

)
, (S3)

where Γλ2λλ1 and Γλ1λ2λ represent the absorption and emission scattering in three-phonon

scattering processes rates and can be calculated as [5, 7, 8]

Γλ1λ2λ =
π~
4N

(1+n0
λ1
+n0

λ2
)
∣∣∣Ψ(3ph)
−

∣∣∣2∆k1k2
k

δ(ωλ−ωλ1−ωλ2)
ωλωλ1ωλ2

, (S4)

Γλ2λλ1 =
π~
4N

(n0
λ1
−n0

λ2
)
∣∣∣Ψ(3ph)

+

∣∣∣2∆k2
kk1

δ(ωλ+ωλ1−ωλ2)
ωλωλ1ωλ2

, (S5)

Ψ
(3ph)
± =

∑
b,l1b1,l2b2

∑
αα1α2

Φαα1α2
0b,l1b1,l2b2

eλαbe
±λ1
α1b1

e−λ2α2b2√
m̄bm̄b1m̄b2

e±ik1·rl1e−ik2·rl2 . (S6)
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∆k1k2
k and ∆k2

kk1
account for the momentum selection rules (Fermi’s golden rule, FGR) for the

absorption process k = k1 + k2 + R and the emission process k + k1 = k2 + R respectively,

with the reciprocal lattice vector R = 0 representing Normal (N) processes and R 6= 0

representing Umklapp (U) processes. N is the total number of k-points or primitive cells,

n0 is the Bose-Einstein distribution for accounting the phonon occupation number, ω is the

phonon frequency, and e is the phonon eigenvector. l, b, and α label the indexes of unit

cells, basis atoms, and (x,y,z) directions, respectively. Φαα1α2
0b,l1b1,l2b2

is third-order interatomic

force constants (3rd-IFCs).

4ph scattering rates: Similarly, 1/τ 4ph
λ can be obtained as [5, 7, 8]

γ4ph
λ =

1

τ 4ph
λ

=

(
1

6

∑
λ1λ2λ3

Γλ1λ2λ3λ +
1

2

∑
λ1λ2λ3

Γλ2λ3λλ1
+

1

2

∑
λ1λ2λ3

Γλ3λλ1λ2

)
, (S7)

where Γλ1λ2λ3λ , Γλ2λ3λ,λ1
, and Γλ3λλ1λ2 account for the absorption, redistribution, and emission

scattering rates in four-phonon scattering processes and can be obtained as [5, 7, 8]

Γλ1λ2λ3λ =
π~
4N

~
2N

n0
λ1
n0
λ2
n0
λ3

n0
λ

∣∣∣Ψ(4ph)
−−

∣∣∣2 ∆k1k2k3
k

δ(ωλ − ωλ1 − ωλ2 − ωλ3)
ωλωλ1ωλ2ωλ3

, (S8)

Γλ2λ3λλ1
=

π~
4N

~
2N

(1 + n0
λ1

)n0
λ2
n0
λ3

n0
λ

∣∣∣Ψ(4ph)
+−

∣∣∣2 ∆k2k3
kk1

δ(ωλ + ωλ1 − ωλ2 − ωλ3)
ωλωλ1ωλ2ωλ3

, (S9)

Γλ3λλ1λ2 =
π~
4N

~
2N

(1 + n0
λ1

)(1 + n0
λ2

)n0
λ3

n0
λ

∣∣∣Ψ(4ph)
++

∣∣∣2 ∆k3
kk1k2

δ(ωλ + ωλ1 + ωλ2 − ωλ3)
ωλωλ1ωλ2ωλ3

, (S10)

Ψ
(4ph)
±± =

∑
b,l1b1,l2b2,l3b3

∑
αα1α2α3

Φαα1α2α3
0b,l1b1,l2b2,l3b3

eλαbe
±λ1
α1b1

e±λ2α2b2
e−λ3α3b3√

m̄bm̄b1m̄b2m̄b3

e±ik1·rl1e±ik2·rl2e−ik3·rl3 ,(S11)

∆k1k2k3
k , ∆k2k3

kk1
, and ∆k3

kk1k2
specify the momentum selection rules (Fermi’s golden rule, FGR)

for the absorption process k = k1 +k2 +k3 +R, redistribution process k+k1 = k2 +k3 +R,

and emission process k + k1 + k2 = k3 + R, respectively, with the reciprocal lattice vector

R = 0 representing Normal (N) processes and R 6= 0 representing Umklapp (U) processes.

Φαα1α2α3
0b,l1b1,l2b2,l3b3

is 4th-IFCs. In order to calculate the 1/τ 3ph
λ and 1/τ 4ph

λ , the 2nd-, 3rd-, and

4th-IFCs need to be determined.

ph-iso scattering rates: 1/τph-iso
λ is considered by the natural isotopic atoms and can

be estimated by Tamura theory [9]

1

τph-iso
λ

=
π

2
ω2
λ

∑
i∈u.c.

gi

∣∣∣e∗λ′(i) · eλ(i)∣∣∣2δ(ωλ − ωλ′) (S12)

where eλ is the normalized eigenvector of phonon mode λ and the asterisk denotes the

complex conjugate. The mass variance factor is expressed as gi =
∑
ifi(j)[1−mi(j)/m̄i]

2,
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where fi(j), mi(j), and m̄i is the concentration, atomic mass of the jth substitution atom

and average mass of the ith atom.

ph-el scattering rates: 1/τph-el
λ can be obtained from the imaginary part of phonon

self-energy
∏

λ by 1/τph-el
λ = 2Im(

∏
λ)/~. It can be expressed as [10]

1

τph-el
λ

=
2π

~
∑
k,i,j

∣∣gλjk+q,ik

∣∣2(f 0
ik − f 0

jk+q

)
× δ
(
εik − εjk+q + ~ωλ

)
, (S13)

where g is the e-p interaction matrix element, f 0 is the Fermi-Dirac distribution function, k

is the electron wave vector, i and j are electron band indices, ε is the electron energy, and ω

is the phonon frequency. The e-p matrix element which describes an event where an electron

at initial state |i,k〉 is scattered to |j,k + q〉 by a phonon mode λ = (q, v), is defined as [10]

gλjk+q,ik =

√
~

2ωλ
〈ψjk+q| ∂Uλ |ψik〉 , (S14)

where ψ is the ground-state Bloch wave function and ∂Uλ denotes the first-order derivative

of the Kohn-Sham potential with respect to the phonon displacement.

S1.2. Electron transport

Combining the BTE and Onsager relations [5], the electronic transport thermal conduc-

tivity can be obtained as

σαβ = −e
2ns
V

∑
ik

∂f 0
ik

∂εik
vαikv

β
ikτ

el-ph
ik , (S15)

[σS]αβ = − ens
V T

∑
ik

(εik − µ)
∂f 0

ik

∂εik
vαikv

β
ikτ

el-ph
ik , (S16)

Kαβ = − ns
V T

∑
ik

(εik − µ)2∂f
0
ik

∂εik
vαikv

β
ikτ

el-ph
ik , (S17)

where e is the elementary charge, ns is the number of electrons per state, V is the volume

of the unit cell, f 0
ik is the electron distribution function, vik = 1

~
∂εik
∂k

is the electron velocity,

α and β denotes the directional component. σ, S and K are 3 × 3 tensors. σ is the

electrical conductivity, S is the Seebeck coefficient, and K is related to the electron thermal

conductivity κe = K− SσST , where T is the temperature. The summation in these three

equations is over all the electrons enumerated using electronic wave vector k and band index

i. µ is the chemical potential. The electron relaxation time, limited by electron-phonon
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interaction scatterings, can be obtained as [5]

1

τ el-ph
ik

=
2π

~
∑
j

∑
λ

∣∣gλjk+q,ik

∣∣2{(nλ + f 0
jk+q

)
δ
(
εik + ~ωλ − εjk+q

)
+
(
nλ + 1− f 0

jk+q

)
δ
(
εik − ~ωλ − εjk+q

)}(
1− vikvjk+q

|vik| |vjk+q|

)
.

(S18)

S2. Computational details

For phonon-phonon scattering rate calculations, all the computations of IFCs based

on density functional theory (DFT) in this work are performed by employing projector-

augmented-wave [11] (PAW) method, as implemented in the Vienna ab initio simulation

package (VASP) [12]. Perdew-Burke-Ernzerhof [13] (PBE) with the projector-augmented-

wave method [11] is used for exchange and correlation functionals. There is 1 chemical unit

of BeN4 in the primitive unit cell for two-dimensional (2D) structure with 5 atoms, which

will be used to build the supercell in the following IFCs calculations. The plane-wave energy

is truncated with 800 eV, the converged threshold for energy and atomic forces are set to

be 10−12 eV and 0.0001 eV/Å, respectively. The Brillouin zone was sampled with 18×18×1

in the optimization calculations. The optimized lattice constants of 2D BeN4 are a=4.27 Å,

b=3.66 Å, and γ=64.58°, which are being 0.2% smaller for a=4.28 Å [14], 0.3% smaller for

b=3.67 Å [14], and 0.03% smaller for γ=64.58°[14] compared to experimental data [14]. To

avoid the interactions between the layers and its mirror caused by the periodic boundary

conditions, the 2D BeN4 sheets are isolated from each other by 25 ÃĚ of vacuum spacing,

which enables the convergence of κp. In 2nd-IFCs calculations, we employed DFTP calcu-

lations based on the supercell of 6 × 6 × 1 for 2D BeN4. The phonon dispersion relation

was then extracted using Phonopy [15] which was interfaced to VASP [12]. In 3rd-IFCs cal-

culations, we adopted the finite difference method as implemented thirdorder.py packaged

in ShengBTE [16]. The supercell of 4 × 4 × 1 was used, and the cutoff radius of inter-

atomic interactions was set to be 12th nearest neighboring (12th-NN) for 2D BeN4. After

obtaining the 2nd- and 3th-IFCs, the three-phonon scattering rates were calculated using

ShengBTE [16] and the integration of Brillouin zone sampling was converged with q-points

of 50×50×1. In 4th-IFCs calculations, we also employed the finite difference method by an

in-house code [8, 17]. The supercell of 4 × 4 × 1 was used, and the cutoff radius of inter-
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atomic interactions was set to be 3th-NN for 2D BeN4. After obtaining the 2nd-, 3rd- and

4th-IFCs, the four-phonon scattering rates were calculated using the in-house code [8, 17]

and the integration of Brillouin zone sampling was converged with q-points of 50×50×1.

The convergence of phonon thermal conductivity with respect to IFCs cutoffs and (q)-points

sampled in Brillouin zone are carefully discussed in Sec. S3.

For electron-phonon scattering rate calculations, all the self-consistent DFT and density

functional perturbation theory (DFPT) calculations are implemented in Quantum Espresso

[18]. The norm-conserving pseudopotentials [19] are used. The exchange and correlation

(XC) functional is treated by Generalized Gradient Approximation ([13], GGA) in our cal-

culations. The plane-wave energy is truncated with 120 Ry, the converged threshold for

energy and atomic forces are set to be 10−12 eV and 10−6 eV/Å, respectively. The electronic

integration over the Brillouin zone is approximated by the Gaussian smearing of 0.01 Ry

for the self-consistent calculations. The Brillouin zone was sampled with 18×18×1 in the

optimization calculations. The optimized lattice constants of 2D BeN4 are a=4.27 Å, b=3.66

Å, and γ=64.58°, which are being 0.2% smaller for a=4.28 Å [14], 0.3% smaller for b=3.67

Å [14], and 0.0% smaller for γ=64.58°[14] compared to experimental data [14]. To avoid the

interactions between the layers and its mirror caused by the periodic boundary conditions,

the 2D BeN4 sheets are isolated from each other by 25 Å of vacuum spacing, which enables

the convergence of κp. The phonon perturbation is firstly calculated using DFPT based on

a supercell of 6×6×1 as implemented in Quantum Espresso [18] and then the el-ph scat-

tering matrix element is calculated in Electron-Phonon Wannier (EPW) package [20, 21].

The el-ph scattering matrix element is initially obtained on coarse electron (k-points) and

phonon (q-points) wave vector grids and then interpolated to denser k and q grids using the

maximally localized Wannier function basis as implemented in EPW [20, 21]. The coarse

k-points with 18×18×1 and q-points with 6×6×1 are used in the Wannier interpolations.

The convergence of el-ph scattering rates with respect to denser mesh of wave vector are

carefully discussed in Sec. S3. Finally, the finer k-points with 500×500×1 and q-points with

200×200×1 was used to compute the el-ph scattering rate contributing to electron trans-

port, and finer q-points with 50×50×1 and k-points with 200×200×1 was used to compute

the el-ph scattering rate contributing to phonon transport. On the other hand, in order to

model the charge doping system, the Fermi surface is shifted toward to the unoccupied en-

ergy states from the charge neutral point [22, 23]. Importantly, an in-house modified EPW
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code [1, 2, 24] is used to predict the electron-phonon coupling scattering rates in order to

compute the huge dense k- and q-points more efficiently.

It should be noted that we performed non-spin calculations in both Quantum espresso

and VASP. The differences in the relaxed lattice constants, phonon dispersion, and

electronic band structures between Quantum espresso and VASP are less than 0.5%.

S3. Convergence studies and validations of parameters

S3.1. Convergence of IFCs cutoff in phonon thermal conductivity calculations
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Fig. S1: κ3ph
ph in (a) and κ3+4ph

ph in (b) of 2D BeN4 vary with temperature for different 3rd-IFCs

and 4th-IFCs cutoffs, respectively. NN, 3ph, and 3+4ph denote nearest neighbors, 3ph scattering,

and both 3ph and 4ph scatterings.

We plot κ3ph
ph and κ3+4ph

ph of 2D BeN4 as a function of temperature for different IFCs

cutoff as shown in Figs. S1(a) and (b), respectively. From Fig. S1(a), we can see that

κ3ph
ph changes within 3% in increasing the cutoff from 8th-NN to 12th-NN in 3ph scattering

calculations. In 4ph scattering calculations, κ3+4ph
ph changes within 5% in increasing the

cutoff from 3rd-NN to 4th-NN shown in Fig. S1(b). Therefore, based on the trade-off

between computational cost and accuracy, we finally include up to 12th-NN cutoffs in 3ph

scattering calculations and 3th-NN in 4ph scattering calculations for 2D BeN4, respectively.

S3.2. Convergence of q-points in phonon thermal conductivity calculations
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Fig. S2: Variation of κ3ph
ph and κ3+4ph

ph with q-points of 2D BeN4.

The convergence of κ3ph
ph and κ3+4ph

ph with respect to Brillouin Zone sample density

(q-points) is studied through calculating κ by considering different q-points density. Based

on this, the κ3ph
ph and κ3+4ph

ph of 2D BeN4 are plotted as a function of q-points as shown in

Fig. S2. From the figure, we can see that κ3ph
ph is converged to within 5% for an increase

in q-points beyond 50 × 50 × 1, while κ3+4ph
ph is converged to within 3% for an increase

in q-points beyond 40 × 40 × 1. Therefore, in order to keep the balance of accuracy and

computational cost, we finally use 50× 50× 1 for both 3ph and 4ph scattering calculations.

S3.3. Validation of the Wannier interpolation

The Bloch electron states should be transformed to Wannier form to perform the interpo-

lation [10] for calculating electron-phonon coupling matrix with dense k-points for electronic

wave vector grid and q-points for phonon wave vector grid. s and p orbitals are included for

both Be and N in the Wannier projections with 24 maximally localized Wannier functions

(MLWFs) for interpolation. the coarse k-points with 18×18×1 and q-points with 6×6×1

are used in the Wannier interpolations. Figures S3(a) and (b) shows the electronic band
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structure and phonon dispersions calculated by DFT and Wannier interpolation. The results

match quite well with each other, indicating the reliability of Wannierization.
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Fig. S3: (a) Electronic band structures of 2D BeN4 calculated by DFT and Wannier interpolation

technique. The electron energy is normalized to the Fermi energy. (b) Phonon dispersions of

2D BeN4 calculated by DFT and Wannier interpolation technique. (c) Spatial decay of the largest

component of the Hamiltonian, H(Re), dynamical matrix, D(Rp), electron-phonon coupling matrix

element, g(Re), and g(Rp) for 2D BeN4. The data are normalized against their largest values and

are plotted as a function of position of the electron unit-cell, Re, or the phonon unit-cell, Rp, used

for describing electrons and phonons in the real space.

To further check the convergence of the coarse k-points and to get the converged coarse

q-points, we plot the spatial decay of the Hamiltonian, the phonon dynamical matrix, and

the electron-phonon coupling matrix elements in the Wannier functions representation for

2D BeN4 in Fig. S3(c). All of these quantities should decay to zero in order to have the

localized Wannier functions that are necessary for high-quality interpolation. As can be

seen from Fig. S3(c), all of these quantities decay very quickly with distance, suggesting

the sufficiency of the selected coarse k- and q-points for interpolation.

S3.4. Convergence of fine k- and q-points for electron-phonon coupling
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Fig. S4: (a) Variation of electron-phonon scattering rates (1/τ el-ph
ik ) contributing to electron

thermal transport with fine q- and k-points at 300 K. (b) Variation of electrical conductivity

(σel-ph) originating from electron-phonon scattering with fine q- and k-points. (c) Variation of

phonon-electron scattering rates (1/τph-el
λ ) contributing to phonon transport with fine q- and k-

points at 300 K. (d) Variation of phonon thermal conductivity (κ3ph+4ph+ph-el
ph ) with fine q- and

k-points.

The variations of the electron-phonon scattering rates contributing to phonon and electron

transport of 2D BeN4 with the fine q- and k-points are plotted in Fig. S4. As shown in

Figs. S4(a) and (b), the electron-phonon scattering rates (1/τ el-ph
ik ) contributing to electron

thermal transport and the electrical conductivity (σel-ph) originating from electron-phonon

scattering are converged to within 2% for an increase in k-points beyond 200×200×1 and

q-points beyond 200×200×1. To keep the balance between accuracy and computational

cost, we finally used k-points with 500×500×1 and q-points with 200×200×1 for studying
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electron transport properties due to electron-phonon coupling scatterings.

On other hand, as shown in Figs. S4(c) and (d), the electron-phonon scattering rates

(1/τph-el
λ ) contributing to phonon thermal transport and the phonon thermal conductivity

(κ3ph+4ph+ph-el
ph ) are converged to within 2% for an increase in k-points beyond 200×200×1

and q-points beyond 50×50×1. It should be noted that in order to include the phonon-

electron scattering into the computation of phonon thermal conductivity in which a

consistent q-points is required in the implementation of computing 3ph, 4ph, and ph-el

scattering rates, therefore we here only calculate the phonon thermal conductivity with

q-points up to 50×50×1 shown in Fig. S4(d) due to the limitation of huge computation

of 4ph scattering rates. Finally, to keep the balance between accuracy and computational

cost, we used q-points with 50×50×1 and k-points with 200×200×1 for studying phonon

transport properties due to electron-phonon coupling scatterings.

S3.5. Anisotropic thermal conductivity
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Fig. S5: Anisotropic thermal conductivity of (a) phonon κ3ph+4ph+ph-el
ph and (b) electron κel-ph

e in

intrinsic 2D BeN4.

S4. Electrical resistivity of n-doped Graphene

In order to further validate our implementation of electron-phonon coupling calculations

for predicting the electrical properties of doped material systems, here we first calculate the

electrical resistivity of doped Graphene to validate our strategies which is adopted for 2D
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Fig. S6: (a) Electronic band structures of Graphene calculated by DFT and Wannier interpola-
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Graphene. (d) Electron-phonon scattering of different doped carrier concentration with respect to
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BeN4 systems. The computational details for doped Graphene are as follows. By employing

DFT and DFTP calculations, the energy of electrons and phonons are calculated with the

Quantum-ESPRESSO package [18]. The norm-conserving pseudo-potential [19] is adopted

and the local-density approximation (LDA)[27] is used for exchange and correlation. The

kinetic energy cutoff of plane-wave basis is set as 60 Ry. The electronic integration over the

Brillouin zone is approximated by the Gaussian smearing of 0.01 Ry for the self-consistent

calculations. The Brillouin zone was sampled with 18×18×1 in the optimization calculations.

To avoid the interactions between the layers and its mirror caused by the periodic boundary

conditions, the graphene sheets are isolated from each other by 10 Å of vacuum spacing,

which enables the convergence of κp. In order to model the charge doping system, the Fermi

surface is shifted toward to the unoccupied energy states from the charge neutral point [22,

23]. The phonon perturbation is firstly calculated using DFPT based on a supercell of 8×8×1

as implemented in Quantum Espresso [18] and then the el-ph scattering matrix element is

calculated in Electron-Phonon Wannier (EPW) package [20, 21]. The el-ph scattering matrix

element is initially obtained on coarse electron (k-points) and phonon (q-points) wave vector

grids with 8×8×1 and then interpolated to a convergence of el-ph scatterings with dense

of 500×500×1 k-points and 200×200×1 q-points using the maximally localized Wannier

function basis as implemented in our modified EPW package [1, 2, 24].

The calculated electron band structure, phonon dispersion, shifted Fermi level of doped

Graphene, el-ph scattering rates, and electrical resistivity are shown in Fig. S6. Figure

S6(e) compares our calculated electrical resistivity with reported data including DFT

predictions [25] and experimental measurements [26] for different doping concentration

of Graphene. We can see that our predictions overall agree well with the reported data

especially for temperature higher than 200 K. The deviations at temperature lower then

200 K can be explained as following: (1) the experimental values [26] are higher then our

predictions is attributed to the impurity or defects of the measuring samples which will

induce extrinsic scatterings; (2) the DFT data from Park et al. [25] is calculated using

Allen’s [28] model and also include the electron-electron interactions which is important

at low temperatures. Overall, our implementations give rise of very well agreement with

reported data for temperature higher than 200 K, which demonstrates the reliability of our

implementations for calculating the electron-phonon coupling transport properties of doped

2D BeN4 in temperature range of 200 to 1000 K.
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S5. Electron-phonon coupling strength
The mode-resolved electron-phonon coupling strength is defined as [21]

λtr(ω) =
1

NFωqν

∑
ik

∣∣gqνjk+q,ik

∣∣2δ(εik − εF )δ(εjk+q − εF )

(
1− vikvjk+q

|vik| |vjk+q|

)
, (S19)

where NF is the Fermi electron density-of -states per spin and per unit cell. The Eliashberg

transport function α2Ftr is further expressed as [21]

α2Ftr(ω) =
1

2

∑
qν

ωqνδ(ω − ωqν)λtr(ωqν). (S20)

The α2Ftr and λtr(ω) of intrinsic and n-type beryllonitrene with n = 13.8 × 1014 cm−2 is

shown in Fig. S7
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Fig. S7: Calculated transport Eliashberg spectral function α2
trF and transport electron-phonon

coupling strength λtr of intrinsic and n = 13.8× 1014 cm−2 at T = 300 K.

S6. Average electron relaxation time and group velocity
We predict the average electron relaxation time and group velocity using the following

formulas

〈τ el-ph
e 〉 =

∑
ik(εik − εF )2 ∂f

0
ik

∂εik
|vik|2τ el-ph

ik∑
ik(εik − εF )2 ∂f

0
ik

∂εik
|vik|2

. (S21)

14



〈ve〉 =

√√√√∑ik(εik − εF )2 ∂f
0
ik

∂εik
|vik|2τ el-ph

ik∑
ik(εik − εF )2 ∂f

0
ik

∂εik
τ el-ph
ik

. (S22)

S7. Drude’s free electron model for κe
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Fig. S8: Comparison of κe vs. n in beryllonitrene as obtained with a Drude’s free electron model

with τ = 12 fs electron lifetime and with BTE and electron lifetime obtained from DFT.

S8. Allen’s model for electron transport properties

According to Allen’s model, the electrical resistivity is given by [28, 29]

ρel-ph =
1

σel-ph
=

2πV kBT

e2~NF 〈v2
F 〉

∫ ∞
0

dω

ω

x2

sinh2 x
α2Ftr(ω), (S23)

V is the volume of the unit cell, k2
B is the Boltzmann constant, T is the temperature, NF

is the Fermi electron density-of -states per spin and per unit cell, v2
F is the Fermi velocity,

and ω is the frequency of phonon. x = ~ω/2k2
BT is a dimensionless parameter. α2Ftr is the

Eliashberg transport function defined in Eq. S20.
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S9. Accumulation function of thermal conductivity
The phonon and electron thermal conductivity can be re-written as a function of phonon and

electron mean free paths (MFP) with Λλ and Λik. These functions are called accumulation

functions as expressed by [1, 2]

καβph (Λ) =

Λλ<Λ∑
λ

cλ
vλ,αvλ,β
|vλ|

Λλ, (S24)

καβe (Λ) = − ns
V T

Λik<Λ∑
ik

(εik − µ)
∂f 0

ik

∂ε

vik,αvik,β
|vik|

Λik, (S25)

where Λλ= |vλ| τλ and Λik = |vik| τik. The MFP is the definition of a distance between

scattering events when a carrier travels.
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