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Summary

The traditional ultrasonic computerized tomography (UCT) method needs

numerous measurements to detect the inside conditions of concrete. Consider-

ing the damage is sparsely distributed in the reinforced concrete, compressive

sampling (CS) is applied to advance the UCT method at both the measurement

stage and the imaging stage to localize damage part in the structure. The pro-

posed detection algorithm requires much fewer measurements compared to

the traditional UCT with the same accuracy. In the measurement stage, the

pitch–catch paths are randomly selected to capture the travel time of ultra-

sonic wave from one side to the other side in the dense measurement net.

When ultrasonic waves propagate in the structure, they will interact with the

damaged part, prolong the propagation length, and delay the time of flight

(ToF). In the imaging stage, the whole specimen is divided into small pixels

based on the desired accuracy. The conventional Rando equation is advanced

based on ℓ1-minimization algorithm from CS method to solve the slowness of

each pixel to reconstruct the damaged part. The functionality of the proposed

algorithm is validated via both numerical model and experimental testing on a

reinforced concrete beam in the laboratory. The results reveal the UCT based

on CS is more efficient for localizing and imaging the damage with much

fewer measurements, which has the immense potential in the development of

structural health monitoring (SHM).
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1 | INTRODUCTION

Structural health monitoring (SHM) is an essential management tool that provides quantitative data to evaluate the
structural health. SHM consists of global approaches and local nondestructive testing-based (NDT-based) technique to
identify damage existence, location, type, and severity for the decision making of maintenance to ensure structural
safety.1–4 Compared to the global approach, NDT-based local damage detection technique which is more sensitive to
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the small level of damage provides a more precise interrogation of structural component with a more direct measure-
ment of spatially depicting structural damage.3,5–7 While local damage detection technique has its own drawbacks such
as point-based (strain gauge, thermal sensor) approach, it can only get sensitive damaged response in locations close to
the damage. Thus, high-dimension local sensing approaches are pursued to visualize the spatial interrogation of the
structure via a network of single point sensor,8,9 wave-based (e.g., electromagnetic wave and elastic wave)
scanning,5,8,10–12 computerized tomography (CT),13,14 computer vision,15,16 etc.

CT technique is a powerful approach to derive high-dimension visualization of the object. While X-ray CT scanning
is currently used as a clinical evaluation method, it also exposes human body under the harmful radiation. Thus, for
the high-intensity industrial SHM, ultrasonic CT (UCT) become a better approach to interrogate the internal flaw in
structures for the characterization of the damages. UCT has been extensively used as 2-D/3-D sensing technique in
many areas, such as medical science,17–21 civil engineering,22–24 and material engineering.25 Wiegand and Hoyle used
pulse-echo ultrasound tomography to generate a cross-sectional image of the two-phase flow in real time.26 They do sig-
nificantly improved signal-to-noise ratio (SNR) and reconstructed image, but the flow imaging can only use a restricted
number of sensor positions in their system. Transmission-mode UCT was employed by Xu et al. to analyze the inherent
dependency of the incomplete tomographic projections on the distribution of bubbles in gas/liquid flow.27 The authors
pointed out that the accuracy can be furthered by increasing the quantity of transducer, but they also stated that com-
promise must be made between the increasing resolution and the ability of the system. Ohkawa et al. described the dis-
tributions of gas and solid holdups in slurry bubble column by UCT technique.24 These research showed UCT
technique has good reconstruction result in terms of the recognizing the gas–solid systems. Later researches all confirm
that UCT is a technique with great significance can be applied to varieties of ranges. In Fujii and Zhang's study, UCT
can also be used for temperature measurements.25 Zhu et al. have presented an UCT algorithm to obtain three-
dimensional temperature or CO2 concentration distributions for environmental field where ultrasonic phase difference
were served as projected data.28 He found out that reconstruction quality can be improved due to the increase of projec-
tion data by decreasing the step rotation angle; however, this kind of means may increase the number of measurements.
Hay et al. demonstrated that UCT technology is capable of detecting material loss on real aircraft components using
embedded piezoelectric sensors on hidden surfaces. Their study showed clearly that the method is very sensitive to
material loss29 demonstrating UCT is a good method for damage detection, but he has the same problem with time con-
suming related to testing time. Hoyle then reviewed the ultrasound transducers employed in tomography, including
their advantages and difficulties.30 He stated that the use of CT especially fits the condition where significant changes
in density or elasticity occurs but the quantity of data also caused problem cannot be solved. Rahiman et al. described
the design and modeling of ultrasonic tomography for two-component high-acoustic impedance mixture.31 Filipik et al.
proposed a novel method for calibration of measuring geometry and of individual signal delays of transducers in UCT
system.32 It is worth noting that some researchers applied UCT technique into some civil structures and receive good
results. Martin et al. showed that UCT potentially provides a highly successful method of investigating post-tensioned
concrete beams.33 They pointed out that array systems could be developed which would reduce the testing time, the
problem is the testing time. Bond et al.22 applied the UCT method into a dam. They tested the laboratory model and a
section of a large dam, but they could not solve the problem between accuracy and resolution for the huge volume of
detecting area. These researches all demonstrate that UCT can locate and characterize various structural damages or
inhomogeneities of materials.

While the UCT provides a high-dimension visualized damage image, it requires a dense measurement net for detec-
tion, which can be costly to provide accurate spatial resolution of the structure. Thus, a cost-efficient reconstruction
approach is pursued to shrink the redundant detections from the traditional UCT. Compressive sampling (CS) is a
game-changing method to the traditional Nyquist/Shannon sampling theory and has successful achievements since it is
proposed by Candès and Wakin,34,35 Donoho,36 and Tao et al.37,38 in 2006. It can accurately reconstruct images or sig-
nals to solve ill-conditioned inverse problems from far fewer measurements than are usually considered necessary.39,40

Nowadays, CS has a significant impact on many applications, such as the signal processing,38,41 medical imaging42,43

(especially, the magnetic resonance imaging), geophysical data analysis,44,45 civil engineering,46 etc.
In this study, we proposed an efficient method based on CS theory to advance the traditional UCT method to

overcome its drawbacks including redundant detection and costly computation. Both the detection stage and imag-
ing stage of the UCT are improved based on CS theory. The entire method will be introduced in the remainder of
this paper. First, we introduce the traditional UCT technique and CS theory in Section 2. The cost-efficient UCT
method we proposed based on CS theory is also described in Section 2. In Section 3, various simulation models are
carried out for random selective inspection to validate the proposed method. The visualized reconstruction results
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indicate great agreements with the original damages. In Section 4, we designed and machined a reinforced concrete
(RC) specimen with multiple damages for the spatial damage detection. The experimental implement and the recon-
struction results are demonstrated in the last part of Section 4. Finally, conclusions and future works are summa-
rized in Section 5.

2 | DAMAGE LOCALIZATION ALGORITHM OF CONCRETE BY
IMPLEMENTING CS INTO UCT TECHNOLOGY

2.1 | Brief description of CS approach

The CS approach proposed by Candès35 can be explained briefly by a mathematic model as following basic example. A
common signal x�RN can be expended under orthogonal basis which can be expressed in a matrix form as
Equation (1).

x¼Ψα, ð1Þ

where Ψ�RN�N is the basis matrix, α�RN is supposed to be K-sparse vector meaning it possesses K nonzero elements
(K<< N).

Original signal then can be compressed by adopting a measurement matrix Φ�Rm�N to this procedure can be
expressed as Equation (2)

y¼Φxþe¼ΦΨαþe¼Θαþe, ð2Þ

where Θ¼ΦΨ is an m�N transfer matrix, the rows of matrix Θ are much fewer than the columns, and e denotes the
measurement noises.

The above procedure can be elaborated in a more practical way. Matrix Φ can be referred to as m sensors to obtain
the partial information of the signal. Therefore, vector, y, with a dimension of m (m<N) is the compressive form of sig-
nal x which can be regarded as signal x received by several arranged sensors.

Construction x from y is an underdetermined ill-posed inverse problem because the dimension of y is much smaller
than that of x:40,47 Fortunately, Candès35 has proven that x or α can be uniquely reconstructed with overwhelming
probability if the signal x is sparse and the transfer matrix Θ meet the restricted isometry property (RIP). That is, there
exists an isometric constant δK for the matrix Θ. Where δK is defined as the smallest number which holds for all K-
sparse vectors v, such that:

1�δK ≤
Θvk k2
vk k2

≤ 1þδK ,δK >0: ð3Þ

This property essentially requires that every set of columns with cardinality less than K are approximately orthonor-
mal. If the columns of the transfer matrix Θ are orthogonal, then x can be exactly constructed from y.36 Candès also
proved that random matrix, such as Gaussian matrix and Bernoulli matrix, could be employed as the measurement
matrix to construct the signal. Besides, the measurement number m must be larger than the required number
m> μK log N=Kð Þ, and μ is a universal constant (independent of K, m, and N).34,35 This bound is in fact optimal
depending on each instance.

If the measurement number is satisfied, one can stably and accurately reconstruct nearly sparse signals from dra-
matically under-sampled data in an incoherent domain. In the other words, α, the sparse coefficients vector of the origi-
nal signal x can be exactly or approximately reconstructed from the random low-rate sampling measurement vector
y by solving the convex optimization problem.

Foucart and Rauhut48 proved the “asymptotic” recovery condition for large N, mildly large K, and large ratio N=K,
as shown in Equation (4)

m>2Klog N=Kð Þ: ð4Þ
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This is the general rule of thumb for compressive sensing and reflects well empirical tests for sparse recovery using
further random matrices such as Gaussian matrices and Bernoulli matrices.

In this study, μ is selected to be 4 to ensure the information can be recovered with high probability. Then, following
convex optimization can be employed to obtain x:

argmin αk k1 subjected to Θα�yk k2 < ε, ð5Þ

where αk k1 ¼
PN
i¼1

αij j, and ε is the reconstruction error threshold.

2.2 | UCT technique

UCT technique for damage detection using ultrasonic waves in structures has evolved from the concept of X-ray/UCT
used in the medical community.49 It consists of two stages to obtain the visualized tomographic reconstruction. In the
measurement stage, ultrasonic waves are generated with piezoelectric ultrasound probes, transmitted in direction of the
structure, and received with another ultrasound probe. While traversing and interacting with the measurement struc-
ture, ultrasonic waves carry information of the damage part in the structure,50–52 e.g., the attenuation, the time of flight
(ToF) of the wave, and the scattered wave magnitude as shown in Appendix A. In the imaging stage, the transmission
information recorded is extracted and used to create an image of the damage part based on the solution of claassical
inverse Radon problem. Considering the ToF from one probe to the other probe as the target function, then, the ToF at
the measurement path is equal to the line integral of the travel time of each pixel over the same path.49,50 Radon pro-
vided a basis for the description of the tomographic projections. The ToF along path i can be expressed as follows:

Ti ¼
Z

Li

1
V x,yð ÞdL¼

Z
Li

s x,yð ÞdL, ð6Þ

where Ti is the travel time along measurement path i, V x,yð Þ and s x,yð Þ are the ultrasonic wave velocity and slowness
at location x,yð Þ in the measurement area which are related to the properties of each pixel in the structure, and Li is the
total length of the measurement path i.

Although ultrasonic wave propagation in the structure is 3-D, to simplify the UCT method, the reconstruction
processing is demonstrated as a 2-D problem with all the actuators and the sensors placed in the same plane. To recon-
struct the damage, the structure is divided into a number of pixels, as shown in Figure 1 (the smaller pixel, the more
accurate). The slowness in a grid is considered as a constant in the small pixel. Thus, Equation (6) can be rewritten in
discretized representation as follows:

Ti ¼
Xw
j¼1

tij ¼
Xw
j¼1

aij
V j

¼
Xw
j¼1

aijsj, ð7Þ

FIGURE 1 UCT technique and the measurement paths
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where tij is the travel time in pixel j along measurement path i, aij is the travel length of the pixel j in measurement path
i, and w is the total number of the pixels, which yields to the product of the number of horizontal and vertical pixels,
i.e., w¼ p�q. For the traditional side-to-side UCT technique, the total number of measurements is N ¼ p�p, where
p is the number of the horizontal elements.

Furthermore, Equation (7) can be written in a matrix form

T¼AS, ð8Þ

where T is the vector of travel time of ultrasonic wave along all the measurement paths, A is the travel length matrix of
all the pixels in the measurement paths, and S is the slowness vector of all pixels.

The overarching goal of imaging stage is to reconstruct the slowness vector S of the pixels which represents the
internal properties and conditions of the structure. There are several algorithms to reconstruct the damage image based
on slowness from the measured ToFs, e.g., algebraic reconstruction techniques (ARTs), simultaneous iterative recon-
struction techniques (SIRTs), least squares QR (LSQR)factorization, etc. However, as we mentioned previous, the algo-
rithms above require a dense net of paths which contains redundant measurements making the whole processing
costly.

2.3 | Damage localization based on CS technology

In order to reduce the measurements of traditional UCT, CS theory is applied to pursue a cost-effective reconstruction
via random selective measurement paths. Fortunately, damage (e.g., holes and cracks) distribution is naturally sparse
in structures. Therefore, we can regard the slowness of healthy pixels (distributed in most part of the structure) as a ref-
erence (S0) to obtain a sparse vector (ΔS) from the difference between the slowness vector (S) in the measurement
structure and reference vector. The sparse slowness vector can be written as

ΔS¼ S�S0: ð9Þ

Combining Equations (9) and (8) yields to

ΔT¼T�T0 ¼A S�S0ð Þ¼AΔS, ð10Þ

where ΔT is the difference vector between the ToF of ultrasonic wave propagation in the measurement structure and
the reference ToF (healthy structure), and T0 ¼AS0 is the reference ToF vector of the ultrasonic wave in healthy struc-
ture. As shown in Equation (9), the ToF difference can be expressed as ΔT0 ¼AΔS, which is directly related to the
sparse slowness vector presented above. Equation (10) can be rewritten in the following form:

ΔT1

ΔT2

..

.

ΔTN

8>>>><>>>>:

9>>>>=>>>>;¼

T1

T2

..

.

TN

8>>>><>>>>:

9>>>>=>>>>;�

T0_1

T0_2

..

.

T0_N

8>>>><>>>>:

9>>>>=>>>>;¼

a11 a12 � � � a1w
a21 a22 � � � a2w

..

. ..
. . .

. ..
.

aN1 aN2 � � � aNw

266664
377775

Δs1
Δs2
..
.

Δsw

8>>>><>>>>:

9>>>>=>>>>;, ð11Þ

where ΔTi is ToF difference obtained from ith measurement path, Ti and T0_i are respectively the measured ToF in the
measurement structure with unknow condition and reference ToF along ith path, aij is the travel length of the jth pixel
along ith measurement path, and Δsj is the slowness of the jth pixel.

Comparing Equation (10) with Equation (1), ΔT and A are equivalent to x and Ψ in Equation (1), respectively. It is
worth noted that the travel length matrix A should be regarded as the dictionary matrix, which is pseudo-random
matrix satisfied the RIP condition. Thus, according to previous studies,36 the unique solution of the convex optimization
problem in Equation (5) can be solved in the CS framework.

Then, the CS framework is applied to advance the UCT measurement stage. We randomly select m paths
(m> μKlog N=Kð Þ, μ¼ 4) from all the N measurement paths to build the measurement net for the ultrasonic inspection
of the structure. In mathematics, the m measurement paths selection is expressed as
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ΔT
0
m ¼ΦΔT

Φ¼

0 1

1

1

1

1

2666666664

3777777775
m�N

,
ð12Þ

where Φ is the measurement matrix representing the selection from the original measurement net of traditional UCT.
The matrix is randomly determined by the Bernoulli distribution. In each row of the matrix, one and only one element
is equal to 1, and each column will contain at most one element equals to 1. If φri ¼ 1, the ith in all N paths will be
selected to interrogate as the rth measurement in the CS-based UCT, and if φrj ¼ 0, the jth path will be abandoned for
the measurement. In other words, the positions of nonzero element in the measurement matrix Φ correspond to the
selected measurement paths in the proposed approach.

Substituting Equation (10) into Equation (12), the vector of travel time in the measurement can be rewritten as
follows:

ΔT0
m ¼Φ �ΔT¼Φ �A �ΔS¼ΘΔS: ð13Þ

In order to state the improved UCT in CS framework, Figure 2 is employed to illustrate the proposed method
in a flowchart. As shown in Figure 2a, the traditional CT method is summarized to be ΔT¼A �ΔS as the Radon
equation mentioned previously, where ΔT is the difference ToF between the measurements from the measured struc-
ture and the reference healthy structure, A is the travel length matrix of all the pixels in the measurement paths, and
ΔS is the difference slowness vector between the slowness (S) for each pixel and the reference one (S0) in the healthy
structure. It is noted that the slowness vector ΔS is a sparse vector with limited number (K) of nonzero entries. Then,
for the advanced UCT in the CS framework, a measurement matrix Φ is employed to randomly select the measure-
ments from the measurements obtained from the original measurement net. Assuming the number of rows is
m (m> μKlog N=Kð Þ), the measurement matrix Φ is sparse and determined by Bernoulli distribution as mentioned in
previous. The measurements are assembled to be a new measurement vector, as show in Figure 2a. Meanwhile, the
travel length matrix (transfer matrix A) is assembled to be ΦA as a result of random selection of measurement paths.
φij ¼ 1 means this path is selected and φij ¼ 0 represents the opposite meaning. For example, as Figure 2b,c illustrated,
φ18 ¼ 1 states the first ToF difference is obtained from measurement the eighth path of traditional UCT method and the
reference ToF. Similarly, φ26 ¼ 1 represents second measurement path of the proposed method is selected to be the sixth
measurement path from the original net. Thus, the measurements ToF difference vector (ΔT) and transfer matrix
(Θ¼ΦA) are assembled according to the measurement matrix (Φ) as shown in Figure 2d. It is noted that the measure-
ment paths in the proposed approach are much fewer than that used in the traditional method. As we mentioned previ-
ous, the distribution of the damage is sparse (ΔS is sparse), and the transfer matrix is a pseudo-random matrix satisfied
the RIP condition. Thus, the reconstruction for imaging can be solved by ℓ1-minimization algorithm based on CS
theory.

ΔbS¼ argmin Θ �ΔS�ΔT0
m

�� ��
2þ λ ΔSk k1

� �
,Θ¼Φ �A, ð14Þ

where λ is the Lagrange multiplier in the ℓ1-minimization algorithm.
The obtained ΔbS demonstrate both the location and the size of the damage part in the structure. The positions of

nonzero element in the vector (ΔbS) represent the damage locations, and the value of the nonzero element is related
with the severity of the damage in structure. Considering the noise and error in the measurement processing, only the
damage value larger than the threshold will be identified as a damage pixel:

ΔbS��� ���≥ΔS0, ð15Þ

where ΔS0 is the threshold for damage localization.
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FIGURE 2 Flowchart of the improved UCT technique in CS framework: (a) Radon equation for traditional UCT technique, (b) the

proposed approach requires less measurements via a random matrix, (c) improved Radon equation with fewer measurements and random

selected paths according to the measurement matrix, and (d) reassembled equation for CS-based UCT approach
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In summary, the entire proposed CS-based UCT process can be divided into two stages: measurement stage and
reconstruction stage, as shown in Figure 3. As we can see, the discretization process introduces w¼ p�q unknown
pixels with the given accuracy. Then, the original dense measurement net consisting of N paths and the travel length
matrix are determined as well. In the measurement stage, m random processes are employed to choose the measure-
ment paths instead of the even-spaced measurement spots for pitch–catch ultrasonic inspection. The Tof difference for
each selected path is calculated based on the standard ToF and re-assembled to a vector of ToF difference feeding to the
reconstruction stage. In the reconstruction stage, the reassembled transfer matrix and measured ToF differences are
imported into Equation (14) to reconstruct the slowness of each unknown pixel by using the ℓ1-minimization
algorithm. Finally, slowness values are mapped to reveal the internal damages as a slice of the cross section of the RC
structure.

3 | NUMERICAL STUDY

In order to validate the proposed method, a two-dimension RC beam is modeled for a numerical study. The finite ele-
ment (FE) modeling platform COMSOL Multiphysics (COMSOL Inc) is adopted to model the RC beam model with var-
ious cases of preset damages. The size of the specimen is 1,000 mm (L) � 300 mm (W). Two longitudinal steel bars
with diameters of Φ12 and Φ22 are designed, and stirrups are ϕ6@150. The accuracy is respectively selected as 25 and
10mm along x- and y-axes, in the other words, the pixel size is 25mm � 10mm. There are w = 40 � 30= 1,200 pixels
in the whole model, as shown in Figure 4. While the traditional UCT method requires 40 excitation points on the top
surface and another 40 receiving points on the bottom surface, or vice versa, to solve the inverse problem in Equation (8)
for imaging. In summary, N = 40� 40= 1,600 measuring paths used in traditional UCT to pursue 1,200 unknown
values is a huge computational cost. According to that, the size of matrix A based on the entire measuring net will also

FIGURE 3 Measurement stage and reconstruction stage based on the proposed CS-based UCT technique
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be huge and inefficient option for imaging. The entire measuring net consists of 1,600 measuring paths is demonstrated
in Figure 5a. As we can see, it is a dense measuring net with significant level of redundancy.

3.1 | Redundancy level of measurement net

As Figure 5b shown, the proposed algorithm randomly selected 200 paths from the original dense 1,600 measurement
net for reconstruction. The random selected measuring paths are much sparser than the original net, and the number
(measurement workloads) becomes 12.5% of the original 1,600 measurements. The number of measurement paths,
m = 200, satisfies the requirement that m> μKlog N=Kð Þ (in this paper μ¼ 4), and the transfer matrix satisfies both the
RIP and incoherence conditions. The size of measurement matrix Φ is 200 (rows)� 1,600 (columns) based on the
section above, and the transfer matrix Θ¼ΦA is also reassembled as 200 (rows)� 1,200 (columns) to reconstruct the
unknown slowness matrix for imaging. The measurement matrix, Φ, mapping random selected measurement paths in
the original dense net is also shown in Figure 5b.

As shown in Figure 6, the density of path traveling in each pixel of the beam is evaluated to show the redundancy
level of the measurement domain. Figure 6a shows the number of measurement paths shared by the same pixel
according to the traditional UCT technique. As we can see, the original dense net is high-level redundant for measure-
ment. Although all the pixels in the interested cross section of the beam are covered by multiple measurement paths, it
wastes too many measurement paths for evaluating the center of RC beam. A lot of pixels in the center are covered by
more than 100 measurement paths each because of the crossing paths. In addition, the distribution of the measurement
net is significantly bias distributed. There are more than 100 measurement paths for each pixel in the center; however,
only a few paths cover the pixels near the left and right edge of the beam. The maximum and the minimum number of
measurement paths shared by one pixel are dramatically different from 115 and 2. The standard deviation and variance
are 26.62 and 709.10, which indicate a significantly dispersive distribution of the measurement paths.

The mean value and standard deviation of the number of measurement paths shared by the all the pixels are calcu-
lated by Equations (16) and (17)

ε¼ 1
w

Xw
i¼1

ηi ¼
η1þη2þ���ηw

w
, ð16Þ

FIGURE 4 RC specimen scheme and 25 mm � 10mm preset pixels for UCT
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σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
w

Xw
i¼1

ηi� εð Þ2
s

, ð17Þ

where ηi is the number of measurement paths covering the ith pixel, ε and σ is respectively the mean value and stan-
dard deviation of overlapping paths number for the randomly selected measurement net.

As we can see in Figure 6b, the proposed CS-based UCT introduces a more balanced measurement net. The differ-
ence between the central area and edge is much smaller compared to the traditional UCT. The maximum and mini-
mum number of measurement paths shared by one pixel are 19 and 0, respectively. And only 21 pixels on the right
edge are not directly measured by this random process. The standard deviation and variance are 3.79 and 14.41, which
indicate the 200 measurement paths are well-assigned to evaluate the internal damages of the cross section. In addition,
the median value of path number in the same pixel significantly drops from 62.5 to 7.5, which is strong evidence that
the proposed method successfully reduces the redundancy level of the traditional UCT.

The distribution of the path number in each pixel for both techniques is demonstrated in Figure 7. For the CS-based
UCT, the histogram of measurement net concentrates in the range of 4–10, which means 80% (range of 10%–90%) of
the entire 1,200 pixels are covered by 4–10 measurement paths. As comparison, traditional UCT has a slim distribution
whose histogram is dispersive from 2 to 115. The path number of the same pixel in the range of 25%–75% is 38–73, and
in the range of 10% to 90% is 13–87. The statistical characters of paths traveling in the same pixel are listed in Table 1 to
demonstrate the redundancy level of these two techniques.

FIGURE 5 (a) Original dense measurement net for traditional UCT; and (b) random measurement matrix and selected measurement

paths
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General speaking, the level of redundancy is witnessed to the change of mean value of overlapping paths number, ε.
In addition, a balanced net with well-assigned measurement paths is essential to the CS-based UCT method, because
we have to ensure there are as few as possible pixels uncovered. Thus, a novel baseline-free index, β, is defined as

β¼ 1
εeσ

¼ exp �σð Þ
ε

, ð18Þ

where the exp �ð Þ or e� stands for exponential function, the proposed β index decreases with the increasing of mean
value of the overlapping paths number, and it significantly drops when the standard deviation increases. Higher value

FIGURE 6 The density of paths traveling in each pixel of the beam (a) traditional UCT and (b) proposed CS-based UCT

FIGURE 7 Distribution of the path number in each pixel
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of β index represents a better random-selected measurement net for CS-based UCT. Ideally, the proposed index will
reach its maximum value, βmax ¼ 1, when the ε¼ 1 and σ¼ 0, which means each pixel is covered by one and only one
measurement path.

The β index for the traditional measurement net and aforementioned random selected net is 4.9140e-14 and 0.0032,
respectively. Considering the value is extra small, the authors also suggest the natural logarithm function of β index as
listed in Equations (19) and (20) to advance our understanding of well-assigned measurement net in the real-world
applications.

ln βð Þ¼�ln εeσð Þ¼�ln εð Þ�σ: ð19Þ

χ¼Cþ ln βð Þ¼C� ln εð Þ�σ, ð20Þ

where ln �ð Þ denotes the natural logarithm function, C is a constant to ensure the positive value of χ index, and χ repre-
sents the χ index value of the random-selected measurement net. For instance, C¼ 100, the χ index of the ideal mea-
surement net is χ¼ 100. The χ index for the traditional measurement net and aforementioned random-selected net
becomes 69.36 and 94.26, respectively.

On the contrary, γ index, which is the reciprocal of the index β can be used to present the level of redundancy and
chaos degree for the measurement net, as shown in Equation (19).

γ¼ 1
β
¼ εeσ: ð21Þ

3.2 | Numerical model of RC specimen

To verify the proposed method, three cases with various damage types, locations, and numbers are studies on the afore-
mentioned numerical model. Case 1 is the RC specimen without any damage, Case 2 is the RC specimen with five
hole-like damages, and Case 3 is the RC specimen with six damages, including two cracks and four holes. The damages
in Cases 2 and 3 are randomly generated to prove the functionality of the proposal method, and all these three numeri-
cal cases are also adopted to random measurement matrix Φ for paths selecting.

As shown in Figure 8a, the concrete beam is isotropic and modeled with mechanical properties as follows: elastic
modulus Ec = 25 GPa, density ρc = 2,400 kg/m3, and Poisson's ratio νc = 0.20. The beam is meshed using 125,553 free
tetrahedra (4-node) 3-D elements (Figure 8a). The maximum element size should be less than 1/10th of wavelength of
the pressure wave to pursue accurately wave propagation.12,53 The maximum size for the element is 7mm, the growth
rate is 1.2, and the curvature factor is 0.25 in the user-controlled mesh settings.

The steel-reinforced rebars and stirrups are meshed using a 4-node, free tetrahedra element with a feature size no
bigger than 7 mm resulting in a total of 23,947 mesh elements, as shown in Figure 8b. The density of the steel is
7,850 kg/m3, and the elastic modulus and Poisson's ratio is Es = 200 GPa and νc = 0.30, respectively.

TABLE 1 Statistical characters of paths traveling in the same pixel

Traditional UCT CS-based UCT

Maximum 115 19

Minimum 2 0

Mean 55.93 7.04

Median 62.5 7.5

Standard deviation 26.62 3.79

Variance 709.10 14.41
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Cracks, holes, and void are created by rectangle or circle partition objects based on Boolean's difference. Thus, the
damaged concrete beam in Cases 2 and 3 is regenerated and assembled for numerical simulation, and no extra mesh is
needed to mimic the preset damages.

Elastic wave, time explicit (elte) module is employed to simulate the time-dependent process of elastic waves propa-
gation in the RC beam specimen. Because of the transmission gel in the real ultrasonic inspection, only pressure wave
propagates from the piezoelectric transducer into the RC beam. In general, the pressure wave velocity in concrete and
steel are determined by their elastic modules and density,54–56 as shown in Equations (22) and (23).

FIGURE 8 (a) Numerical RC model; and (b) meshes for various components
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CPc ¼
ffiffiffiffiffi
Ec

ρc

s
, ð22Þ

CPs ¼
ffiffiffiffiffi
Es

ρs

s
, ð23Þ

where CPc is the generic velocity of ultrasound propagating in concrete, Ec and ρc are the elastic modulus and density
for concrete beam, and CPs, Es, and ρs are the ultrasound velocity, elastic modulus, and density for steel material. In this
study, the velocities of pressure wave in concrete and steel are approximately 4,200 and 5,200m/s, respectively.

After launched by the ultrasonic probe, ultrasonic wave will propagate into the structure, and it will bypass the
damage and continue propagating to the probe on the other side. The ToF is obtained by the division of the travel
length calculated based on the Huygens–Fresnel principle and the given ultrasonic velocities of concrete and steel.

A capped periodic signal, V tð Þ, is employed as the excitation signal for the piezoelectric transducer, whose formula
is as follows:

V tð Þ¼ Ac v tð Þj j≥Ac

Awsin 2πf ctð Þ v tð Þj j<Ac

�
, ð24Þ

v tð Þ¼Awsin 2πf ctð Þ, ð25Þ

where Aw is the amplitude value of the sinusoid wave, f c ¼ 50kHz is the center frequency of the excitation signal, t
denotes the time, v tð Þ is the original sinusoid wave, and Ac is the cap of the preset maximum amplitude value of the
excitation signal. The amplitude cap, Ac ¼ 250V, is utilized to protect the ultrasonic NDT instrument in the following
experimental section.

The wavelength of ultrasound when the sinusoidal waveform travels in the concrete or steel rebars at a constant
speed CPc or CPs, is a given by Equations (26) and (27).

λC ¼CPc

f c
, ð26Þ

λS ¼CPs

f c
, ð27Þ

where λC and λS represent the ultrasonic wavelengths in concrete and steel rebars, respectively.56 According to the pre-
vious research,12,53 the maximum element size should be less than 1/10th of wavelength of the pressure wave to ensure
an accurate wave propagation simulation.

3.2.1 | Case 1

The first case for simulation is the pristine RC specimen which denotes the undamaged (health) status. As shown in
Figure 9a, the ultrasounds excited at the location (415 mm, 300 mm) propagate in the model and Ti equals to T0_i in
Equation (11) resulting in ΔT a zero vector. Thus, the vector of the variation in slowness ΔS obtained by the
ℓ1-minimization algorithm in Equation (14) is a zero vector as well. The reconstruction result is shown in Figure 9b,
and green color denotes the RC specimen is undamaged.

3.2.2 | Case 2

For Case 2, the RC specimen consists of five hole-like damages (holes or voids). Three of them have a diameter of
10 mm located at (200 mm, 150 mm), (300 mm, 200 mm), and (800 mm, 100 mm). Another two 20-mm-diameter holes
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(or voids) site at (600 mm, 200 mm) and (400 mm, 100 mm). Two wave propagation examples are shown in Figure 10a
when the transducer locates at (415 mm, 300 mm), the receiver at (395 mm, 0 mm), and the transducer locates at
(600 mm, 300 mm), the receiver at (300 mm, 0 mm).

Based on Huygens–Fresnel principle, the ultrasonic traveling along the pink line is larger than that without any
damage (yellow line). In addition, for various ultrasonic measurement paths, the influence caused by hole-like damages
is omnidirectional, which means the pixel containing holes (or voids) has approximately the same effect to the slowness
value no matter the direction of the measurement paths. As we can see in Figure 10b, the wavefronts are similar for
Paths 1 and 2. The hole respond to ultrasonic waves is used to distinguish from cracks in the RC beam.

The reconstruction results are represented in relative slowness and relative error, as shown in Figure 10c. As we can
see, not only the locations but also the relative slowness values of the identified damages have good agreements with
the preset damages in Figure 10a. And the small value of reconstruction error is strong evidence that the damages in
that cross section have been successfully reconstructed by the proposed method.

3.2.3 | Case 3

In Case 3, four types of damages consisting of throughout holes, blind hole, throughout crack, and half-through crack
are designed in the RC model as shown in Figure 11. Two throughout holes whose diameter is 20 mm locating at
(200 mm, 200 mm) and (600 mm, 100 mm), another throughout hole whose diameter is 10 mm sitting at (800 mm,
200 mm). A 10-mm-diameter blind hole is located at (400 mm, 100 mm) whose depth diameter is 100 mm starting from
the z = 0 plane. Meanwhile, a vertical crack whose center is (500 mm, 150 mm) is a throughout crack with a size of
100 mm � 0.5 mm. And the horizontal crack with the same size is a half-through crack at the location of (650 mm,
200 mm) in the RC model.

FIGURE 9 (a) Wave propagation example when the transducer locates at (415 mm, 300 mm); and (b) reconstruction results for the

undamaged case
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FIGURE 10 Numerical simulation of the RC specimen (Case 2): (a) wave propagation example when the transducer locates at

(415 mm, 300 mm) and the receiver at (395 mm, 0 mm), (b) wave propagation example when the transducer locates at (600 mm, 300 mm)

and the receiver at (300 mm, 0 mm), and (c) reconstruction results represented in relative slowness and relative error
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Similar to the identification of the hole-like damage, the orientation of the crack can be identified by various mea-
surements related to the directional property of crack. For instance, the travel length is 300.10 mm via Path 1 resulting
in almost 0 μs of ToF difference, and the travel length for Path 2 is 358.74 mm resulting in approximately 1.5 μs of ToF
difference. In addition, the wavefronts are completely different, as we can see in Figure 12b.

Because of the blind hole and normal crack, the proposed methods are utilized twice at z = 50 mm and z = 150
cross-sectional planes to identify the internal damaged images for demonstration. The slowness values of the pixels on
the two planes are separately identified by the ℓ1-minimization method. The reconstructed results are shown in
Figure 13. Two z-plane slices of the reconstruction results are stacked in Figure 14 to reveal the damage conditions of
different depths in the numerical RC model. The identified results of the z = 50 mm plane have six damages whose
locations have good agreements with the preset damages in the numerical RC model. For the results of z = 150 mm
plane, four damages are identified because the depths of blind hold and half-through crack are smaller than that of the
inspection plane.

4 | EXPERIMENTAL RESULTS AND ANALYSIS

In order to validate the proposed UCT approach in the real world, a RC specimen with a length of 1,000 mm, width of
300 mm and thickness of 200 mm is designed and built with C40 concrete. The reinforced steel bars in the specimen
are 2Φ 12 and 3Φ 22, and stirrups are ϕ 6@150, as shown in Figure 15. Four holes and three crack are set by PVC tubes
and iron plates to simulate the damage part in the RC specimen. The diameter of holes are 15 (one holes), 10 (one
holes), and 20mm (two holes). Three cracks with the same size of 100mm� 3mm were arranged in the angle of 0�,
45�, and 90� respectively.

In the measurement stage, an ultrasonic NDT instrument, NU 62 with two piezoelectric probes, is employed to gen-
erate and receive ultrasonic wave on the two sides (top and bottom sides) of the specimen to measure the ToF using
pitch–catch method. The actuator probe is attached to the top surface of the specimen to generate continuous square
ultrasonic wave with a frequency of 50 kHz and amplitude of 250 V into the RC specimen. The sensor is employed to

FIGURE 11 Preset damages in the numerical RC model for the Case 3
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capture the waveform from the bottom side with a sampling frequency of 25 MHz (time resolution 0.04 μs). The veloci-
ties of the concrete and steel are mentioned previous, and the wavelength of the ultrasonic wave is 0.08 m. The ToF of
the ultrasonic wave in the specimen can be obtained according to the time difference between the emitting and receiv-
ing. The NU 62 ultrasonic testing instrument and the input signal are shown in Figure 16.

The size of pixel is chosen as 2.5 cm � 1 cm to reconstruct the internal situation of the RC specimen. Considering
the edge of the specimen is not easy to be attached for the piezoelectric probes, the interrogate area is selected to be
800mm � 300mm. The number of total pixels is w= 33 � 30= 990. For the traditional UCT reconstruction, there are
N= 33 � 33= 1,089 measurements path in the original dense net, while, for the CS-based UCT approach, 200 measure-
ment paths (m= 200> μK log N=Kð Þ¼ 141) is enough to localize and reconstruct the damage in the RC specimen. A
measurement matrix Φ is processed based on Bernoulli distribution to randomly select the measurement paths from
the original measurement net. For each measurement path, the excitation is applied 5 times with waveforms averaged
to remove measurement noise to derive precise ToF. The ToF measured by the ultrasonic wave are subtracted by the
calculated reference and assembled to the ToF difference vector according to the measurement matrix Φ. The selected
paths are sequentially measured via the movement of the actuating and sensing probes. The measurement paths
selected from the original net are shown in Figure 17.

As shown in Figure 18, the ToFs of ultrasonic waves carry the information of different internal damaged situa-
tions along the four straight-line measurement paths: 70.72 μs for Path A without any damage, 71.64 μs for Path B
with a hole, 71.16 μs for Path C parallel to a crack, and 74.24 μs for Path D perpendicular to the crack. The ToFs
of the ultrasonic waves are obtained by the first arriving peak indicated by a short green bar and shown in
Figure 18b.

FIGURE 12 (a) Wave propagation example when the transducer locates at (500 mm, 300 mm) and the receiver at (500 mm, 0 mm), and

(b) wave propagation example when the transducer locates at (415 mm, 300 mm) and the receiver at (600 mm, 0 mm)
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For the reconstruction and imaging stage, after assembling the transfer matrix (Θ¼ΦA) and ToF difference vector
(ΔT), the slowness is calculated by ℓ1-minimization method in the CS framework. The threshold ΔS0 is set to be
0.0008, which means the damage size less than 0.1mm will be ignored. Meanwhile, the measurements also show the
effect caused by steel bar is rather small and negligible compared to concrete because of the small diameter and like-
concrete propagating velocity of steel bars. The identification of slowness and damage location is shown in Figure 19.
The location and size of hole damages are identified as (200mm, 100mm, 9.64mm), (300mm, 200mm, 14.25mm),
(400mm, 100mm, 18.87mm), and (650mm, 100mm, 19.66mm), respectively. The maximum error of the identified
result of hole-like damage is 5.6%. Three cracks have also been reconstructed: Most identified results of the vertical
crack are in the range of 2.86–3.34mm, the maximum of the identified result is 4.12, and maximum error is 1.12mm;
the identified results of the horizontal crack are in the range of 3.52–4.89mm, the maximum error is 1.89mm; the iden-
tified results of the 45� crack are from 2.94–3.35mm, the maximum error is 0.35mm. The reconstructed results have

FIGURE 13 Reconstructed results and relative error for Case 3: (a) z = 50 mm plane, and (b) z = 150 mm plane
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good agreements with the original damages set in the RC specimen, which demonstrate the proposed approach has
great potential of cost-efficient identifying damage in the structure via much less measurements.

5 | CONCLUSION

In this paper, based on the naturally sparse distribution of damages, CS theory is proposed as a tool to improve the tra-
ditional UCT technique for damage localization in the structures. This sensing strategy is conducted via significantly
reducing the number of measurement paths in the measurement stage and reconstructing the slowness values of each

FIGURE 14 Assembled 3-D monitoring results by proposed CS-based UCT inspection

FIGURE 15 Designed and damage distribution in the RC specimen for laboratory experiment
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pixel using ℓ1-minimization optimization algorithm in the imaging stage. Ultrasonic waves are introduced into the
structural specimen to interrogate the structure by random selected measurement paths to assemble the ToFs vector for
reconstruction. The functionality of the CS-based UCT technique is validated on RC models with various damages of
both numerical simulation and experimental study in the laboratory.

An important contribution of this study is to invent a novel baseline-free β index to quantitatively assess the perfor-
mance of the random-selected measurement net. The β index advances our understanding of the redundancy level and
balanced distribution of the measurement net in real-world applications. A higher β-index value represents a sparser
and better assigned measurement paths for the CS-based UCT technique.

The proposed cost-efficient approach developed both inspection and reconstruction. Considering the damages dis-
tribute sparsely in the structure, the proposed approach requires much fewer paths (12.5%–18.3% of the original num-
ber), and each measurement path of ultrasonic wave is randomly selected according to a measurement matrix. Then,
the slowness of each refined pixel is pursued by solving the ℓ1-minimization method in the CS framework. The
reconstructed results have good agreements with the preset damages, which reveal the proposed approach is a promis-
ing method provides more efficient approach for localizing and imaging the damage with much fewer measurements.
CS-based UCT technique is a game-changing approach requiring 20% or less workload compared to the traditional
UCT inspection. It has the immense potential in both academic development and industrial applications for SHM.

It is noted that, we demonstrate the capability of damage detection in RC in this paper, this proposed method has
great potential in spatial damage detection in concrete, metal, and composite structures as well. The identification error
depends on the pixel size and the SNR. Future work will also explore the proposed method to classify more damage
types in various structures. Meanwhile, choosing measurement paths from the original net for interrogation will be
explored as an optimization problem of the proposed CS-based UCT technique.

FIGURE 16 Ultrasonic pitch-catch instrument and the excitation signal

FIGURE 17 Randomly selected measurement paths in the experiment
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FIGURE 18 (a) Ultrasonic wave propagation paths with different damages, and (b) received waveforms of the ultrasonic waves via the

measurement paths above

FIGURE 19 Reconstructed results based on the proposed approach
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APPENDIX A

In generally, the velocity of the ultrasonic wave in concrete is 3,800–4,500 m/s, and the velocity of ultrasonic wave
propagating in steel and air are about 5,200s and 340 m/s,54 respectively. Considering the acoustic impedance of the
materials above, the acoustic impedance of air is much less than the acoustic impedance of concrete and steel. Thus,
ultrasonic wave will reflect and propagate back when it reaches the concrete-air boundary. The ratio of reflected pres-
sure to incident ultrasonic pressure is called reflection coefficient (indicated by the symbol R),55 which is determined by
the acoustic impedance of concrete and air, as shown in Equation (A1):

R¼ pr
p0

¼ z2� z1
z2þ z1

, ðA1Þ

where, z2 is the acoustic impedance of concrete, z1 is the acoustic impedance of air (almost equal to 0), pr is the
reflected ultrasonic pressure, and p0 is the incident ultrasonic pressure.

In fact, the impedance of concrete z2 ≈ 108�104g=cm2, and the impedance of air z1 ≈ 0:004�104g=cm2:57 Consider-
ing the relationship of dense medium (concrete) and the sparse medium (air), the energy transmits to air is so little that
we can ignore it (z1 � z2, R≈ 1, pt � pr). The majority of energy remains in the concrete (shown in Figure A1).

The acoustic impedances for concrete and steel are very close; thus, the ultrasonic waves can propagate from con-
crete into the steel bar, vice versa. While damage parts in structures (e.g., holes or cracks) are filled by air and should be
regarded as an obstacle for the ultrasonic wave in structures. Based on Huygens–Fresnel principle, every point on the
previous wavefront is a source of next spherical waves, and the new wavefront is a line tangent to all the spherical
waves.56–58 When the ultrasonic wave encounters an obstacle, only points that are not obscured by the obstacle
remains. Thus, the new wavefront is distorted by the obstacle, which results in the ultrasonic wave bypassing the dam-
age via its edges with longer travel length and larger ToF, as shown in Figure A2. The wavefront propagation is similar
when multiple damages get involved in the ultrasonic propagation.

Cracks are directional damages in structures, as shown in Figure A3, the difference ToF measured along measure-
ment Path 1 (ΔT1) dramatically differs from that obtained along Path 2 (ΔT2). Thus, the direction of crack can be
predicted by the relationships of difference ToFs (ΔT) and the measurement paths.
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FIGURE A1 Schematic of concrete-air interface reflection: (a) reflection and acoustic impedance, (b) wavefront based on Huygens–
Fresnel principle
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FIGURE A2 Propagation properties of ultrasonic waves in damaged structures: (a) shortest propagation path from the transducer to

receiver, (b) comparison of one damage and multiple damages in the structures

FIGURE A3 Directional characteristic of crack measured by different paths
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