
1. Introduction
Venus' extended oxygen corona is in non-equilibrium conditions. Hence, quantitative characterization of the 
“hot” O population in the corona can only be done based on kinetic modeling. We have employed this approach 
in the work presented in this paper. One of the first attempts to apply kinetic simulations to study Venus' corona 
was made by Nagy et al. (1981), who had produced 1D models for the hot atomic coronae based on a two-stream 
calculation and Liouville's equation. R. Hodges and Tinsley (1986) generated a Monte Carlo particle trajectory 
model for the hot H corona of Venus, a method that developed finally into 3D Monte Carlo trajectory models for 
O and C in Venus and Mars (R. R. Hodges, 2000). An example of recent kinetic modeling efforts can be found 
in, for example, Gröller et al. (2012).

Here we present the first results of a 3D hot O corona calculation and its variation with solar activity based on the 
detailed physics and chemistry of the thermosphere and ionosphere. The presented modeling is performed using 
a combination of a fluid-type Venus' ionosphere/thermosphere model (VTGCM) and kinetic model AMPS. In 
this study, we have used AMPS to simulate the source and transport of the energetic hot O accounting for their 
thermalization in the thermosphere. The paper presents both the model results and comparison with PVO obser-
vations of Venus' hot O corona.

Abstract Due to Venus not having a substantial planetary magnetic field the fast-flowing solar wind 
plasma can propagate to regions close to the planet. Therefore, thermal atomic oxygen in the thermosphere, hot 
oxygen in the corona, and the resulting pickup oxygen ions are essential for determining the overall interaction 
of the planet with plasma of the ambient solar wind. To investigate this complex system, we have initiated a 
project where a combination of Venus Thermosphere General Circulation Model (VTGCM) and Adaptive 
Mesh Particle Simulator (AMPS) codes are used to determine the variability of the ”hot” O corona depending 
on the solar conditions. Here we present the results of modeling Venus' oxygen corona using the VTGCM 
ionosphere/thermosphere and AMPS kinetic particle models. VTGCM produces a self-consistent calculation of 
the thermosphere/ionosphere, providing the spatial distributions of the dominant species. That is further used in 
AMPS’ modeling of Venus' exosphere (a) to specify the source of the newly created hot O atoms produced by 
dissociative recombination of 𝐴𝐴 O

+

2
 ions and (b) to account for thermalization of these energetic oxygen atoms as 

they propagate in the upper thermosphere. The altitude distribution of hot O calculated for the solar maximum 
conditions agree well with Pioneer Venus Orbiter observations of the oxygen corona. The modeling that we 
have performed for the solar minimum conditions indicates a decrease of the oxygen density in the corona 
by almost a factor of six compared to that at solar maximum. That is consistent with the non-detection of the 
oxygen corona from Venus Express. As expected, the solar moderate case is between the solar maximum and 
minimum cases.

Plain Language Summary Here we present an investigation of the variability of Venus' extended 
oxygen corona. For that, we employ a combination of fluid modeling for simulating Venus' ionosphere and 
thermosphere and kinetic modeling of the source and transport of energetic hot O atoms in the thermosphere. 
We have found a good agreement of the model results with the Pioneer Venus Orbiter observations of the “hot” 
O corona. We also found that the oxygen density strongly depends on solar conditions and varies by a factor of 
six over a solar cycle. That explains why the extended oxygen corona was observed only at the solar maximum. 
The result presented in this paper will be a part of a later study of the planet's interaction with the ambient solar 
wind, where the corona model would be used to calculate the mass loading coefficient.
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Kinetic modeling of Venus exosphere and corona presented in this paper is based on our previous modeling work of 
Mars' extended oxygen corona. Despite the much lower surface pressure and two times larger heliocentric distance 
for Mars than Venus, CO2 dominates their lower atmospheres, and both planets have surprisingly similar thermo-
spheres and ionospheres. In addition, they both lack a dominant global dipole magnetic field in shaping the inter-
action of the solar wind with the planet. As such, the production mechanism of the two exospheres is also similar. 
Because of its larger mass, Venus' corona does not contribute to substantial mass loss, while escape of Mars' hot O 
corona is thought to be the biggest contributor to mass loss (Cravens et al., 2017; Fox & Hac, 2009; Y. Lee, Combi, 
Tenishev, Bougher, & Lillis, 2015; Lillis et al., 2015; Valeille, Combi, et al., 2009; Valeille, Tenishev, et al., 2009).

In future work, this hot O corona and the self-consistent thermal O distribution of the thermosphere/ionosphere 
model will be used to investigate the interaction of the solar wind with Venus.

2. Venus' Upper Atmosphere and Corona
Venus' exosphere, thermosphere and ionosphere have been studied based on spacecraft observations for many 
years, since the Soviet Venera and US Mariner eras, during the nearly 14-year Pioneer Venus mission, and up to the 
present time with the Venus Express mission (S. W. Bougher et al., 1997; Gérard et al., 2017; Schubert et al., 2007).

Most of our current knowledge of Venus' upper atmosphere and corona comes from measurements made by 
in-situ and remote sensing experiments on the Pioneer Venus Orbiter (PVO) from December 1978 to October 
1992. The “hot” O corona was observed with an ultraviolet spectrometer (UVS) onboard PVO by measuring the 
OI resonance triplet near 1304 Å (Nagy et al., 1981). Based on these observations Nagy et al. (1981) had derived 
the density of “hot” O population on the order of 10 4 cm −3 at the altitude range 400–800 km.

PVO had also performed observations of Venus' ionosphere. Mainly, the data relevant to Venus' ionosphere was 
obtained with the orbiter radio occultation experiment (ORO), the Ion Mass Spectrometer (OIMS), the Retarding 
Potential Analyzer (ORPA), and the Langmuir Probe (OETP; e.g., Brace et al., 1980; Knudsen et al., 1980; Taylor 
et al., 1980). Most recently, the VEx Radio Science (VeRA) experiment returned many electron density profiles 
using the radio occultation technique (e.g., Pätzold et al., 2007).

The “hot” O density estimation derived from the PVO/UVS data was not confirmed by later observations. SPICAV 
and ASPERA-4 onboard Venus Express had sufficient sensitivity to detect the “hot” O population if the density of this 
population is of the order that was derived from the PVO data (Bertaux et al., 2007; Galli et al., 2008). However, “hot” 
oxygen was not detected above the instrument threshold neither by SPICAV or ASPERA-4 (Lichtenegger et al., 2009).

This “first-order” picture of Venus' upper atmosphere winds has been gleaned from a number of remote and 
in-situ datasets collected at the planet. A thorough examination of Pioneer Venus Orbiter (PVO) neutral density 
(e.g., CO2, O, He, and H) and temperature distributions above ∼130 km, as well as ultraviolet (UV) NO night-
glow and O dayglow distributions, has been used to constrain general circulation model simulations, from which 
SS-AS and RSZ wind magnitudes can be extracted (see reviews by S. Bougher et al., 2006). In addition, visi-
ble and infrared O2 nightglow distributions from Venera 9 and 10, Galileo, PVO, and the ground, along with 
minor species distributions (especially CO) have also been used to constrain upper mesospheric wind patterns 
(80–110 km; e.g., Lellouch et al., 1998; Schubert et al., 2007).

Systematic monitoring by VEx instruments (since 2006) augments this record with measurements of key night-
glow distributions (e.g., NO, O2) and vertical structure measurements needed to infer SS-AS and RSZ wind 
variations and any residuals (A. Brecht et al., 2011). For example, Visible and IR Thermal Imaging Spectrometer 
(VIRTIS) observations address upper atmosphere dynamics by (1) measuring the 3D temperatures and deriving 
the thermal wind fields (∼40–90 km) (Piccialli et al., 2008, 2012), and (2) mapping the highly variable O2 IR 
nightglow distribution (e.g., Drossart et al., 2007; Gérard, Saglam, et al., 2008, 2009; Hueso et al., 2008; Piccioni 
et al., 2009; Soret et al., 2012, 2014) as a tracer of the wind system over ∼90–130 km. Also, Spectroscopy for 
Investigation of Characteristics of the Atmosphere of Venus (SPICAV) airglow (nadir and limb) observations of 
NO (190–270 nm) emissions were made and modeled (Collet et al., 2010; Gérard, Cox, et al., 2008, 2009; Stiepen 
et al., 2013). Nadir viewing enables NO nightglow maps to be constructed (Stiepen et al., 2013), confirming the 
pattern observed previously with PVO (Stewart et al., 1980). Furthermore, SPICAV provides repeated measure-
ments of vertical profiles of atmospheric density (and inferred temperatures) over ∼80–150 km (nightside) via 
stellar occultations (e.g., Bertaux et al., 2007). These VEx datasets have been used to validate VTGCM simula-
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tions (S. Bougher et al., 2015; A. Brecht & Bougher, 2012; A. Brecht et al., 2011, 2012). In summary, departures 
from this basic 2-component wind model (residuals) are becoming more apparent as ground-based and multiple 
VEx observations are combined with previous PVO measurements.

3. Consistent Thermosphere/Ionosphere/Exosphere Model
Here we describe the current state of the core modeling tools that we have used in this paper. The order of present-
ing the models repeats the order that the models are used in the actual simulations, as illustrated in Figure 1. 
Hence, we start with the Venus Thermosphere General Circulation model (VTGCM) continuing with the Adap-
tive Mesh Particle Simulator (AMPS).

3.1. Venus Thermosphere General Circulation Model (VTGCM)

The Venus Thermosphere General Circulation Model (VTGCM) is a 3D finite difference hydrodynamic model 
of Venus' upper atmosphere (S. Bougher et al., 1988) which is based on the National Center for Atmospheric 
Research terrestrial Thermospheric General Circulation Model (TGCM). The VTGCM has been well docu-
mented in the literature as it has been revised and improved over the last three decades. This section presents an 
overview of the model as implemented recently and used to interpret Venus Express datasets (e.g., A. Brecht & 
Bougher, 2012; A. Brecht et al., 2011, 2012; S. Bougher et al., 2015).

The VTGCM solves the time-dependent Navier Stokes equations for the neutral upper atmosphere. The diag-
nostic equations (hydrostatic and continuity) are solved to provide geopotential and vertical motion fields. The 
prognostic equations (thermodynamic, eastward and northward momentum, composition) are solved for steady-
state solutions for the temperature, zonal and meridional velocity, and the mass mixing ratios of specific species 
(e.g., O, CO, N2, CO2, O2, OH, N, NO, SO, SO2). The VTGCM model domain covers a 5° × 5° latitude-longitude 
grid, with 1/2-scale height evenly spaced log-pressure levels (69) in the vertical, extending from ∼70–300 km 
(∼70–200 km) at local noon (midnight). This altitude range captures the key dynamical processes contributing to 
the nightglow layers (i.e., NO, O2, OH), and ensures that wave propagation above the cloud tops can be addressed. 
The lower boundary of the VTGCM has recently been modified to include the self-consistent latitude and local 
time variation of temperatures, zonal and meridional winds, plus heights near ∼69 km. This specification is in 
accord with current Venus lower atmosphere General Circulation Models (e.g., C. Lee & Richardson, 2010).

The VTGCM ionosphere is calculated from direct photo-ionization of CO2 and O, producing C𝐴𝐴 O
+

2
 and O + initially. 

The reaction of C𝐴𝐴 O
+

2
 with O produces 𝐴𝐴 O

+

2
 , directly. Alternatively, the reaction of O + with CO2 ultimately (2-step) 

produces 𝐴𝐴 O
+

2
 as well. These photochemical reactions enable 𝐴𝐴 O

+

2
 to be produced and subsequently to dissociatively 

recombine, yielding the hot O atoms discussed in Section 3.2. This photochemical treatment is adequate to calcu-
late the bulk of the hot O production (below 200 km) on the dayside. Nightside production of hot O is minimal 
by comparison and is neglected.

Figure 1. The figure illustrates the implemented coupling approach. First, we use VTGCM to simulate Venus' ionosphere and thermosphere. Then, the calculated (1) 
density, bulk velocity, and temperatures of the primary neutral species and (2) density of ions and electrons are passed to AMPS for modeling the extended hot oxygen 
corona, which is the final result of the study presented here.
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The VTGCM includes fast parameterizations for CO2 15-µm cooling, infrared (IR) heating, and extreme ultravi-
olet (EUV) heating. The near-IR heating rate is incorporated in the VTGCM using two offline simulated look-up 
tables (organized as a function of pressure and SZA), and taken from Roldán et al. (2000) and Crisp (1986) for 
the upper and middle atmosphere, respectively. Reference CO2 15-µm cooling rates for a given temperature and 
composition profile are taken from Roldán et  al.  (2000). Subsequently, local cooling rates are simulated for 
VTGCM temperatures and species abundances from these reference rates (S. Bougher et al., 1986). In addition, 
the VTGCM can capture the full range of EUV-UV flux conditions, yielding neutral heating, photo-dissociation 
and ionization rates. The corresponding ion-neutral reactions and rates being used in the VTGCM are primarily 
taken from Fox and Sung (2001).

Since sub-grid scale wave effects cannot be captured by the VTGCM directly, empirically based parameteriza-
tions are applied instead. For instance, wave drag is presently prescribed as Rayleigh friction within the VTGCM 
in order to mimic first order wave-drag effects on the mean flow (e.g., A. Brecht et al., 2011). However, detailed 
gravity wave momentum and energy deposition schemes are being tested for replacement of Rayleigh friction 
within the VTGCM code (Zalucha et al., 2013). In addition, the eddy diffusion coefficient is prescribed within 
the VTGCM using a standard aeronomical formulation and constrained using Pioneer Venus measurements (e.g., 
A. Brecht et al., 2011; von Zahn et al., 1979).

Historically, statistically averaged maps of nightglow emission distributions from Venus measurements during 
both Pioneer Venus and Venus Express (VEx) missions have provided constraints for the mean thermospheric 
circulation of the Venus upper atmosphere (e.g., S. Bougher et al., 2006). Specifically, 2-D maps of O2, NO, 
and OH nightglow emission distributions have been constructed and compared to climate maps of VTGCM 
simulated nightglow distributions (e.g., A. Brecht et al., 2011; Parkinson et al., 2021). These comparisons have 
been used to study the time averaged behavior of both the sub-solar to anti-solar (SS-AS) and the super-rotating 
retrograde zonal (RSZ) components of the atmospheric circulation above the cloud tops. In addition, the Venus 
Express mission has prompted the study of VTGCM climate model outputs of terminator temperature profiles for 
comparison with corresponding statistically averaged SOIR profiles in 5-latitude bins (S. Bougher et al., 2015).

However, it is noteworthy that the VTGCM thus far has largely been used as a climate model. Nevertheless, the 
changing SS-AS and RSZ wind components of the real atmosphere provide significant variations of these densi-
ties, temperatures, and nightglow distributions over time. Additional tidal wave, planetary wave, and gravity wave 
formulations are presently being incorporated into the VTGCM framework to test the impacts of these waves (of 
various scales) on the time varying upper atmosphere circulation, corresponding density and temperature struc-
ture, and changing nightglow distributions (A. S. Brecht et al., 2021).

3.2. Adaptive Mesh Particle Simulator (AMPS)

Important processes in tenuous atmospheres work on various energy and rate scales described with the Boltz-
mann equation. AMPS is a general-purpose multi-species kinetic code for solving the Boltzmann equation using 
the Direct Simulation Monte Carlo (DSMC) method (Bird, 1994). Nowadays, DSMC is the de facto standard 
method in the broad rarefied gas community to provide useful solutions to the generalized collisional Boltzmann 
equation (Combi et al., 2004). The details of the code capabilities and implemented physics models are given in 
our recent paper by Tenishev et al. (2013, 2021)

DSMC was first used to simulate the transition regime, where the mean free path of particles is too large for 
continuum hydrodynamics to be applicable. Simulation particles move around within a grid, colliding with 
other particles and any solid objects. Macroscopic properties (density, velocity and temperatures) are computed 
by appropriately averaging particle masses, locations, velocities, and internal energies. DSMC is based on the 
“rarefied-gas” assumption that over a short time interval or “step” the molecular motion and the intermolecular 
collisions are uncoupled and can be calculated independently. Molecules move over the distances appropriate for 
this time step, affected by macroscopic forces (e.g., gravity, radiation pressure, or Lorentz force for charged parti-
cles) as necessary, followed by calculating a representative set of collisions. The time step needs to be smaller 
compared to the mean collision time.

For this work, we adapted Mars' oxygen corona application developed in AMPS that used in our previous studies 
for the case of Venus' environment. That is possible because both Mars and Venus have similar mechanisms for 
producing and thermalizing energetic hot O. These previous Mars modeling are described in a series of papers 
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by, for example, Valeille, Tenishev, et al. (2009), Valeille, Combi, et al. (2009), and Y. Lee, Combi, Tenishev, 
Bougher, Deighan, et al. (2015).

The parameters of the dissociative recombination reaction that was employed in this study are summarized in 
Table 1. The reaction rate constant in Equation 1 was adapted from Mehr and Biondi (1969), which was also 
used in our previous investigation of Mars' hot O corona (e.g., Y. Lee, Combi, Tenishev, Bougher, & Lillis, 2015; 
Valeille et al., 2010).

𝛼𝛼 =

⎧⎪⎨⎪⎩

1.95 × 10−7

(
300

𝑇𝑇𝑒𝑒

)0.7

cm3s−1, 300 < 𝑇𝑇𝑒𝑒 < 1200K

7.39 × 10−8
(
1200

𝑇𝑇 𝑒𝑒

)0.56

cm3s−1, 1200 < 𝑇𝑇𝑒𝑒 < 5000K

 (1)

Propagating in the thermosphere, the energetic hot O may experience collisions with atoms and molecules popu-
lating the ambient thermosphere, lose their energy and become thermalized before reaching the corona. Overlap-

Table 1 
𝐴𝐴 O

+

2
 Dissociative Recombination Channels, Excess Energies, and Branching Rations. Adapted From Kella et al. (1997)

Figure 2. Thermal neutral oxygen distribution at a 200 km exobase for solar maximum, moderate, and minimum cases. The contour values are in base 10 log of the 
density in cm −3.

Solar minimum

Solar moderate
Solar maximum
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ping VTGCM and AMPS model simulations are conducted (130–200 km). Extrapolation of CO2, O, N2, CO to 
higher altitudes by the exponential method is used.

The thermospheric wind has no significant direct effect on the “hot” O distribution. Among all simulated channels 
of 𝐴𝐴 O

+

2
 dissociative recombinations, the smallest excess energy is 0.83 eV, which corresponds to a velocity of the 

newly created oxygen atoms of 9 km/s. Thermospheric wind does not exceed 200 m/s, which is much smaller than 
the velocity of energetic oxygen atoms. Therefore, collisions of the energetic oxygen atoms are mainly determined 
by their speed, not thermospheric winds. In our modeling, the newly created energetic oxygen atoms are created 
in the frame of reference that moves with the 𝐴𝐴 O

+

2
 bulk flow, which also accounts for the potential wind's effect. 

However, the wind can affect the final dayside 𝐴𝐴 O
+

2
 distribution that is a source of the energetic oxygen atoms.

Collisions of a hot energetic O with a thermal O from the ambient thermosphere can energize the latter suffi-
ciently to reach the corona. This process is also accounted for in AMPS’ simulations. The energy that is trans-
ferred during collisions is highly dependent on both the total and angular differential scattering cross-sections. 
In work presented here, we have used the forward scattering cross-sections by Kharchenko et al. (2000). We also 
have used these cross-sections in our studies of Mars' oxygen corona (e.g., Y. Lee et al., 2018, 2020). The effect 
of producing secondary hot O is discussed by, for example, Y. Lee, Combi, Tenishev, Bougher, and Lillis (2015).

4. Results
This section summarizes results of the study that we have presented here. The distinctive feature of the presented 
modeling is that it combines modeling of Venus' ionosphere/thermosphere with kinetic modeling of the corona. 
Section 4.1 summarize the VTGCM simulations that were used as input for further modeling the hot oxygen 

Figure 3. Neutral CO2 distribution at a 200 km exobase for solar maximum, moderate and minimum cases. The contour values are in base 10 log of the density in 
cm −3.

Solar maximum Solar moderate

Solar minimum
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corona. The detailed discussion of the variability of the corona that we have inferred from our modeling is in 
Section 4.2.

4.1. Thermosphere and Ionosphere Input for Solar Maximum, Moderate, and Minimum Conditions

The VTGCM can capture the full range of EUV-UV flux conditions (see Section  3.1). For this paper, solar 
fluxes were specified, making use of the Solomon flux bins and solar fluxes based upon the Hinteregger linear 
interpolation method, which makes use of the F10.7-cm index at Earth (e.g., S. W. Bougher et al., 2002; A. S. 
Brecht et al., 2021; Hinteregger et al., 1981). These fluxes (0.1–225.0-nm) are scaled to the Venus-sun distance 
by multiplying by a factor of 1.914. Three F10.7-cm solar flux periods are chosen for VTGCM simulations 
presented in this paper: (a) solar minimum (early Venus Express sampling) conditions, for which F10.7 = 70; (b) 
solar moderate (Magellan sampling) conditions, where F10.7 = 130; and (c) solar maximum (early Pioneer Venus 
sampling) conditions, for which F10.7 = 170 or 200. These calculations are illustrated in Figures 2–4.

4.2. Structure and Solar Activity Variation of the Hot O Corona

We have calculated the content of Venus' hot oxygen corona for solar maximum, moderate, and minimum 
conditions. The ionosphere and thermosphere have been simulated with the VTGCM model as described in 
Section 4.1. The results of that modeling was used in the study of hot O corona presented in the paper. The 
rate of injection of the newly created energetic hot O and their velocity have been determined as summarized 
in Equation 1 and Table 1. The interaction of hot O atoms with the background thermosphere was simulated 

Figure 4. Neutral temperature (K) distribution at a 200 km exobase for solar maximum, moderate and minimum cases. The maximum velocity vectors are as 
follows:solar maximum (∼335 m/s), moderate (∼305 m/s) and minimum (∼280 m/s), corresponding to the VTGCM cases in these three panels.

Solar maximum Solar moderate

Solar minimum
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using the forward scattering cross-section by Kharchenko et al. (2000). In the 
presented simulations, we also account for the secondary production of hot 
O atoms in collisions of existing hot O atoms with the background thermo-
sphere. Gröller et al. (2012) showed that 𝐴𝐴 O

+

2
 , and thus the production of “hot” 

O, peaks at 150 km or so, whereas the CO2 density is only dominant below 
about 140 km. Hence, the interaction of “hot” O with the CO2 population 
would not significantly contribute to the overall interaction of “hot” O with 
the thermosphere and thus will not result in a significant change of “hot” O 
densities.

A model particle was considered thermalized and removed from the simula-
tion if, after a collision, the following criterion is met

𝑣𝑣𝑝𝑝 < 2𝑣𝑣𝑡𝑡𝑡, (2)

where vp is the particle velocity after a collision, and vth is the mean thermal 
velocity of oxygen atoms at the particle's location.

Figure 5 shows density of hot oxygen corona in a plane that (1) includes the 
planet's center and (2) is normal to the ecliptic plane. The presented calcula-
tions were performed for solar maximum and minimum conditions to illus-
trate the range of the corona's variability. Our model results indicate that the 
hot O population density is mainly axially-symmetric around the sunward 
direction. One can see that though the overall topology of the corona does 
not change through the solar cycle, the density has a significant dependence 
on the solar conditions.

For validation of the model results, we have compared the results of our 
simulations with the PVO observations of Venus' extended oxygen corona 
in Figure 7. The results of our modeling for the appropriate solar maximum 

conditions are in good agreement with the PVO observations (Gröller et al., 2010). The oxygen density in the 
corona is significantly affected by the solar conditions, which explains non-detection of the oxygen corona from 
Venus Express.

Figure 5. Density of hot oxygen corona. The figure present a cut of the 3D 
simulation performed for solar maximum and minimum cases. The solar 
moderate case is intermediate between these two. The axis are defined 
as follow: X-axis is directed away from the Sun (X-axis points toward the 
nightside), Y-axis is in the ecliptic plane, normal to X-direction and anti-
parallel to the planet's velocity relative to the Sun. Z-axis is a cross product of 
X- and Y-axis.

X [m]

Z
 [

m
]

-5.0x10+06 0 5.0x10+06

-5.0x10+06

0

5.0x10+06

Number     
 Density [m-3]: 1.0x10+05 3.8x10+06 1.4x10+08 5.3x10+09

Solar maximum 
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Thermal atomic oxygen dominates the overall atomic oxygen population at low altitudes. Density of this thermal 
population drops with altitude faster than that of the energetic hot atomic oxygen. As a result, at the altitudes 
above 400  km, the non-thermal hot atomic oxygen dominates the overall oxygen population as presented in 
Figure 6.

5. Summary
This study investigated the variability of Venus' extended hot oxygen corona over a solar cycle and compared the 
model results with PVO observations of the corona. The modeling was conducted using the Venus' ionosphere/
thermosphere model VTGCM and a kinetic model AMPS. Our model results are in good agreement with obser-
vations of “hot” O population performed with ultraviolet spectrometer (UVS) onboard PVO that was done by 
measuring the OI resonance triplet near 1304 Å (e.g., Nagy et al., 1981; Paxton & Meier, 1986). For this study, 
we have taken the data from Gröller et al. (2010).

We have reproduced the PVO/UVS observations with our kinetic simulation of hot O transport in Venus' thermo-
sphere, exosphere and corona. We also found that accounting for the forward scattering of energetic oxygen atoms 
is needed. The latter is consistent with conclusions by, for example, Gröller et al. (2010).

Our modeling suggests that density of the extended oxygen corona varies by a factor of six during a solar cycle. 
That agrees with Gérard et al. (2017), who suggest that density at low solar activity during the Venus Express era 
was up to a factor of 5 smaller than that during solar maximum conditions at PVO observations.

Neither ASPERA-4 nor SPICAV onboard Venus Express have confirmed PVO observations (Gérard et al., 2017). 
The strong dependence of the oxygen density in the corona on the solar conditions suggested by our modeling 
is consistent with the non-detection of the oxygen corona from Venus Express (Lichtenegger et al., 2009). That 
makes the solar maximum most favorable for observing the oxygen corona of Venus.

Data Availability Statement
Data in Figures 2–7 are available in the University of Michigan Deep Blue Data archive (collection https://doi.
org/10.7302/x094-he85).

Figure 7. Simulated altitude variation of “hot” oxygen population. The lines show the solar minimum, moderate and 
maximum model results. The dots are density of “hot” oxygen atoms derived from measurements of the OI resonance triplet 
near 1304 Å by the ultraviolet spectrometer onboard PVO. The measurements were performed at solar maximum (Nagy 
et al., 1981; Paxton & Meier, 1986). The data was adapted from Gröller et al. (2010).
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