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S.1 Additional details for the SEIR-fansy model

S.1.1 Basic reproduction number

The basic reproduction number (or reproductive ratio) is defined as the number of infections that are expected to occur
on average in a homogeneous population as a result of infection by a single infectious individual when the entire
population is susceptible at the start of the pandemic. We derive an analytical formula for the reproduction number
using the Next Generation Matrix Method shown in [13]. In the Next Generation Matrix Method, we start by calculating
the next generation matrix, and the spectral radius of the next generation matrix gives us the basic reproduction number.
The resulting expression for R0 is as follows:

R0 =
βt · S0

µDE + 1

 αu(1− rt)
1

β1Dr
+ δ1µc + µ

+
αprt(1− f)
1

Dr
+ µc + µ

+
rtf

β2
Dr

+
µc
δ2

+ µ

 (S.1)

where we define

S0 =

{
λ/µ if µ 6= 0
1 if µ = 0.
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S.1.1.1 Calculation of R0 for Misclassification Model

We calculate the basic reproduction number R0 using the The Next Generation Matrix Method as described by
van den Driessche [13]. Suppose the whole population is divided into n compartments in which there are m < n
infected compartments. Let xi, i = 1, 2, ..,m be the number of infected individuals in the ith infected compartment at
time t. Now, the epidemic model is:

∂xi
∂t

= Fi(x)− Vi(x)

Here, Vi(x) = [V −i (x) − V +
i (x)], where V +

i (x) represents the rate of transfer of individuals into compartment i
from all other components containing individuals infected with the disease (here E, U , P and F ) and where V −i (x)
represents the rate of transfer of individuals out of compartment i. Here, Fi(x) represents the rate of appearance of
new infections in compartment i. Let x0 denote the disease free equilibrium. NowF and V arem×mmatrices such that :

Fij =
∂Fi
∂xj

(x0) Vij =
∂Vi
∂xj

(x0)

Now, FV−1 is called the Next Generation Matrix. The basic reproduction number R0 is calculated by the spectral
radius or the largest eigenvalue of FV−1. For our case,

F =

 βS(αpP + αuU + F )
0
0
0

 , V =



E

DE
+ µE

U

(
1

β1Dr
+ δ1µc + µ

)
−
(
1− r
DE

)
E

P

(
1

Dr
+ µc + µ

)
−
(
r(1− f)
DE

)
E

F

(
β2
Dr

+
µc
δ2

+ µ

)
−
(
rf

DE

)
E


Now, we calculate the jacobian of F and V at the Disease Free Equilibrium (DFE).

Ḟ =
∂F
∂X

=

 0 βαuS0 βαpS0 βS0

0 0 0 0
0 0 0 0
0 0 0 0



V̇ =
∂V
∂X

=



(
1

DE
+ µ

)
0 0 0

−
(
1− r
DE

) (
1

β1Dr
+ δ1µc + µ

)
0 0

−
(
r(1− f)
DE

)
0

(
1

Dr
+ µc + µ

)
0

−
(
rf

DE

)
0 0

(
β2
Dr

+
µc
δ2

+ µ

)


Now, we need to find the inverse of V̇ . Since it is a lower triangular matrix, it is easy to find the inverse.

V̇−1 =



1(
1

DE
+ µ

) 0 0 0

(
1− r
DE

)
1

1

β1Dr
+ δ1µc + µ

· 1(
1

DE
+ µ

) 1
1

β1Dr
+ δ1µc + µ

0 0

r(1− f)
DE

· 1
1

Dr
+ µc + µ

· 1(
1

DE
+ µ

) 0
1

1

Dr
+ µc + µ

0

(
rf

DE

)
1

β1
Dr

+
µc
δ2

+ µ

· 1(
1

DE
+ µ

) 0 0
1

β1
Dr

+
µc
δ2

+ µ
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Now, we multiply Ḟ and V̇−1. The spectral radius of ḞV̇−1 gives the basic reproduction number. Note that the matrix
ḞV̇−1 has only one non-zero row, which is the first one. All other rows of ḞV̇−1 are 0. Hence, the spectral radius is
given by

(
ḞV̇−1

)
11

(i.e., the (1, 1)th element of ḞV̇−1). So,

R0 =
(
ḞV̇−1

)
11

=
β · S0

µDE + 1

 αu(1− r)
1

β1Dr
+ δ1µc + µ

+
αpr(1− f)
1

Dr
+ µc + µ

+
rf

β2
Dr

+
µc
δ2

+ µ


S.1.2 Special Cases

We develop an intuitive understanding of the above expression by studying some special cases of the SEIR-fansy model
below:

S.1.2.1 Special case I: SIR model

In the SIR model, there are only 3 compartments: S (Susceptible), I (Infectious), and R (Removed). The death and
recovered compartments are merged into one compartment called R (Removed). In the SIR model, there is only one
infectious compartment I (which, in our model, is the P compartment), so we assume r = 1, f = 0 and αp = 1. As
in the derivation of R0 for the SIR model [13], we assume the birth (λ) and death (µ) rates to be zero. With these
constraints and assumptions in place, our model reduces to SIR model, and we can simplify the expression in Equation
S.1 as follows

R0 =
βtS0

D−1r + µc
=
βtS0

ν
=
βt
ν
,

where S0 = 1, µ = 0 is assumed and ν = D−1r + µc specifies the removal rate. As such, we recover the well-known
form of R0 for the SIR model.

S.1.2.2 Special case II: SEIR model

Another special case is the popular SEIR model, where we have 4 compartments: S (Susceptible), E (Exposed), I
(Infectious) and R (Removed). To obtain the expression of R0 for SEIR model, we make all the assumptions as for SIR
model except that DE takes non-zero value DE = 1

k . We can also assume non-zero natural birth and death rates λ and
µ.

Under these assumptions, the expression of R0 in (S.1) becomes

R0 =
βtS0

µDE + 1
· αp
ν + µ

=
kβtS0

µ+ k
· 1

ν + µ
=

kβtλ

µ(µ+ k)(ν + µ)

This is the expression of R0 for the SEIR model as derived in [13] as a special case.

S.1.3 Non-Instantaneous Testing

In the previous models we have assumed instantaneous testing. Without this assumptions ( i.e, for DT 6= 0), the
differential equations would be as follows:

∂S

∂t
= −βS(t)

N

(
αPP (t) + αUU(t) + F (t) + T (t)

)
+ λ− µS(t)

∂E

∂t
= β

S(t)

N

(
αPP (t) + αUU(t) + F (t) + T (t)

)
− E(t)

DE
− µE(t)

∂U

∂t
=

(1− r)E(t)

DE
− U(t)

β1Dr
− δ1µcU(t)− µU(t)

∂T

∂t
=
r E(t)

DE
− T (t)

DT
− µ T (t)

∂P

∂t
=

(1− f) T (t)
DT

− P (t)

Dr
− µc P (t)− µ P (t)
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∂F

∂t
=
f T (t)

DT
− β2 F (t)

Dr
− µc F (t)

δ2
− µ F (t)

∂RU

∂t
=

U(t)

β1Dr
+
β2 F (t)

Dr
− µ RU(t)

∂RR

∂t
=
P (t)

Dr
− µ RR(t)

∂DU

∂t
= δ1µcU(t) +

µc F (t)

δ2
∂DR

∂t
= µcP (t)

S.1.4 Misclassification model - complete distributional assumptions

In the main paper, we have given the distribution of observed nodes given the other nodes and parameters. Here, we
describe the distribution of the latent nodes also. After getting the estimates of the parameters using MCMC, we want to
obtain model-based forecasts. In order to predict the future counts, we use the following multinomial random sampling
strategy:

ζS→E , ζS→O, ζS→S ∼ Multinomial (S(t− 1), pS→E , µ, 1− pS→E − µ)

ζE→U , ζE→P , ζE→F , ζE→O, ζE→E ∼ Multinomial (E(t− 1),
(1− r)
DE

,
r(1− f)
DE

,
rf

DE
, µ,

1− pE→U − pE→P − pE→F − µ)
ζU→RU , ζU→DU , ζU→O, ζU→U ∼ Multinomial (U(t− 1), β−11 D−1r , δ1µc, µ, 1− β−11 D−1r − δ1µc − µ)
ζP→RR, ζP→DR, ζP→O, ζP→P ∼ Multinomial (P (t− 1), D−1r , µc, µ, 1−D−1r − µc − µ)
ζF→RU , ζF→DU , ζF→O, ζF→F ∼ Multinomial (F (t− 1), β2D

−1
r , δ−12 µc, µ, 1− β2D−1r − δ−12 µc − µ)

ζRU→O, ζRU→RU ∼ Multinomial (RU(t− 1), µ, 1− µ)
ζRR→O, ζRR→RR ∼ Multinomial (RR(t− 1), µ, 1− µ)

where ζX→Y denotes the number of individuals moving from compartment X to compartment Y at time t. ζX→0

denotes the number of individuals in compartment X that die at time t. The counts in each compartment at time t are
given by,

S(t) = ζS→S
E(t) = ζE→E + ζS→E
U(t) = ζU→U + UE → U

P (t) = ζP→P + ζE→P
F (t) = ζF→F + ζE→F

RU(t) = ζRU→RU + ζU→RU + ζF→RU
RR(t) = ζRR→RR + ζP→RR
DU(t) = ζDU→DU + ζU→DU + ζF→DU
DR(t) = ζDR→DR + ζP→DR

Given the parameters and the counts at time (t− 1), we obtain the predicted counts for time t. Using this approach, we
obtain the posterior means of the future predicted counts at each of the 9 compartments using the MCMC estimated
parameters. For the purpose of future prediction beyond the training period, we use the parameter estimates from the
last time period. The estimation process is described in details below.

S.4
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S.2 Extensions of the SEIR-fansy model

S.2.1 Extension 1. Time varying Case-Fatality Rate (mCFR)

Empirical analysis shows that the death rates and in turn the case-fatality rates are changing during the course of this
pandemic between and within countries. The usual case fatality rate (CFR) is defined as:

Case fatality rate (CFR) =
Reported Cumulative Deaths
Reported Cumulative Cases

The modified CFR or mCFR includes only the removed cases (deaths+recoveries) in the denominator as the outcomes
are known only for this subset of individuals.

Modified case fatality rate (mCFR) =
Reported Cumulative deaths

Reported Cumulative deaths + Reported Cumulative Recoveries

Figure S.1 shows that while countries like Belgium, USA, Italy, and Spain have very high mCFR, India and Russia

Figure S.1: Variation of mCFR with time: mCFR varies widely not only across countries but also within country for
different time points. Each of the countries considered here exhibit an initial phase of high variation in mCFR followed
by a decreasing trend which gradually stabilizes to some constant.

have comparatively much lower mCFR. We also note that initially most countries experienced a high mCFR, and mCFR
gradually settled to a lower value as the case counts and recoveries rose. Hence, we hypothesize that modeling mCFR
as a time varying quantity will improve the prediction of active cases and deaths.

Thus, we introduce a third time varying parameter called the mCFR along with βt and rt in the previous multinomial
likelihood (Extensions after §2.3.4 of main manuscript). With this change, the differential equations in §2.2 of the main
paper will remain the same. We use mCFR as opposed to CFR because in our model we use it to determine what is the
probability that an infected person from node P moves to the death node (DR). The remaining will go to the recovered
node RR. The new recovery rate will be (1−mCFR)

Dr
, while the new death rate will be mCFR×µc.

S.2.2 Extension 2. Testing of infectious people based on symptoms

The problem with the base model is that we have implicitly assumed that the probability of a person being tested is
equal for all infected individuals. However, that is certainly not the case in reality. The probability of being tested
for a truly infected person largely depends on symptoms. On average, a person with severe symptoms will have the
highest probability of being tested followed by the mild symptomatics and the asymptomatics. We extend the model
(See Figure S.2) to account for symptom-dependent testing. We split the Exposed(E) compartment into three nodes:
Severe Symptomatic (Se), Mild Symptomatic (Mi) and Asymptomatic (As).

S.5
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We assume that individuals with severe symptoms will be tested with probability 1, while the mild and asymptomatic
individuals will be tested with probability t1,t and t2.t at time t, respectively. We will also assume the probabilities of
an infected person having severe, mild, or no symptoms are p1, p2, p3, respectively. Under this setting the differential

Figure S.2: Misclassification Model with Symptoms: In addition to the original compartments in the basic misclassi-
fication model, this model includes 3 other compartments based on symptoms: Se (severe symptomatic), Mi (mild
symptomatic) and As (Asymptomatic). Each of these compartments are assumed to have different rates of being tested
with testing rate increasing with severity of symptoms.

equations remain the same except the ones corresponding to the nodes P, U and F. The new set of differential equations
corresponding to these three nodes are:

∂U

∂t
=

(p2(1− t1,t) + p3(1− t2,t))E(t)

DE
− U(t)

β1Dr
− δ1µcU(t)− µU(t)

∂P

∂t
=

(p1 + p2t1,t + p3t2,t)(1− f) E(t)

DE
− P (t)

Dr
− µc P (t)− µ P (t)

∂F

∂t
=
f (p1 + p2t1,t + p3t2,t) E(t)

DE
− β2 F (t)

Dr
− µc F (t)

δ2
− µ F (t)

Due to identifiability issues, all the parameters described above cannot be estimated simultaneously. Therefore, We
assume values for p1, p2 and p3 are fixed based on existing data. We also assume that t1,t = kt2,t, where k is greater
than 1 and known. This assumption implies that the probability of receiving a test for a person with mild symptoms is
more than for a person with no symptoms. We run a sensitivity analysis for different values of k.

This model is nearly equivalent to the multinomial-2-parameter model described in Section 2.4.4. The only additional
information that we are obtaining here is the allocation of tests conditional on symptoms. We essentially have expressed
the probability of getting tested or the ascertainment rate rt as the sum of three different probabilities by using the
theorem of total probability. Namely,

rt = (p1 + p2t1,t + p3t2,t) (S.2)
rt = (p1 + kp2t2,t + p3t2,t) (S.3)

Our main parameters of interest are now reparameterized as βt and t2,t instead of βt and rt. Since this model is a
simple reparameterization of our original model we do not discuss the estimation again.

We shall refer to Extensions 1 and 2 as Multinomial-3-parameter and Multinomial Symptoms models, respectively.

S.6
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S.2.3 Extension 3. Selection model: Who is getting tested?

So far we have been concerned with only the testing of truly infected individuals. However, respiratory or flu-like
symptoms may manifest in an infected individual or an uninfected individual. The cause of symptoms (both mild and
severe) in susceptible individuals may be due to other respiratory diseases such as influenza and the common cold.

It may be reasonable to assume that each individual, regardless of their underlying true disease status, has a probability
of being tested that depends on the symptoms they have (or do not have). This probability could also depend on other
covariates such as occupation or comorbidities. For simplicity, we will consider the case where testing is determined by
symptoms only. Our goal is to extend the Multinomial-2-parameter model in §2.3.2 of main manuscript to directly
incorporate the mechanism by which people in the population are tested.

To this end, we will assume individuals with severe symptoms are always tested provided sufficient tests are available.
After all the individuals with severe symptoms are tested, the remaining tests are divided among those with mild
symptoms and asymptomatics according to some given allocation rule that is independent of their true disease status
given observed symptoms. We also assume that the number of tests to be performed in a given day does not depend on
the true infection counts and is an external input. One advantage of using the number of tests as an input to the model is
that we can study how the number of available tests influences the population infection rate in the long term. Figure S.3
provides a visualization of this expanded model.

Figure S.3: Selection Model: This model assumes probability of being tested depends only on symptoms and not
on the underlying disease status (D) which is unknown. As an example, probability of being tested is same for As1
and As0 which denote infected and uninfected asymptomatic individuals respectively. Following similar notations
as in figure S.2, Se, Mi and As denote severe symptomatic, mild symptomatic and Asymptomatic individuals while
the numbers in the superscript denote the underlying disease status with D = 1 and D = 0 denoting infected and
uninfected individuals respectively.

There are eight new compartments in this model. Se1, Mi1 and As1 consist of individuals who have developed
severe, mild and no symptoms due to COVID-19 respectively. On the other hand, Se0, Mi0 and As0 are comprised of
individuals who have developed the similar degrees of symptoms but do not have COVID-19 infection. Their symptoms
might be attributed to other diseases which exhibit similar symptoms as COVID-19 like influenza etc. Finally, UI (and
UNI) compartment is formed of individuals who are untested with (without) an active COVID-19 infection.

The differential equations corresponding to this model have been provided in section S.2.3.1. Though conceptually
appealing, this model has identifiability issues, and estimation requires substantial additional information. In particular,
we need to know the mechanism by which people are tested, including the corresponding probabilities of testing.
Additionally, we need to know the true symptom distributions for the exposed and susceptible people. It will be often
quite hard to obtain this information as part of regularly-released data sources by countries across the world. Thus,
implementation of this model may be wrinkled with too many subjective choices. However, we still think this is a

S.7
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valuable formulation as it helps us to understand, analytically and intuitively, how selection bias can influence our
estimates of interest.

Basic Reproduction number: We can calculate R0 for this expanded model framework (derived using the Next
Generation Matrix Method) as follows:

R0 =
S0βt(

µ+
1

DE

)
αu

((
p12 + p13
DE

)
− T0 − (1− µ)Se0

DE(1− µ)

(
t1p12
Mi0

+
t2p13
As0

))
(
µ+ δ1µc +

1

β1Dr

) +

αp

(
(1− f)p11

DE
+

(1− f)(T0 − (1− µ)Se0)
DE(1− µ)

(
t1p12
Mi0

+
t2p13
As0

))
(
µ+ µc +

1

Dr

) +

(
f p11
DE

+
f (T0 − (1− µ)Se0)

DE(1− µ)

(
t1p12
Mi0

+
t2p13
As0

))
(
µ+ µc +

1

Dr

)
. (S.4)

S.2.3.1 Differential Equations for the Selection Model

The differential equations for the selection model are as follows:
∂S

∂t
=
∂Se0

∂t
+
∂Mi0

∂t
+
∂As0

∂t
∂Se0

∂t
=
−βSe0(αpP (t) + αuiUI(t) + F (t))

N
− µSe0(t)

∂Mi0

∂t
=
−βMi0(αpP (t) + αuiUI(t) + F (t))

N
− µMi0(t)

∂As0

∂t
=
−βAs0(αpP (t) + αuiUI(t) + F (t))

N
− µAs0(t)

∂E

∂t
=
−βS(αpP (t) + αuiUI(t) + F (t))

N
− p11E(t)

De
− p12E(t)

De
− p13E(t)

De

Se1(t) =
p11E(t)

De
Mi1(t) =

p12E(t)

De
As1(t) =

p13E(t)

De

∂UI

∂t
=Mi1(t)− t1(T − Se1(t)− (Se0(t) +

∂Se0

∂t
))

 Mi1(t)

Mi1(t) + (Mi0(t) +
∂Mi0

∂t
)



+As1(t)− t2(T − Se1(t)− (Se0(t) +
∂Se0

∂t
))

 As1(t)

As1(t) + (As0(t) +
∂As0

∂t
)


− µUI(t)− δ1µcUI(t)−

UI(t)

β1Dr

∂P

∂t
= (1− f)(t1(T − Se1(t)− (Se0(t) +

∂Se0

∂t
))

 Mi1(t)

Mi1(t) + (Mi0(t) +
∂Mi0

∂t
)



+ (1− f)(t2(T − Se1(t)− (Se0(t) +
∂Se0

∂t
))

 As1(t)

As1(t) + (As0(t) +
∂As0

∂t
)


+ (1− f)Se1(t)− µP (t)− µcP (t)−

P (t)

Dr
(S.5)

S.8



FEBRUARY 5, 2022

∂F

∂t
= f(t1(T − Se1(t)− (Se0(t) +

∂Se0

∂t
))

 Mi1(t)

Mi1(t) + (Mi0(t) +
∂Mi0

∂t
)



+ f(t2(T − Se1(t)− (Se0(t) +
∂Se0

∂t
))

 As1(t)

As1(t) + (As0(t) +
∂As0

∂t
)


+ fSe1(t)− µF (t)− µcF (t)

δ2
− β2F (t)

Dr

∂RU

∂t
=
UI(t)

β1Dr
+
β2 F (t)

Dr
− µ xRU

∂RR

∂t
=
P (t)

Dr
− µ RR

∂DU

∂t
= δ1µcUI(t) +

µc F (t)

δ2

∂DR

∂t
= µcP (t)

S.2.3.2 Selection Model : Complete Distributional Assumptions

To generate data using the test model, we perform the following steps.

ζS→E , ζS→O, ζS→S ∼Multinomial(S(t− 1), pS→E , µ, 1− pS→E − µ)

Now, we assume the probability of an individual being severely symptomatic, mildly symptomatic or asymptomatic
given he/she is susceptible is given by the probability vector p0 = (p01, p02, p03). The probability for an infected
individual is given by p1 = (p11, p12, p13). To obtain the number of individuals in the groups Se0,Mi0, andAs0, we
assume that the outgoing individuals from the susceptible group follow the distribution given by p0.

Se0new(t), Mi0new(t), As
0
new(t) ∼Multinomial(ζS→S ,p0)

Now, from our assumption that the individuals in E follow the distribution given by p1, we can write,

ζE→Se1 , ζE→Mi1 , ζE→As1 , ζE→O, ζE→E ∼Multinomial

(
E(t− 1),

(
p1

DE
, µ, 1− 1

DE
− µ

))

Recall, we assume that all individuals with severe symptoms are tested provided adequate tests are available. This
implies

Se0tested = Se0(t) Se1tested = Se1(t) Setested = Se0tested + Se1tested

In the case when number of test T (t) is less than that of severe individuals, we assume that the number of tested Se1
and Se0 individuals is proportional to their respective counts.

Se0tested, Se
1
tested ∼Multinomial

(
Se(t),

(
Se0(t)

Se0(t) + Se1(t)
,

Se1(t)

Se0(t) + Se1(t)

))
If the total number of remaining tests is greater than or equal to the number of mild and asymptomatic individuals, then
all of them are tested i.e :

Mi0tested =Mi0(t), Mi1tested =Mi1(t), As0tested = As0(t), As1tested = As1(t)

If number of tests are not adequate for all the mild symptomatic and asymptomatic people to be tested, then the
remaining tests (after testing the severe symptomatic people) are distributed among the mildly symptomatic and
asymptomatic individuals in the ratio t1 : t2.

Mitested, Astested ∼ Binomial (T − Setested, (t1, t2))

As we did in the case of severely symptomatic, we allocate the tests among infected and uninfected mildly symptomatic
(and also asymptomatic) individuals randomly.

Mi0tested,Mi1tested ∼ Binomial
(
Mitested,

(
Mi0(t)

Mi0(t) +Mi1(t)
,

Mi1(t)

Mi0(t) +Mi1(t)

))
As0tested, As

1
tested ∼ Binomial

(
Astested,

(
As0(t)

As0(t) +As1(t)
,

As1(t)

As0(t) +As1(t)

))
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ζUI→RU , ζUI→DU , ζUI→O, ζUI→UI ∼Multinomial(UI(t− 1), β−11 D−1r , δ1µc, µ,

1− β−11 D−1r − δ1µc − µ)
ζP→RR, ζP→DR, ζP→O, ζP→P ∼Multinomial(P (t− 1), D−1r , µc, µ, 1−D−1r − µc − µ)
ζF→RU , ζF→DU , ζF→O, ζF→F ∼Multinomial(F (t− 1), β2D

−1
r , δ−12 µc, µ,

1− β2D−1r − δ−12 µc − µ)
ζRU→O, ζRU→RU ∼Multinomial(RU(t− 1), µ, 1− µ)
ζRR→O, ζRR→RR ∼Multinomial(RR(t− 1), µ, 1− µ)

We also assume the false negative probability = f . The numbers of new individuals to P and F states are given by :

Pnew, Fnew ∼Multinomial
(
Se1tested +Mi1tested +As1tested, (1− f, f)

)
Finally we write the number of people in each state at time t as follows :

UI(t) = ζUI→UI + Se1untested +Mi1untested +As1untested
P (t) = ζP→P + Pnew
F (t) = ζF→F + Fnew

RU(t) = ζRU→RU + ζUI→RU + ζF→RU
RR(t) = ζRR→RR + ζP→RR
DU(t) = ζDU→DU + ζUI→DU + ζF→DU
DR(t) = ζDR→DR + ζP→DR

S.2.3.3 Special case of Selection Model : Uniform testing

To understand the effect of selection bias on R0, we consider a special case of the Selection model where we assume
uniform testing. Here, uniform testing means tests are offered independently of symptoms. The model is represented
diagrammatically in Figure (S.4).

Figure S.4: Special case of Selection Model : Uniform testing. This is a special case of the selection model where we
assume probability of being tested is same for Se, Mi or As compartments (irrespective of true disease status). This
simplifies the selection model and in fact, under this assumption, the selection model is equivalent to our misclassification
model.

The transmission dynamics of this model are very similar to the Selection model. We provide the differential equations
describing the dynamics of the nodes S,E,UI, P and F . The rest of the nodes (RU,RR,DU andDR) have differential
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equations exactly same as in Selection Model.

∂S

∂t
= −βS(t)

N

(
αPP (t) + αUU(t) + F (t)

)
+ λ− µS(t)

∂E

∂t
= β

S(t)

N

(
αPP (t) + αUU(t) + F (t)

)
− E(t)

DE
− µE(t)

∂UI

∂t
=
E(t)

DE
− T E(t)

S(t) + E(t)
− UI(t)

β1Dr
− δ1µcUI(t)− µUI(t)

∂P

∂t
= (1− f)T E(t)

S(t) + E(t)
− P (t)

Dr
− µc P (t)− µ P (t)

∂F

∂t
= f · T E(t)

S(t) + E(t)
− β2 F (t)

Dr
− µc F (t)

δ2
− µ F (t)

Now that we have all the differential equations governing the dynamics of this model, we calculate the basic reproduction
number using Next Generation Matrix method [13]. Using calculations similar to what we did for the Misclassification
model, we arrive at the following expression of R0 for Uniform testing model.

R0 =
β

µ+ 1
DE

 αu

(
1
DE
− T

)
1

β1Dr
− δ1µc − µ

+
αp (1− f)T
1
Dr
− µc − µ

+
fT

β2

Dr
− µc

δ2
− µ

 (S.6)

S.2.3.4 Decoupling selection and misclassification:

To capture the effect of selection bias and misclassification onR0, we consider an example setting where we first compute
the value of R0 (see equation S.7) with f = 0 (no misclassification, selection), f = 0.3 (misclassification+selection)
using the same set of parameters. To isolate the effect of selection, we consider a model where selection is random (for
further details refer to section S.2.3.3 of supplementary materials) and evaluate R0 when f = 0 (no misclassification or
selection) and f = 0.3 (only misclassification, no selection).
Data Generation: We consider a hypothetical population of 1 million people. We set β = 0.25, rt = 0.1, p0 =
(10−6, 10−5, 1− 10−6 − 10−5) p1 = (0.02, 0.18, 0.8), t1,t = 0.7 and t2,t = 0.3. We consider three different values of
the number of tests per thousand population (0.1, 0.5, 1.0, 2.0) consistent with values observed in different countries
across the world. Remaining parameters are same as in §S.4.
Results: Table S.1 presents values of R0 for the four configurations. From table (S.1), we conclude that under random

Number of tests
per thousand

Model

No Selection Bias Selection Bias
f = 0 f = 0.3 f = 0 f = 0.3

0.1 1.54 1.53 1.64 2.09
0.5 1.54 1.54 2.02 4.08
1.0 1.54 1.54 2.50 6.56
2.0 1.54 1.55 3.45 11.54

Table S.1: Effect of misclassification and selection bias on R0: The table lists values of basic reproduction number
R0 calculated under different values of false negative rate f and under presence or absence of selection bias. As is
evident from the table, the value of R0 is not sensitive to the value of f when selection bias is absent. However, under
the presence of selection bias, the value of R0 is sensitive to different values of sensitivity of the test. This phenomenon
is further supported by the simulation studies in sections 4.1 and 4.2 in the main paper.

selection, R0 is not sensitive to the total number of tests and false negatives with values remaining around 1.54, the true
value. The values in the 3rd column are inflated, which indicates a substantial effect of selection bias on R0, especially
when the number of tests are large, even when the tests are perfect. The fourth column underpins the key issue that the
R0 can be very far from the true value with both selection bias and misclassification, especially with large number of
tests being distributed in a non-probabilistic way.
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S.3 Real Data Analysis for India

S.3.1 Initial values and parameter setting:

Using observed counts on April 1, 2020 (for wave 1) and February 1, 2021 (for wave 2), we fix the values P0, RR0

and DR0 for the three compartments for which data are reported. The counts in the unobserved compartments are set
proportionately to the observed ones, with E0 = 3(U0 + P0 + F0). The false negative rate is fixed at f = 0.15 [9], and
the initial value for the ascertainment rate rt is set to 0.15. We assume all the parameters in our model except rt and βt
remain constant through the entire course of the disease. We set the latency period DE = 5.2 days and assume that the
latency period is equal to the incubation period [10]. We assume Dr = 17.8 days following the report by WHO and set
this as the average time till death for deceased COVID patients. We set µc = mCFR/17.8 where mCFR is as defined in
section S.2.1. The natural birth and death rates are assumed to be equal. According to the worldbank report, the average
life span of Indians is approximately 69.4 years. So we take λ = µ = 1/(69.416 · 365)..The various scaling factors
are fixed: αp = 0.5, αu = 0.5, β1 = 0.6, β2 = 0.7, δ1 = 0.3, δ2 = 0.7. With these values and the sub-intervals
described in Table S.4, we estimate R0 for each sub-interval. Additionally, we predict COVID-counts in the test period
for wave 2 using the estimated parameter values based on the training set.

For India, we have fitted data from April 1, 2020 to January 31, 2021 for wave 1 and February 1 to August 31, 2021 .
So for our prediction, we need the counts of the different compartments on the initial date, that is on April 1, 2020 and
February 1, 2021 for waves 1 and 2 respectively. The tables S.2 and S.3 present the counts of the compartments for
India on the start dates of waves 1 and 2 respectively.

Variable Value Justification

S(0) 1340940853 N-(E(0) + U(0) + P(0) + F(0) + RU(0) + RR(0) + DU(0) + DR(0)) (N = 1341 million)

E(0) 43221 Thrice the number of current infected

U(0) 12246 1−r
r (P(0) + F(0))

P(0) 1837 Reported current infected on 1st April, 2020

F(0) 324 f
1−f P(0)

RU(0) 987
(

1−r
r + f

1−f

)
RR(0)

RR(0) 169 Reported recovered on 1st April, 2020

DU(0) 310
(

1−r
r + f

1−f

)
DR(0)

DR(0) 53 Reported deceased on 1st April, 2020

Table S.2: Initial Values of the Different Compartments in Wave 1. We have taken April 1, 2020 to January 31, 2021 as
the first wave training period and in the first wave, we have not taken any testing period. The date on which these initial
counts are reported is April 1,2020.

S.3.2 Performance of different models for India

To asses the performance of different models described earlier, we check the estimates of R0 as well as the accuracy of
estimates of number of cases and deaths.

First, we look at the estimates of R0. From table S.6, we observe that the estimates of R0 from different models are
qualitatively similar with numerical differences.

Now, we look at the prediction accuracies of the different models in estimating case and death counts. Noting that the
number of cases and deaths varies widely across different time points (e.g., the number of reported cumulative cases go
from below 5000 on April to 31 million in August, 2021), we use a scale-independent metric, mean squared relative
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Variable Value Justification

S(0) 1263249237 N-(E(0) + U(0) + P(0) + F(0) + RU(0) + RR(0) + DU(0) + DR(0)) (N = 1341 million)

E(0) 3903900 Thrice the number of current infected

U(0) 1106105 1−r
r (P(0) + F(0))

P(0) 165916 Reported current infected on 1st Feb,2021

F(0) 29279 f
1−f P(0)

RU(0) 61044909
(

1−r
r + f

1−f

)
RR(0)

RR(0) 10447283 Reported recovered on 1st Feb, 2021

DU(0) 899440
(

1−r
r + f

1−f

)
DR(0)

DR(0) 153931 Reported deceased on 1st Feb, 2021

Table S.3: Initial Values of the Different Compartments in Wave 2. In the wave 2, we have taken Feb 1,2021 to June
30,2021 as the training period, while, July 1,2021 to August 31,2021 was taken to be the test period. The date on which
these iniital counts are reported is Feb 1,2021.

prediction error (MRPE) or relative mean square error or RMSE [3], defined as follows:

MRPE =
1

n

n∑
i=1

(
1− v̂i

vi

)2

for observed data v = (v1, v2, ..., vn) and predicted vector v̂ = (v̂1, v̂2, ..., v̂n). We present MRPE (multiplied by 10)
for each of the models evaluated both on the training and test set. Table S.5 presents the values of MRPE for reported
cumulative cases, deaths and active cases for all the five models. The column-wise minima are indicated in bold letters.

The Poisson and binomial models perform very similarly. This is expected, since the binomial likelihood approaches the
Poisson likelihood for large case-counts. We note that the multinomial models are doing better in test data in predicting
reported cumulative cases. Overall, the multinomial-2-parameter model does well when predicting reported cumulative
cases, deaths and active cases. Specifically, the multinomial-2-parameter model predicts reported active cases better
than the other models considered.

Reported Cumulative Cases Reported Deaths Reported Active Cases
Model Train Test Train Test Train Test
Poisson 0.07 0.10 0.95 1.24 0.36 0.75
Binomial 0.07 0.10 0.96 1.22 0.36 0.74
Multinomial-2-parameter 0.21 0.09 1.25 1.27 0.57 0.71
Multinomial-3-parameter 0.13 0.02 0.40 1.52 0.45 1.10
Multinomial symptoms 0.12 0.02 1.19 1.87 0.44 1.23

Table S.5: MRPE (multiplied by factor of ten) for reported cumulative cases, deaths and active cases for different
models on train and test dataset. The lowest values in each column are written in bold characters. As can be seen from
the table, Poisson and Binomial models perform very similarly while multinomial models outperform Poisson and
Binomial models in test data when predicting case counts.

Table S.5 presents the values of MRPE for reported cumulative cases, deaths and active cases for all the five models.
The column-wise minima are indicated in bold letters. The Poisson and binomial models perform very similarly. This
is expected, since the binomial likelihood approaches the Poisson likelihood for large case-counts. We note that the
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Phase From To Wave
Lockdown 1 1st April 14th April 1
Lockdown 2 15th April 3rd May 1
Lockdown 3 4th May 17th May 1
Lockdown 4 18th May 31st May 1
Unlock 1.0 1st June 30th June 1
Unlock 2.0 1st July 31st July 1
Unlock 3.0 1st August 31st August 1
Unlock 4.0 1st September 30th September 1
Unlock 5.0 1st October 31st October 1
Unlock 6.0 1st November 30th November 1
Unlock 7.0 1st December 31st December 1
Unlock 8.0 1st January 31st January 1
Unlock 9.0 1st February 28th February 2

Unlock 10.0 1st March 31st March 2
Unlock 11.0 1st April 30th April 2
Unlock 12.0 1st May 31st May 2
Unlock 13.0 1st June 30th June 2
Unlock 14.0 1st July 31st July 2
Unlock 15.0 1st August 31st August 2

Table S.4: Phases of public health interventions in India from 1st April, 2020 to 1st August, 2021 which is the time period
considered for data analysis in this paper. The last column indicates if a particular time period has been considered as
wave 1 or 2. The period from 1st April, 2020 to 31st January, 2021 is considered as wave 1 while 1st February, 2021 to
31st August, 2021 is considered as wave 2.

multinomial models are doing better in test data in predicting reported cumulative cases. Overall, the Multinomial-
2-parameter model does well when predicting reported cumulative cases, deaths and active cases. Specifically, the
Multinomial-2-parameter model predicts reported active cases better than the other models considered. Figure S.5
provides the daily trajectories for predicted active cases and deaths from April 1, 2020 to August 31, 2020 for the
different models under consideration.

Figure S.5: Reported Active Cases in India - Comparison between different models: We consider 5 different models
here, namely, Binomial, Poisson, Multinomial-2-parameter, Multinomial-3-parameter and Multinomial symptoms
models. We observe that the prediction of all the models are quite similar and all of them are quite accurate for the
training period. However, in the test period, all of the models suffer due to the sudden decrease in cases during Unlock
3, which none of them could predict.
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=Model Basic Reproduction Number
1-14 Apr 15 Apr-3 May 4-17 May 18-31 May 1-30 Jun

Poisson 3.36
[3.29, 3.43]

2.24
[2.21, 2.27]

1.69
[1.66, 1.72]

1.76
[1.73, 1.79]

1.76
[1.62, 1.64]

Binomial 3.42
[3.35, 3.5]

2.25
[2.22, 2.28]

1.69
[1.66, 1.72]

1.76
[1.73, 1.79]

1.63
[1.62, 1.64]

Multinomial-2-parameter 3.74
[3.62, 3.85]

2.36
[2.31, 2.4]

1.75
[1.72, 1.78]

1.70
[1.67, 1.72]

1.61
[1.61, 1.62]

Multinomial-3-parameter 3.22
[3.15, 3.29]

2.25
[2.21, 2.29]

1.75
[1.72, 1.78]

1.75
[1.72, 1.78]

1.73
[1.72, 1.74]

Multinomial symptoms 3.30
[3.23, 3.37]

2.18
[2.14, 2.21]

1.64
[1.61, 1.66]

1.59
[1.57, 1.61]

1.52
[1.51, 1.53]

Table S.6: Estimates of R0 for 5 different time periods in India by different models. All the models give quite similar
estimates. For each of the 5 models, there is an overall decreasing trend in the estimates of R0 as we move forward in
time periods. This shows the effectiveness of the lockdown and public health measures implemented in India during the
beginning of wave 1.

S.3.3 Confidence intervals for different compartments for India

We have done our estimation using the MCMC Metropolis Method and predicted the counts for the different com-
partments by using the posterior means conditional on the estimated parameters. So the large number of iterations of
MCMC provide a 95% credible interval for the parameters as well as for the predictions of the compartments. So the
following figure shows the credible regions for the Reported Active, False negative active and Untested Active cases.
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Figure S.6: 95% Credible Intervals of estimates of Current Active Cases in India for (A) wave 1 and (B) wave 2. We see
that the credible intervals of reported active cases is much narrower than that of untested active cases and false negative
cases which is expected as the former is observed, which reduces the variance of the estimates while the other 2, being
unobserved, have high variance.

Subfigure (A) of figure (S.6), shows the 95% CI’s of the estimates of Current Active cases in India from 1st April, 2020
to 31st January, 2021 and subfigure (B) shows the same from 1st February, 2021 to 31st August, 2021.
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Figure S.7: Daily Fluctuations in May and June. The red line denotes our usual predictions (using base Multinomial-2-
parameter model without day-of-the-week correction) and the blue line denotes predictions with the correction. One
can clearly see how the correction makes the prediction much more accurate.

S.3.4 Accounting for weekly seasonality

From figure S.7, we can easily observe a seasonal trend in the observed number of daily confirmed cases. More
specifically a weekly trend is visible, where the number of cases for Monday and Tuesday is a bit lower than the other
five days of the week. So, in this case, it might not be reasonable to assume that the outgoing rate from the Exposed
Node to the Infectious Nodes is same for all the days in the week. So we have assumed that the rate for these two days
(Monday and Tuesday) is lower than that of other days of the week. This is achieved by multiplying the rate for Monday
and Tuesday by a constant ω1 (to be estimated by MCMC as a third parameter), and for the remaining 5 days, it is
multiplied by a constant ω2. But we have assumed that the mean outgoing rate from the Exposed Node to the Infectious
Nodes is 1

DE
over a week. So we can readily get the relationship between ω1 and ω2 which is given by ω2 = 7−2ω1

5 .
Now using the new adjustments, there will be changes in the following 4 differential equations and the remaining D.E.
will remain exactly same.

∂E

∂t
=
βtS(t)

N

(
αPP (t) + αUU(t) + F (t)

)
− E(t) ∗ ω(t)

DE
− µE(t)

∂U

∂t
=

(1− rt)E(t) ∗ ω(t)
DE

− U(t)

β1Dr
− δ1µcU(t)− µU(t)

∂P

∂t
=

(1− f)rt E(t) ∗ ω(t)
DE

− P (t)

Dr
− µc P (t)− µ P (t)

∂F

∂t
=
f rt E(t) ∗ ω(t)

DE
− β2 F (t)

Dr
− µc F (t)

δ2
− µ F (t)

where ω(t) = ω1 if the day is Monday or Tuesday and ω(t) = ω2 if the day is otherwise. So basically we need to
estimate an additional parameter ω1 other than βt and rt. Now we have assumed that ω1 is not time-varying, it is
constant over time to reduce the complexity of the model. Now we can easily see from the Figure S.7 that using this
correction, the model has been able to capture the true trend of the daily confirmed cases more accurately than that
of without correction. The prediction has been become more accurate with this adjustment. This is also evident from
the MRPE of the daily confirmed cases in both cases. The MRPE with correction is 0.009, while the MRPE without
correction is 0.012. The estimate for ω1 came out to be 0.82 and therefore ω2 is equal to 1.07. Actually the ratio of ω1

and ω2 denotes the actual scaling factor by which the daily positive counts on Monday and Tuesday are dipping down
compared to the remaining 5 days and this ratio came out to be 0.76. So, with this correction, we have not only been
able to improve the prediction accuracy but also estimate that there is an approximately 76% lower reporting of daily
new cases on Monday and Tuesday than other days of the week. It is easy to see that this method is also applicable for
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other countries like USA where reported cases tend to be lower on weekends than on weekdays. However, one must
assume beforehand which days have comparatively lower rates of reporting. If such information is unavailable, one
may try to incorporate more than 2 parameters all of which can vary freely or resort to other time series techniques for
isolating the seasonal (weekly) component.

S.4 Results for Delhi and Mumbai

There is tremendous heterogeneity in the virus curves across time in India. We focus on two of the worst-hit places in
India - Delhi and Mumbai.

The city of Mumbai has nearly 0.7 million reported cumulative cases by 1st August, 2021 while Delhi had over 1.4
million cases by the same date.

We estimate the basic reproduction number for Mumbai and Delhi for both wave 1 and wave 2. The periods for wave 1
and wave 2 remain same as before. Wave 1 is defined from April 1, 2020 to January 31, 2021 and wave 2 is defined as
February 1, 2021 to June 30, 2021. We also provide a 1 month prediction of reported active cases for July, 2021 for
both Delhi and Mumbai.
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Figure S.8: Predicted Reported Active Cases for (A) Delhi (wave 1), (B) Delhi (wave 2), (C) Mumbai (wave 1) and (D)
Mumbai (wave 2) using the Multinomial-2-parameter model. We have taken April 1, 2020 to January 31, 2021 as the
first wave training period and in the first wave, we have not taken any testing period. In the wave 2, we have taken Feb
1,2021 to June 30,2021 as the training period, while, July 1,2021 to August 31,2021 was taken to be the test period.

S.17



FEBRUARY 5, 2022

Figure S.8 shows the predicted reported active cases of Delhi and Mumbai. Figure S.8 shows that our model fits the
training data for both the places reasonably well. We also see that in the test data, our model the number of reported
cases predicted by our model matches the true observed cases quite accurately.

Table S.8 presents a comparison of the under-reporting factors in Delhi and Mumbai for cases and deaths. There is
tremendous heterogeneity between states, with case underreporting factors of approximately 28.3 and 13.6 in the first
wave, while the underreporting factors in Wave 2 are 19 and 42 and death underreporting factors of 6.29, and 3.86 in
Delhi, and Mumbai respectively in the first wave, while in the second wave they came out to be 4.4 and 5.6.
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Figure S.9: Estimated basic reproduction number for (A) Delhi (wave 1), (B) Delhi (wave 2), (C) Mumbai (wave 1)
and (D) Mumbai (wave 2) using the Multinomial-2-parameter model. The reproduction numbers are estimated for the
training periods only in each of the 2 waves: April 1,2020 to Jan 31, 2021 for the first wave and Feb 1,2021 to June
30,2021 for the second wave.

Figure (S.9) shows the estimates of basic reproduction number for Delhi and Mumbai. We note that the peak mean
estimates of R0 for wave 1 is lower than the same in wave 2 for both the places. In fact, the peak R0 values for wave 1
are 1.89 and 1.71 while in wave 2, they are 3.15 and 3.31 for Delhi and Mumbai respectively. This can be explained by
the fact that during the second wave, both these places, as well as the rest of India, saw a much higher rate of daily new
cases than that in the first wave.
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S.5 Simulations

We will here discuss about the different simulations and scenarios and their methods of data generation.

S.5.1 Effect of Misclassification

Data Generation: Our generative model is the multinomial-2-parameter model with f = 0.3. The other parameters are
fixed as in the data analysis for India: N = 1.341 billion, λ = µ = (69.416 × 365)−1, αp = 0.5, αu = 0.5, β1 =
0.6, β2 = 0.7, δ1 = 0.3, δ2 = 0.7, De = 5.2, DR = 14, µc = (1−mCFR)/14 where mCFR = 0.054. We generate
the data for a period of 101 days, divided into five time periods: days 1 − 10, 11 − 31, 32 − 50, 51 − 64, 65 − 101.
The values of βt across the five periods are set at 0.8, 0.65, 0.4, 0.3, 0.3 and the corresponding values of rt are set
at 0.1, 0.2, 0.15, 0.15, 0.2. The chosen true values closely mimic the estimates for India from March 15 to June 23
and the periods mimic the phases of lockdown in India. We choose the multinomial-2-parameter model for estimation.
We fit the model using the same parameters as in the model used for generating the data except βt, rt and f . We
consider f ∈ {0, 0.15, 0.3} for prediction in the 3 scenarios. The values of βt and rt are then estimated in each of the
3 scenarios for the 5 time periods. The entire process is repeated 1000 times. In the main paper we have shown the
effect of misclassification on number of total active cases. We concluded that the effect of misclassification on total
active cases was substantial, but it was negligible on reported active cases. Here, we provide the mean estimates of R0

obtained by the 3 different models with 3 different false negative rates f = 0, 0.15 and 0.3.

Basic Reproduction Number MRE
R01 R02 R03 R04 R05 Lower C.I Mean Upper C.I

Actual 3.99 3.65 2.12 1.59 1.69 - - -
Predicted Using f = 0 3.64 3.51 1.97 1.48 1.65 0.0036 0.0041 0.0045
Predicted Using f = 0.15 3.52 3.64 2.01 1.51 1.69 0.0035 0.004 0.0044
Predicted Using f = 0.3 3.83 3.73 2.04 1.53 1.71 0.0009 0.0012 0.0015

Table S.7: Effect of misclassification on Basic Reproduction Number. The first row denotes the true values used to
simulate the data (which are based on estimates for India during the beginning of wave 1) while the later rows show
estimates obtained using Multinomial-2-parameter model with 3 different values of fm which are 0, 0.15 and 0.3
respectively. We observe that the estimates of R0 do not vary substantially with different values of f which shows the
robustness of our estimate of R0 against misclassification.

It is quite evident from the table S.7 that the R0 is quite robust with the change of the value of false negative rate (f ).
Under all the false negative rates, the estimation of R0 is quite accurate which is evident from the MRE provided in the
table S.7.

S.5.2 Effect of selection

We generate data using the model described in extension 3 with most of the parameters taking the same values as the
above previous simulation except for αu = 0.7, µc = 0.047 · 1

14 , De = 5.2, Dr = 14/0.953. For Selection Model we
have some additional parameters. They are set as p0 = (10−6, 10−5, 1− 10−6 − 10−5) and p1 = (0.02, 0.18, 0.8). As
before, the data are generated for a period of 101 days with 5 periods 1− 10, 11− 31, 32− 50, 51− 64 and 65− 101.
βt = (0.6, 0.4, 0.3, 0.25, 0.2)′ for the 5 periods. Predictions are based on the Multinomial-2-parameter model, where
the probability of being tested is assumed to be independent of symptoms with f = 0.3 (the simulation truth). Ignoring
the misclassification will lead to even larger biases but we chose to decouple the effect of the two. As we have observed
in section 4.2 of main paper, selection bias has a substantial impact on the estimates of R0 and case counts.

S.5.3 Effect of number of tests

In this section, we study the effect of increasing testing on the course of the pandemic. We expect that with increasing
number of tests we have a better chance of identifying the infectious people, which might result in a faster end to the
pandemic. To test this hypothesis, we use our Selection Model(Extension 3) to explore the population infection rates
as a function of the number of available tests. Generation Model: We use the same Selection model for generating
these data as in the previous section. To generate the data, we use five different scenarios where values of all the
parameters except the number of tests is the same as in the previous simulation. The data are generated for a period of
1000 days with 5 periods 1− 10, 11− 31, 32− 50, 51− 64 and 65− 1200. The values of βt for the 5 periods were
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(0.6, 0.4, 0.3, 0.2, 0.05) for all the models. The only difference between the models is the number of tests. For the first
scenario, we generated the number of tests such that the number of test increases exponentially from 20,000 on the first
day to 1 million on the 1200th day. We used the following equation for generating such a sequence :

T (t) = start× e(t−1) log(λ) ∀t ∈ {1, 2, ..., 1200} where λ =
log
( start

end

)
1200− 1

Let us denote the sequence of no of tests generated by T . Now, for the 5 scenarios, we generated data using number
of tests equal to 1, 2, 3, 4 and 5 times T respectively. We repeat the process 1000 times and take analyze the mean
predictions of total active cases.

Figure S.10: Effect of test : Plot showing the number of total active cases over time for different number of tests. The
numbers above the arrows indicate the multiplication factor of number of tests. We can observe that with higher number
of tests, we have earlier peaks and a quicker drop in the number of cases as well.

Results: Figure S.10 shows the mean number of total active cases across 1000 simulations as a function of time since
pandemic onset. With a higher number of tests, the pandemic ends faster. We observe that the number of days before the
first time the number of total active cases comes below the 1 million mark (after attaining the peak) for the models with
number of tests = 3T and 4T is 1.14 and 1.06 times that of model with with number of tests = 5T . For the models with
number of tests = T and 2T , we note that cases do not come below the 1 million mark withing the 1200 day period.

We also note that all the predictions in the 5 scenarios predict the existence of a 2nd peak. This is a proof of concept
illustration with our formulation. We further observe that with higher number of tests, the gap between the first and
second peak becomes smaller. Here, for the models with number of tests equal to 2, 3, 4 and 5 times T , we have the
gap between the 2 peaks as 0.77, 0.64, 0.56 and 0.49 times that of model with number of tests equal to T . We should
note that while the actual values presented in this simulation do not bear any resemblance with those of any country or
state, the relative orders and findings convey important insights regarding effect of the number of tests on the number of
infections.

S.6 MCMC convergence diagnostics

Since the training period for our simulation study was divided into 1-months bins, resulting in a large number of
month-specific parameters, we discuss the convergence diagnostics for the key parameters (βt, rt andR0) corresponding
to the last period for the sake of simplicity. Recall that the true values for these three parameters were set at β∗t = 0.25,
r∗t = 0.1 and and R∗0 = 1.5 respectively.

We further assess the convergence and mixing properties for our MH sampler by running two chains each for 200,000
iterations with burn-in of 100,000 iterations, using standard diagnostic tools such as the Gelman-Rubin R̂ [6], trace-plot
and autocorrelation. To generate diverse initial values, we initialize the first chain using Gaussian MLE estimates and
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the second using a random walk perturbation of the initial values of the first chain. The trace-plots and autocorrelation
plots are shown in (Fig. S.11, A and B) and the densities of the posterior samples in Fig. S.11)-C. The Gelman–Rubin
R̂ statistics for the three parameters (βt, rt and R0) came out to be 1.02 (upper CI: 1.1),1.05 (upper CI: 1.23) and 1
(upper CI: 1.01), respectively, indicating convergence. These diagnostics suggest rapid convergence, adequate mixing
and low autocorrelation for the sampler. The diagnostic plots have been generated using the ggmcmc package [5] in R.
Note that the results on the main paper and the supplement are based on posterior summaries based on one long chain
with 200,000 iterations iterations out of which the first 100,000 iterations are considered to be the burn-in period.

S.7 Sensitivity Analysis

Since we have not estimated the values of quite a few parameters, a sensitivity analysis is necessary. Now, as doing
sensitivity analysis of all the parameters and initial values is impractical, we will do sensitivity analysis for the following
parameters only.

1. E0 : The initial value of Exposed had been chosen as 3 times the sum of initial values of Untested, Confirmed
and False Negative cases. Such a choice might seem arbitrary. Hence, we try 4 different values of E0 and
check how the estimates of R0 and Current Active cases vary across different values of E0. We have assumed
E0 = 1, 2, 3 and 4 times (U0 + P0 + F0).

2. αU : The value of αU had been taken as 0.5 in the main analysis. We also assumed αP = 0.5. So, we effectively
assumed that the rate of transmission of disease by untested and tested positive individuals was same. Some
things to consider when choosing the value of αU and αP were that individuals who were tested positive
are quarantined and/or hospitalized reducing their rate of transmitting the disease. And untested cases are
predominantly asymptomatic cases whose rate of spreading the virus is much less than symptomatic cases.
So, we have αU < 1 and αP < 1. However, we do not know if αU > αP or αU < αP . So we try 4 different
values of αU here which are αU = 0.3, 0.5, 0.7 and 1.

3. DE : We stated in the beginning of this paper that we have assumed the Incubation period equals the Latency
period (= DE). We have taken DE = 5.2 days following the results by Lauer et al. [10]. However research
by other groups suggest different values of incubation period like 6.4 days by Becker et al. [2] etc. So we
consider 3 values of DE for sensitivity analysis. They are DE = 6.4, 5.2 and 4.1 (lower limit of 95% CI of
estimates of incubation period by Lauer et al. [10])

4. k : For Multinomial Symptoms model, one important parameters is k which is the ratio of probability of a
mildly symptomatic person being tested to that of an asymptomatic person being tested. Since the probability
of testing is higher for a mildly symptomatic person than an asymptomatic person, so k > 1. In our main
analysis, we assumed k = 4. The choice of k was not supported by any data. So, we try 4 different values of k
: k = 3, 4, 5 and 6 and look at the different estimates.

S.7.1 Effect of initial value of Exposed

We start with the initial value of Exposed individuals. Throughout our analysis we have assumed that the number of
exposed individuals on the starting day i.e. 1st April was thrice the number of total expected infected up to that day. So
we check how much our estimates vary if we vary the starting value of Exposed (E0). So, we use 4 starting values for
E0:

1. E0 = U0 + P0 + F0

2. E0 = 2(U0 + P0 + F0)

3. E0 = 3(U0 + P0 + F0)

4. E0 = 4(U0 + P0 + F0)

We can observe from subfigure B of Figure (S.12) that our estimates of R0 are relatively robust with respect to choice
of initial values of exposed. The only substantial variation is observed in the first time period - 1st - 14th April. Now,
let us look at how the estimates of number of active cases change with different initial values.

We can observe from subfigure A of Figure (S.12) that all the estimates for total active cases increases with increasing
values of E0. The estimate of total active cases on 30th June for E0 = 4(U0 + P0 + F0) was more than 2 times that
for E0 = (U0 + P0 + F0). Hence we observe that though the estimates of total active cases vary substantially with
different initial number of Exposed people, the estimates of Basic Reproduction Number are much more robust to such
variations. Now we look at the effect of αU on our estimates.
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Figure S.11: The Figures under Block A correspond to the trace plots for the three parameters β, r and R0, while those
under Block B correspond to the autocorrelation plots and finally the Block C correspond to the density plots.

S.7.1.1 Effect of αu

In our main analysis we assumed αU = 0.5. Here, we try 4 different values of αU , α = 0.3, 0.5, 0.7 and 1. First, we
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Figure S.12: Variation of estimates of R0 with different values of E0 which is the initial number of Exposed individuals.
4 values of E0 are considered, which are, E0 = U0 + P0 + F0, E0 = 2(U0 + P0 + F0), E0 = 3(U0 + P0 + F0) and
E0 = 4(U0 + P0 + F0)

Figure S.13: Variation of estimates of R0 with different values of αU which is the scaling factor of the infection rate
of untested individuals as compared to false negative individuals. 4 different values of αU are considered which are
0.3, 0.5, 0.7 and. 1 respectively.

look at the estimates of R0. Similar to the previous section, from subfigure B of (S.13), we observe that the estimates of
R0 are more or less similar for different values of αU . Once again, the only R0 that substantially varies with different
values of αU is the first one i.e. R01. Now, we look at the estimates of total active cases.

Subfigure A of (S.13) shows that the estimated value of total active cases decreases with increasing value of αU . The
reason behind this is if the value of αU is higher, then a smaller number of untested cases will spread the same amount
of infection as a larger number of cases would have if the value of αU had been lower.

So, once again, we observe that while the estimates of the number of active cases are influenced heavily by αU , the
estimates of R0 remain relatively unaffected by the change.

S.7.2 Effect of De

In our model, the time an individual stays in the compartment E is assumed to follow an exponential distribution
whose mean is equal to the latency period. Based on estimates from [7] we have taken the value of latency period to
be 5.2 days. While the estimates of latency period by different groups of researchers vary substantially, most papers
list their mean estimates between 5 and 6 days. For example, a recent paper Xin et al. [14] estimates mean latency
period to be 5.5 days. In this context, we would like to point out another implicit assumption in our model. For the
sake of simplicity, the exposed individuals E are assumed to move to some compartment among P , U or F after the
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latency period. This is equivalent to assuming that the incubation period and latency period are equal. This seems to
be a reasonable assumption in the context of COVID-19 as the values of the incubation period and latency period are
estimated to be very close. For example, a meta-analysis by [4] finds the mean incubation period to lie in the range 5.2
days (95% CI 4.4 to 5.9) to 6.65 days (95% CI 6.0 to 7.2). These numbers did change with the rise of the Omicron
variant [1], but that does not affect our data analysis as it ends in August 2021 before Omicron started its circulation. To
check whether the predictions from our model are robust to different latency periods, we have performed sensitivity
analyses corresponding to data from waves 1 and 2 in India.

In the first study, we try two values of De (4.1 and 6.4) and check how the new estimates stack up against our original
predictions using De = 5.2.

Figure S.14: Variation of estimates of R0 and total active cases with different values of De which is the incubation
period. 3 different values of De are considered, which are, 4.1, 5.2 and 6.4 respectively.

As we can observe from subfigure B of S.14, the estimates of R0 are robust with respect to different values of De.
From subfigure A of Figure (S.14), we note that the predicted number of active cases vary with the different values of
De. However, unlike the previous cases, we do not observe substantial variation with different variation of De. But
one thing, we need to observe that in this setup, the value of De is just varying from 4.1 to 6.2. So, we performed a
second sensitivity analysis on for the second wave (Feb 1, 2021 – Jun 30, 2021), for a broader range of values for De,
motivated by the predominance of delta variant[12] during the second wave of pandemic in India, with a much smaller
latency period (3-4 days) [11]. For the second sensitivity analysis, we have used 5 values of De ∈ {2, 3, 4, 5, 6}.

Figure S.15: Variation of estimates of R0 and total active cases with different values of De which is the incubation
period. 5 different values of De are considered, which are 2, 3, 4, 5 and 6 respectively.
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Figure S.15 presents the results of the sensitivity study. We observe that the estimate of R0 varies moderately with De,
the maximum R0 for the model De=6 being 2.5 and that for the model De=2 being 2 (approximately). In spite of this
variation across the different values of De, we see that the general trend of the basic reproduction captured by all the
models is similar. On the other hand, the peak total active cases for the models varies from 64.5 million to 73.8 million.
As with R0, the general trend appears to be similar even after varying the latency period over a wide range of values.
We would like to point out here that while the figure only includes total active cases, the robustness properties extend
similarly to estimates of cumulative cases and deaths as well.

To summarize, we observe that the predictions and estimates of our model exhibit some variation with changing values
of De. As we cited earlier there has been studies showing that the value of De for the ancestral variant has been in the
5-6 days range. The alpha and delta variant estimates also fall closer to this range. Since the current paper analyzes
data during wave 1 and 2 from India (April 2020 to June 2021) our choice of De aligns with the estimates of De for
the ancestral, alpha and delta variants which have been the principal variants during this period. On the other hand,
the latency period of recent variants like Omicron have been estimated to be much shorter at around 3 days [8]. So,
with new emerging variants we would recommend choosing reliable and accurate estimates [1] of De and other similar
parameters from other external studies and incorporate them in our model. Different periods of the pandemic will need
different values of De based on the dominant variant.

S.7.3 Effect of k

In multinomial symptoms model, we defined k as the ratio of the probability of a mildly symptomatic individual getting
tested to the same for an asymptomatic individual. We chose the value k = 4 for our main analysis. We had argued why
the value of k should be greater than 1 but could not provide any justification for choosing that particular value. So, we
try 4 different values of k : k = 3, 4, 5 and 6. We will start with the estimates of R0.

Figure S.16: Variation of estimates of R0 with different values of k for multinomial symptoms model (which denotes
the ratio of probability of being tested for mild symptomatic to that of asymptomatic individuals). k is assumed to be
greater than 1. Here we have considered 4 different values of k which are 3, 4, 5 and 6 respectively.

Figure subfigure B (S.16) shows that similar to previous cases, the estimates of R0 do not vary much with different
values of k. We now look at the estimates of total active cases. From subfigure A of Figure (S.16), we note that the
estimates of total active cases vary with different values of k and with higher values of k we have lower predictions of
number of total active cases.

To summarize, we observe that the estimates of the Basic Reproduction number are not substantially influenced by
these parameters with an exception of the first Reproduction number. We also note that the estimated number of active
cases varies with different values of parameters in most of the cases. It is clearly visible that the sensitivity of the total
active case predictions vary across parameters. While it does not vary much with DE , there is substantial variation with
different values of E0.
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Nation/State 1st February, 2021 1st July, 2021
Predicted Reported

(Millions)
0.62

[0.6, 0.64]
1.44

[1.43, 1.45]
Predicted Total

(Millions)
17.6

[17.06, 18.1]
33.3

[32.7, 33.9]
Observed
(Millions) 0.64 1.43

Cases

Under-Reporting
Factor

28.3
[28.2, 28.4]

19.2
[18.9, 19.5]

Predicted Reported
(Thousands)

11.5
[11.16, 11.9]

25.36
[25.06, 25.7]

Predicted Total
(Thousands)

72.4
[69.6, 75.1]

132
[127, 137]

Observed
(Thousands) 10.8 25

Delhi

Deaths

Under-Reporting
Factor

6.29
[6.24, 6.33]

4.3
[4.1, 4.5]

Predicted Reported
(Millions)

0.322
[0.318, 0.325]

0.73
[0.724, 0.73]

Predicted Total
(Millions)

4.19
[3.93, 4.54]

20.04
[19.97, 20.1]

Observed
(Millions) 0.309 0.73

Cases

Under-Reporting
Factor

13.6
[12.7, 14.7]

43.3
[43.2, 43.5 ]

Predicted Reported
(Thousands)

11.99
[11.76, 12.23 ]

15.52
[15.39, 15.65 ]

Predicted Total
(Thousands)

43.9
[41.9, 46.34]

115
[114.6, 115.4]

Observed
(Thousands) 11.4 15.5

Mumbai

Deaths

Under-Reporting
Factor

3.86
[3.69, 4.08]

9.06
[8.97, 9.16]

Table S.8: Predicted Cumulative Cases and Deaths (Reported and Total) of Delhi and Mumbai along with observed
counts and predicted underreporting factors on 2 different dates, 1st February, 2021 & 1st July, 2021
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