
Enhancing Automated Software Refactoring via Simultaneous Testing,
Dependency Analysis, and Examining Multi-level Software Quality

Concerns

by

Jeffrey J. Yackley

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer and Information Science)

in the University of Michigan-Dearborn
2022

Doctoral Committee:

Professor Marouane Kessentini, Co-Chair
Professor Bruce R. Maxim, Co-Chair
Assistant Professor Abdallah Chehade
Assistant Professor Foyzul Hassan
Associate Professor Zhiwei Xu

© Jeffrey J. Yackley 2022

All Rights Reserved

For my parents, because of you “I am on my way; I can go the distance..."

ii

ACKNOWLEDGEMENTS

It has been a challenging five years to bring this dissertation to fruition and I

would like to thank everyone who made it possible and supported me on this amazing

journey.

First, I would like to thank my co-advisors Profs. Marouane Kessentini and

Bruce Maxim who spent countless hours guiding me through innumerable late nights,

manuscript edits, and conference presentations. Your expertise and insight pushed

me to be a better researcher and your encouragement kept me on track even through

a global pandemic.

I would also like to thank Bruce for taking me on as his Padawan. You have

been a fantastic mentor and role-model from the start of my undergraduate program

in computer and information science so many years ago all through my graduate

program. I’ve been honored to learn from you these past ten years and I know I

wouldn’t be half the instructor I am today if it wasn’t for your advice and example

as a brilliant, caring, student-focused, and fair professor.

Many thanks to my fellow ISE Lab members, in particular, Thiago Ferreira and

Rafi Almhana for your friendship and support these many years.

To my parents, Sandra Yackley-Anderson and Richard Anderson, your faith in

me, support, and love has been irreplaceable. I’m only able to write this dissertation

because you never gave up on me and pushed me to succeed. I love and appreciate

you both tremendously.

Next, I would like to thank my partner, Mariah Bauman, for putting up with the

many sleepless nights and the long hours spent studying, writing, and coding while I

iii

finished the work for this dissertation. Your love and support throughout this process

has meant more to me than you will ever know.

Lastly, but by no means least, thank you to the CIS Department at U of M -

Dearborn for providing the support to complete this thesis. In addition, thank you

to our wonderful staff, particularly Kimberly LaPere and Allison Kerry for helping

to keep things running smoothly and guiding me through all of the administrative

hurdles of the program.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF ABBREVIATIONS . xiii

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Research Context . 1

1.2 Problem Statement . 3

1.3 Contributions . 5

1.3.1 Contribution 1: Simultaneous Refactoring and Re-
gression Testing . 5

1.3.2 Contribution 2: Detecting and Understanding Col-
lections of Refactoring Recommendations 8

1.3.3 Contribution 3: Investigating the Relationships be-
tween Architecture and Code Anti-patterns Using
Random Forest and Grid Search 12

1.4 Publication List . 14

1.5 Organization of the Dissertation 15

v

II. State of the Art . 16

2.1 Introduction . 16

2.2 Software Refactoring . 16

2.3 Automated Software Refactoring Recommendation Tools . . . 17

2.4 Software Refactoring Dependencies 18

2.5 Regression Testing . 20

2.6 Software Anti-patterns . 21

2.6.1 Architecture Anti-patterns 22

2.6.2 Code Anomalies . 23

III. Simultaneous Refactoring and Regression Testing 25

3.1 A Motivating Example . 25

3.2 Approach Overview . 26

3.2.1 Simultasking . 27

3.2.2 Adaptation . 29

3.2.2.1 Unified Search Space Representation . . 30

3.2.2.2 Fitness Functions 33

3.2.2.3 Evolutionary Operators 35

3.3 Validation . 37

3.3.1 Research Questions 37

3.3.1.1 RQ1-A: Quality Improvement 37

3.3.1.2 RQ1-B: Refactoring Meaningfulness . . 37

3.3.1.3 RQ2-A: Synergy between Regression Test-
ing and Refactoring to Support Software
Maintenance in Practice 38

vi

3.3.1.4 RQ2-B: Testing Effort Reduction and Refac-
toring Coverage 38

3.3.1.5 Study Context 39

3.3.2 Data Collection . 40

3.3.2.1 RQ1 - Refactoring 40

3.3.2.2 RQ2 - Regression Testing 43

3.3.3 Experimental Settings and Data Analysis 43

3.3.4 Results . 45

3.3.4.1 RQ1-A: Quality Improvement 45

3.3.4.2 RQ1-B: Refactoring Meaningfulness . . . 46

3.3.4.3 RQ2-A and RQ2-B: Test Case Selection
Coverage and Effort Reduction 48

3.4 Threats to Validity . 50

3.5 Conclusion . 50

IV. Dependent or Not: Detecting and Understanding Collections
of Refactorings . 52

4.1 A Motivating Example . 52

4.2 Refactoring Dependency Theory 54

4.2.1 Definitions . 55

4.2.1.1 Refactoring Pre- and Post-Conditions . . 56

4.2.2 Algorithm for Detecting Refactoring Dependencies . 57

4.2.3 DPRef . 60

4.3 Empirical Study . 62

4.3.1 Research Questions 62

4.3.1.1 RQ1: Precision 63

4.3.1.2 RQ2: Relation 65

vii

4.3.1.3 RQ3: Improvement 66

4.3.2 Experimental Settings 66

4.3.3 Results and Discussion 69

4.3.3.1 Results for RQ1 69

4.3.3.2 Results for RQ2 72

4.3.3.3 Results for RQ3 75

4.4 Threats to Validity . 77

4.5 Implications and Future Work 78

4.5.1 Refactoring Pattern Extraction 79

4.5.2 Refactoring Collaborations Between Developers . . . 80

4.5.3 Change Operator in Search-based Refactoring . . . 80

4.5.4 Interactive Refactoring Tool Support 80

4.6 Conclusion . 80

V. Investigating the Relationships between Architecture and Code
Anti-patterns Using Random Forest and Grid Search 82

5.1 A Motivating Example . 82

5.2 Approach Overview . 85

5.3 Experimental Design . 88

5.3.1 Research Questions 88

5.3.2 Experimental Setup and Formulae 88

5.3.2.1 Metrics for RQ1 88

5.3.2.2 Metrics for RQ2 89

5.3.2.3 Metrics for RQ3 90

5.3.2.4 Data Collection 91

5.3.2.5 Parameter Tuning 92

viii

5.4 Experimental Results . 93

5.4.1 Results for RQ1 . 93

5.4.2 Results for RQ2 . 98

5.4.3 Results for RQ3 . 102

5.5 Threats to Validity . 105

5.6 Conclusion . 106

VI. Conclusion . 107

6.1 Summary . 107

6.2 Future Work . 108

BIBLIOGRAPHY . 111

ix

LIST OF FIGURES

Figure

1.1 Overview of the contributions of this thesis. 5

1.2 Example output of a refactoring recommendation tool: JDeodorant. 10

3.1 An example of decoding a random-key chromosome into domain-
specific representations. 32

3.2 A summary of the 2-task environment. 33

3.3 An illustration of the assortative mating using the adapted crossover
for knowledge transfer. 36

3.4 Median percentage of fixed code smells (NF) over 30 runs at the 95%
confidence level (α < 5%). 46

3.5 Median quality gain (G) over 30 runs at the 95% confidence level (α
< 5%). 46

3.6 The outcomes of the industrial validation on the JDI system by 6
developers during 5 days. 48

3.7 Median effort to test the refactorings (EF) over 30 runs at the 95%
confidence level (α < 5%). 49

4.1 A simplified solution of 6 refactorings for the JFreeChart project. . 53

4.2 Execution of Algorithm 1 on the example of Figure 4.1. 60

4.3 DPRef, a web-tool for detecting refactoring dependencies. 61

4.4 DPRef showing detected refactoring dependencies for JFreeChart. . 61

4.5 Number of refactorings per non-trivial graph in each data set. . . . 68

4.6 Box-plots of refactoring dependency correctness for the 9,595 projects. 70

x

4.7 Participant Survey. 71

4.8 Distribution of refactorings in trivial versus non-trivial graphs based
on the 9,595 projects. 73

4.9 Size of non-trivial refactoring graphs in the 9,595 projects. 74

4.10 Distribution of the refactoring types among non-trivial graphs for the
9,595 projects. 74

4.11 The number of graphs that improved the quality metrics. 76

4.12 Rate of quality improvement (%) for the refactoring graphs per metric. 76

5.1 Visualization of anti-patterns and code anomalies for the BioInfo
Project. 85

5.2 An overview of our approach. 86

5.3 Our web-app showing the relationships between code anomalies and
architecture anti-patterns for the Opencsv project. 87

5.4 Predicting Cyclic Dependencies architecture-level anti-patterns from
class-level code anomalies. 94

5.5 Predicting God Package architecture-level anti-patterns from class-
level code anomalies. 95

5.6 Predicting SAP Breaker architecture-level anti-patterns from class-
level code anomalies. 96

5.7 Each bar represents the number of occurrences of architecture-level
anti-patterns that exist for each set of code anomalies. For example,
the second bar indicates for almost 500 of the input data (a set of
16 code anomalies) two architecture-level anti-patterns exist at the
same time. 97

5.8 Each bar represents how many of the data points have that specific
architecture anti-pattern independent from other architecture anti-
patterns that may exist in those data points. 98

5.9 Distribution of code anomalies per architecture anti-pattern type. . 101

xi

LIST OF TABLES

Table

2.1 A brief description of different code anomalies used in our study. . . 24

3.1 Statistics of the studied systems. 39

3.2 Participants involved in RQ1-B. 43

3.3 RQ1-B: Would you apply the proposed refactorings? 47

4.1 Refactoring types and their pre- and post-condition rules. 58

4.2 QMOOD quality metrics. 63

4.3 Statistics of the subject projects. 67

4.4 Selected Participants. 68

5.1 Anti-patterns and code anomalies detected from Apache Cassandra. 84

5.2 Parameter Tuning Results . 92

5.3 Evaluation Results . 93

5.4 Detection rules for three architecture-level anti-patterns. 97

5.5 Most important features for the classification of the SAP Breaker
Anti-pattern . 98

5.6 Most important features for the classification of the Cyclic Depen-
dencies Anti-pattern . 99

5.7 Most important features for the classification of the God Package
Anti-pattern . 99

5.8 Results from the manual validation of the classifier. 103

xii

LIST OF ABBREVIATIONS

AOP Aspect-Oriented Programming

BC Blob Class

BO Blob Operation

CBO Coupling Between Objects

DC Data Class

DCP Data Clumps

DH Distorted Hierarchy

DOE Design of Experiments

EAs Evolutionary Algorithms

ED External Duplication

EF Median Effort to Test Refactorings

FE Feature Envy

GC God Class

IEEE Institute of Electrical and Electronics Engineers

IC Intensive Coupling

ID Internal Duplication

LOC Lines of Code

xiii

MC Message Chain

MCr Manual Correctness

MFEA Multi-Factorial Evolutionary Algorithm

MNF Maximum Number of Features

MO-MFO Multi-Objective-Multi-Factorial Optimization

MOT Mono-task Multi-objective Regression Technique

MSL Minimum Sample Leaf Size

NASA National Aeronautics and Space Administration

NCCS Number of Corrected Code Smells

NDCS Number of Detected Code Smells

NF Number of Fixed Code Smells

NHTSA National Highway Traffic Safety Administration

NSGA-II Non-dominated Sorting Genetic Algorithm-II

NT Number of Trees in the Forest

NTCL Number of Times Code Anomaly Appeared

NTR Non-Trivial Rate

QMOOD Quality Model for Object-Oriented Design

RC Rate of Correctness

RPB Refused Parent Bequest

SAP Stable Abstractions Principle

SC Schizophrenic Code

SCAM Source Code Analysis and Manipulation

xiv

SD Sibling Duplication

SDLC Software Development Life-cycle

SDMPC Standard Deviation of Methods Per Class

SS Shotgun Surgery

TB Tradition Breaker

TCs Test Cases

TNTS Total Number of Test Samples

TQI Total Quality Index

TSE Transactions on Software Engineering

UML Unified Modeling Language

xv

ABSTRACT

Software development is a messy process filled with an assortment of widely vary-

ing practices, procedures, and activities. Software refactoring, the process by which

code is restructured without changing its external behavior, is one of many such ac-

tivities squeezed in to tight deadlines and frantic work schedules. Refactoring is often

discussed as an isolated process, yet developers most often perform floss-refactoring

where refactoring operations are performed along-side some other software develop-

ment activity, such as the addition of a new feature or to fix a bug, in order to support

the work for that activity. This has created a niche for automated tools to assist de-

velopers with these time-intensive tasks and the high cognitive cost associated with

the practice of constant task-switching.

The various automated tools created to support refactoring currently rely on com-

binations of quality metrics and detected code anti-patterns, often called code smells

or code anomalies, to find opportunities to improve the code. Yet, the tools do not

use more task-specific knowledge that exists to further improve both the refactor-

ing recommendations and the associated tasks. Additionally, these automated tools

frequently produce an overwhelming number of refactoring recommendations which

take the form of multiple solutions which are themselves comprised of hundreds of

individual refactoring operations to be performed on the software project. The over-

whelming nature of these recommendation options and competing quality objectives

makes refactoring code quite challenging. To further add to this already onerous

effort, these refactoring recommendations are presented to developers with little con-

cern for how these refactorings are linked together or need to be applied to the code

xvi

creating a truly herculean task.

To address these challenges, we present the following contributions:

1. We designed a simultasking1, search-based algorithm that unifies the software

development tasks of refactoring and regression testing which are currently

treated in isolation, yet inherently linked. Developers frequently switch be-

tween these two activities, using regression testing to identify unwanted behav-

ior changes introduced while refactoring, and applying refactorings on identi-

fied buggy code fragments. This overlap between both developer activity and

engineering material, the source code, makes it an ideal target for potential

knowledge transfer. The salient feature of the algorithm therefore is a unified

and generic solution representation scheme for both problems which serves as

a common platform for knowledge transfer between them. We implemented

and evaluated the simultasking approach on six open-source systems and one

industrial project. Our study features quantitative and qualitative analysis

performed with professional and student developers. The results show that our

simultasking approach provides advantages over current state-of-the-art, mono-

task techniques which treat refactoring and regression testing separately.

2. We developed a theory for reasoning about collections of refactorings through

defining an ordering dependency relation among refactorings and organizing

collections of refactorings as a set of refactoring graphs. We then created an

algorithm, based on our theory, to identify refactoring dependencies and we

further illustrate these concepts with a web-tool for visualizing such refactoring

dependencies and refactoring graphs. Our validation results demonstrate that

43% of the 1,457,873 recommended refactorings from 9,595 open-source projects

that we studied are part of dependent refactoring graphs. Furthermore, refac-
1Simultaneous Tasking: Executing two or more tasks at the same time without weakening of any

of the tasks.

xvii

torings are not only commonly involved in dependent relations, but also when

applied dependent refactoring graphs improve all of the quality attribute metrics

in our experiments more than individual refactorings.

3. We investigated high-level architecture anti-patterns and their correlation or

lack-thereof of with code smells as we noted that software quality can be sig-

nificantly impacted by architecture deterioration. This decay commonly results

in unexpected side effects, an inability to support new features, and an over-

all reduction in software performance. Currently, there is limited knowledge of

when code smells lead to architectural problems, or how the latter can cause

code smells to propagate. Determining which anti-pattern should be refactored

and how is never a pure technical problem in practice. High-level refactoring

decisions have to consider trade-offs between code quality, available resources,

project schedule, time-to-market, and management support. However, most

existing anti-pattern detection tools focus on the code-level, and thus generate

hundreds of code anomalies per project without linking them to architecture

anti-patterns or indicating to developers where to start refactoring. We an-

alyzed the occurrences of 3 types of anti-patterns and 16 code smells on 113

projects to determine: (1) What properties and types of code smells can serve

as indicators of architectural problems? (2) Are there common anti-patterns?

(3) Which types of high-level architecture anti-patterns are correlated with code

smells, and under what circumstances? The answers to these questions will help

developers understand where abstraction is needed, where refactoring is needed,

and to what extent code smells can be prioritized and classified. Thus, we for-

mulated the problem as a multi-class classification task and applied Random

Forest along with a 5-fold, cross validation, Grid Search. We also conducted a

survey with 34 developers to manually check the ranking and classification of

code smells based on their impact and severity on architecture quality.

xviii

CHAPTER I

Introduction

1.1 Research Context

In 1999, Stephen R. Schach wrote in his textbook, Software Engineering, that

software maintenance and evolution accounted for 67% of the total Software Devel-

opment Life-cycle (SDLC) costs of a software project [1]. Twenty-two years later

in 2021, a software quality consulting firm, Galorath1, estimated that number to be

typically around 75% of the total cost of ownership where 50% was consumed for

corrective, adaptive, and perfective maintenance while the remaining 50% was due

to the costs of software enhancements [2]. While the drastic increase in maintenance

and evolution costs are multi-factorial and outside the scope of this thesis, one reason

is the sheer number of tasks that encompass this phase of the SDLC. These various

tasks include: fixing software bugs, migration, software refactoring, software testing,

software change management, and version control among many others [1, 3]. When

one looks at the the long list of the various tasks involved in software maintenance and

evolution it can easily be seen how daunting it is to accomplish all of these tasks with

high quality under the often intractable production deadlines software developers find

themselves facing every day.

From 2000 to 2010, Toyota2 automobiles suffered from strange cases of unintended
1https://galorath.com/
2https://www.toyota.com/

1

https://galorath.com/
https://www.toyota.com/

acceleration which resulted in the deaths of 89 people and 57 injuries over the decade

[4]. The resulting investigation by the United States Department of Transportation

National Highway Traffic Safety Administration (NHTSA) and the National Aero-

nautics and Space Administration (NASA) eventually concluded that excessive use

of global variables contributed to the creation of Spaghetti Code [4]. Spaghetti Code

[5] is a well-known anti-pattern in software development where the flow or logic of

the code has become disorganized and usually incomprehensible to follow just as the

noodles of spaghetti wind through each other in to a messy (even if tasty) clump on a

plate. An anti-pattern is a common, but ultimately poor solution to a common issue

in software development [3].

One of the identified root contributors to the cause of the Spaghetti Code as iden-

tified by an expert witness in the trial, Philip Koopman from Carnegie Mellon Uni-

versity, was excessive use of global variables. Ideally there should be none in the code,

but the actual number present was between 9,000-11,500 representing approximately

82% of the total variables in the code [4]. Additionally as stated by Koopman, the

throttle code was found to have a cyclomatic complexity metric score of 146 whereas

a score of 50 would represent code that was not testable which further demonstrated

the presence of the Spaghetti Code anti-pattern [4]. This amongst other problems

with the code resulted in a settlement for $1.6 billion dollars in damages from a class

action lawsuit against Toyota [4].

As can be see in the Toyota case study, software quality issues can result in

significant and dire consequences not just in dollars, but also human lives. To further

highlight this point, consider the field of medical device manufacturing where recalls

have significantly increased since 2018 with the leading contributor to the recalls being

caused by various software quality issues [6]. This begs the question: how then can

companies and their developers deal with such staggering software quality issues?

Software refactoring, one of the many tasks of the SDLC phase of software main-

2

tenance and evolution, is a critical process which is able to improve software quality

as well as helping to enable other maintenance tasks such as defect correction and

feature addition. Software refactoring is the process of changing the internal structure

of the software without changing its external behavior [7]. The field of refactoring was

pioneered by Ralph Johnson and David Notkin separately in the late 1980s [8]. How-

ever, it was Martin Fowler who most recently rejuvenated and popularized refactoring

in 1999 [7].

Anti-patterns such as Spaghetti Code in addition to other quality metrics such

as the Quality Model for Object-Oriented Design (QMOOD) can provide indications

of problem areas in the code that need restructuring and are thus good candidates

for refactoring [7, 9, 10, 11]. Software refactoring in its purest form is performed by

applying one of the more than sixty, small, atomic operations to code to accomplish

some pre-defined restructuring of the code [7, 12, 13]. For example, the Move Field

refactoring operation will move a single field from class 1 to class 2. However, the

way researches write about software refactoring is often at odds with how refactoring

is actually performed by software developers. Most commonly, developers perform

floss-refactoring which is where they refactor in order to accomplish some other goal

such as to help fix a bug and therefore do not perform refactoring as a distinct, atomic

operation although we can still detect the results of the isolated refactoring as if it

was executed on the code as a distinct operation [13].

1.2 Problem Statement

Currently, there are numerous manual and automated software refactoring tools

[14, 15, 16, 17, 18, 19]. Several of these tools3 exist as either integrated features

or as plug-ins in development environments. Yet, they do not support developers
3https://visualstudio.microsoft.com/, https://www.eclipse.org/, https://www.jetbrains.com/

idea/, https://www.sonarqube.org/

3

https://visualstudio.microsoft.com/
https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.sonarqube.org/

in switching between tasks and treat refactoring as another, separate activity that

developers can use at their disposal when working on their project code. Further,

there is no transfer of knowledge between tasks even though the various maintenance

tasks overlap with software refactoring such as correcting defects, adding features, or

testing.

Software refactoring tools, particularly automated tools, frequently generate an

overwhelming number of refactoring operation recommendations. A tool might pro-

duce multiple solutions each with hundreds to thousands of refactorings. As develop-

ers are already facing a time crunch, it is little surprise that developers do not favor

using the current tools to support refactoring [13]. It is hard to trust recommenda-

tions when one is unable to evaluate each suggestion on the code. Further, there are

hidden dependencies between refactorings in the recommended list output from the

various tools. As developers may only choose to implement some of the refactorings in

the recommendation list, the act of picking and choosing further complicates applying

the refactorings as a refactoring may rely on another refactoring.

In terms of software refactoring, a popular target to find code that needs to be

refactored are anti-patterns. While there is a good understanding and collection of

well-known anti-patterns at the code-level, there is currently a poor understanding

of how these code-level anti-patterns impact the architecture of a software project.

An understanding of which code-level anti-patterns lead to architecture issues and

if refactoring the underlying code-level anti-patterns resolves higher-level problems

in a project would lead to creating better software refactoring tools that are able to

more quickly find the most severe problems that are contributing to larger issues and

generate more useful recommendations for resolving those issues.

4

Figure 1.1: Overview of the contributions of this thesis.

1.3 Contributions

To address the issues mentioned in Subsection 1.2, we offer the following solutions

organized into the three contributions as shown in Fig. 1.1 4.

1.3.1 Contribution 1: Simultaneous Refactoring and Regression Testing

Current software development processes are expensive, laborious, and error prone

[20], with software developers frequently switching between various tasks [21]. For

instance, they commonly shift back and forth between fixing critical bugs and refactor-

ing the related code. While such a multitasking behavior can optimize the allocation
4Free clip art used in the creation of Fig. 1.1 provided by clipartkey.com and clipart-library.com.

5

of human resources, its cognitive cost can be high and exacerbated by the lack of

automated support tools.

Various techniques have been proposed to automate refactoring, including the

detection of refactoring opportunities such as anti-patterns [9, 22, 23] and refactoring

strategies to fix them [24, 25]. Most of the approaches rely on static and dynamic code

analysis to identify refactoring opportunities that maximize quality improvement.

Similarly, many techniques address regression testing to select or prioritize test cases

that maximize the coverage of code changes [26, 27]. In contribution 1, we focus on

test case selection as a regression testing technique. While refactoring and regression

testing might look like two disjointed activities, they are implicitly connected. There

are at least three reasons for this: (1) Since refactoring is not supposed to change

system behavior, developers should perform regression testing on the refactored code

to ensure that no bugs were introduced; (2) both activities go through a first step

of identifying the code component(s) to refactor and/or to test; (3) developers are

usually interested in refactoring buggy code to improve its maintainability; therefore,

they aim to reduce the likelihood of introducing new bugs while working on it [9, 28].

Only a few studies are proposed in the literature to use such implicit connec-

tions [28, 29, 30]. The main goal of these regression testing approaches is to reduce

the number of test cases to run by differentiating between regular code changes and

refactorings. Thus, the regression testing process will not run test cases on methods

where only refactorings, e.g. rename method, were applied since they are assuming

that the applied refactorings will not change the behavior. However, none of these

techniques addressed the possibility of treating refactoring and regression testing si-

multaneously. As a result, refactorings may not be recommended for relevant buggy

code components and selected test cases may not cover relevant poor-quality classes.

Contribution 1 remedies that gap by proposing a unified and generic solution

representation scheme for both refactoring and regression testing to serve as common

6

platform for knowledge transfer between them. The resulting simultasking search

allows for the involvement of multiple tasks at once with each one contributing a

unique factor influencing the evolution of a single population of individuals. In this

contribution, each of the problems of refactoring and regression testing corresponds

to an optimization task, and each one contributes to our simultasking model with

its own objectives which are intended to be complementary to those of the other

problem.

We implemented and evaluated the proposed simultasking approach on six open-

source systems and one industrial project by: (1) assessing the quality improvement

brought by the refactorings recommended by our approach as compared to state-of-

the-art refactoring tools [11, 31]; (2) asking 25 developers to evaluate the meaningful-

ness of the refactorings generated by our approach and by a competitive mono-task

approach [11] using the same fitness functions we employ to identify refactorings (thus,

having as the only difference with our approach the mono-task vs multi-task focus);

and (3) assessing the effectiveness of the test case selection output of our approach

as compared to baseline techniques composed by a bi-objective greedy algorithm [32]

and a mono-task testing approach using the same fitness functions for testing of si-

multasking. We found based on manual evaluation and surveys with developers that,

on average, the simultasking approach performs better than the state-of-the-art tech-

niques, with 89% of recommended refactorings classified as meaningful by developers

and real bugs identified via regression testing in an industrial setting.

The better performance of our simultasking approach in comparison to mono-

task algorithms may be explained by two observations from our experiments: (1)

relevant refactoring opportunities can be recommended in parts of the code that are

reached not thanks to the fitness functions dedicated to the refactoring task (removing

code anti-patterns), but due to the need for covering them in the test case selection

process; and (2) bugs can be discovered because of the knowledge transferred from

7

the refactoring task that promotes the selection of test cases aimed at covering the

refactored components. The 2-stage approach (refactoring then regression testing)

did not outperform the simultasking approach. In fact, simultasking enables the

knowledge transfer in two ways during the optimization process while the 2-stage

approach is limited to only: (1) one way of knowledge transfer (from refactoring to

regression testing), and (2) the final refactoring solution rather than the variety of

refactoring solutions generated during the optimization process.

This work has been accepted and presented at the Institute of Electrical and

Electronics Engineers (IEEE) 19th International Working Conference on Source Code

Analysis and Manipulation (SCAM) [33]

1.3.2 Contribution 2: Detecting and Understanding Collections of Refac-

toring Recommendations

Even for the most competent organizations, building and maintaining high per-

forming software applications with high-quality code is a challenging and expensive

endeavor [34]. Working in a fast-paced environment that demands frequent releases

across several products and deployment environments, developers are often forced to

compromise high-quality standards in favor of meeting deadlines [35]. Lack of ro-

bust automated tools results in buggy and poor quality software that causes financial

losses, high maintenance costs, increased fault-proneness, and delayed or canceled

projects [36]. Software refactoring is widely recognized as an effective approach for

maintaining high quality software by restructuring existing code without changing its

external behavior [37].

Resolving code smells and broader code quality improvements across a project

often requires applying multiple refactorings, which has lead to the creation of tools

that recommend extensive collections of refactorings to developers [38]. These col-

lections are presented to users as a sequence with an implied strict ordering among

8

the refactorings. In practice, many of these orderings are not significant while others

retain significant meaning. Yet, these tools treat each refactoring in the sequence

in isolation. For instance, Cinnéide et al. [39] investigate the impact of only in-

dividual refactorings on quality attribute metrics, such as using the Move Method

refactoring operation to reduce the coupling of a class, without studying the impact

of a sequence of refactorings. Bibiano et al. [40] evaluates the relationships between

refactoring types (e.g. Move Class, Extract Interface) and code smells. However, the

study is based on the assumption that refactorings are only related if applied to the

same code location, e.g. a class. However, most refactoring types modify multiple

code fragments e.g. Move Method modifies two classes, the source and target of the

move operation.

Further, a common practice among developers is to manually apply these gener-

ated sequence of refactorings from tools [38, 40, 41]. This is additionally complicated

by the practice of developers picking and choosing which, if any, of the recommenda-

tions they will implement in their code. Figure 1.2 shows an example of the refactoring

recommendations of JDeodorant [42]. Similarly to other existing automated refac-

toring tools, the dependencies between the refactorings are not revealed. Thus, this

leaves the challenging task of interpreting the sequence of refactoring recommenda-

tions to the developers who lack a theory to tell the difference between when the

orderings are not significant and when they retain significant meaning. This makes

refactoring recommendations generated by tools harder to understand than is neces-

sary especially as the critical refactoring dependency information is not integrated in

refactoring recommendation tools and highlights a gap in the existing research.

To close this gap, in contribution 2 we describe a theory for reasoning about

collections of refactorings through a definition of ordering dependencies among refac-

torings and an algorithm for identifying these dependencies. We aim to improve the

accuracy of refactoring recommendation tools by detecting refactoring dependencies,

9

Figure 1.2: Example output of a refactoring recommendation tool: JDeodorant.

which allows the developers to efficiently interact with such refactoring recommenda-

tion tools. Additionally, we define refactoring recommendations as sets of refactoring

graphs rather than as refactoring sequences. We illustrate these concepts with a

web-tool for visualizing refactoring dependencies and refactoring graphs.

Refactorings, when formalized, have clear pre-conditions defining the circum-

stances in which they can be applied and post-conditions defining the effects of ap-

plying them. For instance, one of the pre-conditions of a Move Method refactoring is

that the method exists in the class from which it will be moved and one of its post-

conditions is that the method must exist in the target class afterward. Therefore,

a refactoring dependency exists when any post-condition of one refactoring matches

any pre-condition of another refactoring, e.g. the method exists in the relevant class.

These linked refactorings then can be organized into groups based upon their de-

pendencies. We represent these groups as directed acyclic graphs, where the nodes

are the refactorings and the edges are the dependencies. This approach offers three

main benefits: (1) developers can quickly and intuitively understand the dependencies

among refactorings that constrain recommendations, e.g. which refactorings must be

done together; (2) developers can more easily compare recommendations by focusing

on essential, rather than accidental, differences; and (3) tool builders can easily inte-

10

grate new features to detect invalid refactorings and improve their recommendation

algorithms.

We validated our proposed theory based on 1,457,873 refactorings recommended

for 9,595 Java projects publicly available on GitHub5. We considered 14 types of

refactorings that are most commonly used in practice [14, 43]. We also developed a

web-tool, DPRef, that implements the proposed ordering dependency detection al-

gorithm. It transforms a refactoring sequence recommended by existing refactoring

tools [42, 44] into refactoring graphs based on the detected dependencies. We con-

ducted experiments to evaluate the correctness of the detected dependencies, discover

what portion of refactorings in recommendations are actually dependent rather than

independent, and estimate the potential impact of dependent refactorings on several

quality attribute metrics. Finally, we conducted a human validation study with 27

developers to manually evaluate the correctness of the detected dependencies and

their relevance.

Our implemented algorithm achieved 100% in correctly detecting all dependencies

between refactorings and identifying invalid refactorings. Furthermore, our findings

demonstrate that 43% of the 1,457,873 recommended refactorings are part of de-

pendent refactoring graphs. This finding confirms that refactorings are commonly

involved in dependent relations and cannot be applied truly independently. Further-

more, dependent refactorings improve all six QMOOD quality attribute metrics [45]

in our experiments better than independent refactorings. The manual validation of

the refactorings by 27 developers shows that all the identified dependencies are correct

for a sample of 233 refactorings after applying them directly on the code of 61 open

source projects based on the order proposed by DPRef. The post-study survey with

the developers confirmed the relevance of detecting the dependencies to help them

understand the sequence of recommended refactorings.
5https://github.com/

11

https://github.com/

We also provide a replication package6 that includes the refactoring dependency

detection tool and necessary data for our large scale validation. The replication pack-

age will enable researchers and tool builders to integrate the refactoring dependency

feature into existing refactoring recommendation and detection tools and further in-

vestigate the relationships among refactorings. This work is currently under review

at the IEEE Journal Transactions on Software Engineering (TSE) and our web-tool

is available on-line7 [46].

1.3.3 Contribution 3: Investigating the Relationships between Architec-

ture and Code Anti-patterns Using Random Forest and Grid Search

Architecture decay causes significant consequences for the quality of a software

project. This decay can cause numerous, unexpected side effects, an inability to sup-

port new features, and an overall reduction in software performance and reliability

among many other negative consequences [47, 48]. As projects evolve, developers fre-

quently postpone improving the quality of their systems in the rush to deliver a new

release until a crisis happens [49]. When that postponement occurs, the project ac-

crues a technical debt which is the cost of choosing a simpler and therefore quicker ap-

proach instead of more thorough, quality-based, and therefore more time-consuming

approach [3]. This accrual of technical debt is the foundation of architectural decay

and eventually a terminally broken system architecture with significant quality loss

[50, 51, 52]. It is critical to identify and fix these quality issues as early as possible

at different levels of abstraction.

One of the main challenges is that even though quality issues often occur at

multiple levels, existing studies focus mainly on the code-level such as code smells [22,

53, 54, 55]. However, recent studies [14, 56] show that 92% of interviewed developers

emphasized that they had never performed architecture refactoring in isolation from
6https://sites.google.com/view/refactoringdependency
7https://iselab-dpref.herokuapp.com

12

https://sites.google.com/view/refactoringdependency
https://iselab-dpref.herokuapp.com

code refactoring. Currently, it is not clear if, when, and how anti-patterns at different

levels influence each other.

While detecting the co-occurrence of code anomalies is well supported by different

tools [11, 13, 57, 58, 59, 60, 61, 62, 63, 64], they do not specify where to start or

how they depend on each other. A large number of code smells are detected without

grouping them together based on their possible relationships with architecture anti-

patterns. Some recent studies [22, 53, 54, 55, 65] investigated the relationships be-

tween code smells and several quality aspects of the software (e.g. maintainability and

comprehension), and conceptually characterized interactions between code anomalies.

However, the relationships between code anomalies and architecture anti-patterns,

such as cyclic dependencies, are rarely investigated. Empirical studies mainly ad-

dress how individual occurrences of code anomalies emerge during software evolution

[66] or impact quality attributes [48, 67, 68, 69].

There is limited knowledge of if and when code anomalies lead to architectural

problems, or how the latter can cause code anomalies to propagate. Given the exis-

tence of multiple names of software problems at different levels, such as anti-patterns

[70], bad smells [7, 71], hotspot pattern [72], and technical debt [51, 73, 74], in this

contribution, we uniformly label architecture problems as anti-patterns and code-level

quality issues as code anomalies.

The objectives of this contribution are to: (1) reveal the correlation or lack of

correlation between architecture anti-patterns and code anomalies, (2) determine the

impacts of anti-patterns and make them explicit to help programmers select the ones

that need to be refactored, and (3) integrate these learned relationships into a refac-

toring opportunities detection tool. This knowledge will guide future research on

avoiding, detecting, and fixing them with (semi) automated support. We formu-

lated the problem of identifying relationships between architecture anti-patterns and

code anomalies as a multi-class classification task and applied Random Forest along

13

with 5-fold cross validation Grid Search to extract the best association rules. In our

adaptation, the code anomalies are the features of the predictive model (i.e., internal

nodes of the decision tree) and architecture-level anti-patterns are the classes to be

predicted (i.e., leaves in the decision tree).

We used a set of 16 code anomalies and 3 architecture-level anti-patterns in 113

open-source Java projects for generating the association rules using existing tools

for code anomalies and architecture anti-pattern detection. We selected these tools

due to the low false positive results when evaluated on open-source projects. The

accuracy of the best tree is 87%. We have achieved the highest precision of 91%,

highest recall of 90% and highest F1-score of 75%. We have conducted a survey with

34 developers to manually check the ranking and classification of code anomalies

based on their impact and severity on the architectures’ quality. The participants

manually confirmed the accuracy of the generated association rules and the benefits

of grouping code anomalies based on their impact on the architecture quality after

they used our tool with the integrated association rules.

This work is currently under review at the open-access journal, IEEE Access [75].

1.4 Publication List

• Jeffrey J. Yackley, Marouane Kessentini, Gabriele Bavota, Vahid Alizadeh,

and Bruce R. Maxim, "Simultaneous Refactoring and Regression Testing,"

In Proceedings of the 2019 IEEE 19th International Working Conference on

Source Code Analysis and Manipulation (SCAM), Cleveland, OH, USA, 30

September-1 October 2019, pp.216-227, DOI: 10.1109/SCAM.2019.00032. Ac-

ceptance Rate: 24%

• Thiago Ferreira, James Ivers, Jeffrey J. Yackley, Marouane Kessentini, Ipek

Ozkaya, and Khouloud Gaaloul, "Dependent or Not: Detecting and Under-

14

standing Collections of Refactorings", Under review at IEEE Transaction on

Software Engineering (TSE), 2022. Impact Factor: 7.77

• Jeffrey J. Yackley, Somayeh Molaei, Marouane Kessentini, and Bruce R. Maxim,

"Investigating the Relationships between Architecture and Code Anti-patterns

Using Random Forest and Grid Search," Under review at IEEE Access, 2022.

Impact Factor: 3.37

1.5 Organization of the Dissertation

This thesis is organized as follows: Chapter II introduces the current state of the

art including the background and related works necessary to contextualize and un-

derstand the contributions to the thesis and their place in the wider body of research.

Chapter III describes the first contribution on unifying two, related software mainte-

nance tasks, software refactoring and regression testing, through a simultasking algo-

rithm to simultaneously improve both tasks. Chapter IV chronicles the second contri-

bution on a theory of refactoring ordering dependencies, an algorithm to detect them,

and a web-tool to organize refactorings into refactoring graphs to highlight the hidden

dependencies between refactorings in a recommended solution. Chapter V highlights

the third contribution that investigates the relationships between architecture-level

and code-level anti-patterns using machine learning. Lastly in Chapter VI, a sum-

mary of the work in this thesis is presented with a brief discussion of future research

directions.

15

CHAPTER II

State of the Art

2.1 Introduction

In this chapter, we cover the background information to understand and contex-

tualize the work in the contributions of this thesis as well as providing an overview of

the closest related work from existing studies. The chapter organizes this discussion

in to the following topics: Subsection 2.2 on software refactoring, Subsection 2.3 on

automated refactoring tools, Subsection 2.4 on refactoring dependencies, Subsection

2.5 on regression testing, and Subsection 2.6 on anti-patterns.

2.2 Software Refactoring

Software refactoring is defined as the process by which the internal structure of

code is modified without changing the external behavior of the code [7]. Catalogs like

Fowler’s [7] have identified many types of refactorings, e.g. Move Method, Extract

Class, Pull Up Field, each of which is a semantics preserving code transformation

that improves code structure. Developers routinely apply such refactorings in their

day-to-day work with modern development environments providing limited support

for applying selected refactorings as directed by a developer.

16

2.3 Automated Software Refactoring Recommendation Tools

There has been both industry and research interest in developing automated

and semi-automated refactoring tools to support developers [76]. One representa-

tive example is JDeodorant, the tool proposed by Tsantalis and Chatzigeorgiou [42].

JDeodorant and similar recommendation tools [14, 15, 16, 17, 18, 19] generate rec-

ommendations as sequences of refactoring instances. The experiments described in

contribution 2 take refactoring recommendations as input. Thus, our discussion in

this section focuses on this category of studies. We point the interested reader to the

survey by Bavota et al. [77] for an overview of approaches supporting code refactoring

recommendations. In another refactoring recommendation tool, O’Keeffe and Cin-

néide [78] formulate refactoring tasks as a multi-objective search problem to generate

alternative designs by applying a sequence of refactoring operations. Such a search is

guided by a quality evaluation function based on eleven object-oriented design metrics

that reflect refactoring goals. Harman and Tratt [17] were the first to introduce the

concept of Pareto optimality to search-based refactoring. They used it to combine two

metrics, namely Coupling Between Objects (CBO) and Standard Deviation of Meth-

ods Per Class (SDMPC), into a fitness function and showed its superior performance

as compared to a mono-objective technique [17]. The two aforementioned studies

[17, 78] paved the way for several search-based approaches aimed at recommending

refactorings [15, 44, 79, 80, 81, 82].

A representative example of these search-based refactoring techniques is the work

by Ouni et al. [44], who propose a multi-criteria code refactoring approach aimed

at optimizing contrasting objectives: (1) minimizing the number of code smells; (2)

minimizing the refactoring cost (i.e., the number of recommended refactorings); (3)

preserving the design semantics (meaning considering textual information embed-

ded in code identifiers and comments in the refactoring recommendation); and (4)

maximizing the consistency with code changes performed over the system’s change

17

history. In contribution 2, we use the refactoring recommendations generated by this

tool based on (1) its superior performance compared to the state of the art [44]; (2)

the large number of supported refactoring types, and (3) its being publicly available.

Contribution 2 of this thesis is not generating refactoring recommendations. Any

refactoring recommendation approach can be used to generate the refactorings, the

input of our proposed approach, if they support some or all of the refactoring types

summarized in Table 4.1.

2.4 Software Refactoring Dependencies

Chavez et al. [83] investigated how refactoring types affect five quality attributes

based on the version history of twenty-three open-source projects. They found that

94% of refactorings are applied to code with at least one low quality attribute value,

with 65% of refactorings improving attributes and 35% of all refactorings being neu-

tral on the system. Similarly, Cinnéide et al. [39] studied the impact of individual

refactorings on quality attributes, such as using the Move Method refactoring opera-

tion to reduce the coupling of a class. None of these studies considered the impact of

a sequence of refactorings on the quality attributes.

Murphy-Hill et al. [41] investigated refactoring tool usage through both sampling

developers’ code and manually checking if their refactorings were performed with tool

support and looked at 240,000 tool-assisted refactorings to find assumptions on how

developers, in general, refactor code. They ultimately concluded that refactoring tools

are rarely used by developers in practice with 90% of refactorings being performed

manually, and that 40% of refactorings occur in batches.

Bibiano et al. [40] analyzed batch refactoring characteristics and their effects on

code smells in open and closed-source projects and concluded that 57% of batches/

patterns are simple compositions of only two types of refactoring operations. They

highlight the lack of tool support to automatically detect refactoring dependencies as

18

a barrier. However, this study is based on the assumption that refactorings are only

related if applied to the same code location, which often is not the case for types of

refactorings that modify multiple code fragments.

Mens et al. [84, 85] define and detect mutual exclusions, sequential dependencies,

and asymmetric conflicts between refactorings. These studies analyze dependencies

at the model-level working with the Unified Modeling Language (UML) and they

use graph transformation techniques to detect invalid refactorings. The detection of

conflicts between refactorings at the model-level (UML) is based on a set of rules, a

matrix where the lines and columns are model refactoring types, that are manually

defined. The type of refactorings is different and simplified compared to code-level

ones. Furthermore, the authors were looking for mutually exclusive UML refactorings

rather than detecting dependencies.

Liu et al. [86, 87] propose a conflict-aware scheduling approach, which schedules

refactorings according to the conflict matrix of refactorings and effects of each individ-

ual refactoring using a multi-objective optimisation model. In this work, the authors

focused on identifying the best schedule to apply refactorings where the conflicts are

defined based on which code smells are to be fixed. Thus, the same refactorings fix-

ing different code smells or applied in the same locations are grouped together. The

notion of dependencies is defined in contribution 2 in a different way than Liu et al.

[86] where they are more about the conflicts between the refactoring themselves and

not their goals.

Sousa et al. [88] identify and analyze composite refactorings within and across

commits from the commit history of 48 GitHub software projects. The concept of

defining dependencies in this work is different than contribution 2 where the depen-

dency is about grouping the refactorings applied within the same commits/locations.

Overall, existing studies do not provide a rigorous definition of ordering depen-

dencies among refactorings. They mainly define what might be better considering

19

similarity relations, such as a collection of refactorings that have similar effects, e.g.

fixing a code smell, or similar context, e.g. applied by the same developer or to the

same code location [89, 90].

2.5 Regression Testing

Pressman and Maxim define regression testing as “the process of verifying that

software that was previously developed and tested still performs the same way after

it has been changed" [3]. Regression testing often involves running incredibly large

test suites with hundreds if not thousands of test cases depending on the size of the

system being tested. This has lead to the development of many techniques which

have been proposed with the goal of reducing the regression testing effort, mostly via

test minimization/selection [26, 27, 32, 91, 92, 93, 94, 95, 96, 97, 98] and prioritization

[32, 99, 100, 101, 102, 103, 104, 105, 106].

Yoo and Harman [32, 95] present a multi-objective approach supporting test case

selection. They use different search algorithms to look for solutions aimed at opti-

mizing two and three contrasting objectives. In the two-objective approach, they aim

at maximizing statement coverage while minimizing the computational cost of test

execution. Those are also the fitness functions that we optimize in our approach in

contribution 1. In the three-objective version, they also try to maximize the past

faults detection. Panichella et al. [27] built on top of these works showing how to

improve the performance of multi-objective genetic algorithms by injecting diversity

during the generation of the solutions.

Contribution 1 is complementary to the previously mentioned related works. In-

deed, our goal is not to present the most effective search-based technique for test

case selection, but rather to show the potential benefits of exploiting a simultasking

search-based algorithm to solve simultaneously strongly related search problems such

as refactoring and regression test case selection.

20

2.6 Software Anti-patterns

Palomba et al. defines anti-patterns as “poor solutions to recurring design prob-

lems" noting that “They occur in object-oriented systems when developers introduce

these bad practices while designing and implementing their systems in the rush to de-

liver a new release" [107]. This means that anti-patterns are not bugs in the software

since they implement the correct functionality. The implementation is simply flawed

from a non-functional requirements perspective (e.g. bad design, performance, etc.).

In [108], Lin et al. present Refactoring Navigator, an interactive architectural

refactoring recommendation tool. Their approach takes as input some code imple-

mentation as a starting point and a desired high-level design as the target before

iterating refactoring recommendations to fix the detected anti-patterns while allow-

ing the user to provide feedback on the refactoring recommendations [108]. Moha et

al. [22] proposed DECOR, a method to specify and detect code anomalies.

Abbes et al. in [54] performed an empirical study to investigate whether the

occurrence of two anti-patterns, Blob and Spaghetti code, actually affects the under-

standability of systems by developers during comprehension and maintenance tasks.

Abbes et al. concluded that developers could work around code with one anti-pattern,

but code with multiple anti-patterns significantly decreased a developer’s performance

[54]. Yamashita and Moonen [53] empirically investigated 12 code smells and ana-

lyzed their interactions in relation to software maintenance problems using a team of

professional developers. They noticed a strong coupling effect between smelly code

and co-located smells that affected maintainability [53]. With similar purpose, [55],

quantified the affect of 12 code-level anomalies on the maintenance effort.

In [48], Oizumi et al. discuss that code anomalies have a cumulative effect to realize

a design problem. They argue that each code-level anomaly alone may represent only

a partial embodiment of a design problem and that groups, they call agglomerations,

provide enough information to locate/predict design issues [48].

21

An analysis of the relationship between design flaws and software defects was

proposed in [67]. D’Ambros et al. investigated this relationship by analyzing the

frequency of design flaws in six open-source software systems and based on that

analysis investigated the correlation of flaws with post-release defects. [66] conducted

an empirical study by investigating the change history of 200 open-source projects

looking to find evidence of when and how code smells are introduced in to the code.

Tufano et al. conclude from their study four main lessons: (1) code elements are

affected by smells since their origination, (2) code elements that become smelly as

a result of maintenance and evolution have different metric trends from unaffected

code elements, (3) refactoring introduced smells in 400 cases, and (4) high workload

and deadline pressure are responsible for making developers more likely to introduce

smells than a new developer to the code [66].

However, none of the above studies analyzed how code anomalies and architecture

anti-patterns relate together and how this relationship can help developers to have

a better understanding of which code anomalies are currently impacting architecture

anti-patterns. To make our terminology for contribution 3 precise, we provide the

following definitions for architecture anti-patterns and code anomalies based on the

related work.

2.6.1 Architecture Anti-patterns

In this section, we provide the definitions for the three architecture anti-patterns

that we investigated in contribution 3. We based our definitions off of the work of

Mannan et al. [109] who refined definitions for some of the most common code smells

which includes: Cyclic Dependencies, Stable Abstractions Principle (SAP) Breaker,

and God Class. Our definitions abstract from the code-level to capture the behavior

of the smell at the higher architecture-level where we consider groups of related classes

called packages.

22

Cyclic Dependencies: There exists a cyclic dependency similarly defined by

Mannan et al. for classes [109] between two or more packages in the

system. For example, package A, is dependent upon package B which is

dependent on package C which is dependent on package A leading to a

cycle of dependencies.

SAP Breaker: The Stable Abstraction Breaker anti-pattern is a package which

has an inverse relationship between its abstractness and its use by other

packages following the stable abstraction principle [109]. Stated another

way, the more one package is used by another package the more abstract

the package should be.

God Package: Similar to the concept of a God Class [109] which aggregates

the responsibilities of multiple classes, the God Package is a package which

aggregates the responsibilities of multiple different packages. This results

in an overly complex package that hoards behaviors and data that would

be otherwise better organized in to separate packages.

2.6.2 Code Anomalies

As shown by Nucci et al. , code anomalies have been well studied in the lit-

erature with works focusing on: (1) their introduction, (2) evolution, (3) effect on

program comprehension, and (4) the ability of developers to find and correct them

[110]. Moreover, Nucci et al. also write of several code smell detection tools that

have been proposed in the literature [110]. Different studies have been focused on

23

different subsets of code smells. One can find a survey on different code smells and

their detection techniques in [111, 112]. In contribution 3, we detected a set of sixteen

code-level smells, which we refer to as code anomalies throughout the contribution

to avoid confusion with architecture anti-patterns, for 113 different Java open-source

projects. The revised and simplified definitions of these code smells are summarized

in Table 2.1 and are based on the work of Mannan et al. [109].

Table 2.1: A brief description of different code anomalies used in our study.
Code Anomalies Definition
Blob Class (BC) A large and complicated class that is challenging to maintain;

highly probable it exhibits strong coupling.
Blob Operation (BO) A long and overly complicated method which incorporates too

much of the behavior of its class.
God Class (GC) A large class that incorporates the behavior and data of multiple

other classes; possess low cohesion.
Data Class (DC) A class that consists primarily of data members without methods

that meaningfully interact with the data; usually also lacks
appropriate encapsulation of the data.

Schizophrenic Code (SC) A class that models two or more different design abstractions that
should be separate from each other.

Refused Parent Bequest (RPB) A child class that fails to make use of the inherited members from
its parent class.

Tradition Breaker (TB) A child class that provides significant functionality that is
unrelated to its parent class functionality.

Distorted Hierarchy (DH) An inheritance hierarchy that is approximately six or more classes
deep.

External Duplication (ED) A module(s) of a system replicate(s) functionality already found
in another unassociated module(s).

Sibling Duplication (SD) Occurs when two or more classes at the same inheritance
hierarchy level duplicate each other’s behavior.

Internal Duplication (ID) A class or module that duplicates parts of its own code.
Data Clumps (DCP) Occurs when the same data is repetitively passed as individual

parameters in a system instead of being encapsulated and passed
as an object.

Intensive Coupling (IC) Occurs when a method is tightly coupled to numerous other
functionality throughout the system.

Message Chain (MC) Occurs when an extended progression of method calls is used to
retrieve or produce data.

Shotgun Surgery (SS) Occurs when code throughout the system in numerous places
must be altered to allow modification or addition of a feature.

Feature Envy (FE) A method that requires the data members of other classes more so
than its own class indicating the method has been coded in the
incorrect location.

24

CHAPTER III

Simultaneous Refactoring and Regression Testing

In this chapter we present contribution 1: simultaneous refactoring and regression

testing. In this contribution, we begin with Section 3.1 that demonstrates an au-

thentic and concrete instance that supports the simultasking approach for refactoring

and regression testing. In Section 3.2, we present an overview of our approach before

covering the validation of the approach in Section 3.3. We discuss the threats to va-

lidity in Section 3.4. Finally, we conclude with a summary of our work and mention

potential future research directions in Section 3.5.

3.1 A Motivating Example

To illustrate the motivation for this work, we present an example from the Aspect-

J1 project, an open-source, Aspect-Oriented Programming (AOP) extension to the

Java programming language. For the releases between 03/2002 and 01/2014, Aspect-J

had 593 bug reports documented in Bugzilla2.

One of the Aspect-J classes exhibiting a high fault proneness is AjcTask, with 28

bug fixes over several releases. The analysis of the bug reports shows that seven of

these bugs were introduced as the result of 63 refactorings performed by developers.
1https://www.eclipse.org/aspectj/
2https://www.bugzilla.org/

25

https://www.eclipse.org/aspectj/
https://www.bugzilla.org/

For example, bug reports 4634723 and 49963934 discuss bugs introduced after apply-

ing Rename Method refactorings to the AjcTask class. We also found that the average

number of design defects (code smells) affecting AjcTask was between 9 and 14 across

the multiple releases that we analyzed. Those numbers were obtained by running a

code smell detection tool [14] and manually validating the candidate smell instances

it produced. By using the approach in Ouni et al. [11], we found four possible refac-

toring solutions to fix the identified code smells. Those solutions comprise different

refactorings and require different sets of test cases for the regression testing of the

refactored code. The shortest refactoring solution was a sequence of 16 refactorings,

37 test cases, and took 46 minutes for regression testing (running the test cases); the

longest solution included 52 refactorings, 128 test cases, and took 232 minutes of run

time. The running times were obtained with an execution platform featuring an Intel

i7 and 8GB of RAM. This simple example shows that, as already observed in the

literature: (1) refactoring may introduce bugs [113] and (2) code smells may relate

to high class fault proneness [69, 114]. These observations motivate our approach for

supporting refactoring and regression testing as a simultasking search problem.

3.2 Approach Overview

We begin by outlining the similarities between refactoring and regression testing.

The first activity tries to find refactorings that cover detected design defects, whereas

the second tries to find test cases to cover code changes. In both cases, high problem

coverage is required to achieve good solutions. Furthermore, both the regression test

cases and refactorings need to be selected. For refactoring, we seek to select refac-

torings to maximize the number of design defects that are fixed while minimizing the

refactoring cost (minimizing the number of refactoring operations). For regression
3https://bugs.eclipse.org/bugs/show_bug.cgi?id=46347
4https://bugs.eclipse.org/bugs/show_bug.cgi?id=499639

26

https://bugs.eclipse.org/bugs/show_bug.cgi?id=46347
https://bugs.eclipse.org/bugs/show_bug.cgi?id=499639

testing, we seek to select the test cases to maximize the number of detected bugs

while minimizing the testing effort (minimizing the number of test cases to execute).

Finally, the selection of a refactoring solution by developers may depend on the num-

ber of test cases needed to test it, since they seek to improve code quality while

minimizing the risk of introducing bugs and testing cost. Thus, the decision-making

process needs to consider both problems simultaneously, and the knowledge to solve

one problem may be useful to solve the other.

The new search approach involves multiple tasks synergistically contributing their

individual influences to the evolution of a population of individuals, based on shared

interests.

3.2.1 Simultasking

There are two key insights behind evolutionary multitasking. Firstly, given a

population of solutions in a unified search space (encompassing more than a single

task), it is intuitively more probable for a randomly generated or genetically modified

solution to be competent for at least one task. In our case, the random selection

of methods from the source code can be relevant for testing or refactoring or both.

Secondly, as the search progresses, it may happen that the high performing genetic

building blocks (or schema) created for a particular task turn out to also be useful for

another task. Thus, the test cases selection block of the unified solution may identify

relevant buggy methods that can be also transferred to the second refactoring block.

In this case, the simultasking algorithm can converge faster to find good refactor-

ing recommendations when the regression testing task is solved. As argued before,

the proposed simultasking approach allows such mutually beneficial genetic building

blocks to be exchanged spontaneously, thereby leading to accelerated convergence

towards the solution(s).

To compare the candidate solutions during simultasking, we first define the prop-

27

erties to describe every individual pi in a population P , with i ∈ {1,2, . . . , |P |}. As

detailed in the next section, every individual is encoded into a unified space Y that

encompasses the individual task spaces X1,X2,. . . ,XK , and can be translated into a

task-specific solution with respect to any of the K optimization tasks. We are limited

to two tasks (K = 2).

Definition 1 (Factorial Rank): The factorial rank rji of pi for task Tj is the

pi’s index in the list of population members sorted in decreasing order of

preference w.r.t. Tj.

Definition 2 (Skill Factor): The skill factor τi of pi is the one task, among

all other tasks in a K-factorial environment, with which the individual is

associated. If pi is evaluated for all tasks, then τi = argminj {rji }, where

j ∈ {1,2,. . . ,K}.

Definition 3 (Scalar Fitness): The scalar fitness of pi in the simultasking

environment is given by ϕi = 1/riτi . Pt is the current population at gen-

eration t, and Ct is the generated offspring of Pt.

The algorithm largely follows a standard evolutionary procedure based on the

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [115], with the addition of

a new entity, the skill factor (τ). The NSGA-II component is mainly used to find a

trade-off between conflicting objectives. The skill factor is seen as the computational

representation of an individual’s cultural background. The skill factor is passed on

28

through generations by the simple process of imitation, which is perhaps the most

prevalent form of vertical cultural transmission. In other words, an offspring ran-

domly copies the skill factor of any one of its parents, with the scope for fruitful

genetic exchange occurring when parents with different skill factors undergo genetic

recombination to create an offspring. For the case of our tasks, one solution can have

a high skill factor for the refactoring task while another solution can have a high skill

factor for the regression testing task. Thus, the genetic recombination will take the

best block from each solution and combine them to generate better solutions solving

both tasks. We will generate new solutions either combining both blocks of these

two solutions (taking the best from every solution) or transferring the knowledge be-

tween the blocks of the same solution (transferring the best from the block having the

higher skill factor). For instance, the methods recommended for refactoring located in

a block with high refactoring skill factor will be transferred to the block of regression

testing of the same solution to be covered by test cases. While the foundations of our

approach are based on the multitasking algorithm, we introduced several adaptations

to the original version based on the characteristics of the addressed regression testing

and refactoring problems as described in the next section.

3.2.2 Adaptation

The input of our approach consists of the source code of the evaluated system and

its previous commits (code changes), a set of code smell detection rules [14], and a set

of test cases from previous releases. The output is a set of Pareto front solutions. Each

solution is composed from a set of recommended refactorings and another of selected

test cases to execute. Four objectives are used to evaluate solutions: (1) minimize

the number of code smells, (2) minimize the number of recommended refactorings

(the refactoring cost), (3) maximize the code coverage, and (4) minimize the number

of selected test cases and the run-time of the execution order of selected test cases.

29

While we have four objectives, we have still selected NSGA-II since the knowledge

transfer between the blocks of the solutions using the skill factor helped to reduce

the size of the Pareto front comparing to a regular NSGA-II algorithm. Thus, we

did not observe a larger number of solutions in the Pareto front despite the use of

four objectives. The supported refactoring operations are: Extract Class, Extract

Super Class, Extract Sub Class, Encapsulate Field, Decrease/Increase Field Security,

Decrease/Increase Method Security, Extract Interface, Inline Class, Extract Method,

Move Field, Move Method, Push Down Field, Push Down Method, Pull Up Field,

Pull Up Method, and Move Class. In the following subsections, we describe the

different adaptation steps, especially the generic solution representation to unify the

search space of our two tasks to be optimized.

3.2.2.1 Unified Search Space Representation

The unified solution space, encoding and decoding steps are key ingredients of the

simultasking adaptation. In our case, we have two optimization tasks to perform si-

multaneously. Given Dj the dimensionality of the jth task, we define a unified search

space with dimensionality Dmultitask equal to maxj{Dj}. During the population ini-

tialization step, every individual is thus endowed with a vector y of Dmultitask random

variables that constitutes its chromosome (its complete genetic material). Essentially,

the ith dimension of the unified search space is represented by a random key yi, and

the fixed range represents the box-constraint of the unified space. When addressing

a task Tj (refactoring or regression testing), we simply refer to the first Dj random

keys of the chromosome. This encoding technique, in place of simply concatenating

the variables of each optimization task to form a giant chromosome of D1 + D2 ele-

ments, encourages the discovery and implicit transfer of useful genetic material from

one task to another in an efficient manner. In other words, refactoring and regression

testing are unified into one solution representation integrating the dimensions of both

30

tasks. A dimension of the first task is a refactoring operation while the dimension of

the second task is a selected test case. Both tasks have in common the methods (the

knowledge to transfer) that need to be either refactored and/or tested.

Both tasks of refactoring and test cases selection are discrete problems, and every

test case and/or refactoring is applicable to the methods of the system to evaluate,

either in part or in whole. For example, a test case may cover a method in the code or

a refactoring can be applied to it. Thus, the overlap of both phenotypes is implicitly

represented by the methods to be covered by test cases or to be refactored and the

random keys can be decoded in a straightforward manner. The ith random key of an

individual is viewed as a method assigned to test case(s) and refactoring(s). Thus,

that assigned method needs to be refactored and covered by the test cases. To assign

test cases/refactorings to methods, the random keys are simply sorted in ascending

order, with each random key corresponding to a method. Then, test cases/refactorings

are assigned to methods according to their position in the sorted list. When a class-

level refactoring is assigned to a method, we select the class containing that method.

It is possible to use different levels of granularity than the method level (such as the

statement level) for the solutions representation. We decided to use the method level

to ensure a reasonable analysis/execution cost.

The simplified illustrative example depicted in Figure 3.1 summarizes the cross-

domain decoding procedures described heretofore. For our 2-factorial problem, we

have Dmultitask(testcases, refactorings) = max{3, 4} = 4. Therefore, we randomly

generate a 4-dimensional chromosome with the following random key representation:

(0.23, 0.12, 0.42, 0.11). This 4-dimensional chromosome represents the unified solu-

tion representation. Then, we randomly select a set of n test cases for the sequence

of methods corresponding to three keys (0.23, 0.12, 0.42) and a random set of m

refactorings applied to the methods corresponding to all four keys (0.23, 0.12, 0.42,

0.11). Of course, the methods’ precedence is important, since it may impact the

31

Figure 3.1: An example of decoding a random-key chromosome into domain-specific
representations.

evaluation functions. In case there is no exact match between a key and one of the

methods, we select the method with the closest Euclidean distance to the key. Please

note that this is a simplified example, but in practice the size of both tasks is very

different and large. The reader can refer to the following paper for more details about

the random-key representation [116]. For our adaptation, the goal is to find a way

to represent the engineering material (methods of the source code) as random keys

that can be assigned to the different tasks of regression testing and refactoring in a

generic manner. Then, these keys can be used for the knowledge transfer between

tasks based on the skill factor scores.

Figure 3.2 shows the utility of exploiting knowledge overlap in evolutionary simul-

tasking. In particular, the common knowledge is expected to be primarily contained

in the intersecting region in phenotype space that corresponds to the three common

methods of our example for the refactoring and regression testing tasks. As explained

previously, the exchange of methods between the refactoring and regression testing

blocks can happen within the same solution or between solutions using the guided

change operators to recombine the blocks.

It is not possible to just simply add additional regression testing objectives to a

32

Figure 3.2: A summary of the 2-task environment.

multi-objective refactoring algorithm without unifying the two solutions of refactoring

and regression testing (a key contribution of multi-tasking). In fact, it is not possible

to evaluate a set of test cases based on refactorings where the solution representation

is just a set of test cases. Furthermore, our multi-tasking adaptation proposes also to

use novel change operators to ensure the knowledge transfer between both refactoring

and regression testing as explained later (another key contribution).

3.2.2.2 Fitness Functions

As already stated, we have four objective functions to consider in our problem

formulation. It is possible to aggregate the two fitness functions of each task to re-

duce the number of non-dominated solutions and the computational cost. However,

we preferred to use four fitness functions since we found them conflicting and the

algorithm still provides good solutions with reasonable computational cost. Further-

more, the use of the skill factors along with the fitness functions reduced the number

of non-dominated solutions due the intentional overlap between these solutions.

33

The first two fitness functions can be stated as follows:
f1(X,S) = NCCS(X,S)

NDCS(S)

f2(X,S) = length(X)

(3.1)

Subject to x = {x1, . . . , xn} ∈ X

where X is the set of all refactoring sequences of software system S, xi is the ith

refactoring in the sequence X, NCCS(X,S) is the Number of Corrected Code Smells

(NCCS) after applying the refactoring solution X to system S, NDCS(S) is the

Number of Detected Code Smells (NDCS) prior to the application of solution X to

S. The code smells are detected on the system before and after refactoring using the

rules defined in [14]. Thus, f1 defines the ratio of the number of corrected code smells

per all known smells in the system (to maximize), and f2 represents the number of

operations to apply (to minimize).

The two remaining fitness functions can be stated as follows:


f3(T, S) = (1− TS1+TS2+...+TSM

N×M
) + (1− TC1+TC2+...+TCM

N×M
) + 1

N

f4(N) = |T ′ ∩ T̄ |+
N.length∑

i=0

ETi

(3.2)

Subject to TS = (TS1, . . . , TSn) ∈ T and TC = (TC1, . . . , TCn) ∈ T

where T is the test suite of all N test cases of system S, TSi indicates a test case

covering statement i, while TCi, similar to TSi, represents a test case that covers

a changed statement i; M is the number of changed statements and can be easily

calculated by exploring the code elements involved in each refactoring operation that

belongs to the solution and the regular developers’ code changes found in recent

commits; ETi is the run-time of test case i; T ′ represents the subset of the selected

test cases to execute; f3 aggregates our coverage criteria (to maximize) and f4 denotes

34

the number of selected test cases (to minimize) and measures the runtime of the

execution order of the selected test cases (to minimize). We did not aggregate the

functions since the multifactorial algorithm supports the use of multiple objectives.

3.2.2.3 Evolutionary Operators

As with most Evolutionary Algorithms (EAs), the Multi-Factorial Evolutionary

Algorithm (MFEA) uses crossover and mutation as its core genetic mechanisms and

the key for the knowledge transfer between tasks. Following the principles of as-

sortative mating in the bio-cultural models of multifactorial inheritance, crossover is

favored to occur between parents belonging to the same cultural background (between

solutions associated to the same task in our case). The goal of the crossover is to

ensure the knowledge transfer between two solutions where each solution is good in

at least solving one task. The crossover will generate new solutions by taking the

best from each block (having a high skill factor) of best solutions that are selected for

each task separately. Thus, this operator will keep the blocks of the solution having

high scalar fitness values of each task in the new generated solutions and replacing

the methods of the blocks with low scalar fitness for each task by the methods of

the block with high scalar fitness (either between the same or different tasks). The

mutation operator will introduce changes to the methods of each block based on the

skill factor of each block. For instance, some of the methods of the block having

a high refactoring skill factor will be replacing the methods of a block having a low

regression skill factor or a block of another solution with a low refactoring skill factor.

Figure 3.3 illustrates an example of using the crossover to take the best from each

solution for each task (S1) and transferring the engineering material (methods) from

the regression testing task to the refactoring task (S2).

The constructive scalar fitness allows the evolution of these solutions within the

same search space. This process encourages the discovery and implicit transfer of

35

Figure 3.3: An illustration of the assortative mating using the adapted crossover for
knowledge transfer.

useful genetic material from one task to another. The use of genetic operators allows

the exchange of genetic building blocks corresponding to more than one optimization

task when creating offspring solutions. The assortative selection is one of the most

important components of the simultasking algorithm. Of course, the use of the dif-

ferent change operators is combined with a set of pre/post-conditions to check the

correctness of the generated solutions after applying the operators. For example, if the

algorithm recommends to move method m1 from class C1 to class C2, but a method

having the same signature as m1 already exists in C2, then it will be considered as

an invalid refactoring operation. The list of refactoring pre/post conditions can be

found in [117].

36

3.3 Validation

3.3.1 Research Questions

3.3.1.1 RQ1-A: Quality Improvement

To what extent can our approach improve the quality of software systems as com-

pared to mono-task refactoring techniques?

In RQ1-A we use code smells [7] and internal quality attributes [118] as proxies to

assess the quality improvement brought by the refactoring operations generated by

Multi-Objective-Multi-Factorial Optimization (MO-MFO). We compare its perfor-

mance with two, state-of-the-art, mono-task refactoring techniques: Ouni et al. [11]

and JDeodorant [31]. Ouni et al. [11] proposed a mono-task multi-objective refactor-

ing formulation based on NSGA-II using the two fitness functions of the refactoring

task described in this paper. JDeodorant [31] is an Eclipse5 plugin able to detect

code smells and automatically recommend refactorings to fix them. JDeodorant is

not based on the use of heuristic search. As JDeodorant supports a lower number of

refactoring types with respect to the ones we considered, we restrict our comparison

with it to these refactorings.

3.3.1.2 RQ1-B: Refactoring Meaningfulness

Are the refactoring recommendations produced by MO-MFO meaningful from a

developer’s point of view? How do they compare with those generated by a mono-task

technique?

Using anti-patterns and internal quality indicators as proxies for code quality (as

we do in RQ1-A) has strong limitations. For this reason, in RQ1-B we survey 25

developers asking for their opinion about the meaningfulness of the refactorings rec-

ommended by our technique and by the mono-task competitive techniques [11]. In
5https://www.eclipse.org/

37

https://www.eclipse.org/

RQ1-B we do not compare with JDeodorant since the mono-task refactoring technique

of Ouni et al. outperformed JDeodorant based on the systems considered in our ex-

periments [11]. The main substantial difference between MO-MFO and the approach

by Ouni et al. [11] is indeed the multi-task perspective of MO-MFO. This allows us

to verify whether multi-task permits MO-MFO to identify meaningful refactorings

missed by the mono-task approach.

3.3.1.3 RQ2-A: Synergy between Regression Testing and Refactoring to

Support Software Maintenance in Practice

To what extent can MO-MFO support the simultaneous selection of relevant test

cases for both refactoring and regular code changes while still finding relevant refac-

torings in a real world scenario?

We integrated a beta version of MO-MFO into a previously licensed refactoring

tool, and asked one of our industrial partners to use it for a limited period of 5 business

days (with 6 developers involved). During this period, we checked the ability of MO-

MFO to select relevant test cases by identifying real bugs for both refactoring and

regular code changes introduced by the programmers during their daily activities.

We have also evaluated the ability of MO-MFO to recommend relevant refactorings

during that period.

3.3.1.4 RQ2-B: Testing Effort Reduction and Refactoring Coverage

What is the effectiveness of our approach in maximizing the coverage of the rec-

ommended refactorings and introduced code changes, while reducing the number of

selected test cases?

Here we focus on the coverage of the statements changed due to the implemented

refactoring operations. Clearly, only analyzing the coverage of the selected test cases

does not tell the whole story about the usefulness of a regression testing technique.

38

Indeed, a trivial solution to maximize code coverage would be to select the whole

test suite. However, this would not reduce the testing cost. For this reason in RQ2-

B, we consider both the code coverage ensured by the selected test cases as well as

the percentage of selected test cases as proxies to evaluate the test case selection

effectiveness. We compare MO-MFO with two baselines. The first one, is a Mono-

task Multi-objective Regression Technique (MOT) exploiting exactly the same fitness

functions as the two we use in MO-MFO to support regression testing. The second

is the approach proposed by Yoo and Harmon [32] based on a greedy bi-objective

algorithm to maximize the coverage and reduce the cost. In the industry validation

study, we have also evaluated the ability of our approach in detecting real bugs by

using the recommended test cases.

3.3.1.5 Study Context

The context of our study is represented by the seven systems in Table 3.1. We

selected these seven systems for our validation because they range from medium to

large size projects and have been actively developed over the past 10 years. JDI6 is

an industrial project for which 6 of the developers involved in the maintenance of JDI

agreed to take part in RQ1-B and RQ2-A.

Table 3.1: Statistics of the studied systems.
System Release # Classes # Smells KLOC # Test Cases Method Coverage
Xerces-J v2.7.0 991 91 240 2218 47%
JHotDraw v7.5.1 585 25 21 663 53%
JFreeChart v1.0.18 521 72 170 2217 72%
GanttProject v1.11.1 245 49 41 842 61%
JDI v5.8 638 88 247 2647 68%
Apache Ant v1.8.2 1191 112 255 2703 62%
Rhino v1.7.5 305 69 42 973 71%

Table 3.1 provides information about the size of the subject systems (in terms of

number of classes and KLOC), number of code smells affecting them as detected with

the rules defined in [14], number of JUnit7 test cases they have, and the method cov-
6Company anonymized due to request for confidentiality.
7https://junit.org/junit5/

39

https://junit.org/junit5/

erage ensured by these tests. For instance, JFreeChart8 has 2,217 test cases resulting

in a ratio of ∼4.2 test methods per class. The initial test case method coverage varies

from one project to another. Apache Ant9 has 2,703 tests that cover 62% of its 2691

methods while Xerces-J10 achieves 47% coverage with 2,218 test cases. With such a

number of test cases, the compilation and execution of the complete test suite may

require substantial time (almost 90 minutes for Apache Ant with an i7 Processor and

8GB RAM) due to factors such as external dependencies and test case timeouts.

3.3.2 Data Collection

We present the data collection and analysis process grouped by research question

category: refactoring or regression testing.

3.3.2.1 RQ1 - Refactoring

To address RQ1-A, we calculated the Number of Fixed Code Smells (NF) as the

percentage of code smells fixed by the refactoring solutions generated by the three

considered approaches, over the total number of code smells affecting the subject

systems. The detection of code smells before/after applying a refactoring solution

was performed with the rules defined in [14]. The considered code smells are Blob

Class (BC), Feature Envy (FE), Data Class (DC), Spaghetti Code (SC), Functional

Decomposition (FD), and Shotgun Surgery (SS).

Since the concept of a code smell is very subjective (different developers may

have different opinions on whether a code component is smelly or not) [119], we

also use more objective metrics to assess the quality of the refactorings generated

by the experimental approaches. We adopted the G metric based on QMOOD [118]

that estimates the quality improvement of the system by comparing the quality be-
8https://www.jfree.org/jfreechart/
9https://ant.apache.org/

10https://xerces.apache.org/xerces-j/

40

https://www.jfree.org/jfreechart/
https://ant.apache.org/
https://xerces.apache.org/xerces-j/

fore/after refactoring independently from the number of fixed design defects. Four

quality factors are considered by QMOOD : reusability, flexibility, understandability

and effectiveness. All of them are formalized using a set of quality metrics. Hence,

the total gain in quality G for each of the considered QMOOD quality attributes qi

before and after refactoring can be estimated as:

G =

4∑
i=1

Gqi

4
where Gqi = q′i − qi (3.3)

where q′i and qi represent the value of the quality attribute i respectively after and

before refactoring.

To answer RQ1-B we asked 25 developers to evaluate the meaningfulness of

the refactorings recommended by MO-MFO (multi-task) and by the approach of

Ouni et al. [11] (mono-task) on the seven subject systems. Before explaining the

study design for RQ1-B, it is important to remember that both the experimental

techniques generate output sequences of refactoring operations that make sense when

considered together rather than when looking at them in isolation. However, it is

not an option to ask a developer to assess the meaningfulness of all the refactoring

operations (potentially hundreds) generated for a given system. For this reason, we

started by filtering, for each system, the sequences of refactoring operations impacting

(1) a single subsystem and (2) no more than ten classes. Then, from these sequences of

refactorings, we randomly selected two sequences per system per treatment (meaning,

four sequences per system, two generated by MO-MFO and two by [11]).

Each participant was then asked to assess the meaningfulness of four sequences

of refactoring operations: two generated by MO-MFO and two by [11]. Since on

six of the seven systems (all but JDI) we involved external developers (professional

developers who did not take part in the development of the subject system), we made

sure that each participant only evaluated refactoring sequences recommended by the

41

two competitive techniques on one specific system (e.g. JHotDraw11). The rationale

for such a choice is that an external developer would need time to acquire a system’s

knowledge by inspecting its code, and we did not want participants to comprehend the

code from four different systems, since this would introduce a strong tiring effect in

our study. The six developers of the JDI project evaluated the refactoring sequences

generated for that system, since here we wanted to exploit their experience as original

developers of the system. They used MO-MFO, as a beta version tool, during a

period of 5 days instead of a refactoring tool that we licensed to their company in

the past. Our industrial partner was motivated to try out MO-MFO since they are

interested in estimating the refactoring cost in terms of testing especially with relevant

refactoring suggestions. They also expressed a concern about the lack of regression

testing support in existing refactoring tools which make their developers reluctant to

apply refactorings.

To support such a complex experimental design, we built a Java12 Web-app that

automatically assigns the refactoring sequences to be evaluated to the developers.

The web-app showed each participant one sequence of refactoring operations on a

single page, providing the developer with (1) the list of refactorings (Move Method

mi to class Cj , then Push Down Field fk to subclass Cj, etc.), (2) the code of the

classes impacted by the sequence of refactorings, and (3) the complete code of the

subject system of the refactorings. The web page showing the refactoring sequence

asked participants the question, Would you apply the proposed refactorings?, with a

choice between no (the refactoring sequence is not meaningful), maybe (the refactor-

ing sequence is meaningful, but the quality improvement it brings does not justify

changing the code), or yes (the refactoring sequence is meaningful and should be im-

plemented). Moreover, participants were allowed to leave a comment justifying their

assessment (this was optional).
11https://www.randelshofer.ch/oop/jhotdraw/
12https://www.java.com/en/

42

https://www.randelshofer.ch/oop/jhotdraw/
https://www.java.com/en/

Table 3.2: Participants involved in RQ1-B.
System # Participants Avg. Prog. Exp. Avg. Java Exp. Avg. Refact. Exp.(1-5)
Xerces-J 4 11 9 4.0 (high)
JHotDraw 4 10 7 3.0 (medium)
JFreeChart 4 10 7 3.3 (medium)
GanttProject 4 9 8 3.5 (high)
JDI 6 14 12 4.5 (very high)
Apache Ant 3 9 7 3.7 (high)

Table 3.2 shows the participants involved in our study and how they were dis-

tributed in the evaluation of the refactoring sequences generated on the seven sys-

tems. For the 5 day industrial validation, we integrated a routine in our MO-MFO

tool to record all the actions of the 6 developers including the number of applied

and rejected refactorings, number of selected test cases, the introduced code changes,

commit messages, and the identified bugs by the test cases.

3.3.2.2 RQ2 - Regression Testing

To answer RQ2-A, we evaluated the number of identified bugs for both refactor-

ings and regular code changes by the selected test cases. We have also calculated the

percentage of selected test cases to cover both the code changes and refactorings. We

calculated, as well, the number of applied and rejected refactorings by each developer.

We answer RQ2-B by computing the Median Effort to Test Refactorings (EF)

metric, aimed at evaluating the ability of the simultasking approach to generate

refactoring solutions with a minimum testing effort and defined as the ratio of selected

Test Cases (TCs) to cover the maximum number of code components impacted by

refactoring operations over the number of TCs in the original test suite:

EF=# TCs in reduced test suite covering as much as possible all refactorings
TCs in original test suite ×100 (3.4)

3.3.3 Experimental Settings and Data Analysis

For each algorithm and for each system, we performed a set of experiments using

several population sizes: 50, 100, 200, and 300. The upper and lower bounds on

43

the chromosome length were set to 10 and 350, respectively. The stopping criterion

was set to 10,000 fitness evaluations for all algorithms to ensure fairness. Since the

offspring performance is measured by the skill factor that it imitates, the rmp value

was set to 0.5 to increase the probability of applying the crossover between parents

regardless of their skill factor to increase the diversity of the solutions.

We note that the mono-objective deterministic refactoring approach JDeodroant

only provides one refactoring solution, while the other algorithms generate sets of

non-dominated solutions. To make meaningful comparisons, we selected the best so-

lution for the simultasking and multi-objective algorithms using a knee-point strategy.

The knee point corresponds to the solution with the maximal trade-off between the

different objectives. Thus, we selected the knee point from the Pareto approximation

having the median hyper-volume IHV value.

The stochastic nature of the deployed algorithms required 30 independent simula-

tion runs for each problem instance [120], and the obtained results were statistically

analyzed with the Wilcoxon rank sum test with a 95% confidence level (α = 0.05).

We used the Vargha-Delaney A measure [120] which is a non-parametric effect size

measure. In our context, given the different performance metrics (NF, G), the A

statistic measures the probability that running an algorithm B1 yields better perfor-

mance than running another algorithm B2. If the two algorithms are equivalent, then

A = 0.5.

Concerning RQ1-B, we report the percentage of refactoring sequences assessed

with a no, maybe, or yes by developers for each treatment (MO-MFO and [11]) and

system. Then, we discuss interesting comments left by developers when justifying

their assessment.

44

3.3.4 Results

3.3.4.1 RQ1-A: Quality Improvement

Figure 3.4 and Figure 3.5 provide the percentage of fixed code smells (NF) and

the quality gain (G) based on the QMOOD model, respectively. The average NF on

the seven systems is 86% with peaks of ∼90% for JFreeChart and GanttProject13.

The recommended refactorings also improved the G metric values (Figure 3.5) of the

seven systems. The average quality gain for the JFreeChart system was the highest

among the seven systems with 0.38. The improvement in the quality gain shows that

the recommended refactorings help to optimize different quality metrics. In addition,

the performance of MO-MFO is superior as compared to the competitive refactoring

techniques [11, 31], even though the difference in terms of fixed code smells is not

that marked (Figure 3.4). This latter result is also due to the fact that MO-MFO

does not only recommend refactoring operations aimed at removing code smells but,

thanks to the knowledge transfer from the regression testing task, it also focuses on

refactoring classes not affected by code smells but covered by the test cases. For

example, in a manual investigation of the refactorings recommended by MO-MFO for

JFreeChart, we found that 17 of the impacted classes do not exhibit any criticality

as indicated by code quality proxies such as metrics and code smells. This is the case

of the EncoderUtil class, only recommended for refactoring by MO-MFO, and not by

the other algorithms. This indicates that the knowledge transfer between refactoring

and regression testing is likely the reason for the refactorings applied to EncoderUtil.

The statistical tests confirm that for the different evaluation metrics: (1) on small

software projects (GanttProject and Rhino14), our approach outperforms the compet-

itive techniques with an A value > 0.91; (2) on medium and large software projects

(JDI, Apache Ant, Xerces-J, JHotDraw, and JFreeChart), it achieves higher NF/G
13https://www.ganttproject.biz/
14https://mozilla.github.io/rhino/

45

https://www.ganttproject.biz/
https://mozilla.github.io/rhino/

Figure 3.4: Median percentage of fixed code smells (NF) over 30 runs at the 95%
confidence level (α < 5%).

Figure 3.5: Median quality gain (G) over 30 runs at the 95% confidence level (α <
5%).

w.r.t. the other algorithms with an A value > 0.86.

3.3.4.2 RQ1-B: Refactoring Meaningfulness

Table 3.3 summarizes the manual refactoring evaluation results obtained from

the 25 participants. Note that there is a slight deviation between the total number

46

of refactorings evaluated by the two approaches (136 vs. 144) since, as explained

in Section 3.3, we did not consider the data analysis for the evaluations in which

participants spent less than 60 seconds to assess the meaningfulness of the refactoring

sequence under analysis.

Table 3.3: RQ1-B: Would you apply the proposed refactorings?
Approach No Maybe Yes
MO-MFO 15/136 (11%) 18/136 (13%) 103/136 (76%)

Ouni et al. [11] 27/144 (19%) 49/144 (34%) 68/144 (47%)

The unification of regression testing and refactoring improved the relevance of

the recommended refactorings compared to the mono-task multi-objective approach.

Indeed, while the percentage of meaningful recommendations (the sum of the maybe

and yes answers) is similar between the two approaches (89% for MO-MFO and 81%

for Ouni et al.), the percentage of refactorings that participants believe must be

applied (yes answers) is significantly higher for MO-MFO (76% vs 47%). Looking

at the comments left by participants when justifying their assessment, four out of

the six original developers of the JDI system highlighted in their comments for three

refactoring sequences that they found the refactorings relevant because it is improving

the modularity of a buggy class that they frequently modify. For example, one of the

developers wrote in a comment:

“That’s a relevant one, I spent days fixing one of the bugs located there so I
like this extract class and move method. It may probably take me less time
in the future to fix future bugs in that class after your recommendation
to split it and move some methods out of it”.

We found this comment as important qualitative evidence of the value of unifying

refactoring and regression testing especially that (1) this class was not affected by any

code smell, and (2) the comment comes from an original developer of the industrial

system.

47

3.3.4.3 RQ2-A and RQ2-B: Test Case Selection Coverage and Effort Re-

duction

Figure 3.6 summarizes the results of deploying our simulatsking tool during 5

business days to our industrial partner. The six developers used the tool as part of

their daily programming activities instead of a previously licensed refactoring tool.

The tool was deployed as a web app that connects automatically to a private GitHub

repository whenever a number of code changes are introduced by the developers to

simultaneously check for refactorings and select test cases for regression testing. The

total number of bugs successfully detected by MO-MFO was 22. Six of these bugs

were related to the refactorings applied by the developers as a consequence of the

approach’s recommendations, and the remaining sixteen were related to recent code

changes. The total number of statements modified by the developers during the 5

days are 227 which corresponds to 31 methods. The number of selected test cases by

MO-MFO during this period was 72 test cases out of 2,647. The developers accepted

37 refactorings recommended by our tool and rejected 8.

Figure 3.6: The outcomes of the industrial validation on the JDI system by 6 devel-
opers during 5 days.

48

Overall, the achieved results confirm the effectiveness of our approach to enable

both tasks simultaneously. We found that 24 out of the 37 accepted refactorings

impact the same classes where the bugs were located. The achieved results confirm

the basic intuition behind this work, showing that buggy files might be in need of

refactoring even if their code quality as assessed by code smells/quality metrics is not

problematic. The six developers also confirmed that they feel more comfortable in

applying refactorings due to the integrated support for regression testing. This may

explain the reason why a good number of recommended refactorings were applied.

Figure 3.7: Median effort to test the refactorings (EF) over 30 runs at the 95% con-
fidence level (α < 5%).

Finally, Figure 3.7 confirms the effectiveness of the simultasking technique in terms

of selecting relevant test cases to cover the introduced refactorings. Most of the com-

ponents impacted by the refactorings recommended by the simultasking approach

were covered by the selected test cases, while requiring an effort/number of test cases

(EF) representing, on average 24% of the original test suite size. When comparing

MO-MFO to both the greedy regression testing approach [32] and multi-objective

mono-task one, MOT, the test cases selected by MO-MFO cover the expected refac-

torings with similar effectiveness, but with a lower number of test cases (EF) as shown

49

in Figure 3.7.

3.4 Threats to Validity

Our simultasking formulation treats the two tasks of refactoring and test case

selection with the same importance, but developers may have different priorities when

working on these two tasks simultaneously. Another internal threat is related to the

used detection rules of code smells that may identify false positives and miss false

negatives.

Construct validity is concerned with the relationship between theory and what is

observed. To evaluate the results of our approach, we selected solutions at the knee

point when comparing with other techniques, but developers may select a different

solution based on their preferences in order to give different weights to the objectives

when selecting the best refactoring or test case solution.

External validity refers to the generalize-ability of our findings. We performed

our experiments on six open-source systems belonging to different domains, and one

industrial project, by involving 25 participants in the evaluations of the refactoring

operations. However, we cannot assert that our results can be generalized to other

applications, and to other developers. Furthermore, we can extend the manual valida-

tion of suggested refatorings to include a larger number of recommendations. Future

replications of this study are necessary to confirm our findings.

3.5 Conclusion

We presented a first attempt to unify two different software engineering problems

using the tasks of refactoring and regression testing as a case study. The salient fea-

ture of the proposed simultasking approach is that it incorporates a unified solution

representation scheme, which serves as a common platform for knowledge transfer,

50

hence allowing each task to influence the solution of the other. To evaluate the effec-

tiveness of our technique, we applied it to six open-source projects and one industrial

project comparing it with state-of-the-art approaches. Our results show promising

evidence on the usefulness of the simultasking approach.

Future work will involve validating our technique with additional refactoring types,

test cases, programming languages, code smell types, and additional tasks (e.g. the

next release problem).

51

CHAPTER IV

Dependent or Not: Detecting and Understanding

Collections of Refactorings

In this chapter we present contribution 2: detecting and understanding collections

of refactorings. In this contribution, we begin with Section 4.1 that demonstrates an

genuine instance of links between refactorings for a popular open-source project. In

Section 4.2, we discuss our refactoring dependency theory and algorithm for detecting

dependencies in refactoring recommendation lists. In Section 4.3, we present our

empirical study and validation of our technique. We discuss the threats to validity

in Section 4.4. Next, we highlight the implications of the contribution and propose

directions of future work in Section 4.5. Finally, we conclude in Section 4.6 with a

summary of our work.

4.1 A Motivating Example

The key to applying refactorings successfully is the decision of which refactorings

to apply and where to apply them. In essence, this requires a developer to instantiate

a refactoring by supplying the parameters that allow a type of refactoring to be un-

ambiguously applied to code. For example, to instantiate a Move Method refactoring

operation, a developer must supply parameters that indicate which method to move

52

and where to move it. Throughout this contribution, when we talk about refactorings

and dependencies among refactorings, we are referring to refactoring instances.

While refactoring recommendations generated by tools to mimic this activity are

typically represented as sequences, not all orderings in these sequences are significant.

That is, the same code could be generated by two solutions that contain the same

refactorings, but simply each solution applies them in a different order. This is

because while many refactorings are independent of one another, other refactorings

are dependent on each other such that removing or reordering a refactoring from a

solution could make other refactorings invalid. With the current growth of interactive

tools to support refactoring [14, 18], developers are offered solutions that contain

dozens to hundreds of refactorings and the option to selectively apply elements of a

solution. Without a theory for reasoning about refactoring dependencies, developers

can inadvertently make decisions, e.g. ignoring part of a solution, that result in

failure (code cannot be successfully refactored) and enter a tedious trial and error

loop. Making refactoring dependencies visible improves developers’ understanding of

how refactorings work together and allows them to make sound inferences regarding

their application.

#1
MoveField

PowerFunction2D
BooleanList

[b]
[]

#3
MoveField
Class_7

EventObject
[fieldDelimiter]

[]

#4
PullUpField

CSV
Class_7

[textDelimiter]
[]

#5
PullUpMethod

CSV
Class_7

[]
[readCategoryDataset]

#2
ExtractSuperClass

CSV
Class_7

[fieldDelimiter]
[extractRowKeyAndData]

Refactoring

Dependency

Figure 4.1: A simplified solution of 6 refactorings for the JFreeChart project.

Figure 4.1 shows a simplified example of a solution composed of 5 refactorings to

be applied to the JFreeChart project. Three of the refactorings (#3, #4, #5) depend

53

on another refactoring (#2) because the Extract Super Class refactoring (#2) creates

a new class (Class_7), on which refactorings #3, #4, and #5 operate. If the new class

is not created first, then refactorings #3, #4, and #5 will fail. Thus, there exists an

ordering dependency from each of #3, #4, and #5 to #2. Refactoring #1, however,

has distinct parameters, indicating that it operates on different code elements, thus

it has no ordering dependencies on any others in this solution. Presenting these

dependencies to a developer clarifies the options that the developer has to refactor

their code. For example, the developer could choose not to apply any refactoring

except for refactoring #2 without consequences; if the developer chooses not to apply

refactoring #2, then refactorings #3, #4, and #5 cannot be applied either. Detecting

ordering dependency relationships among refactorings is essential to more effectively

applying refactorings.

4.2 Refactoring Dependency Theory

The refactoring dependency theory for reasoning about collections of refactorings

is built upon two concepts. The first is the definition of an ordering dependency re-

lation among refactorings in a collection of refactorings. Pre- and post-conditions for

refactoring types are used to detect refactoring dependencies. The second is the orga-

nization of a collection of refactorings as a set of refactoring graphs. Together, these

concepts improve our ability to understand the meaning of collections of refactorings,

allowable operations on them, and their composition in practice.

In this section, we describe the elements of our theory, the algorithm for detecting

refactoring dependencies, and an associated web-tool that implements this detection

algorithm.

54

4.2.1 Definitions

Our proposed dependency relation captures an ordering dependency between pairs

of refactoring instances. Specifically, an ordering dependency (rf2 7→ rf1) between

two refactoring instances (rf1 and rf2) exists when rf2 can only be successfully applied

after rf1 has been applied. That is, rf1 makes a change to code that is necessary in

order to apply rf2. This condition can be evaluated based on the combination of pre-

and post-conditions of the types of refactorings involved and the parameters of each

refactoring instance. For example, to apply Move Method (a type of refactoring) to

move method m1 from class c1 to class c2 (m1, c1, and c2 being the parameters of the

refactoring instance), several pre-conditions must hold (e.g. m1, c1, and c2 must all

exist and m1 must be defined on c1). The pre- and post-conditions of each type of

refactoring will be described in the next sub-section.

Building on this ordering dependency definition, we organize collections of refac-

torings as sets of refactoring graphs rather than as sequences of refactorings. A refac-

toring graph is a weakly connected directed acyclic graph composed of refactoring

instance vertices and ordering dependency edges. Using the ordering dependencies as

the basis for forming refactoring graphs (Algorithm 1) results in a set of graphs with

the following traits:

• Each refactoring instance is an element of exactly one refactoring graph.

• Some graphs contain a single refactoring instance because that refactoring is

truly independent of all others. We call these trivial graphs comprised of a

single node of a refactoring instance.

• The remaining graphs contain multiple refactoring instances, each of which is

part of one or more dependencies. We call these non-trivial graphs .

• Each refactoring graph is independent of every other graph in the solution.

55

Refactoring recommendations typically comprise a collection of compatible refac-

torings, and as such positive dependencies are more relevant to common use cases.

The idea of negative refactorings would be more applicable if a recommendation con-

tained mutually exclusive advice, e.g. three Move Method refactorings that move the

same method to three different locations. This is not the common use case, but this

work could be easily adapted. The essence of identifying a refactoring that precluded

(or invalidated) another could be performed using the same pre- and post-conditions,

but with a modification to check for differences rather than commonalities, e.g. refac-

toring #1’s post-condition moves the location of a method to class A and refactoring

#2’s pre-condition requires that same method to reside in class B. It may require

additional work to consider the initial state of a program, but the same principles

would likely apply.

4.2.1.1 Refactoring Pre- and Post-Conditions

As our approach for detecting ordering dependencies relies on the pre- and post-

conditions of specific types of refactorings, we began with validated conditions in the

current literature [37, 44, 78, 89] related to 14 types of refactorings. We selected the

refactoring types summarized in Table 4.1 since they were those most frequently used

in practice based on existing studies [41, 43, 83] and since our work focuses more on

complex/composite refactoring operations, which have more complex/sophisticated

pre/post-conditions. The pre- and post-conditions sets published in current liter-

ature were extensively validated for correctness and completeness [37, 44, 78, 89].

The complete list of updated pre- and post-conditions for the 14 supported types

of refactorings are organized in Table 4.1. In this table, the post-conditions that

are presented are only those that represent a change. This is important for the de-

pendency detection algorithm, allowing it to efficiently identify changes that enable

pre-conditions of dependent refactorings. Also, the functions used for describing the

56

pre- and post-conditions and their meanings are defined in [44].

4.2.2 Algorithm for Detecting Refactoring Dependencies

Algorithm 1 describes the process for detecting refactoring ordering dependen-

cies. These dependencies are detected based on comparisons between pre- and post-

conditions of refactoring instances. The proposed algorithm takes a list of refactoring

instances as input and generates a set of refactoring graphs as output.

Algorithm 1: Dependency Detection Algorithm.
Input: refactoring solution C = {r1, r2, r3, . . . , rn}
Output: forest of refactoring graphs F = {f1, f2, f3, . . . , fm}
V ← ∅, E ← ∅;
foreach ri ∈ C do

V ← V ∪ ri;
P ← post_conditions(ri);
foreach rj ∈ C | j > i do

Q← pre_conditions(rj);
M ← P ∩Q;
if |M | ≠ 0 then

E ← E ∪ {rj , ri};

G← (V,E);
F ← partition(G);
return F ;

Lines 1 and 2 initialize the lists of refactoring instances (nodes of the graph, V)

and refactoring dependencies (edges of the graph, E). Then, the post-conditions of

each refactoring instance of the solution C (collection of refactorings) are evaluated

for matching with the remaining refactoring instances in C (Lines 3–13). Specifically,

the algorithm looks for any match between predicates of pre- and post-conditions

from Table 4.1. That is, if any predicate of the post-condition of one refactoring

(any element of P) matches any predicate of the pre-condition of another refactoring

(any element of Q), then a dependency has been detected and an edge is added to

the graph between those refactorings (Lines 5–10). We repeat this process until all

the refactorings have been visited. Then, Lines 14 identifies the different trivial and

57

Ta
bl

e
4.

1:
R

ef
ac

to
ri

ng
ty

pe
s

an
d

th
ei

r
pr

e-
an

d
po

st
-c

on
di

ti
on

ru
le

s.
R

ef
ac

to
ri

n
g

C
on

d
.

R
u
le

s
M

ov
e

M
et

ho
d

(c
1,

c2
,m

)
P

re
ex

is
t(

c1
,c

2,
m

)
&

&
N

O
T

(i
nh

er
it

an
ce

H
ie

ra
rc

hy
(c

1,
c2

))
&

&
de

fin
es

(c
1,

m
)

&
&

N
O

T
(d

efi
ne

s(
c2

,m
))

P
os

t
N

O
T

(d
efi

ne
s(

c1
,m

))
&

&
de

fin
es

(c
2,

m
)

M
ov

e
F
ie

ld
(c

1,
c2

,f
)

P
re

ex
is

t(
c1

,c
2,

f)
&

&
N

O
T

(i
nh

er
it

an
ce

H
ie

ra
rc

hy
(c

1,
c2

))
&

&
de

fin
es

(c
1,

f)
&

&
N

O
T

(d
efi

ne
s(

c2
,f

))
P
os

t
N

O
T

(d
efi

ne
s(

c1
,f

))
&

&
de

fin
es

(c
2,

f)
P

ul
lU

p
F
ie

ld
(c

1,
c2

,f
)

P
re

ex
is

t(
c1

,c
2,

f)
&

&
is

Su
pe

rC
la

ss
O

f(
c2

,c
1)

&
&

de
fin

es
(c

1,
f)

&
&

N
O

T
(d

efi
ne

s(
c2

,f
))

P
os

t
de

fin
es

(c
2,

f)
&

&
N

O
T

(d
efi

ne
s(

c1
,f

))
P

ul
lU

p
M

et
ho

d
(c

1,
c2

,m
)

P
re

ex
is

t(
c1

,c
2,

m
)

&
&

is
Su

pe
rC

la
ss

O
f(

c2
,c

1)
&

&
de

fin
es

(c
1,

m
)

&
&

N
O

T
(d

efi
ne

s(
c2

,m
))

P
os

t
de

fin
es

(c
2,

m
)

&
&

N
O

T
(d

efi
ne

s(
c1

,m
))

P
us

h
D

ow
n

F
ie

ld
(c

1,
c2

,f
)

P
re

ex
is

t(
c1

,c
2,

f)
&

&
is

Su
pe

rC
la

ss
O

f(
c1

,c
2)

&
&

de
fin

es
(c

1,
f)

&
&

N
O

T
(d

efi
ne

s(
c2

,f
))

P
os

t
de

fin
es

(c
2,

f)
&

&
N

O
T

(d
efi

ne
s(

c1
,f

))
P

us
h

D
ow

n
M

et
ho

d
(c

1,
c2

,m
)

P
re

ex
is

t(
c1

,c
2,

m
)

&
&

is
Su

pe
rC

la
ss

O
f(

c1
,c

2)
&

&
de

fin
es

(c
1,

m
)

&
&

N
O

T
(d

efi
ne

s(
c2

,m
))

P
os

t
de

fin
es

(c
2,

m
)

&
&

N
O

T
(d

efi
ne

s(
c1

,m
))

In
lin

e
C

la
ss

(c
1,

c2
,{

el
em

en
ts

})
P

re
ex

is
t(

c1
,c

2)
&

&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
2,

e)
&

&
N

O
T

(d
efi

ne
s(

c1
,e

))
P
os

t
ex

is
t(

c1
)

&
&

N
O

T
(e

xi
st

(c
2)

)
&

&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
1,

e)
E

xt
ra

ct
C

la
ss

(c
1,

c2
,{

el
em

en
ts

})
P

re
ex

is
t(

c1
)

&
&

N
O

T
(e

xi
st

(c
2)

)
&

&
m

et
ho

ds
(c

1)
>

2
&

&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
1,

e)
P
os

t
ex

is
t(

c2
)

&
&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
2,

e)
&

&
N

O
T

(d
efi

ne
s(

c1
,e

))
E

xt
ra

ct
Su

pe
r

C
la

ss
(c

1,
c2

,{
el

em
en

ts
})

P
re

ex
is

t(
c1

)
&

&
N

O
T

(e
xi

st
(c

2)
)

&
&

m
et

ho
ds

(c
1)

>
2

&
&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
1,

e)
P
os

t
ex

is
t(

c2
)

&
&

is
Su

pe
rC

la
ss

O
f(

c2
,c

1)
&

&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
2,

e)
&

&
N

O
T

(d
efi

ne
s(

c1
,e

))
E

xt
ra

ct
Su

b
C

la
ss

(c
1,

c2
,{

el
em

en
ts

})
P

re
ex

is
t(

c1
)

&
&

N
O

T
(e

xi
st

(c
2)

)
&

&
m

et
ho

ds
(c

1)
>

2
&

&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
1,

e)
P
os

t
ex

is
t(

c2
)

&
&

is
Su

pe
rC

la
ss

O
f(

c1
,c

2)
&

&
∀e
∈

el
em

en
ts

:
de

fin
es

(c
2,

e)
&

&
N

O
T

(d
efi

ne
s(

c1
,e

))
E

nc
ap

su
la

te
F
ie

ld
(c

1,
f)

P
re

ex
is

t(
c1

)
&

&
de

fin
es

(c
1,

f)
&

&
N

O
T

(d
efi

ne
s(

c1
,s

et
_

f)
)

&
&

N
O

T
(d

efi
ne

s(
c1

,g
et

_
f)

)
P
os

t
de

fin
es

(c
1,

se
t_

f)
&

&
de

fin
es

(c
1,

ge
t_

f)

D
ec

re
as

e
F
ie

ld
Se

cu
ri

ty
(c

1,
f,

ne
w

Se
cL

vl
)

P
re

ex
is

t(
c1

)
&

&
de

fin
es

(c
1,

f)
&

&
((

ne
w

Se
cL

vl
=

=
“p

ub
lic

”
=
⇒

(N
O

T
(i

sP
ub

lic
(f

))
&

&
is

P
ro

te
ct

ed
(f

))
)

&
&

(n
ew

Se
cL

vl
=

=
“p

ro
te

ct
ed

”
=
⇒

(N
O

T
(i

sP
ro

te
ct

ed
(f

))
&

&
N

O
T

(i
sP

ub
lic

(f
))

&
&

is
P

ri
va

te
(f

))
))

P
os

t
(n

ew
Se

cL
vl

=
=

“p
ub

lic
”

=
⇒

is
P

ub
lic

(f
))

||
(n

ew
Se

cL
vl

=
=

“p
ro

te
ct

ed
”

=
⇒

is
P

ro
te

ct
ed

(f
))

D
ec

re
as

e
M

et
ho

d
Se

cu
ri

ty
(c

1,
m

,n
ew

Se
cL

vl
)

P
re

ex
is

t(
c1

)
&

&
de

fin
es

(c
1,

m
)

&
&

((
ne

w
Se

cL
vl

=
=

“p
ub

lic
”

=
⇒

(N
O

T
(i

sP
ub

lic
(m

))
&

&
is

P
ro

te
ct

ed
(m

))
)

&
&

(n
ew

Se
cL

vl
=

=
“p

ro
te

ct
ed

”
=
⇒

(N
O

T
(i

sP
ro

te
ct

ed
(m

))
&

&
N

O
T

(i
sP

ub
lic

(m
))

&
&

is
P

ri
va

te
(m

))
))

P
os

t
(n

ew
Se

cL
vl

=
=

“p
ub

lic
”

=
⇒

is
P

ub
lic

(m
))

&
&

(n
ew

Se
cL

vl
=

=
“p

ro
te

ct
ed

”
=
⇒

is
P

ro
te

ct
ed

(m
))

In
cr

ea
se

F
ie

ld
Se

cu
ri

ty
(c

1,
f,

ne
w

Se
cL

vl
)

P
re

ex
is

t(
c1

)
&

&
de

fin
es

(c
1,

f)
&

&
((

ne
w

Se
cL

vl
=

=
“p

ri
va

te
”

=
⇒

(N
O

T
(i

sP
ri

va
te

(f
))

&
&

is
P

ro
te

ct
ed

(f
))

)
&

&
(n

ew
Se

cL
vl

=
=

“p
ro

te
ct

ed
”

=
⇒

(N
O

T
(i

sP
ro

te
ct

ed
(f

))
&

&
N

O
T

(i
sP

ri
va

te
(f

))
&

&
is

P
ub

lic
(f

))
))

P
os

t
(n

ew
Se

cL
vl

=
=

“p
ri

va
te

”
=
⇒

is
P

ri
va

te
(f

))
&

&
(n

ew
Se

cL
vl

=
=

“p
ro

te
ct

ed
”

=
⇒

is
P

ro
te

ct
ed

(f
))

In
cr

ea
se

M
et

ho
d

Se
cu

ri
ty

(c
1,

m
,n

ew
Se

cL
vl

)

P
re

ex
is

t(
c1

)
&

&
de

fin
es

(c
1,

m
)

&
&

((
ne

w
Se

cL
vl

=
=

“p
ri

va
te

”
=
⇒

(N
O

T
(i

sP
ri

va
te

(m
))

&
&

is
P

ro
te

ct
ed

(m
))

)
&

&
(n

ew
Se

cL
vl

=
=

“p
ro

te
ct

ed
”

=
⇒

(N
O

T
(i

sP
ro

te
ct

ed
(m

))
&

&
N

O
T

(i
sP

ri
va

te
(m

))
&

&
is

P
ub

lic
(m

))
))

P
os

t
(n

ew
Se

cL
vl

=
=

“p
ri

va
te

”
=
⇒

is
P

ri
va

te
(m

))
&

&
(n

ew
Se

cL
vl

=
=

“p
ro

te
ct

ed
”

=
⇒

is
P

ro
te

ct
ed

(m
))

58

non-trivial graphs that are formed based on the detected dependencies.

To illustrate Algorithm 1, consider the motivating example described in Figure 4.1.

This example contains six refactoring instances:

#1 ExtractClass(OverwriteDataSet;Class_6;[x]; [addChangeListener])

#2 MoveField(PowerFunction2D;BooleanList;[b];[])

#3 ExtractSuperClass(CSV;Class_7;[fieldDelimiter]; [extractRowKeyAndData])

#4 MoveField(Class_7;EventObject;[fieldDelimiter];[])

#5 PullUpField(CSV;Class_7;[textDelimiter];[])

#6 PullUpMethod(CSV;Class_7;[];[readCategoryDataset])

Figure 4.2 illustrates the application of the algorithm to this example. In Step

1, the post-conditions of refactoring #1 are compared to the pre-conditions of all

remaining refactorings. Since there is no match among pre- and post-conditions for

any of them, no dependency is added. Next, the post-conditions of refactoring #2 are

compared in Step 2 to the pre-conditions of the next refactorings in the sequence (#3

- #6). Again, no match is found. In Step 3, the post-conditions of refactoring #3

are compared to pre-conditions of refactorings #4, #5, and #6. For each, a match

exist(Class_7) is found. Thus, three dependencies are added, from each of #4, #5,

and #6 to #3. The algorithm continues, but no additional matches are found. Thus,

Algorithm 1 transforms this sequence into three refactoring graphs (two trivial graphs

and one non-trivial graph that includes four refactorings).

When the developers interact with the tool by modifying or rejecting some of

the refactorings then the dependencies detection algorithm is re-executed to check

the impact of those changes on the graphs. Thus, all the graphs will be updated

59

Figure 4.2: Execution of Algorithm 1 on the example of Figure 4.1.

instantly during those interactions.

4.2.3 DPRef

To validate our definitions and algorithm and to make our refactoring dependency

detection approach available to the community, we implemented DPRef1, a free and

open-source web-platform that allows users to provide a sequence of refactorings to

be applied as input and generates a set of refactoring graphs as output. The home-

page of the DPRef web-tool and a sample input list of refactoring operations for the
1https://iselab-dpref.herokuapp.com/

60

https://iselab-dpref.herokuapp.com/

JFreeChart project is demonstrated in Figure 4.3.

Figure 4.3: DPRef, a web-tool for detecting refactoring dependencies.

Figure 4.4: DPRef showing detected refactoring dependencies for JFreeChart.

Figure 4.4 shows DPRef’s output, which includes the generated set of refactoring

graphs and associated information like the impact on quality attributes for each graph

61

or individual refactoring. Our tool automatically applies the refactoring graphs on the

source code. Then, the quality metrics are calculated on the code after applying those

refactorings. Developers are then able to change the generated refactoring graphs and

apply filters to show, for instance, just the graphs that significantly improve specific

quality attributes. DPRef also includes an Eclipse plug-in to execute any refactorings

selected by the user on the actual source code. The tool is available as part of our

replication package.

4.3 Empirical Study

In this section, we present our research questions, validation methodology, exper-

imental setup, and discuss our findings.

4.3.1 Research Questions

The following research questions guide the evaluation of our refactoring depen-

dency theory:

RQ1: (Precision) To what extent are the detected refactoring ordering depen-

dencies correct?

RQ2: (Relation) To what extent are refactorings dependent?

RQ3: (Improvement) To what extent do non-trivial refactoring graphs improve

quality attributes compared to trivial refactoring graphs, i.e., independent

refactorings?

We collected data from 9,595 open-source repositories to evaluate the correct-

ness of the detected ordering dependency relationships among refactorings. For each

62

project, we executed existing refactoring recommendation tools [42, 44] to find rel-

evant refactorings to be applied on the code of those projects. In this study, we

use the refactoring recommendations generated by those tools based on their supe-

rior performance compared to the state of the art with over 90% of precision, recall,

and manual correctness based on large, open-source, and industry projects; the large

number of supported refactoring types; and them being publicly available. We de-

scribe the parameter settings used by such refactoring recommendation tools in the

next section. Finally, we detected dependencies among refactorings and generated

refactoring graphs based on Algorithm 1 for all generated refactoring solutions to un-

derstand if and how refactorings are applied together rather than in isolation. Finally,

we studied and compared the impact of refactoring graphs on different well-defined

quality attributes, based on the QMOOD model [45] detailed in Table 4.2.

Table 4.2: QMOOD quality metrics.
QMOOD Metrics Definition / Computation
Reusability −0.25∗Coupling+0.25∗Cohesion+0.5∗Messaging+

0.5 ∗DesignSize
Flexibility 0.25 ∗ Encapsulation − 0.25 ∗ Coupling + 0.5 ∗

Composition+ 0.5 ∗ Polymorphism
Understandability −0.33 ∗ Abstraction + 0.33 ∗ Encapsulation − 0.33 ∗

Coupling + 0.33 ∗ Cohesion − 0.33 ∗ Polymorphism −
0.33 ∗ Complexity − 0.33 ∗DesignSize

Functionality 0.12 ∗ Cohesion + 0.22 ∗ Polymorphism + 0.22 ∗
Messaging + 0.22 ∗DesignSize+ 0.22 ∗Hierarchies

Extendibility 0.5 ∗Abstraction− 0.5 ∗Coupling+0.5 ∗ Inheritance+
0.5 ∗ Polymorphism

Effectiveness 0.2 ∗ Abstraction + 0.2 ∗ Encapsulation + 0.2 ∗
Composition+0.2 ∗ Inheritance+0.2 ∗Polymorphism

4.3.1.1 RQ1: Precision

To answer RQ1, we use two methods: automated and manual correctness. We

used these complementary methods because the manual evaluation can be error-prone,

time-consuming, and not scalable while the automated evaluation may lack insights

63

and feedback from developers.

For automated correctness, we removed refactorings from valid non-trivial graphs

and determined whether the removal invalidated the graph. We define a valid graph

as a refactoring graph for which all pre-conditions of all refactorings hold (Table 4.1).

As defined earlier, if an ordering dependency exists between two refactorings (a head

refactoring depends on a tail refactoring), then the head refactoring can only be

successfully applied after the tail; removing any tail refactoring should then invalidate

at least one pre-condition of a head refactoring. As such, our specific test was to

remove one tail refactoring from each valid non-trivial graph with more than two

refactorings and then count the number of valid and invalid non-trivial graphs. To

answer RQ1, we calculated the Rate of Correctness (RC) after removing one tail

refactoring from all non-trivial graphs as follows:

RC =
of Invalid Non-trivial Graphs

of Non-trivial Graphs
(4.1)

Our assertion is that the refactoring dependency detection algorithm is correct if

all non-trivial graphs become invalid if at least one tail refactoring is removed from

each, as above.

For the manual evaluation, we asked 27 full-time developers to manually check

the correctness of 50 valid non-trivial graphs totaling 233 refactorings from 5 open-

source projects23456 that contained at least 5K Lines of Code (LOC) and involved

significant refactorings in the last 2 years. The graphs are a sequence of refactorings

and some of them are large in size. We made sure during the sampling process

to use the following criteria to avoid any bias in the selected refactorings for the

manual validation: refactoring types, project size, project domain, and locations of
2https://github.com/phunware/maas-ads-android-sdk
3https://github.com/solita/query-utils
4https://github.com/forge/roaster
5https://github.com/goobi/goobi-ugh
6https://github.com/kongchen/swagger-maven-example

64

https://github.com/phunware/maas-ads-android-sdk
https://github.com/solita/query-utils
https://github.com/forge/roaster
https://github.com/goobi/goobi-ugh
https://github.com/kongchen/swagger-maven-example

the refactorings (files).

The participants were asked to use our tool to identify refactoring dependencies,

assess the correctness of those dependencies, and apply and compile the refactor-

ings. When checking correctness, developers were asked to evaluate each refactoring

independently to determine whether each identified dependency was necessary and

whether there were any missing dependencies. The participants looked to the gen-

erated dependencies graph of the refactorings using our visual representation in the

DPRef tool. Then, they reviewed the code before and after applying any selected

refactorings. In case of any doubt, the participants could select the refactorings from

the graph and they would be automatically executed on the code. Conflicting refac-

torings may generate errors in the code which may confirm the missing dependencies.

In this case, the refactoring is considered as invalid in this exercise. Otherwise, a refac-

toring for which the set of dependencies was both correct and complete is considered

as a valid refactoring. We define a Manual Correctness (MCr) score as:

MCr =
of Valid Refactorings

of Evaluated Refactorings
(4.2)

4.3.1.2 RQ2: Relation

To answer RQ2, we calculated the number of dependencies (edges) and graphs

(trivial and non-trivial) for all projects. We also counted the number of refactorings

in non-trivial graphs and the most frequently occurring refactoring types in them, as

well as the Non-Trivial Rate (NTR) defined as follows:

NTR =
of Refactorings in Non-trivial Graphs

of Refactorings
(4.3)

These evaluation metrics allow us to understand the extent of refactoring depen-

dencies. Furthermore, we can evaluate the refactoring types that are less commonly

applied in isolation and also understand the complexity of the non-trivial graphs

65

based on their sizes.

4.3.1.3 RQ3: Improvement

To answer RQ3, we consider all the trivial and non-trivial graphs to evaluate

their impact on the quality attributes and the design metrics from QMOOD. We

compared the number of graphs that improve the quality attributes and design metrics

from QMOOD [45] for both trivial and non-trivial graphs. We also considered the

rates of improvement, in percentage, for all graphs taking into consideration the

reusability, flexibility, understandability, functionality, extendibility, and effectiveness

quality attributes captured by QMOOD metrics and available in Table 4.2, as well

as, basic metrics such as coupling, cohesion, etc. We also calculated a Total Quality

Index (TQI), aggregating all the metrics, after normalization, with equal weights into

one metric.

These evaluation metrics are useful to understand the impact of collections ver-

sus individual refactorings on improving the quality and which quality attributes

are more likely to be significantly improved using non-trivial graphs or independent

refactorings.

4.3.2 Experimental Settings

We considered a total of 9,595 open-source Java projects to address the above

research questions. The selection process limited consideration to projects with ≥

5k LOC and at least 2 collaborators. We also eliminated any duplicate (cloned)

projects from consideration. We applied these criteria on the list of one million

GitHub projects provided by [121]. We performed this selection process in an at-

tempt to eliminate small projects, such as student projects and small hobby/learner

programs, that were not likely to be good candidates for refactorings.

Table 4.3 shows the minimum (min), average, and maximum (max) for the num-

66

ber of the collaborators, code size (in LOC), # of classes, and # of recommended

refactorings generated. The list of subject projects is also available in the replication

package along with all results (e.g. refactorings, quality metrics, refactoring graphs,

etc.).

Table 4.3: Statistics of the subject projects.
Metric Min Average Max

Collaborators 2 2.6 65

Code Size 5.0k 25.9k 4,997.7k

of Classes 1 931.3 23802

of Refactorings 150 151.9 200

The total number of refactorings collected from recommendations for these 9,595

projects is almost 1.5 million (1,457,873 refactorings). We used the parameter settings

recommended by the authors of the refactoring recommendations tool [44]: Single

Point crossover with probability = 0.7, Bit Flip mutation with probability = 0.4, and

stopping criterion was set to 100,000 evaluations. We also set the initial population

size to 100 and utilized a tournament selection operator with n = 2. The minimum and

maximum number of refactorings per solution are limited to 150 and 200, respectively.

For the manual validation of the refactoring dependencies, we recruited 27 full-

time developers from our networks, each of whom was unaware of our algorithm.

These participants were first asked to fill out a pre-study questionnaire containing

six questions. The questionnaire helped to collect background information such as

their role within their company, their programming experience, and their familiarity

with software refactoring. The list of the pre- and post-study questions of all the

questionnaires, the validation data, and the obtained results can be found in the online

appendix. Although the vast majority of participants were already familiar with

refactoring as part of their jobs and graduate studies, all the participants attended

a two-hour lecture on refactoring by two the organizers of the experiments. The

67

details of the selected participants can be found in Table 4.4, including their years of

programming experience, familiarity with refactoring, etc.

Table 4.4: Selected Participants.
Prog. Exp. (Years)

System # of Subjects
[Min-Avg-Max]

Avg. Ref. Exp.

Data Set #1 5 [5.5 - 6.0 - 7.5] High
Data Set #2 5 [5.5 - 7.0 - 8.0] High
Data Set #3 7 [6.5 - 7.5 - 10.5] High
Data Set #4 5 [6.0 - 6.5 - 8.5] High
Data Set #5 5 [6.5 - 7.5 - 9.0] High

All participants had a minimum of 5.5 years experience and work as active pro-

grammers with strong backgrounds in refactoring, Java, and software quality metrics.

We divided the participants into 5 data sets where each data set contains 10 samples

of valid non-trivial graphs. We selected these samples based on the distribution of the

refactoring types and number of refactorings in each graph as described in Figure 4.5.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

#
 o

f
R
ef

ac
to

rin
gs

 p

er
 G

ra
ph

Figure 4.5: Number of refactorings per non-trivial graph in each data set.

Each participant was asked to assess the correctness of the refactoring dependen-

cies and to identify missing dependencies between the refactorings using our DPRef

tool. They were asked to execute the sequence of refactoring using our Eclipse plug-in

and compile the code after applying the refactorings of each valid non-trivial graph.

In addition to evaluating the refactorings, the participants were asked to configure,

68

run, and interact with the tool on the different systems. We assigned tasks to the

participants according to the data sets and developers’ experience. Each participant

was given a post-study survey. This second survey was more general as it collected

the practitioners’ opinions and their perception of the importance and relevance of

detecting refactoring dependencies along with the usability of DPRef. The samples

used in the manual validation study as well as the full details of our pre-study survey

results can be found in the replication package.

4.3.3 Results and Discussion

4.3.3.1 Results for RQ1

Figure 4.6 summarizes the distribution of the results of removing one tail refac-

toring from all non-trivial graphs with more than two refactorings. One important

outcome is that all non-trivial graphs become invalid after removing a tail refactoring

(RC), which confirms that the proposed algorithm accurately identifies refactoring

dependencies. The RC evaluation metric has a value of 1.0 (or 100%) across all the

9,595 projects, i.e., for all non-trivial graphs. The total number of non-trivial graphs

is 257,725 with an average of 26.8 per project.

Another interesting result was that our algorithm detected many invalid refactor-

ings among the solutions generated by the tool of Ouni et al. [44]. An average of 6.2

invalid non-trivial graphs were identified per project. The main reason is that the

crossover operator used to exchange refactorings between solutions did not ensure that

refactoring pre-conditions would remain satisfied after the exchange. As discussed in

the future work section, the theory proposed in this paper can be integrated into ex-

isting refactoring recommendation tools to improve their correctness and contribute

to the definition of intelligent change operators (including crossover) for search-based

refactoring. Non-trivial graphs that were initially invalid were excluded from the

calculation of RC and the removal of refactorings shown in Figure 4.6.

69

 0

 4

 8

 12

 16

 20

 24

Invalid Non-trivial
 Graphs after

 Refactoring Removal

Number Of
 Considered
 Non-trivial

 0

 0.2

 0.4

 0.6

 0.8

 1

RC MC

Figure 4.6: Box-plots of refactoring dependency correctness for the 9,595 projects.

For the manual evaluation, all the non-trivial graphs were correctly executed by

the participants on the open source projects and they agreed that the dependencies

were correctly and completely identified for each refactoring. Thus, the MCr scores

were 100% on all the selected data sets as shown in Figure 4.6. Accordingly, the

manual correctness results confirm the automated method.

The fact that a refactoring was recommended by Ouni et al. [44] and was not

applied before by developers does not mean that the recommendation is not correct,

but simply that most likely the developers may not have thought about that refac-

toring and may not have had time to implement it. The manual validation scores of

[44] are more than 90% on large scale systems which means that the manual check

by developers confirmed that the vast majority of the recommendations are correct

and useful. We clarified these observations in the validation section when explaining

our choices.

Maturation of automated tools to assist developers with complex tasks such as

refactoring is an important gap to fill. The developers that we surveyed also agree

with this. All the participants rated the importance of detecting refactoring depen-

dencies as important or rather important, which confirms the need for tools to detect

dependencies in a refactoring sequence. The vast majority of participants (24 out

70

of 27) also rated the task of manually identifying these dependencies as difficult or

very difficult based on their experiences in using existing refactoring tools. These

developers described that the most important motivations of automatically detecting

dependencies is to understand how they can fix code smells (typically fixed using a

sequence of refactorings) and also to reduce the refactoring effort by applying refac-

torings incrementally.

We asked also the participants to rate their agreement on a Likert scale from 1

(complete disagreement) to 5 (complete agreement) with the following question on

how important it is to detect refactoring dependencies automatically.

Figure 4.7: Participant Survey.

As shown in Figure 4.7, all the participants rated this feature as important or

71

rather important which confirms the need for tools to detect dependencies in a refac-

toring sequence. The majority of participants (14 out of 27) also rated the task of

manually identifying these dependencies as difficult/very difficult based on their ex-

periences in using existing refactoring tools. Figure 4.7 also describes that developers

think that the most important motivations of automatically detecting dependencies

is to understand how they can fix code smells (typically fixed using a sequence of

refactorings) and also to reduce the refactoring effort by applying refactorings in an

incremental way. The figure also shows that DPRef was easy to use by at least 18 out

of the 27 participants and they were able to understand the dependencies without

complications.

¤ Key findings: To answer RQ1, the algorithm for detecting refactoring de-

pendencies achieved 100% correctness on all projects.

4.3.3.2 Results for RQ2

Figure 4.8 shows that while truly independent refactorings are more common, the

mean NTR shows that more than 40% of all recommended refactorings are part of

non-trivial graphs and for some projects, all refactorings are part of a single non-

trivial graph (NTR = 1.0). The portion of refactorings that are part of refactoring

dependencies is significant.

Across all projects, non-trivial graphs have a mean number of dependencies of

almost 40 (recall that this is based on solutions with a mean of roughly 150 refac-

torings), with nearly 100 dependencies observed for some projects. This indicates

a range of connectedness in non-trivial graphs, with the more highly dependent/

coupled likely being difficult for developers to understand and having a high risk of

generating large numbers of invalid refactorings if they are not applied together. We

noticed that the most connected refactoring graphs are more likely to be associated

with small projects in which many refactorings are applied to common code locations.

72

 0

 20

 40

 60

 80

 100

of
 Dependencies

 0

 40

 80

 120

 160

 200

of
 Graphs

 0

 40

 80

 120

 160

 200

of
 Non-Trivial

 Graphs

 0

 40

 80

 120

 160

 200

of
 Trivial
 Graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

NTR

Figure 4.8: Distribution of refactorings in trivial versus non-trivial graphs based on
the 9,595 projects.

Comparing the range and distribution of the number of graphs, most projects have

a mean of more than 100 graphs per solution in which the number of trivial graphs

is greater than non-trivial. However, as shown by NTR, the number of refactorings

in non-trivial graphs is very similar or exceeds the number of refactorings in trivial

graphs.

Figure 4.9 shows the distribution of the size of the non-trivial graphs; notice that

there is a small number of non-trivial graphs including 31+ refactorings. However,

the vast majority of non-trivial graphs include 2-5 refactorings. This may confirm

that collections of dependent refactorings tend to be small, which can offer flexibility

to developers if they want to modify these collections. Projects vary, however, with

several including non-trivial graphs with 10-50 refactorings and with one including a

graph of 138 refactorings.

Regarding refactoring types, Figure 4.10 shows that the most common refactoring

types found in non-trivial graphs are Extract Class, Extract Super Class, and Extract

Sub Class. This finding confirms that modifying the hierarchy of code requires a

combination of several refactorings and cannot be done with one isolated refactoring.

73

Graph Size

of

 G
ra

ph
s

0
4
8

12
16
20
24
28
32
36
40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+

Figure 4.9: Size of non-trivial refactoring graphs in the 9,595 projects.

 0 6 12 18 24 30

Decrease Field Security
Decrease Method Security

Encapsulate Field
Extract Class

Extract Sub Class
Extract Super Class

Increase Field Security
Increase Method Security

Move Field
Move Method

PullUp Field
PullUp Method

Push Down Field
Push Down Method

of Non-Trivial Graphs

Figure 4.10: Distribution of the refactoring types among non-trivial graphs for the
9,595 projects.

Furthermore, the figure also shows that Decrease Method Security, Encapsulate Field,

and Increase Field Security are the least common refactoring types in non-trivial

graphs. It most likely indicates that these refactorings can be applied independently

without requiring major restructuring effort.

74

¤ Key findings: To answer RQ2, while more refactorings appear in trivial

graphs than non-trivial graphs, the difference is not large. The mean value of

NTR is 43%, indicating nearly half of all refactorings participate in refactoring

dependencies and as such cannot be applied without consideration of other refac-

torings. Some refactoring types are more likely to be applied with other dependent

refactorings than others.

4.3.3.3 Results for RQ3

Figure 4.11 shows how trivial and non-trivial refactoring graphs improve quality

attribute and design metrics. The number of trivial graphs that improves each metric

is greater than the number of non-trivial graphs that do so. However, the impact of

each kind of graph on the improvement of each quality metric can vary considerably.

We also analysed the improvements caused by the two kinds of refactoring graphs for

a subset of the quality attribute metrics.

Figure 4.12 shows the rate of improvement in % for Effectiveness, Extendibility,

Flexibility, Functionality, Reusability, and Understandability. This data shows that,

for most projects, the improvement caused by the non-trivial graphs is greater than

for trivial graphs. The implication is that non-trivial graphs may be more useful

in practice for developers than marginal improvements obtained by individual refac-

torings. Some metrics, like Extendibility (note the different scale) and Reusability,

are more significantly improved using dependent refactorings. Even small changes

are significant when considered as aggregate measures across an entire code base.

This result is consistent with the fact that Extract [Super/Sub] Class refactorings are

more likely to occur within a non-trivial graph and that these refactorings are natural

choices for improving the Extendibility and Reusability of software. However, quality

metrics may be conflicting, hence the execution of a refactoring could increase some

metrics and deteriorate others. The cumulative impact will depend on the types of

75

 0 20 40 60 80 100

Trivial Graphs

 0 20 40 60 80 100

Abstraction
Cohesion

Complexity
Composition

Coupling
Design Size

Effectiveness
Encapsulation
Extendibility

Flexibility
Functionality
Hierarchies
Inheritance
Messaging

Polymorphism
Reusability

Standard Cohesion
Standard Complexity
Standard Coupling

TQI
Understandability

Non-trivial Graphs

Figure 4.11: The number of graphs that improved the quality metrics.

the refactorings in the non-trivial graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

Effectiveness

Non-trivial
Trivial

 0

 0.2

 0.4

 0.6

 0.8

 1

Extendibility

 0

 0.2

 0.4

 0.6

 0.8

 1

Flexibility

 0

 0.2

 0.4

 0.6

 0.8

 1

Functionality

 0

 0.2

 0.4

 0.6

 0.8

 1

Reusability

 0

 0.2

 0.4

 0.6

 0.8

 1

Understandability

Figure 4.12: Rate of quality improvement (%) for the refactoring graphs per metric.

76

¤ Key findings: To answer RQ3, non-trivial refactoring graphs improve all six

quality attribute metrics in our experiments better than independent refactorings.

In particular, the improvement from the application of non-trivial graphs over

trivial graphs is particularly significant for Functionality and Reusability.

4.4 Threats to Validity

Conclusion validity. We used Design of Experiments (DoE) [122] to mitigate

the internal threat related to parameter tuning used in our experiments. DoE is

a methodology for systematically applying statistics to experimentation and is one

of the most efficient techniques for parameter settings of evolutionary algorithms

for the used refactoring recommendation tool. Each parameter has been uniformly

discretized in some intervals. Values from each interval have been tested for our

application and we chose the best values.

Internal validity. We collected data from a very large number of repositories

resulting in about 1.5 million refactorings for 9,595 projects. A possible internal threat

is the diversity of these projects in terms of domains, size, etc. To mitigate this threat,

we used several criteria (e.g. more than one contributor per project, over 5K lines

of code, etc.) to select the projects and eliminate redundant ones or those with

small size to avoid considering student projects on GitHub and so on. Also, different

tools, with different recommendation strategies might be more or less dominated by

non-trivial graphs. Historical refactorings from commit histories could likewise have a

different composition. When we conclude that dependencies are common, the source

of the source data matters. We make a replication package available including all the

collected data that can be used and improved by the community.

Another possible internal threat is the technique used for the manual validation.

We did not inform the participants that the non-trivial graphs are all valid based on

our tool and we wanted them to confirm that by validating the code after refactoring

77

and executing it. The invalid graphs can be easily validated as the code will not

even compile after refactoring. As described in the pre-study questionnaire, we asked

the participants about their experience in interacting with the tool and measured the

time that they spent as well. Thus, our questions were not just to ask them about

the importance of detecting dependencies, but more on how they could be useful for

them in understanding the refactoring recommendations and so on.

Construct validity. The refactorings used in our experiments are generated

using an existing refactoring tool [44]. Thus, it is possible that some of them are

not relevant (e.g. small impact on quality). However, our goal is to evaluate the

dependencies among the refactorings independently from their relevance. In addition,

our approach can take as input any sequence of refactorings.

External validity. The types of refactorings considered in our experiments may

threaten the generalizability of our results. Additionally, our study was limited to the

use of specific quality attributes to measure the impact of the application of refactoring

graphs. Future replications of this study are necessary to further confirm our findings.

Also, the number of participants can be extended in our future work to validate more

refactoring dependencies. Moreover, there is no consensus in refactoring studies about

the most representative types. Several existing works [123, 124, 125, 126] show that

the used refactoring types in this study are the most frequently used by developers.

4.5 Implications and Future Work

Our proposed theory of organizing collections of refactoring instances as a set of

refactoring graphs offers several advantages that address the challenges confirmed by

developers:

• Explainability : each refactoring graph is smaller and more coherent than a long

sequence of refactorings. As each can be explained independently, the cognitive

78

burden on a developer is much lower, i.e., contrast with determining which

refactorings scattered across a sequence of dozens or hundreds of refactorings

are related.

• Comparability : search-based refactoring recommendation tools typically gener-

ate multiple recommendations on a Pareto front, leaving developers to choose

one. Identifying common elements of different recommendations is simplified

by comparing sets of graphs that do not contain the spurious orderings found

in sequence representations.

• Search Efficiency : search-based refactoring recommendation tools that use ge-

netic algorithms gain new options. Specifically, crossover operations can be

more reliable (reducing failures) when using dependency analysis; graphs may

also be better genomes for crossover than individual refactorings.

Consequently, there are several directions for future work:

4.5.1 Refactoring Pattern Extraction

One important implication of the proposed refactoring dependency theory is the

ability to extract common refactoring patterns by mining software repositories using

tools such as RefMiner [16]. These patterns are the common non-trivial graphs that

can be extracted on different commits/pull-requests of the same project or multiple

projects. Such patterns of non-trivial graphs can be linked to refactoring opportunities

such as resolving different types of code smells repeatably. In the future, we plan

to use the refactoring dependencies to understand the common refactoring patterns

from the history of commits and pull requests of software repositories using existing

refactoring detection tools such as RefMiner.

79

4.5.2 Refactoring Collaborations Between Developers

Studying the collaborations among multiple developers when refactoring code is

a promising next step. Refactoring graphs extracted from commit histories can be

linked to the authors of those commits. Then, a graph of collaborations among de-

velopers can be generated based on the dependencies among the applied refactorings.

This can lead to new insights into why and when developers collaborate for refactor-

ing.

4.5.3 Change Operator in Search-based Refactoring

Random selection and application of crossover and mutation when evolving a pop-

ulation of solutions is a challenge in search-based refactoring. Refactoring dependency

analysis can be used to avoid destroying good patterns in refactoring solutions and

make change operators more intelligent, which can lead to better solutions and faster

convergence.

4.5.4 Interactive Refactoring Tool Support

Developers can more easily understand the implications of selecting which refac-

torings from a recommendation to apply, improving the interactive process and in-

creasing their confidence in the recommendation tool. The only restriction in applying

non-trivial refactoring graphs is that a refactoring can only be applied if every other

refactoring that it depends on (transitively) is also applied. Thus, invalid refactorings

can be detected and highlighted on the fly.

4.6 Conclusion

Although manually applying a collection of refactorings is common practice, ex-

isting empirical studies and refactoring recommendation/detection tools treat refac-

80

torings in isolation. In this contribution, we created a definition for ordering depen-

dencies among refactorings and an algorithm for detecting these dependencies. We

also defined refactoring recommendations as sets of refactoring graphs rather than

as refactoring sequences, and illustrated these concepts with a web-tool for visualiz-

ing refactoring dependencies and sets of refactoring graphs. We also elaborated our

research agenda for future work in Section 4.5.

We validated the proposed approach on 1,457,873 refactorings recommended for

9,595 projects. Our results show that the proposed approach achieved 100% in cor-

rectly detecting all dependencies among refactorings. Furthermore, we found that

43% of the 1,457,873 recommended refactorings are part of dependent refactoring

graphs, which confirms that refactorings are commonly involved in dependent rela-

tions and cannot be applied truly independently. These concepts advance a theory

for reasoning about refactorings collectively, rather than individually, and offer clear

benefits both to developers applying refactoring recommendations (e.g. explainability

and comparability) and to authors of tools for recommending refactorings (e.g. search

efficiency and improving the correctness of recommendations).

81

CHAPTER V

Investigating the Relationships between

Architecture and Code Anti-patterns Using

Random Forest and Grid Search

In this chapter we present contribution 3: investigating the relationships between

architecture and code anti-patterns using random forest and grid search. In this

contribution, we begin with Section 5.1 that demonstrates a real instance of the

complementary nature of anti-patterns and code anomalies. In Section 5.2, we discuss

our machine learning approach. In Section 5.3, we present our experimental design

and research questions. We highlight the results of our study in Section 5.4. Then,

we describe the threats to validity in Section 5.5. Finally, we conclude in Section 5.6

with a summary of our work and a brief discussion of future work.

5.1 A Motivating Example

Without knowing the commonalities of real-world code anti-patterns and their

architecture-level impacts, developers lack knowledge about where and how to apply

architecture-level software refactoring. It is easy to see how developers can quickly

get lost in hundreds of code anti-patterns to fix without any indication of their impact

on important architecture quality issues such as Cyclic Dependencies, SAP Breaker,

etc.

82

We provide a motivating example from the BioInfo Project1 to illustrate the prob-

lem of linking architecture anti-patterns and code anomalies. Figure 5.1 shows the

anti-patterns and code anomalies detected for the BioInfo project. In Figure 5.1,

the yellow dots are packages identified as God Package [127] and the pink dots are

packages with other architecture anti-patterns. Following the lines going from the

packages, we can observe large numbers of red dots indicating the existence of code

anomalies at the same time. The pink lines reveal Cyclic Dependencies among pack-

ages. This figure makes it clear that in this system the God Package anti-pattern is

highly correlated with many code anomalies. The data shows that 4 of 35 packages

are God Packages and 84% of 579 code anomalies are located in these packages.

Table 5.1 lists a partial sample of anti-patterns detected from Apache Cassan-

dra2. These six instances of anti-patterns are ranked by the number of files involved

and belong to four types of architecture-level anti-patterns: God Package, Scattered

Functionality, Cyclic Dependency, and Feature Concentration. Table 5.1 also reveals

associated code-level and file-level anomalies. The largest architectural problem in-

volving 73 files also contains the most instances of code anomalies (54) which include:

Blob Class, Spaghetti Code, Functional Decomposition, Feature Envy, and Shotgun

Surgery.

The two above examples show the highly complementary nature of anti-patterns

and code anomalies. These code anomalies can be used as indicators of severe

architecture-level quality issues. Thus, they can be grouped together and ranked

based on their impact upon the architecture of the system.

Based on the large amount of anti-pattern data that we collected in this work, we

will explore a set of research questions including: What properties and types of code

anomalies can serve as indicators of architectural problems? Are there any common

patterns? Which types of high-level anti-patterns are not correlated with low-level
1https://github.com/ohnosequences/bioinfo-util
2https://cassandra.apache.org/

83

https://github.com/ohnosequences/bioinfo-util
https://cassandra.apache.org/

Ta
bl

e
5.

1:
A

nt
i-p

at
te

rn
s

an
d

co
de

an
om

al
ie

s
de

te
ct

ed
fr

om
A

pa
ch

e
C

as
sa

nd
ra

.

A
rc

h
it

ec
tu

re
-l
ev

el
A

nt
i-
p
at

te
rn

F
il
e-

le
ve

l
A

n
om

al
y

#
F
il
es

#
L
O

C
#

C
od

e-
le

ve
l
A

n
om

al
ie

s
G

od
P
ac

ka
ge

1:
U

I-
Sc

he
m

a.
ja

va
73

63
73

8
54

G
od

P
ac

ka
ge

2:
U

I-
C

ol
um

nD
efi

ni
ti

on
.ja

va
62

69
05

8
37

C
yc

lic
D

ep
en

de
nc

y
3:

U
I-

SS
Ta

bl
eR

ea
de

r.
ja

va
53

11
81

3
29

Sc
at

te
re

d
Fu

nc
ti

on
al

ity
4:

U
I-

K
ey

sp
ac

e.
ja

va
47

11
75

3
34

C
yc

lic
D

ep
en

de
nc

y
5:

U
I-

To
ke

n.
ja

va
32

83
41

14
C

yc
lic

D
ep

en
de

nc
y

6:
U

I-
D

ec
or

at
ed

K
ey

.ja
va

23
53

18
12

#
F
il
es

:
th

e
nu

m
be

r
of

fil
es

in
flu

en
ce

d
by

th
e

gi
ve

n
ar

ch
it

ec
tu

re
-le

ve
la

nt
i-p

at
te

rn

84

Figure 5.1: Visualization of anti-patterns and code anomalies for the BioInfo Project.

anomalies, and under what circumstances? The answers to these questions will help

developers understand where abstraction is needed, where refactoring is needed, and

to what extent refactoring can be automated.

5.2 Approach Overview

Our approach includes three main components as illustrated in Figure 5.2. The

first component consists of extracting the code smells using a detection tool based

on genetic programming [80] and the architecture anti-patterns using another tool

named Understand3. Once the data is extracted, the second component is executed
3https://scitools.com/features/

85

https://scitools.com/features/

Figure 5.2: An overview of our approach.

to identify the association rules and correlations between the code anomalies and

architecture anti-patterns. This part is the most important component of our ap-

proach and is described in more detail in the following paragraph. The generated

association rules are then integrated into our web-application to visualize and rank

the code anomalies based on their impact on design/architecture quality by creating

anti-patterns as detailed in Figure 5.3 which was run on the Opencsv4 project. Then,

the developer/architect can decide which code anomalies to fix now and the ones that

may be postponed for later since they have not impacted the architecture’s quality

yet.

In order to explore the potential relationships between code anomalies and archi-

tecture anti-patterns, we adapted an ensemble learning algorithm called the Random

Forest Algorithm [128]. In this technique, Breiman describes that the algorithm com-

bines predictions from multiple models which in this case is accomplished through

a process known as bootstrap aggregation, or more commonly as "bagging", where

the algorithm generates a large number of trees independent of each other in paral-

lel using a bootstrap sample of the data [128]. Ultimately, a simple majority vote

is taken to generate the prediction model, but Random Forest adds an additional

twist to improve the construction of each tree where each node uses the best from

a subset of randomly chosen predictors at the current node [128]. Breiman claims
4https://opencsv.sourceforge.net/

86

https://opencsv.sourceforge.net/

Figure 5.3: Our web-app showing the relationships between code anomalies and ar-
chitecture anti-patterns for the Opencsv project.

this strategy helps Random Forest outperform other classifiers such as discriminant

analysis, support vector machines, and neural networks [128]. Further, it prevents

over-fitting which is a significant concern with machine learning techniques [128]. It

also reduces the likelihood of using imbalanced training data [129] which is a very

common problem in real applications.

We formulated the problem as a three-class, classification problem where each of

the architecture anti-patterns is a class to be predicted and each of the code anomalies

87

is a feature for the classification model. We generate the prediction rules for each

class from the best tree in the forest. The types of anti-patterns and code anomalies

considered in this contribution were discussed in Subsection 2.6.1.

5.3 Experimental Design

In this section, we describe the research questions and our experimental technique.

5.3.1 Research Questions

In this study, we assessed the performance of our approach by finding whether it

could predict the existence of architecture anti-patterns from code anomalies. This

contribution aims at addressing the following research questions:

RQ1 : What types of code anomalies can serve as indicators of architectural

problems?

RQ2 : What are the most severe types of code anomalies causing architecture

anti-patterns?

RQ3 : Did practitioners agree with the tool identified relationships between

code anomalies and architecture anti-patterns?

5.3.2 Experimental Setup and Formulae

5.3.2.1 Metrics for RQ1

We used three metrics to evaluate the random forest’s performance on our data set:

Precision, Recall, and F1-score. For Class A in a 3-class classification, we compute

the following metrics:

88

• T(AA) : Truly predicted class A as class A

• F(AB) : Falsely predicted class A as class B

• F(AC) : Falsely predicted class A as class C

The same definition applies to F(BA), F(CA), etc.

Precision =
T (AA)

T (AA) + F (AB) + F (AC)
(5.1)

Recall =
T (AA)

T (AA) + F (BA) + F (CA)
(5.2)

F1 − score =
2T (AA)

X
(5.3)

X = 2T (AA) + F (AB) + F (BA) + F (AC) + F (CA) (5.4)

We compute precision and recall since accuracy alone can be quite misleading

especially in cases where the distribution of the training data is uneven over all

classes. Given all the predicted labels for a given class C, Precision computes how

many instances were correctly predicted. Recall is only focused on True Positives.

For all instances that should have a label C (truly labeled as C), Recall calculates

how many of these were correctly predicted as class C. F1-score is the weighted

average of Precision and Recall.

5.3.2.2 Metrics for RQ2

We defined the metric Contribution to measure the importance of each class level

code anomaly to predict each architecture-level anti-pattern. The Number of Times

Code Anomaly Appeared (NTCL) is defined as the number of times code anomaly i, i ∈

89

{0, 1, 2, . . . , 15} appeared in the decision path for predicting architecture-level anti-

pattern j, j ∈ {0, 1, 2} and the Total Number of Test Samples (TNTS) is defined as the

total number of test samples predicted as class j, and the contribution or importance

of class level code anomaly (i) for predicting architecture-level anti-pattern (j) is then

as follows:

Contribution(i, j) =
NTCL(i)

TNTS(j)
(5.5)

5.3.2.3 Metrics for RQ3

We asked 30 software practitioners who are experienced in software quality to in-

vestigate the results of our classifier. These developers were instructed for two hours

on anti-patterns, and given a thorough explanation of the classifier and sample of its

results. The developers were then given a set of 22 classifications from the classifier

on three different, open-source, Java software projects: Glotaran [130], WordPress

[131], and the Meta Protean Analyzer (MPA) [132]. These practitioners were given

the complete project source code in addition to the packages and classes of the code

directly effected by the discovered classifications. In addition, they were supplied with

the definitions of the architecture anti-patterns and class code anomalies for reference

and review which can be found summarized in Table 2.1. We equally distributed the

developers on the three systems based on the number of anti-pattern instances to in-

spect. The participants have a good level of experience as software engineers and they

are part-time graduate students in a master in software engineering program. They

were recruited from a graduate Software Quality Assurance course after attending

extensive lectures on refactoring and anti-patterns.

We provided to the developers a list of 5 architecture anti-patterns that were

linked to a group of code anomalies as identified by our tool and listed in Table 5.8 to

investigate and analyze the results. Then, we calculated the following three metrics:

90

Architecture Correctness measures the correctness of the predicted architecture

anti-pattern for the test samples inspected by the interviewees. The developers

measured the architecture correctness on a scale from 1 to 5 where 1 = strongly

reject as not an architecture anti-pattern and 5 = strongly accept as an architec-

ture anti-pattern. This measure will confirm if our approach actually predicts

architecture anti-patterns from code anomalies.

Relational Correctness measures how related the code anomalies are to the pre-

dicted architecture anti-pattern. This was measured through a binary choice

(Yes = related or No = unrelated) in addition to a short written explanation

as to why the developer chose the option. This measure will enable the individ-

ual assessment of the impact of one type of code anomaly on the architecture

anti-patterns.

Severity evaluates how harmful the predicted architecture anti-pattern is on the

quality of the system based on the type and also the generated code anomalies.

The participants were asked to measure the severity of the architecture anti-

patterns on a scale from 1 to 5 where 1 = minor severity and 5 = very high

severity on the system.

5.3.2.4 Data Collection

In order to build a model capable of predicting the existence of architecture anti-

patterns for a variety of projects, we have analyzed 113 open-source Java projects

and have detected the instances of 16 different code anomalies and 3 architecture

91

anti-patterns. The raw data contains information on the project ID and packages

belonging to each project in addition to the classes belonging to each package. We

used this information to reformat the data into a training set for a multi-label clas-

sification problem where there are multiple labels and each can be present or absent

in the predicted set of labels. Then, we transformed the problem into a three-class

classification problem. After the pre-processing, there are 305 samples in the data set.

Each sample corresponds to one package and contains 16 input values as the number

of instances of code anomalies in the package and 3 label values as the instances of

architecture anti-patterns.

5.3.2.5 Parameter Tuning

Based on the size of our training set, we tuned only the parameters that control the

performance in terms of the prediction. The three main parameters that control the

prediction power in random forest are: (1) the Maximum Number of Features (MNF)

Random Forest is allowed to try in an individual tree, (2) the Number of Trees in

the Forest (NT), and (3) the Minimum Sample Leaf Size (MSL).

In our study, we selected the parameters resulting in the best performance for our

training data. We compared the best parameter selection for each parameter tuning

method and the performance of the algorithm using each recommended parameter

selection as reported in Table 5.2. The results of the parameter tuning are presented

in Table 5.3. Table 5.2 shows that although Random Search is significantly faster,

the parameters discovered by Grid Search lead us to more distinguishable trees to

predict the existence of the architecture anti-patterns.

Table 5.2: Parameter Tuning Results
Search Method Time (s) MVS MNF NT MSL
Random Search 69.18 0.643 9 600 4

Grid Search 1107.56 0.946 6 900 0.1

92

Table 5.3: Evaluation Results
Class Precision Recall F1-score

Cyclic Dependencies 0.88 0.60 0.71
SAP Breaker 0.54 0.90 0.68
God Package 0.91 0.63 0.75

Weighted Average 0.78 0.71 0.71

5.4 Experimental Results

5.4.1 Results for RQ1

We trained a decision tree to formulate the correlation between code anomalies

and architecture anti-patterns. Figure 5.4 illustrates part of the tree presenting the

correlation between code anomalies and the Cyclic Dependency anti-pattern at the

architecture-level. Visiting the nodes starting from the root to the leaves represents

the correlation between the code anomalies presented in the path and the architecture

anti-pattern in the leaf as a rule to predict the presence of that specific architecture

anti-pattern.

Figure 5.5 and Figure 5.6 illustrate part of the tree presenting the correlation

between code anomalies and both the God Package and SAP Breaker anti-patterns

respectively. The equivalent rules to predict each architecture-level anti-pattern are

presented in Table 5.4. The higher the feature in the tree the more important the

value of that feature is to predict a test data point as the leaf (class). One of our obser-

vations from all these trees was that they have overlapping features, especially at the

top of the tree. However, having a closer look at Figure 5.7, this is not unexpected. As

illustrated in Figure 5.7, the architectural anti-patterns happen together. For exam-

ple, the second bar means about 500 times in the entire data set two architecture-level

anti-patterns are happening together for a given set of code anomalies. Considering

93

Figure 5.4: Predicting Cyclic Dependencies architecture-level anti-patterns from
class-level code anomalies.

the total size of the data set we worked with (1,058 data points), this case is roughly

happening in 48% of the data which influences the extracted rule for each individual

architecture-level anti-pattern even when we transform this problem into a multi-class

classification.

In Table 5.3, we have reported the Precision, Recall, and F1-score for each class

along with the weighted average. Using the best parameters recommended by Grid

Search (Table 5.2), the accuracy of the best tree is 87%. Precision is a measure

of how accurate a specific architecture-level anti-pattern has been predicted. God

Package architecture anti-pattern has the highest precision of 91%, while SAP Breaker

94

Figure 5.5: Predicting God Package architecture-level anti-patterns from class-level
code anomalies.

architecture anti-pattern has the lowest precision of 54%. Looking at Figure 5.8

explains the reason for low precision for the SAP Breaker architecture anti-pattern.

There are less than 240 data points (less than 22% of the data) with a SAP Breaker

anti-pattern occurrence which is significantly lower than the other two architecture-

level anti-patterns we trained the model on.

Recall, for each architecture anti-pattern, is the fraction of data points in the test

set where we correctly predicted the data point as that specific architecture anti-

pattern, out of all of the cases where the true label of the data point is that specific

architecture anti-pattern. SAP Breaker has the highest recall of 90%, while the Cyclic

Dependency anti-pattern has the lowest recall of 60%. While only less than 22% of

95

Figure 5.6: Predicting SAP Breaker architecture-level anti-patterns from class-level
code anomalies.

the data is labelled as SAP Breaker, the algorithm can successfully recognize the data

points that truly are labelled as SAP Breaker and predict the correct class for them.

However, we have more data in each of the Dense Structure and Cyclic Dependency

anti-patterns, and the reason for lower recall for these two classes is that they share

the same set of features (code anomalies) and it makes it more challenging for the

model to distinguish unseen data accurately between these two classes.

To conclude, the outcomes of RQ1 confirm the strong correlation between the 3

96

Table 5.4: Detection rules for three architecture-level anti-patterns.
Architecture-level Anti-pattern Prediction rule

Cyclic Dependencies [(ExternalDuplication) & (DataClass) &
(not(GodClass)) & (not(DataClumps))] OR
[(ExternalDuplication) & (DataClass) &
(not(GodClass)) & (DataClumps) &
(not(IntensiveCoupling))]

SAP Breaker [(not(ExternalDuplication)) & (DataClass) &
(not(BlobClass)) & (GodClass)] OR
[(not(ExternalDuplication) & (not(DataClass)) &
(messageChain) & (GodClass) &
(not(BlobOperation)) & (SchizophrenicClass)]

God Package [(ExternalDuplication) & (DataClass) &
(not(SiblingOperation)) & (not(BlobOperation))]
OR [(not(ExternalDuplication) & (not(DataClass))
& (messageChain) & (GodClass) &
(BlobOperation))]

Figure 5.7: Each bar represents the number of occurrences of architecture-level anti-
patterns that exist for each set of code anomalies. For example, the second
bar indicates for almost 500 of the input data (a set of 16 code anomalies)
two architecture-level anti-patterns exist at the same time.

types of architecture anti-patterns and code anomalies where all instances of archi-

tecture anti-patterns are associated with different types of code anomalies.

97

Figure 5.8: Each bar represents how many of the data points have that specific ar-
chitecture anti-pattern independent from other architecture anti-patterns
that may exist in those data points.

5.4.2 Results for RQ2

We investigated the contribution of the code anomalies in each class of architec-

ture anti-patterns to conclude what are the most severe code anomalies causing each

type of architecture anti-pattern. We analyzed the decision path for each sample

in the test-set to find out what are the most visited code anomalies when predict-

ing architecture anti-patterns. We computed the contribution of each type of code

anomalies to predict each type of architecture anti-pattern using the Contribution

metric introduced in Subsection 5.3.2.

Table 5.5: Most important features for the classification of the SAP Breaker Anti-
pattern
Feature ExtDup DataClass GodC BlobOp SchizC

Contribution 1.0 1.0 0.92 0.88 0.80

98

Table 5.6: Most important features for the classification of the Cyclic Dependen-
cies Anti-pattern
Feature ExtDup DataClass GodC BlobOp SchizC

Contribution 1.0 1.0 0.90 0.72 0.77

Table 5.7: Most important features for the classification of the God Package Anti-
pattern
Feature ExtDup DataClass GodC BlobOp SchizC

Contribution 1.0 1.0 0.95 0.95 0.90

The most important code anomalies for the classification of the SAP Breaker anti-

pattern, as seen in Table 5.5, are External Duplication (100%) and Data Class (100%)

code anomalies with God Class (92%), Blob Operation (88%), and Schizophrenic

Class (80%) also playing a significant part of the classification. The rules generated

for the classification as seen in Table 5.4 and Figure 5.6 show the reason for the

importance of these code anomalies for SAP Breaker. External Duplication and

Data Class are the the first checked code anomalies. This is because you would

not expect an External Duplication code anomaly as this is caused by duplication

between unrelated modules of the system whereas with SAP Breaker we are discussing

packages that are inherently related. Data class is also one of the highest rated code

anomalies for classification as it is the fork in the decision tree. When a Data Class

code anomaly is involved we do not see involvement of a Blob Class, but we do find

God class involvement (always as seen in Figure 5.6). This is likely because God

Classes are those the concentrate functionality from several unrelated modules which

is what is inherently occurring when stability is low since the shared subsystem is not

abstracted appropriately. Blob Classes are not involved despite being the result of

strongly coupled classes because it implies a significant large size and complexity not

generally seen when one discusses classes that are involved in abstraction inheritance

relationships. Schizophrenic Classes make sense as being key for classification since

99

they result from capturing and concentrating multiple abstractions together.

Meanwhile, the most important code anomalies for the classification of Cyclic

Dependencies, as seen in Table 5.6, are External Duplication (100%) and Data Class

(100%) code anomalies with God Class (90%), Schizophrenic Class (77%), and Blob

Operation (72%) also playing a significant part. Here, External Duplication is always

present in a Cyclic Dependency anti-pattern as seen in the classification prediction

rules in Table 5.4 and Figure 5.4. External Duplication is always involved since in

a Cyclic Dependency you have multiple packages involved in a relationship which

implies a large degree of duplication between unrelated components. Data Class

anomalies are important for classification as they are always not involved given that

they are modules without complex functionality and lack encapsulation which is the

opposite of the situation with the packages in the Cyclic Dependency anti-pattern.

God Class code anomalies while an important step of the classifier are not involved

since they imply a concentration of functionality whereas a Cyclic Dependency is a

cyclic relationship amongst packages.

Lastly, the most important code anomalies for the classification of God Package

anti-patterns, as seen in Table 5.7, are also External Duplication (100%) and Data

Class (100%) code anomalies with Blob Operation (95%), God Class (95%), and

Schizophrenic Class (90%) also playing a significant part. Again External Duplication

and Data Class play a significant role in the classification as seen in Table 5.4 and

Figure 5.5. This is likely since a God Package anti-pattern is a pattern that knows

too much and tries to perform too much functionality. This can result from External

Duplication between unrelated modules in the package and/or large amounts of data

holders without the complex functionality. However, God Class are nearly always

present as it logically makes sense that a module that hordes data and functionality

would contribute to a package that does that same.

Figure 5.9 shows the distribution of the code anomalies per architecture anti-

100

Figure 5.9: Distribution of code anomalies per architecture anti-pattern type.

pattern on all the systems of our experiments. It is clear that the God Package

generated various types of code anomalies, nearly all of which involve the duplication

of data or functionality such as Blob Class, God Class, Data Class, Sibling Duplica-

tion, and Data Clumps; while the SAP breaker created the highest number of code

anomalies. Thus, we may consider that these two types of architecture anti-patterns

are the most severe ones in terms of generating code anomalies. For SAP Breaker,

we see Data Class, External Duplication, and Message Chain as the most frequent

anomalies which follows from an anti-pattern that breaks abstraction stability through

too tightly coupled modules. Lastly, the Cyclic Dependency anti-pattern has high fre-

quencies of Data Class, Blob Operation, and God Class code anomalies which follows

from an anti-pattern that results from cyclic dependencies amongst packages thereby

having duplicated and extremely centralized functionality in modules.

101

5.4.3 Results for RQ3

Table 5.8 summarizes our results. The results are organized by software project

and architecture anti-patterns as detected by the results of our classifier. 29 out of the

30 participants returned results. From those 29 practitioners, we had a total of 174

evaluations of the classified architecture anti-patterns. We recorded the time spent

by the participants for each evaluation and removed responses where participants

spent only 5 minutes or less in order to remove poor evaluations from the response

pool. Only 7 responses were removed leaving 167 useful evaluations. The individual

evaluations were summarized into Table 5.8. The detailed evaluations per each of

the 22 classifications data is included as an appendix in our replication package5 for

download.

The architecture anti-pattern correctness results as shown in Table 5.8, are dis-

played with the mean, median, and mode in order to describe the true central tendency

of the metric. The developers rated all architecture anti-patterns in the 3 (neutral)

to 4 (weakly accept) range with median values all at 4. This indicates that the our

survey participants agreed that there was likely an architecture anti-pattern present

and indicates that these architecture anti-patterns exist and are detectable in real

project code.

The relational correctness as shown in Table 5.8 shows similar weak indications.

However, it seems that the majority of participants thought there was compelling

evidence that the Glotaran software project had a SAP Breaker architecture anti-

pattern which was related to the Data Class (75%) code anomaly. This is opposed

to the SAP Breaker anti-pattern in the MPA software project which had fewer Data

Class anomalies and a Schizophrenic Class code anomaly where the participants eval-

uated the relationship at 40% correctness. Further, the Glotaran Cyclic Dependency

(61%) anti-pattern involved God Class, Data Class, Schizophrenic Class, External Du-
5https://sites.google.com/umich.edu/ieee2022-anti-patterns/home

102

https://sites.google.com/umich.edu/ieee2022-anti-patterns/home

Ta
bl

e
5.

8:
R

es
ul

ts
fr

om
th

e
m

an
ua

lv
al

id
at

io
n

of
th

e
cl

as
si

fie
r.

S
of

tw
ar

e
A

rc
h
it

ec
tu

re
A

nt
i-

P
at

te
rn

S
ev

er
it
y

R
at

in
g

N
C

la
ss

C
od

e
A

n
om

al
y

R
el

at
io

n
al

C
or

r.
A

rc
h
it

ec
tu

re
C

or
re

ct
n
es

s
1

=
m

in
or

,
5

=
ve

ry
hi

gh
1

=
st

ro
ng

ly
re

je
ct

,
5

=
st

ro
ng

ly
ac

ce
pt

M
ea

n
M

ed
ia

n
M

od
e

B
C

G
C

D
C

S
C

R
P

B
T

B
D

H
E
D

S
D

ID
D

C
P

IC
M

C
S
S

F
E

B
O

Y
es

/
T
ot

al
M

ea
n

M
ed

ia
n

M
od

e
G

lo
ta

ra
n

C
yc

lic
D

ep
en

de
nc

y
3.

21
3

3
38

0
3

1
2

0
0

0
1

0
0

0
0

1
0

5
2

23
/3

7
(6

2%
)

3.
37

4
5

G
lo

ta
ra

n
SA

P
B

re
ak

er
3.

42
3

3
24

0
0

20
0

0
0

0
0

0
0

0
0

0
0

0
0

18
/2

4
(7

5%
)

3.
96

4
5

W
or

dP
re

ss
G

od
P
ac

ka
ge

3.
61

4
4

49
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
26

/4
9

(5
3%

)
4

4
4

M
PA

C
yc

lic
D

ep
en

de
nc

y
3.

30
3

4
46

2
6

19
11

0
0

0
0

0
3

0
1

0
0

3
9

27
/4

6
(5

9%
)

3.
5

4
5

M
PA

SA
P

B
re

ak
er

2.
9

3
2

45
0

0
4

1
0

0
0

0
0

0
0

0
0

0
0

0
4/

10
(4

0%
)

3.
7

4
4

103

plication, Message Chain, Feature Envy, and Blob Operation code anomalies whereas

the MPA Cyclic Dependency (59%) anti-pattern involved a significantly larger num-

ber of Data Class, Schizophrenic Class, and Blob Operation code anomalies. This

may indicate that the anti-patterns may relate more to the severity of underlying

code anomalies rather than simply some combination of specific code anomalies given

that the number of code anomalies and the types of code anomalies were different in

each case. The WordPress God Package (53%) anti-pattern resulted only from two

Data Class code anomalies which gives furtherance to the suggestion that the severity

caused by the code anomalies, two in this case, is significant enough to result in the

symptoms of an architecture anti-pattern. Some participants’ comments from their

evaluation of the relational correctness evaluation are included below:

• For the Cyclic Dependency anti-pattern when looking at the Glotaran project

one participant wrote: “Yes I believe that the following code anomalies (God

Class, Message Chains, Feature Envy and Blob Operation) are connected to the

suggested Cyclic Dependency anti-pattern. All of these code anomalies suggest

high coupling and high dependency of classes upon other classes that can be

inside or outside the package which increases the probability of getting a Cyclic

Dependency anti-pattern."

• For the Cyclic Dependency anti-pattern when looking at the MAP project:

“Yes, the code consists of a few methods like stopTransaction and getGraph-

DatabaseService which are dummy data holders and depends on other methods.

addTaxonomy, addPeptides, addProtein are large and complex leading to Blob

Operations. The code also contains Intensive Coupling, as God Class and Blob

Class leads to Cyclic Dependencies in the code."

The developers also evaluated the severity of the detected architecture anti-patterns.

It is interesting that the WordPress God Package anti-pattern was rated with an aver-

104

age score of 3.61 mean and 4 median (moderate severity) and had the highest average

architecture correctness score. One possibility is that the easier the architecture anti-

pattern is to detect the more severe it likely will be rated. Alternatively, the severity

of the architecture anti-pattern is tied to the severity of the underlying code anomalies

and is a property derived from them rather than being inherent to the architecture

anti-pattern. This would explain the differences in severity between the Glotaran

SAP Breaker and MPA SAP Breaker.

To conclude, the manual evaluation by the developers of the classification of our

architecture anti-patterns based on code anomalies confirm the correctness of our

approach and its outcomes. Although further research needs to be performed to

determine if these results will hold for other projects, anti-patterns, and code anoma-

lies.

5.5 Threats to Validity

In our experiments, construct validity threats are related to the absence of similar

work that uses machine learning to predict architecture anti-patterns based on code

anomalies. We did not compare the outcomes of our study to existing work based on

the same types of quality issues. Furthermore, parameter tuning is another challenge

of our approach. We used one of the most efficient and popular approaches for the

parameter setting of the learning algorithms which is Design of Experiments (DOE)

[122, 133]. Each parameter has been uniformly discretized in some intervals. Values

from each interval have been tested for our application. Finally, we picked the best

values for all parameters. Hence, a reasonable set of parameter values have been

experimented.

Internal threats to validity are related to the fact that, in our approach, the

prediction is made based on considering the data for each class level separately. The

more realistic model to formulate this problem is a multi-label classification problem

105

where all the classes can be present in each decision path. Thus, having a set of code

anomalies can result in all three architecture-level anti-patterns at the same time.

However, since our training set is not large enough to build a strong, multi-label

predictor, we reduced the complexity of the problem to predict each architecture-level

anti-pattern separately. In future work, we plan to collect more data to investigate

this correlation with multi-label classification. Additionally, our manual validation

could have produced skewed results due to the inexperience of the graduate students

working with anti-patterns and unfamiliar code.

External validity refers to the generalization of our findings. In this study, we

performed our experiments on 113 open-source projects. A larger data set is needed

to result in more reliable results. We will also extend the number of participants

who manually evaluated the outcomes of our tool combining both code anomalies

and architecture anti-patterns.

5.6 Conclusion

We have analyzed 113 open-source Java projects and detected the instances of 16

different code-level anomalies and 3 architecture-level anti-patterns in this work. We

formulated the problem as a multi-class classification task and applied Random Forest

along with 5-fold cross validation Grid Search to extract the best rules representing the

correlation between two levels of anti-patterns. The manual validation by developers

confirmed the benefits of ranking the code anomalies based on their impact on the

architecture.

Future work involves validating our technique with additional code anomalies and

architecture anti-patterns detected on a variety of projects of different sizes. We

will also examine if the relationships hold among other programming languages. In

another future research direction, we will integrate these findings into refactoring

strategies helping developers to manage and fix the most severe anti-patterns.

106

CHAPTER VI

Conclusion

In this chapter, we conclude with a summary of the contributions of this thesis in

Section 6.1 and discuss potential directions of future work in Section 6.2.

6.1 Summary

In Chapter I we presented the context of the work in this thesis placing it in the

domain of software maintenance and evolution, in particular work on software refac-

toring and anti-patterns. The importance of software maintenance and maintaining

high quality was discussed as a motivation for the importance of the work. We also

identified the general gaps in the current body of knowledge and introduced the three

contributions of this thesis to fill this gap.

Next, Chapter II reviewed the relevant background and related works on software

refactoring, automated software refactoring recommendation tools, software refactor-

ing dependencies, regression testing, and software anti-patterns.

Chapter III presents a first attempt to unify two different software engineering

problems using the tasks of refactoring and regression test case selection as a case

study. In Section 3.2 we explain our simultasking algorithm and the key unified solu-

tion representation scheme that serves as a common platform for knowledge transfer

between the tasks. We evaluated the effectiveness of our technique against two cur-

rent state-of-the-art approaches for software refactoring and two for regression testing

107

in Section 3.3. To perform the evaluation we executed our approach and the com-

peting state-of-the-art approaches on six-open sourced systems and one industrial

project. Our findings indicated that our approach performs better than the compet-

ing state-of-the-art approaches and indicated the strong potential for a simultasking

approach.

In Chapter IV we examined a new theory on software refactoring correctness de-

pendencies in Section 4.2 and developed an algorithm and web-tool to detect these

dependencies in input refactoring recommendation lists. We then performed an exten-

sive empirical study in Section 4.3 to evaluate the approach on 1,457,873 refactorings

recommended for 9,595 Java open-source projects from GitHub. Our study confirms

that refactorings are commonly involved in dependent relations and cannot be applied

truly independently. We discuss the implications from the study in greater depth in

Section 4.5.

We investigated the relationship between architecture anti-patterns and code-level

anomalies in Chapter V. Section 5.2 describes our machine learning approach to build-

ing a random-forest classifier with 5-fold cross validation Grid Search for architecture

anti-patterns based on the code anomalies present in source code. We explain our ex-

perimental approach in Section 5.3 where we analyzed 113 open-source Java projects

from GitHub and detected the instances of 16 different code-level anomalies and 3

architecture-level anti-patterns. We then validated our work through manual exam-

ination of the results of our classifier using developers who confirmed the benefits of

ranking the code anomalies based on their impact on the architecture in Section 5.4.

6.2 Future Work

For future work, we envision multiple projects branching off of each of the con-

tributions from this thesis. Our wider aim is to use the knowledge of the techniques,

algorithms, and theories present in this thesis in order to improve automated software

108

refactoring and developers’ ability to improve the quality of their code.

In contribution 1 we designed a simultaksing algorithm to unite software refactor-

ing and regression testing. Future work will initially involve validating our technique

further with additional refactoring types, test cases, programming languages, and

code smells. Further, we wish to investigate adding in additional source of knowledge

by adding additional tasks or looking at uniting different software maintenance tasks.

One example would be looking at the next release problem where developers need to

find what feature, big fixes, or other quality improvements should be included in the

next release of the software.

For contribution 2, we plan to investigate several different directions:

1. Pattern Extraction: One important implication of the proposed refactoring de-

pendency theory is the ability to extract common refactoring patterns by mining

software repositories using tools such as RefMiner [16]. These patterns are the

common non-trivial graphs that can be extracted on different commits/pull-

requests of the same project or multiple projects. Such patterns of non-trivial

graphs can be linked to refactoring opportunities such as resolving different

types of code smells repeatably. In the future, we plan to use the refactoring

dependencies to understand the common refactoring patterns from the history

of commits and pull requests of software repositories using existing refactoring

detection tools such as RefMiner.

2. Refactoring Collaborations Between Developers: Studying the collaborations

among multiple developers when refactoring code is a promising next step.

Refactoring graphs extracted from commit histories can be linked to the au-

thors of those commits. Then, a graph of collaborations among developers can

be generated based on the dependencies among the applied refactorings. This

can lead to new insights into why and when developers collaborate for refactor-

ing.

109

3. Change Operator in Search-based Refactoring: Random selection and appli-

cation of crossover and mutation when evolving a population of solutions is

a challenge in search-based refactoring. Refactoring dependency analysis can

be used to avoid destroying good patterns in refactoring solutions and make

change operators more intelligent, which can lead to better solutions and faster

convergence.

4. Interactive Refactoring Tool Support: Developers can more easily understand

the implications of selecting which refactorings from a recommendation to ap-

ply, improving the interactive process and increasing their confidence in the

recommendation tool. The only restriction in applying non-trivial refactoring

graphs is that a refactoring can only be applied if every other refactoring that

it depends on (transitively) is also applied. Thus, invalid refactorings can be

detected and highlighted on the fly.

Contribution 3’s future works involves validating our technique with additional

code anomalies and architecture anti-patterns detected on a variety of projects of

different sizes. We will also examine if the relationships hold among other program-

ming languages. In another future research direction, we will integrate these findings

into refactoring strategies helping developers to manage and fix the most severe anti-

patterns in their projects.

110

BIBLIOGRAPHY

[1] S. R. Schach, Software Engineering 4th ed. Boston, MA, USA: McGraw-Hill,
1999.

[2] Galorath, “Software maintenance cost.” https://galorath.com/
software-maintenance-costs/, 2021. [Online; accessed 15 March 2022].

[3] R. S. Pressman and B. R. Maxim, Software Engineering A Practitioner’s Ap-
proach 9th ed. New York, NY, USA: McGraw-Hill, 2020.

[4] P. Koopman, “Lecture notes: A case study of toyota unintended acceleration
and software safety.” https://users.ece.cmu.edu/~koopman/pubs/koopman14_
toyota_ua_slides.pdf, 18 September 2014. [Online; accessed 17 March 2022].

[5] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi, “Improving
multi-objective code-smells correction using development history,” Journal of
Systems and Software, vol. 105, pp. 18–39, 2015.

[6] R. Fenton, “5 staggering medical device recall statistics that should concern ev-
eryone.” https://www.qualio.com/blog/medical-device-recall-statistics, 10 De-
cember 2019. [Online; accessed 1 April 2022].

[7] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley, 1999.

[8] W. G. Griswold and W. F. Opdyke, “The birth of refactoring: A retrospective
on the nature of high-impact software engineering research,” IEEE Software,
vol. 32, no. 6, pp. 30–38, 2015.

[9] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design
flaws,” ICSM ’04, (USA), p. 350–359, IEEE Computer Society, 2004.

[10] P. L. Roden, S. Virani, L. H. Etzkorn, and S. Messimer, “An empirical study of
the relationship of stability metrics and the qmood quality models over software
developed using highly iterative or agile software processes,” in Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation
(SCAM 2007), pp. 171–179, IEEE, 2007.

111

https://galorath.com/software-maintenance-costs/
https://galorath.com/software-maintenance-costs/
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://www.qualio.com/blog/medical-device-recall-statistics

[11] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code
refactoring using search-based software engineering: An industrial case study,”
ACM Trans. Softw. Eng. Methodol., vol. 25, pp. 23:1–23:53, 2016.

[12] R. Guru, “Refactoring techniques.” https://refactoring.guru/refactoring/
techniques, 2014. [Online; accessed 1 April 2022].

[13] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we
know it,” IEEE Transactions on Software Engineering (TSE), vol. 38, no. 1,
pp. 5–18, 2012.

[14] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai,
“An interactive and dynamic search-based approach to software refactoring rec-
ommendations,” IEEE Transactions on Software Engineering, 2018.

[15] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. O. Cinnéide, “Rec-
ommendation system for software refactoring using innovization and interactive
dynamic optimization,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (ASE ’14), (Vasteras, Sweden),
pp. 331–336, ACM, 2014.

[16] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig, “Accu-
rate and efficient refactoring detection in commit history,” in Proceedings of the
40th International Conference on Software Engineering (ICSE ’18), (Gothen-
burg, Sweden), pp. 483–494, ACM, 2018.

[17] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design
level,” in Proceedings of the 9th annual conference on Genetic and evolutionary
computation (GECCO ’07), (London, England), pp. 1106–1113, ACM, 2007.

[18] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and guided
architectural refactoring with search-based recommendation,” in Proceedings
of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’16), (Seattle, US), pp. 535–546, ACM, 2016.

[19] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of Systems
and Software, vol. 138, pp. 158 – 173, 2018.

[20] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A taxonomy and an initial empir-
ical study of bad smells in code,” International Conference on Software Main-
tenance, 2003. ICSM 2003. Proceedings., pp. 381–384, 2003.

[21] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. T. De-
vanbu, and V. Filkov, “The sky is not the limit: Multitasking across github
projects,” 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), pp. 994–1005, 2016.

112

https://refactoring.guru/refactoring/techniques
https://refactoring.guru/refactoring/techniques

[22] N. Moha, Y.-G. Gueheneuc, A.-F. Duchien, et al., “Decor: A method for the
specification and detection of code and design smells,” IEEE Transactions on
Software Engineering (TSE), vol. 36, no. 1, pp. 20–36, 2010.

[23] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and A. De
Lucia, “Mining version histories for detecting code smells,” IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 462–489, 2015.

[24] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design
level,” in In GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1106–1113, ACM, 2007.

[25] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring
opportunities,” IEEE Transactions on Software Engineering, vol. 35, no. 3,
pp. 347–367, 2009.

[26] S. Yoo, M. Harman, and S. Ur, “Highly scalable multi objective test suite min-
imisation using graphics cards,” in SSBSE ’11: Proceedings of the 2011 Interna-
tion Symposium on Search Based Software Engineering, pp. 219–236, Springer,
2011.

[27] A. Panichella, R. Oliveto, M. D. Penta, and A. Lucia, “Improving multi-
objective test case selection by injecting diversity in genetic algorithms,” IEEE
Transactions on Software Engineering, vol. 41, pp. 358–383, 2015.

[28] K. Wang, C. Zhu, A. Celik, J. Kim, D. Batory, and M. Gligoric, “Towards
refactoring-aware regression test selection,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE ’18, (New York, NY, USA),
p. 233–244, Association for Computing Machinery, 2018.

[29] E. L. G. Alves, P. D. L. Machado, T. Massoni, and M. Kim, “Prioritizing test
cases for early detection of refactoring faults,” Software Testing, Verification
and Reliability, vol. 26, no. 5, pp. 402–426, 2016.

[30] M. Harman, “Refactoring as testability transformation,” in Proceedings of the
2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, ICSTW ’11, (USA), p. 414–421, IEEE Computer
Society, 2011.

[31] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodorant: Iden-
tification and application of extract class refactorings,” ICSE ’11, (New York,
NY, USA), p. 1037–1039, Association for Computing Machinery, 2011.

[32] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,”
in Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA ’07, (New York, NY, USA), p. 140–150, Association for Com-
puting Machinery, 2007.

113

[33] J. J. Yackley, M. Kessentini, G. Bavota, V. Alizadeh, and B. R. Maxim, “Simul-
taneous refactoring and regression testing,” in 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 216–227,
IEEE, 2019.

[34] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal
of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.

[35] M. Kuutila, M. Mäntylä, U. Farooq, and M. Claes, “Time pressure in soft-
ware engineering: A systematic review,” Information and Software Technology,
vol. 121, p. 106257, 2020.

[36] S. A. Slaughter, D. E. Harter, and M. S. Krishnan, “Evaluating the cost of
software quality,” Communications of the ACM, vol. 41, no. 8, pp. 67–73, 1998.

[37] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[38] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An experi-
mental investigation on the innate relationship between quality and refactoring,”
Journal of Systems and Software, vol. 107, pp. 1–14, 2015.

[39] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. Hemati Moghadam,
“Experimental assessment of software metrics using automated refactoring,” in
Proceedings of the ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’12, pp. 49–58, ACM, 2012.

[40] A. C. Bibiano, E. Fernandes, D. Oliveira, A. Garcia, M. Kalinowski, B. Fon-
seca, R. Oliveira, A. Oliveira, and D. Cedrim, “A quantitative study on char-
acteristics and effect of batch refactoring on code smells,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 1–11, 2019.

[41] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we
know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1, pp. 5–18,
2012.

[42] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring
opportunities,” IEEE Transactions on Software Engineering, vol. 35, no. 3,
pp. 347–367, 2009.

[43] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of refactoring
challenges and benefits at microsoft,” Software Engineering, IEEE Transactions
on, vol. 40, pp. 633–649, July 2014.

[44] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code
refactoring using search-based software engineering: an industrial case study,”
ACM Transactions on Software Engineering and Methodology, vol. 25, no. 3,
p. 23, 2016.

114

[45] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design
quality assessment,” IEEE Transactions on Software Engineering, vol. 28, no. 1,
pp. 4–17, 2002.

[46] T. Ferreira, J. Ivers, J. J. Yackley, M. Kessentini, I. Ozkaya, and K. Gaaloul,
“Dependent or not: Detecting and understanding collections of refactorings,”
IEEE Transactions on Software Engineering, Submitted and Under Review
2022.

[47] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, “Mapping architectural decay
instances to dependency models,” in Proceedings of the 2013 4th International
Workshop on Managing Technical Debt, MTD 2013, pp. 39–46, IEEE, 2013.

[48] W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo, and Y. Zhao, “Code anoma-
lies flock together: Exploring code anomaly agglomerations for locating design
problems,” in Software Engineering (ICSE), 2016 IEEE/ACM 38th Interna-
tional Conference on, pp. 440–451, IEEE, 2016.

[49] M. Feathers, Working Effectively with Legacy Code. Prentice Hall PTR, 2004.

[50] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004.

[51] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and
A. Shapochka, “A case study in locating the architectural roots of technical
debt,” in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2, pp. 179–188, 2015.

[52] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework for making
architectural decisions in a business context,” in 2010 IEEE 32nd International
Conference on Software Engineering (ICSE), vol. 2, pp. 149–157, IEEE, May
2010.

[53] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell relations
on software maintainability: An empirical study,” in Proceedings of the 2013
International Conference on Software Engineering, pp. 682–691, IEEE Press,
2013.

[54] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical study
of the impact of two antipatterns, blob and spaghetti code, on program com-
prehension,” in Software maintenance and reengineering (CSMR), 2011 15th
European conference on, pp. 181–190, IEEE, 2011.

[55] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba, “Quantifying
the effect of code smells on maintenance effort,” IEEE Transactions on Software
Engineering, no. 8, pp. 1144–1156, 2013.

[56] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort via
clustering-based multi-objective search,” in Proceedings of the 33rd ACM/IEEE

115

International Conference on Automated Software Engineering, ASE 2018,
pp. 464–474, ACM, 2018.

[57] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a refactoring re-
construction tool based on logic query templates,” in Proceedings of the Interna-
tional Symposium on Foundations of Software Engineering, FSE, pp. 371–372,
2009.

[58] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated detection of
refactorings in evolving components,” in ECOOP, vol. 4067, pp. 404–428, 2006.

[59] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement,”
in Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, (USA), p. 187–197, IEEE, 2003.

[60] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refactoring speed by
10x,” in Proceedings of the 38th International Conference on Software Engineer-
ing, pp. 1145–1156, ACM, 2016.

[61] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, “A cooper-
ative parallel search-based software engineering approach for code-smells detec-
tion,” IEEE Transactions on Software Engineering, vol. 40, no. 9, pp. 841–861,
2014.

[62] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintainability
defects detection and correction: A multi-objective approach,” Automated Soft-
ware Engg., vol. 20, p. 47–79, Mar. 2013.

[63] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “Rec-
ommendation system for software refactoring using innovization and interactive
dynamic optimization,” in Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pp. 331–336, ACM, 2014.

[64] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving coupling and
cohesion of existing code,” in 11th Working Conference on Reverse Engineering
(WCRE), pp. 144–151, 2004.

[65] I. M. Bertrán, On the detection of architecturally-relevant code anomalies in
software systems. PhD thesis, PhD thesis, Pontifical Catholic University of Rio
de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, 2013.

[66] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk, “When and why your code starts to smell bad,” in Proceedings of
the 37th International Conference on Software Engineering-Volume 1, pp. 403–
414, IEEE Press, 2015.

[67] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design flaws on
software defects,” in Quality Software (QSIC), 2010 10th International Confer-
ence on, pp. 23–31, IEEE, 2010.

116

[68] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code clones
matter?,” in Proceedings of the 31st International Conference on Software En-
gineering, ICSE ’09, (USA), p. 485–495, IEEE, 2009.

[69] F. Khomh, M. D. Penta, Y. G. Guéhéneuc, and G. Antoniol, “An exploratory
study of the impact of antipatterns on class change- and fault-proneness,” Em-
pirical Software Engineering, vol. 17, no. 3, pp. 243–275, 2012.

[70] W. H. Brown, R. C. Malveau, and T. J. Mowbray, AntiPatterns: refactoring
software, architectures, and projects in crisis. John Wiley and Sons, 1998.

[71] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying architec-
tural bad smells,” in Proceedings of the 2009 European Conference on Software
Maintenance and Reengineering, CSMR ’09, (USA), p. 255–258, IEEE, 2009.

[72] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal def-
inition and automatic detection of architecture smells,” in 2015 12th Working
IEEE/IFIP Conference on Software Architecture, pp. 51–60, 2015.

[73] J. Letouzey and M. Ilkiewicz, “Managing technical debt with the sqale method,”
IEEE Software, vol. 29, no. 6, pp. 44–51, 2012.

[74] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and quantifying
architectural debt,” in Proceedings of the 38th International Conference on Soft-
ware Engineering, ICSE ’16, (New York, NY, USA), p. 488–498, Association
for Computing Machinery, 2016.

[75] J. J. Yackley, S. Molaei, M. Kessentini, and B. R. Maxim, “Investigating the
relationships between architecture and code anti-patterns using random forest
and grid search,” IEEE Access, Submitted and Under Review 2022.

[76] C. Abid, V. Alizadeh, M. Kessentini, T. d. N. F. Ferreira, and D. Dig, “30 years
of software refactoring research: A systematic literature review,” arXiv preprint
arXiv:2007.02194, vol. NA, 2020.

[77] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Recommending refactoring
operations in large software systems,” in Recommendation Systems in Software
Engineering (M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
eds.), pp. 387–419, Springer Berlin Heidelberg, 2014.

[78] M. O’Keeffe and M. Ó Cinnéide, “A stochastic approach to automated design
improvement,” in International Conference on Principles and practice of pro-
gramming in Java, pp. 59–62, Computer Science Press, Inc., 2003.

[79] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination of refac-
torings for improving the class structure of object-oriented systems,” in Inter-
national conference on Genetic and evolutionary computation, pp. 1909–1916,
ACM, 2006.

117

[80] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “De-
sign defects detection and correction by example,” in 2011 IEEE 19th Interna-
tional Conference on Program Comprehension, pp. 81–90, IEEE, 2011.

[81] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactoring using
recorded code changes,” in Proceedings of the 17th European Conference on
Software Maintenance and Reengineering (CSMR 2013), pp. 221–230.

[82] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni, “Many-objective software remodularization using nsga-iii,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 24,
no. 3, pp. 17:1–17:45, 2015.

[83] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How does
refactoring affect internal quality attributes? a multi-project study,” in Pro-
ceedings of the 31st Brazilian Symposium on Software Engineering, SBES’17,
p. 74–83, Association for Computing Machinery, 2017.

[84] T. Mens, G. Taentzer, and O. Runge, “Analysing refactoring dependencies using
graph transformation,” Software & Systems Modeling, vol. 6, no. 3, pp. 269–285,
2007.

[85] T. Mens, G. Taentzer, and O. Runge, “Detecting structural refactoring conflicts
using critical pair analysis,” Electronic Notes in Theoretical Computer Science,
vol. 127, no. 3, pp. 113–128, 2005.

[86] H. Liu, G. Li, Z. Ma, and W. Shao, “Conflict-aware schedule of software refac-
torings,” IET software, vol. 2, no. 5, pp. 446–460, 2008.

[87] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detection and reso-
lution: A new way to save effort,” IEEE transactions on Software Engineering,
vol. 38, no. 1, pp. 220–235, 2011.

[88] L. Sousa, D. Cedrim, A. Garcia, W. Oizumi, A. C. Bibiano, D. Oliveira, M. Kim,
and A. Oliveira, “Characterizing and identifying composite refactorings: Con-
cepts, heuristics and patterns,” in Proceedings of the 17th International Con-
ference on Mining Software Repositories, pp. 186–197, 2020.

[89] H. Melton and E. Tempero, “Identifying refactoring opportunities by identifying
dependency cycles,” in Proceedings of the 29th Australasian Computer Science
Conference-Volume 48, pp. 35–41, 2006.

[90] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “On refactoring
support based on code clone dependency relation,” in 11th IEEE International
Software Metrics Symposium (METRICS’05), pp. 10–pp, IEEE, 2005.

[91] G. Rothermel and M. J. Harrold, “A safe, efficient algorithm for regression test
selection,” in Proceedings of the Conference on Software Maintenance, ICSM
’93, (USA), p. 358–367, IEEE Computer Society, 1993.

118

[92] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the
size of a test suite,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 2, no. 3, pp. 270–285, 1993.

[93] S. McMaster and A. Memon, “Call-stack coverage for gui test suite reduction,”
IEEE Transactions on Software Engineering, vol. 34, no. 1, pp. 99–115, 2008.

[94] H.-Y. Hsu and A. Orso, “Mints: A general framework and tool for support-
ing test-suite minimization,” in 2009 IEEE 31st International Conference on
Software Engineering, pp. 419–429, IEEE, 2009.

[95] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient multi-
objective test suite minimisation,” Journal of Systems and Software, vol. 83,
no. 4, pp. 689 – 701, 2010.

[96] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, “An enhanced test case selection
approach for model-based testing: An industrial case study,” in Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE ’10, (New York, NY, USA), p. 267–276, Association
for Computing Machinery, 2010.

[97] A. De Lucia, M. Di Penta, R. Oliveto, and A. Panichella, “On the role of
diversity measures for multi-objective test case selection,” AST ’12, p. 145–151,
IEEE Press, 2012.

[98] E. Rogstad, L. Briand, and R. Torkar, “Test case selection for black-box regres-
sion testing of database applications,” Information and Software Technology,
vol. 55, no. 10, pp. 1781 – 1795, 2013.

[99] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying test costs
and fault severities into test case prioritization,” in In Proceedings of the 23rd
International Conference on Software Engineering, pp. 329–338, 2001.

[100] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-
cognizant test case prioritization,” tech. rep.

[101] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “Timeaware
test suite prioritization,” in Proceedings of the 2006 International Symposium
on Software Testing and Analysis, ISSTA ’06, (New York, NY, USA), p. 1–12,
Association for Computing Machinery, 2006.

[102] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression test
case prioritization,” IEEE Transactions on Software Engineering, vol. 33, no. 4,
pp. 225–237, 2007.

[103] R. C. Bryce, S. Sampath, and A. Memon, “Developing a single model and
test prioritization strategies for event-driven software,” IEEE Transactions on
Software Engineering, vol. 37, pp. 48–64, 2011.

119

[104] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Generating
transformation rules from examples for behavioral models,” BM-FA ’10, (New
York, NY, USA), Association for Computing Machinery, 2010.

[105] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refactoring
of class and activity diagrams using a multi-objective evolutionary algorithm,”
Software Quality Journal, vol. 25, pp. 473–501, 2015.

[106] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective code-
smells detection using good and bad design examples,” Software Quality Jour-
nal, vol. 25, pp. 529–552, 2016.

[107] F. Palomba, A. De Lucia, G. Bavota, and R. Oliveto, “Anti-pattern detec-
tion: Methods, challenges, and open issues,” in Advances in Computers, vol. 95,
pp. 201–238, Elsevier, 2014.

[108] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and guided
architectural refactoring with search-based recommendation,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, (New York, NY, USA), pp. 535–546, ACM,
2016.

[109] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen, “Un-
derstanding code smells in android applications,” in Proceedings of the Interna-
tional Conference on Mobile Software Engineering and Systems, MOBILESoft
’16, (New York, NY, USA), p. 225–234, Association for Computing Machinery,
2016.

[110] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
“Detecting code smells using machine learning techniques: are we there yet?,”
in 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 612–621, IEEE, 2018.

[111] V. Garousi and B. Küçük, “Smells in software test code: A survey of knowledge
in industry and academia,” Journal of Systems and Software, vol. 138, pp. 52–
81, 2018.

[112] M. S. Haque, J. Carver, and T. Atkison, “Causes, impacts, and detection ap-
proaches of code smell: a survey,” in Proceedings of the ACMSE 2018 Confer-
ence, p. 25, ACM, 2018.

[113] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,” SCAM
’12, (USA), p. 104–113, IEEE Computer Society, 2012.

[114] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. D. Lucia,
“On the diffuseness and the impact on maintainability of code smells: A large
scale empirical investigation,” Empirical Softw. Engg., vol. 23, p. 1188–1221,
June 2018.

120

[115] K. Deb, A. Member, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, pp. 182–197, 2002.

[116] J. F. Gonçalves and M. G. Resende, “A parallel multi-population biased random-
key genetic algorithm for a container loading problem,” vol. 39, p. 179–190, Feb.
2012.

[117] Y. Kataoka, M. D. Ernst, W. Griswold, and D. Notkin, “Automated support
for program refactoring using invariants,” Proceedings IEEE International Con-
ference on Software Maintenance. ICSM 2001, pp. 736–743, 2001.

[118] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design
quality assessment,” IEEE Transactions on Software Engineering, vol. 28, no. 1,
pp. 4–17, 2002.

[119] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. Lucia, and
D. Poshyvanyk, “When and why your code starts to smell bad (and whether
the smells go away),” IEEE Transactions on Software Engineering, vol. PP,
pp. 1–1, 01 2017.

[120] A. Arcuri and L. Briand, “A practical guide for using statistical tests to as-
sess randomized algorithms in software engineering,” in Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, (New York, NY,
USA), p. 1–10, Association for Computing Machinery, 2011.

[121] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for en-
gineered software projects,” Empirical Software Engineering, vol. 22, pp. 3219–
3253, 2017.

[122] J. R. Koehler and A. B. Owen, “Computer experiments. handbook of statistics,”
Elsevier Science, pp. 261–308, 1996.

[123] M. Alshayeb and Mohammad, “Empirical investigation of refactoring effect on
software quality,” Information and Software Technology, vol. 51, pp. 1319–, 09
2009.

[124] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia, “An exploratory study on
the relationship between changes and refactoring,” in 2017 IEEE/ACM 25th In-
ternational Conference on Program Comprehension (ICPC), pp. 176–185, 2017.

[125] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, and A. Bacchelli, “A large-scale
empirical exploration on refactoring activities in open source software projects,”
Science of Computer Programming, vol. 180, pp. 1–15, 2019.

[126] G. Szke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimthy, “Empirical study on
refactoring large-scale industrial systems and its effects on maintainability,” J.
Syst. Softw., vol. 129, p. 107–126, jul 2017.

121

[127] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of Systems
and Software, vol. 138, pp. 158–173, 2018.

[128] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[129] D. J. Dittman, T. M. Khoshgoftaar, and A. Napolitano, “The effect of data
sampling when using random forest on imbalanced bioinformatics data,” in
Information Reuse and Integration (IRI), 2015 IEEE International Conference
on, pp. 457–463, IEEE, 2015.

[130] J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, and I. H. M. van
Stokkum, “Glotaran: a Java-based Graphical User Interface for the R-package
TIMP,” Journal of Statistical Software, vol. 49, no. 3, pp. 1–22, 2012.

[131] M. Mullenweg and M. Little, “WordPress Github Repository,” 2003.

[132] T. Muth, F. Kohrs, R. Heyer, D. Benndorf, E. Rapp, U. Reichl, L. Martens,
and B. Y. Renard, “Mpa portable: A stand-alone software package for analyzing
metaproteome samples on the go,” Analytical Chemistry, vol. 90, no. 1, pp. 685–
689, 2018.

[133] NIST, “Nist/sematech e-handbook of statistical methods,” OCT 2013.

122

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Research Context
	Problem Statement
	Contributions
	Contribution 1: Simultaneous Refactoring and Regression Testing
	Contribution 2: Detecting and Understanding Collections of Refactoring Recommendations
	Contribution 3: Investigating the Relationships between Architecture and Code Anti-patterns Using Random Forest and Grid Search

	Publication List
	Organization of the Dissertation

	State of the Art
	Introduction
	Software Refactoring
	Automated Software Refactoring Recommendation Tools
	Software Refactoring Dependencies
	Regression Testing
	Software Anti-patterns
	Architecture Anti-patterns
	Code Anomalies

	Simultaneous Refactoring and Regression Testing
	A Motivating Example
	Approach Overview
	Simultasking
	Adaptation
	Unified Search Space Representation
	Fitness Functions
	Evolutionary Operators

	Validation
	Research Questions
	RQ1-A: Quality Improvement
	RQ1-B: Refactoring Meaningfulness
	RQ2-A: Synergy between Regression Testing and Refactoring to Support Software Maintenance in Practice
	RQ2-B: Testing Effort Reduction and Refactoring Coverage
	Study Context

	Data Collection
	RQ1 - Refactoring
	RQ2 - Regression Testing

	Experimental Settings and Data Analysis
	Results
	RQ1-A: Quality Improvement
	RQ1-B: Refactoring Meaningfulness
	RQ2-A and RQ2-B: Test Case Selection Coverage and Effort Reduction

	Threats to Validity
	Conclusion

	Dependent or Not: Detecting and Understanding Collections of Refactorings
	A Motivating Example
	Refactoring Dependency Theory
	Definitions
	Refactoring Pre- and Post-Conditions

	Algorithm for Detecting Refactoring Dependencies
	DPRef

	Empirical Study
	Research Questions
	RQ1: Precision
	RQ2: Relation
	RQ3: Improvement

	Experimental Settings
	Results and Discussion
	Results for RQ1
	Results for RQ2
	Results for RQ3

	Threats to Validity
	Implications and Future Work
	Refactoring Pattern Extraction
	Refactoring Collaborations Between Developers
	Change Operator in Search-based Refactoring
	Interactive Refactoring Tool Support

	Conclusion

	Investigating the Relationships between Architecture and Code Anti-patterns Using Random Forest and Grid Search
	A Motivating Example
	Approach Overview
	Experimental Design
	Research Questions
	Experimental Setup and Formulae
	Metrics for RQ1
	Metrics for RQ2
	Metrics for RQ3
	Data Collection
	Parameter Tuning

	Experimental Results
	Results for RQ1
	Results for RQ2
	Results for RQ3

	Threats to Validity
	Conclusion

	Conclusion
	Summary
	Future Work

	BIBLIOGRAPHY

