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ABSTRACT

Recent GPU architectural enhancements enable easy multi-GPU programming by ex-

posing the GPUs’ aggregate memory as a single shared address space, while allowing direct

remote data accesses among them. However, despite dramatic improvements in inter-GPU

latency and bandwidth, inter-GPU communication remains the largest architectural bot-

tleneck in multi-GPU systems. With hundreds of thousands of independent concurrently

executing threads, maximizing interconnect utilization without degrading computational

efficiency when strong-scaling HPC workloads is an open problem.

In this dissertation, I explore proactive, peer-to-peer writes as the communication

paradigm for improved multi-GPU strong scaling. Proactive writes enable a natural overlap

of compute and communication by performing remote transfers as and when the data is

generated. This results in improved utilization of compute and communication bandwidth

over the traditional mechanisms of data movement such as bulk transfers and on-demand

loads. However, existing GPU and interconnect architectures are not designed to suit such

transfers, resulting in significant bandwidth wastage and programming complexity. To

overcome these limitations, I propose a transfer mechanism, a memory management tech-

nique and an interconnect architecture to improve the programmability and performance of

proactive peer-to-peer writes. These solutions based on hardware/software co-design offer

huge performance advantages over the existing multi-GPU architecture while providing a

simple and intuitive programming interface.

In the first part of the dissertation, I propose PROACT, an inter-GPU communication

mechanism which enables remote memory transfers with the programmability and pipeline

advantages of peer-to-peer stores, while achieving interconnect efficiency that rivals bulk

xi



DMA transfers. I describe both hardware and software implementations of PROACT and

demonstrate the effectiveness of a PROACT software prototype on three generations of GPU

hardware and interconnects. I also present a real-life case study of PROACT, demonstrating

its benefits to improve strong scaling for Model-Based Iterative Reconstruction (MBIR), a

computationally expensive algorithm used in medical imaging.

In the next part of the dissertation, I propose a novel memory management solution

GPS (GPU Publish Subscribe), to efficiently orchestrate inter-GPU communication using

proactive data transfers. GPS enables the programmability of multi-GPU shared memory

with the performance of GPU-local memory by automatically tracking the data accesses

performed by each GPU, maintaining duplicate physical replicas of shared regions in local

memory, and publishing updates to the replicas among GPUs. GPS lives within the existing

GPU memory consistency model but takes full advantage of its relaxed nature in order to

deliver performance improvements.

In the last part of the dissertation, I discuss my work to design and evaluate FINEPACK,

a set of I/O interconnect and GPU hardware enhancements for high fine-grained access

efficiency. Existing and emerging multi-GPU interconnects focus primarily on bulk transfers

or coherence and exhibit poor performance for small accesses due to high protocol overheads.

FINEPACK provides improved efficiency by packing fine-grained transfers into a giant packet,

enabling sharing of common protocol headers and thus reducing the wastage of precious

interconnect bandwidth. I evaluate FINEPACK on a system comprising 4 Volta GPUs on

a PCIe 4.0 interconnect to show it improves interconnect efficiency for small peer-to-peer

stores by 5×, results in 4-GPU strong scaling performance 1.5× better than traditional DMA

based multi-GPU programming, and comes within 77% of maximum achievable strong

scaling performance.
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CHAPTER I

Introduction

Graphics Processing Units (GPUs) are becoming ubiquitous for accelerating high-

performance computing applications, since they enable enormous computational density.

Yet, many applications exhibit more parallelism than what a single GPU can provide; these

applications can spawn more thread blocks than there are compute cores on current GPUs

and generate more memory parallelism than the available local memory bandwidth. One

way to accelerate such applications further is via strong scaling—-to spread the excess

computation to multiple GPUs.

A key challenge in multi-GPU parallelization lies in managing the limited bandwidth of

the inter-GPU interconnect. Each GPU provides enormous bandwidth to locally-attached

GPU memory; far greater than the interconnect bandwidth available between GPUs. The

NUMA bandwidth and latency disparity between local and remote memory is most pro-

nounced in systems where GPUs are connected via low-cost PCIe, but these systems are

typically limited to just 2–4 GPUs. In high-end systems with as many as 16 GPUs [112],

improved interconnects provide much higher bandwidth [114, 115] but there are also 4× as

many remote GPUs that must coordinate efficiently. Figure 1.1 demonstrates the variation

in local, aggregate remote, and peer-to-peer bandwidths across several generations of GPUs.

Across these systems, the ratio of local to remote memory bandwidth can be as high as 10:1

on Kepler based PCIe systems and is still 3:1 on NVIDIA’s recent 16-GPU DGX-2 system.
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Figure 1.1: Variation in local and remote bandwidths across GPU generations.

The disparity between local and remote memory bandwidth makes data locality manage-

ment a significant challenge in strong scaling multi-GPU applications. This challenge is

illustrated by Figure 1.2, which shows the average speedup over a single GPU on an NVIDIA

DGX-Station system with four Volta GPUs [113], for five applications from a variety of

domains (described later in Section 2.4). In orange, we show potential speedup when we

consider computation scaling alone and neglect the cost of data transfer (all accesses are

GPU-local). In blue, we show the actual performance when the applications are naively

partitioned across GPUs, using direct loads and stores to access remote GPU memory.

Whereas computational performance scales close to the linear ideal, the overhead of remote

loads and stores is so high that the applications suffer a net slowdown. Efficiently managing

inter-GPU bandwidth—ensuring the loads during computational kernels access local GPU

memory—is critical to enable multi-GPU scaling.

One way to improve locality is to perform judicious and explicit memory manage-

ment among GPUs. As GPU architectures and the CUDA programming interface have

matured, an increasingly diverse set of mechanisms, such as direct memory access (DMA)

engines [145], peer-to-peer PCIe transfers [138], multiple CUDA streams [131], unified

memory (UM) [110], and dynamic parallelism [62] have been added to the GPU ecosystem

2
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Figure 1.2: Actual speedup with direct loads/stores vs. hypothetical speedup of computation alone
on a NVIDIA DGX-Station with 4 GV100 Volta GPUs.

to help enable the programmer to maximize performance. These mechanisms lead to an

astonishing diversity of approaches to move data among GPUs.

The simplest (from a programmer’s perspective) approach for coordinating data transfers

among GPUs is to rely upon GPUs’ automatic memory management runtime, called Unified

Memory; UM automatically moves data among the CPU and GPUs, on demand, as it is

accessed. While effective at improving programmability, we will show that the overheads of

page-fault–based memory management use the limited interconnect resource poorly and are

inappropriate for high performance multi-GPU systems; they typically lead to degradation

relative to a single GPU. This observation motivates us to study and optimize the space of

programmer-directed memory management in multi-GPU systems.

Existing GPU interconnect architectures are optimized to explicitly transfer data between

GPUs is via host-initiated peer-to-peer cudaMemcpy() invocation between kernels execut-

ing on the GPUs. This technique is simple to implement, uses efficient DMA hardware, and

typically occurs between kernel invocations. By occurring only between kernel executions,

there is an implicit GPU-wide barrier before data transfer, easing the programmer burden

for algorithm design and data movement coordination. However, as GPU workloads scale

3



beyond a small number of GPUs, interleaving data movement between kernel invocations

results in frequent multi-gigabyte all-to-all copies and poor utilization of the limited inter-

connect bandwidth during kernel execution; these bulk transfers rapidly degrade multi-GPU

scalability due to Amdahl’s Law.

To enable performance scalability on many-GPU systems, we argue that both architects

and GPU programmers must change their mindset about how, and when, GPU execution and

data transfers should occur. Application designers must embrace solutions that overlap data

transfers with GPU execution by streaming data among GPUs as it becomes ready in a fine

grained producer–consumer relationship. In this dissertation, I will show that this simple idea

entails several significant challenges since the existing communication mechanisms, memory

management runtime and interconnect architectures are not suited to perform for such

transfers. To overcome these limitations, I partner with industry experts to develop novel

architectural and programming model modifications through hardware/software co-design

to improve strong scaling performance. Through simulations and software prototyping

of multiple real world applications, I achieve orders of magnitude improvements in both

performance and interconnect efficiency versus systems available today.

1.1 Contributions of the dissertation

Throughout the remainder of this dissertation, I detail my major contributions spanning

across the hardware and software stack to tackle the challenges in adopting proactive fine-

grained transfers as a communication paradigm to improve multi-GPU strong scaling. First,

I will detail PROACT [97], a joint compile and runtime system that transparently fine-tunes

inter-GPU data movement for each application’s needs, thus achieving the interconnect

efficiency of bulk transfers at the programming simplicity of peer-to-peer stores. Next, I will

demonstrate how GPS [95], a HW/SW memory management technique, employs selective

page replication and proactive remote stores to improve read locality while conserving

the interconnect bandwidth. Finally, I will discuss FinePack [96], a set of architectural

4



enhancements to overcome the limitations of existing multi-GPU interconnects to perform

small transfers efficiently.
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CHAPTER II

PROACT: Efficient Multi-GPU Shared Memory via

Automatic Optimization of Fine-grained Transfers
*

2.1 Introduction

Despite advancements in GPU architecture and programming models, achieving peak

performance on multi-GPU systems remains a challenge for GPU programmers [21, 39, 148,

102, 130, 88]. To efficiently parallelize applications across a multi-GPU system, developers

typically distribute an application’s data structures across each GPU’s physical memory.

Programs are also designed to operate in logical phases, alternating between periods of

heavy computation accessing mostly locally-available data and periods of data distribution

and synchronization among the GPUs. Unfortunately, this typically results in inefficient use

of resources: interconnects sit idle during computation phases and compute units sit idle

during communication phases.

2.1.1 Challenges of existing paradigms

To obtain high interconnect utilization and maximize performance on multi-GPU sys-

tems, developers are forced to dedicate a substantial manual effort to performance-tuning

and re-architecting their applications to ensure optimal data distribution, inter-GPU com-

*This chapter based on [97]
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Figure 2.1: Different multi-GPU communication paradigms

munication, and synchronization management for correctness. These steps often require

detailed knowledge of internal GPU architecture, GPU interconnects, and the memory

access patterns of the application. As a result, peak multi-GPU performance is often only

achievable by “ninja” programmers.

One major impediment to improving multi-GPU performance is the difficulty in ef-

ficiently overlapping GPU computation with communication phases, leading to system

resource under-utilization. Historically multi-GPU applications have used bulk DMA-based

communication among GPUs because these DMA transfers provide high interconnect

utilization during the transfer phases. Unfortunately, due to bulk synchronization, GPU

computation cannot generally take place during these communication phases. Figure 2.1(a)

depicts a typical DMA-based transfer between 2 GPUs. The DMA transfer occurs between

the producer and consumer kernels on the GPUs, exposing the data transfer latency.

More recently, fine-grained peer-to-peer (P2P) transfers enable GPU compute units

7



to issue loads and stores directly to the physical memory of remote GPUs. These peer

to peer (P2P) transfers enable inherent overlap of compute and communication, but P2P

transfers are inefficient on current GPU interconnects leading to gross under-utilization

of the inter-GPU interconnect. Depicted in Figure 2.1(b), P2P loads often result in the

consumer kernel stalling while waiting for remote loads to complete, due to interconnect

latency, negatively impacting performance. Shown in Figure 2.1(c), P2P stores between

GPUs often are generated at sub-cacheline granularity and with sporadic access patterns.

Although some store latency is hidden, due to protocol packetization overheads, these stores

do not use the GPU-interconnect efficiently.

2.1.2 Contributions

This work propose PROACT, a joint compile-time and runtime system that combines

the flexibility of peer-to-peer stores with the interconnect efficiency of bulk transfers, as

shown in Figure 2.1(d). PROACT exposes an easy to use P2P-store programming model

to developers, but leverages profiling and GPU-runtime support to track data generation,

perform transfer coalescing, and dynamically issue transfers over the interconnect to achieve

high utilization. PROACT provides efficient overlap of per-GPU computation and inter-

GPU data transfer by performing the transfers proactively soon after data generation and

can be supported with either dedicated hardware or software (at the expense of some GPU

computation resources).

To evaluate the PROACT approach of balancing fine grained transfers with intelligent

interconnect utilization, we provide a comprehensive performance comparison to other

common multi-GPU programming paradigms that use automatic GPU memory management,

barrier-based GPU transfers, and fine-grained data accesses. To demonstrate the performance

of PROACT we implement a software prototype of our design on real hardware and show

that even while consuming GPU resources (an overhead which would be eliminated with

future HW support), PROACT is the best performing approach to multi-GPU programming,
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enabling strong scaling to an 11× mean performance improvement on a prototype 16-GPU

system—5.3× better than next-best alternative, a standard bulk-synchronous approach.

2.2 Background

2.2.1 CUDA programming model

In the CUDA programming model [101], a kernel comprises many thousands of threads

grouped into blocks. Sets of threads (32 in recent GPUs) within a block are grouped together

into warps, which are scheduled by hardware and execute in lock-step on a Streaming

Multiprocessor (SM).

A central tenet of the CUDA programming model—critical to enabling switch-on-miss

multithreading—is that the warps in a block may execute in any order. As a consequence,

developers typically ensure that all GPU threads within a kernel are independent. Inde-

pendence creates an easy opportunity to spread execution across multiple GPUs if data

structures in local GPU memory can be replicated or partitioned, scaling both the compute

and memory bandwidth available to the application. However, splitting an application across

GPUs creates a new bottleneck—exchanging data over the shared interconnect.

2.2.2 Inter-GPU Communication Mechanisms

Regardless of the amount of remote data a multi-GPU program may access during

its execution, GPU programmers must choose between several mechanisms to perform

these accesses or copies, and each mechanism has unique performance characteristics. We

describe these mechanisms and their performance implications using NVIDIA’s terminology

to provide specific examples, though the concepts themselves are general. Pedagogically,

we refer to a kernel that requires data produced by another GPU as a consumer kernel

and the kernel that generates data for kernels on other GPU(s) as a producer kernel. In

practice, a single kernel is often both the producer of some data and a consumer of other
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Figure 2.2: Interconnect goodput vs. write transfer granularity.

data simultaneously.

DMA-based bulk transfers: When using bulk DMA-based transfers between GPUs,

data transfer is typically explicitly invoked from the host program executing on the CPU via

cudaMemcpy(). The copy is scheduled following the completion of the producer kernel,

before invocation of the consumer kernel. The cudaMemcpy() call invokes the GPU’s

hardware DMA engine to transfer data directly between the GPUs’ memories without the

need for the transfer to reflect off the CPU’s memory system.

This paradigm can saturate most GPU interconnects when transferring very large gran-

ularity data and ensures that subsequent accesses made by the consumer kernel will be

serviced at high bandwidth from within the consumer GPU’s local physical memory. How-

ever, this method is not suitable for small (several cache lines) or medium (several KB) sized

transfers due to the high initialization and synchronization overhead of returning to the host

program and then programming the DMA engine. Each of these steps can consume several

microseconds [45], which dominates the data transfer time itself. Though programmers

can attempt to interleave computation and communication using DMA-based transfers, it

requires substantial programmer expertise and effort.

Peer-to-peer (P2P) GPU accesses: In modern multi-GPU systems, individual GPUs are

capable of directly reading and writing the physical memory of peer GPUs without GPU run-
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time intervention or host CPU synchronization. The advantages of performing direct remote

accesses using GPU threads is that there is no initiation overhead (such as programming a

DMA engine) and the accesses can be performed while unrelated computation continues in

parallel, within a given thread and without stalling other threads. However, when loads are

performed from remote memory, these P2P loads often stall thread execution beyond the

GPUs’ ability to hide the load latency with multi-threading due to the longer latency of the

inter-GPU interconnect as compared to local memory. As these load stalls build up within

the GPU’s memory system, they eventually consume precious GPU resources that would

otherwise have been used to make execution progress.

Unlike P2P reads that eventually may stall each issuing thread in the GPU, P2P writes

almost never stall the issuing thread because there is no implicit dependence within program

execution. As such, they consume substantially fewer on-chip resources. We believe the non-

blocking nature of P2P stores makes them fundamentally the most efficient way to perform

multi-GPU communication. P2P stores are not a panacea, however. Straight-forward use of

P2P stores will typically result in numerous small writes (as small as one byte) issued over

the inter-GPU interconnect, which results in poor interconnect utilization. PROACT adopts

P2P stores as the basis of its programming model and the major contribution of this work is

designing a system that can overcome poor interconnect efficiency when performing small

P2P writes.

Programmatic communication libraries: In an effort to ease development burden

it is common for GPU programmers to use use GPU-aware libraries such as MPI [158],
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NVIDIA’s NCCL [58], or NVIDIA’a NVSHMEM [124] to provide universal inter-GPU

communication and synchronization patterns, irrespective of the interconnect technology

and topologies on which the code is run. In turn, under the hood these libraries may

selectively use bulk DMA transfers or P2P accesses, combined with library-controlled

memory management to optimize communication between GPUs.

Although these libraries continue to be optimized, there is little they can do to avoid

DMA initiation overhead when performing large transfers. To the best of our knowledge

none of these libraries attempt to aggregate fine grained transfers intelligently to improve

interconnect efficiency. We will show that brief compile-time profiling of a system and

runtime optimization for interconnect utilization can provide substantial performance im-

provement over the underlying mechanisms used by these libraries, and without loss of

generality, the PROACT technique could be implemented as a new back end to many of

these commonly used libraries. We discuss several additional GPU communication libraries

in Section 2.6.

2.2.3 Inter-GPU Interconnect Efficiency

System architects and builders have a range of interconnect technologies to choose from

while designing multi-GPU systems. For over a decade and still today, PCIe [140] has

been the dominant interconnect used to attach peripherals and accelerators to CPUs, and

to each other. More recently, NVLink[114] was designed by NVIDIA as a dedicated GPU

interconnect that targeted higher bandwidth and improved scalability over PCIe. Other high

performance interconnects such as Infiniband [158] and AMD’s Infinity Fabric [162] exist

but target large scale networking and CPU-CPU connections respectively. We choose to

evaluate PCIe as the most common GPU interconnect used today and NVIDIA’s NVLink as

the highest performing dedicated GPU interconnect.

Despite both evolutionary (PCIe) and clean slate (NVLink) design progression where

both protocols support direct peer to peer accesses between GPUs, both PCIe and NVLink
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have poor efficiency when performing small accesses. Figure 2.2 shows the percentage of

goodput achieved on the interconnect, i.e., the percentage of useful data delivered over PCIe

and NVLink interconnects for varying store granularities. Both interconnect technologies

provide high efficiency for transfers with greater than 128 bytes (a common cache line

size) but drop off dramatically at smaller transfer sizes. Interconnect efficiency decreases at

these smaller granularities because protocol packetization overheads dominate the effective

goodput and the transfer efficiency falls as low as 8% on NVLink and 14% on PCIe for

4-byte stores. Therefore, while P2P writes may fundamentally be the most efficient way to

transfer data from a latency-hiding perspective, to improve overall multi-GPU performance,

dramatic improvements in interconnect efficiency must be achieved.

2.3 PROACT Design and Implementation

PROACT attempts to bridge the benefits of DMA-based bulk copies and peer-to-peer

accesses in multi-GPU systems to provide the interconnect efficiency of large transfers

with the non-blocking semantics of SM initiated peer-to-peer stores. PROACT improves

the performance of multi-GPU systems by (1) balancing the overlap of data transfers with

GPU computation, (2) maximizing the opportunity for write coalescing, (3) smoothing

interconnect utilization over time to ensure no bandwidth is wasted, and (4) increasing

interconnect efficiency by ensuring communication occurs at sufficiently large granularities.

To provide these benefits for a range of applications with varying data access patterns,

PROACT needs to make the following design choices depending on the application and

system architecture.

• Transfer mechanism: GPUs provide different ways to transfer data among memo-

ries. The best approach overlaps compute with communication while providing high

interconnect utilization and efficiency.

• Transfer granularity: Data transfer mechanisms vary in efficiency as a function of
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granularity. Performing transfers in coarser chunks can reduce initiation overhead,

but may result in a large tail chunk that extends past the end of computation, delaying

the next phase. On the other hand, transferring data as fine-grained chunks can lead to

poor interconnect efficiency as described in Section 2.2.3.

• Transfer resources: Performing data transfers by employing all threads in the system

typically leads to interconnect inefficiencies and compute stalls, but developing appli-

cations that use per-thread warp specialization so that only a subset of the threads are

writing data to remote GPUs is both difficult to implement and error prone. Thus, we

need to automatically identify the appropriate amount of GPU resources to perform

the transfers and hide this complexity from programmers as much as possible.

• Tracking data generation: CUDA does not guarantee thread ordering. Hence, we

need to develop an appropriate mechanism to track data production and then trigger

efficient transfers.

PROACT has three primary components that coordinate up and down the software and

hardware stack to make these design choices and maximize throughput. Figure 2.3 provides

an overview of these building blocks. They are (a) a compile-time profiler to determine

the different PROACT parameters required to achieve optimized transfer efficiency (b) a

tracking unit to monitor data readiness (c) a data transfer mechanism that initiates optimized

transfers. Each component is described in further detail below.

2.3.1 Optimizing Transfer Efficiency via Profiling

The first step in improving interconnect efficiency is identifying how to extract per-

formance from the multi-GPU interconnect without hampering GPU compute throughput.

If the granularity of P2P stores is too small, they offer poor interconnect efficiency, as

described earlier in Section 2.2.3. If a sufficient number of writes are not in flight on the

interconnect at any given time, bandwidth will go underutilized.
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Perhaps unsurprisingly, performance is a complicated function of multiple parameters.

Figure 2.4 provides an example of the sensitivity to the number of transfer threads (see

Section 2.3.3) and aggregate transfer granularity on an NVIDIA Kepler based system. In

this case the best application throughput is obtained for transfer granularities between 64kB

and 1MB when the number of threads used for the transfers is more than 128. Using

additional threads (or in fact all threads on the system) to saturate the interconnect results in

decreased compute efficiency, without any improvement in interconnect utilization. Each

GPU generation and interconnect type has a distinct number of GPU threads that are needed

to saturate the interconnect bandwidth. By examining these profiles, PROACT can choose

the number of transfer threads for a given system to maximize interconnect bandwidth while

minimizing how many GPU execution lanes are used for data transfer.

To facilitate exploration of the complex design space, as shown in Figure 2.3(a),

PROACT contains a compile time software profiling suite that identifies the appropri-

ate balance of the many competing factors that affect performance on a given GPU and

interconnect. The PROACT profiler performs a parameter sweep and analyzes application
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performance across PROACT’s different transfer mechanisms ( described later in Sec-

tion 2.3.3), and varying the transfer chunk size and transfer thread count, to identify the

best configuration for a given application and system. It then configures the application

compilation to emit code that is most efficient according to the profiling results.

2.3.2 Tracking Local Data Transfer Readiness

PROACT presents users with a programming model that encourages the use of P2P

stores, however transmitting data over the interconnect at fine granularity leads to poor

interconnect efficiency. We propose that remote GPU transfers should be decoupled from

each individual thread’s writes by aggregating these writes into local GPU memory before

being transferred to remote GPUs. Shown in Figure 2.5, PROACT provides a staging

mechanism whereby GPU threads individually write to a local buffer (as if it was remote).

This locally written data is then propagated to remote GPUs by an asynchronously operating

transfer agent. By decoupling the transfer of data over the interconnect from the the

generation of data locally, PROACT can optimize the transfer timing, granularity, and

mechanisms it chooses to employ (based on profiling).

The NVIDIA GPU memory model only requires weak writes and strong writes with

cta and gpu scopes to be visible at remote GPUs no later than the succeeding global syn-

chronization barrier. PROACT exploits this slack by aggregating data in local memory until

all writes to a transfer chunk complete, only then pushing out data to keep the interconnect

saturated with high efficiency transfers. Strong writes with sys-scope are typically used as
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global memory synchronization instructions rather than for performing data transfers and

hence do not fall under the purview of PROACT.

The existence of a decoupled transfer mechanism implies a need to track when a transfer

is ready to begin. Whereas direct remote GPU stores require no special data tracking

mechanism (i.e., remote stores are simply issued by the producer kernel), decoupling

remote transfers from their local generation imposes a need for explicit mechanisms to

track data generation and trigger transfers. By employing structured programming, the

basic mechanism that PROACT uses to track data destined for other GPUs is relatively

straightforward: a set of atomically-updated per-chunk counters track when stores are

generated by the producer thread as shown in Figure 2.5. While ultra-fast hardware support

for tracking the readiness of PROACT’s local memory buffers would be beneficial, it is

not necessary because GPUs today already support atomic counters in memory (typically

implemented in the GPU’s L2 for performance reasons). Thus, while less efficient than

custom hardware support, it is possible to prototype the data tracking portion of PROACT

entirely in software on today’s GPUs.

Because GPU programmers are familiar with a producer-consumer paradigm, it is

rare that data structures are globally shared among GPUs with no coordination regarding

locality. This makes porting applications to the PROACT program structure easy. For

legacy multi-GPU programs that use explicit writes to local buffers, followed by manual

or library-managed copies to a remote GPU, the computation phase of the application will

remain unchanged, while the communication phase is simply elided because PROACT now

orchestrates the transfers automatically during kernel execution.

Figure 2.5 shows a simplified example in which an application’s memory is laid out

linearly. As the producer kernel produces data it also updates the atomic counters, maintained

at a different location in memory. The transfer agent polls theses counters and when the

expected value is observed, the transfer is started. Linear arrangements of data in memory

are not required but contiguous buffers result in better performance and reduce the amount
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of storage overhead needed for the atomic counters versus the buffers themselves. We note

that, because PROACT typically chooses transfer granularities of 64kB–1MB (shown later

in Table 2.2) the storage overhead of the counters themselves is not a significant concern.

2.3.3 Choosing the Decoupled Data Transfer Mechanism

By decoupling data transfer from local data generation, we have the flexibility to chose

an inter-GPU transfer mechanism and transfer granularity that can maximize bandwidth

utilization between GPUs. Because of the initiation overhead of the GPU DMA engine it

not appropriate for frequent data movement among GPUs, leaving us with three alternatives.

Long-lived Software Threads: In this technique, a small configurable number of GPU

warps are specialized to perform data transfers at a given granularity. Auto-generated and

managed entirely by the PROACT runtime, this independently launched long-lived kernel

polls the structured data-ready atomic counters that are updated by the application’s producer

kernels. When ready, the transfer threads read a chunk from the local staging array and

perform remote writes to the target buffer on the target GPU. While PROACT’s profiler tries

to minimize the number of transfer threads required to maximize interconnect performance,

ultimately these threads and the polling of the counters (in a SW implementation) compete

with the compute kernel(s) for execution throughput. Memory consistency between the

producer threads and the decoupled transfer threads is enforced by using existing GPU

memory ordering fences in our PROACT SW-prototype.

Dynamic Kernel Launches: DMA offload is high latency and consumes no GPU

compute resources, while long-lived software threads dedicated to transfers are low latency

but consume GPU compute bandwidth via polling even when no data is being transferred.

CUDA Dynamic Parallelism (CDP) [63] presents another transfer agent mechanism, by

allowing a parent kernel to launch child kernels as needed. In contrast to using long-lived

threads, which consume compute bandwidth in the polling loops that monitor for chunk

transfer readiness, dynamic kernels are launched only when a chunk is ready for transfer and
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consume compute resources only during the transfer itself. The CUDA runtime guarantees

that parent and child kernels have a fully consistent view of global memory when the child

kernel starts and ends so no additional synchronization is needed. PROACT implements

CDP-based transfers an alternative to long-lived threads to avoid the compute bandwidth

cost of polling the transfer bitmaps. The trade-off, however, is that CDP kernel launch has a

higher initiation latency than the long-lived transfer kernels, though still lower than DMA

based transfers.

To use CDP based transfers, when the atomic data counter indicates that a data chunk is

ready for transfer, PROACT’s instrumentation in the producer kernel launches a dynamic

kernel (with a pre-configured number of threads) to perform the transfer. This dynamic

kernel transfers the data chunks to all destination GPUs using tightly packed SM store

instructions.

Direct Inline Stores: To evaluate the full design space of options, our PROACT

software prototype also includes an inline version wherein native P2P stores issue remote

writes to distribute data to remote GPUs as data are produced (i.e., without deferring to

decoupled transfer threads), though we do not expect this to perform well in practice.

Direct inline stores have the advantage that they spread remote writes over the course

of the producer kernel without the tracking overhead of decoupled transfers, smoothing

interconnect utilization as long as remote writes are evenly distributed within the kernel

execution. Because GPU stores are usually non-blocking and can coalesce adjacent writes,

remote transfer latency is hidden unless queuing resources are exhausted. Functionally a

memory ordering barrier at the end of the producer kernel is needed ensures all transfers are

complete and subsequent accesses by the consumer kernel can then be made locally. If data

generated by the producer has poor spatial locality, write coalescing may fail, inflating the

interconnect bandwidth required to transfer the applications data, relative to the decoupled

transfer mechanisms.

19



2.3.4 Hardware Support for PROACT

In this study, we implement a SW prototype of PROACT because it allows us to validate

the concept across wide range of GPU generations and interconnects, which would be

impossible to simulate in reasonable time. With additional hardware support, we envision

an implementation where the data readiness counters are provisioned in a dedicated memory

structure that are initialized by the PROACT runtime and associated with the base and

bound of local transfer buffers located in GPU memory. Local writes issued to a transfer

buffer’s address range automatically update the corresponding counter, replacing the explicit

instructions added by PROACT instrumentation to maintain counters in our prototype.

When a counter decrements to zero, hardware signals a transfer agent to initiate a transfer

of the corresponding buffer. The transfer agent itself can be realized as a simplified DMA

engine with descriptors for the geometry of each transfer prepared in advance in memory

by the PROACT runtime. The salient aspect of a hardware design is that transfers are

triggered automatically and without the need for interaction with GPU drivers running on the

host CPU. Because PROACT can be prototyped entirely in software (with SW overheads

quantified later in Figure 2.8), we leave microarchictural details of a PROACT hardware

realization for future work and focus on demonstrating the efficacy and generality of the

PROACT approach across numerous GPU and interconnect topologies using our software

prototype.

2.4 Experimental Methodology

To evaluate PROACT’s software prototype we perform our experiments across three

4-GPU platforms (4x Kepler, 4x Pascal, and 4x Volta) with key characteristics described in

Table 2.1 and one 16-GPU platform (16x Volta) [141, 105, 36, 106, 107, 108].
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System 4x Kepler 4x Pascal 4x Volta 16x Volta
GPU Tesla K40m Tesla P100 Tesla V100 Tesla V100
GPU Arch Kepler Pascal Volta Volta
#GPUs 4 4 4 16
Interconnect PCIe3.0 NVLink NVLink2 NVSwitch
Bidirectional 16GB/s 150GB/s 300GB/s 300GB/s
BW per GPU aggregate aggregate aggregate aggregate
#Cores (SMs) 15 56 80 80
TFLOPS 1.43 5.3 7.8 7.8
BW (GB/sec) 288.4 720 920 920
Mem Cap (GB) 12 16 16 32

Table 2.1: Key characteristics of the GPUs used in the experiments and their interconnect topologies
in test systems.

2.4.1 PROACT Code Framework

To aid users, the PROACT prototype provides a skeleton code framework, or template,

that can be adapted for use by each target application. The skeleton framework comprises

two components: an initialization interface that runs on the host and prepares for proactive

transfers and a wrapper interface that provides runtime support for progress tracking and

data transfer initiation.

The initialization interface is invoked from the host prior to kernel launch. It allocates

the atomic counters to track data generation and also manages a mapping function that

determines how the data to be distributed between GPUs is laid out in the virtual address

space. This mapping function associates the writes performed by a thread with a particular

atomic counter that tracks progress for a particular transfer granule.

The wrapper interface is shown in Algorithm 1. The wrapper encloses the user’s compute

kernel with code to track progress. It first invokes the user’s kernel to produce a particular

datum or data range (line 2). Next, a barrier at the end of the block ensures all warps in the

block complete (line 3). Following this barrier, the first thread in each block decrements

a corresponding progress-tracking counter. When this counter reaches zero, the wrapper

invokes either a copy kernel on a separate stream or sets a bit in the ready bitmap or hardware

transfer unit to indicate a data chunk is ready.
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Algorithm 1 PROACT Wrapper
1: procedure PROACT WRAPPER(kernel parameters[])
2: compute kernel(kernel parameters[])
3: syncthreads()
4: if is first thread in block() then
5: chunk = block to chunk mapping(blockId)
6: atomicDec cntrs[chunk]
7: if cntrs[chunk] == 0 then
8: launch COPY INITIATOR()
9: procedure COPY INITIATOR

10: if DedicatedHW then
11: atomicDec atomic unit[chunk]
12: else if PersistentKernels then
13: set bitmap[chunk]
14: else if DynamicKernelLaunch then
15: launch dynamic copy kernel()

2.4.2 Evaluated Design Alternatives

To demonstrate the dynamic benefits of PROACT, we compare it to a number of different

static multi-GPU programming approaches.

cudaMemcpy: In this paradigm, the computation kernel is followed by a cudaMemcpy

call that duplicates data structures among all GPUs as needed. By the initiation of the

following kernel, all data structures accessed by that kernel are resident in local GPU

memory; there are no remote accesses. However, there is also no overlap between data

transfers and compute. This approach makes great utilization of the interconnect when the

transfer is in progress, but SMs remain idle during that time.

Unified Memory (UM): Unified memory was introduced to aid in the rapid development

of GPU applications. We port our workload implementations to use unified memory by

replacing conventional memory allocations with unified memory allocations, removing

explicit data transfers, and adding the required inter-GPU synchronization. UM provides

hint APIs to allow expert users to try to avoid the page faults and their large respective

overheads. We hand-tested a variety of hinting strategies, including data pre-fetching, read-

replication, and pre-population of the GPU page tables to reduce fault overheads, making
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a best effort attempt to optimize for each application. We note that though several of the

workloads benefit substantially from read-replication hints, UM still does not make efficient

use of the interconnect, especially for applications with sporadic access patterns.

PROACT-inline: PROACT-inline is a pattern within the PROACT framework that

performs remote writes as part of the data generation kernel, rather than performing transfers

on decoupled transfer threads. Remote stores are injected directly into the source kernel to

push data to remote GPUs, rather than relying on the decoupled transfer agent to optimize

the transfers.

PROACT-decoupled: PROACT-decoupled uses the full flexibility of the PROACT

mechanisms, using the profiling tools to select the best data transfer method and parameters

for each platform and application.

Infinite Interconnect BW: Finally, we include a limit study that shows performance

when data transfers are instantaneous. This represents the maximum speedup that appli-

cations can attain from optimizing data movement. Here applications enjoy the benefit of

fine-grained memory copies, but the data transfer time and the overhead of fine-grained

tracking are neglected. Not attainable in practice, this study help us understand how close

each multi-GPU programming paradigm comes to a theoretical maximum performance.

We compute this performance bound by using the bulk transfer implementation of each

workload and then discounting its execution by the time spend performing data copies with

cudaMemcpy.

2.4.3 Benchmarks

To evaluate PROACT we implement multiple versions of workloads across a variety of

scientific domains and microbenchmarks that can demonstrate the differences between the

PROACT transfer mechanisms. All our benchmarks are compiled using CUDA 9.1 [111].

Microbenchmarks: For demonstrating system variation, we use microbenchmarks

to compare the different PROACT design points. These microbenchmarks consist of a

23



synthetic compute kernel running on a source GPU, which generates data that is needed in

entirety by the destination GPUs for the next phase. Because the opportunity to overlap data

transfer and kernel execution is maximized when the duration of the compute kernel and

transfer are equal, we tune the compute time of the synthetic kernel to match the transfer

time under cudaMemcpy() transfers. To obtain a reasonable size of the compute kernel

that can meet this criteria, we fix the total amount of data to be transferred at 256MB and

tune the compute across various GPU generations. We then instrument the compute kernel

on the source GPU to track its data production and initiate transfers via both PROACT’s

decoupled mechanisms.

MBIR X-ray CT: Model Based Iterative Reconstruction (MBIR) is a computational

technique that can produce high quality images with low X-ray dose, but at high computa-

tional cost. MBIR can be formulated to admit considerable parallelism over image voxels

or detector values, making it well-suited for multi-GPU acceleration [81, 87, 134]. The

algorithm operates iteratively in two barrier-synchronized phases wherein data structures

are partitioned across GPUs and each GPU requires input data from the previous phase from

all other GPUs. We study an algorithm similar to that used in the FDA-approved GE Veo

CT system, the only MBIR system approved for clinical use.

Page Rank: Page Rank assigns a ‘Page-rank score’ to web pages based on their impor-

tance. Our benchmark assigns page-rank scores to articles in the Wikipedia dataset [35].

Single Source Shortest Path (SSSP): Shortest Path algorithms are used to navigate

between physical locations, such as in a road network [53]. We use a version of this algorithm

where the path computation is formulated as a matrix operation [66]. In each iteration,

every vertex computes its shortest distance from the source vertex using the Bellman-Ford

algorithm [66]. We compute SSSP on the HV15R dataset [35].

Alternating Least Squares (ALS): ALS is widely used to perform matrix factorization

in recommender systems. The algorithm is iterative. In each iteration, it fixes the user

matrix and optimizes the item matrix and vice versa. In our study, we performed ALS using
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Stochastic Gradient Descent for vertices in the HV15R dataset [35].

Jacobi Solver: The Jacobi Solver iteratively solves a system of linear equations of

the form Ax = b, where A is the coefficient matrix, b is a constant vector and x is the

required solution vector. The solver iteratively computes the solution vector using Jacobi’s

method [165]. We performed our study on the Jacobi solver for banded matrices, which

arise widely in finite element analysis [164, 70].

2.5 Results

We first analyze PROACT’s decoupled transfer mechanisms to understand how they

manifest across different GPU architectures and then present PROACT’s scalability results.

2.5.1 Microbenchmarking Decoupled Transfer Mechanisms

Figure 2.6 shows the performance of the microbenchmark described in Section 2.4.3

when varying the granularity for decoupled transfers from 4KB to 256MB, where each

source thread block generates 4KB of data.

For the Kepler-based system and CDP case, the performance curve exhibits three regions.

When the transfers happen at fine granularity (less than 16KB per chunk), performance

is initiation-bound. Initiation overheads dominate and there is a net slowdown relative to

cudaMemcpy. From 16KB to 1MB per chunk, the transfers are bandwidth-bound and

proactive transfers reach their peak speedup of 1.6×.

As the granularity increases beyond 1MB, we enter a tail-transfer–bound region, where

the left-over transfers, after the compute kernel completes (which we call the tail transfers)

become significant leading to a net slowdown. Polling substantially underperforms both

cudaMemcpy and CDP on Kepler, due to GPU resources wasted by numerous fruitless

poll loops.

For the Pascal-based system, CDP matches the trend of the Kepler-based system, offering

a peak speedup of 1.8× in the bandwidth bound region.
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Figure 2.6: Performance of the PROACT microbenchmarks showing the effect of decoupled transfer
paradigm and transfer granularity.

However, polling performs even better, attaining up to 1.9× speedup once the transfer

granularity is large enough so that the delay of iterating over the polling bitmap is amortized

26



over the transfer operations.

In the Volta-based system, CDP results in slowdowns at low granularities, while achiev-

ing a 1.5x speedup at large granularities. The initiation overhead of dynamic kernels is

higher on Volta than the other architectures. Polling offers higher speedups at nearly all

granularities.

On current GPUs, launching dynamic kernels requires intervention from the host driver.

As such, the degree to which dynamic kernel launches impacts the performance of the parent

depends on the GPU hardware and the driver. We have observed this cost to vary substantially

across GPU generations. Furthermore, the degree the data transfer kernel interferes with the

parent computation depends on the number of warps in the data transfer kernel and again

varies across GPU platforms. Thus, per GPU platform, the highest-performing data transfer

mechanism varies across transfer granularity, transfer mechanism (DMA vs fine-grained)

and transfer agent type (polling vs CUDA dynamic parallelism)

2.5.2 End-to-End Performance on Full Applications

Figure 2.7 shows the speedups achievable on a 4-GPU system over a single GPU,

across three different GPU generations and Table 2.2 depicts the corresponding PROACT

configurations.

With programmer-provided cudaMemAdvise hints, UM can substantially improve

performance over a single GPU for some applications. For Jacobi, UM even outperforms

cudaMemcpy duplication. Performing explicit duplication via cudaMemcpy on these

4-GPU systems outperforms a single GPU for all applications except Pagerank, where it

underperforms a single GPU on our Volta- and Pascal-based systems.

PROACT-inline outperforms decoupled transfers in just four cases where the applications

naturally exhibit spatial locality. In Jacobi and X Ray-CT, GPU threads are scheduled so that

data are produced densely in increasing address order, leading to excellent write coalescing

within the SM. In these cases the increase in interconnect efficiency achieved by decoupling
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Figure 2.7: 4-GPU speedup under each data transfer method for different hardware configurations.

data transfers is not sufficient to overcome the overheads of the SW-implementation con-

suming SM resources. This marginal difference in performance is an artifact of prototyping

PROACT-decoupled in software and we expect a hardware implementation to outperform

the inline configuration in all cases.

In the remaining applications, where coalescing is poor due to more random memory

update ordering, PROACT-decoupled performs best, as its larger-grain transfers always

coalesce. For example, in ALS on 4x Volta, there are 26× more store transactions over
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Application 4x Kepler 4x Pascal 4x Volta
X-ray CT D 16kB 256 DKL I I
Jacobi I I D 128kB 2048 PST
Pagerank D 16kB 256 DKL D 1MB 4096 PST D 128kB 2048 PST
SSSP D 16kB 256 DKL D 1MB 4096 PST D 128kB 2048 PST
ALS D 16kB 256 DKL D 1MB 4096 PST D 128kB 2048 PST

Table 2.2: Best performing PROACT configuration as determined by the PROACT profiler. Each
configuration is represented as transfer scheme (I: PROACT-inline and D: PROACT-decoupled),
transfer granularity, number of transfer threads, decoupled transfer mechanism (PST: Persistent
Software Threads and DKL: Dynamic Kernel Launches).

the interconnect under PROACT-inline than PROACT-decoupled due to poor coalescing.

Depending on the nature of the application and system architecture, PROACT picks the

most suitable mechanism to perform the data transfers.

The abundant parallelism available in these applications is apparent in the near-linear

scaling achieved under the theoretical upper bound with infinite interconnect bandwidth.

Regardless of GPU generation, the geometric mean theoretical opportunity is a 3.6× speedup

over a single GPU for this set of applications. PROACT enables 3× speedup across all

generations, capturing 83% of the possible opportunity. The story is more complicated for

cudaMemcpy, where there is significantly more variation across GPU generations, but

with an average of 2.1× speedup over a single GPU. UM displays the most variable results,

achieving good speedups for some applications, on some platforms, but on average under-

performing even a single-GPU configuration. We conclude that, even with programmer-

directed hints, traditional fault-based UM can not be relied upon to achieve peak performance.

The minimal additional overhead for programmers to use PROACT is a small price to pay

to achieve the highest performance across applications and GPU systems.

2.5.3 Decomposing PROACT’s Performance

To further understand the performance, we analyze the overheads incurred by PROACT.

PROACT-inline incurs no overhead on computation since there is no tracking instrumen-

tation involved. For PROACT-decoupled, the largest performance overhead stems from
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Figure 2.8: Compute slowdown due to PROACT for decoupled transfers (included in all our results).

prototyping the data tracking interface entirely in software. We determine the overhead by

comparing runtime with tracking instrumentation but without the data transfers to the runtime

of the theoretical infinite interconnect BW case. We report this overhead in Figure 2.8.

The figure reveals that the overhead averages between 10 and 15% depending on GPU

platform. The variation across applications is significant, ranging from negligible overhead

to as much as 40% for Pagerank. Note that the overhead is included in all our results (both in

Figure 2.7 and the Figure 2.10), which shows that PROACT-decoupled achieves substantial

performance improvements despite the software overhead. A hardware implementation will

alleviate these overheads and can further improve performance, motivating its inclusion in

future GPU architectures.

To understand how efficient PROACT is at overlapping data transfer and computation,

we investigate the fraction of data transfer overhead overlapped with computation on

each of the 4-GPU systems. We obtain this result by executing each application with the

instrumentation and initiation overheads of PROACT, but eliding the stores that actually

perform the data transfers to remote GPU memory. The difference between the runtime

with and without the data transfer operations reveals the portion of transfer time that is not

overlapped. We then determine the fraction of overlap by comparing the non-overlapped

transfer time to the baseline duplication time with cudaMemcpy, reported in Figure 2.9.
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Although there are variations among applications and platforms, Figure 2.9 reveals that

PROACT always hides at least 75% of transfer time. In many cases it can overlap nearly

100% of the communication, which will enable great scalability at high GPU counts relative

to cudaMemcpy duplication.

2.5.4 Strong Scaling with PROACT

To this point we have shown studies of PROACT’s (inline and decoupled) performance

impact for 4-GPU systems with different generations of GPUs and interconnects. We next

consider the scalability of PROACT with multi-GPU system size. Figure 2.10 shows the

absolute speedup that PROACT achieves on Kepler, Pascal, and Volta for systems with up

to 4, 4, and 16 GPUs, respectively.

In Figure 2.10 we omit unified memory results, which do not scale well (on average)

and instead focus on the performance improvements with PROACT and cudaMemcpy

duplication compared to the single-GPU performance achieved on the respective system.

We see that across all three platforms, when employing just two GPUs performance is

insensitive to transfer method. This result is not surprising; as the total fraction of time spent

in data transfers is insignificant with only two GPUs. However, as the number of GPUs

increases to four (on the Kepler- and Pascal-based systems), and 5–6 on the Volta-based

system, performance with cudaMemcpy flattens and even begins decreasing.

This effect manifests beyond just two GPUs on the Kepler system, which we hypothesize

is because our PCIe-based Kepler system has the lowest inter-GPU bandwidth, thus transfer

overheads start affecting performance more quickly than in the other systems. We see that,

on the Pascal system, performance with cudaMemcpy is generally competitive up to three

GPUs before leveling off. When examining many-GPU scaling on the Volta-based prototype

system, cudaMemcpy scales to five GPUs before leveling off. PROACT, however, exhibits

nearly linear multi-GPU scaling, indicating that it is doing a good job using the interconnect

bandwidth effectively and overlapping GPU communication with computation. Overall, on
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Figure 2.9: Transfer overlap achieved by PROACT.

our 16 GPU Volta system PROACT achieves a mean speedup of 1.2×, 2.2× and 5.3× over

cudaMemcpy duplication at 4, 8, and 16 GPU configurations, respectively, while coming

within 90%, 87% and 77% of the theoretical application performance limit.

2.6 Related Work

Accelerating scientific applications using GPUs [44, 168, 43, 20, 153, 30, 135] and

optimizing GPU communication [158, 125, 122] has been widely studied, but in what

are now legacy contexts; given the introduction of direct switch-connected LD/ST-based

multi-GPU systems.

Communication in GPU systems: To our knowledge, ours is the first work to explore

proactive direct stores to optimize multi-GPU communication. Xiao et al. [167] optimize

inter-block GPU communication via barrier synchronization. CudaDMA [13] overlaps

computation and data transfer between GPU global and shared memory. MVAPICH2-

GPU [158] integrates CUDA data movement transparently with MPI. Potluri et al. provide

intra-node MPI communication on multi-GPU nodes in [125]. CGCM [56], is an automated

system for managing and optimizing CPU-GPU communication. Chen et al. [27] explore

weak execution ordering to reduce host synchronization overhead.
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Figure 2.10: Scalability achieved on different hardware configurations.

Groute [16] provides an asynchronous multi-GPU model for irregular applications; but

does not consider optimizing fine grained communications between GPUs. Even in MCM-

GPU [7], where a package-level integration of multiple GPU modules is done, PROACT

could help improve performance by effecting efficient copies to local DRAM partitions.

Prior work [89, 171, 11, 68] has explored various hardware and software mechanisms to

improve multi-GPU performance. Many other works [173, 1, 75, 128, 38] perform NUMA-

aware optimizations to improve GPU performance and perform hardware-based peer caching

[83, 126, 31, 143, 12].

Performance of heterogeneous systems: Staged Memory Scheduling [8] decouples

the primary tasks of a memory controller to improve performance of CPU-GPU systems.

Sutherland et al. [149] improve performance by using texture cache approximation on

GPUs. While Schaa et al. [137] allow developers to accurately predict execution time

of GPU scaling, Yao et al. [170] provide a theoretical analysis of multicore scalability.

Unicorn [18] provides a parallel programming model for hybrid CPU-GPU clusters while
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[22, 15] provide frameworks for automatic multi-GPU parallelization. CAWS [74] provides

a scheduling policy and Bhattacharjee et al. propose thread criticality predictors for parallel

applications [19]. Dymaxion [25] attempts to overlap CPU-GPU PCIe transfer with data

layout transformations on the GPU, while Lustig et al. [83] offer techniques for more

effective GPU offloading. These topics are orthogonal and complimentary to optimizing

fine-grained multi-GPU communication, the subject of this work.

Auto-tuning and code generation: General literature in auto-tuners include automating

the construction of compiler heuristics using machine learning [146], automatic tuning of

heuristics for code inlining [24], and a genetic algorithm approach for compiler optimiza-

tions [71]. Additionally, obtaining the heuristic scheduling algorithm automatically [92],

and finding the shortest program to compute a function [85] have been studied previ-

ously. In the GPU realm, multiple works have explored application-specific auto-tuning

for GPUs [104, 79, 65, 33, 34, 78, 46], but this work provide a new methodology for

scaling multi-GPU performance. Spafford et al. attempt to improve load balancing and

bus utilization [147], yet they do not attempt to overlap compute with communication.

CLTune [103] provides a generic auto-tuner for OpenCL Kernels but does not consider

inter-device communication. While different works have explored code generation for

specific GPU applications [51, 155, 29, 4, 174], we attempt to create a generic mechanism

allowing all applications to scale.

2.7 Conclusion

In this work, we proposed PROACT, a hardware and software system that improves

multi-GPU performance by overcoming the limitations of existing inter-GPU communication

mechanisms. PROACT combines the advantages of peer-to-peer transfers with that of

bulk transfers to enable interconnect friendly data transfers while hiding transfer latencies.

Demonstrated across three different 4-GPU system architectures, PROACT provides an

average speedup of 3× over a single-GPU implementation, capturing 83% of the theoretical
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limit. We also show how PROACT provides dramatic scalability improvements on next

generation systems with large numbers of GPUs, achieving up to 12× speedup over a single-

GPU implementation, while capturing 77% of the available opportunity. Scalable multi-GPU

programming is no easy task; to maximize programmer productivity, runtime systems like

PROACT will be necessary to enable rapid development cycles while leveraging next

generation architectural improvements in future GPUs.
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CHAPTER III

Case Study: Improving GPU Scaling for X-Ray CT
*

3.1 Introduction

Model-based iterative reconstruction (MBIR) for X-Ray CT offers improved image

quality at lower radiation doses than Filtered Back Projection (FBP) [152], but at higher

computational costs. Although researchers have explored various acceleration techniques,

such as using SIMD instructions on CPUs [172, 136] and cloud computing [100, 133], the

compute times remain undesirably high for MBIR to be ubiquitous clinically.

Further MBIR acceleration requires increasing both computational resources and mem-

ory bandwidth, making a case for employing multiple GPUs [86, 57]. But GPU scaling does

not always result in linear speedup. Fig. 3.1 shows projected speedups as we parallelize a

state-of-the-art MBIR algorithm [67] over more GPUs. Using more GPUs initially provides

near-linear speedup up to about eight GPUs, as the computational phases of MBIR can be

readily partitioned across the GPUs. However, beyond eight GPUS, speedup saturates and

then begins to decrease. This reversal arises due to the time spent copying data among GPUs

between computational phases. Sinogram and image data must be exchanged all-to-all

among the GPUs between phases, yet current systems offer no mechanism to broadcast data,

requiring pairwise copies. As a result, even though computation time shrinks, copy time

grows and ultimately dominates as the number of GPUs increases.

*This chapter based on [98]
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Figure 3.1: Ideal and Projected speedups achievable with GPU scaling with conventional multi-GPU
implementation.

High copy time can be mitigated by overlapping copying with computation—by “stream-

ing” data from producer GPUs as soon they become ready. By initiating some copies while

computation is ongoing, the next computational phase must wait only for straggling data

produced at the end of a phase.

While overlapping communication with compute between CPU and GPU has been

studied for FBP[176], hiding copies underneath compute in multi-GPU systems entails

several challenges: (1) State-of-the-art CPU–GPU systems provide an astonishing diversity

of mechanisms to move data from one GPU’s memory space to another. Data may be moved

by CPU loads/stores through a variety of addressing mechanisms, by GPU loads/stores, by

DMA engines integrated on the GPU, and potentially even by other devices on the PCIe

bus. These alternatives trade off bandwidth, initiation latency, and disruption to other GPU

threads in non-trivial ways; the best approach for our purpose is not obvious. (2) Every

CT phase must indicate when enough data has been generated for a copy to start. It is

neither clear how to trigger copies, nor at what granularity they should be performed. (3)

The CUDA programming model allows enormous freedom in ordering the execution of

individual threads. No existing programming interface allows GPU programs to efficiently
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track production of output data, initiate copies, and await copy completion.

This work focuses on using PROACT for accelerating a penalized weighted least-

squares with ordered subsets (PWLS-OS) reconstruction algorithm [67] on a multi-GPU

system. PROACT automatically identifies the best granularity at which to perform such

copies and the transfer mechanism best suited for our purpose. We also consider how the

subdivision of MBIR phases into individual GPU kernels affects the order data is generated

and how to orchestrate these to maximize gains from our technique.

Using four Tesla K40m GPUs, we show that a 20-iteration helical CT reconstruction

of a 512×512×512 image from 7256 views of size 888×64 takes 11.25 minutes using our

copy mechanism. We also demonstrate, using a simple mathematical model, how PROACT

makes MBIR CT more amenable to further GPU scaling.

3.2 Methods

3.2.1 Background

We reconstruct the image x̂xx by iteratively minimizing the PWLS cost function [133]:

x̂xx = argmin
xxx≥0

Ψ(xxx), Ψ(xxx) =
1
2
∥AAAxxx− yyy∥2

WWW +RRR(xxx), (3.1)

where AAA is the system matrix, yyy is the sinogram measurements, WWW is the statistical weighting

and RRR is the regularizer.

Each iteration updates the current image estimate (xxx(n)) using the following gradient of

Ψ:

∇Ψ(xxx(n)) = AAATWWW (AAAxxx(n)− yyy)+∇RRR(xxx(n)). (3.2)

Each iteration comprises four phases as shown in Figure 3.4. Each phase can be formulated

to admit considerable parallelism over image voxels or detector values in the sinogram,

making it well-suited to using the enormous compute capabilities of modern GPUs [93].
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Figure 3.2: (a) Conventional: computation and copies in series. (b) PROACT: incremental copying
overlapping computation

GPUs have multiple Streaming Multiprocessors that concurrently execute many threads [80].

These hardware elements execute a GPU kernel (programmed in CUDA) organized as blocks,

warps and threads [69]. Kernel ordering is programmer-controlled, but ordering of blocks

and warps is left to the hardware scheduler.

In our GPU implementation of PWLS-OS, we parallelize forward projection by parti-

tioning views across multiple GPUs, employing one GPU thread to compute the value of one

detector residual. Every GPU broadcasts its generated residual values to every other GPU,

since back projection uses all of them. We then parallelize computation of the other phases

by partitioning the y plane across multiple GPUs. Each thread performs the back projection,

regularization and update of one image voxel. The GPUs then copy the corresponding

partial image to other GPUs before the next iteration commences.

3.2.2 Using PROACT to overlap copy with compute

As shown in Figure 3.1, although PWLS-OS is highly amenable to parallelization, GPU

scaling does not yield linear speedup due to time taken to perform all-to-all copies of the

detector residual at the end of forward projection and of the image voxels at the end of the

update phase. The total amount of data copied increases linearly with number of GPUs;

although each GPU produces fewer values, they must copy to more destinations. Since
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Figure 3.3: GPU SM resource utilization and copy initiation. The launch of the initiated copy kernels
depends entirely on the hardware scheduler.

Figure 3.4: Phases of X-Ray CT MBIR. After forward projection, the GPUs exchange their generated
sinogram data, followed by three computational phases and an image update. The GPUs then
exchange image data and the algorithm repeats until convergence.

using more GPUs also reduces compute time per GPU, scaling beyond 12 GPUs results in

copy time that exceeds compute time.

The available copy bandwidth is bound by the interconnect (PCIe3.0 and PCIe4.0

pose theoretical limits of 16GB/s and 32GB/s, respectively, though substantially lower

sustained throughput is achievable in practice) and cannot be increased without hardware

enhancements. However, a careful study of the hardware utilization pattern during the

reconstruction process indicates that the interconnect remains idle during the computation

phases and is utilized to its practical limit only during the ensuing copy phase, when no

compute takes place. Hence, one way to decrease the reconstruction time is to use PROACT

to initiate copies of data generated early in the computation phase while the rest is still being

computed, overlapping computation and copying, as depicted in Figure 3.2.

To overlap compute and copy, the copy mechanism must impose minimal overhead

and interference on the computation. PROACT identifies GPU thread-based copy using

dynamic kernel launch as the mechanism best suited for our purpose. In this technique, the

40



GPU threads that perform computation also trigger copies after generating a data chunk

(e.g., a set of sinogram bins) of the desired granularity. The copies are issued via dynamic

kernel launch, wherein a copy kernel is launched from within the main CT computation

kernels—a capability introduced in CUDA 5.0 [62]. The copy kernel is scheduled by the

GPU hardware scheduler and copies the data chunk to the other GPUs as shown in Figure 3.3.

As computation proceeds, copy kernels are triggered, scheduled by hardware, and executed.

Although our technique incurs minimal copy initiation overhead, the copy kernels

nevertheless use GPU resources that might otherwise have been used by CT computation

kernels, and hence indirectly delay computation. Hence, invoking the copy kernel at an

appropriate frequency while ensuring that the maximum amount of copy time is hidden

behind compute becomes crucial. PROACT addresses this challenge by carefully tuning

the granularity at which copies are initiated. Since this granularity depends only on the CT

geometry and not on patient features, it can be determined in advance via a parameter-sweep

over a sample image.

Choosing the right granularity to track data production is also important, as tracking at

too low granularity (such as thread granularity) would increase the overhead of tracking,

slowing computation, while tracking at too high granularity might not ensure enough

compute-copy overlap. PROACT performs the tracking at the granularity of GPU thread

blocks. Once consecutive thread blocks produce a chunk of data of the desired granularity, a

dynamic copy kernel initiates the copies.

Our final design decision entails selecting the best implementation to track data genera-

tion. Proper design of this mechanism is crucial because the CUDA programming model

offers enormous freedom to the scheduler with respect to block ordering, so blocks may

complete in any order. PROACT employs an atomic counter-based approach, wherein each

data chunk is assigned a corresponding atomic counter, initialized to the number of blocks

that contribute data to the chunk. The first thread of each block waits until all its sibling

threads complete, then decrements the counter using an atomic decrement instruction. When
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the counter reaches zero, it indicates that the corresponding group of consecutive blocks is

complete. The thread then initiates a dynamic copy kernel for the corresponding data chunk.

Although the counter-based approach uses atomic accesses that are inherently slower than

normal reads and writes, it performed better than alternatives (e.g., dedicated threads that

poll for chunk completion).

3.2.3 Sequencing data generation

To ensure that the reconstruction method can effectively use the copy strategy discussed

above, it is important to structure the kernels to perform all the computation corresponding to

a particular data element in quick succession, producing data elements incrementally rather

than performing multiple updates to all data elements during kernel execution. The goal is to

ensure that data chunks are available as early as possible to maximize copy-compute overlap.

While the original forward projection code computed the detector residuals in succession,

the back projection code updated the relevant voxels using one view before updating the

voxels using the next view, i.e., an outer loop over views. This led to voxels being ready for

copy only during the processing of the last view, leaving very little room for compute-copy

overlap. We restructured the code to generate the voxels in succession by having each voxel

loop over the relevant views that contribute to it, thus ensuring voxel values are produced

incrementally.

3.3 Experimental Results

We report on our multi-GPU PWLS-OS implementation. We validate the GPU imple-

mentation against a CPU baseline, which it matches to within 0.0289HU (Hounsfield units).

Our test system comprises four Tesla K40m GPUs, each having 2880 CUDA cores, 11.9GB

global memory and 4KB shared memory per block. Each GPU is capable of performing a

peer access to the other GPUs. They reside on a PCIe3.0 bus that also interfaces them with

the host.
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Figure 3.5: Measured speedups achieved through PROACT

We simulated 9-turn helical CT data with pitch 63/64 and 7256 views of size 64 rows

by 888 channels, and reconstructed a 512×512×512 voxel image volume over a 512 mm

transaxial field of view (FOV) with 0.625 mm slice thickness using the separable footprint

projector [82] and [67] with 24 subsets.

In PROACT, the GPU threads initiated through dynamic kernel launch perform copies,

as explained in Section 3.2.2. The copies are performed for 8kB data chunks for detector

residuals and 16kB for image voxels. We compare PROACT against the baseline wherein

data is copied after compute phases using cudaMemcpy Peer-to-Peer [138].

Figure 3.5 shows speedup achieved with respect to a single GPU for three cases: (1)

Baseline, (2) Our design (PROACT), and (3) Instantaneous copies (copies are performed in

zero time). The blue (Instantaneous) bars indicate the theoretical limit on the performance

gains achievable via compute-copy overlap. With only two GPUs, copy overhead is negligi-

ble and there is little performance difference between the baseline and the ideal. However,

the potential and realized gains grow rapidly with further scaling. Our approach realizes

94% of the theoretical opportunity for four GPUs, achieving a speedup of 1.24× over the

baseline and 3.46× over a single GPU.

PROACT falls short of the opportunity available with instantaneous copies for two
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Figure 3.6: Effect of GPU scaling on speedup for different interconnect generations

reasons: (1) The dynamic copy kernels require some GPU execution bandwidth, slightly

delaying execution of CT kernel threads. (2) A 100% copy-compute overlap is not possible

because the data generated by the final blocks is copied after computation is complete.

3.4 Scalability Analysis

PROACT holds the potential to unlock even higher performance scalability on future,

larger multi-GPU systems. To analyze this potential, we develop a simple analytic model

that predicts the impact of our approach with more GPUs and faster GPU interconnects. We

base our scalability model on the following observations: (1) As previously explained, the

four phases of X-ray CT are amenable to GPU scaling. For simplicity, we assume that the

compute time of individual algorithmic phases scales linearly with the number of GPUs,

although practical implementations typically fall a bit short of ideal linear scaling. (2) An

all-to-all broadcast must occur at the end of the forward projection and update phases. Thus,

as the number of GPUs increases, the total data to be copied, and hence the time required

for copy, increases, since the data must be copied to additional GPUs.

3.4.1 Scalability Model

At the end of forward projection, the GPUs must exchange the portions of the sinogram

each generated. The total bytes copied is the product of the sinogram size (Sizesino), and
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the number of destination GPUs (ngpu − 1). The total time for the copy depends upon

the interconnect technology, which we model simply as a ‘copy time per byte (tperbyte)’

bandwidth, as expressed in the following equation:

Copytime1 = (ngpu −1) ∗ Sizesino ∗ tperbyte.

After the update phase, the GPUs must exchange the image portions each generated.

Hence the total bytes copied is the product of the total image size (Sizeimage) and the number

of destination GPUs (ngpu −1):

Copytime2 = (ngpu −1) ∗ Sizeimage ∗ tperbyte.

3.4.2 Discussion

Using this simple model, we estimate the impact of PROACT on CT reconstruction

performance. Figure 3.6 shows the projected speedup of PROACT and that of the baseline

for different GPU counts against a single GPU implementation for two different assumptions

on interconnect bandwidth (unidirectional transfer bandwidths of 16GB/sec for PCIe 3.0

and an estimated 64GB/s for PCIe 5.0).

For both assumptions on interconnect bandwidth, PROACT enables performance scala-

bility to a much larger number of GPUs than the baseline. For PCIe 3.0, baseline performance

saturates at about 6× speedup (over a single GPU) with ten GPUs. Above six GPUs, growth

in copy time exceeds reductions in computation time. In contrast, our approach enables

near-ideal scaling up to twelve GPUs. Beyond this point, copy time grows to the point where

it exceeds compute time and can no longer be hidden.

Higher interconnect bandwidth under PCIe 5.0 reduces copy time, enabling greater

performance scalability for both the baseline and PROACT. However, our technique still

drastically increases the scalability potential. PROACT enables near-ideal scaling up to 24
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GPUs, while the baseline saturates at about 12× speedup with 20 GPUs. Newer GPUs will

further decrease compute time by the time PCIe 5.0 becomes available, making our solution

even more relevant.

3.5 Summary and Conclusion

In this Chapter, we showed that though Model-based iterative reconstruction (MBIR) for

X-Ray CT is highly parallelizable, reconstruction time does not improve linearly with the

number of GPUs, mainly due to high inter-GPU copying delays at the end of computation

phases. We also showed that using PROACT to overlap copies with computation—by

copying incrementally as data are produced—can mitigate copy overhead and improve

performance scalability. PROACT enabled 90% of copy time to overlap with compute,

achieving a speedup of 1.24× (nearing the theoretical bound of 1.31× with instantaneous

copies) over conventional cudaMemcpy at the end of compute phases on four Tesla K40m

GPUs. Relative to a baseline implementation on a single GPU, PROACT approach achieves

a speedup of 3.46× on four GPUs. We project even higher impact from our technique with

more GPUs.
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CHAPTER IV

GPS: A Global Publish Subscribe Model for Multi-GPU

Memory Management
*

4.1 Introduction

GPUs are now central to high performance computing, given their abundant resources

and suitability for parallel execution. However, extracting high performance from multi-

GPU systems remains a challenge. Multi-GPU systems offer teraflops of computational

power [117, 47] and terabytes per second of memory bandwidth. However, effectively

managing these resources to extract high performance from multi-GPU systems remains a

challenge for most GPU users. As the GPU count in a system increases, the time each GPU

spends on computation decreases while inter-GPU communication increases, resulting in

poor performance.

One of the primary challenges for effective multi-GPU memory management is the order

of magnitude gap between local and remote memory bandwidths. If applications are naively

partitioned across GPUs, most memory accesses will end up traversing slow remote links,

resulting in these links becoming a performance bottleneck. Interconnect bottlenecks can

degrade scaling so significantly that multi-GPU implementations often perform worse than

their single-GPU counterpart.

*This chapter based on [95]
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Figure 4.1: Load/store paths for conventional and GPS pages.

4.1.1 Challenges of existing solutions

Existing techniques to manage data in multi-GPU systems fall short. Unified Memory

(UM) [48] provides a single memory address space accessible from any processor in the

system by employing fault-based page migration to move data pages to the local physical

memory of the accessing processor. Although this enables UM to automatically migrate

pages for locality, the page fault handling overheads are often performance prohibitive.

Peer-to-peer transfers [138], in which GPUs perform loads/stores directly to the physi-

cal memories of other GPUs, can potentially achieve good strong scaling when properly

coordinated with computation. However, orchestrating this requires substantial manual

programmer effort and detailed knowledge about the application and execution platform.

Frameworks such as Gunrock [159] and Groute [17] can help improve strong scaling for

some workloads, but these frameworks are typically domain specific and limited in scope.

4.1.2 Contributions

To overcome the limitations of existing techniques, we propose GPS (GPU Publish

Subscribe), a multi-GPU memory management technique that transparently improves the

performance of multi-GPU applications following a Unified Memory-like programming

model. GPS provides a set of architectural enhancements that automatically track which

GPUs subscribe to shared memory pages, and through driver support it replicates those

pages locally on each subscribing GPU. GPS hardware then broadcasts stores proactively
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to all subscribers, enabling the subscribers to read that data from local memory at high

bandwidth. Figure 4.1 shows the behavioral difference between GPS and conventional

accesses. GPS loads always return from local memory, while GPS stores are issued to

all subscribers. GPS takes advantage of the fact that remote stores do not stall execution;

performing remote accesses on the write path instead of the read path hides latency and

enables further optimizations to schedule and combine writes to use interconnect bandwidth

efficiently.

GPS successfully improves strong scaling performance because of its ability to: (1)

transfer data in a proactive, fine-grained fashion and overlap compute with communication,

(2) issue all loads to local DRAM rather than to remote GPUs’ memory over slower

interconnects, and (3) perform aggressive coalescing optimizations that reduce inter-GPU

bandwidth requirements without violating the GPU’s memory model.

This work makes the following contributions:

• We propose GPS, a multi-GPU memory management technique that leverages the

publish-subscribe paradigm.

• We propose simple, intuitive programming model extensions that naturally integrate

GPS into applications, while still conforming to the existing GPU memory model.

• We propose a novel subscription management mechanism that tracks GPUs’ access

patterns and unsubscribes from unused pages to minimize scarce inter-GPU band-

width.

• We demonstrate that GPS enables strong scaling performance up to 3.84× over a

single GPU for a suite of native multi-GPU applications, an average 2×-5× improve-

ment over the next best available multi-GPU paradigm across different interconnect

architectures, and achieves 75% of the hypothetical performance of an ideal intercon-

nect.
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Figure 4.2: Local and remote bandwidths on varying GPU platforms. Despite significant increases in
both metrics, a 3× bandwidth gap persists between local and remote memories.

4.2 Background and Motivation

4.2.1 Proactive transfers for locality

Proper orchestration of remote accesses is essential for strong scaling in multi-GPU

systems. With each new GPU and interconnect generation, the compute throughput, local

memory bandwidth, and inter-GPU bandwidth increase. However, the bandwidth available

to local GPU memory remains much higher than the bandwidth available to remote GPU

memories.

This trend is illustrated in Figure 4.2 which shows the improvements in local and

remote memory bandwidths across GPU and interconnect generations. We see that even

though interconnect bandwidth has improved 18× while evolving from PCIe 3.0 [3] to

NVIDIA’s most recent NVSwitch [115], it still remains 3× slower than the local GPU

memory bandwidth. If GPUs perform remote loads via the slower interconnect links during

computation, they incur computation stalls and poor performance.

One way to avoid the remote access bottleneck is to transfer data from the producing

GPUs to the consuming GPUs in advance, as soon as the data is generated. The consumers

can then read the data directly from their local memory when needed. These proactive

transfers help strong scaling for two reasons: (1) they provide more opportunities to overlap
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data transfers with computation, and (2) they improve locality and ensure that critical path

loads enjoy higher local memory bandwidth.

4.2.2 Inter-GPU communication mechanisms

To exploit the advantages of local memory accesses, multi-GPU workloads typically use

one of following mechanisms to move data among GPUs’ physical memories.

• Message Passing Interface (MPI): MPI is a standardized and portable API for

communicating via messages between distributed processes. With CUDA-aware MPI

and optimizations such as GPUDirect Remote Direct Memory Access (RDMA) [123],

the MPI library can send and receive GPU buffers directly, without having to first

stage them in host memory. Message transfers can also be pipelined with computation.

However, porting an application to MPU requires significant programmer effort, and

as a result, it is hard to overlap compute and communication effectively by leveraging

the pipelining features of MPI.

• Host-initiated DMA using cudaMemcpy: cudaMemcpy() programs a GPU’s

DMA engine to copy data directly between GPUs and/or CPUs. Though CUDA

provides the ability to pipeline compute and cudaMemcpy()-based transfers [144],

implementing pipeline parallelism requires significant programmer effort and detailed

knowledge of the applications’ behavior in order to work effectively.

• Fault-based migration via Unified Memory (UM): NVIDIA’s Unified Memory

provides a single unified virtual memory address space accessible to any processor

in a system. UM uses a page fault and migrate mechanism to perform data transfers

among GPUs. Although this enables data movement among GPUs in an implicit and

programmer-agnostic fashion, the performance overhead of these page faults typically

is a performance concern.
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• Peer-to-peer transfers: GPU threads also have the ability to perform peer-to-peer

loads and stores that directly access the physical memory of other GPUs, without

requiring page migration. In principle, peer-to-peer accesses can be performed at a fine

granularity, overlap compute and communication, and incur low initiation overhead.

However, peer-to-peer loads suffer from the high latency of remote accesses, often

stalling thread execution beyond the GPU’s ability to mitigate those stalls via multi-

threading. Peer-to-peer stores, on the other hand, typically do not stall GPU thread

execution and can be used to proactively push data to future consumers without

slowing down the computation phases of the application.

GPS relies on peer-to-peer stores to perform data transfers as the basis of its performance-

scalable implementation.

4.2.3 Publish-subscribe frameworks

Although proactive fine-grained data movement can improve locality, performing broad

all-to-all transfers wastes inter-GPU bandwidth in cases where only a subset of GPUs

will consume the data. In these cases, tracking which GPUs read from a page and then

transmitting data only to these consumers can save precious interconnect bandwidth. To track

a page’s consumers and propagate updates only to them, GPS adopts a conceptual publish-

subscribe framework, which is often used in software distributed systems [41, 9, 37, 94].

A simple example of a publish-subscribe framework is shown in Figure 4.3. It consists

of publishers who generate data and subscribers who have requested specific updates. The

subscribers send their access requests to a publish-subscribe processing unit that tracks

subscription information at page granularity. The publisher sends data updates to the

publish-subscribe processing unit, which then forwards these updates to subscribers. This

mechanism provides the advantage that publishers and subscribers can be decoupled from

one another and subscription management is handled entirely by the publish-subscribe

processing unit.
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Figure 4.3: A simple publish-subscribe framework.

4.2.4 The GPU memory consistency model

The NVIDIA GPU memory consistency model [118] prescribes rules regarding the

apparent ordering of GPU memory operations and the values that may be returned by a read

operation. We briefly summarize concepts from the memory model that are relevant to GPS.

Memory operation types: Memory operations can be broadly categorized into two

types; namely, weak operations and strong operations. Weak operations are non-synchronizing

memory instructions. The effects of these instructions are required to become visible to

other threads only when a synchronization is established by an additional explicit event.

GPU memory accesses are weak accesses by default, unless they are atomic operations,

fence operations, or they possess explicit synchronization qualifiers. Strong operations are

synchronizing operations, i.e., they are either fence operations or memory operations with

synchronization qualifiers.

Scopes: In the GPU memory model, strong operations (but not weak operations) have

the ability to synchronize at different scopes depending on applications’ requirements. The

GPU thread hierarchy is shown in Figure 4.4. Threads are grouped into Cooperative Thread

Arrays (CTAs) a.k.a. thread blocks; multiple CTAs constitute a GPU, and the system consists

of all available GPUs. A grid is the one-, two-, or three-dimensional set of CTAs used to

execute a particular kernel on a GPU. The GPU memory model provides the freedom to the
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user to choose the subset of threads within the thread hierarchy for which synchronization

and same-address ordering rules are enforced. The available scopes are:

• cta scope, which is the set of all threads executing in the same CTA as the current

thread.

• gpu scope, which is the set of all threads executing on the same GPU as the current

thread.

• sys scope, which is the set of all CPU and GPU threads in the system.

GPS makes use of the relaxed memory ordering guarantees offered by the different GPU

operation types and scopes to perform several hardware optimizations, as described later in

Section 4.3.4.

4.3 GPS Architectural Principles

In this section we describe the different architectural principles upon which GPS is

based. Several possible hardware implementations, described later in Section 4.5, can

support the GPS semantics with differing performance characteristics. These high-level

design principles are intended to decouple the GPS concept from our specific proposed

implementation.
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4.3.1 Publish-subscribe data transfer patterns

GPS differs from other multi-GPU paradigms in the way it proactively orchestrates

stores so that loads can complete locally during compute. Figure 4.5 depicts three different

multi-GPU data transfer paradigms. The figure illustrates a simple producer-consumer

kernel interaction executing in a 3-GPU system. The producer kernel running on GPU0

generates data and consumer kernels running on GPU1 and GPU2 subsequently read the

generated data. We discuss below the nature of the remote data transfer patterns under three

multi-GPU programming paradigms.

• Under peer-to-peer loads and UM, the consumer kernels fetch data on demand, as

depicted in Figure 4.5(a). As described in Section 4.2.2, these on-demand transfers

pay substantial performance penalties.

• Memcpy-based transfers copy data to consumer GPUs at the end of the producer
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kernel (in a bulk-synchronous fashion) to make the required data available locally

at GPU1 and GPU2 at the start of the consumer kernels, as shown in Figure 4.5(b).

These transfers are often able to saturate the interconnect during the inter-kernel

transfer phase, however execution typically is stalled while the copies are in progress.

As a result, the overall GPU efficiency is lowered because there is no overlap of

computation with communication.

• Figure 4.5(c) depicts a typical publish-subscribe use case: GPUs subscribe to the

regions they intend to access before kernel execution begins. The hardware supporting

the GPS address space then orchestrates the forwarding of proactive remote writes

to the targeted pages’ respective subscribers as soon as the data is generated by the

producer kernel. In this way, GPS-allocated data is available locally on each GPU

before the consuming kernel requires it. Therefore, the consuming kernel can access

the data at the GPU’s full local memory bandwidth, resulting in large performance

advantages.

The major challenge faced by a publish-subscribe model relying on proactive remote

stores is deciding which GPUs should receive the data, and when the stores should be

transmitted. We address this next.

4.3.2 Subscription management

The key innovation behind GPS is a set of architectural enhancements designed to

coordinate proactive inter-GPU communication for high performance. These architectural

enhancements maintain subscription information to enable data transfer only to GPUs that

require it, enabling local accesses during consumption. GPS also contains a set of aggressive

coalescing optimizations to ensure that the network is utilized as efficiently as possible. We

describe the former here, and the latter in Section 4.3.4.

GPS provides both manual and automatic mechanisms to manage page subscriptions.

We describe the general mechanisms below, the APIs in Section 4.4, and the implementation
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in Section 4.5.

Manual subscription tracking: The manual mechanism allows the user to explicitly

specify subscription information through subscription/unsubscription APIs that can be called

while referencing each page (or a range of pages) in memory. Though this requires extra

programmer effort, it can lead to significant bandwidth savings compared to an all-to-all

subscription even if the subscription list is not minimized.

Automatic subscription tracking: For applications with an iterative/phase behavior

wherein the access patterns in each program segment match those of prior segments, the

subscriber lists can be determined automatically. The repetition in iterative workloads

enables GPS to discover the access patterns from one segment, in an initial profiling phase,

and determine the set of subscriptions for subsequent execution.

Automatic subscriber tracking can be performed in one of two ways: subscribed-by-

default, i.e., indiscriminate all-to-all subscription followed by an unsubscription phase,

or unsubscribed-by-default, i.e., a GPU subscribes to a page only when it issues the first

read request to that page. GPS uses subscribed-by-default profiling. Although the early

over-subscription initially transfers more data than is required, unsubscribed-by-default

profiling incurs stalls due to remote access on first touch similar to the Unified Memory

model, and hence is more expensive. To implement the subscribed-by-default policy, our

GPS implementation adds architectural support for sharer tracking (see Section 4.5). This

information then feeds into the subscription tracking mechanism used to orchestrate the

inter-GPU communication.

It is important to note that for both mechanisms the subscriptions are hints to GPS

and are not functional requirements for correct application execution. In other words, if a

GPU issues a load to a page to which it is not a subscriber, it does not fault; the hardware

simply issues the load remotely to one of the subscribers. Going to a remote GPU imposes a

performance penalty, but does not break functional correctness.
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4.3.3 The GPS address space

To enable programmers to incorporate GPS features into their applications, GPS provi-

sions the GPS address space, which is an extension of the conventional GPU virtual address

space. As shown in Figure 4.6, all allocations made in the GPS address space have local

replicas in all subscribing GPUs’ physical memories.

Loads and stores are issued to GPS pages in exactly the same way as they are to

normal pages, with the same syntax, although the underlying behavior is different. GPS’

architectural enhancements intercept each store and forward a copy to each subscriber’s

local replica. Loads to GPS pages are also intercepted, but are not duplicated. Instead,

they are issued to the replica in the issuing GPU’s local memory, and can therefore be

performed at full local bandwidth and without consuming interconnect bandwidth. In the

corner case where the issuing GPU is not a subscriber to that page (e.g., because of an

incorrect subscription hint), the load is issued remotely to one of the subscribers. This design

offers GPS a significant advantage over existing multi-GPU programming frameworks: a

programmer can integrate GPS into their workloads with only minor changes for allocation

and subscription management and need not modify GPU kernels written for UM, except to

apply performance tuning.
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4.3.4 Aggressive coalescing and functional correctness

While publish-subscribe models have been proposed in the past, a key innovation of

GPS is the way it exploits the weakness of the GPU memory consistency model described

in Section 4.2.4. In particular, GPS performs aggressive coalescing of stores to GPS pages

before those stores are forwarded to other GPUs, as described below.

Coalescing weak writes and cta- and gpu-scoped strong writes: As described in

Section 4.2.4, the GPU memory model only requires weak writes to be made visible to other

threads after the next synchronization operation with a scope that includes those threads.

GPS uses this delayed visibility requirement to aggressively coalesce weak stores if their

addresses fall within the same cache line. Stores need not be consecutive to get coalesced, as

the GPU memory model allows store-store reordering as long as there is no synchronization

or same-address relationship between the stores. This decreases the data transferred across

the interconnect and saving valuable inter-GPU bandwidth. The coalescer must be flushed

only upon sys-scoped synchronization (e.g., memory fences), including the implicit release

operation at the end of every grid.

The GPU memory model also does not require cache coherence, i.e., a consistent store

visibility order, unless stores are from the same thread or some form of synchronization is

used. While it is possible for GPS stores broadcast from different GPUs to the same address

to cross each other in flight and therefore arrive at different consumer GPUs in different

orders, this is also not a violation of the memory model. Weak stores performed by different

GPUs to the same address simultaneously without synchronization are racy, and therefore,

no ordering guarantees need to be maintained. As long as proper synchronization is being

used, weak writes will only be sent to a particular address from one GPU at a time, and

point-to-point ordering will ensure that all consumer GPUs see those stores arriving in the

same order. In this way, GPS maintains all of the required memory ordering behavior.

Strong cta-scoped and gpu-scoped writes behave similarly: they must be made visible

to threads outside of the CTA or GPU, respectively, only after a synchronization operation
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with a scope that includes those other threads. Likewise, they can be multicast without

concern about memory ordering for the same reason that weak writes can. GPS uses this

delayed visibility requirement to aggressively coalesce strong stores with cta or gpu scope

as well.

sys-scoped accesses: These writes are intended for synchronization and must be kept

coherent across all GPUs. Therefore, GPS neither coalesces nor broadcasts such writes,

but instead simply handles them as traditional GPUs do. Specifically, all sys-scoped

accesses are sent to a single point of coherence and performed there. Typically, the number

of sys-scoped operations in programs is low, as they are only used when grids launched

concurrently on multiple GPUs need to explicitly synchronize through memory. Hence, the

cost of not coalescing system-scoped strong stores is minimal. Further discussion of the

handling of sys-scoped writes in our GPS implementation is described in Section 4.5.3.

The design choices described above ensure that GPS can deliver consistent performance

gains without breaking backwards compatibility with the GPU programming model or

memory consistency model. This compatibility enables developers to easily integrate GPS

into their applications with minimal code or conceptual change.

4.4 GPS Programming Interface

We next describe the programming interface that an application developer uses to

leverage GPS features. We seek to develop a minimal, simple programming interface to

ease the integration of GPS into existing multi-GPU applications. GPS API functions are

implemented in the GPU driver, similar to the existing CUDA API. Listing IV.1 shows

sample code.

Memory allocation and release: GPS provides the cudaMallocGPS() API call, a

drop-in replacement for the baseline CUDA cudaMalloc() (for GPU-pinned memory)

or cudaMallocManaged() (for Unified Memory) APIs, to allocate pages within the

GPS address space. This API allocates memory in the GPS virtual address space and backs
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__global__ void mvmul(float* invec, float* outvec, ...) {
...
// Stores to outvec in the GPS address space are
// forwarded to the replicas at each subscriber GPU
for(int i=0; i<mat_dim; i++)
outvec[tid] += mat[tid*mat_dim+i] * invec[i];

}
int main(...) {
// enable GPS for mat, vec1, and vec2
cudaMallocGPS(&mat, mat_dim*mat_dim_size);
cudaMallocGPS(&vec1, mat_dim_size);
cudaMallocGPS(&vec2, mat_dim_size);
cudaMemset(vec2, 0, mat_dim_size);
for(int iter=0; iter<MAX_ITER; iter++) {
// Automatic profiling: all GPUs are tentatively
// subscribed to all GPS pages at the start
if (iter==0) cuGPSTrackingStart();
for(int device=0; device<num_devices; device++) {
cudaSetDevice(device);
mvmul<<<num_blocks, num_threads, stream[device]>>>(

mat, vec1, vec2, ...);
mvmul<<<num_blocks, num_threads, stream[device]>>>(

mat, vec2, vec1, ...);
}
// GPUs are unsubscribed from pages they did not touch
if (iter==0) cuGPSTrackingStop();

}

Listing IV.1: A sample GPS application. GPS requires code changes only for GPS allocation and
tracking as highlighted in yellow.

it with physical memory in at least one GPU. At allocation, the programmer can pass an

optional manual parameter to indicate subscriptions will be managed explicitly for the

region. Otherwise, GPS performs automatic subscription management. GPS re-purposes

the existing cudaFree() function to release a GPS memory region. Because the driver

knows the status of all GPU memory pages, no new API is needed for returning GPS pages

to the GPUs’ free memory pool.

Manual subscription: To allow expert programmers to explicitly manage subscriptions,

GPS overloads the existing cuMemAdvise() API for providing hints to UM with two ad-

ditional hints to perform manual subscription and unsubscription. Specifically, GPS uses the

new flag enums CU MEM ADVISE GPS SUBSCRIBE and CU MEM ADVISE GPS UNSUBSCRIBE

for subscription and unsubscription, respectively. Upon subscription, GPS backs the region
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with physical memory on the specified GPU. When a programmer unsubscribes a GPU from

a GPS region, GPS removes the GPU from the set of subscribers for that region and frees

the corresponding physical memory. GPS ensures that there is at least one subscriber to a

GPS region and will return an error on attempts to unsubscribe the last subscriber, leaving

the allocation in place.

Automatic subscription and profiling phase: As described in Section 4.3.2, the au-

tomatic subscription mechanism comprises a hardware profiling phase during which the

mechanism observes application access patterns and determines a set of subscriptions. This

profiling phase requires the user to demarcate the start and end of the profiling period using

two new APIs cuGPSTrackingStart() and cuGPSTrackingStop(), which are

similar to the existing CUDA calls cuProfilerStart() and cuProfilerStop().

GPS automatically updates subscriptions at the end of the profiling phase; a GPU re-

mains subscribed to a page if and only if it accessed the page during profiling. Thus,

upon receiving cuGPSTrackingStop(), GPS invokes the API cuMemAdvise(...,

CU MEM ADVISE GPS UNSUBSCRIBE) to unsubscribe GPUs from any page they did

not access during profiling. (Recall that a GPU may still access a page to which it is not

subscribed, but such accesses will be performed remotely at reduced performance; hence,

profiling need not be exact to maintain correctness).

4.5 Architectural Support for GPS

We now describe one possible GPS hardware implementation that extends a generic

GPU design, such as NVIDIA’s recent Volta GPUs. Our hardware proposal comprises two

major components: First, it requires one bit in the GPU page table entry (PTE), the GPS

bit, to indicate whether a virtual memory page is a GPS page (i.e., potentially replicated).

Second, it requires a new hardware unit to propagate writes to GPUs that have subscribed to

particular pages.
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4.5.1 GPS memory operations

There are four basic memory operations that GPS must support.

Conventional loads and stores: GPU loads and stores to non-GPS pages (virtual

addresses for which the GPS bit is not set in the PTE) proceed as they do on conventional

GPUs, through the existing GPU TLB and cache hierarchy to either local or remote physical

addresses.

GPS loads: Figure 4.7 shows the common case paths taken by writes and reads to GPS

pages. For loads issued to the GPS address space by a GPU that is a subscriber to the page,

the conventional GPU page table is configured at the time of subscription to translate the

virtual address to the physical address of the local replica. GPS loads thus follow the same

path as conventional loads to local memory, as shown by R1, R2, R3 in Figure 4.7. In the

uncommon case, if a GPU is not subscribed to this particular page, either the load forwards

a value from the remote write queue (Section 4.5.2) if there is a hit, or it issues remotely to

one of the subscribers.

GPS stores: Stores to GPS pages initially proceed as normal stores, as shown by W1

and W2 in Figure 4.7. When a thread issues a store to an address whose GPS bit is set in the

conventional TLB, and for which there is a local replica, the write operation is forwarded to

the local replica using this translation (W4), ensuring that subsequent local reads from the

same GPU thread will observe the new write, a requirement of the existing GPU memory

model. In addition, whether or not there is a local replica, the virtually addressed write is

also forwarded to the GPS units for possible replication to remote subscribers (W3, W5,

W6).

4.5.2 GPS hardware units and extensions

Page table support: Our GPS implementation modifies the baseline GPU page table

entries (PTEs) to re-purpose a single currently unused bit (of which there are many [116])

to indicate whether a given page is a GPS page. When this bit is set, the virtual address is
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Figure 4.7: Modifications to the GPU hardware needed for GPS provisioning. Alternate design
choice explored in Section 4.5.3.

GPS-enabled and stores to the page will be propagated to the GPS units described below.

The baseline GPU virtual memory system remains unchanged aside from this extension.

Our GPS support also introduces a new secondary page table, the GPS page table,

for tracking multiple physical mappings that can coexist for a given virtual address when

multiple GPUs subscribe to a page. This limited page table for the GPS address space is a

variant of a traditional 5-level hierarchical page table with very wide leaf PTEs. Importantly,

the GPS page table lies off of the critical path for memory operations, as it is used only

for remote writes triggered by writes to GPS pages. These remote writes are already being

aggressively coalesced, and so the additional latency of the GPS address translation unit

can either overlap with the coalescing period, and/or will add just a small additional latency

beyond what is already being added. By design, these writes are not required to become

visible until the next synchronization boundary anyway, so they are not latency-sensitive.

Therefore, the latencies imposed by the address translation unit are not a critical factor, even
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under TLB misses.

Each GPS-PTE contains the physical page addresses of all the remote subscribers to

that page, as shown in Figure 4.7. The GPS-PTE is sized at GPU initialization based on the

number of GPUs in the system. With 64KB pages, for a Virtual Page Number (VPN) size

of 33 bits and Physical Page Number (PPN) size of 31 bits [116], for a 4 GPU system, the

minimum GPS-PTE entry size is 126 bits.

We choose to allocate memory in the GPS address space using 64KB pages for two

reasons. First, the negative impact of false sharing due to large pages is multiplied due to

GPS’ replication of remote stores. Second, the GPU’s conventional TLB is already sized to

provide full coverage of the entire VA range [127]. As discussed later in Section 4.7.3, the

GPS address translation unit requires a surprisingly small translation capacity even with

64KB pages. Therefore, neither TLB lies on the execution’s critical path.

Coalescing of remote writes: If a store’s translation information indicates it is to a

GPS-enabled address, then the GPS write proceeds to the remote write queue (W3). This

queue is fully-associative and virtually addressed at cache block granularity. The queue

coalesces all writes to the same cache block (unless they are sys-scoped) and buffers them

until they are drained to remote GPU memory. This simple optimization results in substantial

inter-GPU bandwidth savings for many applications, yet maintains weak memory model

compatibility.

Whenever the occupancy of the write combining buffer reaches a high watermark,

it seeks to drain the least recently added entry to the remote destinations. We set this

high watermark to one less than the capacity of the buffer in our evaluation, to maximize

coalescing opportunity. On draining, the flushed entry moves to the GPS address translation

unit.

If the buffers in the address translation unit are full, it back-pressures execution. We

report on stalls due to this back-pressure later in our evaluation. In our default configuration

with 64 entries, the GPS-write buffer requires 8.5KB of SRAM storage. The remote write
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queue unit must fully drain at synchronization points.

GPS address translation: When a GPS store reaches the GPS address translation unit

(W5), it looks up translation information cached from the GPS page table in its internal,

wide GPS-TLB. Much like conventional TLB misses, GPS-TLB misses trigger a hardware

page walk that fetches a GPS-PTE entry containing the physical addresses for all subscribers.

Once translated, the GPS address translation unit sends a duplicate copy of the store for

each subscriber to the inter-GPU interconnect (W6). The GPS address translation unit also

drains at synchronization points.

Access tracking unit: To optimize subscription management, GPS employs a dynamic

mechanism that typically begins by subscribing all GPUs to the entirety of GPS allocations

at the beginning of execution. As discussed in Section 4.4, GPS tracks the access patterns

during a profiling phase, after which it unsubscribes each GPU from pages they did not

access.

The GPS access tracking unit provides the hardware support for runtime subscription

profiling. It maintains a bitmap in DRAM with one bit per page in the GPS address space.

Misses at the last level conventional GPU TLBs to pages in the GPS virtual address space

are forwarded to the access tracking unit, which sets the bit corresponding to the page (as

shown by T1 in Figure 4.7). As TLB misses are infrequent, yet cover all pages accessed

by the GPU, the bandwidth required to maintain this bitmap is low (typically only 1.4

TLB misses per thousand cycles [127]); tracking a 32GB virtual address range, the bitmap

requires 64KB of on-chip memory which is smaller than the current GPU L1 cache size.

The total area and energy consumed by these hardware extensions are negligible relative to

the GPU SoC.

4.5.3 Discussion

Coalescing in the L2 cache: An alternative implementation strategy for GPS is to

reuse the GPU’s L2 cache to implement the remote write queue, reserving a small number
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of L2 cache lines for the GPS write queue rather than provisioning a dedicated structure.

The paths taken by conventional and GPS accesses remain the same as in the dedicated

write queue design.

Given that the GPS remote write queue amounts to only a few kilobytes of state and the

L2 size is megabytes (6MB in Volta GPUs and 40MB in Ampere GPUs), cache capacity

impact is negligible. Nevertheless, to isolate the impact of the GPS remote write queue

from cache capacity reduction effects, we choose to implement a dedicated remote write

queue in our evaluation.

GPS remote write queue addressing: Our GPS implementation assumes the remote

write queue is virtually addressed, irrespective of whether it is maintained as a dedicated

SRAM structure or as specially marked and reserved cache lines in L2. If GPS were to

perform translation prior to the GPS write queue, a remote store would require one entry

per subscribing GPU (one per remote physical address); performing translation as the stores

are drained to the interconnect conserves space in the write queue.

Handling sys-scoped writes: Strong sys-scoped writes must be kept coherent across

all GPUs. Our GPS implementation handles sys-scoped writes in the same way that

UM handles writes to pages annotated with read-mostly cudaMemAdvise hints. Upon

detection of a sys-scoped store to a GPS page, the access faults, all in-flight accesses to the

page are flushed, and the page is collapsed to a single copy and demoted to a conventional

page (i.e., its GPS bit is cleared). From this point on, accesses to the page are all issued to the

GPU hosting the single physical copy. This approach ensures coherence and same-address

ordering for this access and all future accesses to the page.

As mentioned in Section 4.3.4, sys-scoped accesses are rare, and hence the impact on

typical programs is minimal. The user is expected to explicitly opt pages holding synchro-

nization variables out of GPS (i.e., use cudaMalloc instead of cudaMallocGPS). If

the user provides incorrect hints, then just as with UM, there will be a performance penalty.

Nevertheless, the execution remains functionally correct.
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4.6 Experimental Methodology

To evaluate the benefits of GPS, we employ a trace based simulation methodology

as described below. We compare its performance against many multi-GPU programming

paradigms that exist today.

4.6.1 Simulation setup

We model GPS using a trace-based multi-GPU simulation methodology. We simulate

GPS in the context of a system with four NVIDIA Volta-like GPUs connected using PCIe in

a tree topology. The design parameters are shown in Table 4.1. We run our application suite

on a real multi-GPU system comprised of four NVIDIA V100 GPUs to extract memory

access traces for all loads/stores. Our tracing infrastructure imposes only a 1.2% slowdown

relative to native execution; as such, the time delta between two trace entries is a good

approximation of the computation time between two memory operations. We use these time

deltas to properly pace the injection rate of memory transactions into our simulation model

while accounting for back-pressure from stalls.

We model the GPS memory system and GPU interconnect as depicted in Figure 4.7

using a detailed interconnect model derived from BookSim [60]. We calibrate the link and

switch parameters to match several PCIe generations. When strong scaling is bound by

inter-GPU communication, hardware profiling shows the interconnect becomes the primary

performance bottleneck. Hence a cycle-accurate interconnect model along with a trace-based

GPU model that accounts for back-pressure effects from interconnect bandwidth utilization

can capture the key performance impacts of the GPS design.

We evaluate a suite of applications from various domains, ranging from scientific

computation to graph algorithms, and include several iterative applications from the Tartan

benchmark suite [77]. These applications were chosen as test cases for the GPS concept

because they all exhibit poor strong scaling in their native multi-GPU versions on real

systems. All our application variants are written in CUDA and compiled using CUDA 10.
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GPU Parameters
Cache block size 128 bytes
Global memory 16 GB

Streaming multiprocessors (SM) 80
CUDA cores/SM 64

Memory bus width 4096-bit
L2 Cache size 6 MB

Warp size 32
Maximum threads per SM 2048
Maximum threads per CTA 1024

GPS Structures
Remote write queue 64 entries

Remote write queue entry size 135 bytes
TLB 4-way set associative

TLB hit latency 20 cycles
TLB miss latency 2 DRAM accesses

TLB size 32 entries
Virtual address 49 bits

Physical address 47 bits

Table 4.1: Simulation parameters, based on NVIDIA V100 GPUs.

4.6.2 Multi-GPU programming paradigms compared

To demonstrate the ability of GPS to improve multi-GPU scalability, we compare it

with several contemporary multi-GPU programming paradigms; namely, unified memory,

peer-to-peer loads, and inter-kernel memcpy, as discussed in Section 4.3.1. We simulate

UM by modeling a 50 microsecond per-SM stall each time a 64KB page migration must

be performed, following the conventions of NVIDIA’s UM implementation [175]. We also

implement two versions of GPS:

GPS with automatic subscription management: We modify applications to enable

GPS and automatic subscription as discussed in Section 4.4. In Section 4.7 we will discuss

the effectiveness of the load tracking hardware at reducing over-subscription to minimize

inter-GPU traffic.

Explicit broadcast (EB): This model is a variation of the GPS paradigm wherein every

store to the GPS address space is issued to all GPUs in the system. It is an overzealous
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implementation of GPS, without the ability to unsubscribe from portions of the address

space. Whereas EB offers some advantage over the memcpy baseline because it more easily

overlaps computation and communication, it often transfers far more data than is necessary.

4.7 Experimental Results

The GPS system relies on fine-grain, proactive, data transfers to remote GPUs during

kernel execution to optimize GPU locality. The subscription management mechanism

ensures that only the required data is transferred, resulting in interconnect bandwidth
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savings. In this section, we first analyze the benefits of the subscription tracking mechanism

and then present performance results across different interconnect generations.

4.7.1 Benefits of Subscription Tracking

Figure 4.8a shows the percentage of application pages that are read-write versus read-

only in our workload suite. Assuming all read-write pages are initially allocated and

subscribed in the GPS space by all four GPUs, using the automatic subscription scheme,

Figure 4.8b shows the percentage of GPS pages that have 1–4 subscribers at the end of

program execution. Whereas some applications do perform all-to-all transfers for nearly

all pages in the GPS space (Tartan - Hit), other applications (like Jacobi) require only one

subscriber for most pages because of how the algorithm performs boundary exchange of

halos. The variation in these applications’ subscription sets supports the idea that program-

mer efficiency is maximized by allowing promiscuous subscription to the GPS space, with

automatic hardware unsubscription when the programmer cannot easily determine the ideal

subscription set for each GPU.

Figure 4.9 compares the total data moved over the GPU interconnect for both GPS and
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the explicit broadcast implementation, normalized to the inter-kernel memcpy variant of our

workloads. Generally, employing explicit broadcast causes large increases in interconnect

traffic over manual memcpy because data is often needlessly replicated to GPUs that never

consume these updates. So, while explicit broadcast enables the overlap of interconnect

transfers with computation, this additional data overwhelms the available bandwidth and

degrades performance.

Compared to explicit broadcast, the GPS design drastically reduces the total data

transferred over the interconnect via page unsubscription in most cases. However, compared

to the memcpy paradigm, there may be improvement or degradation in the amount of data

that is transferred across the interconnect. We observe improvements when GPS allows

small granularity updates to occur within a page, in contrast to bulk DMA transfers. When

degradation occurs, it is typically due to the GPS write combining buffer failing to coalesce

multiple writes to the same block effectively, but if they do not saturate the interconnect they

will not typically stall GPU execution.

4.7.2 Multi-GPU performance

Figure 4.10 shows the multi-GPU application speedup over a single GPU for the five

different programming paradigms described in Section 4.6. In addition to these application

variants, we provide a compute-only comparison, which is the upper bound in achievable

multi-GPU performance if 100% of data were always accessible locally at each GPU (i.e., it

ignores all transfer costs).

The unified memory paradigm is not effective for multi-GPU programming, despite

having attractive programmability properties, due to the cost of page faults necessary to

migrate data between GPUs. While work is ongoing [11, 175], it is unclear if executing

page faults on the GPU’s critical load path in multi-GPU systems will ever scale well.

Using programmer-directed memcpy to optimize locality is the most common program-

ming technique today. Memcpy performs well for Tartan-Diffusion, but on average does not
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achieve any improvement over a well-optimized single GPU implementation. This finding

is significant because it demonstrates that it is not just possible, but likely that multi-GPU

parallelization will result in no strong scaling speedup using this technique.

Peer-to-peer loads to remote GPUs perform slightly better than unified memory, with

similarly simple programming semantics, but again many applications fail to achieve any

speedup over the single-GPU implementations. Finally, explicit broadcast suffers from poor

performance primarily due to interconnect bottlenecks, demonstrating the significance of

subscription management mechanism of GPS.

The GPS methodology ensures a good overlap of communication and compute; at the

same time decreasing the unwanted stores to GPUs that do not require a given page. As a

result, GPS outperforms the next best paradigm by 3.3×, with an overall average speedup

of 2.5× (out of 3.3× possible) over the single-GPU programs.

The GPS paradigm does not achieve maximum theoretical performance due to three

primary issues. First, even though a GPU may subscribe to a page, it may only require

updates to a sub-portion of the (64KB) page, yet the interconnect will still transmit all

updates to this page. Second, GPUs typically issue interconnect transfers at cache line

granularity. We observe that for many HPC applications, not all bytes within a cache block

are updated, resulting in the transfer of some unneeded bytes. Third, although the write
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combining buffer coalesces stores to the same cache block, if the stores are temporally

distant, the prior store might have already been flushed from the write combining buffer

before the subsequent store to the same cache block arrives.

Figure 4.11 provides the geometric mean performance of each programming model

shown in Figure 4.10, while increasing the throughput of the inter-GPU interconnect. Our

results show that despite expected dramatic improvements in PCIe (PCIe 6.0 projected to be

up to 128GB/s) and other inter-GPU interconnects [6], good strong scaling is unlikely to

be achieved using traditional GPU multi-programming paradigms. Conversely, as GPUs

move to higher performance interconnects in the future, GPS will approach the limits of

performance scalability by making efficient use of inter-GPU bandwidth.

4.7.3 Quantifying GPS design parameters

Sizing the GPS remote write queue properly is critical to overall GPS system perfor-

mance. An ideal queue contains enough entries to exploit applications’ temporal locality but

is not so large that the associative lookup operations become overly expensive. Figure 4.12

studies the sensitivity of buffer size versus achieved performance. With just 64 buffer entries

all applications achieve near peak performance. Further performance is difficult to capture

due to random writes that have neither temporal nor spatial locality.
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In virtual memory systems, the translation information for a virtual address will typically

be fetched only once (upon the first request to the page) and subsequent accesses to the page

will result TLB hits. The GPS-TLB is no exception and it is important to size the GPS-TLB

appropriately to capture locality in the GPS space. GPUs now have thousands of entries in

their last level TLB [99] and we initially expected the GPS-TLB to require a similar number

of entries. However, Figure 4.13 shows that the GPS-TLB hit rate approaches 100% at

just 32 entries. We find that because the GPS-TLB only services a fraction of the entire

GPU memory space (GPS-allocated heap pages) and it does not service read requests to the

GPS address space (they are typically serviced from the normal local memory system) the

GPS-TLB is under substantially less pressure than the general-purpose GPU TLBs, and can

thus be much smaller.

4.8 Related Work

Prior work [7, 89, 171, 17, 11, 68] has explored the use of various hardware and

software mechanisms to improve performance in multi-GPU systems. Our work explores

employing the publish-subscribe paradigm for strong scaling in multi-GPU systems. Prior

work [150, 129, 130] has also proposed different mechanisms for inter-GPU coherence.

GPS does not implement an expensive coherence protocol because it is not a requirement

for GPU memory model compatibility.

Several teams have studied prefetching in the context of single GPUs [139, 72, 73] but

multi-GPU systems pose new challenges due to concurrent accesses and the high cost of

GPU TLB shootdowns to migrate pages among the GPUs. NVIDIA’s Unified Memory

allows programmers to explicitly provide data placement hints [109] to improve locality

through programmer controlled prefetching and decrease the rate of page migration in

multi-GPU systems. It also provides a mechanism to allow read-only page duplication

among GPUs, but upon any write to the page, it must collapse back to a single GPU. In

future work, it could be possible to improve UM performance by layering it on top of a
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GPS-like system.

The publish-subscribe communication paradigm for distributed interaction has been

explored by prior work [40, 2, 9, 10]. Hill et al. [50] propose a Check-In/Check-out model

for shared memory machines. The more traditional alternative to publish-subscribe support

is NUMA memory management. Dashti et al. [32] develop and implement a memory

placement algorithm in Linux to address traffic congestion in modern NUMA systems.

Many other works [173, 1, 75, 128, 38] perform NUMA-aware optimizations to improve

performance and hardware-based peer caching has been explored but is yet to be adopted by

GPU vendors [83, 126, 31, 143, 12]. Recently DRAM-caches for multi-node systems [28]

have been proposed as a way to achieve large capacity advantages.

Prior work has also explored scoped synchronization for memory models [52, 119, 161,

42, 49, 84]. Non-scoped GPU memory models are simpler [142], but do not permit the same

type of coalescing as GPS, which makes explicit use of scopes.
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4.9 Conclusion

In this work we have proposed and evaluated GPS, a set of architectural enhancements to

improve strong scaling in multi-GPU systems. GPS automatically tracks the subscribers to

each page of memory and proactively broadcasts fine-grained stores to all subscribers. This

enables the subscribers to read data from local memory at high bandwidth. GPS provides

these advantages while retaining compatibility with the conventional GPU programming

and memory models. Evaluated on a model of 4 NVIDIA V100 GPUs connected by varying

interconnect architectures, GPS offers a speedup of up to 3.8× (2.5× on average) over

1 GPU and performs 3.3× better than the next best available multi-GPU programming

paradigm.

Strong scaling in multi-GPU systems is a challenging task. This work has shown that

building blocks such as GPS can successfully enable GPU programmers to perform inter-

GPU transfers efficiently with minimal programming overhead. We hope this work inspires

a new body of research on differentiating the multi-GPU programming paradigm from

single GPU programming semantics to help extract the best possible performance out of

next generation multi-GPU systems.
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CHAPTER V

FinePack: Improving the Efficiency of Fine-Grained

Transfers in Multi-GPU Systems
*

5.1 Introduction

As demand for compute throughput continues to skyrocket, GPU vendors continue

to deliver larger systems comprising more GPUs, more memory bandwidth, and larger

interconnection networks. Many problems in the high performance computing and deep

learning (DL) domains show excellent weak scaling characteristics and naturally enjoy

continued performance scaling as these systems grow. Recently, tasks such as training DL

networks with billions of parameters have been scaled to systems with thousands of GPUs

thanks to continuous development effort among the GPU computing industry [59, 54].

However, strong scaling problems across increasing numbers of GPUs are often accom-

panied by a super-linear increase in inter-GPU communication. As a result, attempts to

strong-scale application performance typically become limited by the inter-GPU intercon-

nect, even at low GPU counts. The strong scaling challenge is exacerbated by the fact that

even today’s best GPU-to-GPU interconnects deliver bandwidth that is an order of magni-

tude smaller than the GPU’s locally attached memory bandwidth [115, 76]. This inter-GPU

bottleneck is so severe that many multi-GPU programs exhibit slowdowns when compared

*This chapter based on [96]
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to their single GPU counterparts even after tedious manual optimization [76, 97, 95].

To improve multi-GPU strong scaling performance, multi-GPU programming models

and architectural enhancement have been an area of active research and development over the

past few years [97, 95, 11, 171]. Recent work has shown the utility of programming models

built around proactive peer-to-peer stores: where individual store operations issued by the

compute cores on one GPU are routed directly to the memory of a remote GPU [97, 95].

Proactive peer-to-peer stores are efficient, as they do not stall the issuing GPU core, and

provide a natural overlap of compute and communication, which is necessary to keep GPU

compute units fully occupied. They also maintain a familiar shared-memory programming

model and fall within the standard GPU memory consistency model, thus maintaining good

programmability when porting applications from one to many GPUs.

However peer-to-peer (P2P) stores result in inefficient small-grain transfers over the

GPU-interconnect. We profiled five applications (described in Section 5.4) and found that on

average over 75% of inter-GPU transfers initiated by P2P stores carry a payload smaller than

32B, drastically smaller than the typical granularity of DMA operations in GPU programs.

Figure 5.1 shows the calculated goodput (number of useful data bytes divided by total
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bytes sent) of two common GPU interconnect protocols across a range of transfer sizes.

Small P2P issued stores that traverse the inter-GPU interconnect achieve poor interconnect

efficiency compared to multi-KB DMA transfers. Due to framing and link-level interconnect

protocol overheads, 32B transfers are roughly half as efficient as transfers of 128B or larger.

This efficiency loss is so dramatic that even though P2P-store based application design can

improve communication and compute overlap, this improvement is typically more than

offset by the decrease in interconnect performance, resulting in a net performance loss. Thus,

an ideal scalable multi-GPU system must both support a programming model that enables

overlap of compute and communication and achieve high interconnect efficiency for both

small and large transfers alike.

In this paper, we propose FINEPACK, a set of I/O interconnect and GPU architecture

enhancements that improve interconnect efficiency of fine-grained peer-to-peer store opera-

tions. By exploiting the GPUs’ weak memory model and the application’s spatiotemporal

locality, we show that it is possible to dramatically improve small transfer efficiency without

requiring any changes to the software interface. Fundamentally, FINEPACK temporarily

buffers peer-to-peer stores before they are issued over the interconnect, aggregates multi-

ple stores between the same source-destination GPU pair and efficiently compresses and

repacketizes the stores using a base+offset compression scheme to minimize framing and

link-level protocol overhead. On the receiving side, the write operations are disaggregated

before being forwarded to the target GPU’s memory system. Both the sender and receiver

GPU memory systems remain unmodified; only the interface to the interconnect is changed.

Through coalescing and compression, FINEPACK drastically decreases both framing and

link-level protocol overheads of small writes and the wasted bandwidth arising from repeated

issue of remote stores to the same address.

This work advances state of the art in multi-GPU systems and interconnects with the

following contributions:

• We identify the need for efficient small granularity stores and show that existing and
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emerging interconnects do not handle them efficiently.

• We propose an extension to the link-level interconnect protocol to significantly im-

prove small store efficiency while remaining within the framework of the existing

PCIe protocol. Our approach can also be applied to other interconnect protocols.

• We design the GPU architectural enhancements to make use of FINEPACK while

remaining transparent to the existing GPU software interface and memory system.

• Through simulation we show that, on a switched PCIe 4.0 interconnect with 4 GPUs,

FINEPACK improves interconnect efficiency by 5.1× while providing an average

strong scaling performance of over a single GPU capturing 77 % of the available

opportunity.

5.2 Background and Motivation

Multi-GPU programming models based on peer-to-peer stores have seen renewed interest

due to improvements in PCIe bandwidth and growing adoption of NVIDIA’s higher speed

NVLink interconnect. Peer-to-peer transfers perform loads/stores directly to the physical

memories of the destination GPUs by sending requests and responses across the inter-GPU

interconnection network. The GPU’s many-threaded architecture has the ability to typically

hide the local read memory latency, and thereby to prevent it from causing processor bubbles.

However, prior work has shown that because of the lower bandwidth and higher latency of a

read from peer GPU memory, performing loads directly from other GPU’s memories does

not result in good multi-GPU performance [97]. Conversely, the approach of using P2P

stores to push data into remote GPUs’ memory possesses a natural ability to overlap compute

and communication with minimal programmer effort, since the data is naturally propagated

to the eventual consumer as it is generated. Since stores are used rather than loads, this

communication takes place off of the critical path for most data. When the consumer is

ready, the data is already available locally within the target GPU’s high bandwidth memory.
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Programming models based on P2P stores have emerged because other common multi-

GPU programming models all have significant drawbacks. For example, using traditional

bulk memory transfers between GPUs using their DMA engines results in non-overlapping

phases of compute and communication. While common because they are easy to reason

about in the simple case, DMA based transfers that achieve high performance require com-

plex double buffering of data, use of asynchronous concurrent programming streams within

the GPU, and can still leave communication time among GPUs exposed without sufficient

computation to execute concurrently as the number of GPUs communicating in a system

grows. The second common GPU programming methodology, Unified Memory (UM),

provides a single memory address space accessible from any processor in the system [48],

much like the model when using P2P stores. However, UM implements this abstraction

using software page fault-based and/or API hint-based page migration. Prior work has

shown that despite many optimizations, the cost of reactively migrating pages to a GPU in

an attempt to optimize locality is too inefficient to be utilized in multi-GPU system [95, 1].

5.2.1 Understanding GPU Interconnect Inefficiencies

If P2P stores are an ideal programming model for multi-GPUs but have not yet been

adopted, we must understand what factors are limiting their performance within multi-GPU

system designs. Today, modern multi-GPU systems rely on interconnect technologies such as

PCI Express (PCIe) [163], NVLink [114], InfiniBand [120], Xe [121], or Infinity Fabric [14]

to network GPUs together. Other technologies continue to emerge such as Compute Express

Link (CXL) that extends PCIe with support for memory coherency among processors and

memory expansions [154]. Because of their early presence in the marketplace, PCIe and

NVLink are the predominant interconnects used for multi-GPU systems within a single node

today and InifiniBand with RDMA support is the most common multi-node interconnect.

When considering the properties and interaction of programming systems with the proto-

cols used for inter-GPU communication today, we can quantify the sources of interconnect
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Figure 5.2: Packet structure of two common GPU interconnects.

bandwidth inefficiency into four categories.

• Protocol overheads: Interconnects form network packets by combining the data

payload with protocol headers. These headers contain metadata to enable transaction

routing and provide different services such as flow control, QoS, reliability, etc. As

shown in Figure 5.2, because the header bytes in most packet formats are fixed, the

smaller the data payload, the worse the interconnect goodput (fraction of useful data

sent over the interconnect), as shown in Figure 5.1.

• Over-transfer of data: In situations where the programmer employs bulk DMA-

based transfers at the end of compute kernels and these kernels have performed sparse

updates to data structures, it is difficult for the programmer to identify the precise

subset of memory locations that were updated. Hence, the programmer may end up

transferring unwanted data, i.e., data that was not updated in the compute kernel and/or

not consumed at the target GPU. Moreover, DMA-based transfer are typically initiated

using software APIs which in many cases have to go through many software layers

(i.e. runtime, driver, etc.) resulting in additional overheads that become prohibitive

if the granularity of the data transfer is too small. Fine grained P2P stores implicitly

optimize these overheads by pushing only data that is written using hardware based

memory operations. However, they introduce a new problem of redundant transfer.
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• Redundant transfer of data: When a programmer performs data transfers via weak

peer-to-peer stores and these stores exhibit temporal locality, many writes to the data

may occur before a final value is produced. The value of the location is only known

to be final when the program reaches a synchronization barrier. Until the barrier,

sending multiple P2P stores to the same address is redundant and results in wasted

interconnect bandwidth. We will later show that this effect is as significant as the

protocol overhead when employing P2P writes in GPU systems and must be addressed

to achieve high interconnect efficiency.

• Data padding: In many interconnects, data is transferred on the wire in units known

as flits, which represent the amount of data transferred per flow-control unit. When the

total payload size is not a multiple of the native flit size the payload is often padded to

match the native flit size, resulting in additional wasted bandwidth. In this work, we

find this overhead is not one of the primary sources of inefficiency but recognize it

may need to be considered when optimizing other protocols with large flit sizes.

5.2.2 The Opportunity for Address Compression & Coalescing

GPU interconnect packets are formed as a result of stores that are destined for memory

physically located on a remote GPU. Each store from an individual GPU thread will range

from 1–8B. If there is good spatial and temporal locality, GPUs will naturally coalesce

memory accesses across a warp or wavefront of 32 threads into a single memory access of up

to 128B†. However, if no locality arises, either due to the lack of sufficient optimization on

the part of the programmer or due to the inherent nature of the problem itself (e.g., in graph

or sparse matrix algorithms), no coalescing can be performed, and accesses to remote GPUs

are sent over the interconnect with even smaller payloads of 32B or less. Since address

spaces today are commonly as large as 48–64b, it takes 6–8B of overhead to transfer a full

address along with each packet.

†These numbers come from NVIDIA GPUs, but other GPU architectures have similar characteristics.
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Figure 5.3: Spatial locality enables address compression by partitioning the address into base and
offset

This work makes the important observation that by examining the address stream egress-

ing a GPU to other individual GPUs, there is significant opportunity for both compressing

packet headers and addresses and reducing redundant writes before packets are sent out

over the interconnect. Figure 5.3 illustrates the basic premise on which FINEPACK is based.

When examining a stream of writes (egressing a single GPU that are destined for a single

remote GPU) we observe that these writes will not use the entire physical address space

present in the system because most applications will benefit from some amount of spatial

locality. This allows us combine multiple small writes (to different addresses) that have

redundant common address bits into a new base plus offset addressing scheme that com-

presses wasted bits, in addition to saving on the fixed packet overheads shown in Figure 5.2.

Further, should any of these writes be destined for the same address (or address range), the

GPU’s weak memory model allows even more efficient compression/coalescing by simply

overwriting the data locally before sending the packet out on the interconnect. Exploiting
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Figure 5.4: Average size of remote stores exiting the L1 cache for the P2P store paradigm.

these two properties with modest architectural modifications can allow fine grain P2P stores

to achieve network efficiency that rivals or exceeds that of bulk DMA memory copies

and overcome the primary limitations for adopting P2P stores as the preferred method for

achieving strong multi-GPU scaling.

5.3 FINEPACK Design

Figure 5.4 shows the fraction of inter-GPU transfers egressing the GPU’s L1 caches,

broken down by size of transfer. Despite intra-GPU coalescing of small writes occurring

within both the SM and L1 cache, many applications not optimized for bulk DMA transfer

often emit sub-128B communication. The goal of FINEPACK is to transfer fine-grained stores

across the interconnect more efficiently. It does this by compressing multiple individual

transfers into a single large transaction. As such, the FINEPACK design consists of two

primary components: extensions to the interconnect transaction layer to add a compressed

store operation and the microarchitecture that coalesces transactions in a network-efficient

manner. We describe these two components in turn below.
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5.3.1 FINEPACK Packet Structure

Figure 5.5 shows the FINEPACK packet structure embedded within a PCIe packet.

It is based on our insight that for stores belonging to the same source-destination pair,

most of the interconnect’s transaction-layer fields are (or can be made) identical without

changing the stores’ semantics. Thus, with a suitable mechanism to perform aggregation

at the sender and disaggregation at the receiver, the common header fields of many stores

need to be transmitted only once, thus saving precious interconnect bandwidth. In effect,

FINEPACK allows stores to share framing and transaction layer header fields across otherwise

independent stores.

The existing transaction layer protocol (TLP) header fields retain their original meanings

and are largely unchanged. However, the payload of the new transaction type now com-

prises multiple sub-packets concatenated within a single transaction for better interconnect

efficiency. Each sub-transaction contains a new header that encodes specifics of the sub-

packets that differ from the outer transaction, notably, a compressed address and size of the

sub-packets payload for the individual store.

Table 5.1 enumerates the fields in the outer PCIe TLP packet‡. Among the required

fields of the PCIe TLP, all fields except the address, data length, and byte enables can be

made common for stores with the same source and destination. We repurpose an unused

encoding in the type field to indicate the new FINEPACK transaction type. The address

field in the outer TLP packet signifies a base address for all FINEPACK sub-packets. The

length field now represents the cumulative length of the FINEPACK sub-packets (and can

be used, e.g., for buffer management). The first byte enable field is unused in a FINEPACK

transaction; however, since the PCIe length field is 4B-aligned, the last byte enable field is

used to specify the two least-significant bits of the total FINEPACK payload size.

Each FINEPACK sub-transaction header consists of an address component and data

length component. The address field represents an offset that is added to the base address in

‡We use PCIe as an example, but other interconnect transaction layers, such as NVLink, are similar.
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Figure 5.5: FINEPACK packet structure embedded within PCIe.

Bits Field Use in FINEPACK outer packet
10 Length Total length of FINEPACK payload
2 Attribute Standard PCIe meaning
1 Error/Poisoned Standard PCIe meaning
1 TLP Digest Standard PCIe meaning
3 Traffic Class Standard PCIe meaning
5 Type Encoding indicating FINEPACK
2 Format Standard PCIe meaning
4 First BE 0 (Not needed by FINEPACK)
4 Last BE Set relative to FINEPACK payload
8 Tag Standard PCIe meaning
16 Requester ID Standard PCIe meaning
62 Address FINEPACK payload base address
— Data FINEPACK payload

Table 5.1: PCIe transaction layer protocol (TLP) header fields, as interpreted for FINEPACK packets.
Most fields retain their standard meaning.

the outer TLP packet header. The length field describes the length of the inner transaction

payload. Although the PCIe header address and length fields are 4B-aligned, the FINEPACK

inner transaction format uses 1B-aligned address and length fields to more flexibly support

small writes. The four bits of sub-transaction header needed to capture 1B alignment are

denser than the eight bits required to propagate the first and last byte enable fields in each

sub-transaction header.

The number of bits reserved for addresses and lengths in the sub-transaction header
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format is a design parameter that can be adjusted for different manifestations of FINEPACK.

For the evaluation in this paper, we sweep the header size across different byte counts as

shown in Table 5.2. In each case, ten bits are reserved for the length field, and the remaining

bits are used as address offsets. As our results later confirm, 4–5 bytes for the sub-transaction

offset (corresponding to 4MB or 1GB of addressable range per sub-packet, respectively) is

often the sweet spot between having reasonable overhead per sub-transaction header but

still allowing significant addressable range within the boundaries of the outer transaction.

FINEPACK augmented PCIe implementations consumes buffers and credits in the same way

as a variable length memory write transaction are currently specified on PCIe.

5.3.2 FINEPACK Architectural Components

We now describe one possible FINEPACK hardware implementation that extends a

generic multi-GPU design. The overall architecture is shown in Figure 5.6. Our hardware

proposal comprises three major components. First is a remote write queue that collects

outgoing GPU stores at the GPU network egress port and buffers them in an attempt to

combine them into larger transactions. Second, there is a packetizer to re-packetize the

combined stores before sending them to the network using the extended TLP packet format

described in Section 5.3.1. Third, there is a de-packetizer at the destination GPU’s ingress

network port to break the aggregated transaction into individual stores before issuing them

to the target memory. But PCIe componentry in the system such as switches or the CPU’s

root complex (if transactions are routed through it) can remain unmodified. We describe

each FINEPACK component in turn below.

Remote Write Queue: The remote write queue is a dedicated SRAM structure log-

ically attached to the egress port of the GPU. The remote write queue collects outbound

store transactions destined for each GPU so that they can be coalesced into a single outer

FINEPACK transaction. Store transactions with addresses that fall within the address window,

determined by the address base and the range of address offset, are coalesced into FINEPACK
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Sub-transaction header bytes
2 3 4 5 6

Length field bits 10 10 10 10 10
Address field bits 6 14 22 30 38
Addressable range 64B 16KB 4MB 1GB 256GB

Table 5.2: The number of bytes used for sub-transaction headers is a tradeoff between more overhead
per sub-transaction header and more addressable range per outer transaction.
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Figure 5.6: FINEPACK architecture.

packets as long as the maximum remote queue size and the maximum PCIe payload size

are not exceeded. The queue is logically partitioned across the total number of destination

GPUs in the system so that packets targeting each GPU can be coalesced independently.

Within each partition, the SRAM is organized as a fully-associative structure indexed by

memory address at 128B granularity. Each entry holds an address tag, 128B of data, and a

byte-enable bit for each byte.

An available payload length register is initialized to the maximum payload size and

decremented for every store that gets added to the remote write queue. It keeps track of the

payload length of the packet to ensure it doesn’t exceed the length supported by the intercon-

nect. The first store to arrive at an empty remote write queue will allocate an entry, filling in

the address, data, and byte-enable bits. It will also set a base address register associated with

the targeted GPU to a value matching the upper ADDRLEN −OFFSET LEN bits of the

addresses of other valid entries, where ADDRLEN is the number of physical address bits in

the system, and OFFSET LEN is the number of bits in the offset field of the sub-transaction
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header (Table 5.2). Each subsequent store will then scan the associative structure to find any

matches, according to the following procedure:

1. If the incoming store finds an exact address match, it will overwrite any valid data

bits in the matching entry, and it will also update the byte-enables and the available

payload length register accordingly.

2. If the incoming store address does not match any existing entries, then it will check

the upper bits of its address against the base address register. If there is a mismatch,

then the incoming packet cannot be coalesced into the same FINEPACK transaction

as the currently queued packets due to insufficient sub-transaction header offset bits.

When this happens, the current contents of the write queue are flushed and passed to

the packetizer, and the incoming packet becomes the first store of a new FINEPACK

transaction.

3. If the incoming address matches the contents of the base address register, but does not

match any existing entry, then the incoming packet can create a new entry in the write

queue, assuming there is room and decrement the available payload length register by

the sub-transaction header plus the store size. If there is no room, then once again, the

contents of the queue are flushed to the packetizer, and the incoming store initiates

coalescing for a new FINEPACK transaction.

To ensure that the remote write queues buffer sufficient data to be able to target reaching the

PCIe maximum payload size of 4kB, the remote write queue is sized to 64 entries of 128B

each and 24kB total on a 4-GPU system (not counting tags or byte enables). This size can

be easily accommodated on a GPU where each L1 cache is already hundreds of KB.

The remote write queue must be flushed upon receiving a system-scoped release opera-

tion, such as a memory fence or the end of a kernel’s execution. In GPU memory consistency

model terminology, system scope refers to synchronization applied to all devices in the

system, and release operations refer to the synchronization performed by a producer when
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synchronizing its data with some other consumer. Loosely speaking, a GPU release oper-

ation generally requires the implementation to flush in-flight stores to the point at which

they become visible to all threads in the specified scope. As such, flushing the remote write

queue upon receiving a system-scoped release operation ensures that the FINEPACK scheme

remains compatible with the GPU memory consistency model.

To ensure same-address load-store ordering is maintained, an load operation to remote

memory with an address that matches a write in the packetizer must flush any matching

stores currently queued in the remote write queue. These stores can be flushed individually,

or load hits can trigger a flush of the remote write queue just as a synchronization operation

would. We did not evaluate this tradeoff further as, by design, our workloads use only

remote stores.

Packetizer: The packetizer receives a series of 128B byte-enabled remote write queue

entries and converts them into sub-packets in the FINEPACK format described in Sec-

tion 5.3.1. Each individual remote write queue entry may need to be converted into multiple

sub-packets if the enabled bytes are not contiguous, as the sub-transaction header does not

contain byte-enables. This set of sub-packets is then concatenated into the data payload of

the outer transaction and transferred to the interconnect.

In rare cases in which the pattern of writes produces sparse byte enables, the number of

sub-packets required to drain the write queue may exceed the outer packet payload capacity

(4KB on PCIe). In such cases, the packetizer splits the sub-packets across multiple outer

packets and transfers them independently. Such scenarios are possible, but did not arise in

our evaluations.

De-packetizer: When the FINEPACK packet reaches the destination GPU, the de-

packetizer de-aggregates the stores into individual memory transactions before sending them

to the target memory system. The de-packetizer simply modifies the address field of each

de-aggregated packet to add the offset from the sub-transaction header to the base address

from the main header. No other changes are needed to the GPU architecture.
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5.3.3 Discussion

Effect of small accesses on local memory bandwidth: We note that although FINEPACK

ensures reduced packetization overheads on the interconnect, the communication to and

from the GPU’s local memory still occurs as fine-grained transfers. In general, the GPU’s

last-level cache and HBM/DRAM have enough bandwidth to match or exceed the rate

at which stores can arrive from the interconnect. As such, the existence of fine-grained

transfers arriving at the target GPU’s local memory system does not further bottleneck the

FINEPACK system architecture.

Timeouts: The GPU’s weak memory consistency model does not require stores to

become visible to remote GPUs until system-scoped synchronization is performed [84].

Therefore, it is functionally correct for the remote write queue to buffer stores indefinitely

until a system-scoped synchronization is observed. It is also functionally correct to drain

the remote write queue at any time, for any reason. More aggressive flushing, e.g., after

some kind of inactivity timeout, will lower the end-to-end latency of store transmission,

and can avoid burstiness if the remote write queue is flushed with more stores buffered at

once. On the other hand, less-aggressive flushing will keep the coalescing window open

for longer, potentially leading to even better efficiency for packets sent over the network.

As any choice is functionally correct, the choice of when to drain the remote write queue is

therefore simply a knob that can be tuned as needed to achieve higher performance.

Applicability to read accesses: FINEPACK focuses on improving interconnect efficiency

for applications that adopt a peer-to-peer store programming model for communication. In

such applications, proactive data transfers via stores ensures that subsequent loads complete

locally without having to traverse the interconnect on the critical path. Since on-demand

loads stall the GPU threads issuing them, performing FINEPACK optimizations for loads will

exacerbate their latencies and can further harm application performance. Hence, FINEPACK

performs aggressive packing and coalescing only for store operations.

Base Addresses: As described in Section 5.3.2, FINEPACK sets the base address of the
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remote write queue to a copy of the address of the first incoming store with the low-order

bits corresponding to the FINEPACK sub-transaction addressable range (Table 5.2) masked

off.

There are multiple ways to solve the problem of spanning alignment regions. One ap-

proach is to use a more sophisticated remote write queue design that dynamically calculates

the address range spanned by all currently queued stores, and then flushes only when an

incoming store causes the range to exceed the FINEPACK sub-packet addressable range. An

alternative design might maintain multiple open outer transactions for each target GPU so

that accesses to data structures spanning two aligned regions do not thrash the remote write

queue. We evaluated the simple design to avoid unnecessary complexity and because the

issues described here did not arise as first-order concerns in the applications we evaluated.

Logical Partitioning of the Remote Write Queue: The amount of SRAM allocated

for remote write queue can be partitioned in multiple ways. In our evaluation, we sized

the buffer to hold 4KB (the maximum PCIe payload size) for each remote GPU. However,

the size could be adjusted as performance needs dictate. If in larger systems it becomes

too expensive to allocate that much storage, FINEPACK will scale down gracefully as the

number of remote write queue entries shrinks. As described above, it is also possible to

allocate more than one buffer partition per remote GPU to avoid thrashing, at the cost of

fewer entries per any individual partition. More sophisticated designs might construct the

SRAM with full dynamic allocation, rather than partitioning capacity in advance. We leave

further exploration of such fine-tuning possibilities for future work.

Compatibility with Memory Ordering Rules: Although the FINEPACK write queue

reorders store operations, this does not violate any GPU memory ordering rules. The GPU’s

weak memory model permits accesses to non-overlapping addresses to be reordered freely

(assuming there is no synchronization operation in between). Stores to the same address will

simply overwrite each other in the remote write queue, which is also permitted. Standard

PCIe ordering rules require store TLPs to remain in order, and this invariant is maintained
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GPU Parameters
Cache block size 128 bytes
Global memory 16 GB

Streaming multiprocessors (SM) 80
CUDA cores/SM 64

L2 Cache size 6 MB
Warp size 32

Maximum threads per SM 2048
Maximum threads per CTA 1024

FINEPACK Structures
Remote write queue 192 entries

Remote write queue entry size 132 bytes
Base address register 8 bytes

PCIe maximum packet size 4096 bytes
FINEPACK subheader size 5 bytes

FINEPACK subheader address offset 30 bits

Table 5.3: Simulation parameters, based on NVIDIA V100 GPU.

once a FINEPACK transaction is issued, but before and after packetization the reordering is

freely permitted on the GPU.

Applicability Beyond PCIe: Although we focus on PCIe for our evaluation, the

techniques we have described generalize to other protocols such as NVLink or CXL. Each

interconnect technology differs in the details of packet formats and encodings. For example,

protocols such as NVLink that use byte enable fields for the entire payload may end up using

slightly different encodings of the FINEPACK payload in the outer transaction. Nevertheless,

the general approach of compressing multiple small stores into a single payload within a

larger outer transaction still applies.

5.4 Experimental Methodology

We evaluate FINEPACK by extending the NVIDIA Architecture Simulator, NVAS [156]

comprising a system of NVIDIA GV100 GPUs connected over existing and projected PCIe

generations with bandwidths ranging from 32GB/s for PCIe 4.0 to 128GB/s for PCIe 6.0.

NVAS is a trace- and execution-driven multi-GPU simulator that exhibits good simulation
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fidelity without sacrificing speed and has been correlated across a wide range of benchmarks.

We collect application traces at the GPU assembly level using NVBit [157] and replay these

traces in the simulator. These traces contain CUDA API events, GPU kernel instructions,

and memory accesses. The simulator models timing when replaying traces. Our FINEPACK

implementation in NVAS is configured with parameters listed in Table 5.3.

We evaluate a suite of multi-GPU applications described below based on prior work [97].

Single Source Shortest Path (SSSP): We use the Bellman-Ford algorithm to compute

the shortest path, i.e., the path between a given vertex and all the other vertices of a graph

such that the sum of the weights of the edges in the path is the least [66]. This algorithm is

extensively used to compute the minimum distance between different geographical locations,

such as road network [53]. Our implementation formulates the computation as a matrix

operation similar to prior works [97, 66]. We compute SSSP on the HV15R dataset [35].

Page Rank: Page Rank is used by Google to rank web pages, it works based on the

assumption that the more important a web page is, the more likely it is to receive incoming

links from other web pages [166]. Our application assigns pagerank to the Wikipedia

dataset [35].

Alternating Least Squares (ALS): ALS is an iterative matrix factorization algorithm

used to solve collaborative filtering problems. It factorizes a given matrix R into two factors

U and V such that UTV = R. Every iteration, the algorithm optimizes one of the two factors

while keeping the other factor a constant. The roles are reversed for the next iteration [151].

We perform ALS for HV15R dataset [35] using Stochastic Gradient Descent.

MBIR X-ray CT: Model Based Iterative Reconstruction (MBIR) is a minimization

algorithm used in low-dose X-ray CT reconstruction. MBIR can be formulated to admit

considerable parallelism over image voxels or detector values, in the sinogram making it

well-suited for multi-GPU acceleration. The algorithm operates iteratively in two barrier-

synchronized phases wherein data structures are partitioned across GPUs and each GPU

requires input data from the previous phase from all other GPUs [81, 87, 134]. Our

96



implementation seeks to accelerate MBIR via multi-GPU execution by addressing the

high remote access cost that arises with GPU scaling.

Jacobi Solver: Jacobi solver is an iterative algorithm, used in numerical linear algebra

for determining the solutions of a system of linear equations that are strictly diagonally

dominant. It iteratively solves a system of linear equations and computes the solution

vector. [165]. Our implementation computes the solution vector for banded matrices, which

arise widely in finite element analysis [164, 55].

For each multi-GPU application we have two equivalent implementations that maintain

the same data sharing and work sharing characteristics across GPUs, but use a different

programming paradigm. The two paradigms are:

Memcpy: This paradigm maintains duplicate copies of data structures among all GPUs

to ensure locality at the time of compute. The updates performed by a compute kernel are

broadcast after the end of the producer kernel and before the start of the consumer kernels

using via cudaMemcpy() API. In this paradigm there are no remote accesses during kernel

execution, however data is transferred at coarse granularity preventing the overlap between

data transfers and compute.

Peer-to-peer stores: This paradigm employs peer-to-peer stores to transfer data proac-

tively as soon as the data is generated so that the data is resident locally in the consumer

GPUs at the time of compute. This paradigm ensures fine-grained overlap of compute and

communication without imposing significant burden on the programmer.

FINEPACK works transparently optimizing the peer-to-peer store paradigm providing

more efficient bandwidth utilization. To establish an upper bound for the potential benefit

of FINEPACK, we also compare it with a system with infinite bandwidth. We modelled

such a theoretical system by eliding data transfer time when applications execute using the

memcpy paradigm.
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Figure 5.7: 4-GPU speedups

5.5 Results

We next look at the properties and performance of FINEPACK on a system of 4 GPUs

connected via PCIe, as described in Section 5.4.

5.5.1 Performance Results

Figure 5.7 shows the speedup of various communication paradigms on a four GPU

system normalized to the performance of a single GPU baseline. The infinite bandwidth

paradigm shows the total opportunity available upon optimizing inter-GPU communication

and on average it is 3.6×, indicating the highly parallel nature of these workloads. The

benefits of FINEPACK arise from: (1) its ability to rely on fine-grained peer-to-peer stores

that provide natural overlap of compute with communication, (2) its ability to minimize the

protocol packetization overhead by aggressively packing multiple stores within the same

packet, and (3) its ability to coalesce writes before sending them to the destination GPU

thereby reducing the number of redundant writes to the same location.

Figure 5.8 provides a breakdown of the underlying efficiency of the three studied inter-
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Figure 5.8: Breakdown of total bytes transferred over the interconnect, normalized to inter-GPU
memcopy. For each inter-GPU transfer paradigm, these bytes are then categorized into ’Useful bytes’,
which are read by the destination GPU, ’Protocol overhead’ which is the number of bytes required
to perform all transfers, and ’Wasted bytes’, which is bytes transferred that are never read or are
overwritten by the source GPU, before being read by the destination GPU.

GPU communication schemes. The figure shows the total number of bytes transferred over

the interconnect in each scheme, normalized to the total data transferred by the memcpy

scheme. ‘Useful bytes’ represents the fraction of total data transferred that is actually

read by the destination GPU during its computation; ‘Protocol overhead’ represents the

fraction of interconnect bandwidth spent on framing and header overhead, and ‘Wasted

bytes’ represents data bytes that are either overwritten by later stores to the same location or

never read by the destination GPU.

As Figure 5.8 shows, the memcpy paradigm results in negligible protocol overheads

due to the coarse granularity of transfers. However, the memcpy paradigm suffers perfor-

mance degradation compared to FINEPACK due to (1) its inability to overlap compute and
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communication, and (2) the high percentage of wasted bytes being transferred due to the

coarse-grained nature of these transfers copying data that was not actually updated by the

source and/or not actually accessed by the destination.

P2P stores achieve a good overlap of compute and communication, but also exhibit poor

performance due to the protocol packetization overheads of the fine-grained transfers as

well their inability to exploit temporal locality. P2P stores also suffer from wasted bytes

due to the transfers of multiple stores to the same address. These factors result in the

total data transferred often being an order of magnitude higher than the amount of data

transferred by the memcpy scheme. FINEPACK on the other hand, eliminates the overheads

of peer-to-peer stores by packing multiple stores within the same packet, thus decreasing

the packetization overhead. It also exploits the relaxed nature of the memory consistency

model to aggressively coalesce stores with temporal locality, thus reducing the number of

redundant bytes.

5.5.2 Performance Characterization and Sensitivity Studies

Sub-transactions per FINEPACK Packet: Figure 5.9 shows the average number of

stores that are coalesced in the FINEPACK packetization buffer before egressing the source

GPU. We observe that FINEPACK is able to pack close to 40 stores on average into a single

transaction before sending it to the interconnect, thus leading to the protocol overhead

reduction shown in Figure 5.8. CT is able to pack fewer stores on average because the

individual stores exhibit less spatial locality.

Understanding Address Splitting Decisions: One of the important design decisions

that has to be made when considering an architecture like FinePack is how to sub-divide

the sub-traction address structure into the address base and offset fields. As discussed

in Section 5.3, the number of bytes in the sub-transaction header address field presents a

tradeoff: as more address field bytes are used, more stores can be compressed into a single

large transaction, but the overhead of each sub-transaction also grows accordingly. As such,
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Figure 5.9: Average number of stores aggregated in a single packet by FINEPACK.

we evaluated multiple sub-transaction header sizes to find the sweet spot.

Figure 5.10 shows that performance increases to maximum at 4 sub-transaction header

bytes with virtually no change at 5 bytes. Four bytes of sub-transaction header corresponds

to 22 bits of address space per outer transaction, meaning that stores within a 4MB-aligned

region can be coalesced into a single packet. For our applications, this granularity is

sufficient to capture the communication patterns of the workloads evaluated. Beyond 5

bytes, performance begins to decrease because the protocol overhead grows, yet additional

stores cannot be accommodated in a single packet. While there is some variation among

applications, we observe that for these applications from a variety of GPU computation

areas, 4-5 sub-transaction header bytes works well.

Six bytes of sub-transaction header enables addressing of 256GB of memory, which

grossly exceeds the total memory capacity of each individual GPU today. Even as the GPU’s

memory capacity increases in the future it seems unlikely FINEPACK would need to move to

6 byte sub-transaction headers. This is because FINEPACK relies on application locality to

minimize the number of overhead bytes in each sub-transaction, not just the maximum size

of each GPU’s physical memory. This is why 4 and 5 byte sub-transaction headers appear to
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Figure 5.10: FINEPACK performance sensitivity to variation in the number of sub-header bytes.

perform virtually identically, both are large enough to capture the memory stream locality

present in the workloads.

Sensitivity to Interconnect Bandwidth: Figure 5.11 shows the geomean performance

gains of FINEPACK over memcpy and direct P2P stores when increasing the inter-GPU

bandwidth while leaving GPU compute capabilities fixed. We observe that memcpy and

P2P stores improve performance significantly with each step in bandwidth. However,

at no step (until bandwidth is unlimited) do they reach the performance of FINEPACK

because of FINEPACK’s ability to better utilize the interconnect by providing improved

compute-communication overlap as well as decreasing the protocol overheads.

We expect the interconnect BW to be magnitudes lower than the local memory bandwidth

even in future multi-GPU systems. Thus architectures such as FINEPACK which require no

GPU programmer intervention are a promising way to exploit address locality in limited

physical memories to improve small store performance.
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5.5.3 Discussion

Comparison with pother proactive transfer systems: Prior works [97, 95] also

employ proactive transfers to improve multi-GPU strong scaling. PROACT [97] is a joint

compile and runtime system to achieve intelligent orchestration of shared data in multi-

GPU systems. It transparently fine-tunes inter-GPU data movement for the application’s

needs, thus achieving the interconnect efficiency of bulk transfers while maintaining the

programming simplicity of peer-to-peer stores. However PROACT requires per-application

profiling and program re-writing to integrate its framework into each application. FINEPACK

on the other hand, is completely programmer transparent and offers performance gains

without the need for profile driven optimization (PDO).

GPS [95] is a hardware-software solution that maintains duplicate physical replicas of

the shared memory pages in the local memory of each GPU, updates these replicas via

proactive stores and employs a dynamic unsubscription technique to eliminate the unwanted

replicas. While GPS improves interconnect efficiency by eliminating stores to GPUs that do

not access the pages, which is similar in spirit to FINEPACK’s write coalescing. GPS does

nothing to improve the network efficiency for small transfers however and requires invasive

changes to the GPU’s memory system. In GPS transfers happen at a cacheline granularity

and results in unneeded bytes traversing the interconnect if not all bytes within a cacheblock

are updated by the application. It also requires programmer effort in some cases to identify

the profiling region as the automatic subscription is valid only for iterative applications.

We compared FINEPACK versus GPS for individual applications that had the same

reference implementation. We see that for applications where the subscription benefits

in GPS are able to offset the low efficiency due to unneeded transfers within a cacheline,

GPS performs well. In other workloads where these unneeded transfers result in larger

inefficiencies, FINEPACK performs better than GPS, with no need for a new GPU-centric

memory subscription mechanism. On average, across our evaluated workloads we find

FINEPACK is 10% slower than GPS on a 4-GPU PCIe system, however FINEPACK is a
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Figure 5.11: Performance sensitivity to interconnect bandwidth

vastly simpler modification to a GPU’s architecture and remains fully transparent to the

programmer and application without need for special libraries or API usage.

Applicability to other interconnect architectures: Similar to PCIe, other multi-GPU

interconnects such NVLink and Infiniband also implement packetized transfers over the in-

terconnect. Though the exact fields in the packet headers for other interconnect architectures

are similar but never the same to PCIe, we still expect packets routed between the same

source-destination pair to contain configuration fields that can be transferred once, similar

to FINEPACK, instead of being transferred for every store, thus conserving interconnect

bandwidth in most protocols - albeit at differing rates. We note that the spatial locality

fundamentally exploited by FINEPACK to perform address compression is agnostic to the

interconnect architecture being used. Hence, though our implementation considered PCIe

since it is an open standard, we expect FINEPACK to provide significant performance gains

for other interconnect architectures as well. For interconnects such as Infiniband that support

larger packet sizes than PCIe, we expect even similar or greater benefit from FINEPACK’s

ability to aggregate small transfers into efficient bulk transfers.

Alternate FINEPACK implementations: In addition to the proposed design, we per-
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formed opportunity studies to evaluate an alternate design where the protocol overheads

are minimized by separating out the base address and other common fields into a special

configuration packet. This packet will define the packet characteristics for the store-packets

that follow it until the next configuration packet is sent in a stateful manner. In principle, this

is similar to virtual circuit networks where the path taken by the first packet is assigned to

all packets succeeding it. However, analytical modeling showed that the protocol overhead

reduction possible in such a design is not as efficient as the current FINEPACK design.

FINEPACK packs multiple stores as sub-transactions within a single PCIe packet, thus

requiring one common sequence number, ECRC and LCRC per packet. In contrast, for

this competing design, though the common header fields across multiple stores are sent

as a single configuration packet, the stores that succeed it must still be independent PCIe

packets minimally requiring their own sequence number and CRC fields. This results in an

at least additional 10-byte overhead per store when compared to FINEPACK. Thus, for a

packet containing 32-64 stores (FINEPACK can typically coalesce 38 stores before emitting

a packet), this alternate design is approximately 18% less efficient than FINEPACK. This

type of designs will also require significant modifications to the existing PCIe layer because

the packet structure for the store-packets will not be compatible with the PCIe packets. We

believe FINEPACK is superior to this alternative.

Scaling beyond 4 GPUs: As the number of GPUs in the system increases, the SRAM

storage required for FINEPACK’s remote write queue will also increase per addressable peer

GPU in the system. If the store buffer size becomes a first order design constraint (note that

GPU L2 caches are tens of MB in recent GPUs), the size of the per GPU buffer could be

reduced to limit the number of entries. The impact of reducing the maximum coalescing

size is left for future work however. At larger GPU counts, we expect both the average

store size to remain similar to that shown in Fig. 4 and the address locality that is exploited

by FINEPACK to remain largely intact because scaling an application across GPU counts

does not change the address access patterns within the small time windows that FINEPACK
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operates.

5.6 Related work

Small message aggregation: Aggregation of small messages to reduce overheads and

improve network performance has been proposed both at software and hardware level. There

are a variety of software approaches, ranging from runtimes [160, 91], compilers [5], or

application level [23]. The typical approach involves aggregating messages targeting the

same end node and/or compressing the final aggregation buffer before it is sent. All these

approaches suffer from non negligible software overheads and incur extra transmission

latencies. For this reason they typically require additional mitigation mechanisms (such as

multi-threading) or limit their applicability to specific domains. A particular successful use

case of software based aggregation is the acceleration of collective communication [64].

Network level approaches [61, 26], instead are designed as part of the routers and

aggregate messages as they travel inside the network. They are transparent to the user and

the applications and provide a net benefit because the hardware can inexpensively monitor

the effectiveness of the aggregation and use it as needed.

In this paper we also propose a hardware based approach which is transparent to the

application, but also to the network itself as it logically sits at the interface between the GPU

and the network ingress/egress ports. Our approach is based on the aggregation memory

references following a scheme that is reminiscent of that found inside TLBs [169, 132, 90]

as a way improve virtual address space coverage and reduce TLB footprint. While the end

goal of TLB range compressors and our approach is different, the core idea of exploiting

memory address locality to reduce space is relatively similar.

Multi-GPU performance Prior work [7, 89, 171, 17, 11, 68] has explored different

mechanisms both at the hardware and software levels to improve performance in multi-GPU

systems. Our work explores optimizing small access efficiency thereby improving strong

scaling in multi-GPU systems. Prior work [150, 129, 130] has also proposed techniques
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for inter-GPU coherence. FINEPACK avoids an expensive coherence protocol despite

maintaining GPU memory model compatibility.

Several works propose multi-GPU memory management solutions. Griffin [11] opti-

mizes page migration to improve multi-GPU performance. CARVE [171] caches remote

data in local DRAM to improve locality. PROACT [97] proposes a software framework to

aggregate fine-grained transfers and improve interconnect efficiency, however it requires

significant effort from the programmer. GPS [95] adopts a publish-subscribe paradigm to im-

prove multi-GPU memory management but requires invasive changes to the memory system.

FINEPACK on the other hand, optimizes fine-grained transfers and improves performance

while being transparent to the application as well as the GPU memory system.

NUMA memory management: Dashti et al. [32] develop a Linux memory placement

algorithm for mitigating address traffic congestion in NUMA systems. Works [173, 1, 75,

128, 38] perform NUMA-aware optimizations. Works also explored hardware-based peer

caching [83, 126, 31, 143, 12].

5.7 Conclusion

Performing fine grain writes to other GPU memories is a natural paradigm for program-

ming multi-GPU systems. Unfortunately due to interconnect inefficiency, GPU programmers

today are forced to either suffer through poor performance when using P2P stores, or artifi-

cially aggregate data updates into program phases that kill communication and computation

overlap, but improve interconnect efficiency. FinePack provides the best of both worlds

through repacketization of fine-grained transfers to eliminate protocol overhead and aggres-

sive coalescing to reduce redundant data transferred on the interconnect. By leveraging

locality inherent in the physical address stream egressing single source to single destination

GPUs, FinePack is able to achieve 5× efficiency improvement over peer-to-peer stores that

translates into an average speedup of 3.9× over peer-to-peer stores.
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CHAPTER VI

Conclusion

Suboptimal management of memory and bandwidth is one of the primary causes of low

performance on systems comprising multiple GPUs. Existing multi-GPU systems require

hardware and software enhancements to improve interconnect efficiency and achieve good

strong scaling performance.

In this work, we proposed PROACT, a hardware and software system that improves

multi-GPU performance by overcoming the limitations of existing inter-GPU communication

mechanisms. PROACT combines the advantages of peer-to-peer transfers with that of

bulk transfers to enable interconnect friendly data transfers while hiding transfer latencies.

Demonstrated across three different 4-GPU system architectures, PROACT provides an

average speedup of 3× over a single-GPU implementation, capturing 83% of the theoretical

limit. We also show how PROACT provides dramatic scalability improvements on next

generation systems with large numbers of GPUs, achieving up to 12× speedup over a single-

GPU implementation, while capturing 77% of the available opportunity. Scalable multi-GPU

programming is no easy task; to maximize programmer productivity, runtime systems like

PROACT will be necessary to enable rapid development cycles while leveraging next

generation architectural improvements in future GPUs.

Next, we reviewed and evaluated GPS, a set of architectural enhancements to improve

strong scaling in multi-GPU systems. GPS automatically tracks the subscribers to each
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page of memory and proactively broadcasts fine-grained stores to all subscribers. This

enables the subscribers to read data from local memory at high bandwidth. GPS provides

these advantages while retaining compatibility with the conventional GPU programming

and memory models. Evaluated on a model of 4 NVIDIA V100 GPUs connected by varying

interconnect architectures, GPS offers a speedup of up to 3.8× (2.5× on average) over

1 GPU and performs 3.3× better than the next best available multi-GPU programming

paradigm.

Finally, we elaborated our work to improve the interconnect efficiency of small accesses

in multi-GPU systems. Performing fine grain writes to other GPU memories is a natural

paradigm for programming multi-GPU systems. Unfortunately due to interconnect inef-

ficiency, GPU programmers today are forced to either suffer through poor performance

when using P2P stores, or artificially aggregate data updates into program phases that kill

communication and computation overlap, but improve interconnect efficiency. FINEPACK

provides the best of both worlds through repacketization of fine-grained transfers to elimi-

nate protocol overhead and aggressive coalescing to reduce redundant data transferred on the

interconnect. By leveraging locality inherent in the physical address stream egressing single

source to single destination GPUs, FINEPACK is able to achieve 5× efficiency improvement

over peer-to-peer stores that translates into an average speedup of 3.9× over peer-to-peer

stores.

Strong scaling in multi-GPU systems is a challenging task. This dissertation has shown

that building blocks such as PROACT, GPS and FINEPACK can successfully enable

GPU programmers to perform inter-GPU transfers efficiently with minimal programming

overhead and high interconnect efficiency, thereby improving the overall system performance.

We hope this dissertation inspires a new body of research on differentiating the multi-GPU

programming paradigm from single GPU programming semantics to help extract the best

possible performance out of next generation multi-GPU systems.
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