
The Adaptive Use of Working Memory in Young and Older Adults:  

Effects of Incentives and Task Demands 

 

by 

 

Hyesue Jang 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy  

(Psychology and Scientific Computing) 

in the University of Michigan 

2022 

Doctoral Committee: 

 

Professor Cindy A. Lustig, Chair 

Professor Richard L. Lewis 

Professor Thad A. Polk 

Professor Carolyn Yoon 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Hyesue Jang  

  

hyesuej@umich.edu  

  

ORCID iD:  0000-0003-4350-3583  

 

  

  

© Hyesue Jang 2022 

 



 ii 

Dedication 

 

To my family 

 

 



 iii 

Acknowledgements 

 

I would like to thank my wonderful advisor Cindy Lustig for her support and guidance 

throughout my time at the University of Michigan. She is the reason how I got this far, and none 

of this work would have been possible if not for her patience and dedication to my scientific 

training. I would also like to thank my secondary advisor Richard Lewis for opening a new 

perspective on how I think about the mind. I will truly miss listening to his beautiful ideas and 

exciting insights. Next, I would like to thank my dissertation committee members, Thad Polk and 

Carolyn Yoon, for their valuable inputs on this dissertation. I would also like to send my deepest 

thanks to my family for their unwavering love and support. Finally, thanks to my dear friends 

and colleagues for their help and friendship I cherish so much. 

  



 iv 

 

 

 

 

 

Table of Contents 

Dedication ....................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

Abstract .......................................................................................................................................... ix 

Chapter 1 Introduction .................................................................................................................... 1 

The Costs of Using (or Not Using) Working Memory ............................................................... 1 

Internal and External Factors That Drive Performance: Ability, Motivation, and Environment 3 

Balancing Controlled and Automatic Processes in Response to Demands ................................. 4 

Summary and Overview .............................................................................................................. 6 

References ................................................................................................................................... 7 

Chapter 2 Losing Money and Motivation: Effects of Loss Incentives on Motivation and 

Metacognition in Younger and Older Adults................................................................................ 10 

Introduction ............................................................................................................................... 10 

Method....................................................................................................................................... 21 

Results ....................................................................................................................................... 31 

Discussion ................................................................................................................................. 42 

References ................................................................................................................................. 55 

Supplemental Material .............................................................................................................. 63 

Chapter 3 Opposite Reactions to Loss Incentive by Young and Older Adults: Insights From 

Diffusion Modeling ....................................................................................................................... 64 

Introduction ............................................................................................................................... 64 



 v 

Method....................................................................................................................................... 72 

Results ....................................................................................................................................... 82 

Discussion ............................................................................................................................... 100 

References ............................................................................................................................... 110 

Supplemental Material ............................................................................................................ 119 

Chapter 4 Computationally Rational Strategies for Integrating Working Memory and 

Reinforcement Learning: A Bounded Optimality Approach ...................................................... 120 

Introduction ............................................................................................................................. 120 

Method..................................................................................................................................... 125 

Results ..................................................................................................................................... 135 

Discussion ............................................................................................................................... 156 

References ............................................................................................................................... 162 

Supplemental Material ............................................................................................................ 166 

Chapter 5 General Discussion ..................................................................................................... 167 

The Adaptive Use of Working Memory in Response to Loss Incentives ............................... 167 

The Adaptive Use of Working Memory in Choice Learning .................................................. 172 

Closing Remarks ..................................................................................................................... 174 

References ............................................................................................................................... 175 



 vi 

List of Tables 

 

Table 2-1. Demographics and self-reported Poor Attentional Control ......................................... 19 

Table 2-2. An overview of the predictions from each of the theoretical perspectives ................. 20 

Table 2-3. NASA-TLX MLM results ........................................................................................... 33 

Table 3-1. Demographics and self-reported Poor Attentional Control ......................................... 82 

Table 3-2. Reaction time data ....................................................................................................... 85 

Table 3-3. Reaction time data (Retention interval) ....................................................................... 95 

Table 4-1. The number of subjects and mean age for each group .............................................. 135 

Table 4-2. Posterior mean and 95% CI of the mixture weight parameter at each set size for 

different populations ................................................................................................................... 136 

 

 



 vii 

List of Figures 

 

Figure 2-1. LNS accuracy and NASA-TLX perceived performance ratings ................................ 32 

Figure 2-2. NASA-TLX Mental Demand, and Effort, and Frustration ........................................ 36 

Figure 2-3. State Attention and Motivation Questionnaire ........................................................... 38 

Figure 2-4. Relative metacognitive accuracy................................................................................ 40 

Figure 2-5. Absolute metacognitive accuracy .............................................................................. 41 

Figure 3-1. Sternberg working memory task and incentive conditions ........................................ 74 

Figure 3-2. Accuracy data ............................................................................................................. 83 

Figure 3-3. Diffusion model parameters ....................................................................................... 87 

Figure 3-4. Accuracy data (Retention interval) ............................................................................ 93 

Figure 3-5. Diffusion model parameters as a function of retention interval ................................. 96 

Figure 4-1. Overview of the study .............................................................................................. 124 

Figure 4-2. Experimental tasks ................................................................................................... 126 

Figure 4-3. The average accuracy of the working memory task and the choice learning task in all 

participants .................................................................................................................................. 138 

Figure 4-4. WM/RL trade-off in all participants ........................................................................ 139 

Figure 4-5. Bounded optimality analysis for all participants ...................................................... 140 

Figure 4-6. The average accuracy of the working memory task and the choice learning task in 

different working memory capacity groups ................................................................................ 143 

Figure 4-7. WM/RL trade-off in low, medium, high WM capacity groups ............................... 144 

Figure 4-8. Bounded optimality analysis for low, medium, and high-capacity groups .............. 145 

Figure 4-9. The average accuracy of the working memory task and the choice learning task in 

different age groups .................................................................................................................... 149 



 viii 

Figure 4-10. WM bounds in young, middle age, older adult groups .......................................... 150 

Figure 4-11. WM/RL trade-off in young, middle age, older adult groups ................................. 151 

Figure 4-12. Bounded optimality analysis for young, middle-aged, older adults....................... 152 

 

 



 ix 

Abstract 

 

Working memory demands are common in everyday life. Because working memory is 

costly, we constantly need to judge when it is worth (or not worth) using working memory. 

Engagement of working memory can be driven by multiple internal and external factors such as 

ability, motivation, and environment. The present dissertation explores complex interactions 

between individual differences in ability, internal and external motivational factors, and how 

these internal processes interact with demands and constraints coming from the task and 

environment. The first two experiments of the current dissertation (Chapters 2 and 3) examine 

how young and older adults respond to working memory demands, especially when under loss 

incentives, and how those responses differ under situations that vary in the degree to which 

engagement in the task itself may depend on self-initiated vs. task-constrained control. Given 

that almost every behavior is the outcome of a mix of top-down controlled and automatic 

bottom-up processes, the last experiment of this dissertation (Chapter 4) investigates whether 

people adaptively balance (relatively controlled and effortful) working memory and (relatively 

automatic and implicit) reinforcement learning in response to varying task demands. Overall, we 

show that high task load and loss incentives lead to adaptive changes in working memory 

engagement, but those changes can deviate from what is optimal in terms of maximizing 

performance. Our results also suggest the effects of loss incentives and task demands on working 

memory engagement can differ for young and older adults and for people with different 

cognitive ability.  
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Chapter 1  Introduction 

The Costs of Using (or Not Using) Working Memory 

Humans are often thought to be cognitive misers (Kool & Botvinick, 2018; Shenhav et 

al., 2017). When environmental inputs require us to use a lot of cognitive control and working 

memory, we often “pay for it” with feelings of effort or stress during the task and being fatigued 

afterward. When asked to choose between a task with a low vs. high level of demand for 

cognitive effort, people often prefer the low-effort task to the high-effort task (Dunn et al., 2016; 

Kool et al., 2010). However, not putting forth enough effort often has its own costs, such as a 

cook who does not keep the proper ingredients, amounts, and cooking times in mind ending up 

with an unappetizing meal. In contrast, at other times, we may engage working memory and 

other effortful processes when they are not helpful or can even hurt our performance. For 

example, in many gambling and reinforcement tasks, pigeons and rats perform better than 

humans because they rely on simple probabilities, whereas humans often employ cognitive 

strategies to try to outguess the system (see discussion by Wolford et al., 2004). The present 

dissertation examines each of these scenarios and how they may differ for young vs. older adults. 

Working memory – the ability to hold information in mind while performing processing 

operations on it or new information – is an ideal testbed for studying how people respond to 

cognitive demands because it is relatively straightforward to manipulate those demands 

quantitatively by increasing the number of items to be remembered. In the N-back task (a widely 

used task for assessing working memory), people demand greater rewards to engage in trials 
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associated with greater cognitive effort, and the costs of mental effort increase parametrically 

with increasing working memory load (Westbrook et al., 2013).  

Moreover, cognitive effort is more costly for older adults than young adults. Older adults 

need to exert more effort than young adults to initiate and maintain the engagement of working 

memory (Ennis et al., 2013; Hess et al., 2016; Westbrook et al., 2013). Given the age-related 

differences in effort costs, answers to the question “when is working memory worth it?” can 

differ for young and older adults. One related perspective, the selective engagement theory 

(Hess, 2014), argues that aging is associated with increased mental effort costs, and these 

increased costs reduce the ratio of benefits to costs for a cognitive task for older adults than 

younger adults. This leads to a reduced motivation to engage working memory (and other mental 

resources) for older adults. 

Because working memory is costly for young and (more so for) older adults, people often 

need to be motivated to invest their mental effort. A common way to motivate the use of working 

memory is to incentivize it. Incentives are usually found to improve cognitive performance in 

young and older adults, suggesting that people increase their cognitive control when incentives 

are offered. However, most studies looking at incentive effects on young and older adults have 

used gain incentives (e.g., Bowen et al., 2020; Cohen et al., 2016; Di Rosa et al., 2019; Spaniol 

et al., 2014; Thurm et al., 2018; Yee et al., 2019), with only a very few investigating the effects 

of loss incentives. To bridge this gap, Chapters 2 and 3 in the present dissertation examine the 

effects of loss incentives on working memory and subjective mental demand in young and older 

adults, and the effects of environmental variables on whether people may pay those costs either 

in performance or in their subjective feelings of demand.  
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Internal and External Factors That Drive Performance: Ability, Motivation, and 

Environment 

Cognitive functioning results from the integration of environmental stimuli and internal 

processes. Performance on cognitive tasks, therefore, depends on interactions between the ability 

of the individual, their current cognitive-emotional states, and the constraints from the task. 

Variations in working memory performance across individuals, for example, can arise from 

complex interactions between stable individual differences in ability (Unsworth & Engle, 2007), 

internal and external motivational factors that fuel engagement in the task (Botvinick & Braver, 

2015; Braver et al., 2014), and how these internal processes interact with supports and 

constraints coming from the task and environment (Lindenberger & Mayr, 2014). 

A central concept in cognitive psychology is that top-down, goal-driven processing is 

typically more effortful and costly, whereas bottom-up, stimulus-driven processing is more 

automatic. Craik and colleagues integrated this idea into the study of memory, especially age 

differences in memory, with the concepts of self-initiated processing and environmental support 

(Craik & Lockhart, 1972; Craik & Byrd, 1982). Older adults’ memory performance is often 

impaired when encoding and/or retrieval depend on self-initiated processes, but age-related 

decline in performance is often reduced or even eliminated by when there is environmental 

support. The concepts of proactive (the sustained maintenance of goal-relevant information) vs. 

reactive (transient, stimulus-driven goal reactivation) control follow a similar logic (Braver, 

2012)), suggesting that self-initiated, proactive processing requires more attentional resources 

(and is thus more costly) than reactive processing. Older adults are often thought to have reduced 

attentional resources, and thus to not engage in self-initiated processing as much as young adults 

because it has a higher relative cost.  
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Environmental support (usually in the form of environmental cues that encourage task-

relevant processing), is typically thought to reduce the resource cost, and to thus improve 

performance, especially for older adults. However, environmental support can also have a “dark 

side” (Lindenberger & Mayr, 2014).  First, we may over-rely on it, even when it is not the most 

efficient strategy.  For example, when a task can be solved either by retrieving information from 

memory or by visually scanning the information from a look-up table on the screen, older adults 

relied on the more time-consuming visual-scanning strategy.  This slowed their performance 

compared to younger adults, who  relied more on the faster memory-retrieval strategy (Rogers et 

al., 2000). Second, the term “support” is synonymous with “constraint”, and environmental cues 

that drive engagement in a task may feel more like the latter when they push us to perform tasks 

that are difficult or aversive. For example, we often find that deadlines help us focus and get 

more done, but also often find that performing under deadlines feels more demanding than 

situations that allow us to more freely match our level of performance and effort with our 

internal motivation. 

To understand these complex factors underlying working memory performance, the first 

two experiments of this dissertation (Chapters 2 and 3) examine how young and older adults 

respond to cognitive demands, especially when under loss incentives, and how those responses 

differ under situations that vary in how much self-initiated vs. task-constrained control. 

 

Balancing Controlled and Automatic Processes in Response to Demands 

 Another axiom of cognitive psychology is that no task is process pure. Instead, almost 

every behavior is the outcome of a mix of controlled and automatic, top-down and bottom-up 

processes. In many cases, older adults rely more on automatic processes than do young adults. 
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For example, older adults perform better in familiarity-based recognition (relatively fast and 

automatic process) than in recollection-based recognition (relatively controlled process 

associated with remembering specific context about the original event). However, in other 

situations older adults may bring in more controlled, top-down processing, potentially to 

compensate for age-related declines in more bottom-up processes (for dicussion see Lustig & 

Jang, 2020). 

 Learning to make the rewarding choice among different options provides a good example 

of how the balance between more controlled vs. more automatic processes may differ both as a 

function of ability and task demands. Specifically, choice learning can be supported by both 

working memory (WM; relatively controlled and effortful) and reinforcement learning (RL; 

relatively automatic and implicit) (Collins, 2018; Collins & Frank, 2012; Rmus et al., 2021). 

However, because WM is fast but capacity-limited and RL is robust but slow, these choice-

learning situations also present an interesting situation in which increasing WM load (the number 

of stimulus-response options to be learned) may not only lead to worse performance but also 

influence the degree to which people rely on (relatively controlled) WM vs. (relatively 

automatic) RL processes. 

To understand how people balance controlled and automatic processes in response to 

demands, Chapter 4 of the current dissertation examine the adaptive nature of combining 

working memory and reinforcement learning in choice learning in response to varying task loads 

and investigate if people use computationally optimal balance (Lewis et al., 2014). 
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Summary and Overview 

 In this dissertation, we first examine young and older adults’ objective performance and 

subjective responses to the costs of using – or not using – working memory in two tasks that 

differ in the degree to which their structure supports (or constrains) engagement (Chapters 2 and 

3). In the third study, we examine how people balance effortful WM processes with more 

automatic RL processes as demands increase. Taken together, we show that high task load and 

loss incentives lead to adaptive changes in working memory engagement, but those changes can 

deviate from what is optimal in terms of maximizing performance. Our results also suggest the 

effects of loss incentives and task demands on working memory engagement can differ for young 

and older adults and for people with different cognitive ability. 
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Chapter 2  Losing Money and Motivation: Effects of Loss Incentives on Motivation and 

Metacognition in Younger and Older Adults  

Introduction 

In the last 10 years, there has been rising interest on the effects of monetary incentives on 

cognition. That interest was sparked in part by the integration of cognitive and computational 

perspectives on reinforcement learning and has spread to the effects of incentive on other aspects 

of cognition. The general assumption is that incentives increase motivation, and that motivation 

in turn increases the engagement of attention and cognitive control (Botvinick & Braver, 2015; 

Yee & Braver, 2018). A great deal of progress has been made on this topic in a relatively short 

period of time. However, several important gaps in the literature remain. 

First, most studies have built on the reinforcement learning literature and implemented 

incentives on a within-subjects, trial-wise basis (i.e., comparing performance on rewarded vs 

unrewarded trials). A common finding in that literature is that older adults show reduced neural 

responsivity to anticipated losses, but similar results to young adults for anticipated gains, 

experienced gains, and experienced losses (reviewed by Samanez-Larkin & Knutson, 2015). 

Trial-wise incentive manipulations likely translate well to real-world reinforcement learning and 

value-based decision making (e.g., after repeated exposures one learns that Restaurant A is more 

likely to produce a rewarding experience than Restaurant B).  However, in these cases, as well as 

in studies examining the prioritization of high- versus low-value items in episodic memory 

(Castel et al., 2002; Cohen et al., 2016), incentive valence and magnitude attach to specific 

items, actions, or decision options. 
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It’s not clear that conclusions from these more specific, trial-wise incentive 

manipulations apply to most real world (e.g., school, work, or sports) situations with incentivized 

performance. For example, a junior accountant performing an audit would likely receive bonus 

pay for completing all the steps needed thoroughly and efficiently (or have their pay docked for 

underperforming), rather than having one step be associated with bonus pay for correct 

completion, another step associated with lost pay for failure (e.g., Libby & Lipe, 1992). The 

same is likely true in many cognitively challenging situations in everyday life: following 

directions to reach a desired location, debugging a computer program, or organizing a weekly 

work schedule for oneself or a group of employees. 

Second, many of these real-world situations rely heavily on working memory, and age 

differences in working memory are both large and a topic of central interest in both theoretical 

work and empirical studies of cognition and performance (see Park & Festini, 2017 for a recent 

review). However, most performance-incentive studies have focused on measures related to 

attention and cognitive control (Di Rosa et al., 2015; Schmitt et al., 2015, 2017; Williams et al., 

2017, 2018; Yee et al., 2019), and only a handful have compared young and older adults. As 

noted above, there have also been a number of reinforcement learning and episodic memory 

studies focusing more on the ability to learn reward/loss associations or prioritize high vs low 

reward items (e.g., Castel et al., 2002; Cohen et al., 2016), as well as studies on incentivized 

episodic memory encoding (e.g., Geddes et al., 2018; Spaniol et al., 2014). 

To our knowledge, only one study has examined the effects of incentive on working 

memory in both younger and older adults (Thurm et al., 2018). The lack of studies on how 

incentives might affect working memory performance in younger and older adults stands in 

contrast to the training and neurostimulation literatures, where working memory is a frequent 
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target because of its large age differences and importance in everyday life (Basak et al., 2008; 

Buschkuehl et al., 2008; Di Rosa et al., 2019; Li et al., 2008; Rhodes & Katz, 2017; Stephens & 

Berryhill, 2016). From a scientific perspective, another reason to examine working memory is 

that the range of set sizes used in many working memory tasks also provides a relatively 

straightforward way of examining whether age differences in the response to incentive vary as a 

function of task load. 

Third, many studies have focused on reward (gain) incentives (e.g., Bowen et al., 2020; 

Castel et al., 2002; Cohen et al., 2016; Di Rosa et al., 2019; Spaniol et al., 2014; Thurm et al., 

2018; Yee et al., 2019). However, loss is thought to play an increasingly important part in older 

adults’ experience, and real-world attempts to motivate their behavior often focus on the 

opportunity to avoid such losses (e.g., of health, of employment or financial stability, of driving 

privileges). Finally, the assumption that incentive will increase motivation (and then increase 

attention and control) is rarely tested directly. This is despite an earlier literature indicating that 

extrinsic motivators such as monetary incentive can often have paradoxical effects (see meta-

analytic reviews by Cerasoli, Nicklin, & Ford, 2014; Deci, Koestner, & Ryan, 1999). 

The present study begins to address some of these gaps. We examined the effects of loss 

incentive, implemented across the entire session, on both younger and older adults. We examined 

both working memory performance and subjective reports of related constructs including 

perceived demand, frustration, motivation, distraction, and metacognition. We focused on losses 

both because they have been understudied, and because different theoretical perspectives make 

competing hypotheses about the effects of loss incentives on older adults, whereas predictions 

are the same (and thus the incentive manipulation less incisive) for reward (gain) effects.  The 
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subjective measures were used to provide potentially converging or disconfirming evidence for 

each of these views. 

 Before describing the rationale for our study, we review different theoretical perspectives 

that make disparate predictions for the effects of loss on older adults’ cognitive performance and 

subjective response.  The major predictions for each view are summarized in Table 2-2.   

First, the intuitive prediction is that incentive increases motivation, which increases 

performance.  This might also be expected to reduce perceived demand and increase 

metacognitive accuracy, as participants pay closer attention to their performance in order to 

improve it. Building off of lifespan development theory and the idea that losses become more 

prominent in later life, the motivational shift hypothesis is that older adults are particularly 

motivated to avoid losses: “With advancing age, however, personal goals are expected to shift 

towards an increasingly stronger focus on maintenance and prevention of loss” (Freund & Ebner, 

2005). If one follows the logical chain, described above – that greater motivation should increase 

the application of cognitive control and thus increase performance – this hypothesis would seem 

to suggest that older adults would show even larger performance and motivation increases in the 

loss condition than do young adults.  

 However, the motivational shift theory appears to primarily apply to older adults’ goal-

setting and preferences in decision-making scenarios, and in particular whether one gravitates 

towards opportunities for growth and improvement in cognitive or physical performance versus 

maintenance or compensation for loss on those fronts (e.g., Best & Freund, 2018; Freund & 

Ebner, 2005).  It may also be of relevance in avoidance-learning paradigms, where older adults 

have sometimes shown faster learning in response to loss (Eppinger & Kray, 2011; Frank & 

Kong, 2008; Hämmerer et al., 2011). It does not seem to straightforwardly apply to the 
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motivation-cognitive performance questions of interest here. Indeed, those studies that have 

examined the effects of loss incentive on older adults’ response to cognitive demands are 

relatively consistent in showing that older adults have either an equivalent or reduced response to 

loss incentive compared to young adults and/or to positive incentive (e.g., Bagurdes et al., 2008; 

Di Rosa et al., 2015; Pachur et al., 2017; Schmitt et al., 2015, 2017; Williams et al., 2017, 2018). 

Thus, while we note that the motivational shift hypothesis might superficially appear to predict 

larger performance improvements, greater motivation, and increased metacognitive accuracy for 

older adults in the loss condition, we do not consider it likely to apply to the current study.  

Most of the studies finding apparently reduced sensitivity to loss incentives in older 

adults have interpreted it as an example of the positivity effect – the finding that older adults tend 

to prioritize positive, and de-prioritize negative, information for attention and memory (Bagurdes 

et al., 2008; Di Rosa et al., 2015; Pachur et al., 2017; Williams et al., 2017, 2018). This 

interpretation of the positivity effect would seem to predict that compared to young adults, older 

adults should show less effects of loss incentive (results more similar to the control condition) on 

both our performance and subjective measures. 

However, some caution is needed in making that leap. As noted above, in some situations 

older adults are in fact even more responsive to loss than are young adults (Eppinger & Kray, 

2011; Frank & Kong, 2008; Hämmerer et al., 2011). The apparent reduction in sensitivity to loss 

in some other studies may be at least partially an artifact of how incentive cues were 

implemented in those experiments. In most cases, the reduced loss sensitivity of older adults 

primarily concerns neural or electrophysiological responses to the incentive cue. Overall 

performance quality often shows similar incentive effects for the two age groups, though there 

may be some differences in speed-accuracy tradeoffs (e.g., Schmitt et al., 2015; Williams et al., 
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2017, 2018). This suggests that older adults may be less responsive to loss-incentive cues, but 

equally (and in some cases, even more so) responsive to the actual delivery of loss incentive. 

That interpretation would fit with findings from the reinforcement learning literature that older 

adults have reduced neural and arousal responses to loss cues, but equivalent or greater responses 

to loss delivery (reviewed by Samanez-Larkin et al., 2007). 

Similar results indicating potentially greater responses by older adults to loss delivery 

have been reported in the Monetary Incentive Delay task (Kircanski et al., 2018). In addition, 

using an analysis approach that emphasizes spatiotemporal covariance patterns, Spaniol and 

colleagues (2015) found that at cue presentation, young and older adults showed similar reward-

network recruitment, but older adults showed increased recruitment of frontal-parietal control 

networks and decreased deactivation of the default network; these effects did not differ by 

valence. At the point of feedback/incentive delivery, young and older adults again showed 

similar patterns related to general feedback/reward processing, but older adults recruited two 

additional networks in response to error feedback and to loss (Bowen et al., 2019). 

A neuroimaging study by Geddes et al. (2018) generally replicated the pattern of a 

specific reduction in older adult’s activation of reward networks in response to loss cues for the 

Monetary Incentive Delay task, but a different pattern for incentivized encoding trials for an 

upcoming (24 hour delay) recognition memory test. Behaviorally, young adults showed incentive 

(reward or punishment) advantages on recollection but not familiarity; older adults had low 

recollection performance and no effects of incentive (see Spaniol et al., 2014 for slightly 

different results as well as the Geddes et al. discussion of the similarities and differences between 

these studies). Interestingly, the neuroimaging data showed similar activations of memory- and 

reward-related region in both young and older adults during the incentive cue, regardless of 
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incentive valance, but reduced engagement of these regions by older adults during the encoding 

period. The authors suggest that differences between their memory task versus the Monetary 

Incentive Delay task as well as value-directed memory tasks in terms of the immediacy of 

feedback/incentive manipulation – and thus the ability to modulate processing in response – 

might partially explain the differences in results. 

In short, whether older adults show the same, less, or more responsivity to loss than do 

young adults seems to vary widely across different paradigms. A more nuanced view of the 

positivity effect, integrated with the concepts of proactive versus reactive control, may provide a 

more comprehensive explanation for the patterns seen across different tasks.  Both theoretical 

and empirical work indicate that the age-related positivity effect is primarily seen in low-

constraint situations that allow or require older adults to direct their attention towards or away 

from emotional information (see Carstensen & DeLiema, 2018; Reed & Carstensen, 2012 for 

reviews). It does not usually occur when negative information is highly salient or otherwise 

processed relatively automatically. Likewise, the Dual Mechanisms of Control theory’s 

perspective on aging is that older adults are less likely than young adults to engage self-initiated 

proactive control to prepare for upcoming cognitive demands, but often show even greater 

(perhaps compensatory) reactive control when the critical stimulus is presented (Braver, 2012; 

see earlier work by Craik & Byrd (1982) for similar ideas on age differences in self-initiate 

processing).  Thus, in many previous studies using trial-by-trial incentive cues, older adults may 

have failed to engage with the loss cues at presentation. This could explain the failure to show 

the same neural or physiological responses to those cues as did young adults.  Notably, one study 

using block-wise presentation of incentive cues found if anything increased sensitivity to loss 
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cues in older adults, suggesting that experienced (rather than merely anticipated) losses carried 

over to subsequent trials (Schmitt et al., 2017). 

 It has been suggested that when negative information is unavoidable, older adults may 

instead disengage or distance themselves from the situation, and in addition may later reframe 

the situation to take a more positive view (Charles, 2010). For example, Charles & Carstensen 

(2008) found that after participants listened to conversations ostensibly consisting of disparaging 

remarks about them, young adults wanted to learn more about the cause of the complaints and 

made more appraisals about the speakers, whereas older adults distanced themselves from the 

situation with remarks such as “you can’t please all the people all the time”.  Compared to 

incentive cues, the actual delivery of loss feedback – especially performance-based incentives in 

a domain (memory) that is important to older adults (Dark-Freudeman et al., 2006; Reese et al., 

1999) may be more personally relevant and thus difficult to ignore, and paradoxically lead older 

adults to disengage from the situation rather than increasing their motivation to improve (but see 

Barber et al., 2015; Barber & Mather, 2013 for evidence suggesting a nonlinear relationship). 

A related proposal from Selective Engagement Theory (SET; Hess, 2014) is that a 

person’s motivation to engage depends on their calculation of benefits vs. costs of that 

engagement, and that those costs – and thus the likelihood of disengagement – may occur at 

earlier levels of objective task difficulty for older adults. Although to our knowledge Hess and 

colleagues have not directly addressed the question of monetary incentives, if losses after errors 

incentives magnify the perceived costs of performance, they would be predicted to increase the 

likelihood of disengagement. Consistent with this idea, previous studies in our lab using an 

attention task found that loss incentives reduced focused-attention performance and increased 

self-reported mind-wandering in older adults (Lin, 2018; Lin, Berry, & Lustig, 2019).  
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An alternative, more competitive pathway to disengagement has been suggested by 

Ferdinand & Czernochowski (2018): Processing incentive information may itself create a 

cognitive load that draws cognitive processing away from the task itself. Thus, incentive could 

paradoxically reduce performance, with effects presumably most evident at the highest working 

memory loads. Alternatively, as suggested in some of their papers, the cognitive load of the task 

itself may cause older adults to ignore or less completely process incentive information (Schmitt 

et al., 2015, 2017). Thus, the predictions that this view would make for many of the measures in 

the current study are not entirely clear. As a first step towards testing this possibility, we asked 

participants about the degree to which they found the feedback (control or incentive) provided to 

them to be distracting. 
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Table 2-1. Demographics and self-reported Poor Attentional Control 

  

Young  

Control 

(n = 43, 31 f) 

Young 

Loss 

(n = 42, 30 f) 

Old 

Control 

(n = 41, 24 f) 

Old 

Loss 

(n = 43, 28 f) 

Age      

 mean 20.19 19.79 71.37 71.95 

 SD 1.93 2.06 6.83 6.39 

Years of Education     

 mean 14.40 14.04 17.45 17.21 
 SD 1.53 1.42 2.11 2.30 

ERVT      

 mean 19.65 17.95 29.51 30.33 
 SD 5.88 4.73 9.04 8.41 

PAC Mind-Wandering     

 mean 14.58 15.86 12.15 12.47 
 SD 4.29 3.06 3.06 3.06 

PAC Boredom     

 mean 13.72 14.81 10.51 10.79 
 SD 3.51 3.37 2.66 2.72 

PAC Distractibility     

 mean 15.42 15.67 12.39 13.79 
 SD 3.53 4.18 3.12 3.94 

MMSE      

 mean n/a n/a 28.83 28.95 
 SD n/a n/a 1.18 1.11 

f: Female, ERVT: The Extended Range Vocabulary Test, PAC: The Poor Attentional Control 

scale 
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Table 2-2. An overview of the predictions from each of the theoretical perspectives 

Perspective Actual Performance NASA-TLX measures SAMQ and IMI Other 

Intuitive view (greater 

motivation and cognitive 

control under incentive) 

Better in incentive 

condition 

Performance:  More accurate 

metacognition in incentive condition 

Demand:  Lower in incentive 

condition 

Effort: Higher in incentive condition 

Frustration:  No strong predictions; 

loss may lead to greater frustration at 

higher set sizes 

Greater motivation in 

incentive condition 

Weak prediction for greater 

pressure/tension in 

incentive condition 

 

Motivational shift (older 

adults especially motivated 

by losses) 

Generally the same as the "intuitive" hypothesis but with larger effects for older adults 

Heuristic positivity effect 

(older adults ignore negative 

information including losses) 

Generally the opposite of the "motivational shift" hypothesis; older adults less responsive to the loss incentive.  

Potentially less accurate metacognition (NASA-TLX Performance and IMI Perceived Competence) for older adults in the 

loss condition, if they are ignoring loss-related feedback. 

Nuanced positivity effect 

(older adults have reduced 

proactive, increased reactive 

responses to negative 

information; potentially 

followed by reframing) 

Reduced performance for 

older adults in loss 

condition 

Demand:  Higher in loss condition 

Effort: No differences or reduced for 

older adults in loss condition 

Frustration:  Increased by loss 

Reduced motivation for 

older adults in the loss 

condition 

Reframing may inflate IMI 

Competence scores 

Reframing may reduce 

long-term metacognitive 

accuracy for older adults 

in the loss condition 

Incentive as cognitive load Reduced performance 

under loss incentive, 

especially for older adults 

and at higher set sizes 

Performance:  If performance 

monitoring competes with the task 

itself for cognitive processing, 

ratings may be less accurate under 

loss incentive, especially at higher 

set sizes. 

Demand:  Higher in loss condition, 

especially for older adults and at 

higher set sizes 

Increased self-reported 

distraction in loss condition 

 

NASA-TLX: NASA Task Load Index, SAMQ: State Attention and Motivation Questionnaire, IMI: Intrinsic Motivation Inventory 
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Method 

Rationale and overview of methods for the present study 

As noted earlier, although the number is small, there have been several studies examining 

age differences in the response to loss incentives on cognitive control tasks using the trial-based 

incentive cue method borrowed from reinforcement learning paradigms. These have generally 

indicated a reduced responsivity to loss cues in older adults, although that reduced responsivity is 

typically most evident on neural or physiological measures, rather than performance. Although 

these studies are interesting and important, it was not our goal to add another variation. 

 Instead our aim was to take a first step towards closely related questions that have been 

thus far largely unaddressed. We used a session-wide incentive manipulation rather than trial-

wise changes, since as noted above session-wide incentives are more likely to reflect real-world 

situations. We examined working memory, which thus far has been the focus of only one age × 

incentive study, despite the importance of working memory to cognitive performance in many 

domains, and its well-known decline in aging. We focused on losses, rather than gains, since this 

again has been a neglected area despite the putatively increased importance of loss in later adult 

life, and because most of the theoretical perspectives above have the same predictions for 

rewards/gains but differ in their predictions for losses, making the latter more incisive. 

Based in part on other data from our lab suggesting that loss incentive reduced focused 

attention in older adults and increased mind-wandering (Lin et al., 2019), we were especially 

interested in the possibility that loss incentives might lead older adults to disengage from the 

task. Our task and procedures thus closely followed those previously used by Hess et al. (2016) 

which examined age differences in a physiological measure of task engagement as a function of 

working memory load. We used largely the same working memory task and questionnaires to 
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assess self-reported mental demand, effort, and related constructs such as frustration, and added 

the loss-incentive manipulation. This also allowed our control sample to provide a basic 

replication test of the behavioral age differences reported by Hess et al., 2016. Finally, we added 

an exploratory set of subjective measures of motivation, distraction and metacognition as a first 

step towards examining the effects of loss incentives on these constructs in young and older 

adults. 

 

Participants 

85 young adults and 84 older adults were included in the analysis (Table 2-1; see 

Supplemental Material S8 for exclusion information). Young adults (61 female, mean age = 

19.99 years, range = 18-29) were students recruited from the University of Michigan. Older 

adults (52 female, mean age = 71.67, range = 60-88) were recruited from the Ann Arbor 

community. Participants were screened to ensure physical and psychological health with no 

history of anxiety, depression, ADHD, or head injury, and no use of medications that could 

affect cognition. As in other studies in our lab, the Extended Range Vocabulary Test Version 3 

(ERVT; Ekstrom, 1976) was used to screen for participants who might not understand the 

instructions or were generally unmotivated or not willing/able to complete the experimental 

session; a minimum score of 9 out of a possible 48 was required. For older adults, a Mini Mental 

State Examination score (MMSE; Folstein, Robins, & Helzer, 1983) of 27 or greater was 

required. Young and older adults received $10 and $12 per hour respectively for their 

participation (older adults received a slightly higher amount to compensate for their driving to 

the testing site). Written informed consent was obtained from all participants. The study was 

approved by the Institutional Review Board (IRB) of the University of Michigan. 
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Design 

Age group (young, old) and incentive condition (control, loss) were the group-level, between-

subjects variables; set size was a within-subjects variable of secondary interest.  Participants 

within each age group were randomly assigned to the control or loss condition.  Our previous 

study using an attention task (Lin et al., 2019) found an effect size of f = .217 (equivalent ηp
2 = 

.045) for the age (young vs. old) by motivation (control vs. loss) interaction on task performance. 

Power analysis using G*Power (Faul et al., 2007) suggested a total sample size of 169 to detect 

the age by motivation interaction with an effect size f of .217; α error probability of .05; power 

(1-β probability) of .80; numerator degrees of freedom of 1; 4 groups in a two-way ANOVA. For 

the exploratory correlation analyses within each group, a sensitivity analysis indicated r of .304 

was the minimum to be detected at .80 power. 

 

Working Memory Task 

The Letter Number Sequencing (LNS) task from the Wechsler Adult Intelligence Scale-

III (Wechsler, 1997) was used to measure working memory. The task was programmed using 

PsychoPy version 3 (Peirce, 2007). On each trial, participants received intermixed letters and 

numbers at a rate of one item per second. Participants were asked to report the numbers in 

numerical order, the letters in alphabetical order. Each run had 6 trials of the same set size (the 

number of items to be memorized). Set size increased in an ascending order across runs, from set 

size 2 (run 1) to set size 9 (run 8). There were 8 runs total.  At the end of each run, participants 

were given performance feedback (percent correct/incorrect for a given run). For interactions 

with the within-subjects variable set size, sensitivity analyses indicated power of .80 for f = .111, 
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which is equivalent to ηp
2 = .012 (4 groups, 8 measures, r = .217 between measures; 

nonsphericity correction set at 1). 

 

Questionnaires 

All questionnaires were self-administered after the instructions for it were provided by 

the experimenter, and the participant given the chance to ask any questions. 

 

Poor Attentional Control (PAC) Scale 

The PAC scale serves as a trait measure of attentional function in everyday life. It was 

administered before the LNS task to avoid the possibility that participants’ perceptions of their 

performance might influence their responses.  The PAC subscale consists of 15 items identified 

by factor analysis (Huba et al., 1982) from the larger 36-item Imaginal Processes Inventory 

(Singer & Antrobus, 1970).  As in previous studies in our lab  (e.g., Berry, Demeter, et al., 2014; 

Berry, Li, Lin, & Lustig, 2014; Kim, Müller, Bohnen, Sarter, & Lustig, 2017) participants 

completed all 36 items so that they were viewed in context, with analyses focused on the PAC 

scale items. For each item, the participant indicated how true the statement was of them (1 = not 

all true of me; 5 = very true of me). 

 

NASA Task Load Index (NASA-TLX) 

The NASA-TLX measures subjective workload experienced during the task (Hart & 

Staveland, 1988). It was administered after each LNS run, and it has 6 subscales that ask 1) How 

mentally demanding was the task? (Mental Demand); 2) How physically demanding was the 

task? (Physical Demand); 3) How hurried or rushed was the pace of the task? (Temporal 
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Demand); 4) How successful were you in accomplishing what you were asked to do? 

(Performance); 5) How hard did you have to work to accomplish your level of performance? 

(Effort); 6) How insecure, discouraged, irritated, stressed, and annoyed were you? (Frustration). 

The responses are rated on a 0 (very low) to 100 (very high) point scale, except for the 

Performance scale which uses a “reversed” scale, 0 (successful) to 100 (failure).  In the results 

and figures below, we present the results for the Performance scale using the more intuitive 0 

(failure), 100 (success) format. 

 

State Attention and Motivation Questionnaire (SAMQ) 

The SAMQ was administered after finishing the LNS task and the final NASA-TLX form.  

It was created by our lab to ask “state” questions related to boredom, difficulty focusing 

attention, distraction, and motivation using the same wording as the “trait” level PAC scale.  It 

has been shown in several previous studies to correlate with both the PAC trait measures and 

with construct-related performance measures (e.g., Berry, Demeter, et al., 2014; Berry, Li, Lin, 

& Lustig, 2014; Kim, Müller, Bohnen, Sarter, & Lustig, 2017). The version used in the present 

study modified the last two questions to specifically assess the distracting or motivating potential 

of monetary incentive: “I found the possibility of [Control: getting feedback; Loss: losing 

money] to be distracting”; “I found the possibility [Control: getting feedback; Loss: losing 

money] to be motivating.” (See Supplemental Material S4 for full questionnaire.) 

 

Intrinsic Motivation Inventory (IMI) 

The IMI is a standard 22-item questionnaire assessing participants’ subjective experience 

regarding a task in an experiment (Ryan, 1982). After completing the task and SAMQ, 
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participants completed the IMI, indicating how true each statement was for them during the LNS 

task (1 = not all true; 7 = very true of me). This inventory has four subscales: Interest/Enjoyment, 

Perceived Choice, Perceived Competence, and Pressure/Tension. Interest/Enjoyment is often 

used as a self-report measure of intrinsic motivation. 

 

Procedure 

 Participants completed informed-consent procedures, a health and demographic survey, 

and the PAC questionnaire. Participants then received instructions for the LNS task, and 

completed a practice run consisting of 5 trials of set sizes of 2 to 5. Participants had to get more 

than 80% correct on the practice trials to proceed to the main task. If not, they repeated the 

practice. Failure to reach criterion within three practice runs terminated the session (n = 5 older 

adults).  

After the practice run, participants in the loss condition were endowed with $24.  This 

money was put on the table in front of them. They were told that it was theirs to keep for good 

performance (in addition to the hourly compensation for study participation), but that 50 cents 

would be deducted for every incorrect trial. Both performance feedback (percent incorrect) and 

incentive feedback (the amount of money lost) were given after each run. After that, the 

experimenter immediately removed the amount lost and placed the new amount on the table.  

Control participants were given performance feedback only. Participants next completed the 

NASA-TLX with reference to the run they had just completed.  

After the final LNS run and corresponding NASA-TLX questionnaire, participants 

completed the SAMQ and IMI to assess their evaluation of their attention, motivation, and 

performance during the task as a whole. They next completed the Mini-Mental State 
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Examination (MMSE; Cockrell & Folstein, 2002; older adults only) and AD8 (Galvin et al., 

2005; older adults only), and Extended Range Vocabulary Test (ERVT; Ekstrom, 1976), and 

were thanked, debriefed, and given the hourly compensation for their participation. 

 

Analyses 

Analyses were conducted using R version 3.6.1 (R Core Team, 2017). Our overall analysis 

strategy followed that of Hess et al. (2016) in examining effects of age group and set-size, with 

the additional between-subjects variable of incentive condition (control, loss). As described 

below, we also used correlation analyses to assess the relative accuracy of participants’ 

metacognitive reports. 

The primary question was whether/how the loss-incentive would affect the dependent 

measures of performance, motivation, and metacognition, and whether incentive effects 

interacted with age group and/or set size.  See Table 2-2 for an overview of the predictions from 

each of the theoretical perspectives described in the Introduction; critical hypotheses are 

discussed in more detail below. A secondary question was whether we would replicate the age 

group and set size effects reported by Hess et al. (2016), especially for participants in the control 

condition (see Supplemental Material for these analyses).  In some cases, especially for 

unexpected findings, we conducted additional post hoc analyses to provide potentially 

converging or disconfirming evidence, or to give insight into potential mechanisms. 

 

LNS Task Performance and Subjective Task Load (NASA-TLX) 

The LNS data were analyzed using a mixed ANOVA design, with incentive and age 

group as the between-subjects variables, set size as the within-subjects variable. Greenhouse-
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Geisser corrected df, F, and p values are reported where the sphericity assumption was violated.  

For easier reading, df values are rounded to the nearest integer in the text. 

As in Hess et al. (2016), the NASA-TLX data were analyzed using multi-level modeling 

(MLM), rather than ANOVA, because the questions were consistently presented in the same 

sequential order, making the scales non-independent1. Included predictors were age group 

(young adults = referent), incentive condition (control = referent), linear and quadratic trends of 

set sizes (centered at 5.5), and all interaction terms.  To control for individual variability, we 

included the random intercept for each individual (Field et al., 2012). 

 

Post Task Motivation 

The SAMQ questions regarding distraction (Q5) and motivation (Q6) were of primary 

interest for the present study; the other questions were included to be consistent with other 

publications from our lab that have used the questionnaire (Berry, Demeter, et al., 2014; Berry, 

Li, et al., 2014; Lin et al., 2019), allowing interested readers or eventual meta-analyses to 

compare across experiments and study populations.  The IMI subscales were used as post-task, 

holistic measures of participants’ metacognition and emotional-motivational response to the task, 

as compared to the run-specific questions presented by the NASA-TLX.  Both the SAMQ and 

IMI subscales were analyzed using ANOVA with incentive condition and age group as between-

subjects variables. 

 

 
1 One might question whether the LNS runs were truly independent given previous findings suggesting that 

ascending set-size presentation leads to both practice effects, differentially affecting young adults, and proactive 

interference, differentially affecting older adults (e.g., Lustig, May, & Hasher, 2001; May, Hasher, & Kane, 1999; 

Rowe, Hasher, & Turcotte, 2008).  As a precaution we also used MLM to analyze the LNS results; conclusions did 

not differ between the two methods. 
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Correlations between questionnaires and task performance 

The NASA-TLX “Performance” scale asked participants to rate their performance on a 0-

100 scale immediately after completing the run and receiving feedback. It therefore provides a 

relatively specific, ‘in the moment’ assessment of the participants’ metacognitive judgment of 

their performance. The IMI “Competence” scale measures a similar construct, but post-task, and 

in a more general sense (sample questions: “I think I did pretty well at this task, compared to my 

peers”; “I am satisfied with my performance on this task”).  We used correlation analyses to 

examine whether age or incentive changed the relationship between these measures (NASA-TLX 

Performance and IMI Competence) and actual performance.  Correlations between these 

measures and actual performance provided an estimate of participant’s relative metacognitive 

accuracy.  That is, stronger positive correlations between these measures and actual performance 

would indicate that those individuals who gave themselves high ratings relative to others in their 

group did in fact tend to obtain higher scores than others in their group.  Fisher’s z-tests were 

used to test our a priori question of potential differences in correlation strengths between the 

groups.   

The NASA-TLX Performance scale, with a range from 0-100, also allows for calculation 

of absolute metacognitive accuracy, or the distance between a person’s actual performance, and 

their rating of their performance on the NASA-TLX scale (e.g., if four people all had an actual 

score of 75% correct, those rating themselves at either 77 or 73 would have better absolute 

accuracy than those rating themselves at 65 or 85).  To measure this, we calculated a 

“metacognitive difference score” for each run by subtracting the participant’s NASA-TLX 

Performance rating on that run from their actual performance. The metacognitive difference 

scores were analyzed using the same MLM design as used to analyze the NASA-TLX scales.  
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We included this as a post-hoc analysis to explore the unexpected finding that participants in the 

loss condition gave themselves higher ratings for performance.  However, in hindsight, it 

provides an additional test of the version of the “positivity effect” sometimes used to explain the 

results of previous studies:  If older adults in the loss condition are ignoring the feedback 

information provided at the end of each run, they should be less accurate than the other groups. 
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Results 

Loss incentives increase perceived performance but not actual performance in the working 

memory task 

Loss incentive did not affect LNS performance, F(1, 159) = 1.27, p = .262, ηp
2= .008; nor 

did it interact with age, F(1, 159) = .56, p = .455, ηp
2= .003, or set size, F(4, 159) = 1.26, p = 

.281, ηp
2= .008 (Figure 2-1). We replicated commonly observed set size and age effects and 

interactions: Accuracy decreased as set size increased, F(4, 159) = 879.29, p < .001, ηp
2= .84; 

older adults showed lower accuracy compared to young adults, F(1, 159) = 67.80, p < .001, ηp
2= 

.29; and older adults’ accuracy decreased at earlier set sizes than young adults’, F(4, 159) = 

26.88, p < .001, ηp
2= .14.  

As an exploratory analysis of potential incentive effects on metacognition, we examined 

participants’ self-ratings on the Performance subscale of the NASA-TLX, administered after 

each run. The full MLM results for the Performance subscale and all NASA measures can be 

found in Table 2-3. To briefly summarize the critical results, in contrast to the lack of incentive 

effects on actual performance, participants in the loss condition perceived themselves to be more 

successful in accomplishing the task than did those in the control condition, β = 8.28, t(165) = 

2.66, p < .01. (Figure 2-1).   

The results so far indicate that loss incentives do not improve performance, contradicting 

the intuitive hypothesis.  As we describe in the Discussion, in hindsight this may not be 

surprising given the task constraints (relatively fast presentation of stimuli, verbal response 

required on every trial) and that several other studies have failed to find incentive effects on 

performance; Hess et al (2016) also did not find effects of an alternative motivation manipulation 
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on this same task. More importantly, we did not find any evidence in either actual or perceived 

performance that older adults were any more (motivational shift hypothesis) or less (heuristic 

positivity effect hypothesis) sensitive to the loss incentive.  

The higher Performance self-ratings in the loss condition were an unexpected finding, 

which we discuss in the context of the other metacognitive measures below. Before turning to 

those issues, we review the results for the other NASA-TLX subscales and post-task 

questionnaires. 

 

Figure 2-1. LNS accuracy and NASA-TLX perceived performance ratings 

 
Different colors/lines (control = black solid line, loss = red dashed line) and shapes (triangle = 

young adults (YA), circle = older adults (OA)) are used to highlight the different conditions. 

Error bars represent 95% confidence intervals. NASA-TLX: NASA Task Load Index 
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Table 2-3. NASA-TLX MLM results 

Effect 
Mental  

demand 

Physical  

demand 

Temporal 

demand 
Performance Effort Frustration 

Intercept 45.69 *** 9.32 *** 32.36 *** 74.20 *** 44.67 *** 24.97 *** 

Age -0.49  5.95 * 7.26  -14.12 *** 2.56  9.06 * 

SSlinear 10.08 *** 1.00 *** 7.30 *** -12.07 *** 9.46 *** 5.40 *** 

SSquadratic 0.33  0.09  0.77 *** -1.76 *** 0.34  0.35  

Age × SSlinear 0.51  1.59 *** 2.77 *** -1.64 ** 1.04 * 3.93 *** 

Age × SSquadratic 0.32  0.08  -0.12  0.63 * 0.47  0.02  

Incentive -2.49  -2.71  -1.09  8.28 ** 0.65  3.19  

Age × Incentive -0.37  -2.70  -0.66  -1.86  -4.24  -1.95  

SSlinear × Incentive 1.11 * 0.55  -0.86  0.90  0.65  1.53 ** 

SSquadratic × Incentive 0.24  0.20  -0.01  -0.54  0.03  -0.04  

Age × SSlinear × Incentive -0.28  -1.59 ** 0.36  -1.43  -0.60  -0.92  

Age × SSquadratic × Incentive  0.22   -0.09   0.25   0.24   0.05   0.31   

*** p < .001, ** p < .01, * p < .05, NASA-TLX: NASA Task Load Index, MLM: Multilevel 

model, SS: Set size 

 

 

Loss incentives increase the perceived demands and frustration at higher task loads but not 

the effort to meet that demand 

The main measures of interest for the NASA-TLX were the Mental Demand, Effort, and 

Frustration subscales. Hess et al. (2016) noted that the Mental Demand and Effort scales were 

especially related to the construct of engagement, both in terms of face validity and in their 

ability to predict a physiological measure of engagement (systolic blood pressure (SBP) 

reactivity). As noted in 
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Table 2-2, an intuitive “incentive increases motivation” perspective predicts that 

incentive should increase the effort people put in to maintain performance as actual demand (set 

size) increases, and may also reduce perceived demand (i.e., people may perceive the task as less 

demanding if they are strongly motivated). In contrast, a “disengagement” perspective predicts a 

lack of willingness to increase effort in response to an increase in perceived demand.  

The results were more consistent with the disengagement perspective.  For the Mental 

Demand measure, the Incentive × Set size interaction was significant (Table 2-3) with 

participants in the loss condition giving numerically lower ratings of demand until about set size 

6 and giving numerically higher ratings from set size 8. (Figure 2-2; see also S2, which shows 

the results more clearly by collapsing across age group.) Post-hoc t-tests suggested that this 

interaction is due to significant increase in ratings from set size 8 to set size 9 in the loss group 

(t(168) = -2.35, p = 0.019), but not in the control group (t(166) = -1.71, p = 0.087). In contrast, 

for the Effort measure, there was no effect of incentive (Table 2-3). In other words, despite 

perceiving greater demand, participants in the loss condition were not inclined to increase effort 

to meet that demand. 

We were also interested in the Frustration subscale, as the “positivity effect” view would 

make different predictions than the other two perspectives.  That is, if older adults ignore or 

downplay negative information in the service of regulating emotion, they might be expected to 

show less frustration than young adults (especially in the loss condition) at the higher set sizes, 

when errors and thus losses are more likely. The “disengagement” perspective predicts a 

different chain of events:  The feedback and loss information immediately after the trial is 

relatively difficult to ignore or avoid, and a resulting increase in frustration would be predicted to 

lead to subsequent, downstream disengagement.  The “incentive increases motivation” viewpoint 
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might also predict increased frustration, if that motivation or desire to achieve/retain reward is 

literally frustrated by the increase in errors, and thus losses, at higher set sizes (Angus & 

Harmon‐Jones, 2019; Carver & Harmon-Jones, 2009). 

For the Frustration subscale, set size had significant interactions with both incentive and 

age group. The 3-way interaction was not significant (Table 2-3).  In both cases, the two groups 

(young vs old; loss vs control) were largely identical at the lower, easier, set sizes, with larger 

differences between the groups appearing at the higher, more difficult set sizes (Figure 2-2).  

Age group differences in particular closely paralleled the accuracy data in when they began to 

show a separation (i.e., older adults had low Frustration scores for set sizes 2-4 and began to 

show an increase around set size 5; whereas for young adults the sharper increase occurred 

around set size 6).  In short, these data support the idea that the loss incentive increases 

frustration specifically at higher set sizes when errors are more likely to occur, and there is no 

evidence that older adults are either immune to or especially sensitive to this effect. 

The other subscales were not as incisive theoretically, but are reported (Table 2-3, 

Supplemental Material S1 and S3) for completeness, including comparison with the prior study 

by Hess et al. (2016). 
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Figure 2-2. NASA-TLX Mental Demand, and Effort, and Frustration 

  

 

Different colors/lines (control = black solid line, loss = red dashed line) and shapes (triangle = 

young adults (YA), circle = older adults (OA)) are used to highlight the different conditions. 

Error bars represent 95% confidence intervals. NASA-TLX: NASA Task Load Index 
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Loss incentives increase distraction in young adults and decrease motivation in older adults 

Figure 2-3 shows the results of directly asking participants about their focus of attention, 

and the degree to which the feedback or incentive was distracting or motivating. Older adults 

gave lower ratings for difficulty focusing attention than did young adults, replicating 

counterintuitive but typical findings in the literature, F(1, 160) = 8.47, p = .004, ηp
2= .05.   

A significant Age × Incentive interactions for the distraction question indicated that 

young and older adults had different reactions to the loss incentive feedback, F(1, 160) = 8.51, p 

= .004, ηp
2= .049. Young adults under loss incentive reported higher distraction than those in the 

control condition, t(83) = -4.89, p < .001, but this effect was not observed in older adults, t(82) = 

-1.08, p = .285. For the motivation question, we observed a significant incentive effect, F(1, 160) 

= 8.25, p = .005, ηp
2= .05 where those under loss incentive show lower motivation.  Although the 

Age × Incentive interaction was not significant, F(1, 160) = 3.40, p = .067, ηp
2= .02, the incentive 

effect was largely driven by older adults, t(82) = 3.08, p = .003, and not significant for young 

adults, t(83) = .80, p = .428.    

One caveat to these results is that they reflect participant’s answers to the direct questions 

about their responses to the incentive and feedback.  We did not see incentive effects on the more 

general measures provided by the IMI, including the Interest/Enjoyment scale (Supplemental 

Material S5). This may be due to the less targeted nature of the IMI questions and their focus on 

how fun, interesting, or enjoyable the task is rather than the participant’s inner motivation or 

desire to do well. 
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Figure 2-3. State Attention and Motivation Questionnaire 

    

Different colors/patterns (control = black filled, loss = red dotted) are used to highlight the 

different conditions for young (YA) and older adults (OA). Error bars represent 95% confidence 

intervals. ** p < .001, * p < .01. Loss incentive increased distraction for young adults, 

decreased motivation for older adults. 

 

 

Loss incentives improve the accuracy of immediate, absolute metacognitive judgments, but 

may distort relative judgments of competence for older adults 

We next conducted further exploratory analyses of how the loss incentive might affect 

participants’ metacognitive judgments.  The hypothesis that older adults ignore negative 

information predicts that older adults in the loss condition would have a weaker relationship 

between their actual and perceived (self-rated) performance.  This was not the case for the 

Performance subscale of the NASA-TLX:  Correlations between perceived and actual 

performance were moderately strong for all four groups (all r > .68 p < .001; Figure 2-4 top 

panel).   

Moreover, the metacognitive difference scores (actual performance - self-rated 

performance) were analyzed using the same MLM design as used to analyze the NASA-TLX 
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scales (see Supplemental Material S6 for the full results). The results showed that both younger 

and older adults in the loss condition in fact showed less discrepancy between their actual 

performance and perceived performance than did their counterparts in the control condition, β = -

4.84, t(165) = -2.43,  p = .016 (Figure 2-5). There was also a significant quadratic interaction 

between set size and incentive condition, β = 0.45, t(1175) = 2.22, p = .026.  Both the control and 

loss groups tended to under-estimate their performance in the lower set sizes and get close to 

accurate judgement or slight over-estimation at the higher set sizes.  The discrepancies between 

the groups appear to be greatest at the middle set sizes (SS4-7), where the loss incentive group’s 

ratings underestimated their performance less than did those of the control group.  Full MLM 

results for metacognitive difference scores are shown in Supplemental Material S6. 

A different pattern emerged for the IMI Competence rating, which was given after the 

entire task (rather than immediately after run feedback) and focused on participants’ overall 

satisfaction with their performance and whether they felt they had performed well in comparison 

with their peers.  While the other 3 groups maintained moderate correlations between this 

measure and their actual performance, this correlation was only marginal for older adults in the 

loss condition, r = .29, p = .061 (Figure 2-4).  This was significantly smaller than the correlation 

between their NASA-TLX Performance rating and actual performance (modified Fisher’s z-test, 

z = 2.37, p = .009; Steiger, 1980; calculation tool provided by Lee & Preacher, 2013). For the 

other groups, the correlations between IMI Competence and actual performance remained in the 

moderate range, all r ≥ .57, p < .001.  Comparing across groups, Fisher’s z tests showed that the 

correlation for older adults in the loss condition was significantly weaker than that of the young 

adults in the loss condition (p = .009), marginally so compared to the other two groups (both p = 

.06). 
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Figure 2-4. Relative metacognitive accuracy 

Actual Performance and On-line Perceived Performance (NASA-TLX) 

 
Actual Performance and Post-task Perceived Competence (IMI) 

 
Different colors (control = black, red = loss) and shapes (triangle = young adults (YA), circle = 

older adults (OA)) are used to highlight the different conditions. NASA-TLX: NASA Task Load 

Index, IMI: Intrinsic Motivation Inventory  
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Figure 2-5. Absolute metacognitive accuracy 

 

Black solid line and red dashed line denote control and loss condition, respectively. Error bars 

represent 95% confidence intervals. Scale on y-axis is reversed for ease of interpretation. Zero 

means accurate judgement. See S7 for the full Age × Incentive graph. SS: Set size 
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Discussion 

We examined the effects of a loss-based incentive on young and older adults’ working 

memory performance, motivation, and metacognition. Incentive did not impact performance, but 

instead increased participants’ perceptions of mental demand and their frustration at the higher, 

more demanding set sizes.  The loss incentive also increased the absolute accuracy of immediate 

metacognitive judgments, that is, participants’ ratings of how well they did compared to their 

actual performance. These results are not consistent either with the “incentive increases 

motivation” or the heuristic “older adults ignore loss information” hypotheses. Older adults were 

at least as sensitive to loss information in the immediate post-run ratings as were young adults, 

and their immediate post-run metacognitive performance ratings were particularly accurate in the 

loss condition, suggesting close attention to the loss incentive feedback. 

The results did not completely fit any of the predictions outlined in Table 2-2. An 

overview of the predictions from each of the theoretical perspectives, but overall seemed most 

consistent with the idea that, especially at the highest set sizes when errors were most common, 

loss incentive increased the perceived “costs” (mental demand, frustration) of performance.  

Somewhat contrary to the suggestion that older adults may be more sensitive to unavoidable 

negative information and/or more sensitive to such costs (c.f., Charles, 2010; Hess, 2014), the 

effects appeared to be of similar size for younger and older adults. However, other aspects of the 

results suggest that these equivalent effects occurred for different reasons, with the loss incentive 

being more distracting to young adults, more de-motivating to older adults.  The change in 

metacognitive accuracy by older adults in the loss condition from immediate, specific 

performance judgments versus later judgements of competency in the task as a whole also seems 
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consistent with the suggestion that when negative information is unavoidable in the moment, 

older adults may instead cope by reframing later on (Charles, 2010). 

Despite their increased perception of demand and frustration, as well as more accurate 

judgements of performance, participants in the loss condition did not increase their effort to meet 

that demand and improve their performance. To further explore the possibility that for older 

adults, this failure to increase effort might be related to disengagement and decreased motivation, 

we conducted additional exploratory analyses examining correlations between changes on the 

NASA-TLX Effort scale from the lowest (2) to highest (9) set size, and the post-task question 

about motivation (p-values corrected for multiple comparisons using the false discovery rate 

(FDR) approach because of the exploratory nature of the analyses). The relationship between 

effort and motivation change went in the opposite direction for older adults in the control and 

loss conditions, Fisher’s z = 2.12, p = .034.  However, this result should be considered only 

suggestive and interpreted with caution given the exploratory nature of the analyses and that the 

individual correlations did not reach significance (Kendall rank correlation coefficient for control 

condition: tau = .22, pFDR = .14; loss condition: tau = -.25, pFDR = .14). The loss-reversal pattern 

appears to be specific to older adults, and to the motivation measure:  Correlations for young 

adults did not approach significance (all pFDR > .40), and the older adult the control and loss 

incentive groups showed similar correlations between distraction ratings and increases in effort 

(control tau = -.38, pFDR = .006; loss tau = -.26, pFDR = 0.034).   

In addition, although it had not been part of our thought process in setting up the 

correlation matrix, we also observed that for the control groups, motivation and distraction 

tended to be negatively correlated (tau = -.35, pFDR = .021 for young adults; tau = -.25, pFDR = 

.07 for older adults) with the opposite pattern in the loss groups (tau = .23, pFDR = .07 for young 
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adults; tau = .55, pFDR < .001 for older adults).  This again seems inconsistent with the idea that 

older adults ignored the negative loss incentive information.  Instead, for both age groups, the 

more motivated they were by the loss incentive information, the more distracting they found it. 

 

Performance vs. subjective measures  

Contrary to initial expectations, we did not see either beneficial or detrimental effects on 

performance by either group. Figure 2-1 suggests a very small numerical advantage for the loss 

condition, but even at the set size with the largest difference the effect is quite small (d = .24). 

We originally chose this task because Hess et al. (2016) had found age and set size differences in 

a physiological measure of engagement during the task.  An earlier set of studies in our lab found 

that loss incentive reduced older adults’ performance on a measure of focused attention and 

increased their self-reported mind-wandering (Lin, 2018; Lin et al., 2019) and so we had thought 

we might see similar effects here. 

 Of course, it’s possible that our loss incentive manipulation was simply ineffective and 

inadequate. A reviewer raised the question of whether this might be the case because of the 

between-subjects design, and whether a within-session contrast with reward or neutral trials 

might be necessary to make the loss salient produce an effect. Although that explanation cannot 

be ruled out, we think it is unlikely to be the case.  First, there are the findings of effects on the 

subjective measures, suggesting that the loss incentive was indeed salient, and that the lack of 

effects on working memory performance were due to a lack of sensitivity in the measure. Other 

studies suggest that between-subjects incentive manipulations can affect performance in older 

adults:  Barber and Mather found crossover interactions for between-subjects manipulations of 

stereotype threat and gain/loss incentive on both working memory and clinical cognitive 
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assessments (Barber et al., 2015; Barber & Mather, 2013). As we have already noted, other 

datasets from our lab show that older adults’ performance can be impaired by similar between-

subjects incentive manipulations. 

Instead, although targeted experiments will be required to test it, our working hypothesis 

is that discrepancies across studies in whether they show performance differences as a result of 

incentive, especially loss incentive, may be heavily influenced by differences in the task 

constraints and proactive control requirements. Incentives appear to largely affect the 

engagement of proactive control (Chiew & Braver, 2016; Mäki-Marttunen, Hagen, & Espeseth, 

2019; general reductions in response time may be an exception). The focused-attention task used 

in our earlier study made strong demands on self-initiated, proactive processing (rare targets and 

responses, low-salience targets distinguishable only by their duration). The LNS task uses a 

relatively fast presentation of to-be-remembered stimuli (one per second) and requires a verbal 

response on each trial – literally requiring the participant to ‘engage with’ the experimenter. 

Thus, it may rely more on reactive control; the low ratings of mind-wandering and difficulty 

focusing attention seem consistent with that interpretation. Future experiments that specifically 

isolate task constraints and top-down control requirements will be needed to determine the 

plausibility of this interpretation. 

 On the other hand, the lack of performance differences helps to alleviate concerns that the 

effects we see on the subjective measures are simply downstream artifacts of poor performance.  

That is, it is difficult to say that the higher mental demand ratings (for example) by participants 

in the loss condition are simply an attempt to ‘excuse’ lower performance, since they did not in 

fact have lower performance.  
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We also examined whether the end-of-task measures might be especially influenced by 

the last few runs. This was the case for the IMI competence measure, as might be expected, 

given that the final runs are also the ones where performance is most difficult and competence 

becomes a question:  For all groups except the older adult loss group, correlations between 

performance and the IMI Competence ratings were higher for the last 3 set sizes (r = .36 - .60) 

than for the first 3 set sizes (r = -.31 - .31).  For the older adult loss group, correlations were 

consistently low (r = -.06 - .17 for the first 3 set sizes; r = .07 - .27 for the last set sizes), as 

would be expected from the results shown in Figure 2-4. There were no systematic changes in 

correlation with set size for the SAMQ Motivation or Distraction questions, or IMI 

Interest/Enjoyment measures, especially for the incentive groups.  (The young adult control 

group showed hints of such a pattern for the IMI Interest/Enjoyment measure (r = -.06 - .28 for 

the first 3 set sizes; r = .13 -. 36 for the last 3); but given fluctuations across the set sizes this 

seems unlikely to be meaningful.)  Thus, there is no evidence that the end-of-task measures of 

motivation and distraction were unduly influenced by the last few runs/highest set sizes. 

 The opposite critique may come to mind when considering age differences: Young adults 

had better performance than older adults. Of course, that is also the case in most previous studies 

of age × incentive interactions in cognitive control tasks.  The present task has the advantage that 

the range of set sizes used here allows us to examine the issue, at least for the post-run NASA-

TLX ratings. We did a follow-up analysis using only those set sizes where performance for 

young and older adults was equivalent (between 25% - 75% accuracy; set sizes 5-7 for older 

adults; set sizes 6-8 for young adults; rescaled as “low, medium and high” for each group). In 

that case the Mental Demand and Effort ratings were generally higher for young adults, whereas 

Frustration remained somewhat higher for older adults. It did not introduce any new age × 
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incentive interactions compared to the analyses reported above, although there was a trend for 

the Effort ratings of older adults in the loss condition to be especially low.  In general, comparing 

the restricted-range results to the full dataset suggests that incentive effects overall were greatest 

at the highest set sizes, when load exceeded capacity, but there was no suggestion of interactions 

with age or that age differences in performance played a role. 

 

Limitations and comparisons (or the lack thereof) with previous studies 

There are several limitations and differences from other studies that should be kept in 

mind when interpreting these results and their place in the literature, as well as strengths and 

weaknesses that are shared with other studies in this field.  First, we focused on loss incentives, 

because they are understudied, losses are thought to be increasingly important in later life (Baltes 

et al., 1999), the opportunity to avoid losses is often used to motivate older adults, and this is the 

condition that is most theoretically incisive:  The general/intuitive “incentive increases 

motivation and thus attention and performance”, heuristic positivity effect (“older adults ignore 

negative information”) and nuanced positivity effect/disengagement hypothesis all make similar 

predictions for reward conditions.  The “incentive as cognitive load” makes similar predictions 

for reward and loss incentive.  Prior studies that did examine both reward and loss effects on 

cognitive performance in young and older adults have already found patterns contradicting the 

“motivational shift” hypothesis, which appears to apply to more general orientations and choice 

behaviors, and possibly to avoidance learning.   

It is the case that we cannot rule out that “gain” incentives would have had similar results 

in the present study; the complementary criticism applies to the majority of studies that have 

focused solely on gain incentives.  Behavioral (O’Brien & Hess, 2019) and neural (e.g., Cubillo 
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et al., 2019; Paschke et al., 2015) evidence suggests that gain and loss operate through partially 

independent processes.  However, this issue needs further examination, and in general, studies in 

this field would benefit from including both conditions.  What we can say is that we did not find 

any evidence that loss incentive generally improved performance and motivation, and that older 

adults appeared to be at least as responsive to the loss incentive as were young adults.   

Second, as stated earlier, it was explicitly not our intention to do another incremental 

variation on existing studies that, besides focusing on gain effects, have with rare exception used 

trial-wise manipulations on cognitive control tasks.  We instead wanted to take the first step in 

addressing several important but understudied questions, not only of incentive type (loss, as 

noted above), but also of cognitive domain (working memory) and session-wide implementation 

of incentives.  While the differences in our approach make it difficult to compare our results 

directly to existing laboratory studies, we believe that this last aspect is especially important, 

given how performance incentives are typically implemented in everyday life.  Trial-wise 

implementations have an advantage in statistical power, but this may come at the cost of 

generalization to real-world situations (c.f., Cerasoli, Nicklin, & Ford, 2014; Deci, Koestner, & 

Ryan, 1999).   

Another reason we have specifically avoided trial-by-trial incentives in our studies is that 

the changing incentive cues and delivery of reward/loss information on every or almost every 

trial are likely to drive attention and engagement in the “bottom-up” fashion described earlier. 

Several studies have already found different incentive effects for block- or run-wise 

implementation of incentives versus trial-wise manipulations (Bruening et al., 2018; Jimura et 

al., 2010; Paschke et al., 2015); differences from session-wide effects may be even more 

pronounced (Lin, 2018).  Although they examined downstream effects of correct/error and 
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gain/loss feedback on incidental encoding during a previous task rather than incentivized 

performance, analysis by Mather and Schoeke (2011) suggest that trial-history effects could be 

an interesting compromise method to test whether, e.g., disengagement (or overarousal) builds 

up over multiple errors or losses (see also Schmitt et al., 2017).  Regardless, it seems important 

to have both types of studies in the literature to see where effects converge or diverge, and in the 

latter case to ultimately conduct targeted, parametric manipulations to understand why. 

Third, our use of subjective response measures, especially examination of potential 

effects on metacognition, is relatively novel and provides further insights into the pathways by 

which incentives may have their effects.  However, such measures come with their own 

limitations, including potential response bias, impression management, and so on.  As noted 

above, although the lack of incentive effects on performance can be seen as a limitation in some 

respects, raising questions about whether the incentive manipulation was effective, on the other 

hand, has the advantage of alleviating the concerns that the loss groups’ higher ratings of mental 

demand, frustration, and distraction (young adults) or reduced motivation (older adults) might be 

attempts to blame poor performance on those factors in retrospect.  Besides their preserved 

actual performance, participants in the loss condition also gave themselves higher and more 

accurate immediate self-ratings of performance, especially at the higher set sizes.  It seems hard 

to reconcile this greater confidence and accuracy with the idea that they were more likely to use 

increased mental demand, frustration, distraction, or loss of motivation to excuse performance 

declines. Again, what we have here is a complementary set of advantages and disadvantages 

compared to studies that have examined physiological or neural responses to incentive 

manipulations; what is ultimately needed is a combined approach. 
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Another critique that can be applied to this study and almost every other study of age × 

incentive effects is “maybe older adults just don’t care (as much) about the money”. This seems 

a bit hard to reconcile with the equivalent effects of the incentive on young and older adults for 

many of our measures. However – although it should be considered exploratory – the different 

patterns shown by young and older adults for the post-task distraction vs. motivation questions 

suggests that there may be at least some truth to this. In a larger sense, we agree entirely that 

older adults, at least those who are likely to participate in studies in our lab and the labs of other 

university-based investigators, are unlikely to find the money per se of primary interest.  We 

suspect that instead the loss incentive in particular has its power by drawing attention to errors. 

We are beginning studies to test this possibility more directly. Providing some indirect support, 

Dhingra et al. (2020) reported less behavioral and neural sensitivity to incentive magnitude 

(dollar vs. cent) in older vs. young adults.  However, in the case of losses, this was due to a 

relatively higher response to even small losses in older adults. Another important question for 

this area of study more generally is how different incentive amounts and types may affect results, 

and potentially interact with participant demographics. 

Finally, an aspect of the present study lacking in many others was our examination of 

subjective measures, both immediately and post-task.  It is interesting that younger and older 

adults showed similar incentive effects for the ratings of mental demand, performance, and 

frustration taken during the task, with age differences emerging in the more holistic, post-task 

measures. This could be seen as consistent with claims that older adults may be just as affected 

as young adults by unavoidable negative information “in the moment”, but more likely to 

respond to it with more passive strategies, and by later reframing or reappraising the situation to 

put it in a more positive light (e.g., Charles, 2010).  Future studies using instruments designed to 
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more systematically explore how metacognition and the emotional/motivational response to 

incentives is affected by the specificity (atomistic vs holistic) and temporal (during/immediately 

after performance vs somewhat later on) dimensions, as well as their interaction, will be 

important for more definitively identifying which factors exert a critical influence over these 

effects. 

 

What are the roles of “engagement” and task constraints in studies of incentive? 

As noted in the Introduction, incentives are often used (or assumed) to increase proactive control 

in an effort to improve performance (Botvinick & Braver, 2015); the “engagement” idea of Hess 

and colleagues (Ennis et al., 2014; Hess, 2014) is similar.  This leads to the question of how to 

define “engagement”.  Although Hess’s theoretical writings have not specifically addressed 

issues of top-down (proactive, goal-related) vs. bottom-up (reactive, task or stimulus related) 

factors, he has noted that he means the term to be synonymous with “effort” and emphasizes the 

idea of the choice whether or not to engage, which seems more consistent with the top-down 

interpretation. However, the degree to which engagement of this type is required likely varies 

inversely with the degree to which the task itself is inherently “engaging” because of constraints 

or stimuli that drive attention in a more bottom-up or reactive fashion.  Several fMRI studies 

indicate that incentives may have their primary effects on proactive, self-initiated control (e.g., 

whether participants engage frontoparietal regions at the point of a cue which would allow them 

to prepare for the upcoming probe vs. waiting for the probe), though this has primarily been 

demonstrated for reward incentives (e.g., Etzel, Cole, Zacks, Kay, & Braver, 2015; Jimura, 

Locke, & Braver, 2010; see Cubillo, Makwana, & Hare, 2019 for effects of loss incentives 

suggesting a shift to reactive control.).   
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Putting this together with the boundary conditions on the positivity effect noted by 

Carstensen and colleagues, when loss information is unavoidable but task constraints are high, 

older adults may react to the negative information at a subjective and motivational-emotional 

level without this drop in motivational “engagement” decreasing performance. One interesting 

prediction is that higher task constraints should lead to preserved performance at the cost of 

greater subjective demand and frustration, whereas relatively unconstrained tasks provide an 

opportunity to reduce engagement and negative subjective experience, but at the cost of reduced 

performance. This hypothesis regarding the potential role of task constraints should be regarded 

as that – a hypothesis – rather than a definitive conclusion.   

An alternative, less process-specific explanation for the differences between the studies 

might be that the present task was simply more difficult, especially at the higher set sizes. 

However, this alternative runs into some complications given that on the one hand more difficult 

tasks typically decreases mind-wandering (e.g., Baird et al., 2012; Konishi, McLaren, Engen, & 

Smallwood, 2015; see Seli, Konishi, Risko, & Smilek, 2018 for discussion of exceptions), but on 

the other hand are usually considered to be exactly the situations in which incentive and 

motivation are likely to be most important (e.g., Botvinick & Braver, 2015; Ferdinand & 

Czernochowski, 2018; Kostandyan et al., 2019).  

To our knowledge, there has not been a systematic investigation of how either incentive 

effects or the positivity effect may be impacted by changing the degree to which engagement is 

driven by bottom-up vs. top-down within the same task.  One way to differentiate these ideas 

while controlling for task difficulty might be, e.g., comparing rare-response versus frequent-

response versions of the same attention task (c.f., Staub, Doignon-Camus, Marques-Carneiro, 

Bacon, & Bonnefond, 2015), or varying retention intervals in a working-memory task. The latter 
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idea was tested in Chapter 3 (Study 2) of the current dissertation. This kind of task analysis and 

testing of parameters and boundary conditions may be an important direction for future research, 

especially as many real-world tasks are relatively unconstrained (e.g., reading, writing, 

participating in a conversation, driving) and thus may rely more on the top-down, self-initiated 

aspects of attention (Hess et al., 2011, 2018). 

 

Summary and conclusions 

The study of age differences in the response to incentives during cognitive challenging 

tasks is still at very early stages, though growing quickly.  Thus far most studies have used 

attention and cognitive control tasks, used reward incentives, and implemented incentive on a 

trial-wise basis.  We took a complementary approach (working memory task, loss incentive, 

session-wide incentive implementation), with a complementary set of strengths and weaknesses 

in our methods, design, and the conclusions that can be drawn. 

Our results suggest caution in generalizing the results of previous studies, especially to 

everyday life scenarios:  They do not support the idea that incentive generally (i.e., regardless of 

valence) increases motivation and performance even for young adults, or that older adults ignore 

negative information provided by loss incentives. Another relatively novel aspect of our study 

was the inclusion of metacognitive and self-report measures of motivation, distraction, and 

related constructs.  The loss incentive appeared to increase participants’ attention to their own 

performance, their perceptions of mental demand at higher set sizes, and their frustration at not 

being able to maintain good performance at those higher set sizes.  Interestingly, these perceived 

increases in demand and frustration at higher set sizes were not met with concomitant increases 
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in effort.  Instead, young adults reported finding the incentive distracting, whereas older adults 

found it demotivating.  

These results come with the usual caveats accompanying self-report measures, though 

supposedly more objective physiological measures have a complementary problem of somewhat 

subjective interpretation by the investigator (as opposed to the participant). That is, they are often 

related to some aspect of sympathetic arousal, but is this arousal indexing engagement or some 

other construct such as frustration or anxiety? Ideally future studies will combine these 

approaches; self-report measures may provide richer and more precise interpretations of the 

neural and physiological results, especially if combined with fine-grained analysis of 

performance results (e.g., response time, vigor (speed or force), or variability) and careful 

experiment construction to get at different cognitive, emotional, or motivational constructs.  The 

role of individual and cultural differences in attitudes towards different types and levels of 

incentives is also an understudied topic. Finally, task constraints vs. the demand for proactive, 

self-initiated top-down control may be an important but as yet somewhat understudied factor in 

determining when and how incentives may affect performance and/or subjective responses.   

In short, our study may raise as many questions as it answers. One of the most important 

questions it raises concerns the degree to which the results of previous studies can be 

generalized, especially to real-world scenarios.  However, we believe that in the long run a 

careful consideration of issues related to proactive, top-down control versus reactive, bottom-up 

attention will provide an important organizing principle for understanding the literature and 

driving it forward. 
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Chapter 3  Opposite Reactions to Loss Incentive by Young and Older Adults: Insights 

From Diffusion Modeling 

 

Introduction 

Everyday life imposes demands on working memory that can be especially challenging 

and costly to older adults. Failing to process all the information involved in an important Zoom 

meeting, financial decision, or busy traffic intersection could cost you your job, your 

independence, or even your life.  Different theoretical perspectives make different predictions as 

to how loss-based incentives might affect working memory in young and older adults, but there 

has been little direct investigation. The present study takes a step towards addressing this gap.  

Moreover, manipulation of task parameters, diffusion modeling analyses, and self-report 

measures are used to specify which aspects of cognitive-motivational processing are affected. 

Theoretical perspectives on cognition-motivation interactions in aging are relatively 

consistent in predicting that gain incentives will improve older adults’ motivation and 

performance (though possibly to a lesser degree compared to young adults), but vary 

considerably in their predictions on loss effects. The popular idea that older adults are more loss-

averse (but see Mikels & Reed, 2009; O’Brien & Hess, 2020) suggests that they should be more 

motivated to avoid losses. A similar prediction is made by motivation-shift theory, which builds 

on the observation that losses become more prevalent in later life.  Moreover, pursuing gains 

often involves investment of (cognitive, energetic, temporal, etc.) resources differentially limited 

for older adults. Thus, motivation-shift theory proposes that while young adults are more 
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motivated to achieve gains, older adults are more motivated to avoid losses (Best & Freund, 

2018; Freund & Ebner, 2005). However, while motivation-shift theory may help explain older 

adults’ preferences and choices in some situations (Byrne & Ghaiumy Anaraky, 2020; Ebner et 

al., 2006; Frank & Kong, 2008), there is little evidence that loss incentives differentially improve 

older adults’ performance. 

 Instead, several studies of loss incentive effects on cognitive tasks, especially those 

measuring proactive control or executive attention, suggest that older adults are less sensitive to 

loss incentives (e.g., Bagurdes et al., 2008; Di Rosa et al., 2015; Pachur et al., 2017; Williams et 

al., 2017, 2018). These results parallel those seen in the reinforcement-learning literature (see 

review by Samanez-Larkin & Knutson, 2015), and likewise have typically been interpreted in 

terms of the age-related positivity effect: The tendency of older adults to direct attention and 

memory away from negative information, presumably in the service of maintaining a positive 

emotional state. This interpretation would predict that older adults should be less responsive to 

loss incentive than are young adults.  However, as we describe further below, the positivity effect 

may not apply when negative information is personally relevant (English & Carstensen, 2015; 

Tomaszczyk et al., 2008) as it presumably would be for errors.  

 The third possibility – that loss incentive will reduce older adults’ motivation and 

performance – is suggested by studies of real world cognition. For example, higher anxiety about 

health or financial concerns in older adults leads to less information-seeking about those topics, 

and impaired processing of related information (e.g., Kiso & Hershey, 2017; Persoskie et al., 

2014). Likewise, older adults’ perception of the effectiveness of health messaging is more 

impacted by the degree of positive emotion elicited by gain framing, whereas young adults’ 

perception is more influenced by the negative emotion elicited by loss framing (Liu et al., 2019). 
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Older workers have stronger negative emotional reactions to making an error while working with 

computers, and are less likely than younger workers to self-initiate steps to solve the problem 

(Birdi & Zapf, 1997). Loss incentives reduce older adults’ performance on a common dementia 

screening test (Word List Memory from the CERAD; Barber et al., 2015). 

There are multiple potential mechanisms for loss-induced performance impairments in 

older adults.  First, older adults may be more upset and disrupted by errors, which are made more 

salient by losses incurred by making those errors.  Although the positivity effect suggests that 

older adults ignore negative information, the major theory behind the positivity effect describes it 

as a goal-directed process (see reviews by  Reed & Carstensen, 2012; see Barber et al., 2020; 

Carstensen & DeLiema, 2018 for discussion of overlaps and distinctions from strategic 

processes). When negative information is especially salient or self-relevant, older adults often 

pay more attention to it than do young adults, and may even be more vulnerable to its disruptive 

effects (see Charles, 2010 for review and theoretical framework; see Barber, 2020 for applied 

examples in driving, employment, and dementia assessment). 

Alternatively, loss incentives may de-motivate older adults and lead them to disengage 

from the task itself – possibly as a form of self-handicapping and to reduce emotional threat, or 

because loss incentives increase the subjective costs of task engagement (see Hess, 2014 for a 

related view).2  A third proposal is that incentives, especially loss incentives, impose distraction 

or cognitive load especially detrimental to older adults (Ferdinand & Czernochowski, 2018; 

Schmitt et al., 2017). 

 
2 The term “engagement” has been used in different ways across the literature. We use “engage” in the Oxford 

dictionary sense: “to occupy, attract, or involve” attention and cognitive processing.  Engagement may be driven to 

various degrees by effortful (aka top-down, goal driven, self-initiated, proactive) and automatic (bottom-up, stimulus 

driven, reactive) processes. We use the term “constraint” in a manner similar to Craik’s “environmental support” 

(Craik & Byrd, 1982):  A high constraint task is one that has features (e.g., salient stimuli, frequent cues) that drive 

engagement in a exogenous, bottom-up fashion; a low-constraint task relies more on self-initiation.   
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The discrepant findings of laboratory vs. real-world studies may be at least partially due 

to differences in task and incentive structure. The tasks used in most age × incentive laboratory 

studies (e.g., Attention Network Test, flanker, AX-CPT) have features that help constrain 

attention and engagement: perceptually distinct targets, fast-paced trials, and frequent responses. 

These constraints may help keep participants on-task and performing relatively well even when 

motivation is low. In contrast, everyday cognitive tasks (e.g., cooking a meal, driving, planning 

an employee work schedule) often lack these constraining features. This lack of constraint may 

make everyday tasks more reliant on self-initiation, and thus more sensitive to drops in 

motivation. 

Laboratory and real-world situations also differ in how incentives are typically presented 

and implemented. Most laboratory studies borrow the structure used in reinforcement-learning 

studies: trial-wise randomization of incentive conditions, with a cue at the start of each trial 

informing subjects of its value.  Such frequent cues may continuously draw attention back to the 

task despite low motivation. Real-world incentives typically apply to an entire session of 

performance, or even beyond. Whether you are taking a driving exam, doing your taxes, or 

solving a complicated problem at work, gains for successful performance and losses for failure 

typically apply to the final outcome, rather than each step assigned a random cue indicating 

potential loss or reward.   

The intermixed, randomized implementation of incentive used in most laboratory studies 

may also create problems for interpretation. Putatively neutral control trials are responded to 

differently if they are presented in the context of gains vs. losses (i.e., a “nongain” elicits a 

different subjective response than a “nonloss”; Idson et al., 2000); and if gain and loss trials are 

intermixed a gain is a nonloss and vice versa.  Moreover, incentives are often thought to increase 
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proactive control, but older adults do not adjust their level of control as dynamically as do young 

adults, even in non-incentivized tasks (Braver et al., 2001; see Bowen et al., 2020 for related 

evidence from a memory paradigm).  Therefore, when older adults show smaller performance 

changes in response to changing incentive than do young adults, it may be difficult to disentangle 

whether this represents reduced sensitivity to the incentive per se versus a more general age-

related impairment in dynamically modulating control. Thurm et al., (2018) noted that older 

adults’ failure to adjust response bias in accordance with trial-wise changes in reward in their 

study might reflect difficulties in adapting to changing reward context.  Even young adults can 

show large carryover effects: The response to a non-incentivized trial is quite different 

depending on whether it occurs intermixed with incentivized trials or in a block of non-

incentivized trials (e.g., Jimura et al., 2010; see Schmitt et al., 2017 for differential effects in 

older adutls). Differences between intermixed trials and between-subjects manipulations are 

likely even larger. 

To our knowledge, only two previous studies have examined loss effects on working 

memory performance in older adults (see Thurm et al., 2018; Manga et al., 2020 for gain-effect 

studies).  Both used a between-subjects incentive manipulation, but with relatively high-

constraint tasks: Barber & Mather (2013) used a sentence span task that required participants to 

verify the meaningfulness of each sentence via button press, remember the sentence-final word, 

and then at the end of the set, recite those sentence-final words to the experimenter.  Both the 

button-press and the recitation of the words to the experimenter would require the participant to 

actively engage with the task, and they did not find differential effects of gain or loss unless a 

stereotype-threat manipulation was also introduced (there was no young adult comparison 

group).  Study 1 (Chapter 2; Jang et al., 2020) in the current dissertation used a letter-number 
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sequencing task in which the experimenter spoke a random series of letters and numbers to the 

participant, who was then asked to immediately repeat them back in alphanumeric order – again 

actively engaging with the task (and experimenter) on every trial. The loss incentive reduced 

older adults’ subjective motivation, but not performance.  The lack of performance effects in this 

working memory task, despite the drop in subjective motivation, contrasted with older adults’ 

loss-induced performance impairments during a low-constraint attention task (slow-paced, rare 

targets identifiable only by different duration; Lin et al., 2019).   

We hypothesized that a working memory task with relatively low constraints, similar to 

real-world situations requiring self-initiated processing, would show loss-related performance 

impairments in older adults (see discussion in Study 1 and Jang et al., 2020). The Sternberg 

working memory task presents a set of memoranda, followed by a retention interval and then a 

probe which the participant must identify as either being a member of the memory set or a new, 

unstudied item.  It thus implements a scaled-down simulation of many real-world situations that 

require holding information in mind for a short period of time, e.g., remembering whether it’s a 

teaspoon or a tablespoon as we look away from the cookbook to our ingredients, remembering 

the next turn in our directions long enough to recognize the appropriate street sign. Although a 

response is required to each probe item, attention and engagement during the encoding and 

retention period rely on self-initiation. 

As an additional test of the possibility that task constraints determine whether older 

adults show loss-related performance impairments, we manipulated retention interval. Our logic 

was that the longer retention interval presented a lower-constraint situation, with greater 

opportunity to disengage from the task, and thus might be more sensitive to incentive effects.  

The longer retention interval was predicted to lead to greater incentive-related improvements for 
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young adults, and larger performance reductions for older adults. Of secondary interest, the 

Sternberg task allows an independent manipulation of load (number of items in the memory set), 

allowing us to test the alternative proposal that loss incentive increases cognitive load (Ferdinand 

& Czernochowski, 2018; Schmitt et al., 2017). If so, loss-induced performance reductions for 

older adults might be especially pronounced at higher set sizes. 

Our primary hypothesis was that loss incentive would have opposite quantitative effects 

on motivation, engagement, and performance for young vs older adults. There may also be 

important qualitative age differences in which processes are affected, and how. For example, 

older adults often put more emphasis on accuracy than speed compared to young adults; 

incentives can either reduce or exaggerate these differences (Di Rosa et al., 2015; Touron & 

Hertzog, 2009; Williams et al., 2018). Likewise, in recognition memory situations, including 

probe-recognition working memory tasks like the one used here, older adults often show a liberal 

bias – i.e., a bias towards incorrectly saying that unstudied items were members of the memory 

set (Huh et al., 2006). To our knowledge, the Thurm et al., (2018) study is the only incentive-

working memory study to examine potential age differences in incentive effects on bias; young 

but not older adults showed increased conservatism in response to gain incentive (see also young 

adult data in Massar et al., 2020). As noted earlier, this study used a trial-wise incentive 

manipulation and the authors speculated that the lack of incentive effects for older adults could 

reflect difficulties in switching reward context. 

To examine how loss incentive affected different processing components, we used 

diffusion modeling to estimate parameters related to the quality of the memory representation 

(drift rate), speed-accuracy tradeoffs (boundary separation), response bias, and nondecision 

factors (see Greene & Rhodes, 2020, for discussion of the advantages of this modeling approach 
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for understanding cognitive aging).  Our main hypothesis was that if the incentive affected task 

engagement, it should have its primary effects on drift rate, as motivation might affect attention 

to and quality of encoding and maintenance.  Alternatively, it could affect decision bias – for 

example, if older adults’ liberal decision bias under normal circumstances reflects motivation to 

demonstrate “good memory” – or the nondecision component, if it has a general effect on 

increasing or decreasing arousal and thus motor speed.   

We included subjective measures of motivation, distraction, and mental workload to 

inform interpretation of the performance and diffusion-modeling results.  Our main prediction 

was that the loss incentive would increase motivation for young adults, but decrease it for older 

adults.  We did not expect to find incentive effects on measures more closely related to perceived 

mental demand, effort, frustration, and similar constructs, as the relatively open-ended nature of 

the working memory task used here allows participants to adjust their level of effort according to 

their level of motivation (see Jang et al., 2020 for earlier discussion of this hypothesis and Zhang 

et al., 2021 for related data; Massar et al., 2020 for evidence that task parameters may determine 

whether performance and subjective measures align). 

To summarize, the present study begins to test competing theories and address existing 

knowledge gaps about age differences in the effects of loss incentive on working memory.  

Based on the literature and previous experiments from our own lab, we hypothesized that loss 

incentive will increase the motivation and performance of young adults, with opposite effects for 

older adults. We manipulated task parameters (retention interval, set size) and used diffusion 

modeling to identify which of several possible mechanisms (engagement, cognitive load, 

strategic biases, arousal) might underlie incentive effects, and whether those there the same for 
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both age groups.  Finally, self-report measures assessed participants’ subjective experience and 

constrained interpretation of the performance and modeling results.   

To preview our results, we found that the loss incentive had opposite effects on 

performance and self-reported motivation in younger versus older adults. The diffusion modeling 

results suggested drift rate, a proxy for the quality of the memory representation, as the primary 

locus of these effects. Contrary to our expectations, the effects of the incentive were not 

magnified with longer retention intervals.  Both age groups counterintuitively performed better 

and had higher drift rates with longer retention intervals, regardless of incentive. More detailed 

analyses revealed that these effects were specific to the correct rejection of unstudied probes.  

These latter findings, while exploratory, may help clarify the role of time in working memory.   

 

Method 

Participants 

Sixty-five (50 female) young adults and 51 (32 female) older adults recruited from the 

University of Michigan and the surrounding community were included in the analysis. See Table 

3-1 for demographics, Supplemental Material S15 for exclusion data; S23 for description of 

sample-size determination and power estimates. Participants were screened to ensure physical 

and psychological health with no history of anxiety, depression, attention deficit hyperactivity 

disorder (ADHD), or head injury, and no use of medications that could affect cognition. The 

Extended Range Vocabulary Test Version 3 (ERVT; Ekstrom, 1976) was used as a screen for 

participants who might not understand the instructions or were generally unmotivated; a 

minimum score of 9 out of a possible 48 was required. For older adults, a Mini Mental State 

Examination score (MMSE; Folstein et al., 1983) of 27 or greater was required. Young and older 
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adults received $10 and $12 per hour respectively for their participation. The study was approved 

by the University of Michigan Institutional Review Board. 

 

Design 

Age group (young, older adults) and incentive condition (control, loss incentive) were the group-

level, between-subjects variables of primary interest; set size (4, 6, 8 letters) and retention 

interval (4, 16 seconds) were within-subjects variables of secondary interest. Participants within 

each age group were randomly assigned to the control or loss incentive condition. 

 

Working Memory Task 

A Sternberg-type probe recognition task was used to measure working memory (Figure 

3-1). The task was programed using PsychoPy version 3 (Peirce, 2007). Each trial began with a 

3-second presentation of the memory set (4, 6, or 8 letters, varied randomly across trials). A 

fixation cross was then presented during the retention interval (4 or 16 seconds, varied randomly 

across trials). Then a lower-case letter appeared in the center of the screen, and participants 

pressed the “z” or “/” key to indicate whether the letter was/was not in the memory set (response 

key assignment counterbalanced across participants). There was a 3.5 seconds response time 

limit for making a response; if no response was made within this limit, the trial was considered 

incorrect. After each trial, participants were given performance feedback (trial-level accuracy 

and run-level percent correct/incorrect). Participants completed 5 runs, 30 trials each (total 150 

trials).   
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Figure 3-1. Sternberg working memory task and incentive conditions 

 

 

 

On each trial, participants viewed a set of letters, followed by a retention interval or 4 or 16 

seconds (within subjects).  They were then presented with a probe item and asked to indicate if it 

was (old) or was not (new) a member of the memory set.  Incentive (control or loss) was 

implemented between subjects; see Method for details. 
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Questionnaires 

Questionnaires were self-administered after the instructions were provided by the 

experimenter and the participants were given the chance to ask questions. 

 

Poor Attentional Control Scale 

The Poor Attentional Control (PAC) scale serves as a trait measure of attentional function 

in everyday life. It was administered before the Sternberg working memory task to avoid the 

possibility that participants’ perceptions of their performance might influence responses. The 

PAC consists of 15 items identified by factor analysis (Huba et al., 1982) from the larger 36-item 

Imaginal Processes Inventory (Singer & Antrobus, 1970). As in previous studies (Berry, 

Demeter, et al., 2014; Berry, Li, et al., 2014; Jang et al., 2020; Kim et al., 2017), participants 

completed all 36 items but analyses focused on the PAC scale. For each item, the participant 

indicated how true the statement was for them (1 = not all true of me; 5 = very true of me). 

 

Modified NASA Task Load Index 

The NASA Task Load Index (NASA-TLX) measures subjective workload experienced 

during the task (Hart & Staveland, 1988). It was administered after each Sternberg run. The 

original NASA-TLX has six subscales that ask the following: (1) How mentally demanding was 

the task? (Mental Demand); (2) how physically demanding was the task? (Physical Demand); (3) 

how hurried or rushed was the pace of the task? (Temporal Demand); (4) How successful were 

you in accomplishing what you were asked to do? (Performance); (5) How hard did you have to 

work to accomplish your level of performance? (Effort); (6) How insecure, discouraged, irritated, 

stressed, and annoyed were you? (Frustration). We added two relevant to our specific 
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hypotheses: (7) How distracted were you during the task? (Distraction) and (8) How motivated 

were you during the task? (Motivation). Participants respond using a 0 (very low) to 100 (very 

high) point scale, except for the Performance scale, which uses a “reversed” scale, 0 (perfect) to 

100 (failure). 

 

Other questionnaires 

 We included other questionnaires for exploratory analyses and to maintain consistency 

with our previous report (Jang et al., 2020).  These included the Motivation and Thinking 

Content scales from the Dundee Stress State Questionnaire (DSSQ; Matthews et al., 2002, 2013) 

and the Intrinsic Motivation Inventory (IMI; Ryan, 1982).  Because of their exploratory nature, 

we do not discuss these at length in the Results, but provide the summary data in the 

Supplemental Material S16-S21 for completeness. 

 

Procedure 

Participants first completed informed consent procedures, followed by the health and 

demographic questionnaire and the PAC questionnaire. Participants then received instructions 

for the Sternberg task and completed a practice run consisting of 10 trials of set sizes 3, 5, or 7. 

Participants had to get more than 80% correct on the practice trials to proceed to the main task. If 

not, they repeated the practice. Failure to reach criterion within three practice runs terminated the 

session. 

 After the practice run, participants in the loss incentive condition were endowed with 

$15. This money was put on the table in front of them. They were told that it was theirs to keep 

for good performance (in addition to the hourly compensation for study participation), with 30 
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cents deducted for every incorrect trial. Performance feedback (trial-level accuracy and run-level 

percent incorrect) and incentive feedback (the amount of money lost in the current run) were 

given after each trial. At the end of each run, the experimenter removed the amount lost and 

placed the new amount on the table. Participants in the control condition received identical 

performance feedback but without incentive.  Participants then completed the modified NASA-

TLX questionnaire with reference to the run they had just completed. After the final run of the 

Sternberg task and the corresponding NASA-TLX questionnaire, they completed the remaining 

questionnaires. They next completed the MMSE (older adults only) and ERVT. Lastly, they were 

thanked, debriefed, and given the hourly compensation for their participation. 

 

Analyses 

 Our central question was whether the incentive manipulation would have opposite 

effects (increases for young adults, decreases for older adults) on overall performance, diffusion 

model parameters (especially drift rate), and motivation in young vs older adults. Secondary 

analyses of within-subjects factors (different trial types) and subjective measures guided 

interpretation of the main analyses. We used Bayesian multilevel models (Kruschke, 2014; Lee 

& Wagenmakers, 2014). Unless otherwise noted, all analyses used the analysis package default 

non- or weakly-informative priors. Orthonormal contrasts ensured that the intercept 

corresponded to the unweighted grand mean and that the marginal prior was same for all factor 

levels (Rouder et al., 2012; Singmann, 2020). A random intercept for each participant controlled 

for individual variability (Field et al., 2012).   
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Our description of the results in the main text focuses on those analyses relevant to 

testing our conceptual hypotheses.  The full modeling results, marginal means, power analyses, 

and other details can be found in the Supplemental Material. 

Analyses were conducted in the probabilistic programming language Stan (Carpenter et 

al., 2017; Stan Development Team, 2018) using the wrapper package brms (Bürkner, 2017) in R 

version 4.0.2 (R Core Team, 2017). The brms package uses a Markov chain Monte Carlo 

(MCMC) sampling procedure to compute posterior samples. We fit the models with three chains 

and 6,000 iterations, 2,000 of which were the warm-up phase. To assess convergence, we made 

sure that the R-hat convergence diagnostic was close to 1 and less than 1.1, visually inspected the 

chains, and verified that the bulk effective sample size was greater than 100 times the number of 

chains (Bürkner, 2016; Kruschke, 2014). To validate the models, we performed posterior 

predictive checks to inspect whether the data generated from draws from the posterior show 

patterns consistent with those observed in the actual data. These convergence checks and 

posterior predictive checks were adequate for the reported models. However, the reaction time 

model had relatively low bulk effective sample size; to address this, we increased the number of 

iterations by 2,000 for this model. For the fixed effects, we report the point estimate and 95% 

credible interval of the posterior samples of the regression coefficients. Effects were considered 

significant if this 95% credible interval did not include zero. For the set size analyses, the 

regression coefficient βSS1 describes the difference between set size 6 vs. set size 8 and βSS2 the 

difference between set size 4 vs. set sizes 6 and 8. We set the contrast this way because set size 4 

is likely sub-span for both groups, so the contrast between set size 4 vs. set sizes 6 and 8 

represents the transition from sub-span to or above span, whereas the contrast between set size 6 
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vs. set size 8 represents changes in difficulty at or above span. All other factors have two levels 

and were treated as categorical variables.  

 

Accuracy and response time analyses 

Age group (younger, older adults), incentive condition (control, incentive condition), set 

size (4, 6, 8 letters), retention interval (4, 16 seconds), and all interaction terms were included as 

predictors. For accuracy, a logistic regression model was fitted since outcomes are binary (0 = 

incorrect, 1 = correct). For reaction time, linear regression was fitted on raw reaction time data 

for correct trials3.  

 

Diffusion model analysis 

 We conducted diffusion model analyses to examine the effects of loss incentive on 

different processing components. Diffusion models integrate accuracy and response time data to 

understand decisions in two-choice tasks (Ratcliff, 1978; Ratcliff et al., 2004; Ratcliff & Smith, 

2004; Wagenmakers, 2009). Diffusion models assume that evidence available to the decision 

maker is represented in a one-dimensional quantity. This evidence accumulates over time and the 

decision is made when accumulated evidence reaches a threshold of either option. Among 

various extensions of the diffusion models (see Ratcliff & Smith, 2004, for review), we used the 

Wiener diffusion model since it has the simplest complete form (Wabersich & Vandekerckhove, 

2014) and includes the four parameters of primary interest.  

 
3 In addition to raw reaction time data, log transformed reaction time data were fit to the models to adjust for general 

slowing in older adults’ responses. We report the raw reaction time results in the main text since the results were 

mostly consistent with log transformed reaction time results. Results for log transformed data are reported in the 

Supplemental Material. 
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The four parameters of the Weiner diffusion model are drift rate, boundary separation, 

initial bias, and non-decision time. Drift rate represents the quality of the stimulus representation. 

This corresponds to how fast evidence is accumulating. In our model, the upper boundary was 

set as making the “old item” response and the lower boundary was set as making the “new item” 

response. Therefore, drift rates for old item trials have positive values (evidence accumulating 

towards the upper boundary), whereas drift rates for new item trials have negative values 

(evidence accumulating towards the lower boundary). For ease of comparison, we report 

absolute values of drift rates in this paper. Boundary separation represents how much evidence 

needs to be accumulated before making a response. Boundary separation is related to speed-

accuracy trade-offs: higher values indicate an emphasis on accuracy (requiring more evidence 

despite longer time for accumulation); lower values indicate emphasis on speed (faster responses 

despite less accumulated evidence). Initial bias (bias, hereafter) represents the bias towards the 

“old” or “new” response before evidence accumulation begins. The product of the bias and the 

boundary separation decides the starting point in evidence accumulation. A bias equal to 0.5 

indicates an unbiased starting point, halfway between the lower and upper boundaries. A bias 

greater than 0.5 indicates bias towards the upper boundary (making an “old item” response), and 

a bias less than 0.5 indicates bias towards the lower boundary (making a “new item” response). 

Since our task had equal numbers of new and old item trials, the optimal value of the bias 

parameter was 0.5. Lastly, the non-decision time parameter represents the time spent on 

processes not related to evidence accumulation, such as motor response time and encoding time.  

We used a hierarchical Bayesian approach to fit the data to the Wiener diffusion model, 

using the RWiener (Wabersich & Vandekerckhove, 2014) package. We generally followed the 

estimation procedures introduced in Singmann (2017). Drift rate was predicted by the probe type 



 

 81 

(new, old item trial), age group, incentive condition, set size, retention interval, and all 

interaction terms. Boundary separation and bias were predicted by age group, incentive 

condition, set size, retention interval, and all interaction terms. Non-decision time was predicted 

by age group, incentive condition, and their interaction.  

For bias, rather than the default non- or weakly-informative priors, we used a normal 

distribution with mean of 0.5 and standard deviation of 0.2 as a prior, based on the estimates 

from a prior study (Spaniol et al., 2011). Non-responses due to exceeding response time limit in 

the task were excluded from the analysis (0.5% of the total data).  

 

Modified NASA-TLX analysis 

Age group, incentive condition, and their interaction were included as predictors.   
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Results 

Table 3-1. Demographics and self-reported Poor Attentional Control 

  

Young  

Control 

(n = 31, 24 f) 

Young 

Loss 

(n = 35, 26 f) 

Old 

Control 

(n = 24, 17 f) 

Old 

Loss 

(n = 28, 15 f) 

Age      

 Mean 19.26 19.51 68.83 68.04 

 SD 1.71 2.12 4.86 5.75 

Years of Education     

 Mean 13.27 13.59 17.71 17.07 
 SD 1.43 1.90 1.76 1.94 

ERVT      

 Mean 17.63 20.04 31.15 29.82 
 SD 5.83 4.67 6.92 7.29 

PAC Mind-Wandering     

 Mean 14.97 14.31 13.50 11.43 
 SD 3.45 3.31 3.01 2.38 

PAC Boredom     

 Mean 13.97 13.57 10.62 11.25 
 SD 3.20 2.90 2.87 3.69 

PAC Distractibility     

 Mean 15.74 16.31 13.08 12.79 
 SD 3.79 3.40 3.41 3.42 

MMSE      

 Mean n/a n/a 28.79 28.68 
 SD n/a n/a 0.98 1.22 

f, female; ERVT, The Extended Range Vocabulary Test; PAC, the Poor Attentional Control 

scale; MMSE, Mini-Mental State Examination 
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Behavioral results 

Figure 3-2. Accuracy data 

All (Accuracy) 

 
New item (Correct rejection) 
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Old item (Hit) 

 
 

Top panels show accuracy for all trials. Middle and bottom panels show accuracy for new and 

old item trials, respectively. Control condition: black circle, Loss condition: red triangle. Error 

bars show 95% confidence interval of the data. 
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Table 3-2. Reaction time data 

Age Condition Set size All items New items Old items 

YA Control 4 1.027 [0.957  1.096] 1.028 [0.949  1.107] 1.025 [0.961  1.089] 

6 1.119 [1.037  1.201] 1.140 [1.051  1.229] 1.097 [1.011  1.183] 

8 1.153 [1.066  1.239] 1.180 [1.085  1.275] 1.126 [1.040  1.212] 
      

YA Loss 4 0.987 [0.925  1.048] 0.984 [0.921  1.048] 0.990 [0.926  1.053] 

6 1.090 [1.019  1.160] 1.135 [1.053  1.218] 1.044 [0.979  1.109] 

8 1.117 [1.046  1.188] 1.149 [1.074  1.224] 1.086 [1.011  1.161] 
      

OA Control 4 1.265 [1.166  1.363] 1.293 [1.192  1.393] 1.236 [1.136  1.335] 

6 1.413 [1.321  1.506] 1.456 [1.355  1.556] 1.372 [1.276  1.467] 

8 1.464 [1.363  1.566] 1.494 [1.382  1.606] 1.437 [1.335  1.538] 
      

OA Loss 4 1.243 [1.171  1.315] 1.243 [1.157  1.329] 1.245 [1.175  1.315] 

6 1.349 [1.263  1.434] 1.373 [1.266  1.480] 1.330 [1.258  1.401] 

8 1.396 [1.311  1.481] 1.402 [1.302  1.502] 1.396 [1.316  1.475] 

Mean and 95% confidence interval for reaction time data are shown. Only correct trials were 

used to compute these summaries. All items: both new and old item trials. 

 

 

Our primary question concerned the effect of the loss incentive on performance and 

motivation in young and older adults.  Secondarily, we hypothesized that the effects of the 

incentive, and age differences therein, might be larger for the longer retention interval.  The latter 

hypothesis was not supported:  The retention interval factor did not interact with the effects of 

incentive (Accuracy: βRI1 × Incentive1 = 0.042 [-0.086  0.171], βRI1 × Age × Incentive1 = -0.067 [-0.249  

0.114]; Reaction time: βRI1 × Incentive1 = 0.011 [-0.001  0.023], βRI1 × Age × Incentive1 = 0.001 [-0.016  

0.017]). Instead, the retention interval had surprising effects that were independent of the 

incentive manipulation.  We report those findings in a separate section.  The analyses reported 

below focus on our primary predictions for the age × incentive interaction, with the secondary 

question of whether those effects may be greater at larger set sizes. 
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Overall accuracy data (Figure 3-2) replicated typical effects of age and set size:  Young 

adults outperformed older adults (βAge1 = -0.426 [-0.579  -0.275]; marginal model estimate4 of 

young adults = 0.939 [0.932  0.946], older adults = 0.894 [0.882  0.906]), and there was a decline 

in performance with increasing set size (βSetsize1 = -0.548 [-0.625  -0.473], βSetsize2 = 1.391 [1.256  

1.533])5.  See S1 for full model results. 

As predicted, the incentive manipulation had opposite effects on the performance of 

young and older adults, (βAge1 × Incentive1 = -0.402 [-0.617  -0.195]). Young adults in the loss 

condition had higher accuracy (marginal model estimate = 0.953 [0.944  0.960]) compared to 

those in the control condition (0.923 [0.910  0.934]). Older adults in the loss incentive condition 

(0.880 [0.862  0.897]) tended to show decreased accuracy compared to those in the control 

condition (0.907 [0.890  0.922]), with a small overlap.  

For the reaction time data (Table 3-2) there was no incentive effect (βIncentive1 = -0.031 [-

0.086  0.023], nor was there an age × incentive interaction on reaction time (βAge1 × Incentive1 = -

0.008 [-0.086  0.071]). We replicated typical effects of slower responses for older adults, and at 

larger set sizes (see S2 for full model results). 

In short, the basic behavioral data suggest that incentive had opposite effects on accuracy 

for younger and older adults, and no significant effects on response time. The patterns were 

consistent when we analyzed the effects separately for new and old item trials (middle and 

bottom panels in Figure 3-2; full model results and marginal means in S1-S2 and S6-S7). Across 

analyses there were a few interactions involving set size, but no systematic pattern suggesting an 

increase or decrease in incentive effects as a function of cognitive load.  

 
4 The marginal model estimates are the mean and 95% credible interval of the posterior predictive values (model 

predictions) of the outcome variable based on posterior samples of the parameters in the model. 
5 As described in the Methods, βSS1 tests the difference between set size 6 vs. set size 8 and βSS2 tests the difference 

between set size 4 vs. set sizes 6 and 8. 
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Diffusion model results 

Figure 3-3. Diffusion model parameters 

(a) Drift rate 

 

 
 

(b) Boundary separation 
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(c) Decision bias 

 
 

(d) Non-decision time 

 
(a) Drift rate. Absolute values are shown for the ease of comparison. (b) Boundary separation. 

(c) Decision bias. Dashed line (0.5) means no bias. (d) Non-decision time. Control condition: 

black circle, Loss condition: red triangle. Error bars show 95% credible interval of marginal 

model estimates.  
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Drift rates 

The drift rate parameter was used to examine the effects of loss incentive and other 

experimental factors on the quality of memory representation (Figure 3-3a). Making a “new 

item” response corresponded to hitting the lower boundary. Making an “old item” response 

corresponded to hitting the upper boundary.  Thus, successful performance requires a negative 

drift rate for new item trials and a positive drift rate for old item trials. For ease of comparison, 

we report absolute value of the drift rate estimates for all probe types.    

Our main question was whether the loss incentive would have differential effects on the 

quality of the memory representation (drift rate) for younger vs. older adults. This was indeed the 

case (Figure 3-3a).  The size of the incentive effect for each age group varied by probe type (old, 

new item), (βProbeType1 × Age1 × Incentive1 = -0.305 [-0.370  -0.242]).  Young adults showed a larger 

beneficial effect of the incentive for old item trials than for new item trials (old: control = 1.270 

[1.184  1.356], loss = 1.629 [1.544  1.714]; new: control = 1.487 [1.399  1.577], incentive = 

1.699 [1.611  1.787]); whereas for older adults loss-induced impairments were larger for new 

item trials than for old item trials (old: control = 1.011 [0.923  1.099], loss = 0.949 [0.867  

1.033]; new: control = 1.453 [1.356  1.545], incentive = 1.222 [1.139  1.306]). See S4 for full 

model results. 

We did not find strong evidence for the alternative hypothesis that loss incentive might 

increase cognitive load for older adults, and thus show its most detrimental effects at the highest 

set sizes.  Instead, although the results were complex, they tended in the opposite direction, 

especially for young adults’ response to new items. Given the complex patterns of incentive × set 

size interaction seen here and in other studies (e.g., Manga et al., 2020; Thurm et al., 2018), we 
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do not discuss them further.  Full model results are presented in Supplemental Material (S4 for 

the contrasts for this and other diffusion model parameters; S8 and S14 for the marginal means).  

 

Boundary separation 

 The boundary separation parameter was used to examine whether loss incentive affected 

speed-accuracy tradeoffs (Figure 3-3b).  We replicated standard age effects (e.g., Starns & 

Ratcliff, 2010, 2012): older adults set higher decision boundaries (greater emphasis on accuracy 

vs speed) than did younger adults (βAge1= 0.058 [0.009  0.107]) with a slight overlap in the 

marginal model estimates (young adults = 1.873 [1.787  1.961], older adults = 2.034 [1.936  

2.141]). We did not find evidence that the incentive affected the speed-accuracy tradeoff for 

either group (βIncentive1 = -0.003 [-0.050  0.046]; βAge1 × Incentive1 = -0.033 [-0.103  0.039, c.f.  Chiew 

& Braver, 2011; Thurm et al., 2018). 

 

Response bias 

We next examined whether loss incentive introduced a bias toward old or new responses 

(Figure 3-3c).  There was a trend towards an age × incentive interaction, though it did not reach 

traditional significance levels (βAge1 × Incentive1 = -0.068 [-0.139  0.004]). Specifically, as shown in 

Figure 3-3c, older adults in the loss incentive condition showed less bias towards “old item” 

responses (0.520 [0.502  0.537]) compared to those in the control condition (0.556 [0.537  

0.576]), with minimal overlap.  There was no incentive effect in younger adults (control = 0.517 

[0.500  0.534], loss = 0.515 [0.498  0.531]). This suggests the loss incentive may have reduced 

the typical liberal bias seen in older adults, but should be interpretatively cautiously given the 

marginal results and that this was not one of our original predictions. 
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Non-decision time 

 We examined the non-decision parameter to ask whether loss incentive affected 

processes (e.g., motor speed) not related to the decision-making (Figure 3-3d). We replicated 

standard effects of longer non-decision times for older adults (Ratcliff et al., 2001; Theisen et al., 

2021; βAge1 = 0.144 [0.078  0.207]; young adults = 0.535 [0.503  0.569], older adults = 0.655 

[0.611  0.702]). There was no incentive effect (βIncentive1 = 0.003 [-0.064  0.075]) nor age × 

incentive interaction (βAge1 × Incentive1 = -0.024 [-0.109  0.064]). 

 

Modified NASA-TLX results 

 Our primary interest in examining the NASA-TLX data was to see if subjective 

experience differed by incentive condition and if those effects interacted with age group.  In a 

previous study with a high-constraint task and little opportunity for disengagement (the 

experimenter spoke letters and numbers to the participant, who had to immediately recite them 

back in alphanumeric order), we found that loss incentive increased frustration and level of 

perceived demand, but not the effort to meet that demand (Jang et al., 2020).  In discussing those 

results, we proposed that task constraints may mediate whether motivation effects are more 

evident in performance or perceived demand:  In highly constrained tasks, performance is less 

reliant on self-initiated engagement, and thus loss-incentive effects may be more evident in 

subjective measure such as perceived demand. The opposite might be true in less-constrained 

tasks, such as that used here, where participants can escape increased perceived demand by 

reducing their performance.  With the caveat that the tasks differ in several ways, the results 

were consistent with those predictions:  The incentive had performance effects, but no effect on 
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the mental demand and frustration subscales that had shown effects in Jang et al. (Full model 

results and marginal means for all subscales in Supplemental Material S5 and S12). 

 There was an age × incentive interaction on two subscales less related to perceived 

demand, the self-reported performance subscale (βAge1 × Incentive1 = -5.892 [-11.589  -0.188]) and 

the newly-added motivation subscale (βAge1 × Incentive1 = -9.419 [-16.035  -2.779]).  The patterns 

for the self-report, perceived performance subscale paralleled the working memory accuracy 

data: Younger adults in the loss condition reported numerically higher success in the task 

compared to those in the control condition (control = 76.164 [71.574  80.739], loss = 79.832 

[75.558  84.031]), whereas older adults showed the opposite pattern (control = 72.688 [67.645  

77.984], loss = 64.574 [59.863  69.300]). There was also a significant age effect on self-reported 

performance (βAge1 = -6.667 [-10.819 -2.608]): Younger adults reported higher success in the task 

compared to older adults (young adults = 77.998 [74.872  81.088], older adults = 68.631 [65.162  

72.065]).  In short, incentive and age had similar effects on actual and self-perceived 

performance. 

The age × incentive interaction on the motivation subscale suggested that loss incentive 

increased motivation for younger adults (control = 65.487 [60.326  70.553], loss = 76.694 

[71.814  81.634]), but decreased motivation for older adults (control = 84.049 [78.016  89.984], 

loss = 76.026 [70.166  81.889]). There was also a significant main effect of age (βAge1 = 6.098 

[1.615  10.773]), in the opposite direction as that seen for the self-reported performance 

subscale: Younger adults reported lower motivation in the task compared to older adults (young 

adults = 71.091 [67.624  74.691], older adults = 80.038 [76.012  84.111]).  
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Retention interval effect 

Figure 3-4. Accuracy data (Retention interval) 

All (Accuracy) 

 
New item (Correct rejection) 
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Old item (Hit) 

 
 

Top panels show accuracy for all trials. Middle and bottom panels show accuracy for new and 

old item trials, respectively (collapsed across control and loss incentive conditions). Shorter 

retention interval (4 s): gray circle, Longer retention interval (16 s): black triangle. Error bars 

show 95% confidence interval of the data. 
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Table 3-3. Reaction time data (Retention interval) 

Age RI Set size All items New items Old items 

YA Short 

(4 s) 

4 0.994 [0.950  1.038] 0.988 [0.939  1.037] 0.999 [0.954  1.043] 

6 1.121 [1.068  1.174] 1.187 [1.122  1.252] 1.061 [1.010  1.113] 

8 1.167 [1.109  1.225] 1.219 [1.158  1.279] 1.118 [1.055  1.182] 

      

YA Long 

(16 s) 

4 1.017 [0.966  1.068] 1.020 [0.963  1.077] 1.015 [0.965  1.065] 

6 1.086 [1.028  1.143] 1.094 [1.031  1.156] 1.077 [1.016  1.137] 

8 1.101 [1.044  1.157] 1.113 [1.049  1.177] 1.088 [1.031  1.146] 

      

OA Short 

(4 s) 

4 1.247 [1.189  1.305] 1.251 [1.189  1.314] 1.244 [1.183  1.305] 

6 1.424 [1.361  1.488] 1.480 [1.399  1.561] 1.377 [1.316  1.438] 

8 1.491 [1.425  1.556] 1.530 [1.449  1.611] 1.458 [1.395  1.522] 

      

OA Long 

(16 s) 

4 1.260 [1.197  1.323] 1.279 [1.207  1.351] 1.238 [1.176  1.300] 

6 1.334 [1.267  1.402] 1.353 [1.275  1.432] 1.318 [1.253  1.383] 

8 1.368 [1.297  1.440] 1.375 [1.298  1.452] 1.367 [1.292  1.442] 

Mean and 95% confidence interval for reaction time data are shown. Only the correct trials 

were used to compute these summaries. RI: retention interval. All items: both new and old item 

trials.  
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Figure 3-5. Diffusion model parameters as a function of retention interval 

(a) Drift rate 

  
 

(b) Boundary separation 

  
 

(c) Bias 
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(a) Drift rate. Absolute values are shown for the ease of comparison. (b) Boundary separation. 

(c) Decision bias. Dashed line (0.5) means no bias. Shorter retention interval (4 s): gray circle, 

Longer retention interval (16 s): black triangle. Values are collapsed across control and loss 

incentive conditions. Error bars show 95% credible interval of marginal model estimates. 

 

 

As explained in the Introduction, our original motivation for the retention interval 

manipulation was the hypothesis that a longer retention interval would create greater opportunity 

for the effects of incentive (whether positive or negative) to manifest. This hypothesis was 

incorrect.  The retention interval factor did not interact with incentive condition.  

Instead, the longer retention interval counterintuitively led to higher accuracy (βRI1 = 

0.099 [0.007  0.188]) and shorter RTs (βRI1 = -0.034 [-0.042  -0.025]) (Figure 3-4 and Table 3-3; 

accuracy: short RI 0.915 [0.906  0.922], long RI 0.925 [0.917 0.932]; RT: short RI 1.243 [1.211  

1.275], long RI: 1.195 [1.163  1.227]). The effects appeared somewhat larger for older adults.  

The interaction with age was not significant for accuracy (βAge1 × RI1 = 0.078  [-0.046  0.205]), but 

the response-time effect was greater for older adults (βAge1 × RI1 = -0.021 [-0.033  -0.009]).   

A possible explanation of the benefits of longer retention interval is that the longer 

retention interval might allow greater rehearsal, and thus a stronger memory representation, for 

old item trials. However, the empirical data do not support this explanation:  It was the correct 

rejection of new items that benefitted from the longer retention interval (accuracy:  βRI1 = 0.512 

[0.323  0.729]; RT: βRI1 = -0.052 [-0.064  -0.040]).  Old items showed the usual pattern of 

forgetting over time (accuracy:  βRI1 = -0.142 [-0.258  -0.025]; RT: βRI1 = -0.019 [-0.030  -0.007])  

(Figure 3-4 and Table 3-3; Supplemental Material S1, S2, S6, and S7 provide full model results 

and marginal means). 
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The diffusion model analyses (Figure 3-5; Supplemental Material S4) indicated a 

significant retention interval effect on drift rate (βProbeType1 × RI1 = 0.049 [0.004  0.095]). The 

beneficial retention-interval effects on drift rate were specific to correct rejection of new items 

(shorter RI = 1.364 [1.307  1.422], longer RI = 1.566 [1.511  1.621]). Drift rate for old items was 

not significantly different as a function of RI, though effects were in the expected direction 

(shorter RI = 1.266 [1.212  1.322], longer RI = 1.163 [1.107  1.219]). This retention interval 

effect on drift rates for the rejection of new items was more prominent for older adults  

(βProbeType1 × Age1 × RI1 = 0.067 [0.004  0.131]; Figure 3-5a).  

Model estimates of boundary separation suggest that compared to the short RI, the long 

RI encouraged greater emphasis on speed versus accuracy, with some overlaps (βRI1 = -0.023 [-

0.035  -0.012], shorter RI = 1.984 [1.914  2.057], longer RI = 1.920 [1.852  1.990]; Figure 3-5b).   

This does not appear to result from participants strategically favoring a “new item” response 

after the longer RI.  Instead, the results were numerically in the opposite direction, with the bias 

parameter tending towards more bias toward responding “old” after the longer retention interval 

than in the shorter retention interval with slight overlaps (βRI1 = 0.036 [0.004  0.067], shorter RI 

= 0.521 [0.510  0.532], longer RI = 0.533 [0.523  0.544]). Though these bias effects visually 

appeared more prominent in older adults (Figure 3-5c), the age × retention interval interaction 

did not reach statistical significance (βAge1 × RI1 = 0.039 [-0.003  0.083]). 

To summarize, the key – though unexpected – finding here was that performance was 

counterintuitively better after the longer retention interval.  This effect was driven by better 

correct rejection of new items, and the diffusion analyses suggested that the primary mechanism 

was stronger evidence discriminating the probe from the memory set after the longer retention 

interval, rather than an increased bias to call the probe “new”.  As we outline in the Discussion, 
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these results may have implications for current discussions on the role of time in working 

memory (see below).  Given their unexpected and exploratory nature, they should be considered 

hypothesis-generating, not confirmatory. 
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Discussion 

 Working memory demands are part of everyday life.  Failure to meet those demands can 

incur losses, especially for older adults.  The present study contributes to our understanding of 

how loss incentives affect young and older adults’ working memory. We found that loss 

incentive increased young adults’ motivation and performance, with opposite effects for older 

adults.  Modeling analyses identified drift rate, a proxy for the quality of the memory 

representation, as the primary locus of these effects, and self-report measures contextualize and 

constrain interpretation.  

 The effects on performance and subjective motivation, rather than mental demand or 

frustration, were consistent with our hypothesis that the present task would allow participants to 

modulate performance in accordance with their level of motivation.  Likewise, effects were 

concentrated on drift rate, a measure of the quality of the memory representation, rather than 

bias, speed-accuracy tradeoffs, or nonspecific factors. These patterns suggest that the loss 

incentive affected participants’ engagement in the task, perhaps in part by affecting how much 

effort they put into forming the memory representation.   

We did not find the predicted amplification of incentive effects at the longer RI. Our 

original logic was that the longer RI would be a lower-constraint situation allowing greater 

manifestation of incentive-motivation effects (more rehearsal for motivated subjects, more 

disengagement and mind-wandering for de-motivated subjects). However, other aspects of the 

results suggested that such active maintenance processes were not a major factor in this task (see 

also Souza & Oberauer, 2018, 2020).  Instead, the counterintuitive benefits of the longer RI may 

have more general implications for understanding the effects of time on working memory. 
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Age differences in the response to loss incentive 

 As described in the Introduction, different theoretical perspectives suggest competing 

hypotheses about age differences in the effects of loss incentive. While incentive effects were 

somewhat smaller for older adults, suggesting reduced responsivity, overall our results aligned 

with frameworks predicting loss-induced reductions in older adults’ motivation and performance.  

We cannot definitively identify the underlying mechanisms, but the secondary measures and 

questionnaire data help guide interpretation.  Older adults in the loss condition did not give 

higher frustration ratings, as one might expect if they had greater negative arousal.  Nor did we 

find support for the “cognitive load” idea:  Neither incentive effects nor the age × incentive 

interaction increased with set size, nor did older adults in the loss condition report greater 

distraction or perceived mental demand.  Instead, loss incentive reduced self-rated performance 

and motivation for older adults.  This seems consistent with the possibility that the loss incentive 

caused older adults to focus on their errors and take a negative view of their performance, de-

motivating them and leading them to disengage from the task itself, further worsening their 

performance. 

 The highly salient experience of loss in our study may play an important role.  That is, 

the actual experience of loss may be important in depressing older adults’ motivation and 

performance, and may have a greater – or even a qualitatively different – effect than the 

description of loss incentive at the start of the task. Some patterns in the data suggest that this 

may be the case: While for young adults the effects of incentive were evident from the first run, 

for older adults the two incentive groups had similar results for accuracy, self-rated performance, 

and motivation on the first run, with the loss-induced drop appearing in the second run and 

maintained afterwards (Supplemental Material S13).   
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The age × incentive × run interaction did not reach statistical significance, so the idea that 

experiencing the loss was a critical factor is a hypothesis for future research, not a strong 

conclusion.  This hypothesis is also suggested by evidence from studies with intermixed, trial-

wise incentive structures indicating that losses or gains affect performance and 

neurophysiological responses on subsequent non-incentivized trials (e.g., Bruening et al., 2018; 

Chiew & Braver, 2013; Jimura et al., 2010; see Dhingra et al., 2020; Paschke et al., 2015 for 

evidence that losses may have more generalized effects than gains, especially for older adults). 

Interestingly, in one of the only studies we are aware of in which older adults performed better 

under loss- than gain-incentive, the incentive was delivered at the end of the task, not during 

performance (Horn & Freund, 2020). Moreover, the incentivized task was a prospective memory 

task performed simultaneously with an ongoing task, consistent with motivation-shift theory’s 

emphasis on how gains and losses interact with age differences in task and goal prioritization.   

In the Introduction, we discussed the motivation-shift, positivity effect, and 

disengagement perspectives as competing views.  Given the pattern of results across studies, it 

may be useful to consider whether they are instead complementary perspectives, explaining 

different aspects and stages of motivation-cognition interactions.  Motivation-shift theory may be 

especially relevant for how older adults prioritize tasks and goals, especially when there are 

competing options. The positivity effect, older adults’ tendency to direct attention away from 

negative information, seems to be the most applicable to characterizing older adults’ reduced 

responses to loss-incentive cues in in reinforcement learning and performance studies.  

At the cue stage, the negativity associated with losses is still hypothetical and abstract, 

making it potentially easier for older adults to ignore.  When the loss is actually experienced, 

older adults are just as, or even more, reactive (Bowen et al., 2019; Kircanski et al., 2018; 
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Samanez-Larkin & Knutson, 2015).  This is consistent with an important caveat made about the 

positivity effect:  It is a goal-directed process.  Older adults are not expected to direct attention 

and memory away from highly salient or self-relevant negative information (see reviews by 

Carstensen & DeLiema, 2018 and Reed & Carstensen, 2012). Reactivity to negative self-relevant 

information at the outcome stage may disrupt performance and motivation on subsequent trials 

or lead older adults to disengage to distance themselves from those negative emotions (Barber et 

al., 2015 for a review of the disruptive effects of age- and self-relevant negative feedback on 

“real world” measures and career outcomes; Charles, 2010; Hess, 2014). 

Although it was not one of the frameworks we originally considered, during the review 

process it was pointed out that the results might be relevant to regulatory focus theory:  the idea 

that performance is best when incentive structures map onto an individual’s sensitivities to the 

presence or absence of positive outcomes (in which case reward incentives should be more 

effective) or negative outcomes (in which case loss incentives should be more effective; Shah et 

al., 1998; see Barber, 2017  for discussion of how in aging it may interact with stereotype threat).  

On the one hand, young adults’ improvement under loss incentive might be interpreted as 

evidence that they were more prevention-focused than older adults.  However, this is difficult to 

interpret, as our study was not designed to address regulatory-focus theory, and in at least some 

cases young adults show greater regulatory focus overall than do older adults (Lockwood et al., 

2005 ). Thus, we don’t think the present dataset can speak clearly on this question.  However, 

combining the modeling approach and balanced incentives with independent measures and 

manipulations (e.g., stereotype threat) of regulatory focus could be an interesting direction for 

future research. 
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Which processing components are most affected by the loss incentive in young and older 

adults? 

 The diffusion modeling results provide insights into how incentives may affect working 

memory processes in young and older adults. The primary effects were on drift rate, thought to 

represent the quality of the memory representation and its match with the probe. For young 

adults, the incentive-related improvement in drift rate was larger for old items than for new 

items.  This suggests that for young adults, incentive enhanced the encoding and/or maintenance 

of studied items, consistent with the incentive-related increase in motivation on the NASA-TLX.  

In contrast, for older adults, the loss-related reduction of drift rate was primarily for new 

items.  Older adults under loss incentive also failed to show the increased liberal response bias 

(bias towards calling items “old” when uncertain) typically seen on recognition tasks (Huh et al., 

2006; Spaniol et al., 2011; Trahan et al., 1986).  Older adults’ liberal response has been 

attributed to reductions in controlled processing at both encoding and retrieval, and may also 

partially reflect a motivation to exhibit “good” memory, colloquially more associated with 

successful remembering of old items than rejection of new items (see Bowen, Marchesi, et al., 

2020 for evidence that motivation influences response bias) When combined with the loss-

induced decrease in self-rated performance and motivation for older adults, these results suggest 

that the loss incentive led older adults to devalue and disengage from the task more generally, 

perhaps as a way to avoid the negative emotions associated with making errors on a memory 

task.  Studied items may be less sensitive to these effects, as their match to the probe item 

provides a powerful retrieval cue.  Incentive did not affect boundary separation or non-decision 

time for either age group, suggesting it did not influence speed-accuracy tradeoffs or overall 

arousal. 
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Better performance at longer retention intervals: Recognizing the old vs. rejecting the new 

 The results for the retention interval (RI) manipulation initially seem quite surprising: 

Better accuracy and faster reaction times at the longer delay. A closer look revealed that this 

improvement was due to improved correct rejection of new items.  For old items, effects were in 

the expected direction, worse performance at the longer delay.  The specific benefit to new items, 

along with the random, unpredictable intermixing of short and long retention intervals, make it 

unlikely that the beneficial effects of longer RIs are due to strategic differences in encoding or 

maintenance (e.g., rehearsal) processes. 

 Importantly, the diffusion modeling analyses indicated that faster and more accurate 

rejection of new items at the longer RI was not the result of a greater bias to call items “new”.  

Instead, the benefits were driven by higher drift rates at the longer delay.  For old items drift rate 

is conceptualized as the quality of the memory representation and its match with the probe 

(Ratcliff & McKoon, 2008).  Thus, for new items, one might think of it as the quality of the non-

match - that is, how distinct the probe item is from the memory set. 

 What constitutes the basis of this distinctiveness?  The most obvious answer is time, or 

the context changes that occur with the passage of time.  Most models of working memory focus 

on the ability to correctly recognize or recall studied items, and whether the forgetting of those 

items is more likely caused by interference or decay (see reviews by Baddeley, 2012; D’Esposito 

& Postle, 2015). However, some emphasize the contributions of context to short-term and 

working memory, with time – or more properly, the internal and external changes that occur over 

time – being a critical context (see Polyn & Cutler, 2017 for a concise review). Perhaps most 

relevant is a recent modification of the context retrieval model (Lohnas et al., 2015) to examine 

age effects, including those in working memory (Healey & Kahana, 2016).  According to this 
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conceptualization, context drifts slowly over time, and studied items become associated with the 

context in place at encoding.  If an “old” probe (one matching a studied item) is presented, 

successful recognition occurs if it reinstates that prior context.  “New” probes are correctly 

rejected as such if their associated context representation is sufficiently different.  If context 

drifts over time, a longer delay between encoding and the probe should result in a more 

differentiated and distinct context, and thus an easier rejection of the new item – exactly the 

results obtained here. 

 These results should be considered with the usual caveats about unexpected findings, but 

they suggest an interesting testing ground for theories of working memory.  It can be difficult to 

determine whether an old item is forgotten because of decay, interference, or context changes, 

some of which may interact, and which are likely affected by processes at encoding and during 

maintenance. New items by definition lack a short-term representation to encode, decay, or 

maintain, and thus could provide an illuminating alternative perspective.  

 

Limitations and future directions 

 The failure to find the expected interaction between RI and incentive is one obvious 

limitation.  It may be that the conceptual hypothesis regarding incentive and engagement is 

incorrect. Alternatively, RI was the wrong manipulation to target engagement, given ongoing 

debates about the role of rehearsal and other active maintenance processes in working memory 

(e.g., Hakim et al., 2020; Oberauer, 2019; see Constantinidis et al., 2018 and Lundqvist et al., 

2018 for opposing neuroscience perspectives). Well-established manipulations or indices of self-

initiated engagement and control on other processing components (e.g., deep vs shallow 

encoding, familiarity vs recollection at retrieval) should be employed in future studies to provide 
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a more thorough test of engagement and constraint as mediators of incentive effects (see Bowen 

et al., 2020; Geddes et al., 2018; Spaniol et al., 2014 for related work in long-term memory). 

 Our central hypothesis – that the loss incentive would improve the motivation and 

performance of young adults, while decreasing it for older adults – received more support.  Some 

limitations relevant to this hypothesis are prevalent in almost all studies in this domain, such as 

the cross-sectional age group comparison, and the question of whether monetary incentives have 

a similar relevance to young and older adults.  Likewise, while we have argued that the structure 

of our task and incentive manipulation may bear closer resemblance to real-world incentivized 

performance situations than some previous studies, they are all “laboratory tasks” and the 

generalization to real-world situations remains to be tested.  Other limitations and strengths 

complement the strengths and weaknesses of previous studies.  A major difference between our 

methods and that of many recent studies of incentive effects on cognitive performance is that we 

used a session-wide, between-subjects manipulation, whereas most recent studies use a trial-

wise, within-subjects manipulation.  Those within-subjects designs are more efficient, but 

potentially reduce generalization to real-world performance, and as noted earlier there is 

increasing evidence for carryover and incentive-context effects that distort estimates of trial-

specific effects. Our design makes complementary tradeoffs.  

Another major departure from most previous work is the focus on loss, rather than gain.  

This can be viewed both an innovation and a limitation.  Studies focusing on either incentive 

type are equally subject to the criticism that it is not possible to rule out that “gain” or “loss” 

effects are more general results of incentive, regardless of valence.  Future studies should ideally 

include both to clarify when gain and loss have congruent events, when they have the opposite 

effects on the same processes and when they operate via different mechanisms entirely. The 
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present study still makes a unique contribution:  Gain incentives typically produce improvement 

for both young and older adults, occasionally with different magnitudes or on different 

performance metrics (e.g., speed vs accuracy).  Our manipulation of loss incentive produced 

opposite effects for the two groups.  Moreover, losses are theoretically incisive due to competing 

predictions from different perspectives on age differences on motivation (see Yee et al., 2021 for 

further discussion of unique insights to be gained from studies using losses and other aversive 

incentives).   

 

Summary and conclusion 

The present work contributes to understanding incentive-cognition interactions and basic 

processes in working memory. We found that loss incentive was effective in improving 

motivation, actual performance, and self-perceived performance in young adults, with opposite 

effects for older adults.  Diffusion modeling analyses provided evidence that the primary effects 

were on the quality of the memory representation (drift rate), rather than strategic bias or speed-

accuracy tradeoffs, or nondecision processes (e.g., overall motor speed) that might reflect 

differences in arousal.  With the usual caveats, the subjective measures enriched and constrained 

interpretation of the performance data, with primary effects on self-rated performance and 

motivation, rather than frustration, distraction, or mental demand. 

Our attempt to test the hypothesis that task constraints influence whether incentive effects 

manifest more in performance or subjective measures was not successful.  Instead, the retention-

interval manipulation revealed an intriguing pattern regardless of age or incentive group: Better 

performance, specifically faster and more accurate correct rejections, at the longer retention 

interval.  The major impact was again on the quality of the memory representation, in this case 
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the efficiency with which a “new” probe could be differentiated from the memory set.  This 

finding is unexpected and should be replicated, but seems consistent with models of working 

memory that emphasize the role of temporal context.  More generally, it suggests that looking at 

the fate of “new” items may be an under-explored avenue for understanding working memory. 

Barrouillet et al. (2018) note that “it is unwise to aim at identifying a unique source to a 

complex phenomenon like working memory forgetting”.  The same likely applies to age 

differences in the response to incentive. The present results seem consistent with the idea that 

older adults become de-motivated and disengage when faced with loss incentive, rather than the 

motivation-shift or positivity effect views. However, as described above, we suspect that these 

ideas are best viewed as complementary, rather than competing.  An important challenge for the 

field is a more systematic understanding of when each may apply how to translate that 

understanding to benefit the real-world performance of both young and older adults.    
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Chapter 4 Computationally Rational Strategies for Integrating Working Memory and 

Reinforcement Learning: A Bounded Optimality Approach  

 

Introduction 

Behavior results from the integration of environmental stimuli and internal processes. 

Moreover, no task is “process pure” – almost any behavior involves multiple cognitive 

processes. How those processes are integrated depends on the stable traits of the individual, their 

current cognitive-emotional state, and the situation. How can we understand these complex and 

dynamic interactions, especially when they lead to suboptimal results? When we see differences 

across the lifespan, to what degree do they reflect relatively fixed cognitive limitations vs. 

potentially more malleable processes such as adaptations to the age-related declines in the 

cognitive systems? 

As we go through life, many situations require us to make choices and learn through trial 

and error which choices are the most likely to lead to good results.  This kind of choice learning 

is a good example of how our cognition and behavior results from a mix of internal processes as 

well as environment and task variables. Recent studies have highlighted the joint contribution of 

working memory (WM) and reinforcement learning (RL) in reward learning (Collins & Frank, 

2012, 2018; Rmus et al., 2021; Viejo et al., 2015, 2018; Wimmer & Poldrack, 2022). WM is 

faster than RL in terms of storing information; however, WM is more capacity-limited and 

interference-sensitive than RL.  Both of these processes play into our learning of different choice 

options, but how much we rely on each may depend both on our abilities and the situation. 
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 Collins & Frank (2012, 2018) provided a computational framework for estimating the 

WM/RL tradeoff—i.e., how much an individual relies on working memory (WM) compared to 

reinforcement learning (RL)—in a choice learning task. In the task, people were asked to learn 

the rewarding action for the associated stimulus. Importantly, the number of stimulus-action 

associations (set size 1-6) varied across runs to manipulate the task load.  If the amount of 

information to be learned is within WM capacity and is likely to be used within a few seconds, 

the adaptive strategy is to rely more on WM than RL. However, if the amount of information to 

be remembered, or the duration for which it must be remembered, exceeds WM capacity, WM 

becomes less effective than RL. In such cases, the adaptive strategy is to increase reliance on RL. 

Collins and Frank modeled this task by including both a WM and RL component, as well as a 

mixture weight parameter, w, that represented the relative contribution of WM as opposed to RL 

on a trial-level choice.  

The current study builds off the Collins & Frank model, but asks in more detail how 

abilities and demands play into the tradeoffs that people make. Although how to define working 

memory “capacity” (or if one should even use that term) remains controversial (see discussion by 

Wilhelm et al., 2013), from a functional and empirical perspective, there are clear limitations on 

working memory performance that differ across individuals and groups (Jonides et al., 2008; 

Miller, 1956; Unsworth & Engle, 2007).  Knowing the limitations of WM – how much 

information it can hold – is critical for judging whether WM-RL tradeoffs are ‘adaptive’ and in 

accordance with the limitations of that system. Therefore, one important novel feature of the 

current study is that we measured the set size-specific bounds in WM using an independent WM 

task and a separate model fitting procedure (Figure 4-1B).  This allows us to make more specific 

predictions for different groups as a function of task load.   
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First, we can ask whether people adapt to their working memory limitations: Our 

hypothesis is that as working memory load increases, people will adaptively shift to increased 

reliance on RL in a way that reflects how well their own WM and RL systems are functioning 

(Figure 4-1A & Figure 4-1B). In addition to asking whether people are adaptive in shifting from 

WM to RL, we can also ask the more precise question of whether they make that shift at the 

optimal point to balance their abilities with the task demands, or do they shift “too early” (at too 

low a set size) or “too late” (at too high of one)?  To ask this more rigorous question, we use a 

bounded optimality approach (Lewis et al., 2014). Bounded optimality analysis provides a 

principled way of deriving the computationally rational strategy that leads to maximum utility in 

a task given the specific level of bounds in the information processing systems. Notably, this 

analysis reframes individual and group differences research in a way that does not center the 

behavior of a college-age adult as the normative standard and considers the different strengths 

and limitations that may be present across different populations (e.g., developmental stages, 

clinical groups). Further, when behavior is suboptimal, it can shed light on the relative 

contributions of the individuals’ cognitive limits vs. their strategies or the task. We first 

conducted this bounded optimality analysis on the whole group to see if the general population is 

bounded optimal in their strategy and performance (Figure 4-1C). 

Finally, we ask how ability and age differences may affect the adaptations to cognitive 

limitations. On average, older adults have reduced working memory abilities compared to young 

adults (Borella et al., 2008; Nilsson, 2003; Old & Naveh-Benjamin, 2008; Spencer & Raz, 1995; 

Verhaeghen et al., 1993; Wingfield et al., 1988), but there are also other important differences 

between young and older adults such as age differences in dopamine reward systems (Radulescu 

et al., 2016; Samanez-Larkin et al., 2007), as well as behavioral and neural compensation (Davis 
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et al., 2008; Reuter-Lorenz & Cappell, 2008). Therefore, we further examined whether people 

adapt to their own bounds, whether we see this adaptation across different age groups, and 

whether the adaptation is different in different age groups (Figure 4-1D). 
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Figure 4-1. Overview of the study 
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Method 

Participants 

We recruited 53 young adults (age 20-25), 53 middle-aged adults (age 45-50), and 53 

older adults (age 70-75) from an online database Prolific (https://prolific.co/). A total of 159 

participants who met the inclusion criteria were included in the analysis. Inclusion rules were age 

(20-25, 45-50, or 70-75), no ongoing mental health/illness/condition, identification of country of 

residence as US or UK (for IRB compliance), and passing performance criteria. See Table 4-1 

for demographics and Supplemental Material S10 for exclusion data. Participants were 

compensated at an hourly rate of $9.50/hour. The study was approved by the University of 

Michigan Institutional Review Board. 

 

https://prolific.co/
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Figure 4-2. Experimental tasks 

 
A. An example of two trials in the choice learning task. B. An example of one trial in set size 2 

block in the working memory task. 
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question mark on the top of the screen. While the stimulus was on the screen, participants were 
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“L” keys using their index, middle, and ring finger, respectively. Then a feedback message 
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deterministic. The subsequent trial started after a 650-millisecond inter-trial interval. The number 

of stimulus-action associations (set size) was 1, 2, 3, 4, 5, or 6 and varied randomly across runs. 

Each stimulus appeared 9 times in a run, and the stimuli appeared in random order. As in Collins 

and Frank (2018), the number of runs for set sizes 1-6 was in order 3, 6, 4, 3, 3, and 3. The 

images used in the task were from the Multilingual Picture databank (Duñabeitia et al., 2018). 

The internal consistency reliability of the choice learning task estimated using the coefficient 

alpha for the trial data (Cronbach, 1951; Cronbach & Shavelson, 2004) was 0.91 (95% CI: 0.84-

0.97). 

 

Working Memory Task 

The working memory task was used to measure individual-level and group-level 

limitations in working memory and make predictions for the choice learning task. Participants 

completed the working memory task within three days before or after the choice learning task 

(the order of the tasks was randomized). The stimuli, possible actions, and the set sizes used in 

the working memory task were the same as the choice learning task. As shown in Figure 4-2B, at 

the beginning of a trial, an image and a visual cue for a keypress (1x3 cells with one of the cells 

colored black) appeared in a box with a black outline. Participants were asked to press the key 

indicated by the visual cue (response limit: 7 seconds). Making the key press response changed 

the color of the box outline to purple or orange. The combined stimulus (image, key, outline 

color) remained on the screen for 2 seconds, and participants were instructed to remember the 

associations.  After repeating these steps for all sets (set size 1-6), a probe with the image and the 

color appeared. The participants’ job was to press the correct key associated with the given 

image and the color in the probe within 3.5 seconds. Set size randomly varied across runs. As in 
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the choice learning task, the number of runs for set sizes 1-6 were in order 3, 6, 4, 3, 3, and 3. 

The internal consistency reliability of the working memory task estimated using the coefficient 

alpha for the trial data (Cronbach, 1951; Cronbach & Shavelson, 2004) was 0.89 (95% CI: 0.82-

0.95).   

 

Procedure 

When participants signed up for the study on Prolific, they first completed an informed 

consent procedure. They then received instructions for the first task (either choice learning or 

working memory tasks; task order randomized). After completing the first task, participants were 

invited back to complete the other task within three days. 

We used an individual’s performance at the lowest set size (set size 1) as our exclusion 

criteria to screen out careless participation for both of our tasks. For the working memory task, 

individuals with average accuracy lower than 90% in set size 1 were excluded from all analyses. 

For the choice learning task, individuals who did not achieve 90% average accuracy at the 4th 

iteration or beyond in set size 1 runs were excluded from all analyses. See Supplemental Material 

S10 for exclusion data. 

 

Computational Models 

Choice learning model 

A trial-level response in the choice learning task is modeled as a random sample with a 

probability vector (Pchoice) for possible actions—i.e., “J”, “K”, or “L” keypress. The critical 

assumptions of this model are (1) Pchoice is the weighted sum of the policy computed from the 

WM system (PWM) and that of the RL system (PRL), and (2) this mixture weight differs for 
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different set sizes. The weight given to PWM and PRL at each set size is wset size and (1-wset size), 

respectively (higher values: more reliance on WM). 

Pchoice  = ( wset size * PWM ) + ( (1- wset size) * PRL ) 

Choicetrial ~ Categorical( Pchoice ) 

 

WM system: We assume that (1) the WM system is noisy and (2) the noise level differs 

for different set sizes. A trial-level WM policy (PWM) is a probabilistic rule of the WM system 

for choosing an action in response to a stimulus at a given trial. The PWM is a weighted sum of 

the correct probability vector (Pcorrect; see below for details) and the noise vector (Pnoise = [0.333, 

0.333, 0.333]). The weight given to the noise vector at each set size is εset size.  

PWM = ( (1 - εset size) * Pcorrect ) + ( εset size * Pnoise ) 

Notably, a novel component of the current study compared to previous work by Collins et 

al. (Collins & Frank, 2012, 2018; McDougle & Collins, 2021)was that working memory 

limitations (εset size parameters) were not estimated within this model. Instead, they were 

estimated using a separate fitting procedure using a structurally similar independent working 

memory task but without the choice-learning component.  

Pcorrect is computed as follows: First, for each stimulus s and action a at trial t, the 

memory value Mt+1(s, a) is updated upon encoding the outcome (1 if correct, -1 if incorrect) 

following this formula:  

Mt+1(s, a) = outcomet 

Then, Pcorrect is computed by transforming Mt(s, a) to a probability vector using a softmax 

function (M(s, a) is multiplied by 50 to model the deterministic nature of working memory): 

Pcorrect = exp(50 * M(s, a)) / Σi(exp(50 * M(s, ai)) 
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RL system: A trial-level reinforcement learning policy (PRL) is a probabilistic rule of the 

RL system for choosing an action in response to a stimulus at a given trial. We use a classic RL 

model to compute PRL. For each stimulus s and action a at trial t, the expected value Qt+1(s, a) is 

learned upon receiving reward feedback (rt = 1 for correct, 0 for incorrect) following this formula 

(Q values are initialized as 1/Nchoice, where Nchoice = 3): 

Qt+1(s, a) = Qt(s, a) + ⍺ * ( rt - Qt(s, a) ) 

Here, the learning rate (⍺) is a free parameter that decides how fast the RL system will learn 

from prior experiences. PRL is computed by transforming the expected value Qt(s, a) to a 

probability vector using a softmax function: 

PRL = exp(β * Q(s, a)) / Σi(exp(β * Q(s, ai)) 

The exploitation bias (β; inverse temperature, softmax beta) is a free parameter deciding the 

degree to which differences in expected values are translated into a more deterministic choice. 

 

Working memory model  

The goal of the working memory model is to estimate the working memory limitations 

for each experimental group which will be used to model the WM system in the choice learning 

model introduced above. The parameters of this model are estimated using the external working 

memory task data. An identical model is used to model the WM system in the choice learning 

model. 

We used the Bayesian hierarchical modeling approach to estimate the parameters of the 

models proposed above. In this approach, group-level hyperparameters are added on the 

individual parameters (Gelman et al., 2013; Kruschke, 2014). This hierarchical structure reduces 

the effects of sampling variation. The hierarchical parameter settings and their priors were 



 

 131 

declared as suggested in Ahn et al., (2017). Complete model scripts are available on our OSF 

page (https://osf.io/2vds9/). For the model fitting procedure, we used the R programming 

language (version 4.1.0; R Core Team, 2021) and the ‘rstan’ package (version: 2.21.2; Stan 

Development Team, 2021). For sampling posteriors, we used the No-U-Turn sampler variant of 

Hamiltonian Monte Carlo (Hoffman & Gelman, 2011; the default algorithm in rstan) with four 

chains, drawing 2000 samples from each, and discarding the first 1000 samples. See 

Supplemental Material S8 and S9 for robustness checks and sensitivity checks (i.e., posterior 

predictive checks).  

 

Analyses 

The analysis plan was pre-registered (https://osf.io/by5hd). To examine the effect of set 

size on the WM-RL trade-off, we reported the posterior distribution (with the mean and 95% 

credible interval) of the group-level mixture weight parameter (wset size: the proportion of reliance 

on WM) for each set size. For statistical inference on when people shift from reliance on WM to 

reliance on RL, we compared the highest density interval (HDI) of the pairwise difference 

between the mixture weight at set size 1 (wset size1), which is assumed to represent complete 

reliance on WM, to that of the other set sizes (wset size = 2, 3, 4, 5, 6). The lowest set size k at which 

the HDI of the difference score (wset size1 - wset size k) distribution does not contain zero was 

considered the shifting point. 

To examine the effect of WM differences on the WM-RL trade-off, we categorized 

people into three groups (low, medium, high-performance group, n = 53 per each group because 

prior work, for example, McDougle & Collins (2021), suggests this number will give reasonable 

estimates) based on their performance on the working memory task. We fit each group’s data 

https://osf.io/2vds9/
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separately to our working memory and choice learning models. We report the posterior 

distributions of the group-level mixture weight parameter (wset size) for each WM performance 

group. For testing whether a lower performance group will begin to shift from reliance on WM 

to reliance on RL at lower set sizes than a higher performance group, we estimated the shifting 

point (see the above paragraph for details) for each WM performance group. We reported if the 

shifting points are different for different groups. 

To test the effect of age on WM bounds, we fit each age group’s data separately to our 

working memory model (Age group: young, middle-aged, older adult group, n = 53 per each 

group). We report the posterior distribution of the group-level WM noise parameter (εset size: the 

proportion of the noise in WM policy) for each set size. For statistical inference on whether an 

older group has lower WM ability than a younger group, we examined if the HDI for the 

comparison across age groups (at each set size) does not overlap zero. 

As a secondary individual differences analysis, we examined the correlation between an 

individual’s age and their average posterior mean of the WM noise estimates across set sizes (Σset 

size(εi, set size), i = 1, …, N, set size = 1, 2, …, 6). 

Since we confirmed that the older adult group has higher WM noise than the middle-aged 

adult group (see Results section), we further tested if the older adult group shows earlier shifts 

from WM to RL than the middle-aged adult group. The procedure was identical to the proposed 

analyses for the WM capacity groups described above except that we use different age groups 

here. 

To test if the different age groups use bounded optimal WM-RL trade-off, we will 

compare the estimated wset size (how much individuals actually rely on WM compared to RL) and 

the bounded optimal w*set size (how much individuals should be relying on WM compared to RL 
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in order to get maximum reward from the task conditional upon their WM and RL ability). 

Bounded optimality analysis (Lewis et al., 2014) provides a principled way of asking whether 

groups use the strategies that will lead to maximum performance in the choice learning task 

given their bounds in information processing systems (i.e., WM and RL). The first step of this 

analysis was to measure the bounds/limitations of a cognitive system. We proposed to use an 

external working memory task and model to measure the set size-specific WM noise for each 

group. We chose to use set size-specific noise to represent WM limitations on the assumption 

that adding more items to working memory increases noise (and thus decreases the accuracy and 

reliability of the system), either because people do not encode larger sets due to limited time, 

greater inter-item interference in representation and retrieval, or a combination of both  

(Anderson & Reder, 1999; Oberauer, 2009).  

The key assumption in this study was that the set size-specific WM noise is the critical 

bound that should constrain how individuals should balance WM and RL in the choice learning 

task. If the WM noise is very high at a certain set size to the extent that WM policy is less 

accurate than RL policy, participants should shift to relying more on RL. Using the bounds in 

WM (i.e., set size-specific noise) and RL (i.e., learning rate, softmax beta) estimated for each 

group, we derived the optimal balance between RL and WM that leads to maximum utility in the 

choice learning task by simulation. This bounded optimal strategy (w*set size) was then used for 

simulating bounded optimal behavior for that group – that is the best possible performance we 

can expect from this group, given their estimated WM capacity and RL learning rate. For each 

possible mixture weight value with 0.01 interval (i.e., 0.00, 0.01, 0.02, …, 1.0), we estimated the 

average accuracy from the 100 simulated experiments. The last step was to compare the bounded 
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optimal prediction with the observed behavior. To the extent that the predicted behavior 

corresponds to observed behavior, the behavior was explained as bounded optimal.  

We report (1) the bounded optimal mixture weight value (w*set size), (2) the 95% CI of the 

estimated mixture weight parameter (wset size), (3) the bounded optimal performance, and (4) the 

observed performance (data). Inference on whether the group used bounded optimal strategies or 

not can be made by testing if the 95% CI of the estimated mixture weight overlaps with the 

derived bounded optimal weight. The bounded optimality analysis was conducted (1) on one 

group including all individuals, (2) separately for different WM performance groups, and (3) 

separately for different age groups. 
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Results 

Table 4-1. The number of subjects and mean age for each group 

    Age group WMC group 

    Young Middle age Old Low Med High 

N (female)  53 (28) 53 (34) 53 (28) 53 (26) 53 (32) 53 (32) 

Age (SD)  22.5 (1.86) 47.5 (1.78) 72.0 (1.73) 49.0 (21.8) 48.4 (20.1) 44.7 (19.3) 
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Table 4-2. Posterior mean and 95% CI of the mixture weight parameter at each set size for 

different populations 

      Posterior mean and 95% CI   
Difference HDI compared 

to set size 1 (95% CI) 
  Set size Mean Lower CI Upper CI  Lower CI Upper CI 

All participants              
  1 0.96 0.94 0.98    

  2 0.79 0.75 0.83  0.13 0.22 
  3 0.30 0.24 0.37  0.60 0.72 
  4 0.21 0.18 0.25  0.70 0.79 
  5 0.21 0.17 0.25  0.70 0.79 

    6 0.28 0.23 0.32   0.64 0.73 

WM capacity groups             
 Low        

  1 0.97 0.93 1.00    

  2 0.68 0.58 0.77  0.19 0.39 
  3 0.13 0.09 0.17  0.79 0.89 
  4 0.19 0.14 0.25  0.71 0.84 
  5 0.33 0.27 0.40  0.57 0.72 
  6 0.44 0.38 0.51  0.45 0.60 
 Medium        

  1 0.94 0.90 0.98    

  2 0.78 0.71 0.84  0.09 0.24 
  3 0.37 0.28 0.47  0.47 0.68 
  4 0.27 0.22 0.33  0.60 0.74 
  5 0.26 0.20 0.32  0.62 0.76 
  6 0.30 0.23 0.38  0.56 0.73 
 High        

  1 0.95 0.91 0.98    

  2 0.77 0.71 0.84  0.10 0.25 
  3 0.68 0.58 0.78  0.15 0.37 
  4 0.31 0.24 0.38  0.56 0.72 
  5 0.15 0.11 0.21  0.73 0.86 

    6 0.22 0.16 0.29   0.66 0.81 

Age groups               
 Young adults       

  1 0.96 0.91 0.99    

  2 0.71 0.64 0.78  0.17 0.33 
  3 0.39 0.30 0.48  0.47 0.66 
  4 0.22 0.16 0.29  0.66 0.81 
  5 0.25 0.18 0.32  0.64 0.79 
  6 0.20 0.15 0.25  0.69 0.82 
 Middle age adults       

  1 0.97 0.93 0.99    

  2 0.79 0.73 0.86  0.11 0.25 



 

 137 

  3 0.47 0.36 0.58  0.38 0.61 
  4 0.25 0.19 0.31  0.65 0.78 
  5 0.17 0.12 0.22  0.73 0.85 
  6 0.26 0.20 0.32  0.64 0.79 
 Older adults        

  1 0.95 0.91 0.98    

  2 0.82 0.76 0.89  0.06 0.20 
  3 0.12 0.08 0.17  0.77 0.89 
  4 0.20 0.15 0.26  0.68 0.81 
  5 0.25 0.19 0.32  0.63 0.78 

    6 0.41 0.32 0.49   0.46 0.64 

CI: Credible intervals 

 

  



 

 138 

Figure 4-3. The average accuracy of the working memory task and the choice learning task in all 

participants 

  

Error bars show standard errors. 
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Figure 4-4. WM/RL trade-off in all participants 

 

The posterior distributions of the group-level mixture weight parameter (the proportion of 

reliance on WM as opposed to RL) for each set size. Vertical lines show the mean of the 

posterior, and the shaded areas show 95% credible intervals. 
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Figure 4-5. Bounded optimality analysis for all participants 

 

The pink circle indicates performance (y-axis) if using the bounded optimal strategy (x-axis: 

mixture weight; higher values: more reliance on WM). The grey diamond shows actual 

performance (y-axis) and empirical estimates of mixture weights (x-axis; shading 95% credible 

intervals). The thick solid line indicates hypothetical (simulated) performance across possible 

mixture rates. 
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All analyses were preregistered. Table 4-1 shows the participants’ demographic 

information, and Figure 4-3 and Supplemental Material S1 show behavioral data in the working 

memory task and the choice learning task. Our first question concerned whether people (across 

all groups) adaptively adjust how they combine WM and RL in choice learning and to which 

extent their combination is bounded optimal. We first fit the trial-level data from the independent 

working memory task to estimate set size-specific noise for this population. We defined this set-

size specific noise to be the WM bounds of this population. As expected, WM noise increased 

with increasing set sizes (see Supplemental Material S3 and S4 for the posterior distributions and 

summary of WM bounds). 

Importantly, when we estimated the empirical and bounded optimal mixture weights, it 

was assumed that the WM system had the set size-specific noise bounds we measured from the 

independent task/model above (the bounds in the RL system were estimated within the choice 

learning model). In our preregistered analysis plan, we had assumed that the mixture weight at 

set size 1 would represent full reliance on WM. As shown in Figure 4-4, people shifted away 

from full reliance on WM at set size 2 (the HDI of the pairwise difference between the mixture 

weight at set size 1 and all the other set sizes did not contain 0; see Table 4-2 for details). From 

set size 3, people began to rely more on RL than on WM (i.e., w < 0.5; wset size 3 = 0.30 [0.24  

0.37]). 

Bounded optimality analysis suggested that such dominance of RL from set size 3 is 

adaptive as it is optimal given the bounds of this population to fully rely on WM up to set size 2 

and fully rely on RL from set size 3 (Figure 4-5). However, except for at set size 1, the degree to 

which people relied on WM vs. RL was not exactly at the optimal point. Specifically, people 

started to shift toward RL too early (set size 2) than they should be shifting to get maximum 
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accuracy (set size 3). Moreover, people still utilized WM at set size 3 and above (about 20-30%) 

even though they could have performed better by relying more on RL, as shown in Figure 4-5. 

See Supplemental Material S3 for the posterior estimates of all parameters. See Supplemental 

Material S8 and S9 for robustness and sensitivity checks of the models. 
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Figure 4-6. The average accuracy of the working memory task and the choice learning task in 

different working memory capacity groups 

 

 

Error bars show standard errors. 
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Figure 4-7. WM/RL trade-off in low, medium, high WM capacity groups 

 

A: Low-capacity group. B: Medium-capacity group. C: High-capacity group. The posterior 

distributions of the group-level mixture weight parameter (the proportion of reliance on WM as 

opposed to RL) for each set size. Vertical lines show the mean of the posterior, and the shaded 

areas show 95% credible intervals. 

 

 

 

A. Low capacity group B. Medium capacity group C. High capacity group
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Figure 4-8. Bounded optimality analysis for low, medium, and high-capacity groups 

A. 

    

B. 
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C. 

  
A: Low-capacity group. B: Medium-capacity group. C: High-capacity group. The pink circle 

indicates performance (y-axis) if using the bounded optimal strategy (x-axis: mixture weight; 

higher values: more reliance on WM). The grey diamond shows actual performance (y-axis) and 

empirical estimates of mixture weights (x-axis; shading 95% credible intervals). The thick solid 

line indicates hypothetical (simulated) performance across possible mixture rates. 
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Next, we examined how people with different WM bounds varied in how they combined 

WM and RL and in the extent to which their combination was bounded optimal. We first 

categorized participants (young, middle-aged, older adults combined) into the low-, medium-, 

and high-capacity groups using their average behavioral performance in the working memory 

task (Figure 4-6, Supplemental Material S3). There was no significant association between the 

working memory capacity group and the age group (chi-square = 5.55, p = 0.24; see 

Supplemental Material S2 for the contingency table of the capacity group and the age group). We 

then measured the specific WM bounds of the different capacity groups by fitting the working 

memory model. As expected, WM noise increased with increasing set size for all groups, and the 

high-capacity group had the lowest WM noise overall (see Supplemental Material S3 and S5 for 

the posterior distributions and summary of WM bounds in each capacity group).  

We then estimated each group’s empirical and bounded optimal mixture weights with the 

assumption that the WM system had the set size-specific noise bounds estimated above. As 

shown in Figure 4-7, all groups shifted away from full reliance on WM at set size 2 (the HDI of 

the pairwise difference between the mixture weight at set size 1 and all the other set sizes did not 

contain 0; see Table 4-2 for details). In terms of when RL becomes dominant, the low- and 

medium-capacity groups started to rely more on RL than WM (i.e., w < 0.5) from set size 3, 

whereas it was not until set size 4 that the high-capacity group started relying more on RL than 

WM (see Table 4-2 for details).  

Variation in the set size point at which RL becomes more dominant than WM in different 

capacity groups could be, in part, explained by the variations in the bounded optimal mixture 

weights in different capacity groups. That is, for the low- and medium-capacity groups, it was 

optimal to move away from full reliance on WM from set size 3; whereas, for the high-capacity 
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group, that shifting point was from set size 4. However, the results indicate that behavior was not 

strictly bounded optimal as defined by the model: Except for set size 1, all groups showed some 

gap between the estimated mixture weights and the strictly optimal mixture weights. Overall, all 

groups tended to over-rely on WM even when they could have performed better by relying fully 

on RL, especially at set sizes 4 to 6. The low-capacity group showed the most significant gap 

between the optimal mixture and empirical mixture weights, especially at the largest set size. 

This suggests that the low-capacity group could have performed better in the task by relying 

fully on RL at higher set sizes (e.g., at set size 6, the actual performance was 0.60 in the 

accuracy, but the predicted performance when using bounded optimal weight was 0.78 in the 

accuracy). It is also worth noting that, in some cases, different combinations of WM and RL had 

little impact on the (predicted) performance (e.g., set size 2 in the low-capacity group and set 

size 4 in the high-capacity group; Figure 4-8). See Supplemental Material S8 and S9 for 

robustness and sensitivity checks of the models. 
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Figure 4-9. The average accuracy of the working memory task and the choice learning task in 

different age groups 

 

 

Error bars show standard errors. 
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Figure 4-10. WM bounds in young, middle age, older adult groups 

 

A: Young adults. B: Middle-aged adults. C: Older adults. The posterior distributions of the 

group-level working memory noise parameter for each set size (0 = no noise, 1 = full random). 

Vertical lines show the mean of the posterior, and the shaded areas show 95% credible intervals. 

 

  

A. Young adult group B. Middle age group C. Older adult group
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Figure 4-11. WM/RL trade-off in young, middle age, older adult groups 

 

A: Young adults. B: Middle-aged adults. C: Older adults. The posterior distributions of the 

group-level mixture weight parameter (the proportion of reliance on WM as opposed to RL) for 

each set size. Vertical lines show the mean of the posterior, and the shaded areas show 95% 

credible intervals. 

  

A. Young adult group B. Middle age group C. Older adult group
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Figure 4-12. Bounded optimality analysis for young, middle-aged, older adults 

A. 

 

B. 
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C. 

 

A: Young adults. B: Middle-aged adults. C: Older adults. The pink circle indicates performance 

(y-axis) if using the bounded optimal strategy (x-axis: mixture weight; higher values: more 

reliance on WM). The grey diamond shows actual performance (y-axis) and empirical estimates 

of mixture weights (x-axis; shading 95% CI). The thick solid line indicates hypothetical 

(simulated) performance across possible mixture rates.  
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Lastly, we examined (1) whether people of different ages have different levels of WM 

bounds and, (2) if so, whether they vary in how they combined WM and RL and in the extent to 

which their combination was bounded optimal. Figure 4-9 and Supplementary Material S1 show 

the behavioral data for each age group. We initially hypothesized that working memory ability 

will be highest in the young adult group and the lowest in the older adult group. However, the 

young and older adults did not differ in performance on the working memory task (regression 

coefficient βYoung vs. Old = -0.01, p = 0.46). Only middle-aged adults and older adults showed a 

significant difference in working memory performance (older adults performing slightly worse 

than middle-aged adults; regression coefficient βMiddle-age vs. Old = -0.04, p = 0.02). Next, we fit 

each age group’s data to the working memory model to estimate set-size specific noise in WM. 

Figure 4-10 shows the posterior distributions of the set size-specific noise in working memory 

for each age group. Comparison of the HDI of the WM noise between age groups at each set size 

suggested that the older adult group had higher WM noise than the middle-aged group in set 

sizes 3, 4, and 5 (see Supplemental Material S6 for the difference HDI between groups). 

Correlation between individuals’ age and WM noise (average across set size) was not significant 

(Pearson r = 0.12, p = 0.13; see Supplemental Material S7 for the scatter plot). 

Since the older adult group had higher set size-specific WM noise than the middle-aged 

group, especially at set sizes 3 to 5, we further tested if the older adult group showed earlier 

shifts from WM to RL compared to the middle-aged group. All groups started to move away 

from full reliance on WM at set size 2 (see Table 4-2 for the difference in HDI of mixture 

weights between set size 1 and other set sizes). The older adult group (and the young adult 

group) started to rely more on RL than WM (i.e., w < 0.5) at set size 3; whereas it was not until 
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set size 4 that the middle-aged adult group started relying more on RL than WM (Figure 4-11, 

Table 4-2).  

As shown in Figure 4-12, the bounded optimal strategy for all groups would have been to 

entirely rely on WM up to set size 2 and entirely rely on RL from set size 3. However, except for 

set size 1, all age groups showed some gap between the bounded optimal mixture weights and 

the empirical mixture weights. Specifically, there was an overall tendency of over-reliance on 

WM in all age groups. Moreover, older adults showed the most significant gap between the 

optimal mixture and empirical mixture weights, especially at the largest set size. This suggests 

that older adults could have performed better in the task by relying more strongly on RL than 

using their WM (e.g., at set size 6, the actual performance was 0.63 in the accuracy, but the 

predicted performance when using bounded optimal weight was 0.78 in the accuracy). See 

Supplemental Material S8 and S9 for robustness and sensitivity checks of the models.  
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Discussion 

In this study, we examined how people balance their use of WM vs. RL processes in a 

choice learning task in accordance with their own abilities and the task demands. Interestingly, 

although people were adaptive in how they shifted from relying on WM vs. RL – that is, they 

decreased reliance on WM and increased reliance on RL as the WM load of the task increased, 

they did not strictly follow the pattern suggested by bounded optimality. 

One of the main questions in this study was whether people adapt to their own bounds 

and whether there are differences in these adaptations in people with different cognitive abilities 

and ages. To answer this question, we conducted a bounded optimality analysis on groups with 

different WM capacities, groups with different ages, as well as all subjects from all groups. 

Across these analyses in different populations, we found that people adapt to their own bounds, 

but they are not strictly bounded optimal as defined by the model. When the task load was 

minimum, people fully relied on WM in choice learning. As the task load increased, people 

began to increase reliance on RL and decrease reliance on WM. The point at which RL became 

more dominant than WM varied for different capacity groups and age groups. This variation in 

when RL becomes dominant in different groups, in part, reflected their bounded optimal mixture 

strategies. People shifted to the RL-dominant strategy in set size points at which the bounded 

optimal weight changed from full reliance on WM to full reliance RL (in most cases, the 

bounded optimal weights were either 1 (full reliance on WM) or 0 (full reliance on RL)).  

Even though the point at which people shifted to the RL dominant strategy was consistent 

with bounded optimality, people were not strictly bounded optimal in that the credible intervals 

of the posterior distributions of the mixture weights did not overlap with the bounded optimal 

weights, except for set size 1. First, people shifted too early: In lower set sizes where bounded 
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optimal strategy was a full reliance on WM, people over-relied on RL when they hypothetically 

could have done better by engaging more WM. On the one hand, this might be explained by the 

fact that using WM is effortful (Westbrook et al., 2013), and those costs may lead people not to 

engage it as fully as they might if they are not very motivated (Dunn et al., 2016; Kool et al., 

2010). As mentioned in the Introduction, behavior results from the integration of stable traits, 

situational demand, and the cognitive-emotional states of individuals. The current study 

considered the first two factors: we measured stable traits, namely the cognitive limitations in 

WM and RL, and examined the effects of situational demand by manipulating task load (set 

sizes). However, our analysis did not address the effects of the cognitive-emotional state. It 

remains an interesting question whether the differences in the costs of working memory and 

other emotional/motivational factors might help explain the over-reliance on RL at lower set 

sizes. 

In contrast to the over-reliance on RL at lower set sizes, there was an opposite pattern in 

the higher set sizes: people over-relied on WM when it was optimal to fully rely on RL given 

that the task load exceeds their WM capacity. This pattern of over-reliance on WM was 

especially strong for the people with low WM capacity and the older adults. An interesting 

question related to this is whether the underlying mechanism is similar or different for the low-

capacity individuals and the older adults. One conclusion we might draw from these results is 

that older adults don’t adapt as well as they could, but that might not be the correct conclusion; 

maybe it is the low WM capacity that explains the poor adaptation regardless of age group. 

Although an explicit test of the interaction between WM capacity and age is necessary to 

understand a complete picture, the fact that (1) we had an even distribution of age groups in each 

WM capacity group and (2) there was no significant association between the individual age and 
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WM bounds suggests that both lower capacity and older age could be predictors of the gap 

between the optimal and empirical mixture weights. Though this lack of age differences in WM 

in our sample was informative in this aspect, it can be considered a limitation since this is not 

consistent with the well-known age-related decline in WM (Borella et al., 2008; Nilsson, 2003; 

Old & Naveh-Benjamin, 2008; Spencer & Raz, 1995; Verhaeghen et al., 1993; Wingfield et al., 

1988) and raises a question about the representativeness of older adults on online data collection 

platforms (Greene & Naveh-Benjamin, 2022; Vroman et al., 2015). 

Moreover, the low-capacity individuals and older adults showed a curvilinear pattern in 

the mixture weights as a function of set size. That is, they increased reliance on RL as set size 

increased from 1 to 3, but they reversed the pattern and shifted back towards increased reliance 

on WM as set size increased from set size 4 to 6. What might explain this regression to WM at 

higher set sizes? One possible explanation is that people tried to ramp up cognitive effort to 

compensate for low performance at higher set sizes. A similar finding in aging literature suggests 

that older adults apply more top-down, controlled processing when their automatic processing is 

not successful in accomplishing the task goal (Staub et al., 2014, 2015). A different explanation 

is that people started to use a different strategy that relies more on WM at higher set sizes. For 

example, they might have decided to focus on either just the first or most recent items in the 

presented set once they realize the set size is going to be large. Alternatively, it might be that the 

set size 3 (or 4) is a breakpoint where the capacity of working memory per se has been exceeded 

and long-term memory processes come more into play (Cowan, 2001).   

It is also worth noting that, in some cases, different combinations of WM and RL had 

little impact on the predicted performance. For example, for the low-capacity individuals, the 

predicted performance line as a function of hypothetical mixture weights was flat in set size 2. In 
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this situation, using different strategies will not make a difference in performance. Being able to 

identify this kind of situation is one of the strengths of conducting the bounded optimality 

analysis. This will be especially valuable when designing an intervention that targets different 

cognitive strategies because it allows one to precisely quantify how much increase in 

performance (or utility) one can expect from a change in cognitive strategies in a task. 

It is also possible that deviations from what the model defines as “bounded optimal” 

could result from limitations in the modeling.  First, some of the assumptions made in our 

computation model might need to be revisited. Our model assumed that the working memory and 

reinforcement learning systems are independent, and they have a competitive relationship (in that 

an increase in reliance on one system means a decrease in reliance on the other system). Even 

though our models showed good sensitivity in predicting the behavior data and were robust in 

replicating the trend in a separate pilot dataset (Supplemental Material S8 and S9), recent studies 

suggest a more complicated and interactive nature of working memory and reinforcement 

learning integration (Collins, 2018; Yoo & Collins, 2022). For example, Collins (2018) showed 

that WM could influence RL computations by providing information for the calculation of the 

reward prediction error. It will be important in future work to compare the bounded optimality 

predictions in different models of the WM and RL integration and to examine if they lead to 

different conclusions about the adaptation to cognitive bounds. 

In the Introduction, we stressed the importance of situational demand (task demand) in 

behavior. The current study focused on the effects of task load on the adaptive nature of WM and 

RL integration. In addition to task load, other task-related factors can pose important 

implications in adaptive strategies in choice learning. For example, the length of the task (i.e., the 

number of trials) can affect bounded optimal mixture weights in choice learning. As the number 
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of total trials in a task decrease, it would be better to use WM because WM learns faster than RL; 

as the number of trials in the task increases, it would be better to use RL because RL is more 

robust to interference than WM. Another example is the delay between repetition of the stimulus 

(e.g., spaced vs. massed). If the stimuli are repeated after a long delay, it would be better to use 

RL; if the stimuli are repeated after a short delay, it would be better to use WM (see Wimmer & 

Poldrack (2022) for related discussion). 

Another critical question to be explored is the development of adaptation with 

experiences (i.e., do people move close to an optimal strategy as they experience more trials in 

the task?). The current study estimated a single mixture weight across all trials in each set size—

therefore can only speak about the overall strategy; however, future work would better explain 

the changes in adaptations by (1) estimating the mixture weights as a function of trials in the task 

and (2) examining if the gap between the bounded optimal and empirical weights reduces with 

more trials. The prediction is that people might get closer to an optimal strategy with experiences 

since learning is required to achieve optimality. Other future directions might include leveraging 

different methodologies to aid a fuller understanding of the adaptive nature of WM and RL 

integration. For example, neural signatures of different utilization of WM (Rottschy et al., 2012) 

could be used to recover the WM and RL integration on both neural and behavioral levels, and 

pupillometry measures could be used to understand how motivational factors are related to the 

integration of automatic RL and effortful WM processes in choice learning. 

Although these other questions remain to be explored, the current study contributes to 

understanding the adaptive nature of WM and RL integration in choice learning in groups with 

different abilities and ages. We suggested a novel way to measure WM bounds using an 

independent task and model, as well as a way to define computationally rational strategy using 
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the modified version of Collins & Frank’s computation model of choice learning with a bounded 

optimality assumption (Lewis et al., 2014). Our finding suggest that people are overall adaptive, 

but not computationally optimal, in how they balance WM and RL. Even more interesting, 

people seem to paradoxically increase reliance on WM at the highest set sizes, when it is least 

reliable, and this especially true for individuals with lower working memory performance and 

older adults.  Going forward, future studies to better understand why people differ from 

strategies that are hypothetically optimal – and especially why they may engage effortful WM 

processes more than they “should” – may be helpful for designing interventions and 

environments that help people optimize their performance. 
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Chapter 5  General Discussion  

 

The Adaptive Use of Working Memory in Response to Loss Incentives 

Summary of Findings 

Working memory demands are common in everyday life. Failure to meet those demands 

can lead to losses, especially for older adults. Different theories in the literature make different 

predictions for how older adults may respond to loss incentives: Motivational shift theory 

suggests that older adults are especially motivated to avoid losses (Freund & Ebner, 2005), some 

interpretations of the age-related positivity effect suggest that older adults may ignore losses 

(Brassen et al., 2012; Williams et al., 2017), and yet another set of views suggests that losses 

might differentially disrupt older adults (Charles, 2010; Hess, 2014). Studies 1 and 2 (Chapters 2 

and 3) contribute to our understanding of how loss incentives affect young and older adults’ 

working memory and motivation across different tasks.  

Study 1 used a working memory task that required participants to view a sequence of 

random numbers and letters and then immediately recite the numbers in numerical order, the 

letters in alphabetical order. Contrary to our initial hypothesis and previous findings in our lab 

(Lin, 2018; Lin et al., 2019) that loss would have a negative impact on older adults’ cognitive 

performance, loss incentive did not affect working memory performance for either age group. 

Instead, for both age groups, loss incentive increased subjective feelings of mental demand and 

frustration, especially at the highest set sizes. However, other aspects of the data suggest that 

these increases in perceived demand and frustration may have occurred for different reasons in 
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young and older adults, as the self-report data indicate that young adults found the losses to be 

distracting, whereas older adults found them de-motivating. 

In trying to understand why loss incentive effects are sometimes expressed in terms of 

performance (Lin, 2018; Lin et al., 2019) and at other times in feelings of demands (Study1; Jang 

et al., 2020), we considered that one possibility might be that the task used by Lin et al. was very 

open-ended and provided ample opportunities to disengage attention from the task. (Indeed, the 

task is designed to make it difficult to sustain attention and engagement.) In contrast, the 

working memory task used in Study 1 of the current dissertation was relatively fast-paced and 

required participants to speak to the experimenter on every trial. In Study 1, these task 

constraints may have kept people engaged in the task even when motivation was decreased.  

Study 2, therefore, used a Sternberg-type working memory task. On each trial of each 

task, participants silently viewed a set of letters, followed by a retention interval with just a 

fixation cross on the screen, and then were presented with a probe item and pressed one key to 

indicate that it was a member of the memory set, another to indicate that it was not. As this task 

does not require the same kind of interaction with the experimenter on each trial and has a 

retention interval that may further encourage attention to drift from the task, remaining engaged 

with and focused on the task itself may require more self-initiated processing than the relatively 

active task used in Study 1. Here, consistent with our hypotheses, we found that loss incentive 

increased young adults’ motivation and working memory performance, with opposite effects for 

older adults. Providing additional support for the idea that incentive affected the degree to which 

people were engaged in the task, diffusion modeling analysis identified drift rate, a measure of 

the quality of the memory representation, as the primary locus of these effects rather than 

strategic bias, speed-accuracy tradeoffs, or nondecision processes (e.g., overall motor speed). 
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Specifically, the effects on drift rate suggest that the incentive may have influenced how much 

effort participants put into forming or maintaining the memory representation. 

 

Implications 

Taken together, our results in the first two studies (Chapters 2 and 3) suggest that loss 

incentive, especially when consistently delivered, can lead to a loss of motivation in older adults.  

Whether that loss is expressed in terms of performance or in subjective feelings of demands may 

depend on situational factors, including the structure of the task. In tasks with features that may 

help keep participants engaged in the task even if their motivation is low, performance may not 

differ between groups., but those with lower motivation may find it more subjectively 

demanding.  The opposite might be true in less-constrained tasks, such as that used in Study 2, 

where less-motivated participants can escape increased perceived demand by reducing their 

performance.   

The idea that task constraints may determine whether increases and decreases in 

motivation are primarily expressed in subjective responses vs. performance seems most 

consistent with the theoretical perspectives emphasizing the importance of engagement (Hess et 

al., 2016). Considering situational factors and task variables suggests another interesting 

possibility: Rather than taking a “winner take all” approach to the different theoretical 

perspectives on aging and motivation, and especially the response to losses, it may be more 

helpful to consider under which conditions each is most likely to apply. For example, 

motivational shift theory suggests that while young adults are more motivated to achieve gains, 

older adults are more motivated to avoid losses (Best & Freund, 2018). This view may be 

especially relevant for how older adults prioritize tasks and goals, especially when there are 
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competing options. The age-related positivity effect is the tendency of older adults to direct 

attention and memory away from negative information, presumably in the service of maintaining 

a positive emotional state (Carstensen & DeLiema, 2018; Reed & Carstensen, 2012). This 

perspective seems most applicable to characterizing older adults’ reduced responses to loss-

incentive cues in reinforcement learning and performance studies. At the cue stage, the 

negativity associated with losses is still hypothetical and abstract, making it potentially easier for 

older adults to ignore. However, as our results show, when the loss is actually experienced, older 

adults are just as, or even more, reactive than young adults (Bowen et al., 2019; Kircanski et al., 

2018; Samanez-Larkin & Knutson, 2015). Reactivity to negative self-relevant information at the 

outcome stage may impair performance and reduce motivation or lead older adults to disengage 

from those negative emotions (Barber et al., 2015). 

  

Limitations and Future Directions 

 Limitations of the current studies include the cross-sectional age group comparison, the 

difference between the laboratory tasks and real-world situations, and the question of whether 

monetary incentives have a similar relevance to young and older adults. However, these 

limitations are prevalent in almost all studies in this domain. It is interesting to note that the 

results from the Sternberg task (Study 2), which may more closely resemble real-world situations 

that require goal-driven, self-initiated processing to stay engaged on a task, seem to more closely 

follow studies occurring in more real-world environments (e.g., job performance, financial 

planning, etc.; Birdi & Zapf, 1997; Kiso & Hershey, 2017; Persoskie et al., 2014). That said, it is 

important to note that we did not make a direct comparison of incentive effects on two tasks that 
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are identical except for the features that can manipulate the degree to which the task engages (or 

constrains) attention in a more bottom-up or reactive way. 

One major difference from previous work on aging and incentive effects is that we 

focused on loss rather than gain. On the one hand, this limits the degree to which our results can 

be compared to the prior literature, which has focused primarily on gain incentives. On the other 

hand, this could also be seen as a strength and novel contribution, as our studies begin to fill in 

that gap.  Moreover, as discussed in detail in Study 1, losses are theoretically more incisive than 

gains due to competing predictions from different perspectives on age differences on motivation.  

Another difference from many studies of incentive effects on cognitive performance is that we 

used a session-wide, between-subjects incentive manipulation. In contrast, most recent studies 

use a trial-wise, within-subjects manipulation. Those within-subjects designs are more efficient 

but potentially reduce generalization to real-world performance, and there is increasing evidence 

for the carryover and incentive-context effects that distort estimates of trial-specific effects 

(Jimura et al., 2010; Schmitt et al., 2017; Thurm et al., 2018). 

In short, there are a number of important parameters that could affect whether and how 

incentives affect motivation, performance, or both in young and older adults. There is a great 

deal of work to be done to understand the impact of each of those parameters and even more to 

understand their potential interactions. The studies presented here have complementary strengths 

and weaknesses compared to the majority of the literature. While they certainly do not provide a 

complete understanding of the factors influencing age differences in motivation-cognition 

interactions, they demonstrate the dangers of over-generalizing from the prior literature and 

encourage a careful and systematic exploration of this parameter space both in the lab and in 

everyday life. 
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The Adaptive Use of Working Memory in Choice Learning 

Summary of Findings 

As we examined in Study 1 and Study 2, people may change their performance in 

response to costs and benefits; however, it is less known whether people are doing so adaptively 

or optimally. Study 3 explored the adaptive nature of combining working memory (WM) and 

reinforcement learning (RL) in response to varying task loads in a choice learning task. We 

specifically compared the empirical vs. optimal combination of WM and RL using a bounded 

optimality analysis (Lewis et al., 2014) – a computational framework for deriving strategies that 

are rational given the specific cognitive limitations of the individual performing the task. We 

found that although people were adaptive in how they shifted from relying on WM vs. RL – that 

is, they decreased reliance on WM and increased reliance on RL as the task load increased, they 

did not follow the pattern suggested by bounded optimality. In low task-load conditions when it 

would have been optimal from a computational perspective to fully rely on WM, people over-

relied on RL. On the other hand, when task load increased to the point that fully relying on RL 

was the optimal strategy, people over-relied on WM. This gap between the optimal and empirical 

strategies was especially large for older adults and people with low WM capacity. 

 

Implications 

 Our main conclusion in Study 3 was that people are not bounded optimal. When the task 

load was low, people over-relied on RL compared to the predictions of bounded optimality. This 

could be explained by WM being more effortful, and those costs may have led people not to 

engage it as fully as they might if they were not very motivated. This suggests the importance of 

considering cognitive-emotional states and the subjective costs of cognitive effort in optimality 
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analysis. When the task load was high, people over-relied on WM compared to the predictions of 

bounded optimality. In other words, when the task demands exceeded one’s WM capacity and 

performance declined, people, especially low-capacity people and older adults, started to use 

more effortful WM even though the optimal strategy is to rely fully on RL. Although further 

studies are required to aid correct interpretation, this over-reliance on WM at higher set sizes 

might reflect compensation mechanisms in response to decreasing performance in the task. For 

example, this might reflect people were increasing cognitive effort and/or utilizing a strategy that 

relies more on WM (e.g., remembering either the first or most recent items). 

 

Limitations and Future Directions 

 The current study used a modified version of Collins & Frank’s computation model 

(Collins & Frank, 2012) for understanding the adaptive combination of WM and RL in choice 

learning. The fact that we used a computation model is one of the primary strengths of the paper 

because it offers well-defined computationally rational strategies and quantitative predictions 

about how behavior might differ depending on which strategy is being used.  However,  at the 

same time, the use of computation models brings an inherent limitation. This is related to a 

famous quote by statistician George Box that “All models are wrong, but some are useful.” We 

have aimed to improve the original Collins & Frank model by explicitly measuring the WM 

bounds and modifying the WM component of the model to better represent the bounds by 

estimating set size-specific noise in WM. However, we acknowledge that improvements can be 

made to our model as well. In addition to incorporating subjective costs/benefits into the model, 

the WM component can be refined by making the mechanisms of the model consistent with 

dominant working memory theories (e.g., Jonides et al., 2008; Oberauer, 2009). Moreover, it will 
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be important for future work to compare the bounded optimality predictions in different models 

of WM and RL integration (e.g., are they completely separate, or can one system learn from 

feedback to responses largely driven by the other system) and examine if different models lead to 

different conclusions about people’s adaptation to cognitive bounds. 

 

Closing Remarks 

WM is costly, and people may change their engagement of working memory in response 

to the costs and benefits of the task. The current dissertation examined the effects of loss 

incentives and task loads on the use of working memory. Our work suggests that loss incentives 

increase the perceived costs of performance in young and (more so in) older adults, leading to 

disengagement of working memory and the subsequent performance drop especially when the 

engagement is driven by self-initiated control. We also found that people were adaptive, but not 

strictly bounded optimal, in shifting the balance between working memory and reinforcement 

learning in response to varying task loads. These results reflect the complicated nature of 

interactions between internal and external factors such as ability, motivation, and environment in 

driving performance and engagement in the task. We hope that the current work contributes to 

our understanding of the adaptive use of working memory and provides useful directions for 

future research. 

  



 

 175 

References 

Barber, S. J., Mather, M., & Gatz, M. (2015). How Stereotype Threat Affects Healthy Older 

Adults’ Performance on Clinical Assessments of Cognitive Decline: The Key Role of 

Regulatory Fit. The Journals of Gerontology Series B: Psychological Sciences and Social 

Sciences, 70(6), 891–900. https://doi.org/10.1093/geronb/gbv009 

Best, R., & Freund, A. M. (2018). Age, Loss Minimization, and the Role of Probability for 

Decision-Making. Gerontology, 64(5), 475–484. https://doi.org/10.1159/000487636 

Birdi, K. S., & Zapf, D. (1997). Age differences in reactions to errors in computer-based work. 

Behaviour & Information Technology, 16(6), 309–319. 

https://doi.org/10.1080/014492997119716 

Bowen, H. J., Grady, C. L., & Spaniol, J. (2019). Age differences in the neural response to 

negative feedback. Aging, Neuropsychology, and Cognition, 26(3), 463–485. 

https://doi.org/10.1080/13825585.2018.1475003 

Brassen, S., Gamer, M., Peters, J., Gluth, S., & Büchel, C. (2012). Don’t Look Back in Anger! 

Responsiveness to Missed Chances in Successful and Nonsuccessful Aging. Science, 

336(6081), 612–614. https://doi.org/10.1126/science.1217516 

Carstensen, L. L., & DeLiema, M. (2018). The positivity effect: A negativity bias in youth fades 

with age. Current Opinion in Behavioral Sciences, 19, 7–12. 

https://doi.org/10.1016/j.cobeha.2017.07.009 

Charles, S. T. (2010). Strength and vulnerability integration: A model of emotional well-being 

across adulthood. Psychological Bulletin, 136(6), 1068–1091. 

https://doi.org/10.1037/a0021232 

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement learning is working 

memory, not reinforcement learning? A behavioral, computational, and neurogenetic 

analysis. The European Journal of Neuroscience, 35(7), 1024–1035. 

https://doi.org/10.1111/j.1460-9568.2011.07980.x 

Freund, A. M., & Ebner, N. C. (2005). The aging self: Shifting from promoting gains to 

balancing losses. In W. Greve, K. Rothermund, & D. Wentura (Eds.), The Adaptive Self: 

Personal Continuity and Intentional Self-Development (pp. 185-202.). Cambridge, MA: 

Hogrefe Publishing. 

Hess, T. M. (2014). Selective Engagement of Cognitive Resources: Motivational Influences on 

Older Adults’ Cognitive Functioning. Perspectives on Psychological Science, 9(4), 388–

407. https://doi.org/10.1177/1745691614527465 

Hess, T. M., Smith, B. T., & Sharifian, N. (2016). Aging and effort expenditure: The impact of 

subjective perceptions of task demands. Psychology and Aging, 31(7), 653–660. 

https://doi.org/10.1037/pag0000127 



 

 176 

Jang, H., Lin, Z., & Lustig, C. (2020). Losing Money and Motivation: Effects of Loss Incentives 

on Motivation and Metacognition in Younger and Older Adults. Frontiers in Psychology, 

11, 1489. https://doi.org/10.3389/fpsyg.2020.01489 

Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive 

enhancement in rewarding motivational contexts. Proceedings of the National Academy 

of Sciences, 107(19), 8871–8876. https://doi.org/10.1073/pnas.1002007107 

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The 

Mind and Brain of Short-Term Memory. Annual Review of Psychology, 59(1), 193–224. 

https://doi.org/10.1146/annurev.psych.59.103006.093615 

Kircanski, K., Notthoff, N., DeLiema, M., Samanez-Larkin, G. R., Shadel, D., Mottola, G., 

Carstensen, L. L., & Gotlib, I. H. (2018). Emotional arousal may increase susceptibility 

to fraud in older and younger adults. Psychology and Aging, 33(2), 325–337. 

https://doi.org/10.1037/pag0000228 

Kiso, H., & Hershey, D. A. (2017). Working Adults’ Metacognitions Regarding Financial 

Planning for Retirement. Work, Aging and Retirement, 3(1), 77–88. 

https://doi.org/10.1093/workar/waw021 

Lewis, R. L., Howes, A., & Singh, S. (2014). Computational rationality: Linking mechanism and 

behavior through bounded utility maximization. Topics in Cognitive Science, 6(2), 279–

311. https://doi.org/10.1111/tops.12086 

Lin, Z. (2018). Motivation and Value: Effects on Attentional Control and Learning [Thesis]. 

http://deepblue.lib.umich.edu/handle/2027.42/146000 

Lin, Z., Lustig, C., & Berry, A. S. (2019). Don’t pay attention! Paradoxical effects of monetary 

incentive on attentional performance in older adults [Preprint]. 

https://doi.org/10.31234/osf.io/2abw3 

Oberauer, K. (2009). Chapter 2 Design for a Working Memory. In Psychology of Learning and 

Motivation (Vol. 51, pp. 45–100). Elsevier. https://doi.org/10.1016/S0079-

7421(09)51002-X 

Persoskie, A., Ferrer, R. A., & Klein, W. M. P. (2014). Association of cancer worry and 

perceived risk with doctor avoidance: An analysis of information avoidance in a 

nationally representative US sample. Journal of Behavioral Medicine, 37(5), 977–987. 

https://doi.org/10.1007/s10865-013-9537-2 

Reed, A. E., & Carstensen, L. L. (2012). The Theory Behind the Age-Related Positivity Effect. 

Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00339 

Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in 

affective and motivational circuits. Nature Reviews Neuroscience, 16(5), 278–289. 

https://doi.org/10.1038/nrn3917 



 

 177 

Schmitt, H., Kray, J., & Ferdinand, N. K. (2017). Does the Effort of Processing Potential 

Incentives Influence the Adaption of Context Updating in Older Adults? Frontiers in 

Psychology, 8, 1969. https://doi.org/10.3389/fpsyg.2017.01969 

Thurm, F., Zink, N., & Li, S.-C. (2018). Comparing Effects of Reward Anticipation on Working 

Memory in Younger and Older Adults. Frontiers in Psychology, 9, 2318. 

https://doi.org/10.3389/fpsyg.2018.02318 

Williams, R. S., Biel, A. L., Dyson, B. J., & Spaniol, J. (2017). Age differences in gain- and loss-

motivated attention. Brain and Cognition, 111, 171–181. 

https://doi.org/10.1016/j.bandc.2016.12.003 

 


	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Chapter 1  Introduction
	The Costs of Using (or Not Using) Working Memory
	Internal and External Factors That Drive Performance: Ability, Motivation, and Environment
	Balancing Controlled and Automatic Processes in Response to Demands
	Summary and Overview
	References

	Chapter 2  Losing Money and Motivation: Effects of Loss Incentives on Motivation and Metacognition in Younger and Older Adults
	Introduction
	Method
	Results
	Discussion
	References
	Supplemental Material

	Chapter 3  Opposite Reactions to Loss Incentive by Young and Older Adults: Insights From Diffusion Modeling
	Introduction
	Method
	Results
	Discussion
	References
	Supplemental Material

	Chapter 4 Computationally Rational Strategies for Integrating Working Memory and Reinforcement Learning: A Bounded Optimality Approach
	Introduction
	Method
	Results
	Discussion
	References
	Supplemental Material

	Chapter 5  General Discussion
	The Adaptive Use of Working Memory in Response to Loss Incentives
	The Adaptive Use of Working Memory in Choice Learning
	Closing Remarks
	References


