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ABSTRACT

Transcription factors can bind cis-regulatory DNA elements to achieve their regu-

latory properties. Identification of transcription factor binding sites remains a crucial

goal in deciphering transcriptional regulatory circuits. The vast majority of genetic

variants identified from whole genome sequencing studies and leading disease-causing

SNPs implicated in genome-wide association studies (GWAS) lie well outside of pro-

tein coding regions. The functional effect of variants within non-coding sequence

is often through creation or disruption of individual transcription factor binding

that alters downstream gene regulatory activity. In addition, transcription factors

can act cooperatively to regulate transcription in a context-specific manner. Some

binding complexes, such as CTCF together with cohesin proteins, can also medi-

ate 3D chromatin interactions that also have downstream gene regulatory control.

My dissertation is focused on deciphering these interactions driving gene regulatory

circuits. In this dissertation, I develop an improved footprinting algorithm to map

transcription factor binding sites genome-wide, study regulatory variants associated

with transcription factor binding affinity, and explore transcription factor coopera-

tivity and their role in 3D chromatin interaction.

In Chapter 2, I will introduce the TRACE algorithm, a multi-threaded com-

putational footprinting method to predict transcription factor binding sites, using

chromatin accessibility data (DNase-seq or ATAC-seq) and sequence information. In

the development of the method, I Implemented a multivariate hidden Markov model

ix



(HMM) in an unsupervised training manner for identifying and labeling DNase foot-

prints. TRACE exhibited the best overall performance among all existing footprint-

ing methods after a comprehensive evaluation.

In Chapter 3, I investigated the association between genetic variants and tran-

scription factor binding activity to identify footprint QTLs (fpQTLs) at a base pair

resolution, contributing to a better knowledge of the mechanism behind the link-

age between genotypic variation and gene regulation as well as disease phenotypes.

Overall, detection of fpQTLs provides additional information for a more complete

characterization of the landscape of human regulatory variation and its direct effect

on gene expression. In Chapter 4, I employed an artificial neural network called Self-

Organizing Maps (SOMs) to identify “clusters” of transcription factors and define

co-binding patterns. I specifically examined the transcription factor enrichment at

chromatin loop anchors and studied how they might modulate downstream looping

effects.

Together, the studies in this dissertation provide improved transcription factor

binding site prediction, deliver improved functional interpretation of noncoding vari-

ation, and expand our knowledge on transcription factor cooperativity and their

effect on 3D organization of chromatin.
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CHAPTER I

Introduction

Binding of transcription factors (TFs) to specific DNA sequences is elementary

for transcriptional regulation. Accurate identification of transcription factor binding

sites (TFBSs) is critical for understanding gene expression and whole regulatory net-

works. Whole genome sequencing studies have revealed that the majority of variants

lies outside of protein coding regions. The functional effect of noncoding single nu-

cleotide variants (SNVs) is often through altering TFBSs. Accurate understanding

of variants’ impact on transcription factor binding can lead to a better interpretation

of how noncoding variants affect gene function and lead to disease phenotypes. Gene

regulatory control also relies on chromatin interactions driven through 3-dimensional

conformation. Co-binding of particular TFs with another, including CTCF, the co-

hesin complex, and a host of accessory TFs, often work cooperatively to mediate

the formation of 3D chromatin structure and elicit specific regulatory outcomes.

Elucidating these co-binding patterns is central to understanding gene regulatory

mechanisms.

In this dissertation, I evaluated existing footprinting methods and developed new

algorithm for an improved genome-wide transcription factor mapping (Chapter 2).

Then I extended the usage of this algorithm in characterizing and mapping functional

1
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variation. I performed association test on TF binding affinity and genetic variation

to identify footprint QTLs (fpQTLs) (Chapter 3). Finally, I explored TF co-binding

patterns and investigated their potential impact on CTCF looping regulation and

3D chromatin contacts (Chapter 4).

In this introductory chapter, I will discuss a variety of experimental or computa-

tional appraches in TFBSs identification and their features and limitations. I will also

describe some statistical analyses in genome-wide regulatory variants mapping and

computational tools in regulatory variants characteriazation. Finally, I will discuss

TF cooperative binding activity and CTCF-mediated chromatin interctions.

1.1 Identification of transcription factor binding sites

My dissertation has a focus on transcription factors and their binding pattern

and mechanism. The first key element in my study is genome-wide TFBSs mapping.

TFs are DNA binding proteins that can recognize their binding sequence and are

essential in gene expression regulation. TFBSs are building blocks for regulatory

sequences such as cis regulatory elements. Thus, identification of TFBSs is essential

in understanding gene expression and regulatory networks. In this chapter I will

discuss some commonly used TFBSs mapping techniques and tools, many of which

utilize data from high-throughput functional genomics assays (Figure 1.1). The stan-

dard approaches that were widely used include Position Weight Matrices (PWMs)

and Chromatin immunoprecipitation followed by sequencing (ChIP-seq). TFBSs can

also be detected by DNase footprint by investigating chromatin accessibility patterns,

as TFs often leave protected regions (footprints) from DNaseI digestion. However,

these existing experimental or computational tools in TFBSs identification have dif-

ferent drawbacks that limit their application and accuracy, which will be discussed
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in this chapter. As a result, improved TFBSs prediction methods are needed to map

TFs with better quality and higher availability.

Figure 1.1: ENCODE data types. Figure adapted from Ecker et al. 2012 [1].

1.1.1 Chromatin Immunoprecipitation sequencing (ChIP-seq)

Chromatin immunoprecipitation followed by sequencing (ChIP–seq) is one of the

early applications of next-generation sequencing. ChIP–seq measures proteins bind-

ing to DNA, and can be used to identify transcription factor binding, profile nucleo-

some positioning and histone modifications, and detect methylated DNA regions in

a genome-wide manner [2]. ChIP–seq workflow includes crosslinking protein to DNA

and then lysing cells and fragment (around 200-300 bp) with sonication. DNA frag-

ments bound with specific proteins are enriched and unbound chromatin and proteins
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are discarded. Purified DNA fragments can then be identified with next-generation

sequencing techniques. Protein-specific antibody is required to immunoprecipitate

the DNA–protein complex.

ChIP-seq has a low resolution (200-500 bp), but it can identify specific TFBSs

with downstream analysis. However, quality (specificity & sensitivity) of antibody

against the protein of interest limits its data quality. Success of ChIP-seq assays

depends on the existence of a good antibody against the TFs of interest and the

availability of large numbers of cells. Dependency on antibodies is one of the major

limitations of ChIP-related technologies. Notably, available antibodies for TFs are

very limited and only a very small fraction of TFs have ChIP-seq data available in

ENCODE (Figure 1.2). There are only about 160 validated antibodies, that is only

9% of predicted TFs. Previous study also showed that 20–35% of the commercially

produced antibodies tested were unsatisfactory [3, 4]. ENCODE has put in enormous

effort in generating sequencing data and has produced 2443 TF ChIP-seq assays over

the three phases [5]. However, TF ChIP-seq data is still in shortage, considering the

total number of TFs and cell lines. In fact, ChIP-seq assay is labor intensive and

relatively cost inefficient, so it is not feasible to map all TFs in all cell lines or tissues

even if the corresponding antibody is available.

1.1.2 Position Weight Matrices (PWMs)

A position weight matrix (PWM) describes the DNA binding preferences of a TF.

It is a probabilistic model that denotes the fraction of nucleotide occurrences (A, C,

G or T) at each location of the motif. Most of PWMs from early studies were identi-

fied using systematic evolution of ligands by exponential enrichment (SELEX) data.

More recent PWMs were generated from ChIP-seq data. Several public databases

provide PWMs for a large amount of TFs from different sources. JASPAR is one
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ChIP−seq avail

A549

ChIP−seq avail

K562

ChIP−seq avail

GM12878

ChIP−seq avail

H1A B

C D

107 163

3928

Figure 1.2: Numbers of TFs with ChIP-seq data available in (A) A549, (B) H1, (C) K562 and
(D) GM12878 among all motifs in JASPAR CORE database (non-redundant). Each
pie plot has a total number of 746 TFs, orange portion represents number of TFs has
ChIP-seq data in that cell line in ENCODE.

of these databases and it gathers a non-redundant collection of PWMs from around

800 TFs along with cluster information of closely related TFs.

PWM-based methods to identify TFBSs have high resolution but also have sig-

nificant drawbacks. One of its limitations is that binding preference might not be

sufficient to measure binding affinity. The presence of a sequence motif for a TF

does not necessarily imply there is actual protein binding in a particular cell line.

Consequently, sequence-based methods can detect a large number of putative TF-

BSs, but only a small fraction of them are functional sites or active binding sites,

which can potentially result in a high false positive rate (FPR). For instance, CTCF



6

is one of the most studied and abundant TFs, but it still has a FPR of 61.6%. A

more extreme example is GATA2, which has a 96.2% FPR. Together, it shows the

difficulty of using PWMs alone for TFBS mapping.

1.1.3 DNase I footprinting assays

The traditional DNase I footprinting assay is another experimental method that

can be used to detect TFBSs. It is a classical method to investigate in vivo protection

of DNA by protein binding. DNase I footprinting assays can be used to identify TFBS

since a critical feature of footprinting is that the affinity of TFs for their binding

sites is greater than the affinity of DNase I for the same sequences, leading to the

protection of TF-occupied DNA from nuclease attack. In open chromatin regions,

TFs will protect the DNA it is bound to from DNase I cut, leaving nucleotide-

resolution footprints.

DNase I can cut the DNA at open chromatin regions, but TFs will protect the

sequence that they bind, resulting in a reduced number of cuts at those regions. The

limited DNase I digestion at the protein protected regions will result in a series of

nested fragments that can be resolved by running a gel. In the gel, the missing bands

are TF bound regions (footprints).

1.1.4 DNase I hypersensitive sites sequencing (DNase-seq) and computational foot-
printing methods

DNase I hypersensitive sites sequencing (DNase-seq) is chromatin accessibility as-

say that measures the absence of nucleosomes [6]. It maps open chromatin regions

that are more accessible for protein interaction, which are shown to be enriched for

regulatory elements including enhancers, promoters, silencers, insulators and locus

control regions. DNase-seq identifies DNase I hypersensitive sites (DHSs) where

DNase I can cut at higher frequency, allowing for genome-wide footprinting and
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nucleotide-level identification of TFBSs by searching footprint-like regions with low

numbers of DNase I cuts surrounded by regions with high numbers of cuts. Since the

development of the first DNase-seq data based computational footprinting method

in Saccharomyces cerevisiae [7], several chromatin accessibility data based compu-

tational methods have been developed to detect footprints genome-wide (Table 1.1)

[8, 9, 10, 11, 12, 13, 14, 15, 16]. ATAC-seq can also be used in footprinting as it

identifies open chromatin regions where Tn5 transposase can insert [17].

Computational footprinting algorithms are categorized into de novo methods (the

Boyle method, DNase2TF, HINT, PIQ and Wellington) and motif-centric meth-

ods (DeFCoM, BinDNase, CENTIPEDE, FLR). De novo methods are TF-agnostic,

which detect footprints by investigating chromatin accessibility pattern across input

regions. These generic footprints have the desired DNase digestion pattern, but not

necessarily match with any sequence motif. On the other hand, motif-centric meth-

ods are TF-specific, which assess the TF-binding probability at each pre-generated

candidate binding site for TFs of interest.

Binding sequence preference is another key factor that can be considered in foot-

prints identification, especially when predicting binding sites for specific TF with a

known motif.

1.1.5 Limitations of current TFBSs prediction methods

Current widely used TFBSs prediction includes ChIP-seq, motif sequence scan,

and footprinting. ChIP-seq provides enrichment peaks for DNA binding proteins

but has a low resolution and is labor intensive. More recent ChIP based assays

such as ChIP-exo [18] has higher resolution and improved cost efficiency, but still

have some of the same disadvantages as ChIP-seq, including labor intensive and

limited antibody availability. PWM-based methods can identify binding sites at
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Table 1.1: Computational footprinting methods

  Input data Algorithm 
Year 
published 

Language  

Boyle method DNase-seq HMM 2011 C++ 

Neph method 
(FOS) 

DNase-seq Sliding window 2012 C++ 

HINT DNase-seq, and/or ChIP-seq HMM 2014/2016 python 

DNase2TF DNase-seq, mappability Sliding window 2014 R 

pyDNase 
(Wellington) 

DNase-seq Sliding window 2013 python 

Footprint mixture 
(FLR) 

DNase-seq 
Mixture 
model         

2014 R 

CENTIPEDE 

DNase-seq, PWM bit-score 
and/or sequence conservation 
and/or distance to the nearest 
TSS 

Bayesian 
mixture 
model         

2011/2015 R 

BinDNase DNase-seq, PWM score 
Logistic 
regression 

2015 R 

DEFCOM DNase-seq, PWM score SVM 2017 python 

high resolution but usually have high false positive rates.

De novo footprinting methods only detect general footprints instead of binding

sites for specific TFs, so they require additional sequencing scan or motif database

query steps to label binding sites of TF of interest. Motif-centric methods are TF-

specific, but require pre-identified candidate binding sites for TFs of interest. An-

other limitation of existing footprint methods is that many of them include supervised
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training steps, which means they still need ChIP-seq data to generate training sets.

Their applications heavily rely on availability and quality of ChIP-seq data.

Collectively, the limitations of experimental assays, PWM-based methods, and

existing computational footprinting algorithms call for a much-needed improvement

in computational footprinting algorithm with increased prediction accuracy and ex-

panded application. New algorithms that overcome these drawbacks can provide

much improved TFBSs profiles and contribute to better understanding of transcrip-

tion regulation.

1.2 Effect of genetic variation on TF binding

Regulatory variants can modulate gene expression in a context-specific manner

and are often linked to disease phenotypes. However, the molecular mechanisms un-

derlying their regulating effect are still poorly understood. Although genome-wide

association studies have linked genetic variants to many human phenotypes such

as gene expression, chromatin accessibility, protein level, and histone modifications,

and functional annotation of the genome has been improved with machine learning

and deep learning techniques, our understanding of biological mechanisms underly-

ing causal variants are still limited. Multiple studies have linked functional regula-

tory variants with TF motif sequence, so that identification of the effect of genetic

variation on TF binding is key to understanding and interpreting downstream con-

sequences of gene expression variations. Genome Wide Association Studies (GWAS)

has provided rich resource to understanding human phenotypes by identifying pu-

tative causal genetic variation statistically correlated with traits or diseases. 85%

leading single nucleotide polymorphisms (SNPs) identified in GWAS studies lie out-

side of protein coding sequences [19]. Therefore, understanding the role of noncoding
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variation in altering TF binding is important in studying the impact of variants on

gene expression and understand gene regulation. Identifying how variation affects TF

binding activity will allow us to generate more informed hypotheses on the function

of regulatory genetic variants in the genome.

TSS

TSS

A

C

Enhancer

Enhancer

Promoter

Promoter

TF

TF

Footprint

Figure 1.3: Simplified schematic that a genetic variant disrupts TF binding at footprint, and there-
fore decreases expression of gene that is regulated by that enhancer.

1.2.1 Non-coding genetic variation

Development of high throughput sequencing technologies has allowed whole genome

analysis for variant detection. GWAS studies have discovered a large number of ge-

netic variants linked to diseases phenotypes, however a substantial portion of these

associations are still unexplained, encouraging further studies on underlying biologi-

cal mechanisms. Whole genome sequencing studies from projects including the 1000

Genomes Project have revealed that 95% of genomic variation falls into non-coding

sequences [20, 21], and 85% of leading GWAS SNPs that were potentially disease

causing also lie outside of protein coding regions [19]. In addition, the genetic vari-

ations in cis-regulatory sequence have been linked to altered gene regulation and
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human disease. The abundance of variants in non-coding regions and their associa-

tion with diseases raises the importance of understanding how non-coding variants

affect gene function and disease phenotypes.

The functional effect of noncoding SNVs can occur through the disruption or cre-

ation of transcription factor binding sites. Genetic variation can lead to alteration

of TF binding sequence and/or change in DNase sensitivity, and therefore affect

the likelihood of footprints occurrence and gene expression (Figure 1.3). In fact,

transcription factor binding sites make up only 8% of the genome but contain 31%

of variants identified by GWAS. Previous studies have reported that genetic varia-

tions in transcription factor binding sites that alter likelihood of transcription factor

binding are also associated with human diseases. For example, a previous study re-

ported variants associated with Type 2 diabetes, located in open chromatin region,

significantly increased reporter gene expression, consistent with increased transcrip-

tion factor binding [22]. A systematic study on genetic variation and its impact on

TF binding, as well as potential downstream effects including gene expression and

disease phenotypes can contribute to a better understanding and interpretation of

genetic variations consequences.

1.2.2 Quantitative trait loci (QTLs) mapping

Association mapping of quantitatively measurable molecular traits has merged as

a powerful approach in study of genetic variation. Quantitative trait locus (QTL)

approach can be applied to any quantitatively measurable cellular traits with defined

locus in the genome. QTL mapping of chromatin traits identifies genetic variants

that regulate chromatin both proximally and distally. Genome-wide mapping of ex-

pression quantitative trait loci (eQTLs) has become an essential method to study the

impact of variants on gene expression and understand gene regulation [23, 24]. The
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Genotype-Tissue Expression (GTEx) provides the largest eQTL datasets of human

tissues, characterizing genetic associations in 838 individuals over 49 human tissues.

eQTL is the most extensively conducted QTL analysis where genetic variants asso-

ciated with gene expression levels from RNA-seq are mapped on the whole genome.

However, only a small fraction of previously localized disease-associated variants are

also eQTL SNPs, although they are enriched in gene regulatory elements [25, 26]. In

addition, the regulatory mechanism behind variants’ effect on gene regulation is not

clearly explained. Gene expression change might be correlated with casual variants

through different mechanisms, instead of the eQTL directly regulate transcription.

One putative mechanism of their effect is that some SNPs can create or disrupt TF-

BSs and alter TF binding affinity, thereby they can affect regulatory networks and

change gene expression level. This also emphasizes the importance of investigating

the relationship between gene variation and TF binding activity.

Besides gene expression level, chromatin accessibility is another molecular trait

that has been worked on intensively and been linked to genetic variants. dsQTLs were

first identified at which DNase-seq read depth correlates significantly with genotypes

at nearby variants in 70 HapMap Yoruba lymphoblastoid cell lines (LCLs). They

were also shown to be enriched in TFBSs and a large portion were found to be

associated with differential expression levels of nearby genes. They were then further

generalized as chromatin accessibility QTLs (caQTLs) and can be generated using

ATAC-seq data. caQTLs were also reported to be enriched in TFBSs, suggesting

the mechanism behind caQTLs might also include alteration in TF binding activity.

Genome-wide association test between TF binding affinity and genetic variants and

investigation on these linkages can further extend our knowledge on their mechanism

and potential provide new functional annotations.
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1.2.3 Computational tools to predict regulatory variants

Computational non-coding annotation tools have been developed to address the

prioritization of genetic variants and are available to predict regulatory variants

in noncoding regions with different scoring schemes. They utilize many functional

genomics assays and association studies, such as ChIP-seq and DNase-seq, as well

as eQTLs, DNase footprints and TF motif sequences, along with other annotations,

such as sequence conservation and 3D chromatin interactions from assays like Hi-

C and ChIA-PET. Machine learning techniques and, more recently, deep learning

methods have been widely used for functional variations prediction, which can be

grouped into three categories: disease risk predictors, fitness consequence predictors

and regulatory function predictors.

Tools like RegulomeDB utilize ChIP-seq, DNase-seq, and eQTL annotations as

well as scores from another non-coding SNP annotation method DeepSEA, in a ran-

dom forest machine learning model to prioritize non-coding variation [27, 28]. Deep

learning-based method DeepSEA utilizes a convolutional neural network to predict

functional SNPs in single nucleotide resolution [29]. It predicts variant effects on

regulatory function based on 919 predictors from functional genomics features in-

cluding TF binding, open chromatin, and histone mark profiles, across various cell

lines. These computational non-coding annotation tools refine the functional regu-

latory variants from candidate variation and generate quantitative score predictions.

These methods can be utilized to assess the QTL associated variants to further study

their functional properties.
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1.3 TF co-binding patterns and 3D chromatin structure

The importance of 3D chromatin structure in gene regulation has been demon-

strated in many recent studies. DNA binding sites of the insulator protein CTCF are

present in many chromatin loop boundaries, and variations in CTCF occupancy are

associated with looping divergence, but their contribution to 3D chromatin struc-

tural evolution remains unknown. Study of TF cooperativity, especially CTCF and

cohesin proteins related complex which mediate 3D chromatin interaction, is key to

extended understanding gene regulatory networks.

1.3.1 TF cooperativity

Binding of TFs to specific DNA sequences are elementary for transcription regula-

tion. TFs can act cooperatively to regulate gene expression under varying conditions.

They often recruit co-regulators and epigenetic modifiers to affect the 3D chromatin

structure. Determining TF co-binding patterns is central to understanding gene reg-

ulatory mechanisms. Co-binding of particular TFs with another, including CTCF,

the cohesin complex, and a host of accessory TFs, may work cooperatively to mediate

the formation of 3D chromatin structure and elicit specific regulatory outcomes.

Recent studies have reported hundreds of co-binding TF pairs [30], and also

showed that TF co-localization is prevalent and, in many cases, co-binding TFs

form DNA-mediated complexes instead of direct interaction. TF co-binding may

result from either TF binding at neighboring sites along the DNA strand, or through

TF protein-protein interactions. Most TF co-binding studies utilize ChIP-seq data

as their main protein binding information source; however, this method cannot dis-

cern between the two modes of co-occupancy because ChIP measures enrichment of

protein interacted DNA but not necessarily DNA that were directly bound by that
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protein. To better understand TF cooperativity, a comprehensive map of TFs co-

localization due to directed DNA binding or protein-protein interactions and ability

to explore and interpret these complex relationships is needed.

1.3.2 CTCF-mediated chromatin interactions

Our previous study demonstrated that looping variation may produce differential

expression by refining altered enhancer–promoter interactions, and raised questions

about the necessity of CTCF variability in chromatin looping dynamics [31]. CTCF

is known to bind at insulators to mediate enhancer-blocking activity [32], and also

plays an important role in 3D genome structure formation as chromatin looping

mediator. Clustered factors might regulate CTCF binding and promote CTCF loops.

The loop anchors bound with more factors clustered with CTCF were also shown to

have a greater capacity to mediate stronger loops [33]. In addition, CTCF-mediated

chromatin loops were reported to be involved in enhancer-promoter loops [34, 35]

and CTCF binding might facilitate enhancer-promoter loop formation.

A few TFs have been shown to co-localize with CTCF and can regulate binding,

participate in CTCF looping, and help modulate downstream looping effects. Pre-

viously reported CTCF co-localization proteins including BHLHE40, BPTF, CHD8,

PARP1, SIN3A, TAF3, YY1 [36, 37, 33, 38, 39, 40, 41]. The cohesin complex proteins

consisting of SMC1, SMC3, RAD21 and SA1/2 subunits are some of the most studied

CTCF co-binding factors [42, 43]. A more systematic investigation on TF cooper-

ativity can help identify additional TFs that might participate in CTCF-mediated

chromatin loop stabilization and can lead to better understanding of how CTCF

related protein complex mediate chromatin interaction.
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1.3.3 3D structure measurements

Several high-throughput sequencing-based assays have been developed to mea-

sure the 3-dimensional interactions in the genome, including 3D conformation cap-

ture that detects the interaction between two loci (3C), 3C-based technologies that

capture interactions between one locus and the rest of the genome (4C), between

multiple loci (5C) and genome-wide (Hi-C), and chromatin-interaction analysis by

paired-end-tag sequencing (ChIA-PET) [44, 45, 46, 47]. Analysis of data generated

from these assays can identify loci pairs with higher interaction frequencies than

expected by random chance. They detect 3D chromatin structures including topo-

logically associated domains (TADs) exhibiting more interactions than outside the

domain and TF-mediated chromatin loops involved in gene regulation. Loop inter-

actions are at the edges of TADs and are often mediated by CTCF and cohesin

complex. ChIA-PET features an immunoprecipitation step to enrich for chromatin

complex with a specific protein. It maps long-range chromatin interactions bound by

specific proteins genome-wide at high resolution. However, 3D conformation assays

usually require very deep sequencing and can contain experimental noise. In addi-

tion, direct comparison between observations from different 3D conformation assays

can be very challenging due to lack of benchmarks.

Several analysis tools have been developed to process ChIA-PET data, including

Mango, a bias-correcting ChIA-PET analysis pipeline [48]. It can detect significant

chromatin loop anchors, enabling protein-mediated functional interactions study and

downstream functional annotation.
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1.4 Conclusion

TFBSs are building blocks for cis-regulatory elements. Precise genome-wide iden-

tification of TFBSs is essential in understanding gene regulatory network and can

provide rich resource for downstream regulatory network analysis. In this disser-

tation, I developed a new computational footprinting algorithm TRACE, which in-

corporates DNase-seq or ATAC-seq data and PWMs within a multivariate Hidden

Markov Model (HMM) to detect footprint, with a better prediction performance and

improved applicability (Chapter 2). TRACE’s ability to predict individual-specific

and tissue-specific footprint enables genome-wide test on impact of regulatory vari-

ants on TF binding activity. I performed association test on TF binding affinity

and genetic variation to identify footprint QTLs (fpQTLs), providing powerful in-

formation for functional interpretation of human noncoding variation (Chapter 3).

Finally, I investigated TF cooperativity mechanism and explored how TF co-binding

patterns and CTCF-related molecular complexes interact to determine regulatory

effects and impact chromatin conformation (Chapter 4).



CHAPTER II

TRACE: Transcription Factor Footprinting Using
Chromatin Accessibility Data and DNA Sequence

2.1 Abstract

Transcription is tightly regulated by cis-regulatory DNA elements where tran-

scription factors can bind. Thus, identification of transcription factor binding sites

(TFBSs) is key to understanding gene expression and whole regulatory networks

within a cell. The standard approaches used for TFBS prediction, such as posi-

tion weight matrices (PWMs) and chromatin immunoprecipitation followed by se-

quencing (ChIP-seq), are widely used, but have their drawbacks including high false

positive rates and limited antibody availability, respectively. Several computational

footprinting algorithms have been developed to detect TFBSs by investigating chro-

matin accessibility patterns, however these also have limitations. We have developed

a footprinting method to predict Transcription factor footpRints in Active Chro-

matin Elements (TRACE) to improve the prediction of TFBS footprints. TRACE

incorporates DNase-seq data and PWMs within a multivariate Hidden Markov Model

(HMM) to detect footprint-like regions with matching motifs. TRACE is an unsuper-

vised method that accurately annotates binding sites for specific TFs automatically

with no requirement for pre-generated candidate binding sites or ChIP-seq training

data. Compared to published footprinting algorithms, TRACE has the best over-

18
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all performance with the distinct advantage of targeting multiple motifs in a single

model.

2.2 Introduction

Identification of cis-regulatory elements where transcription factors (TFs) bind

remains a key goal in deciphering transcriptional regulatory circuits. Standard ap-

proaches to identify sets of active transcription factor binding sites (TFBSs) include

the use of position weight matrices (PWMs) [49] and ChIP-seq [50]. While these

methods have been successful, both suffer from drawbacks that limit their useful-

ness. PWMs are able to identify high-resolution binding sites but are prone to

extremely high false positive rates in the genome. On the other hand, while ChIP-

seq binding measurements are highly specific and have a significantly reduced false

positive rate, the resolution is comparatively low, labor intensive, and depends on

suitable antibodies that are only available for a limited number of TFs. Newer ex-

perimental techniques for identification of DNA-bound protein binding sites, such as

ChIP-exo [18] and CUT&RUN [51], have the advantage of high resolution and cost

efficiency, but still share the same labor intensive and limited antibody availability

disadvantages as ChIP-seq. To complement these approaches, another experimen-

tal method has been developed using data from high-throughput sequencing after

DNase I digestion (DNase-seq) [52]. DNase-seq identifies stretches of open regions of

chromatin where DNase I cuts at a higher frequency. Within these regions, TFBSs

can be identified at nucleotide resolution by searching for footprint-like regions with

low numbers of DNase I cuts embedded in high-cut peaks.

Hesselberth et al. (2009) first proposed a DNase-seq signal based computational

method to detect footprints at base pair resolution in Saccharomyces cerevisiae. Since
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then, several computational footprinting algorithms have been developed to detect

TFBSs by investigating chromatin accessibility patterns, which can be categorized

as de novo (the Boyle method, DNase2TF, HINT, PIQ and Wellington) and motif-

centric (DeFCoM, BinDNase, CENTIPEDE, FLR) [8, 9, 10, 11, 12, 13, 14, 15, 16]. De

novo methods detect footprints across input regions based on their DNase digestion

pattern. However, most of these methods were not designed to distinguish between

binding sites for specific TFs, and cannot automatically label TF-specific binding

sites of interest. In contrast, motif-centric methods can predict TF-specific sites, but

require pre-generated candidate binding sites for TFs and assess their probability of

being TF-bound (active binding sites). This limits their performance as these meth-

ods are unable to detect additional regions of candidate binding sites. Moreover,

some of these methods are supervised, requiring ChIP-seq data to generate positive

and negative training sets, and can only be applied to TFs with high-quality anti-

bodies. This is a constraint as only a minority of TFs have ChIP-seq data available

[53].

In addition to DNase digestion patterns, more detailed modeling of sequence

preference information has been used in TFBSs identification. Hoffman and Bir-

ney (2010) [54] have previously proposed a Hidden Markov Model (HMM)-based

method, termed Sunflower, to predict TFBSs based solely on sequence data. Instead

of scanning for motif sequences directly, this model takes into consideration the com-

petition between multiple TFs to provide a binding profile for all factors included in

the model. While Sunflower still suffers from sequence-only method limitations for

identifying TFBSs, it has a greater ability to distinguish the specific TF that binds

at each predicted site.

We have developed an unsupervised footprinting method, TRACE, based on a



21

HMM framework [55, 56] and inspired by the success of Sunflower and other existing

footprinting methods. TRACE predicts footprints and label binding sites for a set

of desired TFs by integrating both DNase-seq data and PWMs. Our method is

not dependent on pre-generated candidate binding sites or available ChIP-seq data,

making it more flexible and broadly applicable compared to previous methods.

A

B

C50 bases hg19
15,650,200 15,650,250 15,650,300

K562 DNaseI HS Overlap Signal from ENCODE/Duke

Transcription Factor ChIP-seq (161 factors) from ENCODE with Factorbook Motifs

120 _

0 _

CTCF

Cluster_3

MAFK

Predictions from TRACE

UP

CTCF

UP

UP

UP

UP

UP

UP

UP

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

UP

DOWN

Cluster
     _1

Cluster
     _2

Cluster
     _3

Cluster
    _4

Cluster
     _5

Cluster
    _6

…….

Back
ground

Back
ground

CTCF

CTCF

CTCF

Figure 2.1: Computational footprinting can detect TFBSs at nucleotide resolution. (A) An example
of digestion pattern at footprints: DNase I base overlap signal centered at CTCF motif
sites (black box). (B) Predicted binding sites from TRACE using our 10-motif CTCF
model match corresponding region of transcription factor binding obtained by ChIP-seq
experiments with DNA binding motifs by the ENCODE Factorbook repository. (MAFK
is a member of cluster 3 motifs.) (C) Simplified example schematic of a 7-motif CTCF
model. Circles represent different hidden states including multiple motifs, lines with
arrows represent transitions between different states. For simplicity, TOP states are
not shown in the model structure.

2.3 Results

2.3.1 The TRACE Model

TRACE is an HMM-based unsupervised method with the number of hidden states

dependent on the numbers and lengths of included PWMs (Figure 2.1). The basic

structure of our model includes two Background states (the start and end of each open

chromatin region delineated by DNase I cut sites), a target TF state (Figure 2.1C,
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CTCF), a generic footprint state (Figure 2.1C, fp), and a series of bait motif states

(Figure 2.1C, motif 1-motif 6). Each of the non-background states is surrounded

by a set of UP, TOP and DOWN states (upslope, summit, and downslope of small

peaks surrounding each footprint). Target TF states and bait motif states contain a

number of discrete chains of states representing binding sites for each motif included

in the model. The generic footprint state represents the regions that have a footprint-

like digestion pattern, but do not match any PWMs in the model. TRACE includes

a series of bait motifs representing commonly co-occurring motifs that significantly

increase the performance of the model. For example, the 7-motif CTCF model in

Fig. 1C includes a CTCF binding site state chain, 6 additional bait motifs (motif 1,

motif 2, . . . , motif 6), and generic footprints whose sequences do not match any of

the included motifs. For each of these motifs, our model can distinguish its TF-bound

states from unbound states based on the distinct DNase-seq digestion patterns of the

motif sites (Figure 2.2).

TRACE takes PWMs and DNase-seq signals as inputs and models the emission

distribution as a multivariate normal distribution using cut count signal and its

derivative, and PWM scores at each genomic position. Each binding site (footprint)

is expected to be in a region of low sequence density surrounded by a peak of density

to either side with a high PWM score (Figure 2.1A, 2.1B).

2.3.2 TRACE outperforms existing methods

To evaluate the performance of TRACE relative to published computational foot-

printing methods, we tested 9 methods (DeFCoM, BinDNase, CENTIPEDE, FLR,

DNase2TF, HINT, PIQ, Wellington, and a PWM-only comparison) on 99 TFs. For

a fair comparison across all methods, de novo methods were applied to DNase-seq

peaks containing the same sets of motif sites that were assessed by motif-centric
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Figure 2.2: Detailed schematic of bound and unbound CTCF state in CTCF model. Circles repre-
sent different hidden states including binding sites and peaks, lines with arrows represent
transitions between different states. For simplicity, all other motifs, generic footprint
states and background are represented by a dashed line circle.

methods. Receiver operating characteristic curve area under the curve (ROC AUC),

and Precision-Recall (PR) AUC of predictions of each TF were computed for each

method based on the P-values or scores provided, and ranked across all methods

(Figure 2.3A).

Previous studies evaluating computational footprinting methods focus on ROC

AUC as a measurement of performance. Although this is a decent classification per-

formance assessment, the number can be inflated by false positive predictions. For

example, the ROC AUC statistic might imply a relatively favorable classification

if the method tends to call most samples as positive hits when the data is highly

unbalanced, as is the case for many of TFs tested. In addition, partial ROC AUC

(ROC pAUC) were computed at a 5% false positive rate (FPR) cutoff. PR AUC

was also included in the evaluations as it provides a better assessment of false pos-

itives. Compared with other footprinting methods, TRACE has the best overall

performance based on average rank in both ROC pAUC and PR AUC across the 99

tested TFs (Figure 2.3C, 2.3D). It ranked first overall for 25.5% of TFs and in the
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Figure 2.3: TRACE’s performances are stable across-cell line and it outperforms other computa-
tional methods. (A) Example ROC curves of E2F1 for all methods evaluated. (B)
Cross-cell line comparison of binding sites prediction in GM12878. Each point repre-
sents a TF tested, x-axis and y-axis are PR AUCs of applying TRACE using models
trained from GM12878 and models trained from K562, respectively. Points above the
diagonal line indicate TFs for which inter-cell line model performed better. (C, D)
Average rank of PR AUC and ROC pAUC of existing methods across all TFs tested.
The Bars with a dashed outline represent motif-centric methods.

top 5 for 96.9% of TFs. Compared to other unsupervised methods, TRACE ranked

first for 87.7% of TFs. TRACE also outperformed supervised approaches including

DeFCoM and BinDNase. TRACE can predict TF footprints with performance equal

to or better than the best published methods without the requirement of positive

and negative training datasets.
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2.3.3 Bait motifs improve footprinting prediction accuracy

TRACE provides identification of binding sites for any desired TFs at nucleotide

resolution. By incorporating DNase-seq data and PWM information, it can detect

footprints with an anticipated DNase digestion pattern and matching motifs (Figure

2.1B). One important feature of our model is that states for different motifs are

independent of each other, enabling its ability to distinctly label binding sites for

multiple TFs. In addition, adding extra motifs to the model for a specific TF can

potentially increase the accuracy of identifying TF-specific binding sites. These

additional motifs as baits, discouraging the prediction of weakly matching sites and

introducing competition, thus decreasing false positive rates [54]. However, including

PWMs with similar sequence preference does not provide useful information and

could decrease our model’s ability to distinguish between binding sites of different

motifs. To avoid this, only root motifs from each motif cluster in the JASPAR

CORE vertebrates clustering were used [57] and the cluster that contains the TF of

interest was excluded. Each root motif encompasses all of the position-specific scoring

matrices (PSSMs) of a cluster generated by the RSAT matrix-clustering tool [58].

In a N-motif model, the root motifs from N-1 clusters with the greatest number of

occurrences were selected. These N-1 motifs provide additional information, making

the model more sensitive to identifying binding sites for the TF of interest.

Overall, the addition of bait motifs to the model yielded significant improvements

over our original method, which had a similar HMM structure but did not include

motif information (an option provided in TRACE) [8]. Using a 10-motif model (the

TF of interest plus 9 extra motifs), the average PR AUC from TRACE increased by

0.20 (63.1%) over our original method and ROC pAUC improved by 20%.

By comparing models containing different numbers of extra motifs, we found that
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additional TFs can increase the quality of TFBS identification in most cases. How-

ever, this was at the expense of considerably increased computational time. We

determined that an optimal trade-off between performance increase and computa-

tional time was the 10-motif model, which is used in the remainder of this study.

2.3.4 TRACE can be applied accurately across cell lines

Cross cell-line validation was performed using models trained from K562 DNase-

seq data and subsequently applied to GM12878 to test their performance compared

to models trained on GM12878. Due to less available validation data in GM12878,

this comparison utilized 52 TFs. The results indicated that TRACE can provide

accurate predictions in one cell line using a model trained from another cell line, and

that intra-cell line and inter-cell line predictions have comparable overall performance

(Figure 2.3B). This suggests that the data processing steps can successfully capture

the signature information of DNase digestion and diminish between-dataset variance

to a degree sufficient for effective prediction across cell lines. It also indicates that the

DNase digestion pattern of binding sites is preserved for most TFs across cell types.

Some exceptions were observed however, for example ESRRA had significantly better

performance in the inter-cell line test compared to the intra-cell line test. This TF

has far fewer active binding sites in GM12878 (7.6% prevalence) than K562 (31.3%

prevalence), and TRACE may not be able to learn an accurate model from the

GM12878 data. This suggests that the model should be trained using high quality

and most representative of the true genome-wide binding datasets, and the trained

model can be applied across all cell types of interest.

TRACE’s cross-cell line application allows for fast and large-scale TFBSs pre-

diction using existing models without repetitive model training, which is the most

time-consuming step. It also shows TRACE’s advantage over supervised methods’
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limited usage as only a very small fraction of TFs have ChIP-seq data available

(Figure 1.2). To further showcase this flexibility, we have generated models for 526

JASPAR motifs and made them available through our GitHub site.
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seq and ATAC-seq based TRACE performance comparison on PR AUC.

2.3.5 TRACE calls accurate footprints using ATAC-seq data

ATAC-seq provides chromatin accessibility information [17] and has been proposed

to be useful in footprinting analyses. TRACE was tested using ATAC-seq and OMNI-

ATAC-seq data to evaluate the performance of our model compared to other models

designed to work with this particular data type. The results were compared with

HINT-ATAC [59] and DeFCoM, as their original publications included ATAC-seq-

based evaluation, and showed similar improvement in performance as in the case of

DNase data.

Overall, TRACE maintains the best performance among these three methods, as
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Figure 2.5: Average rank of ROC pAUC across all TFs tested using ATAC-seq data for TRACE,
DeFCoM and HINT-ATAC.

it ranked first for both PR AUC and ROC pAUC (Figure 2.4A, 2.5). Prediction ac-

curacy for TRACE was compared using DNase-seq and ATAC-seq data for each TF

in GM12878 (Figure 2.4B). This analysis showed that ATAC-seq data provides com-

parable TFBS identification potential as DNase-seq, but that TRACE works slightly

better comparing PR AUCs using DNase-seq data (60% of TFs). TFs that showed

significant lower PR AUC using DNase-seq were caused by training data imbalances
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from GM12878 DNase-seq peaks. For example, training sets from ATAC-seq data

for FOXK2, ZNF384, CEBPB and TBP all have at least 100% increase of prevalence

compared to DNase-seq training sets. To determine that the performance difference

between these two datasets was not due to the deeper sequencing depth of DNase-

seq, TRACE was performed on a DNase-seq dataset that had comparable and/or

fewer reads than ATAC-seq. This had minimal effect on TRACE’s performance and

similar results were obtained (Figure 2.6). We further downsampled our datasets

and found that footprinting performance would drop significantly if number of reads

was below 50 million.

2.3.6 DNase footprinting has stable performance despite variable levels of data im-
balance

It has been noted that not all TFs have accurately predicted active binding sites

by computational footprinting, regardless of the algorithm applied. Our evaluation

of existing footprinting methods indicates that all methods share similar performance

trends across all TFs (Figure 2.7A left panel). This pattern also exists when assess-

ing candidate binding sites by PWM scores alone (Figure 2.7A right panel). The

footprinting performance gain against PWMs is only marginal for some TFs, and

using PWM scores alone can even outperform all footprinting methods for 2 TFs

among the 99 TFs tested here (Figure 2.7B).

The poor performance from footprinting might be partially due to the imbalance

of positive (P) and negative (N) examples in data sets, as evaluation statistics of

prediction for each TF were shown to be associated with its prevalence (fraction of

positive samples, P/(P+N), see Methods) (Figure 2.7A). Data imbalance affects the

quality of model training and, if the data distribution is too skewed, training quality

will likely be diminished. Some poor performing models were associated with too
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few positive examples, due to their inability to distinguish active and inactive states

in model training. However, this only accounts for a small subset and cannot explain

the general trend of poor performance in TFBSs predictions. Comparing final models

for each TF did not reveal significant correlation between prediction accuracies and

statistics from different models.

To further explore how computational footprinting may be limited by data imbal-

ance, the best footprinting performance for each TF was compared with a matched-
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Figure 2.7: Computational footprinting methods share similar performance patterns. (A) Heatmap
of PR AUC of all TFs tested from existing methods sorted by prevalence. (B) Compar-
ison between the best PR AUC among all footprinting methods (y-axis) and PR AUC
from using PWM score alone (x-axis) for every TF tested. (C) Performance improve-
ment of footprinting methods over permutation for each TF colored by its best PR AUC
from footprinting. Orange line is from a simulation test using positive instances drawn
from N(10, 8), and negative instances from N(0, 7) to demonstrate expected PR AUC
trend as binding prevalence changes.

imbalance permutation test of labeled sites (Figure 2.7C, 2.8, 2.9, 2.11). To com-

plement this, simulations were performed with different levels of classification skill

and varying imbalance to estimate how PR AUC and ROC AUC values reflect the

classifier performance (Figure 2.8). As imbalance changes within a classification skill,

we can expect the PR AUC will change correspondingly, but ROC AUC and ROC
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pAUC will stay the same [60]. However, ROC curve often provides an overly op-

timistic assessment caused by true negatives used in false positive rate calculation,

especially when there is a large skew in the data distribution [61].

Instead of comparing AUCs across TFs directly, their performance improvement

over random labels (baseline) was measured. To examine the general performance

gain using computational footprinting, max PR AUCs or ROC AUCs were collected

from all existing methods, including TRACE, and then AUCs were subtracted from

the corresponding permutation test. This number was used as a measurement of

footprinting performance advantage over randomly predicted labels. The regression

line of PR AUC increase against baseline has a skewed bell-like shape, consistent with

the shape of simulated performance generated from a steady model skill (Figure 2.7C,

2.8, 2.11). This suggests that the performance of footprinting is roughly at a stable

level and not associated with data imbalance. A higher evaluation statistic does not

necessarily mean a better classification quality for that TF in some cases. Although

prevalence may affect evaluation statistic values, no evidence was found that the

true classification quality is determined by this data imbalance. Instead, there tends

to be a stable level of footprinting classification performance increase compared to

random across all TFs.

2.4 Discussion

Incorporating DNase-seq data and PWM information enables TRACE to detect

footprints with the desired DNase digestion pattern and matching motifs. By includ-

ing multiple motifs in the same model, our method provides a better overall TFBS

prediction than other existing computational footprinting methods. Since different

motifs are treated as separate states in our model, TRACE also has the potential of
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targeting multiple TFs in a single model. Our method annotates binding sites for

the desired TFs across input regions automatically, without requiring pre-generated
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candidate binding sites or additional motif matching steps. In addition, as an un-

supervised algorithm, its application is not limited to TFs with available ChIP-seq

data.

Although computational footprinting has demonstrated the ability to predict TF-

BSs at an approximately consistent level, variation in evaluation statistics is still

observed across TFs. A previous study showed that not all TFs will leave clear

footprint-like nuclease cleavage patterns, and their protection of DNA from cleavage

is correlated with residence time [62]. For some TFs, this can result in footprinting

methods being unable to detect a consistent footprint-like DNase digestion pattern,

and might fail to correctly label its binding sites. However, there is only limited

residence time data available for a small number of TFs, and no comprehensive ex-

amination on residence time’s impact on footprinting quality has been completed.

Although residence time is known to be associated with enzymatic digestion patterns,

it is also correlated with the number of active binding sites. GR, AP-1 and CTCF

were tested by Sung et al. (2014) as TFs or TF subunits with short, intermediate and

long residence time, respectively. For those TFs included in our test (NR3C1 as GR

group, JUN, JUNB, JUND as AP-1 group, and CTCF), we observed that TFs with

longer residency time tend to have a greater prevalence and a better PR AUC from

footprinting (Figure 2.12). However, neither ROC AUC nor ROC pAUC of these

TFs were correlated with residence time. This indicates the possibility that the as-

sociation between residence time and footprinting ability might be caused by the

correlation between performance evaluation statistics and TFBS prevalence. The

observed performance disparity may only reflect the changes in fraction of active

binding sites among all putative motif sites.

Our evaluation on all footprinting methods indicates that there might be a limited
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classification accuracy gain that computational footprinting achieves, as the best

performance for different TFs all centered at a certain level of classification quality.

Our analysis suggests that evaluation statistics of classification from footprinting may

be largely influenced by TFBS prevalence, and comparing them directly across TFs

may be misleading. Computational footprinting in general might have a maximum

potential for how well it can detect TFBSs and only very limited improvement can

be achieved beyond this point.

2.5 Methods

2.5.1 Data and software

DNase-seq data in BAM and BED formats and ChIP-seq data in BED format were

retrieved from the ENCODE download portal (Supplemental Table S1). ATAC-seq

data for GM12878 cells using the standard ATAC-seq protocol were obtained from

GSE47753 [17]. Omni-ATAC-seq data were obtained from the Sequencing Read

Archive (SRA) with the BioProject accession PRJNA380283 [63]. 129 PWMs and

cluster information (Supplemental Table S2) were downloaded from the JASPAR

database [57]. Motif sites were identified using FIMO (MEME v5.0.3) with default

parameters [64]. Evaluation statistics were generated using the Python package

scikit-learn [65].

2.5.2 Data processing

After bias correction based on model and bias values reported in He et al. (2014)

[66], we first counted the number of DNase-seq reads at each location using the 5’

end of the reads, which is the DNase I digestion site. These cut counts were then

normalized by non-zero mean of the surrounding 10k bp window (within data set

normalization) as well as the percentile and standard deviation from the entire region
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(between data set normalization) (Supplemental Methods). Normalized signals were

then smoothed using the local regression method R [67] function LOESS [68] and

their derivatives were calculated using the savitzky-golay filter in the Python package

Scipy [69]. The first derivatives represent the slope of the processed signal curve and

their signs indicate the increase or decrease data changes. UP, TOP and DOWN

states in the peak have positive, zero and negative slopes, respectively.

2.5.3 ATAC-seq pipeline

ATAC-seq data for GM12878 was obtained from GSE47753, and Omni-ATAC-seq

data was obtained from the Sequencing Read Archive (SRA) with the BioProject

accession PRJNA380283. These data were processed following the Kundaje lab’s

ATAC-seq pipeline. (https://github.com/kundajelab/atac dnase pipelines)

2.5.4 Model details

Our model was built based on the idea of a generalized HMM, in which each motif

consists of n states, each representing one position in its PWM (n is the length of

PWM.). Each state in a motif can only transition to the next state in that motif, and

the last state in this motif will transition to the state of the small peak. Thus, each

motif can still be considered as an individual large state, but its parameters at each

base pair can be captured separately. There are also footprint states representing

generalized footprints which do not match any motif in included in the model. (Figure

2.1B) shows this in a simplified structure of TRACE model.

Two Background states represent starting and ending positions for each region

of interest. Small peaks that surround footprints are divided into UP, TOP, and

DOWN states with a one-direction connection. The DOWN state will either transit

to a footprint state or the end of an open chromatin region state (Background state).
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Only the last state in the motif states, or start of the region (Background state), can

transit to an UP state.

To better predict transcription factor (TF) functional binding sites, we included

two sets of states for each motif to represent active and inactive binding sites. For

each TF, TRACE will differentiate and predict its functional binding sites, and those

regions with a matching motif but are not necessarily bound by that TF.

2.5.5 Bait motif selection

In addition to the TF of interest states, our TRACE model also includes other

motifs which serve as bait motifs. Adding bait motifs can potentially reduce the false

positive labels of regions with footprint-like digestion patterns, but a weak sequence

match with the TF of interest. These footprint-like regions might have a higher

sequence preference for the bait motifs. This binding competition can increase the

accuracy of identifying TF binding sites.

To include useful information from the bait motifs in the model, these motifs

should not have similar binding preference, otherwise they will only contain repeti-

tive sequence information and be treated as the same states by TRACE. We obtained

hierarchical clustering information of position frequency matrices (PFMs) from the

JASPAR database using the RSAT matrix-clustering tool to ensure all motifs in-

cluded in the model are different. The motifs at the root of each tree encompass all

the position-specific scoring matrices (PSSMs) of a cluster. These root alignments

are the only PWMs that should be added to the TRACE model as baits. The root

motif from the cluster that contains the TF of interest should also be excluded from

the model. We scanned each root motif across the genome and ranked their numbers

of occurrences to determine which motifs to be added in the model. For a N-motif

model for a certain TF, the bait motifs will be (N-1) the most abundant root motifs
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from the clusters that do not contain the TF of interest.

2.5.6 Evaluation

To assess the performance of TRACE and existing computational footprinting

tools, we evaluated DeFCoM, BinDNase, CENTIPEDE, FLR, PWM score only,

DNase2TF, HINT, PIQ and Wellington based on scores or P-values provided by

each method. Candidate binding sites (motif sites) that overlapped with DNase-

seq peaks confirmed by ChIP-seq were used as the positive set, and those not in

ChIP-seq peaks but still overlapping DNase-seq peaks made up the negative set.

Prevalence was calculated as number of active binding sites (positive set) divided by

total number of motif sites (positive set and negative set).

To provide a fair comparison across all methods, we applied de novo methods to

DNase-seq peaks (with 100bp flanking regions to each side) containing the same sets

of motif sites that were included in motif-centric methods tests. For de novo methods,

only the predictions overlapping with motif sites of tested TFs were included in our

evaluation; candidate binding sites that were missing from their predictions were also

included with an assigned minimum score. For motif-centric methods and PWM only

evaluations, only candidate binding sites provided are assessed, thus all predictions

were included in the evaluation. Annotations and corresponding scores or P-values

were used to calculate the ROC AUC, ROC pAUC at a 5% FPR cutoff and PR AUC

values for all TFs.

Permutation tests were performed by shuffling labels from footprinting prediction

results. Multiple simulation tests were also included based on different levels of posi-

tive and negative samples separation and different positive example fractions. Scores

for positive and negative groups were randomly drawn from the normal distribution

of different means and standard deviations.
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2.6 Software availability

TRACE is an open source software; the source code, trained models, and predic-

tions are available on GitHub at https://github.com/Boyle-Lab/TRACE.

2.7 Publication

The study in this chapter has been published in Genome Research [70]: Ouyang,

N., & Boyle, A. P. (2020). TRACE: transcription factor footprinting using chromatin

accessibility data and DNA sequence.



40

RUNX1

NR2F1

E2F1

ELK1
GATA1

GATA2

IRF1

IRF2

MEF2A

MAX

NFYA

GABPA

SP1
ZNF143

USF1

YY1

ETS1
TBP

NR3C1

HINFP

STAT1

REST

CTCF
ZFX

MYC

FOXA1

NFIC

EGR1

BHLHE40
CEBPB

E2F6

ELF1JUN
JUNB

JUND

MAFF

MAFK

NFYB

NR2C2

NRF1

RFX1
RFX5 SOX6

TCF12

TCF7L2

USF2

ZBTB33

ZNF263 ESRRA

SREBF1

THAP1

ATF1

ATF3

CREMFOXJ2

GMEB1

MITF

NFATC3

CREB3

ELF4

ETV6
IRF9

KLF13

MAFG

NR2F6

KLF16

ZBED1

ZBTB7A ZNF740

CUX1

E2F7

ETV1

LEF1

MEF2D

MEIS2

MYBL2

PKNOX1
TEAD4

MNT

ATF4

ATF7

CEBPG

CREB3L1

NFE2
E2F8

HMBOX1

HES1

CTCFL

FOXK2

MXI1

NEUROD1

NR2F2

NR4A1

PBX2

TEAD2

TFDP1

ZNF24

ZNF384

ZNF282

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Prevalence

M
ax

 In
cr

ea
se

0.9

0.8

0.7

0.6
ROC AUC

ROC AUCA

RUNX1

NR2F1

E2F1

ELK1

GATA1

GATA2

IRF1

IRF2

MEF2A
MAX

NFYA

GABPA

SP1

ZNF143
USF1

YY1

ETS1

TBP

NR3C1

HINFP

STAT1

REST

CTCF

ZFX

MYC

FOXA1

NFIC

EGR1

BHLHE40

CEBPB

E2F6

ELF1

JUN

JUNB

JUND

MAFF

MAFK
NFYB

NR2C2

NRF1
RFX1

RFX5

SOX6

TCF12

TCF7L2

USF2

ZBTB33

ZNF263

ESRRA

SREBF1

THAP1

ATF1

ATF3

CREM

FOXJ2

GMEB1

MITF

NFATC3

CREB3

ELF4

ETV6

IRF9

KLF13

MAFG
NR2F6

KLF16

ZBED1

ZBTB7A

ZNF740

CUX1

E2F7

ETV1

LEF1MEF2D

MEIS2MYBL2

PKNOX1
TEAD4

MNT

ATF4

ATF7

CEBPG

CREB3L1

NFE2

E2F8

HMBOX1

HES1 CTCFL

FOXK2
MXI1

NEUROD1

NR2F2

NR4A1

PBX2

TEAD2

TFDP1

ZNF24

ZNF384
ZNF282

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Prevalence

M
ax

 In
cr

ea
se

0.8

0.7

0.6

ROC pAUC

ROC pAUCB

Figure 2.9: Increase of footprinting methods’ best (A) ROC AUC and (B) ROC pAUC over per-
mutation are not correlated with prevalence. Orange line is from simulation test using
positive set from N(10, 8), negative set from N(0, 7).
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CHAPTER III

Characterizing Regulatory Variants by Fine-mapping
Footprint QTLs

3.1 Abstract

Association fine-mapping of molecular traits has emerged as an essential method

for understanding the function of genetic variation. Sequencing-based assays, in-

cluding RNA-seq, DNaseI-seq and ChIP-seq data, have been widely used to measure

different cellular traits and enabled genome-wide mapping of quantitative trait loci

(QTLs). The disruption of cis-regulatory sequence, often occurring through variation

within transcription factor binding motifs, has been strongly associated with gene

dysregulation and human disease. We recently developed a computational method,

TRACE, for transcription factor binding sites identification. TRACE provides pow-

erful information for association mapping of footprint and regulatory variants uti-

lizing DNase footprinting for precise genome-wide prediction of individual-specific

transcription factor binding sites. Using binding activities predicted from TRACE

and genome-wide genotypes of Yoruba lymphoblastoid cell lines (LCLs), we mapped

footprint-variants significant associations, termed footprint QTLs (fpQTLs). Detec-

tion of fpQTLs provides a rich resource for the continued study of regulatory variants,

leading to improved functional interpretation of noncoding variation.

44
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3.2 Introduction

Transcription factors (TFs) can recognize and bind to DNA sequence, including

cis-regulatory elements, to perform their regulatory activaty. Transcription factor

binding sites (TFBSs) make up only 8% of the genome but contain 31% of genome-

wide association studies (GWAS) identified genetic variants, suggesting they play

a largely underappreciated role in human disease [71]. Binding of TFs to specific

DNA sequences is fundamental for transcription regulation and the effect of regula-

tory variants on these regions is more directly interpretable. The functional effect

of noncoding single nucleotide variants (SNVs) is often observed as a strengthening

or weakening of individual transcription factor binding activity, thus identification

of variation effects on transcription factor binding is key to understanding and inter-

preting the downstream consequences on gene expression and disease phenotypes.

Association mapping of quantitatively measurable molecular traits has emerged

as a powerful approach for studying genetic variation. Genome-wide mapping of ex-

pression quantitative trait loci (eQTLs) has become an essential method to examine

the impact of variants on gene expression and regulation [72, 24]. However, the un-

derlying regulatory mechanism is not immediately evident due to linkage with causal

variants rather than having a direct effect on transcription. One putative mecha-

nism is that variants can change the likelihood of transcription factor binding and

thereby affect regulatory networks. Previous study demonstrated that mutations in

transcription factor binding sites alter transcription factor binding affinity, and are

associated with human diseases, including cancer and type 2 diabetes [22].

Binding of TFs to DNA often exhibits regions that are protected from DNaseI

digestion, known as footprints. DNase I hypersensitive site sequencing (DNase-seq)
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measures open chromatin regions where DNase I cuts at higher frequencies, allowing

for genome-wide footprinting. We recently developed a computational footprinting

method, TRACE that predicts footprints and labels binding sites for desired TFs

[70]. Our model integrates both DNA accessibility (DNase-seq or ATAC-seq) and

genome sequence information (PWMs to predict footprints, and binding scores can

reflect binding activity changes caused by variation in genotype and chromatin ac-

cessibility by utilizing DNase-seq or ATAC-seq and DNA sequence from different

individuals. Here We leverage DNase-seq, RNA-seq, and genotypes for the HapMap

Yoruba lymphoblastoid cell lines (LCLs) to enable genome-wide identification of ge-

netic variant-footprint associations in a base pair resolution and examine their impact

on phenotypic variation [20, 73, 21, 74]. We refer to loci with significant associations

in TF binding between genotypes and inter-individual variation as “footprint QTLs”,

or fpQTLs. This genome-wide mapping of fpQTLs provides additional information

for the functional interpretation of human noncoding variation.

3.3 Results

3.3.1 Genome-wide identification of fpQTLs

Genetic variation can alter TF binding sequences and therefore affect the like-

lihood of TF binding. As an example, rs1338681 is a SNP within a CTCF bind-

ing motif (Figure 3.1C), where the alternative allele disrupts the motif and leads

to reduced binding affinity at the footprint (Figure 3.1D). Genome-wide mapping

of footprint-variant association can be accomplished by utilizing TFBSs prediction

datasets. TRACE employs both chromatin accessibility data and sequence infor-

mation to assess binding activity at footprints, allowing for the investigation of the

impact of variants on TF binding activity. We generated individual digestion signal

profile and PWM scores for 57 HapMap Yoruba lymphoblastoid cell lines (LCLs),
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Figure 3.1: Genome-wide detection of fpQTLs and an example fpQTL SNP. (A) QQ-plots for all
tests of association between footprint scores and variants within 2kb (red) and 40kb
(blue) regions surrounding the target footprint. Permutation controls (gray) confirmed
that observed p-values are uniform under the null (B, C, D) Example of a fpQTL
rs1338681: (B) The T allele reduced TF binding affinity through (C) disrupting the
CTCF binding motif, and (D)is associated with reduced binding score. (E) -log10 p
values of associations of variants-footprint tested, significant fpQTLs at 10% FDR are
in red color.

using available DNase-seq data and genome-wide genotypes, following the same data

processing pipeline as TRACE with some adjustments that account for genetic vari-

ation. These processed signals were subsequently used to predict individual-specific

TFBSs with a modified version of TRACE. Individual-specific marginal posterior

probability for each region being bound by a certain TF was also assigned to the

corresponding predicted footprint.

For each TFBS within a sample, the predicted score from TRACE was used

as a quantitative trait to estimate the sample-specific TF binding activity at that
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Figure 3.2: Workflow of fpQTLs identification.

footprint. Given genome-wide TFBS prediction and genotype, an association test

was completed between binding scores at each footprint and and all SNP genotypes in

a cis candidate window of 2kb and 40kb centered at the target binding site (Figure

3.2). Significant footprint-genetic variant pairs were identified where TF binding

affinity was significantly correlated with genome variants at 10% FDR, thus referred

to as footprint QTLs (fpQTLs). In general, fpQTLs within in a 2kb window showed

a higher significance level than fpQTLs in a 40kb window (Figure 3.1A). In the

following analyses, only include fpQTLs identified in a 2kb window are included.

3.3.2 Proximal and distal fpQTLs

Since different alleles within a motif can directly lead to the creation or disruption

in TF binding sequence, we hypothesized that fpQTL SNPs lying inside the target

footprints could have a greater effect on TF binding compared to those outside of
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footprint. Similarly, the distance of a gene variant relative to motif sites can impact

its effect size on binding activity. fpQTLs generated previously were separated into

three groups: 5.15% of SNPs were locating inside associated footprints, 29.2% were

outside of the target footprint but fell within a +/-100 bp window centered at the

footprint, and others were outside the +/- 100bp window but were within a +/-1

kb window (Figure 3.3A). Each footprint can be linked to multiple SNPs, however,

12.5% of fpQTL loci were significantly linked to SNPs that fell within the target

footprint, and 55.4% had associated SNPs lying in a +/-100 bp window centered at

the footprint.
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Figure 3.3: Properties of Proximal and distal fpQTLs (A) Distribution of fpQTLs by variant’ dis-
tance to target footprint. (B) Distribution of effect sizes for proximal and distal fpQTLs
(solid curves) and caQTLs (dotted curve) showed larger effect size for more proximal
QTLs. Dashed lines are average effect size for the three positional categories of fpQTLs.

To test if distance factors into the impact of genetic variants on footprint, R

squared from the linear model were used as effect size measurements. The distri-

bution of effect size in three positional categories indicated that fpQTLs inside the
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binding sites tend to have a larger effect on binding activity, and more distal fpQTLs

tend to have smaller effect size (Figure 3.3B, solid curve). This is consistent with

our expectations that formation or disruption of a binding sequence can exert the

greatest effect on TF binding. The same trend was observed with chromatin acces-

sibility QTLs (caQTLs) as proximal SNPs have a more extreme effect on chromatin

accessibility than more distant ones (Figure 3.3B dotted curves). [73].

3.3.3 Functional significance of fpQTLs

The high number of detected fpQTLs provide a rich resource to generalize ge-

nomic properties of variants, including their enrichment with other cellular traits

or diseases. fpQTLs share a large overlap with caQTLs that were also identified

in LCLs using the same DNase-seq dataset. Utilizing GWAS catalog data, many

fpQTL SNPs were found to overlap with GWAS-associated SNPs for various dis-

ease/traits including Type 2 diabetes and cancer such as prostate cancer, consistent

with our prior knowledge, as well as blood protein levels, mean corpuscular volume

and serum metabolite levels. Fisher’s exact test also showed significant enrichment in

some traits or diseases such as IgM levels and systemic lupus erythematosus (Figure

3.4C).

Several computational tools have been developed to prioritize genetic variants

and predict their functional consequences based on a variety of genomic features. To

study genomic properties of fpQTLs, fpQTL SNPs were queried against RegulomeDB

[75, 76] and ExPecto [77] annotations, and functional scores were obtained for each

SNP. Compared to randomly selected non-fpQTL variants, fpQTL SNPs showed

higher functional significance in both scoring systems (Figure 3.4A, 3.4B).
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3.3.4 Cis-regulation of gene expression by fpQTLs

Genetic variations that alter the likelihood of transcription factor binding can

thereby affect regulatory networks, thus we hypothesized that a substantial portion

of fpQTLs will also contribute to variation in the expression level of nearby genes.

To examine the effect of creation or disruption of transcription factor binding as

a potential mechanism involved in the linkage between genotypic and phenotypic

variation, tissue specific eQTLs from Epstein-Barr virus (EBV) transformed lym-

phocytes were retrieved from the Genotype-Tissue Expression (GTEx) project. We

found that 12.8% of fpQTL SNPs are also significantly associated with variation in

the expression levels of nearby genes.



52

TSS

TSS

A

C

Promoter

Promoter

TF

TF

Footprint

reduced 
binding affinity reduced 

gene expression

TSS

TSS

G

T

Promoter

Promoter

TF

TF

Footprint

reduced 
binding affinity increased

gene expression

0.0

0.2

0.6

0.9

A C

bi
nd

in
g 

af
fin

ity

0.0

0.2

0.6

0.9

A C

ge
ne

 e
xp

re
ss

io
n

0.0

0.2

0.6

0.9

G T

bi
nd

in
g 

af
fin

ity

0.0

0.2

0.6

0.9

G T

ge
ne

 e
xp

re
ss

io
n

A

B C

D

E F

Example of positive e�ect fpQTL-eQTL Example of negative e�ect fpQTL-eQTL
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(A) A positively directed genetic variant disrupts TF binding at footprint and decreases
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with (B) level of TF binding and (C) gene expression. (D) A negatively directed genetic
variant disrupts TF binding at footprint and induced gene expression. the G/T allele
is associated with (E) level of TF binding and (F) gene expression.

We observed that the joint fpQTLs-eQTLs SNPs are enriched in a closer window

surrounding the TSS, 9.2% are within a +/- 1kb window around the TSS, 78.6% are

outside +/- 1kb but within a +/- 100kb window. SNPs closer to the TSS tended to

be more significant than distal ones (Figure 3.6). However, unlike dsQTLs-eQTLs

pairs, where usually increased chromatin accessibility is associated with increased

gene expression levels, the direction of the SNP’s impact on TF binding activity and

gene expression is highly diverse due to the diversity of activating or repressing func-

tionality of different TFs. To study the correlation between the impact of SNPs on

TF occupancy and gene expression levels, fpQTLs and eQTLs regression slopes were
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Figure 3.6: QQ-plots for fpQTL-eQTL, grouped by distances to TSS. The dots don’t start off
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plotted.

calculated from linear models of footprint scores and gene expression respectively,

and the sign of the slope indicates either an up-regulating or down-regulating effect

on binding affinity or gene expression. Congruent signs for both slopes suggest the

SNP associated with TF binding disruption is also associated with reduced expres-

sion of a nearby gene (Figure 3.5A, 3.5B, 3.5C). Conflicting directions of the SNPs’

effect on TF binding and gene expression indicate that reduced TF binding activ-

ity is linked to increased gene expression (Figure 3.5D, 3.5E, 3.5F). To determine

whether a specific TF has directional impact on gene expression, as defined as the
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changes in binding activity tending towards have a consistently positive or negative

effect on gene expression across all detected fpQTLs, we performed a binomial test

on each TF separately to characterize direction-specific TFs with significant asso-

ciation between regulating directionalities of TF binding activity and transcription

level. There were 43 TFs with Bonferroni-corrected p-values smaller than 0.05 and

a fold change greater than 2 (Figure 3.7A). Among these TFs, nuclear transcrip-

tion factor Y, beta subunit (NFYB) is a most significant negative effect TF but

has a moderate fold change of positive loci / negative loci. This suggests that, al-

though NFYB loci are more enriched for having a negative regulatory effect, some

still exhibited up-regulation on gene expression. In fact, the NF-Y complex is known

as an activator protein that can bind promoter regions and regulate transcription

through heterodimers or heterotrimers formation. However, the NFYB subunit of

the NF-Y complex has been previously reported to be a repressor in multi-omics

analysis [78, 79]. Another significant directional TF is eomesodermin (EOMES) that

act as a transcriptional activator and is involved in differentiation of CD8+ T cells

[80, 81, 82], consistent with its high positive log fold change value.

3.4 Discussion

Association studies using sequencing-based assays such as RNA-seq, RIBO-seq,

ChIP-seq and DNaseI-seq have revealed plentiful QTLs involved in gene expression

[74] and transcriptome [83, 84, 85], ribosome occupancy and protein abundance [86],

histone modification [87], DNA methylation [88] and chromatin accessibility [73].

Here we define footprint QTLs (fpQTLs) as genetic variations that are significantly

associated with footprint binding affinity, providing additional information on the

regulatory functions of genetic variation. Both proximal and distal fpQTLs were



55

A

TSS
A

ZNF263

reduced 
binding affinity

increased
gene expression

GBA2
rs1570247

TSS

EOMES

SGCA
rs847687

G

increased 
binding affinity

increased
gene expression

B

ATF2

BATF3

CEBPD
EBF1

EGR1

EOMES
ETV1

EWSR1−FLI1

FIGLA
FOS::JUN

FOSB::JUNB

FOXE1

HOXA13

JUN

KLF2

LEF1

MAFF

Mlxip

NFKB2

NFYB

NR1D1
NR1D2

NR2C2

PBX3

Prdm15

Ptf1a

RARA::RXRA

RELA

RUNX2
SOX21

SOX4

STAT3

THAP11

0

5

10

15

20

−5.0 −2.5 0.0 2.5 5.0

log2 fold change (positive loci / negative loci)

−l
og

10
(p

 v
al

ue
)

C

X

vertical cup-disc ratio 

type 2 diabetes

Figure 3.7: Properties of fpQTL-eQTL (A) Volcano plot for TFs on their gene regulation direc-
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gene. This SNP is linked to vertical cup-disc ratio trait.

identified using an association test. Although a substantial portion of fpQTL SNPs

enriched closer to the targeting footprint with a greater effect size, a number of

distant regulatory relationships also exist.

fpQTLs from this study provide a rich source of information for examination

of SNP genomic properties and evaluatation of the regulatory potential of untested

variants to achieve a better understanding of regulatory mechanisms. Among fpQTL

SNPs, many also overlapped with eQTL SNPs and potential disease-causing SNPs

identified by GWAS. For example, rs1570247, a causal SNP correlated with type 2

diabetes, disrupts the binding of the previously reported transcriptional repressor

ZNF263 [89], and is associated with increased expression of the Glucosylceramidase

Beta 2 (GBA2) gene (Figure 3.7B). This provides a potential underlying mechanism

for the linkage between genetic variants, gene expression and disease phenotype, as
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the alternative allele can alter ZNF263 binding. Subsequent disruption of ANF263

binding can affect GBA2 gene expression along with other co-factors, and cause the

disease phenotype. Another example is rs847687, which increases the binding of the

activating transcription factor EOMES that was discussed in the previous section,

and is associated with increased expression of the Sarcoglycan Alpha (SGCA) gene

(Figure 3.7C). This has also been identified as a disease risk locus and was linked to

vertical cup-disc ratio through the same gene by a GWAS study [90], postulating that

EOMES binding might be involved in the cup-disc ratio phenotype via transcriptional

regulation.

3.5 Methods

3.5.1 Data and software

DNase-seq data for 57 HapMap Yoruba lymphoblastoid cell lines (LCLs) in fastq

formats were retrieved from http://eqtl.uchicago.edu/dsQTL data/. Reads were

remapped to hg38 using the variant-aware aligner VG toolkit [91]. Correspond-

ing variant file in VCF format were downloaded from 1000 Genomes. 780 PWMs

and cluster information were downloaded from the JASPAR database [57].

3.5.2 Modified TRACE workflow

Signal processing of DNase-seq data followed the TRACE pipeline, which includes

cutting bias correction, normalization, and local regression smoothing. The original

program was modified to accept sequence information with variants, and the motif

score feature can reflect different alleles. To generate individual-specific TFBSs, a

10-motif was trained for each TF and the same model was applied on all individual

datasets.
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3.5.3 fpQTL association testing

For each predicted footprint and its individual-specific binding score from TRACE,

we tested for association of the binding score with the genotypes of all SNPs where

the minor allele frequency was greater than 5% within a cis-candidate region (2 kb

and 40 kb cis-candidate windows centered on the target footprint). For each foot-

print and each SNP falling within the candidate window, standard linear regression

between genotype and binding score was performed in R, and a p-value was gen-

erated by testing the alternative hypothesis that the slope in the linear regression

model is not 0.10% FDR, which was estimated using the “qvalue” R package, was

used as a threshold to select significant footprint-variant pairs.

3.5.4 caQTLs generation

To generate caQTLs, DNase-seq reads that were mapped to the hg38 in the pre-

vious section were processed following the same pipeline described in Degner et al.

(2012) [73]. Reads starting within the 5 bp window centered at SNPs were discarded.

Raw DNase sensitivity was calculated by counting the number of reads falling in each

non-overlapping 100bp window, normalized by total number of mapped reads and

mappability. Additional normalization steps for hypersensitivity phenotypes include

GC-content correction, mean-center and variances scale, and quantile-normalization

to standard normal distribution. Unidentified confounders were removed with PCA,

thus 4 PCs were removed. Subsequent association testing was conducted to generate

dsQTLs at 10% FDR.

3.5.5 Functional significance analysis for fpQTLs

Genomic annotations and function scores were collected from RegulomeDB [75, 76]

and ExPecto [77].All identified fpQTL SNPs and randomly selected background non-
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fpQTL SNPs were queried, and lists of RegulomeDB scores and ExPecto disease

significant scores were obtained. GWAS catalogue data [92] built in Dec 2021 were

retrieved from the GWAS Catalogue website. Fisher’s exact test was performed to

assess the enrichment of disease and other traits. Odds ratio and its 95% confidence

interval were calculated for each disease/trait.

3.5.6 Impact direction of the fpQTLs-eQTLs SNPs

The impact direction of the fpQTLs-eQTLs SNPs is defined as the consistency of

the signs of the slopes of the variant-footprint and variant-expression linear regression

model. It can be interpreted as the up or down-regulation effect of the increased

or reduced TF binding resulting from the alternative allele (ALT) relative to the

reference allele (REF) on gene expression (i.e., if it has a negative impact direction,

the disruption of TF binding will lead to increased expression of a nearby gene).

Log fold-change for each TF was calculated by taking the log-ratio of the number of

fpQTLs-eQTLs SNPs associated with that specific TF that have a positive impact

direction to the number of SNPs with negative effects.



CHAPTER IV

Integration of TFBSs with 3D Chromatin Structure to
Understand CTCF Looping Regulation

4.1 Abstract

Genetic regulation relies on transcription factor binding as well as spatial folding

of chromosomes and chromatin looping. 3D chromatin structure plays a pivotal

role in gene expression by bringing distal regulatory elements into spatial proximity.

Transcription factors can co-bind with one other and recruit other regulatory proteins

through direct or indirect physical interaction. CTCF and cohesin complex are

known to work cooperatively to mediate the formation of 3D chromatin structure

and achieve specific regulatory outcomes. Illumination of TF co-localization is central

to understanding gene regulatory mechanisms. Here I explore how TF co-binding

patterns and CTCF-related molecular complexes interact to determine regulatory

effects and impact chromatin conformation.

4.2 Introduction

Transcription factors (TFs) act cooperatively to regulate gene expression under

varying conditions across cell types. Determining TF co-binding patterns is essential

in understanding architecture of the gene regulatory network in a cell. One way of

mapping this network is through ChIP-seq assays that provide genome-wide binding
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profiles of a large number of transcription-related factors and analysis of these data

has revealed complex co-binding patterns [93]. This combinatorial binding of TFs

exhibits distinct genomic properties and drives regulatory function in a context-

specific fashion. However, in depth systematic investigation on TFs co-localization

can be challenging due to the high dimensionality of the large data sets. Furthermore,

ChIP-seq data based TF cooperativity studies cannot discern between the two modes

of co-occupancy: protein-protein interaction or direct DNA binding. An overall

understanding of the mechanisms and consequences behind cooperative TF binding

is still needed.

The insulator protein CTCF is known to serve as a chromatin looping mediator in

forming 3D genome structure. CTCF can mediate chromosomal contacts and plays

a critical role in genome organization [94]. These changes in chromatin interaction

through 3D conformation of the genome allows regulatory elements where TFs bind

to achieve their gene regulation properties across long distances. 3D chromatin inter-

actions can connect regulatory elements to target genes and regulate gene expression.

CTCF binding sites are present in many chromatin loop boundaries, and variations

in CTCF occupancy are associated with chromatin looping dynamics. In addition,

previous studies have showed that depletion of CTCF binding can lead to disruption

of these chromatin interactions [95, 96].

A few TFs have been shown to co-localize with CTCF and can regulate bind-

ing, participate in CTCF looping, and help modulate downstream looping effects.

However, no comprehensive analysis of molecular complexes around CTCF has been

performed. The most widely explored co-factors that co-localize with CTCF are the

cohesin complex proteins, consisting of SMC1, SMC3, RAD21 and SA1/2 subunits.

Cohesin has its established role in chromatid cohesion and CTCF has been shown
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to be required for cohesin subunit Scc3/SA1 recruitment to Chromatin [42, 43]. Co-

hesin is essential in CTCF-mediated chromatin loops stabilization and is critical for

CTCF function genome-wide [97]. To deepen our understanding of how CTCF me-

diates higher-order chromatin organization, the factors that are involved in CTCF

complex and CTCF mediated loops need to be further explored.

Using transcription factor binding information as raw data, here I employed an

artificial neural network called Self-Organizing Maps (SOMs) to identify “clusters” of

TFs and define co-binding patterns. These were further characterized by their corre-

lation with chromatin states and histone modifications to improve our understanding

of the mechanisms behind the downstream regulatory outcomes. I also studied TF

enrichment at chromatin loop anchors to investigate key factors in mediating the

3D organization of chromatin and 3D-cooperation between chromatin loops and TF

co-binding complexes.

4.3 Methods

4.3.1 SOM training and plotting

At each DNase I hypersensitive site (DHS), the binding state of all TFs at that

region was encoded into binary states (bound / unbound) determined by either

TFBSs predicted from TRACE or ChIP-seq peak of same group of TFs overlapping.

These binary binding information vectors ware used as input into an empty SOM

which then went through unsupervised training. After training, SOMs can detect

clusters of TFs and generate nodes of different TF co-binding patterns. These co-

localization patterns were represented by hexagons in SOM map which can be color

coded by values representing different biological signals including binding activity

of a specific TF and regulatory element enrichment (Figure 4.1A). Each hexagon

denotes a generated patterns and is supported by multiple regions that were bound
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by TFs involved in that pattern (Figure 4.1B). To plot enhancer enrichment, we first

intersected all regions with enhancer locations, and calculated the mean value of each

binary overlapping information vectors of regions labeled with each pattern. Then

the signal can be used to color each hexagon to represent the fragment of enhancer

regions.

Figure 4.1: SOM map and co-binding patterns (A) SOM map colored by FOS binding values (darker
blue represents higher FOS binding). (B) Each hexagon represents a co-localization
pattern. (C) Overlapping TF binding were assembled into different co-binding patterns.
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4.3.2 ChIA-PET data analysis

ChIA-PET data for GM12878 and K562 were retrieved from the ENCODE down-

load portal in fastq format. After quality check, paired reads were aligned using BWA

mem with default parameters. Unmapped and secondary reads, as well as reads with

quality scores less than 30 were filtered out using Samtools view. Processed data from

all biological and technical replicates were concatenated. MANGO pipeline was then

utilized to further analyze the data to generate significant loop interactions.

4.3.3 Epigenetic properties at loop anchors

ChIP-seq data for GM12878, and K562 cells in bigWig format were downloaded

from the ENCODE download portal. The rtracklayer R package [98] was used to

retrieve histone modification signals at each location in 20-kb windows surrounding

the loop anchors. For each histone mark and cell line, we also compared the average

signals in left and right 10-kb portions of each window region. If the right half has

higher signal than left, we will flip the signal track direction. Mean signal at each

location was calculated and then normalized by mean signals at randomly selected 20-

kb windows across the genome. This process was applied to promoter and enhancer

enriched loops anchors separately and the processed score vectors were plotted as

line graphs for each cell type using ggplot2.

4.3.4 TF enrichment at loop anchors and cis-regulatory elements

Core 15-state model chromHMM chromatin states annotations were downloaded

from Roadmap Epigenomics Consortium [99, 100]. Their annotations were used to

label cis-regulatory element at chromatin loop anchors by intersecting significant

loop anchors generated from previous section and regulatory element annotations.

To study the enrichment of TF at certain group of loop anchors (group X) such as
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enhancer loop anchors and promoter loop anchors, we first generated a background

group. We counted total number of regions in group X and randomly selected the

same number of regions from the pool of all loop anchors as background group. We

next calculated the number of regions in group X and background group having a

specific TF binding respectively. By comparing the counts from a certain group and

background, we can show which TF tend to be enriched or depleted in anchor group

X.

4.4 Results

4.4.1 TF co-binding patterns from Self-Organizing Map

Existence of TF co-localization may result from either direct TF binding at neigh-

boring sites along the DNA strand, or through protein-protein interactions. ChIP-seq

data is widely used as main TF binding information source in most co-occupancy

studies; however, using ChIP-seq data alone cannot differentiate the two modes of

TF co-binding. In contrast, TRACE can predict footprints of TFs that bind directly

to DNA by accessing chromatin accessibility pattern and sequence binding prefer-

ence [70]. By utilizing TFBSs data, more TFs can be included to help distinguish

between DNA-directed co-binding and co-localization due to protein-protein inter-

actions. This allows us to work on a larger number of TFs, considering the limited

availability of ChIP-seq data for TFs, and focus on the combinatorial effects of neigh-

boring TFBSs on regulatory outcomes. Binding information from footprinting can

generate combinatorial binding for more than 400 TFs, the high dimensionality of

the data makes it very challenging to study TF co-binding patterns. Here, an arti-

ficial neural network called Self-Organizing Maps (SOMs) was employed to identify

“clusters” of TFs and define co-binding patterns [101].

Binding sites for 425 TFs in K562 were generated using TRACE. K562 was used
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in this study because it has the most TF ChIP-seq data available. At each genomic

region, whether the binding sites of TFs overlapping the region was encoded into

binary states. The binary binding information were used in SOM training in order

to cluster all overlapping binding into sets of similar co-binding patterns. A SOM

map comprised of a series of “neurons” was generated by SOM algorithm based on

mutual overlap of TF binding. Each neuron contains a common co-binding pattern

and was assigned to a node in the map grid (Figure 4.1A).

The SOM captured a large variety of co-localization patterns and detected some

previously reported TF cooperativities. For example, JUN-FOS-ATF co-binding

pattern were identified from SOM. JUN and FOS are activating protein 1 (AP-1)

transcription factors. ATF often form complexes with AP-1 proteins and bind to

TPA-responsive elements (TREs)-like sequences together [102]. CTCF-ZNF143 co-

binding were also detected, which is consistent with previous studies. ZNF143 is

known to be co-localized with CTCF, and knocking down ZNF143 can lead to loss

of chromatin interaction at individual loci [103, 104].

4.4.2 co-binding patterns from ChIP-seq peaks and footprints

To distinguish between TF co-localization due to DNA-directed co-binding and

protein-protein interactions, we applied SOM on both TFBSs data (footprint SOM)

and ChIP-seq data (ChIP-seq SOM) and found low level of agreement between TF

co-binding patterns identified from footprints and ChIP-seq peaks (Figure 4.2). For

example, for genomic regions with CTCF binding that were determined by ChIP-seq

peaks, only 35.7% of them were labeled with CTCF involved patterns from footprint,

and for footprint labeled CTCF-bound regions, 72.6% of them were also interacted

with CTCF from ChIP-seq data (Figure 4.2A, 4.2B).

The difference in footprint SOM and ChIP-seq SOM labeled patterns can be
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caused by TF co-localization due to direct DNA binding or protein-protein interac-

tions. Our footprinting method, TRACE investigates chromatin accessibility pattern

and motif sequence to detect TFBSs, its predicted binding sites reflect there is direct

TF binding at DNA. Therefore, a footprint-based SOM will only cluster together

TFs binding at neighboring sites on the DNA. ChIP-seq enriches for DNA regions

interacted with specific proteins but not necessarily by direct binding of that protein,

so co-localization detected by ChIP-seq SOM might be formed by protein-protein in-

teractions. For example, cohesin proteins like RAD21 lacks a direct DNA-binding do-

main, instead they function through interacting with CTCF. CTCF-cohesin protein

patterns can be identified by ChIP-seq SOM but not footprint SOM. The footprint

SOM can help filter out protein-protein interactions and allows study on cooperativ-

ity of TFs that are all directly binding at DNA.

With the binding mechanism difference from direct DNA-protein interaction and

protein-protein interaction, a low level of consistency between co-binding modules

identified by the footprint SOM and ChIP-seq SOM were observed, along with low

overlapping rate between ChIP-seq peaks and binding motif. Previous studies have

shown that most ChIP-seq peaks lack the TF’s sequence motif [105], suggesting in

many ChIP-seq peaks there are not direct TF interaction with DNA. Motif infor-

mation is one of the features used in our TFBSs prediction, so the low agreement

between ChIP-seq peaks and motif sequence is also consistent with lack of predicted

binding sites in ChIP-seq peaks. In fact, our comparison also showed that very small

fraction of ChIP-seq peaks for specific TFs contain binding sites predictions from

TRACE (Figure 4.2C). It is consistent with our observation that the ChIP-seq iden-

tified co-localization has a more extreme small portion that have similar co-binding

patterns by footprint than fraction of footprint patterns that were consistence with
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ChIP-seq patterns.

Figure 4.2: Low consistency between TF binding from ChIP-seq and footprints (A) For all regions
labeled as ChIP-seq SOM generated CTCF involved patterns, the pie plot shows the
distribution of their pattern annotated by footprint SOM (B) For all regions labeled as
footprint SOM generated CTCF involved patterns, the pie plot shows the distribution
of their pattern annotated by ChIP-seq SOM. (C) Fraction of ENCODE ChIP-seq peaks
for a TF with binding sites predictions from TRACE.
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4.4.3 TF enrichment at loop anchors

We next studied TF binding activities in chromatin interaction. To identify chro-

matin loops in the human genomes, we utilized publicly available Paired-End Tag

sequencing (ChIA-PET) data. Loop anchors were generated using ChIA-PET data

analysis pipeline Mango [48] and then labeled with TF binding. Here, difference in

co-localization resulting from DNA-directed or protein-protein interaction is not the

main focus. Instead,we want to include proteins that might lack a sequence mo-

tif in our analysis, so ChIP-seq peaks were used to label TF binding. Among all

TFs we tested, CTCF, REST, RAD21, SMC3 and ZNF143 were most prevalent and

strongly enriched in loop anchor regions (Figure 4.3A). CTCF and cohesion complex

(RAD21, SMC3) are known to mediate 3D chromatin structure formation. Previous

studies have shown that anchor regions of chromatin loops are very strongly en-

riched for CTCF, cohesion complex protein RAD21 and SMC3, and ZNF143 [106].

ZNF143 is known to cooperate with cohesin complex to help establish the CTCF in-

volved conserved chromatin loops. Besides these 5 TFs, interestingly, the other TFs

all exhibited slightly enrichment in loop anchors. One possible reason is that the

background regions used in comparison were selected from open chromatin regions

(DNase-seq peaks) but not necessarily have evidence of TF binding. In contrast,

loop anchors generated from ChIA-PET data should be bound by at least one pro-

tein that were enriched in the assay and presumably are more likely to be interacted

with TFs. As a result, loop anchor regions will show a higher enrichment for TFs

binding than background, and the fitted line of plotted dots can be used as a base

line instead of the diagonal line to determine strong enrichment (Figure 4.3A). We

then conducted a same comparison but remove all high-occupancy target (HOT)

regions since those regions are expected to have one or a few proteins binding. By
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only considering non-HOT regions, the overall abundance of TF were reduced, and

CTCF, REST, RAD21, SMC3 and ZNF143 showed even more extreme enrichment.

Some other TFs enriched in loop anchor regions includes Myc-associated zinc

finger protein (MAZ) and myc-associated factor X (MAX). Binding sites of MAZ

are often found at adjacent regions to CTCF, and just like CTCF, it also interacts

with cohesin subunit with a suggested role in 3D chromatin structure formation

[107, 108]. MAX serves as a cofactor for DNA binding and often form homodimer

or heterodimer [109]. MAX–MAZ is known to form protein complex in multiple cell

lines and previous study suggested that they can modify chromatin structure and

alter gene expression with the involvement of chromatin-remodelling gene CHD2

[110].

4.4.4 Enhancer and promoter loop anchors

Our previous study demonstrated that looping variation may produce differential

expression by refining altered enhancer–promoter interactions and raised questions

about the necessity of CTCF variability in chromatin looping dynamics. Here we

followed up on this finding by examining the TF binding complex at enhancer and

promoter loop anchors.

To study TF enrichment in cis-regulatory elements, we first defined enhancer

and promoter loop anchors by intersecting loop anchors with chromatin states an-

notations from chromHMM. The same 5 TFs (CTCF, REST, RAD21, SMC3 and

ZNF143) were still enriched in enhancer regions when comparing to randomly se-

lected background group from open chromatin regions (Figure 4.3B). However, when

we used the randomly selected regions from pools of all generated loop anchors as

background group, these 5 TFs showed similar level of abundance in enhancer regions

with background (Figure 4.3C). Unexpectedly, all other tested TFs still displayed a
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Figure 4.3: Enrichment of transcription factors. (A) TF enrichment at loop anchors. (B) TF en-
richment at loop anchors after removing HOT regions. (C) TF enrichment at enhancer
loop anchors over random DHSs as background. (D) TF enrichment at enhancer loop
anchors over random loop anchors as background.

slight enrichment in active regulatory element loop anchors. One possible expla-

nation is that the CTCF is a known chromatin interaction mediator, and CTCF,

together with TFs that are clustered with it, exist at most loop anchors no matter

which regulatory element they were annotated, so when we compare occurrence of

the TFs at enhancer and promoter anchors versus random anchors, they tend to

show similar level of abundance instead of an enrichment at specific group of loop
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anchors. But it does not affect proteins that are not essential in chromatin loop

formation, and as a result, the shift of the majority of TFs towards enrichment in

enhancer and promoter loop anchors still exist. However, no particular TF showed

extreme enrichment in enhancer loop anchors when comparing to all background

loop anchors if the common shift shared by all tested TFs were considered as a base

line.

4.4.5 TF co-binding patterns at loop anchors

We next studied the TF co-localization at loop anchors by training SOM on loop

anchors labeled by TF binding. Our goal was to define common binding patterns

at loop anchors and enhancer-promoter loop anchors. Common co-binding patterns

at anchor regions that we discovered using SOM include different combinations of

CTCF, ZNF143, RAD21, and SMC3, as expected. REST, MAZ, MAX, E2F6 are

some of other most occurred TFs in co-binding patterns. For the regions grouped

by co-binding patterns that are more enriched with enhancer regions, we tested the

abundance of some TFs that showed enrichment at loop anchors in previous sections.

Among all enhancer enriched co-binding patterns, a few of them contain CTCF and

REST (Figure 4.4B, 4.4F). MAX and MAZ were exist in many of enhancer related

patterns, and most of these patterns do not consist of CTCF or REST (Figure 4.4C,

4.4D). JUND is another TF appearing at most enhancers (Figure 4.4E), which is

consistence with a previous study that reported JUND is major enhancer molecule

and can induce Bcl6 expression [111].

To further investigate binding proteins at regulatory element loop anchors, we also

employed a SOM on enhancer loop anchors and promoter loop anchors. A variety

of binding patterns were revealed, however, number of genomic regions supporting

these binding patterns was too small due to limited data availability and quality,
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so that these may be false positives and are not true co-localizations at regulatory

loop anchors. This approach can be reconducted when chromatin interaction and

regulatory element data with better quality become available.

Figure 4.4: Loop anchor SOM maps, shaded by (A) enhancer enrichment. (B) CTCF binding value.
(C) MAX binding value. (D) MAZ binding value. (E) JUND binding value. (F) REST
binding value.
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4.5 Discussion

Our analysis in TF enrichment at loop anchors raised questions about the function

and binding mechanism of REST as it is highly enriched in loop anchors and showed

highly preference in co-binding with CTCF. 63.8% CTCF bound regions were also

bound by REST and 73.1% regions bound by REST also interacted with CTCF. Fur-

thermore, 61.3% REST bound regions also interacted with cohesin protein RAD21

or SMC3. This suggests that REST might play an important role in chromatin inter-

action and mediate chromatin looping together with cohesin proteins, it might also

form special co-localization complex with CTCF to exert specific regulatory effect.

Repressor element-1 silencing transcription factor (REST) is a known transcriptional

repressor that can recognize neuron-restrictive silencer elements (NRSEs) and can

recruit chromatin-modifying enzymes to regulate gene expression [112]. However,

how REST regulates gene expression has not yet been fully understood. To further

exam regulatory properties of REST, follow-up study on REST binding needs to be

conducted to better understand its binding mechanism and regulatory function.

Another two TFs that we studied were USF1 and USF2. USF1 and USF2 often

form homo- and heterodimers, and preferentially bind to TSS proximal regions. They

have been reported to bind at domains with high levels of active histone marks and

low levels of repressive histone marks [113]. We observed that 45.5% of loop anchors

with USF1/USF2 binding are TSS or TSS flanking regions (Figure 4.5A), but for the

rest loop anchors not bound by USFs, only 18.3% are proximal to TSS. We previously

found that USF1/USF2 related pattern’s binding specificity can be fully explained by

transposable elements (TEs), however, in general, TE-derived and native chromatin

loops presented similar activating histone marks patterns [31]. Here we compared
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chromatin modification enrichment at USF1/USF2 bound chromatin loops that were

TE derived with those were not TE derived. High level signal of H3K27ac, H3K4me1,

H3K4me3 and H3K9ac were enriched at USFs bound anchors, along with low level

of signal of H3K27me3 (Figure 4.5B), consistent with previous studies. However, the

signal was very noisy and there were minor peaks occurring repeatedly surrounding

the major peak at region summit. The chromatin marks signal became extremely

noisy when we plotted TE derived and not TE derived loop anchors separately. We

can still detect high level of active histone marks and observed similar magnitude

between two groups, but there were no strong patterns (Figure 4.5C, 4.5D). As a

result, no clear difference can be detected between these two groups of USFs bound

loop anchors. This could be caused by small number of USF1/USF2 binding sites,

as the aggregate signal can be easily impacted by some extreme samples. We also

examined the histone marks at each region individually and found a certain amount

of variety of signal patterns across USFs bound loop anchors. Given the current

data availability and quality, the conclusion on epigenetic properties at TE or non-

TE derived loop anchors with USF1/USF2 binding cannot be confidently drawn.

The unexpected TF enrichment at active regulatory elements also raised questions

about potential TF binding patterns associated with enhancer and promoter loop

anchors. Most TFs were shown to be more prevalent than random in promoter and

enhancer loop anchors except CTCF, cohesin complex proteins RAD21 and SMC3

and ZNF143 which were previously reported to be enriched in chromatin interaction

regions and can mediates CTCF-bound loops. Although we proposed some possible

explanations that might lead to a false enrichment, whether the shift of majority

TFs in enrichment plots has biological meaning needs further exploration.

In addition, our analysis on TF enrichment could also be limited by chromHMM
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Figure 4.5: Comparison of chromatin state and histone modifications at USF1/USF2 loop anchors.
(A) chromatin states annotations at all loop anchors bound by USF1/USF2. TssA:
Active TSS, TssAFlnk: Flanking Active TSS, TxFlnk: Transcription at gene 5’ and 3’,
Tx: Strong transcription, TxWk: Weak transcription, EnhG: Genic enhancers, Enh:
Enhancers, ZNF/Rpts: ZNF genes & repeats, Het: Heterochromatin, TssBiv: Biva-
lent/Poised TSS, BivFlnk: Flanking Bivalent TSS/Enh, EnhBiv: Bivalent Enhancer,
ReprPC: Repressed PolyComb, ReprPCWk: Weak Repressed PolyComb, Quies: Quies-
cent/Low. (B, C, D) Average histone modification signals centered at anchor summits
in loop anchors that are (B) bound by USF1 and are (C) TE-derived or (D) not TE-
derived .

annotation accuracy. Although chromHMM is a widely used chromatin segmentation

tool and is able to label regulatory elements with certain accuracy, it often performs

poorly when annotating promoters and enhancers [114] as their annotations can

result in many regions containing a noisy mixture of adjacent promoter and enhancer

states. chromHMM has many limitations, such as loss of information caused by

transforming read counts into binary values, the proper choice of binarization cutoff,
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unrealistic data distribution assumptions (independent Bernoulli distributions), and

limitation of data input used [115]. Therefore, the group of enhancer and promoter

loop anchors we annotated using chromHMM might not be correctly labeled with the

corresponding regulatory element. Furthermore, some publicly available chromHMM

annotations also utilized CTCF binding information as input feature and have CTCF

binding region or insulator has a separated states in their prediction (these data were

not used in this chapter). As a result, the regions with strong CTCF binding will

most likely be labeled as insulators instead of enhancers or promoters so that we will

not observe CTCF and its co-factors enriched at enhancer or promoter loop anchors

if utilizing these chromHMM annotations to determine regulatory elements. The

analysis of TF binding at active regulatory elements related chromatin interactions

can be reconducted when more accurate genome-wide regulatory element annotations

are available.



CHAPTER V

Conclusions and Future Directions

The main focus of this dissertation was to decipher the gene regulatory circuit

driving by transcription factor binding and cooperativity, 3D chromatin looping, and

regulatory variants. Transcription factor can recognize and bind to specific DNA

sequence to regulate gene expression in a cell type specific manner. They may work

cooperatively to mediate the formation of 3D chromatin structure to exert specific

gene regulatory effect. Transcription factor binding sites are key building blocks for

gene regulatory network. They are enriched with regulatory variants which can lead

to gene dysregulation and diseases through altering TF binding affinity.

The work presented in this dissertation provided improved genome-wide predic-

tion of transcription factor binding sites. Individual-specific and tissue-specific foot-

printing allowed association fine-mapping of footprint quantitative trait loci that can

contribute to a better understanding and interpretation of genetic variations conse-

quences. Precise mapping of a large amount of TFs also enabled a systematic study

on TF cooperativity.

5.1 Improved genome-wide transcription factor binding sites prediction

In chapter 2, I developed a new computational method TRACE to predict TFBSs

through DNase footprinting. By incorporating DNase-seq or ATAC-seq data and

77
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PWM information, our model is able to detect footprints with the desired DNase

digestion pattern and matching motifs. Although several DNase-seq signal based

computational algorithms have been developed to detect footprints by investigating

chromatin accessibility patterns [8, 9, 10, 11, 12, 13, 14, 15, 16], they have various

restraints that limit their prediction accuracy and applicability. TRACE is a Hidden

Markov Model (HMM)-based unsupervised footprinting method. Its basic structure

includes different hidden states such as TFBSs, small peaks which flank footprints,

and background which are start and end of each input regions. A unique feature of

TRACE model is that it includes “bait” motifs of additional TFs as separate hidden

state that helps the model discriminate true binding for the TF of interest. Also, as

an unsupervised model, its application is not limited to TFs with available ChIP-seq

data. In this chapter, I tested TRACE on 100 TFs and generated binding scores for

each binding sites predicted. A comprehensive evaluation on existing footprinting

methods was conducted. Compared to other supervised and unsupervised footprint-

ing methods, TRACE has the best overall performance as it has the best ranking in

both receiver operating characteristic curve area under the curve (ROC AUC) and

Precision-Recall (PR) AUC across 100 tested TFs. I also demonstrated that TRACE

can be applied accurately across cell lines, so that a model trained in one cell line

can be applied to all other cell lines with a comparable accuracy, which significantly

increased its applicability and reduced computational cost.

The current TRACE model is TF-specific, which means one separate model needs

to be trained for each TF. Considering its capability of targeting multiple motifs in

a single model, we can further extend the model and develop a general model that

contains all cluster root motifs, so that one single model can predict binding sites

for all TFs. It should be noted that adding motifs with similar sequence binding
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preference to the model can lead to collision of those motif states, so that motifs

included in the model need to be carefully selected.

Another future direction is genome-wide footprinting in all cell lines with available

DNase-seq or ATAC-seq data. We recently improved memory usage of TRACE by

truncating the input data and reduced its computational time by GPU computing.

It makes TFBSs prediction in a huge amount of cell lines feasible, allowing global and

nucleotide-precision analyses of cell-context-dependent gene regulatory mechanisms

and providing rich resources for various downstream analysis.

5.2 Functional interpretation of regulatory variants

Genetic variation in regulatory elements has been linked to various diseases and

phenotypic traits. Identification of variation effects on transcription factor binding is

key to understanding and interpreting downstream consequences of changes on gene

expression. In chapter 3, I performed association test on genetic variants and TF

binding activity predicted from modified version of TRACE, and generated abundant

footprint quantitative trait loci (fpQTLs). Many of the fpQTLs SNPs are located

inside footprints and exert its regulatory effect by disruption or creation of TF bind

sequence. More distal fpQTLs also exist, but generally exhibit a smaller effect size.

fpQTLs SNPs are found enriched with higher functional score predicted from com-

putational variant function prediction tools. And a substantial fraction of them are

also associated with human diseases or traits such as type 2 diabetes. Regulatory

variants altering TF binding affinity may also contribute to variation in expression

levels of nearby genes. Many fpQTLs we detected also overlap eQTLs and these

SNPs can impact gene expression by alter TF binding activity. We observed positive

impact and negative impact TFs by testing the regulating direction of fpQTL-eQTL
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SNPs, their functional direction is mostly consistent with the activating or repressing

nature of the binding TF.

The next step is to perform gene set enrichment test on the fpQTLs associated

genes and study the enrichment of pathways, biological processes, or molecular func-

tions for genes associated with altered binding activity of each TF. Other cellular

traits associated QTLs such as pQTLs, meQTLs can also be included in the analysis

to extend the study on fpQTLs’ property and functional mechanisms.

5.3 TF co-binding patterns and their contribution to CTCF-mediated
chromatin interactions and molecular complexes

Co-binding of TFs and regulatory proteins, such as CTCF and cohesin complex,

may work cooperatively to mediate the formation of 3D chromatin structure and

exert specific regulatory effect. In chapter 4, I employed an artificial neural network

called Self-Organizing Maps (SOMs) to explore TF co-binding patterns and studied

how CTCF-related molecular complexes interact to impact chromatin conformation,

in order to improve our understanding of TF cooperativity and the mechanisms

that determine chromatin looping patterns and downstream regulatory outcomes.

Footprint and ChIP-seq based SOMs detected a variety of TF co-binding patterns,

these two groups showed low level of agreement, which is as expected since the co-

localization of TFs can be due to direct DNA binding or protein-protein interactions.

Footprint SOM exclusively measures TF co-binding through direct DNA binding but

ChIP-seq does not discern between these two cases. Using chromatin loop anchors

generated from ChIA-PET data, we found 5 TFs significant enriched in loop anchor

regions, including CTCF, RAD21, SMC3, ZNF143, and REST. CTCF, cohesion

complex proteins (RAD21, SMC3) and ZNF143 are known to mediate 3D chromatin

structure formation collaboratively [106, 42, 43]. But this observation raised ques-
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tions about binding mechanisms of REST. REST is a known transcription silencing

factor, but how it exerts transcription regulation effect and its effect on chromatin

loop is not fully understood. Follow-up study on REST binding mechanism should be

conducted in order to better understand its role in gene regulation and 3D chromatin

structure formation. Additional experimental validations of TF co-binding will also

be beneficial. Moreover, the analysis was performed on K562 due to the largest TF

ChIP-seq availability in K562. We can further extend the study on more cell lines

to validate the observations when more data are available in other cell lines. We

also tested TF enrichment and co-binding pattern in loop anchors overlapping active

regulatory element. However, limited by data quality and quantity, there was no sig-

nificant results produced. When better quality data become available, the analysis

can be reperformed.

5.4 Concluding remarks

In this dissertation, I developed an HMM-based computational footprinting method

TRACE to precisely predict transcription factor binding sites genome-wide. Com-

pared to existing methods, TRACE showed better prediction performance and ex-

tended applicability. TRACE can also provide individual-specific or tissue-specific

footprints and binding scores, which allows association test on genetic variation and

transcription factor binding affinity across population. Using this method, I identi-

fied fpQTLs and their associated regulatory variants. Detection of fpQTLs provides

insights in landscape of human regulatory variation and its direct effect on gene ex-

pression. In addition, I explored transcription factor cooperativity utilizing footprint

prediction from TRACE.

As we are expanding the usage of TRACE and generating footprints from all cell
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lines and tissues with available sequencing data, we hope to provide powerful resource

to context-dependent or independent studies on TF binding, co-binding mechanism,

functional variants, and more.

Current transcription factor binding sites prediction and their binding measure-

ment focus on chromatin accessibility pattern and sequence binding preference, but

there are many other biological features that might also impact transcription factor

binding but systematic investigation on their effect is lacking. For example, DNA

methylation is an epigenetic mark that can changes DNA information content with-

out varying DNA sequence. Abnormal methylation in transcription factor binding

sites has been linked to gene dysregulation but we only have limited knowledge as

to its impact on transcription factor binding. With the adaptability of including

additional features and capability of measuring individual-specific and tissue-specific

TF binding activity, TRACE can be adapted to assess the impact of methylation

on TF binding alteration. With further extension of TRACE model utilizing more

biological information, it can help examine the combinatorial effect on TF binding

activity and downstream phenotype consequences.
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