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NOTATION

z, [z] Homogeneous coordinates on Pn.

w, [w] Homogeneous coordinates on the dual (Pn)∗, identified with the hyperplane

w · z = 0.

~z, ~w Affine coordinates
(
zi
z0

)n
i=1

,

(
wi
−w0

)n
i=1

respectively.

`w, `~w Complex hyperplanes w · z = 0, ~z · ~w = 1 respectively.

ej Homogeneous coordinates corresponding to the jth standard basis vector

in Cn+1.

~ej The jth standard basis vector in Cn.

I The incidence locus, corresponding to {z ·w = 0} ⊂ Pn × (Pn)∗.

ω The Universal Cauchy-Fantappié-Leray form.

Ω A pseudoconvex domain in Pn.

S The boundary of Ω.

Ssm The smooth locus of S.

Ssing The singular locus ofS.

Sn The skeleton of Ω.

Ω∗ The dual of Ω, usually assumed to have non-empty interior.

S∗ The boundary of Ω∗.

IS The incidence manifold corresponding to S, I ∩ (S × S∗).

O(Ω) For Ω open, the space of functions holomorphic on Ω. For Ω closed, the space

of functions holomorphic in an open neighborhood of Ω.

d~zj, d~wj

n∏
k=1,k 6=j

dzj,
n∏

k=1,k 6=j

dwj.

detj(W) For an n× (n+ 1) matrix W, the determinant of W with the jth column
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removed.

T−t,M−t For a projective transformation T , with associated lift M , the map and the lift,

respectively, on the dual space.

Tz(H) The tangent space to H at z.

J The map induced on tangent vectors by multiplication by i.

Tz(H) ∩ JTz(H) The maximal complex subspace of the tangent space at z.

TCz(E) The tangent cone of a set E at z.

∆m The m-simplex {~t ∈ Rm|
∑

ti = 1, ti ≥ 0}.

Dn The polydisk {~z ∈ Cn||zi| < 1}.

bDn, Sn The distinguished boundary of the bidisk{~z ∈ Cn||zi| = 1}, written as the

latter when emphasizing the group structure.

|| · ||∞ The norm ||~z||∞ := max
i
|zi|.

d The total derivative operator.

∂ The differential operator ∂ρ :=
∑
j

∂ρ

∂zj
dzjwhen applied to function. The

topological boundary when applied to a set.

β The multivariate β-function.
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ABSTRACT

In this thesis we develop a Hardy space theory for piece-wise smooth Levi-flat domains. We
use the Cauchy-Fantappié pairing to produce projectively invariant reproducing kernels for such
domains, along with families of measures to define Hardy spaces on the original domain and its
dual. We study the qualitative properties of the pairing, and show that many of the properties from
the smooth, strongly C-convex case continue to hold. However, the maps between Hardy spaces are
in general not isomorphisms, but are injective with dense image. Lastly, we demonstrate how to
construct projectively invariant Hardy spaces in two variables.
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CHAPTER I

Introduction

We begin with a discussion of Hardy spaces and duality in one variable as a primer for the
theory in several variables. The reader unfamiliar with the notions of Hardy spaces, C-convexity or
our treatment of line bundles may want to consult Chapter II first. After summarizing some of the
known results, we give an exposition of the new results contained within this thesis.

Suppose we have bounded domain Ω ⊂ Ĉ containing the origin whose boundary is a simple
closed curve γ, oriented as the boundary of Ω. Then we have a Cauchy kernel which reproduces
holomorphic functions on the interior of γ, namely

C+(f)(τ) :=
1

2πi

∫
γ

f(z)
1

z − τ
dz

C+(f) = f for f ∈ O(Ω) ∩ L2(γ, |dz|).

See section 2.2 for full definitions. Let Ω∗ denote the interior of the complement Ĉ\Ω, and set
w = 1

z
, so that w is a holomorphic coordinate for Ω∗. Note that Ω∗∗ = Ω, partially justifying calling

Ω∗ the dual of Ω. We re-write the Cauchy kernel slightly to highlight all the necessary ingredients
for the generalization to several variables.

C+(f)(τ) =
1

2πi

∫
γ

f(z)
1

1− wτ
dz

z

We have a linearly invariant 1-form dz
z

and a family of rational functions, holomorphic on
Ω∗, namely gτ (w) := 1

1−wτ , τ ∈ Ω which can be integrated over ∂Ω to reproduce the values of
holomorphic f with L2-boundary values. Written this way, we obtain a corresponding Cauchy
kernel with a reproducing property for holomorphic functions g(w) on the dual Ω∗ (the minus sign
coming from the orientation of γ)

C−g(τ) =
−1

2πi

∫
γ

g(w)
1

1− zτ
dw

w

C−g = g for g ∈ O(Ω) ∩ L2(γ, |dw|).
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Put another way, given a bounded domain Ω containing the origin, we have two Hardy spaces

H2(Ω) := O(Ω) ∩ L2(γ, |dz|), H2(Ω∗) := O(Ω∗) ∩ L2(γ, |dw|),

a linearly invariant kernel
1

2πi

dz

z
,

a pairing,

〈〈, 〉〉 : H2(Ω, |dz|)×H2(Ω∗, |dw|)→ C

〈〈f, g〉〉 :=

∫
γ

f · g 1

2πi

dz

z

and two simple families of rational functions, parameterized by each domain, holomorphic on the
dual, which reproduce holomorphic functions on each domain. Each family is given by

gτ (·) =
1

1− 〈τ, ·〉

where τ ∈ Ω or τ ∈ Ω∗.
Now let us relax the somewhat restrictive conditions that Ω be bounded containing the origin.

For any domain Ω ⊂ Ĉ with smooth boundary, a reproducing pairing should still exist, albeit
slightly modified. Let z = [z0 : z1] be homogeneous coordinates on Ĉ. For each z, there is a
unique w = [w0 : w1] such that w · z = w0z0 + z1w1 = 0, so that w is a function of z and
vice versa. Written in the affine coordinates z = z1

z0
, w = w1

−w0
, we get w · z = 1, i.e. w = 1

z
.

Define Ω∗ := {w|z(w) 6∈ Ω}, and note that Ω∗ ⊂ (P1)∗ and is closed, and Ω∗∗ = Ω. Define the
OP1(1, 0)⊗O(P1)∗(1, 0)-valued 1-form ω = z0w0

(2πi)
w dz. One can verify directly that ω is projectively

invariant, and thus given sections f ∈ O∂Ω(−1, 0), g ∈ O∂Ω∗(−1, 0), we have a well-defined
projectively invariant pairing

〈〈f, g〉〉 =

∫
∂Ω

f · g ω.

Furthermore, if we set gτ (·) = 1
〈τ ,·〉 , we have the reproducing properties

f(τ ) =

∫
∂Ω

f · gτ ω τ ∈ Ω, f ∈ OΩ(−1, 0)

g(τ ) =

∫
∂Ω

gτ · g ω τ ∈ Ω∗, g ∈ OΩ∗(−1, 0)

These identities are simply the Cauchy formula when written in the affine coordinates z0 =

1, w0 = −1. The expressions |z2
0 dz| and |w2

0 dw| define invariant O(1, 1)-valued 1-forms, giving
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rise to the norms

||f ||2 :=

∫
∂Ω

|f |2|z2
0 dz| f ∈ O∂Ω(−1, 0)

||g||2 :=

∫
∂Ω∗
|g|2|w2

0 dw| g ∈ O∂Ω∗(−1, 0)

Using these norms to define the corresponding L2 and Hardy spaces, we get a duality pairing

between H2(Ω, |z2
0 dz|) and H2(Ω∗, |w2

0 dw|), that is

inf
g∈H2(Ω∗),||g||=1

sup
f∈H2(Ω∗),||f ||≤1

|〈〈f, g〉〉| = inf
f∈H2(Ω),||f ||=1

sup
g∈H2(Ω∗),||g||≤1

|〈〈f, g〉〉| > 0

In particular, the open mapping theorem implies that the pairing induces an isomorphisms
H2(Ω, |z2

0dz|)∗ ∼= H2(Ω∗, |w2
0dw|), H2(Ω∗, |w2

0dw|)∗ ∼= H2(Ω, |z2
0dz|) (see page 4 of [Zim90]).

The proof requires two elementary identities

〈〈C+f, g〉〉 = 〈〈f,C−g〉〉, f ∈ L2(γ, |z2
0dz|), g ∈ L2(γ, |w2

0dw|)

|dz
z2
| = |dw| ⇒ |ω| =

√
|z2

0dz|
√
|w2

0dw|.

Applying Cauchy-Schwartz to the following point-wise identity,

|fgω| = |f |
√
|z2

0dz||g|
√
|w2

0dw|

⇒ |〈〈f, g〉〉| ≤ ||f || · ||g||

with equality when g = f on γ. Finally, we need the boundedness of the Cauchy operator on
L2(γ, |dz|). For γ Lipschitz, this is a classical result established by Coifman, McIntosh, and Meyer
[CMM82] building on the foundational work of Calderón [Cal77]. For an accessible treatment
in the case of analytic curves, see Theorem 4.1 of [Bel16]. Following [Bar15], we have for
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f ∈ H2(Ω, |z)−2 dz|), ||f || = 1

1 = ||f || = max
g∈L2(γ,|dw|),||g||≤1

|〈〈f, g〉〉|

= max
g∈L2(γ,|dw|),||g||≤1

|〈〈C+f, g〉〉|

= max
g∈L2(γ,|dw|),||g||≤1

|〈〈f,C−g〉〉|

≤ sup
g∈H2(Ωc),||g||≤||C||

|〈〈f, g〉〉|

≤ ||C−|| sup
g∈H2(Ωc),||g||≤1

|〈〈f, g〉〉|.

We have re-framed aspects of the one variable theory in such a way that we can now analogously
describe the theory in several variables. Let Pn have homogeneous coordinates z = [z0 : . . . : zn],
and let (Pn)∗ denote the set of hyperplanes in Pn, with coordinates given by w · z = 0. Define
the incidence locus I := {w · z = 0} ⊂ Pn × (Pn)∗. On I , there is a unique (up to constants)
projectively invariantOPn(n, 0)⊗O(Pn)∗(n, 0)-valued (2n−1) form ω, called the Universal Cauchy-
Fantappié-Leray Form, or Universal CFL form, which will play the role of dz

z
. Given a strongly

C-convex domain Ω ⊂ Pn with C2 boundary S, let Ω∗ denote the set of complex hyperplanes
external to Ω, called the dual of Ω. The boundary S∗ := ∂Ω∗ is C2 and strongly C-convex, and we
have duality maps S → S∗ and S → S∗ given by mapping z ∈ S to the maximal complex subspace
of S at z, namely Tz(S) ∩ JTz(S) and vice versa. From this description and the symmetry of the
relation z ·w = 0, it follows that the duality maps are inverses of each other. Let IS := I ∩ (S×S∗)
be the graph of the duality map and set gτ (·) := 1

〈τ ,·〉n . There exists a unique separately continuous
projectively invariant pairing defined by

〈〈, 〉〉 : OΩ(−n, 0)×OΩ∗(−n, 0)→ C

〈〈f, g〉〉 :=

∫
IS

f · g ω

with the reproducing properties.

〈〈f, gτ 〉〉 = f(τ ) f ∈ OΩ(−n, 0), τ ∈ Ω

〈〈gτ , g〉〉 = g(τ ) g ∈ OΩ∗(−n, 0), τ ∈ Ω∗

We shall refer to the functionals 〈〈·, gτ 〉〉 and 〈〈gτ , ·〉〉 as the Leray Kernel. The pairing exists
for general open or closed C-convex sets Ω, but we shall additionally assume that Ω∗ is non-empty.
By taking w ∈ int(Ω∗) and moving the corresponding hyperplane `w to infinity, this is equivalent
to Ω being bounded in some affine coordinates.
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By finding a positive OS(n, n)-valued 2n− 1-form µS on S and the same on S∗, one can define
projectively invariant L2 and Hardy spaces using the norms

||f ||22 =

∫
S

|f |2µS f ∈ OS(−n, 0)

||g||22 =

∫
S∗
|g|2µS∗ g ∈ OS∗(−n, 0)

and then investigate how the norms of the corresponding Leray kernels relate to the projective
geometry of the domain Ω. When Ω is C2 and strongly C-convex, a preferred choice of measure is
set forth in [Bar15], as ϕ

−2n
n+1

S µS,Fef , where ϕS is an explicitly defined projectively invariant function
on S, and µS,Fef is the Fefferman form (see [KN99]) on S. With respect to this measure, the pairing
〈〈, 〉〉 is a duality pairing, meaning

inf
||g||=1

sup
||f ||≤1

|〈〈f, g〉〉| = inf
||f ||=1

sup
||g||≤1

|〈〈f, g〉〉| > 0.

This result relies on the boundedness of the Leray kernel (see [KS78] or Theorem 1 of [LS13])
and then following the same proof as in the one variable case.

In this thesis, we consider a class of C-convex domains with Levi-flat, singular boundaries
that we dub C-polytopes. Proposition 3.2.7 gives an explicit description of the boundary of
the dual domain S∗, which when combined with Theorem 2.4.9, permits the calculation of a
reproducing kernel concentrated on the skeleton of Ω in Theorem 4.1.1. We propose a family of
measures to define substitute Hardy spaces on Ω and Ω∗, and summarize the main properties of
the corresponding pairing in Theorem 4.2.2. The pairing between these Hardy spaces has similar
invariance and reproducing properties as in the smooth, strongly C-convex case, but we show the
pairing is in general not a duality pairing by demonstrate for a large class of examples that

inf
||g||=1

sup
||f ||≤1

|〈〈f, g〉〉| = 0.

However, the induced maps between the Hardy spaces and the corresponding duals are not far
from isomorphisms, namely they are injective with dense image. Lastly, we demonstrate how to
build projectively invariant Hardy spaces on C-polytopes, or more generally, piece-wise smooth
pseudoconvex domains, when n = 2.
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CHAPTER II

Background Material

First some notational conventions. Let z denote homogeneous coordinates on Pn. The hy-
perplane at infinity will correspond to z0 = 0, so standard affine coordinates are ~z = (

zj
z0

). Give
the space of hyperplanes (Pn)∗ homogeneous coordinates w, identifying w with the hyperplane
`w := {z|w · z = 0}. In the affine coordinates ~w = ( wi

−w0
), this amounts to identifying ~w with

`~w := {~z|~w · ~z = 1}. In (Pn)∗, the hyperplane at infinity w0 = 0 corresponds to hyperplanes in Pn

passing through the origin, all other hyperplanes are parameterized in these affine coordinates. We
will interchangeably use 〈, 〉 and · for the standard dot product, depending on which is easier to read
in context.

We use the shorthand d~z := dz1 ∧ . . . ∧ dzn and d~z[j] := dz1 ∧ . . . d̂zj . . . ∧ dzn, where the ·̂
indicates omission.

Throughout it will be useful to have a notion of transversality that applies to the intersection
of multiple hypersurfaces which we obtain from Shifrin [Shi]. Suppose we have k hypersurfaces
H1, . . . , Hk intersecting at a point ~z ∈ Cn, and let N~z(Hj) denote the stalk of the normal bundle
at ~z and let CN~z(Hj) denote the stalk of the complex normal bundle at ~z. The intersection is
transverse if

⊕
j N~z(Hj) has rank k. In this case, the intersection is a manifold of dimension 2n−k.

The intersection is complex transverse if
⊕

j CN~z(Hj) has complex rank k. We again conclude
that the intersection is a manifold of dimension 2n− k whose maximal complex subspace at ~z has
dimension 2n− 2k.

2.1 Projective Transformations and Line Bundles

Let T : Pn → Pn be a projective transformation. Choose an invertible matrix (Mi,j)
n
i,j=0 with

det(M) = 1 which descends to T . Any two choices of M differ by a n+ 1 root of unity, and for
the formulas we care about the ambiguity will wash out. In the standard affine coordinates,

T (z1, . . . , zn) =
1

M0,0 +
∑n

j=1M0,jzj
(M1,0 +

n∑
j=1

M1,jzj, . . . ,Mn,0 +
n∑
j=1

Mn,jzj).
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Given a set E ⊂ Pn such that T (E) ⊂ Cn and integers j, k, let OE(j, k) denote the space of
continuous functions on the cone over E satisfying

F (λz0, . . . , λzn) = λjλkF (z0, . . . zn).

Working in standard affine coordinates, we can identify F with the continuous function f on E,
f(z1, . . . , zn) = F (1, z1, . . . , zn) and obtain the following transformation law

(T ∗f)(~z) = (M0,0 +
n∑
i=1

M0,izi)
j(M0,0 +

n∑
i=1

M0,izi)kf(T (~z)).

If E is open, OE(j, 0) will denote the space of sections over holomorphic on E, and if E is
closedOE(j, 0) will denote the space of sections holomorphic in some neighborhood ofE. With this
convention, expressions like zj can be thought of as sections of OPn(1, 0). Likewise, an expression
fd~z defined on E in the affine plane can be identified with the section F of OE(−n − 1, 0),
F (z0, . . . , zn) := z−n−1

0 f( z1
z0
, . . . , zn

z0
). Given F ∈ OE(j, k), we have well-defined expressions

F ∈ OE(k, j), |F |2 ∈ OE(j + k, j + k), etc. More generally, if G ∈ OE(j′, k′) then FG ∈
OE(j + j′, k+ k′). Lastly we remark that a section of OE(0, 0) is nothing but a continuous function
on E, and so an OE(0, 0)-valued k-form is just an ordinary k-form.

For T and M as above, there is a unique transformation T−t : (Pn)∗ → (Pn)∗ preserving the
incidence locus I , or so that Tz · T−tw = z ·w. The matrix M−t := tM−1 descends to T−t, and
the two operations commute, explaining the notation. We will need the notion of a projectively
invariant OPn(n, 0)⊗O(Pn)∗(n, 0)-valued (2n− 1)-form. This means we have an expression

f g η, f ∈ OPn(n, 0), g ∈ O(Pn)∗(n, 0), η ∈
2n−1∧

T ∗(Pn × (Pn)∗).

Pulling back such an expression means pulling back f via T , g via T−t and η via (T, T−t).

2.2 Hardy Spaces

Let Ω ⊂ Cn be a bounded domain with C2 strongly C-convex boundary S := ∂Ω. Given a
non-negative measure µ equivalent to surface measure on S, define the L2-space L2(S, µ) using the
norm

||f ||2µ :=

∫
S

|f |2dµ.

We define the Hardy space H2(Ω, µ) to be the closure of OΩ(0, 0) with respect to this norm.
Intuitively the Hardy space is the space of holomorphic functions on Ω with L2-boundary values,

7



and in one variable this is made precise by the fact that the restriction map OΩ(0, 0)→ L2(S, |dz|)
is injective, and given an element f ∈ H2(Ω, |dz|), there is a holomorphic function on Ω which
has radial limits agreeing a.e. with f . For more on equivalent definitions and properties of Hardy
spaces, see Chapters 1-3 of [Dur70].

If instead of a measure µ we are given a positive OS(j, j)-valued 2n− 1-form σ, we can define
a norm on OS(−j, 0) via

||f ||2µ :=

∫
S

|f |2σ.

The Hardy space is then the closure of OΩ(−j, 0) with respect to this norm. Note that the
integrand is a OS(0, 0)-valued (2n− 1)-form, i.e. this is simply an ordinary integral and there is no
ambiguity when using a lift M of a projective transformation T to pull back the integrand.

2.3 Notions of Convexity and Duality

We now define notions of convexity and duality that are crucial to the theory in several variables.
Let Ω ⊂ Pn be an open domain. Ω is pseudoconvex if there exists a plurisubharmonic exhaustion,
or equivalently if Ω is a domain of holomorphy. Without getting in too deep of a discussion here, it
suffices to say that such domains have a long history in the subject. They are the natural domains
for studying holomorphic function theory in several variables and the ∂-equation. For a thorough
treatment of the subject, see [Hö90].

Ω is C-convex if the intersection of Ω with every projective line is either connected and simply
connected or empty. Ω is C-linearly convex if Ωc is a union of complex hyperplanes. The dual

complement or dual of Ω, denoted Ω∗ is the set {w|`w ∩ Ω = ∅}. Set S := ∂Ω, then the dual of S
is S∗ := ∂Ω∗. For C-linearly convex Ω, S∗ = {w|`w ∩S 6= ∅, `w ∩Ω = ∅}. It’s not difficult to see
that C-convexity is a stronger notion than pseudoconvexity. C-convexity is an important notion, as
it is a necessary and sufficient condition to be able to solve linear, constant coefficient, holomorphic
partial differential equations. See chapter 4 of [APS04].

This notation will be fixed throughout, that is Ω will always be a pseudoconvex domain in Pn

with boundary S, and the dual will always be Ω∗ with boundary S∗. Additionally, we will also
always assume that the interior of Ω∗ is non-empty. The geometric properties of Ω, S will vary
based on the context.

That these are the right notions of complex projective convexity is partially justified by the
following theorem.

Theorem 2.3.1. Duality of C-linearly Convex Domains ([APS04] Theorem 2.3.9)

Let Ω be a C-convex domain. Then Ω∗ is C-linearly convex, that is Ω∗∗ = Ω.

The first statement of Theorem 2.3.1 can be thought of as a complex version of Hahn-Banach.
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The second is a complex version of duality for the Legendre transform. Assuming certain boundary
regularity, there are theorems in the other direction as well. See [APS04] Chapter II for more details.

2.4 Invariant Forms, Reproducing Kernels

The reproducing property of the pairing comes from the notion of a generating form which we
now describe.

Definition 2.4.1. Generating Form

Let ~τ ∈ Ω with S piece-wise smooth, and ~w be a vector valued function in C1(S) satisfying

〈~w, ~z − ~τ 〉 6= 0. The Generating Form for ~τ , ω~τ is defined by

ω~τ (~z − ~τ , ~w) =
(n− 1)!

(2πi)n

∑n
k=1(−1)kwkd~w[k] ∧ d~z
〈~w, ~z − ~τ 〉n

.

Theorem 2.4.2. ([AY83] Lemma 3.3 and Corollary 3.6)

In the above definition, ω~τ does not depend on choice of ~w and we have the reproducing property

f(~τ ) =

∫
S

fω~τ , f ∈ O(Ω) ∩ C(Ω).

A generating form is a recipe for constructing any number of reproducing kernels on S depending
on choice of ~w. The choice of interest to us is set forth by Leray, where one uses the hyperplane
tangent at ~z to S to produce ~w. However, there are other interesting choices, and in fact one can
replace S by any smooth cycle h homologous to ~w(S) ([AY83] Corollary 3.7). We demonstrate
how this technique is used to construct the Bergman-Weil kernel, as the same idea will be used later.

Given a domain of holomorphy D ⊂ Cn, and N > n holomorphic functions Wj on D, an
analytic polyhedron Ω is a relatively compact finite union of connected components of {|Wj| < 1}
compactly contained in D. Given a strictly increasing tuple ~j = (j1, . . . , jk), the edge σ~j :=

{|Wjl | = 1, l = 1, . . . , k} ∩ Ω. A face is an edge corresponding to a tuple of length 1. An analytic
polyhedron is a Weil domain if all faces meets complex transversely. In particular, dim(σ~j) = 2n−k
for k ≤ n. The skeleton Sn is the set of n-dimensional edges.

Definition 2.4.3. Bergman-Weil Kernel

Let Ω be a Weil domain defined by {|Wj| < 1}, f ∈ O(D) ∩ C(D). Define Pi,j by Hefer’s lemma

([AY83] Thm 25.2)

Wj(~z)−Wj(~τ ) =
∑
i,j

(zi − τi)Pi,j(~z, ~τ ).

9



The Bergman-Weil kernel is defined for z ∈ σ~j ∩ Sn as

BΩ(~z, ~τ ) =
1

(2πi)n

det
(
Pi,~j

)
∏

k(Wjk(~z)−Wjk(~τ ))
d~z.

Theorem 2.4.4. Bergman-Weil Representation ([AY83] Theorem 9.1)

Let Ω be a Weil polyhedron, f ∈ O(Ω) ∩ C(Ω). Then we have the following reproducing formula.

f(~τ ) =

∫
Sn

f(~z)BΩ(~z, ~τ )

We give the proof, as similar proofs are given in Chapter 3. The idea is to define an appropriate
cycle to integrate over in ~w-space using Theorem 2.4.2.

Lemma 2.4.5. Let ∆n(~q1, . . . , ~qn) denote the convex hull of ~qj ∈ Cn. Then∫
∆n(~q1,...,~qn)

∑
k

(−1)k−1wkdw[j] =
1

(n− 1)!
det(~q1, . . . , ~qn).

Proof. For a linear map A, we have the identity

A∗(
∑
k

(−1)k−1wk ~w[k]) = det(A)(
∑
k

(−1)k−1wkd~w[k]).

The is easily seen by checking it holds for generators of the linear group. For transpositions
and scaling coordinates this is clear. It remains to check basic row and column operations. By the
previous remarks, it suffices to check when A is the map w′1 = w1 + aw2, w′j = wj, j 6= 1, but a
direct computation verifies the claim.
We have∫

∆n(~q1,...,~qn)

∑
k

(−1)k−1wkd~w[k] = det(~q1, . . . , ~qn)

∫
∆n(~e1,...,~en)

n∑
k=1

(−1)k−1wkd~w[k]

=
1

(n− 1)!
det(~q1, . . . , ~qn).

Proof. Proof of Theorem 2.4.4
Fix ~τ ∈ Ω. On the face Sj := {|Wj| = 1} of Ω, define the map

~wj =

(
P1,j

Wj(~z)−Wj(~τ )
, . . . ,

Pn,j
Wj(~z)−Wj(~τ )

)
.
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Each ~wj satisfies 〈~wj, ~z − ~τ 〉 = 1, whose image is a manifold in ~w-space lying over the
face Sj . The idea is to stitch these manifolds together over each edge to get a cycle in ~w space.
Over a point ~z in the edge S~j let ~w take values in ∆n(~wj1(~z), . . . , ~wjn(~z)). Taking the union
of all these simplices gives an appropriate cycle in ~w-space, although note that ~w is no longer a
function of ~z ∈ S. The integral in Theorem 2.4.2 can now be evaluated using Lemma 2.4.5. The
integral vanishes on edges that are of dimension < n, since the expression involves a wedge of n
differentials in the ~z-variables, but these take values in a manifold of dimension < n. On edges
that are dimension 2n− k > n, note that the ~wj are holomorphic functions of ~z and functions of
k − 1 other independent parameters. So in all, d~w[k] ∧ d~z consists of at most n+ k − 1 < 2n− 1

independent differentials, and thus must vanish. Applying theorem 2.4.2 and lemma 2.4.5,

f(~τ ) =
(n− 1)!

(2πi)n

∑
j1<j2<...<jm

∫
Sj1,...,jm

f(~z)

(∫
∆n(~wj1 ,...,~wjm )

∑
k

(−1)k−1wkd~w[k]

)
d~z

=
1

(2πi)n

∑
j1<j2<...<jn

∫
Sj1,...,jn

f(~z)
det
(
Pi,~j

)
∏

k(Wjk(~z)−Wjk(~τ ))
d~z.

Remark 2.4.6. If Ω = γ̊1 × . . .× γ̊n where each γi is a simple analytic closed curve in C, then we

may take Wj(~z) = Wj(zj). For the decomposition from Hefer’s lemma, we have

Wj(zj)−Wj(τj) = (zj − τj)Pj,j

implying
Pj,j

Wj(zj)−Wj(τj)
=

1

zj − τj
.

It follows that for product domains the Bergman-Weil kernel is just the multivariate Cauchy kernel.

We now come the Fantappié-Leray part of the story. Let

π : Cn+1\{0} × Cn+1\{0} → Pn × (Pn)∗

and set

Ĩ := π−1(I)

ω̃(z,w) :=
1

(2πi)n

(
n∑
j=0

zjdwj

)
∧

(
n∑
j=0

dzj ∧ dwj

)n−1 ∣∣∣∣∣
Ĩ

.
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First we observe that ω̃(z,w) = (−1)nω̃(w, z). This follows from differentiating the relation∑n
j=0 zjwj defining Ĩ , so that

∑n
j=0 zjdwj = −

∑n
j=0 wjdzj . We also claim that if λ ∈ C1(Ĩ) then

ω̃(λz,w) = λnω̃(z,w). We have

n∑
j=0

d(λzj) ∧ dwj =
n∑
j=0

λdzj ∧ dwj + dλ ∧
n∑
j=0

zjdwj.

The second term vanishes when computing ω̃, so the claim is proved. By the symmetry of ω̃, the
same holds in the w variable.

Definition 2.4.7. Universal Cauchy-Fantappié-Leray Form ([APS04] Ch. 3, [Bar15] Sec. 7)

The Universal CFL form is the restriction to I of the OPn(n, 0)⊗O(Pn)∗(n, 0)-valued 2n− 1 form

ω defined by

π∗ω =
1

(2πi)n

(
n∑
j=0

zjdwj

)
∧

(
n∑
j=0

dzj ∧ dwj

)n−1

.

On the coordinate patch Uj,k := {zj 6= 0, wk 6= 0}, it is given by the expression

ωj,k =
znj w

n
k

(2πi)n

(
n∑
l=0

zl
zj
d

(
wl
wk

))
∧

(
n∑
l=0

d

(
zl
zj

)
∧ d
(
wl
wk

))n−1

.

Proposition 2.4.8. ω is the unique (up to a constant) projectively invariantOPn(n, 0)⊗O(Pn)∗(n, 0)-

valued (2n− 1) form on I .

Proof. It suffices to check that ω̃ is invariant under SLn+1(C), which acts on Ĩ via M(z,w) 7→
(Mz,M−tw) The first factor is clearly invariant, and one can check that the second factor is invariant
under permutations, diagonal matrices and basic row/column operations. Uniqueness follows from
homogeneity of the incidence manifold.

Theorem 2.4.9. ([APS04] Theorem 3.1.7)

Let Ω ⊂ Pn be an open C-convex set, and set gτ (·) := 1
〈τ ,·〉n . Then there exists a unique, separately

continuous C-bilinear pairing 〈〈, 〉〉 : OΩ(−n, 0)×OΩ∗(−n, 0)→ C so that

f(τ ) = 〈〈f, gτ 〉〉 for τ ∈ Ω, f ∈ OΩ(−n, 0)

g(τ ) = 〈〈gτ , g〉〉 for τ ∈ Ω∗, g ∈ OΩ∗(−n, 0).

The pairing is realized by the following procedure. Choosing p ∈ Ω and q ∈ Ω∗, show that

Ip,q := {(z,w) ∈ I|z 6= p,w 6= q}
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is homotopic to the 2n − 1 sphere, thus the top dimensional homology group H2n−1(Ip,q) ∼= Z.
Choose a cycle D whose homology class corresponds to the generator of H2n−1(Ip,q), and such
that f, g are defined on D. The pairing is given by

〈〈f, g〉〉 =

∫
D

f · g ω

with the reproducing property coming from Theorem 2.4.2.
In the case when Ω is C2 and has strongly C-convex boundary, there is an obvious choice for D,

namely IS := I ∩ (S × S∗). To be more precise, we have diffeomorphisms

D : S → S∗

D∗ : S∗ → S

given by mapping z ∈ S to the maximal complex subspace of the tangent space, Tz(S) ∩ JTz(S)

and the same for D∗. It follows from the uniqueness of this subspace and the symmetry of the
relation z ·w = 0 that these maps are inverses of each other. The orientation on IS is induced by
orienting S as the boundary of Ω, and using the diffeomorphism z 7→ (z,D(z)) to orient IS . Given
a defining function ρ and writing these maps in affine coordinates, we have

D(~z) =
∂ρ

〈∂ρ, ~z〉

Using this formula to pull back the integral produces the Leray kernel.

L (~z, ~τ ) :=
1

(2πi)n
∂ρ ∧ (∂∂ρ)n−1

〈∂ρ, ~z − ~τ 〉n

with the reproducing property for f ∈ O(Ω), ~τ ∈ Ω

f(~τ ) =

∫
S

f(~z) L (~z, ~τ )

In section 4.1, we will produce a parameterization of IS when Ω is piece-wise smooth, and use
this parameterization to calculate a reproducing kernel for such domains.

As in the one variable case, we can factor the universal CFL form as a product of projective
invariants on S and S∗.

Theorem 2.4.10. ([Bar15])

Let Ω be a domain in Pn with C2 strongly C-linearly convex boundary. There exists an explicit
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projectively invariant function ϕS so that

|ω| = ϕ
−n
n+1

S µ
1
2
S,Fefϕ

−n
n+1

S∗ µ
1
2
S∗,F ef .

Here µS,Fef is the Fefferman form, a (somewhat) well-known invariant OS(n, n)-valued 2n− 1

form. See [KN99] for construction of the 2n − 1 form, or [Bar15] for treatment as an OS(n, n)-

valued 2n − 1 form. The positive bundle-valued form ϕ
−2n
n+1

S µS,Fef connects optimally with the
pairing in the sense that if we use it to define the corresponding L2 and Hardy spaces, then the
identity

|fg ω| = |f ||g|ϕ
−n
n+1

S µ
1
2
S,Fefϕ

−n
n+1

S∗ µ
1
2
S∗,F ef

implies by Cauchy-Schwartz that

|〈〈f, g〉〉| ≤ ||f || ||g||.

14



CHAPTER III

Geometry of C-Polytopes

Suppose we want to set up a projective Hardy space theory for a C-convex domain Ω which
has Levi-flat boundary. Let’s make a few observations about what examples the theory should
encompass. First, by taking a hyperplane outside Ω and moving it to infinity, we may assume that Ω

is bounded. It then follows from the maximum principle that the boundary S must have singularities.
Here we define a class of C-convex domains with extremely nice singularities which will allow us
to describe the geometry of the boundary well enough such that in Chapter 4, we can produce an
explicit pairing with functions on the dual which realizes the pairing of Theorem 2.4.9, compute a
version of the Leray Kernel for these domains, and define analogous Hardy spaces.

3.1 Definitions

An analytic hypersurface H is Levi-flat at ~p if there are a holomorphic coordinates ~z at ~p so that
H = {Re(zn) = 0}. H is Levi-flat if every point is Levi-flat. In this case there is a corresponding
Levi foliation by complex manifolds locally of the form zn = it, t ∈ R.

Ω is piece-wise smooth if there are finitely many connected smooth hypersurfaces Hj so that
S ⊂ ∪jHj and each intersection ∩kl=1Hjk is complex transverse for k ≤ n and real transverse for
k > n, and for each ~z ∈ S, there is a sufficiently small neighborhood U so that Ω ∩ U is connected.
Ω is piece-wise Levi-flat if in addition each Hj is Levi-flat.

The smooth locus of S is Ssm := ∪j(Hj\ ∪k 6=j Hk). The singular locus of S is Ssing := S\Ssm.
It follows that an edge S~j := Hj1 ∩ . . . ∩Hjk has dimension 2n− k, and the edges may be ordered
by inclusion. The skeleton Sn is the union of the n-dimensional edges. At a complex transverse
intersection, an edge of dimension 2n−k has maximal complex subspace of real dimension 2n−2k.
In particular, the skeleton is totally real, that is T~z(Sn) ∩ JT~z(Sn) = {~z}.

Definition 3.1.1. Strong Tangents

For a piece-wise smooth domain Ω, ~w is a strong tangent at ~z ∈ S if `~w is the maximal complex

subspace of one of the Hj containing ~z.
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Definition 3.1.2. Weak Tangents

Let Ω be a piece-wise smooth domain, ~z ∈ S, S~j the minimal edge containing ~z. A hyperplane ~w is

an interior weak tangent at ~z if the tangent cone TC~z(`~w ∩Ω) is contained in T~z(S~j). A hyperplane
~w is a weak tangent if it is in the closure of the interior weak tangents and it is not a strong tangent.

Denote by W~z(Ω) the set of weak tangents at ~z.

See Section 3.9 of [Mor16] for more on tangent cones. In particular, if a hyperplane ~w through
~z avoids Ω, then ~w ∈ W~z(Ω).

Definition 3.1.3. C-Polytope

Ω is a C-polytope if the following properties hold

a) Ω is C-convex

b) S is piece-wise Levi-flat

c) For every ~z ∈ S, denote by S~j the minimal edge containing ~z. For every weak interior tangent
~w ∈ W~z(Ω), `~w ∩ Ω ⊂ T~z(S~j) ∩ JT~z(S~j).

A few observations and comments are in order. First, observe that definition 3.1.3 is projectively
invariant since the right hand side T~z(S~j) ∩ JT~z(S~j) is the intersection of all strong tangents at ~z.
Second, for ~z in the skeleton Sn, T~z(S~j) ∩ JT~z(S~j) = {~z}, and thus all interior weak tangents
intersect Ω precisely at ~z. This property is necessary to calculate the reproducing kernels of Chapter
4. One undesirable property of the stated definition is it does not necessarily hold under intersection,
however in Prop. 3.2.10 a sufficient criteria to be a C-polytope is given, and we show that this criteria
holds under appropriate intersections. The main examples we have in mind are convex product
domains Ω = γ̊1 × . . .× γ̊n, where each γj is a convex analytic curve, appropriate intersections of
such domains, and their projective images (see Prop. 3.2.11 and the final statement of 3.2.10).

3.2 Main Results

Lemma 3.2.1. Barrett’s Lemma

If Ω is piece-wise Levi-flat and a strong tangent avoids Ω at smooth point ~z then the leaf of the

Levi-foliation through ~z consists of subsets of a hyperplane. In particular, if Ω is a C-polytope then

all leaves of the Levi-foliation are subsets of complex hyperplanes.

Proof. We prove the first statement, and the second will follow since C-polytopes are assumed to
be C-convex, and therefore C-linearly convex by Theorem 2.3.1. Choose local analytic coordinates
centered at ~z so that S is given by Re(z1) = 0. In these analytic coordinates, the hyperplane tangent
to S at ~z is given by z1 = f(z2, . . . zn) where f holomorphic and ∂f(0) = 0. By the open mapping
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theorem, if f is non-constant we will have solutions to f(z2, . . . , zn) = t for 0 < |t| << 1, so the
only way the complex hyperplane can avoid Ω is if f ≡ 0. This in turn implies that the hyperplane
z1 = 0 lies in the boundary of the surface, i.e. it is one of the leaves of the Levi foliation.

Proposition 3.2.2. Suppose Ω is pseudoconvex with piece-wise smooth boundary, ~z ∈ S, with

{Hl, l = 1, . . . , k} a minimal set of boundary hypersurfaces at ~z. Suppose U is sufficiently small

that U\ ∪l Hl has 2k components, and Ω ∩ U is connected. Then Ω ∩ U coincides with one of the

components of U\ ∪l Hl.

We need some definitions and lemmas before the proof. To see why the pseudoconvexity
assumption is crucial, consider the domain Ω ⊂ C2 where the complement of Ω is {Im(z1) ≥
0, Im(z2) ≥ 0}. This is the prototypical example of a complex boundary wedge, defined below and
depicted in Figure 3.1.

Definition 3.2.3. Complex Boundary Wedge

A domain Ω has a complex boundary wedge at ~z ∈ S if there exists a neighborhood U 3 p and two

real hypersurfaces H1, H2 satisfying

• S ∩ U ⊂ H1 ∪H2.

• H1 and H2 intersect complex transversely at ~z.

• Given defining functions ρj for Hj on U such that Ω ∩ U ⊃ {ρ1 < 0, ρ2 < 0}, then

Ωc ∩ U = {ρ1 ≥ 0, ρ2 ≥ 0}.

Lemma 3.2.4. Pseudoconvex Domains Cannot Have a Complex Boundary Wedge

The main idea is to use the Kontinuitätssatz, see Figure 3.1.

ρ1

ρ2

Ω

ρ1

ρ2

Ω

Figure 3.1: Ω piece-wise smooth and pseudoconvex on the left, Ω with a complex boundary wedge
on the right. Boundary of family of holomorphic disks in solid red, dashed line represents final disk
leaving the domain Ω.
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Proof. We first prove the statement when n = 2, and the general statement will follow.
The idea is if Ω contains a complex boundary wedge, produce a family of holomorphic disks Ft :

D→ C2, 0 ≤ t ≤ 1 such that F0(D) ⊂⊂ Ω and Ft(∂D) ⊂⊂ Ω for all t while F1(D)∩ int(Ωc) 6= ∅,
violating the so-called Kontinuitätssatz (see Theorem 3.3.5 of [Kra08]).

By changing coordinates, assume ~z = 0 and T0(Hj) = {Im(zj) = 0}, the neighborhood U
is a ball of radius 1, max~z∈S dist(~z, T0(H1) ∪ T0(H2)) is arbitrarily small. We construct a family
Ft as above for when Ω is the complement of {Im(zj) ≥ 0}, and it follows from our choice of
coordinates that Ft will have the desired properties for Ω as well.

Consider four points p1, . . . , p4 on ∂D in clockwise order. Take two line segments, C1 from p1 to
p4 and C2 from p2 to p3. Let C1(t), C2(t), 0 ≤ t ≤ 1 be homotopies of C1, C2 respectively, relative
to each endpoint such that Cj(0) = Cj , Cj(t) is a segment of a circle for each t > 0 and the Cj(1)

cross transversely in the interior of the D bounding a set E compactly contained in D. Let f1(z, t)

be the Möbius transformation so that Im(f1(C1(t), t)) = 0 and Im(f1(z, t)) < 0 below C1(t). Let
f2(z, t) be the Möbius transformation so that Im(f2(C2(t), t)) = 0 and Im(f2(z, t)) < 0 above
C2(t). It follows that Ft(z) := (f1(z, t), f2(z, t)) has the desired properties. See Figure 3.2 for
construction of the family of analytic disks.

p1

p2p3

p4

E

p1

p2p3

p4

Figure 3.2: Construction of the family of holomorphic disks, F0 on the left, F1 on the right.

The general case follows by considering the intersection of Ω with a complex plane of dimension
2 which is transverse to H1 and H2.

Proof. Proof of Prop. 3.2.2
The idea is to show that if the conclusion is false, then Ω must contain a complex wedge.
Assume ~z = 0, and eachHl has defining function ρl. Since all theHl are real-transverse, ∪kl=1Hl

divides U into 2k components {~z|sgn(ρl(~z)) = εl},~ε ∈ {−1, 1}k. Let Ck denote the hypercube
graph on {−1, 1}k, and let G(Ω∩U) be the induced graph on the vertices~ε such that the component
of U\ ∪kl=1 {ρl = 0} corresponding to ~ε is contained in Ω. Let C denote the smallest sub-hypercube
containing G(Ω ∩ U). Our goal is to show that C consists of precisely one vertex, so assume this is
not the case.

Since Ω∩U is connected, G(Ω∩U) is connected. SinceG(Ω∩U) cannot be all of C, (otherwise
there are extraneous Hl that we could discard) there must be two adjacent vertices in Ck such that
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one vertex is in G(Ω∩U) and one is not. By applying an automorphism of the cube we may assume
that the all 1’s vector ~1 ∈ G(Ω∩U) and (−1, 1, . . . , 1) 6∈ G(Ω∩U). Since G(Ω∩U) is contained
in no smaller hypercube, G′ := G(Ω ∩ U) ∩ {~ε|ε1 = −1} 6= ∅. Let γ be a shortest path from ~1 to
G′. γ must contain at least 3 vertices, and consider the end of the path. Up to permuting coordinates,
the last three vertices must be

(1,−x2, x3, . . . , xk)→ (1, x2, x3, . . . , xk)→ (−1, x2, x3, x4, . . . , xk).

The vertex ~v4 := (−1,−x2, x3, . . . , xk) cannot be in G(Ω ∩ U) since then there would be a
shorter path to G′. Let ~v1, ~v2, ~v3 be the three last vertices of γ. By definition then Ω contains the
components {sgn(~z) = ~vj}, j = 1, . . . , 3 and not {sgn(~z) = ~v4}, and therefore Ω contains a
complex wedge.

We are now in a position to describe the weak tangents of a pseudoconvex domain with piece-
wise smooth boundary. We start with a simple example that will be useful later.

Proposition 3.2.5. Weak Tangents of a Cone

Suppose Ω is the cone {Im( ~αj · ~z) < 0, j = 1, . . . ,m}. The weak tangents through 0 coincide

with the positive cone over the αj ,

C := {~w|~w =
∑

tj ~αj , tj ≥ 0}

temporarily identifying ~w with the line ~w · ~z = 0.

Proof. Suppose we take a line of the form
∑
tj~αj · ~z = 0, tj ≥ 0, then we have that

∑
tjIm(~αj ·

~z) = 0, so for at least one j, Im(~αj · ~z) ≤ 0 and the line avoids Ω.
Now suppose that we take a line ~α which is not in C. Since C is convex, by Hahn-Banach there is a
real hyperplane {~w|Im(~z · ~w) = 0} so that Im(~z ·C) < 0 and Im(~z · ~α) > 0. The first condition
implies that ~z ∈ Ω, and the second condition implies that ~α cannot be written as a positive linear
combination of the ~αj .

Remark 3.2.6. Letting ∆m := {~t ∈ Rn|
∑
tj = 1, tj ≥ 0} be the standard m-simplex, prop 3.2.5

gives a convenient way of parameterizing the weak tangents of the cone via

∆m → W0(Ω)

~t 7→
∑

tj~αj.

The vertices of ∆m map to the strong tangents of Ω, and similarly the boundary of ∆m maps to the

weak tangents lying over the corresponding edge of the cone. The cone C is unaffected by replacing
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~αj with a positive multiple of ~αj , so for computations we may assume, for example, that |~αj| = 1.

For the shifted cone Ω′ = Ω + ~z, we can parameterize the weak tangents in homogeneous coor-

dinates. In the standard affine and homogeneous coordinates, the weak tangents are parameterized

via

∆m → W~z(Ω
′)

~t 7→ [−
∑

tj~αj · ~z :
∑

tj~αj] = w

= (

∑
tj~αj∑

tj~αj · ~z
) = ~w.

Proposition 3.2.7. Description of Weak Tangents at Transverse Intersection

Let Ω be a pseudoconvex domain with piece-wise smooth boundary. Suppose Hjk , k = 1, . . . , l are

the boundary Levi-flat hypersurfaces containing ~z, each with defining function ρjk . Then we can

parameterize the weak tangents at ~z via the map

∆m → W~z(Ω)

~t 7→ [−
∑
k

tk∂ρjk · ~z :
∑
k

tk∂ρjk ]

=

( ∑
k tk∂ρjk∑

k tk∂ρjk · ~z

)
.

In particular, the vertices of ∆m map to the strong tangents at ~z, and the union of the strong and

weak tangents give a smooth cycle in (Pn)∗.

Proof. First shift ~z to the origin, and just for the purposes of this proof, encode hyperplanes through
the origin via `~w := {~z|~w · ~z = 0}. This encodes hyperplanes uniquely up to multiplying ~w by a
scalar. For each k, write

ρjk = −Im(~αk · ~z) + h.o.t.

For each k, let P~αk
denote the orthogonal projection onto the real hyperplane T~0(Hjk). We claim

that there are constants C > 0, 0 < c << 1 such that if ||~z|| < c and Im(~α · ~z) > C(P~αk
~z)2 then

~z 6∈ Ω.
We prove this for a fixed k, then the constants C and c can be chosen to be the max and min,

respectively, of the all the chosen constants. Fixing k, choose an orthogonal change of coordinates
so that T~0(Hjk) = Cn−1 × R. Thinking of Hjk as a graph over z1, . . . , zn−1, Re(zn), we have

Im(zn) =
n−1∑
i,j=1

Li,jzizj +
n−1∑
i,j=1

Re(Qi,jzizj) +
n−1∑
i=1

Im(Rizi) ·Re(zn) + R̃ ·Re(zn)2 + h.o.t.
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The right hand side is a quadratic form in z1, . . . , zn−1, Re(zn), so taking C larger than the largest
eigenvalue of this quadratic form suffices.

Now suppose that we take ~w to be in the interior of the cone over the ~αk, i.e. of the form
~w =

∑
k tk~αk, tk > 0. We want to show that TC~z(Ω ∩ `~w) ⊂ T~z(S~j) = {Im(~αk · ~z) =

0, k = 1, . . . ,m}. Suppose there were a sequence ~zs → 0 with ~zs · ~w = 0, ~zs ∈ Ω and
~zs
|~zs| → ~p 6∈ {Im(~αk · ~z) = 0, k = 1, . . . ,m}. It follows from ~w · ~p = 0 that there is at least one k
with Im(~αk ·~p) > 0. We then have for 0 < t < 1 and a constant K that Im(~αk · t ·~p) > t ·K · ||~p||.
It then follows for s >> 1 that

Im(~αl · ~zs) > K̃ · ||~zs|| > C||P~αk
(~zs)||2

contradicting the fact that ~zs ∈ Ω.
Now take ~w to not be in the closure of the positive cone over the αj . From proposition 3.2.5,

we know that `~w will intersect the interior of the cone {Im(~αl · ~z) ≤ 0}, and from here it’s easy
to see that TC0(Ω ∩ ~w) is not contained in T0(S~j). (For example, take a complex line L ⊂ `~w)

intersecting the interior of the cone. The intersection of L with the cone is a cone in C agreeing up
to first order with L ∩ Ω).

Completing the proof just requires shifting the origin back to the original point ~z as in remark
3.2.6.

Remark 3.2.8. For S Levi-flat, take ρ = f+f for f holomorphic. Applying Prop. 3.2.7 at a smooth

point (in the case l = 1), ~w = ~w(~z) = ∂f
∂f ·~z . In particular, for ~z in a leaf of the Levi foliation, ~w is

a holomorphic function of ~z. For S piece-wise Levi-flat, taking ρjk = fjk + fjk , Prop. 3.2.7 implies

that holomorphic differentials dwl can be written as a sum of holomorphic differentials in ~z and

l other differentials in ~t. This fact will be used in the proof of Theorem 4.1.1 to deduce that the

Universal CFL form vanishes on high-dimensional edges.

Proposition 3.2.9. If Ω is a C-polytope, then every strong and weak tangent avoids Ω. If Ω is a

C-polytope then every image of Ω by a projective transformation is a C-polytope.

Proof. If ~z ∈ Ssm the first statement follows from the C-linear convexity of Ω, so assume ~z ∈ Ssing.
Since Ω is open, the condition that `~w ∩ Ω is non-empty is an open condition on ~w. Thus if there
were a weak tangent such that the intersection is non-empty, by density we could find an interior
weak tangent so that the intersection is also non-empty, so assume ~w is an interior weak tangent.
Then `~w ∩ Ω is an open subset of `~w contained in a proper subspace T~z(S~j) ∩ JT~z(S~j) which is
absurd.

The notions of weak and strong tangents are projectively invariant. T~z(S~j) ∩ JT~z(S~j) is the
intersection of all strong tangents at ~z, and thus also projectively invariant.
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Proposition 3.2.10. Sufficient Condition to be a C-polytope

Ω is a C-polytope if there is a choice of projective coordinates such that

a) Ω is piece-wise Levi-flat.

b) Ω is convex.

c) If ~z ∈ S is contained in the minimal edge S~j , then T~z(S~j) ∩ Ω ⊂ T~z(S~j) ∩ JT~z(S~j).

Furthermore, if there is a choice of projective coordinates so that items b) and c) hold simultaneously

for Ω1,Ω2 and the intersection Ω1 ∩ Ω2 is piece-wise Levi-flat then item c) holds for Ω1 ∩ Ω2. In

particular, Ω1 ∩ Ω2 is a C-polytope.

Proof. Let ~z ∈ S, make a linear shift so that ~z = 0 and identify ~w with complex lines through the
origin via ~w·~z = 0 exactly as in Prop. 3.2.5. By convexity Ω will be contained in the real half-spaces
{Im(~wjk ·~z) < 0}, and we may write our interior weak tangent as ~w =

∑
k tk ~wjk , tk > 0. Suppose

we have a point ~p ∈ `~w ∩ Ω. From the equation ~w · ~p = 0, it follows then that Im(~wjk · ~p) = 0 (if
there were a k such that Im(~wjk · ~p) < 0, there would have to be some k′ with Im(~wjk · ~p) > 0,
implying p 6∈ Ω). Thus ~p ∈ T0(S~j), and by item c), ~p ∈ T0(S~j) ∩ JT0(S~j).

For the last statement, suppose ~z ∈ ∂(Ω1 ∩ Ω2) ⊂ S1 ∪ S2. If ~z 6∈ S1 or S2, there is nothing to
prove, so assume ~z ∈ S1 ∩ S2 and is contained in the minimal edges σ1, σ2. Since the intersection
is transverse, the corresponding minimal edge in ∂(Ω1 ∩ Ω2) is σ1 ∩ σ2, and item c) holding under
intersection follows easily from the equality T~z(σ1 ∩ σ2) = T~z(σ1) ∩ T~z(σ2).

Combined with the following proposition, we get a somewhat large class of examples of
C-polytopes.

Proposition 3.2.11. Let n > 1. If Ω = γ̊1 × . . .× γ̊n where each γj is an analytic curve in C, then

Ω is a C-polytope iff each γj is convex.

The proof will demonstrate why being a C-polytope does not necessarily hold under intersection.
In particular, the property of weak tangents avoiding Ω does not necessarily hold under intersection.
Take Ω1 = γ̊1 × C where γ1 is not convex and Ω2 = C × γ̊2. Ω1 has smooth boundary, with the
strong tangent at ~p = (p1, p2) ∈ γ1 × C defined by z1 = p obviously avoiding Ω, and since the
boundary is smooth there are no interior weak tangents to check. The same argument shows that
the strong tangents of Ω1 ∩ Ω2 = γ̊1 × γ̊2 avoid Ω1 ∩ Ω2, but the proof below will produce a weak
tangent that intersects Ω1 ∩ Ω2.

Proof. Proof of Prop. 3.2.11
Begin with the case when γ1 is not convex. Obviously conditions a), b), c) do not hold in the

standard affine coordinates, but it’s somewhat less obvious they cannot hold in any projective
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p1 p2

Ω = γ̊1 × γ̊2

p1 = f(p2)

f(γ̊2) intersecting γ̊1

Figure 3.3: Affine map corresponding to a weak tangent intersecting the interior of Ω = γ̊1 × γ̊2

when γ1 is not convex. Note that the tangent cone of the intersection near p1 = f(p2) corresponds
to the totally real 2-plane Tp1(γ1)× Tp2(γ2), so the corresponding complex line is indeed a weak
tangent.

coordinates. To show Ω cannot be a C-polytope, we produce a weak tangent which intersects Ω

in violation of proposition 3.2.9. Assume that 0 ∈ Ω, so that every line outside Ω can be uniquely
represented as ~w · ~z = 1. The problem can be reduced to the case n = 2 by only considering lines
where wj = 0, j ≥ 3. We will produce a weak tangent ~w ∈ W~z(Ω) of this form which intersects
the interior of Ω.

The defining equation reads w1z1 + w2z2 = 1. Solving for z1 produces z1 = 1−w2z2
w1

. In this
way, identify the line ~w with the affine function of one variable f(z) = 1−w2z

w1
. Taking a point

~p = (p1, p2) ∈ γ1 × γ2, a line passing through ~p avoiding γ̊1 × γ̊2 is the same as the graph of an
affine f : C→ C so that f(p2) = p1 and f(γ̊2) ∩ γ̊1 = ∅. A weak tangent is the graph of an affine
f : C → C so that f(p2) = p1 and f ′(p2) · γ′2(p2) = −r · γ′1(p1), where r > 0 and each γj is
oriented clockwise, see Figure 3.3.

Assuming that γ̊1 is not convex, set p1, p
′
1 to be points in the boundary γ1 connected by a line

segment contained in the exterior of γ̊1 and so that this line segment is real-transverse to γ′1(p1).
Take a point p2 ∈ γ2 and a linear map in one variable f(z) = az + b so that

• f(p2) = p1

• f ′(p2) · γ′2(p2) = −r · γ′1(p1), r > 0

• |f ′| >> 1.

In particular, choose |f ′| so large so that f(γ̊2) contains p′1. If we write f(z) = az + b, then the line
z2 = az1 + b intersects γ̊1 × γ̊2 at (p′1, f

−1(p′1)) it follows from proposition 3.2.7 that this line is in
W~p(Ω), yielding the promised contradiction to Prop. 3.2.9.
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In the case when each γj is convex, items a) and b) of Prop. 3.2.10 are immediate. Analyticity
implies that each γj is strictly convex, that is it contains no line segments, and item c) follows.
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CHAPTER IV

Duality for C-Polytopes

It is a general fact that on the Levi-flat portion of S, µS,Fef = 0. Examining Theorem 2.4.10
suggests that good measures to use for a Hardy space theory should be supported on the singular
locus of S, and likewise Theorem 2.4.4 indicates that the accompanying reproducing kernel should
be concentrated on the skeleton. In this chapter we will indeed produce such measures and kernels,
and examine the qualitative properties of the pairing.

4.1 The Leray Kernel

Theorem 4.1.1. Let Ω be a C-polytope, and let wj = wj(z), j = 1, . . . , n denote the strong

tangents at points z ∈ Sn not contained in any smaller edge of S. We have a projectively invariant

OSn(n, 0)-valued n-form
(−1)n

(2πi)n
det0(wj)∏
j〈wj, τ 〉

d~z

with the reproducing property for f ∈ OΩ(−n, 0)

f(τ ) =
(−1)n

(2πi)n

∫
Sn

f(z)
det0(wj)∏
j〈wj, τ 〉

d~z

.

The idea is simple; once projective invariance is established, it suffices to check the equality of
the integrands in Theorems 4.1.1 and 2.4.9 in a preferred choice of coordinates. First we point out
that in the above formula, the wj are “row vectors”, with det0(w) meaning the determinant of the
last n columns. We emphasize also that pulling back by a transformation T requires also pulling
back τ via T . Care must be taken when numbering the strong tangents, as choosing a different
ordering may result in a different sign. The correct ordering will be induced by parameterizing IS
appropriately, see the discussion under Theorem 2.4.9. Notice also Ω = γ̊1 × . . .× γ̊n where each
γi is a convex curve then the strong tangents are wj = e0 − 1

zj
ej . Substituting into the integrand of

Theorem 4.1.1 produces the multivariate Cauchy formula. The proof requires a few lemmas.
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Lemma 4.1.2. Projective Cramer’s Rule

Let z ∈ Pn,wj ∈ (Pn)∗ be a set of independent hyperplanes such that wj · z = 0. Let W be the

n× (n+ 1) matrix with the wj as rows. Then

zjdet0(W) = (−1)jz0detj(W)

.

Proof. We check the equality on the dense open set I ∩ U0,0. In the standard affine coordinates, we
have the matrix equation. 

w1,1

−w1,0

w1,2

−w1,0
. . . w1,n

−w1,0

w2,1

−w2,0

w2,2

−w2,0
. . . w2,n

−w2,0

...
...

wn,1

−wn,0

wn,2

−wn,0
. . . wn,n

−wn,0



z1
z0
z2
z0
...
zn
z0

 =


1

1
...
1


Cramer’s rule gives

z1

z0

=

∣∣∣∣∣∣∣∣∣∣∣

1 w1,2

−w1,0
. . . w1,n

−w1,0

1 w2,2

−w2,0
. . . w2,n

−w2,0

...
...

1 wn,2

−wn,0
. . . wn,n

−wn,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1,1

−w1,0

w1,2

−w1,0
. . . w1,n

−w1,0

w2,1

−w2,0

w2,2

−w2,0
. . . w2,n

−w2,0

...
...

wn,1

−wn,0

wn,2

−wn,0
. . . wn,n

−wn,0

∣∣∣∣∣∣∣∣∣∣∣
Rearranging this yields z1 det0(W) = −z0 det1(W). The same argument works for arbitrary
j.

Lemma 4.1.3. Simplex Calculation

Fix ~z and suppose ~wi = ~wi(~t),~t ∈ ∆n are functions satisfying ~z · ~w = 1 and that

wi(~ej) =

 1
zi

i = j

0 i 6= j
. Then

I(w1, . . . , wn) :=

∫
∆n

1

(1− 〈~τ , ~w〉)n

(
n−1∏
j=1

zjdwj

)
=

(−1)n

(n− 1)!

n∏
j=1

1

1− τj
zj

.
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Proof. The proof is induction on n. For n = 2, this reduces to calculating∫ t1=1

t1=0

1

(1− (w1τ1 + w2τ2))2
z1dw1.

Keeping in mind that w2 = 1−w1z1
z2

, we get

[
−1

(1− (w1τ1 + w2τ2))

−1

τ1 − z1
z2
τ2

· z1

]t1=1

t1=0

=
1

(1− τ1
z1

)(1− τ2
z2

)
.

For the induction step, we will use Stoke’s theorem. Set ∂∆n
i := ∆n ∩ {ti = 0} oriented as the

boundary of ∆n, and let ϕ denote the integrand in the lemma. Thinking of wn as a function of the
other wj , we have ∂wn

∂wn−1
= − zn−1

zn
. Define the primitive for ϕ

η :=
(−1)n−1

(n− 1)(τn−1 + τn(−zn−1

zn
))

1

(1− 〈~τ , ~w〉)n−1
z1 . . . zn−1dw1 ∧ . . . ∧ dwn−2.

Note that η is only non-zero along ∂∆n
i for i = n− 1, n. Keeping in mind the orientation, we have∫

∂∆n
n−1

η =
(−1)n−2

(n− 1)

zn−1

τn−1 + τn(−zn−1

zn
)
(−1)n−2I(w1, . . . , wn−2, wn)∫

∂∆n
n

η =
(−1)n−2

(n− 1)

zn−1

τn−1 + τn(−zn−1

zn
)
(−1)n−1I(w1, . . . , wn−2, wn−1).

By Stoke’s∫
∆n

ϕ =
1

(n− 1)( τn−1

zn−1
− τn

zn
)

(I(w1, . . . , wn−2, wn)− I(w1, . . . , wn−2, wn−1)) .

From induction, along with the identity

∏
j 6=n

1

1− τj
zj

−
∏

j 6=n−1

1

1− τj
zj

=

τn−1

zn−1
− τn

zn∏n
j=1 1− τj

zj

we are done.

Proof. Proof of Thm. 4.1.1
First we verify the projective invariance. Let T be a projective transformation with associated

matrix M . It suffices to check invariance for T in a generating set.
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Case 1: T is a linear transformation in ~z, that is M is of the formdet
(
M̃
) −1

n+1
0

0 det
(
M̃
) −1

n+1
M̃

 , M̃ ∈ GLn(C)

T ∗(
det0(wj)∏
j〈wj, τ 〉

d~z) =
det0(wj ◦M−1)∏
j〈M−twj,Mτ 〉

det
(
M̃
)
d~z

= det
(
M̃
) n

n+1 det0(wj)∏
j〈wj, τ 〉

d~z.

Case 2: T is a linear shift, that is T (z) = z + λz0ej .
Case 1 allows us to assume that j = 1. The dual transformation is given by T−t(w) =

w − λwje0, so one column operation shows that T ∗ det0(wj) = det0(wj ◦ T−1) = det0(wj).
Case 3: T is an inversion, that is T (z) = z + λzje0.

Again, assume that j = 1. The dual transformation is given by T−t(w) = w+λw0e1. Applying
Lemma 4.1.2,

T ∗(det0(wj)) = det0(wj)− λdet1(wj)

= (1 + λ
z1

z0

)det0(wj)

T ∗(
det0(wj)∏
j〈wj, τ 〉

d~z) = (1 + λ
z1

z0

)n
det0(wj)∏
j〈wj, τ 〉

d~z.

We have the desired invariance, so now we establish that ω vanishes on points (~z, ~w) ∈ IS
where ~z ∈ S\Sn and at points ~z in edges of real dimension < n. At a point where ~z is in an
edge of dimension < n, then clearly d~z = 0. Conversely, at a point where ~z is in an edge of
dimension 2n − k > n, it follows from Prop 3.2.7, recalling the fact that Si is Levi-flat, that the
strong tangents ~wS

i are holomorphic functions of ~z, and thus ~w depends holomorphically on ~z and
the k − 1 independent parameters~t (see remark 3.2.8). Thus there are at most n+ k − 1 < 2n− 1

independent differentials, so d~w[j] ∧ d~z = 0.
By appropriate projective transformations, we may assume that Ω is bounded containing the

origin, that is (Ω× Ω∗) ⊂⊂ U0,0. In these affine coordinates, we claim ω is equal to the expression

ω =
(−1)

n2−n−2
2 (n− 1)!

(2πi)n

n−1∏
i=1

zid~w[n] ∧
d~z∏n
i=1 zn

.

To see this, first make the substitution 1
zn

= wn +
∑n−1

j=1
wjzj
zn

into the right hand side. Then
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observe by differentiating the relation ~z · ~w = 1, that zjdwj = −zndwn+ terms that involve
dwj, j 6= n and dzk. These extra terms cancel upon substitution. The calculations described are
below.

(−1)
n2−n−2

2 (n− 1)!

(2πi)n
1

zn
d~w[n] ∧ d~z = (wn +

n−1∑
j=1

wjzj
zn

)d~w[n] ∧ d~z

=
(−1)

n2−n−2
2 (n− 1)!

(2πi)n

(
wnd~w[n] ∧ d~z +

n−1∑
j=1

wj(−1)n−jd~w[j] ∧ d~z

)

=
(−1)

n2−3n−2
2 (n− 1)!

(2πi)n

n∑
j=1

(−1)jwjd~w[j] ∧ d~z

To see that this is indeed the Universal CFL form, take the expression in Def. 2.4.7 in the
coordinate chart U0,0 (remembering that w0 = −1), apply the symmetry to the ~z and ~w variables
and expand.

To conclude, the vanishing of ω away from the skeleton implies∫
(S×S∗)∩I

f(~z)g~τ (~w)ω0,0 =

∫
(Sn×S∗)∩I

f(~z)g~τ (~w)ω0,0.

Writing this in local coordinates, applying Prop. 3.2.7, we obtain

f(~τ ) =

∫
(Sn×S∗)∩I

f(~z)g~τ (~w)ω0,0

=
(−1)

n2−n−2
2 (n− 1)!

(2πi)n

∫
Sn

f(~z)

(∫
∆n

1

(1− 〈~τ , ~w〉)n
n−1∏
j=1

(zjdwj)

)
d~z∏n
j=1 zj

.

By a projective change of coordinates, assume we are looking near a point ~p = (1, . . . , 1) ∈ Sn and
~wj(~p) = ~ej , then use Lemma 4.1.3 to evaluate the inner integral at ~p and verify that it does indeed
agree with the n-form in Theorem 4.1.1.

4.2 Substitute Hardy Spaces

To set up projectively invariant Hardy space on Ω and Ω∗, ideally we would like a positive,
projectively invariant OSn(n, n)-valued n-form µ1 and a positive, projectively invariant OS∗(n, n)-
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valued 2n− 1 form µ2 defining the norms

||f ||22 :=

∫
Sn

|f |2µ1 f ∈ OSn(−n, 0)

||g||22 :=

∫
S∗
|g|2µ2 g ∈ OS∗(−n, 0)

giving corresponding L2 and Hardy spaces. On S∗sm there is such a form, namely the Fefferman
form. One might also want to use Barrett’s preferred measure (page 19 of [Bar15]), but the invariant
ϕS∗ vanishes in this case. On Sn, the natural guess is |zn+1

0 d~z|, but this is an invariant O(n+1
2
, n+1

2
)-

valued n-form. There are two approaches to fix this, either construct a OSn(n, n)-valued n-forms,
or construct substitute L2 spaces. In the next section we will accomplish the former when n = 2,
but here we explore the latter option, and construct somewhat satisfactory substitute L2-spaces
whose topologies are projectively invariant. Recall that IS := (S × S∗) ∩ I , and ω is the Universal
CFL-form (see Def. 2.4.7).

Definition 4.2.1. Let Ω be a C-polytope, π : Cn+1\{0}×Cn+1\{0}. For (p,q) ∈ π−1(Ω×int(Ω∗))
define the norms

||f ||2p,q :=

∫
IS

|f |2
(
|q · z|
|p ·w|

)n
2

|ω|, f ∈ OSn(−n, 0)

||g||2p,q :=

∫
IS

|g|2
(
|p ·w|
|q · z|

)n
2

|ω|, g ∈ OS∗(−n, 0).

Define L2(Sn,p,q), L2(S∗,p,q) as the closure with respect to each norm, and define the Hardy

spaces H2(Ω,p,q), H2(Ω∗,p,q) as the L2-closure of OΩ(−n, 0) and OΩ∗(−n, 0) respectively.

With these definitions, we get a C-bilinear pairing on the Hardy spaces with similar properties
as in the C2 strongly C-convex case.

Theorem 4.2.2. Qualitative Properties of the Pairing

Define the C-bilinear pairing

〈〈, 〉〉 : L2(Sn,p,q)× L2(S∗,p,q)→ C

〈〈f, g〉〉 :=

∫
IS

f · g ω.

a) 〈〈, 〉〉 is separately continuous.
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b) We have the reproducing properties

f(τ ) = 〈〈f, gτ 〉〉 for τ ∈ Ω, f ∈ H2(Ω,p,q)

g(τ ) = 〈〈gτ , g〉〉 for τ ∈ Ω∗, g ∈ H2(Ω∗,p,q).

c) The pairing induces injective maps

H2(Ω,p,q) ↪→ H2(Ω∗,p,q)∗

H2(Ω∗,p,q) ↪→ H2(Ω,p,q)∗

with dense image.

d) If f ∈ OΩ(−n, 0), g ∈ OΩ∗(−n, 0)) and S2 := ∂Ω2 is homologous to S in the domain of f , and

S∗2 is homologous to S∗ in the domain of g then 〈〈f, g〉〉IS = 〈〈f, g〉〉IS2
.

e) This is not in general a duality pairing. When Ω is a product of bounded convex curves containing

the origin, taking p = q = (1, 0, . . . , 0), we have

inf
g∈H2(Ω∗,p,q),||g||=1

sup
f∈H2(Ω,p,q),||f ||≤1

|〈〈f, g〉〉| = 0.

In the C2 strongly C-convex case, one gets bounded operators L2(Ω, µ)→ H2(Ω, µ) by pairing
with gτ and letting τ tend to the boundary [LS13]. This is far from obvious, as the integrals will
develop singularities as τ tends to the boundary. We emphasize here that we are not claiming
that we get even unbounded operators L2 → H2. It follows from item e) and following Barrett’s
proof in the introduction that if in fact this operator gives a map L2(S∗,p,q)→ H2(Ω∗,p,q), it is
necessarily unbounded.

Before proving the theorem, we collect some basic propositions and lemmas.

Proposition 4.2.3. Let (p,q), (p′,q′) ∈ π−1(Ω × int(Ω∗)). There exists a constants C1, C2,

depending on (p,q), (p′,q′), so that for all f ∈ L2(S,p,q), g ∈ L2(S∗,p,q)

||f ||p,q ≤ C1||f ||p′,q′

||g||p,q ≤ C2||f ||p′,q′ .

Thus theL2 andH2 spaces above coincide as topological vector spaces for different choices of (p,q).

Given a projective transformation T : Ω→ T (Ω), with liftM , we have ||T ∗(f)||p,q = ||f ||Mp,M−tq.

Proof. Since q,q′ ∈ Ω∗,q′ · z 6= 0 and q · z 6= 0 on Ω, and by compactness there are k,K so that
0 < k ≤ | q·z

q′·z | ≤ K. The same argument applies to the forms p · w,p′ · w, and the first claim
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follows. The second claim is applying the transformation laws for the various bundles, remembering
that |ω| is projectively invariant.

The previous proposition implies that the qualitative properties of the pairing are unchanged if
we restrict ourselves to the case p = q = (1, 0, . . . , 0), i.e. Ω is bounded containing the origin.

Lemma 4.2.4. Pairing Calculation

Let Ω = Dn so that Ω∗ is the `1-ball, and define the constants cn = (−1)
n2−n−2

2

(2πi)n
. We have

〈〈z−n0 ~z~a, w−n0 ~w
~b〉〉 = cnδ~a,~b · β(~a+ ~1)

where β(a1, . . . , an) =
∏

Γ(ai)
Γ(

∑
ai)

Proof. We can parameterize the `1-sphere by ∆n× bDn via the map (~t, ~z) 7→ (tizi), where ∆n× ~z
parameterizes WbDn(~z). In these coordinates, we have dwi = tidzi + zidti. Substituting these
expressions into ω and expanding, every term with dzi ∧ d~z vanishes since the ~z takes value in a
real n-dimensional manifold. Keeping in mind that zi = 1

zi
, we are left with

ω = (z0w0)ncnd~t[n] ∧
d~z

z1 . . . zn
= (z0w0)ncnd~t[n] ∧ d~θ

where θi is the angle along the circle in the ith component. We calculate

〈〈z−n0 ~z~a, w−n0 ~w
~b〉〉 = cn

∫
bDn

~z~a~z
~b
(∫

∆n

~t
~b
d~t[n]

)
d~θ.

From the Sn-invariance of the ~z-integral, we see that the integral is zero unless ~a = ~b. It just
remains to show ∫

∆n

~t
~a
d~t[n] = β(a1 + 1, . . . , an + 1)

which is a standard fact about multivariate Dirichlet distributions, see section 2.1 of [TT11].

For the calculations that follow ~1 := (1, 1, . . . , 1) is the all-ones vector of length n.

Lemma 4.2.5. Asymptotic Estimate

There is a constant Cn depending on n so that

lim
m→∞

β((m+ 1) · ~1)

m−
n−1
2 n−nm

= Cn
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Proof. The main ingredient is Stirling’s approximation.

β((m+ 1) · ~1) =
(m!)n

(mn+ n− 1)!
∼ mn/2(m/e)mn√

mn+ n− 1(mn+n−1
e

)mn+n−1

∼ Cnm
−n−1

2 n−nm
(

m

m+ 1− 1
n

)mn
∼ Cnm

−n−1
2 n−nm

Lemma 4.2.6. Function Construction

Let S be a smooth manifold, fk a finite collection of smooth real-valued functions each with a

minimum at ~z0, M = fk(~z0) for all k. Then there exists a smooth function g so that maxk fk ≤ g,

g(~z0) = M and ~z0 is non-degenerate for g, that is Hessian of g at ~z0 is strictly positive definite.

Proof. Take (real) coordinates ~x centered at ~z0, then we have the Taylor expansion fk(~x) =

M + ~xtHk~x+ o(||~x||3), where H is positive semi-definite. Letting λk denote the largest eigenvalue
of Hk, we have ~xtHk~x < λk||~x||2. So pick λ with λ > maxk λk and pick g to be smooth with local
expansion M + λ~xt~x+ o(||~x||3).

Lemma 4.2.7. Laplace Bounds

Let f be a non-negative smooth function on the n-dimensional compact manifold S, µ a measure

mutually absolutely continuous with respect to Lebesgue. Suppose N := {~z|f(~z) = supS f} is a

non-degenerate critical manifold of dimension k, meaning the Hessian of f has rank n− k at every

point of N . Then there exists a constants C1, C2 > 0 so that for m >> 1, we have

C1 sup(em·f )m−
n−k
2 ≥

∫
S

emfdµ ≥ C2 sup(em·f )m−
n−k
2 .

Proof. Cover M with finitely many coordinate patches Uj so that either Uj ∩N = ∅ or N is given
by the last n− k coordinates being 0, and take a partition of unity subordinate to the covering ϕj .
On each Uj , with Uj ∩N = ∅ we have

|
∫
Uj

ϕje
m·fdµ| ≤ C sup

S
em·(f−ε)

and so in the limit, none of these integrals will affect our estimates.
For Uj intersecting N , write dµ = hd~x and first applying Fubini

∫
Uj

ϕje
m·fdµ =

∫
x1,...,xk

(∫
xk+1,...,xn

em·fϕj · h dxk+1 . . . dxn

)
dx1 . . . dxk
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For the inner integrand, we are in exactly the situation where the Laplace method applies, and
we obtain constants C1,j, C2,j > 0 so that

C2,j sup(em·f )m−
n−k
2 ≤

∫
xk+1,...,xn

em·fϕj · h dxk+1 . . . dxn ≤ C1,j sup(em·f )m−
n−k
2

Finishing the integration and then summing up the estimates from each coordinate patch produces
the result.

Proof. Proof of Theorem 4.2.2

a) Continuity follows from applying Cauchy-Schwartz to the point-wise identity

|f ||g||ω| = |f |
(
|q · z|
|p ·w|

)n
4

|g|
(
|p ·w|
|q · z|

)n
4

|ω|

implying
|〈〈f, g〉〉| ≤ ||f ||p,q||g||p,q.

b) This is the reproducing property of Theorem 2.4.9.

c) Injectivity follows from the following general fact; given two Hilbert spaces H1, H2 and a non-
degenerate pairing 〈〈, 〉〉 : H1×H2 → C, then the map H1 → H∗2 has dense image. Suppose for
contradiction that the image of H1 in H∗2 were contained in a proper closed subspace K. Then
there exists h2 ∈ H2 so that K(h2) = 0, violating the non-degeneracy assumption.

d) The integrand is holomorphic of maximal degree, thus closed.

e) Let Ω = γ̊1 × . . . γ̊n be a bounded convex product domain containing the origin. We will take
p = q = (1, 0, . . . , 0), dropping subscripts for convenience. Let k denote the number of γi
which are circles centered at the origin. Note when applying lemma 4.2.7 to expressions of the
form

∫
S
|~z|m, the critical manifold has dimension k, and further assume that this manifold is

non-degenerate (equivalently, | · | has non-degenerate minima on each γi). Set ri = inf~z∈S |zi|
so that supS |~z

−m·~1| = ~r−m·
~1, supS(||z||−1

∞ )−1 = maxi ri. By scaling each γi and applying prop
4.2.3, we may assume that all ri are equal to r, and that the first k γi are circles.
Set dm = ||(w0)−n ~wm·~1||−1, and let fm ∈ H2(Sn) be such that ||fm|| = 1 and

sup
f∈H2(S),||f ||≤1

|〈〈f, dm(w0)−n ~wm·~1〉〉| ≤ |〈〈fm, dm(w0)−n ~wm·~1〉〉|+ 1

m
.

We may further assume that fm is entire by approximating fm((1 + ε)~z) uniformly on Ω by an
entire function, see Theorem 3.1.3 in [APS04]. Writing fm = (z0)−n

∑
a~α~z

~α, it follows from
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lemma 4.2.4 and property d) that

〈〈fm, dm ~wm·~1〉〉 = 〈〈(z0)−nam·~1~z
m·~1, dm(w0)−n ~wm·~1〉〉 = am·~1 · dm · cnβ((m+ 1) · ~1).

We begin by estimating the |am|. By differentiating the usual Cauchy formula and appealing to
lemma 4.2.7, we have

am = |cn|
∫
Sn

(z0)nfm(~z)
n∏
i=1

~z−m·
~1d~θ

|am| ≤ |cn|||fm||(
∫
S

|~z−2m·~1|d~θ)
1
2

≤ C sup
S
|~z−m|m−

n−k
4 = Crmnm−

n−k
4 .

Now we need estimates on the asymptotics of dm. Set ~wi(~z) = ~ei
zi

, so ~wi is the ith strong
tangent at ~z. Using Remark 3.2.6 with αi = |zi|

zi
,

d−2
m =

∫
S∗
|~w|2m|w0

z0

|
n
2 |ω|

=

∫
S

∫
∆n

~t
2m·~1

|
∑

i tiαizi|2mn
|w0

z0

|
n
2 |ω|

≥ β((2m+ 1) · ~1)

∫
S

||~z||−2mn
∞ .

Note that since the first k factors are circles which have constant radius r, and all other curves are
distance ≥ r away from 0, we have ||~z||∞ = maxi |zi| = maxi>k |zi|. Each |zi| has a minimum
r, so by lemma 4.2.6, there exists a smooth function g = g(zk+1, . . . zn) so that ||~z||∞ ≤ g,
min(g) = min(||~z||∞) implying sup(1

g
) = sup(||~z||−1

∞ ) = r−1. Lastly observe that the level set
of g−1 = r−1 has dimension k and applying lemma 4.2.7, we have

β((2m+ 1) · ~1)

∫
S

||~z||−2mn
∞ ≥ β((2m+ 1) · ~1)

∫
S

g−2mn

≥ β((2m+ 1) · ~1)r−2mnm−
n−k
2

implying

dm ≤ rmnm
n−k
4 β((2m+ 1)~1)−

1
2 .
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Putting it all together and applying lemma 4.2.5,

am·~1 · dm · β((m+ 1) · ~1) ≤ C4 · β((m+ 1) · ~1)β((2m+ 1) · ~1)−
1
2

≤ C4m
−1
4 .

Example 4.2.8. If we had a duality pairing, it would follow from the open mapping theorem that the

image of H2(S∗) is all of H2(Sn)∗. We demonstrate by example that this is not the case. Consider

Ω = D2 so that Ω∗ = `1 := |{(w1, w2)||w1|+ |w2| < 1}|, and consider the functional

f 7→
∫
bD2

f

∞∑
m=1

1

m
zm1 dθ1dθ2.

By Lemma 4.2.4, the only candidate power series in H2(l1) is
∑

m∈Z≥0

m+1
m
wm1 . All the wm1 are

orthogonal by symmetry, so we have

||
∑
m

m+ 1

m
wm1 ||2 =

∑
m

(m+ 1)2

m2
||wm1 ||2

=
∑
m

(m+ 1)2

m2
β(2m+ 1, 1)

=
∑
m

(m+ 1)2

m2(2m+ 1)

which diverges. Taking this example further, we see that if g =
∑

m1,m2∈Z≥0
am1,m2z

m1
1 zm2

2 , the only

candidate in H2(∂`1) for the functional

f 7→
∫
bD2

fgdθ1dθ2

is given by the formal series

g̃ =
∑

m1,m2∈Z≥0

am1,m2

β(m1,m2)
wm1

1 wm2
2 .

The set of monomials {wm1
1 wm2

2 } are mutually orthogonal by the S2 symmetry of `1, and

||wm1
1 wm2

2 ||2 = β(2m1, 2m2).
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We see that the image of H2(∂`1)∗ in H2(bD2) consists of power series

g =
∑

m1,m2∈Z≥0

am1,m2z
m1
1 zm2

2

where ∑
m1,m2∈Z≥0

β(2m1, 2m2)

β(m1,m2)2
|am1,m2|2 <∞.

4.3 Invariant Sections and Hardy Spaces when n = 2

In this section, we describe how to construct a completely projectively invariant Hardy space
when n = 2. We would like a positive, projectively invariant OS2(2, 2)-valued 2-form, and
as previously described |z2

0d~z| takes values in the wrong bundle. However, if we construct a
projectively invariant section of OS2(j, j) for j 6= 0, then the form |σ|

3
2j |z2

0d~z| will have values in
the correct bundle.

Proposition 4.3.1. Let Ω ⊂ P2 be a piece-wise smooth pseudoconvex domain. Then there exists a

projectively invariant section σ ∈ OS2(
3
2
, 3

2
).

Proof. Let z ∈ S2 with boundary surfaces H1, H2, and by Lemma 3.2.2, we can make a projective
change of coordinates so that z = 0 and TC0(Ω) = {Im(z1) ≤ 0, Im(z2) ≤ 0}. This choice
uniquely determines the projective coordinates up the the action of the group generated by the
following matrices.

Iλ :=

1 0 0

λ 1 0

0 0 1

 , λ ∈ C, Sr :=

1 0 0

0 r 0

0 0 1

 , r ∈ R>0, W :=

1 0 0

0 0 1

0 1 0


Write zj = xj + iyj so that on H1 ∩H2, we have

y1 = a1x
2
1 + b1x1x2 + c1x

2
2 + h.o.t.

y2 = a2x
2
2 + b2x1x2 + c2x

2
1 + h.o.t.

Using Mathematica, we can compute how the normal form changes by pulling back by each of
the above matrices. For convenience, identify the normal form with the matrix(

a1 b1 c1

a2 b2 c2

)
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We write down the result of the computations, which can be found in the Appendix.

W ∗

(
a1 b1 c1

a2 b2 c2

)
=

(
a2 b2 c2

a1 b1 c1

)

I∗λ

(
a1 b1 c1

a2 b2 c2

)
=

(
a1 + Im(λ) b1 c1

a2 b2 + Im(λ) c2

)

S∗r

(
a1 b1 c1

a2 b2 c2

)
=

(
a1r b1

c1
r

a2 b2r c2r
2

)

It follows that the quantity σ := (b1−a2)(b2−a1) is a projectively invariant section ofOS2(
3
2
, 3

2
).

We remark that when Ω = γ̊1 × γ̊2, it follows that σ = 4κ1κ2, where κj is the signed curvature
of each γj , and thus is everywhere positive exactly when Ω is a C-polytope. An interesting, related
question is given a totally real submanifold S of P2, are there any projectively invariant sections of
OS(j, j)? This can be approached in the same method as above, with the additional matrices

Sr, r ∈ R<0, Hr :=

1 0 0

0 1 r

0 0 1

 , r ∈ R\{0}.

In the Appendix, it is calculated that

H∗r

(
a1 b1 c1

a2 b2 c2

)
=(

a1 + rb1 + r2c1 b1 + 2rc1 c1

a2 − rc1 b2 + 2ra2 − rb1 + 2r2c1 c2 + rb2 + r2a2 − r(a1 + rb1 + r2c1)

)
.
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APPENDIX

Projective Normal Form Calculations

PullBack[expr1 , expr2 , vars ,M ]:=Module[{z1, z2,w1,w2, x1, y1, x2, y2, t, newexpr1,PullBack[expr1 , expr2 , vars ,M ]:=Module[{z1, z2,w1,w2, x1, y1, x2, y2, t, newexpr1,PullBack[expr1 , expr2 , vars ,M ]:=Module[{z1, z2,w1,w2, x1, y1, x2, y2, t, newexpr1,

newexpr2},newexpr2},newexpr2},

z1 = x1 + Iy1;z1 = x1 + Iy1;z1 = x1 + Iy1;

z2 = x2 + Iy2;z2 = x2 + Iy2;z2 = x2 + Iy2;

w1 = (M [[1, 2]] +M [[2, 2]] ∗ z1 +M [[3, 2]] ∗ z2)/(M [[1, 1]] +M [[2, 1]] ∗ z1 +M [[3, 1]] ∗ z2);w1 = (M [[1, 2]] +M [[2, 2]] ∗ z1 +M [[3, 2]] ∗ z2)/(M [[1, 1]] +M [[2, 1]] ∗ z1 +M [[3, 1]] ∗ z2);w1 = (M [[1, 2]] +M [[2, 2]] ∗ z1 +M [[3, 2]] ∗ z2)/(M [[1, 1]] +M [[2, 1]] ∗ z1 +M [[3, 1]] ∗ z2);

w2 = (M [[1, 3]] +M [[2, 3]] ∗ z1 +M [[3, 3]] ∗ z2)/(M [[1, 1]] +M [[2, 1]] ∗ z1 +M [[3, 1]] ∗ z2);w2 = (M [[1, 3]] +M [[2, 3]] ∗ z1 +M [[3, 3]] ∗ z2)/(M [[1, 1]] +M [[2, 1]] ∗ z1 +M [[3, 1]] ∗ z2);w2 = (M [[1, 3]] +M [[2, 3]] ∗ z1 +M [[3, 3]] ∗ z2)/(M [[1, 1]] +M [[2, 1]] ∗ z1 +M [[3, 1]] ∗ z2);

(*Substituting in Real, Imaginary parts of transformed variables into the normal form*)(*Substituting in Real, Imaginary parts of transformed variables into the normal form*)(*Substituting in Real, Imaginary parts of transformed variables into the normal form*)

newexpr1 = expr1/.Thread[vars->{ComplexExpand[Re[w1]],ComplexExpand[Re[w2]],newexpr1 = expr1/.Thread[vars->{ComplexExpand[Re[w1]],ComplexExpand[Re[w2]],newexpr1 = expr1/.Thread[vars->{ComplexExpand[Re[w1]],ComplexExpand[Re[w2]],

ComplexExpand[Im[w1]],ComplexExpand[Im[w2]]}];ComplexExpand[Im[w1]],ComplexExpand[Im[w2]]}];ComplexExpand[Im[w1]],ComplexExpand[Im[w2]]}];

newexpr2 = expr2/.Thread[vars->{ComplexExpand[Re[w1]],ComplexExpand[Re[w2]],newexpr2 = expr2/.Thread[vars->{ComplexExpand[Re[w1]],ComplexExpand[Re[w2]],newexpr2 = expr2/.Thread[vars->{ComplexExpand[Re[w1]],ComplexExpand[Re[w2]],

ComplexExpand[Im[w1]],ComplexExpand[Im[w2]]}];ComplexExpand[Im[w1]],ComplexExpand[Im[w2]]}];ComplexExpand[Im[w1]],ComplexExpand[Im[w2]]}];

(*Discarding all terms of degree > 2, remembering that y1, y2 have degree2*)(*Discarding all terms of degree > 2, remembering that y1, y2 have degree2*)(*Discarding all terms of degree > 2, remembering that y1, y2 have degree2*)

newexpr1 = Normal[Series[newexpr1/.Thread[{y1, y2, x1, x2}->{t∧2 ∗ y1, t∧2 ∗ y2, t ∗ x1,newexpr1 = Normal[Series[newexpr1/.Thread[{y1, y2, x1, x2}->{t∧2 ∗ y1, t∧2 ∗ y2, t ∗ x1,newexpr1 = Normal[Series[newexpr1/.Thread[{y1, y2, x1, x2}->{t∧2 ∗ y1, t∧2 ∗ y2, t ∗ x1,

t ∗ x2}], {t, 0, 2}]]/.t->1;t ∗ x2}], {t, 0, 2}]]/.t->1;t ∗ x2}], {t, 0, 2}]]/.t->1;

newexpr2 = Normal[Series[newexpr2/.Thread[{y1, y2, x1, x2}->{t∧2 ∗ y1, t∧2 ∗ y2, t ∗ x1,newexpr2 = Normal[Series[newexpr2/.Thread[{y1, y2, x1, x2}->{t∧2 ∗ y1, t∧2 ∗ y2, t ∗ x1,newexpr2 = Normal[Series[newexpr2/.Thread[{y1, y2, x1, x2}->{t∧2 ∗ y1, t∧2 ∗ y2, t ∗ x1,

t ∗ x2}], {t, 0, 2}]]/.t->1;t ∗ x2}], {t, 0, 2}]]/.t->1;t ∗ x2}], {t, 0, 2}]]/.t->1;

(*Substituting in original variables*)(*Substituting in original variables*)(*Substituting in original variables*)
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{Collect[newexpr1/.Thread[{x1, x2, y1, y2}->vars], vars],Collect[newexpr2/.Thread[{x1, x2, y1,{Collect[newexpr1/.Thread[{x1, x2, y1, y2}->vars], vars],Collect[newexpr2/.Thread[{x1, x2, y1,{Collect[newexpr1/.Thread[{x1, x2, y1, y2}->vars], vars],Collect[newexpr2/.Thread[{x1, x2, y1,

y2}->vars], vars]}y2}->vars], vars]}y2}->vars], vars]}

]]]

PullBack[a1 ∗ s1∧2− t1, a2 ∗ s2∧2− t2, {s1, s2, t1, t2}, {{1, 0, 0}, {−a1 ∗ I, 1, 0},PullBack[a1 ∗ s1∧2− t1, a2 ∗ s2∧2− t2, {s1, s2, t1, t2}, {{1, 0, 0}, {−a1 ∗ I, 1, 0},PullBack[a1 ∗ s1∧2− t1, a2 ∗ s2∧2− t2, {s1, s2, t1, t2}, {{1, 0, 0}, {−a1 ∗ I, 1, 0},

{−a2 ∗ I, 0, 1}}]{−a2 ∗ I, 0, 1}}]{−a2 ∗ I, 0, 1}}]

{−a2s1s2− t1,−a1s1s2− t2}

Pullback Rules Under Different Generators

PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,

{s1, s2, t1, t2}, {{1, 0, 0}, {λ, 1, 0}, {0, 0, 1}}]{s1, s2, t1, t2}, {{1, 0, 0}, {λ, 1, 0}, {0, 0, 1}}]{s1, s2, t1, t2}, {{1, 0, 0}, {λ, 1, 0}, {0, 0, 1}}]{
a1s12 + b1s1s2 + c1s22 − t1, c2s12 + b2s1s2 + a2s22 − t2

}

PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,

{s1, s2, t1, t2}, {{1, 0, 0}, {I ∗ λ, 1, 0}, {0, 0, 1}}]{s1, s2, t1, t2}, {{1, 0, 0}, {I ∗ λ, 1, 0}, {0, 0, 1}}]{s1, s2, t1, t2}, {{1, 0, 0}, {I ∗ λ, 1, 0}, {0, 0, 1}}]{
b1s1s2 + c1s22 − t1 + s12(a1 + λ), c2s12 + a2s22 − t2 + s1s2(b2 + λ)

}

PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2− t2,

{s1, s2, t1, t2}, {{1, 0, 0}, {0, r, 0}, {0, 0, 1}}]{s1, s2, t1, t2}, {{1, 0, 0}, {0, r, 0}, {0, 0, 1}}]{s1, s2, t1, t2}, {{1, 0, 0}, {0, r, 0}, {0, 0, 1}}]{
a1r2s12 + b1rs1s2 + c1s22 − rt1, c2r2s12 + b2rs1s2 + a2s22 − t2

}
res = PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2res = PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2res = PullBack[a1 ∗ s1∧2 + b1 ∗ s1 ∗ s2 + c1 ∗ s2∧2− t1, a2 ∗ s2∧2 + b2 ∗ s1 ∗ s2 + c2 ∗ s1∧2

−t2, {s1, s2, t1, t2}, {{1, 0, 0}, {0, 1, r}, {0, 0, 1}}]−t2, {s1, s2, t1, t2}, {{1, 0, 0}, {0, 1, r}, {0, 0, 1}}]−t2, {s1, s2, t1, t2}, {{1, 0, 0}, {0, 1, r}, {0, 0, 1}}]

(a1 + b1r + c1r2) s12 + (b1 + 2c1r)s1s2 + c1s22 − t1, (c2 + b2r + a2r2) s12+

(b2 + 2a2r)s1s2 + a2s22 − rt1− t2

Collect[res[[2]]− r ∗ res[[1]], {s1, s2, t1, t2}]Collect[res[[2]]− r ∗ res[[1]], {s1, s2, t1, t2}]Collect[res[[2]]− r ∗ res[[1]], {s1, s2, t1, t2}]
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(c2 + b2r + a2r2 − r (a1 + b1r + c1r2)) s12+(b2+2a2r−r(b1+2c1r))s1s2+(a2−c1r)s22−t2
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