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ABSTRACT

My dissertation investigates the design of information policy in three different types of
strategic interactions as specified below:

Chapter II: “Performance Evaluation Design in Dynamic Incentive Contracts”, examines
how to motivate employees in an organization by strategically disclosing evaluations.
Specifically, consider a continuous-time principal-agent setting where the agent exerts
effort to generate output and the principal subjectively evaluates and pays for the agent’s
performance. If the principal can commit, what type of evaluation system should she
implement? I show that the optimal evaluation system is not based directly on the output,
but rather on an adjusted evaluation of output. In particular, it assigns inflated evaluations
when the agent’s continuation value is low and deflated evaluations when the continuation
value is high. Adding such adjustment into evaluations allows the principal to recalibrate
the agent’s continuation value, which improves the contract by capturing gains from
concavification that are not feasible in contracts directly based on output. As a result,
adjusting evaluations also induces weakly higher volatility in the agent’s continuation
value even though the agent is risk-averse. Moreover, I show that additional contractual
possibilities such as leaving the firm for an outside option, promotion, and reciprocity
in output, could result in strengthening different evaluation biases at the optimum. My
results help explain evaluation biases that have been empirically observed in appraisal
systems.

Chapter III: “Persuasion of Interacting Receivers”, investigates how the consideration
of realistic features could complicate the structure of information policy in situations of
strategic interaction. Its main contribution is to propose a general framework that allows a
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formal characterization for several relevant features and provides a tractable way to design
optimal information policy in such settings. Specifically, I consider a setting where a
sender could communicate privately with multiple receivers before they engage in a one-
shot strategic interaction. To understand optimal information policy, standard approaches
would focus on signals that recommend actions. However, if there are realistic features
outside the scope of the standard model, such a focus could be suboptimal. I consider the
following four features: (i) the equilibrium selection rule may be different from the sender-
preferred one, (ii) receivers may have private information, (iii) receivers may have non
von Neumann–Morgenstern utilities, and (iv) receivers may have heterogeneous priors. I
establish a generalized obedience principle. In this version, the sender recommends actions
and conjectures. I further provide a sufficient condition under which it is without loss of
generality to reduce the messages involved in any signal from continuum to countably
many. The construction of the proof provides a tractable way to compute optimal signals.
I also apply my result to study information policy design in two applications in which
the equilibrium selections differ from the sender-preferred selection and receivers may be
privately informed.

Chapter IV:“Derandomized Persuasion Mechanisms”, investigates when focusing only on
information policy that either fully reveals or (partially) pools the underlying states without
adding extra noise is without loss of generality. I consider a setting where one sender can
communicate with several privately informed receivers through a persuasion mechanism
before the receivers play a game. I show that for any potentially randomized persuasion
mechanism, under certain conditions, there is an effectively equivalent derandomized
persuasion mechanism, and these two mechanisms have the same set of equilibria. I exhibit
the usefulness of my result in a specific disclosure problem, where I apply my result to
derandomize optimal disclosure mechanisms. Overall, this paper provides a rationale for
the fact that persuasion mechanisms are often deterministic in practice.
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CHAPTER I

Introduction

Information asymmetry is present in almost all kinds of economic activities. When some
parties have private information crucial to the outcome, they could exploit such an advantage
by strategically providing information. The uninformed understand the conflict of interests
and would try to unravel such manipulation. My dissertation investigates information policy
design from economic and technical aspects in three different strategic situations, and I will
describe them in detail below.

A lot of institutions nowadays conduct evaluations on their employees. Given that those eval-
uations are usually tied to employees’ compensation, the disclosure policy of the evaluation
outcome would greatly affect the employees’ incentives. In Chapter II, “Performance Eval-

uation Design in Dynamic Incentive Contracts”, I study the design of evaluation schemes in
a dynamic contracting setting. My analysis is based on a continuous-time Principal-Agent
setting with two-sided private information, where the agent privately knows his effort level
and the principal privately knows the noisy output that the agent generates. A good example
for such a setting would be the following: Consider a customer service agent whose duty is
to answer customers’ calls. He knows how much effort he puts in to help customers with
their problems, but the manager (or the principal) does not know. To evaluate the quality
of the agent’s service, the manager asks customers to fill out a short survey about their
satisfaction right after being served. The result of the survey is only observable by the
manager, not the agent.

My result shows that the principal can benefit from evaluating the agent not directly based
on the output he generated. In particular, the optimal evaluation scheme assigns inflated
evaluations when the agent’s continuation value is low, and deflated evaluations when the
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continuation value is high. In doing so, the principal could extend the duration in which the
agent exerts high effort, therefore strictly improving productivity. Despite the agent’s risk
aversion, adding evaluation bias induces weakly higher volatility in the agent’s continuation
value than the benchmark when the principal bases her evaluation directly on the output.
If the principal has the flexibility to choose report strategies, I show that it is optimal for
her to file frequent instantaneous reports about the agent’s evaluation. In an extension, I
examine the effect of additional contractual possibilities, such as promotion or the agent
quitting the firm, and show that the above result is robust under these considerations. My
result could explain the long-existing evaluation bias in practical appraisal systems, and
provides a rationale behind the fact that many companies now switch from an annual report
to the frequent performance evaluation.

In Chapter III, “Persuasion of Interacting Receivers”, I study information design in non-
standard settings. In standard settings we can use either the concavification approach, or in
a somewhat broader range of settings we can use what is called the “revelation principle
for information design”, or the “obedience principle”. This principle says that it is without
loss of generality to assume that the messages the sender sends to the receivers are action
recommendations in the equilibrium she picks and the receivers are willing to follow such
recommendations. However, it is known in the literature that the obedience principle does
not hold more generally. I study how the optimal information structure may change when
the standard conditions for the obedience principle are violated. Specifically, I consider
an information design setting where there are multiple receivers, who may then interact
in a game after receiving their messages from the sender. Moreover, the game I consider
has the following four features: (1) the equilibrium selection rule may differ from the
sender-preferred one; (2) receivers may have their private information; (3) receivers may
have non-expected utility and (4) receivers may have heterogeneous prior beliefs.

The first result of my paper is a generalized obedience principle. In this version, the
information structure recommends both action and conjectures to each receiver. The term
“conjecture” is defined as a receiver’s belief over the following three things: the underlying
state, the other receivers’ belief hierarchies, and their actions. I show when we can simplify
these recommendations further by reducing its cardinality from potentially a continuum
to countable. The proof provides an algorithm for computing an optimal information
structure.

2



I use the above result to compute the optimal information structure in two applications. The
first application considers the case of a politician who would like to persuade privately-
informed voters to support her proposal. Moreover, I assume that the voters will abstain
when they perceive their votes are not pivotal. Under this assumption, the sender cannot
always select the equilibrium she favors.1 Given these nonstandard features, the design
problem in this setting cannot be solved by standard approaches in the literature. My result
shows that the optimal information structure strategically coordinates different voters and
pools unfavorable states with favorable states in such a way that each voter, whenever
pivotal, finds it weakly better to vote for the politician’s proposal. Thus the information the
sender disseminates not only influences voters’ belief about the underlying state but also
what other voters will do. The second application considers a bank regulator disclosing
a stress test result to privately informed investors. In particular, the regulator wants to
minimize the possibility of a bank run under a sender-worse equilibrium selection. In this
case, belief hierarchies matter for characterizing investors’ behavior under the sender-worse
equilibria. By applying the result, I show that the optimal information structure in such
a setting disseminates information more than merely action recommendations because it
needs to influence each investor’s belief about others’ lower order beliefs.

In Bayesian Persuasion models, we often find persuasion mechanisms that involve ran-
domization. But the literature has not established in general whether this randomization is
necessary or can be purified away. Say a signal is derandomized if it either fully reveals
the state or pools over several states without adding extra noise. Such signals are easy to
design and implement in reality. In Chapter IV, “Derandomized Persuasion Mechanisms”,
I investigate when it is without loss of generality to use persuasion mechanisms that only
implement derandomized signals. The setting I examine is the following: There is a sender
and multiple privately-informed receivers. The sender could commit to a persuasion mech-
anism that allows two-way communications between her and each receiver. Specifically,
the mechanism first solicits private reports from each receiver and then picks a signal that
reveals some private information, potentially different, to each receiver about the underly-
ing state. After communicating with the mechanism, receivers then engage in a one-shot
game.

I provide a set of conditions under which for any persuasion mechanism, we can find

1For example, even if the politician recommends everyone to vote for him, since no one’s vote is pivotal it
is possible will vote and the proposal will not pass.

3



a derandomized persuasion mechanism such that the set of equilibria under the original
mechanism is preserved under the new one. Moreover, the set of conditions is tight in the
sense that whenever one condition is violated, there may exist a counterexample. This result
provides a useful simplification technique to derive optimal information policy. Overall, this
chapter provides a rationale for the fact that persuasion mechanisms are often derandomized
in practice.

4



CHAPTER II

Performance Evaluation Design in Dynamic Incentive
Contracts

2.1 Introduction

Most workers are evaluated on subjective criteria, and firms design contracts that specify
how to evaluate employees and how to pay based on those evaluations (Prendergast 1999).
Commitment often plays a key role in the design; many companies, such as Intel (Lawler
2003) and Amazon (Del Rey 2021), assign subjective evaluations based on a predetermined
distribution.1 Evaluating employees is thus a committed procedure that transforms the
performance-relevant data into the final evaluation. There is widely documented evidence
that firms make adjustments in such evaluation procedures. Given that the initial feedbacks
usually have summarised all the information about employees’ performance, it seems a
mystery how firms could benefit from adding adjustments into the evaluation. This is the
main research question this paper would like to study.

Consider a continuous-time moral hazard model with a risk-neutral Principal and a risk-
averse Agent who privately chooses instantaneous effort of binary value to generate a
noisy and unobservable output process X . The principal holds a belief P about how the
output evolves and commits to an evaluation system and a compensation system. The
evaluation system generates a noisy evaluation process Xα, specifies a belief Q on how the
future evaluation would unfold, and reports some information Y about the evaluation. The
compensation system pays the agent based on the report Y . This is analogous to that the

1In fact, by 2012, an estimated 60% of Fortune 500 firms adopt some form of forced rankings (Kwoh
2012).
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employer sets employees’ expectations about the evolution of the evaluation by announcing
the evaluation plan at the beginning. Let the evaluation process Xα evolve as follows:
dXα

t = dXt + αt dt, where α is the adjustment added into the evaluation. To avoid that the
principal could obtain better information about the agent’s effort via evaluation systems, I
restrict the distribution of the evaluation Xα under the chosen belief Q to be the same as
that of the output X under Principal’s belief P . Moreover, I assume that Agent has limited
liability, adopts the belief Q specified by the system and acts in his own best interest.

To put this setting into some context, consider the following example of a customer service
agent whose job is to answer customers’ calls. The agent knows how much effort he puts
in to help customers with their problems, but the manager does not know. To evaluate the
service quality, the principal asks customers to fill out a short survey about their satisfaction
right after being served. The result of the survey is only observable by the manager but
not the agent. It is natural for the manager to relate the compensation to the results of the
surveys in the hope of motiving the agent to work hard. This conduct, however, brings extra
costs, since the agent is risk-averse and customers’ response is only a noisy signal about
his effort. The question is whether evaluating the agent not directly based on the survey
outcome could reduce such costs in some way.

My main result shows that introducing adjustments into the evaluation system is beneficial
for the principal. In particular, the optimal incentive contract has the following three
features: First, the optimal evaluation system does not evaluate Agent directly based on
the output: the system will add the maximum positive adjustment into the evaluation when
Agent’s expected future payoff is low and will add the maximum negative adjustment when
his expected future payoff is high. Second, despite the agent’s risk aversion, the volatility
of his continuation payoff may be higher at the optimum than the benchmark case when the
principal bases the evaluation directly on the output. Third, the principal truthfully reports
the agent’s instantaneous evaluation.

Why is adding adjustments to the evaluation beneficial in the above situation? Intuitively,
the principal could delay terminating the employment relationship by adding adjustment
into evaluations and therefore improve her payoff. Such termination arises naturally in
this relationship because the agent has limited liability and is risk-averse with diminishing
marginal utility. Given his limited liability, the agent’s utility cannot drop below 0 since
otherwise, he could shirk forever to get at least 0. Thus the principal necessarily fires the
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agent when his continuation value drops to 0. On the other hand, given the agent’s risk
aversion with diminishing marginal utility, when his continuation value gets too high, he
needs to be retired since it is very costly to induce him to exert high effort. The first feature
of the optimal contract is to add leniency bias for low continuation values and severity bias
for high continuation values, to lean against firing and retiring. However, extending the
expected employment duration in this way creates nonconcavities in the principal’s value
function. There is room for improvement by concavification. So the second role of the
evaluation process is to insert what amounts to conditional randomization to concavify the
principal’s value function. This generates the second feature of the optimal contract, in
which the agent’s continuation value is weakly noisier at the optimum.

My result justifies the existence of the evaluation biases that have been documented in the
empirical literature (cf. Landy and Farr 1980, Jawahar and Williams 1997, Prendergast
1999, Moers 2005, Frederiksen et al. 2017). In addition, my main result implies that not
directly basing the evaluation on the output could provide partial insurance for Agent’s
firing risk, which aligns with the empirical findings in Gibbs et al. (2004) and Bol and Smith
(2011). Also, the following phenomenon coincides with my result on the optimality of
frequent reporting: more than 1/3 of U.S. companies have abandoned the traditional annual
review approach and adopt a new evaluation policy that provides frequent and exhaustive
reports to the employees’ performance. These companies include General Electric, Adobe,
and Microsoft; see Cappelli and Tavis (2016) and Baldassarre and Finken (2015) for more
discussion.

In an extension, I study performance evaluation design under three realistic contractual
possibilities: (i) the reciprocal effect of evaluation biases on performance; (ii) Agent can be
promoted; and (iii) Agent can quit the firm and receive a positive outside option. My result
shows that, depending on the situation, leniency or severity bias may be strengthened in
the optimal incentive contract. This result suggests that employers should treat different
evaluation biases differently in a context-based manner.

LITERATURE REVIEW

There are five strands in the literature relevant to my paper. First, this paper relates
the literature of contracting with subjective evaluations, where the principal privately
observes the output, with or without monitoring costs, and the compensation is based
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on the report the principal made (“pay for performance”). The most relevant papers
are those with commitments on performance evaluation schemes such as Georgiadis and
Szentes (2020) and Zábojnı́k (2014). Similar to my focus, Georgiadis and Szentes (2020)
study a continuous-time moral hazard model with the principal committing to a subjective
evaluation scheme; but their consideration is on the tradeoff between the monitoring and
information acquisition cost in the optimal contract, which differs from mine.2 Zábojnı́k
(2014) studies a two-period model where production is affected by both Agent’s effort
and his ability. The principal privately observes the agent’s ability after period 1 and then
provides feedback through the subjective evaluation, which affects the agent’s future effort
provision. This feedback role of evaluation is absent in my model since my agent does not
have a private type.

The majority in this literature assume that the principal cannot commit to messaging
strategy, thus reneging becomes an issue. See, for instance, MacLeod (2003), Levin
(2003), Fuchs (2007) and Zhu (2020). My result is starkly different from the results in
this literature: for instance, the optimal subjective rating without commitment may be less
informative (cf. MacLeod 2003, Fuchs 2007 and Zhu 2020). Also the optimal contract
without commitment on messaging strategy has a money-burning feature (cf. MacLeod
2003 and Fuchs 2007), which is absent from my setting. There is another strand of literature
showing that introducing subjective evaluation could improve the contract by (i) mitigating
the incentive distortions based on the distortionary objective measure (Baker et al. 1994)
or (ii) allowing Principal to utilize non-contractible information (Baiman and Rajan 1995
and Hayes and Schaefer 2000); or (iii) reducing risks (Gibbs et al. 2004). My result also
provides a new explanation for firms not basing evaluation directly on the outputs.

The second strand is the literature of Bayesian persuasion and information design pioneered
by Kamenica and Gentzkow (2011) and Rayo and Segal (2010). In particular, my work
is most relevant to the strand that studies persuasion in dynamic moral hazard problems,
including Ely (2017) and Renault et al. (2017) studying a myopic agent, Ely and Szydlowski
(2020) (the principal has no new information after time 0), Orlov (2020) (the principal
chooses to publicly monitor a fraction of projects and only learn about the quality of the
monitored projects) and Smolin (2020) (the principal does not directly observe output but
commits to a dynamic policy of public tests to inform both players). In all these works,

2Their setting also differs from mine in that the agent’s initial effort level determines the mean of the
output for the whole course.
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the evaluation is objective: there is an underlying state and Agent has his belief about its
distribution. Different from these works, my setting allows Principal to influence Agent’s
belief about the underlying state through the evaluation system.

As evaluation biases are widely documented, there is a large strand of literature that studies
subjective performance evaluation bias in the pay-for-performance context in both theory
and practice. The literature also provides justifications for the existence of evaluation
biases and many adopt behavioral and cognitive procedures. Several studies point out that
an evaluator who is not the owner of the firm may assign lenient evaluations because of
collusion or favoritism (Tirole 1986; Prendergast and Topel 1993; De Chiara and Livio
2017). Some argue that social influence could cause leniency bias (Judge and Ferris 1993;
Giebe and Gürtler 2012). Another justification is that subjective evaluations are prone to
information inaccuracy and information is costly to acquire, so it is convenient to assign
average or lenient evaluation to avoid confrontations (Bol 2011). Relatedly, Golman and
Bhatia (2012) argue that the rater feels worse about unfavorable errors than about favorable
errors, so she will assign ratings biased upwards. Leniency bias may also be a result of
luck: Bol and Smith (2011) show that when evaluations are related to an objective measure
in which an uncontrollable stochastic factor (luck) plays a role, supervisors evaluations are
higher when the agent has bad luck (this factor decreases the agent’s objective measure),
but are not lower if he has good luck. Other justifications also come from behavioral
considerations, such as loss-aversion, from the agent’s side (Marchegiani et al. 2016). All
these potential explanations are excluded in my setting. My result could justify evaluation
biases without a behavioral agent or a behavioral principal, information acquisition cost, or
information inaccuracy, which differs from the existing justifications.

The fourth strand of the literature is the continuous-time standard moral hazard with publicly
monitoring outputs, such as Holmstrom and Milgrom (1987), Schattler and Sung (1993),
Sannikov (2008) and Cvitanić et al. (2018). In particular, my work builds on the work of
Sannikov (2008). The main difference from this strand in that the principal in my setting
could have the power in determining the agent’s initial belief and how to evaluate the
agent.

Lastly, my work relates to the literature that studies a privately informed principal in
mechanism design, including Myerson (1983), Maskin and Tirole (1990) and Maskin and
Tirole (1992). In that literature, Principal is informed at the beginning about the state and
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then picks a mechanism. Thus the choice reflects the principal’s private knowledge. But
the principal in my work has no private information at the time when she commits.

This paper is organized as follows: Section 3.2 introduces the model. Section 2.3 charac-
terizes Agent’s incentive compatibility and studies canonical evaluation systems. Section
2.4 formalizes Principal’s problem and derives the benchmark case. Section 2.5 studies the
optimal incentive contract. Section 2.6 extends the model to study the reaction of optimal
incentive contracts under three contractual possibilities. Section 2.7 is a conclusion. The
proofs are all collected in the appendix.

2.2 Model

There is a principal and an agent, both von Neumann–Morgenstern utility maximizers.
Principal has a project and hires Agent to work in an infinite time horizon [0,∞). Agent
exerts costly effort at at each time t that Principal cannot observe, where at takes binary
value {0, aH} with aH > 0 and the cost of efforts is c(0) = 0 for zero effort and c(aH) > 0

for the high effort.3 Principal commits to a contract that governs Agent’s information and
determines his compensation as I will describe below.

At each instant t, Agent produces a cumulative output process Xt unobservable to both
parties, which represents the true production of the agent at that instant.4 The cumulative
output X is a stochastic process in a fixed filtered probability space (Ω,F∞,F, P ) with
Ω the space of all possible continuous functions on [0,∞). Moreover, the evolution
of X is determined by Agent’s effort process at and an exogenous noise W such that
dXt = at dt+ σ dWt, where the process W is a 1-dimensional Brownian motion under
the Wiener measure P that satisfies Wt(ω) = ωt for any t with W0 = 0. For brevity, I will
henceforth call X “the output”. Let F be the filtration generated by W . The constant σ > 0

is commonly known.

For contracting purposes, Principal can choose and commit to a costless noisy evaluation
system that generates contractible reports about Agent’s performance evaluation. In reality,

3Although it is conceptually straightforward to extend the model to the case where the feasible effort set
is continuous in R, there will be extra computationally complications to understand the equilibrium effort
provision in the optimal incentive contract. Hence we will focus on binary-effort choices to keep our intuition
simple and tractable.

4Given that Principal commits to the chosen evaluation and compensation systems without relying on the
realization of X at time 0, Principal doesn’t need to be able to observe X .

10



This figure captures the idea of how the evaluation is conducted. Let the x-axis indicate the time
and let the y-axis indicate the value of the output or evaluation processes. For illustration purpose,
I set σ = 1, aH = 1, α = −3, α = 3 and αt(ω) = 3 ∗ cos(2t) for any t and ω. Let the blue path
be an output realization path, and let the yellow one be the realization of the associated evaluation
process. The gap between these two paths is due to the adjustment process.

Figure 2.1: How to conduct the evaluation process

this system could be the HR department in a firm. A chosen noisy evaluation system
generates an evaluation process Xα such that dXα

t = at dt+ σ dWα
t , where Wα is an

evaluation noise that satisfies dWα
t = αt dt+ dWt with α an F-progressively measurable

adjustment process taking value from a fixed interval [α, α]. Here α and α are fixed
constants that satisfy α ≤ 0 ≤ α. By such a definition, the adjustment α could be
informative about the agent’s effort. As for the evaluation noise Wα, it is unobservable to
both parties with Fα its generated filtration. I assume that the system specifies a probability
measure Q equivalent to P (i.e., Q is absolutely continuous w.r.t P and P is absolutely
continuous w.r.tQ) such thatWα is a Brownian motion in (Ω,Fα∞,Fα, Q). This assumption
implies that the evaluation cannot be more informative about the agent’s effort than the
output process. The above are common knowledge except that Agent does not observe the
realized evaluation Xα.

Then the evaluation system reports to Agent her evaluation using a report process Y that
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discloses some information about the evaluation Xα without adding extra noise. Hence,
Y is a stochastic process in (Ω,Fα∞,Fα, Q) adapted to the filtration generated by Xα.
Let FY be the filtration generated by Y . Agent calculates his expected payoff given the
specifications in the system and acts at the best of his interests.

Denote an evaluation system as (α,Q, Y ). Say an evaluation system (α,Q, Y ) has reports
independent of history if for any s < t, the report information FYt \FYs is independent
of Fαs under measure Q. Intuitively, it requires the reports to base on new information.
Throughout the paper, I focus on evaluation systems that satisfy this condition. This focus
is actually without loss of generality since I allow the principal to compensate the agent
based on the entire report history.

Recall that Principal commits to a contract at the outset. A contract consists of an evaluation
system (α,Q, Y ) and a compensation system that includes a reward process B := {Bt}t≥0

and an effort recommendation process A := {At}t≥0, both FY -adapted. Based on the
entire report history {Ys}s≥0, the contract then recommends an effort level At to Agent
and pays a reward Bt ∈ [0, b] at each time t with b a fixed constant. Note that the effort
recommendation process {At}t≥0 can differ from the agent’s actual effort process {at}t≥0,
and only the agent’s actual effort {at}t≥0 can determine the output X and the evaluation
processes Xα.

Principal and Agent discount their payoffs exponentially with the same discounting rate r
with 0 < r. Principal is risk-neutral and maximizes the expected present value of innova-
tions in Xt less the reward payments

EP

[∫ ∞
0

e−rs dXs −
∫ ∞

0

e−rsBs ds

]
. (2.1)

I assume that Agent is risk-averse, consumes the compensation immediately, and does
not have hidden savings. Specifically, Agent’s Bernoulli utility takes a separable form
u(·)− c(·) where c(·) is the cost of Agent’s effort, and u(·) is the utility from reward which
is a twice continuously differentiable strictly increasing concave function on [0,∞) with the
following assumptions: (i) u(0) = 0; (ii) limb→∞ u(b)→∞, and (iii) limb→∞ u

′(b)→ 0.
Given the assumptions on utility, there always exists a bound b such that u′(b) = c(aH)

aH

holds and I will fix the choice of b such that this condition is satisfied. We will see below
that this condition will ensure that the upper bound is never reached.
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Agent will calculate his payoff in the alternative probability space (Ω,Fα,Fα, Q) specified
by the evaluation system. Given the compensation system (B,A), suppose that the agent
follows the effort recommendation process, then his continuation payoff at each time t,
conditioning on the current information is as follows:

EQ

[∫ ∞
t

e−r(s−t)
(
u (Bs)− c(As)

)
ds | FYt

]
. (2.2)

Given the contract, a recommended effort process A := {As}s≥0 is incentive compatible

(”IC”) for Agent if and only if at each time t, {As}s≥t maximizes expression (2.2). An
incentive contract is a contract that recommends incentive compatible effort process to
Agent. Moreover, I assume that both the principal and the agent obtain 0 if the employment
relationship does not form at time 0.

Principal’s problem is to determine an optimal incentive contract that maximizes her payoff.
I assume that Agent will take Principal’s recommended effort process as long as it is
incentive compatible to do so; and that the choice of parameters is such that it is strictly
optimal for Principal to hire Agent with some contracts rather than walk away.5

2.3 Preparation

I will first introduce a preparation lemma that shows Principal’s feasible choice of evaluation
systems for any adjustment process α is non-empty.

Lemma II.1. For any adjustment process α, there exists a unique probability measure Q

on Ω that satisfies the following: for any time t ∈ [0,∞) and S ∈ Ft,

Q(S) = EP

1S exp

(
−
∫ t

0

αs dWs −
1

2

∫ t

0

|αs|2 ds

) (2.3)

such that the evaluation noise Wα
s satisfying dWα

s := αs ds + dWs, s ∈ [0,∞) is a

Brownian motion under Q. Moreover, Q is equivalent to P .

The above lemma further illustrates how to induce a different belief Q given any adjustment.

5Similar to Demarzo and Sannikov (2006), Sannikov (2008) and Zhu (2013), I do not assume the presence
of an independent public randomization device to keep the model simple. This is actually without loss of
generality in my setting since one will see later that Principal’s value function is concave.
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Let the density function of Q with respect to P conditional on the information flow be
{Zs}s≥0. Suppose both the principal and the agent hold the same belief P at time 0.
To induce belief Q, the principal can tell the agent that she will evaluate the agent’s
compensation by re-weighting the future events with the stochastic weights Zt. Accepting
this piece of information will move the agent’s belief from P to Q. Moreover, the proof of
Lemma II.1 shows that Zt is an F-martingale under P , meaning that the future weight is a
mean-preserving spread conditional on any current weight, i.e., EP [Zt+∆ | Ft] = Zt for
any ∆. Hence, introducing stochastic weights amounts to adding extra noise into Agent’s
belief.

Now we will consider the characterization of Agent’s promised continuation value from
Principal’s point of view. Not knowing the underlying noise, Principal has to infer the noise
from the realized evaluation Xα and the effort process A that she believes Agent is taking.
Thus I will add a subscript A on the expectation whenever necessary (i.e., EA) to indicate
the dependence of Principal’s perception of Agent’s effort A. In the equilibrium, Principal
could correctly anticipate Agent’s choice of effort.

Given an arbitrary contract (α,Q, Y,B,A), I define Agent’s promised continuation payoff
based on Principal’s information at time t as follows:

Vt(B,A, α) := EQ
A

[∫ ∞
t

e−r(s−t)
(
u(Bs)− c(As)

)
ds | Fαt

]
. (2.4)

Principal could set up the contract to retire or fire Agent at any desirable time. When the
right time comes, the contract recommends Agent shirk forever and rewards him a constant
perpetual amount, which is zero for firing and strictly positive for retiring.

Why would the principal ever want to fire or retire the agent? Recall that the agent is
protected by limited liability. By shirking forever, the agent can guarantee his continuation
value to be at least 0. Hence whenever Agent’s continuation value hits 0, it is necessary for
Principal to fire Agent so that his continuation value is never negative. We define the firing
time τ f as follows:

τ f := inf
{
s ∈ (0,∞) | Vs(B,A, α) = 0

}
. (2.5)

On the other hand, the principal would like to retire the agent when his continuation value
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Vt is too high. This is because the agent’s instantaneous consumption Bt at a high Vt
will also be large at most of the future moments, and given that Agent’s utility function
is gradually flattened out, it will be very costly to incentivize the agent to work hard at
such a high Vt. So it is better to retire the agent when Vt rises to a high level that the cost
of inducing the agent’s high effort exceeds its benefit. Let τ r be the stopping time that
Principal optimally retires Agent.

When retiring a risk-averse Agent, it is optimal to pay him a perpetual constant reward flow.
Let p(·) : R+ → R+ be the retirement value function such that, given Agent’s continuation
value v, p(v) is the present value of the total payment Agent receives after retirement at
continuation value v. The fact that the horizon is infinite implies that p is stationary with
respect to time. Based on the property of Agent’s utility, p is a nonnegative-valued twice
differentiable convex function that satisfies p(0) = 0.

2.3.1 Canonical evaluation scheme

The agent knows his own actions so, under any contract, he will continuously update
his belief about evaluation noise from the report. Say an evaluation system (α,Q, Y ) is
canonical, if the report process Y coincides with Agent’s correct belief of the evaluation
noise conditional on his available information, i.e., Yt = EQ[Wα

t |FYt ] for any time t.

For any evaluation system, Agent can always transform the report into the corresponding
expected evaluation noise under which the evaluation system becomes canonical. Call such
a translation a canonical transformation. The following proposition provides a martingale
characterization for canonical transformations of any evaluation system.

Proposition II.1. For any evaluation system, let (α,Q, Y ) be its canonical transformation.

Then there exists a unique FY -adapted βt such that Yt =
∫ t

0
βs dWα

s at any time t. Moreover,

EQ[Y 2
t ] = EQ[

∫ t
0
β2
s ds] ≤ t at any time t.

Proposition II.1 identifies an inclusion relation for canonical evaluation systems (see
Figure 2.2). Say β in the above proposition the variational coefficient for the given
evaluation system. Such coefficient reflects how the report would behave path-wisely due
to the evolution of the realized evaluation in this system. Given any evaluation system, the
canonical transformation is unique, thus its corresponding variational coefficient is also
unique. Thus the problem of choosing a report Y boils down to choosing an appropriate
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Evaluation system (α,Q, Y ) such that
Y =

∫
β dWα for some β satisfying

EQ[
∫ t

0 β
2
s ds] ≤ t for any time t

Canonical evaluation systems

The rectangle represents the set of evaluation schemes admitting a martingale representation with
some FY -adapted variational coefficient β that satisfies EQ[

∫ t
0 β

2
s ds] ≤ t for any time t. The purple

rectangle represents the set of canonical evaluation systems.

Figure 2.2: The inclusion relation presented in Proposition II.1

variational coefficient β (subject to a canonical transformation).

I further focus on variational coefficients β taking value from the interval [−1, 1], under
which, any such choice of β satisfies EQ[

∫ t
0
β2
s ds] ≤ t for any time t. We will see later that

it is actually without loss of generality.6

2.3.2 Agent’s incentive compatibility

The following lemma characterises the evolution of the above Agent’s continuation value
based on Principal’s information, which follows from Sannikov (2008).

Lemma II.2. Fix an arbitrary contract (α,Q, Y,B,A). There exists a Fα-progressively

measurable process K such that

dVt(B,A, α) = (rVt(B,A, α)− u(Bt) + c(At)) dt+Kt(dX
α
t − At dt) (2.6)

6The restriction that the variational coefficient βt takes value in [−1, 1] is without loss of generality for
the following reason: suppose that we allow a general domain [−β, β] with some constant β > 1 and ignore
the canonical constraint for now. Following the same analysis, we can derive that an optimal variational
coefficient always takes the upper bound value β. However, to satisfy the canonical requirement of the
evaluation systems, the constraint EP [

∫ t
0
β2
s ds] ≤ t must satisfy for every t. This means that the optimal

variational coefficient will not be feasible unless the upper bound β ≤ 1.
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holds Q-almost everywhere. Moreover, the above K is unique dQ× dt-a.s., and it satisfies

EQ
A [
∫ t

0
K2
s ds] <∞ for all t ∈ [0,∞).

Based on Equation (2.6), the change of the continuation value can be decomposed into the
following three parts:

dVt(B,A, α)︸ ︷︷ ︸
the change of continuation value

=( rVt(B,A, α)︸ ︷︷ ︸
the interest rate of deferring

− (u(Bt)− c(At))︸ ︷︷ ︸
the net surplus agent gets

) dt

+Kt(dX
α
t − At dt)︸ ︷︷ ︸

the changes due to noise

, for Q− a.s,

where the expression in blue is essentially the evaluation noise. Say the above K in
Equation (2.6) the sensitivity coefficient, since it stipulates how much Agent’s continuation
value will change given the fluctuation of evaluations. We will see later that K plays a
critical role in characterizing the agent’s incentive under the given contract.

Building on the idea of the above lemma, the following lemma further shows that if the
principal cannot manipulate the agent’s prior belief, then the adjustment αt has no effect in
changing the evolution of the agent’s continuation value. Without loss of generality, we
will fix the agent’s prior belief to be P .

Lemma II.3. Suppose that Agent’s belief is fixed at P and the adjustment process can be

any F-adapted process α satisfying Fα = F. Then for any contract (α, P, Y,B,A) with the

above fixed (α, P ), there exists a F-progressively measurable process K such that

dVt(B,A, α) = (rVt(B,A, α)− u(Bt) + c(At)) dt+Kt(dXt − At dt) (2.7)

holds P -almost everywhere.

The above lemma imposes that Fα = F, which guarantees that the principal does not
evaluate the agent based on better information about his effort than that in the output.

Let Agent’s promised continuation value conditional on his own information from the
report be

V Y
t (B,A, α) := EQ

[∫ ∞
t

e−r(s−t)
(
u(Bs)− c(As)

)
ds | FYt

]
. (2.8)

The following proposition shows that, assuming the sensitivity coefficient is adapted to
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Agent’s information, the process V Y
t (B,A, α) admits a similar representation as identified

in Lemma IV.1. More importantly, it characterizes Agent’s incentive compatibility with the
variational and sensitivity coefficients we defined above.

Proposition II.2. Fix an arbitrary contract (α,Q, Y,B,A). Let β be the variational

coefficient and let K be the sensitivity coefficient. Suppose that K is FY -adapted. Then the

evolution of V Y (B,A, α) satisfies

dV Y
t (B,A, α) = (rV Y

t (B,A, α)− u(Bt) + c(At)) dt+ σKtβt dWα
t . (2.9)

Moreover, for any time t, the effort process At is incentive compatible if

At ·Ktβt − c(At) ≥ max
a∈{0,aH}

(a ·Ktβt − c(a)), for Q-almost everywhere ω. (2.10)

Remark II.1. The above incentive compatibility characterization in (2.10) does not restrict
to the binary effort. Similar to Sannikov (2008), this characterization applies to any compact
set of feasible effort levels in R with the smallest element 0.

The next lemma connects the characterizations under the measureQ to that under Principal’s
belief P , which prepares us for Principal’s problem in the next section.

Lemma II.4. Suppose that P is equivalent to Q. For any Fα-adapted stochastic processes

Vt(B,A, α) and K, the following hold:

(i) (2.6) is satisfied Q-a.s if and only if it is satisfied P -a.s;

(ii) (2.9) is satisfied Q-a.s if and only if it is satisfied P -a.s;

(iii) (2.10) is satisfied Q-a.s if and only if it is satisfied P -a.s.

2.3.3 Different types of evaluation biases

Say an evaluation scheme (α,Q, Y ) is truthful if α ≡ 0, P -almost everywhere and Q = P .
Moreover, a contract is output-based if its evaluation scheme is truthful. In this case,
Agent’s continuation value is measured under the true production noise W and Principal’s
belief P . In general, an evaluation scheme need not be truthful.

The following two types of performance evaluation biases are widely documented in
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practice: leniency bias and severity bias. The literature has proposed several operational
definitions of these evaluation biases; see Saal et al. (1980) for a detailed summary and
discussion. Conceptually, one could consider leniency (or severity) bias as the tendency to
assign a higher (or lower) evaluation than is warranted by employees’ performance.

Given any evaluation scheme, conditional on a realized path ω, we say the evaluation
scheme is lenient at a specific time t for this path ω if the adjustment of the evaluation
process at time t is strictly greater than 0, i.e., αt(ω) > 0; say the evaluation scheme is
severe at time t for that path if the adjustment of the evaluation process at time t is strictly
less than 0, i.e., αt(ω) < 0. This definition of leniency or severity biases is aligned with
that in Sharon and Bartlett (1969) and Bernardin et al. (1976), which says “Leniency (or
severity) error is defined as a shift in mean ratings from the midpoint of the rating scale in
the favorable (or unfavorable) direction”.

2.4 Principal’s problem and the benchmark contracts

Building on Lemma II.1, the principal essentially controls processes {As, Bs, αs, Ks, βs}s≥0

that take values from the following compact sets respectively:

αs ∈ [α, α], Ks ∈ [ε,K], βs ∈ [−1, 1], Bs ∈ [0, b], As ∈ {0, aH} for any s ≥ 0.

To prevent the nonexistence of optimal incentive contracts, it is necessary to impose a
strictly positive lower bound ε on the domain of the sensitivity coefficient K. Specifically,
we pick an ε small enough such that c(aH)

aH
> ε > 0 and an upper bound K large enough

such that K > c(aH)
aH

.

From now on, I will focus on contracts in which the sensitivity coefficient is adapted to the
report information. We will see later that such a focus is in fact without loss of generality,
since the optimal incentive contract always truthfully reports the realized evaluation so the
information flow generated by the report and evaluation will coincide, i.e., FY = Fα.

Recall that τ r is the stopping time for the principal to retire the agent. Say a control
Φ := {As, Bs, αs, Ks, βs, τ

r}s≥0 is admissible if (i) {αs}s≥0 is adapted to the filtration F;
(ii) {βs}s≥0 and τ r are adapted to filtration Fα; and (iii) {As, Bs, Ks}s≥0 is adapted to the
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filtration FY such that the following equation has a unique strong solution:

dVs(B,A, α) = (rVs(B,A, α)− u(Bs) + c(As)) ds+ σKs(dWs + αs d s).

Given an admissible control Φ = {As, Bs, αs, Ks, βs, τ
r}s≥0, recall that τ f is the initial

time that Agent’s continuation value hits 0. Then the principal’s expected payoff is

E (v,Φ) :=EP
A

[∫ τr∧τf

0

e−rs dXs − e−rsBs ds− e−r(τr∧τf )p(Vτr∧τf (B,A, α))

]
,

(2.11)

where Vt(B,A, α) is the process starting from the initial value v. Denote by G(·) the
principal’s value function such that given any initial value v,G(v) is the principal’s maximal
expected payoff among all admissible controls Φ subject to the incentive compatibility
constraint:

As ·Ksβs − c(As) ≥ max
a∈{0,aH}

(aKsβs − c(a)).

An admissible control Φ∗ is said to be optimal if it satisfies the incentive compatibility
constraint and E (v,Φ∗) = G(v). Let Γ be the feasible domain of incentive compatible
effort-sensitivity pairs such that

Γ :=

{
(aH , kβ)

∣∣∣K ≥ kβ ≥ c(aH)

aH

}
∪
{

(0, kβ)
∣∣∣ε ≤ kβ ≤ c(aH)

aH

}
. (2.12)

My first objective is to prove that the value function G is twice continuously differentiable
in (0, v∗) for some retirement boundary v∗ which further solves the following Hamilton–
Jacobi–Bellman (HJB) equation:

rG(v) = sup
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

G′(v)(rv − u(b) + c(a) + σkα) +
G′′(v)

2
(σk)2 + a− b (2.13)

with the retirement boundary v∗ characterized by the following condition:

G(0) = 0, G(v∗) = −p(v∗) and G′(v∗) = −p′(v∗). (2.14)

The following results provide a characterization of the principal’s value function and the
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above HJB equation: Theorem II.1 shows that such HJB equation with the boundary
condition has a unique, well-defined solution; and Theorem II.2 shows that such solution
characterizes the principal’s value function.

Theorem II.1. There exists a unique twice continuously differentiable and strictly concave

function G that solves HJB equation (2.13) with G ≥ −p and the boundary condition

(2.14) holds for v∗ where v∗ = arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)} if {v ∈ (0, u(b)
r

] |
G(v) = −p(v)} 6= ∅ and v∗ = 0 otherwise.

Theorem II.2. Suppose that G is the solution to the HJB equation (2.13) with the boundary

condition (2.14) satisfied by v∗ where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)}
if {v ∈ (0, u(b)

r
] | G(v) = −p(v)} 6= ∅ and v∗ := 0 otherwise. Then for any initial

agent’s continuation value v, the principal’s maximum expected payoff under admissible

IC controls is G(v) if v ≤ u(b)
r

, and −p(v) if v > u(b)
r

. In particular, the value function is

twice continuously differentiable and it is the unique solution of the HJB equation (2.13)
with the boundary condition (2.14) satisfied by the above v∗.

Recall that the agent’s outside option is 0, so the initial value the principal promises the agent
will always start from the position maximizing her ex ante payoff, that is, max{0, G′−1(0)}.
As in the condition that G(v∗) = −p(v∗), the principal’s value function must be strictly
negative when she retires the agent. Theorem II.2 thus implies that it is optimal for the
principal to retire the agent whenever his continuation value process hits v∗. Moreover, this
further implies that whenever v∗ = 0, the principal is better off not hiring the agent. We
will henceforth focus on describing the structure of the optimal contracts before the agent
gets retired, i.e., when the agent’s continuation value is less than v∗.

2.4.1 Benchmark: optimal output-based incentive contract

Say a contract is output-based if the system evaluates the agent directly based on the output,
i.e., α = α = 0 and the system specifies Principal’s belief P as Agent’s belief. As a
benchmark, I study the structure of optimal output-based incentive contracts below.

Based on the characterization in Theorem II.1, the following proposition characterizes the
explicit form of the optimal output-based incentive contract.

Proposition II.3. Suppose that α = α ≡ 0 and Q = P . Let F (·) be the unique solution

to equation (2.13) with F ≥ −p and the boundary condition (2.14) satisfied by v∗ where
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v∗ := arg min{v ∈ (0, u(b)
r

] | F (v) = −p(v)} if {v ∈ (0, u(b)
r

] | F (v) = −p(v)} 6= ∅
and v∗ := 0 otherwise. Consider the following policy for any v such that 0 ≤ v ≤ v∗:

β∗(v) = 1,a∗(v) = aH , k
∗(v) = c(aH)

aH

F ′′(v)
2

(εσ)2 ≤ F ′(v)c(aH) + F ′′(v)
2

( c(aH)
aH

σ)2 + aH

a∗(v) = 0, k∗(v) = ε otherwise
,

b∗(v) =


0 u′+(0) ≤ 1

−F ′(v)
or F ′(v) ≥ 0

u′−1( 1
−F ′(v)

) 1
−F ′(v)

∈ (u′−(b), u′+(0))

b otherwise

. (2.15)

Given the initial value v0 := max{0, F ′−1(0)}, then there exists a unique strong solution

to dVs = (rVs − u(b∗(Vs)) + c(a∗(Vs))) ds+ σk∗(Vs) dWs, and the optimal output-based

incentive contract is characterized by the control (β∗(Vt), a
∗(Vt), b

∗(Vt), k
∗(Vt))t≥0.

By the above theorem, the principal retires the agent at the continuation value v∗ = u(b∗(v∗))
r

.
Recall that we show in Theorem II.1 that the retirement bound v∗ < u(b)

r
, which further

implies that the agent is optimally retired before receiving the upper bound b. Moreover,
the immediate reward b∗ in the optimal output-based incentive contract is an increasing
function with respect to Agent’s continuation value. Hence we can further divide the range
of continuation values in which Agent remains employed into two distinct intervals, based
on whether the immediate compensation is 0 or not. Let the division point be b0 such that
The principal pays Agent zero immediate reward if and only if his continuation value is in
[0, b0]. Note that the above theorem shows that the principal pays the agent zero immediate
compensation when her value function is increasing, implying that it is cheaper to motivate
the agent with future payoffs than immediate compensation in this region.

To incentivize Agent to exert high effort, Principal must expose Agent to compensation
risk, which is costly given that Agent is risk-averse. In the above benchmark contract,
the principal minimizes the exposure of the agent’s risk conditional on maintaining his
incentive. To achieve her goal, there are two options at the principal’s disposal: she could
either reduce the compensation sensitivity or the report variation. My result shows that the
principal strictly prefers the former option: The optimal output-based incentive contract
fully reveals the evaluation to Agent, which provides the maximum amount of noise to
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allow the compensation sensitivity to decrease to a minimum level. Therefore, the principal
does not benefit from reporting less information. The optimal output-based incentive
contract achieves the same payoff as that under the optimal incentive contract when the
output is publicly observable (Sannikov (2008)). The canonical reporting requirement of
the evaluation system in this contract is also satisfied.

In a different setting with a risk-neutral Agent, Zhu (2013) shows that it is optimal for Agent
to shirk frequently. It is interesting to know whether switching Agent’s effort between
working and shirking is optimal in my setting. To investigate this problem, we first rewrite
the HJB equation (2.13) by plugging the policy (a∗(·), b∗(·), k∗(·)) in Proposition II.3:

rF (v) = max
{
F ′(v)(rv − u(b∗(v))) +

F ′′(v)

2
(εσ)2 − b∗(v),

F ′(v)(rv − u(b∗(v)) + c(aH)) +
F ′′(v)

2
(
c(aH)

aH
σ)2 + aH − b∗(v)

}
.

(2.16)

The following proposition answers this question and shows that it is always optimal for
Principal to recommend high effort aH before either firing or retiring occurs. Hence,
different from Zhu (2013), the shirking in my setting is an absorbing state. I further
represent the optimal output-based incentive contract in Figure 2.3.

Proposition II.4. The optimal output-based incentive contract always implements effort

aH before firing or retiring.

The following result builds on the above results and shows that if we take away the
principal’s control on the agent’s prior belief, then the benefit of adding adjustment into
the evaluation also vanishes. Again we will fix the agent’s belief to be P and assume that
Fα = F, under which the (adjusted) evaluation does not provide more information about
the agent’s effort than the output.

Theorem II.3. Suppose that Agent’s belief is fixed to be P and the adjustment process can

be any F-adapted process α satisfying Fα = F. Then the optimal incentive contract is the

optimal output-based contract.
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Agent’s
cont val

Principal’s payoff

−p(v)

b∗(v)

F (v) v∗ retirement

b0

firing

a∗(v) = aH

k∗(v) = c(aH)
aH

a∗(v) = 0
k∗(v) = 0

This figure presents the optimal incentive output-based contract. The black parabolic curve is
Principal’s value function; the blue curve is the retirement value function −p(·) with v∗ the optimal
retirement boundary. The cyan curve is the optimal reward function b∗(·). Before retiring or firing,
Agent always exerts high effort. The optimal sensitivity coefficient is the minimum conditional on
maintaining Agent’s incentives and the optimal report is to fully reveal the evaluation.

Figure 2.3: Optimal incentive output-based contract

2.5 Optimal incentive contract

We will now turn to the general case when the principal has the flexibility to add adjustments
and change the agent’s prior belief subject to the constraints we describe. Let us first
introduce a condition that could simplify the exposition.

Condition II.1. Under the given primitives, for any C2-function G(·) : R+ → R and
any function α∗(·) : R+ → [α, α], say G(·) and α∗(·) satisfy Condition II.1 if one of the
following is satisfied:

(i) G′(v)(c(aH) + σ( c(aH)
aH
− ε)α∗(v)) + aH + G′′(v)

2
σ2(( c(aH)

aH
)2 − ε2) ≥ 0

and ε > −G′(v)α∗(v)
G′′(v)σ

;

(ii) G′(v)c(aH) + aH + G′′(v)
2

(σ c(aH)
aH

+ G′(v)α∗(v)
G′′(v)

)2 ≥ 0 and ε ≤ −G′(v)α∗(v)
G′′(v)σ

< c(aH)
aH

;

(iii) c(aH)
aH
≤ −G′(v)α∗(v)

G′′(v)σ
.
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The following theorem characterizes the structure of the optimal incentive contract.

Theorem II.4. Let G(·) be the unique solution to equation (2.13) with G ≥ −p and the

boundary condition (2.14) satisfied by v∗ where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) =

−p(v)} if {v ∈ (0, u(b)
r

] | G(v) = −p(v)} 6= ∅ and v∗ := 0 otherwise. Suppose that G

is third continuously differentiable. Consider the following policies for any v such that

0 ≤ v ≤ v∗: β∗(v) = 1,

b∗(v) =


0 u′+(0) ≤ 1

−G′(v)
or G′(v) ≥ 0

u′−1( 1
−G′(v)

) 1
−G′(v)

∈ (u′−(b), u′+(0))

b otherwise

α∗(v) =


α G′(v) > 0

α G′(v) < 0

[α, α] G′(v) = 0

;

a
∗(v) = aH , k

∗(v) = min

{
K,max

{
G′(v)α∗(v)
−G′′(v)σ

, c(aH)
aH

}}
G and α∗ satisfy Condition II.1

a∗(v) = 0, k∗(v) = max{G
′(v)α∗(v)
−G′′(v)σ

, ε} otherwise
,

Given the initial value v0 := max{0, G′−1(0)}, then there exists a unique strong solution to

dVs = (rVs−u(b∗(Vs))+ c(a∗(Vs))) ds+σk∗(Vs) d(Ws+α∗(Vs) d s), and the optimal in-

centive contract is characterized by the control (β∗(Vt), α
∗(Vt), a

∗(Vt), b
∗(Vt), k

∗(Vt))t≥0.

Why introducing evaluation biases can benefit the principal? The main intuition is as
follows: the employment relationship between the principal and the agent must end at some
point since the agent either gets fired due to a sequence of bad luck or gets retired due to
a sequence of good luck. The principal has a zero outside option, who is thus better off
by adding leniency bias for low continuation value and severity bias for high continuation
value to reduce the probability of labor turnover. Hence, adding biases could improve
productivity in my setting.

To graphically illustrate the idea, let us start with the benchmark case and consider the
principal’s value function under the optimal output-based incentive contract; see the left
subfigure (a) in Figure 4.1. In this case, the relationship terminates at two endpoints. If we
allow the principal to adjust evaluations around these termination points, she could extend
the agent’s employment duration.7 For a visual description of such change, see Figure 4.1
(b). Such extension further induces nonconcavities in the principal’s value function, which

7Those extensions are excluded in the employment range in optimal output-based contracts due to the
violation of constraints such as limited liability.
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creates room for improvement by concavification. The adjustment process could serve
as a randomization device in concavifying the value function. That randomization is
desirable also explains the related observation that, even though Agent is risk-averse,
the volatility with respect to Agent’s continuation value is weakly higher when there are
nonzero adjustments.8

(a) Benchmark: optimal output-based contract (b) Improvement

This figure presents how an evaluation system could improve from the benchmark contract. By
allowing biased evaluation around the firing and retiring points, the principal could extend the
agent’s employing range by going beyond the original termination points. Let the red segment on the
x-axis be such an extension. The blue dashed line is the gain from concavifying the value function.

Figure 2.4: How the evaluation could improve from the benchmark

One interpretation of adding adjustments is to add conditional purified noise (the evaluation
biases) into the realized outputs. Such interpretation places this paper in the dynamic persua-
sion literature, where Ely (2017) studies the case of discontinuous production technology
and the output directly affects the agent’s payoff. The discontinuity of the production
creates a jump in the principal’s preliminary continuation payoff in Ely (2017) where the
agent is about to quit the relationship (see also Figure 2 in Ely 2017). Such a jump leads
to nonconcavity and thus creates room for persuasion. Different from Ely (2017), the
technology (production and evaluation) are continuous in my setting and the agent’s payoff
does not directly affect by the output. Adding in the insight of Theorem II.3, the principal
in such a setting could benefit from adding adjustments into evaluation only if she could
also change the agent’s prior belief.

8Ishida (2012) shows that when the agent’s self-esteem plays a role, adding noise into the compensation
can benefit the principal since it could reduce the agent’s self-handicapping and thus improve his average
effort. My result reveals a different reason for adding noise into compensation without relying on such
behavioral assumptions.
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From the above theorem, the evaluation bias at each point takes the value of either the
upper or the lower bound α and α, i.e., a bang-bang solution. In particular, Principal
exhibits the maximum leniency in evaluation when Agent’s continuation value is lower
than v0; and exhibits the maximum severity bias when it is higher than v0, where v0 is
the maximizer of the principal’s value function. While the agent’s continuation value is
less than v0, the associated immediate reward equals 0. This means that lenient evaluation
only increases Agent’s continuation value but not his immediate payment, which allows
Principal to partially insure Agent from downside risks and defer firing. At the other end
when the agent’s continuation value is high, severe evaluations serve to delay Agent’s
retirement and extend his employment duration. The following Figure 2.5 to 2.7 further
give visual representations about these evaluation biases in the optimal incentive contract
when the agent exerts high effort during his employment according to three situations: (i)
α > α = 0; (ii) α < 0 < α and (iii) 0 = α > α, respectively.

A’s cont val
in eval sysm

Principal’s payoff

Principal’s
value function

v∗

b0

firing

−p(v)

k∗(v) = min
{
K,

max{ c(aH )
aH

,
G′(v)σα
−G′′(v) }

}
α∗(v) = α

k∗(v) =
c(aH )
aH

α∗(v) = 0

b∗(v)

The evaluation scheme adds the maximum leniency bias in the deep blue region and is truthful in
the light blue region. The volatility of Agent’s continuation value process is weakly greater than
that in the optimal output-based contract only in the deep blue region. The light blue curve indicates
the reward policy.

Figure 2.5: When α > α = 0

We will see below that the optimal incentive contract always implements high effort
provided that some technical conditions hold.

Theorem II.5. Let G be the unique strictly concave function that solves the HJB equa-
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A’s cont val
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Principal’s payoff

Principal’s
value function

v∗

b0

firing

−p(v)

b∗(v)

k∗(v) = min
{
K,

max{ c(aH )
aH

,
G′(v)σα
−G′′(v) }

}
α∗(v) = α

k∗(v) = min
{
K,

max{ c(aH )
aH

,
G′(v)σα
−G′′(v) }

α∗(v) = α

The optimal evaluation system adds the maximum leniency bias in the blue region and the maximum
severity bias in the red region. The volatility of Agent’s continuation value process is weakly greater
than that in the optimal output-based contract almost everywhere. The light blue curve is the reward
policy.

Figure 2.6: When α > 0 > α

tion (2.13) with G ≥ −p and the boundary condition (2.14) satisfied by v∗ where v∗ :=

arg min{v ∈ (0, u(b)
r

] | F (v) = −p(v)} if {v ∈ (0, u(b)
r

] | F (v) = −p(v)} 6= ∅
and v∗ := 0 otherwise. Assume that G ∈ C3([0,∞)), G′(0)σα + G′′(0)

2
σ2ε 6= 0 and

G′(v)c(aH)+aH + G′′(v)
2
σ2(( c(aH)

aH
)2− ε2) 6= 0 for any v ∈ (G′−1(0), v∗). Then the optimal

incentive contract always implements the high effort ah before firing or retiring the agent.

While evaluation bias has been discussed in the agency literature on subjective performance
evaluation, it arises from Principal’s incentive to underreport regardless of Agent’s continu-
ation values.9 Different from a cheap-talk principal, a principal with commitment would
like to under-report only when Agent’s continuation value is high enough. Moreover, my
result shows that, depending on the context, the principal will exhibit different types of
evaluation biases. This helps explain the existence of evaluation bias documented in the
empirical literature (Landy and Farr 1980, Rynes et al. 2005, Prendergast 1999).

Lastly, the above theorem also shows that the optimal information policy is to fully reveal the

9Several works show that without commitment, principals who are the residual claimants of the firm have
incentives to under-report agents’ performance to keep compensation costs down (cf. Bull 1983; MacLeod
and Malcomson 1989; Baker et al. 1994). This reflects the major concern of reneging on bonuses in the
relational contracting literature (cf. Levin 2003).
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Principal’s payoff

Principal’s
value function

v∗

b0

firing

−p(v)

b∗(v)

k∗(v) =
c(aH )
aH

α∗(v) = 0

k∗(v) = min
{
K,

max{ c(aH )
aH

,
G′(v)σα
−G′′(v) }

α∗(v) = α

The evaluation scheme adds the maximum severity bias in the deep red region and is truthful in the
light red region. The volatility of Agent’s continuation value process is weakly greater than that
in the optimal output-based contract only in the deep red region. The light blue curve is again the
reward policy.

Figure 2.7: When 0 = α > α

instantaneous evaluation to Agent. This result starkly contrasts with the non-commitment
case, where it can be optimal that no information until termination is revealed by the princi-
pal, so as to reuse punishments across different periods (Fuchs 2007). Why is fully revealing
information optimal with commitment? Intuitively, we may describe the reasons as follows:
essentially, Agent only cares about his compensation. So information revelation without
payment consequence will not affect Agent’s effort provision. Nevertheless, revealing more
information is weakly better for the principal, since it allows more possibilities to design
compensation systems. Hence, a principal who could fully commit to information policy
could benefit from revealing more evaluation information to the agent.

2.5.1 Towards the extreme

The evaluation bias in the optimal incentive contract is either the lower bound or the upper
bound. How would the agent’s continuation value process under the optimal contract
behave differently when we take both bounds to infinity. As the upper bound α increases
(resp. lower bound α decreases), an immediate observation is that the duration of Vt staying
within the region {v | G′(v) > 0} (resp. {v | G′(v) < 0}) decreases. When α goes to∞,
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Let the cyan region be the region where Agent gets a positive amount of payment. The dashed
line indicates the value v0 at which G′(v0) = 0. As α → −∞ and α → ∞, the left side of the
cyan region will converge to the middle dashed line so Agent is more likely to get paid. And the
continuation value process reflects quickly after entering either the left region {v | G′(v) > 0} or
the right region {v | G′(v) ≤ 0}.

Figure 2.8: As α→ −∞ and α→∞

the continuation value process can only stay in the region {v | G′(v) > 0} very briefly.
Because of the increasingly large leniency bias, the probability of firing is also decreasing
to zero. Similarly, as α↘ −∞, the continuation process will exit soon after it enters the
region {v | G′(v) < 0} and the probability of retiring is also decreasing to zero, as the
severity bias gets infinitely large. As we take both α→ −∞ and α→∞, the continuation
value process Vt will rapidly fluctuate between {v | G′(v) > 0} and {v | G′(v) < 0} (recall
that the volatility of Agent’s continuation value is the maximum between the benchmark
value and G′(v)α

−G′′(v)σ
when nonzero evaluation bias α is present). Moreover, Principal’s value

function becomes very steep so that whenever Vt enters the region in {v | G′(v) < 0} where
Agent gets positive payment, Agent’s continuation value then immediately gets pushed
back to the middle area. In this way, Agent’s continuation value fluctuates rapidly between
the above two regions during which he still gets nonnegative payment.
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v

Principal’s payoff

−p(v)

v∗F v∗Gfiring

The red curve is Principal’s value function G under optimal incentive contract, and the black curve
is her value function F under the optimal output-based contract. The two points, v∗G and v∗F , are
retirement boundary points under G and F respectively, which satisfy v∗G > v∗F . As the range [α, α]
with α ≤ 0 < α expands, Principal’s value function increases pointwisely, as shown by the dot cyan
curve.

Figure 2.9: The change of the principal’s value function as we reduce α and increase α

2.5.2 Comparison

This section compares the optimal incentive contract and the benchmark output-based
contract. Let G(·) and F (·) be Principal’s value functions under these two contracts
respectively. From the definition of the principal’s value function, the principal’s value
under the optimal incentive contract is always better than that under the benchmark contract,
i.e., G(v) ≥ F (v) must satisfy at each Agent’s continuation value v. Recall that the
retirement boundary point must satisfy the smooth-pasting condition and the retirement
profit function −p(·) remains the same for both cases. With G pointwisely dominating
F , we can further conclude that the optimal incentive contract has a greater retirement
bound as compared to that under the benchmark contract. Figure 2.9 illustrates such
dominance. Moreover, as the domain of the adjustment process expands, the principal’s
value function is pointwisely increasing and dominates those with a smaller domain of
adjustments. To graphically capture such increments, we include an additional dot cyan
curve in Figure 2.9.

31



2.5.3 Mean exit time

Given any retirement bound v∗, it is also possible to characterize the average of the first time
of Agent’s continuation value process exits the employment domain [0, v∗] due to either
firing and retiring. I define the first passage time or first exit time to be the stopping time
that records the first time that Agent’s continuation value process Vt exits the employment
domain:

τ ∗v (ω) := inf{t ≥ 0 | Vt(ω) = 0 or Vt(ω) = v∗, V0(ω) = v}.

The mean exit time is defined as τ(v) := EP [τ ∗v ] = EP [inf{t ≥ 0 : Vt /∈ [0, v∗]}|V0 = v].

Recall that in the optimal incentive contract, Agent always exerts high effort before being
either retired or fired. Thus the mean exit time directly reflects the average production
generated by this relationship.

Proposition II.5. Given the optimal Markovian policy (b∗(·), a∗(·), α∗(·), k∗(·)) in Theo-

rem II.4 with the retirement bound v∗, the mean exit time is the solution of the following

boundary value problem: for any v ∈ (0, v∗),

−(rv − u(b∗(v)) + c(a∗(v))+σk∗(v)α∗(v))
dτ(v)

dv
− (σk∗(v))2 d2 τ(v)

(dv)2
= 1,

τ(v) = 0, v ∈ {0, v∗}. (2.17)

2.6 Evaluation biases under extra contractual possibili-
ties

Numerous studies observe and document evaluation biases in the appraisal systems (cf.
Landy and Farr 1980, Jawahar and Williams 1997, Prendergast 1999, Moers 2005, Fred-
eriksen et al. 2017). We can see from the previous section that the optimal incentive
contract exhibits leniency bias and severity bias, which justifies the existence of these eval-
uation biases. Do evaluation biases remain optimal as we introduce additional contractual
possibilities? If not, how will they change?

In this section, I consider three types of realistic contractual possibilities, and how their
presence may affect evaluation biases at the optimum, including (i) there is the reciprocity
effect of evaluation biases on employment relationship that directly impacts the output; (ii)
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Agent can get promoted before retirement, and (iii) Agent has a strictly positive outside
option who can quit the firm at any time. The results show that evaluation biases remain
a robust feature of the optimal incentive contract. Moreover, the above possibilities can
strengthen specific evaluation biases depending on the context.

2.6.1 When evaluation biases have reciprocity effect on outputs

We will first consider the case when evaluation biases can have positive effects on employee
performance if they could enhance the employees’ perceptions of fairness. Empirical
evidence in the literature shows that leniency bias could strengthen the employment rela-
tionship, which could have a positive behavioral effect on employees’ performance. On
the contrary, severity bias, even applying to only a fraction of employees, undermines the
perception of fairness and negatively affects employees’ performance.10

I explicitly model about the influence of such reciprocity on the output in the following
parsimonious model such that the output evolves as dXγ

t = γ(αt)At dt + σ dWt, where
γ(·) is the reciprocal effect of evaluation bias on output. I assume that γ(·) is nonnegative,
increasing, concave differentiable function on [α, α] with γ(0) = 1. The rest of the whole
model remains the same, so the reciprocity effect does not directly affect Agent’s evaluation
or compensation.

For convenience, given any function k(·) : R+ → R and any continuously differentiable
function G(·) : R+ → R, we define the function αk,Gγ (·) such that

αk,Gγ (v) :=


α −G′(v)σk(v)

aH
< γ′(α) or G′(v) ≥ 0

γ′−1(−G
′(v)σk(v)
aH

) −G′(v)σk(v)
aH

∈ (γ′(α), γ′(α))

α −G′(v)σk(v)
aH

> γ′(α)

.

With Γ defined in (2.12), the following proposition characterizes the optimal incentive
contract in such a situation.

10Bol (2011) shows that it is positively associated with employees’ performance. From a comparative
aspect, Marchegiani et al. (2016) show that failing to reward a deserving agent under a severe contract is
significantly more detrimental to effort provision than rewarding an undeserving agent under a lenient contract.
The effect of evaluation bias involves severe bias that is negatively associated with the performance (cf. Ahn
et al. 2010; Bol 2011).
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Proposition II.6. Suppose that G(·) is the unique solution to the following equation:

rG(v) = sup
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

G′(v)(rv − u(b) + c(a) + σkα) +
G′′(v)

2
(σk)2 + γ(α)a− b,

(2.18)

and the boundary conditions G(0) = 0, G(v∗) = −p(v∗) and G′(v∗) = −p′(v∗) are

satisfied by some v∗ where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)} if {v ∈ (0, u(b)
r

] |
G(v) = −p(v)} 6= ∅ and v∗ := 0 otherwise. Assume that G is third continuously

differentiable. Consider the following policies for any v ≤ v∗: β∗(v) = 1,

b∗(v) =


0 u′+(0) ≤ 1

−G′(v)
or G′(v) ≥ 0

u′−1( 1
−G′(v)

) 1
−G′(v)

∈ (u′−(b), u′+(0))

b otherwise

;

if G and αk
∗,G
γ (v) satisfy Cond II.1,

a∗(v) = aH , k
∗(v) = min

{
K,max

{
G′(v)α∗(v)

−G′′(v)σ
,
c(aH)

aH

}}
, α∗(v) = αk

∗,G
γ (v),

otherwise,

a∗(v) = 0, k∗(v) = max

{
G′(v)α∗(v)

−G′′(v)σ
, ε

}
, α∗(v) = α + 1(0,∞)(G

′(v))(α− α).

Given the initial value v0 := max{0, G′−1(0)}, then there exists a unique strong solution to

dVs = (rVs−u(b∗(Vs))+ c(a∗(Vs))) ds+σk∗(Vs) d(Ws+α∗(Vs) d s), and the optimal in-

centive contract is characterized by the control (β∗(Vt), α
∗(Vt), a

∗(Vt), b
∗(Vt), k

∗(Vt))t≥0.

The above proposition shows that the optimal incentive contract in this variant again
fully reveals the real-time evaluation to Agent. Compared to the case without reciprocity
effects on productions, a major difference is that there is an overall pointwise shift of
evaluation bias toward leniency in the optimal incentive contract. Whenever G′(v) ≥ 0,
the optimal evaluation bias is still the upper bound α. But there exists an additional region
{v | G′(v) < 0, α∗(v) ≥ 0} in which Principal is willing to evaluate Agent with moderate
leniency. Accordingly, the reciprocal effect attenuates the severity bias in both shrinking
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′(v)σk∗(v)
aH

) < 0

This example presents the case when the equilibrium effort is always aH .

Figure 2.10: An example of optimal incentive contract with the reciprocity effect

the region that exhibits severity bias and reducing its intensity. Figure 2.10 presents a
possible situation when the reciprocity effect of evaluation biases could directly affect the
production and the agent always exerts high effort before being fired or retired.

2.6.2 Agent can quit at any time

We now consider the situation when Agent can quit at any time and receive his outside
option. In this case, the domain of Principal’s value function does not include any region
below Agent’s outside option, since otherwise, the agent will quit immediately when his
continuation value drops to the outside option.

In this situation, the derivation of the optimal incentive contract remains the same as our
main result. The following proposition further gives a comparison result on the principal’s
value functions as the agent’s outside option varies.

Proposition II.7. Given any two outside options w1 and w2 such that 0 ≤ w1 < w2, let

the principal’s value function be G1 and G2, respectively. Then G1(v) ≥ G2(v) for any

v ∈ (w2,∞). Moreover, if G′2(w2) > 0, then G1(v) > G2(v) and G′1(v) > G′2(v) for any
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Principal’s payoff

−p(v)

Leniency-severity crossover points

firing

In the above figure, the cyan, red and black parabolic curves are Principal’s value functions with the
agent’s outside option W1, W2 and W3, respectively. I label the crossover point from leniency to
severity for these three value functions in the brown dashed line, which is moving to the left.

Figure 2.11: When the agent has different outside options

v ∈ (w2,∞).

Figure 2.11 presents Principal’s value functions according to three different Agent’s outside
options: {Wj}3

j=1 such that 0 = W1 < W2 < W3. The figure illustrates that as Agent’s
outside option goes up, Principal becomes less lenient in evaluating Agent. In particular,
the leniency bias weakens in the pointwise sense that whenever the principal is lenient to an
agent with a high outside option, she must be lenient to an agent with a low outside option.
Similarly, severity bias strengthens: whenever Principal is severe to an agent with a low
outside option, she must be severe to an agent with a high outside option who has the same
continuation value. This implies that the principal tends to be more lenient to the agent if
the employment relationship is easier to sustain.

The figure further implies that with a low outside option, an agent has a greater initial
continuation value as compared to when he has a high outside option. Thus lowering the
agent’s outside option provides a Pareto improvement in this relationship since it generates
a higher ex-ante expected payoff for both the principal and the agent.
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2.6.3 Principal has the opportunity to promote Agent

Suppose that the principal has an opportunity to promote the agent to a new position by
training. We model this case in a similar way as the extension in Sannikov (2008). Assume
that the training cost is a perpetual constant cost flow with r ·C > 0 at each instant starting
from the moment when the agent gets a promotion, where r is the discounting rate served
as a normalization. The promotion permanently increases the agent’s productivity of effort
from aH to âH with âH > aH and c(âH) = c(aH). In this case, we again fix the agent’s
outside option to be 0. What does the optimal incentive contract, especially the biases in its
evaluation system, look like in this setting?

We will use the same notation G(·) as the principal’s value function in the case without any
promotion opportunity. Under the promotion opportunity, let Gp(·) be the principal’s value
function after promoting the agent and let Ĝ(·) be the principal’s value function before such
promotion. The following proposition provides a pointwise comparison of the principal’s
value function with the promotion to that without such promotion.

Proposition II.8. (i) Gp(v) + C > G(v) for any v ∈ (0,∞);

(ii) Ĝ(v) ≥ G(v) for any v ∈ (0,∞). Moreover, if there exists a point v̂ ∈ (0,∞) such

that Gp(v̂) > −p(v̂), then Ĝ(v) > G(v) and Ĝ′(v) > G′(v) for any v ∈ (0,∞).

The condition in the above proposition (ii) says that there exists some continuation value at
which to promote the agent is strictly better for the principal than to retire the agent. If this
condition is violated, then the principal always prefers to retire the agent and the promotion
opportunity will not be exercised in all cases.

To illustrate the result, I further depict the above value functions in Figure 2.12. We can see
that, with the presence of the promotion option, Principal effectively delays the retirement
as compared to the case without. The crossover point from leniency bias to severity bias
is pushed further to the right, implying that leniency bias strengthens and severity bias
weakens pointwisely. In conclusion, Principal is more lenient in evaluating Agent with
promotion opportunities than that under the case without.
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−p(v)
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after promotion

retirement without
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This figure illustrates the optimal incentive contract with the promotion opportunity. The red
parabolic curve is Principal’s value function after promotion Gp; the blue curve is the principal’s
retirement profit function −p(·). The cyan curve is Principal’ value function Ĝ and the point
indicated by the red dashed line is the optimal promotion point v∗p and the optimal retirement point
after promotion is vp,r. The deep purple rectangle area indicates the expansion of leniency bias from
the case without promotion to the one with promotion.

Figure 2.12: Optimal incentive contract with the promotion opportunity

2.6.4 Summary

From the above three possible model variants, we can see that either leniency or severity
bias can be a feature in the optimal contract. This prediction contrasts with the conventional
view that evaluation biases are detrimental. Moreover, the result implies that in certain
environments, leniency bias, if in a correct dose, could be positively associated with
production, which is supported by empirical evidence.11

My result thus suggests that, in assessing the effectiveness of the subjective performance
evaluation within an organization, employers should be alert about the type of evaluation
biases and whether it is in the optimal amount.

11For instance, Bol (2011) shows that leniency bias has a positive effect on motivating employees within
a large bank in the Netherlands. The empirical evidence also documents the negative correlation between
evaluation biases involving severity bias and the effort provision (see, Ahn et al. 2010; Bol 2011; Trapp and
Trapp 2019; Marchegiani et al. 2016).
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2.7 Conclusion

This paper suggests that the principal could benefit from not directly basing her evaluation
on the output. The optimal incentive contract will assign lenient evaluation to Agent
with low continuation value and severe evaluation to Agent with high continuation value.
Adding biases into evaluation help Principal to extend the duration of the employment
relationship as compared to the situation without. Also, there is room for concavification
so the optimal incentive contract induces weakly higher volatility in Agent’s continuation
value as compared to the benchmark.

The result is useful in understanding the effect of the evaluation biases observed in the
practical appraisal system. In particular, my result supports the view that evaluation not
directly based on the output could provide partial insurance for the agent from the downside
risk. The results in the extension also imply that evaluation biases could be a robust feature
at the optimum, which further sheds light on how to improve the design of evaluation
schemes. For the designer of a practical appraisal system, it is important to separate
different evaluation biases. Sometimes, it may be worth considering to introduce evaluation
biases into the system.
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CHAPTER III

Persuasion of Interacting Receivers

3.1 Introduction

Many practical operations involve a sender providing information to multiple receivers
before they engage in strategic interaction. Persuasion schemes in these situations often
provide receivers with abundant information not only about the underlying state but also
how others may act or believe. For instance, many online shopping websites disclose their
existing consumers’ reviews and the number of past purchases. Such disclosure allows
the sellers to influence potential buyers by existing buyers’ beliefs and actions. Similarly,
political campaigns would invite celebrities to publicly endorse the candidate, in the hope of
influencing voters’ choice by the celebrities’ beliefs. However, many in the literature have
focused on situations where the sender provides only action recommendations. Departing
from those focuses, our paper investigates the situations that go beyond the standard model
with realistic features playing a critical role in determining the outcome of the receivers’
game. In particular, we provide a new view that could unify several classes of Bayesian
persuasion problems that have been studied separately, which contributes to a more coherent
understanding of the persuasion literature.

In this paper, we study information design settings where multiple receivers are engaged in
a strategic interaction with the following features: (i) the equilibrium selection may differ
from the sender-preferred equilibrium selection, (ii) receivers may have private information
about their preferences and the underlying states, (iii) receivers may have non von Neumann–
Morgenstern utilities, and (iv) receivers may have heterogeneous prior beliefs. Given that
the literature has no consensus on how to select equilibria (cf. Samuelson 1998), we
propose a notion that describes equilibrium selections as selection criteria that eliminate
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unqualified equilibria. Our notion is quite flexible in describing different equilibrium
selections, including the sender-preferred, sincere voting, and the sender-adverse selection
in the literature.

Given the above features we introduce, the analogous revelation principle in the information
design literature may not apply, in other words, the sender in our setting may benefit from
sending messages beyond action recommendations. To better describe information and
endow the messages with more structures, we further propose a more general message space
that could explicitly capture both the basic uncertainty (i.e., underlying state and receivers’
private information) and strategic uncertainty. In particular, we use a conjecture, a concept
modified from epistemic game theory literature (see Dekel et al. 2007 and Chen et al. 2017)
to characterize strategic uncertainty that comes from strategic reasoning. A conjecture
consists of a receiver’s belief about the underlying state, others’ belief hierarchies, and
actions. The message space we propose thus contains recommendations of conjectures and
actions to each receiver type. Say a signal is canonical if it adopts the above message space
and disseminates consistent information.

Our first result establishes a generalized obedience principle, which states that it is without
loss of generality to restrict attention to canonical signals in our setting. Building on
this result, we consider when one can simplify the signal structures further by restricting
attention to canonical signals with countably many messages. This question is nontrivial in
general since the literature has demonstrated that when the equilibrium selection differs
from the sender-preferred one, an optimal information structure could employ uncountably
many messages even though there are finitely many underlying states (see, for instance, Ali
et al. 2021). We provide a sufficient condition for the equilibrium selection under which to
employ countably many messages is without loss of generality for the sender. The key is to
require certain stability properties to hold in the equilibrium selection. The construction
of the proof further provides a tractable method to compute optimal signals in the general
settings we describe above.

We illustrate the usefulness of our result in two applications where the equilibrium selection
differs from the sender-preferred selection and receivers may have private information.
Application 1 studies the optimal information policy in soliciting privately informed voters’
support who will express their opinion only when they are pivotal; Application 2 is about
disclosing a stress test result that minimizes the possibility of a bank run with privately

41



informed investors under a sender-worse selection. Given that our applications have
nonstandard features such as that the selection criteria differ from the sender-preferred one,
they cannot be solved by standard approaches in the literature. We also provide a discussion
about how our method connects to the existing approaches in the literature.

3.1.1 Literature Review

This paper belongs to the literature of information design and Bayesian persuasion. The
literature, pioneering by Kamenica and Gentzkow (2011) and Rayo and Segal (2010), mod-
els the communication game as a sender committing to a probabilistic device that reveals
partial information regarding the underlying state that receivers care about. Specifically,
our paper connects this literature in two different levels:

At the first level, it belongs to the stream interested in a general methodological investigation
of the settings with multiple receivers engaged in strategic interaction. Under the sender-
preferred selection, Bergemann and Morris (2016, 2019) and Taneva (2018) establish
the analogous revelation principle (“direct approach”) in the standard static setting in
which it is without loss of generality for a sender to recommend actions. Similarly, in
the dynamic environment, Ely (2017) discusses what he calls the obfuscation principle
in the setting of multiple agents. Doval and Ely (2020) studies the solution concept of
coordinated equilibrium in an extensive-form game in which the canonical implementation
of the equilibrium is that the sender recommends a sequence of actions. However, it is also
known in the literature that the revelation principle does not generally apply. Among the
counterexamples, the revelation principle does not apply in situations where the selection
rule is sender-worst as the example in Mathevet et al. (2020) (the intuition is similar to
the full implementation literature). And it does not apply to the situation where receivers’
preference is psychological (see Lipnowski and Mathevet (2018)). Our paper is one step to
generalize the idea of the canonical implementation to these natural situations where the
standard revelation principle does not apply.

When going out of the standard settings, progress on studying interacting receivers is made
mostly in specific environments (see the discussions in Kamenica (2019)). The specificities
include binary action, specific payoff structure for receivers (e.g. supermodular), or signal
with specific structures (e.g. public signal, iid signal). Many papers that study interacting
receivers focus on the specific voting environment and consider how to persuade voters.

42



The works on persuading voters include Arieli and Babichenko (2019)(a receiver’s payoff
depends on their own action), Alonso and Camara (2016b) (public signals), Bardhi and
Guo (2018) (a receiver’s payoff depends on the outcome of the social choice rule) and
Wang (2015) (iid signals). Relatedly, Application 1 in our paper considers how to persuade
voters with the equilibrium selection that voters will vote only when they are pivotal
with some positive probability and receivers may have private information about their
preference.

A different well-known method in solving Bayesian persuasion problems is the concavifica-
tion method. For a single receiver setting, see Kamenica and Gentzkow (2011) (a common
prior,) and Alonso and Camara (2016a) (heterogeneous priors). This method is generalized
by Mathevet et al. (2020) to the setting with multiple receivers under a common prior.
In particular, their method can be used to study the situation with equilibrium selection
differing from the sender-preferred one. For other methods in persuasion problem with
a single receiver, there are works that investigate the methodology from a different dual
angle under the sender-preferred selection rule, including Dworczak and Martini (2019),
Dworczak and Kolotilin (2019), Galperti and Perego (2018).1

In the second level, our paper connects with the literature that studies any of the three
features we mentioned above. Specifically:

For non-sender-preferred equilibrium selection, a well-studied alternative selection is the
sender-adverse selection. The study of this selection on supermodular games can be found
in Inostroza and Pavan (2020), Morris et al. (2020) and the example in Mathevet et al.
(2020). Relatedly, Ziegler (2020) studies adverse selection with a different solution concept
that relies only on first-order beliefs. In our Application 2, we substantially extend the
example in Mathevet et al. (2020), and apply our result to compute the optimal signal.
There are other selections such as sincere voting (see, for instance, Alonso and Camara
(2016b) and Titova (2021)). Application 1 in our paper also has the equilibrium selection
that relates to this voting rule.

For privately informed receivers, there are many works studying economics implications
on specific contexts with focuses substantially different from this paper. To list a few: Rayo
and Segal (2010), Guo and Shmaya (2019), Kolotilin et al. (2017) and Kolotilin (2018), etc.

1Different from our discrete setting, these investigations often allow continuum state spaces but may have
other restrictions on player’s utility functions or actions.
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In the application section, we study two applications with some receivers having private
information: in Application 1, the private information is about receivers’ preference, and in
Application 2, the private information is about the underlying state.

For strategic information disclosure to psychological receivers, there are two papers that we
are aware of using Bayesian persuasion to model information disclosure to a psychological
audience: Ely et al. (2015) and Lipnowski and Mathevet (2018). In particular, Ely et al.
(2015) analyze the optimal information revelation for an audience who has a preference
for noninstrumental information in a dynamic setting, and Lipnowski and Mathevet (2018)
analyze a setting of a single psychological receiver whose utility is aligned with the sender.
Both of them adopt some extended versions of the concavification method. We study an
example (Example III.5) modified from Lipnowski and Mathevet (2018) and determine the
optimal signal in such a context.

This paper also borrows important conceptual insight from the epistemic game theory
literature, especially for the concepts of conjectures. Several works, including Ely and
Peski (2006), Dekel et al. (2007), Liu (2009) and Chen et al. (2017), bring valuable insight in
considering a canonical representation in capturing explicitly basic underlying uncertainties
and the strategic uncertainty that comes from strategic reasoning.

This paper is organized as follows: we introduce the model and the definition of equilibrium
selection criterion in Section 3.2. We present our main results in Section 3.3. Section 3.4
includes two applications. We discuss the relationship between our method and the currently
existing approaches and possible extensions in Section 3.5. All proofs are collected in the
appendix.

3.2 The Model

Let Ω be a set of finite underlying states. There is a sender (“Player 0”) and a finite
set of receivers I, each endowed with a set of finite primitive types Ti, i ∈ I, where
T :=

∏
i∈I Ti is the product space of primitive types. Initially, players have no information

about their primitive types. It is common knowledge that Nature will select a primitive
type profile τ := (τi)i∈I according to a rule and privately informs each receiver i about
his type τi. Nature’s rule πN is also commonly known, and conditioning on each realized
state ω ∈ Ω, πN(·|ω) is a distribution over T. Before Nature draws receivers’ primitive
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type profile, each player i has a prior belief µ0
i ∈ ∆(Ω × T) consistent with the known

Nature’s rule but potentially different across players. For any realized primitive type τi, let
µ0
i|τi ∈ ∆(Ω×T) be the intermediate belief of Receiver i condition on τi updated by Bayes’

rule. As in Kamenica (2019), private information that receivers might have could be one
of the following cases: receivers’ preferences (e.g., Rayo and Segal (2010)) or the state of
the world (e.g., Guo and Shmaya (2019)). The receivers’ private information in our model
could be in any or both of the above two situations, depending on whether the primitive
types are directly payoff relevant or not. For convenience, our treatment will mainly base
on the first case, which also applies to the second case with some adaptations.

Each receiver i has a finite set of actions, denoted as Ai. Let A :=
∏

i∈I Ai be the space
of receivers’ action profiles. In the main setting, we will restrict attention to Players are
von Neumann-Morgenstern utility maximizers, and each player i has a Bernoulli utility
function ui : Ω×A×T→ R. Allowing for non von Neumann-Morgenstern players whose
higher-order beliefs directly affect their utilities raises no conceptual difficulties for our
results but requires heavier notations. We will provide a discussion on extending our results
to the case where players have non von Neumann-Morgenstern utilities in Section 3.5.

The sender can design a signal that generates some information about the state. A generic
signal is a pair (M :=

∏
i∈IMi, π) which consists of a message space M and a rule

π : Ω→ ∆(M) that specifies the distribution of messages conditional on the realized state.
Let πi : Ω → ∆(Mi) be the marginal conditional distribution of π on Mi. Moreover, I
assume that the sender’s rule π is independent of Nature’s rule πN .

This game proceeds in five stages: (i) The sender chooses a message space M and commits
to a rule π; (ii) Nature picks a state ω and, given ω, a primitive type profile (τi)i∈I according
to πN and a message profilem = (mi)i∈I according to π; (iii) Nature privately informs each
receiver of his own realized type τi; (vi) each receiver i privately observes her individual
message mi and updates his belief according to Bayes’ rule; (v) receivers take simultaneous
actions and payoffs are realized.

It is common knowledge that all players are rational and understand the model (including all
prior beliefs, utility functions and the equilibrium selection rule). We use the Bayesian Nash
equilibrium as the solution concept for the receivers’ game: given any signal (

∏
i∈IMi, π),

denote by σ := (σi)i∈I a strategy profile where σi : Mi×Ti → ∆(Ai) for receiver i. Given
strategy profile σ played in the receivers’ game, let Eπ[ui(σ−i, τ−i, σi)|mi, τi] be receiver
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i’s expected utility conditional on the realized message and the primitive type.2

Definition III.1. A strategy profile σ∗ is a Bayesian Nash equilibrium (“BNE”) if for any
receiver i ∈ I,

Eπ[ui(σ
∗
−i, τ−i, σ

∗
i )|mi, τi] = max

ai∈Ai
Eπ[ui(σ

∗
−i, τ−i, ai)|mi, τi],

for every τi ∈ Ti and mi ∈Mi.

3.2.1 The notion of equilibrium selection

It is often the case that the receivers’ game has more than one equilibrium. Many works in
the Bayesian persuasion literature consider that Sender could select the equilibrium she
prefers. This selection is termed ”the sender-preferred selection” (see Kamenica 2019 and
Bergemann and Morris 2019), which implicitly assumes that receivers obey the action
recommendations as long as it satisfies the Bayesian incentive compatibility constraints.
Nevertheless, the increasing awareness of the relevance of equilibrium selection rules such
as the sender-adverse selection has led to the examination of other selection rules in the
literature (see Mathevet et al. 2020, Inostroza and Pavan 2020, Ziegler 2020 and Morris
et al. 2020).

The first challenge of considering equilibrium selection is that there is a lack of consensus
among game theorists on an explicit definition of such a notion (cf. Samuelson 1998).3 In
this paper, we propose a notion that can provide a formal description of equilibrium selection
rules. The idea behind our notion is aligned with equilibrium refinements literature, which
specifies selection criteria to rule out unqualified equilibrium. In particular, a selection
criterion in our setting is an axiomatic element on receivers’ behavior. Moreover, which
selection should be present in the receivers’ game is determined by factors outside the game
such as personal characteristics, culture, life experience, etc.

In games of incomplete information, when one deviates from the sender-preferred selection,
belief hierarchies matter for the equilibrium selection since each receiver’s action could

2As a convention, for message m′i realized with 0 probability (i.e.,
∑
ω∈Ω πi(m

′
i|ω) margΩ µ

0
i|τi(ω) = 0),

we set Receiver i’s conditional expected payoff under this message to be the lower bound of their Bernoulli
utility regardless of their primitive type.

3In fact, the problem of equilibrium selection has been heavily examined in the game theory literature.
The refinements literature and the evolutionary games’ literature both have contributed to this topic; see
Samuelson (1998) and references therein.
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depend on his or her belief about how others believe about what the others will believe and
act. Our notion of equilibrium selection thus builds on the concepts from epistemic game
theory literature. To prepare us for this notion, we first provide a very brief review of the
basics that serve as our building blocks.

3.2.1.1 Preliminaries

The basic uncertainty that each receiver i is facing comes from two sources: the underlying
state Ω and his opponents’ primitive types T−i, both assumed to be finite. We thus take
Ω×T−i to be the complete underlying set that summarizes all relevant basic uncertainty
receiver i cares about.

Remark III.1 (when “a primitive type” is private information about the state). In this case,
each receiver i’s utility is ui : Ω × A → R, the basic uncertainty is the underlying state
in Ω. Here, the primitive types τi can be interpreted as private information for updating
reciever i’s prior over Ω and thus will be reflected automatically on his first-order belief.

For any receiver i ∈ I, a first order belief is an element of T 1
i := ∆(Ω × T−i), and for

k ≥ 2, a k-order belief is an element of T ki := ∆(Ω × T−i ×
∏k−1

l=1 T
l
−i). Following

Brandenburger and Dekel (1993), an infinite hierarchy of beliefs ti = (t1i , t
2
i , ...) is coherent

if for every k ≥ 1, margTk−1
i

tki = tk−1
i , where margTk−1

i
denotes the marginal on the space

T k−1
i . A tedious calculation shows the common knowledge of coherency condition in

Brandenburger and Dekel (1993) is satisfied in our setting.

Denote by Ti the set of receiver i’s infinite belief hierarchies with Ti ⊆
∏∞

k=1 T
k
i that

satisfies the common knowledge of coherency condition, i.e., each receiver’s higher-order
beliefs are commonly known to be compatible with the lower-order beliefs. Note that
T ki and Ti, as spaces of probability measures on compact sets, are compact in weak*
topology.4

By Proposition 2 in Brandenburger and Dekel (1993) (or Theorem 2.9 in Mertens and
Zamir, 1985), there exists a homeomorphism ψi : Ti → ∆(Ω×T−i × T−i). Therefore, the
explicit and implicit approaches are equivalent and we can treat infinite belief hierarchies
as “universal types” (see Harsanyi, 1967). As such, we can consider the uncertainty over
belief hierarchies by universal types, and denote as ψi(ti) the associated belief of type ti
about the state and the universal types of the other players.

4See Mertens and Zamir (1985) or Brandenburger and Dekel (1993) for further details.
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We define the conjecture of each receiver i to be νi, which is an element in Vi := ∆(Ω×
T−i× T−i×A−i), modified from the literature to describe the perception of receiver i with
type τi about the joint distribution regarding the basic uncertainty (the underlying state and
others’ primitive types), others’ universal types and actions.

Definition III.2. For each receiver i , given any of his primitive type τi and universal type
tiτi ∈ Ti, his conjecture νiτi ∈ Vi is consistent with his belief ψi(tiτi) if, for each ω ∈ Ω,
τ−i ∈ T−i and measurable subset E−i ⊆ T−i,

νiτi({ω} × {τ−i} × E−i × A−i) = ψi(t
i
τi

)
(
{ω} × {τ−i} × E−i

)
.

Since a receiver with different primitive types may form different intermediary beliefs over
the basic uncertainty Ω × T−i, which could result in different conjectures even given a
same message by the sender. Thus we introduce the space of conjecture menus for each
receiver i, denoted as Ti × Vi, where νi is a generic element and νi :=

∏
τi∈Ti ν

i
τi

with
each νiτi the conjecture of receiver i with primitive type τi.

For each receiver i with primitive type τi, let Bi,τi(ν
i
τi

) be the corresponding set of re-
ceiver i’s mixed strategy best responses to conjecture νiτi and type τi. Given that receivers’
actions are finite, then we can view Bi,τi(ν

i
τi

) is a subset in R|Ai|. We are now ready to
introduce the notion of equilibrium selection in our model.

3.2.1.2 Equilibrium selection criteria

In our setting, how to select equilibrium is determined by how each receive will react based
on their information, which is considered an axiomatized element outside the receivers’
game. To formally describe such a selection, we borrow the insights from Jehiel (2005)
and Jehiel and Koessler (2008) and propose the notion of selection criteria. Specifically, a
selection criterion specifies (i) how to categorize each receivers’ conjectures into analogy
classes, and (ii) assign each class with a subset of selected actions.

The implicit assumption behind our notion is that each receiver with a similar interpretation
of information (summarized by conjectures) will behave similarly such that given their
conjectures, they will consider only a subset of all possible actions in playing the receivers’
game. A selection criterion thus gives explicit instructions on how to think about the
“similarities” of conjectures by bundling them into analogy classes and also which actions
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each class may take. This notion provides a simplified representation for the idea of
equilibrium selection which could bring tractability to describe the idea of equilibrium
selection in complex strategic situations.

Specifically, for each receiver i, a behavioral analogy class is a product set pi × Si with
pi ⊆ Vi and Si ∈ 2Ai . Let Pi be the set of all possible countable partitions on the conjecture
space Vi. Then we define a selection criterion as follows:

Definition III.3. A selection criterion ζ := (ζi)i∈I specifies a partition Pi ∈Pi for each
receiver i such that it is a collection of behavioral analogy classes induced by Pi for each
receiver i, i.e., ζi := {pi × Si(pi) for some Si(pi) ∈ 2Ai\{∅} | pi ∈ Pi}i∈I . Moreover, if
the above {Pi}i∈I satisfies #|Pi| <∞ for all i ∈ I, then the above ζ is a finite selection

criterion.

For any behavioral analogy class pi × Si, say an element (νi, αi) is in this behavioral
analogy class if νi ∈ pi and αi ∈ ∆(Si). A selection criterion selects a subset of equilibria
from any given set of equilibria by eliminating those unqualified. Specifically, given an
arbitrary signal, say a selection criterion ζ selects an equilibrium under this signal if for
each primitive type of receiver i and any equilibrium conjecture νi, its equilibrium action
αi is in the action set specified in ζi. Formally,

Definition III.4. Fix a selection criterion ζ = (ζi)i∈I . Given any signal (
∏

j∈IMj, π) and
an associated BNE σ∗ := (σ∗i )i∈I , let νπ,σ

∗

i (mi) be receiver i’s conjecture given message
mi ∈Mi under equilibrium σ∗. Then we say σ∗ survives the selection criterion ζ if for any
mi ∈Mi, the equilibrium conjecture-action pair (νπ,σ

∗

i (mi), σ
∗
i (mi, τi)) for each primitive

type τi is in some behavioral analogy class in ζi.

Our selection criterion helps to exclude unqualified equilibria, which, in the same vein as
the idea of equilibrium refinements literature, does not guarantee uniqueness. If multiple
equilibria survive this selection criterion, then we assume the tie-breaking rule is that the
sender could choose her preferred equilibrium among the survived ones.

Remark III.2. For exposition convenience, throughout the text, we will focus on the
selection criteria that apply to all receivers’ primitive types. The results can be modified in
a straightforward way to extend to the case where selection criteria could tailor the selection
to each each receiver primitive type.
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We now introduce an important class of selection criteria that we work with throughout the
paper. First let us introduce the concept of regular sets.

Definition III.5 (regular boundary). A set S̃ in a topological space X has a regular

boundary if there exist finitely many continuous functions fj : X → R for j = 1, 2, ..., N

such that the closure of X̃ is ∩Nj=1f
−1
j ([0,∞)).

Figure 3.1 provides three explicit examples to illustrate the above concept.

The boundaries of the above sets are defined by finitely many continuous functions.

Figure 3.1: Sets with regular boundaries

Definition III.6 (regular selection criterion). A selection criterion ζ := {pi × Si(pi) with
Si(pi) ∈ 2Ai | pi ∈ Pi}i∈I is regular provided that each pi ∈ Pi is a convex set with a
regular boundary in Vi for any i ∈ I.

For visualization, we present two examples of regular selection criteria in Figure 3.2: we
use a rectangle to represent the entire conjecture space for an individual receiver, and the
partition of the conjectures as to the partition of the rectangle. We also associate each
selected action set specified by the criterion with its partition component.

For non-regular selection criteria, it is possible to transform them into regular selection cri-
teria via further partitioning on their partition components. Our results are thus immediately
applicable to these types of non-regular selection criteria.

3.2.1.3 Some examples of equilibrium selections in the literature

In the following, we provide four examples to illustrate how the notion of selection criteria
could describe some common equilibrium selection we have seen in the literature.
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{a1, a2}

{a4}
{a2}

{a5, a3}

{a5}

{a1}

{a4}

{a1}{a3, a5}{a2}

{a2, a4, a5}

{a3}

{a5}

Let action set be A := {a1, ..., a5}. In the left rectangle of this figure, we can see that the selection
criterion associates the actions {a1, a2} to the partition component in the upward left corner.
Similarly, this criterion associates action a1 with the partition component in the upward right corner
of the same rectangle. The right rectangle presents another regular selection criterion.

Figure 3.2: Regular selection criterion

Example III.1 (sender-preferred). The most well-known selection rule in the Bayesian
persuasion literature is the sender-preferred selection, as introduced in Kamenica and
Gentzkow (2011). Under this selection, the sender could pick any equilibrium she prefers.
The trivial selection criterion {Vi × Ai} that imposes no restriction on the equilibrium will
always describe the idea that the sender could always select her preferred outcome.

Example III.2 (sincere voting). Building on the empirical evidence that voters derive
utility from expressing support for one of the candidates in large elections, it is common to
adopt the sincere voting rule to predict the election outcomes (see, for instance, Alonso and
Camara 2016b and Titova 2021). Our notion can capture such a selection directly. Suppose
the underlying state is binary θ ∈ {L,R}, and a sender would like to persuade a set I of
voters, each with a binary action {Y,N}, to pass a law. Let ui be the utility function for
each voter i. The sincere voting rule requires each voter to select “Y” if and only if given
the sender’s message, to pass the law is better than not to pass under its posterior belief.

Suppose the law will pass if all voters vote Y and will not pass if all voters vote N . Let ρVi
be a subset of voter i’s conjecture space such that

ρVi := {vi ∈ Vi | Emarg∆(Ω) vi [ui(Y
I , θ)] ≥ Emarg∆(Ω) vi [ui(N

I , θ)]},

where marg∆(Ω) vi is the projection of vi on ∆(Ω). The following selection criterion can
capture the sincere voting rule: {ρVi × {Y }, (Vi\ρVi )× {N}}i∈I .

Example III.3 (sender-worst). One way to think about sender-worst selection, borrowing
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the idea from the global game literature, is to select the action profile such that each action
is uniquely rationalizable given the corresponding agent’s belief hierarchies. For illustration
purposes, we consider the application in Mathevet et al. (2020) and describe it using the
notion of selection criteria.

The underlying state θ takes a binary value {−1, 2}. There is a sender who could like to
persuade two receivers with binary action {I,N} to take action I as much as possible. Re-
ceivers would take action I if action I is uniquely rationalizable given his belief hierarchies.
Mathevet et al. (2020) characterize the set of belief hierarchies for each receiver i, denoted
as ρi, under which action I is uniquely rationalizable. Let ρVi be a subset of Vi for receiver i
such that

ρVi := {vi ∈ Vi | ψ−1
i

(
marg∆(Ω×T−i) vi

)
∈ ρi},

where ψi : Ti → ∆(Ω × T−i) is the homeomorphism. Then the selection criterion
{ρVi × {I}, (Vi\ρVi )× {N}}i=1,2 captures the sender-worse selection in this example.

Example III.4 (skeptical posture). In a seller-buyer context, Milgrom and Roberts (1986)
capture the sophisticated buyer’s behavior in the equilibrium selection with the notion
“skeptical posture”. In particular, a buyer exhibits a skeptical posture if he always chooses a
belief that minimizes the purchased quantity among all possible beliefs given the seller’s
information. Our notion of selection criteria is also useful to formally describe such a
skeptical buyer’s purchase behavior.

Consider the setting of one seller and one buyer where the seller owns products with
unknown quality x that takes finitely many values X := {x1, x2, ..., xN} with x1 < x2 <

... < xN . Let A := {q(xn)}n=1,...,N be all possible purchase quantities such that if the
buyer knows the quality is xn, then the quantity q(xn) is the best choice. Moreover, the
quantities satisfy that q(x1) < q(x2) < ... < q(xN). In this case, the conjecture of the
buyer degenerates to his belief over X . Let ∆(X) be the space of the buyer’s all possible
beliefs. Define φ̃ : ∆(X) → {q(xn)}n=1,...,N such that φ̃(µ) = minx∈suppµ q(x) for any
µ ∈ ∆(X). Then the selection criterion{

φ̃−1(q(x1))× {q(x1)}, φ̃−1(q(x2))× {q(x2)}, ..., φ̃−1(q(xN))× {q(xN)}
}

captures the behavior of a skeptical buyer in such a setting.
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3.3 Main Results

3.3.1 Canonical Signals

To tackle the information design problem with private signals, we introduce a convenient
representation for arbitrary signals, which we call the canonical form. Let M c

i := Ti×Vi×
∆(Ai) be the product space of each receiver i’s conjectures and actions across its possible
primitive types. Intuitively, each element mi ∈M c

i is a menu of recommended conjectures
and types for each possible primitive types (“menu”) for this receiver. Let M c :=

∏
i∈IM

c
i

be the product of such recommendations across all possible receivers.

Definition III.7 (canonical signal). A signal is canonical if it is a pair (M c, πc) such that
for each receiver i who gets message

∏
τi∈Ti(τi, ν

i
τi
, αiτi), given all other receiver complying

with their recommendations, each primitive type τi finds its recommended conjecture νiτi
in the menu consistent with that derived from the Bayes’ rule under π, and αiτi is a best
response given νiτi .

Intuitively, a canonical signal is a direct private recommendation to each receiver primitive
type about their posterior conjecture and action such that, believing others’ compliance,
each receiver primitive type will comply.

Recall that the standard definition of any equilibrium outcome is its induced joint distri-
bution of state and action profiles. With this definition, however, the heterogeneity of
players’ priors may lead to different understanding among players given any equilibrium.
The following definition we introduce is stronger than the standard version, which avoids
such inconsistency. For any signal (M,π) and any associated Bayesian Nash equilibrium
σ, we define OM,π as its equilibrium outcome where OM,π : Ω × T → ∆(A) such that
OM,π(ω, τ) =

∑
m∈M σ(m, τ)π(m | ω) for each ω ∈ Ω and τ ∈ T. Moreover, we say two

equilibrium outcomes O1 and O2 are the same if and only if O1(ω, τ) = O2(ω, τ) for any
ω and τ . We are now ready to introduce our first proposition.

Proposition III.1. Fix an arbitrary regular selection criterion ζ. For any signal (M,π)

and any associated Bayesian Nash equilibrium σ that survives ζ, there exists a canonical

signal in which the direct recommendations constitute a BNE that survives ζ and achieves

the same outcome as that under σ given the signal (M,π). Therefore the sender’s expected

payoff remains the same under both signals.
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The intuition of the proof is as follows: Consider an arbitrary signal s := (M,π) that
induces a Bayesian Nash equilibrium σ surviving rule ζ . We could construct its canonical
counterpart sc := (M c, πc) such that for each message the signal s sends to receiver i at any
state, its canonical counterpart sc sends the corresponding menu of posterior conjectures
and action recommendations with the same conditional probability at that state. This
canonical implementation pools each set of messages that induce an identical menu of
conjecture and action recommendations into a single message. We then verify such a
pooling does not change the resulted menu of conjecture and action. Thus the resulted
signal (M c, πc) is canonical. Moreover, given that the original equilibrium survives the
rule ζ and the two signals have identical conjectures and actions in the equilibria, the
equilibrium recommended by (M c, πc) would survive ζ as well. The preservation of the
equilibrium outcomes also follows directly.

3.3.2 Countable canonical signals

The literature has established that, if the equilibrium selection differs from the sender-
preferred one, the optimal signal may have uncountably many messages even with finitely
many underlying states.5 Our first result shows that, with a regular selection criterion,
we can focus on canonical signals without loss of generality. We will consider pure
strategy BNEs to avoid exposition complications. To simplify the structure of canonical
signals further, we investigate when it is without loss of generality to consider canonical
signals with at most countably many messages. Formally, a canonical signal is a countable

canonical signal if the support of its conditional distribution on each realized state is a
countable set. Our second main result provides a sufficient condition for the equilibrium
selection that allows restricting one’s attention to countable canonical signals.

3.3.2.1 From uncountable to countable messages: the result

To formally present such a condition, let us first introduce the following preliminary notions.
Let Mp,c

i := Ti × Vi × Ai be the space that consists of all possible recommended menus
for each receiver i. Denote Mp,c to be the product across receivers Mp,c :=

∏
j∈IM

p,c
j .

Let
M := ((∆(Ω×T))I × (∆(T))Ω × (∆(Mp,c))Ω

5For example, Ali et al. (2021) show that, under the adverse equilibrium selection, there is a continuum of
messages in the optimal information structure even though the underlying state is of binary values.
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be the set that collects all possible combinations of receivers’ prior belief profile, the
Nature’s rule and the sender’s signal with the message space Mp,c. Denote M c ⊆M as
the largest subset such that for any ((µj)

I , πN , π) ∈M c, π is a canonical signal given the
prior (µj)

I := (µj)j∈I and the Nature’s rule πN assuming receivers’ obedience.

Let B(Vj) be the set of all Borel measurable subsets of Vj for each j ∈ I. To simplify the
exposition, we define the following correspondence

Λ : (∆(Mp,c))Ω × ∪j∈I(B(Vj)× Aj)Tj � (∆(Mp,c))Ω (3.1)

such that for any
(
π, (Sτj , aτj)

Tj
)

with (Sτj , aτj)
Tj := (Sτj × {aτj})τj∈Tj for some j ∈ I,

define Λ(π, (Sτj , aτj)
Tj) to be a subset of (∆(Mp,c))Ω in which each signal is the same as

π except that it replaces all the messages within (Sτj , aτj)
Tj in π with a uniquely distin-

guishable message for receiver j. Building on this correspondence, define the following
mapping

χi : (Vi × Ai)Ti ×M × ∪j∈I((B(Vj))
Tj)× ∪j∈I((Aj)Tj)→ (Vi)

Ti

such that for each ((vτi , aτi)
Ti , (µj′)

I , πN , π, (Sτĵ)
Tĵ , (aτj)

Tj):

if ((µj′)
I , πN , π) ∈M c and ĵ = j, i.e., (Sτj , aτj)

Tj ∈ (B(Vj)× Aj)Tj , then define

χi((vτi , aτi)
Ti , (µj′)

I , πN , π, (Sτĵ)
Tĵ , (aτj)

Tj)

to be receiver i’s correct conjecture menu of getting message (vτi , aτi)
Ti under any signal

in Λ(π, (Sτj , aτj)
Tj) given all receivers’ obedience; for any other case, define

χi((vτi , aτi)
Ti , (µj′)

I , πN , π, (Sτĵ)
Tĵ , (aτj)

Tj) := (vτi)
Ti .

Building on the above χi, define the following correspondence

Υi : (Vi)
Ti × ∪j∈I((B(Vj))

Tj)� (Vi)
Ti
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such that for each pair ((vτi)
Ti , (Sτj)

Tj) with (Sτj)
Tj ∈ (B(Vj))

Tj for some j ∈ I:

Υi((vτi)
Tj , (Sτj)

Tj) :=χi((vτi , aτi)Ti , (µj′)I , πN , π, (Sτj)Tj , (aτĵ)Tĵ) |
(aτi)

Ti ∈ (Ai)
Ti

((µj′)
I , πN , π) ∈M c

(aĵ)
Tĵ ∈ (Aĵ)

Tĵ ,∀ ĵ

 .

We are now ready to introduce the sufficient condition, which requires stability in the
equilibrium selection.

Definition III.8 (stability). Given a regular selection criterion ζ := (ζi)i∈I , let P := (Pi)i∈I

such that each Pi is the partition of the conjecture space specified by ζi for each receiver i.
Let B̃(P ) := ∪j∈I{(Sτj)τj∈Tj | Sτj ⊆ B(pj), pj ∈ Pj}, where B(pj) is the set of all Borel
measurable subsets of pj for each j ∈ I. Say ζ is stable provided that for any receiver i
and any menu of partition components (pτi)

Ti := (pτi)τi∈Ti ∈ (Pi)
Ti , if a conjecture menu

(vτi)
Ti ∈ (pτi)

Ti , then Υi((vτi)
Ti , S) ⊆ (pτi)

Ti for any S ∈ B̃(P ).

Intuitively, if a regular selection criterion ζ is stable, then for each receiver, coarsening any
receiver’s information within the partitions in ζ will not change his conjecture’s partition
location in any possible cases. Such stability brings tractabilities, and we can often construct
stable selection criteria to describe equilibrium selections commonly seen in the literature.
In particular, all selection criteria in Section 3.2.1.3 satisfy this condition. We will revisit
some of these examples in our application section.

Proposition III.2. Fix an arbitrary stable regular selection criterion ζ . For any canonical

signal (M c, πc) which recommends a pure strategy BNE σ that survives ζ, there exists a

countable canonical signal πs which recommends a pure strategy BNE that survives ζ and

achieves the same outcome as that under σ and (M c, πc). Therefore the sender’s expected

payoff remains the same under both signals.

In the following, we will illustrate how to construct a countable canonical signal based on a
given canonical signal which preserves the sender’s expected payoff under a stable regular
selection criterion. Such a construction will further provide a tractable way to compute the
optimal signal in our setting.

56



3.3.2.2 From uncountable to countable messages: the construction

First let us introduce the concept of strategic partitions. Recall that Bi,τi(ν
i
τi

) is the set of
mixed strategy best responses to conjecture νiτi of receiver i with primitive type τi.

Definition III.9 (strategic partition). Given a realized primitive type τi of receiver i, a

strategic partition ξi(τi) for τi is the following special behavioral analogy classes such that

ξi(τi) := {pi × Si ⊆ Vi × (2Ai\{∅}) | νi ∈ pi iff Bi,τi(νi) = ∆(Si)}.

The strategic partition is a special family of behavioral analogy classes that captures
Bayesian incentive compatibility for receiver i with the given primitive type. Specifically,
such partition is based on different forms of the complete set of best responses. We
will further define a partition finer than the strategic partition by taking both the selection
criterion and the Bayesian incentive compatibility into consideration at the same time.

Definition III.10 (ζ-strategic partition). Given a regular selection criterion ζ , let ζi ∩ ξi(τi)
be the ζ-strategic partition for receiver i with τi, where

ζi ∩ ξi(τi) :=

pi × Si ⊆ Vi × 2Ai |
∀ pi × Si, ∃ two behavioral analogy classes
p1
i × S1

i ∈ ξi(τi) and p2
i × S2

i ∈ ζi
s.t. Si = S1

i ∩ S2
i 6= ∅, pi = p1

i ∩ p2
i

 .

In the Appendix, Section B.1.1, we will provide an example to illustrate both strategic
partitions and ζ-strategic partitions in the context of disclosing stress test results.

Given any regular selection criterion ζ , for any receiver i, say any product across primitive
types for their ζ-strategic partition components is a ζ-strategic partition component menu

for this receiver (“partition menu” for short). Let Γi be the collection of all such partition
menus, i.e.,

Γi := {(τi, pτi × Sτi)τi∈Ti | pτi × Sτi ∈ ζi ∩ ξi(τi)}.

Before we introduce our key lemma in this section, let us first introduce two correspondences
to simplify notations. Let S((∆(Mp,c))Ω) be all possible subset of (∆(Mp,c))Ω. Given the
correspondence Λ in the previous section (see Equation (3.1)), we define the following
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correspondence

Λ : S((∆(Mp,c))Ω)× ∪j∈I(B(Vj)× Aj)Tj � (∆(Mp,c))Ω (3.2)

such that for any
(
Ss, (Sτj , aτj)

Tj
)
,

Λ
(
Ss, (Sτj , aτj)

Tj

)
:= ∪π∈Ss

(
Λ
(
π, (Sτj , aτj)

Tj

))
.

Based on the above Λ, we can define the following correspondence

Λ̂ : (∆(Mp,c))Ω × ∪j∈I(B(Vj)× 2Aj)Tj � (∆(Mp,c))Ω (3.3)

such that for any
(
π, (Sτj , S

A
τj

)Tj
)

, define Λ̂(π, (Sτj , S
A
τj

)Tj) to be the resulted set after

iteratively applying Λ to the result of its previous round with (Sτj , aτj)
Tj for an aτj ∈

(SAτj)
Tj that has not been used by all the previous rounds until we exhaust such possibility of

getting a new aτj ; moreover, such iteration will start from an initial set Λ
(
π, (Sτj , a

0
τj

)Tj
)

with some a0
τj
∈ (SAτj)

Tj . Intuitively, each Λ̂(π, (Sτj , S
A
τj

)Tj) is a subset of signals in
which each member is the same as π except that, for each (aτj)τj∈Tj ∈ (SAτj)τj∈Tj , it
replaces all the messages within (Sτj , aτj)

Tj in π with a uniquely distinguishable message
for receiver j.

The basic idea of reducing the number of messages from uncountably many to countably
many is via pooling them in a countable way. The following proposition, based on the above
notions, provides further guidance on how to pool messages without affecting receivers’
behaviors under the given equilibrium selection.

Proposition III.3. Fix an arbitrary stable regular selection criterion ζ and any canonical

signal (M c, πc) which recommends a pure strategy BNE σ that survives ζ . For any receiver i

and an arbitrary partition menu (τi, pτi × SAτi)τi∈Ti , consider any πm,i ∈ Λ̂(π, (pτi ×
SAτi)τi∈Ti). Then there exists a pure strategy BNE under the signal (M c, πm,i) that survives

ζ and achieves the same outcome as that under σ and (M c, πc).

Intuitively, the above proposition says that, the sender could simplify any canonical signal
by arbitrarily choosing a receiver i and a partition menu (τi, pτi × Sτi)τi∈Ti such that: if the
realized message induces a conjecture in the chosen partition component for each receiver i’s
primitive type τi, the sender will inform this receiver only the message’s partition location
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(for each τi) and the action recommendation menu; otherwise, the sender will fully inform
him the exact message (conjecture-action recommendation menu). Say (τi, ντi , aτi)τi∈Ti is
a sample of the above partition menu if (τi, ντi , aτi)τi∈Ti ∈ (τi, pτi × Sτi)τi∈Ti . Moreover,
say M c,s

i is a sample collection of receiver i if, given each action recommendation menu
(aτi)τi∈Ti , it collects a unique sample for each element (τi, pτi × Sτi)τi∈Ti that satisfies
(aτi)τi∈Ti ∈ (Sτi)τi∈Ti in collection of partition menus Γi.

s7 s11

s9s8

s17

s18

s1

s16

s2

s13

s14

s15

s12

s3

s4

s10

s5

s6

To make the illustration clean, we present the sample for a single receiver primitive type only (and
omit all the associated action sets). The ζ-strategic partition for a given receiver primitive type
divides its conjecture space into finitely many regular sets. The above partition on a rectangle is an
analogy of such a partition. In particular, black lines represent the partition induced by the selection
criterion; blue lines represent the partition induced by the strategic partition, and the grey areas
represent those components of which the associated action set is empty. Then the collection of
points {s1, ..., s18} is a sample of the given partition (of the conjectures), with each si corresponding
to a unique action in its associated set. As shown in the top left component, a behavioral analogy
class may have multiple representative elements since it is associated with more than one action. A
sample collection thus collects samples defined above across receiver primitive types.

Figure 3.3: A sample of a partition menu

We can further extend the argument of Proposition III.3 to any receiver and any set of
menus of ζ-strategic partitions by pooling messages based on all possible combinations
of this receiver’s partition menus and action recommendation menus, and we will have at
most countably many such combinations. This extended argument, subject to a canonical
transformation, concludes Proposition III.2 that it is without loss of generality to focus on
canonical signals with countably many messages. Moreover, we have a shaper result that it
is without loss of generality to focus on canonical signals with their message space a sample
collection for each receiver. This result could provide a way to compute the optimal signal
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in our setting. Figure 3.3 further provides a graphic demonstration of what it looks like for
a canonical signal to use a unique sample for each menu in Γi for each receiver i.

3.4 Application

This section is to demonstrate how one could use the insight of the proof of Proposition III.2
to solve complicated persuasion problems. In particular, we present the following two
applications in which the equilibrium selection is different from the sender-preferred
one, and receivers are either privately informed about their preference (application 1) or
the underlying state (application 2). Given these nonstandard features, existing standard
approaches are not applicable for these applications.

3.4.1 Application 1: persuading voters to vote

The presidential election in the United States always attracts enormous attention from
all over the world. The literature points out that political parties may sway the election
outcome by employing targeted advertising, which allows private communication to voters.
In particular, political targeted advertising not only tries to solicit support from voters
but also persuade them to register and vote. As observed, the turnout rates of the past
elections are not very high (see Figure 3.4). Thus a political candidate who could persuade
a significant amount of the no-turnout voters to vote for them may secure a winning
position.

In this application, we consider a political voting game with target advertising where
a politician (“the sender”) wants to improve the voter turnout rate as well as the votes
supporting her proposal. The focus is to understand the optimal advertising scheme in this
setting.

There are four possible states of the world: Ω := {1, 2, 3, 4}. A politician proposes a
legislative bill to 3 voters.6 These voters will jointly determine whether to adopt the bill.
All voters have three actions A := {Yes (“Y”), No (“N”), Absentee (“E”)}. The social
choice X(a) is the majority rule such that the bill is passed as long as there are at least 2

voters voting for its adoption: X(a) = 1 if at least 2 voters vote “Y”; otherwise X(a) = 0.

6To consider only three voters is for exposition elegance. One may interpret them as representative voters,
who in fact represent many voters with similar or even identical preference in the game.
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Note that even at the highest point, the actual turnout rate is a mere 66.8 percent. See more in
https://www.census.gov/library/stories/2021/04/record-high-turnout-in-2020-general-election.html.

Figure 3.4: The record of the turnout rate for general elections from 2000 to 2020

Let action profile be a := (ai)
3
i=1. The payoffs of each voter are specified as follows: if the

law is not adopted, i.e., X(a) = 0, then ui(a, ω) ≡ 0 for all voters. If the law is adopted
(i.e., X(a) = 1), then

u1(a, ω) =


1 ω = 1

0 ω = 3

−1 otherwise

Receiver 1’s payoff

u2(a, ω) =


1 ω = 2

0 ω = 4

−1 otherwise

Receiver 2’s payoff

Receiver 3 is a swing voter who has a type τ ∈ T := {1, 2}, each realized with 1
2

probability,
such that u3(a, τ, ω) = uτ (a, ω) for any τ ∈ T. The politician earns a payoff of 1 if X = 1

regardless of the true state. It is common knowledge that everyone is Bayesian rational
with a common prior µ0 = (1

4
, 1

4
, 1

4
).

Equilibrium selection: each individual voter will cast its vote if and only if it believes that
of at least 50 percent it is a pivotal voter. In such a case, an individual voter will vote Y as
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long as Y is its weakly best response.7

3.4.1.1 Solution

We will first present two benchmark cases: no information and full information.

No information: Given the common prior is µ0 = (1
4
, 1

4
, 1

4
), whoever pivotal will only vote

N. Hence regardless of each receiver’s belief about whether they are pivotal or not, the bill
will not pass will probability 1.

Full information: Suppose the sender must fully reveal the state. Note that, when ω ∈
{1, 3}, receiver 1 and 3 of type 1 will vote Y and they are the only supporters; and
ω ∈ {2, 4}, receiver 2 and 3 of type 2 will vote Y and they are the only supporters. Note
that receiver 3 is equally likely to be either type 1 or type 2. Thus, by providing appropriate
coordination in the message, the maximum payoff sender could achieve by fully revealing
the state is 1

2
.

Now we are ready to present the optimal advertising scheme derived from our approach,
and place all the details in the Appendix, Section B.3.1.

Optimal advertising scheme: By applying our approach, one can find a deterministic
optimal signal that gives the sender a payoff of 1. This optimal signal is present in the
following table:

voter 1 voter 2 voter 3

state 1 c1,Y c2,E c3,Y Y

state 2 c1,E c2,Y c3,Y Y

state 3 c1,Y c2,Y c3,EE

state 4 c1,Y c2,Y c3,EE

We can interpret voters’ beliefs and actions under the above signal as follows: for voter 1,
whenever he gets a private message c1,E , he is sure that the state is 2 and both voter 2 and 3

(both types) will vote Y . Hence voter 1 is not pivotal and he will be absent from voting. For

7Given that each individual will only express its view if it believes its opinion determines the outcome of
at least 0.5 probability, the equilibrium selection in this setting implies that each voter, if he ever votes, is
sincere (the sincerely voting rule).
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the rest situation voter 1 will get private message c1,Y , in which situation he believes that
with probability 1

3
, the realized state is 1 and voter 2 will be absent but voter 3 (both types)

will vote Y and with probability 2
3
, the realized state is either 3 or 4 with equal chance,

and voter 3 (both types) will be absent but voter 2 will vote Y . So in both cases, voter 1 is
pivotal and he will vote Y as well. Note that under state 4, voter 1’s utility of passing the
bill is actually −1. Nevertheless, the sender strategically pools this unfavorable state with
favorable states 1 and 3 in a way that voter 1 finds it weakly better to vote Y . The beliefs
and actions of voter 2 and 3 under the above signal can be interpreted similarly.

3.4.2 Application 2: Stress Test Minimizes Bank Run

Let ω be the bank’s fundamental value, which is −1 if the state of the bank is low and is 2

if it is high, i.e.,
ω ∈ Ω := {−1 (“L”), 2 (“H”)}.

A policymaker (“player 0”) is conducting a stress test for the bank to get information
regarding ω, the result of which will be privately informed to two major investors in
the financial market. Among them, investors 1 has his independent private information
resources regarding the state of the bank, which is commonly known to be a signal πN

committed by Nature that sends a private message of either {h, l} with precision 2
3

to
investor 1, that is, πNi (h|H) = πNi (l|L) = 2

3
. Based on their information, the two receivers

will then decide whether to run on the bank or wait, i.e., a1, a2 ∈ A := {R,W}. Receivers’
payoff matrix is as follows.

(u1, u2) W R

W (ω, ω) (ω − 1, 0)

R (0, ω − 1) (0, 0)

Regardless of the state, the policymaker strictly prefers receivers to wait. We specify
her utility as v(W,W ) = 2, v(W,R) = v(R,W ) = 1 and v(R,R) = 0. All players
share a common prior µ0

i :=Prob({ω = H}) = 0.3, i ∈ {0, 1, 2} at the beginning of the
game.

The timeline of this game is as follows: (i) The policymaker designs and commits to a
stress test π; (ii) Investor 1 receives his private information from Nature under πN and
updates his prior µ0

1 to an intermediate belief; (iii) The test result is realized and private
messages are sent to receivers; (iv) Investors observe their private message(s), update their
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belief accordingly, and take actions that maximize their expected payoff.

Moreover, if there are multiple equilibria, then one of the worst equilibria for the policy-
maker is selected. This example is a substantial extension of the application in Mathevet
et al. (2020). Indeed, by allowing receivers to have extra information from Nature, the
sender’s ex ante expected payoff in this case lies strictly within the corresponding convex
hull and thus the concavification method does not apply.

3.4.2.1 Solution

Given that only investor 1 has private information, denote investor 1’s intermediary belief
as µ0

1|τ1 := Pr({ω = H | τ1}) for any τ1 ∈ {h, l}. We first present two benchmarks: no
information and full information.

No information: Without persuasion the policymaker gets 0: Investor 1’s intermediate
belief will be either µ0

1|h = 6
13

(if he receives message h) or µ0
1|l = 3

17
(if he receives

message l).8 Investor 2 has no private information with prior µ0
2 = 0.3. Thus the worst

equilibrium is both receivers run on the bank.

Full information: Note that the dominant strategy for each investor is R under state L
and W under state H . Thus the policymaker can guarantee both players to wait when the
underlying state is high. With the truth-telling stress test, the policymaker gets an expected
payoff of 0.6.

We present the optimal stress test scheme derived from our approach below with all the
details placed in the Appendix, Section B.3.2.

8The explicit calculation of the intermediate belief of receiver 1 is as follows: upon receiving message h,
receiver 1 will update his belief to µ0

1|h with

µ0
1|h =

µ0
1 · πN (h|H)

µ0
1 · πN (h|H) + (1− µ0

1) · πN (h|L)
=

6

13
;

upon receiving message l, receiver 1 will update his belief to µ0
1|l with

µ0
1|l =

µ0
1 · πN (l|H)

µ0
1 · πN (l|H) + (1− µ0

1) · πN (l|L)
=

3

17
.
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Optimal stress test scheme:

To design an algorithm, we will restrict to finitely many orders of belief hierarchies and
consider the maximum belief orders up to K. As we increase such maximum belief order
K, the policy maker’s payoff also increases, since the optimal signal can take more and
more belief hierarchies into account. The following Figure 3.5 shows that the policymaker’s
maximum expected payoff is converging to ≈ 1.1762 as K increases. We can see that the
persuasion gain is exhausted at the third-order belief hierarchies.

This figure shows the policymaker’s maximum expected payoff from persuasion increases as the
maximum belief order increases. Especially, the persuasion gain is exhausted at the third-order
belief hierarchies.

Figure 3.5: Sender’s gain increases as the maximum belief order K increases

Figure 3.6 further presents the detailed distribution of actions induced by the optimal stress
test scheme when K = 3.

3.5 Discussions

3.5.1 Psychological receivers

Our result can be extended naturally to the setting where receivers have psychological
preferences. Borrowing the modeling choice in Geanakoplos et al. (1989), a psychological
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The figures show the distributions of joint actions induced by the optimal signal when the realized
state is H (left) and L (right). On the x-axis, each action profile is labeled in the following way:
(ah, al, a2), where we aggregate the probability over messages according to their recommended
action profile.

Figure 3.6: Distribution of joint actions induced by the optimal signal

receiver i’s payoff not only depends on everyone’s action but also on what everyone thinks
(reflected in his belief hierarchies): ui : Ti × A→ R, i ∈ I. Unlike the case of expected
utilities, we may need extra regularity assumption for receivers’ preference since, the
psychological preference may not guarantee the regularity of the induced strategic partition.
Under additional regularity assumption, we can then modify our proof and our main insight
remains the same in this setting.

To illustrate how to apply our insight to psychological games, we will consider an example
with a single psychological receiver. In such a setting, Lipnowski and Mathevet (2018)
provide a counterexample that the analogous revelation principle fails and the straightfor-
ward signal may be suboptimal. The following example is inspired by their work, where
Lipnowski and Mathevet (2018) consider the case when the sender’s utility is reduced
from the receiver’s utility function while our example allows the sender’s preference to be
misaligned with the receiver’s. This example provides a simple demonstration of how to
determine an optimal signal with a psychological receiver using our approach.

Example III.5. A sender and a psychological receiver are present in an uncertain environ-
ment, where the underlying state Ω and the action space A are specified as Ω = A = {0, 1}.
Players have a common prior µ0

s(ω = 1) = µ0
r(ω = 1) = 0.5. Let µ indicate the probability

that the receiver believes the underlying state ω = 1. The receiver’s utility is described as
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follows

u(a, µ, ω) =

sin(10µ) a = ω = 1

0 otherwise
.

The sender earns a payoff of 1 if the receiver takes action a = 1 regardless of the state, and
0 otherwise. This example adopts the sender-preferred selection, thus it is regular and stable.
Given that there is only one receiver, we can focus on first-order belief only rather than the
entire belief hierarchies. Whenever his posterior belief lands on the region (0, π

10
)∪ (π

5
, 3π

10
),

the receiver will take action 0; otherwise he will take action 1. In particular, the receiver is
indifferent between action 0 and 1 whenever his belief is in {0, π

10
, π

5
, 3π

10
}.

This figure shows the receiver’s utility is positive when his (posterior) belief µ ∈ (0, π10) ∪ (π5 ,
3π
10 ).

These two regions are thus incentive compatible with respect to action a = 1.

Figure 3.7: Incentive Compatible Regions Supporting Receiver’s Action a = 1

To apply our insight to this example, we need to define a regular strategic partition. One
such version will be as follows:{

(0,
π

10
)× {1}, (

π

5
,
3π

10
)× {1},

{0} × {0, 1}, { π
10
} × {0, 1}, {π

5
} × {0, 1}, {3π

10
} × {0, 1},

(
π

10
,
π

5
)× {0}, (

3π

10
, 1]× {0}

}
.
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Given the sender-preferred selection, the ζ-strategic partition (and its associated collection
of partition menus) is also the strategic partition itself. By slightly extending the proof
of Proposition III.2 to this setting, we can show it is sufficient to focus on canonical
signals with their message spaces a sample collection of the above ζ-strategic partition. A
straightforward calculation shows that the optimal canonical signal uses only two messages
{0.3} × {1} and {2

3
} × {1}, with the following structure:

π({0.3} × {1}|ω = 1) =
3

11
; π({0.3} × {1}|ω = 0) =

7

11
.

Under this signal, with probability 4
9
, the receiver updates to the posterior belief µ1

r(ω =

1) = 0.3 and with probability 5
9

he updates his posterior belief to µ2
r(ω = 1) = 0.66. Thus

it guarantees the sender a payoff of 1.

Note that the analogous revelation principle result still fails in our example: by replacing
the messages in the above signal π with its recommended action, then π reduces to an
uninformative signal, and the receiver will take action 0 under his prior 0.5, leaving the
sender a payoff of 0.

3.5.2 Extending to public persuasion

The insight of our main result can be extended to the setting where the sender’s signal is
observed publicly by adding the extra constraint that the messages that everyone receives
must be the same. Moreover, higher-order beliefs more than second-order do not play
an important role here since the realized posterior belief for each receiver is common
knowledge in the public persuasion setting. Thus one could reduce the message space in
such a setting to the space of ∆(Ω × T 1

−i × A−i) for each receiver i and apply the same
techniques we derive previously.

A different form of public persuasion problem may be that the realized outcome is deter-
mined by some nonlinear social choice rule, such as the scoring rules, single transferable
vote, plurality with run-off, etc. However, if one could incorporate the social choice into
receivers’ utility with which receivers’ transformed utility directly depends on the action
profile, then we can transform these problems into the standard public persuasion setting
and solve it with our approach.
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3.5.3 Why not define selection criteria on belief hierarchies?

Our notion of selection criteria is defined on conjectures. An alternative candidate of such a
notion could be to define the selection criterion on the space of coherent belief hierarchies
or universal types. Compared to our current version, however, this candidate may have
the limitation of failing to capture the benefit of using redundant belief hierarchies as a
correlating device for the sender’s benefit.9

To see this point more clearly, we provide the following example which shows that the
selection criterion in our setting captures the strategic relevance brought by redundant types
but the above alternative definition does not.

Example III.6. There is no uncertainty, i.e., underlying state space is Ω = {ω}. A sender
(the social planner) is present in a society consisting of two receivers, each endowed with
an action set Ai = {L,R}, i ∈ {1, 2}. The sender’s payoff is the sum of all receivers’
payoffs, i.e., us(ω, a1, a2) = u1(ω, a1, a2) + u2(ω, a1, a2), and the sender could commit to
a private signal. Receivers’ payoff matrix is described below.

ω, (u1, u2) L R

L (6,6) (1,8)

R (8,1) (0,0)

It is known that there exist three Nash equilibria (L,R), (R,L) and (1
3
L+ 2

3
R, 1

3
L+ 2

3
R)

under any signal. There exists a signal which recommends a correlated equilibrium (a BNE
under this signal) as follows:

π((L,L)|ω) =
1

5
, π((L,R)|ω) =

2

5
, π((R,L)|ω) =

2

5
.

Suppose that we define the selection criterion on universal type space (i.e, associate the
selected action set to partition components on the universal type space). Under this signal
with the degenerated universal type, then we can only select one of the Nash equilibria in
this example. By defining the selection criterion on conjectures, we can find a selection

9This point has been raised in Dekel et al. (2007) with a remark that “redundant types can serve as a
correlating device, and so these types are not truly “redundant” unless the addition of correlating devices has
no effect”.
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criterion ζ that selects the above correlated equilibrium, which is specified below:{
{δR} × {R}, {δL} × {R}, {

2

3
δR +

1

3
δL} × {L},

{bδR + (1− b)δL |
2

3
< b < 1} × {L}, {bδR + (1− b)δL | 0 < b <

2

3
} × {R}

}
.

3.5.4 On the relation of the two well-known approaches

There are two major approaches in the information design literature: the concavification
method and the direct approach with signal recommending actions. We provide a brief
discussion about how our method relates to these well-known approaches.

The concavification method, proposed by Kamenica and Gentzkow (2011), and generalized
by Mathevet et al. (2020), is based on a nice geometric transformation that relaxes the in-
centive compatible constraint to a necessary condition (the Bayes plausible condition) from
Bayes rule. As this condition is relaxed from the original constraints, the concavification
approach in fact solves a relaxed problem.10 It is known that the solution identified by the
concavification method may not be feasible for the original problem, and a well-known
counterexample would be the “agreeing to disagree” in Aumann (1976) (see also the dis-
cussion in Mathevet et al. (2020)). The usage of conjectures as messages in our approach is
inspired by the fact that the concavification method transforms the problem into designing
the distribution of posterior beliefs.

Another well-known method, the direct approach, allows one to restrict attention to signals
that recommend actions only. Such a restriction is without loss of generality in situations
where the classical obedience principle holds (that is, Bayesian games with sender-preferred
equilibrium selection, see, for instance, Kamenica and Gentzkow (2011), Bergemann and
Morris (2016) and Taneva (2018)). However this approach breaks down in more general
settings, such as the case with psychological receivers ( Lipnowski and Mathevet (2018)),
or when the equilibrium selection differs from the sender-preferred (Mathevet et al. (2020)).
Our approach is a generalized direct approach, which identifies the extra factors along with
the action recommendation, that a message should include.

10Except for the single receiver case, where Kamenica and Gentzkow (2011) show that to focus on the
Bayes plausibility condition is without loss of generality.
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3.6 Conclusion

Practical persuasion schemes are often complicated which may involve using some receivers’
actions or beliefs to persuade other receivers. This paper proposes a new view that could
unify the setting with multiple interacting receivers with any or all of the following features:
(i) receivers have non von Neumann–Morgenstern utilities, (ii) an equilibrium selection rule
other than the designer-preferred equilibrium selection may apply, (iii) receivers have private
information about their preferences and the underlying states, and (iv) with heterogeneous
priors. We establish a generalized obedience principle and provide a sufficient condition
under which it is without loss of generality to restrict attention to canonical signals with
countably many messages. This further provides a tractable way to determine optimal
information revelation policy in such a setting.

We use our method to analyze two applications. Application 1 considers a politician who
wants to maximize the probability of passing a bill by persuading voters to cast the ballot
for her using private targeted advertising. Voters may be privately informed about their
preference, who will vote only when they believe their votes are pivotal. Application 2
considers a pessimistic policy-maker, who designs an optimal stress test to privately inform
each of two investors about the financial health of a bank. The policy-maker wants to
minimize the probability of a bank run. Our method could provide explicit numerical
and analytical solutions for the optimal information structure for the sender in both these
situations. These examples cannot be solved by pre-existing standard approaches in the
literature. We hope that our paper could help to bring the theory one step closer to
understanding persuasion in the real world.
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CHAPTER IV

Derandomized Persuasion Mechanisms

4.1 Introduction

In practice, persuasion mechanisms often have a simple and deterministic structure. Some-
times, types considered similar are assigned the same categorical identifier. For example,
schools use letter grades to evaluate the performance of students, and bond rating agencies
adopt coarse ratings to measure the creditworthiness of bonds. Sometimes, some types
are fully revealed and others are pooled without introducing extra noise. For example,
with bank stress tests, banks that pass the test are pooled, while those that fail may have
their types revealed. A variety of recent papers have observed that the optimal persuasion
mechanism is deterministic in several specific economic environments.1 This paper uncov-
ers a general underlying principle behind this phenomenon and provides tight conditions
under which an optimal persuasion mechanism is deterministic, or derandomized. In fact,
under these conditions, the sets of outcomes induced by derandomized and randomized
persuasion mechanisms are equivalent.

To make our statement concrete, consider a setting where a sender, who has the ability to
generate information about the underlying state Ω, engages in two-way communication with
multiple interacting receivers who have private types. For simplicity, we fix the message
spaces for both parties: for receivers, there is an exogenously given report system which
specifies the set of feasible reports each type of each receiver can make; for the sender,
there is a fixed finite message set Â which specifies all feasible messages she can send. A

1For example, Kolotilin (2018), Guo and Shmaya (2019), Wei and Green (2019), and Dworczak and
Martini (2019) point out that the optimal persuasion mechanism takes a special deterministic structure under
certain conditions. See the literature review for more discussion.
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persuasion mechanism π is a menu of signals that collects receivers’ reports from the report
system, and then selects a signal (i.e., a conditional distribution Ω→ ∆(Â)). A persuasion
mechanism π is derandomized if for any realized report profile t̂ ∈ T̂ , the selected signal
conditional on every state realization is a degenerate distribution over message space Â
(i.e., π(·|t̂, ·) : Ω → {δâ | â ∈ Â}). We use Bayesian Nash equilibrium as the solution
concept within the receivers’ game.

The main result provides conditions under which it is possible to derandomize all signals
in a persuasion mechanism in an effectively equivalent sense. Under those conditions, for
any persuasion mechanism π, we can find a derandomized persuasion mechanism π̄ such
that for each receiver, when holding others’ strategy fixed (subject to a message isometric
transformation), in any decision problem determined by the type profile realization, the
highest payoff he is able to achieve is the same under π̄ and π. Moreover, π̄ preserves the
set of Bayesian Nash equilibria under π, as well as the equilibrium payoff of each type of
each receiver and that of the sender in any specific equilibrium. The key conditions for our
main results include: (i) the underlying state space is atomless; (ii) receivers’ actions and
possible signal realizations are finite; (iii) the players’ utilities are pseudo-separable (that is,
separable in the underlying states and receivers’ type profiles). These conditions are tight,
in the sense that if any of them is violated, one could find a counterexample. We provide
such counterexamples in Section 4.4.1. An important assumption is that the underlying
state and receivers’ private information are independent, which could be relaxed to allow
some interdependence.

This problem contains two technical aspects: a signal-by-signal derandomization and a
measurable selection among derandomized signals. For signal derandomization, a standard
tool is the Lyapunov theorem, well-known in the game theory literature. The result is
immediate for the simplest private Bayesian persuasion model with one receiver who has no
private information (i.e., no types), where the players hold an atomless common prior over
underlying states. However, when the type space is infinite as in our setting, it is known that
the Lyapunov theorem fails in general. To overcome this difficulty, we propose an approach
that identifies payoff-relevant characteristics of a given persuasion mechanism; based
on such identification, we could construct another derandomized persuasion mechanism
with the same payoff characteristics. A key step in our construction is to solve a related
measurable selection problem, for which we borrow the insight of the measurable choice
theorem of Mertens (2003). To our knowledge, such an approach of derandomizing
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persuasion mechanisms is new in the literature.

From a constructive angle, we demonstrate the usefulness of our result on an information
disclosure problem. Our result allows us to focus on derandomized persuasion mechanisms,
which makes the sender’s problem tractable. A derandomized persuasion mechanism in this
setting collects only signals with finite partition structures on states (i.e., such a signal sends
messages according to the partition in which the realized state is located). We also show
that under certain conditions, our result is applicable to derandomize experiments, i.e., the
disclosure mechanism that discloses information without soliciting the receiver’s reports.
For a parametrized example inspired by Kolotilin et al. (2017), we numerically derive
an optimal information disclosure mechanism using a different and more straightforward
method.

4.1.1 Literature Review

This paper provides a systematic study of persuasion mechanism derandomization, allowing
multiple interacting privately informed receivers in the Bayesian persuasion and information
design context (Kamenica and Gentzkow (2011) and Rayo and Segal (2010)). Especially,
our set-up relates to two specific strands of this literature: the first one is the strand that
studies receivers with private information about their preferences, including Rayo and Segal
(2010), Kolotilin et al. (2017), Kolotilin (2018), and Guo and Shmaya (2019); second, it
relates to the literature that studies Bayesian persuasion problem with a large underlying
state space, such as Gentzkow and Kamenica (2016),Kolotilin et al. (2017), Dworczak and
Martini (2019), and Dworczak and Kolotilin (2019). In particular, Kolotilin (2018), Guo
and Shmaya (2019), Wei and Green (2019) and Dworczak and Martini (2019) also have
relevant results in a single receiver setting that the optimal mechanism takes a derandomized
structure under certain conditions.2 By allowing multiple privately informed receivers,
our setting goes outside their frameworks. We can still draw interesting implications of
our result in some of their settings. Specifically, the settings in Kolotilin et al. (2017) and
Wei and Green (2019) have the following common features: the distribution of underlying

2To be exact, Kolotilin (2018) and Dworczak and Martini (2019) have pointed out that, under certain
curvature of the sender’s payoff function, the optimal mechanism may be deterministic within specific regions
in the posterior mean (state) space. Guo and Shmaya (2019) show that under the increasing monotone
likelihood ratio condition the optimal mechanism takes the form of nested intervals. Wei and Green (2019)
show that under a monotone hazard rate condition the optimal persuasion mechanism has a deterministic
cutoff structure.
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states is atomless, the receiver has a binary action and a linear utility, the sender’s utility
separates the receiver’s type and the underlying states, and the receiver’s private type is
independent of the state. In these settings, our result implies that it is without loss of
generality to work directly with derandomized mechanisms. Guo and Shmaya (2019) allow
nonseparable utility functions, but their result requires an increasing monotone likelihood
ratio condition. Dworczak and Martini (2019) consider the setting where the receiver’s best
response depends on the posterior mean of the state who has no private information. They
show that if utility function u is regular and affine-closed, then for any continuous and
full-support prior there exists an optimal signal that is a monotone partitional signal.3 Our
result adds new insights that derandomized persuasion mechanisms may still be optimal
when the receiver’s utility violates the regularity properties required therein. Nevertheless,
the aforementioned works do not intend to provide a general study of persuasion mechanism
derandomization, so many focus on specific environments such as binary action and certain
monotonicity conditions. Our main result allows arbitrarily finite actions and does not rely
on any monotonicity condition.

The mechanism design literature that studies mechanism equivalence is also related, espe-
cially the strand that debates whether randomization creates extra benefit for the designer
such as McAfee and McMillan (1988), Strausz (2006), Manelli and Vincent (2006), Manelli
and Vincent (2007), Hart and Reny (2015) and Chen et al. (2019). In particular, Chen
et al. (2019) establish the equivalence of stochastic and deterministic mechanisms in a
general environment using a mutual purification technique. However, their technique is not
applicable here since we allow nonseparability among receivers’ type profiles.4 Moreover,
there is a fundamental difference between persuasion mechanism derandomization and
similar topics in mechanism design literature, since a standard mechanism can assign the
allocation but a persuasion mechanism cannot.5

3In Dworczak and Martini (2019), a utility function u is regular provided that (i) it is upper semicontinuous
with at most finitely many one-sided jump discontinuities at interior points y1, ..., yk ∈ (0, 1) and has bounded
slope (i.e., Lipschitz continuous) in each (yi, yi+1), with y0 = 0 and yk+1 = 1; (ii) there exists a finite
partition of [0, 1] into intervals such that u is either strictly convex, strictly concave, or affine on each interval
in that partition.

4The separability condition in Chen et al. (2019) requires each receiver’s payoff to be separable in his own
type ti and the types of the rest receivers t−i (see Definition 4 therein).

5The coordination mechanism in Myerson (1982) also recommends actions. On mechanism comparison,
however, the literature mainly focuses on the standard mechanisms such as auctions that directly assign the
allocation. The notion of coordination mechanism is still different from that of persuasion mechanism, since
the sender in a persuasion setting has extra information not available to the players. This is the new feature
of the information design problem added to the problem of communication in games (see Bergemann and
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From a methodological viewpoint, our result is technically related to the purification
literature, especially the Lyapunov theorem and the related result in Dvoretzky et al. (1950)
and Dvoretzky et al. (1951). However, the Lyapunov theorem fails in infinite-dimensional
settings, so the measurable selection insight in Mertens (2003) helps us to overcome this
difficulty. Also, as a natural comparison between persuasion mechanisms in our setting
should build on signal/experiment comparisons, the comparison we proposed is inspired
by the well-known works including Blackwell (1952), Blackwell (1953) and Lehmann
(1988).

Organization: The rest of the paper is organized as follows: In the next section, we
introduce our model. Section 4.3 presents our main result and in Section 4.3.2, we apply
our result to a specific disclosure model and derive an explicit solution of a parametrized
case. Section 4.4 provides all the counterexamples and two extensions. All proofs are
collected in the appendix.

4.2 Model

There is a sender (Player 0) and a finite set of receivers, denoted as I. The underlying
state space is a measurable space (Ω,F), where F is a countably generated σ-algebra.6

Let µΩ be a common prior on Ω. Receivers have private information: each receiver i ∈ I
has a private type ti from a space Ti. Let Ti be a polish space with Ti the associated Borel
σ-algebra. Denote by T :=

∏
i∈I Ti the receivers’ joint type space. Let T := ⊗i∈ITi be the

associated product σ-algebra and let µT be the common prior type distribution over T . Each
receiver i chooses an action from a finite set Ai; denote by A :=

∏
i∈I Ai the set of action

profiles. Each player is a von Neumann-Morgenstern utility maximizer with a bounded
measurable utility function ui : T ×Ω×A→ R for i ∈ I ∪{0}. For expositional purposes,
throughout the text, we assume that the players have a common prior µ = µΩ × µT such
that type profiles and underlying states are distributed independently (although receivers’
types may be correlated with each other). As noted in Remark IV.1 below, the proof of
Theorem IV.1 is provided for a more general case in which some interdependence between
ω and t is allowed.

Receivers may have restrictions in mimicking others’ types. This restriction could come

Morris 2019).
6For example, the Borel σ-algebra of the n-dimensional Euclidean space Rn is countably generated.
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from the partial verifiability of information: for instance, the IRS could audit unusual
income report claims; it could also come from the feasibility of reports: for instance, many
surveys allow consumers to report their satisfaction level in integers only. We introduce the
notion of a report system to describe such restrictions. Let each receiver i’s report space
be (T̂i, T̂i), where T̂i is a Polish space and T̂i is the corresponding Borel σ-algebra. Denote
by T̂ :=

∏
i∈I T̂i the set of all possible report profiles from the system. Let T :=

∏
i∈I Ti

be a report system such that for each type ti of each receiver i, each Ti : Ti � T̂i is a
closed-valued measurable correspondence specifying the set of reports he is able to file.
Moreover, we assume that T is exogenously given.

Players communicate through a persuasion mechanism, denoted as π, under a fixed report
system T and a fixed finite message space for the sender (denoted as Â). Following
Kamenica and Gentzkow (2011), a signal is a conditional distribution Ω → ∆(Â). The
persuasion mechanism, once committed by the sender, asks for each receiver i’s report and
then selects a signal according to receivers’ reports, i.e., π : T̂ × Ω→ ∆(Â), and for each
report profile t̂, π(·|t̂, ·) is a signal. We further assume that Â satisfies |Â| ≥ |A|, so signals
that recommend actions are always feasible for the sender.

The game proceeds as follows: (i) the sender commits to a persuasion mechanism; (ii)
each receiver, based on his type realization and subject to report system T, submits a
feasible report to the sender; (iii) given the realized underlying state and the joint report,
the persuasion mechanism selects a signal; (v) nature picks a realization given the signal;
(vi) each receiver privately observes his individual signal realization, and takes an action
that maximizes his expected utility.

Definition IV.1. We say a signal is derandomized if conditional on each ω, the signal sends
out one single message with probability 1, i.e., Ω → {δâ|â ∈ Â} $ ∆(Â), where δâ is a
Dirac measure on message â ∈ Â. A persuasion mechanism π is derandomized if π(·|t̂, ·)
is a derandomized signal for every realized report t̂ ∈ T̂ .

Each receiver’s strategy includes two components: a reporting strategy which files a report
based on his realized private type, and an action strategy that responses to the observed
signal realization based on the updated belief and his knowledge. We formally define these
two strategies below:

Definition IV.2. Given the report system T, a reporting strategy of receiver i is a mapping
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ri such that ri : Ti × T̂i → [0, 1] and (i) for any measurable set Ei ∈ T̂i, ri(·, Ei) is
Ti-measurable; (ii) for any ti, ri(ti, ·) is a probability measure on the set Ti(ti).

Let GrTi be the graph of Ti, i.e., GrTi := ∪ti∈Ti({ti} × Ti(ti)). An action strategy of
receiver i is a measurable mapping such that σi : GrTi × Âi → ∆(Ai). Let Ri be the set
of feasible reporting strategies for receiver i ∈ I, and let Σi be the set of feasible action
strategies for receiver i ∈ I.

Consider a strategy profile (r, σ) under a persuasion mechanism π: we say a strategy
(ri, σi) for receiver i is interim incentive compatible given others’ strategy profile (r−i, σ−i)

if

Eπ[ui(σi, σ−i)|ri, r−i, ti] = sup
σ̂i∈Σi,r̂i∈Ri

Eπ[ui(σ̂i, σ−i)|r̂i, r−i, ti] for all ti ∈ Ti. (4.1)

For each receiver i to have the incentive to choose an action strategy σi, it must be the case
that, conditional on each receiver type, his reporting strategy, and the signal realization,
receiver i always prefer σi to any other action strategy. This statement is captured by
inequality (4.1) that each receiver i chooses an action strategy that maximizes its interim
utility, as discussed in Bergemann and Morris (2016). Now we are ready to introduce our
solution concept for the receivers’ game.

Definition IV.3 (equilibrium). A strategy profile (r, σ) is a Bayesian Nash equilibrium
(BNE) under a persuasion mechanism π if each receiver’s strategy is interim incentive
compatible given others’ strategies.

The definition of BNE employed here imposes sequential rationality and consistency of
beliefs on the equilibrium path, as well as on the off-equilibrium path after a receiver
deviates from his equilibrium reporting strategy.7 However, it imposes no restrictions
on receivers’ behavior if some message arises that is supposed to be absent unless other
receivers deviate. Upon the appearance of such a message, a receiver could play sequentially
irrationally.

Due to the lack of certain regularity conditions (e.g., a compact report space or continuous
utility functions), a BNE may not exist even though we allow receivers to play behavioral

7Our definition of BNE is slightly stronger than a traditional BNE, since we impose consistency of any
receiver’s belief off the equilibrium path after his own deviation.
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strategies. The existence of BNE, though of great importance, is not the focus of this paper.8

We derive our results under the implicit assumption that at least one BNE exists.

4.2.1 Comparing persuasion mechanisms

Similar to the comparison of mechanisms, it is natural to try comparing two persuasion
mechanisms by comparing the corresponding designer’s payoffs under their induced out-
come distributions (i.e., the joint distribution of action and state). However, this is not
well-defined since persuasion mechanisms cannot assign outcomes of the receivers’ game.
When there are multiple possible outcomes, it is unclear which one should be selected for
calculating the designer’s payoff. Given the fact that persuasion mechanisms are menus of
signals, another natural comparison of persuasion mechanisms is to compare signals listed
in their menus. We define our comparison in this way.

Our definition borrows the insights of signal comparison. Recall that the literature has
proposed various kinds of partial orders to compare signals, among which the most well-
known is perhaps Blackwell’s ordering. Lehmann (1988) proposes a localized comparison
notion based on signal effectiveness. His definition, adapted to this setting, says that a signal
Y is more effective than a signal X with respect to a specific class of decision problems
(a problem is specified as a set of feasible actions A and a utility function u(ω, a)) if for
any problem in this class, given any action strategy σ based on X , there exists another
action strategy σ based on Y such that, for each realization of the state ω, receiver’s payoff
condition on ω under strategy σ′ and signal Y is always weakly better than that under σ
and X .

In contrast to the pointwise comparisons in Lehmann (1988), our comparison is based on
a given prior to make the comparison feasible for a large set of signals. We say a signal
Y is more effective than a signal X w.r.t. the class of decision problems under a prior µ

if for any problem in this class, for any decision procedure σ based on X , there exists a
(possibly randomized) procedure σ′ based on Y such that given the prior µ, the expected
payoff of the receiver with strategy σ′ under signal Y is weakly better than that under σ
based on signal X . Note that such comparison is robust under isometric transformations of
signals (i.e., there is a bijective mapping between the message spaces of two signals under
which their signal structure are essentially the same).

8For related literature, one may refer to Balder (1988) for a general result on the existence of the Bayesian
Nash equilibrium in behavioral strategies in games with incomplete information.
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Based on the comparison of signals in the decision framework, we define the comparison
of persuasion mechanisms in a game environment as follows: Given other receivers’ type
profile realization t−i and strategy profile (r−i, σ−i), let Eπ[ui(σi, σ−i)|ri, r−i, ti, t−i] be
the expected utility of type ti of receiver i under π who plays strategy (ri, σi).

Definition IV.4. For two persuasion mechanisms π1 and π2, we say π1 is more effective

than π2 for receiver i ∈ I (denoted as π1 <i π2) under prior µ if:

there exists a bijection mapping ψ :
∏

i∈I Âi →
∏

i∈I Âi (isometric mapping between
messages) such that for any strategy (ri, σi) ∈ Ri × Σi under π2, there exists a strategy
(r′i, σ

′
i) ∈ Ri × Σi under the persuasion mechanism π1 ◦ ψ (with the message isometric

transformation ψ) such that

Eπ2 [ui(σi, σ−i)|ri, r−i, ti, t−i] ≤ Eπ1◦ψ[ui(σ
′
i, σ−i)|r′i, r−i, ti, t−i],

for any realized type ti, any others’ realized type profile t−i ∈ T−i and strategy profile
r−i ∈ R−i, σ−i ∈ Σ−i.

Two persuasion mechanisms π1 and π2 are effectively equivalent if π1 <i π2 and π1 4i π2

for each receiver i ∈ I.

Intuitively, a persuasion mechanism π1 is more effective than another persuasion mechanism
π2 for a receiver i, if for any reporting strategy ri in π2, he is able to find a strategy r′i in π1

(subject to a isometric transformation) such that the signal generated by r′i under π1 is more
effective than that generated by ri under π2 for all possible decision problems he may face,
where the class of decision problems is parametrized by his own type realization ti, others’
type realizations t−i and the strategy profile (r−i, σ−i).

4.3 Effectively equivalent signal derandomization

Section 4.3 is organized as follows: Section 4.3.1 shows the main result and its implications;
Section 4.3.2 provides an application for our main result.

4.3.1 Main result

From now on, whenever we say “all players” or “each player”, we mean the statement also
applies to the sender. We first introduce an important condition of our main result
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Definition IV.5 (pseudo-separable utility). A player i’s utility function is pseudo-separable

if his utility function can be written as ui(t, ω, a) =
∑N

n=1 fi,n(ω, a) · gi,n(t, a), where N is
a positive integer.

Pseudo-separable utility functions are common in the literature; in fact, several well-
known works, including Rayo and Segal (2010), Kolotilin et al. (2017), and Kolotilin
(2018), consider a privately informed receiver whose utility function is either a · (ω − t)
or a · (ω − t)2: the former represents a receiver who prefers the state above his private
reserved value and the latter represents a receiver who wants to match the state. These are
special forms of pseudo-separable utility functions.9 The following theorem shows that a
persuasion mechanism can be derandomized in an effectively equivalent way if all players’
utility functions are pseudo-separable.

Theorem IV.1. Suppose that µΩ is atomless, the message set Â is finite, and all players

have pseudo-separable utility functions. For any persuasion mechanism π, there exists an

effectively equivalent derandomized persuasion mechanism π such that

(i) any BNE under π is still a BNE under π, and vice versa;

(ii) for any such π and π under which (r∗, σ∗) is a BNE, the expected equilibrium payoff of

each type of each receiver in (r∗, σ∗) is the same under π and under π, and the expected

equilibrium payoff of the sender in (r∗, σ∗) is the same under π and under π.

To understand our result, consider a simple private Bayesian persuasion model (with a
singleton type) where there is a receiver who has finitely many actions and the underlying
state space is an interval in R, such as the setting in Gentzkow and Kamenica (2016). If the
common prior is atomless, then any signal with finite realizations, such as a straightforward
signal (a signal that recommends actions), can be derandomized by the result in Dvoretzky
et al. (1950) based on the Lyapunov theorem.10 The resulted derandomized signal is
effectively equivalent to the original one. However, recall that in our setting, there are
infinitely many types. In this case, the Lyapunov theorem breaks down and we cannot
generalize the above intuitive argument to our main theorem. We propose the following

9For the second example a · (ω − t)2, one way of writing it into the pseudo-separable form is by setting
N = 3, f1(ω, a) = aω2, f2(ω, a) = aω, f3(ω, a) = 1; g1(t) = 1, g2(t) = 2t, and g3(t) = at2.

10One needs to take into account the combination between the realized message and the actual action the
receiver are taking in the signal.
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approach to overcome this difficulty and prove our main theorem. The intuition of the proof
is described as follows:

Let ek ∈ R|Â| be the standard unit vector with all coordinates zero except that the k-th
coordinate is 1. A persuasion mechanism π̃ is derandomized if and only if for every state
and report profile, π̃ recommends a specific action, i.e., π̃(· | t̂, ω) ∈ {e1, e2, ..., e|Â|} for
every ω and t̂. Consider a fixed persuasion mechanism π. Let Ñ be a R|Â|-valued constant
correspondence on T̂×Ω such that Ñ(·, ·) ≡

{
e1, e2, ..., e|Â|

}
. To find an effectively equiv-

alent derandomized persuasion mechanism, our approach includes identifying receivers’
payoff relevant characteristics under π, and determining a selection of the correspondence
Ñ that preserves all these characteristics simultaneously.

To be more precise, consider the expression of each receiver’s “posterior” payoff: given
an arbitrarily fixed receivers’ strategy profile (r :=

∏
i∈I ri, σ :=

∏
i∈I σi), condition on

type profile t := (ti)i∈I , message âi and report t̂i, each receiver i’s expected payoff under
π condition on the above can be written in the following form:

∑
â−i

∫
T̂−i

∑
a∈A

Term A︷ ︸︸ ︷∫
Ω
ui(ω, t, a)π(â | t̂, ω) dµΩ(ω) σi(ai, âi, ti, t̂i) · σ−i(a−i, â−i, t−i, t̂−i)r−i(t−i, dt̂−i)∫

T̂−i

∫
Ω
π(â−i, âi | t̂−i, t̂i, ω) dµΩ(ω)︸ ︷︷ ︸

Term B

r−i(t−i, dt̂−i)
.

The payoff relevant characteristics we refer to are Term A and B. In particular, if we
could find a derandomized persuasion mechanism π such that for any possible combination
of message profile â, type profile t and report profile t̂, the following holds for each
receiver i:

Term A :

∫
Ω

ui(ω, t, a)π(â | t̂, ω) dµΩ(ω) =

∫
Ω

ui(ω, t, a)π(â | t̂, ω) dµΩ(ω)

Term B :

∫
Ω

π(â | t̂, ω) dµΩ(ω) =

∫
Ω

π(â | t̂, ω) dµΩ(ω),

(4.2)

then we could show that π is effectively equivalent to π, and also the other statements in
Theorem IV.1. Based on the pseudo-separable structure of receivers’ payoff functions, we
identify a selection of the above Ñ that establishes the above equation (4.2), borrowing the
measurable selection insight of Mertens (2003). Such a construction is demonstrated in the
proof of Theorem IV.1′ in the appendix.
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Remark IV.1. We actually prove the theorem for the more general situation where players
have subjective priors absolutely continuous with respect to some underlying measure
µΩ × µT , and some interdependence between the underlying state ω and the type profile
t is allowed.11 The set-up in the main text is therefore a special case. In the general
case, the proof requires some additional technical conditions (including separability of the
corresponding Radon–Nikodym densities) that are satisfied given the assumptions in the
main text. We place the more general proof of Theorem IV.1 in the Appendix, Section C.1.

Based on the above insight, we may provide a simplification for the definition of signals
with rich structures proposed by Gentzkow and Kamenica (2017). Under their definition, a
signal is a finite partition of Ω× [0, 1], where every partition element is a signal realization.
In the original definition of Gentzkow and Kamenica (2017), Ω is a finite state space. Here
we extend it to a general underlying state space (Ω,F , µΩ). Suppose that the common
prior µΩ is atomless, by Theorem IV.1, we could simplify the above definition into a finite
partition on Ω instead of the product set Ω × [0, 1]. For example, if the underlying state
space is Ω = [0, 1] with the common prior the Lebesgue measure, then one could define a
signal as a finite partition on Ω = [0, 1] instead of the product set Ω× [0, 1].

4.3.2 Application

To explain our result from a constructive angle, in this section we consider a persuasion
situation as that in Kolotilin et al. (2017). With a different approach, Kolotilin et al. (2017)
characterize the structure of optimal persuasion mechanism, which may be stochastic. Our
main theorem shows that it is without loss of generality to focus on derandomized persuasion
mechanisms in such a setting. We also apply our result to study the derandomization
of a different disclosure mechanism that discloses the same information to all receiver
types.

The following setting is from Kolotilin et al. (2017): There is a sender and a privately-
informed receiver. The underlying state space is an interval Ω := [ω, ω]. The set of the
receiver’s possible private type is the interval T := [t, t]. It is common knowledge that
random variables ω and t are independent. Let the cumulative distribution function (CDF)
of ω and t be GΩ and GT , respectively. Assume GΩ is atomless. The receiver has two

11Nevertheless, we cannot allow full generality in the interdependence between ω and t. Later we will
provide two counterexamples (Example IV.4 and IV.5) showing that such a derandomization result may fail if
ω and t are correlated.
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actions {0, 1}. The sender gets utility 1 if the receiver takes action 1, and gets 0 utility
otherwise. The receiver’s utility is u(ω, t, a) = a · (ω − t). We fix the sender’s message
space to be action recommendations, i.e., {0, 1}, and restrict attention to signals that
recommend actions. The tie-breaking rule is that a receiver type takes action 1 whenever
indifferent.

Say a persuasion mechanism is incentive compatible if telling one’s true type and obeying
the recommendation is incentive compatible for each receiver type. This setting satisfies
the prerequisites of Theorem IV.1. It is therefore without loss of generality for the sender to
focus on derandomized incentive compatible persuasion mechanisms.

Corollary IV.1. For any incentive compatible persuasion mechanism, there exists an

incentive compatible derandomized persuasion mechanism under which the sender achieves

the same payoff as that under the given mechanism.

Derandomized persuasion mechanisms consist of signals that have a partitional structure
on states, i.e., for each signal in the mechanism, there is a binary partition {S,Ω\S} of the
state for some subset S ⊆ Ω such that the signal sends message 1 if and only if the realized
state is ω ∈ S. In other words, derandomized persuasion mechanisms collect signals that
divide Ω into two partition components and send binary messages to inform the receiver
which partition component the realized state is in.

We now turn to a different disclosure mechanism that discloses the same information to all
receiver types, which we call the experiments. An experiment communicates a one-way
message to the receiver and do not require the receiver to report his type. Kolotilin et al.
(2017) show that a sender achieves her maximum payoff in this setting with experiments.
We will consider how to apply our result to derandomize experiments at the optimum.

Without loss of generality, we can focus on canonical experiments. A canonical experiment

takes the following form: ρ : Ω→ ∆(Ω) such that, conditional on the realized ω, ρ(ω) is
a distribution of posterior means. The realized posterior mean is disclosed to all receiver
types. Given any canonical experiment, it is incentive compatible for every receiver type
below the realized posterior mean to take action 1 and for every receiver type above the
realized posterior mean to take action 0. A canonical experiment ρ is derandomized if for
each ω, ρ(ω) is a Dirac measure of Ω. Say an experiment is optimal if it achieves the same
payoff as that under optimal persuasion mechanisms.
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We provide two possible ways to apply our result to derandomize (canonical) experiments
at the optimum. Recall that it is without loss of generality to focus on derandomized
persuasion mechanisms. The first way is to consider, whether an optimal derandomized
persuasion mechanism could be transformed into a (canonical) experiment under some
circumstances. The following corollary, adding in the result in Guo and Shmaya (2019),
gives an affirmative answer under the situation when derandomized persuasion mechanism
is in a cutoff form.

Corollary IV.2. Suppose that π is an optimal derandomized persuasion mechanism that

satisfies the following cutoff property: for any ω, if π(ω, t) = 1, then for any t′ ≤ t,

π(ω, t′) = 1. Then there exists an optimal derandomized canonical experiment.

Alternatively, if the primitives are sufficiently regular so that the optimal experiment has a
special structure, our result may be applicable. This provides a second way to derandomize
experiments. We introduce a regularity condition that allows us to derandomize experiments
in this way.

Definition IV.6. The CDF of receiver type variable GT is partitional regular on [t, t] if
there exists a finite partition of [t, t] that divides [t, t] into finitely many intervals such that
GT is either strictly concave or strictly convex on each interval in that partition.

In the following, we will show that under the above condition (plus a few minor assump-
tions), the optimal experiment can be derandomized. To see how our result is applicable:
borrowing the insight from Dworczak and Martini (2019), we show that the optimal experi-
ment in this setting will truthfully reveal some states; for states not truthfully revealed, it
only sends messages within a fixed finite set. Thus we could apply our result to the region
consisting of states that are not truthfully revealed.

Proposition IV.1. Suppose that GT is continuously differentiable and partitional regular

on [t, t] and that GΩ has full support. Then there exists an optimal derandomized canonical

experiment.

The above results also provide a derandomized approach to explore the optimal persuasion
mechanism in this setting. Kolotilin et al. (2017) show that if the density function for
receiver’s type is single-peaked, the optimal mechanism is derandomized. In fact, the
optimal mechanism fully reveals states below a certain threshold and pools those above
(see their Theorem 2 and Example 1). Guo and Shmaya (2019) show that under certain
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assumptions, the optimal disclosure mechanism takes a derandomized nested interval form.
We consider the following parametrized example, in which the density function has multiple
peaks and the assumptions in Guo and Shmaya (2019) is violated.12We apply our result and
explicitly compute an optimal persuasion mechanism for this example.

Example IV.1. Let the underlying state space be Ω = [−1, 1] with the uniform CDF
dGΩ(ω) = 0.5 dω. Let the type space be T = [0, 1] with the CDF of type variable GT such
thatGT (x) = 29x2

7
− 40x3

7
+ 18x4

7
. The density function dGT (t)

dt
= 216

21
(t− 1

6
)(t− 2

3
)(t− 5

6
)+ 20

21
.

We plot both GT and its density function in the following Figure 4.1.

(a) GT (b) the density function

Note that GT is partitional regular on [0, 1]: it is strictly convex on the interval [0, 1
18(10−

√
13)];

strictly concave on the interval ( 1
18(10−

√
13), 1

18(10 +
√

13)); and strictly convex on the interval
[ 1
18(10 +

√
13), 1].

Figure 4.1: The plots of GT and its density function

The sender’s payoff under two benchmark cases—full revelation and no information—will
be 0.233333 and 0, respectively, implying that the sender optimally discloses at least some
information. The prerequisite conditions in Proposition IV.1 are satisfied in this example.
By Proposition IV.1, there exists an optimal derandomized canonical experiment. Denote
this optimal derandomized canonical experiment as ρ∗ : Ω→ Ω, and we solve its explicit

12In particular, Assumption 3 in Guo and Shmaya (2019) requires the existence of a reference state ω0

such that receiver’s payoff is negative for all types whenever the realized state ω ≤ ω0 and positive whenever
ω ≥ ω0. This assumption is violated in the parametrized example we provided. In the discussion of their
assumptions, Guo and Shmaya (2019) also mention that the optimal IC mechanism in Kolotilin et al. (2017)
does not always recommend accepting on intervals (see Section 5.1).
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form as follows:

ρ∗(ω) =

0.5403, for ω ∈ [0.0806, 1]

ω, for ω ∈ [−1, 0.0806)
.

The above optimal derandomized canonical experiment ρ∗ implies the following persuasion
mechanism π∗ is optimal: if the realized state ω ∈ [0.0806, 1], then π∗ recommends all
receiver type under the cutoff 0.5403 to take action 1 and the rest to take action 0; if
ω ∈ [0, 0.0806), then π∗ recommends the receiver type that below the state ω to take action
1 and those above the state to take action 0; for the rest state, π∗ recommends all receiver
type to take action 0. The sender’s maximal payoff under π∗ is 0.2427. The details of the
derivation can be found in Appendix, Section C.2.1.

4.4 Counterexamples and extensions

4.4.1 Counterexamples

There are three conditions crucial for our results: (i) the measure µΩ on the underlying state
space is atomless; (ii) the receivers’ actions and the possible signal realizations are finite;
(iii) the receivers’ utility is pseudo-separable. This section provides three counterexamples
to illustrate that our results may not hold if these conditions are violated. The proofs of this
section are collected in Appendix, Section C.3.

There is a straightforward counterexample when the measure on state space is atomic. The
judge-prosecutor example in Kamenica and Gentzkow (2011) satisfies the conditions of
pseudo-separability and finiteness except for the condition that the prior is atomless. In that
famous example, Kamenica and Gentzkow (2011) show that an optimal signal cannot be a
derandomized signal.13

4.4.1.1 Infinitely many signal realizations

The finiteness condition on receivers’ signal realizations is also crucial. The following
counterexample, motivated by Shen et al. (2019), shows that if a persuasion mechanism
could select signals with infinitely many realizations, then our result may not hold.

13It is known that any probability measure µ can be decomposed into a purely atomic part and a nonatomic
part (see, for instance, Johnson 1970). Our result will be applicable to the nonatomic part of a probability
measure (with some rescaling).
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Example IV.2 (infinitely many signal realizations). Let the underlying state Ω be [0, 1]

with the Lebesgue measure λ. There are two receivers and a sender.14 Both receiver 1 and 2

have two actions {0, 1}. Each receiver gets utility 1 if his opponent takes action 1 and gets
0 otherwise. It is common knowledge that receiver 1’s prior belief about the underlying
state λ1 := λ, and receiver 2’s belief about the underlying state is dλ2 := 2ω dλ(ω). The
sender has prior λ, who gets 1 if both receivers take action 1, and gets 0 otherwise. Let
message space be [0, 1]. Then we claim the following hold:

(i) there exists a signal π : Ω → ∆([0, 1]) public observable to both receivers that
induces the message distribution µ := (µ1, µ2) for receiver 1 and 2 where µ1 = λ,
and dµ2 = |4ω − 2| dλ.

(ii) there does not exist a derandomized persuasion mechanism with the above message
space Â that is effectively equivalent to π.

4.4.1.2 Non-pseudo-separable utility

The following counterexample violates the third condition, by having a receiver whose
utility is not pseudo-separable.

Example IV.3. There is one sender and one receiver, who has a private type. The underlying
state space and the receiver’s private type space are unit intervals, i.e., Ω = T = [0, 1]. It is
commonly known that the random variables ω and t are independent and both are uniformly
distributed. We allow the sender to have any bounded measurable utility function. The
receiver has two actions {0, 1}, and utility function u(ω, t, a) where

u(ω, t, a) :=

1{(ω′,t′)|ω′≥t′}(ω, t) if he takes action a = 1;

1{(ω′,t′)|ω′<t′}(ω, t) if he takes action a = 0.

For any type t, if he always takes action 0 ignoring any information he may receive, his
expected payoff is t, and if he always takes action 1 then his payoff is 1 − t. Consider a
signal π with the sender’s message set {0, 1} with the following structure: π(0|ω) = 0.8

and π(1|ω) := 0.2 if ω < 0.5, and π(1|ω) = 0.8 and π(0|ω) = 0.2 if ω ≥ 0.5. We claim
that there does not exist a derandomized signal that is effectively equivalent to π.

14We do not know if there is a counterexample in a single receiver setting. But the breakdown of the result
in this multi-receiver environment is due to the incompatibility of beliefs rather than the role of randomization
in coordination.
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4.4.1.3 When the underlying state correlates with receivers’ private information

The independence between the underlying state and receivers’ type profile can be weakened,
as shown in Theorem IV.1′ in the Appendix. However, we cannot relax this assumption
completely. We provide two different reasons why such independence is required.

The first reason is aligned with the idea in Aumann (1987) that randomization could provide
coordination among players in the multi-player environment. As in Example IV.4, when all
players’ information is perfectly correlated, then derandomized persuasion mechanisms
cannot be equivalent to random mechanisms. The second reason is more fundamental,
which says that independence allows the joint density function to separate the types and
states. If such a separation fails, as in Example IV.5, then the derandomization result could
fail even in a single receiver setting.

Example IV.4. There is a sender (the social planner), and two receivers, each with an
action set Ai = {L,R}, i ∈ {1, 2}. The underlying state space is Ω = [0, 1]. All three
players have perfect information, and thus the underlying state and receivers’ information
are perfectly correlated. The sender’s payoff is the sum of all receivers’ payoffs, i.e.,
us(ω, a1, a2) = u1(ω, a1, a2) + u2(ω, a1, a2). The receivers’ payoff matrix is described
below. Whenever receivers are indifferent, they take the sender-preferred actions.

ω, (u1, u2) L R

L (6ω,6ω) (1ω,8ω)

R (8ω,1ω) (0,0)

In this example, the optimal signal is the following: conditional on any realized ω, with
probability 0.2, the sender privately recommends both receivers to play L; with probability
0.4, the sender privately recommends the first receiver to play L and the second receiver
to play R and with probability 0.4, the sender privately recommends the first receiver to
play R and the second receiver to play L. Such a signal would induce receivers to play
a correlated equilibrium at each realized state. But in this case, any incentive compatible
derandomized signal would be a recommendation of playing pure strategy Nash equilibrium
at each realized state. Thus the optimal signal achieves a strictly higher payoff than any
derandomized signal.

Example IV.5. There is one sender, and one receiver who has a private type. The underlying
state space and the receiver’s private type space are unit intervals, i.e., Ω = T = [0, 1]. It is
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commonly known that the joint distribution of random variables ω and t is f(ω, t) dω dt

where f(ω, t) = 2
3
· (21{(ω′,t′)|ω′≥t′}(ω, t) + 1{(ω′,t′)|ω′<t′}(ω, t)). We allow the sender to

have any bounded measurable utility function. The receiver has two actions {0, 1}, and
utility function u(ω, t, a) where u(ω, t, a) := a · (ω − t).

For any type t, if he always takes action 0 ignoring any information he may receive then his
expected payoff is 0, and if he always takes action 1 then his payoff is 2+t2−4t

4−2t
. Consider a

signal π with the sender’s message set {0, 1} with the following structure: π(0|ω) = 0.8

and π(1|ω) := 0.2 if ω < 0.5, and π(1|ω) = 0.8 and π(0|ω) = 0.2 if ω ≥ 0.5. We claim
that there does not exist a derandomized signal that is effectively equivalent to π.

4.4.2 Extensions

4.4.2.1 Persuasion mechanism with transfers

Our results can be extended to the setting where there is a transfer scheme and receivers
have to pay report-dependent fees for the signals they get (see, for instance, Wei and Green
2019 and Li and Shi 2017). Under the transfer scheme, receivers’ reports enter into players’
payoffs in an additive and separable way. The conclusions of our results still hold as long
as the conditions in Theorem IV.1 are satisfied.

4.4.2.2 The sender has a general utility function

It is natural to conjecture that our main results would still hold if one relaxed the restrictions
on the sender’s utility. However, this is not true: without those regularity conditions, a
crucial step that involves an exchange of the order of integrating over Ω and T may break
down.

For this more general case, one way to bypass this obstacle is to introduce some regularity
to reporting strategies. Say a reporting strategy profile is decomposable if there exists a
σ-finite measure λ on T̂ such that for almost every t, r(t, dt̂) can be decomposed into a
purely atomic or discrete measure and a finite measure that is absolutely continuous with
respect to λ. This condition permits analogs of our main results where we relax the sender’s
utility to be merely bounded and measurable. Specifically, with the other prerequisites
remaining the same, the previous conclusions still hold in the relaxed version, except that
the preservation of the sender’s payoff is weakened to only arbitrarily finitely many BNEs
with decomposable reporting strategies. This restriction may not be stringent since there
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is a large class of qualified strategies, such as pure reporting strategy and those absolutely
continuous with respect to a fixed probability measure given any type profile. Moreover,
this restriction does not constrain a sender who relies on the revelation principle to focus
only on the truthful, obedient equilibrium.

4.5 Conclusion

It is quite natural for a practical designer to restrict attention to derandomized persuasion
mechanisms, since they are relatively simple to design and implement in practice. However,
such restriction may lose generality, incurring suboptimality.

This paper proposes a way to compare different persuasion mechanisms based on their
information effectiveness from the receivers’ viewpoint. More importantly, building on
such comparison criteria, we provide tight conditions under which a potentially stochastic
persuasion mechanism is effectively equivalent to some derandomized persuasion mech-
anism. Our results enhance the understanding of when it is without loss of generality to
restrict attention to derandomized persuasion mechanisms, which may provide a simplified
solution to the sender’s optimization problem in practice.
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CHAPTER V

Conclusion

This dissertation focuses on the design of information policy in strategic settings.

Chapter II shows that a principal could benefit from not evaluating the agent directly based
on the output. In particular, the optimal incentive contract assigns lenient evaluation when
the agent’s continuation value is low and severe evaluation when it is high. Adding biases
into evaluation helps the principal to extend the duration of the employment relationship,
which also weakly increases the resulted agent’s continuation value process as compared to
the situation without. The above result voices against conducting the evaluation based on
noisy objective indexes, since shielding the agent partially from the downside risk could
improve productivity. This view aligns with the existing empirical evidence. My result
provides further insights on how to design evaluation schemes for organizations to achieve
higher efficiency under extra contractual possibilities.

Chapter III examines information design settings with any or all of the following features:
(i) receivers have non von Neumann–Morgenstern utilities, (ii) an equilibrium selection rule
other than the designer-preferred equilibrium selection may apply, and (iii) receivers have
private information. I propose a general message space to describe the multi-level basic and
strategic uncertainties, which captures the richness of information. In such a framework, I
establish a generalized obedience principle and show when it is without loss of generality
to restrict attention to simple canonical signals. This further provides a tractable way to
determine optimal information policy. I apply my approach to analyze two applications
that cannot be solved by pre-existing approaches in the literature. My result helps to design
algorithms that explicitly compute optimal information policies in both applications.

Chapter IV investigates when restricting attention to persuasion mechanisms that either
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fully reveal or pool underlying states is without loss of generality. Given that such mech-
anisms are relatively simple to design and implement in practice, it is quite useful for
a designer to know when such a restriction will not incur suboptimality. I provide tight
conditions under which a potentially stochastic persuasion mechanism is equivalent to some
derandomized persuasion mechanism. My results enhance the understanding of the role
randomization plays in persuasion mechanisms, which could be utilized to further sim-
plify the designer’s problem. This result also justifies the wide adoption of derandomized
persuasion mechanisms in practice.
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APPENDIX A

Appendix for Chapter II

A.1 Proofs of Section 2.3

Proof of Lemma II.1. Consider the probability space (C([0,∞)),B(C([0,∞))), P ) with
P the Wiener measure and Wt(ω) = ωt for any t ∈ (0,∞). Let F be the filtration generated
by W , and hence F∞ = B(C([0,∞))). By definition, any adjustment process α satisfies
the Novikov condition. Define a new process Zt(α) as follows: for any time t ∈ [0,∞),

Zt(α) := exp

(
−
∫ t

0

αs dWs −
1

2

∫ t

0

|αs|2 ds

)
.

Thus by Corollary 3.5.13 in Karatzas and Shreve (1991), Zt(α) is a F-martingale.

By Corollary 3.5.2 in Karatzas and Shreve (1991), there exists a unique probability measure
Q satisfying Q(S) = EP [1SZt(α)],∀S ∈ Ft for any fixed time t with 0 ≤ t < ∞ such
that the process {Wα

s ,Fs | 0 ≤ s < ∞} satisfying dWα
s := αs ds + dWs is a Brownian

motion on (Ω,F,F∞, Q).

Lastly, we will show Q is also equivalent to the measure P . Note that for any t and W ,
Zt(α) is defined by an exponential function, which is always of strictly positive value. By
such definition, for any time t ∈ [0,∞) and S ∈ Ft, Q(S) = 0 if and only if P (S) = 0.
Hence we conclude the proof.

Proof of Proposition II.1. Recall that I assume the report is independent of history, i.e., for
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any s < t, FYt \FYs is independent of Fαs under Q. Then for any s < t,

EQ
[
Yt | Fαs

]
= EQ

[
EQ[Wα

t |FYt ] | Fαs
]

by the definition that Y is canonical

=EQ
[
EQ[Wα

t −Wα
s +Wα

s |FYs ∨ (FYt \FYs )] | Fαs
]

=EQ
[
EQ[Wα

t −Wα
s +Wα

s |Fαs ] | FYs ∨ (FYt \FYs )
]

=EQ[EQ[Wα
s |Fαs ] | FYs ∨ (FYt \FYs )] Wα

t \Wα
s is independent of Fαs under Q

=EQ[EQ[Wα
s |Fαs ] | FYs ] FYt \FYs is independent of Fαs under Q

=EQ[Wα
s | FYs ] = Ys; by the tower property that FYs ⊆ Fαs .

Hence, Yt = EQ[Wα
t |FYt ] is a Fα-martingale under measure Q. By the martingale rep-

resentation theorem, there exists a Fα-adapted process βt such that Yt =
∫ t

0
βs dWα

s . By
Theorem 27, PP 71 in Protter (2004), Y 2 − [Y ] is a Fα-martingale under measure Q.
Thus EQ[Y 2

t ] = EQ[[Yt]] for any time t. The square-integrability is implied by Jensen’s
inequality and Itô isometry:

EQ[[Yt]] = EQ[(EQ[Wα
t |FYt ])2] ≤ EQ[(Wα

t )2] = t <∞.

We will next show that βt must be FY -adapted. Given that Y is FY -adapted process, its
quadratic variation is also FY -adapted. Since Yt =

∫ t
0
βs dWα

s is a continuous square-
integrable martingale, by (2.19), PP138, Karatzas and Shreve (1991), its quadratic variation
is
∫ t

0
β2
s ds. This also implies that βt must be FY -adapted (by taking derivative with respect

to t and then a square root). Hence we conclude the proof.

Proof of Lemma II.2. Recall that the evaluation system generates an independent Brownian
noise Wα in the filtered probability space (Ω,Fα,Fα, Q), and the report Y is an Fα-
adapted process. Thus the compensation-effort pair (B,A) adapted to FY is also Fα-
adapted. Proposition 1 in Sannikov (2008) in the appendix is directly applicable, by which,
Vt(B,A, α) admits the following representation:

dVt(B,A, α) = (rVt(B,A, α)− u(Bt) + c(At)) dt+ σKt dWα
t . (A.1)

The dQ× dt uniqueness of K follows from the second part of Theorem 4.15, Karatzas and
Shreve (1991). Therefore, we conclude the proof.
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Proof of Lemma II.3. The proof is a modification of Proposition 1, Sannikov (2008). For
any arbitrary contract (α, Y,B,A), the agent’s total payoff conditional on the information
at time t, denoted as TVt, is the following:

TVt(B,A, α) =

∫ t

0

e−rs(u(Bs)− c(As)) ds+ e−rtVt(B,A, α),

which implies that

dTVt(B,A, α) = e−rt(u(Bt)− c(At)) dt+ d
(
e−rtVt(B,A, α)

)
= e−rt(u(Bt)− c(At)) dt− re−rtVt(B,A, α) + e−rt dVt(B,A, α).

(A.2)

By the assumption that Fα = F and the definition that

Vt(B,A, α) := EP
A

[∫ ∞
t

e−r(s−t)
(
u(Bs)− c(As)

)
ds
∣∣∣Ft] ,

the stochastic process TV is an F-martingale. Then by the martingale representation
theorem, we have

dTVt(B,A, α) = σKte
−rt dWt. (A.3)

By substituting that dWt = 1
σ
(dXt − At dt) into (A.3) and combine with (A.2), then we

arrive at Equation (2.7).

Proof of Proposition II.2. By definition, V Y
t (B,A, α) = EQ[Vt(B,A, α)|FYt ]. For conve-

nience, let (α,Q, Y ) be the canonical evaluation scheme with the variational coefficient β.
Hence, Yt = EQ[Wα

t |FYt ]. Based on Lemma II.2, dYt = βt dWα
t = βt

σ
(dXα

t − At dt).

By Lemma II.2, equation (2.6) holds Q almost everywhere, which is equivalent to the
following: for Q− a.s,

Vt(B,A, α)− V0(B,A, α)

=

∫ t

0

(
rVs(B,A, α)− u(Bs) + c(As)

)
ds+

∫ t

0

σKs dWα
s , ∀ t ∈ [0,∞).

(A.4)

Recall that the pair (B,A) is FY -adapted. Thus by projecting the above equation onto FYt
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at any fixed time t, we have the following:

V Y
t (B,A, α)− V0(B,A, α) = EQ

[
Vt(B,A, α) | FYt

]
− V0(B,A, α)

=

∫ t

0

(
rEQ

[
Vs(B,A, α) | FYt

]
− u(Bs) + c(As)

)
ds+ σEQ

[∫ t

0

Ks dWα
s

∣∣∣FYt
]
.

(A.5)

Consider the first term EQ
[
Vs(B,A, α) | FYt

]
for any 0 ≤ s < t. By the assumption that

FYt \FYs is independent of FYs , the following holds:

EQ
[
Vs(B,A, α) | FYt

]
=EQ

[
Vs(B,A, α)|FYs ∨ (FYt \FYs )

]
(A.6)

=EQ
[
Vs(B,A, α)|FYs

]
= V Y

s (B,A, α).

Next we will show that the second term EQ

[∫ t
0
Ks dWα

s

∣∣∣FYt ] =
∫ t

0
Ks dYs. We first need

to introduce two definitions of metrics for stochastic processes in Karatzas and Shreve (1991)
for the fixed probability filtered space (Ω,Fα∞,Fα, Q): For any square-integrable martingale
M and the fixed time t, let ‖M‖t :=

√
EQ[M2

t ]. Also let ‖M‖ :=
∑∞

n=1
‖M‖n∧1

2n
. The

second metric is defined based on a continuous square integrable martingale M as follows:
for any measurable, Fα-adapted process Z, define

[Z]M :=
∞∑
n=1

1 ∧ [Z]Mn
2n

with [Z]Mt :=

√√√√EQ

[∫ t

0

Z2
s d< M >s

]
for any t ∈ [0,∞).

(A.7)

A process is called simple, denoted as K̂, if there exists a strictly increasing sequence of
real numbers {tm}∞m=0 with t0 = 0 and limm→∞ tm =∞, a sequence of random variables
{ξm}, and a nonrandom constant C < ∞ with supω∈Ω,m≥0 |ξm(ω)| ≤ C, such that ξm is
Fαtm-measurable for every m ≥ 0 and

K̂t(ω) = ξ0(ω)10(t) +
∞∑
i=0

ξi(ω)1(ti,ti+1](t); 0 ≤ t <∞, ω ∈ Ω. (A.8)
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See Definition 3.2.3 in Karatzas and Shreve (1991), PP 132.

For the square integrable K, by Proposition 3.2.6 in Karatzas and Shreve (1991), PP 134,
there exists a sequence of simple processes {K(n)}∞n=1, each in the form of (A.8), such that
limn→∞[K(n) −K]W

α
= 0 with the metric defined in (A.7).

Also by the definition of the stochastic integral (see Definition 3.2.9, PP 139, Karatzas and
Shreve 1991), the stochastic integral of K with respect to the Brownian motion Wα is the
unique, square-integrable martingale which satisfies limn→∞ ‖

∫
K(n) dWα−

∫
K dWα‖ =

0 for every sequence of simple processes {K(n)}∞n=1 with limn→∞[K(n)−K]W
α

= 0. Based
on such convergence, for the above sequence of simple processes {K(n)}∞n=1 such that
limn→∞[K(n) −K]W

α
= 0, the following convergence also holds: for any arbitrarily fixed

t, ∥∥∥∥∥∥EQ

[∫ t

0

K(n)
s dWα

s

∣∣∣FYt
]
− EQ

[∫ t

0

Ks dWα
s

∣∣∣FYt
]∥∥∥∥∥∥

t

=

√√√√√√EQ


EQ

[∫ t

0

K
(n)
s dWα

s

∣∣∣FYt
]
− EQ

A

[∫ t

0

Ks dWα
s

∣∣∣FYt
]2



≤

√√√√√√EQ

EQ

(∫ t

0

K
(n)
s dWα

s −
∫ t

0

Ks dWα
s

)2 ∣∣∣FYt



=‖
∫
K(n) dWα −

∫
K dWα‖t → 0 as n→∞,

(A.9)

where the convergence in the last equation is due to the definition of
∫ t

0
Ks dWα

s that
limn→∞ ‖

∫
K(n) dWα −

∫
K dWα‖ = 0 whenever limn→∞[K(n) −K]W

α
= 0.

Recall that K is FY -adapted. Hence, for each n, each ξnm is FYtm-measurable for every
m ≥ 0. For any n, by projecting

∫
K(n) dWα onto FYt at any fixed time t, we have the
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following equation:

EQ

[∫ t

0

K(n)
s dWα

s

∣∣∣FYt
]

=EQ

ξ(n)
0 (ω)10(t) +

∞∑
i=0

ξ
(n)
i (ω)(Wα

ti+1
−Wα

ti
)
∣∣∣FYt


=ξ

(n)
0 (ω)10(t) +

∞∑
i=0

ξ
(n)
i (ω)

(
EQ

[
Wα
ti+1

∣∣∣FYt ]− EQ

[
Wα
ti

∣∣∣FYt ]
)
.

(A.10)

For any ti < t, EQ
A

[
Wα
ti

∣∣∣FYt ] = EQ
A

[
Wα
ti

∣∣∣FYti ∨ (FYt \FYti )

]
. Recall that Y is a ”canon-

ical” report and that FYt \FYs is independent of Fαs under Q. Hence, EQ

[
Wα
ti

∣∣∣FYt ] =

EQ

[
Wα
ti

∣∣∣FYti ] = Yti for any ti < t. Combining this equality with equation (A.10), we

have

EQ

[∫ t

0

K(n)
s dWα

s

∣∣∣FYt
]

= ξ
(n)
0 (ω)10(t) +

∞∑
i=0

ξ
(n)
i (ω)

(
Yti+1

− Yti
)

=

∫ t

0

K(n)
s dYs.

(A.11)

Recall that we assume that supt∈[0,∞),ω∈Ω |βt(ω)| ≤ 1 and that the sequence {K(n)}n∈N

satisfies limn→∞[K(n) −K]W
α

= 0. Thus for any t ∈ [0,∞),

[K(n) −K]Yt : =

√
EQ[

∫ n

0

(K
(n)
s −Ks)2 d< Y >s]

=

√
EQ[

∫ n

0

(K
(n)
s −Ks)2β2

s d< Wα >s]

≤ [K(n) −K]W
α → 0

(A.12)

Therefore, by the definition of
∫ t

0
Ks dYs, we have ‖

∫ t
0
K

(n)
s dYs −

∫ t
0
Ks dYs‖ → 0 as

n → ∞. Combine the above equality (A.12), (A.11) and (A.9), and by the Q-almost
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everywhere uniqueness of the limit defined by ‖ · ‖, we have

EQ
A

[∫ t

0

Ks dWα
s

∣∣∣FYt
]

=

∫ t

0

Ks dYs =

∫ t

0

Ksβs dWα
s (A.13)

for Q-almost everywhere. By plugging (A.6) and (A.13) in (A.5), we have

V Y
t (B,A, α)− V Y

0 (B,A, α)

=

∫ t

0

(
rV Y

s (B,A, α)− u(Bs) + c(As)
)

ds+ σ

∫ t

0

Ksβs dWα
s .

(A.14)

Therefore, (2.9) follows directly from (A.14).

In the rest of the proof, we will characterize Agent’s incentive compatibility constraint.
The proof borrows the same insight of appendix, Proposition 2 in Sannikov (2008). Given
the above A and at any initial time t0 ∈ [0,∞), consider an alternative FY -adapted effort
strategy Â. Define by T̂ V t Agent’s total expected payoff starting from time t0, who adopts
Â before time t ≥ t0 then follow the strategy A after time t, i.e.,

T̂ V t :=

∫ t

t0

e−r(s−t0)
(
u(Bs)− c(Âs)

)
ds+ e−r(t−t0)V Y

t (B,A, α).

Thus d T̂ V t = e−r(t−t0)
(
u(Bt)− c(Ât)

)
dt+d(e−r(t−t0)V Y

t (B,A, α)). By (2.9), we have

dT̂ V t = e−r(t−t0)(c(At)− c(Ât) +Ktβt(Ât − At)) dt+ e−r(t−t0)Ktβtσ dWα
t , (A.15)

where the drift of dT̂ V t the impact of such a secret deviation.

We now verify that Agent’s incentive compatibility is satisfied if and only if condition (2.10)
is satisfied.

For the necessary condition: At any starting time t0 as specified above, if condition (2.10)
is violated for the recommended effort A in a set of positive measure during time [t0,∞),
then we choose the alternative effort strategy A∗ ∈ AFτ that maximizes KtβtÃt − h(Ãt)

for all t. By equation (A.15), the drift of dT̂ V t is always nonnegative and is positive
on a set of strictly positive measure. Thus there exists a time t∗ such that EQ[T̂ V t∗ ] >

EQ[T̂ V t0 ] = V Y
t0

(B,A, α). Therefore, starting at time t0, the recommended effort process
A is not optimal.
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For sufficient condition: if A satisfies condition (2.10), then similar to the above, we can
show that for any alternative effort process Â, the resulted total value T̂ V has a nonpositive
drift. Thus for any time t, EQ[T̂ V t] ≤ EQ[T̂ V t0 ] = V Y

t0
(B,A, α). Hence, standing at any

initial time t0, A is at least as good as any alternative FY -adapted effort process Â. Hence,
we conclude the proof.

Proof of Lemma II.4. (i) Suppose that Vt(B,A, α) and K satisfy equation (2.6) Q-almost
everywhere, so the set of paths that violate that above equation (2.6) is of Q-zero-measure.
Given that P is equivalent to Q, P and Q have the same set of zero-measure events. The set
of paths that violate equation (2.6) is also of P -zero-measure. The same argument applies
to the other direction. (ii) and (iii) can also be shown similarly.

A.2 Proofs of Section 2.4

A.2.1 The proofs of Theorem II.1 and II.2

We first define the following operator: Given any tuple (a, k, b, α) ∈ {0, aH} × [ε,K] ×
[0, b]× [α, α], letHa,k,b,α be a function such that

Ha,k,b,α(v,G(v), G′(v)) :=
−2G′(v)(rv − u(b) + c(a) + σkα)− 2(a− b) + 2rG(v)

(σk)2
.

(A.16)

With the above notation, we further abbreviate the infimum ofHa,k,b,α of (a, k, b, α) over
the feasible range to be the following:

infH(v,G(v), G′(v)) := inf
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

Ha,k,b,α(v,G(v), G′(v)).

The HJB equation can be rewritten equivalently as the following equation G′′(v) =

infH(v,G(v), G′(v)). We first have the following lemma:

Lemma A.1. For any initial condition y0 ∈ R2, G′′ = infH(v,G,G′) has a unique twice

continuously differentiable solutionG(·, y0) on [0,∞) satisfying y0 = (G(0, y0), G′(0, y0)).

Moreover, G(·, y0) is uniformly continuous in y0.
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Proof. For any y := (y1, y2) ∈ R2, we define H̃(v, y) :=
(
y2, infH(v, y)

)
. Let ‖ · ‖ be

the norm in R2. It is easy to check that on any compact set S0 ⊆ [0,∞), there exists
some positive constants M1 and M2 (depending on S0) such that for every v ∈ S0 the
following holds: (i) ‖H̃(v, y)‖ ≤ M1(1 + ‖y‖); (ii)‖H̃(v, y) − H̃(v, ỹ)‖ ≤ M2‖y − ỹ‖;
(iii) H̃(v, y) is continuous in v for each y. See also the proof of Proposition 2 in Strulovici
and Szydlowski (2015) for more details for such verifications (Note that Assumption 1-3
therein are satisfied in my setting). Hence the statement of this lemma follows directly from
Lemma 4 and 5, Appendix B, in Strulovici and Szydlowski (2015).

Lemma A.2. For any initial condition y0 ∈ R2, there exists a twice continuously differen-

tiable strictly concave solution G(·) to the HJB equation (2.13) satisfying (G(0), G′(0)) =

y0.

Proof. Given any initial condition y0, Lemma A.1 shows that there exists a unique twice
continuously differentiable solution to the HJB equation, denoted as G(·). We will show
that the solution G is strictly concave, which is divided into the following two steps.

First step: We will first show that there does not exist a continuation value v ∈ (0,∞)

such that G′′(v) = 0. Suppose to the contrary that there exists one value v0 ∈ [0,∞)

such that G′′(v0) = 0. This implies that G′′(v0) = 0 = infH(v0, G(v0), G′(v0)). Then
consider the affine function f(v) = G(v0) + G′(v0)(v − v0). A straightforward calcu-
lation generates the following equation: for any (a, k, b, α), Ha,k,b,α(v, f(v), f ′(v)) =

Ha,k,b,α(v0, G(v0), G′(v0)). Hence, for any v ∈ [0,∞),

f ′′(v) = 0 = G′′(v0) = infH(v0, G(v0), G′(v0)) = infH(v, f(v), f ′(v)).

Hence, f is a solution to the HJB equation that satisfies the initial value f(v0) = G(v0) and
f ′(v0) = G′(v0). By the uniqueness of the solution for a given value (v0, G(v0), G′(v0)),
this implies that the solution to the HJB equation on (0,∞) is a straight line.1 However,
given that the maximum production is bounded by aH

r
, Principal’s value function cannot go

to infinity. Hence we must have f ′(v0) ≤ 0, which implies that the maximum is achieved
at f(0) = 0. But this contradicts the prerequisite assumption that it is strictly optimal for
Principal to hire Agent than no trade. So we have a contradiction.

1For the uniqueness, any given value will work; it needs not be the initial value only.
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Second step: To show this, first note that G′′(0) < 0. The proof is the following: by taking
the special value (b = 0, a = 0, β = 1, k ∈ (0, c(aH)

aH
), α = 0),Ha,k,b,α(0, G,G′) = 0. Thus

G′′(0) = infH(0, G,G′) ≤ 0. By the first step, it cannot be the case G′′(0) = 0. Thus we
have G′′(0) < 0.

Now, suppose that if there exists v1 such that G′′(v1) ≥ 0, then by the continuity of function
G′′(·), there must exist a point v1 such that G′′(v1) = 0. This again contradict with the first
step that it cannot be the case G′′(v0) = 0 for some v0 ∈ [0,∞). Therefore, it must be the
case that G′′(v) < 0 for any v.

The next lemma follows directly from Lemma 11, Appendix F in Strulovici and Szydlowski
(2015).

Lemma A.3. For any given initial conditions y0, let G(·, y0) be the unique twice dif-

ferentiable solution on [0,∞) to the equation G′′(v) = infH(v,G(v), G′(v)). For any

two initial values y0 = (y1
0, y

2
0) and ŷ0 := (ŷ1

0, ŷ
2
0) such that y1

0 = ŷ1
0 and y2

0 > ŷ2
0 , the

corresponding solutions to the given equation then satisfy G(v, y0) > G(v, ŷ0) for any

v ∈ [0,∞).

Next we will prove that there exists a unique pair of a twice differentiable strictly concave
function G and a retirement boundary v∗ that satisfies the given HJB equation and the
boundary condition.

First, we introduce the following lemma. Recall that −p(·) is the payment for the agent’s
retirement. Given b is the maximum amount that the principal could pay at each instant,
we will set the upper bound of the agent’s continuation value to be u(b)

r
for now. Later,

Lemma A.6 will provide a formal argument that the principal optimally retires the agent
whenever his continuation value exceeds u(b)

r
so setting such an upper bound is without loss

of generality.

Lemma A.4. For the initial value problem G′′(v) = infH(v,G(v), G′(v)) with the initial

value y0 := (0, s), the solution G satisfies the following: there exists a function ũ such that

G ≥ ũ on [0, u(b)
r

] and ũ′ ≥ 0 on [0,M1 log
(
s+M2

M2

)
] for some strictly positive constant M1

and M2.

Proof. Note that Assumption 1-3 in Strulovici and Szydlowski (2015) are satisfied in my
setting. Following the same procedure in the proof of Proposition 2 in Strulovici and
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Szydlowski (2015), we can verify that − infH satisfies Condition 1-3 therein, thus the
above statement follows directly from the proof of Lemma 7, Appendix B, Strulovici and
Szydlowski (2015).

Lemma A.5. There exists a unique twice continuously differentiable strictly concave

solution G to G′′(v) = infH(v,G(v), G′(v)) such that G(v) ≥ −p(v) and G′(v∗) =

−p′(v∗) for the boundary point v∗, where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)} if

{v ∈ (0, u(b)
r

] | G(v) = −p(v)} 6= ∅ and v∗ = 0 otherwise.

Proof. Given any initial value (0, 0, G′(0)), the unique solution G to the given initial value
problem is a strictly concave C2-function. It is straightforward to verify that a necessary
condition of G ≥ −p on is that G′(0) ≥ −p′(0), which we will impose for the rest of the
proof. Consider the special initial value (0, 0,−p′(0)), let the unique solution be G0. We
divide the possible situations into two different cases.

First case: If the unique solution satisfies G0(v) > −p(v) for all v ∈ (0, u(b)
r

). Then the
above statement holds for G0 with v∗ = 0. The uniqueness of such a pair follows directly
from Lemma A.3.

Second case: Otherwise, there exists some v′ ∈ (0, u(b)
r

) such that G0(v′) = −p(v′). In this
case, if we keep increasing the initial slope G′(0), then by Lemma A.3, the corresponding
unique solution to (2.13) is increasing in G(v) for each v. If we raise the initial slope G′(0)

large enough, by Lemma A.4, the lower boundary ũ in Lemma A.4 can be increasing on
(0, u(b)

r
) and thus the solution to the initial value problem G satisfies G(v) > −p(v) for

all v ∈ (0, u(b)
r

). Suppose that s∗ is the largest initial value of G′(0) such that if we raise
G′(0) > s∗, then the resulted solution to (2.13) has no intersection with −p(·) on (0, u(b)

r
).

Then given initial value (G(0), G′(0)) = (0, s∗), the solution must be tangential to −p(·) at
v∗ := arg min{v ∈ (0, u(b)

r
] | G(v) = −p(v)}, otherwise we can find a contradiction that

there exists a strictly lager initial value of G′(0) under which the resulted solution and−p(·)
has nonempty intersections. Thus G(v∗) = −p(v∗) and G′(v∗) = −p′(v∗) must hold. The
uniqueness of the pair G and v∗ in this case is as follows: Recall that G′(0) ≥ −p′(0) must
hold (in order for G ≥ −p). For any initial slope −p′(0) ≤ G′(0) < s∗, by definition the
smallest intersection ofG and−p is not tangent so the requirement in the statement does not
satisfy; for any initial slope G′(0) > s∗, then G > −p on (0, u(b)

r
) but G′(0) > −p′(0) so
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the requirement does not satisfy, either. Hence, the pair (G, v∗) that satisfies the statement
of the lemma is unique.

Hence we conclude our proof.

Proof of Theorem II.1. The result follows from Lemma A.5.

We now turn to the proof of Theorem II.2.

Lemma A.6. For any agent’s initial continuation value v if v > u(b)
r

, then Principal

achieves a payoff of at most −p(v).

Proof. We will show that under any contract (α,Q, Y,B,A) with the agent’s initial value
v ≥ u(b)

r
, regardless of whether this contract satisfies the incentive compatibility constraint.

Principal gets at most −p(v). Recall that the reward upper bound b must satisfy the
condition u′(b) = c(aH)

aH
.

The proof is as follows: Let b0 := r · p(v). By such definition, v = u(b0)
r

. Given that
v ≥ u(b)

r
, we have b0 ≥ b and thus u′(b0) ≤ u′(b). Hence

v = EQ

[∫ ∞
0

e−rs(u(Bs)− c(As)) ds

]
≤ EQ

[∫ ∞
0

e−rs(u(b0) + u′(b0)(Bs − b0)− u′(b) · As) ds

]
≤ EQ

[∫ ∞
0

e−rs(u(b0) + u′(b0)(Bs − b0)− u′(b0) · As) ds

]
= v − u′(b0)(EQ

[∫ ∞
0

e−rs(As −Bs) ds

]
+
b0

r
),

where the first inequality is by the concavity of u and u′(b) = c(aH)
aH

and the second
inequality is by that u′(b0) ≤ u′(b)). The above inequality further implies that

EQ

[∫ ∞
0

e−rs(As −Bs) ds

]
≤ −b0

r
= −p(v).

Hence Principal can get at most −p(v) for any initial value v > v.

The above result implies that whenever Agent’s continuation value satisfies v > v, he needs
to be retired immediately, in other words, the optimal retirement bound v∗ must satisfy
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v∗ ≤ v. So we conclude our result.

It is also important to verify that the solution on [0, u(b)
r

] to the HJB equation (2.13) with
the boundary condition (2.14) is indeed Principal’s value function. The following lemma
presents this verification argument.

Lemma A.7. Suppose that G is the solution to the HJB equation (2.13) with the boundary

condition (2.14) satisfied by v∗ where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)} if

{v ∈ (0, u(b)
r

] | G(v) = −p(v)} 6= ∅ and v∗ := 0 otherwise. Then for any initial agent’s

continuation value v ∈ [0, u(b)
r

], the principal’s maximum expected payoff under admissible

controls is G(v).

Proof. Given that the domain [0, u(b)
r

] is compact, so the solution G to equation (2.13)
naturally satisfies the linear growth condition: |G(v)| ≤ M0(1 + |v|) for some positive
constant M0. Thus by Lemma 2 and 3, Strulovici and Szydlowski (2015), the principal’s
value function equals to the above solutionG pointwisely on [0, u(b)

r
]. In particular, Lemma 3

therein provides a way to construct an optimal admissible control. Under such optimal
admissible control and consider the optimal stopping problem. Note that Assumption 2-4,
Strulovici and Szydlowski (2015), are satisfied in my setting, by Proposition 7, G is the
value function of the optimal stopping problem. Hence we conclude our proof.

Proof of Theorem II.2. The proof follows from Lemma A.6 and A.7.

A.2.2 The proofs of Proposition II.3, Proposition II.4 and Theorem II.3

Proof of Proposition II.3. It is straightforward to verify that for each v ≤ v∗, the given
tuple (β∗(v), k∗(v), b∗(v), a∗(v)) solves the maximization within the HJB equation (2.13).
It is also straightforward to verify that the assumptions in Theorem 3 in Strulovici and
Szydlowski (2015) are satisfied, by which, there exists a unique strong solution Vt to
equation , the Markov control (β∗(Vt), a

∗(Vt), b
∗(Vt), k

∗(Vt)) is admissible and optimal.
Moreover, by Proposition II.2, the incentive compatibility is satisfied so the contract
characterized by the above control is also incentive compatible.

Proof of Proposition II.4. Let v∗ be the optimal retirement bound. Recall that the HJB
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equation (2.13) can be rewritten into the following form:

rF (v) = max
{
F ′(v)(rv − u(b∗(v))) +

F ′′(v)

2
(εσ)2 − b∗(v),

F ′(v)(rv − u(b∗(v)) + c(aH)) +
F ′′(v)

2
(
c(aH)

aH
σ)2 + aH − b∗(v)

}
,

(A.17)

where we call the first equation in the right-side of equation (A.17) the shirking ODE and
the second equation the working ODE.

In the following I will show that rF (v) ≥ supb∈[0,b]

(
F ′(v)(rv − u(b))− b

)
holds for all

v ∈ [0, v∗] where “=” holds only at v = 0 or v = v∗. Note that the right hand-side is strictly
greater than the shirking ODE . If the above claim is true, then by implementing shirking
Principal will never achieve the optimum value on (0, v∗). Thus the effort 0 will not be
optimal for Principal before stopping occurs.

Recall that the optimal reward b∗(v) solves supb∈[0,b]

(
F ′(v)(rv − u(b))− b

)
for any v.

Depending on whether the optimal reward is strictly positive or not, we can divide the range
of continuation value [0, v∗] into two intervals. Let b0 be the threshold such that b∗(v) = 0

for any v ∈ [0, b0] and b∗(v) > 0 for v ∈ (b0, v
∗].

For any v ∈ [0, b0], the optimal reward b∗(v) = 0. Thus on this interval rF (v) −
supb∈[0,b]

(
F ′(v)(rv − u(b))− b

)
= rF (v) − F ′(v)rv. Note that the derivative function

−F ′′(v)rv ≥ 0. Hence it is an increasing function. With the initial condition F (0) = 0,
the minimum in this region [0, b0] is achieved at 0. Hence for any v ∈ [0, b0],

rF (v)− sup
b∈[0,b]

(
F ′(v)(rv − u(b))− b

)
≥ 0,

with ”=” achieved at v = 0.

The rest case is when the continuation value v is in (b0, v
∗], then b∗(v) > 0. Furthermore, I

claim the following:

Claim A.1. For an arbitrarily fixed b ∈ [0, b], rF (v) >
(
F ′(v)(rv − u(b))− b

)
holds for

all v ∈ (b0, v
∗).

If the above claim is true, then it is not possible for any v′ ∈ (b0, v
∗) to satisfy that
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rF (v′) = supb∈[0,b]

(
F ′(v′)(rv′ − u(b))− b

)
: suppose to the contrary that rF (v′) =

supb∈[0,b]

(
F ′(v′)(rv′ − u(b))− b

)
for some value v′ ∈ (b0, v

∗). Given the compact in-
terval [0, b] and that the function

(
F ′(v)(rv − u(b))− b

)
is continuous with respect to b,

there must exist b′ such that rF (v′) =
(
F ′(v′)(rv′ − u(b′))− b′

)
. Thus we arrive at a

contradiction to the given claim. Hence we can conclude the proof by proving this claim,
and combining it with the above result for the case of [0, b0].

The rest is to prove the above claim. For the given arbitrarily fixed b, consider the function
rF (v) − F ′(v)(rv − u(b)) + b for all v ∈ (b0, v

∗). By taking the derivative of function
rF (v)− F ′(v)(rv − u(b)) + b with respect to v, we have −F ′′(v)(rv − u(b)). By Theo-
rem II.1, F (·) is strictly concave, F ′′(·) < 0. There are two possible cases: u(b)

r
< v∗ or

u(b)
r
≥ v∗. In the first case, −F ′′(v)(rv − u(b)) is strictly negative on

(
b0,

u(b)
r

)
, zero at

u(b)
r

and strictly positive on
(
u(b)
r
, v∗
)

. Then the following holds:

inf
v∈(b0,v∗)

(
rF (v)− F ′(v)(rv − u(b)) + b

)
≥
(
rF (

u(b)

r
)− F ′(u(b)

r
)(r

u(b)

r
− u(b)) + b

)
(by evaluating at the minimizer

u(b)

r
)

= rF (
u(b)

r
) + b > −rp(u(b)

r
) + b (by that F (

u(b)

r
) > −p(u(b)

r
))

= −b+ b = 0 (by the definition of p(·)).

In the second case,−F ′′(v)(rv−u(b)) is strictly negative on [b0, v
∗). By a similar derivation,

for any v ∈ (b0, v
∗),

(
rF (v)− F ′(v)(rv − u(b)) + b

)
>
(
rF (v∗)− F ′(v∗)(rv∗ − u(b)) + b

)
≥
(
rF (

u(b)

r
)− F ′(u(b)

r
)(r

u(b)

r
− u(b)) + b

)
= rF (

u(b)

r
) + b ≥ −rp(u(b)

r
) + b = −b+ b = 0.

Hence we conclude the claim.

Proof of Theorem II.3. From Lemma II.3, the stochastic equation that governs the evolution
of the agent’s continuation value depends only on the external noise W (without the drift
term σα dt). In this case, the canonical report to the agent is Yt = EP [Wt|FYt ],∀ t. The
agent’s incentive compatibility constraint is characterized by Proposition II.2. Based on that
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the agent’s prior belief is P , Principal’s problem in this situation will be equivalent to setting
α = α = 0 in (2.11). Hence the optimal incentive contract is the optimal output-based
contract derived in Proposition II.3.

A.3 Proofs in Section 2.5

Proof of Theorem II.4. It is straightforward to verify that the given policy (b∗(·), α∗(·), k∗(·))
maximizes the HJB equation (2.13). Note that the choice of β could give the principal some
flexibility to switch the choice of effort from aH to 0 in situations when the optimal k∗(v)

supports the high effort, without violating the IC constraint (note that k∗(v) is independent
of the choice of a∗(v)). However, I claim that the inequality G′(v)c(aH) ≥ −aH holds for
any v ∈ [0, v∗] (its proof will be present at the end), which implies that it is not profitable
for the principal to switch aH to 0 when k∗(v) supports high effort. Hence, the given
tuple (a∗(·), k∗(·), b∗(·), α∗(·)) with β∗ ≡ 1 maximizes the optimization within the HJB
equation (2.13) for every v.

Given that G is third continuously differentiable, we can verify that the assumptions in
Theorem 3 in Strulovici and Szydlowski (2015) are satisfied. By this theorem, we can
conclude that there exists a unique strong solution Vt to the equation

dVs = (rVs − u(b∗(Vs)) + c(a∗(Vs))) ds+ σk∗(Vs) d(Ws + α∗(Vs) d s),

and the Markov control (β∗(Vt), α
∗(Vt), a

∗(Vt), b
∗(Vt), k

∗(Vt))t≥0 is admissible and opti-
mal. Moreover, by Proposition II.2, the incentive compatibility is satisfied so the contract
characterized by the above control is also incentive compatible.

Lastly, we present the proof of the inequality G′(v)c(aH) ≥ −aH as follows: Recall that
v := u(b)

r
with u′(b) = c(aH)

aH
. By Theorem II.1, G is a strictly concave function and by

Theorem II.2, v∗ ≤ v holds. Thus for any v ∈ [0, v∗], the following inequality holds:

G′(v)c(aH) + aH ≥ G′(v∗)c(aH) + aH = −p′(v∗)c(aH) + aH ≥ −p′(v)c(aH) + aH = 0.

Hence we complete the proof.

Let v0 be the particular continuation value such that G′(v0) = 0. By the strict concavity of
G, this v0 is unique. Note that when α = 0, then the proof on [0, v0] follows directly from
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that in Proposition II.4; similar for the case when α = 0 on [v0, v
∗]. In the following, we

will solely focus on the case when α > 0 and α < 0. The proof of Theorem II.5 is divided
into the following lemmas.

Lemma A.8. Suppose thatG′(0)σεα+ G′′(0)
2

(σε)2 6= 0. Then the optimal incentive contract

recommends the effort level aH at the agent’s continuation value 0.

Proof. Note that the HJB equation (2.13), when evaluated at v = 0, generates the following
inequality with G(0) = 0:

sup
(0,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

− rG(0) +G′(0)(σkα) +
G′′(0)

2
(σk)2 ≤ 0. (A.18)

Since supk∈[0,K]

(
G′(0)(σkα) + G′′(0)

2
(σk)2

)
≥ 0, thus for the above inequality (A.18) to

hold, the true maximizer in [0, K] that solves supk∈[0,K]

(
G′(0)(σkα) + G′′(0)

2
(σk)2

)
must

be strictly less than ε, thus

arg max

{
k ∈ [ε,K] | G′(0)(σkα) +

G′′(0)

2
(σk)2

}
= ε.

Moreover, the assumption that G′(0)σεα + G′′(0)
2

(σε)2 6= 0 implies that strict inequality
must hold in the above inequality (A.18). Thus the optimal effort level cannot be 0 at the
continuation value 0. We conclude the proof.

Lemma A.9. Suppose thatG′(0)σεα+ G′′(0)
2

(σε)2 6= 0. Then the optimal incentive contract

recommends the effort level aH for any continuation value v ∈ [0, v0].

Proof. The proof is by contradiction. By Lemma A.8, the optimal effort is aH at contin-
uation value 0. Suppose to the contrary that the optimal effort would switch from aH to
0 when v increases from 0 to v0, with the first switching point continuation value v1. Let
the interval [v1, v2] ⊆ [0, v0] to be an interval in which the agent optimally shirks before
switching back to aH . Recall that on [0, v0], the optimal compensation is b∗(v) = 0 and
the evaluation bias is α∗(v) = α. Then the HJB equation for any v ∈ [v1, v2] takes the
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following form:

−rG(v) +G′(v)(rv + σk∗(v)α) +
G′′(v)

2
(σk∗(v))2 = 0, (A.19)

where k∗(v) = max{−G
′(v)α

G′′(v)σ
, ε}.

Let us first consider the case when k∗(v) = −G′(v)α
G′′(v)σ

on [v1, v1 + ε̂] for some ε̂ > 0.
Now consider the switching point v1, at which either condition (ii) or (iii) must hold.
Note that rG(v) − G′(v)rv is increasing, thus the above equation (A.19) implies that
G′(v)σk∗(v)α+ G′′(v)

2
(σk∗(v))2 = −(G′(v)α)2

2G′′(v)
is also increasing. Moreover, given that G′(v)

is a decreasing function, this further implies that −G
′(v)

G′′(v)
must be increasing.

Suppose that working condition (iii) c(aH)
aH
≤ −G′(v)α∗(v)

G′′(v)σ
holds right at the switching

point v1, then given that −G
′(v)

G′′(v)
is increasing on [v1, v1 + ε̂], condition (iii) still holds on

[v1, v1 + ε̂]. Hence it cannot be that a∗(v) = 0 on [v1, v1 + ε̂], a contradiction. Suppose
that the working condition (ii) G′(v)c(aH) + aH + G′′(v)

2
(σ c(aH)

aH
+ G′(v)α∗(v)

G′′(v)
)2 ≥ 0 and

ε ≤ −G′(v)α∗(v)
G′′(v)σ

< c(aH)
aH

are satisfied at the switching point v1. By applying the envelope
theorem and taking the derivative of the equation (A.19) on both sides, we have the
following:

G′′(v)(rv + σk∗(v)α)︸ ︷︷ ︸
<0

+
G′′′(v)

2
(σk∗(v))2 = 0,

which implies that G′′′(v) > 0. The first sub-condition in condition (ii) can be transformed
into the following:

G′(v)c(aH)

−G′′(v)
+

aH
−G′′(v)

≥ 1

2
(σ
c(aH)

aH
+
G′(v)α∗(v)

G′′(v)
)2. (A.20)

Given that the above inequality (A.20) holds at v1, with that G′(v)
−G′′(v)

is increasing and
−G′′(v) is decreasing on [v1, v1 + ε̂], the left handside of the above inequality is increasing
but the right handside is decreasing. Hence the above inequality still holds for [v1, v1 + ε̂].
Therefore, the optimal effort on [v1, v1 + ε̂] is aH , which is again a contradiction.

Lastly we consider the case when k∗(v) = ε on [v1, v1 + ε̂′] for some ε̂′ > 0. Now consider
the switching point v1, at which condition (i) holds. Note that rG(v)−G′(v)rv is increasing,
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thus the above equation (A.19) implies that

G′(v)σεα +
G′′(v)

2
(σε)2 = G′(v)

(
σεα +

G′′(v)

2G′(v)
(σε)2

)
is also increasing. Moreover, given that G′(v) is a decreasing function, this further implies
that G

′′(v)
G′(v)

must be increasing. Suppose that working condition (i)

(c(aH) + σ(
c(aH)

aH
− ε)α∗(v)) +

aH
G′(v)

+
G′′(v)

2G′(v)
σ2((

c(aH)

aH
)2 − ε2) ≥ 0

and ε > −G′(v)α∗(v)
G′′(v)σ

hold right at the switching point v1. Given that G
′′(v)
G′(v)

is increasing on
[v1, v1 + ε̂′] and G′(v) is decreasing and nonnegagive on [0, v0], condition (i) still holds on
[v1, v1 + ε̂]. Hence it cannot be that a∗(v) = 0 on [v1, v1 + ε̂], which is again a contradiction.

In conclusion, the optimal effort is aH at any continuation value v ∈ [0, v0].

Lemma A.10. Suppose that G′(v)c(aH) + aH + G′′(v)
2
σ2(( c(aH)

aH
)2 − ε2) 6= 0 for any

v ∈ (v0, v
∗). For any continuation value v with v ∈ [v0, v

∗), the optimal incentive contract

recommends the effort level aH .

Proof. By Lemma A.9, the optimal effort at the continuation value v0 must be aH . More-
over, by the assumption that G′(v0)c(aH) + aH + G′′(v0)

2
σ2(( c(aH)

aH
)2− ε2) 6= 0 and the HJB

equation, we have G′(v0)c(aH) + aH + G′′(v0)
2

σ2(( c(aH)
aH

)2 − ε2) > 0 holds at v0. By that G
is C3 and that for any v ∈ (v0, v

∗),

G′(v)c(aH) + aH +
G′′(v)

2
σ2((

c(aH)

aH
)2 − ε2) 6= 0,

hence we have that

G′(v)c(aH) + aH +
G′′(v)

2
σ2((

c(aH)

aH
)2 − ε2) > 0 on (v0, v

∗). (A.21)

For any continuation value v ∈ [v0, v
∗), we will now divide the possible situation into the

following two cases: If −G
′(v)α

G′′(v)σ
≥ c(aH)

aH
, then by Theorem II.4, the optimal effort is aH .

Otherwise, −G
′(v)α

G′′(v)σ
< c(aH)

aH
, then let k∗(v) := max{−G

′(v)α
G′′(v)σ

, ε}. Given that G is strictly
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concave, that G′ ≤ 0 on (v0, v
∗), and by Inequality (A.21), the following inequality holds:

G′(v)(c(aH) + σ
c(aH)

aH
α) + aH +

G′′(v)

2
σ2(

c(aH)

aH
)2

>
G′′(v)

2
σ2(k∗(v))2 +G′(v)σk∗(v)α.

Thus, the above inequality further implies the following

0 = sup
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

−rG(v) +G′(v)(rv − u(b) + c(a) + σkα) +
G′′(v)

2
(σk)2 + a− b

≥ sup
b∈[0,b]

−rG(v) +G′(v)(rv − u(b) + c(a) + σ
c(aH)

aH
α) +

G′′(v)

2
(σ
c(aH)

aH
)2 + a− b

> sup
b∈[0,b]

−rG(v) +G′(v)(rv − u(b) + σk∗(v)α) +
G′′(v)

2
(σk∗(v))2 − b.

By the above inequality, 0 cannot be the optimal effort. Thus the optimal effort must be aH .
Hence we conclude the proof.

Proof of Theorem II.5. The proof follows from Lemma A.9 and A.10.

Proof of Proposition II.5. The result for mean exit time for diffusion process is shown in
Result 7.1, PP 239, Pavliotis (2014).

A.4 Proofs in Section 2.6

A.4.1 Proofs in Section 2.6.1

Note that we can characterize Agent’s continuation value in the same way as that in the
main derivation. Hence Principal’s problem can be written in a similar way as (2.11), and
by a similar derivation as that in Section 2.4, we can define the corresponding HJB equation
as follows: Fix a small ε such that K > c(aH)

aH
> ε > 0. Let Γ := {(aH , kβ)|K ≥ kβ ≥

114



c(aH)
aH
} ∪ {(0, kβ)|ε ≤ kβ ≤ c(aH)

aH
}, then

rG(v) = sup
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

G′(v)(rv − u(b) + c(a) + σkα) +
G′′(v)

2
(σk)2 + γ(α)a− b,

(A.22)

G(0) = 0, G(v∗) = −p(v∗) and G′(v∗) = −p′(v∗). (A.23)

We can similarly show that the above HJB equation characterizes the principal’s value
function in this case.

Lemma A.11. (i) There exists a unique twice continuously differentiable and strictly

concave function G that solves HJB equation (A.22) with G ≥ −p and the boundary

condition (A.23) holds for v∗ where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)} if

{v ∈ (0, u(b)
r

] | G(v) = −p(v)} 6= ∅ and v∗ := 0 otherwise.

(ii) Suppose that G is the solution to the HJB equation (A.22) with the boundary con-

dition (A.23) satisfied by v∗ where v∗ := arg min{v ∈ (0, u(b)
r

] | G(v) = −p(v)} if

{v ∈ (0, u(b)
r

] | G(v) = −p(v)} 6= ∅ and v∗ := 0 otherwise. Then for any initial

agent’s continuation value v, the principal’s maximum expected payoff under admis-

sible controls is G(v) if v ≤ u(b)
r

, and −p(v) if v > u(b)
r

. In particular, the value

function is twice continuously differentiable and it is the unique solution of the HJB

equation (A.22) with the boundary condition (A.23) satisfied by the above v∗.

Proof. The proof is similar to that in Theorem II.1 and II.2 so we omit it here.

Proof of Proposition II.6. It is straightforward to verify that the given policy solves the
optimization within the HJB equation (A.22). Given Lemma A.11 , the rest of the proof
follows similar to that in Theorem II.4.

A.4.2 Proofs in Section 2.6.2

Proof of Proposition II.7. By the definition, it is straightforward to verify that given any
agent’s continuation value v, the set of admissible controls under the situation when the
agent’s outside option is w1 is weakly larger than that under the outside option w2. Hence
G1(v) ≥ G2(v) for any v ∈ [w2,∞). So we showed the first statement.
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For the second statement, recall from Theorem II.1 and II.2 that the value function
G1 and G2 are twice continuously differentiable strictly concave unique classical solu-
tion to the equation G′′ = infH(v0, G,G

′) given the initial value (G1(w2), G′1(w2)) and
(G2(w2), G′2(w2)) respectively, where

infH(v,G(v), G′(v)) := inf
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

Ha,k,b,α(v,G(v), G′(v)),

and for any tuple (a, k, b, α) ∈ {0, aH}× [ε,K]× [0, b]× [α, α],Ha,k,b,α is a function such
that

Ha,k,b,α(v,G(v), G′(v)) :=
−2G′(v)(rv − u(b) + c(a) + σkα)− 2(a− b) + 2rG(v)

(σk)2
.

Then we claim thatG1(w2) > G2(w2) holds. To see this, suppose thatG1(w2) = G2(w2) =

0. By the strictly concavity, G1(w1) = 0 and G1(w2) = 0 imply that G1 ≥ 0 on [w1, w2).
However, G′2(w2) ≥ 0 and that G1 ≥ G2 on [w2,∞) imply that G′1(w2) ≥ G′2(w2) > 0.
That G1 ≥ 0 on [w1, w2) combining with that G′1(w2) > 0 with G1(w2) = G2(w2) = 0

implies the non-concavity of G1 at w2. This is a contradiction with that G1 is a twice
continuously differentiable strictly concave function on [w1,∞). So we have G1(w2) >

G2(w2).

The rest of the proof will show that G1(v) > G2(v) and G′1(v) > G′2(v) for any v ∈
(w2,∞). Suppose that to the contrary, G1(v) > G2(v) or G′1(v) > G′2(v) is violated for
some v ∈ (w2,∞). Then there must exist a point v̂′ ∈ [w2,∞) at which G1(v̂′) > G2(v̂′)

is violated. Let v′ := inf{v ∈ [w2,∞) | G′1(v) > G′2(v)}. It is straightforward to verify
that the following inequality holds:

G′′1(v′) = infH(v′, G1(v′), G′1(v′))

> infH(v′, G2(v′), G′2(v′)) = G′′2(v′).

Since G′1(·) hits G′2(·) at v′ the first time before which time G′1(·) > G′2(·) and G1(·) >
G2(·), we have a contradiction with the above inequality. Hence we conclude that G1(v) >

G2(v) and G′1(v) > G′2(v) for any v ∈ (w2,∞).
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A.4.3 Proofs in Section 2.6.3

We can solve Principal’s problem in two steps: first we can characterize the principal’s
problem after promoting the agent with the corresponding HJB equation as follows:

rGp(v) = sup
(a,kβ)∈Γ′,b∈[0,b]
β∈[0,1],α∈[α,α]

G′p(v)(rv − u(b) + c(a) + σkα) +
G′′p(v)

2
(σk)2 + a− b− rC

(A.24)

Gp(0) = −C,Gp(vp,r) = −p(vp,r) and G′p(vp,r) = −p′(vp,r), (A.25)

where Γ′ = {(âH , kβ)|K ≥ kβ ≥ c(âH)
âH
} ∪ {(0, kβ)|ε ≤ kβ ≤ c(âH)

âH
} for some ε and K

such that 0 < ε < c(âH)
âH

< K.

Equivalently, we can write the above HJB equation into the following form: let Ĝp(v) :=

Gp(v) + C and p̂(v) := p(v)− C for any v ∈ [0,∞), then

rĜp(v) = sup
(a,kβ)∈Γ′,b∈[0,b]
β∈[0,1],α∈[α,α]

Ĝ′p(v)(rv − u(b) + c(a) + σkα) +
Ĝ′′p(v)

2
(σk)2 + a− b (A.26)

Ĝp(0) = 0, Ĝp(vp,r) = −p̂(vp,r) and G′p(vp,r) = −p̂′(vp,r), (A.27)

where Γ′ = {(âH , kβ)|K ≥ kβ ≥ c(âH)
âH
} ∪ {(0, kβ)|ε ≤ kβ ≤ c(âH)

âH
} for some ε and K

such that 0 < ε < c(âH)
âH

< K.

By following the same procedure of the proof to Theorem II.1 and II.2 on the equivalent
equation (A.26) and the boundary condition (A.27), we can show that the value function
Gp is the unique classical solution to the above HJB equation (A.24) with the boundary
condition (A.25) satisfied by the retirement bound vp,r where vp,r := arg min{v ∈ (0, u(b)

r
] |

Gp(v) = −p(v)} if {v ∈ (0, u(b)
r

] | Gp(v) = −p(v)} 6= ∅ and vp,r := 0 otherwise. Based
on this conclusion, we will first prove Proposition II.8 (i).

Proof of Proposition II.8 (i). We start with the observation that G′(0) > 0 must hold:
suppose to the contrary that G′(0) ≤ 0 holds. Then by Theorem II.1 and II.2 that G is
strictly concave, G′(v) < 0 for all v ∈ (0,∞). This contradicts our basic assumption that
the principal prefers to hire the agent at the beginning.

Note that the incentive compatibility constraint for high effort is relaxed in the case of after
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promoting the agent. Hence for any admissible control in the benchmark case (without
promotion), we can find a corresponding control by replacing the effort level from either aH
or 0 to âH in the given effort process based on incentive compatibility constraint. Given that
c(âH) = c(aH) > 0, the evolution of the agent’s continuation value remains the same under
such replacement and thus the separation time due to either firing or retirement remains the
same. Moreover, G′(0) > 0 implies that the agent exerts high effort during the employment
relationship in the benchmark case (without promotion opportunities). Therefore, given
any control in the benchmark case, the corresponding control defined above will generate
a strictly higher Principal’s payoff under the case after promotion if we don’t calculate
the training cost. Hence by the definition of the value function, Gp + C > G holds on
(0,∞).

Based on the value function for a trained agent, Principal should decide on the timing of the
promotion or retirement for an untrained agent in the following way. Given the promotion
opportunity, Principal can choose a stopping payoff by optimizing among either retiring
or promoting Agent. Let G0(v) := max{−p(v), Gp(v)} be the optimal stopping payoff
that summarizes the options between retirement and promotion. We can characterize the
principal’s problem before promoting the agent with the corresponding HJB equation as
follows:

rĜ(v) = sup
(a,kβ)∈Γ,b∈[0,b]
β∈[0,1],α∈[α,α]

Ĝ′(v)(rv − u(b) + c(a) + σkα) +
Ĝ′′(v)

2
k2 + a− b, (A.28)

Ĝ(0) = 0, Ĝ(v∗p) = G0(v∗p) and Ĝ′(v∗p) = G′0(v∗p), (A.29)

where Γ := {(aH , kβ)|K ≥ kβ ≥ c(aH)
aH
} ∪ {(0, kβ)|ε ≤ kβ ≤ c(aH)

aH
} for some ε small

enough and K large enough such that 0 < ε < c(aH)
aH

< K.

Proof of Proposition II.8 (ii). Note that (A.28) is the same as (2.13) except that we have
a different termination payment G0. By the proof similar to Theorem II.1 and II.2, the
value function Ĝ in this case is still the unique classical solution to the equation Ĝ′′ =

infH(v0, Ĝ, Ĝ
′), where

infH(v,G(v), G′(v)) := inf
(a,kβ)∈Γ,b∈[0,b]
β∈[−1,1],α∈[α,α]

Ha,k,b,α(v,G(v), G′(v)),
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and for any tuple (a, k, b, α) ∈ {0, aH}× [ε,K]× [0, b]× [α, α],Ha,k,b,α is a function such
that

Ha,k,b,α(v,G(v), G′(v)) :=
−2G′(v)(rv − u(b) + c(a) + σkα)− 2(a− b) + 2rG(v)

(σk)2
.

Recall that for the value function G in the benchmark case, Lemma A.5 shows that G is
obtained by increasing the initial slope G′(0) to the maximum value while satisfying the
condition that {v ∈ [0,∞) | G(v) = −p(v)} 6= ∅ for the resulted solution G. Similar to
Lemma A.5, the value function Ĝ before the promotion is to increase the initial slope Ĝ′(0)

to the maximum value while satisfying the condition that {v ∈ [0,∞) | Ĝ(v) = G0(v)} 6=
∅ for the resulted solution Ĝ.

Given that the terminal payoff G0 ≥ −p, the maximum value of initial slope such that
{v ∈ [0,∞) | Ĝ(v) = G0(v)} 6= ∅ is higher than that such that {v ∈ [0,∞) | G(v) =

−p(v)} 6= ∅. By the same argument as that in Proposition II.7 with Ĝ′(0) ≥ G′(0), we
can show that the solution Ĝ ≥ G on [0,∞). Moreover, if there exists a point v̂ such that
Gp(v̂)−C > −p(v̂), then Ĝ′(0) > G′(0). By the same argument as that in Proposition II.7,
we have Ĝ(v) > G(v) and Ĝ′(v) > G′(v) for any v ∈ [0,∞).
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APPENDIX B

Appendix for Chapter III

B.1 Proofs and Extra Examples of Section 3.3.2

B.1.1 An example illustration of strategic partitions

We illustrate the strategic partition in a setting with one receiver without any primitive
types.

Example B.1. Let ω be the bank’s fundamental value with two possible realizations Ω =

{−1, 2} with equal probability. A policymaker is conducting a stress test for the bank to
get information regarding ω, the result of which will be privately informed to two receivers.
Receivers will then decide whether to run on the bank or wait, i.e., A1 = A2 := {R,W}
with the payoff matrix:

(u1, u2) W R

W (ω, ω) (ω − 1, 0)

R (0, ω − 1) (0, 0)

Let S1 := {η ∈ ∆(Ω × {R,W}) | η(−1,W ) + η(2,W ) > 0.5}. Whenever a receiver’s
beliefs is in S1, action W is uniquely optimal. Let S2 = {η ∈ ∆(Ω × {R,W}) |
η(−1,W ) + η(2,W ) < 0.5}, under which R is uniquely optimal. Let S3 = ∆(Ω ×
{R,W})\(S1 ∪ S2) under which both actions are optimal. Note that {S1, S2, S3} is a
partition of ∆(Ω × {R,W}), and the strategic partition in this example is presented as
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follows: for any i ∈ {1, 2},

ξi :=


{νi ∈ Vi | marg∆(Ω×A−i) νi ∈ S1} × {W},
{νi ∈ Vi | marg∆(Ω×A−i) νi ∈ S2} × {R},
{νi ∈ Vi | marg∆(Ω×A−i) νi ∈ S3} × {R,W}

 .

B.2 Proofs of Section 3.3.2

Proof of Proposition III.3. Fix any stable regular selection criterion ζ and any canonical
signal (πc,M c :=

∏
i∈IM

c
i ) with the recommendations σ constituting a BNE that survives

ζ .

Let us arbitrarily pick a receiver i and an arbitrary partition menu Ψi := (τi, pτi×Sτi)τi∈Ti ∈
Γi. Based on our choice, consider the modified signal πm,i ∈ Λ̂(π, (pτi × SAτi)τi∈Ti) such
that πm,i has the same structure as π except that given each ai := (aτi)τi∈Ti it pools all
messages in Mi(Ψ

i, ai) := {(τi, vτi , aτi)τi∈Ti | vτi ∈ pτi} (if Mi(Ψ
i, ai) 6= ∅) into a

unique message, denoted as mp
i ∈ M c

i , for receiver i. ThatMi(Ψ
i, ai) 6= ∅ and that the

above canonical signal recommendations a BNE surviving ζ imply that ai ∈ (Sτi)τi∈Ti .

Suppose that there exists at least one underlying state ω, such that πi(Mi(Ψ
i, ai)|ω) > 0

and #|Mi(Ψ
i, ai)| > 1. Consider the above modified signal πm,i. For any message mj in

πm,i, define a mapping C : ∪i∈IM c
i → ∪i∈IM c which indicates its corresponding message

in π as follows: if mj /∈ Mi(Ψ
i, ai), then its corresponding message in π is itself, i.e.,

C(mj) = mj; otherwise, the corresponding message C(mj) = mp
i .

By the stability condition, if every receiver primitive type obeys its action recommendation
under the modified signal πm,i in all cases, then for each message mj , the correct conjecture
of receiver i induced by mj under πm,i will still be in the same behavioral analogy class
in ζ as that under its corresponding message C(mj) in π. Thus if we can show that the
recommendation action profile in the modified signal πm,i is indeed incentive compatible
so that the recommendations constitute a BNE. Then this equilibrium survives ζ .

We now show that the recommended action under πm,i is indeed incentive compatible
given others’ obedience. First we consider each primitive type τj and any message mj /∈
Mi(Ψ

i, ai). Note that, the conditional distribution of this message under signal πm,i is the
same as that of its corresponding message C(mj) under π. Assuming that the rest receiver
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primitive types obey their action recommendations, then the primitive type τj’s belief over
Ω × A−j under the modified signal πm,i remains the same as that under C(mj) in signal
π. Given that the recommended action is incentive compatible under the original signal π,
taking the recommended action in the modified signal πm,i for such receiver primitive type
is, therefore, incentive compatible given others’ obedience.

Then we only need to consider the incentive compatibility for any receiver i’s primitive type
τi and message mp

i under signal πm,i. Assume that all other receiver primitive types comply
with their action recommendations. Given that πm,i is equivalent to pooling all messages
inMi(Ψ

i, ai) in π into a single message mp
i and keep the rest the same, receiver i’s belief

over Ω× A−i under the message mp
i will be a convex combination of those induced by the

messages inMi(Ψ
i, ai) under π. Note that the strategic partition component is convex,

and such pooling is among messages within a single partition component. Hence the belief
induced by message mp

i will not change the incentive compatibility of the recommended
action for the primitive type τi under πm,i. Thus taking the recommended action in the
modified signal πm,i for such receiver primitive type is still incentive compatible given
others’ obedience.

By applying the above argument to each receiver j’s primitive type, we can conclude
that the action recommendation menu in every message under the modified signal πm,i

is incentive compatible for each receiver. Hence, there exists a pure strategy BNE under
(πm,i,M c) that survives ζ under which each receiver obeys the action recommendation.
Hence, it achieves the same outcome as that under σ and (M c, πc).

Proof of Proposition III.2. Fix any stable regular selection criterion ζ and any canonical
signal (

∏
i∈IMi, π) with the recommendations σ constituting a BNE that survives the

selection criterion ζ. For any receiver i and any partition menu, by Proposition III.3, we
can construct another signal that achieves the same outcome as that under σ and (M c, πc).
Now consider the following signal (π̂,M c): given each action recommendation menu
(aτi)τi∈Ti for each receiver i, π̂ pools all messages inMi := {(τi, vτi , aτi)τi∈Ti | vτi ∈ pτi}
(ifMi 6= ∅) into a unique message for all possible ζ-strategy partition component menu for
receiver i. Hence, by applying Proposition III.3 repeatedly to different possible combination
of receivers and theri partition menus, we can eventually show that there exists a a pure
strategy BNE under the signal (π̂,M c) that survives ζ and achieves the same outcome as
σ under (

∏
i∈IMi, π). Then there exists a pure strategy BNE under (π̂,M c) that survives
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ζ and achieves the same outcome as that under σ and (M c, πc). So the conclusion of
Proposition III.2 follows after a canonical transformation of the above signal (π̂,M c).

B.3 Solutions in Section 3.4

B.3.1 Detailed derivations in Section 3.4.1

Given that receiver will vote if and only if with at least 0.5 probability it is a pivotal voter,
an effective targeted advertisement must convince the targeted individual voter about two
things: (i) with at least 0.5 probability, there is exactly one of the rest receivers who would
vote Y; (ii) given the advertisement, voting Y is indeed a best response under the voter’s
updated belief about the underlying states.

Let voter i’s belief be µi := (µi1, µ
i
2, µ

i
3) for any i ∈ {1, 2, 3}. We can calculate that,

conditional on being pivotal, for voter 1 to vote Y, its posterior belief must be in the belief
region Φ1 := {µ1 | 2µ1

1 + µ1
3 ≥ 1} and let ∂Φ1 := {µ1 | 2µ1

1 + µ1
3 = 1} be its boundary.

Similarly, conditional on being pivotal, for voter 2 to vote Y, its posterior belief must be in
the belief region Φ2 := {µ2 | 2µ2

2 + µ2
4 ≥ 1} with ∂Φ2 its boundary.

We will first characterize the selection criterion. Define the following set of conjectures
of a voter i under which he believes that he is pivotal of at least 0.5 probability: Let
APV := {Y E} ∪ {Y N} ∪ {EY } ∪ {NY }, then define

PVi :=

{
νi ∈ Vi | marg∆(A−i) νi

(
APV

)
≥ 0.5

}
.

For any receiver i’s conjecture νi, let marg∆(Ω) νi(·|APV ) ∈ ∆(Ω) be the first-order belief
induced by νi conditional on this receiver being pivotal (whenever well-defined). We can
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specify the equilibrium selection criterion as follows: for each receiver i ∈ {1, 2, 3},

ζi :=

{{
νi | νi ∈ PVi,marg∆(Ω) νi(·|APV ) ∈ Φi\∂Φi

}
× {Y,N},{

νi | νi ∈ PVi,marg∆(Ω) νi(·|APV ) ∈ Φc
i

}
× {Y,N},{

νi | νi ∈ PVi,marg∆(Ω) νi(·|APV ) ∈ ∂Φi

}
× {Y },{

νi | νi /∈ PVi
}
× {E}

}
.

It is immediate that this selection criterion is finite and regular. Moreover, it is stable.
We will use the following intuitive pooling argument to illustrate this point. Consider
any canonical signal π. For any voter i ∈ {1, 2}, suppose mi and m′i are two mes-
sages with the same action recommendation in the behavioral analogy class

{
νi | νi ∈

PVi,marg∆(Ω) νi(·|APV ) ∈ Φi\∂Φi

}
× {Y,N}. Note that the selection criterion ζi only

imposes restrictions on the first-order beliefs over A−i and the conditional first-order belief
over Ω. Since both the projection of PVi on ∆(A−i) and the set Φi\∂Φi are convex, if
we modify the signal π by pooling these two messages into one unique distinguishable
message, say mi, then under the modified signal and the imposed obedience, receiver i’s
correct conjecture under message mi (with the recommended action Y ) is still in the same
behavioral analogy class. Similarly, for any other receiver j (j 6= i), such modification
will not change its first-order belief on A−j for any message mj; so his correct conjecture
under the modified signal also remains in the same behavioral analogy class in all possible
cases. Thus the stability condition follows from applying a similar argument to all possible
subsets of messages with the same action recommendation within any behavioral analogy
class for any voter.

We now define the strategic partitions based on set Φi: for each receiver i ∈ {1, 2},{{
νi | marg∆(Ω) νi(·|APV ) ∈ Φi\∂Φi

}
× {Y },

{
νi | marg∆(Ω) νi(·|APV ) /∈ Φi

}
× {N},

{
νi | marg∆(A−i) νi(Ω×T−i × {Y Y }) = 1 or marg∆(Ω) νi(·|APV ) ∈ ∂Φi

}
× {Y,E,N}

}
;

For receiver 3, the strategic partition for his primitive type τi, i ∈ {1, 2}, is the same as that
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for receiver i. Based on the above and note that we also assume that whenever the voter is
indifferent, he will choose, we can define their collection of partition menus Γi as follows:
for each receiver i ∈ {1, 2},

Γi :=

{{
νi | marg∆(Ω) νi(·|APV ) ∈ Φi

}
× {Y },{

νi | marg∆(Ω) νi(·|APV ) /∈ Φi

}
× {N},{

νi | marg∆(A−i) νi(Ω×T−i × {Y Y }) = 1
}
× {E}

}
.

For convenience, denote the above behavioral analogy classes in the presented order as Ci,j ,
i ∈ {1, 2}, j ∈ {Y,N,E}.

For voter 3, note that for any signal, the conjecture given any message is identical for both
primitive types except that his best response differs due to the difference of his utility. We
then write down a simplified version of collection of partition menus (as compared to its
original definition) for voter 3 as follows:1

Γ3 :=

{{[1 νi × {Y }
2 νi × {Y }

]
| marg∆(Ω) νi(·|APV ) ∈ Φ1 ∩ Φ2, νi ∈ PVi

}
,

{[1 νi × {Y }
2 νi × {N}

]
| marg∆(Ω) νi(·|APV ) ∈ Φ1 ∩ Φc

2, νi ∈ PVi
}
,

{[1 νi × {N}
2 νi × {Y }

]
| marg∆(Ω) νi(·|APV ) ∈ Φc

1 ∩ Φ2, νi ∈ PVi
}
,

{[1 νi × {N}
2 νi × {N}

]
| marg∆(Ω) νi(·|APV ) ∈ Φc

1 ∩ Φc
2, νi ∈ PVi

}
,

{[1 νi × {E}
2 νi × {E}

]
| marg∆(A−i) νi(Ω×T−i × {Y Y }) = 1

}}
.

Denote the above behavioral analogy classes as C3,j , j ∈ {Y Y, Y N,NY,NN,EE}.
1Theoretically, a selection criterion for voter 3 should take all the possibilities, including the heterogeneous

conjectures as part of its components. We omit such behavioral analogy classes in the exposition since in this
application, there is no equilibrium in which the conjecture of voter 3 differs for different types. Thus these
omitted classes are redundant in all possible cases.
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By Proposition III.3 and the proof of Proposition III.2, it is without loss of generality to
focus on canonical signals in which the canonical message space for each voter is a sample
collection of ζ-strategic partition component menus. Hence we can specify the messages
space as follows:

M :=



c1,Y

c1,N

c1,E

×
c2,Y

c2,N

c2,E

×


c3,Y Y

c3,Y N

c3,NY

c3,NN

c3,EE




,

where ci,j is a sample of the partition menu Ci,j for any i ∈ {1, 2, 3} and any j in the
corresponding set. Note that if receiver 3 is of type 1, then the bill will pass if any of the
following subset of message profiles is realized:

M1 :=



[
c1,N

c1,E

]
×
[
c2,Y

]
×

[
c3,Y Y

c3,Y N

]
,
[
c1,Y

]
×

[
c2,N

c2,E

]
×

[
c3,Y Y

c3,Y N

]
,

[
c1,Y

]
×
[
c2,Y

]
×

c3,NY

c3,NN

c3,EE




.

Similarly, if receiver 3 is of type 2, then the bill will pass if any of the following subset of
message profiles is realized:

M2 :=



[
c1,N

c1,E

]
×
[
c2,Y

]
×

[
c3,Y Y

c3,NY

]
,
[
c1,1

]
×

[
c2,2

c2,3

]
×

[
c3,1

c3,3

]
,

[
c1,Y

]
×
[
c2,Y

]
×

c3,Y N

c3,NN

c3,EE




.

For exposition simplicity, define the following two notions: for any i, j,

marg∆(A−i) Ci,j := {marg∆(A−i) νi | νi ∈ Ci,j}

and
marg∆(Ω)Ci,j|APVi := {marg∆(Ω) νi(·|APVi) | νi ∈ Ci,j}.
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For any given signal π with the above message space M, given any message ci,j , de-
note by βAi (·|ci,j, π) the posterior belief of receiver i over ∆(A−i); similarly, denote by
βΩ
i (·|APVi , ci,j, π) the posterior belief of receiver i over ∆(Ω) when getting message ci,j

conditional on he being pivotal. By focusing on canonical signals using a sample collection
to message each receiver, the politician then solves the following linear programming
problem:

max
π

∑
ω∈Ω

( ∑
(ci,ji )

3
i=1∈M1

π((ci,ji)
3
i=1|ω) +

∑
(c′i,ji

)3
i=1∈M2

π((c′i,ji)
3
i=1|ω)

)
µ0(ω)0.5 (B.1)

0 ≤ π((ci,ji)
3
i=1|ω) ≤ 1, (c′i,ji)

3
i=1 ∈M, (B.2)

3∑
j=1

πi(ci,j|ω) = 1, ∀ω ∈ Ω, i ∈ {1, 2},
5∑
j=1

π3(c3,j|ω) = 1, ∀ω ∈ Ω, (B.3)

βAi (·|ci,j, π) ∈ marg∆(A−i) Ci,j for any i, j, (B.4)

βΩ
i (·|APVi , ci,j, π) ∈ marg∆(Ω)Ci,j|APVi for any i, j. (B.5)

Note that Constraint (B.4) to (B.5) are linear due to the Bayes’ rule.

B.3.2 Detailed derivations in Section 3.4.2

The worst equilibrium selection in this game will coordinate both players on the running
equilibria whenever this is a possible option. Thus we need to identify the set of belief
hierarchies under which the unique rationalizable action is to wait.

We define explicitly receivers’ primitive type spaces for exposition convenience. Let
T1 := {h, l} and let T2 be a singleton set. For each receiver i, the underlying uncertainty
space is Ω×T−i and denote T ki as receiver i’s k-order of belief for any k ≥ 1.

Note that if receiver i’s first-order belief is in Φ1
i = {t1i ∈ T 1

i |t1i (H) ≥ 2
3
}, i ∈ {1, 2}, then

W is the unique optimal strategy regardless of the other receiver’s primitive type or action.
Hence W is the uniquely rationalizable action if receiver i’s first-order belief is in the above
set.2

Given any integer K ≥ 1 and the k-order belief set Φk
i defined above for any 1 ≤ k ≤ K,

2We will always assign the boundary of the (k-order) belief sets to the action W to have a well-defined
solution; otherwise, one may be able to implement the signal as close to the boundary as possible but cannot
hit the boundary exactly.
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the worst equilibrium is that each receiver will believe that the other will only play W if
and only if his lower-order beliefs are in ∪Kk=1Φk

i . Thus W is uniquely optimal if and only
if the following inequality holds:

2 · tK+1
i ({H} ×T−i ×

playing W︷ ︸︸ ︷
∪Kk=1Φk

−i) + 1 · tK+1
i ({H} ×T−i × {R})

−1 · tK+1
i ({L} ×T−i × ∪Kk=1Φk

−i︸ ︷︷ ︸
playing W

)− 2 · tK+1
i ({L} ×T−i × {R}) ≥ 0.

By simplifying the above inequality, we have tK+1
i ({ω = H}) + 1

3
tK+1
i (Ω × T−i ×

∪Kk=1Φk
−i) ≥ 2

3
. Thus we can iteratively determine the (K + 1)-order belief set under which

the action W is uniquely rationalizable (denoted as ΦK+1
i ) as follows:

ΦK+1
i :=

tK+1
i ∈ TK+1

i |
tK+1
i ({ω = H}) + 1

3
tK+1
i (Ω×T−i × ∪Kk=1Φk

−i) ≥ 2
3

margT ji
tK+1
i /∈ Φj

i , 1 ≤ j ≤ K

 .

W is receiver i’s unique optimal strategy if his (K + 1)-order belief is in ΦK+1
i .

We now define the selection criterion ζ that describes the sender-worse selection in this
game. For exposition convenience, let Φ̂k

i be the conjecture set associated to each Φk
i for

any k ≥ 1 such that

Φ̂k
i :=

{
vi ∈ Vi |

(
margTki ψ

−1
i

(
marg∆(Ω×T−i×T−i) vi

))
∈ Φk

i

}
.

Intuitively, Φ̂k
i collects all the conjectures with which the k-order belief is in Φk

i . Denote by
Φ̂0
i := ∩∞k=1(Φ̂k

i )
c. Thus the selection criterion is the following:3 for any i ∈ {1, 2},

ζi :=
{

Φ̂0
i × {R}, Φ̂k

i × {W}, k ≥ 1
}
. (B.6)

Lemma B.1. The selection criterion ζ defined in (B.6) is regular and stable.

Proof. It is straightforward to see that ζ is regular. We will show it is stable below.
Essentially, the stability condition says that for any canonical signal, if we modify this

3Again, we assign the boundary to the sender-preferred action so as to have a well-defined solution.
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signal by pooling any subset of messages (according to action recommendations) for an
individual receiver within any partition component, the resulted conjecture under such
modification will remain in the same partition component for everyone in all possible cases.
We will prove this statement by induction.

First consider when such pooling happens for the subset of messages in (S1
τ1
× {W})τ1∈T1

with each subset S1
τ1
⊆ Φ̂1

1, τ1 ∈ T1. It is straightforward to check that pooling messages
within (S1

τ1
×{W})τ1∈T1 for receiver 1 will result in the first-order belief still within Φ̂1

1 for
both primitive types of receiver 1. For receiver 2, his first-order belief will not be affected
by the above modification so if his conjecture was in Φ̂1

2, it remains in there and if it stays
out previously, then it stays out in the modified signal as well. Consider the effect of such
modification to the second-order beliefs for both receivers. Given that receiver 2’s first-
order belief does not change, the second-order belief of each primitive type of receiver 1
regarding whether it is within or outside Φ2

1 does not change. For receiver 2, recall that Φ̂2
2

is defined as the conjectures induced by the set of belief hierarchies Φ2
2 defined as follows:

Φ2
2 :=

{
t22 ∈ T 2

2 |
t22({ω = H}) + 1

3
t22(Ω×T1 × Φ1

1) ≥ 2
3

margT 1
2
t22 /∈ Φ1

2

}
.

Given the fact that the above pooling does not change receiver 1’s first-order beliefs regard-
ing whether it is within or outside Φ1

1, hence for any message m2 ∈ Φ2
2, the receiver 2’s cor-

rect second-order belief under such pooling still remains in Φ2
2. Similarly, for any m2 /∈ Φ2

2

(that is, under messagem2, either margT 1
2
t22 ∈ Φ1

2 or t22({ω = H})+ 1
3
t22(Ω×T1×Φ1

1) < 2
3

is satisfied), the receiver 2’s correct second-order belief under such pooling still satisfy
either of the above expressions. So his correct second-order belief under such pooling is
still not in Φ2

2 and the resulted conjecture is still not in Φ̂2
2. A similar argument can be

applied to that receiver 1’s correct third-order belief regarding whether it locates within Φ3
1.

Similarly for the other receiver and the other higher-order beliefs as well. We can further
apply similar arguments to any other subsets of (Sτi × {aτi})τi∈Ti , i ∈ {1, 2} to conclude
all possible cases of pooling within the partition component Φ1

1 and Φ1
2.

For any belief order K ≥ 1, suppose that for any k ≤ K and i ∈ {1, 2}, if we modify
the signal by pooling all messages within a subset of messages in (Skτi × {W})τi∈Ti with
each subset S1

τi
⊆ Φ̂k

i , τi ∈ Ti, then all receivers’ correct conjectures do not change their
location in their partition components in the selection criterion.
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Now consider the order K + 1 and a subset of messages in (SK+1
τ1
× {W})τ1∈T1 with

each subset SK+1
τ1

⊆ Φ̂K+1
1 , τ1 ∈ T1. Note that SK+1

τ1
∩ Φ̂k

1 = ∅ for any 1 ≤ k ≤ K.
So by the induction hypothesis, under such pooling, the resulted conjecture still remains
outside Φ̂k

1 for any k ≥ 1. Again by the induction hypothesis (that the above pooling
does not change receiver i’s k-order beliefs regarding whether it is within or outside Φk

1

for any k ≤ K), we can further conclude that pooling over messages that previously
satisfying tK+1

1 ({ω = H}) + 1
3
tK+1
1 (Ω × T1 × ∪Kk=1Φ1

k) ≥ 2
3

will result in the pooled
message still satisfies the same inequality. Thus such pooling does not change the partition
component that receiver 1’s (K + 1)-order beliefs previously locates as well. By the
induction hypothesis, under such pooling, the receiver 2’s correct (K + 1)-order belief still
remains in the same partition component as they previously locate in all possible cases.
Similar argument applies to all both receivers’ high-order beliefs and the rest possible cases
of pooling as well. So we conclude the proof.

Let us now define the strategic partitions for any receiver primitive type as follows: Recall
that we denote the best response given a conjecture νi to be Bi(νi) (note that here receivers’
primitive types do not affect their utility function and lead to the same best responses for
different primitive types).{

{νi ∈ Vi | Bi(νi) = {R,W}} × {R,W},

{νi ∈ Vi | Bi(νi) = {W}} × {W},

{νi ∈ Vi | Bi(νi) = {R}} × {R}}.

By intersecting the above two partitions, we can obtain the ζ-strategic partitions and derive
their associated collection of partition menus. The following observation could help us to
simplify the messages further by pointing out that if a more pessimistic type of receiver 1
(who receives message l) agrees to wait, the optimistic type (who receives message h)
would be willing to wait as well.

Lemma B.2. Given the selection criterion ζ in (B.6), for any canonical signal π with

countably many messages, if it is optimal for receiver 1 with primitive type l to wait

conditional on receiving a message m1, then it is optimal for receiver 1 with primitive type

h to wait conditional on receiving the same message as well.

Proof of Lemma B.2. We will prove this lemma by showing that, for any signal π, if the
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message m1 leads to receiver 1’s primitive type l to have j-order belief tj1,l ∈ Φj
1 for any

j ≥ 1, then the corresponding j-order belief of primitive type h also satisfies tj1,h ∈ Φj
1

under the same message.

We first consider the case when j = 1: Recall that both types see the same message m1.
Suppose that tl,11 ∈ Φ1

1, i.e, π(m1|H)µ0
1|l ≥ 2 · π(m1|L)(1− µ0

1|l). Note that µ0
1|h = 6

13
and

µ0
1|l = 3

17
, we have π(m1|H)µ0

1|h ≥ 2 · π(m1|L)(1− µ0
1|h) and thus th,11 ∈ Φ1

1 as well.

We now consider the case when K > 1: Let M2 be the whole message space for receiver 2.
For any integer K > 1, let MK−1

2 (W ) be the messages for receiver 2 in π such that for
each m2 ∈ MK−1

2 (W ), there exists k with 1 ≤ k ≤ K − 1 where the k-order belief of
receiver 2 given m2 satisfies tk2 ∈ Φk

2.

For the given message m1, suppose that tl,K1 ∈ ΦK
1 ; then we have ∑

m2∈M2

π
(
(m1,m2)|H

)
+

∑
m2∈Mj−1

2 (W )

π
(
(m1,m2)|H

)µ0
1|l

≥

 ∑
m2∈M2

π
(
(m1,m2)|L

)
+

∑
m2∈Mj−1

2 (W )c

π
(
(m1,m2)|L

) (1− µ0
1|l).

By the above and that µ0
1|h ≥ µ0

1|l, the following holds: ∑
m2∈M2

π
(
(m1,m2)|H

)
+

∑
m2∈Mj−1

2 (W )

π
(
(m1,m2)|H

)µ0
1|h

≥

 ∑
m2∈M2

π
(
(m1,m2)|L

)
+

∑
m2∈Mj−1

2 (W )c

π
(
(m1,m2)|L

) (1− µ0
1|h).

The above inequality implies that for the given message m1 in π, th,j1 ∈ Φj
1 holds for

receiver 1 with primitive type h. Therefore it is optimal for him to wait as well.

Based on the above lemma, we can write down the simplified version of the collection of
partition menus associated to ζ-strategic partition as follows:
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Γ1 =


[
h v W

l v̂ W

]
|
v ∈ Φ̂kh

1 , v̂ ∈ Φ̂kl
1

kh, kl ≥ 1

⋃

[
h v W

l v̂ R

]
|
v ∈ Φ̂kh

1 , v̂ ∈ Φ̂0
1

kh ≥ 1


⋃

[
h v R

l v̂ R

]
| v ∈ Φ̂0

1, v̂ ∈ Φ̂0
1

 ;

Γ2 =
{

Φ̂0
2 × {R}, Φ̂k′

2 × {W}, k′ ≥ 1
}
.

For simplicity, denote byC1
kl,kh

the receiver 1’s partition menu with vkh ∈ Φ̂kh
1 and vkl ∈ Φ̂kl

1

and denote by C2
k the receiver 2’s partition menu with vk ∈ Φ̂k

2. Given that there are
countablely many elements in ζ-strategic partition, to make our problem computer solvable,
we will fix a finite integer K and only consider the order of beliefs up to K.

By Lemma B.1 that the selection criterion is regular and stable, we can apply Proposi-
tion III.3 to conclude that it is without loss of generality to focus on canonical signals
with the message space a sample collection. By Lemma B.2, we can further focus on the
following subset of sample collection: Let M1 := {mk,k̂, k, k̂ ≥ 1,m0,k′ , k

′ ≥ 0} such that
mk,k̂ ∈ C1

k,k̂
for k, k̂ ≥ 0 and let M2 := {mk′ , k

′ ≥ 0} with mk′ ∈ C2
k′ for any k′ ≥ 0.

From now on we will focus on canonical signals with the message space M1 ×M2.

Given any signal π with message space M1 ×M2, for any receiver i and any message
mi ∈Mi, denote by vτii (·|mi, π) the associated conjecture of receiver 1 with type τi ∈ Ti by
receiving mi. For convenience, define Eπ[V |(m1

k,k̂
,m2

k′), ω] as the policymaker’s expected
value conditional on the underlying state ω and realized message (m1

k,k̂
,m2

k′) where

Eπ[V |(m1
k,k̂
,m2

k′), ω] =



2, 1 ≤ k, k̂, k′ ≤ K

π(h|ω)2 + π(l|ω) k = 0, 1 ≤ k̂ ≤ K, 1 ≤ k′

π(h|ω) k = 0, 1 ≤ k̂ ≤ K, k′ = 0

0 k = k̂ = k′ = 0

.

The following linear programming with the constraint of consistency and regularity yields
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an optimal K-order signal.

max
π

∑
ω∈Ω

µ0
0(ω)

 ∑
(m1

k,k̂
,m2

k′ )∈M1×M2

π(m1
k,k̂
,m2

k′ |ω) · Eπ[V |(m1
k,k̂
,m2

k′), ω]


subject to

0 ≤ π(m1
k,k̂
,m2

k′|ω) ≤ 1;m1
k,k̂
∈M1,m

2
k′ ∈M2, ω ∈ Ω;∑

m1
k,k̂
∈M1,m2

k′∈M2
π((m1

k,k̂
,m2

k′)|ω) = 1, ω ∈ Ω;h vh1 (·|m1
k,k̂
, π) W

l vl1(·|m1
k,k̂
, π) W

 ∈ C1
k,k̂
,

h vh1 (·|m1
0,k′ , π) W

l vl1(·|m1
0,k′ , π) R

 ∈ C1
0,k′h vh1 (·|m1

0,0, π) R

l vl1(·|m1
0,0, π) R

 ∈ C1
0,0, ∀ 1 ≤ k′, k̂, k ≤ K

(v2(·|m2
k, π),W ) ∈ C2

k , ∀ 1 ≤ k ≤ K

(v2(·|m2
0, π), R) ∈ C2

0

.
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APPENDIX C

Appendix for Chapter IV

C.1 Proof of Theorem IV.1

Before the main proof, we first introduce a technical tool from Mertens (2003). A measur-
able correspondence N from E × Ω to Rl is P-integrable if, for any measurable selection f

of N (denoted as f ∈ N ), f(ω, e) is P(dω|e)-integrable for any e ∈ E.

Lemma C.1. Let (Ω,A) and (E,E ) be measurable spaces with A separable. Suppose

that P(dω|e) is a Rk-valued bounded kernel.1 Let N be a P-integrable measurable

correspondence from (E × Ω,E ⊗ A) to K∗(Rl). Define
∫
N dP as the map from E

to the subsets of Rl·k where
∫
N dP(e) :=

{∫
f(ω, e)P(dω|e)

∣∣∣f ∈ N
}
.

(1) Fix an arbitrary element e ∈ E. Let f be a measurable selection of the convex hull of

N(e, ·) and f ∈ N(e, ·) on each atom of P(·|e). For any Rl-valued bounded measurable

function u, then
∫
u · f P(dω|e) ∈

(∫
u ·N dP

)
(e).

(2) Fix an arbitrary Rl·M -valued function gM := (g1,g2, ...,gM) such that each gm,

1 ≤ m ≤M , is a Rl-valued E ⊗A-measurable bounded function. Let
∫
gM �N dP

be a mapping from E to the subsets of RM ·k such that∫
gM �N dP : e→

{∫
(g1 · f ′(ω, e), ...,gM · f ′(ω, e))P(dω|e)

∣∣f ′ ∈ N
}
.

1A Rk-valued kernel P(·|·) is a map from E ×A → Rk such that (i) for any e ∈ E, P(·|e) is a Rk-valued
measure on (Ω,A); (ii) P(A|·) is E -measurable, ∀A ∈ A. A kernel P(·|·) is bounded if there exists a
constant C such that ‖P(A|e)‖ ≤ C for all A ∈ A and e ∈ E.
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Denote by Fv ⊆ E × RM ·k its graph with Fv the corresponding σ-algebra. Then

(i) (
∫
gM �N dP) is an E -measurable mapping to K∗(RM ·k), and Fv is a measur-

able set in E × RM ·k;

(ii) there exists a measurable, Rl-valued function h on (Fv × Ω,Fv ⊗A) such that

for any x ∈ Fv ⊆ RM ·k, the following assertions hold: (i) h(e,x, ω) ∈ N(e, ω);

and (ii) x =
∫
gM(e, ω) � h(e,x, ω)P(dω|e), where gM(e, ω) � h(e,x, ω) :=

(g1(e, ω) · h(e,x, ω), ...,gM(e, ω) · h(e,x, ω)).

Proof of Lemma C.1. (1) Let P̃(·|·) be a Rl·k-valued map where

P̃(dω|e) := (unP(dω|e))1≤n≤l.

Given the boundedness of P and u, P̃ is also a bounded kernel. Moreover, for the fixed
element e ∈ E, an atom of P̃(·|e) must be an atom of P(·|e) as well. For any measurable
selection f := (f1, ..., fl) from the convex hull of N(e, ·) such that f ∈ N(e, ·) on the atoms
of P(dω|e), then f is also a measurable selection of the convex hull of N(e, ·) such that f ∈
N(e, ·) on the atoms of P̃(dω|e). Let

∫
N dP̃(e) :=

{∫
f ′(ω, e)P̃(dω|e)

∣∣∣f ′ ∈ N
}
. Hence

by Theorem (2), Mertens (2003),
∫
f dP̃(e) ∈

∫
N dP̃(e). Given that such inclusion holds

for each term in Kronecker product, which implies
∫
u · f(ω)P(dω|e) ∈ (

∫
u ·N dP)(e).

(2) Fix an arbitrary M -component vector function gM := (g1, ...,gM) which satisfies
that each gm is a Rl-valued E ⊗ A-measurable bounded function. Define a RM -valued
correspondence N̂ from (E × Ω,E ⊗A) to K∗(RM) such that for each (e, ω) ∈ E × Ω,
N̂(e, ω) :=

{
(g1(e, ω) · a, ...,gM(e, ω) · a)

∣∣a ∈ N(e, ω)
}
. By given conditions, the above

correspondence N̂ is P-integrable and N̂ is compact-valued.

(i) By Theorem (1) (a) and (b), Mertens (2003), (
∫
N̂ dP) is an E -measurable mapping to

K∗(RM ·k), and its graph is a measurable set in E × RM ·k.

(ii) Denote by F̂ the graph of
∫
N̂ dP with its sub σ-algebra F̂ ⊆ E ⊗ B(RM ·k). By

Theorem (3), Mertens (2003), there exists a measurable, RM -valued function f̂ on (F̂ ×
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Ω, F̂ ⊗ A) such that f̂(e, x̂, ω) ∈ N̂(e, ω) and

x̂ =

∫
f̂(e, x̂, ω)P(dω|e). (C.1)

For each element (e, x̂, ω), by the definition of N̂(e, ω) and that f̂(e, x̂, ω) ∈ N̂(e, ω), there
exists an element â′e,x̂,ω ∈ N̂(e, ω) such that f̂(e, x̂, ω) = (g1 · â′e,x̂,ω, ...,gM · â′e,x̂,ω). Based
on the above f̂ , define a correspondence H : E × F̂× Ω to Rl such that for any (e, x̂, ω),

H(e, x̂, ω) := {â′′e,x̂,ω ∈ N(e, ω)|(gn · â′′e,x̂,ω)1≤k≤M = f̂(e, x̂, ω)}.

By such a definition, H(e, x̂, ω) is measurable, nonempty-valued and compact-valued (for
measurability see Corollary 18.8 in Aliprantis and Border 2006). Therefore, Kuratowski–
Ryll-Nardzewski Selection Theorem implies that we could find a pointwise measurable
selector h of H. Therefore, for each (e, x̂, ω), h(e, x̂, ω) ∈ N(e, ω), and by (C.1) and that
h ∈ H pointwisely, we have x̂ =

∫
gM(e, ω)� h(e, x̂, ω)P(dω|e).

We introduce a more general environment under which our main results still hold, of which
the setting in the main text (with independent information) is a special case.

Definition C.1. The setting is of interdependent information with players holding subjective

priors ( “IWSP”), if the following hold: let (T × Ω, T ⊗ F , µT × µΩ) be the product
probability space of state and types. Assume that µΩ is atomless. Denote by µ̃i ∈ ∆(T ×Ω)

the subjective belief of each player i, i ∈ I ∪ {0}. Assume that µ̃i is absolutely continuous
with respect to the product probability measure µT × µΩ with the density function `i(t, ω),
i.e., dµ̃i = `i(t, ω) d(µT × µΩ). For each i ∈ I ∪ {0}, the density function `i(t, ω) is
assumed to be bounded and measurable.

We will prove the conclusion of Theorem IV.1 in the IWSP setting, which we numbered as
Theorem IV.1′. We say the density function of a player i’s prior is separable if `i(t, ω) can
be written into the following form: `i(t, ω) =

∑N
n=1 `

n
i (ω) · ˜̀ni (t), where N is a positive

integer; `ni and ˜̀n
i , 1 ≤ n ≤ N , are bounded measurable functions. In such a general setting,

this separability condition of density functions is required.

Theorem IV.1′. Suppose that the setting is of IWSP and the density function of each player’s

prior is separable, then the statement of Theorem IV.1 holds.
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Proof of Theorem IV.1′. For convenience, let N be the largest index such that for each
player i ∈ I ∪ {0}, `i(t, ω) :=

∑N
ñ=1 `

ñ
i (ω) · ˜̀̃n

i (t), and ui(t, ω, a) :=
∑N

n=1 fi,n(ω, a) ·
gi,n(t, a) with bounded function fi,n, gi,n, `ñi and ˜̀̃n

i for 1 ≤ n ≤ N .

Let P (·|·) be a stochastic kernel from T̂ to ∆(Ω) such that P (·|·) ≡ µΩ(·). For convenience,
we label the elements in Â and A as Â := {â1, â2, ..., â|Â|} and A := {a1, ..., a|A|},
respectively. For anymwith 1 ≤ m ≤ |Â|, let em ∈ R|Â| be a coordinate vector such that all
components in em are zero except that itsm-th component is 1. Define a R|Â|-valued T̂ ⊗F -
measurable constant correspondence Ñ on T̂ × Ω such that Ñ(·, ·) ≡

{
e1, e2, ..., e|Â|

}
.

We will now construct a vector-valued mapping FN := (F1,F2, ...,FN ) with each Fk a
R|Â|-valued mapping and the largest index N := (|A|N + 1) · |Â|N(|I|+ 1). Before the
explicit construction, we define the following two sets for indexing purposes: let S1 and S2

be finite sets of integer-valued vectors, where

S1 :=
{

(ĵ, j, i, n, ñ) ∈ N5
∣∣∣1 ≤ ĵ ≤ |Â|, 1 ≤ j ≤ |A|, 0 ≤ i ≤ |I|, 1 ≤ n, ñ ≤ N

}
;

S2 :=
{

(ĵ, i, ñ) ∈ N3
∣∣∣1 ≤ ĵ ≤ |Â|, 0 ≤ i ≤ |I|, 1 ≤ ñ ≤ N

}
.

We label the elements in Sj′ as Sj′ := {sj′,1, sj′,2, ..., sj′,|Sj′ |} for j′ = 1, 2, with cardinalities
|S1| = |A||Â|N2(|I| + 1) and |S2| = |Â|N(|I| + 1). We are now ready to define each
Fk : T̂ × Ω→ R|Â| for any 1 ≤ k ≤ N . For any integer k,

(1) if the integer k satisfies that 1 ≤ k ≤ |S1|, then we define Fk based on the vector
s1,k := (ĵk, jk, ik, nk, ñk) as follows:

Fk(t̂, ω) := fik,nk(ω, ajk)`
ñk
ik

(ω) · eĵk for any (t̂, ω). (C.2)

(2) if the integer k satisfies that |S1| + 1 ≤ k ≤ |S1| + |S2|, then we define Fk based on
the vector s2,k̂ := (ĵk̂, ik̂, ñk̂) with k̂ := k − |S1| as follows:

Fk(t̂, ω) := `
ñk̂
ik̂

(ω) · eĵk̂ for any (t̂, ω). (C.3)

Based on the above FN , we further define the following vector-valued integral
∫
FN �

Ñ dP := (
∫
Fk · Ñ dP )1≤k≤N such that each

∫
Fk · Ñ dP : T̂ � R is a measurable
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correspondence such that∫
Fk · Ñ dP : T̂ �

{∫
Ω

Fk(t̂, ω) · h(t̂, ω)P (dω|t̂)
∣∣∣

h is an T̂ ⊗ F-measurable selection from Ñ
}
.

Denote its graph with the corresponding σ-algebra as (Gu,Gu). Since any persuasion mech-
anism π is a T̂ ⊗F -measurable function from T̂×Ω→ [0, 1]|Â| such that

∑|Â|
ĵ=1

π(âĵ|t̂, ω) ≡
1 for any (t̂, ω), by definition π(·|t̂, ω) is in the convex hull of Ñ(t̂, ω) for any (t̂, ω). By (1)
of Lemma C.1 and given that P (·|·) ≡ µΩ(·) is atomless, we can conclude that, fix any t̂,∫

Ω

Fk(t̂, ω) · π(·|t̂, ω)P (dω|t̂) ∈
∫

Fk · Ñ dP (t̂) for each 1 ≤ k ≤ N .

By (2i) of Lemma C.1, we could further conclude that
∫

Ω
Fk(t̂, ω) · π(·|t̂, ω)P (dω|t̂) is

T̂ -measurable. Moreover, by (2ii) of Lemma C.1, there exists a measurable, R|Â|-valued
function h on (Gu × Ω,Gu ⊗F) such that x ∈ Gu, h(t̂,x, ω) ∈ Ñ(t̂, ω) and

x =

∫
Ω

FN (t̂, ω)� h(t̂,x, ω)P (dω|t̂) for any t̂. (C.4)

By substituting x with the expression
∫

Ω
FN (t̂, ω)�π(·|t̂, ω)P (dω|t̂) in the above equation,

for any t̂, we have∫
Ω

FN (t̂, ω)� π(·|t̂, ω)P (dω|t̂)

=

∫
Ω

FN (t̂, ω)� h
(
t̂,

∫
Ω

FN (t̂, ω)� π(·|t̂, ω)P (dω|t̂), ω
)
P (dω|t̂).

(C.5)

Let π be a function from T̂ × Ω→ R|Â| such that

π(·|t̂, ω) := h

(
t̂,

∫
Ω

FN (t̂, ω)� π(·|t̂, ω)P (dω|t̂), ω
)

for any (t̂, ω). (C.6)

That h(t̂,x, ω) ∈ Ñ(t̂, ω) pointwisely implies that π(·|t̂, ω) ∈ {e1, e2, ..., e|Â|} for all
(t̂, ω), and therefore π is a derandomized persuasion mechanism. By the measurability of
h and

∫
Ω
FN (t̂, ω)� π(·|t̂, ω)P (dω|t̂), the measurability of π is immediate. Moreover, by
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Equation (C.5) and (C.6), we could conclude that for any t̂,∫
Ω

FN (t̂, ω)� π(·|t̂, ω)P (dω|t̂) =

∫
Ω

FN (t̂, ω)� π(·|t̂, ω)P (dω|t̂). (C.7)

By replacing each Fk in Equation (C.7) with its explicit form for 1 ≤ k ≤ N , we have
the following equations: for any i ∈ I ∪ {0}, any t̂ ∈ T̂ , 1 ≤ j ≤ |A|, 1 ≤ ĵ ≤ |Â|, and
1 ≤ n, ñ ≤ N , we have∫

Ω

fi,n(ω, aj) `ñi (ω) π(âĵ|t̂, ω)µΩ(dω) =

∫
Ω

fi,n(ω, aj) `ñi (ω) π(âĵ|t̂, ω)µΩ(dω) (C.8)∫
Ω

`ñi (ω) π(âĵ|t̂, ω)µΩ(dω) =

∫
Ω

`ñi (ω) π(âĵ|t̂, ω)µΩ(dω). (C.9)

By Equation (C.8), for i ∈ I ∪ {0}, any t̂ ∈ T̂ , 1 ≤ j ≤ |A|, 1 ≤ ĵ ≤ |Â|, we have∫
Ω

ui(t, ω, a
j)π(âĵ|t̂, ω) `i(t, ω)µΩ(dω)r(t, dt̂)

=
N∑
ñ=1

N∑
n=1

˜̀̃n
i (t) gi,n(t, aj)

∫
Ω

fi,n(ω, aj) π(âĵ|t̂, ω) `ñi (ω)µΩ(dω)

=
N∑
ñ=1

N∑
n=1

˜̀̃n
i (t) gi,n(t, aj)

∫
Ω

fi,n(ω, aj) π(âĵ|t̂, ω) `ñi (ω)µΩ(dω)

=

∫
Ω

ui(t, ω, a
j)π(âĵ|t̂, ω) `i(t, ω)µΩ(dω)r(t, dt̂).

(C.10)

Similarly, by Equation (C.9), for i ∈ I ∪ {0}, any t̂ ∈ T̂ and 1 ≤ ĵ ≤ |Â|, we have∫
Ω

`i(t, ω) π(âĵ|t̂, ω)µΩ(dω) =

∫
Ω

`i(t, ω) π(âĵ|t̂, ω)µΩ(dω).

Our conclusion follows directly from Lemma C.2 presented below.

Lemma C.2. In the setting of IWSP and players have separable densities, suppose that for

two persuasion mechanisms π and π, the following hold for any i ∈ I ∪ {0}, any t ∈ T ,
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t̂ ∈ T̂ , â ∈ Â, and a ∈ A:∫
Ω

ui(t, ω, a) `i(t, ω) π(â|t̂, ω)µΩ(dω) =

∫
Ω

ui(t, ω, a) `i(t, ω) π(â|t̂, ω)µΩ(dω) (C.11)∫
Ω

`i(t, ω) π(â|t̂, ω)µΩ(dω) =

∫
Ω

`i(t, ω) π(â|t̂, ω)µΩ(dω). (C.12)

Then (i) π is effectively equivalent to π; (ii) any BNE under π is still a BNE under π, and

vice versa; (iii) moreover, for any BNE (r∗, σ∗) under π, then the expected equilibrium

payoff of each type of each receiver in (r∗, σ∗) is the same under π and under π, and the

expected equilibrium payoff of the sender in (r∗, σ∗) is the same under π and under π.

Proof. Fix an arbitrary strategy profile (σ̃, r̃). For any i ∈ I and the type profile t̃, any signal
realization profile â′ and the action profile a′, let σ̃(t̃, r̃, â′)(a′) be the probability of playing
a′ given the above (σ̃, r̃, t̃), i.e. σ̃(t̃, r̃, â′)(a′) :=

∏|I|
j=1

∫
T̂j
σ̃j(t̃j, t̂j, â

′
j)(a

′
j)r̃j(t̃j, dt̂j). By

(C.11), the following holds∫
T̂

∫
Ω

(
σ̃(t̃, r̃, â′)(a′)

)
ui(t̃, ω, a

′)π(â′|t̂, ω) `i(t̃, ω)µΩ(dω)r̃(t̃, dt̂)

=

∫
T̂

∫
Ω

(
σ̃(t̃, r̃, â′)(a′)

)
ui(t̃, ω, a

′) π(â′|t̂, ω) `i(t̃, ω)µΩ(dω)r̃(t̃, dt̂),

(C.13)

Given the above (r̃, t̃), â′ ∈ Â and i ∈ I, by taking the expectations over T̂ in (C.12)
according to r̃(t̃, dt̂), we have∫

Ω

∫
T̂

π(â′|t̂, ω) `i(t̃, ω)r̃(t̃, dt̂)µΩ(dω) =

∫
Ω

∫
T̂

π(â′|t̂, ω) `i(t̃, ω)r̃(t̃, dt̂)µΩ(dω).

(C.14)

Recall that Eπ[ui(σ̃i, σ̃−i)|r̃i, r̃−i, t̃] (resp. Eπ[ui(σ̃i, σ̃−i)|r̃i, r̃−i, t̃]) is receiver i’s condi-
tional expected utility on type profile t̃ in persuasion mechanism π (resp. π). Label the
elements in Â and A as Â := {â1, ..., â|Â|} and A := {a1, ..., a|A|}. By Equation (C.14)
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and (C.13), given the above (σ̃, r̃), for any i ∈ I and any type profile t̃, we have

Eπ[ui(σ̃i, σ̃−i)|r̃i, r̃−i, t̃]

=

|Â|∑
ĵ=1

|A|∑
j=1

∫
T̂

∫
Ω

(
σ̃(t̃, r̃, âĵ)(aj)

)
ui(t̃, ω, a

j)π(âĵ|t̂, ω) `i(t̃, ω)µΩ(dω)r̃(t̃, dt̂)∑|Â|
ĵ=1

∫
Ω

∫
T̂
π(âĵ|t̂, ω) `i(t̃, ω)r̃(t̃, dt̂)µΩ(dω)

=

|Â|∑
ĵ=1

|A|∑
j=1

∫
T̂

∫
Ω

(
σ̃(t̃, r̃, âĵ)(aj)

)
ui(t̃, ω, a

j)π(âĵ|t̂, ω) `i(t̃, ω)µΩ(dω)r̃(t̃, dt̂)∑|Â|
ĵ=1

∫
Ω

∫
T̂
π(âĵ|t̂, ω) `i(t̃, ω)r̃(t̃, dt̂)µΩ(dω)

=Eπ[ui(σ̃i, σ̃−i)|r̃i, r̃−i, t̃].

(C.15)

Thus by definition, π <i π and π 4i π for each i ∈ I, and we could conclude that π is
effectively equivalent to π.

(ii) Building on the above proof, for any strategy profile (r, σ), for any ti ∈ Ti and i ∈ I,
by taking the expectation of t−i over T−i in equation (C.15),

Eπ[ui(σi, σ−i)|r, ti] = Eπ[ui(σi, σ−i)|r, ti]. (C.16)

By equation (C.16), if receivers follow the strategy (r, σ), then the interim expected payoff
of type ti of receiver i is the same under π and under π. Now consider any BNE (r∗ =

(r∗i )i∈I , σ
∗ = (σ∗i )i∈I) under π, then the following incentive compatibility constraint holds

for any type ti of any receiver i:

Eπ[ui(σ
∗
i , σ

∗
−i)|r∗, ti] ≥ sup

σ̂i∈Σi,r̂i∈Ri
Eπ[ui(σ̂i, σ

∗
−i)|r̂i, r∗−i, ti].

By (C.16), the same strategy profile (r∗, σ∗) is also incentive compatible under persuasion
mechanism π, and thus (r∗, σ∗) is also a BNE under π. Similarly, if (r∗, σ∗) is a BNE under
π, then it is also a BNE under π.

(iii) For any BNE (r∗, σ∗), (C.16) implies that the equilibrium payoff of each type of each
receiver is the same under π and π. The preservation of the sender’s expected utility in
(r∗, σ∗) under π and π is follows by taking expectation of Equation (C.11) over A, Â and
T̂ for i = 0. That is, Eπ[u0(σ∗)|r∗] = Eπ[u0(σ)|r]. Thus we conclude our proof.
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C.2 Proofs of Section 4.3.2

Proof of Corollary IV.1. It follows directly from Theorem IV.1.

Proof of Corollary IV.2. Given the cutoff-form of the optimal derandomized persuasion
mechanism π, define a derandomized experiment π as follows: π(ω) := sup{t ∈ [t, t] |
π(ω, t) = 1}. The construction of π implies that, if all receiver types follow the recommen-
dation, then π achieves the same payoff for the sender as that under π. We will show π is
incentive compatible below.

Note that the ranking assumption in Proposition 5.1, Guo and Shmaya (2019) is satisfied
in this setting.2 By Proposition 5.1 in Guo and Shmaya (2019), given that the persuasion
mechanism π is incentive compatible and in a cutoff-form, the resulted experiment π
is incentive compatible (i.e., by π fully disclosing the entire realized recommendation
menu to all receive types, it is incentive compatible for each receiver type to follow
its corresponding recommendation on the menu). The optimality of π implies that the
derandomized experiment π is also optimal.

Proof of Proposition IV.1. By Theorem 1 and 2 in Kolotilin et al. (2017), it is without loss
of generality to focus on experiments. We will focus on canonical experiments that disclose
posterior means to all receiver types. Each canonical experiment induces a distribution
of posterior means such that it is a mean-preserving contraction of GΩ. Let v(·) be the
sender’s payoff function defined on posterior means. For each realized posterior mean x,
the sender’s payoff is v(x) = GT (x). Then this problem can be transformed into the sender
choosing an optimal CDF of posterior means F such that

max
F

∫ ω

ω

v(x) dF (x) subject to that GΩ is a mean-preserving spread of F. (C.17)

By our assumption, v(·) on [ω, ω] satisfies the regular condition in Dworczak and Martini
(2019). By Corollary 1 in Dworczak and Martini (2019), there exists a convex and continu-
ous function (”price function”) p(·) : [ω, ω]→ R with p(x) ≥ v(x) for any x ∈ Ω such that

2Guo and Shmaya (2019) also point out this relationship with the setting of Kolotilin et al. (2017) right
after their Proposition 5.1.
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F is optimal if and only if it satisfies the following conditions:

suppF ⊆
{
x ∈ [ω, ω] | v(x) = p(x)

}
, (C.18)∫ ω

ω

p(x) dF (x) =

∫ ω

ω

p(x) dGΩ(x), (C.19)

GΩ is a mean-preserving spread of F. (C.20)

Given the price function p that satisfies (C.18)-(C.20) for some optimal CDF of posterior
mean F , by Proposition 2 in Dworczak and Martini (2019), there exists a coarsest partition
ω = x0 < x1, .. < xn = ω such that on each [xi, xi+1], either (i) or (ii) of the following
holds:

(i) p is strictly convex on [xi, xi+1], p(x) = v(x) and F (x) = GΩ(x) for all x ∈
[xi, xi+1];

(ii) p is affine on [xi, xi+1] and [xi, xi+1] is a maximal interval on which p is affine.
Then F (xi) = GΩ(xi), F (xi+1) = GΩ(xi+1),

∫ xi+1

xi
x dGΩ(x) =

∫ xi+1

xi
x dF (x), and

p(x′) = v(x′) for at least one x′ ∈ [xi, xi+1].

Given that the price function p is convex, p is either strictly convex or affine in each
partitional interval [xi, xi+1]. That the above (i) or (ii) must be satisfies implies that F must
be a mean-preserving contraction of GΩ conditional on each partitional interval [xi, xi+1].
Then:

For the interval [xi, xi+1] on which p is strictly convex, by (i), we have F (x) = GΩ(x) for
any x ∈ [xi, xi+1]. Thus to truthfully reveal the underlying state on [xi, xi+1] is one way
to achieve the optimal posterior distribution F on [xi, xi+1] given GΩ. Note that the above
properties further implies that the mass of {x ∈ [ω, ω] | p strictly convex} is the same
under F and under GΩ. Similarly, the mass of {x ∈ [ω, ω] | p affine} is the same under F
and under GΩ.

Consider the interval [xi, xi+1] on which p is affine. If p(x) = v(x) = 0 on [xi, xi+1], then
we set F (x) = GΩ(x) on x ∈ [xi, xi+1]. By such a setting and combining with the fact
that (i) or (ii) is satisfied in each of the rest partitional intervals, we can verify F satisfies
condition (C.18)-(C.20). Hence, F is optimal by Corollary 1 in Dworczak and Martini
(2019). Thus to truthfully reveal the underlying state on [xi, xi+1] is one way to achieve the
optimal posterior distribution.
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Consider the interval [xi, xi+1] on which p is affine such that p(x) > 0 for some x ∈
[xi, xi+1]. Then by the partitional regularity of GT , we can divide [t, t] into finitely many
intervals such that GT is either strictly concave or strictly convex on each interval. Based
on such a partition, we can further divide the interval [xi, xi+1] into several subintervals
such that each subinterval is either (i) entirely outside [t, t] or (ii) when inside [t, t] ,
then v(·) is either strictly convex or strictly concave on this subinterval. Recall that
p(x) ≥ v(x), ∀x ∈ [xi, xi+1] and p(x′) > 0 for some x′ ∈ [xi, xi+1]. With p affine on
[xi, xi+1], for each subinterval within [xi, xi+1], there will be at most one point x′ in the
entire subinterval such that p(x′) = v(x′). Given that there are finitely many such intervals,
the set {x ∈ Ω | p(x) = v(x)} will be finite. By (C.18), the support of the optimal F on
[xi, xi+1] will be at most finitely many points. This implies that the optimal experiment
sends out finitely many messages on this region. Hence, by Theorem IV.1, there exists
a derandomized experiment on the region when p(v) is affine that preserves the sender’s
payoff.

Combining with the above three situations, we conclude that in this setting, there exists an
optimal canonical experiment that is derandomized.

C.2.1 Derivation of the optimal derandomized canonical experiment

Given a realized posterior mean x, let the sender’s payoff function be v(x), where v(x) :=

GT (x) = 29x2

7
− 40x3

7
+ 18x4

7
for any x ∈ [0, 1] and v(x) = 0 for any x ∈ [−1, 0). By

Proposition IV.1, there exists an optimal derandomized canonical experiment.

We further claim that we can find an optimal derandomized canonical experiment, denoted
as ρ∗, that takes the following form: there exist two points x1 and x2 with−1 ≤ x1 < x2 ≤ 1

such that ρ∗ fully reveal the state if x ∈ [−1, x1] or x ∈ [x2, 1] and ρ∗ pools all the states in
[x1, x2].

To prove this claim, let Gρ∗ be the CDF of ρ∗. Given that v(·) satisfies the regularity
conditions in Dworczak and Martini (2019), by their Corollary 1, there exists a convex and
continuous function (”price function”) p(·) : [−1, 1]→ R with p(x) ≥ v(x) for any x ∈ Ω
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such that Gρ∗ satisfies

suppGρ∗ ⊆
{
x ∈ [−1, 1] | v(x) = p(x)

}
, (C.21)∫ 1

0

p(x) dGρ∗(x) =

∫ 1

0

p(x) dGΩ(x), (C.22)

GΩ is a mean-preserving spread of Gρ∗ . (C.23)

Similar to that in the proof of Proposition IV.1, we can divide [−1, 1] into finitely many
intervals such that on each interval, either p is strictly convex or that p is affine. Given that
v(·) is of convex-concave-convex form and that p = v if p is strictly convex, there exists
an interval such that p is affine on this interval and it includes the entire concave region of
v(·). By Proposition 1 in Dworczak and Martini (2019), the price function p(·) satisfies the
following problem

min
p

∫ ω

ω

p(x) dGΩ(x) subject to p being convex and p ≥ v. (C.24)

The above minimization problem further implies that the price function must take the
following form: there exist two points x1 and x2 with 0 ≤ x1 < x2 ≤ 1 such that
p(x) = v(x) = 0 on [−1, 0]; p(x) is strictly convex on [0, x1] and on [x2, 1]; p(x) is affine
on [x1, x2]. By Proposition 2 in Dworczak and Martini (2019), when p is strictly convex on
a partitional interval [xi, xi+1] such that it is a maximal interval on which p is strictly convex,
then the optimal Gρ∗ satisfies that Gρ∗(x) = GΩ(x) for any x ∈ [xi, xi+1]. As shown in the
proof of Proposition IV.1, when p = v = 0 on a partitional interval [xi, xi+1] such that it is
a maximal interval on which p = v = 0 holds, then there exists an optimal distribution of
posterior means Gρ∗ such that Gρ∗(x) = GΩ(x) for any x ∈ [xi, xi+1]. Thus one way to
achieve the optimum is to fully reveal the state for x ∈ [−1, x1]∪ [x2, 1]. Moreover, that v(·)
is in the convex-concave-convex form implies there will be at most one point x ∈ (x1, x2)

such that p(x) = v(x) on the interval (x1, x2). Thus to pool the state within (x1, x2) is
the only way to satisfy the necessary condition suppGρ∗ ⊆

{
x ∈ [ω, ω] | v(x) = p(x)

}
.

Hence we prove our claim.

We then search for optimal derandomized canonical experiments in the above described
structure with the aid of numerical methods. The solution shows that the optimal ρ∗ pools
state from x1 = 0.806 to x2 = 1, and fully reveal the states below 0.0806. We further plot
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the price function p that solves the above problem (C.24) in the following figure.
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On interval (0.0806, 1], p(·) is affine, represented as the orange straight line in the above figure. For
any x ≤ 0.0806, p(x) = v(x), represented in the blue curve.

Figure C.1: The shape of price function p(·)

C.3 Proofs of Section 4.4.1

Our proofs use the following two definitions (Definition 3.1 and Definition 3.4) in Shen
et al. (2019). For an arbitrary probability space (Ω,F , P ), denote by L1(Ω; Rn) the set of
all integrable n-dimensional random vectors defined on (Ω,F , P ).

Definition C.2 (convex order). Let (Ω1,F1, P1) and (Ω2,F2, P2) be two probability spaces.
For random vectors X ∈ L1(Ω1; Rn) and Y ∈ L1(Ω2; Rn), we say X|P1 4cx Y |P2 if
EP1 [f(X)] ≤ EP2 [f(Y )] for all convex functions f : Rn → R.

LetM(Ω1) andM(Ω2) be the sets of probability measures on two arbitrary measurable
spaces (Ω1,F1) and (Ω2,F2), respectively.

Definition C.3 (dominated in heterogeneity). We say (P1, ..., Pn) ∈Mn(Ω1) is dominated
by (Q1, ..., Qn) ∈Mn(Ω2) in heterogeneity, denoted by (P1, ..., Pn) 4h (Q1, ..., Qn), if(

dP1

dP
, ...,

dPn
dP

) ∣∣∣
P
4cx

(
dQ1

dQ
, ...,

dQn

dQ

) ∣∣∣
Q
,

for some P ∈M(Ω1) dominating (P1, ..., Pn) and Q ∈M(Ω2) dominating (Q1, ..., Qn).

Proof for the claim in Example IV.2. (i) Recall that λ1 := λ and dλ2 := 2ω dλ(ω). Let ι
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be an independent random variable (“randomization device”) on the unit interval [0, 1] with
the Lebesgue measure λι. Note that the pair (λ2 × λι, λ1 × λι) of atomless probability
measures on Ω× [0, 1] satisfies the definition of conditionally atomless.3 By Example 3.8 in
Shen et al. 2019, the given pair (µ2, µ1) with µ1 = λ, and dµ2 = |4ω − 2| dλ satisfies that
(dµ2

dµ1
, 1)|µ1 4cx (dλ2

dλ1
, 1)|λ1 . Note that the densities satisfy dλ2×λι

dλ1×λι |λ1×λι = dλ2

dλ1
|λ1 , which by

Definition C.3 implies that (µ2, µ1) 4h (λ2 × λι, λ1 × λι). Then by Theorem 3.17 in Shen
et al. (2019), (µ2, µ1) and (λ2 × λι, λ1 × λι) are compatible.4 Hence there exists a signal
π : Ω × [0, 1] → [0, 1] which discloses identical information to both receivers such that
λ2 × λι ◦ π−1 = µ2 and λ1 × λι ◦ π−1 = µ1. Thus, (µ1, µ2) are the message distributions
of both receiver 1 and 2 induced by π under the pair of their initial beliefs.

(ii) We will show by contradiction that there does not exist a derandomized signal that is
effectively equivalent to the signal π in (i). Suppose that there exists such a derandomized
signal g : Ω→ [0, 1] (for simplicity, we embed the signal isometric transformation into g)
that is effectively equivalent to π. For any measurable set B̃ ∈ σ([0, 1]), consider the pure
strategy equilibrium that both receiver 1 and 2 take the action 1 if and only if the signal
realization â ∈ B̃. Then under π, receiver 1’s payoff is µ1(B̃) and receiver 2’s payoff is
µ2(B̃). Similarly, under the derandomized signal g and the above strategy, receiver 1’s
expected payoff is λ1 ◦ g−1(B̃) and receiver 2’s expected payoff is λ2 ◦ g−1(B̃). That π
and g are effectively equivalent implies that, the same strategy 1B̃(â) of receiver i will
give receiver −i the same payoff under π and under g. Thus, for any measurable set B̃,
µ2(B̃) = λ2 ◦ g−1(B̃) and µ1(B̃) = λ1 ◦ g−1(B̃). However, Example 3.8 in Shen et al.
(2019) shows that there does not exist a function g : Ω → [0, 1] such that λ1 ◦ g−1 = µ1

and λ2 ◦ g−1 = µ2. We have a contradiction.

Proof of Example IV.3. The proof is by contradiction. Suppose to the contrary that there
exists a derandomized signal π (for simplicity, we embed the signal isometric transformation
into π) that is effectively equivalent to π, where π(·) := 1S(·) for some fixed measurable
set S. There must exist a pure strategy that is optimal under the given mechanism π, which
is one of the following: (i) σ(·) ≡ δ0; (ii) σ(·) ≡ δ1; (iii) σ(1) ≡ δ1 and σ(0) ≡ δ0; (iv)

3Definition 3.12 in Shen et al. 2019: (Q1, ..., Qn) ∈ Mn(Ω1) is conditionally atomless if there exist
Q ∈M(Ω1) dominating (Q1, ..., Qn) and X ∈ L0(Ω1;R) such that under Q, X is continuously distributed
and independent of (dQ1

dQ , ...,
dQn
dQ ).

4Definition 2.1 in Shen et al. (2019): (Qi)i∈J ⊆M(Ω1) and (Fi)i∈J ⊆M(Ω2) are compatible if there
exists a random variable X on (Ω1,A1) such that Fi is the distribution of X under Qi for each i ∈ J .
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σ(1) ≡ δ0 and σ(0) ≡ δ1. We will consider only the types in (0.5, 11
16

). For any t ∈ (0.5, 11
16

),
one could check that the optimal pure strategy under π is to follow the recommendation
that gives him the following payoff∫

Ω

(
1[t,1](ω) · 0.8 + 1[0.5,t](ω) · 0.2 + 0.8 · 1[0,0.5)(ω)

)
dω = 1.1− 0.6t.

Similarly, there must exist a pure strategy that is optimal under π. Given that π and π are
effectively equivalent, an optimal pure strategy under π must give this type t the same
payoff as well. For any t ∈ (0.5, 11

16
), the strategies σ ≡ δ0 and σ ≡ δ1 cannot be optimal

under π, since the respective payoffs of these two strategies are t and 1− t. So we consider
the two only possible cases for the optimal strategy under π: one is always following the
recommendation (obedient strategy), i.e., σ(1) ≡ δ1 and σ(0) ≡ δ0; the other is always
defying the recommendation (defiant strategy), i.e., σ(1) ≡ δ0 and σ(0) ≡ δ1. By playing
the obedient strategy, each type t ∈ (0.5, 11

16
) gets the following expected payoff:

uo(t) :=

∫
Ω

(
π(ω) · 1[t,1](ω) +

(
1− π(ω)

)
· 1[0,t)(ω)

)
dω

=

∫
Ω

(−2 · π(ω) + 1) · 1[0,t)(ω) dω +

∫
Ω

π(ω) dω.

(C.25)

Similarly, by playing the defiant strategy, type t ∈ (0.5, 11
16

) gets the following payoff:

ud(t) :=

∫
Ω

(
(1− π(ω)) · 1[t,1](ω) + π(ω) · 1[0,t)(ω)

)
dω

=

∫ t

0

(
−2 · (1− π(ω)) + 1

)
dω +

∫
Ω

(
1− π(ω)

)
dω.

(C.26)

Note that the function uo(t) and ud(t) are almost everywhere differentiable with respect
to t. Let TO be the set of types for whom the obedient strategy is strictly better than
the defiant strategy, i.e., TO := {t ∈ (0.5, 11

16
) | uo(t) > ud(t)}. Let TD be the set

of types for whom the defiant strategy is strictly better than the obedient strategy, i.e.,
TD := {t ∈ (0.5, 11

16
) | uo(t) < ud(t)}. Let TB be the set of types for whom both

strategies are equally optimal, i.e., TB := {t ∈ (0.5, 11
16

) | uo(t) = ud(t)}. Based on the
above argument that σ ≡ 1 and σ ≡ 0 are both suboptimal for any type in (0.5, 11

16
), thus

(0.5, 11
16

) = TO ∪ TD ∪ TB, and at least one of them must be of strictly positive measure,
which contradicts with the following Claim C.1 and thus to assume the existence of an
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effectively equivalent derandomized signal in the first place will lead to a contradiction.
The rest is to prove the claim.

Claim C.1. The set TO, TD and TB are of zero measure.

The proof of Claim C.1 is by contradiction. Consider the case that TO is of strictly positive
measure and note that by definition TO is an open set. Given that the maximum payoff under
π must equal to that under π, i.e., 1.1− 0.6t = uo(t), for any t ∈ TO. Thus uo′(t) = −0.6

for any t ∈ TO, i.e., −0.6 = −2 · π(t) + 1 for every t ∈ TO, and thus π(t) = 0.8 for every
t ∈ TO. This contradicts with the definition that π is derandomized, i.e., π ∈ {0, 1} for
almost everywhere. For the second case that TD is of strictly positive measure, we can use
similar argument to derive π(t) = 0.2 for every t ∈ TD, which again leads to a contradiction.
Since both TO and TD are of zero measure, then we have TB is only different from (0.5, 11

16
)

by a zero measure set. However, the same argument as above implies π /∈ {0, 1} for almost
everywhere ω ∈ TB , which is again a contradiction. So we have shown that all of these sets
cannot be of positive measure.

Proof of Example IV.5. The logic behind the proof is quite similar to Example IV.3 and is
also done by contradiction. Suppose to the contrary that there exists a derandomized signal
π (for simplicity, we embed the signal isometric transformation into π) that is effectively
equivalent to π, where π(·) := 1S(·) for some fixed measurable set S.

For each type t, its belief about the underlying state condition on type t will be the following
distribution: f(t,ω)

2
3

(2−t) dω. There must exist a pure strategy that is optimal under π. We will
consider only the types in (0.5, 0.6). For any t ∈ (0.5, 0.6), one could check that the
optimal pure strategy under π is to follow the recommendation that gives him the payoff:∫ 0.5

0
(ω − t)0.2 dω +

∫ t
0.5

0.8(ω − t) dω +
∫ 1

t
1.6(ω − t) dω

2− t
=

0.725 + 0.4t2 − 1.3t

2− t
.

Similarly, there must exist a pure strategy that is optimal under π. Given that π and π are
effectively equivalent, an optimal pure strategy under π must give this type t the same payoff
as well. For any t ∈ (0.5, 0.6), the strategies σ ≡ δ0 and σ ≡ δ1 cannot be optimal under
π, since both 0.725+0.4t2−1.3t

2−t > 0 and 0.725+0.4t2−1.3t
2−t > 2+t2−4t

4−2t
hold for any t ∈ (0.5, 0.6).

So we consider the two only possible cases for the optimal strategy under π: the obedient
strategy and the defiant strategy. Under the obedient strategy, each type t ∈ (0.5, 0.6) gets
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a payoff:

uo(t) :=

∫ 1

t
2π(ω)(ω − t) dω +

∫ t
0
π(ω)(ω − t) dω

2− t
(C.27)

Similarly, by playing the defiant strategy, type t ∈ (0.5, 0.6) gets the following payoff:

ud(t) :=

∫ 1

t
2(1− π(ω))(ω − t) dω +

∫ t
0
(1− π(ω))(ω − t) dω

2− t
(C.28)

Note that the function uo(t) and ud(t) are almost everywhere differentiable with respect
to t. Let TO be the set of types for whom the obedient strategy is strictly better than
the defiant strategy, i.e., TO := {t ∈ (0.5, 0.6) | uo(t) > ud(t)}. Let TD be the set
of types for whom the defiant strategy is strictly better than the obedient strategy, i.e.,
TD := {t ∈ (0.5, 0.6) | uo(t) < ud(t)}. Let TB be the set of types for whom both
strategies are equally optimal, i.e., TB := {t ∈ (0.5, 0.6) | uo(t) = ud(t)}. Based on the
above argument that σ ≡ 1 and σ ≡ 0 are both suboptimal for any type in (0.5, 0.6), thus
(0.5, 0.6) = TO ∪ TD ∪ TB, and at least one of them must be of strictly positive measure,
which contradicts with the following Claim C.2 and thus to assume the existence of an
effectively equivalent derandomized signal in the first place will lead to a contradiction.
The rest is to prove the claim.

Claim C.2. The set TO, TD and TB are of zero measure.

The proof of Claim C.2 is again by contradiction. Consider the case that TO is of strictly
positive measure and note that by definition TO is an open set. Given that the maximum
payoff under π must equal to that under π, i.e., 0.725+0.4t2−1.3t

2−t = uo(t), for any t ∈ TO,
which implies that

∫ 1

t
2π(ω)(ω− t) dω+

∫ t
0
π(ω)(ω− t) dω = 0.725+0.4t2−1.3t, for any

t ∈ TO. By taking derivative w.r.t t twice, the following holds: π(t) = 0.8, for any t ∈ TO.
This is a contradiction. For the second case that TD is of strictly positive measure, we can
use similar argument to derive π(t) = 0.2 for every t ∈ TD, which again is a contradiction.
Since both TO and TD are of zero measure, then we have TB only different from (0.5, 0.6)

by a zero measure set. However, the same argument as above implies that π /∈ {0, 1} for
almost everywhere ω ∈ TB, which is again a contradiction. So we have shown that all of
these sets cannot be of positive measure.
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