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Abstract

This thesis explores a series of topics in quantum gravity with a focus on the quantum

nature of AdS black holes via the AdS/CFT correspondence. In Part I, we examine various

holographic approaches to AdS black hole entropy, including (i) from the gravity solution

via the Bekenstein Hawking formula, (ii) from the Kerr/CFT correspondence and (iii) from

the boundary conformal field theory. We explore these methods with the gravitational

implementation of the field theory Cardy-like limit, recently used in the successful microstate

countings of AdS black hole entropy in various dimensions. We then consider a deviation

from the extremal regime and focus on computing the Bekenstein-Hawking entropy of near-

extremal asymptotically AdS4 electrically charged rotating black holes using three different

methods, yielding a unique and universal expression for the entropy.

In Part II, we explore the quantum nature of black holes via the logarithmic corrections

to the entropy of AdS black holes in four dimensions. With a focus on AdS4 solutions in

minimal N “ 2 gauged supergravity, we show that for extremal black holes the logarithmic

correction computed in the near horizon geometry agrees with the result in the full geometry

up to zero mode contributions, thus clarifying where the quantum degrees of freedom lie in

AdS spacetimes. In contrast to flat space, we observe that the logarithmic correction for

supersymmetric black holes can be non-topological in AdS as it is controlled by additional

four-derivative terms other than the Euler density.

We also study supersymmetric, rotating, asymptotically AdS5 black holes and black

strings. On the gravity side, we take the near-horizon limit and apply the Kerr/CFT cor-

respondence whose associated charged Cardy formula describes the degeneracy of states at

subleading order and determines the logarithmic correction to the entropy, which precisely

matches the entropy up to subleading order from the field theory, by the superconformal in-

dex and the refined topologically twisted index of N “ 4 supersymmetric Yang-Mills theory,

respectively.
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Chapter 1

Introduction

1.1 Motivation

The theory encompassing gravitational physics and quantum physics - quantum gravity -

continues to be the most important open issue in the foundations of fundamental physics.

Quantum gravity becomes crucial in understanding the first few moments after the Big Bang

as well as black holes, where quantum gravitational effects cannot be ignored.

A black hole is a region of a spacetime with an event horizon, beyond which events

that take place there cannot classically affect an observer outside this boundary. The event

horizon, or horizon for short, is sometimes called the point of no return. Over the past

several decades, black holes have been tested extensively with the findings of The Laser

Interferometer Gravitational-Wave Observatory (LIGO) and the Event Horizon Telescope

(EHT). Black holes have also been in the forefront of theoretical research and provide a

theoretical laboratory to test ideas and find new insights into quantum gravity.

There are two crucial ideas that we will discuss in this thesis, that have driven our progress

in the field of quantum gravity and are both intimately related to black holes. The first key

insight is the successful matching of the microscopic black hole entropy to the macroscopic

Bekenstein-Hawking entropy [1]. There are several fundamental ideas to digest here so let

us step back to understand what this all means.

Our story starts in the second half of the twentieth century when black hole physics was

put on center stage (see for example [2–10]) and notably when Bekenstein conjectured that

black holes have a well defined entropy proportional to the area of the horizon. His work on

black hole mechanics was followed by Hawking who build on Bekenstein’s proposal. In 1974,

Hawking discovered that black holes emit thermal radiation corresponding to a temperature,

which we now call the Hawking temperature, fixing the constant of proportionality between

the entropy and the horizon area.
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Indeed, black holes have their own set of analogous thermodynamic laws, as described

below.

• The zeroth law: The surface gravity κ is constant over the horizon of a stationary black

hole.

• The first law: The change in the energy dE of a stationary black hole is related to the

change in the area dA, angular momentum dJ , and electric charge dQ

dE “
κ

8π
dA` ΩdJ ` ΦdQ. (1.1.1)

• The second law: The change in the horizon area is non-decreasing over time.

We can derive the entropy formula for black holes from the first law relating the energy,

entropy and temperature. The physical temperature of the black hole, called the Hawking

temperature is proportional to the surface gravity

TH “
κ

2π
, (1.1.2)

while the Bekenstein-Hawking entropy takes the form

S
p1q
BH “

A

4G
, (1.1.3)

where G is Newton’s constant and A is the area of the event horizon. We have set the speed

of light c and kB the Boltzmann constant to one, c “ ~ “ kB “ 1 and will do so for the

remainder of this thesis.

The entropy in (1.1.3) is a macroscopic interpretation and is completely universal – at

leading order – and is valid for any kind of black hole, regardless of dimension, field content

or really anything else. We may then speculate about the microscopic or quantum origin of

the entropy via a statistical mechanical approach. This would look something like

S
p2q
BH “ log Ω, (1.1.4)

where Ω is the number of microstates of the theory. It was not until the mid 1990’s when

Strominger and Vafa successfully accounted for the microscopic counting of the entropy for

a class of five-dimensional black holes [1]. Their analysis was followed by many similar com-

putations for other black holes in different configurations. More importantly, the resolution

of the black hole entropy has shed light in our understanding of the quantum properties of

black holes and has set the stage for further developments in quantum aspects of black holes.
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The second key insight stems from the holographic principle and is widely considered

to be a window into the full understanding of quantum gravity. The canonical example in

high energy physics of holography is the AdS/CFT correspondence [11]. The principle states

that a theory describing gravity is related to a quantum field theory. The gravity theory is

typically called “the bulk” and the quantum theory is called “the boundary theory,” because

it lives on the boundary of the gravity theory and therefore, it is one dimension less than

the gravity theory. Like a dictionary, physical concepts from gravity can be translated into

physical concepts in the quantum theory.

So what kind of gravity theories have quantum duals? According to the AdS/CFT

correspondence, string theories in certain asymptotically Anti-de Sitter (AdS) spacetimes

correspond to dual conformal field theories (CFT) in one less dimension.

Let us take a closer look at the gravity side of the correspondence. Global AdSd`1

spacetimes are maximally symmetric spacetimes with a negative cosmological constant. We

may consider an isometric embedding in Minkowski spacetime in d ` 2 dimensions, where

the extra dimension is time-like

pX0, X1, . . . , Xd, Xd`1
q P Rd,2, (1.1.5)

η̄ “ diagp´,`,`, . . . ,`,´q. (1.1.6)

The Minkowski spacetime takes the form

ds2
“ ´

`

dX0
˘2
`
`

dX1
˘2
` ¨ ¨ ¨ `

`

dXd
˘2
´
`

dXd`1
˘2
” η̄MN dXM dXN , (1.1.7)

and AdSd`1 is given by the hypersurface

η̄MNX
MXN

“ ´
`

X0
˘2
`

d
ÿ

i“1

`

X i
˘2
´
`

Xd`1
˘2
“ ´L2, (1.1.8)

where L is the radius of curvature of AdS. If we consider the parametrization

$

’

&

’

%

X0 “ α coshρ cosτ,

Xd`1 “ α coshρ sinτ,

X i “ α sinhρ µi,
ř

i µ
2
i “ 1, i “ 1, . . . , d,

(1.1.9)

where µi corresponds to a Sd´1 sphere, then the metric of AdSd`1 takes the form

ds2
“ α2

`

´cosh2ρdτ 2
` dρ2

` sinh2ρdΩ2
n´2

˘

, (1.1.10)
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for τ P r0, 2πs and ρ P R`. Note that (1.1.10) are called the global coordinates of AdSd`1 as

each point in the spacetime is accounted for only once. The second parametrization that is

often used is given by

X0
“
L2

2r

ˆ

1`
r2

L4

`

~x2
´ t2 ` L2

˘

˙

,

X i
“
rxi

L
for i P t1, . . . , d´ 1u,

Xd
“
L2

2r

ˆ

1`
r2

L4

`

~x2
´ t2 ´ L2

˘

˙

,

Xd`1
“
rt

L
,

(1.1.11)

where

t P R, ~x “
`

x1, . . . , xd´1
˘

P Rd´1, r P R`. (1.1.12)

This parametrization is called the Poincare patch. Unlike global coordinates, the Poincare

patch coordinates only cover one-half of the AdS spacetime with metric

ds2
“
L2

r2
dr2

`
r2

L2

`

´dt2 ` d~x2
˘

”
L2

r2
dr2

`
r2

L2
pηµνdx

µdxνq , (1.1.13)

where

µ “ 0, . . . , d, x0
“ t ηµν “ diagp´1,`1, . . . ,`1q. (1.1.14)

We often refer to asymptotically AdS spacetimes as spacetimes that, for large radial distance,

asymptote to a metric of the form (1.1.10). For example, we can consider a black hole living

in AdS spacetime and this is usually referred to as an AdS black hole.

The canonical example of holography is AdS5/CFT4 and is the duality between N “ 4

super Yang-Mills theory with gauge group SUpNq and Yang-Mills coupling constant gYM and

type IIB superstring theory with string length l2s “ α1 and coupling constant gs on AdS5ˆS
5

with radius of curvature L and N units of Fp5q on S5. In the AdS/CFT correspondence, we

typically denote the “AdS” side as the gravity solution, which will mainly be asymptotically

AdS black hole solutions in this thesis, while the “CFT” side is the quantum field theory

under consideration.

What makes holography so favorable is its computational accessibility. Many of the

puzzles presented by gravity can now be reformulated in terms of a quantum field theory

and vice versa. For this reason, the AdS/CFT correspondence has not only provided a

computational path in quantum gravity but also in fluid dynamics, superconductivity and

quantum chromodynamics, connecting a wide range of topics. For example, the fluid/gravity

correspondence relates the dynamics of the Einstein equations to that of relativistic Navier-

4



Stokes equations.

In this thesis, we are particularly interested in how holography is connected with the

first key insight regarding black hole thermodynamics. As we mentioned, the microscopic

counting of the black hole entropy was first successfully computed by Strominger and Vafa.

The caveat is that only asymptotically flat black holes have been rigorously studied in this

regard. Since we have the tools in holography to study AdS black holes, we can compute

the microscopic counting of the entropy via the conformal field theory. The first attempt

at studying the canonical example of AdS5 ˆ S5 dual to N “ 4 super Yang-Mills was

unfortunately fruitless [12]. It was not until more than a decade later that the issues were

resolved [13–15] by considering complex chemical potentials.

In this thesis, we build on the work of [13–15] and we consider AdS black hole solutions

with known field theory duals to understand the nature of the microscopic origin of the

entropy from a different perspective.

Let us recap what we know so far. We can compute the macroscopic entropy correspond-

ing to the Bekenstein-Hawking entropy S
p1q
BH and we know from the AdS/CFT correspondence

that the microscopic counting of the entropy S
p2q
BH can be found via the dual field theory. We

consider yet an additional approach to the entropy via the Kerr/CFT correspondence [16],

where we find an impressive match between the properties of black holes and the universal

properties of two-dimensional CFTs.

To understand the definition of extremality, we consider the simpler example of a general

non-rotating pd` 1q-dimensional black hole solution of the form

ds2
“ ´fprqdt2 `

dr2

fprq
` r2dΩ2

d´1, (1.1.15)

where fprq is a function of the radial coordinate r as well as the mass and charges of the

black hole. For example, in the Schwarzschild solution fprq “ 1 ´ 2GM{r. The horizon of

the black hole r` satisfies fpr`q “ 0. For a black hole with additional charges, there are

three possibilities depending on the discriminant ∆ of fprq:

• naked singularity for ∆ ă 0,

• extremal for ∆ “ 0,

• non-extremal for ∆ ą 0.

In the case of the non-extremal solution, there are two horizons, the inner horizon r´ and the

outer horizon r`, where r` ą r´ while extremality is obtained when both horizons coincide

r´ “ r`. For this thesis, we mainly focus on the extremal case for one specific reason. That is,

5



all known extremal black hole solutions develop an AdS2 factor in the near-horizon geometry.

From a geometric point of view, extremal black holes have a throat-geometry, as shown in

Figure 1.1. In the case of non-zero angular momentum, we instead find that the near-horizon

contains a circle, or several circles, fibered over AdS2 and from the Kerr/CFT correspondence

can be dual to an effective two dimensional CFT model. Therefore, the microscopic degrees

of freedom of the black hole can be accounted for via the Cardy formula. We can then utilize

the Kerr/CFT correspondence to reproduce the microscopic counting of the entropy S
p3q
BH for

asymptotically AdS black holes.

Figure 1.1: The horizon and the asymptotic

regions.

Figure 1.2 outlines the overarching goal

of the first part of this thesis. More im-

portantly, the three distinct holographic ap-

proaches to the entropy have shown to be

valid at the extremal limit as well as the

near-extremal limit for a class of rotat-

ing, electrically charged asymptotically AdS

black holes in diverse dimensions.

Indeed, the black hole entropy at leading

order is given by the Bekenstein-Hawking

entropy. We now shift our focus to the

subleading quantum corrections, taking the

form

S “
A

4G
` c log

A

G
` . . . , (1.1.16)

where c is a constant to be determined.

With our current scope of knowledge in quantum gravity, we do not know the full form

of the entropy. Instead, one particular quantum correction that we are able to probe are

the logarithmic corrections to the entropy. Unlike the area formula, the logarithmic correc-

tions are sensitive to the quantum gravity under consideration. Therefore, these types of

corrections provide a unique testing ground for any proposed ultraviolet complete theory of

gravity. There has been active exploration on these types of corrections in asymptotically

flat spacetimes, both in the extremal and non-extremal regime, mainly pushed by Sen and

collaborators. However, there remains a large unexplored territory for these corrections in

AdS spacetimes. This is the goal of the second part of this thesis.

We follow two distinct approaches. The first is the heat kernel, which has been widely

used in literature for these types of entropy corrections. Our work paves the way for field

6



theoretic computations, which can verify our results. Returning to Figure 1.2, we may

speculate to what extent our holographic approaches continue to hold at subleading order.

Therefore, our second method is to extend the Kerr/CFT correspondence to compute the

logarithmic corrections to asymptotically AdS spacetimes.

AdSd`1 black hole (S
p1q
BH) boundary CFTd (S

p3q
BH)

AdS3 geometry CFT2 (S
p2q
BH)

AdS/CFT

Bardeen-
Horowitz scaling

Kerr/CFT

Figure 1.2: The asymptotically AdS black hole entropy can be computed in three different
ways (S

piq
BH), and have found to give one universal result for the entropy. This is valid for

both BPS black holes and near-extremal black holes.

1.2 Overview of Thesis

This thesis explores topics in holography and black holes in the pursuit of further advancing

our understanding of quantum gravity. The work presented is based on articles written with

my advisor Professor Leopoldo Pando Zayas and collaborators. In the following, we give an

overview of the structure of the remaining parts of the thesis.

Chapter 2:

In this chapter, we explore the Cardy-like limit, which has played a role in extracting the

microscopic counting of black hole entropy in AdS spacetimes via known dual field theories.

The Cardy-like limit

|ωi| ! 1 , (1.2.1)

corresponds to small angular velocity with respect to the other parameters on the field theory

side, as shown in Table 1.1. Our main motivation is to provide a physical interpretation of the

Cardy-like limit from the gravity point of view. For a class of electrically charged, rotating,

asymptotically AdS black holes, we find that the gravitational Cardy limit has the following

universal form

|aig| Ñ 1, (1.2.2)

7



Dimension of CFT ω ∆ J Q Entropy Function

d “ 3 ε 1 1{ε2 1{ε 1{ε
d “ 4 ε 1 1{ε3 1{ε2 1{ε2

d “ 5 ε 1 1{ε3 1{ε2 1{ε2

d “ 6 ε 1 1{ε4 1{ε3 1{ε3

Table 1.1: Scaling of conserved quantum numbers in various field theory dimensions.

where ai roughly characterizes the angular momenta in units of the inverse radius of AdS,

g. As shown in Figure 1.2, we impose the gravitational Cardy limit while also zooming

into the near-horizon of the black hole. Near the horizon of these black holes, there exists

a three-dimensional AdS subgeometry – Up1q fibered over AdS2 – which, from holography,

corresponds to a two-dimensional quantum theory. This two-dimensional quantum theory

successfully accounts for the microscopic black hole entropy via the Cardy formula, which

utilizes the universality of the asymptotics of the density of states. The near-horizon limit

paired with the gravitational Cardy like limit, reduces the number of Up1q fibers to one,

and in effect, we extract only the minimal amount of information to compute the black hole

entropy. Therefore, we may reach the same entropy via the three holographic approaches,

the gravity AdSd`1 solution, the CFT2 derived from the near-horizon geometry, as well as

the CFTd.

This chapter is based on:

M. David, J. Nian and L. A. Pando Zayas, “Gravitational Cardy Limit and AdS Black Hole

Entropy,”, JHEP 11 (2020), 041 doi:10.1007/JHEP11(2020)041 [arXiv:2005.10251 [hep-th]].

Chapter 3:

Most of the previous work on the successful matching of the microscopic and macroscopic

black hole entropy has assumed supersymmetry, and one natural question that may arise is

whether or not the entropy matching is successful when the BPS bound – the intersection

of supersymmetry and extremality – is relaxed. This chapter focuses on the near-extremal

regime of electrically charged, rotating AdS4 black holes by exploring the holographic ap-

proaches to the entropy both on the gravitational and field theory side. More explicitly, we

consider

1. the expansion of the non-extremal AdS4 black hole solution around the BPS solution,

2. the near-extremal Kerr-Newman-AdS/CFT correspondence from the near-horizon CFT2,

8
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3. and the microstate counting via AdS/CFT correspondence from the boundary 3d su-

perconformal ABJM theory at small temperature,

as graphically shown in Figure 1.2. Note that we do not assume the Cardy-like limit for any

of these cases. In general, regardless whether we take a gravity or field theoretic approach,

the entropy takes on one universal expression

SBH “ S˚ ` δS “ S˚ `

ˆ

C

TH

˙

˚

TH , (1.2.3)

where S˚ denotes the electrically charged rotating AdS4 black hole entropy in the BPS limit,

while pC{THq˚ stands for the heat capacity in the BPS limit. This result has several profound

consequences. First, we have shown that the Kerr/CFT correspondence [16–18], originally

posed for extremal black holes, can also be valid in the near-extremal regime. Second, the

universality of the black hole entropy suggests that Fig. 1.2 is not only valid in the super-

symmetric regime but also the near-extremal regime. It is an open question to understand

the non-supersymmetric regime, especially from the field theory point of view. Finally,

our results, which are partially derived from the Kerr/CFT correspondence, suggests that

there is a connection between the CFTd and CFT2 through some RG flow across dimensions.

This chapter is based on:

M. David and J. Nian, “Universal Entropy and Hawking Radiation of Near-Extremal AdS4

Black Holes,” JHEP 04 (2021), 256 doi:10.1007/JHEP04(2021)256 [arXiv:2009.12370 [hep-th]].

Chapter 4:

While the logarithmic corrections to the Bekenstein Hawking entropy have been well studied

for asymptotically flat backgrounds [19–23], these subleading terms in asymptotically AdS

remain to be well explored. In this chapter, we study minimal N “ 2 gauged supergravity,

focusing on the logarithmic corrections to the entropy of asymptotically AdS black holes in

four dimensions. Our main approach is via the heat kernel, which we apply to both non-

extremal and extremal black holes. A careful limiting procedure as we take the temperature

to zero shows that the logarithmic corrections obtained in the non-extremal regime agrees

with that of the extremal regime. Moreover, we find that in the BPS case, the logarithmic

corrections are topological as they depend on the parameters of the black hole. This is in

direct contrast with the results in the asymptotically flat case.

9
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This chapter is based on:

M. David, V. Godet, Z. Liu and L. A. P. Zayas,

‘Non-topological logarithmic corrections in minimal gauged supergravity

[arXiv:2112.09444 [hep-th]].

Chapter 5:

As was mentioned in chapter 4, investigating the logarithmic corrections to the black hole

entropy via the heat kernel has been quite effective, and we could ask if a similar approach

can be taken for black objects in AdS5. However, probing the logarithmic term via the heat

kernel proves to be insufficient for five dimensions. This stems from the fact that the heat

kernel coefficient corresponding to the logarithmic term is zero for odd dimensions. There-

fore, we consider computing the quantum corrections to the black hole via the Kerr/CFT

correspondence, by evaluating the density of states about the saddle point.

On the field theory side, the subleading corrections correspond to the large N expansion

of the superconformal index and the refined topologically twisted index of N “ 4 supersym-

metric Yang-Mills theory for the black hole and black string, respectively. Upon converting

from the grand canonical to the microcanonical ensemble, the result derived from the Cardy

forumla precisely matches that of the index on the CFT4.

This chapter is based on:

M. David, A. González Lezcano, J. Nian, and L. A. Pando Zayas,

Logarithmic Corrections to the Entropy of Rotating Back Holes and Black Strings in AdS5

[arXiv:2106.09730 [hep-th]].
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Part I

Holographic Approaches to Black

Hole Entropy
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Chapter 2

The Gravitational Cardy Limit

2.1 Asymptotically AdS5 Black Holes

In this section, we consider the asymptotically AdS5 black holes and the corresponding

gravitational Cardy limit. We will demonstrate that the black hole entropy can be computed

in various ways as shown in Fig. 1.2, and that the other thermodynamic quantities scale in

the gravitational Cardy limit precisely as in the field theory approach following Table 1.1.

2.1.1 AdS5 Black Hole Solution

In this subsection, we first review the non-extremal asymptotically AdS5 black hole solution

found in [24] with degenerate electric charges Q1 “ Q2 “ Q3 “ Q and two angular momenta

J1,2, and then take the BPS limit to obtain its supersymmetric version.

The non-extremal asymptotically AdS5 black hole background was found in [24] as a

solution to the equations of motion of the 5d minimal gauged supergravity in the Boyer-

Lindquist coordinates xµ “ pt, r, θ, φ, ψq. The metric and the gauge field of the black hole

solution are given by

ds2
“ ´

∆θ rp1` g
2r2qρ2dt` 2qνs dt

ΞaΞbρ2
`

2qνω

ρ2
`
f

ρ4

ˆ

∆θdt

ΞaΞb

´ ω

˙2

`
ρ2dr2

∆r

`
ρ2dθ2

∆θ

`
r2 ` a2

Ξa

sin2θ dφ2
`
r2 ` b2

Ξb

cos2θ dψ2 , (2.1.1)

A “

?
3 q

ρ2

ˆ

∆θ dt

ΞaΞb

´ ω

˙

` α5 dt , (2.1.2)
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where

ν ” b sin2θ dφ` a cos2θ dψ ,

ω ” a sin2θ
dφ

Ξa

` b cos2θ
dψ

Ξb

,

∆θ ” 1´ a2g2 cos2θ ´ b2g2 sin2θ ,

∆r ”
pr2 ` a2qpr2 ` b2qp1` g2r2q ` q2 ` 2abq

r2
´ 2m,

ρ2
” r2

` a2 cos2θ ` b2 sin2θ ,

Ξa ” 1´ a2g2 ,

Ξb ” 1´ b2g2 ,

f ” 2mρ2
´ q2

` 2abqg2ρ2 ,

(2.1.3)

and α5 dt is a pure gauge term with α5 a constant. These black hole solutions are character-

ized by four independent parameters pa, b,m, qq. The thermodynamical quantities, including

the mass E, the temperature T and the entropy S, can all be expressed in terms of these

independent parameters. The other physical quantities, such as the electric charge Q, the

electric potential ∆, the angular momenta J1,2 and the angular velocities Ω1,2 can similarly

be written in terms of the four independent parameters. For example, the gravitational

angular velocities Ω1,2 and the temperature T are given by

Ω1 “
apr2

` ` b
2qp1` g2r2

`q ` bq

pr2
` ` a

2qpr2
` ` b

2q ` abq
,

Ω2 “
bpr2

` ` a
2qp1` g2r2

`q ` aq

pr2
` ` a

2qpr2
` ` b

2q ` abq
,

T “
r4
`

”

1` g2p2r2
` ` a

2 ` b2q

ı

´ pab` qq2

2πr`

”

pr2
` ` a

2qpr2
` ` b

2q ` abq
ı ,

(2.1.4)

where r` denotes the position of the outer horizon given by the largest root of ∆r in (4.1.32).

As carefully discussed in [13], it is crucial to make the following important distinctions of

these solutions, in the broader context when complex potentials are allowed. The extremal

black hole solution is characterized by the appearance of a double root in ∆r “ 0, while the

BPS black hole solution is obtained by solving the supersymmetry equations.

The BPS limit is a special limit in the parameter space, such that the backgrounds in

this limit are both extremal and supersymmetric. For the class of AdS5 black hole solutions
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(4.1.30), the BPS limit corresponds to the following condition

q “
m

1` ag ` bg
. (2.1.5)

Moreover, to prevent unphysical naked closed timelike curves (CTC), it is shown in [24] that

the BPS solutions should further satisfy the constraint

m “
1

g
pa` bqp1` agqp1` bgqp1` ag ` bgq . (2.1.6)

Hence, in the BPS limit only two of the four parameters pa, b,m, qq are independent, which

can be chosen to be pa, bq. The special case a “ b corresponds to the supersymmetric AdS5

black hole solutions found by Gutowski and Reall [25]. In the BPS limit, the outer horizon

r` coincides with the inner horizon at r0

r2
0 “

a` b` abg

g
, (2.1.7)

and the black hole entropy S˚, the electric charge Q˚ and the angular momenta J˚1,2 have

the following expressions in terms of pa, bq

S˚ “
π2pa` bq

?
a` b` abg

2g3{2p1´ agqp1´ bgq
,

Q˚ “
πpa` bq

4gp1´ agqp1´ bgq
,

J˚1 “
πpa` bqp2a` b` abgq

4gp1´ agq2p1´ bgq
,

J˚2 “
πpa` bqpa` 2b` abgq

4gp1´ agqp1´ bgq2
,

(2.1.8)

where the entropy S˚ is computed from the Bekenstein-Hawking entropy formula

SBH “
A

4GN

, (2.1.9)

a quarter of the horizon area in units of Planck length. Using the expressions (2.1.8), we can

also rewrite the black hole entropy as a function of Q and J1,2

SBH “ 2π

d

3Q2

g2
´

π

4g3
pJ1 ` J2q . (2.1.10)

The AdS/CFT dictionary helps translate the parameters of the AdS5 black holes to

14



quantities in N “ 4 SYM
1

2
N2

“
π

4GN

`3
5, (2.1.11)

with `5 “ g´1 denoting the AdS5 radius. We can rewrite the expression (2.1.10) of the AdS5

black hole entropy (in the unit G “ 1)

SBH “ 2π

d

3Q2

g2
´
N2

2
pJ1 ` J2q . (2.1.12)

This expression has recently been extracted directly from the boundary CFT in [13–15] with

further clarifying field theory work presented in [26–35]. We show below that this boundary

CFT result can also be obtained from a particular near-horizon Cardy formula.

2.1.2 Gravitational Cardy Limit

The Cardy-like limit for the N “ 4 SYM index was defined in [14]. This limit has been

discussed in the context of N “ 4 SYM also in [26, 27, 34]. In the more general context of

N “ 1 superconformal theories, it has been discussed in [28–30]. A key ingredient in the

limit is the regime

|ωi| ! 1 , ∆I „ Op1q , pi “ 1, 2; I “ 1, 2, 3q . (2.1.13)

Using the relation found in [13,33]

Repωiq “
BΩi

BT

ˇ

ˇ

ˇ

ˇ

T“0

, Rep∆Iq “
BΦI

BT

ˇ

ˇ

ˇ

ˇ

T“0

, (2.1.14)

we can express the Cardy-like limit (2.1.13) in terms of quantities in the dual gravity theory,

such that
ˇ

ˇ

ˇ

ˇ

ˆ

BΩi

BT

˙

T“0

ˇ

ˇ

ˇ

ˇ

! 1 ,
BΦI

BT

ˇ

ˇ

ˇ

ˇ

T“0

„ Op1q , (2.1.15)

with i “ 1, 2 and I “ 1, 2, 3. Using the expressions of the thermodynamic quantities (2.1.4),

we obtain for the asymptotically AdS5 BPS black holes,

BΩ1

BT

ˇ

ˇ

ˇ

ˇ

BPS

“ lim
TÑ0

Ω1 ´ Ω˚1
T

“
2πp´1` agq

3g

c

1` ag ` bg

ab
,

BΩ2

BT

ˇ

ˇ

ˇ

ˇ

BPS

“ lim
TÑ0

Ω2 ´ Ω˚2
T

“
2πp´1` bgq

3g

c

1` ag ` bg

ab
,

(2.1.16)
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where Ω˚1,2 are the values of Ω1,2 in the BPS limit. From the expressions of BΩi
BT

ˇ

ˇ

BPS
(i “ 1, 2),

we conclude that for asymptotically AdS5 BPS black holes, the gravitational Cardy limit

corresponds to the special limit of the parameters on the gravity side

aÑ
1

g
, bÑ

1

g
. (2.1.17)

For later convenience, we parameterize a and b as

a “
1

g
´ ε , b “

1

g
´ ε . (2.1.18)

For this case, ε has the dimension of length. Taking the gravitational Cardy limit (2.1.18)

for the parameters into account, the BPS thermodynamic quantities (2.1.8) become

S˚ “

?
3π2

g5ε2
`Opε´1

q ,

Q˚ “
π

2g4ε2
`Opε´1

q ,

J˚1 “
2π

g6ε3
`Opε´2

q ,

J˚2 “
2π

g6ε3
`Opε´2

q ,

(2.1.19)

which are precisely the scalings of the field theory results [14,36].

2.1.3 Black Hole Solution in the Near-Horizon + Gravitational

Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters

on the gravity side. In this subsection, we discuss how the near-horizon metric changes in

this limit as well as clarify other ingredients.

The asymptotically AdS5 metric (4.1.30) can be written in the following equivalent form,

which is more convenient for the discussions in this subsection,

ds2
“ ´

∆r∆θr
2 sin2p2θq

4Ξ2
aΞ

2
bBφBψ

dt2 ` ρ2

ˆ

dr2

∆r

`
dθ2

∆θ

˙

`Bψpdψ ` v1dφ` v2dtq
2
`Bφpdφ` v3dtq

2 ,

(2.1.20)
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where

Bφ ”
g33 g44 ´ g

2
34

g44

, Bψ ” g44 ,

v1 ”
g34

g44

, v2 ”
g04

g44

, v3 ”
g04 g34 ´ g03 g44

g2
34 ´ g33 g44

,
(2.1.21)

with the non-vanishing components of the metric (4.1.30) explicitly in the coordinates

pt, r, θ, ϕ, ψq

g00 “ ´
∆θp1` g

2r2q

ΞaΞb

`
∆2
θp2mρ

2 ´ q2 ` 2abqg2ρ2q

ρ4Ξ2
aΞ

2
b

,

g03 “ g30 “ ´

∆θ

”

ap2mρ2 ´ q2q ` bqρ2p1` a2g2q

ı

sin2θ

ρ4Ξ2
aΞb

,

g04 “ g40 “ ´

∆θ

”

bp2mρ2 ´ q2q ` aqρ2p1` b2g2q

ı

cos2θ

ρ4Ξ2
bΞa

,

g11 “
ρ2

∆r

, g22 “
ρ2

∆θ

,

g33 “
pr2 ` a2q sin2θ

Ξa

`

a
”

ap2mρ2 ´ q2q ` 2bqρ2
ı

sin4θ

ρ4Ξ2
a

,

g44 “
pr2 ` b2q cos2θ

Ξb

`

b
”

bp2mρ2 ´ q2q ` 2aqρ2
ı

cos4θ

ρ4Ξ2
b

,

g34 “ g43 “

”

abp2mρ2 ´ q2q ` pa2 ` b2qqρ2
ı

sin2θ cos2θ

ρ4ΞaΞb

.

(2.1.22)

A central element in our approach is a near-horizon limit following the prescription of

Bardeen and Horowitz [37] to zoom into a near-horizon region, and at the same time we

move to a rotating frame by implementing the following coordinate change

r Ñ r0 ` λ rr , tÑ
rt

λ
, φÑ rφ` g

rt

λ
, ψ Ñ rψ ` g

rt

λ
. (2.1.23)

Taking λ Ñ 0 brings us to a particular near-horizon region of the AdS5 BPS black holes
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given by the following metric in the coordinates prt, rr, θ, rφ, rψq

ds2
“ ´

2gp1` 5agq

ap1` agq2
rr2 drt2 `

a

2gp1` 5agq

drr2

rr2
` ΛAdS5pθq

»

—

—

–

drφ`
3gp1´ agq

p1` agq

c

a
´

a` 2
g

¯

rr drt

fi

ffi

ffi

fl

2

`

a
´

4´ ag ` 3ag cosp2θq
¯

cos2θ

2gp1´ agq2

„

d rψ `
6ag sin2θ

4´ ag ` 3ag cosp2θq
drφ` V pθq rr drt

2

`
2a

gp1´ agq
dθ2 , (2.1.24)

where

ΛAdS5pθq ”
4ap2` agq sin2θ

gp1´ agq
´

4´ ag ` 3ag cosp2θq
¯ , (2.1.25)

V pθq ”

6g2p1´ agq

c

a
´

a` 2
g

¯

ap1` agq p4´ ag ` 3ag cosp2θqq
, (2.1.26)

and for simplicity, we have set a “ b, in consistency with the gravitational Cardy limit

(2.1.18) that will be imposed later. For some special values of θ, the metric (2.1.24) has the

topology of two Up1q circles fibered over the AdS2 parametrized by pt̃, r̃q, as pointed out

in [17,18].

After a further change of coordinates

τ ”
2gp1` 5agq

ap1` agq
rt , (2.1.27)

we can bring the metric (2.1.24) into the form

ds2
“

a

2gp1` 5agq

„

´rr2 dτ 2
`
drr2

rr2



` ΛAdS5pθq

»

—

—

–

drφ`
3ap1´ agq

2p1` 5agq

c

a
´

a` 2
g

¯

rr dτ

fi

ffi

ffi

fl

2

`

a
´

4´ ag ` 3ag cosp2θq
¯

cos2θ

2gp1´ agq2

„

d rψ `
6ag sin2θ

4´ ag ` 3ag cosp2θq
drφ` rV pθq rr dτ

2

`
2a

gp1´ agq
dθ2 , (2.1.28)
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where

rV pθq ”

3gp1´ agq

c

a
´

a` 2
g

¯

p1` 5agq p4´ ag ` 3ag cosp2θqq
. (2.1.29)

In both U(1) fibrations, the coefficients in front of rr dτ are proportional to BTΩ (2.1.16) with

a “ b. Hence, according to the relation (2.1.14), ωi from N “ 4 SYM indeed play the role

of angular velocities in the metric (2.1.28), and the Cardy-like limit from the field theory

side means the angular velocities slow down on some Up1q circles in the near-horizon metric

(2.1.28).

In Appendix A.1.1, we verify explicitly that the resulting background is a solution of the

5d minimal gauged supergravity equations of motion. This statement holds for arbitrary

values of a “ b. Up to this point, our approach is completely rigorous and verifying the

equations of motion explicitly provides a powerful seal of approval. However, to flesh out

the scaling properties of the solution, in what follows we implement the gravitational Cardy

limit in the space of parameters which further simplifies the geometry.

We apply the gravitational Cardy limit (2.1.18) to the metric (2.1.28) and keep the

leading orders in ε, which leads to

ds2
“

1

12g2

„

´rr2 dτ 2
`
drr2

rr2



´
2

g3ε
dθ2

´
4 sin2pθq ε

g3p1` cosp2θqq

„

1

ε
drφ´

g

4
?

3
rr dτ

2

`
3 cos4pθq

g4

„

1

ε
d rψ `

2 sin2pθq

ε p1` cosp2θqq
drφ´

g sec2pθq

4
?

3
rr dτ

2

. (2.1.30)

From this metric, we can see that in the gravitational Cardy limit ε Ñ 0 only one U(1)

circle remains non-trivially fibered over AdS2. We have only assumed that ε is small without

strictly taking the limit ε Ñ 0, and the near-horizon metric will approximate to AdS3, as ε

becomes smaller. However, since the two initial U(1) fibrations give the same result of the

black hole entropy according to the Cardy formula and the extreme black hole/CFT corre-

spondence [18], the remaining U(1) is enough to compute the AdS5 black hole entropy. We

will demonstrate this point in the next subsection. To summarize, the gravitational Cardy

limit simplifies the near-horizon geometry but keeps the minimal amount of information for

computing the black hole entropy.

Let us finish by warning the potentially puzzled reader. The analysis above, surround-

ing equation (2.1.30), is local and has the sole intention of clarifying the geometry of the

gravitational Cardy limit. If bothered by this last limiting procedure it is possible to step

back and derive all the quantities from the safer background obtained in equation (2.1.28).

However, without this gravitational Cardy limit the connection to the field theory approach
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would be very tenuous.

2.1.4 Black Hole Entropy from Cardy Formula

In the previous subsection, we showed that a warped AdS3 geometry appears in the near-

horizon region of asymptotically AdS5 BPS black holes in the gravitational Cardy limit.

This circumstance permits the use of ideas presented in [16], which lead to the identifica-

tion of a Virasoro algebra as the asymptotic symmetries in the near-horizon geometry and,

subsequently, to a microscopic description of the black hole entropy via the Cardy formula.

Let us briefly review how the Virasoro algebra emerges as the algebra of asymptotic

symmetries of the near-horizon region of the extremal Kerr black hole [16] (see also [38]).

Recall that the asymptotic symmetry group is the group of all allowed diffeomorphisms

modulo trivial ones where allowed diffeomorphisms are defined as those that preserve certain

boundary conditions of the asymptotic metric. The starting element in determining the

algebra of asymptotic symmetries is, therefore, to consider diffeomorphims generated by

vectors of the form

ζε “ εpφq
B

Bφ
´ r ε1pφq

B

Br
, (2.1.31)

where εpφq is a function periodic in φ. For simplicity we can choose to be εpφq “ ´e´inφ,

and consequently obtain the mode expansion of ζε as

ζpnq “ ´e
´inφ B

Bφ
´ inre´inφ

B

Br
, (2.1.32)

which satisfies a centreless Virasoro algebra

irζpmq, ζpnqs “ pm´ nqζpm`nq . (2.1.33)

The charge associated with the diffeomorphis ζε is given by an integral over the boundary of

a spatial slice BΣ

Qζ “
1

8πG

ż

BΣ

kζ , (2.1.34)

where kζ is a 2-form defined for a general perturbation hµν around the background metric

gµν

kζrh, gs ” ´
1

4
εαβµν

”

ζνDµh´ ζνDσh
µσ
` ζσD

νhµσ `
1

2
hDνζµ ´ hνσDσζ

µ

`
1

2
hσνpDµζσ `Dσζ

µ
q

ı

dxα ^ dxβ , (2.1.35)
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with h ” hαβg
αβ. The Dirac bracket of the charges is

tQζpmq , Qζpnqu “ Qrζpmq, ζpnqs `
1

8πG

ż

BΣ

kζrLζg, gs , (2.1.36)

where Lζ denotes the Lie derivative with respect to ζ

Lζgµν ” ζρBρgµν ` gρνBµζ
ρ
` gµρBνζ

ρ . (2.1.37)

The mode expansion of the Dirac bracket (2.1.36) leads to a Virasora algebra

rLm, Lns “ pm´ nqLm`n `
1

12
cL pm

3
` αmq δm`n, 0 , (2.1.38)

where cL can be obtained from the integral

1

8πG

ż

BΣ

kζpmqrLζpnqg, gs “ ´
i

12
cL pm

3
` αmq δm`n, 0 , (2.1.39)

and α is an irrelevant constant.

To compute the black hole entropy using the Cardy formula, we still need the Frolov-

Thorne temperature, which can be obtained in the following way. The quantum fields on

the background (4.1.30) can be expanded in the modes e´iωt`imφ. After taking the scaling

(4.1.37), these modes become

e´iωt`imφ “ e
´iω

rt
λ
`im

´

rφ`g
rt
λ

¯

“ e´ip
ω
λ
´
mg
λ qrt`im

rφ
” e´inR

rt`inL rφ , (2.1.40)

from which we can read off the left-moving and the right-moving mode numbers

nL ” m, nR ”
ω ´mg

λ
. (2.1.41)

The Boltzmann factor is

e
´ω´mΩ

TH “ e
´
nL
TL
´
nR
TR , (2.1.42)

where TH is the Hawking temperature, and TL,R are the left-moving and the right-moving

Frolov-Thorne temperatures. Combining (2.1.41) and (2.1.42), we obtain the near-extremal

Frolov-Thorne temperatures

TL “
TH
g ´ Ω

, TR “
TH
λ
. (2.1.43)

The values for the extremal AdS5 black holes can be obtained by taking the extremal limit

(TH Ñ 0).
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In order to apply the technique described above, we need to first transform the AdS2

Poincaré coordinates prr, τq in the metric (2.1.28) to global coordinates pr̂, t̂q

g rr “ r̂ `
?

1` r̂2 cospt̂q , g´1 τ “

?
1` r̂2 sinpt̂q

r̂ `
?

1` r̂2 cospt̂q
, (2.1.44)

which leads to

´rr2 dτ 2
`
drr2

rr2
“ ´p1` r̂2

q dt̂2 `
dr̂2

1` r̂2
,

rr dτ “ r̂ dt̂` dγ ,

(2.1.45)

where

γ ” log

ˆ

1`
?

1` r̂2 sinpt̂q

cospt̂q ` r̂ sinpt̂q

˙

. (2.1.46)

Consequently, the near-horizon metric (2.1.28) of the AdS5 BPS black holes can be written

as

ds2
“

a

2gp1` 5agq

„

´p1` r̂2
q dt̂2 `

dr̂2

1` r̂2



` ΛAdS5pθq

»

—

—

–

dφ̂`
3ap1´ agq

2p1` 5agq

c

a
´

a` 2
g

¯

r̂ dt̂

fi

ffi

ffi

fl

2

`

a
´

4´ ag ` 3ag cosp2θq
¯

cos2θ

2gp1´ agq2

„

dψ̂ `
6ag sin2θ

4´ ag ` 3ag cosp2θq
dφ̂` rV pθq r̂ dt̂

2

`
2a

gp1´ agq
dθ2 , (2.1.47)

where

φ̂ ” rφ`
3ap1´ agqγ

2p1` 5agq

c

a
´

a` 2
g

¯

, ψ̂ ” rψ `
3ap1´ agqγ

2p1` 5agq

c

a
´

a` 2
g

¯

. (2.1.48)

Applying the formalism reviewed in this subsection, we can compute the central charge

and the extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically

AdS5 BPS black hole solutions (2.1.47)
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cL “
9πa2

gp1´ agqp1` 5agq
, (2.1.49)

TL “
1` 5ag

3ap1´ agqπ

d

a

ˆ

a`
2

g

˙

. (2.1.50)

The BPS black hole entropy in this case is then given by the Cardy formula

SBH “
π2

3
cLTL “

π2a
a

2a` a2g

g3{2p1´ agq2
, (2.1.51)

which is the same as the result from gravity (2.1.8) with a “ b. In fact, we can also apply

the formalism discussed in this subsection to the near-horizon metric in the gravitational

Cardy limit (2.1.30), which can be recast into the global coordinates

ds2
“

1

12g2

„

´p1` r̂2
q dt̂2 `

dr̂2

1` r̂2



´
2

g3ε
dθ2

´
4 sin2pθq ε

g3p1` cosp2θqq

„

1

ε
dφ̂´

g

4
?

3
r̂ dt̂

2

`
3 cos4pθq

g4

„

1

ε
dψ̂ `

2 sin2pθq

ε p1` cosp2θqq
dφ̂´

g sec2pθq

4
?

3
r̂ dt̂

2

. (2.1.52)

The corresponding central charge and the extremal Frolov-Thorne temperature are

cL “
3π

2g4ε
, TL “

2
?

3

πgε
. (2.1.53)

The black hole entropy can obtained from the Cardy formula

SBH “
π2

3
cLTL “

?
3π2

g5ε2
, (2.1.54)

which exactly matches the gravity result in the gravitational Cardy limit (2.1.19).

2.1.5 Comparison with Results from Boundary CFT

The asymptotically AdS5 BPS black hole entropy can also be obtained from the boundary

N “ 4 SYM by extremizing an entropy function [13–15] originally motivated in [39] and

more recently studied in [40]. One can first compute the free energy in the large-N limit

using the partition function via localization or the 4d superconformal index. The entropy
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function is then defined as the Legendre transform of the free energy in the large-N limit

Sp∆I , ωq “
N2

2

∆1∆2∆3

ω1ω2

`

3
ÿ

I“1

QI∆I `

2
ÿ

i“1

Jiωi ´ Λ

˜

ÿ

I

∆I ´
ÿ

i

ω ´ 2πi

¸

. (2.1.55)

In the Cardy-like limit (2.1.13)

ω „ ε , ∆I „ Op1q , (2.1.56)

we can read off from the entropy function (2.1.55)

S „
1

ε2
, J „

1

ε3
, QI „

1

ε2
, (2.1.57)

which have been summarized in Table 1.1.

The electric chargesQI and the angular momenta Ji are real, while the chemical potentials

∆I and the angular velocities ωi can be complex, and so can the entropy function S. By

requiring that the black hole entropy SBH be real after extremizing the entropy function S,

we obtain one more constraint on QI and Ji. More precisely, the asymptotically AdS5 black

hole entropy is given by [13–15]

SBH “ 2π

c

Q1Q2 `Q2Q3 `Q3Q1 ´
N2

2
pJ1 ` J2q , (2.1.58)

subject to the constraint

˜

Q1 `Q2 `Q3 `
N2

2

¸˜

Q1Q2 `Q2Q3 `Q3Q1 ´
N2

2
pJ1 ` J2q

¸

´

˜

Q1Q2Q3 `
N2

2
J1J2

¸

“ 0 , (2.1.59)

which is a consequence of the reality condition on the black hole entropy SBH .

For the AdS5 black hole solutions in [24], the electric charges are degenerate, i.e. Q1 “

Q2 “ Q3 “ Q. Hence, for this class of black hole solutions in the BPS limit, the black hole

entropy becomes

SBH “ 2π

c

3Q2 ´
N2

2
pJ1 ` J2q . (2.1.60)

This is exactly the same as the result from the horizon area (2.1.12) in the unit g “ 1, and

the one from the Cardy formula (2.1.51). The constraint (2.1.59) for this degenerate case
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becomes
ˆ

3Q`
N2

2

˙ˆ

3Q2
´
N2

2
pJ1 ` J2q

˙

“ Q3
`
N2

2
J1J2 , (2.1.61)

which is also consistent with the thermodynamic quantities from the gravity side (2.1.8).

2.2 Asymptotically AdS4 Black Holes

In this section, we consider the asymptotically AdS4 black holes and the corresponding

gravitational Cardy limit. Similar to the AdS5 case, we demonstrate that the AdS4 black hole

entropy can be computed in various ways as shown in Fig. 1.2, and the other thermodynamic

quantities scale correspondingly (see Table 1.1) in the gravitational Cardy limit.

2.2.1 AdS4 Black Hole Solution

The non-extremal rotating, electrically charged asymptotically AdS4 black hole solution with

gauge group Up1q ˆ Up1q in 4d N “ 4 gauged supergravity was constructed in [41]. The

solution is characterized by four parameters pa,m, δ1, δ2q. The metric, the scalars and the

gauge fields are given by

ds2
“ ´

∆r

W

ˆ

dt´
a sin2θ

Ξ
dφ

˙2

`W

ˆ

dr2

∆r

`
dθ2

∆θ

˙

`
∆θ sin2θ

W

„

a dt´
r1r2 ` a

2

Ξ
dφ

2

, (2.2.1)

eϕ1 “
r2

1 ` a
2 cos2θ

W
, χ1 “

apr2 ´ r1q cos θ

r2
1 ` a

2 cos2θ
,

A1 “
2
?

2m sinhpδ1q coshpδ1q r2

W

ˆ

dt´
a sin2θ

Ξ
dφ

˙

` α41 dt ,

A2 “
2
?

2m sinhpδ2q coshpδ2q r1

W

ˆ

dt´
a sin2θ

Ξ
dφ

˙

` α42 dt ,

(2.2.2)

where

ri ” r ` 2m sinh2
pδiq , pi “ 1, 2q

∆r ” r2
` a2

´ 2mr ` g2r1r2pr1r2 ` a
2
q ,

∆θ ” 1´ g2a2 cos2θ ,

W ” r1r2 ` a
2 cos2θ ,

Ξ ” 1´ a2g2 ,

(2.2.3)
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and g ” `´1
4 is the inverse of the AdS4 radius. Note that we have added pure gauge terms to

the two gauge fields where α41 and α42 are constant. The metric (2.2.1) can also be written

in the following equivalent expression, which is more convenient for later discussions,

ds2
“ ´

∆r∆θ

BΞ2
dt2 `B sin2θpdφ` f dtq2 `W

ˆ

dr2

∆r

`
dθ2

∆θ

˙

, (2.2.4)

with

B ”
pa2 ` r1r2q

2∆θ ´ a
2 sin2pθq∆r

WΞ2
,

f ”
aΞ p∆r ´∆θpa

2 ` r1r2qq

∆θpa2 ` r1r2q
2 ´ a2∆r sin2θ

.

(2.2.5)

The non-extremal asymptotically AdS4 black holes with four degenerate electric charges

(Q1 “ Q2, Q3 “ Q4) and one angular momentum J have been found in [42], which are

characterized by four parameters pa,m, δ1, δ2q. The BPS limit imposes a condition

e2δ1`2δ2 “ 1`
2

ag
. (2.2.6)

For the black hole solution to have a regular horizon, we impose an additional constraint

pmgq2 “
cosh2

pδ1 ` δ2q

eδ1`δ2 sinh3
pδ1 ` δ2q sinhp2δ1q sinhp2δ2q

. (2.2.7)

The two conditions (2.2.6) and (3.1.4) in [42] have typos, which have been corrected in

[43,44], see also [45]. With these constraints, there are only two independent parameters for

asymptotically AdS4 BPS black holes, which we choose to be pδ1, δ2q for convenience. In the

BPS limit, the position of the outer horizon is

r` “
2m sinhpδ1q sinhpδ2q

coshpδ1 ` δ2q
, (2.2.8)

which coincides with the inner horizon.

The physical quantities of non-extremal AdS4 black holes can also be solved as functions

of pa,m, δ1, δ2q. In particular, the gravitational angular velocity Ω and the temperature T

are given by

Ω “
ap1` g2r1r2q

r1r2 ` a2
, T “

∆1
r

4πpr1r2 ` a2q
. (2.2.9)

26



Moreover, the other thermodynamic quantities of asymptotically AdS4 black holes are [42]

S “
πpr1r2 ` a

2q

Ξ
,

J “
ma

2Ξ2
pcoshp2δ1q ` coshp2δ2qq ,

Q1 “ Q2 “
m

4Ξ
sinhp2δ1q ,

Q3 “ Q4 “
m

4Ξ
sinhp2δ2q .

(2.2.10)

2.2.2 Gravitational Cardy Limit

The Cardy-like limit for the 3d ABJM theory was defined in [46,47],

|ω| ! 1 , ∆I „ Op1q , pI “ 1, ¨ ¨ ¨ , 4q . (2.2.11)

Using the relations found in [44]

ω “ ´ lim
TÑ0

Ω´ Ω˚

T
, ∆I “ ´ lim

TÑ0

ΦI ´ Φ˚I
T

, (2.2.12)

with Ω˚ “ g and Φ˚I “ 1 denoting the BPS values of Ω and ΦI , we can find the gravitational

counterpart of the Cardy-like limit (2.2.11)

ˇ

ˇ

ˇ

ˇ

ˆ

BΩ

BT

˙

T“0

ˇ

ˇ

ˇ

ˇ

! 1 ,
BΦI

BT

ˇ

ˇ

ˇ

ˇ

T“0

„ Op1q . (2.2.13)

Hence, we obtain for the near-extremal AdS4 black holes

BΩ

BT

ˇ

ˇ

ˇ

ˇ

BPS

“ lim
TÑ0

Ω´ Ω˚
T

“ ´
πe

5
2
pδ1`δ2q pcothpδ1 ` δ2q ´ 2q

a

sinhp2δ1q sinhp2δ2q

pcothpδ1 ` δ2q ` 1q
a

sinhpδ1 ` δ2q coshpδ1 ´ δ2q
. (2.2.14)

This expression has several roots

δ1 “ 0 , δ2 “ 0 , δ1 ` δ2 “ arccothp2q . (2.2.15)

However, δ1 “ 0 and δ2 “ 0 are unphysical, because according to (2.2.8), δ1 “ 0 or δ2 “ 0

will cause r` Ñ 0. Hence, we conclude that the gravitational Cardy limit for asymptotically

AdS4 BPS black holes is

δ1 ` δ2 Ñ arccothp2q . (2.2.16)
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Equivalently, this can be written in terms of the other parameters as

ag Ñ 1. (2.2.17)

We introduce a small parameter ε to denote small deviations from this limit, i.e.,

δ1 ` δ2 “ arccothp2q ` ε . (2.2.18)

For this case ε is dimensionless. Imposing first the BPS constraint (2.2.6) and the regularity

condition (3.1.4) near the horizon, and then taking the gravitational Cardy limit (2.2.18),

we obtain the thermodynamic quantities (3.1.7) to the leading order in ε

S˚ “
π

3g2ε
`Op1q ,

J˚ “
cosh

`

2δ1 ´
1
2
logp3q

˘

9g2ε2
b

2 sinhp4δ1q ´ 5 sinh2
p2δ1q

`Opε´1
q ,

Q˚1 “ Q˚2 “
1

4gε
a

6 tanhpδ1q ` 6 cothpδ1q ´ 15
`Op1q ,

Q˚3 “ Q˚4 “

a

2 tanhpδ1q ` 2 cothpδ1q ´ 5

12
?

3 gε
`Op1q ,

(2.2.19)

which are consistent with [36,46] and the Cardy-like limit on the field theory side (2.2.11)

ω˚ „ ε , ∆I˚ „ Op1q . (2.2.20)

2.2.3 Black Hole Solution in the Near-Horizon + Gravitational

Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters

on the gravity side. In this subsection, we discuss how the near-horizon metric changes

when taking the gravitational Cardy limit. In Appendix A.1.2, we verify explicitly that the

resulting background is a solution of the 4d gauged supergravity equations of motion. In

the following, we implement the gravitational Cardy limit in the space of parameters, which

further simplifies the geometry.

For the asymptotically AdS4 black hole metric (2.2.4), we perform a near-horizon scaling

similar to the AdS5 case (4.1.37)

r Ñ r˚ ` λ rr , tÑ
rt

λ
, φÑ rφ´ g

“

cothpδ1 ` δ2q ´ 2
‰
rt

λ
. (2.2.21)
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Furthermore, we take the gravitational Cardy limit (2.2.18) and keep only the leading orders

in ε. The metric (2.2.4) finally becomes

ds2
“ ´

g2
`

9´ 18 e4δ1 ` e8δ1
˘

p3` cosp2θqq

3 p9´ 10 e4δ1 ` e8δ1q
rr2drt2 `

3 p3` cosp2θqq
`

e4δ1 ´ 1
˘ `

e4δ1 ´ 9
˘

16g2 p9´ 18e4δ1 ` e8δ1q

drr2

rr2

`
3` cosp2θq

2g2 sin2θ
dθ2

`
2 sin4θ

9g2 p3` cosp2θqq

„

drφ

ε
`

?
3g2 cosh

`

2 δ1 ´
1
2

logp3q
˘

a

sinhp2δ1q sinh plogp3q ´ 2δ1q
rr drt

2

`Opεq . (2.2.22)

Defining

τ ”
4g2 p9´ 5 coshp4 δ1q ` 4 sinhp4 δ1qq

2

3 p5´ 5 coshp4 δ1q ` 4 sinhp4 δ1qq
rt , (2.2.23)

we can rewrite the metric (2.2.22) as

ds2
“

3 p3` cosp2θqq
`

e4δ1 ´ 1
˘ `

e4δ1 ´ 9
˘

16g2 p9´ 18e4δ1 ` e8δ1q

„

´ rr2dτ 2
`
drr2

rr2



`
3` cosp2θq

2g2 sin2θ
dθ2

`
2 sin4θ

9g2 p3` cosp2θqq

„

drφ

ε
` V pδ1qrr dτ

2

`Opεq , (2.2.24)

where

V pδ1q ”
9 cosh

`

2 δ1 ´
1
2

logp3q
˘

p5´ 5 coshp4 δ1q ` 4 sinhp4 δ1qq

2
a

10´ 6 cosh p4 δ1 ´ logp3qq p9´ 5 coshp4 δ1q ` 4 sinhp4 δ1qq
. (2.2.25)

2.2.4 Black Hole Entropy from Cardy Formula

For the asymptotically AdS4 black holes discussed in this section, we apply the Cardy formula

to the near-horizon metric only after taking the gravitational Cardy limit. More explicitly, we

first rewrite the metric (2.2.24) from the Poincaré coordinates prr, τq to the global coordinates

pr̂, t̂q using the relations (2.1.44) - (2.1.46). Consequently, the near-horizon metric in the

gravitational Cardy limit (2.2.24) becomes

ds2
“

3 p3` cosp2θqq
`

e4δ1 ´ 1
˘ `

e4δ1 ´ 9
˘

16g2 p9´ 18e4δ1 ` e8δ1q

„

´ p1` r̂2
qdt̂2 `

dr̂2

1` r̂2



`
3` cosp2θq

2g2 sin2θ
dθ2

`
2 sin4θ

9g2 p3` cosp2θqq

„

dψ̂

ε
` V pδ1qr̂ dt̂

2

`Opεq , (2.2.26)

where t̂, r̂ and γ are defined in (2.1.44) and (2.1.46), while

ψ̂ ” φ̂` V pδ1qγε . (2.2.27)

29



Applying the same formalism in Subsection 2.1.4, we obtain the central charge and the

extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically AdS4

BPS black holes,

cL “
3
b

3
2
e2δ1p3` e4δ1q

a

5` 4 sinhp4 δ1q ´ 5 coshp4 δ1q

g2p18 e4 δ1 ´ e8 δ1 ´ 9q
,

TL “
9` 4 sinhp4 δ1q ´ 5 coshp4 δ1q

18πε sinhpδ1q coshpδ1q cosh
`

2 δ1 ´
1
2

logp3q
˘
a

2 tanhpδ1q ` 2 cothpδ1q ´ 5
.

(2.2.28)

Using the Cardy formula, we can compute the black hole entropy of the asymptotically AdS4

BPS black holes:

SBH “
π2

3
cLTL “

π

3g2ε
, (2.2.29)

which is the same as the black hole entropy in the gravitational Cardy limit (2.2.19) from

the gravity side.

2.2.5 Comparison with Results from Boundary CFT

The asymptotically AdS4 BPS black hole entropy can also be obtained from the boundary 3d

ABJM theory by extremizing an entropy function [46,47], which has also been studied in [40].

One can first compute the free energy in the large-N limit using the 3d superconformal index

or the partition function via localization. The entropy function is then defined as a Legendre

transform of the free energy in the large-N limit

Sp∆I , ωq “
2
?

2 i k
1
2N

3
2

3

?
∆1∆2∆3∆4

ω
´2ωJ´

ÿ

I

∆IQI´Λ

˜

ÿ

I

∆I ´ 2ω ` 2πi

¸

. (2.2.30)

In the Cardy-like limit (2.2.11)

ω „ ε , ∆I „ Op1q , (2.2.31)

we can read off from the entropy function (2.2.30)

S „
1

ε
, J „

1

ε2
, QI „

1

ε
, (2.2.32)

which have been summarized in Table 1.1.

Similar to the AdS5 case, for AdS4 the electric charges QI and the angular momentum

J are real, while the chemical potentials ∆I and the angular velocity ω can be complex,

and so can the entropy function S. By requiring that the black hole entropy SBH to be real
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after extremizing the entropy function S, we obtain one more constraint on QI and J . More

precisely, for the degenerate case with Q1 “ Q3, Q2 “ Q4 and one angular momentum J ,

the asymptotically AdS4 black hole entropy is given by [44,46,47]

SBH “
2π

3

d

9Q1Q2pQ1 `Q2q ´ 2kJN3

Q1 `Q2

, (2.2.33)

subject to the constraint

2kJ2N3
` 2kJN3

pQ1 `Q2q ´ 9Q1Q2pQ1 `Q2q
2
“ 0 , (2.2.34)

which is a consequence of the reality condition on the black hole entropy SBH .

If we identify the field theory parameters with the ones on the gravity side in the following

way [44,48]
1

G
“

2
?

2

3
g2k

1
2N

3
2 , QBH “

g

2
Q , JBH “ J , (2.2.35)

we can rewrite the black hole entropy (2.2.33) and the angular momentum as

SBH “
π

g2G

JBH
´

2
g
QBH,1 `

2
g
QBH,2

¯ , (2.2.36)

JBH “
1

2

ˆ

2

g
QBH,1 `

2

g
QBH,2

˙

˜

´1`

d

1` 16g4G2
2QBH,1

g

2QBH,2

g

¸

, (2.2.37)

which are consistent with both the thermodynamic quantities on the gravity side (3.1.7)

(2.2.19) and the black hole entropy in the gravitational Cardy limit from the Cardy formula

(2.2.29).

2.3 Asymptotically AdS7 Black Holes

In this section, we consider asymptotically AdS7 black holes and the corresponding gravi-

tational Cardy limit. Similar to the previous sections, we demonstrate that the AdS7 black

hole entropy can be computed in various ways as shown in Fig. 1.2, and the other thermo-

dynamic quantities scale correspondingly in gravitational Cardy limit. For completeness, we

discuss two asymptotically AdS7 black hole solutions in the literature: a special case with

all equal charges and all equal angular momenta in Subsection 2.3.1 and a more general case

with two equal charges and three independent angular momenta in Subsection 2.3.2.
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2.3.1 A Special Case

In this subsection, we consider the gravitational Cardy limit of a special class of non-extremal

asymptotically AdS7 black holes discussed in [49].

AdS7 Black Hole Solution

The solutions M7 ˆ S4 to 11d gauged supergravity, with M7 denoting an asymptotically

AdS7 black hole, have the isometry group SOp2, 6qˆSOp5q. Hence, this class of solutions has

three angular momenta from the Cartan of the maximal compact subgroup SOp6q Ă SOp2, 6q

and two electric charges from the Cartan of SOp5q. The most generic solution has not been

constructed in the literature so far. Instead, the solutions with two charges and three equal

angular momenta were found in [50], while the ones with two equal charges and three angular

momenta were found in [51]. As the intersection of these two classes, the solution with two

equal charges Q1 “ Q2 and three equal angular momenta J1 “ J2 “ J3 has been considered

in [49].

For this special solution, the metric of the asymptotically AdS7 black hole part is given

by

ds2
7 “ H

2
5

«

´
Y

f1Ξ2
´

dt2 `
Ξ ρ6

Y
dr2

`
f1

H2 Ξ2 ρ4

ˆ

σ ´
2f2

f1

dt

˙2

`
ρ2

Ξ
ds2

CP2

ff

, (2.3.1)

where

σ ” dχ`
1

2
l3 sin2ξ , (2.3.2)

ds2
CP2 “ dξ2

`
1

4
sin2ξ pl21 ` l

2
2q `

1

4
l23 sin2ξ cos2ξ , (2.3.3)

with pl1, l2, l3q denoting the left-invariant 1-forms of SUp2q, which can be explicitly chosen

to be [52]

l1 “ sinψ dθ ´ cosψsinθ dφ ,

l2 “ cosψ dθ ` sinψsinθ dφ ,

l3 “ ´pdψ ` cosθ dφq ,

(2.3.4)

0 ď θ ď π , 0 ď φ ď 2π , 0 ď ψ ď 4π . (2.3.5)

Moreover, the asymptotically AdS7 black hole solution also contains two 1-forms, one 3-form
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and two scalars, which are given by

A1
p1q “ A2

p1q “ Ap1q “
m sinhpδq coshpδq

ρ4 ΞH
pdt´ aσq `

α70

Ξ´
dt ,

Ap3q “
ma sinh2

pδq

ρ2Ξ Ξ´
σ ^ dσ ` α71 dt^ dθ ^ dψ ` α72 dt^ dξ ^ dφ` α73 dt^ dξ ^ dψ ,

X1 “ X2 “ H´1{5 ,

(2.3.6)

where we have added some pure gauge terms to the potentials, and

ρ2
” Ξ r2 ,

H ” 1`
2m sinh2

pδq

ρ4
,

f1 ” Ξ ρ6H2
´

“

2Ξ`ma sinh2
pδq

‰2

ρ4
` 2ma2

“

Ξ2
` ` cosh2

pδq p1´ Ξ2
`q
‰

,

f2 ” ´
g Ξ`ρ

6H2

2
`ma cosh2

pδq ,

Y ” g2ρ8H2
` Ξ ρ6

´ 2mρ2
“

a2g2 cosh2
pδq ` Ξ

‰

` 2ma2
“

Ξ2
` ` cosh2

pδq p1´ Ξ2
`q
‰

,

Ξ˘ ” 1˘ ag , Ξ ” 1´ a2g2 ,

(2.3.7)

with g “ `´1
7 denoting the inverse of the AdS7 radius. The thermodynamic quantities of the

black hole have the following expressions

T “
BrY

4πg ρ3
?

Ξf1

,

S “
π3ρ2

?
f1

4GNΞ3
,

Ω “ ´
1

g

ˆ

g `
2f2 Ξ´
f1

˙

,

Φ “
4m sinhpδq coshpδq

ρ4 ΞH

ˆ

Ξ´ ´
2af2Ξ´
f1

˙

,

E “
mπ2

32GNgΞ4

”

12pag ` 1q2 pagpag ` 2q ´ 1q ´ 4 cosh2
pδq

`

3a4g4
` 12a3g3

` 11a2g2
´ 8

˘

ı

,

J “ ´
maπ2

16GNΞ4

”

4agpag ` 1q2 ´ 4 cosh2
pδq

`

a3g3
` 2a2g2

` ag ´ 1
˘

ı

,

Q “
mπ2 sinhpδq coshpδq

4GNgΞ3
.

(2.3.8)
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The expression of the temperature T has three roots r˘ and r0, all of which coincide at the

extremality. As we can see, the solution depends only on three parameters pa,m, δq. As

shown in [49], the BPS condition and the absence of naked closed timelike curves (CTCs)

require that

e2δ
“ 1´

2

3ag
, m “

128 e2δp3 e2δ ´ 1q3

729 g4pe2δ ` 1q2pe2δ ´ 1q6
. (2.3.9)

Hence, there is only one independent parameter in the BPS limit, which we choose to be δ.

In addition, all three roots of T , i.e. r˘ and r0, coincide in the BPS limit, and its value is

r2
˚ “

16

3g2p3 e2δ ´ 5qpe2δ ` 1q
. (2.3.10)

The thermodynamic quantities in the BPS limit become

T˚ “ 0 ,

S˚ “
32π3

?
9 e2δ ´ 7

3
?

3GNg5p3 e2δ ´ 5q3 pe2δ ` 1q3{2
,

Ω˚ “ 1 ,

Φ˚ “ 2 ,

E˚ “
16π2p18 e6δ ´ 21 e4δ ` 7q

3GNg5p3 e2δ ´ 5q4pe2δ ` 1q2
,

J˚ “
16π2p9 e4δ ` 18 e2δ ´ 23q

9GNg5p3 e2δ ´ 5q4pe2δ ` 1q2
,

Q˚ “
8π2p3 e6δ ´ 5 e4δ ´ 3 e2δ ` 5q

GNg5p3 e2δ ´ 5q4pe2δ ` 1q2
.

(2.3.11)

Gravitational Cardy Limit

The Cardy-like limit for the 6d N “ p2, 0q theory was defined in [53], which for the special

solution with three equal angular momenta is

|ω| ! 1 , ∆ „ Op1q . (2.3.12)

Using the following relations found in [49]

ω “
1

T
pΩ´ Ω˚q , φ “

1

T
pΦ´ Φ˚q , (2.3.13)
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we obtain the corresponding limit as

ˇ

ˇ

ˇ

ˇ

ˆ

BΩ

BT

˙

T“0

ˇ

ˇ

ˇ

ˇ

! 1 ,
BΦ

BT

ˇ

ˇ

ˇ

ˇ

T“0

„ Op1q . (2.3.14)

Using the relation (2.3.13), we can express
`

BΩ
BT

˘

˚
in terms of the paramter δ. The explicit

form is not very elucidating, but we do find a root to the equation
`

BΩ
BT

˘

˚
“ 0, which is

δ˚ “
1

2
log

ˆ

5

3

˙

. (2.3.15)

Hence, the gravitational Cardy limit for the class of asymptotically AdS7 BPS black holes

(2.3.1) is

δ Ñ
1

2
log

ˆ

5

3

˙

. (2.3.16)

Note that this is equivalent to

ag Ñ ´1, (2.3.17)

as in the other black hole solutions. We can introduce a small parameter to denote the

deviation from this limit, i.e.,

δ “
1

2
log

ˆ

5

3

˙

` ε . (2.3.18)

For this case ε is dimensionless. Expanding in ε, we find the BPS thermodynamic quantities

(2.3.11) in the gravitational Cardy limit (2.3.18) to the leading order

T˚ “ 0 ,

S˚ “
π3

250GNg5ε3
`Opε´2

q ,

Ω˚ “ 1 ,

Φ˚ “ 2 ,

E˚ “
3π2

1250GNg5ε4
`Opε´3

q ,

J˚ “
π2

1250GNg5ε4
`Opε´3

q ,

Q˚ “
π2

500GNg5ε3
`Opε´2

q ,

(2.3.19)
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which are consistent with [36,53] and the Cardy-like limit on the field theory side (2.3.12)

ω˚ „ ε , ∆˚ „ Op1q . (2.3.20)

Black Hole Solution in the Near-Horizon + Gravitational Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters

on the gravity side. In this subsection, we discuss how the near-horizon metric changes

when taking the gravitational Cardy limit. In Appendix A.1.3, we verify explicitly that the

resulting background is a solution of the 7d gauged supergravity equations of motion. In

the following, we implement the gravitational Cardy limit in the space of parameter which

further simplifies the geometry.

We can apply the following scaling near the horizon r˚ (2.3.10) to the BPS AdS7 black

hole metric (2.3.1)

r Ñ r˚ ` λ rr , tÑ
rt

λ
, χÑ rχ´

6g sinhpδq

coshpδq ` 2sinhpδq

rt

λ
, (2.3.21)

with λ Ñ 0. In addition, taking the gravitational Cardy limit (2.3.18), we obtain the near-

horizon metric to the leading order in ε

ds2
“ ´10 g2 22{5 ε rr2 drt2 `

1

16 g2 23{5

drr2

rr2

`
22{5

25 g2ε2

ˆ

drχ`
1

2
l3 sin2ξ ´ 5

?
5 g2ε3{2 rr drt

˙2

`
22{5

5g2ε
ds2

CP2 . (2.3.22)

Defining

τ ” 8
?

5 g2
?
εrt , (2.3.23)

we can rewrite the near-horizon metric in the gravitational Cardy limit (2.3.22) as follows

ds2
“

1

16 g2 23{5

„

´rr2 dτ 2
`
drr2

rr2



`
22{5

25 g2ε2

ˆ

drχ`
1

2
l3 sin2ξ ´

5ε

8
rr dτ

˙2

`
22{5

5g2ε
ds2

CP2 . (2.3.24)

Black Hole Entropy from Cardy Formula

For the asymptotically AdS7 black holes discussed in this section, we apply the Cardy formula

to the near-horizon metric only after taking the gravitational Cardy limit. More explicitly, we

first rewrite the metric (2.3.24) from the Poincaré coordinates prr, τq to the global coordinates

pr̂, t̂q using the relations (2.1.44) - (2.1.46). Consequently, the near-horizon metric in the
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gravitational Cardy limit (2.3.24) becomes

ds2
“

1

16 g2 23{5

„

´p1` r̂2
q dt̂2`

dr̂2

1` r̂2



`
22{5

25 g2ε2

ˆ

dχ̂`
1

2
l3 sin2ξ ´

5ε

8
r̂ dt̂

˙2

`
22{5

5g2ε
ds2

CP2 ,

(2.3.25)

where t̂, r̂ and γ are defined in (2.1.44) and (2.1.46), while

χ̂ ” rχ´
5ε

8
γ . (2.3.26)

Applying the same formalism in Subsection 2.1.4, we obtain the central charge and the

extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically AdS7

BPS black holes as follows

cL “
3π2

200 g5ε2
, TL “

4

5πε
. (2.3.27)

Using the Cardy formula, we can compute the black hole entropy of the asymptotically AdS7

BPS black holes

SBH “
π2

3
cLTL “

π3

250 g5ε3
, (2.3.28)

which is the same as the black hole entropy in the gravitational Cardy limit (2.3.19) from

the gravity side in the unit GN “ 1.

Comparison with Results from Boundary CFT

The asymptotically AdS7 BPS black hole entropy can also be obtained from the boundary

6d p2, 0q theory by extremizing an entropy function [14, 49, 53] originally motivated in [54]

and more recently studied in [40]. We can first compute the free energy in the large-N limit

using the background field method on S5, the partition function via localization or the 6d

superconformal index. The entropy function is then defined as a Legendre transform of the

free energy in the large-N limit

Sp∆I , ωiq “ ´
N3

24

∆2
1∆2

2

ω1ω2ω3

`

2
ÿ

I“1

QI∆I `

3
ÿ

i“1

Jiωi ´ Λ

˜

2
ÿ

I“1

∆I ´

3
ÿ

i“1

ωi ´ 2πi

¸

. (2.3.29)

In the Cardy-like limit (2.3.12)

ω „ ε , ∆I „ Op1q , (2.3.30)
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we can read off from the entropy function (2.3.29)

S „
1

ε3
, J „

1

ε4
, QI „

1

ε3
, (2.3.31)

which have been summarized in Table 1.1.

Similar to AdS4,5, for AdS7 the electric charges QI and the angular momenta Ji are real,

while the chemical potentials ∆I and the angular velocities ωi can be complex, and so can the

entropy function S. By requiring that the black hole entropy SBH to be real after extremizing

the entropy function S, we obtain one more constraint on QI and Ji. More precisely, the

most general case with two charges pQ1, Q2q and three angular momenta pJ1, J2, J3q was

discussed in [14,53], while the degenerate case with Q1 “ Q2 and J1 “ J2 “ J3 was discussed

in [49]. For the most general case, the asymptotically AdS7 black hole entropy is [14,53]

SBH “ 2π

d

3pQ2
1Q2 `Q1Q2

2q ´N
3pJ1J2 ` J2J3 ` J3J1q

3pQ1 `Q2q ´N3
, (2.3.32)

subject to the constraint

3pQ2
1Q2 `Q1Q

2
2q ´N

3pJ1J2 ` J2J3 ` J3J1q

3pQ1 `Q2q ´N3

“

„

N3

3
pJ1 ` J2 ` J3q `

Q2
1 `Q

2
2

2
` 2Q1Q2



ˆ

»

—

—

–

1´

g

f

f

f

e

1´
2
3
N3J1J2J3 `Q2

1Q
2
2

´

N3

3
pJ1 ` J2 ` J3q `

Q2
1`Q

2
2

2
` 2Q1Q2

¯2

fi

ffi

ffi

fl

, (2.3.33)

which is a consequence of the reality condition on the black hole entropy SBH .

We apply the general result to the special case Q1 “ Q2 “ Q and J1 “ J2 “ J3 “ J ,

SBH “ 2π

d

6Q3 ´ 3N3J2

6Q´N3
, (2.3.34)

with the constraint

6Q3 ´ 3N3J2

6Q´N3
“
`

N3J ` 3Q2
˘

¨

»

–1´

d

1´
2
3
N3J3 `Q4

N3J ` 3Q2

fi

fl , (2.3.35)

which are consistent with both the thermodynamic quantities on the gravity side (2.3.11)

(2.3.19) and the black hole entropy in the gravitational Cardy limit from the Cardy formula
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(2.3.28) under the AdS7/CFT6 dictionary of parameters [14,53]

GN “
3π2

16 g5N3
. (2.3.36)

2.3.2 More General Case

In the previous section, we have discussed a special solution of asymptotically AdS7 black

holes with two equal charges Q1 “ Q2 and three equal angular momenta J1 “ J2 “ J3. In

this subsection, we consider a more general solution with two equal charges Q1 “ Q2 and

three independent angular momenta pJ1, J2, J3q, which was first introduced in [51].

AdS7 Black Hole Solution

The metric for this class of asymptotically AdS7 black holes is

ds2
“ H2{5

«

pr2 ` y2qpr2 ` z2q

R
dr2

`
pr2 ` y2qpy2 ´ z2q

Y
dy2

`
pr2 ` z2qpz2 ´ y2q

Z
dz2

´
R

H2pr2 ` y2qpr2 ` z2q
A2

`
Y

pr2 ` y2qpy2 ´ z2q

ˆ

dt1 ` pz2
´ r2

qdψ1 ´ r
2z2dψ2 ´

q

Hpr2 ` y2qpr2 ` z2q
A
˙2

`
Z

pr2 ` z2qpz2 ´ y2q

ˆ

dt1 ` py2
´ r2

qdψ1 ´ r
2y2dψ2 ´

q

Hpr2 ` y2qpr2 ` z2q
A
˙2

`
a2

1 a
2
2 a

2
3

r2y2z2

˜

dt1 ` py2
` z2

´ r2
qdψ1 ` py

2z2
´ r2y2

´ r2z2
qdψ2 ´ r

2y2z2dψ3

´
q

Hpr2 ` y2qpr2 ` z2q

ˆ

1`
gy2z2

a1a2a3

˙

A

¸2ff

, (2.3.37)
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while the 1-form, the 2-form, the 3-form and the scalar are

Ap1q “
2m sinhpδq coshpδq

Hpr2 ` y2qpr2 ` z2q
A ,

Ap2q “
q

Hpr2 ` y2qpr2 ` z2q
A^

„

dt1 `
ÿ

i

a2
i pg

2dt1 ` dψ1 `
ÿ

iăj

a2
i a

2
jpg

2dψ1 ` dψ2q ` a
2
1 a

2
2 a

2
3pg

2dψ2 ` dψ3q

´ g2
py2
` z2

qdt1 ´ g2y2z2dψ1 ` a1 a2 a3

´

dψ1 ` py
2
` z2

qdψ2 ` y
2z2dψ3

¯



,

Ap3q “ qa1a2a3

”

dψ1 ` py
2
` z2

qdψ2 ` y
2z2dψ3

ı

^

˜

1

pr2 ` y2qz
dz ^ pdψ1 ` y

2dψ2q `
1

pr2 ` z2qy
dy ^ pdψ1 ` z

2dψ2q

¸

´ qgA^

˜

z

r2 ` y2
dz ^ pdψ1 ` y

2dψ2q `
y

r2 ` z2
dy ^ pdψ1 ` z

2dψ2q

¸

,

X “ H´1{5 ,

(2.3.38)

where

R ”
1` g2r2

r2

3
ź

i“1

pr2
` a2

i q ` qg
2
p2r2

` a2
1 ` a

2
2 ` a

2
3q ´

2qga1a2a3

r2
`
q2g2

r2
´ 2m,

Y ”
1´ g2y2

y2

3
ź

i“1

pa2
i ´ y

2
q ,

Z ”
1´ g2z2

z2

3
ź

i“1

pa2
i ´ z

2
q ,

A ” dt1 ` py2
` z2

qdψ1 ` y
2z2dψ2 ,

H ” 1`
q

pr2 ` y2qpr2 ` z2q
,

q ” 2m sinh2
pδq .

(2.3.39)

It can be shown that after the change of coordinates

t “ t1 ` pa2
1 ` a

2
2 ` a

2
3qψ1 ` pa

2
1 a

2
2 ` a

2
2 a

2
3 ` a

2
3 a

2
1qψ2 ` a

2
1 a

2
2 a

2
3 ψ3 ,

φi
ai
“ g2t1 ` ψ1 `

ÿ

j‰i

a2
jpg

2ψ1 ` ψ2q `
ź

j‰i

a2
jpg

2ψ2 ` ψ3q ,
(2.3.40)
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the metric (2.3.37) can be written in an equivalent form

ds2
“ H2{5

«

pr2 ` y2qpr2 ` z2q

R
dr2

`
pr2 ` y2qpy2 ´ z2q

Y
dy2

`
pr2 ` z2qpz2 ´ y2q

Z
dz2

´
r2y2z2RY Z

H2
ś

iăjpa
2
i ´ a

2
jq

2B1B2B3

dt2 `B3pdφ3 ` v32dφ2 ` v31dφ1 ` v30dtq
2

`B2pdφ2 ` v21dφ1 ` v20dtq
2
`B1pdφ1 ` v10dtq

2

ff

, (2.3.41)

where B1, B2, B3, v10, v20, v21, v30, v31 and v32 can be determined by comparing (2.3.41) with

(2.3.37). We can see that in the gravitational Cardy limit B1 and B2 are subleading compared

to B3. Hence, qualitatively the term B3pdφ3 ` v32dφ2 ` v31dφ1 ` v30dtq
2 in the metric forms

the only Up1q circle fibered over AdS2 in the gravitational Cardy limit of the near-horizon

solution, similar to the other cases in this chapter. However, because the explicit expressions

of these coefficients are lengthy and not very illuminating, we do not list them here.

The thermodynamic quantities can be expressed as

E “
π2

8Ξ1Ξ2Ξ3

«

ÿ

i

2m

Ξi

´m`
5q

2
`
q

2

ÿ

i

˜

ÿ

j‰i

2Ξj

Ξi

´ Ξi ´
2p1` 2a1a2a3g

3q

Ξi

¸ff

,

T “
p1` g2r2

`qr
2
`

ř

i

ś

j‰ipr
2
` ` a

2
jq ´

ś

ipr
2
` ` a

2
i q ` 2qpg2r4

` ` ga1a2a3q ´ q
2g2

2πr` rpr2
` ` a

2
1qpr

2
` ` a

2
2qpr

2
` ` a

2
3q ` qpr

2
` ´ a1a2a3gqs

,

S “
π3

“

pr2
` ` a

2
1qpr

2
` ` a

2
2qpr

2
` ` a

2
3q ` qpr

2
` ´ a1a2a3gq

‰

4Ξ1Ξ2Ξ3r`
,

Ωi “

ai

”

p1` g2r2
`q

ś

j‰ipr
2
` ` a

2
jq ` qg

2r2
`

ı

´ q
ś

j‰i ajg

pr2
` ` a

2
1qpr

2
` ` a

2
2qpr

2
` ` a

2
3q ` qpr

2
` ´ a1a2a3gq

,

Ji “
π2m

”

ai cosh2
pδq ´ g sinh2

pδq
´

ś

j‰i aj ` ai
ř

j‰i a
2
jg ` a1a2a3aig

2
¯ı

4Ξ1Ξ2Ξ3Ξi

,

Φ “
2m sinhpδq coshpδq r2

`

pr2
` ` a

2
1qpr

2
` ` a

2
2qpr

2
` ` a

2
3q ` qpr

2
` ´ a1a2a3gq

,

Q “
π2m sinhpδq coshpδq

Ξ1Ξ2Ξ3

,

(2.3.42)

where r` denotes the position of the outer horizon, and

Ξi ” 1´ a2
i g

2 , Ξi˘ ” 1˘ aig , pi “ 1, 2, 3q . (2.3.43)

This class of asymptotically AdS7 black hole solutions is characterized by five parameters
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pm, δ, a1, a2, a3q. The BPS limit for this class of solutions is

e2δ
“ 1´

2

pa1 ` a2 ` a3qg
, (2.3.44)

while the naked closed timelike curves (CTCs) can be avoided by requiring an additional

condition

q “ ´
Ξ1´Ξ2´Ξ3´pa1 ` a2qpa2 ` a3qpa3 ` a1q

p1´ a1g ´ a2g ´ a3gq2g
. (2.3.45)

Hence, only three parameters are independent, which we can choose to be pa1, a2, a3q. In

the BPS limit, the thermodynamic quantities can be simplified as follows

E “ ´
π2

ś

kălpak ` alq
”

ř

i Ξi `
ř

iăj ΞiΞj ´ p1` a1a2a3g
3qp2`

ř

i aig `
ř

iăj aiajg
2q

ı

8 Ξ2
1`Ξ2

2`Ξ2
3`p1´ a1g ´ a2g ´ a3gq2g

,

T “ 0 , Ωi “ ´g , Φ “ 1 ,

S “ ´
π3pa1 ` a2qpa2 ` a3qpa3 ` a1qpa1a2 ` a2a3 ` a3a1 ´ a1a2a3gq

4Ξ1`Ξ2`Ξ3`p1´ a1g ´ a2g ´ a3gq2gr0

,

Ji “ ´
π2pa1 ` a2qpa2 ` a3qpa3 ` a1q

”

ai ´ pa
2
i ` 2ai

ř

j‰i aj `
ś

j‰i ajqg ` a1a2a3g
2
ı

8Ξ1`Ξ2`Ξ3`Ξi`p1´ a1g ´ a2g ´ a3gq2g
,

Q “ ´
π2pa1 ` a2qpa2 ` a3qpa3 ` a1q

2Ξ1`Ξ2`Ξ3`p1´ a1g ´ a2g ´ a3gqg
,

(2.3.46)

where

r0 “

c

a1a2 ` a2a3 ` a3a1 ´ a1a2a3g

1´ a1g ´ a2g ´ a3g
. (2.3.47)

Gravitational Cardy Limit

Similar to Subsection 2.3.1, for the more general AdS7 solution with three independent

angular momenta, we can translate the Cardy limit for the 6d N “ p2, 0q theory defined

in [53]

|ωi| ! 1 , ∆ „ Op1q , pi “ 1, 2, 3q (2.3.48)

into the gravitational Cardy-like limit for this class of asymptotically AdS7 black holes

ˇ

ˇ

ˇ

ˇ

ˆ

BΩi

BT

˙

T“0

ˇ

ˇ

ˇ

ˇ

! 1 ,
BΦ

BT

ˇ

ˇ

ˇ

ˇ

T“0

„ Op1q . (2.3.49)
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A choice of the parameters pa1, a2, a3q that satisfies the limit (2.3.49) is

a1 “ a2 “ a3 “ ´
1

g
. (2.3.50)

As in the other black hole solutions, this can be summarized as

aig Ñ ´1. (2.3.51)

We can introduce a small parameter ε to denote the deviation from this limit, i.e.,

ai “ ´
1

g
` ε , pi “ 1, 2, 3q , (2.3.52)

or in a more refined way

a1 “ ´
1

g
` ε , a2 “ ´

1

g
` ε` η1 , a3 “ ´

1

g
` ε` η2 , pη1, η2 ! εq . (2.3.53)

Expanding in ε, after expanding in η1 and η2, we find the BPS thermodynamic quantities

(2.3.46) in the gravitational Cardy limit (2.3.52) to the leading order

S˚ “
π3

2g8ε3
`Opε´2

q ,

J˚i “ ´
π2

2g9ε4
`Opε´3

q ,

Q˚ “
π2

g7ε3
`Opε´2

q ,

(2.3.54)

which are consistent with [36,53] and the Cardy-like limit on the field theory side (2.3.48)

ωi˚ „ ε , ∆˚ „ Op1q . (2.3.55)

Black Hole Solution in the Near-Horizon Limit

In this subsection, we consider the near-horizon limit of the asymptotically AdS7 black hole

metric. As mentioned in Subsection 2.3.2, we should in principle take the Cardy limit of the

near horizon solution (2.3.41). Applying the refined gravitational Cardy limit (2.3.53), we

find that B1 and B2 are subleading compared to B3. Therefore, in the near-horizon limit

we obtain an AdS3 geometry, just like the other cases. However, in practice the expressions

of the coefficients are lengthy, so we consider an alternative near-horizon metric discussed
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in [18]. That is, the metric (2.3.37) can be expressed in an equivalent form

ds2
“ H2{5

«

pr2 ` y2qpr2 ` z2q

R
dr2

`
pr2 ` y2qpy2 ´ z2q

Y
dy2

`
pr2 ` z2qpz2 ´ y2q

Z
dz2

`
Y

pr2 ` y2qpy2 ´ z2q

˜

dt´
3
ÿ

i“1

pr2 ` a2
i qγi

a2
i ´ y

2

dφ̂i
δi
´

qA
Hpr2 ` y2qpr2 ` z2q

¸2

`
Z

pr2 ` z2qpz2 ´ y2q

˜

dt´
3
ÿ

i“1

pr2 ` a2
i qγi

a2
i ´ z

2

dφ̂i
δi
´

qA
Hpr2 ` y2qpr2 ` z2q

¸2

`
a2

1 a
2
2 a

2
3

r2y2z2

˜

dt´
3
ÿ

i“1

pr2 ` a2
i qγi

a2
i

dφ̂i
δi
´

qA
Hpr2 ` y2qpr2 ` z2q

ˆ

1`
gy2z2

a1a2a3

˙

¸2ff

,

(2.3.56)

where we have used the changes of coordinates (2.3.40) and

φ̂i ” φi ´ aig
2t , pi “ 1, 2, 3q ,

γi ” a2
i pa

2
i ´ y

2
qpa2

i ´ z
2
q ,

δi ” aip1´ a
2
i g

2
q
ź

j‰i

pa2
i ´ a

2
jq .

(2.3.57)

Applying the following scaling to the new metric (2.3.56)

r Ñ r0p1` λρq , φÑ rφi `
Ω0
i

2πT 10H r0λ
rt , tÑ

rt

2πT 10H r0λ
, (2.3.58)
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which is slightly different from the original Bardeen-Horowitz scaling [37], we obtain the

near-horizon geometry in the limit λÑ 0

ds2
“ H

2{5
0

«

U0

V

ˆ

´ρ2drt2 `
dρ2

ρ2

˙

`
pr2

0 ` y
2qpy2 ´ z2q

Y
dy2

`
pr2

0 ` z
2qpz2 ´ y2q

Z
dz2

`
Y

pr2
0 ` y

2qpy2 ´ z2q

˜

2r0pr
2
0 ` z

2q

V
ρ drt`

3
ÿ

i“1

pr2
0 ` a

2
i qγi

a2
i ´ y

2

drφi
δi
`

q rA

H0U0

¸2

`
Z

pr2
0 ` z

2qpz2 ´ y2q

˜

2r0pr
2
0 ` y

2q

V
ρ drt`

3
ÿ

i“1

pr2
0 ` a

2
i qγi

a2
i ´ z

2

drφi
δi
`

q rA

H0U0

¸2

`
a2

1a
2
2a

2
3

r2
0y

2z2

˜

2

V r0

ˆ

U0 ´
qgy2z2

a1a2a3

˙

ρ drt`
3
ÿ

i“1

pr2
0 ` a

2
i qγi

a2
i

drφi
δi

`
q rA

H0U0

ˆ

1`
gy2z2

a1a2a3

˙

¸2ff

, (2.3.59)

where

U ” pr2
` y2

qpr2
` z2

q ,

γi ” a2
i pa

2
i ´ y

2
qpa2

i ´ z
2
q ,

δi ” Ξiai
ź

j‰i

pa2
i ´ a

2
jq ,

U0 ” U
ˇ

ˇ

ˇ

r“r0
“ pr2

0 ` y
2
qpr2

0 ` z
2
q ,

H0 ” H
ˇ

ˇ

ˇ

r“r0
“ 1`

q

pr2
0 ` y

2qpr2
0 ` z

2q
,

V ” 6r2
0 `

3
ÿ

i“1

a2
i `

3pa1a2a3 ´ qgq
2

r4
0

` g2

«

15r4
0 ` 6r2

0

3
ÿ

i“1

a2
i `

ÿ

1ďiăjď3

a2
i a

2
j ` 2q

ff

,

rA ” ´
2r0p2r

2
0 ` y

2 ` z2q

V
ρ drt´

3
ÿ

i“1

γi
drφi
δi

.

(2.3.60)

Taking the refined gravitational Cardy limit (2.3.53), we can see that two of the three Up1q

circles in the near-horizon metric (2.3.59) become degenerate. However, the remaining two

Up1q circles are still of the same order in the gravitational Cardy limit. This is expected,

because we should take the gravitational Cardy limit of the near-horizon of the metric (2.3.41)

instead of (2.3.56), in order to have only one Up1q circle fibered over AdS2 in the near-

horizon plus gravitational Cardy limit. Nevertheless, the gravitational Cardy limit reduces

some redundant Up1q circles, while keeping the essential information for the near-horizon

Virasoro algebra.
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Black Hole Entropy from Cardy Formula

We can apply the formalism described in Subsection 2.1.4. The central charge and the

extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically AdS7

BPS black holes (2.3.59) were obtained in [18]. In the refined gravitational Cardy limit

(2.3.53), the results are

cL “
48π2

g9ε2V
, TL “

gV

32πε
. (2.3.61)

Hence, the black hole entropy from the Cardy formula in the gravitational Cardy limit is

SBH “
π2

3
cLTL “

π3

2g8ε3
, (2.3.62)

which is exactly the same as the result from the gravity solution (2.3.54).

Comparison with Results from Boundary CFT

As we discussed in Subsection 2.3.1, for the asymptotically AdS7 black holes with general

charges pQ1, Q2q and angular momenta pJ1, J2, J3q, the entropy can be obtained from the

boundary 6d p2, 0q theory [14,53], and the results are summarized in (2.3.32) subject to the

constraint (2.3.33).

We have discussed a degenerate case in Subsection 2.3.1 with Q1 “ Q2 and J1 “ J2 “ J3.

In this subsection, we have seen another degenerate case with Q1 “ Q2 “ Q and pJ1, J2, J3q,

which consequently has the black hole entropy

SBH “ 2π

d

6Q3 ´N3pJ1J2 ` J2J3 ` J3J1q

6Q´N3
, (2.3.63)

subject to the constraint

6Q3 ´N3pJ1J2 ` J2J3 ` J3J1q

6Q´N3

“

„

N3

3
pJ1 ` J2 ` J3q ` 3Q2



¨

»

–1´

g

f

f

e1´
2
3
N3J1J2J3 `Q4

`

N3

3
pJ1 ` J2 ` J3q ` 3Q2

˘2

fi

fl , (2.3.64)

which are consistent with both the thermodynamic quantities on the gravity side (2.3.46)

(2.3.54) and the black hole entropy in the gravitational Cardy limit from the Cardy formula
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(2.3.62) under the AdS7/CFT6 dictionary of parameters [14,53]

GN “
3π2

16 g5N3
. (2.3.65)

2.4 Asymptotically AdS6 Black Holes

In this section, we consider the asymptotically AdS6 black holes and the corresponding grav-

itational Cardy limit. Similar to the other cases, we demonstrate that the AdS6 black hole

entropy can be computed in various ways as shown in Fig. 1.2, and the other thermodynamic

quantities scale correspondingly in the gravitational Cardy limit.

2.4.1 AdS6 Black Hole Solution

In this subsection, we discuss the near-horizon plus Cardy limit of the non-extremal asymp-

totically AdS6 black holes constructed in [55], which are solutions to 6d N “ 4 SUp2q gauged

supergravity.

The bosonic part of this class of solution is given by the metric, a scalar, a 1-form potential

and a 2-form potential. The metric is

ds2
“ H1{2

«

pr2 ` y2qpr2 ` z2q

R
dr2

`
pr2 ` y2qpy2 ´ z2q

Y
dy2

`
pr2 ` z2qpz2 ´ y2q

Z
dz2

´
R

H2pr2 ` y2qpr2 ` z2q
A2

`
Y

pr2 ` y2qpy2 ´ z2q

ˆ

dt1 ` pz2
´ r2

qdψ1 ´ r
2z2dψ2 ´

qrA
Hpr2 ` y2qpr2 ` z2q

˙2

`
Z

pr2 ` z2qpz2 ´ y2q

ˆ

dt1 ` py2
´ r2

qdψ1 ´ r
2y2dψ2 ´

qrA
Hpr2 ` y2qpr2 ` z2q

˙2
ff

,

(2.4.1)
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while the 1-form potential, the 2-form potential and the scalar are

Ap1q “
2mr sinhpδq coshpδq

Hpr2 ` y2qpr2 ` z2q
A` α6

dt
,

Ap2q “
q

Hpr2 ` y2q2pr2 ` z2q2

«

´
yz p2rp2r2 ` y2 ` z2q ` qq

H
dr ^A

` z
`

pr2
` z2

qpr2
´ y2

q ` qr
˘

dy

^

ˆ

dt1 ` pz2
´ r2

qdψ1 ´ r
2z2dψ2 ´

qrA
Hpr2 ` y2qpr2 ` z2q

˙

` y
`

pr2
` y2

qpr2
´ z2

q ` qr
˘

dz

^

ˆ

dt1 ` py2
´ r2

qdψ1 ´ r
2y2dψ2 ´

qrA
Hpr2 ` y2qpr2 ` z2q

˙

ff

,

X “ H´1{4 ,

(2.4.2)

where

t1 ”
t

ΞaΞb

´
a4φ1

Ξa apa2 ´ b2q
´

b4φ2

Ξb bpb2 ´ a2q
,

ψ1 ” ´
g2t

ΞaΞb

`
a2φ1

Ξa apa2 ´ b2q
`

b2φ2

Ξb bpb2 ´ a2q
,

ψ2 ”
g4t

ΞaΞb

´
φ1

Ξa apa2 ´ b2q
´

φ2

Ξb bpb2 ´ a2q
,

(2.4.3)

and

R ” pr2
` a2

qpr2
` b2

q ` g2
“

rpr2
` a2

q ` q
‰ “

rpr2
` b2

q ` q
‰

´ 2mr ,

Y ” ´p1´ g2y2
qpa2

´ y2
qpb2

´ y2
q ,

Z ” ´p1´ g2z2
qpa2

´ z2
qpb2

´ z2
q ,

H ” 1`
qr

pr2 ` y2qpr2 ` z2q
,

A ” dt1 ` py2
` z2

qdψ1 ` y
2z2dψ2 ,

q ” 2m sinh2
pδq , Ξa ” 1´ a2g2 , Ξb ” 1´ b2g2 .

(2.4.4)

Note that we have added a pure gauge term to the 1-form potential. It was shown in [55]
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that the metric (2.4.1) can be written in an equivalent form

ds2
“ H1{2

«

pr2 ` y2qpr2 ` z2q

R
dr2

`
pr2 ` y2qpy2 ´ z2q

Y
dy2

`
pr2 ` z2qpz2 ´ y2q

Z
dz2

`
RY Z

H2Ξ2
a Ξ2

b a
2b2pa2 ´ b2q2B1B2

dt2 `B2pdφ2 ` v21 dφ1 ` v20 dtq
2

`B1pdφ1 ` v10dtq
2

ff

, (2.4.5)

where B1, B2, v10, v20 and v21 can be determined by comparing (2.4.5) with (2.4.1). Because

the explicit expressions of these coefficients are lengthy and not very illuminating, we do not

list them here. Moreover, we notice a sign error in [55] for the term „ dt2 in (2.4.5).

The thermodynamic quantities can be expressed as

E “
π

3ΞaΞb

„

2m

ˆ

1

Ξa

`
1

Ξb

˙

` q

ˆ

1`
Ξa

Ξb

`
Ξb

Ξa

˙

,

S “
2π2

“

pr2
` ` a

2qpr2
` ` b

2q ` qr`
‰

3 Ξa Ξb

,

T “
2r2
`p1` g

2r2
`qp2r

2
` ` a

2 ` b2q ´ p1´ g2r2
`qpr

2
` ` a

2qpr2
` ` b

2q ` 4qg2r3
` ´ q

2g2

4πr` rpr2
` ` a

2qpr2
` ` b

2q ` qr`s
,

J1 “
2πmap1` Ξb sinh2

pδqq

3 Ξ2
a Ξb

, J2 “
2πmbp1` Ξa sinh2

pδqq

3 Ξ2
b Ξa

,

Ω1 “
a
“

p1` g2r2
`qpr

2
` ` b

2q ` qg2r`
‰

pr2
` ` a

2qpr2
` ` b

2q ` qr`
, Ω2 “

b
“

p1` g2r2
`qpr

2
` ` a

2q ` qg2r`
‰

pr2
` ` a

2qpr2
` ` b

2q ` qr`
,

Q “
2πm sinhpδq coshpδq

ΞaΞb

, Φ “
2mr` sinhpδq coshpδq

pr2
` ` a

2qpr2
` ` b

2q ` qr`
.

(2.4.6)

This class of asymptotically AdS6 black hole solutions is characterized by four parameters

pm, δ, a, bq. The BPS limit can be obtained by imposing the following condition

e2δ
“ 1`

2

pa` bqg
. (2.4.7)

The absence of the naked closed timelike curves (CTCs) for these supersymmetric black

holes requires an additional condition

q “
Ξa`Ξb`pa` bqr`
p1` ag ` bgqg

, (2.4.8)
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where in the BPS limit

r` ”

d

ab

1` ag ` bg
, Ξa` ” 1` ag , Ξb` ” 1` bg . (2.4.9)

2.4.2 Gravitational Cardy Limit

The Cardy-like limit for the 5d SCFT was defined in [56]

|ωi| ! 1 , ∆ „ Op1q , pi “ 1, 2q . (2.4.10)

Using the following relations [44]

ωi “ ´ lim
TÑ0

Ωi ´ Ω˚i
T

, ∆ “ ´ lim
TÑ0

Φ´ Φ˚

T
, (2.4.11)

with Ω˚i “ g and Φ˚ “ 1 denoting the BPS values of Ωi and Φ, we can find the gravitational

counterpart of the Cardy-like limit (2.4.10)

ˇ

ˇ

ˇ

ˇ

ˆ

BΩi

BT

˙

T“0

ˇ

ˇ

ˇ

ˇ

! 1 ,
BΦ

BT

ˇ

ˇ

ˇ

ˇ

T“0

„ Op1q . (2.4.12)

The equations
`

BΩi
BT

˘

˚
“ 0 have the roots

a “
1

g
and b “

1

g
. (2.4.13)

Hence, the gravitational Cardy limit for the class of asymptotically AdS6 black holes (2.4.1)

is

aÑ
1

g
and bÑ

1

g
. (2.4.14)

Similar to the black hole solutions in the previous sections, we have

aig Ñ 1, (2.4.15)

where ai “ ta, bu. We can introduce small parameters to denote the deviations from this

limit, i.e.,

a “
1

g
` ε , b “

1

g
` ε` η , with 0 ‰ η ! ε . (2.4.16)

Expanding in ε after expanding in η, we find the thermodynamic quantities (2.4.6) in the
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BPS and gravitational Cardy limit (2.4.16) to the leading order

S˚ “
4π2

9g6ε2
`Opε´1

q ,

J˚1 “ ´
8π

9
?

3g7ε3
`Opε´2

q ,

J˚2 “ ´
8π

9
?

3g7ε3
`Opε´2

q ,

Q˚ “
2π

?
3g5ε2

`Opε´1
q ,

(2.4.17)

which are consistent with [36,56] and the Cardy-like limit on the field theory side (2.4.10)

ω˚i „ ε , ∆˚ „ Op1q . (2.4.18)

2.4.3 Black Hole Solution in the Near-Horizon + Gravitational

Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters

on the gravity side. In this subsection, we discuss how the near-horizon metric changes

when taking the gravitational Cardy limit. In Appendix A.1.4, we verify explicitly that the

resulting background is a solution of the 6d gauged supergravity equations of motion. In

the following, we implement the gravitational Cardy limit in the space of parameters, which

further simplifies the geometry.

We apply the following scaling near the horizon r` (2.4.9) to the asymptotically AdS6

black hole metric (2.4.5) in the BPS limit

r Ñ r` ` λrr , tÑ
rt

λ
, φ1 Ñ

rφ1 ` g
rt

λ
, φ2 Ñ

rφ2 ` g
rt

λ
, (2.4.19)

with λÑ 0, and then take the AdS6 gravitational Cardy limit (2.4.16). To the leading order
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in ε and η, the metric becomes

ds2
“ ´

?
3g2

4

a

p1` 3g2y2qp1` 3g2z2q r3` 3g4y2z2 ` g2py2 ` z2qs rr2 drt2

` p1` 3g2y2
qp1` 3g2z2

qH˚py, zq
drr2

144g2
rr2

`
g2p1` 3g2y2qpz2 ´ y2q

3p1´ g2y2q3
H˚py, zq dy

2
`
g2p1` 3g2z2qpz2 ´ y2q

3pg2z2 ´ 1q3
H˚py, zq dz

2

`
4p1´ g2y2q2p1´ g2z2q2 rz2 ` y2p1` 2g2z2qs

3g4 r3` 3g4y2z2 ` g2py2 ` z2qs
2 ε2η2

H˚py, zq
´

drφ1 ´ drφ2

¯2

`
p1´ g2y2qpg2z2 ´ 1qp1` 3g2y2qp1` 3g2z2q

12g6py2 ` z2 ` 2g2y2z2qε2
H˚py, zq

ˆ

drφ1 ´

?
3

2
g3εrrdrt

˙2

,

(2.4.20)

where

H˚py, zq ”

d

1`
8

p1` 3g2y2qp1` 3g2z2q
. (2.4.21)

Defining

τ ” 6g2
rt , χ ”

rφ1 ´
rφ2

g η
, (2.4.22)

we can rewrite the metric (2.4.20) as

ds2
“ H˚py, zq

«

p1` 3g2y2qp1` 3g2z2q

144g2

ˆ

´ rr2 dτ 2
`
drr2

rr2

˙

`
g2p1` 3g2y2qpz2 ´ y2q

3p1´ g2y2q3
dy2

`
g2p1` 3g2z2qpz2 ´ y2q

3pg2z2 ´ 1q3
dz2

`
4p1´ g2y2q2p1´ g2z2q2 rz2 ` y2p1` 2g2z2qs

3g2 r3` 3g4y2z2 ` g2py2 ` z2qs
2 ε2

dχ2

`
p1´ g2y2qpg2z2 ´ 1qp1` 3g2y2qp1` 3g2z2q

12g6py2 ` z2 ` 2g2y2z2qε2

ˆ

drφ1 ´

?
3

12
gεrrdτ

˙2
ff

. (2.4.23)

2.4.4 Black Hole Entropy from Cardy Formula

For the asymptotically AdS6 black holes discussed in this section, we apply the Cardy formula

to the near-horizon metric only after taking the gravitational Cardy limit. More explicitly,

we first rewrite the metric (2.4.23) from Poincaré coordinates prr, τq to global coordinates

pr̂, t̂q using the relations (2.1.44) - (2.1.46). Consequently, the near-horizon metric in the
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gravitational Cardy limit (2.4.23) becomes

ds2
“ H˚py, zq

«

p1` 3g2y2qp1` 3g2z2q

144g2

ˆ

´ p1` r̂2
q dt̂2 `

dr̂2

1` r̂2

˙

`
g2p1` 3g2y2qpz2 ´ y2q

3p1´ g2y2q3
dy2

`
g2pz2 ´ y2qp1` 3g2z2q

3pg2z2 ´ 1q3
dz2

`
4p1´ g2y2q2p1´ g2z2q2 rz2 ` y2p1` 2g2z2qs

3g2 r3` 3g4y2z2 ` g2py2 ` z2qs
2 ε2

dχ2

`
p1´ g2y2qpg2z2 ´ 1qp1` 3g2y2qp1` 3g2z2q

12g6py2 ` z2 ` 2g2y2z2qε2

ˆ

dψ̂ ´

?
3

12
gεr̂dt̂

˙2
ff

, (2.4.24)

where

ψ̂ ” rφ1 ´

?
3

12
gεγ . (2.4.25)

Applying the same formalism in Subsection 2.1.4 and choosing appropriate ranges of y

and z, we obtain the central charge and the extremal Frolov-Thorne temperature in the

near-horizon region of the asymptotically AdS6 BPS black holes as follows:

cL “
5π

3
?

3g5ε
, TL “

4
?

3

5πgε
. (2.4.26)

Using the Cardy formula, we can compute the black hole entropy of the asymptotically AdS6

BPS black holes:

SBH “
π2

3
cLTL “

4π2

9g6ε2
, (2.4.27)

which is the same as the black hole entropy in the gravitational Cardy limit (2.4.17) from

the gravity side.

2.4.5 Comparison with Results from Boundary CFT

For the asymptotically AdS6 BPS black holes, it was shown in [44,56,57] that the entropies

of these black holes can be obtained from the boundary 5d N “ 1 superconformal field

theories by extremizing an entropy function, which has also been studied in [40]. We can

first compute the free energy in the large-N limit using the 5d superconformal index. The

entropy function is then defined as a Legendre transform of the free energy in the large-N

limit

Sp∆I , ωiq “ ´
iπ

81g4G

∆3

ω1ω2

`Q∆`

2
ÿ

i“1

Jiωi ` Λ

˜

∆´

2
ÿ

i“1

ωi ´ 2πi

¸

. (2.4.28)
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In the Cardy-like limit (2.4.10)

ω „ ε , ∆I „ Op1q , (2.4.29)

we can read off from the entropy function (2.4.28)

S „
1

ε2
, J „

1

ε3
, QI „

1

ε2
, (2.4.30)

which have been summarized in Table 1.1.

Similar to AdS4,5,7, for AdS6 the electric charge Q and the angular momenta Ji are real,

while the chemical potential ∆ and the angular velocities ωi can be complex, and so can

the entropy function S. By requiring that the black hole entropy SBH to be real after

extremizing the entropy function S, we obtain one more constraint on Q and Ji. More

precisely, the asymptotically AdS6 black hole entropy and the corresponding constraint are

given implicitly by the following two relations [44,56]

S3
BH ´

2π2

3g4GN

S2
BH ´ 12π2

ˆ

Q

3g

˙2

SBH `
8π4

3g4GN

J1J2 “ 0 , (2.4.31)

Q

3g
S2
BH `

2π2

9g4GN

pJ1 ` J2qSBH ´
4π2

3

ˆ

Q

3g

˙3

“ 0 , (2.4.32)

which are consistent with both the thermodynamic quantities on the gravity side (2.4.6) and

(2.4.17) as well as the black hole entropy in the gravitational Cardy limit from the Cardy

formula (2.4.27) under the AdS6/CFT5 dictionary of parameters [44,56]

1

g4GN

„ N5{2 . (2.4.33)

2.5 Discussion

In this chapter, we have discussed the near-horizon gravitational Cardy limit of asymptot-

ically AdS4,5,6,7 black holes. The gravitational Cardy limit can be written universally as

|aig| Ñ 1, where ai are parametrize angular momenta in units of the inverse AdS radius, g,

for all the black hole solutions we analyzed. As we have explicitly shown in these examples,

the gravitational Cardy limit leads to an AdS3 geometry near the horizon and is effectively an

additional limit on the independent parameters of the black hole solutions. The macroscopic

Bekenstein-Hawking entropy of asymptotically AdS black holes has recently been given a mi-

croscopic foundation using the dual boundary CFT3,4,5,6. Our work relies on a near-horizon
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AdS3 geometry and we provide an effective microscopic description via the CFT2 Cardy

formula obtained from the algebra of asymptotic symmetries.

It is instructive to point out various analogies with the previous instance when string

theory answered explicitly the problem of microstate counting for black hole entropy. In the

mid 90’s, Strominger and Vafa [1] used the full machinery of D-brane technology to provide

a microscopic description of the Bekenstein-Hawking entropy of a class of asymptotically flat

black holes. Viewing the D-brane description as the UV complete description of gravity, the

analogy with the current developments is that the microscopic description of the entropy of

AdSd`1 black holes in terms of field theory degrees of freedom in the dual CFTd boundary

theory is the UV complete description. After the UV complete description of the 90’s,

Strominger went on to provide a universal description [58], based only on the near-horizon

symmetries exploiting the AdS3 near-horizon region and the asymptotic symmetry algebra

computation of Brown and Henneaux [59]. Similar symmetry-based approaches were shown

to apply to a wide variety of black holes by Carlip [60]. The results presented in [17,18] and

in this manuscript show that we can understand the entropy of asymptotically AdS black

holes based only on near-horizon symmetries via the Kerr/CFT correspondence.

The satisfying aspect of this point of view resides in the separation-of-scales principle.

Such a universal feature of gravity as the Bekenstein-Hawking entropy formula can cer-

tainly be explained using UV complete formulations of quantum gravity but must also be

understood without recourse to the existence of such a UV complete theory and could be

determined strictly from low energy symmetry principles.

The point of view advocated in this chapter leads to a number of interesting questions

some of which we now describe. It would be interesting to understand the field theory

counterpart of the locally AdS3 near-horizon region that arises from the Bardeen-Horowitz

limit plus the gravitational Cardy limit. It clearly suggests the existence of an effective CFT2

which we have used to microscopically compute the entropy but whose further details we

do not know. Some aspects of this effective CFT2 were studied in [61, 62] for the AdS5 and

the AdS4 black holes, but it required going away from extremality. In the bigger picture

described above, understanding how this effective CFT2 embeds in the boundary CFTd

is the dual to finding the UV complete description of the gravitational theory living near

the horizon – a worthy challenge. Along these lines, in this manuscript, we have only

discussed the asymptotically AdS black holes in the BPS limit, hence at zero temperature.

It would be interesting to extend the discussion to near-extremal asymptotically AdS4,6,7

black holes and to reproduce the Bekenstein-Hawking entropy formula from a near-horizon

Cardy formula. When higher-derivative terms are included in the gravity theory, the black

hole entropy does not obey the area law. It was shown in [63] that the central charge
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of the near-horizon asymptotic Virasoro symmetry also gets modified in the gravity with

higher-derivative terms, while the Frolov-Thorne temperature and the Cardy formula still

hold. Other higher-derivative aspects of AdS4 black holes were recently considered [64, 65].

A tantalizing property of higher-derivative corrections in AdS5 black holes was recently

reported in [66], which showed that the leading α1-correction is absent in the BPS limit.

This suggests that the central charge of the near-horizon asymptotic Virasoro symmetry

remains the same in this case.

There is another line of attack that is worth sketching. Recall that the original setup for

Cardy-like limits is 2d CFT. In this case, one simply has a formula for CFT2 on S1 ˆ S1

which effectively relates the high energy and low energy degrees of freedom. It is fair to think

of this relation as a UV/IR relation with the important characteristic of being controlled

by the anomaly, c. Similar formulas have been developed in higher dimensions by Di Pietro

and Komargodski in [67] and further clarified in [26,68,69]. In particular, in four dimensions

they found an effective description of theories in S1ˆM3 whose effective action is controlled

by anomaly coefficients. A similar analysis has been rigorously performed for a set of six-

dimensional theories [14, 53, 70]. More closely related to the questions we addressed in this

chapter is the recent work of Seok Kim and collaborators who have used an effective low

energy action approach to find the leading term in the entropy function for the Cardy-like

limit, first in N “ 4 SYM as well as in the 6d N “ p2, 0q SCFT living on N M5-branes [14],

and later for a more generic 4d N “ 1 situation [28]. These developments point to the

possibility that the Cardy-like limit may be understood as the leading term in an effective

field theory expansion. Although for these cases in the BPS limit the Cardy-like free energy

has been derived from the effective quantum field theory approach, higher order corrections

as well as finite temperatures should be taken into account to go beyond the leading order

in the BPS limit. It would be quite interesting to explore such possibilities on the field

theory side and, ultimately, connect it with a more standard hydrodynamics approach on

the gravity side [71,72].

Finally, it would be nice to develop what seems like a more natural AdS2 or SYK approach

to the entropy of extremal AdS black holes as described in Fig. 1.2. Some interesting work

along this direction was performed in [73] for AdS5 and more recently in [74] for AdS4.

Finding the connection between the AdS2 and AdS3 low energy descriptions in more details

is an interesting problem.
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Chapter 3

The Near Extremal Regime

3.1 Near-Extremal AdS4 Black Hole Entropy

Returning to the AdS4 black hole solution of [41], we further examine the parameter space

with a emphasis on extremality. The extremal black hole solutions are achieved when the

function ∆rprq has a double root, or equivalently when the discriminant of ∆rprq vanishes,

which can be viewed as an equation for m. We can solve when the discriminant is zero and

obtain the extremal value of m as a function of a and δ1,2, i.e.,

m “ mextpa, δ1, δ2q . (3.1.1)

Since this computation is straightforward, we omit the lengthy expression of mextpa, δ1, δ2q.

In this case, for m ă mext the function ∆rprq has two different real roots corresponding to the

outer and the inner horizons of a non-extremal black hole. For m ą mext the function ∆rprq

does not have real roots, which implies that the solution has a naked singularity instead of

a black hole. We would like to emphasize that the asymptotically AdS4 Kerr-Newman black

holes have also been discussed in [75]. However, the supersymmetric solutions considered [75]

have 1
2
-BPS supersymmetry instead of 1

4
-BPS supersymmetry discussed in [41, 42], which

makes some features of the black holes different.

Before moving on, we want to emphasize the parameter space we are exploring. First,

a BPS black hole is both supersymmetric and extremal. Hence, it satisfies both the super-

symmetric condition

e2δ1`2δ2 “ 1`
2

ag
, (3.1.2)

or equivalently,

a “ a0 , with a0 ”
2

g pe2δ1`2δ2 ´ 1q
, (3.1.3)
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and the extremal condition (3.1.1). Under the supersymmetric condition (3.1.3), the extremal

condition (3.1.1) is equivalent to

pmgq2 “
cosh2

pδ1 ` δ2q

eδ1`δ2 sinh3
pδ1 ` δ2q sinhp2δ1q sinhp2δ2q

, (3.1.4)

which can also be obtained by requiring the black hole solution to have a regular horizon. The

two conditions (3.1.3) and (3.1.4) in [42] contain typos, which have been corrected in [43,44]

and also [45]. With these two constraints, there are only two independent parameters for

asymptotically AdS4 electrically charged rotating BPS black holes. To illustrate the relations

of the parameters, we plot in Fig. 3.1 the codimension-1 supersymmetric surface defined by

(3.1.3) together with the codimension-1 extremal surface defined by (3.1.1) in the parameter

space pm, a, δ1, δ2q, where for simplicity we set δ2 “ δ1 and L “ 1. The intersection of these

codimension-1 surfaces is a codimension-2 surface corresponding to the BPS solutions.

Figure 3.1: The extremal surface (yellow) and the supersymmetric surface (green)

We now collect useful properties of the black hole, including the position of the outer

horizon in the BPS limit

r0 “
2m sinhpδ1q sinhpδ2q

coshpδ1 ` δ2q
, (3.1.5)

which coincides with the BPS inner horizon. For the thermodynamic quantities of the

non-extremal asymptotically AdS4 black holes, the gravitational angular velocity Ω and the
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temperature TH are given by

Ω “
ap1` g2r1r2q

r1r2 ` a2
, TH “

∆1
r

4πpr1r2 ` a2q
, (3.1.6)

which are evaluated at the outer horizon r`. The other thermodynamic quantities are [42]

S “
πpr1r2 ` a

2q

Ξ
,

J “
ma

2Ξ2
pcoshp2δ1q ` coshp2δ2qq ,

Q1 “ Q3 “
m

4Ξ
sinhp2δ1q ,

Q2 “ Q4 “
m

4Ξ
sinhp2δ2q .

(3.1.7)

3.1.1 Near-Extremal AdS4 Black Hole Entropy from Gravity So-

lution

The asymptotically AdS4 black hole solutions discussed in the previous subsection are in

general non-extremal. Since our focus is on near-extremality, we perturb the BPS black hole

solution. More precisely, we expand the non-extremal AdS4 black hole solutions around the

BPS solution by turning on a small temperature.

We shall do this by studying the parameter space. Before imposing the constraints

(3.1.3) and (3.1.4), there are 4 parameters that characterize the black hole solution, and we

interchange one of these parameters, a, with the outer horizon r`, where r` is the biggest

root of the equation ∆rpr`q “ 0, i.e.,

r2
` ` a

2
´ 2mr` ` g

2
2
ź

i“1

`

r` ` 2m sinh2
pδiq

˘

”

2
ź

i“1

`

r` ` 2m sinh2
pδiq

˘

` a2
ı

“ 0 . (3.1.8)

There are two reasons why we make this change. The first is pragmatic: this simplifies

the algebra significantly. The second is that the outer horizon r` plays a clear role in

the nAttractor mechanism [76], which will also be relevant for the discussions later in this

subsection. Now, we use (3.1.8) to solve for the parameter a in terms of r`, and the 4

independent parameters for the non-extremal AdS4 black hole solutions are pr`,m, δ1, δ2q.

Correspondingly, there are 4 independent physical quantities pTH , J,Q1, Q2q, where we have

set Q1 “ Q3 and Q2 “ Q4 as in (3.1.7). Without loss of generality, we further set δ2 “ δ1,

and therefore Q1 “ Q2, to simplify the discussion.

The black hole entropy in (3.1.7) is valid for any temperature, including small temper-

ature. This is achieved by expanding around the BPS value of the entropy, leading to the
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expression

S “ S˚ `

ˆ

C

TH

˙

˚

TH `OpT 2
Hq , (3.1.9)

where S˚ denotes the AdS4 black hole entropy (3.1.7) in the BPS limit

S˚ “
2π

g2 pe4 δ1 ´ 3q
, (3.1.10)

while C is the heat capacity which is linear in TH , and
´

C
TH

¯

˚
is evaluated in the BPS limit.

Computing
´

C
TH

¯

˚
is straightforward

ˆ

C

TH

˙

˚

“

ˆ

dS

dTH

˙

˚

“

ˆ

BS

Br`

˙

˚

ˆ

Br`
BTH

˙

˚

`

ˆ

BS

Bm

˙

˚

ˆ

Bm

BTH

˙

˚

`

ˆ

BS

Bδ1

˙

˚

ˆ

Bδ1

BTH

˙

˚

,

(3.1.11)

where Br`
BTH

, Bm
BTH

and Bδ1
BTH

can be obtained by inverting the matrix

BpTH , J,Q1q

Bpr`,m, δ1q
. (3.1.12)

Once the dust settles, the result is

ˆ

C

TH

˙

˚

“
8
?

2π2
`

e4 δ1 ´ 1
˘

3
2

g3 pe4 δ1 ´ 3q pe8 δ1 ` 10 e4 δ1 ´ 7q
. (3.1.13)

We comment that this result can also be obtained by only varying S with respect to r`, i.e.,

ˆ

C

TH

˙

˚

“

ˆ

BS

Br`

˙

˚

ˆ

Br`
BTH

˙

˚

. (3.1.14)

This is similar to the AdS5 case discussed in [33], which is related to the nAttractor mecha-

nism [76]. This hints that the nAttractor mechanism extends to other dimensions.

3.1.2 AdS4 Black Hole Solution in the Near-Horizon Limit

In this subsection, we consider near-extremal asymptotically AdS4 black holes close to the 1
4
-

BPS solutions by introducing a small positive temperature T , and discuss the corresponding

metrics.

It was discussed in [75] that for asymptotically AdS4 black holes from the extremal case

to non-extremal configurations corresponds to perturbing the parameter m from its extremal

value mext. As we can see from Fig. 3.1, when perturbing around the AdS4
1
4
-BPS black
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holes, we can deviate from the extremal surface but still stay in the supersymmetric surface

by imposing the supersymmetric condition (3.1.3). Meanwhile, we expand the parameter m

around its BPS value given by (3.1.4) with a small dimensionless parameter λ [77] corre-

sponding to near-extremal AdS4 black hole solutions, i.e.,

m “ m0p1` λ
2
rmq , (3.1.15)

where

m0 ”
coshpδ1 ` δ2q

g epδ1`δ2q{2 sinh3{2
pδ1 ` δ2q

a

sinhp2δ1q sinhp2δ2q
. (3.1.16)

A similar limit was also used in [78] to study the near-BPS black holes and compared with

other limits in [13]. To summarize, near-extremal AdS4 black holes can be achieved by

perturbing the parameter m around mext while keeping the other parameters fixed. This

is made explicit in this chapter by imposing the near-extremal condition (3.1.15) with the

parameter a fixed by the supersymmetric condition (3.1.3).

Moreover, we perform a near-horizon scaling to the asymptotically AdS4 black hole metric

(2.2.4), which was first introduced by Bardeen and Horowitz in [37] and extensively studied

[79] for the BPS AdS4 black holes

r Ñ r0 ` λ rr , tÑ
rt

λ
, φÑ rφ´ g

“

cothp2δ1q ´ 2
‰
rt

λ
. (3.1.17)

In principle, for near-extremal black holes we should consider the near-horizon scaling r Ñ

r``λ rr. However, the near-extremal condition (3.1.15) implies that r` and r0 only differ by

a constant of order λ. Hence, we can absorb that constant into rr and still take r Ñ r0 ` λ rr

in the near-horizon scaling. This kind of near-horizon scaling for near-extremal black holes

has been used in [80]. To summarize, we impose the near-horizon scaling (3.1.17) together

with the condition conditions (3.1.15) and (3.1.3).

Taking the limit λÑ 0, the metric (2.2.4) becomes

ds2
“ ´

`

e8 δ1 ` 10 e4 δ1 ´ 7
˘ `

e4 δ1 ` cosp2θq
˘

2 pe4 δ1 ` 1q2
g2

rr2 drt2 `
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ` 10 e4 δ1 ´ 7q

drr2

rr2

`
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ´ 2 e4 δ1 ´ 1´ 2 cosp2 θqq
dθ2

` ΛAdS4pθq

«

drφ`
g2 eδ1 pe4 δ1 ´ 3q

a

cschp2 δ1q sechp2 δ1q

1` cothp2 δ1q
rr drt

ff2

, (3.1.18)
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where

ΛAdS4pθq ”
2
`

e8 δ1 ´ 2 e4 δ1 ´ 1´ 2 cosp2 θq
˘

sin2pθq

g2 pe4 δ1 ´ 3q2 pe4 δ1 ` cosp2θqq
. (3.1.19)

From the near-horizon, we are now in a position to extract the necessary details to compute

the entropy via the Kerr/CFT correspondence. As we shall see, there are several methods

to compute the central charges, which requires a rewriting of the near-horizon geometry in

different coordinate systems. To make things clearer, we summarize each of these different

expressions of the near-horizon metric. The change of coordinates

τ ”
g2

`

e8 δ1 ` 10 e4 δ1 ´ 7
˘

2pe4δ1 ` 1q
rt , ρ ” rr , (3.1.20)

allows us to write (3.1.18) in Poincaré coodinates

ds2
“

2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ` 10 e4 δ1 ´ 7q

ˆ

´ρ2 dτ 2
`
dρ2

ρ2

˙

`
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ´ 2 e4 δ1 ´ 1´ 2 cosp2 θqq
dθ2

` ΛAdS4pθq

«

drφ`
2
`

e8 δ1 ´ 4 e4 δ1 ` 3
˘
a

cschp2 δ1q

eδ1 pe8 δ1 ` 10 e4 δ1 ´ 7q
ρ dτ

ff2

. (3.1.21)

Therefore, it is clear that the near-horizon scaling we applied to the metric leaves us with a

circle fibered over AdS2, yielding a warped AdS3 geometry. We now see that the near-horizon

metric in Poincaré coodinates (3.1.21) is in the standard form

ds2
“ f0pθq

ˆ

´ρ2 dτ 2
`
dρ2

ρ2

˙

` fθpθq dθ
2
` γijpθq

`

dxi ` kiρ dτ
˘ `

dxj ` kjρ dτ
˘

, (3.1.22)

with xi P trφu for the AdS4 case, and the coefficients f0pθq, fθpθq, k
i and γijpθq are functions

of θ in general.

Now, we transform the Poincaré coordinates pτ, ρ, θ, rφq in the metric (3.1.21) to the global

coordinates pt̂, r̂, θ, φ̂q using the following relations

g ρ “ r̂ `
?

1` r̂2 cospt̂q , g´1 τ “

?
1` r̂2 sinpt̂q

r̂ `
?

1` r̂2 cospt̂q
, (3.1.23)

which leads to

´ρ2 dτ 2
`
dρ2

ρ2
“ ´p1` r̂2

q dt̂2 `
dr̂2

1` r̂2
,

ρ dτ “ r̂ dt̂` dκ ,

(3.1.24)
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where

κ ” log

ˆ

1`
?

1` r̂2 sinpt̂q

cospt̂q ` r̂ sinpt̂q

˙

. (3.1.25)

Consequently, the metric (3.1.21) can be rewritten as

ds2
“

2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ` 10 e4 δ1 ´ 7q

„

´p1` r̂2
q dt̂2 `

dr̂2

1` r̂2



`
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ´ 2 e4 δ1 ´ 1´ 2 cosp2 θqq
dθ2

` ΛAdS4pθq

«

dφ̂`
2
`

e8 δ1 ´ 4 e4 δ1 ` 3
˘
a

cschp2 δ1q

eδ1 pe8 δ1 ` 10 e4 δ1 ´ 7q
r̂ dt̂

ff2

, (3.1.26)

where

φ̂ ” rφ`
2
`

e8 δ1 ´ 4 e4 δ1 ` 3
˘
a

cschp2 δ1q

eδ1 pe8 δ1 ` 10 e4 δ1 ´ 7q
κ . (3.1.27)

Besides the near-horizon scaling (3.1.17), we can also apply a light-cone scaling in the

near-horizon region [77]

x` ” ε

ˆ

φ`
e4 δ1 ´ 3

e4 δ1 ´ 1
gt

˙

, x´ ” φ´
e4 δ1 ´ 3

e4 δ1 ´ 1
gt , (3.1.28)

and then consider the following near-horizon scaling in the light-cone coordinates

r Ñ r0 ` ε rr , tÑ
e4 δ1 ´ 1

e4 δ1 ´ 3

x` ´ εx´

2gε
, φÑ

x` ` εx´

2ε
. (3.1.29)

Together with the condition (3.1.15) and taking the limit εÑ 0, we obtain the near-horizon

metric for the AdS4 near-extremal black holes in the coordinates px`, rr, θ, x´q

ds2
“ ´

`

e4 δ1 ´ 1
˘2 `

e8 δ1 ` 10 e4 δ1 ´ 7
˘ `

e4 δ1 ` cosp2θq
˘

8 pe8 δ1 ´ 2 e4 δ1 ´ 3q2
rr2 dx`2

`
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ` 10 e4 δ1 ´ 7q

drr2

rr2

`
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ´ 2 e4 δ1 ´ 1´ 2 cosp2 θqq
dθ2

` ΛAdS4pθq

„

dx´ `
eδ1 sechp2 δ1q

cschp2 δ1q
3{2

g rr dx`
2

,

(3.1.30)

where ΛAdS4pθq is the same as (3.1.19). Introducing some new coordinates

x̂` ”
g
`

e4 δ1 ´ 1
˘ `

e8 δ1 ` 10 e4 δ1 ´ 7
˘

4 pe8 δ1 ´ 2 e4 δ1 ´ 3q
x` , ρ̂ ” rr , x̂´ ” x´ , (3.1.31)
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we can rewrite the near-horizon metric in the light-cone coordinates (3.1.30) as

ds2
“

2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ` 10 e4 δ1 ´ 7q

„

´ρ̂2 dx̂`2
`
dρ̂2

ρ̂2



`
2
`

e4 δ1 ` cosp2θq
˘

g2 pe8 δ1 ´ 2 e4 δ1 ´ 1´ 2 cosp2 θqq
dθ2

` ΛAdS4pθq

«

dx̂´ `
2
`

e8 δ1 ´ 4 e4 δ1 ` 3
˘
a

cschp2 δ1q

eδ1 pe8 δ1 ` 10 e4 δ1 ´ 7q
ρ̂ dx̂`

ff2

. (3.1.32)

We see that the metric (3.1.32) is in the standard form

ds2
“ f0pθq

ˆ

´ρ̂2 dx̂`2
`
dρ̂2

ρ̂2

˙

` fθpθq dθ
2
` γijpθq

`

dxi ` kiρ̂ dx̂`
˘ `

dxj ` kj ρ̂ dx̂`
˘

,

(3.1.33)

with xi P tx̂´u for the AdS4 case, and ki, f0pθq, fθpθq and γijpθq remain the same as (3.1.22).

To summarize, we now have several different expressions for the near-horizon metric in

Poincaré and global coordinates. This is useful when we utilize the near-extremal Kerr/CFT

correspondence.

3.1.3 Near-Extremal AdS4 Black Hole Entropy from Cardy For-

mula

After obtaining the various expressions of the near-horizon metric of the asymptotically

AdS4 black holes, we are now ready to compute the central charges and the Frolov-Thorne

temperatures using the near-extremal Kerr/CFT correspondence as well as hidden conformal

symmetry of the near-horizon geometry to find the AdS4 black hole entropy in the near-

extremal limit. For the left central charge cL and the right central charge cR, there are two

different ways for computing each of them, depending on which coordinate system we choose.

We summarize each of these diverse approaches as a consistency check on our computation

as well as to keep things self-contained.

The Kerr/CFT correspondence was originally posed for asymptotically flat extremal Kerr

black holes [16] and was later shown to also be valid for asymptotically AdS black holes

[17, 18]. For the near-extremal case, [77, 80] initiated some progress and we extend those

results here by computing the entropies of near-extremal AdS4 black holes via the Cardy

formula. Before further exploring the near-extremal case, let us take a step back and recall

how the Kerr/CFT correspondence works. The basic idea is the following. Taking the

Bardeen-Horowitz near-horizon scaling [37], the near-horizon geometry of an asymptotically

flat or asymptotically AdS extremal black hole contains Up1q cycles fibered on AdS2. The

near-horizon asymptotic symmetries are characterized by diffeomorphims generated by the
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vectors

ζε “ εpφq
B

Bφ
´ r ε1pφq

B

Br
. (3.1.34)

The mode expansion of a diffeomorphism generating vector ζ is

ζpnq “ ´e
´inrφ B

Brφ
´ inre´in

rφ B

Br̂
. (3.1.35)

We can define a 2-form kζ for a general perturbation hµν around the background metric gµν

as

kζrh, gs ” ´
1

4
εαβµν

”

ζνDµh´ ζνDσh
µσ
` ζσD

νhµσ `
1

2
hDνζµ ´ hνσDσζ

µ

`
1

2
hσνpDµζσ `Dσζ

µ
q

ı

dxα ^ dxβ . (3.1.36)

We also define the Lie derivative with respect to ζ, denoted by Lζ , as

Lζgµν ” ζρBρgµν ` gρνBµζ
ρ
` gµρBνζ

ρ . (3.1.37)

The left central charge cL of the near-horizon Virasoro algebra can be computed using the

Kerr/CFT correspondence in two slightly different ways. For the first method, the central

charge can be computed using the following integral [16–18]

1

8πG

ż

BΣ

kζpmqrLζpnqg, gs “ ´
i

12
cL pm

3
` αmq δm`n, 0 , (3.1.38)

where g denotes the near-horizon metric of the near-extremal AdS4 black hole in global

coordinates (3.1.26). An explicit evaluation of (3.1.38) shows that

cL “
24
a

2 pe4 δ1 ´ 1q

g2 pe8δ1 ` 10 e4 δ1 ´ 7q
. (3.1.39)

The other way of computing cL is to evaluate the following integral [77]

1

8πGN

ż

BΣ

kξn rLξm ḡ, ḡs “ δn`m, 0 n
3 cL
12
, (3.1.40)

where ḡ denotes the standard form (3.1.22) of the near-horizon metric of the near-extremal

AdS4 black hole in Poincaré coordinates (3.1.21). More precisely, we obtain with the unit

GN “ 1

cL “
3k

rφ

GN

ż π

0

dθ
b

Det pγijpθqq fθpθq “
24
a

2 pe4 δ1 ´ 1q

g2 pe8δ1 ` 10 e4 δ1 ´ 7q
, (3.1.41)
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which matches exactly the result of cL (3.1.39) from the first approach.

The right central charge cR can also be obtained in two different ways. Although we

describe the two methods, we prefer one method over the other because of its robustness.

The first approach is to compute the quasi-local charge [77, 81, 82] using the standard form

of the near-horizon metric of the near-extremal AdS4 black hole in Poincaré coordinates

(3.1.22), which is given by the integral

cR
12
“

1

8πGN

ż

dxi dθ
kikjγijpθq

a

Det pγijpθqq fθpθq

2Λ0f0pθq
, (3.1.42)

where f0pθq, fθpθq, γijpθq and ki are defined in (3.1.22), and the parameter Λ0 denotes a

UV cutoff in r. This approach has been used to compute the right central charge cR for

near-extremal AdS5 black holes [61]. For the four-dimensional case, the integral (3.1.42)

can be applied to the near-horizon metric (3.1.21) in Poincaré coordinates to compute cR.

However, the result is not very illuminating due to the unfixed cutoff Λ0.

To compute cR, we choose a more concrete approach using light-cone coordinates as in-

troduced in [77]. More precisely, a scale-covariant right central charge c
pcovq
R can be computed

from the near-horizon metric (3.1.32) by using

c
pcovq
R “ 3k´ ε

ż π

0

dθ
b

Det pγijpθqq fθpθq “
24 ε

a

2 pe4 δ1 ´ 1q

g2 pe8δ1 ` 10 e4 δ1 ´ 7q
, (3.1.43)

where the factors γijpθq, fθpθq and k´ are defined in (3.1.33). Like in [77], we can define a

scale-invariant right central charge cR ” c
pcovq
R {ε, which in this case is

cR “
24
a

2 pe4 δ1 ´ 1q

g2 pe8δ1 ` 10 e4 δ1 ´ 7q
. (3.1.44)

We see that the result is exactly the same as the left central charge computed in (3.1.39) and

(3.1.41). To summarize, the explicit expression for the integral changes slightly depending

on the coordinate system, and we have shown that all the results do indeed lead to the same

central charge.

Now that we have taken care of the central charges, and have consistently gotten that

cL “ cR, the final ingredient is the Frolov-Thorne temperatures TL and TR. We have seen

in [79] that for the BPS case TR “ 0. For the near-extremal case, TL can still be computed

in the same way discussed in [79], and its value remains the same as the BPS case, as it is
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unaffected by whether we impose the condition (3.1.15). Therefore, we find

TL “
eδ1

`

e8 δ1 ` 10 e4 δ1 ´ 7
˘
a

sinhp2 δ1q

4π pe8 δ1 ´ 4 e4 δ1 ` 3q
. (3.1.45)

On the other hand, TR is proportional to the physical Hawking temperature TH . To find the

exact expression of TR, we apply the technique of hidden conformal symmetry. This method

was first introduced in [83], and later generalized to many different cases. The basic idea is to

define a set of near-horizon conformal coordinates and corresponding locally-defined vector

fields with SUp2,Rq Lie algebra, such that the wave equation of an uncharged massless scalar

field becomes the quadratic Casimir of the SUp2,Rq Lie algebra. In this way, we can fix the

Frolov-Thorne temperatures TL,R and the mode numbers NL,R for non-extremal black holes.

In particular, [80] has considered the hidden conformal symmetry of an AdS4 black hole

close to the solutions discussed in this chapter. We can apply the same technique by first

expanding ∆r

∆r “ kpr ´ r`qpr ´ rsq `O
`

pr ´ r`q
3
˘

, (3.1.46)

where k and rs can be read off from the Taylor expansion to quadratic order in pr ´ r`q.

Based on hidden conformal symmetry [80], the right temperature is

TR “
kpr` ´ rsq

4πaΞ
. (3.1.47)

Comparing with the Hawking temperature TH given by (3.1.6), we find that

TR “
a2 ` r2

1

a´ a3g2
TH . (3.1.48)

We also find that the expression obtained using hidden conformal symmetry for TL is (3.1.45)

as expected. Using the Cardy formula, we obtain the near-extremal AdS4 black hole entropy

S “
π2

3
cLTL `

π2

3
cRTR

“ S˚ `

ˆ

C

TH

˙

˚

TH ,

“
2π

g2 pe4 δ1 ´ 3q
`

8
?

2π2
`

e4 δ1 ´ 1
˘

3
2

g3 pe4 δ1 ´ 3q pe8 δ1 ` 10 e4 δ1 ´ 7q
TH , (3.1.49)

where the BPS entropy S˚ is

S˚ “
π2

3
cLTL , (3.1.50)
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while the near-extremal correction to the black hole entropy is

δS “
π2

3
cRTR ”

ˆ

C

TH

˙

˚

TH . (3.1.51)

We see that this result from the near-horizon CFT2 and the Cardy formula is exactly the

same as the results from the gravity side ((3.1.9), (3.1.10) and (3.1.13)).

3.1.4 Near-Extremal AdS4 Black Hole Entropy from Boundary

CFT

What remains is the computation of the near-extremal entropy from the boundary CFT.

In the BPS limit, the AdS4 black hole entropy can be obtained by extremizing an entropy

function, which was derived by the superconformal index or supersymmetric localization

of the 3d ABJM theory on the boundary of electrically charged rotating AdS4 BPS black

holes [46, 47]. More precisely, the BPS entropy function is

Spr∆I , rωq “ ´
4
?

2 i k
1
2N

3
2

3

b

r∆1
r∆2

r∆3
r∆4

rω
`rωJ`

ÿ

I

r∆IQI`Λ

˜

ÿ

I

r∆I ´ rω ´ 2πi

¸

, (3.1.52)

where r∆I are chemical potentials corresponding to the electric charges QI , and rω is the

angular velocity. To extremize the entropy function (3.1.52), we solve the equations

BS

B r∆I

“ 0 ,
BS

Brω
“ 0 , (3.1.53)

which can be expressed explicitly as

QI ` Λ “
4
?

2 i k
1
2N

3
2

3

b

r∆1
r∆2

r∆3
r∆4

2r∆Irω
, (3.1.54)

J ´ Λ “ ´
4
?

2 i k
1
2N

3
2

3

b

r∆1
r∆2

r∆3
r∆4

ω̃2
. (3.1.55)

Substituting these equations back into the entropy function (3.1.52), we obtain

S “ ´2πiΛ . (3.1.56)
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Moreover, the equations (3.1.54) and (3.1.55) can be combined into one equation:

Q1Q2Q3Q4 ` Λ

˜

ÿ

IăJăK

QIQJQK

¸

` Λ2

˜

ÿ

IăJ

QIQJ

¸

` Λ3

˜

ÿ

I

QI

¸

` Λ4

“ ´
2

9
kN3

pΛ2
´ 2ΛJ ` J2

q , (3.1.57)

which can be written more compactly as

Λ4
` AΛ3

`B Λ2
` C Λ`D “ 0 , (3.1.58)

with the real-valued coefficients

A “
4
ÿ

I“1

QI ,

B “
ÿ

IăJ

QIQJ `
2

9
kN3 ,

C “
ÿ

IăJăK

QIQJQK ´
4

9
kN3J ,

D “ Q1Q2Q3Q4 `
2

9
kN3J2 .

(3.1.59)

In order to obtain a real-valued black hole entropy, the expression (3.1.56) implies that

Λ should have a purely imaginary root. Since (3.1.58) is a quartic equation of Λ with

real coefficients, the imaginary roots should come in pairs. Consequently, (3.1.58) can be

factorized as

pΛ2
` αqpΛ2

` β Λ` µq “ Λ4
` β Λ3

` pα ` µqΛ2
` αβ Λ` αµ . (3.1.60)

Comparing (3.1.60) with (3.1.58), we find

A “ β , B “ α ` µ , C “ αβ , D “ αµ , (3.1.61)

or equivalently,

α “
C

A
, β “ A , µ “ B ´

C

A
“
AD

C
. (3.1.62)
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According to (3.1.56), the imaginary root Λ “ i
?
α “ i

b

C
A

leads to the real-valued AdS4

BPS black hole entropy

S˚BH “ 2π

d

Q1Q2Q3 `Q1Q2Q4 `Q1Q3Q4 `Q2Q3Q4 ´
4
9
kN3J

Q1 `Q2 `Q3 `Q4

. (3.1.63)

For the special case Q1 “ Q3, Q2 “ Q4, the expression above becomes

S˚BH “
2π

3

d

9Q1Q2pQ1 `Q2q ´ 2kJN3

Q1 `Q2

. (3.1.64)

After imposing the identifications of parameters introduced in [44,46,47]

QBH,I “
g

2
QI , JBH “ J , I P t1, ¨ ¨ ¨ , 4u (3.1.65)

and using an entry from the AdS/CFT dictionary

1

GN

“
2
?

2

3
g2k

1
2N

3
2 , (3.1.66)

we can rewrite the BPS black hole entropy (3.1.64) as

S˚BH “
π

g2G

JBH
´

2
g
QBH,1 `

2
g
QBH,2

¯ , (3.1.67)

which can be subsequently written in terms of the free parameters pδ1, δ2q on the gravity side

in the BPS limit. For the special case δ1 “ δ2, the BPS black hole entropy obtained from

the boundary CFT is

S˚BH “
2π

g2 pe4 δ1 ´ 3q
, (3.1.68)

which is exactly the same as the BPS result from the gravity side (3.1.10) and the one from

the near-horizon Kerr/CFT correspondence (3.1.50).

In addition to the black hole entropy, the electric charges QI ’s and the angular momentum

J should also satisfy a constraint, which originates from the consistency of two expressions

of µ in (3.1.62), i.e.,

B ´
C

A
´
AD

C
“ 0 . (3.1.69)
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More explicitly, for the special case Q1 “ Q3, Q2 “ Q4 the constraint is

2

9
kN3

` pQ1 `Q2q
2
`

2kJN3

9pQ1 `Q2q
`

2kJN3 rQ1Q2 ` JpQ1 `Q2qs

2kJN3 ´ 9Q1Q2pQ1 `Q2q
“ 0 . (3.1.70)

We emphasize that the constraint is not unique. A constraint multiplied by a constant or

some regular function of QI and J can produce new constraints. For later convenience, we

define

h ”
J2

4g5pQ1 `Q2q
2

„

2

9
kN3

` pQ1 `Q2q
2
`

2kJN3

9pQ1 `Q2q
`

2kJN3 rQ1Q2 ` JpQ1 `Q2qs

2kJN3 ´ 9Q1Q2pQ1 `Q2q



,

(3.1.71)

whose BPS value will be called h˚, and

h˚ “ 0 (3.1.72)

is one of the BPS constraints. So far we have only considered the BPS black holes from

the boundary CFT in this subsection. To extend the BPS results to the near-extremal case,

similar to the AdS5 case discussed in [61], we generalize the quartic equation (3.1.58) from

the BPS limit to the near-extremal case by perturbing Λ and h as

pΛ` δΛq4 ` A pΛ` δΛq3 `B pΛ` δΛq2 ` C pΛ` δΛq `D ` ph˚ ` δhq “ 0 , (3.1.73)

which at the order OpδΛq is

p4Λ3
` 3AΛ2

` 2B Λ` Cq δΛ` δh “ 0 . (3.1.74)

For the root Λ “ i
b

C
A

, which has led to the BPS black hole entropy, we can solve (3.1.74)

and obtain

δΛ “
δh

2C ´ 2i
b

C
A

`

B ´ 2C
A

˘

. (3.1.75)

Based on (3.1.56), the correction to the BPS black hole entropy is

δS “ ´2πi δΛ . (3.1.76)

Hence, only the imaginary part of δΛ will contribute to the real part of δS. If we assume
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that δh is purely imaginary, then

ImpδΛq “ δhRe

»

–

1

2C ´ 2i
b

C
A

`

B ´ 2C
A

˘

fi

fl

“
2C δh

”

2C ´ 2i
b

C
A

`

B ´ 2C
A

˘

ı ”

2C ` 2i
b

C
A

`

B ´ 2C
A

˘

ı

“
δh

2C ` 2
A

`

B ´ 2C
A

˘2 . (3.1.77)

Therefore, for real-valued δS we have

δS “ ´2πi ImpδΛq “
´πi δh

C ` 1
A

`

B ´ 2C
A

˘2 . (3.1.78)

We view δh as a small change of h from its BPS value, i.e.,

δh “ h´ h˚ “ h . (3.1.79)

We can compute δh by

δh “
Bh

BQI

δQI `
Bh

BJ
δJ , (3.1.80)

with the transformations similar to the AdS5 case [61]

δQI “ ηQI , δJi “ ηJi . (3.1.81)

For the near-extremal case, we relate the transformation parameter η with the temperature

change

2πi δTH “ 2η , (3.1.82)

where δTH “ TH ´ T ˚H “ TH . Now, we apply (3.1.80) to the explicit choice of h given by

(3.1.71). In the unit GN “ 1, the near-extremal correction to the BPS entropy for the special

case δ1 “ δ2 becomes

δS “
8
?

2π2
`

e4 δ1 ´ 1
˘

3
2

g3 pe4 δ1 ´ 3q pe8 δ1 ` 10 e4 δ1 ´ 7q
TH ”

ˆ

C

TH

˙

˚

TH . (3.1.83)

Combining the BPS black hole entropy from the boundary CFT (3.1.68) and the near-

extremal correction (3.1.83), we obtain the near-extremal AdS4 black hole entropy from the
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boundary CFT

SBH “ S˚BH ` δS

“
2π

g2 pe4 δ1 ´ 3q
`

8
?

2π2
`

e4 δ1 ´ 1
˘

3
2

g3 pe4 δ1 ´ 3q pe8 δ1 ` 10 e4 δ1 ´ 7q
TH

” S˚ `

ˆ

C

TH

˙

˚

TH , (3.1.84)

which matches perfectly with the results from gravity solution ((3.1.9), (3.1.10) and (3.1.13))

and from the near-horizon Kerr/CFT correspondence ((3.1.49), (3.1.50) and (3.1.51)).

3.2 Hawking Radiation and Near-Extremal AdS4 Black

Hole

In Sec. 3.1, we have derived the near-extremal AdS4 black hole entropy using three different

approaches and obtained one universal result. In particular, the approach of the near-horizon

Kerr/CFT correspondence shows that there exists a near-horizon CFT2, which accounts for

the low-energy spectrum of the black hole microstates.

As we have seen in Subsection 3.1.3, the near-extremal black hole entropy can be decom-

posed into the contributions from the left and the right sectors of the near-horizon CFT2.

The expression from the canonical ensemble is

SBH “
π2

3
cLTL `

π2

3
cRTR , (3.2.1)

which has been discussed extensively for the asymptotically flat black holes [84–91], while

the expression from the microcanonical ensemble is [92]

SBH “ 2π

c

cLNL

6
` 2π

c

cRNR

6
, (3.2.2)

where NL and NR are the left and the right mode numbers, respectively. Comparing the

expressions (3.2.1) and (3.2.2), we find that the temperatures TL,R can be related to the

mode numbers NL,R

TL “
1

π

c

6NL

cL
, TR “

1

π

c

6NR

cR
. (3.2.3)

The explicit expressions of NL and NR for near-extremal AdS4 black holes considered in this

73



work with δ1 “ δ2 are

NL “
e8 δ1 ` 10 e4 δ1 ´ 7

4
?

2g2 pe4 δ1 ´ 3q2
?
e4 δ1 ´ 1

,

NR “
4
?

2π2
`

e4 δ1 ´ 1
˘

5
2 T 2

H

g4 pe4 δ1 ´ 3q2 pe8 δ1 ` 10 e4 δ1 ´ 7q
.

(3.2.4)

Suppose that the left and the right mode numbers in the BPS limit are N˚
L and N˚

R respec-

tively, where

N˚
R “ 0 . (3.2.5)

As discussed in [61, 93], for the near-extremal case the left-moving and the right-moving

modes become

NL “ N˚
L ` δNL « N˚

L ,

NR “ N˚
R ` δNR “ δNR ,

(3.2.6)

with δNL “ δNR ! N˚
L. If we assume that the right modes obey a canonical ensemble, then

the partition function of the right sector can be written as

ZR “
ÿ

NR

qNRdpNRq “
ÿ

NR

qNReSR “
ÿ

NR

qNRe2π
?
cRNR{6 . (3.2.7)

We evaluate this partition function using a saddle-point approximation with respect to NR,

and the result is

δNR “ NR “ q
B

Bq
logZR «

cRπ
2

6 plogpqqq2
, with logpqq ă 0 . (3.2.8)

The occupation number in the right sector is given by Bose-Einstein statistics

ρRpk0q “
qn

1´ qn
“

e
´
k0
TR

1´ e
´
k0
TR

, (3.2.9)

where n is the momentum quantum number of the mode moving in the time circle for

the near-horizon region of AdS4 black holes. From (3.2.8) we can solve for q in terms of

δNR “ NR, and then combining it with (3.2.9) we obtain

TR “
k0

πn

c

6
δNR

cR
“

1

π

c

6NR

cR
, (3.2.10)
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where we used k0 “ n. A similar expression holds for TL, i.e.,

TL “
1

π

c

6NL

cL
. (3.2.11)

We see that (3.2.10) and (3.2.11) are completely consistent with (3.2.3). In the limit k0 „

TR ! TL, the occupation number in the left sector can be approximated as

ρLpk0q “
e
´
k0
TL

1´ e
´
k0
TL

«
TL
k0

“
1

πk0

c

6NL

cL
. (3.2.12)

According to [61, 93], Hawking radiation can be formulated as a scattering process of

left and right modes in the near-horizon CFT2. Therefore, we can evaluate the Hawking

radiation rate for near-extremal AdS4 black holes based on the analyses above

dΓ „
d4k

k0

1

pL0 p
R
0

|A|2 cL ρLpk0q ρRpk0q , (3.2.13)

where the central charge cL provides the degrees of freedom for a given momentum quantum

number n, and A is the disc amplitude of strings depending on details of the near-horizon

CFT2. From (3.2.12) we see that

cL ρLpk0q „ SL9phorizon areaq . (3.2.14)

Consequently, the Hawking radiation rate becomes

dΓ „ phorizon areaq ¨
e
´
k0
TR

1´ e
´
k0
TR

d4k , (3.2.15)

which implies that the radiation spectrum is thermal and governed by a temperature TR pro-

portional to the Hawking temperature TH . Therefore, we have found a microscopic formalism

of Hawking radiation in the near-horizon CFT2. According to this picture, the scattering of

modes is unitary; hence there is no information loss during the Hawking radiation process.

Since the boundary CFT can exactly reproduce the near-extremal black hole entropy

(3.2.1), this microscopic formalism of Hawking radiation can in principle be embedded in

higher-dimensional boundary CFT, which is the 3d superconformal ABJM theory for AdS4

black holes.

Like the AdS5 case discussed in [61], we have not taken into account the global structure

of AdS space. Particularly, due to the conformal boundary of AdS space, once the radiation
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reaches the boundary, it will bounce back and head towards the black hole. Therefore, our

current model provides a microscopic description for the Hawking radiation immediately

after creation. We leave the full evolution of Hawking radiation for future work.

3.3 Discussion

We have studied the electrically charged rotating AdS4 black holes in the near-extremal

limit. Moreover, by studying the parameter space we have successfully defined a way to

approach near-extremal supersymmetric black holes. We have then computed the entropy

using three different approaches: (i) from the gravity solution, (ii) from the near-horizon

CFT2 via the Kerr/CFT correspondence and (iii) from the boundary CFT via the AdS/CFT

correspondence. Remarkably, these three results match precisely, giving us a universal and

unique expression for the entropy in the near-extremal limit. This supports the near-extremal

microstate counting in the boundary CFT and in the near-horizon CFT2. We also have

shown that the extension of the Kerr/CFT correspondence, originally posed for extremality,

to near-extremal black holes is valid. Using the results of near-extremal black hole entropy,

we provide a microscopic description of Hawking radiation, and qualitatively show that

unitarity and information are preserved during the Hawking radiation process.

The success of this work provides motivation to further study near-extremality in other

dimensions and indeed show that the three diverse entropy computations lead to one universal

entropy. Besides the near-extremal AdS5 black holes discussed in [61] and the AdS4 case

discussed in this chapter, we can also consider the known AdS6 and AdS7 [94] black hole

solutions. Similar results from different approaches listed in Fig. 1.2 are expected. Moreover,

the unifying picture Fig. 1.2 can potentially be valid beyond the Bekenstein-Hawking entropy.

Hence, it would be interesting to study the subleading corrections to the Bekenstein-Hawking

entropy and see if the different approaches still provide a unique expression for the entropy,

in the same spirit of [48, 95–104]. A recent work [65] shows that Sen’s classical entropy

function formalism [105] can be applied to asymptotically AdS4 black holes to capture higher

derivative corrections to the Bekenstein-Hawking entropy, which complements the methods

in Fig. 1.2.

Besides the microstate counting of black holes, a more interesting question is how to

use field theory techniques to study dynamical process in black hole physics. For instance,

Hawking radiation on asymptotically AdS black holes has been studied within the framework

of AdS/CFT correspondence previously in [106, 107]. Some recent progress has been made

for microscopic description of Hawking-Page transition [108]. Another related problem is to

reproduce the Page curve in the black hole evaporation process [109–111], which has been
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studied in the framework of 2d JT gravity coupled to a 2d bath CFT [112–115]. Our approach

in [61] and in this chapter provides another powerful framework of studying these problems.

In order to do that, however, we have to first carefully study the Hawking radiation at a

later time in the dual boundary field theory and in the near-horizon CFT2 to resolve the

issues from the global property of AdS space. We hope to refine our microscopic models and

study these more physical problems in the near future.
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Part II

Logarithmic Corrections to AdS Black

Hole Entropy
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Chapter 4

Five Dimensional AdS Black Objects

4.1 AdS5 Black Holes

4.1.1 The Superconformal Index and Black Hole Entropy

An efficient way to count 1
16

-BPS states in N “ 4 SYM is to consider the theory on S1ˆ S3

and evaluate the superconformal index (SCI) [12, 116]:

Ipτ ; ∆q “ Tr
”

p´1qF e´βtQ,Q
:uvQaa pJ1`

r
2 qJ2`

r
2

ı

, (4.1.1)

where β is the circumference of S1, and F is the fermionic operator, while Qa“1,2,3 are

flavor charges with associated fugacities va “ e2πi∆a . With r we denote the R-charge. The

fugacities p “ e2πiτ and q “ e2πiσ are associated to the angular momenta J1,2 of S3, and the

combinations J1,2 `
r
2

commute with the supercharge Q. In what follows we set τ “ σ for

simplicity. Note that the counting of states that the SCI offers should be seen as performed

in the grand-canonical ensemble, since we are keeping fixed the values of chemical potentials

while summing over all possible charges.

According to the AdS/CFT correspondence, SUpNq N “ 4 SYM is dual to type IIB

supergravity on AdS5 ˆ S
5, in which one can find supersymmetric black hole solutions that

are asymptotically AdS, rotating and electrically charged. Remarkably, in recent years plenty

of evidences have been gathered indicating that Ipτ ; ∆q captures the entropy of such black

holes [13–15] (see [30–32, 68, 69, 117, 118] for further developments and [103, 119] for a more

complete list of references).

The SCI can be written as a contour integral over the holonomies of the gauge group
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[120,121]:

I pτ ; ∆q “ κN

ż 1

0

N´1
ź

µ“1

duµZ pu; ∆, τq ,

Z pu; ∆, τq “

ś3
a“1

ś

i‰j
rΓ puij `∆a; τq

ś

i‰j
rΓ puij; τq

,

κN “
pp; pqN´1

8
pq; qqN´1

8

N !

3
ź

a“1

´

rΓp∆a; τq
¯N´1

,

(4.1.2)

where p¨ ; ¨q8 is the Pochhammer symbol, and rΓpu; τq is the elliptic Gamma function defined

both in Appendix C.1. There are two main approaches to evaluate theN -dimensional integral

over the holonomies of the gauge group representing the SCI. The first approach relies on a

direct application of the residue theorem, and yields what is known in the literature as the

Bethe-Ansatz method. The second approach implements a saddle-point evaluation of the

integral.

The Bethe-Ansatz Approach

The location of the poles of (4.1.2) is given by the solutions to the set of equations:

Qkpû; ∆, τq “ 1, @ k “ 1, ¨ ¨ ¨ , N , (4.1.3)

where

Qkpu; ∆, τq “ e2πiλ
N
ź

l“1p‰kq

3
ź

a“1

θ1p´ukl `∆a; τq

θ1pukl `∆a; τq
(4.1.4)

are the Bethe-Ansatz operators and the values û satisfying (4.1.3) are called Bethe-Ansatz

solutions. We then define BA “ tû | (4.1.3) is satisfiedu. With λ we have denoted a

Lagrange multiplier implementing the SUpNq constraint on the holonomies
řN
i“1 ui P Z,

and θ1pu; τq is the elliptic theta function defined in Appendix C.1. Upon direct application

of the residue theorem, Ipτ,∆q can be rewritten in terms of a discrete sum as:

Ipτ ; ∆q “ κN
ÿ

ûPBA

Zpû; ∆, τqHpû; ∆, τq´1 ,

H pû; ∆, τq “ det

„

1

2πi

B pQ1, ¨ ¨ ¨ , QNq

B pu1, ¨ ¨ ¨ , uN´1, λq



.

(4.1.5)

Let us emphasize that (4.1.5) is not the full story, since the application of the residue

theorem required the poles to be isolated, and there is enough evidence by now [122, 123]
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that this is not the case generically. We shall focus only on the contributions coming from

isolated poles (see [124] for more detailed discussions on this point). A set of solutions to

the equations (4.1.3) was found in [125] and it is given by:

ui “ uĵ,k̂ “ ū`
ĵ

m
`
k̂

n

´

τ `
r

m

¯

,

ĵ “ 0, ¨ ¨ ¨ ,m´ 1 , k̂ “ 0, ¨ ¨ ¨ , n´ 1 ,

r “ 0, ¨ ¨ ¨ , n´ 1 ,

(4.1.6)

where N “ mn, hence, each set tuiu in (4.1.6) can be labeled by the numbers tm,n, ru.

These solutions to the Bethe-Ansatz equations for the SCI were, in fact, inspired by the set

of solutions found in [125] for the Bethe-Ansatz equations associated to the topologically

twisted index. We will discuss that case in Sec. 4.2.1. However, in the large-N limit, it was

possible to argue that the configuration corresponding to t1, N, 0u contributed dominantly

to the SCI. We shall refer to the t1, N, 0u solution as the “basic” solution, namely

ûbasic “

"

ui “ ū`
i

N
τ
ˇ

ˇ

ˇ
i “ 1, 2, ¨ ¨ ¨ , N ´ 1

*

ď

tuN “ ūu , (4.1.7)

where ū is determined as

Nū`
NpN ´ 1q

2N
τ P Z . (4.1.8)

The parameter ū enforces the SUpNq constraint
řN
i“1 ui P Z on the holonomies, which,

together with the periodicity properties of Ipτ ; ∆q allows us to obtain:

ū “
k

N
´
N ´ 1

2N
τ , k “ 1, ¨ ¨ ¨ , N ´ 1 , (4.1.9)

each of which contributes identically to the Ipτ ; ∆q, we therefore have that, in the appropriate

regime of chemical potentials:

log Ipτ ; ∆q
ˇ

ˇ

Basic BA
“ ´

iπpN2 ´ 1q

τ 2
∆1∆2∆3 ` logN `OpN0

q. (4.1.10)

We see that the logN in (4.1.10) has a purely combinatorial origin, whose precise form is

quite insensitive to details about the theory in which Ipτ ; ∆q is being evaluated.
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The Saddle Point Approach and the Cardy-Like Expansion

Let us further reinforce the idea that the logarithmic correction to the SCI has a combi-

natorial origin. To do so we briefly reproduce here the saddle-point evaluation of (4.1.2)

implemented in [103].

The strict Cardy-like limit

By the strict Cardy-like limit we mean that we keep only the most divergent term in a

τ Ñ 0 expansion1. The study of the strict Cardy-like limit was the subject of several

works [14,26–30], and the main idea is to rewrite (4.1.2) in the following way:

Ipτ ; ∆q “ κN

ż N´1
ź

µ“1

duµ exp

ˆ

1

τ 2
Seffpu; ∆, τq

˙

, (4.1.11)

where Seffpu; ∆, τq is appropriately defined such that Zpu; ∆, τq in (4.1.2) is recovered. The
1
τ2 factor can be used as a large control parameter to apply the saddle-point method in

the strict Cardy-like limit. We are exploiting the fact that we already know the leading

contribution in such limit is precisely of the order O
`

1
τ2

˘

. The saddle-point equations have

the form:

B

Buµ
Seffpu; ∆, τq

ˇ

ˇ

ˇ

ˇ

u“saddle

“ 0 , pµ “ 1, ¨ ¨ ¨ , N ´ 1q . (4.1.12)

The set with all identical holonomies, namely ui “ uj for all i, j P t1, ¨ ¨ ¨ , Nu [14, 26] is

one of the most well-known solutions to (4.1.12). The effective action at this saddle point

successfully counted the dual AdS5 black hole microstates [14].

There areN distinct sets of identical holonomies satisfying the SUpNq constraint
řN
i“1 ui P

Z, namely

upmq “
!

u
pmq
j “

m

N

ˇ

ˇ

ˇ
j “ 1, ¨ ¨ ¨ , N

)

, pm “ 0, 1, ¨ ¨ ¨ , N ´ 1q . (4.1.13)

Within the appropriate range of chemical potentials, the saddle points (4.1.13) yield the

following effective action:

1

τ 2

N´1
ÿ

m“0

Seffpu
pmq; ∆, τq “ exp

ˆ

´
iπpN2 ´ 1q

τ 2
∆1∆2∆3 ` logN `Op´1{|τ |q

˙

. (4.1.14)

1More refined limits were considered in [126]. The authors discussed the limit where q “ e2πiτ approaches
roots of unit.
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From (4.1.13) and (4.1.14) we see that the logarithmic correction has its origin in the mul-

tiplicity of the saddle points. This result remains true even for more generic N “ 1 toric

quiver gauge theories, as emphasized in [103], which renders the logN correction a quite

robust one. Note that we have not made use of the large-N limit here, therefore, provided

that we remain at small values of τ , (4.1.14) holds for finite N (Evidence in favor of this has

been given in [122]).

The Cardy-like expansion

With the Bethe-Ansatz approach we have learned that even for generic values of τ , in the

large-N limit, the logN is the same and arises from degeneracies of Bethe-Ansatz solutions.

At this point we have shown that also for finite N , in the strict Cardy-like limit, the logN

has a combinatorial origin.

We now proceed to include subleading corrections in inverse powers of τ and show that,

indeed, the logN remains unchanged. This is an important step, since it helps us build

an intuition that we later import to a different situation, namely the refined topologically

twisted index, where we have only access to the strict Cardy-like limit and argue about

the possibility of the combinatorial nature of logN to remain true as we depart from this

limit. We then focus on the effective action evaluated near the leading saddle-point solution

(4.1.13). Following [103], we make the Ansatz for saddle-point solutions in the finite Cardy-

like expansion,

upmq “

#

u
pmq
j “

m

N
` vjτ

ˇ

ˇ

ˇ
vj „ Op|τ |0q,

N
ÿ

j“1

vj “ 0

+

, pm “ 0, 1, ¨ ¨ ¨ , N ´ 1q , (4.1.15)

and evaluate the effective action around this Ansatz. For a suitable choice of chemical

potentials, the following expression was obtained:

log Ipτ ; ∆q “ ´
iπpN2 ´ 1q

τ 2
∆1∆2∆3 ` logN `Ope´1{|τ |

q . (4.1.16)

The exponentially suppressed correction comes from the asymptotic expansion of the building

blocks of the effective action, namely elliptic Gamma functions and Pochhammer symbols

(see Appendix C.1.1). An important aspect about (4.1.16) is that it includes all power-like

corrections in τ , and rather remarkably, it is a series that truncates at the leading order.

A prominent role in the technical evaluation of (4.1.16) was the cancellation of the Opτ 0q

contribution which was given in terms of the effective action of a matrix model of SUpNq
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level k “ N Chern-Simons theory on S3 (see [103] for a more detailed discussion).

What seems like a rather technical step when analyzed from the strictly mathematical

perspective of looking at the asymptotic behavior of Seffpu; ∆, τq, becomes very natural when

viewed from an effective field theory perspective. Such analysis was carried out in [127], where

the Cardy-like (small τ) expansion was shown to geometrically correspond to shrinking the

S1 circle, thus leading to an effective field theory on S3 organized in inverse powers of the

circumference of S1.

In particular, a careful treatment of the Kaluza-Klein reduction on S1 yields a result

compatible with (4.1.16), where the logN is associated to degeneracies of vacua. This

effective field theory approach clarifies the organization of the index in inverse powers of

|τ | and further confirms the logarithmic term as certain degeneracy of vacua [126, 127].

Specifically, the effective field theory approach allows to establish the existence of a minimum

of Seffpu; ∆, τq at u “ 0, which spontaneously breaks the one-form symmetry ZN of the 4d

N “ 4 SYM theory. The fact that u “ 0 spontaneously breaks ZN implies the existence

of exactly N ´ 1 additional local minima which contribute equally to the index, hence the

logN correction to the logarithm of the SCI.

Summarizing, the logarithmic correction to the logarithm of the SCI, which we refer to

as ∆log ICFT4 , has been shown to be robust. In [103] it was originally obtained using two

different approaches to evaluate the index: the saddle-point approximation and the Bethe-

Ansatz approach. In the latter approach, the logarithmic term appears as the degeneracy of

the Bethe-Ansatz solutions. The same logarithmic contribution was also shown to persist for

a large class of N “ 1 superconformal field theories. The form of the logarithmic correction

was further confirmed in [128], which provides an interpretation for certain exponentially

suppressed terms. In [129], the logarithmic corrections were extended to other gauge groups

and the results were shown to be compatible with the SUpNq analysis.

The black hole entropy is extracted from the SCI by implementing an inverse Laplace

transformation, which yields the degeneracy of a state with given energy and charges. In

the regime of large charges, we can reduce the inverse Laplace transformation to a Legendre

transformation using the saddle point approximation. This is tantamount to changing from

a grand-canonical ensemble to a microcanonical one. At the leading order in N , the two

ways of approaching the entropy should be equivalent. However, when studying subleading

structures we have to be more careful, since the very process of going from one ensemble to

the other could modify the subleading corrections we are trying to probe. To be more specific,

let us call ∆SCFT4 the subleading logarithmic correction to the black hole entropy. Then we

expect that in general ∆SCFT4 “ ∆log ICFT4` (corrections from changing ensemble). Let us

now study more carefully the contribution coming from the change of ensemble.
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4.1.2 The Logarithmic Correction Associated to Changing Ensem-

ble

We denote IGC as the index computeded in the grand-canonical ensemble and IMC as the

index in the microcanonical ensemble, i.e., the index for fixed values of the charges. We

consider D chemical potentials µI (I “ 1, ¨ ¨ ¨ , D) satisfying the constraint,

D
ÿ

I“1

cIµI “ n0, (4.1.17)

where cI “ 1 for µI associated to electric charges and cI “ ´1 for µI associated to angular

momenta. We implement the inverse Laplace transform which takes us from the grand-

canonical ensemble to the microcanonical ensemble

IMC “

ż

dDµ dΛ exp

#

log IGC ´

D
ÿ

I“1

QIµI ´ Λ

˜

D
ÿ

I“1

cIµI ´ n0

¸+

, (4.1.18)

where Λ is the Lagrange multiplier associated to the constraint (4.1.17). Note that we have

already considered the case of equal angular momenta when computing the index in the

grand-canonical ensemble. Otherwise, we would have also needed an additional Lagrange

multiplier accounting for the constraint among rotations. We know the logarithmic correc-

tions in the grand-canonical ensemble takes the form

log IGC “ log Ipleadingq
GC ` logN. (4.1.19)

Imposing (4.1.19), we find that the index in the microcanonical ensemble takes the form

IMC “ N

ż

dDµ dΛ exp

«

log Ipleadingq
GC ´

D
ÿ

I“1

QIµI ´ Λ

˜

D
ÿ

I“1

cIµI ´ n0

¸ff

. (4.1.20)

We are now ready to implement the saddle point method, keeping the subleading logarithmic

corrections associated to the one-loop determinant. The saddle point equations are given as

B

BµI

«

log Ipleadingq
GC ´

D
ÿ

I“1

QIµI ´ Λ

˜

D
ÿ

I“1

cIµI ´ n0

¸ff

“ 0,

B

BΛ

«

log Ipleadingq
GC ´

D
ÿ

I“1

QIµI ´ Λ

˜

D
ÿ

I“1

cIµI ´ n0

¸ff

“ 0,

(4.1.21)
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which leads to

B log Ipleadingq
GC

BµI
“ QI ` cIΛ,

D
ÿ

I“1

cIµI “ n0.

(4.1.22)

A very important property of log Ipleadingq
GC is its homogeneity of degree one in the chemical

potentials. This implies the following crucial relation

log Ipleadingq
GC “

D
ÿ

I“1

µI
B log Ipleadingq

GC

BµI
. (4.1.23)

Evaluating at the saddle point values, we obtain

log I‹pleadingq
GC “

D
ÿ

I“1

µ‹I pQI ` cIΛq , (4.1.24)

such that the saddle point imposed on (4.1.20) yields

IMC « N exp

#

log I‹pleadingq
GC ´

D
ÿ

I“1

QIµ
‹
I ´ Λ

˜

D
ÿ

I“1

cIµ
‹
I ´ n0

¸

´
1

2
log det pHq

+

“ N exp

#

D
ÿ

I“1

µ‹I pQI ` cIΛq ´
D
ÿ

I“1

QIµ
‹
I ´ Λ

˜

D
ÿ

I“1

cIµ
‹
I ´ n0

¸

´
1

2
log det pHq

+

“ Nen0Λ´ 1
2

log detpHq.

(4.1.25)

The Hessian H has the form

H “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

B2 log Ipleadingq
GC

Bµ2
1

¨ ¨ ¨
B2 log Ipleadingq

GC

Bµ1BµD

B2 log Ipleadingq
GC

Bµ1BΛ

. . . .

. . . .
B2 log Ipleadingq

GC

BµDBµ1
¨ ¨ ¨

B2 log Ipleadingq
GC

Bµ2
D

B2 log Ipleadingq
GC

BµDBΛ

B2 log Ipleadingq
GC

BΛBµ1
¨ ¨ ¨

B2 log Ipleadingq
GC

BΛBµD

B2 log Ipleadingq
GC

BΛ2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.1.26)

Since log Ipleadingq
GC is a homogeneous function of degree one, the chemical potentials can

appear either in the numerator or the denominator in a way that the second derivative terms

appearing along the diagonal of H vanish when µI appears in the denominator. To keep
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track of this we define a list of numbers tδ1, ¨ ¨ ¨ , δDu such that δI vanishes when µI is in the

numerator of log Ipleadingq
GC and it is equal to one otherwise. This implies the following scaling

of H

detH „ det

¨

˚

˚

˚

˚

˚

˚

˝

OpN2qδ1 ¨ ¨ ¨ OpN2q c1

. . . .

. . . .

OpN2q ¨ ¨ ¨ OpN2qδD cD

c1 ¨ ¨ ¨ cD 0

˛

‹

‹

‹

‹

‹

‹

‚

„ OpN2pD´1q
q. (4.1.27)

Defining D “ d ` 1, where d is the number of independent chemical potentials, the index

computed in the microcanonical ensemble up to logarithmic corrections takes the form

log IMC « n0Λ` p1´ dq logN. (4.1.28)

Since the chemical potentials are constrained by having equal angular momenta as well as the

BPS condition, we have d “ 3 and therefore the logarithmic correction in the microcanonical

ensemble is

∆SCFT4 “ ´2 logN. (4.1.29)

We expect this 4-dimensional result to match with the subleading correction coming from

the 2-dimensional Cardy formula.

4.1.3 Black Hole, Its Entropy and Near-Horizon Limit

The non-extremal asymptotically AdS5 black hole background was found in [24]. In the

Boyer-Lindquist coordinates xµ “ pt, r, θ, φ, ψq, the metric and the gauge field are given by
2

ds2
“ ´

rp1` g2r2qρ2dt` 2qνs dt

Ξρ2
`

2q

ρ2Ξ
ν2
`

f

ρ4Ξ2
pdt´ νq2

`
ρ2dr2

∆r

`
ρ2

Ξ

`

dθ2
` sin2θ dφ2

` cos2θ dψ2
˘

, (4.1.30)

A “

?
3 q

ρ2Ξ
pdt´ νq , (4.1.31)

2For simplicity, we consider the black hole with equal angular momenta J1 “ J2 and equal electric charges
Q1 “ Q2 “ Q3.
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where

ν ” a p sin2θ dφ` cos2θ dψq , Ξ ” 1´ a2g2 ,

∆r ”
pr2 ` a2q2p1` g2r2q ` q2 ` 2a2q

r2
´ 2m,

ρ2
” r2

` a2, f ” 2mρ2
´ q2

` 2a2qg2ρ2 .

(4.1.32)

These black hole solutions are characterized by three independent parameters pm, a, qq, and

g is the inverse radius of AdS5.

We are ultimately interested in exploring the black hole solution for the parameter space

satisfying supersymmetry and extremality, i.e. BPS. The supersymmetric limit corresponds

to

q “
m

1` 2ag
. (4.1.33)

However, this is not enough to ensure physical solutions and therefore we must also consider

an additional constraint to prevent naked closed timelike curves, which in the BPS limit

takes the form

m “
2ap1` agq2p1` 2agq

g
. (4.1.34)

Extremality occurs when the inner horizon and the outer horizon coincide, which for our

solution gives the double root

r2
0 “

ap2` agq

g
. (4.1.35)

The macroscopic Bekenstein-Hawking entropy for the supersymmetric black hole, com-

puted as a quarter of the area of the horizon (in units of GN “ 1), is

SBH “
π2a3{2

?
2` ag

g3{2p1´ agq2
“ 2π

d

3Q2

g2
´

π

2g3
J , (4.1.36)

where we have written it explicitly in terms of the electric charge, Q, and the angular

momentum, J . The remarkable achievement of [13–15] was to obtain this expression for the

black hole entropy as the Legendre transform of the leading N2-part of the SCI (4.1.16),

thus providing it with a microscopic explanation.

Given that the AdS/CFT correspondence geometrizes RG flow in the radial direction,

it is convenient to consider zooming into a near-horizon region (IR), r0, while assuming a
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co-rotating frame:

r Ñ r0 ` λ rr , tÑ
rt

λ
, φÑ rφ` g

rt

λ
, ψ Ñ rψ ` g

rt

λ
, (4.1.37)

where we have also imposed both (4.1.33) and (4.1.34). Taking λ Ñ 0 brings us to a near-

horizon region of the AdS5 BPS black hole:

ds2
“ α1

„

´rr2 dτ 2
`
drr2

rr2



` Λ1pθq
”

drφ` α2 rr dτ
ı2

` Λ2pθq
”

d rψ ` β1pθqdrφ` β2pθq rr dτ
ı2

` α3 dθ
2 , (4.1.38)

where

α1 “
a

2gp1` 5agq
,

α2 “
3ap1´ agq

2p1` 5agq

c

a
´

a` 2
g

¯

,

α3 “
2a

gp1´ agq
,

Λ1pθq “
4ap2` agqsin2θ

gp1´ agqp4´ ag ` 3agcosp2θqq
,

Λ2pθq “
ap4´ ag ` 3agcosp2θqqcos2θ

2gp1´ agq2
,

β1pθq “
6agsin2θ

4´ ag ` 3agcosp2θq
,

β2pθq “

3gp1´ agq

c

a
´

a` 2
g

¯

p1` 5agqp4´ ag ` 3agcosp2θqq
.

(4.1.39)

It is in the near-horizon limit at extremality where we find that the near-horizon geom-

etry is locally a Up1q2-bundle over AdS2. The asymptotic symmetries of this space can be

studied via the Kerr/CFT correspondence, which associates to each Up1q-fiber in (4.1.38)

a central charge and an effective temperature in the CFT2. We can apply the Kerr/CFT

correspondence to either Up1q, and the results of the black hole entropy from the Cardy

formula are the same [18,79].

89



4.1.4 Kerr/CFT Correspondence and Charged Cardy Formula

Let us briefly review the Cardy formula which determines the degeneracy of states in a

CFT2. We are interested in its application up to and including the logarithmic corrections

to the degeneracy of states, with constraints among the charges and chemical potentials. We

consider the partition function of a CFT2 with n global Up1q symmetries expressed in the

grand-canonical ensemble

Zpτ, τ̄ , ~µq “ Tr e2πiτL0´2πiτ̄ L̄0`2πiµiP
i

, (4.1.40)

where P i are the conserved charges of the global Up1q’s, and µi are the corresponding chem-

ical potentials. One particular property of the CFT2 with conserved currents is that under

modular transformations

τ Ñ τ 1 “
aτ ` b

cτ ` d
, µi Ñ µ1i “

µi
cτ ` d

, i “ 1, ¨ ¨ ¨ , n, (4.1.41)

the partition function transforms as (in a special choice of normalization)

Z pτ 1, ~µ1q “ e
´2πi

ˆ

cµ2

cτ`d

˙

Zpτ, ~µq . (4.1.42)

Therefore, the modular invariance of the partition function requires

Zpτ, τ̄ , ~µq “ e´
2πiµ2

τ Z

ˆ

´
1

τ
, ´

1

τ̄
,
~µ

τ

˙

, (4.1.43)

where µ2 ” µiµjk
ij with kij denoting the matrix of the Kac-Moody levels of the Up1q

currents. The modular invariance (4.1.43) implies that for small τ

Zpτ, τ̄ , ~µq « e´
2πiµ2

τ e´
2πiEvL
τ

`
2πiEvR
τ̄

`
2πiµip

i
v

τ , (4.1.44)

where Ev
L, Ev

R and piv are the lowest eigenvalues of L0, L̄0 and P i respectively. Moreover, we

take Ev
L, Ev

R to be negative, and piv “ 0, corresponding to an electrically neutral vacuum.

Let us take a moment to understand the charges pi of the theory, which include the

angular momenta p1, p2 and the electric charges p3, p4, p5, originally coming from the AdS5

black hole solution. Particularly, for the 5d BPS black hole of interest, such charges obey a
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linear constraint of the generic form

5
ÿ

i“1

bipi “M, (4.1.45)

where bi are some constant coefficients and M is related to the mass of the black hole. There-

fore, (4.1.45) implements the BPS conditions (4.1.33) and (4.1.34). Since we are considering

pi „ OpN0q, it can be seen from (4.1.45) that M „ N0.

In the grand-canonical ensemble, we fix chemical potentials and admit all values of

charges. We consider a linear constraint among chemical potentials

5
ÿ

i“1

siµi “ C , (4.1.46)

where C is a constant of the orderOpN0q. The constraint (4.1.17) is a special case of (4.1.46).

As we are going to see, this leads to the result that in terms of the scaling of N , si „ k´1
ii .

Moreover, in order to compare to the CFT4 with equal angular momenta, we consider an

additional constraint of the form

2
ÿ

i“1

αiµi “ 0, (4.1.47)

of which the constraint µ1 “ µ2 is a special case. To clarify how we use these constraints to

derive the logarithmic corrections, we carefully change to the microcanonical ensemble by

integrating over chemical potentials while respecting the constraints (4.1.46) and (4.1.47).

The density of states ρpτ, τ̄ , ~µq can be expressed as the inverse Fourier transform of Zpτ, τ̄ , ~µq

ρpEL, ER, ~pq “

ż

dτ dτ̄ dnµ dλ1 dλ2 exp

«

2πiSpµ, τ, τ̄q ` 2πiλ1

˜

5
ÿ

i“1

siµi ´ C

¸

` 2πiλ2

2
ÿ

i“1

αiµi

ff

,

(4.1.48)

Spµ, τ, τ̄q “ ´
µ2

τ
´
Ev
L

τ
`
Ev
R

τ̄
`
µip

i
v

τ
´ τEL ` τ̄ER ´ µip

i , (4.1.49)

where EL, ER and pi are the eigenvalues of L0, L̄0 and P i, respectively, and n denotes

the number of independent chemical potentials. Before we proceed, we take a moment to

discuss the scaling of the various expressions and parameters involved. This is a crucial step

in understanding which terms contribute to the subleading corrections of the entropy. The

modular parameters are order-1 parameters: τ, τ̄ „ OpN0q. Similarly, we take pi „ N0 and
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C „ N0. From (4.1.49), we find that µ2 „ µi p
i τ , which solving for the scaling of µi gives

µi „ pjkijτ ñ µi „
ÿ

j

pjkij „ ps
i
q
´1, (4.1.50)

where we have made the summation over the indices explicit, to make it clear that the

highest order in the summation should be the scaling of µi and si. Likewise, EL „ ER „

Ev
L „ Ev

R „ µ2 „
ř

i,j p
ipjkij.

Therefore, we have related the different parameters to the matrix kij, where the scaling

can be found via the Kac-Moody levels. There are two types of levels that we are interested

in. The Kac-Moody level from the SUp2q rotation, i.e. k11 or k22, is proportional to the

central charge c [130], which is of the order of Newton’s constant G´1 „ N2. The Kac-Moody

levels from Up1q gauge symmetries, i.e. kii (i ą 2), are proportional to N´2 [131, 132]. For

the BPS AdS5 black hole, the N -dependences of various factors are

Ev
L, E

v
R „ N2 , 4EL ´ P2, ER „ N2 , k11, k22

„ N2 , k33, k44, k55
„ N´2 , (4.1.51)

which implies that k11, k22 „ N´2 and k33, k44, k55 „ N2. Moreover, this also implies that

s1
“ s2

„ N2, s3
“ s4

“ s5
„ N´2, (4.1.52)

or likewise s1 “ s2 „ N0, s3 “ s4 “ s5 „ N0. Due to the definition of µi and pi as

µ2 “ µiµjk
ij and P2 ” pipjk

ij, we lower and raise the indices of µi, pi and si with kij.

However, for αi we do not need to raise indices with kij, as α1 and α2 are the net scaling

because the right hand side of (4.1.47) is zero.

With these scalings in mind, we can now proceed to compute the saddle point. From

(4.1.48) and (4.1.49) let us define

rSpµ, τ, τ̄q ” Spµ, τ, τ̄q ` λ1

˜

5
ÿ

i“1

siµi ´ C

¸

` λ2

2
ÿ

i“1

αiµi . (4.1.53)
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The equations for the fixed points have the form

i “ 1, 2 :
B rS

Bµi
“ ´2

kijµ
j

τ
`
ppvqi
τ

´ pi ` λ1si ` λ2αi “ 0 , (4.1.54a)

i “ 3, 4, 5 :
B rS

Bµi
“ ´2

kijµ
j

τ
`
ppvqi
τ

´ pi ` λ1si “ 0 , (4.1.54b)

B rS

Bτ
“
µ2

τ 2
`
Ev
L

τ 2
´
µip

i
v

τ 2
´ EL “ 0 , (4.1.54c)

B rS

Bτ̄
“ ´

Ev
R

τ̄ 2
` ER “ 0 , (4.1.54d)

B rS

Bλ1

“

5
ÿ

i“1

siµi ´ C “ 0 , (4.1.54e)

B rS

Bλ2

“

2
ÿ

i“1

αiµi “ 0 . (4.1.54f)

We define the values of the saddle to be pµiq0, τ0 and τ̄0, such that (4.1.54a) gives

pµiq0 “

$

&

%

1
2
kij pp

j
v ´ p

jτ0 ` λ1s
jτ0 ` λ2α

jτ0q , i “ 1, 2 ,

1
2
kij pp

j
v ´ p

jτ0 ` λ1s
jτ0q , i “ 3, 4, 5 ,

(4.1.55)

where we can redefine pi by shifting it as follows

rpi ”

$

&

%

pi ´ λ1s
i ´ λ2α

i , i “ 1, 2 ,

pi ´ λ1s
i , i “ 3, 4, 5 .

(4.1.56)

Therefore, we rewrite

pµiq0 “
1

2
kij

`

pjv ´ rpjτ0

˘

, (4.1.57)

with τ0 satisfying

τ 2
0EL “ µ2

0 ` E
v
L ´ pµiq0p

i
v . (4.1.58)

Using (4.1.57), we find that

µ2
0 “

1

4

“

kijp
i
vp
j
v ` τ

2
0 kijrp

i
rpj
‰

´
1

2
kijrp

ipjvτ0 “
1

4
kijτ

2
0 rp

i
rpj , (4.1.59)

where kimk
il “ δlm, and in the second equality we have assumed that the vacuum is electrically
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neutral, i.e. piv “ 0. Inserting (4.1.59) in (4.1.58), we obtain

τ0 “ ˘i

d

4p´Ev
Lq

4EL ´ kijpipj
. (4.1.60)

The saddle point for τ̄ trivially is τ̄0 “ ˘i
b

´EvR
ER

. Consequently, pµiq0 given by (4.1.57) now

has the form

pµiq0 “ ´
1

2
kijrp

jτ0 “ ¯ikijrp
j

d

´Ev
L

4EL ´ kijrpirpj
. (4.1.61)

Imposing (4.1.54f), we find

2
ÿ

i“1

αipµiq0 “ ´kijα
i
rpj

d

Ev
L

4EL ´ kijrpirpj
“ 0 ñ α1k11rp

1
` α2k22rp

2
“ 0 . (4.1.62)

Choosing the normalization of the Kac-Moody levels such that k11 “ k22, we can solve for

the Lagrange multiplier λ2

α1k11rp
1
` α2k22rp

2
“ 0 ,

ñ k11

`

α1
pp1
´ λ1s

1
´ λ2α

1
q ` α2

pp2
´ λ1s

2
´ λ2α

1
q
˘

“ 0 ,

ñ α1p1
` α2p2

´ λ1pα
1s2
` α2s2

q ´ λ2ppα
1
q
2
` pα2

q
2
q “ 0 .

(4.1.63)

We now set α1 “ ´α2, since both p1 and p2 should have the same scaling. Therefore, we

obtain

α1, α2 „ 1, (4.1.64)

and

α1
„ α2

„ 1 , (4.1.65)

where we do not need to raise indices with kij here, as α1 and α2 are the net scaling, and

the right hand side of (4.1.47) is zero. Moreover, s1 “ s2 as they correspond to the equal

angular momenta. We then find from (4.1.63) that

α1
pp1
´ p2

q “ 2pα1
q
2λ2 ,

ñ λ2 “
p1 ´ p2

2α1
,

(4.1.66)

which vanish for p1 “ p2. This implies that λ2 does not affect the logarithmic corrections to
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the entropy for the case of equal angular momenta, as its contribution to the determinant of

the Hessian matrix is of the order OpN0q. We are also interested in the scaling of λ1. From

(4.1.54e), we find

5
ÿ

i

sipµiq0 “ ´kijs
i
rpj

d

Ev
L

4EL ´ kijrpirpj
“ C . (4.1.67)

As we expect the scaling to remain the same for any arbitrary values of the charges, we

consider a special case pi “ piv “ 0 and find from (4.1.56) and (4.1.67) that

λ1

5
ÿ

i“1

kiis
isi “ C

d

4EL ´ λ2
1

ř5
i“1 kiis

isi

Ev
L

,

ñ λ2
1

˜

5
ÿ

i“1

kiis
isi

¸2

“ C2

˜

4EL
Ev
L

´
λ2

1

ř5
i“1 kiis

isi

Ev
L

¸

,

ñ λ2
1

»

–

˜

5
ÿ

i“1

kiis
isi

¸2

` C2

ř5
i“1 kiis

isi

Ev
L

fi

fl “ 4C2EL
Ev
L

.

(4.1.68)

Let us now discuss the scalings of each of these terms. Given (4.1.51) and (4.1.52), we have

at the leading order EL „ Ev
L „ N2, C „ N0 and kiis

isi „ N2 and therefore

λ1 „ N´2. (4.1.69)

The leading order value of the degeneracy is obtained by evaluating the action at the

saddle point values, which gives

log ρ0 “

b

Ev
L p4EL ´ kijrp

i
rpjq ` 2

a

EREv
R . (4.1.70)

We would like to comment on the scaling with respect to N in (4.1.70). At the leading order,

λ1s
i „ OpN´2q which implies that Oprpiq „ Oppiq. Therefore, (4.1.70) coincides with the

leading order of the degeneracy with rpi replaced by pi. This is important as we can see that

the constraint we imposed only affects the subleading order of the entropy.

Note that we have more than one saddle points, namely one for each choice of signs in

the values of τ0, τ̄0, pµiq0. However, one saddle dominates over the others as Spµ, τ, τ̄q is

95



exponentially suppressed. To see this explicitly, let us take

τ0 “ iετ

d

4p´Ev
Lq

4EL ´ kijpipj
, τ̄0 “ iετ̄

c

´Ev
R

ER
, µi,0 “ ´iετkij p

j

d

´Ev
L

4EL ´ kijpipj
,

(4.1.71)

where ετ and ετ̄ take on values of ˘1. Then, under the constraints imposed by the Lagrange

multipliers, the density of states (4.1.48) can be approximated by the saddle points

ρ0 “
ÿ

ετ ,ετ̄“˘1

exp p2πiSpµ, τ, τ̄qq

“
ÿ

ετ ,ετ̄“˘1

exp

#

2πi

«

´
iετ
2

P2
a

´Ev
L

?
4EL ´ P2

´ iετ p´E
v
Lq

d

4EL ´ P2

4p´Ev
Lq

` iετ̄ p´E
v
Rq

d

ER
´Ev

R

´iετEL

c

´4Ev
L

4EL ´ P2
` iετ̄ER

c

´Ev
R

ER
´ p´iετ qP2

c

´Ev
L

4EL ´ P2

*

“
ÿ

ετ ,ετ̄“˘1

exp

„

2π

ˆ

ετ

b

´Ev
Lp4EL ´ P2q ´ ετ̄

a

´4Ev
RER

˙

.

(4.1.72)

If we now select the combination of ετ “ 1 and ετ̄ “ ´1, which maximizes the exponent in

(4.1.72), we can write

ρ0 „ exp

„

2π

ˆ

b

´Ev
Lp4EL ´ P2q `

a

´4Ev
RER

˙

` . . . , (4.1.73)

where the dots denote the exponentially suppressed terms of subleading non-logarithmic

order. To summarize, given the behavior of Z, the degeneracy ρ can be determined using

the saddle-point approximation with the dominant saddle at

τ0 “

c

4Ev
L

4EL ´ P2
, τ̄0 “ ´

c

Ev
R

ER
, µi,0 “ ´kij p

j

c

Ev
L

4EL ´ P2
, (4.1.74)

where kij is the inverse matrix of kij, and P2 ” pipjkij. Note that the saddle-point values τ0

and pµiq0 are parametrically small, as P2 " |EL|, which is reminiscent of the 4d Cardy limit

originally used in [13, 14] and recently clarified in [126, 127]. Moreover, the Cardy limit in

2d, which assumes that the levels of the theory is much larger than the Casimir energy, is

compatible with the Cardy limit in 4d, which focuses on small chemical potentials and large

charges, as they both address the high energy states of the theory and in our particular case

address the entropy of extremal black holes.

At the saddle (4.1.74), the density of states ρ reaches its extremum ρ0, and the corre-
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sponding entropy is

Spµ0, τ0, τ̄0q “ log ρ0 « 2π
b

´Ev
Lp4EL ´ P2q ` 2π

b

´Ev
Rp4ERq . (4.1.75)

This expression is also called the charged Cardy formula in [133], which implies a micro-

canonical ensemble of black hole microstates. If we apply Ev
L “ Ev

R “ ´c{24, and define the

temperatures TL,R through

EL ´
P2

4
“
π2

6
cT 2

L , ER “
π2

6
cT 2

R , (4.1.76)

we can rewrite the entropy (4.1.75) as

S “
π2

3
cTL `

π2

3
cTR , (4.1.77)

where TR is proportional to the physical Hawking temperature TH . This formula coincides,

at the leading order, with the canonical ensemble version of the charged Cardy formula, and

has been successfully used in a variety of cases [16,83,134–136]. However, we emphasize that

obtaining (4.1.77) did not involve a change of ensemble, as we merely re-identified certain

combinations.

From the near-horizon CFT2 and the Kerr/CFT correspondence we know that for the

BPS AdS5 black hole

cL “
9πa2

GNgp1´ agqp1` 5agq
“

18N2pagq2

p1´ agqp1` 5agq
, (4.1.78)

TL “
1` 5ag

3ap1´ agqπ

d

a

ˆ

a`
2

g

˙

, (4.1.79)

where we have used the AdS5/CFT4 dictionary 1
2
N2 “ π

4GN
`3

5 “
π

4GNg3 . Note that both cL

and TL are dimensionless. Consequently, the BPS AdS5 black hole entropy at the leading

order in N is given by the Cardy formula

SCFT2 “
π2

3
cLTL “

2N2πpagq3{2
?

2` ag

p1´ agq2
. (4.1.80)

This near-horizon CFT2 result matches the macroscopic Bekenstein-Hawking entropy of the

black hole (4.1.36), as shown in [17,18,79].
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4.1.5 Logarithmic Corrections from Near-Horizon CFT2

To derive the logarithmic corrections to the black hole entropy from the near-horizon CFT2,

we evaluate the Cardy formula beyond its leading saddle-point value by including its Gaus-

sian correction. Namely, we consider a logarithmic correction ∆SCFT2 obtained from ex-

panding τ , τ̄ and ~µ to the quadratic order around the saddle point given by (4.1.74). The

result is

∆SCFT2 “ ´
1

2
log

detA
p2πqn`2

, (4.1.81)

where A is the Hessian of the exponent in the integrand of (4.1.48) around the saddle point

(4.1.74), and has the formAµν “ B2S
BxµBxν

, where xµ “ tτ, τ̄ , λ, µi“1,¨¨¨ ,nu, whose only non-trivial

elements in the presence of constraints are

B2
rS

BτBµi
“ 2

kijpµ
jq0

τ0

,

B2
rS

Bτ 2
“ ´

2

τ 3
0

`

kijpµ
i
q0pµ

j
q0 ` E

v
L

˘

,

B2
rS

Bτ̄ 2
“ 2

Ev
R

τ̄ 3
0

,

B2
rS

Bλ1Bµi
“ si, pi “ 1, ¨ ¨ ¨ , 5q

B2
rS

Bλ2Bµi
“ αi, pi “ 1, 2q

B2
rS

BµiBµj
“ ´2

kij
τ0

.

(4.1.82)

We see that k11 and k22 come from the SUp2q rotation, which corresponds to the angular

momenta, while kii (i ą 2) come from the Up1q gauge symmetries. At the subleading order

the Hessian takes the form

detA “ p2πq
n`2

16
p´Ev

Lq
´n`1

2 p4EL ´ P2
q
n`3

2 p´Ev
Rq
´ 1

2 p4ERq
3
2 detpHq , (4.1.83)

where

H „

¨

˚

˝

kij ST

S 0

˛

‹

‚

, (4.1.84)
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and

S “

˜

s1 s2 s3 s4 s5

α1 α2 0 0 0

¸

. (4.1.85)

Note that this result is different than in [131], as we have considered two linear constraints

on the chemical potentials.

For supersymmetric extremal (BPS) black holes, one of the Frolov-Thorne temperatures

TR vanishes, as it is proportional to the Hawking temperature, and only the left sector

contributes to the black hole entropy. Consequently, (4.1.83) for BPS black holes becomes

pdetAqBPS “
p2πqn`2

16
p´Ev

Lq
´n`1

2 p4EL ´ P2
q
n`3

2 detpHq , (4.1.86)

where

´ Ev
L “

c

24
, 4EL ´ P2

“
2π2

3
cT 2

L . (4.1.87)

With the scalings in (4.1.51), (4.1.52) and (4.1.64), the Hessian takes on the N -dependence

detH „ N2, (4.1.88)

such that

pdetAqAdS5 Black Hole „ pN
2
q
´n`1

2 pN2
q
n`3

2

`

N2
˘

“ N4 . (4.1.89)

Note that the result is independent of n since the scaling of Ev
L and 4EL ´ P2 are equal.

Therefore, the logarithmic correction to the leading-order BPS AdS5 black hole entropy

(4.1.80) is

∆SCFT2 “ ´
1

2
log

detA
p2πqn`2

“ ´2 logN `Op1q , (4.1.90)

which precisely agrees with ∆SCFT4 in (4.1.29).

4.2 AdS5 Black Strings

4.2.1 AdS5 Black String Entropy from Boundary N “ 4 SYM

A rotating AdS5 black string solution in gauged supergravity has been discussed in [133,

137], where it was shown that its leading-order entropy can be obtained from the refined

topologically twisted index of N “ 4 SYM on S2 ˆ T 2.

The topologically twisted index of N “ 4 SYM with gauge group SUpNq is defined as

the supersymmetric index of the theory on T 2ˆS2 with a topological twist on S2 [138,139],
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its Hamiltonian interpretation being

Zppa,∆aq “ p´1qF e2πiτ tQ,Q:uei∆aJa . (4.2.1)

The topologically twisted index depends on a set of chemical potentials, ∆a, for the gen-

erators of flavor symmetries (a “ 1, 2, 3), a modular parameter of the torus τ and magnetic

fluxes pa. The topologically twisted index of N “ 4 SYM with gauge group SUpNq admits

a presentation as an integral over the space of holonomies in the following way:

Zppa,∆aq “
1

N !

ÿ

m

¿

C

N´1
ź

µ“1

`

duµηpqq
2
˘

ZTT pu,∆a, τ, paq ,

ZTT pu,∆a, τ, paq “
N
ź

i,j“1

«

θ1 puij; τq

iηpqq

3
ź

a“1

ˆ

iηpqq

θ1 puij `∆a; τq

˙mij´pa`1
ff

,

(4.2.2)

where ηpqq is the Dedekind eta function that we define in Appendix C.1. We can evaluate

(4.2.2) as the sum over residues [139] which takes the following explicit form:

Zppa,∆aq “ ηpqq2pN´1q
ÿ

ûPBA

N
ź

i,j“1

«

3
ź

a“1

ˆ

θ1 puij; τq

θ1 puij `∆a; τq

˙1´pa
ff

H´1
pû,∆, τq, (4.2.3)

where, analogously to the SCI discussed in Sec. 4.1.1, BA stands for the set of solutions to

the Bethe-Ansatz equations (4.1.3), and Hpû,∆, τq is the Jacobian defined in (4.1.5). The

location of a set of such residues was found in [125] and have the form given by (4.1.6)

labeled by tuiu with integers tm,n, ru.

In fact, the set of solutions found in [125] inspired the evaluation of the SCI carried in [15],

where the tuiu are also organized according to equation (4.1.6), however, in the large-N limit,

it was possible to argue that the configuration corresponding to t1, N, 0u was dominant. For

fixed tm,n, ru, it is possible to count how many values of ū give non-equivalent contributions

to topologically twisted index (by non-equivalent we mean, those which are not identified by

periodicity u „ u ` 1 or u „ u ` τ). Once again, imposing the SUpNq constraint we find

that:

ū “
k

N
´

1

2N

”

npm´ 1q `mpn´ 1q
´

τ `
r

m

¯ı

,

k “ 0, 1, ¨ ¨ ¨ , N ´ 1 ,
(4.2.4)

which reduces to (4.1.9) for tm,n, ru “ t1, N, 0u. We then conclude that there is a degeneracy

factor of N for each tm,n, ru configuration contributing to the topologically twisted index.
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To argue that there is no other contribution of the same order that spoils the value of

the coefficient of logN would require a more detailed study of the large-N behavior of the

topologically twisted index, which has been studied recently in [124] at the leading order

in N . A systematic study of subleading corrections to the topologically twisted index still

remains an open problem. It is, however, very tempting to conjecture that indeed, there

is no contribution other than the one originated from degeneracy of Bethe-Ansatz solutions

and, consequently, the coefficient of logN is 1 also for the topologically twisted index in the

grand-canonical ensemble.

One can further refine the topologically twisted index by adding a rotation on S2 [138].

This will modify the integral expression (4.2.2) through the appropriate fugacities associated

to the rotation on S2, namely ξ “ e2πiω. To be concrete, we would have:

Zppa,∆aqrefined “
1

N !

ÿ

m

¿

C

N´1
ź

µ“1

`

duµηpqq
2
˘

ZTTref pu,∆a, τ, paq ,

ZTTref pu,∆a, τ, paq “
N
ź

i,j“1

«

θ1 puij ` 2ωj; τq

iηpqq

3
ź

a“1

ˆ

iηpqq

θ1 puij `∆a ` 2ωj; τq

˙mij´pa`1
ff

.

(4.2.5)

The refined topologically twisted index has been studied, in the strict Cardy-like limit,

in [137], where the correction due to the refinement could be factored out in the following

way:

Zppa,∆aqrefined

ˇ

ˇ

τÑ0
“ Zppa,∆aqZω , (4.2.6)

where Zppa,∆aq is the unrefined topologically twisted index, and Zω is the correction associ-

ated to the refinement. The explicit form of Zω is irrelevant to us, while only the fact that it

is independent on u, pa and ∆a will be important. To the best of our knowledge, the direct

application of the Bethe-Ansatz approach to the refined topologically twisted index has not

been performed yet. However, we can exploit the fact that in the Cardy-like limit there is

a simple connection to the unrefined index, namely (4.2.6), and based on the intuition we

have gained by studying the SCI, to argue that the combinatorial origin of logN corrections

is still there at small τ , therefore we do not expect it to go away as we depart from the

Cardy-like limit.

As we have discussed in the AdS5 black hole case, the logarithmic correction to the

entropy can be seen as essentially arising from the degeneracy of dominant Bethe-Ansatz

solutions to the appropriate partition function of the boundary N “ 4 SYM. As in the case
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of the SCI, the logarithmic correction we compute for the topologically twisted index is in

the grand-canonical ensemble. However, since we find that the result matches that of the mi-

crocanonical ensemble, we conjecture that there are no additional logarithmic contributions

associated to the change of ensembles. Therefore, for the BPS rotating AdS5 black string

considered in [133, 137], the logarithmic correction to logZ(leading)ppa,∆aq can be obtained

from the degeneracy of dominant residues contributing to the topologically twisted index of

N “ 4 SYM, i.e.

∆ logZppa,∆aq “ logN . (4.2.7)

This result has the same origin (in the Bethe-Ansatz treatment [15]) as in the SCI, and we

expect a similar robustness as the logarithmic correction to the AdS5 black hole.

Since logZ(leading)ppa,∆aq „ N2 and it is homogeneous of degree one in the chemical

potentials, it is possible to apply the result of Sec. 4.1.2 to conclude that the logarithmic

correction has an additional contribution from the change of ensemble which again takes

the form ´d logN , where d “ 3 is the number of independent chemical potentials for the

rotating AdS5 black string. We then conclude that

∆SCFT4 “ p1´ dq logN `Op1q “ ´2 logN `Op1q. (4.2.8)

4.2.2 AdS5 Black String Entropy from Near-Horizon CFT2

The near-horizon geometry of the rotating AdS5 black string solution is [133]

ds2
“
p´MΠq2{3

Θ2

«

´r2 dτ 2
`
dr2

r2
`
WΘ2

M2

ˆ

dy ´
M

Θ
?
W

rdτ

˙2
ff

`
p´Mq2{3

Π1{3

«

dθ2
` sin2θ

ˆ

dϕ`
J
M

dy

˙2
ff

, (4.2.9)

where M ” ´p1p2p3 is the product of magnetic charges, and J is the angular momentum,

while

Θ ” pp1
q
2
` pp2

q
2
` pp3

q
2
´ 2pp1p2

` p1p3
` p2p3

q ,

Π ” p´p1
` p2

` p3
qpp1

´ p2
` p3

qpp1
` p2

´ p3
q ,

W ”
´4q0p

1p2p3 ´ J 2

Θ
,

(4.2.10)
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with q0 denoting the momentum added along the black string direction. Using the standard

Kerr/CFT correspondence, we obtain the central charge of the near-horizon CFT2

cL “
6M
G4Θ

. (4.2.11)

This central charge was found in [133] as a Brown-Henneaux central charge [59].

To compute the black string entropy using the Cardy formula, we still need the Frolov-

Thorne temperature, which can be computed from the standard formalism for the Kerr/CFT

correspondence [140]

TL “

?
W Θ

2πM
. (4.2.12)

Therefore, the Cardy formula leads to the rotating AdS5 black string (BS) entropy

SBS “
π2

3
cLTL “

π
?
W

G4

, (4.2.13)

which is the same as the leading-order rotating AdS5 black string entropy [133,137].

For the logarithmic correction to the AdS5 black string entropy from the near-horizon

CFT2, we apply the same technique as the AdS5 black hole case. As mentioned in [133,137],

the rotating AdS5 black string solution has one angular momentum and three electric charges.

Similar to the BPS AdS5 black hole case,

c „ N2 , k11
„ N2 , kii „ N´2

pi “ 2, 3, 4q , (4.2.14)

where we take n “ 4 in the general formula (4.1.86) due to the following reason. Three Up1q

electric charges have three corresponding chemical potentials ∆a subject to a constraint,

hence there are only two indepedent Up1q electric charges. The angular momentum J
appearing in the second line of (4.2.9) can be viewed as an additional Up1q, which can be

treated in the same way as a Up1q electric charge [21], while in the first line of (4.2.9) there is

actually another angular momentum hidden in the BTZ part of the metric. Hence, from the

near-horizon region of the rotating AdS5 black string there are still one angular momentum

and three Up1q charges (including J ), which are independent of each other. Unlike the AdS5

black hole case where we can choose one of the two angular momenta, for the rotating AdS5

black string the way of counting near-horizon symmetries is unique.

The reasoning of Sec. 4.1.5 can be followed in its entirety except that from the start there

are only 4 chemical potentials, one conjugate to angular momentum and three conjugate to

electric charges, obeying one constraint. This is in contrast with the AdS5 black hole with

5 chemical potentials, two conjugate to angular momenta and three conjugate to electric
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charges. The scalings of the Kac-Moody levels and other parameters are the same. Moreover,

only one Lagrange multiplier is needed, λ1, and we find that detH „ N2, as in the case of

the AdS5 black hole with the same final result as in (4.1.90). Consequently,

pdetAqAdS5 Black String „ pN
2
q
´n`1

2 pN2
q
n`3

2

`

N2
˘

“ N4 , (4.2.15)

and the logarithmic correction to the leading-order AdS5 black string entropy (4.2.13) is

∆SCFT2 “ ´
1

2
log

detA
p2πqn`2

“ ´2 logN `Op1q . (4.2.16)

4.3 Discussion

In this chapter, we have explored logarithmic corrections to asymptotically AdS5 supersym-

metric extremal, rotating, electrically charged black holes and black strings. For each case

we examined the microstate counting in the context of N “ 4 SYM whereby it reduces to

a combinatorial contribution from the space of solutions. We also approached the logarith-

mic corrections to the entropy by considering the microstate counting in the near-horizon

geometry and its dual CFT2, where the logarithmic corrections arise as subleading contri-

butions in the Cardy formula for the degeneracy of states. We found that the results from

both approaches precisely match for both AdS5 black holes and rotating black strings. It is

instructive to write our result as p1´dq logN to note that the logarithmic correction has two

contributions, one that has a completely combinatorial origin and is rather universal, namely,

logN , while the other contribution from the change of ensemble depending on the number

of independent chemical potentials of the theory, ´d logN . Since we have 3 independent

chemical potentials, we obtain ´2 logN as a correction to the microscopic entropy.

Our agreement in using the Cardy formula to its logarithmic precision should come more

as a surprise than as a foregone conclusion. There is precedent where the Cardy formula leads

to the wrong answer for logarithmic corrections [21]. Although the subtleties in applying

the Cardy formula beyond its intrinsic regime are numerous, we expect that our positive

results indicate the existence of resolutions which take into account particular properties of

the spectrum [141,142].

It would be interesting to derive the logarithmic corrections directly from the macroscopic

one-loop contribution in type IIB supergravity. It is also natural to extend our near-horizon

analysis to asymptotically AdS black holes in other dimensions. This route is certain to

encounter obstructions in the form of zero modes, as is the case for asymptotically AdS4 and

AdS6 black holes. Indeed, it has been shown that the one-loop supergravity contribution to
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the logarithmic corrections for asymptotically AdS4 black holes [97] is different from the one

obtained in the near-horizon approach [95,96]. Our work indicates that given the absence of

obstructions (zero modes) in odd-dimensional AdS spacetimes the counting can be performed

at the near-horizon level, paving the way for a quantum entropy formula à la Sen [143]. It will

also be interesting to explore the implications of our near-horizon results within supergravity

localization along the lines of [48,144].
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Chapter 5

Four dimensional AdS Spacetimes

5.1 Summary of results

In this chapter, we take a practical, bottom-up approach to the question of logarithmic con-

tributions in four dimensions. Our main result is the computation of logarithmic correction

in N “ 2 minimal gauged supergravity. We also present results for minimally coupled fields

as well as for the Einstein-Maxwell theory with a negative cosmological constant.

The black hole we are interested is the AdS-Kerr-Newman geometry [75, 145, 146]. In

the extremal case, we will also consider the near horizon geometry which includes a warped

circle fibration over AdS2. Our results also give the logarithmic correction to the free energy

of thermal AdS4. They can also be applied to the hyperbolic black hole [147] from which we

obtain the logarithmic corrections to the corresponding entanglement entropy.

The microcanonical entropy of the black hole is given by

S “
A

4G
` C log λ` . . . , pλÑ `8q (5.1.1)

where A is the area of the horizon and the subleading logarithmic term is the explicit quantum

correction we seek. We are interested in the coefficient of the log λ in the “isometric” scaling

regime where all length scales (in Planck units) are multiplied by λ and we take λÑ `8.

The logarithmic correction receives two types of contributions

C “ Clocal ` Cglobal . (5.1.2)

The global contribution Cglobal is an integer that captures the contribution from the zero

modes and from the change of ensemble from canonical to microcanonical. The more in-

teresting local contribution, Clocal, receives contributions from the non-zero modes and can
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Multiplet aE c b1 b2

Free scalar 1
360

1
120

1
288
p∆p∆´ 3q ´ 2q2 0

Free fermion ´ 11
360

1
20

1
72

`

∆´ 3
2

˘2
´

`

∆´ 3
2

˘2
´ 2

¯

0

Free vector 31
180

1
10

0 0

Free gravitino ´229
720

´ 77
120

´1
9

0

Einstein-Maxwell 53
45

137
60

´13
36

0

N “ 2 gravitini ´589
360

´137
60

0 13
18

N “ 2 gravity multiplet ´11
24

0 ´13
36

13
18

Table 5.1: Results for the Seeley-DeWitt coefficient a4 responsible for the logarithmic cor-
rections. The results for a0 and a2 are given in Table B.1 in Appendix B.4.

be computed using the heat kernel expansion. It is given by an integral over the Euclidean

spacetime

Clocal ”

ż

ddx
?
g a4pxq , (5.1.3)

where the so-called fourth Seeley-DeWitt coefficient is a sum of four-derivative terms

a4pxq “ ´aEE4 ` cW
2
` b1R

2
` b2RFµνF

µν , (5.1.4)

evaluated on the background. The backgrounds we consider are solutions of Einstein-Maxwell

theory with a negative cosmological constant. Using the equations of motion, a general four-

derivative expression such as a4pxq can always be decomposed in the above basis. The

expression of Euler, E4, and the Weyl tensor squared, W 2, are given in (5.3.2). The heat

kernel expansion provides a way to compute these coefficients from any two-derivative action

using the formula (5.2.23). The results are summarized for the theories studied in this chapter

in Table 5.1.
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Our final result for the Seeley-DeWitt coefficient of minimal N “ 2 gauged supergravity

takes the form

p4πq2a4pxq “
11

24
E4 ´

13

36
R2
`

13

18
RFµνF

µν . (5.1.5)

Evaluating this expression on the BPS Kerr-Newman black hole, we obtain

Clocal “
11

6
´

26

3

ap`2 ´ 4`´ a2q

p`´ aqpa2 ` 6a`` `2q
, (5.1.6)

where a “ J{M is the rotation parameter and ` is the AdS4 radius. The integer corrections,

Cglobal, are summarized in Table 5.2.

We observe that the logarithmic correction for a BPS black hole in gauged supergravity

has a richer structure than in flat space: the logarithmic correction is non-topological, i.e.,

its coefficient is not a pure number but depends on black hole parameters. Our result is,

to our knowledge, the first computation of the Seeley-DeWitt coefficient a4pxq in gauged

supergravity. We find that the non-topological contribution comes from the additional four-

derivative terms R2 and RFµνF
µν . In the flat space limit, these terms both vanish and the

logarithmic correction becomes topological and gives Clocal “
11
6

. This was shown in [148,149]

and is a non-trivial consequence of supersymmetry.

We suspect that the non-topological piece can be interpreted as a contribution from the

AdS boundary. It is possible to interpret the logarithmic correction as the Atiyah-Singer

index of an appropriate supercharge [150]. We surmise that the non-topological term should

correspond to the η-invariant which is a correction due to the presence of a boundary.

We note that according to microscopic computations [95,99,100,104,151], we expect the

full logarithmic entropy correction to be topological. Such expectation has been confirmed in

various 11d supergravity computations [97,100,104,151]. There is, however, no contradiction

because the 4d minimal gauged supergravity is by itself not the low-energy effective theory

of a UV complete theory as matter multiplets, arising from Kaluza-Klein reduction, need to

be included. Nonetheless, our result shows that supersymmetry is not enough to guarantee

a topological logarithmic correction. This observation suggests that the topological nature

of the logarithmic correction could be used to indicate which low-energy theories admit a

UV completion1.

1The possibility of using the topological nature of logarithmic correction for such questions was emphasized
to us by Alejandra Castro and was discussed in [152].
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5.2 Logarithmic corrections in AdS4

In this section, we review logarithmic corrections to black hole entropy and the heat kernel

method for their computation [21–23]. This method has been chiefly applied to asymptoti-

cally flat black holes. We also explain how to apply it to asymptotically AdS black holes.

5.2.1 Euclidean quantum gravity

We consider theories of Einstein gravity in D dimensions coupled to matter fields. We restrict

to theories with a scaling property so that purely bosonic terms have two derivatives, terms

with two fermions have one derivative and terms with four fermions have no derivative. This

covers a wide range of theories, such as Einstein gravity with minimally coupled scalars,

fermions and gauge fields, but also a variety of supergravity theories at a generic point in

the moduli space. We also allow for the presence of a cosmological constant.

We now consider a black hole solution in this theory. To define the quantum entropy of

the black hole, we use the fact that this black hole appears as a saddle-point of the Euclidean

path integral

Zpβ, µαq “

ż

DΨ e´SEpΨq , (5.2.1)

where SE is the Euclidean action and the integration is done while fixing the temperature

β, thermodynamically conjugate to the mass, M , and appropriate chemical potentials µα

associated to the Up1q charges qα.

Upon studying the black hole solutions, we probe the Euclidean spacetimes via a con-

tinuation to imaginary time and analytically continue the action. For the case of the Kerr

solutions, these quasi-Euclidean metrics are complex and do indeed give appropriate thermo-

dynamics, see for example [153]. Our computations focus on the small fluctuations around

the complex saddle points and we do not expect the subtleties of analytic continuation to

affect these quantum corrections. Therefore, for the sake of this chapter, we consider these

quasi-Euclidean solutions (which we call Euclidean) as is, and leave the subtleties of space-

times with complex metrics for future study. We simply comment that complex solutions in

Euclidean gravity is an evolving subject and we refer the reader to a few examples in the

literature [154,155] as well as more recent discussions on this matter [156,157].

The black hole entropy is given by the Legendre transform

S “ logZ ` βM `
ÿ

α

µαqα . (5.2.2)

At leading order, the classical approximation logZ “ ´Sclassical
E is the Euclidean on-shell
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action. It is a classic result of Gibbons and Hawking [153] that the transform leads to the

Bekenstein-Hawking entropy formula

S “
Areapqαq

4G
` . . . . (5.2.3)

At one-loop order around the saddle-point, we obtain

Zpβ, µαq „
1

?
detQ

e´S
classical
E , (5.2.4)

where Q “ δ2SE
δΨ2 is the quadratic operator for the fluctuating fields on the background. This

expression is divergent and needs to be regulated. The one-loop correction to the black hole

entropy is

δS “ ´
1

2
log detQ. (5.2.5)

5.2.2 Scaling regime

The result for the logarithmic correction is highly sensitive to the precise scaling regime we

consider. To isolate the logarithmic correction, we consider a reference configuration with

fixed length scales `
p0q
i . In the example of AdS-Schwarzschild, these length scales can be taken

to be the AdS4 radius ` and the horizon size r`. We then consider a rescaled configuration

where all length scales are multiplied by the same factor λ " 1: `i “ λ`
p0q
i . We are then

interested in the coefficient of log λ in the one-loop correction to the entropy of the rescaled

configuration.

This scaling regime is “isometric” because it only magnifies the geometry without de-

forming it. As a result, the eigenvalues of Q are given by

κn “ λ2κp0qn , (5.2.6)

where κ
p0q
n are the eigenvalues of the reference configuration. As explained in the next section,

this relation is important to ensure that the logarithmic correction depends only on the small

s expansion of the heat kernel.

For more general scaling regimes, there will not be any simple relation between the

eigenvalues of the scaled versus reference configuration, because the geometry gets deformed.

In this case, the logarithmic correction cannot be computed by the heat kernel expansion

and would require knowledge of the heat kernel at general values of s. For a background with

k independent length scales `1, . . . , `k (in Planck units), the general logarithmic correction
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would take the form

S “
A

4G
`

k
ÿ

i“1

Ci log `i ` . . . , (5.2.7)

with an independent coefficient Ci for each independent length scale `i. In these terms, the

heat kernel expansion can only give us the sum

C “
k
ÿ

i“1

Ci , (5.2.8)

without being able to access the individual Ci. Indeed, C is the coefficient of log λ if we

write `i “ λ`
p0q
i with `

p0q
i fixed.

Let us now contrast this regime with the flat space regime of [21–23]. In flat space,

we do not rescale the mass m of massive fields. As a consequence, it can be shown that

massive fields do not contribute to the logarithmic correction of flat space black holes. In

AdS, the prescription is to fix the conformal dimension, or equivalently the combination m`,

so we get non-trivial logarithmic corrections for massive fields as a function of the conformal

dimension. Clearly we can see that in the flat space limit ` Ñ `8, only fields with m “ 0

can contribute and in that limit, we actually reproduce the scaling regime of [21–23]. We

indeed see that we reproduce known results for flat space black holes by taking the flat space

limit of our results.

It can also be shown that higher loops do not contribute to the logarithmic correction

as they are suppressed by positive powers of λ [22]. Summarizing, the logarithmic correc-

tion to the entropy arises only at one-loop from the two-derivative Lagrangian and can be

unambiguously computed in the low-energy effective theory.

For extremal black holes, we need to be more careful. In particular, the thermal circle

is infinite which naively makes the Euclidean on-shell action divergent. To obtain a well-

defined β Ñ `8 limit, we remove a divergence that can be viewed as an infinite shift in the

ground state energy. This can be made precise using the quantum entropy function [143]

in which the quantum entropy is defined using the AdS2/CFT1 correspondence in the near

horizon geometry. This procedure was used, for example, in [19–21].

5.2.3 Heat kernel expansion

We will now describe the main technical tool which makes possible the exact computation of

the logarithmic correction for a variety of black holes: the heat kernel expansion [158–160].

The one-loop correction to the partition function decomposes as a contribution Znz from

the non-zero modes and a contribution Zzm from the zero modes of the corresponding kinetic
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operators, so that we have

Z1-looppβ, µαq “ ZnzZzm e
´Sclass.

E . (5.2.9)

The one-loop corrected Bekenstein-Hawking entropy, defined in the microcanonical ensemble,

takes the form

S “
A

4G
` pClocal ` Cglobalq log λ` . . . . (5.2.10)

Here Clocal is the local contribution computed using the heat kernel. The global term Cglobal

is an integer correction due to the zero modes and the change of ensemble from canonical to

microcanonical. We now explain how to compute the local contribution. It originates from

the non-zero modes

logZnz “ ´
1

2

ÿ

n

1

log κn , (5.2.11)

where κn are the eigenvalues of the quadratic operator Q and the primed sum runs only over

the non-zero eigenvalues κn ‰ 0. This can be computed by introducing the heat kernel

Kpx, sq “
ÿ

n

e´κnsf `npxqf
`1

n pxqG``1 , (5.2.12)

where tf `nu are the ortho-normalized eigenfunctions of Q with eigenvalues tκnu and G``1 is

the metric on field space. In particular, we have

ż

M
dDx

?
g Kpx, sq “

ÿ

n

e´sκn “
ÿ

n

1

e´sκn `Nzm , (5.2.13)

where Nzm is the number of zero modes. We will make use of the relation

log κ´ log κp0q “ ´ lim
εÑ0

ż 8

ε

ds

s

´

e´sκ ´ e´sκ
p0q
¯

. (5.2.14)

In our scaling regime, the eigenvalues are rescaled according to (5.2.6). This allows us to

show that we have

logZnz ´ logZp0qnz “
1

2

ż ελ

ε

ds

s

ˆ
ż

M
dDx

?
g Kpx, sq ´Nzm

˙

. (5.2.15)

The above expression makes it clear that only the range of very small s contributes due to a

cancellation between Znz and Z
p0q
nz . We can then use the heat kernel expansion which states
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the existence of a small s expansion of the form

Kpx, sq “
ÿ

ně0

sn´D{2a2npxq (5.2.16)

where D is the dimension of spacetime. The coefficients a2npxq are known as Seeley-DeWitt

coefficients. For smooth manifolds, a2npxq is a sum of 2n-derivative terms constructed from

the fields appearing in the action [158].

We are mainly interested in D “ 4 for which we have

Kpx, sq “ s´2a0pxq ` s
´1a2pxq ` s

0a4pxq `Opsq . (5.2.17)

We want to compute the log λ contribution in logZnz. The integral (5.2.15) makes it clear

that this comes from the a4 coefficient and we have

logZnz “ Clocal log λ` . . . , (5.2.18)

where we have defined

Clocal ”

ż

d4x
?
g a4pxq . (5.2.19)

We refer to this as the local contribution as it is given by an integral over spacetime. In

general spacetime dimension D, a4pxq should be replaced by aDpxq in the above formula.

Note that this vanishes when D is odd so there is no local contribution in odd-dimensional

spacetimes.

The power of the heat kernel expansion lies in the fact that there is a general expression for

a4pxq summarized in [158]. This allows to compute Clocal without computing the eigenvalues

of Q.

The other Seeley-DeWitt coefficients a0pxq and a2pxq capture one-loop corrections to the

cosmological constant, Newton’s constant and the other couplings in the Lagrangians. This

is discussed, for completeness, in Appendix B.4.

Bosonic fluctuations. We write the operator of quadratic fluctuations for bosons as

Qnm “ plqInm ` 2pωµDµq
n
m ` P

n
m , (5.2.20)
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where the Latin indices m,n refer to the different fields and Dµ is the spacetime covariant

derivative. We define Dµ “ Dµ ` ωµ to complete the square so that

Qnm “ pDµDµqInm ` En
m, (5.2.21)

with

E ” P ´ ωµωµ ´ pD
µωµq . (5.2.22)

The Seeley-DeWitt coefficient a4pxq is then given explicitly by the formula

p4πq2a4pxq “ Tr

„

1

2
E2
`

1

6
RE `

1

12
ΩµνΩ

µν (5.2.23)

`
1

360
Ip5R2

` 2RµνρσR
µνρσ

´ 2RµνR
µν
q



,

where Ωµν “ rDµ ` ωµ, Dν ` ωνs is the curvature associated to the connection Dµ.

Fermionic fluctuations. For fermionic fields, the quadratic Lagrangian takes the form

L “ ψ̄Dψ where D “ {D ` L is a Dirac-type operator and ψ denotes all the fermions of the

theory. The prescription is then to use the fact that

log detD “ 1

2
log detD:D, (5.2.24)

so that we can apply the heat kernel method to Q “ D:D. We have, more explicitly,

ωµ “
1

2

`

γµL´ L:γµ
˘

, P “ R`
`

{DL
˘

´ L:L, (5.2.25)

where R “ ´1
4
R for spin 1

2
and R “ ´1

4
gµν `

1
2
γρσRµνρσ for spin 3

2
.

5.2.4 Global contribution

The global contribution consists of an integer correction which is the sum of two contributions

Cglobal “ Cens ` Czm. (5.2.26)

The first term corresponds to the correction due to changing from the grand canonical to

the microcanonical ensemble [22].

The zero modes are associated to asymptotic symmetries: gauge transformations with
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parameters that do not vanish at infinity and are thus, not normalizable. In the path integral,

we can treat them by making a change of variable to the parameters of the asymptotic

symmetry group. For a field Ψ, the Jacobian of this change of variable introduces a factor

λβΨ , (5.2.27)

which contributes a logarithmic correction βΨ logL to the entropy. As a result, the total

contribution from the zero modes is

Czm “
ÿ

Ψ

pβΨ ´ 1qn0
Ψ, (5.2.28)

where we are summing over all fields Ψ (including ghosts) and we denote by n0
Ψ the number

of zero modes for Ψ. There is a ´1 because we include here the ´Nzm which was in the

non-zero mode contribution (5.2.15) (and not included in Clocal). The value of βΨ can be

computed by normalizing correctly the path integral measure. We refer to [21] for a more

detailed discussion. As an illustration, we report below the values of βΨ for the gauge field,

the Rarita-Schwinger field and the graviton in D spacetime dimensions

βA “
D

2
´ 1, βψ “ D ´ 1, βg “

D

2
. (5.2.29)

5.3 Black hole backgrounds

In this section, we present the background geometries for which we compute the logarithmic

corrections. They are solutions of Einstein-Maxwell theory with a negative cosmological

constant.

We give the integrated four-derivative terms as a precursor to the computations of the

logarithmic corrections and describe the extremal limit and the near horizon geometry. At

this level, we already observe that the local contribution Clocal for extremal black holes is

the same in the full geometry and in the near horizon geometry so that the only difference

is due to the zero mode contribution.

In the following subsections, we review the metrics of AdS-Schwarzschild, thermal AdS4

and the Reissner-Nordström AdS4 black hole as simple examples before we consider the

general Kerr-Newman AdS4 black hole solution with particular emphasis on its BPS limit.

We compute the curvature invariants in both the full solution and the near horizon before

giving the general result for the logarithmic corrections to the entropy. The results are

written in terms of the theory-dependent coefficients aE, c, b1 and b2. The computation of
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these coefficients for the theories of interest will be the subject of subsequent sections.

5.3.1 General structure

The local contribution to the logarithmic correction is given by the Seeley-DeWitt coefficient

a4pxq using (5.2.19). For solutions of Einstein-Maxwell-AdS theory, a general four-derivative

term can be decomposed as

p4πq2a4pxq “ ´aE E4 ` cW
2
` b1R

2
` b2RFµνF

µν , (5.3.1)

after using the equations of motion for the background fields. Here we write the curvature

invariants in terms of the Euler density and the Weyl tensor squared given explicitly as

E4 ” RµνρσR
µνρσ

´ 4RµνR
µν
`R2 , (5.3.2)

W 2
” RµνρσR

µνρσ
´ 2RµνR

µν
`

1

3
R2 . (5.3.3)

Note that the equations of motion implies that R “ 4Λ “ ´12{`2. The difference with the

previous flat space computations lies in the last two terms in (5.3.1), which vanish if R “ 0.

These terms are responsible for making the logarithmic correction non-topological.

To regularize the integral over spacetime, we use the same prescription as in holographic

renormalization, which gives an unambiguous finite answer. A consistency check on this

procedure is that for the Euler term, the regularized integral gives

χ “
1

32π2

ż

d4x
?
g E4, (regularized) (5.3.4)

where χ is the Euler characteristic of spacetime. This is possible because our regularization

procedure produces the same boundary as the one appearing in the Gauss-Bonnet-Chern

theorem, as we explain in Appendix B.5. Thus, we see that the logarithmic correction is

topological if and only if a4pxq contains only the Euler term, that is, c “ b1 “ b2 “ 0.

5.3.2 AdS-Schwarzschild black hole

The Euclidean AdS-Schwarzschild black hole is described by the line element

ds2
“ fprqdt2 `

dr2

fprq
` r2dΩ2, fprq “ 1`

r2

`2
´

2m

r
, (5.3.5)
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where m is the mass of the black hole and ` is the radius of AdS4. Here-forth, Euclidean

time is identified with a period proportional to the inverse Hawking temperature β,

t „ t` β, β “
4πr`

1`
3r2
`

`2

, (5.3.6)

where r` is the position of the horizon given by the largest real root of fpr`q “ 0. The

curvature invariants in (5.3.1) for this solution are

E4 “
24

`4
`

48m2

r6
, W 2

“
48m2

r6
, R2

“
144

`4
, RFµνF

µν
“ 0 . (5.3.7)

The integrated curvature invariant are divergent due to the infinite volume. To regularize

these divergences, we utilize the same prescription as holographic renormalization [161,162].

Such choice of renormalization is natural given that the logarithmic contributions are cor-

rections to the on-shell action and it allows us to obtain finite and unambiguous results in

all cases. A more systematic understanding of this prescription would require a quantum

version of holographic renormalization.

The prescription is to impose a cutoff at large r “ rc. At the boundary, we add a counter

term written in terms of intrinsic data

aCT
4 “

ż

BM

d3y
?
h pc1 ` c2Rq , (5.3.8)

where R is the Ricci curvature of the boundary BM . The coefficients c1, c2 are determined by

the requirement that a4`a
CT
4 remains finite as we take rc Ñ `8. The regularized integrated

invariants take the form

1

p4πq2

ż

d4x
?
g E4 “ 4 ,

1

p4πq2

ż

d4x
?
gW 2

“
4p`2 ` r2

`q
2

`2p`2 ` 3r2
`q

,

1

p4πq2

ż

d4x
?
g R2

“
24r2

`p`
2 ´ r2

`q

`2p`2 ` 3r2
`q

,
1

p4πq2

ż

d4x
?
g RFµνF

µν
“ 0 . (5.3.9)

As expected from the Gauss-Bonnet-Chern theorem, the Euler characteristic is

χ “
1

32π2

ż

d4x
?
g E4 “ 2. (5.3.10)

In fact, we verify that with the holographic renormalization procedure, the integral of the

Euler density is always the Euler characteristic of the spacetime, for all the backgrounds

considered in this chapter. This suggests that the holographic counterterm reproduces ex-

actly the boundary term comparable to that of the Gauss-Bonnet-Chern theorem. This is
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evidence that our renormalization procedure is correct and we refer to Appendix B.5 for

details.

The final result for Clocal for AdS-Schwarzschild takes the form

Clocal “
4

`2p`2 ` 3r2
`q

`

pc´ aEq`
4
` p2c´ 3aE ` 6b1q`

2r2
` ` pc´ 6b1qr

4
`

˘

. (5.3.11)

Thermal AdS4

We are mainly interested in logarithmic corrections to black hole entropy. However, the

dominant saddle-point in the canonical ensemble is not always a black hole in AdS. For

temperatures below the Hawking-Page transition [163], it is a thermal AdS. Our computation

gives the logarithmic corrections to the free energy of AdS4. The metric of the AdS spacetime

with only radiation, thermal AdS, is given by

ds2
“

ˆ

1`
r2

`2

˙

dt2 `
dr2

`

1` r2

`2

˘ ` r2dΩ2 . (5.3.12)

The curvature invariants for the thermal AdS background read

E4 “
24

`4
, W 2

“ 0, R2
“

144

`4
, FµνF

µν
“ 0 . (5.3.13)

Using the same regularization procedure as above, the integrated invariants all vanish

1

p4πq2

ż

d4x
?
g E4 “ 0 ,

1

p4πq2

ż

d4x
?
gW 2

“ 0 ,

1

p4πq2

ż

d4x
?
g R2

“ 0 ,
1

p4πq2

ż

d4x
?
g RFµνF

µν
“ 0 . (5.3.14)

This shows that on thermal AdS4, we have a4pxq “ 0 so that the local contribution vanishes

Clocal “ 0 , (5.3.15)

and the logarithmic correction comes only from the zero mode contribution. Thus we may use

Clocal as an order parameter indicating the Hawking page transition. In the case of Einstein-

Maxwell theory, we must include a fixed gauge potential Φ as thermal AdS [75, 164, 165].

Since it is a pure gauge, it does not affect the logarithmic term of the entropy.
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5.3.3 Reissner-Nordström black hole

We now turn to the AdS-Reissner-Nordström black hole and its extremal limit. It is impor-

tant to note that this black hole is not a BPS solution of minimal gauged supergravity. A

non-zero rotation is necessary to solve the BPS equations as we discuss in the next section.

Non-extremal black hole

The Euclidean Reissner-Nordström black hole in AdS is described by

ds2
“ fprqdt2 `

dr2

fprq
` r2dΩ2 , A “

iqe
r
dt´ qmcos θ dφ . (5.3.16)

with

fprq “ 1`
r2

`2
´

2m

r
`
q2
e ` q

2
m

r2
, (5.3.17)

where m, qe and qm characterize the mass, the electric charge and the magnetic charge of

the black hole, respectively. The horizon r` is the largest root of fprq “ 0 and the Hawking

temperature is

TH “ β´1
“
f 1pr`q

4π
“

1

4πr`

ˆ

1`
3r2
`

`2
´
pq2
e ` q

2
mq

r2
`

˙

. (5.3.18)

The curvature invariants are computed to be

R2
“

144

`4
, E4 “

24

`4
`

8 p6m2r2 ´ 12mpq2
e ` q

2
mqr ` 5pq2

e ` q
2
mq

2q

r8
,

FµνF
µν
“ ´

2pq2
e ´ q

2
mq

r4
, W 2

“
48 pmr ´ pq2

e ` q
2
mqq

2

r8
. (5.3.19)

The integrated invariants can be computed using the same renormalization procedure as

described above for the AdS-Schwarzschild case. The results are

1

p4πq2

ż

d4x
?
g E4 “ 4 , (5.3.20)

1

p4πq2

ż

d4x
?
gW 2

“
2

5

ˆ

2´
14r2

`

`2
`

16πr`
β

`
p`4 ` `2r2

` ` 4r4
`q

π`4r`
β

˙

,(5.3.21)

1

p4πq2

ż

d4x
?
g R2

“
12r`pr

2
` ` `

2q

π`4
β ´

24r2
`

`2
, (5.3.22)

1

p4πq2

ż

d4x
?
g RFµνF

µν
“

6p3r4
` ` `

2r2
` ´ 2`2q2

mq

π`4r`
β ´

24r2
`

`2
. (5.3.23)
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The final result for the Reissner-Nordström black hole takes the following form

Clocal “
2

5

ˆ

2pc´ 5aEq ´
2r2
`

`2
p7c` 30pb1 ` b2qq `

16πr`
β

c (5.3.24)

`
β

π`4r`

´

c`4
`
`

c` 30b1 ` 15b2

˘

`2r2
` `

`

4c` 30b1 ` 45b2

˘

r4
` ´ 30b2`

2q2
m

¯

˙

.

The appearance of qm indicates that if the final result has a non-vanishing b2, the loga-

rithmic correction does not preserves the electromagnetic duality. As we will see in section

5.6, if we consider N “ 2 supergravity, we do have a non-trivial b2.

Extremal limit

The result for the extremal black hole is obtained by taking the T Ñ 0 or β Ñ `8 limit.

This limit is naively divergent and we will describe how to implement it in this context.

The prescription is as follows. First, the outer horizon is a function of β, and must be

substituted as an explicit expression in terms of β. We then take the β Ñ 8 limit while

keeping the charges fixed and subsequently impose the extremal values of the charges. The

low-temperature expansion yields

r` “ r0 `
2π`2

2

β
`Opβ´2

q, (5.3.25)

where r0 is the position of the extremal horizon and `2 is the AdS2 radius and can be

expressed as

r2
0 “

1

6
`p
a

`2 ` 12q2 ´ `q , `2
2 “

r2
0

1`
6r2

0

`2

“
`2

6

˜

1´
`

a

`2 ` 12q2

¸

. (5.3.26)

In the β Ñ `8, we generally have

ż

d4x
?
g a4pxq “ C1β ` C0 `Opβ

´1
q . (5.3.27)

The first term, linear in β, is divergent. As this expression is a correction to the effective

action, we can interpret this term as a shift of the ground state energy due to one-loop

fluctuations. As a result, we ignore this term and define the limit β Ñ `8 to be the

120



constant term C0. The resulting four-derivative terms are

lim
βÑ`8

1

p4πq2

ż

d4x
?
g E4 “ 4 , (5.3.28)

lim
βÑ`8

1

p4πq2

ż

d4x
?
gW 2

“ ´
2pr2

0 ´ `
2
2q

2

3r2
0`

2
2

, (5.3.29)

lim
βÑ`8

1

p4πq2

ż

d4x
?
g R2

“ ´
2pr2

0 ´ `
2
2q

2

r2
0`

2
2

, (5.3.30)

lim
βÑ`8

1

p4πq2

ż

d4x
?
g RFµνF

µν
“ ´

pr2
0 ´ `

2
2qpr

4
0 ` r

2
0`

2
2 ´ 4q2

m`
2
2q

r4
0`

2
2

. (5.3.31)

This leads to the final result

lim
βÑ`8

Clocal “ ´4 aE ´
r2

0 ´ `
2
2

r2
0`

2
2

ˆˆ

2

3
c` 2b1

˙

´

r2
0 ´ `

2
2

¯

` b2

´

r2
0 ` `

2
2 ´

4`2
2q

2
m

r2
0

¯

˙

. (5.3.32)

Note that in the flat space limit, we have r0 “ `2 and the logarithmic correction is manifestly

topological, but such cancellation does not occur for AdS black holes.

Near horizon geometry

As we would like to investigate where the quantum degrees of freedom live for asymptotically

AdS spacetimes, we compare the basis of curvature invariants of the full solution to that of

the near horizon geometry. Let us first consider the extremal black hole. The near horizon

geometry can be obtained using the change of coordinates

r Ñ r0 ` ε r̃, tÑ `2
2

t̃

ε
(5.3.33)

and taking the limit εÑ 0. The result is the AdS2 ˆ S
2 geometry

ds2
“ `2

2

ˆ

r̃2dt̃2 `
dr̃2

r̃2

˙

` r2
0 dΩ2

2, A “ ´
i`2

2qe
r2

0

r̃dt̃` qm cos θ dφ , (5.3.34)

where `2 and r0 are defined in (5.3.26). For the gauge field, a pure gauge term needs to be

added to obtain a smooth εÑ 0 limit. We can express everything in terms of the two scales

`2 and r0. The AdS4 radius and the extremal charges are given by

6

`2
“

1

`2
2

´
1

r2
0

, q2
e ` q

2
m “

r2
0pr

2
0 ` `

2
2q

2`2
2

. (5.3.35)

In particular we see that we must have r0 ą `2. Note that in flat space we obtain r0 “ `2.

The infinite volume of AdS2 is regularized by removing the divergence through a redef-
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inition of the ground state energy in the dual CFT1 [143, 166]. This leads to a regularized

volume of unit AdS2 which is ´2π. The integrated invariants can then be computed and we

find

Clocal “ ´4aE ´
r2

0 ´ `
2
2

r2
0`

2
2

ˆˆ

2

3
c` 2b1

˙

´

r2
0 ´ `

2
2

¯

` b2

ˆ

r2
0 ` `

2
2 ´

4`2
2q

2
m

r2
0

˙˙

. (5.3.36)

This expression matches the result (5.3.32) obtained by taking the β Ñ `8 limit of the

non-extremal Clocal. Hence, the computation of Clocal for an extremal black hole can be

done either in the full geometry or in the near horizon region. The difference in logarithmic

correction between the full geometry and the near horizon geometry come exclusively from

zero modes.

5.3.4 Kerr-Newman black hole

We now turn to the AdS-Kerr-Newman black hole [75, 146]. This solution is particularly

interesting because it has a regular BPS limit unlike the Reissner-Nordström black hole

[167–169].

Non-extremal black hole

As given in [75], the line element takes the form ,

ds2
“ ´

∆r

ρ2

ˆ

dt´
a sin2θ

Ξ
dφ

˙2

`
ρ2dr2

∆r

`
ρ2dθ2

∆θ

`
∆θ sin2θ

ρ2

ˆ

a dt´
r2 ` a2

Ξ
dφ

˙2

, (5.3.37)

where we have defined

∆r “
`

r2
` a2

˘

ˆ

1`
r2

`2

˙

´ 2mr ` q2
e ` q

2
m, ∆θ “ 1´

a2

`2
cos2θ , (5.3.38)

with ρ2 “ r2 ` a2cos2θ and Ξ “ 1´ a2

`2
. The gauge field is given by

A “ ´
qer

ρ2

ˆ

dt´
a sin2θ

Ξ
dφ

˙

´
qm cos θ

ρ2

ˆ

adt´
r2 ` a2

Ξ
dφ

˙

, (5.3.39)

The parameters satisfy a2 ă `2 and we take a ě 0 without loss of generality.2 The physical

mass M , angular momentum J , electric charge Qe and magnetic charge Qm are given by

M “
m

Ξ2
, J “

am

Ξ2
, Qe “

qe
Ξ
, Qm “

qm
Ξ
, (5.3.40)

2The general result is obtained by replacing aÑ |a| everywhere.
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and the inverse temperature is

β “
4π

`

r2
` ` a

2
˘

r`

´

1` a2

`2
` 3

r2
`

`2
´

a2`q2
e`q

2
m

r2
`

¯ . (5.3.41)

For the non-extremal black hole, the general form is

Clocal “ ´4 aE ` p6A1 ` cW1qβ ` p24A2 ` cW2q `
cW3

β
, (5.3.42)

where the logarithmic corrections depends on five independent parameters tr`, β, `, a, qmu.

The Euler term simply gives a pure number in agreement with the formula

χ “
1

32π2

ż

d4x
?
gE4 “ 2 . (5.3.43)

The expressions Ai and Wi are independent of β and take the form

A1 “
p2b1 ` b2qpa

2 ` `2qr3
` ` p2b1 ` 3b2qr

5
` ` pp2b1 ´ b2qa

2 ´ 2b2q
2
mqr``

2

π`2p`2 ´ a2qpa2 ` r2
`q

,

A2 “ ´
b1a

2 ` pb1 ` b2qr
2
`

`2 ´ a2
,

(5.3.44)

and we have isolated the contribution Wi from the Weyl squared term, explicitly given as

W1 “
1

16πa5r4
``

2p`2 ´ a2qpa2 ` r2
`q

“

3ar`pa
8
p`2
´ r2

`q
2
` r8

`p`
2
` 3r2

`q
2
q

´4a3r3
`pr

4
`p`

4
´ 9r4

`q ` a
4
p`4
` 12`2r2

` ` 3r4
`q ` 2a5r5

`p`
4
´ 14`2r2

` ` 5r4
`q

´3pa2
` r2

`qpa
2
p`2
´ r2

`q ´ r
2
`p`

2
` 3r2

`qq
2
pr4
` ´ a

4
q arctanpa{r`q

‰

,

W2 “
a2 ` r2

`

2a5r3
`p`

2 ´ a2q

“

4a3`2r3
` ` 3ar`pa

4
p`2
´ r2

`q ´ r
4
`p`

2
` 3r2

`qq (5.3.45)

´3pa2
p`2
´ r2

`q ´ r
2
`p`

2
` 3r2

`qqpr
4
` ´ a

4
q arctanpa{r`q

‰

,

W3 “
π`2pa2 ` r2

`q

a5r2
`p`

2 ´ a2q

“

ar`p3a
4
` 2a2r2

` ` 3r4
`q ´ 3pr2

` ` a
2
qpr4

` ´ a
4
q arctanpa{r`q

‰

.

We have checked that we reproduce the Reissner-Nordström results of section 5.3.3 in the

limit a “ 0.

Extremal limit

As was done in the Reissner-Nordström black hole, the extremal limit can be found by taking

the limit T Ñ 0 or β Ñ `8 while keeping the charges fixed. To do this appropriately, we
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use that for small temperatures

r` “ r0 `
2π`2

2

β
`Opβ´2

q , (5.3.46)

and we take the β Ñ `8 limit while keeping r0, `, a, qm fixed. The procedure yields a finite

piece in β as well as a piece linear in β, which can be removed by a renormalization of

the ground state energy. The final result can be written in terms of the four independent

parameters tr0, `, a, qmu. It takes the form

Clocal “ ´4aE `
1

2ar5
0p`

2 ´ a2qpa2 ` r2
0qpa

2 ` `2 ` 6r2
0q

”

´ 3a7r0p16b1r
4
0 ` cp`

2
´ r2

0q
2
q.

`a5r3
0pc`

4
` 2p11c´ 12b2q`

2r2
0 ´ 3p13c´ 8b2 ` 80b1qr

4
0q

`a3r5
0p15c`4

` 2p25c` 24b2q`
2r2

0 ´ p49c` 336b1 ´ 48b2qr
4
0 ´ 48b2`

2q2
mq

`3ar7
0pc`

4
` 2p3c´ 4b2q`

2r2
0 ´ p7c` 48b1 ` 24b2qr

4
0 ` 16b2`

2q2
mq

´3cpa2
` r2

0qpa
2
pr2

0 ´ `
2
q ` r2

0p`
2
` 3r2

0qq
2 arctanpa{r0q

ı

. (5.3.47)

We can also compare with the computation performed in the near horizon geometry obtained

via

r Ñ r0 ` ε r̃, tÑ `2
2

t̃

ε
, φÑ φ´

ia`2
2p`

2 ´ a2q

`2pa2 ` r2
0q

t

ε
, (5.3.48)

while taking εÑ 0. This leads to

ds̃2
“

`2
2pr

2
0 ` a

2 cos2θq

a2 ` r2
0

ˆ

r̃2dt̃2 `
dr̃2

r̃2

˙

`
`2pr2

0 ` a
2 cos2θq

`2 ´ a2 cos2θ
dθ2 (5.3.49)

`
`2pa2 ` r2

0q
2p`2 ´ a2 cos2θq sin2θ

p`2 ´ a2q2pr2
0 ` a

2 cos2θq

ˆ

dφ´
2`2

2ar0p`
2 ´ a2q

`2pa2 ` r2
0q

2
irdt

˙2

,

where the AdS2 radius is

`2 “ `

d

a2 ` r2
0

a2 ` `2 ` 6r2
0

. (5.3.50)

The near horizon geometry is a warped version of AdS2 with a circle fiber, similar to the

near horizon of extreme Kerr (NHEK), which we recover in the appropriate limit. The near

horizon gauge field takes the form

rA “
1

r2
0 ` a

2 cos2θ

„

´
i`2

2

a2 ` r2
0

pqepr
2
0 ´ a

2 cos2θq ` 2qm ar0 cos θqr̃dt̃ (5.3.51)

`
`2

`2 ´ a2
pqe ar0 sin2θ ` qmpa

2
` r2

0q cos θqdφ̃



.
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We can perform more general near horizon limits by taking at the same time a near-extremal

limit. Instead of setting qe “ q˚e , we can consider a deformation qe “ q˚e ` δqeε
2 parametrized

by the same ε as in (5.3.48). Moreover, keeping subleading corrections in β´1 would yield

corrections to the entropy in the near-extremal regime. The non-zero energy associated to

this large diffeomorphism can be understood in terms of the Schwarzian action of Jackiw-

Teitelboim gravity [170].

We are now in a position to compute the logarithmic corrections in the near horizon

geometry and we find that the result is equal to (5.3.47) obtained by taking the extremal limit

appropriately, i.e., fixing the charges while taking β Ñ `8. Thus, the local contribution is

the same in the near horizon region and the full geometry.

BPS limit

The BPS limit can be obtained by imposing the additional conditions to the extremal black

hole

r0 “
?
a`, qm “ 0 . (5.3.52)

The resulting black hole preserves half of the supersymmetries [168]. Its charges are given

by

M “

?
a`

`

1´ a
`

˘2 , Qe “

?
a`

1´ a
`

, Qm “ 0, J “
a
?
a`

`

1´ a
`

˘2 (5.3.53)

and it satisfies a BPS bound:

M “ Qe `
J

`
. (5.3.54)

The BPS result can be written in terms of the two independent parameters ` and a

Clocal “ ´4aE `
3`2

2

2a`2p`2 ´ a2q

„

p9c´ 8b2qa`
2
´ p9c` 48b1 ´ 8b2qa

2`´ pc` 16b1qa
3

`c`3
´
cpa` `q4
?
al

arctanp
a

a{`q



, (5.3.55)

where the AdS2 radius given in (5.3.50) is

`2 “ `

c

apa` `q

a2 ` 6a`` `2
(BPS case) . (5.3.56)

It is clear from this formula that there is no non-rotating BPS solution as the limit aÑ 0 is

singular.
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5.3.5 AdS-Rindler geometry

Our computation of the logarithmic correction can also be applied to the so-called hyperbolic

black hole of [147], i.e., the AdS4-Rindler geometry. The entropy of this black hole is the

entanglement entropy

SEE “ ´Tr ρA log ρA, (5.3.57)

associated to a ball-shaped boundary subregion A. Here ρA is the reduce density matrix

defined by tracing over the complement Ā

ρA “ TrĀ|0yx0|, (5.3.58)

where |0y is the global vacuum. Here the only length scale is the AdS4 radius ` so we are

considering the regime of large ` and computing

SEE “
Area

4G
` pClocal ` Czmq log `` . . . . (5.3.59)

The geometry of the hyperbolic black hole is given by

ds2
“

ˆ

ρ2

`2
´ 1

˙

dt2 `
dρ2

ρ2

`2
´ 1

` ρ2ds2
H2

, ds2
H2
“ du2

` sinh2u dφ2, (5.3.60)

where ρ ě `, u ě 0 and t „ t` β. The inverse temperature is given by

β “ 2π` . (5.3.61)

We regularize the integral over spacetime using holographic renormalization. In this case,

there is also a divergence coming from the volume of H2 and we take a regulator such that

volpH2q “ ´2π. The integrated four-derivative invariants are given by

1

p4πq2

ż

d4x
?
g E4 “ 2 ,

1

p4πq2

ż

d4x
?
gW 2

“ 0 ,

1

p4πq2

ż

d4x
?
g R2

“ 12 ,
1

p4πq2

ż

d4x
?
g RFµνF

µν
“ 0 . (5.3.62)

This implies that we have

Clocal “ ´2aE ` 12b1 . (5.3.63)

Note that the Gauss-Bonnet-Chern theorem gives

χ “
1

32π2

ż

d4x
?
g E4 “ 1 , (5.3.64)
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as expected since M is topologically D2 ˆ H2 where D2 is a disk and we have χpMq “

χpD2qχpH2q “ 1 since χpD2q “ χpH2q “ 1. This is a non-trivial consistency check for our

regularization procedure.

5.3.6 Global contribution

We now compute the global contribution (5.2.26) which comes from the zero modes and the

change of ensemble. The results are summarized in Table 5.2. In the full geometry, the

contribution from the bosonic zero modes in the full asymptotically AdS4 geometry vanishes

[22]. Indeed, the fact that AdS4 admits a 2-form zero mode follows from the general result

of Camporesi and Higuchi who established that AdS2M admits a M-form zero mode [171].

This 2-form zero mode is central in generating the logarithmic correction in asymptotically

AdS4 backgrounds embedded in eleven-dimensional supergravity [97, 172]. However, in the

four-dimensional theories we consider in this manuscript, there is no contribution from such

a 2-form zero mode.

Hence we have

Czm “ 0 (full geometry) . (5.3.65)

In the near horizon geometry, additional zero modes come from the AdS2 factor. The metric

contributes ´3 zero modes. In the near horizon geometry of BPS black holes, we also have

8 fermionic zero modes. The zero mode contribution for extremal black holes in the near

horizon geometry is then given by

Czm “ ´3` 8 δBPS (near horizon geometry), (5.3.66)

where δBPS “ 1 in the BPS case and 0 otherwise. It is interesting to observe that this contri-

bution can be interpreted in the context of nearly AdS2 holography [170]. The asymptotic

symmetry group of AdS2 is DiffpS1q{SLp2,Rq. Upon a choice of configuration, the number

of broken symmetries is n0 “ `8´ 3, the infinite piece being absorbed in a renormalization

of the energy. So the ´3 zero modes come from the unbroken SLp2,Rq symmetry of AdS2.

A similar argument for BPS black holes explains the 8 fermionic zero modes as arising from

the eight fermionic generators of the PSUp1, 1|2q near horizon symmetry. These patterns of

symmetry breaking can be studied using Jackiw-Teitelboim gravity [170,173–179].

We also include in Cglobal the correction that comes from the change of ensemble from

canonical to microcanonical. Following [22], the change of ensemble gives a contribution

Cens “ ´K , (5.3.67)
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Background spacetime Czm Cens Cglobal

Schwarzschild 0 ´3 ´3

Reissner-Nordström 0 ´3 ´3

Kerr 0 ´1 ´1

Kerr-Newman 0 ´1 ´1

BPS Kerr-Newman 0 ´1 ´1

Reissner-Nordström near horizon ´3 ´3 ´6

Kerr-Newman near horizon ´3 ´1 ´4

BPS Kerr-Newman near horizon 5 ´1 4

Thermal AdS4 0 ´3 ´3

AdS4-Rindler 0 ´3 ´3

Table 5.2: Global contribution to the logarithmic correction.

where K is the number of rotational symmetries of the black hole.

5.4 Minimally coupled matter

To obtain the logarithmic corrections, we need to compute the coefficients aE, c, b1, b2 that

appear in the general expression (5.3.1). Our ultimate aim is to evaluate logarithmic correc-

tions in theories that can arise as consistent low-energy truncations from string and M-theory.

However, in the next sections, we compute these logarithmic corrections in Einstein-Maxwell

theory with a negative cosmological constant and in minimal N “ 2 gauged supergravity. As

a warm-up, we also present the logarithmic corrections to AdS black holes due to minimally

coupled fields, as was done for flat space black holes in [22].

5.4.1 Minimal theories

In this subsection, we compute Clocal for minimal scalars, fermions, vectors and gravitini.

Free scalar. We consider a scalar field of mass m described by the action

S “ ´
1

2

ż

d4x
?
g
`

pBφq2 `m2φ2
˘

. (5.4.1)

The result for a scalar field is obtained by setting

P “ E “ m2, Ω “ 0 , (5.4.2)
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in equation (5.2.23). As explained in section 5.2.2, we consider a regime where every length

scales with a factor λ. So here m scales as λ´1 and what is fixed is the conformal dimension

∆ “
1

2

´

3`
?

9` 4m2`2
¯

. (5.4.3)

This is to be contrasted with flat space where massive fields do not contribute to the loga-

rithmic correction as explained in [21–23].

The heat kernel takes the form

p4πq2a4pxq “ ´
1

360
E4 `

1

120
W 2

`
1

288
p∆p∆´ 3q ´ 2q2R2 . (5.4.4)

The explicit result for Clocal can be obtained using (5.2.19) and (5.3.1). We report the result

for the extremal black hole

Clocal “ ´
1

90
´

r2
0

20`4
p24` 5p∆` 1q∆p∆´ 3qp∆´ 4qq . (5.4.5)

Free fermion. We consider a free Dirac fermion with Euclidean action

S “

ż

dd`1x
?
g ψ̄ pγµ∇µ ´mqψ (5.4.6)

This is dual to an operator with scaling dimension [180]

∆ “
3

2
`m`. (5.4.7)

The result is

p4πq2a4pxq “
11

360
E4 `

1

20
W 2

`
1

72

`

∆´ 3
2

˘2
´

`

∆´ 3
2

˘2
´ 2

¯

R2. (5.4.8)

Free vector. We now consider a free Maxwell field aµ with the Lagrangian

L “ ´1

4
fµνf

µν , (5.4.9)

where fµν “ ∇µaν ´∇νaµ. We add the gauge fixing term

Lg.f. “
1

2
p∇µa

µ
q
2, (5.4.10)
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so that the total Lagrangian becomes

L` Lg.f. “ aµlaµ ´ a
µRµνa

ν . (5.4.11)

The gauge-fixing induces two massless scalar fields with fermionic statistics. We obtain the

result

p4πq2a4pxq “ ´
31

180
E4 `

1

10
W 2 . (5.4.12)

Free Rarita-Schwinger field. We consider here a Majorana spin-3
2

field described by the

Lagrangian

L3{2 “ ´ψ̄µγ
µρν∇ρψν . (5.4.13)

We use the gauge-fixing condition γµψµ “ 0. This is implemented with the gauge-fixing term

Lg.f “ ´
1

2
pψ̄µγ

µ
qγρ∇ρpγ

νψνq , (5.4.14)

so that the total Lagrangian is

L3{2 ` Lg.f “ χ̄µγ
νDνχ

µ, (5.4.15)

after using the field redefinition ψµ “ χµ´
1
2
γµγ

νχν . The gauge-fixing leads to three Majorana

ghosts which are free massless fermions. We refer the reader to section B.3.3 for details on

the gauge-fixing procedure. Hence, we find

p4πq2a4pxq “
229

720
E4 ´

77

120
W 2

´
1

9
R2. (5.4.16)

5.4.2 Logarithmic corrections

The results for minimally coupled scalars are summarized in Table 5.1.

Massless fields

For massless fields, we can present the result as

aE “
1

720
p2nS ` 22nF ` 124nV ´ 229nψq , (5.4.17)

c “
1

120
pnS ` 6nF ` 12nV ´ 77nψq , (5.4.18)

b1 “
1

72
pnS ´ 8nψq . (5.4.19)
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where nS, nF , nV , nψ the number of scalars, spin-1
2

Majorana fermion, vector and gravitini.

The result for AdS-Schwarzschild takes the form

Clocal “
1

180`2p`2 ` 3r2
`q

“

`4
p4nS ` 14nF ´ 52nV ´ 233nψq (5.4.20)

`3r2
``

2
p22nS ` 2nF ´ 76nV ´ 239nψq ` 18r4

`p´3nS ` 2nF ` 4nV ` nψq
‰

.

It is easily seen that in the flat space limit, we have

lim
`Ñ`8

Clocal “
1

180
p4nS ` 14nF ´ 52nV ´ 233nψq. (5.4.21)

which reproduces the results of [22].

Corrections to entanglement entropy

Our result can also be applied to compute logarithmic correction to entanglement entropy.

We consider a ball-shaped region A in the boundary. The entanglement entropy of A is

given by the area of the hyperbolic black hole discussed in section 5.3.5. The logarithmic

corrections to entanglement entropy are given by

SEE “
Area

4G
` C log β ` . . . . (5.4.22)

The contribution of a minimal scalar field of conformal dimension ∆ gives

C “
29

180
`

1

24
p∆` 1q∆p∆´ 3qp∆´ 4q . (5.4.23)

We have here C “ Clocal since there is no zero mode for the scalar field. Quantum corrections

to entanglement entropy can also be interpreted in terms of bulk entanglement entropy [181].

It would be interesting to see if we can understand (5.4.23) as the logarithmic piece of the

bulk entanglement entropy of a scalar field in the Rindler wedge.

5.5 Einstein-Maxwell-AdS theory

We now consider Einstein-Maxwell theory with a negative cosmological constant. This is

the minimal theory that contains the AdS-Kerr-Newman black hole and is the bosonic part

of minimal N “ 2 gauged supergravity studied in section 5.6. The action is given by

S “

ż

d4x
?
g pR ´ 2Λ´ FµνF

µν
q , (5.5.1)
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where Fµν “ BµAν ´ BνAµ is the field strength with Aµ the gauge potential. Note that we

find it convenient to use a convention 4πG “ 1.

The computation is easily performed using the algorithm described in Appendix B.1. We

have also performed an independent computation by hand, as detailed in Appendix B.2.

5.5.1 Bosonic fluctuations

We consider variations of the metric and gauge field

δgµν “
?

2hµν , δAµ “
1

2
aµ , (5.5.2)

where hµν and aα are the graviton and graviphoton, respectively. We impose a particular

gauge to the theory by adding a suitable gauge-fixing Lagrangian

S “ ´

ż

d4x
a

det g

"ˆ

Dµhµρ ´
1

2
Dρh

˙ˆ

Dνhρν ´
1

2
Dρh

˙

`
1

2
pDµaµq pD

νaνq

*

, (5.5.3)

and the corresponding ghost action to the action (5.5.1). We then expand the action up to

quadratic order. The linear order variation yields the equation of motion for the background

fields

Rµν ´
1

2
gµνR ` gµνΛ “2FµρF

ρ
ν ´

1

2
gµνFαβF

αβ , (5.5.4)

DµFµν “0 . (5.5.5)

Note that the equations of motion implies that R “ 4Λ “ ´12{`2. It is also worth mentioning

the Bianchi identity for the gravitational field and gauge field

DrµFνρs “0 , (5.5.6)

Rµrνρσs “0 , (5.5.7)

as they serve as handy tools for simplifying our calculations. The quadratic action can be

put in the canonical form (5.2.21). The details can be found in appendix B.2.1 where we

present the explicit form of the quadratic fluctuations. This allows us to extract the matrices

132



I, E and Ω:

φmI
mnφn “hµν

ˆ

1

2
gµαgνβ `

1

2
gµβgνα ´

1

2
gµνgαβ

˙

hαβ ` aαg
αβaβ, (5.5.8)

φmE
mnφn “hµν

`

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` Λgµνgαβ
˘

hαβ

` aα

ˆ

3

2
gαβFµνF

µν
´ Λgαβ

˙

aβ `

?
2

2
hµν pD

µFαν
`DνFαµ

q aα

`

?
2

2
aα pD

µFαν
`DνFαµ

qhµν ,

(5.5.9)

φm pΩ
ρσ
q
mn φn “hµν

"

1

2

`

gνβRµαρσ
` gναRµβρσ

` gµβRναρσ
` gµαRνβρσ

˘

` rωρ, ωσsµναβ
)

hαβ ` aα

!

Rαβρσ
` rωρ, ωσsαβ

)

aβ

` hµν
`

Drρωσs
˘µνα

aα ` aα
`

Drρωσs
˘αµν

hµν ,

(5.5.10)

where ωρ is the spin-connection given by

φm pω
ρ
q
mn φn “

?
2

2
hµν

´

gαµF ρν
` gανF ρµ

´ gµρFαν
´ gνρFαµ

´ gµνF ρα
¯

aα

´

?
2

2
aα

´

gαµF ρν
` gανF ρµ

´ gµρFαν
´ gνρFαµ

´ gµνF ρα
¯

hµν .

(5.5.11)

We then find the trace of (5.5.8)-(5.5.10). The computation is tedious, but it may also

be illuminating for some readers. We present the intermediate steps in appendix B.2.2. The

final contribution to the heat kernel coefficient is

p4πq2aEM
4 pxq “ ´

277

180
E4 `

38

15
W 2

`
7

18
R2 . (5.5.12)

The reader familiar with the literature might notice that we have not treated the trace mode

in the graviton. Traditionally, as in the literature [148, 153, 182], one decomposes the fields

appearing in the Lagrangian into the irreducible fields φpA,Bq which transform according to

the irreducible pA,Bq representation of SO(4). For example, in [182], the authors considered

the decomposition of fluctuation of geometry hµν into a p1, 1q symmetric traceless tensor, a

scalar characterizing the trace part transforming in p0, 0q and the corresponding vector ghost

field in p1
2
, 1

2
q. Here, we choose the operator Imn as the effective metric, which is equivalent

to making this decomposition.
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Ghost contribution

The addition of the gauge-fixing Lagrangian (5.5.3) gives an action for the ghosts

Sghost,b “
1

2

ż

d4x
?
g
!

2bµ
`

gµνl`Rµν
˘

cν ` 2bl c´ 4bF ρνDρcν

)

, (5.5.13)

where bµ and cµ are vector fields and b and c are scalar fields. From these expression, we can

extract the matrices E and Ω as

φnE
n
mφ

m
“bµ pR

µ
νq b

ν
` cµ pR

µ
νq c

ν ,

φn pΩαβq
n
m φ

m
“bµ

`

Rµ
ναβ

˘

bν ` cµ
`

Rµ
ναβ

˘

cν ´
1

2
pbµ ´ icµq pD

µFαβq pb` icq

`
1

2
pb` icq pDνFαβq pb

ν
´ icνq ,

(5.5.14)

The result for the Seeley-DeWitt coefficient is

aghosts
4 pxq “

13

36
E4 ´

1

4
W 2

´
3

4
R2 , (5.5.15)

where we have already included here the minus sign due to the opposite statistics.

5.5.2 Logarithmic correction

Adding the above results, the heat kernel for Einstein-Maxwell theory takes the form,

p4πq2aB
4 pxq “ ´

53

45
E4 `

137

60
W 2

´
13

36
R2 . (5.5.16)

We can read off the coefficients from (5.3.1) to be

aE “
53

45
, c “

137

60
, b1 “ ´

13

36
, b2 “ 0. (5.5.17)

We note that in the flat limit `Ñ `8, the coefficients a and c match the known flat space

computations in [148,183,184] while the coefficients b1 and b2 are unique to AdS. We can also

note that the result does not explicitly depend on F µν as b2 “ 0. This implies that the final

result is invariant under electric-magnetic duality. This property has also been observed in

the asymptotically flat case in [183,184]. Another sanity check is to consider the truncation

of the terms involving Fµν in the fluctuations. Then (5.5.16) reduces to the neutral limit

which was first obtained in [182]; we show this in detail in Appendix B.2.4.

We can evaluate this result for the BPS Kerr-Newman solution described in section 5.3.4.
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The result is

Clocal “ ´
212

45
`

`2
2

120a`2p`2 ´ a2q

ˆ

629a3
´ 579a2`` 3699a`2 (5.5.18)

`411`3
´ 411

pa` `q4
?
a`

arctanp
a

a{`q

˙

.

5.6 Minimal N “ 2 gauged supergravity

We now consider the simplest supersymmetric theory with a consistent truncation to Einstein-

Maxwell theory with a negative cosmological constant. This is minimal N “ 2 gauged su-

pergravity [167, 185–187]. In this section, we compute the logarithmic corrections in this

theory. We find that in contrast to flat space, the logarithmic correction for BPS black holes

is not topological. The results of this section were obtained using a Mathematica algorithm

described in Appendix B.1 which we have made publicly available [188].

Ultimately, we would like to compute the logarithmic correction for AdS black holes where

a microscopic counting is available. Although the techniques of this chapter are applicable

in those cases, the computations are more involved due to additional matter multiplets.

5.6.1 Fermionic fluctuations

The bosonic Lagrangian of minimal N “ 2 supergravity is the same as (5.5.1). Hence,

the result of the previous section can be applied and gives (5.5.16). In this section, we

will compute the contribution from the fermions. In the conventions of [187], the fermionic

Lagrangian takes the form

Lf “
1

2
ψ̄µγ

µνρDνψρ `
i

4
F µνψ̄ργµγ

ρσγνψσ ´
1

2`
ψ̄µγ

µνψν , (5.6.1)

where the gravitino ψµ is a Dirac spin-3
2

field with charge one, in units of the AdS4 length,

under the Up1q gauge symmetry. The action of the covariant derivative is

Dµψν “ ∇µψν ´
i

`
Aµψν . (5.6.2)

We now put the fermionic Lagrangian in a form suitable for the heat kernel computation.

Firstly, we fix the gauge by adding the following gauge-fixing Lagrangian

Lg.f. “ ´
1

4
pψ̄µγ

µ
qγνDνpγ

ρψρq . (5.6.3)
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This choice is convenient because after we perform the field redefinition

ψµ “
?

2

ˆ

χµ ´
1

2
γµγ

νχν

˙

, (5.6.4)

we obtain a simpler kinetic term. The resulting Lagrangian takes the form

Lf “ gµνχ̄µγ
ρDρχν `

i

2
F µνχ̄ργµγ

ρσγνχσ ´
1

`
χ̄µγ

µνχν . (5.6.5)

More details on this computation are given in Appendix B.3. We then write the Dirac spinor

as

χµ “ χµ1 ` iχ
µ
2 , (5.6.6)

where χ1 and χ2 are Majorana spin-3
2

spinors 3. We use the label A “ 1, 2 for the two

Majorana spinors. The covariant derivative acting on χµA takes the form

Dµχ
ν
A “

ˆ

δAB∇µ
`

1

`
εABAµ

˙

χνB , (5.6.7)

where εAB is the antisymmetric symbol with ε12 “ 1. This is necessary if we want to preserve

the reality condition. It is useful to use the Majorana flip identities (B.3.17) reviewed in

Appendix B.3. The computation detailed there leads to the Lagrangian in terms of Majorana

spinors

Lf “ δABgµνχ̄
µ
Aγ

ρDρχ
ν
B ´

1

2
εABF

µνχ̄ρAγ
µγρσγ

νχσB ´
1

`
δABχ̄

µ
Aγµνχ

ν
B . (5.6.8)

Finally, we reinterpret this Lagrangian as being a Euclidean Lagrangian in which χAµ are

Euclidean spinors satisfying χ̄Aµ “ pχ
A
µ q
:. This Lagrangian can then be used in the algorithm

to obtain the result for the heat kernel. Note that we can question the validity of the Wick

rotation here because Majorana spinors actually do not exist in four Euclidean dimensions.

This can be addressed by using symplectic Majorana spinors. We find, however, that this

procedure actually gives the same result as the naive Wick rotation.

Symplectic Majoranas

The Lagrangian (5.6.8) is written in terms of Majorana spinors in p1, 3q signature. We would

like to Wick rotate this Lagrangian to p0, 4q signature. As mentioned above, this appears

problematic because Majorana spinors do not exist in p0, 4q signature. A better approach is

3For definiteness, we can use here the “really real” representation of the Clifford algebra in which the
Majorana condition is just the reality condition [189].
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to use symplectic Majorana spinors which exist in both p1, 3q and p0, 4q signature [190].

It is shown in [191] that one can map Majorana spinors χµA to symplectic Majorana

spinors λµA using

χµ1 “
1

2
pλµ1 ` γ

5λµ2q , (5.6.9)

χµ2 “
i

2
pλµ1 ´ γ

5λµ2q .

This allows us to write the Lagrangian in terms of λµA. We find that the two flavors actually

decouple as

Lf “ L1 ` L2, (5.6.10)

with

L1 “ gµνλ̄
µ
1γ

ρ
p∇ρ ` i`

´1Aρqλ
ν
1 ´

i

2
F µνλ̄ρ1γµγρσγνλ

σ
1 ´

1

`
λ̄µ1γµνλ

ν
1 , (5.6.11)

L2 “ gµνλ̄
µ
2γ

ρ
p∇ρ ´ i`

´1Aρqλ
ν
2 ´

i

2
F µνλ̄ρ2γµγρσγνλ

σ
2 `

1

`
λ̄µ2γµνλ

ν
2 . (5.6.12)

The Wick rotation is done by reinterpreting λµA as symplectic Majorana spinors in p0, 4q

signature with λ̄µA “ pλ
µ
Aq
:. This can then be used in the algorithm, described in Appendix

(B.1), to compute the heat kernel4. We obtain the gravitini contribution

p4πq2aF,gravitini
4 pxq “

139

90
E4 ´

32

15
W 2

´
2

9
R2
`

8

9
RFµνF

µν . (5.6.13)

Note that the result is ultimately the same as what we obtain naively by using directly the

Majorana Lagrangian (5.6.8) in the algorithm.

Ghost contribution

The gauge-fixing of the gravitini leads to three pairs of ghosts. The gauge condition γµψAµ “ 0

leads to a bc ghost Lagrangian given as

Lbc “ δAB b̄Aγµδcψ
µ
B, (5.6.14)

where δcψ
µ is the supersymmetry transformation with parameter c. This gives

Lbc “ δAB b̄A

ˆ

γµDµ `
2

`

˙

cB . (5.6.15)

4The contribution to the heat kernel of L1 and L2 are equal because the two Lagrangian differs by `Ñ ´`
and the four-derivative terms are invariant under that change.
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We can get a diagonal kinetic term by a suitable redefinition. This leads to two pairs of

ghosts which are charged spin-1
2

fermions with mass m “ 2
`
. In addition, implementing the

gauge-fixing term in the path integral leads to an additional pair of massless charged ghosts,

giving us a ghost for ghost phenomena [192,193]. Details are given in Appendix B.3.

The total heat kernel of the fermionic ghosts is

p4πq2aF,ghosts
4 pxq “

11

120
E4 ´

3

20
W 2

`
2

9
R2
´

1

6
RFµνF

µν , (5.6.16)

where we have already included the minus sign due to the opposite statistics of ghosts.

5.6.2 Logarithmic correction

The total fermionic contribution is

p4πq2aF
4 pxq “

589

360
E4 ´

137

60
W 2

`
13

18
RFµνF

µν . (5.6.17)

Adding this to (5.5.16) from the bosonic computation, we obtain for minimal N “ 2 super-

gravity

p4πq2a4pxq “
11

24
E4 ´

13

36
R2
`

13

18
RFµνF

µν . (5.6.18)

We find that the full result is not only given by the Euler term as other four-derivative

invariants are present. This indicates that the logarithmic correction is non-universal. We

note that the W 2 term, which would give another non-universal contribution, does cancel

between bosons and fermions. This is expected from the flat space result [148], which we

recover in the flat limit.

Evaluation

We can evaluate the heat kernel coefficient on the backgrounds summarized in section 5.3.

For the non-extremal Kerr-Newman black hole, we get

Clocal “
11

6
`

26
“

r`βpr
4
` ´ `

2pa2 ` q2
mqq ´ π`

2pr4
` ´ a

4q
‰

3π`2p`2 ´ a2qpa2 ` r2
`q

. (5.6.19)

We note that the fermionic contribution breaks electromagnetic duality as it generates a

non-zero b2. This is reflected by the dependence in the magnetic charge qm in the above

expression.
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The result for extremal Kerr-Newman takes the form

Clocal “
11

6
`

26`2
2 rpa

2pa` `q ` r2
0p3a´ `qqpa

2pa´ `q ` r2
0p3a` `qq ` 2`2q2

mpr
2
0 ´ a

2qs

3`2p`2 ´ a2qpa2 ` r2
0q

2
,

(5.6.20)

where here the AdS2 radius is `2 “ `
b

a2`r2
0

a2``2`6r2
0
. As explained in section 5.3.4, this is

obtained by either taking the extremal limit of (5.6.19) or by doing the computation in the

near horizon geometry.

We are particularly interested in evaluating the logarithmic corrections on BPS black

holes. Rotation is necessary to have a regular BPS background in minimal gauged super-

gravity as the extremal AdS-Reissner-Nordström is singular in the BPS limit [75, 168, 194].

We obtain the BPS result by imposing the BPS constraints r0 “
?
a` and qm “ 0 on (5.6.20).

The contribution is

Clocal “
11

6
´

26

3

ap`2 ´ 4`´ a2q

p`´ aqpa2 ` 6a`` `2q
, (5.6.21)

where the first term comes from the topological Euler term and the second term comes

R2 and RF 2 and constitute the non-topological piece. We discuss the significance of this

non-topological term in the next subsection.

5.6.3 Implications

We shall now comment on the non-topological nature of the logarithmic correction. For

the flat space Kerr-Newman black hole, the heat kernel a4pxq is the sum of only two terms:

the Euler term and the Weyl squared term. Although W 2 “ 0 for extremal non-rotating

black holes in flat space, it is non-zero for extremal rotating black holes. It was shown

in [148, 195] that supersymmetry ensures that the coefficient c multiplying W 2 actually

cancels. This shows that supersymmetry makes the logarithmic correction topological in

ungauged supergravity.

In AdS4, theW 2 term never vanishes in the near horizon geometry (even without rotation)

and there are two additional terms. We also obtain that supersymmetry ensures c “ 0 due

to cancellations between bosons and fermions. This could be expected from the flat space

results of [148] which we reproduce in the flat limit ` Ñ `8. Hence, even with a negative

cosmological constant, supersymmetry makes the logarithmic correction less complicated as

it removes the non-topological term W 2. This term is a complicated function of the black

hole parameters. For the BPS Kerr-Newman AdS black hole, it takes the form

1

p4πq2

ż

d2x
?
gW 2

“
3`2

2

2a`2p`2 ´ a2q

ˆ

p`´ aqp`2
` 10a`` a2

q ´
pa` `q4
?
a`

arctanp
a

a{`q

˙

.

(5.6.22)
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The two other four-derivative, R2 and RF 2, terms do not cancel so supersymmetry does not

imply that the logarithmic corrections are topological. However, we see that the BPS result

(5.6.21) is still a simpler function of a and ` as it has c “ 0. It is a rational function rather

than a transcendental one.

It is natural to expect topological logarithmic corrections in the UV given the known

examples of microscopic counting of black hole entropy [95, 99, 100, 104, 151, 196–198]. This

is also automatic if the 4d theory comes from an odd-dimensional theory by Kaluza-Klein

reduction because Clocal “ 0 in odd dimensions. Hence, the logarithmic correction can be

a useful probe of whether a low-energy effective theory can have a UV completion. The

idea is that from a bottom-up perspective, we should prefer low-energy theories which have

topological logarithmic correction. This is only possible if c “ b1 “ b2 “ 0 which is a rather

strong constraint on the low-energy Lagrangian, analogous to anomaly cancellation.

5.7 Discussion

In this chapter, we have computed the logarithmic corrections to the entropy of black holes

in minimal gauged supergravity using the four dimensional heat kernel expansion. The

inclusion of a negative cosmological constant leads to new features compared to the case of

asymptotically flat black holes. In the especially interesting case of BPS black holes, the

logarithmic corrections present a richer structure and can be non-topological.

The original explicit logarithmic corrections performed for asymptotically AdS4 ˆ S7

black holes based on Sen’s entropy function formalism, using the near horizon geometry, did

not agree with the field theory computations [95, 96]. It was only in [97] that agreement

was found by considering the full geometry. The results of this manuscript clarify that the

difference between the two approaches comes from the contributions of the zero modes which

are indeed different in the two geometries. Namely, we have shown that for extremal black

holes the local contribution to the logarithmic correction, Clocal, is the same when computed

either from the full AdS4 asymptotic region or for the near horizon geometry. This result

elucidates the question of where the degrees of freedom responsible for the quantum entropy

live.

For the BPS Kerr-Newman black hole in minimally gauged supergravity, we have found

that the logarithmic correction, given in (5.6.21), is non-topological. To obtain this result,

we have used holographic renormalization to regularize the divergent volume integrals. This

appears to be the right prescription as, for example, it gives the correct counterterm to

obtain the Euler characteristic when integrating the Euler density, see Appendix B.5 for

more details.
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The non-topological nature of the logarithmic corrections suggest that they might contain

more information than the flat space counterpart, providing a wider “infrared window into

the microstates”. Moreover, this non-topological nature is interesting because for all the

available examples of microscopic counting and for BPS black holes in flat space [148], the

logarithmic correction is always topological, i.e., the coefficient of the logarithm is a pure

number. In minimal gauged supergravity, we find that it is instead a rather non-trivial

function of the black hole parameters.

It is illuminating to compare this result to recent investigations using supergravity local-

ization [98,102,150]. In [150], the general structure of the logarithmic correction of 4d N “ 2

gauged supergravity on BPS backgrounds was studied using index theory. It was shown that

the universal piece coming from the Euler term arises from the application of the Atiyah-

Singer theorem to an appropriate supercharge. We surmise that the non-universal piece that

we obtained should be interpreted as the contribution from the η invariant, not considered

in [150], which is a non-topological correction due to the presence of a boundary [199]. Su-

pergravity localization has the potential of ultimately providing the full quantum entropy of

the black holes and it would be fruitful to test it against one-loop supergravity results such

as ours.

Our work also clarifies the role of supersymmetry. One could think that supersymmetry

guarantees that the logarithmic corrections are topological. This is suggested by the index

theory interpretation [150] and by results in flat spacetime [148,149]. In this work, we have

seen that supersymmetry is not enough to make the other terms cancel which shows the

logarithmic corrections can be non-topological for BPS black holes. Nevertheless, supersym-

metry does play a role in making Clocal simpler as it cancels the coefficient, c, of the Weyl

squared term (5.6.22). This simplifies the logarithmic correction for the BPS black hole as

its dependence on a and ` becomes rational instead of transcendental.

We might hope to use the topological nature of logarithmic corrections as a criterion for

a low-energy theory to admit a UV completion. In the available examples of microscopic

countings, the logarithmic correction is indeed topological [95, 99, 100, 104, 151, 196–198].

Such a criteria would greatly constrain effective supergravity theories as it gives rather

stringent conditions similar to anomaly cancellation. Note that in odd dimensions, the

logarithmic correction is automatically topological because the local contribution is trivially

zero. So if the four-dimensional theory comes from the dimensional reduction of an odd-

dimensional theory, such as 11d supergravity, the logarithmic correction computed in 4d has

to be topological. For ten dimensional theories, there is a local contribution in 10d and, as

a result, the topological criterion should be much more constraining.

We have obtained the logarithmic correction for the simplest gauged supergravity in four
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dimensions. Our goal is to grow this direction towards more interesting theories and to relate

our results to other approaches such as the computations performed in eleven-dimensional

supergravity [97,100,104,151]. It should be possible to perform the same computation in the

gauged Up1q4 supergravity which comes from eleven dimensional supergravity on AdS4ˆS
7.

Similarly, the logarithmic correction to the entropy of black holes in AdS4 ˆ SE7 has been

computed both in field theory and supergravity for a large class of Sasaki-Einstein seven-

dimensional manifolds [104]. In both these cases, the topological nature follows from the

fact that the parent theory is odd-dimensional. It would be interesting to see explicitly how

this is realized from a four-dimensional perspective.

More challenging would be the cases where the AdS4 black holes are embedded in ten-

dimensional theories such as massive IIA supergravity. A matching of the Bekenstein-

Hawking entropy at leading order was presented in [200–202]. The available sub-leading,

microscopic analysis confirms the topological nature of the logarithmic term [99]. However,

the supergravity computations need to be in agreement with the nontrivial nature of Clocal.

We hope to address some of these issues in the future.
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Chapter 6

Concluding Remarks

In this thesis, we have focused on exploring quantum gravity in the context of holography

and its relation to AdS black holes. While this is a very broad subject, we have focused on

investigating the entropy of black holes via gravity and field theoretic computations. The aim

of part I was to explore the AdS/CFT and Kerr/CFT correspondence in a certain parameter

space to study the matching between the macroscopic entropy via the Bekenstein-Hawking

formula and the microscopic entropy counting via CFTd´1 and CFT2. For example, we

have also been able to extend these holographic approaches to the entropy to the context

of near-extremality, with the hopes that we can eventually probe the full non-extremal

regime. This is an outstanding problem since most field theoretic computations heavily rely

on supersymmetry.

In part II, we shifted our attention to the entropy at subleading order by considering

two distinct methods: the Kerr/CFT correspondence and the heat kernel. Although the two

dimensional effective CFT2 is not completely understand from the Kerr/CFT perspective,

we can still connect and take advantage of the correspondence. Expanding beyond the saddle

point, we can investigate the logarithmic term of the entropy via the Cardy formula to obtain

a correction that matches precisely with field theory predictions. This supports the use of

Kerr/CFT and prompts us to investigate further the strength of the conjecture. Moreover,

the success of implementing the near-horizon geometry to extract the entropy, as for example

in the Kerr/CFT correspondence, leaves room for speculation as to what extent the black hole

horizon provides a window into the full understanding of quantum gravity. By calculating

the quantum corrections to the entropy, we have found that the near-horizon accounts does

contain the quantum degrees of freedom accounting for the logarithmic correction, up to

zero modes and changes in the ensemble. From these two methods to extract the logarithmic

corrections, it would be interesting to understand how zero modes, the heat kernel and the

Kerr/CFT correspondence are related in diverse dimensions.
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Appendix A

Verifying Black Hole Equations of

Motion

A.1 Verifying the equations of motion for the near-

horizon

Gravitational theories are nonlinear and, therefore, a truncated sector of a solution need

not be a solution itself. For that reason, we explicitly verify that, in each instance, the

near-horizon limit satisfies the equations of motion. This fact alone should inspire trust in

the consistency of the resulting geometry and the potential existence and closure of a dual

field theory sector. Returning to the analogy with the BMN paradigm, this is equivalent to

checking the equations of motion for the plane wave background [203].

A.1.1 AdS5

We verify the equations of motion for the near-horizon geometry for AdS5. The Lagrangian

describing the solution in [24] is

L “
`

R ` 12g2
˘

˚ 1´
1

2
˚ F ^ F `

1

3
?

3
F ^ F ^ A, (A.1.1)

and the equations of motion are

Rab ´
1

2
FacF

c
b `

1

3
gab

ˆ

1

4
F 2
` 12g2

˙

“ 0, d ‹ F ´
1
?

3
F ^ F “ 0. (A.1.2)

144



In order to facilitate the computation, we turn to a veilbein description for the near-horizon

geometry,

e1 “

c

a

10ag2 ` 2g
r̃dτ,

e2 “

c

a

10ag2 ` 2g

dr̃

r̃
,

e3 “

c

2a

g ´ ag2
dθ,

e4 “ p1

´

p2

´

p´3agcos2θ ` ag ´ 4qdψ̃ ´ 6agsin2θdφ̃
¯

` 3a
`

a2g2
` ag ´ 2

˘

r̃dτ
¯

,

e5 “ p3

´

3ap1´ agqr̃dτ ` 2p2dφ̃
¯

,

(A.1.3)

where

p1 “ ´
cosθ

p1´ agqp5ag ` 1q
a

2pag ` 2qp3agcosp2θq ´ ag ` 4q
,

p2 “

d

apag ` 2q

g
p5ag ` 1q,

p3 “
sinθ

p5ag ` 1q
a

p1´ agqp3agcosp2θq ´ ag ` 4q
.

(A.1.4)

Note that this coframe describes the near-horizon, which is computed using [37]. After

applying the near-horizon geometry and gauge fixing, the gauge potential is

Ap1q,near “ ´

?
6p1´ agq

?
ag ` 2

?
5ag ` 1

e1 ´

?
6agcosθ

?
3agcos2θ ´ ag ` 4

e4

´
2
a

3agp1´ agqsinθ

p
?
ag ` 2

?
3agcos2θ ´ ag ` 4

e5. (A.1.5)

Note that the exterior derivative and the near-horizon geometry limit commute to give an

equivalent expression for the gauge field,

Fp2q,near “ dAp1q,near “

a

3agpag ` 2q

a
e1 ^ e2 ` 2gsinθ

d

3p1´ agq

3agcos2θ ´ ag ` 4
e3 ^ e4

` gcosθ

d

6pag ` 2q

p3agcos2θ ´ ag ` 4q
e3 ^ e5.

(A.1.6)

145



Then,

Fp2q,near ^ Fp2q,near “ 6g3{2

?
ag ` 2

a

ap3agcos2θ ´ ag ` 4q

´

2
a

1´ agsinθe1 ^ e2 ^ e3 ^ e4

´
a

2ag ` 4cosθe1 ^ e2 ^ e3 ^ e5

¯

.

(A.1.7)

The other term gives

d ‹ Fp2q,near “d

«

?
6gcosθ

c

ag ` 2

3agcos2θ ´ ag ` 4
e1 ^ e2 ^ e4 ´

a

3agpag ` 2q

a
e3 ^ e4 ^ e5

`2
?

3gsinθ

c

1´ ag

3agcos2θ ´ ag ` 4
e1 ^ e2 ^ e5



“
2
a

3pag ` 2qg3{2

a

ap3agcos2θ ´ ag ` 4q

´

2
a

1´ agsinθe1 ^ e2 ^ e3 ^ e4

´
a

2ag ` 4cosθe1 ^ e2 ^ e3 ^ e5

¯

.

(A.1.8)

Comparing equations (A.1.7) and (A.1.8), we can see that the equation of motion for the

gauge potential is satisfied. For the Einstein equations, the geometric data we need are the

nonzero components of the Ricci tensor

R00,near “ ´R11,near “
gp11ag ` 4q

2a
,

R22,near “ ´
gp5ag ´ 2q

2a
,

R33,near “ ´
g p9a2g2cos2θ ´ a2g2 ` 14ag ´ 4q

ap3agcos2θ ´ ag ` 4q
,

R34,near “ ´
3
?

2g2
a

2´ ag ´ a2g2sinθcosθ

3agcos2θ ´ ag ` 4
,

R44,near “ ´
g p21a2g2cos2θ ´ 11a2g2 ´ 12agcos2θ ` 28ag ´ 8q

2ap3agcos2θ ´ ag ` 4q
.

(A.1.9)
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We also need the explicit nonzero contractions of the gauge field Fac,nearF
c
b ,near ” Fab,near

F00,near “
3gpag ` 2q

a
, F11,near “ ´F00,near, F22,near “ 3g2,

F33,near “
12g2p1´ agqsin2θ

3agcos2θ ´ ag ` 4
, F34,near “ ´

3g2sin2θ
a

2p1´ agqp2` agq

3agcos2θ ´ ag ` 4
,

F44,near “
6g2pag ` 2qcos2θ

3agcos2θ ´ ag ` 4
, Fab,nearF

ab,near
“ ´

12g

a
.

(A.1.10)

The equations of motion are then verified once we impose these expressions.

A.1.2 AdS4

The 4dN “ 4 gauged supergravity can be obtained by the truncation of the 11d supergravity

[41]

L4 “R ˚ 1´
1

2
˚ dϕ^ dϕ´

1

2
e2ϕ

˚ dχ^ dχ´
1

2
e´ϕ ˚ Fp2q2 ^ Fp2q2 ´

1

2
χFp2q2 ^ Fp2q2

´
1

2 p1` χ2e2ϕq

`

eϕ ˚ Fp2q1 ^ Fp2q1 ´ e
2ϕχFp2q1 ^ Fp2q1

˘

´ g2
`

4` 2coshϕ` eϕχ2
˘

˚ 1,

(A.1.11)

where ϕ and χ are the dilaton and axion. The subscript in parenthesis denotes the degree

of the form. The solution has two pairwise equal charges and therefore two gauge potential
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Ap1q1 and Ap1q2. The equations of motion are

0 “d

ˆ

1

1` χ2e2ϕ

`

eϕ ‹ Fp2q1 ´ e
2ϕχFp2q1

˘

˙

,

0 “d
`

e´ϕ ‹ Fp2q2 ` χFp2q2
˘

,

0 “ ´ d ‹ dϕ´ e2ϕ
‹ dχ^ dχ`

1

2
e´ϕ ‹ dAp1q2 ^ dAp1q2 ´ g

2
p2sinhϕ` eϕχ2

q ‹ 1

`
eϕ pe2ϕχ2 ´ 1q

2 pe2ϕχ2 ` 1q2
‹ dAp1q1 ^ dAp1q1 `

e2ϕχ

pe2ϕχ2 ` 1q2
dAp1q1 ^ dAp1q1,

0 “´ dpe2ϕ
‹ dχq ´

1

2
dAp1q2 ^ dAp1q2 `

e3ϕχ

pe2ϕχ2 ` 1q2
‹ dAp1q1 ^ dAp1q1 ´ 2g2eϕχ ‹ 1

`
e2ϕ ´ e4ϕχ2

2 pe2ϕχ2 ` 1q2
dAp1q1 ^ dAp1q1,

0 “Rab ´
1

2
gabR ´

1

2

ˆ

∇aϕ∇bϕ´
1

2
∇cϕ∇cϕgab

˙

´
1

2
e´ϕ

ˆ

Fac,2F
c
b,2 ´

1

4
Fcd,2F

cd
2 gab

˙

´
1

2
e2ϕ

ˆ

∇aχ∇bχ´
1

2
∇cχ∇cχgab

˙

´
eϕ

2p1` χ2e2ϕq

ˆ

Fac,1F
c
b,1 ´

1

4
Fcd,1F

cd
1 gab

˙

`
1

2
g2
p4` 2coshϕ` eϕχ2

qgab.

(A.1.12)

The convenient veilbein for this black hole solution is

e0 “ G1

a

cos2θ ` x2y2r̃dτ,

e1 “ G1

a

cos2θ ` x2y2
dr̃

r̃
,

e2 “
?

2

d

cos2θ ` x2y2

h2 p´2cos2θ ` x4y4 ´ 2x2y2 ´ 1q
dθ,

e3 “ G4sinθ

d

´2cos2θ ` x4y4 ´ 2x2y2 ´ 1

px2y2 ´ 1q2 pcos2θ ` x2y2q
pG5r̃dτ ` dφ̃q,

(A.1.13)
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where G1, G4, G5 are constants

G1 “
xy

a

2 px4 ´ 1q py4 ´ 1q

g

`

x10
“

y10
` y6

˘

` x8
`

6y8
´ 8y4

˘

` x6y2
`

y8
´ 10y4

` 5
˘

´2x4
`

4y8
´ 7y4

` 1
˘

` x2y2
`

5y4
´ 3

˘

´ 2y4
‰´1{2

,

G4 “

?
2 px2y2 ´ 1q

g |x2y2 ´ 3|
,

G5 “ G2
1

g2 px2 ` y2q px2y2 ´ 3q px2y2 ´ 1q
3{2

?
2xy

a

px4 ´ 1q py4 ´ 1q
,

(A.1.14)

that depend on the parameters δ1, δ2 of the solution, which we have redefined as

δ1 ” lnx, δ2 ” ln y. (A.1.15)

The scalar fields in the near-horizon are

χnear “ ´
xcospθq px2 ´ y2q px2y2 ` 1q

a

2 py4 ´ 1q px2y2 ´ 1q

y px2 py4 ´ 1q cosp2θq ` x6y4 ´ x4y2 ´ x2 ` y2q
?
x4 ´ 1

,

peϕqnear “
x2 py4 ´ 1q cosp2θq ` x6y4 ´ x4y2 ´ x2 ` y2

x2 py4 ´ 1q pcosp2θq ` x2y2q
,

(A.1.16)

and for the gauge potentials after adding a pure gauge term for convenience,

Ap1q1,near “
M1

cosp2θq ` x2y2

«

M2 p´ px
4 ´ 1q y2cosp2θq ` x4y2 py4 ´ 2q ´ x2 py4 ´ 1q ` y2q

G1

a

cosp2θq ` x2y2
e1

`M4sin2θ

˜

cscpθq px2y2 ´ 1q
a

cosp2θq ` x2y2

G4

a

´2cosp2θq ` x4y4 ´ 2x2y2 ´ 1
e4 ´

G5

G1

a

cosp2θq ` x2y2
e1

¸ff

,

Ap1q2,near “
M1

cosp2θq ` x2y2

«

M2 p´x
2 py4 ´ 1q cosp2θq ` x6y4 ´ x4y2 ` x2 p1´ 2y4q ` y2q

G1

a

cosp2θq ` x2y2
e1

`M4sin2θ

˜

cscpθq px2y2 ´ 1q
a

cosp2θq ` x2y2

G4

a

´2cosp2θq ` x4y4 ´ 2x2y2 ´ 1
e4 ´

G5

G1

a

cosp2θq ` x2y2

¸

e1

ff

,

(A.1.17)
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where

M1 “
x2y2 ´ 1
?

2
,

M2 “ ´G5
2 px2y2 ` 1q

g px2 ` y2q px2y2 ´ 3q px2y2 ´ 1q2
,

M4 “
4

3g ´ gx2y2
.

(A.1.18)

A.1.3 AdS7

In this section, we are interested in charged, rotating AdS7 black hole solutions as studied

in [50,51]. The Lagrangian is

L7 “R ‹ 1´
1

2

2
ÿ

i“1

‹dϕi ^ dϕi ´
1

2

2
ÿ

I“1

X´2
I ‹ F I

p2q ^ F
I
p2q ´

1

2
X2

1X
2
2 ‹ Fp4q ^ Fp4q

` 2g2
`

8X1X2 ` 4X´1
1 X´2

2 ` 4X´2
1 X´1

2 ´X´4
1 X´4

2

˘

‹ 1

` gFp4q ^ Ap3q ` F
1
p2q ^ F

2
p2q ^ Ap3q,

(A.1.19)

where

X1 “ e´ϕ1{
?

10´ϕ2{
?

2, X2 “ e´ϕ1{
?

10`ϕ2{
?

2, F I
p2q “ dAIp1q, Fp4q “ dAp3q, (A.1.20)

where we have fixed a typographical error corresponding to a minus sign in one of the terms

in the Lagrangian. The bosonic fields include two scalars ϕ1 and ϕ2, the graviton, a 3-form

potential Ap3q, and two U(1) gauge potentials AI
p1q, I “ 1, 2. We study two different solutions

to this Lagrangian. The first solution is more general with two charges set equal but different

angular momenta. The equations of motion corresponding to the scalars and gauge fields
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are

lϕ1 “
8
?

10
g2

`

4X1X2 ´ 3X´1
1 X´2

2 ´ 3X´2
1 X´1

2 ` 2X´4
1 X´4

2

˘

`
1

2
?

10

2
ÿ

I“1

X´2
I F IabF I

ab

´
1

12
?

10
X2

1X
2
2F

abcdFabcd,

lϕ2 “
1

2
?

2

`

X´2
1 F 1abF 1

ab ´X
´2
2 F 2abF 2

ab

˘

` 4
?

2g2
`

X´1
1 X´2

2 ´X´2
1 X´1

2

˘

,

0 “ d
`

X´2
1 ‹ F 1

p2q

˘

´ F 2
p2q ^ Fp4q,

0 “ d
`

X´2
2 ‹ F 2

p2q

˘

´ F 1
p2q ^ Fp4q,

0 “ d
`

X2
1X

2
2 ‹ Fp4q

˘

´ 2gFp4q ´ F
1
p2q ^ F

2
p2q,

(A.1.21)

and for the graviton, we have

0 “ Rab ´
1

2
Rgab ´ g

2
`

8X1X2 ` 4X´1
1 X´2

2 ` 4X´2
1 X´1

2 ´X´4
1 X´4

2

˘

gab

´

2
ÿ

i“1

ˆ

1

2
∇aϕi∇bϕi ´

1

4
∇cϕi∇cϕigab

˙

´

2
ÿ

I“1

X´2
I

ˆ

1

2
F Ic
a F I

bc ´
1

8
F IcdF I

cd gab

˙

´X2
1X

2
2

ˆ

1

12
F cde
a Fbcde ´

1

96
F cdefFcdef gab

˙

.

(A.1.22)

We can truncate this solution as constructed in [50], where the two charges and angular

momenta are set equal. This truncation can be done by lettingX “ X1 “ X2 “ e´ϕ{
?

10, ϕ2 “

0 and Ap1q “ A1
p1q “ A2

p1q and the Lagrangian of interest becomes

L7 “R ‹ 1´
1

2
‹ dϕ1 ^ dϕ1 ´X

´2
‹ Fp2q ^ Fp2q ´

1

2
X4
‹ Fp4q ^ Fp4q

` 2g2
`

8X2
` 8X´3

´X´8
˘

‹ 1` Fp2q ^ Fp2q ^ Ap3q ` gFp4q ^ Ap3q,
(A.1.23)

and the equations of motion are

0 “ d ‹ dϕ´
2X´2

?
10

‹ Fp2q ^ Fp2q `
2X4

?
10
‹ Fp4q ^ Fp4q ´

16g2

?
10

`

2X2
´ 3X´3

`X´8
˘

‹ 1,

0 “ d
`

X´2
‹ Fp2q

˘

´ Fp2q ^ Fp4q,

0 “ d
`

X4
1 ‹ Fp4q

˘

´ 2gFp4q ´ F
1
p2q ^ F

2
p2q,

(A.1.24)
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and for the graviton

0 “Rab ´
1

2
Rgab ´

1

2

ˆ

∇aϕ∇bϕ´
1

2
∇cϕ∇cϕgab

˙

´X´2

ˆ

F c
a Fbc ´

1

4
F cdFcd gab

˙

´ g2
`

8X2
` 8X´3

´X´8
˘

´
1

12
X4

ˆ

F cde
a Fbcde ´

1

8
F cdefFcdef gab

˙

.

(A.1.25)

The fields corresponding to the solution in [50] are

X “ H´1{5,

Ap1q “
2msinhpδqcoshpδq

ρ4ΞH
pdt´ aσq `

α70 dt

Ξ´
,

Ap3q “

`

amsinh2
pδq

˘

σ ^ dσ

ρ2ΞΞ´
` α71 dt^ dθ ^ dψ ` α72 dt^ dξ ^ dφ` α73 dt^ dξ ^ dψ,

(A.1.26)

where we have added pure gauge terms to both potentials Ap1q and Ap3q for convenience.

More precisely, after taking the near-horizon geometry, we have

α70 “ ´1, α71 “ ´βsinθsin2ξ, α72 “ βsin2ξ, α73 “ βcosθsin2ξ, (A.1.27)

where

β “ ´
4
`

e2δ ´ 1
˘

p´13e2δ ´ 9e4δ ` 9e6δ ` 5q g2
. (A.1.28)

A convenient veilbein for the near-horizon is

e1 “ p1r̃dτ,

e2 “ p1
dr̃

r̃
,

e3 “ p2

`

p3r̃dτ ` p4

`

sin2ξpdφ` cosθdψq ` 2dχ̃
˘˘

,

e4 “ p5dξ,

e5 “ p5sinξdθ,

e6 “ p5sinθsinξdψ,

e7 “ p5sinξcosξpdφ` cosθdψq,

(A.1.29)
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where

p1 “
1

g

23{531{5pe2δ ` 1q1{5
?

6e2δ ` 27e4δ ` 43
,

p2 “
1

22{533{10g

1

p1´ 3e2δq p5´ 3e2δq

1
b

pe2δ ` 1q3{5 p9e2δ ´ 7q
,

p3 “ ´
16

`

3e2δ ´ 5
˘3{2 `

2e2δ ` 3e4δ ´ 1
˘

6e2δ ` 27e4δ ` 43

d

3p9e2δ ´ 7q

p´2e2δ ` 3e4δ ´ 5q
,

p4 “ ´30e2δ
` 27e4δ

` 7,

p5 “
1

g

28{5

33{10

pe2δ ` 1q1{5
a

p´2e2δ ` 3e4δ ´ 5q
.

(A.1.30)

In the near-horizon limit, the fields in the veilbein basis become

Xnear “
22{5

31{5pe2δ ` 1q1{5
,

Ap1q,near “
22{533{10

`

e2δ ` 1
˘4{5 ``

15´ 9e2δ
˘

e1 `
?

6e2δ ` 27e4δ ` 43e3

˘

?
44e2δ ` 210e4δ ` 108e6δ ` 243e8δ ´ 301

,

Ap3q,near “
p54e2δ ` 27e4δ ´ 101qpe1 ^ e5 ^ e6 ´ e1 ^ e4 ^ e7q

29{531{10pe2δ ` 1q1{10
?

9e2δ ´ 7
?

6e2δ ` 27e4δ ` 43

´

`

99e2δ ´ 117e4δ ` 81e6δ ´ 215
˘

pe3 ^ e4 ^ e7 ´ e3 ^ e5 ^ e6q

24{531{10pe2δ ` 1q1{10
?

9e2δ ´ 7 p6e2δ ` 27e4δ ` 43q
.

(A.1.31)

A.1.4 AdS6

The field content consists of the graviton, a 2-form Ap2q, the scalar ϕ and one U(1) gauge

potential Ap1q after truncation, as shown in [55]. After appropriate rescaling and gauge

transformations, the 6d Lagrangian is given by

L6 “R ‹ 1´
1

2
‹ dϕ^ dϕ´X´2

`

‹Fp2q ^ Fp2q ` g
2
‹ Ap2q ^ Ap2q

˘

´
1

2
X4
‹ Fp3q ^ Fp3q

` g2
`

9X2
` 12X´2

´X´6
˘

‹ 1´ Fp2q ^ Fp2q ^ Ap2q ´
g2

3
Ap2q ^ Ap2q ^ Ap2q,

(A.1.32)

where

X “ e´ϕ{
?

8. (A.1.33)
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The equations of motion are

Gab “
1

2
∇aϕ∇bϕ´

1

4
∇cϕ∇cϕgab `X

´2

ˆ

F c
aFbc ´

1

4
F cdFcdgab

˙

`X´2g2

ˆ

AcaAbc ´
1

4
AcdAcdgab

˙

`X4

ˆ

1

4
F cd
a Fbcd ´

1

24
F cdeFcdegab

˙

`
g2

2

`

9X2
` 12X´2

´X´6
˘

gab,

(A.1.34)

lϕ “
1
?

8
X´2

`

F abFab ` g
2AabAab

˘

´
1

3
?

8
X4F abcFabc `

3
?

2
g2

`

3X2
´ 4X´2

`X´6
˘

,

d
`

X´2
‹ Fp2q

˘

“ ´Fp2q ^ Fp3q,

d
`

X4 ‹ Fp3q
˘

“ ´Fp2q ^ Fp2q ´ g
2Ap2q ^ Ap2q ´ 2g2X´2 ‹ Fp2q.

(A.1.35)

We omit the veilbein and several other details for this black hole as the expressions are quite

long. The scalar and the Up1q gauge field in the near-horizon limit take the form

χ4
near “

g pa pb` gy2q ` y2pbg ` 1qq pa pb` gz2q ` z2pbg ` 1qq

pag ` bg ` 1q pa2bpbg ` 1q ` a pb2 ` bg py2 ` z2q ` g2y2z2q ` gy2z2pbg ` 1qq
,

Ap1q,near “ W1

´

W2r̃dt̃`W3dφ̃1 `W4dφ̃2

¯

,

(A.1.36)

where

W1 “

?
ab

?
ag ` bg ` 1 pa2bpbg ` 1q ` a pb2 ` bg py2 ` z2q ` g2y2z2q ` gy2z2pbg ` 1qq

,

W2 “
“`

b2
´ a2

˘

ΞaΞbpag ` bg ` 1q
`

a2
`

3b2
` bg

`

y2
` z2

˘

´ g2y2z2
˘

`a
`

b2g
`

y2
` z2

˘

` b
`

´2g2y2z2
` y2

` z2
˘

´ 2gy2z2
˘

´ y2z2
pbg ` 1q2

‰

“

a4g2
`

b2g2
` 6bg ` 1

˘

` 2a3g
`

b3g3
` 7b2g2

` 7bg ` 1
˘

`a2
`

b4g4
` 14b3g3

` 30b2g2
` 14bg ` 1

˘

` 2ab
`

3b3g3
` 7b2g2

` 7bg ` 3
˘

`b2
pbg ` 1q2

‰´1
,

W3 “
b pa2 ´ y2q pa2 ´ z2q pb2g2 ´ 1q

b

ab
ag`bg`1

,

W4 “´
a pa2g2 ´ 1q pb2 ´ y2q pb2 ´ z2q

b

ab
ag`bg`1

.

(A.1.37)
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Note that we have added a pure gauge term to the 1-form α6dt, where α6 “ ´1.
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Appendix B

Subleading Corrections via the Heat

Kernel: Supplemental Computations

B.1 Mathematica algorithm

We describe the Mathematica algorithm written with xAct [204] and xPert [205] to compute

the Seeley-DeWitt coefficients a4pxq presented in this paper. An executable code reproducing

the results of this paper is available at [188]. The purpose of the algorithm is to compute

a4pxq via the expression

p4πq2a4pxq “ Tr

„

1

2
E2
`

1

6
RE `

1

12
ΩµνΩ

µν
`

1

360
p5R2

` 2RµνρσR
µνρσ

´ 2RµνR
µν
q



,

(B.1.1)

where E and Ω are determined by the two-derivative action as defined in section (5.2.3).

This computation is straightforward but tedious to do by hand, especially for fermions.

The algorithm uses xTensor and our own implementation of Euclidean spinors (as xSpinor

can only treat Lorentzian spinors). The resulting expression is then reduced using various

spinorial and geometrical identities, as well as the equations of motion.

For bosons, the algorithm uses xPert [205] to expand any Lagrangian to quadratic order.

It then extracts the matrices P and ω which allows us to compute E and Ω, evaluates

and simplifies a4pxq. For fermions, the input is the matrix L which defines the quadratic

Lagrangian as L “ ψ̄p {D ` Lqψ where ψ refers to all the fermionic fields of the theory. The

heat kernel method is then applied to the operator Q “ D:D using the formula (5.2.25) to

obtain P and ω. The algorithmic approach is useful because we can automatize simplification

using gamma matrix identities.
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The algorithm was used in this paper to verify the bosonic result, also computed by hand,

and to obtain the fermionic result, which appeared too tedious to compute by hand. It has

also been used to obtain the results for minimal couplings, which can also be easily obtained

by hand.

Let us mention various checks that have been performed on this algorithm. It gives

the correct logarithmic contribution for various results in the literature such as minimally

coupled fields [158] and ungauged N ě 2 supergravity [148]. The same algorithm was used

in [206] to compute the logarithmic correction in the non-BPS branch of ungauged N ě 2

supergravity. The results of [206] were subsequently checked by a completely independent

approach [148] computing directly a4pxq from eigenvalues, with agreement in all cases. Given

that the Lagrangians involved in these computations were fairly complicated, this gives us

confidence that the algorithm performs correctly.

B.2 Bosonic computation

For the interested reader, we present a self-contained computation of the heat kernel coeffi-

cient a4pxq for the Einstein-Maxwell-AdS theory.

B.2.1 Quadratic fluctuations in Einstein-Maxwell AdS theory

The action is given by

S “

ż

d4x
?
g pR ´ 2Λ´ FµνF

µν
q , (B.2.1)

where Fµν “ BµAν ´ BνAµ is the field strength with Aµ the gauge potential. Note that we

find it convenient to use the convention 4πG “ 1. We consider variations of the metric and

gauge field

δgµν “
?

2hµν , δAµ “
1

2
aµ , (B.2.2)

where hµν and aα are the graviton and graviphoton respectively. We impose a particular

gauge to the theory by adding a suitable gauge-fixing Lagrangian

S “ ´

ż

d4x
a

det g

"ˆ

Dµhµρ ´
1

2
Dρh

˙ˆ

Dνhρν ´
1

2
Dρh

˙

`
1

2
pDµaµq pD

νaνq

*

, (B.2.3)

and the corresponding ghost action to the action (B.2.1). We then expand the action up to

quadratic order. The linear order variation yields the equation of motion for the background
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fields

Rµν ´
1

2
gµνR ` gµνΛ “2FµρF

ρ
ν ´

1

2
gµνFαβF

αβ , (B.2.4)

DµFµν “0 . (B.2.5)

Note that the equations of motion implies that R “ 4Λ “ ´12{`2. It is also worth mentioning

the Bianchi identity for the gravitational and gauge fields

DrµFνρs “0 , (B.2.6)

Rµrνρσs “0 . (B.2.7)

Writing the quadratic action in the standard form (5.2.20), we find

φmQmnφn “Gµναβhµνlhαβ ` g
αβaαlaβ ´ aαR

αβaβ

` hµν

"

Rµανβ
`Rµβνα

´
1

2

`

gµαRνβ
` gµβRνα

`gναRµβ
` gνβRµα

˘

´ 2
`

F µαF νβ
` F µβF να

˘

`
1

2

`

gµνgαβ ´ gµαgνβ ´ gµβgνα
˘ `

FθϕF
θϕ
˘

` 2GαβµνΛ

*

hαβ

´ hµν

"

1

4
pDρK

ρ
q
µνα

´
1

2
pKρ

q
µναDρ

*

aα

´ aα

"

1

4
pDρK

ρ
q
µνα

`
1

2
pKρ

q
µναDρ

*

hµν ,

(B.2.8)

where

pKρ
q
µνα

“ 2
?

2
´

gαµF ρν
` gανF ρµ

´ gµρFαν
´ gνρFαµ

´ gµνF ρα
¯

. (B.2.9)

Note that we have used the symmetry properties of the graviton to write the term propor-

tional to Λ using the DeWitt metric

Gµναβ
“

1

2

`

gµαgνβ ` gµβgνα ´ gµνgαβ
˘

, (B.2.10)

as hµνp2g
µαgνβΛ´ gµνgαβΛqhαβ “ hµνp2G

αβµνΛqhαβ. We note that the results pertaining to

the cosmological constant terms agree with what we expect from [182]. With (B.2.8), we
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can explicitly read out the matrices Imn, ωρ and Pmn in (5.2.20):

φmI
mnφn “hµνG

µναβhαβ ` aαg
αβaβ . (B.2.11)

φm pω
ρ
q
mn φn “

1

4
hµν pK

ρ
q
µνα aα ´

1

4
aα pK

ρ
q
µνα hµν . (B.2.12)

φmP
mnφn “hµν

"

Rµανβ
`Rµβνα

´
1

2

`

gµαRνβ
` gµβRνα

`gναRµβ
` gνβRµα

˘

´ 2
`

F µαF νβ
` F µβF να

˘

`
1

2

`

gµνgαβ ´ gµαgνβ ´ gµβgνα
˘ `

FθϕF
θϕ
˘

`2gµαgνβΛ´ gµνgαβΛ
(

hαβ ,

´ aαR
αβaβ `

?
2

2
hµν tD

µFαν
`DνFαµ

u aα

`

?
2

2
aα tD

µFαν
`DνFαµ

uhµν .

(B.2.13)

B.2.2 Trace computation

Here, we present various trace computations. The field strength Ω is given by

φmΩmn
µν φn “φmrDµ ` ωµ, Dν ` ωνsφn “ φm

!

rDµ, Dνs
mn
`Drµω

mn
νs ` rωµ, ωνs

mn
)

φn .

(B.2.14)

To compute the matrix E and Ω using (5.2.22) and (B.2.14), we need rDµ.Dνs, pD
ρωρq

mn

and pωρqmp pωρq
n
p :

φm rD
ρ, Dσ

s
mn φn “hµν rD

ρ, Dσ
shµν ` aα rD

ρ, Dσ
s aα

“hµν
 

gνβRµαρσ
` gµβRναρσ

(

hαβ ` aαR
αβρσaβ

“
1

2
hµν

 

gνβRµαρσ
` gναRµβρσ

` gµβRναρσ
` gµαRνβρσ

(

hαβ

` aαR
αβρσaβ,

(B.2.15)

φm pD
ρωρq

mn φn “´

?
2

2
hµν pD

νFαµ
`DµFαν

q aα `

?
2

2
aα pD

νFαµ
`DµFαν

qhµν ,

(B.2.16)

φm pω
ρ
q
mp
pωρq

n
p φn “

1

16
hµν pK

ρ
q
µνα
p´Kρq

δγβ gαβhδγ

`
1

16
aα pK

ρ
q
µνα
p´Kρq

δγ βGµνδγaβ.
(B.2.17)
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For (B.2.17), using the definition of pKρq
µνα (B.2.9), we find

φm pω
ρ
q
mp
pωρq

n
p φn “hµν

`

´2F µδF νγ
´ 2F µγF νδ

` 2F γρF δ
ρg
µν
´ F νρF δ

ρg
µγ

´F νρF γ
ρg
µδ
´ F µρF δ

ρg
νγ
´ F µρF γ

ρg
νδ
` 2F µρF ν

ρg
γδ

´1
2
FρσF

ρσgµνgγδ
˘

hγδ ` aα
`

´2FαγF β
γ ´ FθφF

θφgαβ
˘

aβ.

(B.2.18)

Note that (B.2.18) is the same expression as in the asymptotically flat case [183] and changes

only when we plug in the equations of motion (B.2.4),

φm pω
ρ
q
mp
pωρq

n
p φn “hµν

`

´2F µαF νβ
´ 2F µβF να

´ 1
2
FadF

adgµαgνβ ´ 1
2
FadF

adgµβgνα

`1
2
FadF

adgµνgβα ` gβαRµν
´ 1

2
gναRµβ

´ 1
2
gνβRµα

´ 1
2
gµαRνβ

´1
2
gµβRνα

` gµνRβα
` Λgµαgνβ ` Λgµβgνα ´ 2Λgµνgβα

˘

hαβ

`
1

2
aα

`

´3
2
FθφF

θφgαβ ´Rαβ
` Λgαβ

˘

aβ.

(B.2.19)

Extracting the information from the quadratic action, we find

φmE
mnφn “hµν

`

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` Λgµνgαβ
˘

hαβ

` aα

ˆ

3

2
gαβFµνF

µν
´ Λgαβ

˙

aβ `

?
2

2
hµν pD

µFαν
`DνFαµ

q aα

`

?
2

2
aα pD

µFαν
`DνFαµ

qhµν ,

(B.2.20)

φm pΩ
ρσ
q
mn φn “hµν

"

1

2

`

gνβRµαρσ
` gναRµβρσ

` gµβRναρσ
` gµαRνβρσ

˘

` rωρ, ωσsµναβ
)

hαβ ` aα

!

Rαβρσ
` rωρ, ωσsαβ

)

aβ

` hµν
`

Drρωσs
˘µνα

aα ` aα
`

Drρωσs
˘αµν

hµν .

(B.2.21)

We explicitly compute the traces involving the endomorphism E

TrpREq “ TrR
“

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` Λgµνgαβ
‰

` Tr

ˆ

3

2
gαβRFµνF

µν
´RΛgαβ

˙

“ R
`

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` gµνgαβΛ
˘

Gµναβ

`R

ˆ

3

2
gαβFµνF

µν
´ Λgαβ

˙

gαβ,

(B.2.22)
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which after expanding, we find

TrpREq “ R

ˆ

´2R ` pD ´ 2qR `

ˆ

D ´
D2

2

˙

Λ

˙

`R

ˆ

3D

2
FµνF

µν
´ dΛ

˙

“ ´32Λ2
` 6RFµνF

µν ,

(B.2.23)

where D “ 4 is the dimension of the space and we have imposed R “ 4Λ. Next, we consider

TrpE2
q “Tr

`

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` gµνgαβΛ
˘

ˆ
`

Rρτσδ
`Rρδστ

´ gρσRτδ
´ gτδRρσ

` gρσgτδΛ
˘

` Tr

ˆˆ

3

2
gαβFµνF

µν
´ Λgαβ

˙ˆ

3

2
gτδFθφF

θφ
´ Λgτδ

˙˙

`
1

2
Tr

`

pDµFαν
`DνFαµ

q
`

DρF βσ
`DσF βρ

˘˘

`
1

2
Tr

`

pDµFαν
`DνFαµ

q
`

DρF βσ
`DσF βρ

˘˘

.

(B.2.24)

For the first term of (B.2.24), we have

`

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` gµνgαβΛ
˘

ˆ
`

Rρτσδ
`Rρδστ

´ gρσRτδ
´ gτδRρσ

` gρσgτδΛ
˘

GµνρσGαβτδ

“ 16Λ2
´ 4RabR

ab
` 3RabcdR

abcd.

(B.2.25)

The second term of (B.2.24) gives

Tr

ˆ

3

2
gαβFµνF

µν
´ Λgαβ

˙ˆ

3

2
gτδFθφF

θφ
´ Λgτδ

˙

“ 4Λ2
´ 12ΛFαβF

αβ
` 9

`

FθφF
θφ
˘2
,

(B.2.26)

where gαβgτδgατgβδ “ D “ 4. Now, for the remaining terms in the trace in (B.2.24), we need

the following identities

pDρFµνqpD
ρF µν

q “ ´RµνRµν `
1

2
R2
´ ΛR ´

1

2
RFρσF

ρσ
`RµνραF

µνF ρα ,

pDµF
ν

ρ qpDνF
ρµ
q “

1

2

ˆ

2RµνρσF
µνF ρσ

´RµνR
µν
`

1

2
R2
´ ΛR ´

1

2
RFρσF

ρσ

˙

.
(B.2.27)

These identities can be found by using the Bianchi identity (B.2.6) and (B.2.7) followed by

an integration of parts, dropping the boundary terms along the way, and imposing the com-

mutator relations (B.2.15) of the covariant derivatives acting on the gauge field. Note that

(B.2.27) are on-shell since we have explicitly imposed the Maxwell equations and Einstein
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equations. Then,

X ”
1

2
Tr

`

pDµFαν
`DνFαµ

q
`

DρF βσ
`DσF βρ

˘˘

`
1

2
Tr

`

pDµFαν
`DνFαµ

q
`

DρF βσ
`DσF βρ

˘˘

“pDµFαν
`DνFαµ

q
`

DρF βσ
`DσF βρ

˘

gαβGµνρσ .

(B.2.28)

Imposing the Bianchi identities simplifies our expression to

X “ 2pDρFασqpD
ρFασ

q ` 2pDρFασqpD
σFαρ

q . (B.2.29)

Finally, using (B.2.27), we find

X “2

ˆ

´RµνRµν `
1

2
R2
´ ΛR ´

1

2
RFρσF

ρσ
`RµνραF

µνF ρα

˙

`

ˆ

RµνρσF
µνF ρσ

´RµνR
µν
`

1

2
R2
´ ΛR ´

1

2
RFρσF

ρσ
`RµνραF

µνF ρα

˙

“3

ˆ

´RµνRµν `
1

2
R2
´ ΛR ´

1

2
RFρσF

ρσ
`RµνραF

µνF ρα

˙

.

(B.2.30)

Putting all the contributions together, the trace of the square of E is therefore

TrE2
“
`

16Λ2
´ 4RabR

ab
` 3RabcdR

abcd
˘

`

´

4Λ2
´ 12ΛFαβF

αβ
` 9

`

FθφF
θφ
˘2
¯

` 3

ˆ

´RµνRµν `
1

2
R2
´ ΛR ´

1

2
RFρσF

ρσ
`RµνραF

µνF ρα

˙

“32Λ2
´ 7RµνR

µν
` 3RµνρσR

µνρσ
´ 18ΛFρσF

ρσ
` 3RµνραF

µνF ρα
` 9

`

FθφF
θφ
˘2

.

(B.2.31)

The necessary traces are summarised below:

TrpIq “ 14 , (B.2.32)

TrpREq “ ´32Λ2
` 6RFµνF

µν , (B.2.33)

TrpE2
q “ 32Λ2

´ 7RµνR
µν
` 3RµνρσR

µνρσ
´ 18ΛFρσF

ρσ

` 3RµνρσF
µνF ρσ

` 9
`

FθφF
θφ
˘2

,
(B.2.34)

TrpΩ2
q “ ´224Λ2

` 60ΛFµνF
µν
´ 54FµνF

µνFρσF
ρσ
` 56RµνR

µν

´ 18F µνF ρσRµνρσ ´ 7RµνρσR
µνρσ .

(B.2.35)
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Substituting the traces (B.2.32)-(B.2.35) into (5.2.23), we obtain the fourth heat kernel

coefficient of Einstein-Maxwell AdS theory without ghosts

p4πq2aEM
4 pxq “ ´

880

180
Λ2
`

196

180
RµνR

µν
`

179

180
RµνρσR

µνρσ . (B.2.36)

Ghost contribution

The addition of the gauge-fixing Lagrangian (B.2.3) introduces an action for the ghosts,

given by

Sghost,b “
1

2

ż

d4x
?
g
!

2bµ
`

gµνl`Rµν
˘

cν ` 2bl c´ 4bF ρνDρcν

)

, (B.2.37)

where bµ and cµ are vector fields and b and c are scalar fields. From these expressions, we

can extract the matrices E and Ω as

φnE
n
mφ

m
“bµ pR

µ
νq b

ν
` cµ pR

µ
νq c

ν ,

φn pΩαβq
n
m φ

m
“bµ

`

Rµ
ναβ

˘

bν ` cµ
`

Rµ
ναβ

˘

cν ´
1

2
pbµ ´ icµq pD

µFαβq pb` icq

`
1

2
pb` icq pDνFαβq pb

ν
´ icνq ,

(B.2.38)

Note that in the case of the ghost fields, we are raising and lowering the indices with gαβ

and 1. The result for the heat kernel is

aghosts,EM
4 pxq “

13

36
E4 ´

1

4
W 2

´
3

4
R2 . (B.2.39)

where we have already included here the negative sign due to the opposite statistics.

B.2.3 Logarithmic correction

Adding the above results, the heat kernel for Einstein-Maxwell-AdS theory takes the form,

p4πq2aB
4 pxq “ ´

53

45
E4 `

137

60
W 2

´
13

36
R2 . (B.2.40)

We can read off the coefficients from (5.3.1) to be

aE “
53

45
, c “

137

60
, b1 “ ´

13

36
, b2 “ 0 . (B.2.41)
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B.2.4 Neutral limit

As previously mentioned, if we properly truncate the fluctuations and the resulting curvature

invariants, we recover the result obtained in [182] for the theory of pure gravity with a

negative cosmological constant. Let us show this explicitly as a sanity check of our results.

In this limit, we must truncate the fluctuation of aα in (B.2.20)

φmE
mnφn “ hµν

`

Rµανβ
`Rµβνα

´ gµνRαβ
´ gαβRµν

` Λgµνgαβ
˘

hαβ . (B.2.42)

This yields the following traces

TrpREq “ ´16Λ2 ,

TrpE2
q “ 16Λ2

´ 4RµνR
µν
` 3RµνρσR

µνρσ ,

TrpIq “ 10 .

(B.2.43)

Note that the trace of I is 10 instead of 14 because we no longer have the fluctuation aµ,

this is the kind of intermediate result that makes a naive truncation of the final answer yield

the wrong result. Moreover, the field strength Ω is simply the commutator of ∇. Its trace is

well-known and takes the value TrpΩ2q “ ´6RµνρσR
µνρσ. Combining these results, we have

180p4πq2abulk,Λ
4 “

1

2

”

60p´16Λ2
q ` 180p16Λ2

´ 4RµνR
µν
` 3RµναβRµναβq ` 30p´6qRµναβRµναβ

` 10p5R2
` 2RµναβRµναβ ´ 2RµνR

µν
ı

“´ 120Λ2
` 190RµναβRµναβ .

(B.2.44)

In the second line, we used the field equation Rµν “ gµνΛ. For the ghost contribution, we do

not have the ghost of the graviphoton, i.e., the scalar ghosts b and c. Therefore, the matrix

E in the neutral limit remains the same and Ω reduces to

φn pΩαβq
n
m φ

m
“bµ

`

Rµ
ναβ

˘

bν ` cµ
`

Rµ
ναβ

˘

cν . (B.2.45)

The only change in the trace is the I operator

TrpIq “ Trpgµνq ` Trpgµνq “ 8 , (B.2.46)
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which yields the ghost contribution in the neutral limit

´p4πq2aghost,B
4 pxq “

1

3
R2
`RµνR

µν
´

1

6
RµνρσR

µνρσ
` p

1

9
R2
`

2

45
RµνρσR

µνρσ
´

2

45
RµνR

µν
q

“
4

9
R2
`

43

45
RµνR

µν
´

43

45
RµνρσR

µνρσ

“
11

90
RµνρσR

µνρσ
´

164

15
Λ2 ,

(B.2.47)

where we use the field equation Rµν “ gµνΛ once more. In the neutral limit, the heat kernel

coefficient is therefore

180p4πq2aΛ
4 pxq “ 212RµνρσR

µνρσ
´ 2088Λ2 , (B.2.48)

which agrees with the result in [182].

B.3 Fermionic computation

In this appendix, we present the details of the computation for the gravitini of minimal

gauged supergravity described in section 5.6.

B.3.1 Majorana Lagrangian

The fermionic Lagrangian is given as [185]

L “
1

2
ψ̄µγ

µνρDνψρ `
i

4
F µνψ̄ργµγ

ρσγνψσ ´
1

2`
ψ̄µγ

µνψν , (B.3.1)

where ψµ is a complex spinor with spin 3
2
. It can be written as

ψµ “ ψ1
µ ` iψ

2
µ , (B.3.2)

where ψAµ are Majorana spinors. For definiteness, we use the really real representation of the

Clifford algebra given by explicitly as [189]

γ0
“

˜

0 1

´1 0

¸

, γ1
“

˜

1 0

0 ´1

¸

, γ2
“

˜

0 σ1

σ1 0

¸

, γ3
“

˜

0 σ3

σ3 0

¸

.(B.3.3)
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In this case, the Majorana condition reduces to

ψ˚ “ ψ, (B.3.4)

which is just the reality condition. We choose the gauge γµψµ “ 0. This can be implemented

by the gauge-fixing term

Lg.f. “ ´
1

4
pψ̄µγ

µ
qγνDνpγ

ρψρq . (B.3.5)

More details about the Faddeev-Popov procedure are given in the following subsection when

we consider the ghost contribution. We then perform the field redefinition

ψµ “
?

2

ˆ

χµ ´
1

2
γµγ

νχν

˙

, (B.3.6)

which leads to the Lagrangian

LFermi ` Lg.f. “ Lkin ` Lψ̄Fψ ` Lψ̄ψ , (B.3.7)

where

Lkin “
1

2
gµνψ̄µγ

ρ∇ρψν , (B.3.8)

Lψ̄Fψ “
i

4
F µνψ̄ργµγ

ρσγνψσ ,

Lψ̄ψ “ ´
1

2`
ψ̄µγ

µνψν .

For the kinetic term, we can use the fact that (see [19,148] for details)

χ̄µγ
νDνχ

µ
“

1

2
ψ̄µ

ˆ

γµνρDν ´
1

2
γµγνγρDν

˙

ψρ . (B.3.9)
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Note that gauge invariance guarantees that this identity holds also for the gauge connection.

For the mass term, we have

Lψ̄ψ “ ´
1

2`
ψ̄µγ

µνψν (B.3.10)

“ ´
1

`

ˆ

χ̄µ ´
1

2
χ̄ργ

ργµ

˙

γµν
ˆ

χν ´
1

2
γνγ

σχσ

˙

“ ´
1

`

ˆ

χ̄µγ
µνχν ´

1

2
χ̄ργ

ργµγ
µνχν ´

1

2
χ̄µγ

µνγνγ
σχσ `

1

4
χ̄ργ

ργµγ
µνγνγ

σχσ

˙

“ ´
1

`
pχ̄µγ

µνχν ´ 3χ̄µγ
µγνχν ` 3χ̄ργ

ργσχσq

“ ´
1

`
χ̄µγ

µνχν ,

where we have used γµν “ γµγν ´ gµν so that γµγ
µν “ 3γν and γµγ

µνγν “ 12. Finally, we

have

Lψ̄Fψ “
i

4
F µνψ̄ργµγ

ρσγνψσ (B.3.11)

“
i

2
F µν

ˆ

χ̄ρ ´
1

2
χ̄αγ

αγρ

˙

γµγ
ρσγν

ˆ

χσ ´
1

2
γσγ

βχβ

˙

“
i

2
F µν

ˆ

χ̄ργµγ
ρσγνχσ ´

1

2
χ̄αγ

αγργµγ
ρσγνχσ ´

1

2
χ̄ργµγ

ρσγνγσγ
βχβ

`
1

4
χ̄αγ

αγργµγ
ρσγνγσγ

βχβ

˙

.

To simplify, we use the following gamma matrix identities

γµγνγµ “ ´2γν ,

γργµγ
ρσ
“ γργµpγ

ργσ ´ gρσq “ ´γµγ
σ
´ 2δσµ ,

γργµγ
ρσγνγσ “ p´γµγ

σ
´ 2δσµqγνγσ “ 4γµν .

(B.3.12)

For the second term in (B.3.11), we have

´
1

2
χ̄αγ

αγργµγ
ρσγνχσ “

1

2
χ̄αγ

α
pγµγ

σ
` 2δσµqγνχσ (B.3.13)

“
1

2
χ̄αγ

αγµγ
σγνχσ ` χ̄αγ

αγνχµ

“
1

2
χ̄αγ

αγµp2δ
σ
ν ´ γνγ

σ
qχσ ` χ̄αγ

αγνχµ

“ χ̄αγ
αγµχν ´

1

2
χ̄αγ

αγµγνγ
σχσ ` χ̄αγ

αγνχµ .
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After contracting with F µν , the first and last terms in (B.3.11) cancel due to antisymmetry.

Finally, symmetry arguments show that the third term in (B.3.11) gives the same simplifi-

cation as (B.3.13). At the end, we obtain

Lψ̄Fψ “
i

2
F µν

`

χ̄ργµγ
ρσγνχσ ´ χ̄αγ

αγµγνγ
σχσ ` χ̄αγ

αγµνγ
βχβ

˘

(B.3.14)

“
i

2
F µνχ̄ργµγ

ρσγνχσ .

We thus obtain the Lagrangian

Lf “ gµνχ̄µγ
ρDρχν `

i

2
F µνχ̄ργµγ

ρσγνχσ ´
1

`
χ̄µγ

µνχν . (B.3.15)

We introduce the complex spinor χµ as

χµ “ χ1
µ ` iχ

2
µ , (B.3.16)

in terms of Majorana spinors. We use the label A “ 1, 2 for the two spinors and make use

of Majorana flip identities [189]

λ̄γµ1...µrχ “ trχ̄γµ1...µrλ , (B.3.17)

where

tr “

$

&

%

´1 r “ 1, 2 mod 4

1 r “ 3, 4 mod 4
. (B.3.18)

The sign tr reflects the symmetry of the gamma matrices under charge conjugation. Another

useful identity is [189]

λ̄γµ1γµ2 . . . γµpχ “ p´1qpχ̄γµp . . . γµ2γµ1λ. (B.3.19)

Each term in the Lagrangian can be simplified using Majorana flips and is either proportional

to the identity matrix δAB or the antisymmetric matrix εAB (wtih ε12 “ 1). In the kinetic

term, the cross-terms cancel

χ̄1
µγ

ρDρχ
2
ν “ ´Dρχ̄

2
νγ

ρχ1
µ (B.3.20)

“ χ̄2
νγ

ρDρχ
1
µ
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where we used a Majorana flip and integration by parts. Hence we have

Lkin “ δABg
µνχ̄Aµγ

ρDρχ
B
ν . (B.3.21)

We then have

F µνψ̄1
ργµγ

ρσγνψ
1
σ “ F µν

pγµψ
1
ρq
:γρσpγνψ

1
σq (B.3.22)

“ ´F µν
pγνψ

1
σq
:γρσpγµψ

1
ρq

“ ´F µνψ̄1
ργµγ

ρσγνψ
1
σ

“ 0

where we used a Majorana flip in the second line. This shows that

Lψ̄Fψ “ ´
1

2
εABF

µνχ̄Aρ γµγ
ρσγνχ

B
σ . (B.3.23)

Finally, we have

χ̄1
µγ

µνχ2
ν “ ´χ̄2

νγ
µνχ1

µ (B.3.24)

“ χ̄2
µγ

µνχ1
ν

where we used a Majorana flip and antisymmetry of γµν . This shows that mass term is

Lψ̄ψ “ ´
1

`
δABχ̄

A
µγ

µνχBν . (B.3.25)

The final Lagrangian is then

Lf ` Lg.f. “ δABg
µνχ̄Aµγ

ρDρχ
B
ν ´

1

2
εABF

µνχ̄Aρ γµγ
ρσγνχ

B
σ ´

1

`
δABχ̄

A
µγ

µνχBν .(B.3.26)

This Lagrangian could now be interpreted as a Euclidean Lagrangian by performing the

Wick rotation and using χ̄A “ χ:A. This can then be used in the algorithm to compute the

logarithmic corrections.

B.3.2 Symplectic Lagrangian

We are ultimately interested in the fermionic Lagrangian in p0, 4q signature. It is known that

Majorana spinors do not exist in p0, 4q signature [191,207]. Instead, we should use symplectic

Majorana spinors. Thus, we first convert our Lagrangian from Majorana to symplectic

Majorana spinors in p1, 3q signature, where both Majorana and symplectic Majorana spinors

169



exist. We then perform the Wick rotation to obtain the Lagrangian in p0, 4q signature.

Symplectic Majorana spinors

The symmetries of the gamma matrices are captured by matrices A,B and C. The matrix

A expresses the Hermitian conjugate of a gamma matrix as

pγµq: “ p´1qtAγµA´1 (B.3.27)

and we can take A “ ´γ0. The charge conjugation matrix gives the transpose as

pγµqt “ t0t1Cγ
µC´1, (B.3.28)

and satisfies Ct “ ´t0C. Here t0, t1 can take the values ˘1. The matrix B captures the

complex conjugate

pγµq˚ “ ´t0t1Bγ
µB´1 . (B.3.29)

and can be obtained as

B “ pCA´1
q
t . (B.3.30)

We also define

γ5
“ ´iγ0γ1γ2γ3

“

˜

0 σ2

σ2 0

¸

(B.3.31)

given in the representation (B.3.3). Note that we have

pγ5
q
2
“ 1, pγ5

q
:
“ γ5, pγ5

q
t
“ pγ5

q
˚
“ ´γ5 . (B.3.32)

There are two possible choice of charge conjugation matrix which we will denote C` and C´.

The C` matrix has t0 “ 1, t1 “ ´1. It gives a matrix B` “ pC`A
´1qt “ 1. The Majorana

condition is then written as

ψ˚ “ B`ψ “ ψ . (B.3.33)

To define symplectic Majoranas, we need to use another charge conjugation matrix C´ “

C`γ
5 which has t0 “ t1 “ 1. It gives the matrix

B´ “ pC´A
´1
q
t
“ γ5 . (B.3.34)

The symplectic Marojana condition can be written as

pλµAq
˚
“ B´εABλ

µ
B . (B.3.35)
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The mapping between Majoranas and symplectic Majoranas in p1, 3q signature is given

in [191] and takes the form

λµ1 “ χµ1 ´ iχ
2
µ , (B.3.36)

λµ2 “ γ5
pχµ1 ` iχ

µ
2q , (B.3.37)

where we have used that B´ “ γ5. This gives

χµ1 “
1

2
pλµ1 ` γ

5λµ2q , (B.3.38)

χµ2 “
i

2
pλµ1 ´ γ

5λµ2q . (B.3.39)

It is also useful to note that the Dirac conjugated defined as χ̄µA “ pχ
µ
Aqiγ

0 gives

χ̄µ1 “
1

2
pλ̄µ1 ´ λ̄

µ
2γ

5
q , (B.3.40)

χ̄µ2 “ ´
i

2
pλ̄µ1 ` λ̄

µ
2γ

5
q . (B.3.41)

We will write the Majorana Lagrangian (B.3.26) as

Lf ` Lg.f. “ Lkin ` LχFχ ` Lχχ (B.3.42)

where

Lkin “ δABgµνχ̄
µ
Aγ

ρDρχ
ν
B , (B.3.43)

LχFχ “ ´
1

2
εABF

µνχ̄ρAγµγρσγνχ
σ
B ,

Lχχ “ ´
1

`
δABχ̄

µ
Aγµνχ

ν
B .

We will now convert these terms one by one.

Kinetic term

For the kinetic term, we compute

gµνχ̄
µ
1γ

ρ∇ρχ
ν
1 “

1

4
gµνpλ̄

µ
1 ´ λ̄

µ
2γ

5
qγρ∇ρpλ

µ
1 ` γ

5λµ2q (B.3.44)

“
1

4
gµνpλ̄

µ
1γ

ρ∇ρλ
µ
1 ´ λ̄

µ
2γ

5γρ∇ργ
5λµ2 ` λ̄

µ
1γ

ρ∇ργ
5λµ2 ´ λ̄

µ
2γ

5γρ∇ρλ
µ
1q

“
1

4
gµνpλ̄

µ
1γ

ρ∇ρλ
µ
1 ` λ̄

µ
2γ

ρ∇ρλ
µ
2 ` λ̄

µ
1γ

ρ∇ργ
5λµ2 ´ λ̄

µ
2γ

5γρ∇ρλ
µ
1q.
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The other contribution is

gµνχ̄
µ
2γ

ρ∇ρχ
ν
2 “

1

4
gµνpλ̄

µ
1 ` λ̄

µ
2γ

5
qγρ∇ρpλ

µ
1 ´ γ

5λµ2q (B.3.45)

“
1

4
gµνpλ̄

µ
1γ

ρ∇ρλ
µ
1 ´ λ̄

µ
2γ

5γρ∇ργ
5λµ2 ´ λ̄

µ
1γ

ρ∇ργ
5λµ2 ` λ̄

µ
2γ

5γρ∇ρλ
µ
1q

“
1

4
gµνpλ̄

µ
1γ

ρ∇ρλ
µ
1 ` λ̄

µ
2γ

ρ∇ρλ
µ
2 ´ λ̄

µ
1γ

ρ∇ργ
5λµ2 ` λ̄

µ
2γ

5γρ∇ρλ
µ
1q.

Therefore, we get

Lkin “
1

2
gµνpλ̄

µ
1γ

ρ∇ρλ
µ
1 ` λ̄

µ
2γ

ρ∇ρλ
µ
2q. (B.3.46)

We now compute the contribution from the gauge connection. The Majorana spinors pχµ1 χ
µ
2q

form a doublet under the SOp2q – Up1q gauge symmetry. We have

Dµχ
ν
A “

ˆ

δAB∇µ `
1

`
εABAµ

˙

χνB , (B.3.47)

or more explicitly

Dµχ
ν
1 “ ∇µχ

ν
1 `

1

`
Aµχ

ν
2 , (B.3.48)

Dµχ
ν
2 “ ∇µχ

ν
2 ´

1

`
Aµχ

ν
1 . (B.3.49)

Using (B.3.36), we see that

Dµλ
ν
1 “ Dµpχ

ν
1 ´ iχ

ν
2q (B.3.50)

“ ∇µχ
ν
1 `

1

`
Aµχ

ν
2 ´ i

ˆ

∇µχ
ν
2 ´

1

`
Aµχ

ν
1

˙

“ ∇µλ
ν
1 `

i

`
Aµλ

ν
1 ,

and

Dµλ
ν
2 “ γ5Dµpχ

ν
1 ` iχ

ν
2q (B.3.51)

“ γ5

ˆ

∇µχ
ν
1 `

1

`
Aµχ

ν
2

˙

` iγ5

ˆ

∇µχ
ν
2 ´

1

`
Aµχ

ν
1

˙

“ ∇µλ
ν
2 ´

i

`
Aµλ

ν
2 .

As a result, we see that λµ1 and λµ2 are singlet under the Up1q gauge symmetry and have

opposite charges. By gauge invariance, the kinetic term including the gauge connection is
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then

Lkin “
1

2
gµνpλ̄

µ
1γ

ρDρλ
µ
1 ` λ̄

µ
2γ

ρDρλ
µ
2q . (B.3.52)

Mass term

We have

Lχχ “ ´
1

`
δABχ̄

µ
Aγµνχ

ν
B. (B.3.53)

We compute

χ̄µ1γµνχ
ν
1 “

1

4
pλ̄µ1 ´ λ̄

µ
2γ

5
qγµνpλ

ν
1 ` γ

5λν2q (B.3.54)

“
1

4

`

λ̄µ1γµνλ
ν
1 ´ λ̄

µ
2γ

5γµνγ
5λν2 ` λ̄

µ
1γµνγ

5λν2 ´ λ̄
µ
2γ

5γµνλ
ν
1

˘

“
1

4

`

λ̄µ1γµνλ
ν
1 ´ λ̄

µ
2γµνλ

ν
2 ` λ̄

µ
1γµνγ

5λν2 ´ λ̄
µ
2γ

5γµνλ
ν
1

˘

,

as well as

χ̄µ2γµνχ
ν
2 “

1

4
pλ̄µ1 ` λ̄

µ
2γ

5
qγµνpλ

ν
1 ´ γ

5λν2q (B.3.55)

“
1

4

`

λ̄µ1γµνλ
ν
1 ´ λ̄

µ
2γµνλ

ν
2 ´ λ̄

µ
1γµνγ

5λν2 ` λ̄
µ
2γ

5γµνλ
ν
1

˘

.

We see that the cross terms cancel upon addition of the two contributions and we end up

with

Lχχ “ ´
1

2`

`

λ̄µ1γµνλ
ν
1 ´ λ̄

µ
2γµνλ

ν
2

˘

. (B.3.56)

Gauge interaction term

We compute

F µνχ̄ρ1γµγρσγνχ
σ
2

“
i

4
F µν

pλ̄ρ1 ´ λ̄
ρ
2γ

5
qγµγρσγνpλ

σ
1 ´ γ

5λσ2 q

“
i

4
F µν

`

λ̄ρ1γµγρσγνλ
σ
1 ` λ̄

ρ
2γ

5γµγρσγνγ
5λσ2 ´ λ̄

ρ
1γµγρσγνγ

5λσ2 ´ λ̄
ρ
2γ

5γµγρσγνλ
σ
1

˘

“
i

4
F µν

`

λ̄ρ1γµγρσγνλ
σ
1 ` λ̄

ρ
2γµγρσγνλ

σ
2 ´ λ̄

ρ
1γµγρσγνγ

5λσ2 ´ λ̄
ρ
2γ

5γµγρσγνλ
σ
1

˘

,

(B.3.57)
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and

F µνχ̄ρ2γµγρσγνχ
σ
1

“ ´
i

4
F µν

pλ̄ρ1 ` λ̄
ρ
2γ

5
qγµγρσγνpλ

σ
1 ` γ

5λσ2 q

“ ´
i

4
F µν

`

λ̄ρ1γµγρσγνλ
σ
1 ` λ̄

ρ
2γ

5γµγρσγνγ
5λσ2 ` λ̄

ρ
1γµγρσγνγ

5λσ2 ` λ̄
ρ
2γ

5γµγρσγνλ
σ
1

˘

“ ´
i

4
F µν

`

λ̄ρ1γµγρσγνλ
σ
1 ` λ̄

ρ
2γµγρσγνλ

σ
2 ` λ̄

ρ
1γµγρσγνγ

5λσ2 ` λ̄
ρ
2γ

5γµγρσγνλ
σ
1

˘

.

(B.3.58)

Finally, we get

LχFχ “ ´
1

2
εABF

µνχ̄ρAγµγρσγνχ
σ
B “ ´

i

4
F µν

`

λ̄ρ1γµγρσγνλ
σ
1 ` λ̄

ρ
2γµγρσγνλ

σ
2

˘

.(B.3.59)

Final Lagrangian

The final Lagrangian, written in terms of symplectic Majorana spinors, takes the form

Lf “
1

2
δABgµνλ̄

µ
Aγ

ρDρλ
ν
A ´

i

4
F µν

`

λ̄ρ1γµγρσγνλ
σ
1 ` λ̄

ρ
2γµγρσγνλ

σ
2

˘

´
1

2`

`

λ̄µ1γµνλ
ν
1 ´ λ̄

µ
2γµνλ

ν
2

˘

.

(B.3.60)

We rescale λA Ñ
?

2λA and write explicitly the gauge covariant derivative. At the end, the

two symplectic Majorana spinors decouple and we can write

Lf “ L1 ` L2, (B.3.61)

where

L1 “ gµνλ̄
µ
1γ

ρ
p∇ρ ` i`

´1Aρqλ
ν
1 ´

i

2
F µνλ̄ρ1γµγρσγνλ

σ
1 ´

1

`
λ̄µ1γµνλ

ν
1 , (B.3.62)

L2 “ gµνλ̄
µ
2γ

ρ
p∇ρ ´ i`

´1Aρqλ
ν
2 ´

i

2
F µνλ̄ρ2γµγρσγνλ

σ
2 `

1

`
λ̄µ2γµνλ

ν
2 . (B.3.63)

We can now reinterpret this Lagrangian to be in p0, 4q signature. To perform the Wick

rotation, we define Euclidean gamma matrices

γ̂1, γ̂2, γ̂3, γ̂4, (B.3.64)

where γ̂i “ γi for i “ 1, 2, 3 and γ̂4 “ ´iγ0. They satisfy

pγ̂µq: “ γ̂µ . (B.3.65)
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We also take the Hermitian conjugate to be

λ̄µA “ pλ
µ
Aq
: . (B.3.66)

Note that it is clear that both flavors give the same contribution because L1 and L2 are equal

up to an exchange of `Ø ´` and the four-derivative terms only involve `2. As a result, it is

enough to do the computation for L1 and multiply the final heat kernel by two.

B.3.3 Ghosts

In this section, we discuss the contributions from ghosts.

Faddeev-Popov procedure

Given the crucial role of a proper treatment of the ghosts, we include here details about the

Faddeev-Popov procedure. This was first explained in [192] (see also [19]). The fermionic

path integral is schematically of the form

Z “

ż

Dψ̄µDψν e
´Srψ̄µ,ψν s. (B.3.67)

The Faddeev-Popov procedure corresponds to inserting in the path integral

1 “

ż

DεDε̄ δpξ ´ γµψpεqµ qδpξ̄ ´ γ
µψ̄pεqµ q∆

´1
FP, (B.3.68)

where the Faddeev-Popov determinant is

∆FP “ det

˜

δpγµψ
pεq
µ q

δε

¸

det

˜

δpγµψ̄
pε̄q
µ q

δε̄

¸

, (B.3.69)

and ψ
pεq
µ “ ψµ ` Dµε is the infinitesimal transform of ψµ under a supersymmetry transfor-

mation. Here, ξ is an arbitrary spinor. We then insert

1 “
1

det {D

ż

DξDξ̄ exp
`

´ξ̄ {Dξ
˘

. (B.3.70)
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As a result, we have

Z “
∆´1

FP

det {D

ż

Dψ̄µDψνDξDξ̄DεDε̄ exp
`

´ξ̄ {Dξ
˘

δpξ ´ γµψpεqµ qδpξ̄ ´ γ
µψ̄pεqµ q e

´Srψ̄µ,ψν s

“
∆´1

FP

det {D

ż

Dψ̄µDψνDεDε̄ exp
`

´ψ̄νγ
ν {Dγµψµ

˘

e´Srψ̄µ,ψν s, (B.3.71)

where we have performed the integral over ξ, ξ̄ and performed the field redefinition ψµ Ñ

ψµ´Dµε. By supersymmetry, the action is invariant under this redefinition. We see that the

correct gauge-fixing term appears. Now, we can rewrite the prefactor in terms of b, c ghosts

and an additional d ghost

∆´1
FP “

ż

DbDc exp p´bγµDµcq , (B.3.72)

1

det {D
“

ż

DdDd̄ exp
`

´d̄γµDµd
˘

,

where b, c, d, d̄ are spin 1
2

ghosts with bosonic statistics.

Ghost Lagrangian

The ghost Lagrangian

Lghost “ b̄A

ˆ

γµDµ `
2

`

˙

cA ` c̄A

ˆ

γµDµ `
2

`

˙

bA ` ēAγ
µDµeA , (B.3.73)

where bA, cA, eA are Majorana spinors. We map them to symplectic Majoranas using

b1 “
1

2
pβ1 ` γ

5β2q, b2 “
i

2
pβ1 ´ γ

5β2q , (B.3.74)

c1 “
1

2
pη1 ` γ

5η2q, c2 “
i

2
pη1 ´ γ

5η2q , (B.3.75)

e1 “
1

2
pε1 ` γ

5ε2q, e2 “
i

2
pε1 ´ γ

5ε2q . (B.3.76)
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We have

b̄1γ
µDµc1 “

1

4
pβ̄1 ´ β̄2γ

5
qγµDµpη1 ` γ

5η2q (B.3.77)

“
1

4

`

β̄1γ
µDµη1 ´ β̄2γ

5γµDµγ
5η2 ` β̄1γ

µDµγ
5η2 ´ β̄2γ

5γµDµη1

˘

“
1

4

`

β̄1γ
µDµη1 ` β̄2γ

µDµη2 ` β̄1γ
µDµγ

5η2 ´ β̄2γ
5γµDµη1

˘

,

and

b̄2γ
µDµc2 “

1

4
pβ̄1 ` β̄2γ

5
qγµDµpη1 ´ γ

5η2q (B.3.78)

“
1

4

`

β̄1γ
µDµη1 ` β̄2γ

µDµη2 ´ β̄1γ
µDµγ

5η2 ` β̄2γ
5γµDµη1

˘

.

We see that the cross terms cancel upon summation so that

b̄Aγ
µDµcA “

1

2
pβ̄1γ

µDµη1 ` β̄2γ
µDµη2q . (B.3.79)

Similarly,

c̄Aγ
µDµbA “

1

2
pη̄1γ

µDµβ1 ` η̄2γ
µDµβ2q , (B.3.80)

and

ēAγ
µDµeA “

1

2
pε̄1γ

µDµε1 ` ε̄2γ
µDµε2q . (B.3.81)

The mass term gives

b̄1c1 “
1

4
pβ̄1 ´ β̄2γ

5
qpη1 ` γ

5η2q (B.3.82)

“
1

4
pβ̄1η1 ´ β̄2η2 ` β̄1γ

5η2 ´ β̄2γ
5η1q,

and

b̄2c2 “
1

4
pβ̄1 ` β̄2γ

5
qpη1 ´ γ

5η2q (B.3.83)

“
1

4
pβ̄1η1 ´ β̄2η2 ´ β̄1γ

5η2 ` β̄2γ
5η1q,

so that

b̄AcA “
1

2
pβ̄1η1 ´ β̄2η2q, (B.3.84)
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and

c̄AbA “
1

2
pη̄1β1 ´ η̄2β2q. (B.3.85)

We now rescale all ghosts by a factor
?

2. Finally, we obtain

Lghosts “ β̄1

ˆ

γµDµ `
2

`

˙

η1 ` η̄1

ˆ

γµDµ `
2

`

˙

β1 (B.3.86)

`β̄2

ˆ

γµDµ ´
2

`

˙

η2 ` η̄2

ˆ

γµDµ ´
2

`

˙

β2

`ε̄1γ
µDµε1 ` ε̄2γ

µDµε2

We now Wick rotate and interpret the Dirac conjugates as Hermitian conjugates in Euclidean

signature

β̄1 “ η:1, β̄2 “ η:2, ε̄1 “ ε:1 . (B.3.87)

The above choice of Hermitian conjugate makes the kinetic term diagonal and suitable for

the heat kernel computation. We can also use the more natural choice β̄1 “ β:1, β̄2 “ β:2 and

make the kinetic diagonal by a simple field redefinition.

B.3.4 Result

The heat kernel can now be computed using the algorithm described in section B.1. The

gravitini contribution is computed using the Lagrangian (B.3.61). The result is

p4πq2a4pxq “
139

90
E4 ´

32

15
W 2

´
2

9
R2
`

8

9
RFµνF

µν . (B.3.88)

In total we have one massless pair of ghosts and two massive pairs. A massless pair of ghosts

gives the contribution

p4πq2a4pxq “
11

360
E4 ´

1

20
W 2

´
1

18
RFµνF

µν , (B.3.89)

and each of the massive pair gives

p4πq2a4pxq “
11

360
E4 ´

1

20
W 2

`
1

9
R2
´

1

18
RFµνF

µν . (B.3.90)

In all these formulas, we have already included the minus sign due to the opposite statistics

of ghosts. Finally, the total fermionic contribution gives

p4πq2a4pxq “
589

360
E4 ´

137

60
W 2

`
13

18
RFµνF

µν , (B.3.91)
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as reported in (5.6.17).

A different gauge-fixing term

Another possible gauge-fixing term is to take

Lg.f. “ ´
1

4
pψ̄µγ

µ
qpγνDν ´mqpγ

ρψρq (B.3.92)

“ ´
1

4
δABpψ̄

A
µ γ

µ
qpγνDν ´mqpγ

ρψBρ q .

This is natural because with m “ 2
`
, the three pairs of ghosts become identical. Of course

the final result should not depend on this choice. This adds the term

Lnew “
1

4
mψ̄µγ

µγνψν (B.3.93)

“
1

2
m

ˆ

χ̄µ ´
1

2
χ̄αγ

αγµ

˙

γµγν
ˆ

χν ´
1

2
γνγ

βχβ

˙

“
1

2
mδABχ̄

A
µγ

µγνχBν .

Using that gµν “ γµγν ´ γµν , we can simplify the Majorana Lagrangian with the choice

m “ 2
`

so that it takes the form

Lf “ δABg
µνχ̄Aµγ

ρDρχ
B
ν ´

1

2
εABF

µνχ̄Aρ γµγ
ρσγνχ

B
σ `

1

`
δABχ̄

A
µ g

µνχBν . (B.3.94)

After converting to symplectic Majoranas and performing the computation, this gives the

gravitini contribution

p4πq2a4pxq “
139

90
E4 ´

32

15
W 2

´
1

3
R2
`

8

9
RFµνF

µν . (B.3.95)

The ghost contribution is also modified. Indeed, the Lagrangian of the e-ghost is determined

by the gauge-fixing Lagrangian and hence acquires the same mass of the b, c ghosts. So we

end up with three identical pairs of charged ghosts for a total ghost contribution of

p4πq2a4pxq “ ´
11

120
E4 ´

3

20
W 2

`
1

3
R2
´

1

6
RFµνF

µν . (B.3.96)

The total contribution is then

p4πq2a4pxq “
589

360
E4 ´

137

60
W 2

`
13

18
RFµνF

µν , (B.3.97)

179



which, as expected, is the same as (B.3.91).

B.4 Renormalization of the couplings

Our focus in this paper has been on the Seeley-DeWitt coefficient a4 which is responsible for

the local contribution to the logarithmic corrections. The other Seeley-DeWitt coefficients a0

and a2 capture the one-loop renormalization of the couplings. Indeed, the effective Euclidean

action takes the form

S “ Sclassical ` S1-loop ` . . . , (B.4.1)

where the one-loop correction is

S1-loop “ ´
1

2

ż `8

ε

ds

s

ż

d4x
?
g Kpx, sq, Kpx, sq “ s´2a0pxq ` s

´1a2pxq ` . . . , (B.4.2)

which gives

S1-loop “

ż

d4x
?
g

ˆ

´
1

4ε2
a0pxq ´

1

2ε
a2pxq ` . . .

˙

. (B.4.3)

The coefficient a0 is a constant while a2 is a general two-derivative term

p4πq2a2pxq “ d1R ` d2FµνF
µν . (B.4.4)

Thus, we get

S1-loop “
1

16π2

ż

d4x
?
g

ˆ

´
1

4ε2
a0 ´

1

2ε
pd1R ` d2FµνF

µν
q ` . . .

˙

. (B.4.5)

From this expression, we can see that a0, d1 and d2 are respectively renormalizations of the

cosmological constant, Newton’s constant and the electric charge. Here ε represents a UV

cutoff. We can compute a0 and a2 using the formulas [158]

p4πq2a0 “ Tr 1 , (B.4.6)

p4πq2a2 “ Tr

ˆ

E `
1

6
R

˙

. (B.4.7)

This allows us to compute the coefficients a0, d1, d2 for the theories considered in this paper.

The results are summarized in Table B.1 below.

The renormalization of the cosmological constant, a0, depends only on the number of

fields and is as in flat space. However, our computations for the renormalization of New-

ton’s constant, d1, generalize previous flat space discussions in, for example, [208, 209]. To
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compare with those papers we note that our ε above has dimensions of rLs2. More precisely,

considering a massless scalar in AdS, ∆ “ 3, leads to the same contribution as the one pre-

sented in [209]: d1 “ 1{6. Similarly, the massless Dirac fermion (∆ “ 3{2) leads to d1 “ 1{3

and the free vector to d1 “ ´2{3 which coincide with [209].

Multiplet a0 d1 d2

Free scalar 1 1
12
p2´∆p∆´ 3qq 0

Free Dirac fermion ´4 ´ 1
12
p5` 4∆p∆´ 3qq 0

Free vector 2 ´2
3

0

Free gravitino ´2 ´1
2

0

Einstein-Maxwell 4 ´10
3

6

N “ 2 gravitini ´4 7 ´8

N “ 2 gravity multiplet 0 11
3

´2

Table B.1: Seeley-DeWitt coefficients a0 and a2 for the theories studied in this paper

B.5 Holographic renormalization and the Gauss-Bonnet-

Chern theorem

Since the local contribution is given by an integral over the Euclidean spacetime, the result

for the logarithmic correction is sensitive to the choice of regularization procedure. In this

work, we have used holographic renormalization to regulate these integrals. This is natural

because the logarithmic correction can be viewed as a term in the effective bulk action. We

have found that this prescription always gives a finite and unambiguous result.

For the Euler density, a natural counterterm is provided by the Gauss-Bonnet-Chern

theorem
1

32π2

ż

M
ddx
?
g E4 `

1

32π2
B “ χ , (B.5.1)

where B is is the boundary term found by Chern in [210] and χ is the Euler characteristic

of spacetime, which is an integer. Our regularization prescription gives precisely the same

counterterm. Indeed, we find that

lim
rcÑ`8

„

1

32π2

ż

M
ddx
?
g E4 `

ż

BM
d3y
?
h pc1 ` c2Rq



“ χ . (B.5.2)

where c1 and c2 are chosen to cancel the r3
c and rc divergences. This works for all the
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geometries considered in this paper. Note that a naive regularization procedure where we

simply remove the divergent term would not give this result. In fact, it would lead to a non-

topological result, depending on the black hole parameters. The holographic counterterm

gives a finite contribution, necessary to obtain a topological result which is the same as

the one appearing in the Gauss-Bonnet-Chern theorem. This gives us confidence that our

regularization procedure is physically sensible. In this appendix, we show explicitly the

matching of the two counterterms for the AdS-Schwarzschild black hole.

B.5.1 Chern’s boundary term

To illustrate the above points, we consider the application of the Gauss-Bonnet-Chern the-

orem [210] (see section 8 of [211] for a review and [212] for a simple AdS application) to the

AdS-Schwarzschild solution. The theorem takes the form

χ “
1

32π2

ż

d4x
?
g E4 `

1

32π2
B, (B.5.3)

where B is the boundary term [210]

B ” ´2

ż

εabcdθ
a
bRc

d `
4

3

ż

εabcdθ
a
b θ

c
eθ
e
d . (B.5.4)

where θab is the second fundamental form, and R is the Riemann curvature tensor at the

boundary. For AdS-Schwarzschild, the bulk contribution is

1

32π2

ż

d4x
?
g E4 “

ż rc

r`

r2dr

ż

dΩ2

ż β

0

dτ

ˆ

24

`4
`

48m2

r6

˙

(B.5.5)

“
β

π

„

2m2

ˆ

1

r3
`

´
1

r3
c

˙

`
1

`4

`

r3
c ´ r

3
`

˘



,

where r` is the horizon radius and we have introduced a cutoff r “ rc that should be taken

to infinity at the end. For the boundary term, we first compute the fundamental form

θ01 “
m`2 ` r3

c

r2
c`

2
dτ , (B.5.6)

θ12 “ ´

d

r3
c ` rc`

2 ´ 2m`2

rc`2
dθ , (B.5.7)

θ12 “ ´

d

r3
c ` rc`

2 ´ 2m`2

rc`2
sin θ dφ . (B.5.8)
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Note that the vielbeins are in general non-trivial linear combination of dxµ, but the funda-

mental forms here are simple monomials of dxµ. We can read out the coordinate component

Ra
bµν on the slice r “ rc using that

Ra
b “ Ra

bcde
c
^ ed “ Ra

bµνdx
µ
^ dxν . (B.5.9)

This gives

R0
2τθ “´

m`2 ` r3
c

`2r2
c

d

r3
c ` rc`

2 ´ 2m`2

rc`2
, (B.5.10)

R0
3τφ “´

m`2 ` r3
c

`2r2
c

d

r3
c ` rc`

2 ´ 2m`2

rc`2
sinθ , (B.5.11)

R0
3θφ “

2m`2 ´ r3
c

rc`2
. (B.5.12)

The boundary contribution is then

B “ 8p4πβq
pm`2 ` r3

c qp2m`
2 ´ r3

c q

`4r3
c

(B.5.13)

“ 4πβ

„

´16m2 1

r3
c

` 8m
1

`2
´

8

`4
r3
c



.

The total contribution of the Euler characteristic is

4πβ

„

16m2 1

r3
`

` 8m
1

`2
´

8

`4
r3
`



. (B.5.14)

Using the fact that the periodicity of τ is the inverse Hawking temperature (5.3.6) and that

fpr`q “ 0 gives 2m “ r`

´

1`
r2
`

`2

¯

, we obtain

χ “
β

π

„

2m2 1

r3
`

`m
1

`2
´

1

`3
r3
`



“ 2 , (B.5.15)

which is the correct result for the Euler characteristic of a black hole.

B.5.2 Holographic renormalization

We now show that our regularization procedure, using the prescription of holographic renor-

malization, gives the same boundary term. This is already clear from the fact that the

regularized Euler integral gives the correct χ but here we directly compare the boundary
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terms. The boundary geometry at r “ rc is

ds2
“

ˆ

1`
r2
c

`2
´

2m

rc

˙

dt2 ` r2
cdθ

2
` r2

c sin2θ dφ2, (B.5.16)

and the Ricci scalar on the boundary is R “ 2
r2
c
. The holographic counterterms are given by

aCT
“

ż

d3y
?
hpc1 ` c2Rq (B.5.17)

“

ż β

0

dt

ż π

0

sinθdθ

ż 2π

0

dφ

d

1`
r2
c

`2
´

2m

rc
r2
c pc1 ` c2Rq

“ 4πβ
`

c1r
2
c ` 2c2

˘

d

r2
c

`2
´

2m

rc
` 1 (B.5.18)

“ 4πβ

„

c1

`
r3
c `

pc1`
2 ` 4c2q

2`
rc ´ c1m`



`Opr´1
c q. (B.5.19)

In order to remove the divergence in (B.5.5), we demand

c1 “ ´
8

`3
, c2 “

2

`
. (B.5.20)

Plugging back in (B.5.17), we see that the counterterm is exactly equal to Chern’s boundary

term. Note that this is non-trivial because the renormalization introduces a finite correction.

It would be interesting to have a more geometrical understanding of this identification.

B.6 Vanishing of boundary terms

The proper application of the heat kernel expansion in AdS following [158] requires the

addition of boundary terms. They come from the fact that the computation needs to be

done on a regularized geometry defined by a cutoff r ă rc. In this appendix, we show that

these boundary terms vanish and thus can be ignored. One source of boundary terms is the

fact that a4pxq actually contains total derivatives, highlighted below as

a4pxq “ ¨ ¨ ¨ `
1

30
p5lE `lRq . (B.6.1)

This gives a contribution

Clocal “ ¨ ¨ ¨ `
1

p4πq2
1

30

ż

d3y
?
hnµ∇µp5TrE `RTr 1q . (B.6.2)
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Using the fact that TrE is a linear combination of two-derivative terms, it can be generally

written as

TrE “ α1R ` α2FµνF
µν , (B.6.3)

for some coefficient α1 and α2. We can then compute the contribution (B.6.2) on our back-

ground. It is of order Opr´1
c q and hence vanishes in the limit rc Ñ `8.

Another contribution comes from the formula of a4pxq on a manifold with boundaries,

which include additional boundary terms. This can be written as an additional boundary

contribution to C

Cbdy “

ż

d3y
?
h aB4pyq, (B.6.4)

where

aB4 “ B1 Tr 1`B2 TrE, (B.6.5)

and B1 and B2 are geometric invariants of the boundary depending on both intrinsic and

extrinsic data

B1 “
1

360

„

24K:bb ` 20RK ` 4RananK ´ 12RanbnKab ` 4RabcbKac ` 480S2K ` 480S3

`
1

21

“

p280Π` ` 40Π´qK
3
` p168Π` ´ 264Π´qKabKabKcc

‰

` 120S:aa

`
1

21
p224Π` ` 320Π´qKabKbcKac ` 120SR ` 144SK2

` 48SKabKab



,

B2 “
1

3
pK ` 6Sq ,

(B.6.6)

where Kab is the extrinsic curvature of the boundary. Here Π˘ and S capture the choice

of boundary conditions for the fields at infinity. For normalizable boundary conditions in

AdS4, it can be checked that they are constants.

We can evaluate this term on our background using the general expression (B.6.3) for

TrE, which diverges and hence, we use the same regularization prescription as in holographic

renormalization. Once the dust settles, we find that this contribution vanishes. Hence, no

boundary term of this type gives a contribution to the logarithmic correction.

B.7 Black hole curvature invariants

In the main text, we emphasize the role of universality considering by the Euler characteristic

and the square of the Weyl tensor. It is also common to express the curvature invariants in

terms of RµνρσR
µνρσ, RµνR

µν and R2. In this appendix, we explicitly write out the curvature
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invariants for the Kerr-Newman-AdS black hole studied in section 5.3.4 and show how they

are related to their flat space counterparts.

The curvature invariants are

RµναβR
µναβ

“
24

`4
`

8

4pr2 ` a2cos2θq6

”

´24m2
`

a2cos2θ ` r2
˘3
` 192r4

`

pq2
e ` q

2
mq ´ 2mr

˘2

´192r2
`

pq2
e ` q

2
mq ´ 3mr

˘ `

pq2
e ` q

2
mq ´ 2mr

˘ `

a2cos2θ ` r2
˘

`4
`

pq2
e ` q

2
mq ´ 6mr

˘ `

7pq2
e ` q

2
mq ´ 18mr

˘ `

a2cos2θ ` r2
˘2
ı

“
24

`4
` R̃µναβR̃

µναβ ,

RµνR
µν

“
36

`4
`

4pq2
e ` q

2
mq

2

pr2 ` a2cos2θq4
(B.7.1)

“
36

`4
` R̃µνR̃

µν ,

R2
“

144

`4
,

FµνF
µν

“ ´
2
`

q2
e ´ q

2
m

˘

pr4 ´ 6a2r2cos2θ ` a4cos4θq ` 16qeqmra cosθ
`

r2 ´ a2cos2θ
˘

pr2 ` a2cos2θq4
.

Each of the invariants are a sum of two terms. The first term is proportional to `´4 and the

second term which has no ` dependence agrees with the analogous invariants R̃µναβR̃
µναβ

and R̃µνR̃
µν of asymptotically flat Kerr-Newman black holes. Thus, taking ` Ñ 8, we

smoothly recover the same expressions for the invariants in [172, 183]. The invariants for

Reissner-Nordström and Schwarzschild can be obtained by specializing the parameters. We

can find the expressions for E4 using (5.3.2):

E4 “
24

`4
`

8

pr2 ` a2cos2θq6

´

6m2
`

r6
´ 15a2r4cos2θ ` 15a4r2cos4θ ´ a6cos6θ

˘

´ 12mrpq2
e ` q

2
mq

`

r4
´ 10a2r2cos2θ ` 5a4cos4θ

˘

` pq2
e ` q

2
mq

2
`

5r4
´ 38a2r2cos2θ ` 5a4cos4θ

˘

¯

(B.7.2)

Moreover, upon integration, the `´4 term diverges because of the divergent AdS4 volume,

and we tame this divergence by holographic renormalisation. On the other hand, the second

term is finite and does not require holographic renormalization. The integrated curvature
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invariants after proper renormalization take the form of

1

p4πq2

ż

d4x
?
g RµνρσR

µνρσ

“´

3
`

a2 ´ r2
`

˘ `

a2 ` r2
`

˘2 `
a2

`

r2
` ´ `

2
˘

` r2
`

`

`2 ` 3r2
`

˘˘

arctan
´

a
r`

¯

a5`2Ξr3
`

`
`

a2
`

`2
´ r2

`

˘

´ r2
`

`

`2
` 3r2

`

˘˘2

ˆ

β
´

3a5r` ` 2a3r3
` ` 3

`

a2 ´ r2
`

˘ `

a2 ` r2
`

˘2
arctan

´

a
r`

¯

` 3ar5
`

¯

8πa5`4Ξr4
` pa

2 ` r2
`q

`

2π
`

a2 ` r2
`

˘

´

3a5r` ` 2a3r3
` ` 3

`

a2 ´ r2
`

˘ `

a2 ` r2
`

˘2
arctan

´

a
r`

¯

` 3ar5
`

¯

a5βΞr2
`

`
ar`

`

a6
`

3`2 ´ 7r2
`

˘

` a4
`

3`2r2
` ´ 11r4

`

˘

` a2r4
`

`

`2 ´ 9r2
`

˘

´ 3r6
`

`

`2 ` 3r2
`

˘˘

a5`2Ξr3
`

,

1

p4πq2

ż

d4x
?
g RµνR

µν

“
96βr4

`

`

βr`
`

a2 ` `2 ` 2r2
`

˘

´ 2π`2
`

a2 ` r2
`

˘˘

´ 96β2r5
`

`

a2 ` r2
`

˘

32πβ`4Ξr4
`

`
`

a2
`

βr2
` ´ `

2
pβ ` 4πr`q

˘

` `2r2
`pβ ´ 4πr`q ` 3βr4

`

˘2

ˆ

´

3a5r` ` 2a3r3
` ` 3pa´ r`qpa` r`q

`

a2 ` r2
`

˘2
arctan

´

a
r`

¯

` 3ar5
`

¯

32πβ`4Ξr4
` pa

5 pa2 ` r2
`qq

,

1

p4πq2

ż

d4x
?
g R2

“
12

`

βr`
`

`2 ` r2
`

˘

´ 2π`2
`

a2 ` r2
`

˘˘

π`4Ξ
,

1

p4πq2

ż

d4x
?
gFµνF

µν
“ 2r2

` ´
βr`

`

3r4
` ` pa

2 ` `2qr2
` ´ a

2`2 ´ 2`2q2
m

˘

2π`2 pa2 ` r2
`q

.

(B.7.3)
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Appendix C

C.1 Special Functions

Here we summarize the definitions of special functions used in the paper. The Dedekind eta

function is defined as

ηpqq “ q
1
24

8
ź

k“1

`

1´ qk
˘

, Impτq ą 0 , (C.1.1)

with q “ e2πiτ . The Pochhammer symbol is defined as

pz; qq8 “
8
ź

k“0

p1´ zqkq . (C.1.2)

The elliptic theta functions which are relevant to us have the following product form:

θ0pu; τq “
8
ź

k“0

p1´ e2πipu`kτq
qp1´ e2πip´u`pk`1qτq

q , (C.1.3a)

θ1pu; τq “ ´ie
πiτ
4 peπiτ ´ e´πiτ q

8
ź

k“1

p1´ e2πikτ
qp1´ e2πipkτ`uq

qp1´ e2πipkτ´uq
q

“ ie
πiτ
4 e´πiuθ0pu; τq

8
ź

k“1

p1´ e2πikτ
q . (C.1.3b)

The elliptic gamma function and the “tilde” elliptic gamma function are defined as

Γpz; p, qq “
8
ź

j,k“0

1´ pj`1qk`1z´1

1´ pjqkz
, (C.1.4a)

rΓpu;σ, τq “
8
ź

j,k“0

1´ e2πirpj`1qσ`pk`1qτ´us

1´ e2πirjσ`kτ`us
. (C.1.4b)
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C.1.1 Asymptotic Behavior

For a small |τ | with fixed 0 ă arg τ ă π, the Pochhammer symbol can be approximated as

logpq; qq8 “ ´
πi

12
pτ `

1

τ
q ´

1

2
logp´iτq `Ope

2πsinparg τq
|τ | q . (C.1.5)

To study asymptotic behaviors of elliptic functions, it is useful to introduce the function

tuuτ , as

tuuτ ” u´ tRepuq ´ cotparg τqImpuqu pu P Cq , (C.1.6)

which satisfies

tuuτ “ tũuτ ` ǔτ , t´uuτ “

$

&

%

1´ tuuτ pũ R Zq ,

´tuuτ pũ P Zq ,
(C.1.7)

where we have defined ũ, ǔ P R as

u “ ũ` ǔτ . (C.1.8)

The elliptic theta function θ0pu; τq can be approximated for a small |τ | with fixed 0 ă

arg τ ă π as

log θ0pu; τq “
πi

τ
tuuτ p1´ tuuτ q ` πituuτ ´

πi

6τ
p1` 3τ ` τ 2

q

` logp1´ e´
2πi
τ
p1´tuuτ qq

´

1´ e´
2πi
τ
tuuτ

¯

`Ope
2πsinparg τq

|τ | q .
(C.1.9)

The elliptic theta function θ1pu; τq is approximated for a small |τ | with fixed 0 ă arg τ ă π

as

log θ1pu; τq “
πi

τ
tuuτ p1´ tuuτ q ´

πi

4τ
p1` τq ` πitRepuq ´ cotparg τqImpuqu`

1

2
log τ

` logp1´ e´
2πi
τ
p1´tuuτ qq

´

1´ e´
2πi
τ
tuuτ

¯

`Ope
2πsinparg τq

|τ | q .

(C.1.10)

For a small |τ | with fixed 0 ă arg τ ă π, the elliptic gamma function can be approximated

as

log rΓpu; τq “ 2πiQptuuτ ; τq `Op|τ |´1e
2πsinparg τq

|τ |
minptũu,1´tũuq

q , (C.1.11)

provided ũ {ÑZ (see [27] for example), and the function Qp¨ ; ¨q is defined as:

Qpu; τq ” ´
B3puq

6τ 2
`
B2puq

2τ
´

5

12
B1puq `

τ

12
, (C.1.12)
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with Bnpuq being the n-th Bernoulli polynomial.
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