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Abstract

This thesis explores a series of topics in quantum gravity with a focus on the quantum
nature of AdS black holes via the AdS/CFT correspondence. In Part I, we examine various
holographic approaches to AdS black hole entropy, including (i) from the gravity solution
via the Bekenstein Hawking formula, (ii) from the Kerr/CFT correspondence and (iii) from
the boundary conformal field theory. We explore these methods with the gravitational
implementation of the field theory Cardy-like limit, recently used in the successful microstate
countings of AdS black hole entropy in various dimensions. We then consider a deviation
from the extremal regime and focus on computing the Bekenstein-Hawking entropy of near-
extremal asymptotically AdS, electrically charged rotating black holes using three different
methods, yielding a unique and universal expression for the entropy.

In Part II, we explore the quantum nature of black holes via the logarithmic corrections
to the entropy of AdS black holes in four dimensions. With a focus on AdS, solutions in
minimal A/ = 2 gauged supergravity, we show that for extremal black holes the logarithmic
correction computed in the near horizon geometry agrees with the result in the full geometry
up to zero mode contributions, thus clarifying where the quantum degrees of freedom lie in
AdS spacetimes. In contrast to flat space, we observe that the logarithmic correction for
supersymmetric black holes can be non-topological in AdS as it is controlled by additional
four-derivative terms other than the Euler density.

We also study supersymmetric, rotating, asymptotically AdSs black holes and black
strings. On the gravity side, we take the near-horizon limit and apply the Kerr/CFT cor-
respondence whose associated charged Cardy formula describes the degeneracy of states at
subleading order and determines the logarithmic correction to the entropy, which precisely
matches the entropy up to subleading order from the field theory, by the superconformal in-
dex and the refined topologically twisted index of N' = 4 supersymmetric Yang-Mills theory,

respectively.
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Chapter 1

Introduction

1.1 Motivation

The theory encompassing gravitational physics and quantum physics - quantum gravity -
continues to be the most important open issue in the foundations of fundamental physics.
Quantum gravity becomes crucial in understanding the first few moments after the Big Bang
as well as black holes, where quantum gravitational effects cannot be ignored.

A black hole is a region of a spacetime with an event horizon, beyond which events
that take place there cannot classically affect an observer outside this boundary. The event
horizon, or horizon for short, is sometimes called the point of no return. Over the past
several decades, black holes have been tested extensively with the findings of The Laser
Interferometer Gravitational-Wave Observatory (LIGO) and the Event Horizon Telescope
(EHT). Black holes have also been in the forefront of theoretical research and provide a
theoretical laboratory to test ideas and find new insights into quantum gravity.

There are two crucial ideas that we will discuss in this thesis, that have driven our progress
in the field of quantum gravity and are both intimately related to black holes. The first key
insight is the successful matching of the microscopic black hole entropy to the macroscopic
Bekenstein-Hawking entropy [1]. There are several fundamental ideas to digest here so let
us step back to understand what this all means.

Our story starts in the second half of the twentieth century when black hole physics was
put on center stage (see for example [2-10]) and notably when Bekenstein conjectured that
black holes have a well defined entropy proportional to the area of the horizon. His work on
black hole mechanics was followed by Hawking who build on Bekenstein’s proposal. In 1974,
Hawking discovered that black holes emit thermal radiation corresponding to a temperature,
which we now call the Hawking temperature, fixing the constant of proportionality between

the entropy and the horizon area.



Indeed, black holes have their own set of analogous thermodynamic laws, as described

below.

e The zeroth law: The surface gravity s is constant over the horizon of a stationary black
hole.

e The first law: The change in the energy dFE of a stationary black hole is related to the

change in the area dA, angular momentum d.J, and electric charge d@

dE = 8idA +QdJ + ®dQ. (1.1.1)
7

e The second law: The change in the horizon area is non-decreasing over time.

We can derive the entropy formula for black holes from the first law relating the energy,
entropy and temperature. The physical temperature of the black hole, called the Hawking

temperature is proportional to the surface gravity
Ty = — (1.1.2)

while the Bekenstein-Hawking entropy takes the form

y A

S = el (1.1.3)

where (G is Newton’s constant and A is the area of the event horizon. We have set the speed
of light ¢ and kg the Boltzmann constant to one, ¢ = h = kg = 1 and will do so for the
remainder of this thesis.

The entropy in (1.1.3) is a macroscopic interpretation and is completely universal — at
leading order — and is valid for any kind of black hole, regardless of dimension, field content
or really anything else. We may then speculate about the microscopic or quantum origin of

the entropy via a statistical mechanical approach. This would look something like
Sgﬁ = log (2, (1.1.4)

where €2 is the number of microstates of the theory. It was not until the mid 1990’s when
Strominger and Vafa successfully accounted for the microscopic counting of the entropy for
a class of five-dimensional black holes [1]. Their analysis was followed by many similar com-
putations for other black holes in different configurations. More importantly, the resolution
of the black hole entropy has shed light in our understanding of the quantum properties of

black holes and has set the stage for further developments in quantum aspects of black holes.
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The second key insight stems from the holographic principle and is widely considered
to be a window into the full understanding of quantum gravity. The canonical example in
high energy physics of holography is the AdS/CFT correspondence [11]. The principle states
that a theory describing gravity is related to a quantum field theory. The gravity theory is
typically called “the bulk” and the quantum theory is called “the boundary theory,” because
it lives on the boundary of the gravity theory and therefore, it is one dimension less than
the gravity theory. Like a dictionary, physical concepts from gravity can be translated into
physical concepts in the quantum theory.

So what kind of gravity theories have quantum duals? According to the AdS/CFT
correspondence, string theories in certain asymptotically Anti-de Sitter (AdS) spacetimes
correspond to dual conformal field theories (CFT) in one less dimension.

Let us take a closer look at the gravity side of the correspondence. Global AdSg,q
spacetimes are maximally symmetric spacetimes with a negative cosmological constant. We
may consider an isometric embedding in Minkowski spacetime in d + 2 dimensions, where

the extra dimension is time-like

(X0, X1 X4 X e RY?, (1.1.5)
7 = diag(—, +,+, ..., +,—). (1.1.6)

The Minkowski spacetime takes the form
ds? = — (dX°)% + (dX)* + -+ (AX)* — (AX) =y XM AXY, (L17)

and AdSy,; is given by the hypersurface

d
v XX = - (x0)2 4 3 (X0)? (X = 12, (1.1.8)

=1
where L is the radius of curvature of AdS. If we consider the parametrization

XY = «coshp cosr,
X4t = o coshpsinr, (1.1.9)
X = arsinhp p;, Sini=1, i=1,...,d,

where j; corresponds to a S?! sphere, then the metric of AdSy,; takes the form

ds® = o* (—cosh’pdr® + dp* + sinh?pd(22_,) , (1.1.10)



for 7 € [0,27] and p € R*. Note that (1.1.10) are called the global coordinates of AdSy41 as
each point in the spacetime is accounted for only once. The second parametrization that is

often used is given by

L2 7“2
0 =2 2 2
X =§(1+ﬁ(x —t +L)),
xi="" forie{l,....d—1},
L (1.1.11)
xio B 1+L2(52—t2—L2)
2r LA ’
t
Xd+1 _ T_
L?
where
teR, = (a',..., a7 ") e R, reR,. (1.1.12)

This parametrization is called the Poincare patch. Unlike global coordinates, the Poincare

patch coordinates only cover one-half of the AdS spacetime with metric

2 L? 2 r’ 2 2 L? 2 r’
ds* = 5 dr* + o (—dt* + d7®) = —z &+ 75 (uda”da”), (1.1.13)
where
w=0,...,d, =t o, =dag(—1,+1,...,+1). (1.1.14)

We often refer to asymptotically AdS spacetimes as spacetimes that, for large radial distance,
asymptote to a metric of the form (1.1.10). For example, we can consider a black hole living
in AdS spacetime and this is usually referred to as an AdS black hole.

The canonical example of holography is AdS;/CFT, and is the duality between N = 4
super Yang-Mills theory with gauge group SU(N) and Yang-Mills coupling constant gyy and
type IIB superstring theory with string length [> = o/ and coupling constant g, on AdSs x S°
with radius of curvature L and N units of Fi5) on S°. In the AdS/CFT correspondence, we
typically denote the “AdS” side as the gravity solution, which will mainly be asymptotically
AdS black hole solutions in this thesis, while the “CFT” side is the quantum field theory
under consideration.

What makes holography so favorable is its computational accessibility. Many of the
puzzles presented by gravity can now be reformulated in terms of a quantum field theory
and vice versa. For this reason, the AdS/CFT correspondence has not only provided a
computational path in quantum gravity but also in fluid dynamics, superconductivity and
quantum chromodynamics, connecting a wide range of topics. For example, the fluid/gravity

correspondence relates the dynamics of the Einstein equations to that of relativistic Navier-



Stokes equations.

In this thesis, we are particularly interested in how holography is connected with the
first key insight regarding black hole thermodynamics. As we mentioned, the microscopic
counting of the black hole entropy was first successfully computed by Strominger and Vafa.
The caveat is that only asymptotically flat black holes have been rigorously studied in this
regard. Since we have the tools in holography to study AdS black holes, we can compute
the microscopic counting of the entropy via the conformal field theory. The first attempt
at studying the canonical example of AdS; x S° dual to N/ = 4 super Yang-Mills was
unfortunately fruitless [12]. It was not until more than a decade later that the issues were
resolved [13-15] by considering complex chemical potentials.

In this thesis, we build on the work of [13—-15] and we consider AdS black hole solutions
with known field theory duals to understand the nature of the microscopic origin of the
entropy from a different perspective.

Let us recap what we know so far. We can compute the macroscopic entropy correspond-
ing to the Bekenstein-Hawking entropy 51(31131 and we know from the AdS/CFT correspondence
that the microscopic counting of the entropy Sggl can be found via the dual field theory. We
consider yet an additional approach to the entropy via the Kerr/CET correspondence [16],
where we find an impressive match between the properties of black holes and the universal
properties of two-dimensional CFTs.

To understand the definition of extremality, we consider the simpler example of a general

non-rotating (d + 1)-dimensional black hole solution of the form

dr?

f(r)

where f(r) is a function of the radial coordinate r as well as the mass and charges of the
black hole. For example, in the Schwarzschild solution f(r) = 1 —2GM /r. The horizon of
the black hole r, satisfies f(r;) = 0. For a black hole with additional charges, there are
three possibilities depending on the discriminant A of f(r):

ds? = —f(r)dt* + —— + 123, (1.1.15)

e naked singularity for A < 0,
e extremal for A =0,
e non-extremal for A > 0.

In the case of the non-extremal solution, there are two horizons, the inner horizon r_ and the
outer horizon r,, where r, > r_ while extremality is obtained when both horizons coincide

r_ = r,. For this thesis, we mainly focus on the extremal case for one specific reason. That is,



all known extremal black hole solutions develop an AdSs factor in the near-horizon geometry.
From a geometric point of view, extremal black holes have a throat-geometry, as shown in
Figure 1.1. In the case of non-zero angular momentum, we instead find that the near-horizon
contains a circle, or several circles, fibered over AdS, and from the Kerr/CFT correspondence
can be dual to an effective two dimensional CF'T model. Therefore, the microscopic degrees
of freedom of the black hole can be accounted for via the Cardy formula. We can then utilize
the Kerr/CFT correspondence to reproduce the microscopic counting of the entropy 51(3?% for
asymptotically AdS black holes.

Figure 1.2 outlines the overarching goal
of the first part of this thesis. More im-
portantly, the three distinct holographic ap- CFT & asymptotics
proaches to the entropy have shown to be
valid at the extremal limit as well as the
near-extremal limit for a class of rotat-
ing, electrically charged asymptotically AdS
black holes in diverse dimensions.

Indeed, the black hole entropy at leading
order is given by the Bekenstein-Hawking

entropy. We now shift our focus to the

subleading quantum corrections, taking the Horizon Wllill§ Kerr/CFT
Spn
form
S = 1 A 1.1.16
e e ge] T (1.1.16) Figure 1.1: The horizon and the asymptotic

. ) regions.
where ¢ is a constant to be determined.

With our current scope of knowledge in quantum gravity, we do not know the full form
of the entropy. Instead, one particular quantum correction that we are able to probe are
the logarithmic corrections to the entropy. Unlike the area formula, the logarithmic correc-
tions are sensitive to the quantum gravity under consideration. Therefore, these types of
corrections provide a unique testing ground for any proposed ultraviolet complete theory of
gravity. There has been active exploration on these types of corrections in asymptotically
flat spacetimes, both in the extremal and non-extremal regime, mainly pushed by Sen and
collaborators. However, there remains a large unexplored territory for these corrections in
AdS spacetimes. This is the goal of the second part of this thesis.

We follow two distinct approaches. The first is the heat kernel, which has been widely

used in literature for these types of entropy corrections. Our work paves the way for field



theoretic computations, which can verify our results. Returning to Figure 1.2, we may
speculate to what extent our holographic approaches continue to hold at subleading order.
Therefore, our second method is to extend the Kerr/CFT correspondence to compute the

logarithmic corrections to asymptotically AdS spacetimes.

AdS/CFT

AdSg4, 1 black hole (51(31})1) boundary CFTy (51(331%)

Bardeen-
Horowitz scaling

Kerr/CFT )
AdS; geometry CFT, (51(31—)I>

Figure 1.2: The asymptotically AdS black hole entropy can be computed in three different
ways (Sg%l), and have found to give one universal result for the entropy. This is valid for
both BPS black holes and near-extremal black holes.

1.2 Overview of Thesis

This thesis explores topics in holography and black holes in the pursuit of further advancing
our understanding of quantum gravity. The work presented is based on articles written with
my advisor Professor Leopoldo Pando Zayas and collaborators. In the following, we give an

overview of the structure of the remaining parts of the thesis.

Chapter 2:

In this chapter, we explore the Cardy-like limit, which has played a role in extracting the
microscopic counting of black hole entropy in AdS spacetimes via known dual field theories.
The Cardy-like limit

|w;| « 1, (1.2.1)

corresponds to small angular velocity with respect to the other parameters on the field theory
side, as shown in Table 1.1. Our main motivation is to provide a physical interpretation of the
Cardy-like limit from the gravity point of view. For a class of electrically charged, rotating,
asymptotically AdS black holes, we find that the gravitational Cardy limit has the following

universal form

la;g| — 1, (1.2.2)



’ Dimension of CFT ‘ w ‘ A ‘ J ‘ Q ‘ Entropy Function
d=3 e | 1 |1/e8] 1/e 1/e
d=4 e 1[1/e3]1/e 1/€?
d=5 e | 1]1/e3] 1/ 1/€
d==6 e | 1|1/t ]1/e 1/€3

Table 1.1: Scaling of conserved quantum numbers in various field theory dimensions.

where a; roughly characterizes the angular momenta in units of the inverse radius of AdS,
g. As shown in Figure 1.2, we impose the gravitational Cardy limit while also zooming
into the near-horizon of the black hole. Near the horizon of these black holes, there exists
a three-dimensional AdS subgeometry — U(1) fibered over AdSs — which, from holography,
corresponds to a two-dimensional quantum theory. This two-dimensional quantum theory
successfully accounts for the microscopic black hole entropy via the Cardy formula, which
utilizes the universality of the asymptotics of the density of states. The near-horizon limit
paired with the gravitational Cardy like limit, reduces the number of U(1) fibers to one,
and in effect, we extract only the minimal amount of information to compute the black hole
entropy. Therefore, we may reach the same entropy via the three holographic approaches,

the gravity AdS,.; solution, the CFTy derived from the near-horizon geometry, as well as
the CFTd

This chapter is based on:

M. David, J. Nian and L. A. Pando Zayas, “Gravitational Cardy Limit and AdS Black Hole
Entropy,”, JHEP 11 (2020), 041 doi:10.1007/JHEP11(2020)041 [arXiv:2005.10251 [hep-th]].

Chapter 3:

Most of the previous work on the successful matching of the microscopic and macroscopic
black hole entropy has assumed supersymmetry, and one natural question that may arise is
whether or not the entropy matching is successful when the BPS bound — the intersection
of supersymmetry and extremality — is relaxed. This chapter focuses on the near-extremal
regime of electrically charged, rotating AdS, black holes by exploring the holographic ap-
proaches to the entropy both on the gravitational and field theory side. More explicitly, we

consider
1. the expansion of the non-extremal AdS, black hole solution around the BPS solution,

2. the near-extremal Kerr-Newman-AdS/CFT correspondence from the near-horizon CF Ty,


https://arxiv.org/pdf/2005.10251.pdf

3. and the microstate counting via AdS/CFT correspondence from the boundary 3d su-

perconformal ABJM theory at small temperature,

as graphically shown in Figure 1.2. Note that we do not assume the Cardy-like limit for any
of these cases. In general, regardless whether we take a gravity or field theoretic approach,

the entropy takes on one universal expression

Spy = S +05 =85, + <£> Ty, (1.2.3)
Ty ),

where S, denotes the electrically charged rotating AdS, black hole entropy in the BPS limit,
while (C'/Ty ). stands for the heat capacity in the BPS limit. This result has several profound
consequences. First, we have shown that the Kerr/CFT correspondence [16-18], originally
posed for extremal black holes, can also be valid in the near-extremal regime. Second, the
universality of the black hole entropy suggests that Fig. 1.2 is not only valid in the super-
symmetric regime but also the near-extremal regime. It is an open question to understand
the non-supersymmetric regime, especially from the field theory point of view. Finally,
our results, which are partially derived from the Kerr/CFT correspondence, suggests that

there is a connection between the CFT; and CFTy through some RG flow across dimensions.
This chapter is based on:

M. David and J. Nian, “Universal Entropy and Hawking Radiation of Near-Extremal AdS,
Black Holes,” JHEP 04 (2021), 256 doi:10.1007/JHEP04(2021)256 [arXiv:2009.12370 [hep-th]].

Chapter 4:

While the logarithmic corrections to the Bekenstein Hawking entropy have been well studied
for asymptotically flat backgrounds [19-23], these subleading terms in asymptotically AdS
remain to be well explored. In this chapter, we study minimal N = 2 gauged supergravity,
focusing on the logarithmic corrections to the entropy of asymptotically AdS black holes in
four dimensions. Our main approach is via the heat kernel, which we apply to both non-
extremal and extremal black holes. A careful limiting procedure as we take the temperature
to zero shows that the logarithmic corrections obtained in the non-extremal regime agrees
with that of the extremal regime. Moreover, we find that in the BPS case, the logarithmic
corrections are topological as they depend on the parameters of the black hole. This is in

direct contrast with the results in the asymptotically flat case.


https://arxiv.org/pdf/2009.12370.pdf

This chapter is based on:

M. David, V. Godet, Z. Liu and L. A. P. Zayas,
‘Non-topological logarithmic corrections in minimal gauged supergravity

larXiv:2112.09444 [hep-th]].

Chapter 5:

As was mentioned in chapter 4, investigating the logarithmic corrections to the black hole
entropy via the heat kernel has been quite effective, and we could ask if a similar approach
can be taken for black objects in AdS;. However, probing the logarithmic term via the heat
kernel proves to be insufficient for five dimensions. This stems from the fact that the heat
kernel coefficient corresponding to the logarithmic term is zero for odd dimensions. There-
fore, we consider computing the quantum corrections to the black hole via the Kerr/CFT
correspondence, by evaluating the density of states about the saddle point.

On the field theory side, the subleading corrections correspond to the large N expansion
of the superconformal index and the refined topologically twisted index of N' = 4 supersym-
metric Yang-Mills theory for the black hole and black string, respectively. Upon converting
from the grand canonical to the microcanonical ensemble, the result derived from the Cardy

forumla precisely matches that of the index on the CFTy.
This chapter is based on:
M. David, A. Gonzalez Lezcano, J. Nian, and L. A. Pando Zayas,

Logarithmic Corrections to the Entropy of Rotating Back Holes and Black Strings in AdS;
[arXiv:2106.09730 [hep-th]].
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Part 1

Holographic Approaches to Black
Hole Entropy
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Chapter 2

The Gravitational Cardy Limit

2.1 Asymptotically AdS; Black Holes

In this section, we consider the asymptotically AdSs black holes and the corresponding
gravitational Cardy limit. We will demonstrate that the black hole entropy can be computed
in various ways as shown in Fig. 1.2, and that the other thermodynamic quantities scale in

the gravitational Cardy limit precisely as in the field theory approach following Table 1.1.

2.1.1 AdS; Black Hole Solution

In this subsection, we first review the non-extremal asymptotically AdSs black hole solution
found in [24] with degenerate electric charges (1 = Q)2 = Q3 = @ and two angular momenta
J1 2, and then take the BPS limit to obtain its supersymmetric version.

The non-extremal asymptotically AdSs black hole background was found in [24] as a
solution to the equations of motion of the 5d minimal gauged supergravity in the Boyer-
Lindquist coordinates z# = (t, r, 0, ¢, ©). The metric and the gauge field of the black hole

solution are given by

Ag [(1+ ¢%r2)p2dt + 2qu] dt 2 Agdt 2 2drt prde?
gs2 = Bl g:)_p2 qv] +qzw+i4<HeH _w> Lty
Za=bp p P Za=b Ar A9
2 2 2 4 b2
T in20de? + 7 cos20 dy?, (2.1.1)
Za Zp
3q (A dt
A= \/;q (H‘L —w) +oasdt, (2.1.2)
P Za=b

12



where

v = bsin?0 dé + a cos’0 dy
do dv)

— + bcos* =,

—a —b

w = asin’f

Ap =1 — a?¢? cos?d — b2 g* sin?6,
2 a2V (2 4 b2)(1 + o272 2. 9
ATE(T +a?)(r* +b°)(1 + g*r*) + ¢* + abq_2m’ (213)

r2

p? =12 + a® cos’d + b*sin?f
E.=1-d%¢?,
Sy =1— 0%,

f=2mp* — ¢ + 2abqg*p”,

and as dt is a pure gauge term with as a constant. These black hole solutions are character-
ized by four independent parameters (a, b, m, q). The thermodynamical quantities, including
the mass F, the temperature 7" and the entropy .S, can all be expressed in terms of these
independent parameters. The other physical quantities, such as the electric charge @), the
electric potential A, the angular momenta J; 5 and the angular velocities {2y 5 can similarly
be written in terms of the four independent parameters. For example, the gravitational

angular velocities 2; o and the temperature 7" are given by

a(r} +0*)(L+g°r3) + bg

0, =
! (r2 +a?)(r2 +b?) + abq ’
Q, b(r2 +a?®)(1 + ¢*r2) + aq
(r2 + a?)(r% + b%) + abg ’ (2.1.4)
rt [1 +g%(2r2 + a® + bz)] — (ab + q)?
T —

?

277, [(ri + a?)(rt +v?) + abq]

where r, denotes the position of the outer horizon given by the largest root of A, in (4.1.32).
As carefully discussed in [13], it is crucial to make the following important distinctions of
these solutions, in the broader context when complex potentials are allowed. The extremal
black hole solution is characterized by the appearance of a double root in A, = 0, while the
BPS black hole solution is obtained by solving the supersymmetry equations.
The BPS limit is a special limit in the parameter space, such that the backgrounds in

this limit are both extremal and supersymmetric. For the class of AdS5 black hole solutions

13



(4.1.30), the BPS limit corresponds to the following condition

m

=\ 2.1.5
1+ ag+ bg ( )

q

Moreover, to prevent unphysical naked closed timelike curves (CTC), it is shown in [24] that

the BPS solutions should further satisfy the constraint
1
m = g(a—i-b)(l—i-ag)(l—i-bg)(l—I—ag—l—bg). (2.1.6)

Hence, in the BPS limit only two of the four parameters (a, b, m,q) are independent, which
can be chosen to be (a,b). The special case a = b corresponds to the supersymmetric AdSs
black hole solutions found by Gutowski and Reall [25]. In the BPS limit, the outer horizon

r, coincides with the inner horizon at rg

b+ ab
R L (2.1.7)

9

and the black hole entropy S, the electric charge (). and the angular momenta Ji', have

the following expressions in terms of (a, b)

m2(a + b)y/a + b + abg

% = 21— ag)1—bg) °
Q. = m(a +b)
i 49(1 — ag)(1 —bg)’ (2.1.8)
Jr m(a+b)(2a + b+ abg)
b Ag(1—ag)*(1—bg)
IE m(a + b)(a + 2b + abg)

4g(1 — ag)(1 - bg)*
where the entropy S, is computed from the Bekenstein-Hawking entropy formula

A
= — 2.1.
SBH 4GN ) ( 9)

a quarter of the horizon area in units of Planck length. Using the expressions (2.1.8), we can

also rewrite the black hole entropy as a function of ) and Ji o

i 493(J1 +Jy). (2.1.10)

The AdS/CFT dictionary helps translate the parameters of the AdSs black holes to
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quantities in AV = 4 SYM

1
SV = ﬁeg, (2.1.11)

with ¢5 = g~! denoting the AdS; radius. We can rewrite the expression (2.1.10) of the AdS;
black hole entropy (in the unit G = 1)

3 2 N2
SBH =27 g;g — 7((]1 + JQ) . (2112)

This expression has recently been extracted directly from the boundary CFT in [13-15] with
further clarifying field theory work presented in [26-35]. We show below that this boundary

CFT result can also be obtained from a particular near-horizon Cardy formula.

2.1.2 Gravitational Cardy Limit

The Cardy-like limit for the N' = 4 SYM index was defined in [14]. This limit has been
discussed in the context of N' = 4 SYM also in [26,27,34]. In the more general context of
N = 1 superconformal theories, it has been discussed in [28-30]. A key ingredient in the

limit is the regime
lwi| « 1, A ~O(1), (1=1,2,1=1,2,3). (2.1.13)

Using the relation found in [13,33]

o€,
oT

i)
Re(A;) = )

Re(w;) = a7

(2.1.14)

’ )
T=0 T=0

we can express the Cardy-like limit (2.1.13) in terms of quantities in the dual gravity theory,

such that
0%,
or ) r_o

with ¢ =1, 2 and I = 1, 2, 3. Using the expressions of the thermodynamic quantities (2.1.4),
we obtain for the asymptotically AdSs; BPS black holes,

_thl—Q’l“_Qﬂ(—lJrag) 1+ ag + bg
spg 10 T 3g ab ’

_ling—Q’z“_Qﬂ(—1+bg) |1+ ag+ bg
spg 10 T 39 a ’

20,
oT

«1, ~O(1), (2.1.15)

T=0

(2.1.16)
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where Q7 , are the values of €} 5 in the BPS limit. From the expressions of % sps (0 =1,2),

we conclude that for asymptotically AdS; BPS black holes, the gravitational Cardy limit

corresponds to the special limit of the parameters on the gravity side

. b -, (2.1.17)

1
a=-—¢€, b=-——¢. (2.1.18)

For this case, € has the dimension of length. Taking the gravitational Cardy limit (2.1.18)

for the parameters into account, the BPS thermodynamic quantities (2.1.8) become

/32

-1
Sy = P +O(e ),
__T -1
Q* - 29462 + O(E )7
o . (2.1.19)
Jl = ﬁ + O(E ) y
* 2m —2
J2 = @ + 0(6 ) s

which are precisely the scalings of the field theory results [14, 36].

2.1.3 Black Hole Solution in the Near-Horizon + Gravitational
Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters
on the gravity side. In this subsection, we discuss how the near-horizon metric changes in
this limit as well as clarify other ingredients.
The asymptotically AdSs metric (4.1.30) can be written in the following equivalent form,
which is more convenient for the discussions in this subsection,
s o (dr?  d6? 9 9
dt“+p (A_,« + A_e) + By (dy) 4+ vidg + vadt)” + By(dg + vsdt)”,
(2.1.20)

A, Agr? sin?(20)
=2Z2B,B,

ds® =
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where

_ 933044 — 9%4

By = ————, By = gua,
gaa (2.1.21)
934 _ Go4 904 934 — Jo3 G44
N=—, Vo=—, V3= D)
944 944 934 — 933 944

with the non-vanishing components of the metric (4.1.30) explicitly in the coordinates
(t7 r? 87 907 /l/})

Ag(1+ ¢g*r?)  A2(2mp* — ¢* + 2abqg®p?)
goo = — =5, + piE2E2 ’

Ag [a(?mp2 —q?) + bgp*(1 + a292)] sin?0
goz = gzo = — ’

10453517
AV [b(2mp2 —¢*) + agp*(1 + b292)] cos®0
go4a = a0 = — —5= ,
PEEa
2 2
_ -
g = Ar ) g22 Aa ) (2122)

(r2 4 a2) sin26 a[a(2mp2 - )+ 2bqp2] sinf

933 = = + =2 )
=, pi=2

(2 + b?) cosd b[b(2mp2 — )+ 2aqp2] cos*d
Gaa = = + 1=2 ;
=b P =y

[ab(2mp2 — )+ (a® + bz)qu] sin?f cos?0
934 = 943 = = =

A central element in our approach is a near-horizon limit following the prescription of
Bardeen and Horowitz [37] to zoom into a near-horizon region, and at the same time we

move to a rotating frame by implementing the following coordinate change

~

: dw»&+g§. (2.1.23)

> =+

. b—dtyg

>

r—ro+ AT, t—

Taking A — 0 brings us to a particular near-horizon region of the AdS; BPS black holes
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2¢9(1 + bag) -, e a dr? ~ 39(1 — ag)

ds® = — t — 0) | d rdt
° a(l + ag)? - 29(1 + 5ag) 72 rass (0) | do =+ ) "
(14 ag)y/a (a + 5)
a<4 —ag + 3ag COS(29)> cos® 6a0 sin20 2
~ gsin ~ -~
d d 0)rdt
- 2g(1 — ag)? [ v 4 — ag + 3ag cos(26) o+ VO ]
2a
N ey 2.1.24
o1~ ag) 2120
where
4a(2 + ag) sin*0
Apds; (0) = ( 9) : (2.1.25)
g(1 —ag) (4 —ag + 3ag cos(29)>
6g%(1 — ag) a(a—l— %)
V(0) = (2.1.26)

~ a(1+ ag) (4 — ag + 3ag cos(20))’

and for simplicity, we have set a = b, in consistency with the gravitational Cardy limit
(2.1.18) that will be imposed later. For some special values of 0, the metric (2.1.24) has the
topology of two U(1) circles fibered over the AdS, parametrized by (,7), as pointed out
in [17, 18)].

After a further change of coordinates

29(1 + 5ag) ~

t 2.1.2
’ a(l+ag) ( )

we can bring the metric (2.1.24) into the form

dr* ~ 3a(1 — N
5 = gy | O+ | 0| b
I g 2(1 + bag)a a (a + 5)
a<4 — ag + 3ag cos(ZQ)) cos?0 600 sin0 2
~ gsin ~ e
d d O)rd
" 29(1 — ag)? [ v 4 — ag + 3ag cos(26) o+ V)T T]
2a
+ i, 2.1.28
9(1 — ag) (2.1.28)

18



where

39(1 —ag)s/a <a + %)
(1 + 5ag) (4 — ag + 3ag cos(26))
In both U(1) fibrations, the coefficients in front of 7" dr are proportional to 072 (2.1.16) with

a = b. Hence, according to the relation (2.1.14), w; from N = 4 SYM indeed play the role
of angular velocities in the metric (2.1.28), and the Cardy-like limit from the field theory

~

V(0) =

(2.1.29)

side means the angular velocities slow down on some U(1) circles in the near-horizon metric
(2.1.28).

In Appendix A.1.1, we verify explicitly that the resulting background is a solution of the
5d minimal gauged supergravity equations of motion. This statement holds for arbitrary
values of @ = b. Up to this point, our approach is completely rigorous and verifying the
equations of motion explicitly provides a powerful seal of approval. However, to flesh out
the scaling properties of the solution, in what follows we implement the gravitational Cardy
limit in the space of parameters which further simplifies the geometry.

We apply the gravitational Cardy limit (2.1.18) to the metric (2.1.28) and keep the

leading orders in €, which leads to

1 dr? 2 4sin*(0) e 1 ~ g 2
ds® = —Pdr? 4+ — | — = db? — —d¢p — ——=7d
g 12ng T Nﬂ] 7 T P+ cos(28) l e ]
3cost(B) [1 ~ 2sin’(6) ~ gsec?(0) . 17
—= | =d do — d 2.1.
- gt le v e (1 + cos(26)) ¢ 44/3 nar (2.1.30)

From this metric, we can see that in the gravitational Cardy limit ¢ — 0 only one U(1)
circle remains non-trivially fibered over AdS,. We have only assumed that € is small without
strictly taking the limit ¢ — 0, and the near-horizon metric will approximate to AdSs, as €
becomes smaller. However, since the two initial U(1) fibrations give the same result of the
black hole entropy according to the Cardy formula and the extreme black hole/CFT corre-
spondence [18], the remaining U(1) is enough to compute the AdSs black hole entropy. We
will demonstrate this point in the next subsection. To summarize, the gravitational Cardy
limit simplifies the near-horizon geometry but keeps the minimal amount of information for
computing the black hole entropy.

Let us finish by warning the potentially puzzled reader. The analysis above, surround-
ing equation (2.1.30), is local and has the sole intention of clarifying the geometry of the
gravitational Cardy limit. If bothered by this last limiting procedure it is possible to step
back and derive all the quantities from the safer background obtained in equation (2.1.28).

However, without this gravitational Cardy limit the connection to the field theory approach
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would be very tenuous.

2.1.4 Black Hole Entropy from Cardy Formula

In the previous subsection, we showed that a warped AdS3; geometry appears in the near-
horizon region of asymptotically AdS; BPS black holes in the gravitational Cardy limit.
This circumstance permits the use of ideas presented in [16], which lead to the identifica-
tion of a Virasoro algebra as the asymptotic symmetries in the near-horizon geometry and,
subsequently, to a microscopic description of the black hole entropy via the Cardy formula.

Let us briefly review how the Virasoro algebra emerges as the algebra of asymptotic
symmetries of the near-horizon region of the extremal Kerr black hole [16] (see also [38]).
Recall that the asymptotic symmetry group is the group of all allowed diffeomorphisms
modulo trivial ones where allowed diffeomorphisms are defined as those that preserve certain
boundary conditions of the asymptotic metric. The starting element in determining the
algebra of asymptotic symmetries is, therefore, to consider diffeomorphims generated by

vectors of the form

0 ;0

= 2 —, 2.1.31
()55~ ¢0) 5 (21.31)
where €(¢) is a function periodic in ¢. For simplicity we can choose to be ¢(¢) = —e™ "9,

and consequently obtain the mode expansion of (, as

0 0
which satisfies a centreless Virasoro algebra

iy, ] = (M = 1) Cmsn) - (2.1.33)

The charge associated with the diffeomorphis (. is given by an integral over the boundary of

a spatial slice 0%
1

= — k
TG on ¢
where k. is a 2-form defined for a general perturbation h,, around the background metric

Guv

Q¢ (2.1.34)

1 1
kg[h, g] = _ZEGBMV [CuDuh _ CVDUhMU + CUDVhMU + §hDV§M o hVUDUCu

1
£ ShT (DG + DUC“)]d:cO‘ A da? (2.1.35)
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with h = hag®®. The Dirac bracket of the charges is

1
{Qé(m)v QC(n)} = Q[C(m),C(n)] + A k‘g[ﬁgg, g] ) (2‘1'36>
87TG on

where L, denotes the Lie derivative with respect to ¢

ECgul/ = Cpapgul/ + gplxa,ugp + g,u,paz/cp . (2137)

The mode expansion of the Dirac bracket (2.1.36) leads to a Virasora algebra

1
[Lim, Ln] = (m—n)Lpyn + ECL (m3 + am) Omn, 05 (2.1.38)

where ¢y, can be obtained from the integral

1 ; ;
871G LZ Kem L 9: 91 = —5¢ (m” + am) a0, (2.1.39)

and « is an irrelevant constant.
To compute the black hole entropy using the Cardy formula, we still need the Frolov-

Thorne temperature, which can be obtained in the following way. The quantum fields on

the background (4.1.30) can be expanded in the modes e~®!+m¢  After taking the scaling

(4.1.37), these modes become

—iwt+ime _ 6—iw§+im<$+g§)

. _ 6_7;(§_%)t~+im$ _ e—meJrinqu7 (2.1.40)

from which we can read off the left-moving and the right-moving mode numbers

_w—mg

np=m, np= o (2.1.41)
The Boltzmann factor is
e Th = e T Th, (2.1.42)

where Ty is the Hawking temperature, and 77 r are the left-moving and the right-moving
Frolov-Thorne temperatures. Combining (2.1.41) and (2.1.42), we obtain the near-extremal

Frolov-Thorne temperatures
Ty Ty

= T .
g _ Q Y R A
The values for the extremal AdSs black holes can be obtained by taking the extremal limit

Ty (2.1.43)

21



In order to apply the technique described above, we need to first transform the AdS,

Poincaré coordinates (7, 7) in the metric (2.1.28) to global coordinates (7, %)

- V1 + 72 sin(f)
F=r+V1+72cos(t), g 'T= — 2.1.44
g ®), g T+ mces(t) ( )
which leads to
dr? di?
2+ o (1) di
2 1+ 72 (2.1.45)

Fdr =7dt + dy,

where

(1 + /1 +f2sin(f))
v = log .

cos(f) + 'Fsin(f) (2.1.46)

Consequently, the near-horizon metric (2.1.28) of the AdS; BPS black holes can be written

as

2

& 1-— .
ds? = m [—(1 + ) di + %} f Anasy(0) | d+ — 209y
g g 2(1+ 5ag)4 |a (a + %)
a(4 —ag + 3ag cos(29)> cos?0 600 sin0 2
N gsin T PPN
d dp+V(0)rdt
" 29(1 — ag)? [ ¢+4—ag+3agcos(29) o+ VO)F ]
2a
N 0° 2.1.47
9(1 - ag) (2.1.47)
where
A~ 3a(l — A~ 3a(l —
=0+ alzagh - all—aghy (2.1.48)
2(1 4+ 5ag)4/a (a + §> 2(1 4 5ag9)4|a <a + %)

Applying the formalism reviewed in this subsection, we can compute the central charge
and the extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically
AdS; BPS black hole solutions (2.1.47)
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9ra?

- 2.1.49
U G0 ag)(L+ ag) (2149
1+ dag 2
Ty = —— 2 2. 2.1.
Y7 30T - ag)r | (a " g) (2.1.50)

The BPS black hole entropy in this case is then given by the Cardy formula

2 2 2 + 2
T Tovaarhy (2.1.51)

Spu = —c 11 =
BH 3CL L gg/Q(l_ag)Q )

which is the same as the result from gravity (2.1.8) with a = b. In fact, we can also apply
the formalism discussed in this subsection to the near-horizon metric in the gravitational

Cardy limit (2.1.30), which can be recast into the global coordinates

1 dr? 2 4sin?(0) e J g Nk
ds® = —(1+ ) de® — ——db* — —d¢ — —=Fdi
i 12¢2 [ (L+7)di"+ 1+ f’Q] gie g3(1 + cos(20)) le ¢ 4\/§T ]
3cost(B) [1 - 2sin?(6) . gsec2(0)
—= | =d — rdt 2.1.52
* gt L vt € (1 + cos(20)) 44/3 " ] ( )

The corresponding central charge and the extremal Frolov-Thorne temperature are

3T T :2\/§

= — ) 2.1.53
‘r 2gte’ L Tge ( )
The black hole entropy can obtained from the Cardy formula
2 /372
SBH = chTL = W, (2154)

which exactly matches the gravity result in the gravitational Cardy limit (2.1.19).

2.1.5 Comparison with Results from Boundary CFT

The asymptotically AdSs BPS black hole entropy can also be obtained from the boundary
N = 4 SYM by extremizing an entropy function [13-15] originally motivated in [39] and
more recently studied in [40]. One can first compute the free energy in the large-N limit

using the partition function via localization or the 4d superconformal index. The entropy
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function is then defined as the Legendre transform of the free energy in the large-N limit

W12

N? A AoAs ¢
S(Ar, w) = ——=3 ZQIAI+ZJW1 <ZA1—Zw—2m’> . (2.1.55)
T i
In the Cardy-like limit (2.1.13)
w~e, Ar~0(1), (2.1.56)

we can read off from the entropy function (2.1.55)

S~ J~t i~ t (2.1.57)
€ €
which have been summarized in Table 1.1.

The electric charges (7 and the angular momenta J; are real, while the chemical potentials
A; and the angular velocities w; can be complex, and so can the entropy function S. By
requiring that the black hole entropy Sgy be real after extremizing the entropy function S,
we obtain one more constraint on (; and J;. More precisely, the asymptotically AdS5 black

hole entropy is given by [13—15]

2
Spy = 27\/@1@2 + Q203 + Q3Q1 — N7<J1 +J2), (2.1.58)

subject to the constraint
N2 N2
Q1+ Q2+ Q3+ > Q1Q2 + Q2Q3 + 301 — T(Jl + Jo)

N2
- <Q1Q2Q3 + 7J1J2> =0, (2.1.59)

which is a consequence of the reality condition on the black hole entropy Spy.
For the AdS; black hole solutions in [24], the electric charges are degenerate, i.e. Q) =
Q2 = Q3 = ). Hence, for this class of black hole solutions in the BPS limit, the black hole

entropy becomes

N2
SBH = 271'\/3@2 — 7((]1 + JQ) . (2160)

This is exactly the same as the result from the horizon area (2.1.12) in the unit g = 1, and

the one from the Cardy formula (2.1.51). The constraint (2.1.59) for this degenerate case
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becomes

(2.1.61)

<3Q + NTQ) (3@2 — NTZ(JI + J2)> =Q+ NTQJIJQ,

which is also consistent with the thermodynamic quantities from the gravity side (2.1.8).

2.2 Asymptotically AdS; Black Holes

In this section, we consider the asymptotically AdS, black holes and the corresponding
gravitational Cardy limit. Similar to the AdS; case, we demonstrate that the AdS, black hole
entropy can be computed in various ways as shown in Fig. 1.2, and the other thermodynamic

quantities scale correspondingly (see Table 1.1) in the gravitational Cardy limit.

2.2.1 AdS, Black Hole Solution

The non-extremal rotating, electrically charged asymptotically AdS, black hole solution with
gauge group U(1) x U(1) in 4d N = 4 gauged supergravity was constructed in [41]. The
solution is characterized by four parameters (a,m,d1,d2). The metric, the scalars and the

gauge fields are given by

g2 = A (dt B asin29d¢>2+w (dr2 d02>+A9 sin®f [adt iy ta?
T —_—

W A TA,

—_
—
—

r? + a? cos®

—
—

a(re —ry) cosd

dqbr L (2.2.1)

o 1T P T =
e W ’ X1 r? + a2 cos6
24/2m sinh h in”
A - v2m sin (3‘1/) cosh(dy) o <dt B asgl 9d¢) + oo dt, (2.2.2)
1y 2B (4000,
W =
where
ri=r+ 2msinh2(5i) , (1=1,2)
A, =71*+a® = 2mr + ¢°rira(rirs + a%)
Np=1-— gQa2 COS20, (22.3)

W = riry + a® cos®0,

E=1-d%¢?,
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and g = £; " is the inverse of the AdS, radius. Note that we have added pure gauge terms to
the two gauge fields where ay; and ays are constant. The metric (2.2.1) can also be written

in the following equivalent expression, which is more convenient for later discussions,

ATAO

dr?  d6?
2 2 .2 2
ds* = FED dt* + Bsin“6(d¢ + fdt)*+ W (Ar + _Ag) : (2.2.4)
with
(@ +1ire)?Ag — a®sin®(0) A,
o= W=* 7 2.2.5
= aZ (A, — Ag(a® + riry)) (2.2.5)

Ag(a2? 4+ 1r179)2 — a2A, sin®0

The non-extremal asymptotically AdS, black holes with four degenerate electric charges
(Q1 = @2, Q3 = @Q4) and one angular momentum J have been found in [42], which are

characterized by four parameters (a,m, d1, ). The BPS limit imposes a condition

P 1y 2 (2.2.6)
ag

For the black hole solution to have a regular horizon, we impose an additional constraint

cosh?(0; + d)
91492 sinh®(§; + d) sinh(26; ) sinh(26,) -

(mg)? = (2.2.7)
The two conditions (2.2.6) and (3.1.4) in [42] have typos, which have been corrected in
[43,44], see also [45]. With these constraints, there are only two independent parameters for
asymptotically AdSs BPS black holes, which we choose to be (41, d2) for convenience. In the

BPS limit, the position of the outer horizon is

. 2m sinh(d;) sinh(d2)
T cosh(6 +4,)

(2.2.8)

which coincides with the inner horizon.
The physical quantities of non-extremal AdS, black holes can also be solved as functions
of (a,m,d1,02). In particular, the gravitational angular velocity Q2 and the temperature T
are given by
a1+ gPriry) A

Q=" - =7 T = —+— 2.2.9
riry +a? 47 (rire + a?) ( )
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Moreover, the other thermodynamic quantities of asymptotically AdS, black holes are [42]

w(riry + a?)

S = = ,
ma
J = — (cosh(201) + cosh(2d5)) ,
752 (cosh(20:) (202)) (2.2.10)
Ql = QQ = 4—: smh(2(51) y
m .
Qg = Q4 = 4—: smh(2(52) .

2.2.2 Gravitational Cardy Limit

The Cardy-like limit for the 3d ABJM theory was defined in [46,47],
lwl <1, A;r~0(1), (I=1,---,4). (2.2.11)

Using the relations found in [44]

Q- T
w= —%1% T A= —%1% i (2.2.12)

with Q* = g and @} = 1 denoting the BPS values of Q2 and ®;, we can find the gravitational
counterpart of the Cardy-like limit (2.2.11)

o0
T ) r_,

Hence, we obtain for the near-extremal AdS, black holes

0P

1 P
L 1, oT

~0O(1). (2.2.13)

T=0

00 00 mel 0 (coth(h +8) —2) SIR@) SR
0T |gpg 720 T (coth(dy + d2) + 1) 4/sinh (01 + d2) cosh(6y — d2)

This expression has several roots
9 =0, d0,=0, 0 +Jy=arccoth(2). (2.2.15)

However, §; = 0 and d, = 0 are unphysical, because according to (2.2.8), 9y = 0 or §3 = 0

will cause 7y — 0. Hence, we conclude that the gravitational Cardy limit for asymptotically
AdS, BPS black holes is

d1 + 09 — arccoth(2). (2.2.16)
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Equivalently, this can be written in terms of the other parameters as
ag — 1. (2.2.17)
We introduce a small parameter € to denote small deviations from this limit, i.e.,
01 + 69 = arccoth(2) + €. (2.2.18)

For this case € is dimensionless. Imposing first the BPS constraint (2.2.6) and the regularity
condition (3.1.4) near the horizon, and then taking the gravitational Cardy limit (2.2.18),

we obtain the thermodynamic quantities (3.1.7) to the leading order in e

Sy = —— +0(1),

3g%e
Joo_ cosh(h—3los@®) oy
PENE sinh(4(5i) — 5sinh®(26,) (2.2.19)
Qr =0 = 4geq/6 tanh(d1) + 6 coth(d;) — 15 o
0 = Of = v/2tanh(61) + 2 coth(é;) — 5 +0O(1),

124/3 ge

which are consistent with [36,46] and the Cardy-like limit on the field theory side (2.2.11)

we ~€, A ~0(1). (2.2.20)

2.2.3 Black Hole Solution in the Near-Horizon + Gravitational
Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters
on the gravity side. In this subsection, we discuss how the near-horizon metric changes
when taking the gravitational Cardy limit. In Appendix A.1.2, we verify explicitly that the
resulting background is a solution of the 4d gauged supergravity equations of motion. In
the following, we implement the gravitational Cardy limit in the space of parameters, which
further simplifies the geometry.

For the asymptotically AdS, black hole metric (2.2.4), we perform a near-horizon scaling
similar to the AdS; case (4.1.37)

(2.2.21)

> =

. o — g|coth(6; + d5) — 2]

> =

r—r.+ AT, t—
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Furthermore, we take the gravitational Cardy limit (2.2.18) and keep only the leading orders
in €. The metric (2.2.4) finally becomes

g% (9 — 18 + 1) (3 + cos(26)) 3(3 + cos(20)) (e** — 1) (e* — 9) d7?

2 _ 2 772 —
ds” = 3(9— 10e™1 + e801) e 1692 (9 — 18¢41 + ¢801) =
3 + cos(20) a0 + 2 sinf @ N V/3g% cosh (26, — 11log(3)) g 2
292 sin?0) 992 (3 +cos(20)) | €  4/sinh(26,) sinh (log(3) — 24;)
+O(e). (2.2.22)
Defining
2(0 _ : 2
o 4g* (9 — 5 cosh(44y) + 4§1nh(451)) | (2.2.23)
3(5—>5cosh(46;) + 4sinh(44))
we can rewrite the metric (2.2.22) as
3(3+ cos(20)) (e* —1) (e** =9 P 2
452 = SCH s (€ —1) (B ZO) [ e | dFF) 3+ con(0)
16¢2 (9 — 18e%1 + e801) 72 2¢? sin“0
2sin'd d& 2
— + V(6)rd 2.2.24
- 9g?% (3 + cos(26)) [ e (07 T] +009), ( )
where
V() = 9cosh (26, — 11log(3)) (5 — 5cosh(44;) + 4sinh(46;)) (2.2.95)

24/10 — 6 cosh (46; — log(3)) (9 — 5cosh(4 6,) + 4sinh(44;))

2.2.4 Black Hole Entropy from Cardy Formula

For the asymptotically AdS, black holes discussed in this section, we apply the Cardy formula
to the near-horizon metric only after taking the gravitational Cardy limit. More explicitly, we
first rewrite the metric (2.2.24) from the Poincaré coordinates (7, 7) to the global coordinates
(7, 1) using the relations (2.1.44) - (2.1.46). Consequently, the near-horizon metric in the
gravitational Cardy limit (2.2.24) becomes

3 (3 + cos(26)) (e* — 1) (e* —
1692 (9 — 18e%01 + ¢801)
2sinf [d_p@

ds® = do?

9 P2 2
)[—(1+f2)df2+ dr ] 3 + cos(26)

1+ 72 2¢2 sin’6

* 9¢g? (3 + cos(20)) * V<51)fdt} +0(9), (2:2.26)

€

where £, # and ~y are defined in (2.1.44) and (2.1.46), while

~

V=¢+V(0)ve. (2.2.27)
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Applying the same formalism in Subsection 2.1.4, we obtain the central charge and the

extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically AdS,
BPS black holes,

34/ 2 €¥1(3 + e*91)4/5 + 4sinh(46;) — 5 cosh(4 ;)
Cr, =

g*(18 o — €80 —9) ’ (2.2.28)
9 + 4sinh(4 ;) — 5cosh(467)

T, = —— : .
187 sinh(d1) cosh(dy) cosh (281 — 1 log(3)) 4/2 tanh(6;) + 2 coth(d;) — 5

Using the Cardy formula, we can compute the black hole entropy of the asymptotically AdS,
BPS black holes:

2

T T
Spu = —c 1, = —
BH 3CLL 3g2¢

which is the same as the black hole entropy in the gravitational Cardy limit (2.2.19) from

(2.2.29)

the gravity side.

2.2.5 Comparison with Results from Boundary CFT

The asymptotically AdS,; BPS black hole entropy can also be obtained from the boundary 3d
ABJM theory by extremizing an entropy function [46,47], which has also been studied in [40].
One can first compute the free energy in the large- /N limit using the 3d superconformal index
or the partition function via localization. The entropy function is then defined as a Legendre

transform of the free energy in the large-N limit

W2i k2 N2 /AT AAA
S(A;, w) = v2ik 22w =Y AQr—A | Y Ar — 2w+ 2mi | L (2:2.30)
3 w T T

In the Cardy-like limit (2.2.11)
w~e, A;~0O(1), (2.2.31)

we can read off from the entropy function (2.2.30)

1 1 1
S~—-, J~—= ~ - 2.2.32
p ) 62 ’ Q[ c ) ( )
which have been summarized in Table 1.1.
Similar to the AdSs case, for AdS, the electric charges ); and the angular momentum
J are real, while the chemical potentials A; and the angular velocity w can be complex,

and so can the entropy function S. By requiring that the black hole entropy Sy to be real
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after extremizing the entropy function .S, we obtain one more constraint on ); and J. More
precisely, for the degenerate case with Q1 = @3, Q2 = ()4 and one angular momentum .J,

the asymptotically AdS, black hole entropy is given by [44,46,47]

S = 2%, [21Qa(C Qo) — 2RINT (2.2.33)

3 Q1 + Q2

subject to the constraint
2k J?N? + 2kIN3(Q1 + Q2) — 9Q1Q2(Q1 + Q2)* =0, (2.2.34)

which is a consequence of the reality condition on the black hole entropy Sgpy.
If we identify the field theory parameters with the ones on the gravity side in the following
way [44,48]

, Qpn = gQ, Jpu = J , (2.2.35)

we can rewrite the black hole entropy (2.2.33) and the angular momentum as

T JBH
Spy = . ’ (2.2.36)
9°G <§QBH,1 + %QBHQ)
1 /2 2 2 2
Jpn = 5 <§QBH,1 + 5@31{,2) (—1 + \/1 + 16gG? QsH’l QgBH’2> ; (2.2.37)

which are consistent with both the thermodynamic quantities on the gravity side (3.1.7)
(2.2.19) and the black hole entropy in the gravitational Cardy limit from the Cardy formula
(2.2.29).

2.3 Asymptotically AdS; Black Holes

In this section, we consider asymptotically AdS; black holes and the corresponding gravi-
tational Cardy limit. Similar to the previous sections, we demonstrate that the AdS; black
hole entropy can be computed in various ways as shown in Fig. 1.2, and the other thermo-
dynamic quantities scale correspondingly in gravitational Cardy limit. For completeness, we
discuss two asymptotically AdS; black hole solutions in the literature: a special case with
all equal charges and all equal angular momenta in Subsection 2.3.1 and a more general case

with two equal charges and three independent angular momenta in Subsection 2.3.2.
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2.3.1 A Special Case

In this subsection, we consider the gravitational Cardy limit of a special class of non-extremal

asymptotically AdS7 black holes discussed in [49].

AdS; Black Hole Solution

The solutions My x S* to 11d gauged supergravity, with My denoting an asymptotically
AdS7 black hole, have the isometry group SO(2,6) x SO(5). Hence, this class of solutions has
three angular momenta from the Cartan of the maximal compact subgroup SO(6) < SO(2, 6)
and two electric charges from the Cartan of SO(5). The most generic solution has not been
constructed in the literature so far. Instead, the solutions with two charges and three equal
angular momenta were found in [50], while the ones with two equal charges and three angular
momenta were found in [51]. As the intersection of these two classes, the solution with two
equal charges ()1 = ()2 and three equal angular momenta J; = J; = J3 has been considered
in [49].

For this special solution, the metric of the asymptotically AdS; black hole part is given

2| _ Y =0 fi 2fs \* . P
ds? = Hs5 | — dt? dr? — —=dt — ds? 2.3.1
57 =2 t y T H2 =2 ph g i + = ®Sce? | ( )
where
1. .,

o=dx+ §l3 sin“¢, (2.3.2)

1 1
dstps = dE* + Zsinzﬁ (24 15) + Zl% sin¢ cos?¢ (2.3.3)

with (l1,l2,13) denoting the left-invariant 1-forms of SU(2), which can be explicitly chosen
to be [52]

[y = siny df — cosysinf d¢
ly = cosyy df + sinysing do (2.34)
ls = —(d) + cosf do) ,

0<fO<m, 0<¢<2r, 0<y<4rm. (2.3.5)

Moreover, the asymptotically AdS; black hole solution also contains two 1-forms, one 3-form
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and two scalars, which are given by

msinh(d) cosh(d) (dt — ao) + an 4,

AL = A2 = A =
(1) (1) (1 o'EH =

oA do+apndt AdiAdy+ arpdt AdE A AP+ azsdt A dE A dY,

(2.3.6)
where we have added some pure gauge terms to the potentials, and
pr==r%,
He14 2msin4h2(5) 7
’ — . 2
fL=Z ) H? — [2:+ma;nh2(5)] +2ma®[Z2 + cosh?(8) (1 — E%)], (2.3.7)
f2= —gEJFTpGHQ + ma cosh?(§)

Y = ¢*p°H? + Zp° — 2mp? [a292 cosh?(8) + E] + 2ma’® [Ei + cosh?(8) (1 — Ei)] ’
Er=1+ag, E=1-d¢*,
with g = ¢;! denoting the inverse of the AdS; radius. The thermodynamic quantities of the

black hole have the following expressions

I
Amg pPNEF

g_ TPV
AGNE3

1 2fy=_
Q=— (g+ J> ) ;
g fi

® — 4m sinh(d) cosh(d) <: B 2anE)
p*t=H H_ fi ’

2
[12(@9 +1)? (ag(ag + 2) — 1) — 4 cosh?(¥) (3@494 +12a%¢g® + 11a¢* — 8) ] ,

mim

= ———
32GNgE4
2

T = dagtag + 1)~ deosh?0) (" + 2027 + ag 1) |
0- mm?sinh () cosh(d)
B 4G N g=3 '

(2.3.8)
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The expression of the temperature 7" has three roots r4 and ry, all of which coincide at the
extremality. As we can see, the solution depends only on three parameters (a,m,d). As
shown in [49], the BPS condition and the absence of naked closed timelike curves (CTCs)

require that
0 2 128 ¢¥ (3% —1)3

R _ .
© . 729 g*(e20 + 1)2(e20 — 1)6

2.3.9
3ag ( )
Hence, there is only one independent parameter in the BPS limit, which we choose to be 9.

In addition, all three roots of T', i.e. r+ and rg, coincide in the BPS limit, and its value is

16
2 _ ) 2.3.10
= 3g%(3e? —5)(e* + 1) ( )

The thermodynamic quantities in the BPS limit become

T, =0,

g, 32m3\/9e2 — 7
3v3Gng®(3e2 —5)3 (20 + 1)3/2

0, =1,

o, =2,

2.3.11
167m2(18 €% — 21 % + 7) ( )

By = 3Gng°(3e? —5)4 (e +1)27

5 1672(9 e + 182 — 23)
T 9GNGE(3e2 — 5)4(e2 +1)27

0. - 87m2(3e8 — 5t — 3e¥ 4 5)

Gngo (320 —5)4(e20 +1)%
Gravitational Cardy Limit

The Cardy-like limit for the 6d N = (2,0) theory was defined in [53], which for the special

solution with three equal angular momenta is
lwl«1, A~O(1). (2.3.12)

Using the following relations found in [49]

w— %(Q—Q*), b= ~(@—d,), (2.3.13)

34



we obtain the corresponding limit as

092
— <1, — ~0(1). 2.3.14
(&), &, oo 2314
Using the relation (2.3.13), we can express (g—%)* in terms of the paramter §. The explicit
form is not very elucidating, but we do find a root to the equation (g—%)* = 0, which is
1 5
g ==1 - . 2.3.1
5 5 log (3) (2.3.15)

Hence, the gravitational Cardy limit for the class of asymptotically AdS; BPS black holes
(2.3.1) is

1 5
— —1 —-1. 2.3.1
) 20g<3> (2.3.16)

Note that this is equivalent to
ag — —1, (2.3.17)

as in the other black hole solutions. We can introduce a small parameter to denote the

deviation from this limit, i.e.,
1 5

For this case € is dimensionless. Expanding in €, we find the BPS thermodynamic quantities
(2.3.11) in the gravitational Cardy limit (2.3.18) to the leading order

T, =0,
S A O(e?)
* = T~ ~ F a € )
250 Gy goe3
0, =1,
o, =2,
i 3 (2.3.19)
E,——2 L0,
250 Grga T o)
J ~ O(e)
* Ealppa——— € 9
1250 G ygPet
Q=T 1O
* T 500GNgoe

35



which are consistent with [36,53] and the Cardy-like limit on the field theory side (2.3.12)
we ~€, Ay ~0(1). (2.3.20)

Black Hole Solution in the Near-Horizon + Gravitational Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters
on the gravity side. In this subsection, we discuss how the near-horizon metric changes
when taking the gravitational Cardy limit. In Appendix A.1.3, we verify explicitly that the
resulting background is a solution of the 7d gauged supergravity equations of motion. In
the following, we implement the gravitational Cardy limit in the space of parameter which
further simplifies the geometry.

We can apply the following scaling near the horizon r, (2.3.10) to the BPS AdS; black
hole metric (2.3.1)

6g sinh(6)
cosh(d) + 2sinh(0)

T
¥ - ~ 2.3.21
. X=X T ( )

> =

r—re+ AT, t—

with A — 0. In addition, taking the gravitational Cardy limit (2.3.18), we obtain the near-

horizon metric to the leading order in ¢

ds2=—1Og222/5e7“‘2dE2+—1 ﬁ
16 g2 23/5> 72

2/5

22/5 1 ~ 2 2
(dz + glasin® — 5v5 g7 7 dt) + 5 s (2.3.22)
g

- 25 g2e? 2¢

Defining
T =8V5¢g*/et, (2.3.23)

we can rewrite the near-horizon metric in the gravitational Cardy limit (2.3.22) as follows

1 a2 225 1 e \° 2%°
ds* = 1642995 [—72 dTh—%] —1—25 e (dx + §l3 sin®¢ — g rdT) —i—@ dstps . (2.3.24)

Black Hole Entropy from Cardy Formula

For the asymptotically AdS; black holes discussed in this section, we apply the Cardy formula
to the near-horizon metric only after taking the gravitational Cardy limit. More explicitly, we
first rewrite the metric (2.3.24) from the Poincaré coordinates (7, 7) to the global coordinates

(7, 1) using the relations (2.1.44) - (2.1.46). Consequently, the near-horizon metric in the
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gravitational Cardy limit (2.3.24) becomes

1 dr? 22/5 1 5¢  \2 925
2__ - | _ N N T PR L )
== 16 g* 25/ (1) di +1+f2}+259262 <alX+2l38m5 8 Tdt) +592€d3<cw,
(2.3.25)
where ¢, 7 and «y are defined in (2.1.44) and (2.1.46), while
.~ O€
X=X—g7 (2.3.26)

Applying the same formalism in Subsection 2.1.4, we obtain the central charge and the

extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically AdS;
BPS black holes as follows
32 4
L= 35047 To=o—. (2.3.27)
Using the Cardy formula, we can compute the black hole entropy of the asymptotically AdS;
BPS black holes

2 3

T T
Spuy = —c 1T, = ——— 2.3.28

BH 3 crirp 250 goe3 ) ( )
which is the same as the black hole entropy in the gravitational Cardy limit (2.3.19) from

the gravity side in the unit Gy = 1.

Comparison with Results from Boundary CFT

The asymptotically AdS; BPS black hole entropy can also be obtained from the boundary
6d (2,0) theory by extremizing an entropy function [14,49, 53] originally motivated in [54]
and more recently studied in [40]. We can first compute the free energy in the large-N limit
using the background field method on S®, the partition function via localization or the 6d
superconformal index. The entropy function is then defined as a Legendre transform of the

free energy in the large-N limit

N3 A2A2 2 3 2 3
S(A w) = =2 Y QA+ > Jwi = A YA =Y w—2mi | . (2.3.29)
I=1 =1 I=1 =1

24 wWi1Wals
In the Cardy-like limit (2.3.12)

w~e, Ar~0(1), (2.3.30)
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we can read off from the entropy function (2.3.29)

S~=, J~=, Qr~= (2.3.31)

which have been summarized in Table 1.1.

Similar to AdSy 5, for AdS7 the electric charges (J; and the angular momenta J; are real,
while the chemical potentials A; and the angular velocities w; can be complex, and so can the
entropy function S. By requiring that the black hole entropy Sy to be real after extremizing
the entropy function S, we obtain one more constraint on ; and J;. More precisely, the
most general case with two charges (Q1, (J2) and three angular momenta (J;, Jo, J3) was
discussed in [14,53], while the degenerate case with ()1 = Q2 and J; = Jo = J3 was discussed
in [49]. For the most general case, the asymptotically AdS; black hole entropy is [14, 53]

2 2y _ N3
S o \/3@1@2 +QIQ) — NIy + JoJs + Iy ) 2.3.32)

3(Q1+ Q) — N3 ’
subject to the constraint

3(@%@2 + QlQ%) - N3(J1J2 + JoJs + J3Jh)
3(Q1 + Q2) — N3

3 2 2
[N?Ul chr gy BTG 2@1@]

§N3J1 JoJs + Q1Q3

x |1— |1- P 2
(B0 + 2+ J3) + 52 420,0,)

, (2.3.33)

which is a consequence of the reality condition on the black hole entropy Sgy.

We apply the general result to the special case Q1 = Qo = Q and J; = Jo, = J3 = J,
1603 — 3N3J?
=2Mp | —————— 2.3.34
SpH m 60 — N3 (2.3.34)

6Q° — 3N3J? 3 ) ZNBJ3 + Q4

with the constraint

which are consistent with both the thermodynamic quantities on the gravity side (2.3.11)

(2.3.19) and the black hole entropy in the gravitational Cardy limit from the Cardy formula
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(2.3.28) under the AdS;/CFTg dictionary of parameters [14,53]

32

= —. 2.3.36
16 g5 N3 (2.3.36)

Gy

2.3.2 More General Case

In the previous section, we have discussed a special solution of asymptotically AdS; black
holes with two equal charges ()7 = ()2 and three equal angular momenta J; = Jo = J3. In
this subsection, we consider a more general solution with two equal charges ()1 = Q2 and

three independent angular momenta (J;, Jo, J3), which was first introduced in [51].

AdS; Black Hole Solution

The metric for this class of asymptotically AdS; black holes is

ds? — F2/5 [(7“2 +y?)(r? + ZQ)dT2 i (r* + ) - Z2)dy2 I (r* +2%)(2% — 3/2)d 2

7‘2y22’2

Y Z :
— R A2
H2(r?2 + y2)(r? + 22)
+ Y At + (22 — r2)dipy — r222dis — a A 2
(r? + y?)(y* — =) 1 LOH(P + ) + 22
Z q 2
dt/ 2 2 d .2 2d o
T A E ) ( P e S e e z?)A)
a?a?a?
+ 2230 at + (P + 22— Dy + (Y227 — 2y — i) diy — rPyP 2P ds

2
q gy 2
L H(? + )% + 2?) <1 i a1a2a3) A) ] ’ (2.3.37)
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while the 1-form, the 2-form, the 3-form and the scalar are

A — 2m sinh(9) cosh(9)
VT HE A )T
Apy = a An

H(r? +y?)(r? + 22)
i+ D + du + S+ dun) + at adadlaPvs + o)

i<j
— G2 (y? + 22)dt' — g*y* 22y + ay asas (dwl + (y? + 2H)dapy + y2z2d@/}3)] ,

A@) = qarazag [dwl + (y? + 2%)dipe + y222d¢3]

1 1
A <md2ﬁ A (d¢1 + y2d¢2) + mdy A (dwl + szw2)>

z
—qgA A (mdz A (dipy + yPdaps) + i > dy A (dipy + z%wz)) ,

r? +
X=H",
(2.3.38)
where

1+ g2 £ 2qgarazas | q°g°

R= = H(r2 +a?) +qg*(2r* + af + a3 +a3) — 2 o o2m,
i=1

1— 92y2 3

Y=—7—]] -y,
Yy i=1

1—g?2 2, 2.3.39
7 = = H(ai—z), (2.3.39)
A=dt' + (v + 22)dyy + y*22dys,

q
H=1+ ,
()
q = 2msinh?(9) .
It can be shown that after the change of coordinates
t=1t+(ad + a3+ a3) + (ad a3 + a3 a3 + a3 ai)s + aiaj a3 s,
(2.3.40)

% = g2t/ + 'le + Z(I?(gziﬁl + ’1702) + H(I?(gzi/}Q + ¢3) ,

! i i
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the metric (2.3.37) can be written in an equivalent form

gs2 — g2 | yz)}gr2 +2%) e (P y?/(y2 — ) g CHAE )
r2y?2?RY Z
H? Hi<j<a12 - a?)QBlBng

22

dtQ + B3(d¢3 + 'U32d¢2 + 'U31d(b1 + ’U30dt>2
+ Bo(doy + va1dgy + vaodt)? + By (doy + vipdt)* |, (2.3.41)

where By, By, B3, V19, U2, V21, U39, V31 and vsy can be determined by comparing (2.3.41) with
(2.3.37). We can see that in the gravitational Cardy limit By and By are subleading compared
to Bs. Hence, qualitatively the term Bs(dgs + vsadgs + vs1dgy + vsdt)? in the metric forms
the only U(1) circle fibered over AdSs in the gravitational Cardy limit of the near-horizon
solution, similar to the other cases in this chapter. However, because the explicit expressions
of these coefficients are lengthy and not very illuminating, we do not list them here.

The thermodynamic quantities can be expressed as

2 2m 5¢ q 2= 2(1 + 2ayasa393)
E=—F= = —m+ S+ =L -E- = ;
8.:1.:2\:3 p = 2 2 z Z - =

P =

_ (14 g*r2)r2 Y, ]‘[#i(ri +a2) = [L;(r3 +a?) + 2q(g*r + garasas) — ¢*g°

T = )
2y [(rt 4+ a?) (1} + a@3)(r? + a3) + q(r — a1aza39)]
g_ w0 [(r} + a})(r] + a3)(r + a3) + q(r} — arazaz9)]
4ElEQEg’r+ ’

a; [(1 + g%”_%_) 1_[]¢z(r+ + aj ) +4q9 T+] - q]_[j# asg (2.3.42)

{; = 2 1 2)(r2 -
(r3 +a)(r} +a3)(r + a3) + q(r} — a1a2a39)
L *m [ai cosh?(8) — g sinh?(4) (H#i aj + a; )5, 59 + a1a2a3a;9 )]
‘ A=129235, 7

© 2m sinh(6) cosh(d) 72

(r3 +a)(r} + a3)(r} + ) + q(r} — arazasg)’
Q- m?m sinh(4) cosh(d)

[I]

—_
—
Qe

'—'1 3

where r, denotes the position of the outer horizon, and
Ei=1-ad2¢*, Zi=1l+tayg, (i=1,23). (2.3.43)

This class of asymptotically AdS; black hole solutions is characterized by five parameters
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(m, §, a1, as, az). The BPS limit for this class of solutions is

2
e =1-— : (2.3.44)
(a1 + as + az)g
while the naked closed timelike curves (CTCs) can be avoided by requiring an additional

condition _
E1-E9_Z3_ (a1 + az)(as + a3)(as + ay)

(1 —ai1g — a2g9 — a39)29

Hence, only three parameters are independent, which we can choose to be (a1, as, az). In

q=- (2.3.45)

the BPS limit, the thermodynamic quantities can be simplified as follows

7 [ calan + )| 5,5+ X, B85 — (1 + mazasg®) 2+ X g + X, aseyg?) |
8 E%+E%+E§+(1 —a1g — a29 — a3g)29
T=0, Q= —gq, d=1,

73 (ay + az)(as + az)(as + a1)(ayas + azaz + aza; — ayasasg)

E=—

Y

S =- = ;
4514591234 (1 — a19 — azg — azg)?gro
; (a1 + as)(as + as)(as + ay) [ai —(af +2a; 3,05 + ] 05)9 + a1a2a3gz]
i = 8514 Eos Ear Zi (L — a1g — azg — az9)%g ’
2
(a1 + az)(az + az)(as + a1)
Q=- - = = ’
(2.3.46)
where
+ 4205 + a3a; —
o \/alag (pl3 + A301 — (102039 (2.3.47)
1 —a1g — a9 —asg

Gravitational Cardy Limit

Similar to Subsection 2.3.1, for the more general AdS; solution with three independent
angular momenta, we can translate the Cardy limit for the 6d N' = (2,0) theory defined
in [53]

lwil « 1, A~O(1), (=12, 3) (2.3.48)

into the gravitational Cardy-like limit for this class of asymptotically AdS; black holes

0%,
0T ) p_y

oP
oT

«1, ~0(1). (2.3.49)

T=0
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A choice of the parameters (a1, aq, as) that satisfies the limit (2.3.49) is

1
a;y = Qa9 = ag = —— . (2350)
9

As in the other black hole solutions, this can be summarized as

a;g — —1. (2.3.51)

We can introduce a small parameter € to denote the deviation from this limit, i.e.,

1
a=——+e, (i=1,23), (2.3.52)
g
or in a more refined way
1 1 1
a =—§+e, ag = —E—i—e—km, as = —§+6+n2, (1, M2 < €). (2.3.53)

Expanding in €, after expanding in 7; and 7,, we find the BPS thermodynamic quantities
(2.3.46) in the gravitational Cardy limit (2.3.52) to the leading order

3

T —2
5*229863+O(6 ),
* G -3 2.3.54
Ji:_299€4+0(6 )7 ( )
2
i -2
Q*Zﬁﬁ‘O(E ),

which are consistent with [36,53] and the Cardy-like limit on the field theory side (2.3.48)
wig ~ €, Ay ~0O(1). (2.3.55)

Black Hole Solution in the Near-Horizon Limit

In this subsection, we consider the near-horizon limit of the asymptotically AdS; black hole
metric. As mentioned in Subsection 2.3.2, we should in principle take the Cardy limit of the
near horizon solution (2.3.41). Applying the refined gravitational Cardy limit (2.3.53), we
find that B; and B, are subleading compared to Bs. Therefore, in the near-horizon limit
we obtain an AdS3 geometry, just like the other cases. However, in practice the expressions

of the coefficients are lengthy, so we consider an alternative near-horizon metric discussed
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n [18]. That is, the metric (2.3.37) can be expressed in an equivalent form

2y (r? + 22 2 4 02) (42 — 22 2 L2\(.2 _ 2
d82:H2/5[(7“ +yié7” +Z>dr2+(7" +y§/(y Z)dy2+(7" +z)(z y>dz

Y 2 4 02\~ do
dt _ Z (T 2+ aZ g’% d¢2 .
~ai-y* G H(r2+y )(r? + 22)

+ z dt_im%_
(r2 + 22)(2%2 — y?) g2 —22 6 H(r?+y?) 7’2 + 22)

N ai a3 a3 at— Y (r? + a2)yi do; gA 14 gy*2*
r29222 . a? 5 Hr?+y?)(r? + 2?) a1a203 ’

i=1 ?
(2.3.56)
where we have used the changes of coordinates (2.3.40) and
(ii5¢z_azg2t7 (7'217 27 3)7
i = aia; —y)(ai = 2%), (2.3.57)
0i = ai(1—aig®) | [(af —aj).
j#i
Applying the following scaling to the new metric (2.3.56)
~ Qo t
r—ro(l+Ap), ¢— ¢+ (2.3.58)

% o770 \ t: L= — )
27TT[,?7’0)\ 27TT1/L?7”0)\
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which is slightly different from the original Bardeen-Horowitz scaling [37], we obtain the

near-horizon geometry in the limit A — 0

ds? — H§/5 [% <—p2d7?2 n d_pj) L (rd + y2¥y2 — Zz)dyQ N (r2 + 22)2(22 - y2)d22
p

3 ~ ~ N2
Y 2ro(ré + Z2)pdz?+ Z (r§2+ a?)v; do; N qgA
%) L oai —y* 6 Holo

~ ~ N 2
Z 200(r5 +9°) > o (bt ad)vidds | gA
A PR . Col
22 —y?) ( P Z a?—2z2 6  HylUy

~ 2
qA gy°* 2

1 2.3.59

- HyUy ( " a1a2a3) ) ] ’ ( )

where

U= +92)0* + 2%,
Vi = a;(a; —y*)(af — 27),

6 =Ziai ]| [(a] —al),

VE
U=U| =05+ y2)0d+ 2%,
r=ro
q (2.3.60)

Hy=H =1+ ,

T e T OB 2)0E )

_p2 : o Slarazasz — 99)2 2 4 2 ° 2 2 2
V=67’o+zaz’+ - +g 157’0+6T02ai+ Z a;a; +2q|,
1=1 =1 1<i<y<3

Mo(2r2 + 12 +22)  ~ & doy
_ 2rol2rg )Pdt—Z%

A .
v 5;

i=1

Taking the refined gravitational Cardy limit (2.3.53), we can see that two of the three U(1)
circles in the near-horizon metric (2.3.59) become degenerate. However, the remaining two
U(1) circles are still of the same order in the gravitational Cardy limit. This is expected,
because we should take the gravitational Cardy limit of the near-horizon of the metric (2.3.41)
instead of (2.3.56), in order to have only one U(1) circle fibered over AdS, in the near-
horizon plus gravitational Cardy limit. Nevertheless, the gravitational Cardy limit reduces
some redundant U(1) circles, while keeping the essential information for the near-horizon

Virasoro algebra.
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Black Hole Entropy from Cardy Formula

We can apply the formalism described in Subsection 2.1.4. The central charge and the
extremal Frolov-Thorne temperature in the near-horizon region of the asymptotically AdS;
BPS black holes (2.3.59) were obtained in [18]. In the refined gravitational Cardy limit

(2.3.53), the results are
_ 48n? 4
T Pev TP 3one

Hence, the black hole entropy from the Cardy formula in the gravitational Cardy limit is

(2.3.61)

CL

72 73

Spn = —c 11 =

5 o (2.3.62)

which is exactly the same as the result from the gravity solution (2.3.54).

Comparison with Results from Boundary CFT

As we discussed in Subsection 2.3.1, for the asymptotically AdS; black holes with general
charges (@1, @2) and angular momenta (.J;, Jo, J3), the entropy can be obtained from the
boundary 6d (2,0) theory [14,53], and the results are summarized in (2.3.32) subject to the
constraint (2.3.33).

We have discussed a degenerate case in Subsection 2.3.1 with @)1 = Q2 and J; = J5 = Js.
In this subsection, we have seen another degenerate case with Q1 = Q2 = @Q and (J;, Jo, J3),

which consequently has the black hole entropy

_ 6Q3 — N3(J1Jo + JoJ5 + J3Jp)
SBH = 27'['\/ 6@ — N3 s (2363)
subject to the constraint
6Q° — N3(J1Jo + JoJs + J3Jy)
6Q — N3
N? ZN3JyJyJs + Q1
= —(J1+J2+J3)+3Q2]. 1=, [1- 22 © S, (23.64)
3 (BT + o+ J3) +3Q2)

which are consistent with both the thermodynamic quantities on the gravity side (2.3.46)

(2.3.54) and the black hole entropy in the gravitational Cardy limit from the Cardy formula
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(2.3.62) under the AdS;/CFTg dictionary of parameters [14,53]

32

= —. 2.3.65
16 g5 N3 (2:3.65)

Gy

2.4 Asymptotically AdSs Black Holes

In this section, we consider the asymptotically AdSg black holes and the corresponding grav-
itational Cardy limit. Similar to the other cases, we demonstrate that the AdSg black hole
entropy can be computed in various ways as shown in Fig. 1.2, and the other thermodynamic

quantities scale correspondingly in the gravitational Cardy limit.

2.4.1 AdSg Black Hole Solution

In this subsection, we discuss the near-horizon plus Cardy limit of the non-extremal asymp-
totically AdSg black holes constructed in [55], which are solutions to 6d N' = 4 SU(2) gauged
supergravity.

The bosonic part of this class of solution is given by the metric, a scalar, a 1-form potential

and a 2-form potential. The metric is

e Hl/zl(r2 P2 o PR =2 (P E ) s

R Y Z :
R 2
H2(r2 + y?)(r? + 22)
Y / 2 2 2.2 - qrA ’
T (4 e
z ! 2 _ .2 2,2 _ qrA 2
T (0 = i) |

(2.4.1)
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while the 1-form potential, the 2-form potential and the scalar are

2mer sinh(0) cosh(9) ag
Ay = =6
W= H(r? + y?)(r? + 22 )‘A+ dt’
q yz (2r(2r* + y? + 2%) + q)
A(2) = (TZ + y2)2(7“2 + Z2)2 [ - H dr A A
+z ((7’2 + 22)(r* — ) + qr) dy
2 2 2.2 qrA 2.4.2
A (dt’—i—(z —r9)dipy — roztdiy — H(T2+y2)(r2+z2)) ( )
+y (P + ) = 2°) + qr) dz
A
dt’ 2 _ o\ doby — 1202da — qr
A( + (y~ = r7)dpr — riy dips HO? 5 207 1 ) ,
X =H'*,
where
t/ — t _ a4¢1 . b4¢2
T E.E, Zea(a®—0?)  Eb(0% —a?)’
2 2 2
gt a“gq b* oo
= - 2.4.3
wl EaEb * Ea a(CL2 — b2) + Eb b(bQ — CL2> ’ ( )
¢ _ g4t . ¢1 o ¢2
2T 25, Eea(@® 1) S,b(2—a?)’
and

R=(r*+a®)(r* + b°) + ¢* [r(r* + a®) + q] [r(r* + V*) + ¢] — 2mr,
Y =—(1-g%")(a® - y) (0" ¢,
Z=—(1~-¢2)(a® = 2)(b* - 2*),
qr (2.4.4)
A )
A=dt' + (y* + 22 dy + y*22dis
q = 2msinh?(0) , E.=1-—d%¢%, = 1—b%g%.

H=1+

Note that we have added a pure gauge term to the 1-form potential. It was shown in [55]
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that the metric (2.4.1) can be written in an equivalent form

2y (r? + 22 2 4 02\ (12 — 2 2 L L2\(.2 2
dsZZHl/Ql(r +y—)é7“ +Z)d7,2+(7“ +y§£y Z)dyQ—i—(T —i—z)Z(z y)d22
RY Z

+ 22 =2 a2b2(a2 — b2)23132 dtQ + Bg(d¢2 + U921 d¢1 + U9 dt)Q
—a b

+ Bl (del + ’Umdt)Q] s (245)

where By, Bz, v19, U9 and ve; can be determined by comparing (2.4.5) with (2.4.1). Because
the explicit expressions of these coefficients are lengthy and not very illuminating, we do not
list them here. Moreover, we notice a sign error in [55] for the term ~ dt? in (2.4.5).

The thermodynamic quantities can be expressed as

1 1 = =
2m(ﬁ—+:)+Q<1+H—a+H—b)};
Za = Zp Sa

2

S =
3Ea —b ’
_ 2r2 (14 ¢*r2)(2r2 + a®> + b*) — (1 — ¢*r2)(r2 + a®)(r2 + V%) + 499°r2 — ¢*¢*
Arry [} + @) (r +0%) + qry ] ’
2mma(l + =y sinh?(9)) 2rmb(1 + =, sinh?(6))
<]1 = —y — 3 J2 = —9 = )
325, 35, 2.

q _ oA +g )l +0) +agr] B[+ ¢g?)(% + ) +ag’r ]

L ) ) s ) ) gy
Q- 27m sinh(6) cosh(d) & — 2mr sinh(§) cosh(0)

=N SR+ a0 )y
(2.4.6)

This class of asymptotically AdSg black hole solutions is characterized by four parameters

(m, 0, a, b). The BPS limit can be obtained by imposing the following condition

2
e® =1+ .
(a+Db)g

(2.4.7)

The absence of the naked closed timelike curves (CTCs) for these supersymmetric black

holes requires an additional condition

Ea+Eb+ (a + b)'f’+
(1+ag+0bg)g

q= (2.4.8)
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where in the BPS limit

T+

ab
N S, =1+ag, Sp=1+0bg. 2.4.9
1+ag+bg’ * +ag bt 09 ( )

2.4.2 Gravitational Cardy Limit

The Cardy-like limit for the 5d SCFT was defined in [56]
lwi| «1, A~O(1), (i=1,2). (2.4.10)

Using the following relations [44]

wiz—liin_Qi, Az—limq)_q),
T—0 T T—0 T

(2.4.11)

with QF = g and ®* = 1 denoting the BPS values of €2; and ®, we can find the gravitational
counterpart of the Cardy-like limit (2.4.10)

0P

09,
: 1, — ~0(1). 2.4.12
()l <r G, -ow 2412
The equations (%%)* = 0 have the roots
a=— and b= 1 (2.4.13)
g g

Hence, the gravitational Cardy limit for the class of asymptotically AdSg black holes (2.4.1)
is . )
a—— and b— —. (2.4.14)
g g

Similar to the black hole solutions in the previous sections, we have
a;g — 1, (2.4.15)

where a; = {a,b}. We can introduce small parameters to denote the deviations from this
limit, i.e.,

1
a=—-—+€, b=—+e+n, withO#n<e. (2.4.16)
g 9

Expanding in € after expanding in 7, we find the thermodynamic quantities (2.4.6) in the

50



BPS and gravitational Cardy limit (2.4.16) to the leading order

472 1

Sy = 955 O(e ),
8w
= O,
7.3

9\/835 ¢ (2.4.17)
Jf= —————+0(?),

27

* + O -1 ’

Q"= g O

which are consistent with [36,56] and the Cardy-like limit on the field theory side (2.4.10)

Wi~e, Ay ~O(1). (2.4.18)

(2

2.4.3 Black Hole Solution in the Near-Horizon -+ Gravitational
Cardy Limit

In the previous subsection, we have obtained the gravitational Cardy limit for the parameters
on the gravity side. In this subsection, we discuss how the near-horizon metric changes
when taking the gravitational Cardy limit. In Appendix A.1.4, we verify explicitly that the
resulting background is a solution of the 6d gauged supergravity equations of motion. In
the following, we implement the gravitational Cardy limit in the space of parameters, which
further simplifies the geometry.

We apply the following scaling near the horizon r, (2.4.9) to the asymptotically AdSg
black hole metric (2.4.5) in the BPS limit

~ ~

- ~ t ~ t
r—ore+ AT, t— ¢1_)¢1+9X’ ¢2—>¢2+9X7 (2.4.19)

> =

with A — 0, and then take the AdSg gravitational Cardy limit (2.4.16). To the leading order
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in € and 7, the metric becomes

ds? = \fg V(14 36202) (1 + 3g222) [3 + 3g4y222 + g2(y2 + 22)] 72 di?
(L4 371+ 362 Hay, )
T 449272
2 2. 9\/.2 .2 2 2.2\/.2 .2
g°(1+39°y°) (2% — y°) o g (1+3g%2%)(2* —¢°) 5
H, dy” + H.(y, z)dz
S = )
4(1 - g2y2)2(1 - 9222)2 [22 + y2(1 + 2922 )] <d¢1 d¢2>
394 [3 + 3g1y222 + g2(y2 + 22)]* e2p?
1— ) (222 — 1)(1 + 3¢202) (1 + 30222 N 3 ~~2
L 1 =g%)(¢*2* = (1 +3¢°y*)(1 + QZ)H*(%Z) d¢1_£g3€rdt |
12¢%(y? + 22 + 2¢%y?22)e? 2
(2.4.20)
where
8
Ho(y, 2) = 4|1+ . 2.4.21
(v, 2) \/ (1 + 3g%y?)(1 + 3¢g%22) ( )
Defining L
r=6¢%, y= o1~ 92 : (2.4.22)
an

we can rewrite the metric (2.4.20) as

2 (1 +3g°%y*) (1 + 3¢%2%) _2 dr
dS :H*<y7 Z)[ 14492 dT +?

S
g*(1 + 39%y*) (2% — y?) dy? + g*(1+3¢%2%)(2* — v°) 422
3(1 — g%y?)3 3(g22% - 1)3
LA Gy?)* (1 — g22%)% [2* + *(1 + 292z2)]d 2
392 [3 + 3g1y222 + g2(y? + 22)|° &

N (1 —g*y*)(g%22 — 1)(1 + 3¢%y%)(1 + 3g%2?) Ay — \/_§ erdr : (2.4.23)
125(y% + 22 + 2¢%y%22)e2 1 129 . 4.

2.4.4 Black Hole Entropy from Cardy Formula

For the asymptotically AdSg black holes discussed in this section, we apply the Cardy formula
to the near-horizon metric only after taking the gravitational Cardy limit. More explicitly,
we first rewrite the metric (2.4.23) from Poincaré coordinates (7, 7) to global coordinates

(7, t) using the relations (2.1.44) - (2.1.46). Consequently, the near-horizon metric in the
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gravitational Cardy limit (2.4.23) becomes

14 3¢%y%)(1 + 3¢*2%) . dr?
ds®> = H, ( — (1 + #?) di?
5 <y7 Z) 14442 ( +r ) * 1+ 72
9°(1+3¢°y%) (2* — v*) 9 (2" —y*) (1 + 3¢%2%)
3(1 — g%y?)3 3(g222 — 1)3
N 4(1 __92y2>2(1 —'9222>2[22 +_y2(1 +‘29222)] )
392 [3 + 39222 + g2(y? + 22)]* €

N (1 - ¢?y*) (9?22 — 1)(1 + 3¢%y?)(1 + 3¢32?%) <d1ﬁ — \{—Sgefdf)Q ] , (2.4.24)

dy? + dz?

12¢5(y? + 22 + 2g%y?22)e?

where

=61 — \1/—3967. (2.4.25)

Applying the same formalism in Subsection 2.1.4 and choosing appropriate ranges of y
and z, we obtain the central charge and the extremal Frolov-Thorne temperature in the

near-horizon region of the asymptotically AdSg BPS black holes as follows:

5T T 44/3
L =——— = .
L 3\/§g5€7 L 57_‘_96

(2.4.26)

Using the Cardy formula, we can compute the black hole entropy of the asymptotically AdSg
BPS black holes:

w2 472

Sy = —c T, = —— 2.4.27
BH 3 crir 0g0e2’ ( )
which is the same as the black hole entropy in the gravitational Cardy limit (2.4.17) from

the gravity side.

2.4.5 Comparison with Results from Boundary CFT

For the asymptotically AdSg BPS black holes, it was shown in [44,56,57] that the entropies
of these black holes can be obtained from the boundary 5d A/ = 1 superconformal field
theories by extremizing an entropy function, which has also been studied in [40]. We can
first compute the free energy in the large-N limit using the 5d superconformal index. The
entropy function is then defined as a Legendre transform of the free energy in the large-N
limit

s 3

A 2 2 .
S(Af, w;) = _8lg4G WiWo + QA + Z Jiw; + A (A — Zwi — 2m) ) (2.4.28)

i=1 i=1
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In the Cardy-like limit (2.4.10)
w~e, Ap~O(1), (2.4.29)

we can read off from the entropy function (2.4.28)

s<l sl gL a0
which have been summarized in Table 1.1.

Similar to AdS, 57, for AdSg the electric charge () and the angular momenta J; are real,
while the chemical potential A and the angular velocities w; can be complex, and so can
the entropy function S. By requiring that the black hole entropy Sy to be real after
extremizing the entropy function S, we obtain one more constraint on @ and J;. More
precisely, the asymptotically AdSg black hole entropy and the corresponding constraint are

given implicitly by the following two relations [44, 56]

272 Q 2 8t
S, ————S5%. —12n° (=) S —N1Jy =0 2.4.31
BT 3giay e (Sg) T (243
Q 272 A2 (Q\°
— 5 —(J1+)Sgg——— (=) =0 2.4.32
39 BH+9g4GN( 1+ J2)SBE 3 \3g ; ( )

which are consistent with both the thermodynamic quantities on the gravity side (2.4.6) and
(2.4.17) as well as the black hole entropy in the gravitational Cardy limit from the Cardy
formula (2.4.27) under the AdSs/CFTj5 dictionary of parameters [44, 56]

1

prre N°/2. (2.4.33)

2.5 Discussion

In this chapter, we have discussed the near-horizon gravitational Cardy limit of asymptot-
ically AdS4567 black holes. The gravitational Cardy limit can be written universally as
la;g| — 1, where a; are parametrize angular momenta in units of the inverse AdS radius, g,
for all the black hole solutions we analyzed. As we have explicitly shown in these examples,
the gravitational Cardy limit leads to an AdS; geometry near the horizon and is effectively an
additional limit on the independent parameters of the black hole solutions. The macroscopic
Bekenstein-Hawking entropy of asymptotically AdS black holes has recently been given a mi-

croscopic foundation using the dual boundary CFT3 456. Our work relies on a near-horizon
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AdS; geometry and we provide an effective microscopic description via the CFTy Cardy
formula obtained from the algebra of asymptotic symmetries.

It is instructive to point out various analogies with the previous instance when string
theory answered explicitly the problem of microstate counting for black hole entropy. In the
mid 90’s, Strominger and Vafa [1] used the full machinery of D-brane technology to provide
a microscopic description of the Bekenstein-Hawking entropy of a class of asymptotically flat
black holes. Viewing the D-brane description as the UV complete description of gravity, the
analogy with the current developments is that the microscopic description of the entropy of
AdSy, 1 black holes in terms of field theory degrees of freedom in the dual CFT,; boundary
theory is the UV complete description. After the UV complete description of the 90’s,
Strominger went on to provide a universal description [58], based only on the near-horizon
symmetries exploiting the AdSs; near-horizon region and the asymptotic symmetry algebra
computation of Brown and Henneaux [59]. Similar symmetry-based approaches were shown
to apply to a wide variety of black holes by Carlip [60]. The results presented in [17,18] and
in this manuscript show that we can understand the entropy of asymptotically AdS black
holes based only on near-horizon symmetries via the Kerr/CFT correspondence.

The satisfying aspect of this point of view resides in the separation-of-scales principle.
Such a universal feature of gravity as the Bekenstein-Hawking entropy formula can cer-
tainly be explained using UV complete formulations of quantum gravity but must also be
understood without recourse to the existence of such a UV complete theory and could be
determined strictly from low energy symmetry principles.

The point of view advocated in this chapter leads to a number of interesting questions
some of which we now describe. It would be interesting to understand the field theory
counterpart of the locally AdS; near-horizon region that arises from the Bardeen-Horowitz
limit plus the gravitational Cardy limit. It clearly suggests the existence of an effective CFTy
which we have used to microscopically compute the entropy but whose further details we
do not know. Some aspects of this effective CF Ty were studied in [61,62] for the AdSs and
the AdS; black holes, but it required going away from extremality. In the bigger picture
described above, understanding how this effective CFTy embeds in the boundary CFTy
is the dual to finding the UV complete description of the gravitational theory living near
the horizon — a worthy challenge. Along these lines, in this manuscript, we have only
discussed the asymptotically AdS black holes in the BPS limit, hence at zero temperature.
It would be interesting to extend the discussion to near-extremal asymptotically AdS,e 7
black holes and to reproduce the Bekenstein-Hawking entropy formula from a near-horizon
Cardy formula. When higher-derivative terms are included in the gravity theory, the black

hole entropy does not obey the area law. It was shown in [63] that the central charge
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of the near-horizon asymptotic Virasoro symmetry also gets modified in the gravity with
higher-derivative terms, while the Frolov-Thorne temperature and the Cardy formula still
hold. Other higher-derivative aspects of AdS, black holes were recently considered [64, 65].
A tantalizing property of higher-derivative corrections in AdSs black holes was recently
reported in [66], which showed that the leading o'-correction is absent in the BPS limit.
This suggests that the central charge of the near-horizon asymptotic Virasoro symmetry
remains the same in this case.

There is another line of attack that is worth sketching. Recall that the original setup for
Cardy-like limits is 2d CFT. In this case, one simply has a formula for CFT, on S! x S!
which effectively relates the high energy and low energy degrees of freedom. It is fair to think
of this relation as a UV/IR relation with the important characteristic of being controlled
by the anomaly, c¢. Similar formulas have been developed in higher dimensions by Di Pietro
and Komargodski in [67] and further clarified in [26,68,69]. In particular, in four dimensions
they found an effective description of theories in S* x M3 whose effective action is controlled
by anomaly coefficients. A similar analysis has been rigorously performed for a set of six-
dimensional theories [14,53,70]. More closely related to the questions we addressed in this
chapter is the recent work of Seok Kim and collaborators who have used an effective low
energy action approach to find the leading term in the entropy function for the Cardy-like
limit, first in ' = 4 SYM as well as in the 6d N' = (2,0) SCFT living on N M5-branes [14],
and later for a more generic 4d N' = 1 situation [28]. These developments point to the
possibility that the Cardy-like limit may be understood as the leading term in an effective
field theory expansion. Although for these cases in the BPS limit the Cardy-like free energy
has been derived from the effective quantum field theory approach, higher order corrections
as well as finite temperatures should be taken into account to go beyond the leading order
in the BPS limit. It would be quite interesting to explore such possibilities on the field
theory side and, ultimately, connect it with a more standard hydrodynamics approach on
the gravity side [71,72].

Finally, it would be nice to develop what seems like a more natural AdSs; or SYK approach
to the entropy of extremal AdS black holes as described in Fig. 1.2. Some interesting work
along this direction was performed in [73] for AdS; and more recently in [74] for AdS,.
Finding the connection between the AdS,; and AdS3 low energy descriptions in more details

is an interesting problem.
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Chapter 3

The Near Extremal Regime

3.1 Near-Extremal AdS, Black Hole Entropy

Returning to the AdS, black hole solution of [41], we further examine the parameter space
with a emphasis on extremality. The extremal black hole solutions are achieved when the
function A,(r) has a double root, or equivalently when the discriminant of A, (r) vanishes,
which can be viewed as an equation for m. We can solve when the discriminant is zero and

obtain the extremal value of m as a function of a and ¢, o, i.e.,
m = Mexi(a, 01, 02) . (3.1.1)

Since this computation is straightforward, we omit the lengthy expression of mey(a, 01, d2).
In this case, for m < mey the function A,.(r) has two different real roots corresponding to the
outer and the inner horizons of a non-extremal black hole. For m > mey the function A,.(r)
does not have real roots, which implies that the solution has a naked singularity instead of
a black hole. We would like to emphasize that the asymptotically AdS; Kerr-Newman black
holes have also been discussed in [75]. However, the supersymmetric solutions considered [75]
have %—BPS supersymmetry instead of %—BPS supersymmetry discussed in [41,42], which
makes some features of the black holes different.
Before moving on, we want to emphasize the parameter space we are exploring. First,
a BPS black hole is both supersymmetric and extremal. Hence, it satisfies both the super-
symmetric condition
et — 1 4 3, (3.1.2)
ag

or equivalently,
2

S (3.1.3)

a=ay, with ay=
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and the extremal condition (3.1.1). Under the supersymmetric condition (3.1.3), the extremal

condition (3.1.1) is equivalent to

cosh?(0; + 05)
31492 sinh®(§; + §y) sinh(26;) sinh(26,) ’

(mg)* = (3.1.4)
which can also be obtained by requiring the black hole solution to have a regular horizon. The
two conditions (3.1.3) and (3.1.4) in [42] contain typos, which have been corrected in [43,44]
and also [45]. With these two constraints, there are only two independent parameters for
asymptotically AdSy electrically charged rotating BPS black holes. To illustrate the relations
of the parameters, we plot in Fig. 3.1 the codimension-1 supersymmetric surface defined by
(3.1.3) together with the codimension-1 extremal surface defined by (3.1.1) in the parameter
space (m,a, d1,02), where for simplicity we set d, = §; and L = 1. The intersection of these

codimension-1 surfaces is a codimension-2 surface corresponding to the BPS solutions.

Figure 3.1: The extremal surface (yellow) and the supersymmetric surface (green)

We now collect useful properties of the black hole, including the position of the outer

horizon in the BPS limit
2m sinh(6;) sinh(ds)

cosh(d + d9)

which coincides with the BPS inner horizon. For the thermodynamic quantities of the

ro = (3.1.5)

non-extremal asymptotically AdS, black holes, the gravitational angular velocity €2 and the
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temperature Ty are given by

1 2 A
o rgmr) g A (3.1.6)

riry + a? A7c(rire + a?)’
which are evaluated at the outer horizon r,. The other thermodynamic quantities are [42]

m(riry + a?)
= ——

J = mTc; (cosh(261) + cosh(26,)) ,

2= (3.1.7)
Ql = Qg = 4—: Slnh(2(51) s

m .
Q2= Q4 = = sinh(20) .

3.1.1 Near-Extremal AdS, Black Hole Entropy from Gravity So-

lution

The asymptotically AdS; black hole solutions discussed in the previous subsection are in
general non-extremal. Since our focus is on near-extremality, we perturb the BPS black hole
solution. More precisely, we expand the non-extremal AdS, black hole solutions around the
BPS solution by turning on a small temperature.

We shall do this by studying the parameter space. Before imposing the constraints
(3.1.3) and (3.1.4), there are 4 parameters that characterize the black hole solution, and we
interchange one of these parameters, a, with the outer horizon r,, where r, is the biggest

root of the equation A,(r;) =0, i.e.,

2 2
2 +a* —2mry + g* H (ry + 2msinh*(5;)) [H (ry + 2msinh®(5;)) + az] =0. (3.1.8)
i=1 i=1
There are two reasons why we make this change. The first is pragmatic: this simplifies
the algebra significantly. The second is that the outer horizon r, plays a clear role in
the nAttractor mechanism [76], which will also be relevant for the discussions later in this
subsection. Now, we use (3.1.8) to solve for the parameter a in terms of r,, and the 4
independent parameters for the non-extremal AdS, black hole solutions are (r.,m,d1,ds).
Correspondingly, there are 4 independent physical quantities (Ty, J, Q1, Q2), where we have
set @1 = Q3 and Q2 = @4 as in (3.1.7). Without loss of generality, we further set d, = 0y,
and therefore ()1 = ()2, to simplify the discussion.
The black hole entropy in (3.1.7) is valid for any temperature, including small temper-
ature. This is achieved by expanding around the BPS value of the entropy, leading to the
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expression

S =8+ (E) Ty + O(T%), (3.1.9)
Ty ),

where S, denotes the AdS, black hole entropy (3.1.7) in the BPS limit

2

Sk = S
g° (et =3)

(3.1.10)

while C' is the heat capacity which is linear in T, and (%) is evaluated in the BPS limit.

*

Computing (%) is straightforward
%

O\ (S (28 (2re) (S (m) L (28 (2
TH *_ dTH *_ 6r+ % &TH % om " 6TH % (951 % ﬁTH *’

(3.1.11)
where S’EN ;T”; and % can be obtained by inverting the matrix
T
(T, 1. Q1) (3.1.12)
(](TJM m, 51)
Once the dust settles, the result is
3
C 8v2m? (et —1)2
— ] == V2 ( ) . (3.1.13)
Tu), ¢>(e*?r —3) (B +10et% —7)

We comment that this result can also be obtained by only varying S with respect to 4, i.e.,

().~ (). (). 6110

This is similar to the AdS; case discussed in [33], which is related to the nAttractor mecha-

nism [76]. This hints that the nAttractor mechanism extends to other dimensions.

3.1.2 AdS, Black Hole Solution in the Near-Horizon Limit

In this subsection, we consider near-extremal asymptotically AdS, black holes close to the }L—
BPS solutions by introducing a small positive temperature T', and discuss the corresponding
metrics.

It was discussed in [75] that for asymptotically AdS, black holes from the extremal case
to non-extremal configurations corresponds to perturbing the parameter m from its extremal

value mey. As we can see from Fig. 3.1, when perturbing around the AdSy Z—i—BPS black

60



holes, we can deviate from the extremal surface but still stay in the supersymmetric surface
by imposing the supersymmetric condition (3.1.3). Meanwhile, we expand the parameter m
around its BPS value given by (3.1.4) with a small dimensionless parameter A [77] corre-

sponding to near-extremal AdS, black hole solutions, i.e.,
m = mo(1 + \*m), (3.1.15)

where

cosh(d; + d9)

= . 3.1.16
g e®1+82)/25inh*2(§; + 8,) y/sinh(20;) sinh(26,) ( )

mo

A similar limit was also used in [78] to study the near-BPS black holes and compared with
other limits in [13]. To summarize, near-extremal AdS, black holes can be achieved by
perturbing the parameter m around me, while keeping the other parameters fixed. This
is made explicit in this chapter by imposing the near-extremal condition (3.1.15) with the
parameter a fixed by the supersymmetric condition (3.1.3).

Moreover, we perform a near-horizon scaling to the asymptotically AdS, black hole metric
(2.2.4), which was first introduced by Bardeen and Horowitz in [37] and extensively studied
[79] for the BPS AdSy black holes

r—ro+ AT, t— . (3.1.17)

> 2

., O — (Z— g[coth(261) — 2]

> =+

In principle, for near-extremal black holes we should consider the near-horizon scaling r —
ry + AT. However, the near-extremal condition (3.1.15) implies that r, and 7o only differ by
a constant of order A. Hence, we can absorb that constant into 7 and still take r — rg + A7
in the near-horizon scaling. This kind of near-horizon scaling for near-extremal black holes
has been used in [80]. To summarize, we impose the near-horizon scaling (3.1.17) together
with the condition conditions (3.1.15) and (3.1.3).

Taking the limit A — 0, the metric (2.2.4) becomes

801 1 10e* —7) (e* + cos(260
(e e ) (e cos(26)) AP+
2 (et 4 1)2
2 (e**' + cos(26)) )
g? (801 —2e%n — 1 —2cos(26))

2 01 (40
~ g?e® (e**r — 3)4/csch(207) sech(2dy)
+ Aaas,(0) | do + 1 + coth(24;)

2 (e" + cos(20))  d?

ds* = — @
§ g% (801 +10e%0t —7) 72

+

2
Fdt| (3.1.18)
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where

2 (€89 —2¢%% — 1 —2cos(26)) sin®()
g% (e*%1 —3)2 (91 + cos(20))

Anas, (6) = (3.1.19)
From the near-horizon, we are now in a position to extract the necessary details to compute
the entropy via the Kerr/CFT correspondence. As we shall see, there are several methods
to compute the central charges, which requires a rewriting of the near-horizon geometry in
different coordinate systems. To make things clearer, we summarize each of these different

expressions of the near-horizon metric. The change of coordinates

g° (6861 +10e*0 — 7) ~

= t =7 3.1.20
allows us to write (3.1.18) in Poincaré coodinates
L 9 (6461 + cos(29)) R d_p2 N 2 (6451 + cos(?e)) 102
g% (€89 + 10e%0t —7) p? g% (€89 —2e%h — 1 —2cos(26))

(3.1.21)

2 (6851 _ 46461 =+ 3) CSCh(Q 61) d ’
o (891 + 1040 — 7) re

+ Apas, (6) [d% +

Therefore, it is clear that the near-horizon scaling we applied to the metric leaves us with a
circle fibered over AdSs, yielding a warped AdS3 geometry. We now see that the near-horizon

metric in Poincaré coodinates (3.1.21) is in the standard form
2 2, o dp’ 2 i i j j
ds® = fo(0) | —p°dr* + o + fo(0) d6® + ~;;(0) (dz' + K'pdr) (da’ + K pdr) , (3.1.22)

with 27 € {¢} for the AdS, case, and the coefficients fo(6), fo(6), k' and 755(0) are functions
of 6 in general.
Now, we transform the Poincaré coordinates (7, p, 6, 5) in the metric (3.1.21) to the global
coordinates (£,7, 6, ¢E) using the following relations
V1 + 72 sin(t)

=7 4+/1+ 2 cos(t), lr= =~ 3.1.23
gp ®), g # + /1 + 72 cos(l) ( )

which leads to

dp? dr?
—p2d7‘2+i2 = f(1+f2)dt“2+LA2,
p L+7 (3.1.24)

pdr = 7dt + dk,
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where

(1 +4/1 +f2sin(A))
k = log

cos(t) + 7sin(t) (3.1.25)

Consequently, the metric (3.1.21) can be rewritten as

4t — 2 (6451 + Cos(29)) (1R dr? N 2 (6451 + Cos(29)) W0
g% (e891 +10e101 —7) L+72] g2 (8% —2e*9 — 1 —2cos(26))
2
o 2(e8 —4e 4 3) y/esch(201) .
+ Aaas, (0) [d¢ + YT E— rdt| (3.1.26)
where o s
A~ o~ 2(e®r —4e* + 3) 4/csch(20
=0+ ( ) (26,) (3.1.27)

e (e891 +10et9 —7)

Besides the near-horizon scaling (3.1.17), we can also apply a light-cone scaling in the

near-horizon region [77]

451 3 B 6461 -3

and then consider the following near-horizon scaling in the light-cone coordinates

PN et 1 xt —ex— 5 T+ ex”
r—ro+er — -
’ et -3 2ge 2¢

(3.1.29)

Together with the condition (3.1.15) and taking the limit € — 0, we obtain the near-horizon

metric for the AdS, near-extremal black holes in the coordinates (z*, 7, 6, x7)

(etor — 1)2 (e® +10e* —7) (e** + cos(20)) o, ., 2 (e*® + cos(20))  dr?
3 rdz 2 (o830 15 2
8 (B9 — 2401 — 3) g% (e8r +10e* —7) 7
9 (6451 + COS(ZG)) e’ sech(26,) g dat ?
g? (801 — 2e%% — 1 —2cos(26)) csch(2 6y)3/2 ’

ds* = —

_.I_

do* + AAdS4 ((9) |:d$_
(3.1.30)

where Aags, (6) is the same as (3.1.19). Introducing some new coordinates

46 891 461
o g(etr 1) (¥ 4 10et —7) - -
=T @n g Y PET. A= (3.1.31)
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we can rewrite the near-horizon metric in the light-cone coordinates (3.1.30) as

A2

2 (e" + cos(26)) gt dp* N 2 (e* + cos(26))
g% (80 +10et% —7) p p? g% (€89 —2e%01 — 1 —2cos(26))
2 (8% — 4¢*% + 3) y/csch(26))
e (€801 4 10et0 — 7)

ds® = d?

2
+ Apas, (6) [d:f:‘ + ﬁdﬁc*] : (3.1.32)

We see that the metric (3.1.32) is in the standard form

dp? . , ; ~
ds® = fo(0) (*ﬁQ dit? + g ) + fo(0) dO® + ;;(0) (dz' + K'pdi™) (da? + K pdi™)
P
(3.1.33)
with 2* € {#~} for the AdS, case, and k%, fo(6), fo(f) and v;;(6) remain the same as (3.1.22).
To summarize, we now have several different expressions for the near-horizon metric in
Poincaré and global coordinates. This is useful when we utilize the near-extremal Kerr/CFT

correspondence.

3.1.3 Near-Extremal AdS; Black Hole Entropy from Cardy For-

mula

After obtaining the various expressions of the near-horizon metric of the asymptotically
AdS, black holes, we are now ready to compute the central charges and the Frolov-Thorne
temperatures using the near-extremal Kerr/CFT correspondence as well as hidden conformal
symmetry of the near-horizon geometry to find the AdS, black hole entropy in the near-
extremal limit. For the left central charge ¢y and the right central charge cg, there are two
different ways for computing each of them, depending on which coordinate system we choose.
We summarize each of these diverse approaches as a consistency check on our computation
as well as to keep things self-contained.

The Kerr/CFT correspondence was originally posed for asymptotically flat extremal Kerr
black holes [16] and was later shown to also be valid for asymptotically AdS black holes
[17,18]. For the near-extremal case, [77,80] initiated some progress and we extend those
results here by computing the entropies of near-extremal AdS; black holes via the Cardy
formula. Before further exploring the near-extremal case, let us take a step back and recall
how the Kerr/CFT correspondence works. The basic idea is the following. Taking the
Bardeen-Horowitz near-horizon scaling [37], the near-horizon geometry of an asymptotically
flat or asymptotically AdS extremal black hole contains U(1) cycles fibered on AdSs. The

near-horizon asymptotic symmetries are characterized by diffeomorphims generated by the
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vectors

0 ;0
= —. 1.34
= o) 25— eO)% (3134
The mode expansion of a diffeomorphism generating vector ( is
Cn) = m(b@agb inre m‘z%. (3.1.35)

We can define a 2-form k¢ for a general perturbation h,, around the background metric g,

as

1 1
kelh, 9] = =g | D"h = C"Dh” + G D + ShDVC* = B Dy G

1
+ ShT (DG, + DUC“)]de‘ A daP. (3.1.36)
We also define the Lie derivative with respect to ¢, denoted by L, as

LG = P0G + 9pv0uC’ + Gupdi (P (3.1.37)

The left central charge ¢, of the near-horizon Virasoro algebra can be computed using the
Kerr/CFT correspondence in two slightly different ways. For the first method, the central
charge can be computed using the following integral [16-18]

1 i

_ — 3
5 ). T L9 91 = =562 (m° + am) B, (3.1.38)

where ¢g denotes the near-horizon metric of the near-extremal AdS, black hole in global
coordinates (3.1.26). An explicit evaluation of (3.1.38) shows that

24,/2 (e* — 1)

— _ 3.1.39
L g% (e801 + 10 e*% —7) ( )
The other way of computing ¢y, is to evaluate the following integral [77]
! J ke, [Le. G, g] = 0 3L (3.1.40)
= On4+m,0 M —=, c
87TGN o5 én gmg7 g +m, 0 12

where g denotes the standard form (3.1.22) of the near-horizon metric of the near-extremal
AdS, black hole in Poincaré coordinates (3.1.21). More precisely, we obtain with the unit
Gy =1

3k 244/2 (¢4 — 1)
d@ Det (7, 0) = ’ o
GN \/ et (7i;(0)) fo(6) 2 (e3 +10e%0 —7) 8 )

L =
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which matches exactly the result of ¢;, (3.1.39) from the first approach.

The right central charge cr can also be obtained in two different ways. Although we
describe the two methods, we prefer one method over the other because of its robustness.
The first approach is to compute the quasi-local charge [77,81,82] using the standard form
of the near-horizon metric of the near-extremal AdS, black hole in Poincaré coordinates

(3.1.22), which is given by the integral

N 2 fo(0) 7

12 87Gy
where fo(0), fo(6), 7i;(0) and k; are defined in (3.1.22), and the parameter Ay denotes a
UV cutoff in . This approach has been used to compute the right central charge cg for
near-extremal AdSs black holes [61]. For the four-dimensional case, the integral (3.1.42)
can be applied to the near-horizon metric (3.1.21) in Poincaré coordinates to compute cg.
However, the result is not very illuminating due to the unfixed cutoff Ag.
To compute cg, we choose a more concrete approach using light-cone coordinates as in-
(cov)

troduced in [77]. More precisely, a scale-covariant right central charge ¢~ can be computed

from the near-horizon metric (3.1.32) by using

24 €4/2 (et — 1)

(cov) _ " D B _ 14
e _ 3k e L 46 \/Det (7;(6)) fo(6) g e F (3.1.43)

where the factors v;;(0), fo(f) and k_ are defined in (3.1.33). Like in [77], we can define a

scale-invariant right central charge cp = c§§°”) /e, which in this case is

24,/2 (401 — 1)
g% (e3 + 10t —7)

Cp = (3.1.44)
We see that the result is exactly the same as the left central charge computed in (3.1.39) and
(3.1.41). To summarize, the explicit expression for the integral changes slightly depending
on the coordinate system, and we have shown that all the results do indeed lead to the same
central charge.

Now that we have taken care of the central charges, and have consistently gotten that
¢, = cg, the final ingredient is the Frolov-Thorne temperatures T, and Tr. We have seen
in [79] that for the BPS case T = 0. For the near-extremal case, T, can still be computed

in the same way discussed in [79], and its value remains the same as the BPS case, as it is

66



unaffected by whether we impose the condition (3.1.15). Therefore, we find

e (e® +10e* —7) /sinh(24;)

T —
L 47 (€89 — 4 etd 4 3)

(3.1.45)

On the other hand, Ty is proportional to the physical Hawking temperature Ty. To find the
exact expression of T, we apply the technique of hidden conformal symmetry. This method
was first introduced in [83], and later generalized to many different cases. The basic idea is to
define a set of near-horizon conformal coordinates and corresponding locally-defined vector
fields with SU(2,R) Lie algebra, such that the wave equation of an uncharged massless scalar
field becomes the quadratic Casimir of the SU(2,R) Lie algebra. In this way, we can fix the
Frolov-Thorne temperatures 77, z and the mode numbers Ny, r for non-extremal black holes.
In particular, [80] has considered the hidden conformal symmetry of an AdS, black hole
close to the solutions discussed in this chapter. We can apply the same technique by first

expanding A,
Ay =k(r—r)(r—r)+0((r—ry)?), (3.1.46)

where k and 7, can be read off from the Taylor expansion to quadratic order in (r — 7).

Based on hidden conformal symmetry [80], the right temperature is

k?(?“+ — 7’5) .

Tk = 3.1.47
R dma= ( )
Comparing with the Hawking temperature Ty given by (3.1.6), we find that
2, .2
Tp= 20 1 (3.1.48)

a — a3g?

We also find that the expression obtained using hidden conformal symmetry for T}, is (3.1.45)
as expected. Using the Cardy formula, we obtain the near-extremal AdS, black hole entropy

71.2 2

S = ?CLTL + %CRTR

C

3
B 2 N 8v2m® (et —1)° T (3.1.49)
g2 (et —3) g3 (et —3) (e84 1040 — 7) i o

where the BPS entropy S, is

71.2

S* = ?CLTL, (3150)
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while the near-extremal correction to the black hole entropy is

2
0S = 7T?CRCTR = (£> TH . (3151)

We see that this result from the near-horizon CFTy and the Cardy formula is exactly the
same as the results from the gravity side ((3.1.9), (3.1.10) and (3.1.13)).

3.1.4 Near-Extremal AdS; Black Hole Entropy from Boundary
CFT

What remains is the computation of the near-extremal entropy from the boundary CFT.
In the BPS limit, the AdS, black hole entropy can be obtained by extremizing an entropy
function, which was derived by the superconformal index or supersymmetric localization
of the 3d ABJM theory on the boundary of electrically charged rotating AdS, BPS black
holes [46,47]. More precisely, the BPS entropy function is

3 W

N A2 ks N A/ A ALAA N N
S(A;, %) = — V2ikiNT Y 21808y oI+ Y R A [ YA -3 - 2mi |, (3.152)
I I

where A; are chemical potentials corresponding to the electric charges ()7, and @ is the

angular velocity. To extremize the entropy function (3.1.52), we solve the equations

0S 0S
Y~ 07 —_— =
OA; ow

0, (3.1.53)

which can be expressed explicitly as

_4\/52'/5]\7% Al 253£4

Qr+A , 3.1.54
! 3 2 (3.1.54)
A2 i kSN A A ALAA
o p = AV2ikN S—— (3.1.55)
3 w
Substituting these equations back into the entropy function (3.1.52), we obtain
S = —2mi\. (3.1.56)
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Moreover, the equations (3.1.54) and (3.1.55) can be combined into one equation:

Q1Q2Q3Q4 + A < > QIQJQK) + A’ (Z @1@J> + A (2 @1> + A
I

I<J<K I<J

2
:<—§kN%A2—2AJ+uP), (3.1.57)

which can be written more compactly as
M+ AN+ BN +CA+D=0, (3.1.58)

with the real-valued coefficients

4
A=>1Qr,
I=1
2
B =) QiQs+ $kN?,
9
I<J (3.1.59)
4
C= ), QuQsQx —gkN*J,
I<J<K

2
D = Q1Q2:Q3Q4 + §/€N3J2-

In order to obtain a real-valued black hole entropy, the expression (3.1.56) implies that
A should have a purely imaginary root. Since (3.1.58) is a quartic equation of A with
real coefficients, the imaginary roots should come in pairs. Consequently, (3.1.58) can be

factorized as
(A +a) (N +BA+p)=A" + BA* + (a+ p) A + aB A+ ap. (3.1.60)
Comparing (3.1.60) with (3.1.58), we find
A=p, B=a+pu, C=af, D=au, (3.1.61)

or equivalently,

azg,ﬁzA,uzB——z——. (3.1.62)
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According to (3.1.56), the imaginary root A = i\/a = i\/g leads to the real-valued AdS,
BPS black hole entropy

. Q1Q2Q3 + Q1Q2Q4 + Q1Q3Q4 + Q2Q3Q4 — 5kN3J
Q1+ Q2+ Q3 + Q4
For the special case ()1 = )3, Q2 = ()4, the expression above becomes
9Q1Q2(Q1 + Q) — 2kJN3
Spy = 3.1.64
BH — 3 Ql + QQ ( )
After imposing the identifications of parameters introduced in [44, 46, 47]
QBH,I = gQ], JBH = J, Ie {1, s ,4} (3165)
and using an entry from the AdS/CFT dictionary
1 2
— = JVsz (3.1.66)
Gy
we can rewrite the BPS black hole entropy (3.1.64) as
J
St = ZL , (3.1.67)

2
9°G (%QBH,I + %QBH,Q)

which can be subsequently written in terms of the free parameters (41, d2) on the gravity side
in the BPS limit. For the special case §; = &5, the BPS black hole entropy obtained from

the boundary CFT is
27

—_— A
g2 (e*0 —3)° (3.1.68)

*
SBH -

which is exactly the same as the BPS result from the gravity side (3.1.10) and the one from
the near-horizon Kerr/CFT correspondence (3.1.50).

In addition to the black hole entropy, the electric charges (0;’s and the angular momentum
J should also satisfy a constraint, which originates from the consistency of two expressions
of pin (3.1.62), i.e

B—— 5 =0. (3.1.69)
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More explicitly, for the special case ()1 = @3, Q2 = ()4 the constraint is

2kJN? i 2kJN? [Q1Q2 + J(Q1 + Q2)]
9(Q1 + Q2) 2kJN3 —9Q1Q2(Q1 + Q2)

gkNg +(Q1+ Q)% +

=0. 3.1.70

We emphasize that the constraint is not unique. A constraint multiplied by a constant or
some regular function of (); and J can produce new constraints. For later convenience, we

define

J? 2 2kJN3 2kIN3 [Q1Qq + J(Q1 + Qg)]]
h= SEN? 4+ (Q1 + @) + + ,
1@+ Qo [0 T OO T 50,50, T ok - 901001 + Qo)
(3.1.71)
whose BPS value will be called h,, and
hy = 0 (3.1.72)

is one of the BPS constraints. So far we have only considered the BPS black holes from
the boundary CFT in this subsection. To extend the BPS results to the near-extremal case,
similar to the AdS; case discussed in [61], we generalize the quartic equation (3.1.58) from

the BPS limit to the near-extremal case by perturbing A and h as
(A+0M)* + AN+ 0A)? + B(A+ M)+ C(A+6A) + D+ (he +5h) =0, (3.1.73)
which at the order O(0A) is
(4A* + 3AN* +2BA + C)6A + 6h = 0. (3.1.74)

For the root A = z'\/g , which has led to the BPS black hole entropy, we can solve (3.1.74)
and obtain

SA = Oh (3.1.75)

20 -2, [§ (B -25)

Based on (3.1.56), the correction to the BPS black hole entropy is

5S = —2mi A (3.1.76)

Hence, only the imaginary part of A will contribute to the real part of §S. If we assume
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that dh is purely imaginary, then

1
m(dA) = dhRe
2C — 22'\/% (B —-29)
B 2C oh
|20 - 2i,/S (B-29)] [20 +2iy/S (B-29)]
oh
= 5 (3.1.77)
2C + 2 (B —2%)
Therefore, for real-valued .S we have
—7i0h
§S = —2miIm(5A) = i - (3.1.78)
C+1(B-29)
We view dh as a small change of h from its BPS value, i.e.,
oh=h—hy=nh. (3.1.79)
We can compute 6h by
oh
oh=——9 — (5J 3.1.80
o " (3450
with the transformations similar to the AdS; case [61]
0Qr =nQr, 0J;i=nJ;. (3.1.81)

For the near-extremal case, we relate the transformation parameter n with the temperature
change
2mi 0Ty = 27, (3.1.82)

where 0Ty = Ty — Tj; = Ty. Now, we apply (3.1.80) to the explicit choice of h given by
(3.1.71). In the unit Gy = 1, the near-extremal correction to the BPS entropy for the special

case 0; = 0o becomes

972 (A0 _ 1)2
5S = Svar (e 1) 5 T = (2) Ty (3.1.83)

g3 (e —3) (e + 10t — Ty

Combining the BPS black hole entropy from the boundary CFT (3.1.68) and the near-

extremal correction (3.1.83), we obtain the near-extremal AdS, black hole entropy from the
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boundary CF'T

Spi = Sk + 68

B o N 8/2n? (4% — 1)% ,

T2 (e —3) T Beth —3) (80 + 10et0 —7) 7
C

=S+ (—) Tu, (3.1.84)
Ty ),

which matches perfectly with the results from gravity solution ((3.1.9), (3.1.10) and (3.1.13))
and from the near-horizon Kerr/CFT correspondence ((3.1.49), (3.1.50) and (3.1.51)).

3.2 Hawking Radiation and Near-Extremal AdS, Black
Hole

In Sec. 3.1, we have derived the near-extremal AdS, black hole entropy using three different
approaches and obtained one universal result. In particular, the approach of the near-horizon
Kerr/CFT correspondence shows that there exists a near-horizon CFTy, which accounts for
the low-energy spectrum of the black hole microstates.

As we have seen in Subsection 3.1.3, the near-extremal black hole entropy can be decom-
posed into the contributions from the left and the right sectors of the near-horizon CFTj.
The expression from the canonical ensemble is

2 2

Spy = 7T?CLTL + %CRTR, (3.2.1)

which has been discussed extensively for the asymptotically flat black holes [84-91], while

the expression from the microcanonical ensemble is [92]

N N
Spi = 274 | CL6 Ly omy/ CR6 i (3.2.2)

where Ny and Npg are the left and the right mode numbers, respectively. Comparing the

expressions (3.2.1) and (3.2.2), we find that the temperatures 77, p can be related to the

1 [6N 1 [6N
Ty = =] —%, Tr=—y|—2. (3.2.3)
™ Cy, ™ CRr

The explicit expressions of N, and Np for near-extremal AdS, black holes considered in this

mode numbers Ny, g
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work with §; = 9 are

8 410" — 7

Np = )
T P 5o
3.2.
Np = 42 (461_ )2TI%I

gt (erd — 3) (€891 + 1040 —7)

Suppose that the left and the right mode numbers in the BPS limit are Nj and N} respec-
tively, where
N%=0. (3.2.5)

As discussed in [61,93], for the near-extremal case the left-moving and the right-moving

modes become

Np = N + 6N, ~ N¥,

(3.2.6)
Ni = N} + 6Ng = 0Ng,

with 0Ny, = dNr « Nj. If we assume that the right modes obey a canonical ensemble, then

the partition function of the right sector can be written as

R = ZqNRd(NR) = ZqNReSR = ZqNReQ”V crNR/6 (3.2.7)

Ngr Ngr Nr

We evaluate this partition function using a saddle-point approximation with respect to Ng,

and the result is

CR7T2

W, with log(q) <0. (3.2.8)

0
ONr = Ng = qa—qlogZR ~

The occupation number in the right sector is given by Bose-Einstein statistics

q
pR(kO) = 1 n kg (329)
—d T

where n is the momentum quantum number of the mode moving in the time circle for
the near-horizon region of AdS, black holes. From (3.2.8) we can solve for ¢ in terms of
dNg = Ng, and then combining it with (3.2.9) we obtain

¢%M% ,¢€NR (3.2.10)

74




where we used kg = n. A similar expression holds for 77, i.e.,

T;, = 16N (3.2.11)
™ Cr,

We see that (3.2.10) and (3.2.11) are completely consistent with (3.2.3). In the limit ky ~
Tr < Ty, the occupation number in the left sector can be approximated as
e 1L TL 1 6 NL

k) = ——F—~ — = — : 3.2.12
pL( 0) 1_ 7% ko '/Tko CL ( )

According to [61, 93], Hawking radiation can be formulated as a scattering process of
left and right modes in the near-horizon CFTy. Therefore, we can evaluate the Hawking
radiation rate for near-extremal AdS, black holes based on the analyses above

d*k 1 5
dl’ ~ —L—R|A| cr pr(ko) pr(ko) , (3.2.13)
ko py Py
where the central charge ¢y, provides the degrees of freedom for a given momentum quantum

number n, and A is the disc amplitude of strings depending on details of the near-horizon
CFT,. From (3.2.12) we see that

cr pr(ko) ~ Sp oc (horizon area) . (3.2.14)

Consequently, the Hawking radiation rate becomes

dl' ~ (horizon area) - ————d*k, (3.2.15)

which implies that the radiation spectrum is thermal and governed by a temperature T pro-
portional to the Hawking temperature T. Therefore, we have found a microscopic formalism
of Hawking radiation in the near-horizon CFT,. According to this picture, the scattering of
modes is unitary; hence there is no information loss during the Hawking radiation process.

Since the boundary CFT can exactly reproduce the near-extremal black hole entropy
(3.2.1), this microscopic formalism of Hawking radiation can in principle be embedded in
higher-dimensional boundary CF'T, which is the 3d superconformal ABJM theory for AdS,
black holes.

Like the AdSs case discussed in [61], we have not taken into account the global structure

of AdS space. Particularly, due to the conformal boundary of AdS space, once the radiation
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reaches the boundary, it will bounce back and head towards the black hole. Therefore, our
current model provides a microscopic description for the Hawking radiation immediately

after creation. We leave the full evolution of Hawking radiation for future work.

3.3 Discussion

We have studied the electrically charged rotating AdS, black holes in the near-extremal
limit. Moreover, by studying the parameter space we have successfully defined a way to
approach near-extremal supersymmetric black holes. We have then computed the entropy
using three different approaches: (i) from the gravity solution, (ii) from the near-horizon
CFT, via the Kerr/CFT correspondence and (iii) from the boundary CFT via the AdS/CFT
correspondence. Remarkably, these three results match precisely, giving us a universal and
unique expression for the entropy in the near-extremal limit. This supports the near-extremal
microstate counting in the boundary CFT and in the near-horizon CFTy. We also have
shown that the extension of the Kerr/CFT correspondence, originally posed for extremality,
to near-extremal black holes is valid. Using the results of near-extremal black hole entropy,
we provide a microscopic description of Hawking radiation, and qualitatively show that
unitarity and information are preserved during the Hawking radiation process.

The success of this work provides motivation to further study near-extremality in other
dimensions and indeed show that the three diverse entropy computations lead to one universal
entropy. Besides the near-extremal AdSs black holes discussed in [61] and the AdSs case
discussed in this chapter, we can also consider the known AdSg and AdS; [94] black hole
solutions. Similar results from different approaches listed in Fig. 1.2 are expected. Moreover,
the unifying picture Fig. 1.2 can potentially be valid beyond the Bekenstein-Hawking entropy.
Hence, it would be interesting to study the subleading corrections to the Bekenstein-Hawking
entropy and see if the different approaches still provide a unique expression for the entropy,
in the same spirit of [48,95-104]. A recent work [65] shows that Sen’s classical entropy
function formalism [105] can be applied to asymptotically AdS, black holes to capture higher
derivative corrections to the Bekenstein-Hawking entropy, which complements the methods
in Fig. 1.2.

Besides the microstate counting of black holes, a more interesting question is how to
use field theory techniques to study dynamical process in black hole physics. For instance,
Hawking radiation on asymptotically AdS black holes has been studied within the framework
of AdS/CFT correspondence previously in [106,107]. Some recent progress has been made
for microscopic description of Hawking-Page transition [108]. Another related problem is to

reproduce the Page curve in the black hole evaporation process [109-111], which has been
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studied in the framework of 2d JT gravity coupled to a 2d bath CFT [112-115]. Our approach
in [61] and in this chapter provides another powerful framework of studying these problems.
In order to do that, however, we have to first carefully study the Hawking radiation at a
later time in the dual boundary field theory and in the near-horizon CFT5 to resolve the
issues from the global property of AdS space. We hope to refine our microscopic models and

study these more physical problems in the near future.
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Part 11

Logarithmic Corrections to AdS Black
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Chapter 4

Five Dimensional AdS Black Objects

4.1 AdS; Black Holes

4.1.1 The Superconformal Index and Black Hole Entropy

An efficient way to count %—BPS states in AV = 4 SYM is to consider the theory on St x §3
and evaluate the superconformal index (SCI) [12,116]:

T(r;A) = Te[ (1) e #O Qo 55 ] (4.1.1)

where 3 is the circumference of S', and F is the fermionic operator, while Q,—123 are

flavor charges with associated fugacities v, = e*™*«. With  we denote the R-charge. The

2miT 2mio

fugacities p = e and ¢ = e are associated to the angular momenta J; » of S*, and the
combinations J; + 5 commute with the supercharge Q. In what follows we set 7 = ¢ for
simplicity. Note that the counting of states that the SCI offers should be seen as performed
in the grand-canonical ensemble, since we are keeping fixed the values of chemical potentials
while summing over all possible charges.

According to the AdS/CFT correspondence, SU(N) N = 4 SYM is dual to type IIB
supergravity on AdSs x S°, in which one can find supersymmetric black hole solutions that
are asymptotically AdS, rotating and electrically charged. Remarkably, in recent years plenty
of evidences have been gathered indicating that Z(7; A) captures the entropy of such black
holes [13-15] (see [30-32,68,69,117,118] for further developments and [103,119] for a more
complete list of references).

The SCI can be written as a contour integral over the holonomies of the gauge group
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120, 121]:

1 N—1
Z(r; —IiNf Hdu# (u; A7)

2 (A7) - U Hi#j g+ A7) (4.1.2)

H#j I (wij; 7)
)N 1 N 1

oy = 5P H( )Nl,

where (- ;) is the Pochhammer symbol, and I'(u; 7) is the elliptic Gamma function defined

both in Appendix C.1. There are two main approaches to evaluate the N-dimensional integral
over the holonomies of the gauge group representing the SCI. The first approach relies on a
direct application of the residue theorem, and yields what is known in the literature as the
Bethe-Ansatz method. The second approach implements a saddle-point evaluation of the

integral.

The Bethe-Ansatz Approach

The location of the poles of (4.1.2) is given by the solutions to the set of equations:

Qk(’d,A,T)Zl, Vk:177Na (413)
where
01 (—up + Ag; 7)
Qr(u; A7) = ™ (4.1.4)
zgkﬂ O (ugs + A7)

are the Bethe-Ansatz operators and the values @ satisfying (4.1.3) are called Bethe-Ansatz
solutions. We then define BA = {4 | (4.1.3) is satisfied}. With A we have denoted a
Lagrange multiplier implementing the SU(N) constraint on the holonomies Zf\;l u; € 7,
and 01 (u; 7) is the elliptic theta function defined in Appendix C.1. Upon direct application

of the residue theorem, Z(7, A) can be rewritten in terms of a discrete sum as:

I(r;A) = ky Y, Z(4;A,7)H (i A,7) 7",
ueBA

" L _0(Qu-.Qn)
H(i;A,7) = dt[?m&(uh o UN-1, A)

(4.1.5)

Let us emphasize that (4.1.5) is not the full story, since the application of the residue
theorem required the poles to be isolated, and there is enough evidence by now [122,123]
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that this is not the case generically. We shall focus only on the contributions coming from
isolated poles (see [124] for more detailed discussions on this point). A set of solutions to

the equations (4.1.3) was found in [125] and it is given by:

(4.1.6)

where N = mn, hence, each set {u;} in (4.1.6) can be labeled by the numbers {m,n,r}.
These solutions to the Bethe-Ansatz equations for the SCI were, in fact, inspired by the set
of solutions found in [125] for the Bethe-Ansatz equations associated to the topologically
twisted index. We will discuss that case in Sec. 4.2.1. However, in the large-N limit, it was
possible to argue that the configuration corresponding to {1, N,0} contributed dominantly
to the SCI. We shall refer to the {1, NV, 0} solution as the “basic” solution, namely

. ) . _
Upasic = {uz =u+ ~T|1= 1,2,--- N — 1}U{uN =u}, (4.1.7)
where @ is determined as NN —1
NZ_L—F%TEZ. (4.1.8)

The parameter @ enforces the SU(N) constraint Y~  u; € Z on the holonomies, which,

together with the periodicity properties of Z(7; A) allows us to obtain:
k=1,--- ,N—1, (4.1.9)

each of which contributes identically to the Z(7; A), we therefore have that, in the appropriate

regime of chemical potentials:

: 2
—MA1A2A3 +log N + O(N). (4.1.10)

T2

10gI(T’ A) ‘Basic BA =

We see that the log N in (4.1.10) has a purely combinatorial origin, whose precise form is

quite insensitive to details about the theory in which Z(7; A) is being evaluated.
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The Saddle Point Approach and the Cardy-Like Expansion

Let us further reinforce the idea that the logarithmic correction to the SCI has a combi-
natorial origin. To do so we briefly reproduce here the saddle-point evaluation of (4.1.2)

implemented in [103].

The strict Cardy-like limit

By the strict Cardy-like limit we mean that we keep only the most divergent term in a
7 — 0 expansion'. The study of the strict Cardy-like limit was the subject of several

works [14,26-30], and the main idea is to rewrite (4.1.2) in the following way:

N-1
Z(r;A) = &NJ H du,, exp (%Seﬁ‘(u; A,T)) , (4.1.11)
pn=1

where Seg(u; A, 7) is appropriately defined such that Z(u; A, 7) in (4.1.2) is recovered. The
7—12 factor can be used as a large control parameter to apply the saddle-point method in
the strict Cardy-like limit. We are exploiting the fact that we already know the leading
contribution in such limit is precisely of the order O (T—lz) The saddle-point equations have
the form:
0
— Seir(u; A, T) =0, (u=1,---,N—1). (4.1.12)
uy, u=saddle
The set with all identical holonomies, namely w; = u; for all 4,7 € {1,---, N} [14,26] is
one of the most well-known solutions to (4.1.12). The effective action at this saddle point
successfully counted the dual AdSs black hole microstates [14].
There are N distinct sets of identical holonomies satisfying the SU (V) constraint le\il u; €

Z, namely

m m m .
ul >={u§. )=N‘j=1,---,N}, (m=0,1,---,N—1). (4.1.13)

Within the appropriate range of chemical potentials, the saddle points (4.1.13) yield the

following effective action:

1 & im(N? — 1)
ﬁ 2 Seff<u(m); A’T) = exp (—TAIAgAg + lOgN + O(-l/‘TD) . (4114)
m=0

More refined limits were considered in [126]. The authors discussed the limit where ¢ = €*™7 approaches
roots of unit.
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From (4.1.13) and (4.1.14) we see that the logarithmic correction has its origin in the mul-
tiplicity of the saddle points. This result remains true even for more generic N' = 1 toric
quiver gauge theories, as emphasized in [103], which renders the log N correction a quite
robust one. Note that we have not made use of the large-/N limit here, therefore, provided
that we remain at small values of 7, (4.1.14) holds for finite N (Evidence in favor of this has

been given in [122]).

The Cardy-like expansion

With the Bethe-Ansatz approach we have learned that even for generic values of 7, in the
large- N limit, the log N is the same and arises from degeneracies of Bethe-Ansatz solutions.
At this point we have shown that also for finite N, in the strict Cardy-like limit, the log N
has a combinatorial origin.

We now proceed to include subleading corrections in inverse powers of 7 and show that,
indeed, the log N remains unchanged. This is an important step, since it helps us build
an intuition that we later import to a different situation, namely the refined topologically
twisted index, where we have only access to the strict Cardy-like limit and argue about
the possibility of the combinatorial nature of log N to remain true as we depart from this
limit. We then focus on the effective action evaluated near the leading saddle-point solution
(4.1.13). Following [103], we make the Ansatz for saddle-point solutions in the finite Cardy-

like expansion,

N
U(m) = {Ugm) = % + v;T |T| 2 } m = 07 1?' o 7N - 1)7 (4115>

and evaluate the effective action around this Ansatz. For a suitable choice of chemical

potentials, the following expression was obtained:

im(N? —
2

logZ(1; A) = — DN 1 AyAg +log N + O(e Iy (4.1.16)

The exponentially suppressed correction comes from the asymptotic expansion of the building
blocks of the effective action, namely elliptic Gamma functions and Pochhammer symbols
(see Appendix C.1.1). An important aspect about (4.1.16) is that it includes all power-like
corrections in 7, and rather remarkably, it is a series that truncates at the leading order.
A prominent role in the technical evaluation of (4.1.16) was the cancellation of the O(7°)

contribution which was given in terms of the effective action of a matrix model of SU(N)
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level K = N Chern-Simons theory on S? (see [103] for a more detailed discussion).

What seems like a rather technical step when analyzed from the strictly mathematical
perspective of looking at the asymptotic behavior of Seg(u; A, 7), becomes very natural when
viewed from an effective field theory perspective. Such analysis was carried out in [127], where
the Cardy-like (small 7) expansion was shown to geometrically correspond to shrinking the
St circle, thus leading to an effective field theory on S® organized in inverse powers of the
circumference of S?.

In particular, a careful treatment of the Kaluza-Klein reduction on S! yields a result
compatible with (4.1.16), where the log N is associated to degeneracies of vacua. This
effective field theory approach clarifies the organization of the index in inverse powers of
|7| and further confirms the logarithmic term as certain degeneracy of vacua [126, 127].
Specifically, the effective field theory approach allows to establish the existence of a minimum
of Ser(u; A, 7) at w = 0, which spontaneously breaks the one-form symmetry Zy of the 4d
N = 4 SYM theory. The fact that u = 0 spontaneously breaks Zy implies the existence
of exactly N — 1 additional local minima which contribute equally to the index, hence the
log N correction to the logarithm of the SCI.

Summarizing, the logarithmic correction to the logarithm of the SCI, which we refer to
as AlogZcpr,, has been shown to be robust. In [103] it was originally obtained using two
different approaches to evaluate the index: the saddle-point approximation and the Bethe-
Ansatz approach. In the latter approach, the logarithmic term appears as the degeneracy of
the Bethe-Ansatz solutions. The same logarithmic contribution was also shown to persist for
a large class of N' = 1 superconformal field theories. The form of the logarithmic correction
was further confirmed in [128], which provides an interpretation for certain exponentially
suppressed terms. In [129], the logarithmic corrections were extended to other gauge groups
and the results were shown to be compatible with the SU(N) analysis.

The black hole entropy is extracted from the SCI by implementing an inverse Laplace
transformation, which yields the degeneracy of a state with given energy and charges. In
the regime of large charges, we can reduce the inverse Laplace transformation to a Legendre
transformation using the saddle point approximation. This is tantamount to changing from
a grand-canonical ensemble to a microcanonical one. At the leading order in N, the two
ways of approaching the entropy should be equivalent. However, when studying subleading
structures we have to be more careful, since the very process of going from one ensemble to
the other could modify the subleading corrections we are trying to probe. To be more specific,
let us call AScpt, the subleading logarithmic correction to the black hole entropy. Then we
expect that in general AScpr, = Alog Zepr, + (corrections from changing ensemble). Let us

now study more carefully the contribution coming from the change of ensemble.

84



4.1.2 The Logarithmic Correction Associated to Changing Ensem-
ble

We denote Zgc as the index computeded in the grand-canonical ensemble and Zy;¢ as the
index in the microcanonical ensemble, i.e., the index for fixed values of the charges. We

consider D chemical potentials p; (I =1,---, D) satisfying the constraint,

D
Z crity = no, (4.1.17)
I=1

where ¢y = 1 for uy associated to electric charges and ¢; = —1 for uy associated to angular

momenta. We implement the inverse Laplace transform which takes us from the grand-

canonical ensemble to the microcanonical ensemble

D D
Tac = JdDM dA exp {IOgIGc - Z Qrpr — A (Z cribr — no) } ; (4.1.18)

I=1 I=1

where A is the Lagrange multiplier associated to the constraint (4.1.17). Note that we have
already considered the case of equal angular momenta when computing the index in the
grand-canonical ensemble. Otherwise, we would have also needed an additional Lagrange
multiplier accounting for the constraint among rotations. We know the logarithmic correc-

tions in the grand-canonical ensemble takes the form
log Zgc = log Z02™® 4 log N (4.1.19)

Imposing (4.1.19), we find that the index in the microcanonical ensemble takes the form

D D
Iyvic = Ndeu dA exp llogIgecadmg) - 2 Qrinr — A (Z Cribr — no)] : (4.1.20)

I=1 I=1

We are now ready to implement the saddle point method, keeping the subleading logarithmic

corrections associated to the one-loop determinant. The saddle point equations are given as

D

a eadin 2 |
Eps logzgcd e - Z Qrpr — A (Z Crpy — no) =0,
=1 - (4.1.21)

=1

p . D D

A logIélecadmg) - Z Qrpr — A (Z critr — no) =0,
I=1 I=1
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which leads to

olo I(leading)

g
WBTe™ _ e,
I
, (4.1.22)
Z Cipr = ng-
=1
A very important property of logIg%ading) is its homogeneity of degree one in the chemical

potentials. This implies the following crucial relation

D (leading)
eadin; al 7
R (4.1.23)
I=1 Op
Evaluating at the saddle point values, we obtain
D
log Ze\eadine) Z (Qr + M), (4.1.24)

such that the saddle point imposed on (4.1.20) yields

D D
(leading) * * 1
Tyvc ~ N exp {logZG ? IzélQ[,uI — A ( E crpy — n0> — Elogdet (H)}

I=1
D D D )
* *
= Nexp Z (Qr + ciA) — ZQW}—A Zcml—no —§logdet(H)
I=1 I=1 I=1
_ NenoA—ilogdet( )
(4.1.25)
The Hessian H has the form
&2 log Iggading) #?log Iélecading) % log Igecading)
ony Op10pp Op1 0N
H = ~ : : . . (4.1.26)
02 log Igecading) 210 I(leading) 02 log Igecading)
6,uD6,u1' 5u ('/‘uD(?A'
02 logl—ékéadmg) 210 Z(leadmg) 3 log Iélecadmg)
Ao aAa,L D A2

Since log Iggading)

is a homogeneous function of degree one, the chemical potentials can
appear either in the numerator or the denominator in a way that the second derivative terms

appearing along the diagonal of H vanish when u; appears in the denominator. To keep
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track of this we define a list of numbers {01, -+ ,0p} such that d; vanishes when p; is in the
numerator of log Igecading) and it is equal to one otherwise. This implies the following scaling
of H

O(N2)61 ce O(N2) C1

det H ~ det . . : .|~ o(NAPY), (4.1.27)
O(N2> Tt O<N2)5D CpD
C1 e CD O

Defining D = d + 1, where d is the number of independent chemical potentials, the index

computed in the microcanonical ensemble up to logarithmic corrections takes the form
log Zye ~ noA + (1 —d) log N. (4.1.28)

Since the chemical potentials are constrained by having equal angular momenta as well as the
BPS condition, we have d = 3 and therefore the logarithmic correction in the microcanonical

ensemble is
ASCFT4 = —210g N. (4129)

We expect this 4-dimensional result to match with the subleading correction coming from

the 2-dimensional Cardy formula.

4.1.3 Black Hole, Its Entropy and Near-Horizon Limit

The non-extremal asymptotically AdSs black hole background was found in [24]. In the

Boyer-Lindquist coordinates z* = (¢, r, 6, ¢, 1), the metric and the gauge field are given by
2

[(1+ g*r?)p?dt + 2quv] dt 2q f

ds? = — = TRt (dt —v)?
,O2d7"2 p2
+ Rt T (d6* + sin®0 d¢* + cos*0 dy?) | (4.1.30)
3
4 Y34 (dt —v) | (4.1.31)
p*E

2For simplicity, we consider the black hole with equal angular momenta J; = J, and equal electric charges

Q1 =Q2 = Q3.
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where

a(sin0dp + cos’0dy), E=1-ag?,
_ (P +a®)?(A+ g% + ¢* +2d%g
2

N
Il

I
|

om (4.1.32)

pP=r*4+ad®  f=2mp® — ¢+ 2aqq%p” .
These black hole solutions are characterized by three independent parameters (m, a, q), and
g is the inverse radius of AdSs.
We are ultimately interested in exploring the black hole solution for the parameter space
satisfying supersymmetry and extremality, i.e. BPS. The supersymmetric limit corresponds

to

m
1+2ag"

q= (4.1.33)
However, this is not enough to ensure physical solutions and therefore we must also consider
an additional constraint to prevent naked closed timelike curves, which in the BPS limit
takes the form

2a(1 + ag)?(1 + 2ag)

m = . 4.1.34
p ( )

Extremality occurs when the inner horizon and the outer horizon coincide, which for our

solution gives the double root

2
pz_ U2+ ag) Jgr“g) . (4.1.35)

The macroscopic Bekenstein-Hawking entropy for the supersymmetric black hole, com-

puted as a quarter of the area of the horizon (in units of Gy = 1),

w2a®?\/2 + ag /3@2
= 4.1.

where we have written it explicitly in terms of the electric charge, @), and the angular

momentum, J. The remarkable achievement of [13-15] was to obtain this expression for the
black hole entropy as the Legendre transform of the leading N2-part of the SCI (4.1.16),
thus providing it with a microscopic explanation.

Given that the AdS/CFT correspondence geometrizes RG flow in the radial direction,

it is convenient to consider zooming into a near-horizon region (IR), rg, while assuming a
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co-rotating frame:

~ ~ ~

N 7 ~ 7 ~ 1
7"—)7“0—1—)\7", t—)X’ (ﬁ—)(b{—gx, w—>¢+gx, (4137)

where we have also imposed both (4.1.33) and (4.1.34). Taking A — 0 brings us to a near-
horizon region of the AdS; BPS black hole:

d 2 _ ~2d 2 d?N”Q As (0 d~ “‘d 2
§ = (T ar +TW + Ay ( )[ O+ T T]
~ ~ 2
+0(0) |4 + r(0)d + 5a(6) Far |+ iy 8, (4.138)
where
o — a
' 29(1+ 5ag)
Gy = 3a(l — ag) |
2
2(1 + 5ag)4 [a <a + E)
2a
Qg = ———~,
P g(1-ag)
4a(2 + ag)sin®0
A —
1(6) g(1 —ag)(4 — ag + 3agcos(26)) ’ (4.1.39)

_a(d—ag+ 3agcos(26))cos?d

A2(0) 29(1 - ag)2 )
B 6agsin?f
hil0) = 4 — ag + 3agceos(26)’
39(1 —ag)y/a(a+ 2
o (o+3)

(1 + 5ag)(4 — ag + 3agcos(20))

It is in the near-horizon limit at extremality where we find that the near-horizon geom-
etry is locally a U(1)*-bundle over AdS,. The asymptotic symmetries of this space can be
studied via the Kerr/CFT correspondence, which associates to each U(1)-fiber in (4.1.38)
a central charge and an effective temperature in the CFTy. We can apply the Kerr/CFT
correspondence to either U(1), and the results of the black hole entropy from the Cardy

formula are the same [18,79].
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4.1.4 Kerr/CFT Correspondence and Charged Cardy Formula

Let us briefly review the Cardy formula which determines the degeneracy of states in a
CFT,. We are interested in its application up to and including the logarithmic corrections
to the degeneracy of states, with constraints among the charges and chemical potentials. We
consider the partition function of a CFTy with n global U(1) symmetries expressed in the

grand-canonical ensemble
Z(r, 7, ji) = Tr 2miTLo—2miT Lo+2mip; P* : (4.1.40)

where P' are the conserved charges of the global U(1)’s, and p; are the corresponding chem-
ical potentials. One particular property of the CF'Ty with conserved currents is that under
modular transformations

/ ar +b / Hi

T —> T = y ; —> . = 5
ct +d i I ct +d

1=1---,n, (4.1.41)
the partition function transforms as (in a special choice of normalization)
Z(r ) = 6‘2’”(%) Z(r, i) . (4.1.42)
Therefore, the modular invariance of the partition function requires
Z(rr ) = 2 g <_l, b E) 7 (4.1.43)

where p? = pu;k" with kY denoting the matrix of the Kac-Moody levels of the U(1)

currents. The modular invariance (4.1.43) implies that for small 7

_omig?  2miB} | 2miBY n 2mip, pl)
T T

Z(r, T, i) ~e 7 e 7 7 : (4.1.44)

where EY, E% and pi are the lowest eigenvalues of Lo, Ly and P’ respectively. Moreover, we

take EY, E% to be negative, and p’ = 0, corresponding to an electrically neutral vacuum.
Let us take a moment to understand the charges p; of the theory, which include the

angular momenta py, ps and the electric charges ps, p4, ps, originally coming from the AdSs

black hole solution. Particularly, for the 5d BPS black hole of interest, such charges obey a
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linear constraint of the generic form

5
Dibip =M, (4.1.45)
i=1
where b° are some constant coefficients and M is related to the mass of the black hole. There-
fore, (4.1.45) implements the BPS conditions (4.1.33) and (4.1.34). Since we are considering
p' ~ O(N), it can be seen from (4.1.45) that M ~ N°.
In the grand-canonical ensemble, we fix chemical potentials and admit all values of

charges. We consider a linear constraint among chemical potentials

5
st =C, (4.1.46)
=1

where C is a constant of the order O(N?). The constraint (4.1.17) is a special case of (4.1.46).
As we are going to see, this leads to the result that in terms of the scaling of N, s* ~ k;;*.
Moreover, in order to compare to the CFT, with equal angular momenta, we consider an

additional constraint of the form
2 .
>t =0, (4.1.47)
i=1

of which the constraint p; = ps is a special case. To clarify how we use these constraints to
derive the logarithmic corrections, we carefully change to the microcanonical ensemble by
integrating over chemical potentials while respecting the constraints (4.1.46) and (4.1.47).

The density of states p(7, 7, f{) can be expressed as the inverse Fourier transform of Z(, 7, ji)

5 2
p(EL, Eg,p) = de d7 d" pdXy d)g exp | 2miS(p, T, 7) + 2miA (Z st — C’) + 2miAg Z o'

i=1 i=1

(4.1.48)

2 EY Ev ; % )
S(p,7,7) = —M———L+TR+M—7'EL+7"ER—Mip’, (4.1.49)

T T T T

where E;, Er and p' are the eigenvalues of Ly, Ly and P?, respectively, and n denotes
the number of independent chemical potentials. Before we proceed, we take a moment to
discuss the scaling of the various expressions and parameters involved. This is a crucial step
in understanding which terms contribute to the subleading corrections of the entropy. The

modular parameters are order-1 parameters: 7,7 ~ O(N?). Similarly, we take p' ~ N° and
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C ~ N°. From (4.1.49), we find that p? ~ p; p' 7, which solving for the scaling of y; gives
pi~ Pyt = i~ Y Pk~ (87 (4.1.50)
J

where we have made the summation over the indices explicit, to make it clear that the
highest order in the summation should be the scaling of y; and s'. Likewise, E;, ~ Er ~
B} ~ By~ 12 ~ ¥, 9ok

Therefore, we have related the different parameters to the matrix k;;, where the scaling
can be found via the Kac-Moody levels. There are two types of levels that we are interested
in. The Kac-Moody level from the SU(2) rotation, i.e. k! or k%2, is proportional to the
central charge ¢ [130], which is of the order of Newton’s constant G~! ~ N2. The Kac-Moody
levels from U(1) gauge symmetries, i.e. k% (i > 2), are proportional to N2 [131,132]. For
the BPS AdS; black hole, the N-dependences of various factors are

EV E% ~N?, 4E, —P? Ep~N?, K'NE?~N? E¥ EYES ~N2 (4.151)
which implies that ki1, kso ~ N=2 and kss, kaa, ks5 ~ N2. Moreover, this also implies that
st=s*~N? s =s5"=5"~N72 (4.1.52)

or likewise s; = s5 ~ N° s3 = 54, = s5 ~ N° Due to the definition of y; and p; as
u = ,uz-ujk;ij and P? = pipjkij , we lower and raise the indices of p;,p; and s; with k;;.
However, for a; we do not need to raise indices with k;;, as oy and ay are the net scaling
because the right hand side of (4.1.47) is zero.

With these scalings in mind, we can now proceed to compute the saddle point. From

(4.1.48) and (4.1.49) let us define

5 2
§(u, T, 7) =S, 7, 7)+ N\ (Z s'py — C’) + )\QZO/M. (4.1.53)
i=1

=1
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The equations for the fixed points have the form

oS kit (po)i

=12 -2—2]—#+m—pi+/\18i+)\20@= ;
opt T T
05 ki (po)s

i=3,45: O okt i,
ou’ T T
08 T A
ot T =l
o8 By
52_7——2—'_ER: ’
08 :
8_)\1228/“_0: :

05 &

We define the values of the saddle to be (p;)o, 70 and 7y, such that (4.1.54a) gives

( ) kij (p{)—pjTo—i-)\lSjTo-l-/\gOijo),
Hi)o = A A .
kij (p% —pJTo + )\18]7'0) s

NI= N

where we can redefine p’ by shifting it as follows

pt— M\t — X, i=1,2,
pt— A5, i=3,4,5.

Therefore, we rewrite
1 ) )
(Mi)o = 5’%‘ (pf, —2377'0) )
with 7y satisfying
7o EL = pg + E7 — (1)op, -

Using (4.1.57), we find that

i=1,2,
i=3,4,5,

1 o o 1 o 1 o
uy = 7 kpll + 7ok D] = Shpplmo = Jhymod' D

4

(4.1.54a)
(4.1.54b)

(4.1.54c)
(4.1.54d)

(4.1.54¢)

(4.1.54f)

(4.1.55)

(4.1.56)

(4.1.57)

(4.1.58)

(4.1.59)

where k;,, k" = 6!, and in the second equality we have assumed that the vacuum is electrically
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neutral, i.e. p! = 0. Inserting (4.1.59) in (4.1.58), we obtain

4(-E7)
AEL — kijp'p?

To = +i (4.1.60)

The saddle point for 7 trivially is 7o = +i4/ % Consequently, (u;)o given by (4.1.57) now

has the form
1 A ‘ . —E}
. = — =K. = I . —_— . 4.1. 1
(,UZ)O 2]{:2]1377_0 +zkzjﬁ 4EL - kijﬁlﬁ] ( 6 )

Imposing (4.1.54f), we find

2
. - Ev
i) = —kyad PPy [——L——— =0 =  olkup'+alknp? =0. 4.1.62
; ( )0 J 4EL . k”plp] 11 22 ( )

Choosing the normalization of the Kac-Moody levels such that kj; = koo, we can solve for

the Lagrange multiplier A,

o' kipt + oPkynp® =0,
= k(' (p" = Mist = Xaad) + 2(p* — A5 — Aaa')) =0, (4.1.63)
= a'p' +a?p® — M(a's® +a?s?) — X ((0')? + (?)?) =0

We now set a! = —a?, since both p' and p? should have the same scaling. Therefore, we
obtain
Qaq, Qg ~ ]_, (4164)
and
al~a?~1, (4.1.65)

where we do not need to raise indices with k;; here, as a; and «y are the net scaling, and
the right hand side of (4.1.47) is zero. Moreover, s' = s* as they correspond to the equal
angular momenta. We then find from (4.1.63) that

1_ 2 (4.1.66)

which vanish for p! = p?. This implies that Ay does not affect the logarithmic corrections to
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the entropy for the case of equal angular momenta, as its contribution to the determinant of

the Hessian matrix is of the order O(N?). We are also interested in the scaling of A;. From

(4.1.54e), we find
5 o
Ypi)o = —kijs’ '4 [ ——L __ =C. 4.1.67
Zi:S (1) is'D 1B, — kypp ( )

As we expect the scaling to remain the same for any arbitrary values of the charges, we
consider a special case p' = p! = 0 and find from (4.1.56) and (4.1.67) that

5 5 .
i i ABL — M 250 kis's’
/\1 ; kiis s = O\/ EZ 9

5 2 5 .
— 4F )\2 - k’iiSlSz
= M| D kus's' | =C? EUL - 1Z’Ev , (4.1.68)
i=1 L L

5 2 5 .
o > kys's' Er
= )2 k;:s's’ +02M — 402 =2

Let us now discuss the scalings of each of these terms. Given (4.1.51) and (4.1.52), we have
at the leading order E;, ~ EY ~ N2 C ~ N° and k;;s's' ~ N? and therefore

A~ N2 (4.1.69)

The leading order value of the degeneracy is obtained by evaluating the action at the

saddle point values, which gives

log po = £/ B} (4B, — k') + 2/ EnFy (4.1.70)

We would like to comment on the scaling with respect to N in (4.1.70). At the leading order,
Ais® ~ O(N™2) which implies that O(p*) ~ O(p'). Therefore, (4.1.70) coincides with the
leading order of the degeneracy with p’ replaced by p’. This is important as we can see that
the constraint we imposed only affects the subleading order of the entropy.

Note that we have more than one saddle points, namely one for each choice of signs in

the values of g, 7o, (11;)0. However, one saddle dominates over the others as S(u,7,7) is
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exponentially suppressed. To see this explicitly, let us take

A(—FEY —FEY , —EY
(—L>‘~7 To = 1€z £, fip = —ierki; P\ |,
4B — kijp'p? Er ’ AEL — kijp'p?

(4.1.71)
where €, and €- take on values of +£1. Then, under the constraints imposed by the Lagrange

To = 1€,

multipliers, the density of states (4.1.48) can be approximated by the saddle points

po = Z exp (2miS(p, 7, 7))

erer=11
. P°\/—E} 4F;, — P?
= Z exp { 2mi s L _je (—EY) L ZD + i€e-(— -
L= 2 VAE[ — P? A4(—-E}) —E
—4EY —F? —-LEy
- TE L TE B _ (- T
ie.Ep, 4EL—772+26 Mg, (—ie,)P? 4EL—772]}
= Z exp l27r <57\/—Ez(4EL —P?) — ET\/—4E%ER>] .
erer==11
(4.1.72)
If we now select the combination of ¢, = 1 and ¢ = —1, which maximizes the exponent in
(4.1.72), we can write
Po ~ €Xp l27r <\/—Ez(4EL —-P?) + —4E}’%ER)] +..., (4.1.73)

where the dots denote the exponentially suppressed terms of subleading non-logarithmic
order. To summarize, given the behavior of Z, the degeneracy p can be determined using

the saddle-point approximation with the dominant saddle at

1E} i By, - EY
— - = — — _ . = —k _— 4.1. 4
To 4EL_,P2, T0 ER, Hi0 ij D 4EL_,P27 ( 7 )

where k;; is the inverse matrix of £, and P? = p'p’k;;. Note that the saddle-point values 7,
and (u;)o are parametrically small, as P? » |Fy|, which is reminiscent of the 4d Cardy limit
originally used in [13,14] and recently clarified in [126,127]. Moreover, the Cardy limit in
2d, which assumes that the levels of the theory is much larger than the Casimir energy, is
compatible with the Cardy limit in 4d, which focuses on small chemical potentials and large
charges, as they both address the high energy states of the theory and in our particular case
address the entropy of extremal black holes.

At the saddle (4.1.74), the density of states p reaches its extremum pg, and the corre-
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sponding entropy is

S(po, 10, To) = log po & 27T\/—EZ(4EL — P2%) + 214/ —E}(4ER) . (4.1.75)

This expression is also called the charged Cardy formula in [133], which implies a micro-

canonical ensemble of black hole microstates. If we apply E} = E}, = —c/24, and define the
temperatures 17, p through
P2 g2 2

Er — T Ech, Er = ECT}%, (4.1.76)

we can rewrite the entropy (4.1.75) as

2 2

S = %CTL + %CTR, (4.1.77)

where Tg is proportional to the physical Hawking temperature Ty. This formula coincides,
at the leading order, with the canonical ensemble version of the charged Cardy formula, and
has been successfully used in a variety of cases [16,83,134-136]. However, we emphasize that
obtaining (4.1.77) did not involve a change of ensemble, as we merely re-identified certain
combinations.

From the near-horizon CFTy and the Kerr/CFT correspondence we know that for the
BPS AdS; black hole

2 1 N2 2
cr = Jma __ 18Nag)” (4.1.78)
Gng(1 —ag)(1+5ag) (1 —ag)(1l+ 5ag)
1+ Sag 2
T, = — 2% z 4.1.79
b 3a(1 - ag)m a(a+g)’ ( )

where we have used the AdS;/CFT, dictionary %NQ = ﬁﬁg = m. Note that both ¢j,

and T, are dimensionless. Consequently, the BPS AdSs black hole entropy at the leading
order in N is given by the Cardy formula

w2 2N?7(ag)¥?\/2 + ag

Scrr, = —c1Tp =
CFT2 3CL L (1 — ag)?

(4.1.80)

This near-horizon CFT5 result matches the macroscopic Bekenstein-Hawking entropy of the

black hole (4.1.36), as shown in [17,18,79].
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4.1.5 Logarithmic Corrections from Near-Horizon CFT,

To derive the logarithmic corrections to the black hole entropy from the near-horizon CFTs,
we evaluate the Cardy formula beyond its leading saddle-point value by including its Gaus-
sian correction. Namely, we consider a logarithmic correction AScpr, obtained from ex-

panding 7, 7 and [ to the quadratic order around the saddle point given by (4.1.74). The

result is

1 det A

AScpr, = ——10gW7

5 (4.1.81)

where A is the Hessian of the exponent in the integrand of (4.1.48) around the saddle point
(4.1.74), and has the form A, = 25

oxHoxv

elements in the presence of constraints are

where z# = {7, 7, A, p*=1""} whose only non-trivial

?5 o Fii (1o
oTou’ T
28 2 o .
PR 7_—5, (k’z‘jw Jo(1)o + EL) )
2S  _Ey,
oo T 4 =3
o7 7o (4.1.82)
=S _ sy, (i=1 5)
(})\1(?/112 — 9 - )
025
- = @, , =1,2
g o U )
25 L ky
optop o

We see that kj; and koo come from the SU(2) rotation, which corresponds to the angular

momenta, while £” (i > 2) come from the U(1) gauge symmetries. At the subleading order

the Hessian takes the form

(27T)n+2
16

n+1

det A =

where

(—Ep)”® (4B —P?)

n+3

2 (—EY)72 (4ER)? det(H), (4.1.83)

: (4.1.84)
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and

I L (4.1.85)
a1 Qo 0 0 0

Note that this result is different than in [131], as we have considered two linear constraints
on the chemical potentials.

For supersymmetric extremal (BPS) black holes, one of the Frolov-Thorne temperatures
Tgr vanishes, as it is proportional to the Hawking temperature, and only the left sector

contributes to the black hole entropy. Consequently, (4.1.83) for BPS black holes becomes

(2m)"*2 L —ni 0y 3
(det A)gps = = (—F})~F (4B, — P8 det(H), (4.1.86)
where 52
B = 2—04 AE, — P2 = %ch. (4.1.87)

With the scalings in (4.1.51), (4.1.52) and (4.1.64), the Hessian takes on the N-dependence
det H ~ N?, (4.1.88)

such that

n+3

(det A) adass Black ote ~ (N?) ™% (N?)*3° (N?) = N*. (4.1.89)

Note that the result is independent of n since the scaling of EY and 4F; — P? are equal.
Therefore, the logarithmic correction to the leading-order BPS AdS; black hole entropy

(4.1.80) is
det A

1
ASCFTQ = —§10g

which precisely agrees with AScpr, in (4.1.29).

4.2 AdS; Black Strings

4.2.1 AdS; Black String Entropy from Boundary N =4 SYM

A rotating AdSs black string solution in gauged supergravity has been discussed in [133,
137], where it was shown that its leading-order entropy can be obtained from the refined
topologically twisted index of N =4 SYM on S? x T?.

The topologically twisted index of N' = 4 SYM with gauge group SU(N) is defined as
the supersymmetric index of the theory on 7% x S? with a topological twist on S? [138,139),
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its Hamiltonian interpretation being
Z(Pa; Ng) = (—1)F 212N pitada (4.2.1)

The topologically twisted index depends on a set of chemical potentials, A,, for the gen-
erators of flavor symmetries (a = 1,2,3), a modular parameter of the torus 7 and magnetic
fluxes p,. The topologically twisted index of N' =4 SYM with gauge group SU(N) admits

a presentation as an integral over the space of holonomies in the following way:

Z paa a N' Z§ H duun ZTT(U AmT pa) )

0, (uij;T) 3 m(q) mij—pa+1
Zrr(u, Ay, T,Pa) = H [Wﬂ <91 (wij + Aa;T)) ] ;

ij=1

(4.2.2)

where 7(q) is the Dedekind eta function that we define in Appendix C.1. We can evaluate

(4.2.2) as the sum over residues [139] which takes the following explicit form:

Z(pa, Aa) = n(q)* ™0 Y ]_[ [H (91 eul]“;g) )> _pa]Hl(fb,A,T), (4.2.3)

u€BA i,j=1

where, analogously to the SCI discussed in Sec. 4.1.1, BA stands for the set of solutions to
the Bethe-Ansatz equations (4.1.3), and H(u, A, ) is the Jacobian defined in (4.1.5). The
location of a set of such residues was found in [125] and have the form given by (4.1.6)
labeled by {u;} with integers {m,n,r}.

In fact, the set of solutions found in [125] inspired the evaluation of the SCI carried in [15],
where the {u;} are also organized according to equation (4.1.6), however, in the large-N limit,
it was possible to argue that the configuration corresponding to {1, N,0} was dominant. For
fixed {m, n,r}, it is possible to count how many values of @ give non-equivalent contributions
to topologically twisted index (by non-equivalent we mean, those which are not identified by
periodicity w ~ u + 1 or u ~ u + 7). Once again, imposing the SU(N) constraint we find
that:

u:%—%[n(m—1)+m(n—l)<7+%>]a
0,1,--- ,N—-1,

(4.2.4)

which reduces to (4.1.9) for {m,n,r} = {1, N,0}. We then conclude that there is a degeneracy

factor of N for each {m,n,r} configuration contributing to the topologically twisted index.
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To argue that there is no other contribution of the same order that spoils the value of
the coefficient of log N would require a more detailed study of the large-N behavior of the
topologically twisted index, which has been studied recently in [124] at the leading order
in N. A systematic study of subleading corrections to the topologically twisted index still
remains an open problem. It is, however, very tempting to conjecture that indeed, there
is no contribution other than the one originated from degeneracy of Bethe-Ansatz solutions
and, consequently, the coefficient of log N is 1 also for the topologically twisted index in the
grand-canonical ensemble.

One can further refine the topologically twisted index by adding a rotation on S? [138].
This will modify the integral expression (4.2.2) through the appropriate fugacities associated

to the rotation on S?, namely £ = ¢*™*. To be concrete, we would have:

N ) 3 . m;j—pa+1
01 (i + 2wj; 7) in(q) v
2 A _ j ) .
TTref(uv ar Ty pa) H [ 1 (q) 1_[ 91 (Uz‘j + Aa + 2UJ], 7-)

(4.2.5)

The refined topologically twisted index has been studied, in the strict Cardy-like limit,
in [137], where the correction due to the refinement could be factored out in the following
way:

Z(paa Aa)reﬁned’ = Z(pa: Aa)Zw ’ (426)

T—0

where Z(p,, A,) is the unrefined topologically twisted index, and Z, is the correction associ-
ated to the refinement. The explicit form of Z, is irrelevant to us, while only the fact that it
is independent on u, p, and A, will be important. To the best of our knowledge, the direct
application of the Bethe-Ansatz approach to the refined topologically twisted index has not
been performed yet. However, we can exploit the fact that in the Cardy-like limit there is
a simple connection to the unrefined index, namely (4.2.6), and based on the intuition we
have gained by studying the SCI, to argue that the combinatorial origin of log NV corrections
is still there at small 7, therefore we do not expect it to go away as we depart from the
Cardy-like limit.

As we have discussed in the AdSs black hole case, the logarithmic correction to the
entropy can be seen as essentially arising from the degeneracy of dominant Bethe-Ansatz

solutions to the appropriate partition function of the boundary A/ = 4 SYM. As in the case

101



of the SCI, the logarithmic correction we compute for the topologically twisted index is in
the grand-canonical ensemble. However, since we find that the result matches that of the mi-
crocanonical ensemble, we conjecture that there are no additional logarithmic contributions
associated to the change of ensembles. Therefore, for the BPS rotating AdS; black string
considered in [133,137], the logarithmic correction to log ZU¢2d8) (p, A,) can be obtained
from the degeneracy of dominant residues contributing to the topologically twisted index of
N =4SYM, ie.

Alog Z(pa, Ag) = log N . (4.2.7)

This result has the same origin (in the Bethe-Ansatz treatment [15]) as in the SCI, and we
expect a similar robustness as the logarithmic correction to the AdSs black hole.

Since log ZU°2dm8)(p, A,) ~ N? and it is homogeneous of degree one in the chemical
potentials, it is possible to apply the result of Sec. 4.1.2 to conclude that the logarithmic
correction has an additional contribution from the change of ensemble which again takes
the form —dlog N, where d = 3 is the number of independent chemical potentials for the
rotating AdS; black string. We then conclude that

AScpr, = (1 —d)log N + O(1) = —=2log N + O(1). (4.2.8)

4.2.2 AdS; Black String Entropy from Near-Horizon CFT,

The near-horizon geometry of the rotating AdSs black string solution is [133]

. (~mIme | dr2  We? M ;
ds =5 —r? dr? +—+ vl d —mrdr
(M I\

s df* + sin“0 | dy + v dy , (4.2.9)
where M = —ppops is the product of magnetic charges, and J is the angular momentum,
while

= (")’ + )"+ (°)° —20'p* +p'p’ + p*p%),

= (-p' +p +p ' =P+ 0"+ P 1Y), (4.2.10)
_ —Aqp'p*p® = J?

W= @ ,
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with ¢p denoting the momentum added along the black string direction. Using the standard

Kerr/CFT correspondence, we obtain the central charge of the near-horizon CFTy

_6M
TGO

cr (4.2.11)
This central charge was found in [133] as a Brown-Henneaux central charge [59].

To compute the black string entropy using the Cardy formula, we still need the Frolov-
Thorne temperature, which can be computed from the standard formalism for the Kerr/CFT

correspondence [140]

VWO
2T M
Therefore, the Cardy formula leads to the rotating AdSs black string (BS) entropy

w2 T W

Sps = —c Ty, =
BS SCLL G4’

T, = (4.2.12)

(4.2.13)

which is the same as the leading-order rotating AdSs black string entropy [133,137].

For the logarithmic correction to the AdSs black string entropy from the near-horizon
CFTs,, we apply the same technique as the AdSs black hole case. As mentioned in [133,137],
the rotating AdSs black string solution has one angular momentum and three electric charges.
Similar to the BPS AdS5 black hole case,

C ~ ~ l"\a - Z: oL
N*, KM~ N K'Y~ N? (i=23,4), (4.2.14)

where we take n = 4 in the general formula (4.1.86) due to the following reason. Three U(1)
electric charges have three corresponding chemical potentials A, subject to a constraint,
hence there are only two indepedent U(1) electric charges. The angular momentum J
appearing in the second line of (4.2.9) can be viewed as an additional U(1), which can be
treated in the same way as a U(1) electric charge [21], while in the first line of (4.2.9) there is
actually another angular momentum hidden in the BTZ part of the metric. Hence, from the
near-horizon region of the rotating AdSs black string there are still one angular momentum
and three U(1) charges (including J), which are independent of each other. Unlike the AdSs
black hole case where we can choose one of the two angular momenta, for the rotating AdSs
black string the way of counting near-horizon symmetries is unique.

The reasoning of Sec. 4.1.5 can be followed in its entirety except that from the start there
are only 4 chemical potentials, one conjugate to angular momentum and three conjugate to
electric charges, obeying one constraint. This is in contrast with the AdSs black hole with

5 chemical potentials, two conjugate to angular momenta and three conjugate to electric
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charges. The scalings of the Kac-Moody levels and other parameters are the same. Moreover,
only one Lagrange multiplier is needed, \;, and we find that det H ~ N2, as in the case of
the AdSs black hole with the same final result as in (4.1.90). Consequently,

_n+1 n+3

(det A)Adss Black String ~ (NQ) T2 (N2> 2 (NQ) = N4, (4.2.15)

and the logarithmic correction to the leading-order AdSs black string entropy (4.2.13) is

det A

Gy = ~2losN + O(1). (4.2.16)

1
ASCFTQ = —5 log

4.3 Discussion

In this chapter, we have explored logarithmic corrections to asymptotically AdS5 supersym-
metric extremal, rotating, electrically charged black holes and black strings. For each case
we examined the microstate counting in the context of N' = 4 SYM whereby it reduces to
a combinatorial contribution from the space of solutions. We also approached the logarith-
mic corrections to the entropy by considering the microstate counting in the near-horizon
geometry and its dual CF'Ty, where the logarithmic corrections arise as subleading contri-
butions in the Cardy formula for the degeneracy of states. We found that the results from
both approaches precisely match for both AdS; black holes and rotating black strings. It is
instructive to write our result as (1 —d)log N to note that the logarithmic correction has two
contributions, one that has a completely combinatorial origin and is rather universal, namely,
log N, while the other contribution from the change of ensemble depending on the number
of independent chemical potentials of the theory, —dlog N. Since we have 3 independent
chemical potentials, we obtain —2log N as a correction to the microscopic entropy.

Our agreement in using the Cardy formula to its logarithmic precision should come more
as a surprise than as a foregone conclusion. There is precedent where the Cardy formula leads
to the wrong answer for logarithmic corrections [21]. Although the subtleties in applying
the Cardy formula beyond its intrinsic regime are numerous, we expect that our positive
results indicate the existence of resolutions which take into account particular properties of
the spectrum [141,142].

It would be interesting to derive the logarithmic corrections directly from the macroscopic
one-loop contribution in type IIB supergravity. It is also natural to extend our near-horizon
analysis to asymptotically AdS black holes in other dimensions. This route is certain to
encounter obstructions in the form of zero modes, as is the case for asymptotically AdS, and

AdSg black holes. Indeed, it has been shown that the one-loop supergravity contribution to
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the logarithmic corrections for asymptotically AdS, black holes [97] is different from the one
obtained in the near-horizon approach [95,96]. Our work indicates that given the absence of
obstructions (zero modes) in odd-dimensional AdS spacetimes the counting can be performed
at the near-horizon level, paving the way for a quantum entropy formula & la Sen [143]. Tt will
also be interesting to explore the implications of our near-horizon results within supergravity

localization along the lines of [48,144].
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Chapter 5

Four dimensional AdS Spacetimes

5.1 Summary of results

In this chapter, we take a practical, bottom-up approach to the question of logarithmic con-
tributions in four dimensions. Our main result is the computation of logarithmic correction
in /' = 2 minimal gauged supergravity. We also present results for minimally coupled fields
as well as for the Einstein-Maxwell theory with a negative cosmological constant.

The black hole we are interested is the AdS-Kerr-Newman geometry [75, 145, 146]. In
the extremal case, we will also consider the near horizon geometry which includes a warped
circle fibration over AdS,. Our results also give the logarithmic correction to the free energy
of thermal AdS,. They can also be applied to the hyperbolic black hole [147] from which we
obtain the logarithmic corrections to the corresponding entanglement entropy.

The microcanonical entropy of the black hole is given by

A
+ ClogA+ ..., (A — +x0) (5.1.1)

S=1c

where A is the area of the horizon and the subleading logarithmic term is the explicit quantum
correction we seek. We are interested in the coefficient of the log A in the “isometric” scaling
regime where all length scales (in Planck units) are multiplied by A and we take A — +00.

The logarithmic correction receives two types of contributions
C= Clocal + Oglobal . (512)

The global contribution Cgiopar is an integer that captures the contribution from the zero
modes and from the change of ensemble from canonical to microcanonical. The more in-

teresting local contribution, Ciyca, receives contributions from the non-zero modes and can
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Multiplet ag c by b

Free scalar =5 | 135 = (A(A = 3) —2)? 0

Free fermion —a | & | S (A %)2 ((A — %)2 _ 2) 0

Free vector %810 % 0 0

Free gravitino —% —% —% 0
Einstein-Maxwell % % —% 0

N = 2 gravitini —% —% 0 %

N = 2 gravity multiplet | —4 0 —1 13

Table 5.1: Results for the Seeley-DeWitt coefficient a4 responsible for the logarithmic cor-
rections. The results for ay and a, are given in Table B.1 in Appendix B.4.

be computed using the heat kernel expansion. It is given by an integral over the Euclidean

spacetime

Clocal = Jddxx/géu(x) ) (513)

where the so-called fourth Seeley-DeWitt coefficient is a sum of four-derivative terms

asy(r) = —agBy + cW? + b R* + boRF,, F", (5.1.4)

evaluated on the background. The backgrounds we consider are solutions of Einstein-Maxwell
theory with a negative cosmological constant. Using the equations of motion, a general four-
derivative expression such as a4(x) can always be decomposed in the above basis. The
expression of Euler, F;, and the Weyl tensor squared, W?2, are given in (5.3.2). The heat
kernel expansion provides a way to compute these coefficients from any two-derivative action

using the formula (5.2.23). The results are summarized for the theories studied in this chapter
in Table 5.1.

107



Our final result for the Seeley-DeWitt coefficient of minimal N = 2 gauged supergravity

takes the form " 13 13
(4m)%ay(z) = 5P~ %RQ + 1—8RFWFW : (5.1.5)

Evaluating this expression on the BPS Kerr-Newman black hole, we obtain
11 26  a(?—40—a?)

Clocal = 5~ 3 (0 —a)(a? + 6al + £2)’

(5.1.6)

where a = J/M is the rotation parameter and ¢ is the AdS, radius. The integer corrections,
Cliobal, are summarized in Table 5.2.

We observe that the logarithmic correction for a BPS black hole in gauged supergravity
has a richer structure than in flat space: the logarithmic correction is non-topological, i.e.,
its coefficient is mot a pure number but depends on black hole parameters. Our result is,
to our knowledge, the first computation of the Seeley-DeWitt coefficient ay4(z) in gauged
supergravity. We find that the non-topological contribution comes from the additional four-
derivative terms R? and RF,, F*. In the flat space limit, these terms both vanish and the
logarithmic correction becomes topological and gives Clyea = %. This was shown in [148,149]
and is a non-trivial consequence of supersymmetry.

We suspect that the non-topological piece can be interpreted as a contribution from the
AdS boundary. It is possible to interpret the logarithmic correction as the Atiyah-Singer
index of an appropriate supercharge [150]. We surmise that the non-topological term should
correspond to the n-invariant which is a correction due to the presence of a boundary.

We note that according to microscopic computations [95,99, 100,104, 151], we expect the
full logarithmic entropy correction to be topological. Such expectation has been confirmed in
various 11d supergravity computations [97,100,104,151]. There is, however, no contradiction
because the 4d minimal gauged supergravity is by itself not the low-energy effective theory
of a UV complete theory as matter multiplets, arising from Kaluza-Klein reduction, need to
be included. Nonetheless, our result shows that supersymmetry is not enough to guarantee
a topological logarithmic correction. This observation suggests that the topological nature
of the logarithmic correction could be used to indicate which low-energy theories admit a

UV completion®.

IThe possibility of using the topological nature of logarithmic correction for such questions was emphasized
to us by Alejandra Castro and was discussed in [152].
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5.2 Logarithmic corrections in AdSy

In this section, we review logarithmic corrections to black hole entropy and the heat kernel
method for their computation [21-23]. This method has been chiefly applied to asymptoti-
cally flat black holes. We also explain how to apply it to asymptotically AdS black holes.

5.2.1 Euclidean quantum gravity

We consider theories of Einstein gravity in D dimensions coupled to matter fields. We restrict
to theories with a scaling property so that purely bosonic terms have two derivatives, terms
with two fermions have one derivative and terms with four fermions have no derivative. This
covers a wide range of theories, such as Einstein gravity with minimally coupled scalars,
fermions and gauge fields, but also a variety of supergravity theories at a generic point in
the moduli space. We also allow for the presence of a cosmological constant.

We now consider a black hole solution in this theory. To define the quantum entropy of
the black hole, we use the fact that this black hole appears as a saddle-point of the Euclidean
path integral

Z(B) = | DV, (5.2.1)

where Sg is the Euclidean action and the integration is done while fixing the temperature
B, thermodynamically conjugate to the mass, M, and appropriate chemical potentials p®
associated to the U(1) charges ¢,.

Upon studying the black hole solutions, we probe the Euclidean spacetimes via a con-
tinuation to imaginary time and analytically continue the action. For the case of the Kerr
solutions, these quasi-Euclidean metrics are complex and do indeed give appropriate thermo-
dynamics, see for example [153]. Our computations focus on the small fluctuations around
the complex saddle points and we do not expect the subtleties of analytic continuation to
affect these quantum corrections. Therefore, for the sake of this chapter, we consider these
quasi-Euclidean solutions (which we call Euclidean) as is, and leave the subtleties of space-
times with complex metrics for future study. We simply comment that complex solutions in
Euclidean gravity is an evolving subject and we refer the reader to a few examples in the
literature [154,155] as well as more recent discussions on this matter [156, 157].

The black hole entropy is given by the Legendre transform

S =logZ + M + Zuaqa : (5.2.2)
At leading order, the classical approximation log Z = —Sgical ig the Euclidean on-shell
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action. It is a classic result of Gibbons and Hawking [153] that the transform leads to the

Bekenstein-Hawking entropy formula

_ Area(qa) N

S="—1z (5.2.3)

At one-loop order around the saddle-point, we obtain

1 __ Qclassical
SE

Z(B, pto) ~ ———=¢ ) 5.2.4
where Q = ‘?% is the quadratic operator for the fluctuating fields on the background. This
expression is divergent and needs to be regulated. The one-loop correction to the black hole
entropy is

0S = —%logdet Q. (5.2.5)

5.2.2 Scaling regime

The result for the logarithmic correction is highly sensitive to the precise scaling regime we
consider. To isolate the logarithmic correction, we consider a reference configuration with
fixed length scales El(»o). In the example of AdS-Schwarzschild, these length scales can be taken
to be the AdS, radius ¢ and the horizon size r,. We then consider a rescaled configuration

where all length scales are multiplied by the same factor A » 1: ¢; = /\EZ(»O). We are then

interested in the coefficient of log A in the one-loop correction to the entropy of the rescaled
configuration.
This scaling regime is “isometric” because it only magnifies the geometry without de-

forming it. As a result, the eigenvalues of Q are given by

Ko = A5, (5.2.6)

where £\ are the eigenvalues of the reference configuration. As explained in the next section,
this relation is important to ensure that the logarithmic correction depends only on the small
s expansion of the heat kernel.

For more general scaling regimes, there will not be any simple relation between the
eigenvalues of the scaled versus reference configuration, because the geometry gets deformed.
In this case, the logarithmic correction cannot be computed by the heat kernel expansion
and would require knowledge of the heat kernel at general values of s. For a background with

k independent length scales £y, ..., ¢, (in Planck units), the general logarithmic correction
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would take the form

A k
S + Y Cilogli+ ... | (5.2.7)
i=1

RTe]

with an independent coefficient C; for each independent length scale /;. In these terms, the

heat kernel expansion can only give us the sum

k
C=>0Ci, (5.2.8)
=1

without being able to access the individual C;. Indeed, C' is the coefficient of log A\ if we
write £; = A with ¢ fixed.

Let us now contrast this regime with the flat space regime of [21-23]. In flat space,
we do not rescale the mass m of massive fields. As a consequence, it can be shown that
massive fields do not contribute to the logarithmic correction of flat space black holes. In
AdS, the prescription is to fix the conformal dimension, or equivalently the combination m/,
so we get non-trivial logarithmic corrections for massive fields as a function of the conformal
dimension. Clearly we can see that in the flat space limit ¢ — +o0o, only fields with m = 0
can contribute and in that limit, we actually reproduce the scaling regime of [21-23]. We
indeed see that we reproduce known results for flat space black holes by taking the flat space
limit of our results.

It can also be shown that higher loops do not contribute to the logarithmic correction
as they are suppressed by positive powers of A [22]. Summarizing, the logarithmic correc-
tion to the entropy arises only at one-loop from the two-derivative Lagrangian and can be
unambiguously computed in the low-energy effective theory.

For extremal black holes, we need to be more careful. In particular, the thermal circle
is infinite which naively makes the Euclidean on-shell action divergent. To obtain a well-
defined g — 400 limit, we remove a divergence that can be viewed as an infinite shift in the
ground state energy. This can be made precise using the quantum entropy function [143]
in which the quantum entropy is defined using the AdS,/CFT; correspondence in the near

horizon geometry. This procedure was used, for example, in [19-21].

5.2.3 Heat kernel expansion

We will now describe the main technical tool which makes possible the exact computation of
the logarithmic correction for a variety of black holes: the heat kernel expansion [158-160].
The one-loop correction to the partition function decomposes as a contribution Z,, from

the non-zero modes and a contribution Z,,, from the zero modes of the corresponding kinetic
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operators, so that we have

class.
SE

Zl—loop(ﬁv ,uoz) = ansz e (529>

The one-loop corrected Bekenstein-Hawking entropy, defined in the microcanonical ensemble,
takes the form

A
S = E + (Clocal + Cglobal) 10g>\ .o (5210)

Here Cigear is the local contribution computed using the heat kernel. The global term Cgjopal
is an integer correction due to the zero modes and the change of ensemble from canonical to
microcanonical. We now explain how to compute the local contribution. It originates from

the non-zero modes
1 v
log Zy, = —§; log Ky, | (5.2.11)

where k,, are the eigenvalues of the quadratic operator Q and the primed sum runs only over

the non-zero eigenvalues k,, # 0. This can be computed by introducing the heat kernel
Ze*w Fh@) f2 (2) G (5.2.12)

where {f%} are the ortho-normalized eigenfunctions of Q with eigenvalues {x,} and Gy is

the metric on field space. In particular, we have
J dPx\/g K(x,s) Ze St — Z/e’s”" + Ny (5.2.13)
M n
where N, is the number of zero modes. We will make use of the relation

(0) : * ds —SK —sk(0)
log k — log k" = — hr% — (e —e > . (5.2.14)
€—> € S

In our scaling regime, the eigenvalues are rescaled according to (5.2.6). This allows us to

show that we have

€A
log Zn, — log 20 QJ ds (f dPx\/g K(z,s) — sz) : (5.2.15)
€ M

S

The above expression makes it clear that only the range of very small s contributes due to a

cancellation between Z,, and ZIEQ). We can then use the heat kernel expansion which states
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the existence of a small s expansion of the form

K(z,s) = Z s DRy, (1) (5.2.16)

n=0

where D is the dimension of spacetime. The coefficients ay, () are known as Seeley-DeWitt
coefficients. For smooth manifolds, ay,(x) is a sum of 2n-derivative terms constructed from

the fields appearing in the action [158].

We are mainly interested in D = 4 for which we have
K(z,5) = s %ap(x) + s az(z) + s%ay(z) + O(s) . (5.2.17)

We want to compute the log A contribution in log Z,,,. The integral (5.2.15) makes it clear

that this comes from the a4 coefficient and we have
log Ly = Clocal log A+ ... , (5.2.18)

where we have defined

Clocal = Jd“x\/g as(r) . (5.2.19)

We refer to this as the local contribution as it is given by an integral over spacetime. In
general spacetime dimension D, a4(z) should be replaced by ap(x) in the above formula.
Note that this vanishes when D is odd so there is no local contribution in odd-dimensional
spacetimes.

The power of the heat kernel expansion lies in the fact that there is a general expression for
as(x) summarized in [158]. This allows to compute Cioeal Without computing the eigenvalues
of Q.

The other Seeley-DeWitt coefficients ag(x) and ay(x) capture one-loop corrections to the
cosmological constant, Newton’s constant and the other couplings in the Lagrangians. This

is discussed, for completeness, in Appendix B.4.

Bosonic fluctuations. We write the operator of quadratic fluctuations for bosons as

Q= (O, + 2(w"Dy)y, + Py (5.2.20)
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where the Latin indices m,n refer to the different fields and D, is the spacetime covariant

derivative. We define D, = D, + w,, to complete the square so that

Q= (D'Dy)1y, + B, (5.2.21)
with

E=P—-ww,—(D'w,) . (5.2.22)
The Seeley-DeWitt coefficient a4(x) is then given explicitly by the formula

1 1 1
(4r)’ay(z) = Tr EE? + 6RE + EQWQW (5.2.23)

1
+%I(5R2 + 2R,p0 R*" — 2R, R™) |,

where Q,, = [D, + w,, D, + w,] is the curvature associated to the connection D,,.

Fermionic fluctuations. For fermionic fields, the quadratic Lagrangian takes the form
L = YDy where D = ) + L is a Dirac-type operator and ¢ denotes all the fermions of the
theory. The prescription is then to use the fact that

1
logdet D = élog det D'D, (5.2.24)
so that we can apply the heat kernel method to @ = D'D. We have, more explicitly,

(’y”L _ LTV“)a P=R+ (ﬁL) — LTL7 (5.2.25)

DN | —

wh =

3

where R = —iR for spin % and R = —}Lg,w + %VPURWW for spin 3.

5.2.4 Global contribution
The global contribution consists of an integer correction which is the sum of two contributions
Cglobal = Oens + sz- (5226)

The first term corresponds to the correction due to changing from the grand canonical to
the microcanonical ensemble [22].

The zero modes are associated to asymptotic symmetries: gauge transformations with
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parameters that do not vanish at infinity and are thus, not normalizable. In the path integral,
we can treat them by making a change of variable to the parameters of the asymptotic

symmetry group. For a field ¥, the Jacobian of this change of variable introduces a factor
N (5.2.27)

which contributes a logarithmic correction By log L to the entropy. As a result, the total

contribution from the zero modes is
Com = ) (Ba — D)y, (5.2.28)
v

where we are summing over all fields ¥ (including ghosts) and we denote by nY the number
of zero modes for ¥. There is a —1 because we include here the —N,,, which was in the
non-zero mode contribution (5.2.15) (and not included in Ciyear). The value of Sy can be
computed by normalizing correctly the path integral measure. We refer to [21] for a more
detailed discussion. As an illustration, we report below the values of Sy for the gauge field,

the Rarita-Schwinger field and the graviton in D spacetime dimensions

D D

6A=5—1, By=D—-1, By =—. (5.2.29)

5.3 Black hole backgrounds

In this section, we present the background geometries for which we compute the logarithmic
corrections. They are solutions of Einstein-Maxwell theory with a negative cosmological
constant.

We give the integrated four-derivative terms as a precursor to the computations of the
logarithmic corrections and describe the extremal limit and the near horizon geometry. At
this level, we already observe that the local contribution Ciye, for extremal black holes is
the same in the full geometry and in the near horizon geometry so that the only difference
is due to the zero mode contribution.

In the following subsections, we review the metrics of AdS-Schwarzschild, thermal AdS,
and the Reissner-Nordstrom AdS, black hole as simple examples before we consider the
general Kerr-Newman AdS, black hole solution with particular emphasis on its BPS limit.
We compute the curvature invariants in both the full solution and the near horizon before
giving the general result for the logarithmic corrections to the entropy. The results are

written in terms of the theory-dependent coefficients ag, c,b; and by. The computation of

115



these coefficients for the theories of interest will be the subject of subsequent sections.

5.3.1 General structure

The local contribution to the logarithmic correction is given by the Seeley-DeWitt coefficient
as(x) using (5.2.19). For solutions of Einstein-Maxwell-AdS theory, a general four-derivative

term can be decomposed as
(47)%ay(x) = —ap Ey + cW? + by R* + by RF,, F* | (5.3.1)

after using the equations of motion for the background fields. Here we write the curvature

invariants in terms of the Euler density and the Weyl tensor squared given explicitly as

E,
W2

R,u,upO'R“Vpa - 4RMVR“V + R2 ’ (532)
1
Ryupo RMP7 — 2R, R"™ + §R2 : (5.3.3)

Note that the equations of motion implies that R = 4A = —12/¢2. The difference with the
previous flat space computations lies in the last two terms in (5.3.1), which vanish if R = 0.
These terms are responsible for making the logarithmic correction non-topological.

To regularize the integral over spacetime, we use the same prescription as in holographic
renormalization, which gives an unambiguous finite answer. A consistency check on this

procedure is that for the Euler term, the regularized integral gives

B 1
- 3272

X J d'z\/q Ey, (regularized) (5.3.4)

where y is the Euler characteristic of spacetime. This is possible because our regularization
procedure produces the same boundary as the one appearing in the Gauss-Bonnet-Chern
theorem, as we explain in Appendix B.5. Thus, we see that the logarithmic correction is

topological if and only if ay(x) contains only the Euler term, that is, ¢ = b; = by = 0.

5.3.2 AdS-Schwarzschild black hole

The Euclidean AdS-Schwarzschild black hole is described by the line element

dr? 22
ds? = f(r)dt? + % Fr2d0%, ) =1+ 2—2 - Tm : (5.3.5)
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where m is the mass of the black hole and /¢ is the radius of AdS,. Here-forth, Euclidean

time is identified with a period proportional to the inverse Hawking temperature (3,

4
t~t+B, =t (5.3.6)

1+£—2+

where 7, is the position of the horizon given by the largest real root of f(r,) = 0. The

curvature invariants in (5.3.1) for this solution are

24 A8m? 2 Asm’ o 144

E4:£_4+ 6 ) 6 ) 8_47

RF,,F"™ =0 . (5.3.7)

The integrated curvature invariant are divergent due to the infinite volume. To regularize
these divergences, we utilize the same prescription as holographic renormalization [161,162].
Such choice of renormalization is natural given that the logarithmic contributions are cor-
rections to the on-shell action and it allows us to obtain finite and unambiguous results in
all cases. A more systematic understanding of this prescription would require a quantum
version of holographic renormalization.

The prescription is to impose a cutoff at large r = r.. At the boundary, we add a counter

term written in terms of intrinsic data
a§T = f PyvVh (e + &R) (5.3.8)
oM

where R is the Ricci curvature of the boundary 0M. The coefficients ¢y, ¢y are determined by
the requirement that a4 +a§'T remains finite as we take 7. — +c0. The regularized integrated

invariants take the form

1 4 B 1 . , A 42y
e | 2evaE=4, e | 1V = B ey

1 " o 24r2 (0% —r2) 1 \ )
G | VIR = T Al RELP <0 (339

As expected from the Gauss-Bonnet-Chern theorem, the Euler characteristic is

1
X =353 fd4a;\/§E4 =2. (5.3.10)

In fact, we verify that with the holographic renormalization procedure, the integral of the
Euler density is always the Euler characteristic of the spacetime, for all the backgrounds
considered in this chapter. This suggests that the holographic counterterm reproduces ex-

actly the boundary term comparable to that of the Gauss-Bonnet-Chern theorem. This is
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evidence that our renormalization procedure is correct and we refer to Appendix B.5 for
details.
The final result for C)yeq for AdS-Schwarzschild takes the form

4

Cvoca = 570 5.9
ol T (2 4 302) (

¢ —ag)l* + (2c — 3ag + 6b1)0*r7 + (c — 6b1)r}) . (5.3.11)

Thermal AdS,

We are mainly interested in logarithmic corrections to black hole entropy. However, the
dominant saddle-point in the canonical ensemble is not always a black hole in AdS. For
temperatures below the Hawking-Page transition [163], it is a thermal AdS. Our computation
gives the logarithmic corrections to the free energy of AdS,. The metric of the AdS spacetime

with only radiation, thermal AdS, is given by

2 2
ds? = (1 + T—) dt? + Lﬂ +r2dQ? . (5.3.12)
1+%)

The curvature invariants for the thermal AdS background read

24

E4:€_47

W2 =0, R*=—— E,F" =0. (5.3.13)

Using the same regularization procedure as above, the integrated invariants all vanish

1 4 1 4 2
(47r)2fdx*/§E4:0’ (47r)2fdx\/§w =0,
1 4 2 1 4 ”

This shows that on thermal AdS,, we have a4(z) = 0 so that the local contribution vanishes
C’local =0 ) (5315)

and the logarithmic correction comes only from the zero mode contribution. Thus we may use
Clocal as an order parameter indicating the Hawking page transition. In the case of Einstein-
Maxwell theory, we must include a fixed gauge potential ® as thermal AdS [75,164, 165].

Since it is a pure gauge, it does not affect the logarithmic term of the entropy.
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5.3.3 Reissner-Nordstrom black hole

We now turn to the AdS-Reissner-Nordstrom black hole and its extremal limit. It is impor-
tant to note that this black hole is not a BPS solution of minimal gauged supergravity. A

non-zero rotation is necessary to solve the BPS equations as we discuss in the next section.

Non-extremal black hole

The Euclidean Reissner-Nordstrém black hole in AdS is described by

dr?

f(r)

ds® = f(r)dt* + —— +1r%dQ*, A= %dt — grcosfdg . (5.3.16)

with
2 2m @+
r)=14— 2243 T0n
1(r) 02 r 72

where m, ¢, and ¢, characterize the mass, the electric charge and the magnetic charge of

(5.3.17)

the black hole, respectively. The horizon 7, is the largest root of f(r) = 0 and the Hawking

temperature is

gt Je) 1 (1 L U +q31)) | (5.3.18)

dm dwry 2 r?

The curvature invariants are computed to be

144 24 2r2 12 2 2 2 22
B = B=2s 8 (6m*r” — 12m(q +8qm)7“ + 500+ 4n)’)
r
2a? — o2 48 —(a? + @2 2
FMVF,LW - _ (qe - qm) 7 W2 _ (mr (ge qm)) ) (5319)
T T

The integrated invariants can be computed using the same renormalization procedure as
described above for the AdS-Schwarzschild case. The results are

(471r)2fd4x\/§E4 _ 4 (5.3.20)
e - 3o a0t
ﬁfd%\@ﬁﬂ _ 127‘+(7”T”§4+€2)5_ 2‘;’3 , (5.3.22)
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The final result for the Reissner-Nordstrom black hole takes the following form

2

2 2 16
Clocal = g (2(6 - 5CLE) - _;;_,_ (76 + 30(b1 + bg)) + ZTJFC (5324)
+ Efr (e + (e + 30y + 15b5) 2 + (de + 300, + 4562 - 30b2£2q;)> .
TET +

The appearance of ¢, indicates that if the final result has a non-vanishing b, the loga-
rithmic correction does not preserves the electromagnetic duality. As we will see in section

5.6, if we consider N = 2 supergravity, we do have a non-trivial by.

Extremal limit

The result for the extremal black hole is obtained by taking the 7' — 0 or f — +0c0 limit.
This limit is naively divergent and we will describe how to implement it in this context.
The prescription is as follows. First, the outer horizon is a function of £, and must be
substituted as an explicit expression in terms of 5. We then take the § — oo limit while
keeping the charges fixed and subsequently impose the extremal values of the charges. The

low-temperature expansion yields

2702
B

where 7y is the position of the extremal horizon and /5 is the AdS; radius and can be

+0(B7?), (5.3.25)

T+:T0+

expressed as

1 2 2
- ST ). @:7"—02:6—(1—L>- (5.3.26)

1+58 6

In the 8 — 40, we generally have

fd4x\/§a4(x) = 015 + Co + 0(5_1) . (5327)
The first term, linear in [, is divergent. As this expression is a correction to the effective

action, we can interpret this term as a shift of the ground state energy due to one-loop

fluctuations. As a result, we ignore this term and define the limit § — +o0 to be the
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constant term Cj. The resulting four-derivative terms are

Jd‘lx\/g E, = 4, (5.3.28)

, 1 2(r — (2)?
lim —— | d* 2 = 00 2/ 3.2
o (47T)ZJ oW 3raly (5:3.29)

2(rg — 63)°

Bt (41)2

li 4 2 - Vo 27 3.
,6’—13100 (47)? Jd ol ral3 ’ (53.30)
2 p2\(pd o 202 2 )2
. 4 o o (rg — 63)(rg + 1505 — 4g;,03)
ﬁEI:IFlOO (im)? Jd x\/g RF,, F T . (5.3.31)

2 62 2 462 2
lim Cloea = —4ap — 02 ((—c + 2b1> (rg - eg) + by <rg Ty . 22%)) . (5.3.32)

Note that in the flat space limit, we have ry = ¢5 and the logarithmic correction is manifestly

topological, but such cancellation does not occur for AdS black holes.

Near horizon geometry

As we would like to investigate where the quantum degrees of freedom live for asymptotically
AdS spacetimes, we compare the basis of curvature invariants of the full solution to that of
the near horizon geometry. Let us first consider the extremal black hole. The near horizon
geometry can be obtained using the change of coordinates

t
r— 7o+ €T, t— 0= (5.3.33)
€

and taking the limit € — 0. The result is the AdS, x S? geometry

~2

d 2. -
ds® = (2 (f%zt”? + 7@) Fr2d02, A=t rgq Fdi + g cos 0 do | (5.3.34)
0

where ¢y and 7y are defined in (5.3.26). For the gauge field, a pure gauge term needs to be

added to obtain a smooth € — 0 limit. We can express everything in terms of the two scales

{5 and ro. The AdS, radius and the extremal charges are given by
6 1 1 ro(rg + (3)

2 2
D T 2T oo e+m:
IR R e 1 202

(5.3.35)

In particular we see that we must have rq > /5. Note that in flat space we obtain rq = /5.

The infinite volume of AdS, is regularized by removing the divergence through a redef-
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inition of the ground state energy in the dual CFT; [143,166]. This leads to a regularized

volume of unit AdS, which is —27. The integrated invariants can then be computed and we
find

— 43 46342,
Clocal = —4dag — 8@ (<3c+ 2b1> (rg — 53) + by (rg + 02— iQ )) . (5.3.36)

0

This expression matches the result (5.3.32) obtained by taking the  — +oo limit of the
non-extremal Cloea). Hence, the computation of Clyeq for an extremal black hole can be
done either in the full geometry or in the near horizon region. The difference in logarithmic
correction between the full geometry and the near horizon geometry come exclusively from

zero modes.

5.3.4 Kerr-Newman black hole

We now turn to the AdS-Kerr-Newman black hole [75,146]. This solution is particularly
interesting because it has a regular BPS limit unlike the Reissner-Nordstrém black hole
[167-169].

Non-extremal black hole

As given in [75], the line element takes the form ,

A 2 2 1.2 2 702 Ay si 2 2
A’ = -5 (dt @ s 9d¢> pAdr T pAde T 9;;“ ’ (adt .
r 0

+

(1]

a® 2
dng) . (5.3.37)

where we have defined

2 2
A, = (r? +d?) (1 + 122) —2mr + ¢ + ¢, Np=1— Z—Q cos? | (5.3.38)
with p? = r? + a®cos?0 and Z = 1 — ‘;—j The gauge field is given by
29 m A 2 2
A= -2 (dt _ asin dgb) 05 (adt _rra dgb) , (5.3.39)
p P =

The parameters satisfy a® < £ and we take a > 0 without loss of generality.? The physical

mass M, angular momentum J, electric charge Q). and magnetic charge @,, are given by

m am e qm
M = ? J == g, Qe == E, Qm == E, (5340)

2The general result is obtained by replacing a — |a| everywhere.
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and the inverse temperature is

47 (7“3_ + a2)

B = - = — (5.3.41)
Ty (1 + % + 34 — Tt *i‘i*%)
z
For the non-extremal black hole, the general form is
C W3
Clocal = —4ag + (6A1 + CWl)ﬁ + (24A2 + CWQ) + (5342)

5 )
where the logarithmic corrections depends on five independent parameters {ry, 5, ¢, a, ¢y}.

The Euler term simply gives a pure number in agreement with the formula

1 4
= E,=2. 3.4
X 327r2fd x\/gE}4 (5.3.43)
The expressions A; and W; are independent of S and take the form

(2()1 + b2)<(12 + 62)7”3_ + (2b1 + Sbg)’l“i + ((2b1 - b2>a2 - 2b2q31>7"+€2
Tl (02 —a?)(a? +73) ’

A =

5.3.44
_b1a2 + (bl + bg)’l“_%_ ( )

/2 — g2 ’

Ay =

and we have isolated the contribution W; from the Weyl squared term, explicitly given as

1 802 _ .2\2 | .8 ()2 212
Wi = et e — )@ 1) [3ary (a¥ (€% = r3)* + 3% + 3r%)?)
—4ar (L (0 = 9r) + ' (01 + 12637 + 3rL) + 20T (01 — 14635 + 5r)
—3(@2 + T‘i)(aQ(éQ _ T2) _ ri(g? + 3Ti))2(Ti . CL4) arctan(a/r+)] ’
a? 472 59 3 PP o )
Wy = 20 (2 — ) [4a*C*r% + 3ar, (a* (6 —17) — L (6 + 3r2)) (5.3.45)

=3(a*(0® — %) — 137 + 3r2))(r} — a*) arctan(a/ry)] |

(a2 + 12
Ws = % [ary (3a* + 2a%r% + 3r}) — 3(r} + a®)(r} — a*) arctan(a/r)] .

We have checked that we reproduce the Reissner-Nordstrom results of section 5.3.3 in the

limit a = 0.

Extremal limit

As was done in the Reissner-Nordstrom black hole, the extremal limit can be found by taking

the limit 7" — 0 or § — 400 while keeping the charges fixed. To do this appropriately, we
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use that for small temperatures

2702
&

+0(67%) , (5.3.46)

T_;,_:TO“F

and we take the § — +oo limit while keeping rg, ¢, a, ¢, fixed. The procedure yields a finite
piece in 8 as well as a piece linear in [, which can be removed by a renormalization of
the ground state energy. The final result can be written in terms of the four independent

parameters {rg, {, a, g, }. It takes the form

1
2ar§ (0?2 — a?)(a? + r2)(a® + (2 + 612)
+a°r3(cl* + 2(11c — 12by)0%r3 — 3(13c¢ — 8by + 80by)1)
+a’r5(15c* + 2(25¢ + 24by)%rg — (49¢ + 336b; — 48by)rg — 48bylq2,)
+3arg(cl* + 2(3c — 4by) 0?13 — (Tc + 48by + 24by)ry + 16b20%¢2,)
—3c(a® + 1r3)(a®(rg — %) + r2 (0% + 3r2))? arctan(a/ro)} : (5.3.47)

C(local = _4aE +

[ — 3a77’0(16b1r§ +c(* —r5)?).

We can also compare with the computation performed in the near horizon geometry obtained

via
t ial3(0?> —a?) t
— r t— 03~ - — L 5.3.48
T To + €T, 267 (b ¢ £2<a2+7"8) 6 ) ( )
while taking e — 0. This leads to
03(r3 + a? cos®6) dr? C%(r3 + a? cos®6)
g = 220 P+ — | + 5" de? 5.3.49
° a? + 13 : 72 0?2 — a? cos?0 ( )

2(a® + r2)%(0? — a® cos?0) sin?0 i 202ary((? — a?) it 2
(02 — a?)%(r2 + a2 cos?0) (2(a2 + r3)? ’

a? + r?
by = by | ——— 9 — . 3.
2 \| a® + % + 6r} (5.3:50)

The near horizon geometry is a warped version of AdS,; with a circle fiber, similar to the

where the AdS, radius is

near horizon of extreme Kerr (NHEK), which we recover in the appropriate limit. The near

horizon gauge field takes the form

1 l 02

r8 + a? cos®d

4

g2 (qe(rg — a® cos0) + 2q,, arg cos )Fdt (5.3.51)
0
+L(q argsin®6 + qn(a® + r2) cos 0)de
62 . a2 e 0 m 0 .
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We can perform more general near horizon limits by taking at the same time a near-extremal
limit. Instead of setting ¢, = ¢*, we can consider a deformation g, = ¢* + dq.€* parametrized
by the same € as in (5.3.48). Moreover, keeping subleading corrections in 37! would yield
corrections to the entropy in the near-extremal regime. The non-zero energy associated to
this large diffeomorphism can be understood in terms of the Schwarzian action of Jackiw-
Teitelboim gravity [170].

We are now in a position to compute the logarithmic corrections in the near horizon
geometry and we find that the result is equal to (5.3.47) obtained by taking the extremal limit
appropriately, i.e., fixing the charges while taking § — +00. Thus, the local contribution is

the same in the near horizon region and the full geometry.

BPS limit

The BPS limit can be obtained by imposing the additional conditions to the extremal black
hole
ro=+val,  gn=0. (5.3.52)

The resulting black hole preserves half of the supersymmetries [168]. Its charges are given
by

Mo Vel Qezm, QO =0, g _aval (5.3.53)

a 2’
(1-9)
and it satisfies a BPS bound:

M=0Q.+ % : (5.3.54)

The BPS result can be written in terms of the two independent parameters ¢ and a

302

Clocsl = —4ap + m

[(90 — 8by)al® — (9c + 48b; — 8by)a’*l — (c + 16b;)a’

4
+el? — % arctan(r/a/l) |, (5.3.55)
a

where the AdS, radius given in (5.3.50) is

a(a + 0)

=1 a? + 6al + 12

(BPS case) . (5.3.56)

It is clear from this formula that there is no non-rotating BPS solution as the limit a — 0 is

singular.
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5.3.5 AdS-Rindler geometry

Our computation of the logarithmic correction can also be applied to the so-called hyperbolic
black hole of [147], i.e., the AdSs;-Rindler geometry. The entropy of this black hole is the
entanglement entropy

Sge = —Trpalogpa, (5.3.57)

associated to a ball-shaped boundary subregion A. Here p, is the reduce density matrix

defined by tracing over the complement A

pa = Trl0)0], (5.3.58)
where |0) is the global vacuum. Here the only length scale is the AdS, radius ¢ so we are
considering the regime of large ¢ and computing

Area

SEE = 4G

+ (Clocal + sz) logl+.... (5.3.59)

The geometry of the hyperbolic black hole is given by

2 d 2
ds?® = <’Z—2 — 1) dt®> + e p n + deSJQqQ , alsiflj,2 — du® + sinh®u d¢?, (5.3.60)
2

where p > 0, uw > 0 and t ~ t + 8. The inverse temperature is given by
B =2l . (5.3.61)

We regularize the integral over spacetime using holographic renormalization. In this case,

there is also a divergence coming from the volume of Hy and we take a regulator such that

vol(Hy) = —27. The integrated four-derivative invariants are given by
= Jd”‘x\@E =2 ! fd4a:\/§W2=0
(4m)? e (47)? ’
1 4 2 1 4 v
(am)? J AT (4m)? J dwyg REwF =0 (5.3.62)

This implies that we have
Clocal = —2ag + 12b; . (5363)

Note that the Gauss-Bonnet-Chern theorem gives

X:

337 Jd%;\/g E,=1, (5.3.64)
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as expected since M is topologically Dy x Hy where Dy is a disk and we have x(M) =
X(D2)x(Hz) = 1 since x(Ds) = x(Hz) = 1. This is a non-trivial consistency check for our

regularization procedure.

5.3.6 Global contribution

We now compute the global contribution (5.2.26) which comes from the zero modes and the
change of ensemble. The results are summarized in Table 5.2. In the full geometry, the
contribution from the bosonic zero modes in the full asymptotically AdS,; geometry vanishes
[22]. Indeed, the fact that AdS, admits a 2-form zero mode follows from the general result
of Camporesi and Higuchi who established that AdS;y, admits a M-form zero mode [171].
This 2-form zero mode is central in generating the logarithmic correction in asymptotically
AdS, backgrounds embedded in eleven-dimensional supergravity [97,172]. However, in the
four-dimensional theories we consider in this manuscript, there is no contribution from such
a 2-form zero mode.
Hence we have

Com =0 (full geometry) . (5.3.65)

In the near horizon geometry, additional zero modes come from the AdS, factor. The metric
contributes —3 zero modes. In the near horizon geometry of BPS black holes, we also have
8 fermionic zero modes. The zero mode contribution for extremal black holes in the near

horizon geometry is then given by
Com = —3 + 8 pps (near horizon geometry), (5.3.66)

where dgps = 1 in the BPS case and 0 otherwise. It is interesting to observe that this contri-
bution can be interpreted in the context of nearly AdSs holography [170]. The asymptotic
symmetry group of AdS, is Diff(S')/SL(2,R). Upon a choice of configuration, the number
of broken symmetries is ng = +00 — 3, the infinite piece being absorbed in a renormalization
of the energy. So the —3 zero modes come from the unbroken SL(2,R) symmetry of AdS,.
A similar argument for BPS black holes explains the 8 fermionic zero modes as arising from
the eight fermionic generators of the PSU(1,1|2) near horizon symmetry. These patterns of
symmetry breaking can be studied using Jackiw-Teitelboim gravity [170,173-179].

We also include in Cyiobar the correction that comes from the change of ensemble from

canonical to microcanonical. Following [22], the change of ensemble gives a contribution

C’ens =—-K s (5367)
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Background spacetime Com | Cens || Calobal
Schwarzschild 0 -3 -3
Reissner-Nordstrom 0 -3 -3
Kerr 0 -1 —1
Kerr-Newman 0 —1 —1
BPS Kerr-Newman 0 —1 —1
Reissner-Nordstrom near horizon | —3 | —3 —6
Kerr-Newman near horizon -3 | —1 —4
BPS Kerr-Newman near horizon 5) —1 4
Thermal AdSy 0 -3 -3
AdSs-Rindler 0 -3 -3

Table 5.2: Global contribution to the logarithmic correction.

where K is the number of rotational symmetries of the black hole.

5.4 Minimally coupled matter

To obtain the logarithmic corrections, we need to compute the coefficients ag, ¢, by, by that
appear in the general expression (5.3.1). Our ultimate aim is to evaluate logarithmic correc-
tions in theories that can arise as consistent low-energy truncations from string and M-theory.
However, in the next sections, we compute these logarithmic corrections in Einstein-Maxwell
theory with a negative cosmological constant and in minimal ' = 2 gauged supergravity. As
a warm-up, we also present the logarithmic corrections to AdS black holes due to minimally

coupled fields, as was done for flat space black holes in [22].

5.4.1 Minimal theories

In this subsection, we compute Cjoca for minimal scalars, fermions, vectors and gravitini.
Free scalar. We consider a scalar field of mass m described by the action

S — —% fd“x\/ﬁ ((06) + m?¢?). (5.4.1)
The result for a scalar field is obtained by setting

P =FE =m? Q=0, (5.4.2)
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in equation (5.2.23). As explained in section 5.2.2, we consider a regime where every length

scales with a factor \. So here m scales as A\™! and what is fixed is the conformal dimension
1
A= (3 V9 F 4m2€2> . (5.4.3)

This is to be contrasted with flat space where massive fields do not contribute to the loga-
rithmic correction as explained in [21-23].
The heat kernel takes the form

1 1 1
(47’(’)20,4(56) = _%Ezl + EOWZ + @(A(A - 3) - 2>2R2 . (544)

The explicit result for Coca can be obtained using (5.2.19) and (5.3.1). We report the result

for the extremal black hole

1 ra
Clocal = ~90 " M(% +5(A +1)A(A - 3)(A—4)) . (5.4.5)

Free fermion. We consider a free Dirac fermion with Euclidean action
S = fddﬂx\/gz/z (YWV, —m) (5.4.6)

This is dual to an operator with scaling dimension [180]

A= ; + md. (5.4.7)
The result is
11 1 1 2 2
2 _ _ 2 i _ 3 _ 3 o 2
(47) as(w) = so5Ba+ 5 W2 + = (A-3) ((A 3) 2) R, (5.4.8)

Free vector. We now consider a free Maxwell field a* with the Lagrangian

L= —%l Funf™ (5.4.9)

where f,, = V,a, — V,a,. We add the gauge fixing term

1
Loys = é(vua“)z, (5.4.10)
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so that the total Lagrangian becomes
L+ ‘Cg.f. = G#Dau - CLMR;U/GV . (5411)

The gauge-fixing induces two massless scalar fields with fermionic statistics. We obtain the

result

31 1
2 . 2

Free Rarita-Schwinger field. We consider here a Majorana Spin—% field described by the
Lagrangian
£3/2 = _&u'yupyvau- (5413)

We use the gauge-fixing condition «#1,, = 0. This is implemented with the gauge-fixing term

Lgr= —%(%V“)W’JV,J(V”%) ; (5.4.14)

so that the total Lagrangian is
Lsjo + Lo = Xy DX, (5.4.15)

after using the field redefinition ¢, = XN—%’y,ﬁ” Xv- The gauge-fixing leads to three Majorana
ghosts which are free massless fermions. We refer the reader to section B.3.3 for details on

the gauge-fixing procedure. Hence, we find

229 77 1
47)? = FE,— —W?*~ _R%. 4.1
() asle) = 255 Ea = 355" — gF (5-4.16)

5.4.2 Logarithmic corrections

The results for minimally coupled scalars are summarized in Table 5.1.

Massless fields

For massless fields, we can present the result as

1

ag = %(QTLS + 22np + 124ny — 229n,,) , (5.4.17)
1

c = 1—20(n5 +6ng + 12ny — 77n¢) , (5418)
1

bl = E(ng — 8”1/,) . (5419)
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where ng, ng, ny, ny the number of scalars, Spin—% Majorana fermion, vector and gravitini.
The result for AdS-Schwarzschild takes the form

1
18042(¢2 + 3r2)
+3r70%(22ng + 2np — T6ny — 239ny) + 1875 (=3ns + 2np + 4ny + ny)| .

C(local

[¢*(4ns + 14np — 52ny — 233ny) (5.4.20)

It is easily seen that in the flat space limit, we have

. 1
ZEI-POO Clocal = @( ng + ldnp — 52ny — 2337’Lw) (5421)

which reproduces the results of [22].

Corrections to entanglement entropy

Our result can also be applied to compute logarithmic correction to entanglement entropy.
We consider a ball-shaped region A in the boundary. The entanglement entropy of A is
given by the area of the hyperbolic black hole discussed in section 5.3.5. The logarithmic

corrections to entanglement entropy are given by

Area
4G

The contribution of a minimal scalar field of conformal dimension A gives

29 1
=—+ —(A+1DHAA-3)(A—-14). 4.2
€= =+ (AT AR - 3)(A -4 (5.4.23)
We have here C' = C)yca1 since there is no zero mode for the scalar field. Quantum corrections
to entanglement entropy can also be interpreted in terms of bulk entanglement entropy [181].
It would be interesting to see if we can understand (5.4.23) as the logarithmic piece of the

bulk entanglement entropy of a scalar field in the Rindler wedge.

5.5 Einstein-Maxwell-AdS theory

We now consider Einstein-Maxwell theory with a negative cosmological constant. This is
the minimal theory that contains the AdS-Kerr-Newman black hole and is the bosonic part

of minimal N = 2 gauged supergravity studied in section 5.6. The action is given by

S = fd‘lx\@ (R—2A—F,, F"), (5.5.1)
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where F),, = 0,A, — 0,A, is the field strength with A, the gauge potential. Note that we
find it convenient to use a convention 47G = 1.
The computation is easily performed using the algorithm described in Appendix B.1. We

have also performed an independent computation by hand, as detailed in Appendix B.2.

5.5.1 Bosonic fluctuations

We consider variations of the metric and gauge field
0guw = V2hu, , 64, = K (5.5.2)

where h,, and a, are the graviton and graviphoton, respectively. We impose a particular

gauge to the theory by adding a suitable gauge-fixing Lagrangian

S =— fd“m/det g { (D“hup - %D,ﬁ) <D”hfj - 1Dﬂh) + % (D"a,) (D”al,)} . (5.5.3)

2

and the corresponding ghost action to the action (5.5.1). We then expand the action up to

quadratic order. The linear order variation yields the equation of motion for the background
fields

1 1 a
Ry, — §gm,R + g =2F,, 0 — §gquaﬁF 7, (5.54)

DMF,, =0 . (5.5.5)

Note that the equations of motion implies that R = 4A = —12/¢2. Tt is also worth mentioning
the Bianchi identity for the gravitational field and gauge field

Dy F,y =0, (5.5.6)
R,u[upcr] =0 5 (557)

as they serve as handy tools for simplifying our calculations. The quadratic action can be
put in the canonical form (5.2.21). The details can be found in appendix B.2.1 where we

present the explicit form of the quadratic fluctuations. This allows us to extract the matrices
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I, E and €:

1 1 1
o R (59“"‘9”5 + 599" = 59" g™ ) has + aag*ag, (5.5.8)

gmem"gbn :huu (R,uow,B + Ruﬁua o guuRaﬂ o gaﬁRMV + Aguygaﬁ) hoz,B
3 « v « \/5 av v o
+ a, (59 PFE.LF"™ — Ag B) ag + Th‘w (DHFY + DYF*") a, (5.5.9)

>
+ gaa (DHFO 4 DYFony

)

1
(bm (Qpa)ﬂ”m an :huy {_ (gzxﬁRuapo + guaR,u,Bpo + g,uBRuapcr + g,uaRZ/Bpa')

2
+ [w”,w”]“mﬁ} hap + Ga {RO‘B”” + [wp,w"]aﬁ} ag (5.5.10)
+ Iy (D[”w"])um Qo + Qg (D[pwa])aw h
where w? is the spin-connection given by
G (W)™ b :\ghuv <gaMFPV GOV PR — ghP OV VP [k g/wFpa> ay,

/s (5.5.11)

_ 7@@ (Qauppv SR Ay A Gy s g“”FpO‘)hW ‘
We then find the trace of (5.5.8)-(5.5.10). The computation is tedious, but it may also
be illuminating for some readers. We present the intermediate steps in appendix B.2.2. The

final contribution to the heat kernel coefficient is

(4m)2aiM(2) = —%& + %WQ - %R2 : (5.5.12)
The reader familiar with the literature might notice that we have not treated the trace mode
in the graviton. Traditionally, as in the literature [148, 153, 182], one decomposes the fields
appearing in the Lagrangian into the irreducible fields ¢(A, B) which transform according to
the irreducible (A, B) representation of SO(4). For example, in [182], the authors considered
the decomposition of fluctuation of geometry h,, into a (1,1) symmetric traceless tensor, a
scalar characterizing the trace part transforming in (0, 0) and the corresponding vector ghost
field in (%, %) Here, we choose the operator I™" as the effective metric, which is equivalent
to making this decomposition.
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Ghost contribution

The addition of the gauge-fixing Lagrangian (5.5.3) gives an action for the ghosts
1
Sanosts = J d4x\/§{ZbM (¢ T+ B*™)e, + 2b01c — 4pr”Dpcy}, (5.5.13)

where b, and ¢, are vector fields and b and c are scalar fields. From these expression, we can

extract the matrices £ and 2 as
OB, d™ =b, (R, 0" + ¢, (RY,) ¥
1 , )
On (Qap bu (Ryap) V7 + cu (R mﬁ) ¢ — 5 (b — i) (D"Fop) (b +ic)  (5.5.14)

(b +ic) (D, Fap) (b —ic”),

l\')lr—l

The result for the Seeley-DeWitt coefficient is

13 3
CLiglhos‘LS( ) _ —E4 . _W2

o 432 : (5.5.15)

where we have already included here the minus sign due to the opposite statistics.
5.5.2 Logarithmic correction

Adding the above results, the heat kernel for Einstein-Maxwell theory takes the form,

53 137 13

Am)iaf(z) = ——Ey + —W?* — 5.5.16
We can read off the coefficients from (5.3.1) to be
53 137 13
T T T T3 (5:5.17)

We note that in the flat limit / — +o0, the coefficients a and ¢ match the known flat space
computations in [148,183,184] while the coefficients b; and by are unique to AdS. We can also
note that the result does not explicitly depend on F*" as b, = 0. This implies that the final
result is invariant under electric-magnetic duality. This property has also been observed in
the asymptotically flat case in [183,184]. Another sanity check is to consider the truncation
of the terms involving F), in the fluctuations. Then (5.5.16) reduces to the neutral limit
which was first obtained in [182]; we show this in detail in Appendix B.2.4.

We can evaluate this result for the BPS Kerr-Newman solution described in section 5.3.4.
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The result is

2,0
45 120al%(0% — a?)

Clocal (629a3 — 579a*( + 3699a¢? (5.5.18)

(a+0)*

Val

+4110% — 411

arctan( a/@) .

5.6 Minimal N = 2 gauged supergravity

We now consider the simplest supersymmetric theory with a consistent truncation to Einstein-
Maxwell theory with a negative cosmological constant. This is minimal N/ = 2 gauged su-
pergravity [167,185-187]. In this section, we compute the logarithmic corrections in this
theory. We find that in contrast to flat space, the logarithmic correction for BPS black holes
is not topological. The results of this section were obtained using a Mathematica algorithm
described in Appendix B.1 which we have made publicly available [188].

Ultimately, we would like to compute the logarithmic correction for AdS black holes where
a microscopic counting is available. Although the techniques of this chapter are applicable

in those cases, the computations are more involved due to additional matter multiplets.

5.6.1 Fermionic fluctuations

The bosonic Lagrangian of minimal N' = 2 supergravity is the same as (5.5.1). Hence,
the result of the previous section can be applied and gives (5.5.16). In this section, we
will compute the contribution from the fermions. In the conventions of [187], the fermionic

Lagrangian takes the form

1~ v i v, o 1 - v
‘Cf = 577&,1/7” pDuqu)p + ZFM Qﬁp%ﬁp 7u¢a - 2_6770//7“ ¢u ) (561)

where the gravitino v, is a Dirac spin—% field with charge one, in units of the AdS, length,

under the U(1) gauge symmetry. The action of the covariant derivative is

Dy = Vb, — %A;ﬂ/fu : (5.6.2)

We now put the fermionic Lagrangian in a form suitable for the heat kernel computation.

Firstly, we fix the gauge by adding the following gauge-fixing Lagrangian

1 -
;Cg,f, = _Z(@DM’Y“)’YVDV(’W?%) . (563)
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This choice is convenient because after we perform the field redefinition

Y= V2 (x“ — %vﬂ”xy) , (5.6.4)

we obtain a simpler kinetic term. The resulting Lagrangian takes the form

Vo Z V.- a ]' = v
Ly = 9"Xu"Doxv + 5E X000 WX = X" X - (5.6.5)

More details on this computation are given in Appendix B.3. We then write the Dirac spinor

as
X=X+ ixG (5.6.6)

where y; and x» are Majorana spin—% spinors 3. We use the label A = 1,2 for the two

Majorana spinors. The covariant derivative acting on x’; takes the form

1
Duxa = (5ABV“ +3 5ABAu) X5 (5.6.7)

where € 45 is the antisymmetric symbol with €15 = 1. This is necessary if we want to preserve
the reality condition. It is useful to use the Majorana flip identities (B.3.17) reviewed in
Appendix B.3. The computation detailed there leads to the Lagrangian in terms of Majorana
spinors
_ 1 _ 1 ~

Ly = 0apguXaV" DX = 5eanE" X" 17" X5 — J0anXanwXs - (5.6.8)
Finally, we reinterpret this Lagrangian as being a Fuclidean Lagrangian in which Xﬁ are
Euclidean spinors satisfying )’(;‘ = (X;‘)T. This Lagrangian can then be used in the algorithm
to obtain the result for the heat kernel. Note that we can question the validity of the Wick
rotation here because Majorana spinors actually do not exist in four Euclidean dimensions.

This can be addressed by using symplectic Majorana spinors. We find, however, that this

procedure actually gives the same result as the naive Wick rotation.

Symplectic Majoranas

The Lagrangian (5.6.8) is written in terms of Majorana spinors in (1, 3) signature. We would
like to Wick rotate this Lagrangian to (0,4) signature. As mentioned above, this appears

problematic because Majorana spinors do not exist in (0,4) signature. A better approach is

3For definiteness, we can use here the “really real” representation of the Clifford algebra in which the
Majorana condition is just the reality condition [189).
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to use symplectic Majorana spinors which exist in both (1,3) and (0,4) signature [190].
It is shown in [191] that one can map Majorana spinors x4 to symplectic Majorana

spinors Ny using

1

o= SOH ). (5.6.9)
?

o= SN

This allows us to write the Lagrangian in terms of \. We find that the two flavors actually

decouple as

L;= L1+ Lo, (5.6.10)
with
Y - H— v i vy o 17 v
El = g;w)‘/ll’yp(vp + il 1AP))‘1 - §F'u )‘T’YMP)/paﬁ)/u)‘l - Z)‘/fFYuV 1 (5'6'11)
Y - H— v i vy o 1_ v
Ly = guIy(V, — il TA)NS — §F“ NoVuYpo Yo NG + Z)\’;fyw,)\Q ) (5.6.12)

The Wick rotation is done by reinterpreting A\ as symplectic Majorana spinors in (0, 4)
signature with My = (\)f. This can then be used in the algorithm, described in Appendix

(B.1), to compute the heat kernel’. We obtain the gravitini contribution

itini 139 32 2 8
(47T>2a£,gravlt1n1(x) = WE;; — 1—5W2 - §R2 + §RFHVF‘LW . (5613)

Note that the result is ultimately the same as what we obtain naively by using directly the

Majorana Lagrangian (5.6.8) in the algorithm.

Ghost contribution

The gauge-fixing of the gravitini leads to three pairs of ghosts. The gauge condition 7“1/);‘ =0

leads to a bc ghost Lagrangian given as

Ebc = 5ABBA7uécw%> (5614)

where d.1" is the supersymmetry transformation with parameter c. This gives

- 2
£bc = 5ABbA (’Y“Du + Z) cp . (5615)

4The contribution to the heat kernel of £; and L, are equal because the two Lagrangian differs by £ — —/¢
and the four-derivative terms are invariant under that change.
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We can get a diagonal kinetic term by a suitable redefinition. This leads to two pairs of
ghosts which are charged spin—% fermions with mass m = % In addition, implementing the
gauge-fixing term in the path integral leads to an additional pair of massless charged ghosts,
giving us a ghost for ghost phenomena [192,193]. Details are given in Appendix B.3.

The total heat kernel of the fermionic ghosts is

11 3 2 1
(47T)2ai‘,ghost5($) - [, — _W2 + _R2 _

= F,, F* 6.1
120 20 9 GR m ’ (5.6.16)

where we have already included the minus sign due to the opposite statistics of ghosts.

5.6.2 Logarithmic correction

The total fermionic contribution is

589 137 13
4m)’ay (z) = ——FEy — —W? + —RF,, F" . 5.6.17
( ﬂ-) a, (x) 360 4 60 18 1% ( )
Adding this to (5.5.16) from the bosonic computation, we obtain for minimal A/ = 2 super-
gravity
11 13 13
4rr)? = —FE,— —R*+ —RF,, F"™ . 6.1
() as(x) = 5 B = 36 B+ g b (5:6.18)
We find that the full result is not only given by the Euler term as other four-derivative
invariants are present. This indicates that the logarithmic correction is non-universal. We
note that the W? term, which would give another non-universal contribution, does cancel
between bosons and fermions. This is expected from the flat space result [148], which we

recover in the flat limit.

Evaluation

We can evaluate the heat kernel coefficient on the backgrounds summarized in section 5.3.
For the non-extremal Kerr-Newman black hole, we get
11 26 [ryB(ry — (a® + ¢2,)) — 7P (ry — a*)]

CYoca =
tocal = 5 3% — @) (a? 1 12)

(5.6.19)

We note that the fermionic contribution breaks electromagnetic duality as it generates a
non-zero by. This is reflected by the dependence in the magnetic charge ¢, in the above

expression.
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The result for extremal Kerr-Newman takes the form

o 11 N 2602 [(a*(a + 0) +r2(3a — 0))(a*(a — €) + r3(3a + £)) + 202¢2,(rg — a?)]
ol g 302(2 — a?)(a® + 12)? ’

(5.6.20)

where here the AdS, radius is /5 = fq/%. As explained in section 5.3.4, this is
0

obtained by either taking the extremal limit of (5.6.19) or by doing the computation in the

near horizon geometry.
We are particularly interested in evaluating the logarithmic corrections on BPS black
holes. Rotation is necessary to have a regular BPS background in minimal gauged super-
gravity as the extremal AdS-Reissner-Nordstrom is singular in the BPS limit [75, 168, 194].
We obtain the BPS result by imposing the BPS constraints ry = v/af and ¢, = 0 on (5.6.20).
The contribution is
Cvlocal = E - % a(€2 A a2) ’
6 3 (¢ —a)(a® + 6al + (2)

where the first term comes from the topological Euler term and the second term comes

(5.6.21)

R? and RF? and constitute the non-topological piece. We discuss the significance of this

non-topological term in the next subsection.

5.6.3 Implications

We shall now comment on the non-topological nature of the logarithmic correction. For
the flat space Kerr-Newman black hole, the heat kernel a4(x) is the sum of only two terms:
the Euler term and the Weyl squared term. Although W? = 0 for extremal non-rotating
black holes in flat space, it is non-zero for extremal rotating black holes. It was shown
in [148,195] that supersymmetry ensures that the coefficient ¢ multiplying W? actually
cancels. This shows that supersymmetry makes the logarithmic correction topological in
ungauged supergravity.

In AdS,, the W? term never vanishes in the near horizon geometry (even without rotation)
and there are two additional terms. We also obtain that supersymmetry ensures ¢ = 0 due
to cancellations between bosons and fermions. This could be expected from the flat space
results of [148] which we reproduce in the flat limit ¢ — +00. Hence, even with a negative
cosmological constant, supersymmetry makes the logarithmic correction less complicated as
it removes the non-topological term W?2. This term is a complicated function of the black
hole parameters. For the BPS Kerr-Newman AdS black hole, it takes the form

2 4
(4;)2 Jd%\/ﬁ W2 = W&_w ((€ —a)(f* + 10al + a®) — %amtam( a/€)) :
(5.6.22)
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The two other four-derivative, R? and RF?, terms do not cancel so supersymmetry does not
imply that the logarithmic corrections are topological. However, we see that the BPS result
(5.6.21) is still a simpler function of a and ¢ as it has ¢ = 0. It is a rational function rather
than a transcendental one.

It is natural to expect topological logarithmic corrections in the UV given the known
examples of microscopic counting of black hole entropy [95,99,100,104, 151, 196-198]. This
is also automatic if the 4d theory comes from an odd-dimensional theory by Kaluza-Klein
reduction because Clyeay = 0 in odd dimensions. Hence, the logarithmic correction can be
a useful probe of whether a low-energy effective theory can have a UV completion. The
idea is that from a bottom-up perspective, we should prefer low-energy theories which have
topological logarithmic correction. This is only possible if ¢ = b; = by = 0 which is a rather

strong constraint on the low-energy Lagrangian, analogous to anomaly cancellation.

5.7 Discussion

In this chapter, we have computed the logarithmic corrections to the entropy of black holes
in minimal gauged supergravity using the four dimensional heat kernel expansion. The
inclusion of a negative cosmological constant leads to new features compared to the case of
asymptotically flat black holes. In the especially interesting case of BPS black holes, the
logarithmic corrections present a richer structure and can be non-topological.

The original explicit logarithmic corrections performed for asymptotically AdS, x S7
black holes based on Sen’s entropy function formalism, using the near horizon geometry, did
not agree with the field theory computations [95,96]. It was only in [97] that agreement
was found by considering the full geometry. The results of this manuscript clarify that the
difference between the two approaches comes from the contributions of the zero modes which
are indeed different in the two geometries. Namely, we have shown that for extremal black
holes the local contribution to the logarithmic correction, Cloca, is the same when computed
either from the full AdS, asymptotic region or for the near horizon geometry. This result
elucidates the question of where the degrees of freedom responsible for the quantum entropy
live.

For the BPS Kerr-Newman black hole in minimally gauged supergravity, we have found
that the logarithmic correction, given in (5.6.21), is non-topological. To obtain this result,
we have used holographic renormalization to regularize the divergent volume integrals. This
appears to be the right prescription as, for example, it gives the correct counterterm to
obtain the Euler characteristic when integrating the Euler density, see Appendix B.5 for

more details.
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The non-topological nature of the logarithmic corrections suggest that they might contain
more information than the flat space counterpart, providing a wider “infrared window into
the microstates”. Moreover, this non-topological nature is interesting because for all the
available examples of microscopic counting and for BPS black holes in flat space [148], the
logarithmic correction is always topological, i.e., the coefficient of the logarithm is a pure
number. In minimal gauged supergravity, we find that it is instead a rather non-trivial
function of the black hole parameters.

It is illuminating to compare this result to recent investigations using supergravity local-
ization [98,102,150]. In [150], the general structure of the logarithmic correction of 4d N = 2
gauged supergravity on BPS backgrounds was studied using index theory. It was shown that
the universal piece coming from the Euler term arises from the application of the Atiyah-
Singer theorem to an appropriate supercharge. We surmise that the non-universal piece that
we obtained should be interpreted as the contribution from the 7 invariant, not considered
in [150], which is a non-topological correction due to the presence of a boundary [199]. Su-
pergravity localization has the potential of ultimately providing the full quantum entropy of
the black holes and it would be fruitful to test it against one-loop supergravity results such
as ours.

Our work also clarifies the role of supersymmetry. One could think that supersymmetry
guarantees that the logarithmic corrections are topological. This is suggested by the index
theory interpretation [150] and by results in flat spacetime [148,149]. In this work, we have
seen that supersymmetry is not enough to make the other terms cancel which shows the
logarithmic corrections can be non-topological for BPS black holes. Nevertheless, supersym-
metry does play a role in making Cj,.. simpler as it cancels the coefficient, ¢, of the Weyl
squared term (5.6.22). This simplifies the logarithmic correction for the BPS black hole as
its dependence on a and ¢ becomes rational instead of transcendental.

We might hope to use the topological nature of logarithmic corrections as a criterion for
a low-energy theory to admit a UV completion. In the available examples of microscopic
countings, the logarithmic correction is indeed topological [95,99, 100, 104, 151, 196-198].
Such a criteria would greatly constrain effective supergravity theories as it gives rather
stringent conditions similar to anomaly cancellation. Note that in odd dimensions, the
logarithmic correction is automatically topological because the local contribution is trivially
zero. So if the four-dimensional theory comes from the dimensional reduction of an odd-
dimensional theory, such as 11d supergravity, the logarithmic correction computed in 4d has
to be topological. For ten dimensional theories, there is a local contribution in 10d and, as
a result, the topological criterion should be much more constraining.

We have obtained the logarithmic correction for the simplest gauged supergravity in four
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dimensions. Our goal is to grow this direction towards more interesting theories and to relate
our results to other approaches such as the computations performed in eleven-dimensional
supergravity [97,100,104,151]. It should be possible to perform the same computation in the
gauged U(1)* supergravity which comes from eleven dimensional supergravity on AdS, x S7.
Similarly, the logarithmic correction to the entropy of black holes in AdS, x SFE; has been
computed both in field theory and supergravity for a large class of Sasaki-Einstein seven-
dimensional manifolds [104]. In both these cases, the topological nature follows from the
fact that the parent theory is odd-dimensional. It would be interesting to see explicitly how
this is realized from a four-dimensional perspective.

More challenging would be the cases where the AdS, black holes are embedded in ten-
dimensional theories such as massive IIA supergravity. A matching of the Bekenstein-
Hawking entropy at leading order was presented in [200-202]. The available sub-leading,
microscopic analysis confirms the topological nature of the logarithmic term [99]. However,
the supergravity computations need to be in agreement with the nontrivial nature of Ciyca.

We hope to address some of these issues in the future.
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Chapter 6
Concluding Remarks

In this thesis, we have focused on exploring quantum gravity in the context of holography
and its relation to AdS black holes. While this is a very broad subject, we have focused on
investigating the entropy of black holes via gravity and field theoretic computations. The aim
of part I was to explore the AdS/CFT and Kerr/CFT correspondence in a certain parameter
space to study the matching between the macroscopic entropy via the Bekenstein-Hawking
formula and the microscopic entropy counting via CFT,;_; and CFTs. For example, we
have also been able to extend these holographic approaches to the entropy to the context
of near-extremality, with the hopes that we can eventually probe the full non-extremal
regime. This is an outstanding problem since most field theoretic computations heavily rely
on supersymmetry.

In part II, we shifted our attention to the entropy at subleading order by considering
two distinct methods: the Kerr/CFT correspondence and the heat kernel. Although the two
dimensional effective CFT5 is not completely understand from the Kerr/CFT perspective,
we can still connect and take advantage of the correspondence. Expanding beyond the saddle
point, we can investigate the logarithmic term of the entropy via the Cardy formula to obtain
a correction that matches precisely with field theory predictions. This supports the use of
Kerr/CFT and prompts us to investigate further the strength of the conjecture. Moreover,
the success of implementing the near-horizon geometry to extract the entropy, as for example
in the Kerr/CFT correspondence, leaves room for speculation as to what extent the black hole
horizon provides a window into the full understanding of quantum gravity. By calculating
the quantum corrections to the entropy, we have found that the near-horizon accounts does
contain the quantum degrees of freedom accounting for the logarithmic correction, up to
zero modes and changes in the ensemble. From these two methods to extract the logarithmic
corrections, it would be interesting to understand how zero modes, the heat kernel and the

Kerr/CFT correspondence are related in diverse dimensions.
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Appendix A

Verifying Black Hole Equations of
Motion

A.1 Verifying the equations of motion for the near-

horizon

Gravitational theories are nonlinear and, therefore, a truncated sector of a solution need
not be a solution itself. For that reason, we explicitly verify that, in each instance, the
near-horizon limit satisfies the equations of motion. This fact alone should inspire trust in
the consistency of the resulting geometry and the potential existence and closure of a dual
field theory sector. Returning to the analogy with the BMN paradigm, this is equivalent to

checking the equations of motion for the plane wave background [203].

A.1.1 AdS;

We verify the equations of motion for the near-horizon geometry for AdSs;. The Lagrangian

describing the solution in [24] is

1

1
= 12¢) s 1 — =« F A F
L (R+ g) 5 A +3\/§

FAFAA, (A.1.1)

and the equations of motion are

1

Rab_ 9

1 1 1
F.FS+ —gu [ -F?>+12¢°) = d*F— —F A F=0. A.1.2
g (3P4 1) =0, deF- ZFAF-0. (ALY)
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In order to facilitate the computation, we turn to a veilbein description for the near-horizon

geometry,

S —

rdr
10ag? +2g
/ a dr

10ag? + 29 7

2 A13
/g—cclzg2d9’ ( )

€1 =
€y =
€3 =

es = p1 (p2 ((—3agcos20 + ag — 4)dyp — 6agsin2€d<;~§> +3a (a°¢” + ag — 2) de) ,
es = P3 <3a(1 —ag)rdr + 2p2dq5> ,
where
o cost
b (1 — ag)(5ag + 1)+/2(ag + 2)(3agcos(20) — ag + 4)’
+2
p2 = —a(agg ) (5ag + 1), (A.1.4)

sinf
(5ag + 1)4/(1 — ag)(3agcos(20) — ag + 4)

Note that this coframe describes the near-horizon, which is computed using [37]. After

applying the near-horizon geometry and gauge fixing, the gauge potential is

V6(1 — ag) v/6ageost

~ Jag + 2+/5ag + 17 v/3ageos20 — ag + 1
24/3ag(1 — ag)sind

~ (Vag + 2v/3agcos20 — ag + 1

A(l),near =

(A.1.5)

Note that the exterior derivative and the near-horizon geometry limit commute to give an

equivalent expression for the gauge field,

3ag(ag + 2)

3(1 —
F(Q),near = dA(l),near = ——€ ANey+ ZQSHIH\/ ( CLg)

3agcos26 — ag + 4

+ gcost 6(ag +2) es A e
g (3agcos20 —ag +4) >

€3 A ey
a

(A.1.6)
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Then,

3/2 Vvag+ 2
v a(3ageos20 — ag + 4

F(Q),near A F(Q),near = 69

) (2 1 — agsinfe; A es A eg A ey

—a/2ag + 4cosble; A ey A e3 A e5> )

(A.17)

The other term gives

+ 2 3 + 2
d * F(2) near =d [\/égcosé’\/gagcosge . 461 A€y A €y — %63 A €4 A €5

3agcos20 — ag + 4
_ 24/3(ag + 2)g%?
\/CL(3agCOSQ(9 —ag+4

—a/2ag + 4cosfey A ex A e3 A e5> )

1—
+2\/§gsin9\/ c e1 A ey A 65]

) <2 1 —agsinfle; A ey A e3 A ey

(A.1.8)

Comparing equations (A.1.7) and (A.1.8), we can see that the equation of motion for the
gauge potential is satisfied. For the Einstein equations, the geometric data we need are the

nonzero components of the Ricci tensor

1lag + 4
R00,near = _Rll,near = M?
2a
dag — 2
R22,near = _M7
2a

R ~ 9(9a%¢°cos20 — a*g® + 1dag — 4)

39 mear = a(3agcos26 — ag + 4) ’ (A.1.9)
B _ 3v/2¢%\/2 — ag — a®¢?sinfcosh

Smear = 3agcos20 — ag + 4 ’
R g (21a*g?cos20 — 11a%g* — 12agcos20 + 28ag — 8)

44, near — .

2a(3agcos20 — ag + 4)
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We also need the explicit nonzero contractions of the gauge field Fic nearF), ® sear = Fab,near

3g(ag + 2
fOO,near = ga «Fll,near = _FOO,neara F22,near = 392,

a
12¢%(1 — ag)sin®f 3¢%sin20~/2(1 — ag)(2 +
f33 near = g ( ag)SIH 9 f34 near = — g i \/ ( ag)( ag), (A.]_.]_O)
’ 3agcos20 — ag + 4 ’ 3agcos20 —ag + 4
69%(ag + 2)cos*d 12g
Fab,near - -

3agcos20 — ag + 4’ a

Fab,near _

f44,near =

The equations of motion are then verified once we impose these expressions.

A.1.2 AdS,

The 4d N = 4 gauged supergravity can be obtained by the truncation of the 11d supergravity
[41]

1 1 1 1
Ly=R=+1- 3* dp A dp — §€2¢ «dy Ady — §€_§D * Floya A Flaya — §XF(2)2 A Fa)
1
- ¥
2 (1 + x2e2%) (7>
—q° (4 + 2coshyp + e‘pXQ) w1,

Flay A Fapn — € xFan A Fay)

(A.1.11)

where ¢ and y are the dilaton and axion. The subscript in parenthesis denotes the degree

of the form. The solution has two pairwise equal charges and therefore two gauge potential
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Ay and Agp)2. The equations of motion are

1 2
0 =d (—1 NPT (7 Fian —e “”XF(zn)) )

0=d (6750 * F(Q)z + XF(Q)Z) ’

1
0= —dxdp—e*xdy ady+ 56_“” * dAye A dA@gy2 — gQ(QSinhgp + e‘pxz) *x 1
e? (e*x? — 1) ey

dhos mddo o+ —EX 4 da

1 3¢
0=-— d(e29" * dx> — §dA(1)2 A dA(1)2 + W * dA(l)l A dA(1)1 — QQQQ@X * 1
20 L4p, 2
6—6X2dA(1)1 A dAq,
2(e%*x2+1)
1 1 1_, 1, o1 y
0 :Rab - §gabR - 5 VaSOVbSO - EV (pvcgpgab - 56 Fac,2Fb,2 - Zch,2F2 Jab
1 2p 1 c e’ c 1 cd
- 56 VaxVix — §V XVeXGab | — W Fac,lFbJ - Zch,lFl Gab

1
+ §g2(4 + 2coshy + €#x?) gap.

(A.1.12)

The convenient veilbein for this black hole solution is

eo = G/ cos20 + x2y?rdr,
I

e1 = G1/cos20 + x2 ZTT,
7

2 24,2
ey — ﬂ\/lﬁ( cos20 + %y a0, (A.1.13)

—2c0s820 + iyt — 22%y% — 1)

-2 2 A — 20242 — 1 ~
e = Gsingy | 2SS0 ¥ Ty 20y~ Lo+ dg),
(x2y? — 1)" (cos260 + 22y?)
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where G, G4, G5 are constants

4 _ 4 _
G = a:y\/Q (x 1) (y 1) (1’10 [ylo + yﬁ) 448 (6y8 _ 8y4) + x6y2 (yg - 1Oy4 + 5)

g
—22* (4y* — Tyt + 1) + 2% (55 - 3) — 2],
q. - V2@ - 1)
gl -3
G _ @8 B @ - 3) Py - 1)
T /e Dy -1
(A.1.14)
that depend on the parameters 0y, o of the solution, which we have redefined as
o =Inzx, dy =1Iny. (A.1.15)
The scalar fields in the near-horizon are
o = Teos(6) (2% = y?) (a%” + 1) /2 (y! 1) (ay? — )
e y (22 (y* — 1) cos(20) + a8y* — 2ty? — 22 + ) V! =1 (A.1.16)
() 22 (y* — 1) cos(20) + 2%yt — xty? — 2% + 42
(& =
near 22 (y* — 1) (cos(20) + x2y?) ’
and for the gauge potentials after adding a pure gauge term for convenience,
M, My (— (2% — 1) y2cos(20) + zty? (y* — 2) — 2% (y* — 1) + ¢?)
A(l)l,near = D) e
cos(20) + x2y Gl\/cos(%) + x2y?
0) (2%y? — 1 20 2y2
P e L e e R - SR
G/ —2c08(20) + xiyt — 2222 — 1 G1+/cos(20) + z2y?
M, My (=22 (y* — 1) cos(20) + 25y* — 2y* + 22 (1 — 2y*) + 9?)
A(1)2,near = 5 5 €1
cos(20) + x2y G14/cos(20) + 22>
0) (z%y* — 1 20 292
+M4Sin28 CSC( ) (‘/L‘ ) )\/COS< ) +z ) €4 — G5 el |,
G/ —2c08(20) + iyt — 22292 — 1 G1/cos(20) + z2y?
(A.1.17)
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where

22y? —1
M=
' V2
2 (22y% + 1
M, = —Gs (7y" + 1) -, (A.1.18)
g (2% +y?) (a2y? = 3) (22y* — 1)
e A
39 — gx?y?

A.1.3 AdS;

In this section, we are interested in charged, rotating AdS; black hole solutions as studied

in [50,51]. The Lagrangian is

1< 1 ¢ 1
Lr=R+1- D xdep; A dp; — 5 DX Fly A Flhy - S XI5 Fay A Fla
i=1 I=1
A1.19
+2¢° (8X1 X + 44X X572 +4X 2 X - XX ) « 1 ( )

+ gF(4) A A(g) + F(12) A F(22) A A(g),

where
X, = e—%/\/ﬁ—wz/ﬁ’ X, = e—¢1/\/ﬁ+w2/\/§, F(IQ) _ dA{Ua Fuy = dA), (A.1.20)

where we have fixed a typographical error corresponding to a minus sign in one of the terms
in the Lagrangian. The bosonic fields include two scalars ¢, and ¢, the graviton, a 3-form
potential A, and two U(1) gauge potentials A{l), I =1,2. We study two different solutions
to this Lagrangian. The first solution is more general with two charges set equal but different

angular momenta. The equations of motion corresponding to the scalars and gauge fields
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are
8 2 —1 —2 —2 —1 —4 —4 1 2 —2 lab oI
(et =—mg (4X,1 X, — 3X7' X572 — 3X 72X, + 2X0X, )+—2\/EZXI plebpl

- X XQFadeFaC,
12 /7 bed

ﬁ (Xl_ZFlabF;b o X2—2F2abF3b) + 4\/592 (Xl—lX2—2 o X1—2X2—1) 7
0=d (X% Fyy) = Fzy A Flay,

0=d (X572 % Ffy)) = Fiyy A Flay,

0=d (X7X3 * Fuay) — 29Fu) — Fiyy A Fiy,

Llpg =

(A.1.21)

and for the graviton, we have

1
0= Rap = 5 Rga — 9° (8X1Xz + 4X X0 +4X72X0 = XX g
2

1 1_, oo (1 . e
_ ; <§Va90sz90z - ZV SOchSpigab) - Z XI (2Fa Fbc 8F ngab (A122)

1 1
_X2X2 _FCdche__FCdeche o ]
1432 (12 a bed 9% def Jab
We can truncate this solution as constructed in [50], where the two charges and angular
momenta are set equal. This truncation can be done by letting X = X; = X, = e=%/ \/ﬁ, Py =
0 and Ay = A%l) = A%l) and the Lagrangian of interest becomes

1 1
L;=Rx1—-xd dp; — X2 Foy— =X* %« Fyy A F,
7 o 2* Y1 A dpr * L2) N L(2) 5 * L) AN Lg) (A.1.23)
+2¢° (BX? +8X 7% — X %)« 1 + Fo) A Fo) A Ay + gFy A Ags)

and the equations of motion are

X2 2X* 164>

2
0=dx*dp— * (2)AF(2)+\/—1»O*F(4)AF(4) V10

V10
0=d(X?*Fg) - Fa » Fu,

0=d(X{* Fu)) —29Fu — Fiy » Fy,

(2X? =3X 7+ X7%) x 1,

(A.1.24)
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and for the graviton

1 1 1 1
0 :Rab - éR Gab — 5 (Vagpvbgo - Evcwvcwgab) - X_2 <Fa0Fbc - ZFCchd gab>

1 1
_ g2 (8X2 + 8X—3 . X—S) - EXZL (FacderCde . gFCdechdef gab) )
(A.1.25)
The fields corresponding to the solution in [50] are
X=H",
2msinh(d)cosh(9) Qo dt
Ay = dt —
M AZH (dt —ao) + ——,
(amsinh®(0)) o A do
Aiy = = +apndt AdO Ady+ arpdt AdE A dp + azsdt A dE A dip,
PPEE_
(A.1.26)

where we have added pure gauge terms to both potentials Ay and Ay for convenience.

More precisely, after taking the near-horizon geometry, we have

aqg = —1, a71 = —PBsinfsin’E, Qg = Psin2€, a3 = Peosfsin2é, (A.1.27)

where
4 (625 — 1)
- _ i A.1.28
B (_13625 _ 9646 + 9666 + 5) g2 ( )
A convenient veilbein for the near-horizon is
e1 = pirdr,
dr
€2 = P1—,
7
€3 = Po (pgde + py (sin2£(d¢ + cosfdy) + 2d)~<)) ,
eq = psdt, (A.1.29)

es5 = pssinédo,
eg = pssinfsinéd,
er = pssinécosé (do + cosfdi)),
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where

1 23/531/5(626 + 1)1/5
P g VBer + 27e® + 43

1 1 1
22/533/104 (1 — 3¢20) (5 — 3¢20) \/( )

P2 =

26 4+ 1)%/% (9628 — 7)

16(3¢* —5)% (2¢2 4 3¢% — 1) 3(9¢% — 7) (A.1.30)
bs = 6e2 + 27e% + 43 (—2¢% + 3¢¥ —5)’
Py = —30e? + 27" + 7,

1 28/5 (626 + 1)1/5
g3, [(“2e% 1 3¢ —5)

bs

In the near-horizon limit, the fields in the veilbein basis become

92/5
Xnear = 31/5(¢26 4 1)1/5’
2 (e 1) (15 — 962 e1 + v/6625 + 278 + 43ey)
(Dsmear = VA4e2 + 210e% + 1085 + 243¢% — 301 ’ (A.131)
- (54?0 4 27e* —101)(e; A es A eg — €1 A eq A €7)
’ 29/531/10(26 4 1)1/101/9e25 — 7+/6e20 + 27e% + 43
(99¢% — 117¢* + 81e% — 215) (e5 A s A €7 — €3 A €5 A €6)
C o 24/531/10(e26 4 1)1/10,/9eT 7 (6620 + 27e% + 43)
A.1.4 AdSg

The field content consists of the graviton, a 2-form A, the scalar ¢ and one U(1) gauge
potential Ay after truncation, as shown in [55]. After appropriate rescaling and gauge

transformations, the 6d Lagrangian is given by

1 1
,CG =Rx1-— 5 *ng A\ ng — X_2 (*F(Q) A F(Q) + 92 *A(Q) A A(g)) — §X4 * F(g) A F(g)

2
+ g2 (9X2 + 12X 72— X_G) *1 — F(g) A F(g) A A(g) — %A(g) A A(g) A A(g),
(A1.32)

where

X = 9/V8, (A.1.33)
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The equations of motion are

1 1 1
Gap =§Va80Vb§0 - Zvcgovcgogab + X2 (EfE,C - ZFCchdgab)
-2 2 c 1 cd 4 1 cd 1 cde
+X g AaAbC - ZA Acdgab + X Z_LFQ Fbcd — ﬂF chegab (A134)
92
+ 2 (9X% + 12X 72 — X %) g,
2
o = LX_2 FabF 2AabA . 1 X4Fach i 2 3X2 o 4X_2 X—6
w_\/g ( ab T g ab) 3\/§ abc+\/§g( + )a

d (X7 x Fig)) = —Fy A Fla,
d (X" x Fig)) = =Foy A Foy = Ay A Ap) = 20°X 7%+ Fy.
(A.1.35)

We omit the veilbein and several other details for this black hole as the expressions are quite

long. The scalar and the U(1) gauge field in the near-horizon limit take the form

i g(a®+gy®) +y*(bg + 1)) (a (b + gz°) + 2%(bg + 1))
AXnear (ag + bg + 1) (a2b(bg + 1) + a (b2 + bg (y2 + 22) + g*y222) + gy222(bg + 1))’
A1) near = Wi (ngdf—i— Wsdéy + W4d¢§2> ;

(A.1.36)

where

Vab

vag +bg + 1(a?b(bg + 1) + a (b + bg (v + 2%) + ¢°°2*) + gy*2*(bg + 1))’
W, = [<b2 - a2) E.Zp(ag +bg + 1) (a2 (3[)2 +bg (y2 + 22) . g2y222)
+a (bg (v° +2%) + b (=20°y"2" + 7 + 2°) — 29y°2%) — y*2"(bg + 1)°]
[a'g? (b%g" + 6bg + 1) + 2a°g (b°g” + Tb*g" + Thg + 1)
+a® (b'g" + 146°° + 300" + 1dbg + 1) + 2ab (3°9° + 0" + Thg + 3) (A 1.37)
g+ 1)°]
b(a? — ¢ (a® — 2%) (Pg® — 1)

W3 = b )
\ agrberT
W o@D ) (17— )

ab
ag+bg+1
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Note that we have added a pure gauge term to the 1-form agdt, where ag = —1.
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Appendix B

Subleading Corrections via the Heat

Kernel: Supplemental Computations

B.1 Mathematica algorithm

We describe the Mathematica algorithm written with xAct [204] and xPert [205] to compute
the Seeley-DeWitt coefficients a4 () presented in this paper. An executable code reproducing
the results of this paper is available at [188]. The purpose of the algorithm is to compute

as4(x) via the expression

1 1 1 1
(4m)%ay(z) = Tr 5E2 + G RE + 5 Q"+ %(532 + 2R, e RMP7 — 2R, R™) |

(B.1.1)

where E and 2 are determined by the two-derivative action as defined in section (5.2.3).
This computation is straightforward but tedious to do by hand, especially for fermions.
The algorithm uses xTensor and our own implementation of Euclidean spinors (as xSpinor
can only treat Lorentzian spinors). The resulting expression is then reduced using various
spinorial and geometrical identities, as well as the equations of motion.

For bosons, the algorithm uses xPert [205] to expand any Lagrangian to quadratic order.
It then extracts the matrices P and w which allows us to compute E and 2, evaluates
and simplifies a4(z). For fermions, the input is the matrix L which defines the quadratic
Lagrangian as £ = ¢(I) + L) where 9 refers to all the fermionic fields of the theory. The
heat kernel method is then applied to the operator @ = DD using the formula (5.2.25) to
obtain P and w. The algorithmic approach is useful because we can automatize simplification

using gamma matrix identities.
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The algorithm was used in this paper to verify the bosonic result, also computed by hand,
and to obtain the fermionic result, which appeared too tedious to compute by hand. It has
also been used to obtain the results for minimal couplings, which can also be easily obtained
by hand.

Let us mention various checks that have been performed on this algorithm. It gives
the correct logarithmic contribution for various results in the literature such as minimally
coupled fields [158] and ungauged N > 2 supergravity [148]. The same algorithm was used
in [206] to compute the logarithmic correction in the non-BPS branch of ungauged N > 2
supergravity. The results of [206] were subsequently checked by a completely independent
approach [148] computing directly a4(x) from eigenvalues, with agreement in all cases. Given
that the Lagrangians involved in these computations were fairly complicated, this gives us

confidence that the algorithm performs correctly.

B.2 Bosonic computation

For the interested reader, we present a self-contained computation of the heat kernel coeffi-
cient ay(z) for the Einstein-Maxwell-AdS theory.

B.2.1 Quadratic fluctuations in Einstein-Maxwell AdS theory

The action is given by
S = Jd‘lx\/ﬁ (R—2A - F, F"™), (B.2.1)

where F),, = 0,A, — 0,A, is the field strength with A, the gauge potential. Note that we
find it convenient to use the convention 47G = 1. We consider variations of the metric and
gauge field
1
69/41/ = \/ﬁhuyy 514# = §aﬂ s (BQQ)
where h,, and a, are the graviton and graviphoton respectively. We impose a particular

gauge to the theory by adding a suitable gauge-fixing Lagrangian

S =— f d*r4/det g { (D“hﬂp - %Dph> (D”h,’j - %D”h) + % (D*a,,) (D”a,,)} , (B.2.3)

and the corresponding ghost action to the action (B.2.1). We then expand the action up to

quadratic order. The linear order variation yields the equation of motion for the background
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fields

1 1 a
Ry — §g;wR + g =2F,,F0 — §gquaﬁF 7, (B.2.4)

DMF,, =0 . (B.2.5)

Note that the equations of motion implies that R = 4A = —12/¢2. Tt is also worth mentioning
the Bianchi identity for the gravitational and gauge fields

Dy F,y =0 (B.2.6)
R,u[upcr] =0 . (B27)

Writing the quadratic action in the standard form (5.2.20), we find
Om Q™" Oy :Gﬂmﬁhwmhaﬁ + ga'gaaDaﬁ - aaRaﬁa[g
1
+ {Rﬂwﬁ + R — (g R + g R
+g" R + g"P RM) — 2 (FHF"P 4 IO F™)
1 vV oV, voa « v B.Q.
+§(gugﬁ_gugﬁ_guﬁg )(F9¢F9¢)+2G Bu A}ha,b’ ( 8)
1 p\HYQ 1 p\HVY
—h Z(DPK) _§(K) Dy aa

1 va | 1 va
—aa{Z(Dpr)“ +§(K’))“ Dp}hw,

where
(Kp);wa _ 2\/§<go¢quu + gOcVFpM _ gMﬂFOCV _ gVPFO‘N — g“”FpO‘)‘ (B29)

Note that we have used the symmetry properties of the graviton to write the term propor-
tional to A using the DeWitt metric

GHvab — (g,uoéglfﬁ + gﬂﬁgl’a _ gl“’gaﬁ) , <B210)

N | —

as hy, (2g"g"P A — g g*P N hog = hy, (2G*PH A)h,s. We note that the results pertaining to

the cosmological constant terms agree with what we expect from [182]. With (B.2.8), we
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can explicitly read out the matrices ™", w” and P™" in (5.2.20):

™ by =R G* P hos + ang™Pag . (B.2.11)
1 1
Om (W)™ Py, =Zh,“, (KP)"* a, — 70 (KP)" hyy (B.2.12)
1
¢umn¢n =h , Ruoa/ﬁ + Ruﬁua - g,uaRVﬂ + gu,BRVa
a 2

+gVaRuﬁ + gV5Rua) ) (FuaFVﬁ + Fuﬁpva)
1
+5 (99" = g""g” = ¢"79"") (Foo ™)
(B.2.13)
+2g"*g"PN — " g*P A} hog |
2
— aaRo‘ﬁag + ghuv {DFFY + D"F**} a,

>
+ gaa {DFF 4 DYFY o, |

B.2.2 Trace computation

Here, we present various trace computations. The field strength (2 is given by

¢mQ/TVn¢" =¢m[Dy + wy, Dy + wy | = ¢m{[Dua D, ™ + D[uwu]mn + [wu7wu]mn}¢n )
(B.2.14)

To compute the matrix E and Q2 using (5.2.22) and (B.2.14), we need [D,.D,], (D w,)™"

and (w?)™ (w,),"

G [DP, D™ ¢y =hy, [D?, D7 W + a, [D?, D°] a®
=hyu {g"P R + g"P R} hog + ag R ag

1 h vB puapo va pufpo 1B praps po prBpo (B.2.15)
=5l {9 +g +g +g } hagp
+ aaRaﬁp"ag,
2 2
¢m (Dpwp)mn ¢n _ _ ghuu (DVFau + D,LLFOW> Ay + \/77(1& (DuFau + DuFow) h,uzx;
(B.2.16)
m n 1 va 1
Om ()" (@), o =g Py (KP) (=K, gaghsy
1 (B.2.17)
va 1
+ Eaa (K*)" (—K),) ! BGWMaﬁ'
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For (B.2.17), using the definition of (K?)*"* (B.2.9), we find

bm (W)™ (w,)," D =hp (=2FFOF = 2P FY 4 2FWE° jgh" — FYPF° g7
_FVpFngué _ F“’)F‘Spgw _ FMﬂFVngCS + QFW’F”ngS (B.2.18)
—LE, G F7 g™ g°) hoys + ao (—2F*FP — Fpu F*g°") ag.

Note that (B.2.18) is the same expression as in the asymptotically flat case [183] and changes

only when we plug in the equations of motion (B.2.4),

O (W)™ (W), bn =Py, (~2FVCF"P = 2FW PV — S Fy g Fghe g — S FyF g g
+ F Fadg,uu Ba + gﬁaRuV . l VCYRHB o l VBR,u,a o %g,uaRuB
LR 4 g RP 4 Mgy . AgPg" — 209" 6% hag

1
+ §aa ( F9¢F0¢ B Raﬁ + Agaﬁ) CLB

(B.2.19)
Extracting the information from the quadratic action, we find
P E™"Pp =h, (lewﬁ + RHBra _ gWRaB _ gaﬁR/w + Ag;wgocﬁ) R
+ Qq (%gaBFWF‘“’ - Agaﬂ) ag + gh,ﬂ, (DFF®Y + D" F**) a, (B.2.20)

2
+ gaa (D*F* 4 DYF™) h,,,

1
Qbm (on)?’nn ¢n :h,ul/ {5 (gVBR'uapU + gVOéR,U«ﬁPU + g,uﬁRuapo + g,uozRuﬁpa)
+ [wp’ wa]uuaﬂ} haﬁ + ag {Raﬂpa + [Wp7 wa]aﬁ} ag <B221)

apy

+ hy (DY 4y + ag (DPw™)™ 1y,

We explicitly compute the traces involving the endomorphism £
Tr(RE) = TR R 4 R — g R — g®P RV 4 Agh g7
3
+ Tr <§ 9"’ RF,, F" — RAgaﬁ)
(B.2.22)

=R ( RrovB 4 Rpubra _ g RY8 — gaﬁ R™ 4 gt gaﬂ A) ija 3

3
+R (égaﬂFp,uFm/ - Agaﬁ) Gaps,
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which after expanding, we find

Tr(RE) =R (—2}2 +(D-2)R + (D — D;) A) +R (%FWF“” - dA) (B.2.23)

= —32A% + 6RF,, F",
where D = 4 is the dimension of the space and we have imposed R = 4A. Next, we consider

Tr(E2) =Tr (RF"% + RW® — g R — g®B Riv 4 g o8 A )
% (RpTJ5 + Rpéa’r o gpoR’r(S . gT(SRpU + nggTéA)

3 3

2 _af 2 aff < 76 0p 70
+ Tr ((29 F,F Ag ) (29 Fou I Ag )) (B.2.24)
+ ST ((D"Fo + DYFor) (DPFP 4 DTFP))

+ =Tr (D'F* + D"F**) (D’ FP + D°FP?)) .

N — DN -

For the first term of (B.2.24), we have

(R#alfﬁ + RHBra _ g/wRozﬁ _ gaﬁRuV + g‘“’ga’BA)
X (R”T”‘S + RPOOT — g”"RT‘S — gT‘SR"" + g’”gTéA) GWWGaﬁﬂg (B.2.25)
= 16A% — 4R, R™ + 3Rupea R,

The second term of (B.2.24) gives

Tr <;ga5FuyF‘“’ — AgOfﬁ) <2975F9¢FO¢ — Ag75> — 4N? — 120 F, 3 F*° + 9 (Fp,F%)*

(B.2.26)

where ¢*?¢7°g,,935s = D = 4. Now, for the remaining terms in the trace in (B.2.24), we need

the following identities

1 1
(DyFu)(D"F*™) = —R™ Ry + 5 R* = AR = SRF, F” 4 Ryupa P F*

. - . (B.2.27)
(DuF,")(DyF™) = 5 ( 2Ryupe F* F" — Ry R" + R — AR = SRE) ) .

These identities can be found by using the Bianchi identity (B.2.6) and (B.2.7) followed by
an integration of parts, dropping the boundary terms along the way, and imposing the com-
mutator relations (B.2.15) of the covariant derivatives acting on the gauge field. Note that

(B.2.27) are on-shell since we have explicitly imposed the Maxwell equations and Einstein
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equations. Then,

X = -Tr (D*F* + D"F**) (D’ F" + D° F"?))

DN | —

4 %Tr ((D"F* + DY Fo*) (DPF® 4 D7 %)) (B.2.28)
= (D"F*® + D"F**) (D*F" + D" F") g0pGluvpo -
Imposing the Bianchi identities simplifies our expression to
X = 2(D,Fo)(DPF) + 2(D,F,q) (D’ F?) . (B.2.29)
Finally, using (B.2.27), we find
X =2 (—R“”RW + %RQ — AR — %RFPUF’” + RW,,QF“”F”“>
+ (RWPC,F“”F"” — R, R"™ + %RQ — AR - %RFPUF”" - Rm,paF“”F’”> (B.2.30)
=3 (—R"”RW + %RQ — AR — %RFPUF"” + RWWFWFW> :
Putting all the contributions together, the trace of the square of E is therefore

TYB? = (16A% — 4Rop R + 3Rapa ) + (402 = 12AF,5 P + 9 (Fpo F)°)
1 1
+3 (—R“”RW + 532 —AR— SRE, P + RWWF"”F”O‘>

—32A% — TR R* + 3Ryupe R — 18AF e F™ + 3Ry0p0 FF FP* + 9 (Fy F%)”

(B.2.31)
The necessary traces are summarised below:
Tr(I) = 14, (B.2.32)
Tr(RE) = —32A* + 6RE,, F" | (B.2.33)
Tr(E®) = 32A% — TR, R"™ + 3R, R*"" — 18AF,, F*°
(£7) 1 fivp . p (B.2.34)
+ 3Ryupe FHWFP + 9 (Fpo F°7)"
Tr(Q%) = —224A% + 60AF,, F" — 54F,, F" F,,F* + 56 R, R"” (B.2.35)

—18F* F* R, 00 — TRyupe R*7 .
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Substituting the traces (B.2.32)-(B.2.35) into (5.2.23), we obtain the fourth heat kernel
coefficient of Einstein-Maxwell AdS theory without ghosts

880 196 179
—— A2+ —R,R"™ + —R,,,, R . B.2.36
R0 T 10t T ( )

(4m)*ag™(z) =
Ghost contribution
The addition of the gauge-fixing Lagrangian (B.2.3) introduces an action for the ghosts,
given by
1
(%mmp:éfd%V@PmeT}+RWyb+2Mjo—%FWDw&, (B.2.37)

where b, and ¢, are vector fields and b and ¢ are scalar fields. From these expressions, we

can extract the matrices £ and (2 as
OB d™ =b, (RY) V" + ¢, (RY,) ¢,
G (a0 b (R ) (R s) € = 5 (0 — i) (Do) (i) (B.2.38)
+ %(b +ic) (D, Fop) (B —ic”) |

Note that in the case of the ghost fields, we are raising and lowering the indices with g®°
and 1. The result for the heat kernel is

ghosts,EM E ‘1/2 _ T p2 B.2
ag (x) = _36 4 | 1R : ( ) '39)

where we have already included here the negative sign due to the opposite statistics.

B.2.3 Logarithmic correction
Adding the above results, the heat kernel for Einstein-Maxwell-AdS theory takes the form,

53 137 13
A0)2aB () = —=E, + —W? - —R? . B.2.4
(4n)faf(x) = — B+ oo WP = 2R (B.2.40)

We can read off the coefficients from (5.3.1) to be

93 137 13
—_ — = —_— b = —— b = O . B.2.41
agr 45, C 60 ; 1 2 ( )
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B.2.4 Neutral limit

As previously mentioned, if we properly truncate the fluctuations and the resulting curvature
invariants, we recover the result obtained in [182] for the theory of pure gravity with a
negative cosmological constant. Let us show this explicitly as a sanity check of our results.

In this limit, we must truncate the fluctuation of a, in (B.2.20)
G E™" P = hy, (R’“WB + RiPre gt ROP  geP R Ag’“’gaﬂ) hap - (B.2.42)
This yields the following traces

Tr(RE) = —16A? ,
Tr(E?) = 16A* — 4R, R" + 3R 0 R*"7 (B.2.43)
Tr(I) =10 .

Note that the trace of I is 10 instead of 14 because we no longer have the fluctuation a,,
this is the kind of intermediate result that makes a naive truncation of the final answer yield
the wrong result. Moreover, the field strength €2 is simply the commutator of V. Its trace is
well-known and takes the value Tr(Q?) = —6R,,,,, B**°. Combining these results, we have
1
180(4x)%a e =3 [60(—16/\2) +180(16A% — 4R, R* + 3R" PR ,053) + 30(—6) R PR 105
+10(5R2 + 2R Ry — 2R, B |

= — 120A% + 190R" PR .05 -
(B.2.44)

In the second line, we used the field equation R, = g,,A. For the ghost contribution, we do
not have the ghost of the graviphoton, i.e., the scalar ghosts b and c¢. Therefore, the matrix

FE in the neutral limit remains the same and €2 reduces to

O (Qap)m @™ =bu (Rby5) b + ¢ (R, 5) ¢ (B.2.45)
The only change in the trace is the I operator

Tr(l) = Tr(¢") + Tr(¢") =8, (B.2.46)
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which yields the ghost contribution in the neutral limit

1 1 1 2 2
—(4m)2a§"*P(z) = R® + R, R" — & Buwpo B7 + (=R*+ 15 Pwpo 77 = = R BY)

3 9 45
4y 43 w43 o
= 9R + 45RWR 45R,“,,,JR

11 164
I VJR,LW,DU__AQ

QOR” ? 15

(B.2.47)

where we use the field equation R,, = g,, A once more. In the neutral limit, the heat kernel

coefficient is therefore
180(47)%al (x) = 212R,,,,0 R*P7 — 2088A% (B.2.48)

which agrees with the result in [182].

B.3 Fermionic computation

In this appendix, we present the details of the computation for the gravitini of minimal

gauged supergravity described in section 5.6.

B.3.1 Majorana Lagrangian

The fermionic Lagrangian is given as [185]

L v i v o 1 - v
L = §¢M’7M pDV¢p + ZLFM ’pr’)/u’yp '7V77Z)o - Q_E"vz);ﬂ/u @Zju , (B31)
where 9, is a complex spinor with spin % It can be written as

Uy =1, + iV (B.3.2)

where w,f are Majorana spinors. For definiteness, we use the really real representation of the

Clifford algebra given by explicitly as [189]

0 1 1 0 0 01 0 03
0 = s 1 = y 2 = y 3 = . B3.3
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In this case, the Majorana condition reduces to

V¥ =, (B.3.4)

which is just the reality condition. We choose the gauge v*1,, = 0. This can be implemented
by the gauge-fixing term
1 - v
Las. = =7 (") Do (v"y) - (B.3.5)

More details about the Faddeev-Popov procedure are given in the following subsection when

we consider the ghost contribution. We then perform the field redefinition

1
Y =2 (Xu — 5%{7”)@) : (B.3.6)

which leads to the Lagrangian

‘cFermi + Eg.f. = Ekin + ﬁq];qu + Eq/_)w > (BB?)
where
1 HY o)y AP
Lkin = §g ’l/}‘ufy vay ; (B38>
4 v,/ o
E'J)F?}) = ZF# wpf)//fyp Yo
1 =
_ _ uv
szp %%ﬁ (I

For the kinetic term, we can use the fact that (see [19,148] for details)

o v 1 - v, 1 v
XuY Dox! = 5% (7“ ’D, — 57"7 V’JD,,> Y, (B.3.9)
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Note that gauge invariance guarantees that this identity holds also for the gauge connection.

For the mass term, we have

Ly

1
2_g¢“7MV¢” (B.3.10)

1/ 1_ W 1
Z Xu*§Xp7 Yu )Y XV7§’YV,Y Xo

1 _ v 1 _ v 1 — v o 1 = 174 g
7 (X,ﬁ“ Xv — §xwp’m“ Xv — §x,ﬁ” YWY Xo + ;prvp’yuv” Yy xa)
1

ﬁ (XM’VIWXV - 3XM’VM’YVXV + 3>7(p’7p70X0)

1 — v
wa“ Xv

where we have used v = y#4" — g so that v,v* = 37" and v,v*"7, = 12. Finally, we

have

Lipy

7 _
= —F" Y77 s (B.3.11)

4

2 2 2

i oo 1 . 1
= " (Xp - =XaY 'yp) VY Vo <Xa — =7.7° Xﬂ)

Z. v - g ]' - (0% (o ]' - g
= §F a (xww” WXo = 5Xa7 YoVu Y Vo Xo — §xp7w” YWYV x5
+1>‘< VY VY VYo VP X )
g plu vl Bl -

To simplify, we use the following gamma matrix identities

YNV = =2,
WY = 1V = 977) = =" = 265, (B.3.12)
YoV Y VYo = (=Y = 200)% Yo = 4w -

For the second term in (B.3.11), we have

1

2

1

XY VoV wXo = XY (Y7 + 20,) 1 X0 (B.3.13)

2
1 - (073 g - (073
= 5)(0/7 TuY VvXo + Xa Yo Xu
1 N o o o
= §xw°‘%(25y — %Y )Xo + XY Vo Xu
1

= XaV " VuXv — §>‘<a'y“'mw”xa + XY VX -
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After contracting with F*¥, the first and last terms in (B.3.11) cancel due to antisymmetry.
Finally, symmetry arguments show that the third term in (B.3.11) gives the same simplifi-
cation as (B.3.13). At the end, we obtain

¢ V(v o o (e} o - o
Lipy = FF" (Xo Y7 VX = Xa V" W07 Xo + XaV VY X5) (B.3.14)

Z’ V.— o8
= §F XYY Vo X

We thus obtain the Lagrangian

V.- i V.- o 1 - v
Ly = "X Dyxy + §F“ Xo VY Vo Xo — wa“ Xo- (B.3.15)

We introduce the complex spinor x,, as

Xu = X X5 (B.3.16)

in terms of Majorana spinors. We use the label A = 1,2 for the two spinors and make use
of Majorana flip identities [189]

Mt i X = X VA (B.3.17)

where

—1 r=1,2mod 4
t, = : (B.3.18)
1 r = 3,4 mod 4

The sign t, reflects the symmetry of the gamma matrices under charge conjugation. Another
useful identity is [189]

MyHLykz gty = (—1)Pgyte Ry (B.3.19)

Each term in the Lagrangian can be simplified using Majorana flips and is either proportional
to the identity matrix 045 or the antisymmetric matrix 45 (wtih €'? = 1). In the kinetic

term, the cross-terms cancel

X' Doxy = —DpXon"X, (B.3.20)
= X;%’YprXi
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where we used a Majorana flip and integration by parts. Hence we have

Liin = 0ag" XV’ Doxy - (B.3.21)
We then have
Frly ™y = FP (yu0p) ' (1)) (B.3.22)
= _F“y(7u¢;)T’7pa<’Yu¢;)
= Py b,
=0

where we used a Majorana flip in the second line. This shows that

1 o
Liry = —5EaBF" X007 10X - (B.3.23)
Finally, we have
N G e (B.3.24)
= X

where we used a Majorana flip and antisymmetry of v*”. This shows that mass term is

1

Ly = gaABxﬁyﬂ”Xf : (B.3.25)
The final Lagrangian is then
wv —A_p B 1 puv —A po B 1 A _uv. B
Ly+Lgr = 0ad"" X,V DXy — §€ABF Xo VY VX — Z(SABXﬁﬂ X, (B.3.26)

This Lagrangian could now be interpreted as a Euclidean Lagrangian by performing the
Wick rotation and using Y4 = XL- This can then be used in the algorithm to compute the

logarithmic corrections.

B.3.2 Symplectic Lagrangian

We are ultimately interested in the fermionic Lagrangian in (0, 4) signature. It is known that
Majorana spinors do not exist in (0, 4) signature [191,207]. Instead, we should use symplectic
Majorana spinors. Thus, we first convert our Lagrangian from Majorana to symplectic

Majorana spinors in (1, 3) signature, where both Majorana and symplectic Majorana spinors
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exist. We then perform the Wick rotation to obtain the Lagrangian in (0, 4) signature.

Symplectic Majorana spinors

The symmetries of the gamma matrices are captured by matrices A, B and C. The matrix

A expresses the Hermitian conjugate of a gamma matrix as

(v = (=1) Ay A (B.3.27)
and we can take A = —°. The charge conjugation matrix gives the transpose as
(v")" = tot, CH*C 1, (B.3.28)
and satisfies C* = —t,C. Here ty,t; can take the values +1. The matrix B captures the
complex conjugate
(v")* = —tot, By*B ' . (B.3.29)
and can be obtained as
B=(CA™Y). (B.3.30)
We also define
. 0 o
7P = —in'yly?y® = ( ) (B.3.31)
02 0

given in the representation (B.3.3). Note that we have

()P =1 (O'=4" (P =0")=—". (B.3.32)

There are two possible choice of charge conjugation matrix which we will denote C; and C_.
The C, matrix has to = 1,¢; = —1. It gives a matrix B, = (C;A™!)! = 1. The Majorana
condition is then written as

V' =B =1 (B.3.33)

To define symplectic Majoranas, we need to use another charge conjugation matrix C_ =

C,~° which has ty = t; = 1. It gives the matrix
B_=(C_A N =+, (B.3.34)
The symplectic Marojana condition can be written as
(M)* = B_eap\y . (B.3.35)
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The mapping between Majoranas and symplectic Majoranas in (1,3) signature is given

in [191] and takes the form

Moo= X =i (B.3.36)
Ay = 0d ixG) (B.3.37)

where we have used that B_ = v°. This gives

1

= SN (1.3.38)
7

b= SN (1.3.39)

It is also useful to note that the Dirac conjugated defined as Y/, = (x'1)i7° gives

_ 1o, ~
o= SOh -, (B.3.40)
1

2(%{ + 259°%) . (B.3.41)

Xy =

We will write the Majorana Lagrangian (B.3.26) as

where

ﬁf + Eg.f. = Lyin + ﬁXFX + EXX (B.3.42)
‘Ckin = 5ABgu1/>_<ff17prX1é ) <B343)
1 VvV — g
LXFX = _§5ABF# XPA’YN’YPUVVXB ’
1 = 14
Lo = _Z(SABXZ%WXB :

We will now convert these terms one by one.

Kinetic term

For the kinetic term, we compute

guVle”valelj

1 — _
19 (N = M7 )7 Y, (A 4+ 97AE) (B.3.44)
1 3\ \ < —
19 (NP VN = M7V, PN + MV, N — My A V)
1 3\ N\ = —
19 YV M+ XV + MV 000 = NPV ).
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The other contribution is

_ , 1
G XsV'Voxs = 79w N+ A7)V, (A = 7°A%) (B.3.45)
1 3\ \ < —
= 79w MYV = X779 V7N = MV A8 + X5y V)
1 3\ N < —
= TN+ NV = MY+ V).

Therefore, we get
1 - _
Liin = 50 XAV X+ V). (B.3.46)

We now compute the contribution from the gauge connection. The Majorana spinors (X} x%)

form a doublet under the SO(2) = U(1) gauge symmetry. We have

1
D, = <5ABVu + ngBAM) X5 (B.3.47)
or more explicitly
v 14 1 v
Duxi = Vuxi+ 4uxz (B.3.48)
1
DMXZ = V,uXZ - ZAMXI{ . (B349)
Using (B.3.36), we see that
DN = Dyt —ixh) (B3.50)
1 N 14 1 v
= v,uXT + ZAMXZ -1 (VMX2 - ZAMXI)
VA %AM ,
and
D; = °Du(xy +ix5) (B.3.51)
1 N 14 1 14
= (VNXT + ZAMXZ) + iy <Vu><2 - ZA,m)
14 Z v
= vﬂ)\Z - ZAMAQ .

As a result, we see that \[ and M\, are singlet under the U(1) gauge symmetry and have

opposite charges. By gauge invariance, the kinetic term including the gauge connection is
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then

Lo — %gW(xWDpx; VN D (B.3.52)
Mass term
We have
Lyx = —%5,43)&%1/)(%- (B.3.53)
We compute
Kt = 08 = T O + 74 (B354
= i (M AT = MY As + Ny A — A7 7, AY)
= i (M AY = My Ay + My Ay = Ny AT
as well as
s = 00+ XM —7°X) (B.3.55)
1

= = (M = My = M7y’ A + A7 A7) -

=~

We see that the cross terms cancel upon addition of the two contributions and we end up

with
1

Exx = 20

Gauge interaction term

We compute

FM X5y Yoo XS

Z' Vi \ o o
= - MYV oo Yo (A — 7°A9)
(B.3.57)

i v (\ o \ o \ o \ o
= (MY 7p0 1 AT + MY 1Yo Y° A = MeVuYpe 1Y AT — MoV VYoo Vo A])

G v (Y o 3 o 3\ o 3\ o
= ZF“ ()“lyr}/u’)/pa’%/)‘l + /\g7u'7pa/yu/\2 - /\/1)’7/17/)0’)@75)‘2 - )‘5757;/7%07@)‘1) )
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and

FM X% Yoo Y XT
Z' Vi \ o o
= _ZFH O‘T + /\5’75>7u7p0’71/()‘1 + 75>‘2)
i _ . . _ . o (B.3.58)
=— (M Yoo WAL + MYV A + MVuYpe YA + MY YooV A])
i v (\ o \ o 3\ o \ o
=3 (MYu7pe 1 AT + MoV Yoo 1w AT + MYuYoo " AS + A7 °VuYpe 1w AT) -
Finally, we get
]' V.— o Z v (\ o \ o
EXFX = _§5ABFu XZ’VMVpa”YuXB = _ZF“ (/\T’V;pra’Yz/)q + A'S%’Ypa%)\g) (B~3~59>

Final Lagrangian

The final Lagrangian, written in terms of symplectic Majorana spinors, takes the form

1 3 v i v (Y o 3\ o 1 3\ v 3\ v
»Cf = §5ABg;w)\ffl’prp)‘A - ZF“ (/\ll)’ylt/ypafyy/\l + /\g’)/uf}/pa%//\2) - ﬂ ()‘lll/y;w)‘l - Ag/yuu)‘Q) :
(B.3.60)
We rescale Ay — /24 and write explicitly the gauge covariant derivative. At the end, the

two symplectic Majorana spinors decouple and we can write
Ly= L+ Lo, (B.3.61)
where

3 - n— v i vy o 1< v
Li = guMY(Vp+ il AN =GP XYoo A] = JA AT (B3.62)
1

Ny . (B3.63)

_ o R AN -
Lo = GuMy(V, — il TA)NS — §F“ MYV oo YA +

We can now reinterpret this Lagrangian to be in (0,4) signature. To perform the Wick

rotation, we define Euclidean gamma matrices
LA AY (B.3.64)
where 4? = 4% for i = 1,2,3 and 4* = —i7°. They satisfy

(AT =4+ . (B.3.65)
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We also take the Hermitian conjugate to be
M= ()T (B.3.66)

Note that it is clear that both flavors give the same contribution because £, and L, are equal
up to an exchange of £ <> —¢ and the four-derivative terms only involve £2. As a result, it is

enough to do the computation for £; and multiply the final heat kernel by two.

B.3.3 Ghosts

In this section, we discuss the contributions from ghosts.

Faddeev-Popov procedure

Given the crucial role of a proper treatment of the ghosts, we include here details about the
Faddeev-Popov procedure. This was first explained in [192] (see also [19]). The fermionic

path integral is schematically of the form
7 = J D, D, e~ Stustv], (B.3.67)
The Faddeev-Popov procedure corresponds to inserting in the path integral
1= | Debes(e -1 u0)5(E TN, (B.3.68)

where the Faddeev-Popov determinant is

m () ,ui(g)
App = det (%) det (M) , (B.3.69)

€ 0€

and 2/1,(f) = 1, + D,e is the infinitesimal transform of * under a supersymmetry transfor-

mation. Here, £ is an arbitrary spinor. We then insert

1= @ J DEDE exp (—EDE) . (B.3.70)
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As a result, we have

J = 1o tlD JD¢ND¢VD§D§D6DE eXp( fmg) (g ’7M¢ e)) (5 7M¢ 5)) S ]

- o lDwa#DwyDeDe exp (=, 7" Dy, e S]] (B.3.71)

where we have performed the integral over ¢,¢ and performed the field redefinition v, —
¥, —D,e. By supersymmetry, the action is invariant under this redefinition. We see that the
correct gauge-fixing term appears. Now, we can rewrite the prefactor in terms of b, ¢ ghosts

and an additional d ghost

App = JDch exp (—by"D,c), (B.3.72)

1

[ 7 — M
o D JDdDdeXp( dry Dud),

where b, ¢, d, d are spin % ghosts with bosonic statistics.

Ghost Lagrangian

The ghost Lagrangian
5 M 2 = H 2 > A
Eghost =by y DH + Z catcalyy DM + Z ba + €AY DNGA , (B373)

where by, ca,e4 are Majorana spinors. We map them to symplectic Majoranas using

1 )

by = 5@1 +7°8,), by = 5(51 —7°Ba) , (B.3.74)
1 1

¢ = 5(771 + ’75772), = 5(771 - 75772) ) (B.3.75)
1 7

€1 = 5(61 +7°€), €2 = 5(61 —7°6) . (B.3.76)
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We have

_ 1 -
by Dyer = Z(ﬁl — B27°)7" Dy + v°n2) (B.3.77)
1 ,_ _ _ _
= 1 (B Dum = B°" D™ np + By Dy = B2y Dyt )
1, - _ _ _
=1 (ﬁl’Y“D;ﬂh + By Do + 517“D“’Y5772 - 52757”17;4771) )
and
_ 1 -
boy'Dycy = 1(51 + 829" )Y* Dyu(m — 7°n2) (B.3.78)

1 _ _ _
= 7 (B Dy + 827" Dyte = 519" Dyy*na + 5277 D) -

We see that the cross terms cancel upon summation so that

_ 1 _ _
bay'D,ca = E(ﬁw“Dum + Boy*Dym2) (B.3.79)
Similarly,
1
cay'D,ba = 5(7717”)#51 + 7oy D) (B.3.80)
and .
éA’}/uD#GA = 5(617’“DM61 + EQ’Y‘“DHEQ) . <B381)
The mass term gives
_ 1 _ _
bicy, = Z(ﬁl — Bo”)(m + ¥°mp) (B.3.82)

1 _ _ _ _
= Z(ﬁﬂh — [ans + 5175772 — ﬂ275771),
and
7 L - 2.5 5
baca = Z(ﬂl + B2y ) (1 — ¥°12) (B.3.83)
1 - _ _ _
= 1(51771 — [ang — 5175772 + 52’75771),
so that

l_?ACA = %(51771 - 52772)7 (B~3~84)

177



and )
Caby = 5(77151 — 12/32). (B.3.85)

We now rescale all ghosts by a factor v/2. Finally, we obtain

- 2 2
Eghosts = 51 (’}/MD/L + Z) T + 771 (’YMD/L + Z) ﬂl (B386)

2 2
+ 52 (’Y”Du - Z) N2 + 72 (’Y”Du - Z) B
+€1’Y“Du€1 + gQ’Y“DMEQ

We now Wick rotate and interpret the Dirac conjugates as Hermitian conjugates in Euclidean

signature
Bi =i, By = n}, & =€ . (B.3.87)

The above choice of Hermitian conjugate makes the kinetic term diagonal and suitable for
the heat kernel computation. We can also use the more natural choice 3; = BI, B = ﬁg and

make the kinetic diagonal by a simple field redefinition.

B.3.4 Result

The heat kernel can now be computed using the algorithm described in section B.1. The

gravitini contribution is computed using the Lagrangian (B.3.61). The result is

139 32 2 8
4r)? = —FEy— —W?—--R*+ —RF,, F" . B.3.88
( ﬂ-) a4<l’) 90 4 15 9 9 1 ( )
In total we have one massless pair of ghosts and two massive pairs. A massless pair of ghosts

gives the contribution

11 1 1
(4m)2ay(x) = ﬁﬂl - 2—OW2 - ERF,WJW, (B.3.89)
and each of the massive pair gives
11 1 1 1
4)? =_—FE,— —W?+_-R*~ —_RF,F". B.3.90
(r) as(w) = 555 s = 55" + 5 F — g R ( )

In all these formulas, we have already included the minus sign due to the opposite statistics

of ghosts. Finally, the total fermionic contribution gives

1 1
589E4 AT —SRFWF“” : (B.3.91)

477)? =
(47)%as(7) = 355 60 18
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as reported in (5.6.17).

A different gauge-fixing term
Another possible gauge-fixing term is to take

1

Lor = —7y")("Dy = m)(37) (B.3.92)

1 _
= —Z5AB(¢;‘”Y”)(’YVDV -m)(v"¥,) -

This is natural because with m = %, the three pairs of ghosts become identical. Of course
the final result should not depend on this choice. This adds the term

1
Loew = me;ﬁ”’YV’% (B.3.93)
R U 1,
= m - X« v — S v
5 Xu 2X Y Ve VY X 2’7 7XB
1
= MmN YN

Using that g, = v"v” — ", we can simplify the Majorana Lagrangian with the choice
m = % so that it takes the form

1
(

uv.—A

1
Ly = 0ag" X" Dpxs) = 5ean " Xpu" wXs + 70apXug"' X, - (B.3.94)

After converting to symplectic Majoranas and performing the computation, this gives the

gravitini contribution

1 8
4rr)? = —FEy— —W?~-R*+ —RF,, F" . B.3.95
( ﬂ-) a4(l’) 90 4 15 3 + 9 14 ( )
The ghost contribution is also modified. Indeed, the Lagrangian of the e-ghost is determined
by the gauge-fixing Lagrangian and hence acquires the same mass of the b, ¢ ghosts. So we

end up with three identical pairs of charged ghosts for a total ghost contribution of

11 1 1
(47)%ay(z) = —m& — %WZ + §R2 - éRFWF’“’ : (B.3.96)
The total contribution is then
589 137 13
(4m)%ay(z) = %& — EWQ + 1—8RFWF‘“’ : (B.3.97)
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which, as expected, is the same as (B.3.91).

B.4 Renormalization of the couplings

Our focus in this paper has been on the Seeley-DeWitt coefficient a4 which is responsible for
the local contribution to the logarithmic corrections. The other Seeley-DeWitt coefficients ag
and ay capture the one-loop renormalization of the couplings. Indeed, the effective Euclidean
action takes the form

S = Selassical T S1-loop + - - - 5 (B.4.1)

where the one-loop correction is

1 ("d
S1loop = —§f ;8 Jd‘lx\/g[((:c, s), K(z,s) = s %ap(x) + s taz(z) + ..., (B.4.2)

which gives
1
Sl—loop = J‘d4$\/7 (—_ao( ) - 2—6(12(1’) + .. ) . (B43)

The coefficient ag is a constant while as is a general two-derivative term
(47)%az(x) = di R + dyF,, F™ . (B.4.4)

Thus, we get

Sl loop — 167 P J \/> ( CL(] — 2—(le + dQFw/F ) ) . (B45)

From this expression, we can see that ag, d; and ds are respectively renormalizations of the
cosmological constant, Newton’s constant and the electric charge. Here € represents a UV

cutoff. We can compute ag and ay using the formulas [158]

(4m)%ag = Trl, (B.4.6)
(4m)%ay; = Tr <E+%R> . (B.4.7)

This allows us to compute the coefficients ag, dy, ds for the theories considered in this paper.
The results are summarized in Table B.1 below.

The renormalization of the cosmological constant, ag, depends only on the number of
fields and is as in flat space. However, our computations for the renormalization of New-

ton’s constant, d;, generalize previous flat space discussions in, for example, [208,209]. To

180



compare with those papers we note that our € above has dimensions of [L]?. More precisely,
considering a massless scalar in AdS, A = 3, leads to the same contribution as the one pre-
sented in [209]: d; = 1/6. Similarly, the massless Dirac fermion (A = 3/2) leads to d; = 1/3
and the free vector to d; = —2/3 which coincide with [209].

Multiplet ag dy dy

Free scalar 1 S(2—-A(A-13)) 0

Free Dirac fermion —4 | —5(B+4AA=3)) | 0
Free vector 2 —% 0

Free gravitino —2 —% 0
Einstein-Maxwell 4 — % 6

N = 2 gravitini —4 7 -8

N = 2 gravity multiplet | 0 % -2

Table B.1: Seeley-DeWitt coefficients ag and ay for the theories studied in this paper

B.5 Holographic renormalization and the Gauss-Bonnet-

Chern theorem

Since the local contribution is given by an integral over the Euclidean spacetime, the result
for the logarithmic correction is sensitive to the choice of regularization procedure. In this
work, we have used holographic renormalization to regulate these integrals. This is natural
because the logarithmic correction can be viewed as a term in the effective bulk action. We
have found that this prescription always gives a finite and unambiguous result.

For the Euler density, a natural counterterm is provided by the Gauss-Bonnet-Chern

theorem

1 1
a? E B = B.5.1
3972 J:/\/l x\/g 4+ 3272 X ( )

where B is is the boundary term found by Chern in [210] and y is the Euler characteristic
of spacetime, which is an integer. Our regularization prescription gives precisely the same

counterterm. Indeed, we find that

Te—>+00

1
lim J d®z\/g Ey + J Pyvh (e + R = x . (B.5.2)
3212 ) oM
where ¢; and ¢y are chosen to cancel the 7’? and 7. divergences. This works for all the
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geometries considered in this paper. Note that a naive regularization procedure where we
simply remove the divergent term would not give this result. In fact, it would lead to a non-
topological result, depending on the black hole parameters. The holographic counterterm
gives a finite contribution, necessary to obtain a topological result which is the same as
the one appearing in the Gauss-Bonnet-Chern theorem. This gives us confidence that our
regularization procedure is physically sensible. In this appendix, we show explicitly the

matching of the two counterterms for the AdS-Schwarzschild black hole.

B.5.1 Chern’s boundary term

To illustrate the above points, we consider the application of the Gauss-Bonnet-Chern the-
orem [210] (see section 8 of [211] for a review and [212] for a simple AdS application) to the
AdS-Schwarzschild solution. The theorem takes the form

1 [, 1
= Ey,+ —B B.5.
X 327r2fdx\/§ 1T e (B.5.3)
where B is the boundary term [210]
4
= -2 J eadeGgRé + g feabchgﬁgéj . (B54)

where 0, is the second fundamental form, and R is the Riemann curvature tensor at the
boundary. For AdS-Schwarzschild, the bulk contribution is

1 . (T, ) fﬁ 24 48m?
593 Jd r\/gE, = L+ T erdQ ) dr Yz (B.5.5)
3 11

1
2 2 JT3 ],3

where 7, is the horizon radius and we have introduced a cutoff r = r. that should be taken

to infinity at the end. For the boundary term, we first compute the fundamental form

me? + r?
001 = W dr s (B56)
3+ r 2 — 2mi?
01 = —\/ e do , (B.5.7)
3 02 — 9mip2
O1p = —\/TC e f? T sin0de . (B.5.8)
Te
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Note that the vielbeins are in general non-trivial linear combination of dz*, but the funda-
mental forms here are simple monomials of dz*. We can read out the coordinate component

R*%,,, on the slice r = r. using that

RE = R%.4e° A e = b dt A dx” (B.5.9)
This gives
0 ml* + 13 [rd +rd?2 — 2mi?
== — . .1
R 276 €2T2 TCEQ ’ <B 5 0>
0 mb? 4+ 13 [rd3 4 rd?2 —2me?
Rsr0 212 \/ e sinf , (B.5.11)
2mi% —r3
R4 = (B.5.12)
The boundary contribution is then
(> 2ml? —
B = s(anpnltro@me o) (B.5.13)

4,3
A3

1 1 8

The total contribution of the Fuler characteristic is

1 18
473 lmﬁg +8m s — Wﬂ : (B.5.14)

Using the fact that the periodicity of 7 is the inverse Hawking temperature (5.3.6) and that
7"2 .
f(ry) =0 gives 2m = ry <1 + £—§>, we obtain

1 1 1
5 = g {2m2_+m€_2_g_3 3] =2, (B.5.15)

which is the correct result for the Euler characteristic of a black hole.

B.5.2 Holographic renormalization

We now show that our regularization procedure, using the prescription of holographic renor-
malization, gives the same boundary term. This is already clear from the fact that the

regularized Euler integral gives the correct x but here we directly compare the boundary
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terms. The boundary geometry at r = r, is

2 9
Js <1 LTl _m) 42 + r2d6° + 12 sin’0 dg, (B.5.16)

02 Te

and the Ricci scalar on the boundary is R = T% The holographic counterterms are given by
ot = dey\/E(cl + 3R) (B.5.17)

B g 27 2 2
= f dtf sianGJ doa |1+ r—; — mrz (c1 + &R)
0 0 0 4 Te

m
= 4mB (aar? + 2¢,) 5 ot (B.5.18)
2
= 4np [%TS + Wn — clmé] +0(r;h). (B.5.19)

In order to remove the divergence in (B.5.5), we demand

8 2
E_?’ s Cy = Z (B520)

i1 = —

Plugging back in (B.5.17), we see that the counterterm is exactly equal to Chern’s boundary
term. Note that this is non-trivial because the renormalization introduces a finite correction.

It would be interesting to have a more geometrical understanding of this identification.

B.6 Vanishing of boundary terms

The proper application of the heat kernel expansion in AdS following [158] requires the
addition of boundary terms. They come from the fact that the computation needs to be
done on a regularized geometry defined by a cutoff r < r.. In this appendix, we show that
these boundary terms vanish and thus can be ignored. One source of boundary terms is the

fact that a4(x) actually contains total derivatives, highlighted below as

1
This gives a contribution
Clocal = -+ + ! ifd?’y\fhn’“‘v (bTr £+ RTr1) (B.6.2)
local (471')2 30 m . .0.
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Using the fact that Tr E is a linear combination of two-derivative terms, it can be generally

written as
TrF = OélR + CYQFW,F/W, (B63)

for some coefficient oy and ay. We can then compute the contribution (B.6.2) on our back-
ground. Tt is of order O(r; ') and hence vanishes in the limit 7, — +o0.

Another contribution comes from the formula of a4(x) on a manifold with boundaries,
which include additional boundary terms. This can be written as an additional boundary

contribution to C'

Chay = fd?’y\/ﬁ al(y), (B.6.4)

where
ai=DBTrl+ B, TrE, (B.6.5)

and B; and Bs are geometric invariants of the boundary depending on both intrinsic and

extrinsic data

1
By = 350 24Ky + 20RK + 4RunandS — 12Runin Kb + 4 Rapes K e + 48052 K + 48053

1
+57 [(280IL, + 40I1_) K + (16811 — 26411_) K Koy Koe| + 120,44
1
+ﬁ(22411+ + 32011 ) K 0y Kpo K 4 + 120SR + 144SK? + 48S Ky Ko |
1
By = §(K +69),
(B.6.6)

where K, is the extrinsic curvature of the boundary. Here 11, and S capture the choice
of boundary conditions for the fields at infinity. For normalizable boundary conditions in
AdS,, it can be checked that they are constants.

We can evaluate this term on our background using the general expression (B.6.3) for
Tr E, which diverges and hence, we use the same regularization prescription as in holographic
renormalization. Once the dust settles, we find that this contribution vanishes. Hence, no

boundary term of this type gives a contribution to the logarithmic correction.

B.7 Black hole curvature invariants

In the main text, we emphasize the role of universality considering by the Euler characteristic
and the square of the Weyl tensor. It is also common to express the curvature invariants in

terms of R,,,,0 R**°, R, R* and R?. In this appendix, we explicitly write out the curvature
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invariants for the Kerr-Newman-AdS black hole studied in section 5.3.4 and show how they
are related to their flat space counterparts.

The curvature invariants are

24 8
R va R#Vﬂtﬂ = i
pap 2 4(r? + a?cos?0)"

—192r” ((qg +qz) — 3m7’) ((q? +q2) — 2m7‘) (a2cos29 + 7"2)
+4 (2 + ap,) — 6mr) (7(2 + qp,) — 18mr) (a’cos®0 + 7“2)2]

24 - ~ o
= £_4+R;wa53“ B 7
36 4(q% + ¢3)?
R,RY = —+ - B.7.1
. o (2 4 a2cos20)4 ( )
36 - -
= €_4 + R/WRN ,
144
2
2(q2 — ¢2) (r* — 6a®r?cos®d + a*cos*d) + 16g.qmra cosf (r? — a*cos®6)

(r? + a2cos20)*

[—24m2 (a*cos®d + 1“2)3 +192r* ((¢2 + ¢2) — 2m7")2

R =

F, F* = —

Each of the invariants are a sum of two terms. The first term is proportional to £~* and the
second term which has no ¢ dependence agrees with the analogous invariants fx’umﬂf?*‘”aﬂ
and RWR“” of asymptotically flat Kerr-Newman black holes. Thus, taking ¢ — oo, we
smoothly recover the same expressions for the invariants in [172,183]. The invariants for
Reissner-Nordstrom and Schwarzschild can be obtained by specializing the parameters. We

can find the expressions for E; using (5.3.2):

24 8

-4
4 (r2 4 a2cos?0)

6 <6m2 (r® — 15a’r*cos®d + 15a*r*cos*d — a’cos’)
—12mr(q? + ¢2) (r* — 10a%r2c0s?0 + 5a*cos*0) (B.7.2)

+ (2 + ¢2,)* (5r* — 38a*rcos®d + 5a*cos’d) )

Moreover, upon integration, the £~* term diverges because of the divergent AdS, volume,
and we tame this divergence by holographic renormalisation. On the other hand, the second

term is finite and does not require holographic renormalization. The integrated curvature
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invariants after proper renormalization take the form of

1 Vpo

3(a*—71%) (a* + Ti)z (a® (r2 — 2) +r2 (€2 + 3r%)) arctan (%)
abl?=rd

( (EQ 7’+) —T+ (€2+3r+))2

B <3a Ty + 2a°r? +3(a —ri) (a2 +Ti)2arctan< ) +3a7“+>

8radli=ri (a + r2)

2T (a2 + ri) (3a5r+ + 263 +3 (a2 — ri) (a2 + ri)z arctan ( > + 3ar+>

X

t 5
a’f=r?

N ary (a6 (362 — 77“3) + a* (3627"%r — 11r+) + a’rt (EQ — 97’3) —3r8 (62 + 37’3))
a’l?=r3 ’

o Jeinr
9661} (Brs (a® + 2 +2r2) —210% (a® + r2)) — 9685 (a* + 12)
32w BlA=rt
+ (a® (Bri — (B +4mry)) + Cri (B — 4mry) + 3Bri)2
<3a5r+ +2a%8 +3(a—ry)(a+r1y) (a® + r+) arctan ( ) + 3ar+>
32w BLA=re (a® (a2 + 12)) )

X

1 4 o 12 (@T+ (52 + T‘_%_) — 2702 (a2 + ri))
(47T)2 Jd x\/gR B 7T£4E )
4 24 022 202 2 2
(41)2 Jd‘lx\/gFleuu _ 27’3_ _ Br (3T+ + (CL +/ )1"+ —a“lc -2 qm) .
T

2102 (a? + r?)
(B.7.3)
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Appendix C

C.1 Special Functions

Here we summarize the definitions of special functions used in the paper. The Dedekind eta

function is defined as

»"“

ee}

gu [ [(1=4"), Im(r) >0, (C.1.1)
k=1

with ¢ = ™. The Pochhammer symbol is defined as

e}

1_[ (1— 2¢") (C.1.2)

The elliptic theta functions which are relevant to us have the following product form:

0
_ 1_[(1 o 627ri(u+k7))(1 o 627ri(—u+(k+1)’r)) : (C13a)
o0
0, (U, 7_) _ _7:6”1" mT —mT n 271'114:7' 627Ti(k7'+u))(1 . 627ri(k7'—u)>
k=1
o0
—je 1 e T h( 1_[ ATy | (C.1.3b)

The elliptic gamma function and the “tilde” elliptic gamma function are defined as

s
1— j+1 k+1 —1
(i) = | ] v —, (C.1.4a)
4,k=0 1 *p]q z
o0 2m j+1)o+(k+1)T—u]
1 — [(
U 7 7- H — e2mi [jo+kT+u] : (Cl4b)
7,k=0
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C.1.1 Asymptotic Behavior
For a small |7| with fixed 0 < arg 7T < 7, the Pochhammer symbol can be approximated as

ﬂ-/L 1 ]_ . 2msin(arg )
0g(¢; @) = —15(7 + =) — 5 log(—iT) + O(e 7T ). (C.1.5)

To study asymptotic behaviors of elliptic functions, it is useful to introduce the function

{u},, as

{u}, = u— |Re(u) — cot(arg 7)Im(u)| (ueC), (C.1.6)
which satisfies
—du}, (ué¢Z),
() = @), var,  (oup, = @FF) (©L7)
(), (@c),
where we have defined @, 7 € R as
w=1u-+ur. (C.1.8)

The elliptic theta function y(u;7) can be approximated for a small |7| with fixed 0 <

arg T < T as

log 0o (u; 1) = 7r—Z{u}T(l —{u},) + mif{u}, — g_z(l + 37+ 77)
T T (C.1.9)

2msin(arg )

+ log(1 — e_@(l_{“}”) (1 - e_ﬁ{“}v +O(e” 7T ).

The elliptic theta function ;(u;7) is approximated for a small |7| with fixed 0 < argT < 7

as

log 0 (i 7) — W?i{u}T(l ~fu) — Z—i(l + 7) + mi|Re(u) — cot(arg 7)Im(u)] + %mgf

2msin(arg 7)

+log(1 — e~ 7 (- tulo)) (1 — 6_@{”%) + O(e” T
(C.1.10)

For a small |7| with fixed 0 < arg 7 < m, the elliptic gamma function can be approximated

as
~ rsin(arg 7) _ . ~ ~
logT(u; 7) = 2mi Q({u},; 7) + (9(|7-|_1e2 1 min(aEhl={an)y (C.1.11)

provided @ - Z (see [27] for example), and the function Q(-;-) is defined as:

_Bs(w)  Bolw) 5y T (C.1.12)

Quim)=-—— 5+ 5"~ 1 12
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with B, (u) being the n-th Bernoulli polynomial.
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