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ABSTRACT

Advances in mobility technology are expected to greatly improve our access to transportation

and the convenience of life. Many challenges in achieving the safety, efficiency, and comfort

of mobility systems still exist. This dissertation leverages advances in modeling and control to

highlight several solutions to these challenges.

In particular, for safety-critical applications, it is important to guarantee that the system can

operate safely anytime even with the occurrence of failures; hence there is a need for systematic

approaches to achieving fault-tolerant control (FTC). Fault tolerance must be ensured in multiple

ways: for failure detection and isolation (FDI), system reconfiguration/recovery, and safe operation

in all normal and failure modes. Meanwhile, the system availability should be maximized instead of

being compromised. In this dissertation, this problem is approached through set-theoretic methods

by exploiting nesting between constraint admissible, recoverable, and isolatable sets to satisfy state

and control constraints in all phases of failure detection, isolation, reconfiguration, and transition

to operation in failure mode. The proposed FTC framework integrates a reference governor for

safe reference tracking, and the framework can handle stuck/jammed actuators that are common in

mobility applications. An aircraft longitudinal flight control example is used for demonstration.

The second advance in this dissertation is an eco-driving approach for connected and autonomous

vehicles (CAVs) that accounts for the interactive vehicle behavior in traffic. By exploiting and

fusing game theory, reinforcement learning (RL), and battery electric vehicle (BEV) powertrain

modeling and control, significant opportunities for energy efficiency improvements are highlighted.

Specifically, a level-k game-theoretic traffic model is considered to capture the interactions between

the ego vehicle and the surrounding human-driven vehicles. Also, a model that represents a BEV

is established, and a control policy for operating the vehicle in traffic is trained by RL applied to

xi



the reward function that reflects energy efficiency, travel time efficiency, safety, and comfort. The

control policy can command both longitudinal and lateral actions, including acceleration, braking,

and lane changes, to enhance the possibilities for energy saving.

Finally, the third advance in this dissertation is the development of a trajectory optimizer for

multistage hybrid powertrain capable of handling both continuous (engine and motor torques) and

discrete (engine on/off or gear selection) degrees of freedom. For driving scenarios prioritizing

drivability, the shortening of acceleration duration is often limited by jerk since sudden changes of

acceleration can cause discomfort to passengers. Specifically, a 40 to 70 kph acceleration event is

considered to simulate a passing maneuver for a multistage hybrid electric vehicle (HEV). Case stud-

ies with different jerk limits are set up to investigate the trade-off between acceleration duration and

jerk, and the acceleration performance is optimized by solving a constrained trajectory optimization

problem formulated as a parallelizable multistage mixed-integer problem. The proposed approach,

therefore, addresses a complex optimal control problem in the area of vehicle drivability/rideability

that is critical for customer acceptance of energy-efficient and autonomous vehicles. The developed

methodology for efficient numerical trajectory optimization with continuous and integer variables

can be applied to other engineering domains.

Overall, this dissertation highlights opportunities for applications of game-theoretic, set-theoretic

and optimal control towards the development of safer, more efficient and comfortable future mobility

systems. The contributions address the gaps in safety-guaranteed FTC, safe and energy-aware CAV

control in shared traffic, as well as in unbiased and easy-to-implement drivability analysis processes.
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CHAPTER 1

Introduction

1.1 Background and Motivations

Traditionally, we refer to moving people and items by cars, trains, airplanes and ships as
transportation [1]. In recent years, however, the word mobility has become more common. This is
not simply a shift in the language because mobility means a lot more than moving objects from point
A to point B. In fact, mobility also includes considerations such as equity, accessibility, and demand
satisfaction [2]. Mobility enables the efficient delivery of supplies such as food and medicine to our
doorsteps. In addition, with the growing penetration of connected and autonomous vehicle (CAV)
technologies, land travel becomes easily accessible to people who are not capable of driving [3].

To achieve improvements in mobility, many challenges need to be addressed. This dissertation
considers control issues for mobility applications with a focus on safety, efficiency, and comfort.

There are many aspects to the safety of mobility systems. The one addressed in this dissertation
relates to situations when malfunctions occur. In such cases, these systems should have the ability
to continue operation without violating safety constraints while maintaining (to the possible extent)
the system function. Failure to do so may not only cause damage to the system and cargo but
also cause injury to people and even fatalities [4, 5]. In this dissertation, we consider fault-tolerant
control (FTC) approaches for Failure Mode and Effect Management (FMEM) in Chaps. 2 to 4.
We illustrate these developments with an application to aircraft longitudinal flight control with
redundant actuators where some of the actuators may fail in flight. The general theory that is
developed can be useful in other applications, e.g., electric vehicles with redundant motors [6], but
their treatment is left to continuing research.

In terms of efficiency and comfort, this dissertation focuses on applications in the automotive
domain. The data in [7] by the U.S. Department of Transportation shows that the average American
driver traveled 13,476 miles in 2018, which implies on average 37 miles and roughly between 30
minutes and an hour of daily driving per driver. Consequently, improving travel time efficiency and
comfort can have a significant societal impact. Additionally, about 26% of the total U.S. energy
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consumption in 2020 is for transportation where the operation of light-duty vehicles and heavy-duty
trucks accounts for over 77% of the transportation energy consumption (see Fig 1.1 by [8]). Thus,
the energy efficiency of automotive applications has a great impact on total energy consumption.

Figure 1.1: Transportation energy consumption by mode and type [8].

The combination of connected and autonomous driving and vehicle electrification is expected
to bring significant environmental benefits by reducing energy consumption and emissions [9, 10].
However, approaches to balance safety (e.g., by avoiding collisions) and travel time efficiency
with energy consumption reduction are not thoroughly understood [11]. These issues are further
considered and addressed in Chap. 5 for the battery electric vehicles (BEVs).

Comfort and drivability are also important areas to customer acceptance of energy-efficient
vehicles. Although comfort depends on many aspects such as interior design and convenience
features, this dissertation seeks to improve the comfort of driving and riding through control that
limits jerk during the acceleration because sudden changes of the longitudinal motion are commonly
detectable by passengers and often cause discomfort. In addition, trade-offs exist between the
acceleration performance and the jerk constraints [12]. Being able to perform the trade-off analysis
is necessary for the powertrain system development, especially during the early design phase. In
Chap. 6, we consider a 40 to 70 kph acceleration scenario (simulating a passing maneuver) and
study the trade-offs between the minimum acceleration time and the imposed jerk limits. A hybrid
electric vehicle (HEV) powertrain is considered since electrified vehicles are promising for the
reduction of environmental concerns as mentioned previously and the powertrain configurations of
HEVs are usually more complex than those of the other types of vehicles, e.g., BEVs.
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1.2 Challenges and Strategies

Figure 1.2 highlights the development areas, methodologies and mobility applications for the
three specific topics considered in this dissertation. In the following sections, we discuss the
challenges and strategies for these topics.
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Figure 1.2: Highlights of study areas, strategies and applications of this dissertation. Each back-
ground color represents a specific topic.

1.2.1 Fault-Tolerant Control for Mobility Systems Using Set-Theoretic Meth-
ods

Figure 1.3 highlights the fault-tolerant control (FTC) problem considered in this dissertation.
There are multiple ways to categorize faults and failures of a system. One way is to classify them
into communication, software, and hardware failures. In the hardware category, actuator failures
are among the most common ones, and failures due to stuck actuators are typical in mobility
applications (e.g., [4, 5]). Systems such as those in vehicles and aircraft often have redundancy and
operate in constrained environments while tracking reference commands. Even when failures occur,
these systems must operate without safety constraint violation at any time. Thus, our FTC strategy
should ensure that, in case of actuator failures, the system can still operate safely while maximizing
its availability. Specifically, a Failure Mode and Effect Management (FMEM) strategy is needed
to handle stuck/jammed actuators that lead to the system operating mode transitions caused by
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such failures. The strategy should guarantee that the failure can be isolated and the system can be
reconfigured within a certain number of time steps upon failure detection without violating safety
constraints while performing reference tracking.

Failure Mode and Effect Management (FMEM) system 

Despite failures, guarantee

Safe operation in each mode

Safe isolation and reconfiguration upon failure 

detection within certain known duration 

Actuator failures

Mode transitions
Sequential failures 

and mode transitions

1 2 n
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2

n

1

2

n

1

2

n

1 2 n

1 2 n

1 2 n

1 2 n

Key assumptions:

Single point of failure

Actuator redundancy

Large time between failures

Feature: Reference tracking

Figure 1.3: Problem and assumptions made in the development of Failure Mode and Effect Manage-
ment strategies.

There is much literature that considers FTC and reconfigurability analysis, e.g., [13–15], yet
safety constraints and reference tracking are usually not addressed. The systems that we study
operate with constraints while trying to minimize the tracking errors. Such a problem falls into
the category of constrained control and it can be handled by reference governors (see [16] and
references therein). Set-theoretic methods, e.g., in [17–20], can be further applied to guarantee
constraints satisfaction. Our proposed FTC strategy is inspired by [21] where set-theoretic failure
reconfiguration is used for safe trim point to trim point transitions, though [21] does not consider
sequential failures. Different methods for FTC, such as the ones based on fault-tolerant model
predictive control (FTMPC), have been proposed, e.g., in [22, 23]; however, many of them are
designed to address only the stabilization setting, and they may not be able to guarantee that the
MPC problem is feasible for all operating scenarios. Lastly, instead of using a systematic FMEM
strategy, fault detection and isolation (FDI) and failure mode reconfiguration are often handled
separately due to otherwise large problem complexity [14, 24].

In Chaps. 2, 3, and 4, a reference governor-centric set-theoretic FMEM framework is developed
to handle stuck/jammed actuators. A mass-spring-damper system and an aircraft longitudinal flight
control system are used as application examples. In particular, the proposed FMEM framework
exploits nesting between sets to guarantee the feasibility of the online constrained optimization
problems for the reference governor, isolation, and reconfiguration. We provide an overview of
this strategy here. Firstly, sets of states and reference commands that are constraint admissible,
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isolatable, and recoverable are defined. Then, during the online operation (as shown in Fig. 4.1), a
reference governor, which is based on a solution to a quadratic programming problem, is applied
to track reference commands using the working actuators while imposing constraints informed
by the constraint admissible set (in Phase 0). Upon failure detection, an isolation sequence of
the open-loop input values is first generated to isolate the failure mode (in Phase 1), and then a
recovery sequence of reference commands is generated for failure mode reconfiguration (in Phase
2). Both sequences are generated by solving optimization problems with constraints informed by
the isolatable and recoverable sets. Finally, the reference governor is re-activated once the isolation
and reconfiguration are finished and the process returns to Phase 0. Note that the above-mentioned
optimization problems during the online process may not always have solutions. To guarantee
feasibility, by the offline design, we define set-membership conditions and make sure they are
satisfied through three mechanisms that manipulate the size of the imposed constraint sets. The
idea of nesting between sets is that, at the end of the preceding phase, the system should already be
operating in the feasible set (e.g., an isolatable set or a recoverable set) of the next phase, so that
once the transition happens, the optimization problem to be solved (e.g., to generate the isolation
sequence or recovery sequence) is guaranteed to have a solution (see Figs. 1.4 and 3.2 for reference).

Mode 1

Mode 2

Given 

Isolatable set

Recoverable set

-- the set of states upon failure detection

-- the set of states at the end of isolation

-- isolation sequence

Figure 1.4: Demonstration of set-membership relations for failure isolation and reconfiguration.

Compared with existing methods in the literature, the proposed FTC strategy is distinguished by
having the ability to safely perform reference tracking in both normal and failure modes through the
use of a reference governor. In addition, through the set-membership conditions enforced in the
offline design, our FMEM system explicitly guarantees the isolatability and reconfigurability, and
the time durations for the isolating and reconfiguration processes are finite and known prior to the
online operation.

For illustration, this set-theoretic FTC strategy is successfully implemented to control the
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displacement of a mass-spring-damper system as well as for the longitudinal flight control of a
Boeing 747-100 aircraft. Chapters 2, 3, and 4 of this dissertation are written based on the preliminary
journal and conference versions in [25–27].

1.2.2 Energy-Efficient Driving for Autonomous Vehicles in Game-Theoretic
Traffic Environment

Chapter 5 considers developing an autonomous driving policy focusing on the optimization of
energy efficiency. There have been many studies in recent years on using CAV technologies to
reduce energy consumption. In the Advanced Research Projects Agency-Energy’s (ARPA-E) Next-
Generation Energy Technologies for Connected and Automated On-Road Vehicles (NEXTCAR)
program by the U.S. Department of Energy, an over 20% of energy saving potential has been
demonstrated through connected and automated driving (see Table 5.1 and [28] for reference). The
developments in this dissertation are motivated by two considerations. Firstly, in the foreseeable
future, CAVs and human-driven vehicles will be operated together in the shared traffic [29]. Hence
CAVs will need to account for the surrounding vehicle actions and reactions caused by different
types of human driving styles. Secondly, many existing studies considered energy efficiency
improvements only in the longitudinal car following situations. Adding lateral control, e.g., lane
changing, can provide additional possibilities for energy savings [30]. At the same time, the problem
complexity also increases.

When driving, most of the energy waste comes from braking. Consequently, common strategies
to improve energy efficiency include route planning and driving as smoothly as possible, particularly,
to avoid braking at any time [11]. However, this is not always feasible in real-world driving
conditions. In particular, subtle trade-offs exist between collision avoidance and energy saving. One
may need to choose lane changing or braking in situations when the ego vehicle (i.e., the vehicle
whose behavior is of primary interest in the analysis/evaluation) is approaching a slow vehicle in its
front, and whether the decision is good or bad depends on the interactions with the surrounding
vehicles. In addition, handling safety and energy efficiency objectives requires considering different
time horizons. In regards to safety constraint violations, such as collisions, relevant events typically
occur within a time duration of seconds, but meaningful optimization of energy consumption
requires much longer time horizons. For example, the Federal Test Procedure (FTP) used by the
U.S. Environmental Protection Agency (EPA) for vehicle emissions and fuel economy testing has a
1874-second duration and a travel distance of approximately 11 miles [31].

To address these considerations, the following approaches are used to develop an energy-efficient
autonomous driving policy in Chap. 5. Firstly, a level-k game-theoretic interactive highway traffic
simulator proposed in [32] (following the methodology originally proposed in [33]) is used to
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facilitate the training of the autonomous driving policy. In a level-k game, the level-0 players
make decisions without considering other players, while the level-k players for k > 0 take the
best action assuming everyone else is level-(k − 1). This kind of game can be used to model
the cognitive behaviors of vehicles driven by human drivers in traffic. Our game-theoretic traffic
simulator contains three levels of players with a certain mixed ratio. The level-0 policy uses a
heuristic policy while the level-1 and level-2 policies are trained by reinforcement learning (RL).

Secondly, a battery electric vehicle energy model is constructed based on the powertrain and
driveline dynamics, and the model is integrated into the interactive traffic simulator to provide
explicit information about energy consumption. A backward model, that is, a model that determines
battery energy consumption based on wheel traction power, is used due to its low computational
complexity; this backward model is verified versus a more detailed forward model (see Remark 5.1
for reference).

Finally, the control policy is trained by RL (see Fig 1.5) using 13 observations that contain
vehicle speed and battery state of charge, 7 actions that include both longitudinal actions and lane
changes, and the reward function that considers collision rate, vehicle speed, headway, control effort,
and energy efficiency. Note that the observations include the relative distance and vehicle speed only
between the ego vehicle and its immediate surrounding vehicles. This information is commonly
available through the sensors (e.g., Lidars and cameras) on board so the use of vehicle connectivity
(e.g., vehicle-to-vehicle communications) is not necessary. Also, note that we choose the Jaakkola
RL algorithm [34] for policy training because this algorithm considers both the immediate one-step
reward and the infinite-horizon average reward so that optimization objectives with different time
horizons can be handled simultaneously.

To summarize the work of Chap. 5, an energy-efficient autonomous driving policy that considers
both longitudinal and lateral actions is developed where the safety, efficiency, and comfort are si-
multaneously optimized. A level-k game-theoretic traffic simulator is used to model the interactions
with human-driven vehicles, and a BEV model is developed to provide explicit energy consumption
information. The results in Chap. 5 have appeared in [35, 36].

1.2.3 Acceleration Performance Analysis with Jerk Limits Using Trajectory
Optimization

As discussed in Sect. 1.1, electrified vehicles hold significant promise for addressing environ-
mental concerns. Hybrid electric vehicles (HEVs) are, in particular, an attractive choice as they do
not cause range anxiety concerns. At the same time, HEV powertrains get increasingly complex to
satisfy the demand for various features. The power-split configuration of the 2018 Lexus LC-500h
(see Fig 6.1), for example, consists of an engine and two motors that are coupled by a planetary
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Figure 1.5: Highlights of the reinforcement learning process for training of the energy-efficient
autonomous driving control policy.

gear set, in addition to a four-speed automatic transmission located between the differential and the
Toyota Hybrid System (THS), i.e., the system that contains the engine, motors, and the planetary
gears set [37]. Such powertrains are over-actuated and have high degrees of control freedom.
Moreover, unlike the inputs that are continuous such as the engine and motor torques, the engine
on/off selection and gear position are discrete signals. As a result, the need to find the optimal
control inputs for jerk limited acceleration, which is an important scenario for drivability evaluation,
leads to a constrained nonlinear mixed-integer problem that is difficult to solve reliably.

The traditional approach to powertrain control involves using pre-defined strategies and lookup
tables [38]. This method is commonly adopted due to its low computational complexity. However,
acquiring these lookup tables requires calibration that is labor-intensive and the optimality may not
be guaranteed. Instead, trajectory optimization can be used to find the optimal control inputs [39,40].
Although trajectory optimization methods, such as the ones based on dynamic programming (DP)
and Pontryagin’s maximum principle (PMP), are typically not used for real-time control because
they require extensive computational resources and explicitly known information of the driving
cycle, they are suitable for offline analysis especially during the early stage of powertrain design,
e.g., when comparing different parallel and power-split HEV configurations with several choices
of engines and motors. The approach proposed in Chap. 6 of this dissertation instead exploits
multistate mixed-integer nonlinear programming.

In Chap. 6, we describe a hybrid powertrain model that can simulate the 40 to 70 kph acceleration
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scenario and calculate the jerk. Based on this model, we consider a case study that illustrates a
trade-off between the minimum acceleration duration and the jerk limit. To find the optimal control
profile for the minimum acceleration duration, a multi-stage mixed-integer nonlinear programming
problem is formulated, and a highly parallelizable routine for solving this problem is proposed.
The concept of the multi-stage mixed-integer trajectory optimization is as follows. Firstly, the
acceleration event is divided into M ∈ N stages where the gear position stays constant in each stage.
(We assume there is no engine on/off switching and the engine stays on for the whole acceleration
event as in reality, the engine is on when the vehicle is at 40 kph.) Then, a set of all possible gear
shifting sequences is generated. For each shifting sequence, the optimal control profiles of engine
and motor torques are found by solving a constrained nonlinear programming problem. Note that
different shifting sequences can be handled in parallel. Finally, we obtain the optimal solution
by comparing the values of the acceleration duration for all possible gear shifting sequences and
picking the one that has the minimum duration.

This multi-stage mixed-integer trajectory optimization method is distinguished by its broad
applicability (e.g., it can be applied to other powertrain configurations that have discrete control
inputs) and relative ease of implementation. Moreover, as far as the author is aware, this is the first
trajectory optimization study for the powertrain configuration of the type used in the 2018 Lexus
LC-500h in the literature. The results in Chap. 6 have been reported in [41].

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. First, Chaps. 2 to 4 discuss the use of
set-theoretic methods for fault-tolerant control of mobility systems. We begin in Chap. 2 considering
the case with actuator failures where the failed actuators are zeroed out. Then, the treatment is
extended to stuck/jammed actuators in Chap. 3. In Chap. 4, a failure detection and isolation
strategy is proposed and integrated with the failure mode reconfiguration strategy proposed in the
previous two chapters. This strategy is also extended to consider systems with input disturbances
in this chapter. Next, Chaps. 5 and 6 focus on automotive applications for safe, efficient and
comfortable driving/riding. A control policy for autonomous driving is developed in Chap. 5 using
a game-theoretic traffic model for policy training, focusing on energy efficiency improvement while
balancing the trade-offs with collision avoidance, comfort, and time efficiency. Chapter 6 uses
trajectory optimization to analyze the acceleration performance of an HEV when jerk limits are
applied to improve the comfort level. Finally, concluding remarks are made and directions for future
work are discussed in Chap. 7.
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1.4 Summary of Novel Contributions

This dissertation develops the following novel results:

• A set membership-based, reference governor-centric fault-tolerant control framework is
developed for safe reference tracking in systems with redundant actuators and set-bounded
measured disturbances in which actuators can fail by getting stuck/jammed. The framework
handles failure mode detection, isolation and reconfiguration phases and ensures that the
imposed state and control constraints are satisfied throughout all the involved phases. The
abilities are guaranteed for failure isolation, system reconfiguration and safe operation after
mode transitions, in addition to that the durations needed for the isolation and reconfiguration
phases are finite and known before the online operation. Illustrations based on mass-spring-
damper system and aircraft longitudinal flight control are used to show the developments.

• A novel approach to generating a control policy for autonomous eco-driving has been devel-
oped that accounts for energy consumption, safety, travel time efficiency and comfort through
the application of reinforcement learning and level-k game theory. The main innovations
versus previous work include the integration of vehicle interaction and energy consumption
into the problem, and the demonstration that control policies can be successfully trained and
provide energy consumption reduction for battery electric vehicles in shared traffic. These de-
velopments fill the gap in the literature by exploiting lateral vehicle controls and possibilities
of lane changes, along with standard longitudinal vehicle controls, for energy consumption
reduction and collision avoidance.

• A mixed-integer nonlinear programming-based approach has been proposed and demonstrated
for trajectory optimization of advanced hybrid electric vehicle powertrains to enhance their
drivability and acceleration performance under jerk limits.
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CHAPTER 2

Failure Mode Reconfiguration Based on Constraint
Admissible and Recoverable Sets for Zeroed-Out

Actuators

2.1 Introduction

The chapter presents an approach to the design of a Failure Mode and Effect Management
(FMEM) system based on constraint admissible and recoverable sets for systems with redundant
actuators and state and control constraints. Multiple actuator failure modes are considered, and an
approach to the design of FMEM system is proposed that ensures constraints are satisfied when
operating in normal and failure modes and during mode transitions.

There is great demand for systematic approaches to FMEM system design for industrial systems
since the software and algorithmic content of diagnostics and FMEM systems is often larger than
what is responsible for the nominal system function. This is notably the case in the area of advanced
and autonomous vehicles where redundant actuation (e.g., dual steering motors and multiple brake
actuators) is employed to enable safe reconfiguration and the implementation of limited operating
strategies in the event of failures. In these applications, a typical requirement for FMEM strategy is
to ensure that, in case of a single point of failure, the system operation can be reconfigured so that
in the new mode, another single point of failure cannot lead to safety hazards while maximizing
system availability.

Figure 2.1 illustrates modes in a system with two redundant actuators, where a normal mode
corresponds to both actuators functioning, and three failure modes correspond to either or both
actuators to have failed. Notably the modes form vertices of a unidirectional graph.

The proposed approach to FMEM design builds on the idea of using constraint admissible and
recoverable sets proposed in [21] but extends it to multiple failure modes and reference tracking. In
each mode, a reference governor [16] is applied to enforce the constraints. When an actuator failure
occurs, a recovery sequence is computed by solving a quadratic programming problem to bring the
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Figure 2.1: Possible modes of a system with two actuators labeled by 1 and 2. The numbers in the
boxes are the labels of the actuators that work properly. M stands for mode.

system trajectory into the constraint admissible set for the reference governor in the subsequent
mode.

In this setting, constraint admissible sets are sets of initial states and constant reference com-
mands for which the ensuing response satisfies state and control constraints. Recoverable sets are
sets of initial states that can be steered into the (state projections of) constraint admissible sets
within a specified number of steps without constraint violations.

To be able to perform a safe reconfiguration, the state of the system in the preceding mode
must be in the recoverable set for the subsequent mode. In this chapter, the implications of this
set-membership condition on the design of FMEM scheme are considered and illustrated with
numerical examples. Under the assumptions of a single point of failure (i.e., one actuator failure
at a time), instantaneous fault detection and isolation, and large time between subsequent failures,
it is sufficient to ensure that a set bounding possible states in the preceding mode is a subset of
the interior of the recoverable set in each of the possible subsequent modes. In this chapter, we
examine the implications of this condition and illustrate three mechanisms by which it can be
ensured: (i) by adding extra state constraints in the preceding mode; (ii) by adding range and rate
limits to the command in the preceding mode; and (iii) by temporarily relaxing state constraints
when determining the recovery sequence. The latter mechanism is suitable for systems with soft
constraints when a temporary constraint violation might be permissible.

Systematic recoverability analysis has been addressed in the fault tolerant control literature [13];
however, the existing methods typically do not handle state and control constraints. In a broader
sense, this chapter compliments set-theoretic control methods such as in [17–19,42,43] and provides
extensions relevant to handling systems with multiple failure modes and reconfiguration levels. Set
theoretic methods for handling failure modes in constrained systems have been considered in [20]
and in the reference governor literature (see [16] and references therein). The present chapter is
distinguished by addressing multiple failure modes and failure paths/scenarios, by combined use
of constrained admissible and recoverable sets and by specific mechanisms used to enforce the
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reconfigurability.
The chapter is organized as follows. In Sect. 2.2, the basic problem setting including models,

failure modes and constraints is introduced. Section 2.3 introduces constraint admissible and recov-
erable sets that are used in Sect. 2.4 to define a system capable of safe operation and reconfiguration
in the event of failures. Two examples in Sects. 2.5 and 2.6 are used to highlight and illustrate
design steps for a mass-spring-damper system and for an aircraft longitudinal flight, respectively.
Section 2.7 presents concluding remarks.

2.2 Mode-Dependent System Dynamics, Constraints and Prob-
lem Formulation

2.2.1 System Dynamics

The development of our FMEM system relies on a discrete-time model of the form,

xk+1 = AMxk +BMuk, (2.1a)

yk = CMxk, (2.1b)

where k ∈ Z≥0, xk is the state vector, yk is the output vector, uk is the input vector, and M ∈
{0, 1, 2, · · · } designates different operating modes of the system, including normal modes and
failure modes caused by actuator failures when specific inputs corresponding to the failed actuators
equal zero.

It is assumed that the number of working actuators/inputs are greater than or equal to the number
of outputs that need to be tracked. Then in each mode, a stabilizing feedback plus feedforward
controller is used of the form,

uk = KMxk +GMvk, (2.2)

where KM is the feedback gain matrix, GM is the feedforward gain matrix, and vk is the vector of
the reference commands (set-points). Depending on the mode M , appropriate rows of KM and GM

are zeroed out to represent the effect of the actuator failures as the inputs corresponding to the failed
actuators are forced to zero.
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The closed-loop dynamics in mode M can be represented by the following discrete-time model,

xk+1 = ĀMxk + B̄Mvk, (2.3)

ĀM = AM +BMKM ,

B̄M = BMGM ,

where ĀM is a Schur matrix (where all eigenvalues are inside the unit disk of the complex plane).
Since one of the possible modes is when all actuators fail, this assumption implies that the open-loop
system must be stable.

2.2.2 Constraints

To ensure safe operation, pointwise-in-time state constraints are defined by a finite set of
inequalities and imposed of the form,

xk ∈ X (vk) = {x : AXx ≤ bX (vk)}. (2.4)

Since these constraints are imposed on the states of the closed-loop system with the given controllers,
they can also represent actuator range and rate limits.

Modifications to these constraints are considered to facilitate the subsequent design of our
failure mode reconfiguration approach. Firstly, to satisfy subsequent conditions for safe failure
mode reconfiguration, it may be necessary to artificially tighten constraints (2.4) to

xk ∈ XM(vk) = X (vk) ∩ X̄M(vk), (2.5)

where the sets X̄M(v) need to be appropriately designed. Secondly, upon detection and isolation of
the failure mode, a recovery sequence of control inputs is computed and implemented over a short
time horizon before the control is relinquished to the reference governor. In practical applications
(see e.g., [44]), some of the state constraints could be imposed conservatively to extend system
operating life, and they may be relaxed temporarily during the reconfiguration and recovery. Hence
during a short period when the recovery sequence is applied, the constraints can be relaxed to

xk ∈ XRM
(vk), (2.6)

where XRM
(v) ⊇ XM(v), and XRM

(v) should also be appropriately designed.
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2.2.3 Problem Formulation

A Failure Mode and Effect Management (FMEM) system is to be designed which is capable of
ensuring safety despite failures. Each failure corresponds to a loss of an actuator and system mode
transition. The time between failures is assumed to be large.

2.3 Constraint Admissible and Recoverable Sets

2.3.1 Constraint Admissible Sets

Each operating mode M has its corresponding approximation to the maximum constraint
admissible set defined by

O∞,M = {(v, x0) : xt ∈ XM(v) ∀t ∈ Z≥0, xss(v,M)⊕Bϵ ⊂ XM(v)} (2.7)

= {(v, x0) : AO∞,M
x0 ≤ bO∞,M

(v)}, (2.8)

where xt is the response of (2.3) to the initial condition x0 and constant command vt = v, xss(v,M)

is the steady-state operating point given by xss(v,M) = (I − ĀM)−1B̄Mv, and Bϵ is an open ball of
radius ϵ > 0. The reasons for adding the constraint xss(v,M)⊕Bϵ ⊂ XM(v) in (2.7) are technical:
They ensure, under mild additional assumptions [45], that the set O∞,M is finitely-determined and
can be represented by a finite set of affine inequalities as in (2.8). An important property of O∞,M

is its invariance under constant commands, that is, if (v0, x0) ∈ O∞,M and vt = v0 for all t ∈ N
while the system remains operating in mode M , then (vt, xt) ∈ O∞,M ∀t ∈ N.

2.3.2 Recoverable Sets

The recoverable set for the system in mode M is defined as

RNM
∞,M = {x0 : ∃{v0, · · · , vNM−1} such that

xt ∈ XRM
(vt) ∀t ∈ {0, 1, · · · , NM − 1}, xNM

∈ ProjxO∞,M}.
(2.9)

Any initial condition x0 in the recoverable set RNM
∞,M can be “steered” into ProjxO∞,M within

NM steps using the command sequence {v0, · · · , vNM−1}, and the constraints xt ∈ XRM
(vt)

∀t ∈ {0, 1, · · · , NM − 1} and xNM
∈ ProjxO∞,M are satisfied.
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2.4 Employing Admissible and Recoverable Sets for Safe Oper-
ation and Reconfiguration

2.4.1 Safe Operation in Each Mode Using Reference Governor

The reference/command governor [16] is used for reference tracking and to enforce the con-
straints in each mode except during the reconfiguration. The reference governor computes the
modified command vk as a function of the state xk and original reference command rk based on the
solution of the following optimization problem,

min
vk
∥rk − vk∥2 (2.10)

s.t. (vk, xk) ∈ O∞,M .

If (vt, xt) ∈ O∞,M and the mode remains equal to M , then there exists (vt+k, xt+k) ∈ O∞,M ,
i.e., (2.10) is feasible, for all k ≥ 1 and the constraints (2.5) remain satisfied (e.g., we can let
vt+k = vt ∀k ≥ 1).

2.4.2 Safe Reconfiguration Upon Failure Detection

The failure mode reconfiguration relies on the condition

ProjxO∞,M ⊆ R
NM′
∞,M ′ ∀M ′ ∈ succ(M), (2.11)

whereRNM′
∞,M ′ denotes the set of all states which are recoverable with command sequences of length

NM ′ in mode M ′, and succ(M) is the set of all successor modes of mode M .
To ensure that (2.11) is satisfied, the sets X̄M(v), XRM′ (vt) and NM ′ need to be designed. One

can reduce X̄M(v) (i.e., tighten constraints for the preceding mode M ), enlarge XRM′ (vt) (i.e., relax
constraints for the successor mode M ′ during the recovery) and increase NM ′ (i.e., allow more
elements in the reconfiguration sequence). The last approach has an impact on online computations
as increasing NM ′ increases the size of the optimization problem which needs to be solved online.

With the condition (2.11) satisfied, if the failure occurs at the time instant t, then xt ∈ R
NM′
∞,M ′

for the new mode M ′ ∈ succ(M), so a recovery sequence v of the reference commands can be
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found by solving a quadratic programming problem,

min
v
∥rt1− v∥2 (2.12)

s.t. xt+s ∈ XRM
(vt+s) ∀s ∈ {0, 1, · · · , NM ′ − 1},

xt+NM′ ∈ ProjxO∞,M ′ ,

where v =
[
vTt vTt+1 · · · vTt+NM′

]T
is the recovery sequence, and the reference sequence rt1 =[

rTt rTt · · · rTt

]T
means assuming a constant reference equal to rt during the reconfiguration

since we do not know the future references at the begining of the recovery. After the recovery
sequence is applied, we have xt+NM′ ∈ ProjxO∞,M ′ . Hence at the time instant t+NM ′ the reference
governor can be activated to continue operating the system in mode M ′.

2.4.3 Command Range and Rate Limiting

An additional mechanism to ensure reconfigurability in the design of our FMEM system is to
impose artificial range and rate limits on vk. This results in state trajectories converging to a subset
of ProjxO∞,M when operating in mode M . Since the time between failures is assumed to be large,
ProjxO∞,M in (2.11) can be replaced by a smaller subset which ultimately bounds state trajectories,
thereby weakening the requirement (2.11). These ancillary constraints on the command range and
rate have the form,

vk ∈ VM = {v : AV v ≤ bV }, (2.13)

∆vk = vk − vk+1 ∈ ∆VM = {∆v : A∆V∆v ≤ b∆V }. (2.14)

Let

zk = xk − ΓMvk, (2.15)

ΓM = (I − ĀM)−1B̄M ,

then it can be derived that

zk+1 = ĀMzk + ΓM∆vk, (2.16)
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since

zk+1 = xk+1 − ΓMvk+1

= ĀMxk + B̄Mvk − ΓMvk+1

= ĀM(zk + ΓMvk) + B̄Mvk − ΓMvk+1

= ĀMzk +
(
ĀM(I − ĀM)−1 + I

)
B̄Mvk − ΓMvk+1

= ĀMzk +
(
ĀM(I + ĀM + Ā2

M + · · ·+) + I
)
B̄Mvk − ΓMvk+1

= ĀMzk + (I − ĀM)−1B̄Mvk − ΓMvk+1

= ĀMzk + ΓM(vk − vk+1)

= ĀMzk + ΓM∆vk.

With rate limits imposed by (2.14) and assuming the mode remains in M , we have

zk → FM as k →∞,

where FM is the minimum invariant set [45] of the system derived from (2.16). This minimum
invariant set is defined as an infinite Minkowski sum

FM = ΓM∆VM⊕ĀMΓM∆VM⊕Ā2
MΓM∆VM⊕ · · · ,

while in the implementation, computable outer approximations of FM are used. In addition to the
rate limits, if range limits are also imposed on the command as in (2.13), then the state trajectory
converges to the set

SM = FM⊕ΓMVM . (2.17)

With the extra range and rate limits on the commands (2.13), (2.14) added to the optimization
problem defining the reference governor (2.10), the state trajectories in mode M will be ultimately
bounded in the set SM ∩ ProjxO∞,M . Hence the condition (2.11) can be weakened to

SM ∩ ProjxO∞,M ⊆ intRNM′
∞,M ′ ∀M ′ ∈ succ(M). (2.18)

2.5 Mass-Spring-Damper System Example

A low order example of a system with redundant actuation is given by a mass-spring-damper
system, where m0 = 1kg for the mass (Fig. 2.2), k0 = 1N/m for the spring stiffness and
c0 = 0.01N s/m for the damping coefficient.
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Figure 2.2: Mass-spring-damper system with position and force magnitude constraints and redundant
actuation.

2.5.1 System Dynamics, Mode Definitions and Constraints

In the normal operating mode (Mode 0), the continuous-time system model is given by

ẋ = Ax+Bu, (2.19a)

y = Cx, (2.19b)

where u = [f1 f2]
T is the input with f1 and f2 being the forces in N, x = [d w]T is the state with d

being the displacement of the mass in m, and w being the velocity of the mass in m/s, y = d is the
output, and

A =

[
0 1

− k0
m0
− c0

m0

]
, B =

[
0 0
1
m0

1
m0

]
, C =

[
1 0

]
.

Three failure modes are possible in this system and the potential failure paths/scenarios are
illustrated in Fig. 2.1: In Mode 1, f1 operates normally while f2 fails, that is, u = [f1 0]T ; In Mode
2, f2 operates normally while f1 fails, that is, u = [0 f2]

T ; In Mode 3, Both f1 and f2 fail, that is,
u = [0 0]T .

The discrete-time model of the form (2.1) with M ∈ {0, 1, 2, 3} is obtained by converting the
model (2.19) to discrete-time assuming the sampling period of 0.2 sec.

The controller (2.2) for modes M = 0, 1, 2 is designed using Linear Quadratic Regulator (LQR)
theory to obtain KM . The feedforward gain GM is computed so that the steady-state gain from v to
the mass position d is equal to 1. In the selection of the LQR weights QM and RM , it is assumed
that the use of f1 is more expensive than the use of f2. The closed-loop system of each mode is
design using the following parameters:

• For Mode 0, 1, and 2,

Q0 =

[
1 0

0 1

]
, Q1 = Q0, Q2 = Q0,
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R0 =

[
1000 0

0 250

]
, R1 =

[
10 0

0 0

]
, R2 =

[
0 0

0 2.5

]
.

• For Mode 3, since both actuators fail, the system operates as it is in open-loop, but to keep
the consistency of the notation, let

K3 =

[
0 0

0 0

]
, G3 =

[
0

0

]
.

The constraints are imposed on the position of the mass and on the magnitudes of the actuation
forces:

|d| ≤ ymax, |f1| ≤ umax,1, |f2| ≤ umax,2,

where ymax = 1m and umax,1 = umax,2 = 1N. Using (2.2), these constraints are converted into the
form (2.4).

2.5.2 FMEM Strategy Design

The development of the FMEM strategy based on constraint admissible and recoverable sets
proceeds backward beginning from Mode 3 to the predecessor modes.

Since in Mode 3 the system runs in open-loop, the constraint admissible set in Mode 3 can be
computed directly for the states (compare with (2.7) ) as

ProjxO∞,3 = {x0 : xt ∈ X3(0) ∀t ∈ Z≥0}

= {x0 : AO∞,3x0 ≤ bO∞,3}, (2.20)

and the recoverable set of Mode 3 is

RN3
∞,3 = ProjxO∞,3 ∀N3 ≥ 0, (2.21)

Equation (2.21) implies that (2.11) can be satisfied only if xk ∈ ProjxO∞,3 is imposed as the
state constraint during the operation in Modes 1 and 2. To demonstrate using mechanisms in
Sects. 2.4.2 and 2.4.3 to satisfy this requirement, two case studies are considered.

In the first case, state constraints of Mode 1 and 2 are tightened while the command range and
rate limits are not used. This can be done by imposing state constrains of Mode 3 to Mode 1 and 2.

Remark 2.1. Since the number of the inequalities in the representation of ProjxO∞,3 can be large,
this can result in highly complexO∞,1 andO∞,2 and large computational effort in using them in the
implementation of the reference governor. Consequently, we use a simpler subset P3 ⊂ ProjxO∞,3.
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Such a subset is generated by removing close to being redundant inequalities from the representation
of ProjxO∞,3 and a scaling transformation to ensure that P3 ⊂ ProjxO∞,3. This leads to

P3 = {x0 : AP3x0 ≤ bP3}. (2.22)

Now for M ∈ {1, 2}, we let X̄M = P3. Then, XM(v) and O∞,M can be constructed by (2.5) and
(2.7).

The second case relies on having the command range and rate limits (2.13) and (2.14) of the
form |v| ≤ vmax and |∆v| ≤ ∆vmax. No additional state constraints are added to further restrict the
operation in Mode 1 and 2. That is, for M ∈ {1, 2}, we let XM(v) = X (v) and construct O∞,M

using (2.7).
Finally, for both cases, O∞,0 is computed based on (2.7) with X0(v) = X (v).
The value of ϵ = 0.01 was used in computing O∞,M for M ∈ {0, 1, 2}. The projections

ProjxO∞,M computed using Bensolve [46] are shown in Fig. 2.3(a) for the first case and in
Fig. 2.4(a) for the second case, with Figs. 2.3(b) and 2.4(b) showing the zoom-in views.

Recoverable sets in the first case for mode switching between Mode 0 and Mode 1 or 2 are
based on (2.9) where XRM

(v) = XM(v), and NM is chosen sufficiently large to satisfy (2.11).
Figures 2.3(a) and (b) show the recoverable sets of Mode 2 as examples. After comparing the
admissible and recoverable sets for both Mode 1 and Mode 2, NM should at least be 3 to satisfy
(2.11). Hence, we set N1 = N2 = 3 to minimize the length of the recovery sequence. Note that for
transitions to Mode 3, the condition (2.11) is satisfied as by construction so both ProjxO∞,1 and
ProjxO∞,2 are subsets of ProjxO∞,3

For the second case, ProjxO∞,2 ⊇ ProjxO∞,0 as shown in Fig. 2.4(a), and so is for ProjxO∞,1.
Thus, for mode transitioning from Mode 0 to Mode 1 or 2, since xk ∈ ProjxO∞,M for M ∈ {1, 2}
is automatically satisfied, a recovery sequence is not needed. Now, to safely switch from Mode
1 or 2 to Mode 3, vmax and ∆vmax need to be chosen so that the condition (2.18) holds. In order
to maximize the size of SM ∩ ProjxO∞,M for M ∈ {1, 2} that restrict the operation of the system
in Mode 1 and Mode 2, we set vmax = 1 and ∆vmax = 0.007 for Mode 1, and vmax = 1 and
∆vmax = 0.01 for Mode 2.

2.5.3 Simulation Results

Results of the two case studies are shown in Figs. 2.3 and 2.4, where the trajectories are plotted
in (a) and (b), and time-based signals are in (c) and (d).

In both cases, the system begins with operation in the normal mode (Mode 0), and then
sequentially switches to Mode 2 and Mode 3. The reference is set to be switching between −0.99m
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Figure 2.3: Projections of sets and simulation results for the first case.

and 0.99m. The time-based results show that all state and control input constraints are satisfied
throughout the simulation. When the system switches to Mode 2, in comparison with the first case
study, the trajectory in the second case immediately starts approaching S2 ∩ ProjxO∞,2 and stays
inside it after the state converges. Effects of command rate limiting are clearly visible from the
time-based signals.

2.6 Aircraft Longitudinal Flight Control Example

We now consider a higher order example of aircraft longitudinal flight control with engine thrust
and elevator actuators.
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Figure 2.4: Projections of sets and simulation results for the second case.

2.6.1 System Dynamics, Mode Definitions and Constraints

The aircraft model represents a Boeing 747-100 aircraft at steady level flight corresponding
to Mach 0.5 cruise at 20,000 feet [47]. The linearized longitudinal flight dynamics under the
normal operating conditions can be represented by the form (2.19) where x = [∆µ ∆w ∆q ∆θ]T ,
u = [∆aT ∆δe]

T , and y = ∆ḣ, µ and w, respectively, are the projection of the velocity vector on
the x-axis and z-axis of the body-fixed frame in m/s, q is the projection of the angular velocity
vector on the y-axis in °/s (degree per second), θ is the pitch angle in ° (degree), aT is the thrust-to-
mass ratio in N/kg, δe is the elevator deflection in °, ḣ is the climb rate in m/s, and ∆ denotes the
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deviation from the trim value. In this model,

A =


−0.0073 0.0274 −0.0040 −0.1713
−0.1205 −0.4350 2.7645 0

0.0188 −0.3196 −0.4850 0

0 0 1 0

 ,

B =


1 −0.0053
0 0.1170

0 14.5

0 0

 , C =
[
0 −1 0 2.7645

]
.

(2.23)

The model is then converted to discrete-time assuming 0.2 sec update period.
The normal and failure modes are defined and the controller for each mode is designed similar

to Sect. 2.5. In Mode 0, the controller is designed to track a given climb rate deviation and a zero
deviation of the velocity magnitude from the nominal, that is, to hold

√
µ2 + w2 at constant. During

Modes 2 and 3, ∆aT = 0 in the linearized model can represent full authority digital engine control
(FADEC) system maintaining engine availability when handling an internal engine failure mode but
having to restrict the ability to change engine thrust.

The constraints are imposed on the climb rate and on the thrust and the elevator inputs as

|∆ḣ| ≤ ymax, |∆aT | ≤ umax,1, |∆δe| ≤ umax,2,

where ymax = 5m/s, umax,1 = 5N/kg, and umax,2 = 5°. These constraints define X (vk) and can
be put into the form (2.4).

2.6.2 FMEM Strategy Design

The design process of admissible and recoverable sets for this aircraft example is similar to the
first case in Sect. 2.5.2, except for two main differences. First, in Mode 0, the state constraints X0(v)

in (2.7) had to be tightened. Second, XRM
(vt) in (2.9) exploits the relaxation in Mode 1 and 2.

The rationale for these two steps is illustrated in Fig. 2.5 as an example, showing the projection
of O∞,0 and RN1

∞,1 on the first two coordinates ∆µ and ∆w. It shows that the change of N1 has
little impact on the shape ofRN1

∞,1 relative to O∞,0 in the ∆w direction. In order to satisfy (2.11), a
large value for N1 is required, meaning the reconfiguration will take a long time. Similar situation
also occurs in Mode 2. Thus, in order to have a reasonable value of NM for M ∈ {1, 2}, X0(v) and
XRM

(vt) for M ∈ {1, 2} need to be adjusted.
The first change is to reduce the size of O∞,0 by adding extra state constraints. This is done by
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Figure 2.5: Projections of admissible and recoverable sets as NM changes.

having X0(v) = X (v) ∩ X̄0 where

X̄0 = {x : AP3x ≤ ηObP3}. (2.24)

Here, ηO ≥ 1 is a design parameter. Figure 2.6 shows the projection of O∞,0 with different values
of ηO. Smaller values of ηO make it more likely that (2.11) can be satisfied with small N1 and N2,
but at the same time, O∞,0 shrinks, meaning that the system operation in the normal mode is more
restricted. Thus, the value of ηO needs to be optimized and carefully chosen.
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Figure 2.6: Projections of admissible sets as ηO changes.

To avoid the need for over restriction in Mode 0, the second change is introduced, that is, to
relax state constraints during the application of the recovery sequence in Mode 1 and 2 based on
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(2.9), with

XRM
= {x : AXx ≤ ηRM

bX}, (2.25)

where ηRM
≥ 1 is also a design parameter. Figure 2.7 shows the projection ofRN1

∞,1 for different
values of ηRM

. The “size” ofRNM
∞,M increases as the value of ηRM

increases, while the trade-off is
that the system could operate far outside from the normal constraints if the value of ηRM

gets too
large. Thus, the value of ηRM

also needs to be optimized and chosen with care.
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Figure 2.7: Projections of admissible and recoverable sets as ηRM
changes.

Based on optimization over a grid of values, we have ηO = 1.5, and we choose N1 = 9, ηR1 = 8

for Mode 1, and N2 = 10, ηR2 = 11 for Mode 2. Note that in Fig. 2.7, although it appears that for
the projected sets we have Projx1,2

O∞,0 ⊆ Projx1,2
R10

∞,1 with ηRM
≥ 2, this does not imply (2.11)

is satisfied. Specifically for this aircraft example, large values of ηRM
are needed.

2.6.3 Simulation Results

Figure 2.8 shows an example of the simulation with mode switching from Mode 0 to Mode
1 at 72.2 sec and then from Mode 1 to Mode 3 at 120.2 sec, and Fig. 2.9 shows the simulation
where the mode switches from Mode 0 to Mode 2 and then to Mode 3 also at 72.2 sec and 120.2
sec. The time-based signals show that all input and output constraints are respected through out the
simulation.
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2.7 Concluding Remarks

To be able to handle onboard failures safely (i.e., without violation of constraints), Failure Mode
and Effect Management (FMEM) systems have to be appropriately designed. In systems with
multiple redundant actuators, system operating modes can be defined dependent on functioning
actuators. The operation in the preceding mode may have to be restricted either by imposing extra
pointwise-in-time state constraints or by deliberately slowing down the response in order to ensure
that in the event of a failure there exists a recovery control sequence that can avoid constraint
violation. This chapter illustrated some of the ingredients and approaches that can be used in a
systematic FMEM system design based on reference governors, and based on recoverable and
constraint admissible sets. The development of comprehensive numerical procedures that can be
used to guarantee the set inclusion conditions for safe reconfigurability is left to the future work.
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Figure 2.8: Simulation results with failure path from Mode 0 to Mode 1 to Mode 3.

27



0 50 100 150

-20
-10

0

0 50 100 150
-5

0

5
zoom-in of (a)

0 50 100 150
-10

-5
0
5

0 50 100 150

Time (sec)

-0.5

0

0.5
zoom-in of (c)

(a)

(b)

(c)

(d)

Figure 2.9: Simulation results with failure path from Mode 0 to Mode 2 to Mode 3.
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CHAPTER 3

Set-Theoretic Failure Mode Reconfiguration for Stuck
Actuators

3.1 Introduction

Maintaining the safety of systems in applications such as aircraft and autonomous vehicles
is critical. These systems often operate in constrained environments while tracking reference
commands. For example, an autonomous vehicle may be given a planned trajectory to follow
but it must simultaneously avoid obstacles such as other vehicles in traffic or pedestrians. Such
applications may require the system to operate without constraint violation at all times, even when
failures occur.

Continuing to operate without constraint violations is challenging when there are failed hardware
components. It is not uncommon for hardware components, such as sensors and actuators, to fail for
various reasons. In particular, failures due to stuck actuators often occur in industrial applications.
Jammed elevators or rudders, for example, are one of the most common reasons for the failure of
aircraft flight control, for which consequences could be fatal [5]. To mitigate failures, redundant
actuators are often used (e.g., dual steering systems in automotive applications). In addition, sensors
can be added for diagnostic purposes. As the software and algorithmic content for handling failure
modes can be large and complex, systematic methods for Failure Mode and Effect Management
(FMEM) system design are very much in need. Such FMEM strategies must be able to reconfigure
system operation to maintain safety and maximize system availability.

This chapter presents an approach to designing an FMEM strategy for handling actuator failures,
where actuators can fail by getting stuck in a constant position. The proposed FMEM system aims to
guarantee that pointwise-in-time state and control constraints are satisfied during normal operation,
in failure modes, and during mode transitions.

There is much literature on the design of fault-tolerant control systems and on the analysis
of the ability to reconfigure, such as [13] and [15]; usually, state and control constraints are not
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considered. Constraint handling using control methods similar to ours in this chapter is addressed
in [17–19], but failure modes are not considered. In [20], the case of stuck actuators is handled
using set-theoretic methods; however, the reference tracking problem is not treated. The use of
reference governors for fault-tolerant control is described in [16] and references therein, but these
approaches are different from ours and are not combined with the reconfiguration strategy. The
use of recoverable sets for safe trim point to trim point transitions is considered in [21], but the
reconfiguration is not addressed to handle sequential failures that involve multiple operating mode
transitions. Fault-tolerant model predictive control (FTMPC) methods proposed in [22] handle
constraints and reference tracking; however, [22] addresses unknown fault intensity instead of
stuck/jammed actuators in this chapter and does not consider sequential failures. A comprehensive
comparison between the FTMPC approaches and our strategy is left to future work.

In Chap. 2 (based on [25]), an FMEM strategy is proposed for the case when actuator failures
result in the corresponding control input being set to zero. This strategy relies on manipulating
the reference command to a nominal controller based on the use of constraint admissible and
recoverable sets constructed using discrete-time linear models of the closed-loop system in each
mode. A maximum constraint admissible set O∞,M is the set of all initial states x0 of the system
and reference commands v with which the ensuing response satisfies state and control constraints
for all future time instants if operating in mode M . For each failure mode, a recoverable setRNM

∞,M

is the set of all initial states x0 of the system for which there exists a reference command sequence v
that steers the states into the state projection ofO∞,M within NM steps without constraint violations.
Then, if the following conditions are satisfied,

Projx O∞,M ′ ⊆ RNM
∞,M ∀M ′ ∈ pred(M), (3.1)

where M ′ is the predecessor mode of M , constraints can be satisfied in each mode and during
mode changes. This result is established under the assumptions of a single point of failure (i.e.,
one actuator failure at a time), instantaneous fault detection and isolation, and large time between
subsequent failures. Furthermore, Chap. 2 introduced three mechanisms by which (3.1) can be
ensured: (i) by adding extra state constraints in the preceding mode; (ii) by increasing time duration
allowed for the reconfiguration; and (iii) by temporarily relaxing state constraints when determining
the recovery sequence. The latter mechanism is suitable for systems with soft constraints when a
temporary constraint violation is permissible.

A reference governor [16] is used in Chap. 2 for reference tracking in each mode after the
reconfiguration is completed and until another failure occurs. The reference governor maintains
the state and modified reference in O∞,M while minimizing the difference between the modified
references and reference commands. When a failure occurs and the reconfiguration begins, the
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reference governor operation is suspended. A constrained quadratic programming problem is solved
to generate a recovery sequence of modified references, which is then applied until the states enter
the constraint admissible set of the current mode, and the operation of the reference governor
resumes.

In this chapter, the approach of Chap. 2 is extended to address the practically important case
when actuators can get stuck/jammed at a constant position. This requires modifying control laws
in each mode to compensate for failed actuator positions, as well as re-formulating the constraint
admissible sets, recoverable sets, and reconfiguration conditions to include the dependence on the
failed actuator positions. The case treated in this chapter is significantly more general than that in
Chap. 2 where inputs corresponding to failed actuators were set to zero.

The proposed FMEM strategy (as shown by Fig. 3.1), upon failure, first modifies the reference
command by generating a recovery sequence, and then by using a reference governor once the state
enters the maximum constraint admissible set (as shown by Fig. 3.2). The controller responding to
the modified reference command is also switched for each specific mode.
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Figure 3.1: A flowchart of the proposed FMEM strategy. Signals in round brackets are passed from
previous blocks.
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Figure 3.2: The relation between offline designed constraint admissible and recoverable sets
exploited in the FMEM strategy.

The rest of the chapter is organized as follows. First, normal and failure modes, open and closed-
loop discrete-time system models, as well as constraints are introduced in Sect. 3.2. Section 3.3
defines the problem statement, constraint admissible and recoverable sets, reconfiguration conditions
for different mode transitions, and reference governors for reference tracking. Numerical results for
an aircraft longitudinal flight application are reported in Sect. 3.4. Finally, conclusions are drawn in
Sect. 3.5.

3.2 Operation Modes, System Dynamics, and Constraints

3.2.1 Normal and Failure Modes

Consider an over-actuated system with N actuators. Each actuator may fail because it gets
stuck/jammed and generates a constant input equal to the value immediately before the failure
happens. Failures of multiple actuators are possible, but only one actuator can fail at a time. The
time between subsequent failures is assumed to be large. Furthermore, to simplify the exposition,
we assume that the failure is detected instantaneously and the failed actuator position is accurately
measured/estimated, while in practice these assumptions can be relaxed.

Figure 3.3 shows an example of potential failure paths for the case of N = 2 in the worst case
scenario when every combination of actuator failures is possible. Each box represents a potential
operating mode of the system. The numbers inside the box are labels of the actuators that are still
working. Each mode is denoted by M ∈ {0, 1, · · · , 2N}, and a vector ℓM is defined to label each
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mode by

ℓM =
[
m1 m2 · · · mN

]T
,

mi =

0 if the ith actuator failed,

1 if the ith actuator works,

for i ∈ {1, · · · , N}. In particular,

ℓ0 =
[
1 1 · · · 1

]T
,

ℓΩ =
[
0 0 · · · 0

]T
,

where ℓ0 is the label of the normal mode when all actuators work, and ℓΩ with Ω = 2N labels the
mode when all actuators fail.

1
2

1

2

n/a

= 0

= [1 1]

= 3

= [0 0]

= 1

= [1 0]

= 2

= [0 1]

Figure 3.3: Example of failure paths, modes M , and labels ℓM for N = 2.

3.2.2 Open-Loop and Closed-Loop System Models

We assume that the system in mode M is represented by the following discrete-time linear
model:

xk+1 = Axk +BuM,k, (3.2)

yk = Cxk, (3.3)

where xk is the state, yk is the output, and uM,k is the input. We have

uM,k = ℓM ⊙ u0,k + (ℓ0 − ℓM)⊙ uΩ,k ∀0 ≤M ≤ Ω,
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where

u0,k =
[
µ1,k µ2,k · · · µN,k

]T
,

uΩ,k =
[
d1 d2 · · · dN

]T
,

and where µi,k is the input in the ith channel where the corresponding actuator is working properly,
di is the constant input in the ith channel where the corresponding actuator failed and got stuck, and
⊙ is the element-wise product. For example, in the case with three actuators, if

ℓ1 =
[
1 1 0

]T
,

we have

u1,k =
[
µ1,k µ2,k d3

]T
.

In the normal mode (M = 0), a stabilizing feedback plus feedforward controller is used, of the
form,

u0,k = K0xk +G0vk, (3.4)

where K0 is a stabilizing feedback gain, G0 is a feedforward gain such that the tracking error in
steady state is equal to zero, and vk is the reference command.

In failure modes M , 0 < M < Ω, when there are actuators stuck at constant values, we first
define µℓM ,k as the vector of inputs of the working actuators and dℓM as the vector of constant inputs
of the failed actuators by reducing uM,k to

µℓM ,k = ♢(ℓM , uM,k),

dℓM = ♢(ℓ0 − ℓM , uM,k),

where ♢(ℓ, E) is an operator that reduces the dimension of the vector, matrix, or product of sets E
by removing the ith, i ∈ {1, · · · , N}, element, row, or set if the corresponding ith element in ℓ is
zero.

It is assumed that in all failure modes the number of references is less than or equal to the
number of working actuators. Then for each mode M , a stabilizing controller is assumed to have
been designed, and given by

µℓM ,k = KMxk +GMvk +HMdℓM , (3.5)
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where KM is the stabilizing feedback gain and GM and HM are the feedforward gains for the
reference commands and stuck inputs. They are designed so that the system has zero steady-state
tracking error.

In general, the closed-loop dynamics are represented by

xk+1 = ĀMxk + B̄MUM,k, (3.6)

where UM,k is the closed-loop input, and

• for M = 0,

Ā0 = A+BK0,

B̄0 = BG0,

U0,k = vk,

• for 0 < M < Ω,

ĀM = A+BM,µKM ,

B̄M =
[
BM,µGM BM,µHM +BM,d

]
,

UM,k =

[
vk

dℓM

]
,

where

BM,µ =
(
♢(ℓM , BT )

)T
,

BM,d =
(
♢(ℓ0 − ℓM , BT )

)T
.

In the failure mode when all actuators fail and give constant inputs (M = Ω), the system runs in
open-loop. In this case we assume that the open-loop system is stable as otherwise state constraints
cannot be handled. For consistency of notations, we let

ĀΩ = A,

B̄Ω = B,

UΩ,k = uΩ,k.
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3.2.3 Constraints

To ensure safe operation, pointwise-in-time state and control constraints are imposed given by
inequalities of the form,

xk ∈ X ∗
M(UM,k) = {x : A∗

M

[
x

UM,k

]
≤ b∗

M}. (3.7)

It is assumed that individual open-loop input range constraints of the form uM,k ∈ D1 × · · · ×DN

are reflected in (3.7) where Di, i = 1, · · · , N , is the feasible input range for the ith actuator.
Modifications of constraints may be needed to facilitate the sequential failure mode reconfigura-

tion design. Firstly, to satisfy subsequent conditions for the safe reconfiguration, it may be necessary
to restrict the operation in preceding modes by artificially tightening constraints (3.7) to

xk ∈ XM(UM,k) = X ∗
M(UM,k) ∩ X̄M(UM,k)

= {x : AM

[
x

UM,k

]
≤ bM},

(3.8)

where the sets X̄M(UM,k) need to be appropriately designed.
Secondly, in practical applications, some of the state constraints could be imposed conservatively

to extend the system operating life and can be relaxed temporarily during the recovery to, for
example, reduce the number of steps needed for the recovery. Thus, during the short period when
the recovery sequence is applied, the constraints can be relaxed to

xk ∈ XR,M(UM,k) = {x : AR,M

[
x

UM,k

]
≤ bR,M}, (3.9)

where XR,M(UM,k) ⊇ XM(UM,k), and XR,M(UM,k) also need to be appropriately designed.

3.3 Reconfiguration Strategy

The FMEM strategy has two basic goals. Firstly, constraints should not be violated at any
time so that safety is preserved. The system needs to operate safely in all modes and during mode
transitions. Secondly, the system output should follow the given reference command as closely as
possible. The proposed strategy exploits constraint admissible sets, recoverable sets, and reference
governors.
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3.3.1 Constraint Admissible Sets

For M ∈ {0, · · · ,Ω}, the maximum constraint admissible sets are defined by

O∞,M ={(UM , x0) : xt ∈ XM(UM) ∀t ∈ Z≥0, xM,ss(UM)⊕ Bϵ ⊂ XM(UM)}

={(UM , x0) : AO∞,M
x0 ≤ bO∞,M

(UM)},
(3.10)

where xt is the response of (3.6) to the initial condition x0 and constant closed-loop input UM ,
xM,ss(UM) is the steady-state point given by

xM,ss(UM) = (I − ĀM)−1B̄MUM ,

and Bϵ is an open ball of radius ϵ > 0. By adding the constraint xM,ss(UM)⊕ Bϵ ⊂ XM(UM), one
can ensure that, under mild additional assumptions, the set O∞,M is positively invariant, finitely
determined, and can be represented by a finite set of affine inequalities [45]. Positive invariance
means that if (UM , x0) ∈ O∞,M , then (UM , xt) ∈ O∞,M for all future time instants t ≥ 0 as long as
the mode remains equal to M . Being finitely determined means that there exists T ∈ Z≥0 such that
xt ∈ XM(UM) ∀t ≤ T is equivalent to (UM , x0) ∈ O∞,M . As a result, it is possible to represent
O∞,M by a finite set of inequalities as in (3.10) (see, e.g., [21] for derivation).

3.3.2 Recoverable Sets

The recoverable sets for M ∈ {1, · · · ,Ω− 1} are defined as

RNM
∞,M(dℓM ) = {x0 : ∃{v0, · · · , vNM

} such that

xt ∈ XR,M(UM,t) ∀t = 0, 1, · · · , NM − 1, (UM,NM
, xNM

) ∈ O∞,M},
(3.11)

where NM is the number of steps allowed for the reconfiguration, which is a design parameter. We

let v =
[
vT0 · · · vTNM

]T
designate the reference sequence.

In mode Ω, when all actuators fail, the system runs open-loop, so it needs to be already running
inside O∞,Ω in the immediate preceding modes. To keep the consistency of notations, we let

RNΩ
∞,Ω = Projx O∞,Ω ∀NΩ ≥ 0, (3.12)

where

Projx O∞,M = {x0 : ∃UM such that (UM , x0) ∈ O∞,M}.
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3.3.3 Reconfiguration Conditions

The safe reconfiguration conditions that follow are based on an extension of (3.1). If these
conditions are satisfied, upon failure, the states of the system are in the state projection of the
constraint admissible set of the predecessor mode, which is a subset of the recoverable set of the
successor mode. Therefore, the states are guaranteed to be inside the recoverable set of the successor
mode, and there exists a feasible sequence of references for the reconfiguration.

For transitions to mode M ∈ {1, · · · ,Ω − 1} from mode M ′ ∈ pred(M), where pred(M) is
the set of all predecessor modes that can change to the successor mode M due to a single actuator
failure, it suffices to require that

Projx O∞,M ′ ⊆
⋂

dℓM∈DℓM

RNM
∞,M(dℓM ), (3.13)

where

DℓM = ♢(ℓ0 − ℓM , D1 × · · · ×DN)

is the set of control constraints for dℓM .
For transitions to mode Ω from M ′ ∈ pred(Ω), since none of the actuators work, we have to

ensure that

O∞,M ′ ⊆ O∞,Ω, (3.14)

for all M ′ ∈ pred(Ω).

3.3.4 Safe Reconfiguration Upon Failure Detection

At the beginning of the reconfiguration and mode transition to mode M ∈ {1, · · · ,Ω− 1}, the
recovery reference sequence v is computed by solving the following quadratic programming (QP)
problem

min
v
∥rk1− v∥2 (3.15)

s.t. xt ∈ XR,M(UM,t) ∀t = k, · · · , k +NM − 1,

(UM,k+NM
, xk+NM

) ∈ O∞,M ,

where rk equals to the given reference command at the beginning of the transition (at time step k).
Then the system runs for NM steps using the recovery sequence of modified references v until the
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end of the reconfiguration.

3.3.5 Reference Governor

A reference governor (RG) is used for reference tracking after the reconfiguration is completed.
With the system running in mode M ∈ {0, · · · ,Ω − 1}, the reference governor determines the
modified reference based on the solution of the following optimization problem

min
vk
∥rk − vk∥2 (3.16)

s.t. (UM,k, xk) ∈ O∞,M .

The modified reference vk is then updated at every time step. By construction, the following result
is obtained:

Proposition 3.1 (Reconfiguration Condition). For system operation in arbitrary mode M ∈
{1, · · · ,Ω− 1}, if (3.13) is satisfied, the time between failures is larger than NM , and the safe re-

configuration strategy and reference governor based on (3.15) and (3.16) are used, then constraints

given by (3.9) and (3.8) are satisfied respectively during the reconfiguration and after the recovery

is completed.

Remark 3.1. Note that if (3.13) is satisfied, the system can operate safely not only when the
input is stuck at a constant value immediately preceding the failure, but even if it instantaneously
jumps to another constant value at the time of failure as long as dℓM ∈ DℓM , such as for the zero
control considered in Chap. 2 where (3.13) coincides with (3.1) by having dℓM ∈ DℓM = {0} and
RNM

∞,M = RNM
∞,M(dℓM ).

Remark 3.2. The FMEM strategy is developed offline and involves choosing variables NM ,
X̄M(UM,k), and XR,M(UM,k) to satisfy (3.13) as in Fig. 3.2 for each mode transition. Then during
the online operation (as shown in Fig. 3.1), the modified reference command is generated by (3.15)
or (3.16). Note that the online chronometric load would not regularly increase with the increase in
the number of redundant actuators or possible failure paths as the underlying QP problems are only
relevant to the current mode. However, the read-only memory (ROM) size necessary to store sets
for different modes can grow.

39



3.4 Application to Aircraft Longitudinal Flight Control

3.4.1 System Dynamics

3.4.1.1 Open-Loop Model

The aircraft model represents a Boeing 747-100 aircraft in steady level flight corresponding to
Mach 0.5 cruise at 20,000 feet [47]. The linearized longitudinal flight dynamics under the normal
operating conditions with the classical phugoid approximation are modeled by

∆u̇ =− 0.0075∆u − 0.1713∆θ +∆aT − 0.0051∆δe,

∆θ̇ = 0.0436∆u − 0.0423∆δe,

and the output is

∆ḣ = 2.7645∆θ,

where ∆ denotes the deviation from the trim value, u is the projection of the velocity vector on the
x-axis of the body-fixed frame in m/s, θ is the pitch angle in ° (degree), aT is the thrust-to-mass
ratio in N/kg, δe is the elevator deflection in °, and ḣ is the climb rate in m/s.

The system can be written compactly in the form,

ẋ = Ax+Bu, (3.17a)

y = Cx, (3.17b)

where x = [∆u ∆θ]T is the state vector, u = [∆aT ∆δe]
T is the input vector, and y = ∆ḣ is the

output. This model is converted to discrete-time assuming a 5-second update period. Note that this
system has two redundant actuators, hence N = 2 as in Fig. 3.3.

3.4.1.2 Closed-Loop Model

The controllers (3.4) for M = 0 and (3.5) for M ∈ {1, 2} are designed using Linear Quadratic
Regulator (LQR) theory with the dlqr command in Matlab to obtain the feedback gain KM . The
feedforward gains GM and HM are computed so that the steady-state gain from the reference v to
the output y for the climb rate deviation is equal to 1. The weights QM and RM are chosen by trial
and error and assuming that the use of thrust is more expensive than the use of the elevator. Their
values and those of the resulting GM and HM matrices are as follows:

• In Mode 0, the controller is designed to track a given climb rate deviation from nominal and a
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zero deviation of the velocity magnitude from nominal, that is, to hold u , using

Q0 =

[
1 0

0 1

]
,

R0 =

[
1000 0

0 250

]
,

G∗
0 =

([
0 2.7645

1 0

]
(I − ĀM)−1B

)−1 [
1 0

0 0

]
,

G0 =
(
♢([1 0]T , G∗T

0 )
)T

.

• In Modes 1 and 2 (for M ∈ {1, 2}), the controller only tracks a given climb rate deviation
reference, with

Q1 =

[
1 0

0 1

]
, R1 =

[
10 0

0 0

]
,

Q2 =

[
1 0

0 1

]
, R2 =

[
0 0

0 2.5

]
,

GM = [C(I − ĀM)−1BM,µ]
−1,

HM = −GM [C(I − ĀM)−1BM,d]
−1.

The closed-loop systems are then obtained based on (3.6).

3.4.2 Constraints

Constraints are imposed on the climb rate, the thrust-to-mass ratio, and the elevator deflection as

|∆ḣ| ≤ ymax, |∆aT | ≤ u1max , and |∆δe| ≤ u2max , (3.18)

where ymax = 20m/s, u1max = 2N/kg, and u2max = 45°. These constraints define X ∗
M(UM,k) given

by (3.7) for all modes of M ∈ {0, 1, 2, 3}.

3.4.3 Design of Constraint Admissible and Recoverable Sets

3.4.3.1 Constraint Admissible Sets

The design begins from Mode 3. During simulation, constraints for the failed inputs d1 and
d2 by (3.18) are automatically satisfied due to the same constraints being applied to the working
inputs µ1,k and µ2,k in preceding modes. However, the input constraints are still used to define
X ∗

3 (U3,k) so that O∞,3 is a bounded set. Since Mode 3 is the last mode of the failure sequence,
no subsequent conditions need to be considered, so for (3.8), let X3(U3,k) = X ∗

3 (U3,k). Then, the
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constraint admissible set of Mode 3, as defined in (3.10), can be represented by

O∞,3 =
{
(d1, d2, x0) : AO3,d1d1 + AO3,d2d2 + AO3,x0x0 ≤ bO3

}
. (3.19)

Next, in Modes 1 and 2 (M ∈ {1, 2}), in order to satisfy the condition (3.14) for transitions to
Mode 3, the state constraints can be tightened by imposing constraints from O∞,3, that is, to have

x0 ∈ {x0 : AO3,dMµM,k + AO3,dℓM
dℓM + AO3,x0x0 ≤ bO3}, (3.20)

where µM,k is generated by the controller in (3.5), as a function of UM,k. By substituting µM,k in
(3.20) by (3.5), we define

X̄M(UM,k) = {x0 : AO3,dMGMvk + (AO3,dMHM + AO3,dℓM
)dℓM

+ (AO3,dMKM + AO3,x0)x0 ≤ bO3}.
(3.21)

Then, XM(UM,k) and O∞,M are defined based on (3.8) and (3.10).
Finally, to satisfy the recovery conditions of (3.13) for mode transitions between Modes 0 and 1

and 0 and 2, the constraints are tightened by a scaling coefficient of ηO ∈ (0, 1] that needs to be
tuned (beginning from 1 and decreasing until the recovery conditions are satisfied). Then, X0(U0,k)

is defined by these tightened constraints as

X0(U0,k) = {x0 : A∗
0

[
x

U0,k

]
≤ ηOb∗

0}, (3.22)

and O∞,0 is defined based on (3.10).

3.4.3.2 Recoverable Sets

The recoverable sets for Modes 1 and 2 (M ∈ {1, 2}) are designed based on (3.13).
The state constraints during recovery are temporarily relaxed by having

XR,M(UM,k) = {x : AM,X

[
x

UM,k

]
≤ ηR,MbM,X}, (3.23)

where ηR,M ≥ 1 is a design parameter. Then, the recoverable sets are constructed based on (3.11).

3.4.3.3 Choosing Design Parameters to Satisfy Recovery Conditions

The final tuning results are ηO = 0.7, N1 = 5, ηR,1 = 1.9, N2 = 5, and ηR,2 = 1. Conditions
(3.13) are checked using the toolbox Bensolve [46]. Figure 3.4 shows the state projections of the
O∞,M sets for all modes, compared with the intersection of setsRNM

∞,M(dℓM ) for all dℓM ∈ DℓM for
M = 1 and 2. It can be seen that the reconfiguration conditions (3.13) are satisfied. By checking
the set relations of O∞,1 and O∞,2 versus O∞,3 using the Bensolve command le, it has been
confirmed that the conditions (3.14) are also satisfied.
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3.4.4 Simulation Results

Figure 3.4 shows the state trajectories and time-based trajectories of the major signals of a
simulation with mode switching from 0 to 2 to 3 at times 0 and 225. In order to demonstrate
the reconfiguration process, an initial condition is picked such that ([v0 µ1,0]

T , x0) /∈ O∞,2 but
x0 ∈ RN2

∞,2(µ1,0), and the simulation starts at the transition from Mode 0 to Mode 2.
The system runs from 0 to 25 seconds with the modified reference sequence {vt}N2

0 generated
by the recovery sequence generator. The thrust is stuck while the elevator is working normally.
At 25 seconds, the state is steered inside O∞,2, so after that, the reference governor updates the
reference at every time step, until 225 seconds when the mode switches from 2 to 3, in which both
actuators fail. Since x0 ∈ O∞,2 prior to the transition, the system continues to operate without
constraint violation in open-loop after it switches to Mode 3.

3.5 Concluding Remarks

Failure Mode and Effect Management (FMEM) systems need to be properly designed to avoid
safety constraint violations when failures occur. Redundant actuators can be exploited to improve
system reliability, but failures could happen due to one or multiple actuators being stuck. A set-
theoretic based strategy for system reconfiguration was presented, using constraint admissible and
recoverable sets together with the use of a reference governor that enables tracking of references. The
strategy considers sequential transitions of normal and failure modes, guaranteeing safe operations
in all modes as well as during mode transitions. Mechanisms to help satisfy the reconfiguration
conditions were illustrated through a numerical example of an aircraft longitudinal flight control
application. By requiring that the recovery sequence be simultaneously feasible for multiple modes,
the present approach can be extended to the case when failure detection and isolation are not
instantaneous. In such a setting, generating a recovery control sequence directly rather than a
modified reference command sequence could be more straightforward.
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Figure 3.4: Aircraft example simulation results (initial states are picked such that recovery is
needed).
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CHAPTER 4

Integrating Failure Detection and Isolation into a
Reference Governor-Based Reconfiguration Strategy

for Stuck Actuators

4.1 Introduction

Stuck/jammed actuators, unless properly handled by a Failure Mode and Effect Management
(FMEM) system, can result in a marked degradation of system performance and safety, with notable
recent examples in [4, 5]. Systems that are highly automated and designed to fulfill complex
missions often exploit actuator redundancy and comprehensive failure detection and isolation (FDI)
and fault-tolerant control (FTC) schemes to ensure reliability and safety. To handle the multitude of
potential failure modes, a systematic development process of such FMEM strategies that is capable
of handling sequential failures and has guaranteed properties by design is highly desirable.

In this chapter, we develop several enhancements to the reference governor-based set-theoretic
FMEM that was introduced in Chap. 3 (based on [26]). This strategy handles stuck/jammed
actuators while tracking reference commands. It relies on the reference governor for operating
the system subject to constraints in different operating modes and generates a recovery reference
command sequence once failure is detected to effect the transition into the new operating mode with
a different number of functioning actuators. The proposed enhancements include the integration
of a scheme that detects and isolates failures in finite time (thereby relaxing the negligibly small
time assumption for FDI in Chaps. 2 and 3) before the recovery command sequence is generated.
Additionally, set-bounded unmeasured disturbance inputs are handled.

The literature on FDI and failure mode reconfiguration is extensive, see e.g., [13–15]; however,
reference command tracking in presence of state and control constraints is often not the focus and
the design of the system to handle sequential failures is frequently not considered. In the reference
command tracking setting, several reference governor-based approaches have been proposed such as
in [16,48] and references therein, with the approach closest to ours being [48]. A notable difference
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is that in Chaps. 2, 3 and this chapter, we pursue a deterministic treatment (based on set-theoretic
control) that leads to a possibility of FDI and failure mode reconfiguration in finite time rather than
asymptotically in a probabilistic sense, while guaranteeing that the constraints are enforced in all
phases of failure detection, isolation, reconfiguration and when operating in the new mode under
the reference governor supervision. Other approaches utilizing set-theoretic methods in systems
with failures are proposed in, e.g., [20, 21].

Fault detection and diagnosis, isolation, identification, and reconfiguration are essential compo-
nents of active FTC [49] but they are often studied separately due to the complexity of the individual
problems. Notably, existing approaches often do not guarantee explicitly (i.e., by design) the ability
to isolate failures and reconfigure the system operation while satisfying constraints. Furthermore,
the time required to isolate failures and reconfigure the system operation may not be a priori bounded
or even finite. For example, in [23], a fault-tolerant model predictive control (FTMPC) strategy
is developed based on similar to ours set-theoretic considerations, yet with important differences.
In particular, we focus on the approach that is based on the reference governor for safe command
tracking. Furthermore, we guarantee explicitly by design that failures are isolatable and the system
can be reconfigured into the new mode within a finite and a priori known duration. We note that in
the isolation and reconfiguration phases, the original constraints may need to be temporarily relaxed
but the amount of this relaxation is determined by the designer as a part of the offline design process
to ensure existence of the solution. For the same reason, in certain modes constraints may need
to be tightened to ensure the system state is within the capability of the FDI and reconfiguration
scheme and ultimately the next mode controller to handle.

To highlight the contributions, we proposed a set membership-based reference governor-centric
FTC strategy that simultaneously (1) guarantees the safe operation in phases of FDI and system
reconfiguration and in all normal and failure modes, (2) guarantees abilities and has finite duration
that is known before the online operation for isolation and reconfiguration, (3) enables reference
tracking, and (4) handles sequential stuck/jammed actuators failures for systems with set-bounded
unmeasured disturbances.

The remainder of the chapter is structured as follows. First, the system, its operating modes, and
constraints are described in Sect. 4.2. Then, Sect. 4.3 introduces our approach to FDI and failure
mode reconfiguration and the online computations involved, followed by the description of the
offline design that guarantees the isolability and reconfigurability in Sect. 4.4. A numerical example
is reported in Sect. 4.5. Concluding remarks are made in Sect. 4.6.
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4.2 Preliminaries: Operating Modes, System Dynamics and
Constraints

4.2.1 Operating Modes

Consider a system with N redundant actuators. Each actuator may fail by being stuck/jammed
at a constant position. We assume that only one failure can occur at a time, and there is sufficient
time between sequential failures for FDI and failure mode reconfiguration. Then, there are Ω = 2N

possible modes in total, corresponding to different combinations of stuck actuators. Each operating
mode is labeled using M ∈ {0, 1, · · · ,Ω} where, in particular, the normal mode M = 0 has all
actuators working properly, and the failure mode M = Ω has all actuators failed.

4.2.2 System Dynamics

We consider a system with a set-bounded input disturbance and discuss the open-loop dynamics,
stabilizing nominal controllers, and system response representations in what follows.

4.2.2.1 Open-Loop Systems

Discrete-time linear models are considered to represent system dynamics in each mode. Three
representations of the dynamics are used as follows:

xk+1 = AMxk +BMuk + FMwk, (4.1)

= AMxk +BM,µµM,k +BM,ddM + FMwk, (4.2)

= AMxk +Bµ
Muk +BM,ddM + FMwk, (4.3)

yk = CMxk, (4.4)

where M is the mode, xk is the state, yk is the output, and wk ∈ W is a set-bounded unmeasured
input that can represent the disturbance whereW is assumed to be a closed polytope with 0 ∈ intW .
It is assumed that the exact value of the state can be measured without noise. The first representation
(4.1) is a general state-space representation where uk ∈ U is the control input and BM is the input
matrix. In (4.2), BMuk is split into two parts. The first part BM,µµM,k is for the working actuators
where µM,k is the vector of the working actuator inputs. The second part BM,ddM is for the failed
actuators where dM ∈ DM is the vector of constant inputs of the stuck/jammed actuators. For
Bµ

Muk in (4.3), the columns of BM corresponding to the failed actuators are set to zero to form Bµ
M

so that Bµ
Muk equals BM,µµM,k. Note that µM,k and dM in this chapter are the same variables as

µℓM ,k and dℓM defined in Chap. 3.
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4.2.2.2 Closed-Loop Systems

To stabilize the system and track the given references (where the number of references is
assumed to be less than or equal to the number of working actuators), feedback and feedforward
control are used to command the working inputs using

µ0,k = K0xk +G0vk,

µM,k = KMxk +GMvk +HMdM ∀M ∈ {1, · · · ,Ω− 1},

where KM is the stabilizing feedback gain, while GM and HM are the feedforward gains for the
references and the failed actuator positions that are assumed to be measured or accurately estimated.
The system is assumed to be stable in mode Ω when the system runs in open-loop so that safety
constraints can be handled by restricting the operation of its predecessor modes.

Then, the closed-loop system can be represented by

xk+1 = ĀMxk + B̄MUM,k + FMwk, (4.5)

= ĀMxk + B̄M,vvk + B̄M,ddM + FMwk, (4.6)

where

U0,k = vk,

UM,k =

[
vk

dM

]
∀M ∈ {1, · · · ,Ω− 1},

UΩ,k = dΩ,

and ĀM and B̄M are appropriately defined (see the models in Chap. 3 for details). B̄M,v and B̄M,d

are defined similarly to BM,µ and BM,d by only keeping the corresponding columns to vk and dM

from B̄M . Note that (4.5) and (4.6) include the model for mode Ω for the consistency of notations.

4.2.2.3 System Response Representations

Let xM,k denote the predicted state of the system at time instant k in mode M . Define, for k ≥ 1,
the set, QM,k, as a polyhedral overbound on the set of states reachable at time k by applying all
possible disturbance sequences when xM,0 = 0. Since

xM,k = BM,ddM + FMwk−1 + AM(BM,ddM + FMwk−2) + · · ·+ Ak−1
M (BM,ddM + FMw0),

it follows that

QM,k ⊇ BM,dDM⊕FMW⊕AM(BM,dDM⊕FMW)⊕ · · ·⊕Ak−1
M (BM,dDM⊕FMW),

(4.7)

where⊕ stands for the Minkowski sum.
Now, consider the nominal prediction of the state with wk = 0 ∀k ≥ 0, dM = 0, and the input
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command u∗
k ∈ U . We have

xuM,k = Ak
Mx0 + Ak−1

M Bµ
Mu∗

0 + Ak−2
M Bµ

Mu∗
1 + · · ·+Bµ

Mu∗
k−1,

which can be condensed to the form,

xuM,k = xuM,k(U
∗) = SM,kx0 + TM,kU

∗, (4.8)

where

SM,k = Ak
M ,

TM,k =
[
Ak−1

M Bµ
M Ak−2

M Bµ
M · · · Bµ

M

]
,

U∗ =
[
u∗T
0 u∗T

1 · · · u∗T
k−1

]T
.

Note that the elements of the input command U∗ sequence corresponding to the failed input channels
have no impact to the system response since the corresponding columns of Bµ

M are zero.
Then, by the superposition principle for linear systems, we have

xM,k ∈ RM,k(U
∗) =

{
xuM,k(U

∗)
}⊕QM,k

=
{
SM,kx0 + TM,kU

∗}⊕QM,k.
(4.9)

SinceW is a closed polytope, it is reasonable to assume that QM,k in (4.7) are also polytopes.
Note that the reachable sets RM,k(U

∗) are polyhedral if QM,k are polyhedral.

Remark 4.1. The reachable sets above are defined based on the open-loop dynamics. To represent
the reachable sets based on the closed-loop dynamics, we define a polyhedral overbound

Q̄M,k ⊇ B̄M,dDM⊕FMW⊕ĀM(B̄M,dDM⊕FMW)⊕ · · ·⊕Āk−1
M (B̄M,dDM⊕FMW),

and let

xvM,k = xvM,k(V ) = S̄M,kx0 + T̄M,kV,

where

S̄M,k = Āk
M ,

T̄M,k =
[
Āk−1

M B̄M,v Āk−2
M B̄M,v · · · B̄M,v

]
,

V =
[
vT0 vT1 · · · vTk−1

]T
.

Then, the reachable sets can be written as

xM,k ∈ RM,k(V ) =
{
xvM,k(V )

}⊕Q̄M,k

=
{
S̄M,kx0 + T̄M,kV

}⊕Q̄M,k.
(4.10)

4.2.3 Constraints

Pointwise-in-time state and control constraints are imposed to ensure safe operation of the
system. Since the working actuator input µM,k is a function of the state xk and the closed-loop input
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UM,k, these state and control constraints are transformed into the form:

A∗
M

[
xk

UM,k

]
≤ b∗

M ,

and the safety constraints are further defined by

xk ∈ X ∗
M(UM,k) = {x : A∗

M

[
x

UM,k

]
≤ b∗

M}. (4.11)

To accommodate the sequential failures, the safety constraints of the predecessor modes could
be artificially tightened to help the system satisfy the constraints of the subsequent operating modes
and during the failure isolation and reconfiguration. On the other hand, the safety constraints could
be temporarily relaxed during the failure mode isolation and reconfiguration to, for example, reduce
the number of time steps needed during the mode transition, which can help reduce the online
computations. Relaxing constraints during failure mode isolation and reconfiguration is possible
in many applications as some of the constraints are imposed to reduce system aging and their
temporary violation in emergencies does not lead to catastrophic consequences. The tightened
safety constraints during the operation in each mode, as well as the relaxed safety constraints for
isolation and reconfiguration are defined as follow:

xk ∈ XM(UM,k) = X ∗
M(UM,k) ∩ X̄M(UM,k),

xk ∈ XI,M(UM,k) where XI,M(UM,k) ⊇ X ∗
M(UM,k),

xk ∈ XR,M(UM,k) where XR,M(UM,k) ⊇ X ∗
M(UM,k),

and the sets X̄M(UM,k), XI,M(UM,k), and XR,M(UM,k) are to be designed appropriately. One of the
easiest way, if all elements of b∗

M are positive, is to use scaling factors and let

xk ∈XM(UM,k) =
{
x : A∗

M

[
xk

UM,k

]
≤ ηO,Mb∗

M

}
, (4.12)

xk ∈XI,M(UM,k) =
{
x : A∗

M

[
xk

UM,k

]
≤ ηI,Mb∗

M

}
, (4.13)

xk ∈XR,M(UM,k) =
{
x : A∗

M

[
xk

UM,k

]
≤ ηR,Mb∗

M

}
, (4.14)

where ηO,M ∈ (0, 1] and ηI,M , ηR,M ∈ [1,∞), while they should all be as close to 1 as possible to
avoid overly restricted/relaxed operation.
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4.3 Online FDI and Failure Mode Reconfiguration Process

4.3.1 Structure Overview

Figure 4.1 illustrates the online process flow of the FDI and failure mode reconfiguration strategy
for the proposed FMEM system with three phases. In phase 0, the failure detection is run at every
time step to check if there is a new failure. If the failure is detected, the system enters phase 1
for the failure isolation, at the end of which the failure mode M is known. Otherwise, the system
continues operating in phase 0, and a reference governor is used to generate the modified reference
vk for reference tracking without constraint violations. Conversely, during the isolation phase,
using a reference sequence is less straightforward than using an open-loop input sequence since the
closed-loop dynamics are uncertain without knowing the failure mode M . Instead, a sequence of
actuator input commands U∗ is computed and applied to the plant. Once the isolation process is
over, we know the value of M , and it is assumed that the failure has been identified (i.e. the value
of dM is known). The system moves on to phase 2 where the nominal controller for the isolated
mode M is enabled and the reconfiguration process is carried out. A recovery sequence of modified
references v is generated, and the system operates with this reference sequence until the end of
the reconfiguration process. Then, it returns to phase 0 and operates in the new mode. Compared
with the strategy in [26] that focuses on reference tracking and failure mode reconfiguration, this
proposed strategy integrates FDI by adding phase 1 between phase 0 and phase 2, and replaces the
assumption of instantaneous FDI with the process of Detection (in phase 0) and Isolation (in phase
1).

4.3.2 Phase 0: Reference Tracking and Failure Detection

4.3.2.1 Constraint Admissible Sets

We first introduce the definition of a constraint admissible set since both the application of
reference governor and the failure detection use this concept. The constraint admissible set of
mode M ∈ {0, · · · ,Ω}, denoted by O∞,M , is defined as a set of the initial state x0 and the constant
closed-loop input UM such that, with these pairs, the safety constraints given by (4.12) will be
satisfied for all future time. We let

O∞,M =
{
(UM , x0) : xt ∈ XM(UM) ∀t ∈ Z≥0, xM,ss(UM)⊕Bϵ ⊂ XM(UM)

}
=
{
(UM , x0) : AO∞,M

x0 ≤ bO∞,M
(UM)

}
,

(4.15)
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Figure 4.1: Structural overview of the online FDI and failure mode reconfiguration strategy. The
blocks of Controller and Plant represent the banks of controllers and open-loop system dynamics
for different modes.

where xt is the system response, xM,ss(UM) is the steady-state point (assuming zero-disturbance)
given by

xM,ss(UM) = (I − ĀM)−1B̄MUM ,

and Bϵ is an open ball of radius ϵ > 0. By this definition, the constraint admissible sets are positively
invariant, finitely determined, and can be represented by a finite set of affine inequalities under mild
additional assumptions [45].

Remark 4.2. To account for the unknown input disturbance wk, the computations are modified
compared with the process of Chap. 3. Firstly, for xt ∈ XM(UM), it is sufficient to have

xvM,t(Vt) ∈ XM(UM) ∼ Q̄M,t,

where ∼ is the Pontryagin difference, and Vt is given by UM . Specifically, Vt is a vector of
vk = v, ∀k = 0, · · · , t− 1, where v is the constant reference in UM . Moreover, DM = {dM} for
Q̄M,t where dM is the stuck/jammed actuator position in UM . Secondly, the open ball Bϵ is assumed
to be sufficiently large to include the minimum disturbance invariant set [45].
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4.3.2.2 Reference Governor

For mode M ∈ {0, · · · ,Ω− 1}, at every time step k in phase 0, in order to track the reference
command rk as close as possible without violating the safety constraints, a reference governor is
used to generate the modified reference vk by solving the following quadratic programming (QP)
problem:

min
vk
∥rk − vk∥22 (4.16)

s.t. (UM,k, xk) ∈ O∞,M .

The modified reference vk is then taken by the controller to command the input of the working
actuators.

4.3.2.3 Failure Detection

If the system is operating in the current mode M0 and the control input is uk, the state xk+1 is
determined by (4.1) with M = M0. Hence, if the condition

xk+1 ̸∈ AM0xk +BM0uk⊕FM0W (4.17)

holds, a new actuator failure has occurred and the isolation phase is initiated. In the isolation phase,
the successor modes of mode M0, whose set is denoted by succ(M0), are considered.

Remark 4.3. It is possible that (4.17) does not hold but the new failure has already happened. In
this case, the disturbance wk ∈ W masks the failure. On the other hand, during this time, the system
response is close to nominally expected and hence is considered to be safe and satisfactory.

4.3.3 Phase 1: Failure Isolation

4.3.3.1 Isolability

Once a new failure is detected, the system enters the failure isolation phase, at the end of which
the failure mode M should be known. Consider mode M0 ∈ {0, · · · ,Ω − 1} whose successor
mode is not M = Ω (otherwise it is certain that succ(M0) = {Ω}), and any two candidate modes
M1,M2 ∈ succ(M0) where M1 ̸= M2. Based on the measured state, it is sufficient to isolate the
failure in NI steps if there exists an isolation sequence U∗ such that the reachable sets have no
common states, that is, if

RM1,NI
(U∗)

⋂
RM2,NI

(U∗) = ∅. (4.18)

Then, the failure mode is the one whose reachable set contains the measured state xNI
.

Following (4.9), condition (4.18) can be ensured if and only if

∀z1 ∈ QM1,NI
, z2 ∈ QM2,NI

, SM1,NI
x0 + TM1,NI

U∗ + z1 ̸= SM2,NI
x0 + TM2,NI

U∗ + z2, (4.19)
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where x0 here represents the state at the beginning of the isolation.

Proposition 4.1. Equation (4.19) is equivalent to

(SM1,NI
− SM2,NI

)x0 + (TM1,NI
− TM2,NI

)U∗ ̸∈ QM2,NI⊕(−QM1,NI
), (4.20)

Proof. By definition,

ΩN,m2⊕(−ΩN,m1) = {z2 − z1 : z1 ∈ ΩN,m1 , z2 ∈ ΩN,m2},

that is,

z ∈ ΩN,m2⊕(−ΩN,m1)⇔ ∃z1 ∈ ΩN,m1 and z2 ∈ ΩN,m2 such that z2 − z1 = z.

By negation, we have

z /∈ ΩN,m2⊕(−ΩN,m1)⇔ ∀z1 ∈ ΩN,m1 and z2 ∈ ΩN,m2 , z2 − z1 ̸= z.

Thus, (4.19)⇔ (4.20).

As a result, we need to find an isolation sequence U∗ such that (4.20) holds.

4.3.3.2 Computations to Generate the Isolation Sequence

By the definition of QM,k, the set on the right-hand-side of (4.20) is polyhedral. Consider its
representation in the form of affine inequalities:

QM2,NI⊕(−QM1,NI
) = {x : Hjx ≤ hj, j = 1, · · · , q}.

Then, (4.20) can be re-stated as

∃j : Hj

(
(SM1,NI

− SM2,NI
)x0 + (TM1,NI

− TM2,NI
)U∗) > hj. (4.21)

The problem becomes finding an isolation sequence U∗ such that (4.21) holds, and at the same
time, the safety constraints given by (4.13) are satisfied. This can be handled using mixed-integer
optimization applied to (4.21) transformed using the “Big-M” technique (see Sect. 9.3.1 in [50]).
We introduce binary integers δj ∈ {0, 1}, j = 1, · · · , q. The condition (4.21) can be written as

q∑
j=1

δj ≥ 1,

∀j, Hj

(
(SM1,NI

− SM2,NI
)x0 + (TM1,NI

− TM2,NI
)U∗) ≥ hj − (1− δj)M+ γ,

(4.22)

where M≫ 0 is a large positive number, and γ > 0 is a small positive number introduced to replace
“>” with “≥”. Note that to ensure (4.22) holds, one of δj has to be equal to 1, which implies (4.21).

The constraints (4.22) can now be integrated into a mixed-integer quadratic programming
(MIQP) problem, whose objective is to determine a minimum norm control sequence U∗ that
ensures the ability to distinguish the operation in mode M1 versus operation in mode M2 without
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violating the safety constraints, that is, to find the solution of the following problem:

min
U∗,δ1,··· ,δq

∥U∗∥22 (4.23)

s.t. (U∗, δ1, · · · , δq, x0) ∈ C(M0),

where

C(M0) = CM1,M2 =
{
(U∗, δ1, · · · , δq, x0) :

q∑
j=1

δj ≥ 1,

∀j ∈ {1, · · · , q},

δj ∈ {0, 1},

Hj(TM1,NI
− TM2,NI

)U∗ −Mδj + Hj(SM1,NI
− SM2,NI

)x0 ≥ hj −M+ γ,

∀t ∈ {0, · · · , NI − 1},

xt ∈ XI,M1(UM,t), xt ∈ XI,M2(UM,t)
}
.

(4.24)

Remark 4.4. To account for the unknown input disturbance, for xt ∈ XI,M(UM,t), it is sufficient to
have

xuM,t(U
∗
t ) ∈ XI,M(UM,t) ∼ QM,t.

where U∗
t is the vector consists of u∗

0, · · · , u∗
t from U∗.

Remark 4.5. If there are more than two candidate modes, constraints can be defined similar to
(4.24) for all distinct pairs of candidate modes, e.g., if the candidate modes are M = 1, 2, 3, then
constraints should be defined for mode pairs (1, 2), (2, 3) and (3, 1). The MIQP problem becomes

min ∥U∗∥22
s.t. (U∗, δ1,2,1, · · · , δ1,2,q1 , δ2,3,1, · · · , δ2,3,q2 , δ3,1,1, · · · , δ3,1,q3 , x0) ∈ C(M0),

where

C(M0) = C1,2 ∩ C2,3 ∩ C3,1.

Note that, while handling the combinatorial complexity of failure mode, e.g., due to the exponential
growth of modes by the increase of actuators, is not a feature of our approach but a property
of the underlying problem that any approach has to deal with in practice, fortunately, in many
mobility applications, the number of redundant actuators is limited due to considerations such
as cost. Furthermore, it is not uncommon to limit the FMEM strategy to only handling the most
probable failure scenarios.
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4.3.4 Phase 2: Failure Reconfiguration

When the system finished operating with the isolation sequence, it enters the reconfiguration
phase with the known failure mode M ∈ {1, · · · ,Ω− 1} and the vector of stuck/jammed actuator

positions dM that has been identified. In this phase, a reference sequence v =
[
vT0 · · · vTNM

]T
is generated to steer the state into the state projection of the constraint admissible set, ProjxO∞,M ,
within NM steps without violating the relaxed safety constraints given by (4.14). The recovery
reference sequence is determined by solving the following QP problem:

min
v
∥r01− v∥22 (4.25)

s.t. xt ∈ XR,M(UM,t) ∀t = 0, · · · , NM − 1,

(UM,NM
, xNM

) ∈ O∞,M ,

where t = 0 here corresponds to the beginning of the reconfiguration phase, and by using r01 it
is assumed that the reference command stays at constant during the reconfiguration process. The
system eventually returns to phase 0 once it finished operating with the recovery sequence.

4.4 Conditions for Guaranteed Failure Isolation and Reconfigu-
ration

The set-membership conditions for the offline design procedure is now described. So far, three
optimization problems, (4.16), (4.23), and (4.25), have been introduced for different online phases
of the FMEM strategy. For the reference governor defined by (4.16), the problem is feasible in the
failure modes because of the constraint (UM,NM

, xNM
) ∈ O∞,M imposed in (4.25). To ensure the

feasibility of failure mode isolation and reconfiguration, i.e., for (4.23) and (4.25), we can choose
the number of steps allowed for isolation NI , the number of steps allowed for reconfiguration NM ,
and the safety constraint scaling coefficients ηO,M , ηI,M , and ηR,M .

4.4.1 Isolation Conditions

When the system is operating in mode M0 ∈ {0, · · · ,Ω−1}, its state is contained in ProjxO∞,M0 ,
but when a failure is detected, the state is in the following set:

IM0 =
⋃

M∈succ(M0)

AMProjxO∞,M0⊕BMU⊕FMW . (4.26)

This implies the following result:

Proposition 4.2 (Isolation Condition). If the following condition holds,

IM0 ⊆ ProjxC(M0), (4.27)
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then (4.23) is feasible.

4.4.2 Reconfiguration Conditions

We begin by introducing the recoverable sets, which, for the successor modes M ∈ succ(M0),
are defined as
RNM

∞,M(dM) = {x0 : ∃{v0, · · · , vNM
} such that

xt ∈ XR,M(UM,t) ∀t = 0, · · · , NM − 1, (UM,NM
, xNM

) ∈ O∞,M}.
(4.28)

Remark 4.6. To account for the unknown input disturbance in ensuring xt ∈ XR,M(UM,t), it is
sufficient to have

xvM,t(Vt) ∈ XR,M(UM,t) ∼ Q̄M,t,

where Vt is the vector consists of v0, · · · , vt from v, and DM = {dM} for Q̄M,t.

In mode Ω, we let the recoverable set to be the state projection of the constraint admissible set,
that is,

RNΩ
∞,Ω = ProjxO∞,Ω ∀NΩ ≥ 0, (4.29)

as the system runs open-loop when all actuators have failed.
At the end of the isolation phase, i.e., the beginning of the reconfiguration phase, the system is

in the known failure mode M , and the states are in

S ′
M(dM , U∗) = {xNI

: x0 ∈ ProjxC(M0)}, (4.30)

where xNI
results from using the isolation sequence U∗ assuming the stuck/jammed actuator input

is dM . Furthermore, since the state at the beginning of the isolation x0 ∈ IM0 , if the isolation
condition (4.27) holds, the states are contained in

S ′′
M(dM , U∗) = {xNI

: x0 ∈ IM0}. (4.31)

If we have

S ′′
M(dM , U∗) ⊆

⋂
dM∈DM

RNM
∞,M(dM), (4.32)

which implies that the state at the end of the isolation phase is in the recoverable set for any
stuck/jammed actuator position, the optimization problem (4.25) is guaranteed to be feasible.

However, dM and U∗ are a priori unknown. To satisfy (4.32), it is sufficient to define

S(M0) = {xNI
: x0 ∈ IM0 , U

∗ ∈ UNI , dM ∈ DM}, (4.33)

i.e., the set of states that are NI steps later of the states in IM0 considering all possible inputs (for
both working and failed actuators) and disturbances, and impose a stricter condition as

S(M0) ⊆
⋂

dM∈DM

RNM
∞,M(dM). (4.34)
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Proposition 4.3 (Reconfiguration Condition). If the conditions (4.27) and (4.34) hold, then (4.25)
is feasible.

The offline design procedure to satisfy the conditions of Propositions 4.2 and 4.3 is demonstrated
through a numerical example in the next section.

4.5 Numerical Example

4.5.1 System Dynamics and Operating Modes

A mass-spring-damper system is used for illustration with the model given by

ẋ = Ax+Bu+ Fw, y = Cx, (4.35)

where

A =

[
0 1

− k0
m0
− c0

m0

]
, B =

[
0 0
1
m0

1
m0

]
, F =

[
0
1
m0

]
,

C =
[
1 0

]
, x = [α λ]T , u = [f1 f2]

T , y = α,

in which α is the displacement, λ is the velocity, f1 and f2 are the redundant acting forces, m0 = 1

is the mass, k0 = 1 is the spring constant, and c0 = 0.01 is the damping constant. The system is
converted to discrete-time assuming the sampling-period of 0.2 sec.

Since there are N = 2 actuators, the system can operate in four modes. We define mode 0 as the
normal mode, i.e. the mode in which both actuators work properly. In mode 1, f1 works properly
and f2 fails, while in mode 2, f2 works properly and f1 fails. The last mode is mode 3 when both
actuators have failed.

Linear Quadratic Regulator (LQR) theory is used to generate feedback gains KM for modes
M = 0, 1, 2 and the closed-loop dynamics (4.5). The design parameters (chosen by trial and error)
are as follows:

Q0 =

[
1 0

0 1

]
, Q1 = Q0, Q2 = Q0,

R0 =

[
1000 0

0 250

]
, R1 =

[
10 0

0 0

]
, R2 =

[
0 0

0 2.5

]
,

where the subscript corresponds to a specified mode. It is assumed that the use of actuator f1 is more
expensive than f2 which is reflected in a choice of a larger weight for that input. The closed-loop
state matrices ĀM are derived corresponding to each KM , and the feedforward matrices are defined
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as

G0 =
[
0.25/g1 0.75/g2

]T
,

where
[
g1 g2

]
= C0(I − Ā0)

−1B0,

∀M ∈ {1, 2},

GM = [CM(I − ĀM)−1BM,µ]
−1,

HM = −GM [CM(I − ĀM)−1BM,d]
−1.

4.5.2 Constraints

The state and control constraints are given by

|α| ≤ αmax, |f1| ≤ f1max , and |f2| ≤ f2max , (4.36)

where

αmax = 1, f1max = 0.6, and f2max = 0.4.

In addition, the input disturbance is bounded by

|w| ≤ wmax, (4.37)

where wmax = 0.02.

4.5.3 Offline Design for Guaranteed Isolability and Reconfigurability

In this section, we consider the case of sequential failures where the system begins operating
in mode 0, then changes to mode 1 where f2 fails, and eventually finishes in mode 3 with both
actuators failed. The case with 0-2-3 mode transition sequence follows a similar procedure. The
Bensolve toolbox [46] is used for polyhedral computations. The design parameters, NI , NM ,
ηO,M , ηI,M and ηR,M , are chosen from a grid of values to minimize the number of time steps needed
and the changes from the original constraints due to scaling.

The offline design proceeds backward in terms of the failure sequence, that is, we begin by
considering mode 3 and determining its recoverable set given the safety constraints. To ensure
the system state is in ProjxO∞,3 during mode 1, we choose ηO,1 = 0.45 to satisfy ProjxO∞,1 ⊆
ProjxO∞,3. The result is shown in Fig. 4.4. For mode 2, ηO,2 = 0.75.

Next, the isolability condition for the transition from mode 0 given by (4.27) with M0 = 0 is
considered. We let ηO,0 = 1 so that the normal operation is not artificially restricted, and we use
ηI,1 = 1.2 to relax the safety constraints for NI = 2 steps during the isolation phase. Note that this
is a common step for the 0-1-3 and 0-2-3 mode transitions, as both mode 1 and 2 are the successor
modes of mode 0. Hence, the parameters NI , ηI,1 and ηI,2 are adjusted together to satisfy (4.27).
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Figure 4.2: Isolation condition (4.27) satisfied for M0 = 0.

For mode 2, we also let ηI,2 = 1.2. Figure 4.2 illustrates the set-membership relation.
Finally, we consider the reconfigurablity for the mode transition to M = 1. The recoverable set

of mode 1 is determined following (4.28), and the condition that needs to be satisfied is (4.34). In
this phase, we relax the safety constraints by having ηR,1 = 1.7 and allow N1 = 15 steps for the
recovery. The set-membership relation is shown in Fig. 4.3. For mode 2, ηR,2 = 1.9 and N2 = 22.

4.5.4 Simulations

A simulation is run for the case of 0-1-3 mode transition. The input disturbance follows a
normal distribution withinW using zero mean and the standard deviation σ = wmax/6. The failures
are set to happen in 2 and 44 sec, while the displacement reference command switches between
−0.99 and 0.99 in 20 and 40 sec. Figure 4.4 shows the state trajectory and Fig. 4.5 shows the
time-based signals for a 60-sec simulation. Both failures are detected in one step and the isolation
and reconfiguration takes 3.4 sec in total as determined by NI and NM for M = 1. The difference
between the reference command and the modified reference in mode 1 shows that the operation is
restricted after the initial failure to prepare for the potential subsequent failure, i.e., transiting to
mode 3, which makes the system run in open-loop. No constraint violations are observed during the
operation in any of the modes and phases.
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Figure 4.3: Reconfiguration conditions (4.34) satisfied for M0 = 0.

4.6 Concluding Remarks

Enhancements to a reference governor-based Failure Mode and Effect Management (FMEM)
strategy for a system with redundant actuators that can become stuck/jammed have been developed.
These enhancements ensure the ability to detect and isolate failures within a finite time while
tracking reference commands and satisfying state and control constraints. Conditions have been
derived that can be used in the offline design phase to guarantee the ability to isolate failures
within a pre-determined time duration and to reconfigure the system into the next mode. The
proposed system can handle sequential failures and unmeasured set-bounded disturbance inputs. A
mass-spring-damper example with two force inputs has been reported to illustrate the design and
operation of the proposed FMEM strategy. Possible directions of future work include considering
(1) other types of failures, e.g., failures caused by actuator efficiency degradation, failed signals
that change slowly with bounded rates, and failures related to sensors and/or communication, and
(2) challenges for implementing the strategy in real-time, e.g., in the situation when the isolation
and reconfiguration sequences cannot be generated in time for execution due to limitations of
computational resources.
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Figure 4.4: State projections of constraint admissible sets and simulated state trajectory.
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Figure 4.5: Simulation results, where M is the actual mode, and Mest stands for the mode determined
by the FMEM unit.
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CHAPTER 5

Energy-Efficient Autonomous Driving Control Using
Game-Theoretic Interactive Traffic Models and

Reinforcement Learning

5.1 Introduction

With recent advances in sensing technologies and artificial intelligence, there has been a rapidly
growing interest in connected and autonomous vehicles (CAVs) [51,52]. Such vehicles are expected
to improve the safety and mobility of transportation and to alleviate traffic congestion.

Another expected benefit of CAVs is a reduction in fuel/energy consumption [11,53]. Since 2016,
the U.S. Department of Energy has awarded more than $50 million in funding for studies by the
Advanced Research Projects Agency-Energy’s (ARPA-E) Next-Generation Energy Technologies for
Connected and Automated On-Road Vehicles (NEXTCAR) program for which the goal is to reduce
the energy consumption of vehicles in all classes by more than 20% via CAV technologies [54].
Table 5.1 shows selected results by this program. This is not intended to be a comprehensive review,
but the collection illustrates the variety of methods and traffic conditions being explored in some of
the most recent studies to achieve energy efficiency improvements using CAV technologies.

To realize this encouraging potential in real-world driving circumstances, we observe that at
least the following two problems remain to be studied. Firstly, interactions of the ego vehicle
with surrounding vehicles in traffic need to be considered. In the foreseeable future, autonomous
vehicles will operate together with human-driven vehicles in traffic [29]. Thus, it is necessary to
consider the different vehicle actions and reactions caused by different types of human driving
styles. In [32, 64–66], level-k game theory is used to model the interactions with the focus on
different driving scenarios. Researchers such as of [67–69] have utilized traffic-in-the-loop models
and closed-loop control to achieve simultaneous optimization for safety and fuel economy. However,
only longitudinal control is considered in these studies. Indeed, the vast majority of recent studies
on improving energy efficiency using CAV technologies assume that the ego vehicle is driven in
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Table 5.1: Summary of selected literature on using CAV technologies to improve energy efficiency

Ref.
Energy consumption
reduction by [%]

Methods Traffic conditions

[55] 5.4
Thermal management
(air conditioning)

Driving cycles

[56] 3.1 Thermal management (battery) Driving cycles

[57] 41
Thermal management
(air conditioning and engine)

Driving cycles

[58] 50 Eco-driving Intersections
[59] 12 Eco-routing City
[60] 57.8 Platooning, cooperative merging Ramps on highway
[61] 8.5 Anticipative lane change City and highway
[62] (up to) 59 Cooperative lane change Highway

[63] 47 Cooperative driving
Intersections and
roundabouts

single-lane traffic. Thus, the second problem worth investigating is the simultaneous longitudinal
control and lateral control (such as lane changes) of AVs, which increases the dimension of the
problem but provides additional possibilities to save energy. A more detailed discussion on lane
changes for better energy efficiency is given in Sect. 5.2.

There has been a rich set of research on machine learning (ML) methods for automotive
applications to improve energy efficiency and emissions by modeling and control of the powertrain
system (see, e.g., [70–75]). In particular, to meet increasingly stringent fuel economy and emissions
regulations, the powertrain systems of hybrid electric vehicles (HEVs) have become more and
more complex. Consequently, commonly studied model-based control methods for the energy
management system (EMS), such as dynamic programming (DP) and model predictive control
(MPC) [40], are facing growing difficulties, as they rely on models with good accuracy and
many control-oriented models are physics-based. In comparison, machine learning methods can
handle this challenge well. For example, for HEVs with small electrical energy storage, there is
a significant potential to utilize recurrent neural networks to learn driving patterns and improve
energy efficiency [76]. In the CAV domain, example applications of ML include perception
and localization, route/path planning/optimization, and motion control, despite challenges such
as computation, safety, and adaptability/generalizability that are actively being studied [77–79].
Studies such as [80, 81] use ML to inform energy-efficient acceleration/braking of electric vehicles.
A level-k game theory-based traffic simulator is developed in [32] following the methodology
originally proposed in [33]. The simulator is based on cognitive driver behavioral models trained by
reinforcement learning (RL).
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In this chapter, we describe a novel framework for developing energy-efficient AV control
policies (including both longitudinal, e.g., vehicle speed, and lateral, e.g., lane change, controls)
through RL1. We focus our attention on highway driving and autonomous battery electric vehicles
(BEVs), as BEVs are getting increasingly popular due to their environmental benefits [82]. A
BEV powertrain model is developed to calculate the energy consumption over trips. To enable the
AV control policy to properly respond to the interactions with human-driven vehicles on shared
roads, the game-theoretic traffic model developed in [32, 64] is used as the RL training environment.
Extensions to other powertrain types and traffic environments are possible [66, 83] but are left to
future work.

The remainder of this chapter is organized as follows. Firstly, further background on lane
changes for energy-efficient AV driving is discussed in Sect. 5.2. Then, we begin the development
by building a BEV model and validating it in Sect. 5.3. In Sect. 5.4, the control development is
detailed, and another control policy trained by RL and the finite-state-machine (FSM) controller
from [64] are introduced to be subsequently used for comparison. Section 5.5 presents results on RL
convergence and on performance of the developed control policy in simulations. Finally, concluding
remarks are made in Sect. 5.6.

5.2 Lane Changes for Energy-Efficient AV Driving

Including lateral actions such as lane changes may further improve the energy efficiency [30],
though the survey results of [11] show that this is still an emerging area that remains to be studied.
Anticipating lane selection has been proposed, such as in [84, 85]. Furthermore, instead of focusing
on an individual vehicle, cooperative lane change [86] is expected to benefit the neighboring vehicles
and harmonize the surrounding traffic. However, these studies assume having connected vehicle
technologies, such as vehicle-to-vehicle and vehicle-to-infrastructure communications. A general
observation is that the energy efficiency can be improved by reducing the change of speed and
acceleration. In contrast, our work uses the position and velocity information of the immediate
neighboring vehicles detected by the sensors of the ego vehicle, and a powertrain model is used to
accurately predict the energy consumption.

There are two major challenges to combine longitudinal and lateral actions for safe energy-
efficient driving. Firstly, considering both longitudinal and lateral actions increases the problem
complexity. In particular, there are subtle trade-offs between safety and energy efficiency. For
instance, in scenarios such as a sudden cut-in by a slow vehicle, changing lanes rather than hard
braking preserves vehicle momentum and avoids energy loss, but if the traffic density is high,

1The policy training was performed on the HPC cluster supported through computational resources and services
provided by Advanced Research Computing at the University of Michigan, Ann Arbor.
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performing a lane change may not be safe or feasible.
Another challenge is that, unlike safety constraint violation scenarios (e.g., collisions) where

events typically occur within seconds, energy efficiency evaluation requires longer time horizons
of several hundreds of seconds. Hence, optimization-based control algorithms that simultaneously
address driving safety and energy efficiency requirements need to account for both short-term and
long-term objectives. One approach is to define a terminal cost function for the short horizon
optimization reflective of long-term rewards. However, how to practically determine such a terminal
cost function is often a priori unclear. In special cases, the problem can be reformulated to focus on
maintaining component operation in more efficient regions [87] for which short-horizon optimization
is sufficient. However, such reformulations are not always feasible and the performance with such
an approach could be sub-optimal. In particular, Stackelberg policies and the decision tree policies
considered in [88–90] rely on rewards being evaluated short-term. It may not be straightforward to
extend these to account for energy efficiency requirements. For our AV control policy, since the
RL algorithm updates the value functions with not only the one-step/instantaneous reward but also
the average reward over time, it is able to handle multiple optimization objectives that need to be
evaluated over different time horizons.

5.3 Powertrain Modeling for Battery Electric Vehicles

5.3.1 Model Description

Accounting for energy efficiency in the controller design requires a longitudinal powertrain
model. As an RL process is generally computationally intensive, a powertrain model used in RL
should have low computational footprint but sufficiently high accuracy.

Figure 5.1 shows the layout of the BEV model considered in this work. The powertrain system
consists of a battery pack, a motor/generator (MG), a drivetrain with a single-speed final drive, the
wheels and tires, and the powertrain control unit (PCU).

The powertrain model is of the backward type [40, 91, 92]. (See Remark 5.1 below for details.)
It has two states, state of charge (SOC) and total energy consumption. High-fidelity dynamics,
such as transient responses of the MG and drivetrain, are not considered. Maps (i.e., look-up tables)
are used to represent component operating characteristics as described below. A benefit of using a
map-based approach is that it can facilitate the change of component specifications so that potential
extensions, such as component sizing or fleet energy efficiency studies, are possible.

Remark 5.1. A backward powertrain model assumes that the actual vehicle speed is always equal
to the reference speed command. Rotational speeds of components are coupled/scaled by the gear
ratios and wheel radius based on this command. The torque required at the wheels to meet the
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Figure 5.1: Battery electric vehicle powertrain system layout.

acceleration demand is first calculated and then translated component by component to the actuators
such as the motor and the brakes. Backward models typically entail low computational costs and
are suitable for (rough) energy consumption evaluations. In comparison, forward models involve a
driver model, typically modeled as a PID controller, that commands the motor/brake torque in order
to track the vehicle speed reference. The torque is then translated to the wheels through drivetrain
components. The speed of each component, as well as the actual vehicle speed, is calculated by
integrating the acceleration produced by the torques and forces. Consequently, forward models
can better capture the component dynamics, at the cost of higher computational complexity than
backward models. They are typically used for more detailed (e.g., componentwise) energy efficiency
analysis as well as drivability-related simulations [40, 91, 92]. For example, the multistage hybrid
electric vehicle model used for acceleration performance and jerk analysis in Chap. 6 is of the
forward type. In the current chapter, however, the forward model is not as suitable as the backward
model not only because of the computational concerns, but also due to that in the case considering
safe driving, the forward model has tracking error between the commanded and actual vehicle speed
whose value depends on the tuning of the driver model parameters.

In the BEV model, the MG speed and traction torque at the wheels are first calculated based on
the vehicle speed command according to

ωmg =
V g

r
, (5.1)

Ta = V̇ Mr, (5.2)

Tl = al + blV + clV
2, (5.3)

Twhl = Ta + Tl, (5.4)
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where ωmg is the MG speed, V is the vehicle speed, g is the final drive gear ratio, r is the effective
wheel radius, Ta is the acceleration torque, M is the effective vehicle mass involving powertrain
component inertia, Tl represents lumped external loads including rolling and aerodynamic resistance
(while the grade is assumed to be zero) approximated by a quadratic function with coefficients al,
bl, and cl, and Twhl is the traction torque at wheels.

The PCU then checks whether the traction torque demand exceeds the battery or MG limits and
distributes the torque command to the MG and the friction brake, using the following logic,

TmgPos =


0, if Twhl < 0,

Twhl/g, if 0 ≤ Twhl ≤ TmgMax g,

TmgMax, if Twhl > TmgMax g,

(5.5)

TwhlBrk =


0, if − Twhl < 0,

−Twhl, if 0 ≤ −Twhl ≤ TbrkMax,

TbrkMax, if − Twhl > TbrkMax,

(5.6)

TmgReg =

Freg TwhlBrk/g, if TwhlBrk ≤ TmgRegLim g,

Freg TmgRegLim, if TwhlBrk > TmgRegLim g,
(5.7)

Tmg =

TmgPos, if Twhl > 0,

−TmgReg, if Twhl ≤ 0,
(5.8)

TmechBrk = −(TwhlBrk − TmgReg), (5.9)

where TmgMax is the maximum MG torque limit, TmgPos is the positive portion of the MG torque
limited by TmgMax, TwhlBrk is the negative portion of the traction torque at wheels limited by a
constant brake torque limit denoted by TbrkMax, TmgRegLim is the MG regeneration torque limit, Freg

is the regeneration factor, TmgReg is the negative portion of the MG torque limited by TmgRegLim,
Tmg is the MG torque, and TmechBrk is the torque demand assigned to the friction brakes. We obtain
the values of TmgMax, TmgRegLim, and Freg through maps, where both TmgMax and TmgRegLim

depend on ωmg, and Freg is a function of V (to reduce the regenerative braking at low vehicle
speeds) and the battery SOC (to reduce the regenerative braking at high SOC).

The power drawn by the MG is then obtained from

Pmg =

Tmg ωmg/η, if Tmg ωmg ≥ 0,

Tmg ωmg η, if Tmg ωmg < 0,
(5.10)

where Pmg is the MG electric power, and η ∈ (0, 1) is the MG efficiency as a function of the MG
torque and speed, as given by a map.
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To calculate the SOC and cumulative energy consumption, the battery is modeled as follows:

Pmg = (Voc −
1

Np

I R)Ns I

= Ns Voc I −
Ns

Np

RI2, (5.11)

which can be re-arranged as
Ns

Np

RI2 −Ns Voc I + Pmg = 0, (5.12)

where Voc and R are, respectively, the open circuit voltage and the resistance of a single battery cell,
I is the battery pack current, Ns is the number of battery cells in series, and Np is the number of
battery cells in parallel. Here, Voc and R are acquired through maps, and both variables depend
on SOC, with the assumption that the battery temperature is constant. Then, we can solve for the
battery current as

I =

Ns Voc −
√

(Ns Voc)2 − 4
Ns

Np

RPmg

2
Ns

Np

R
, (5.13)

and the battery dynamics are given by

˙SOC =
−I

3600CmaxNp

· 100, (5.14)

where Cmax is the maximum battery capacity in Ah.
The total discharged electric energy Ebatt is computed by integrating the battery power Pbatt

based on

Ėbatt = Pbatt = Ns I Voc, (5.15)

and the energy consumption can be determined from

MPGe =
x

Ebatt

· γ, (5.16)

where MPGe stands for miles per gallon equivalent, x is the total distance traveled, and γ represents
the unit conversion coefficient.

5.3.2 Model Calibration and Validation

The BEV powertrain model described above is calibrated using the BEV reference model in the
Powertrain Blockset Toolbox (PTBS) version 1.5 developed by MathWorks. The PTBS reference
model is a forward model and includes more detailed component controls and dynamics than our
model. Our model uses some maps and parameter values from the PTBS reference model, and the
other model parameters are hand-tuned to reduce errors between the two models.

After calibration, we validate our model by testing and comparing the MPGe of our model and
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that of the PTBS reference model for different driving cycles. The MPGe mismatches between the
two models for the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy
Test (HWFET), and the US06 driving cycles are 5.94%, 5.90%, and 7.95%, respectively. Figure 5.2
shows the time histories of powertrain signals for the BEV driving through the UDDS cycle, where
the blue curves correspond to our model after calibration and the red curves correspond to the PTBS
reference model. It can be observed that the signals of our model closely match those of the PTBS
reference model. These results validate that our model (5.1)-(5.16) after calibration can be used
to produce sufficiently accurate energy consumption estimates (accurate in terms of matching the
estimates produced by the high-fidelity PTBS reference model). Note that our model entails much
lower computational footprint than the PTBS reference model, and is thus suitable for RL purposes.

The BEV powertrain model (5.1)-(5.16) is then converted to discrete-time, assuming a 1-second
sampling period, and integrated with the traffic simulator of [32, 64], used for the RL-based
development of energy-efficient autonomous vehicle control policy.

Figure 5.2: Time histories of powertrain signals for the UDDS cycle.
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5.4 Controller Design

5.4.1 Game-Theoretic Traffic Environment

In order to train an autonomous vehicle control policy offline, we use an interactive traffic
simulator, following the approach described in [32], as the training environment. This level-k
game-theory based simulator assumes that the traffic consists of human-driven vehicles that can
be modeled by cognitive behavioral models with k levels. Studies such as [66] show that human
reasoning process rarely exceeds three steps, so k = 0, 1, 2 is used in this work. The level-0 vehicles
use a hand-crafted policy that commands one of the three actions, “maintain speed”, “decelerate”,
or “hard decelerate”, based on the range and range rate with the vehicle in its front to represent
vehicle behavior under minimal rationality; level-1 and level-2 vehicles use policies trained by
RL assuming that the surrounding vehicles are all level-0 and level-1, respectively. Moreover, the
level-1 and 2 vehicles have a larger action space consisting of seven actions, including acceleration,
deceleration, and lane change. Overall, the results of [32] indicate that the level-0 drivers/vehicles
have the most conservative behaviors, while level-1 vehicles behave the most aggressively such as
driving faster and frequently making lane changes, and the aggressiveness of level-2 vehicles falls
between level-0 and level-1.

Remark 5.2. Similarities and differences between the setup considered in this work and that in [32]
are highlighted in Table 5.2, in terms of models, reward functions, surrounding traffic, observation
space and action space, RL algorithm, and training process. Details are given in the subsequent
subsections.

5.4.2 Observation and Action Spaces

The observation space, i.e., input space, for our autonomous vehicle control policy is extended
from the observation space for the level-k driver policies. The observation space for the level-k
policies has 11 observations, including the range and range rate of the ego vehicle to the vehicles in
its front, front right, front left, rear right, and rear left, as well as the lane index of the ego vehicle.
The range is categorized by “far”, “nominal”, or “close”, and the range rate is categorized by
“moving away”, “stable”, and “approaching”. The simulator is configured for a three-lane highway.
As a result, the total number of possible states in the level-k policy is 311. Here, a state means a
unique combination of observations.

To incorporate considerations of energy efficiency, it is necessary to enlarge the observation space
by including additional observations. Since vehicle speed and battery SOC are critical factors that
affect the PCU decision for the regenerative power distribution, as well as the component efficiencies
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Table 5.2: Comparison summary on control development for the level-k (k = 1, 2) policies and the
autonomous vehicle policy considered in this work (AV)

Level-k for k = 1, 2 AV

BEV model Not included Included
Reward function R1 R1 +R2

Surrounding traffic during RL Level-(k − 1)
A mixture of level-0, level-1,
and level-2 with a certain ratio

Observation space 11 observations
11 observations plus V and
SOC

Action space 7 actions Same as level-k
RL algorithm Jaakkola RL algorithm Same as level-k
After training, assign level-0
policy to states visited fewer
than n times

n = 20 n = 40

of the battery and the MG, they are added to the observation space, each being categorized by
“high”, “medium”, and “low”. Consequently, the total number of possible states for our autonomous
vehicle control policy increases to 313.

The action space, i.e., output space, for the proposed control design is the same as that for the
level-k driver policies. It includes the following seven actions: 1) maintain speed, 2) accelerate, 3)
decelerate, 4) hard accelerate, 5) hard decelerate, 6) move left (if the vehicle is not in the left-most
lane) and 7) move right (if the vehicle is not in the right-most lane).

The exact definitions of the observation and action spaces for the level-k driver policies are
given based on the parameters including the relative longitudinal position and speed thresholds,
acceleration rates, deceleration rates, and lane change rates, whose values are the same as in [32] so
they are not repeated here. For the two additional observations of the autonomous vehicle control
policy, i.e., the vehicle speed and battery SOC, the thresholds that divide the three categories are,
respectively, 17.22 m/s and 22.22 m/s, and 70% and 80%, chosen by trial and error.

5.4.3 Reward Function

The reward function used for RL training is as follows,

R = R1 +R2, (5.17)

where

R1 = w1 c+ w2 v + w3 h+ w4 u, (5.18)

R2 = w5 e. (5.19)
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Here, wi > 0, i = 1, . . . , 5 are weights, and c, v, h, u, and e are reward features. In particular, the
reward function consists of two parts: The first part R1 with the terms c, v, h, and u accounts for the
safety, performance, and comfort requirements and shares the same setup as for the level-k policies.
The second part R2 is an additional term that accounts for energy efficiency.

The reward features and their corresponding weights are chosen based on engineering insight
and tuning by simulation as follows:

• c accounts for constraint violations,

c =

−1, if a collision occurs to the ego vehicle,

0, otherwise,
(5.20)

with w1 = 10, 000.

• v accounts for travel speed,

v =
V − vn

a
, (5.21)

where V is the speed of the ego vehicle in the longitudinal direction, and the constants vn,
a nominal speed, and a, a nominal acceleration rate, are used to scale this term to the same
order of magnitude of the other terms, with w2 = 5.

• h accounts for headway, encouraging the ego vehicle to keep a reasonable distance from
preceding vehicles,

h =


1, if headway ∈ “far”,

0, if headway ∈ “nominal”,

−1, if headway ∈ “close”,

(5.22)

with w3 = 1. Here, “headway” means the range of the ego vehicle to the vehicle in its
immediate front.

• u accounts for control effort,

u =



0, if action = “maintain speed”,

−1, if action = “accelerate” or “decelerate”,

−3, if action = “move left” or “move right”,

−5, if action = “hard accelerate” or “hard decelerate”,

(5.23)

with w4 = 1.

• e is for energy efficiency, defined by the time derivative of MPGe as

e =
dMPGe

dt
=

V Ebatt − xPbatt

E2
batt

γ, (5.24)

with w5 = 5.

74



5.4.4 Training Algorithm

The goal of training is to find a control policy that maximizes the reward averaged over an infinite
horizon. Using the settings described above, we formulate this problem as a partially observable
Markov decision process (POMDP) problem since only certain observations are available to the ego
vehicle. For example, if there are multiple vehicles in front of the ego vehicle on the same lane, the
ego vehicle can only observe the relative range and range rate of the vehicle immediately in front
of it. Thus, the algorithm used for training the control policy should guarantee convergence of the
average reward with respect to POMDP problems. We choose to use the Jaakkola RL algorithm [34]
since, under suitable assumptions, this algorithm guarantees convergence of the average reward to a
local maximum for POMDP problems. The proof of such a convergence guarantee can be found in
Appendix A of [93].

A summary of the Jaakkola RL algorithm is given in [32] and Sect. 1.2.7 of [93]. The key
variables and equations are reviewed here. The algorithm iterates with two steps at every simulation
time step t. First, the one-step reward Rt is evaluated based on the results of the simulation
following the current policy πt. Then, for each observation state o ∈ O, and state and action pair
(o, a) ∈ O ×A, the state-value functions V (o|πt) and the action-value functions Q(o, a|πt), also
called Q-values, are updated based on the difference of Rt − R̄(πt) where R̄(πt) is the average
reward for an infinite duration with the policy πt. The state-value V (o|πt) represents the expected
cumulative reward starting at state o following policy πt, while the Q-values Q(o, a|πt) represents
the expected cumulative reward if the state starts at o, we take action a first, and then follow policy
πt afterward. Specifically, the state-value functions and Q-values are updated with equations given
as

βo
t (o) =

(
1− χo

t (o)

Ko
t (o)

)
γtβ

o
t−1(o) +

χo
t (o)

Ko
t (o)

, (5.25)

V (o|πt) =

(
1− χo

t (o)

Ko
t (o)

)
V (o|πt−1) + βo

t (o)
(
Rt − R̄(πt)

)
, (5.26)

βa
t (o, a) =

(
1− χa

t (o, a)

Ka
t (o, a)

)
γtβ

a
t−1(o, a) +

χa
t (o, a)

Ka
t (o, a)

, (5.27)

Q(o, a|πt) =

(
1− χa

t (o, a)

Ka
t (o, a)

)
Q(o, a|πt−1) + βa

t (o, a)
(
Rt − R̄(πt)

)
, (5.28)

where χ represents a binary (0 or 1) indicator function that equals to one if o or (o, a) is visited at
the current time step, K is a function that counts how many times o or (o, a) has been visited, and
γt is a time-dependent discount factor that takes a value between zero and one and converges to one
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as t goes to infinity. In the second step, the policy is updated by the following equation

πt+1(o, a) = (1− ϵ)πt(o, a) + ϵπ̂t(o, a), ∀(o, a) ∈ O ×A, (5.29)

where ϵ ∈ (0, 1) is the learning rate and π̂t is the greedy policy that maximizes

Jt(π, o) =
∑
a∈A

π(o, a)
(
Q(o, a|πt)− V (o|πt)

)
, ∀o ∈ O. (5.30)

The process then moves on to the next time step and the iteration of the above two steps continues.
Note that the Jaakkola RL algorithm updates the value functions and Q-values at each time

step using both the immediate one-step reward Rt and the infinite-horizon average reward R̄. The
one-step reward can make the policy update respond instantly to the large penalty of a safety
constraint violation. The average reward, which in actual implementation is estimated by averaging
all past instant rewards, eventually contains the weighted energy efficiency MPGe computed over
a long horizon. In this way, objectives with different time horizons are handled simultaneously.

5.4.5 Training Process

The level-k policies with k = 1 and 2 are obtained following Algorithms 1 and 2 of [32]
(similar to Algorithm 1 below) with the reward function R1 described above, and thus, they do not
account for energy efficiency. We then use vehicles operating with level-k policies to provide the
traffic environment for the RL training of our autonomous vehicle controller that considers energy
efficiency.

The training process for the proposed autonomous vehicle control policy is summarized by the
pseudo-code in Algorithm 5.1. Each training episode corresponds to a simulation trajectory with a
duration of 200 seconds. This RL training process is similar to the level-k policy training process
described by Algorithms 1 and 2 of [32] with the following major differences: 1) When initializing
a training episode, we initialize the ego vehicle battery SOC randomly according to a uniform
distribution on the range of [15%, 90%]. For Algorithm 2 of [32], however, since SOC is not a state
of the level-k models, this initialization step does not exist; 2) A traffic environment consisting
of a mixture of level-0, 1, and 2 vehicles with a ratio of 15%, 55%, and 30% is used to train our
autonomous vehicle control policy, while when training a level-k policy, by definition, vehicles in
the environment are all level-(k− 1); 3) Due to the increase of the size of the observation space, the
total number of possible observation combinations is 9 times greater than for the level-k policies.
With the same number of training episodes (i.e., 50,000, determined/limited by the affordable
computational resources such as training time duration), it is more likely that some states are not
sufficiently visited during the training. Thus, an increased value of the parameter n is used in the
last step for the autonomous vehicle policy training, where n represents the number of times a state
has to be visited during training, lest it be assigned the level-0 policy.

76



Algorithm 5.1: Training process
1 Initialize the ego car’s policy with equal action probabilities for every state.
2 episode← 0.
3 while episode ≤ 50, 000 do
4 Randomly select the number of surrounding cars, nc ∈ [21, 30].
5 Initialize surrounding cars with level-k policies with probabilities of 15%, 55% and 30% for

k = 0, 1 and 2.
6 Initialize the ego car with SOC ∈ [15%, 90%].
7 while t ≤ 200 do
8 Run simulation and evaluate the ego car’s policy with the reward functionR.
9 Update the ego car’s policy.

10 if a collision occurs to the ego vehicle then
11 Terminate the current episode.
12 end
13 end
14 episode← episode+ 1.
15 Assign the level-0 policy to states visited less than n = 40 times.
16 end

5.4.6 Autonomous Vehicle Control Policy for Benchmarking

For comparison purposes, a second RL-based policy is trained in the mixed traffic environment
described above. This benchmark policy uses only R1, as defined in (5.18), as its reward function,
and allows one to study the differences between considering the fuel economy or not, in similar
traffic conditions.

In addition to policies trained by RL, the FSM-based policy described in [64] is adopted for
comparison. The FSM-based policy is a rule-based controller with three modes including cruise
control, adaptive cruise control, and lane change control. Switches between modes are triggered
when certain traffic conditions are satisfied. The FSM-based policy is calibrated to optimize safety
and performance, while the energy efficiency is not being considered.

5.5 Results

5.5.1 Training for RL-Based Policies

As discussed above, each RL-based policy is trained for 50,000 episodes. Figure 5.3 shows the
values of the average reward as the training progresses for the level-1 policy, level-2 policy, the
proposed autonomous vehicle control policy with the energy efficiency consideration (AV w/ e), and
the benchmark policy that does not account for the energy efficiency (AV w/o e). It can be observed
that the average rewards all converge smoothly, suggesting the success of the RL procedures.
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The value of the converged average reward of each policy is a combined result of the different
reward features in R. For example, the converged average reward of the level-2 policy is higher
than those of the other policies. This is because, among the level-0, 1, and 2 policies, the level-1
policy is the most aggressive as concluded in [32], tending to make many lane changes to pursue
higher travel speeds. Since the traffic environment for training the level-2 policy is composed of
purely level-1 vehicles, the level-2 policy is relatively conservative and collisions are less likely.
Moreover, the overall faster traffic flow allows a higher travel speed of the ego vehicle. Thus, the
coupled effect of these factors leads to a higher converged average reward for the level-2 policy.
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Figure 5.3: Average reward evolution during RL.

5.5.2 Control Performance

5.5.2.1 Evaluation Process

The control policies are evaluated based on simulations using the process described by the
pseudo-code in Algorithm 5.2. In particular, for each policy and each traffic density (represented by
the number of surrounding vehicles in traffic, ranging from 0 to 30), 10, 000 simulation episodes
are run, each with a duration of 200 seconds. Then, the policy is evaluated with respect to four
evaluation metrics, including:

• Constraint violation rate, defined as the percentage of simulation episodes where a collision
occurs to the ego vehicle;

• Average number of lane changes per simulation episode;
• Average MPGe;
• Average travel speed.
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Algorithm 5.2: Evaluation process
1 for nc = 0 : 30 do
2 episode← 0.
3 while episode ≤ 10, 000 do
4 Initialize the ego car with SOC ∈ [15%, 90%] and the control policy to be evaluated.
5 Initialize surrounding cars with level-k policies randomly with probabilities of 15%, 55%

and 30% for k = 0, 1 and 2.
6 Simulate and record variables relevant to the evaluation metrics.
7 episode← episode+ 1.
8 end
9 Compute and output the evaluation metric values.

10 end

5.5.2.2 Simulation Result Analysis

Proposed AV Control Policy Figures 5.4 to 5.6 show the results of different policies in regards
to the four aforementioned evaluation metrics as functions of the traffic density. Figures 5.4(a)
and 5.5 show the constraint violation rate, and Figs. 5.4(b) and 5.6(a) show the average number of
lane changes. It can be observed that, when driving in the mixed traffic environment (vs. Mix),
the proposed policy (AV w/ e) has the lowest constraint violation rate among all policies that can
perform lane changes, indicating good safety features.

Figure 5.4(c) compares the average MPGe among the three AV control policies, i.e., the
proposed policy (AV w/ e), the RL-based benchmark policy (AV w/o e), and the FSM-based policy.
It shows that the proposed policy with the energy efficiency consideration is more energy-efficient
than the other two policies, verifying that the additional observations (vehicle speed and SOC) and
the energy efficiency term R2 in the reward functionR are effective for the improvement of energy
efficiency.

The average travel speed of each policy is shown in Figs. 5.4(d) and 5.6(b). It can be observed
that at low traffic density, the autonomous vehicle controlled by the proposed AV policy drives
at a higher average speed, close to that of level-2 vehicles; but when the traffic gets denser, the
autonomous vehicle slows down to an average speed close to that of a level-0 vehicle. This can
be explained with the help of Fig. 5.4(b): The average number of lane changes of the proposed
policy varies only slightly for different traffic densities, since when the traffic density is low, there is
not much need to change lanes, while when the traffic density gets high, it may be neither safe nor
energy-efficient to perform lane changes. This feature distinguishes the behavior of the proposed
policy from the level-1 policy and the FSM-based policy that prefer higher travel speeds and thus
make many lane changes to achieve them.
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Figure 5.4: Evaluation results for AV control policies in traffic environments of different traffic
densities: (a) Constraint violation rate; (b) Average number of lane changes per simulation episode;
(c) Average MPGe; (d) Average travel speed.

Miscellaneous Observations The results indicate that the effects of the different evaluation
aspects, that are closely related to the five features in the reward function, are not decoupled and can
largely affect each other. For example, for the level-k policies, although the level-0 policy has the
lowest constraint violation rate, it is a very conservative policy that does not allow lane changes (as
illustrated in Fig. 5.6(a)) and has the lowest average vehicle speed (as shown in Fig. 5.6(b)). When
driving in the level-0 environment (vs. Level-0), consequently, the level-1 policy also has a very low
constraint violation rate. However, when driving in the mixed traffic environment, where there are
other level-1 cars and level-2 cars, the level-1 policy has the highest constraint violation rate instead.

It is worth highlighting some additional observations in the simulation results. Firstly, for
policies trained by RL, the average MPGe increases as the average travel speed decreases in denser
traffic. This is attributed to the fact that for highway driving, the energy efficiency at the vehicle
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Figure 5.5: Constraint violation rates for level-k and the proposed AV control policies in traffic
environments of different traffic densities.

level is affected largely by energy losses from rolling and aerodynamic resistance that increase
as the vehicle travel speed increases. To see the significant impact of rolling and aerodynamic
resistance on energy consumption, let us consider and compare two cases: In the first case, the
vehicle is driving at a constant speed of 20.5m/s. In the second case, the vehicle is driving at
24.5m/s. These two cases roughly represent, respectively, the average longitudinal behavior of
the proposed AV policy and that of the FSM-based policy with 30 surrounding vehicles, shown in
Fig. 5.4(d). Here, we ignore the differences in the MG efficiency by assuming a constant value
η0. Then, we have that the MG power consumed by the rolling and aerodynamic resistance can be
calculated as

Pl = (Tl/g)ωmg/η0

= (al + bl V + cl V
2)V/(rη0), (5.31)

depending cubically on the vehicle speed V . Without considering the discrepancy in the battery and
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Figure 5.6: Average number of lane changes per simulation episode and average travel speed for
level-k and the proposed AV control policies in traffic environments of different traffic densities.

MG efficiency, we then use (5.31) to estimate the difference in the MG power used to counteract
the rolling and aerodynamic resistance. We obtain that the discrepancy between the two cases is
about 33%. This contributes to the difference in the MPGe shown in Fig. 5.4(b), where the change
is about 64%. It is within a reasonable range according to Table 5.1 (e.g., [60, 62]).

Note, however, that the proposed policy does not always operate the autonomous vehicle at a
low speed, as the reward function represents several different objectives besides energy efficiency.
In general, energy efficiency depends on the traffic scenario, the powertrain type, as well as the
component specifications. This fact highlights the benefit of modeling the powertrain system using
maps, so that components can be easily sized or swapped.

Secondly, it is observed in Fig. 5.4(b) that when there is no other vehicle in traffic (“zero-traffic”),
the autonomous vehicle controlled by the proposed policy makes on average one lane change. This
is because the policy by RL converges to a solution where when there is no other vehicle in the
immediate vicinity of the ego vehicle, the ego vehicle tends to change to and stay in the right-most
lane to reduce the possibility of having interactions/conflicts with other vehicles that may degrade
its safety and energy efficiency in the future. Note also that such a solution may only be locally
optimal (i.e., not globally optimal), as the Jaakkola RL algorithm used to train the policy guarantees
only convergence to a local optimum (and not necessarily the global optimum) [34].

Intuitively speaking, vehicles need not change lanes when there are no slower vehicles in their
front blocking their ways. This is the case for most policies shown in Figs. 5.4(b) and 5.6(a)
except for the proposed policy for which the average number of lane changes in the zero-traffic
environment is close to but slightly less than one. For most cases, when initialized in the middle
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lane, the autonomous vehicle controlled by the proposed policy immediately makes a lane change
to the right, as explained above. However, for some states with high SOC that were not visited
enough during RL training, the policy was overridden by the level-0 policy that does not perform
lane changes (see the last line of Algorithm 5.1). This caused the average number of lane changes to
be slightly less than one. Note also that the training is conducted only for traffic environments with
21 to 30 surrounding vehicles, i.e., not covering the zero-traffic environment. Such sub-optimal
behavior in the zero-traffic environment of the trained policy indicates that it might be beneficial to
conduct training for a wider range of traffic environments if computational resources allow.

Thirdly, one of the major contributors to the high constraint violation rate of the level-1 policy
when operating in the mixed traffic environment is its high frequency of lane changes. Two
problematic scenarios related to lane changes have been identified in [32]. The first case involves
a scenario where the ego vehicle originally driving in the right (or left) lane and another vehicle
originally driving in the left (or right) lane in an almost parallel longitudinal position with the ego
vehicle simultaneously start to perform lane changes to the middle and lead to a side collision
between them. The second case involves a scenario where the ego vehicle starts to change lanes
trying to overtake a vehicle in its front, but at the same time, the preceding vehicle also starts to
change lanes in the same direction (e.g., trying to overtake another vehicle) and blocks the ego
vehicle’s overtaking. Since the level-1 policy is trained using an environment consisting of only
level-0 vehicles that do not change lanes, these two “unrare-in-reality” scenarios have never occurred
during the RL training. Consequently, the level-1 policy fails to learn to avoid such scenarios. We
have identified all constraint violation cases in the Level-1 vs. Mix data that belong to these two
scenarios and computed the constraint violation rate after filtering out these cases. The result is
plotted in Fig. 5.5, called Level-1 vs. Mix w/ filter. It can be seen that the constraint violation rate
of the level-1 policy after this filtering is significantly reduced.

If such an issue happens when developing autonomous vehicle control algorithms, where
problematic scenarios can be clearly identified, they can be handled by specific add-on mechanisms.
For example, the autonomous vehicle may be commanded to go back to its original lane when either
of the above two cases is detected.

5.6 Concluding Remarks

In this chapter, an autonomous vehicle control policy is developed focusing on energy efficiency
optimization while safety, performance, and comfort are balanced. We first discuss the potential of
autonomous vehicle (AV) controls for energy-efficient driving and the major challenges to develop
such control policies. Then, we show the powertrain model built to capture the energy consumption
of a battery electric vehicle (BEV), integrated with the highway traffic simulator consisting of
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cognitive driver behavioral models based on level-k game theory. An AV control policy is trained
by reinforcement learning (RL) for this BEV and compared with two benchmark policies as well as
the level-k policies from different evaluation perspectives.

Analysis of the results indicates that the addition of the energy efficiency term in the RL reward
function, in addition to the expanded observation space to include the vehicle speed and SOC,
is effective in improving the energy efficiency while maintaining low collision rates. Through
analysis of the BEV powertrain model, the increase of the energy efficiency represented by MPGe

is likely dominated by the reduction of the average vehicle speed that lowers the rolling and
aerodynamic resistance. However, this does not make the vehicle always travel at the lower speed
limit, which highlights the capability of the RL-based approach that does a good job in balancing
travel speeds, safety, and efficiency. The results also imply the potential to further extend and
explore the control design in terms of higher computational efficiency and advanced RL algorithms
for control performance improvement. In the future, our AV policy may serve as a baseline control
strategy for more advanced autonomous driving control development.
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CHAPTER 6

Analysis of Multistage Hybrid Powertrains Using
Multistage Mixed-Integer Trajectory Optimization

6.1 Introduction

Modern hybrid powertrains are becoming increasingly complex. They often have multiple
controlled degrees of freedom, e.g., gear selection, engine on/off, power split, etc., the operation of
which needs to be pre-determined before a meaningful evaluation of the system-level performance
can be carried out. Traditionally, this has been accomplished by pre-defining an operating strategy
that uses a combination of feedforward and feedback calibration tables that determine power split,
engine on/off, and gear selection as functions of, for example, the pedal angle and vehicle speed.
These tables must be carefully calibrated to meet design requirements and are placed in closed-loop
with a simulation model during performance analyses. However, hybrid powertrains are often highly
coupled and over-actuated. Nonlinearities, constraints, and interactions between actuators can make
it difficult for engineers to find “optimal” calibrations resulting in biased analyses, reduced overall
vehicle performance, and increased development time and costs.

Trajectory optimization is an attractive approach for overcoming the aforementioned difficulties.
It allows design engineers to determine optimal input profiles and evaluate specific scenarios
without pre-defining a specific controller and without designing calibration tables [38]. For example,
studying certain scenarios, such as a 0 to 100 kph acceleration maneuver or a 40 to 70 kph passing
maneuver, can help engineers evaluate the capabilities of different powertrain configurations,
perform trade-off studies early in the design process, and cascade requirements to powertrain
subsystems.

There are several trajectory optimization software packages available, including GPOPS-II [94],
OpenOCL [95], Drake [96], and PSOPT [97]. These can efficiently solve nonlinear trajectory opti-
mization problems using sophisticated discretization techniques and leveraging powerful nonlinear
programming solvers like IPOPT [98] or SNOPT [99]. However, the presence of integer or binary

85



valued degrees of freedom in hybrid powertrains, e.g., engine on/off or gear selection, leads to
mixed-integer nonlinear programming (MINLP) problems that are difficult to solve reliably.

In this chapter, we present a trajectory optimization-based analysis of a multistage hybrid pow-
ertrain (MSHP) of the type used in 2018 Lexus LC500h vehicles, as shown in Fig. 6.1. Compared
with the traditional power-split hybrid configuration, which uses a planetary gear set with mo-
tor/generators (MGs) to achieve functionality similar to that of a continuously variable transmission
(CVT), the MSHP extends and combines a Toyota Hybrid System (THS) power-split hybrid configu-
ration with a four-speed automatic transmission to offer increased performance, drivability, and fuel
economy by providing a wider operating range for the powering components [37]. However, the
added degree of freedom offered by the gearbox increases the complexity of the powertrain control
problem. Moreover, instead of a continuous control input, such as for the engine and MG torques,
the gear number is a discrete variable. This requires optimization routines that can simultaneously
handle both continuous and discrete control inputs.

MG1 Engine MG2 4AT/g1 g
2

W
h
e
e
ls

Sun

Ring
CarrierPinion

Figure 6.1: The layout of the multistage hybrid powertrain. The powertrain system consists of
the motor/generator 1 (MG1), motor/generator 2 (MG2), engine, driveline compliance, 4-speed
automatic transmission (4AT/g1), differential (g2), and wheels and tires.

The MSHP is an example of a switched system [100], a class of hybrid systems with discrete
modes that are common in the automotive domain [101]. There is a rich literature on optimal
control of switched systems [102], often focused around switching time optimization [103, 104],
i.e., determining optimal switching instants given fixed modes. Several bi-level descent methods,
which alternate between optimizing over the mode sequence (discrete) and the switching times
(continuous), with guaranteed convergence properties have also been proposed [105,106] in addition
to a strong variations method based on the maximum principle [107]. Automotive applications of
switched systems and switching time optimization include: skid steering [104], roll control [108],
mechanical hybrid powertrains [109], and start-up of automated manual transmissions [110, 111].

In this chapter, a highly parallelizable bi-level optimization method is proposed for switched sys-
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tems and is used to study an MSHP. To the best of the author’s knowledge, this is the first trajectory
optimization study for such a powertrain configuration in the literature. Moreover, the proposed
optimization methodology is distinguished from others due to its simplicity, broad applicability, and
relative ease of implementation. This work focuses on offline trajectory optimization for design
phase analysis. Use of these techniques for other purposes, e.g., as a part of a model predictive
controller online, and/or to assist the calibration table design, is outside the scope of this chapter
and a topic for future research.

The chapter is organized as follows. First, we derive a control-oriented model of an MSHP
that is suitable for preliminary design studies and potentially for model-based control design, e.g.,
model predictive control. Next, we propose a simple and highly parallelizable bi-level trajectory
optimization procedure to enable optimization over both discrete and continuous variables. Finally,
we present a case study wherein we apply our proposed trajectory optimization methodology to
the MSHP model to perform a performance/drivability trade-off study, specifically, 40 to 70 kph
acceleration time versus jerk analysis.

6.2 Powertrain Modeling

Figure 6.1 shows the layout of the MSHP. The motor/generator1 (MG1), motor/generator 2
(MG2), and engine are connected to the sun gear, ring gear, and carrier, respectively. The MG2 also
connects to the 4-speed automatic transmission (4AT/g1) through a torsional compliance that is
represented by a parallel spring and damper to approximate the driveline dynamics. The MSHP has
a single-speed differential (g2), and the vehicle is assumed to be driving on level ground.

The model has three continuous inputs,

u =
[
umg1 umg2 ueng

]T
, (6.1)

which are the MG1 torque command, MG2 torque command and engine torque command. For the
case study of 40 to 70 kph acceleration, we have one discrete input

v = vη ∈ {1, 2, 3, 4}, (6.2)

which represents the automatic transmission gear selection command. In this chapter, we assume the
engine remains on, as indeed would be the case during the acceleration scenarios that we consider,
and do not consider engine on/off as a control input.

There are ten states in the model:

x =
[
Tmg1 Tmg2 Teng fη1 fη2 fη3 ωs ωr ∆αcomp s

]T
, (6.3)

including
• Tmg1, Tmg2, Teng: for three first-order low-pass filters that model the MG1, MG2 and engine

dynamics,
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• fη1 , fη2 , fη3 : three states in a third-order Bessel filter used to model the automatic transmission
dynamics by filtering the gear number from the control command, with time a constant
τη = 5 s,

• ωs: the angular velocity of the sun gear,
• ωr: the angular velocity of the ring gear,
• ∆αcomp: the angular displacement across the driveline compliance, and
• s: the longitudinal speed of the vehicle.
The actuator dynamics are modeled by first-order filters,

τiṪi = ui − Ti, (6.4)

where i ∈ {mg1,mg2, eng}. The time constants are τmg1 = τmg2 = 0.05 s, and τeng = 0.3 s. The
dynamics of the Bessel filter can be expressed in state space form asḟη1ḟη2

ḟη3

 = Aη

fη1fη2

fη3

+Bηvη,

η = Cη

fη1fη2

fη3

 , (6.5)

where η is the filtered/actual gear number, and Aη, Bη, and Cη are matrices generated by the
MATLAB function “besself” given the order and time constant of the filter.

Sun

Ring

Carrier

Pinion

Figure 6.2: Planetary gear set geometry and kinematics abstraction. The planetary gear set consists
of sun gear (orange), ring gear (red), carrier (blue), and pinion gears (green).

The geometry and kinematics of the planetary gear set is shown in Fig. 6.2. The model is based
on a power-split HEV model in Autonomie (developed by the Argonne National Lab). The dynamic
equations for the sun gear angular velocity and ring gear angular velocity are derived from the THS
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dynamics and kinematics, described by the following equations:

ω̇sJs = Ts −NprsFs, (6.6)

ω̇cJcc = Tc +NprsFs −NprrFr, (6.7)

ω̇rJr = Tr0 +NprrFr, (6.8)

ω̇pJp = −rpFs − rpFr, (6.9)

rrωr = rcωc + rpωp, (6.10)

rsωs = rcωc − rpωp, (6.11)

with Jcc defined by

Jcc = Jc + Jpc, (6.12)

Jpc = Np(Jp +mpr
2
c ), (6.13)

where ωs = ωmg1, ωc = ωeng, ωr = ωmg2, and ωp are angular velocities for the sun gear (coupled to
MG1), carrier (coupled to the engine), ring gear (coupled to MG2), and pinion gears, respectively.
We denote by Ts = Tmg1, Tc = Teng, and Tr0 the torques applied to the sun gear by MG1, carrier
by the engine, and ring gear axles, respectively. Moreover, Fs is the reaction force from a pinion
gear to the sun gear, Fr is the reaction force from a pinion gear to the ring gear, rs, rc, rr, and rp

are effective radius of the sun gear, carrier, ring gear and pinion gears, respectively, Js, Jc, Jr, and
Jp are inertias at the sun gear (including MG1), carrier (including engine), ring gear (including
MG2), and a single pinion gear, respectively, Jpc is the total inertia of the pinion gears, Jcc is the
total inertia of the pinion gears and the carrier, Np is the number of pinion gears, and mp is the mass
of a single pinion gear.

By rearranging (6.6) to (6.11) and differentiating the two kinematic equations of (6.10) and
(6.11) with respect to time, we obtain

Ts = ω̇sJs +NprsFs, (6.14)

Tc = ω̇cJcc −NprsFs +NprrFr, (6.15)

Tr0 = ω̇rJr −NprrFr, (6.16)

0 = ω̇pJp + rpFs + rpFr, (6.17)

0 = ω̇sρ− ω̇c(1 + ρ) + ω̇r, (6.18)

0 = ω̇sρ− ω̇r + ω̇p(1− ρ), (6.19)

where ρ = rs
rr

is the ratio of the radii of the sun gear and the ring gear. Equations (6.14) to (6.19)
can be written compactly as[

Ts Tc Tr0 0 0 0
]T

= Q
[
ω̇s ω̇c ω̇r ω̇p Fs Fr

]T
, (6.20)
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where

Q =



Js 0 0 0 Nprs 0

0 Jcc 0 0 −Nprs Nprr

0 0 Jr 0 0 −Nprr

0 0 0 Jp rp rp

ρ −(1 + ρ) 1 0 0 0

ρ 0 −1 1− ρ 0 0


, (6.21)

which is a constant invertible matrix. Thus, we have[
ω̇s ω̇c ω̇r ω̇p Fs Fr

]T
= Q−1

[
Ts Tc Tr0 0 0 0

]T
. (6.22)

The dynamic equations of the sun gear angular velocity, i.e., MG1 speed, and the ring gear angular
velocity, i.e., MG2 speed, are thus

ω̇s = Q−1
11 Ts +Q−1

12 Tc +Q−1
13 Tr0 , (6.23)

ω̇r = Q−1
31 Ts +Q−1

32 Tc +Q−1
33 Tr0 , (6.24)

where Q−1
ij , i, j = 1, 2, · · · , 6, denotes the element of Q−1 at the ith row and jth column. The angular

velocity of the carrier, which is equal to the engine speed, can be computed using the following
equation

ωc =
ωr + ρωs

1 + ρ
. (6.25)

The model includes a lumped rotational spring/damper that represents the driveline compliance,
where input and output torques (described below) depend on the angular displacement between the
MG2 output shaft and the automatic transmission input shaft. The dynamic equation of the angular
displacement is given by

∆α̇comp = ∆ωcomp, (6.26)

where ∆αcomp is the angle difference across the driveline compliance, and ∆ωcomp is the angular
velocity difference across the driveline compliance, calculated as

∆ωcomp = ωr − ωti , (6.27)

The angular velocity of the transmission input shaft ωti is computed using the following kinematic
equations

ωti = g1ωto , (6.28)

ωto = g2ωw, (6.29)

ωw =
s

rtire
, (6.30)

where g1 is the gear ratio across the automatic transmission, which is computed as

g1 = ag1η
3 + bg1η

2 + cg1η + dg1 , (6.31)
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based on a third-order polynomial fit with coefficients ag1 , bg1 , cg1 and dg1 that approximate the
gear ratio versus gear number curve, and where ωto is the angular velocity of the shaft between
the automatic transmission and the differential (where to means output of the transmission), g2 is
the fixed gear ratio of the differential, ωw is the angular velocity of the wheels, s is the vehicle
longitudinal speed, and rtire is the effective tire radius.

The longitudinal vehicle speed dynamics are derived from Newton’s laws and are given by

ṡ =
g1g2Tti − Flrtire

Mrtire
, (6.32)

where s is the vehicle speed, M is the equivalent vehicle mass, Fl is the sum of driving resistance
forces, and Tti is the torque applied to the shaft between the driveline compliance and the automatic
transmission. We use a polynomial model for the driving resistance,

Fl = als
2 + bls+ cl, (6.33)

where al, bl, and cl are the resistance force coefficients. The compliance torque is computed using

Tti = k∆αcomp + d∆ωcomp, (6.34)

where k and d are stiffness and damping coefficients of the driveline compliance.
Given Tti , the torque Tr0 applied to the ring gear axle used in the dynamic equations (6.23) and

(6.24) is computed as

Tr0 = Tmg2 − Tti , (6.35)

where Tmg2 is the filtered MG2 torque.
Finally, the jerk can be calculated by taking the second time derivative of the vehicle speed and

is given by

s̈ = s̈(x, u, v) =
ġ1g2Tti + g1g2Ṫti − Ḟlrtire

Mrtire
, (6.36)

where, by (6.31), (6.33), and (6.34),

ġ1 = 3ag1η
2η̇ + 2bg1ηη̇ + cg1 η̇, (6.37)

Ḟl = 2alsṡ+ blṡ, (6.38)

Ṫti = k∆α̇comp + d∆ω̇comp, (6.39)

with

η̇ = Cη

[
ḟη1 ḟη2 ḟη3

]T
, (6.40)

from (6.5), and then by (6.28) to (6.30) we have

∆ω̇comp = ω̇r − ġ1ωto − g1g2
ṡ

rtire
. (6.41)
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6.3 Multistage Mixed-Integer Optimization

The powertrain model in the previous section can be compactly expressed as the following
nonlinear switched system

ẋ = f(x, u, v), (6.42)

where x ∈ Rn is the state, u ∈ Rm is the continuous input, v ∈ Q = {1, 2, 3, 4} is the discrete input
and f : Rn × Rm ×Q → Rn is twice continuously differentiable in x and u for any fixed v. Our
objective is to solve the following optimal control problem (OCP)

min
T,x,u,v

Φ
(
x(T ), v(T ), T

)
+

∫ T

0

ℓ
(
x(τ), u(τ), v(τ)

)
dτ (6.43)

s.t. ẋ(t) = f
(
x(t), u(t), v(t)

)
∀t ∈ [0, T ],

x(0) = xI , x(T ) = xf ,

c
(
x(t), u(t)

)
≤ 0,

v(0) = vI , v(T ) ∈ vf ,

where T ∈ R is the total acceleration duration, Φ : Rn × Q × R → R is the terminal cost,
ℓ : Rn ×Rm ×Q → R is the incremental cost, c : Rn ×Rm → Rp represent inequality constraints,
xI , xf ∈ Rn are initial and terminal state constraints, vI ∈ Q is the initial discrete input constraint,
vf ⊆ Q is the set of terminal discrete input constraints, u : [0, T ]→ Rm is bounded and measurable,
v : [0, T ]→ Q is piecewise constant, and x : [0, T ]→ Rn is continuously differentiable. We also
want to enforce that v can change at most once every ∆ts > 0 seconds (to account for the dynamics
of the automatic transmission) and that the gear transitions satisfy a relationship of the following
type

vj+1 ∈ Γ(vj), (6.44)

where the point to set mapping Γ : Q⇒ Q represents transition constraints. For example, Γ could
be used to enforce that the gear sequence is monotonically increasing in a given scenario. In this
situation, Γ would be fully defined by the following,

Γ(1) = {1, 2, 3, 4}, (6.45a)

Γ(2) = {2, 3, 4}, (6.45b)

Γ(3) = {3, 4}, (6.45c)

Γ(4) = {4}. (6.45d)

Clutch pairing in automatic transmissions is another common constraint that can be encoded in Γ.
To make this problem tractable, we assume that at most M ∈ N stages, i.e., M − 1 gear

transitions, will occur and that v remains constant in each stage, i.e., v(t) = vj ∀t ∈ [tj−1, tj), j =

1, · · · ,M where t0 < t1 < · · · < tM−1 < tM with t0 = 0 and tM = T are the switching times.
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This leads to the following multistage OCP,

min
τ,x,u,w

ϕ
(
x(tM), tM

)
+

M−1∑
j=0

l
(
x, u, vj, tj

)
(6.46)

s.t. ∀j ∈ {1, · · · ,M},

ẋ(t) = f
(
x(t), u(t), vj

)
∀t ∈ [tj−1, tj),

vj ∈ Γ(vj−1),

tj−1 +∆ts ≤ tj,

x(0) = xI , x(T ) = xf ,

v0 = vI , vM ∈ vf ,

c
(
x(t), u(t)

)
≤ 0,

where ∆ts > 0 is the minimum switching time, τ = (t1, · · · , tM), w = (v0, · · · , vM), ϕ : Rn×R→
R is the per-stage terminal cost, and

l
(
x, u, vj, tj

)
= ϕ

(
x(tj), tj

)
+

∫ tj+1

tj

ℓ
(
x(s), u(s), vj

)
ds. (6.47)

This is an optimal control problem for a switched/hybrid system so, following, e.g., [102, 105, 106],
we decompose it into a bi-level optimization problem. At the same time, we also replace the
continuous time portions of (6.46) with a discrete approximation. The resulting discretized bi-level
problem can be written compactly as

min
w∈V
P∗(w), (6.48)

where the multifunction P : QM+1 ⇒ R ∪ [−∞,∞] represents solutions of a discretized OCP
(which is described in detail below) and

V =
{
(v0, v1, · · · , vM) : vj+1 ∈ Γ(vj), v0 = vI , vM ∈ vf

}
is the set of all admissible gear sequences. We adopt the convention that P∗(w) = ∞ if the
corresponding optimization problem is infeasible. The inner problem in (6.48) is not convex; it may
have multiple local minima. In this chapter we use a gradient based optimizer (IPOPT) to solve the
inner problems and we accept whichever solution the optimizer provides. One could use a more
computationally intensive global optimizer if local solutions are not sufficient.

We form the discretized OCP by applying explicit Euler integration to each stage and introduce
the notation xj

i for the value of the state vector at the ith discretization point in the jth stage.
Moreover, we parameterize the length of the stages by their interval lengths, i.e. we use ∆tj =

tj − tj−1, as optimization variables in place of tj and introduce a maximum stage length ∆tmax

which serves to ensure that the numerical approximation of the derivative remains reasonable during
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the optimizer iterations. The resulting OCP is:

min
X,U,∆t

M∑
j=1

[
ϕ(xj

N , tj) +
N−1∑
i=0

ℓ(xj
i , u

j
i , vj)

]
(6.49)

s.t. ∀j ∈ {1, · · · ,M},

xj
i+1 = fj(x

j
i , u

j
i ,∆tj) ∀i ∈ {0, · · · , N − 1},

c(xj
i , u

j
i ) ≤ 0 ∀i ∈ {0, · · · , N},

∆ts ≤ ∆tj ≤ ∆tmax,

x1
0 = xI , x

M
N = xf ,

xj
0 = xj−1

N ∀j ∈ {2, · · · ,M},
where the discrete dynamics are

fj(x, u,∆t) = x+
∆t

N
f(x, u, vj), (6.50)

and the optimization variabkles are:

X =
[
x1
0 · · · x1

N · · · xM
0 · · · xM

N

]T
, (6.51a)

U =
[
u1
0 · · · u1

N−1 · · · uM
0 · · · uM

N−1

]T
, (6.51b)

∆t =
[
∆t1 · · · ∆tM

]T
. (6.51c)

By defining z = (X,U,∆t) this OCP can be written compactly as a standard smooth nonlinear
program of the form

min
z

f(z, w) (6.52)

s.t. g(z, w) = 0,

h(z) ≤ 0,

that can be readily solved (for any fixed w ∈ V) using established nonlinear programming solvers,
e.g., IPOPT [98]. We use the CASADI package [112] to automatically generate derivative evaluation
functions that are passed to IPOPT to solve (6.52). The set V of all admissible sequences is generated
recursively using Algorithm 6.1.

Many methods in the literature, e.g., [105, 106], solve the upper level problem using gradient or
Newton like techniques to minimize the number of times the inner problem (6.52) needs to be solved.
Since we only have 4 gears and only need to consider a small number of gear change scenarios, we
found it more effective (from an engineering workload perspective) to simply solve (6.52) for each
w ∈ V in parallel and choose the best solution. If more scenarios need to be considered a genetic
algorithm or one of the techniques in [105,106] could be used instead. To summarize, our algorithm
is as follows:

1. Use Algorithm 6.1 to generate the set V of all admissible discrete transitions.
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2. For each sequence w ∈ V solve (6.52) to obtain P∗(w),
3. Pick the solutions corresponding to the lowest value of P∗(w).

Algorithm 6.1: GenerateAllSequences
Input: vI , vf ,M
Output: V

1 Algorithm
2 V ← Expand(vI , vI ,M, 1)
3 foreach w = (v0, · · · , vM ) ∈ V do
4 if vM /∈ vf then
5 V ← V\w
6 end
7 end
8 return V
1 Procedure Expand(s,u,M,d)
2 if d = M then
3 return s
4 end
5 us ← u
6 foreach v ∈ Γ(s[d]) do
7 s+ ← (s, v)
8 u← u∪Expand(s+, us,M, d+ 1)

9 end
10 return u

6.4 Application to a Multistage Hybrid Powertrain

In this section, we use our proposed multistage mixed-integer optimization methodology to
study the MSHP system. As a case study, we consider a minimum time 40 to 70 kph acceleration
scenario subject to passenger comfort constraints, i.e., jerk constraints.

First, to obtain a suitable steady-state initial condition for the MSHP, we place the model
in closed-loop with a pair of proportional-integral (PI) controllers that use the MG1 and MG2
torque commands to track the constant engine speed command and vehicle speed at 40 kph. The
engine operating condition is determined based on fuel economy considerations, and the automatic
transmission is in the first gear. When the system reaches steady state, values for all model states
and inputs are recorded to provide initial conditions for the optimizer. Note that the PI controllers
are only used here to acquire the initial conditions. Later, during the optimization and validation
simulation, the MSHP model is run open-loop.

Referencing (6.49), the OCP for the minimum time 40 to 70 kph acceleration scenario can be
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written explicitly as

min
∆t,X,U,w

M∑
j=1

[
λ1∆tj + λ2(∆tj −∆ts)

2
]
+

M∑
j=1

N−1∑
i=0

[
λ3(u

j
i+1 − uj

i )
T
(uj

i+1 − uj
i ) + λ4u

j
i

T
uj
i

]
s.t. ∀j ∈ {1, · · · ,M},

xj
i+1 = fj(x

j
i , u

j
i ,∆tj) ∀i ∈ {0, · · · , N − 1},

c(xj
i , u

j
i ) ≤ 0 ∀i ∈ {0, · · · , N},

∆ts ≤ ∆tj ≤ ∆tmax,

x1
0 = xI , x

M
N = xf ,

xj
0 = xj−1

N ∀j ∈ {2, · · · ,M},

(v0, · · · , vM) = w ∈ V ,

(6.53)

where λp, p = 1, 2, 3, 4, are weights to penalize the acceleration duration (λ1), deviation from
the minimum duration (λ2), change rate of torque commands (λ3), and excessively high torque
commands (λ4). We set λ1 = 104 for this time minimization problem, and we found it helpful
to stabilize the solver by adding small penalties to the other terms. We found that λ2 = 10−4,
λ3 = 10−4, and λ4 = 10−6 works well in practice.

The OCP uses a steady-state initial condition and enforces a terminal equality constraint on the
final speed. It includes pointwise in time inequality constraints on the model inputs, states, and
outputs (including jerk), given by

c(x, u) =



umg1 − Tmg1max

umg2 − Tmg2max

ueng − Tengmax

Tmg1min
− umg1

−umg2

Tengmin
− ueng

ωeng − ωengmax

ωengmin
− ωeng

ωmg1Tmg1 − Pmg1max

Pmg1min
− ωmg1Tmg1

ωmg2Tmg2 − Pmg2max

Pmg2min
− ωmg2Tmg2

−s
s̈− s̈max



, (6.54)

where max and min denote the maximum and minimum limits respectively, and P denotes power.
There are only four possible gear ratios for this automatic transmission and skip-shifting is
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allowed so we found three stages was sufficient (i.e., if we added a fourth stage the solution did
not change). The final gear is left free, i.e., the optimizer is allowed to choose any vM ∈ vf =

{1, 2, 3, 4}.
The OCP is solved using CASADI and IPOPT through the OPTI package. On a desktop with

Intel Xeon Processor E3-1246 v3 @ 3.05GHz CPU using MATLAB R2019a and the parallel toolbox
with 4 workers, we solve the multistage OCP in an average of 586 seconds when executing the case
studies discussed in the next section.

6.5 Case Studies

To better understand the relationship between acceleration and smoothness, we solved (6.53) for
several different values of the maximum jerk constraints, that is, for s̈max = 20, 30, 40 and 50m/s3.
Figure 6.3 plots the maneuver duration versus maximum jerk limit curve. There is a clear trade-off
between these two variables: maneuver duration increases as the maximum jerk limit decreases (the
duration for s̈max = 50m/s3 is slightly shorter than the duration for the case without jerk limit but
are identical within numerical error). Next, we perform a more detailed analysis of the following
three scenarios:

1. No jerk limit,
2. A jerk limit of 40m/s3,
3. A jerk limit of 20m/s3.

Figure 6.3: Trade-off between acceleration duration and maximum jerk limit.
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6.5.1 Without Jerk Limits

Figure 6.4 shows the simulation results of the MSHP, given optimal inputs generated by the
trajectory optimization procedure, when there is no constraint on the jerk. In this scenario, the
vehicle accelerates from 40 kph to 70 kph in 1.4737 seconds and the maximum jerk is approximately
55m/s3. The optimal gear number sequence is (1, 1, 4), and the up shift happens at around 1.01
seconds.

As can be seen in Fig. 6.4, the jerk signal peaks at the beginning of the scenario and then
decreases to around zero within 0.34 seconds. For the remainder of the scenario, the absolute value
of jerk is below 5m/s3. The jerk oscillates around zero because the engine, MG1, and MG2 are
operating near their torque/power constraints. For example, at around 0.35 seconds, the MG2 torque
reaches its limit and starts decreasing due to the power limit. Around the same time, jerk begins to
increase. For another example, at around 0.85 second, the MG1 regenerative torque reaches its limit
and starts increasing due to the power constraint. As a result, jerk slightly decreases before it slowly
climbs back up to zero.

Figure 6.4 also shows that, in order to minimize the acceleration duration, the engine, MG1, and
MG2 operate near their limits throughout the scenario. During the acceleration, both the engine
and MG2 operate at their maximum torque and power limits. The actual outputs do not reach the
commands instantaneously due to the component dynamics. MG1 outputs a positive torque at the
beginning of the acceleration to speed up the engine rotational velocity, and later decreases to output
a large negative torque so the engine power can be transmitted through the planetary gear set. Such
behavior is consistent with other vehicles that use traditional powersplit configurations.

Instead of staying in the first gear through the whole acceleration duration, the optimal trajectory
shifts into the fourth gear near the end of the scenario. We hypothesize that this is advantageous
because it shifts the operating points of the engine, MG1, and MG2 away from the constraints,
allowing them to increase their power outputs.

6.5.2 With Maximum Jerk Limits

Figures 6.5 and 6.6 show the simulation results when the jerk is set to be no more than 40m/s3

and 20m/s3, respectively. As shown in Fig. 6.5, the total maneuver duration increases to 1.4748
seconds, and the jerk constraint is respected. The MG2 torque command is lower and the MG1
power is higher at the beginning of the scenario than in the unconstrained scenario (in Fig. 6.4).

Similarly, in Fig. 6.6, the jerk constraint is satisfied by sacrificing the acceleration performance.
The total maneuver duration further increases to 1.4969 second. At the beginning of the acceleration,
the MG2 torque command is significantly lower compared with two other cases, and the MG1
power increases and then decreases more quickly.
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Otherwise, the results in Fig. 6.5 and 6.6 are consistent with the ones of the no jerk limit scenario
in Fig. 6.4. The engine operating conditions are similar in all three cases. Moreover, for the cases
with jerk constraint, the optimizer still decides to perform a skip-shift directly to fourth gear around
1 second into the maneuver.

6.6 Concluding Remarks

In this chapter, we presented a trajectory optimization methodology for complex hybrid power-
trains and used it to analyze a multistage hybrid powertrain through an acceleration duration versus
jerk/smoothness tradeoff study. The simulation results show the developed MSHP model is able to
capture the system behavior to enable preliminary study of the powertrain design. The results also
indicate that the multistage trajectory optimization method can handle control inputs including both
continuous and discrete variables, as well as jerk (or other nonlinear output) constraints.
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Figure 6.4: Simulation with optimal control inputs and without jerk constraint.
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Figure 6.5: Simulation with optimal control inputs and with maximum jerk limit of 40m/s3.
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Figure 6.6: Simulation with optimal control inputs and with maximum jerk limit of 20m/s3.
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CHAPTER 7

Conclusions and Future Work

Autonomy, connected vehicles, electric powertrains and other trends are transforming mobility.
Innovative solutions should improve equity and accessibility, while allowing safe, efficient and
comfortable movement of people and goods. This dissertation advances decision and control
theory for mobility applications. It leverages set theory, game theory, and trajectory optimization to
transform the safety, efficiency, and comfort of future mobility systems.

In Chaps. 2, 3, and 4, we focus on developing fault-tolerant control (FTC) and Failure Mode
and Effect Management (FMEM) strategies based on reference governor-centric set-theoretic
approaches. Failed actuators that are zeroed-out are considered in Chap. 2, and stuck/jammed
actuators are considered in Chaps. 3 and 4. Failure mode reconfiguration strategies are proposed
in Chaps. 2 and 3, and Chap. 4 integrates the reconfiguration with fault detection and isolation
(FDI) to construct a more systematic approach. The methods are demonstrated in simulation on a
mass-spring-damper system (displacement control) and an aircraft longitudinal flight control system.
The results show that, by imposing set-membership conditions that guarantee isolatability and
reconfigurability, the systems are able to handle transitions to failure modes within a certain number
of time steps and without violating safety constraints. The function of safe reference tracking by the
reference governor is re-activated after the failure mode transition is finished. Possible future work
in this direction for a more generic FMEM strategy includes the following:

• The type of failures explored in the current study mainly focused on failed actuators generating
constant open-loop inputs. Other types of failures, such as sensor failures and communication
failures (e.g., false-positive detection) are common for mobility applications and need to be
investigated in the future. Additionally, failed signals in different forms need to be considered,
such as for efficiency degradation and slowly changing signals with bounded rate.

• The impact on the system performance, such as the operating range and energy efficiency,
should be evaluated if the normal operation must be restricted for guaranteed safety.
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• Possible challenges when implementing the FMEM strategy in real-time need to be considered,
e.g., to handle the situations when the isolation and reconfiguration sequences cannot be
generated in time for execution.

• Situations with multiple simultaneous failures and failures that are not sequential should be
addressed.

• Other mobility applications, such as unmanned aerial vehicles (UAVs) and connected and
autonomous vehicles (CAVs) that often use system redundancy to achieve fault tolerance,
should be considered.

In Chaps. 5, an energy-aware autonomous driving control policy is developed in a game-theoretic
traffic environment that models the actions of human-driven vehicles. In addition, a battery electric
vehicle (BEV) energy model is built and integrated into the traffic simulator to provide explicit
information about energy consumption. The policy is trained by reinforcement learning with a
reward function that balances the energy efficiency with other evaluation aspects including safety,
time efficiency, and comfort. The ego vehicle is able to perform both longitudinal actions and lane
changes. Simulation results indicate that the developed autonomous driving policy outperforms the
other non-energy-aware benchmarking policies in energy saving and collision avoidance. The main
observation is that, while the reward function for the policy training encourages driving at higher
speed for time efficiency considerations, the ego vehicle using the energy-efficient policy tends to
drive slower than the benchmarking vehicles to potentially reduce the energy losses due to rolling
and aerodynamic resistance. In the future, we can consider extending the proposed methods in the
directions below:

• Figure 7.1 shows an example of how the proposed energy-efficient control policy can be
integrated into a typical autonomous driving architecture. The challenges in applying the
proposed policy in actual vehicles need further investigation. For example, we need to
properly design the module of safe tracking control for collision avoidance, whose decisions
may affect the overall control performance including energy efficiency.

• Other traffic environments such as city driving with slow traffic should be studied in addition
to the current highway traffic. Compared to highway driving where efficiencies of the
powertrain components are relatively high, the advances for energy efficiency improvement
by optimizing the decision of lane changes and braking may be more notable in traffic with
frequent start-and-stops.

• The current autonomous driving policy is trained to optimize its own energy efficiency. The
policy may make selfish decisions to save energy such as by changing lanes frequently to
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avoid braking and/or driving at a lower average speed than the surrounding vehicles to reduce
the resistance force. To achieve a more global energy saving benefit, co-optimization with
other vehicles in traffic to develop friendly policies should be considered.

Perception

Control

(Safe tracking)

Planning

Route

TrajectoryObservations Action

Traffic

Vehicle dynamics

Longitudinal

Lateral

Environment

Reference trajectory

Vehicle speed, SOC

Modified trajectory (acceleration and lane change commands)

Figure 7.1: Integrating the energy-efficient autonomous driving control policy into a typical au-
tonomous driving architecture. The proposed control policy maps the observations to actions for
trajectory planning.

Finally, Chap. 6 takes a hybrid electric vehicle (HEV) powertrain that combines the power-split
configuration with a four-speed automatic transmission as an example application. We develop a
routine for the analysis of acceleration performance and comfort level measured by jerk. A case
study is set up for the 40 to 70 kph acceleration scenario with different jerk limits to study the
relations of minimum acceleration duration versus maximum jerk. A vehicle model is built, and
we formulate a multistage mixed-integer trajectory optimization problem with the jerk constraint
to solve for the minimum acceleration duration. A clear trade-off is seen in the simulation results,
i.e., as the allowed jerk value reduces, it takes longer for the vehicle to complete the acceleration
event. Moreover, the optimal time-based control profile is insightful. For example, it shows how
the engine and motors cooperate to deliver the optimum power, and that the skip-shifting feature
is beneficial to improve the acceleration performance. The following are areas of potential future
work to be considered:

• As the common vehicle control involves using calibration tables for which the tuning is often
labor-intensive, the proposed optimal control method may be integrated to assist and automate
a part of the tuning process so that the powertrain control development efficiency can be
enhanced.

• To further eliminate the labor effort for tuning and calibration, it is worth investigating
potential optimal control methods to be implemented in real-time, e.g., model predictive
control (MPC), though the major challenge is to ensure that they are computationally viable.
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In this case, the current multistage control strategy can provide benchmarking references for
future control development.

Overall, this dissertation highlights opportunities for applications of game-theoretic, set-theoretic
and optimal control towards the development of safer, more efficient and comfortable future mobility
systems. We also show the ability and benefits of integrating reference governor, reinforcement
learning and vehicle propulsion system modeling into the proposed strategies. The contributions ad-
dress the gaps in safety-guaranteed fault-tolerant control, energy-aware connected and autonomous
driving control, and optimal-based vehicle drivability analysis processes.
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