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Abstract 

 The use of surfactants in a variety of consumer and industrial products makes them an 

important class of molecules. Surfactants self-assemble, at high enough concentrations forming 

long wormlike micelles that impart a distinct viscoelasticity to solutions containing them. 

Understanding the rheology of such solutions is of interest from both an industrial and academic 

standpoint. Connecting the flow behavior of wormlike micellar solutions to the solution 

composition is done by modeling the underlying physics using a mesoscopic model previously 

developed in the Larson lab, the “pointer algorithm.” The pointer algorithm has been shown to 

be capable of fitting experimental linear rheological data and extracting micelle parameters, such 

as the average micelle length and breakage time, from the data. Because of the self-assembled 

nature of micelles, direct measurement of their features, necessarily performed on diluted or 

modified solutions, changes the micelle properties. Thus, the only way to infer these properties 

in a non-diluted solution is from the rheology. 

 Here, the pointer algorithm is first validated using the more highly resolved slip-spring 

model and comparisons between the two simulation methods show good agreement at low 

numbers of entanglements. Next, the rheology of a series of surfactant solutions is fit and the 

extracted micelle parameters used to calculate scaling laws that describe how the micelle 

parameters change as a function of the surfactant concentration. Correlations that relate 

experimental rheological features to micelle parameters are also developed, providing a 

relatively fast and simple way to estimate micelle parameters directly from experimental data. 

These correlations, along with the pointer algorithm, are finally applied to a variety of surfactant 
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solutions from literature. In general, both using a pointer algorithm simulation to extract micelle 

parameters from the experimental rheology and estimating the micelle parameters from the 

correlations give good results, producing parameters consistent with the high viscosity and 

viscoelasticity of the solutions and predicted rheology that matches the experimental data well. 

The results show that the pointier algorithm is able to describe the linear rheology of a general 

wormlike micellar solution and that these surfactant solutions exhibit universality in their 

rheological behavior. The thesis also contains a user manual to help users learn to run the pointer 

algorithm software, which is made publicly available. 
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Chapter 1: Introduction 

Introduction to surfactant solutions 

 Surfactants are a class of molecules that have important applications in areas ranging 

from biology to drug delivery, personal care products, and oil flow in pipelines [1]. They are 

amphiphilic, having a long hydrophobic tail and a hydrophilic head group. This property of 

surfactants means that in solution, they self-assemble into micelles that are spherical at low 

surfactant concentration and grow into rodlike, then wormlike micelles as concentration 

increases. It is generally understood that this change in microstructure is reflected in the viscosity 

of the solution. For example, a graph of the zero-shear viscosity plotted against salt 

concentration, a so-called “salt curve,” shows the viscosity first increase as salt concentration 

increases, then reach a peak and decrease. Electron micrographs of sample solutions along the 

salt curve have shown imaging of spherical micelles at low concentration, followed by rodlike 

micelles, long wormlike micelles, branching past the viscosity peak, and finally vesicles at high 

salt concentration [2–4]. What is not as well understood is the quantitative effect of salt, or 

surfactant, concentration on the solution’s viscosity and other macroscopic flow properties, e.g. 

the rheology of such solutions, particularly at concentrations where entangled wormlike micelles 

are present. This is an important area of study for the formulation of commercial personal care 

products such as shampoos and detergents where understanding the relation between a solution’s 

composition and its flow behavior is beneficial for product design and development. 

 One way to make the connection between solution composition and rheology is by 

modeling these solutions at the microstructural scale. If the model correctly captures the 
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underlying physics of surfactant micellar solutions, it can be used to determine the relationship 

between composition and microscopic properties such as the length of the micelles, which can 

then predict the rheology of solutions at different salt or surfactant concentrations. There are, 

however, multiple challenges in modelling micellar solutions. Firstly, the relevant length scales 

in surfactant solutions span several orders of magnitude. At the surfactant level, the tail length of 

a surfactant molecule sets the radius of the micelles, which is usually found to be around 2 nm. 

Overall, wormlike micelles are flexible, but locally, the micelles behave like elastic rods or 

beams. The micelle stiffness is quantified by the persistence length, lp, where at lengths less than 

lp the micelle is like a rigid rod and at lengths greater than lp the micelle can bend. The 

persistence length depends on the identities and concentrations of the surfactant and salt and 

varies from 20-100 nm. As wormlike micelles grow, they entangle with each other like strands of 

spaghetti in a bowl; the entanglements can be described by an entanglement length, le, that is the 

average distance between entanglements along a micelle, and is typically 100s of nanometers. 

Finally, the longest length scale to consider is the contour length of the micelle (the average 

micelle length is denoted as 〈𝐿〉), which can be several microns or longer. 

 From a computational perspective, the range in length scales creates difficulties in 

simulating these solutions. In general, the smaller the length scale that needs to be simulated, the 

smaller the simulation time step. For example, an all-atom molecular dynamics simulation, in 

which every atom is individually modeled on a scale of 0.1 nm (10-10 m), has a time step on the 

order of a femtosecond, or 10-15 seconds, making it very difficult to reach even a second of real 

time. Wormlike micellar solutions, with contour lengths on the order of a micron (10-6 m) or 

greater, can take several seconds to relax, so it is evident that some level of coarse-graining or a 

mesoscopic model is necessary to model these solutions. This model, however, will still need to 
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be able to account for relaxation processes apparent in experimental rheological measurements 

that result from the smaller length scales in the system. 

 Physically, the different lengths result in surfactant wormlike micellar solutions 

exhibiting somewhat complex rheology that cannot fully be described by simple viscoelastic 

models such as the Maxwell model. Figure 1.1 shows the linear oscillatory shear rheology of a 

typical wormlike micellar solution, including several features that a model will need to capture. 

At low frequency, the micelles relax similarly to a Maxwell fluid, with the storage modulus 

G’(ω) and loss modulus G”(ω) having terminal slopes (on a log-log plot) of 2 and 1 respectively. 

At intermediate frequency, the loss modulus exhibits a minimum, marked as G”min in Figure 1.1, 

while the storage modulus grows slowly and is approximately constant. At high frequency, both 

G’ and G” eventually reach a slope of 3/4. Additionally, there are two crossover frequencies, one 

at low frequency and one at high frequency, ωc1 and ωc2, where G’ and G” intersect. A model for 

wormlike micelle solutions will need to be able to describe all of these rheological features. 

 

Figure 1.1: Example surfactant rheology curves with rheological features denoted. 
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Modeling surfactant solutions 

 To construct a simulation capable of modeling the rheology of surfactant solutions, we 

first see if there is an existing model that we can modify or add features to. We already 

determined that the Maxwell model, one of the simplest models for a viscoelastic fluid, does not 

describe surfactant solution rheology across the entire frequency range. The addition of a viscous 

term to the storage modulus introduces a minimum in G”, but the high-frequency rheology is still 

not modeled correctly. Furthermore, the fitting parameters of the Maxwell model are chosen 

solely to best fit the experimental data and are unrelated to the physical microstructural 

properties like the contour and persistence lengths of the micelles. 

 Instead, we take advantage of the similarity between surfactant micelles and polymers 

and adapt more well established polymer theory to micelles. Like polymers, surfactant micelles 

are long and flexible and entangle with each other, resulting in viscoelastic solutions whose 

rheology often share several qualitative features, including low-frequency Maxwell fluid-like 

relaxation, a minimum in G”, and two crossover frequencies. On the other hand, unlike 

monomers that chemically bond to form polymers, surfactant molecules self-assemble in a 

reversible process depending on hydrophobic and electrostatic interactions. Surfactant micelles 

can therefore reversibly break and rejoin while polymers are fixed in length. Polymers can also 

be synthesized to create an ensemble with a single, or close to single, molecular weight while the 

thermodynamic equilibrium length distribution for micelles is exponential. The aim is then to 

find a model for polymer rheology to which reversible breakage and rejoining and an exponential 

length distribution can be added. 
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 The Cates theory is one such model [5]. Reptation theory was originally developed by de 

Gennes to describe the mobility of a polymer chain surrounded by fixed obstacles. de Gennes 

hypothesized that the surrounding obstacles would confine the polymer chain to a tube so that 

the polymer would relax by diffusing, i.e. reptating, in one dimension along the tube [6]. Doi and 

Edwards later expanded on the reptation theory to develop constitutive equations for the 

rheology of polymer melts or concentrated solutions containing entangled polymers [7,8]. 

Further modifications to the Doi and Edwards tube theory have been shown to be able to model 

rheological behaviors of polymer solutions such as steady shear, shear startup, and uniaxial 

elongation [9]. Cates took the reptation theory, accounted for an exponential length distribution 

of micelles, and added reversible breakage and rejoining. He was then able to generate viscosity 

and stress relaxation curves at varying breakage to reptation time ratios consistent with the 

multiexponential relaxation expected of micelles with a distribution of lengths [5]. Later, Turner 

and Cates used the model to perform numerical simulations and produced a series of stress 

relaxation curves that agreed qualitatively with experimental data [10]. Additional work by 

Granek and Cates then allowed the development of a semi-quantitative equation that could be 

used to estimate the micelle length from rheological data [11]. This result is important for the 

characterization of surfactant solutions because the microscopic micelle parameters are difficult 

to measure directly and must be inferred from rheology. 

 Unlike polymers, which have a fixed length after synthesis and can be diluted or change 

temperature without being physically altered, the self-assembled nature of micelles means that 

changing the experimental conditions changes the micelles themselves, in particular their 

average length. This indicates that any experimental method that requires modifying the 

surfactant solution unavoidably changes the micelles in the solution. For example, small-angle 
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neutron scattering (SANS) experiments have been used to determine micelle lengths, but the 

experiments are best performed on dilute solutions where the micelles are short and do not 

overlap. Once the micelles overlap, screening makes it difficult to differentiate micelle contour 

lengths, especially micelles that are longer than the maximum resolution of SANS, which is 

usually a couple hundred nanometers. Surfactant solutions with measurable rheology are 

typically at concentrations high enough that the micelles are entangled and overlap significantly, 

so that the options are to either dilute the solution, in which case the micelles decrease in length 

and are no longer representative of their length in the original solution, or perform SANS on 

solutions with a high degree of screening that obscures the full micelle contour length. Similarly, 

direct visualization of the micelles through cryo-TEM requires the formation of a thin film, so 

the micelles are no longer in solution when viewed. While cryo-TEM can provide some 

qualitative information on the micelle structure and length, it is difficult to make any quantitative 

conclusions about their properties. Thus, rheological models seem to be the best way to infer  

micelle properties in surfactant solutions containing entangled micelles. 

 The Cates theory is still a promising basis for a model of surfactant micelle rheology, but 

it has several limitations that need to be considered when adapting it. Firstly, the scaling relation 

developed by Granek and Cates is semiquantitative; the prefactor is assumed to be 1. The scaling 

relation is also based on the limit where the breakage time for a micelle of average length is 

much longer than the Rouse time of a micelle segment as long as the entanglement length (τbr >> 

τe), which Granek and Cates suggest is usually true when the micelles are long and strongly 

entangled and the ratio G0/G”min of the plateau modulus to the value of G” at its local minimum 

is high. [11] This makes the scaling relation most accurate for more concentrated solutions while 

less concentrated solutions may not be able to be described as precisely. However, even for fairly 
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concentrated solutions expected to contain well-entangled micelles, the scaling relation with 

prefactor unity sometimes estimates the micelle length to be under a micron, which seems too 

short considering the high viscosity of some of these surfactant solutions [12–14]. The micelle 

lengths calculated from the Cates scaling relation also can be predicted to decrease as surfactant 

concentration increases, the opposite of what is expected to happen [15]. An example of this can 

be seen below in Table 2.1. Additionally, the micelles are assumed to be loosely entangled, i.e. 

the entanglement length le is longer than the persistence length lp, which may not always be true, 

and we may want to be able to model tightly entangled micelles (le < lp) as well. Finally, the 

high-frequency rheology predicted by the Cates theory shows G’ and G” coinciding at high 

frequency (see Figure 6 in Granek and Cates [11]), but experimental data such as in Figure 1.1 

do not show G’ and G” overlapping at high frequency. When we modify the Cates model, we 

therefore look for ways to model a range of concentrations encompassing weakly to well-

entangled micelles, better match the predicted high-frequency rheology to experimental data, and 

model both loosely and tightly entangled micelles. After developing this model, we can 

determine if we recover a Cates-like scaling relation for the micelle length, perhaps with a 

prefactor differing from unity. 

 

The Pointer Algorithm 

 Previously in the Larson lab, a mesoscopic simulation, the “pointer algorithm,” was 

developed to address the points above and model the rheology of surfactant micellar solutions. 

Full details of the simulation can be found in [16,17]; here the key features of the pointer 

algorithm will be summarized. A mesoscopic simulation in which an ensemble of micelles, but 

not individual surfactant molecules, is generated, was chosen to access the time scale of several 
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seconds necessary to model low-frequency rheology. To model the different relaxation processes 

over the length scales of the micelles, multiple additional relaxation modes were included in the 

simulation.  

 At low frequency, where reptation is the main relaxation mechanism, the Cates theory 

was adapted into the simulation. When the simulation starts, the micelles are unrelaxed; the 

simulation runs until the micelles are relaxed. At each simulation time step, every micelle in the 

ensemble randomly moves a calculated distance left or right within its confining tube. The 

unrelaxed percentage of the micelle still in its original tube is tracked. At time steps where 

breakage or rejoining, determined by the breakage time, occurs, either a micelle is chosen to 

break at a random point along its length or two micelles are chosen to combine. During the 

reptation portion of the simulation, the micelle ends further relax because of contour length 

fluctuations (CLF), which are calculated and added to the reptation distance. While individual 

micelles reptate and relax, all the surrounding micelles are also moving, a process that speeds up 

relaxation known as constraint release (CR). Constraint release is accounted for in the pointer 

algorithm by double reptation, so the contribution to relaxation from reptation is squared. The 

stress relaxation curve can then be constructed from the unrelaxed fraction of micelles as a 

function of time and converted into the frequency domain to determine the impact of reptation on 

the rheology of the solution. 

 After reptation with CLFs and CR is simulated, the contributions from higher frequency 

relaxation modes are added analytically. These relaxation modes, Rouse and bending modes, are 

again borrowed from polymer theory. Rouse modes were originally derived for a single polymer 

chain (or a polymer chain in a dilute solution) relaxing in solution [18]. However, for polymer 

melts or concentrated solutions where the chains are entangled and can no longer move freely, 
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(1.1) 

the Rouse modes become fractionated into relaxation parallel to the tube and relaxation 

perpendicular to the tube [19,20]. Because of entanglements slowing down motion along the 

tube, the perpendicular relaxation modes are known as “fast Rouse modes” and the slower 

parallel relaxation modes as “longitudinal Rouse modes.” Since micelles experience similar 

entanglement to polymers, we expect Rouse modes to also be relevant to our surfactant solutions 

and add the fast Rouse modes to the simulation, assuming that there are enough entanglements 

that they damp out the effects of the longitudinal Rouse modes. [16] The fast Rouse modes are 

given by Eq. 1.1, and can be calculated from the values of the micelle parameters. 
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where ϕi is the volume fraction of micelles of length i  ̧τe is the Rouse time of a micelle between 

entanglements, and Zi is the number of entanglements in a micelle of length i. 

 Rouse modes contribute to relaxation on a length scale around the entanglement length; 

at even shorter length and higher frequency, bending modes become important. Similarly to the 

Rouse modes, they are calculated from an equation (Eq. 1.2) and added analytically to the 

simulation. [21] Bending modes describe the relaxation of a rigid rod, which micelles behave 

like at lengths smaller than the persistence length. While Rouse modes were considered by the 

Cates theory, the effects of bending modes were not, and this addition improves the rheology 

modeling at high frequency. 

𝐺′(𝜔) = 𝑅𝑒[𝑖3 4⁄ ]
𝜌

15

23 4⁄ 𝑘𝐵𝑇

𝑙𝑝

(𝜔𝜏𝑝)
3 4⁄
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(1.2) 
𝐺"(𝜔) = 𝐼𝑚[𝑖3 4⁄ ]

𝜌

15

23 4⁄ 𝑘𝐵𝑇

𝑙𝑝

(𝜔𝜏𝑝)
3 4⁄

+ 𝜔𝜂𝑠  

where τp is the relaxation time for a micelle segment as long as the persistence length.  

 To further account for relaxation processes from short, unentangled micelles (in Eqs. 1.1 

and 1.2 micelles shorter than the entanglement length make no contribution to relaxation), a later 

modification to the pointer algorithm, Rouse, bending, and rotary relaxation modes for 

unentangled micelles were added analytically. These relaxation modes are similar to Eqs. 1.1 and 

1.2 and their equations are given fully in [17]. 

 Once all the contributions to relaxation have been simulated and calculated, the final 

rheology curves can be calculated and compared to experimental data. Based on the difference 

between the predicted simulation and experimental curves, the micelle parameters are adjusted. 

For example, if the ratio of G’min to G”min is smaller for the simulation rheological curves than in 

the experimental data, that indicates that the micelles in the simulation are too short and not 

entangled enough, so the micelle length is increased for the next iteration. Iterations of the 

simulation are run, modifying the micelle parameters at the end of each iteration based on a 

comparison to the experimental data, until the simulation rheology curves match the 

experimental data to within a pre-set error. In this way, the pointer algorithm is able to extract 

micelle parameters from experimental rheological data. 

 

Overview 

 In this work, we apply the pointer algorithm toward the goal of understanding the 

relationship between surfactant solution composition and rheology. Chapter 2 begins by first 

comparing pointer algorithm simulations to slip-spring simulations. Because of the difficulties of 

directly measuring micelle properties in solution as discussed above, alternate means of 
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validating the pointer algorithm must be used. The slip-spring model, developed by Likhtman 

[22], has been shown to be able to describe the rheology of entangled polymer solutions well. It 

was modified to model surfactant solutions by adding reversible breakage and rejoining [23]. 

When we compare these slip-spring simulations with pointer algorithm results at a variety of 

numbers of entanglements and breakage to reptation time ratios, we find good agreement 

between the two simulation methods, helping to validate the rheological predictions of the 

pointer algorithm and the micelle parameters that we extract from rheology. Once the pointer 

algorithm has been validated, we study a series of surfactant solutions at constant counterion 

concentration and varying surfactant concentration. After using the pointer algorithm to fit the 

rheology of these solutions, we calculate scaling relations that describe how the micelle 

parameters vary with surfactant concentration and compare them to theoretically predicted 

scalings. We also construct correlations that allow micelle parameters to be directly estimated 

from rheological data, which we use in chapter 3 to investigate other surfactant systems in 

literature. 

 Chapter 3 considers solutions of a variety of different salts and surfactants found in 

literature. The pointer algorithm and the correlations derived from it are used to fit the rheology 

of these solutions and directly predict micelle parameters from the experimental data. The 

correlations allow the pointer algorithm to be applied to a greater range of solutions, including 

solutions with weakly entangled micelles that have rheology without enough features to fit and 

solutions with very highly entangled micelles that are too long to run iterative pointer algorithm 

simulations. Our results, showing that the pointer algorithm can describe the rheology of a 

variety of salt and surfactant systems, demonstrates some universality in surfactant solution 

rheology and that the relaxation modes considered are independent of surfactant or salt identity. 
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 In chapter 4, the pointer algorithm code is documented with a user manual. Instructions 

for running pointer algorithm simulations are given so that other researchers can use the pointer 

algorithm in their own work and example simulations are provided as a guide. Chapter 5 

summarizes and concludes this work. 
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Chapter 2: Determining Threadlike Micelle Lengths from Rheometry 

Abstract: We show that the average length 〈𝐿〉 of threadlike micelles in surfactant solutions 

predicted by fitting results of a mesoscopic simulation, the “pointer algorithm,” to experimental 

G’(ω), G”(ω) data, is longer than, and more accurate than, that from a scaling law that equates 

〈𝐿〉/𝑙𝑒 to the modulus ratio G0/G”min. Here G0 is the plateau modulus, G”min is obtained at the 

local minimum in G”, and 𝑙𝑒 is the entanglement length. The accuracy of the pointer algorithm is 

supported by the agreement of its predictions with results from a recent application of the slip-

spring simulation method to threadlike micelles. Improved fits of the pointer algorithm to the 

slip-spring results are obtained for weakly entangled micelles (with average number of 

entanglements Z < 15) if the full spectrum of Rouse modes is included in the description rather 

than just the high-frequency modes included in an earlier version. For sodium laureth-1 sulfate 

(SLE1S) and cocamidopropyl betaine (CAPB) in NaCl solutions, we find scaling relations for 

micelle length, the plateau modulus, and the persistence length that are in rough agreement with 

the predictions of mean field theory and with the modified scaling relation in which 〈𝐿〉/𝑙𝑒 is 

raised to the 0.82 power, rather than unity, that we recommend as an improvement to the original 

scaling law. 

 

Introduction 

 Surfactant molecules are used in a variety of industrial and personal care products due to 

their  drag-reduction properties and ability to encapsulate and solubilize hydrophobic molecules 
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in water [1,24]. In solution, they self-assemble, at high enough concentrations forming long 

wormlike micelles that impart a distinct viscoelastic behavior to the solutions. Understanding the 

relationship between the microscopic and macroscopic features of these micellar solutions, for 

example between the average micelle length and the macroscopic rheology, has remained a 

problem of particular interest, especially since such properties are very hard to measure except 

through their influence on rheology. 

 The first proposed method for determining the micelle length from rheology is the Cates 

method [12–14], which is based on Cates theory [5] for the dynamics and linear rheology of 

entangled threadlike micelles. The Cates theory, adapted from the reptation theory for entangled 

polymers, takes the micelles to be contained in a “tube” formed by surrounding micelles, and to 

relax by diffusing (or “reptating”) along, and eventually out of, the tube. However, unlike 

polymers, micelles can also reversibly break and rejoin, and the Cates theory adds this 

mechanism to reptation to obtain its predictions of rheology. 

 The pointer algorithm is a numerical implementation of the Cates theory that simulates an 

ensemble of breaking and rejoining micelles with the exponential length distribution expected 

from random breakage [17]. It allows predictions to be obtained from the Cates theory over a 

broader range of conditions than allowed by the earlier analyses of the theory, and allows some 

additional physics to be introduced. In the pointer algorithm, at each simulation time step, a 

micelle can slide randomly a pre-calculated distance along its tube, and the fraction of the 

micelle that remains unrelaxed is then updated. A fraction of these micelles will also randomly 

break or re-join at each time step, as determined by the breakage/re-joining rate. The reptation 

process accounts for relaxation at low frequencies. At higher frequencies, other mechanisms 

become important, including Rouse and bending modes, which are added analytically to the 
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relaxation modulus determined by the simulation. Given measured storage and loss moduli 

versus frequency, G’(ω) and G”(ω), micelle parameters, including the micelle length, can be 

determined from the pointer algorithm by iteratively adjusting them to give a best fit to G’() 

and G”(). Full details of the pointer algorithm and the method of fitting its predictions to 

rheological data can be found in previous work [16,17]. 

 In this work, we show that micelle lengths estimated from fits of the pointer algorithm to 

linear rheology significantly improve upon those obtained from the Cates method, which gives 

highly approximate estimates of lengths from the Cates theory. The Cates method uses a scaling 

law that relates the micelle average length 〈𝐿〉 to the ratio 𝐺0 𝐺𝑚𝑖𝑛
"⁄  where G0 is the plateau 

modulus, and G”min is G” at the frequency min at which G” is a local minimum. We argue here 

that the micelle length estimates from the pointer algorithm are superior to those from the Cates 

method, in the following ways: 1) the longer micelle lengths from the pointer algorithm are more 

consistent with the high viscoelasticity and viscosity exhibited by the surfactant solutions; 2) 

lengths from the pointer algorithm are more consistent with extrapolations of lengths obtained 

from dilute solution rheometry of the same surfactant; and 3) predictions of the pointer algorithm 

agree better with those from a more microscopic slip-spring simulation model. We also give a 

modification of the Cates scaling law that matches more closely the predictions of the pointer 

algorithm and that can be used to obtain more accurate estimates of micelle length. 

 

Details of Cates Method and Pointer Algorithm 

  In the Cates theory, the stress relaxation of “living polymers,” such as surfactant micelles, 

is modeled using equations that account for reptation and reversible breakage and rejoining of 

micelles [5]. Later work [11] also considered the effect of contour-length fluctuations, or 
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“breathing,” as well as Rouse modes, on the stress relaxation.  In addition, Cates developed from 

his theory a scaling relationship linking rheology to average micelle length, namely  
𝐺0

𝐺𝑚𝑖𝑛
" ~

〈𝐿〉

𝑙𝑒
 

where le is the “entanglement length,” the length of the micelle per entanglement, and other 

parameters are defined above. Since G0 and G”min are reasonably easy to obtain experimentally, 

if le is known, and if we take the prefactor to be unity, this scaling relation provides a way to 

estimate the average micelle length, a property that can otherwise be difficult to determine. In a 

good solvent, the entanglement length is approximated by 𝑙𝑒 ≅ 𝜉
5

3/𝑙𝑝

2

3  where ξ is the correlation 

length and lp is the persistence length. For “loosely entangled” micelles (𝑙𝑒 𝑙𝑝⁄ > 1), ξ can be 

estimated by 𝜉~ (
𝑘𝐵𝑇

𝐺0
)

1

3
 [12], where, again, the prefactor is typically taken to be unity. Thus, if 

the persistence length is known from another experimental method, such as small-angle neutron 

scattering (SANS) [25], diffusing wave spectroscopy (DWS) [26], or rheo-optics [27], and G0 

and G”min are determined from rheology, then 〈𝐿〉 can be calculated using the relationships 

above. Here, the use of the above scaling formulas for micelles lengths and other parameters will 

be referred to as the “Cates method,” distinguishing it from the more general “Cates theory,” 

which gives a comprehensive model of dynamics and linear rheology of worm-like micelles. 

 Alternatively to the Cates method, the pointer algorithm (which is itself based on the 

Cates theory) can give the average micelle length through an iterative fitting procedure, as 

mentioned above. In this method, reptation, breakage, and rejoining are simulated for an 

ensemble of micelles, and then high-frequency relaxation mechanisms – Rouse and bending 

modes – are added analytically. Iterating to minimize the error between the simulated 

experimental G’ and G” curves, micelle parameter values are determined that best fit 

experimental data. The pointer algorithm offers the following advantages over the Cates method: 
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 1) The average micelle length 〈𝐿〉 is not calculated directly from a single rheological 

feature (i.e., 𝐺0 𝐺𝑚𝑖𝑛
"⁄ ) at a single frequency min, but is obtained by fitting the entire frequency 

dependence of the rheology, making the result less sensitive to errors in either experimental data 

or the Cates theory at this frequency. Since the micelle length should have its greatest influence 

in the terminal region well below the frequency min, fitting the rheology over the entire 

frequency range should be a more robust method of extracting 〈𝐿〉. 

 2) The plateau modulus G0 is also a fitting parameter whose value is determined 

simultaneously with 〈𝐿〉 from the same fitting of the pointer-algorithm predictions to data. This 

differs from work by Cates and Turner [10], where G0 was estimated by extrapolating the linear 

region of a “Cole-Cole" plot to high frequency. Other methods used in the literature to obtain G0 

include fitting the semi-circular region of a Cole-Cole plot [28], fitting G’ and G” to one or two 

Maxwell elements [14], or using the value of G’ at the frequency where G” has its minimum 

[26]. However, for moderately- to lightly-entangled micelles where G’ never clearly flattens but 

continuously increases with frequency, these methods likely underestimate G0. 

 3) In the pointer algorithm the plateau modulus is related to the correlation length by a 

“crossover formula” [16] that allows for consideration of both tightly and loosely entangled 

micelles and the intermediate region between these limits. Since most solutions of entangled 

micelles are in this crossover region while the Cates method assumes that the micelles are in the 

loosely entangled region, the pointer algorithm treats entanglements more realistically than does 

the Cates method. Even in the loosely entangled region, the pointer algorithm introduces a 

prefactor A (discussed later) into the scaling law 𝜉~𝐴(𝑘𝐵𝑇 𝐺0⁄ )
1

3, whose value is derived from 

well-established correlations for polymer solutions and melts [16]. 
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 4) If data are available at high enough frequency to encompass a second crossover of G’ 

and G”, the persistence length can also be determined as a fitting parameter in the pointer 

algorithm simulations; otherwise, the persistence length is an input parameter. The frequency 

required to reach the second crossover is typically up to 105 rad/s, usually obtained from 

diffusing-wave spectroscopy (DWS). 

 5) The accuracy of the pointer algorithm can be validated by showing (in what follows) 

that its predictions of  G’ and G” match, using the same parameter values, the results from a 

more microscopic slip-spring simulation, details of which can be found elsewhere [23]. 

 

Experimental Materials and Methods 

 The experimental data are for mixed surfactant solutions containing sodium laureth-1 

sulfate (SLE1S) and cocamidopropyl betaine (CAPB) of varying concentration with added NaCl, 

such that the total sodium ion concentration, including the counterions of SLE1S, is held 

constant at [Na+] = 0.70 M. The weight ratio of SLE1S to CAPB is 8.65 and the total volume 

fraction of surfactant lies in the range φ = 0.015-0.09. These solutions were prepared in D2O with 

0.5 wt% of 630 nm polystyrene latex beads for DWS analysis for the high frequency portion of 

the rheological spectrum. The added beads do not measurably affect the zero shear viscosity. The 

high frequency data measured using DWS are shifted vertically to merge smoothly with the 

mechanical rheology [17]. 

 A second set of data contains only SLE1S (φ = 0.067-0.14) and NaCl (3.1 wt%) in D2O. 

The rheology for these solutions are obtained from mechanical rheometry and no high frequency 

data are available. All data for both sets of solutions are taken at 25 C. 
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 Experimental values for the specific viscosity (defined as 𝜂𝑠𝑝 =
𝜂0−𝜂𝑠

𝜂𝑠
 , where η0 is the 

zero-shear solution viscosity and ηs is the viscosity of the pure solvent) is also obtained along 

with the modulus curves. At low concentrations, when the viscosity is low, the zero shear 

viscosity η0 is found by steady-state shear using a single-wall, Couette geometry and shear rates 

from 20 to 0.05 s-1. The zero shear viscosity is extracted in the limit of the low-shear viscosity 

plateau. At high enough concentrations, η0 is extracted from the complex viscosity plateau in the 

low frequency limit of a frequency sweep experiment. The solvent viscosity is determined using 

a rolling ball rheometer. 

 

Results and Discussion 

Anomalously Small Micelle Lengths from Rheology Using the Cates Method 

 Although the simplicity of the Cates method makes it a relatively fast way to determine 

the micelle length, in some cases, as discussed below, the calculated length is much shorter than 

might be expected based on the viscosity of the solution. Even more suspiciously, the micelle 

lengths predicted by the Cates method can sometimes actually decrease as the surfactant 

concentration increases, the opposite of the expected behavior predicted by simple laws of mass 

action (unless somehow concentration-dependent electrostatic interactions reverse this 

dependence). This anomalous inverted relationship between micelle length and concentration can 

be seen for our series of solutions containing mixed SLE1S and CAPB surfactants. Figure 2.1a 

shows the rheological data for a few of these solutions. As the surfactant concentration increases, 

G’ and G” increase and the minimum in G” (which is used in the Cates method) appears and 

becomes deeper; the terminal relaxation time, calculated as the inverse of the first crossover 

frequency, increases. All of these features indicate that wormlike micelles are present that, at 5% 
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and 10% concentrations, have become long and entangled. This conclusion is reinforced by a 

plot of the specific viscosity ηsp versus volume fraction φ in Figure 2.2. Figure 2.2 shows data for 

SLE1S solutions, without CAPB, and with constant added NaCl concentration (3.1 wt%), but the 

rheology for these solutions, shown in Figure 2.1b, is similar to that of the mixed surfactant 

solutions (Figure 2.1a), for which wormlike micelles are also expected to be present. Notice in 

Figure 2.2 that ηsp rises slowly with φ at low concentrations below about 1%, followed by a 

much steeper rise at higher concentrations. Figure 2.2 has a very similar appearance to 

corresponding plots of viscosity versus concentration for polymers solutions, such as that shown 

in Figs. 8.11 and 9.10 of Rubinstein and Colby [29]. For polymers, the region of steep increase in 

viscosity corresponds to a regime of well entangled micelles, suggesting that the micelles are 

long enough to be entangled at concentrations above 1%, and become longer still at 

concentrations approaching 10%. 

 

Figure 2.1: Example rheological data at various surfactant volume fractions shown in the 

legends. (a) SLE1S/CAPB at constant sodium ion concentration, [Na+] = 0.7 M and (b) SLE1S at 

constant added salt, NaCl = 3.1 wt%. 

 



21 

 

 However, Table 2.1a shows that the micelle lengths calculated from the mixed surfactant 

data in Figure 2.1a using the Cates method are very short, ≤ 200 nm, and decrease to a length ≈ 

100 nm, with increasing concentration.  We use in these calculations a previously determined 

persistence length of 70 nm [30], and approximate the plateau modulus as G’min, the value of G’ 

at the minimum in G”. The resulting micelle lengths are shorter than expected, having, on 

average, only Z = 〈𝐿〉/𝑙𝑒  = 3-6 entanglements, which would make them lightly entangled, and in 

entangled polymers, the rapid 3.4 power-law increase in viscosity with Z typically occurs only 

for Z > 2-4 [29]. Given that the zero-shear viscosities are thousands of times higher than the 

viscosity of water, and that the inverse of the low-frequency cross-over frequency indicates a 

relaxation time near 1 s, it seems unlikely that micelles would be that short and still show such 

high values of the solution viscosity and relaxation time. 

 To make these arguments more quantitative, we note firstly, that, the reptation times for 

the SLE1S/CAPB micelles predicted by the Cates method are approximately 0.001 s, much 

shorter than the relaxation times (~1 s) indicated by the terminal crossover frequency. The 

reptation time is calculated from 𝜏𝑟𝑒𝑝 =
2<𝐿>3

𝜋2𝛼𝐷0
, where 𝛼 ≡ 𝑙𝑒/𝑙𝑝  is the ratio of entanglement 

length to persistence length, the diffusivity is given by 𝐷0 =
𝑘𝐵𝑇

𝜍
 with the drag coefficient for a 

cylinder given by 𝜍 =
2𝜋𝜂𝑠

ln(𝜉 𝑑⁄ )
 , and 𝜂𝑠 the solvent viscosity (around 1 cP), d the micelle diameter 

(4 nm), and 𝜉 the correlation length (30-80 nm). Additionally, the experimental zero-shear 

viscosities at high concentrations in Table 2.1a are orders of magnitude higher than the 

viscosities we infer for solutions with micelles less than a micron in length from the slip-spring 

model, as shown later. The slip-spring model has been well validated by Likhtman for slightly 

and densely entangled polymers, and so estimates of viscosity from the slip-spring model should 



22 

 

be reasonably accurate, and yet are much lower than the experimental values if micelles are less 

than a micron in length. For example, in one of our comparisons with the slip-spring model, a 

solution with 0.84 μm-long micelles at a surfactant volume fraction of 0.01, has a predicted zero-

shear viscosity of 0.075 Pa∙s, about an order of magnitude smaller than that of even the most 

dilute solution in Table 2.1a. While perhaps not definitive, these arguments strongly suggest that 

the micelle lengths estimated by the Cates method are too short.  

 

Table 2.1a: Experimental rheological parameters and micelle lengths calculated from the Cates 

method for SLE1S/CAPB at [Na+] = 0.7 M. 

ϕ 
G0 ≈ G’min 

(Pa) 
G”min (Pa) le (nm) 〈𝐿〉 (μm) η0 (Pa∙s) 

0.015*     0.526 

0.020*     1.14 

0.025 8.48 3.55 84.9 0.202 2.82 

0.030 13.0 5.07 66.9 0.172 4.43 

0.040 28.0 7.60 43.7 0.161 10.5 

0.050 47.3 10.7 32.7 0.145 17.0 

0.050 49.9 9.72 31.7 0.163 21.7 

0.060 69.9 13.8 26.3 0.133 26.1 

0.070 95.9 16.6 22.1 0.127 38.5 

0.075 106 18.9 20.8 0.117 41.2 

0.079 125 22.7 19.0 0.105 43.3 

0.089 150 26.2 17.2 0.098 52.9 

*These data sets have no minimum in G” (see 1.5% solution in Figure 2.1). 

 

Table 2.1b: Experimental rheological parameters and micelle lengths calculated from the Cates 

method for SLE1S at NaCl = 3.1 wt%. 

ϕ G0 ≈ G’min 

(Pa) 

G”min (Pa) le (nm) 〈𝐿〉 (μm) η0 (Pa∙s) 

0.067 45.6 23.2 33.3 0.066 5.45 

0.080 105.2 25.0 20.9 0.088 17.5 

0.11 248.1 27.3 13.0 0.118 67.1 

0.14 370.3 30.4 10.4 0.127 113 
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 In fact, Granek and Cates [11] first proposed the relationship 
𝐺0

𝐺𝑚𝑖𝑛
" ~

〈𝐿〉

𝑙𝑒
 as a scaling 

relationship and simply chose a prefactor of unity to estimate specific values of the micelle 

length from literature data. They also remarked that micelle lengths will be underestimated if the 

timescale for micelle breakage and rejoining is on the same order of magnitude as the 

entanglement time, as seems to be the case for the experimental data discussed above. 

 Exploiting the similarity between Figure 2.2 and the corresponding data for polymer 

solutions, we can use the known scaling laws relating polymer length to viscosity, along with 

neutron scattering data in the dilute regime, to help estimate the lengths of threadlike micelles. 

Of course, threadlike micelles dynamically break and fuse, while polymers do not. Since for 

fixed average micelle length, breakage/scission decreases the viscosity of the micellar solution, 

by neglecting breakage/scission, the micelle length estimated from the measured viscosity 

without accounting for breakage/scission will be shorter than the actual length, and thus will be a 

lower bound on micelle length. The actual micelle length will be significantly longer especially 

at higher concentrations.   

First, note that at low concentrations below around 1%, the observed scaling of viscosity 

with concentration in Figure 2.2 is 𝜂𝑠𝑝 ∝ 𝜑1.7 while at concentrations above around 2%, the 

scaling is 𝜂𝑠𝑝 ∝ 𝜙5.0. From dilute polymer theory, we expect 𝜂𝑠𝑝 ∝ 𝜈𝑅𝑔
3, where ν is the micelle 

number density and Rg is the average radius of gyration of the micelle. For dilute polymers, the 

chain length is constant and so 𝜂𝑠𝑝 ∝ 𝜈 ∝ 𝜑. However, micelle length is expected to increase 

with surfactant concentration. Assuming a mean-field scaling of 〈𝐿〉 ∝ 𝜑0.5, and a good solvent 

scaling of  𝑅𝑔 ∝ 〈𝐿〉0.6, we obtain 𝑅𝑔 ∝ 𝜑0.3. Since 𝜈 ∝ 𝜑/〈𝐿〉  ∝  𝜑0.5, 𝜂𝑠𝑝 ∝ 𝜈𝑅𝑔
3 implies that 

𝜂𝑠𝑝 ∝ 𝜑1.4, somewhat weaker than the scaling observed in Figure 2.2, 𝜂𝑠𝑝 ∝ 𝜙1.7. A scaling 
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closer to the observed scaling 𝜂𝑠𝑝 ∝ 𝜙1.7 would be obtained if the non-mean-field, excluded-

volume, scaling [31] 〈𝐿〉 ∝ 𝜑0.6 holds, which leads to 𝜂𝑠𝑝 ∝ 𝜑1.6. 

At high concentrations, the predicted viscosity scaling from the Cates model in the fast-

breakage limit, with 〈𝐿〉 ∝ 𝜑0.5 , is 𝜂𝑠𝑝 ∝ 𝜙3.5 [12], which is lower than seen in Figure 2.2, 

𝜂𝑠𝑝 ∝ 𝜙5.0. The higher power law of the scaling in Figure 2.2 is likely to be partly due to 

micelles lying outside the fast-breakage limit, and perhaps partly due to more rapid growth of 

micelle length than 〈𝐿〉 ∝ 𝜑0.5. The average micelle length for the SLE1S solutions, at the same 

salt concentration (3.1 wt%), and at the lowest surfactant concentrations of 0.1-0.25%, was 

determined from small angle neutron scattering (SANS) to be around 200 nm [25]. Assuming a 

constant scaling law 〈𝐿〉 ∝ 𝜙0.5 across the range of surfactant concentrations, at the 

concentration 1% where the viscosity shows a transition from dilute to entangled, the micelle 

length should be 400-600 nm, and at 10% it should be 1-2 μm. For surfactant concentrations 

usually studied rheologically (around 10%), this again indicates that the micelles should be on 

the order of microns, not hundreds of nanometers or less. We also note from Table 2.1b that 

while the Cates method correctly predicts increasing micelle lengths as surfactant concentration 

increases, the lengths are much less than a micron and are shorter than the lengths from SANS (~ 

200 nm), even at concentrations 100 times higher than those at which SANS measurements were 

made. 
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Figure 2.2: Specific viscosity versus concentration of SLE1S surfactant and 3.1 wt% NaCl 

showing different power law dependencies in dilute vs. semi-dilute concentration ranges at 25°C. 

 

Review of Selected Literature Measurements of Micelle Length 

 In other work, micelle lengths were estimated over a range of surfactant concentrations 

through the use of SANS, cryo-TEM, and rheology. Afifi et al. [32] measured the linear rheology 

and a zero shear viscosity of 10-100 Pa∙s, or  𝜂𝑠𝑝 ≈ 104-105 for a wormlike micellar solution of 

10 wt% poly(oxyethylene) cholesteryl ether (ChEO10) and varying amounts of lipophilic 

monoglycerides. They then imaged micelles in a 5-fold dilution of this solution using cryo-TEM 

and performed SANS experiments on a 10-fold dilution. From SANS, the micelles were inferred 

to be ellipsoids or cylinders with elliptical cross-section and “lengths” between 16 and 80 nm, 

which, according to the authors, may be either contour lengths or persistence lengths, indicating 

either small micellar aggregates or semi-flexible wormlike micelles of unknown length. For the 

5-fold dilution from this concentration, cryo-TEM revealed long wormlike micelles greater than 

1 μm in length, although it must be acknowledged that the disruptive preparation methods for 

cryo-TEM could distort micelle length distributions. As we argued above for SLE1S/CAPB 
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micelles, the high viscosity of the 10% solution (i.e., or  𝜂𝑠𝑝 ≈ 104-105 ) suggests that micelle 

lengths for this solution are likely significantly longer than the SANS estimates for the diluted 

sample. Given the combined findings from multiple experimental methods, it seems possible that 

small ellipsoidal or short wormlike micelles exist at low surfactant concentrations, then grow 

into long wormlike micelles with lengths around 1 μm or more at higher surfactant 

concentration. 

 In an unusually thorough study, Helgeson et al. [14] found good agreement between 

micelle contour lengths from rheology and those from SANS for solutions of CTAB from 40 to 

100 mM (i.e., around 1-3% by volume) in NaNO3 at three mole ratios (1, 2, and 3) of salt to 

surfactant and temperatures ranging from 25-45 C. Other micelle parameters were also obtained. 

Importantly, the persistence length for each solution lp was obtained from the stress-optic 

coefficient in flow birefringence. The micelle breakage time 𝜏𝑏𝑟 = 1/𝜔𝑚𝑖𝑛 was taken as the 

inverse of the frequency at which G” reached a local minimum (which we find from the pointer 

algorithm not to be a very accurate estimate). The modulus G0 was obtained from Maxwell fits to 

the rheology, and this combined with lp was used to calculate the entanglement length le. To do 

so, the formula 𝜉 = (𝑘𝐵𝑇/𝐺0)1/3 for the mesh size was combined with the expression 𝜉 =

𝑙𝑒
3/5

𝑙𝑝
2/5

,  allowing le to be obtained. The Granek and Cates expression 
𝐺0

𝐺𝑚𝑖𝑛
" ~

〈𝐿〉

𝑙𝑒
 was then used to 

obtain 〈𝐿〉. The micelle lengths were obtained from SANS for many solutions and also from 

rheology for a half dozen of them; agreement between the two measurement was within 10%, 

and included lengths ranging from 200 to 900 nm, with the highest values at high surfactant and 

salt concentrations and low temperature, as expected. Based on the rheology and viscosities of 

these solutions, and our experience inferring lengths from the pointer algorithm, these lengths 

seem too short. The dependence of specific viscosity on concentration for these solutions showed 
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three scaling regimes corresponding to dilute, semi-dilute, and concentrated (fully entangled) 

solutions, very similar to those for polymers, again implying that the micelles are quite long in 

the entangled regime. 

 Additionally, the requirement of multiple Maxwell modes to approximate the data at 

lower salt and surfactant concentrations indicates that the micelles are not in the fast breakage 

limit. In that case, τbr > τrep and τR ≈ τrep, where τbr is the breakage time, τrep the reptation time, 

and τR the terminal relaxation time, all for a micelle of average length. But for a 60 mM CTAB 

and 120 mM NaNO3 solution studied by Helgeson et al., it is found that  τR = ωc1
-1 = 0.04 s and 

τrep = 1.4 x10-4 s, as calculated from the reported parameters (〈𝐿〉 = 225 nm, le = 221.5 nm, lp = 

32 nm). The terminal relaxation time τR is the inverse of the first crossover frequency, ωc1, and 

the reptation time is calculated from 𝜏𝑟𝑒𝑝 =
2〈𝐿〉3

𝜋2𝛼𝐷0
, where the diffusivity is given by 𝐷0 =

𝑘𝐵𝑇

𝜍
 

with the drag coefficient for a cylinder given by 𝜍 =
2𝜋𝜂𝑠

ln(𝜉 𝑑⁄ )
 [16]. This gives a reptation time two 

orders of magnitude shorter than the relaxation time from rheology, suggesting again that the 

micelle length used to estimate this reptation time is too short.  

 For this solution, the micelle length of 225 nm comes from fitting SANS data, but the 

actual micelle length for this and more concentrated solutions is likely longer than what that can 

be accurately resolved by SANS. The smallest q value for which Helgeson et al. report SANS 

data is about qmin = 0.03 nm-1, corresponding to 𝑟𝑚𝑎𝑥 =
𝜋

0.03 𝑛𝑚−1 = 105 𝑛𝑚. Even when micelle 

radii of gyration fall within this restriction, overlap of micelles leads to screening of scattering 

signal, making longer micelle lengths hard to infer by SANS. Others who have performed SANS 

measurements on non-dilute surfactant solutions have concluded that the micelles are too long 

for their lengths to be accurately determined from SANS. Work by Francisco et al. [33] that 

examined the effect of co-solutes on CTAB/NaSal micelles found a large variation in the 
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rheology and zero-shear viscosity, up to two orders of magnitude in the crossover frequency and 

viscosity. The SANS results, however, superimpose exactly for all co-solutes, and the authors 

comment that for micelles greater than a few hundred nanometers in length, a change in length 

would not be detectable by SANS. A different study of saponin micelles came to a similar 

conclusion. There Peixoto et al. [34] found relaxation times greater than 100 s from rheology but 

determined from SANS only that the micelle length was greater than the q range of their SANS 

experiments. Finally, Croce et al. [3,35], studying erucyl bis(hydroxyethyl) methylammonium 

chloride (EHAC) micelles, measured viscosities in the range of what is typically reported for 

solutions of wormlike micelles (1-100 Pa∙s). At these concentrations they note that the micelles 

are longer than can be measured within their q range and that there was no model to usefully fit 

the whole scattering curve. 

 As an example of the longer micelle length extracted from our experimental data using 

the pointer algorithm than is obtained from the Cates’ scaling law, Figure 2.3 shows a fit of 

rheology data for ϕ = 0.05 SLE1S/CAPB, [Na+] = 0.7 M, giving a micelle length of 〈𝐿〉 = 3.0 μm 

in contrast to the length of 0.145 μm calculated from the Cates method (Table 2.1a). A length of 

3.0 μm seems reasonable considering that a) the solution viscosity is high, indicating that the 

micelles are well entangled, that b) extrapolation of micelle lengths from SANS yields lengths 

well over 1 μm, and that c) long  ~1 m micelle lengths are observed in cryo-TEM results on 

other solutions with similarly high viscosities discussed above. All of these considerations 

suggest micelle lengths that are on the order of microns for surfactant solutions at our 

experimental concentrations. 
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Figure 2.3: Fits of original pointer algorithm with only fast Rouse modes (dashed lines) to an 

example experimental data set (solid lines) for which ϕ = 0.05, [Na+] = 0.7 M, and T = 25°C, 

resulting in the following “best fit” micelle parameters: G0 = 76 Pa, 〈𝐿〉 = 3.0 μm, τbr = 0.73 s, lp 

= 76 nm, and le = 140 nm. 

 

Comparisons with Slip-Spring Simulations 

 To further validate the micelle length obtained from the pointer algorithm, we next 

compare rheology generated by the pointer algorithm to results from a more highly resolved slip-

spring simulation model. The slip-spring model, originally developed for solutions of entangled 

polymers as an alternative to the tube model, and which is regarded as quantitatively accurate for 

polymer solutions and melts, treats each polymer as a bead-spring Rouse chain with 

entanglements represented by slip-links attached to the chain [19,22]. To adapt this model to 

micelles, chains were allowed to reversibly break and rejoin [23]. To make the slip-spring 

simulations numerically tractable, the micelles must be relatively short and therefore only 

weakly entangled with an average number of entanglements Z = 3 or 5. Stresses in this limit are 

often too low to be measurable for experimental solutions, but since the slip-link simulations 

have proved to be quite accurate for entangled polymers, they can serve to test the accuracy of 
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the rheological predictions of the pointer algorithm, thus justifying their use for estimating 

micelle length. 

 The slip-spring model naturally captures reptation, contour length fluctuations, constraint 

release, and Rouse modes. The pointer algorithm imposes the effects of these phenomena on 

rheology in a coarser-grained way, but only the short range (fast) Rouse modes were originally 

included. Slower, “longitudinal” Rouse modes were omitted from the original pointer algorithm 

because they were assumed to be negligible relative to the stresses produced by entanglements. 

(Additionally, in the comparisons to the slip-spring model, bending modes usually present in the 

pointer algorithm are dropped since the slip-spring simulations do not have bending modes.) In 

previous work [23], we found good agreement between the predictions of the slip-spring and the 

original pointer algorithm at low frequency, but pronounced deviation starting at intermediate 

and high frequencies; this deviation could be alleviated by inclusion of the full spectrum of 

Rouse modes rather than just the high-frequency ones. The inclusion of the full spectrum of 

Rouse modes can be justified by the weakness of the entanglements in the slip-spring 

simulations, since Z = 3 or Z = 5 represents only 3 or 5 entanglements, which is not enough to 

create a distinct “tube” able to suppress the slow Rouse modes. 

Even for a highly entangled solution, there should be slower, longer-range modes present, 

but restricted by the tube to one-dimensional relaxation and hence having reduced amplitude.  

Within the tube model, the one dimensionality of these modes is imposed by reducing their 

amplitude by a factor of 5 relative to their original amplitude in the absence of the tube. These 

reduced-modulus slow Rouse modes are called “longitudinal” Rouse modes. Thus, for weakly 

entangled micelles with Z = 3 or 5 (where we use “Z” as a shorthand for the average value 〈𝑍〉), 

we found in previous work that the full Rouse spectrum of modes should be added to the 
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predictions of the pointer algorithm to be able to match results from the slip-link model. For high 

degrees of entanglement, the longitudinal Rouse modes, with their reduced magnitude, should 

theoretically be included, but were assumed to have negligible effect and so were neglected in 

the original pointer algorithm. However, because we found that these slower modes are clearly 

important for weakly entangled micelles and must be included, we wish to check whether the 

longitudinal Rouse modes (i.e., with reduced amplitude) need to be included even for higher 

levels of entanglement. Thus, there are three options for choice of Rouse modes, shown 

mathematically below in Eqs. 2.1 and 2.2 respectively, where the first terms in Eq. 2.1 are the 

longitudinal Rouse modes. In these equations, ϕi and Zi are the volume fraction and number of 

entanglements respectively of micelles of length i, p is the mode number, and τe is the 

entanglement time. 
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 Figure 2.4 compares results from slip-spring simulations to those from the pointer 

algorithm, using each of the three options for Rouse modes, namely 1) fast Rouse modes only 

(second term only in Eqs. 2.1a and 2.1b), 2) a “fractionated” Rouse spectrum including fast and 

longitudinal Rouse modes (both terms in Eqs. 2.1a and 2.1b), or 3) full Rouse modes (Eqs. 2.2a 

and 2.2b). The calculations are carried out for solutions of micelles with mean length of 0.84 or 

1.4 μm, containing, respectively, 3 or 5 entanglements with an entanglement length le of 280 nm; 

a micelle persistence length of 20 nm, resulting in a semi-flexibility parameter α = le/lp of 14; and 

ratio of breakage to reptation time ζ = 100. These comparisons show that adding longitudinal 

Rouse modes improves the comparison marginally, but using a full Rouse spectrum gives us 

good agreement with the slip-spring simulations across the whole frequency range. It therefore 

seems that at low numbers of entanglements, the entanglement network is not fully formed and at 

short length scales, the tube has no confining effect, leading to relaxation by unfractionated 

Rouse modes. Thus full Rouse modes give the best overall agreement to the slip-spring model. 

Similar results are obtained when Z < 5 for other values of ζ. 
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Figure 2.4: Comparison of G’ and G” between the slip-spring model and the pointer algorithm at 

(a) Z = 3 and (b) Z = 5. In each sub-plot the curves for the three cases are separated by shifting 

the upper two cases upwards by either one or two decades. 

 

 We next investigate at what point the tube has enough entanglements to suppress the 

longitudinal Rouse modes, as originally assumed. To do this, we compare fits of pointer 

algorithm predictions to SLE1S/CAPB experimental data using our three different options for 

Rouse modes discussed above. Two sample experimental data sets are fit by the pointer 

algorithm predictions in Figure 2.5, with bending modes included. We find that for all solutions, 

adding additional Rouse modes results in better fits to the experimental data, particularly beyond 

the maximum in G”, where fits with only fast Rouse motion tend to underestimate the moduli. 

By modifying the Rouse modes, we can fit the experimental data well across all frequencies. At 

lower concentrations where Z = 7 (Figure 2.5a), adding full Rouse modes improves the 

predictions at frequencies above the first cross-over. At a higher concentration with Z = 30 

(Figure 2.5b), including full Rouse modes no longer results in a good fit to the experimental data, 
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which can be seen particularly near the minimum in G”. From the slip-spring simulation data, 

with Z = 3 and 5, we determined that simulations with full Rouse modes best represent the high-

frequency relaxation for small Z. All these results taken together are consistent with the 

progressive formation of a confining tube as the number of entanglements per micelle increases. 

Based on our fits, the transition from full to fractionated (fast and longitudinal) Rouse modes 

seems to occur at or slightly below around 15 entanglements per micelle. At no point does it 

appear that the tube entirely suppresses the influence of longitudinal Rouse modes, contrary to 

the original pointer algorithm model. 

 

 

Figure 2.5: Fits of pointer algorithm predictions to rheological data for SLE1S/CAPB and [Na+] 

= 0.7 M at (a) lower concentration (ϕ = 0.025, Z = 7) and (b) higher concentration (ϕ = 0.089, Z 

= 30) with different treatments of Rouse modes. The topmost two sets of curves in both graphs 

have been shifted upwards for readability. 
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Micelle Parameters Obtained by Pointer Algorithm 

 By fitting a series of experimental data sets using the pointer algorithm, we can determine 

how the micelle parameters vary with the surfactant concentration. The data we consider here are 

for the SLE1S and CAPB solutions with NaCl added to maintain a constant sodium ion 

concentration (while the surfactant concentration varies). Example fits can be found in Figure 2.3 

andFigure 2.5 above. Figure 2.6 shows selected micelle parameters extracted from the 

experimental data using our various treatments of the Rouse modes. From Figure 2.6, the 

parameters most sensitive to the treatment of the Rouse modes are τbr, which varies by about a 

factor of three, and 〈𝐿〉, which varies by a factor of two.  However, in all cases, the micelle 

lengths obtained are on the order of microns, not hundreds of nanometers or less. Thus, the 

conclusion that micelle lengths are on the order of microns is robust to the choice of how the 

Rouse modes are treated. We note that fits are better when we include the slower Rouse modes. 

Table 2.2 gives our calculated scaling laws along with their mean-field theoretical values in the 

fast-breakage limit and literature values drawn primarily from experimental correlations. For the 

case in Table 2.2 labeled “full (Z < 15) to fractionated Rouse modes,” (third column), when 

calculating scaling laws we assume a transition from full Rouse modes at low Z  < 15 to a 

combination of fast and longitudinal Rouse modes for Z ≥ 15. Overall, we find that the scaling 

exponents (except the one for τbr) agree fairly well with their theoretical values as well as with 

literature values. Scaling exponents for the plateau modulus similar to those obtained by our 

fitting have been reported in the literature – 1.85 for CTAB and KBr [12], 2.18 for CPyCl/NaSal 

and NaCl [28], and 2.12 for CTAC/NaSal and NaCl [36]. For the micelle length, Berret et al. 

[28] used a combination of rheology and light scattering to find a scaling relation with a power 

of 0.24 or 0.36, though they did not explicitly determine the micelle length. Re-analysis of their 
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data resulted in a power law of 0.60 [37]. These values are similar to the theoretical value as well 

as to the range of values calculated from fits of our data by the pointer algorithm. The greatest 

deviation from theory occurs for the breakage time, where the theoretical scaling exponent is 

simply the negative of the exponent for micelle length, based on the assumption that the product 

𝜏𝑏𝑟〈𝐿〉 is constant (an assumption not made when using the pointer algorithm). The persistence 

length from fits by the pointer algorithm is approximately constant at high concentrations, as 

shown in Figure 2.6d, consistent with theory, but then appears to decrease at lower 

concentration. Previous work [17] at lower surfactant concentrations reports persistence lengths 

of around 20-30 nm, which is consistent with our finding of a lower persistence length at low 

concentration. 
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Figure 2.6: Micelle parameters extracted from rheological data for SLE1S/CAPB at [Na+] = 0.7 

M, using the pointer algorithm with varying choices for Rouse modes described in the legend of 

(d). Figure 2.6(c) also contains linear fits to the 〈𝐿〉 values on a log-log plot from which different 

values of the scaling exponent are obtained and tabulated in Table 2.2, for the different 

treatments of the Rouse modes. 

 

Table 2.2: Scaling-law exponents for surfactant-concentration dependencies 

parameter 
fast Rouse 

modes only 

full (Z < 15) 

to fractionated 

Rouse modes 

fractionated 

Rouse 

modes 

mean field 

[12] 

literature 

[12,28,36,38,39] 

τbr -1.1 -0.84 -1.5 -0.5  

〈𝐿〉 0.48 0.28 0.64 0.5 0.24-0.6 

G0 1.77 1.83 1.69 2.2 1.5-2.18 

lp ~0 ~0 ~0 0  

le -0.57 -0.65 -0.56 -0.75 -0.65 – -0.72 

η0 2.9 2.9 2.9 3.5 2.42-5 
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A New Cates-like Correlation for Micelle Length 

 Finally, we attempt to recover a Cates-like scaling for the micelle length, i.e., resembling 

𝐺0

𝐺𝑚𝑖𝑛
" ~

〈𝐿〉

𝑙𝑒
, but matching our micelle lengths fitted from the pointer algorithm. Fitting rheological 

data for a variety of mixed SLE1S/CAPB and pure SLE1S solutions with NaCl using the pointer 

algorithm with only fast Rouse modes, we find that by plotting the experimental values for 

G’min/G”min rather than G0/G”min against 〈𝐿〉/le (Figure 2.7), we obtain a best-fit relationship 

𝐺′𝑚𝑖𝑛

𝐺𝑚𝑖𝑛
" = 0.225 (

〈𝐿〉

𝑙𝑒
)

0.99±0.03

, which is essentially the Cates scaling with a prefactor less than unity 

and that uses the experimental value of G’min instead of an estimated plateau modulus. If we use 

results from full Rouse modes for Z  < 15 and from fast and longitudinal Rouse modes for Z > 

15, we obtain 
𝐺′𝑚𝑖𝑛

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82±0.05

, which more closely resembles a refinement of the 

Cates scaling law by Granek [37] that includes contour length fluctuations as well as Rouse 

modes and predicts a 0.8 power-law exponent. The similarity between our exponent of 0.82 and 

the 0.8 power-law exponent derived by Granek may be significant since the Granek correction 

includes contour length fluctuations which are also part of the pointer algorithm. However, the 

pointer algorithm also includes constraint release and bending modes, which are lacking from the 

Granek calculation, and so the similarity of the exponents may be fortuitous. 

 When we used the original Cates scaling law to calculate average micelle lengths for our 

experimental data in Table 2.1a and b, we found that the lengths were too short and for the data 

in Table 2.1a, the micelles were predicted to shrink as surfactant concentration increased. Our 

modified Cates scaling relation derived from the pointer algorithm, however, is consistent with 

micelles growing as surfactant concentration increases and yields micelles that are at least 10-20 

times longer than calculated from the original Cates method. Both the micelle growth and 
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lengths given by the modified scaling better agree with the high solution viscosities. For the 

solutions with a constant concentration of added salt (Figure 2.1b and Table 2.1b), the micelle 

lengths are also longer than the lengths determined from SANS at lower concentrations, not 

shorter as is found from the Cates scaling law. 

 The increased micelle lengths come partially from the crossover formula in the pointer 

algorithm which accounts for a transition between loosely and tightly entangled micelles and an 

additional factor of 9.75 in the formula 𝐺0 = 9.75 𝑘𝐵𝑇 𝜉3⁄  for loosely entangled micelles, rather 

than the simple scaling law 𝐺0 = 𝑘𝐵𝑇 𝜉3⁄  typically used along with the Cates scaling law to 

determine micelle length. The factor of 9.75 is based on equations for the packing of polymer 

chains in good solvent, with the full derivation given in [16]. Inclusion of the prefactor 9.75 

increases ξ by 9.751/3 = 2.14, which in turn increases le and thus 〈𝐿〉 by 2.145/3 = 3.5. For more 

tightly entangled micelles, the effect of the prefactor lessens. The additional prefactor of 0.317 in 

the modified Cates relationship further increases the micelle length by (0.317-1)1/0.82 = 4.1. 

Assuming loosely entangled micelles, the cumulative effect is to increase the micelle length by a 

factor of about 15 compared to the original Cates method. 

 The Cates model in the “fast breakage limit” also allows derivation of a relationship for 

the terminal relaxation time – 𝜏𝑅 = (𝜏𝑏𝑟𝜏𝑟𝑒𝑝)
0.5

.  If we allow the exponents for τbr and τrep to 

vary separately but constrain them to sum to unity so that the expression remains dimensionally 

correct, we calculate 𝜏𝑅 = 0.48𝜏𝑏𝑟
0.58𝜏𝑟𝑒𝑝

0.42 and 𝜏𝑅 = 0.48𝜏𝑏𝑟
0.63𝜏𝑟𝑒𝑝

0.37 for simulations with fast 

Rouse modes only and modified Rouse modes respectively. These scaling laws indicate that the 

pointer algorithm results are in general agreement with the Cates model scaling for the relaxation 

time, but have a stronger dependence on the breakage time. Thus, for both the micelle length 〈𝐿〉 
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and time scale 𝜏𝑅, we recover scaling relationships that are similar with those from the Cates 

theory, but with somewhat different exponents and prefactors. 

 

 

Figure 2.7: Scaling relation between G’min/G”min and 〈𝐿〉/le with fast Rouse modes only (filled 

diamonds), slope = 0.99 ± 0.03, or a transition from unfractionated to a combination of fast and 

longitudinal Rouse modes (open circles), slope = 0.82 ± 0.05. 

 

 We now use the correlations established above, in particular the new Cates-like scaling 

law  

𝐺′𝑚𝑖𝑛

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

 (2.3) 

to predict the micelle length for the 60 mM CTAB/120 mM NaNO3 solution from Helgeson et 

al. [14]. This prediction enables us to further test the pointer algorithm and compare the micelle 

lengths obtained from the pointer algorithm with the published value. The input parameters for 

the pointer algorithm are taken to be G0 = 22.2 Pa, 〈𝐿〉 = 1.2 μm, lp = 32 nm, and ζ = 200. The 

micelle length is obtained using Eq. 2.3, and details of how the other parameters are estimated 

for this solution, from information provided in the paper of Helgeson et al., can be found in 
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Appendix A. Figure 2.8 compares experimental data to predictions of the pointer algorithm 

obtained from the above micelle parameters and from those published in Helgeson et al. The 

most significant difference is that our correlation in Eq. 2.3 gives a micelle length of 1.2 μm, 

while in Helgeson et al., the reported length is 225 nm, obtained from the Cates correlation. 

 We can see in Figure 2.8 that the published parameter values, when used in the pointer 

algorithm, result in G’ and G” curves that relax 1-2 orders of magnitude more quickly than in the 

experiments, as might have been expected from the calculation of the reptation time above. 

Furthermore, using the published values, the shapes of the relaxation curves do not match the 

experimental data, and no crossover between G’ and G” is observed, all of which signifies that 

the micelle length of 225 nm is too short. Alternately, the results from the micelle length 

obtained from Eq. 2.3, with other parameters given in Appendix A, match the experimental data 

fairly well. The micelle length from Eq. 2.3, 1.2 μm, corresponds to about five entanglements. 

Since our new parameters for this solution were themselves obtained from the predictions of the 

pointer algorithm, it is no great surprise that the rheology predicted by the pointer algorithm 

using these same parameters agrees with the data. However, recall that the predictions of our 

pointer algorithm also agree well with those from the slip-spring model, where this model has 

proved able to predict well the effects of entanglements in polymers, and so is likely quite 

accurate. This, plus the fact that the micelle length we estimate from Eq. 2.3 is consistent with 

the relatively high solution viscosity, strongly indicates that the micelle lengths we obtain from 

the pointer algorithm are more accurate than those estimated from the original Cates scaling law.   
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Figure 2.8: Experimental data for 60 mM CTAB/120 mM NaNO3 solution from Helgeson et al. 

[14] (symbols) compared to results from pointer algorithm using both micelle parameters given 

in Helgeson et al. (dashed lines) and those calculated from the new Cates-like scaling law, Eq. 

2.3, for micelle length with other parameters estimated in Appendix A. 

 

 While the modification of the Cates method by Granek results in somewhat longer 

micelle lengths and a scaling exponent (0.8) in closer agreement to what we obtain from the 

pointer algorithm, the Granek modification does not change predictions of decreasing micelle 

length with increasing surfactant concentration obtained from the Cates method, and the micelle 

lengths remain much smaller than those inferred from the pointer algorithm, unless the prefactor 

of the scaling law is changed to a value suggested by fits to results from the pointer algorithm.  

Although most of the fits and our proposed scaling laws are based on the SLE1S + CAPB/NaCl 

system, the pointer algorithm should be generally applicable to solutions of entangled wormlike 

micelles. Our prediction of the experimental data from Helgeson et al. indicates that this true, but 

to verify that the pointer algorithm and the derived scaling laws are applicable to any given 

surfactant solution with entangled micelles, more pointer algorithm fits with different systems 

would need to be run.  Further comparisons of the pointer algorithm with predictions of the slip-
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spring model for more highly entangled wormlike micelles should also help determine the 

general accuracy of the pointer algorithm. 

 

Conclusions 

 Using a mesoscopic simulation, the pointer algorithm, we have extracted surfactant 

micelle parameters from linear rheology data for entangled wormlike micellar solutions for a 

series of solutions of sodium laureth-1 sulfate (SLE1S) and cocamidopropyl betaine (CAPB) in 

NaCl solutions.  In particular, the extracted average micelle lengths 〈𝐿〉 are more consistent with 

the high solution viscosities, in excess of 102 Pa∙s, measured for these solutions, than are the 

values extracted from the Cates method in which 
𝐺0

𝐺𝑚𝑖𝑛
" ~

〈𝐿〉

𝑙𝑒
 where 𝑙𝑒 is the entanglement length, 

G0 is the plateau modulus, and 𝐺𝑚𝑖𝑛
"  is the local minimum value of G” as a function of 

frequency. Similar data in the literature also give sub-micron micelle lengths despite high 

solution viscosities, again suggesting underprediction of micelle lengths by the Cates method. 

 To further validate the micelle lengths from the pointer algorithm, we compared G’ and 

G” curves generated by the pointer algorithm to results from a slip-spring simulation model 

adapted to breakable chains and found good agreement between the two methods after modifying 

the Rouse modes in the pointer algorithm to include low-frequency modes. By modifying the 

pointer algorithm by switching to an unfractionated Rouse spectrum at low concentrations and 

adding longitudinal Rouse modes to the high-frequency modes at higher concentrations where 

the number of entanglements per micelle exceeds Z = 15, we also improved our fits to 

experimental data. From the fits to experimental data by this and the original version of the 

pointer algorithm, we calculated scaling laws for the micelle parameters that generally agree with 

theoretical and literature values, and that do not depend severely on the choice of which Rouse 
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modes to include. Additionally, the micelle lengths from fits of the pointer algorithm to 

experimental data for a variety of surfactant solutions follow a scaling law, 
𝐺′𝑚𝑖𝑛

𝐺𝑚𝑖𝑛
" =

0.317 (
〈𝐿〉

𝑙𝑒
)

0.82

, similar to the scaling law 
𝐺0

𝐺𝑚𝑖𝑛
" ~

〈𝐿〉

𝑙𝑒
, of Cates and even more similar to the scaling 

law 
𝐺0

𝐺𝑚𝑖𝑛
" ~ (

〈𝐿〉

𝑙𝑒
)

0.8

 of Granek.  But, because of the smaller prefactor (0.317), the new scaling law 

is more consistent with the longer micelle lengths obtained from the pointer algorithm. Thus, the 

pointer algorithm allows extraction of micelle parameters, in particular the average micelle 

length, that are consistent with the high solution viscosities of these solutions, and gives 

dependencies of micelle parameters on surfactant concentration that are generally in agreement 

with theoretical scaling laws. In the future, we recommend use of either the pointer algorithm or 

the scaling law 
𝐺′𝑚𝑖𝑛

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

, rather than the Cates scaling law, to extract average 

micelle lengths from rheological data. 
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Chapter 3: Quantitative Modeling of Threadlike Micellar Solution Rheology 

Abstract: A mesoscopic simulation method, the “pointer algorithm,” is here shown to capture 

accurately the rheology of a variety of surfactant solutions, including CTAB/NaNO3, 

CPyCl/NaSal, and CTAB/NaSal, at different salt and surfactant concentrations presented in the 

literature. In addition, correlations derived from this method are shown to allow the average 

micelle length 〈𝐿〉 to be estimated from 
𝐺𝑚𝑖𝑛

′

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

 where  G’min/G”min is the ratio of 

storage to loss modulus at the frequency where G” exhibits a local minimum, and 𝑙𝑒 is the 

entanglement length, which can be estimated from the modulus. We also obtain from the pointer 

algorithm a formula whereby the micelle breakage time τbr can be estimated from the longest 

relaxation time 𝜏𝑅. The pointer algorithm’s predictions are also shown to match those of a more 

microscopic slip-spring model, which had been previously validated by comparison to polymer 

rheological data. Thus, the work provides both a method and example estimates of these 

parameters as functions of surfactant and salt concentration, filling a major gap in 

characterization of these solutions. Finally, we investigate the determination of the micelle 

persistence length from high frequency data. 

 

Introduction 

 Over the past forty years, starting with the work of Cates [5], a theory for the rheology of 

surfactant solutions containing wormlike micelles has been developed by borrowing from 

entangled polymer theory the relaxation processes of reptation, contour length fluctuations, and 
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constraint release (e.g. double reptation), and adding to these micelle reversible breakage and 

rejoining [16]. In addition, to model the rheology at high frequencies, Rouse and bending modes 

have been included [20,21]. Granek and Cates [11,37] derived from a simplified version of the 

model an empirical scaling relation (with prefactor assumed to be unity) that allowed the average 

micelle length to be estimated from experimental linear rheology, specifically from the ratio of 

the plateau modulus to the loss modulus at the frequency where G” exhibits a local minimum, 

G0/G”min. Such a method is much needed, given that length (or molecular weight) is perhaps the 

most basic characterization of polymeric materials, and cannot be readily obtained in entangled 

solutions of wormlike micelles, because the latter are the result of self-assembly. This points to 

the general difficulty that micelle parameters, especially their length and average time to break, 

cannot be obtained readily except by fitting to rheological models. But these models themselves 

need to be tested against experimental data from which the parameters are obtained, thus 

introducing circularity in model building and testing. 

 More recently, the core ideas of Cates, and the above relaxation mechanisms, were 

incorporated with greater precision into the “pointer algorithm,” a mesoscopic simulation 

method, and used to extract micelle parameters, including the average micelle length and 

breakage time, by fitting linear rheology data over the entire frequency range (and not relying on 

matching data at a single frequency, for example) [16,17]. In particular, in previous work, we 

used the pointer algorithm to obtain micelle parameters for various sodium laureth-1 sulfate 

(SLE1S) + cocoamidopropyl betaine (CAPB)/NaCl solutions, and showed that and predictions of 

the pointer algorithm were consistent with a correlation linking micelle length to G’min/G”min 

similar to what Cates found, but with prefactor significantly different from unity [15], as 

discussed below. We also previously derived a novel correlation (discussed below) for the 
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micelle breakage time, which is another critical micelle parameter not easily determined except 

through rheology. 

 While the above represents significant progress, the theory for entangled wormlike 

micelles remains much less developed than that for entangled linear polymers, from which the 

former was derived. For entangled polymers, standard sets of reference data have accumulated, 

for which theory works relatively well at least in the linear viscoelastic regime, while such data 

sets remain either unavailable, or at least unrecognized, for wormlike micelles. Moreover, 

rheological data for different polymer chemistries have been shown to behave essentially 

identically with each other, as long as the relevant parameters, especially the number of 

entanglements per polymers Z, are the same, and the effects of other parameters, such as 

frictional time and plateau modulus, are scaled out. No such “universality” in the linear rheology 

of wormlike micelles that self assemble from solutions of various surfactants and salts has been 

identified, although the rheological data do show common features. As alluded to above, a key 

problem is the lack of accurate characterization of the self-assembled micelles that form in such 

solutions.  

 We here address this problem in two different ways.  The first is a comparison of the 

predictions of the pointer algorithm with predictions of a more microscopic model, the slip-

spring model, which has already been validated by previous comparisons of its predictions 

against the linear rheology of well-characterized entangled polymer solutions and melts. Initial 

comparisons of the pointer algorithm against the slip-spring model were presented in our 

previous work [15], and here we extend these comparisons to more densely entangled micellar 

solutions. 
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The second validation method is to fit the predictions of the pointer algorithm to 

rheological data for multiple wormlike micelle solutions in the literature, thereby extracting 

fitted micelle parameters, and simultaneously testing the consistency of the quality of the fit. We 

can also use our scaling laws derived from the pointer algorithm that link micelle length and 

breakage time to simple rheological properties, to set our micelle parameters in advance, and 

then use these parameters to see how well predictions of the pointer algorithm fit the 

experimental rheology. While this method remains circular (since it uses a correlation derived 

from the pointer algorithm itself to obtain the parameters needed to make predictions using the 

pointer algorithm), this strategy does check the self-consistency of the method. 

 Additionally, as part of the project to investigate the “universality” of the rheology of 

entangled micellar rheology, we survey some of the methods used to obtain surfactant rheology 

and determine micelle parameters, including the extraction of the persistence length from high-

frequency diffusing wave spectroscopy (DWS) data and methods of estimating the micelle 

diameter. 

 In what follows, we first briefly survey the experimental linear rheology data we draw 

from the literature. Then we describe briefly the pointer algorithm and the correlations derived 

from it. Next, we continue our validation of the pointer algorithm predictions by comparing them 

against those of slip-spring simulations for micelles whose average lengths range from Z = 3 to Z 

= 9 entanglements per micelle, using the same micelle parameters in both models. We then apply 

the pointer algorithm to experimental data, both by fitting its predictions to the data through 

iterative prediction, thereby extracting “best-fit” micelle parameters, and by extracting the 

parameters more simply through use of the correlations, and then using these parameters to 

predict directly the linear rheology from the pointer algorithm. Finally, we check how well the 
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latter predictions agree with the experimental data and how similar the parameters obtained from 

the correlations are to those obtained by iteratively fitting the predictions of the pointer algorithm 

to the data. These processes help check and confirm the ability of the pointer algorithm to fit the 

linear rheological data for a wide variety of experimental micellar solutions, and the ability of the 

simple correlations to calculate fairly accurately micellar parameters that are very difficult to 

measure in any other way. An important and unique output of this paper is a tabulation of micelle 

parameters, including micelle length, breakage time, and persistence length, at various surfactant 

and salt concentrations, for the most commonly studied micellar solutions, information that had 

not heretofore been assembled in a systematic way. 

 

Experimental Data from Literature 

 The main experimental data analyzed in this work comes from multiple sources. The first 

set of solutions, from Helgeson et al. [14], contain cetyltrimethylammonium bromide (CTAB) at 

a constant surfactant concentration of 0.1 M and NaNO3 salt concentrations of 0.1, 0.2, and 0.3 

M, giving salt to surfactant ratios of R =1, 2, and 3. The data were obtained from mechanical 

rheometry at 25C. We compare the linear rheology of these solutions to that of a series of 

SLE1S solutions at a surfactant volume fraction φ = 0.05 and NaCl salt concentrations of 4.6, 

5.1, and 5.3 wt%. The rheology of these SLE1S solutions at 25C was measured using 

mechanical and high-frequency diffusing wave spectroscopy (DWS), with mechanical and DWS 

data merged as described in previous work [17].  

 We also consider the rheology of 0.1 M cetylpyridinium chloride (CPyCl)/0.06 M sodium 

salicylate (NaSal) solutions from Oelschlaeger et al. [40] at temperatures varying from 20-40C, 

again from a merger of mechanical and DWS data. 
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 The last experimental data set considered here in detail is from a 0.1 M CTAB solution at 

22C with 0.04 M NaSal taken from Galvan-Miyoshi et al. [13], which includes DWS and 

mechanical data. These data represent a sample of commonly studied surfactants and salts having 

micelle parameters that span several orders of magnitude, showing the applicability of the 

pointer algorithm and its underlying theory to micelles that range from short and weakly 

entangled, that relax faster than they break, to ones that are long, highly entangled, and break 

multiple times before relaxing. 

A few other less systems with less complete data, or less favorable for application of the 

pointer algorithm, are considered briefly at the end of this paper and in Appendix F. 

 

Methods 

 For each set of rheology curves from the literature, we calculate the predicted micelle 

parameters from our previously determined correlations, as detailed below. We then compare the 

rheological properties predicted by the pointer algorithm using these parameters to the 

experimental rheology, to verify the consistency of the correlations. When possible, we also fit 

directly the experimental data using the pointer algorithm to compare the fitted micelle 

parameters with those calculated from the correlations. 

 In previous work [15], we fitted experimental rheological data for SLE1S and CAPB 

solutions with NaCl and found that the extracted parameters could be described well by 

correlations for the micelle length and breakage time. These correlations provide a method for 

determining micelle parameters from rheology that is much faster and more convenient than 

fitting them by iteratively running a full pointer-algorithm simulation. Below we review briefly 

the correlations and other formulas that relate micelle parameters to each other, whose derivation 
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is presented in detail in previous work [15,16], and show how to use these equations to calculate 

the micelle parameters necessary to run a predictive pointer algorithm simulation. 

 The pointer algorithm involves various time scales, length scales, and dimensionless 

parameters, although only a few of these are completely independent. To run a single-iteration, 

predictive, pointer algorithm simulation, the independent parameters required are the diameter d, 

persistence length lp, semi-flexibility factor α, average micelle length 〈𝐿〉, and dimensionless 

breakage rate ζ, as well as some experimental and rheological parameters. The semi-flexibility 

factor is defined as α = le/lp, where le is the entanglement length, and the dimensionless breakage 

rate as 𝜁 =
𝜏𝑏𝑟

𝜏𝑟𝑒𝑝
, where τbr and τrep are the breakage and reptation times respectively. We have 

found that the diameter cannot be determined from rheology, so it is treated as an input 

parameter that must be obtained from other experimental methods (such as neutron scattering 

[25,41,42]) or from simulations [43]. Without high-frequency data, the persistence length also 

cannot be extracted from rheology and must be determined from another method such as small-

angle neutron scattering (SANS) [25], simulations [43], or rheo-optics [14]. If high-frequency 

data are available, the persistence length can be calculated along with the other independent 

parameters through the equations and correlations below. 

 Firstly, the experimental temperature T, solvent viscosity ηs, and volume fraction φ are 

required, as well as the rheological parameters G’min, G”min, and ωc1, which are, respectively, the 

values of G’ and G” at the minimum in G” and the first crossover frequency ωc1. These values 

are known, physical, properties of the solution that will be used in the calculations that follow. 

 From G’min and G”min, the plateau modulus G0, which is related to le and lp and is 

necessary to determine α, is calculated from the correlation given in Appendix A, 

𝐺0

𝐺𝑚𝑖𝑛
′ =

4.75

(𝐺𝑚𝑖𝑛
′ 𝐺𝑚𝑖𝑛

"⁄ )
+ 0.625  (Eq. 3.1) 
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for G’min/G”min < 10 or G0 ≈ G’min for G’min/G”min > 10. The plateau modulus is also defined by a 

“crossover formula” (Eq. 3.2 below) in the pointer algorithm that spans between “loose” and 

“tight” entanglement regimes, defined, respectively, by le/lp > 2 and by le/lp < 1 [16].  

𝐺0 =
𝛼3

3+𝛼3 9.75
𝑘𝑏𝑇

𝛼1.8𝑙𝑝
3 +

3

3+𝛼3

28

5𝜋

𝜙𝑘𝑏𝑇

𝑑2𝛼𝑙𝑝
  (Eq. 3.2) 

 If no high-frequency data, such as from diffusive wave spectroscopy, are available, one must 

pre-specify the value of lp, which is input into Eq. 3.2 along with the other known parameters, 

and Eq. 3.2 can then be solved for le, which is finally used with lp to obtain α = le/lp. If there are 

high-frequency data, both lp and le (and thus α) can be taken as unknowns in Eq. 3.2 and another 

equation, derived from the high-frequency data, is necessary. Such an equation has been used by 

Willenbacher et al. [26], derived from high-frequency relaxation of micelles through bending 

modes [21] (Eq. 3.3 below), which leads to a 3/4 power law for the loss modulus at high 

frequency. 

𝐺” − 𝜔𝜂𝑠 = 𝐼𝑚 [
1

15
𝜌𝜅𝑙𝑝 (

−2𝑖𝜍⊥

𝜅
)

3 4⁄

𝜔
3

4] (Eq. 3.3) 

Here, the area density of micelles ρ, is defined by 𝜌 =
𝜙

𝜋𝑑2/4
, the bending modulus by 𝜅 =

𝑘𝑩𝑇𝑙𝑝, and the lateral drag coefficient by 𝜍⊥ =
4𝜋𝜂𝑠

ln (0.6𝜉/𝑑)
 with the mesh size 𝜉 = 𝑙𝑒

0.6𝑙𝑝
0.4. Because 

the unknown values in both Eqs. 3.2 and 3.3 are lp and le, the two equations have to be solved 

simultaneously to determine the persistence and entanglement lengths, thereby yielding the two 

independent parameters lp and α. 

 Once le is known, the average micelle length 〈𝐿〉 can then be calculated from our 

correlation obtained from running the pointer algorithm [15]:  

𝐺𝑚𝑖𝑛
′

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

  (Eq. 3.4) 
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We note that this correlation is similar to the “Cates scaling law” proposed initially by Granek 

and Cates [11], with exponent revised from 1.0 to 0.8 by Granek [37] but without giving a 

prefactor; our fits to the predictions of the pointer algorithm supply the prefactor of 0.317 in Eq. 

3.4. Previous authors used the Cates scaling with exponent unity and prefactor unity, i.e., 
𝐺0

𝐺𝑚𝑖𝑛
" =

〈𝐿〉

𝑙𝑒
 , and 𝑙𝑒 given by assuming the loose-entanglement limit, i.e., 𝐺0 =

𝑘𝑏𝑇

𝜉3  , instead of our Eq. 

3.3, which accounts for the crossover to the tight-entanglement regime.  The accuracy of the 

pointer algorithm’s predictions of the effect of micelle length on rheology was supported by our 

recent work showing agreement of the linear rheology predicted by the pointer algorithm with 

that predicted by the more microscopic “slip-spring” simulations [15,23].  

 Lastly, the dimensionless breakage rate ζ ≡ 𝜏𝑏𝑟/𝜏𝑟𝑒𝑝 can be determined by calculating 

the reptation time τrep and then getting τbr from the following semi-empirical correlation, again 

obtained from G’ and G” predicted by the pointer algorithm:  

𝜏𝑅 = 0.484𝜏𝑏𝑟
0.63𝜏𝑟𝑒𝑝

0.37  (Eq. 3.5) 

where the longest rheological relaxation time τR is taken as the inverse of the first crossover 

frequency of G’ and G” and the reptation time is calculated from theory as 𝜏𝑟𝑒𝑝 =
2〈𝐿〉3

𝜋2𝛼𝐷0
. The 

micelle translational diffusivity within the tube is given by 𝐷0 =
𝑘𝐵𝑇

𝜍
 with the drag coefficient 

given by 𝜍 =
2𝜋𝜂𝑠

ln (𝜉 𝑑⁄ )
.  

 These calculations produce the required independent parameters needed as input to the 

pointer algorithm – α from Eq. 3.2, lp from Eq. 3.3 (solved simultaneously with Eq. 3.2 if high-

frequency data are available), 〈𝐿〉 from Eq. 3.4, and 𝜁 =
𝜏𝑏𝑟

𝜏𝑟𝑒𝑝
 from Eq. 3.5. (As shown above, 

other parameters that may be of interest, such as G0 or τbr, are related to the four independent 
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parameters by the formulas given.) The experimental parameters (T, ηs, φ) and the independent 

micelle parameters (d, lp, α, 〈𝐿〉, ζ) can then be input into the pointer algorithm and a predictive 

simulation run to compare to the experimental data. 

 If an iterative pointer algorithm simulation is run to fit experimental data with high-

frequency data, the experimental parameters T, ηs, and φ and the micelle diameter are required 

inputs. Without high-frequency data, the persistence length lp is also a required input parameter. 

 

Results and Discussion 

Slip-spring simulations 

 Before applying the pointer algorithm to a variety of surfactant solutions, we first want to 

validate the pointer algorithm simulations. Because the pointer algorithm predictions, or 

correlations based on the pointer algorithm, are fit to experimental data, there is the possibility 

that the fitting is compensating for errors in the theory and approximations used to derive the 

method. To provide an independent check on the pointer algorithm, the much more resolved slip-

spring model, developed and validated for entangled polymers, was modified in previous joint 

work with our group [23] by the addition of random breakage and rejoining of micelles. We 

earlier found good agreement between predictions of the pointer algorithm and slip-spring 

simulations for Z = 3 and Z = 5 entanglements per micelle, where 𝑍 ≡ ⟨𝐿⟩/𝑙𝑒. Since such lightly 

entangled micelles would not have easily measurable rheology, it is important to extend the 

comparison to higher numbers of entanglements, which we do here for Z = 9. The other micelle 

parameters are 〈𝐿〉 = 2.52 μm, lp = 20 nm, α = 14, and ζ = 0.01, 0.1, 1 in both the slip-spring 

simulations and the pointer algorithm, so that there are no adjustable parameters, with results 

shown in Figure 3.1. In these predictions of the pointer algorithm, the bending modes are left out 
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because they are not included in the slip-spring simulations (although they could easily be added 

to them, in the same way that they are added to the predictions of the pointer algorithm), and the 

“full” Rouse modes are included, as discussed in the earlier work. 

 As with the less entangled Z = 3 and 5 simulations, we again see excellent agreement 

between the results for the pointer algorithm and the slip-spring simulations. The micelle length 

(>1-2 μm) and average number of entanglements (~10) in this comparison are similar to values 

seen in the rheology of more dilute solutions (such as in Figure 3.1a and 3.7 below). We note 

that the slip-spring simulations become very expensive for larger Z, since an entire ensemble of 

micelles must by simulated, as described in detail in [23]. But the attainment of micelle lengths 

comparable with those in some experimental micellar solutions is an important result that bridges 

the gap between the earlier slip-spring simulations for dilute, weakly entangled micelles and the 

semi-dilute, high entangled solutions often studied in literature. Since we find that the pointer 

algorithm and slip-spring simulations match well at the experimentally relevant entanglement 

value of Z = 9, this result helps to support our use of the pointer algorithm to fit the experimental 

data in the sections that follow. 
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Figure 3.1: Predictions of pointer algorithm (dashed lines) and slip-spring simulations (symbols) 

compared at Z = 9 and varying ζ. The top two sets of curves have been shifted upwards by 1 and 

2 orders of magnitude for readability 

 

Effect of salt concentration 

 Three solutions of 0.1 M CTAB with added NaNO3 from Helgeson et al. [14] were 

studied with the pointer algorithm and its derived correlations. First, the correlations were used 

to predict micelle parameters and a non-iterative pointer algorithm simulation was run with those 

calculated parameters to produce rheology curves for comparison with the experimental data. 

Since no high frequency data were available, the persistence lengths used were the 

experimentally derived values that Helgeson et al. determined from flow birefringence. For the 

solution with the lowest salt concentration, 0.1 M, the maximum value of G’(ω)/G”(ω) was used 

in calculations because there was no minimum in G”(ω). Since the solution rheology for 

salt/surfactant molar ratio R = 1 also lacked high-frequency data, we were unable to use the 
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pointer algorithm to fit these data. For the R = 2 and R =3 solutions, the micelle parameters were 

calculated using the procedure outlined in the methods section, then these parameters were 

verified with a non-iterative pointer-algorithm simulation, and the parameters were also obtained 

by fitting with the pointer algorithm without use of the correlations. When fitting with the pointer 

algorithm, a simulation is said to be “converged” if the G’ and G” curves produced by the pointer 

algorithm match the experimental data with an average error of less than 10%. Pointer algorithm 

results from simulations that do not converge to within this tolerance are referred to as the “best-

fit” results. 

 As Figure 3.2 shows, both the calculated and fitted micelle parameters produce G’ and 

G”  curves that match the experimental data reasonably well for all three solutions. The pointer 

algorithm results for the R = 1 solution have the greatest deviation from the experimental data, 

but this might be expected because the data have few defining features. Overall, we note that the 

experimental data are similar in shape and have comparable features (ωc1, G’min/G”min) to those 

for SLE1S and SLE1S + CAPB solutions that we previously fit with the pointer algorithm, and 

so we obtain similar micelle parameters. The plateau moduli are 10-100 Pa, micelle lengths are 

1-10 μm, and breakage to reptation time ratios are 0.01-10. The calculated and fitted parameters 

(from converged simulations) for selected micelle parameters are provided below in Table 3.1. 

We see general agreement between the fitted micelle parameters and those obtained from the 

correlations, although the micelle lengths differ somewhat and the breakage times change by a 

factor of more than two to compensate. 

In previous work [17,44], and in Appendix D, we carried out extensive sensitivity 

analyses to assess the error in the parameters inferred from rheology, such as those in Table 3.1. 

While errors are of course sensitive to the particular data sets, we can say that, in general, one 
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can infer that the errors are comparable to the differences between parameter values inferred 

from the correlations and those from fitting the pointer algorithm. An exception is the persistence 

length, whose value and its accuracy depends strongly on the existence and accuracy of high-

frequency data, such as that obtained by DWS, and on the accuracy of the value of the micelle 

diameter, as discussed below, and studied in detail in Appendix D.  

 The micelle parameters obtained from either the correlations or from fitting by the 

pointer algorithm differ significantly from those published by Helgeson et al. because of the 

methods used to estimate them. The published breakage times of Helgeson et al. were derived 

from the inverse of the frequency at which G” has a minimum while the pointer algorithm treats 

τbr as an independent fitting parameter used to optimize the fit of G’ and G” over the entire 

frequency range. The differences in plateau moduli reported by Helgeson et al. and those 

reported in Table 3.1arise because the pointer algorithm fits the low frequency reptation data 

with multiple Maxwell modes as necessary and uses a modulus crossover formula that bridges 

loosely and tightly entangled micelles, instead of assuming 1 or 2 Maxwell modes and loosely 

entangled micelles, as Helgeson’s fits do. Lastly, the micelle length, as we discussed in our 

previous work, is underestimated by both the Cates scaling and by SANS measurement, which 

are the two methods used by Helgeson et al. At concentrations high enough that viscoelastic 

rheology can be reliably measured, the micelles overlap and screening makes it difficult to 

determine accurately the micelle lengths from SANS. The values of 〈𝐿〉 = 0.431 μm and le = 88.6 

nm (number of entanglements Z = 〈𝐿〉/le = 5) published by Helgeson et al. for the R = 2 solution, 

if input into the slip-spring calculation, would not produce rheology similar to Figure 3.2b. We 

infer this, since even for longer micelles (1.4 μm) with Z = 5, the first crossover frequency from 

the slip-spring predictions is an order of magnitude higher than in the R = 2 experimental data, 
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and lacks the minimum in G” present in the experimental data. (See Fig. 8 in Sato et al. [23]) 

Thus the shorter micelle length suggested by Helgeson et al. would results in even greater 

deviations between the predictions of the pointer algorithm and experimental data. Given the 

reliability of the slip-spring model for polymer chains and likely also for wormlike micelles, 

these differences imply that the micelles in these solutions are at least several microns long, not 

less than a micron in length, which had been surmised by Helgeson et al. 

 

Figure 3.2: Rheology curves generated from the pointer algorithm with parameters calculated 

from correlations (solid lines) and fitting (dashed lines) compared to experimental data for 0.1 M 

CTAB solutions with (a) 0.1 M (R = 1), (b) 0.2 M (R = 2), and (c) 0.3 M (R = 3) NaNO3. (Data 
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from Helgeson et al. [14]. As discussed in the text, pointer algorithm predictions could not be 

obtained for R = 1 

 

Table 3.1: Micelle parameters for 0.1 M CTAB solutions at varying NaNO3 concentration 

obtained from the correlations and from fittings by the pointer algorithm 

[NaNO3]  ζ τbr (s) G0 (Pa) ⟨𝐿⟩ (μm) le (nm) lp (nm) 

0.1 M corr. 4.5 0.33 38.6 1.38 167 56 

0.2 M corr. 0.063 0.26 30.2 7.36 251 32 

 fit 0.47 0.66 30.5 5.07 250 32 

0.3 M corr. 0.0024 0.098 33.9 17.5 277 25 

 fit 0.016 0.20 31.9 12.0 286 25 

 

 Most of the micelle parameters are more sensitive to the salt concentration than to the 

surfactant concentration. In particular, the micelle length grows much more quickly with 

increasing salt concentration than for a similar relative increase in surfactant concentration. The 

mean field theory predicts that micelle length grows with surfactant volume fraction φ as 

〈𝐿〉~𝜙0.5 or as 〈𝐿〉~𝜙0.6 if excluded volume is considered in the latter case [31], where these 

predictions ignore the effects of electrostatics. Mackintosh et al. [45], on the other hand, 

predicted that, because of electrostatic effects, the micelle length should transition from slow 

growth at dilute surfactant concentration to faster growth with a power-law exponent greater than 

0.5 in the semi-dilute concentration regime. Previously, we found a scaling-law exponent close 

to 0.5 for the dependence on surfactant concentration of micelle length for SLE1S+CAPB/NaCl 

solutions at constant sodium ion concentration [15]. For the CTAB solutions of Helgeson et al. 

[14],  the micelle length obtained from the correlations scales as [NaNO3]
2.3±0.1 and as [NaNO3]

2.4 

from fits of the pointer algorithm to the rheological data, where the former is based on three data 
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points and the latter on only two points. Both of these scaling laws show significantly steeper 

increase of length with salt concentration than with surfactant concentration. For a series of 

SLE1S/NaCl solutions with varying salt concentration, we found the scaling 〈𝐿〉~[NaCl]3.6±0.7. 

Because of the limited data – i.e., 3 data points for both the CTAB/NaNO3 and SLE1S/NaCl 

solutions – and narrow range of salt concentration, there is significant uncertainty in the 

magnitude of the power law exponent, but it is safe to conclude that micelles grow faster with 

salt concentration than with surfactant concentration. 

 In contrast, the plateau modulus is less sensitive to the salt concentration than to the 

surfactant concentration. Neither CTAB/NaNO3 nor SLE1S/NaCl, considered in this section, 

show any clear dependence of the plateau modulus on salt concentration. The pointer algorithm, 

using either the fits or the correlation, gives a plateau modulus that remains approximately 

constant or increases slightly as the salt concentration increases. Previous work on the 

SLE1S+CAPB/NaCl system over a wider range of salt concentrations may show a moderate 

increase in the plateau modulus with salt based on a visual inspection of the rheology curves 

[17]. Other work with SLES/NaCl [46], CPyCl/NaSal, and CTAB with NaNO3, NaCO3, or KBr 

[47] also generally show a modest increase in G0 with increasing salt concentration. 

 

Effect of temperature 

 Next, we analyze a solution of 0.1 M CPyCl/0.06 M NaSal at temperatures ranging from 

20-40C at 5 increments obtained by Oelschlaeger et al. [40] using a combination of rotational 

rheometry, oscillatory squeeze flow, and DWS. As with the CTAB/NaNO3 solutions from the 

previous section, we both predict the micelle parameters using our correlations and fit the data 

using iterations of the pointer-algorithm simulations. For these data, at higher temperatures, the 
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results are similar to those for the CTAB/NaNO3 solutions, where the parameters calculated from 

the correlations and the iterative best-fit parameters show general agreement, although they do 

not match exactly. The micelle parameters and example fits to the experimental data are shown 

in Table 3.2 and Figure 3.3. As the temperature decreases, the micelles grow to lengths greater 

than 10-20 μm, increasing the time per iteration of the simulation and making it difficult to run 

enough iterations to reach convergence. Hence, the best-fit parameters are not appreciably 

different from the initial input parameters, calculated from the correlations, and only the T = 

40C simulation “converges,” in the sense defined earlier. 

 

Figure 3.3: Comparison of results from the pointer algorithm with micelle parameters calculated 

from correlations (solid lines) or fitted (dashed lines) to experimental data for 0.1 M CPyCl/0.06 

NaSal solutions at (a) 40C and (b) 20C. Additional rheology curves for 35, 30, and 25C can 

be found in Appendix B. 
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Table 3.2: Micelle parameters for 0.1 M CPyCl/0.06 NaSal solutions at various temperatures 

T (C)  ζ τbr (s) G0 (Pa) ⟨𝐿⟩ (μm) le (nm) lp (nm) 

40 corr. 0.14 0.051 61.0 2.36 154 105 

 fit 0.55 0.13 46.1 2.01 161 85.2 

35 corr. 0.091 0.15 50.5 3.80 160 96 

 fit 0.29 0.32 41.2 3.32 178 100. 

30 corr. 0.038 0.45 39.6 7.00 173 91 

 fit 0.056 0.51 39.6 6.41 173 91 

25 corr. 0.0037 0.61 33.5 16.6 178 82 

 fit 0.0019 0.41 25.2 19.0 202 83.7 

20 corr. 0.001 0.92 31.7 29.2 178 72 

 fit 0.00088 0.79 31.7 29.0 178 72 

 

 Additionally, particularly for the data at lower temperature and low frequency in Figure 

3.3, the shapes of the rheology curves from the pointer algorithm do not match the experimental 

data well. We believe this may be the result of the way the mechanical and DWS data were 

merged together. The difference between the mechanical and DWS data can be seen in 

Willenbacher et al. [26] for the solution at 20C and is discussed further in Appendix C. DWS 

provides a way to access high-frequency data for surfactant solutions, but results have varied 

from system to system. In general, mechanical rheology and DWS data produce rheology curves 

that are similar in shape, but sometimes vertical shifting of the DWS data is required to match 

the magnitude of the mechanical data. The CPyCl/NaSal system explored by Oelschlaeger et al. 

exhibited this behavior; they saw agreement between the shapes of the mechanical and DWS 
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data but the magnitude of the DWS data differed from the mechanical data. Cardinaux et al. [48] 

also found that a scaling factor of 1.5-2 was needed to match the DWS data to mechanical 

rheometry for hexa-ethylene glycol mono n-hexadecyl ether (C16E6) solutions. In our previous 

work [17] with SLE1S+CAPB/NaCl, we used a similar merging procedure to combine 

mechanical and DWS data. In contrast, Bellour et al. [49] did not need to scale their DWS data 

to match mechanical rheology for solutions of either hexane sulfonate cetyltrimethylammonium 

(CTAC6SO3) or heptane sulfonate cetyltrimethylammonium (CTAC7SO3), and neither did 

Galvan-Miyoshi et al. [13] for CTAB/NaSal solutions. Even when the shapes of the DWS and 

mechanical rheology curves agree well without vertical shifting, there can still be significant 

deviation in the micelle parameters extracted separately from each of the methods. The overall 

relaxation time τR, taken as the inverse of the first crossover frequency, and the plateau modulus, 

taken as the value of G’ at the minimum in G”, can differ between DWS and mechanical 

rheology by more than a factor of 2 [13,40]. These differences between the mechanical and DWS 

data have been hypothesized to be caused by properties of the probe particles used in DWS [49], 

either because they do not accurately follow the generalized Stokes-Einstein relation [48], or 

because of interference from free ions [13], but the deviations have not been definitively 

explained. 

 We can use high-frequency data to calculate the persistence length, but results from our 

pointer algorithm differ from those obtained by Oelschlaeger et al. [40] primarily because of the 

micelle diameter, d = 2.6 nm, used by Oelschlaeger et al. Assuming an average carbon-carbon 

bond length of 1.54 Å and a bond angle of 109.5°, CPyCl’s 16-carbon tail, fully extended, would 

be about 1.8 nm. Even allowing for some coiling of the tail, it seems unlikely that the micelle 

radius d/2 would be only 1.3 nm after the pyridine head group is added. Both SLE1S and CTAB 
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have similar tails – 12 carbons plus an ether group and 16 carbons respectively – and have been 

found to have diameters closer to ~4 nm. The SLE1S/NaCl system was studied using SANS and 

the micelle diameter was determined to be 3.5-3.8 nm over a range of surfactant concentrations 

[25]. Other SANS studies for CTAB/NaSal gave diameters of 4 nm [41] and 4.4 nm [42]; SANS 

performed on CTAB/NaNO3 yielded a diameter of 4.06 nm [14]; and a coarse-grained molecular 

dynamics simulation for CTAC/NaSal determined a diameter of approximately 5 nm [43]. A 

SANS study of CPyCl/NaSal found d = 4.4 nm [50]. It therefore seems likely that CPyCl has a 

micelle diameter of around 4 nm, which we use when calculating micelle parameters from our 

correlations and as an input parameter for the iterative pointer algorithm simulations. Increasing 

the diameter, when fitting high-frequency rheology data, leads to an increase in the persistence 

length, from ~30-50 nm when d = 2.6 nm to ~70-100 nm, when d = 4 nm, similar to what we 

found for SLE1S solutions. This increase in the persistence length calculated from G” is due to 

the dependence of G” on d and lp captured by retaining only these dependences in Eq. 3.3 for 

high-frequency bending modes, namely 𝐺"~
𝑙𝑝

1.25

𝑑2 [
1

ln(𝑙𝑝
0.6 𝑑⁄ )

]
0.75

;  thus, increasing d increases lp. 

 The micelle length ranges from around 2-30 m, and grows exponentially with inverse 

temperature, as predicted theoretically, and shown in Figure 3.4. These micelle lengths 

correspond to scission free energies Esc of 49-59 kJ/mol, as calculated from 𝐸𝑠𝑐 =

2𝑅𝑇 ln (
〈𝐿〉𝜌𝑠𝜋𝑑2𝑁𝐴

8𝑀𝑠𝛸0.5 ), where R is the molar gas constant, ρs and Ms are the surfactant micelle 

density and molecular weight respectively, and Χ is the surfactant mole fraction [30]. 

Alternatively, Esc can be calculated from a similar equation 𝐸𝑠𝑐 = 2𝑅𝑇 ln (
〈𝐿〉𝜌𝑠𝜋𝑑2𝑁𝐴

4𝑀𝑠𝜙0.5 ) based on 

the surfactant volume fraction φ instead of the mole fraction [25]. The difference between the 

two equations derives from whether one assumes the mixing entropy to be ideal, or given by a 
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Flory-Huggins expression, neither of which is rigorous. From the volume fraction equation, Esc = 

38-48 kJ/mol, which is about 20% lower than that obtained using the ideal solution assumption. 

Either equation produces scission free energies for this system that are similar to the scission free 

energies of 55-71 kJ/mol found for SLE1S [25] and SLE1S/CAPB [17,30] solutions with NaCl. 

 The enthalpy of scission Hsc can be extracted from the slope of ln (〈𝐿〉) plotted against 

the inverse of temperature (as in Figure 3.4), giving Hsc = 200±10 kJ/mol or Hsc = 230±27 kJ/mol 

using the micelle lengths calculated from the correlations or fitted using the pointer algorithm 

respectively. Again, these values are similar to what has been found for SLE1S micelles [25].  

 

Figure 3.4: Micelle length from correlation (solid circles) and fitting (open triangles) plotted 

against the inverse of absolute temperature. Lines represent best-fit exponential functions. 

 

 Overall, for this system we find that the pointer algorithm and the correlations derived 

from it seem to be able to describe the rheology well. The discrepancies between the micelle 

parameters based on the pointer algorithm and the published values are because the published 

values were obtained from the original Cates method, which underestimates the micelle length 

[15], and also assumed a micelle diameter that was too small, as discussed above, leading to a 

too-small persistence length. We believe that our estimates of these parameters are significantly 
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more realistic than previous estimates for this micelle solution. Further discussion of how the 

other micelle parameters are affected by changing the micelle diameter can be found in 

Appendix D. 

 

Micelles of Unusual Size 

 The last system that we examine in detail is a CTAB/NaSal solution from Galvan-

Miyoshi et al. [13]. This system exhibits two peaks in the curve of viscosity as a function of the 

concentration of intercalating salt (Sal-). Our solution of interest, namely 0.1 M CTAB/0.04 M 

NaSal solution at 22C, lies in the region before the first viscosity peak, where micelles should 

be mostly linear; i.e., unbranched. From the rheology shown in Figure 3.5, the first crossover 

frequency is very low, ~0.01 rad/s, corresponding to an overall relaxation time of ~100 s, in 

contrast to some of the solutions above, where the relaxation time is 1 s or less. Moreover, the 

ratio G’/G” at the minimum in G” is also higher than previously seen, which, like the long 

relaxation time, indicates unusually long, entangled micelles. In fact, when we calculate the 

micelle parameters from our correlations, we find a predicted micelle length of 90 μm and a 

persistence length of 161 nm. Both the micelle length and persistence length are longer than 

found for the other systems discussed above. When we run a pointer algorithm simulation with 

the calculated parameters, we see good agreement with the experimental data, except that the 

prediction of the second crossover frequency is three-fold lower than in the experiments, as 

shown in Table 3.3. If, instead of extracting the persistence length from the high frequency data, 

we use a more “typical” surfactant micelle persistence length of 30 nm and the corresponding 

calculated micelle length of 89 μm, Figure 3.5 shows that the second crossover frequency from 

the pointer algorithm simulation matches the experimental value better, but the magnitudes of G’ 
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and G” at high frequency are considerably underestimated. Table 3.3 compares features of the 

experimental rheology curves to the ones from the pointer algorithm simulations and shows how 

the longer persistence length better matches the magnitudes of G’ and G” at intermediate to high 

frequency while the shorter persistence length agrees better with the second crossover frequency. 

 

Figure 3.5: Experimental rheology for an 0.1 M CTAB/0.04 M NaSal solution compared to 

predictions of pointer algorithm simulations with parameters calculated from correlations that 

use the two different persistence lengths. Data from Galvan-Miyoshi et al. [13] 

 

Table 3.3: Experimental rheology features compared to predictions of the pointer algorithm 

 ωc1 (rad/s) G’min/G”min ωmin (rad/s) ωc2 (rad/s) 

experimental 0.0125 42.0 1.47 12300 

lp = 161 nm 0.0122 44.0 2.65 4370 

lp = 30 nm 0.0102 61.6 10.4 15800 

 

 Because lp is determined from the magnitude of high-frequency data obtained from DWS, 

which (as discussed above) is sometimes vertically shifted to overlap the mechanical rheology, 

the procedure used to merge the data can affect the persistence length calculated. This may be 

part of the reason the persistence we extract from the data is higher than expected. Other 
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experimental and simulation methods indicate that lp is usually in a range of about 20-50 nm, 

with most values being near 30 nm, which is why we choose this as our “typical” persistence 

length. For example, SANS studies on SLE1S/NaCl produced persistence lengths of 25-32 nm 

[25], flow birefringence gave lp = 25-56 nm for CTAB/NaNO3 [14], and coarse-grained 

molecular dynamics simulations of CTAC/NaSal showed lp ~ 10-30 nm [43]. For the 

SLE1S+CAPB/NaCl solutions we studied earlier, the addition of longitudinal or full Rouse 

modes allowed both the second crossover frequency and magnitudes of G’ and G” at high 

frequency to be fit well by the pointer algorithm, using a persistence length of lp ~80 nm. The 

CTAB/NaSal solution of Galvan-Miyoshi et al. differs, however, from the SLE1S+CAPB 

system in that the former cannot have both its high-frequency data and second crossover 

frequency fit by a single persistence length. A longer persistence length of 161 nm fits the 

magnitude of the experimental data and a shorter persistence length of ~30 nm better agrees with 

the second crossover frequency. Extracting the micelle persistence length from high-frequency 

rheology is thus an area that still requires study, to determine if the variance in persistence 

lengths is due to inaccuracies in the experimental data, or perhaps to high-frequency relaxation 

modes that are not accounted for in the pointer algorithm. Appendix D contains simulations that 

explore how the value of the persistence length affects the other parameters when fitting 

rheology with the pointer algorithm. 

 The very long, “Brobdingnagian,” micelle length for CTAB/NaSal, on the other hand, 

namely 90 μm when the persistence length is taken to be 161 nm, and 89 μm when it is taken to 

be 30 nm, seems plausible. The zero-shear viscosity of this CTAB solution is greater than 1800 

Pa∙s, which is over a million times greater than the viscosity of water, and 10-1000 times greater 

than that of other surfactant solutions that we have maintained should contain micelles that are at 
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least several microns long [15]. Although quantitative measurements of the micelle length are 

difficult to determine from cryo-TEM experiments, micrographs of CTAC/NaSal [51], 

CTAB/NaSal [52], and CTAB/salicylic acid [53], even at surfactant concentrations less than the 

0.1 M CTAB solution considered here, show micelles that are very much longer than the field of 

view (i.e., greater than 100s of nm) since very few ends are visible in the micrographs, which is 

consistent with micelles being multiple microns long. Because of the long micelle length 

required to fit the rheological data, it would require too much computer time to run iterative 

pointer algorithm simulations to find the best-fit micelle parameters, but the correlations provide 

a way to estimate the parameters, which can then be checked by using them in a single, non-

iterative simulation. The results from this simulation, in Figure 3.5 and Table 3.4, show good 

agreement with the experimental data, supporting a micelle length approaching 100 μm, as also 

indicated by the high zero-shear viscosity, long relaxation time, and large number of 

entanglements per micelle, given by 〈𝐿〉/le. As with the systems above, differences between the 

parameters from the pointer algorithm and the published ones mainly come from the differences 

between our Eqs. 3.2 and 3.4 and the corresponding formulas from the Cates scaling with unit 

prefactor (namely 𝐺0 =
𝑘𝑏𝑇

𝜉3  and 
𝐺0

𝐺𝑚𝑖𝑛
" =

〈𝐿〉

𝑙𝑒
 ), which likely underestimates the micelle length. The 

micelle length that Galvan-Miyoshi et al. calculated from the Cates scaling is over a micron (2.8 

μm) but considering the high zero-shear viscosity and long relaxation time as compared to other 

solutions discussed above, these micelles are likely much longer. 

 

Table 3.4: Micelle parameters for 0.1 M CTAB/0.04 M NaSal solution 

lp (nm)  ζ τbr (s) G0 (Pa) ⟨𝐿⟩ (μm) le (nm) 

161 corr. 0.00025 4.9 36.5 90.2 233 
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30 corr. 0.0019 16 37.8 89.0 230 

 

Other Surfactant Systems 

 The sections above demonstrate that the pointer algorithm can be used to model the 

rheology of various surfactant solutions besides SLE1S+CAPB/NaCl, which was the focus of 

our earlier work. Through the use of correlations derived from the pointer algorithm, we also 

provide a way to estimate micelle parameters from experimental data that does not require 

running an iterative pointer algorithm simulation. This allows insight into a wider range of 

surfactant solutions, including solutions that approach the dilute regime, with micelles too short 

and weakly entangled to provide stresses high enough and relaxing slow enough for conventional 

rheometers to measure as well as ones that are so long and strongly entangled that a prohibitive 

amount of time is required to fit their rheology with the pointer algorithm. 

 Although the solutions we have examined so far represent some of the commonly studied 

surfactants and salts, rheological data for many other systems are found in literature. 

Additionally, besides surfactant and salt [47,54], cosurfactants and other additives, such as 

perfumes or oils commonly used in consumer products, can be added to the solutions [30,32]; a 

different solvent can be used [55]; or the temperature [40], salt concentration [13,14], or 

surfactant concentration [15] can be varied. Thus, the literature contains a wide variety of 

rheological studies performed on surfactant solutions that use different experimental methods 

and that change different experimental parameters than those considered here thus far. While in 

the sections above we explored a few systems in depth, here we look briefly at others and discuss 

how micelle parameters can be estimated for them. For these additional solutions we only 

calculate the micelle parameters using the correlations derived from the pointer algorithm, and 
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then run a forward predictive simulation for comparison with the experimental data. Since the 

determination of the persistence length is still uncertain, we calculate parameters using both 30 

nm as an “average” value and 100 nm as an approximate upper bound for lp. 

 First we consider an additional CPyCl/NaSal solution [56]. This is the same system as 

studied by Oelschlaeger et al. [40], at the same surfactant and salt concentration (0.1 M 

CPyCl/0.06 M NaSal, T = 20C) as the earlier data of Oelschlaeger et al. examined above (in 

Figure 3.3), but with only mechanical data available in the data of Rehage and Hoffmann (Figure 

E1 in Appendix E shows the Rehage and Hoffmann data plotted on the same graph as the 

Oelschlaeger et al. data for comparison.) Both the earlier data set and the one presented in Figure 

3.6 are generally in agreement with predictions of the pointer algorithm using parameters from 

the correlations, but with some variance around G”min, which is usually the most difficult part of 

the rheology to fit. Unlike the merged Oelschlaeger data (containing both mechanical and DWS 

data), we get a good match at and around the first crossover frequency (similar to the fit obtained 

to the mechanical data of Willenbacher et al. [26] without the DWS data as shown in Appendix 

C), further showing the difference between the mechanical and DWS data for this solution. 

 The extracted micelle parameters (Table 3.5) are similar but do not agree exactly with 

those extracted from the nominally identical solution of Oelshlaeger et al. The micelle length 

extracted from the data of Oelschlaeger et al. and Willenbacher et al. is about 30 μm for the 

merged data, 20 μm for the mechanical data alone, and 40 μm for the DWS data alone; for the 

Rehage data it is around 50 or 60 μm depending on the persistence length used. These 

differences mostly come from disparities in the experimental data around G”min, which besides 

sometimes being difficult to fit, also have a large effect on the micelle length. It is possible that a 

micelle length that better fits the experimental data might be found by iteratively running the 
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pointer algorithm, but the micelles are at or approaching a length that makes each iteration of the 

pointer algorithm fairly long. Given the variation in experimental data, we can at least conclude 

that we can fit the low-frequency data of Rehage and Hoffmann well and the intermediate 

frequency data somewhat well. We can also conclude that the micelles are a few 10s of microns 

long. These results are important in that to date, rheological measurements from different labs 

are essentially never compared, so that good “reference” data for solutions of threadlike micelles 

are essentially unknown, unlike the situation for entangled polymers. The comparisons carried 

out here thus help to establish the level of reproducibility of at least one set of rheological data in 

the literature. They also set a precedent for necessary future work aimed at establishing 

benchmark data sets for wormlike micellar solutions, and obtaining estimates of micellar 

parameters for those solutions and their dependence on salt concentration and temperature. 

 

Figure 3.6: Predictions of pointer algorithm compared to experimental rheology for 0.1 M 

CPyCl/0.06 M NaSal solution at T = 20C. Data from Rehage and Hoffmann [56] 

 

Table 3.5: Micelle parameters for 0.1 M CPyCl/0.06 M NaSal solution 

lp (nm)  ζ τbr (s) G0 (Pa) ⟨𝐿⟩ (μm) le (nm) 

30 corr. 0.00027 0.81 31.5 64.3 253 
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100 corr. 0.00012 0.56 31.5 47.5 187 

 

 Finally, we extract micelle parameters for a few more solutions: 0.05 M NaOA in 0.6 M 

KCl [57], 1 wt% cetyltrimethyl tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) (at a 

97/3 weight ratio) in 0.25 wt% sodium tosylate (NaTos) organic salt [27], 3 wt% sodium oleate 

(NaOA)/C8TAB (at a 70/30 weight ratio) [54] with no added salt, 0.015 M CPyCl in 0.011 M 

NaSal [58], and 0.1 M CTAB in 0.0275 M NaSal [52]. These solutions contain a variety of 

surfactants and salts and have micelle lengths spanning over an order of magnitude, but most of 

which can be described well by the pointer algorithm. In all of these, the micelle parameters were 

obtained from the correlations in Eqs. 3.2-3.5, and then used in the pointer algorithm to predict 

the rheology.   

 All micelle parameters calculated from the correlations at the two persistence lengths of 

30 nm and 100 nm are given in Table 3.6, but only the pointer algorithm predictions for the 0.05 

M NaOA/0.6 M KCl solution are shown in Figure 3.7. Pointer algorithm predictions for the other 

solutions can be found in Appendix F along with additional commentary about fitting those 

solutions. In general, the good quality of the fit indicates that the correlations and the pointer 

algorithm can be used both to obtain micelle parameters and to fit rheological data for multiple 

surfactant solutions, including ones other than those we have concentrated on in previous work, 

such as the SLE1S or SLE1S+CAPB in NaCl solutions. 
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Figure 3.7: Predictions of pointer algorithm, with parameters based on correlations, compared to 

experimental rheology for 0.05 M NaOA/0.6 M KCl solution. Data taken from Kalur and 

Raghavan [57] 

 

Table 3.6: Micelle parameters for additional surfactant solutions, all obtained from correlations 

in Eqs. 3.2-3.5. 

lp (nm) ζ τbr (s) G0 (Pa) ⟨𝐿⟩ (μm) le (nm) 

0.05 M NaOA/0.6 M KCl 

30 0.0033 2.0 9.45 51.1 499 

100 0.0037 2.0 9.45 27.3 267 

1 wt% CTAT/SDBS/0.25 wt% NaTos 

30 0.0084 0.11 2.50 19.1 1040 

100 0.014 0.13 2.50 8.93 487 

3 wt% NaOA/C8TAB 

30 0.0038 23 22.7 90.9 307 

100 0.002 18 22.7 63.7 215 

0.1 M CTAB/0.0275 NaSal 

30 105 5.0 22.4 1.8 309 

30 105 22 22.4 3.0 309 
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0.015 M CPyCl/0.011 M NaSal 

30 0.077 0.80 0.5 23.5 2530 

100 0.14 0.98 0.5 10.6 1140 

 

 The above demonstrates that the pointer algorithm describes reasonably well the linear 

rheology of a variety of surfactant solutions. However, the pointer algorithm is only able to 

predict linear rheology, leaving the nonlinear rheology of surfactant solutions without an 

accurate theory. On the other hand, the slip-spring model is able to model both linear and 

nonlinear rheology. Since we have shown that rheology predictions from the pointer algorithm 

and slip-spring simulations agree with each other, this would now allow one to measure the 

linear rheology of a surfactant solution, obtain the micelle parameters using the pointer 

algorithm, and then input those parameters into the slip-spring model to predict the nonlinear 

rheology. This combination of simulation methods would thus take advantage of the pointer 

algorithm’s ability to extract micelle parameters from linear rheology and the slip-spring model’s 

capability of modeling nonlinear rheology to achieve greater insight into surfactant solution 

rheology. In the future, such a strategy could be used to test the modeling by predicting complex 

nonlinear rheology, perhaps along with other properties such as SANS patterns, in large 

amplitude oscillatory shearing, for example [59].  

 

Conclusions and Future Directions 

 We found that the pointer algorithm can fit the rheology of, and extract micelle 

parameters from, a variety of surfactant systems, ranging from CTAB in NaCl or NaSal 

solutions, known to form long, well-entangled micelles; to SLE1S/CAPB in NaCl solutions, 

commonly found in consumer products like soaps and shampoos. We also showed that 
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correlations derived from the pointer algorithm provide estimates of the micelle parameters that 

yield similarly good predictions of the rheology, and can be used in place of the fitting 

procedure, which is especially useful when fits are hard to perform because of the length of the 

micelles. The simulations also provide guidelines for how and when to apply the pointer 

algorithm and correlations.  

Moreover, we have shown that the pointer algorithm gives predictions of linear rheology 

that are almost identical to that of the slip-spring simulation, up to the highest entanglement 

density we can attain with the latter. The slip-spring simulation method has been well validated 

by comparisons of its predictions with well-characterized entangled polymer solutions. Since 

micelle parameters such as length and breakage time cannot readily be obtained except through 

fits to rheological data, the validation of the pointer algorithm through its agreement with the slip 

spring model is essential to confirm that micelle parameters obtained from the pointer algorithm 

are reasonable. 

 At lower concentrations, where the micelles are weakly entangled, if high frequency data 

that include the second crossover frequency are available, the pointer algorithm can be used to fit 

the data and extract micelle parameters. Without high frequency data, the micelle parameters can 

be calculated from our correlations but the data cannot be fit by the pointer algorithm using the 

automated fitting procedure. However, because of greater uncertainty in the values used to 

estimate the micelle parameters (primarily in how the ratio G’min/G”min is approximated), the fits 

and parameter values may not be as accurate as for more entangled micelles. The rheological 

data at low surfactant or salt concentrations have no minimum in G” and have a first crossover 

frequency that is greater than 1 rad/s, which usually corresponds to a micelle length of a few 

microns or less. 
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 As the surfactant or salt concentration increases, the micelles grow in length and become 

well-entangled; the first crossover frequency then decreases to around 0.1-10 rad/s, and the 

minimum in G” becomes pronounced, with G’min/G”min ratios of ~5-15 and micelle lengths of 

~3-25 μm. For these solutions, the micelle parameters can be determined either from a fit to the 

rheology by the pointer algorithm or from the correlations, although for a few cases, usually at 

lower surfactant concentrations, the correlations can produce parameters and G’ and G” curves 

that differ significantly from the data and from the best-fit by the pointer algorithm. 

 At still higher concentrations, where the micelles are highly entangled, the first crossover 

frequency further decreases to 0.01-0.1 rad/s, and the ratio G’min/G”min increases to values greater 

than 15. The micelle length then ranges from 20-100 μm. At the lower end of this range, it is still 

possible to fit the rheology using the iterative pointer-algorithm simulations, but this can be time 

consuming. For the longest micelles, it is more practical to estimate the micelle parameters from 

the correlations and then run a single iteration of the pointer algorithm with those parameters to 

check the predicted linear rheology curves against the experimental data. Results are generally in 

good agreement with experimental data, with the greatest deviations occurring in the G” curve 

near the minimum. 

 Overall, the pointer-algorithm simulations and correlations seem to do a good job of 

matching surfactant micelle rheology across a variety of different surfactants, salts, and 

concentrations that span more than two orders of magnitude in the micelle length. This indicates 

universal behavior in the rheology of these solutions, although some uncertainties remain, 

particularly with the high-frequency data. In particular, the shift factor that is sometimes required 

to match the magnitudes of mechanical and DWS data has not been fully explained. There are 

also variations in the shapes of the mechanical and DWS data which can have a significant effect 
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on the extracted micelles parameters. When the persistence length is extracted from the high-

frequency data, for some more entangled solutions the magnitude of the curves and the 

frequency of the second crossover frequency cannot always be fit – the persistence length 

calculated to match the magnitude of the moduli can be 3-5 times longer than the persistence 

length that fits the second crossover frequency. These disparities remain in need of explanation 

and correction. In general, however, the pointer algorithm and the theories it combines are 

consistent with surfactant wormlike micelle rheology and the correlations we developed provide 

a relatively simple way to extract micelle parameters from rheology. 

 Despite some remaining uncertainties, the results for several surfactant systems indicate 

“universality” in the rheology of entangled wormlike micelles that can be captured by an 

adaptation of polymer entanglement theory, with a limited number of micelle parameters that can 

be obtained by fits to linear rheological data. These micelle parameters are the micelle length, 

micelle breakage time, plateau modulus, and persistence length, along with the other known 

inputs of solvent viscosity and micelle diameter. The difficulty of correlating rheology with 

micelle parameters, such as micelle length, has been hindered by inability to control, or 

accurately measure, these parameters a priori, thus requiring fitting by a rheological model to 

convert those measurements into estimates of the micelle parameters. The consistency of micelle 

solution rheology with predictions of the pointer algorithm suggest that this model is accurate 

enough to provide useful estimates of these parameters.  Further steps are required to confirm or 

correct these estimates from a combination of experimental data and molecular dynamics 

simulations, and to develop correlations and theories for how the micelle parameters depend on 

salt concentration and other additives. Ultimately, an ability to link both linear and nonlinear 
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rheological properties to concentrations of surfactant, salt, and other additives would be highly 

desirable to enable rational design of these important solutions. 
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Chapter 4: The Pointer Algorithm User Manual 

Now that the pointer algorithm has been validated using slip-spring simulations and has been 

shown to be applicable to a variety of surfactant systems, we want to make the pointer algorithm 

simulation code and correlations available for use by other researchers. To that end, in what 

follows, we provide instructions for setting up and running pointer algorithm simulations. This 

user manual, the mentioned Excel spreadsheet, and the pointer algorithm simulation code will be 

archived in the University of Michigan’s Deep Blue digital repository and publicly accessible. 

 

Introduction 

The “pointer algorithm” is a mesoscopic simulation method that models the linear rheology of 

surfactant solutions containing wormlike micelles. It can be used for the following purposes: 

1) to extract micelle parameters (e.g. micelle length, plateau modulus, and breakage time) 

from experimental small amplitude oscillatory shear rheology 

2) to predict G’ and G” rheology curves from a given set of micelle parameters 

3) to compare the G’ and G” curves from specified micelle parameters to an experimental 

data set. 

 

The pointer algorithm is based on the Cates theory [5] that states that micelles, like entangled 

polymers, relax by diffusing through a tube formed by surrounding micelles, a process also 

known as reptation. However, unlike polymers, micelles can reversibly break and rejoin. In the 

pointer algorithm, reptation, breakage, and rejoining are simulated for an ensemble of micelles. 
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High frequency relaxation modes, namely Rouse [60] and bending [21] modes, are also added 

analytically to the pointer algorithm, and the effects of contour length fluctuations and constraint 

release (double reptation) are considered in the simulation as well. A detailed explanation of the 

pointer algorithm can be found in [16]. 

 

Version history 

The pointer algorithm was originally developed in the Larson lab by Weizhong Zou, and has 

been modified by Grace Tan. It is written in Fortran (F90) and several notable versions are 

described below. 

 

[unmerged] – This version of the pointer algorithm models the relaxation of well-entangled 

micelles.  It was shown to be able to match the rheology of a couple common surfactant/salt 

systems from literature [16] and was fit to several SLE1S+CAPB/NaCl solutions [30,44]. A full 

description of this version is found in Ref. [16]. 

 

v3.1 – In this version of the pointer algorithm, additional contributions to relaxation from 

unentangled micelles (shorter than the entanglement length) are added to the simulation. These 

added relaxation mechanisms, explained in Ref. [17], allow the pointer algorithm to be applied to 

surfactant solutions at lower concentrations than previously possible. 

 

v3.3 – After a comparison of the pointer algorithm with the more highly resolved slip-spring 

model [23], we found that the assumption that longitudinal (slow) Rouse modes can be neglected 

because entanglements impede relaxation along the micelle seems to be incorrect. Instead, for 
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well-entangled micelles (an average of >15 entanglements per micelle), both fast and 

longitudinal Rouse modes must be considered, and if micelles are weakly entangled (an average 

of <15 entanglements per micelle), an unfractionated, full spectrum of Rouse modes best 

describes the high-frequency data. These additional Rouse modes were added to the pointer 

algorithm in this version, as described in Ref. [15], which also shows improved fits to SLE1S+ 

CAPB/NaCl rheological data. 

 

Preparing the simulation input file 

To run a pointer algorithm simulation, there is a single input file, titled INPUT_[version].DAT. 

The instructions shown here will be for version 3.3 and are mostly, but not exactly, applicable to 

earlier versions. Figure 4.1 below shows a sample input file for reference. In the sections below, 

inputs are referenced as [line number].[column number] and “yes” and “no” are designated as 

“Y” and “N” respectively. This section provides general instructions for creating an input file; 

examples with sample numerical calculations and results are given below in the “Example 

simulations” section. 
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Figure 4.1: Sample input file for v3.3 of the pointer algorithm 

 

1. Title – This can be the sample ID, a description of the surfactant/salt and concentration, or any 

other kind of identifier. It has no effect on how the simulation runs. 

 

2.1. Temperature [K] – The temperature at which the experimental data were collected or at 

which you want to generate predictive rheology curves. 

2.2. Micelle volume fraction ϕ – Ratio of the micelle volume to the total solution volume. For 

most systems that we’ve investigated, the volume fraction is within 10% of the weight 

fraction, so weight fraction can be used if volume fraction cannot be calculated or estimated 

another way. 
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2.3. Solvent viscosity ηs [Pa∙s] – The solvent viscosity can either be that of the salt solution 

without surfactant, if measured separately, or if not, the viscosity of pure water at the 

appropriate temperature. 

 

3.1. Are experimental data present? [Y/N] 

 - Y to run an iterative pointer algorithm simulation that fits the experimental data and 

extracts micelle parameters or a simulation that compares input micelle parameters to 

experimental data without iterating to fit the experimental rheology 

 - N to run a predictive pointer algorithm simulation for a given set of micelle parameters 

without comparing them to any experimental data 

3.2. Are only mechanical data present? [Y/N] 

 - Y if the data are from a mechanical rheometer and go up to ~100-200 rad/s (also select yes 

if no data are present at all) 

 - N if there are high-frequency data (up to or greater than ~100,000 rad/s) from DWS or 

another experimental method 

 

4.1. Should a file containing G(t) from reptation be generated? [Y/N] – If this option is selected, 

a file containing the G(t) curve from reptation and its best fit from the genetic algorithm 

(fitting with multiple Maxwell modes) for the current iteration will be outputted. 

4.2. Should a file containing G’(ω) and G”(ω) from reptation be generated? [Y/N] – This option 

outputs a file containing the G(t) (reptation) curve for the current iteration transformed into 

the frequency domain. 
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4.3. Should the simulation output G’(ω) and G”(ω) with the contribution of unentangled micelles 

in a separate file? [Y/N] – This file contains G’ and G” from reptation with relaxation from 

unentangled micelles (rotary relaxation, Rouse modes, and bending modes) added. 

 

5.1. Should the simulation output the contributions to G’(ω) and G”(ω) from high frequency 

relaxation modes in separate files? [Y/N] – If this option is selected, the simulation will 

generate separate files with G’ and G” for 1) rotary relaxation of unentangled micelles, 2) 

Rouse modes for unentangled micelles, 3) bending modes for unentangled micelles, 4) Rouse 

modes for entangled micelles, and 5) bending modes for entangled micelles. 

5.2. Is an iterative simulation being run? [Y/N] 

 - Y if fitting to experimental data 

 - N if predicting the rheology of a specific set of micelle parameters (either independently of 

experimental data or to compare to experimental data) 

5.3. Should the simulation try to fit G(t) from reptation with a single Maxwell mode? [Y/N] – 

The genetic algorithm that converts G(t) from the time to frequency domain allows a 

minimum of 2 Maxwell modes. With this option, the simulation will first try to fit G(t) with a 

single Maxwell mode. If the error is low enough, the simulation continues with the 1 

Maxwell mode; if the error is too high it uses the genetic algorithm to find a better fit. 

 

6.1. Is the persistence length a fitting parameter? [Y/N] 

 - Y if high frequency data are available and you want the simulation to extract the persistence 

length from the data 

 - N if no high frequency data are available or you want to set the persistence length yourself 
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6.2. Initial guess or fixed value for the persistence length lp [nm] – For iterative simulations 

without high frequency data or predictive simulations, the persistence length is a required 

input parameter that would have to come from another experimental method or literature. For 

iterative simulations with high frequency data, the value for lp entered here is either the 

starting value of lp for the first iteration or chosen to be fixed depending on what was entered 

for input 6.1. 

 

7.1. Zero shear viscosity η0 [Pa∙s] – If the zero shear viscosity was not measured for the solution 

of interest, it can be extracted from the slope of G” at low frequency. This value will not 

affect how the simulation converges, but the simulation may not think it’s converged even if 

it has and keep running. The zero shear viscosity is not required as an input to run a 

predictive pointer algorithm simulation but can help in judging how well the predicted 

rheology curves match experimental data if making such a comparison. 

7.2. Initial guess or value of the average micelle length 〈𝐿〉 [μm] – For iterative fitting 

simulations, a better initial guess for 〈𝐿〉 can decrease the number of iterations it takes before 

convergence. As a general estimate, for solutions with η0 < 10 Pa∙s, 〈𝐿〉0 = 1 μm is a 

reasonable starting guess, increasing to 〈𝐿〉0 = 5-10 μm for 10 Pa∙s < η0 < 100 Pa∙s. 

7.3. Micelle diameter d [nm] – This input parameter cannot be determined from rheology. The 

literature value for a variety of systems is ~4 nm. 

 

8.1. Number of micelles N in the simulated ensemble – The number of micelles in the ensemble 

needs to be large enough that the length distribution is not overly discretized, but more 

micelles take more time to simulation. From tests of the ensemble size, we have determined 



88 

 

that 2000 micelles balances getting a good length distribution with simulation time. [Note 

that fewer micelles can be used, but certain parameters may be under or overestimated. If not 

running an iterative simulation and the micelles are very long the ensemble size can be 

decreased to ~500 micelles without overly affecting the predicted rheology curves to get the 

simulation to finish in a reasonable amount of time.] 

8.2. Number of iterations – Our standard for an average set of experimental data is 20 iterations 

and 5 days of compute time on a high-performance computing cluster. 

 

9.1. Is the simulation being started with all parameters specified? [Y/N] – Out of the five 

independent micelle parameters (d, lp, 〈𝐿〉, ζ, α), d cannot be determined from rheology and 

must be specified, lp can be extracted from high-frequency data but at least requires a starting 

value, 〈𝐿〉 needs a starting value as input, and ζ and α can both either start from user-input 

values or from simulation-estimated values.  

 - Y if running an iterative simulation and all parameters have been pre-calculated or 

restarting a simulation from a previous set of parameters. Also enter yes if running a 

predictive pointer algorithm simulation, for which all independent micelle parameters must 

be inputted.  (See “Calculating micelle parameters” below for how to extract micelle 

parameters from experimental rheology using previously developed correlations.) 

 - N if running an iterative pointer algorithm simulation with no initial guesses for ζ and α 

9.2. Initial guess or value for dimensionless breakage time ζ (not required if input 9.1 = N) 

9.3. Initial guess or value for semi-flexibility factor α (not required if input 9.1 = N) 
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10-EOF. Experimental rheology data in three columns, in the order ω [rad/s], G’(ω) [Pa], G”(ω) 

[Pa]. See Figure 4.2 below about preparing experimental data for input.  In particular, 

especially when using mechanical data only, watch for poor data at the lowest 

frequencies where the modulus may be lower than the physical limits of the rheometer 

and the highest frequencies where inertial effects can begin to affect the data. 

 

 
Figure 4.2: Example experimental rheology data 

  

Watch for an 

upturn or plateau 

in the data at low 

frequency. 

At high frequency, discard 

data that either increase 

suddenly or that inconsistently 

increase and decrease. 

Input only the 

data between 

the dotted lines. 
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Calculating micelle parameters 

The independent fitting parameters α, lp, 〈𝐿〉, and ζ can be estimated from experimental 

rheological data using correlations derived from pointer algorithm simulations. The process was 

detailed in Chapter 3 and is also summarized below.  

 

1) Obtain solution parameters T (K), ϕ, and ηs (Pa∙s). 

 

2) Get experimental parameters G’min (Pa), G”min (Pa), and ωc1 (rad/s) from the rheology data.  

G’min and G”min are the values of G’ and G” at the frequency where G” has a minimum. If 

there is no minimum in G”, either the maximum of the ratio G’(ω)/G”(ω) or the limit of 1 can 

be used in the calculations below. ωc1 is the first crossover frequency, where the G’ and G” 

curves intersect at low frequency. 

 

3) Calculate G0 (Pa) from the correlation  

  
𝐺0

𝐺𝑚𝑖𝑛
′ =

4.25

𝐺𝑚𝑖𝑛
′ 𝐺𝑚𝑖𝑛

"⁄
+ 0.625 if G’min/G”min < 10 or take 

  G0 ≈ G’min if G’min/G”min > 10.  (4.1) 

 

4.1) If lp (m) is known or will be specified, calculate α from the crossover formula 

  𝐺0 =
𝛼3

3+𝛼3 9.75
𝑘𝐵𝑇

𝛼3𝑙𝑝
1.8 +

3

3+𝛼3

28

5𝜋

𝜙𝑘𝐵𝑇

𝑑2𝑙𝑒
   (4.2) 

 

4.2) To extract lp from the high-frequency data, perform steps 4.1 and 4.2 simultaneously to 

determine α and lp, solving the crossover formula while minimizing the error of fitting 

bending modes to the G” high-frequency data at the same time. Equation for bending modes: 
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  𝐺” − 𝜔𝜂𝑠 = 𝐼𝑚 [
1

15
𝜌𝜅𝑙𝑝 (

−2𝑖𝜍⊥

𝜅
)

3 4⁄

𝜔
3

4]  (4.3) 

  where the area density of micelles 𝜌 =
𝜙

𝜋𝑑2 4⁄
, 

  the bending modulus 𝜅 = 𝑘𝐵𝑇𝑙𝑝,  

  and the lateral drag coefficient 𝜍⊥ =
4𝜋𝜂𝑠

ln (0.6𝜉 𝑑⁄ )
 

 

5) Calculate 〈𝐿〉 (m) from the correlation 

 
𝐺𝑚𝑖𝑛

′

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

   (4.4) 

 using le as calculated from 𝛼 ≡
𝑙𝑒

𝑙𝑝
 

 

6) Calculate 𝜉 ≡ 𝜏𝑏𝑟 𝜏𝑟𝑒𝑝⁄  from the correlation 

 𝜏𝑅 =
1

𝜔𝑐1
= 0.484𝜏𝑏𝑟

0.63𝜏𝑟𝑒𝑝
0.37  (4.5) 

 where the reptation time 𝜏𝑟𝑒𝑝 =
2〈𝐿〉3

𝜋2𝛼𝐷0
, 

 in which the translational diffusivity within the tube 𝐷0 =
𝑘𝐵𝑇

𝜍
 

 and the drag coefficient 𝜍 =
2𝜋𝜂𝑠

ln (𝜉 𝑑⁄ )
 

 

[Note: We have provided an Excel spreadsheet that can be used to aid in calculating the micelle 

parameters as outlined above.] 

 



92 

 

Running a pointer algorithm simulation 

The pointer algorithm can be compiled using the gfortran compiler and run locally in a command 

line or IDE, or run remotely on a computing cluster. 

 

Understanding the output files 

RESULT.DAT – At the end of the simulation, this file will contain the final extracted micelle 

parameters and G’ and G” curves. For a noniterative pointer algorithm simulation, the 

parameters should match the inputs and the G’ and G” curves are the predicted rheology. For an 

iterative simulation, the output is either the converged results or the results from the final 

(unconverged) iteration, in which case you may decide to restart the simulation with the final 

micelle parameters. 

 

result_fit.dat – After every iteration, the simulation checks the error between the G’ and G” 

curves from the current iteration and the experimental data. If the error has decreased from 

previous iterations, the current best-fit parameters and rheology curves are recorded in this file. 

 

GF_t.DAT – This file contains the stress relaxation curve from reptation and its fit using the 

genetic algorithm assuming multiexponential relaxation of the form 𝜇(𝑡) = ∑ 𝜇𝑖𝑒𝑡/𝜏𝑖
𝑖 . These 

data are normalized by the plateau modulus and are in the form [time (s), μ(t) from simulation,  

μ(t) fitted with the genetic algorithm]. 
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GW.DAT – The contents of the above file transformed into the frequency domain, scaled by the 

plateau modulus. The columns of this file are [ω (rad/s), G’(ω) (Pa), G”(ω) (Pa)] with 𝐺′(𝜔) =

∑ 𝐺0𝜇𝑖
𝜔𝜏𝑖

1+𝜔2𝜏𝑖
2𝑖  and 𝐺′′(𝜔) = ∑ 𝐺0𝜇𝑖

(𝜔𝜏𝑖)2

1+𝜔2𝜏𝑖
2𝑖 . 

 

rotary.dat, rouse_u.dat, bending_u.dat, rouse.dat, bending.dat – These files contain contributions 

to relaxation from rotary relaxation, Rouse modes of unentangled micelles, bending modes of 

unentangled micelles, Rouse modes of entangled micelles, and bending modes of entangled 

micelles respectively. All of these files contain data in the format [ω (rad/s), G’(ω) (Pa), G”(ω) 

(Pa)]. 

 

NEW_INPUT.DAT – This file tracks the best-fitting iteration and creates a new input file with 

those parameters in case the simulation does not converge and you want to restart it from the 

best-fit parameters. Note that it does not contain the experimental data that were input. 

 

result_in.dat – The predicted G’ and G” values are output to this file at the same frequencies as 

the experimental data for the best-fit iteration. Certain features of the experimental and pointer 

algorithm rheology such as the first crossover frequency are also output to this file. This 

information can be useful to manually compare the pointer algorithm predictions to the 

experimental data at the same frequencies. 

 

Other files: 

SIMULATION OUTPUT.DAT – This is an intermediate file that records the micelle parameters 

and the calculated error between the pointer algorithm G’ and G” curves and the experimental 



94 

 

data at each iteration. If the simulation is not converging, this file may be useful. You can look 

for iterations with lower error and restart the simulation from those parameters as an alternative 

to using the simulation-determined best-fit parameters. 

 

INTRADATA.DAT – This file contains the micelle parameters and G’ and G” curves for every 

iteration. It can be used to manually compare any iteration to the experimental data after 

potential iterations of interest have been identified in the SIMULATION OUTPUT file. 

 

TEMP.DAT – The unrelaxed fraction of micelles μ(t) is written to this file in the format [time 

step (#), time (s), μ(t)]. 

 

TIME_FREQUENCY TRANSFORMATION.DAT – This file has the results from fitting μ(t) to 

a multiexponential expression with the genetic algorithm. The data pairs are [μi, τi]. 

 

SIMULATION MONITOR.DAT – This file tracks the step of the pointer algorithm currently 

being performed (reptation, the genetic algorithm, etc.). 

 

Example simulations 

Example 1: An iterative pointer algorithm simulation 

This example shows how to set up an iterative pointer algorithm simulation and the simulation 

results.  The solution considered is a SLE1S + CAPB/NaCl solution with merged mechanical and 

high-frequency DWS rheology shown in Figure 4.3 below. The rheology was measured at 25°C, 

the salt solution (solvent) has a viscosity of ηs = 0.0011 Pa.s, the zero shear viscosity of the 
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surfactant solution was measured to be 26.1 Pa.s, and the surfactant concentration was calculated 

to give a volume fraction of 0.06. 

 

 
Figure 4.3: Experimental rheology for example SLE1S/CAPB solution. 

 

Along with those known experimental parameters, we also need to estimate starting values for 

the micelle parameters and select options for the simulation. In this case, if we opt not to pre-

calculate the micelle parameters before beginning the simulation, we only need to make guesses 

for the starting persistence length and the micelle length. For the persistence length, because 

high-frequency data are available, we choose to have the simulation fit the persistence length and 

estimate a starting value of 80 nm, close to values we previously found for other SLE1S/CAPB 

solutions. For the micelle length, the experimental data do show a minimum in G”, but the ratio 

of G’ to G” at the frequency where G” has its minimum is only moderately high (~5) so we don’t 

expect the micelle length to be extremely long and guess 3 μm as a starting value for the micelle 

length. After choosing starting values for the micelle and persistence lengths, we can generate 

the input file for the simulation, shown in Figure 4.4. 
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In Figure 4.4 below, the experimental parameters T, ϕ, ηs, and η0 (units given in the “preparing 

the simulation input file” section) are entered in lines 1 and 7 (column 1). The estimated micelle 

parameters, the persistence length and micelle length, are inputs 6.2 and 7.2 respectively. If we 

had also wanted to estimate the other independent fitting parameters α and ζ, those would have 

been entered in line 9 (and Y entered for input 9.1). 

 

Line 3 contains the information about the form of the experimental data. Input 3.1 (Y) signifies 

that experimental rheological data are available, and 3.2 (N) means that high-frequency data are 

present. Since we entered Y for all items in line 4, the simulation will generate the output files 

GF_t.DAT, GW.DAT, and a file containing the contribution to relaxation from unentangled 

micelles added to the data in GW.DAT for the most recent iteration. See the above section for 

more information on the contents of GF_t.DAT and GW.DAT. 

 

Input 5.1 is the switch for generating separate output files for the contributions to relaxation from 

Rouse, bending, and rotary modes for entangled and unentangled micelles. For the example 

simulation in Figure 4.4, these files will be output. Input 5.2 (Y) tells the simulation to iterate 

and fit the experimental data, not run a single-iteration predictive pointer algorithm simulation. 

The last input on line 5 (N) means that the simulation will not try to fit the stress relaxation curve 

from reptation with a single Maxwell mode, but will use the Genetic Algorithm to fit the stress 

relaxation curve with an appropriate number of modes. 

 

As mentioned above, input 6.2 is the starting value of the persistence length in nanometers. Input 

6.1 (Y) is the option for the pointer algorithm to fit the high-frequency data and extract the 
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persistence length as a fitting parameter. We can choose this option because high-frequency data 

are present in this example. 

 

The final input in line 7 is the micelle diameter in nanometers. We usually use a value of 4.0 nm 

here, but if a separate measurement of the micelle diameter is available from SANS or another 

experimental method, the diameter can be input here. 

 

Line 8 contains the inputs for the number of micelles and number of iterations. From a series of 

simulations fitting experimental rheology with different ensemble sizes, we determined that 2000 

micelles is the smallest ensemble size that gives the same results as larger ensembles (see 

Appendix D). For the number of iterations, we find that 20 is a good number to allow enough 

iterations and time for the parameters to converge. 

 

Line 9 was described above, and finally, lines 10 to the end of the file contain the experimental 

rheology in the order [ω(rad/s), G’ (Pa), G”(Pa)]. 

 



98 

 

 
Figure 4.4: Example input file for data shown in Figure 4.3. 

 

After completing the input file, we transferred the input file, the simulation code, and a 

submission script to the University of Michigan’s high-performance computing cluster. [The 

simulations can be run locally, but their length often makes it more practical to run them 

remotely.] The simulation was given 5 days of wall time, but converged after 16 hours and the 

results are shown in Figure 4.5 and Table 4.1. 

 



99 

 

 

Figure 4.5: Example simulation results showing the fitted pointer algorithm rheology curves 

compared to the experimental data. 

 

Table 4.1: Fitted micelle parameters extracted from experimental rheology 

parameter value 

ζ 0.2 

τrep (s) 3 

τbr (s) 0.4 

〈𝐿〉 (μm) 3.7 

G0 (Pa) 98 

le (nm) 140 

lp (nm) 91 

α ≡ le/lp 1.6 

Z ≡ 〈𝐿〉/le 26 

 

From Figure 4.5, we see good agreement between the pointer algorithm results and the 

experimental data. 

 

Example 2: A predictive pointer algorithm simulation 

If in the above example we had chosen to pre-calculate our micelle parameters, thought the 

micelles were very long, or didn’t want to wait for an iterative simulation to converge, we could 
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instead have run a predictive pointer algorithm simulation. To run a predictive simulation, we 

need to have better estimates of the micelle parameters, which can be obtained from the 

correlations in the “Calculating micelle parameters” section. 

 

First, we need the experimental parameters T = 298 K, ϕ = 0.06, and ηs = 0.0011 Pa.s and the 

experimental rheological parameters G’min, G”min, and ωc1. For this data set, G’min = 69.9 Pa, 

G”min = 13.8 Pa, and ωc1 = 2.34 rad/s. 

 

The ratio G’min/G”min = 5.06 is less than 10 so Eq. 1 is used to calculate G0 and 

𝐺0 = 𝐺𝑚𝑖𝑛
′ (

4.25

𝐺𝑚𝑖𝑛
′ 𝐺𝑚𝑖𝑛

"⁄
+ 0.625) = 69.9 𝑃𝑎 (

4.25

69.9 𝑃𝑎 13.8 𝑃𝑎⁄
+ 0.625) = 102 𝑃𝑎 

 

Next, because we want to extract the persistence length from the high-frequency rheology, Eqs. 

4.2 and 4.3 must be solved simultaneously. Here we use an Excel spreadsheet that has been set 

up for this purpose. Part of the spreadsheet is shown in Figure 4.6. Columns M, N, and O are the 

experimental data.  Column P is the right-hand side (RHS) of Eq. 4.3, calculated from the 

experimental data and column R is the LHS of Eq. 4.3, initially calculated from the known 

micelle parameters and placeholder values for le and lp. We are interested in the high-frequency 

data when the slope is 0.75, so we calculate the slope of column P on a log-log scale in column 

Q. We look for where the slope of the RHS of Eq. 4.3 is close to 0.75 and sum the differences 

(error) between columns P and R, the left and right sides of Eq. 4.3. The spreadsheet is also 

simultaneously calculating the plateau modulus from Eq. 4.2 and comparing it to G0 determined 

earlier from Eq. 4.1, 102 Pa.  We then use solver to minimize the two sources of error (from 

fitting to high frequency data and from the already calculated G0) by varying le and lp. The solver 
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solution for this experimental data set is le = 141 nm and lp = 92.5 nm, so 𝛼 =
𝑙𝑒

𝑙𝑝
=

141 𝑛𝑚

92.5 𝑛𝑚
=

1.52. 

 

 
Figure 4.6: Portion of Excel spreadsheet showing fitting to Eq. 4.3, scrolled to the high-

frequency data where the slope is close to 0.75. 

 

〈𝐿〉 can now be calculated from Eq. 4.4, 
𝐺𝑚𝑖𝑛

′

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

 and 

〈𝐿〉 = 𝑙𝑒 [
1

0.317
(

𝐺𝑚𝑖𝑛
′

𝐺𝑚𝑖𝑛
" )]

1
0.82

= 0.141 𝜇𝑚 [
1

0.317
(5.06)]

1
0.82

= 4.13 𝜇𝑚 

 

Lastly, the ratio of breakage to reptation time is determined from Eq. 4.5,  

 𝜏𝑅 =
1

𝜔𝑐1
= 0.484𝜏𝑏𝑟

0.63𝜏𝑟𝑒𝑝
0.37, 

 where the reptation time 𝜏𝑟𝑒𝑝 =
2〈𝐿〉3

𝜋2𝛼𝐷0
, 
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 in which the translational diffusivity within the tube 𝐷0 =
𝑘𝐵𝑇

𝜍
 

 and the drag coefficient 𝜍 =
2𝜋𝜂𝑠

ln (𝜉 𝑑⁄ )
. 

Starting from the drag coefficient and working upward, 𝜍 =
2𝜋(0.0011 𝑃𝑎.𝑠)

ln (1410.6∗92.50.4 4⁄ )
= 0.0021 𝑃𝑎. 𝑠, 

𝐷0 =
1.38 ∗ 10−23  𝐽 𝐾⁄ (298 𝐾)

0.0021 𝑃𝑎. 𝑠
= 1.96 ∗ 10−18

𝑚3

𝑠
 

𝜏𝑟𝑒𝑝 =
2(4.13 ∗ 10−6 𝑚)3

𝜋2(1.52)(1.96 ∗ 10−18  𝑚3 𝑠⁄ )
= 4.80 𝑠 

 

𝜏𝑏𝑟 = (
1

2.34 𝑠⁄ (0.484)4.80 𝑠0.37
)

1/0.63

= 0.326 𝑠 

and 𝜁 =
𝜏𝑏𝑟

𝜏𝑟𝑒𝑝
=

0.326 𝑠

4.80 𝑠
= 0.0678. 

 

With the independent micelle parameters calculated, the input file can be filled in much like the 

example above except with the calculated values in inputs 6.2, 7.2, 9.2, and 9.3 (persistence 

length, micelle length, zeta, and alpha respectively). Additionally, make sure Y is entered for 

input 9.1 so that the simulation uses the calculated values of zeta and alpha. 

 

An example result is shown in Figure 4.7. Note that the calculated parameters are close to the 

fitted parameters given in Table 4.1, and although the simulation rheology curves do not match 

the experimental data as well as the fitted curves (compare with Figure 4.5), the agreement is still 

reasonably good. 
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Figure 4.7: Rheology curves predicted by the pointer algorithm using micelle parameters 

calculated from correlations (Eqs. 4.1-4.5). 

 

Troubleshooting 

The simulation does not run: 

If running a predictive pointer algorithm simulation (or a single iteration to compare to 

experimental data), the format or units of the input parameters may have been entered 

incorrectly, causing an error. 

 

If running an iterative pointer algorithm simulation, you should still double check the input 

parameters, but there are also minimum requirements for the experimental data.  The data need 

to contain a minimum in G” or if there is no minimum in G”, high-frequency data that include 

the second crossover frequency must be available.  Without either of these rheological features, 

an iterative fitting simulation cannot be run, but the micelle parameters can still be estimated 

from the rheology, as detailed in “Calculating micelle parameters.” 
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The simulation does not finish: 

For a predictive pointer algorithm simulation, you may just need to increase the wall time if 

running the simulation on a computation cluster.  However, if the micelles are very long (greater 

than ~40-50 μm), even with an increased simulation time the simulation may take an excessive 

amount of time to finish.  In this case, the number of micelles can be decreased to a minimum of 

~500 micelles. 

 

An iterative simulation may not finish because it also wasn’t given enough time to complete all 

the iterations.  Again, the wall time can be increased, but long micelles may make more than a 

few iterations difficult to complete in a reasonable amount of time.  The options here are to 

increase the simulation time, use less iterations, or estimate the micelle parameters from the 

rheology and switch to a predictive simulation. 

 

The simulation does not converge: 

Although we have made an effort to test the pointer algorithm with a variety of surfactant/salt 

systems, the pointer algorithm may not be able to fit every single set of data.  There may be a 

feature in your experimental data that the pointer algorithm cannot handle well.  If the best-fit 

rheological curves look close to the experimental data, you can restart the simulation with the 

best-fit parameters and see if more iterations would allow the simulation to converge.  If the 

best-fit G’ and G” curves do not match the experimental data well, you may want to switch to a 

predictive simulation with the parameters calculated from the experimental data. 
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Chapter 5: Conclusion 

 In this work, we investigated the use of a mesoscopic simulation method, the pointer 

algorithm, to extract micelle parameters from the rheology of surfactant solutions and better 

understand the relation between solution composition and rheology. The pointer algorithm, 

previously developed in the Larson lab, is based on polymer theory adapted for micelles and 

combines several relaxation mechanisms, namely reptation, contour length fluctuations, 

constraint release, Rouse modes, and bending modes, to model surfactant solution rheology. The 

simulation had been shown to fit a SLE1S+CAPB/NaCl solution at varying surfactant and salt 

concentrations and with perfume raw materials added, and here we extend the use of the pointer 

algorithm to general surfactant systems from literature. 

 We began by validating the pointer algorithm simulations with the slip-spring model 

modified for micelles in Chapter 2. The comparison between the two simulation methods led us 

to reevaluate the treatment of Rouse modes in the pointer algorithm and to the interesting result 

that the initial assumption of ignoring the longitudinal Rouse modes was incorrect. Instead, we 

found that the Rouse modes transition from a full Rouse spectrum to fractionated Rouse modes 

(including both fast and longitudinal Rouse modes) as solutions become more concentrated and 

the micelles go from locally relaxing as if they were in a dilute solution to being restricted as a 

confining tube of surrounding micelles forms. Once we modified the Rouse modes in the pointer 

algorithm, we saw good agreement between the two simulation methods over a range of micelle 

lengths and breakage ratios. This result helps to verify that the micelle parameters that we extract 

from rheology are accurate, in particular the micelle length that can be an order of magnitude 
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longer than what is calculated from the Granek and Cates scaling relation but seems more 

consistence with the high solution viscosities. 

 After comparing the pointer algorithm with the slip-spring model, we used the pointer 

algorithm to fit the rheology of a series of SLE1S+CAPB/NaCl solutions in which the surfactant 

concentration was systematically varied while the counterion concentration was held constant. 

From the micelle parameters that were determined from the rheology, we calculated scaling laws 

for the micelle parameters to quantify how they change with surfactant concentration. The 

scaling laws we found were consistent with theoretical predictions. We were also able to use the 

fitted micelle parameters to recover Cates-like correlations that directly relate the micelle length 

and breakage time, two parameters that are otherwise difficult to determine, from rheology. The 

correlations make it possible to quickly estimate micelle parameters from experimental data 

without running a full iterative pointer algorithm simulation. 

 Next, the pointer algorithm and our derived correlations were applied to a variety of 

surfactant systems from literature. Since the pointer algorithm doesn’t contain any properties of 

the surfactants or salts in the solution, it should be valid for any general surfactant solution, 

which we confirm in Chapter 3. In Chapter 3, we fit several sets of rheology data for 

CTAB/NaNO3 and CPyCl/NaSal solutions, use the correlations to extend the range of 

concentrations for which the pointer algorithm can be used, and test the correlations’ ability to 

estimate micelle parameters without fitting. We find that for solutions with micelles of 

intermediate length, the pointer algorithm can fit the experimental data similarly to the 

SLE1S+CAPB/NaCl solutions we previously worked with. For more dilute solutions where the 

rheology doesn’t have enough features to fit, or for more concentrated solutions with very long 

micelles where the time per iteration is computationally prohibitive, the correlations still allow 
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the micelle parameters to be estimated. Overall, the pointer algorithm is able to describe the 

rheology of a variety of surfactant systems well, showing that the relaxation mechanisms of 

surfactant micelles are similar across different systems. 

 In Chapter 4, we document the pointer algorithm to make it generally usable. We provide 

a user manual that gives instructions for running iterative pointer algorithm simulations as well 

as predictive simulations. The correlations that we developed in Chapter 2 and tested in Chapter 

3 increase the accessibility of the pointer algorithm, both by expanding the range of 

concentrations encompassed in the simulation and by providing a relatively quick and simple 

way to estimate the micelle parameters without a full iterative simulation. 

 With the pointer algorithm validated by the slip-spring model and shown to be applicable 

to surfactant solutions in general, future work can focus on developing a deeper understanding of 

the relationship between the surfactant solution composition and the rheology as well as 

combining results from the pointer algorithm with different simulation and experimental 

methods. In Chapter 2, we began to study the effect of surfactant concentration on the micelle 

parameters and calculated scaling laws for the micelle parameters as a function of surfactant 

concentration. In general, however, unlike for polymers, surfactant micelles lack comprehensive 

reference sets of rheological data in which both surfactant and salt concentration are varied 

systematically. The effect of salt, in particular the counterion, and other additives is also still not 

fully understood. Although some work has been done to quantify the effect of counterion binding 

efficiency [47], it uses the original Cates scaling relations and we would like to apply the pointer 

algorithm to similar data, in which salt curves and rheology for varied salts and a chosen 

surfactant are obtained. The rheology could then be fit with the pointer algorithm and we would 

ascertain how the micelle parameters are affected by the counterion and if those changes are 
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consistent with what we might expect based on the Hofmeister series. We are also interested in 

the effect of additives like perfumes that are common in consumer products. Previous work [30] 

combined dissipative particle dynamics (DPD) simulations with pointer algorithm simulations to 

relate how additives alter the packing of surfactant molecules to changes to the rheology. It was 

found that the octanol/water partition coefficient roughly correlates to the location of additives in 

and around the micelle and to the zero-shear viscosity, but further work can be done to find a 

better predictor of how additives will affect rheology as well as look at the effect of multiple 

additives in the same solution. 

 Additionally, further development of the pointer algorithm has added branched micelles 

to the simulation, allowing exploration of a different range of solutions past the peak of the salt 

curve. It is generally accepted that the peak in the salt curve signifies an onset of branching, 

which has been qualitatively visualized using cryo-TEM [14,25]. Branching is predicted to speed 

up relaxation, but its effect on rheology has not been quantified. With this addition to the pointer 

algorithm, we would be able to investigate both sides of a salt curve, and compare the rheology 

of two solutions with similar viscosities, which would aid in understanding the effect of 

branched micelles on the micelle parameters and could be useful for product formulation. 

 Finally, so far we have concentrated on the linear rheology of linear micelles. Although 

the pointer algorithm is not designed to model nonlinear rheology, the comparisons to the slip-

spring model open up an interesting possibility. Our more recent comparisons with the slip-

spring model (in Chapter 3) approach rheologically relevant concentrations, where micelles are 

long and entangled enough to have measurable rheology. As discussed in Chapter 3, this means 

that it could be possible to use the pointer algorithm to extract micelle parameters from 

experimental data, then use those parameters in the slip-spring model to predict the nonlinear 
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rheology. For surfactant solutions, stress controlled experiments in which the shear rate is 

measured as the stress is increased have found that the solutions have a maximum stress 

[12,61,62] that is related to the plateau modulus but the experimental value often differs from the 

theoretically predicted value. If the stress is ramped up, then down, hysteresis is seen for these 

solutions [63]. Under shear startup, the rheology can exhibit a stress plateau, a stress overshoot, 

or oscillations depending on the shear rate [64]. Where possible, we could run slip-spring 

simulations for these rheological experiments and see which of these phenomena can be captured 

or predicted by the slip-spring model. The results could help explain the underlying physics of 

some of these phenomena and why experimental results differ from theoretical predictions. 

 Extensional rheology is another area that the slip-spring simulations could explore. 

Various experiments using capillary breakup extensional rheometers (CaBER) and filament 

stretching extensional rheometers (FiSER) [63,65–67] indicate that the viscosities and relaxation 

times extracted from these methods differ from each other and from results from linear rheology. 

It also seems that the initial step size in CaBER affects the rheology of surfactant solutions, 

unlike polymer solutions, where the viscosity is relatively insensitive to the step strain [65,66]. 

Slip-spring simulations could provide insight into the differences between the measured 

viscosities and relaxation times and determine the effect of micelle breakage on extensional 

rheology. As we continue to build on the pointer algorithm and use it in combination with other 

simulation methods, we work toward our goal of gaining a more comprehensive understanding 

of surfactant solution rheology.  
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Appendix A: Parameters for 60 mM CTAB/120 mM NaNO3 Solution from Helgeson et al. 

 

The experimental data in Figure 2.8 drawn from Helgeson et al. show no minimum in G”, but 

other data in Helgeson et al. show that an increase in either surfactant concentration or salt 

concentration produces a minimum in G”. Thus, we take the data in Figure 2.8 to be at the 

threshold of having a minimum in G”.  (We can also see that the data are near this threshold by 

examining the two-mode fit to these data in Fig. 5 of Helgeson et al.)  Thus, we take our scaling 

relation 
𝐺′𝑚𝑖𝑛

𝐺𝑚𝑖𝑛
" = 0.317 (

〈𝐿〉

𝑙𝑒
)

0.82

 in the limit G’min/G”min = 1 and thereby obtain 〈𝐿〉 = 4.06𝑙𝑒. To 

get le, we assume loosely entangled micelles, which is usually true of less concentrated/entangled 

solutions, and our crossover formula then reduces to 

 𝐺0 = 9.75
𝑘𝑏𝑇

𝜉3 , where 𝜉 = 𝑙𝑒
0.6𝑙𝑝

0.4.      (A1) 

The plateau modulus is estimated by 𝐺0 = 4.88𝐺𝑚𝑖𝑛
′ , which comes from fitting pointer algorithm 

results to the equation 

 
𝐺0

𝐺𝑚𝑖𝑛
′ =

4.25

𝐺𝑚𝑖𝑛
′ 𝐺𝑚𝑖𝑛

"⁄
+ 0.625       (A2) 

(shown in Figure A1) and again taking G’min/G”min = 1. We can also estimate from Figure 2.8 

that the storage modulus at the frequency where this incipient minimum will appear,  G’min , is 

approximately twice its value at the crossover frequency. Then from Figure 2.8, we find G’min = 

4.54 Pa and therefore Eq. A2 gives G0 = 22.2 Pa. From the persistence length of 32 nm from 

Helgeson et al., and Eq. A1, the entanglement length is 298 nm. Then, from 〈𝐿〉 = 4.06𝑙𝑒, we 

find 〈𝐿〉 = 1.2 μm. For a solution well outside the fast breakage regime, we use a large value of ζ 
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= 200, so that results are insensitive to ζ . These calculations have given us all the independent 

input parameters needed for the pointer algorithm, namely G0 = 22.2 Pa, 〈𝐿〉 = 1.2 μm, lp = 32 

nm, and ζ = 200. (Other calculated parameters used in the pointer algorithm are derived from 

these, namely α = le/lp = 9.30, Z = 5.1, and le = 298 nm.) Using these input parameters, the 

pointer algorithm predicts the G’ and G” curves shown by the dotted lines in Figure 2.8. 

 

Figure A1: Plot of ratio G0/G’min vs. G’min/G”min , which is used to calculate G0. Dashed line 

shows best fit inverse function 
𝐺0

𝐺𝑚𝑖𝑛
′ =

4.25

𝐺𝑚𝑖𝑛
′ 𝐺𝑚𝑖𝑛

"⁄
+ 0.625, which we recommend when 

G’min/G”min < 10. For G’min/G”min > 10, G0 can be approximated as G’min.
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Appendix B: Additional Experimental and Pointer Algorithm Rheology for 0.1 M 

CPyCl/0.06 M NaSal 

 

Figures B1-B3 below show the experimental rheology compared to pointer algorithm predictions 

from calculated correlation parameters and from fitting for 0.1 M CPyCl/0.06 M NaSal at 35, 30, 

and 25°C.  The comparisons for 20 and 40°C are given in the main text and these additional 

figures show similar results, with the rheology curves from both the correlation and fitted 

parameters matching the experimental data well at high and intermediate frequencies and less 

well at low frequency. 

 

 

Figure B1: Experimental rheological data for 0.1 M CPyCl/0.06 M NaSal at 35C compared to 

pointer algorithm curves from calculated correlation parameters (solid lines) and fitting by the 

pointer algorithm (dashed lines). 
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Figure B2: The same as Figure B1 except at 30C. 

 

Figure B3: The same as Figure B1 except at 25C.
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Appendix C: Separately Fitted DWS and Mechanical Data for 0.1 M CPyCl/0.06 M NaSal 

at 20C 

 

Figures C1 and C2 show rheology for the same solution measured by mechanical rheometry 

(Figure C1) and DWS (Figure C2). The overall form and magnitude of the two data sets are 

similar, although the DWS data have a different shape around the first crossover frequency and a 

deeper minimum in G”. For each of the two data sets, micelle parameters were calculated using 

our correlations in Eqs. 3.2-3.5. The plateau modulus and persistence length extracted from the 

mechanical and DWS data agree well with each other while the micelle length from DWS is 

about twice the length from mechanical rheology because of the greater G’min/G”min ratio in the 

former data. To compensate for the difference in lengths, the breakage times also change to fit 

the shape of the rheological curves at lower frequencies. A pointer algorithm simulation was run 

with the parameters calculated from the correlations and results compared to the experimental 

data. The mechanical data are matched well by the pointer algorithm curves over the entire 

frequency range. For the DWS data, the high frequency data are matched well, but there is a 

deviation near the minimum in G” and at the first crossover frequency. These results demonstrate 

that although the data look fairly similar, the details are significant, since the difference in the 

minimum in G” doubles the micelle length, as shown in Error! Reference source not found.. 

The results also help to explain the pointer algorithm’s poor fit around the first crossover 

frequency for the CPyCl//NaSal rheology above and show the importance of developing a 
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consistent procedure for merging DWS and mechanical data, which seems to remain an 

outstanding problem for experimentalists to address. 

 

Figure C1: Mechanical rheology of 0.1 M CPyCl/0.06 M NaSal solution at 20C compared to 

pointer algorithm prediction with micelle parameters calculated from correlations. 

 

 

Figure C2: The same as Figure C1, except for DWS rheology. 

 

Table C1: Calculated micelle parameters for 0.1 M CPyCl/0.06 M NaSal solution at 20C 

T (C)  ζ τbr (s) G0 (Pa) ⟨𝐿⟩ (μm) le (nm) lp (nm) 

Mech. corr. 0.004 0.91 35.5 19.2 170. 58 

DWS corr. 0.0002 0.56 33.6 42.9 173 66 
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Appendix D: Effect of Ensemble Size, Diameter, and Persistence Length on Pointer 

Algorithm Simulations 

 

For the studies below, each set of simulations was performed for one data set containing only 

mechanical data (no high frequency data) and one data set with merged mechanical and DWS 

data that includes high frequency data. These solutions were chosen as examples of fitting with a 

fixed persistence length and of fitting with the persistence length left as an additional fitting 

parameter. The data set without high frequency data is a 16 wt% SLE1S/CAPB solution with 

2.1% NaCl and the data set with high frequency data is a SLE1S/CAPB solution with a 

surfactant volume fraction of φ = 0.04 and NaCl added so that [Na+] = 0.7 M. All rheological 

data were measured at 25C. 

 

Effect of ensemble size on fitted micelle parameters 

Since the time per iteration of the pointer algorithm is directly proportional to the number of 

micelles in the simulation, it is advantageous to use a smaller ensemble size. However, because 

the micelle lengths are discretized in the simulation, the length distribution for a given average 

micelle length is affected by the number of micelles. In this study we vary the ensemble size and 

compare the converged micelle parameters to find the minimum number of micelles we need to 

simulate. At each ensemble size, five simulations were run and the average values of the best fit 

parameters are plotted and tabulated below. All simulations converged, in that the average 

deviation between measured and predicted moduli is less than 10%. 
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For the data set without high frequency data, the plateau modulus and entanglement length are 

approximately constant over the range of ensemble sizes tested, as can be seen in Figure D1. The 

time scales and micelle length are dependent on the ensemble size up to around 1000 micelles, 

where the change in these parameters slows and the parameters plateau by around 2000 micelles.  

The average values of the micelle parameters are given in Table D1. 

 

 

Figure D1: Variation of micelle parameters with number N of micelles in the ensemble, at fixed 

persistence length of 70 nm for pointer algorithm fits to data for 16 wt% SLE1S/CAPB solution 

with 2.1% NaCl.  
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Table D1: Micelle parameters, averaged over 5 runs, at different ensemble sizes N, at fixed 

persistence length of 70 nm 

N ζ τrep (s) τbr (s) 〈𝐿〉 (μm) G0 (Pa) le (nm) α Z 

100 2.39 0.281 0.644 1.83 446 95.7 1.37 19.2 

250 2.08 0.331 0.676 1.94 465 93.8 1.34 20.7 

500 1.58 0.397 0.612 2.06 461 94.2 1.35 21.9 

750 1.48 0.410 0.606 2.08 462 94.1 1.34 22.1 

1000 1.43 0.425 0.592 2.10 480 92.5 1.32 22.7 

1500 1.47 0.413 0.597 2.08 488 91.8 1.31 22.7 

2000 1.34 0.432 0.574 2.12 467 93.6 1.34 22.6 

3000 1.26 0.444 0.558 2.14 472 93.2 1.33 22.9 

4000 1.21 0.477 0.568 2.19 467 93.6 1.34 23.4 

5000 1.20 0.460 0.552 2.16 475 92.9 1.33 23.3 

 

For the merged data (Figure D2 and Table D2), because the persistence length is now also a 

fitting parameter, its variation with the ensemble size causes the plateau modulus and 

entanglement length to also vary along with the time scales and micelle length. As in the case for 

mechanical data only, the change in the parameters with increasing ensemble size slows down 

significantly once 1000 micelles are used, and plateaus once around 2000 micelles are present. 

Our recommendation therefore is to run simulations with at least 2000 micelles when fitting 

experimental data with the pointer algorithm. Smaller ensembles can be used, as long as it is 

recognized that the breakage time will be overestimated and the micelle length underestimated 

and if high-frequency data are also being fit, the persistence length will also be underestimated 

and the plateau modulus slightly overestimated. 
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Figure D2: Variation of micelle parameters with ensemble size N, including persistence length as 

a fitting parameter for pointer algorithm fits to data for SLE1S+CAPB with a surfactant volume 

fraction of φ = 0.04 and [Na+] = 0.7 M.  
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Table D2: Micelle parameters, averaged over 5 runs at different ensemble sizes N, with 

persistence length as a fitting parameter 

N ζ τrep (s) τbr (s) 〈𝐿〉 (μm) G0 (Pa) le (nm) lp (nm) α Z 

100 2.41 0.447 1.069 1.99 109 116.1 59.7 1.95 17.1 

250 0.73 0.936 0.676 2.58 103 126.7 73.0 1.74 20.4 

500 0.49 1.281 0.627 2.88 102 129.0 75.7 1.71 22.3 

750 0.36 1.563 0.550 3.08 101 132.7 79.5 1.67 23.2 

1000 0.37 1.506 0.551 3.05 98 135.2 81.0 1.67 22.5 

1500 0.28 1.775 0.503 3.23 97 138.0 84.4 1.64 23.4 

2000 0.24 1.974 0.476 3.35 96 138.6 84.4 1.64 24.2 

3000 0.24 1.973 0.476 3.36 98 140.4 88.2 1.59 23.9 

4000 0.23 2.068 0.463 3.41 97 141.2 88.1 1.60 24.1 

5000 0.24 1.995 0.463 3.37 97 141.4 88.9 1.59 23.8 

 

Effect of persistence length on fitted micelle parameters 

Even when the persistence length can be extracted from high-frequency rheology (if such data 

are available), doubts remain about the fitting process and the accuracy of the persistence length. 

Thus, it is important to assess how the fitted, or assumed, value of the persistence length affects 

the other micelle parameters that emerge from the fitting process. To determine this effect, we 

ran a series of simulations fitting experimental data with the persistence length fixed at a series 

of different values, while the other parameters were allowed to vary to achieve a best fit. 

 

Pointer-algorithm simulations were run with persistence lengths ranging from 40-110 nm in 10-

nm intervals, centered around the previously determined value of 70 nm for this system. When 

the high-frequency data were lacking, simulations with a persistence length lp greater than 70 nm 

converged while shorter persistence lengths did not converge within an average error of 10%, 

and the parameters given are the best fits to the experimental data attained before runs 
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terminated. For the simulations that did not converge, the average error is around 15% at low 

frequency and up to 25% at intermediate frequency. Figure D3 below shows that the predictions 

for both lp = 70 and 100 nm match the experimental data well although with slight differences at 

high frequency (greater than the maximum frequency of the experimental data). The curves for lp 

= 40 nm fit the experimental data at low frequency but deviate significantly starting at 

intermediate frequencies so that this simulation does not converge, as can be seen in Figure D3. 

 In the range of persistence lengths over which the simulations do converge, the other 

parameters vary linearly with the persistence length, with micelle length and breakage time 

varying most strongly (see Figure D4 and Table D3). Thus, the ~50% increase in the persistence 

length from 70 to 110 leads to an increase of ~50% in the micelle length, a ~50% decreases in 

the breakage time, and ~20% decrease in the plateau modulus. Hence, when fitting without high 

frequency data in Figure D3, there is a range of persistence lengths over which the pointer 

algorithm converges, but the other micelle parameters obtained from the fit vary proportionately 

to the change in the persistence length. Thus, uncertainty in the value of the persistence length 

implies an uncertainty in the micelle parameters (such as micelle length) that, for micelle length, 

can easily be around a factor of two or so. This illustrates the importance of having high-

frequency data from DWS to help determine the value of the persistence length. 
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Figure D3: Predictions of pointer algorithm compared to experimental rheology for lp = 40 nm 

(best fit), lp = 70 nm (converged), and lp = 100 nm (converged) for 16 wt% SLE1S/CAPB 

solution with 2.1% NaCl. 

 

 

Figure D4: Variation of micelle parameters at fixed persistence lengths (parameters are “best 

fits” as described in the text at lp = 60 nm and below and from “converged simulations” at lp = 70 

nm and above) for mechanical data only, for pointer algorithm fits to data for 16 wt% 

SLE1S/CAPB solution with 2.1% NaCl. 
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Table D3: Micelle parameters at imposed persistence lengths, obtained from mechanical data 

only 

lp (nm) ζ τrep (s) τbr (s) ⟨𝐿⟩ (μm) G0 (Pa) le (nm) α Z 

40 21.1 0.120 2.54 1.31 665.4 62.9 1.57 20.8 

50 6.41 0.202 1.29 1.59 577.0 73.0 1.46 21.9 

60 1.65 0.357 0.592 1.97 487.0 85.4 1.42 23.0 

70 1.35 0.452 0.612 2.15 467.1 93.6 1.34 23.0 

80 0.718 0.590 0.424 2.38 435.2 103.2 1.29 23.1 

90 0.480 0.808 0.388 2.67 414.8 111.8 1.24 23.9 

100 0.308 1.11 0.342 2.99 400.2 119.8 1.20 25.0 

110 0.211 1.34 0.284 3.22 386.4 127.6 1.16 25.2 

 

When high frequency data are included, convergence is only obtained in the simulation when the 

persistence length is close to the fitted value obtained when it is allowed to freely vary (88 nm). 

Persistence lengths less than or equal to 80 nm, or greater than or equal to 100 nm, are unable to 

fit the experimental data at the minimum in G” and at high frequency. The converged simulation 

curves and examples of unconverged simulations at a shorter and longer persistence length are 

shown in Figure D5 below. The average error for unconverged simulations is about 5-15% at low 

to intermediate frequencies and rises to 25% at high frequency. Figure D6 and Table D4 give the 

best-fit micelle parameters for all persistence lengths, but as can be seen in Figure D5 only the 

simulation with lp = 90 nm converged. Thus, the added constraint of fitting the high frequency 

data severely limits the values of the persistence length that permit convergence of simulation 

predictions to the experimental data. 
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Figure D5: Predictions of pointer algorithm compared to experimental rheology for lp = 50 nm, 

90 nm, and 130 nm. Only the simulation with lp = 90 nm converged For SLE1S+CAPB with a 

surfactant volume fraction of φ = 0.04 and [Na+] = 0.7 M. 

 

 

Figure D6: Variation of best-fit micelle parameters as functions of persistence lengths with high-

frequency DWS data included in the rheology for pointer algorithm fits to data for SLE1S/CAPB 

with a surfactant volume fraction of φ = 0.04 and [Na+] = 0.7 M. 
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Table D4: Micelle parameters at imposed persistence lengths, obtained from mechanical and 

high-frequency DWS data 

lp (nm) ζ τrep (s) τbr (s) ⟨𝐿⟩ (μm) G0 (Pa) le (nm) α Z 

50 1.88 0.55 1.03 2.15 123.5 107 2.13 20.2 

70 0.63 1.11 0.70 2.72 111.3 121 1.73 22.5 

90 0.29 1.79 0.52 3.26 96.0 143 1.59 22.8 

110 0.10 3.54 0.36 4.16 84.7 166 1.51 25.0 

130 0.059 5.00 0.29 4.72 81.5 184 1.41 25.7 

150 0.036 7.62 0.27 5.49 77.7 202 1.35 27.1 

 

Effect of diameter on fitted micelle parameters 

The other parameter in the simulation that we can fix is the micelle diameter. As discussed in the 

main text, based on various studies, we usually set this parameter to 4 nm, but to assess the effect 

of possible inaccuracy in this parameter, we wish to determine its effect on the best-fit values of 

other micelle parameters. We therefore ran a series of simulations with the micelle diameter 

varying from 2-5 nm in 0.5 nm increments. From various SANS experiments and MD 

simulations, we don’t expect the dimeter to be much greater than 4 nm, and we choose a 

minimum of 2 nm, since this value is close to that used by Oelschlaeger et al. [40] and 

Willenbacher et al. [26] in some of their work.  All simulations converged. 

 

Figure D7 and Table D5 show that the micelle diameter has a strong effect on the other 

parameters, similar to what was found when varying the persistence length. The parameters vary 

roughly linearly with the diameter, with the micelle length possibly showing two different 

scaling regimes. As the micelle diameter increases from 2 to 5 nm, the fitted micelle length 

decreases by approximately 60% while the breakage time increases by a factor greater than 5 and 

the plateau modulus increases by 50%. Because in these calculations the persistence length is set 
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to a constant value while the diameter is changed, the rheology curves differ from each other at 

high frequency, as seen in Figure D8. 

 

 

Figure D7: Variation of micelle parameters with micelle diameter, with mechanical data only for 

pointer algorithm fits to data for 16 wt% SLE1S/CAPB solution with 2.1% NaCl. 

 

Table D5: Micelle parameters with varying micelle diameter, obtained from mechanical data 

only 

d (nm) ζ τrep (s) τbr (s) ⟨𝐿⟩ (μm) G0 (Pa) le (nm) lp (nm) α Z 

2 0.087 2.12 0.19 4.22 334.5 168 70 2.39 25.2 

2.5 0.17 1.40 0.23 3.41 351.2 145 70 2.07 23.5 

3 0.37 0.85 0.32 2.79 388.7 125 70 1.78 22.3 

3.5 0.77 0.57 0.44 2.38 440.4 107 70 1.53 22.2 

4 1.15 0.47 0.53 2.17 469.4 93.4 70 1.33 23.3 

4.5 1.82 0.39 0.70 2.00 477.7 83.2 70 1.19 24.0 

5 2.44 0.31 0.75 1.81 509.8 71.9 70 1.03 25.2 
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Figure D8: Predictions of pointer algorithm compared to experimental rheology at varying 

micelle diameter for 16 wt% SLE1S/CAPB solution with 2.1% NaCl. 

 

With the persistence length now allowed to vary also, the effect of changing the diameter on the 

other parameters decreases and reverses the directions of the changes when compared to the 

simulations at a fixed persistence length. As an example, at a fixed persistence length, the 

micelle length decreases by over a factor of two when the diameter increases from 2 to 5 nm, but 

when the persistence length is also allowed to vary, the micelle length increases, but only by 

about 25%. Since the simulation has to fit the high frequency data to converge, the other 

parameters have to compensate for the changing diameter, and it seems that the persistence 

length is the main parameter that accomplishes that. Over the given range of diameters, the 

persistence length increases by close to a factor of 4; while the plateau modulus and breakage 

time decrease by factors of 2 and 1.2 respectively, and the length increases by a factor of 1.25. 

These changes can be seen in Figure D9 and Table D6 and Figure D10 shows that because the 

persistence length can vary to fit the high-frequency data, all the pointer algorithm curves match 

the data well and look similar across the range of micelle diameters. 
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Figure D9:Variation of micelle parameters with micelle diameter, as in Figure D7, but with high-

frequency data used in pointer algorithm fits for SLE1S+CAPB with a surfactant volume fraction 

of φ = 0.04 and [Na+] = 0.7 M.  
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Table D6: Micelle parameters with varying micelle diameter, with high-frequency data 

d (nm) ζ τrep (s) τbr (s) ⟨𝐿⟩ (μm) G0 (Pa) le (nm) lp (nm) α Z 

2 1.31 0.68 0.90 2.85 115 96.1 27.3 3.52 29.7 

2.5 1.08 0.73 0.79 2.80 111 113 35.7 3.17 24.8 

3 0.56 1.06 0.59 2.96 108 129 51.2 2.51 23.0 

3.5 0.38 1.40 0.53 3.00 103 134 68.1 1.96 22.4 

4 0.30 1.66 0.50 3.17 99.1 138 86.0 1.61 22.9 

4.5 0.32 1.69 0.54 3.16 98.8 133 96.1 1.38 23.8 

5 0.20 2.37 0.48 3.51 93.8 132 112 1.18 26.7 

 

 

Figure D10: Experimental data and example pointer algorithm simulations for varying micelle 

diameters, for SLE1S+CAPB with a surfactant volume fraction of φ = 0.04 and [Na+] = 0.7 M. 

 

Thus, the persistence length and diameter are relatively important parameters that affect the other 

parameters in the simulation. However, as long as extreme values for the persistence length and 

diameter are avoided, the other parameters will lie within a “reasonable” range. For example, the 

length of the micelles in the two SLE1S+CAPB solutions considered above will be on the order 

of a few microns, not less than a micron as predicted by the Cates scaling or tens of microns 

long, as in like some of the other highly entangled solutions examined in this work.
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Appendix E: Comparison of Rheology from Different References 

 

Below, Figure E1 shows general agreement between the two rheology data sets measured by two 

different labs on the same surfactant formulation, with some disagreement around the first 

crossover frequency and the minimum in G”. 

 

Figure E1: Comparison of rheology of 0.1 M CPyCl/0.06 NaSal solution at 20C from Rehage 

and Hoffmann [56] (solid diamonds) and Oelschlaeger et al. [40] (open circles) 
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Appendix F: Additional Pointer Algorithm Predictions for Experimental Data 

 

For the first two solutions considered in this section (Figure F1 and Figure F2), the rheology 

looks similar to other data we previously fit. Those solutions contain well-entangled micelles, 

and the pointer algorithm predictions match the experimental data well. However, the next two 

solutions (Figure F3 and Figure F4) are at lower salt and surfactant concentrations, and here we 

find that the predictions of the pointer algorithm predictions match poorly the experimental data. 

This disagreement reflects some of the difficulties in determining micelle parameters for more 

dilute solutions. 

 

 

Figure F1: Predictions of pointer algorithm, with parameters based on correlations, compared to 

experimental rheology for 1 wt% CTAT/SDBS/0.25 wt% NaTos solution for two persistence 

lengths. Data taken from [27]. 
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Figure F2: The same as Figure F1, except for 3 wt% NaOA/C8TAB solution. Data from [54]. 

 

Because of the lack of rheological features, as mentioned above and discussed in earlier work, 

less concentrated solutions need high-frequency data that include the second crossover frequency 

to be fit with the pointer algorithm. If only mechanical data are available, we can approximate 

micelle parameters using the correlations (modified as discussed below), but these estimations 

tend to be less accurate than those for well-entangled micelles, for multiple reasons. Since the 

correlations normally require the value of the minimum in G”, which does not exist for weakly 

entangled micelles, instead of the ratio G’min/G”min, the maximum value of G’(ω)/G”(ω) can be 

used, or in the limiting case, simply be taken to be unity. However, this may be an underestimate 

that leads to a micelle length that is too short, especially if the maximum G’(ω)/G”(ω) ratio is at 

the highest frequency at which experimental data are available. Additionally, for linear micelles, 

the magnitudes of G’ and G” are lower for solutions at more dilute concentrations, and at low 

frequency may approach the physical limitations of the rheometer. For the 0.015 M CPyCl/0.011 

M NaSal solution considered here (Figure F3), the terminal slopes of G’ and G” are both close to 

1, instead of 1 and 2 respectively, as expected for a Maxwell fluid, which typically describes 

surfactant solutions at low frequency. This uncertainty in the data and in the approximations 
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required to calculate micelle parameters evidently result in a poorer match between the 

experimental data and the predictions of the pointer algorithm. 

 

 

Figure F3: The same as Figure F1, except for 0.015 M CPyCl/0.011 M NaSal solution. Data 

taken from [58]. 

 

We obtain similar results for a CTAB/NaSal solution from Shikata and Hirata [52] (0.1 M 

CTAB/0.0275 M NaSal, T = 25C)  at lower salt concentration than that studied by Galvan-

Miyoshi et al. [13]. In this rheological data set, in Figure F4, the maximum G’(ω)/G”(ω) ratio is 

attained at the highest experimental frequency and the G’ and G” curves appear to be still 

diverging at this frequency, so that a higher G’(ω)/G”(ω) ratio would be attained if higher 

frequency data were obtained. Hence, using this maximum G’(ω)/G”(ω) ratio attained within the 

experimental window in our correlation will likely produce an underestimation of the micelle 

length.  The rheology curves predicted using the correlations, including this micelle length 

extracted from G’(ω)/G”(ω), match the shape of the experimental data well, but the first 

crossover frequency is an order of magnitude too high, despite the fact that the cross-over 

frequency was used to estimate the parameters. This failure of the correlations to produce a good 
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fit is likely associated with the low surfactant concentration of this solution. By manually 

adjusting the micelle length to a longer value, we can get a better fit to the experimental data, 

shown in Figure F4 and Table 3.6 in the main text. 

 

 

Figure F4: Comparison of predictions of the pointer algorithm to experimental rheology for 0.1 

M CTAB/0.0275 M NaSal solution at 20°C for two different average micelles lengths, 〈𝐿〉. Data 

from [52].  

 

Fitting data from Shikata and Hirata [52] and from Galvan-Miyoshi et al. [13] with the pointer 

algorithm indicates that micelle lengths grow extremely quickly with the addition of salt; the 

zero shear viscosity increases from 3.8 Pa.s to over 1000 Pa.s as the salt-to-surfactant ratio R 

increases from 0.275 to 0.4 (which is near the first peak in the salt curve). For the 0.04 M NaSal 

solution, for which R = 0.4, the inferred micelle length is close to 100 μm, G” shows a clear 

minimum, and the first crossover frequency is near 0.01 rad/s (see Table 3.3 and Table 3.4). The 

0.0275 M NaSal solution, on the other hand, has no G” minimum, a first crossover frequency 

above 1 rad/s, and the inferred micelle length is about two orders of magnitude shorter. 
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