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ABSTRACT

Most of today’s systems consist of strategic/selfish agents with some private information and un-
certainty towards others’ information and system states. Transmission and exchange of information
in such networks have been the focus of many interesting research areas such as mechanism design,
information design, and Bayesian learning. The information is directly exchanged in mechanism
design and information design, and the goal is to steer agents’ actions towards a desirable direction
by putting incentives in place (mechanism design) or designing the appropriate information structure
(information design). Information can also be spread more indirectly by agents who observe each
other’s actions (Bayesian learning).

In this thesis, we follow two main directions of “Analysis” and “Design” to investigate the
spread of information in networks of strategic agents. Specifically, we analyze dynamic systems
with asymmetric information and characterize their equilibria and study the spread of information
induced by these equilibrium behaviors. Furthermore, we study how incentives or information
structures can be designed to shape the equilibrium behavior of agents.

In part I of this thesis (analysis part), we study structured perfect Bayesian equilibria (structured
PBE) in dynamic games with asymmetric information. While there is no general framework to
characterize such equilibria, we can study them for some specific information structures. Specifically,
we consider games with conditionally independent types. As an example of such games, we study
a setting where there is a marketplace with a product that has an unknown value and privately
informed agents coming to the market to decide on buying or not buying the product. The agents get
multiple chances to enter the market, and in this sense, they act non-myopically. Characterization of
structured PBE in this game enables us to analyze informational cascades and suggest settings that
avoid such outcomes.

In part II of this thesis (design part), we design distributed mechanisms for efficient resource
allocation in networks. The message transmission is done locally in our mechanisms, and we
investigate how appropriate information is propagated throughout the network so that the equilibrium
outcome is efficient. We also study a joint information and mechanism design problem where agents
with private types arrive at a queue with an unobservable backlog. We study how a planner that

xi



observes the queue backlog can design taxes and type-dependent admission signals for the agents to
gain the most revenue. We further analyze an information design problem for a non-atomic service
scheduling game. We investigate how a planner can give suggestions to users about the time to join
a queue for a service with an unknown start time to minimize the social cost.

xii



CHAPTER 1

Introduction

1.1 Motivation and Background

In the last decades, there has been significant research into understanding how agents behave in
communication, transportation, energy, economic and societal networks. It has been realized that
assumptions such as fully-informed or fully-compliant agents are untenable in vastly decentralized
networks. Indeed, most of today’s systems comprise of strategic/selfish agents with private informa-
tion and uncertainty towards others’ information and system states. Transmission and exchange of
information in such networks have been the focus of many interesting research areas. In “Mecha-
nism Design”, appropriate incentives are designed for the agents to incentivize them to directly share
some part of their private information in order to achieve a socially optimal objective (e.g., efficient
resource allocation). In “Information Design”, we study how an agent can affect others’ actions
by directly sharing some part of her private information with them. In both mechanism design and
information design frameworks, the goal is to “steer” agents’ actions towards a desirable direction,
either by incentivizing them via taxes/subsidies (mechanism design) or by providing appropriate
information to them (information design). Another set of related problems is collectively known as
“Bayesian Learning”. In this research area, we study how information is spread indirectly between
agents through observing each others’ actions. In all such problems, the interaction between players
is characterized through notions of equilibria. Therefore, studying the equilibria in games will
enable us to further analyze the players’ behavior.

In this thesis, we have utilized tools from these frameworks to gain a better understanding of
strategic agents’ behavior and the spread of information in complex systems, which are modeled as
dynamic games with asymmetric information. Examples of such systems can be found in network
problems such as resource allocation in networks, queuing systems, informational cascades, etc. We
present two main approaches to study such problems. One is an analytical approach where we study
and analyze the spread of information in different settings. That is, we study and analyze equilibria
and the resulted behavior of agents in such problems. The other approach is from a designing
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point of view, where we utilize mechanism design and information design techniques to study such
problems. Therefore, the problems discussed in this thesis can be categorized into two main parts,
namely “Analysis” and “Design”.

1.2 Analysis of Equilibria in Dynamic Games with asymmetric information

In order to investigate information transmission and learning in strategic environments, one
needs to study the strategic interaction between players, which is usually formalized with notions
of equilibria. In this thesis, we study dynamic games with asymmetric information, for which the
appropriate notion of equilibrium is perfect Bayesian equilibrium (PBE) [1, 2, 3]. There is no
unified framework to characterize PBE due to its complexity in general. Hence, we restrict our focus
to structured equilibria (which are akin to Markov policies in stochastic control) [4, 5]. The main
challenge in characterizing structured PBE in dynamic games is finding the appropriate summary
according to which players make decisions. These summaries usually include some type of belief
over the unknown states of the game.

Specifically, in games with asymmetric information, finding such summaries is more complex
due to the emergence of private beliefs and the need to form beliefs over beliefs, which could
also be a private quantity and therefore, create an infinite hierarchy of private beliefs. Some
specific information structures enable us to avoid the infinite hierarchy of beliefs. In this thesis,
we study structured PBE for dynamic games with asymmetric information where agents’ types are
conditionally independent given an unknown state of the world. We show summaries including a
private belief and a joint public belief over the private beliefs are valid summaries for structured
PBE. Essentially, we show that the hierarchy of beliefs stops at the second step due to the defined
belief over (private) beliefs being public. In addition, we specialize our results to dynamic linear
quadratic Gaussian (LQG) games where instead of beliefs, we form estimates over unknown states
of the game due to the beliefs being Gaussian.

1.3 Analysis of Bayesian Learning and Informational Cascades

In large decentralized networks, there is usually some unknown (possibly dynamically changing)
state of the world. While the agents have their own private information about the unknown state,
they can also become more informed by observing others’ actions in the network. Consider a market
with a new product with unknown quality. Each person has his/her observation of the quality of the
product. It is intuitively clear that if one gathers all the people’s information about this product, one
can get a better idea about its quality. In a strategic setting where agents may not be willing to reveal
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their private information, people can get information and learn about others’ observations through
their actions (whether they have bought the product or not). Learning the unknown state of the
world can be beneficial to the agents since it enables them to make better decisions. However, there
may be situations where this learning stops due to the fact that nobody has an incentive to act based
on his/her private information; these situations are referred to as informational cascades. Avoiding
these situations may result in more beneficial outcomes for the whole network. Sequential learning
has been extensively explored in the literature, with a special focus on informational cascades
[6, 7, 8, 9, 10]. In two seminal papers [6, 7] the authors investigated the occurrence of fads in a
social network, which was later generalized in [8]. In this thesis, we study Bayesian learning in
a dynamic game where players have multiple opportunities to decide on buying a product with
unknown quality. In this sense, we allow the players to act non-myopically and investigate the
occurrence of information cascades. We present results showing that while information cascades
seem to be unavoidable in most situations, the non-myopic behavior of the players can help avoid
them for some specific parameters of the game.

1.4 Distributed Mechanism Design

Achieving a socially optimal objective is often formulated as a centralized optimization problem
where a central authority allocates scarce resources so that the sum of users’ utilities (social welfare)
is maximized. Versions of this problem have been extensively studied in the literature in the last few
decades. Technological advances have enabled us to solve such optimization problems involving
thousands of users. There is, however, a fundamental difficulty in solving such problems that
cannot be overcome by technology: in large networks with heterogeneous and strategic agents
with privacy constraints, agents may not be willing to reveal their private information (utility),
which is related to the optimization problem. This fundamental problem has been addressed by the
theory of “Mechanism Design” [11, 12]. Mechanism design is the design of appropriate incentives
that, once in place, incentivize agents to share some of their private information in a way that
enables achievement of the socially optimal objective. Mechanism design has been widely utilized
in such areas of research as market allocations [13, 14, 15], rate and resource allocations [16,
Sec. 2.7][17, 18, 19, 20, 21], spectrum sharing [22, 23, 24], data security [25], power allocation in
wireless networks [26, 27], demand-side management in the power grid [28, 29, 30], etc.

In the standard mechanism design framework (Hurwicz-Reiter [1]), agents transmit messages to
a central authority. The central authority, upon receiving all these messages, determines allocation
and taxes/subsidies for the agents of the network. Clearly, this arrangement may result in a significant
communication overhead due to the message transmission of agents to the central authority. In
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this thesis, we study the more realistic scenario where such message transmission to a central
authority cannot take place due to network communication constraints. To investigate this problem,
we consider a setting in which agents are only allowed to transmit their messages to their local
neighborhood. Consequently, each agent can determine her allocation and tax based on the messages
she hears locally, and therefore, there is no need for a central authority to evaluate these functions.
This additional restriction is the focus of a research direction that we call “Distributed Mechanism
Design” (DMD).

A complementary view of DMD stems from the literature of “Distributed Optimization” (e.g.,
[31, 32, 33, 34, 35, 36, 37]) where agents do exchange local messages in order to solve a centralized
allocation problem. In distributed optimization, however, it is assumed that agents are not strategic.
In fact, they are automata and execute a predefined message exchange algorithm. Our work thus
aims at enriching the theory of Distributed Optimization by incorporating agents that are strategic
and have privacy constraints. In this sense, the results presented in this thesis constitute a step
towards the ultimate goal to combine two areas of research, Mechanism Design and Distributed
Optimization, into a unified theory of Distributed Mechanism Design.

1.5 Information Design

In information design, there is one agent, the information designer, who has some valuable
information about an unknown payoff-related state of the world. Other agents in the system are
interested to know the information about the state of the world to be able to make more informed
decisions and earn higher payoffs. However, the information provider investigates how he can “steer”
other agents’ actions towards his own interests by wisely providing some information about the state
of the world to other agents. The goal of the information designer is to align the preferences of other
agents with his own preferences as much as possible by designing the information structure for the
agents. Information design problems with one sender and one receiver are referred to as “Bayesian
persuasion” introduced in [38], where authors present a geometric form of interpreting information
design and when it is profitable for the designer not to share some part of the information. However,
when there are multiple receivers, the information design problem becomes more complex, and
notions of equilibria must be introduced to analyze the game.

In this thesis, we study two information design problems with multiple receivers. We focus
on a different aspect of information design in each of the problems studied. In the first problem,
we have multiple receivers, and they have private types. Therefore, we study a joint mechanism
design and information design problem similar to what is done in [39]. In our model, all agents
have some private information: the planner (information designer) has private information about
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the state of the world, and the network agents possess private types related to their preferences.
The information provided to the agents can be considered as a resource that is to be allocated to
the agents. Therefore, mechanism design tools can be used to design tax functions to incentivize
agents to reveal their type. As a result of this design, the information provider can provide different
amounts of information for different types of agents to maximize his revenue. In the second problem,
we have a continuum of receivers who need a service with an unknown start time. An informed
planner will make suggestions about the time to join the queue to minimize the social cost. The
continuous aspect of the receivers makes studying the information design problem more complex
and challenging but gives more insight into the real-world population of information receivers.

1.6 Thesis Overview

In this thesis, we consider five different problems, each described in a separate chapter. Chapters
2 and 3 constitute the analysis part of the thesis (part I), and chapters 4, 5, and 6 are the three
chapters under the design approach (part II).

In chapter 2, we present our work “Structured equilibria for dynamic games with asymmetric
information and dependent types” [40, 41, 42]. In this work, we have studied a dynamic game
with asymmetric information. There is a state of the world with an unknown value, V ∈ R. At
each time, all players get noisy private observations of V that are independent conditioned on V or,
in other words, dependent to each other through V . We characterize structured perfect Bayesian
equilibrium for this game. In order to find the structure of the equilibrium, we need to define
summaries, or sufficient statistics, for the history of the game. A quantity commonly used as a
sufficient statistic is a belief over the unknown state of the world V . The main challenge in this
context is the emergence of private beliefs in sufficient statistics, i.e., the fact that different agents
in the system have different (private) observations of V and, therefore, form private beliefs over it.
One way to avoid this problem is to consider models in which private beliefs either do not exist
(symmetric information games, or asymmetric but independent observations [4, 43, 44]) or, if they
exist, they are not taken into account in agents’ strategies (see for example the concept of “public
perfect equilibrium” [45]). In order to intuitively explain the conceptual difficulty arising from
having private beliefs in sufficient statistics, consider the following thought process. If a player acts
according to her private belief ξit of a hidden variable and she expects other players to behave in the
same way, she needs to form a belief over other players’ beliefs to interpret and predict their actions,
and she has to take that belief into account when acting. In other words, she has to form a belief over
(at least) ξjt for all other users j 6= i. This is a belief on beliefs which is also private information of
user i, and it has to be taken into account in her strategies. Due to the symmetry of the information
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structure, all other players should do the same. Hence, it is clear that user i needs to form beliefs
over beliefs over beliefs of other players. This chain continues as long as these beliefs are private. It
stops whenever the beliefs in one step become public or public functions of previous step beliefs. In
chapter 2, we show that for a game with conditionally independent types, this chain of beliefs stops
at the second step. Using this result, we characterize structured PBE for the considered game. We
then specialize our results to a dynamic LQG game where the aforementioned beliefs are Gaussian,
and therefore, players only keep track of estimates and covariance matrices instead of beliefs.

In chapter 3, we present our work “Bayesian learning with non-myopic agents” [46, 47, 48].
This work was done in collaboration with Ilai Bistritz, and the modeling, problem formulation,
and derivation of some of the results were mainly done by him [49]. In this work, we consider a
setting where there is a product with an unknown value, V ∈ {0, 1}. There is a finite number of
players that enter a market one at a time according to a random exogenous process. The player
that has entered the market has to decide to buy or not buy the product, but he might get other
chances in the future to decide on buying or not buying. In this sense, the players in our model are
non-myopic, and they take the future into account for their decisions. Each player has a noisy private
observation of V , which can be revealed to others when taking an action. The private observations
are generated independently conditioned on V . In other words, they are dependent to each other
through V . Players update their beliefs on V once someone reveals her private information. We
characterize equilibria for this game which is a dynamic game with asymmetric information, for
which an appropriate notion of equilibrium is the PBE. In this framework, we investigate whether
informational cascades can happen or not. In other words, we investigate whether non-myopic
behavior can/cannot avoid informational cascades. We have shown that although informational
cascades are inevitable for most of the game parameters, they can still be avoided for some of the
model parameters due to the non-myopic behavior of agents.

In chapter 4, we present our work “Distributed mechanism design for network resource allocation
problems” [50, 51, 52]. In this work, we consider two network resource allocation problems,
formulated as network utility maximization (NUM) problems. In particular, we consider two
concrete examples of resource allocation, namely, data rate allocation for unicast transmission
networks and for multicast transmission networks. The NUM problem associated with the unicast
protocol is as follows.

max
x

∑
i∈N

vi(xi) (1.1a)

s.t. xi ≥ 0 ∀i ∈ N (1.1b)
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and
∑
j∈N l

xj ≤ cl ∀l ∈ L. (1.1c)

Utility function vi(·) is private information of player i, and therefore, one can not solve the
above maximization problem directly. Therefore, we propose a distributed mechanism to achieve
efficient rate allocation for each of the mentioned protocols. To model the distributed aspect of
our mechanism, we utilize a message transmission network through which agents’ messages will
be exchanged. Therefore, we have two layers of networks, one for data transmission and one for
message transmission related to the distributed mechanism, as it is shown in Fig. 1.1.

Agent 3

Agent 2

Agent 1

Agent 4

Node 1

Node 2

Node 3

Node 4

Source 1

Source 2

Message-exchange 
Network

Data 
Transmission 

Network

Figure 1.1: Message-exchange network vs. Data transmission network

Chapter 5 presents our work “Joint Information and Mechanism Design for Queues with
Heterogeneous Users” [53]. We consider a queue with an unknown backlog to the incoming traffic.
There is a planner that observes the queue backlog and sends admission signals to the agents arriving
at the queue. The agents have private types that affect how much they value being serviced in the
queue and how much they lose by waiting in the queue. We utilize mechanism design techniques to
design tax functions to incentivize agents to report their types truthfully. The planner then optimizes
the information he shares with each type of agent through the admission signal to maximize his
revenue. The order of the actions is as follows. An agent arrives at the queue. She decides to either
join the mechanism, which means she will be admitted by the planner, or choose the outside option,
which means she has to decide to join or leave the queue without any information about the queue
backlog. If she chooses to join the mechanism, she has to report her type, and then she will receive
the admission signal (according to which she is either admitted to the queue or not). Also, she has
to pay a tax. We characterize tax functions, investigate whether the planner prefers all types of users
to join the mechanism or not, and study the structural properties of the optimal admission policy.
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The extended form of this game is depicted in the figure below.

arrival of a user with type i

decide

on her own

not join

quote message m

u(i, d = 0,e = 0) u(i, d = 0,e = 1) u(i, d = 1,m, s = 1)

e = 0
join

e = 1

d = 0
getting admitted

by the planner

d = 1
P(D = 1) = γi

m = f (i)
P(E = 1) = αi

admission signal s
σ(s |x, m)

0 1

u(i, d = 1,m, s = 0)

planner

σ, t

Figure 1.2: Extended form of the game faced by each user at the arrival time.

In chapter 6 we present our work “Information Design for a Non-atomic Service Scheduling
Game” [54]. We study an information design problem where we have a continuum of user population
as our receivers. A service scheduling game is analyzed where the users do not know the service
start time, but there is an informed planner who sends suggestions to the users about when to join
the queue. The objective of the planner is to minimize the social cost of users among all obedient
direct signals. The cost of a user contains the time she spends in the queue and the difference
between when she gets serviced and the service start time.

The proofs and complimentary discussions related to each chapter are relegated to the Appen-
dices at the end of this thesis.

1.7 Contributions

The contributions of this thesis are as follows.

• In chapter 2, we characterize structured PBE for a dynamic game with asymmetric information
and dependent types. The main contribution of this work is to show that, due to the conditional
independence of the private signals given V , the private belief chain stops at the second
step, and players’ beliefs over others’ beliefs are public functions of their own beliefs (the
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first step beliefs). In the LQG model, we further show that the beliefs are Gaussian and
hence, are characterized by their mean and covariance matrix. Furthermore, the players’
estimations over others’ estimations are public linear functions of their own estimations. We
hypothesize (and eventually prove) structured PBE with strategies for user i being linear
in V̂ i

t , the private estimate of V by user i, generated by a (private) Kalman filter. We show
that the equilibrium strategies can be characterized by an appropriate backward sequential
decomposition algorithm akin to dynamic programming. In the LQG model, the main
difference of our work from the standard stochastic control LQG framework is that the forward
recursion that evaluates covariance matrices cannot be performed separately as it depends on
the equilibrium strategies. A unique feature of our development is the requirement to update
in a forward manner additional quantities that are observation dependent (public actions).
This precludes off-line evaluation of these forward-updated quantities and necessitates their
inclusion as part of the state of the above mentioned backward sequential decomposition.

• In chapter 3, we study and characterize the equilibrium of the proposed dynamic game with
asymmetric information. We provide existence results and some structural properties for the
equilibrium of the game. Further, we show that there exists an equilibrium with infinitely
patient players, in which we can avoid bad informational cascades in some states of the
world. It is shown in [49] that for not infinitely patient players, the probability of a cascade
approaches one as the number of players, N , approaches infinity. Moreover, it is shown that
the number of players who have revealed their information before the cascade occurs is small
- which formalizes their inefficiency. These results show that in order to avoid informational
cascades, we may not only allow the players to be non-myopic, but we should also allow
them to be infinitely patient.

• In chapter 4, we design two distributed mechanism design for efficient data rate allocation in
unicast and multicast transmission networks. The mechanisms are distributed, and there is
no need for a central authority to collect the messages and determine allocation and taxes.
They also fully implement the efficient allocation in their Nash equilibria, i.e., there are no
extraneous non-efficient equilibria in the induced game. They are individually rational and
weak budget balance. Further, the message space grows linearly with the number of agents
in the network. Although we present our method for two examples of unicast transmission
protocol and multicast multirate transmission protocol, the mechanisms can be used in many
network resource allocation problems.

• In chapter 5, we propose a joint information and mechanism design technique for queues with
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heterogeneous users. We formulate the mechanism to ensure dominant strategy incentive
compatibility. We also investigate whether the planner prefers all types of users to join the
mechanism or not. We further characterize the planner’s optimization problem that he uses
to maximize his revenue. We show some structural results for the optimal admission policy
of the planner through analytical reasoning that are also supported by numerical analysis.
We observe how the planner discriminates between different types of players in providing
information for them in order to gain more revenue. We also study the two extreme cases of
full and no information strategies.

• In chapter 6, we formulate an information design problem for a service scheduling game
consisting of non-atomic agents. We characterize the equilibrium in full information and
no information extremes. We show some results on when the planner can do no better than
revealing the full information to the agents. We impose some assumptions on our model that
will allow us to express the information design problem as a generalized problem of moments
(GPM) [55]. We use the computation tools for these problems such as Gloptipoly [56] to
numerically solve the information design problem.
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CHAPTER 2

Structured Equilibria for Dynamic Games with Asymmetric Information and Dependent
Types

2.1 Introduction

Dynamic games with asymmetric information play an important role in decision and control
problems, yet there is no general framework to study such games in a tractable manner. The
appropriate solution concept for these games is some notion of equilibrium such as Bayesian
Nash equilibrium, perfect Bayesian equilibrium (PBE), sequential equilibrium, etc. [1, 2, 3]. Due
to the dynamic nature of such games, the players’ histories expand with time and therefore the
corresponding strategies have an expanding domain. To mitigate this problem, researchers have
introduced equilibrium concepts that summarize the time expanding histories into sufficient statistics.
For symmetric information games, Markov perfect equilibria [57] have been introduced, in which
the players’ strategies depend only on payoff-relevant past events and not the whole history. For
asymmetric information games or control problems, finding the appropriate sufficient statistic
is a challenging task and various information structures and corresponding statistics have been
considered in the literature [58, 4, 59, 60, 61, 62, 63].

A quantity commonly used as a sufficient statistic, is a belief over some unknown part of the
system. The main challenge in this context is the emergence of private beliefs in the sufficient
statistics, i.e., the fact that different agents in the system may have different (private) observations
about the same quantity. One way to avoid this problem is to consider models in which private beliefs
either do not exist (symmetric information games, or asymmetric but independent observations [4,
59, 64]) or, if they exist, they are not taken into account in agents’ strategies (see for example the
concept of “public perfect equilibrium” [45]). In order to intuitively explain the conceptual difficulty
arising from having private beliefs in the sufficient statistics, consider the following thought process.
If a player i acts according to her private belief ξit of a hidden variable and she expects other players
to behave in the same way, she needs to form a belief over other players’ beliefs to interpret and
predict their actions and she has to take that belief into account when acting. In other words, she
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has to form a belief over (at least) ξjt for all other users j 6= i. This is a belief on beliefs which
is also a private information of user i and it has to be taken into account in her strategies. Due to
symmetry of the information structure, all other players should do the same. But now, it is clear that
user i needs to form beliefs over beliefs over beliefs of other players. This chain continues as long
as this hierarchy of beliefs are private. It stops whenever the beliefs in one step are public or public
functions of previous step beliefs.

In this chapter, we study a dynamic game with asymmetric information. We consider a model
with an unknown state of the world V , where each player i has a private noisy observation X i

t of
it at each time t. The private observations of players are conditionally independent given V . We
then specialize this setting to the case of a Linear Quadratic Gaussian (LQG) non-zero-sum game
where V is a Gaussian random variable and players’ observations are generated through a linear
Gaussian model from V . Our LQG model closely follows that of [64] with one important difference:
the private observations of players in [64] are independent where in our case, they are dependent
through V ; in particular they are conditionally independent given V .

The intuitive reason behind studying a model with dependent private observations is that in
today’s complex networks, agents are well connected to each other and each agent in the network is
affected by other agents and also by many unknown system quantities. Although the independence
assumption simplifies model analysis, it cannot always capture the ever connected aspect of today’s
networks. Our model can also be thought of as a generalization of the one in [65] where V models
the value of a product (or a technology) and agents receive a noisy private signal about it and
decide whether to adopt it or not, with the important difference that we allow multiple agents to
act simultaneously and, unlike [65], we also allow them to return to the marketplace at each time
instance and receive a new observation on V . A real-world application of such a model can be seen
in product promotions in social networks where there is a product with unknown quality, V , and
the users obtain private noisy observations of the product value (e.g., by receiving free samples or
asking around about the product). Players’ actions relate to how much they want to promote the
product (e.g., by advertising it in social networks or writing online reviews, etc.). Depending on the
reward functions, we can have different types of players. For instance, some of them may work
for a competing company and have malicious intentions towards that product, while others may
have the intention to help the community make more informed decisions and they promote what
they think has good quality. Another example can be a security game, where V is the unknown
security status of the network, and users get private observations about V by privately “poking”
the system. Players act by trying to use the system based on their knowledge of its security status
(e.g., requesting services or launching attacks), while at the same time learning about the security
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status. Similarly, we can model both malicious and not malicious players by defining appropriate
reward functions (e.g., non-malicious users utilize the system more if they think it is secure, while
malicious ones utilize it more if they think it is not secure).

One of the contributions of this work is to show that, due to the conditional independence of
the private signals given V , the private belief chain stops at the second step and players beliefs
over others’ beliefs are public functions of their own beliefs (the first step beliefs). In the LQG
model, we further show that the beliefs are Gaussian and hence, are characterized by their mean and
covariance matrix. Furthermore, the players’ estimation over others’ estimations are public linear
functions of their own estimations. We hypothesize (and eventually prove) structured PBE with
strategies for user i being linear in V̂ i

t , the private estimate of V by user i, generated by a (private)
Kalman filter. This is the second contribution of this work.

We show that the equilibrium strategies can be characterized by an appropriate backward se-
quential decomposition algorithm akin to dynamic programming. In the LQG model, the main
difference of our work from the standard stochastic control LQG framework is that the forward
recursion that evaluates covariance matrices cannot be performed separately as it depends on the
equilibrium strategies. This was also the case in [64]. A unique feature of our development is the
requirement to update in a forward manner additional quantities that are observation dependent
(public actions). This precludes off-line evaluation of these forward-updated quantities and necessi-
tates their inclusion as part of the state of the above mentioned backward sequential decomposition.
This is the third contribution of this work.

2.1.1 Literature Review

In this section we give an overview of the related literature with a focus on the information
structures. In [66], a framework, called precedence diagram, was introduced to characterize the
information structures in team problems with asymmetric information. The evolving (dynamic)
information of the decision makers is modeled by a different (new) controller making a decision at
each time with the specific information corresponding to that time available to her. The authors have
also provided some examples of the dynamic team problems, one of which is LQG team problem
with nested information structure and have proved optimality of linear controllers. The specific
information structure considered, nested information, allows the authors to form an equivalent static
team problem for the dynamic model considered and hence, avoiding further challenges of dealing
with dynamic models.

LQG models have been studied extensively for decision and control problems. In the simplest
instance of a single centralized controller it is well known that there is separation of estimation
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and control, posterior beliefs of the state are Gaussian, a sufficient statistic for control is the state
estimate evaluated by the Kalman filter, the optimal control is linear in the state estimate, and the
required covariance matrices can be calculated offline [67]. Although it is known that, in general,
linear controllers are not optimal in LQG team problems [68], as we mentioned, some information
structures have been identified for which linear controllers are shown to be optimal such as the
works with nested information structure [66], stochastically nested information structure [61] and
partial history sharing information structure [60]. Private beliefs do not emerge in these models
because of the specific information structure considered. In the nested information structure, there
is no need to form beliefs to interpret the action of the predecessors because the decision maker
already knows their information. In the model considered in [60], the decision makers have local
memory (not perfect memory) and the authors have not defined any summaries for the history and
therefore, beliefs and hence, private beliefs are not introduced.

In order to capture the strategic behavior of agents, dynamic decision problems have also
been considered in the context of dynamic games and there is extensive literature on dynamic
games with asymmetric information. In [69], the author considers a delayed observation sharing
model where all of the previous private observations are shared with all of the players and the
asymmetry of the information is only due to the private observations at current time. This specific
information structure avoids the private beliefs in the sufficient statistics because they can be formed
by augmenting the public belief by the current private observation. One-step delayed information
sharing is also used in [70]. Similarly, in [65, 49, 46, 47], there is a public belief that can be
augmented by the players’ static private signals, to form the private beliefs.

Authors in [71] have used the common information approach, which breaks the history into
the common and private parts and similarly, two partial strategies are introduced. One is applied
to the private part of the history and the other one generates the first one based on the public part
of the history. Finding the strategy that is generated based on the public part of the history does
not have the challenges of asymmetric games because the public part of the history is common
between all players. The solution concept used is called common information based Markov perfect
equilibria. Note that in [71], the private part of the history is not summarized into any other quantity,
and therefore, no private beliefs had to be defined. A similar approach is used in [4].

In [64], authors have considered a multi-stage LQG game and characterized a signaling equi-
librium which is linear in agents’ private observations. In addition, a backward sequential decom-
position was presented for the construction of the equilibrium, based on the general development
in [59]. In this work, the private observations are independent across agents and therefore there are
no private beliefs in the game. This is because a player’s belief over others’ private observations is
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independent of her private observation and hence, the belief is public.
A number of works consider LQG games where information available to some players is affected

by the decision of others. The works of [72] on strategic information transmission, and [73] on
Gaussian cheap talk consider two-stage games and focus on Bayesian Nash equilibria. These
works, however, consider games that are not dynamic. This implies that there is no need to search
for the sufficient statistics and no private belief will be defined. The classic work on Bayesian
persuasion [38], and the related one on strategic deception [74] consider two-stage and multi-stage
games, respectively, and focus on (sender preferred) subgame perfect equilibria owing to the fact
that strategies (as opposed to only the actions) of the sender are observed. Although the authors
of [74] consider a dynamic game, they do not summarize the history into time invariant quantities
and they search for the strategies over the whole time horizon. Therefore, although the problem
becomes intractable for large time horizons, the issue of private beliefs does not appear.

The unique feature of this work is that we consider dependent private observations (specifically,
conditionally independent on a hidden state of the world) between agents, in conjunctions with
strategies with time-invariant domains, and so sufficient statistics (beliefs) are defined. As a result,
we are forced to deal with private beliefs and the aforementioned issue of the infinite sequence of
beliefs on beliefs has to be resolved. This is what makes the considered model interesting and more
challenging compared to the previous works.

Games with asymmetric information are also studied in the context of hypergames [75]. In
hypergames, players play different games (in an 1-level hypergame), and they have different
perceptions towards each others’ games (in a 2-level hypergame) and so on. This is similar to
the private belief hierarchy that we study in this chapter. However, we study a Bayesian game
where although players have different perceptions and uncertainty towards other players preferences,
they are playing the same game and we deal with the uncertainty by considering average utility
maximizing players. Furthermore, we do not impose a fixed level on beliefs over beliefs that each
player can have, as opposed to hypergames where the level of the game is a fixed quantity.

The remaining part of the chapter is structured as follows. In section 2.2 the general model is
described. section 2.3 is a review of the solution concept that we have considered in this chapter.
We develop our main results in section 2.4. In section 2.5, we describe the special case of the model
that is an LQG game, followed by the development of a concrete example in section 2.6 together
with numerical results. We discuss some extensions for the model studied in this chapter in section
2.7 and we conclude in section 2.8. Most of the proofs of theorems and lemmas are relegated to
Appendix A at the end of this thesis.
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2.1.2 Notation

We use upper case letters for scalar and vector random variables and lower case letters for their
realizations. We use the notation P(a|b) to denote the probability P(A = a|B = b) for discrete
random variables and to denote fA|B(a|b), i.e., the probability density function ofA at a givenB = b

for continuous random variables. The superscripts in the probability distributions and expectations
such as Pg and Eg indicate the strategy according to which the probability distributions are defined.
We also use subscripts in the expectation operator as Egµ to indicate the belief according to which
the expectation is calculated. Bold upper case letters are used to denote matrices. Subscripts
denote time indices and superscripts represent player identities. The notation −i denotes the set
of all players except i. All vectors are column vectors. The transpose of a matrix A (or vector) is
denoted by A′. We use semicolons “; ” for vertical concatenation of matrices (or vectors). For any
vector (or matrix) with time and player indices, ait (or Ai

t), a
−i
t denotes the vertical concatenation

of vectors (or matrices) a1t , a
2
t , . . . , a

i−1
t , ai+1

t , . . .. Further, ai1:t means (ai1, a
i
2, . . . , a

i
t). In general,

for any vector with time and player indices, ait, we remove the superscript to show the vertical
concatenation of the whole vectors and we remove the subscript to show the set of all vectors for all
times. The matrix of all zeros with appropriate dimensions is denoted by 0 and the identity matrix of
appropriate dimensions is denoted by I. For two matrices A and B, D(A,B) represents the block

diagonal concatenation of these matrices, i.e.,

[
A 0

0 B

]
(it applies for any number of matrices). By

D(A−i), we mean the block diagonal concatenation of matrices Aj for j ∈ −i. Further, qd(A;B)

represents B′AB. For the equation
[
ã ; b̃ ; c̃

]
= A

[
a ; b ; c

]
, the notation (A)ã,b denotes

the intersection of the rows of A corresponding to ã and the columns that are multiplied by b. Note
that both ã and b are row vectors. We use “ : ” for either of the row or column subscripts to indicate
the whole rows or columns, e.g., (A):,b denotes the columns of A that are multiplied by b. The trace
of matrix A is denoted by tr(A). We use δ(·) for the Dirac delta function. We denote the normal
distribution with mean vector m and covariance matrix Σ by N(m,Σ). We use square brackets
for mappings that produce functions, e.g., F [a] is a mapping that takes a as its input and produces
a function. For any Euclidean set S, ∆(S) represents the space of all probability measures on S.
We use Supp(σ) to denote the support of the probability distribution σ. To keep the expressions of
integrals compact, we drop the infinitesimal variables and only present the integral variables in the
integral signs.
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2.2 Model

We consider a discrete time dynamic system withN strategic players in the setN = {1, 2, ..., N}
over a finite time horizon T = {1, 2, ..., T}. There is a static unknown state of the world V ∼ QV (·).
Each player has a private noisy observation X i

t of V at every time step t ∈ T . At time t, player
i takes action ait ∈ Ai which is observed publicly by all players. The private observations are
generated according to the kernel X i

t ∼ Qi
X(·|V,At−1) and they are independent across agents

given V and At−1, i.e.,

P(Xt|V,A1:t−1, X1:t−1) = P(Xt|V,At−1) =
∏
i∈N

Qi
X(X i

t |V,At−1) (2.1)

The kernels QV and Qi
X are known to all of the players. We assume that players have perfect

recall and we can construct the history of the system at time t as ht = (v, x1:t, a1:t−1) ∈ Ht and
the information set of player i at time t as hit = (xi1:t, a1:t−1) ∈ Hi

t. At the end of time step t, each
player i receives the reward rit(v, at). We assume that the reward functions are known to all players,
but the value of the rewards are not observed by the players until the end of the time horizon.

Let gi = (git)t∈T be a probabilistic strategy of player i, where git : Hi
t → ∆(Ai), meaning that

player i’s action at time t is generated according to the distribution Ait ∼ git(·|hit). The strategy
profile of all players is denoted by g. For the strategy profile g, player i’s total expected reward is

J i,g := Eg
{

T∑
t=1

rit(V,At)

}
, (2.2)

and her objective is to maximize her total expected reward.

2.3 Solution concept

We can model this system as a dynamic game with asymmetric information and an appropriate
solution concept for such games is Perfect Bayesian Equilibrium (PBE). A PBE consists of a
pair (β, µ) (an assessment) of strategy profile β = (βit)t∈T ,i∈N and belief system µ = (µit)t∈T ,i∈N

where µit : Hi
t → ∆(Ht) satisfies Bayesian updating and sequential rationality holds. Bayesian

updating includes both on- and off-equilibrium histories1. This condition requires the beliefs to
be Bayesian updated, if possible, given any history, whether that history is on equilibrium or
off equilibrium [76, 3]. To be more specific, given an information set hit, which could be on

1On-equilibrium histories are the ones that have positive probability of occurrence under equilibrium strategies and
similarly, off-equilibrium histories are the ones with zero probability of occurrence under equilibrium strategies [76].
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or off-equilibrium, and for each hit+1, the beliefs should be updated according to Bayes rule if
Pg(hit+1|hit) > 0, where we define Pg(hit+1|hit) as follows.

Pg(hit+1|hit) =

∫
(ht+1:hit+1)\hit+1

∫
ht

P gt(ht+1|ht)µit(ht|hit), (2.3)

and we define P gt to be the kernel that describes the transition probability from ht to ht+1. We
also define ht+1 : hit+1 as all histories ht+1 that are consistent with hit+1, and the notation (ht+1 :

hit+1)\hit+1 means we have excluded the hit+1 part from those ht+1 that are consistent with hit+1.
The beliefs are updated arbitrarily if Pg(hit+1|hit) = 0.

The Bayesian updating of the belief µit+1(ht+1|hit+1) is described below. For those ht+1 that are
consistent with hit+1, we write

µit+1(ht+1|hit+1) = Pg(ht+1|hit+1) =

∫
ht
P gt(ht+1|ht)µit(ht|hit)∫

ht+1:hit+1

∫
ht
P gt(ht+1|ht)µit(ht|hit)

, (2.4)

and if ht+1 is not consistent with hit+1, we have µit+1(ht+1|hit+1) = 0.
For any i ∈ N , t ∈ T , hit ∈ Hi

t, β̃
i, sequential rationality imposes the following condition for

the strategy profile β and belief system µ:

Eβ
i
t:T β

−i
t:T

µt

{
T∑
n=t

rin(V,An)|hit

}
≥ Eβ̃

i
t:T β

−i
t:T

µt

{
T∑
n=t

rin(V,An)|hit

}
(2.5)

Sequential rationality ensures that at each information set hit, each player’s action is a best response
to the strategy of others. This is formulated in equation (2.5), where β is the equilibrium strategy
profile and β̃i is any other strategy of player i. The inequality indicates that player i gains more by
playing βi compared to β̃i.

Notice that we have defined the belief µit to be a belief over the set of all histories at time t given
the information set of player i at t. However, this is the most general belief that one could consider
and depending on the specifics of the game, we can define other (simpler) types of beliefs that are
sufficient for the players to act rationally. Note that for any types of beliefs that we consider, the
update rule is the same as what was described here.

We note that PBE is not the only type of equilibrium that can be employed in this setting.
Refinements of PBE, including trembling hand equilibrium and sequential equilibrium [77, 78]
can also be considered. On the other hand, Bayes correlated equilibria [79], or their extensions to
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extensive-form games [80], may be a potential alternative; their complexity, however, can be much
higher than the studied PBEs for games with long time horizons.

2.4 Structured PBE

The domain of the strategies git(·|hit) is expanding in time. Finding such strategies is complicated
with the complexity growing exponentially with the time horizon. For this reason, we consider
summaries for hit ∈ Hi

t, i.e., S(hit), with time invariant domains [62]. Notice that the information
set hit is time variant and therefore, the summary S(hit) is also time variant. However, the domain of
hit, i.e.,Hi

t, is expanding by time while the domain of S(hit) is time invariant. We are interested in
PBEs with strategies, git(·|hit) = ψit(·|S(hit)), that are functions of hit only through the summaries
S(hit). These PBEs are called structured PBEs [59]. Since the set of summaries does not grow in
time, finding such structured PBEs is less complicated than a general PBE. According to [59], we
can show that players can guarantee the same rewards by playing structured strategies compared to
the general non-structured ones. In dynamic games with asymmetric information, summaries are
usually the belief of players over the unknown variables of the game.

Define the private beliefs over the unknown state of the world V as

ξit(v) = Pg(v|hit) = Pg(v|xi1:t, a1:t−1). (2.6)

We further define the conditional public belief over the private beliefs as follows

πt(ξt|v) = Pg(ξt|v, a1:t−1). (2.7)

Lemma 1 (Conditional Independence of Private Beliefs). We have the following for the conditional

public belief

πt(ξt|v) =
∏
i∈N

πit(ξ
i
t|v), (2.8)

where πit(ξ
i
t|v) = P(ξit|v, a1:t−1). Similarly, we have

Pg(x1:t|v, a1:t−1) =
∏
i∈N

Pg(xi1:t|v, a1:t−1). (2.9)

Proof. See Appendix A.1.

Note that this conditional independence holds regardless of the strategy profiles g. Using this
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result, and with a slight abuse of notation2, we can summarize the conditional public belief into the
vector πt = [π1

t , . . . , π
N
t ].

We are interested in strategies of the form Ait ∼ ψit(·|ξit, πt) = γit(·|ξit), where γit = θit[πt] and
we will prove that such structured strategies form a PBE of the game. Note that with the above
decomposition of the strategy ψ into partial strategies γ and the strategy θ, designing strategies ψ is
equivalent to designing θ.

2.4.1 Belief Update

In this subsection, we present two lemmas regarding the beliefs and their update rules.

Lemma 2. The private beliefs can be updated as ξit+1 = F i[ξit, π
−i
t , γ

−i
t , at, x

i
t+1], where F i is

defined through

ξit+1(v) =

∫
ξ−it

ξit(v)
∏
j∈−i

πjt (ξ
j
t |v)γjt (a

j
t |ξ

j
t )Q

i
X(xit+1|v, at)∫

ξ−it ,ṽ

ξi(ṽ)
∏
j∈−i

πjt (ξ
j
t |ṽ)γjt (a

j
t |ξ

j
t )Q

i
X(xit+1|ṽ, at)

, (2.10)

for all v.

Proof. See Appendix A.2.

Note that this update depends on the strategy profile g only through the partial function γ−it , i.e.,
it is independent of the strategy θ. We will also use the notation ξt+1 = F [ξt, πt, γt, at, xt+1] for the
update function of the vector of private beliefs.

Lemma 3. The conditional public beliefs can be updated as πit+1 = F i
π[πt, γt, at], where F i

π is

defined through

πit+1(ξ
i
t+1|v) =

∫
ξit,x

i
t+1

πit(ξ
i
t|v)γit(a

i
t|ξit)Qi

X(xit+1|v, at)δ(ξit+1 − F i[ξit, π
−i
t , γ

−i
t , at, x

i
t+1])∫

ξ̃it

πit(ξ̃
i
t|v)γit(a

i
t|ξ̃it)

,

(2.11)

for all v and ξit+1.
2We will be using πt to denote the joint conditional πt(ξt|v) as well as the vector of marginal conditionals

πt = [π1
t , . . . , π

N
t ]. The distinction will be obvious from the context.
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Proof. See Appendix A.3.

Similarly to the previous lemma, this update depends on the strategy profile g only through the
partial function γt, i.e., it is independent of the strategy θ. We use the notation πt+1 = Fπ[πt, γt, at]

to denote the update function of the vector of conditional public beliefs.

2.4.2 Equilibrium Strategies

In this subsection, we will show that structured strategies of the form γit(·|ξit), where γit = θit[πt]

form structured PBE of the game. The following theorem formalizes this result and presents the
fixed point equation characterizing the equilibrium strategies.

Theorem 1. The strategy profile γ∗t = θt[πt] characterized by the following fixed point equation,

forms a structured PBE of the game. For all i ∈ N ,

γ∗,it (·|ξit) ∈ arg max
γit(·|ξit)

E[r̂it(πt, ξ
i
t, A

i
t) + J it+1(Fπ[πt, γ

∗
t , At], F

i[ξit, πt, γ
∗,−i
t , At, X

i
t+1]))|πt, ξit],

(2.12a)

J it (πt, ξ
i
t) = max

γit(·|ξit)
E[r̂it(πt, ξ

i
t, A

i
t) + J it+1(Fπ[πt, γ

∗
t , At], F

i[ξit, πt, γ
∗,−i
t , At, X

i
t+1]))|πt, ξit],

(2.12b)

where, r̂it(πt, ξ
i
t, a

i
t) = E [rit(V,At)|πt, ξit, ait].

Proof. See Appendix A.4.

We remark here that in equation (2.12) the update rule of the public belief πt is using the
equilibrium strategies γ∗t and therefore, for each time instance t, the collection of equations of
the form (2.12a) for all i ∈ N constitutes a fixed point equation over the strategy profile γ∗t . The
reason for this is that in characterizing a PBE, one needs to fix the belief structure and then finds
the equilibrium strategies corresponding to those beliefs. On the other hand, the beliefs have to be
consistent with the equilibrium strategies. This creates a fixed point equation over γ∗,it . Furthermore,
the above equation has to be solved simultaneously for all i ∈ N , thus creating the fixed point
equation over the strategy γ∗t . Notice that equation (2.12) is a general formulation for finding
structured PBE in dynamic games with the information structure considered in this work. All of
such PBEs satisfy this equation and any solution of this equation, if a solution exists, is a structured
PBE. An interesting question is the existence of a solution to (2.12). We first mention that existence
results are very scarce in the literature for asymmetric information dynamic games. In [4, 59, 64, 81]
existence is discussed under several simplifying assumptions. To this date the general question
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of existence in general dynamic games with asymmetric information is unresolved even for the
independent-types case. The numerical results presented in section 2.6 provide positive evidence
towards existence.

2.4.3 Discussion on belief hierarchy

In this section, we characterized the sufficient statistics of the histories of the considered dynamic
game. As we mentioned in the Introduction, these summaries include private beliefs, ξit . One may
wonder how we resolved the issue with the chain of private beliefs that was discussed in the
Introduction. In other words, how did we resolve the issue of possibly requiring an infinite hierarchy
of beliefs on beliefs. In the previous development, we actually proved that this chain stops at the
second step. To see this, consider the introduction of private beliefs over others’ private beliefs, i.e.,
P(ξ−it |hit). The results of Lemma 1 show that

P(ξ−it |hit) =

∫
v,x−i1:t

P(ξ−it |v, hit, x−i1:t)P(x−i1:t|v, hit)P(v|hit)

(a)
=

∫
v,x−i1:t

P(ξ−it |v, a1:t−1, x−i1:t)P(x−i1:t|v, a1:t−1)P(v|hit)

=

∫
v

P(ξ−it |v, a1:t−1)P(v|hit)

=

∫
v

πt(ξ
−i
t |v)ξit(v), (2.13)

where (a) is due to the definition of the private beliefs and (2.9). The above implies that these beliefs
can be evaluated by the public information, πt, and the first order private beliefs ξit . This is the exact
reason why πt(ξt|v) was defined.

2.5 LQG Model

In this section, we study a specific instance of the model discussed so far which is the case
where the unknown state of the world, V , is a Gaussian random variable, the private observation
kernels are linear and Gaussian and the instantaneous reward is quadratic. Therefore we have an
LQG model. The motivation for studying this model stems from the general development in the
previous section. In particular we required that equilibrium strategies are generated based on private
beliefs and public beliefs on beliefs. In the LQG setting these beliefs can be greatly simplified, thus
enabling us to more succinctly characterize the equilibrium strategies discussed in the previous
section.
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In this model, we consider an unknown state of the world V ∼ N(0,Σ) with size Nv. Each
player has a private noisy observation X i

t of V at every time step t ∈ T

xit = v + wit, (2.14)

where W i
t ∼ N(0,Qi) and all of the noise random vectors W i

t are independent across i and t and
also independent of V . The values of Σ and Qi, ∀i ∈ N are common knowledge between players.
Note that in order to maintain the linearity of private observations, we have considered uncontrolled
private observations unlike the general model in first part of the chapter. More discussion on this
matter can be found in section 2.7. We have ait ∈ Ai = RNa . The instantaneous reward3 is given by

rit(v, at) =
[
v′ a′t

]
Ri
t

[
v

at

]
= qd(Ri

t;

[
v

at

]
), (2.15)

where Ri
t is a symmetric negative definite matrix of appropriate dimensions.

2.5.1 Equilibrium Beliefs

In this setting, we will show that the private beliefs ξit are Gaussian and since any Gaussian
belief can be expressed in terms of its mean and covariance matrix, we define the summaries such
that they include the mean and covariance matrices of the beliefs of the players over V . The mean of
each player’s belief, i.e., her estimate of V , will be her private information. The covariance matrix,
however, can be calculated publicly. We define the private estimate of players over V as follows.
For all i ∈ N , t ∈ T ,

v̂it = E[V |hit] = E[V |xi1:t, a1:t−1], (2.16)

Since the private beliefs can be expressed in terms of their means and covariance matrices and since
the covariance matrices are publicly calculated, the conditional public belief πit(ξ

i
t|v) is equivalent

to a belief over the private estimates. Intuitively, each player, in addition to her own estimate of V ,
needs to interpret actions of others and predict their future actions. Hence, each player needs to
have a belief over the estimates of other players on V . We will show that this latter belief is also
Gaussian and therefore, one needs to keep track of only its mean and covariance. We define the

3Unlike more standard LQG setting we consider “rewards” instead of “costs” to maintain consistency with the
general problem discussed earlier.
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following quantity for all i ∈ N , t ∈ T ,

ṽi,jt = E[V̂ j
t |hit] = E[V̂ j

t |xi1:t, a1:t−1]. (2.17)

The quantity v̂it is player i’s best estimate of V given her observations up to time t. As mentioned
before, this quantity is a private estimation for player i and is not measurable with respect to the
sigma algebra generated by the observations of any other player j. Hence, player i should form an
estimate over the private estimates of other players and this is the reason ṽi,jt is defined. This in turn
implies that players’ strategies should also be a function of their estimates over others’ estimates of
V . Hence, the same argument as the one in the first part of the chapter about private beliefs holds
and we need to define an estimate over estimates of players over other players’ estimates of V . This
argument continues as long as these estimates are private. Therefore, once again, we are faced with
the problem of having to define a chain of private beliefs which are expressed as private estimates in
this model. This chain stops whenever one of the estimates of players is public (or a public function
of previous-step private estimates) and therefore, there is no need to form an estimate over it.

Indeed, we will show that ṽi,−it is a public linear function of v̂it, hence, there is no need to
include ṽi,−it in the private part of the summary S(hit) and therefore, no other player needs to form
an estimate over it. The summary we use for hit is defined as S(hit) = (v̂it, P (hit)), where P (hit)

is the public summary for hit and it includes the covariance matrix of player i’s belief over V and
some other needed quantities that will be subsequently defined. We are interested in equilibria with
strategies of the form Ait ∼ ψit(·|v̂it, P (hit)) = γit(·|v̂it), where γit = θit[P (hit)]. In particular, we want
to prove that pure linear strategies of the form γit(a

i
t|v̂it) = δ(ait − Li

tv̂
i
t −mi

t), where Li
t and mi

t are
matrices with appropriate dimensions and are functions of P (hit), form a PBE of the game.

In the next theorem, we show that when linear strategies are employed, the private beliefs are
Gaussian.

Theorem 2. Assuming pure linear strategies of the form γit(a
i
t|v̂it) = δ(ait − Li

tv̂
i
t −mi

t), ∀t ∈ T
and ∀i ∈ N , the private belief ξit on V is Gaussian N(v̂it,Σ

i
t), where v̂it is the private estimate of

player i of V and Σi
t is the corresponding covariance matrix, which can be evaluated publicly.

Consequently, the public belief πit(ξ
i
t|v) can be reduced to a belief πit(v̂

i
t|v). Furthermore, πit(v̂

i
t|v)

is Gaussian with mean Ei
tv + f it , where matrices Ei

t, f
i
t can be evaluated publicly.

Proof. See Appendix A.5.

In the following we summarize the parameters needed to update each of the quantities introduced
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in the proof of Theorem 2 and we introduce update functions for each one.

v̂it+1 = Fv̂(v̂
i
t,Σ

i
t+1|t,E

−i
t , f

−i
t ,L−it ,m

−i
t , a

−i
t , x

i
t+1) (2.18a)

Σi
t+1 = FΣi(Σi

t+1|t,L
−i
t ) (2.18b)

Σt+2|t+1 = FΣ(Σt+1|t,Et,Lt) (2.18c)

Σ̃t+2|t+1 = FΣ̃(Σ̃t+1|t,Σt+1|t,Et,Lt) (2.18d)

Et+1 = FE(Et,Σt+1|t, Σ̃t+1|t,Lt) (2.18e)

ft+1 = Ff (ft,Σt+1|t, Σ̃t+1|t,Et,Lt,mt, at), (2.18f)

where Fv̂ is defined in (A.18), FΣi and FΣ are defined in (A.20), FΣ̃ is defined in (A.28), and FE

and Ff are defined in (A.27). Equations (2.18a) and (2.18b) correspond to the private belief update
and are similar in structure to the update function F i of of ξit in Lemma 2 for the general case. The
remaining update functions correspond to the public belief update Fπ in Lemma 3 for the general
case.

Note that according to the above equations, the quantities Σt+1|t, Σ̃t+1|t, Et are updated recur-
sively using the strategy matrices Lt. Hence, if one knows the strategies, one can calculate these
quantities offline for the entire time horizon of the game. However, the quantity fk is updated using
the strategy matrices Lt and vectors mk as well as the realized actions at and therefore, they cannot
be evaluated offline.

We reiterate at this point that Theorem 2 implies that the estimate of player i over private
estimates of players −i, i.e., ṽi,−it , is a linear function of v̂it,

ṽi,−it = E[V̂ −it |hit]

= E[E[V̂ −it |V,A1:t−1]|hit]

= E[E−it V + f−it |hit]

= E−it v̂
i
t + f−it , (2.19)

with matrices E−it and f−it being public information. As a result, assuming linear strategies of the
form ait = Li

tv̂
i
t +mi

t at equilibrium, one can form the summary S(hit) = (v̂−it , P (hit)) and base the
selection of the matrices Li

t and mi
t on the public part of this summary, P (hit). In the next section

we show that indeed linear strategies can form an equilibrium and provide a methodology to find
the quantities Li

t and mi
t.
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2.5.2 Linear Structured PBE

Theorem 2 implies that Sit is a jointly Gaussian random vector conditioned on player i’s
observation till time t, ∀i ∈ N , t ∈ T . This implies that the beliefs over V are jointly Gaussian
and so players need only keep track of their belief’s mean (estimation) and covariance matrices.
Furthermore, this theorem implies that a player’s belief over other players beliefs is also Gaussian
and hence, players need to keep track of their estimation on other players’ estimations, i.e., ṽ. The
important point of Theorem 2 is the statement that the estimation of players on others’ estimations
is a linear function of their own estimation and hence, in order to keep track of the estimation
over other players’ estimations, a player only needs to keep track of her own estimation over V .
Therefore, v̂it is a sufficient statistic for player i’s private observations till time t.

In terms of the public summary, we see four public quantities, Σt+1|t, Σ̃t+1|t, Et and ft in
(2.18). With some abuse of notation, we define Σt = [Σt+1|t, Σ̃t+1|t]. We will show that the
tupple (Σt,Et, ft) is the public summary of hit, i.e., P (hit). Note that Et and ft are involved in
the expression for the mean of the conditional public belief over v̂t, hence, they correspond to the
conditional public belief πt in the first part of the chapter. The convariance matrices Σt+1|t, Σ̃t+1|t

represent the covariance matrices of the private and conditional public beliefs. This implies that by
having the tuple (v̂it,Σt,Et, ft), we have full characterization of the private and public belief and
therefore, we have the summaries for the LQG game.

Therefore, we consider strategies of the form ψit(·|v̂it,Σt,Et, ft) = γit(·|v̂it). In particular, we
will now show that linear strategies of the form γit(·|v̂it) = δ(ait − Li

tv̂
i
t −mi

t), where Lt and mt are
derived from (Σt,Et, ft), are PBE of the game.

Theorem 3. The strategy profile ψit(·|v̂it,Σt,Et, ft) = γit(·|v̂it) ∀i ∈ N where γit(·|v̂it) = δ(ait −
Li
tv̂
i
t − mi

t), together with the corresponding Gaussian beliefs derived in Theorem 2, form a

structured PBE of the game.

The strategy matrices Lt and vectors mt are constructed throughout the proof.

Proof. See Appendix A.6.

One important result from the proof of Theorem 3 is that the reward to go, J it (v̂
i
t,Σt,Et, ft) is

quadratic with respect to v̂it and ft, which are the only quantities in the summary that can not be
evaluated offline, i.e., we have

J it (v̂
i
t,Σt,Et, ft) = qd(Zi

t;

[
v̂it

ft

]
) + zi′t

[
v̂it

ft

]
+ oit. (2.20)
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Therefore, if we have the quantities Zi
t, z

i′
t , and oit we can evaluate the reward to go for every value

of v̂it and ft.
In the following, we propose a backward algorithm that evaluates the quantities Zi

t, z
i
t, and oit as

well as the strategy matrices Lt, Mt and vectors mt (we have mi
t = Mi

tft +mi
t, according to the

proof of Theorem 3) as functions of (Σt,Et). Before stating the algorithm, we define the following
functions.

Lt = gL,t(Σt,Et) (2.21a)

Mt = gM,t(Σt,Et) (2.21b)

mt = gm,t(Σt,Et) (2.21c)

Zt = ψZ,t(Σt,Et) (2.21d)

zt = ψz,t(Σt,Et) (2.21e)

ot = ψo,t(Σt,Et), (2.21f)

where the first three functions are defined in equation (A.41) and the rest are defined in equation
(A.43).

Backward Algorithm (Offline)

1. Set t = T . Set ZT+1 = ψZ,T+1(ΣT+1,ET+1) = 0, zT+1 = ψz,T+1(ΣT+1,ET+1) = 0 and
oT+1 = ψZ,T+1(ΣT+1,ET+1) = 0 for every ΣT+1,ET+1.

2. Calculate Lt = gL,t(Σt,Et), Mt = gM,t(Σt,Et), mt = gm,t(Σt,Et), and Zt = ψZ,t(Σt,Et)

for every Σt,Et and the corresponding ψZ,t+1(·, ·) according to equation (A.41) and (A.43).

3. Set t = t− 1.

4. If t ≥ 1 Go to step 2. Else stop.

Using the functions defined above, one can run the following forward algorithm to find the
strategy matrices Lt, Mt and vectors mt and the quantities Zi

t, z
i′
t , and oit.

Forward Algorithm (Offline)

1. Set t = 1.

2. Initialize the value of Σ1 and E1 using Lemma 21.

3. Using Σt and Et, find Lt, Mt, mt and the quantities Zi
t, z

i′
t , and oit according to equation

(2.21).
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4. Using Σt, Et and Lt, calculate Σt+1 and Et+1 according to equation (2.18).

5. Set t = t+ 1.

6. If t ≤ T , Go to step 3. Else stop.

2.6 Example

In this section, we describe some numerical examples to show the equilibrium strategies
discussed in this chapter. In these examples, we derive the equilibrium strategies by solving a
fixed point equation for the entire time horizon using the following algorithm. Note that the
superscript (k) in A(k) denotes the number of iterations performed. We define the convergence error
as ε(k) = max(|L(k+1)

1:T − L
(k)
1:T |, |M

(k+1)
1:T −M

(k)
1:T |, |m

(k+1)
1:T −m(k)

1:T |).
Numerical Algorithm (Offline)

1. Set k = 1.

2. Initialize L
(1)
1:T , M

(1)
1:T , and m(1)

1:T arbitrarily.

3. Using L
(k)
1:T , evaluate Σ

(k+1)
1:T , E

(k+1)
1:T according to equations (2.18) in a forward manner (using

initial conditions Σ1 and E1 according to equations (A.20) and (A.28)).

4. Using L
(k)
1:T , M

(k)
1:T , m(k)

1:T , and Σ
(k+1)
1:T , E

(k+1)
1:T , evaluate L

(k+1)
1:T , M

(k+1)
1:T , and m(k+1)

1:T according
to the backward algorithm.
L

(k+1)
t = gL,t(Σ

(k+1)
t ,E

(k+1)
t ) = bdpL,t(...)(Σ

(k+1)
t ,E

(k+1)
t )

5. Evaluate ε(k). If it is below the desired threshold, stop. Otherwise, go to step 4.

Note that in each step of the backward algorithm, one needs to solve a fixed point equation with
respect to the strategy matrices and vectors to derive the functions defined in eq. (2.21) (see eq.
(A.41) in Appendix A). However, in the numerical algorithm described above, we use the last
iteration quantities for the right hand side of the equations and consequently, we do not need to
solve any fixed point equations.

As a concrete example, we consider a setting where there is a project with an unknown attribute
denoted by v. There are two agents working on this project exerting a costly effort ait. The agents
are rewarded based on the alignment of their effort with the project attribute, v, as well as based on
their cooperation. At each time slot, the agents have private observations, xit, of the project attribute.
We consider two instances of the game where v is scalar in one and a two dimensional vector in the
other, while the efforts are scalars in both.
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2.6.1 Scalar State and Action

We model the considered scenario for scalar v and scalar actions ait with the instantaneous
rewards being R1

t (v, at) = a1tv + 1
2
a1ta

2
t − (a1t )

2 and R2
t (v, at) = a2tv + 1

2
a1ta

2
t − (a2t )

2. That is, we

set R1
t =

 0 1
2

0
1
2
−1 1

4

0 1
4

0

 and R2
t =

 0 0 1
2

0 0 1
4

1
2

1
4
−1

. Note that the term aitv in the instantaneous

rewards accounts for the alignment of ait with v, and the term a1ta
2
t denotes the cooperation between

the agents.
Case 1: If we assume that agents perfectly observe V , i.e., if we set Q1 = 0 and Q2 = 0, the

following linear equilibrium strategy matrices and vectors are derived from the numerical analysis
of this game for T = 2 and Σ = 1

L1
1 = 2

3
L2

1 = 2
3

L1
2 = 2

3
L2

2 = 2
3
.

(2.22)

Furthermore, we have mi
t = 0 for t = 1, 2 and i = 1, 2. Note that since in this case, ft = 0

for t = 1, 2, the strategy matrices Mi
t will not play any roles and are not presented here. These

results imply that each agent will exert effort exactly equal to 2
3
V . As it turns out, these strategies

are myopic, i.e., we also observe these strategies in the case T = 1. The reason for having myopic
strategies is that the observations are perfect and hence, the actions have no effect in shaping the
future beliefs.

Case 2: Consider agents with equally imperfect observations, Q1 = Q2 = 1. The following
strategy matrices are derived

L1
1 = 0.6722 L2

1 = 0.6722

L1
2 = 0.5333 L2

2 = 0.5333
(2.23a)

M1
1 = [0.0561 0.2620] M2

1 = [0.2620 0.0561]

M1
2 = [0.0356 0.1422] M2

2 = [0.1422 0.0356] ,
(2.23b)

together with mi
t = 0 for t = 1, 2 and i = 1, 2. Once more, it is observed that mi

t = 0 and as will
be seen, the same is happening in all of the other cases studied as well. This could imply that it
is sufficient to restrict attention to strategies with zero mi

t. We also observe that the value of the
strategy matrices decrease with time.
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Case 3: If one agent has better observations than the other, i.e., Q1 = 1, Q2 = 2, the strategy
matrices are changed as follows.

L1
1 = 0.6700 L2

1 = 0.6619

L1
2 = 0.5224 L2

2 = 0.5373
(2.24a)

M1
1 = [0.0520 0.2701] M2

1 = [0.2738 0.0605]

M1
2 = [0.0348 0.1433] M2

2 = [0.1393 0.0358]
(2.24b)

and mi
t = 0 for t = 1, 2 and i = 1, 2. One can explain these results by paying attention to the

interactions between the agents. At t = 1, agent one has a better estimation of V compared to agent
two and therefore, she has higher L1

1. At t = 2, agent two has learned the estimation of agent one
through her action at t = 1 and therefore, the two agents have almost equal estimations. But this
time, agent two exerts slightly higher effort to compensate agent one’s efforts at t = 1.

Case 4: The interaction between agents can also be seen in a scenario where one agent has
perfect observations and the other one has partial observations, i.e., Q1 = 0, Q2 = 2. The strategy
matrices are given as follows.

L1
1 = 0.7125 L2

1 = 0.6781

L1
2 = 0.5000 L2

2 = 0.6250
(2.25a)

M1
1 = [0.0142 0.1808] M2

1 = [0.1817 0.0452]

M1
2 = [0.0333 0.1667] M2

2 = [0.1333 0.0417] ,
(2.25b)

and mi
t = 0 for t = 1, 2 and i = 1, 2.

Case 5: Finally, consider a case where both agents have very noisy observations, that is Q1, Q2

are large numbers. In this case, v̂it = 0 and ft = 0. Therefore, the strategy matrices Li
t and Mi

t do
not play any roles and the actions will only follow mi

t. For this game we obtain mi
t = 0 for t = 1, 2

and i = 1, 2.
Case 6: We have also derived the strategy matrices of the game for larger values of T . In

Figure 2.1, we can see the plot of the strategy matrices Li
t with respect to time for the symmetric

case of Q1 = Q2 = 1 and for T = 10. As before, we observe a trend where as time goes by,
the values of the strategy matrices decrease. The intuition behind why such behavior is observed
is that more public information is observed as time goes by. Therefore, the players estimation
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over others’ estimations is mainly characterized by the public part of the state, ft, rather than the
private estimates. This indicates that the matrix Et decreases with time and as it is observed in our
numerical results in Figure 2.1, it converges to zero. One can also see that the strategies decrease as
Et decreases. Therefore, the strategy matrices Lt decrease as time passes and they converge to 0.5,
which is the equilibrium of the game when Et = 0.

1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

t

Li
t

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Ei
t

Ei
t

Li
t

Figure 2.1: Strategy matrices Lit and quantities Eit for T = 10.

2.6.2 Game vs Centralized LQG

In this subsection, we have compared the total rewards per time obtained through the game
by players for Q1 = Q2 = 1 with a scenario in which both actions are taken by a single decision
maker and the sum of the two rewards are collected by her. We have done this comparison for
different time horizons T and Figure 2.2 depicts the plot of the total rewards per time obtained, JT ,
in the two considered scenarios. We notice that players are doing worse compared to the centralized
decision maker. In order to comment on that we note that there are three possible scenarios one can
consider in relation to the problem at hand: (i) the centralized problem, (ii) the decentralized team
problem and (iii) the decentralized game. Problem (i) is considering a single (centralized) controller
solving the optimal LQG problem with reward being the social utility (sum of rewards). Problem
(ii) considers multiple decentralized controllers, all having the same goal of maximizing social
utility but having the same information structure as in our model. This is a dynamic team problem
and its solution is not at all clear (see Witsenhausen counter-example [68]). Finally, problem (iii) is
the problem studied in this work. It should be clear that regarding achieving better social utility,
(i) is better than (ii) and (ii) is better than (iii). The former is due to the decentralized nature of
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Figure 2.2: Total rewards per time obtained in game vs centralized LQG.

information in (ii), while the latter is due to what is called “Price of Anarchy” (PoA) in the literature,
which is the strategic behavior of users in (iii) compared to the team problem (ii). Based on the
above, the findings in Fig. 2.2 are not surprising and can be attributed to the PoA. Note, however,
that through numerical analysis, we have found one of the possible equilibria of the game and
the social reward might be better at other equilibria. We also notice that, the total reward in the
centralized scenario is slightly increasing with the time horizon, while the total reward is decreasing
with the time horizon in the game scenario. This is due to the fact that in the game scenario, the
uncertainty in predicting the average reward-to-go increases drastically as time horizon increases.
The centralized decision maker, however, benefits from time horizon increasing and her total reward
per time converges to one. This is because as time goes by, the estimation over V becomes better
and better and the reward converges to the one in the complete information case.

2.6.3 Two Dimensional State and Scalar Action

In this part, we consider a two dimensional attribute vector for the project, i.e., V is a two
dimensional vector. Each agent tries to be aligned with one element of the attribute vector while
maintaining the cooperation with the other agent. We can model this alignment and cooperation of
agents with R1

t (v, at) = a1tv(1) + a1ta
2
t − (a1t )

2 and R2
t (v, at) = a2tv(2) + a1ta

2
t − (a2t )

2. That is, we

set R1
t =


0 0 1

2
0

0 0 0 0
1
2

0 −1 1
2

0 0 1
2

0

 and R2
t =


0 0 0 0

0 0 0 1
2

0 0 0 1
2

0 1
2

1
2
−1

. We also set Σ =

[
1 0

0 1

]
.
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Case 1: The following linear equilibrium strategy matrices are derived for the full information
case.

L1
1 =

[
2
3

1
3

]
L2

1 =
[
1
3

2
3

]
L1

2 =
[
2
3

1
3

]
L2

2 =
[
1
3

2
3

]
,

(2.26)

and mi
t = 0 for t = 1, 2 and i = 1, 2. Also, similar to the scalar case, Mi

t strategy matrices do
not play any roles here since ft = 0. We see that if V is perfectly observed, each agent will align
her effort with a weighted average of V (1) and V (2) with the element corresponding to that agent
having twice the weight. Also, similar to the scalar case, myopic strategies are played.

Case 2: Consider the partial information scenario with Q1 =

[
1 0

0 1

]
and Q2 =

[
1 0

0 1

]
.

The following linear equilibrium strategy matrices are derived.

L1
1 = [0.7224 0.2402] L2

1 = [0.2402 0.7224]

L1
2 = [0.4858 0.0842] L2

2 = [0.0842 0.4858]
(2.27a)

M1
1 = [0.2874 0.0780 0.1793 0.6054] (2.27b)

M2
1 = [0.6054 0.1793 0.0780 0.2874] (2.27c)

M1
2 = [0.1619 0.0281 0.0561 0.3239] (2.27d)

M2
2 = [0.3239 0.0561 0.0281 0.1619] , (2.27e)

and mi
t = 0 for t = 1, 2 and i = 1, 2. Similar to the scalar scenario, we observe that the value of the

strategy matrices decrease with time and again, mi
t = 0 for all of the cases.

Case 3: If each agent fully observes her corresponding element of the state and partially observes

the other one, i.e., Q1 =

[
0 0

0 1

]
and Q2 =

[
1 0

0 0

]
, we have the following linear equilibrium

strategy matrices.

L1
1 = [0.7198 0.4232] L2

1 = [0.4232 0.7198]

L1
2 = [0.5071 0.2055] L2

2 = [0.2055 0.5071]
(2.28a)

M1
1 = [0.3196 0.1506 0.3235 0.6293] (2.28b)

M2
1 = [0.6293 0.3235 0.1506 0.3196] (2.28c)
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M1
2 = [0.1690 0.0685 0.1370 0.3380] (2.28d)

M2
2 = [0.3380 0.1370 0.0685 0.1690] (2.28e)

and mi
t = 0 for t = 1, 2 and i = 1, 2. An intuitive reason of why the second element and the first

element of the strategy matrices L1
t and L2

t , respectively, are larger than the previous case is that the
second element and the first element of E1

t and E2
t , respectively, have increased.

2.7 Model Extensions

In this section, we investigate alternative models that can be studied with the methodology
introduced in this chapter and we explain how the results can be extended to such models.

As it is clear in equation (2.14), in the LQG model considered in this chapter, the private
observations are not controlled by the actions, unlike the general model of the first part of the
chapter. If we were to add control actions to equation (2.14), in order to maintain linearity, we
would have added a term such as Bi

tat and therefore, equation (2.14) would have looked like
xit = v + wit +Bi

tat. Since the actions are publicly observed, the amount of information that player
i extracts from V remains the same with or without the term Bi

tat. Hence, because the private
observations serve only as measurements of V , adding control to equation (2.14) does not make any
difference in the results.

Controlled private observations could make a difference in the LQG model if the private
observations could affect the instantaneous rewards. That is, if the reward was rit(v, at, x

i
t) =

qd(Ri
t;

 v

at

xit

). Note that the amount of information that xit conveys about V is still the same as in

the uncontrolled case. We can show that results similar to all of the ones in this chapter will hold
for this model with controlled private observations and this type of instantaneous reward. Note
that in this case, the strategies would be linear in both the private estimation and the latest private
observation.

We can also extend our results of the first part of the chapter (the general model) to a model
with the instantaneous reward being of the form of rit(v, at, x

i
t). In this case, xit should be added to

the summaries and the results will hold.
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2.8 Conclusion

In this chapter, we studied a dynamic game with asymmetric information and dependent types
and we characterized the structured perfect Bayesian equilibria of the game. We also studied a
special case of our model that was Linear Quadratic Gaussian (LQG) non-zero-sum game and we
characterized linear structured perfect Bayesian equilibria for the game. One of the important points
that we made in this chapter was that due to the conditional independence of the private signals,
the private belief chain stops at the second step and players beliefs over others’ beliefs are public
functions of their own beliefs. We further proved that these beliefs are Gaussian in the LQG case.

A future direction for this research could be investigating the models for which we have the
same interesting features for the beliefs as we do in this chapter. That is, the models for which
the private belief chain stops at two or any other given number of steps. Another important future
direction is to investigate the existence conditions for the solution of fixed point equations presented
in this chapter.
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CHAPTER 3

Bayesian Learning with Non-myopic Agents

3.1 Introduction

When a new product/technology is deployed one cannot be certain about its quality in the early
stages of the deployment. Many people together may form a more accurate prediction about its
quality, but in a strategic environment players act selfishly and may not want to share their private
information about the product/technology. Hence, other players’ opinions (private information about
the product quality) are revealed only indirectly through their actions, i.e., whether they bought
the product (adopted the technology) or not. This means that from the perspective of a strategic
player, waiting to see what other people have done may provide more certainty about the quality
of the product. On the other hand, many products or trends which turn out to be beneficial are
better to be adopted as early as possible, since their value can decay over time. This interaction can
be formalized as a dynamic game with asymmetric information and a discounted reward. Players
want to avoid buying a bad product, so they may postpone their decision to buy/adopt until more
information is revealed, while at the same time they want to buy/adopt a good product as soon as
possible. This scenario generalizes the classical problem of sequential Bayesian learning to a setting
with forward-looking players and no predefined order of play.

Sequential learning has been extensively explored in the literature, with a special focus on a
phenomenon known as an informational cascade. In two seminal papers [6, 7] the authors investi-
gated the occurrence of fads in a social network, which was later generalized in [8]. Alternative
learning models that have been studied in the literature include [82] where players only observe
a random set of past actions, [83] where players observe the past actions through a noisy process,
[84] where players observe only their immediate predecessor, and [85] where players are allowed to
ask questions to a bounded subset of their predecessors.

The common assumption in all of these models is that players act only once in the game and
there are informational externalities only, which allows for relatively easy computation of game
equilibrium strategies. Some other works where all players act in each period but are myopic
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by design include [86, 87, 88, 89, 90, 91, 92]. In [93, 94, 95, 96], different models of Bayesian
learning were studied where players do not observe the entire action history of the past players,
but a “coarser” history. There are also works on non-Bayesian learning models where players do
not update their beliefs in a Bayesian sense [97, 86, 98, 99, 100, 101], or do so only with some
probability [102]. A survey of such models can be found in [103].

An informational cascade is a phenomenon where no player has an incentive to reveal her private
information, hence learning stops in the system. This is an interesting case of herd behavior that
happens even with fully rational players. While information cascades do not necessarily happen in
all systems (see [104, 105]), they represent a universal phenomenon in sequential Bayesian learning
where players act once in a sequence that is predefined before the game starts. In such systems,
when the turn of a certain player arrives, she has no choice but to either buy the product if it seems
profitable to her at the moment or forever forgo the opportunity. Hence, it is natural to ask whether
cascades occur because this one-shot opportunity was forced upon the players. It is conceivable
that if players had the freedom to choose to wait and gather more information about the product, a
herd behavior, especially a wrong one, could be avoided. This question provides the motivation for
studying information cascades in more complex environments. In [106], informational cascades
were defined for a general dynamic scenario. However, no evidence for their occurrence was
provided.

From a technical perspective, the sequential one-shot framework introduced in [6, 7] and
followed in most of the subsequent literature, lends itself to relatively simple equilibrium analysis,
since players do not have to account for how much their estimation on the value of the product is
going to improve by waiting. This is simply because players are given a single opportunity to act,
and cannot wait. In this case, players form a posterior belief on the value of the product based on
their public and private signals. Consequently, the equilibrium consists of strategies that maximize
each player’s instantaneous reward based on this posterior belief.

In this chapter we consider a setting with a finite number of players with no predefined order of
action. An exogenous process determines who enters the marketplace at each time epoch. Once a
player is chosen, she is given the opportunity to buy the product (and leave the marketplace forever)
or wait and have the opportunity to be called again at future times. In this setting strategic players
take the future into account since they have multiple interactions with the environment. As a result,
our players are typically non-myopic. This problem can be formulated as a dynamic game with
asymmetric information.

In general, one appropriate solution concept for dynamic games with asymmetric information is
the perfect Bayesian equilibrium (PBE) [76]. Finding a PBE is a crucial first step for establishing
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whether an informational cascade occurs. Finding a PBE in a general dynamic scenario with
asymmetric information is an extremely challenging task. In [107, 59], the independence of players’
types was exploited to introduce a sequential decomposition methodology to find PBE involving
strategies with time-invariant domain. This sequential decomposition methodology was based on
the common information approach in team problems [58] where the strategies are broken into two
partial strategies and dynamic programming equations are used to generate the partial strategies
to be applied to the private part of the history. The common information approach in games
[107, 59, 108, 40, 41] is what we use in order to characterize PBE in this work.

The first contribution of this work is to characterize a class of PBE where strategies depend on
the private observation, as well as the public history of previous actions summarized into a sufficient
statistic, the size of which does not increase with time. As a result, equilibrium strategies have a
time-invariant domain, and are characterized through the solution of a fixed-point equation (FPE).
Furthermore, the domain of the value functions in the FPE we characterize is finite. The finite
dimension of the FPE holds even though, for a system with N players, the belief by definition is a
probability distribution over a set of size 2N+1 (all possible realizations of the quality of the good
and players’ private observation), and thus it is itself an infinite-dimensional object.

Although this sequential decomposition and the ensuing FPE reduce considerably the problem
of finding a PBE, the FPE is still quite cumbersome since it has an exponential dimension in the
number of players N (the dimensions of the domain of the value functions). Hence, solving the
FPE to find PBE is infeasible for large-scale systems. The second contribution of this work is to
show that by exploiting the structure of our model, we can further simplify the FPE such that the
dimension of the domain of the value functions only grows quadratically with N .This simplification
and the resulting summarizing variables have a very intuitive explanation that relates this model to
the original sequential model of [6, 7] and highlights the fundamental differences between the two
models. This quadratic-dimension FPE can be solved numerically in practice even for relatively
large N . We present numerical results indicating that more collaborative equilibria emerge in this
setting if players are sufficiently patient. In particular, players are willing to reveal their information
even though they are quite certain that the value of the product is good and they would have bought
it if they were acting myopically.

The third contribution of this work is to prove existence for the solution of the FPE and to
characterize the structure of the solutions. Structural properties of the equilibrium strategies that
apply to all of the solutions of the FPE are investigated. Specifically, the existence of a specific type
of strategies, i.e., threshold policies, is proved.

The final contribution of this work is to study whether informational cascades can occur in this
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model. We study two settings. In the first setting, the discount factor, δ, is strictly below one. We
show that in this case, the probability of a cascade approaches one as the number of players, N ,
approaches infinity. Moreover, the number of players who have revealed their information before
the cascade occurs is small, which formalizes their inefficiency. The second setting involves a fixed
number of players N with the discount factor approaching one. A surprising result emerges in this
setting: when the product is bad, there exists a PBE where at least N

2
players reveal their information

before the wrong cascade, when players buy the product, can occur. Since each revealing player is
wrong with probability p < 1

2
, this implies that the probability for a wrong cascade vanishes with

N . Furthermore, when the discount factor is exactly one and the product is bad, we show that there
exists a PBE where a bad informational cascade does not happen at all.

The rest of this chapter is organized as follows. In section 3.2 we present the model and
formulate the game of non-myopic players. In section 3.3 we characterize PBE through a FPE on
appropriate beliefs. In section 3.4 we summarize the information contained in the aforementioned
beliefs and provide characterization through FPEs with quadratic dimension in N . Existence results
and further characterization of equilibrium strategies are presented in section 3.5. In section 3.6 we
analyze informational cascades and we show that quite inefficient informational cascades happen
with high probability (for large N ) for discount factors strictly smaller than one. Furthermore, we
show the surprising result that bad informational cascades can be avoided completely when the
product is bad. Some numerical results are presented in section 3.7, while conclusions are drawn in
section 3.8. Most of the proof of the theorems are relegated to the Appendices.

3.1.1 Notation

We use upper case letters for scalar and vector random variables. We use lower case letters for
scalars and bold lower case letters for vectors. We denote the indicator function by 1a(b), such that
1a(b) = 1 if a = b and 1a(b) = 0 otherwise. The space of distributions on a general setA is denoted
as P(A).

3.2 Problem Formulation

Consider an infinite horizon dynamic game with N players in the set N . Time is discrete and
the current turn is denoted by t, starting from t = 0. At each turn, a player is chosen uniformly at
random to act, independently between turns. Only a single player acts in each turn. The random
index of the acting player at time t is denoted Nt, and its realization is nt.

There is a product with a random state V ∈ V = {−1, 1} where V = −1 means that the product
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is bad and V = 1 means that the product is good1. We define Q (v) = P (V = v). In the following
we assume for simplicity of exposition that Q(1) = Q(−1) = 0.5.

Each player has her own private information on the product. The private information of player
n is the random variable Xn ∈ X , {−1, 1}, with distribution

Q (xn|v) = P (Xn = xn |V = v) =

{
1− p xn = v

p xn 6= v
(3.1)

where p ∈ (0, 1/2). Define the vector of private information as X = (X1, ..., XN). The private
information is independent between players conditioned on the true value of V , so

P(X = (x1, . . . , xN)|V = v) =
N∏
n=1

Q(xn|v). (3.2)

Player n’s action at turn t, denoted by ant , is equal to 1 if player n buys the product at time t and 0
otherwise. Below, we restrict the action sets such that only player nt can buy the product at time t,
and she can do that only once.

Denote a0:t−1 = (a0, ...,at−1) and n0:t = (n0, ..., nt), where at = (ant )n∈N is the action profile
at time t. The total history of the game at time t is

ht = (v,x,a0:t−1, n0:t) ∈ Ht. (3.3)

We assume each player can observe all the previous actions taken by the other players, as well as
their identities. Hence the common history at time t is

hct = (a0:t−1, n0:t) ∈ Hc
t . (3.4)

The common history of actions provide her with additional information about the quality of the
product. Together with her private information, they form the information set of player n at time t,
denoted by

hnt = (xn,a0:t−1, n0:t) ∈ Hn
t . (3.5)

We define bt = (bnt )n∈N with bnt equal to 1 if and only if player n has already bought the product
before time t. Clearly, bt can be determined recursively through the publicly observed action profile
history a0:t−1 and thus it is part of the common history of the players.

1In our model we assume the good has infinite many copies, or alternatively the good is a technology that can be
adopted by all without scarcity constraints.
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A player’s pure strategy is a sequence of functions from the information sets of the game to
the action space (i.e., a decision whether to buy or not). In this work, we consider pure strategies.
Formally, player n’s strategy is sn = (snt )∞t=0, with

snt : Hn
t → An (bnt , nt) (3.6)

where

An (bnt , nt) =

{
{0, 1} if bnt = 0 , nt = n

{0} else
(3.7)

so that any player n can buy the product only once, and ant = 0 for all t afterwards. In all the turns
when player n does not act (nt 6= n), she is restricted not to buy (“play zero”).

Note that for player n, the unknown variables in ht are X−n and V . Hence, we define the
private belief of player n on the history of the game as µnt : Hn

t → P(X−n × V) and denote the
sequence of private beliefs by µn = (µnt )t≥0. Taking the expectation with respect to this belief and
the strategies in (3.6), we define the expected reward-to-go of player n at time t as

Rn (st:∞, µ
n
t ,h

n
t ) = Es,µnt

{
∞∑
t′=t

δt
′−tV Ant′ |hnt

}
, (3.8)

where 0 ≤ δ ≤ 1 is the discount factor. Note that at most a single term in the sum (3.8) can be
non-zero, since V Ant′ = V only in the first time that player n buys the product, and 0 otherwise.

The strategies in (3.6) are functions of xn, a0:t−1 and n0:t. While a0:t−1 and n0:t are observed
by all players, xn is only known to player n. Throughout the chapter, it will be useful to decompose
those strategies into their common and private components as follows.

Definition 1. Player n at time t observes hct and takes an action ant = γnt (xn), where γnt : X →
An (bnt , nt) is the partial function from her private information to her action. These partial functions

are generated through some policy2

ψnt : Hc
t → {X → An} ∀n ∈ N (3.9)

which operates on hct and returns a mapping from xn to an action ant , so γnt = ψnt [hct ] and

ant = ψnt [hct ](x
n).

The above decomposition is a trivial consequence of the fact that any functionHc
t ×X → An

is equivalent to a functionHc
t → {X → An}. In the first form, the strategy is a direct function of

2Throughout the chapter we use square brackets for mappings that produce functions.
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both the public history hct and the private signal xn, so that ant = snt (hct , x
n). In the second form,

the strategy is decomposed into two steps: in the first step the public history produces a partial
function γnt = ψnt [hct ], and in the second step this partial function is evaluated at the private signal
to generate the final action ant = γnt (xn) = ψnt [hct ](x

n). Note that there are only four possible
deterministic gamma functions γnt : wait for any xn (denoted by 0), buy for any xn (denoted by 1),
buy according to xn (denoted by I) and buy according to −xn. The last one is clearly dominated
by one of the other three so it is never considered. Hence, we are left with three possible partial
strategies, namely, γnt ∈ {0,1, I}. Furthermore, since every non-acting player is essentially waiting
(i.e., playing γnt = 0 for n 6= nt), in the following we will drop the superscript n and only refer to
the acting player’s partial function as γt = ψt[h

c
t ].

We conclude this section by remarking that players’ strategies and particularly their partial
function γt are responsible for the revelation of the private information xn to the rest of the
community. Indeed, if a player plays according to γt = I then she reveals her private information
xn through her action ant . Conversely, if she either plays according to γt = 0, or 1, her private
information is not revealed. We note that “revealing” is a special case of “signaling”, where the
exact private information of a player can be inferred as opposed to only some Bayesian estimation
of it [109].

3.3 Characterization of Structured Perfect Bayesian Equilibria

3.3.1 Perfect Bayesian Equilibrium

Our main goal is to study if an informational cascade occurs in the above setting. An informa-
tional cascade is defined as a state of the game where learning stops since actions no longer reveal
new information. To do so, we first have to study the equilibrium strategies of this game. Since this
is a dynamic game with asymmetric information, an appropriate solution concept is the PBE [76],
defined as follows.

Definition 2. A PBE with pure strategies is a pair (s∗,µ∗) of

• a strategy profile s∗ = (s∗n)n∈N ,

• a belief profile sequence µ∗ = (µ∗n)n∈N ,

such that sequential rationality holds, i.e., for each n ∈ N , t ≥ 0 and hnt ∈ Hn
t , and each strategy

sn:

Rn
(
s∗nt:∞, s

∗−n
t:∞ , µ

∗n
t ,h

n
t

)
≥ Rn

(
snt:∞, s

∗−n
t:∞ , µ

∗n
t ,h

n
t

)
, (3.10)
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and the beliefs satisfy Bayesian updating whenever Ps∗(hnt |hnt−1) > 0, where we define

Ps∗(hnt |hnt−1) =
∑
ht:h

n
t

∑
ht−1

P s∗t−1(ht|ht−1)µ∗nt−1(ht−1|hnt−1), (3.11)

and P s∗t−1 is the kernel that describes the transition probability from ht−1 to ht. We define ht : hnt

to be all ht that ae consistent with hnt .

The Bayesian update of the beliefs is described in the following. For those ht that are consistent

with hnt , we write

µ∗nt (ht|hnt ) = Ps∗(ht|hnt ) =

∑
ht−1

P s∗t−1(ht|ht−1)µ∗nt (ht−1|hnt−1)∑
ht:h

n
t

∑
ht−1

P s∗t−1(ht|ht−1)µ∗nt (ht−1|hnt−1)
, (3.12)

and if ht is not consistent with hnt , we have µ∗nt (ht|hnt ) = 0.

We remark that strategies and beliefs should be defined for all information sets, even those that
occur with zero probability under equilibrium strategies (off-equilibrium paths). In our setting, there
are both public and private off-equilibrium paths. The public off-equilibrium paths (i.e., paths where
all players can confirm that there was a deviation from equilibrium) are those for which ant−1

t−1 = 0,
but s∗nt−1(xnt−1 ,hct−1) = 1, for all xnt−1 or similarly, ant−1

t−1 = 1, but s∗nt−1(xnt−1 ,hct−1) = 0, for
all xnt−1 . In both of these situations, we have Ps∗(hnt |hnt−1) = 0 and we pose no restriction on
the belief updating. As will be shown in Lemma 1, in both of these cases, the beliefs are not
updated for on-equilibrium actions, and so we choose to not update them even if the actions are
not according to the equilibrium strategies. The beliefs at the continuation of the game from these
points on, however, will be updated according to Bayes’ rule if Ps∗(hnt |hnt−1) > 0. The private
off-equilibrium paths (i.e., paths where all players other than the acting player do not have a way
to confirm if a deviation from equilibrium occurred) are when s∗nt−1(xnt−1 = 1,hct−1) = 1 and
s∗nt−1(xnt−1 = −1,hct−1) = 0 (playing γntt = I) and the acting player played ant−1

t−1 = 1 with a
private signal xnt−1 = −1 or played ant−1

t−1 = 0 with a private signal xnt−1 = 1, and she has not yet
revealed her private information. In this situation, no player other than player nt−1 is aware of the
deviation because both actions are possible. We impose the restriction on player nt−1’s belief to not
be updated at the time of her deviation, although other players update their beliefs about xnt−1 and
consequently v. Intuitively, a player can not learn anything more by her own actions but she can
induce different beliefs in others. One can refer to [76, 110] in order to justify this constraint on the
off-equilibrium beliefs. Specifically, one of the conditions posed on off-equilibrium beliefs for PBE
is referred to as “no signaling what you don’t know” [110, p. 332]. This condition indicates that if
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one considers two different action profiles in which a specific player’s action is the same, the belief
about that player’s type should be updated similarly for both action profiles. This implies that in
our setting, the acting player should not change her belief about any other player’s private signal
because they are not playing. On the other hand, learning about v happens through players’ private
signals. If the belief about others’ private signals does not change, the belief about v should not
change either. So the acting player should not change her belief about neither v nor others’ private
signals when she is playing, no matter what she plays and whether she deviates or not.

Notice that in the above definition, we have defined the belief µnt to be a belief over the set of all
histories at time t given the information set of player n at t. However, this is the most general belief
that one could consider and depending on the specifics of the game, we can define other (simpler)
types of beliefs that are sufficient for the players to act rationally. Note that for any types of beliefs
that we consider, the update rule is the same as what was described here.

In this work, we are interested in PBE that depend on the history of the game only through
a summary in the form of the belief of the players about V and X . Hence, we formulate FPE
for which the set of solutions is the set of these PBE, which are known as structured PBE [59].
Structured PBEs represent a more reasonable behavior since strategies that depend on sequentially
updatable beliefs are more tractable than strategies that require tracking the whole history.

3.3.2 Characterization of Structured PBE

We now present a methodology for characterizing PBE where the strategy for the acting player
nt depends on the common history only through the common belief on the variables V,X (as well as
the variableBt−1). In particular, we define the common belief πt ∈ P

(
XN × V

)
where πt(x, v) :=

Ps (X = x, V = v|a0:t−1, b0:t−1, n0:t) = Pψ (X = x, V = v|a0:t−1, b0:t−1, n0:t, γ0:t−1). For t = 0,
we set π0(x, v) = Q(v)

∏
nQ(xn|v). We first show that the belief πt can be updated using only

public information and that the update depends on ψt only through γt. Note that the dependence of
the update equation on γt is the manifestation of “signaling” in our model. When the equilibrium
strategy is γt = I , acting player’s action reveals her private information and changes the beliefs of
other players about V and X .

Lemma 1. There exists a function F such that the belief πt can be updated as πt+1 = F (πt, γt, a
nt
t , nt).

In particular, if γt 6= I , the belief is not updated.

Proof. By simple application of Bayes’ rule we have

πt+1 (x, v) = Ps (x, v|a0:t, b0:t, n0:t+1) (3.13a)
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= Pψ (x, v|a0:t, b0:t, n0:t+1, γ0:t) (3.13b)

= Pψ (x, v|a0:t, b0:t−1, n0:t, γ0:t) (3.13c)

=
Pψ (x, v,at|a0:t−1, b0:t−1, n0:t, γ0:t)

Pψ (at|a0:t−1, b0:t−1, n0:t, γ0:t)
(3.13d)

=
Pψ (at|x, v,a0:t−1, b0:t−1, n0:t, γ0:t)Pψ (x, v|a0:t−1, b0:t−1, n0:t, γ0:t)

P (at|a0:t−1, b0:t−1, n0:t, γ0:t)
(3.13e)

=
1γt(xnt ) (antt ) πt (x, v)∑

x′,v′ 1γt(x′nt ) (antt ) πt (x′, v′)
. (3.13f)

Note that if γt is a constant function (i.e., γt 6= I) the quantity 1γt(xnt )(a
nt
t ) cancels from numerator

and denominator of the above expression, thus resulting in πt+1 = πt. Furthermore, whenever the

denominator is zero (off-equilibrium paths) we set πt+1 = πt. Additionally, while πt(x, v) depends

on a0:t, n0:t+1 and b0:t, the update function F only depends on πt, γt, antt and nt. By definition of the

game, amt = 0 for all m 6= nt, and so factors of the form 10(amt ) are canceled from both numerator

and denominator in the last equality.

The private beliefs of players on v on equilibrium paths are obtained by conditioning the public
belief on V on players’ private signal,Xn. More specifically, player n’s private belief on equilibrium
path is µnt (v) = πt(v|xn) = πt(xn,v)

πt(xn)
, where πt(xn, v) and πt(xn) are marginal beliefs of πt(x, v).

A player is only interested in the previous actions since they carry information about V . However,
not every action reveals the private information of the acting player. For that to happen, the action
that the player took must be determined by her private information. This motivates characterizing
the beliefs using the following finite dimensional variables:

Definition 3. Let x̃nt ∈ {0,−1, 1} be the revealed information of player n up to time t, so x̃nt = 0 if

the player has not yet revealed her private information, while x̃nt = ±1 if the player has already

revealed her private signal and the value is as indicated. The quantity x̃nt remains unchanged for

non-acting players while it is recursively updated for the acting player as

x̃nt = f(x̃nt−1, γt, a
n
t ) =

{
2ant − 1 γt = I, x̃nt−1 = 0

x̃nt−1 o.w.,
(3.14)

with the initial condition x̃n0 = 0. Note that x̃nt is a function of x̃n0:t−1, a0:t and n0:t, or equivalently

of γ0:t, a0:t and n0:t. We also define the function F̃ such that

x̃t =
(
x̃−ntt , x̃ntt

)
= F̃ (x̃t−1, γt, a

nt
t , nt)

,
(
x̃−ntt−1 , f(x̃ntt−1, γt, a

nt
t )
)

(3.15)
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to summarize the recursive update of the entire vector x̃t = (x̃1t , . . . , x̃
N
t ). Note that only the acting

player’s component of this vector is updated. Furthermore, x̃nt can be derived from the belief πt
since if πt(xn) = 1k(xn) for k ∈ {−1, 1} then x̃nt = k and otherwise x̃nt = 0.

Following the discussion after Definition 2 and by using x̃t, we characterize the off-equilibrium
private beliefs as follows:

µnt (v = 1)

µnt (v = −1)
=

πt(v = 1)

πt(v = −1)

(
1− p
p

)−x̃nt +xn
. (3.16)

Intuitively, equation (3.16) says that if a player has not yet revealed her information (x̃nt = 0), then
her private likelihood about V is the public likelihood amplified by the private factor (1−p

p
)x
n . If

however she has already revealed her information and she is on equilibrium x̃nt = xn then her
private belief is the same as the public belief, which includes her private information since it was
revealed. Finally, if she has already revealed her information and she is off-equilibrium x̃nt = −xn

then her private likelihood has to correct for the erroneous public belief through the factor (1−p
p

)−x̃
n
t

and then amplified by the true factor (1−p
p

)x
n .

The following lemma shows that the common belief decomposes into a belief on v and a
belief on x, and that each part can be updated recursively. Specifically, it proves that the private
information variables X1, . . . , XN are conditionally independent given v ,hct and that the common
belief can be expressed in terms of x̃t from Definition 3.

Lemma 2. The public belief πt (x, v) = P (X = x, V = v|hct) can be decomposed as follows

πt (x, v) = πt (v)
N∏
m=1

πt (xm|v) (3.17)

where πt (v) , P (V = v |hct) and πt (xm|v) , P (Xm = xm | v,hct). Furthermore,

πt (xm|v) =

1x̃mt (xm), x̃mt 6= 0

Q (xm|v) , x̃mt = 0
(3.18)

and the belief on V can be updated as

πt+1(1)

πt+1(−1)
=

πt(1)

πt(−1)
×

q2a
nt
t −1, γt = I and x̃ntt = 0

1, o.w.,
(3.19)
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with q = 1−p
p

. Finally, the belief on V can be explicitly expressed as

πt(1)

πt(−1)
= q

∑
n x̃

n
t . (3.20)

Proof. See Appendix B.1.

We would like to characterize equilibrium strategies for the acting player antt = ψt[h
c
t ](x

nt)

for which the ever-increasing common history hct = (a0:t−1, n0:t) is summarized into the time-
invariant quantities (nt, πt, bt) ∈ N ×P(XN ×V)×{0, 1}N , i.e., equilibrium strategies of the form
antt = θ[nt, πt, bt](x

nt). In other words, we seek equilibrium strategies where the partial functions
are of the form γt = θ[nt, πt, bt]. Thanks to Lemma 2 we know that the beliefs can be summarized
using x̃. Hence, with a slight abuse of notation, we can write γt = θ[nt, x̃t, bt].

Using the above structural results for the beliefs, we can construct our finite-dimensional FPE.

Fixed-Point Equation 1 (Finite dimensional). For every n ∈ N , x̃ ∈ {−1, 0, 1}N , b ∈ {0, 1}N

we evaluate γ∗ = θ [n, x̃, b] as follows

• If bn = 1 then γ∗ = 0.

• If bn = 0 then γ∗ is the solution of the following system of equations, ∀xn ∈ X

γ∗ (xn) = arg max


q
∑
m x̃m−x̃n+xn − 1

q
∑
m x̃m−x̃n+xn + 1︸ ︷︷ ︸

1=“buy”

,
δ

N

N∑
n′=1

V n
(
xn, n′, F̃ (x̃, γ∗, 0, n) , b

)
︸ ︷︷ ︸

0=“don’t buy”

 (3.21a)

where the value functions for all m ∈ N satisfy

V m (xm, n, x̃, b) =

0, bm = 1
δ
N

∑N
n′=1 V

m
(
xm, n′, F̃ (x̃, γ∗, 0,m) , b

)
, bm = 0, n = m, γ∗ (xm) = 0

q
∑
m′ x̃

m′−x̃m+xm−1
q
∑
m′ x̃

m′−x̃m+xm+1
, bm = 0, n = m, γ∗ (xm) = 1

δ
N

∑N
n′=1 E

[
V m(xm, n′, F̃ (x̃, γ∗, γ∗(Xn), n), b−nBn)

]
, bm = 0, n 6= m,

(3.21b)
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where expectation in (3.21b) is w.r.t. the RVs Xn and Bn with

P(Xn = xn, Bn = b′n|xm, n, x̃, b)

= P (Bn = b′n|Xn = xn, xm, n, x̃, b)P (Xn = xn|xm, n, x̃, b) , (3.21c)

where

P (Bn = 1|Xn = xn, xm, n, x̃, b) =

{
1 , if bn = 1 or γ∗ (xn) = 1

0 , else,
(3.21d)

and

P(Xn = xn|xm, n, x̃, b) =

 1x̃n(xn) , if x̃n 6= 0

Q(xn|−1)+Q(xn|1)q
∑
m′ x̃

m′−x̃m+xm

1+q
∑
m′ x̃

m′−x̃m+xm
, if x̃n = 0.

(3.21e)

�

Once the mapping θ [·] has been found through the FPE 1, the PBE strategies and beliefs are
generated through the following forward recursion.

• Initialization: Let x̃0 = 0 ∈ RN .

• For t = 0, 1, 2 . . ., ∀n ∈ N , hct ∈ Hc
t , x

n ∈ X :

1. Compute

s∗nt (hnt ) :=

{
θ [nt, x̃

∗
t [hct ] , bt−1] (xn) n = nt

0 o.w.
(3.22a)

2. Compute π∗t according to Lemma 2.

3. Generate the private beliefs µ∗nt from π∗t by as

µ∗nt
(
x−n, v

)
= π∗t (x

−n|v)µ∗nt (v) (3.22b)

where
µ∗nt (v = 1)

µ∗nt (v = −1)
=

π∗t (v = 1)

π∗t (v = −1)

(
1− p
p

)−x̃n+xn
. (3.22c)
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4. Let antt = s∗nt (hnt ). For every nt+1 ∈ N , let hct+1 = (hct , a
nt
t , nt+1) and compute:

x̃∗t+1

[
hct+1

]
:= F̃ (x̃∗t [hct ] , θ [nt, x̃

∗
t [hct ] , bt−1] , a

nt
t , nt) . (3.22d)

The following theorem establishes that the above construction generates a PBE.

Theorem 1. Whenever FPE 1 has a solution, the forward construction described in (3.22) generates

a PBE.

Proof. See Appendix B.2.

FPE 1, and in particular in (3.21a) is akin to a dynamic programming FPE in an infinite-horizon
stopping-time problem. There is however a significant difference: although player n is deciding
about her strategy which will lead to an action by maximizing the reward between buying and
waiting, we use the equilibrium strategy γ∗ in the update function of the belief π. The reason for
this twist is shown in the proof of Theorem 1. This proof shows that player n faces an MDP only if
every other player plays according to γ∗, and also, most crucially, if the update of π is according
to γ∗. Hence, if these two requirements hold, the best response of player n will give us the PBE
strategies, γ∗. Therefore, we have a FPE that contains γ∗ in both the left- and right-hand side of
the equation. In other words, γ∗t is an equilibrium strategy only if it is the best response assuming
that the belief update πt+1 = F (πt, γ

∗
t , a

nt
t , nt)(or equivalently x̃t+1 = F̃ (x̃t, γ

∗
t+1, a

nt+1

t+1 , nt+1)) is
evaluated using the equilibrium strategy.

We now provide intuition for the expressions in (3.21b). The first equation describes the case
where a player has already bought the product so there is no additional expected reward. The
second equation refers to the case where the acting player chooses to wait and so the future reward
is averaged over all acting players at time t + 1 with the beliefs being updated according to the
equilibrium strategy γ∗ and the action 0. The third equation refers to the case where the acting player
chooses to buy the product and thus it receives the expected value estimated by her private belief.
Finally, the last equation refers to non-acting players who evaluate their future rewards by taking
expectation over all possible acting players at the next stage, as well as the private information of
the currently acting player and whether she will buy the product or not.

The domain of the value functions V m(·) in FPE 1 is finite, with size 2×N × 3N × 2N . For
practical systems with a large number of users N , the exponential dimension of FPE 1 renders
the computation of the PBE infeasible. In the next section we show that using the structure of the
problem, these equations can be simplified considerably, resulting in quadratic dimension in N .
Then, the efficient computation of the PBE would allow characterizing informational cascades in
large systems where the implication of a cascade can be dramatic.
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3.4 Computing a PBE though a quadratic-dimensional FPE

In this section, we exploit the structure of the problem to simplify FPE 1. This simplification
is done in two steps. The first step results in a FPE with value functions having domain that
grows polynomially with N , and in particular as ∼ N4. However, we only present this result in
Appendix B.3 for completeness. The second step results in an even more drastic simplification
with strategies and value functions having domain that grows only quadratically with N . The key
observation here is that the indexing of the players has no effect on the future reward a player
estimates she would get by waiting. Since x̃ contains this information, it can be reduced to the
following two quantities:

Definition 4. Define the aggregated state information as

yt =
N∑
n=1

x̃nt ∈ Y = {−N, . . . , N}. (3.23)

Further, define the indicator that player n has revealed her private information as rnt = |x̃nt |. Using

znt = max {rnt , bnt }, define the number of players who cannot reveal their private information after

turn t by

wt =
N∑
n=1

znt ∈ W = {0, . . . , N}. (3.24)

These are the players that have already revealed their private information or have already bought

the product and cannot buy it again.

Since the value function and strategy of players with bn = 1 are evidently 0 and γ∗ = 0,
respectively, we only argue for the players with bn = 0 and drop bn from the state variables. We
define the functions Ua : X×{0, 1}×Y×W → R and U r̃

na : X×{0, 1}×Y×W → R ∀r̃ ∈ {0, 1}
as follows. Ua (x, r, y, w) is the value function of the acting player n whose private information
is xn = x, she has revealed if r = 1 and the aforementioned state variables are (yt, wt) = (y, w).
Similarly, U r̃

na (x, z, y, w) is the value function of a non-acting player m, whose private information
is xm = x, she has revealed if r̃ = 1 with an acting player n who can reveal her private information
if z = 0, and y, w as before.

Finally, define the update functions Gr, Gz, Gy, Gw as follows

Gr(r, γ) =

{
1, r = 0 and γ = I
r, else

(3.25a)
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Gz(z, γ, a) =

{
1, z = 0 and (a = 1 or γ = I)
z, else

(3.25b)

Gy(z, y, γ, a) =

{
y + (2a− 1), z = 0 and γ = I
y, else

(3.25c)

Gw(z, w, γ, a) = w +Gz(z, γ, a)− z. (3.25d)

We now can formulate the alternative FPE 2.

Fixed-Point Equation 2 (Quadratic dimension). For every r ∈ {0, 1}, y ∈ Y , w ∈ W , we evaluate

γ∗ = φ [r, y, w] as follows

• γ∗ is the solution of

γ∗(x) = arg max


qy+r+x − 1

qy+r+x + 1︸ ︷︷ ︸
1=buy

, A︸︷︷︸
0=don’t buy

 ∀x ∈ X , (3.26a)

where

A =
δ

N
Ua (x, r′, y′, w′) +

δ

N
(N − w − 1 + r)U r′

na(x, 0, y
′, w′)

+
δ

N
(w − r)U r′

na (x, 1, y′, w′) . (3.26b)

where the next state variables are

r′ = Gr(r, γ∗) (3.26c)

y′ = Gy (r, y, γ∗, 0) (3.26d)

w′ = Gw (r, w, γ∗, 0) . (3.26e)

The value functions satisfy

Ua (x, r, y, w) =

{
A γ∗(x) = 0

qy+r+x−1
qy+r+x+1

γ∗(x) = 1
(3.26f)

and for all r̃ ∈ {0, 1}

U r̃
na (x, z, y, w) =

δ

N
E
{
Ua

(
x, r̃, Ỹ , W̃

)}
+

δ

N
E
{
U r̃
na

(
x, Z̃, Ỹ , W̃

)}
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+
δ

N
(w − z − r̃)E

{
U r̃
na

(
x, 1, Ỹ , W̃

)}
+

δ

N
(N − w − 2 + z + r̃)E

{
U r̃
na

(
x, 0, Ỹ , W̃

)}
, (3.26g)

where the (random) next state variables from the point of view of a non-acting player are:

Z̃ = Gz (z, γ∗, γ∗ (Xn)) (3.26h)

Ỹ = Gy (z, y, γ∗, γ∗ (Xn)) (3.26i)

W̃ = Gw (z, w, γ∗, γ∗ (Xn)) (3.26j)

and the expectation is w.r.t. the RV Xn, where

P(Xn = xn|r̃, x, w, y) =
Q(xn| − 1) +Q(xn|1)qy+r+x

1 + qy+r+x
.

Specifically, for z = 1 the above becomes

U r̃
na (x, 1, y, w) =

δ

N
Ua (x, r̃, y, w) +

δ

N
(w − z − r̃ + 1)U r̃

na (x, 1, y, w)

+
δ

N
(N − w − 2 + z + r̃)U r̃

na (x, 0, y, w) . (3.26k)

�

The intuitive explanation for FPE 2 is as follows. Equation (3.26a) quantifies the decision
between buying now or waiting, given the quality of information about V evaluated through
y. Specifically, the reward-to-go for waiting in (3.26b) averages out the rewards obtained by
whether the acting player will also be acting at the next epoch (first term), or whether she will
be non-acting and the acting player can reveal her private information or not (the two terms with
z = 0, 1). Similarly, a non-acting player updates her value function in (3.26g) by averaging out
four possibilities for the next epoch: whether she will be the acting player (first term), whether she
will be non-acting but the acting player will be the same as in the current epoch (second term), and
whether she will be non-acting and the acting player will be some other than herself and the current
acting player (last two terms). Specifically, if the current acting player has either bought the product
or revealed her private information (z = 1) the second term in this equation is absorbed into the
third one as shown in (3.26k).

The next Theorem shows that by finding a solution to FPE 2, we obtain a solution to FPE 1.
Since equations (3.26) have quadratic dimension in N , this significantly reduces the complexity
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of solving FPE 1. Specifically, given the solution U∗ of FPE 2 (together with φ) we construct the
following strategies and value functions.

γ∗ = θ
[
n, x̃, bn, b−n

]
=

φ [rn, y, w] , bn = 0

0, bn = 1
(3.27)

Ṽ m
(
·, n, x̃, bm, b−m

)
=


Ua (·, |x̃n| , y, w) , bm = 0,m = n

U
|x̃m|
na (·,max{|x̃n|, bn}, y, w) , bm = 0,m 6= n

0, bm = 1,

(3.28)

where we note that y, w and rn are all determined by x̃ and n through (3.23) and (3.24). We will
show that these value functions are solutions of the original FPE 1.

Theorem 2. The value functions (Ṽ m)m∈N in (3.28) together with the strategy mapping γ∗ in (3.27)
satisfy FPE 1.

Proof. See Appendix B.4.

3.5 Equilibrium Analysis

The convenient form of FPE 2 allows us to analyze properties of the PBE and even to verify
intuitive PBE solutions. We first present an intermediate lemma which will be useful in proving
subsequent results.

Lemma 3. The following are true for all solutions of FPE 2.

• For δ = 1, players with x = 1 are indifferent between buying and waiting for y ≥ −1 and all

w and r. Furthermore, players with x = −1 are indifferent between buying and waiting for

y + w ≥ N and all r.

• For δ < 1, players with x = 1 prefer buying over waiting for y ≥ 0 and all w and r and for

y = −1, r = 1, and are indifferent between buying and waiting for y = −1, r = 0. Also,

players with x = −1 prefer buying over waiting for y ≥ 2, y + w ≥ N and all r and also for

y = 1, w ≥ N − 1 and r = 1, and are indifferent for y = 1, r = 0 and y = 0, r = 1.

• For all δ ≤ 1, for y < −1, all w and r = 0 and for both values of x, players prefer to wait.

Similarly, for y < −2, all w and r = 1 and both values of x, players prefer to wait. Finally,
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For y = −2, all w and r = 1 players with x = 1 are indifferent between buying and waiting

and players with x = −1 prefer to wait.

Proof. See Appendix B.5.

We comment at this point that the usefulness of the above lemma is the very fact that these
statements are proved without explicitly solving FPE 2. Specifically, note that both the right hand
side and the left hand side of equation (3.26a) depend on the solution γ∗. However, Lemma 3 claims
that for all of the solutions γ∗, the aforementioned properties hold. Most of the remaining results of
this section hinge on the above lemma.

The next theorem presents a solution of FPE 2 for all values of δ ≤ 1 including δ = 0. For δ = 0,
our scenario coincides with the original myopic scenario from [7], up to the fact that players who
do not buy get another opportunity to play. Therefore, we refer to the strategy profile in Theorem 3
as the myopic solution, even though it is a solution for all δ.

Theorem 3 (Existence). The following strategy profile is a solution of FPE 2 for all δ.

For r = 0, and all w,

γ∗ = φ[r, y, w] =


1, y ≥ 2

0, y ≤ −2

I, −1 ≤ y ≤ 1.

(3.29a)

For r = 1, and all w,

γ∗ = φ[r, y, w] =


1, y ≥ 2

0, y ≤ −2

I, −1 ≤ y ≤ 0.

(3.29b)

Finally, for r = 1, y = 1, and all w, γ∗ = φ[r, y, w] can be chosen appropriately, as a function of δ

(it is either 1 or I).

Proof. See Appendix B.6.

This strategy profile is depicted in Fig. 3.1 (in all such figures we present the case for r = 0 and
the case for r = 1 with x̃ = −1, since if a player has revealed and her private information is 1 it
means that she has bought the product already). Notice that it mostly consists of strategies γ∗ = 1

and γ∗ = 0 which implies that players do not tend to reveal their private signal. Intuitively, if a
player knows that others do not reveal their private signal, she does not gain from waiting for more
information. Hence, revelation of private signals, which occur when γ∗ = I is played, does not
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Figure 3.1: Equilibrium strategies for N = 11 and all δ ≤ 1, including δ = 0. “00”, “01”, and “11”
denote strategies 0, I , and 1, respectively. The strategies for r = 1 and y = 1 are specifically for
δ = 0.

happen when both players with x = 1 and x = −1 have positive instantaneous reward. Therefore,
for all values of δ, acting myopically is always an equilibrium.

Although the strategy profile of Theorem 3 is referred to as myopic, it captures the non-myopic
aspect of the game too. For instance, at y = 1, a player with r = 0 and x = −1, does not buy the
product because her value function is positive by not buying and therefore, she gains from waiting.
But in the myopic case, her valuation is 0 for both buying and not buying so the player is indifferent
between playing a = 1 and a = 0. This implies that if we change the apriori belief about V from
Q(v = 1) = 0.5 to Q(v = 1) = 0.5 + ε for small enough ε, this strategy profile is an equilibrium
for δ 6= 0 but not for δ = 0. This follows since a player with x = −1 at y = 1 strictly prefers to buy
at the myopic setting, while she still prefers to wait at the non-myopic setting if ε is small enough.

We next investigate a solution for FPE 2 for both δ = 1 and large enough δ < 1.

Theorem 4. The following strategy profile is a solution of FPE 2,

• For δ = 1,

γ∗ = φ[r, y, w] =



0, y ≤ −2

I, y ≥ −1, w < N

1, y ≥ 1, w = N, r = 1

I, y ∈ {0,−1}, w = N, r = 1

(3.30a)
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• For large enough δ < 1 (which depends on N and other parameters of the game),

γ∗ = φ[r, y, w] =



0, y ≤ −2

I, y ≥ −1, y + w < N

I, y = 1, w = N − 1, r = 0

I, y = 0, w = N, r = 1

1, y ≥ 2, y + w ≥ N

1, y = 1, w ≥ N − 1, r = 1

(3.30b)

Proof. See Appendix B.7

The strategy profiles presented in Theorem 4 are depicted in Fig. 3.2 and 3.3 for N = 11 and
δ = 1 and large enough δ < 1, respectively. Note that the strategy γ∗ = I (denoted by 01) is
extended throughout all the states with y ≥ −1 and w < N for δ = 1.

Figure 3.2: Equilibrium strategies for N = 11 and δ = 1. “00”, “01”, and “11” denote strategies 0,
I , and 1, respectively.

The FPE 2 may exhibit more PBE than the PBE of Theorem 3. Nevertheless, all these potential
PBE share similar structure, as the next theorem shows. We have also presented the existence results
for the solutions that are threshold policies w.r.t. w and y in the next theorem.

Theorem 5. The following properties hold for the solutions of FPE 2 for b = 0:

• All of the solutions of FPE 2 are either threshold policies (from 0 to 1) w.r.t. w or there exists

a threshold policy w.r.t. w corresponding to a solution that is not of this type.
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Figure 3.3: Equilibrium strategies for N = 11 and large enough δ < 1. “00”, “01”, and “11” denote
strategies 0, I , and 1, respectively.

• For δ < 1, all of the solutions of FPE 2 that are threshold functions w.r.t. w, must be

threshold functions w.r.t. y for r = 0, when all other parameters are fixed. This implies that if

γ∗(x) = φ[0, y, w](x) = 1, then γ∗(x) = φ[0, y′, w′](x) = 1 for y′ ≥ y and w′ ≥ w. Further

whenever the solution is threshold policy w.r.t. y for r = 0, the solutions can also be threshold

policy w.r.t. y for r = 1.

Further, for all of the solutions of FPE 2, we have the following properties:

• They are threshold functions w.r.t. y for x = 1 and r = 0, and the threshold is either y = −1

or y = 0 for all w.

• They are such that γ∗ = φ[r, y, w] = 0 for y ≤ −3 and all other parameters, and for y = −2

and r = 0. Also, γ∗ = φ[0, y, w] 6= 0 for y ≥ 0.

• We have γ∗ = φ[0, 0, w] = I .

• For y 6= −1, γ∗ = φ[0, y, w] = 0 for all w (constant w.r.t. w) or can only be either

γ∗ = φ[0, y, w] = I or γ∗ = φ[0, y, w] = 1 for all w. It implies that by changing w and

fixing other parameters, the equilibrium strategies either do not change and are always 0, or

they can change between I and 1.

• For y = −1, both γ∗ = φ[0,−1, w] = I and γ∗ = φ[0,−1, w] = 0 are always solutions for

all w.

58



• For y = −2, both γ∗ = φ[1,−2, w] = I and γ∗ = φ[1,−2, w] = 0 are always solutions for

all w.

Proof. See Appendix B.8.

The first two parts of this theorem imply that there exist solutions of FPE 2 that by increasing
y or w, the equilibrium strategies change from 0’s to I’s and then to 1’s. This is evident in all of
the solutions that we have proposed in this chapter (Fig. 3.1, 3.2, 3.3). Other parts present more
general statements about the solutions. For instance, as we can see in the proposed solutions, the
equilibrium strategies are γ∗ = φ[r, y, w] = 0 for y ≤ −2, which is because the instantaneous
reward of players is non-positive. One can also verify other parts of the theorem by the solutions
proposed in this chapter.

The boundary of |y| = 2 is of special importance for the equilibria. The reason is that y = 2

is the smallest y for which the instantaneous reward is positive for all players, regardless of their
private information. Similarly, y = −2 is the largest y for which the instantaneous reward is
negative for all players regardless of their private information. For the myopic scenario, these
facts determine the equilibrium strategies at y ≥ 2 and y ≤ −2, and this is a possible PBE in our
non-myopic scenario as well, as Theorem 3 shows. However, in our non-myopic scenario, more
intricate behaviors are also possible at equilibrium. For y ≤ −2, waiting, which gives zero reward,
is always better than buying. Therefore this side of the boundary behaves like the myopic scenario
in all PBE. Nevertheless, for y ≥ 2, players may choose to wait and not buy the product even if
their instantaneous reward is positive. Therefore, we may have signaling strategies for y ≥ 2 and
hence, we observe different equilibrium strategies for these values of y in Theorem 4.

3.6 Informational Cascades

Our results from the previous section allow us to evaluate PBE of the game by solving equations
with a quadratic number (in N ) of variables. This methodology provides us with the necessary tools
to investigate whether informational cascades occur in settings with large number of players.

Definition 5. An informational cascade is a sequence of turns in our game, starting from some

t0 ≥ 0, such that γt 6= I for all t ≥ t0. We say that an informational cascade is bad if it leads to the

wrong decision: users choose γ = 0 when V = 1 or γ = 1 when V = 0.

While the sequence of events in a realization of the game is random, given a PBE, we can
identify the histories of the game at which an informational cascade occurs. Using Theorem 2, we
can characterize these histories using only w and y.
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According to the definition above, an informational cascade can affect any number of players,
from 1 to N . Obviously, informational cascades that affect more players are more significant. A
natural question is then how much damage a bad informational cascade causes to the network. Our
FPE 2 with its variables (y, w) gives an easy way to tackle this question. If the cascade occurred
at state (y, w), then two things affect the damage done to the community: the probability that the
cascade is bad, and the number of players that received the worst possible reward if the cascade is
bad. Interestingly enough, both of these numbers are characterized by w.

The players that participate in a bad cascade with γ = 0 receive 0 reward, which is the worst
possible. The best reward is 1 up to the discounting in the first turn they get to act. The number of
players that made the right decision and bought the product before the cascade is bounded from
above by w.

The players that participate in a bad cascade with γ = 1 receive a reward of -1 up to the
discounting in the first turn they get to act. This is the worst reward possible, while the best reward
is 0. The number of players that initially made the right decision not to buy the product is bounded
from above by w. Indeed, any such player must have played γ = I since otherwise, she would have
started a γ = 0 cascade instead.

We conclude that in any bad cascade, at least N − w players receive the worst reward possible.
Hence, both the probability for a bad cascade and the damage it causes decrease with w. Using
w, one can bound the system performance using a metric of choice (e.g., social welfare, or some
notion of fairness). In the next section, we numerically evaluate the probability for a bad cascade as
a function of w.

A direct consequence of our model, which induces players to be forward-looking instead of
acting myopically, is a multitude of equilibrium behaviors for the players. This rich spectrum of
behaviors includes the myopic strategies that have been reported in the literature and that lead to
informational cascades, but also–and more importantly–includes more cooperative strategies that
induce players to reveal their information with the potential of alleviating or even eliminating infor-
mational cascades. The next two subsections explore these two extremes by proving conclusively
the above claims.

3.6.1 The case of δ < 1 and N →∞

In this part, we employ the results of the previous section to conclude that an informational
cascade indeed happens with probability approaching 1 as the number of players approaches infinity
even in a non-myopic scenario for a fixed δ < 1.

Our methodology consists of defining a Markov chain and studying its properties. Specifically

60



this Markov chain is not defined on absolute time t, but on the random times when a new revelation
happens (i.e., when a player plays strategy γt = I). Towards this goal we provide the following
definition.

Definition 6. Let φ[·] be a solution to FPE 2. Define the random variables (Dt)t≥0 with realization

dt =

{
1, φ[rntt , yt, wt] = I and rntt = 0 and bntt = 0

0, else,
(3.31)

which indicates if the player who acts at turn t reveals her private information. Let Yt be the random

aggregated state information at time t (see (3.23)). Let Ti be the random time of the i-th revealing,

so T0 = 0 and Ti = min{t > Ti−1|Dt = 1} for i ≥ 1. We also define the random process (Y i)i≥0

with Y i = YTi when Ti <∞ and Y i = Y i−1 otherwise.

The next lemma characterizes the reason why cascades still occur in a non-myopic scenario.

Lemma 4. Let φ[·] be a solution to FPE 2. The induced process (Y i)i≥0 is a Markov chain where,

for large enough N , there exist absorbing states yR, yL such that for all yL < y < yR, if Ti+1 <∞
then

P
(
Y i+1 = y′|Y i = y

)
=

{
p+(1−p)qy
qy+1

y′ = y + 1
1−p+pqy
qy+1

y′ = y − 1
. (3.32)

Proof. First we show the Markovianity of (Y i)i≥0

P
(
Y i+1 = y′|Y 0:i = y0:i

)
= P

(
YTi +XNTi = y′ |YT0:i = y0:i

)
(3.33a)

= P
(
XNTi = y′ − yi|YT0:i = y0:i

)
(3.33b)

=
Q(y′ − yi|0) +Q(y′ − yi|1)qyi

qyi + 1
(3.33c)

= P
(
Y i+1 = y′|Y i = yi

)
. (3.33d)

Now we characterize the absorbing states. For δ < 1 and Ymax =
⌈
1 + logq(

1+δ
1−δ )

⌉
< N , we have

qYmax+rt+x − 1

qYmax+rt+x + 1
> δ > δUa (x, rt+1, yt+1, wt+1) . (3.34)

Hence, either yR = Ymax is absorbing or there exists a yR < Ymax that is absorbing. In Yt = yR, all

players, regardless of x, prefer to buy. Similarly, for Ymin = −2 we have

q−1 − 1

q−1 + 1
= 2p− 1 < 0 < δUa (x, rt+1, yt+1, wt+1) . (3.35)
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Therefore, either yL = Ymin = −2 or yL = −1 is absorbing. In Yt = yL, all players, regardless of

x, prefer to wait. Hence, in Yt = yL or Yt = yR no more revealings occur and Yt (and Y i) remains

constant for all t′ > t with probability 1.

The absorbing states of the Markov chain we defined above are informational cascades. As a
result, an informational cascade will occur with probability approaching 1 as N increases as in the
gambler’s ruin problem. However, an informational cascade that occurs after (almost) all players
have revealed their private information is of little concern. In such a case (almost) all available
information about V has been revealed, so w is close to N and the cascade affects only a few players
and also has small probability to be bad. Unfortunately, for a fixed δ < 1, the following theorem
shows that this is far from being the case, as an informational cascade occurs early on.

Theorem 6. For δ < 1, the probability that an informational cascade occurs in finite time ap-

proaches 1 as N →∞.

Furthermore, let MN be a sequence such that limN→∞
MN√
N

= 0 and limN→∞MN =∞.

1. The probability that less than MN players have revealed their private information before the

cascade occurred approaches 1 as N →∞.

2. If, in addition, the solution is such that φ [r, y, w] = 1 implies φ [r, y, ŵ] = 1 for all ŵ > w

(according to Theorem 5, we know such solutions exist), then the cascade happens in less

than MN turns with a probability that approaches 1 as N →∞.

Proof. See Appendix B.9.

Theorem 6 implies that an informational cascade will occur at some finite time with probability
approaching 1 as N increases. Secondly, the theorem implies that the cascade happens too early.
This follows since when a cascade occurs, with high probability, less than MN players have revealed
their information for any increasing sequence that grows slower than

√
N (e.g., MN = logN ).

Hence, a minuscule amount of the available information about V has been revealed before a cascade
occurs (for large N ). This is undesirable, since it means that the probability for a bad cascade can
be significant, and that the cascade will affect almost all of the players.

3.6.2 The case of δ = 1 or large enough δ < 1 and finite N

In this subsection, we study informational cascades for a fixed N and for either δ = 1 or
large enough δ < 1. We refer to these cases as infinitely patient and sufficiently patient players,
respectively. As it will be shown, a very surprising result emerges in this setting. For δ = 1 and
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V = −1, there exists a PBE that completely avoids bad information cascades. For V = −1 and with
large enough δ < 1, there exists a PBE that has a vanishing probability (in N ) for a bad information
cascade, since it is guaranteed that at least half of the players will reveal their private information.
The next two theorems formalize these results.

Theorem 7. For δ = 1, there exists a PBE in which there is no bad informational cascade for

V = −1.

Proof. Consider the strategy profile of Theorem 4 for δ = 1 (depicted in Fig. 3.2). There is no

strategy γ∗ = φ[r = 0, y, w] = 1. This means that for V = −1, bad informational cascades never

happen for this strategy profile.

Although Theorem 7 states that bad informational cascades can be avoided for V = −1, they
will always happen for V = 1 with positive probability due to the strategies γ∗ = φ[r = 0, y, w] = 0

that are played for y ≤ −2 and all w.

Theorem 8. For sufficiently large δ < 1 (which depends on N ) there exists a PBE for which bad

informational cascades for V = −1 happen only when at least half of the players have revealed

their private information. Consequently, the probability that a bad informational cascade for

V = −1 happens is bounded from above by e−
N
4
(1−2p)2 .

Proof. Assume that δ < 1 is large enough such that the strategy profile of the second part

of Theorem 4 (depicted in Fig. 3.3) is a PBE. This strategy profile consists of strategies γ∗ =

φ[0, y, w] = 1 for y ≥ 2 and y + w ≥ N (yellow cells in Fig. 3.3). This implies that for V = −1,

a bad informational cascade happens only when y ≥ 2 and y + w ≥ N . This in turn means that

a bad informational cascade happens when at least w = N
2

. Since the initial value of y is 0 and

the strategies played before reaching y ≥ 2 and y + w ≥ N , are all γ∗ = φ[r, y, w] = I , then w is

equal to the number of players who have revealed. Therefore, a bad cascade happens only when at

least N
2

players have revealed their private information.

Let T be the set of turns when players revealed their private information. Let R = |T |. Let Y∞
be the random value of y when an information cascade occurs, such that Y∞ = ∞ if it does not

occur. Let E be the error event, in which a bad information cascade happens. Then, using that
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p < 1
2

we have

P (E)
(a)

≤ P(Y∞ =
∑
t∈T

xnt ≤ 0 | V = 1)P (V = 1) + P(Y∞ =
∑
t∈T

xnt ≥ 0 | V = −1)P (V = −1)

=
1

2
P(
∑
t∈T

xnt − (1− 2p)R ≤ − (1− 2p)R | V = 1)

+
1

2
P(
∑
t∈T

xnt + (1− 2p)R ≥ (1− 2p)R | V = −1)

(b)

≤ e−
R
2
(1−2p)2

(c)

≤ e−
N
4
(1−2p)2 (3.36)

where (a) follows since a bad information cascade can only occur if V Y∞ is non-positive, (b) is

Hoeffding’s inequality for bounded random variables, and (c) uses that R ≥ N
2

.

3.7 Numerical Results

In this section, we present numerical results for the solution of FPE 2. The results were obtained
as follows. First an iterative algorithm was used to solve the FPE, much like the value iteration
algorithm used in the solution of Markov Decision Processes. The iterative process was run until
the value functions converged numerically. In order to verify without a doubt that this solution is an
equilibrium, a second step was followed. At the second step, the equilibrium strategy obtained by
this iterative process was fixed and a linear system of equations was formulated with unknowns
being all value functions. This system was solved using infinite precision arithmetic (through
rational number representation) and the exact value functions were obtained corresponding to this
strategy profile. The final step involved checking if sequential rationality is satisfied for the obtained
value functions, i.e., if all inequalities in (3.26) are satisfied.

In the following we present results for N = 11, p = 0.1 and three different cases: δ = 0,
δ = 0.999, and δ = 1. The first case (δ = 0) is essentially the case of myopic players and the results
in Fig. 3.4 confirm the ones in [7]. Regardless of the value of w, players who have not yet revealed
their information, wait for y ≤ −2, buy for y ≥ 2 and reveal their information for −1 ≤ y ≤ 1.
Note that for y = 1 a non-revealing player is indifferent between γ = I and γ = 1, and similarly
for y = −1. We resolve the tie by assuming that the player always reveals. In addition, for y = 0 a
player who has already revealed is indifferent between any action, and we resolve this ambiguity by
assuming that she always reveals.

The second case (δ = 0.999) studies more patient players and the results are depicted in Fig. 3.5.
Not surprisingly, players are willing to wait more before committing to a buying decision. In
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Figure 3.4: Equilibrium strategies for N = 11, p = 0.1, δ = 0. “00”, “01”, and “11” denote
strategies 0, I , and 1, respectively.

fact, for values of w = 2 to w = 5 and with a believed product quality of y = 2 a player is not
committing to buy (i.e., to play γ = 1) but the equilibrium strategy is to reveal her information
(γ = I). Similarly, with a believed product quality of y = 2 a player who has already revealed her
private information Xn = −1 chooses to wait (γ = 0).

Figure 3.5: Equilibrium strategies for N = 11, p = 0.1, δ = 0.999. “00”, “01”, and “11” denote
strategies 0, I , and 1, respectively.

The third case (δ = 1) studies infinitely patient players and the results are depicted in Fig. 3.6.
As intuition suggests, players are willing to wait more before committing to a buying decision. In
fact, for w = 5 and with a believed product quality of y = 5 a player is not committing to buy (i.e.,
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to play γ = 1) but the equilibrium strategy is to reveal her information (γ = I). Similarly, for
w = 6 and with a believed product quality of y = 4 a player who has already revealed her private
information Xn = −1 chooses to wait (γ = 0). Clearly, as w increases and we are approaching
the end of the game, players become more aggressive, as there is less information to be learnt by
waiting, and at w = N the equilibrium strategies for δ = 0 and δ = 1 coincide. Nevertheless, in
the case of patient players a more cooperative equilibrium emerges (see strategies indicated in the
red triangle in Fig. 3.6) where players are willing to help each other learn the unknown state V by
revealing their private information.

We remark that these results are not inconsistent with Theorem 4 since the theorem claims
existence of specific solutions to the FPE but not uniqueness. Indeed, although this is the case of
δ = 1 our numerical algorithm converges to the equilibrium described in (3.30b) and also depicted
in Fig. 3.3.

Figure 3.6: Equilibrium strategies for N = 11, p = 0.1, δ = 1. “00”, “01”, and “11” denote
strategies 0, I , and 1, respectively.

The next set of figures shows the effect of the quality of information. In Fig. 3.7 the equilibrium
for the case of δ = 0.999 and p = 0.4 is depicted. This is a much noisier private observation
compared to the one depicted in Fig. 3.5. As a result, equilibrium behavior is “softer”: players are
willing to wait more and reveal their information, since a single observation is now of lower quality
than before.

The last figure shows the probability of a bad cascade for the two different values of V , for
different values of p and for a larger number of users N = 21. We further disaggregate this
probability according to the value of W when a cascade occurs. We depict this information as
cumulative bad cascade probabilities with W ≤ w for w ∈ {0, . . . , N} in Fig. 3.8. The figure
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Figure 3.7: Equilibrium strategies for N = 11, p = 0.4, δ = 0.999. “00”, “01”, and “11” denote
strategies 0, I , and 1, respectively.

shows that cascading behaviour is significantly asymmetric for the values V = 1 and V = −1 and
it is more severe for V = 1, i.e., when the product is good and players opt to not buy it. This is
due to the asymmetry of the sets of values of (y, w) for which the equilibrium is γ = 0 vs. that for
which the equilibrium is γ = 1.

3.8 Conclusions

We studied a Bayesian learning scenario with non-myopic players. Our model generalizes the
classic myopic and sequential one-shot scenario where informational cascades were first reported.
In order to analyze information cascades in this scenario, an intricate analysis of the PBE of the
dynamic game was needed. To that end, we first constructed FPEs that involve value functions
defined on a finite domain. By further exploiting the structure of the model, we constructed FPEs
with intuitive interpretations where the value functions has domain that is only quadratic in the
number of players N . Building on the tractability of these equations, we investigated their solutions
in two regimes. The first is for a fixed δ < 1 and asymptotically large N . The second is for a fixed
N and δ = 1 or asymptotically approaching 1. For the first regime, we proved that an informational
cascade eventually happens with high probability for large N . In these informational cascades,
only a small portion of the information has been revealed, with high probability, making these
cascades inefficient. For the second regime we proved that, surprisingly, infinitely patient players
can completely avoid bad cascades when the product is bad. Furthermore, for sufficiently patient
players when a bad cascade occurs (for a bad product) at least half of the players have already

67



Figure 3.8: Bad cascade probability for N = 21, δ = 0.999999, p ∈ {0.1, 0.2, 0.3, 0.4}.

revealed their private information, which guarantees an error probability that vanishes with N .
Numerical solutions of the developed FPEs show that players exhibit a non-myopic behavior that is
much more intricate than in the myopic case we generalized.

We were able to compress the fixed point equation based on the symmetry and structure of the
problem. It could be interesting to apply the techniques introduced here to when the observation
model Q (xn|v) is different between players. Extending FPE 1 is relatively straightforward. Ex-
tending FPE 2 is possible if there is a discrete set of available Q (xn|v). Then we can add a pair of
w, y variables to count players that have the same Q (xn|v). As expected, the dimension of the FPE
would then increase with the complexity of the scenario.
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Part II

Design
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CHAPTER 4

Distributed Mechanism Design for Network Resource Allocation Problems

4.1 Introduction

Allocation of scarce resources in networks has been a topic of intensive research in the last fifty
years. This problem is often formulated as a network utility maximization (NUM) problem [16,
Ch. 2] where the designer is seeking the optimal allocation of resources that maximizes the social
welfare. The complexity of this problem, especially for large networks of heterogeneous and
strategic agents with privacy constraints stems from the fact that agents may not be willing to
share some of their private information related to their utilities. Hence, appropriate incentives
(taxes/subsidies) have to be put in place to incentivize agents to reveal some part of their private
information relevant to the welfare optimization problem. A useful mathematical framework for this
setting is mechanism design (MD) [11, 12] that has been widely utilized in such areas of research
as market allocations [13, 14, 15], rate and resource allocations [16, Sec. 2.7][17, 18, 19, 20, 21],
spectrum sharing [22, 23, 24], data security [25], power allocation in wireless networks [26, 27],
demand-side management in the power grid [28, 29, 30], etc.

In the standard MD framework (Hurwicz-Reiter [11]) agents are transmitting messages to a
central authority. The central authority, upon receiving all these messages, determines allocation
and taxes/subsidies for the agents of the network. Equivalently, all agents broadcast their messages
to everyone else and then the allocation and taxes can be generated (and verified) by everyone
in the network. Clearly, this arrangement results in a significant communication overhead due to
message transmission of agents to the central authority or to each other, and this problem becomes
more pronounced the larger the network. The motivation for this work is the more realistic scenario
where such message transmission to a central authority (or equivalently, broadcasting of messages)
cannot take place due to network communication constraints. To investigate this problem, we
consider a setting in which agents are only allowed to transmit their messages to their neighboring
agents. In this setting, neighborhoods are defined through an underlying message-exchange network.
Consequently, each agent can determine her allocation and tax based on the messages she hears
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locally and therefore, there is no need for a central authority to evaluate these functions. This
implies that, unlike standard mechanisms, the designed allocation and tax functions cannot have the
whole message space as their domain; rather the allocation and tax function for each agent should
only depend on the neighborhood messages. This additional restriction gives rise to a novel research
direction that we call “Distributed Mechanism Design” (DMD).

A complementary view of DMD stems from the literature of distributed optimization (e.g.,
[31, 32, 33, 34, 35, 36, 37]). In distributed optimization agents do exchange local messages in order
to solve a centralized allocation problem. It is assumed however, that agents are not strategic–in
fact they are automata–and follow a predefined message exchange algorithm. DMD can be thought
of as the generalization of distributed optimization to account for strategic agents, i.e., for settings
where we can no longer assume that agents will follow a distributed message passing algorithm
unless the designer puts in place appropriate incentives for them to do so.

In this work, we consider two network resource allocation problems with increasing degree
of sophistication, formulated as NUM problems. Although the models presented are abstract, we
present them through two concrete applications. In particular, we consider rate allocation for data
transmission on a network which operates either with a unicast transmission protocol (UTP) or
a multirate multicast transmission protocol (MMTP). For each of these protocols, a distributed
mechanism is proposed for efficient rate allocation. The distributed mechanism proposed for
MMTP is an extended and modified version of the distributed mechanism for UTP. For this reason,
we present these two mechanisms side-by-side and highlight the main techniques used and the
differences between them throughout the presentation.

The contributions of this work are as follows. Both of the proposed mechanisms are (a)
distributed, (b) they fully implement the optimal allocation in Nash equilibria (NE) (i.e., there are no
extraneous non-efficient equilibria in the induced game), and (c) their total message space dimension
grows linearly with respect to the number of network agents. Furthermore, the mechanisms are (d)
individually rational and (e) weak budget balanced at NE.

4.1.1 Relevant Literature

A non-distributed mechanism for efficient rate allocation with UTP has been proposed in [18,
20, 111] and with MMTP in [19, 21]. The models we consider in this work, closely follow the ones
in [18, 20, 111, 19, 21] but the mechanisms differ in a fundamental way since our focus is designing
distributed mechanisms. The current work builds on distributed mechanisms for Walrasian and
Lindahl allocation in private and public goods, respectively, that were proposed in [112][113, Ch.
4]. We have utilized an idea similar to the radial allocation [15, 17, 21] to achieve feasibility at
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NE. Unlike the mechanism in [112] with message dimensionality per user that grows linearly with
the number of users in the whole network, in this work, the message dimensionality of each agent
grows linearly only with respect to the size of her neighborhood.

There is a line of research in the computer science literature by the name distributed algorithmic
mechanism design (DAMD) [114, 115, 116][117, Ch. 14]. We caution the reader not to confuse
DAMD with DMD. The mechanisms in DAMD impose no restrictions on the domain of the
allocation and tax functions. Indeed these functions can depend on the entire message from all users.
The “distributed” aspect of DAMD pertains to the fact that an algorithm is designated to collect
and disseminate all these messages to the users of the network so that they can all evaluate these
complex functions. In DMD however, the allocation and tax functions are explicitly designed so
that they only depend on messages from neighboring agents. Another difference is that in DAMD
the message exchange network coincides with the network implied by the allocation problem (e.g.,
in [114] messages are exchanged between neighboring agents on the multicast tree) while in DMD,
as will be evident in Section 4.2, the message exchange network can be arbitrary.

A related line of work in distributed optimization attempts to resolve “privacy” issues by
means of dithering (i.e., adding noise to) the exchanged messages or the objective function as
in [118, 119, 120, 121]. In these works, agents are given some privacy guarantees in that the
distributed algorithm does not fully reveal their private information. However, the agents are
still considered non-strategic automata, i.e., it is assumed that they follow the prescription of the
algorithm even if there is an incentive to deviate.

We conclude the discussion on the relevant literature by pointing out that the games induced by
DMD fall under the class of “graphical games” [122, 123]. This property may have some conse-
quences on the complexity of off-line evaluation of the NE, which however, is not of importance in
our work.

The rest of this chapter is structured as follows. In section 4.2, the model and problem formula-
tion for both of the network transmission protocols are discussed. Section 4.3 presents both of the
distributed mechanisms by characterizing the message-exchange network and defining messages,
allocation and tax functions. A specific example is discussed in detail in section 4.4 in order to
clarify the general definitions of the distributed algorithms. In section 4.5, the properties of the
designed mechanisms are derived and the main results are presented. In section 4.6, for each of
the two mechanisms, an alternative mechanism is presented by relaxing an assumption on the
message-exchange network. We conclude and comment on the message dimensions in section 4.7.
All of the proofs of intermediate lemmas can be found in Appendix C.
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4.2 Model

The two abstract centralized optimization problems for which distributed mechanisms will be
developed in the following sections are precisely defined in (4.1) and (4.3), respectively. In order
to make the discussion more relevant to resource allocation in data transmission networks, we
now present two concrete applications that will serve as prototypes in the subsequent discussion.
In particular, we consider a data transmission network with two different transmission protocols,
Unicast Transmission Protocol (UTP) and Multirate Multicast Transmission Protocol (MMTP) and
for each one of them an optimization problem for efficient data rate allocation is presented. We are
following closely the models developed in [16, Sec. 2.7][18, 19, 20, 21]. The network consists of
multiple sources in the set K = {1, ..., K} and strategic receivers in the set N = {1, ..., N}, which
will be referred to as agents. Each agent has one designated source from which it receives content,
and each source can send content to multiple agents possibly with different data rates. The vector
of allocated rates to all agents is denoted by x = (x1, ..., xN) ∈ RN

+ , where xi is the data rate of
agent i. Based on its allocated rate, xi, each agent receives a private utility (satisfaction) vi(xi). The
following assumptions are imposed on the utility functions. For every i ∈ N , vi(·) ∈ V0, where V0
is the set of strictly concave, monotonically increasing, twice differentiable R+ → R functions with
continuous second derivatives. The valuation function vi(.) is the private information of agent i.
The network links are denoted by L = {1, ..., L}, each of which has capacity cl > 0. Agent i’s data
stream is transmitted via links Li ⊂ L with |Li| = Li. The routing has been established in advance
and it is considered fixed for the problem of interest in this work. For each link l, agents using it
are denoted by N l with |N l| = N l. The designer’s goal is to maximize the social welfare which is
the summation of agents’ valuation functions. This is done by determining the efficient x that is
consistent with the capacity constraints of the network which arise from the specific transmission
protocol utilized. In the following, we provide more concrete details for UTP and MMTP models.

4.2.1 Unicast Transmission Protocol (UTP)

In UTP, a separate data stream is established between each source-receiver pair, regardless of
whether the same data content is transmitted multiple times over some links. An example of a
network utilizing UTP is depicted in Fig. 4.1. We assume N l ≥ 2, that is at least two agents use any
link l. This mild assumption is made so that there is competition between agents for using any of
the links and it will help us avoid corner cases that distract from the main message of the paper.
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Figure 4.1: Network with Unicast Transmission Protocol (UTP). Both R1 and R2 use link T1-A,
which, due to using UTP, is loaded with the sum data rate x1 + x2.

The centralized optimization problem that formulates the design goal for UTP is as follows

max
x

∑
i∈N

vi(xi) (4.1a)

s.t. xi ≥ 0 ∀i ∈ N (4.1b)

and
∑
j∈N l

xj ≤ cl ∀l ∈ L. (4.1c)

In order to characterize the solution of problem (4.1), we use dual variables λ = {λl, l ∈ L}
and write the KKT conditions for this problem. Since the valuation functions are concave and all of
the constraints of problem (4.1) are affine, problem (4.1) is a convex optimization problem and so
KKT conditions are necessary and sufficient. These conditions at the optimal point (x∗, λ∗) are

(a) Primal Feasibility: x∗ satisfies (4.1b) and (4.1c).

(b) Dual Feasibility: λl∗ ≥ 0 ∀l ∈ L.

(c) Complimentary Slackness:

λl∗(cl −
∑
j∈N l

x∗j) = 0 ∀l ∈ L. (4.2a)

(d) Stationarity:

v′i(x
∗
i ) =

∑
l∈Li

λl∗ if x∗i > 0 (4.2b)
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v′i(x
∗
i ) ≤

∑
l∈Li

λl∗ if x∗i = 0. (4.2c)

4.2.2 Multirate Multicast Transmission Protocol (MMTP)

In MMTP model, agents are classified into K groups based on their data source and each group
is denoted by Gk ⊂ N . Since agents in each group receive data from the same source (albeit with
possibly different data rates), instead of transmitting a separate data stream to each agent, in each
link only a single stream is transmitted for each group utilizing that link. Furthermore, the data rate
of that stream is the maximum demanded rate among users in the group on that link. In other words,
each source transmits the common data of agents by the best quality demanded in each link and
each agent can regenerate her own data by down-sampling from the received data stream to get her
desirable quality. This scenario is as if agents inside a group share the bandwidth with each other
(public good) but they have competition for it with other groups (private good), a situation referred
to as intergroup competition and intragroup sharing in [21]. An example of a network utilizing
MMTP is illustrated in Fig. 4.2. We further define the following quantities. The group of agent i is

R1

R2

R3

R4

T1

T2

max{x1,x2}

max{x3,x4}

x1

x2 + max{x3,x4}

x2

x3

x4

A B

Figure 4.2: Network with Multirate Multicast Transmission Protocol (MMTP). Even though both R1
and R2 use link T1-A, due to using MMTP, it is only loaded with the maximum rate max{x1, x2}.

denoted by k(i). The set of users in group k using link l is denoted by Glk = N l ∩ Gk. Further, Kl is
the subset of groups that are using link l (groups that contain at least one agent using link l) with
|Kl| = K l. For the same reason as in UTP, we assume K l ≥ 2, that is, at least two groups use each
link l and this is for ensuring competition at each link.

The centralized optimization problem that formulates the design goal for MMTP is as follows

max
x

∑
i∈N

vi(xi) (4.3a)
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s.t. xi ≥ 0 ∀i ∈ N (4.3b)

and
∑
k∈Kl

max
i∈Glk
{xi} ≤ cl ∀l ∈ L. (4.3c)

As in the case of UTP, we utilize KKT conditions to characterize the solution of problem (4.3).
We first need to transform it into a convex optimization problem. Towards this goal, we introduce
the variable blk for each l ∈ L and k ∈ Kl that represents the maximum demanded rate of agents
in group k that use link l, which we refer to as the “group rate”. It is straightforward to show the
equivalence of problem (4.3) with the one below

max
x

∑
i∈N

vi(xi) (4.4a)

s.t. xi ≥ 0 ∀i ∈ N (4.4b)

and
∑
k∈Kl

blk ≤ cl ∀l ∈ L (4.4c)

and xi ≤ blk ∀l ∈ L, k ∈ Kl, i ∈ Glk. (4.4d)

Similar to problem (4.1), problem (4.4) is a convex optimization problem and hence, KKT conditions
are necessary and sufficient for its solution. We use dual variables λ = {λl, l ∈ L}, each of which
corresponds to one of the constraints in (4.4c) and µ = {µli,∀l ∈ L, i ∈ N l}, each of which
corresponds to one of the constraints in (4.4d). We can write the KKT conditions at the optimal
point (x∗, b∗, λ∗, µ∗) as

(a) Primal Feasibility: x∗ and b∗ satisfy (4.4b) and (4.4c) and (4.4d).

(b) Dual Feasibility: λl∗ ≥ 0 ∀l ∈ L and µl∗i ≥ 0 ∀l ∈ L, i ∈ N l.

(c) Complimentary Slackness:

λl∗(cl −
∑
k∈Kl

bl∗k ) = 0 ∀l ∈ L (4.5a)

µl∗i (x∗i − bl∗k ) = 0 ∀l ∈ L, k ∈ Kl, i ∈ Glk. (4.5b)

(d) Stationarity:

v′i(x
∗
i ) =

∑
l∈Li

µl∗i ∀i ∈ N if x∗i > 0 (4.5c)
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v′i(x
∗
i ) ≤

∑
l∈Li

µl∗i ∀i ∈ N if x∗i = 0 (4.5d)

λl∗ =
∑
i∈Glk

µl∗i ∀l ∈ L, k ∈ Kl. (4.5e)

Note that from the above KKT conditions it is obvious that MMTP gives rise to the “free-riding”
problem that is commonly encountered in public-goods problems [124, Sec. 11.C]: if an agent
i on link l is not requesting the highest rate among the agents in the same group k(i), then his
contribution µl∗i is zero in the “price” λl∗ for this link and thus she can free-ride on the other agent(s)
in the group requesting the highest rate.

The optimization problems (4.1) and (4.4) cannot be solved in a centralized manner because the
valuation functions of agents are private information of the agents. In the next section, we present
two distributed mechanisms that aim to reach the solution of optimization problems (4.1) and (4.4)
in a decentralized fashion in the presence of strategic agents.

4.3 Distributed Mechanism

A mechanism consists of a message spaceMi for each agent i ∈ N giving rise to a total message
spaceM =M1 × . . . ,×MN , and allocation and tax functions that are denoted by x̂i :M→ RN

+

and t̂i :M→ RN , respectively. Hence, a mechanism can be characterized completely by specifying
the tuple (M, (x̂i)i∈N , (t̂i)i∈N ). The mechanism induces the game G = (N ,M, (ûi)i∈N ), where
we consider a quasi-linear environment with ûi(m) = vi(x̂i(m))− t̂i(m) for any m ∈M. In the
following we will use superscripts u and m to specify quantities for UTP and MMTP, respectively.
Thus, we will use notationsMu, x̂ui , t̂

u
i , m

u, Gu, ûui for UTP, and similarly,Mm, x̂mi , t̂mi , mm, Gm,
ûmi for MMTP. In the following we formally describe “distributed” mechanisms, i.e., mechanisms
for which the allocation and tax functions depend only on neighboring agents’ messages as opposed
to the entire message spaceM.

4.3.1 Message-Exchange Network

We describe the local exchange of messages through a “message-exchange network”, which is
modeled as an undirected acyclic (tree) connected graph GR = (N , E), in which agents are denoted
by nodes and an edge between two agents indicates that these two agents receive each others’
messages. For all i ∈ N , N (i) is the set of neighbors of agent i in GR and |N (i)| = N(i). Further,
n(i, j) is agent i’s neighbor which is on the shortest path from i to j. Also, N l(i) = N (i) ∩ N l

and |N l(i)| = N l(i). For each agent i ∈ N , the function φ(i) arbitrarily chooses one of agent i’s
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neighbors. We define the set Ii = {h ∈ N (i) : φ(h) = i}. The role of this function will become
evident in the description of the allocation and tax functions.

Notice that the “message-exchange network” is not to be confused with the “data transmission
network” related to UTP and MMTP and modeled through the centralized problems in (4.1) or (4.3).
The former enables the decentralized solution of those problems by means of exchanging messages
between neighboring nodes, while the latter describes the relation between agents dictated by the
common links utilized by their data flows. These two networks are illustrated in Fig. 4.3.

Agent 3

Agent 2

Agent 1

Agent 4

Node 1

Node 2

Node 3

Node 4

Source 1

Source 2

Message-exchange 
Network

Data 
Transmission 

Network

Figure 4.3: Message-exchange network vs. Data transmission network

In the following, we state two assumptions for the message-exchange network where Assump-
tion 1 holds for both UTP and MMTP mechanisms and Assumption 2 only holds for MMTP
mechanism. These assumptions simplify the exposition of the mechanisms. We will further relax
Assumption 1 for both mechanisms in section 4.6 and two alternative mechanisms will be proposed.

Assumption 1. (UTP/MMTP) For each link l ∈ L, the sub-graph consisting of agents i ∈ N l is a

connected graph.

This assumption essentially requires that a connected path exists for message passing between
agents using the same link, eventually enabling them to form a consensus about some of the
exchanged messages, e.g., the price for using each link.

Assumption 2. (MMTP) For each link l ∈ L and group k ∈ Kl, there is at least one node i ∈ Glk
that is connected to all other nodes j ∈ Glk in a single hop. This node will be referred to as the

“group leader” of group k in link l and will be denoted by c(k, l).

For each agent i ∈ N , the set Ci is defined as the set of links l for which c(k(i), l) = i, i.e., this
set contains all links for which agent i is a group leader.
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The reason for this assumption is that in MMTP due to the free-riding problem, we require that
there exists a user in each group Glk who has access to some necessary information about her group
(e.g., group demand, group price) and can announce this information to the rest of the agents in Glk.

4.3.2 Message Components

4.3.2.1 UTP

Agent i announces the message mu
i = (yi, ni, qi, pi). The first message yi ∈ R+ is a proxy

for her demanded rate. The second message, ni = (nli,j, j ∈ N (i), l ∈ L) ∈ RL×N(i)
+ consists

of components nli,j , which are referred to as “summary” messages, each of which is a proxy for
the sum of demands of the agents h ∈ N l with n(i, h) = j. In other words, nli,j is the sum of
demanded rates for all users that are connected to i through her neighbor j. These messages are
required by agent i in order to assess the total demand on each link she is using. The third message,
qi = (qi,j, j ∈ Ii) ∈ R|Ii|+ is a vector of components qi,j , each of which is a proxy for the demand
of neighboring agent j ∈ Ii. The purpose of these messages will become evident in the allocation
function (4.7) and can intuitively be explained as follows: in order to allocate rate to agent i in such
a way that the capacity constraint at each link is satisfied, her demanded rate needs to be scaled
by the sum of rates in that link. However, in evaluating the sum of rates, the rate of agent i should
not be controlled by her; instead an arbitrarily chosen neighboring agent j quotes her rate through
the message qj,i. Clearly, we want the message qj,i to agree with yi at NE. Finally, the message
pi = (pli, l ∈ Li) ∈ RLi

+ is the price (per unit of rate) that agent i suggests for using each link l. This
message is essentially a proxy for the dual variable λl∗ that appears in the KKT conditions (4.2).

The message components for UTP are summarized in Table 4.1.

Table 4.1: Message components of agent i ∈ N in UTP mechanism

Message
Component Definition Functionality

yi - Demand for the data rate

nli,j
j ∈ N (i)
l ∈ L

Summary for demands of agents
on link l, connected to i via j

qi,j j ∈ Ii Proxy for yj

pli l ∈ Li Suggested price for using link l
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4.3.2.2 MMTP

Agent i announces the message mm
i = (yi, ni, qi, pi, si, wi, zi, ai). The reason for the larger

message compared to UTP stems form the fact that (a) all agents within a group Glk need access to the
maximum demanded rate in that group (this is required due to the free-riding problem that is inherent
in the MMTP scenario) and (b) this information needs to be disseminated to all agents in the network
while satisfying the communication constraints. In the following we give intuitive explanations
for the meaning of each of the eight message components. The first message yi ∈ R+ is a proxy
for the agent i’s demanded rate. The second message, ni = (nli,j, j ∈ N (i), l ∈ L) ∈ RL×N(i)

+

consists of components nli,j where, similar to UTP, are referred to as “summary” messages, with the
only difference being that each of them is a proxy for the sum of group demands (not individual
demands) of the agents h ∈ N l with n(i, h) = j. The third message, qi = (qi,j, j ∈ Ii) ∈ R|Ii|+

consists of elements qi,j , each of which is a proxy for agent j’s demand, and its role is similar
to UTP. The fourth message consists of two components pi = (p1i , p

2
i ). The first component is

defined as p1i = (p1,li , l ∈ Li) ∈ RLi
+ , where each variable p1,li is the price that agent i is willing

to pay for using link l and is similar to the message pli in UTP. This is essentially a proxy for the
dual variable µl∗i that appears in the KKT conditions (4.5). The second component is defined as
p2i = (p2,li,j , j ∈ Ii, l ∈ Lj) ∈ R

(
∑
j∈Ii

Lj)

+ , where each variable p2,li,j is the price that agent i thinks
agent j should pay for using link l ∈ Lj . The reason why user i quotes a price relevant to user j
is the same as in the case of the q messages explained above in the UTP scenario. We now define
the new messages that are present in MMTP and give intuitive explanations for their role. The
fifth message is defined as si = (sli, l ∈ Li) ∈ RLi

+ , where, each of the variables sli is capturing
whether the specific agent belongs in the group of agents that demand the maximum rate within
the group Glk(i). We call these messages as proxies of the “group demand”. Specifically, at NE, the
message sli becomes zero if agent i is not in the max group in link l, and otherwise, it will be the
maximum demanded rate of group Glk(i) divided by the number of users in the max group in link l.
The sixth message wi = (wli, l ∈ Li) ∈ RLi

+ consists of components wli, each of which is a proxy
for the price that group k(i) is willing to pay for link l and will be referred to as group price of
group k(i) for link l. These messages have to converge at NE to the dual variables λl∗ in the KKT
conditions (4.5) for all users i ∈ N l. The seventh message is defined as zi = (z1i , z

2
i ). The first

component z1i = (z1,li , l ∈ Ci) ∈ R|Ci|+ consists of elements z1,li , each of which is a proxy for the
maximum value of demands of agents in Glk(i), i.e., the total group demand of agents in the group
Glk(i). Further, z2i = (z2,li , l ∈ Ci) ∈ R|Ci|+ consists of elements z2,li , each of which is a proxy for
the number of agents that have maximum demand in Glk(i). These messages are quoted by user i
for every link for which i is the group leader of Glk(i). Finally, the eighth message, ai = (a1i , a

2
i ),
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consists of two components. The first component is defined as a1i = (a1,li , l ∈ Li) ∈ RLi
++. Its role is

quite technical and will become evident in the proof of efficiency of the NE of this mechanism. The
second component, a2i = (a2,li,j , j ∈ Ii, l ∈ Lj) ∈ R

(
∑
j∈Ii

Lj)

++ , consists of the elements a2,li,j , each of
which is a proxy for the message a1,lj . The reason for user i quoting such message relevant to user j
is the same as in the case of q messages explained earlier in the UTP scenario.

The message components for MMTP are summarized in Table 4.2.

Table 4.2: Message components of agent i ∈ N in MMTP mechanism

Message
Component Definition Functionality

yi - Demand for the data rate

nli,j
j ∈ N (i)
l ∈ L

Summary for group demands
of agents on link l and

connected to i via j

qi,j j ∈ Ii Proxy for yj

p1,li l ∈ Li Suggested price for using link l

p2,li,j
j ∈ Ii
l ∈ Lj

Proxy for p1,lj

sli l ∈ Li
Proxy for group demand
on link l and group k(i)

wli l ∈ Li
Proxy for group price
of group k(i) for link l

z1,li l ∈ Ci
Proxy for the total group

demand on link l and group k(i)

z2,li l ∈ Ci
Proxy for the number

of agents with max demand
on link l and group k(i)

a1,li l ∈ Li Technical point in the proof

a2,li,j
j ∈ Ii
l ∈ Lj

Proxy for a1,lj

4.3.3 Allocation Functions

Let us first define some auxiliary variables. For the UTP scenario, for each agent i ∈ N and for
every l ∈ L, yli is defined as yli = 1Li(l)yi, where 1A is the indicator function of the setA. Similarly,
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for the MMTP scenario, we define yli as yli = 1Li(l)sli. Further, for each agent i ∈ N and l ∈ Li,
the auxiliary quantities z1,li and z2,li are defined as

z1,li =

{
max{qφ(i),i,maxj∈Gl

k(i)
,j 6=i{yj}} if l ∈ Ci

z1,lc(k(i),l) if l /∈ Ci
(4.6a)

z2,li =

{
1{qφ(i),i}(z

1,l
i ) +

∑
j∈Gl

k(i)
,j 6=i 1{yj}(z

1,l
i ) if l ∈ Ci

z2,lc(k(i),l) if l /∈ Ci.
(4.6b)

The meaning of these quantities is as follows. The quantity z1,li encodes the maximum demanded
rate in the group Glk(i). If user i is not the leader of that group, then the leader c(k(i), l) quotes this
message through z1,lc(k(i),l). On the other hand, if i is the leader of the group then she has to compute
the maximum demand from all other members of the group including her own demand which is
now quoted by a proxy through qφ(i),i. Similarly, the quantity z2,li encodes the number of agents
with maximum demand among all of the agents in the group Glk(i).

We utilize an idea similar to the radial allocation [21] to have feasible allocation at NE. With
this goal in mind, for message vectors mu

i = (yi, ni, qi, pi) and mm
i = (yi, ni, qi, pi, si, wi, zi, ai),

the allocation functions for the two mechanisms are defined as appropriately scaled versions of the
demanded rates as follows

x̂ui (m
u) = rui yi (4.7a)

x̂mi (mm) = rmi yi, (4.7b)

where rui and rmi are agent i’s radial allocation factor in the two protocols and they are defined as

rui = min
l∈L

cl

f u,l
i

(4.7c)

rmi = min
l∈L

cl

fm,l
i

, (4.7d)

where for l ∈ Li, f u,l
i and fm,l

i are defined as

f u,l
i = qφ(i),i +

∑
j∈N (i)

(ylj +
∑

h∈N (j),h 6=i

nlj,h) (4.7e)

fm,l
i =

qφ(i),i1{qφ(i),i}(z
1,l
i )

z2,li
+
∑
j∈N (i)

(ylj +
∑

h∈N (j),h 6=i

nlj,h), (4.7f)
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and for l /∈ Li,
f u,l
i = fm,l

i =
∑
j∈N (i)

(ylj +
∑

h∈N (j),h6=i

nlj,h). (4.7g)

The role of the messages n and q should now be clear from the above description. The quantity f u,l
i

is the total demanded rate on link l by all agents (from agent i’s viewpoint). However, since agent
i does not have access to other agents’ demands outside her neighborhood, utilizes the summary
messages nj , j ∈ N (i) for this purpose. In addition, her own demand is quoted by a pre-specified
neighboring agent φ(i) through qφ(i),i. This is done so that the quantities f u,l

i and fm,l
i do not depend

on agent i’s messages and the only part that agent i can control in her allocation is yi in (4.7a). This
choice will greatly simplify our proofs of efficiency of the mechanisms.

The additional complication in (4.7f) is due to the fact that in MMTP, if there are more than one
agents who quote the maximum rate in a group, they should only load the corresponding link by
that maximum rate and not the sum of the maximum rates, thus the normalization by z2,li . This is
exactly the reason for the introduction of the z messages in MMTP mechanism.

4.3.4 Tax Functions

4.3.4.1 UTP

The tax function is t̂ui (m
u) =

∑
l∈L t̂

u,l
i (mu) and for each component t̂u,li (mu) we have different

cases.
For l ∈ Li we have

t̂u,li (mu) =pl−ix̂
u
i (m

u) +
∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h6=i

nlj,h)
2

+
∑
j∈Ii

(qi,j − yj)2 + (pli − pl−i)2 + (pli − pl−i)pl−i(cl − rui f
u,l
i )2, (4.8a)

where pl−i is the average price for link l quoted by the neighbors of i and is defined as

pl−i =
1

N l(i)

∑
j∈N l(i)

plj. (4.8b)

For l /∈ Li we have
t̂u,li (mu) =

∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h 6=i

nlj,h)
2. (4.8c)

Intuitively, the tax functions provide some penalties to incentivize agents for quoting messages
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in a desirable way. With this goal in mind, taxes contain three types of terms. The first type is a
rate times price component (first term in (4.8a)). Since agent i controls her allocation through yi
we do not allow her to control her price as well and so the price that she pays is dictated by her
neighbors through pl−i. The second type consists of quadratic terms that at NE will become zero
and thus can be thought of as incentivizing agents to come to a consensus (second to fourth terms
in (4.8a)). This enables the mechanism to provide proxies for the missing information of agents at
NE, in addition to the requirements of having efficient allocation at NE. The third type relates to
the complimentary slackness conditions in (4.2) (fifth term in (4.8a)). The reason of defining two
different tax functions is that different incentives are required for agents that utilize a link versus
ones that do not. For instance, each agent i has to pay a tax even for links l /∈ Li, which is required
for consensus about the “summary messages”. The intuition about each tax term will become more
evident from the results in the lemmas of section 4.5.

4.3.4.2 MMTP

The tax function is defined as t̂mi (mm) = t̂m,ci (mm) +
∑

l∈L t̂
m,l
i (mm), where the first term is

defined as

t̂m,ci (mm) =
∑
j∈Ii

∑
l∈Lj

((p2,li,j − p
1,l
j )2 + (a2,li,j − a

1,l
j )2) +

∑
j∈Ii

(qi,j − yj)2, (4.9a)

and for each component t̂m,li (mm), we consider different cases. For l ∈ Li, l /∈ Ci, we have

t̂m,li (mm) =p2,lφ(i),ix̂
m
i (mm) +

∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h6=i

nlj,h)
2

+ (sli −
qφ(i),i1{qφ(i),i}(z

1,l
i )

z2,li
)2 + wl−i(ŵ

l
i − wl−i)(cl − rmi f

m,l
i )2

+ (ŵli − wl−i)2 + p2,lφ(i),i(p
1,l
i − p

2,l
φ(i),i)(z

1,l
i − qφ(i),i)2 + (wli − wlc(k(i),l))2. (4.9b)

For l ∈ Li, l ∈ Ci, we have

t̂m,li (mm) =p2,lφ(i),ix̂
m
i (mm) +

∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h6=i

nlj,h)
2

+ (sli −
qφ(i),i1{qφ(i),i}(z

1,l
i )

z2,li
)2 + (z1,li − z

1,l
i )2 + (z2,li − z

2,l
i )2
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+ wl−i(ŵ
l
i − wl−i)(cl − rmi f

m,l
i )2 + (ŵli − wl−i)2

+ p2,lφ(i),i(p
1,l
i − p

2,l
φ(i),i)(z

1,l
i − qφ(i),i)2 + (wli − p

2,l
φ(i),i −

∑
j∈Gl

k(i)
,j 6=i

p1,lj )2, (4.9c)

where for each link l and agent i ∈ N l, ŵli is defined as

ŵli =


∑

j∈Gl
k(i)

p1,lj + (a1,li − a
2,l
φ(i),i) if l ∈ Ci

wlc(k(i),l) − p
2,l
φ(i),i + p1,li + (a1,li − a

2,l
φ(i),i) if l /∈ Ci,

(4.9d)

and, wl−i is defined as

wl−i =
1

N l(i)

∑
j∈N l(i)

wlj. (4.9e)

Finally for l /∈ Li, the tax term is defined as

t̂m,li (mm) =
∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h 6=i

nlj,h)
2. (4.9f)

The intuitive explanation of the terms appearing in the tax function is very similar to the one
given above for the UTP scenario. The additional complication stems from the fact that we need to
keep track of two types of prices, p and w, corresponding to dual variables µ and λ, respectively.

4.4 A concrete example with UTP

In this section, we provide a simple but not trivial example of UTP model and the corresponding
mechanism for that. Assume that we have three agents N = {1, 2, 3} using a single link (link 1)
with capacity c1 = 1. The valuation function of agent i ∈ N is given by vi(xi) = i ln(xi). The
optimization problem (4.1) will be of the form

max
x

ln(x1) + 2 ln(x2) + 3 ln(x3) (4.10a)

s.t. xi ≥ 0 ∀i ∈ N (4.10b)

and x1 + x2 + x3 ≤ 1. (4.10c)

By writing the KKT conditions for this problem, one can easily calculate the solution to this
optimization problem to be x∗ = (1

6
, 1
3
, 1
2
) and the optimal dual variable is λ = 6. We will show

that the mechanism for UTP, has Nash equilibria, all of which result in this efficient allocation x∗.
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We consider the message network of Figure 4.4 between the agents. Note that this message
network satisfies Assumption 1 and it is a tree graph. We know that φ(2) = 1 and φ(3) = 1 (they

Figure 4.4: Message-exchange network

only have one option). Assume that φ(1) = 2. The above means that agent 1 uses agent 2 for
quoting a proxy of his demand, while agent 2 uses agent 1 and agent 3 uses agent 1 for the same.
The message components of agents are mu

1 = (y1, p
1
1, n

1
1,2, n

1
1,3, q1,2, q1,3), m

u
2 = (y2, p

1
2, n

1
2,1, q2,1)

and mu
3 = (y3, p

1
3, n

1
3,1). In this simple, single-link setting, superscripts 1 are redundant but we

maintain them for notational uniformity with the general description. In this network, agent 1 can
listen to all messages, while agent 2 cannot listen to m3, and similarly, agent 3 cannot listen to m2.
The allocation functions are as follows

x̂u1(m
u) = ru1y1 (4.11a)

x̂u2(m
u) = ru2y2 (4.11b)

x̂u3(m
u) = ru3y3, (4.11c)

where

ru1 =
1

q2,1 + y2 + y3
(4.12a)

ru2 =
1

y1 + q1,2 + n1
1,3

(4.12b)

ru3 =
1

y1 + n1
1,2 + q1,3

. (4.12c)

Observe the roles of the q and the n message components. All agents would have to scale their
messages by the total demand y1 + y2 + y3. We do not want agent 1 to control her scaling factor
and thus we ask agent 2 to quote a proxy q2,1 for her demand y1. A similar argument for agents 2
and 3 justifies the presence of the messages q1,2 and q1,3. In addition, agent 2 does not have access
to the demand quoted by agent 3 and that’s why she is using the summary message n1

1,3 quoted by
agent 1 for this purpose. Similarly for agent 3. Finally, note that summary messages n1

2,1 and n1
3,1

are redundant and are not used in this example. Since agents 2 and 3 are at the leafs of the tree they
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do not need to pass any information downstream, so these messages are not used in the mechanism.
The tax functions can be written as follows

t1(m
u) =p1−1x̂

u
1 + (n1

1,2 − y2)2 + (n1
1,3 − y3)2 + (q1,2 − y2)2 + (q1,3 − y3)2

+ (p11 − p1−1)2 + (p11 − p1−1)p1−1(1− ru1(q2,1 + y2 + y3))
2 (4.13a)

t2(m
u) =p1−2x̂

u
2 + (n1

2,1 − y1 − n1
1,3)

2 + (q2,1 − y1)2

+ (p12 − p1−2)2 + (p12 − p1−2)p1−2(1− ru2(y1 + q1,2 + n1
1,3))

2 (4.13b)

t3(m
u) =p1−3x̂

u
3 + (n1

3,1 − y1 − n1
1,2)

2

+ (p13 − p1−3)2 + (p13 − p1−3)p1−3(1− ru3(y1 + n1
1,2 + q1,3))

2, (4.13c)

where

p1−1 =
p12 + p13

2
p1−2 = p11 p1−3 = p11. (4.14)

Since the n and q messages only appear once in the tax function of each agent, each agent has the
ability to minimize the tax terms by zeroing out the corresponding quadratic terms (four terms for
agent 1, two terms for agent 2 and one term for agent 3). So, at NE, we have

n1
1,2 = y2 n1

1,3 = y3 n1
2,1 = y1 + n1

1,3 n1
3,1 = y1 + n1

1,2

q1,2 = y2 q1,3 = y3 q2,1 = y1. (4.15)

This means that at NE, we have

ru1 = ru2 = ru3 =
1

y1 + y2 + y3
, (4.16)

and therefore,

x̂ui (m
u) =

yi
y1 + y2 + y3

, i ∈ N . (4.17)

The above further implies that at NE, x̂u1(m
u) + x̂u2(m

u) + x̂u3(m
u) = 1 and the link is fully loaded,

and as a result, the last term in all three tax functions will be zero. Consequently, each agent has now
the ability to minimize the tax terms by zeroing out the remaining quadratic term that depends on the
quoted price. We can conclude that at NE, p11 = p1−1, p

1
2 = p1−2 = p11, p

1
3 = p1−3 = p11, which implies

that all price messages are equal (to some yet unspecified price p) at NE, i.e., p11 = p12 = p13 = p.
Furthermore, by deriving the best response for the messages y1, y2 and y3 we have the following
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equation for i ∈ N ,

dui(m
u)

dyi
= 0 if yi > 0 (4.18a)

dui(m
u)

dyi
< 0 if yi = 0, (4.18b)

which implies that

v′i(x̂
u
i ) = p if yi > 0 (4.19a)

v′i(x̂
u
i ) < p if yi = 0. (4.19b)

By solving these equations for x̂ui and p, we have p = 6 (it equals to λ in the optimization
problem (4.10)) and x̂ui = i

6
which means that x̂u1 = 1

6
, x̂u2 = 2

6
and x̂u3 = 3

6
. Hence, the allocation at

NE is efficient. The equilibrium y messages can be derived from the following equation

yi
y1 + y2 + y3

=
i

6
, (4.20)

which implies that yi = k i
6

for any constant number k > 0. This shows that there are infinitely
many NE, but all of them have the same and efficient allocation.

4.5 Mechanism Properties

Fact 1. The mechanisms (Mu, x̂u, t̂u) and (Mm, x̂m, t̂m) are distributed.

This can be obviously derived from the definition of allocation and tax functions. Clearly, they
depend only on each agent’s own messages and the messages of her neighboring agents.

Theorem 4. (Full Implementation, Individual Rationality and Weak Budget Balance - UTP) The

game Gu has infinitely many Nash equilibria. At every Nash equilibrium mu ∈ NEu of the game

Gu, the allocation vector x̂u(mu) is efficient, i.e., it is equal to the solution, x∗, of problem (4.1). In

addition, for each agent, individual rationality is satisfied at all NE. Further, the game Gu is weak

budget balanced at all NE, i.e.,
∑

i∈N t̂
u
i (m

u) ≥ 0.

Theorem 5. (Full Implementation, Individual Rationality and Weak Budget Balance - MMTP) The

game Gm has infinitely many Nash equilibria. At every Nash equilibrium mm ∈ NEm of the game

Gm, the allocation vector x̂m(mm) is efficient, i.e., it is equal to the solution, x∗, of problem (4.3).
In addition, for each agent, individual rationality is satisfied at all NE. Further, the game Gm is

weak budget balanced at all NE, i.e.,
∑

i∈N t̂
m
i (mm) ≥ 0.
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Regarding the multiplicity of Nash equilibria in the induced games, we point out that there are
two reasons for this behavior. The first reason of not having a unique Nash equilibrium is that the
dual variables are not generally unique and therefore, for each dual variable solution (price messages
in the mechanism), we can construct a different Nash equilibrium. The second reason is that the
demand vector in each of the Nash equilibria is a scaled version of the efficient allocation and every
Nash equilibrium corresponds to a scaled version of the allocation. However, the resulting allocation
in all of these Nash equilibria is efficient as stated in the theorems. Since for both problems (4.1) and
(4.3) the solution is unique, then, according to Theorems 4 and 5, for all mu ∈ NEu, the allocation
vector x̂u(mu) is unique, and for all mm ∈ NEm, the allocation vector x̂m(mm) is unique.

Before proving Theorems 4 and 5, some lemmas are presented that are necessary for their
proof. The basic idea behind the proof is to show, through a series of lemmas, certain necessary
conditions that all NE of the induced games Gu and Gm should satisfy. These necessary conditions
essentially lead to showing that the allocations and prices at NE are satisfying the KKT conditions
for problems (4.1) and (4.4), respectively. The proof is concluded by showing that indeed there
exists such an equilibrium by constructing it.

Lemma 4. (Concavity) The function ûui (m
u
i ,m

u
−i) is strictly concave w.r.t. mu

i . Similarly, the

function ûmi (mm
i ,m

m
−i) is strictly concave w.r.t. mm

i .

Proof. See Appendix C.1.

The strict concavity of ûui (m
u
i ,m

u
−i) and ûmi (mm

i ,m
m
−i) w.r.t. mu

i and mm
i , respectively, helps

us calculate the best response functions for player i in each of the games Gu and Gm by setting
the gradient of ûui (m

u
i ,m

u
−i) w.r.t. mu

i and ûmi (mm
i ,m

m
−i) w.r.t. mm

i to be equal to zero, respectively.
Whenever an element of the gradient cannot be set to zero, it is either always positive or always
negative. If any of the elements is always positive, then as message spaces are unbounded from
above, there is no best response. Otherwise, if any of the elements of the gradient vector is always
negative, the best response would be zero for that element.

The next two lemmas are related with the quadratic terms in the tax functions of UTP and
MMTP mechanisms. As mentioned earlier, at NE, agents force these quadratic terms to zero thus
achieving consensus. For instance, each message component qi,j can be used as a proxy for yj by
agent j and yet is not controlled by agent j. Furthermore, these lemmas explain how summary
messages n are designed to sum up the demands (UTP) or group demands (MMTP) of all agents
using link l at NE.

Lemma 5. At any m ∈ NEu we have

qi,j = yj, ∀j ∈ Ii, (4.21a)
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and

nli,j = ylj +
∑

h∈N (j),h6=i

nlj,h. (4.21b)

This implies that at any NE,

nli,j =
∑

h∈N ,n(i,h)=j

ylh. (4.21c)

Proof. See Appendix C.2.

Regarding (4.21c), note that since the message graph is a tree, each node is connected to any
other node only by one path, and therefore, the demand of each agent is counted once. This ensures
no double counting of demands.

Lemma 6. At any mm ∈ NEm, the following equations hold for any i ∈ N ,

qi,j = yj, ∀j ∈ Ii (4.22a)

sli =
qφ(i),i1{qφ(i),i}(z

1,l
i )

z2,li
, ∀l ∈ Li (4.22b)

p2,li,j = p1,lj , ∀j ∈ Ii, l ∈ Lj (4.22c)

wli =

{
wlc(k(i),l) if l ∈ Li, l /∈ Ci

p2,lφ(i),i +
∑

j∈Gl
k(i)

,j 6=i p
1,l
j if l ∈ Li, l ∈ Ci

(4.22d)

nli,j = ylj +
∑

h∈N (j),h6=i

nlj,h, ∀l ∈ L, j ∈ N (i) (4.22e)

z1,li = z1,li = max{qφ(i),i, max
j∈Gl

k(i)
,j 6=i

yj}, ∀l ∈ Li, l ∈ Ci (4.22f)

z2,li = z2,li = 1{qφ(i),i}(z
1,l
i ) +

∑
j∈Gl

k(i)
,j 6=i

1{yj}(z
1,l
i ), ∀l ∈ Li, l ∈ Ci (4.22g)

a2,li,j = a1,lj , ∀j ∈ Ii, l ∈ Lj. (4.22h)

Proof. See Appendix C.3.

In the next lemma it is shown how radial allocation (whereby the actual allocation is a scaled
version of the requested allocation by all agents) ensures feasibility at NE.

Lemma 7. (Primal Feasibility) At any mu ∈ NEu, of the game Gu, the allocation vector x̂u(mu)

is feasible for problem (4.1). Similarly, at any mm ∈ NEm, of the game Gm, the allocation vector

x̂m(mm) is feasible for problem (4.3).
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Proof. See Appendix C.4.

The next two lemmas show how different agents form a consensus on the price variables for each
link l. For example it is shown that all quoted prices pli end up being equal to a price pl at NE for
the UTP scenario. This price will play the role of the dual variable λl in the KKT conditions (4.2).
Similarly, for the MMTP scenario, it is shown how different groups form a consensus on the group
prices ŵli for each link l which becomes equal towl at NE. Furthermore, in both lemmas, equilibrium
expressions are derived that resemble the complimentary slackness terms of the KKT conditions
in (4.2) and (4.5).

Lemma 8. At any mu ∈ NEu, of the game Gu,

pli = pl,∀i ∈ N , l ∈ Li. (4.23a)

Also,

pl(cl −
∑
i∈N l

x̂ui ) = 0 ∀l ∈ L. (4.23b)

Proof. See Appendix C.5.

Lemma 9. At any mm ∈ NEm, of the game Gm, the following constraints hold for all i ∈ N and

l ∈ Li,

ŵli = wl (4.24a)

wl(cl − rmi
∑
i∈N

yli) = 0 (4.24b)

p1,li (yi − z1,li ) = 0. (4.24c)

Proof. See Appendix C.6.

The next two lemmas conclude the necessary conditions by showing that NE implies the
stationary conditions in (4.2) and (4.5).

Lemma 10. (Stationarity - UTP) At any mu ∈ NEu, of the game Gu, the following constraints are

satisfied,

v′i(x̂
u
i (m

u)) =
∑
l∈Li

pl if x̂ui (m
u) > 0 (4.25a)

v′i(x̂
u
i (m

u)) ≤
∑
l∈Li

pl if x̂ui (m
u) = 0. (4.25b)
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Proof. See Appendix C.7.

Lemma 11. (Stationarity - MMTP) The following constraints hold at any mm ∈ NEm, of the game

Gm,

v′i(x̂
m
i (mm)) =

∑
l∈Li

p1,li if x̂mi (mm) > 0 (4.26a)

v′i(x̂
m
i (mm)) ≤

∑
l∈Li

p1,li if x̂mi (mm) = 0. (4.26b)

Proof. See Appendix C.8.

As mentioned earlier, the overall strategy for proving our main result is to show that any NE
satisfies the KKT conditions of the original problem and then showing that such an equilibrium
indeed exists. This last step is shown in the following lemma.

Lemma 12. (Existence of NE) There exist infinitely many Nash equilibria mu ∈ NEu, for the game

Gu. Also, there exist infinitely many Nash equilibria mm ∈ NEm, for the game Gm.

Proof. See Appendix C.9.

The above series of lemmas is sufficient to prove the full implementation result for the two
mechanisms for UTP and MMTP. Individual rationality and weak budget balance are shown
separately in the following lemma.

Lemma 13. (Individual Rationality and Weak Budget Balance) At any NE of the games Gu and

Gm, individual rationality is satisfied

vi(x̂
u
i (m

u))− t̂ui (mu) ≥ vi(0), ∀i ∈ N (4.27a)

vi(x̂
m
i (mm))− t̂mi (mm) ≥ vi(0), ∀i ∈ N . (4.27b)

Furthermore, both of the mechanisms are weak budget balanced∑
i∈N

t̂ui (m
u) ≥ 0 (4.28a)∑

i∈N

t̂mi (mm) ≥ 0. (4.28b)

Proof. See Appendix C.10.
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We are now ready to state the proofs of Theorems 4 and 5.

Proof of Theorem 4. In the proof of Lemma 12, we showed that the message associated to the
solution of problem (4.1), (x∗, λ∗), is a NE of the game Gu. Now, we want to prove that all of the
NE of the game Gu generate allocation and prices that are efficient for problem (4.1). Consider
any mu ∈ NEu, if x̂u(mu) is used as the primal variables vector and p = {p1, ..., pL} is used as the
dual variables vector, all of the KKT conditions (4.2) are satisfied due to Lemmas 5, 7, 8, and 10.
Therefore, x̂u(mu) = x∗ for any mu ∈ NEu and so, full implementation is obtained. Furthermore,
Lemma 13 proves individual rationality and weak budget balance at any NE of the game Gu.

The proof of Theorem 5 is very similar to the proof of Theorem 4 and it is stated below for
completeness.

Proof of Theorem 5. Let (x∗, b∗, λ∗, µ∗) be the solution of problem (4.4) and consider any mm ∈
NEm. Due to Lemmas 6, 7, 9 and 11, the allocation vector, x̂m(mm) as x∗, rmi z

1,l
i as bl∗k(i) (any

rmj
1zlj, j ∈ Glk(i) could work too) and the variables p1,li and wli (or any wlj for j ∈ N l) as µl∗i and λl∗,

respectively, satisfy the KKT conditions (4.5). Therefore, x̂m(mm) = x∗ for any mm ∈ NEm and
hence, the allocation at all NE is unique and efficient. Also, due to Lemma 12, we know at least
one NE exists and therefore, the mechanism fully implements problem (4.3) at its Nash equilibria.
Furthermore, Lemma 13 proves individual rationality and weak budget balance.

4.6 Relaxing Assumption 1 on Message-Exchange Network

The primary reason of imposing Assumption 1 is that there should be a consensus on the prices
of different agents (UTP) or groups (MMTP) using link l at NE and this is not implementable by
the proposed mechanism if the sub-graph of the agents using link l is not connected.

On the other hand, a message-exchange network that satisfies the required properties may be
hard or even impossible to construct. Consider the special case of having only one link (constraint)
in the UTP/MMTP optimization problem. Then, the message-exchange network should be the
tree that contains all of the agents of the network. But in general there are more than one links
in the UTP/MMTP optimization problem and the message-exchange network should consist of
multiple connected sub-graphs (each corresponding to one constraint) and should still be a tree.
Constructing such message-exchange network is hard and may be impossible. In this section, we
propose an alternative extended mechanism so that there is no need for imposing Assumption 1 on
the message-exchange network.
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In the alternative mechanism, we extend the agents that quote message pli, in UTP, and wli, in
MMTP, from the agents using link l to a bigger group of agents as follows. For every link l, consider
a connected sub-graph GRl = (N̂ l, E l) consisting of all agents i ∈ N l in addition to the minimum
number of other agents that do not use link l and are required to make the sub-graph connected. This
connected sub-graph is called link l’s sub-graph and we know that it exists due to the connectivity
of the message graph. For each agent i, the set of links l /∈ Li which i ∈ N̂ l are denoted by L̂i with
|L̂i| = L̂i. The definition of N l(i) is modified as

N l(i) = {j : j ∈ N (i) ∩ N̂ l}, ∀i ∈ N , l ∈ Li ∪ L̂i. (4.29)

In the game Gu, the extended definition of message pi is pi = (pli, l ∈ Li ∪ L̂i), while in the game
Gm, the extended definition of message wi is wi = (wli, l ∈ Li ∪ L̂i). The tax functions are also
modified for l ∈ L̂i according to

t̂u,li (mu) =
∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h6=i

nlj,h)
2 + (pli − pl−i)2 + (pli − pl−i)pl−i(cl − rui f

u,l
i )2

(4.30a)

t̂m,li (mm) =
∑
j∈N (i)

(nli,j − ylj −
∑

h∈N (j),h6=i

nlj,h)
2 + (wli − wl−i)2 + wl−i(w

l
i − wl−i)(cl − rmi f

m,l
i )2.

(4.30b)

Intuitively, since the sub-graph of agents using each link l may not be connected, we need other
agents i /∈ N l to quote pli messages in the game Gu and wli messages in the game Gm. This helps
the agents j ∈ N l in forming a consensus on the prices or group prices of using link l. This is
why two terms have been added to the tax functions above that impose required conditions for the
messages pli and wli in the two games. In both games, the tax function does not change for l ∈ Li.
For l /∈ Li ∪ L̂i, the tax function is the same as the l /∈ Li case for the original mechanism. It
is straightforward to prove almost the same results (with some minor changes to cover the new
messages) for these mechanisms. Therefore, these mechanisms also fully Nash implement problem
(4.1) and (4.3), respectively, and are individually rational and weak budget balanced at NE.

4.7 Discussion and Conclusion

We proposed two distributed mechanisms for the networks with UTP and MMTP. As mentioned
before, the mechanisms are applicable to a number of other optimization problems with linear/max
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constraints. The proposed mechanisms were proved to fully Nash implement the solution of
problems (4.1) (UTP) and (4.3) (MMTP). The main feature of this work is that message transmission
is done locally via an underlying message-exchange network, in contrast to the standard mechanism
design framework that allows message transmission throughout the whole network.

The dimensionality of agent i’s message in the mechanism for UTP isMi = 1+N(i)L+|Ii|+Li.
Since for each agent i, the function φ(i) chooses one agent j ∈ N (i), the average size of the set Ii
is 1. Hence, the average dimensionality of an agent’s message is Ei∈N [Mi] = 2 + Ei∈N [N(i)]L+

Ei∈N [Li] and by denoting Ei∈N [N(i)] and Ei∈N [Li] by N and L respectively, the average message
dimensionality of the whole network is

E[
∑
i∈N

Mi] = N(2 + LN + L).

Clearly, the dimensionality of message space grows linearly with N .
The dimensionality of agent i’s message in the mechanism for MMTP is Mi = 1 + 4Li +

N(i)L+ |Ii|+ 2
∑

j∈Ii Lj + 2|Ci|. Similar to UTP, the average size of the set Ii is 1. Further, the
average value of

∑
j∈Ii Lj is

∑
i∈N Li
N

. Also, we know that for each link l and group k ∈ Kl, there

is one agent denoted by c(k, l) and hence, the average size of |Ci| is
∑
l∈LK

l

N
. Consequently, the

average size of the whole network’s message is

E[
∑
i∈N

Mi] = N(2 + 4L+NL+ 2

∑
i∈N Li

N
+ 2

∑
l∈LK

l

N
),

which, similar to UTP, grows linearly with the number of agents in the network, N .
For the alternative mechanism presented in section 4.6, the term NEi∈N (L̂i) should be added to

the average of the message dimensionality of the whole network. This is due to the extra messages
that agents have to quote in the alternative mechanisms to preserve the connectivity of the message
passing.

In terms of message dimensionality, the mechanisms proposed in this work are more efficient
than the distributed mechanism proposed in [112] which has a message dimensionality that grows
with N2. This gain in dimensionality may be a consequence of the fact that the proposed mechanism
in [112] has additional learning guarantees that our proposed mechanism does not possess.

We would like to emphasize that although the proposed mechanisms are proven to have efficient
Nash equilibria, in the current work we do not propose any message exchange algorithm that is
guaranteed to converge to these equilibria. In general, it is not even clear if such algorithm exists.
One possible future research direction is redesigning these mechanisms to possess other features
such as learning guarantees and convergence to NE. Such features would enable the mechanisms to
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converge to their NE in a dynamic learning process over a large set of possible dynamics followed
by the agents [125, 112]. In addition, the study of the tradeoff between message dimensionality and
convergence guarantees is an interesting open problem.
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CHAPTER 5

Joint Information and Mechanism Design for Queues with Heterogeneous Users

5.1 Introduction

Decentralized information is an important and inevitable aspect of today’s systems. Each agent
in a system can own some information that others might be interested to know. On the other
hand, agents usually act strategically and might not be willing to share their information with
others. Therefore, incentives have to be put in place to motivate agents to reveal some parts of their
information. There are two main approaches, mechanism design and information design, where the
sharing of information between agents and their incentives of doing so is studied.

In mechanism design [126, 11, 20, 127, 51, 128, 129, 22, 52, 130, 131, 132, 133], there are a
number of agents with some private information. There is a designer that designs messages together
with allocation and tax/subsidy functions. Agents, as “senders” of information, send their messages,
which could convey true or false information, to the central authority, acting as the “receiver” of
information. Upon reception of these messages, the central authority will then determine their
allocations and taxes/subsidies. The incentives for the agents to send truthful messages are created
through allocation and tax functions. Note that the central authority commits to the allocation and
tax function and can not change these functions after hearing the agents’ messages.

In information design [38, 134, 135, 136, 137, 54], there is usually one “sender” who owns a
piece of information. The sender shares some part of his information with a number of agents as
“receivers” by sending messages to them. The messages are created according to a policy that is to
be designed by the sender. The agents will then interpret the messages using the policy based on
which the messages are generated and then they take some actions. The sender has to optimally
choose his policy to steer agents’ actions to a desired direction. Note that similar to the mechanism
design framework, the sender commits to the policy he is using to create messages. The difference
is that, the commitment in information design is from the sender while in mechanism design it
is from the receiver. Information design problems with one sender and one receiver are usually
referred to as “Bayesian persuasion”, which was introduced in [38], where the authors present a
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geometric form of interpreting information design and show when it is profitable for the designer to
not share some part of the information. However, when there are multiple receivers, the information
design problem becomes more complex and notions of equilibria must be introduced to analyze
the game. As it is shown in [138], an information design model with multiple receivers is in fact
a game with incomplete information and the set of outcomes of the information design problem
corresponds to the set of Bayes-correlated equilibria (BCE). In the definition of BCE in [138], the
information designer follows a direct strategy where he directly recommends actions to the players.
The strategy of the information designer has to satisfy an obedience condition, that is, each player
has to be willing to follow the recommendation.

In this work, we combine the two approaches and study joint information and mechanism design
for a queuing system. In our model, there is a queue with an unobservable backlog by the incoming
users who have payoff relevant private types. There is a planner who observes the queue backlog
and designs a mechanism and an admission policy for the users. A user, upon arrival, decides to
either be admitted to the queue by the planner or join the queue or not on her own. If she decides
to be admitted by the planner, she has to send a message, that is supposed to be her type, to the
planner. The planner then creates an admission signal for that specific type of user. Information
about the queue backlog is conveyed through the admission signal and the users have to pay a tax
in exchange for the information they receive. The information sent through the admission signal
and the tax function incentivize the users to reveal their true type. In this setting, the planner is
both an information designer (designs the admission policy) and a mechanism designer (designs
the tax function) and he has commitments to both his admission policy and the tax function. Note
that the planner is a sender of the information in the information design aspect and a receiver in the
mechanism design aspect of our model. We formulate an optimization problem that characterizes
the solution of the joint design problem. We characterize the tax function that satisfies dominant
strategy incentive compatibility and provide structural results, which are supported by numerical
analysis, for the optimal admission policy.

The problem studied in this chapter can model many real world applications such as admission
control for a customer service call center where the customers can decide to wait in line for a
representative or leave the queue on their own, or they can pay a price to be admitted by a planner
(and possibly avoid long wait times). Another example could be ride sharing apps such as Uber
where the customers can wait (possibly a long time) for a ride or they can choose to pay a price and
get in the line or be kicked out by the app to avoid long waits. In both of these two examples, the
customers are unaware of the system backlog.

There are some works on information design where, similar to our model, the receivers have
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private information, e.g., private types. There are two approaches to these problems: without
elicitation and with elicitation of the private information. In the case of information design without
elicitation [139], the information designer has to send a list of suggestions for each possible type
of the receivers. This setting is referred to as public persuasion by Kolotilin et al. in [139]. In
the case of information design with elicitation [139, 39, 140], receivers report their types and
instead of the obedience constraint, the decision rule of the information designer should satisfy an
incentive constraint that makes sure each type of the receiver prefers her own recommendation over
other recommendations that she can possibly hear if she reports her type untruthfully. Kolotilin et
al. [139] refer to this setting as private persuasion. In [39], authors utilize monetary transfers, i.e.,
taxes/subsidies, to elicit the private types, as opposed to the model in [139] where elicitation is done
without taxes. In [141, 142], the persuasion is done not only through information design, but also
by using monetary transfers. However, the receiver does not have any private information. In [143],
there is also some type of joint mechanism and information design but the information disclosure is
public and not a function of the users’ reported types. In addition, there are no monetary transfers.
In [144], authors have studied the effect of a third-party data provider on simple mechanisms and in
this sense, they have considered a joint information and mechanism design problem. They show that
simple mechanisms fail to approximate the optimal revenue in the presence of a third-party signal.

Our formulation of joint information and mechanism design is similar in spirit to the one
discussed in [39], where there are multiple players with private prior beliefs about a state of the
world. The information designer offers a menu of experiments (that convey information) that players
can choose from and they have to pay a tax in return. The information designer maximizes his
revenue over the set of experiments and taxes subject to incentive compatibility and individual
rationality constraints. Our setting can be considered a special case of the general framework
discussed in [39]. The specifics of our model, such as users’ utilities being linear in their private
types, enable us to evaluate an explicit tax function and formulate a linear optimization problem for
the planner.

The queuing system presented in this chapter builds on the model by [145] with the main
difference being that in our model the users have private types where in [145], the incoming traffic
is uniform (there are some discussions on the case of different user types but these types are assumed
to be known to the information designer).

Information design problems can study dynamic or static systems. In static information design,
there is no dynamic state in the system and there is no time involved. Therefore, the problem that the
information designer faces is a static optimization problem [38, 138, 146, 147, 148, 149]. Dynamic
information design problems deal with dynamic settings that usually involve time [150, 135, 151,
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145]. Therefore, the strategy of the designer can be dynamic and the information can be disclosed
sequentially. Dynamic programming techniques can therefore be used to characterize the optimal
strategy. Although our model can be considered a dynamic information design problem, the strategy
of the information designer is not time dependent. However, the strategy of the information designer
affects the evolution of the state variable.

The rest of this chapter is structured as follows. In section 5.2, we discuss the model. In section
5.3 we characterize the users’ strategies. The mechanism objectives are discussed in section 5.4.
The tax functions are presented in section 5.5. We formulate the planner’s optimization problem in
section 5.6. We study the mechanism with individual rationality in section 5.7 together with the
extreme cases of full information and no information mechanisms. We present numerical analysis
in section 5.8 and we conclude in section 5.9.

5.2 Model

We consider a service provider with service rate 1. There is a queue with infinite capacity and
users arrive at the queue according to a Poisson arrival process with rate λ > 1. We denote the
number of users in the queue by x and we have X ∼ µ(·), where µ(·) is the stationary distribution
of the queue backlog. The users have payoff relevant private types i ∈ I = {1, · · · , N} and the
a-priori type distribution is known I ∼ PI(·). The queue backlog is unobservable by users. There is
a planner who observes the queue backlog and sets up an admission control mechanism M

def
= (σ, t)

in which users can participate or not. The mechanism consists of an admission policy σ and a
tax function t. Upon arrival, a user makes a decision of being admitted by the planner (join the
mechanism) or decide to join the queue or not on her own. We define the following sequence of
actions that users take at the time of arrival. Note that we refer to a user by she and to the planner
by he.

• First, the user with type i who has arrived at the queue decides to participate in the admission
mechanism or not by choosing the probability of participating in the mechanism, γi. Her
action is denoted by d where P (D = 1) = γi. We denote γ = (γ1, · · · , γN).

• If the user does not participate in the mechanism, she will make a decision to join the queue
or not by deciding on the probability of joining the queue, αi. Her decision is denoted by e
where P (E = 1) = αi. We denote α = (α1, · · · , αN). If a user does not participate in the
mechanism, we say she has chosen the outside option.

• If the user participates in the mechanism, she has to send a message m = f(i), m ∈ I to the
planner. The mechanism is a direct mechanism and the message m sent by a user with type i
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is supposed to be her type. The planner determines a tax t(m) that is to be paid by the user.
He then generates a (randomized) admission signal s where S ∼ σ(·|x,m) and announces it
to the user, where σ is the admission policy. The user will then either join the queue if she is
admitted or leave if she is not admitted.

Note that we assume all users with the same type choose the same strategy even if there is a tie.
Based on the steps described above, we can denote the information set of a user by h ∈ H, where
the set of information sets is defined asH = {(i, d = 0, e = 0)(i∈I), (i, d = 0, e = 1)(i∈I), (i, d =

1,m, s = 0)(i,m∈I), (i, d = 1,m, s = 1)(i,m∈I)}. The utility of a user for each of these information
sets is denoted by u(h), and is described in the following.

The users have to pay a price p for the service they receive if they opt out of the mechanism
(choose the outside option) but enter the queue. As mentioned before, the users pay a tax t(m) if
they participate in the mechanism and they do not pay any other price for receiving service if they are
admitted by the planner (the price of the service is included in the tax function). The user with type
i receives a reward of iv(x) by joining the queue of backlog x, where v(·) is a decreasing function,
which can be negative for large enough x. Therefore, for h = (i, d = 0, e = 1), the user receives
the expected utility of u(i, d = 0, e = 1) = iv − p where v = E[v(X)] =

∑∞
x=0 v(x)µ(x). For

h = (i, d = 0, e = 0), she leaves the queue and receives u(i, d = 0, e = 0) = 0. For h = (i, d =

1,m, s = 1), the user receives the expected utility of u(i, d = 1,m, s = 1) = iE[v(X)|h]− t(m).
Finally, for h = (i, d = 1,m, s = 0), the user receives the utility u(i, d = 1,m, s = 0) = −t(m).
Figure 5.1 depicts the extended form of the game, where the black circles indicate decision points.

One can express the joint probability distribution of the random variables described in this
model as follows.

P(x, i, d, e,m, s) = µ(x)PI(i)P(d, e,m|i)σ(s|x,m), (5.1)

where the stationary distribution of X , µ(·), depends on σ. Note that P(d, e,m|i) is determined by
the strategy of the user with type i and we have

P(m|i) = 1f(i)(m) (5.2)

P(d = 1|i) = γi (5.3)

P(e = 1|i) = αi, (5.4)

where 1a(b) =

{
1 if a = b

0 o.w.
. In order to characterize the stationary distribution of X , we need

to know the effective arrival rate to the queue. The arrival to the queue consists of both users joining
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u(i, d = 1,m, s = 0)

planner

σ, t

Figure 5.1: Extended form of the game.

the queue through the admission mechanism and users joining the queue on their own in the outside
option. Therefore, in order to know the arrival rate, we need the admission policy, γi and αi for all i.
The stationary distribution of X , µ(·), can be found using the following lemma.

Lemma 14. The stationary distribution of X , i.e., µ(·), is given by the following equation.

µ(x+ 1) = λµ(x)
N∑
i=1

PI(i)(γiσ(1|x, f(i)) + (1− γi)αi)

∞∑
x=0

µ(x) = 1.

Proof. See Appendix D.1.

To calculate the average utility u(i, d = 1,m, s = 1), we find E[v(X)|h] using the joint
probability distribution of the random variables as follows.

E[v(X)|h] =
1

P(S = 1|m)

∞∑
x=0

v(x)µ(x)σ(1|x,m), (5.6)
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where P(S = 1|m) =
∑∞

x=0 µ(x)σ(1|x,m).
The average utility that a user with type i predicts to receive if she participates in the mechanism

(before making any decision or hearing any signal) is E[u(i, d = 1,m, S)] and we have

E[u(i, d = 1,m, S)] = P(S = 1|m)u(i, d = 1,m, s = 1) + P(S = 0|m)u(i, d = 0,m, s = 0)

= i

∞∑
x=0

v(x)µ(x)σ(1|x,m)− t(m), (5.7)

We define

q(m) =
∞∑
x=0

v(x)µ(x)σ(1|x,m), ∀m ∈ I, (5.8)

to be the “allocation” to a user that reports m as her type. Therefore, the average utility of a user
with type i that reports m as her type is

E[u(i, d = 1,m, S)] = iq(m)− t(m). (5.9)

This formulation enables us to solve a mechanism design problem with linear utilities with respect
to allocations.

The average utility that the user predicts to receive from the outside option is the maximum of
0 and iv − p (depending on the action e, one of these utilities are received), and we denote it by
(iv − p)+, where we define the plus operator as (a)+ = max(a, 0).

5.3 Users’ Strategies

In this section, we characterize the users’ best response strategies to the planner’s decision on
σ and t. We first summarize the actions that are taken in the game. We have actions/decisions d,
e, m, that are taken by the users and for a user with type i, P(D = 1) = γi, P(E = 1) = αi and
m = f(i). We also have the admission policy, σ, that generates the admission signal, s, according
to S ∼ σ(·|x,m) and tax function t that are to be designed by the planner. The following lemma
characterizes αi, function f , and γi.

Lemma 15. For a given σ and t, we have the following for αi.

• αi = 1 If iv − p > 0

• αi = 0 If iv − p < 0
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• αi ∈ [0, 1] If iv − p = 0.

Also, function f is given by the following equation.

f(i) = arg max
m

iq(m)− t(m).

Finally, for γi we have

• γi = 1 If iq(m)− t(m) > (iv − p)+

• γi = 0 If iq(m)− t(m) < (iv − p)+

• γi ∈ [0, 1] If iq(m)− t(m) = (iv − p)+,

where m = f(i).

Proof. See Appendix D.2.

5.4 Mechanism Objectives

The mechanism M
def
= (σ, t) is designed by the planner to have the following properties:

• DSIC: The mechanism should be dominant strategy incentive compatible (DSIC). That is,
all users should act truthfully in reporting their types, no matter what other users do, i.e.,
m = f(i) = i for all i ∈ I. For the mechanism to be DSIC we should have the following.

f(i) = arg max
m

iq(m)− t(m) = i, ∀i (5.10)

• The mechanism should maximize the planner’s expected revenue. That is, the planner solves
the following optimization problem.

σ∗, t∗ ∈ arg max
σ,t

λE[t(M)D], (5.11)

whereM = f(I). Note that the tax is only paid by the users who participate in the mechanism,
i.e., d = 1.

Note that in DSIC constraint, the expected utility E(u(i, d = 1,m, S)) depends on the strategy
and actions of other players only through the stationary distribution of X . The DSIC constraint
ensures that for any stationary distribution of X , acting truthful is the best strategy. Therefore, for
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any strategy of other players, truthful strategy is the best response and therefore, we have dominant
strategy incentive compatibility.

Notice that we do not enforce individual rationality constraint for the mechanism as it might be
more beneficial for the planner to not have all types of the users participate in the mechanism. The
intuitive reason is that it might be too costly for the planner to incentivize all types to participate in
the mechanism and so some types of the users might choose the outside option, i.e., choose on their
own to join the queue or not.

Given the DSIC constraint, the planner’s expected revenue can be simplified as follows.

λE[t(I)D] = λ

N∑
i=1

γiPI(i)t(i). (5.12)

5.5 Tax Function

In this section we introduce the tax function for the mechanism and prove DSIC. We also prove
that this type of tax function maximizes the planner’s revenue.

We consider the following tax function.

t(m) =t0 +mq(m)−
m−1∑
j=1

q(j), ∀m ∈ I. (5.13)

We refer to t0 by the tax offset.
We will see in the next theorem that this types of tax function ensures dominant strategy incentive

compatibility. Notice that there are two degrees of freedom in the tax function, t0 and q(·) that is
determined by σ and the planner will choose them to maximize his revenue.

Theorem 6. The mechanism is dominant strategy incentive compatible if

• q(m) is weakly increasing w.r.t. m.

• The tax function is given by equation (5.13).

Furthermore, the given tax function maximizes the planner’s revenue among all other DSIC tax

functions.

Proof. See Appendix D.3.
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5.6 Planner’s Optimization Problem

Given the tax function described in the previous section and the fact that DSIC holds for a
mechanism with such tax function, the objective of the planner is to maximize the following quantity.

λE[t(I)D] =λ
N∑
i=1

γiPI(i)(t0 + iq(i)−
i−1∑
j=1

q(j)) (5.14a)

As we mentioned in the previous section, the tax function t is determined by σ and t0 and therefore,
the planner maximizes his revenue w.r.t. σ and t0 instead of σ and t as we had in equation (5.11).
Also, notice that we assume all users with the same type make the same actions even if there is a tie,
and we assume that if there is a tie, the users will choose the action that benefits the planner the most.
Therefore, one can say that the planner is also optimizing over αi and γi subject to the constraints in
Lemma 15 (function f is already determined as f(i) = i according to DSIC condition). Hence, we
can formulate the planner’s optimization problem as follows.

max
σ,t0,α,γ

λ
N∑
i=1

γiPI(i)(t0 + iq(i)−
i−1∑
j=1

q(j)) (5.15a)

s.t. q(i) ≤ q(i+ 1), ∀i ∈ I, i 6= N (5.15b)

µ(x+ 1) = λµ(x)
N∑
i=1

PI(i)(γiσ(1|x, i) + (1− γi)αi)∀x ≥ 0 (5.15c)

∞∑
x=0

µ(x) = 1. (5.15d)

α and γ satisfy Lemma 15 for σ and t0. (5.15e)

In the following we give some illustration on how t0 affects which types of players will
participate in the mechanism and which ones do not. The utility of a user with type i that participates
in the mechanism is as follows.

i−1∑
j=1

q(j)− t0. (5.16)

The utility of the outside option for a user with type i is (iv − p)+. Figure 5.2 demonstrates an
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example of the outside option utility and the utility of the admission mechanism with respect to
the type of the users for two different value of t0, 0 and −a for some a > 0. The types for which
we have the admission mechanism utility below the outside option utility, do not participate in the
mechanism and γi = 0. As the planner decreases t0 from 0 to −a, more types of players participate
in the mechanism. In the example of Figure 5.2, with t0 = 0, users of type 2, 3 and 4 do not
participate in the mechanism but with t0 = −a, only type 3 does not participate.

i

i−1
∑
j=1

q ( j )

(i v̄ − p)+

i−1
∑
j=1

q ( j ) − t0

a

21 3 4

Figure 5.2: An example of how t0 affects which types of users participate in the mechanism

The optimization problem (5.15) is not linear or convex and therefore, through numerical
analysis, we first characterize the possible best values for α and γ and then we focus our attention
to the optimization problem for the specific optimal values of α and γ. In Table 5.1, we have listed
the optimal values of α and γ for the special case of N = 2 for different values of p. We have done
the analysis for λ = 1.2, v(x) = 1

502
(502 − x2), and PI(1) = PI(2) = 1

2
. Note that since v(x) ≤ 1,

we consider different values of p ∈ [0, 1].
The analysis in Table 5.1 shows that for most reasonable values of p (the values for which the

outside option is indeed a reasonable option), the optimal value of the parameters γ1 and γ2 is 1.
It indicates that it is most beneficial for the planner to have both types of the users participate in
the mechanism. Notice that the parameter α1 and α2 are the decision of users in off-equilibrium
decision points and although they are chosen so that the players would be best responding at those
points, they do not play any role in the on-equilibrium system dynamics. Although this analysis is
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p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α1 0 0 0 0 0 0 0 0 0 0 0
α2 1 1 1 1 1 1 1 1 1 1 1
γ1 1 1 1 1 1 1 1 0.7 0.7 0.7 0.75
γ2 1 1 1 1 1 1 1 1 1 1 1

Table 5.1: The optimal values of γ and α for a range of different values of p. The analysis is done
for N = 2, λ = 1.2 and v(x) = 1

502
(502 − x2).

only done for the special N = 2 case, to simplify the planner’s optimization problem, in the rest
of the chapter, we focus our attention to the case of γi = 1 for all i ∈ I, i.e., all types of users
participate in the mechanism. Notice that if γi = 1, the value of αi does not matter for the planner.
The condition that enforces the mechanism to have all types of users participating in the mechanism
is called individual rationality.

5.7 Mechanism with Individual Rationality

In this section, we reformulate the planner’s optimization problem by enforcing the individual
rationality constraint. That is, we assume the planner designs the mechanism such that users choose
γi = 1 for all i ∈ I. We further notice that even for a fixed value of γi = 1 for all i ∈ I, the
planner’s optimization problem is not linear with respect to σ because of the stationary constraints
of (5.15c). Therefore, we restate the problem in terms of the joint probability distribution on
(S, I,X), denoted by γ(S, I,X). Note that q(i) =

∑∞
x=0 v(x)µ(x)σ(1|x, i) =

∑∞
x=0 v(x)γ(s=1,i,x)

PI(i)
.

Therefore, we have the following linear optimization problem for the planner.

max
γ,t0

λt0 + λ
N∑
i=1

∞∑
x=0

v(x)(iγ(s = 1, i, x)−
i−1∑
j=0

PI(i)

PI(j)
γ(s = 1, j, x)) (5.17a)

s.t. N

i−1∑
j=1

∞∑
x=0

v(x)γ(s = 1, j, x)− t0 ≥ i
∞∑
x=0

v(x)
∑
s,j

γ(s, j, x)− p, ∀i ∈ I (5.17b)

N

i−1∑
j=1

∞∑
x=0

v(x)γ(s = 1, j, x)− t0 ≥ 0, ∀i ∈ I (5.17c)

∞∑
x=0

v(x)γ(s = 1, i, x) ≤
∞∑
x=0

v(x)γ(s = 1, i+ 1, x),∀i ∈ I, i 6= N (5.17d)∑
s,i

γ(s, i, x+ 1) = λ
∑
i

γ(1, i, x), ∀x ≥ 0 (5.17e)
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∑
s

γ(s, i, x) =
1

N

∑
s,j

γ(s, j, x), ∀i ∈ I, x ≥ 0 (5.17f)∑
s,i,x

γ(s, i, x) = 1 (5.17g)

γ(s, i, x) ≥ 0, ∀s ∈ {0, 1}, i ∈ I, x ≥ 0. (5.17h)

Note that constraints (5.17b) and (5.17c) correspond to linearized constraints of the individual
rationality condition, while constraint (5.17f) is to ensure P(x, i) = µ(x)PI(i) according to (5.1).

Using the linear formulation of the planner’s optimization problem, we will provide some
structural properties for the optimal policy in the next section. Also, in the numerical analysis
section, we will use this linear formulation to numerically solve the optimization problem using
Matlab.

5.7.1 Structural Properties

In this section, we discuss some properties and behaviors of the optimal admission policy of the
mechanism with individual rationality, i.e., the solution of the optimization problem (5.17). We first
define the dominance of type i over type j in an admission policy σ as follows.

Definition 7 (Dominance). For a given admission policy σ, type i dominates type j if the following

hold.

• If v(x) > 0 and σ(s = 1|j, x) > 0, then σ(s = 1|i, x) = 1.

• If v(x) < 0 and σ(s = 1|i, x) > 0, then σ(s = 1|j, x) = 1.

Note that the dominance condition implies that the planner favors type i over type j in his
admission policy.

In the next theorem, we present some results for the special case of two types of users and then
generalize the results to multiple types.

Theorem 7. Suppose t0 and γ∗ (or equivalently σ∗) are the solution of (5.17) for N = 2. Then,

one of the following holds.

• Case 1: Type 2 dominates type 1.

• Case 2: There is a threshold x̃ such that for x ≥ x̃ we have σ∗(1|i, x) = 0 for all i ∈ I.

Furthermore, for x < x̃, σ∗(1|i, x) = 1 for all i ∈ I except for some points in X̃ =
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{x1, x2, . . .}, xk < x̃ for which we can have σ∗(1|1, xk) < 1, or σ∗(1|2, xk) < 1, where all

xk ∈ X̃ satisfy the following condition. There exists ε1 > 0 and ψ such that

(2

xk∑
x=0

λxv(x))ε1 + (

xk∑
x=0

λx)ψ =

xk−1∑
x=0

λxv(x), ∀xk ∈ X̃ . (5.18)

Proof. See Appendix D.4.

The intuitive explanation of the above theorem is as follows. If we define x0 as v(x) > 0 for
x < x0 and v(x) < 0 for x > x0, then case 1 of the theorem implies a threshold behavior for the
admission policy with the threshold being x0. That is, for x below the threshold, the admission
policy favors type 2 of the users and only allows type 1 to enter the queue if type 2 is admitted with
probability 1. Similarly, for x above the threshold, type 1 is favored for entering the queue and
type 2 is allowed to enter the queue if type 1 is allowed in with probability 1. Notice that users are
not interested to enter the queue for x > x0 because v(x) < 0. Therefore, type 2 is favored by the
admission policy in both x < x0 and x > x0.

Case 2 of the theorem implies that the planner is sending the same signal (except for x ∈ X̃ ) for
both types of the users. Therefore, revenue due to the discrimination between the two user types
can only be gained for states x ∈ X̃ . One question that arises is what is the size |X̃ | of this set.
Equation (5.18) indicates that for a given size |X̃ |, there are |X̃ | equations to be satisfied and only
two unknowns (ε1 and ψ). As a result, it is highly unlikely that for a general utility function v(·),
the size of the set is larger than 2. Evaluating the quantities x1 and x2 can be done systematically by
first evaluating x̃ and then searching over all O(x̃2) cases for the values of x1 and x2 by checking
if (5.18) is satisfied for some ε1 > 0 and ψ.

In the next theorem we extend the structural results to the general case of N types of users.

Theorem 8. Suppose t0 and γ∗(·, ·, ·) (or equivalently σ∗(·|·, ·)) are the solution of (5.17). Then,

for each i1 and i2 where i2 > i1, at least one of the following holds.

• Type i2 dominates type i1.

• If i2 − i1 > N
2

, then q(i2) = q(i2 + 1), or q(i1) = q(i1 − 1).

• If i2 − i1 ≤ N
2

, then q(i2) = q(i2 + 1), or q(i1) = q(i1 − 1), or there exists an i, where

i1 < i ≤ i2, for which the mechanism utility matches that of the outside option, i.e., iq(i)−
t(i) = (iv − p)+.
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Proof. See Appendix D.5.

The dominance condition in case 1 of Theorem 8 is similar to the first case of Theorem 7, which
indicated a threshold behavior for the optimal admission policy. Theorem 8 also states that for
i2 > i1, the admission policy favors type i2 over type i1 unless we have two conditions (case two
and three of the theorem) where the planner can not favor type i2 over type i1. The intuitive reason
of why in case two and three the planner can not favor type i2 over type i1 is that he either cannot
increase allocation of type i2 since q(i2) = q(i2 + 1) or he cannot decrease allocation of type i1 that
can happen due to two reasons. First, we might have q(i1) = q(i1 − 1). Second, if the utility of
some type, i, between i1 and i2 matches her outside option utility, by decreasing q(i1), the utility of
type i will become less than the outside option and it violates the individual rationality constraint.

5.7.2 No information and Full information extremes

In this section, we evaluate two extreme policies of “no information” and “full information”
for the mechanism with individual rationality. The “no information” policy refers to a policy that
conveys no information about x to the users through the admission signal. This happens when
σ(1|x, i) = σ(1|x′, i) for all x, x′ and all i. Therefore, we can denote the admission policy by σ(·|i).
One can evaluate the stationary distribution and the tax function described in the previous sections
for the no information policy as follows.

µ(x+ 1) = λµ(x)
n−1∑
i=0

PI(i)σ(1|i) = λP(S = 1)µ(x) (5.19a)

∞∑
x=0

µ(x) = 1. (5.19b)

Therefore, if we denote λσ = λP(S = 1), the stationary distribution is given by the following
equation.

µ(x) = (λσ)x(1− λσ). (5.19c)

The allocation in this case is given by q(m) = σ(1|m)
∑∞

x=0 v(x)µ(x) = σ(1|m)v.
In the next lemma, we present an upper bound on the revenue of the planner in the no information

scenario.

Theorem 9. The revenue of the planner in the no information case is bounded from above by λp.

Proof. See Appendix D.6.

111



Next, we consider the full information case. First, we notice that the planner can not convey
full information about x only through the admission signal, as it is binary and the queue backlog,
x, is not. Therefore, in order to analyze the full information scenario, we assume that the planner
uses richer signals s ∈ {0, 1, . . .} and therefore, σ(s|x, i) = 1(s = x). Note that the signal s in this
scenario is not an admission signal any more. Therefore, the users will make a decision of joining
or leaving the queue after hearing the signal. We denote this decision by e = k(i, x), where e = 1

means the user enters the queue and e = 0 means she leaves.
Since the planner is not discriminating between the types in providing information for them, he

can not charge them differently through taxes. Otherwise, every one pretends to be the type that
pays the least. Therefore, we have t(m) = t. Hence, the message quoting is basically useless in this
case. One can easily derive the equation for e to be e = k(i, x) = 1(v(x) ≥ 0). We do not include t
in this equation because the user has already paid t when she is deciding about e. Therefore, the
user with type i receives iv(x)+ − t through the mechanism.

Theorem 10. The revenue of the planner in the full information case is less than or equal to

−λv(xneg)
λxneg∑xneg
x=0 λx

+ λp, where xneg is the smallest x for which we have v(x) < 0.

Proof. See Appendix D.7.

5.8 Numerical Analysis

In this section, we present some numerical analysis of the model discussed in this chapter. We
have numerically solved the linear optimization problem (5.17) using Matlab. In our analysis, we
have set a maximum capacity for the queue such that it does not affect the stationary distribution of
the queue backlog.

We consider N = 2, λ = 1.2, and v(x) = 1
502

(502 − x2) as the value function of the users. Fig.
5.3a represents the plot of the admission policy of the planner for the two types of users with respect
to the queue backlog for p = 0 and the stationary distribution of the queue backlog is plotted is Fig.
5.3b. The revenue of the planner in this case is 0.0786. The admission policy in Fig. 5.3a confirms
the results of Theorem 7 and we can see that type 2 dominates type 1.

In Fig. 5.4, the plots are represented for p = 0.2 and the revenue of the planner is 0.2693.
Similar to the p = 0 case, the results are consistent with case 1 of Theorem 7.

Fig. 5.5 shows the optimal admission policy for N = 3 and we see that for this admission policy,
type 3 dominates type 2 and type 2 dominates type 1, which confirms the results of Theorem 8.

In order to have an evaluation of how good the planner is doing in terms of gaining revenue,
we can calculate the revenue of the queue from the outside option, i.e., if there was no planner
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Figure 5.3: Numerical Results for N = 2 and p = 0
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Figure 5.4: Numerical Results for N = 2 and p = 0.2
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Figure 5.5: Numerical Results for N = 3 and p = 0

and the incoming traffic would choose to join the queue without any information. In the outside
option for N = 2 and the given v(·), if we assume deterministic decisions for the users, only one
type of the users will join the queue and the rate would become λ

2
. Otherwise, the queue becomes

unstable. Therefore, the revenue is λp
2

. Hence, for p = 0, the revenue of the outside option is 0 and
for p = 0.2, the revenue of the outside option is 0.12 and clearly, the planner is doing better than the
outside option. We also note that the revenue of the planner in both cases is greater than λp (λp = 0

for p = 0 and λp = 0.24 for p = 0.2), which is the upper bound for the revenue of the planner in
the no information case. Similarly, the revenue of the planner in both cases is more than the upper
bound on the revenue of the full information case, −λv(xneg)

λxneg∑xneg
x=0 λx

+ λp (0.0081 for p = 0 and
0.2481 for p = 0.2).

We have also investigated the behavior of the admission policy when the arrival rate of the users
increases. We have increased the value of λ to 50000 in four steps of λ ∈ {10, 100, 300, 50000}.
The admission policies for these four values of λ are represented in Fig. 5.6. We observe that
by increasing the arrival rate, at first, the interval over which the users are admitted to the queue
decreases in length (comparing λ = 1.2 and λ = 10). Then, by further increasing the arrival rate,
the users of type 1 are never admitted to the queue and the users of type 2 are admitted to the queue
over an interval that is decreasing in length as λ increases. We also observe that for an extremely
high value of λ = 50000, the admission policy consists of two single admission points, one for type
1 and one for type 2 of users.
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Figure 5.6: The admission policy for different values of the arrival rate and p = 0
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5.9 Conclusion

In this chapter, we studied a joint information and mechanism design problem for a queuing
system with heterogeneous users and an unobservable queue backlog. We investigated how the
planner can design tax function and provide different information for different types of the users in
order to gain the most revenue. We designed the tax function to ensure dominant strategy incentive
compatibility. Through numerical analysis we observed that for most reasonable model parameters,
the planner prefers all types of users to participate in his mechanism and we characterized some
structural results for the optimal admission policy of the mechanism with individual rationality. Our
structural results were also supported by numerical analysis.
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CHAPTER 6

Information Design for a Non-atomic Service Scheduling Game

6.1 Introduction

Information asymmetry is inevitable in today’s ever-growing systems and networks. Each agent
in these systems faces decision makings in the presence of uncertainty toward some states of the
world or other agent’s information [41, 40]. Having access to as much information as possible
enables these agents to make more profitable decisions. Information design [38, 134] studies how
sharing information strategically with the agents can steer their actions towards a desirable direction.
In the information design framework, there is a sender that possesses some private knowledge about
the state of the world. There are possibly multiple receivers of the information. The information
that the sender shares with the receivers is shaped in a way to align their objectives with that of the
sender as much as possible.

There are different types of information design problems depending on whether there are
multiple receivers or a single one, whether the system is dynamic or not, whether the receivers have
private information or not, etc. The information design problems with a single receiver are referred
to as “Bayesian persuasion” as first introduced in [38], where a geometric method of analyzing the
information design problem is proposed. Information design problems with more than one receiver
are usually more complex since the solution must induce an equilibrium between the receivers. It is
shown in [138] that the set of outcomes in an information design problem with multiple receivers is
indeed the set of Bayes-correlated equilibria, BCE, for the receivers. According to the definition of
BCE in [138], the information shared with the receivers contains suggestions of what actions they
should take. Therefore, an obedience condition has to be imposed on the strategy of the sender to
make sure the receivers will follow the suggestions once they hear them. The obedience condition
is the same as the conditions that are imposed in the definition of correlated equilibria.

Information design problems study dynamic or static systems. In static information design, the
problem that the information designer faces is a static optimization problem [38, 138, 146, 147, 148,
149]. Dynamic information design problems [150, 135, 151, 145, 74, 53] deal with dynamic settings
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and therefore, the information can be disclosed sequentially. Dynamic programming techniques can
therefore be used to characterize the optimal strategy.

An example of dynamic information design can be found in [150], where the receiver is awaiting
the occurrence of a random event, e.g., the arrival of an email, so that she can check her email. The
receiver is informed of the arrival of the email by a beep that is sent by the sender. The sender wants
the receiver not to check her email for as long as possible. Therefore, the sender has to solve a
dynamic information design problem to decide whether or not or when to send a beep and reveal the
arrival of an email. The problem is solved in continuous time and then a discrete time generalization
is presented.

In this chapter, we study an information design problem where there are not only multiple
receivers, but they are non-atomic. That is, they form a continuum of population with unit total
mass. A service scheduling problem is studied where the service start time is unknown to the agents
who want to make decisions of when to join the queue in order to avoid long waits in the queue or
not to arrive earlier than the service has started. The service starting time and agents’ decisions are
in continuous time. There is a planner that knows when the service starts and makes suggestions
to the agents about when to join the queue. The suggestion profile has to satisfy the obedience
condition. That is, an agent that has received the suggestion of joining at time t must be willing to
obey that suggestion. Our model can be considered a dynamic information design problem because
the planner makes suggestions for the whole dynamic arrival process of agents. However, each
agent only receives one signal from the planner.

Our model of a continuum of agent population arriving at a queue and their cost function closely
follows that of [152, 153]. The existence and uniqueness of the equilibrium arrival process is proved
in [152] and [153], respectively. In these works, the agents have a preference of when to depart
the queue while in our model, this preferred time coincides with the time the service starts and is
also the same for all of the agents, although they do not know when that time is. This is where the
information design aspect of our model plays its role. Information design for non-atomic agents
has also been studied in [154], where a routing game has been considered in which the unknown
states of the world affect the latency of the links. The problem has been shown to be a generalized
problem of moments and a hierarchy of polynomial optimization is proposed to approximate the
solution.

The contributions of this work are as follows. We formulate an information design problem
for a service scheduling game consisting of non-atomic agents. We characterize the equilibrium in
full information and no information extremes. We show some results on when the planner can do
no better than revealing the full information to the agents. We impose some assumptions on our
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model that will allow us to express the information design problem as a generalized problem of
moments (GPM) [55]. We use the computation tools for these problems such as Gloptipoly [56] to
numerically solve the information design problem.

The rest of the chapter is structured as follows. Problem formulation is discussed in section 6.2.
In section 6.3, the obedience condition is defined and simplified. We study the two extreme cases of
full information and no information equilibria in section 6.4. A structural result is stated in section
6.5 for a specific type of arrival processes. We formulate the problem as a GPM in section 6.6 and
we present numerical analysis in section 6.7. We conclude in section 6.8. The proofs of the lemmas
and theorems can be found in Appendix E.

6.2 Problem Formulation

A service provider starts its service at a fixed rate µ ∈ (0, 1) starting at some time τ ≥ 0 with
probability distribution of fτ (·). A continuum of agent population of unit total mass needs this
service. The action of an agent is the time t to join the service queue. The collection of actions of all
the agents can be represented as a probability measure, m, on R≥0. Let the set of such measures be
denoted as M . We usually refer to the measure m as the arrival process. Note that the support of m
can include negative numbers. That is, the arrival times of agents can be a negative number which is
due to the fact that the time origin is considered to be when the service can possibly start. For a
given m ∈M and τ , we denote the queue length at time t by qτ,m(t), which is given as follows.

qτ,m(t) =

∫ t

s=−∞
m(s)ds− µ(t− τ)+,

where (a)+ = max(a, 0).
The cost of an agent with action t ∈ supp(m) and for a given τ and m is denoted by cτ,m(t) and

is the weighted sum of (i) time to wait in the queue until receiving service; and (ii) the difference
between the time of service and realization of τ . Note that (i) includes the time to wait for the
service to start in case t < τ . Part (ii) is considered to capture the possibility of service quality
deterioration by time. For example, the service quality degrades by time in a food distribution center
since the food quality degrades. Part (ii) also captures the fact that agents might be impatient and
want to get serviced as soon as possible. Therefore, we have the following cost function.

cτ,m(t) =c1(
qτ,m(t)

µ
+ (τ − t)+) + c2(t+

qτ,m(t)

µ
+ (τ − t)+ − τ)
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≡qτ,m(t)

µ
+ c(τ − t)+ + (1− c)(t− τ)+

=
qτ,m(t)

µ
+ (t− τ)+ − c(t− τ), (6.1)

where c = c1
c1+c2

≤ 1, and c1 and c2 are the weights of the two parts of the cost function. Without
loss of generality, we can assume c1 and c2 are between 0 and 1.

The social cost associated with an arrival process m and a τ is denoted by s(τ,m) and is defined
as the sum of costs of all agents, i.e., s(τ,m) :=

∫
t
m(t)cτ,m(t)dt.

The service rate µ and the probability distribution of τ , fτ (·), are common knowledge. The
agents do not know the exact realization of τ , but there is a planner who does. The planner desires
to utilize this information asymmetry to minimize expected social cost over all obedient direct
signaling strategies. A direct signaling strategy is a map π : R≥0 → 4M , where4M is the set
of probability distributions over M . That is, for a realization τ , the planner privately recommends
actions to the agents consistent with a measure m ∈ M sampled from π(.|τ). The obedience
condition is defined in the next section. The objective of the planner is to minimize the average
value of the social costs, s(π), which is given below.

s(π) :=

∫
τ,m

∫
t

m(t)cτ,m(t)fτ (τ)π(m|τ)dmdτdt. (6.2a)

Throughout this chapter, we impose different assumptions on the set of arrival processes M , to
which the designer restricts his attention. In each section, it will be stated which assumption has
been considered. Below is the list of these assumptions.

Assumptions:

(a) m(t) ≤ µ,∀t.

(b) For all m with π(m|τ) > 0, m(t) = 0 for t /∈ [tτ , tτ ] and some tτ and tτ that are increasing
with respect to τ .

(c) For all m with π(m|τ) > 0, if qτ,m(t) = 0 and m(s) > 0 for some s > t and s < t, then
m(t) = µ.

(d) m is piecewise continuous.

Note that assumption (c) is to make sure that the server works at its full capacity as long as there is
yet agents to arrive. As we will see in section 6.4, the full information equilibrium arrival process
satisfies all of the above assumptions. Further, the no information equilibrium arrival process that
satisfies (d), also satisfies assumptions (a) and (b).
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6.3 Obedience Condition

The agent that has received suggestion t, will form her posterior belief on τ and m which can be
used to calculate the average cost of taking action s (arriving at time s). We denote this average cost
by ct,π(s). The posterior belief of an agent that has received the suggestion t is given below.

β(τ,m|t, π) =
fτ (τ)π(m|τ)m(t)∫
τ,m

fτ (τ)π(m|τ)m(t)
. (6.3)

In order to calculate ct,π(s), we define a quantity τ̃m(t) as follows. For a given arrival process
m and each t ≥ 0, we define τ̃m(t) ≤ t as follows.

∀τ ≤ τ̃m(t), qτ,m(t) = 0

∀τ > τ̃m(t), qτ,m(t) > 0. (6.4)

Note that there might exist a t for which we have qτ,m(t) > 0, for all τ . In this case, we define
τ̃m(t) = 0. Also, for t < 0, we define τ̃m(t) = 0.

Throughout the chapter, except for section 6.4, we assume m follows assumption (a). As we
will see in section 6.4, both full information and no information equilibria satisfy this assumption.

The average cost ct,π(s) is given in the following lemma.

Lemma 16. ct,π(s) which is the average value of the cost for an agent that has received suggestion

t through the signaling strategy π is given as follows.

ct,π(s) = E{cτ,m(s)|t, π}

=
1

µm(t)

∫
m,τ>τ̃m(s)

fτ (τ)π(m|τ)m(t)(

∫ s

l=−∞
m(l)dl − µcs)dτdm

+
1

m(t)

∫
m,τ<τ̃m(s)

fτ (τ)π(m|τ)m(t)((1− c)s− τ)dτdm+ cE(τ |t),

where m(t) =
∫
τ,m

fτ (τ)π(m|τ)m(t)dτdm.

Proof. See Appendix E.1.

As mentioned before, the planner restricts his attention to the set of obedient signaling strategies.
The definition of the obedience condition is stated below.

Definition 8 (Obedience Condition). The signaling strategy π is obedient if all of the agents prefer
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to arrive at the queue at the time they are recommended to do so. That is

t ∈ arg min
s
ct,π(s), ∀t.

Definition 8 states that t must be a global minimizer of ct,π(s) for π to be obedient. In the next
lemma, we will show that for a signaling strategy π to be obedient, it is necessary and sufficient for
t to be a local minimizer of ct,π(s).

Lemma 17. The signaling strategy π is obedient if and only if d
ds
ct,π(s)|t = 0 for all times t, which

implies the following must hold for an obedient signaling strategy.

(1− c)
∫
m

∫ τ̃m(t)

τ=0

fτ (τ)π(m|τ)m(t)dτdm+
1

µ

∫
m

∫ ∞
τ̃m(t)

fτ (τ)π(m|τ)m(t)(m(t)− µc)dτ = 0.

Proof. See Appendix E.2.

6.4 Full Information and No Information Extremes

In this section, we characterize the full information (all agents know the value of τ ) and the no
information (there is no signal sent to the agents about the value of τ ) equilibrium arrival processes.

Theorem 11 (Full Information). The full information equilibrium arrival process for the service

time τ is as follows.

m(t) = µc, t ∈ (τ − 1− c
µc

, τ +
1

µ
),

and m(t) = 0 elsewhere.

Proof. See Appendix E.3.

Note that the full information equilibrium arrival process induces a single queue throughout the
whole time horizon and the queue is cleared out at the same time the arrival process is ended.

Next, we investigate the equilibrium when the agents have no information about τ , other than its
prior distribution, fτ (·). For this part, we restrict our attention to the set of arrival processes that
satisfy assumption (d). Also, we assume fτ (·) is an exponential distribution with parameter λ. Note
that this assumption is not critical in finding the no information equilibrium and one can search the
equilibrium arrival process for a different fτ (·). As we will see in the proof of Theorem 12, having
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a different fτ (·) will induce a different differential equation to be solved than the one we solve in
this work.

Before stating the equilibrium, we present the following lemma that will enable us to restrict
our attention to a smaller set of arrival processes for the no information equilibrium.

Lemma 18. For the no information equilibrium arrival process, m, we have m(t) ≤ µ for all t and

m can not include a delta function.

Proof. See Appendix E.4.

Using Lemma 18, we can characterize the no information equilibrium arrival process.

Theorem 12 (No Information). The no information equilibrium arrival process, if it exists, is as

follows.

m(t) = µ− µ

β − λt
, t ∈ [t1, t2],

where β = − ln(1− c) + λ
µ

+ 1, t2 = − ln(1−c)
λ

+ 1
µ

, and t1 is derived from either of the following

equations (or possibly both, which results in two solutions for the equilibrium).

ln(1− c) + λt1 + ln(
λ

µ
− ln(1− c)− λt1 + 1) = 0, t1 ≥ 0

t1 =
1− c
λc

ln(1− c)− 1− c
µc

+
1

λ
, t1 < 0.

Proof. See Appendix E.5.

6.5 Structural Results

In this section, we assume that the planner restricts her attention to a set of arrival processes that
satisfy assumption (b) and for such strategies, we present a structural property in the next theorem.

Theorem 13. If a signaling strategy π(·|τ) that satisfies assumption (b) is obedient and if we assume

tτ − tτ ≤ 1
µc

and c ≤ 0.5, then, π(·|τ) is supported only over the full information equilibrium

arrival process characterized in Theorem 11.

Proof. See Appendix E.6.

Note that the interval 1
µc

is the time span of the equilibrium arrival process in the full information
case. Theorem 13 indicates that if the planner wants to induce a lower social cost than the full
information equilibrium social cost, he should expand the time span of the arrival processes to
intervals longer than 1

µc
.
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6.6 GPM Formulation

In this section, we formulate our problem as a generalized problem of moments (GPM). A GPM
is an optimization problem over finite probability measures that minimizes a cost that is linear in
moments w.r.t. those measures, subject to constraints that are linear w.r.t. those moments. The
GPM formulation will allow us to utilize the computation tools available for such problems to
do numerical analysis for our model. In order to express our problem as a GPM, we impose two
assumptions (b) and (c) on the set of arrival processes.

We define τ(t) and τ(t) to be the inverse of tτ and tτ , respectively. That is, for τ < τ(t) or
τ > τ(t), we have m(t) = 0 for all m with π(m|τ) > 0.

The obedience condition is simplified in the next lemma.

Lemma 19. A signaling strategy π that satisfies assumptions (b) and (c) is obedient iff the following

holds. ∫ τ(t)

τ(t)

fτ (τ)Rm,τ (t, t)dτ = µc

∫ τ(t)

τ(t)

fτ (τ)mτ (t)dτ,

where we denote mτ (t) =
∫
m
π(m|τ)m(t)dm and Rm,τ (t, s) =

∫
m
π(m|τ)m(t)m(s)dm.

Proof. See Appendix E.7.

One can easily see that the full information signaling strategy, i.e., π(m|τ) = 1(m = mF
τ ),

where mF
τ is the full information equilibrium characterized in Theorem 11, satisfies the above

obedience constraints.
We can also simplify the planner’s objective as follows.

Lemma 20. The planner’s objective is given below if he restricts his attentions to the signalling

strategies that satisfy assumptions (b) and (c).

s(π) =
1

µ

∫
τ

fτ (τ)(

∫ tτ

t=tτ

∫ t

s=tτ

(Rm,τ (t, s)− µcmτ (t))dsdt+ µc(τ − tτ ))dτ

Proof. See Appendix E.8.

According to lemmas 19 and 20, the planner’s objective is linear in moments of m with respect
to the measure π(m|τ). Also, the obedience condition is linear in moments of m. However, m is
supported over real numbers and therefore, the measure π is not a finite measure. But for a problem
to be a GPM, we must have finite probability measures. In order to have a finite measure, we need
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to discretize the time and consider a discretized version of the optimization problem, which is a
GPM. Therefore, we can numerically solve it using the computation tools available for these types
of problems such as Gloptipoly [56]. In the next section, we will present these numerical results.

Next lemma presents a result similar to one presented in Theorem 13 for the signaling strategies
that satisfy assumptions (b) and (c).

Theorem 14. If a signaling strategy π(·|τ) that satisfies assumptions (b) and (c) is obedient and if

we assume tτ − tτ ≤ 1
µc

then π(·|τ) is supported only over the full information equilibrium arrival

process characterized in Theorem 11.

Proof. See Appendix E.9.

Note that the result of Theorem 14 holds regardless of the value of c, while in Theorem 13, we
must have c ≤ 0.5 for the result to hold.

6.7 Numerical Analysis

In this section, based on the GPM formulation of our problem, we use Gloptipoly to solve the
problem numerically. In this chapter, we consider uniform discretization of time.

As showed in the previous section, if we restrict our attention to the signaling strategies that
satisfy assumptions (b) and (c), and if tτ − tτ ≤ 1

µc
, then the solution is known to have support only

on the full information equilibrium of Theorem 11. This result is numerically confirmed as it is
shown in Fig. 6.1a and 6.1b for c = 0.5 and c = 0.8, respectively, and for µ = 0.5 and a bounded
discrete interval of τ ∈ {3, 3.5, 4, 4.5, 5, 5.5, 6} with uniform distribution.

In order to investigate solutions other than the full information equilibrium, we allow the interval
of tτ − tτ to be longer than 1

µc
. We set tτ − tτ = 1

µc
+ 0.75. The optimal signaling strategy for

each τ turns out to have support on a singleton arrival process and the different arrival processes
corresponding to each τ are represented in Fig. 6.1c and 6.1d for c = 0.5 and c = 0.8, respectively.

An intuitive explanation about why the solution looks like what we see in Fig. 6.1c, is that the
planner decides to put smaller values of τ in higher priority compared to larger values. We can see
that the arrival processes associated with smaller values of τ result in smaller social cost. However,
they do not satisfy the obedience condition and are indeed far from it. This has been compensated
with the arrival processes associated with larger values of τ that result in higher social cost but help
with the obedience condition.
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Figure 6.1: m(t) for different values of τ ∈ {3, 3.5, 4, 4.5, 5, 5.5, 6}. The stared plots corresponds
to τ = 3.5.

6.8 Conclusion

In this chapter, we formulated and studied an information design problem for a non-atomic
service scheduling game. We characterized the two extremes of full information and the no
information equilibrium and investigated the conditions in which the planner should reveal the
full information to the agents. We also formulated the information design problem as a GPM
by imposing some assumptions on the model and then numerically solved some examples of the
problem.
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APPENDIX A

Proofs for Chapter 2

A.1 Proof of Lemma 1

πt(ξt|v) = P(ξt|v, a1:t−1) =

∫
x1:t

P(x1:t, ξt, a1:t−1|v)∫
x1:t

P(x1:t, a1:t−1|v)

=

∫
x1:t

∏
i∈N

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)P(ξit|xi1:t, a1:t−1)∫
x1:t

∏
i∈N

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)

=
∏
i∈N

∫
xi1:t

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)P(ξit|xi1:t, a1:t−1)∫
xi1:t

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)

=
∏
i∈N

P(ξit, a1:t−1|v)

P(a1:t−1|v)
=
∏
i∈N

P(ξit|v, a1:t−1) =
∏
i∈N

πt(ξ
i
t|v). (A.1)

The second part of the theorem is similarly proved as follows.

P(x1:t|v, a1:t−1) =
P(x1:t, a1:t−1|v)

P(a1:t−1|v)

=

∏
i∈N

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)∫
x1:t

∏
i∈N

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)
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=

∏
i∈N

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)

∏
i∈N

∫
xi1:t

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)

=
∏
i∈N

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)∫
xi1:t

t−1∏
s=1

Qi
X(xis|v, as−1)P(ais|xi1:s, a1:s−1)Qi

X(xit|v, at−1)

=
∏
i∈N

P(xi1:t, a1:t−1|v)

P(a1:t−1|v)
=
∏
i∈N

P(xi1:t|a1:t−1, v). (A.2)

A.2 Proof of Lemma 2

Using Bayes rule we have

ξit+1(v) = P(v|xi1:t+1, a1:t) =
P(v, xit+1, at|xi1:t, a1:t−1)
P(xit+1, at|xi1:t, a1:t−1)

=

∫
ξ−it

P(v, xit+1, at, ξ
−i
t |xi1:t, a1:t−1)∫

ξ−it ,ṽ
P(ṽ, xit+1, at, ξ

−i
t |xi1:t, a1:t−1)

=

∫
ξ−it

P(v|xi1:t, a1:t−1)P(ξ−it |v, a1:t−1)P(at|ξ−it , v, xi1:t, a1:t−1)Qi
X(xit+1|v, at)∫

ξ−it ,ṽ

P(ṽ|xi1:t, a1:t−1)P(ξ−it |ṽ, a1:t−1)P(at|ξ−it , ṽ, xi1:t, a1:t−1)Qi
X(xit+1|ṽ, at)

=

∫
ξ−it

ξit(v)π−it (ξ−it |v)
∏
j∈N

γjt (a
j
t |ξ

j
t )Q

i
X(xit+1|v, at)∫

ξ−it ,ṽ

ξit(ṽ)π−it (ξ−it |ṽ)
∏
j∈N

γjt (a
j
t |ξ

j
t )Q

i
X(xit+1|ṽ, at)

=

∫
ξ−it

ξit(v)
∏
j∈−i

πjt (ξ
j
t |v)γjt (a

j
t |ξ

j
t )Q

i
X(xit+1|v, at)∫

ξ−it ,ṽ

ξi(ṽ)
∏
j∈−i

πjt (ξ
j
t |ṽ)γjt (a

j
t |ξ

j
t )Q

i
X(xit+1|ṽ, at)

. (A.3)
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A.3 Proof of Lemma 3

Using Bayes rule we have

πit+1(ξ
i
t+1|v) = P(ξit+1|v, a1:t)

=

∫
ξt,xit+1

P(ξit+1, ξt, x
i
t+1, at|v, a1:t−1)∫

ξt
P(ξt, at|v, a1:t−1)

=

∫
ξt,xit+1

P(ξt|v, a1:t−1)P(at|ξt, a1:t−1)P(xit+1|v, at)δ(ξit+1 − F i[ξit, π
−i
t , γ

−i
t , at, x

i
t+1])∫

ξt

P(ξt|v, a1:t−1)P(at|ξt, a1:t−1)

=

∫
ξt,xit+1

∏
j∈N

πjt (ξ
j
t |v)γjt (a

j
t |ξ

j
t )Q

i
X(xit+1|v, at)δ(ξit+1 − F i[ξit, π

−i
t , γ

−i
t , at, x

i
t+1])∫

ξt

∏
j∈N

πjt (ξ
j
t |v)γjt (a

j
t |ξ

j
t )

=

∏
j 6=i

∫
ξjt

πjt (ξ
j
t |v)γjt (a

j
t |ξ

j
t )∫

ξit,x
i
t+1

πit(ξ
i
t|v)γit(a

i
t|ξit)Qi

X(xit+1|v, at)δ(ξit+1 − F i[ξit, π
−i
t , γ

−i
t , at, x

i
t+1])∏

j∈N

∫
ξjt

πjt (ξ
j
t |v)γjt (a

j
t |ξ

j
t )

=

∫
ξit,x

i
t+1

πit(ξ
i
t|v)γit(a

i
t|ξit)Qi

X(xit+1|v, at)δ(ξit+1 − F i[ξit, π
−i
t , γ

−i
t , at, x

i
t+1])∫

ξit

πit(ξ
i
t|v)γit(a

i
t|ξit)

.

(A.4)

A.4 Proof of Theorem 1

To prove the theorem, we show that if every player in −i plays according to strategy γ∗,−it =

θ−it [πt], the best response of player i is of the form γ∗,it = θit[πt] and it is derived from the given
fixed point equation. We show that if we fix the update rule of πt to πt+1 = Fπ[πt, γ

∗
t , at] =

Fπ[πt, θt[πt], at] and assume that player i is forced to use these beliefs as her true beliefs, then she
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faces an MDP with state (πt, ξ
i
t), action ait and instantaneous reward

r̂it(πt, ξ
i
t, a

i
t) = E

[
rit(V,At)|πt, ξit, ait

]
.

We first need to prove that the state (πt, ξ
i
t) evolves according to a controlled Markov process.

Indeed,

P(πt+1, ξ
i
t+1|π1:t, ξi1:t, ai1:t) =

∫
v,ξ−it ,a−it ,xit+1

π−it (ξ−it |v)ξit(v)θ−it [πt](a
−i
t |ξ−it )Q(xit+1|v, at)

δ(πt+1 − Fπ[πt, θt[πt], at])δ(ξ
i
t+1 − F i[ξit, π

−i
t , θ

−i
t [πt], at, x

i
t+1])

= P(πt+1, ξ
i
t+1|πt, ξit, ait). (A.5)

The average instantaneous reward can now be written as E[rit(V,At)] = E[E[rit(V,At)|Πt,Ξ
i
t, A

i
t]],

where

E[ri(V,At)|πt, ξit, ait] =

∫
v,a−it

ri(v, at)

∫
ξ−it

P(v, a−it , ξ
−i
t |πt, ξit, ait)

=

∫
v,a−it

ri(v, at)

∫
ξ−it

θ−it [πt](a
−i
t |ξ−it )π−it (ξ−it |v)ξit(v)

=

∫
v,a−it

ri(v, at)

∫
ξ−it

θ−it [πt](a
−i
t |ξ−it )π−it (ξ−it |v)ξit(v)

=: r̂it(πt, ξ
i
t, a

i
t). (A.6)

Based on the above, it is now clear that user i faces an MDP and her best response strategy is the
solution of the following backward dynamic program. We have Ait ∼ γ∗,i(·|ξit), where

Supp(γ∗,it (·|ξit)) ⊂ arg max
a

E[r̂it(πt, ξ
i
t, a) + J it+1(Πt+1,Ξ

i
t+1)|πt, ξit, a] (A.7a)

J it (πt, ξ
i
t) = max

a
E[r̂it(πt, ξ

i
t, a) + J it+1(Πt+1,Ξ

i
t+1)|πt, ξit, a] (A.7b)

where expectation is w.r.t. γit and the conditional distribution in (A.5). Consequently the best
response of user i is of the form A∗,it ∼ ψit(·|ξit, πt). Note that in the standard MDP formulation, it
is sufficient to only consider the pure strategies. However, in equation (A.7), we see randomized
strategies. The reason of this modification is that in a PBE, the beliefs have to be consistent with the
equilibrium strategies and we need ψit(·|ξit, πt) = γ∗,it (·|ξit) = θit[πt](·|ξit). Hence, the best responses
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satisfy the following fixed point equation at each time t. For all i and all ξit we have

γ∗,i(·|ξit) ∈ arg max
γi(·|ξit)

E[r̂it(πt, ξ
i
t, A

i
t) + J it+1(Fπ(πt, γ

∗
t , At), F

i(ξit, πt, γ
∗,−i
t , At, X

i
t+1)))|πt, ξit],

(A.8)

where expectation is w.r.t. the distribution

P(at, x
i
t+1|πt, ξit) =

∫
ξ−it ,v

γit(a
i
t|ξit)γ

∗,−i
t (a−it |ξ−it )π−it (ξ−it |v)ξit(v)Qi

X(xit+1|v, at). (A.9)

The above fixed point might not have a solution in pure strategies and therefore, we had to consider
randomized strategies in equation (A.7).

A.5 Proof of Theorem 2

Throughout this proof, the submatrices that are not explicitly specified are all zero matrices with
appropriate dimensions.

In order to prove the theorem we will define a dynamical system from the viewpoint of a specific
user i and show inductively that it is a Gauss Markov model. Gaussianity of both private and
conditional public beliefs follows from KF-type arguments.

For each player i ∈ N , we define an unobserved state vector as

sit =
[
v ; v̂−it−1

]
, (A.10a)

and an observation vector
yit =

[
a−it−1 −m−it−1 ; xit

]
. (A.10b)

We will show that the random vector sit evolves according to a linear Gaussian process,

sit+1 = Ai
ts
i
t +

[
0

Di
t

]
ait−1 +

[
0

Hi
t

]
w−it +

[
0

dit

]
(A.11a)

yit = Ci
ts
i
t +

[
0

I

]
wit, (A.11b)
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where

Ai
t =

[
I 0

G−it

]
(A.11c)

Note that (yi1:t, a
i
1:t−1) is a shifted version of hit. We prove the validity of (A.11) and the claim of the

theorem using induction. In particular, Lemma 21 below is the induction basis and the subsequent
Lemma 22 is the induction step. This concludes the proof of the theorem.

Lemma 21. The following are true.

(a) ξi1 is Gaussian N(v̂i1,Σ
i
1), with v̂i1 = Σ(Σ + Qi)

−1
xi1 and Σi

1 = Σ−Σ(Σ + Qi)−1Σ. Conse-

quently the public belief πi1(ξ
i
1|v) reduces to πi1(v̂

i
1|v).

(b) (A.11) holds for t = 1.

(c) The public belief πi1(v̂
i
1|v) is Gaussian with mean E[V̂ i

1 |v] = Ei
1v+ f i1, with Ei

1 = Σ(Σ + Qi)−1,

f i1 = 0, and covariance matrix Σ(Σ + Qi)−1Qi(Σ + Qi)−1Σ.

Proof. (a) We have xi1 = v + wi1 and ξi1(v) = P(v|xi1), so due to joint Gaussianity of V and X i
1 we

have that ξi1 is N(v̂i1,Σ
i
1), with mean

v̂i1 = E[V |xi1]

= E[V ] + E[V X i′
1 ]E[X i

1X
i′
1 ]
−1

(xi1 − E[X i
1])

= Σ(Σ + Qi)
−1
xi1, (A.12)

and covariance matrix

Σi
1 = Σ−Σ(Σ + Qi)−1Σ. (A.13)

As a result the only private information of user i relevant to other users is v̂i1 and the public belief

πi1(ξ
i
1|v) can be reduced to πi1(v̂

i
1|v).

(b) We have si1 =
[
v ; 0

]
and si2 =

[
v ; v̂−i1

]
. The first row of (A.11a) is evidently true. For

the second row, using the result (from part (a)) v̂j1 = Σ(Σ + Qj)
−1

(v + wj1), we can derive G−i1 ,

Hi
1, Di

1 and di1 as

G−i1 =
[

Σ(Σ + Q−i)
−1

0
]

(A.14a)

Hi
1 = D(Σ(Σ + Q−i)

−1
) (A.14b)

Di
1 = 0 (A.14c)
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di1 = 0, (A.14d)

where Σ(Σ + Q−i)
−1 is the vertical concatenation of the matrices Σ(Σ + Qj)

−1 for j ∈ −i.
(c) Since v̂i1 = Σ(Σ + Qi)

−1
(v + wi1) we deduce that πi1(v̂

i
1|v) is Gaussian with mean E[V̂ i

1 |v] =

Σ(Σ + Qi)
−1
v and covariance matrix Σ̃i

1 = Σ(Σ + Qi)−1Qi(Σ + Qi)−1Σ.

Lemma 22. Assuming pure linear strategies of the form γjt (a
j
t |v̂

j
t ) = δ(ajt − Lj

t v̂
j
t −m

j
t) for all

j ∈ N , and assuming that (A.11) holds for t ≤ k and E[V̂ j
k |v, a1:k−1] = Ej

kv + f jk , the following

are true.

(a) ξik+1 is N(v̂ik+1,Σ
i
k+1) with

v̂ik+1 = Gi,i
k+1

[
v̂ik
xik+1

]
+ di,ik+1, (A.15)

where Gi,i
k+1, di,ik+1 and Σi

k+1 can be publicly evaluated. Consequently, the public belief πik+1(ξ
i
k+1|v)

can be reduced to a belief πik+1(v̂
i
k+1|v).

(b) (A.11) holds for t = k + 1.

(c) The conditional public belief, πik+1(v̂
i
k+1|v), are Gaussian with mean E[V̂ i

k+1|V, a1:k] = Ei
k+1V +

f ik+1 and covariance matrix Σ̃i
k+1, where matrices Ei

k+1 and Σ̃i
k+1 and vector f ik+1 can be publicly

evaluated.

Proof. (a) We first show one important result from the lemma assumptions. Notice that due to

conditional independence of xjk’s given v across time and players, and since v̂jk is a function of xj1:k
and a1:k−1, we have

ṽi,jk = E[V̂ j
k |x

i
1:k, a1:k−1]

= EV [E[V̂ j
k |V, x

i
1:k, a1:k−1]|xi1:k, a1:k−1]

= EV [E[V̂ j
k |V, a1:k−1]|x

i
1:k, a1:k−1]

= EV [Ej
kV + f jk |x

i
1:k, a1:k−1]

= Ej
kE[V |xi1:k, a1:k−1] + f jk

= Ej
kv̂

i
k + f jk . (A.16)

By using the assumption that (A.11) holds for t = k, we form a linear Gaussian model with

partial observations and use Kalman filter results [67, Ch.7]. Consider equation (A.11) for t = k.

By using standard Kalman filter results [67, Ch.7], we know that the belief over the system states

given the observations is Gaussian and therefore, the private belief ξik is N(v̂ik,Σ
i
k). We denote
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E[Sik+1|yi1:k+1, a
i
1:k] and E[Sik+1|yi1:k, ai1:k−1] by sik+1|k+1 and sik+1|k, respectively. We have

sik+1|k+1 = E[Sik+1|xi1:k+1, a1:k]

=

[
v̂ik+1

E[V̂ −ik |xi1:k+1, a1:k]

]

= Ai
ks
i
k|k +

[
0

Di
k

]
aik−1 + Jik+1(y

i
k+1 −Ci

k+1s
i
k+1|k) +

[
0

dik

]
. (A.17)

Therefore,

v̂ik+1 = v̂ik + (Jik+1)v̂i,:(y
i
k+1 −Ci

k+1s
i
k+1|k)

= v̂ik + (Jik+1)v̂i,:

[
a−ik −m

−i
k −D(L−ik )ṽi,−ik

xik+1 − v̂ik

]

= v̂ik + (Jik+1)v̂i,:

[
−D(L−ik )E−ik v̂

i
k

xik+1 − v̂ik

]
+ (Jik+1)v̂i,a−i(a

−i
k −m

−i
k −D(L−ik )f−ik )

= Gi,i
k+1

[
v̂ik
xik+1

]
+ di,ik+1, (A.18)

where

(Gi,i
k+1):,xi = (Jik+1)v̂i,xi (A.19a)

(Gi,i
k+1):,v̂i = I− (Jik+1)v̂i,a−iD(L−ik )E−ik − (Jik+1)v̂i,xi (A.19b)

di,ik+1 = (Jik+1)v̂i,a−i(a
−i
k −m

−i
k −D(L−ik )f−ik ). (A.19c)

The matrix Jik+1 and the covariance matrix of Sik+1 conditioned on yi1:k+1 and yi1:k, denoted by

Σi
k+1|k+1 and Σi

k+1|k, respectively, can be derived from the standard Kalman filter equations as

follows

Σi
k+1|k = Ai

kΣ
i
k|kA

i′
k +

[
0

Hi
k

]
D(Q−i)

[
0

Hi
k

]′
(A.20a)

Jik+1 = Σi
k+1|kC

i′
k+1(C

i
k+1Σ

i
k+1|kC

i′
k+1 +

[
0

I

]
Qi

[
0

I

]′
)−1 (A.20b)

Σi
k+1|k+1 = (I− Jik+1C

i
k+1)Σ

i
k+1|k (A.20c)

Σi
1|1 = E[Si1S

i′
1 ]− E[Si1X

i′
1 ](E[X i

1X
i′
1 ])−1E[Si1X

i′
1 ]′
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=

[
Σ 0

0 0

]
−

[
Σ

0

]
(Σ + Qi)−1

[
Σ 0

]
=

[
Σ−Σ(Σ + Qi)−1Σ 0

0 0

]
. (A.20d)

Note that, for notational simplicity, we remove the time subscripts from submatrix notation, so that

(Jik+1)v̂i,xi denotes (Jik+1)v̂ik+1,x
i
k
.

Finally, we have Σi
t = (Σi

t+1|t)v,v. Unlike v̂it, which is part of the private information of player

i, the matrix Σi
t is a public quantity due to the independence of equation (A.20c) to the private

observations of player i.

(b) Equation (A.11a) is obvious for the first part of the state, v. In order to prove the other parts of

equation (A.11a) for t = k + 1, we consider the dynamic system (A.11) for each of the players −i
for t = k and we write (A.18) for players −i. Since x−ik+1 is not part of yik+1, we can substitute it by

v + w−ik+1 and derive Gj
k+1, Di

k+1, Hi
k+1, and dik+1 for all j ∈ −i as

(Gj
k+1):,v = (Jjk+1)v̂j ,xj (A.21a)

(Gj
k+1):,v̂j = I− (Jjk+1)v̂j ,a−jD(L−jk )E−jk − (Jjk+1)v̂j ,xj (A.21b)

(Di
k+1)v̂j ,: = (Jjk+1)v̂j ,ai (A.21c)

(dik+1)v̂j = (Jjk+1)v̂j ,a−ij(a
−ij
k −m−ijk −D(L−ijk )f−ijk ) + (Jjk+1)v̂j ,ai(−m

i
k − Li

kf
i
k) (A.21d)

Hi
k+1 = D((J−ik+1)v̂−i,x−i). (A.21e)

The notation −ij means all of the players except i and j. We have derived the matrices Ai
k+1, Di

k+1,

Hi
k+1, and vector dik+1 and so (A.11) holds for t = k + 1.

(c) In order to show that the conditional public belief πik+1(v̂
i
k+1|v) is Gaussian, we consider a

conditional Gauss Markov model. Note that the conditional public belief is publicly measurable

conditioned on V . We use this fact to form a conditional model, where the observations are the

conditions in the conditional public belief and we derive conditional Kalman filters. Using (A.11)
for t ≤ k + 1, we can construct the following linear Gaussian model for t ≤ k + 1,

State:

s̃t =

[
v

v̂t−1

]
, (A.22a)

State Evolution:

s̃t+1 = Ãts̃t + H̃twt + d̃t, (A.22b)
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Observation:

ỹt =

[
v

at−1 −mt−1

]
= C̃tst, (A.22c)

where

Ãt =

 I 0

G̃t

 (A.23a)

(G̃t)v̂i,vv̂i = (Gi
t):,vv̂i , ∀i ∈ N (A.23b)

(H̃t)v̂i,wi = (Jit)v̂i,xi , ∀i ∈ N (A.23c)

(d̃t)v̂i = di,it , ∀i ∈ N (A.23d)

C̃t =

[
I 0

0 D(Lt−1)

]
. (A.23e)

Using this conditional Gauss Markov model, we can conclude that the conditional public beliefs

πjk+1(v̂
j
k+1|v) are Gaussian and by using Kalman filter results for t = k + 1, we can write

s̃k+2|k+1 = E[S̃k+2|ỹ1:k+1] = E[S̃k+2|v, a1:k]

= Ãk+1s̃k+1|k + Ãk+1J̃k+1(ỹk+1 − C̃k+1s̃k+1|k) + d̃k+1. (A.24)

Therefore,

E[V̂k+1|v, a1:k] = (G̃k+1):,vv + (G̃k+1):,v̂E[V̂k|v, a1:k−1]− (Ãk+1J̃k+1)v̂,aD(Lk)E[V̂k|v, a1:k−1]

+ (Ãk+1J̃k+1)v̂,a(ak −mk) + (d̃k+1)v̂. (A.25)

Using the assumption of E[V̂k|v, a1:k−1] = Ekv + fk, we have the following

E[V̂k+1|v, a1:k] = (G̃k+1):,vv + (G̃k+1):,v̂(Ekv + fk − (Ãk+1J̃k+1)v̂,aD(Lk)(Ekv + fk)

+ (Ãk+1J̃k+1)v̂,a(ak −mk) + (d̃k+1)v̂

= Ek+1v + fk+1, (A.26)

where

Ek+1 = (G̃k+1):,v + ((G̃k+1):,v̂ − (Ãk+1J̃k+1)v̂,aD(Lk))Ek (A.27a)
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fk+1 = ((G̃k+1):,v̂ − (Ãk+1J̃k+1)v̂,aD(Lk))fk + (Ãk+1J̃k+1)v̂,a(ak −mk) + (d̃k+1)v̂, (A.27b)

and similar to part (a) of the proof, the covariance matrix of S̃k+1 conditioned on ỹ1:k+1 and ỹ1:k,

denoted by Σ̃k+1|k+1 and Σ̃k+1|k, respectively, and the matrix J̃k+1 are derived from the following

Kalman filter equations.

Σ̃k+1|k = ÃkΣ̃k|kÃ
′

k + H̃kD(Q)H̃
′

k (A.28a)

J̃k+1 = Σ̃k+1|kC̃
′

k+1(C̃k+1Σ̃k+1|kC̃
′

k+1)
−1 (A.28b)

Σ̃k+1|k+1 = (I− J̃k+1C̃k+1)Σ̃k+1|k (A.28c)

Σ̃1|1 = E[S̃1S̃
′

1]− E[S̃1V
′](E[V V ′])−1E[S̃1V

′]′ = 0. (A.28d)

Note that if we know Σk+1|k, Σ̃k+1|k, Ek and fk, we can publicly evaluate all of the other quantities

defined in this proof for k + 1 for a given strategy matrices Lk and vectors mk and therefore, we

can find Σk+2|k+1, Σ̃k+2|k+1, Ek+1 and fk+1. We can also find Gi,i
k+1 and di,ik+1, which are used to

update v̂ik to v̂ik+1.

A.6 Proof of Theorem 3

We show that for any t ∈ T , if all players −i play according to the strategy γ−it (a−it |v̂−it ) =

δ(a−it −D(L−it )v̂−it −m−it ), where m−it = M−i
t ft +m−it , and the strategies of players are linear in

v̂k for k < t, player i faces an MDP with state (v̂it,Σt,Et, ft) and her best response is of the form
γit(a

i
t|v̂it) = δ(ait −D(Li

t)v̂
i
t −mi

t), where mi
t = Mi

tft +mi
t.

By using the results from Theorem 2, given the strategy profile γt, (v̂it,Σt,Et, ft) forms a
Markov chain. Notice that V̂ i

t+1,Σt+1,Et+1, ft+1 are updated by γt which is linear and therefore,
all results from Theorem 2 hold.

Lemma 23. One can write the expected value of the instantaneous reward R
i

t as

R
i

t = E[rit(V,At)|ait, v̂it,Σi
t,Et, ft] = qd(R

i

t;

 v̂it

ait

ft

) + b
i′
t

 v̂it

ait

ft

+ cit, (A.29)

where R
i

t, b
i

t and cit are constructed in the proof.

Proof. Since we assume all players −i play according to γ−it , we have

a−it = D(L−it )v̂−it + M−i
t ft +m−it ,
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and so the instantaneous reward can be rewritten as follows.

rit(v, at) = qd(Ri
t;

[
v

at

]
)

= qd(R̃i
t;


v

ait

v̂−it

ft

) + b̃i′t


v

ait

v̂−it

ft

+ c̃it, (A.30)

where

R̃i
t =

[
INv+Na 0 0

0 D(L−it ) M−i
t

]′
Ĩ′2,i+1R

i
tĨ2,i+1

[
INv+Na 0 0

0 D(L−it ) M−i
t

]
(A.31a)

Ĩ2,i+1 =


INv 0 0 0

0 0 I(i−1)Na 0

0 INa 0 0

0 0 0 I(N−i)Na

 , (A.31b)

and Ik is the identity matrix with size k × k.

b̃i′t = 2

[
0

m−it

]′
Ĩ′2,i+1R

i
tĨ2,i+1

[
INv+Na 0 0

0 D(L−it ) M−i
t

]
(A.31c)

c̃it =

[
0

m−it

]′
Ĩ′2,i+1R

i
tĨ2,i+1

[
0

m−it

]
. (A.31d)

We can now calculate the expected value of Ri as follows.

R
i

t = qd(R̃i
t;


v̂it

ait

ṽi,−it

ft

) + tr(R̃i
tΣ

i

t) + b̃i′t


v̂it

ait

ṽi,−it

ft

+ c̃it, (A.32)
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where

Σ
i

t =


Σi
t 0 Σi

tE
−i′
t 0

0 0 0 0

E−it Σi
t 0 (Σi

t+1|t)v̂−i,v̂−i 0

0 0 0 0

 . (A.33)

By using ṽi,−it = E−it v̂
i
t + f−it , we can derive the equations for R

i

t, b
i

t and cit.

R
i

t =


INv 0 0

0 INa 0

E−it 0 Î−i

0 0 INvN


′

R̃i
t


INv 0 0

0 INa 0

E−it 0 Î−i

0 0 INvN

 (A.34a)

b
i′
t = b̃i′t


INv 0 0

0 INa 0

E−it 0 Î−i

0 0 INvN

 (A.34b)

(̂I−i):,f−i = I(N−1)Nv (A.34c)

cit = tr(R̃i
tΣ

i

t) + c̃it, (A.34d)

In the next lemma, we show that the reward-to-go at time t is a quadratic functions of

[
v̂it

ft

]
and we will construct the strategy matrix and vector Li

t and mi
t.

Lemma 24. We have the following equation for the reward-to-go function, J it (v̂
i
t,Σt,Et, ft) =

qd(Zi
t;

[
v̂it

ft

]
) + zi′t

[
v̂it

ft

]
+ oit.

Note that the above equation only highlights the functionality of the reward-to-go with respect
to v̂it and ft. We do not care about its functionality with respect to Σt and Et due to two reasons.
First, they are part of the public part of the history and are not parameters of the partial strategies γ.
Second, they are not controlled by the actions. As we will see in the proof of this lemma, Zi

t, z
i
t and

oit are functions of Σt and Et.

Proof. We prove the lemma by backward induction. For T + 1, we have

J iT+1(v̂
i
T+1,ΣT+1,ET+1, fT+1) = 0
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and by setting Zi
T+1 = 0, ziT+1 = 0, oiT+1 = 0, the equation holds.

Assume that the lemma holds for t+ 1. We will show that it will also hold for t.

J it (v̂
i
t,Σt,Et, ft) = max

ait

Eγ
−i
t [rit(V,At) + J it+1(V̂

i
t+1,Σt+1,Et+1, ft+1)|ait, v̂it,Σt,Et, ft]

= max
ait

{qd(R
i

t;

 v̂it

ait

ft

) + b
i′
t

 v̂it

ait

ft

+ cit + Eγ
−i
t [qd(Zi

t+1;

[
V̂ i
t+1

ft+1

]
)

+ zi′t+1

[
V̂ i
t+1

ft+1

]
+ oit+1|ait, v̂it,Σt,Et, ft]}. (A.35)

First consider the J it+1 part.

Eγ
−i
t [qd(Zi

t+1;

[
V̂ i
t+1

ft+1

]
) + zi′t+1

[
V̂ i
t+1

ft+1

]
+ oit+1|ait, v̂it,Σt,Et, ft]

= Eγ
−i
t [qd(Zi

t+1; Ĝ
i
t+1


v̂it

ait

V̂ −it

X i
t+1

ft

+ ĝit+1) + zi′t+1(Ĝ
i
t+1


v̂it

ait

V̂ −it

X i
t+1

ft

+ ĝit+1)

+ oit+1|ait, v̂it,Σt,Et, ft]

= qd(Z
i

t+1;

 v̂it

ait

ft

) + zi′t+1

 v̂it

ait

ft

+ oit+1, (A.36)

where

(Ĝi
t+1)v̂i,v̂i = (Gi,i

t+1):,v̂i (A.37a)

(Ĝi
t+1)v̂i,v̂−i = (Jit+1)v̂i,a−iD(L−it ) (A.37b)

(Ĝi
t+1)v̂i,xi = (Gi,i

t+1):,xi (A.37c)

(Ĝi
t+1)v̂i,f−i = (Jit+1)v̂i,a−iD(L−it ) (A.37d)

(Ĝi
t+1)fj ,f−j = ((G̃t+1):,v̂ − (Ãt+1J̃t+1)v̂,aD(Lt))fj ,f−j

− (Jjt+1)v̂j ,a−jD(L−jt )− (Ãt+1J̃t+1)v̂j ,ai(M
i
t):,f−j − (Jjt+1)v̂j ,ai(M

i
t):,f−j , ∀j 6= i

(A.37e)

140



(Ĝi
t+1)fj ,fj = ((G̃t+1):,v̂ − (Ãt+1J̃t+1)v̂,aD(Lt))fj ,fj

− (Ãt+1J̃t+1)v̂j ,ai(M
i
t):,fj − (Jjt+1)v̂j ,ai(M

i
t):,fj , ∀j 6= i (A.37f)

(Ĝi
t+1)f i,f−i = ((G̃t+1):,v̂ − (Ãt+1J̃t+1)v̂,aD(Lt))f i,f−i

− (Jit+1)v̂i,a−iD(L−it )− (Ãt+1J̃t+1)v̂i,ai(M
i
t):,f−i (A.37g)

(Ĝi
t+1)f i,f i = ((G̃t+1):,v̂ − (Ãt+1J̃t+1)v̂,aD(Lt))f i,f i − (Ãt+1J̃t+1)v̂i,ai(M

i
t):,f i , ∀j 6= i

(A.37h)

(Ĝi
t+1)fj ,ai = (Jjt+1)v̂j ,ai + (Ãt+1J̃t+1)v̂j ,ai , ∀j 6= i (A.37i)

(Ĝi
t+1)f i,ai = (Ãt+1J̃t+1)v̂i,ai (A.37j)

(Ĝi
t+1)fk,v̂j = (Jkt+1)v̂k,ajL

j
t + (Ãt+1J̃t+1)v̂k,ajL

j
t , ∀j 6= i, ∀k 6= j (A.37k)

(Ĝi
t+1)fj ,v̂j = (Ãt+1J̃t+1)v̂j ,ajL

j
t , ∀j 6= i (A.37l)

(ĝit+1)f i = −(Ãt+1J̃t+1)v̂i,aim
i
t (A.37m)

(ĝit+1)fj = −(Ãt+1J̃t+1)v̂j ,aim
i
t − (Jjt+1)v̂j ,aim

i
t, ∀j 6= i, (A.37n)

and we have

Z
i

t+1 = Ti′
t+1Ĝ

i′
t+1Z

i
t+1Ĝ

i
t+1T

i
t+1 (A.38a)

Ti
t+1 =


INv 0 0

0 INa 0

E−it 0 Î−i

INv 0 0

0 0 INvN

 (A.38b)

zi′t+1 = (2ĝi′t+1Z
i
t+1Ĝ

i
t+1 + zi′t+1Ĝ

i
t+1)T

i
t+1 (A.38c)

oit+1 = ĝi′t+1Z
i
t+1ĝ

i
t+1 + tr(Ĝi′

t+1Z
i
t+1Ĝ

i
t+1Σ̂

i
t+1) + zi′t+1ĝ

i
t+1 + oit+1 (A.38d)

Σ̂i
t+1 = Cov(


v̂it

ait

V̂ −it

X i
t+1

ft

 |a
i
t, v̂

i
t,Σt,Et, ft) (A.38e)

(Σ̂i
t+1)v̂−ixi,v̂−ixi =

[
(Σi

t+1|t)v̂−i,v̂−i E−it Σi
t

Σi
tE
−i′
t Σi

t + Qi

]
. (A.38f)
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Therefore, one can write the expected reward-to-go as follows.

J it (v̂
i
t,Σ

i
t,Et, ft)

= max
ait

{qd(R
i

t;

 v̂it

ait

ft

) + b
i′
t

 v̂it

ait

ft

+ cit + qd(Z
i

t+1;

 v̂it

ait

ft

) + zi′t+1

 v̂it

ait

ft

+ oit+1}

= max
ait

{qd(R
i

t + Z
i

t+1;

 v̂it

ait

ft

) + (b
i′
t + zi′t+1)

 v̂it

ait

ft

+ cit + oit+1}. (A.39)

The above equation is quadratic with respect to ait and therefore, if (R
i

t + Z
i

t+1)ai,ai is negative

definite, the maximum value is achieved when the gradient of the above equation with respect to ait
is zero.

2(R
i

t + Z
i

t+1)ai,aia
i
t + 2(R

i

t + Z
i

t+1)ai,v̂if

[
v̂it

ft

]
+ (b

i

t + zit+1)ai = 0 (A.40a)

⇒ ait = −(R
i

t + Z
i

t+1)
−1
ai,ai

((R
i

t + Z
i

t+1)ai,v̂if

[
v̂it

ft

]
+

1

2
(b
i

t + zit+1)ai). (A.40b)

Finally, we can derive the best response strategy of player i to be γit(·|v̂it) = δ(ait − Li
tv̂
i
t −mi

t)

where

Li
t = −(R

i

t + Z
i

t+1)
−1
ai,ai

(R
i

t + Z
i

t+1)ai,v̂i (A.41a)

mi
t = −(R

i

t + Z
i

t+1)
−1
ai,ai

((R
i

t + Z
i

t+1)ai,fft +
1

2
(b
i

t + zit+1)ai). (A.41b)

Note that we have mi
t = Mi

tft +mi
t, where

Mi
t = −(R

i

t + Z
i

t+1)
−1
ai,ai

(R
i

t + Z
i

t+1)ai,f (A.41c)

mi
t = −1

2
(R

i

t + Z
i

t+1)
−1
ai,ai

(b
i

t + zit+1)ai . (A.41d)

By substituting the best response action in the reward-to-go equation (A.39), we have the following

final step of the proof.

J it (v̂
i
t,Σt,Et, ft) = qd(Zi

t;

[
v̂it

ft

]
) + zi′t

[
v̂it

ft

]
+ oit, (A.42)
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where

Zi
t = T̂i′

t (R
i

t + Z
i

t+1)T̂
i
t (A.43a)

T̂i
t =

 INv 0

Li
t Mi

t

0 INvN

 (A.43b)

zi′t = 2m̂i′
t (R

i

t + Z
i

t+1)T̂
i
t + (b

i′
t + zi′t+1)T̂

i
t (A.43c)

m̂i
t =

 0

mi
t

0

 (A.43d)

oit = m̂i′
t (R

i

t + Z
i

t+1)m̂
i
t + (b

i′
t + zi′t+1)m̂

i
t + cit + oit+1. (A.43e)

Note that in order to derive the γit strategy matrix and vector, Li
t and mi

t, we need to know L−it

and m−it . Clearly, the same is true for calculating L−it and m−it . On the other hand, some of the

quantities used in the proof, like Ĝi
t+1, require Li

t and mi
t to be evaluated. Therefore, we have a

fixed point equation over Lt and mt.

Note that we have such linear solution only if the matrix (R
i

t + Z
i

t+1)ai,ai is invertible and

negative semidefinite for all i ∈ N .

We conclude the proof of the theorem by noting that in Lemma 24, we proved that the reward to

go is a quadratic function of

[
v̂it

ft

]
and as a result and throughout the proof, we showed that the

strategies that are linear in terms of

[
v̂it

ft

]
form equilibria of the game and the theorem is proved.
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APPENDIX B

Proofs for Chapter 3

B.1 Proof of Lemma 2

Proof. The proof follows by induction. For t = 0 we have

π0(x, v) = Ps(x, v|n0) = Q(v)
N∏
m=1

Q(xm|v).

Assuming that πt−1(x, v) = πt−1(v)
∏N

m=1 πt−1(x
m|v) we have

πt(x, v) = Ps(x, v|a0:t−1, n0:t) (B.1a)

=
Ps(x, v,at−1, nt|a0:t−2, n0:t−1)

Ps(at−1, nt|a0:t−2, n0:t−1)
(B.1b)

=
(1/N)Ps(at−1|x, v,a0:t−2, n0:t−1)Ps(x, v|a0:t−2, n0:t−1)

Ps(at−1, nt|a0:t−2, n0:t−1)
(B.1c)

=
(1/N)

(∏N
m=1 1γmt−1(x

m)(a
m
t−1)
)
πt−1(x, v)∑

x,v(1/N)
(∏N

m=1 1γmt−1(x
m)(amt−1)

)
πt−1(x, v)

(B.1d)

=

(∏N
m=1 1γmt−1(x

m)(a
m
t−1)
)
πt−1(v)

∏N
m=1 πt−1(x

m|v)∑
x,v

(∏N
m=1 1γmt−1(x

m)(amt−1)
)
πt−1(v)

∏N
m=1 πt−1(x

m|v)
(B.1e)

=

(∏N
m=1 1γmt−1(x

m)(a
m
t−1)πt−1(x

m|v)
)
πt−1(v)∑

v

(∏N
m=1

∑
xm 1γmt−1(x

m)(amt−1)πt−1(x
m|v)

)
πt−1(v)

. (B.1f)

The conditional distribution of X given V and hct can now be written as

πt(x|v) =

∏N
m=1 1γmt−1(x

m)(a
m
t−1)πt−1(x

m|v)∑
x

(∏N
m=1 1γmt−1(x

m)(amt−1)πt−1(x
m|v)

) (B.2a)
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=
N∏
m=1

1γmt−1(x
m)(a

m
t−1)πt−1(x

m|v)∑
xm 1γmt−1(x

m)(amt−1)πt−1(x
m|v)

(B.2b)

=
N∏
m=1

πt(x
m|v), (B.2c)

where the second equality follows since given V , {xm} are independent, so the expectation of

the product is the product of the expectations. This completes the induction step proving that

X1, . . . , XN are conditionally independent given v,hct , which gives (3.17). Furthermore, (B.2c)
provides an update equation for the conditional beliefs as

πt(x
m|v) =

1γmt−1(x
m)(a

m
t−1)πt−1(x

m|v)∑
xm 1γmt−1(x

m)(amt−1)πt−1(x
m|v)

=

πt−1(xm|v), m 6= nt−1 or γmt−1 6= I

1xm+1
2

(amt−1), m = nt−1 and γmt−1 = I.
(B.3a)

Consequently, if player m has not yet revealed her information up to time t, then πt(xm|v) = · · · =
π0(x

m|v) = Q(xm|v). Alternatively, if player m has revealed her information before time t, we

have πt(xm|v) = 1x̃m(xm), thus proving (3.18).
Now, marginalizing (B.1a) w.r.t. x we have

πt+1(1)

πt+1(−1)
=

∏N
m=1

∑
xm 1γmt (xm)(a

m
t )πt(x

m|1)∏N
m=1

∑
xm 1γmt (xm)(amt )πt(xm| − 1)

πt(1)

πt(−1)
(B.4a)

=

∑
xnt 1γt(xnt )(a

nt
t )πt(x

nt |1)∑
xnt 1γt(xnt )(a

nt
t )πt(xnt| − 1)

πt(1)

πt(−1)
, (B.4b)

where the last equality is due to the fact that for all non-acting players m 6= nt we have γmt = 0.

Hence, for m 6= nt we always have 1γt(xm)(a
m
t ) = 1, and then

∑
πt (xm | ±1) = 1 so these terms

have no effect on the products in the numerator and denominator. Furthermore, if γt 6= I or the

acting player has already revealed her information, the multiplicative factor reduces to 1. Else, the

factor becomes ∑
xnt 1xnt+1

2
(antt )Q(xnt |1)∑

xnt 1xnt+1
2

(antt )Q(xnt | − 1)
=

Q(2antt − 1|1)

Q(2antt − 1| − 1)
= q2a

nt
t −1, (B.4c)

which gives (3.19). We derive (3.20) by repeating the substitution of (B.4c) for all n, and using

Q(1) = Q(−1) = 1
2
.
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B.2 Proof of Theorem 1

Proof. For clarity, we first prove the result with π replacing x̃ all throughout FPE 1, and then use the

fact that π can be computed from x̃. Let us assume that all players other than player n play according

to γ∗t = θ[nt, πt, bt], i.e., so if at time t we have nt 6= n then antt = γ∗t (x
nt) = θ[nt, πt, bt](x

nt).

Let us further assume that the update of the belief πt is fixed to πt+1 = F (πt, γ
∗
t , a

nt
t , nt) =

F (πt, θ[nt, πt, bt], a
nt
t , nt) =: F θ(πt, nt, a

nt
t , bt). We will show that the optimization problem faced

by player n can be formulated as a Markov decision process (MDP). For this we will define a

state, action, and instantaneous reward of a dynamical system as follows. The state of the system

is defined as λt = (xn, nt, πt, bt). Further, the action space is defined according to (3.7), where

at each time t, player n takes the action ant ∈ An(bnt , nt) and receives an expected instantaneous

reward of R(λt, a
n
t ) = ant

∑
v vµ

n(v).

We first show that (Λt)t is a controlled Markov process with actions ant , i.e.,

P(Λt+1|Λ1:t, a
n
1:t) = P(Λt+1|Λt, a

n
t ). (B.5)

Indeed,

P(Λt+1|Λ1:t, a
n
1:t) = P(xn, nt+1, πt+1, bt+1|xn, n1:t, π1:t, b1:t, a

n
1:t) (B.6a)

= 1xn(xn)
1

N
Qb(bt+1|xn, nt, πt, bt, ant )Qπ(πt+1|xn, nt, πt, bt, ant ), (B.6b)

where the kernels Qb and Qπ are defined through

Qb(bt+1|xn, nt, πt, bt, ant ) = Qbn(bnt+1|bnt , ant )
N∏

m=1,m 6=n

Qb−n(bmt+1|xn, nt, πt, bt) (B.7a)

with

Qbn(bnt+1 = 1|bnt , ant ) =

{
1, bnt = 1, or ant = 1

0, else
(B.7b)

Qb−n(bmt+1 = 1|xn, nt, πt, bt) =

1m(nt)
∑

xm µ
n(xm)1θ[nt,πt,bt](xm)(1), bmt = 0

1, bmt = 1
(B.7c)
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and

Qπ(πt+1|xn, nt, πt, bt, ant ) =


∑
xnt
µn(xnt)1F θ(πt,nt,θ[nt,πt,bt](xnt ),bt)(πt+1), nt 6= n

1F θ(πt,nt,ant ,bt)(πt+1), nt = n.
(B.7d)

It is exactly the above equation that reveals why the belief update has to be fixed in order to prove

that player n faces an MDP. If that were not the case, the above equation would require that the

belief is updated through an expression of the form πt+1 = F (πt, γt, a
nt
t , nt) which would require to

include the partial function γt in the action space for the case nt = n as opposed to only including

the action ant . We have now proved (B.5). Hence, the state process (Λt)t with the reward R(Λt, a
n
t )

form an infinite horizon MDP and so the optimal pure strategy can be derived from the following

FPE for the state Λ = (xn, na, π, b),

a∗n = γ∗(xn) = arg max
an∈An(bn,na)

{
an
∑
v

vµn(v) + δE [V n(xn, N ′a,Π, B)|xn, na, π, b, an]

}
, (B.8a)

where na denotes the acting player and N ′a, Π and B are random variables for the next state

elements and the expectation is according to the transition kernels (B.7). Furthermore,

V n(xn, na, π, b) = max
an∈An(bn,na)

{
an
∑
v

vµn(v) + δE [V n(xn, N ′a,Π, B)|xn, na, π, b, an]

}
.

(B.8b)

Next, we need to show that the above FPE is equivalent to FPE 1. We first show that for all

xn, n, π, b−n,

V n(xn, na, π, b
n = 1, b−n) = 0.

According to the action space defined in (3.7), if bn = 1, An(bn, na) = {0}. This means that

the instantaneous reward at this state is 0. On the other hand, according to the transition kernel

of b in (B.7), this state is absorbing in terms of bn, which means that bn = 1 for all future

states too. This will cause player n to have 0 rewards in all of the upcoming states and so

V n(xn, na, π, b
n = 1, b−n) = 0. The above implies that player n faces a stopping time problem.

If n is the acting player (n = na), then FPE (B.8) is indeed choosing between buying and
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getting the instantaneous reward
∑

v vµ
n(v), or waiting and getting

δE [V n(xn, N ′a,Π, B)|xn, na, π, b, an] =
δ

N

N∑
n′a=1

V n (xn, n′a, F (π, γ∗, 0, n) , b)

using the transition kernels in (B.7). Hence, for n = na, FPE (B.8) is equivalent to (3.21a) and the

first three cases of (3.21b).
If n is not the acting player (n 6= na), since An(bn, na) = {0} then

V n(xn, na, π, b) = δE [V n(xn, N ′a,Π, B)|xn, na, π, b, an] .

According the transition kernels (B.7),

δE [V n(xn, N ′a,Π, B)|xn, na, π, b, an] =
δ

N

N∑
n′a=1

E
[
V n(xn, n′a,Π, (B

na , b−na))|xn, na, π, b, an
]
,

and Π = F (π, γ∗, γ∗(Xna), na) with probability 1. Thus,

V n(xn, na, π, b) =
δ

N

N∑
n′a=1

E{V n(xn, n′a, F (π, γ∗, γ∗(Xna), na), B
nab−na)|xn, na, π, b, an},

which is the fourth case of (3.21b). Next, note that the transition kernel of Bna in (B.7b) is the

same is in (3.21c). It is now a simple task to construct the PBE by the forward algorithm in (3.22)
following each information set recursively (we are also using the fact that the private variables

X1, . . . , XN are independent conditioned on V , as shown in Lemma 2). The proof is completed

by showing that π can be computed using x̃. In particular, using (3.20) in Lemma 2, and (3.16)
in (3.21a) we substitute

π(1 |xn) =
q
∑
m x̃m−x̃n+xn

1 + q
∑
m x̃m−x̃n+xn . (B.9)

Similarly, using (3.18) in Lemma 2, in (3.21e) we get (3.21d).

B.3 Computing a PBE though a polynomial-dimensional FPE

Owing to the symmetry of the problem we define the set K = {00,−10, 01,−11,+11} where
the elements of this set are all possible values that the pair x̃ibi can take for each player i. Note that
+10 can never happen under any strategy so it is not included in the set. So players are grouped
into 5 groups according to their value of the pair x̃ibi. We define the joint type (scaled empirical

148



distribution), tx̃b of the sequence (x̃, b) as

tx̃b(k) =
N∑
i=1

1x̃ibi(k), ∀k ∈ K. (B.10)

Clearly for every type t, t(k) ≥ 0 and
∑

k∈K t(k) = N , so there are exactly
(
N+4
4

)
∼ N4 such

possible types.
Note that with the above definition, the aggregate state information y =

∑N
i=1 x̃i equals to

y = t(+11)− t(−10)− t(−11).
We define the following functions Ua : X ×K × T → R, and U l

na : X ×K × T → R for all
l ∈ K. The meaning of these functions is as follows. Ua(x, k, t) denotes the value function of the
acting player n whose private information xn = x, her pair x̃nbn = k (and so she belongs to group
k) and the joint type of the sequence (x̃, b) is t. Similarly, U l

na(x, k, t) denotes the value function of
a non-acting player m whose private information xm = x, her pair x̃mbm = l (and so she belongs to
group l), with an acting player n whose pair x̃nbn = k (i.e., belonging to group k), and the joint
type of the sequence (x̃, b) is t.

Finally we define the update functions gx, gb, and gt as follows

gx(kx, γ, a) =

{
2a− 1 , if kx = 0 and γ = I

kx , else
, (B.11a)

gb(kb, a) =

{
a , if kb = 0

kb , else
, (B.11b)

gt(k, t, γ, a)(k′) =


t(k′)− 1 , if k′ = k and gxb(k, γ, a) 6= k

t(k′) + 1 , if k′ = gxb(k, γ, a) and gxb(k, γ, a) 6= k

t(k′) , else

(B.11c)

where we use the notation k = kxkb to decompose the two parts of the k index, and with the
understanding that we also use the notation gefg to denote (ge, gf , gg) for any e, f, g ∈ {x, b, t}.

We consider the following FP equation in FPE 3.

Fixed-Point Equation 3 (Polynomial dimension). For every k = kxkb ∈ K, t ∈ T we evaluate

γ∗ = φ[k, t] as follows.

• If kb = 1 then γ∗ = 0.

149



• If kb = 0 then γ∗ is the solution of the following system of equations

γ∗(x) = arg max{ A︸︷︷︸
0=don’t buy

,
qy+x10(kx) − 1

qy+x10(kx) + 1︸ ︷︷ ︸
1=buy

} ∀x ∈ X , (B.12a)

where

A =
δ

N
Ua(x, g

xbt(k, t, γ∗, 0)) +
δ

N

∑
k′∈K

[t(k′)− 1k(k′)]U gxb(k,γ∗,0)
na (x, k′, gt(k, t, γ∗, 0))]

(B.12b)

where the value functions satisfy

Ua(x, k, t) =


0, if kb = 1

A, if kb = 0, γ∗(x) = 0
qy+x10(kx)−1
qy+x10(kx)+1

, if kb = 0, γ∗(x) = 1

, (B.12c)

and for all l = lxlb ∈ K

U l
na(x, k, t)

=



0, if lb = 1

δ

N
E[Ua(x, l, g

t(k, t, γ∗, γ∗(Xn)))] +
δ

N
E[U l

na(x, g
xbt(k, t, γ∗, γ∗(Xn)))]

+
δ

N

∑
k′∈K

[t(k′)− 1k(k′)− 1l(k′)]E[U l
na(x, k

′, gt(k, t, γ∗, γ∗(Xn)))], if lb = 0,

(B.12d)

where expectation in the last equation is w.r.t. the RV Xn where

P (Xn = xn|l, x, k, t) =

{
1kx(xn), if kx 6= 0
Q(xn|−1)+Q(xn|1)qy+x10(lx)

qy+x10(lx)+1
, else.

(B.12e)

�

We will now show that if the above FPE has a solution U∗, then the original FPE has a solution
V ∗ where V ∗ can be readily derived from U∗.

Given the solution U∗ of the above FP equation (together with the strategy φ) we construct the
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following strategies and value functions.

γ∗ = θ[n, x̃, b] = φ[x̃nbn, tx̃,b] (B.13a)

Ṽ m(·, n, x̃, b) =

{
Ua(·, x̃nbn, tx̃,b), if m = n

U x̃mbm

na (·, x̃nbn, tx̃,b), if m 6= n
. (B.13b)

We will show that these value functions are solutions of the original FPE 1.

Theorem 9. The value functions (Ṽ m)m∈N together with the strategy mapping γ∗ = φ[·] satisfy

FPE 1.

Proof. Fix n, x̃, and b that result in a type t with accumulated state y. The acting player n belongs

to a group k = kxkb = x̃nbn. If bn = 1 then kb = 1 and γ∗ = 0. If bn = 0 then it is clear that

the second term in (3.21a) becomes qy+x
n10(kx)−1

qy+x
n10(kx)+1

, which is exactly the same as the second term

in (B.12b) (with xn = x). Consider the first term in (3.21a). The new group of the acting player

n is k̂ = (f(x̃n, γ∗, 0), 0) = gxb(k, γ∗, 0) and the new value for the overall type will change to

t̂ = gt(k, t, γ∗, 0). The implication of the above is that the first term in (3.21a) will be

N∑
n′=1

Ṽ n(xn, n′,
(
x̃−n, f(x̃n, γ∗, 0)

)
(b−n, 0))

= Ṽ n(xn, n,
(
x̃−n, f(x̃n, γ∗, 0)

)
, (b−n, 0)) +

N∑
n′=1,n′ 6=n

Ṽ n(xn, n′,
(
x̃−n, f(x̃n, γ∗, 0)

)
, (b−n, 0))

= Ua(x
n, k̂, t̂) +

N∑
n′=1,n′ 6=n

U k̂
na(x

n, x̃n
′
bn
′
, t̂)

= Ua(x
n, k̂, t̂) +

∑
k′∈K

N∑
n′=1,n′ 6=n,x̃n′bn′=k′

U k̂
na(x

n, x̃n
′
bn
′
, t̂)

= Ua(x
n, gxbt(k, t, γ∗, 0)) +

∑
k′∈K

[t(k′)− 1k(k′)]U gxb(k,γ∗,0)
na (xn, k′, gt(k, t, γ∗, 0)), (B.14)

where the term t(k′)−1k(k′) enumerates all players n′ 6= n in the vector (x̃−n, f(x̃n, γ∗, 0)) , (b−n, 0)

which are given by the original type t subtracting one from the group of the acting player. This is

exactly the expression in (B.12b) and thus (3.21a) is satisfied.

Now consider (3.21b). Fix m and denote the group of the m-th player by l = lxlb = x̃mbm. The

first three branches of this equation are obviously satisfied. Regarding the fourth branch we know
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that the new group of the acting player n will be K̂ = f(x̃n, γ∗, γ∗(Xn)), B′n = gb(kb, γ
∗(Xn)) and

the new type will be T̂ = gt(k, t, γ∗, γ∗(Xn)). The left-hand side of (3.21b) becomes U l
na(x

m, k, t)

with lb = 0. The right-hand side becomes

N∑
n′=1

E
[
V m

(
xm, n′,

(
x̃−n, f (x̃n, γ∗, γ∗ (Xn))

)
, (b−n, B′n)

)]
= E

[
V m

(
xm,m,

(
x̃−n, f (x̃n, γ∗, γ∗ (Xn))

)
, (b−n, B′n)

)]
+ E

[
V m

(
xm, n,

(
x̃−n, f (x̃n, γ∗, γ∗ (Xn))

)
, (b−n, B′n)

)]
+

N∑
n′=1,n′ 6=m,n

E
[
V m

(
xm, n′,

(
x̃−n, f (x̃n, γ∗, γ∗ (Xn))

)
, (b−n, B′n)

)]
= E[Ua(x

m, l, T̂ )] + E[U l
na(x

m, K̂, T̂ )] +
∑
k′∈K

N∑
n′=1,n′ 6=n,m, x̃n′bn′=k′

E[U l
na(x

m, x̃n
′
bn
′
, T̂ )]

= E[Ua(x
m, l, gt(k, t, γ∗, γ∗(Xn)))] + E[U l

na(x
m, gxbt(k, t, γ∗, γ∗(Xn)))]

+
∑
k′∈K

[t(k′)− 1k(k′)− 1l(k′)]E[U l
na(x

m, k′, gt(k, t, γ∗, γ∗(Xn)))]. (B.15)

This is exactly the expression in (B.12d) and thus (3.21b) is satisfied.

We remark at this point that this method can be generalized for heterogeneous players with
different values of δ. All is needed is to consider joint types of the vectors x̃, b, δ. The corresponding
dimensionality of the FP equation will be ∼ N4Kδ where Kδ is the number of different types of δ.

B.4 Proof of Theorem 2

Proof. Fix n, x̃ that results in population parameters y and w. The acting player has either not

revealed her information (x̃n = 0) or she has revealed a bad signal (x̃n = −1), since otherwise

she would have already bought the product and must play an = 0. This implies that x̃n = −r.
It is then clear that the first term in (3.21a) becomes qy+r+x

n−1
qy+r+xn+1

, which is exactly the same as the

first term in (3.26a) (with xn = x). Consider the second term in (3.21a). The new parameter of

the acting player n is r̂ = |f(x̃n, γ∗, 0)| = Gr(r, γ∗). Define the new population parameters by

ŷ = Gy (r, y, γ∗, 0) and ŵ = Gw (r, w, γ∗, 0). The implication of the above is that the second term

in (3.21a) will be (apart for the δ/N factor)

N∑
n′=1

Ṽ n
(
xn, n′, x̃−nf(x̃n, γ∗, 0), (b−n, 0)

)
(B.16a)
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= Ṽ n
(
xn, n, x̃−nf (x̃n, γ∗, 0) , (b−n, 0)

)
+

N∑
n′=1,n′ 6=n

Ṽ n
(
xn, n′, x̃−nf (x̃n, γ∗, 0) , (b−n, 0)

)
(B.16b)

= Ua (xn, r̂, ŷ, ŵ) +
N∑

n′=1,n′ 6=n

U r̂
na

(
xn, zn

′
, ŷ, ŵ

)
(B.16c)

= Ua (xn, r̂, ŷ, ŵ) +
N∑

n′=1,n′ 6=n,zn′=0

U r̂
na (xn, 0, ŷ, ŵ) +

N∑
n′=1,n′ 6=n,zn′=1

U r̂
na (xn, 1, ŷ, ŵ) (B.16d)

= Ua (xn, r̂, ŷ, ŵ) + (N − w − 1 + r)U r̂
na (xn, 0, ŷ, ŵ) + (w − r)U r̂

na (xn, 1, ŷ, ŵ)

= Ua (xn, Gryw(r, y, w, γ∗, 0)) + (N − w − 1 + r)UGr(r,γ∗)
na (xn, 0, Gyw(r, y, w, γ∗, 0))

+ (w − r)UGr(r,γ∗)
na (xn, 1, Gyw(r, y, w, γ∗, 0)) . (B.16e)

This is exactly the expression in (3.26b) so (3.21a) is satisfied. Now consider (3.21b). Fix m

and denote the parameter of the m-th player by r̃ = |x̃m|. The first three branches of this

equation are obviously satisfied. Regarding the fourth branch we know that the new parameter

of the acting player n will be Ẑ = Gz(z, γ∗, γ∗(Xn)) and the new population parameters will be

(Ŷ , Ŵ ) = Gyw(z, y, w, γ∗, γ∗(Xn)). The left-hand side of (3.21b) becomes U r̃
na(x

m, z, y, w). The

right-hand side is as follows.

N∑
n′=1

E
[
V m

(
xm, n′, x̃−nf (x̃n, γ∗, γ∗ (Xn)) , (b−n, B′n)

)]
= E

[
V m

(
xm,m, x̃−nf (x̃n, γ∗, γ∗ (Xn)) , (b−n, B′n)

)]
+ E

[
V m

(
xm, n, x̃−nf (x̃n, γ∗, γ∗ (Xn)) , b−nB′n

)]
+

N∑
n′=1,n′ 6=m,n

E
[
V m

(
xm, n′, x̃−nf (x̃n, γ∗, γ∗ (Xn)) , (b−n, B′n)

)]
= E[Ua(x

m, r̃, Ŷ , Ŵ )] + E[U r̃
na(x

m, Ẑ, Ŷ , Ŵ )] +
N∑

n′=1,n′ 6=n,m, zn′=1

E[U r̃
na(x

m, 1, Ŷ , Ŵ )]

+
N∑

n′=1,n′ 6=n,m, zn′=0

E[U r̃
na(x

m, 0, Ŷ , Ŵ )]

= E[Ua(x
m, r̃, Gyw(z, y, w, γ∗, γ∗(Xn)))] + E[U r̃

na(x
m, Gzyw(z, y, w, γ∗, γ∗(Xn)))]

+ (w − z − r̃)E[U r̃
na(x

m, 1, Gyw(z, y, w, γ∗, γ∗(Xn)))]
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+ (N − w − 2 + z + r̃)E[U r̃
na(x

m, 0, Gyw(z, y, w, γ∗, γ∗(Xn)))]. (B.17)

This is exactly the expression in (3.26g) and thus (3.21b) is satisfied.

B.5 Proof of Lemma 3

First, we show that whenever γ∗ = φ[0, y, w] = 0, the valuation functions are all 0 and we must
have γ∗ = φ[1, y, w] = 0. According to FPE 2, at the state (x, r, y, w) we have

A =
δ

N
Ua (x, r, y, w) +

δ

N
(N − w − 1 + z)U r

na (x, 0, y, w) +
δ

N
(w − z)U r

na (x, 1, y, w) ,

where for both z̃ = 0, 1,

U r
na (x, z̃, y, w) =

δ

N
Ua (x, r, y, w) +

δ

N
(N − w − 1 + z)U r

na (x, 0, y, w)

+
δ

N
(w − z)U r

na (x, 1, y, w) .

and since γ∗ = φ[r, y, w] = 0, we should have Ua (x, r, y, w) = A. Therefore, we can solve for
Ua (x, r, y, w), U r

na (x, 0, y, w), U r
na (x, 1, y, w) and A in above equations. It is easy to see that the

solution for all of these quantities is 0 and hence, A = 0. Therefore, Ua (x, r, y, w) = 0 and it is
obvious that for y < −2, players strictly prefer to wait since the expected value of instantaneous
reward is negative and they prefer to get A, which is 0. Further, for y = −2, players with r = 0 or
r = 1 and x = −1 strictly prefer to wait. A player with r = 1 and x = 1 is indifferent between
buying and not buying. The reason is that a player with r = 1 that gets to play again, must have
revealed x = −1. Therefore, if x = 1, the player is at an off-equilibrium point and according
to equation (3.16), she forms her true belief by canceling out what she has revealed and then
augmenting the belief by her private information. In terms of y, this is translated into using y− x̃+x

to form the belief over V . For y = −2, a player with r = 1 and x = 1 uses y − (−1) + 1 = 0 to
form her belief over V . Thus, the expected value of her instantaneous reward is 0. It completes the
proof of the third part of the theorem.

Now consider δ = 1. Assume that γ∗ = φ[r, y, w] is a solution of FPE 2. According to γ∗,
define player n’s terminating states to be the (r, y, w) values for which player n decides to either
buy the product (and leave the game) or to not buy it ever after, i.e., playing γ∗ = 0 when everyone
else is (which means that the player practically leaves the game). At each state of the game, γ∗

imposes a probability distribution on the future terminating states of the game that are reached by
not buying decision of the acting player. So at each state, a player compares the expected value of
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V with the expected valuation she can get in future by not buying, which is an average between
the value of V at the terminating states where she buys the product, and zero, corresponding to the
terminating states she decides not to buy the product ever.

Lemma 5. Assume that according to γ∗ = φ[r, y, w], the acting player will buy the product in all

of the future terminating states (the ones with positive probability to happen if the acting player

decided not to buy). Then, the player is indifferent between buying and not buying the product for

δ = 1. Otherwise, she strictly prefers to wait for δ = 1.

Proof. According to FPE 2, the acting player compares the expected value of v with the average of

expected values of v in future terminating states with positive probability to happen if the acting

player decided not to buy. More formally, if we denote the current state by s and the future

terminating states that happen with positive probability if the player does not buy with s1, ..., sk,

then we have

γ∗(x) = arg max

{
k∑
j=1

E[v|sj]p(sj|s),E[v|s]

}
(B.18)

By the law of total expectation, we know that the above terms are always equal to each other, no

matter what the states s1, ...sk are and with what probability they happen. The only requirement is

that at all of the states s1, ...sk the player decides to buy the product. Therefore, if a player finds

herself in a state s that could lead to terminating states s1, ...sk (by not buying), in all of which she

will decide to buy the product (according to γ∗), she is in fact indifferent between buying and not

buying at the current state for δ = 1.

Next, assume that at one of the terminating states s1, ...sk, let’s say sj , the player strictly prefer

not to buy the product, she will receive zero valuation at sj and therefore, the expected value of v

should have been negative at sj . Hence, by substituting zero instead of E[v|sj] in equation (B.18),
we get a term that is greater than E[v|s]. It means that the expected valuation of not buying is

greater than the expected value of v at the current state s which implies that the player strictly

prefers not to buy the product. The same argument holds if in more than one future terminating

states the player strictly prefers not to buy.

Lemma 6. Assume that according to γ∗, we know that for state s, there exists at least one future

terminating state sj (with positive probability to happen if the acting player does not buy the

product), at which the acting player strictly prefers not to buy the product, then she strictly prefers

to wait at the state s for large enough δ ≤ 1.
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Proof. According to the proof of the second part of Lemma 5, for δ = 1, the acting player strictly

prefers to wait. Hence, there exists large enough δ < 1 for which the acting player still strictly

prefers to wait.

Next, we prove the first two parts of the theorem. We first characterize the equilibrium strategies
for w = N . It is evident what the equilibrium is for w = N , because all of the states are
absorbing and players act based on the expected instantaneous reward. For any value of δ, we have
γ∗ = φ[1, y,N ] = 0 for1 y ≤ −2 , γ∗ = φ[1, y,N ] = I for y = −1 and γ∗ = φ[1, y,N ] = 1 for
y ≥ 0. We also know that γ∗ = φ[r, y, w] = 0 for y ≤ −2. In order to prove the theorem, we
investigate the terminating states for all states of the game with y ≥ −1. Since γ∗ = 0 is played at
y = −2, all states with y = −2 are absorbing. Hence, no state with y < −2 is reachable from states
with y ≥ −1. Therefore, all of the terminating states have y ≥ −2. On the other hand, if γ∗ = I at
the current state, the acting player with x = 1 can reach her terminating states only when she has
r = 1. A player with x = 1 and r = 1 is indifferent between buying and not buying at y = −2 (she
is on an off-equilibrium path) and prefers to buy at all states with y ≥ −1. Therefore, at all of the
terminating states the player prefers to buy and according to Lemma 5, she is indifferent between
buying and not buying at the current state. Furthermore, if γ∗ = 1 at the current state, the acting
player should be indifferent between buying and not buying according to Lemma 5 (the player
should either be indifferent or strictly prefer to wait. The latter is impossible due to the strategy
γ∗ = 1). It means that a player with x = 1 is indifferent between buying and not buying for all
states with y ≥ −1 and all w. It implies that for δ < 1 a player with x = 1 strictly prefers to buy if
her instantaneous reward is positive, i.e., y ≥ 0 and is indifferent if her instantaneous reward is 0,
i.e., y = −1.

Next consider the players with x = −1. If at all of the terminating states of a player with
x = −1 we have y ≥ 1 or y = 0 and w = N (the states in which she prefers to buy the product),
then this player should be indifferent between buying and not buying at the current state. Assume
that we have γ∗ = φ[r, y, w] = I for every r, y, w (this strategy profile shows us the biggest set
of approachable terminating states from each state s, although it may not be the solution). It is
evident that for y + w ≥ N and all r, all of the terminating states that are approachable have y ≥ 1

or y = 0 and w = N (at each state (r, y, w), the player can move to y − 1 and w + 1 by playing
γ∗ = I). Hence, for δ = 1, a player with x = −1 is indifferent between buying and not buying for
y + w ≥ N and all r. It implies that for δ < 1, a player with x = −1 strictly prefers to buy for
y +w ≥ N if her instantaneous reward is positive, i.e., y ≥ 2 or y = 1 and r = 1, and is indifferent
if her instantaneous reward is 0, i.e., y = 1 and r = 0 or y = 0 and r = 1.

1Note that we can also have γ∗ = φ[1, y,N ] = I for y = −2 due to the tie for the player with x = 1.
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B.6 Proof of Theorem 3

We prove this theorem by referring to Lemma 3. The strategy profile proposed for y ≤ −2 is an
evident solution of FPE 2 due to the fact that both types of players with r = 0 prefer not to buy and
hence they play γ∗ = 0. This implies that both types of players with r = 1 will also play γ∗ = 0.
For y ≥ −1, a player with x = 1 is either indifferent or prefers to buy for all δ ≤ 1 and therefore,
she can decide to buy for −1 ≤ y ≤ 1. Furthermore, a player with x = −1 and r = 0 always
prefers to wait or is indifferent for−1 ≤ y ≤ 1 (her expected instantaneous reward is either negative
or zero) and so she can decide to wait for −1 ≤ y ≤ 1. The same argument holds for a player with
x = −1 and r = 1 for −1 ≤ y ≤ 0. For y = 1, a player with x = −1 and r = 1 has positive
expected instantaneous reward and so whether she prefers to wait or to buy depends on δ. Since we
know that the action of a player with x = 1 and r = 1 at y = 1 is buying, the strategy at y = 1 and
r = 1 should be either of 1 or I . Notice that this strategy does not affect the decision of players
at other states (it can not be reached from states with y > 1 and the solution for y < 1 does not
depend on what is played at y = 1, as we just proved). Hence, it can be determined independently
based on FPE 2. We next have to prove that the strategy γ∗ = φ[r, y, w] = 1 is a solution for y ≥ 2

and all w and r. According to Lemma 3, if the strategy profile is γ∗ = φ[r, y, w] = 1 for some state
of the game s = (r, y, w) and we have γ∗ = φ[r, y, w′] = 1 for all w′ > w (which is the case in
the suggested strategy profile in this theorem), then in all of the terminating states (see the proof
of Lemma 3) that are reachable from s, the acting player buys the product. Hence, the player is
either indifferent (δ = 1) or strictly prefers to buy (δ < 1) and it completes the proof of the strategy
γ∗ = φ[r, y, w] = 1 being a solution for y ≥ 2, all w, r and all δ ≤ 1.

B.7 Proof of Theorem 4

According to Lemma 3, the solution is evident for y ≤ −2, for both δ = 1 and δ < 1. We also
know the solution for w = N and all δ according to the proof of Lemma 3. For w = N , which
implies that r = 1, we must have γ∗ = φ[r, y, w] = 1 for y ≥ 1. Further, since for y = 0, 1, the
expected instantaneous reward for players with x = 1 and x = −1 is positive and non-positive,
respectively, we can have γ∗ = φ[r, y, w] = I as the solution. This proves the first, third and fourth
part of δ = 1 case and first and fifth part (w = N ) of δ < 1 case.

Next, consider the second part of δ = 1 case. According to Lemma 3, a player with x = 1

and all r and w < N is indifferent between buying and not buying for y ≥ −1 and hence, she can
decide to buy. On the other hand, a player with x = −1 is indifferent for y+w ≥ N and so she can
decide not to buy for these states. If the proposed strategy is the solution of FPE 2, then from the
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states with y+w < N , a player with x = −1 can reach the terminating states with negative y (-1 or
-2), in which she strictly prefers not to buy (this is evident by tracing the states that can be reached
by going from y, w to y − 1, w + 1 by each revelation through the strategy γ∗ = φ[r, y, w] = I).
Therefore, for δ = 1 a player with x = −1 strictly prefers to wait for y + w < N and so strategy
γ∗ = φ[r, y, w] = I can be a solution for y ≥ −1 and w < N . This completes the proof of the
δ = 1 case.

Now consider δ < 1. With the same arguments as in the δ = 1 case, since a player with x = 1

is indifferent for y ≥ −1 and δ = 1, she strictly prefers to buy if δ < 1 (she is losing valuation by
waiting and is not gaining anything). In the same manner, a player with x = −1 strictly prefers to
buy for y + w ≥ N and w < N . Therefore, the strategy γ∗ = φ[r, y, w] = 1 could be a solution for
y + w ≥ N and w < N . For the rest of the states which are y ≥ −1, w < N and y + w < N , a
player with x = −1 strictly prefers to wait for δ = 1 and hence, there exists large enough δ < 1

such that this player still prefers to wait and therefore, γ∗ = φ[r, y, w] = I can be a solution for
y ≥ −1, w < N and y + w < N when δ < 1 is large enough. Further, for w = N − 1, y = 1 and
r = 1, both types prefer buying over waiting therefore γ∗ = φ[r, y, w] = 1 can be a solution. This
completes the proof of this theorem.

B.8 Proof of Theorem 5

We first prove the fourth part of the theorem. For y ≤ −2, the instantaneous reward is negative
for r = 0 and both x = 1 and x = −1. On the other hand, according to the proof of Lemma 3, the
value functions are 0 when γ∗ = φ(r, y, w) = 0. Therefore, the equilibrium strategy is not buying
for both values of x and so γ∗ = φ(r, y, w) = 0 is the only solution for y ≤ −2. For y ≥ 0, the
instantaneous reward is positive for x = 1 and therefore, γ∗ = φ(0, y, w) = 0 (so that the value
functions are all 0) can not be an equilibrium strategy.

The fifth part is obvious due to the fact that at y = 0 the reward is negative for x = −1 and it is
positive for x = 1. Hence, neither γ∗ = φ[0, 0, w] = 0 nor γ∗ = φ[0, 0, w] = 1 can be solution of
FPE 2. Therefore, if a solution exists, which we know it does, we must have γ∗ = φ(0, 0, w) = I .

Now we prove the sixth part. If for some equilibrium strategy and some w and y, γ∗ =

φ[0, y, w] = I or γ∗ = φ[0, y, w] = 1, we can not have γ∗ = φ[0, y, w] = 0 for w′ 6= w and
y 6= −1. The reason is that if for w′ 6= w, we have γ∗ = φ[r, y, w′] = 0, the valuation function
Ua(x, 0, y, w) = 0 as proved in the proof of Lemma 3. On the other hand, since γ∗ = φ[0, y, w] = I

or γ∗ = φ[0, y, w] = 1, we know that qy+1−1
qy+1+1

> 0 for y 6= −1. Hence the instantaneous reward
for a player with x = 1 at r = 0, y, w′ is positive and therefore, γ∗ = φ[0, y, w′] = 0 can not be
an equilibrium strategy. Hence, γ∗ = φ[0, y, w] = I or γ∗ = φ[0, y, w] = 1 can not happen with

158



γ∗ = φ[0, y, w′] = 0 for the same y. Therefore, for a fixed y, we either have γ∗ = φ[0, y, w] = 0

for all w or a combination of γ∗ = φ[0, y, w] = I or γ∗ = φ[0, y, w] = 1 for different w.
The seventh part is evident by using the fourth part and Lemma 3. As we saw in Lemma 3, a

player with x = 1 is indifferent between buying and waiting for y ≥ −1, which includes y = −1.
It means that she can always decide to buy for y ≥ −1. On the other hand, a player with x = −1

has negative instantaneous reward and she should not buy at y = −1. Hence, since the expected
reward of the player with x = 1 is 0, both γ∗ = φ[0,−1, w] = I and γ∗ = φ[0,−1, w] = 0 can be
solutions for all w.

We can prove the eighth part in a similar way. A player with x = 1 and r = 1 is always
indifferent between buying and not buying at y = −2 since the instantaneous reward is 0 (she is
on an off-equilibrium path). On the other hand, a player with x = −1 and r = 1 prefers to wait
at y = −2 since her instantaneous reward is negative and hence, both γ∗ = φ[1,−2, w] = I and
γ∗ = φ[1,−2, w] = 0 are the solutions.

The third part is a direct consequence of fourth and seventh parts.
In order to prove the first part, it is sufficient to show that if γ∗ = φ[r, y, w] = I and the solution

is a threshold policy w.r.t. w for y′ < y, then γ∗ = φ[r, y, w′] = I is a solution for w′ < w (Note
that it might not be the only case, and we are arguing about existence. So if a solution is not of this
type, we can construct a solution of this type, as we explain later on).

Assume that for the state s = (x, r, y, w), we have γ∗ = φ[r, y, w] = I . It means that the
instantaneous reward for x = −1 at y has been no more than the expected valuation of not buying,
which is the average of rewards, at those terminating states that the player will buy, and 0’s, for those
in which the player decides not to buy the product (see the proof of Lemma 3). The more likely the
final states with not buying decision are, the larger the difference between the instantaneous reward
and expected valuation of not buying is. So for two different states with the same instantaneous
reward, i.e., the same y, we can compare their terminating states to get a sense of how the player
decides in these two states. Consider s′ = (r, y, w′) for w′ < w. Since the solution is a threshold
policy w.r.t. w for y′ < y, it is clear that for each terminating state sj for the state s that the player
decides not to buy the product, there is a corresponding state s′j for the state s′ which is at least as
likely to happen as sj (there are more players that can reveal their private signal and change the
state). At s′j , the player has the opportunity to decide not to buy the product, or decide later on if it
is beneficial for her (which implies that s′j may not be a terminating state for s′). In both cases, the
valuation of not buying at s′ is at least as good as s and hence, if the valuation of not buying at s is
not less than the instantaneous reward, it has to be true for s′ too. Therefore, if γ∗ = φ[r, y, w] = I ,
we can have γ∗ = φ[r, y, w′] = I for w′ < w. If a solution is not of this type, we can construct
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such strategy as follows. According to the other parts of this theorem, we know the solution can be
γ∗ = φ[r, y, w] = 0 for y ≤ −2, all r and w, and also γ∗ = φ[r, y, w] = I for r = 0, −1 ≤ y ≤ 0

and all w and for r = 1, −1 ≤ y ≤ 0 and all w. So whatever else is the solution, we can change it to
the mentioned strategy profile. Next, we start at y = 1 and we know that the solution is a threshold
policy for y′ < y. Starting at w = N and going back step by step for both r = 0 and r = 1, we can
change all the solutions γ∗ = φ[r, y, w′] = 1 to γ∗ = φ[r, y, w′] = I for all w′ < w such that the
solution is γ∗ = φ[r, y, w] = I . In this way we construct a strategy profile that is a threshold policy
w.r.t. w and is solution to FPE 2.

Now we restrict our attention to the equilibrium strategies that are threshold policies w.r.t. w
and prove that whenever γ∗ = φ[0, y, w] = 1, then we must have γ∗ = φ[0, y′, w] = 1 for all y′ > y

and whenever γ∗ = φ[0, y, w] = I then we must have γ∗ = φ[0, y′, w] 6= 0 for all y′ > y.
Similar to the arguments in the proof of sixth part of this theorem, whenever γ∗ = φ[0, y, w] = I ,

the instantaneous reward is positive for x = 1 and if we have γ∗ = φ[0, y′, w] = 0, the valuation
will be 0 while the instantaneous reward for y′ is greater than y and so it is positive. Hence, we can
not have γ∗ = φ[0, y′, w] = 0 as a solution.

In order to prove that whenever γ∗ = φ[0, y, w] = 1, then we must have γ∗ = φ[0, y′, w] = 1

for all y′ > y, we assume this is not true and hence, we have a case where γ∗ = φ[0, y, w] = 1 and
γ∗ = φ[0, y + 1, w] = I . In this case the player with x = −1 at y + 1 is choosing not buying over
buying which means that

qy − 1

qy + 1
≤ δ

N
Ua (−1, 1, y, w + 1) +

δ

N
(N − w − 1)U1

na (−1, 0, y, w + 1)

+
δ

N
wU1

na (−1, 1, y, w + 1) , (B.19)

since γ∗ = φ[0, y, w] = 1, we know that γ∗ = φ[0, y, w+1] = 1 and hence, according to the proof of
Theorem 3, Ua (−1, 1, y, w + 1) = qy−1

qy+1
, U1

na (−1, 0, y, w + 1) ≤ qy−1
qy+1

andU1
na (−1, 1, y, w + 1) ≤

qy−1
qy+1

which means that for δ < 1, q
y−1
qy+1

< qy−1
qy+1

and it is a contradiction.
Next consider r = 1. We first prove a relation between a player’s decision in states s =

(x, 0, y, w) and s′ = (x, 1, y − 1, w + 1). Assume that γ∗ = φ[0, y, w] = I . It means that

qy−1 − 1

qy−1 + 1
≤ δ

N
Ua (−1, 1, y − 1, w + 1) +

δ

N
(N − w − 1)U1

na (−1, 0, y − 1, w + 1)

+
δ

N
wU1

na (−1, 1, y − 1, w + 1) , (B.20)
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on the other hand, if we write the fixed point equation for x = −1, r = 1, y − 1, w + 1, we have

γ∗(−1) = arg max

{
δ

N
Ua (−1, 1, y − 1, w + 1) +

δ

N
(N − w − 1)U1

na (−1, 0, y − 1, w + 1)

+
δ

N
wU1

na (−1, 1, y − 1, w + 1) ,
qy−1 − 1

qy−1 + 1

}
. (B.21)

According to (B.20), we can say that the solution of the above fixed point equation can be not buy.
Hence, whenever γ∗ = φ[0, y, w] = I , we can have γ∗ = φ[1, y − 1, w + 1] = I . Also, according
to Lemma 3, whenever γ∗ = φ[0, y, w] = 1 and γ∗ = φ[0, y, w′] = 1 for w′ > w, we must have
γ∗ = φ[1, y, w] = 1. This all means that whenever we have a solution that is a threshold policy w.r.t.
y for r = 0, the solution can also be a threshold policy w.r.t. y for r = 1.

B.9 Proof of Theorem 6

If Yt remains constant with probability one for all t′ > t, then it is an informational cascade
by definition since yt sums all the revealed private information. Hence, the absorbing states of
Y i are informational cascades. We have shown that some Y i = yL ≥ Ymin and Y i = yR ≤ Ymax

are absorbing. The values of both yL, yR are independent of N . The transition probabilities of
Y i are p+(1−p)qy

qy+1
for moving right and 1−p+pqy

qy+1
for moving left, so they are also independent of N .

We conclude that the distribution (specifically, expectation and variance) of the absorption time is
independent of N . Hence, for large enough N , the probability that the absorption time is larger than
MN vanishes to zero. This absorption time is counted in the number of revealings i. We conclude
that the probability that a cascade occurs before MN revealings occur approaches 1 as N →∞.

Now assume that φ [r, y, w] = 1 implies that φ [r, y, ŵ] = 1 for ŵ > w. Denote the number
of turns up to turn t = MN where the acting player nt has rnt = 1 or bnt = 1 by R (MN), which
is stochastically dominated by a binomial distributed variable with p = MN

N
and MN trials since

wt
N
≤ MN

N
.

Hence, for all N > 0,

P
(
R (MN) ≥ 1

)
≤ 1−

(
1− MN

N

)MN

. (B.22)

Since by assumption M2
N

N
→ 0 as N → ∞, then 1 −

(
1− MN

N

)MN → 1 − e−
M2
N
N → 0 and we

conclude that with high probability, at least MN − 1 of the first turns are of players with zn = 0.
Assume that in turn t < MN − 1 the acting player did not reveal her private information.
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• If she waited, then wt+1 = wt and yt+1 = yt. The next player with zn = 0 will also wait since
she uses the same strategy γ∗ = φ [r, y, w].

• If she bought, then wt+1 = wt + 1 and yt+1 = yt. The next acting player with zn = 0 will
also buy for xn = −1, 1 (and not reveal) since wt+1 > wt.

The same argument applies to all subsequent players with zn = 0, and by definition to players with
zn = 1, so a cascade occurred.
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APPENDIX C

Proofs for Chapter 4

C.1 Proof of Lemma 4

Since functions ûui (m
u
i ,m

u
−i) and ûmi (mm

i ,m
m
−i) are twice differentiable w.r.t mu

i and mm
i , respec-

tively, we can prove strict concavity by showing that their Hessian matrices, Hu and Hm, w.r.t. mu
i

and mm
i , respectively, are negative definite. The cross derivatives of ûui (m

u
i ,m

u
−i) and ûmi (mm

i ,m
m
−i)

w.r.t. different components of mu
i and mm

i , which are the non-diagonal elements of Hu and Hm,
respectively, are zero. Hence, we consider the diagonal elements and show that they are all negative.
The second partial derivative of ûui (m

u) w.r.t. all elements of messages ni, qi, pi is equal to −2.
Also, the second partial derivative of ûmi (mm) w.r.t. all elements of messages ni, qi, pi, wi, zi,
ai and si is equal to −2. The only message element left is yi. The second partial derivative of
ûui (m

u) w.r.t. yi is ∂2ûui (m
u)/(∂yi)

2 = (rui )
2∂2vi(x̂

u
i )/(∂x̂

u
i )

2. Since vi(x̂ui ) is strictly concave
w.r.t. x̂ui , ∂

2ûui (m
u)/(∂yi)

2 < 0. Similarly, the second partial derivative of ûmi (mm) w.r.t. yi is
∂2ûmi (mm)/(∂yi)

2 = (rmi )2∂2vi(x̂
m
i )/(∂x̂mi )2 < 0. Note that rui and rmi don’t consist of any of agent

i’s messages and so they are constant factors.
Therefore, matrices Hu and Hm are negative definite because all of their diagonal elements are

negative and non-diagonal elements are zero.

C.2 Proof of Lemma 5

At NE, every agent is best responding to other agents’ messages. Each of the results in this
lemma corresponds to one of agent i’s messages and its best response to other agents messages.
Therefore, all of the results can be directly derived by setting each of their corresponding element
of gradient to zero. For all i ∈ N we have

∂ûui (m
u
i ,m

u
−i)

∂qi,j
= 0⇒ qi,j = yj, ∀j ∈ Ii. (C.1)
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Since yj ≥ 0 the above equation can always hold.

∂ûui (m
u
i ,m

u
−i)

∂nli,j
= 0⇒ nli,j = ylj +

∑
h∈N (j),h6=i

nlj,h ∀j ∈ N (i), l ∈ L. (C.2)

Using a similar argument as the one used in [113, p. 131] all above equations can be combined to
show that

nli,j =
∑

h∈N ,n(i,h)=j

ylh, (C.3)

and equivalently, ∑
j∈N (i)

nli,j =
∑

h∈N ,h6=i

ylh. (C.4)

In order to verify this conclusion, we mention that the message graph is a tree, and hence
we can form an induction on the level of nodes from the leaf nodes. If j ∈ N (i) is a leaf node,
there is no message components nlj,h for h ∈ N (j), h 6= i. because the only neighbor of j is
i. As a result, nli,j = ylj and therefore, the induction basis holds. Suppose for all j ∈ N (i),
nlj,h =

∑
k∈N ,n(j,k)=h y

l
k, ∀h ∈ N (j). Substituting this to (C.2) we have

nli,j = ylj +
∑

h∈N (j)
h6=i

∑
k∈N

n(j,k)=h

ylk ∀j ∈ N (i), l ∈ L. (C.5)

We need to check whether the set of nodes covered in the summations above is equal to the set
of nodes in the summation of (C.3). In (C.5), we are summing over all nodes k that can be reached
to node j by nodes h ∈ N (j), h 6= i. Since j ∈ N (i) and there is only one path between any two
nodes in the graph, we conclude that all of these nodes reach i through j and therefore, n(i, k) = j.
This means that the summations in (C.3) and (C.5) include the same set of nodes and the result is
proved.

C.3 Proof of Lemma 6

According to the explanations at the beginning of the proof of Lemma 5, by setting each of the
corresponding element of gradients of ûmi (mm

i ,m
m
−i) to zero for all i ∈ N we have

∂ûmi (mm
i ,m

m
−i)

∂qi,j
= 0⇒ qi,j = yj, ∀j ∈ Ii (C.6a)
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∂ûmi (mm
i ,m

m
−i)

∂(sli)
= 0⇒ sli =

qφ(i),i1{qφ(i),i}(z
1,l
i )

z2,li
, ∀l ∈ Li (C.6b)

∂ûmi (mm
i ,m

m
−i)

∂(p2,li,j)
= 0⇒ p2,li,j = p1,lj , ∀j ∈ Ii, l ∈ Lj (C.6c)

∂ûmi (mm
i ,m

m
−i)

∂wli
= 0⇒ wli = wlc(k(i),l), ∀l ∈ Li, l /∈ Ci (C.6d)

∂ûmi (mm
i ,m

m
−i)

∂wli
= 0⇒ wli = p2,lφ(i),i +

∑
j∈Gl

k(i)
,j 6=i

p1,lj , ∀l ∈ Li, l ∈ Ci (C.6e)

∂ûmi (mm
i ,m

m
−i)

∂nli,j
= 0⇒ nli,j = ylj +

∑
h∈N (j),h6=i

nlj,h, ∀j ∈ N (i), l ∈ L. (C.6f)

Using a similar argument as the one used in [113, p. 131] we prove that

nli,j =
∑

h∈N ,n(i,h)=j

ylh, (C.7)

and consequently, ∑
j∈N (i)

nli,j =
∑

h∈N ,h6=i

ylh. (C.8)

The remaining results are related to message elements zi and 2ai.

∂ûmi (mm
i ,m

m
−i)

∂(z1,li )
= 0⇒ z1,li = z1,li , ∀l ∈ Li, l ∈ Ci (C.9a)

∂ûmi (mm
i ,m

m
−i)

∂(z2,li )
= 0⇒ z2,li = z2,li , ∀l ∈ Li, l ∈ Ci (C.9b)

∂ûmi (mm
i ,m

m
−i)

∂(a2,li,j)
= 0⇒ a2,li,j = a1,lj , ∀j ∈ Ii, l ∈ Lj. (C.9c)

C.4 Proof of Lemma 7

According to Lemmas 5 and 6, the following relation holds at NE,

f u,l
i =

∑
j∈N

ylj, (C.10)
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and similarly,
fm,l
i =

∑
j∈N

ylj. (C.11)

This implies that all of the agents i ∈ N have the same f u,l
i and fm,l

i and consequently, have the
same rui and rmi at NE of the games Gu and Gm, respectively. Further, due to Lemma 6, for the game
Gm we can write for every j ∈ Glk

ylj =

{
yj

n maxlk
if l ∈ Lj, yj = maxi∈Glk{yi}

0 oth.,
(C.12)

where n maxlk is the number of agents j ∈ Glk with yj = maxi∈Glk{yi}. Consequently, ∀l ∈ L we
can write

∑
k∈Kl

max
i∈Glk
{x̂mi } =

∑
k∈Kl

max
i∈Glk
{rmi yi} ≤

cl∑
j∈N y

l
j

∑
k∈Kl

max
i∈Glk
{yi} =

cl∑
j∈N y

l
j

∑
i∈N

yli = cl, (C.13)

which proves that the allocation x̂m is feasible at NE.
By using similar steps, we can show the feasibility of allocation of the game Gu at NE.

C.5 Proof of Lemma 8

In order to prove the first result, we first derive the following

pli = pl−i ∀i ∈ N , l ∈ Li. (C.14)

Suppose the above equation does not hold, i.e.,

∃i ∈ N , l ∈ Li : pli 6= pl−i. (C.15)

Then there exists an agent j ∈ N l : plj > pl−j (as an example, we could consider the agent j with
the highest plj over all of the agents and if we have multiple choices, at least one of them will work).
We can show that agent j has a profitable deviation to pl′j = pl−j = plj − ε. Indeed, we can write

ûuj(., p
l′

j )− ûuj(., plj) = ε2 + εpl−j(c
l − rujf

u,l
j )2 = ε( ε︸︷︷︸

>0

+ pl−j(c
l − rujf

u,l
j )2︸ ︷︷ ︸

≥0

) > 0, (C.16)

therefore, we must have pli = pl−i.
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As a result of this equality and because of Assumption 1, it is obvious that pli = plj, ∀i, j ∈ N l

and we denote this common price by pl.
For the second result, we set the derivative of the utility function w.r.t. pli to zero,

∂ûui (m
u
i ,m

u
−i)

∂pli
= 0⇒ 2(pli − pl−i)︸ ︷︷ ︸

=0,Due to (4.23a)

+pl−i(c
l − rui f

u,l
i )2 = 0

⇒ pl(cl − rui f
u,l
i )2 = 0⇒ pl(cl −

∑
i∈N l

x̂ui ) = 0.

(C.17)

C.6 Proof of Lemma 9

We first prove result (4.24a). This result is equivalent with ŵli = ŵlj, ∀i, j ∈ N l. Assume
∃i, j ∈ N l, ŵli 6= ŵlj . Since wli = ŵli at NE and due to Assumption 1, there exists an agent h ∈ N l

for which ŵlh > wl−h or equivalently, ŵlh = wl−h + ε for some ε > 0. We will show that agent h has
a profitable deviation by decreasing his message a1,lh to a1,l

′

h = a1,lh − ε′ > 0 for some 0 < ε′ < ε.
Consequently, ŵl′h = ŵlh − ε′ = wl−h + ε− ε′ = wl−h + ε′′. We can write

ûmh (., a1,l
′

h )− ûmh (., a1,lh ) = −ε′′2 − wl−hε′′(cl − rmh f
m,l
h )2 + ε2 + wl−hε(c

l − rmh f
m,l
h )2

= ε2 − ε′′2︸ ︷︷ ︸
>0

+wl−h(ε− ε′′)(cl − rmh f
m,l
h )2︸ ︷︷ ︸

≥0

> 0, (C.18)

and we conclude that at any NE, ŵli = ŵlj, ∀l ∈ L, i, j ∈ N l. Therefore, we can denote this
common value for each link l by wl and we arrive at the result ŵli = wl, ∀i ∈ N , l ∈ Li.

Now we prove result (4.24b). Suppose ∃i ∈ N , l ∈ Li so that wl(cl − rmi
∑

i∈N y
l
i) 6= 0. This

implies wl−i(c
l − rmi f

m,l
i )2 > 0. We show that agent i benefits from deviating to a1,l

′

i = a1,li − ε > 0,
for some ε > 0. According to the first result of this lemma, ŵli = wl−i and we have

ûmi (., a1,l
′

i )− ûmi (., a1,li ) = −ε2 + wl−iε(c
l − rmi f

m,l
i )2

= ε(−ε+ wl−i(c
l − rmi f

m,l
i )2︸ ︷︷ ︸

>0, Due to assumption

) = ε(−ε+ α) > 0, for ε < α. (C.19)

Since α > 0, profitable deviation by a positive ε is possible and the result is proved.
Proving result (4.24c) is similar to result (4.24b). Assume ∃i ∈ N , l ∈ Li so that p1,li (yi−z1,li ) 6=

0. This implies that p2,lφ(i),i(z
1,l
i −qφ(i),i)2 > 0 and p1,li > 0. We prove agent i has a profitable deviation
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to p1,l
′

i = p1,li − ε > 0, for some ε > 0. Indeed,

ûmi (., p1,l
′

i )− ûmi (., p1,li ) = −ε2 + p2,lφ(i),iε(z
1,l
i − qφ(i),i)2

= ε(−ε+ p2,lφ(i),i(z
1,l
i − qφ(i),i)2︸ ︷︷ ︸

>0, Due to assumption

) = ε(−ε+ α) > 0, for ε < α. (C.20)

Since α > 0, agent i can profit by deviating with a positive ε and the result is proved.

C.7 Proof of Lemma 10

If x̂ui (m
u) > 0, then yi > 0 and hence, the partial derivative of ûui (m

u
i ,m

u
−i) w.r.t. yi must be

zero at NE. Therefore,

∂ûui (m
u
i ,m

u
−i)

∂yi
= 0⇒ (

∂ûui (m
u
i ,m

u
−i)

∂x̂ui (m
u)

)
dx̂ui (m

u)

dyi
= 0

= (v′i(x̂
u
i (m

u))−
∑
l∈Li

pl)rui ⇒ v′i(x̂
u
i (m

u)) =
∑
l∈Li

pl, (C.21)

and if x̂ui (m
u) = 0, then yi = 0 and therefore, the partial derivative of ûui (m

u
i ,m

u
−i) w.r.t. yi must

not be positive at NE. Hence,

∂ûui (m
u
i ,m

u
−i)

∂yi
≤ 0⇒ (

∂ûui (m
u
i ,m

u
−i)

∂x̂ui (m
u)

)
dx̂ui (m

u)

dyi

= (v′i(x̂
u
i (m

u))−
∑
l∈Li

pl)rui ≤ 0⇒ v′i(x̂
u
i (m

u)) ≤
∑
l∈Li

pl. (C.22)

C.8 Proof of Lemma 11

Similar to Lemma 10, if x̂mi (mm) > 0,

∂ûmi (mm
i ,m

m
−i)

∂yi
= 0⇒ (

∂ûmi (mm
i ,m

m
−i)

∂x̂mi (mm)
)
dx̂mi (mm)

dyi
= 0

⇒ (v′i(x̂
m
i (mm))−

∑
l∈Li

p2,lφ(i),i)r
m
i = 0

⇒ v′i(x̂
m
i (mm)) =

∑
l∈Li

p1,li . (C.23)
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Note that rmi > 0. If x̂mi (mm) = 0,

∂ûmi (mm
i ,m

m
−i)

∂yi
≤ 0⇒ (

∂ûmi (mm
i ,m

m
−i)

∂x̂mi (mm)
)
dx̂mi (mm)

dyi
≤ 0

⇒ (v′i(x̂
m
i (mm))−

∑
l∈Li

p2,lφ(i),i)r
m
i ≤ 0

⇒ v′i(x̂
m
i (mm)) ≤

∑
l∈Li

p1,li . (C.24)

C.9 Proof of Lemma 12

To prove the existence of a NE, we show that a suggested valid message is a NE. For each of the
games Gu and Gm, the suggested message is generated based on the solution of problems (4.1) and
(4.3), respectively, which we know exist and is unique. We notice that because of the monotonicity
of valuation functions, the solution of problems (4.1) and (4.3) always lies in the Pareto optimal
region of the feasible set which, in our case, is the upper boundary of feasible set in both UTP and
MMTP. First consider the game Gu. Suppose (x∗, λ∗) is the solution of problem (4.1). We generate
mu as follows. First assume mu satisfies all of the constraints in Lemma 5. Further, y is set to be any
scaled version of x∗ and since x∗ is on the boundary of feasible region, x̂u(mu) = x∗. In addition,
pli is set to be equal to λl∗ and this is valid since λl∗ ≥ 0. Hence, Lemma 8 is satisfied for mu. Also,
due to stationarity condition, Lemma 10 is also satisfied for mu. Overall, since Lemmas 5, 8 and 10
are satisfied, we know that the elements of the gradient vector of agent i’s utility function w.r.t. mu

i

is either zero (positive messages) or not positive (zero messages) which implies that each agent is
best responding to other agents’ messages and therefore, mu is a NE of the game Gu.

Similar steps are taken for the proof of existence of NE for the game Gm. Let (x∗, b∗, λ∗, µ∗)

be the solution of problem (4.4). We generate mm as following. First assume mm satisfies all of
the constraints in Lemma 6. Further, y is set to be any scaled version of x∗ and since x∗ is on the
boundary of feasible region, x̂m(mm) = x∗. In addition, p1,li is set to be equal to µl∗i and this is valid
because µl∗i ≥ 0. Then, wl =

∑
j∈Glk

p1,lj =
∑

j∈Glk
µl∗j = λl∗. Also rmi z

1,l
i = maxj∈Gl

k(i)
{rmi yj} =

maxj∈Gl
k(i)
{x̂mi } = maxj∈Gl

k(i)
{x∗i } = bl∗k(i). Hence Lemma 9 is satisfied for mm. Also, due to

stationarity condition, Lemma 11 is satisfied for mm. Overall, since Lemmas 6, 9 and 11 are
satisfied, we know that the elements of the gradient vector of utility function of each agent i w.r.t.
mm
i is either zero (positive messages) or not positive (zero messages) which implies that each agent

is best responding to other agents’ messages and therefore, mm is a NE.
Notice that the dual variables in the solution of optimization problems (4.1) and (4.4) are not

unique, even though the primal solution (x) is unique. For each game and each value of dual
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variables there is a suggested message that is a Nash equilibrium for that game. Further, the y
messages at Nash equilibria of these games have infinitely many options as it was mentioned in its
construction. This means that the Nash equilibria of these games are not unique and in fact there
are infinitely many Nash equilibria for these games.

C.10 Proof of Lemma 13

First consider the weak budget balance equations. At NE, we can write t̂ui = x̂ui (m
u)
∑

l∈Li p
l

and hence
∑

i∈N t̂
u
i ≥ 0. Similarly, t̂mi = x̂mi (mm)

∑
l∈Li p

1,l
i and hence,

∑
i∈N t̂

m
i ≥ 0 and both

mechanisms are weak budget balanced.
Next, consider the individual rationality part for UTP mechanism (the MMTP version is almost

identical). For x̂ui (m
u) = 0, the result is obvious. For x̂ui (m

u) > 0, we define the function ui as

ui(x) = vi(x)− x
∑
l∈Li

pl. (C.25)

Since ui(x) is concave w.r.t. x and u′i(x̂
u
i (m

u)) = 0, then u′i(y) ≥ 0 for 0 ≤ y ≤ x̂ui (m
u), we can

conclude ui(y) ≥ ui(0) and since ui(0) = vi(0) and ui(x̂ui (m
u)) = vi(x̂

u
i (m

u))− t̂ui (mu), it follows
that vi(x̂ui (m

u))− t̂ui (mu) ≥ vi(0) and the result is proved.
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APPENDIX D

Proofs for Chapter 5

D.1 Proof of Lemma 14

We have a continuous time M/M/1 queue with transition rates gi,i+1 = λP(S = 1|x = i),
i.e., rate of transiting from state i to state i + 1, and gi,i−1 = 1 for i > 0. Therefore, we have
gi,i = −1 − λP(S = 1|x = i) for i > 0 and g0,0 = −λP(S = 1|x = 0). We can calculate the
stationary distribution of the queue as follows.∑

j

µ(j)gj,i = 0, ∀i ≥ 0 (D.1)

⇒ µ(1) = λP(S = 1|x = 0)µ(0), (D.2)

µ(i+ 1) + λP(S = 1|x = i− 1)µ(i− 1) (D.3)

= (1 + λP(S = 1|x = i))µ(i) (D.4)

⇒ µ(i+ 1) = λP(S = 1|x = i)µ(i), ∀i ≥ 0 (D.5)

D.2 Proof of Lemma 15

The proof for αi is evident by comparing the utility of action e = 1 at its decision point, i.e.,
u(i, d = 0, e = 1) = iv − p by the utility of e = 0, which is u(i, d = 0, e = 0) = 0.

To prove the equation of f , we need to maximize the average utility of the user at the decision
point of function f , i.e., iq(m)− t(m) w.r.t. m, which gives us the result.

Similarly, we can prove the equations for γi by comparing the average utility of actions d = 1

and d = 0 at the corresponding decision point. The average utility of action d = 1 is E[u(i, d =

1,m, S)] = iq(m)− t(m), where we have m = f(i). The average utility of the action d = 0 is the
utility of the outside option which is (iv − p)+, and this completes the proof.
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D.3 Proof of Theorem 6

This theorem can be proved using Myerson’s Lemma [155]. In order to see the connection,
note given the tax function described in equation (5.13), one can write the following for E(u(i, d =

1,m, S)).

E(u(i, d = 1,m, S)) = iq(m)−mq(m) +
m−1∑
j=1

q(j)− t0 (D.6a)

= (i−m)q(m) +
m−1∑
j=1

q(j)− t0 (D.6b)

where m = f(i) and if m = f(i) = i, we have

E(u(i, d = 1,m = i, S)) =
i−1∑
j=1

q(j)− t0. (D.7)

It is now clear that Myerson’s lemma can be used here and therefore we have DSIC.
In order to prove the second part of the theorem, note that because of the discrete type space, we

do not have uniqueness for the tax function. In other words, revenue equivalence theorem does not
hold. However, we can show that the tax function defined in equation (5.13) is an upper bound on
all of the tax functions satisfying DSIC and therefore, it is the best the planner can do in terms of
his revenue.

One can write the following for any tax function satisfying DSIC.

t(m+ 1)− t(m) ≥ m[q(m+ 1)− q(m)] (D.8)

t(m+ 1)− t(m) ≤ (m+ 1)[q(m+ 1)− q(m)] (D.9)

Therefore, for m ≥ 2 we have

t(m) ≤ t(m− 1) +m[q(m)− q(m− 1)] (D.10)

We will show that if tax function is defined according to equation (5.13), each t(m) is equal to
its upper bound. We can see it through induction. For m = 2, according to equation (5.13), we
have t(2) = t(1) + 2(q(2)− q(1)) which is the upper bound in the above inequality. Assume we
have t(m) = t(m− 1) +m[q(m)− q(m− 1)]. According to equation (5.13), we have t(m+ 1) =

t(m)+(m+1)q(m+1)−mq(m)−q(m) and therefore, t(m+1) = t(m)+(m+1)[q(m+1)−q(m)].
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Therefore, we have proved that the planner can not gain any more revenue using other forms of tax
functions.

D.4 Proof of Theorem 7

Since optimization problem (5.17) is linear in γ, we can use KKT conditions to characterize
the solution. We have the following optimization problem for N = 2 and the corresponding dual
variables for each constraints.

− 2
∞∑
x=0

v(x)γ(s = 1, 1, x) + 2
∞∑
x=0

v(x)
∑
s,i

γ(s, i, x)− p+ t0 ≤ 0 : ε1 (D.11)

∞∑
x=0

v(x)
∑
s,i

γ(s, i, x)− p+ t0 ≤ 0 : ε2 (D.12)

− 2
∞∑
x=0

v(x)γ(s = 1, 1, x) + t0 ≤ 0 : ε3 (D.13)

t0 ≤ 0 : ε4 (D.14)
∞∑
x=0

v(x)γ(s = 1, 1, x)−
∞∑
x=0

v(x)γ(s = 1, 2, x)≤ 0 : η (D.15)∑
s,i

γ(s, i, x+ 1)−λ
∑
i

γ(1, i, x) = 0, ∀x ≥ 0 : αx (D.16)

2
∑
s

γ(s, i, x)−
∑
s,i

γ(s, i, x) = 0,∀i ∈ I, x ≥ 0 : νix (D.17)∑
s,i,x

γ(s, i, x)− 1 = 0 : ψ (D.18)

− γ(s, i, x) ≤ 0, ∀s ∈ {0, 1}, i ∈ I, x ≥ 0 : βis,x (D.19)

where ε1 ≥ 0, ε2 ≥ 0, ε3 ≥ 0, ε4 ≥ 0, η ≥ 0 and βis,x ≥ 0. By taking the derivative of the dual
function with respect to γ(1, 1, x), γ(1, 2, x), γ(0, 1, x), and γ(0, 2, x) for x > 0, and also with
respect to t0 and setting them to zero, we have the following.

(ε2 − 2ε3 + η)v(x) + αx−1 − λαx + ν1x − ν2x + ψ − β1
1,x = 0 (D.20a)

(−2 + 2ε1 + ε2 − η)v(x) + αx−1 − λαx + ν2x − ν1x + ψ − β2
1,x = 0 (D.20b)

(2ε1 + ε2)v(x) + αx−1 + ν1x − ν2x + ψ − β1
0,x = 0 (D.20c)

(2ε1 + ε2)v(x) + αx−1 + ν2x − ν1x + ψ − β2
0,x = 0 (D.20d)
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− 1 + ε1 + ε2 + ε3 + ε4 = 0. (D.20e)

Therefore, we have

v(x) =
−λαx + αx−1 + ν1x − ν2x + ψ − β1

1,x

2ε3 − ε2 − η
(D.21a)

=
−λαx + αx−1 + ν2x − ν1x + ψ − β2

1,x

2− 2ε1 − ε2 + η
(D.21b)

=
−αx−1 − ν1x + ν2x − ψ + β1

0,x

2ε1 + ε2
(D.21c)

=
−αx−1 − ν2x + ν1x − ψ + β2

0,x

2ε1 + ε2
. (D.21d)

Based on the above equations, we can have the following lemma.

Lemma 25. If there exists a x̃ > 0 for which we have γ(0, 1, x̃) > 0, γ(0, 2, x̃) > 0, γ(1, 1, x̃) > 0,

and γ(1, 2, x̃) > 0, then η = 0, ε2 = ε4 = 0, and ν1x = ν2x for all x > 0. Further, we have

β1
0,x = β2

0,x and β1
1,x = β2

1,x.

Proof. Looking at equations (D.21c) and (D.21d), we have 2ν1x − 2ν2x + β2
0,x = β1

0,x. Since

γ(0, 1, x̃) > 0 and γ(0, 2, x̃) > 0 we have β2
0,x̃ = β1

0,x̃ = 0 and it results in ν1x̃ = ν2x̃. Also since

γ(1, 1, x̃) > 0 and γ(1, 2, x̃) > 0, which results in β2
1,x̃ = β1

1,x̃ = 0, we must have 2ε3 − ε2 − η =

2− 2ε1 − ε2 + η or equivalently, ε1 + ε3 = 1 + η. According to equation (D.20e), we must have

η = 0 and ε2 = ε4 = 0. Further, for any x > 0 and each type i ∈ I, we either have γ(1, i, x) > 0

or γ(0, i, x) > 0 or both. Therefore, either βi1,x̃ = 0 or βi0,x̃ = 0 or both. Assume β1
0,x̃ = 0. Then if

β2
0,x̃ = 0, we must have ν1x̃ = ν2x̃ and the result is proved. If β2

1,x̃ = 0, then from equations (D.21c)
and (D.21d) we must have ν2x̃ ≥ ν1x̃. From equations (D.21a) and (D.21b), we must have ν1x̃ ≥ ν2x̃.

Therefore, ν1x̃ = ν2x̃. Therefore, due to equation (D.21), we must have β1
0,x = β2

0,x and β1
1,x = β2

1,x

for all x > 0.

Note that all of the results of Lemma 25 hold if we have 2ε3 − ε2 − η = 2 − 2ε1 − ε2 + η,
i.e., the denominators of the coefficients in equations (D.21a) and (D.21b) are equal. In other
words, Lemma 25 states a condition in which we must have 2ε3 − ε2 − η = 2− 2ε1 − ε2 + η and
consequently, the rest of the results hold. However, these coefficients might be equal without having
the condition stated in Lemma 25. In the next lemma, we show what the solution looks like if we
have 2ε3 − ε2 − η = 2− 2ε1 − ε2 + η.

Lemma 26. If we have 2ε3 − ε2 − η = 2 − 2ε1 − ε2 + η, then there is a threshold x̃ such that

for x ≥ x̃ we have γ(s = 1, i, x) = 0 for all i ∈ I, and for x < x̃, γ(s = 0, i, x) = 0 for all
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i ∈ I except for some points X̃ = {x1, x2, . . .}, xk < x̃ for which we can have γ(0, 1, xk) > 0, or

γ(0, 2, xk) > 0, where all xk ∈ X̃ satisfy the following condition. There exists ε1 > 0 and ψ such

that

(2

xk∑
x=0

λxv(x))ε1 + (

xk∑
x=0

λx)ψ =

xk−1∑
x=0

λxv(x), ∀xk ∈ X̃ .

Proof. If we have 2ε3 − ε2 − η = 2− 2ε1 − ε2 + η, then η = 0, ε2 = ε4 = 0, and ν1x = ν2x for all

x > 0. Further, we have β1
0,x = β2

0,x and β1
1,x = β2

1,x. This results in the following.

v(x) =
−λαx + αx−1 + ψ − β1

1,x

2− 2ε1
(D.22a)

=
−λαx + αx−1 + ψ − β2

1,x

2− 2ε1
(D.22b)

=
−αx−1 − ψ + β1

0,x

2ε1
=
−αx−1 − ψ + β2

0,x

2ε1
. (D.22c)

From the above equations, we can conclude that β1
0,x = β2

0,x and β1
1,x = β2

1,x. It means that we if

we have β1
1,x̃ = β2

1,x̃ > 0 which results in γ(s = 1, i, x̃) = 0 for all i ∈ I , the stationary distribution

µ(x) is zero for all x > x̃ and therefore γ(s = 1, i, x) = 0 for all i ∈ I. For x < x̃, we have

β1
1,x = β2

1,x = 0. We also either have β1
0,x = β2

0,x > 0, which results in γ(s = 0, i, x) = 0 for all

i ∈ I or we have β1
0,x = β2

0,x = 0 which can allow us to have γ(0, 1, x) > 0, γ(0, 2, x) > 0. Suppose

either γ(0, 1, x) > 0 or γ(0, 2, x) > 0 for x ∈ {x1, x2, . . .}. By writing the equation (D.22) for

x = 0 and due to the fact that at least one of β1
1,0 or β2

1,0 is zero, we have v(0) = 1
2−2ε1 (−λα0 + ψ).

For x ∈ {x1, x2, . . .} we have

v(x) =
−λαx + αx−1 + ψ

2− 2ε1
=
−αx−1 − ψ

2ε1
(D.23)

which results in v(x) = −λ
2
αx. Using equations (D.22) and(D.23) we have

x1∑
x=0

λxv(x) =
1

2− 2ε1
(−λx1+1αx1 + ψ

x1∑
x=0

λx) (D.24)

⇒ (2

x1∑
x=0

λxv(x))ε1 + (

x1∑
x=0

λx)ψ =

x1−1∑
x=0

λxv(x). (D.25)

having x1, the above is an equation with respect to ε and ψ. In general, if we have x1 and x2, we

should be able to determine ε and ψ and we can have xk for k ≥ 3 only if they result in linearly
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dependent equations in (D.25) and this might not be true for general v(·).

Note that if for all x < x̃ we have γ(s = 0, i, x) = 0 for all i ∈ I, then q(1) = q(2) and

the objective of the planner would be zero. Therefore, this is probably not the solution of the

optimization problem. In order to create discrimination between users of type 1 and type 2, the

planner can only consider different policies for these two types at xk ∈ X̃ .

In Lemma 26, we investigated the solution under the assumption of 2ε3−ε2−η = 2−2ε1−ε2+η.
Note that due to equation (D.20e), we can not have 2ε3 − ε2 − η > 2− 2ε1 − ε2 + η. Therefore if
the equality does not hold, we have 2ε3 − ε2 − η < 2− 2ε1 − ε2 + η. In the next lemma we present
some results under this inequality assumption.

Lemma 27. If 2ε3 − ε2 − η < 2 − 2ε1 − ε2 + η, then we have the following. If v(x) > 0 and

σ(s = 1|1, x) > 0, we have σ(s = 1|2, x) = 1. Furthermore, if v(x) < 0 and σ(s = 1|2, x) > 0,

we have σ(s = 1|1, x) = 1.

Proof. Looking at equation (D.21), if v(x) > 0, since 2ε3 − ε2 − η < 2− 2ε1 − ε2 + η, we must

have the following.

v(x) =
αx−1 − λαx + ν1x − ν2x + ψ − β1

1,x

2ε3 − ε2 − η
(D.26)

=
αx−1 − λαx + ν2x − ν1x + ψ − β2

1,x

2− 2ε1 − ε2 + η
(D.27)

⇒ αx−1 − λαx + ν1x − ν2x + ψ − β1
1,x < αx−1 − λαx + ν2x − ν1x + ψ − β2

1,x (D.28)

⇒ β2
1,x + 2ν1x − 2ν2x < β1

1,x (D.29)

We also have the following.

− ν1x + ν2x + β1
0,x = −ν2x + ν1x + β2

0,x (D.30)

⇒ β1
0,x = β2

0,x + 2ν1x − 2ν2x (D.31)

We can have three cases for ν1x − ν2x. We either have ν1x > ν2x, which results in β2
1,x < β1

1,x, which

means that β1
1,x > 0 and therefore, γ(s = 1, 1, x) = 0. On the other hand, we must have β1

0,x > 0

and therefore, γ(s = 0, 1, x) = 0. This is a contradiction for those x’s that µ(x) > 0, which are

the ones that we are interested in. If we have ν1x < ν2x, we must have β2
0,x > 0, and therefore,

γ(s = 0, 2, x) = 0. If we have ν1x = ν2x, we must have β1
1,x > 0 and therefore, γ(s = 1, 1, x) = 0.

Therefore, for v(x) > 0, we have σ(s = 1|2, x) = 1 if σ(s = 1|1, x) > 0. If v(x) < 0, then we must
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have

αx−1 − λαx + ν1x − ν2x + ψ − β1
1,x > αx−1 − λαx + ν2x − ν1x + ψ − β2

1,x (D.32)

⇒ β1
1,x + 2ν2x − 2ν1x < β2

1,x. (D.33)

Consequently, if ν2x > ν1x, we have β2
1,x > 0 and therefore, γ(s = 1, 2, x) = 0. On the other hand,

due to equation (D.31), we have β2
0,x > 0 and therefore, γ(s = 0, 2, x) = 0, which is a contradiction.

Hence, ν2x ≤ ν1x. If ν2x < ν1x, we have β1
0,x > 0 and so γ(s = 0, 1, x) = 0. If ν2x = ν1x, we have

β2
1,x > 0 and therefore, γ(s = 1, 2, x) = 0. Hence, for v(x) < 0 we have σ(s = 1|1, x) = 1 if

σ(s = 1|2, x) > 0.

D.5 Proof of Theorem 8

Similar to the proof of Theorem 7, we use KKT conditions to find the properties for the solution
of the optimization problem (5.17). We use the following dual variables for each constraints in
(5.17).

t0 −N
i−1∑
j=1

∞∑
x=0

v(x)γ(s = 1, j, x)− i
∞∑
x=0

v(x)
∑
s,j

γ(s, j, x) + p ≤ 0, ∀i ∈ I : εi1 (D.34a)

t0 −N
i−1∑
j=1

∞∑
x=0

v(x)γ(s = 1, j, x) ≤ 0, ∀i ∈ I : εi2 (D.34b)

∞∑
x=0

v(x)γ(s = 1, i, x)−
∞∑
x=0

v(x)γ(s = 1, i+ 1, x) ≤ 0, 1 ≤ i < N : ηi (D.34c)∑
s,i

γ(s, i, x+ 1)− λ
∑
i

γ(1, i, x) = 0, ∀x ≥ 0 : αx (D.34d)

∑
s

γ(s, i, x)− 1

N

∑
s,j

γ(s, j, x) = 0, ∀i ∈ I, x ≥ 0 : νix (D.34e)∑
s,i,x

γ(s, i, x)− 1 = 0 : ψ (D.34f)

− γ(s, i, x) ≤ 0, ∀s ∈ {0, 1}, i ∈ I, x ≥ 0 : βis,x. (D.34g)

The KKT Stationarity conditions will result in the following.

v(x) =
λαx − αx−1 − νix + 1

N

∑
i∈I ν

i
x − ψ + βi1,x∑

j∈I jε
j
1 − (2i−N)−N

∑N
j=i+1(ε

j
1 + εj2) + ηi − ηi−1

(D.35a)
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=
−αx−1 − νix + 1

N

∑
i∈I ν

i
x − ψ + βi0,x∑

j∈I jε
j
1

(D.35b)

We denote the denominator in equation (D.35a) by ci. By comparing ci for different i ∈ I, we
can prove the results.

Lemma 28. If ci1 > ci2 , then i2 dominates i1.

Proof. From equation (D.35b), we denote

βi0,x − νix = kx. (D.36)

Notice that βi0,x − νix is fixed across types of users. Therefore, we have

v(x) =
λαx − αx−1 + 1

N

∑
i∈I ν

i
x − ψ + kx + βi1,x − βi0,x∑

j∈I jε
j
1 − (2i−N)−N

∑N
j=i+1(ε

j
1 + εj2) + ηi − ηi−1

. (D.37)

Hence, if ci1 > ci2 and for v(x) > 0, we have βi11,x − βi10,x > βi21,x − βi20,x. It means that for v(x) > 0,

whenever we have βi21,x > 0 (meaning γ(s = 1, i2, x) = 0), we must have βi11,x > 0 (meaning

γ(s = 1, i1, x) = 0). Similarly, for v(x) < 0, we have βi11,x − βi10,x < βi21,x − βi20,x, which means

whenever we have βi11,x > 0 (meaning γ(s = 1, i1, x) = 0), we must have βi21,x > 0 (meaning

γ(s = 1, i2, x) = 0). Therefore, i2 dominates i1.

Assume i2 > i1. We either have ci1 > ci2 , which according to Lemma 28 indicates that i2
dominates i1, or we have ci1 ≤ ci2 . It indicates the following.

∑
j∈I

jεj1 − (2i1 −N)−N
N∑

j=i1+1

(εj1 + εj2) + ηi1 − ηi1−1

≤
∑
j∈I

jεj1 − (2i2 −N)−N
N∑

j=i2+1

(εj1 + εj2) + ηi2 − ηi2−1 (D.38)

⇒ 2(i2 − i1)−N
i2∑

j=i1+1

(εj1 + εj2) + ηi1 − ηi1−1 − ηi2 + ηi2−1 ≤ 0 (D.39)

Since we have ηi ≥ 0, εi1 ≥ 0, and εi2 ≥ 0, for the above inequality to hold, we must have

N

i2∑
j=i1+1

(εj1 + εj2) + ηi1−1 + ηi2 ≥ 2(i2 − i1).
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Also note that using KKT conditions, we have∑
i∈I

(εi1 + εi2) = 1. (D.40)

Therefore, for i2 − i1 > N
2

, we must have ηi1−1 + ηi2 > 0, which means we should either have
ηi2 > 0 (meaning q(i2) = q(i2 + 1)) or ηi1−1 > 0 (meaning q(i1) = q(i1 − 1)). If i2 − i1 <= N

2
,

then we either have ηi2 > 0 (meaning q(i2) = q(i2 + 1)) or ηi1−1 > 0 (meaning q(i1) = q(i1 − 1)),
or
∑i2

j=i1+1(ε
j
1 + εj2) > 0, which means that there exists an i where i1 < i ≤ i2, for which we have

εi1 > 0 or εi2 > 0. It indicates that for i, the utility of the mechanism is equal to the outside option
utility. That is, we have iq(i)− t(i) = (iv − p)+.

D.6 Proof of Theorem 9

In the no information case, the objective of the planner is to maximize the following.

λ
N∑
i=1

γiPI(i)(t0 + iq(i)−
i−1∑
j=1

q(j)) (D.41)

If v ≥ 0, we have

λ
N∑
i=1

γiPI(i)(t0 + iq(i)−
i−1∑
j=1

q(j)) =λ
N∑
i=1

γiPI(i)(t0 + iσ(1|i)v −
i−1∑
j=1

q(j)) (D.42a)

≤λ
N∑
i=1

γiPI(i)(t0 + iv −
i−1∑
j=1

q(j)) ≤ λp (D.42b)

where the last inequality is due to the individual rationality constrains (γi = 1, ∀i ∈ I) that impose
the condition iq(i)− t(i) =

∑i−1
j=1 q(j)− t0 ≥ (iv − p)+.

If v < 0, we have iv − p < 0 and therefore, we must have iq(i)− t(i) =
∑i−1

j=1 q(j)− t0 ≥ 0.
Hence, we can write the following.

λ
N∑
i=1

γiPI(i)(t0 + iq(i)−
i−1∑
j=1

q(j)) =λ
N∑
i=1

γiPI(i)(t0 + iσ(1|i)v −
i−1∑
j=1

q(j)) (D.43a)

≤0 ≤ λp (D.43b)
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D.7 Proof of Theorem 10

Due to irrelevance of message quoting in the full information scenario, the planner only needs
to satisfy individual rationality constraints, which are given below.

i
∞∑
x=0

(v(x))+µ(x)− t ≥ (i
∞∑
x=0

v(x)µ(x)− p)+, ∀i ∈ I (D.44)

Therefore, we have

t = min
i

(i
∞∑
x=0

(v(x))+µ(x)− (i
∞∑
x=0

v(x)µ(x)− p)+) (D.45)

≤min
i

(i
∞∑
x=0

(v(x))+µ(x)− (i
∞∑
x=0

v(x)µ(x)− p)) (D.46)

= min
i
−iv(xneg)µ(xneg) + p = −v(xneg)µ(xneg) + p, (D.47)

where xneg is the smallest x for which we have v(x) < 0. We have µ(xneg) = λxneg∑xneg
x=0 λx

. Therefore,

the revenue of the planner is less than or equal to −λv(xneg)
λxneg∑xneg
x=0 λx

+ λp.
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APPENDIX E

Proofs for Chapter 6

E.1 Proof of Lemma 16

ct,π(s) = E{cτ,m(s)|t, π}

=
E{q(s)|t, π}

µ
+ E{(s− τ)+ − c(s− τ)}

=
1

µm(t)

∫
m,τ>τ̃m(s)

fτ (τ)π(m|τ)m(t)(

∫ s

l=−∞
m(l)dl − µ(s− τ)+ + µc(τ − s) + µ(s− τ)+)dτdm

+
1

m(t)

∫
m,τ<τ̃m(s)

fτ (τ)π(m|τ)m(t)(c(τ − s) + (s− τ)+) dτdm

=
1

µm(t)

∫
m,τ>τ̃m(s)

fτ (τ)π(m|τ)m(t)(

∫ s

l=−∞
m(l)dl − µcs+ µcτ) dτdm

+
1

m(t)

∫
m,τ<τ̃m(s)

fτ (τ)π(m|τ)m(t)

(c(τ − s) + (s− τ)) dτdm

=
1

µm(t)

∫
m,τ>τ̃m(s)

fτ (τ)π(m|τ)m(t)(

∫ s

l=−∞
m(l)dl − µcs)dτdm

+
1

m(t)

∫
m,τ<τ̃m(s)

fτ (τ)π(m|τ)m(t)((1− c)s− τ) dτdm+ cE(τ |t) (E.1)

where m(t) =
∫
τ,m

fτ (τ)π(m|τ)m(t)dτdm.

E.2 Proof of Lemma 17

In order for an agent to obey her suggestion, we must have ct,π(t) to be the global minimizer of
ct,π(s). In the next lemma, we will show that ct,π(s) is convex and therefore, any local minimizer is
a global minimizer.
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Lemma 29. ct,π(s) is convex with respect to s.

Proof. In order to prove convexity of ct,π(s), we prove that its derivative is increasing. But we first
go over some preliminary results.

For t ≥ 0, if
∫ t
−∞m(s)ds ≤ µt, we have

∫ t

−∞
m(s)ds = µ(t− τ̃m(t)) (E.2)

Since we have τ̃m(t) = 0 for t ≤ 0, the following holds.

τ̃m(t) = (t−
∫ t

−∞

m(s)

µ
ds)+ (E.3)

Lemma 30. If m(t) ≤ µ for all t, then τ̃m(t) is continuous and increasing with respect to t.

Furthermore, τ̃m(t) is differentiable for all t except possibly for t = t̃, where t̃ will be characterized

in the proof.

Proof. Since m(t) ≤ µ, there exists a time t̃, for which we have t−
∫ t
−∞

m(s)
µ

ds ≥ 0 for t ≥ t̃ and
t −

∫ t
−∞

m(s)
µ

ds < 0 for t < t̃. It is clear that τ̃m(t) is continuous, differentiable and increasing
for t < t̃ and for t > t̃. Also, since the assumption of m(t) ≤ µ eliminates the possibility of m(t)

including a delta function, τ̃m(t) is continuous for all t.

Since we have assumed m(t) ≤ µ, and according to Lemma 30, we know τ̃m(t) is continuous,
increasing, and differentiable for t 6= t̃, we can write the following for d

ds
ct,π(s) for s 6= t̃.

d

ds
ct,π(s) =

d

ds

1

m(t)

∫
τ,m

cm,τ (s)fτ (τ)π(m|τ)m(t)dτdm

=
d

ds

1

m(t)
(

∫
m

∫ τ̃m(s)

0

(1− c)(s− τ)fτ (τ)π(m|τ)m(t)dτdm

+

∫
m

∫ ∞
τ̃m(s)

(

∫ s

l=−∞

m(l)

µ
dl − c(s− τ))fτ (τ)π(m|τ)m(t)dτdm)

=
1

m(t)
(

∫
m

∫ τ̃m(s)

0

(1− c)fτ (τ)π(m|τ)m(t)dτdm

+

∫
m

τ̃ ′m(s)(1− c)(s− τ̃m(s))fτ (τ̃m(s))π(m|τ̃m(s))m(t)dm

−
∫
m

τ̃ ′m(s)(

∫ s

l=−∞

m(l)

µ
dl − c(s− τ̃m(s)))fτ (τ̃m(s))π(m|τ̃m(s))m(t)dm
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+

∫
m

∫ ∞
τ̃m(s)

(
m(s)

µ
− c)fτ (τ)π(m|τ)m(t)dτdm)

=
1

m(t)
(

∫
m

∫ τ̃m(s)

τ=0

fτ (τ)π(m|τ)m(t)dτdm

+

∫
m

∫ ∞
τ̃m(s)

fτ (τ)π(m|τ)m(t)
m(s)

µ
dτdm)− c (E.4)

One can see that the left and right derivative of ct,π(s) at s = t̃ are equal to equation (E.4) and
therefore, equation (E.4) holds for all s. According to equation (E.4), since m(t) ≤ µ for all t,
the term in the first integral of d

ds
ct,π(s), i.e., fτ (τ)π(m|τ)m(t), is greater than the term in the

second integral, i.e., fτ (τ)π(m|τ)m(t)m(s)
µ

. Therefore, as we increase s and therefore we increase
τ̃m(s), we are increasing the range of the first integral and decreasing the range of the second, thus,
increasing d

ds
ct,π(s). Hence, ct,π(s) is convex with respect to s.

According to Lemma 29, it is necessary and sufficient for t to be a local minimizer of ct,π(s) to
be its global minimizer. Therefore, we should have d

ds
ct,π(s)|t = 0 and we have the result by setting

(E.4) at t to 0.

E.3 Proof of Theorem 11

Let us assume that we have a positive queue over the interval [t1, t2], i.e., qτ,m(t) > 0 for
t ∈ (t1, t2) and qτ,m(t1) = 0 and qτ,m(t2) = 0. Note that we do not have any assumptions on the
queue length at other times. In order not to have any profitable deviations for agents arriving in
t ∈ [t1, t2], we should have c′τ,m(t) = 0 for t ∈ (t1, t2) to avoid profitable deviations by changing
the position inside the queue. It implies the following.

c′τ,m(t) =
m(t)

µ
− c = 0⇒ m(t) = µc, t ∈ (t1, t2) (E.5)

Since the queue size is 0 at t2, an agent arriving at t2 does not have any incentives for arriving later.
Furthermore, in order for an agent arriving at t1 not to have profit by arriving earlier, it is sufficient
to have t1 ≤ τ . This condition implies that we can not have multiple queues in the full information
equilibrium.

We can calculate the queue length at t as follows.

qτ,m(t) =

∫ t

t1

m(t)dt− µ(t− τ)+ = cµ(t− t1)− µ(t− τ)+ (E.6)
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Setting the queue at t2 to 0 will give us the equation below that relates t1 and t2 to τ .

τ = ct1 + (1− c)t2

Since all agents must arrive between [t1, t2], we have cµ(t2 − t1) = 1, and therefore, we have

t1 = τ − 1− c
cµ

, t2 = τ +
1

µ
(E.7)

E.4 Proof of Lemma 18

Assume we have a delta function of size a at some time t in the arrival process. We will show
that the agent arriving at time t has a profit by arriving slightly before t at s = t− dt. Note that we
have qτ,m(t− dt) = qτ,m(t)− a for every τ . The average cost of arriving at time t is

c(t) =

∫ ∞
τ=0

(
qτ,m(t)

µ
− c(t− τ) + (t− τ)+)fτ (τ)dτ (E.8)

On the other hand, the average cost of arriving at time s = t− dt is

c(t− dt) =

∫ ∞
τ=0

(
qτ,m(t− dt)

µ
− c(t− dt− τ) + (t− dt− τ)+)fτ (τ)dτ (E.9)

Subtracting the two will result in the following.

c(t)− c(t− dt) =
a

µ
− cdt+ dt1(t ≥ τ) > 0, for dt small enough.

Therefore, we can not have a delta function in the arrival process.
Next, assume m(t) > µ for some time t, which due to piecewise continuity of m, implies that

m(s) > µ in a neighborhood of t. Ifm is not continuous at t, we consider a point in the neighborhood
of t where m is continuous. Therefore, we have q(t) > 0 in a neighborhood of t. Let us denote t0 to
be the latest time before t that q(t0) = 0. We have q(t) =

∫ t
l=t0

m(l)dl−µ(t−max(t0, τ))1(t ≥ τ).
Therefore, we can write the derivative of the average value of the cost as follows.

c′(t) =
d

dt
(

∫ ∞
τ=0

(

∫ t

l=t0

m(l)

µ
dl − (t−max(t0, τ))1(t ≥ τ)

+ (t− τ)+ − c(t− τ))fτ (τ)dτ =
m(t)

µ
− c (E.10)
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Setting c′(t) = 0 results in m(t) = cµ < µ. Therefore, we can not have m(t) > µ.

E.5 Proof of Theorem 12

We define c(t) to be the average value of the cost cτ,m(t) with respect to τ using fτ (·). In order
to have an equilibrium, each agent arriving at time t should to be acting rationally by doing so.
Therefore, we should have c′(t) = 0 for every t that m(t) > 0 in a neighborhood of t. If m(t) > 0

in a right neighborhood of t, the right derivative of the expected cost should be zero and the left
derivative should be non-positive. Similar rule applies for the left neighborhoods.

In Lemma 18, we proved that in order to satisfy incentive constraints in the no information case,
we can never have m(t) > µ, and m(t) can never include a delta function. Therefore, we have
m(t) ≤ µ for all t. Also, according to Lemma 30, we know τ̃m(t) is continuous and differentiable.
Therefore, the derivative of the average value of the cost, c′(t) is given as follows.

c′(t) =
d

dt

∫
τ

cτ,m(t)fτ (τ)dτ

=
d

dt
(

∫ τ̃m(t)

0

(1− c)(t− τ)fτ (τ)dτ +

∫ ∞
τ̃m(t)

(

∫ t

l=−∞

m(l)

µ
dl − c(t− τ))fτ (τ)dτ)

=τ̃ ′m(t)(1− c)(t− τ̃m(t))fτ (τ̃m(t))− τ̃ ′m(t)(

∫ t

l=−∞

m(l)

µ
dl − c(t− τ̃m(t)))fτ (τ̃m(t))

+

∫ τ̃m(t)

0

(1− c)fτ (τ)dτ +

∫ ∞
τ̃m(t)

(
m(t)

µ
− c)fτ (τ)dτ

=

∫ τ̃m(t)

0

(1− c)fτ (τ)dτ +

∫ ∞
τ̃m(t)

(
m(t)

µ
− c)fτ (τ)dτ

=1− e−λτ̃m(t) +
m(t)

µ
e−λτ̃m(t) − c

=1− c− e−λ(t−
∫ t
l=−∞

m(l)
µ

dl)+(1− m(t)

µ
) (E.11)

Setting c′(t) = 0 will result in the following.

e−λ(t−
∫ t
l=−∞

m(l)
µ

dl)+(1− m(t)

µ
) = 1− c (E.12)

Equation (E.12) holds for all t such that we have m(t) > 0. Note that if m(s) = 0 for s < t and
m(s) > 0 for s ≥ t, the left derivative of c(t) is non-positive given equation (E.12) holds for t. This
implies that, as we increase t, we can have discontinuity in m(t) from 0 to a non zero value. This is
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not the case for right neighborhoods with zero arrivals, i.e., m(s) = 0 for an interval of s > t and
m(s) > 0 for an interval of s ≤ t . In this case, the right derivative will be non-positive if (E.12)
holds for t. However, we need the right derivative to be positive for the agents to not have profitable
deviations. Hence, whenever we have m(s) = 0 for an interval of s > t, we should have m(t) = 0,
i.e., m(t) must be continuous when transitioning to zero from non zero values. Also, note that the
assumption of m(t) ≤ µ clearly holds for any m(t) satisfying equation (E.12). Therefore, we have
the following.

If we take the derivative of equation (E.12) w.r.t. t for t ≥ t̃ (t̃ is defined in Lemma 30), we have

e−λ(t−
∫ t
l=−∞

m(l)
µ

dl)(λ(1− m(t)

µ
)2 +

m′(t)

µ
) = 0

⇒ −λ(1− m(t)

µ
)2 − m′(t)

µ
= 0 ⇒ dm

(µ−m)2
= −λ

µ
dt

⇒ 1

µ−m
=
−λt+ β

µ
⇒ m(t) = µ− µ

β − λt
(E.13)

In order to derive constant β, we assume that m(t) is 0 outside of an interval of [t1, t2]. If t̃ > 0 then
we must have t1 < 0. For now, we assume t̃1 = 0 and therefore, t1 ≥ 0. We must have m(t2) = 0

as mentioned in the discussions above. Also, since
∫ t2
0
m(t)dt = 1, we have τ̃m(t2) = t2 − 1

µ
.

Therefore, according to equation (E.12), we have the following for t2.

e−λ(t2−
1
µ
) = 1− c⇒ t2 =

− ln(1− c)
λ

+
1

µ
(E.14)

and we know m(t2) = 0 which will give us β as follows.

µ− µ

β − λt2
= 0⇒ β = λt2 + 1⇒ β = − ln(1− c) +

λ

µ
+ 1. (E.15)

On the other hand, we must have
∫ t2
t1
m(t) = 1, which results in the following equation to derive t1.

∫ t2

t1

m(t)dt =

∫ t2

t1

(µ− µ

β − λt
)dt = 1

⇒ µ(t2 − t1)−
µ

λ
ln(λ(t2 − t1) + 1) = 1

⇒ ln(1− c) + λt1 + ln(
λ

µ
− ln(1− c)− λt1 + 1) = 0 (E.16)

If t1 derived from the above equation is non-negative, then the equilibrium is characterized. Next,
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we consider the possibility of t1 ≤ 0, which results in t̃ > 0. For t ≤ t̃, τ̃m(t) = 0 and according to
(E.12) we have 1− m(t)

µ
= 1− c and therefore, we must have m(t) = µc for t1 ≤ t ≤ t̃. The queue

size must be 0 at t̃ if τ = 0, because for t > t̃, we have τ̃m(t) > 0. This results in the following.

µc(t̃− t1) = µt̃⇒ t̃ = − c

1− c
t1 (E.17)

On the other hand, since τ̃m(t) > 0 for t > t̃ and τ̃m(t̃) = 0, m(t) follows equation (E.13) for t ≥ t̃

and we have m(t̃) = µ− µ
β−λt̃ . Therefore, we have the following.

m(t̃) = µ− µ

β − λt̃
= µc

⇒ 1− 1

λ(t2 + c
1−ct1) + 1

= c

⇒ λ((1− c)t2 + ct1) = c

⇒ −(1− c) ln(1− c) +
(1− c)λ

µ
+ λct1 = c

⇒ t1 =
1− c
λc

ln(1− c)− 1− c
µc

+
1

λ
(E.18)

If the value of t1 above is negative, the no information equilibrium is characterized. Notice that we
might have two types of no information equilibrium, one with negative t1 and one with a positive
one if the value of t1 satisfying equations (E.16) and (E.18) is positive and negative, respectively.

E.6 Proof of Theorem 13

Consider any m in the support of π(·|τ). We show m(t) as m(t) = µc + δ(t), where δ(t) is
defined over [tτ , tτ ]. Since we have

∫ tτ
tτ
m(t)dt = 1 and tτ − tτ ≤ 1

µc
, we must have

∫ tτ
tτ
δ(t)dt ≥ 0.

Using Lemma 17 we have the following.

(1− c)
∫
τ,m

fτ (τ)π(m|τ)m(t)1(τ ≤ τ̃m(t))dm

+
1

µ

∫
τ,m

fτ (τ)π(m|τ)m(t)(m(t)− µc)1(τ > τ̃m(t))dm = 0 (E.19)
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Since τ̃m(t) is increasing in t, we can define its inverse by t̃m(τ), i.e., we have qτ,m(t) > 0 for
tτ ≤ t < t̃m(τ) and qτ,m(t) = 0 for t ≥ t̃m(τ). We have

1

µ

∫
τ,m

fτ (τ)π(m|τ)

∫
t

m(t)(µ(1− c)1(t ≥ t̃m(τ))

+ (m(t)− µc)1(t < t̃m(τ)))dτdmdt = 0

1

µ

∫
τ,m

fτ (τ)π(m|τ)

∫
t

(δ(t) + µc)(µ(1− 2c+ c)

1(t ≥ t̃m(τ)) + δ(t)1(t < t̃m(τ)))dτdmdt = 0

1

µ

∫
τ,m

fτ (τ)π(m|τ)

∫ tτ

tτ

(µcδ(t) + µ2c21(t ≥ t̃m(τ))

+ µ(1− 2c)m(t)1(t ≥ t̃m(τ)) + δ(t)21(t < t̃m(τ)))dτdmdt = 0 (E.20)

We notice that all of the elements of the above integral are greater than or equal to zero. Therefore,
they must all be zero for the sum to be zero. Hence, we have∫ tτ

tτ

µ2c21(t ≥ t̃m(τ))dt = 0∫ tτ

tτ

µ(1− 2c)m(t)1(t ≥ t̃m(τ))dt = 0∫ tτ

tτ

δ(t)21(t < t̃m(τ)))dt = 0 (E.21)

Therefore, we must have δ(t) = 0 for all t ∈ [tτ , tτ ],m. Hence, m(t) = µc and thus, tτ − tτ = 1
µc

,
i.e., the time span of the arrival processes are equal to the one in the full information equilibrium.
We must also have 1(t ≥ t̃m(τ)) = 0 for all t ∈ [tτ , tτ ],m, τ , which is consistent with assumption
(c). Therefore, we must have tτ = τ − 1−c

cµ
and tτ = τ + 1

µ
. Hence, π(·|τ) is supported only over

the full information equilibrium arrival process and the theorem is proved.

E.7 Proof of Lemma 19

If the planner restricts his attention to the set of signaling strategies that satisfy assumptions (b)
and (c), we have qτ,m(t) =

∫ t
l=−∞m(l)dl− µ(τ − t)+. Therefore, we have the following for ct,π(s)
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and its derivative.

ct,π(s) =
1

µm(t)

∫
m

∫ τ(t)

τ=τ(t)

(

∫ s

l=−∞
m(l)dl − µ(s− τ)+

+ µc(τ − s) + µ(s− τ)+)fτ (τ)π(m|τ)m(t)dτdmc

=
1

µm(t)

∫
m

∫ τ(t)

τ=τ(t)

fτ (τ)π(m|τ)m(t)(

∫ s

l=−∞
m(l)dl − µcs) dτdm+ cE(τ |t) (E.22)

d

ds
ct,π(s) =

1

µm(t)

∫
m

∫ τ(t)

τ=τ(t)

fτ (τ)π(m|τ)m(t)(m(s)− µc) dτdm (E.23)

According to Lemma 17, if we set d
ds
ct,π(s)|t = 0 we get the result.

E.8 Proof of Lemma 20

s(π) =

∫
t

∫
τ,m

fτ (τ)π(m|τ)m(t)cτ,m(t)dτdmdt

=

∫
t

∫
τ,m

fτ (τ)π(m|τ)m(t)(
q(t)

µ
+ c(τ − t)+ + (1− c)(t− τ)+)dτdmdt

=

∫
t

∫
τ,m

fτ (τ)π(m|τ)m(t)(

∫ t
l=−∞m(l)dl − µ(t− τ)+

µ
+ c(τ − t) + (t− τ)+)dτdmdt

=

∫
t

∫
τ,m

fτ (τ)π(m|τ)m(t)(

∫ t
l=−∞m(l)dl

µ
+ c(τ − t))dτdmdt

=
1

µ

∫
τ

fτ (τ)(

∫ tτ

t=tτ

∫ t

s=tτ

(Rm,τ (t, s)− µcmτ (t))dsdt+ µc(τ − tτ ))dτ (E.24)

E.9 Proof of Theorem 14

Suppose m(t) is in the support of π(·|τ). Assume tτ − tτ = T . We show m(t) as m(t) =

µc + δ(t). Since we have
∫ tτ
tτ
m(t)dt = 1, we must have

∫ tτ
tτ
δ(t)dt = 1 − µcT ≥ 0. Lemma 19

results in the following.∫
τ,m

fτ (τ)π(m|τ)

∫
t

(µ2c2 + 2µcδ(t) + δ(t)2)dtdmdτ = µc

⇒ µc(1− µcT ) +

∫
τ,m

fτ (τ)π(m|τ)

∫
t

δ(t)2dtdmdτ = 0
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⇒ E[

∫
t

δ2(t)dt] = 0 ⇒ δ(t) = 0 wp. 1

µcT = 1⇒ T =
1

µc
(E.25)

Therefore, we have m(t) = µc with probability one and tτ − tτ = 1
µc

. Therefore, we must have
m(t) to be the full information equilibrium, i.e., tτ = τ − 1−c

cµ
and tτ = τ + 1

µ
. Therefore, π(·|τ) is

supported only over the full information equilibrium arrival process and the result is proved.
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