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ABSTRACT

In adaptive control and online parameter estimation, recursive identification al-

gorithms, such as Recursive Least Squares (RLS) or gradient methods, are often

used to learn system dynamics online. An established method of coping with

changing system parameters is the use of forgetting in the recursive identifier, but

standard constant-rate forgetting can cause divergence of the filter covariance in

RLS and has an unacceptably low re-convergence rate when the system is subject

to abrupt instead of gradual changes. In this work, we present novel theory and al-

gorithms for mitigating these two drawbacks by the introduction of modified RLS

algorithms with variable-rate forgetting, matrix forgetting, and a priori bounded

covariance. Next, we exhaustively investigate the role of persistent excitation in

the global asymptotic stability (GAS) of RLS without forgetting, and finally we

present results guaranteeing the GAS of sequential gradient descent using a class

of cost functions that include the non-strictly convex least-squares costs corre-

sponding to limiting case of forgetting all past data. Our results provide a robust

forgetting-based solution to the loss of persistency and abrupt change of param-

eters problems for RLS, as well as a template for directly generalizing existing

persistency conditions to achieve necessary and sufficient regressor properties for

the GAS of RLS. Finally, the work opens new directions in stability analyses for

gradient methods, such as the introduction of time-generalized fixed point the-

orems that can be used in the case where Lyapunov’s direct method cannot be

applied.
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CHAPTER 1

Introduction

The year is 2054 and an F43, the newest and most advanced fighter in the world, is

hit by an air-to-air missile while dog-fighting in the Pacific. In a tenth of a second, flames

engulf the fighter’s left wing and a small stub of contorted steel near the fuselage is all

that remains. The aircraft begins to roll unstably about the nosecone. Knowing that he is

over unfriendly territory, the pilot chooses not to eject. The mental and physical strains

of this risky option have been well known to generations of pilots. Instead, he waits; less

than a second later the fighter has restabilized and begins a flight back to base. In several

minutes, the battered F43 lands safely on its home carrier, with repair crews rushing to

meet it. The life of a serviceman and hundreds of thousands of dollars in equipment have

been saved–but how?

Unlike the fighters of today, the F43 has an adaptive autopilot that can redesign itself

quickly in response to damage inflicted upon the aircraft. The heart of this autopilot is

an advanced online system identification algorithm, which infers flight parameters in real-

time from online data streams and can detect and respond to parameter changes in as little

as 30 samples of data–or 50 milliseconds at 600 Hz. Although it might seem far-fetched

that such a system could exist, progress in control and estimation theory has made this

kind of technology feasible. This thesis will describe fundamental algorithms that can

enable technologies like the autopilot of the hypothetical F43 in applications ranging from

aerospace, automotive systems, and robotics to chemical plants and power and electrical
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systems.

1.1 Recursive Online System Identification

The main type of algorithms we will discuss will be system identification algorithms,

and specifically recursive online system identification algorithms. To understand exactly

what this means, it is useful to separate the term into its constituent parts:

i) System Identification: a system is any assembly of interacting material parts. Exam-

ples are mechanical systems, such as aircraft, automobiles, and spacecraft; chemical

systems, such as controlled chemical plants and reactors like distillation columns;

electrical systems, such as power stations, the electric grid, or radar installations; and

biological systems such as individual cells, organs, or the entire human body. Sys-

tems usually admit the flow of data through the system in some form. The standard

paradigm of systems theory distinguishes several kinds of data streams:

Inputs are data streams that are supplied from outside the system and affect the be-

havior of the system. Inputs can be controlled–in which case they are specified by

the user and flow into special parts of the system called actuators–or uncontrolled

(also called exogenous) in which case they cannot be manipulated by the user and

affect the system through paths that are often complex and unknown. Uncontrolled

inputs are often called disturbances because they disturb what would otherwise be

the ordinary, predictable, or desired behavior of the system.

Outputs are data streams that are measured by one or more sensors and are available

to the user, usually corrupted with noise.

System states are a special set of data streams that taken collectively uniquely specify

the internal configuration of the system at each instant. If the entire set of states were

known at a single instant, and all future inputs were known, then an analyst could, in

principle, determine the states and outputs at every point in the future.
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There are other approaches to system theory, such as the behavior approach devel-

oped by Willems and his collaborators [1–4], but the input, output, and state approach

just described is standard and accounts for the majority of research and all major ap-

plications in the field.

When a system is considered for engineering purposes, a model connecting the be-

havior of the inputs to the outputs and possibly unmeasured system characteristics is

often useful or necessary. System identification is the scientific study of how models

can be obtained from input and output data from a system. The kind of models used

in system identification and how they are determined from data will be discussed at

length in a later chapter. For now, we mention that we will be interested primarily in

discrete, dynamic models. A dynamic model is a model that predicts the response of

a dynamic system from known inputs and initial conditions. The data and predicted

response can be given continuously in time or supplied only at finitely-separated in-

stants. We will consider only the latter case, in which the dynamics are said to be

discrete. This is to better fit the analysis to the operation of the most common hard-

ware, which all relies on digital electronics and sampled-data. The reader should be

aware, however, that continuous-time versions exist of all the fundamental algorithms

we will present.

ii) online: system identification can be performed entirely in the laboratory by means of

controlled (in the scientific sense) experiments. Typically, this approach operates by

applying a series of non-destructive inputs to the system, or a prototype of the system,

recording the corresponding system outputs, and batch processing the experimental

data into a set of model parameters. In contrast to this approach, online identification

attempts to identify the system in real-time while it is operating. Because of this more

ambitious objective, online identification lacks most of the luxuries available to the

offline, laboratory-based approach. Instead of being able to choose experiments at

will, we must work with the data that is produced during system operation. Notably,
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when the system is operating within a closed-loop control architecture, the inputs

will tend to minimize the range of system dynamics they excite. Although this is

highly desirable from a control perspective, this behavior will result in data that is

not rich enough in information to identify a full model of the system. Identification

and control can therefore be seen to have competing interests in online operation.

Thus enters the notion of persistency, also called persistency of excitation, which is

a property that can be used to decide if the input and output data is rich enough to

fully identify a model of the system. The simultaneous satisfaction of the goals of

control and identification during closed-loop online operation is sometimes referred

to as the problem of dual control (cf. [5–9]), the general solution of which remains

open at the time of writing.

iii) recursive: not only must the identification algorithm operate online, but it must be

at least in principle capable of computing model estimates efficiently and with little

computation power. Hardware constraints are often a limiting factor, since online

algorithms usually run on embedded platforms such as those used in flight control

applications. A standard way of creating efficient algorithms is to assume a recursive

form for the estimate, given in general by

θk+1 = θk + Uk(yk, uk, θk), (1.1)

where θk is the current model estimate, given as a parameter vector in a finite-

dimensional real vector space, θk+1 is the updated estimate, andUk is a step-dependent

update function that incorporates the current output yk, input uk, as well as possibly

internal state variables. An algorithm that can be written in this form can be bounded

in complexity by the update function. In several important cases, this complexity is

O(p2), where p is the number of system outputs, which is frequently far less than the

number of model parameters, enabling the computation of an efficient estimate.
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Recursive online identification thus forms a subfield of general system identification, which

in turn forms a subfield of estimation theory and systems theory.

What sort of algorithms do we consider in recursive online identification? A Great vari-

ety of options exist depending on the choice of model type and how the engineer decides to

measure the quality of the estimate. The simplest option, which we will later find has much

to recommend it from the Bayesian viewpoint, is to begin with a well-established offline

algorithm and modify it for recursive online implementation. For the important class of

linear input-output models (also called ARMA models), the elementary least-squares algo-

rithm of Gauss [10] and Legendre [11] is difficult to beat–though many have tried. Another

recommending factor is that a recursive version of least-squares, which is straightforwardly

called Recursive Least-Squares (RLS), exists that produces exactly the same estimates as

the offline batch version. This is not the case with many offline algorithms.

1.2 Parameter Changes

Thus far we have presented nothing new. The idea of using RLS for system identifica-

tion dates back to the 1970s and 80s [12, 13] and RLS itself dates back to the 1950s [14].

If RLS works well enough, what is there to do? Recalling the F43 scenario, we see that

what we want is not simply an algorithm that can identify a system, but an algorithm that

can adapt to changes in a system; the aerodynamic coefficients of the hypothetical F43 are

doubtlessly much different after the missile hits it than before, and we want an algorithm

that is robust to these kind of changes.

Parameters can change either gradually or abruptly. Gradual changes happen slowly

over time. These kind of changes usually result from component wear or gradual environ-

mental drift, and the task of the identifier in this situation is to track this trend. In contrast,

abrupt changes happen over a very short period, and are usually due to the sudden failure

of a component or to damage being inflicted upon the system. When the missile hit our
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Figure 1.1: Intuitive view of gradual and abrupt changes

F43, it caused an abrupt change in the system parameters. The task of the identifier in this

case is to detect the change and reconverge to the new parameters as quickly as possible.

Except for the simplest cases of very slowly changing parameters, standard recursive

identifiers track parameter changes too slowly, since the estimate is continuously biased by

older data. This motivated the introduction of forgetting factors from the 1980s to the early

2000s (see, for instance, [15, 16], [12, pp. 52-53]). A forgetting factor was initially seen

as a number λ in the interval (0, 1] that is applied geometrically at each data point. Hence,

at step k, the measurement yk has weight 1, the measurement yk−1 has weight λ, yk−2 has

weight λ2 and so forth. There are several standard algorithms in which the forgetting factor

can be incorporated in a way that the recursive form of the algorithm is preserved. The

most important example of this RLS, in which the forgetting factor is incorporated as a

multiplicative factor in the covariance update.

When a forgetting factor is included, RLS is more responsive to gradual parameter

changes and more quick to respond to abrupt parameter changes. However, the re-convergence

rate after abrupt changes is still slower than desired, and might take as many as several

hundred to several thousand steps depending on the magnitude of the forgetting factor.

The rate of re-convergence is quicker for smaller forgetting factors, but small forgetting

factors degrade the quality of the estimate, since less data is effectively being used in the

production of the estimate. Small forgetting factors also lead issues of stability and nu-

merical robustness, and hence in most applications large forgetting factors, ranging from

0.999 − 0.999999, are used. Another major drawback of using forgetting in this way
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emerges when we consider the effect that a gradual or abrupt loss of persistency will have

on the estimator.

1.3 Persistency

As mentioned before, persistency is a property of the data being used in an estimator.

In system identification, the data under consideration consist of input and output mea-

surements of the system, y0, . . . , yk and u0, . . . , uk. The identification procedures we will

consider organize these measurements into a vector

φk =

[
−yk−1 . . . −yk−n uk . . . uk−m

]
, (1.2)

where n and m are related to the selected model order. The vector φk is then called the

regressor and the sequence φ0, φ1, . . . is called the regressor sequence. Persistency can be

defined as a property of the regressor sequence. Specifically, if there exists an N > 0 such

that any N +1 consecutive regressors, when formed into the positive-semidefinite matrices

φT
k φk and added have minimum eigenvalue greater than a positive constant α. That is, for

all j ≥ 0,

N∑
i=0

φT
i+jφi+j ≥ αIn. (1.3)

This formulation of persistency can be shown to guarantee a wide range of convergence and

consistency results for RLS and exponential convergence results for RLS with a constant

forgetting factor λ. The question remains, however: what happens when persistency is

lost?

Loss of persistency occurs during the operation of most adaptive control systems, since

as the control objective is met, the outputs and inputs tend to reach a steady state of strictly

“lower dimension” than the parameter space of the system in the sense that too few system
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modes are excited to uniquely identify all of the system parameters. Hence, supposing that

there are no changes in the parameters, the only data that contributes information about the

steady state non-identifiable parameters is that taken during transient operation. When a

forgetting factor is used, however, this data is weighted successively less and less as the

system continues in steady state, and asymptotically is excluded from the estimate. This

causes a divergence in the estimates that can lead to bursting in adaptive controllers [17,18].

We can also consider the effect of the loss of persistency on a recursive online identifi-

cation algorithm without necessarily assuming that the estimates will be used in an adaptive

controller. In this case we simply assume that the regressor loses persistency, without con-

sidering the cause of this loss. When this occurs for RLS with a constant forgetting factor

λ, one finds that the covariance matrix for RLS begins to diverge exponentially, which ul-

timately causes the estimate itself to diverge, since random noise and even small numerical

roundoff errors will eventually be amplified enough to disturb even an estimate that has

converged very closely to the true parameters. This divergence is caused entirely by the

fact that there is both forgetting and loss of persistency simultaneously–were even one of

these two circumstances different, no divergence would occur. Since the loss of persis-

tency cannot be easily mitigated in practice, we naturally come to the question of how an

algorithm can be designed that has the advantages of forgetting, but does not exhibit the

instabilities caused by a constant forgetting factor when the regressor is not persistent.

1.4 Two Questions to Begin the Work

As seen above, consideration of extant online identification algorithms, and more specif-

ically RLS, has led us to the following two questions, which can be taken as the beginning

of our work. Namely,

i) How can a RLS or another existing recursive identification algorithm be modified

to handle both gradual and abrupt parameter changes well? (Currently RLS with a
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constant forgetting factor has some success with gradual changes.)

ii) Does there exist a way to include forgetting in RLS that does not suffer from insta-

bilities when persistency is lost?

From these two questions, we will move on successively to others. However, this is the

natural starting place of the work we will present herein.

1.5 Outline

Let us outline the remainder of the thesis. In the next chapter, we will discuss the fun-

damental notions of system identification that will be assumed throughout the five papers

that constitute the main body of the work. In order these papers are

i) “A Modified Recursive Least Squares Algorithm with Forgetting and Bounded Co-

variance” published in the 2019 American Control Conference as [19].

ii) “Convergence and Consistency of Recursive Least Squares with Variable-Rate For-

getting” published in Automatica as [20].

iii) “Recursive Least Squares with Matrix Forgetting” published in the 2020 American

Control Conference as [21]

iv) “Necessary and Sufficient Regressor Conditions for the Global Asymptotic Stability

of Recursive Least Squares” published in Systems & Control Letters as [22].

v) “Sequential Gradient-Descent Optimization of Data-Dependent, Rank-Deficient Cost

Functions with a Unique Common Global Minimizer”, which is to appear in the 2021

Conference on Decision and Control and which is under revision for submission to

the IEEE Transactions on Automatic Control.
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Each of these papers is accompanied by a preface that attempts to put the work in the larger

context of the research program of the thesis–something that is not always possible in indi-

vidual publications. They begin with our second main question: how do we modify RLS to

be robust to the loss of persistency? The first papers evaluates one possibility–bounding the

covariance a priori. Although this is an interesting idea, originally presented by Goodwin

et al. in [23], and although progress on Goodwin’s idea proved to be possible, the course of

the research shifted when we discovered variable-rate forgetting factors, especially those

that increase or decrease monotonically as a function of the measurement residual. The

development of these ideas is presented in the second and third papers, both for scalar and

matrix-valued forgetting factors. Variable-rate forgetting provides, in its various versions,

answers to both questions, although, as shown in paper iii) and [24], guaranteeing total

robustness to the loss of persistency might be as expensive as computing an SVD of the

covariance at each timestep.

With answers that are at least workable to both of our beginning questions, we turned

to a further investigations of features that we found while pursuing our work up until that

point. One major question was the role played by the “miraculous” (cf. [25]) condition

of persistency in convergence. If the loss of persistency can be as catastrophic as it is

with constant forgetting, yet only be a sufficent condition for convergence, then surely the

study of weaker-than-persistency conditions is valuable to understand the behavior of RLS.

Indeed this is the case, and in paper iv) we present a comprehensive theory of necessary

and sufficient conditions for the convergence of ordinary RLS.

Finally, we examine the case in which forgetting is taken to an extreme and only the

most recent data point is used to update the estimate. In this case, there is in general

no analytic minimizer and thus the RLS update cannot be used. We forge ahead using

gradient-descent, and hence set forth the problem of finding sufficient conditions under

which gradient descent operating sequentially on each cost, will converge to the true system

parameters.
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CHAPTER 2

Background on System Identification

In this chapter we will formulate the system identification problem rigorously and then

derive and discuss the RLS algorithm. Before adding mathematics to the conceptual notion

of “finding a system model”, we will try to clarify exactly what we want.

There are several possible questions that can motivate the identification of a system.

One example is: how can the outputs of a system be correctly predicted if we know that

a specific sequence of inputs will be applied? We will call this question the prediction

question. Note that in this case, we are ambivalent to the particular way that the output

prediction is made. We do not have a specific model set in mind and the choice of one

model set over another may be the result of nothing more than convention, familiarity, or,

perhaps more humorously put, an attempt to maximize the likelihood of a high citation

rate1. Also note that we are not attempting to determine a state vector, but only outputs.

In many cases, there is no obvious choice of state vector or the canonical choices have so

many dimensions that we may prefer to work without them.

There are multiple concrete interpretations of predicting “outputs” given an “input”.

First, we may consider the apparently simplest case of predicting the output yk that will be

observed simultaneously with the application of a specific input uk. Experience with dy-

namical systems shows that knowledge only of uk is insufficient to form good predictions

1This is only humorous in part however. Everyone who conducts research has come across cliques, fads,
and informal ‘schools’, and it is not difficult to find research in which the models are apparently chosen for
no other reason than to appeal to one of these.
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of yk, and thus this approach is usually extended as follows: given the previous outputs

y0, . . . , yk−1 and the previous inputs u0, . . . , uk−1, predict the yk that will be observed for a

specific uk. We might call this “output predictability of the first kind”. We may of course

extend this to the prediction of a finite number of future outputs yk, . . . , yk+m that are to

be predicted for a specific input sequence uk, . . . , uk+m, under the condition that the previ-

ous inputs and outputs are known, which we might call “output predictability of the second

kind”, and finally, lettingm→∞, we might consider the problem of predicting the remain-

der of the whole sequence yk, yk+1, . . . ad inf. for a specific input sequence uk, uk+1, . . .

ad inf., or, by setting k = 0, the problem of determining the entire output sequence from

a specific input sequence, either of which we might call “output predictability of the third

kind.” It follows immediately by induction that output predictability of the first kind im-

plies that of the second and third kind, and by setting m = 0, it follows that the second

kind implies the first, but the third kind need not imply the first or second. That being said,

we will henceforth only consider output predictability of the first kind, thus obtaining the

second and third kinds as implications.

Alternatively, we may not be ambivalent to the way that the output predictions are

made. In this case, the fundamental causes of an observed sequence of outputs may be

known through, for instance, the application of basic scientific laws and principles, and

only a finite number of (usually constant) parameters are to be determined. Hence we

may ask: how can we determine the best values of a finite set of parameters θ1, . . . , θn,

so that the output predicted by the scientific model is as close as possible to the observed

output. We will call this question the fitting question. Note that there is no need, even with

perfect, noiseless measurements, for the predicted and observed outputs to match, since the

scientific model may not include all of the mechanisms that noticeably affect the output of

the system.

These two goals are different in their essential object. There first requires only some

mathematical device–any one–that succeeds in making good predictions, while the second
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uses prediction as a way of measuring the accuracy of a hypothesis (albeit from a quite spe-

cialized class). The pursuit of the first goal leads naturally to the development of generic

model structures, like transfer functions of a specified order [12, 26, 27], linear state space

models, or nonlinear models like Volterra series [28–30] or neural nets [31–33]. The pur-

suit of the second goal leads to detailed procedures for estimating physically meaningful

quantities in first-principles models. Clearly we must think carefully and decide on which

one of these goals better fits out intentions when we set out to perform system identifica-

tion. In what follows, we will consider only the goal of prediction, since the chief purpose

of our identified models will be for the synthesis of controllers.

2.1 Model Classes

Model types can be broadly classified along the lines of: linear or nonlinear, state-space

or input-output (stateless), finite or infinite dimension, and so forth. For simplicity we re-

strict our attention to linear models, since this class is most frequently used in applications.

Ultimately, we will also only use input-output models, but before doing so, we will briefly

review state space models, since these kinds of models are becoming increasingly repre-

sented in the literature [34].

2.1.1 State Models

With the advent of “modern” control in the 1960s, state space models of linear systems

became increasingly popular. Among many theoretical innovations, these models allowed

the determination of a system’s instantaneous output yk using only the knowledge of the

state vector xk. The state vector at the next step is uniquely determined by the current state

vector and corresponding input value uk. Altogether, these relationships are expressed by
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the now ubiquitous equations

xk+1 = Axk +Buk, (2.1)

yk = Cxk +Duk. (2.2)

For practical systems whose frequency response tends asymptotically to zero, we have

D = 0.

In general, the state vector is not directly measured, and must be determined by the

use of an observer, such as those given in the classic works of Kalman [35] and Luen-

berger [36]. The use of these observers, however, requires knowledge of the state space

matrices A,B,C,D, which are typically themselves sought in the identification process.

Therefore, established identification procedures that produce state space models must gen-

erally operate without explicit knowledge of the state. This assumption leads to realization-

type algorithms, such as the Eigenvector Realization Algorithm [37], or modal identifica-

tion [38, 39], that return state representations in a generic basis, which cannot be easily

specified or constrained by the user. It has also been noted that these algorithms are not

robust to measurement noise. For instance, the authors in [34] carefully observe that a more

realistic model for identification is given by

xk+1 = Axk +Buk + wk, (2.3)

yk = Cxk +Duk + νk. (2.4)

where (wk)k≥0 and (νk)k≥0 are zero-mean Gauss-Markov processes as found in the stan-

dard formulation of the Kalman filter [35].

At most n2 + np + nm + mp parameters are needed to specify a state space model.

However, frequently far fewer are required. In this case, one way of writing the state space
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model is

xk+1 = A(θ)xk +B(θ)uk, (2.5)

yk = C(θ)xk +D(θ)uk. (2.6)

The use of such parameterized state space models is usually more appropriate to the goal

of fitting rather than prediction, since the specific parameterization is frequently the result

of the application of scientific principles. It is also the case that in these kind of models

the notion of identifiability [40] can become a driving factor, since it may not be possible

to uniquely determine the entire parameter vector simply from the available measurements.

Although state space models are an interesting and increasingly present class of models, the

computational burden, arbitrariness of the state basis, and lack of robustness to noise make

them poorly suited to the output prediction problem for the purpose of adaptive control, and

hence most adaptive control algorithms (see, e.g. [12, 13]) use input-output model types,

although it is possible that special state realizations may be performed during the controller

synthesis stage [41–43].

2.1.2 Input-Output Algorithms

The most basic input-output algorithm in discrete time is given by the so-called AR

(auto-regressive) model

yk + a1yk−1 + · · ·+ anyk−n = b0uk + b1uk−1 + · · ·+ nmuk−m, k ≥ 0, (2.7)

with initial conditions y−n, . . . y−1. In the SISO case the output and input sequences, along

with the coefficients are scalar-valued, while in the MIMO case, the output and input se-

quences will be vector-valued while the coefficients will be matrix-valued. In order to

account for disturbances, model uncertainty, and noise, an exogenous term is frequently
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added in the form of

yk +
n∑
i=1

akyk−i =
n∑
i=0

biuk−i + d0e0 + · · ·+ dpep, k ≥ 0, (2.8)

where (ep)k≥0 is a stochastic process that is almost always zero-mean and Gauss-Markov.

This modification of the AR model is frequently called the ARMAX model, in which

the “MA” stands for “moving avergage”, and the “X” stands for “eXogenous”. Different

choices of filter coefficients d0, . . . dp can lead the stochastic process to mimic different dis-

turbance behavior and noise spectra. Exogenous input filters are discussed further in [26].

The inclusion of a nontrivial filter for the exogenous input requires an estimate of the noise

or disturbance spectrum, which is not straightforward to compute online, and in many cases

cannot be simply calibrated.

In what follows we will only consider ARMAX models with the exogenous input given

by zero-mean Gaussian white noise νk and di = δ0,i, which is typically referred to as the

ARX model, since the moving average is removed. In this case the exogenous inputs acts

as a noise term that affects the outputs yk recursively. For this model, the SISO case can be

written as

yk = φkθ + νk, (2.9)

where φk is the regressor given in (1.2). We will call this form the linear regressor form,

since it expresses the relationship between yk and θ in the form of a linear regression model.

For the MIMO case, a similar regression form can be computed by the use of the identity

Ax = (In⊗ xT)vec(A). Note that in this case, the regressor will be an p× q matrix, where

q is the number of identified parameters.

An important distinction arises between the inclusion of noise in recursion relation (2.9)
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and the inclusion of noise by the process

yk = φkθ, k ≥ 0,

ỹk = yk + νk, (2.10)

which can be found, for instance, as a special case of the models presented in Chapter 4

of [44]. In the model structure (2.10), the noise is included only in the measured output ỹk,

but is not assumed to act in the recursion, and hence the regressor in this model is noiseless.

This is in contradistinction to (2.9) in which each yk is assumed to be noisy and hence the

regressor is also noisy. This renders the ARX model closer to an Error-In-Variables model

in statistics (see, for example, [45, Ch. 8, pp. 300-330], [46, 47]), which is considerably

less tractable than the case of a noiseless regressor, and whose complete analysis, even for

the simplest case of a static regressor (such as are frequently assumed in statistics), is open

at the time of writing.

Hence for the purposes of analysis, we will assume that the regressor is noiseless in

conformity with the model type (2.10). However, since the actual regressor, which includes

measured outputs, must be constructed for the implementation of the algorithms we will

consider, and since only noisy output data is available in practice, the implementation of

the algorithms we discuss will conform more closely to (2.9). Although we have observed

that this inconsistent use of the two models makes little difference in practical experiments

and numerical analysis, nonetheless, the treatment of the noisy regressor case would form

a more perfect theoretical basis than the current assumption of a noiseless regressor, and

we see this as future work.

2.2 Recursive Least Squares

We will now discuss the tradition recursive least squares algorithm, found, for instance,

in [13,14,48,49]. Throughout this section, we will assume the following sizes of the various
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parameters: θ ∈ Rn, and yk ∈ Rp and φk ∈ Rp×n for all k ≥ 0. To find the parameter vector

that best predicts the outputs yk, for the linear regression form (2.9), we minimize the cost

Jk(θ) =
1

2

k∑
i=0

‖yi − φiθ‖2 +R(θ, θ0), (2.11)

where R(θ, θ0) is a regularization term that is user-defined. The most popular choice of

regularization is

R(θ, θ0) =
1

2
(θ − θ0)TP−10 (θ − θ0), (2.12)

where P0 is a positive definite matrix, which has both algorithmic and statistical reasons

to recommend it, as we will discuss below. With this choice of regularization, the least-

squares cost (2.11) is a strictly convex quadratic form in θ and hence has a unique global

minimizer, given by the normal equations

θk+1 =

(
P−10 +

k∑
i=0

φT
i φi

)−1( k∑
i=0

φT
i yi + P−10 θ0

)
. (2.13)

This form of the equations provides a full solution to the optimization problem, but is

inefficient for online implementation due to the recalculation of the n×n covariance matrix

at each step. Hence, we seek a way to recursively update the matrix P−10 +
∑k

i=0 φ
T
i φi. To

do so, set P−1k

4
= P−10 +

∑k
i=0 φ

T
i φi. We obtain the recursion equation for the inverse

P−1k+1 = P−1k + φT
k φk, (2.14)

and by the matrix inversion lemma [50], it follows that

Pk+1 = Pk − PkφT
k (In + φkPkφ

T
k )−1φkPk. (2.15)
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A straightforward application of the matrix inversion lemma to (2.13) and some calculation

yields the recursive form for the estimate,

θk+1 = θk + Pk+1φ
T
k (yk − φkθk), (2.16)

and thus we have derived the ordinary RLS algorithm

θk+1 = θk + Pk+1φ
T
k (yk − φkθk), (2.17)

Pk+1 = Pk − PkφT
k (In + φkPkφ

T
k )−1φkPk, k ≥ 0, (2.18)

where the initial values θ0 ∈ Rn and P0 ∈ Pn are specified by the regularization term.

2.2.1 Convergence and Consistency

The convergence and consistency of RLS is a main topic throughout several of the

papers presented in the sequel. In this section we will quickly introduce two basic results

that can be used for comparison with the more complex results that follow.

Definition 1. A sequence of estimates (θk)k≥0 ⊂ Rp of a parameter θ ∈ Rp is convergent

to θ if limk→∞ θk = θ.

Note that convergence is not simply the convergence of the sequence of estimates in the

sense of mathematical analysis, but more specifically the convergence of the sequence of

estimates to the ‘true’ parameter vector θ. Hence both divergent (in the analytic sense) and

biased (in the statistical sense) estimators are not convergent in this sense.

Theorem 1. If the regressor sequence is persistent and νk = 0 for all k, then the sequence

of RLS estimates is convergent to the true parameters θ.

Proof. Let θ̃k
4
= θk − θ and note that the assumption that νk = 0 implies that yk = φkθ.
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From (2.17) and the recursion equation P−1k+1 = P−1k + φT
k φk, it follows that

θ̃k+1 = Pk+1P
−1
k θ̃k = Pk+1P

−1
0 θ0.

Since (φk)k≥0 is persistent, it follows that there exists and α > 0 such that
∑∞

k=0 φ
T
k φk ≥∑∞

k=0 α =∞ and thus Pk → 0 as k →∞. Hence θ̃k → 0 as k →∞.

The next property is an essentially stochastic property in which θk is naturally viewed

as a random variable, and θ0 and P0 as the mean and covariance of a prior distribution.

We will discuss the Bayesian formulation of the RLS estimator in further detail in the next

section.

Definition 2. Let (Ω,Σ,P) be a probability space and, for all k ≥ 0, let θk be a measurable

function Ω→ Rn. Then (θk)k≥0 is consistent with respect to θ if, for all ε > 0,

lim
k→∞

P({ω ∈ Ω: ‖θk(ω)− θ‖ < ε}) = 1. (2.19)

If θk ∼ N(θ, Pk) for all k ≥ 0, it is straightforward to show that (θk)k≥0 is consistent if

and only if Pk → 0 as k →∞. The following result is an immediate corollary to Theorem

6 in chapter 4

Theorem 2. If the regressor sequence is persistent and (νk)k≥0 is a zero-mean Gaussian

white noise process, then the sequence of RLS estimates (θk)k≥0 is consistent with respect

to the true parameters θ.

2.2.2 A Bayesian Perspective on RLS

In this section we will show that the RLS cost function with the regularization given

by (2.12) can be interpreted as a Bayesian maximum a priori (MAP) estimate when θ is

considered as a random variable. We will also assume that, for all k ≥ 0, νk ∼ N(0, 1).

We assume that θ has the prior density N(θ0, P
−1
0 ) and that the data y0, . . . , yk is available,
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which is connected to θ by the linear regression form (2.9). We seek fθ|y0,...,yk , the posterior

distribution of θ given the these data. From Bayes theorem and the law of total probability,

it follows that

fθ|y0,...,yk =
fy0,...,yk|θfθ∫
fy0,...,yk|θfθ dθ

, (2.20)

Since yk − φkθ = νk, it follows that yk − φkθ ∼ N(0, 1) and hence

fyk|θ(yk, θ) =
1

N
e−

1
2
‖yk−φkθ‖2 , (2.21)

where N is a normalization factor. Furthermore, since the νk are independent, it follows

that fy0,...,yk|θ = fy0|θ · · · fyk|θ. Thus, it follows that the a posteriori distribution is given by

fθ|y0,...,yk(θ, y0, . . . , yk)

=
1

N ′(y0, . . . , yk)
exp

(
−1

2

k∑
i=0

‖yi − φiθ‖2 −
1

2
(θ − θ0)TP−10 (θ − θ0)

)
, (2.22)

whereN ′(y0, . . . , yk) is a function only of the specific data values. Hence, to maximize this

distribution, it follows that the argument of the exponential function should be minimized,

which is exactly the minimization of (2.11)–(2.12).

21



CHAPTER 3

A Modified Recursive Least Squares Algorithm

with Forgetting and Bounded Covariance

3.1 Preface

The following paper was published in the 2019 American Control Conference as [19].

The objective of the research was to generalize the Exponential Forgetting and Resetting

Algorithm (EFRA) of Goodwin et al. [23], which achieved a priori bounds on the filter

covariance via an ad hoc modification of the usual RLS update. In order to produce these

covariance bounds, Goodwin et al. introduced four new parameters, γ, α, β, and δ, the

first two of which acted as generalizations of a constant-rate forgetting factor λ, while the

last two were proportionality constants used to balance covariance growth by the adding

the positive-definite term βI into the update, while simultaneously subtracting the term

positive-definite term δP 2
k . The feasible set of these parameters is not simple, as can be

seen by the constraints given in Theorem 3.1.

The ability to enforce a priori covariance bounds is appealing from the perspective

of preventing instabilities due to the covariance divergence during losses of persistency,

which is experienced by RLS with constant-rate forgetting, since the ability to guarantee

bounded covariance stops these instabilities at their source. Unfortunately, EFRA was

not derived from an RLS-like cost function, so it has no apparent connection to MAP

estimation in the Bayesian framework. It thus represents one of a class of algorithms that
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are created as modifications of well-known methods that proceed from sound statistical and

philosophical principles, but themselves are justified only by technical properties (such as

bounded covariance) that are far removed from the basic considerations of the problem.

Furthermore, we were able to show that EFRA does not match the RLS update anywhere

in the closure of the feasible set of its parameters. That is, RLS is never a special or

limiting case of EFRA. A second, practical drawback is the complexity of the formulas for

the covariance bounds; it was very difficult to start out with two covariance bounds in mind

and actually find EFRA parameters that achieved those covariance bounds. In many cases,

reasonable covariance bounds are simply not in the feasible set.

With these results, we set down the task of creating a bounded-covariance modifica-

tion of RLS that did not have these limitations. The result, poetically called “Modified

Recursive Least Squares” (MRLS), is presented in the latter half of the paper, along with

a derivation showing the limit in which it approaches RLS and an heuristic algorithm for

selecting parameters corresponding to given covariance bounds. While no convergence or

reachability analysis of this algorithm is given, our experience is that it works well.

The paper was well-received at ACC 2019, but soon after completing it, I discovered

variable-rate forgetting and how to design variable forgetting factors that are both robust

to the loss of persistency and much more responsive to abrupt changes in the system pa-

rameters. As a result, MRLS lost most of its importance for applications and we shifted

the focus of our work. The MRLS paper is included here for completeness in tracing our

thoughts in approaches to solving the problems of abrupt parameter changes and sudden

loss of persistency, as well as a bridge to connect ideas like EFRA to those like RLS-VRF.

3.2 Introduction

The recursive least squares (RLS) algorithm is one of the key fundamental tools of

identification, signal processing, estimation, and control [51, Section 2.2], [52, Chapter
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13], [53, 54], [55, Chapter 12]. RLS provides a recursive technique for minimizing the

least-squares cost function J(x) = (Ax − b)T(Ax − b), where each row of A provides

an additional data point that can be used to update the previous estimate of x. A unique

minimizer of A exists if and only if ATA is positive definite; an equivalent condition is that

A is left invertible. Since A may not be left invertible for a limited amount of data, the RLS

cost function includes a regularization term.

The simplest approach to deriving RLS is to define a recursion for the quadratic term

in x appearing in J(x) in terms of a covariance matrix. The matrix inversion can then be

used to arrive at the final update equations. The term “covariance matrix” arises from the

relationship between RLS and the Kalman filter [56,57]. In particular, by defining the state

update xk+1 = xk, which models the assumption that x is constant, Ax = b can be viewed

as the measurement equation b = Ax, where A is the “C” matrix for use in the Kalman

filter. With these dynamics and measurement equation, the Riccati difference equation

with initial condition given by the regularization term yields the RLS covariance update

equation. Note that the state update xk+1 = xk does not include disturbance noise, and thus

the Riccati covariance update lacks a constant driving term. Consequently, the solution of

the Riccati difference equation is monotonically decreasing.

A useful variation of RLS is obtained by modifying the cost function to include a for-

getting factor λ ∈ (0, 1). By using λ, older data are discounted relative to more recent data.

Consequently, RLS can respond more quickly to changes in x. In terms of the Kalman

filter, the forgetting factor corresponds to the state equation xk+1 = 1√
λ
xk, which, since

λ < 1, are unstable. This instability allows the covariance to increase, which explains the

ability of RLS to respond more quickly to changes in x.

An unfortunate side effect of the forgetting factor occurs when the data are not persis-

tently exciting, which is reflected by the situation where ( 1√
λ
I, A) is not observable. In this

case, sensor noise causes the covariance to diverge, leading to divergence of the estimate

of x [58].
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In order to overcome covariance divergence, a modified covariance equation is given

in [23]. This modified covariance equation includes terms that bound the covariance. Most

importantly, the modified covariance equation allows the covariance to increase, thus pro-

viding the ability to adapt to changes in x. Consequently, the exponential forgetting and

resetting algorithm (EFRA) of [23] provides forgetting while preventing divergence. Un-

fortunately, EFRA does not include RLS as a special or limiting case.

The contribution of the present paper is to derive a modified RLS (MRLS) variation

of [23] that includes RLS without forgetting as a limiting case and can closely approximate

RLS with forgetting. Like EFRA, MRLS provides forgetting action while bounding the

covariance. An additional benefit of MRLS relative to EFRA is greater simplicity in setting

the upper and lower covariance bounds.

The contents of the paper are as follows. Section II reviews recursive least squares.

Section III introduces EFRA and shows that it does not have an RLS limit. Section IV

gives the modified RLS algorithm and its proof. Section V shows that MRLS can approxi-

mate RLS. Section VI gives some results which help simplify MRLS coefficient selection.

Finally, Sections VII-IX give examples that illustrate the performance of MRLS, RLS, and

EFRA in different scenarios.

3.3 Review of Recursive Least Squares

In this section, we briefly review of recursive least squares (RLS) with forgetting factor

λ.

Theorem 3.1. For all k ≥ 1, let φ(k) ∈ Rp×n and y(k) ∈ Rp. Furthermore, let θ0 ∈ Rn,

let P0 ∈ Rn×n be positive definite, let λ ∈ (0, 1], and, for all k ≥ 0, denote the minimizer

of the function

Jk(θ)
4
=

k∑
i=1

λk−i(y(i)− φ(i)θ)T(y(i)− φ(i)θ) + λk(θ − θ0)TP−10 (θ − θ0) (3.1)
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by

θk
4
= argminθ∈RnJk(θ). (3.2)

Then, for all k ≥ 1, θk is given by

θk = θk−1 + Pk−1φ(k)T(λI + φ(k)Pk−1φ(k)T)−1(y(k)− φ(k)θk−1), (3.3)

Pk =
1

λ
Pk−1 −

1

λ
Pk−1φ(k)T

[
λI + φ(k)Pk−1φ(k)T

]−1
φ(k)Pk−1. (3.4)

It can be seen from (3.4) that the current covariance matrix is given by the sum of

a positive-definite matrix and a negative-semidefinite matrix. In the case where λ = 1,

the positive-definite matrix is the previous covariance matrix, and thus the sequence of

covariance matrices is nonincreasing with respect to the positive-semidefinite matrix partial

ordering. In the case where λ < 1, the sequence of covariance matrices is not necessarily

nonincreasing. By allowing eigenvalues of the covariance matrix to increase, the effect of

the forgetting factor is to discount prior information and facilitate future learning.

3.4 Exponential Forgetting and Resetting Algorithm

Although the use of the forgetting factor allows eigenvalues of the covariance to in-

crease and thus facilitate learning, an undesirable side effect is that, in the absence of per-

sistent excitation and in the presence of noise, the covariance may diverge (see Section

3.10). An extension of RLS given by the exponential forgetting and resetting algorithm

(EFRA) [23] overcomes this problem.
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Theorem 3.1. Let α ∈ (0, 1), γ ∈ (0, α), β > 0, and δ > 0, and assume that

(α− γ)2 + 4βδ < (1− α)2. (3.5)

Furthermore, define

σ
4
=
α− γ

2δ

(√
1 +

4βδ

(α− γ)2
− 1

)
, (3.6)

ν
4
=

γ

2δ

(
1 +

√
1 +

4βδ

γ2

)
, (3.7)

let P0 ∈ Rn·n be positive semidefinite, and assume that

σI ≤ P0 ≤ νI. (3.8)

Furthermore, let θ0 ∈ Rn, for all k ≥ 0, let y(k) ∈ R and φ(k) ∈ R1×n, and consider the

update equations

θk+1 = θk +
α

1 + φ(k)Pkφ(k)T
Pkφ(k)T(y(k)− φ(k)θk) (3.9)

Pk+1 = (1 + γ)Pk −
α

1 + φ(k)Pkφ(k)T
Pkφ(k)φ(k)TPk + βI − δP 2

k . (3.10)

Then the following statements hold:

i) For all k ≥ 0, σI ≤ Pk ≤ νI.

ii) For all k ≥ 0, βI + γPk − δP 2
k ≥ 0.

iii) If there exists k0 ≥ 0 such that, for all k ≥ k0, φ(k) = 0, then limk→∞ Pk = νI.

Note that (3.10) includes the terms βI and δP 2
k , which do not appear in (3.4). These

terms enforce the bounds given by i). Note, in addition, that γ plays the role of 1/λ− 1 in
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RLS.

Comparing (3.9), (3.10) with (3.3), (3.4), it can be seen that these results coincide in

the case where β = δ = 0 and 1/λ = 1 + γ = α. Since 0 < α < 1, it follows that

−1 < γ < 0, which contradicts the assumption that 0 < γ < α. Therefore, there is

no choice of parameters α, γ, β, and δ for which RLS is a special or limiting case of

EFRA. Finally, for each choice of α and γ, it can be shown that the ratio ν/σ cannot

be set arbitrarily. For example, let α = 1/2 and γ = 1/4. From (3.5), it follows that

βδ < 0.046875. Furthermore, (3.6) and (3.7) imply that

ν

σ
=

1
4

+
√

1
16

+ 4βδ√
1
16

+ 4βδ − 1
4

. (3.11)

Thus, for all β > 0 and δ < 0.046875/β, it follows that ν/σ > 3.

3.5 Modified RLS

Inspired by EFRA, we now derive modified RLS (MRLS), which, like EFRA, has

bounded covariance, but, unlike EFRA, can approximate RLS. Furthermore, attaining an

arbitrary choice of covariance bounds is simpler for MRLS than for EFRA.

Theorem 3.1. Let β ∈ (0,∞), δ ∈ (0,∞), and γ ∈ [1, 3
2
), assume that

γ + 2βδ < 3
2
, (3.12)

and define

ᾱ
4
=

2[
√

(γ − 1)2 + 4βδ(2− γ −
√

(γ − 1)2 + 4βδ) + γ − 1]

1− (2− γ −
√

(γ − 1)2 + 4βδ)2
. (3.13)
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Then, ᾱ ∈ (0, 1). Next, let α ∈ (0, ᾱ), and define

σ(α)
4
=
γ − 1− α +

√
(γ − 1− α)2 + 4βδ

2δ
. (3.14)

Then,

0 < σ(α) < (1− α)σ(0) < σ(0). (3.15)

Furthermore, let θ0 ∈ Rn and P0 ∈ Rn×n, and assume that P0 is positive definite and

satisfies

σ(α)I ≤ P0 ≤ σ(0)I. (3.16)

For all k ≥ 0, let εk ∈ (0,∞), ηk ∈ (0,∞), y(k) ∈ Rp, and φ(k) ∈ Rp×n, and consider

the update equations

θk+1 = θk + ηkPkφ(k)T[εkI + φ(k)Pkφ(k)T]−1(y(k)− φ(k)θk), (3.17)

Pk+1 = γPk − αPkφ(k)T[εkI + φ(k)Pkφ(k)T]−1φ(k)Pk + βI − δP 2
k . (3.18)

Then, for all k ≥ 1,

σ(α)I ≤ Pk ≤ σ(0)I. (3.19)

Proof. To prove that ᾱ ∈ (0, 1), note that (3.12) implies that

(1− γ)2 + 4βδ = 1− 2γ + γ2 + 4βδ

< 1− 2γ + γ2 + 3− 2γ

= (2− γ)2.
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Hence, the numerator of (3.13) is positive. Furthermore, since 1 ≤ γ < 3
2
, it follows that

1 ≤
√

1 + 2(γ − 1)(2− γ) =
√

(2− γ)2 + (1− γ)2

< 2− γ +
√

(1− γ)2 + 4βδ.

Since 2− γ −
√

(1− γ)2 + 4βδ > 0 and 2− γ +
√

(1− γ)2 + 4βδ > 1, it follows that

2− γ −
√

(1− γ)2 + 4βδ

< (2− γ −
√

(1− γ)2 + 4βδ)(2− γ +
√

(1− γ)2 + 4βδ)

= (2− γ)2 − (1− γ)2 − 4βδ

= 1− (2γ − 2 + 4βδ)

< 1.

Hence, the denominator of (3.13) is positive and therefore, ᾱ > 0. Furthermore,

2[
√

(1− γ)2 + 4βδ(2− γ −
√

(1− γ)2 + 4βδ) + γ − 1]

= −(2− γ −
√

(1− γ)2 + 4βδ)2

+ (2− γ)2 − (1− γ)2 − 4βδ + γ − 1

= 1− 2(γ − 1) + (γ − 1)2

− (γ − 1)2 − 4βδ + γ − 1− (2− γ −
√

(1− γ)2 + 4βδ)2

= 1− (γ − 1)− 4βδ − (2− γ −
√

(1− γ)2 + 4βδ)2

< 1− (2− γ −
√

(1− γ)2 + 4βδ)2.

Hence, ᾱ < 1. Therefore, ᾱ ∈ (0, 1).

To show that σ(α) > 0, note that since β > 0 and δ > 0 it follows that

|γ − α− 1| <
√

(γ − α− 1)2 + 4βδ, (3.20)
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and thus γ − α− 1 +
√

(γ − α− 1)2 + 4βδ > 0. Since α > 0 it follows that γ − α− 1 +√
(γ − α− 1)2 + 4βδ < γ − 1 +

√
(γ − 1)2 + 4βδ, hence σ(α) < σ(0).

To show that σ(α) < (1− α)σ(0), define the positive numbers

b
4
= γ − 1, c

4
= 4βδ, (3.21)

f
4
=
√
b2 + c =

√
(γ − 1)2 + 4βδ, (3.22)

g
4
= 1− b = 2− γ, (3.23)

and note that

ᾱ =
2[f(g − f) + b]

1− (g − f)2
. (3.24)

Furthermore, note that, since α < ᾱ and g − f < 1, it follows that 0 < 2[f(g − f) + b]−

α[1− (g − f)2]. Hence,

0 < 2α[f(g − f) + b]− α2[1− (g − f)2]

= α2g2 − 2αf 2 + α2f 2 + 2αgf − 2α2gf − α2 + 2bα

= α2g2 − 2αf 2 + α2f 2 + 2αgf − 2α2gf

− α2 + 2bα + f 2 − f 2

= α2g2 + (1− α)2f 2 + 2α(1− α)gf − α2 + 2bα− f 2

= [αg + (1− α)f ]2 − [α2 − 2bα + f 2]

= [αg + (1− α)f ]2 − [(b− α)2 + c]

= [αg + (1− α)f −
√

(b− α)2 + c]

· [αg + (1− α)f +
√

(b− α)2 + c].
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Since α < 1, it follows that αg + (1− α)f +
√

(b− α)2 + c > 0. Therefore,

0 < αg + (1− α)f −
√

(b− α)2 + c

= α(1− b) + (1− α)
√
b2 + c−

√
(b− α)2 + c+ b− b

= (1− α)b+ (1− α)
√
b2 + c− [b− α +

√
(b− α)2 + c]

= (1− α)[b+
√
b2 + c]− [b− α +

√
(b− α)2 + c],

Hence,

σ(α) =
b− α +

√
(b− α)2 + c

2δ

< (1− α)
b+
√
b2 + c

2δ
= (1− α)σ(0).

Next, let k ≥ 0, suppose that Pk is positive semidefinite, and define

Mk =

 Pk Pkφ(k)T

φ(k)Pk φ(k)Pkφ(k)T

 . (3.25)

Since Pk is positive semidefinite, Mk can be written as

Mk =

 P
1/2
k

φ(k)P
1/2
k

[P 1/2
k P

1/2
k φ(k)T

]
, (3.26)

and thus Mk is positive semidefinite. Since εk > 0, it follows that

Nk = Mk +

0 0

0 εkI

 (3.27)

is also positive semidefinite. Therefore, since φ(k)Pkφ(k)T + εkI is positive definite, it
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follows that the Schur complement of Nk is positive semidefinite, and thus

Pkφ(k)T[εk + φ(k)Pkφ(k)T]−1φ(k)Pk ≤ Pk. (3.28)

Next, we show that, for all k ≥ 1, Pk ≤ σ(0)I . Let k ≥ 1. By (3.16), P0 ≤ σ(0)I .

Hence, suppose that Pk−1 ≤ σ(0)I . Now, define

a
4
= 1−

√
(1− γ)2 + 4βδ, (3.29)

and note that

Pk − σ(0)I = a(Pk−1 − σ(0)I)− δ(Pk−1 − σ(0)I)2 − αGk−1. (3.30)

From (3.12) it follows that

(γ − 1)2 + 4βδ = γ2 − 4γ + 1 + 2γ + 4βδ < (γ − 2)2 < 1,

and thus
√

(γ − 1)2 + 4βδ < 1, which implies that a > 0. Since a is positive, it follows

from Pk−1 ≤ σ(0)I and (3.30) that Pk − σ(0)I ≤ 0. Hence, Pk ≤ σ(0)I.

Next, we show that, for all k ≥ 1, Pk ≥ σ(α)I . Let k ≥ 1.By assumption, P0 ≥ σ(α)I .

Hence, suppose that Pk−1 ≥ σ(α)I . Now, define

Gk−1
4
= Pk−1φ(k − 1)T[εk−1I + φ(k − 1)Pk−1φ(k − 1)T]−1φ(k − 1)Pk−1, (3.31)

f(µ)
4
= (γ − α)µ+ β − δµ2. (3.32)
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Since Pk−1 is positive definite, it follows that Pk−1 ≥ Gk−1, and thus

Pk = γPk−1 − αGk−1 + βI − δP 2
k−1, (3.33)

≥ (γ − α)Pk−1 + βI − δP 2
k−1. (3.34)

Since σ(α)I ≤ Pk−1 ≤ σ(0)I , it follows that spec(Pk−1) ⊂ [σ(α), σ(0)], and thus

min
[σ(α),σ(0)]

f(µ) ≤ min
spec(Pk−1)

f(µ) ≤ λmin(Pk), (3.35)

where the minimum in (3.35) exists because f is continuous and [σ(α), σ(0)] is compact.

Since f is concave, its unique stationary point is its maximizer, and thus the minimizer of

f over [σ(α), σ(0)] is either σ(α) or σ(0). Since f(σ(0)) = σ(0), f(σ(α)) = (1−α)σ(α),

and σ(α) < (1 − α)σ(0), it follows that f(σ(0)) < f(σ(α)) and thus σ(α) is the unique

minimizer of f over [σ(α), σ(0)]. Therefore, λmin(Pk) ≥ σ(α), and hence Pk ≥ σ(α)I. �

3.6 Approximation of RLS by MRLS

In this section, we show that, in the case where λ = 1, MRLS approximates RLS as a

limiting case. Although the same statement cannot be made in the case where λ < 1, we

show that the MRLS estimates approximate the RLS estimates in the case where λ ≈ 1.

First, we show that RLS is a limiting case of MRLS in the case where λ = 1. To see

this, note that, for all γ ∈ (1, 3
2
),

lim
β↓0

ᾱ =
γ2 − 3γ + 2

γ2 − 3γ + 2
= 1. (3.36)

Hence, by L’Hôpital’s rule,

lim
γ↓1

lim
β↓0

ᾱ = lim
γ↓1

γ2 − 3γ + 2

γ2 − 3γ + 2
= 1. (3.37)
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Hence, letting β → 0, γ → 1, δ → 0, α→ 1, εk = 1, ηk = 1, and setting λ = limγ↓1 1/γ =

1, it follows that (3.17), (3.18) approximate (3.3), (3.4).

Next, let γ ∈ (1, 3
2
). Letting β → 0, δ → 0, α → 1, εk = 1, ηk = 1/γ, and setting

λ = limγ↓1 1/γ, it follows that (3.17), (3.18) are given by

θk+1 = θk + Pkφ(k)T[λI + φ(k)Pkφ(k)T]−1(y(k)− φ(k)θk), (3.38)

Pk+1 =
1

λ
Pk − Pkφ(k)T[λI + φ(k)Pkφ(k)T]−1φ(k)Pk. (3.39)

Comparing (3.39) and (3.4), we see the only difference is in the second term. For λ ≈ 1,

this difference is small, and the examples in Section VIII show that (3.38), (3.39) numeri-

cally approximate (3.3), (3.4).

3.7 Coefficient Selection for MRLS

In this section we give a heuristic procedure for choosing MRLS parameters that yield

an approximate forgetting factor and specified covariance bounds. The procedure is easy

to apply but is not guaranteed to be successful in every case.

Let λ, x, and y be the desired forgetting factor, upper covariance bound, and lower

covariance bound, respectively. Next, consider the following steps:

i) Let γ = 1
λ
.

ii) Choose α ∈ (0, 1) such that

x

y
<

γ − 1

γ − α− 1
. (3.40)
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iii) Compute

δ
4
=

(γ − 1)(x− y) + αy

x2 − y2
, (3.41)

β
4
=
xy[αx− (γ − 1)(x− y)]

x2 − y2
. (3.42)

iv) Compute ᾱ using (3.13).

v) If α < ᾱ, then the coefficients γ, α, δ, β yield an MRLS filter with σ(0) = x and

σ(α) = y, where σ(α) is defined by (3.14). If α > ᾱ, then decrease α and repeat

steps ii)− v).

vi) Choose εk and ηk.

To obtain an estimator that mimics RLS but has bounded covariance, choose εk = λ

and ηk = 1. If β is small then ᾱ ≈ 1. In this case, let α ≈ 1 to most effectively approximate

RLS.

The following examples illustrate the behavior of MRLS and its relationship to EFRA

and RLS.

3.8 Example 1: MRLS Approximation of RLS

Consider the system

G(q) =
q− 1

12

q2 − 1
12
q− 1

12

. (3.43)

with input

u(k) = 1 + sin
2πk

10
+ sin

2πk

20
+ sin

2πk

100
. (3.44)
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Suppose that the measurement of the output is corrupted by noise with standard deviation

σ = 0.01. Let λ = 0.999, P0 = 100, and θ0 = 0. Consider the MRLS parameters

α = 0.99998, γ = 1.001, δ = 10−7,

β = 0.001, η = 1, ε = 0.999. (3.45)

The covariance bounds corresponding to these parameters are σ(α) = 0.001 and σ(0) =

1.011× 104, which closely approximate RLS. Figure 3.1 shows the similarity between the

responses for RLS and MRLS.

Now consider the MRLS parameters

α = 0.999998, γ = 1.001, δ = 1,

β = 0.001, η = 1, ε = 0.999. (3.46)

The covariance bounds corresponding to these parameters are σ(α) = 0.001 and σ(0) =

0.0321. With these parameters, Figure 3.1 shows the difference between the responses for

RLS and MRLS.

3.9 Example 2: Sudden Change of Parameters

Consider the system described by the time-dependent transfer function

Gk(q) =


q+0.2

q2−0.6q+0.08
, k ≤ 50000,

2q+0.5
q2+0.4q−0.05 , k > 50000,

(3.47)

which has a sudden change of parameters at k = 50, 000. The driving signal is given by

u(k) = 1 + sin
2πk

10
+ sin

2πk

20
+ sin

2πk

100
. (3.48)
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Figure 3.1: Example 1: MRLS with coefficients that closely approximate RLS. (a) shows
the parameter estimates and their true values; (b) shows the eigenvalues of the covariance
matrix with the MRLS covariance bounds.

Figure 3.2: Example 1: MRLS with coefficients that differ significantly from RLS. (a)
shows the parameter estimates and their true values; (b) shows the eigenvalues of the co-
variance matrix with the MRLS covariance bounds.
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Figure 3.3: Example 2: Sudden change of parameters. (a) shows the parameter estimates
and their true values; (b) shows the eigenvalues of the covariance matrix with the EFRA
and MRLS covariance bounds.

Suppose that the output measurement is noise free. Let λ = 0.999, P0 = 100, and θ0 = 0.

Consider the EFRA parameters

α = 0.375, γ = 0.001, δ = 0.05, β = 1.2525, (3.49)

and the MRLS parameters

α = 0.991, γ = 1.001, δ = 0.00001,

β = 0.001, η = 1, ε = 0.999. (3.50)

Figure 3.3 shows the parameter estimates and covariance eigenvalues for RLS, EFRA, and

MRLS, along with the EFRA and MRLS covariance bounds. The choice of constraint on

the covariance prevents convergence of EFRA to the true value both before and after the

parameter change. In contrast, RLS and MRLS quickly converge to the true parameter

values, and then reconverge to the new values after approximately 20, 000 steps.
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Figure 3.4: Example 3: Loss of persistency at k = 10, 000. (a) shows the parameter
estimates with the true values shown by blue dashed lines; (b) shows the eigenvalues of
the covariance matrix with EFRA covariance bounds (red dashed) and MRLS covariance
bounds (blue dashed).

3.10 Example 3: Sudden Loss of Persistency with Sensor

Noise

Consider the system

G(q) =
q + 0.2

q2 − 0.6q + 0.08
(3.51)

with the driving signal

u(k) =


ν(k) k ≤ 5000,

sin k
10

k > 5000,

(3.52)

where, for all k ≥ 1, ν(k) ∼ N(0, 1). Note that u suddenly loses persistency at k = 5000.

Suppose that the measurement of the output is corrupted by noise with standard deviation
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σ = 0.01. Let λ = 0.999, P0 = 100, and θ0 = 0. Consider the EFRA parameters

α = 0.375, γ = 0.001, δ = 0.05, β = 1.2525, (3.53)

and the MRLS parameters

α = 0.991, γ = 1.001, δ = 1, (3.54)

β = 0.001, η = 1, ε = 0.999. (3.55)

Figure 3.4 shows the parameter estimates and covariance eigenvalues for RLS, EFRA,

and MRLS, along with the EFRA and MRLS covariance bounds. When the driving signal

loses persistency at k = 5000, the RLS covariance diverges, and the RLS parameter esti-

mates diverge from the true parameter values. Since EFRA and MRLS both have bounded

covariance, neither can diverge. The MRLS covariance is bounded to be close to zero,

causing a lag in the initial estimate convergence, but also maintaing the estimates close to

the converged values, even when persistency is lost.

3.11 Conclusions

In this paper we derived a modified recursive least squares (MRLS) algorithm with

forgetting and bounded covariance. Unlike EFRA [23], it is possible to select the param-

eters of MRLS such that MRLS approximates RLS as a limiting case in the absence of

forgetting, and approximately in the case of forgetting. In addition, the simpler constraints

of MRLS enable a straightforward process for choosing the MRLS parameters that yield

specified covariance bounds.

Examples were given to compare the performance of RLS, MRLS, and EFRA. These

examples showed that, by suitably choosing the covariance bounds, it is possible to use

MRLS effectively in various situations, including sudden changes in parameters and lack
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of persistency.

The derivation of MRLS raises questions for future research. The highest priority is to

investigate whether or not there is a bounded covariance algorithm that exactly yields RLS

with forgetting as a limiting case. Another question is whether or not analytical bounds can

be found for the error between RLS with forgetting and the closest MRLS approximation

to RLS. The numerical examples in Section VII suggest that these bounds are tight.
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CHAPTER 4

Covergence and Consistency Recursive Least

Squares with Variable-Rate Forgetting

4.1 Preface

The bounded-covariance algorithms EFRA and MRLS generalized the number of pa-

rameters in the covariance update, including those corresponding to the constant forgetting

factor, but these parameters themselves remained constant during operation.

Another approach advocated in the literature, such as [16, 59], is to instead make the

forgetting factor time-varying. A brief section on variable forgetting factors appeared in

the 1987 text of [26]. However, time-varying forgetting, which we will refer to as variable-

rate forgetting (VRF), was not largely adopted in system identification applications, even

after these works appeared. One major reason for this lack of adoption was the complexity

that a variable forgetting factor introduces into the covariance update. Now we deal not

only with a nonlinear vector-matrix difference equation, but with a time-varying nonlinear

equation. The lack of theoretical guarantees–indeed, any theory at all–made VRF a fright-

ening prospect for applications. Although several variable forgetting formulas existed in

the literature, they were not connected by any unifying analysis, and the questions of which

one to choose and how to use it were not considered.

The following paper, published in Automatica as [60], presented the first thorough anal-

ysis of convergence and convergence-rate for VRF, as well as the first detailed analysis of
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consistency. Surprisingly, under the assumption of persistency of excitation, convergence

occurs regardless of the particular value of the forgetting factor!1. The rate of convergence

increases as the amount of forgetting increases, which is consistent with earlier results,

such as those found in [24], that for persistent regressors, constant-rate forgetting is expo-

nentially stable while ordinary RLS is only asymptotically stable (linear convergence rates

being strictly possible).

Consistency is more difficult. In general, it can be shown that the asymptotic covariance

is bounded by functions of the cumulative weight due to variable-rate forgetting, but no

widely general sufficient condition can be given at present. Results for more restricted

cases are proven, however, such as the case where the infinite product of forgetting factors

converges. Convergence is not necessary, however, since the forgetting law βk = 1 + 1/k,

whose infinite product diverges, is also consistent.

Finally, and most important for practical applications, was the discovery of a new kind

of forgetting formula. This is a formula that is “error-actuated” in the sense that when

some measure of the residual is large, the forgetting factor increases–since such a misfit is

taken to indicate parameters that poorly predict model performance and are thus likely to be

spurious or obsolete. Although the simpleest form is actuated using the instantaneous error,

forms of the forgetting formula using averaging and statistical weighting, such as those

in [61–63] or [41–43], can be used in situations where noise is present in the calculation of

the residual.

This work presents the basis of our solution to the abrupt change of parameters prob-

lem, which is developed further in “Recursive least squares with Matrix Forgetting”, and

provided the basis for the work in “Necessary and Sufficient Regressor Conditions for

the Global Asymptotic Stability of Recursive Least Squares” and “Sequential Gradient-

Descent Optimization of Data-Dependent, Rank-Deficient Cost Functions with a Unique

Common Global Minimizer”. The latter two, while not directly involving VRF emerge

1so long as the cumulative weight is non-decreasing, which is equivalent to the assumption that the for-
getting factor is actually forgetting.
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from the questions of 1) given the importance and ubiquity of persistency, is it necessary

for RLS convergence? and 2) given the importance forgetting, is it still possible to identify

the system parameters when only the most recent measurement is used in the update?

4.2 Introduction

Recursive least squares (RLS) is one of the foundational algorithms of systems and

control theory, especially for signal processing, identification, and adaptive control [49,64].

An early exposition of RLS is given in [65].

Standard RLS employs a constant forgetting factor λ, which enhances the importance

of recent data over older data. Although λ can be set by the user, the performance of RLS

is often extremely sensitive to the chosen value. Consequently, choosing a suitable value

of λ is typically a trial and error process.

To remedy this problem, various techniques have been proposed to automatically vary

the forgetting factor in response to the fit error. In particular, [16] reports a method for

sequentially updating the forgetting factor to conserve the amount information used in the

estimate, and [59] reports an update-based algorithm that uses noise statistics to control the

forgetting factor. [66] gives a gradient-based algorithm for computing a forgetting factor

that locally minimizes the mean-square error of the estimate, and [67] derives a Newton-

type gradient-descent algorithm that combines sequential estimation with minimization

of the mean-squared error. Finally, [68] gives a formula based on exponentiation of the

squared residual.

The present paper approaches the problem of varying the forgetting factor by deriving

a generalization of RLS that includes time-dependent cost scaling and regularization. This

formulation involves a growing-window cost function, and thus is distinct from the for-

mulation of [69], which uses a sliding-window cost function. The growing-window cost

function is advantageous since it directly generalizes traditional RLS and has the ability to
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weigh recent data more heavily than older data.

The first contribution of the paper is given by Theorem 1, which introduces RLS with

variable-rate forgetting (VRF), a novel extension of RLS in which the role of the constant

forgetting factor λ in RLS is replaced by a variable forgetting factor βk. By setting βk = 1
λ

for all k, VRF specializes to RLS with constant-rate-forgetting (CRF). The variable-rate-

forgetting extensions of RLS given in [16, 59, 66–68] are special cases of Theorem 3 with

specific choices of βk. In addition, Theorem 1 refines the variable-rate weighting used

in [64, pp. 17, 18]. In particular, we factor αk in [64, Eq. (2.12)] as βk · · · β0, where 1/βk

serves as the instantaneous forgetting factor at step k. This formulation allows the user to

specify βk at each step based on the current residual or knowledge of system changes. The

second and third contributions of this paper are given by Theorems 4, 6, and Corollary 4.1,

which prove conditions on βk ensuring convergence under the assumption of persistency

(Theorem 4) and consistency under the assumption of persistency and that the regressor

and sensor noise are uncorrelated (Theorem 6, Corollary 4.1). Specific examples of βk for

consistent and non-consistent algorithms are given in Corollary 4.2. The fourth contribution

is two choices of βk that may be useful in practice. In Section 4.7, we demonstrate these

choices on an abruptly changing system with and without measurement noise and compare

the performance of VRF and CRF for the given example.

The notation used throughout this paper is as follows. The symbols Sn, Nn, and

Pn denote the sets of real n × n symmetric, positive-semidefinite, and positive-definite

matrices, respectively. For all A ∈ Sn, λi(A) denotes the ith largest eigenvalue of A,

λmax(A)
4
= λ1(A), and λmin(A)

4
= λn(A). bxc denotes the greatest integer less than or

equal to x ∈ R. If X is a set, then the notation (xk)k≥0 ⊂ X indicates that (xk)k≥0 is a

sequence in X . If (ak)k≥0, (bk)k≥0 ⊂ R, then the notation ak ∼ O(bk) indicates that there

exists M > 0 and K ≥ 0 such that, for all k ≥ K, ak ≤ Mbk. Finally, for all k ≥ 0 and

N ≥ 0, we define ξ(k,N)
4
= b k

N+1
c.
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4.3 Problem Formulation

Let λ ∈ (0, 1], θ0 ∈ Rn, and P0 ∈ Pn. Furthermore, for all k ≥ 0, let φk ∈ Rp×n,

yk ∈ Rp, ek
4
= yk − φkθ and define Jk : Rn → [0,∞) by

Jk(θ)
4
=

k∑
i=0

λk−i‖ek‖2 + λk+1(θ − θ0)TP−10 (θ − θ0). (4.1)

Equation (4.1) is the cost function for CRF, the minimization of which produces the least

squares estimate of θ given y0, . . . , yk. Since Jk is quadratic and strictly convex, it follows

that its unique global minimizer, θk+1
4
= argminθ∈RnJk(θ), is the only local minimizer.

The following proposition gives the traditional RLS update equations for computing θk+1

[?, 49, 64].

Proposition 1. Under the notation and assumptions of the preceding paragraph, for all

k ≥ 0, define Jk : Rn → [0,∞) by (4.1). Then

θk+1 = θk + Pk+1φ
T
k (yk − φkθk), (4.2)

where

Pk+1 =
1

λ
Pk −

1

λ
Pkφ

T
k (λIp + φkPkφ

T
k )−1φkPk. (4.3)

In this paper, we introduce a generalization of (4.1) in which the forgetting factor is

variable, prove a result analogous to Proposition 1 for the generalization, and analyze con-

vergence and consistency for the family of algorithms thus obtained. To generalize (4.1),

for all k ≥ 0, let βk > 0, define

ρk
4
=

k∏
i=0

βi, ρ−1
4
= 1, (4.4)
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and define the cost function Jk : Rn → [0,∞) by

Jk(θ)
4
=

k∑
i=0

ρi
ρk
‖ek‖2 +

1

ρk
(θ − θ0)TP−10 (θ − θ0). (4.5)

Since (4.5) is quadratic and strictly convex, like (4.1), its unique global minimizer is the

only local minimizer. Theorem 3 provides recursive update equations for this minimizer.

4.4 RLS with Variable-Rate Forgetting

Note that (4.5) can be written as

Jk(θ) = θTAkθ − 2bTk θ + ck, (4.6)

where

Ak
4
=

k∑
i=0

ρi
ρk
φT
i φi +

1

ρk
P−10 , (4.7)

bk
4
=

k∑
i=0

ρi
ρk
φT
i yi +

1

ρk
P−10 θ0, (4.8)

ck
4
=

k∑
i=0

ρi
ρk
yTi yi +

1

ρk
θT0 P

−1
0 θ0. (4.9)

Since Ak is positive definite, we define the positive-definite matrix

Pk
4
= A−1k−1, (4.10)

where A−1
4
= P−10 .

The following result, RLS with variable-rate forgetting (VRF), generalizes Proposition

1 to the minimizer of (4.5).

Theorem 3. Let θ0 ∈ Rn, P0 ∈ Pn, and, for all k ≥ 0, let φk ∈ Rp×n, yk ∈ Rp, and
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βk ∈ (0,∞). Then the minimizer θk+1 of (4.5) is given by

θk+1 = θk + Pk+1φ
T
k (yk − φkθk), (4.11)

and

Pk+1 = Lk − LkφT
k (Ip + φkLkφ

T
k )−1φkLk, (4.12)

Lk
4
= βkPk. (4.13)

The proof of Theorem 3 requires the following lemma.

Lemma 1. Let P0 ∈ Pn and, for all k ≥ 0, let βk > 0, define ρk by (4.4), and define Pk by

(4.10). Then, for all k ≥ 0,

P−1k+1 =
1

βk
P−1k + φT

k φk (4.14)

=
1

ρk

(
P−10 +

k∑
i=0

ρiφ
T
i φi

)
. (4.15)

Proof. Let k ≥ 0. It follows from (4.7) that Ak = 1
βk
Ak−1 + φT

k φk, which, using (4.10),

implies (4.14). Furthermore, (4.14) implies P−11 = 1
ρ0

(P−10 + ρ0φ
T
0 φ0), which confirms

(4.15) for k = 0. Next, let k > 0 and suppose for induction that (4.15) holds for k−1. From

(4.14) it follows that P−1k+1 = 1
βk
P−1k + φT

k φk = 1
ρk

(
P−10 +

∑k−1
i=0 ρiφ

T
i φi

)
+ ρk

ρk
φT
k φk =

1
ρk

(
P−10 +

∑k
i=0 ρiφ

T
i φi

)
. �

Proof of Theorem 3. Let k ≥ 0. To prove (4.12), note that it follows from (4.13), (4.14),

and the matrix inversion lemma that

Pk+1 =

(
1

βk
P−1k + φT

k φk

)−1
= Lk − LkφT

k

(
Ip + φkLkφ

T
k

)−1
φkLk.
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To prove (4.11), note that (4.8), (4.10), and (4.14) imply that

θk+1 = Pk+1

(
k∑
i=0

ρi
ρk
φT
i yi +

1

ρk
P−10 θ0

)

= Pk+1

(
φT
k yk +

ρk−1
ρk

[
k−1∑
i=0

ρi
ρk−1

φT
i yi +

1

ρk−1
P−10 θ0

])

= Pk+1

(
φT
k φk +

1

βk
P−1k

)
θk + Pk+1φ

T
k (yk − φkθk)

= θk + Pk+1φ
T
k (yk − φkθk), �

For all k ≥ 0, let βk = 1
λ

. Then (4.5) specializes to (4.1), and (4.11)–(4.13) specialize to

(4.3) and (4.2). Theorem 3 thus includes Proposition 1 as a special case.

4.5 Convergence of VRF

4.5.1 Asymptotic Convergence

Definition 3. A sequence (Sk)k≥0 ⊂ Nn is persistent if there exist N ≥ 1 and α > 0 such

that, for all j ≥ 0,

αIn ≤
N∑
i=0

Si+j. (4.16)

The numbers α and N are, respectively, the lower bound and persistency window of

(Sk)k≥0. The sequence (φk)k≥0 ⊂ Rn×m is persistent if (φT
k φk)k≥0 is persistent.

Theorem 4. Let (φk)k≥0 ⊂ Rn×m, be persistent, let θ ∈ Rn, and, for all k ≥ 0, let

yk = φkθ. Furthermore, let a > 1 and, for all k ≥ 0, let βk ≥ 1. Finally, let θ0 ∈ Rn, let

P0 ∈ Pn, and, for all k ≥ 0, define θk+1 by (4.11)–(4.13). Then limk→∞ θk = θ.

Proof. Let k ≥ 0 and define θ̃k
4
= θk − θ. Using (4.11) and (4.14) it follows that θ̃k+1 =
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(In − Pk+1φ
T
k φk)θ̃k = 1

βk
Pk+1P

−1
k θ̃k, thus θ̃k = 1

ρk−1
PkP

−1
0 θ̃0. From (4.15), it follows that

limk→∞‖θ̃k‖2 ≤ limk→∞
λmax(P

2
k )

ρ2k−1
‖P−10 θ0‖2

≤ limk→∞
‖P−10 θ0‖2

λ2max

(
P−10 +

∑k−1
i=0 ρiφ

T
i φi

)
≤ limk→∞

‖P−10 θ0‖2

[λmax(P
−1
0 ) + ξ(k,N + 1)α]2

= 0. �

4.5.2 Convergence Rate

Definition 4. Let (Si)i≥0 ⊂ Nn be persistent with lower bound α and window N . Then the

upper bound β ∈ (0,∞) ∪ {∞} of (Si)i≥0 is

β
4
= sup

j≥0
λmax

(
N∑
i=0

Si+j

)
. (4.17)

Lemma 2. Let (Si)i≥0 ⊂ Nn be persistent with window N , lower bound α, and upper

bound β, and let (ai)i≥0 be a nondecreasing sequence of nonnegative numbers. Then, for

all k ≥ 0,

α`ξ(k,N)−1In ≤
k∑
i=0

aiSi ≤ βrξ(k,N)In, (4.18)

where `j
4
=
∑j

i=0 ai(N+1) and rj
4
=
∑j

i=0 ai(N+1)+N .

Proof. In the case where β = ∞, the upper bound of (4.18) is immediate. Hence, as-

sume β < ∞. Let k ≥ 0. Since (ai)i≥0 is nondecreasing, for all j ≥ 0 and i ∈

{0, . . . , N}, ai+j ≤ aN+j and aj ≤ ai+j . From (4.16) and (4.17) it follows that αajIn ≤

aj
∑N

i=0 Si+j ≤
∑N

i=0 ai+jSi+j, thus

α`ξ(k,N)−1In ≤
ξ(k,N)−1∑
q=0

N∑
i=0

ai+q(N+1)Si+q(N+1) ≤
k∑
i=0

aiSi.
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Similarly,
∑N

i=0 ai+jSi+j ≤ aN+j

∑N
i=0 Si+j ≤ aN+jβIn, and thus

k∑
i=0

aiSi ≤
ξ(k,N)−1∑
q=0

aq(N+1)+NβIn + akβIn ≤ βrξ(k,N)In. �

Theorem 5. Under the assumptions and notation of Theorem 4,

‖θ̃k‖ ∼ O

1/

ξ(k,N)−1∑
i=0

ρi(N+1)

 . (4.19)

Proof. Let M = ‖P−10 θ̃0‖/α. From Lemma 2, it follows that, for all k ≥ 0, λmin

(
P−10

)
+

α
∑ξ(k,N)−1

i=0 ρi(N+1) ≤ λmin

(
P−10 +

∑k
i=0 ρiφ

T
k φk

)
, and therefore, for all k ≥ 0,

‖θ̃k‖ ≤ ‖Pk‖‖P−10 θ̃0‖ ≤
‖P−10 θ̃0‖
λmin‖P−1k ‖

=
‖P−10 θ̃0‖
λmin

(
P−10

)
1 +

α

λmin

(
P−10

) ξ(k,N)−1∑
i=0

ρi(N+1)

−1

≤M

ξ(k,N)−1∑
i=0

ρi(N+1)

−1 . �

The following corollary shows that Theorem 5 can be used to prove convergence rates

for RLS without forgetting as well as with CRF.

Corollary 4.1. Under the assumptions and notation of Theorem 4, assume that there exists

γ ∈ [1,∞) such that, for all k ≥ 0, βk = γ. Then

‖θ̃k‖ ∼


O(1/ξ(k,N)), γ = 1,

O(γ−(N+1)ξ(k,N)), γ > 1,

(4.20)

Proof. In the case where γ = 1, (4.20) is immediate from Theorem 5. Hence, suppose that

γ > 1. From Theorem 5, it follows that there exist M0 > 0 and K0 ≥ 0 such that, for

all k ≥ K, ‖θ̃k‖ ≤ M0/
∑ξ(k,N)−1

i=0 ρi(N+1). Let M = M0γ
N and K = max(K0, N + 1).
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Therefore, since, for all k ≥ 0, ρk(N+1) = γk(N+1)+1, it follows that, for all k ≥ K,

‖θ̃k‖ ≤
M0∑ξ(k,N)−1

i=0 γi(N+1)+1
=
M0

γ

γN+1 − 1

γ(N+1)ξ(k,N) − 1

=
M0

γ

γN+1 − 1

γ(N+1)ξ(k,N) − 1

γ(N+1)ξ(k,N)

γ(N+1)ξ(k,N)
≤ M

γ(N+1)ξ(k,N)
. �

Since generally, for all k ≥ 0, βk ≥ 1, it follows that 1/
∑ξ(k,N)−1

i=0 ρi(N+1) ≤ 1/ξ(k,N).

Thus, this analysis suggests that, in the case where βk > 1 for an infinite set of indices, the

asymptotic convergence rate of VRF is faster than the asymptotic convergence rate of RLS

without forgetting.

4.6 Consistency of VRF

A sequence (Xk)k≥0 of vector-valued random variables on Ω is a consistent estimator

of θ ∈ Rn if, for all ε > 0,

lim
k→∞

P({ω ∈ Ω: ‖Xk(ω)− θ‖ < ε}) = 1. (4.21)

When θ is understood, for brevity, we call such sequences consistent. In this section we

give conditions on βk which are necessary and sufficient for the consistency of VRF when

the measurements of φkθ are corrupted by noise.

Theorem 6. Let (φk)k≥0 be a persistently exciting sequence with window N , lower bound

α, and upper bound β < ∞. Let θ ∈ Rn, P0 ∈ Pn, and θ0 ∼ N(θ, P0). Let (νk)k≥0 be

an Rp-valued stationary Gaussian white-noise process with variance V and uncorrelated

with θ0, and define yk = φkθ + νk. Furthermore, for all k ≥ 0, let βk ≥ 1, and define θk+1
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by (4.11)–(4.13). Then, for all k ≥ 0, θk is a Gaussian random variable with mean θ̄. Then

αλmin(V )

β2
limk→∞

ql,ξ(k,N)

s2u,ξ(k,N)

≤ limk→∞λmin(var(θk)) (4.22)

≤ limk→∞λmax(var(θk)) ≤
βλmax(V )

α2
limk→∞

qu,ξ(k,N)

s2l,ξ(k,N)

, (4.23)

where, for all j ≥ 0, sl,j
4
=
∑j−1

i=0 ρi(N+1), su,j
4
=
∑j

i=0 ρi(N+1)+N , ql,j
4
=
∑j−1

i=0 ρ
2
i(N+1),

and qu,j
4
=
∑j

i=0 ρ
2
i(N+1)+N .

Proof. With base case θ0 ∼ N(θ, P0), suppose for induction that θk ∼ N(θ, var(θk)).

Define θ̃k
4
= θk − θ. From (4.11), it follows that θ̃k+1 = β−1k Pk+1P

−1
k θ̃k + Pk+1φ

T
k νk.

Since θk ∼ N(θ, var(θk)), it follows from Lemma 3 that θ̃k ∼ N(0, var(θk)). Next,

define zk
4
= P−1k θ̃k. Since θ̃k ∼ N(0, var(θk)), it follows from Lemma 3 that zk ∼

N(0, P−1k var(θk)P
−1
k ). Since νk is uncorrelated with ν0, . . . , νk−1, θ0, it follows that νk

and zk are also uncorrelated. Furthermore, zk+1 = β−1k zk + φT
k νk, and thus [zk νk]

T ∼

N(02×1, diag(var(zk), V )). Therefore, Lemma 3 implies that zk+1 ∼ N(0, var(zk+1))

and var(zk+1) = β−2k var(zk) + φT
k V φk. Since θk+1 = Pk+1zk+1 + θ, it follows from

Lemma 3 that θk+1 ∼ N(θ, Pk+1var(zk+1)Pk+1). Thus, for all k ≥ 0, θk is a Gaus-

sian random variable with mean θ. Since var(z0) = P−10 P0P
−1
0 = P−10 , it follows that

var(zk+1) = ρ−2k

(
P−10 +

∑k
i=0 ρ

2
iφ

T
i V φi

)
. For convenience, define Mk

4
=
∑k

i=0 ρiφ
T
i φi,

Mν,k
4
=
∑k

i=0 ρ
2
iφ

T
i V φi, H0,k

4
= (P−10 + Mk)

−1P−10 (P−10 + Mk)
−1, Hν,k

4
= (P−10 +

Mk)
−1Mν,k(P

−1
0 +Mk)

−1. For all k ≥ 0, it follows from Lemma 2 that

αsl,ξ(k,N)In ≤Mk ≤ βsu,ξ(k,N)In, (4.24)

αλmin(V )ql,ξ(k,N)In ≤Mν,k ≤ βλmax(V )qu,ξ(k,N)In. (4.25)

Since βk ≥ 1, it follows that q`,ξ(k,N) → ∞ as k → ∞, and thus λmax(Mk) → ∞ as
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k →∞. From this result and Lemma 6 it follows that

limk→∞λmax(H0,k) ≤ limk→∞λmax(P
−1
0 )/λmax(Mk)

2 = 0.

Hence, limk→∞λmax(H0,k) = 0. Noting that var(θk) = H0,k + Hν,k, it follows from Lem-

mas 5 and 6, (4.24), and (4.25) that

limk→∞ λmax(var(θk)) ≤ limk→∞λmax(H0,k) + limk→∞λmax(Hν,k)

= limk→∞λmax(Hν,k) ≤ limk→∞
λmax(Mν,k)

λmax(P
−1
0 +Mk)2

≤ limk→∞
λmax(Mν,k)

λmax(Mk)2
≤ βλmax(V )

α2
limk→∞

qu,ξ(k,N)

s2l,ξ(k,N)

,

Since H0,k ∈ Pn and limk→∞λmin(H0,k) ≤ limk→∞λmax(H0,k) = 0, it follows that

limk→∞λmin(H0,k) = 0. Thus, from Lemmas 5, 6, and 7, [70, Fact 10.4.13], (4.24), and

(4.25), it follows that

αλmin(V )

β2
limk→∞

ql,ξ(k,N)

s2u,ξ(k,N)

≤ limk→∞
λmin(Mν,k)

λmin(Mk)2

= limk→∞
λmin(Mν,k)

[λmax(P
−1
0 ) + λmin(Mk)]2

≤ limk→∞
λmax(Mν,k)

λmin(P−10 +Mk)2

≤ limk→∞[λmin(H0,k) + λmin(Hν,k)] = limk→∞λmin(var(θk)). �

Corollary 4.1. Under the notation and assumptions of Theorem 6, consider the following

statements:

i) limk→∞qu,ξ(k,N)/s
2
l,ξ(k,N) = 0.

ii) (θk)k≥0 is consistent.

iii) limk→∞ql,ξ(k,N)/s
2
u,ξ(k,N) = 0.

Then i) =⇒ ii) =⇒ iii).
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Proof. To prove i) =⇒ ii), let limk→∞qu,ξ(k,N)/s
2
l,ξ(k,N) = 0. Then limk→∞ λmax(var(θk)) =

0. Thus, from Lemma 4, it follows that (θk)k≥0 is consistent. To prove ii) =⇒ iii), suppose

that (θk)k≥0 is consistent. Then, from Lemma 4, it follows that limk→∞λmin(var(θk)) = 0,

and therefore limk→∞ql,ξ(k,N)/s
2
u,ξ(k,N) = 0. �

Corollary 4.2. Under the notation and assumptions of Theorem 6, the following statements

hold: i) assume that
∏

k≥0 βk is finite. Then (θk)k≥0 is consistent; ii) let β0 = 1 and for all

k > 0, let βk = 1 + 1
k
. Then (θk)k≥0 is consistent; iii) let γ ∈ [1,∞), and, for all k ≥ 0,

let βk = γ. Then (θk)k≥0 is consistent if and only if γ = 1.

Proof. To prove i), suppose that
∏

k≥0 βk = ρ and let ε > 0. Thus there exists K > 0

such that, for all i ≥ K, ρ − ε < ρi < ρ + ε. Let kε > 0 be the smallest integer such that

ξ(kε, N)(N + 1) ≥ K, and define Bε
4
=
∑ξ(kε,N)

i=0 ρ2i(N+1)+N and Cε
4
=
∑ξ(kε,N)

i=0 ρi(N+1).

Then, for all k > kε,

qu,ξ(k,N)

s2l,ξ(k,N)

≤ Bε + (ρ+ ε)2(ξ(k,N)− ξ(kε, N)− 1)

(Cε + (ρ− ε)(ξ(k,N)− ξ(kε, N)− 1))2
. (4.26)

Since the limit superior of the left-hand side of (4.26) is zero, it follows that (θk)k≥0 is

consistent. To prove ii), for all k ≥ 0, let βk = 1 + 1/k. Then, for all i ≥ 0, ρi = i+ 1, and

thus qu,ξ(k,N) and s2l,ξ(k,N) are polynomials of degree three and four, respectively. Hence the

limit superior is zero, and therefore (θk)k≥0 is consistent. To prove iii), suppose that γ = 1.

Then limk→∞qu,ξ(k,N)/s
2
l,ξ(k,N) = limk→∞ξ(k,N)−1 = 0. Hence (θk)k≥0 is consistent.

Conversely, suppose γ > 1. Then, for all i ≥ 0, ρi = γi+1, and thus

limk→∞
ql,ξ(k,N)

s2u,ξ(k,N)

=
1

γ2N
(1− γ(N+1))2

1− γ2(N+1)
limk→∞

1− γ2(N+1)(ξ(k,N)+1)

(1− γ(N+1)(ξ(k,N)+1))2

=
1

γ2N
γ(N+1) − 1

γ(N+1) + 1
,

which is positive because γ > 1. Therefore, (θk)k≥0 is not consistent. �

Corollary 4.2 shows that if
∏

k≥0 βk converges, then VRF is consistent, but also that the
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converse is false, since
∏

k>0 1 + 1
k

= ∞. Furthermore, CRF is consistent if and only if

λ = 1, and thus RLS with a constant, nontrivial forgetting factor is not consistent.

4.7 Example: Abruptly Changing Parameters

Consider a mass-spring-damper system with m = 5 kg, k = 1 N/m, and b = 1 N·sec/m

sampled at 1 sample/sec, and suppose that at 100 samples the parameters of the system

abruptly change to k = 10 N/m and b = 0.01 N·sec/m. This process is modeled by the

time-varying discrete-time transfer function

Gk(q) =


0.4606q + 0.4307

q2 − 1.64q + 0.8187
, k < 100,

0.4218q + 0.4215

q2 − 0.3116q + 0.998
, k ≥ 100,

(4.27)

where q is the forward shift operator. For all k ≥ 0, let uk ∼ N(0, 1), and define

βk
4
= 1 + η satγ(‖yk − φkθk‖), (4.28)

where η, γ > 0, and satγ is the unit-slope saturation function with saturation level γ. Figure

4.1 shows the performance of VRF with γ = η = 1 and CRF with λ = 0.99. VRF con-

verges to the initial system parameters and reconverges to the modified parameters in about

10 samples, illustrating Theorem 4. In contrast, while CRF converges to the initial param-

eters, reconvergence to the modified parameters is still not achieved at 200 samples. Next,

consider the same system with the output corrupted by additive noise νk ∼ N(0, 0.05), and

define

βk
4
=


1 + η satγ(Eτ ), Eτ > 1,

1, Eτ ≤ 1,

(4.29)
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Figure 4.1: The parameter estimate θk given by VRF with βk defined by (4.28) recon-
verges after an abrupt change in the system as guaranteed by Theorem 4. In contrast, The
parameter estimate given by CRF with λ = 0.99 requires many samples to reconverge.

where τ ∈ N and Eτ
4
=
(

1
τ

∑k
i=k−τ ‖yi − φiθi‖2

)1/2
. Figure 4.2 shows the performance

of VRF with η = 1, γ = 5, and τ = 10, and CRF with λ = 0.99. VRF converges to the

initial parameters and then reconverges to the new parameters in roughly 30 samples. As

in the previous case, CRF converges to the initial parameters, but at 200 samples has still

not reconverged to the modified parameters. �

4.8 Lemmas

Lemma 3. Let A ∈ Rn×n and b ∈ Rn. Let X ∼ N(µ, P ) and define Y
4
= AX + b. Then

Y ∼ N(Aµ+ b, APAT).

Lemma 4. Let (Ω,Σ, P ) be a probability space, let θ ∈ Rn, and let (Xk : Ω→ Rn)k≥0 be
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Figure 4.2: The parameter estimate θk given by VRF with βk defined by (4.29) reconverges
after an abrupt change in the system with noisy measurements. In contrast, the parameter
estimate given by CRF with λ = 0.99 requires many samples to reconverge.

a sequence of random variables such that, for all k ≥ 0, Xk ∼ N(θ,Σk). Then (Xk)k≥0 is

a consistent estimator for θ if and only if limk→∞Σk = 0.

Lemma 5. Let (Ak)k≥0, (Bk)k≥0 ⊂ (Nn). Then

limk→∞λmax(Ak +Bk) ≤ limk→∞λmax(Ak) + limk→∞λmax(Bk),

limk→∞λmin(Ak +Bk) ≥ limk→∞λmin(Ak) + limk→∞λmin(Bk).

Lemma 6. Let A ∈ Nn and B ∈ Pn. Then, for all i = 1, . . . , n,

λmin(A)

λi(B)2
≤ λi(B

−1AB−1) ≤ λmax(A)

λi(B)2
. (4.30)
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Now assume that A ∈ Pn. Then there exist 0 < b1 ≤ b2 and 0 < a1 ≤ a2 such that

a1In ≤ A ≤ a2In, (4.31)

b1In ≤ B ≤ b2In. (4.32)

Furthermore, for all a1, a2, b1, b2 satisfying (4.31), (4.32),

a1
b22
In ≤ B−1AB−1 ≤ a2

b21
In. (4.33)

Lemma 7. Let a ∈ [0,∞), let (bk)k≥0, (ck)k≥0 ⊂ [0,∞), and assume that limk→∞ bk =∞.

Then, for all p ≥ 0,

limk→∞
ck

(a+ bk)p
= limk→∞

ck
bpk
. (4.34)
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CHAPTER 5

A Note On Artificial Uncertainty

We have seen in the foregoing paper, first published in 2020 and containing investi-

gations that were substantially completed by mid 2019, that varying the forgetting factor

in RLS is one method for achieving adaptability of the parameter estimates during abrupt

changes while maintaining good estimate quality during periods of little or no change.

Moreover, unlike CRF, the VRF forgetting factor can be designed to converge to unity dur-

ing periods in which persistency is lost (although that is not shown in the paper), and thus

is much less susceptible to instability when regressor is not persistent. The following paper

will show how, by combining VRF with the Variable-direction forgetting concept given

in [24], a matrix-valued forgetting factor algorithm can be derived in which the forgetting

factor is set to unity exactly along the covariance eigenspace in which the information is

stationary at any given instant.

Astute readers will recognize that general the idea of variable-rate forgetting is not

original to our work, and indeed can be found in [16] or [26, pp. 305-309]. (Cf. especially

equation 11.6 of page 305 of [26] with our definition of βk and ρk above.) Our contribution

therefore, is not the mere introduction of a variable forgetting factor, but, from a theoretical

perspective, an extended analysis of convergence and consistency (hence the title) that far

surpasses anything previously attempted1, and from a practical perspective, the introduction

1The complexity of our consistency result, in particular, which I consider at most a partial result, shows
why the often muddled and confused treatment of stochastic convergence in the system theory literature was
incapable of achieving any results at all. Hence the problem was universally ignored.
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of the error-actuated formula

βk = 1 + η‖yk − φkθ‖α. (5.1)

The idea that βk should be chosen as a direct function of the residual is surprisingly absent

in the sporadic variable-rate forgetting literature. Moreover, the methods that earlier in-

vestigators have proposed, such as the “constant information” method of [16] have consid-

erable and unnecessary drawbacks–consider, for instance, the implications on consistency

for a choice of forgetting factor that maintains constant information in the Fisherian sense,

and we find yet another reason why the question of consistency, along with any stochastic

analysis whatsoever, is ignored in [16]. The idea of error-actuation, or residual-actuation,

appears to be both novel and highly effective, at least for a certain class of problems. For

this reason, VRF, using modified versions of (5.1), has been successfully applied in two

major new approaches to adaptive control: Data-Driven Retrospective Cost Adaptive Con-

trol [61–63], and Preditive Cost Adaptive Control [41–43].

In this note, I will present some new, unpublished results that give an interpretation of

variable-rate forgetting in terms of measurement statistics. We will see that the inclusion

of any forgetting whatsoever can be regarded as an artificial increase in the uncertainty

associated with past measurements at the current step. Incredibly, this artificial uncertainty

will actually change at each step, and thus the estimator will see a fixed data point as having

variable, non-decreasing measure of uncertainty associated with it as time and the number

of measurements increase.

5.1 Artificial Uncertainty

We have seen that the RLS algorithm behaves very differently under the influence of a

forgetting factor compared to the elementatry form of the algorithm. Let us investigate this

behavior from a Bayesian perspective.
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Consider the measurement model

yk = φkθ + νk, k ≥ 0, (5.2)

where (νk)k≥0 is zero-mean standard Gaussian white noise. We assume that θ has an a

priori distribution given by f(θ) = Ne−S(θ), where S grows quickly enough as ‖θ‖ → ±∞

so that

1

N

4
=

∫
e−S(θ) dθ <∞. (5.3)

We will now obtain the maximum a posteriori estimate of θ at step k under the assumption

that we have measurements of y0, . . . , yk. From Bayes theorem, it follows that

fθ|y0,...,yk =
fy0,...,yk|θf

fy0,...,yk
(5.4)

=
fy0,...,yk|θf∫

fy0,...,yk|θ(y0, . . . , yk; θ)f(θ) dθ
. (5.5)

Put Dk(y0, . . . , yk)
4
=
∫
fy0,...,yk|θ(y0, . . . , yk; θ)f(θ) dθ. After we obtain an expression for

fy0,...,yk|θ below, it will be easy to show thatDk is well-defined for all k. Since yj = φjθ+νj

for all j = 0, . . . , k, it follows that

fy0,...,yk|θ,ν0,...,νk(y0, . . . , yk, ν0, . . . νk, θ) =
k∏
j=0

δ(yj − φjθ − νj), (5.6)

and thus, since the νj are independent, the law of total probability implies that

fy0,...,yk|θ(y0, . . . , yk; θ) =

∫
· · ·
∫
dν0 . . . dνk

k∏
j=0

δ(yj − φjθ − νj)fνj(νj) (5.7)

=
k∏
j=0

∫
dνj δ(yj − φjθ − νj)Mj exp

[
−‖vj‖

2

2σ2
k,j

]
. (5.8)
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Note that we are allowing the variance of νj to depend on the total number of measure-

ments, k. The justification for this decision will become apparent shortly. From the Fourier

transform relation

δ(x) =

∫
dz eiz

Tx, (5.9)

which is understood in the distributional sense of Schwartz [71], we have

fy0,...,yk|θ(y0, . . . , yk; θ) =
k∏
j=0

Mj

∫
dνj

∫
dzj e

izTj (yj−φjθ−νj) exp

[
−‖vj‖

2

2σ2
k,j

]
(5.10)

=
k∏
j=0

∫
Mj

∫
dνj dzj exp

[
izTj (yj − φjθ − νj)−

‖vj‖2

2σ2
k,j

]
. (5.11)

Each integrand Ij(zj, νj) = exp
[
izTj (yj − φjθ − νj)− ‖vj‖

2

2σ2
k,j

]
is continuous as a function

of zj or νj alone, and hence we may permute the order of integration, which yields

fy0,...,yk|θ(y0, . . . , yk; θ)

=
k∏
j=0

Mj

∫
dzje

izTj (yj−φjθ)
∫
dνj exp

[
−izTj νj −

‖vj‖2

2σ2
k,j

]
. (5.12)

Using the formula

∫
eb

Tx− 1
2
xTAx dx =

πn/2√
detA

e
1
2
bTA−1b, (5.13)

The second integral with respect to νj is found to be Cje−
1
2
σ2
k,j‖zj‖

2

, where Cj is a normal-

ization factor. Thus we have

fy0,...,yk|θ(y0, . . . , yk; θ) =
k∏
j=0

C ′j

∫
dzje

izTj (yj−φjθ)−
1
2
σ2
k,j‖zj‖

2

(5.14)

=
k∏
j=0

C ′je
− 1

2σ2
k,j

‖yj−φjθ‖2
= Kke

− 1
2

∑k
j=0 σ

−2
k,j‖yj−φjθ‖

2

, (5.15)
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where C ′j and Kk are constants, and therefore the posterior distribution is given by

fθ|y0,...,yk(y0, . . . , yk; θ) = K ′k
e−

1
2

∑k
j=0 σ

−2
k,j‖yj−φjθ‖

2− 1
2
S(θ)

Dk(y0, . . . , yk)
, (5.16)

where K ′k is a constant, and hence the maximum a priori estimate for θ is given by

argmaxθfθ|y0,...,yk(y0, . . . , yk; θ) = argminθ

k∑
j=0

σ−2k,j‖yj − φjθ‖
2 +

1

2
S(θ). (5.17)

Setting S(θ) to be the slightly modified Gaussian prior 1
σ2
k,0

(θ−θ0)TP−10 (θ−θ0), we recover

the familiar problem of minimizing the least squares cost

Jk(θ) =
1

2

k∑
j=0

1

σ2
k,j

‖yj − φjθ‖2 +
1

2σ2
k,0

(θ − θ0)TP−10 (θ − θ0). (5.18)

By reference to the VRF cost, we infer that

σk,j =

√
ρk
ρi

=
√
βk . . . βi+1. (5.19)

That is, VRF treats the measurement yj with noise νj as having the covariance

Cov(yj) = φjP0φ
T
j + βk . . . βi+1 ≈ βk . . . βi+1. (5.20)

The forgetting factor is therefore responsible for increasing the formal covariance of the

measurement yi. Since the forgetting factor is determined by the user, this amounts to

a user-defined covariance, or artificial uncertainty, that is placed upon the measurement

to induce the algorithm to react in a desired way–that is, to be responsive to parameter

changes. What is more fascinating is that the covariance assigned to a fixed measurement

is revised at each new step. Thus, the data taken at step 6 may be associated with more

uncertainty at step 15 than it is at step 12. It is the same data–it does not change–but our
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degree of trust in it changes, and this is the key observation.

Setting βk = 1
λ

for all k to obtain CRF, we get σk,j = 1/
√
λk−j . Thus at step k, CRF

presumes the following level of uncertainty for the trailing measurements:

k 1 k − 3 1
λ3/2

. . .

k − 1 1√
λ

k − 4 1
λ2

. . .

k − 2 1
λ

k − 5 1
λ5/2

. . .

Thus, CRF sees each fixed data point as having successively more uncertainty as the esti-

mation process progresses. As k →∞, the covariance associated with each fixed measure-

ment will become infinite, and the weight of the measurement in the estimate will become

negligible. This, conceptually, is why CRF can track slowly varying parameters well, but

also why any constant forgetting factor will result in an estimator that is not consistent.2

It would be possible to write at length about the applications of artificial uncertainty,

especially in connecting RLS with Kalman filtering and regarding its interpretation as a

nonlinear control mechanism for the filter covariance. However, time and space have lim-

ited me to this brief note, which hopefully has helped to enlighten the reader and provide

an intuitive view of the causes of some of the results we have observed so far.

2Clearly the rate at which the weight of a fixed data point becomes negligible will affect consistency. For
the exponential rate of CRF, non-consistency is assured (as proven in the foregoing paper) regardless of the
specific value of the forgetting factor.
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CHAPTER 6

Recursive Least Squares with Matrix Forgetting

6.1 Preface

This paper extends the work of [20] to the case where the forgetting factor is matrix-

valued. This is inspired by [24], in which variable-direction forgetting (VDF) is presented.

When the regressor is not persistent, there exist one or more eigenvectors of the covariance

matrix with eigenvalue zero. In these directions, new data is not entering into the estimate,

and thus forgetting in these directions will cause the covariance matrix to diverge exponen-

tially. VDF stops this from happening by setting the forgetting factor to unity for all of

the axes in which no new measurement information is available. In order to do this, VDF

requires a matrix-valued forgetting factor, which is included as an ad hoc modification of

the ordinary RLS update with forgetting.

The introduction of a matrix-valued forgetting factor raises several questions. First, and

most obvious, is how to combine VRF and VDF. As it happens, this is a simple task, since

one need only replace the constant forgetting factor applied along information-containing

eigenaxes with a variable forgetting factor, such as that given in the previous paper, [20].

Such a modification is one way to ensure that the resulting algorithm is robust both to

parameter changes and the loss of persistency. Of course, this need not be the only ap-

plication of a matrix-valued forgetting factor, and thus a modification allowing for general

matrix-valued forgetting factors is presented.
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One question that was not answered in [24] was whether or not VDF, and by extension

a general matrix-valued forgetting RLS algorithm could be derived from a least-squares

cost in the same way as VRF or ordinary RLS. The major theoretical result in this paper

answers this question in the affirmative–matrix forgetting does indeed minimize a least-

sqaures cost. The detailed structure of this cost, however, is very different from those

corresponding to scalar forgetting factors. Instead of including the forgetting in between

the residuals (note that the size would be wrong in general), it must be included in the

regularization term. This regularization now depends on the step k, and must be calculated

recursively, since the current value of the regularization will depend essentially on previous

values in a complicated way.

Perhaps the most philosophically disturbing feature of this cost is the fact that it allows

from the minimum to become negative! The physical interpretation of a negative minimum

value for a least-squares cost is unclear to say the least. What can be said is that the negative

minimum is the true global minimum, since the cost is strictly convex, and the minimizer

is truly the matrix-valued RLS estimate. One interesting implication of the specialization

to VRF is the fact that the same iteration can arise as the minimizer to multiple, very dif-

ferent least-squares costs. The significance of this implication can be seen by the following

considerations: suppose we are using VRF, which we interpret to be the minimizer of the

cost given in [20]. This will have a matrix intepretation in which the forgetting factor is

given by βkI . Now assume that we modify this to βkI + ηk, where ηk is a matrix that is

not just a scalar multiple of the identity. The resulting algorithm minimimizes an entirely

different cost, regardless of how small ηk is! In practice, ηk could be so small that its effect

is negligible and not measurable in practice. Yet, technically speaking, the cost minimized

by the algorithm would be the matrix-forgetting cost, and not the VRF cost.
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6.2 Introduction

Recursive least squares (RLS) is an algorithm that is widely used in signal processing,

identification, and adaptive control [?, 49, 55, 64]. Standard RLS employs a forgetting

factor λ that enhances the importance of recent data over older data, but unfortunately,

the performance of RLS is often extremely sensitive to the choice of λ. To overcome this

problem, various extensions of RLS have been developed to include variable-rate forgetting

[16, 59, 66–68] or covariance resetting [72].

An additional weakness of RLS is that the use of a fixed- or variable-rate forgetting

factor may cause the covariance to diverge when the input signal is not persistently exciting

[73–77]. A variety of techniques have been developed for overcoming the divergence due

to lack of persistency [23, 73, 78]. One approach to this problem is to restrict forgetting

to the subspace in which the data provide new information about the parameters, [79–85].

Consequently, the direction of the forgetting is varied based on the information content of

the measurements.

The main contribution of this paper is a modified cost function whose minimization

yields a matrix forgetting RLS algorithm that can be specialized into a combined variable-

rate and variable-direction RLS algorithm (RLS-VRDF). The resulting extension of RLS

thus seeks to overcome both changing parameters and loss of persistency. In addition,

since RLS-VRDF is obtained by minimizing a cost function, this modification of RLS

has a known optimal interpretation, in contrast with extensions of RLS obtained by direct

modification of the RLS update equations [23, 78]. Since this paper gives a general matrix

forgetting RLS algorithm and a cost function which it minimizes, and then numerically

investigates RLS-VRDF, while [86] only includes RLS-VRF and [87] only includes RLS-

VDF, the contribution of this paper goes beyond [86, 87].

Matrix forgetting algorithms are also given in [21, 88]. However, [21] assumes an

ARMA model of the system and develops matrix forgetting that only applies to the Instru-

mental Variable Method. In contrast, this paper makes no assumptions about the system
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and directly generalizes standard RLS. In [88], a matrix forgetting algorithm is derived by

modifying the standard RLS cost function, but results in a covariance matrix that is not

generally symmetric. The algorithm also assumes that there is a single output and restricts

the forgetting matrix to be both constant and symmetric. In this paper, the covariance ma-

trix is guaranteed to be symmetric, but the forgetting matrix need not be either symmetric

or constant–allowing for a wide range of choices, such as RLS-VRDF. Furthermore, there

is no assumption on the number of outputs.

The paper is organized as follows. In Section 6.3, we introduce preliminary results

on least squares optimization, including a recursive update algorithm for a general least

squares cost which does not use the matrix inversion lemma (Lemma 8), and show that

standard RLS can be obtained as a special case of this cost. In Section 6.4, we specialize

Proposition 3 in Section 6.3 to the case of matrix forgetting. Then, in Section 6.5, we

specialize Theorem 7 in Section 6.4 further to the cases of RLS-VRF, RLS-VDF, and RLS-

VRDF. Finally, in Section 6.6, we show the performance of the different algorithms on a

system identification example with both abruptly changing parameters and abrupt loss of

persistency.

6.3 Preliminary Results on Least Squares Optimization

The following result on least squares optimization is an immediate consequence of

Lemma 9 in the appendix.

Proposition 2. For all k ≥ 0, let yk ∈ Rp, φk ∈ Rp×n, and αk ∈ Rn, let Qk ∈ Rp×p be

positive semidefinite, let Rk ∈ Rn×n be symmetric, define Jk : Rn → [0,∞) by

Jk(θ)
4
=

k∑
i=0

(yi − φiθ)TQi(yi − φiθ) + (θ − αk)TRk(θ − αk), (6.1)
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and assume that

Ak
4
=

k∑
i=0

φT
i Qiφi +Rk (6.2)

is positive definite. Then, for all k ≥ 0, Jk is quadratic and strictly convex, and thus has a

unique global minimizer, which is also the only local minimizer. For all k ≥ 0, define

θk+1
4
= argminθ∈RnJk(θ). (6.3)

Then, for all k ≥ 0,

θk+1 = −A−1k bk, (6.4)

and the minimum value of Jk is given by

Jk(θk+1) = ck − bTkA−1k bk, (6.5)

where

bk
4
= −

k∑
i=0

φT
i Qiyi −Rkαk, (6.6)

ck
4
=

k∑
i=0

yTi Qiyi + αT
kRkαk. (6.7)

Note that in the case where Rk is positive definite (positive semidefinite) it follows that

(6.5) is positive (nonegative). If however Rk is not positive semidefinite, (6.5) may be

negative.

The next result is a recursive variation of Proposition 2.

Proposition 3. Under the notation and assumptions of Proposition 2, let θ0 ∈ Rn and
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define R−1 ∈ Rn×n and α−1 ∈ Rn such that R−1(α−1 − θ0) = 0. Then, for all k ≥ 0,

Ak = Ak−1 + φT
kQkφk +Rk −Rk−1, (6.8)

θk+1 = θk + A−1k φT
kQk(yk − φkθk) + A−1k [Rk(αk − θk)−Rk−1(αk−1 − θk)]. (6.9)

Proof. Since A−1 = R−1, it follows that

A0 = φT
0Q0φ0 +R0

= R−1 + φT
0Q0φ0 +R0 −R−1

= A−1 + φT
0Q0φ0 +R0 −R−1,

which confirms (6.8) for k = 0. Since A0 is positive definite, Lemma 9 implies that

θ1 = −A−10 b0

= A−10 (φT
0Q0y0 +R0α0)

= A−10 (φT
0Q0y0 + φT

0Q0φ0θ0 − φT
0Q0φ0θ0 +R0α0)

= A−10 (φT
0Q0φ0θ0 +R0θ0) + A−10 φT

0Q0(y0 − φ0θ0) + A−10 R0(α0 − θ0)

= θ0 + A−10 φT
0Q0(y0 − φ0θ0) + A−10 R0(α0 − θ0)− A−10 R−1(α−1 − θ0),

which confirms (6.9) for k = 0.

Now let k ≥ 1. From (6.2) it follows that

Ak =
k∑
i=0

φT
i Qiφi +Rk

=
k−1∑
i=0

φT
i Qiφi + φT

kQkφk +Rk

= Ak−1 −Rk−1 + φT
kQkφk +Rk,
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which confirms (6.8). Furthermore, bk can be written recursively as

bk = bk−1 − φT
kQkyk +Rk−1αk−1 −Rkαk.

It thus follows from Lemma 9 that

θk+1 = −A−1k bk

= −A−1k (bk−1 − φT
kQkyk +Rk−1αk−1 −Rkαk)

= −A−1k (bk−1 − φT
kQkyk + φT

kQkφkθk − φT
kQkφkθk)− A−1k (Rk−1αk−1 −Rkαk)

= −A−1k (bk−1 − φT
kQkφkθk) + A−1k φT

kQk(yk − φkθk) + A−1k (Rkαk −Rk−1αk−1)

= A−1k (Ak−1θk + φT
kQkφkθk) + A−1k φT

kQk(yk − φkθk) + A−1k (Rkαk −Rk−1αk−1)

= A−1k (Ak−1 + φT
kQkφk +Rk −Rk−1)θk + A−1k φT

kQk(yk − φkθk)

+ A−1k (Rkαk −Rk−1αk−1)− A−1k (Rk −Rk−1)θk

= θk + A−1k φT
kQk(yk − φkθk) + A−1k [Rk(αk − θk)−Rk−1(αk−1 − θk)],

which confirms (6.9). �

The following corollary of Proposition 3 is the classical least squares result, which we

provide for comparison with the matrix forgetting result in Section IV.

Corollary 1. Let λ ∈ (0, 1] and θ0 ∈ Rn, and let P0 ∈ Rn×n be positive definite. For all

k ≥ 0, let yk ∈ Rp and φk ∈ Rp×n, and define Jk : Rn → [0,∞) by

J̄k(θ)
4
=

k∑
i=0

λk−i(yi − φiθ)T(yi − φiθ) + λk(θ − θ0)TP−10 (θ − θ0). (6.10)

Then, for all k ≥ 0, Jk is quadratic and strictly convex, and thus has a unique global

minimizer, which is also the only local minimizer. For all k ≥ 0, define

θk+1
4
= argminθ∈Rn J̄k(θ). (6.11)
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Then, for all k ≥ 0,

θk+1 = θk + Pk+1φ
T
k (yk − φkθk) (6.12)

where

Pk+1 =
1

λ
Pk −

1

λ
Pkφ

T
k (λIp + φkPkφ

T
k )−1φkPk. (6.13)

6.4 RLS with Matrix Forgetting

Note that (6.9) requires computation of the n × n inverse A−1k . In Corollary 1, the

matrix inversion lemma was used to replace the n × n inverse with a p × p inverse. As

can be seen in the proof of Corollary 1, this reduction in complexity was because Rk is

equal to a constant, namely P−10 , for all k ≥ 0, and thus the term Rk − Rk−1 vanishes. An

alternative approach is to choose a variable Rk that avoids the need for an n × n inverse.

The following result uses a specific choice of Rk and αk to obtain a version of RLS with

matrix forgetting, thereby providing an explicit quadratic cost function which is minimized

by matrix forgetting RLS. Hereafter, R+
k denotes the Moore-Penrose pseudoinverse of Rk.

Theorem 7. Let θ0 ∈ Rn, and let P0 ∈ Rn×n be positive definite. Furthermore, for all

k ≥ 0, let φk ∈ Rp×n, let Qk ∈ Rp×p be positive definite, let Bk ∈ Rn×n be nonsingular,
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and define Jk : Rn → [0,∞) by (6.1) with

Rk
4
=


P−10 , k = −1,∑k

i=0B
−T
i Ai−1B

−1
i −

∑k
i=1Ai−1, k ≥ 0

(6.14)

and

αk
4
=


θ0, k = −1,

R+
k Sk, k ≥ 0,

(6.15)

where A−1
4
= P−10 ,

Sk
4
=

k∑
i=0

Πk−1 · · ·ΠiB
−T
i Ai−1B

−1
i θi

−
k∑
i=1

Πk−1 · · ·ΠiAi−1θi, (6.16)

and, for all i ≥ 0, Πi
4
= RiR

+
i . Then, for all k ≥ 0, Ak defined by (6.2) is positive definite.

Furthermore, for all k ≥ 0, let yk ∈ Rp, define Pk+1
4
= A−1k , and define θk+1 by (6.3).

Then, for all k ≥ 0, θk+1 is given by

Pk+1 = Lk − LkφT
k (Q−1k + φkLkφ

T
k )−1φkLk, (6.17)

θk+1 = θk + Pk+1φ
T
kQk(yk − φkθk) + Pk+1(Πk − In)γk, (6.18)

where

Lk
4
= BkPkB

T
k , (6.19)

γk
4
= Rk−1αk−1 + (B−Tk Ak−1B

−1
k − Ak−1)θk. (6.20)
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Proof. Note that, for all k ≥ 0, Rk satisfies

Rk = Rk−1 +B−Tk Ak−1B
−1
k − Ak−1, (6.21)

and αk satisfies

αk = R+
k Rk−1αk−1 +R+

k (B−Tk Ak−1B
−1
k − Ak−1)θk. (6.22)

Furthermore, note that A−1 is positive definite. Hence, suppose for induction that Ak−1 is

positive definite. Since α−1 = θ0, it follows that R−1(α−1 − θ0) = 0 and therefore, from

Lemma 1, it follows that, for all k ≥ 0,

Ak = Ak−1 + φT
kQkφk +Rk −Rk−1,

= Ak−1 + φT
kQkφk +B−Tk Ak−1B

−1
k − Ak−1

= φT
kQkφk +B−Tk Ak−1B

−1
k .

Since Bk is nonsingular and Ak−1 is positive definite, it follows that B−Tk Ak−1B
−1
k is posi-

tive definite. Thus Ak is positive definite.

Next, define Lk
4
= BkPkB

T
k . From Lemma 8 with A = B−Tk Ak−1B

−1
k , U = φT

k ,

C = Qk, and V = φk, it follows that, for all k ≥ 0,

Pk+1 = (B−Tk Ak−1B
−1
k + φT

kQkφk)
−1

= Lk − LkφT
k (Q−1k + φkLkφ

T
k )−1φkLk,
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which confirms (6.17). Furthermore, from Lemma 1, it follows that, for all k ≥ 0,

θk+1 − θk − Pk+1φ
T
kQk(yk − φkθk)

=Pk+1Rk(αk − θk)−Pk+1Rk−1(αk−1 − θk)

=Pk+1[Rk(R
+
k Rk−1αk−1 +R+

k [B−Tk Ak−1B
−1
k − Ak−1]θk − θk)−Rk−1(αk−1 − θk)]

= Pk+1[(ΠkRk−1αk−1 −Rk−1αk−1)+Πk(B
−T
k Ak−1B

−1
k − Ak−1)θk −(Rk −Rk−1)θk]

= Pk+1[(Πk − In)Rk−1αk−1 +(Πk − In)(B−Tk Ak−1B
−1
k − Ak−1)θk]

= Pk+1(Πk − In)γk,

which confirms (6.18). �

If Rk is nonsingular, then Πk = In. Assuming that this is the case for all k ≥ 0,

Theorem 7 specializes to the following result.

Corollary 2. Under the notation and assumptions of Theorem 7, let k ≥ 0 and assume that

Rk is nonsingular. Then θk+1 is given by

Pk+1 = Lk − LkφT
k (Q−1k + φkLkφ

T
k )−1φkLk, (6.23)

θk+1 = θk + Pk+1φ
T
kQk(yk − φkθk), (6.24)

where Lk is defined by (6.19).

Note that, in Corollary 2, Bk can be viewed as a matrix forgetting factor. To see this,

let λ ∈ (0, 1] and let Bk = 1√
λ
In. Then (6.23)-(6.24) specialize to the traditional RLS

equations with forgetting factor λ. Hereafter, we refer to this specialization as RLS with

constant-rate forgetting (RLS-CRF).
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6.5 Specializations

Note that the nonsingular matrix Bk in (6.19), (6.23), (6.24) can be chosen arbitrarily.

In particular, the following specializations of Corollary 2 choose Bk in order to achieve

variable-rate and variable-direction forgetting.

Variable-Rate Forgetting (VRF). For all k ≥ 0, let βk ∈ (0,∞), Bk = βkIn, and

Qk = Ip. Then (6.19), (6.17), and (6.18) are given by

Lk = βkPk, (6.25)

Pk+1 = Lk − LkφT
k (Ip + φkLkφ

T
k )−1φkLk, (6.26)

θk+1 = θk + Pk+1φ
T
k (yk − φkθk). (6.27)

Equations (6.25)–(6.27) give RLS with variable-rate forgetting (RLS-VRF) [86].

Variable-Direction Forgetting (VDF). Compute the singular value decomposition Pk =

UkΣkU
T
k , where Uk ∈ Rn×n is orthonormal, and define

ψk
4
= φkUk. (6.28)

Next, let ε > 0 be larger than the noise-to-signal ratio or, if no noise is present, larger than

the machine zero. Finally, let λ ∈ (0, 1), and define

Λk(i, i)
4
=


√
λ, ‖ψk,i‖ > ε,

1, otherwise,

(6.29)

where ψk,i is the ith column of ψk. Finally, define

Bk
4
= UkΛ

−1
k UT

k , (6.30)

Then, with Bk given by (6.30), equations (6.19), (6.23), (6.24) give RLS with variable-
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direction forgetting (RLS-VDF) [87].

Variable-Rate and -Direction Forgetting (VRDF). For all k ≥ 0 and i = 1, . . . , p, let

βi,k ∈ (0,∞), define

Dk(i, i)
4
=


√
βi,k, ‖ψk,i‖ > ε,

1, otherwise,

(6.31)

with Uk, ψk, and ψk,i defined as in (6.28), and let

Bk = UkDkU
T
k . (6.32)

Then, with Bk given by (6.32), equations (6.19), (6.23), (6.24) give variable-rate and -

direction forgetting (RLS-VRDF), which combines RLS-VRF and RLS-VDF.

6.6 Example: abrupt loss and recovery of persistency with

abruptly changing parameters.

Consider a mass-spring-damper system with m = 5 kg, k = 1 N/m, and b = 1 N·s/m

sampled at 1 sample/s, and suppose that at 200 samples the parameters of the system

abruptly change to k = 10 N/m and b = 0.01 N·s/m and then at 1200 samples the pa-

rameters of the system abruptly change again to k = 0.1 N/m and b = 10 N·s/m. This

system is modeled by the time-varying discrete-time transfer function

Gk(q) =



0.4606q + 0.4307

q2 − 1.64q + 0.8187
, k < 200,

0.4218q + 0.4215

q2 − 0.3116q + 0.998
, 200 ≤ k ≤ 1200,

0.2834q + 0.1482

q2 − 1.127q + 0.1353
, k > 1200,

(6.33)
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where q is the forward shift operator. Let the input to (6.33) be given by

uk =


ũk, k < 100 or k > 1000,

sin(0.01k), 100 ≤ k ≤ 1000,

(6.34)

where, for all k ≥ 0,

ũk
4
= sin(0.01k) + sin(0.1k) + sin(k) + sin(10k). (6.35)

Note that, for all 100 < k < 1000, (6.34) is not persistently exciting. Furthermore, suppose

that the output is corrupted with additive Gaussian white noise with standard deviation

σ = 0.025. Finally, define

βk
4
=


1 + η satγ(Eτ ), Eτ > 1,

1, Eτ ≤ 1,

(6.36)

where η and γ are positive numbers, satγ is the unit-slope saturation function with saturation

level γ, τ is a positive integer, and

Eτ
4
=

(
1

τ

k∑
i=k−τ

‖yi − φiθi‖2
)1/2

. (6.37)

The forgetting factor produced by (6.36) increases when output measurements differ sig-

nificantly from the predicted output, which occurs when the parameters change. To reduce

sensitivity to noise, the output error is first fed through a moving average given by (6.37)

and forgetting is only activated when the average output error exceeds unity.

Figure 6.1 shows the performance of RLS-CRF and RLS-VDF, both with λ = 0.99,

and RLS-VRDF with βk given by (6.36) with γ = η = 1. Note that, after both parameter

changes, RLS-VRDF reconverges to the modified parameters more quickly than RLS-CRF

and RLS-VDF. During the loss of persistency between k = 100 and k = 1000 samples, the

80



Figure 6.1: Parameter estimates θk, spectrum of Pk, and spectrum of Bk given by RLS-
CRF and RLS-VDF with λ = 0.99 and by RLS-VRDF with βk defined by (6.36). Intervals
where the input is persistently exciting are shaded in light green, while the interval where
persistency is lost is shaded in light red. The input and output signals are shown in the
middle of the bottom figure for reference.

covariance of RLS-CRF begins to diverge while the covariances of RLS-VDF and RLS-

VRDF remain bounded. �

Conclusions and Future Research

Future research will focus on techniques for reducing the computational complexity of

the singular value decomposition of Pk. A starting point for this objective is the recursive
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SVD presented in [89].

Appendix

Lemma 8. (matrix inversion lemma) LetA ∈ Rn×n, U ∈ Rn×p, C ∈ Rp×p, and V ∈ Rp×n,

and assume that A, C, and A+ UCV are nonsingular. Then

(A+UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1. (6.38)

Lemma 9. Let A ∈ Rn×n, assume that A is positive definite, let b ∈ Rn and c ∈ R, and

define f : Rn −→ R by

f(x)
4
= xTAx+ 2bTx+ c. (6.39)

Then the unique minimizer of f is

xopt = −A−1b, (6.40)

and the minimum value of f is

f(xopt) = c− bTA−1b. (6.41)
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CHAPTER 7

Necessary and Sufficient Regressor Conditions

for the Global Asymptotic Stability of Recursive

Least Squares

7.1 Preface

In the past two papers we have given results on the extension of ordinary RLS by

generalizing the forgetting factor to vary based on step or direction. In this paper, we take a

step back and resolve a basic theoretical issue in RLS itself–the existence of necessary and

sufficient regressor conditions for the convergence of RLS to the true system parameters.

Although persistency has been known to be a sufficient conditions for RLS convergence

since the 1980s (see, for example, the sections on RLS in [12, 90]), examples of RLS

convergence in which the regressor is not persistent were given in [24] and [91]. Hence

persistency is not a sufficient condition for RLS convergence.

This prompts the question of whether or not a regressor condition can be found that

is both necessary and sufficient for RLS convergence. This paper answers the question in

the affirmative. In fact, there is an easily determined necessary and sufficient condition,

but this condition has several drawbacks–such as having no apparent connection with the

sufficient condition of persistency–that lead us to search out more effective necessary and

sufficient conditions. Ultimately our search leads us to an understanding of the basic role
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played by bounded interval partitions in RLS.

Since the paper describes the results and their development in detail, I will not further

outline it here. Instead, I would like to say a few words on why this problem is important

and how it connects with the foregoing work. Ultimately, we desired a complete theory

connecting regressor behavior to estimator convergence, both for RLS and similar esti-

mators, such as gradient descent (the subject of the following paper). This is desired for

several reasons. First, it allows us to design effective online identification systems in which

a model is desired for its own sake. Persistency is often one of the most difficult conditions

to enforce in practice, and thus we would like to ensure that we are seeking the weakest

possible conditions necessary to guarantee convergence–that is, that we are aware of nec-

essary and sufficient conditions for estimate convergence. Second, when we are dealing

with indirect adaptive control algorithms, the requirement of persistency is often too re-

strictive, since, as we mentioned in the introduction, adaptive systems have a tendency to

lose persistency as the control objective is more closely met.

The logical place to begin the development of this theory is with the ordinary RLS

algorithm, which is among the simplest and most widely used identification algorithms

in existence. Hence the conditions of weak persistency of excitation and the existence of

minimum eigenvalue Oresme partitions should be seen as a conceptual basis from which

to develop further theory to understand the operation of these algorithms in the presence of

forgetting and closed-loop operation.

7.2 Introduction

Many problems in system identification, signal processing, and control depend on least

squares algorithms to estimate unknown parameters [26]. In real-time identification and

adaptive control, an estimate of the unknown parameters is often required at each time

step, and recursive estimation algorithms, such as recursive least squares (RLS) [48, 55],
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are commonly used to meet this requirement. When using RLS, a persistently exciting

(PE) regressor implies GAS, hence convergence of the RLS parameter estimates to the true

parameter values in the absence of noise. However, PE is sufficient but not necessary for the

GAS of RLS, and examples of non-PE regressors for which RLS is GAS have been reported

in [24] and [91]. Since PE is ubiquitous in stability analyses for recursive estimators, the

existence of non-PE regressors that ensure GAS prompts the question of whether or not PE

can be directly generalized into a necessary and sufficient condition for the GAS of RLS.

There has been substantial research on weakening the assumption of PE in convergence

and stability proofs for parameter estimation and adaptive control. Work on adaptive con-

trol methods that do not require PE, such as [92], has been done since the 1980s, and [93]

studied boundedness of the RLS error without explicitly assuming PE in 1990. More re-

cently, [94, 95] have developed concurrent learning algorithms that require excitation over

only a finite time interval, a strictly weaker condition than PE. For gradient-based parame-

ter estimators, PE is shown to be necessary and sufficient to guarantee exponential stability

for gradient descent in [13, pp. 71-73] and [96–99], but [100] and [101] have shown that

PE is not necessary for GAS. Recently, [102] has shown that the gradient-type algorithms

proposed in 1967 and 1977 by [103] and [99], respectively, can converge asymptotically

under conditions strictly weaker than PE, and a procedure for generating gradient-type es-

timators that converge without assuming PE is given in [104], and subsequently expanded

in [105]. The extant literature thus concerns both the analysis of strictly-weaker-than-PE

stability for traditional gradient-based estimators as well as the synthesis of estimators with

asymptotically stable error dynamics under strictly-weaker-than-PE conditions.

In contrast to most of this work, analysis of strictly-weaker-than-PE conditions for RLS

stability is sparse. A straightforward proof shows that the condition (cf. [101], [104])

lim
n→∞

λmin

[
n∑
k=0

φT
k φk

]
=∞ (7.1)
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is necessary and sufficient for the GAS of RLS, and it is shown in [93] that the component

of the RLS error contained in the subspace

E
4
=

{
x ∈ Rn :

∞∑
k=0

‖φkx‖2 =∞

}
, (7.2)

whose defining condition is related to (7.1) in the case where E = Rn, is driven asymp-

totically to zero. Since (7.1) is already a necessary and sufficient condition for the GAS of

RLS convergence, it is natural to ask why further conditions should be sought.

There are two major reasons. First, the search for necessary and sufficient conditions is

motivated by the existence of non-PE regressors for which RLS is GAS, and thus, a satis-

factory condition should enable these regressors to be precisely characterized. The truism

that these are exactly the regressors that do not satisfy the PE condition but satisfy (7.1) is

not helpful, since it does not articulate the fundamental structural characteristics that cause

these regressors to have the properties in question. A precise characterization that captures

these fundamental structural features can be obtained by directly generalizing PE. In this

context, a “direct generalization” is understood as a condition obtained by directly weak-

ening or transforming the PE hypotheses, rather than by supplementing the PE hypotheses

or their negation with additional conditions such as (7.1). A direct generalization that is

also necessary and sufficient would by default maintain a clear and simple connection to

PE, and thus reveal explicitly the gap between PE and non-PE sequences for which RLS is

GAS. Creating a similarly precise characterization using only (7.1) would be difficult, and

no such result has appeared before in the literature.

Second, PE is an intrinsically local condition; that is, a condition formulated in terms of

finite sums only, without global analytic objects such as limits or infinite series. In contrast,

(7.1) is global, involving a limit related to an infinite series of matrices. As well as the

possibility that this could be difficult to use in applications, it also destroys the locality

of PE. Thus, instead of possessing only a global necessary and sufficient condition, it is
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reasonable to seek a necessary and sufficient condition that preserves locality.

The main contribution of this paper is two novel necessary and sufficient conditions for

the GAS of RLS. The first, Weak persistent excitation (WPE), is a direct generalization of

PE that relaxes the uniform summation window length and uniform lower bound condi-

tions of PE carefully enough to maintain sufficiency while gaining necessity. Using WPE,

we are able to state precisely how PE’s required uniformity in both of these parameters al-

lows for non-PE regressors that still satisfy (7.1). The second, the existence of a minimum

eigenvalue Oresme partition (MEOP), is a matrix generalization of a standard comparison

method for nonnegative series divergence proofs. Unlike condition (7.1) or WPE, the ex-

istence of a MEOP is a local condition, which requires only finite sums to verify, and thus

both preserves the locality of the PE definition and provides an alternative route to proving

GAS for RLS in cases for which the limits occurring in (7.1) and WPE are difficult to com-

pute. While some implications among these three conditions are straightforward to prove,

showing the equivalence of (7.1), WPE, and the existence of a MEOP is nontrival. Thus,

the main result of this paper is the following:

Condition (7.1) holds iff the regressor is WPE iff there exists a MEOP of the regressor

sequence.

That is, any one of these conditions is equivalent to the GAS of RLS.

The outline of this paper is as follows. After fixing notation and definitions, Section 7.4

briefly reviews RLS and defines PE in Section 7.4.2. Section 7.5 motivates the definition for

WPE in depth by providing a step-by-step search for the ‘right’ generalization of PE, then

introduces WPE and shows WPE is equivalent to a slightly rephrased version of condition

(7.1) in Theorem 11, which is a nontrivial result for the nonscalar case. Finally, Section

7.6 defines the MEOP property for sequences of positive-semidefinite matrices and shows

in Theorem 12 that such a sequence is WPE if and only if it has a MEOP. This theorem is
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followed by two corollaries and a proposition, which allow us to characterize, in consistent

terms, exactly the property that must be satisfied for a regressor sequence to not be PE but

still ensure the GAS of RLS.

7.3 Preliminaries

We define N 4
= {1, 2, 3, . . . } and N0

4
= {0, 1, 2, 3, . . . }. The sets of n × n real sym-

metric, real symmetric positive-semidefinite, and real symmetric positive-definite matrices

are denoted by Sn, Nn, and Pn, respectively. For S ∈ Sn, λmin(S) denotes the smallest

eigenvalue of S, S > 0 indicates that S is positive-definite, and S ≥ 0 indicates that S is

positive-semidefinite. In denotes the n × n identity matrix. N(A) denotes the nullspace

of A. (ak) = (ak)k∈N0 ⊂ X denotes the sequence (a0, a1, . . .) whose components are ele-

ments of the set X . The sum over the empty set is defined to be zero. The kth harmonic

sum is denoted by

Hk
4
=


∑k

p=1 1/p, k > 0,

0, k = 0.

(7.3)

For all x ∈ R, we define bxc 4= max{n ∈ N0 : n ≤ x} .

Let D ⊂ Rn. Then, xe ∈ D is an equilibrium of the sequence (fk : D → D) if, for all

k ∈ N0, fk(xe) = xe. The following are standard definitions of stability for an equilibrium

of a discrete-time system.

Definition 5. Let D ⊂ Rn, for all k ∈ N0, let fk : D→ D, let xe be an equilibrium of (fk),

and consider the initial value problem

xk+1 = fk(xk), (7.4)

xk0 ∈ D. (7.5)

88



Then the equilibrium xe of (7.4)-(7.5) is

i) Lyapunov stable if, for all k0 ∈ N0 and ε > 0, there exists δ(k0, ε) > 0 such that

‖xk0 − xe‖ < δ implies that, for all k ≥ k0, ‖xk − xe‖ < ε.

ii) uniformly Lyapunov stable if, for all ε > 0, there exists δ(ε) > 0 such that, for all

k0 ∈ N0, ‖xk0 − xe‖ < δ implies that, for all k ≥ k0, ‖xk − xe‖ < ε.

iii) globally attractive if, for all k ∈ N0 and xk0 ∈ D, limk→∞ xk = xe.

iv) globally asymptotically stable if it is Lyapunov stable and globally attractive.

Definition 6. Let a > 0. A function f : [0, a) → [0,∞) is class K if it is increasing and

f(0) = 0.

Theorem 8. Assume that the system (7.4)-(7.5) has an equilibrium xe ∈ D, and let N ⊂ D

be a neighborhood of xe. If there exists a continuous function V : N0 × N → [0,∞) and

class K functions g and h such that, for all k ∈ N0 and x ∈ N,

i) Vk(xe) = 0,

ii) g(‖x‖) ≤ V (k, x) ≤ h(‖x‖),

iii) ∆V (k, x)
4
= V (k + 1, fk(x))− V (k, x) ≤ 0,

then xe is uniformly Lyapunov stable.

7.4 Recursive Least Squares with PE Regressors

7.4.1 Recursive Least Squares

The RLS algorithm was introduced in 1950 by [14], and treatments of the fundamental

RLS theory can be found in many introductory textbooks, such as [13, 26, 27, 49]. In this

section we briefly review the facts about RLS necessary to understand the remainder of
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the paper. Further information on RLS using similar notation and conventions as we have

adopted here can be found in [24, 48, 106].

Let θ, θ0 ∈ Rn, let P0 ∈ Pn, and, for all k ∈ N0, let φk ∈ Rp×n and define yk
4
= φkθ

and

Jk(θ̃)
4
=

k∑
i=0

(yi − φiθ̃)T(yi − φiθ̃) + (θ̃ − θ0)TP−10 (θ̃ − θ0). (7.6)

For all k ∈ N0, Jk is strictly convex and hence has a unique global minimizer, which we

denote by θk+1
4
= minθ̃∈Rn Jk(θ̃). The RLS algorithm is given by the update equations

θk+1 = θk + Pk+1φ
T
k (yk − φkθk), (7.7)

Pk+1 = Pk − PkφT
k

(
Ip + φkPkφ

T
k

)−1
φkPk, (7.8)

which enable the recursive calculation of θk+1 in terms of the previous minimizer θk, and

current values of the output yk, regressor φk, and covariance Pk+1. Defining the RLS error

θ̃k
4
= θk − θ and Sk

4
= φT

k φk, the update equations

θ̃k+1 = Pk+1P
−1
k θ̃k, (7.9)

P−1k+1 = P−1k + Sk, (7.10)

follow from (7.7) and (7.8). Equations (7.9) and (7.10) can be solved to yield

θ̃k = PkP
−1
0 θ̃0, (7.11)

P−1k = P−10 +
k−1∑
i=0

Si. (7.12)

Proving a stability property of the equilibrium θ of (7.7)-(7.8) is thus equivalent to proving

the same property of the zero equilibrium for (7.9)-(7.10). Furthermore, since φk enters

into (7.9) and (7.10) only in the form of Sk, it follows that every property of (φk) affecting
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the RLS error is equivalent to a property of (Sk), and thus we shall henceforth consider

only properties of (Sk).

It is possible that (7.9)-(7.10) has equilibria other than the zero equilibrium. In partic-

ular, if there exists p ∈ N(Sk) \ {0} for all k ∈ N0, then p is a nonzero equilibrium of

(7.9)-(7.10). Thus we restrict our attention to the case where ∩k∈N0N(Sk) = ∅, which cor-

responds to the case where RLS converges to the true parameters regardless of the initial

conditions. The following result shows that (7.9)-(7.10) is uniformly Lyapunov stable re-

gardless of the properties of the regressor. Thus, necessary and sufficient conditions on (Sk)

for the GAS of (7.9)-(7.10) are equivalent to necessary and sufficient conditions on (Sk)

for global attractivity of the zero equilibrium. Similar results are found in [24, Theorem 6].

Proposition 4. Let (Sk) ⊂ Nn and P0 ∈ Pn. Then the zero equilibrium of (7.9)-(7.10) is

uniformly Lyapunov stable.

Proof. Define the Lyapunov candidate function

V (k, θ̃)
4
= θ̃TP−1k (In + P−2k )−1P−1k θ̃. (7.13)

For all k ∈ N0, V (k, θ̃) is a continuous function of θ̃ that satisfies V (k, 0) = 0. Moreover,

noting that (I+P−2k )−1 ∈ Pn satisfies I−P−1k (I+P−2k )−1P−1k = (I+P−2k )−1, it follows

that V (k, θ̃) ≤ ‖θ̃‖2. Furthermore, since Sk ≥ 0, it follows that P−1k is nondecreasing, and

thus

θ̃TP−1k (In + P−2k )−1P−1k θ̃ ≥ λmin((In + P−2k )−1)‖P−1k θ̃‖2

= ‖In + P−2k ‖
−1‖P−1k θ̃‖2

≥ (1 + ‖P−1k ‖
2)−1‖P−1k ‖

2‖θ̃‖2

≥ (1 + ‖P−10 ‖2)−1‖P−10 ‖2‖θ̃‖2,

where the final step follows from the fact that x/(1 + x) is a nondecreasing function of x.
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Thus, for all k ∈ N0 and θ̃ ∈ Rn, V (k, θ̃) is bounded above and below by class K functions.

Finally, since

∆V (k, θ̃) = V (k + 1, Pk+1P
−1
k θ̃)− V (k, θ̃)

= θ̃TP−1k [(I + P−2k+1)
−1 − (I + P−2k )−1]P−1k θ̃, (7.14)

and since P−1k+1 ≥ P−1k implies that (I + P−2k+1)
−1 ≤ (I + P−2k )−1, it follows that V (k, θ̃)

satisfies Theorem 5, and thus (7.9)-(7.10) is uniformly Lyapunov stable.

Although the RLS error is always uniformly Lyapunov stable, global attractivity, and hence

GAS, depends strongly on properties of the regressor. In the next section, we investigate

PE as a property of (Sk) that guarantees global attractivity of the zero equilibrium of (7.9)-

(7.10).

7.4.2 PE and RLS Stability

Definition 7. (Sk) ⊂ Nn is persistently exciting (PE) if there exist α > 0 and N ∈ N0

such that, for all j ∈ N0,
∑N

i=0 Si+j ≥ αIn.

If (Sk) is bounded, then
∑N

i=0 Si+j has an upper bound in addition to the lower bound given

in Definition 7, and many definitions of PE, such as [49, p. 64], include an upper bound to

reflect this assumption. However, since the upper bound is not relevant to GAS, we have

omitted it to simplify Definition 7.

Theorem 9. Let (Sk) be PE, and, for all k ∈ N0, define Pk by (7.10). Then i) limk→∞ Pk =

0, and ii) (7.9)-(7.10) is GAS.

Proof. A proof of i) is given in [24, Proposition 3] and the uniform Lyapnunov stability

of (7.9)-(7.10) follows from Proposition 4. Hence, to prove attractivity and thus ii), let

k0 ∈ N0 and θk0 ∈ Rn. From (7.9) it follows that θ̃k = PkP
−1
k0
θk0 and thus limk→∞ θ̃k = 0

implies limk→∞ Pk = 0.
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The converse of Theorem 9 is false. To demonstrate this with an example, we first prove

the following proposition.

Proposition 5. Let (Sk) ⊂ Nn be PE. Then, for all k ∈ N0,
∑k

i=0 Si ≥
⌊
k+1
N+1

⌋
αIn.

Proof. Note that
⌊
k+1
N+1

⌋
αIn ≤

∑(b k+1
N+1
c−1)

j=0

∑N
i=0 Si+j(N+1) ≤

∑(N+1)b k+1
N+1
c−1

i=0 Si ≤
∑k

i=0 Si.

Example 1. Let Sk = 1
k+1

. From (7.12), it follows that

lim
k→∞

Pk = lim
k→∞

(
P−10 +Hk

)−1
= 0,

and thus (7.9)-(7.10) is GAS. Noting that, for all k ∈ N0,
∑k

i=0 Si = Hk+1 < log(k+1)+1,

suppose for contradiction that (Sk) is PE with lower bound α > 0 and window parameter

N ∈ N0. Then αk
2N

< log(k + 1) + 1, which is false for all sufficiently large k ∈ N0,

contradicting Proposition 5. �

7.5 From PE to WPE

Having shown that PE is sufficient but not necessary for GAS, we now present WPE,

a direct generalization of PE that is both necessary and sufficient for GAS. Since the full

relationship between PE and WPE as given by Definition 10 might not be immediately

apparent, we justify our claim that WPE is a direct generalization of PE by beginning with

PE and providing a step-by-step process in which WPE is deduced.

First, we prove that (7.1) is necessary and sufficient for the GAS of RLS. Although we

are ultimately seeking an alternative to (7.1), it nonetheless convenient for checking the

necessity and sufficiency of proposed generalizations of PE.
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Figure 7.1: A PE sequence with N = 2 (window length of 3) showing several summation
windows. PE is characterized by strict uniformity in the window length parameter N and
the lower bound α, both of which must have values that are independent of the position of
the window in the sequence.

Theorem 10. The zero equilibrium of (7.9)-(7.10) is GAS if and only if

lim
n→∞

λmin

(
n∑
k=0

Sk

)
=∞. (7.15)

Proof. Sufficiency is immediate. To prove the converse direction, note that, for all n ∈ N0,

λmin(P−1n ) ≤ λmax(P
−1
0 ) + λmin (

∑n
k=0 Sk). From (7.9), it follows that limk→∞ ‖θ̃k‖ =

limk→∞ ‖PkP−10 θ̃0‖ = 0, hence limk→∞ ‖Pk‖ = limk→∞ λ
−1
min(P−1k ) = 0, and therefore,

limk→∞ λmin

(∑k
i=0 Si

)
≥ limk→∞ λmin(P−1k )− λmax(P

−1
0 ) =∞.

To generalize the hypotheses of PE, we first note that PE is a condition concerning finite

windows of sequential indices. In this context, a window is a finite tuple1 of consecutive

indices. For PE, each index k is associated with a unique window Wk = (k, k+ 1, . . . , k+

N), as illustrated in Figure 7.1. Henceforth, we shall informally refer to this kind of figure

as a window diagram. As shown in Figure 7.1, PE requires that N , which determines the

window length, and the lower bound α be uniform within the sequence (Wk) of windows.

From this perspective, a natural generalization of PE would be to relax the requirement of

1We will not distinguish between tuples with elements in N0 and subsets of N0, since the ordering of the
former is identical to the usual ordering of N0 and since we do not consider tuples containing multiple copies
of a single element.
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Figure 7.2: A GPE-1/GPE-2 sequence showing several summation windows. In contrast
to PE, the window length and lower bound are allowed to vary based on the position of the
window in the sequence. The GPE-1 and GPE-2 conditions completely relax the uniformity
in N and α demanded by PE, but lose sufficiency for guaranteeing GAS by doing so.

uniformity for N and α. Naively doing so, we obtain the following condition.

Definition 8. The sequence (Sk) ⊂ Nn is GPE-1 if, for all k ∈ N0, there exist Nk ≥ 0 and

αk > 0 such that
∑Nk

i=0 Sk+i ≥ αkIn.

Figure 7.2 shows the window diagram for GPE-1, illustrating the nonuniformity in

N and α. Unfortunately, GPE-1 relaxes PE too much. Although necessary, GPE-1 is

not sufficient for (7.15), as can be seen from the sequence (1/k2), which satisfies GPE-

1 with Nk = 0 and αk = 1/k2, but not (7.15). This example suggests that GPE-1 is

insufficient because (αk) is not required to diverge, and thus cannot ultimately force the

divergence of limn→∞ λmin (
∑n

k=0 Sk). Hence, our first refinement of GPE-1 is to require

that
∑∞

k=0 αk =∞.

Definition 9. The sequence (Sk) ⊂ Nn is GPE-2 if, for all k ∈ N0, there exist Nk ≥ 0 and

αk > 0 such that
∑Nk

i=0 Sk+i ≥ αkIn and
∑∞

k=0 αk =∞.

The window diagram for GPE-2 can be pictured in the same way as for GPE-1 (Fig-

ure 7.2), since the only difference is that GPE-2 requires
∑∞

k=0 αk = ∞. GPE-2 is

also necessary but not sufficient for (7.15), as can be seen from the sequence (sk) =

(1, 1, 1/22, 1/22, 1/32, 1/32, . . . , 1/k2, 1/k2, . . . ), which satisfies GPE-2 with Nk = k + 1
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Figure 7.3: The first five summation windows defined by Nk = k + 1 for the GPE-2
sequence 1, 1, 1/22, 1/22, 1/32, 1/32, . . . . Note the overcounting-like effect due to the in-
tersecting windows.

and αk =
∑Nk

i=0 si+k. In particular, the requirement that
∑∞

k=0 αk =∞ is satisfied because

∞∑
k=0

αk = 1 +

(
1 +

1

22

)
+

(
1

22
+

1

22
+

1

32

)
+

(
1

22
+

1

32
+

1

32
+

1

42

)
+ · · ·

> 1 +
2

22
+

3

32
+

4

42
+ · · · = 1 +

1

2
+

1

3
+

1

4
+ · · · =∞.

However, since
∑∞

k=0 sk = 2
∑∞

k=0 1/k2 <∞, it follows that (7.15) is not satisfied.

To understand how this can occur, consider Figure 7.3, which shows (sk) with the

first five windows of defined by (Nk) overlaid. Note that adjacent windows have large

intersections, which exaggerates the effect of individual terms of (sk) on
∑∞

k=0 αk in a way

similar to overcounting. When there are large intersections between adjecent windows, it is

possible that
∑∞

k=0(sk+sk+1 · · ·+sk+Nk) diverges even though
∑∞

k=0 sk converges, which

suggests that intersections between distinct windows must be disallowed. To formulate

a non-intersection requirement, we replace hypotheses formulated in terms of Nk with

hypotheses formulated in terms of windows. PE, GPE-1, and GPE-2 use sequences of

windows (Wk) for which every window Wk begins at k (that is, for all k, minWk = k),

but such a window sequence will have intersections unless each window has a length of 1.

Hence, we dispense with the property that minWk = k for all k ∈ N0, and restrict GPE-2

to window sequences whose consecutive elements are strictly adjacent in the sense that, for
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all k ∈ N0, minWk+1 = maxWk + 1. Collecting the results of this analysis, we find that,

for all k, k′ ∈ N0, the following three conditions must hold:

i) Wk is a bounded interval of N0; that is, a tuple (n, n+ 1, . . . , n+m) ⊂ N0 such that

n,m ∈ N0.

ii) k 6= k′ implies that Wk ∩Wk′ = ∅.

iii) ∪k∈N0Wk = N0.

The last two conditions state that (Wk) is a partition of N0 in the set-theoretic sense. Thus,

we define a bounded interval partition (BIP) of N0 to be a sequence (Wk) of subsets of

N0 satisfying the three conditions given above. That is, a BIP is a partition of N0 whose

elements are bounded intervals and whose order is inherited from the order of their min-

imal elements. The next definition, WPE, modifies GPE-2 to include a non-intersection

requirement phrased in terms of BIPs.

Definition 10. The sequence (Sk) is weakly persistently exciting (WPE) if there exists a

BIP (Wk) and a sequence (αk) ⊂ [0,∞) such that
∑∞

k=0 αk = ∞ and, for all k ∈ N0,∑
i∈Wk

Si ≥ αkIn.

Figure 7.4 shows a window diagram for WPE. Three observations are immediate. First,

unlike GPE-1 or 2, WPE is sufficient for (7.1), as is seen by noting that

λmin

[
n∑
k=0

Sk

]
≥

Kn∑
k=0

λmin

[∑
j∈Wk

Sj

]
≥

Kn∑
k=0

αk,

where Kn
4
= max{` ∈ N0 : maxW` ≤ n}. Since Kn → ∞ as n → ∞, it follows that

limn→∞ λmin (
∑n

k=0 Sk) ≥
∑∞

k=0 αk =∞. Second, every PE sequence is WPE, as can be

seen by setting αk = α for all k ∈ N0 and taking the BIP Wk = (kN + k + 1, . . . , (k +

1)N + k + 2)

W0 = (0, . . . , N + 1), W1 = (N + 2, . . . , 2N + 3), W2 = (2N + 3, . . . , 3N + 4), . . .
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Figure 7.4: A WPE sequence showing several summation windows. Like GPE-1 and 2, but
unlike PE, the window length and lower bound values are allowed to vary based on their
position in the sequence. However, unlike GPE-1 and 2, WPE does not allow intersections
between the windows. This diagram assumes that the nth window Wn begins at the kth
element of the sequence.

Third, WPE is strictly weaker than PE. For example, the sequence

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . . ,

in which the nth 1 is followed by n 0’s, is WPE but not PE. These observations show

that WPE improves PE as a sufficient condition for GAS, but do not show that WPE is

necessary. The following result proves that it is.

Theorem 11. The sequence (Sk) ⊂ Nn satisfies condition (7.15) if and only if it is WPE.

Proof. Sufficiency is straightforward and an outline of the proof has been given in the pre-

vious paragraph. To prove necessity, note that (7.15) is equivalent to the existence of a non-

decreasing, unbounded sequence (hk) ⊂ [0,∞) such that, for all n ∈ N0,
∑n

k=0 Sk ≥ hnIn.

Let ε > 0. Since (hk) is unbounded, it follows that there exists m0 > 0 such that

hm0 ≥ ε. Defining Ũ0 = {0, . . . ,m0}, it follows that
∑

j∈Ũ0
Sj ≥ hm0In ≥ εIn.

Next, let k ∈ N0 and suppose for strong induction that there exist pairwise disjoint in-

tervals Ũ0, . . . , Ũk such that for all 0 ≤ ` ≤ k,
∑

j∈Ũ` Sj ≥ ε. Since (hk) is unbounded

and nondecreasing, it follows that there exists M > 0 such that, for all m ≥ M , hm ≥

λmax

(∑
j∈∪k`=0Ũ`

Sj

)
+ ε. Hence, let mk+1 = max(M,max0≤`≤k(maxU`) + 1) and de-
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fine Ũk+1 = {max0≤`≤k(max Ũ`) + 1, . . . ,mk+1}. Since mk+1 is the maximum of a finite,

bounded subset of N0, it follows that mk+1 < ∞, and thus Ũk+1 is a bounded interval.

Furthermore, since, for all 0 ≤ ` ≤ k, Ũk+1 ∩ Ũ` = ∅, it follows that

εIn ≤

λmax

 ∑
j∈∪k`=0Ũ`

Sj

+ ε

 In − ∑
j∈∪k`=0Ũ`

Sj

≤ hmk+1
In −

∑
j∈∪k`=0Ũ`

Sj ≤
mk+1∑
j=0

Sj −
∑

j∈∪k`=0Ũ`

Sj

=
∑

j∈∪k+1
`=0 Ũ`

Sj −
∑

j∈∪k`=0Ũ`

Sj =
∑

j∈Ũk+1

Sj. (7.16)

Thus (Ũk) is a collection of disjoint finite intervals such that, for all k ∈ N0,
∑

j∈Ũk Sj ≥

εIn. Finally, define Uk = Ũk ∪ {` : max Ũk + 1 ≤ ` ≤ min Ũk+1 − 1}. Since (Ũk) is

a collection of disjoint finite intervals, it follows that (Uk) is a collection of disjoint finite

intervals. Furthermore, since, for all p ∈ N0, there exists k ∈ N0 such that either p ∈ Ũk

or p ∈ {` : max Ũk + 1 ≤ ` ≤ min Ũk+1 − 1}, it follows that there exists k ∈ N0 such

that p ∈ Uk, and thus (Uk) is a BIP of N0. Finally, since, for all k ∈ N0,
∑

j∈Uk Sj ≥∑
j∈Ũk Sj ≥ εIn, setting αk = ε for all k ∈ N0, it follows that (Sk) is WPE.

The logical statements of PE, GPE-1, GPE-2, and WPE are summarized in Table 7.1

along with their status as necessary and/or sufficient conditions for GAS.

Condition Logical Statement Necessity/Sufficiency

PE ∃N ≥ 0 ∃ α > 0 ∀k ≥ 0
[∑N

i=0 Sk+i ≥ αIn

]
S but not N

GPE-1 ∀k ≥ 0 ∃Nk ≥ 0 ∃αk > 0
[∑Nk

i=0 Sk+i ≥ αkIn

]
N but not S

GPE-2 ∀k ≥ 0 ∃Nk ≥ 0 ∃αk > 0
[∑Nk

i=0 Sk+i ≥ αkIn ∧
∑∞

k=0 αk =∞
]

N but not S

WPE ∃ BIP(Wk) ∀k ≥ 0 ∃αk > 0
[∑

i∈Wk
Si ≥ αkIn ∧

∑∞
k=0 αk =∞

]
Both N and S

Table 7.1: Summary of PE and its non-uniform generalizations. Only WPE is both neces-
sary and sufficient for the GAS of RLS.

Note that by summing over k on each side of the inequality λmin

[∑
j∈Wk

Sj

]
≤ αkIn

under the assumption that
∑∞

k=0 αk = ∞, we obtain the conditions that, for all k ∈ N0,
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λmin

[∑
j∈Wk

Sj

]
> 0 and

∑∞
k=0 λmin

[∑
j∈Wk

Sj

]
=∞, which are equivalent to the pred-

icate of WPE given in Table 7.1 and shows that WPE can be stated without reference to

(αk). However, we have chosen to retain (αk) in Definition 10 to more explicitly show its

connection with PE. Finally, we note that the term ‘weakly persistently exciting’ is used

in [107, p. 73] to refer to a regressor sequence with an asymptotically convergent and

positive-definite mean. This usage is unrelated to the concept of WPE described in this

paper.

7.6 A Local Necessary and Sufficient Condition Using

Minimum Eigenvalue Oresme Partitions

In this section, we formulate an equivalent to WPE that is local in the sense that it is

formulated without limits or infinite sums. Consider the following divergence proof of the

harmonic series:

1 +
1

2
+

1

3
+

1

4
+ · · · = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+ · · · =∞.

This proof, originally due to N. Oresme (c. 1320–1382), implicitly uses the BIP

W1 = (1), W2 = (2), W3 = (3, 4), W4 = (5, 6, 7, 8), . . .

to define gk
4
=
∑

j∈Wk
1/j. Since infk∈N0 gk = 1/2 > 0, it follows that

∑∞
k=1 gk =∞ and

hence
∑∞

k=1 1/k = ∞. It is straightforward to see how this strategy can be generalized to

all nonnegative sequences by systematizing the formation of (gk).
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Definition 11. The sequence (gk) ⊂ [0,∞) is an Oresme partition (OP) of the sequence

(ak) ⊂ [0,∞) if there exists a BIP (Wk) of N0 such that gk =
∑

j∈Wk
aj and infk∈N0 gk > 0.

We now state the crux of Oresme’s proof as a proposition.

Proposition 6. If (ak) ⊂ [0,∞) has an OP, then
∑∞

k=0 ak =∞.

An immediate question is whether or not the converse holds: does the divergence of a

nonnegative series imply the existence of an OP? We will show that this is true, and, more-

over, that the following definition, which generalizes Definition 11 to positive-semidefinite

matrices, yields a condition equivalent to WPE.

Definition 12. The sequence (gk) ⊂ [0,∞) is a minimum eigenvalue Oresme partition

(MEOP) of the sequence (Sk) ⊂ Nn if there exists a BIP (Wk) of N0 such that gk =

λmin

(∑
j∈Wk

Sj

)
and infk∈N0 gk > 0.

The existence of a MEOP is a local property, since it can be formulated using only hypothe-

ses involving finite sums. Furthermore, since Theorem 12 will show that having a MEOP is

equivalent to being WPE, it follows that having a MEOP is a local necessary and sufficient

condition for the GAS of RLS. To prove Theorem 12, we need the following lemma.

Lemma 10. Let (ak) ⊂ [0,∞) satisfy
∑∞

k=0 ak = ∞. Then, for all p ∈ N0, there exists

n > p such that
∑n

j=p aj ≥ a0.

Proof. Since the result is immediate for a0 = 0, let a0 > 0 and suppose for contrapositive

that there exists l ≥ 0 such that, for all n > l,
∑n

j=l aj < a0. Hence, for all n > l,∑n
j=0 aj =

∑l−1
j=0 aj +

∑n
j=l aj ≤

∑l−1
j=0 aj + a0, and thus

∑∞
k=0 ak is finite.

Theorem 12. The sequence (Sk) ⊂ Nn is WPE if and only if it has a MEOP.

Proof. Let (gk) be a MEOP of (Sk). Then sufficiency follows immediately from setting

αk = gk for all k ∈ N0. To prove necessity, suppose that (Sk) is WPE and let (Uk) be a

BIP such that, for all k ∈ N0, λmin

(∑
j∈Uk Sj

)
> 0 and

∑∞
k=0 λmin

(∑
j∈Uk Sj

)
= ∞.
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For all k ∈ N0, set λk = λmin

(∑
j∈Uk Sj

)
. Next, define W0 = {0}, and suppose for

strong induction that there exist pairwise disjoint bounded intervals W0,W1, . . . ,Wk such

that, for all 0 ≤ j ≤ k,
∑

i∈Wj
λi ≥ λ0. Since

∑∞
k=0 λk = ∞, Lemma 10 implies that

there exists nk+1 > max(Wk) + 1 such that
∑nk+1

j=max(Wk)+1 λj ≥ λ0. Defining Wk+1 =

{max(Wk) + 1, . . . , nk+1}, it follows that W0, . . . ,Wk+1 are pairwise disjoint bounded

intervals such that, for all 0 ≤ j + 1 ≤ k,
∑

i∈Wj
λi ≥ λ0, and thus the principle of

strong induction implies that there exists a BIP (Wk) with these properties. Next, define

the BIP (Vk), for all k ≥ 0, by Vk =
⋃
j∈Wk

Uj. Since λ0 > 0 by construction, and

since λmin

(∑
i∈Vk Si

)
= λmin

(∑
j∈Wk

∑
i∈Uj Si

)
≥
∑

j∈Wk
λmin

(∑
i∈Uk Si

)
≥ λ0, it

follows that infk∈N0 λmin

(∑
i∈Vk Si

)
= λ0 > 0, and hence (gk) defined for all k ∈ N0 by

gk
4
= λmin

(∑
i∈Vk Si

)
is a MEOP for (Sk).

Since WPE is equivalent to (7.15), setting n = 1 in Theorem 12 yields the result

promised after Proposition 6.

Corollary 3. Let (ak) ⊂ [0,∞). Then
∑∞

k=0 ak = ∞ if and only if there exists an OP of

(ak).

Moreover, Theorem 12 also implies the following fact, which is implicit in the proof of

Theorem 11.

Corollary 4. The sequence (Sk) is WPE with lower bound sequence (αk) if and only if it

is WPE with a constant lower bound sequence αk = α > 0.

This result implies that WPE could be equivalently stated without altering the uniform

lower bound of requirement of PE. However, we have chosen to retain the variable lower

bound to emphasize the flexibility of the WPE hypotheses, the full range of which can be

helpful in practice. For example, the sequence

1, 0,
1

2
, 0, 0,

1

4
, 0, 0, 0, . . .
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is more easily verified to be WPE using Definition 10 and the BIP W1 = (1, 2), W2 =

(3, 4, 5), W3 = (5, 6, 7, 8), . . . than it would be from a definition that required a uniform

lower bound. Note, however, the powerful converse of Corollary 4. Although such a BIP

might be difficult to find, the fact that the sequence is WPE implies that a BIP does exist

for which the uniform lower bound property holds.

Finally, PE can be stated in terms of BIPs and MEOPs.

Proposition 7. Let (Sk) ⊂ Nn. Then (Sk) is PE if and only if it has a MEOP whose BIP

(Uk) consists of constant-length intervals. That is, For all k, k′ ∈ N0, |Uk| = |Uk′|.

Proof. Sufficiency follows immediately by using the BIP U0 = (0, . . . , N), U1 = (N +

1, . . . , 2N + 1), .... To prove necessity, suppose that (gk) is a MEOP of (Sk) with BIP

(Uk) of constant-length intervals and set N = 2|U0| and α = infk∈N0 gk > 0. Since, for

all k ∈ N0, |Uk| = N/2, it follows that, for all j ∈ N0, there exists k(j) ∈ N0 such that

Uk(j) ⊂ (j, j + 1, . . . , j +N), and thus
∑N

i=0 Si+j ≥
∑

i∈Uk(j) Si ≥ α.

This proposition allows us to articulate, in consistent terms, the essential structural property

of non-PE regressors for which RLS is GAS. Specifically, defining a uniform BIP to be a

BIP for which each interval has the same length and a variable BIP as a BIP for which

there exist at least two intervals with different lengths, we have the following result.

Corollary 5. The non-PE sequences that guarantee the GAS of RLS are exactly the se-

quences that have a MEOP with a variable BIP, but no MEOP with a uniform BIP.
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CHAPTER 8

Sequential Gradient-Descent Optimization of

Data-Dependent, Rank-Deficient Cost Functions

with a Unique Common Global Minimizer

8.1 Preface

Finally, our last paper shifts the focus from RLS to a related algorithm, sequential

gradient descent. Although not explicitly stated in the paper, the motivation for this work

also lies in the study of forgetting. Suppose we start with VRF and look at the case in

which the forgetting factor is error-actuated and an abrupt change has just taken place. In

this circumstance, the forgetting factor will be very large during the first few steps after the

abrupt change takes place, and the data used in the estimate will be approximately the same

as if we were to use only the most recent few data points. The most extreme case of this

would be using only the single most recent measurement. That is, minimizing

Jk(θ) =
1

2
‖yk − φkθ‖2. (8.1)

Although it might be difficult to imagine instances in which this instantaneous least-

squares cost is preferable to cumulative RLS (possibly with forgetting), it nonetheless

appears to be the case that in certain applications of DDRCAC, use of the instantaneous
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cost is an effective way of increasing the numerical stability of the controller while still

maintaining good estimate quality.

When φk is not full-rank, (8.1) does not have an analytic formula for its minimizer. In

fact, this cost is in general convex, but not strictly convex, and thus admits an uncountably

infinite number of minimizers, consisting of all the points in some subspace of the parame-

ter space. Thus the ordinary RLS update and its variants cannot be used to minimize (8.1).

Instead, we use the gradient-descent update

θk+1 = θk − µk∇Jk(θ), (8.2)

in which the minimizer is approximated but not computed exactly. Note that in this case

the cost depends on the step as well as the estimate, which makes this algorithm, sequential

gradient descent, essentially different from the elementary fixed-cost gradient descent that

is found in most optimization textbooks. The question that now concerns us is another one

of convergence of the estimates to the true system parameters, which, like that of the previ-

ous paper, can be phrased in terms of global asymptotic stability of the dynamical system

defined by the recursive formula for the estimator. We note that while it is possible to con-

sider subiterations of (8.2); that is, multiple gradient-descent iterations using the same cost

and executed in the time between successive measurement updates; these subiterations will

only affect the convergence-rate, not asymptotic convergence or global asymptotic stability,

and hence we may take, without loss of generality, the form given in (8.2).

The goal is to provide conditions for the stepsize µk so that sequential gradient descent

is GAS for a “reasonable” set of costs. In this case, our set of costs will be general quadratic

cost functions, which includes all least-squares costs that appear in system identification.

The conditions on the stepsize are harder to state simply. Starting with the concept of a

bounded interval partition developed in the preceding paper, we are able to deduce a con-

dition called weak ultimate positivity which requires the stricter concept of a uniformly
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bounded interval partition. If the sequence defined by the stepsize multiplied by the Hes-

sian of the cost at each step is weakly ultimately positive, and the stepsize is bounded by

the reciprocal of the maximum eigenvalue of the Hessian, then sequential gradient-descent

is GAS.

One final thing worth noting about this work is that theorems asserting results about sta-

bility are proven using results from fixed-point theory and not the more familiar Lyapunov

theory. To see why Lyapunov’s second method cannot be used with non-strictly convex

costs, at least in its standard form, consider a Lyapunov candidate function V : Rn×N0 →

R. Since Jk is not strictly convex, there exist multiple minima, and hence multiple station-

ary points of Jk. Thus, the gradient map

fk(θ) = θ − µk∇Jk(θ) (8.3)

has multiple distinct fixed points. Exactly one of these is the equilibrium, in the Lyapunov

sense, of the sequence (fk), and thus there exists at least one non-equilibrium point θ∗ that

is also a fixed point of fk. The Lyapunov difference evaluated at this point is

∆Vk(θ
∗)
4
= Vk ◦ fk(θ∗)− Vk(θ∗) = 0, (8.4)

Since θ∗ is a fixed point of fk, and hence the main condition of Lyapunov’s second method

is spoiled. We will see that under certain circumstances, a modification of the Banach

fixed-point theorem can succeed where Lyapunov’s method fails. At the time of writing

it is not clear whether or not these modifications might facilitate more stability proofs that

are not possible using Lyapunov’s second method, but the existence of another, completely

different approach to the problem is worthy of note.

106



8.2 Introduction and Problem Statement

8.2.1 Background on Online Parameter Estimation

System identification typically requires online estimation of parameters from a linear

regression model. Since data is obtained sequentially during online operation, the task of

online identification leads to the problem of optimizing a sequence of costs that are updated

at each step by the most recent data. For cumulative least squares costs, Recursive Least

Squares (RLS) [?, 14, 49, 64, 65, 108–110] is a well-established method, which includes

sophisticated forgetting schemes [16,59,66–68,106,111] as well as techniques for avoiding

divergence when the regressor lacks persistency of excitation [24,92,94,95,112]. However,

RLS has the drawback of requiring the propagation of a covariance matrix and is restricted

to a cumulative quadratic cost.

Gradient methods [113–115], [13, pp. 58–61] neither require covariance propagation

nor assume a cumulative cost, and applications of gradient algorithms such as the stochas-

tic gradient [116, 117], multi-innovation [118–123], and conjugate gradient [124–127]

methods to system identification, adaptive control, and adaptive filtering have been stud-

ied extensively. Although stability conditions for particular gradient algorithms, such as

the instantaneous and instantaneous normalized projected gradient methods [13, pp. 71-

73], [96–99] are known, the stability of gradient-based identification methods for gen-

eral quadratic costs is not well-studied. This can be compared to fixed-cost optimization,

where the convergence criteria of gradient methods for large classes of costs are well-

established [128, pp. 466-475], [129, pp. 28-35].

A third approach to sequential optimization is Online Convex Optimization (OCO)

[130–132], which has emerged as a subfield of machine learning. The OCO literature has

studied algorithms closely related to the gradient methods used in identification (cf. section

8.2.5) and has treated problems similar to those of interest in system identification, such

as finding a common global minimizer [133–135] or tracking a time-varying global mini-
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mizer [136–138] for sets of strongly convex costs. However, as shown in section 8.2.5, the

OCO objective of regret minimization may not be effective for system identification since

the regret can be minimized without guaranteeing attractivity to the true parameters. This is

especially true for non-strictly convex costs, which may have multiple global minimizers.

In this paper, we address the global asymptotic stability of gradient descent for the

purpose of online system identification. That is, gradient descent with the objective of

determining true system parameters using only sequentially available input/output data (cf.

[115], [13, pp. 58–61]). We refer to this approach as sequential-cost gradient descent

(SGD) to distinguish it from other problems that also use gradient descent (e.g., fixed-cost

optimization). We restrict our attention to quadratic costs, which are the most relevant

for identification, including possibly rank-deficient costs, which are convex but not strictly

convex, and hence we allow for the existence of multiple global minimizers at each step.

Section 8.2.2 fixes notation and terms, Section 8.2.3 further describes the motivation

of the main problem, Section 8.2.4 defines the main problem formally as P1, and section

8.2.5 discusses the relationship of the present work to OCO. In Section 8.3, we present

three fixed-point results that are subsequently used to prove global asymptotic stability

conditions for SGD in Section 8.4. Finally, these conditions are specialized to least squares

costs in Section 8.5 and illustrated with examples in Section 8.6.

8.2.2 Notation and Terminology

We define N 4
= {1, 2, 3, . . . } and N0

4
= {0} ∪ N. The symbols Sn,Nn, and Pn denote

the sets of real n × n symmetric, positive-semidefinite, and positive-definite matrices, re-

spectively. For A ∈ Sn, λi(A) denotes the ith largest eigenvalue of A, λmax(A)
4
= λ1(A),

and λmin(A)
4
= λn(A). For all A ∈ Rn×n, R(A) and N(A) denote the range and null space

of A, respectively, and A+ denotes the generalized inverse of A. The notation |U | denotes

the cardinality of the set U . The notation (xk)k∈N0 ⊂ U indicates that the components

x0, x1, . . . of the sequence (xk)k∈N0 are elements of U . For convenience, we write (xk)
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for (xk)k∈N0 . The empty product and empty sum are defined to be 1 and 0, respectively.

Given the n-tuple J = (j1, . . . , jn) of indices and r × r matrices Aj1 , . . . , Ajn , we define∏
j∈JAj

4
= AjnAjn−1 · · ·Aj1 .

8.2.3 Identification Using Costs with Multiple Minimizers

Let D ⊂ Rn and let J be a set of differentiable functionals J : D→ R. For all J ∈ J, let

MJ denote the set of global minimizers of J , and denote MJ
4
= ∩J∈JMJ . It is frequently

useful in system identification to consider sets J such that, for all J ∈ J, |MJ | > 1 but

|MJ| = 1. For example, the set of instantaneous least squares costs Jk(x) = 1
2
‖yk −

φkx‖2, k ≥ 0, where (yk) ⊂ Rm and (φk) ⊂ Rm×n is a sequence of regressor matrices

such that rank(φk) < min(m,n), satisfies this property in the case where yk = φkx
∗

and ∩k≥1N(φk) = {0}. The objective is to identify the single element x∗ ∈ MJ, which

corresponds to the true system parameters, using only knowledge of the individual costs

in J. In particular, since each set MJ contains elements other than x∗, perhaps infinitely

many, an algorithm for determining x∗ must be capable of distinguishing between points

that are only minimizers of a proper subset of the costs in J and the universal minimizer of

every cost in J. Section 8.2.4 proposes a simple gradient descent strategy for pursuing this

objective.

8.2.4 sequential-cost gradient descent

Based on the discussion in the preceding paragraph, we make the following assumption:

A1. There exists a set J
4
= {J : D ⊂ Rn → R} of differentiable functionals such that, for

all J ∈ J, |MJ | ≥ 1, and |MJ| = 1.

Thus, we allow for the possibility that, for all J ∈ J, |MJ | > 1, but need not assume this a

priori.
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A2. J contains a sequence (Jk) such that ∩kMJk = MJ.

We refer to a sequence satisfying A2 as an exhaustive sequence in J.

Since we are interested in online operation, where each cost Jk is not available until

step k, we also make an assumption restricting the availability of costs.

A3. At each step k, the only available cost is Jk.

Although it is possible to use the previous costs J0, . . . , Jk−1 in addition to Jk at step k,

we shall show that it is possible to identify x∗ using only the current cost Jk, which is

significantly more computationally efficient than holding multiple costs in memory.

Since the most important in system identification applications are quadratic functions,

for simplicity in this initial research, we make the following final assumption:

A4. For all k ≥ 0, Jk is a quadratic function. That is, there exist Ak ∈ Nn\{0}, bk ∈

R(Ak), and ck ∈ R, such that Jk(x)
4
= 1

2
xTAkx+ bTk x+ ck.

Note that by restricting attention to quadratic functions, we also assume that D = Rn. The

assumption that bk ∈ R(Ak) is necessary to ensure the existence of finite-norm minimizers,

while the assumption that Ak is not necessarily full rank implies that Jk is convex, but not

necessarily strictly convex, and hence that there may exist multiple global minimizers. Note

that a quadratic cost sequence satisfies A1-2 if and only if | ∩k≥0 [−A+
k bk + N(Ak)]| = 1.

Let (µk) ⊂ [0,∞). Then the gradient iteration of (Jk) is defined as

xk+1 = xk − µk∇Jk(xk), (8.5)

x0 ∈ Rn, (8.6)
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where µk is the step size at step k. We refer to the use of the gradient iteration to determine

x∗ as sequential-cost gradient descent. Note that x∗ is an equilibrium point of the gradient

iteration (8.5)–(8.6). The main problem that we address in this paper may be stated as

follows:

P1. Under assumptions A1–A4, determine sufficient conditions such that x∗ is a GAS

equilibrium of (8.5)–(8.6).

Guaranteeing GAS will prove a fortiori that the SGD estimates converge to x∗ regardless

of the initialization.

8.2.5 Relationship with Online Convex Opimization

The SGD algorithm is equivalent to Online Gradient Descent [132, pp. 9-11], [130, pp.

130-134], [131, pp. 179-183], [133] in OCO, possibly with the addition of a projection

step, and thus we might initially consider using results from OCO to help answer P1.

Unfortunately, since OCO is based on regret minimization, it cannot guarantee GAS when

J has costs with multiple global minimizers.

To see this, assume that A1–A4 hold and recall that the regret of an OCO algorithm is

defined [132, pp. 1-2], [130, p. 112], [131, pp. 159-161] by

RT
4
=

T∑
k=0

Jk(xk)− min
x∈Rn

T∑
k=0

Jk(x), (8.7)

where xk is the estimated minimum of Jk at step k. In the OCO framework, the goal

is to provide guarantees on the asymptotic growth of RT , and the main figure of merit

is how well RT can be bounded (possibly asymptotically by a function of T ). The ideal

performance is RT = 0 for all T > 0, but even the best OCO algorithms guarantee only

sublinear growth of RT , since the OCO framework allows Jk to be chosen adversarially
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[132, p. 6].

The task given in P1 is to prove GAS of x∗, and hence convergence of the estimate

sequence to the true parameters. Hypothetically, if GAS could be guaranteed by bounding

RT , then the methods of OCO might be used to answer P1. Unfortunately, as the following

example shows, if J has costs with multiple global minimizers, then even achieving the

ideal OCO performance of RT = 0 for all T > 0 is insufficient to guarantee GAS, or even

attractivity of x∗.

Example 1. LetA ∈ Nn\{0}, ‖A‖ ≤ 1, and rank(A) < n, define J1(x) = xTAx and

J2 = xT (In − A)x, and let J = {J1, J2} and (Jk) = (J1, J2, J1, J2, . . . ). Then J satisfies

A1 and (Jk) satisfies A2. Since N(A), N(In−A) 6= {0}, there exist y1 ∈ N(A) \ {0} and

y2 ∈ N(In − A) \ {0}, and thus, for all α ∈ R, the sequence

xk
4
=


αky1, k = 0, 2, 4, . . .

αky2, k = 1, 3, 5, . . .

(8.8)

is well-defined and has RT = 0 for all T > 0. For all α > 1, however, it follows that

limk→∞ ‖xk − x∗‖ =∞. �

In Example 1, since both J1 and J2 have an infinite number of global minimizers, there are

sequences with identically zero regret that diverge infinitely far from the true parameters.

Hence, guarantees on RT , such as those provided by OCO, do not guarantee attractivity,

and thus cannot satisfactorily answer P1. In the remainder of the paper, we instead pursue

a solution strategy based directly on the definition of stability.

8.3 Fixed-Point Theory

This section reviews three fixed-point results that are essential for the main results of

the paper. Although straightforward, to the authors’ knowledge, they have not appeared
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before in the system identification literature.

Let (M,d) be a metric space, and let f : M → M . Then, f is nonexpansive if there

exists a nonexpansion coefficient q ∈ (0, 1] such that, for all x, y ∈ M , d(f(x), f(y)) ≤

qd(x, y). The point p ∈M is a fixed point of f if f(p) = p.

Definition 13. Let (M,d) be a metric space, and let (fk) be a sequence of functions on M .

Then p ∈M is a fixed point of (fk) if, for all k ∈ N0, fk(p) = p. The set of all fixed points

of (fk) is denoted by Fix[(fk)].

Proposition 8. For all k ∈ N0, let fk : M → M be nonexpansive with nonexpansion

coefficient qk. Let x0 ∈ M , define xk+1 = fk(xk), and assume that p is a fixed point of

(fk). Then limk→∞ d(xk, p) ≤ (
∏∞

k=0 qk) d(x0, p), and, furthermore, if
∏∞

k=0 qk = 0, then

p is the only fixed point of (fk) and limk→∞ xk = p.

Proof. Since, for all k ∈ N0, fk is nonexpansive, it follows that d(xk+1, p) = d(fk(xk), fk(p)) ≤

qkd(xk, p), hence, d(xk, p) ≤
∏k−1

`=0 q` d(x0, p), and thus limk→∞ d(xk, p) ≤ (
∏∞

k=0 qk) d(x0, p).

Setting
∏∞

k=0 qk = 0, it follows that limk→∞ d(xk, p) = 0. Suppose that p′ ∈ Fix[(fk)].

Then d(p′, p) ≤ limk→∞ d(p′, xk) + limk→∞ d(xk, p) = 0. �

Proposition 9. Let (fk) be a sequence of nonexpansive functions on (M,d) with fixed point

p. Then p is a Lyapunov stable equilibrium of the system

xk+1 = fk(xk), (8.9)

x0 ∈M. (8.10)
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Proof. Let ε > 0 and x0 ∈ Bε(p). Since (fk) is nonexpansive, it follows that, for all k ≥ 0,

d(xk, p) = d(fk−1(xk−1), fk(p)) ≤ d(xk−1, p) ≤ d(x0, p) < ε. �

A bounded interval of N0 is a set {n, n + 1, . . . , n + m} ⊂ N0, where n,m ∈ N0. A

bounded interval partition of N0 is a partition of N0 whose elements are bounded intervals,

and a uniformly bounded interval partition P of N0 is a bounded interval partition of N0

such that supU∈P |U | <∞.

Proposition 10. Let (fk) be a sequence of nonexpansive functions on (M,d) with fixed

point p, let (Uk) be a bounded interval partition of N0, and, for all k ∈ N0, define

Fk
4
= fmaxUk ◦ · · · ◦ fminUk . (8.11)

Then the following statements hold:

i) p is a fixed point of (Fk).

ii) (Fk) is nonexpansive.

iii) For all x ∈M , limk→∞ Fk◦· · ·◦F0(x) = p if and only if limk→∞ fk◦· · ·◦f0(x) = p.

Proof. i) and ii) are immediate from (8.11). To prove iii), let z ∈ M , and define

(yk), (xk) ⊂ M by x0 = z, y0 = z, and, for all k ∈ N0, by xk+1 = fk(xk) and

zk+1 = Fk(zk). Suppose that limk→∞ xk = p. Since (zk) is a subsequence of (xk), it

follows that limk→∞ zk = p. Conversely, suppose that limk→∞ zk = p, and let ε > 0. Then

there exists k ∈ N0 such that, for all k ≥ K, d(zk, p) < ε. Since (zk) is a subsequence of

(xk), it follows that there exists M ≥ 0 such that zK = xM . Let m > M . Then, since fk is
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nonexpansive, it follows that

d(xm, p) = d(fnmm ◦ · · · ◦ fnMM (xM), fnmm ◦ · · · ◦ fnMM (p))

≤ d(xM , p) = d(zK , p) < ε,

and thus limk→∞ xk = p. �

8.4 Global Asymptotic Stability

In this section, we state and prove sufficient conditions for GAS of SGD in Theorem

13, answering P1. This is our main result, the proof of which requires the following three

lemmas.

Lemma 11. Let (Uk) be a bounded interval partition of N0 and, for all k ≥ 0, letAk ∈ Nn,

with ‖Ak‖ ≤ 1 and limk→∞

∥∥∥∏j∈Uk Aj

∥∥∥ = 1. Then limk→∞ ‖Ak‖ = 1.

Proof. Let ε > 0. Since limk→∞

∥∥∥∏j∈Uk Aj

∥∥∥ = 1 there exists K ≥ 0 such that, for all

k ≥ K and j ∈ Uk, 1 − ε <
∥∥∥∏j∈Uk Aj

∥∥∥ ≤ ∏j∈Uk ‖Aj‖ ≤ ‖Aj‖ ≤ 1. Thus, for all

j ≥ minUK , 1− ε ≤ ‖Aj‖ ≤ 1.

Lemma 12. Let (Uk) be a uniformly bounded interval partition of N0 and let (ak) ⊂ R be

a sequence such that limk→∞ ak = 0. Then limk→∞
∑

j∈Uk aj = 0.

Proof. Let ε > 0 and supk∈N0
|Uk| = M . Since limk→∞ ak = 0, it follows that there exists

K ∈ N0 such that, for all k ≥ K, |ak| < ε/M. Since (Uk) is an interval partition, it follows

that there exists K1 ≥ 0 such that, for all k ≥ K1, minUk > K. Let k ≥ K1. Since, for all
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j ∈ Uk, j ≥ K, it follows that
∣∣∣∑j∈Uk aj

∣∣∣ ≤∑j∈Uk |aj| <
ε
M
|Uk| ≤ ε

M
supk∈N0

|Uk| = ε.

�

To see that the assumption of uniform boundedness is essential, let U0 = {0}, U1 =

{1}, U3 = {2, 3}, U4 = {4, 5, 6}, U5 = {7, 8, 9, 10}, . . . . Then (Uk) is a bounded, but not

uniformly bounded interval partition. For all k ∈ N0, let {aj}j∈Uk = { 1
k+1

, . . . , 1
2k
}. Then∑

j∈Uk aj = ln(2) + ε2k − εk, where limk→∞ εk = 0. Thus limk→∞
∑

j∈Jk aj = ln(2) even

though limk→∞ ak = 0.

Definition 14. Let (Sk) ⊂ Nn. Then (Sk) is ultimately positive if lim infk→∞ λmin(Sk) > 0

and weakly ultimately positive if there exists a uniformly bounded interval partition (Uk) of

N0 such that
(∑

j∈Uk Sj

)
is ultimately positive. The sequence (φk) ⊂ Rn×m is ultimately

positive, or weakly ultimately positive if (φT
k φk) is ultimately positive, or weakly ultimately

positive, respectively.

Lemma 13. For all k ∈ N0, let Ak ∈ Nn\{0},

µk ∈ [0, λ−1max(Ak)], (8.12)

and define qk
4
=
∥∥∥∏j∈Uk (In − µjAj)

∥∥∥ . Furthermore, assume that (µkAk) is weakly ulti-

mately positive. Then lim supk→∞ qk < 1.

Proof. From (8.12), it follows that lim supk→∞ qk ≤ 1. Hence, suppose for contradiction

that lim supk→∞ qk = 1. From Lemma 11, it follows that lim supk→∞ ‖In − µkAk‖ = 1,

and thus lim supk→∞(1−‖In− µkAk‖) = 0. For all k ∈ N0, let xk be the unit eigenvector

of Ak corresponding to λmax(Ak) and let ξ ∈ B1(0). Since µkAkxk = (1−‖I−µkAk‖)xk,
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Lemma 12 implies that

lim inf
k→∞

[
λmin

(∑
j∈Uk

µjAj

)]
≤ lim inf

k→∞

∥∥∥∥∥
[∑
j∈Jk

µjAj

]
ξ

∥∥∥∥∥
≤ lim inf

k→∞

∥∥∥∥∥∑
j∈Jk

µjAjxj

∥∥∥∥∥ ≤ lim inf
k→∞

∑
j∈Jk

‖µjAjxj‖

= lim inf
k→∞

∑
j∈Jk

(1− ‖In − µjAj‖) ≤ lim sup
k→∞

∑
j∈Jk

(1− ‖In − µjAj‖) = 0,

which contradicts the assumption that (µkAk) is weakly ultimately positive. �

Theorem 13. Under the notation and assumptions A1–A4, let (µk) ⊂ [0,∞) satisfy (8.12)

and assume that (µkAk) is weakly ultimately positive. Then x∗ ∈MJ is the globally asymp-

totic stable equilibrium of (8.5)–(8.6).

Proof. The point x∗ is an equilibrium of (8.5)–(8.6) by definition. Consider the sequence

(fk : Rn → Rn) defined for all k ≥ 0 by fk(x)
4
= x − µk∇Jk(x), where (Jk) ⊂ J is

exhaustive. Since (8.12) implies that ‖I − µkAk‖ = 1 − µkλmin(Ak) ∈ [0, 1], it follows

that, for all x, y ∈ Rn, ‖fk(x) − fk(y)‖ ≤ ‖I − µkAk‖‖x − y‖ ≤ ‖x − y‖, and thus (fk)

is nonexpansive. From Proposition 9, it follows that x∗ is Lyapunov stable.

To prove attractivity, let (Uk) be a uniformly bounded interval partition for which

(µkAk) is weakly ultimately positive, for all k ∈ N0, define Fk by (8.11) with fk given

as in the previous paragraph, and define qk
4
=
∥∥∥∏j∈Uk (In − µjAj)

∥∥∥ . Using (8.11), it fol-

lows that, for all k ∈ N0, ‖Fk(x)−Fk(y)‖ =
∥∥∥[∏j∈Jk(In − µjAj)

]
(x− y)

∥∥∥ ≤ qk‖x−y‖.

Finally, ‖In − µkAk‖ ≤ 1 implies that qk ∈ [0, 1]. Next, since (µkAk) is weakly ultimately

positive, it follows that Lemma 13 holds, and thus (13) implies that 1 − lim supk→∞ qk ∈
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(0, 1). Hence, let α ∈ (0, 1− lim supk→∞ qk), and, for all k ∈ N0, define

q̃k
4
=


qk, qk 6= 0,

α, qk = 0.

Since, for all k ∈ N0, q̃k ∈ (0, 1] and, for all x, y ∈ Rn, ‖Fk(x) − Fk(y)‖ ≤ q̃k‖x −

y‖, it follows that q̃k is a nonexpansion coefficient for fk. Since q̃k ∈ (0, 1], it follows

that
∏∞

k=0 q̃k is either zero or positive. Suppose for contradiction that
∏∞

k=0 q̃k is positive.

Then limk→∞ q̃k = 1, which implies that qk is ultimately positive, and hence limk→∞ qk =

limk→∞ q̃k = 1, contradicting Lemma 13. Thus
∏∞

k=0 q̃k = 0.

From A1, it follows that x∗ is the unique fixed point of (fk). From Proposition 10, i)

and 8 it follows that x∗ is the unique fixed point of (Fk), and, for all x ∈ Rn, limk→∞ Fk ◦

· · · ◦ F0(x) = x∗. Thus, it follows from Proposition 10, iii) that limk→∞ xk = x∗. Since

the initialization is arbitrary, it follows that x∗ is GAS. �

Note that Theorem 13 combined with the uniqueness of the universal fixed point in Propo-

sition 8 implies that if (µk) satisfies (8.12), (µkAk) is weakly ultimately positive, and

∩k≥0[−A+
k bk + N(Ak)] 6= ∅, then, moreover, | ∩k≥0 [−A+

k bk + N(Ak)]| = 1 and x∗ ∈

∩k≥0[−A+
k bk + N(Ak)] is the GAS equilibrium of (8.5)–(8.6).

8.5 Least Squares Costs

Least squares costs form a significant subset of the quadratic costs commonly used in

practice. For this special case, the results in the previous section can be specialized.

Definition 15. The sequence (Jk) of quadratic cost functions is a least squares sequence

if, for all k ∈ N0, there exist φk ∈ Rp×n\{0}, yk ∈ Rp, `k ∈ {0, . . . , k} and, for all
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1 ≤ i ≤ `k, Wk,i ∈ Pp such that

Jk(x) =
1

2

`k∑
i=0

(yk−i − φk−ix)TWk,i(yk−i − φk−ix). (8.13)

Note that in the case where
∑`k

i=0 φ
T
k−iWk,iφk−i is rank-deficient, Jk has an infinite number

of global minimizers.

Theorem 14. Let (φk) ⊂ Rp×n be weakly ultimately positive, and, for all k ∈ N0, define

yk = φkx
∗, where x∗ ∈ Rn, let 0 ≤ `k ≤ k, and assume that, for all 1 ≤ i ≤ `k, Wk,i ∈ Pn

andWk,i ≥ ξIn, where ξ > 0. Finally, let (µk) ⊂ [0,∞) be an ultimately positive sequence

such that, for all k ∈ N0,

µk ≤
1

λmax

(∑`k
i=0 φ

T
k−iWk,iφk−i

) , (8.14)

Then x∗ is the globally asymptotically stable equilibrium of (8.5)–(8.6) with Jk given, for

all k ≥ 0, by (8.13).

Proof. Note that (8.13) can be written as Jk(x̃)
4
= 1

2
x̃TAkx̃,whereAk =

∑`k
i=0 φ

T
k−iWk,iφk−i

and x̃ = x∗ − x. Then µk satisfies (8.12) by construction. To show that (µkAk) is weakly

ultimately positive, let (Uk) be a uniformly bounded interval partition with respect to which

(φk) is weakly ultimately positive, and for all k ∈ N0, define µ−k = minj∈Uk µj. Since (µk)

is ultimately positive, (µ−k ) is ultimately positive, and thus

lim inf
k→∞

λmin

(∑
j∈Uk

µjAj

)
≥ ξ lim inf

k→∞
µ−k λmin

∑
j∈Uk

`j∑
i=0

φT
j−iφj−i


≥ ξ lim inf

k→∞
µ−k λmin

(∑
j∈Uk

φT
j φj

)
> 0. �
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8.6 Examples

The following examples illustrate Theorems 13 and 14.

Example 2. Considering the cost set and sequence of Example 1, for all k ∈ N0,

let µk = min(1, λ−1max(A)), and let (Uk) = ({0, 1}, {2, 3}, {4, 5}, . . . ). Then Theorem 14

implies that x∗ = 0 is the GAS equilibrium of (8.5)–(8.6). �

Example 3. Let θ = [1 2]T, and, for all k ∈ N0, define

φk =



0 0

0 1
k

 , k = 0, 2, 4, . . . ,

 1√
k

0

0 0

 , k = 1, 3, 5, . . . ,

(8.15)

yk = φkθ, and let Jk(x) = 1
2
‖yk − φkx‖2. Let µk = k2 and consider the uniformly

bounded interval partition given in Example 2. Then Theorem 14 implies that θ is the GAS

equilibrium of (8.5)–(8.6). Note that θ is GAS even though µk is unbounded. �

Example 4. Let θ ∈ Rn, let Nw ≥ 0, let (φk) ⊂ Rp×n be weakly ultimately positive,

and assume that β 4= supj≥0 λmax

(
φT
j φj
)
< ∞. For all k ∈ N0, let yk = φkθ, and define

Jk(θ̂) = 1
2

∑Nw
i=0 ‖yk−i − φk−iθ̂‖2. Finally, let (µk) be an ultimately positive sequence such

that µk ∈ [0, 1
Nwβ

]. Then (µk) satisfies (8.14), since λmax

(∑Nw
i=0 φ

T
k−iφk−i

)
≤ Nwβ, and

Theorem 14 implies that θ is the GAS equilibrium of (8.5), (8.6). �

8.7 Conclusion

Sufficient conditions were given under which the sequential-cost gradient descent is

GAS with an equilibrium corresponding to the true system parameters. GAS was obtained

regardless of whether or not the individual costs have a unique minimizer (that is, are
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strictly convex). Since quadratic costs are the most common type in system identification,

we restricted attention to this important class of costs. Specialized conditions were given

for least squares costs, including rank-deficient least squares costs with an infinite number

of global minimizers. Future work will consider extensions to sequences of nonquadratic

convex cost functions, the effect of noise, and extension to costs without a common global

minimizer.
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CHAPTER 9

Conclusion

In the foregoing chapters, we have discussed online system identification using both

the RLS and sequential gradient descent. We were mainly interested in solving online

system identification problems in the case where the system parameters could change either

gradually or abruptly. We restricted our attention to systems whose output behavior can be

described by single or multivariable ARX-type models.

First we considered RLS with constant-rate forgetting as a proposed solution to the

changing parameters problem. We showed how RLS with constant-rate forgetting can be

useful for tracking slowly varying parameters but also that the covariance diverges when

the regressor loses persistency. We first investigated a solution to the issue of covariance

divergence by modifying RLS to include a priori covariance bounds. However, this modi-

fication had the drawback that it was only an ad hoc modification of RLS, and practically

speaking it did not produce a good solution to the abrupt change of parameters problem.

Next, we investigated variable-rate forgetting, and presented novel analyses of conver-

gence and consistency as well as the novel idea of an error-actuated variable forgetting

factor. The combination of these contributions allowed us to produce a solution to the

abrupt change of parameters problem while at the same time minimizing the risk of di-

vergence due to non-persistent regressors. A further refinement allowed us to incorporate

VRF with variable-direction forgetting, as presented in [24], to produce variable-rate-and-

direction forgetting (VRDF), which we provided a least-squares cost for in the general form
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of matrix forgetting. Although potentially computationally expensive due to an SVD of the

covariance matrix, VRDF guarantees estimator robustness when persistency is lost, rather

than simply mitigating it.

After presenting our forgetting-based solution to the changing parameters problem, we

further investigated the regressor conditions that are necessary and sufficient for the global

asymptotic convergence of RLS without forgetting. Since persistency of excitation is both

known to be a logically too strict condition (being sufficient but not necessary for RLS

convergence to the true parameters) and also difficult to guarantee in practice, an under-

standing of the weakest possible conditions that still guarantee parameter convergence was

useful. We found that WPE and the existence of a MEOP were two equivalent necessary

and sufficient conditions that can both be understood in a “local” sense in time and are

direct generalizations of PE.

Finally, we investigated the case of extreme “forgetting” in which only the most recent

measurement is used in updating the estimate. Since the associated least squares cost has in

general an uncountably infinite number of minimizers, the RLS update cannot be applied

and therefore we had to use gradient descent instead. This led to an investigation of the

global asymptotic stability of online gradient descent (in which the cost changes at each

step) for general quadratic cost functions. We provided conditions for the gradient stepsize

that gauranteed the gradient iteration was globally asymptotically stable with respect to

the time-varying equilibrium defined by the true parameters of the system both for general

quadratic costs and the special case of least-squares costs.

9.1 Future Work

The analyses of VRF and VRDF can be extended to achieve more complete consistency

results, especially in the case where the forgetting factor is error-actuated. Extensions to

filtering theory especially might be available through the further development of the artifi-
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cial uncertainty concept, which can also provide a starting point for more comprehensive

results on consistency. VRDF could be improved by increasing the practicality of comput-

ing the SVD. This might be possible if an algorithm could be formulated in which the SVD

could be recursively updated.

The investigations on necessary and sufficient regressor conditions for RLS parameter

convergence can be extended to include constant and variable-rate forgetting. Furthermore,

necessary and sufficient conditions for consistency should also be investigated for RLS both

with and without forgetting.

Finally, we are currently extending the results of the gradient descent analysis to the

case of general cost functions, possibly with spatially bounded Hessians, which would

remove the current restriction to general quadratic costs.
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