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Abstract 

 

Grain size strengthening, referred to as the Hall-Petch effect, is a common strategy to 

improve the yield strength of magnesium (Mg) alloys. Several theoretical studies have reported 

that the geometry and structure of grain boundaries in polycrystalline materials could impose a 

significant effect on the Hall-Petch slope. However, experimental observations are primarily 

limited by the ability of the techniques to accurately quantify the grain boundary barrier strength 

to dislocation glide and validate these theoretical models. Using high-resolution electron 

backscatter diffraction (HR-EBSD), the local stress tensor ahead of a slip band blocked by a grain 

boundary was quantified and coupled with a continuum dislocation pile-up model to assess the 

barrier strength of specific grain boundaries to specific slip systems, referred to as micro-Hall-

Petch coefficient. For basal slip system in a deformed Mg-4Al alloy, the micro-Hall-Petch 

coefficient (𝑘𝜇
𝑏𝑎𝑠𝑎𝑙) varied significantly, from 0.054 to 0.184 MPa−m𝟏/𝟐 for nine different grain 

boundaries and for  the prismatic slip systems the micro-Hall-Petch coefficients values ( 

𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

) vary from 0.138 MPa. m𝟏/𝟐 to 0.685 MPa. m𝟏/𝟐 , which are almost three times larger 

than the calculated values for the basal micro-Hall-Petch. These results were correlated with 

geometric descriptors of the respective grain boundaries, with three-dimensional GB profile 

additionally measured via focused ion beam milling. It was found that the angle between the two 

slip plane traces on the grain boundary plane was the most sensitive parameter affecting  𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 

and 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

, followed by the angle between the slip directions. A functional form for calculation 

of 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 and 𝑘𝜇

𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐
 depending on these two angles is proposed to augment crystal plasticity 
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constitutive models with slip resistance dependent on some measure of the grain size. The method 

to incorporate the micro Hall-Petch equation into crystal plasticity constitutive models accounting 

for the microstructural features to understand the coupling between grain size, texture and loading 

direction was presented. A rate-dependent crystal plasticity model implemented into the open-

source PRISMS-CPFE plasticity code is adopted for crystal plasticity simulations. The effect of 

grain size and texture is accounted for by modifying the slip resistances of individual basal and 

prismatic slip systems based on the micro Hall-Petch equation. This modification endows each 

microstructural point with a slip system-level grain size and maximum compatibility factor which 

are used to modify the slip resistance. Comparisons in the Hall-Petch coefficients are presented 

between predicted stress-strain curves using original parameters from previous work and 

subsequently calibrated parameters. This approach provides the foundation to quantitatively model 

more complicated scenarios of coupling between grain size, texture and loading direction in the 

plasticity of Mg alloys. 
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 Chapter 1: Introduction 

 

Magnesium (Mg) alloys, owing to their low density, which is 23% that of steel and 66% 

that of aluminum [1, 2], receive great attention in automobile and aerospace applications. 

However, the widespread industrial application of Mg alloys is limited by their low strength and 

limited room temperature formability. Fundamental understanding of defect-defect interactions 

such as dislocations-grain boundaries (GBs) [3-5], GBs-twins [6, 7], GBs-solute atoms [8-10], 

dislocations-twins [11], and dislocations-precipitates [12, 13] are key to assess the mechanical 

properties of polycrystalline materials. Among these interactions, grain boundaries play a crucial 

role in defining the strengthening of material [14-16], fatigue crack initiation [17], and stress 

corrosion cracking [18]. Under an applied load, dislocation glide accommodates plastic 

deformation until impeded by obstacles such as grain boundaries. The pileup of dislocations at a 

grain boundary successively increases the stress concentration until the boundary barrier to slip 

transmission is exceeded, resulting in slip transmission and further deformation [19]. Such a theory 

has been proposed to explain the empirical Hall-Petch equation [20-23], which connects the yield 

strength of the bulk material to its average grain size: 𝜎𝑦 = 𝜎0 +
𝑘

√𝐿
 where 𝜎𝑦 is the yield strength 

of the material, 𝜎0 is the friction stress, 𝐿  is the average grain size, and 𝑘 is the Hall-Petch 

coefficient which represents the grain boundary barrier to slip transmission. In connection with the 

microscopic phenomenon leading to the Hall-Petch effect, Weng [24] proposed that the flow stress 

of a slip system may be expressed as 𝜏 = 𝜏∞ + 𝑘𝜇. 𝑑
−1/2, where at a specific strain, 𝜏∞ represents 

the flow stress of a slip system in a free single crystal, 𝑑 is the grain size, and 𝑘𝜇 is some physical 
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quantity that reflects the strength of the size-effect. This equation is referred to as the micro-Hall-

Petch relationship in connection with the extension of the Hall-Petch equation to the slip system 

level in which the parameter 𝑘𝜇 is the micro-Hall-Petch coefficient [25, 26]. Such a proposal is 

based on the physical argument by Armstrong et al. [27] that in a polycrystalline material, 

dislocations approaching a grain boundary cannot freely cross the boundary, and therefore, a slip 

band can sustain higher stress compared to one in a single crystal.   The role of individual grain 

boundary parameters (misorientation, tilt angle, twist angle, etc.) on slip band-GB interactions and 

its subsequent effect on the flow stress of a slip system and the strength of polycrystalline 

materials, has been theoretically studied [28, 29] but their calibration is primarily limited by the 

experimental technique to accurately predict the grain boundary energy or stress field induced by 

blocked slip band at a grain boundary. Recently, high-resolution electron backscatter diffraction 

(HR-EBSD) developed by Wilkinson et al. [30] enables the measurement of all components of the 

stress tensor in materials with spatial resolution on the order of 100 nm by assessing changes in 

Kikuchi diffraction patterns. Previous studies used this technique successfully to examine the 

residual stress concentration induced from a slip band blocked by a grain boundary in commercial 

purity titanium [31, 32] and irradiated steel [33, 34]. With the utilization of HR-EBSD in 

conjunction with a continuum dislocation pile-up model, the specific objectives of this dissertation 

work are to: 

1. Develop an experimental approach to calculate the micro-Hall-Petch coefficient for 

different slip systems, including basal and prismatic slip systems in Mg-4Al. 

2. Determine the role of grain boundary geometric parameters in micro-Hall-Petch 

coefficient. 
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3. Develop a functional form to find the micro-Hall-Petch coefficient of the basal and 

prismatic slip system in Mg-4Al alloy depending on the grain boundary descriptors. 

Obtaining such microstructural measurements will help to accurately calibrate the crystal 

plasticity finite element constitutive model to predict the mechanical response of magnesium 

alloys, considering both the grain size and geometrical features of grain boundaries.  

Chapter 2 provides a review of the literature relevant to the present work, including studies 

involving the Hall-Petch relationship in Mg alloys and a discussion on the HR-EBSD technique. 

Chapters 3, 4, and 5 represent studies prepared for publication, resulting in some repetition of 

background information provided in each chapter. Finally, the conclusion and recommendations 

for future work are outlined in Chapter 6. 
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 Chapter 2: Literature Review and Background 

 

In this chapter, a review of the literature on understanding the aims and objectives outlined 

in Chapter 1 and the experimental methods are discussed. Section 1 describes the deformation 

behavior in magnesium alloys. Section 2, a general description of the Hall-Petch relationship, 

dislocation pile-up theory, and the observed Hall-Petch behavior in magnesium alloys are 

discussed. Finally, Section 3 describes the concepts of High-Resolution Electron Backscatter 

Diffraction (HR-EBSD) and how to measure the elastic stress using this novel technique. 

2.1 Deformation Behavior in Magnesium Alloys 

2.1.1  Slip System and Twinning in Mg alloys 

Magnesium (Mg) has a Hexagonal Close-Packed (HCP) structure that exhibits multiple 

slip systems, including basal, prismatic, pyramidal, and tension and compression twinning 

systems, as shown in Figure 2.1. Mg is plastically anisotropy due to the wide range of the critical 

resolved shear stress (CRSS) values of the different slip and twin systems, as shown in Figure 2.2 

[1]. There are three basal slip systems (0001) < 112̅0 >, but only two are independent. Moreover, 

since basal slip systems cannot provide the strain along the <c>-axis, the non-basal slip is required 

for arbitrary shape change of a polycrystal [2]. There are two types of non-basal slip: prismatic 

and pyramidal.  In the prismatic slip systems, <a> dislocation with Burgers vector 1/3 < 112̅0 > 

can slip on the first order plane (101̅0), and <c+a> dislocation with Burgers vector along c axis 
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can slip on both the first order prismatic plane (101̅0) and the second-order prismatic planes 

(112̅0). In the pyramidal slip systems, the first-order and the second-order planes are (101̅1) and 

(112̅2), respectively. Both <a> dislocation and <c+a>-dislocation with Burgers vector along 

<112̅3 > can slip on the first-order pyramidal planes. But only <c+a> dislocation can slip on the 

second-order pyramidal planes. From Figure 2.2, it is obvious that the CRSS for basal slip is much 

smaller than that of the non-basal slip, indicating the predominance of basal slip during plastic 

deformation and the remarkable CRSS anisotropy.  According to the Taylor criteria, at least five 

independent slip systems must be activated to have an arbitrary shape change. However, Taylor’s 

criterion is usually not satisfied for HCP Mg alloys because it has only two independent slip 

systems in the basal plane. This causes twinning, one of the important modes of deformation in 

Mg alloys. Twinning is categorized as compression twin {101̅1}and tension twin {101̅2}. The 

activation of each type depends on the applied stress vector. The tensile twin occurs at a much 

higher rate than the compression twin because of its lower critical stress to nucleate. The difference 

between critical twinning stresses for compression and tensile twin gives rise to the tension-

compression yield asymmetry  [3], which provides another challenge in the formability  of Mg 

alloys for large-scale industrial applications. 
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Figure 2.1 Deformation systems in Mg. Red arrows represent Burgers vector, and purple shaded 

area represents the slip planes  

Figure 2.2 The CRSS of Mg at various temperatures [1] 
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2.2 Hall-Petch Relationship 

Grain refinement is one of the most common techniques used to improve the yield strength of 

polycrystalline materials according to the well-known Hall-Petch equation [4-7], which connects 

the yield strength of the bulk material (𝜎𝑦) to its average grain size (𝐷) : 𝜎𝑦 = 𝜎0 +
𝐾

√𝐷
 where 𝜎0 

is the friction stress and 𝐾 is the macroscopic Hall-Petch coefficient (HPC), which represents the 

collective strengthening effect of all the grain boundaries in the polycrystal. One of the most 

common mechanisms that the Hall-Petch effect is attributed to is the strength needed for a 

dislocation pile-up to overcome the grain boundary (treated as an obstacle) to effect slip 

transmission. 

2.2.1 Dislocation Pile-up Theory 

The following method to construct a model for a slip band based on the theory of 

continuous distribution of dislocations is adapted from Hirth and Lothe [8].  A slip band is 

idealized to a one-dimensional interval [−𝐿/2, 𝐿/2], where the boundaries of the domain represent 

grain boundaries (Figure 2(a)). At any point 𝑥 ∈ [−𝐿/2, 𝐿/2] a dislocation density field 𝜌(𝑥) is 

prescribed, so that the total number of dislocations in a differential element 𝛿𝑥 is 𝛿𝑛(𝑥) = 𝜌(𝑥)𝛿𝑥. 

A continuous density field in one-dimension is a continuum representation of straight, infinite 

dislocations of positive and negative type for a given Burgers vector. The sign of the density field 

refers to the group of dislocations of the corresponding sign. An applied stress field exerts a 

configurational force on the dislocation of the Peach-Koehler type. Additionally, there is a long-

range stress field due to dislocations in the medium (by virtue of their presence), which imposes a 

configurational force on a dislocation present anywhere else in the medium. Any net force acting 
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on the dislocations drives the system to an equilibrium state which is characterized by zero net 

configurational force. Because the expressions for the stress fields of dislocations are derived 

based on linear elasticity, the net configurational force is simply a sum of individual force terms. 

The equilibrium condition is then expressed mathematically as: 

𝜏(𝑥)𝑏 +
𝐺𝑏2

2𝜋𝜅
∫  

𝜌(𝑥′)

𝑥 − 𝑥′
𝑑𝑥′ = 0

𝐿
2

−
𝐿
2

 
(2.2) 

where 𝜏(𝑥) denotes the applied shear stress resolved along the slip system, L is the grain size, G 

the shear modulus for an isotropic elastic material, b the Burgers vector strength, and  𝜅 = 1 (for 

screw dislocations) or 𝜅 = 1-𝜐 (for edge dislocations). It is noted that unalloyed Mg is essentially 

elastically isotropic so that the Eqn.2.1 is a reasonable approximation. Now given 𝜏(𝑥), the density 

field 𝜌(𝑥) satisfying the equilibrium equations needs to be computed. For this purpose, Eqn.1 is 

recast into a simpler mathematical form as follows 

1

𝜋
∫

𝑓(𝜉′)

𝜉′ − 𝜉
𝑑𝜉′

1

−1

= 
2𝜅𝜏 (

𝐿
2
𝜉)

𝐺𝑏
 

≡ ℋ𝜉[𝑓(𝜉
′)] =

2𝜅𝜏 (
𝐿
2
𝜉)

𝐺𝑏
 

(2.3) 

where = 
2𝑥

𝐿
 , 𝜉′ =

2𝑥′

𝐿
, 𝑓(𝜉′) = 𝜌 (

𝐿

2
𝜉′) and  ℋ𝜉[𝑓(𝜉

′)] denotes the finite Hilbert transform of the 

function 𝑓(𝜉′) expressed in terms of the new variable 𝜉. Solving for the dislocation density field 

involves inverting the operator ℋ, a classical problem whose solution has been presented 

elsewhere [9, 10]. The special case of a spatially constant resolved shear stress 𝜏(𝑥) = 𝜏0 is 

considered in this study resulting in 

ℋ𝜉[𝑓(𝜉
′)] =

2𝜅𝜏0
𝐺𝑏
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⟹  𝑓(𝜉′) =
2𝜅𝜏0
𝐺𝑏

𝜉′

√1 − 𝜉′2
+

𝐶

√1 − 𝜉′2
 

⟹  𝜌(𝑥) =
2𝜅𝜏0
𝐺𝑏

𝑥

√(
𝐿
2
)
2

− 𝑥2

+
𝐶𝐿

2√(
𝐿
2
)
2

− 𝑥2

 (2.4) 

where C is a constant appearing due to the homogeneous solution of the integral equation. This 

constant can be related to the net Burgers vector (supplemental material) considering all the 

dislocations appearing in the slip band, which for simplicity is assumed to be zero. In other words, 

there is an equal number of dislocations of both positive and negative type. Accordingly, the stress 

ahead of the pile-up (pileup-stress) due to the dislocation distribution alone takes the form 

𝜏𝑝(𝑋) = 𝜏0

[
 
 
 𝑋 +

𝐿
2

√(𝑋 +
𝐿
2
)
2

− (
𝐿
2
)
2
− 1

]
 
 
 

 
(2.5) 

Where X= 𝑥 −
𝐿

2
 , is the distance from the grain boundary, as denoted in Figure 2.2(a). 

In comparison with experiments, it is noted that the theoretical prediction for the pile up stress 

must not include the effect of the resolved stress, because the experiment measures the residual 

stress in the adjacent grain. This residual stress is considered to arise primarily from the 

development of a dislocation distribution in the slip band reminiscent of a dislocation pile-up. The 

sole purpose of the resolved shear stress is to generate this dislocation distribution which develops 

irreversibly, and hence, retains the functional form even after removal of the resolved shear stress. 

In other words, the generated dislocation distribution is assumed to change negligibly so that the 

form of the pileup stress is not affected significantly.  These simplifications are debatable but in 

the interest of obtaining a simple analytical form, are suggested to be an appropriate starting point. 
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The function 𝜏𝑝(𝑋) (stress ahead of the pile up) for different values of 𝜏0 is plotted in Figure 

2.2(b).  

 

 

 

To purport a particular form of the resolved shear stress, two assumptions are made. 

(1) The resolved shear stress on the slip system equals the initial slip system resistance, which 

arises by neglecting the phenomenon of work hardening on that slip system. In other words, 

the applied shear stress required to equilibrate a dislocation distribution is identical to the 

initial slip system resistance which must be overcome to produce the slip band and 

accommodate the majority of the applied deformation. 

(2) It is assumed that the classical Hall-Petch relationship may be extended to the slip system 

level, formerly termed as “micro-Hall-Petch” relation [11, 12]. It is one way of separating 

the contribution of grain size from the local lattice resistance in the initial slip system 

resistance. Additionally, because the pile-up model doesn’t take into account the grain 

Figure 2.3 (a) Continuum model of dislocation pile-up at a grain boundary. The red curve 

represents the stress ahead of the pile-up based on Eqn.4. (b) Shear stress ahead of pile-up for 

different slip system resistance (𝑠𝛼) - the pileup-stress increases proportionally with the resolved 

shear stress. 
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boundary character, the grain boundary effect is subsumed in the estimates of the micro-

Hall-Petch coefficients. Accordingly, the slip system resistance is expressed in the 

following form: 

 

𝑠𝛼 = 𝜏0
𝛼 +

𝑘𝛼

√𝐿
 

 

(2.6) 

where 𝜏0
𝛼 is the flow stress of slip system 𝛼 of a theoretically infinite single crystal, 𝑘𝛼 the micro-

Hall-Petch coefficient of the slip system 𝛼 signifying the strength of the size effect, and 𝐿 is the 

slip system-level grain size, which in this case represents the length of the slip band across an 

entire grain. In the context of the current experiment, 𝐿 corresponds to the length of the slip trace 

measured along the direction perpendicular to the dislocation (infinite edge or screw) line and slip 

plane normal of the slip system from one-grain boundary to the opposite. Subsequently, we refer 

to 𝐿 as the grain size. Then substituting Eqn.2.5 in Eqn.2.4 yields: 

𝜏𝑝(𝑋) = (𝜏0
𝛼 +

𝑘𝛼

√𝐿
)

[
 
 
 𝑋 +

𝐿
2

√(𝑋 +
𝐿
2
)
2

− (
𝐿
2
)
2
− 1

]
 
 
 

 
(2.7) 

 

2.2.2 Hall-Petch Relationship in Magnesium 

The Hall-Petch relationship was initially proposed based on isotropic materials. 

However, it is also applicable for plastically anisotropic materials such as Mg alloys but 

with more complexity. Table 2-1 summarizes a review of Hall-Petch coefficients in Mg 
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alloy AZ31[13]. It can be found that the K value is relevant to the processing condition, 

loading direction, and grain size. For example, the K value for AZ31 changes from 0.304 

MPa. m1/2 to 0.161 MPa. m1/2 by changing the processing method from extrusion to friction stir 

processing [14]. The influence of loading direction, processing method, and grain size is 

conclusively related to the deformation modes in Mg alloy. As described in section 2.1.1, 

the possible deformation modes in Mg alloys are complicated. A comprehensive study is 

needed to uncover the role of texture in K values in Mg alloys. 

 

Sample Processing Loading path d (µm) k (MPa. 𝐦𝟏/𝟐) 

AZ31 [15]  Rolling Tension//TD 26–78 0.411 

AZ31 [15] Rolling Tension//ND 26–78 0.228 

AZ31 [16] Rolling Tension//RD 5–25 0.319 

AZ31[17] Rolling Tension//RD 5–17 0.231 

AZ31 [17] Rolling Tension//RD 5–21 0.250 

AZ31 [18] Rolling Tension//RD 2–55 0.209 

AZ31 [19] Rolling Tension//RD 13–140 0.281 

AZ31 [19] Rolling Tension//TD 13–140 0.272 

AZ31 [14] Extrusion Tension//ED 2.5–8 0.304 

AZ31 [14] FSP Tension//AD 2.6–6.1 0.161 

AZ31 [20] Extrusion Compression//ED 3–23 0.291 

AZ31 [21] Extrusion Compression//ED 3–11 0.390 

AZ31 [21] Extrusion Tension//ED 3–11 0.303 

Table 2.1 Literature review of the H-P slopes (k) in Mg alloys as a function of the processing 

condition and loading path within a given range of grain size (d). FSP, ECAP, AD and PD represent 

the friction stir processing, equal-channel angular processing, advancing direction and processing 

direction, respectively. RD, TD, and ND refer to the rolling, transverse and normal direction of a 

rolled plate, respectively. ED and FD are the extrusion direction and flow direction of a rod [13].  
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AZ31 [22] FSP Tension//PD 1–25 0.119 

AZ31 [22] FSP Tension//TD 1–25 0.236 

AZ31 [23] Rolling Tension//RD 13–43 0.207 

AZ31 [23] Rolling Compression//RD 13–43 0.472 

AZ31 [24] ECAP Tension//FD 3–33 0.205 

AZ31 [25] ECAP Tension//ED 2–8 0.180 

AZ31 [26] ECAP Tension//ED 5–35 0.170 

AZ31 [27] ECAP Tension//ED 2–8 0.203 

 

 

2.3 High Resolution Electron Backscatter Diffraction (HR-EBSD)  

In various applications, from structural engineering parts to semiconductor components, it 

is necessary to understand the state of stress fields in localized regions in the materials [28]. For 

example, strain accumulation in semiconductors could cause degradation of the device [29]; and 

stress concentration at twin/parent interface could result in crack initiation in polycrystalline 

materials [30]. For these reasons, experimental methods that can measure the local elastic 

stress/strain are desirable. Figure 2.4 summarizes the spatial resolution and strain sensitivity of the 

most commonly developed techniques. X-Ray [31] and Neutron Diffraction [32] methods provide 

strain sensitivity in the order of 10-4 but relatively poor spatial resolution. The Hole Drilling 

technique is limited to macroscopic measurement due to poor strain sensitivity and spatial 

resolution [33]. Spectroscopy-based measurement methods such as CL [34] and micro-Raman [35] 

have about one-micron spatial resolution and cannot determine full strain tensor [36]. The high-

resolution SEM digital image correlation (DIC) method obtains the deformation field by 

comparing before and after deformation images. This type of measurement provides the strain 
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sensitivity of 10-3 and spatial resolution into sub-micron scale. Still, the strain information related 

to the state before the first captured image cannot be measured [37]. The highest spatial resolution 

can be achieved using transmission electron microscopy (TEM) based techniques such as 

convergent beam electron diffraction (CBED) [38]. However, sample preparation and strain 

relaxation due to small sample thickness are significant issues in such techniques. The cross 

correlation-based EBSD strain characterization technique (HR-EBSD) is a novel measurement 

technique that provides the high spatial resolution that electron diffraction techniques can offer 

while not suffering so much from sample preparation [36]. This technique measures the elastic 

strain and lattice rotation by cross-correlating electron backscatter patterns to capture a small shift 

of feature between two patterns [39-42]. 
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2.3.1 Effect of Elastic Strain on Kikuchi Pattern 

According to Bragg's law, changes in lattice spacing due to elastic strain results in changing 

the bandwidth in the diffraction pattern, followed by a shift of the zone axis. As it is shown in 

Figure 2.5, if the lattice is bent, in addition to zone axis shift, there will also be blurring of the 

edges of the diffraction bands [44]. 

 

Figure 2.4 Strain sensitivity and spatial resolution related with different strain characterization 

methods [43]. 
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2.3.2 Linking Pattern Shift to Strain 

The below method was developed by Wilkinson et al. [36, 40-42] and it was improved by Britton 

and Wilkinson [45, 46]. The following is a generalized description adopted from [28] . 

 

 

 

Figure 2.5 Crystal lattice and related diffraction pattern in the undistorted state (left) and distorted 

state (right) [44]. 

Figure 2.6 Schematic diagram showing exaggerated zone axis (r) shift from the undeformed state 

(blue) to deformed state (red), adopted from [36].  
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As is shown in Figure 2.6, an arbitrary strain and rigid body rotation change a vector r from 

reference crystal to 𝑟′ in deformed crystal. The change from r to 𝑟′ can be described by a strain 

gradient tensor A: 

 

𝐀 − 𝐈 =  

(
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(2.8) 

 

where u = (u1 u2 u3)  is  the displacement at position x = (x1 x2 x3) and I is the identity matrix. 

 

Therefore, 

𝒓′  = Ar (2.9) 

The strain and rotation lead to displacement Q: 

Q = 𝒓′− r = (A − I) r (2.10) 

The EBSD technique can only measure the projection of Q onto phosphor screen, which is 

represented by q: 

q = Q − 𝝀r = {A − (𝝀 + 1)I}xr (2.11) 

The component of the vector q can be calculated using the above equation and some mathematical 

manipulation [43]: 

q1 = r1exx + r2exy + r3exz − 𝜆r1 (2.12) 
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q2 = r2eyy + r1exy + r3eyz − 𝜆r2 (2.13) 

q3 = r3ezz + r1exz + r2eyz − 𝜆r3 (2.14) 

where eij is the displacement gradient described in equation (2.8), and λ is an unknown constant. 

The constant λ can be eliminated by combining pairs of the above equations and yields two 

equations in eight variables: 

 

r1r3 [
∂u1
∂x1

−
∂u3
∂x3

]  +  r2r3
∂u1
∂x2

+ r3
2  
∂u1
∂x3

− r1
2 
∂u3
∂x1

− r2r1
∂u3
∂x2

 

=  r3𝑞1  −  r1𝑞3 

(2.15) 

r2r3 [
∂u2
∂x2

−
∂u3
∂x3

]  +  r1r3
∂u2
∂x1

+ r3
2  
∂u2
∂x3

− r2
2 
∂u3
∂x2

− r2r1
∂u3
∂x1

 

=  r3𝑞2  −  r2𝑞3 

(2.16) 

Because shifts are only measured in the phosphor screen, so Q3= 0, therefore, from equation (2.11): 

q3 = −𝜆r3 (2.17) 

The right side of equations (2.15) and (2.16) can then be written as: 

r3q1 + r1q3 = r3(q1 + 𝜆r1) (2.18) 

r3q2 − r2q3 = r3(q2 + 𝜆r2) 

 

(2.19) 

Equation (2.10) can be rearranged as: 

Q = q + λr (2.20) 

Substitute equation (2.20) into equation (2.18) and (2.19): 

r3q1 − r1q3 = r3Q1 (2.21) 

r3q2 − r2q3 = r3Q2 (2.22) 
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r1 [
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(2.23) 
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(2.24) 

Equations (2.23) and (2.24) can be written in matrix form as following: 

 

 

(

 r1 r2
0 0

    
r3 0
0 r1

    
0 0
r2 r3

    
−
r1
2 

r3

−
r2r1
r3

   

−
r2r1
r3

−
r2
2 

r3 )

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[
∂u1
∂x1

−
∂u3
∂x3

]

∂u1
∂x2
∂u1
∂x3
∂u2
∂x1

[
∂u2
∂x2

−
∂u3
∂x3

]

∂u2
∂x3
∂u3
∂x1
∂u3
∂x2 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= (
Q1
Q2
) 

 

 

 

 

 

(2.25) 
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In this equation, the left part (r) is the vector from source point to center of subset on phosphor 

screen (as is shown in Figure 2.7) and is only related with calibration parameter and the position 

of subset; therefore, it is constant for each subset once the pattern center is known. The part to the 

right of the equation, Qi, is the pattern shift for each subset that can be measured. The middle part 

contains 8 unknowns, therefore once four or more subsets are measured, values of 

[
∂u1

∂x1
−
∂u3

∂x3
] ,
∂u1

∂x2
,
∂u1

∂x3
,
∂u2

∂x1
, [
∂u2

∂x2
−
∂u3

∂x3
] ,
∂u2

∂x3
,
∂u3

∂x1
,
∂u3

∂x2
 can be determined. Normal components of the 

displacement gradient tensor (Equation 2.8) can be calculated by assuming the normal stress 

perpendicular to sample surface is zero and Hooke’s law to write the stress in terms of strains and 

elastic constants, then an additional equation can be generated, which combined with the calculated 

values of [
∂u1

∂x1
−
∂u3

∂x3
] and [

∂u2

∂x2
−
∂u3

∂x3
] allows the normal components to be calculated. The above 

procedure allows the calculation of the displacement gradient tensor. This tensor can be split into 

symmetric and asymmetric parts that represent elastic strains 휀ij and rotations wij respectively: 

Figure 2.7 Schematic of the pattern intensity shifts in three low indexed zone axes between a) an 

elastically strain-free, and b) elastically strained crystal. Here unrealistically high shifts are shown 

in order to understand the process.  
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휀ii = 
∂ui
∂xi
  

(2.26) 

휀ij = 
1

2
 (
∂ui
∂xj

+
∂uj

∂xi
) 

(2.27) 

wij = 
1

2
 (
∂ui
∂xj

−
∂uj

∂xi
) 

(2.28) 

2.3.3 Measuring Small Pattern Shift in HR-EBSD 

In order to accurately determine pattern shift using the cross correlation-based method, the below 

steps should be followed. The below instruction is adopted from [28]. 

First, a series of high-quality EBSD patterns must be obtained; the detailed technical parameters 

can be found in [40-43]. To calculate the pattern shifts, the Kikuchi pattern of the highest quality 

in the series was selected as the reference and compared with other Kikuchi patterns in the series. 

First, each pattern is divided into several regions of interest (ROI). It was previously reported that 

20 ROIs decrease the standard deviation of displacement gradient tensor to 10-4 [41]. A typical 

ROI of 256x256 pixels for a 1000x1000 pixel Kikuchi pattern was recommended in the research 

by Wilkinson et al. [41, 42].  

For each individual ROI, the mean intensity is calculated and then subtracted from every pixel. 

The resulting intensity is then multiplied by a weighting function: 

f(x, y) = cos (
πx

256
) cos (

πy

256
) (2.29) 

where (x, y) is the position of the pixel relative to the ROI center. 

 

This weighting function brings the intensity at the edge of the ROI to zero, as shown in Figure 2.9. 
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. 

 

The diffraction patterns converted to the Fourier domain to be more computationally efficient in 

calculating the cross-correlation function at this ROI size. In the Fourier domain, the pattern is 

filtered by a high pass frequency filter to remove the low-frequency elements and a low pass 

frequency filter to eliminate the high-frequency fluctuations associated with noise of the CCD 

readout (Figure 2.8). 

The normalized cross-correlation function (χ) can be assessed by comparing the  Kikuchi patterns 

in the Fourier domain: 

𝑋2 = 
∑FG

√∑F2∑G2
2

 
(2.30) 

where F is the FFT of the reference and G is the FFT of the test ROI. The cross-correlation function 

is represented as an intensity distribution, where the intensity at each point means the degree of 

correlation.  

 

Figure 2.8 Schematic of HR-EBSD analysis process [47] 
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 Chapter 3: Quantitative Study of the Effect of Grain Boundary Parameters on the Slip 

System Level Hall-Petch Slope for Basal Slip System in Mg-4l 

3.1 Abstract 

Several theoretical studies have reported that the geometry and structure of grain boundaries 

in polycrystalline materials could impose a significant effect on the Hall-Petch slope. However, 

experimental observations are primarily limited by the ability of the techniques to accurately 

quantify the grain boundary strength and validate these theoretical models. Using high-resolution 

electron backscatter diffraction (HR-EBSD), the local stress tensor ahead of a slip band blocked 

by a grain boundary was quantified and coupled with a continuum dislocation pile-up model to 

assess the barrier strength of specific grain boundaries to specific slip systems, referred to as micro-

Hall-Petch coefficient. For basal slip system in a deformed Mg-4Al alloy, the micro-Hall-Petch 

coefficient (𝑘𝜇
𝑏𝑎𝑠𝑎𝑙) varied significantly, from 0.054 to 0.184 MPa−m𝟏/𝟐 for nine different grain 

boundaries. These results were correlated with geometric descriptors of the respective grain 

boundaries, with three-dimensional GB profile additionally measured via focused ion beam 

milling. It was found that the angle between the two slip plane traces on the grain boundary plane 

was the most sensitive parameter affecting  𝑘𝜇
𝑏𝑎𝑠𝑎𝑙, followed by the angle between the slip 

directions. A functional form for calculation of 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 depending on these two angles is 

proposed to augment crystal plasticity constitutive models with slip resistance dependent on some 

measure of the grain size. The method allows a new pathway to calibrate grain size strengthening 

parameters in crystal plasticity models, allowing further computational investigations of the 

interrelationship between texture, grain morphology, and the Hall Petch effect. 
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3.2 Introduction 

Magnesium (Mg) alloys, owing to their low density, which is 23% that of steel and 66% that 

of aluminum [1, 2], continue to receive significant attention for weight-saving applications. 

However, the widespread industrial application of Mg alloys is hindered by their low strength and 

limited room temperature formability. Several strategies have been proposed to improve the 

strength and formability of Mg alloys include solid solution alloying [3-5], precipitate hardening 

[6-8], grain refinement [9, 10], and basal texture weakening [11-13]. Among these techniques, 

grain refinement is one of the most common techniques used to improve the yield strength of Mg 

alloys according to the well-known Hall-Petch equation [14-17], which connects the yield strength 

of the bulk material (𝜎𝑦) to its average grain size (𝐷): 𝜎𝑦 = 𝜎0 +
𝐾

√𝐷
 where 𝜎0 is the friction stress 

and 𝐾 is the macroscopic Hall-Petch coefficient (HPC), which represents the collective 

strengthening effect of all the grain boundaries in the polycrystal. One of the most common 

mechanisms that the Hall-Petch effect is attributed to is the strength needed for a dislocation pile-

up to overcome the grain boundary (treated as an obstacle) to effect slip transmission. Extensive 

research into slip transmission phenomena in polycrystalline materials has unraveled its 

complexity via dependence on a multitude of local factors such as GB energy [18, 19], atomic 

structure of GB [20], residual Burgers vectors [21-24], resolved shear stress on each slip system 

[24-26] and a combination of these factors [27-33]. While these are important to the eventual 

understanding of their effect on the HPC, an attempt to analyze the effect of crystallographic 

properties on the HPC forms an initial step to tackle this problem.  

Many studies in the literature have reported that the HPC for face-centered cubic (FCC) and 

body-centered cubic (BCC) materials are less sensitive to crystallographic texture [34-38] as 

compared to hexagonal close-packed (HCP) metals such as Mg and its alloys [10, 39-41]. Texture 
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variations can alter dominant deformation modes, on which the grain boundaries can have a 

different effect, which in turn can result in different values of the HPC [41]. Accordingly, various 

efforts have been made to estimate the HPC for a wide variety of alloys by considering the effect 

of texture, intergranular relationships, and a dependence of the slip system resistance on grain size 

[9, 42-44]. To reflect these changes occurring at the microscale, the Hall-Petch relationship is 

specialized to the slip system level as 𝜏𝛼 = 𝜏0
𝛼 + 𝑘𝜇

𝛼 . 𝐿−1/2, where 𝜏𝛼 is the critical resolved shear 

stress of slip system 𝛼, 𝜏0
𝛼 is the  critical resolved shear stress of slip system 𝛼 of a theoretically 

infinite single crystal, 𝑘𝜇
𝛼 the Hall-Petch coefficient of the slip system 𝛼 (henceforth referred to as 

micro-Hall-Petch coefficient) and L is the slip system-level grain size [45-47]. Wang et al. [41] 

and Singh et al. [48] proposed an approach to estimate the 𝑘𝜇
𝛼  using macroscopic tensile test data 

of Mg alloy samples with four different average grain sizes. They calculated the resolved shear 

stress of the dominant slip system at yielding by dividing the yield strength of the material by the 

average Schmid factor values of that specific slip system. The micro-Hall-Petch coefficient is then 

obtained from the slope of the linear regression model which assumes a linear relationship between 

the resolved shear stress data and the inverse square root of the average grain size. While their 

studies provide a rough estimate of  𝑘𝜇
𝛼, their approach does not consider the structure and 

geometry of the grain boundaries.  

Several theoretical models have reported that the geometry and structure of the grain boundary 

(GB) plays an important role in impeding slip transmission within the material and hence 

contributing to the strength of polycrystalline materials [18, 20, 28]. However, experimental 

observations to accurately quantify the grain boundary strength and validate these theoretical 

models are primarily limited by the ability of experimental techniques to measure the stress field 

ahead of a slip band blocked by a grain boundary.  
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Recently, the development of high-resolution electron backscatter diffraction (HR-EBSD) 

technique provides the possibility of measuring the stress components locally in materials with the 

spatial resolution on the order of 100 nm [49]. Using this technique, the local stress concentration, 

ahead of dislocation pile-ups, has been successfully examined in commercial purity titanium [50-

52], irradiated steel [53, 54], and unalloyed Mg [55].  

In this work, HR-EBSD measurements are analyzed using a continuum dislocation pile-up 

model to calculate the micro-Hall-Petch coefficient of the basal slip system for nine different grain 

boundaries in a deformed Mg-4Al sample. HR-EBSD is a surface measurement technique, while 

grain boundary descriptors such as GB tilt and twist angles are three-dimensional quantities not 

directly accessible through HR-EBSD. The novelty of this current work is the use of the focused 

ion beam (FIB) milling to obtain additional insights on the three-dimensional GB geometry for all 

nine grain boundaries. Based on the combined experimental data and model, different functional 

expressions are examined, which involve three-dimensional geometric descriptors of the 

respective GBs, and a functional form for the micro-Hall-Petch coefficient of the basal system 

depending on these descriptors is proposed. Their possible usage in crystal plasticity constitutive 

models is explored, and some outstanding issues are addressed.  

3.3 Methods 

The author conducted the computational work in collaboration with Prof. Veera Sundararaghavan 

and his student Aaditya Lakshmanan. 

3.3.1 Materials and experimental procedures 

The alloy selected for this work was extruded Mg-4Al (wt.%) bar produced by 

CanmetMaterials [Hamilton, Ontario, Canada]. The as-extruded microstructure and texture of the 
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material are shown in Figure 3.1. The microstructure contains equiaxed grains with an average 

grain diameter of 50 µm. Tensile test samples with the gauge dimensions of 10 mm × 2 mm × 2 

mm were cut using electrical discharge machining (EDM). Prior to mechanical testing, the samples 

were mechanically polished using standard metallographic techniques, with the final step using 

0.05 µm polycrystalline diamond solution. The samples were then etched using an acetic-nitric 

solution (10 mL nitric acid, 5 mL acetic acid, 20 mL water, and 60 mL ethanol) for 3 seconds to 

reveal the GB structures under scanning electron microscopy (SEM).  

The as-extruded microstructure and texture were measured using EBSD, as shown in Figure 

3.1a and Figure 3.1b. The samples were then subjected to tensile loading parallel to the extrusion 

direction (shown in Figure 3.1a) to produce slip bands. SEM imaging was then used to find and 

document the position of the blocked slip band-GB interactions. Two examples of such 

interactions are shown in Figure 3.1c, and Figure 3.1d, with slip bands, blocked at grain boundaries 

without evidence of slip transfer to the adjacent grain. Specific grain boundaries were chosen for 

this work based on the existence of blocked slip bands at GBs and various misorientation angles. 

Table 3.1 summarizes the GB misorientation and the corresponding rotation axis determined by 

EBSD of the selected GBs. 

EBSD scans with the average size of 10 µm × 30 µm with a square grid and 200 nm step 

size, were captured near the slip band-GB interaction regions using FEI Quanta 650 ESEM 

equipped with an integrated Oxford AZtec EDS and EBSD system. The Kikuchi patterns were 

obtained at each step in the scan with a resolution of 1024 × 1024 pixels and saved in the TIFF 

image format with 12-bit depth.  

CrossCourt4 (CC4) software package developed by BLG Vantage [56] was used for 

analyzing the Kikuchi patterns. For each Kikuchi pattern, 50 regions of interest (ROIs) with the 
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256 × 256 pixels in size were used. The ROIs were compared with the corresponding ROIs of the 

low-stress reference pattern of each grain using the cross-correlation method developed by 

Wilkinson et al. [49] to calculate the full stress tensor fields. The remapping algorithm developed 

by Britton and Wilkinson [57] was used during CC4 analysis to reduce the effect of minor lattice 

rotation on the assessment of stress tensor. 

After the HR-EBSD measurement was completed, focused ion beam (FIB) milling was 

performed using a dual-beam FEI Helios Nanolab 650 microscope to lift out a lamella 

perpendicular to the GB line and the surface normal, to discover the GB tilt relative to the surface 

normal. 

 

Grain Boundary ID Misorientation (°) Rotation Axis 

1 73.70 [4̅ 8 4̅ 3̅] 

2 54.89 [1 0 1̅ 0] 

3 38.30 [5̅ 1 4 3̅] 

4 39.21 [5 1̅ 4̅ 3̅] 

5 26.65 [7̅ 2 5 3] 

6 55.98 [4 5̅ 1 3] 

7 47.91 [7̅ 2 5 0] 

8 89.01 [7̅ 2 5 0] 

9 89.82 [7̅ 2 5 3̅] 

 

Table 3.1 List of GB misorientation angles and the corresponding rotation axis determined by 

EBSD of the selected GB-slip band interactions zones. 
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3.3.2 Numerical Methods 

Figure 3.1 (a) Representative microstructure and (b) pole figure of extruded Mg-4Al (wt.%) used 

in this study. The microstructure contains equiaxed grains with an average grain diameter of 50 

µm. RD: Radial Direction; ED: Extrusion Direction (c), (d) Two examples of   Two examples of 

blocked slip bands at grain boundaries which blocked slip bands in one grain and no-slip transfer 

or slip band formation in the adjacent grain, is observed. 



 35 

While the blocked slip band in one grain is observed, it is also important to identify the most 

likely slip system to be activated in the adjacent grain where no slip bands are seen. The primary 

slip system in the adjacent grain that is likely to get activated is affected by factors such as slip 

orientation relative to loading and load redistribution due to the grain neighborhood. Crystal 

plasticity finite element (CPFE) simulations allow a detailed computational understanding of these 

factors. The single crystal constitutive model for CPFE was first calibrated by comparing the 

polycrystal stress-strain response with the experimental stress-strain curves.  These parameters 

were then used to simulate the different GB neighborhoods to identify the likely primary slip 

system in the grains sharing the respective grain boundary of interest.  All the crystal plasticity 

simulations were carried out using PRISMS-Plasticity [58, 59], an open-source 3-D CPFE 

framework based on a fully implicit implementation of an elastoplastic single crystal model. 

Crystallographic slip, twinning, and re-orientation of crystals were assumed to be the primary 

mechanisms of plastic deformation. For a crystal with 𝑁 slip/twin systems the slip resistance 

offered by slip system 𝛼 at time 𝑡, 𝑠𝛼(𝑡), depends on the plastic slip rates via the hardening law: 

�̇�𝛼(𝑡) = ∑ℎ𝛼𝛽|�̇�𝛽|

𝑁

𝛽=1

,    where �̇�𝛼(0) = 𝑠0
𝛼 (3.1) 

ℎ𝛼𝛽  =  ℎ0
𝛽
(𝑞 + (1 − 𝑞) 𝛿𝛼𝛽) (1 − 

𝑠𝛽(𝑡)

𝑠𝑠𝑎𝑡
𝛽 ),      (no sum on 𝛽) 

(3.2) 

where the latent hardening is included through the coefficient 𝑞 which is chosen to be 1, and 𝛿𝛼𝛽 

denotes the 𝑁 x 𝑁 identity matrix. 𝑠0
𝛼 denotes the initial slip resistance of slip system 𝛼, while ℎ0

𝛽
 

and 𝑠𝑠𝑎𝑡
𝛽

 signify the hardening modulus and saturation stress, respectively, for slip system 𝛽 . These 

three parameters were calibrated for each slip system such that the CPFE model predicts the 

experimental stress-strain response in the plastic regime satisfactorily. Additional details of the 
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model, including elastoplastic decomposition, flow rule and constitutive update algorithm, are 

detailed in [60]. 

For the calibration step, the polycrystal idealized as an 8 × 8 × 8 voxelated RVE was 

constructed, where each voxel was assigned a distinct orientation. Orientations were sampled from 

an EBSD map of a microstructure (Figure 3.1a and Figure 3.1b) with 856 grains to ensure that the 

texture was satisfactorily represented in the idealized polycrystal (Figure 3.2a). This 

microstructure was subject to axisymmetric tension along the y direction up to approximately 3.5% 

strain. Figure 3.2b depicts the comparison of stress-strain response from the simulation to the 

experiment at the end of calibration. The list of constitutive model parameters post-calibration is 

included in Table 3.2. 

 

 

 

 

Figure 3.2 (a) Pole figures of the polycrystalline RVE represented as an 8x8x8 voxelated grid 

with one orientation per voxel, (b) Comparison of simulated stress-strain response with 

experiment resulting in the calibrated parameters in Table 3.2. 
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Mode 𝑠0
𝛼 ℎ0

𝛼 𝑠𝑠𝑎𝑡
𝛼  

Basal <a> 6.0 76.0 120.0 

Prismatic <a> 78.0 163.0 150.0 

Pyramidal <a> 78.0 163.0 150.0 

Pyramidal <c + a> 140.0 187.0 150.0 

Twin <c + a> 13.0 116.0 100.0 

3.4 Results 

3.4.1 Stress concentration calculation ahead of blocked slip bands at grain boundaries 

Slip bands blocked at grain boundaries were identified using SEM (two examples of such 

regions are shown in Figure 3.1c and Figure 3.1d), and 10 µm × 30 µm regions around the 

interaction area were selected for HR-EBSD scans as shown in Figure 3.3a. For each grain, a 

reference point for the measurement of stress was selected far away from the grain boundaries, 

where stress was assumed to be low relative to the GB vicinity. An example of a reference pattern 

site marked with a yellow cross is shown in Figure 3.3a, and the corresponding high-quality image 

Kikuchi pattern is shown in Figure 3.3b. For each Kikuchi pattern, 50 ROIs were used and 

compared with the corresponding ROIs of the reference pattern to calculate the distortion tensor 

and from that the full stress tensor (more details provided in section 3.2.1). The stress components 

were obtained relative to the x1x2x3 reference frame (Figure 3.4a), which we refer to as the sample 

frame. An example of the full stress tensor as the output of HR-EBSD analysis is shown in Figure 

3.3c. The stress concentration induced by slip bands blocked at the GB can be clearly observed 

Table 3.2 Initial slip resistance and hardening parameters post-calibration 
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from the 𝜎11,  𝜎12 and 𝜎23 stress components. 𝜎33 is negligible because the sample surface was 

unconstrained.  

To calculate the shear stress resolved onto the slip system corresponding to the slip band, 

the slip system was first determined (explained in section 3.2.2), and then the stress tensor was 

rotated to another axis system, x1
rx2
rx3
r  as shown in Figure 3.4a. In this axis system, x1

r is the 

direction of the slip plane normal while  x3
r  and x2

r  are in the direction of the Burgers vector of the 

determined active slip system in the deformed grain (upper grain) and the direction perpendicular 

to it on the slip plane, respectively. Figure 3.4b shows 𝜏13
𝑟  component of the rotated tensor, which 

represents the resolved shear stress of interest on the slip system corresponding to the slip band of 

the deformed grain.  

In our previous work [55], the slip band blocked at the GB was interpreted as a pile-up of 

dislocations, which was then modeled using a 1D double-ended continuum dislocation pile-up. 

The theoretical model is briefly reviewed first.  

In the 1D double-ended continuum dislocation pile-up model, the equilibrium dislocation 

distribution is obtained for the case when a spatially constant resolved shear stress is applied 

throughout a grain of size 𝐿. The balance between the applied stress and the dislocation-dislocation 

interactions results in an equilibrium dislocation distribution from which the stress field ahead of 

the pile-up [61] is obtained as 

𝜏𝑝(𝑋) = 𝜏 .

[
 
 
 𝑋 +

𝐿
2

√(𝑋 +
𝐿
2
)
2

− (
𝐿
2
)
2
− 1

]
 
 
 

 

 

(3.3) 

 where  𝜏𝑝(𝑋) represents the resolved shear stress ahead of the pile-up, 𝐿 is the grain size, and 𝑋 

is the coordinate measured from the grain boundary. Considering a specific slip system of interest 
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indexed as 𝛼, substituting the phenomenological micro-Hall-Petch equation [34, 45], 𝜏 = 𝜏𝛼 =

 𝜏0
𝛼 +

𝑘𝜇
𝛼

√𝐿
  into Equation 3.4 yields   

𝜏𝑝(𝑋) = (𝜏0
𝛼 +

𝑘𝜇
𝛼

√𝐿
)

[
 
 
 𝑋 +

𝐿
2

√(𝑋 +
𝐿
2
)
2

− (
𝐿
2
)
2
− 1

]
 
 
 

 

 

(3.4) 

where 𝜏0
𝛼 is the critical resolved shear stress of slip system 𝛼 of a theoretically infinite single 

crystal, 𝑘𝜇
𝛼 the micro-Hall-Petch coefficient of the slip system 𝛼, 𝐿  is the slip system-level grain 

size, and 𝑋 is the distance from the GB, as denoted in Figure 3.4b. The micro-Hall-Petch 

coefficients were computed for different GB types by fitting the experimentally measured stress 

field ahead of the pile-up (Figure 3.4b) to the calculation (Equation 3.4). It must be noted that 

using a 1D continuum dislocation pile-up model is an oversimplification of the actual physics, 

which is much more complicated. Additionally, the back-stress that might arise from GND 

distributions in the vicinity of the GB is not considered explicitly in the pile-up model. Their 

importance has been demonstrated in the context of large grained titanium [62] where correlations 

were drawn between GND content and geometric metrics of the GB. However, quantification of 

this back-stress for informing micromechanical models like the present pile-up model is yet to be 

performed.  In the interest of drawing a simple analogy to a blocked slip band and obtaining first-

order analytical expressions, we have resorted to the aforementioned model 1D continuum pile-up 

model without GND induced back-stress.   

A line scan was taken along the slip direction of the deformed grain (upper grain) but 

continued to the lower grain, labeled by X direction in Figure 3.4b, to capture the stress profile 

ahead of the slip band pile up at the GB as shown in Figure 3.4c. This stress was then resolved 

onto the active slip system to yield the resolved shear stress profile ahead of the blocked slip band, 
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which was fitted with Equation 3.3. The experimental data follow a similar trend as the dislocation 

pile-up model presented in Equation 3.3 (Figure 3.4c). The micro-Hall-Petch coefficient of the 

active slip system 𝛼, can be obtained by curve fitting the experimental stress profile with the 

continuum dislocation pile-up model. 𝑘𝜇
𝛼 for all analyzed grain boundaries are measured and 

reported in Table 3.3. Since the active slip systems of the deformed grains in all different 

boundaries studied in this work were basal slip systems (Table 3.6), 𝜏0
𝛼 is computed by 

incorporating the effect of solid solution strengthening due to 4 wt. % Al [63] resulting in 𝜏0
𝛼 = 

4.34 MPa. Accordingly, the calculated micro-Hall-Petch coefficient is denoted as 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙. 
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Figure 3.3 (a) An example of selected 10 µm × 30 µm regions around the slip band-GB interaction 

for HR-EBSD scans. (b) Kikuchi diffraction pattern of the reference point marked by a yellow 

cross in Figure 3.3a. (c) An example of HR-EBSD output which is a full stress tensor calculated 

in the sample frame. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article. 
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Figure 3.4 (a) Schematic of a dislocation pile-up at a GB. HR-EBSD is used to measure the stress 

in the sample frame x1x2x3. To calculate the shear stress resolved onto the active slip system 

observed experimentally by the slip band (𝜏13
𝑟 ), the stress tensor was rotated into another axis 

system, x1
rx2
rx3
r . (b) HR-EBSD map of resolved shear stress 𝜏13

𝑟  onto the active slip system in the 

upper grain. The stress concentration ahead of pile up at GB can be observed.  The solid lines 

represent the position of the slip bands, and the dashed line with an arrowhead indicates the 

direction along which the stress profile shown in Figure 3.4c was extracted. (c) The resolved shear 

stress profile ahead of a slip band blocked by a GB with comparison to the continuum dislocation 

pile-up model to calculate the micro-Hall-Petch coefficient of each individual GB. 
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Grain boundary 

ID 

1 2 3 4 5 6 7 8 9 

Slip System Level 

Grain Size (µm) 

48 55 27 8 65 21 50 60 48 

𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 (MPa.m𝟏/𝟐) 0.164 

± 

0.02 

0.091 

± 

0.01 

0.149 

± 

0.02 

0.172 

± 

0.02 

0.054 

± 

0.01 

0.108 

± 

0.01 

0.070 

± 

0.01 

0.143 

± 

0.01 

0.184 

± 

0.02 

 

3.4.2 Understanding the effect of grain boundary on the micro-Hall-Petch Coefficient 

The goal of this study is to first calculate the micro-Hall-Petch coefficient of various type of 

grain boundaries (section 3.3.1) and then correlate 𝑘𝜇
𝛼 values with the quantitative geometrical 

expressions describing the slip band-GBs interactions. Figure 3.5 shows a schematic of slip 

transfer across a grain boundary. θ is the angle between the two slip plane traces on the GB plane, 

κ is the angle between slip directions (Burgers vector), ψ is the angle between slip plane normal 

directions, and δ is the angle between the incoming slip direction and the intersection of the 

incoming slip plane with the GB plane. �⃗� , �⃗� , 𝑙 , and 𝑑  represent the Burgers vector of the slip plane, 

the slip plane normal, the intersection line of slip plane and GB plane, and the slip direction, 

respectively. To find the above mentioned quantitative geometrical expressions for each slip band-

GB interaction cases studied in this work, it is required to find the grain boundary plane orientation, 

Table 3.3 Micro-Hall-Petch coefficient of the basal slip system for different grain boundaries 
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the slip systems associated with the observed slip band at the grain boundary and the outgoing slip 

system of least resistance.  The outgoing slip system of least resistance is interpreted as the slip 

system in the adjacent grain (Grain 2 in Figure 3.4), which offers the least resistance to 

transmission of the slip system in Grain 1. Crystal plasticity simulations are set up for the grain 

boundary neighborhoods to provide exactly this piece of information, the details of which are 

described later. 

 

Figure 3.5 Schematic of a slip transmission through a grain boundary. 
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3.4.2.1 Grain Boundary Plane Orientations 

 

The grain boundary plane (Figure 3.6a) can be described by the grain boundary trace angle 

(α), the angle between the line made by grain boundary plane on the sample surface and the loading 

axis (extrusion direction) (Figure 3.6b), and the grain boundary plane angle (β), the angle between 

the grain boundary plane and the sample surface normal (Figure 3.6c). The grain boundaries were 

first examined using SEM, and the plan view images of the grain boundaries were obtained after 

the horizontal direction was aligned with the loading axis, as shown in Figure 3.6d. This image 

was then post-processed manually to compute α. Subsequently, focused ion beam (FIB) milling 

on a FEI Helios Nanolab 650 was used to prepare cross-section lamellae of grain boundaries, as 

shown in Figure 3.6e. This image was then post-processed manually to obtain β. Since the slip 

band was not visible in the cross-sectional images, care was taken to ensure that these cross-

sections were close enough to the slip band-GB intersection region to minimize error in the 

measured β value.   
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Figure 3.6 (a) Schematic showing the grain boundary plane, which can be described by (b) the 

grain boundary trace angle, and (c) the grain boundary plane angle. (d) The grain boundary trace 

angle (α) can be measured using the plan view image of the grain boundary. (e) The grain boundary 

plane angle (β) can be measured using cross-section lamellas of grain boundary prepared by FIB 

milling.  
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GB ID 1 2 3 4 5 6 7 8 9 

α (°) 58.35 104.59 40.21 109.96 91.98 17.75 91.33 65.47 16.43 

β (°) 76.28 0.51 24.81 49.66 11.79 67.78 13.30 45.06 66.82 

 

3.4.2.2 Grain neighborhood simulations 

CPFE simulations were performed on microstructural neighborhoods of each GB of interest, 

consisting of the grains sharing that boundary and a few other surrounding grains. The aim was to 

find the active slip system associated with the observed slip band and predict the outgoing slip 

system of the least resistance. Since EBSD maps were available for just one section (sample 

surface), three-dimensionality of the problem was preserved by extruding the 2D section to obtain 

a one element slice of unit thickness, also implying that the subsurface grains were not considered 

as a part of the simulation. This is not problematic since the surface of the simulated microstructure 

is a traction-free surface in the experimental test as well. Earlier work [64] showed that under such 

circumstances, the inclusion of subsurface grains in the simulation affected the basal slip activity 

to a minor extent relative to simulations on the microstructure slice. Additionally, to overcome the 

lack of knowledge of the state of stress or displacements at the boundary of those neighborhoods, 

boundary conditions were enforced as follows:  

(i) The 𝑥 and 𝑦 components of displacements were enforced on the lateral boundaries 

based on a constant velocity gradient reminiscent of uniaxial tension along direction 𝑦 

. 

Table 3.4 Grain boundary plane orientation for different grain boundaries studied in this work. 
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𝐿 = �̇�𝐹−1,   𝐹(0) = 𝐼 ⇒  𝐹 = exp(𝑡𝐿) ;  𝐿 =  [
−0.5 0 0
0 1 0
0 0 −0.5

]                            (3.5) 

               𝑢𝑥 = 𝐹11𝑥 + 𝐹12𝑦 + 𝐹13𝑧 , 𝑢𝑦 = 𝐹21𝑥 + 𝐹22𝑦 + 𝐹23𝑧                                               (3.6) 

where 𝐿 is the velocity gradient, 𝐹 is the deformation gradient, 𝑡 is the time, and 𝑢𝑥 

and 𝑢𝑦 are the 𝑥 and 𝑦 components of the displacement, respectively. 

(ii) The 𝑥 − 𝑦 face at 𝑧 = 0 is constrained from displacing along the 𝑧 direction while the 

opposite face is treated as a free surface. 

Slices of the simulated microstructure were deformed to a strain of approximately 2% where 

the grains of interest show some slip activity in order to identify the most active system, which is 

computed as follows. For each element of the FE mesh, the accumulated slip for each slip system 

was computed based on the information available at the integration points. The most active slip 

systems were then identified as the one with the highest accumulated slip at the end of deformation. 

These IDs refer to those appearing in column 2 of Table 3.4.  

The neighborhood microstructure corresponding to Grain Boundary 1 is shown in Figure 3.7a 

which consists of 21 grains. Figure 3.7b shows a map of the most active slip systems for each 

voxel of the entire microstructure visualized by their ID. It is evident that in the grain neighborhood 

shown in Figures 3.7a and 3.7b, basal slip is predicted to be the most active slip system.  Grain 

Boundary 1 and the grains of interest are depicted in Figure 3.7c identifying the grain containing 

the slip band and the grain blocking the slip band, Figure 3.7d shows a map of the most active slip 

systems for all voxels belonging to the two grains of interest and Figure 3.7e depicts the von Mises 

equivalent stress map for the simulated microstructure. For the grain containing the slip band, 

CPFE augments the slip trace analysis because slip traces only convey information about the slip 

plane, but nothing is known about the slip direction. That is where the CPFE simulation results 
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dictate the choice of the most active slip system, which is correlated with the slip trace in that 

grain. For the grain blocking the slip band (the adjacent grain) the most active slip system 

(potentially outgoing slip system) is interpreted as the one offering the least resistance to the slip 

band so that when slip transmission ensues, it occurs with the highest probability on this most 

active slip system.  For this purpose, the region at the grain boundary containing the slip band in 

the real microstructure was identified by its corresponding voxel (V1) in the voxelated structure. 

Then the voxel next to V1 in the adjacent grain was identified, and the most active slip system was 

obtained. This slip system was chosen as the one offering the least resistance to the slip band. For 

Grain Boundary 1 based on prior arguments, the most active slip system in the adjacent grain has 

ID 1 which corresponds to the system (0001)[112̅0] while the slip system corresponding to the 

slip bands has ID 3 which corresponds to the system (0001)[12̅10]. 

Slip System ID Slip Direction Slip Plane 

 

Basal 

1 [112̅0] (0001) 

2 [2̅110] (0001) 

3 [12̅10] (0001) 

 

Prismatic<a> 

4 [12̅10] (101̅0) 

5 [21̅1̅0] (011̅0) 

6 [112̅0] (1̅100) 

 

 

Pyramidal<a> 

7 [12̅10] (101̅1) 

8 [2̅110] (011̅1) 

9 [1̅1̅20] (1̅101) 

10 [1̅21̅0] (1̅011) 

Table 3.5 Slip and twin systems for Mg alloys. 
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11 [21̅1̅0] (01̅11) 

12 [112̅0] (11̅01) 

 

 

Pyramidal<c+a> 

13 [1̅1̅23] (112̅2) 

14 [12̅13] (1̅21̅2) 

15 [21̅1̅3] (2̅112) 

16 [112̅3] (1̅1̅22) 

17 [1̅21̅3] (12̅12) 

18 [2̅113] (21̅1̅2) 

 

 

Twin<c + a> 

19 [1̅011] (101̅2) 

20 [101̅1] (1̅012) 

21 [1̅101] (11̅02) 

22 [11̅01] (1̅102) 

23 [01̅11] (011̅2) 

24 [011̅1] (01̅12) 
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Figure 3.7 (a) Neighborhood microstructure related to Grain Boundary#1, and (b) its 

corresponding map of most active slip system ID (c) Microstructure of the grains sharing the grain 

boundary of interest, identifying the grain containing the slip band, the grain blocking the slip 

band, the grain boundary and the trace of the basal plane, and (d) a map of the most active slip 

systems in each voxel belonging to the grains sharing the grain boundary.  Legend numbers (1-6) 

refer to the active slip system IDs in Table 3.5, and (e) von Mises equivalent stress map of the 

simulated microstructure.  
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3.4.3 Relationship between the micro-Hall-Petch coefficient and the quantitative geometrical 

expressions describing the slip band-GB interactions 

Table 3.6 summarizes the slip systems of the identified incoming and potentially outgoing 

(offering the least resistance) slip system for each GB analyzed. The quantitative geometrical 

expressions (θ, 𝜅, ψ, 𝛿) were calculated for each GB cases, are also listed in Table 3.6. The total 

number of grains for each of the simulated microstructures described in section 3.3.2 is included 

in Table 3.6. 

GB 

ID 

Number of grains 

in the simulated 

microstructure 

Incoming Slip 

System 

Outgoing Slip 

System 

θ (°) 𝜿 (°) ψ (°) 𝜹 (°) 

1 21 (0001)[12̅10]  (0001)[112̅0] 58.54 73.75 70.68 84.55 

2 21 (0001)[12̅10] (0001)[12̅10] 53.31 5.61 54.59 73.21 

3 24 (0001)[2̅110] (0001)[2̅110] 73.79 37.30 31.70 45.24 

4 34 (0001)[112̅0] (0001)[112̅0] 76.16 87.81 31.77 55.64 

5 17 (0001)[2̅110] (0001)[12̅10] 33.87 55.69 25.95 26.46 

6 28 (0001)[12̅10] (0001)[12̅10] 38.84 54.14 48.32 86.18 

7 16 (0001)[2̅110] (0001)[2̅110] 46.52 46.94 47.13 24.57 

8 21 (0001)[12̅10] (0001)[12̅10] 74.92 66.16 87.18 34.41 

Table 3.6 Summary of the list of the incoming slip system and the predicted potentially outgoing 

slip system of each GB, and the quantitative geometrical expressions (θ,𝜅,ψ, 𝛿) describing the slip 

band-GB interactions associated with each GB. 
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9 25 (0001)[112̅0] (0001)[2̅110] 70.16 88.42 86.91 86.38 

 

 

The micro-Hall-Petch coefficient values presented in Table 3.3 plotted against the angle 

between the two slip plane traces on the GB plane (θ) (Figure 3.8a), the angle between slip 

directions (κ) (Figure 3.8b), the angle between slip plane normal directions (ψ) (Figure 3.8c), 

and the angle between the incoming slip direction and the intersection of the incoming slip plane 

with the GB plane (δ) (Figure 3.8d). In order to quantify the correlation between the micro-Hall-

Petch coefficient values and each of the quantitative geometrical expressions (θ,𝜅,ψ, 𝛿), the R-

squared value, also known as the coefficient of determination, was computed. This statistical 

correlation parameter is an indicator that ranges in value from 0 to 1. The higher the R-squared 

value, the more reliable the linear regression is. The calculated R-squared values are shown in each 

plot.  
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3.5 Discussion  

The blocked slip bands at the grain boundaries in Mg-4Al were investigated using HR-

EBSD, cross-correlation analysis, and CPFE. Nine different grain boundaries were selected based 

on the existence of blocked slip bands at the GBs and various misorientation angles (Table 3.1). 

Figure 3.8 The micro-Hall-Petch coefficient values against (a) the angle between the two slip plane 

traces on the GB plane (θ). (b) the angle between slip directions (κ). (c) the angle between slip 

plane normal directions (ψ). (d) the angle between the incoming slip direction and the intersection 

of the incoming slip plane with the GB plane (δ). 
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CPFE and trace analysis (section 3.2.2) confirmed that the slip band in each case was associated 

with a basal slip system (Table 3.5). The full stress concentration tensor induced by the slip bands 

blocked at the GB was calculated using the HR-EBSD technique combined with the cross-

correlation analysis (Section 3.3.1). The stress field was then resolved onto the active slip plane of 

the incoming slip band, and the resulting resolved shear stress profile was fit with the continuum 

dislocation pile-up model at a GB (Equation 3.3) to obtain the micro-Hall-Petch coefficient of each 

GB case (Table 3.3). The 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values vary from 0.054 MPa−m𝟏/𝟐 to 0.184 MPa−m𝟏/𝟐 

suggesting that the stress concentration ahead of a pile-up depends on the strength of each 

individual GB against slip transmission.  

The 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values are plotted against the quantitative geometrical expressions (θ,𝜅,ψ, 𝛿), 

which describe the slip band-GBs interactions, as shown in Figure 3.8. The 𝑅2 value used to find 

out which angle has a major effect on 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙. 𝑅2 is higher for Figure 3.8a, which depicts the plot 

of 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 against the angle between the two slip plane traces on the GB plane (θ), suggesting the 

critical role of the grain boundary plane orientations in stress concentration ahead of pile up. The 

angle between slip plane traces on the GB plane also appears in Davis [65], where the 

investigations into slip continuity (transmission) motivated the stepped dislocation (see Figure 3.9) 

formation energy as a determining factor for slip transmission. The work done in order to overcome 

the energy barrier for stepped dislocation formation, under a number of assumptions of the 

theoretical model, was shown to be proportional to sin(θ), hence motivating the consideration of 

θ as an important parameter in determining the strength of the GB to slip transmission and 

consequently the micro-Hall-Petch coefficient. 
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The angle between slip directions (κ) (Figure 3.8b) is the second most effective (R2=0.38) 

quantitative geometrical expression in determining the 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙. Previous studies [66, 67] have 

reported that if the slip planes in two neighboring grains possess the same grain boundary trace 

and the Burgers vectors of dislocations are parallel (κ=0), then the dislocations in one grain can 

pass unhindered through the grain boundary into the adjacent grain. Consequently, increasing κ 

could result in an increase in the stress concentration ahead of pile up. It worth noting that since 

the incoming slip systems and predicted outgoing slip systems for all the nine-grain boundaries 

studied in this work are basal slip systems, the magnitude of residual Burgers vector (RBV) is 

directly proportional to sin (
κ

2
) which clearly increases with κ. The RBV has been previously 

studied as a criterion to evaluate the strength of a GB against slip transmission [68-71]. 

As shown in Figure 3.8c and 3.8d, 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙does not show a noticeable correlation with the 

ψ, the angle between slip plane normal directions, and δ, the angle between the incoming slip 

direction and the intersection of the incoming slip plane with the GB plane. This is because ψ does 

not capture the grain boundary plane orientations, which is present in the definition of θ, while δ 

does not have any information about the neighboring grain.  

Figure 3.9 (a) Schematic of slip traces of incoming and outgoing slip planes looking into the grain 

boundary plane. (b) Schematic of the formation of a stepped dislocation in grain 2 when a 

dislocation crosses from grain 1. The dotted line represents the dislocation in grain 2. [65] 
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Taking into account both the geometrical and energetics aspects of 𝑘𝜇
𝛼, the following 

relationship is proposed: 

𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 = 𝐾𝑏𝑎𝑠𝑎𝑙(1 − cos(θ)cos(κ))𝑐   ; 𝑐 > 0 (3.7) 

where 𝐾𝑏𝑎𝑠𝑎𝑙 and 𝑐 are model parameters. The factor cos(θ)cos(κ) was initial proposed by Lee–

Robertson–Birnbaum[61, 72, 73] as being relevant in the context of determining the outgoing slip 

system as a result of slip transmission across grain boundaries, based on in situ straining TEM 

experiments on FCC alloys. This relationship agrees with the Lim et al. [74] study where the 

strengthening effect of grain boundaries in Fe–3%Si was modeled by defining the grain boundary 

obstacle stress  𝜏𝑜𝑏𝑠 as  𝜏𝑜𝑏𝑠 = (1 − cos(θ)cos(κ) ) 𝜏
∗ where 𝜏∗ represents the maximum obstacle 

strength. The Hall-Petch coefficient is known to be correlated with the GB obstacle stress [75] and 

hence, is indirectly related to the factor (1 − cos(θ)cos(κ)). 

𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values obtained for the nine different cases in this study (Table 3.2) were fit with Equation 

3.7 obtaining the model parameters 𝐾𝑏𝑎𝑠𝑎𝑙 = 0.173 ± 0.083 MPa − m𝟏/𝟐 and c = 1.04. For the 

nine cases, 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values are plotted against (1 − cos(θ)cos(κ))𝑐 as shown in Figure 3.10. 𝑅2 

value of 0.78 indicates the good correlation between the 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 and the proposed relationship. The 

aforementioned approach and findings are similar in spirit to the suggestions made by Guo [76] 

where a full three-dimensional analysis of the grain boundary geometry was deemed necessary to 

obtain a well-informed relationship between the stress concentration induced by blocked slip band 

at a grain boundary. 
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One may notice that the obtained values for 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 or 𝐾𝑏𝑎𝑠𝑎𝑙 may not be in complete 

agreement with the macroscopic Hall-Petch coefficients reported in the literature for Mg-4Al. For 

example,  Deda et al. [77] obtained the value of 0.31 MPa −m𝟏/𝟐 for the macroscopic Hall-Petch 

slope of Mg-4Al. This discrepancy highlights the need for understanding the relationship between 

the macroscopic Hall-Petch coefficients and the strength of each grain boundary identified by 

micro-Hall-Petch coefficients. Although there are few studies on this topic [41, 44], what is still 

Figure 3.10 The basal slip system micro-Hall-Petch coefficients (𝑘𝜇
𝑏𝑎𝑠𝑎𝑙) for the nine-cases are  

plotted against the factor (1 − cos(θ)cos(κ))𝑐 where the model parameters 𝐾𝑏𝑎𝑠𝑎𝑙 and 𝑐 were 

obtained from fitting the data points to a power-law. For this fit, 𝑅2 is 0.78 which reflects close to 

the linear relationship between 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 and  (1 − cos(θ)cos(κ))𝑐. 
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missing is a procedure to estimate the macroscopic Hall-Petch slope considering the effect of 

multiple factors simultaneously like texture, loading direction, alloying, misorientation 

distribution, etc.  Equation 3.7 addresses part of this issue by encoding the effect of geometrical 

relationships into parameters quantifying size-effect at the slip system level. This must necessarily 

be complemented by some homogenization scheme to obtain estimates of the macroscopic Hall-

Petch slope, which will be a subject of future work.  

Crystal plasticity simulations have proven to be an indispensable tool in guiding our 

understanding of the effect of microstructure on the elastoplastic material behavior of 

polycrystalline solids. While classical crystal plasticity constitutive formulations provide a sound 

theoretical basis for modeling, their ability to incorporate microstructural size effect informed by 

experiments has been quite limited. The experiments performed in this work combined with 

adequate post-processing of the data can augment crystal plasticity models, where the micro-Hall-

Petch equation can be used to modify the slip resistance based on the micro-Hall-Petch coefficient 

and some measure of the grain size. More importantly, since the current work proposes a functional 

form for the micro-Hall-Petch coefficient depending on the geometric properties of a grain and its 

immediate neighbors, the effect of texture can be directly encoded into this coefficient. 

Furthermore, instead of resorting to the average grain size for the entire microstructure, each point 

in a grain can be assigned an effective distance from the grain boundary, which can be used as the 

measure of grain size for that point. Once crystal plasticity models are appropriately calibrated, 

they can also be used to generate macroscopic Hall-Petch slope datasets amenable to data-mining 

approaches [78], which can furnish a pipeline (as opposed to a simple formula) to estimate the 

macroscopic Hall-Petch slope for a complex microstructure.      
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It is important to note that while the functional dependence of the micro-Hall-Petch coefficient is 

useful, crystal plasticity simulations may not predict macroscopic stress-strain curves consistent 

with experiments if these values are directly used to modify the slip resistances. This discrepancy 

can be attributed to multiple factors. Firstly, the analysis described in this work relies on data 

obtained from the vicinity of a slip band blocked by a grain boundary, which is a local 

measurement. Crystal plasticity simulations, however, are unable to model a slip band since they 

capture the physics in an average sense, i.e., the slip band itself is not modeled, but the accumulated 

slip in a grain conveys something about the accommodation of plastic deformation and the 

possibility of slip bands. Hence the attempt to use the micro-Hall-Petch coefficient from such local 

experiments into crystal plasticity simulations must be accompanied by a sensible scaling of the 

coefficient. Secondly, estimates of the micro-Hall-Petch coefficient have been obtained when a 

sufficient number of blocked slip bands were visually identified, and this meant deforming the 

sample to a higher strain than where the onset of plasticity actually occurs. Along with blocked 

slip bands, there were also grain boundaries through which slip transmission occurred, which were 

not the subject of this study but which clearly contribute to the polycrystalline size effect. It is still 

unclear how the information from transmitted slip and blocked slip bands can be used together to 

better estimate the micro-Hall-Petch coefficient that can be directly embedded into crystal 

plasticity constitutive models to predict the macroscopic stress-strain curves and Hall-Petch effect 

correctly. Finally, the stress profile ahead of a blocked slip band is expected to change depending 

on the accumulated plastic strain, and hence the total strain to which the sample was deformed. In 

other words, if the sample was deformed to a higher value of strain and the slip bands identified 

earlier continued to be blocked, a higher value of the micro-Hall-Petch coefficient would be 

expected to fit the resolved stress measurements. This begs the question as to which value would 
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be appropriate. One way to bypass the previous issues is to consider only the dependence of the 

micro-Hall-Petch coefficient on the geometric parameters while selecting 𝐾𝑏𝑎𝑠𝑎𝑙 by calibrating 

stress-strain curve predictions from CPFEM to experiments. This also demands an acceptable 

representation of the grain boundary in the discretization of the microstructure because the 

[cos(θ)cos(κ)] factor depends on the grain boundary plane orientations and hence is sensitive to 

the discretization as well. All these issues represent challenges to incorporating the results from 

this work into crystal plasticity constitutive models and setting up acceptable simulations. This 

will be a subject of future work. 

 

3.6 Conclusions 

− High resolution electron backscatter diffraction method was used to measure the local stress 

ahead of blocked slip bands at grain boundaries in a deformed Mg-4Al alloy for nine different 

grain boundaries. The results were combined with a continuum dislocation pile-up model to 

assess the slip system level Hall-Petch slope for basal slip system (𝑘𝜇
𝑏𝑎𝑠𝑎𝑙). The results indicate 

that 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values vary from 0.054 MPa−m𝟏/𝟐 to 0.184 MPa−m𝟏/𝟐.  

− The 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values were found to strongly correlate with the angle between the two slip plane 

traces on the GB plane (θ). This understanding highlights the important role of the grain 

boundary plane orientations in the slip system level Hall-Petch slope.  

− The angle between slip directions (κ) was found to be the second most effective geometric 

parameter in determining the magnitude of 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙.  

− A new equation, 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 = 𝐾𝑏𝑎𝑠𝑎𝑙(1 − cos(θ)cos(κ))𝑐 , was proposed considering both the 

angle between the two slip plane traces on the GB plane (θ), and the angle between slip 
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directions (κ) to predict the slip system level Hall-Petch slope for basal slip system.  This 

equation can be used to incorporate microstructural size effects in the crystal plasticity models. 
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 Chapter 4: Estimation of Micro-Hall-Petch Coefficients for Prismatic Slip System in 

Mg-4Al as A Function of Grain Boundary Parameters 

4.1 Abstract 

Grain size strengthening, referred to as the Hall-Petch effect, is a common strategy to 

improve the yield strength of magnesium (Mg) alloys. Several experimental studies have reported 

that the Hall-Petch slope strongly depends on the texture of the alloy. This effect arises from 

altering grain boundaries (GBs) resistance to different slip systems to transfer across adjacent 

grains. The grain boundary barrier strength of certain grain boundaries to basal slip, referred to as 

basal micro-Hall-Petch, was investigated in the previous chapter. In this chapter, the micro-Hall-

Petch coefficient values for the prismatic slip (𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

) in Mg-4Al and their correlation with 

the grain boundary parameters were investigated. An experimental method was developed to 

initiate the prismatic slip band at low-stress levels. High-resolution electron backscatter diffraction 

(HR-EBSD) was used to measure the residual stress tensor, from which the resolved shear stress 

ahead of blocked prismatic slip bands was computed for seven different grain boundaries.  

𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values for each individual GB were calculated by coupling the stress profile information 

with a continuum dislocation pile-up model.  The 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values vary from 0.138 MPa. m𝟏/𝟐 to 

0.685 MPa. m𝟏/𝟐 which are almost three times larger than the calculated values for the basal micro-

Hall-Petch. The 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values were correlated with the GB parameters, and a functional 

relationship depending on the two most effective angles, the angle between the traces of the slip 

planes on the GB plane (θ) and the angle between incoming and outgoing slip directions (κ), was 
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proposed to estimate the Hall-Petch barrier for prismatic slip system.  The work provides 

coefficients that can be supplied as input to crystal plasticity models to couple the effect of texture 

and grain size effectively. 

4.2 Introduction 

Owing to their low mass density, Mg alloys are attractive candidates for a range of industrial 

applications such as automotive [1], aerospace [2], and biomedical [3, 4] sections. However, the 

wide use of Mg alloys is limited by the low yield strength and formability at room temperature 

compared to the other structural materials such as aluminum and titanium. Alternative strategies 

to engineer the microstructure of Mg alloys to improve the yield strength and strain hardening 

include grain size refinement [5, 6], precipitate strengthening [7-10], solute strengthening [11-13], 

and texture modifications [14, 15].  

Grain size strengthening is one of the most common strategies to enhance the yield strength 

of Mg alloys. The empirical Hall-Petch relationship defines the yield strength (𝜎𝑦) of a material 

as a function of its average grain size (𝐷) following 𝜎𝑦 = 𝜎0 +
𝐾

√𝐷
, where K is the Hall-Petch 

coefficient and 𝜎0 is the friction stress [16-19]. Several experimental studies investigated the Hall-

Petch relationship in Mg alloy and indicate that the Hall-Petch coefficient strongly depends on the 

texture of the alloy [5, 20-22]. For example, Yuan et al. [5] reported that the Hall-Petch coefficient 

for Mg–3Al–1Zn varies from 0.411 MPa.m𝟏/𝟐 to 0.228 MPa.m𝟏/𝟐 by changing the loading 

direction along two orthogonal directions. The reported correlation between the Hall-Petch slope 

and texture in Mg alloys is primarily due to the underlying crystal structure, hexagonal close-

packed (HCP), being plastically anisotropic, i.e., the presence of different deformation modes with 

unequal strengths in these alloys. Texture variations can lead to activation of different deformation 
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modes/systems, on which the GBs resistance to them can have a different effect, which results in 

altering the Hall-Petch coefficient.  

To better understand the interactions of the Hall-Petch effect (grain size), texture, and grain 

boundary parameters, in the strengthening of materials, the Hall-Petch relationship needs to be 

investigated at the slip system level for each individual deformation mode. The Hall-Petch 

relationship extended to the microscale is given by 𝜏𝛼 = 𝜏0
𝛼 + 𝑘𝜇

𝛼 . 𝐿𝛼−1/2, where 𝜏𝛼 is the critical 

resolved shear stress corresponding to slip system 𝛼, 𝜏0
𝛼 is the critical resolved shear stress 

corresponding to slip system 𝛼 of a theoretically infinite single crystal, 𝑘𝜇
𝛼 the microscopic Hall-

Petch coefficient of the slip system 𝛼 (micro-Hall-Petch coefficient), and 𝐿𝛼  is the grain size at the 

slip system-level for system 𝛼 [23-25]. Since experimental approaches to quantify the stress tensor 

at the grain level are limited, very few studies focused on finding the micro-Hall-Petch coefficients 

for each individual slip system and the subsequent effect on the macroscopic Hall-Petch 

relationship [20, 26, 27]. Wang et al. [20] used the macroscopic tensile data of Mg–3Al–1Zn 

samples and estimate the variation of the resolved shear stress for each individual slip system by 

changing the grain size to calculate the micro-Hall-Petch slopes. They reported the micro-Hall-

Petch coefficients for basal slip, prismatic slip, and pyramidal slip to be 0.091MPa.m𝟏/𝟐, 0.154 

MPa.m𝟏/𝟐 and 0.311 MPa.m𝟏/𝟐, respectively. In our previous works [28, 29], we proposed using 

HR-EBSD to measure the local stress at the grain level and calculate the micro-Hall-Petch 

coefficient values for the basal slip in Mg alloys. The results show the micro-Hall-Petch coefficient 

values for the basal slip in Mg-4Al varies from 0.054 MPa.m𝟏/𝟐 to 0.184 MPa.m𝟏/𝟐 depending 

on the angle between incoming slip direction and the potential outgoing slip direction, and the 

angle between the two slip plane intersections with the GB.  
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In this chapter, we further expand on our previous results in order to understand the micro-

Hall-Petch relationship for prismatic slip system in Mg-4Al. First, we present a novel method using 

micro-focused ion beam (FIB) notches to locally activate prismatic slip bands. We then use HR-

EBSD measurements to assess the stress ahead of prismatic slip bands blocked at seven different 

GBs. The results are compared with a developed continuum dislocation pile-up model considering 

the presence of micro-FIB notch under two different boundary conditions to calculate the micro-

Hall-Petch coefficient for prismatic slip systems. FIB milling is used to capture the three-

dimensional grain boundary parameters (tilt and twist angles) of each individual grain boundary. 

A functional form to find the micro-Hall-Petch coefficient values of prismatic slip depending on 

the grain boundary descriptors is proposed, and the potential way to implement it to crystal 

plasticity constitutive models is discussed.  

4.3 Methods 

The author conducted the computational work in collaboration with Prof. Veera Sundararaghavan 

and his student Aaditya Lakshmanan. 

4.3.1 Materials and experimental procedures 

Mg-4Al (wt.%) produced by CanmetMaterials in the form of extruded bar is used in this 

study. The texture of the as-extruded material is shown in Figure 4.1a. The basal poles are oriented 

normal to the extrusion direction. This texture leads to activation of primarily basal and prismatic 

slip systems during plasticity when the loading direction is parallel to the extrusion direction. The 

average grain size of the as-received material was 55 µm. Further heat treatment is conducted to 

produce samples with average grain sizes of approximately 187 µm (515°C for 15 minutes) and 

333 µm (550°C for 150 minutes) with a texture very similar to that shown in Figure 4.1a. Tensile 
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tests are performed at a strain rate of 1 × 10−3 𝑠−1 for the samples with different grain sizes up to 

2% strain. Figure 4.1b depicts the variation of the yield strength (0.2% offset) with average grain 

size, reflecting the Hall-Petch effect for this alloy. The linear fit of this data results in a Hall-Petch 

slope of 0.372 MPa.m𝟏/𝟐 , consistent with previous findings for Mg-4Al [30]. 

 

Figure 4.2 depicts a microstructure section of the sample with the average grain size of 55 

µm, which is primarily composed of equiaxed grains. From this sample, specimens with the gauge 

dimensions of 10 mm × 2 mm × 2 mm are cut using electrical discharge machining (EDM). The 

samples are then mechanically ground using SiC papers up to a grit of 1200. Polishing is completed 

using 6, 3, and 1 μm diamond suspensions, followed by a final polish using Buehler Masterpolish 

on a Buehler Chemomet polishing cloth. Samples are lightly chemically etched in acetic-nitric 

solution (60 mL ethanol, 20 mL water, 15mL acetic acid, and 5 mL nitric acid) for 3-5 seconds to 

highlight the grain boundaries. 

Figure 4.1  (a) Pole figure and (b) Hall-Petch relationship of extruded Mg-4Al (wt.%) sample used 

in this work. Linear fit yields 𝜎0  =  94.33 𝑀𝑃𝑎 , 𝐾 =  0.372 MPa.m
𝟏/𝟐. 
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Our primary goal in this study is to initiate prismatic slip in the form of localized slip bands 

which would then be blocked by the grain boundary. It is well known that the anisotropy of the 

HCP crystal structure reflects significantly higher critical resolved shear stress for prismatic 

relative to the basal slip system. To preferentially activate prismatic slip at the low level of stress 

(which is important to consider for capturing high-resolution Kikuchi patterns) a series of sharp 

micro-notches are machined in grains oriented (relative to the loading direction) specifically for 

the prismatic slip to act as slip initiation sites. Given the EBSD data of the microstructure section 

(Figure 4.2), grains were chosen which satisfied the following conditions: 

1. There is at least one prismatic slip system with a Schmid factor (corresponding to 

tension along the extrusion direction) greater than or equal to 0.4. This was to 

ensure that there is at least one prismatic slip system-oriented favorably for plastic 

slip relative to loading. 

2. The ratio of the maximum Schmid factor of basal to the maximum Schmid factor 

of prismatic is at most 0.2. This was to ensure that the basal system is not as 

favorably oriented as the prismatic system obtained from step 1. 

Figure 4.2 EBSD inverse pole figure map of extruded Mg-4Al (wt.%) with the average grain size 

of 55 µm. 
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3. For ease of fabricating the notch using FIB-milling, with prismatic systems 

obtained from step 1 having a plane normal lying favorably in the plane of the 

sample surface.  

The above steps were automated using a MATLAB script which employed the MTEX toolbox 

[31, 32] to post-process EBSD data. Once the grains of interest are identified, the micro-notches 

were created using an FEI Helios Nanolab 650 microscope equipped with a gallium ion source 

(see Figure 4.3a). Notches are machined parallel to the prismatic slip plane, and each had an 

approximate length of 20 µm, a width of 1 µm, and a depth of 10 µm (Figure 4.3(b)). The 

orientation of the prismatic slip system is known due to orientation data available from EBSD. 

The tensile samples are then subjected to loading to observe slip band generation from 

notches. Figure 4.3(c) shows two examples of slip bands that initiate from notches; one was 

blocked at the grain boundary (GB#1), and the other one transferred to the adjacent grain (GB#2). 

Seven-grain boundaries are analyzed for this work since our focus is on boundaries that blocked 

slip transfer. Table 4.1 summarizes the information of these GBs based on the misorientation 

between adjacent grains. 

Kikuchi patterns ahead of blocked slip bands are captured using a TESCAN RISE 

microscope equipped with a Hikari Super EBSD detector provided by EDAX. The EBSD maps 

had an average size of 20 µm × 20 µm with a square grid, and 200 nm step size. The CrossCourt4 

(CC4) software package developed by BLG Vantage is used to analyze the Kikuchi patterns and 

assess the full strain/stress fields across the grains by implementing the cross-correlation approach 

developed by Wilkinson et al. [33]. The remapping method developed by Britton and Wilkinson 

[34] is also applied to minimize the effect of the lattice rotation on calculated strain/stress values. 



 74 

Upon completing the EBSD analysis, the subsurface grain boundary orientations are 

measured to understand the grain boundary plane orientations. To accomplish this, FIB milling is 

used to lift out lamellae perpendicular to the grain boundary line using an FEI Helios Nanolab 650 

microscope. 

 

 

Figure 4.3 (a) Diagram showing placement of FIB notch parallel to prismatic slip planes, (b) 

Examples of micro-notch machined on the surface of the samples to act as slip initiation sites, (c) 

Example of slip bands initiate from FIB notch and interact with GBs. Slip transmission occurs in 

GB#2, and pile-up occurs in GB#1.  
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GB Number Misorientation (°) Rotation Axis 

1 84.70 [6̅ 11 5̅ 1] 

2 52.38 [8 9̅ 1 1] 

3 79.89 [11̅̅̅̅  9̅  20 1] 

4 62.67 [9 3 12̅̅̅̅  1̅] 

5 65.61 [17̅̅̅̅  2̅ 19 1] 

6 38.36 [5 8 13̅̅̅̅  1] 

7 36.84 [9 8 17̅̅̅̅  0] 

 

4.3.2 Analytical and Numerical Methods 

This section is devoted to outlining the analytical and numerical methods that form the 

basis of our work. First, the continuum dislocation pile-up theory in 1D is reviewed, which 

furnishes a closed-form expression for the stress ahead of the pile-up. Following that, essential 

aspects of the rate-dependent crystal plasticity are described which are implemented into the 

PRISMS-Plasticity [35] crystal plasticity finite element (CPFE) framework. Finally, the 

calibration procedure to obtain constitutive model parameters is outlined, followed by the 

methodology to simulate neighborhoods of grain boundaries of interest-based on experimental 

data.   

4.3.2.1 Dislocation Pile-up Model of Notch and Slip Band 

A simple one-dimensional continuum dislocation pile-up model is used as an analogy to 

describe the region in the grain constituting the notch and the slip band (Figure 4.4). Both the notch 

Table 4 .4.1 Misorientation angle and rotation axis of the GBs investigated in this work. 
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and the slip band are represented by a continuous distribution of straight parallel edge dislocations 

[36, 37] with the dislocation line pointing in the z-direction, and Burgers vector along the 

𝑥 −direction with magnitude 𝑏𝑒. 

 

 

 

Let ρ(x) denote the distribution of dislocations in the domain [-a, a] where the subdomain 

[-b, b] represents the notch. We would then like to solve for ρ(x) which is in equilibrium with an 

effective resolved stress 𝜏𝑒(𝑥), where the equilibrium condition takes the following form [38] 

𝜇𝑏𝑒
2𝜋(1 − 𝜈)

{ ∫
𝜌(𝑥′)𝑑𝑥′

𝑥 −  𝑥′

−𝑏

−𝑎

+ ∫
𝜌(𝑥′)𝑑𝑥′

𝑥 −  𝑥′

𝑏

−𝑏

+∫
𝜌(𝑥′)𝑑𝑥′

𝑥 −  𝑥′

𝑎

𝑏

 } + 𝜏𝑒(𝑥) = 0 

                                   𝜏𝑒(𝑥)  =  {
𝜏 ;  |𝑥|  <  𝑏

𝜏 − 𝜏𝑓 ;  𝑏 <  |𝑥|  <  𝑎
 

                                    

(4.1) 

Figure 4.4 Notch and slip band idealized as a continuous distribution of parallel edge dislocations. 
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where μ is the shear modulus, 𝜈 is the Poisson’s ratio and 𝜏𝑓 is a friction stress acting only in the 

slip band, which inhibits the motion of the prismatic dislocations. 𝜏𝑓 is assumed to be a constant. 

We are interested in a closed-form expression for the resolved stress ahead of the pile-up, 𝜏𝑝(𝑥), 

defined as follows:  

𝜏𝑝(𝑥)  ∶=
𝜇𝑏𝑒

2𝜋(1 − 𝜈)
{ ∫

𝜌(𝑥′)𝑑𝑥′

𝑥 −  𝑥′

−𝑏

−𝑎

+ ∫
𝜌(𝑥′)𝑑𝑥′

𝑥 −  𝑥′

𝑏

−𝑏

+∫
𝜌(𝑥′)𝑑𝑥′

𝑥 −  𝑥′

𝑎

𝑏

 } ;  𝑥 >  𝑎 (4.2) 

Eqn. 4.1 is an integral equation with a closed-form solution [39] for 𝜌(𝑥), which upon substituting 

in Eqn. 4.2 yields   

𝜏𝑝(𝑥)  =  

(𝜏 −  2𝜏𝑓 cos
−1 (

𝑏
𝑎
))

√1 − (
𝑎
𝑥
)
2

 +  2𝜏𝑓 cosec
−1 (√1 + 

(𝑥2  −  𝑎2)𝑏2

(𝑎2  −  𝑏2)𝑥2
) −  𝜏;  𝑥 

>  𝑎 

(4.3) 

Shifting the origin to 𝑥 = 𝑎 by defining 𝑋 =  𝑥 − 𝑎, and substituting 𝑥 in terms of 𝑋 yields  

𝜏𝑝(𝑋)  =  
(𝜏 − 2𝜏𝑓 cos

−1(
𝑏

𝑎
))

√1 − (
𝑎

𝑋+𝑎
)
2

 +  2𝜏𝑓 cosec
−1 (√1 + 

((𝑋+𝑎)2 − 𝑎2)𝑏2

(𝑎2 − 𝑏2)(𝑋+𝑎)2
)- 𝜏 (4.4) 

Eqn. (4.4) is now valid for 𝑋 > 0. We now invoke the micro-Hall-Petch assumption [28, 29] where 

𝜏  is additively decomposed into size-independent and size-dependent contributions. Since we 

invoke this at the level of the slip system, we replace 𝜏 with 𝜏𝛼 corresponding to slip system 𝛼. 

The decomposition then takes the simple form 

𝜏𝛼  =  𝜏0
𝛼  +  

𝑘𝜇
𝛼

√2𝑎
 (4.5) 
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where 𝜏0
𝛼 is the lattice friction stress for slip system 𝛼, 𝑘𝜇

𝛼 is the micro-Hall-Petch coefficient and 

𝑎 is the grain size as defined in Figure 4.4.  Substituting Eqn. 4.5 into Eqn. 4.4 and specializing to 

slip system 𝛼 yields.  

𝜏𝑝
𝛼(𝑋)  =  

( 𝜏0
𝛼 + 

𝑘𝜇
𝛼

√𝑎−𝑏
 − 2𝜏𝑓

𝛼 cos−1(
𝑏

𝑎
))

√1 − (
𝑎

𝑋+𝑎
)
2

 +  2𝜏𝑓
𝛼cosec−1 (√1 + 

((𝑋+𝑎)2 − 𝑎2)𝑏2

(𝑎2 − 𝑏2)(𝑋+𝑎)2
) −

(𝜏0
𝛼  +  

𝑘𝜇
𝛼

√2𝑎
)  

(4.6) 

Eqn. 6 furnishes an expression for the resolved stress ahead of the pile-up, which is fit to the data 

obtained from HR-EBSD residual stress measurements. Here 𝑎 and 𝑏 are length dimensions that 

can be measured from the images (Figure 4.3). An estimate of 𝜏0
𝛼 is obtained using 𝜎0 (y-intercept 

in Figure 4.1(b)) and the average Schmid factor associated with prismatic slip for the present as-

extruded texture. The average Schmid factor for prismatic slip is obtained by first computing the 

maximum Schmid factor for each orientation among the prismatic slip systems, and then finding 

the mean of those values. In our case, this value is 0.451, very similar to previous work [40] which 

reported a value of 0.43.  𝜎0 denotes the yield strength for the microstructure with theoretically 

infinite grain size and multiplying this by the average Schmid factor for prismatic slip results in 

an estimate of the grain-size independent critical resolved shear stress for prismatic slip. In our 

case setting 𝜎0 =  94.33 𝑀𝑃𝑎 and using 0.451 as the Schmid factor for prismatic slip [40], yields 

𝜏0
𝛼 = 42.54 𝑀𝑃𝑎. The parameters 𝑘𝜇

𝛼 and 𝜏𝑓
𝛼 are the unknowns which are optimized by 

performing a least-squares fit of Eqn. 4.6 to the residual stress measurements.  

4.3.2.2 Single Crystal Constitutive Model 

We adopt a rate-dependent crystal plasticity constitutive model within the finite 

deformation continuum mechanics framework.  The primary kinematic ingredient is the 
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deformation gradient, 𝐅, which maps infinitesimal material fibers in the reference configuration to 

corresponding fibers in the deformed configuration. We assume 𝐅 to abide by a multiplicative 

decomposition [41, 42] into elastic and plastic components, denoted by 𝐅e and 𝐅p, respectively, 

as follows: 

𝐅 = 𝐅e𝐅p (4.7) 

Physically, 𝐅p encodes the homogenized distortion of the body as a consequence of 

crystallographic slip via dislocation motion on specific slip systems. It maps the reference 

configuration to an intermediate configuration where the underlying lattice remains unchanged. 

𝐅e, on the other hand, captures the elastic stretch and lattice rotation and maps the intermediate 

configuration to the deformed configuration. Since plasticity is inherently deformation path-

dependent, we invoke certain deformation rates. 

 Using Eqn. (4.7), the velocity gradient, 𝐋 = �̇�𝐅−1, can then be expanded additively decomposed 

into elastic and plastic components  

  

𝐋 = �̇�e𝐅e−1⏟    
Elastic part

+ 𝐅e�̇�p𝐅p−1𝐅e−1⏟        
Plastic part

 
(4.8) 

The contributions to the velocity gradient from elastic and plastic parts are both defined in the 

deformed configuration. We can alternatively work with the plastic part of the velocity gradient 

defined on the intermediate configuration, 𝐋p , as:  

𝐋p  = �̇�p𝐅p−1 (4.9) 

Noting that the kinematics of crystallographic slip effectively involves shearing of the lattice on 

specific crystallographic slip planes along with specific crystallographic slip directions, we have  
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𝐋p  = �̇�p𝐅p−1 = ∑ �̇�𝛼𝐦𝛼⨂𝐧𝛼 

𝑛𝑠

𝛼=1

= ∑ �̇�𝛼𝐒𝛼 

𝑛𝑠

𝛼=1

 (4.10) 

where �̇�𝛼 is the shearing rate on slip system 𝛼, 𝑛𝑠 is the number of slip systems, 𝐦𝛼 and 𝐧𝛼 are 

slip direction and slip plane normal unit vectors, respectively. 𝐒𝛼, referred to as the Schmid tensor 

for the slip system 𝛼, is a shorthand for the dyadic product of 𝐦𝛼 and 𝐧𝛼. We note that 𝐦𝛼 and  

𝐧𝛼 are crystallographic vectors in the intermediate configuration. 

We adopt a rate-dependent crystal plasticity framework, where the shearing rate �̇�𝛼 is a function 

of the resolved shear stress 𝜏𝛼 through a phenomenological power law [43] as follows: 

�̇�𝛼 = �̇�0 |
𝜏𝛼

𝑠𝛼
|
𝑚

sign(𝜏𝛼) (4.11) 

where �̇�0 is the reference shearing rate, 𝑚 is the strain rate, sensitivity exponent, 𝜏𝛼 is the resolved 

shear stress on slip system 𝛼, 𝑠𝛼 is the slip resistance on slip system 𝛼 and ‘sign’ refers to the 

signum function.  The resolved shear stress is expressed in terms of the second Piola-Kirchoff 

stress in the intermediate configuration [44, 45], 𝐓, via the following relation 

𝜏𝛼 = (𝐅eT𝐅e𝐓) ∶  𝐒𝛼 (4.12) 

where ‘∶’ denotes the inner product of second-order tensors defined as 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗𝐵𝑖𝑗 . Eqn. (4.12) 

is derivable by equating the plastic part of the internal mechanical power to the power expended 

in crystallographic shearing of slip system 𝛼 with resolved shear stress 𝜏𝛼 and shearing rate �̇�𝛼. 

The second Piola-Kirchoff stress in the intermediate configuration is linked to the elastic Green-

Lagrange strain as follows   

 𝐓 = ℒ ⋅  𝐄e =
1

2
ℒ ⋅  (𝐅eT𝐅e  −  𝐈) (4.13)  
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where 𝐄e is the elastic Green-Lagrange strain tensor, ℒ is the elastic stiffness (a fourth-order 

tensor) and 𝐈 is the second-order identity tensor. ‘⋅’ denotes the product between a fourth-order 

tensor and second-order tensor to furnish a resultant second-order tensor, defined as  (ℒ ⋅ 𝐀)𝑖𝑗  =

 ℒ𝑖𝑗𝑘𝑙𝐴𝑘𝑙. We additionally note that the Cauchy stress, 𝛔 , and the first Piola-Kirchoff stress in the 

reference configuration, 𝐏 , can be computed from 𝐓 as follows:  

𝐓 = 𝐅e−1𝐏 𝐅𝑇𝐅e−𝑇  =  det(𝐅e)𝐅e−1𝛔 𝐅e−𝑇  (4.14)  

Finally, the evolution of slip resistance for slip system 𝛼, which governs isotropic hardening, is 

defined as follows [45]: 

�̇�𝛼 =∑ℎ𝛼𝛽�̇�𝛽

𝛽

 (4.15) 

where ℎ𝛼𝛽, denotes the hardening rate on slip system 𝛼 due to the slip-on system 𝛽. The hardening 

moduli ℎ𝛼𝛽 are prescribed as a power-law relationship involving the combined effect of work 

hardening and recovery, with both self and latent hardening contributions as follows: 

ℎαβ =

{
 
 

 
 
     ℎ0

β
[1 −

𝑠β

𝑠𝑠
β
]

𝑎β

         ;   coplanar systems

  ℎ0
β
𝑞 [1 −

𝑠β

𝑠𝑠
β
]

𝑎β

          ;  otherwise 

 (4.16) 

where ℎ0
β
 denotes the hardening parameter for slip system β, 𝑞 is the latent hardening ratio, 𝑠𝑠

β
 is 

the saturation slip resistance for slip system β, and 𝑎β is a material constant for slip system β 

governing the sensitivity of the hardening moduli to the slip resistance. 

The constitutive model is implemented in the PRISMS-Plasticity CPFE code, an open-source, 

scalable software framework to simulate elasto-plastic boundary value problems [35, 46] using the 

finite element method. In the interest of being succinct, only the constitutive model has been 
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outlined here. For detailed derivations including the incremental constitutive update scheme and 

derivation of an algorithmic tangent modulus, the reader is referred to previous work [47].   

4.3.2.3 Constitutive Model Calibration 

The crystal plasticity constitutive model parameters are obtained by matching the stress-

strain curves between simulations and experiments for Mg-4Al samples for two scenarios. Figs. 

4.5(a)- 4.5(b) depict the pole figures corresponding to the samples from these scenarios along with 

the sample reference frame x-y-z. In the first scenario, the sample was subject to uniaxial tension 

along the y-direction (Figure 4.5(a)), deformed up to a strain of approximately 2.5%. In the second 

scenario, the sample was subjected to uniaxial tension along the z-direction (Figure 4.5(b)), 

deformed up to a strain of approximately 0.6%. For the simulations, cubical synthetic 

microstructures were generated using DREAM.3D [48] using the respective textures. For both the 

cases, 60x60x60 voxelated microstructures containing approximately 2000 grains were 

instantiated, with the cube length set to L = 500 𝜇m. The cubes were subject to symmetry boundary 

conditions, depicted in Figs. 4.5(c)- 4.5(e), where  𝑢0 denotes the maximum displacement applied 

to the face subject to non-zero displacement boundary condition, similar to the experiment. For 

the first scenario, 𝑢0 was set to 10 𝜇m (0.025 x 𝐿), while for the second scenario 𝑢0 was set to 3 

𝜇m (0.006 x L). These match the approximate macroscopic strain levels that the samples were 

subject to in the experiments.  

All crystal plasticity simulations were performed assuming possible activity of 12 slip systems - 3 

basal, 3 prismatic, 6 pyramidal <c+a> - and 6 pyramidal <c+a> twin systems. Figure 4.5(f) and 

Figure 4.5(g) depict the comparison between the stress-strain curves from CPFE simulations and 

experiments for the first and second scenario, respectively, showing a satisfactory match in the 

plastic regime for the strain regimes considered.  Table 4.2 lists the elastic stiffness constants used 
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in calibration [49-51] and Table 4.3 lists the crystal plasticity constitutive model parameters 

obtained post-calibration. In the hardening law, the latent hardening coefficient was set to 𝑞 = 1.0, 

while the flow rule parameters were set as �̇�0  =  0.001 and 𝑚 =  34. 

4.3.2.4 Grain Boundary Neighborhood Simulations 

To construct grain boundary descriptors through which a relationship can be drawn to the 

micro-Hall-Petch coefficient, some information about the slip activity in the grains is necessary. 

By virtue of capturing the resolved stress ahead of the blocked slip band, the slip system in the 

adjacent grain which could potentially accommodate slip transmission, is not known. In the grain 

containing the slip band, the slip trace and crystallographic orientation can be used to infer the slip 

system corresponding to that slip band (incoming slip system). To find the slip system that could 

potentially accommodate slip transmission (potential outgoing slip system), crystal plasticity 

simulations are employed. 

To accomplish this, for each grain boundary case studied, a rectangular region around this 

grain boundary is identified (Figure 4.6(a)), which contains the grains sharing this boundary and 

some of their neighbors. The approximate coordinates of the center of the notch and its length are 

identified (Figure 4.6(b)). This information is then used to create a rectangular geometry of the 

region of interest, with the notch approximated as an ellipse with the same center as that of the 

notch and major axis length equal to the length of the notch. The minor axis length of the ellipse 

is set to 1 𝜇m. This microstructure section (a 2D section) is then meshed using 4-node quadrilateral 

elements via the functionality of Gmsh [52], an open-source 3D finite element mesh generator 

(Figure 6(d)). The elements are then assigned an identifier corresponding to whichever grain they 

constitute in the original microstructure (Figure 4.6(c)). Finally, since we are simulating three-

dimensional geometries using our CPFE framework, the 2D microstructure section is extruded 
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along the third direction to create a slice of the microstructure, where the 4-node quadrilateral 

elements now turn to 8-node brick elements.  

    Then each microstructure section was subjected to deformation via two boundary conditions: 

(iii) Boundary Condition 1 – For the four lateral boundaries (x=0, x=𝐿𝑥, y=0, y=𝐿𝑦), the 

x and y components of displacements were enforced based on a constant velocity 

gradient representative of uniaxial tension along the x-direction. 

𝐋 = �̇�𝐅−1,   𝐅(0) = 𝐈 ⇒  𝐅 = exp(𝑡𝐋) ;  𝐋 =  [
1 0 0
0 −0.5 0
0 0 −0.5

]                            (4.17) 

                      𝑢𝑥 = 𝐹11𝑥 + 𝐹12𝑦 + 𝐹13𝑧 , 𝑢𝑦 = 𝐹21𝑥 + 𝐹22𝑦 + 𝐹23𝑧                                                

where 𝐅 is the time-dependent deformation gradient, 𝐋 is the constant velocity gradient, 

𝑡 is the time, and 𝑢𝑥 and 𝑢𝑦 are the 𝑥 and 𝑦 components of the displacement, 

respectively. The face 𝑧-displacement of the face 𝑧 = 0 is set to 0 while the opposite 

face is treated as a traction-free surface. 

(iv) Boundary Condition 2: Symmetry boundary conditions are enforced. The surfaces 

x=0, y=0 and z=0, respectively, are constrained from displacing along the direction 

perpendicular to corresponding faces. The surfaces y = 𝐿𝑦 and z = 𝐿𝑧  are traction free 

while the face x = 𝐿𝑥 is displaced along the x-direction by the amount 𝑢0. 

Two sets of boundary conditions were chosen as possible portrayals of tension along x-direction, 

since the true deformation of the microstructural boundary is not available. Microstructure slices 

in the simulations strained to about 2% along the x-direction so that the grains under investigation 

show some slip activity in order to identify the potential outgoing slip system in the grain blocking 

the slip band. We choose this to be the slip system with the highest accumulated slip in the 
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neighborhood of the slip trace-grain boundary intersection once the deformation of the 

microstructure section is complete. 

 

 

𝐶11 𝐶33 𝐶12 𝐶13 𝐶44 

59.4 61.6 25.61 21.44 16.4 

 

 

Mode 𝑠0
𝛼 ℎ0

𝛼 𝑠𝑠
𝛼 𝑎𝛼 

Basal <a> 10.0 0.0 - 1.0 

Prismatic <a> 78.0 1000.0 150.0 1.0 

Pyramidal <c + a> 140.0 0.0 - 1.0 

Twin <c + a> 18.0 0.0 - 1.0 

 

Table 4.2 Elastic stiffness constants (in GPa) for Mg-4Al alloy [49-51]  

Table 4.3 Crystal plasticity constitutive model parameters post-calibration 
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Figure 4.5 a) Pole figures and synthetic microstructure for first scenario, (b) Pole figures and 

synthetic microstructure for second scenario, (c) Faces at x=0, y=0 and z=0 enforced as flat 

surfaces, (d) Deformation boundary condition for first scenario, (e) Deformation boundary 

condition for second scenario, (f) Stress-strain curve comparison between CPFE and experiments 

for the first scenario, and (g) Stress-strain curve comparison between CPFE and experiments for 

the second scenario. 
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Figure 4.6 (a) EBSD section for the region around grain boundary, (b) Grain with notch generated 

using FIB, (c) Grain identifiers for microstructure section, and (d) Microstructure section meshed 

using Gmsh with 4-node quadrilateral elements with grain identifiers assigned. 
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4.4 Results 

4.4.1 Micro-Hall-Petch Coefficient Calculation 

Grain boundaries that block the slip bands generated from the micro-notches are found using 

SEM, as shown in Figure 4.3(c) (GB#1). HR-EBSD scans around the interaction zones are 

captured and the full elastic stress tensor is calculated in the sample. An example of the full tensor 

map of the stress concentration ahead of a blocked slip band measured by HR-EBSD is shown in 

Figure 4.7 Boundary condition 1 (BC#1): (a) x and y displacement components set on lateral 

surfaces, (b) x-y plane constrained along z-direction, Boundary condition 2 (BC#2): (c), (d) denote 

symmetry boundary conditions similar to the boundary condition enforced in the calibration 

section for scenario 1. 
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Figure 4.8. More details on how to measure stress components by HR-EBSD are discussed in the 

previous studies [53, 54]. As it can be seen from Figure 4.8, the stress induced by the blocked slip 

band at the grain boundary is revealed most clearly in the 𝜎11 and 𝜎22  stress components.  

 

 

The stress tensors in the sample frame are then resolved onto the active slip system of the 

deformed grain determined by methods explained in section 4.2.2.4. Figure 4.9(a) shows an 

example of the resolved shear stress derived by rotation of stress tensor shown in Figure 8 to 

another axis system x1
rx2
rx3
r , where x1

r ,  x3
r , and x2

r  are along the slip plane normal, Burgers vectors, 

and the direction perpendicular to the Burgers vector on the slip plane of the active slip system, 

respectively.  

Figure 4.8 An example of full stress tensor measured in the sample frame by HR-EBSD for a slip 

band blocked at Grain Boundary 1 (Note: these images are rotated 180 degrees from Figure 4.3).  
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Stress values ahead of the pile up is extracted along with the slip band in the undeformed 

grain, indicated by X direction in Figure 4.9(a). The stress values are compared with the dislocation 

pile-up model given by Eqn. 4.6 as shown in Figure 4.9(b). The experimental data shows the same 

trend as the theoretical model. The micro-Hall-Petch coefficients 𝑘𝜇
𝛼, for all seven grain boundaries 

are estimated by fitting the experimental data with the dislocation pile-up model, and the results 

are presented in Table 4.4. The slip system level grain sizes in the deformed grains and the micro-

notch sizes for each grain boundary are also reported in Table 4.4. 

 

 

 

 

 

Figure 4.9 (a) HR-EBSD stress map of the resolved shear stress on the active slip system in the 

right grain. The active slip system is defined based on the trace analysis and CPFE. The observed 

stress profile in front of the pile-up is extracted along the dashed line and compared with the pile-

up model. (b) The comparison of resolved shear stress ahead of pile-up was measured by HR-

EBSD and the pile-up model (Eqn. 4.6) to assess the prismatic micro-Hall-Petch slope in different 

GBs. 
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GB Number 1 2 3 4 5 6 7 

Slip Level Grain Size in the 

Grain with Slip Band (µm) 

40 40 39 44 41 41 41 

Notch Size (µm) 20 20 19 21 18 17 17 

𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 (MPa.m𝟏/𝟐) 0.455 

± 

0.05 

0.618 

± 

0.06 

0.661 

± 

0.07 

0.635 

± 

0.07 

0.685 

± 

0.02 

0.138 

± 

0.02 

0.641 

± 

0.07 

 

4.4.2 Grain Boundary Parameters 

To understand the effect of grain boundary parameters on micro-Hall-Petch coefficient, the 

quantitative geometrical angles describing the slip transmission across grain boundary as shown 

in Figure 4.10 need to be determined. To achieve this goal (4.3.2.1), the grain boundary plane 

orientation angles are measured, and (4.3.2.2) the active slip systems in Grain 1 (grain with the 

slip band, Grain 1 in Figure 4.3c) and Grain 2 (grain without evidence of any slip band, Grain 2 in 

Figure 4.3c) are determined. 

Table 4.4 A list of the prismatic micro-Hall-Petch coefficient for different GB 
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4.4.2.1 Grain Boundary Plane Orientation Angles Measurement 

The GB plane orientation angles include the trace angle (α), defined as the angle between 

the loading direction and the trace of the GB plane on the sample surface, and the grain boundary 

plane angle (β), defined as the angle between the sample surface normal and the trace of the GB 

plane (Figure 4.11(a)). α can be manually assessed using the plan view image captured by scanning 

electron microscopy (SEM), as shown in Figure 4.11(b). It is worth noting that 𝑥1- direction in the 

plan-view image should be aligned with the loading axis. Cross-sectional analysis of the grain 

boundary is performed to obtain the grain boundary plane angle, as shown in Figure 4.11(c). A 

Figure 4.10 A schematic representative for slip transmission through a GB. �⃗� 𝑖𝑛: Burgers vector of 

the incoming slip system, �⃗� 𝑜𝑢𝑡: Burgers vector of the outgoing slip system, �⃗� 𝑖𝑛: Slip plane normal 

of the incoming slip system, �⃗� 𝑜𝑢𝑡: Slip plane normal of the outgoing slip system, 𝑙 𝑖𝑛: Intersection 

line of the incoming slip plane and GB, 𝑙 𝑜𝑢𝑡: Intersection line of the outgoing slip plane and GB, 

𝑑 𝑖𝑛: Slip direction of the incoming slip system, 𝑑 𝑜𝑢𝑡: Slip direction of the outgoing slip system, θ: 

Angle between the two slip plane traces on the grain boundary plane, κ: Angle between slip 

directions, ψ: Angle between slip plane normal, δ: Angle between the incoming slip direction and 

the incoming slip plane trace on the grain boundary plane. 
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focused ion beam (FIB) is used to lift out a region of material perpendicular to the grain boundary 

line on the sample surface, and the angle β is manually measured for the different GBs. Table 4.5 

summarizes the measured α and β angles for the seven different GBs studied in this work. 

 

 

 

 

 

 

 

Figure 4.11 (a) Schematic representation of the GB plane. (c) The GB trace angle (α) is measured 

using the GB's plan view image (SEM image). (e) The GB plane angle (β) is measured using a 

cross-section of the GB after FIB removal of adjacent material. 
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GB ID 1 2 3 4 5 6 7 

α (°) 176.18 113.03 10.71 149.23 102.42 73.67 7.41 

β (°) 127.35 87.16 55.16 62.26 49.34 76.96 90.11 

4.4.2.2 Grain neighborhood simulations 

Simulations were conducted on GB neighborhoods for seven GB cases with two boundary 

conditions, as described in Section 4.2.2.4. Figure 4.12 depicts the variation of accumulated slip 

for the 3 basal and 3 prismatic slip systems for a particular GB neighborhood represented by the 

microstructure in Figure 4.6, for BC#1. As expected, profuse basal slip is observed in most regions 

of the microstructure section, and particularly in the grains not containing the notch. It is interesting 

to observe significant prismatic slip (relative to basal slip) in the grain containing a notch close to 

both notch ends. This affirms to some extent the experimental observation of a slip band emanating 

from the notch coincident with the trace of a prismatic plane, parallel to the trace of the notch. In 

this particular case, the alignment of the notch corresponds to that of the [12̅10](101̅0) prismatic 

system. Figure 4.12(d) depicts the accumulated slip variation of the [12̅10](101̅0) prismatic 

system, where a diffuse localization of accumulated slip can be observed. This could perhaps 

denote a representation of sharper slip localization observed in the experiment since one of the 

directions in which the accumulated slip localizes in the simulations is parallel to the trace of the 

notch. Figure 4.14(a) is a discrete map denoting the slip system ID (Table 4.6) with the most 

accumulated slip at each element of the FE mesh, with Figure 4.14(b) zooming in on the region 

Table 4.5 List of the trace angle (α) and the plane angle (β) of the different GBs investigated in 

this study  
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around the notch from which the slip band emanates. The dominance of  [12̅10](101̅0) prismatic 

activity is apparent.  

Figure 4.13 depicts the variation of accumulated slip for the 3 basal and 3 prismatic slip systems 

of the same microstructure for BC#2, where one can observe more profuse basal slip and relatively 

lower prismatic slip in the microstructure as compared to BC#1. However, it continues to 

demonstrate significant prismatic slip activity close to the notch, particularly for the 

[12̅10](101̅0) prismatic system. Figure 4.14(c) is a discrete map denoting the slip system ID with 

the most accumulated slip at each element of the FE mesh for BC#2, with Figure 4.14(b) zooming 

in on the region around the notch from which the slip band emanates. The conclusions remain the 

same as for BC#1, with the [12̅10](101̅0) prismatic system being dominant in terms of 

accumulated slip. 

Another interesting observation is the activation of all the prismatic systems in the vicinity of the 

notch for both boundary conditions (Figure 4.14(b) and 4.14(d)), irrespective of the direction of 

the notch. This is most likely caused by significant changes in the in-plane stress state around the 

notch due to the combined effect of the traction-free boundary and notch curvature. This entire 

exercise essentially demonstrates the effectiveness of such simple crystal plasticity models in 

predicting slip localizations in agreement with experimental observations. Additionally, it 

showcases the need to simulate only a very local neighborhood of the GB (about 10 grains) to 

make these predictions which are noteworthy considering performing inexpensive simulations 

which garner essential information. 

The slip system ID map in Figure 4.14 is now used to obtain the potential outgoing slip system. In 

this case, the potential outgoing slip system is chosen as the one with the most accumulated slip in 

the vicinity of the slip trace-GB intersection (Figure 4.14(b) and 4.14(d)). For the present case, the 
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neighborhood of this intersection for BC#1 presents two possibilities – slip system ID 2 and 3. In 

case of multiple possibilities, the slip system representing the majority of the grain in the slip 

system ID map is chosen, which in this case is ID 2. Similarly, slip system ID 2 is considered the 

potential outgoing slip system for BC#2 as well. Table 4.7 lists the incoming slip system (from 

slip trace) and potential outgoing slip system predicted by CPFE, along with some of the relevant 

angles characterizing the GB and the slip system-GB pair.   

 

 

Slip/Twin System ID Slip Direction Slip Plane 

 

Basal 

1 [112̅0] (0001) 

2 [2̅110] (0001) 

3 [12̅10] (0001) 

 

Prismatic<a> 

4 [12̅10] (101̅0) 

5 [21̅1̅0] (011̅0) 

6 [112̅0] (1̅100) 

 

 

Pyramidal<c+a> 

7 [1̅1̅23] (112̅2) 

8 [12̅13] (1̅21̅2) 

9 [21̅1̅3] (2̅112) 

10 [112̅3] (1̅1̅22) 

11 [1̅21̅3] (12̅12) 

12 [2̅113] (21̅1̅2) 

Table 4.6 List of slip direction and slip plane orientations for different slip/twin systems for Mg 

alloys.  
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Twin<c + a> 

13 [1̅011] (101̅2) 

14 [101̅1] (1̅012) 

15 [1̅101] (11̅02) 

16 [11̅01] (1̅102) 

17 [01̅11] (011̅2) 

18 [011̅1] (01̅12) 

 

 

  

Figure 4.12 Boundary Condition 1: (a) Accumulated slip for Basal 1, (b) Accumulated slip for 

Basal 2, (c) Accumulated slip for Basal 3, (d) Accumulated slip for Prismatic 1, (e) Accumulated 

slip for Prismatic 2, and (f) Accumulated slip for Prismatic 3. It can be observed that prismatic slip 

is particularly dominant in the neighborhood of the notches on either side. 
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Figure 4.13 Boundary Condition 2: (a) Accumulated slip for Basal 1, (b) Accumulated slip for 

Basal 2, (c) Accumulated slip for Basal 3, (d) Accumulated slip for Prismatic 1, (e) Accumulated 

slip for Prismatic 2, and (f) Accumulated slip for Prismatic 3. It can be observed that prismatic slip 

is particularly dominant in the neighborhood of the notches on either side. 
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4.4.3  Estimation of micro-Hall-Petch Coefficient as a Function of Grain-Boundary 

Parameters 

Table 4.7 and Table 4.8 summarize the slip systems of the observed prismatic slip band 

generated from the micro-notch and the potential outgoing slip systems under BC#1 and BC#2 for 

Figure 4.14 Visualization of most active slip system for all elements of the microstructure, 

corresponding to GB ID 3, included in Table 4.7. The numbers in the color bar correspond to the 

slip system IDs in Table 4.6.  The most active slip system in every element is recognized as the 

one with the highest accumulated slip within the element. The basal and prismatic <a> slip systems 

dominate in slip activity for both boundary conditions considered. (a) BC#1 – Most active slip 

system map (b) Close-up with prismatic slip trace superposed, (c) BC#2 – Most active slip system 

map (d) Close-up with prismatic slip trace superposed. For both BC#1 and BC#2, the incoming 

slip system is (101̅0)[12̅10] and the potential outgoing slip system is (0001)[2̅110]. 
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each individual grain boundary, respectively. The relevant angles (θ, 𝜅, ψ, 𝛿) are calculated and 

listed in these tables for each GB case.  

GB ID Incoming Slip System Potential Outgoing 

Slip System 

θ (°) 𝜿 (°) ψ (°) 𝜹 (°) 

1 (011̅0)[21̅1̅0] (0001)[2̅110] 74.73 69.94 63.26 27.48 

2 (011̅0)[21̅1̅0] (101̅0)[12̅10] 65.74 88.33 88.35 9.64 

3 (101̅0)[12̅10] (0001)[2̅110] 80.95 70.06 65.53 26.67 

4 (1̅100)[112̅0] (0001)[12̅10] 79.26 42.34 53.72 49.29 

5 (101̅0)[12̅10] (0001)[112̅0] 47.36 36.59 40.92 59.65 

6 (011̅0)[21̅1̅0] (011̅0)[21̅1̅0] 43.92 31.10 22.73 86.94 

7 (011̅0)[21̅1̅0] (0001)[2̅110] 87.95 70.54 72.79 58.48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7 List of the incoming prismatic slip system and the potential outgoing slip system of each 

grain boundary under BC#1, and the relevant angles (θ,𝜅,ψ, 𝛿) describing the prismatic slip band 

interaction with each grain boundary. 
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GB ID Incoming Slip System Potential Outgoing 

Slip System 

θ (°) 𝜿 (°) ψ (°) 𝜹 (°) 

1 (011̅0)[21̅1̅0] (0001)[2̅110] 65.89 69.94 63.26 27.48 

2 (011̅0)[21̅1̅0] (101̅0)[12̅10] 70.22 88.33 88.35 9.64 

3 (101̅0)[12̅10] (0001)[2̅110] 80.95 70.06 65.53 26.67 

4 (1̅100)[112̅0] (0001)[2̅110] 79.26 59.01 53.72 49.29 

5 (101̅0)[12̅10] (0001)[12̅10] 47.36 47.53 40.92 59.65 

6 (011̅0)[21̅1̅0] (011̅0)[21̅1̅0] 43.92 31.10 22.73 86.94 

7 (011̅0)[21̅1̅0] (0001)[2̅110] 87.95 70.54 72.79 58.48 

 

 The prismatic micro-Hall-Petch coefficient values (Table 4.4) are plotted versus the 

corresponding θ, the angle between the two slip plane traces on the grain boundary plane (Figure 

4.15(a) for BC#1, Figure 4.16(a) for BC#2); versus κ, the angle between incoming and outgoing 

slip directions (Figure 4.15(b) for BC#1, Figure 4.16(b) for BC#2); versus δ, the angle between 

the incoming slip direction and the intersection of the incoming slip plane with the grain boundary 

plane (Figure 4.15(c) for BC#1, Figure 4.16(c) for BC#2); and versus ψ, the angle between slip 

plane normals (Figure 4.15(d) for BC#1, Figure 4.16(d) for BC#2). The coefficient of 

determination, the R-squared value (0< 𝑅2 <1), is used to quantify and compare the correlation 

Table 4.8 List of the incoming prismatic slip system and the potential outgoing slip system of each 

grain boundary under BC#2, and the relevant angles (θ,𝜅,ψ, 𝛿) describing the prismatic slip band 

interaction with each grain boundary. 
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between each of the geometrical expression angles and the micro-Hall-Petch coefficient (as shown 

in each plot). The linear regression is stronger at higher values of 𝑅2. 

 

Figure 4.15 The prismatic micro-Hall-Petch coefficient values relevant angles (θ, 𝜅, ψ, 𝛿) 

calculated based on BC#1. (a) 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the angle between the two slip plane intersections with 

the GB (θ). (b) 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the Angle between incoming and outgoing slip directions (κ). (c) 

𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the angle between slip plane normal (ψ). (d) 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the angle between the 

incoming slip direction and the incoming slip plane trace on the GB plane (δ). 
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Figure 4.16 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values against relevant angles (θ, 𝜅, ψ, 𝛿) calculated based on BC#2. (a) 

𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the angle between the two slip plane intersections with the GB (θ). (b) 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs 

the angle between incoming and outgoing slip directions (κ). (c) 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the angle between 

slip plane normal (ψ). (d) 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 vs the angle between the incoming slip direction and the 

incoming slip plane trace on the GB plane (δ). 
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4.5 Discussion  

Prismatic slip band pile-ups at seven different GBs (Table 4.1) were studied using a 

combination of HR-EBSD, dislocation pile-up theory, and CPFE simulations. The grains with the 

highest Schmid factor for the prismatic slip system and the lowest Schmid factor for the basal slip 

were selected. A series of micro-FIB notches (Figure 4.3) parallel to the prismatic slip plane was 

machined in the grains to act as initiation sites for the prismatic slip bands. The resolved shear 

stress field ahead of the pile-up was measured using HR-EBSD approach (Figure 4.8), and the 

resulting stress profiles were fit to the expressions from a dislocation pile-up model to assess the 

micro-Hall-Petch coefficient for each individual GB (Table 4.4). The calculated  𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values 

vary from 0.138 MPa. m𝟏/𝟐 to 0.665 MPa. m𝟏/𝟐 which are almost three times larger than the 

calculated values for the 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 (0.054 MPa. m𝟏/𝟐  ̶ 0.184 MPa. m𝟏/𝟐) [29]. In our 

phenomenological model, since the applied resolved shear stress equilibrating a pile-up is assumed 

to be a Hall-Petch type relation, 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values already subsume the higher critical stress for 

prismatic slip compared to basal. This expectation is also consistent with experimental Hall-Petch 

constants for textures with prismatic + basal slip being higher than when primarily basal slip is 

present [21, 55, 56].  

To understand the role of grain boundaries in the observed variation of 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

, the relevant 

angles (θ,𝜅,ψ, 𝛿) for each individual GB was calculated. First, cross-sectional analysis of the GBs 

was performed by FIB to provide 3-D insights of the GBs plane, as summarized in Table 4.5. Then, 

CPFE modeling of each GB and the surrounding microstructure in the presence of micro-FIB 

notches under two different boundary conditions were used to predict the potential outgoing slip 

system (Table 4.7 and Table 4.8). The 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values were plotted against the relevant 
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geometric quantities involving the angles (θ,𝜅,ψ, 𝛿) for both boundary conditions (Figure 4.15 and 

Figure 4.16) and the results are evaluated using 𝑅2 values. In both boundary conditions, the plots 

of 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values against the angle between the two slip plane intersections with the GB (θ) 

have the highest 𝑅2 values (Figure 4.15(a) and Figure 4.16(a)), which is implying the critical role 

of the GB plane in estimating the prismatic micro-Hall-Petch coefficient. A similar observation 

was reported in our previous work [29], in the case of  𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 and its strong correlation with θ. 

This observation can be interpreted by the model presented by Davis [57] where it was shown that 

the energy barrier of each individual GB for stepped dislocation formation is proportional to 

sin(θ).  

The angle between the slip directions (κ), which was reported as the second most effective 

angle in determining basal micro-Hall-Petch in the previous work [29], shows a considerable 

correlation with 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values ((Figure 4.15(b) and Figure 4.16(b)). It is well known that the 

magnitude of residual Burgers vectors in slip transmission is proportional to κ angle and used as a 

criterion to evaluate the strength of each individual GB against slip transmission [58-61].  

Although, the angle between the incoming slip direction and the intersection of the incoming 

slip plane with the GB plane (δ), and the angle between slip plane normals (ψ), show a correlation 

with the 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values ((Figure 4.15(c), Figure 4.15(d), Figure 4.16(c), and Figure 4.16(d)), 

they are not as informative about slip transmission and GB as the other two angles. δ does not 

capture the outgoing slip system and its grain information and ψ does not include any information 

about grain boundary plane orientations.   

To consider both θ and κ angles in the estimation of the 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

, the following equation is 

proposed: 
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𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

= 𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐(1 − cos(θ)cos(κ))𝑐   ; 𝑐 > 0 (4.18) 

where 𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 and 𝑐 are model parameters. A similar relationship was proposed for the 

estimation of 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙[29]. The model was proposed based on the slip transmission criteria 

developed by Lee–Robertson–Birnbaum[62-64], where the factor cos(θ)cos(κ) was used to 

estimate the outgoing slip systems. 

𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values (Table 4.4) were fit with Equation 4.18 under both boundary conditions (Figure 

4.17).  The model parameters under BC#1 (Table 4.7) and BC#2 (Table 4.8) are obtained as 

𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 = 0.680 ± 0.07 MPa.m𝟏/𝟐 and c = 1.55 under BC#1, and 𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 = 0.687 ±

0.07 MPa.m𝟏/𝟐 and c = 1.83 under BC#2. Substituting Equation 4.18 in Equation 4.5 yields an 

expression for the slip resistance of prismatic slip systems as follows:  

𝜏𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐  =  𝜏0
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 +  
𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐(1 − cos(θ)cos(κ))𝑐  

√2𝑎
 (4.19) 

with the effect of texture and microstructural size taken into account. Along with a similar 

expression proposed for the basal slip in earlier work [29], this provides avenues to capture texture-

grain size coupling for Mg alloys. It is worthwhile to note that the entire procedure developed in 

this work can be extended to any alloy system and is particularly important when there is 

significant plastic anisotropy arising from the underlying crystallography.  
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The dependence of the micro-Hall-Petch coefficient for different slip systems on grain boundary 

metrics can be used as inputs to CPFE simulations, which can simulate the coupling between 

texture and grain-size effect. It is important to note that these simulations often involve 3-D 

synthetic microstructures generated based on input statistics which either don’t provide grain 

boundary inclinations due to a voxelated mesh (like in DREAM.3D) or where grain boundary 

conforming meshes are generated with flat grain boundaries and not curved boundaries (like in 

Neper). As an alternative, one can use the angles κ and ψ to construct the compatibility factor 

cos(ψ)cos(κ). Figure 4.18 depicts 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values against (1 − cos(ψ)cos(κ))𝑐 with 

𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 = 0.689 ± 0.07 MPa.m𝟏/𝟐 and c = 0.85 under BC#1, and 𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 = 0.699 ±

0.07 MPa.m𝟏/𝟐 and c = 1.07 under BC#2. This functional form can be used in CP modeling where 

each slip system and material point pair in the microstructure is assigned a slip-system level grain 

size (calculate from microstructural position data) and micro-Hall-Petch coefficient (using the 

Figure 4.17 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values against (1 − cos(θ)cos(κ))𝑐 based on (a) BC#1 and (b) BC#2. 
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functional form in Equation 4.18). This is the subject of study in our upcoming work, where the 

proposed model is input into a CPFE framework to study texture-grain size coupling.  

From the perspective of modeling the microstructural slices, it is to be noted that the slip band is 

not explicitly modeled, but the stress concentration at the notch is used to naturally initiate 

prismatic slip in the vicinity. Alternatively, the slip band itself can be explicitly modeled in CPFE 

using softening-based models [65-67] or using more recent crystal plasticity peridynamics (CPPD) 

models [68-70] where localizations are a natural consequence of non-local interactions. These 

approaches can capture the existence of localization bands more in line with experimental 

observations.  

 

 

4.6 Conclusions 

− An experimental method was developed to initiate the prismatic slip in the form of the localized 

band at low-stress levels in Mg-4Al. A series of sharp micro-notches parallel to the prismatic 

slip plane in specific grains were machined to act as slip initiation sites due to stress 

concentration and subsequent plasticity accommodation in front of a notch. 

Figure 4.18 The prismatic slip system micro-Hall-Petch coefficients (𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

) for the seven-

cases are plotted against the factor (1 − cos(ψ)cos(κ))𝑐 based on (a) BC#1 and (b) BC#2.  
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− A one-dimensional continuum dislocation pile-up model, coupled with the micro-Hall-Petch 

phenomenological model, was used to estimate the micro-Hall-Petch coefficient for prismatic 

slip from pile-up stress data. 

− The resolved shear stress ahead of blocked prismatic slip bands at seven different grain 

boundaries in Mg-4Al was measured using HR-EBSD method. The calculated  𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 

values vary from 0.138 MPa. m𝟏/𝟐 to 0.665 MPa. m𝟏/𝟐 which are almost three times larger 

than the calculated values for the 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 (0.054 MPa. m𝟏/𝟐  ̶ 0.184 MPa. m𝟏/𝟐). 

− Crystal plasticity simulations of microstructure slices for different GB cases were performed 

to inform the potential outgoing slip system, required to construct geometric expressions and 

ascribe 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values to dependence on these quantities. 

− The 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values were correlated with the geometric descriptors of the GBs, and it was 

concluded that the angle between the two slip plane traces on the GB plane (θ), and the angle 

between slip directions (κ) were the two most effective geometric parameters in estimating the 

magnitude of 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

. A relationship, 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

= 𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐(1 − cos(θ)cos(κ))𝑐  , was 

suggested including both of these angles to estimate the slip system level Hall-Petch slope for 

prismatic slip system, and the model parameters, 𝐾𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 and 𝑐, were calibrated for Mg-4Al 

alloys.   
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 Chapter 5: Implementation of Micro-Hall-Petch Equation into Crystal Plasticity with 

Application to Mg-4Al 

5.1 Abstract 

This chapter presents a method to incorporate the micro Hall-Petch equation into crystal 

plasticity constitutive models accounting for the microstructural features to understand the 

coupling between grain size, texture and loading direction. A rate-dependent crystal plasticity 

model implemented into the open-source PRISMS-CPFE plasticity code is adopted for crystal 

plasticity simulations. The effect of grain size and texture is accounted for by modifying the slip 

resistances of individual basal and prismatic slip systems based on the micro Hall-Petch equation. 

This modification endows each microstructural point with a slip system-level grain size and 

maximum compatibility factor which are used to modify the slip resistance. Comparisons in the 

Hall-Petch coefficients are presented between predicted stress-strain curves using original 

parameters from previous work and subsequently calibrated parameters. This approach provides 

the foundation to quantitatively model more complicated scenarios of coupling between grain size, 

texture and loading direction in the plasticity of Mg alloys. 

 

5.2 Introduction 

Simulations based on crystal plasticity constitutive models have proven to be a powerful 

tool to derive insights into polycrystalline microstructures from single-crystal constitutive models 

integrated with the governing equations on continuum mechanics. While classical crystal plasticity 
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constitutive models [1-5] have been extremely useful, by construction they are unable to capture 

the difference in mechanical behavior that arises from changes in the internal microstructural 

length scale, like the grain size. To address this issue one alternative has been the strain-gradient 

plasticity approach which has proven [6-9] particularly useful in capturing the intrinsic size effects 

arising in a number of plasticity-related phenomena. However, these models are relatively 

expensive to evaluate and also pose a challenge for parameter calibration since they involve a large 

number of internal variables. Another simpler alternative has been to include a grain size-

dependent contribution to the CRSS of individual slip systems by simply extending the Hall-Petch 

relationship to individual slip systems empirically. Based on such a modification, there have been 

very few computational studies addressing the coupling between grain size and texture in Mg 

alloys. Jain et al. [10, 11] conducted studies using a grain size-dependent viscoplastic self-

consistent crystal plasticity (VPSC) model on a rolled Mg alloy, which indicated the role of grain 

size-effect associated with prismatic slip in the tensile behavior. Such VPSC models have also 

been used to explore the role of grain size on the twin growth [12], the density of twins [13], and 

also the correlation between the crystallographic orientation of the grain and corresponding twin 

variant selected [14]. Ravaji et al. [15]  investigated the interacting effects between the grain size, 

loading direction and texture on the response of an Mg alloy. They investigated the role of grain 

size-texture coupling in reducing the net plastic anisotropy, the tension-compression asymmetry 

and the tempering of extension twinning with grain refinement across different textures and 

loading directions. Common in all these important studies is that a single average grain size is used 

to modify the CRSS for all the grains in the simulated microstructure. Moreover, this modification 

to the CRSS at the slip system level, which resembles the linear dependence on the inverse square-

root of the average grain size, uses a constant Hall-Petch type parameter for a particular slip system 
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for all the grains in the microstructure. In other words, the microstructural features are not captured 

directly in the parts of the constitutive model accounting for the grain size in some manner. 

Such an inclusion of the microstructural features builds on our recent work [16-18] which uses the 

micro-Hall-Petch equation as the basis for including the grain size effect in our constitutive model:     

𝜏𝛼 = 𝜏0
𝛼  +  𝜏𝑔

𝛼  =  𝜏0
𝛼  +  

 𝑘𝜇
𝛼

√𝑑𝛼
                                              (5.2) 

where 𝜏𝛼 denotes the initial slip resistance (identical to CRSS) associated with slip system 𝛼, 

decomposed into a grain size-independent contribution (𝜏0
𝛼) and grain size-dependent contribution 

(𝜏𝑔
𝛼). Additionally, this grain size-dependent contribution has a form similar to the classical Hall-

Petch equation but extended to the slip system level where  𝑘𝜇
𝛼 denotes the micro-Hall-Petch 

parameter and 𝑑𝛼 is a measure of the slip system-level grain size. Andani et al. [17, 18] integrated 

experimental measurements of pile-up stress ahead of slip bands blocked by a grain boundary, 

with a dislocation pile-up model and crystal plasticity simulations, to obtain the empirical power-

law relationship between  𝑘𝜇
𝛼 and certain geometrical descriptors of the grain boundaries for basal 

and prismatic slip systems:  

     𝑘𝜇
𝛼  =   𝐾𝜇

𝛼(1 − cos(θ)cos(κ))𝑐
𝛼
                                           (5.3) 
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where  𝐾𝜇
𝛼 denotes the micro-Hall-Petch multiplier and 𝑐𝛼 the micro Hall-Petch exponent, 

respectively for slip system 𝛼. ‘ψ’ and ‘κ’ denote angular quantities obtained from knowledge of 

the slip systems in neighboring grains and the geometric properties of the grain boundary (Figure 

5.1). As a result of these studies,  𝐾𝜇
𝛼 and 𝑐𝛼 were estimated for basal [17] and prismatic [18] slip 

systems, providing quantitative insights into the role of grain boundaries in informing the grain 

size-dependent contribution to the slip resistance. Additionally, in the interest of implementing 

such a relationship in crystal plasticity constitutive models, a similar power-law relationship was 

drawn where instead of the angle ‘θ’, the angle ‘ψ’, was used:    

   𝑘𝜇
𝛼  =   𝐾𝜇

𝛼(1 − cos(θ)cos(κ))𝑐
𝛼
                                                 (5.4) 

This aspect is particularly important in the simulation context since grain boundary inclination in 

synthetic microstructures is sensitive to the mesh used in their discretization. The relationship in 

Figure 5.1 A schematic representative for slip transmission through a GB. �⃗� 𝑖𝑛: Burgers vector of 

the incoming slip system, �⃗� 𝑜𝑢𝑡: Burgers vector of the outgoing slip system, �⃗� 𝑖𝑛: Slip plane normal 

of the incoming slip system, �⃗� 𝑜𝑢𝑡: Slip plane normal of the outgoing slip system, 𝑙 𝑖𝑛: Intersection 

line of the incoming slip plane and GB, 𝑙 𝑜𝑢𝑡: Intersection line of the outgoing slip plane and GB, 

𝑑 𝑖𝑛: Slip direction of the incoming slip system, 𝑑 𝑜𝑢𝑡: Slip direction of the outgoing slip system, θ: 

Angle between the two slip plane traces on the grain boundary plane, κ: Angle between slip 

directions, ψ: Angle between slip plane normal, δ: Angle between the incoming slip direction and 

the incoming slip plane trace on the grain boundary plane. 
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Eqn. 4 provides a way to sidestep the grain boundary information, and as a first step only include 

the relative crystallographic orientation between grains as the key parameter in parametrizing the 

micro-Hall-Petch parameter.  

In this chapter, we present our attempts to implement the micro-Hall-Petch equation into a 

crystal plasticity simulation framework and perform parametric studies. We briefly outline the 

rate-dependent crystal plasticity constitutive model implemented into the open-source PRISMS-

Plasticity crystal plasticity finite element (CPFE) framework [19-21], that is used for all our 

simulations. Then, we outline the procedure to compute the micro-Hall-Petch parameter,  𝑘𝜇
𝛼, and 

the slip system-level grain size, 𝑑𝛼, which forms part of the preprocessing step to then modify the 

slip resistances based on the micro-Hall-Petch equation. Following this, comparisons of stress-

strain curves are presented between simulations and experiments to assess the slip resistance and 

micro Hall-Petch multipliers reported in previous chapter [17, 18], before calibrating for a new set 

of parameters.  

5.3 Computational and Experimental Methods 

The author conducted the computational work in collaboration with Prof. Veera Sundararaghavan 

and his student Aaditya Lakshmanan. 

5.3.1 Micro Hall-Petch Constitutive Model 

As mentioned in the previous section, the initial slip resistance consists of a size-

independent and a size-dependent contribution. The computation of  𝑘𝜇
𝛼 includes information 

concerning the grain neighbors while 𝑑𝛼 encodes the information of both the grain size and grain 

morphology. We now outline the procedure followed in computing these key quantities (illustrated 

in Figure 2).  
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Assuming we are given a microstructure discretized as a structured grid of voxels, along with 

information about the grains, i.e., a set of grain identifiers(integers), and the orientation associated 

with those identifiers. With this input, 𝑑𝛼 is computed for each voxel of the microstructure as 

follows:  

1. Consider any particular voxel defined by it’s centroidal coordinates  𝐩𝑐 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) along 

with the corresponding grain, 𝐺, it belongs to. With this voxel fixed, consider slip system 

𝛼 for which we wish to compute 𝑘𝛼 and  𝑑𝛼, with  𝐦𝛼 denoting the slip direction.  

2. For grain 𝐺, identify its boundary 𝜕𝐺, which is essentially a collection of rectangular 

patches.  

3. Find the point 𝐩1 on 𝜕𝐺 closest1 to point 𝐩𝑐 along direction 𝐦𝛼.  Denote this closest 

distance by 𝑑1
𝛼.  

4. Find the point 𝐩2 on 𝜕𝐺 closest to point 𝐩𝑐 along direction -𝐦𝛼.  Denote this closest distance 

by 𝑑2
𝛼.  

5. The slip system-level grain size 𝑑𝛼 is defined as 𝑑𝛼 =  𝑑1
𝛼  +   𝑑2

𝛼.  

 𝑘𝜇
𝛼 is computed as follows: 

1. Having computed points 𝐩1and 𝐩2 the neighboring grains sharing these points with grain 

𝐺 are first found. Denote them by 𝐺1 and 𝐺2, respectively.  

2. Define  𝜓1
𝛼𝛽

 as the angle satisfying the relation 𝑐𝑜𝑠( 𝜓1
𝛼𝛽
)  =  𝐧𝛼 ⋅ 𝐧1

𝛽
 where 𝐧𝛼is the slip 

plane corresponding to slip system 𝛼 and 𝐧1
𝛽

 is the slip plane corresponding to slip system 

𝛽 in 𝐺1. Define  𝜅1
𝛼𝛽

 as the angle satisfying the relation 𝑐𝑜𝑠( 𝜅1
𝛼𝛽
)  =  𝐦𝛼 ⋅ 𝐦1

𝛽
 where 

                                                 
1 Since the grain G need not be a convex set. 
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𝐦𝛼 is the slip plane corresponding to slip system 𝛼 and 𝐦1
𝛽

 is the slip plane corresponding 

to slip system 𝛽 in 𝐺1.  

3. Compute the compatibility factor defined as 𝑐𝑜𝑠( 𝜓1
𝛼𝛽
) 𝑐𝑜𝑠( 𝜅1

𝛼𝛽
) over a chosen set of 

slip systems in 𝐺1and identify the maximum over this set. Denote this maximum by 𝜇1. 

4. Define  𝜓2
𝛼𝛽

 as the angle satisfying the relation 𝑐𝑜𝑠( 𝜓2
𝛼𝛽
)  =  𝐧𝛼 ⋅ 𝐧2

𝛽
 where 𝐧𝛼is the slip 

plane corresponding to slip system 𝛼 and 𝐧2
𝛽

 is the slip plane corresponding to slip system 

𝛽 in 𝐺2. Define  𝜅2
𝛼𝛽

 as the angle satisfying the relation 𝑐𝑜𝑠( 𝜅2
𝛼𝛽
)  =  𝐦𝛼 ⋅ 𝐦2

𝛽
 where 

𝐦𝛼is the slip plane corresponding to slip system 𝛼 and 𝐦2
𝛽

 is the slip plane corresponding 

to slip system 𝛽 in 𝐺2.  

5. Compute the compatibility factor defined as 𝑐𝑜𝑠( 𝜓2
𝛼𝛽
) 𝑐𝑜𝑠( 𝜅2

𝛼𝛽
) over a chosen set of 

slip systems in 𝐺2 and identify the maximum over this set. Denote this maximum by 𝜇2. 

6. Compute 𝑘𝛼 using the micro Hall-Petch equation as  𝑘𝜇
𝛼  =   𝐾𝜇

𝛼(1 −  𝑚𝑎𝑥(𝜇1, 𝜇2))
𝑐𝛼, 

where  𝐾𝜇
𝛼 is the micro Hall-Petch multiplier, 𝑐𝛼 is the micro Hall-Petch exponent, fixed 

for the material under consideration and 𝑚𝑎𝑥(𝜇1, 𝜇2)  denotes the maximum 

computability factor which is the maximum among 𝜇1 and 𝜇2. 

The computation of 𝑑𝛼 and  𝑘𝜇
𝛼 is implemented in a MATLAB script which is used as a pre-

processor to generate this data in a format readable by PRISMS-Plasticity CPFE. 
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5.4 Materials and experimental procedures 

Extruded Mg-4Al (wt.%) bars provided by CanmetMaterials are used in this work. The 

texture of the as-received material and the compressed samples (5% compression along the 

extrusion direction following heat treatment at 300°C for 3 hours) with the average grain size of 

Figure 5.2 Illustration depicting the workflow described in Section 5.2.2 to compute 𝑑𝛼 and  𝑘𝜇
𝛼. 

(a) Voxelated microstructure from DREAM.3D. (b) For any microstructural point in grain 𝐺 and 

line passing through it with slip direction 𝐦𝛼, find the neighboring grains 𝐺1 and 𝐺2 based on the 

points of intersection of the line with the boundary. (c) The slip system level grain size 𝑑𝛼 is 

computed for every point in the microstructure by finding the length of the line segment passing 

through that point connecting the two points on the grain boundary with direction 𝐦𝛼. (d) To 

compute  𝑘𝜇
𝛼 the primary quantity is the maximum compatibility factor which is computed using 

the knowledge of slip systems corresponding to the neighboring grains 𝐺1 and 𝐺2. The neighboring 

grains are identified by the neighbors of 𝐺 that share each of the two points on the grain boundary 

that were found for computing 𝑑𝛼. 
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55 µm and 68 µm, respectively are shown in Figure 5.3a and Figure 5.3b. Additional heat treatment 

was conducted on the as-received samples to provide specimens with average grain sizes of 

approximately 187 µm (515°C for 15 minutes) and 333 µm (550°C for 150 minutes) with textures 

very similar to the starting texture. Similarly, additional heat treatment was conducted on the 

compressed samples to provide specimens with average grain sizes of approximately 227 µm 

(515°C for 15 minutes) and 343 µm (550°C for 150 minutes) with textures very similar to the 

starting texture.  

Crystallographic orientation information was obtained using electron backscatter diffraction 

(EBSD). Scans were conducted using a Tescan Mira 3 scanning electron microscope equipped 

with an EDAX Hikari XP EBSD detector. Each scan was captured at a voltage of 30kV and a 

beam intensity of 20 nA with an average step size of 1 μm. The samples are mechanically ground 

using SiC papers up to a grit of 1200. Polishing is completed using three steps 6 μm, 3 μm, and 1 

μm diamond suspensions, followed by a final polish using Buehler Masterpolish on a Buehler 

Chemomet polishing cloth. Finally, samples are chemically etched in acetic-nitric solution (60 mL 

ethanol, 20 mL water, 15mL acetic acid, and 5 mL nitric acid) for 3-5 seconds. Tensile tests are 

conduced on samples with the gauge dimensions of 10 mm × 2 mm × 2 mm using INSTRON load 

frame equipped with a 100kN load cell at a constant displacement rate of 1μm/second. The 

macroscopic strain was measured using an extensometer attached to the sample. 

 

(a) 
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(b) 

 

5.5 Preprocessing 

5.5.1 Synthetic Microstructure Generation 

  Here we outline the procedure to generate synthetic microstructures for our simulations 

using DREAM.3D [22], an open-source tool to generate artificial microstructures given certain 

input statistics. The primary inputs required by DREAM.3D to generate microstructures are the 

texture and grain size distribution. For each of the nine cases, the input from microscopy is an 

Figure 5.3 (a) Texture 1 - As-extruded texture for which the specimens with the three average grain 

sizes are deformed along the extrusion direction (y-axis), (b) Texture 2 – Close to basal texture for 

which the specimens with the three average grain sizes are deformed along normal direction (z-

axis). 
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EBSD orientation map consisting of the orientations of the pixels in the pixelated image of a 2D 

section of the microstructure (Figure 5.4a). MTEX [23], a free MATLAB toolbox for texture 

analysis, is used to read in the EBSD map, compute the ODF and pole figures (Figure 5.4d), and 

write out this EBSD data in a format readable by DREAM.3D.  For the grain size distribution data, 

the equivalent grain sizes for all the grains in the 2D section is straightforward to obtain using 

MTEX. However, this furnishes a 2D measure of grain size, which is always an under-estimation 

of the real grain size because these EBSD maps are 2D sections. The way we addressed this issue 

is to use the 2D equivalent grain size statistics(Figure 5.4b) obtained from MTEX along with the 

Scheil-Schwartz-Saltykov method [24-26] to obtain the 3D grain size statistics, assuming equiaxed 

grains. Saltykov [24]  proposed a general algorithm to compute the probability distribution of 

spheres of different sizes, given information about the apparent sizes (from 2D sections). The 3D 

grain size statistics are then fit with a lognormal distribution (Figure 5.4c), whose characteristic 

parameters (mean and variance) are fed into DREAM.3D to generate synthetic microstructures 

(Figure 5.4e). 

Once these microstructures are generated, the relevant information is passed into the 

MATLAB script to compute 𝑑𝛼 and  𝑘𝜇
𝛼 for all voxels constituting the microstructure, using the 

procedure described in Section 2.2. 
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5.5.2 Constitutive Parameters 

All crystal plasticity simulations were performed assuming possible activity of 12 slip 

systems, listed in Table 5.1 - 3 basal, 3 prismatic, 6 pyramidal <c+a> - and 6 pyramidal <c+a> 

twin systems. Table 5.2 lists the elastic stiffness constants used in calibration [27-29]. In the 

hardening law, the latent hardening coefficient was set to 𝑞 = 1.0, while the flow rule parameters 

were set as �̇�0  =  0.001 and 𝑚 =  34. The basal and prismatic slip resistances and micro-Hall-

Petch multipliers are the four parameters that fit based on comparison with experimental data, 

which we present later.  

Figure 5.4 Illustration depicting the workflow described in Section 2.4.1 to obtain necessary inputs 

for synthetic microstructure generation in DREAM.3D. (a) Microstructure section from 

experiment, (b) 2D grain size statistics extracted from microstructure section, (c) Use Saltykov’s 

method to obtain 3D grain size statistics and fit it with lognormal distribution, (d) Pole figures 

from experimental texture data, (e) Use lognormal fit and pole figures as input to DREAM.3D to 

generate synthetic microstructure.  
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Table 5.3 presents the original set of crystal plasticity constitutive parameters to examine the 

predictions of the stress-strain curves for the different grain size and texture cases. Table 5.4 shows 

the same table with some values replaced by symbols which represent free parameters which we 

calibrate to obtain better match with the stress-strain curves.   

 

 Slip/Twin System ID Slip Direction Slip Plane 

 

Basal 

1 [112̅0] (0001) 
2 [2̅110] (0001) 
3 [12̅10] (0001) 

 

Prismatic<a> 

4 [12̅10] (101̅0) 
5 [21̅1̅0] (011̅0) 
6 [112̅0] (1̅100) 

 

 

Pyramidal<c+a> 

7 [1̅1̅23] (112̅2) 
8 [12̅13] (1̅21̅2) 
9 [21̅1̅3] (2̅112) 
10 [112̅3] (1̅1̅22) 
11 [1̅21̅3] (12̅12) 
12 [2̅113] (21̅1̅2) 

 

 

Twin<c + a> 

13 [1̅011] (101̅2) 
14 [101̅1] (1̅012) 
15 [1̅101] (11̅02) 
16 [11̅01] (1̅102) 
17 [01̅11] (011̅2) 
18 [011̅1] (01̅12) 

 

 

 

 

 

Table 5.1 List of slip direction and slip plane orientations for different slip/twin systems for Mg 

alloys. 

𝐶11 𝐶33 𝐶12 𝐶13 𝐶44 

59.4 61.6 25.61 21.44 16.4 

Table 5.2 Elastic stiffness constants (in GPa) for Mg-4Al alloy [27-29] 
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Mode 𝑠0
𝛼(MPa) ℎ0

𝛼(MPa) 𝑠𝑠
𝛼(MPa) 𝑎𝛼  𝐾𝜇

𝛼 (𝑀𝑃𝑎 𝑚0.5) 𝑐𝛼 

Basal <a> 4.34 0.0 - 1.0 0.159 0.6 

Prismatic <a> 42.54 1000.0 150.0 1.0 0.699 1.07 

Pyramidal <c + a> 140.0 0.0 - 1.0 - - 

Twin <c + a> 18.0 0.0 - 1.0 - - 

5.6 Results and Discussion 

5.6.1 Original parameters vs Calibration parameters 

Synthetic microstructures were generated for as-extruded and basal textures for three 

different average grain sizes. For each texture and grain size case, DREAM.3D was fed the input 

texture and lognormal distribution parameters to generate a microstructure represented as a 50 x 

50 x 50 voxelated grid containing approximately 500 grains. All microstructures generated using 

texture 1 were deformed along the extrusion direction(y-axis) with periodic boundary constraints 

to a strain of 1.5%. All the microstructures generated using texture 2 were deformed along the 

normal direction(z-axis) with periodic boundary constraints to a strain of 0.35%.  

As mentioned earlier, there are parameters that we calibrate – initial basal slip resistance (𝑠0
𝑏), 

initial prismatic slip resistance (𝑠0
𝑝
), the basal micro Hall-Petch coefficient (𝐾𝜇

𝑏) and the prismatic 

micro Hall-Petch multiplier (𝐾𝜇
𝑝
).   Before calibrating these four constitutive parameters, we test 

the stress-strain curve predictions given by the original slip resistance parameters which formed 

part of the simple continuum dislocation pile-up models in previous work and the corresponding 

micro Hall-Petch multipliers obtained from curve fitting in those works (Table 5.3). Figures 5a 

and 5b depict the stress-strain curve comparison between CPFE simulations and experiments for 

Table 5.3 Original crystal plasticity constitutive model parameters [16-18] 
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texture 1 and texture 2, respectively. It is interesting to note that even though the stress-strain 

curves do not all match with a single parameter set, they produce quite reasonable stress-strain 

curves. It should be noted that the slip resistance values used here were fed to pile-up models, and 

the micro Hall-Petch coefficients were then obtained from localized measurements ahead of slip 

bands blocked by grain boundaries. 

(a) (b) 

  

 

(c) (d) 

  

Figure 5.5 Stress-strain curve comparison between CPFE simulations and experiments for (a) 

texture 1 and, (b) texture 2. Yield stress vs inverse square-root grain size comparison between 

CPFE simulations and experiments for (c) texture 1 and, (d) texture 2. 
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Figures 5.5c and 5.5d depict the yield stress (𝜎𝑌) plotted against the corresponding inverse 

square-root of grain size (√𝑑
−1
), computed from the average 2D grain size measured in the 

experimental microstructure sections. In all our plots of yield stress against the grain size we 

always set 𝑑 to be the 2D grain size of the microstructural section.  Table 5.4 shows the comparison 

between the Hall-Petch coefficients, i.e., the Hall-Petch intercept (𝜎0) and Hall-Petch slope (𝐾𝐻𝑃) 

for the two textures between CPFE simulations and experiments. 

Hall-Petch 

coefficients 

Texture 1: Exp. Texture 1: CPFE Texture 2: Exp. Texture 2: 

CPFE 

𝜎0 (MPa) 110.06 92.05 37.66 35.66 

𝐾𝐻𝑃 (𝑀𝑃𝑎 𝑚
0.5) 0.37242 0.28697 0.06944 0.07393 

 

We then calibrated the stress-strain curves to obtain a better match with experiments by modifying 

the four crystal plasticity constitutive parameters. Figures 6a and 6b depicts the stress-strain curve 

comparison between CPFE simulations and experiments for texture 1 and texture 2, respectively, 

for the calibrated set of parameters - 𝑠0
𝑏 = 9.3 𝑀𝑃𝑎 , 𝑠0

𝑝
= 50.5 𝑀𝑃𝑎, 𝐾𝜇

𝑏 = 0.060 𝑀𝑃𝑎 𝑚0.5, 

𝐾𝜇
𝑝
= 1000 𝑀𝑃𝑎 𝜇𝑚0.5, 𝑠0

𝑡 = 14 𝑀𝑃𝑎 and 𝐾𝑡  =  0.030 𝑀𝑃𝑎 𝑚0.5. Figures 6c and 6d depict the 

yield stress (𝜎𝑌) plotted against the corresponding inverse square-root of grain size (√𝑑
−1
) based 

on the simulations with the calibrated parameters.  

 

 

 

Table 5.4 Comparison of Hall-Petch coefficients between CPFE simulations and experiments for 

texture 1 and texture 2 
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(a) (b) 

 

(c) (d) 

     

 

Table 5.5 shows the comparison between the Hall-Petch coefficients, i.e., the Hall-Petch intercept 

(𝜎0) and Hall-Petch slope (𝐾𝐻𝑃) for the two textures between CPFE simulations with calibrated 

parameters and experiments. 

 

 

Figure 5.6 Stress-strain curve comparison between CPFE simulations with calibrated parameters 

and experiments for (a) texture 1 and, (b) texture 2. Yield stress vs inverse square-root grain size 

comparison between CPFE simulations with calibrated parameters and experiments for (c) texture 

1 and, (d) texture 2. 
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Hall-Petch 

coefficients 

Texture 1: Exp. Texture 1: 

CPFE 

Texture 2: Exp. Texture 2: 

CPFE 

𝜎0 (MPa) 110.06 112.56 37.66 37.86 

𝐾𝐻𝑃 (𝑀𝑃𝑎 𝜇𝑚
0.5) 0.37242 0.30584 0.06944 0.06565 

 

5.6.2 Crystal Plasticity Finite Element Method  

A rate-dependent crystal plasticity constitutive model is adopted within the framework of 

finite deformation continuum mechanics.  The primary kinematic quantity is the deformation 

gradient, 𝐅, which maps tangent vectors in the reference configuration to corresponding vectors in 

the deformed configuration. Assuming 𝐅 abides by a multiplicative decomposition [30, 31] into 

elastic(𝐅e) and plastic(𝐅p) components as follows: 

𝐅 = 𝐅e𝐅p (5.5) 

𝐅p encodes the distortion of the body as a consequence of crystallographic slip via dislocation slip 

on specific slip systems. It maps the reference configuration to an intermediate configuration 

where the underlying lattice remains unchanged. 𝐅e captures the elastic stretch and lattice rotation 

and maps the intermediate configuration to the deformed configuration. Since plasticity is 

inherently deformation path-dependent we invoke certain deformation rates. Using Eqn. (5.5), the 

velocity gradient, 𝐋 = �̇�𝐅−1, can then be decomposed into elastic and plastic components:  

𝐋 = �̇�e𝐅e−1⏟    
Elastic part

+ 𝐅e�̇�p𝐅p−1𝐅e−1⏟        
Plastic part

 
(5.6) 

Table 5.5 Comparison of Hall-Petch coefficients between CPFE simulations with calibrated 

parameters and experiments for texture 1 and texture 2 
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Contributions to the velocity gradient from elastic and plastic parts are both defined in the 

deformed configuration. We can alternatively work with the plastic part of the velocity gradient 

defined on the intermediate configuration, 𝐋p , as:  

𝐋p  = �̇�p𝐅p−1 (5.7) 

Noting that the kinematics of crystallographic slip effectively involves shearing of the lattice on 

specific crystallographic slip planes along with specific crystallographic slip directions, we have  

𝐋p  = �̇�p𝐅p−1 = ∑ �̇�𝛼𝐦𝛼⨂𝐧𝛼 

𝑛𝑠

𝛼=1

= ∑ �̇�𝛼𝐒𝛼 

𝑛𝑠

𝛼=1

 (5.8) 

where �̇�𝛼 is the shearing rate on slip system 𝛼, 𝑛𝑠 is the number of slip systems, 𝐦𝛼 and 𝐧𝛼 are 

slip direction and slip plane normal unit vectors, respectively. 𝐒𝛼, referred to as the Schmid tensor 

for the slip system 𝛼, is a shorthand for the dyadic product of 𝐦𝛼 and 𝐧𝛼. We note that 𝐦𝛼 and  

𝐧𝛼 are crystallographic vectors in the intermediate configuration. 

We adopt a rate-dependent crystal plasticity framework, where the shearing rate �̇�𝛼 is a function 

of the resolved shear stress 𝜏𝛼 through a phenomenological power law [32]  as follows: 

�̇�𝛼 = �̇�0 |
𝜏𝛼

𝑠𝛼
|
𝑚

sign(𝜏𝛼) (5.9) 

where �̇�0 is the reference shearing rate, 𝑚 is the strain rate sensitivity exponent, 𝜏𝛼 is the resolved 

shear stress on slip system 𝛼, 𝑠𝛼 is the slip resistance on slip system 𝛼 and ‘sign’ refers to the 

signum function.  The resolved shear stress is expressed in terms of the second Piola-Kirchoff 

stress in the intermediate configuration [33, 34], 𝐓, via the following relation: 

𝜏𝛼 = (𝐅eT𝐅e𝐓) ∶  𝐒𝛼 (5.10) 

where ‘∶’ denotes the inner product of second order tensors defined as 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗𝐵𝑖𝑗 . Eqn. (5.10) 

is derivable by equating the plastic part of the internal mechanical power to the power expended 

in crystallographic shearing of slip system 𝛼 with resolved shear stress 𝜏𝛼 and shearing rate �̇�𝛼. 
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The second Piola-Kirchoff stress in the intermediate configuration is linked to the elastic Green-

Lagrange strain as follows   

 𝐓 = ℒ ⋅  𝐄e =
1

2
ℒ ⋅  (𝐅eT𝐅e  −  𝐈) (5.11)  

  

where 𝐄e is the elastic Green-Lagrange strain tensor, ℒ is the elastic stiffness (a fourth-order 

tensor) and 𝐈 is the second-order identity tensor. ‘⋅’ denotes the product between a fourth-order 

tensor and second-order tensor to furnish a resultant second-order tensor, defined as  (ℒ ⋅ 𝐀)𝑖𝑗  =

 ℒ𝑖𝑗𝑘𝑙𝐴𝑘𝑙. We additionally note that the Cauchy stress, 𝛔 , and the first Piola-Kirchoff stress in the 

reference configuration, 𝐏 , can be computed from 𝐓 as follows:  

𝐓 = 𝐅e−1𝐏 𝐅𝑇𝐅e−𝑇  =  det(𝐅e)𝐅e−1𝛔 𝐅e−𝑇  (5.12)  

Finally, the evolution of slip resistance for slip system 𝛼, which governs isotropic hardening, is 

defined as follows [34]: 

�̇�𝛼 = ∑ ℎ𝛼𝛽�̇�𝛽𝛽                                                  (5.13) 

𝑠𝛼(0) =  𝑠0
𝛼  +  𝑠𝑔

𝛼  =  𝑠0
𝛼  +  

 𝑘𝜇
𝛼

√𝑑𝛼
                                   (5.14)                                                                                          

 

where ℎ𝛼𝛽, denotes the hardening rate on slip system 𝛼 due to the slip on system 𝛽. 𝑠0
𝛼 and 𝑠𝑔

𝛼 

denote the size-independent and size-dependent contributions, respectively, to the initial slip 

resistance. 𝑠𝑔
𝛼  is assumed to hold a functional-form identical to the classical Hall-Petch equation, 

but now extended to the level of an individual slip system, with  𝑘𝜇
𝛼 denoting the micro Hall-Petch 

multiplier and 𝑑𝛼 denoting a measure of the slip system-level grain size. The hardening moduli 

ℎ𝛼𝛽 are prescribed as a power-law relationship involving the combined effect of work hardening 

and recovery, with both self and latent hardening contributions as follows: 
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                                      ℎαβ =

{
 
 

 
      ℎ0

β
[1 −

𝑠β

𝑠𝑠
β]
𝑎β

         ;   coplanar systems

  ℎ0
β
𝑞 [1 −

𝑠β

𝑠𝑠
β]
𝑎β

          ;  otherwise 

 (15) 

where ℎ0
β
 denotes the hardening parameter for slip system β, 𝑞 is the latent hardening ratio, 𝑠𝑠

β
 is 

the saturation slip resistance for slip system β, and 𝑎β is a material constant for slip system β 

governing the sensitivity of the hardening moduli to the slip resistance. The constitutive model is 

implemented in the PRISMS-Plasticity CPFE code [20, 21], an open-source, scalable software 

framework to simulate elasto-plastic boundary value problems  built on top of the deal.II [35] open 

source finite element(FE) library. 

5.7 Conclusions  

− A procedure to compute the micro-Hall-Petch parameter,  𝑘𝜇
𝛼 ( 𝑘𝜇

𝛼  =   𝐾𝜇
𝛼(1 −

cos(θ)cos(κ))𝑐
𝛼
), and the slip system-level grain size, 𝑑𝛼, to calculate slip resistances based 

on the micro-Hall-Petch equation (𝑠𝛼(0) =  𝑠0
𝛼  +  𝑠𝑔

𝛼  =  𝑠0
𝛼  +  

 𝑘𝜇
𝛼

√𝑑𝛼
) was developed. 

− The method to incorporate the modified slip system resistance into a CPFE framework to 

simulate the plastic behavior of microstructures, including the grain size and texture effects, 

was developed.  

− We presented a comparison of the stress-strain curves between CPFE and experiments using 

parameters proposed in previous work before calibration using four parameters – the basal and 

prismatic slip resistances and the basal and prismatic micro Hall-Petch multipliers.  

− The comparison between the Hall-Petch coefficients, i.e., the Hall-Petch intercept (𝜎0) and 

Hall-Petch slope (𝐾𝐻𝑃) for the two textures between CPFE simulations with calibrated 

parameters and experiments were presented. The results show the CPFE model with modified 
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slip resistance based on the micro-Hall-Petch equation can capture the role of grain size and 

the texture in predicting the mechanical behavior of materials.  This work provides the 

foundation to quantitatively model more complicated scenarios of coupling between grain size, 

texture, and loading direction in the plasticity of Mg alloys. 
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 Chapter 6: Conclusion and Remarks about Future Work 

 

High-resolution electron backscatter diffraction method was used to measure the local stress 

ahead of blocked slip bands at grain boundaries in a deformed Mg-4Al alloy for different grain 

boundaries. The results were combined with a continuum dislocation pile-up model to assess the 

slip system level Hall-Petch slope for basal slip system (𝑘𝜇
𝑏𝑎𝑠𝑎𝑙) and the prismatic slip system 

(𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

). The results indicate that 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙 values vary from 0.054 MPa−m𝟏/𝟐 to 0.184 

MPa−m𝟏/𝟐 and 𝑘𝜇
𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐

 values vary from 0.138 MPa. m𝟏/𝟐 to 0.665 MPa. m𝟏/𝟐 which are 

almost three times larger than the calculated values for the 𝑘𝜇
𝑏𝑎𝑠𝑎𝑙. The slip system level Hall-Petch 

slope values were correlated with the geometric descriptors of the GBs, and it was concluded that 

the angle between the two slip plane traces on the GB plane (θ), and the angle between slip 

directions (κ) were the two most effective geometric parameters in estimating the magnitude of 

the slip system level Hall-Petch slope values A relationship, 𝑘𝜇
𝑠𝑙𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚

= 𝐾𝑠𝑙𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚(1 −

cos(θ)cos(κ))𝑐  , was suggested including both of these angles to estimate the slip system level 

Hall-Petch slope for basal and prismatic slip system and the model parameters, 𝐾𝑠𝑙𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚 and 𝑐, 

were calibrated for Mg-4Al alloys (chapter 3 and chapter 4). In chapter 5, a procedure to 

incorporate the micro Hall-Petch equation into a CPFE framework to simulate the plastic behavior 

of microstructures, including the grain size and texture effects, was developed. A comparison of 

the stress-strain curves between CPFE and experiments using parameters proposed in previous 

work before calibration using four parameters – the basal and prismatic slip resistances and the 

basal and prismatic micro-Hall-Petch multipliers was presented.  
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 Based on the results and conclusion discussed throughout this dissertation, the following 

recommendations are made for future work: 

− It will be important to understand the micro-Hall-Petch relationship for twining systems. It 

has been previously shown that twining interactions with grain boundaries play a key role 

in understanding the strength of Mg alloy. However, there is no comprehensive 

experimental work to quantify the micro-Hall-Petch relationship for different twining slip 

systems in Mg alloys. Having such unprecedented understanding can help to future develop 

the current crystal plasticity models to better predict the role of grain boundaries in 

strengthening mechanisms in Mg alloys.  

− This study assumes that the slip bands blocked at the grain boundaries observed in SEM 

represent the dislocation pile-up. To confirm this hypothesis, site-specific transmission 

electron microscopy (TEM) analysis should be used to experimentally observe the 

dislocation pile up at the grain boundaries.  This provides more quantitative information 

about how dislocation interacts with grain boundaries and dislocation distribution around 

grain boundaries. 

− The 1D continuum dislocation pile-up model used in chapters 3 and 4 is an 

oversimplification of the actual physics, which is much more complicated. Additionally, 

the back-stress that might arise from geometrically necessary dislocation (GND) 

distributions in the vicinity of the GB is not considered explicitly in the pile-up model. 

Their importance has been demonstrated in the context of large-grained titanium, where 

correlations were drawn between GND content and geometric metrics of the GB. However, 

quantification of this back-stress for informing micromechanical models like the present 

pile-up model should be performed.    
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− This study proposed the slip system level Hall-Petch slope as a function of geometric 

descriptors of the GBs and the model parameters, 𝐾𝑠𝑙𝑖𝑝 𝑠𝑦𝑠𝑡𝑒𝑚 and 𝑐, were calibrated for 

Mg-4Al alloys. However, the proposed relationship should be extended to the other 

polycrystalline materials. It is required to perform a fundamental study to understand the 

interrelationship between the model parameters and the properties of the materials, such as 

the CRSS values.  

 

 


