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ABSTRACT

I present my work to measure the radii of observed star clusters and investigate

the formation and evolution of star clusters with cosmological simulations. By mea-

suring the radii of over 6000 young star clusters in 31 nearby galaxies, I find that

galaxies share a common cluster radius distribution and that a clear mass-radius re-

lation exists. These results provide observational constraints for models of cluster

formation and provide the initial conditions for detailed studies of cluster evolution.

Next, I examine the properties of nuclear star clusters (NSCs) in an existing suite

of cosmological simulations. I find that NSCs have spreads in age and iron abun-

dance similar to those of the iron-complex globular clusters of the Milky Way. This

lends support to the hypothesis that these globular clusters are the remnant NSCs of

disrupted dwarf galaxies.

To investigate the formation of star clusters at high redshift and their evolution

over cosmic time, I ran a series of cosmological simulations that directly modeled star

clusters. I first create a new set of initial conditions (ICs) for these simulations. I

developed a method that optimizes the grid structure of the IC to make simulations

using it more computationally efficient and nearly a factor of two faster. I then

use these ICs for the new simulations which directly model star cluster formation

and evolution. After implementing several updates to the existing prescriptions, I

investigate how variations in the subgrid models change cluster properties. I find that

increasing the momentum boost from supernovae lowers the galactic star formation

rate by decreasing the number of low-mass clusters. The star formation efficiency per

freefall time dramatically changes cluster properties, with higher values leading to

xxxiii



more massive clusters, shorter timescales for cluster formation, and higher integrated

star formation efficiencies. I find that most massive clusters form at high redshift

z > 4, and extrapolation of cluster disruption to z = 0 produces good agreement

with both the Galactic globular cluster mass function and age-metallicity relation.

xxxiv



CHAPTER I

Introduction

Star clusters are some of the most beautiful objects in the night sky. With a

backyard telescope, one can see these dense collections of stars in a single field of

view. The view only gets better when using the Hubble Space Telescope (Figure 1.1).

Thousands, if not millions, of stars are all together, bound to each other and acting

like a single object. Star clusters are more than just jewels in the night sky, though.

They are important probes for understanding how stars form within our home galaxy,

the Milky Way. Where did the stars within a cluster form? How old are these

clusters? How big are they? How have these stars remained together for so long?

Why are some stars in clusters but not others? All these questions have motivated

scientific investigations over the last several hundred years. I am one in a long line

of astronomers asking these questions about star clusters and developing increasingly

sophisticated tools for answering them. In this dissertation, I’ll describe my work to

contribute to this field of knowledge.

To start, this introduction describes how galaxies form. Clusters are but one

component of galaxies, so we must first understand the bigger picture. I’ll then

dive into some properties of star clusters, setting up the questions I’m asking in this

dissertation. I close this introduction with some recent approaches to solving these

questions and laying out where my work fits in.
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Figure 1.1 Image of star cluster M15 from the Hubble Space Telescope (Credit
NASA/ESA).
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1.1 Galaxy Formation

1.1.1 Galaxy Formation in a Cosmological Context

The Universe started from an initial singularity in a dramatically quick expansion

known as the Big Bang. While the Universe was nearly homogenous in the instant

after the Big Bang, quantum fluctuations result in very small primordial density per-

turbations. Only 10−36 seconds after the beginning of the Universe, a process known

as inflation began (Guth, 1981). The size of the Universe increased dramatically,

stretching the initial quantum fluctuations to much larger scales. As the Universe

continues to expand even after inflation ends, eventually matter becomes the domi-

nant component of the Universe, with radiation and dark energy having lower energy

densities. However, the photon density is still high enough that baryonic matter and

radiation are coupled together. Radiation pressure acts on the gas in addition to the

regular gas pressure, greatly increasing the gravitational force required to overcome

this pressure and begin collapse. However, dark matter, which does not interact with

photons, lacks any pressure support and is able to freely collapse, starting the pro-

cess of structure formation. Eventually, as the Universe expands further and cools,

electrons recombine with protons, forming the first atoms. As Thomson scattering

from free electrons is the primary way in which photons interact with ionized bary-

onic matter, this decrease in the number of free electrons lets photons decouple from

the baryonic gas. These photons are able to stream away freely and continue all the

way to z = 0 to be seem by us now as the Cosmic Microwave Background (CMB).

When decoupling happens, it removes the radiation pressure support on the gas. This

makes it much easier for baryonic gas to begin gravitational collapse. With the dark

matter structures growing for quite a while now, the baryons follow the dark matter

into these newly forming cosmic structures that eventually grow into the galaxies

we see today. Without the initial quantum density fluctuations, inflation expanding
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these fluctuations to large scales, and the fact that dark matter does not interact with

photons, the beautiful cosmic structures we see today would not exist.

Even after baryons begin collapsing, cosmic structures continue growing, driven

by dark matter. Once a given perturbation collapses, the dark matter reaches a

steady state, which we call a dark matter halo (Navarro et al., 1997). Analytic

models can predict the mass distribution of these halos well (Press & Schechter, 1974),

and simulations can impressively match the distribution of matter in the Universe

(Springel et al., 2006). While dark matter lays the foundation for galaxy formation,

we now turn to what happens to the baryons inside a given dark matter halo.

1.1.2 Galaxy Formation on Small Scales

The cosmological framework described in the previous section set the stage for

galaxy formation within individual dark matter halos. Here, the physics we will

encounter is much more complicated, with gas, radiation, stars, and dark matter all

influencing one another through a wide range of processes. To start, the gravitational

force of the dark matter pulls gas into the forming halo. This gas dissipates its

thermal energy by radiating it away, decreasing the temperature and therefore the

pressure support, allowing the gas to collapse to denser configurations in the center

of the dark matter halo. While the gas can lose its thermal energy, it cannot lose its

angular momentum. Tidal torques in the early Universe gave halos and their gas some

spin, and this angular momentum must be conserved as the gas collapses, making a

disk the natural configuration of gas within galaxies (Fall & Efstathiou, 1980; Mo

et al., 1998).

Within this gas disk, the gas is not totally uniform. The densest parts of this gas

can collapse further once they exceed the threshold laid out by Toomre (1964). These

regions become dense enough that molecular hydrogen can form, making these objects

known as giant molecular clouds (GMCs). In spiral galaxies, GMCs trace the spiral
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structure, indicating that star formation is enhanced within the spiral arms. Within

GMCs, supersonic turbulence and self-gravity lead to a complex internal structure,

with clumps inside the GMC having even higher densities (Urquhart et al., 2018).

These clumps are the seeds of star formation. Once the mass of a clump reaches the

Jeans mass, runaway collapse begins and continues until stars have formed (Jeans,

1902).

The process of star formation is incredibly complicated, and as an entire field of

astronomy there is simply too much to even summarize here (see Krumholz 2014 for

a recent review). In the interest of brevity, I will summarize some of the processes

most relevant to this dissertation. As the gas of a molecular cloud is converted into

stars, we write the star formation rate as

Ṁ⋆ =
ϵff
tff
Mg (1.1)

where Ṁ⋆ is the star formation rate, Mg is the gas mass of the cloud, tff is the

free-fall time of the cloud, and ϵff is the star formation efficiency per free-fall time.

ϵff is a very important parameter that describes the efficiency of star formation by

quantifying what fraction of gas is turned into stars per free-fall time (Krumholz

et al., 2019). As this framework implies, GMCs tend to form large collections of stars

in one episode, which typically lasts a few Myr (Da Rio et al., 2010; Beccari et al.,

2017). The resulting group of stars is known as a star cluster, and most stars form

in clusters (Lada & Lada, 2003).

Once these stars begin to form, feedback from these stars works to disperse the

GMC and prevent future star formation. As protostars form, they produce outflows

that eject significant amounts of gas and can star to break up the dense regions of

molecular clouds (Bally, 2016). Once massive stars form, their UV photons ionize

the gas and contribute radiation pressure, continuing the dispersal of the natal cloud
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(Williams & McKee, 1997). Finally, massive stars explode as supernovae (SN). Be-

cause SN happen in evolved stars, feedback from SN is delayed compared to other

methods. They contribute less to the dissolution of individual molecular clouds, es-

pecially at low masses (Grudić et al., 2022). However, the large amounts of energy

injected by SN lead to dramatic consequences within the galaxy as a whole (Larson,

1974). SN greatly reshape the gas nearby, can launch galactic outflows, and can trig-

ger star formation by contributing to the collapse of nearby gas. On galaxy scales, SN

feedback has proved to be one of the essential ingredients that determine the cosmic

star formation rate of galaxies (Cole et al., 1994; Hopkins et al., 2014).

Star clusters play an essential role in the story of galaxy formation. As most stars

form within clusters, they can be thought of as the building blocks of galaxies. This

makes them useful for understanding two major subfields of astronomy, star formation

and galaxy evolution. The properties of young star clusters depend strongly on the

physics of star formation, then their evolution over time depends on the galactic

structure they’re embedded in. Star clusters that have survived billions of years can

reveal properties of ancient galaxies and help constrain their assembly history. In this

dissertation, the overarching goal is to understand star cluster evolution over cosmic

time. This requires understanding the initial properties of clusters as well as the

processes that govern their evolution. With that in mind, let us now take up some of

the properties of star clusters to make the goals of this dissertation more specific.

1.2 Star Clusters

In this section, I will describe some of the different classes of star clusters we

observe in the Universe and the processes that shape their evolution over cosmic

time.

6



1.2.1 Young Star Clusters

As the mass of a cluster is its most basic property, one of the key descriptors of the

young (<100 Myr) cluster population is the initial cluster mass function. The mass

function of young massive clusters (YMCs) in external galaxies is shown in Figure 1.2

from Portegies Zwart et al. (2010). These mass functions are well described by a

Schechter (1976) function, which is a power law with an exponential cutoff at high

masses. The power law slope α is consistently measured to be around −2 (Bastian,

2008; Krumholz et al., 2019). However, the value of the cutoff mass depends on the

star formation rate of the host galaxy, with more intense star formation giving higher

cutoff masses. This also has the effect of increasing the maximum cluster mass, letting

galaxies with more intense star formation form more massive clusters (Larsen, 2002).

This can be seen in Figure 1.2, where the Antennae (a pair of interacting galaxies

undergoing vigorous star formation) forms clusters with masses above 106M⊙, unlike

all other galaxies shown in this figure.

The radius distribution of young clusters is another important observable. The

radius is initially set at the end of the cluster formation process (Murray, 2009;

Choksi & Kruijssen, 2021), so measurements of radii can constrain models of cluster

formation. In addition, as we will discuss further in Section 1.2.2, the dynamical

evolution of star clusters is very sensitive to their density. Measuring the radius (and

therefore the density) helps constrain the timescale for cluster disruption.

However, radii measurements are often more difficult to obtain for clusters in

external galaxies, as clusters must be at least partially resolved. The Hubble Space

Telescope (HST) has been essential for this work, enabling measurements of cluster

radii in M31 (Johnson et al., 2012), M51 (Chandar et al., 2016), M82 (Cuevas-Otahola

et al., 2020), and M83 (Ryon et al., 2015), among others (e.g. Ryon et al., 2017). While

these measurements have led to many interesting results, their heterogeneity can

cause difficulties when comparing results. These studies used different instruments,
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Figure 1.2 Figure from Portegies Zwart et al. (2010) showing the cluster mass func-
tions of clusters younger than 1 Gyr in different galaxies. Dashed and dotted lines
indicate Schechter functions, both with α = −2 but different cutoff masses. The
bottom panel shows the logarithmic slopes of the Schechter functions shown in the
top panel.
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different PSF construction, different fitting algorithms and different definitions. With

the advent of large star cluster surveys such as the Legacy Extragalactic UV Survey

(LEGUS, Calzetti et al., 2015; Adamo et al., 2017; Cook et al., 2019), the opportunity

exists to create large uniform catalogs of cluster radius and density. In Chapter II, I

will discuss my work to create the largest currently available uniform catalog of young

star cluster radii.

1.2.2 Globular Clusters

In addition to the young clusters that we observe in the Milky Way and other

galaxies, we also find old, massive clusters known as globular clusters (GCs) (Brodie

& Strader, 2006). These clusters have masses in the range ∼ 104 − 106M⊙ and ages

typically older than 10 Gyr (Harris, 1996; Jordán et al., 2007). These old ages make

GCs a particularly powerful tool for understanding galaxy formation. When GCs

form, they inherit the chemical properties of their host galaxies, giving us a snapshot

of the state of the galaxy at a given time. The large masses also requires conditions

that don’t exist in the Milky Way currently, giving us insight into the properties of

galaxies at high redshift (Kruijssen, 2014). GCs also form in satellite galaxies, and

when these satellites merge with a central galaxy (such as the Milky Way), their

clusters are deposited in this central galaxy. We can then use the distinct properties

of these clusters to reconstruct the accretion history of the Milky Way (Kruijssen

et al., 2019a).

GCs have sizes of a few parsecs, which means they are consistent with YMCs found

in the local Universe (Ryon et al., 2017). This naturally leads to the hypothesis that

GCs are the surving subset of a larger population of YMCs that formed at high

redshift. However, the mass function of GCs is well characterized by a lognormal

distribution with a peak mass of around 2×105M⊙ (Harris, 1991; Jordán et al., 2007),

in contrast to the Schechter (1976) function commonly used to describe YMCs. This
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transformation of the mass function over cosmic time in this way would require a

preferential destruction of low-mass clusters. The initial population of star clusters

forming at high redshift would not fully reach us today at z = 0.

This hypothesis has found support from many studies (e.g. Fall & Zhang, 2001;

Vesperini et al., 2003; Prieto & Gnedin, 2008; Elmegreen, 2010; Kruijssen, 2015).

Clusters face a range of processes that disrupt them, allowing for the transformation

in cluster populations over time (Spitzer, 1958, 1987; Gnedin & Ostriker, 1997). The

initial gas expulsion decreases the gravitational potential of the cluster, unbinding

many low-mass clusters (Hills, 1980). From there, clusters evolve within the gravi-

tational potential of their host galaxy. In particular, the strength of the tidal field

determines how much energy individual stars need to become unbound from the clus-

ter and escape. Stronger tidal fields make it easier for stars to leave clusters. This

is often parametrized in terms of the tidal radius (or Jacobi radius), which describes

the radius within which stars remain bound to the cluster. For an axisymmetric disk,

the Jacobi radius is

rJ =

(
GM

λx

)1/3

(1.2)

where M is the cluster mass and λx is the eigenvalue of the tidal tensor along the

direction towards the galactic center.

One way in which stars can move outside of this radius and leave the cluster hap-

pens because of stellar evolution. As the stars in clusters evolve, supernovae explode

and AGB stars shed their outer envelopes, decreasing the stellar mass of the cluster.

This makes the cluster expand due to the decreased gravitational potential, but this

also shrinks the tidal radius. Some stars that were previously inside this radius are

now outside it and are now unbound, decreasing the mass of the cluster further. Re-

laxation also decreases the mass of the cluster. The distribution of velocities in the

cluster tends toward a Maxwellian as stars randomly exchange energy. But stars with

too much energy can then escape the cluster, making this high-energy tail continually
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underpopulated. This cycle of the velocity distribution refilling the high-energy tail

only for these stars to then escape produces a gradual mass loss over time.

In addition to the processes that happen in a constant tidal field, variations in the

tidal field also serve to disrupt clusters. Clusters pass by dense GMCs, which provide

tidal shocks that can completely unbind the least dense clusters or strip stars from

denser clusters (Spitzer, 1958). Many clusters also have orbits that take them above

and below the plane of the disk. Passing back through the disk imparts a similar tidal

shock (Ostriker et al., 1972). Finally, the orbit of clusters often changes, gradually

changing the tidal field and therefore the timescales required for clusters to disrupt.

Dynamical fraction descreases the angular momentum of clusters, causing them to

spiral towards the galactic center (Chandrasekhar, 1943). Radial migration can move

clusters inward or outward (Sellwood & Binney, 2002).

The density of the cluster plays a central role in determining whether clusters

survive (e.g. Gieles & Renaud, 2016). Denser clusters are more resistant to tidal

disruption. The mass-density relation (or equivalently, the mass-radius relation) of

clusters is therefore an essential initial condition that governs how clusters evolve over

time. If low-mass clusters are less dense, then they will disrupt more quickly. This is

another reason why constraining cluster radii is critical. Radius measurements give us

constraints on cluster formation theories, but then also give us the initial conditions

for understanding cluster evolution over cosmic time.

To properly model the evolution of star cluster populations over cosmic time,

cosmological simulations are needed. These simulations are the only ones that can

accurately model the hierarchical growth of galaxies and their star cluster populations,

form star clusters with realistic properties in the correct locations within galaxies, and

then track cluster evolution over time in a realistic tidal field. All of the processes

described in the last few paragraphs must be modeled self-consistently to accurately

track cluster evolution over time and recover the properties of observed GCs at z = 0.
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This is the central goal of my dissertation. In Chapter II I discuss my measure-

ments of star cluster radii, which constrain the initial conditions of cluster evolution.

Then in Chapters IV and V, I discuss my work on a suite of cosmological simulations

that model star cluster formation and evolution. These simulations have an algo-

rithm for star cluster formation, allowing me to investigate the properties of young

star clusters. They also directly model cluster disruption, enabling an investigation

of the evolution of star cluster populations over cosmic time.

1.2.3 Nuclear Star Clusters and their Relation to Globular Clusters

Nuclear star clusters (NSCs) are a special class of star cluster located in the

innermost regions of most galaxies (Leigh et al., 2012). These clusters are much more

massive and luminous than other star clusters, often being the brightest star cluster in

their host galaxy (Côté et al., 2006; Jordán et al., 2009; Neumayer et al., 2020), even

though their radius can be similar to typical star clusters (Georgiev et al., 2016).

In the Milky Way’s NSC, studies have found a complicated star formation history

(Do et al., 2015; Feldmeier-Krause et al., 2017a). Stars of a wide variety of ages and

metallicities are present.

There are two main theories for how NSCs form. First, dynamical friction can

cause GCs to drift to the center of the galaxy, where over time multiple clusters merge

into a large NSC (Tremaine et al., 1975; Lotz et al., 2001). On the other hand, the

presence of stars with ages less than 10 Myr in the Milky Way’s NSC suggests a recent

episode of in situ star formation (Krabbe et al., 1991; Lu et al., 2013). These two

mechanisms likely both contribute, with GC accretion being dominant in low-mass

galaxies, while in situ star formation dominates at higher masses (Neumayer et al.,

2020).

One particular reason NSCs are interesting is their potential link to the currently-

existing GCs of the Milky Way. When a satellite galaxy hosting an NSC merges with
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a larger central galaxy, the outskirts of the galaxy will be stripped away, potentially

leaving the NSC isolated. It would then appear as a massive GC, but with stars of

a wide range of ages and metallicities (Freeman, 1993; Böker, 2008). We see several

clusters like this in the Milky Way. As typical GCs have a single value of metallicity,

these clusters with measurable iron spreads have become known as “anomalous” or

“iron-complex” clusters (Marino et al., 2015). Some examples include ω Cen (Johnson

et al., 2009), M54 (Carretta et al., 2010a), and Terzan 5 (Massari et al., 2014).

While the connection between the anomalous GCs and NSCs has long been sus-

pected, it needs to be investigated in a fully cosmological context. Simulations of star

cluster formation within this cosmological context would allow a comparison of the

properties of simulated NSCs with the observed anomalous GCs in the Milky Way.

1.3 Star Cluster Modeling in Simulations

With this wealth of observational data, we are well-positioned to test theories

of cluster formation and evolution. While analytic models can explain some simple

aspects of star cluster formation, they have their limitations. On cosmological scales,

the analytic framework for structure formation based on linear perturbation theory

breaks down once the fluctuations grow large, making future evolution very complex

to model analytically. On galactic scales, simple models for gravitational collapse of

molecular clouds assume that clouds are spherical and either isolated or embedded

in a simple galactic disk (Jeans, 1902; Toomre, 1964; Escala & Larson, 2008). Real

molecular clouds are complex, hierarchically structured objects that evolve in sim-

ilarly complex ways. Molecular clouds are not the only complex structures within

galaxies. The galaxy-scale distributions of gas and stars do not always follow simple

analytical models. Their evolution is governed by a huge range of physical processes,

such as heating, cooling, stellar feedback, dynamical interactions from galactic merg-

ers, and magnetic fields. This complexity makes detailed analytic models impossible.
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Numerical simulations are therefore essential for turning an idea into detailed predic-

tions that can be compared against observations.

In simulations of galaxy formation, the simulation code must numerically model

the evolution of gas, stars, and dark matter. Stars and dark matter are both typically

treated as collisionless particles that move under the influence of gravity only. Gas

follows the Eulerian equations for hydrodynamics, which describe the conservation of

mass, momentum, and energy. An equation of state is also required. All components

contribute to the gravitational potential through the Poisson equation. Numerically,

these equations are solved by discretizing the gas into discrete resolution elements.

This can be implemented in several ways. A full comparison of methods is beyond

the scope of this introduction (see Vogelsberger et al. 2020 for a recent review),

but I will summarize two key methods. One popular approach is smoothed particle

hydrodynamics (SPH), which is a Lagrangian method that treats gas as particles

that follow the local flow (Gingold & Monaghan, 1977). Fields such as the density

can be reconstructed through kernel density estimation. Alternatively, grid based

approaches divide the simulation volume into cells, which each have defined quantities

such as density and temperature. These cells exchange mass and energy through cell

interfaces. In the simulations used in this dissertation, I use the grid-based Adaptive

Refinement Tree (ART) code (Kravtsov et al., 1997; Kravtsov, 1999).

While solving hydrodynamics and gravity is essential to modeling galaxies, simply

following the flow of gas under the influence of gravity is not enough. Stars form out

of dense regions of GMCs, but no simulation has the dynamic range to follow the

gas from the kpc galactic scales down to the AU scales of star formation. Therefore,

simulations need some prescriptions for what happens on scales below the resolution

limit. These prescriptions are called “subgrid models,” and are essential components

of astrophysical simulations. For example, most simulations of galaxy formation

instantaneously convert gas to stars once it meets some set of criteria, usually ones
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requiring the gas to be dense and cold. Similarly, the feedback from massive stars is

another process that requires subgrid model. By definition, subgrid models are needed

when the simulation cannot resolve a given process, meaning that they are often ad-

hoc and have free parameters. As an example, supernovae have been modeled in many

different ways over the years (Katz, 1992; Springel & Hernquist, 2003; Stinson et al.,

2006; Agertz et al., 2011, 2013; Hopkins et al., 2014; Keller et al., 2014; Hopkins et al.,

2018). To reproduce reasonable galaxy properties, the free parameters of subgrid

models need to be calibrated against observations. This calibration is an essential

part of the process of running modern simulations of galaxy formation.

While the basic framework of simulations is conceptually simple, they are com-

putationally expensive. Millions to billions of computational elements (stars, dark

matter particles, gas cells) are required to model galaxies. This expense means that

tradeoffs must be made. While high resolution allows for more accurate modeling

of galaxies, particularly on small scales, the increase in the number of resolution el-

ements means that these simulations must contain a small volume (Emerick et al.,

2019). On the other hand, simulations that aim to simulate a cosmological volume

must have lower resolution to be computationally feasible (Vogelsberger et al., 2014;

Schaye et al., 2015; Pillepich et al., 2018). No simulation can do everything.

When running a simulation, one must start from an initial condition (IC). The IC

specifies the volume contained in the simulation and has an initial configuration of

gas properties within this volume. This takes many forms depending on the simula-

tion. Simulations of GMC often use ICs containing a uniform sphere with a random

velocity field to emulate turbulence (Lane et al., 2022), while ICs for simulations of

isolated galaxies typically include gas, stars, and dark matter following simple ana-

lytical profiles (Kim et al., 2016). Of particular interest for this dissertation are ICs

for cosmological simulations. These ICs typically are created at very high redshift

(e.g. z = 100), and contain density fluctuations based on the matter power spec-
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trum at that redshift (see Chapter IV for a more complete summary, and Hahn &

Abel 2011 for a detailed description). These ICs can easily be made to cover cos-

mological volumes, with boxes over 100 Mpc on a side being common for the largest

hydrodynamic simulations. However, this large volume means that while galaxies are

modeled in their full cosmological context, the resolution must be low. On the other

hand, simulations of single isolated galaxies can have much higher resolution, but lack

the cosmological environment that is essential for properly modeling the hierarchical

growth of galaxies.

To bridge these scales, a hybrid approach has been developed, known as “zoom-in”

ICs (Katz et al., 1994; Navarro &White, 1994). These simulations model cosmological

volumes with very low resolution, while dramatically increasing the resolution in the

volume containing a region of interest, such as a galaxy or cluster. For example, one

zoom-in IC used in this dissertation has a box size of 35 comoving Mpc, cell sizes in

the uninteresting region of 137.5 comoving kpc, then cell sizes as small as 3 physical

pc inside the region of interest. This huge dynamic range is challenging for grid based

codes like ART to handle. Later in Chapter IV of this dissertation, I describe my

work to make zoom-in initial conditions more computationally efficient for the ART

code.

With this basic summary of the key aspects of simulations in hand, let us turn to

simulations of star cluster formation. There are several approaches currently used to

simulate the problem. These range from very high resolution simulations of individ-

ual molecular clouds without any galactic context, to simulations of single galaxies

that directly model star clusters, to simulations of cosmological volumes with purely

subgrid models of cluster formation. In the rest of this section I’ll discuss several

examples of simulations modeling star cluster formation, discuss the strengths and

weaknesses of each, then close with a discussion of where my work fits in.
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Figure 1.3 Figure adapted from Grudić et al. (2022) showing the evolution of the gas
surface density and locations of stars in a simulated star cluster as it forms.

1.3.1 Simulations of Individual Molecular Clouds

To understand how star clusters first form out of molecular clouds, several groups

simulate individual molecular clouds with very high resolution, including resolving

individual stars (e.g. Klessen & Burkert, 2000; Offner et al., 2009; Fujii et al., 2021;

Mathew & Federrath, 2021). Simulating a whole galaxy with this resolution would

be too computationally expensive, but a single molecular cloud is feasible. A recent

example of this is the STARFORGE project (Grudić et al., 2021). In Grudić et al.

(2022), they simulated one molecular cloud of mass 2×104M⊙ with a mass resolution

of 10−3M⊙. They were able to reproduce some key star formation observables, such

as the IMF and the stellar multiplicity fraction. They also found that the cluster

assembles hierarchically, as shown in Figure 1.3. Stars initially form in separate

subclusters that collapse along with the gas into a central compact cluster. Eventually,

feedback from the newly formed stars disperses the gas, reducing the gravitational

potential and allowing the stars to expand again. Their simulated star cluster is

unbound, and would continue to disperse if the simulation were continued.

While simulations like these are excellent tools for understanding the process of

star cluster formation on small scales, their high cost means that they cannot currently

be extended to longer timescales, more massive molecular clouds, or broader portions

of the galaxy. These simulations cannot determine the long-term evolution of star

clusters, as they do not simulate beyond the formation of the star cluster and do not
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Figure 1.4 Figure from Kim et al. (2018) showing the evolution of a simulated star
cluster forming. The grey shading in the top panel shows the projected gas-density,
with red points marking star particles younger than 5 Myr and blue points marking all
other star particles. The middle panel shows the gas surface density, and the bottom
panel shows the gas Mach number. Columns show the evolution of the region with
time. In the second column, a very dense cloud forms at the intersection of converging
flows, which quickly forms a star cluster that disperses the gas, then remains bound
for the entirety of the simulation.

include the surrounding galactic environment.

1.3.2 Directly Resolving Star Clusters in Galaxy Formation Simulations

While simulations of molecular clouds have resolution too high to extend to full

galaxies, efforts have been made to run full galaxy simulations with resolution just

high enough to resolve star clusters. Of particular interest are simulations from the

Feedback In Realistic Environments (FIRE) project as reported on in Kim et al.

(2018). These authors use a zoom-in IC around a halo with a virial mass ∼ 1010M⊙

at z = 6, using a mass resolution of 800h−1M⊙ and force resolution of 1.4h−1 pc. With

this high resolution, massive star clusters are resolved by 102 − 103 star particles. In

particular, they followed the evolution of a massive (≈ 106M⊙) gravitationally bound

star cluster as it forms at z ≈ 7. In Figure 1.4 I reproduce a visualization of this

cluster.
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Simulations like this are excellent tools for understanding the formation of glob-

ular clusters at high redshift. They self-consistently model the formation of stars at

extremely high resolution, even resolving the half-mass radius of the cluster. Feed-

back from the new cluster stops future star formation, as it does in simulations of

molecular clouds. While simulations such as these are perhaps the future of cluster

formation simulations, they are limited by their high resolution. The simulations of

Kim et al. (2018) only ran for 420 Myr. Simulations of Milky Way-mass galaxies to

z = 0 with this resolution are prohibitively expensive. Other types of simulations are

needed to follow the evolution of clusters over cosmic time.

1.3.3 Semi-analytic Models of Star Cluster Evolution

In contrast to simulations that directly resolve cluster formation, semi-analytic

models are well-suited to following the evolution of populations of star clusters over

cosmic time. One example of this class of simulations is the E-MOSAICS model

(Kruijssen & Lamers, 2008; Kruijssen, 2009; Kruijssen et al., 2011, 2012; Pfeffer et al.,

2018; Keller et al., 2020; Trujillo-Gomez et al., 2021). This model uses the EAGLE

hydrodynamic cosmological simulation code as a base (Schaye et al., 2015), then

applies a subgrid model of cluster formation and evolution on top. When stars form,

the model treats each star particle as a collection of star clusters with an assumed mass

function. The tidal evolution of these clusters can be tracked in the simulation over

time, directly using the star particle’s environment to calculate disruption. These star

particles can be tracked to z = 0, enabling the modeling of GC kinematics. However,

these models are limited by the low spatial resolution of EAGLE. It does not resolve

the cold dense phases of the interstellar medium, so it underestimates tidal disruption

of clusters. This results in the overproduction of low-mass clusters at z = 0.

A simpler model is that developed in a series of papers starting with Muratov &

Gnedin (2010) and continuing to Li & Gnedin (2014); Choksi et al. (2018); Choksi
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Figure 1.5 Figure from Choksi & Gnedin (2019b) showing relation between galaxy
halo mass and mass of the globular cluster system. The gray shaded region shows
the fidicual model result, which matches observations well.

& Gnedin (2019a,b). These models are based on dark matter merger trees from

simulations such as Illustris (Vogelsberger et al., 2014). Clusters are seeded when

the halo growth rate is large, so as to simulate cluster formation in galactic mergers

or other rapid star formation events. Scaling relations are used to determine cluster

formation rates, with masses of individual clusters drawn from an assumed mass

function. Clusters then tidally disrupt at a constant rate. Remarkably, this model

only has two free parameters, but can reproduce several attributes of observed star

cluster populations, including the relation between mass in GCs and halo mass of

the host galaxy. In Figure 1.5 I reproduce a figure from Choksi & Gnedin (2019b)

showing this relation. However, this model currently contains no information about

the locations of clusters within galaxies.

20



While semi-analytic models such as these are powerful tools for understanding

the evolution of star cluster populations over time, they are less able to inform our

understanding of star cluster formation. Both models presented here assume a cluster

initial mass function. While E-MOSAICS does model the location of clusters within

galaxies, it does not self-consistently account for the feedback from star clusters when

setting cluster properties. Clusters are seeded based on analytic prescriptions using

local gas conditions. A different class of simulations are needed to understand cluster

formation and evolution together.

1.3.4 Cosmological Simulations with Continuous Cluster Formation

The final category of simulations I’ll discuss are the unique simulations presented

in Li et al. (2017, 2018); Li & Gnedin (2019) by former University of Michigan Astron-

omy Ph.D. student Hui Li. All other cosmological simulations treat star formation

as an instantaneous process, with the prescription not changing significantly since

the 1990s (Katz, 1992; Cen & Ostriker, 1992). Even though star formation happens

over several Myr, and these simulations have timesteps small enough to resolve this

process temporally, they do not. In contrast, this new formalism does resolve star

formation, letting a star particle form within a GMC over time until its feedback

disperses the gas. This treats star clusters as the unit of star formation.

Star particles are seeded in dense molecular gas, and accrete material over time

from a region repreenting the GMC. Figure 1.6 shows a cartoon from Li et al. (2018)

illustrating how the star cluster particle can accrete gas from this region of fixed

physical size (with a radius of 5 pc) representing the GMC, which can include multiple

cells within the simulation volume. The growth rate of a cluster is given by

Ṁ =
ϵff
tff

∑
cell

fGMCVcellfH2ρgas (1.3)
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Figure 1.6 Figure from Li et al. (2018) showing a sketch of the star forming GMC
sphere within the cell structure of the simulation.

where ϵff is the local star formation efficiency per freefall time tff , fGMC is the fraction

of cell volume Vcell included in the GMC, fH2 is the local mass fraction of molecular

gas, and ρgas is the local total gas density. ϵff is a key parameter that determines

that rate of cluster growth, influencing many other cluster properties in turn. Gas

accretion continues until feedback from the newly formed stars terminates future

accretion, ending the cluster’s growth. This self-consistently sets the mass of the star

particles. However, not all stars are bound to the newly formed cluster. To account

for this, a prescription determines the initial bound fraction based on the integrated

star formation efficiency of the formed cluster. Clusters that turn more of their gas

into stars have a higher fraction of their stars gravitationally bound in a cluster (Li

et al., 2019). These prescriptions self-consistently model star cluster formation, with

particles that can be interpreted as individual star clusters.

Importantly, this direct model for cluster formation does not require the assump-

tions that semi-analytic models like E-MOSAICS do. The cluster mass function arises
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naturally, rather than being imposed. The later evolution of clusters is also tracked

well, as clusters evolve in the tidal field of the galaxy, which is simulated at high reso-

lution. Unlike very high resolution simulations of star cluster formation such as Kim

et al. (2018), these simulations are able to span many Gyr of evolution, potentially

reaching z = 0. For these reasons, this model occupies a niche not otherwise occupied

by simulations of cluster formation.

Simulations using this prescription for star cluster formation used an initial condi-

tion containing a single MW-mass galaxy and were run to z = 1.5 (Li et al., 2017, 2018;

Li & Gnedin, 2019). These simulations were able to reproduce many key observed

properties of star clusters, including the shape of the initial cluster mass function, the

total mass of stars contained in bound clusters, the relationship between the maxi-

mum cluster mass and the star formation rate density, and the formation timescales

of star clusters.

This simulation suite presented a novel approach for modeling star cluster for-

mation in cosmological simulations and showed that it produces realistic star cluster

properties, making these simulations a success. However, they still had some limi-

tations. The biggest limitation is that the simulations only reached z = 1.5. Direct

comparisons with the observed cluster population at z = 0 is not possible. Impor-

tantly, cluster disruption cannot be fully followed to z = 0 to see which clusters

survive as GCs. While analytical calculations are possible, they are naturally limited

(Li & Gnedin, 2019). To fully understand how GCs form, we need to self-consistently

track their evolution over cosmic time. Also, these simulations only contained one

Milky Way-sized galaxy, limiting the statistical power of the comparisons that can be

made.

In this dissertation, I will describe my work to run the next-generation simulations

of star cluster formation in a cosmological context using this model. I have made

several improvements to the cluster formation and feedback prescription, then run a
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new suite of simulations. These runs use two Local Group analogs, giving four Milky

Way mass galaxies rather than a single one. More importantly, these runs are set up

with the goal of reaching z = 0 to enable the comparisons with the Milky Way laid

out in the previous paragraph. While they have not reached z = 0 yet, my work sets

the stage for this important comparison.

1.4 Dissertation Overview

In the rest of this dissertation, I will describe my work investigating star cluster

formation in simulations and observations. On the broadest scales, my goal is to

understand how clusters evolve over cosmic time. While I obviously cannot achieve

that fully in one dissertation, I have made advances in several key areas that both

increase our current knowledge and set the stage for future work.

Chapter II describes my work to measure the radii of young star clusters. These

measurements can be used to place quantitative constraints on theories of cluster for-

mation, while also setting the initial conditions for cluster evolution. In Chapters III,

IV, and V, I describe my work modeling star cluster formation in cosmological sim-

ulations. Chapter III presents my work to test the hypothesis that NSCs of satellite

galaxies could become the progenitors of the anomalous GCs seen in the Milky Way.

In Chapter IV, I present my efforts to modify ICs for cosmological simulations to make

simulations using them more computationally efficient. This sets the stage for the

capstone of this dissertation, Chapter V. Here I describe my new suite of cosmological

simulations that model cluster formation. I perform a detailed analysis of different

prescriptions for cluster formation and feedback, investigating how subgrid models

should be tuned to optimally match observations. I also show initial results for the

evolution of star clusters, showing that cluster disruption over time can transform the

mass function of young clusters to the mass function of GCs in the MW.
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CHAPTER II

Radii of Young Star Clusters in Nearby Galaxies

This chapter was published as: Brown, G., & Gnedin, O. Y. 2021, MNRAS,

508, 5935

Abstract

We measure the projected half-light radii of young star clusters in 31 galaxies

from the Legacy Extragalactic UV Survey (LEGUS). We implement a custom pipeline

specifically designed to be robust against contamination, which allows us to measure

radii for 6097 clusters. This is the largest sample of young star cluster radii currently

available. We find that most (but not all) galaxies share a common cluster radius

distribution, with the peak at around 3 pc. We find a clear mass-radius relation of

the form Reff ∝ M0.24. This relation is present at all cluster ages younger than 1 Gyr,

but with a shallower slope for clusters younger than 10 Myr. We present simple toy

models to interpret these age trends, finding that high-mass clusters are more likely

to be not tidally limited and expand. We also find that most clusters in LEGUS are

gravitationally bound, especially at older ages or higher masses. Lastly, we present the

cluster density and surface density distributions, finding a large scatter that appears

to decrease with cluster age. The youngest clusters have a typical surface density of

100 M⊙ pc−2.
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2.1 Introduction

Young star clusters bridge the small scales of star formation and the large scales

of galaxy formation. They are easily detected in nearby star-forming galaxies and

contain the majority of massive stars (Krumholz et al., 2019). Their almost universal

luminosity function, and corresponding mass function (Adamo et al., 2020), is used

both as a test of molecular cloud collapse models (Ballesteros-Paredes et al., 2020)

and as a constraint on the star formation modeling in cosmological simulations (Li

et al., 2018). However, our understanding of the origin and long-term evolution of star

clusters is still hindered by lack of reliable measurements of their density distribution.

Depending on the initial density, young massive clusters may evolve into globular

clusters or may dissolve into the smooth stellar field (Portegies Zwart et al., 2010). As

clusters form in giant molecular clouds (GMCs), feedback from massive stars ejects the

residual gas, making the cluster expand to re-establish virial equilibrium (Goodwin

& Bastian, 2006). Additionally, tidal shocks from encounters with other GMCs or

spiral arms kinematically heat the cluster and lead to its disruption (Spitzer, 1958).

The density of young clusters determines whether they can survive this intense phase

as bound stellar systems.

To calculate the density of young star clusters, one needs to measure their radii.

Currently published measurements are limited to only a few galaxy samples. Kharchenko

et al. (2013) measured the radii for ∼ 1100 open clusters in the Milky Way, while

samples from external galaxies include Bastian et al. (2012) and Ryon et al. (2015)

who measured radii for several hundred clusters in M83, about 3800 clusters in M51

measured by Chandar et al. (2016), and 514 clusters in M31 measured by the PHAT

survey (Johnson et al., 2012; Fouesneau et al., 2014). Of particular note for this pa-

per, Ryon et al. (2017) (hereafter R17) measured the radii of several hundred clusters

spread between two galaxies in the Legacy Extragalactic UV Survey (LEGUS).

In this paper we measure the projected half light radius (effective radius) of clus-
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ters in the 31 galaxies with publicly available cluster catalogs from LEGUS. Our

method for fitting the radii is described in Section 2.2. In Section 2.3 we describe our

findings of a cluster radius distribution common to most galaxies and a clear cluster

mass-radius relation. In Section 2.4 we discuss how selection effects affect our results,

calculate cluster densities, and present a toy model of cluster evolution. We close

with a summary in Section 2.5.

2.2 Methods

2.2.1 The LEGUS Sample

We use the publicly available LEGUS dataset1 to extend the sample of clusters

with uniformly measured radii and densities to the 31 galaxies with currently available

cluster catalogs. We summarize some of the key details of LEGUS in this section (see

Calzetti et al. 2015 for more on the LEGUS survey description, Adamo et al. 2017

and Cook et al. 2019 for more on the cluster catalogs).

LEGUS is a Cycle 21 Treasury program on HST that collected imaging with

WFC3/UVIS to supplement archival ACS/WFC imaging, producing five-band cov-

erage from the near-UV to the I band for 50 galaxies. Within each field, a uniform

process was used to identify cluster candidates.

First, SourceExtractor (Bertin & Arnouts, 1996) is used to find sources in the

white-light images (a combination of the images in all five filters, weighted by S/N).

Next, a user selects a training set of objects that are clearly clusters or stars. The

pipeline calculates the concentration index (CI), which is the magnitude difference

between apertures of radius 1 pixel and 3 pixels (Holtzman et al., 1992; Whitmore

et al., 2010). The user then selects a value of the CI that separates stars from

clusters. The aperture for science photometry is chosen as the integer number of

1https://archive.stsci.edu/prepds/legus/dataproducts-public.html
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pixels containing at least 50% of the cluster flux, based on the curve of growth of the

clusters. This science photometry is done with the same aperture in all filters, using

a sky annulus located at 7 pixels with a width of 1 pixel.

Next, aperture corrections for each filter are determined using an averaged method

and CI-based method. In this study we use catalogs using the averaged aperture

correction method, so we describe that here. The correction is the difference between

the magnitude of the source obtained using an aperture of 20 pixels and the magnitude

obtained from the science aperture. The average aperture correction for a user-defined

set of well-behaved clusters is used for all clusters. This photometry is corrected

for galactic foreground extinction (Schlafly & Finkbeiner, 2011). Sources that are

detected in at least four filters with a photometric error of less than 0.3 mag, have

an absolute V-band magnitude brighter than −6, and have a larger CI than the limit

determined earlier, are then visually inspected by the LEGUS team. Sources that do

not pass some of these cuts can be manually added by LEGUS team members, but

the number is small.

Three or more team members visually inspect each cluster candidate, classifying

it into one of the following four classes. Class 1 objects are compact and centrally

concentrated with a homogeneous color. Class 2 clusters have slightly elongated

density profiles and a less symmetric light distribution. Class 3 clusters are likely

compact associations, having asymmetric profiles or multiple peaks on top of diffuse

underlying wings. Class 4 objects are stars or artifacts.

The age, mass, and extinction of each cluster are determined by the SED fitting

code Yggdrasil (Zackrisson et al., 2011). Versions of the catalogs are created with

different stellar tracks and extinction laws, but in this paper we select the catalogs that

use the MW extinction law (Cardelli et al., 1989) and Padova-AGB tracks available

in Starburst99 (Leitherer et al., 1999; Vázquez & Leitherer, 2005).

The survey targeted 50 galaxies. Currently, public cluster catalogs are available
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for 31 of these galaxies. Some galaxies are observed with multiple fields, resulting in

34 total fields with cluster catalogs. Table 2.1 lists these fields along with some key

properties of the galaxies.

2.2.2 Outline of the Measurement Procedure

To fit the cluster radii, we implement a custom pipeline written in Python. We

choose to implement our own method to have full control over the fitting process and

better quantify the distribution of errors of the fit parameters. It is analogous to

that in the popular package Galfit (Peng et al., 2002, 2010), but with automated

masking and several other features described in Section 2.2.4 that make it more robust

against contamination from other nearby sources and ensure a good estimate of the

local background. We assume an EFF density profile for young clusters (Elson et al.,

1987; Larsen, 1999; McLaughlin & van der Marel, 2005), then convolve it with the

empirically-measured point spread function (PSF) before comparing to the data.

We use the F555W images in 25 of the 34 fields, but for the other 9 fields that

were not observed in F555W, we instead use F606W. All images have a pixel scale of

39.62 mas pixel−1. The LEGUS mosaics have units of e−s−1, and we multiply by the

exposure time to convert to the electron count. We use the recommended LEGUS

cluster catalogs that adopt the MW extinction, Padova stellar evolutionary tracks,

and the averaged aperture correction method (Adamo et al., 2017). The LEGUS team

created visual classification tags by visually inspecting each cluster with multiple team

members. We select clusters that were identified as being concentrated and either

symmetric (class 1) or with some degree of asymmetry (class 2). We use the mode

of the classifications from multiple team members. Additionally, machine learning

classifications are available for several galaxies (Grasha, 2018; Grasha et al., 2019).

For NGC 5194 and NGC 5195, we use the human classifications for clusters where

those are available, and supplement with machine learning classifications for clusters
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Figure 2.1 A portion of the F555W image of the LEGUS field with NGC 5194 and
NGC 5195, illustrating our selection of cluster belonging to NGC 5194 (blue circles)
and NGC 5195 (orange circles).

not inspected by humans. In NGC 1566, we use the hybrid classification system

created by the LEGUS team, where some clusters are inspected by humans only, some

by machine learning only, and some with a machine learning classification verified by

humans. We do not use the machine learning classifications for NGC 4449, as we find

that the machine-classified clusters have significantly different concentration index

and radius distributions from the rest of the sample. This selection produces a final

sample of 7242 clusters. As NGC 5194 and NGC 5195 are in the same LEGUS field,

we manually identify their host galaxy. Figure 2.1 shows this selection.
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2.2.3 PSF Creation

Like Galfit, our method convolves the PSF with the model image, and compares

the result with the observed data. To produce this PSF, we use Photutils (Bradley

et al., 2019), an Astropy package (Astropy Collaboration et al., 2013, 2018). We

manually select bright isolated stars in each field, then use the EPSFBuilder class

of Photutils to create a separate PSF for each field. EPSFBuilder follows the

prescription of Anderson & King (2000). The final PSF images are 15 pixels (0.59”)

wide, and we spatially subsample the PSF by a factor of two, producing a PSF with

twice the spatial resolution of the input image. We do not choose higher values, as this

significantly increases the computational cost of the fitting procedure (particularly

the convolution). As shown in Figure 2.9, our results are consistent with those of

R17 for NGC 1313 and NGC 628, even for the smallest clusters, indicating that this

oversampling factor is adequate. We use Photutils’s “quadratic” smoothing kernel,

which is the polynomial fit with degree=2 to 5x5 array of zeros with 1 at the center.

We found that the other options gave unphysically non-smooth PSFs. Figure 2.2

illustrates our created PSFs.

2.2.4 Fitting Cluster Parameters

We fit the clusters with the EFF surface brightness profile, as it accurately de-

scribes the light profiles of young star clusters (Elson et al., 1987; Larsen, 1999;

McLaughlin & van der Marel, 2005; Bastian et al., 2012; Ryon et al., 2015, 2017;

Cuevas-Otahola et al., 2020). Assuming circular symmetry, it takes the form

µ(r) = µ0

(
1 +

r2

a2

)−η

(2.1)
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Figure 2.2 Visualization of one of our PSFs, from the NGC 1313-e field. The solid line
in the left panel shows the azimuthally-averaged radial profile of this PSF, while the
shaded region shows the range of the PSF profiles from all other fields, normalized to
integrate to unity. The right panel shows an image of the NGC 1313-e PSF.

where µ is the surface brightness, a is the scale radius, and η is the power law slope.

As real clusters are typically not circularly symmetric, we include ellipticity as follows:

µ(x, y) = µ0

(
1 +

[
x′(x, y)

a

]2
+

[
y′(x, y)

aq

]2)−η

(2.2)

where q is the ratio of the minor to major axes of the ellipse (0 < q ≤ 1). We have

rotated the image coordinate system by angle θ about the cluster center (xc, yc) to

new coordinates (x′, y′) as follows:

x′(x, y) = (x− xc) cos θ + (y − yc) sin θ (2.3)

y′(x, y) = −(x− xc) sin θ + (y − yc) cos θ. (2.4)

Here x′ is aligned with the cluster major axis, while y′ is aligned with the minor

axis. This gives 7 cluster parameters: µ0, xc, yc, a, q, θ, η. We also leave the local

background fBG as a free parameter, giving 8 total parameters to fit.

We perform this fit on a 30×30 pixel snapshot centered on the cluster, follow-
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ing R17. We tested larger snapshot sizes (40 and 50 pixels) but found no signifi-

cant differences in fitted cluster radii, even for the biggest clusters where a larger

snapshot could potentially allow for a better determination of the local background.

These larger snapshot sizes also included more contaminating sources, leading to

more catastrophic fit failures. The 30-pixel snapshot minimizes these failures while

still performing well on the largest clusters.

To account for contaminating sources inside this 30×30 pixel snapshot, we mask

star-like sources identified by the IRAFStarFinder class of Photutils. Any pix-

els within 2×FWHM of the stars are masked. However we discard any stars whose

masked region would extend within 3 pixels of the cluster center, as well as any

sources with a peak pixel value less than 2 times the local sky background identified

by IRAFStarFinder. This second criterion was added to stop the masking of sub-

structure in the most extended clusters. We also mask any pixels that are within 6

pixels of another star cluster, in cases where two star clusters are close to each other.

However, an automated masking system cannot solve all issues with contamina-

tion. To make our fitting method robust to potential contamination, we have made

substantial modifications compared to a Galfit-like method.

Our best-fit parameters maximize the posterior distribution, defined as

logPposterior = −1

2

∑
x,y

w(x, y)

∣∣∣∣fd(x, y)− fm(x, y)

σ(x, y)

∣∣∣∣+ logPprior (2.5)

where x and y are pixel coordinates, w are pixel weights, fd is the data value at

pixel (x, y), fm is the model, σ(x, y) is the pixel uncertainty, and Pprior is the prior

distribution. We will expand on each of these components in turn. Note that we

use the absolute value of the differences between the model and data rather than the

more typical square. As the square weights large differences more heavily, it has the

effect of increasing the attention the fit pays to unmasked contamination, as these
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pixels have large deviations. Using the absolute value instead produces fits that are

less affected by contamination.

In addition, pixel weights are used to reduce the effect of contamination, partic-

ularly at large distances from the cluster. We weight each pixel proportional to 1/r

so that each annulus has the same weight. To avoid giving dramatically more weight

to the most central pixels, all pixels within 3 pixels from the center receive the same

weight. We use the distance from the center of the cluster to determine the radius,

giving r2 = (x− xc)
2 + (y − yc)

2 and

w(r) =


1 if r ≤ 3

3/r if r > 3

(2.6)

Giving equal weight to each annulus stops the large number of pixel values at large

radius from dominating the fit, effectively increasing the focus on the cluster at the

center.

We break the pixel uncertainty σ(x, y) into two components: image-wide sky noise

plus Poisson noise from individual sources:

σ2(x, y) = σ2
sky + fd(x, y) (2.7)

where fd(x, y) is the pixel value in electrons, and equals the Poisson variance. To

calculate the global sky noise, we use the 3-sigma clipped standard deviation of the

pixel values of the entire image.

The model component fm(x, y) is the convolution of the underlying cluster model

with the PSF plus the local background fBG, which we assume to be constant over

the fitting region. We subsample the pixels for both the model and the empirical
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PSF, then rebin the resulting model image to the same scale as the data:

fm(x, y) =
∑
xs∈x

∑
ys∈y

(PSF ∗ µ)(xs, ys) + fBG (2.8)

where xs and ys represent subpixel positions that are not integer pixel values like x

and y, ∗ represents convolution, and µ is the functional form of the fitted profile given

by Equation 2.2.

The last component of Equation 2.5 is the prior distribution. We employ a prior

on the local background. This is needed because at very low values of η (shallow

power law slopes), the background can be incorrectly fit by this cluster component

rather than a truly flat background. This attributes light to the cluster that should

be attributed to the background, incorrectly inflating the enclosed light and therefore

Reff . Additionally, η is strongly degenerate with a, so as to give the same value of

µ at some typical radius. Low values of η caused by incorrect background fits also

lead to unphysically small values for a. We find that constraining the background

addresses these issues. We first estimate the background and background uncertainty

by using sigma clipping to calculate the mean (µBG) and standard deviation (σBG)

of all pixels farther than 6 pixels from the cluster center. The mean is used as the

mean value of a Gaussian prior on the background. As the background becomes an

issue for low values of η, we condition the width of our prior on it. We use a logistic

function that produces a tight prior σprior = 0.1σBG for low values of η, while giving

a looser constraint σprior = σBG for higher values of η. This takes the form

logPprior = −1

2

(
fBG − µBG

σprior

)2

(2.9)

where

σprior(η) = σBG

(
0.1 +

0.9

1 + e10(1−η)

)
(2.10)
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Figure 2.3 An example of our fitting process. The right set of panels show (in coun-
terclockwise order, starting from the top left) the 2D pixel values for the raw cluster
model, the cluster model after being convolved with the PSF, the data, then the resid-
uals after subtracting the PSF-convolved model from the data. Note the masking of
the contaminating object in the top right panel. The left panel shows the radial pro-
files for these components (with the PSF normalization adjusted accordingly). Note
that the radial profile is included for illustrative purposes only, the fitting is done
using the 2D images.

The combined effect of using the absolute value of differences, the pixel weights,

and the prior on the background is to produce cluster fits that more closely match the

cluster itself. They prevent the fit from being drawn towards any surrounding struc-

tures, while also allowing the local background to be fit appropriately. This produces

trustworthy cluster parameter values. Lastly, to ensure full numerical convergence of

the fit, we use multiple sets of initial values for the fit parameters, selecting the final

parameter set corresponding to the highest likelihood. An example of a cluster fitted

with our method is shown in Figure 2.3.

To determine the distribution of errors of the fit parameters, we perform boot-

strapping on the pixels in the snapshot. We split the snapshot into two regions: pixels

closer than 9 pixels from the cluster center and pixels outside this region. For the

inner region, we resample individual pixels with replacement. For the outer region,
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we group the pixels into 5x5 blocks, then resample those blocks with replacement.

Using blocks in the outskirts does a better job accounting for any missed or faint

contaminating sources. If we were to use individual pixels, at least some of the pixels

from these sources would be included in a given resampling, while using blocks allow

us to exclude these sources completely in certain iterations, giving a better estimate

of how these sources affect the cluster fit. Using individual pixels in the center is nec-

essary as the cluster itself may be roughly the size of the 5x5 chunk. Figure 2.4 shows

an example of the pixels included in one randomly selected bootstrap realization.

We run the bootstrap realizations until convergence of the fit parameters. Ev-

ery 20 iterations, we calculate the standard deviation of the distributions of all 8 fit

parameters in the accumulated iterations, then compare them to the standard devia-

tions from the last time it was calculated. We stop bootstrapping when the standard

deviation of each parameter changes by less than 10 percent. Most clusters required

100–140 iterations to converge. Our reported uncertainties on Reff are marginalized

over all other parameters. We use Reff calculated using the original snapshot as

the best fit value, then take the 16–84th percentile range of Reff from the bootstrap

iterations as the uncertainty.

As we measure everything in pixel values, we need to convert to physical length

units. To do this we use the TRGB distances to all LEGUS galaxies provided by

Sabbi et al. (2018). That work provides independent estimates of distance for each

field. For galaxies split between two fields, we use the mean of the two distance

estimates for both fields. Lastly, NGC 1566 has an unreliable distance estimate. The

TRGB was too faint to be detected in Sabbi et al. (2018), and available values in the

literature span a wide range (from 6 to 20 Mpc). However, NGC 1566 was identified

as being part of the group centered on NGC 1553, which has a measured distance

and group radius (Kourkchi & Tully, 2017; Tully et al., 2016). For NGC 1566, we

adopt the distance to NGC 1553 with uncertainty of the group radius.
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Figure 2.4 An example of the pixels included in one randomly selected bootstrap
iteration. The central region is resampled on a pixel-by-pixel basis, while the outskirts
are resampled on 5×5 pixel blocks.

2.2.5 Converting to Effective Radius

The effective radius is defined to be the circular radius that contains half of the

projected light of the cluster profile. For a circularly symmetric EFF profile, this is

Reff = a

√
2

1
η−1 − 1 (2.11)

However, this equation asymptotically approaches infinity as η approaches unity, and

the total light of the profile is infinite for η ≤ 1. As some cluster fits prefer values

of η near or below unity, we implement a maximum radius for the cluster profiles,

removing this infinity and allowing the effective radius to be well defined for any

value of η. We choose the size of our box (15 pixel radius) as Rmax. When using a

maximum radius, the effective radius for the circularly symmetric EFF profile is

2

[
1 +

(
Reff

a

)2
]1−η

= 1 +

[
1 +

(
Rmax

a

)2
]1−η

. (2.12)
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Figure 2.5 Comparison of the effective radius when calculated with (Eq. 2.12) or
without (Eq. 2.11) a maximum radius. We show this for several representative values
of Rmax/a, as clusters have values across this full range.

For η ≳ 1.5, this agrees well with Equation 2.11, as shown in Figure 2.5.

A correction is required for an elliptical profile. We empirically determine this

correction for the EFF profile as a function of η and q, by performing numerical

integration of elliptical EFF profiles. We determine the circular aperture that contains

half of the total light. We use a circular maximum radius Rmax/a = 10 for this

integration, although we find that the results do not depend strongly on the chosen

Rmax. At a given η, we find that the relation between true effective radius and the

effective radius calculated assuming a circularly symmetric profile (Equation 2.12) is

linear with q, so we parametrize the correction as

Reff,true

Reff,circ

= 1 +m(q − 1) (2.13)
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Figure 2.6 Numerical calculations of the ellipticity correction factor m (see Equa-
tion 2.13), along with the analytic fit (Equation 2.15). The horizontal dotted line
shows m = 0.5, as used in Equation 2.14.

where m is a function of η. With m = 0.5, we obtain the commonly used correction

Reff,true

Reff,circ

= 0.5(1 + q) (2.14)

as found in the ISHAPE manual (Larsen, 1999). We measure m as a function of

η, and find it is well fit by a logistic-type function, with an RMS deviation of only

0.0043. This gives a final correction of the form:

Reff,true

Reff,circ

= 1 +

(
0.579

1 + exp
(
0.924−η
0.266

) − 0.073

)
(q − 1) (2.15)

The results of the numerical integration and the fit are shown in Figure 2.6.
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2.2.6 Cluster Fit Quality

While our fitting procedure is designed to be robust, it does not perform perfectly

on all clusters. We exclude clusters with unrealistic parameter values, which we define

as a scale radius a < 0.1 pixels, a > 15 pixels, or an axis ratio q < 0.3. We also exclude

any clusters where the fitted center is more than 2 pixels away from the central pixel

identified by LEGUS. This eliminates 6.7% percent of the sample.

Additionally, to quantitatively evaluate which clusters have poor fits, we imple-

ment a quality metric based on a comparison of the cumulative light profiles of the

cluster data and the model (after subtracting the best-fit background from both the

data and model). As our primary goal is to evaluate the reliability of Reff , the cu-

mulative profile is a strong indicator as it probes all light enclosed within a given

radius.

Specifically, our metric uses the cumulative light profile to estimate the half-light

radius of the cluster non-parametrically, then compares the enclosed light of the model

and data within this radius. The relative difference is

d =

∣∣∣∣Fmodel(< R1/2)− Fdata(< R1/2)

Fdata(< R1/2)

∣∣∣∣ (2.16)

where the non-parametric radius R1/2 is defined by

Fdata(< R1/2) = 0.5Fdata(< 15 pixels). (2.17)

Here F (< R) is the cumulative flux enclosed within a circular radius R. We use 15

pixels as the maximum radius as it is the radius of the individual cluster snapshots.

We then calculate the distribution of this metric d for clusters that pass the cuts

mentioned at the first paragraph of this section, shown in Figure 2.7. The knee of

the cumulative distribution is at approximately the 90th percentile, so we use that
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Figure 2.7 Cumulative distribution for the deviation in the cumulative light profile
as described in Section 2.2.6. Our analysis excludes clusters that fall above the
90th percentile of this metric, corresponding to approximately 6.5% deviation of the
integrated light within non-parametric R1/2.

percentile as our cut. Any cluster above the 90th percentile will be excluded from the

analysis in the rest of this paper. This results in a final sample of 6097 clusters with

reliable radius measurements. This 90th percentile cut corresponds to about 6.5%

error on the light enclosed within the estimated effective radius, indicating the high

quality of the fits we keep.

2.2.7 Artificial Cluster Tests

To test the ability of the pipeline to recover the effective radius of small clusters,

we perform artificial cluster tests. We generate 150 synthetic clusters following the

EFF profile. These clusters have magnitudes from 20 to 24, 1.25 ≤ η ≤ 2.5, and
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0.03 ≤ Reff ≤ 3 pixels. All parameters are uniformly distributed within these ranges.

To calculate the cluster magnitude, we follow the LEGUS pipeline as described in

Adamo et al. (2017). We use a circular aperture with a radius of 4 pixels (chosen

as the integer pixel value that contains 50% of the flux of typical clusters) and a

local sky annulus located at 7 pixels with a width of 1 pixel, then apply the average

aperture corrections for the NGC 628-c field. The artificial clusters span the range of

the magnitudes of real clusters in this field.

We convolve these models with the PSF for the NGC 628-c field, add Poisson

noise, and insert these artificial clusters into the NGC 628-c field. We then run our

pipeline on this new image to measure their effective radii. The results of this test

are shown in Figure 2.8.

The pipeline is able to accurately measure cluster radii down to about 0.3 pixels.

Below this point, the pipeline systematically overestimates the true radius. The per-

formance of the pipeline does depend on magnitude, as faint clusters with magnitude

24 (the limit of the clusters in the LEGUS catalog for NGC 628-c) have a much wider

dispersion than brighter clusters, even at larger radii. A visual examination of these

fits shows that contamination and noise are the primary causes of this dispersion.

Faint sources rise above the background less than bright sources, so variations in

the background can influence the fit more. Additionally, the Poisson pixel noise of

the source itself can influence the fit, even for artificial clusters placed in a region

where the background is smooth. Due to the nature of Poisson noise, this affects

faint clusters the most.

Figure 2.8 also shows the ability of the pipeline to detect when clusters have poor

fits. Many of the catastrophic failures are correctly identified as failures. However, for

the very compact clusters the pipeline identifies many fits that actually overestimate

Reff as reliable. This is likely because when Reff is much smaller than the PSF, the

observed cluster is not very different from the PSF. A slightly larger model is still very
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similar to the data, making the pipeline identify the fit as a success. This also means

that generally the error bars may be underestimated for clusters with Reff < 0.3 pixels.

Nevertheless, for most clusters our pipeline gives reliable measurements. Importantly,

if Reff is measured to be small, then it really is small. These trends are true for all

values η ≳ 1.25. For values of η ∼ 1, we found larger scatter.

2.3 Results

2.3.1 Comparison to Ryon et al. (2017)

R17 used Galfit to measure the effective radii of clusters in NGC 1313 and

NGC 628, two of the galaxies in the LEGUS sample. To validate our method, we

compare our measurements to those of R17. When making this comparison, we

perform a separate round of fitting with several modifications to our method to match

what was done in R17. We do not mask any contaminating sources, do not use

radial weighting, and use the square of differences rather than the absolute value.

When postprocessing these results, we do not use a maximum radius to calculate the

effective radii (instead using Equation 2.11), we use the simple ellipticity correction

(Equation 2.14), and we use the same distances to NGC 1313 and NGC 628 as R17

did (Jacobs et al., 2009; Olivares E. et al., 2010). These changes ensure consistency

with the R17 method.

The left panel of Figure 2.9 shows the results of that comparison. Following R17,

only clusters with η > 1.3 are shown in this plot, as Reff given by Equation (2.11) is

unreliable for lower values. To quantify the deviation, we use the RMS error, defined

as

RMS =

√
1

N

∑ (Reff,R17 −Reff)
2

σ2
R17 + σ2

(2.18)

where σ and σR17 are the error on Reff in this work and R17, respectively. This RMS

deviation is 0.55, indicating excellent agreement.

46



0.1

1

M
ea

su
re

d 
R e

ff
 [p

ix
el

s]

PSF Size

Success
Failure

0.1 1
True Reff [pixels]

0.5

1

2

R e
ff

 R
at

io

20

21

22

23

24

F5
55

W
 M

ag
ni

tu
de

Figure 2.8 Results of artificial cluster tests. The top panel shows a comparison of the
true effective radius to that measured by our pipeline. Solid circles show fits that the
pipeline identified as successful, while the crosses show failures. The bottom panel
shows the ratio of the measured effective radius to the true effective radius. Only
successful fits are shown in this bottom panel. The dashed line spanning both panels
indicates the PSF size in pixels for the NGC 628-c field, which is the field into which
clusters were inserted.
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Figure 2.9 Comparison of our cluster effective radii using different fitting methods for
NGC 628 and NGC 1313. The left panel shows a comparison to those of Ryon et al.
(2017) using the same fitting method. The right panel shows a comparison of this
method to our full method used in the rest of the paper.

In the right panel of Figure 2.9 we show a comparison of our full method to our

R17-like method. These two methods show good agreement across the full radius

range, with no significant deviations. The RMS deviation here is 1.62. This higher

value is primarily driven by the error bars, which are smaller than those obtained in

R17. In addition, a small number of clusters have significantly different radii between

the two methods. The majority of these discrepant clusters have a small value for η

(typically just above the cutoff of η > 1.3 for inclusion in this plot), where the use of

a maximum radius has the greatest effect on Reff (see Figure 2.5).

In the rest of this paper we analyze the results obtained with our full fitting

method.

2.3.2 Cluster Radius Distribution

In Figure 2.10 we show the distribution of effective radii measured in the entire

LEGUS sample with our full fitting method. For most galaxies the distributions are
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Figure 2.10 Kernel density estimation of the cluster radius distributions of the galaxies
with the most clusters. The line for each galaxy shows the summed Gaussian kernels
representing its clusters, where we use a width equal to twice each cluster’s radius
error. Each curve is normalized to the same area for comparison purposes. The left
panel shows galaxies with similar cluster distributions, while the right panel shows
two galaxies with different distributions. Note that the “Other Galaxies” in the left
panel do not include the two discrepant galaxies NGC 1566 and NGC 7793 shown in
the right panel, while the “All Other Galaxies” in the right panel include all galaxies
shown in the left panel. The tick marks at the bottom show the pixel size in parsecs
for the images of each galaxy.
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remarkably similar. They have a peak at Reff ≈ 3 pc, an extended tail to below 1 pc,

and a sharper cutoff at large radii. This peak at Reff ≈ 3 pc has been seen consistently

in other studies of young clusters (e.g. Meurer et al., 1995; Larsen, 1999; Scheepmaker

et al., 2007; Bastian et al., 2012; Ryon et al., 2015, 2017; Cantat-Gaudin et al., 2018).

Galaxies with similar distributions are shown in the left panel of Figure 2.10, while

two galaxies NGC 1566 and NGC 7793 with discrepant shapes are shown in the right

panel and will be discussed below. While we only show several galaxies individually

in the left panel of Figure 2.10 for clarity, an examination of all galaxies shows that

they have very similar distributions. In Table 2.1 we include the quartiles of the

cluster radius distribution of each galaxy as another method of quantifying their

distributions.

To characterize this common distribution, we create a stacked distribution of

clusters from all galaxies other than the two discrepant. The distribution is shown

as the comparison line in the right panel of Figure 2.10 and has a sharp peak at

2.9 pc. We compared it to several common analytical distributions and found that

neither normal nor lognormal functions are good fits, due to the asymmetric shape

of the observed distribution. Instead we find that the Weibull distribution produces

an excellent match:

dN

dReff

=
k

λ

(
Reff −R0

λ

)k−1

exp

[
−
(
Reff −R0

λ

)k
]

(2.19)

with k = 2.22, λ = 3.64 pc, and R0 = 0.185 pc.

To quantitatively test whether the individual galaxy samples are statistically

consistent with being drawn from the same distribution, we employ the one-sided

Kolmogorov–Smirnov test. We find that of the 31 galaxies, 16 have p−value > 0.01

(13 with p−value > 0.05), indicating that they are not inconsistent with the stacked

distribution. However, of the 13 galaxies with more than 50 clusters, only 4 have
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p > 0.01 (2 with p > 0.05). The large number of clusters in these galaxies pro-

vides high statistical significance to formally distinguish the distributions. Still, the

individual distributions exhibit strong visual similarity.

Two galaxies show cluster distributions significantly different from the rest. NGC 1566

appear shifted to larger radii than other galaxies. It has less low radius clusters, a

peak at larger radii (4.2 pc compared to 2.9 pc for the stacked distribution), and more

high radius clusters than any other galaxy. Selection effects may be partly responsi-

ble. At the adopted distance of NGC 1566 of 15.6 Mpc, 1 pixel covers 3 pc and our

PSF model has an effective radius of 4.3 pc. Small clusters may not be resolved and

therefore not included in the LEGUS catalog. While a full characterization of the LE-

GUS selection effects is beyond the scope of this paper, Adamo et al. (2017) examined

the completeness as a function of cluster radius in NGC 628 at a distance of 8.8 Mpc.

The concentration index cut excluded roughly 50% of clusters with Reff = 1 pc. This

selection effect is not significant for most galaxies, as the peak of the cluster radius

distribution is at higher radii, and most galaxies are closer than NGC 628. But since

NGC 1566 is at approximately twice the distance of NGC 628, we can expect that its

observations will be incomplete below 2 pc. This could explain the dearth of small

clusters in NGC 1566, but would not explain the overabundance of large clusters.

Our adopted distance could be responsible for this. As mentioned at the end of Sec-

tion 2.2.4, the distance to NGC 1566 is uncertain, with distance estimates ranging

from 6 to 20 Mpc. If our adopted distance of 15.6 Mpc is an overestimate, our clus-

ter radius measurements will also be overestimated. Adopting a distance of 11 Mpc

rather than 15.6 Mpc would bring it in line with the distributions of other galaxies,

thus effectively treating this distribution like a standard ruler (Jordán et al., 2005).

Future distance measurements may be able to resolve this and determine whether the

cluster radius distribution in NGC 1566 is significantly different than that of other

galaxies.
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The other discrepant galaxy, NGC 7793, has a double peaked distribution that is

much broader than that in other galaxies. One peak is near the 3 pc peak seen in

other galaxies, while another is at ∼ 0.8 pc. The reason for this is unclear. While

NGC 7793 is split into two fields, both fields show the same double peaked distribu-

tion. Its specific star formation rate is within the range of other galaxies. It is closer

than most other galaxies in the sample, meaning the smallest clusters are more likely

to be included, but other galaxies with similar distances do not show this bimodal

distribution. A visual examination of the spatial distribution within NGC 7793 of

the clusters belonging to each peak does not show any striking trends. An exami-

nation of the age and mass of the clusters shows that, compared to other galaxies,

NGC 7793 has more small young clusters and no large young clusters. Additionally,

the age distribution is bimodal, with a deficit of intermediate age clusters. Roughly

speaking, this results in the low-radius peak being mostly young, low-mass clusters,

while the high-radius peak is mostly old, high-mass clusters. Future detailed studies

of NGC 7793 may be needed to understand its cluster population in more detail.

2.3.3 Cluster Mass-Radius Relation for All LEGUS Galaxies

Figure 2.11 shows the mass-radius relation for the clusters in our sample. A clear

mass-radius relation is visible, albeit with a shallow slope. To guide the eye, lines

indicate the 5, 25, 50, 75, and 95th percentiles of the radius at a given mass.

This plot shows the full mass range of the LEGUS clusters. However, masses below

5000 M⊙ measured by the deterministic method used in LEGUS may be unreliable,

as the assumption of a fully-sampled IMF is no longer valid (Máız Apellániz, 2009;

Silva-Villa & Larsen, 2011; Krumholz et al., 2015). To account for this, previous work

with the LEGUS data, such as Adamo et al. (2017) and R17, restricted to clusters

with masses above 5000 M⊙. As LEGUS is not complete for 5000 M⊙ clusters at old

ages, these papers selected clusters younger than 200 Myr. This produces a complete
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Figure 2.11 The mass-radius relation for the clusters in LEGUS. Clusters of all ages
are included in this plot. The black lines show then 5, 25, 50, 75, and 95th percentiles
of radii at a given mass. The solid line shows the best fit linear relation, with the
shaded region showing the intrinsic scatter.

sample using clusters with the most reliable masses. We take a different approach

in this paper, and use the full mass and age ranges of clusters with good SED fits,

adjusting their errors to account for the systematic errors in the SED fitting. If we

were to consider only clusters more massive than 5000 M⊙, it would exclude about

a third of the complete sample and greatly decrease the dynamic range of the mass-

radius relation. Section 2.4.1 below discusses possible effects of incompleteness.

As discussed in Krumholz et al. (2015), clusters have poor fits – as quantified

by the Q(χ2) statistic – when the assumption of a fully-sampled IMF is violated.

To avoid these unreliable low-mass clusters, we restrict ourselves to clusters with

Q(χ2) > 10−3. Of the 6097 clusters with successfully measured radii, 5105 pass this

further cut. In addition to low-mass clusters, we also find qualitatively that this cut

removes many clusters with high masses (> 105M⊙) and very small radii (Reff < 1

pc) that were outliers from the mass-radius relation due to their unreliable mass.
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In addition, Krumholz et al. (2015) show that the deterministic LEGUS mass

uncertainties are likely underestimated for low-mass clusters. To correct for this, we

compare the mass uncertainty in Krumholz et al. (2015) to the uncertainty in the

LEGUS catalogs. For clusters below 5000 M⊙, the median difference in uncertainty

is 0.16 dex. We add this 0.16 dex correction to the mass uncertainty of all clusters

below 5000 M⊙ when performing our fits.

This produces a sample across the full mass range that includes only the most

reliable low-mass clusters and adjust their errors to account for the systematic error

in the deterministic LEGUS SED fitting. Our resulting sample may not be complete

(as we will be missing old, low-mass clusters), but we will discuss these selection

effects throughout the rest of the paper.

We fit this mass-radius distribution assuming a power law relation:

R̂eff(M) = R4

(
M

104M⊙

)β

(2.20)

such that the normalizing factor R4 is the effective radius at 10
4M⊙. We incorporate

errors in both mass and radius and account for the intrinsic scatter by minimizing

projected displacements of data points from the fit line as outlined in Hogg et al.

(2010). In Appendix A we describe this in more detail and compare it to a hierarchical

Bayesian model that includes a treatment of selection effects. We found that neither

the fitting method nor the inclusion of selection effects made a difference in the fit

parameters, so we use this simpler method. We restrict the fitting to clusters below

105M⊙, as the relation appears to flatten above that mass, possibly because of small-

number statistics. We determine errors on the fit via bootstrapping. For this full

sample, our best fit power law slope is β = 0.24, with an intrinsic scatter of 0.25

dex. Restricting to clusters with ages younger than 1 Gyr produces the same result,

primarily because most clusters in LEGUS are younger than 1 Gyr.
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Figure 2.12 The mass-radius relation for the clusters in LEGUS, split by age. Contours
enclose 50 and 90% of the clusters in each bin, and are smoothed by a kernel of 0.08
dex. The dashed lines show the fits, while the solid lines show the running median in
each age bin.

With this large sample, we can investigate the cluster mass-radius relation for

various subsamples of the data. For all cases below, we restrict our sample to clus-

ters younger than 1 Gyr and less massive than 105M⊙. Table 2.2 shows the fitting

parameters for all the subsets discussed below.
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Figure 2.12 shows the mass-radius relation split by cluster age. The mass range

of the three bins is clearly different, due to LEGUS’s absolute V band magnitude

cut. Evolutionary fading results in only massive clusters being detected at older ages.

To demonstrate this, we include the mass range spanned by the 1–99th percentile of

each sample in Table 2.2. In all 3 bins, we detect a significantly nonzero slope of the

mass-radius relation. The running medians of each panel are quite similar, especially

for the two oldest age bins, which deviate from the 1–10 Myr bin at M > 104M⊙.

This matches what we find in the formal fit, where the two older bins have a slope

and normalization indistinguishable from each other, while the 1–10 Myr bin has a

significantly shallower slope. In addition, the intrinsic scatter decreases with age.

Additionally, we supplement the LEGUS sample with several other large samples

for young star clusters, mostly from the compilation of Krumholz et al. (2019). In

all the samples below, we restrict to clusters with an age less than 1 Gyr and masses

below 105M⊙, as done for our main fits. This age cut means that we do not include

any globular clusters. Additionally, some of the samples in Krumholz et al. (2019)

are for galaxies already included in this paper (namely NGC 628, NGC 1313, and

NGC 5194), so we do not include them again here.

We include MilkyWay open clusters (OCs) within 2 kpc of the Sun from Kharchenko

et al. (2013), who measured King parameters for these clusters. Following Krumholz

et al. (2019), we calculate mass using Equation 3 of Piskunov et al. (2007), Oort

constants from Bovy (2017), and the distance from the Sun to the Galactic center

from Bland-Hawthorn & Gerhard (2016). We also include the sample of 12 Milky

Way YMCs compiled in Krumholz et al. (2019).

We additionally include samples from several external galaxies. Mackey & Gilmore

(2003b,a) measured radii for 53 clusters in the LMC and 10 clusters in the SMC. EFF

profiles were fit to the surface brightness profiles of clusters. These surface brightness

profiles were also used to obtain the total luminosity of each clusters, which was
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Figure 2.13 The mass-radius relation for the clusters in LEGUS as well as external
datasets, as described in the text. Only clusters with ages less than 1 Gyr are shown
here. The black lines show then 5, 25, 50, 75, and 95th percentiles of radii at a given
mass. Note that a small random shift has been applied to the original discrete M31
masses for visual purposes.
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converted into the cluster mass by using mass-to-light ratios.

The Panchromatic Hubble Andromeda Treasury (PHAT) survey identified stellar

clusters in M31 (Johnson et al., 2012; Fouesneau et al., 2014). Half-light radii were

determined by interpolating the flux profile to find the radius in arcseconds that

includes half of the light (Johnson et al., 2012). We then use a distance of 731 kpc

to M31 (Wagner-Kaiser et al., 2015) to convert the radii to parsecs. Masses were

determined using a Bayesian SED fitting method that explicitly accounts for the

stochastic sampling of the IMF (Fouesneau et al., 2014).

In a series of papers, Cuevas-Otahola et al. (2020) and Cuevas-Otahola et al.

(2021) calculated structural parameters for 99 star clusters in M82. They fit EFF,

King, and Wilson profiles to the surface brightness profiles, finding that the EFF

profile best represents the clusters in their sample. Similarly to Mackey & Gilmore

(2003b,a), masses are determined by applying a mass-to-light ratio to fitted luminosi-

ties.

We also include the clusters in M83 measured by Ryon et al. (2015). Radii are

measured by fitting an EFF profile to the 2D light profile using Galfit, as in R17.

Masses are derived in Silva-Villa et al. (2014) and are done using an SED-fitting

method similar to that used in LEGUS (Adamo et al., 2010).

Figure 2.13 shows the mass-radius relation including these data sources. In the

fit shown in this figure, we give each cluster equal weight, no matter which dataset

it comes from. The addition of the MW OCs in particular extends the mass-radius

relation down to very small masses, while the other samples overlap nicely with

LEGUS. Including the MW clusters produces a steeper slope than the fit using only

LEGUS clusters (β = 0.296). In addition, the intrinsic scatter decreases, likely due

to the smaller scatter in the MW OC data. Including the data from external galaxies

produces a shallower slope (β = 0.229), likely due to fewer low-mass clusters with

small radii in the M31 PHAT sample. Including all data produces a fit similar to the

59



105 106 107 108 109 1010

Age [yr]

105

106

107

108

Cr
os

si
ng

 T
im

e 
[y

r]

Bou
nd

Unb
ou

nd

103

104

105

M
as

s 
[M

]

Figure 2.14 A comparison of the crossing time to the age of clusters in LEGUS.
Clusters are color coded according to their mass, and a small random offset was
added to the discrete ages for visual purposes. The black line shows where these
times are equal. Clusters where the age is longer than the crossing time are likely
bound, while those where the age is smaller are likely unbound.

fit for LEGUS + MW, likely due to the leverage and large numbers provided by the

low-mass clusters in the MW sample. In all cases, R4 is consistent with that measured

in the LEGUS sample alone. Note that due to the asymmetric shape of the cluster

radius distributions, R4 may be different from the peak value of the distribution

quoted in Section 2.3.2.

2.3.4 Are Clusters Gravitationally Bound?

Gieles & Portegies Zwart (2011) suggest a distinction between bound clusters

and unbound associations, where bound clusters are older than their instantaneous

crossing time:

tcross = 10

(
R3

eff

GM

)1/2

(2.21)

Clusters with tage > tcross have remained together for their lifetimes, indicating that
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Figure 2.15 The fraction of clusters that are older than their crossing times (indicating
that they are bound objects) as a function of mass. Shaded regions show the 68%
confidence region.

they are gravitationally bound. Unbound objects expand with time, causing the

crossing time to increase proportionally.

Figure 2.14 shows the comparison of these timescales for the clusters in the LEGUS

sample. The majority of clusters are bound. The only unbound clusters are young

(less than 10 Myr) and tend to be less massive. At a given age, the less massive

clusters are more likely to be unbound. We find that 78% of all clusters, 92% of

clusters with M > 5000M⊙, and 97% of clusters older than 10 Myr are bound.

Figure 2.15 shows how the fraction of clusters that are bound changes with age

and mass. 100% of objects older than 100 Myr are bound, while in the other age

bins a clear trend with mass is seen. For the 10–100 Myr bin, nearly all clusters

above 3000M⊙ are bound, while the youngest clusters show a steadily increasing

fraction of bound clusters with mass. This confirms that the LEGUS pipeline selects

gravitationally bound objects, especially for clusters with higher masses or older ages.
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2.4 Discussion

2.4.1 Selection Effects

When selecting clusters, the LEGUS survey used an absolute magnitude cut,

selecting clusters with a V band magnitude brighter than −6 mag. As massive stars

in clusters die, the cluster fades. This means that older clusters must be more massive

to be detected, producing a significant selection effect in the LEGUS sample.

This is particularly visible in Figure 2.12. In the oldest age bin, there are nearly

no clusters below a few 103M⊙, where the bulk of the youngest clusters are. The

mass ranges seen in Figure 2.12 should not be simply interpreted as evidence for

disruption of low-mass clusters, as old low-mass clusters would not be detected even

if they existed. This also complicates an examination of cluster evolution, as without

old low-mass clusters to compare, it is difficult to test predictions of low-mass cluster

evolution.

In the results above and discussion that follows, we present results using all LE-

GUS clusters. We want to be clear that this is not a complete sample. Where relevant,

we discuss how these selection effects may bias the results presented.

LEGUS also uses a cut in concentration index (with a value that varies for each

galaxy). This cut may result in the removal of the smallest clusters. This will depend

on galaxy distance, as the smallest clusters will be possible to resolve in nearby

galaxies but not distant ones. As mentioned above in Section 2.3.2, this is not likely

to affect many of our galaxies. Adamo et al. (2017) examined the completeness as

a function of radius for NGC 628 at a distance of 8.8 Mpc, finding that LEGUS

includes roughly 50% of clusters with Reff = 1 pc. As most of our galaxies are closer

than NGC 628, they will be less affected. The radius distribution shows a clear peak

significantly above the radius where we may be incomplete (Figure 2.10), showing

that the potential removal of small clusters likely will not dramatically change our

62



results.

We also note that because of the inability of our pipeline to pick up extremely

small objects (smaller than 0.3 pixels; see Figure 2.8), the smallest objects may be

even more compact than reported.

The inclusion of small, low-mass clusters would have the effect of steepening the

mass-radius relation. Interestingly, a comparison of the slopes in Figures 2.11 and

2.13 shows that a steeper slope better matches the MW OCs. If the true mass-radius

relation is steeper than we measure here, it may make our results more consistent

with the measurements in the MW.

Lastly, we note that the radial coverage of each galaxy varies. About half of

the LEGUS galaxies are compact enough that they can be covered with one HST

WFC3/UVIS pointing, but larger galaxies are not completely covered. Some galaxies

include only central regions (e.g. NGC 1566), while others include the central regions

and part of the disk (e.g. NGC 628). See Figure 3 of Calzetti et al. (2015) for the

full footprints for all LEGUS galaxies. This uneven coverage may bias our results

somewhat if cluster populations vary throughout galaxies. This could happen if they

are tidally bound, as the tidal radius would change with galactocentric radius. We

defer a detailed examination of this for a future paper.

2.4.2 Mass-Radius Relation

The mass-radius relation shown in Figure 2.11 has a relatively shallow slope and

significant intrinsic scatter. Nevertheless, a relation is clearly present, even when

splitting by age (Figure 2.12).

In the Milky Way, observations of giant molecular clouds (GMCs) show roughly

constant surface densities (Larson, 1981). From this we can expect a mass-radius

relation R = (M/πΣ)1/2 ∝ M1/2. Measurements of clumps have found a range of

slopes from 0.3 to 0.6 (Roman-Duval et al., 2010; Urquhart et al., 2018; Mok et al.,
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2021). These relations are steeper than the relation we measure for young clusters,

which presumably form from such clouds. However, we note that the hierarchical

structure of the ISM makes determining the size of a clump more challenging than

measuring the radius of a star cluster, so these radii might not be directly comparable

(Colombo et al., 2015). We examine cluster density further in Section 2.4.3. The

analytic model of Choksi & Kruijssen (2021) also predicts a mass-radius relation of

the form Reff ∝ (M/Σg)
1/2, where Σg is the gas surface density. After accounting for

the fact that massive clusters can only form in high-density environments, they find

a lower slope which is more consistent with this work.

Many previous studies have found inconclusive evidence of a correlation between

the mass and radius of young clusters. Zepf et al. (1999) found a shallow mass-

luminosity relation, with later studies finding little evidence of a strong mass-radius

relation (Bastian et al., 2005; Scheepmaker et al., 2007; Bastian et al., 2012; Ryon

et al., 2015, 2017). Some studies have found a mass-radius relation for the most

massive clusters above 106M⊙ (Kissler-Patig et al., 2006; Bastian et al., 2013), but

that mass range is not sampled in our results. The large sample size, uniform LEGUS

selection, and uniform fitting procedure presented here allow us to clearly detect this

relation. Our result is similar to that of Cuevas-Otahola et al. (2021), who find a

power law slope of 0.29. However, the normalization of their relation is higher than

ours (see Figure 2.13).

Interestingly, we also find less evolution in the cluster radius with age than seen

in other studies. Bastian et al. (2012) fit the cluster radius distribution as a bivariate

function of age and mass, finding that age is the stronger driver of cluster radius than

mass. Ryon et al. (2015) found a significant age-radius relation. They also found a

steepening of the mass-radius relation with time, although their age bins are different

from the bins used in this paper. Chandar et al. (2016) found that clusters with age of

100–400 Myr have radii 4 times larger than clusters of similar mass with ages younger
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Figure 2.16 Density ρh (left panels) and surface density Σh (right panels) of clusters
within the half-light radius. The top panels shows kernel density estimation of the
density distributions, where clusters are smoothed by a Gaussian kernel with a width
equal to their measurement error. Each curve is normalized to integrate to the same
area. The bottom panels show the dependence of densities on mass. The contours
enclose 50 and 90% of the data, and are smoothed by 0.15 dex. In all panels, we split
the sample by age.

than 10 Myr. Our results stand in contrast, as we find no significant evolution after

10 Myr in the mass ranges probed.

2.4.3 Density Distribution

Using our measured radii, we calculate the average density and surface density of

the LEGUS clusters:

ρh =
3M

8πR3
eff

, Σh =
M

2πR2
eff

. (2.22)

In this section we will use ρh and Σh when referring to those quantities respectively,

and use the generic term “density” when referring to both of them. In Figure 2.16,

the top panels show the distributions of these densities split by cluster age. Younger

clusters have wider ranges and extend to lower densities than old clusters. The bottom

panels show the distribution of densities as a function of mass.
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We find that the distributions shown in the top panels of Figure 2.16 are well

described by lognormal functions:

dN

d log ρh
=

1√
2πσ2

ρ

exp

[
−(log ρh − log µρ)

2

2σ2
ρ

]
(2.23)

and the equivalent for Σh, where µρ and σ2
ρ are the mean and variance, respectively.

We fit these distributions, and show the parameters in Table 2.3. We also include a

fit to the entire distribution without splitting by age.

The decrease in the number of low-density clusters with age is likely to be a

combination of selection effects and disruption of low-mass clusters. There appears

to be a weak mass-ρh relation, and a much stronger relation between mass and Σh. As

old clusters are massive, they are more likely to have high Σh. However, in the narrow

mass range where the age distributions overlap (around 5×104M⊙), the youngest age

bin extends to lower density than the older age bins. We also examined the density

distributions for clusters in the mass range shared by all age bins, again finding a

larger spread at younger ages. This may indicate that disruption is responsible for

removing these low-density clusters. At the same time, we cannot rule out that higher

mass clusters simply form at higher density.

Observations of GMCs in nearby quiescent galaxies are consistent with a roughly

constant surface density ΣGMC ∼ 100 M⊙ pc−2, while in starbursting and high-redshift

galaxies the normalization is higher ΣGMC ∼ 2000 M⊙ pc−2 (e.g., Dessauges-Zavadsky

et al., 2019). Clumps within resolved Galactic clouds are also consistent with a nearly

constant surface density ΣGMC ≳ 1000 M⊙ pc−2 (Urquhart et al., 2018), although

fixed column density may be a selection effect.

The density of the LEGUS clusters is similar to that of GMCs in nearby quiescent

galaxies. The peak of the Σh distribution for young clusters is ≈ 100 M⊙ pc−2. How-

ever, there is a wide range in cluster densities, in contrast to the narrower range of
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ΣGMC. This may be due to the fact that there is not a direct connection between the

density of GMCs and clusters. Clusters form out of the densest clumps within GMCs,

which in the Milky Way typically have ΣGMC between 100 and a few 104 M⊙ pc−2

(Urquhart et al., 2018). After stars form out of these clumps, stellar feedback dis-

perses the gas. This causes the cluster to increase in size and decrease in density. We

note that we are measuring the radii of clusters at this phase of their evolution, after

gas expulsion.

We also note that the LEGUS sample is from many galaxies with a range of star

formation rates. This may produce a range of GMC properties that are partially

responsible for explaining the scatter in cluster density (Sun et al., 2018). In future

work we will examine the dependence of cluster properties on their environment.

Taking full density distributions from the bottom panels of Figure 2.16, we fit

power-law relations and obtain ρh ∝ M0.52±0.02 and Σh ∝ M0.67±0.012. The fitted

intrinsic scatter in ρh is 1.12± 0.014 dex, while for Σh it is 0.74± 0.009 dex. Errors

are determined by bootstrapping. As a consistency check, we can compare these fit

slopes with those expected based on mass-radius relation fit. For the full LEGUS

sample, Reff ∝ M0.242. By rewriting that relation in terms of densities, the expected

relations are ρh ∝ M0.274 and Σh ∝ M0.516. These are less steep than the direct

fits, especially for ρh. Any discrepancy in the slopes may be due to the very large

intrinsic scatter in densities. Their dynamic range is larger than the dynamic range

in mass. This scatter, along with the lack of a clear relation (particularly for the

mass-ρh relation), makes it difficult to fit a reliable slope.

2.4.4 Cluster Evolution

Previous literature indicated that clusters may expand with time (e.g. Bastian

et al., 2012; Ryon et al., 2017). As stars within clusters lose mass, isolated clusters will

slowly expand to maintain virial equilibrium, while at later times two-body relaxation
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Table 2.3 Lognormal fits to the density distributions shown in Figure 2.16. The log
mean µ and standard deviation σ are given for density ρh and surface density Σh.
Note that the cluster mass ranges given in Table 2.2 apply to these fits too.

Age log µρ σρ log µΣ σΣ

( M⊙ pc−3) (dex) ( M⊙ pc−2) (dex)

All 1.80 0.78 2.36 0.61
1–10 Myr 1.56 1.13 1.98 0.82
10–100 Myr 1.83 0.78 2.37 0.60
100 Myr – 1 Gyr 1.82 0.57 2.44 0.43

can also increase the cluster radius (Gieles et al., 2010).

In Figure 2.12 we see a statistically significant evolution in radius with age from

the 1–10 Myr bin to the 10–100 Myr bin, with high-mass clusters slightly expanding.

However, the magnitude of this increase is quite small. The fit parameters indicate

typical clusters at 104M⊙ expand from 2.36 to 2.51 pc, while clusters at 105M⊙

expand from 3.58 to 4.76 pc. Notably, we only see this evolution between our first

two age bins. We see no significant differences between the 10–100 Myr and 100 Myr–

1 Gyr bins.

To start interpreting these results, we turn to an examination of the Jacobi radius,

which sets the radius at which stars belong to a cluster when it is in a tidal field.

Clusters that fill a larger fraction of the Jacobi radius are more vulnerable to mass

loss. For clusters with mass M in circular orbits with angular frequency ω in a galaxy

with a flat rotation curve, the Jacobi radius is defined as

rJ =

(
GM

2ω2

)1/3

(2.24)

We do not directly calculate rJ , as obtaining ω for each cluster is beyond the scope

of this paper, and the assumption of a flat rotation curve may not be true for every

galaxy. However, we can qualitatively examine how the ratio of the effective radius
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to the Jacobi radius scales with cluster mass:

Reff

rJ
∝ Mβ

M1/3
(2.25)

where β is the slope of the mass-radius relation (Equation 2.20 and Table 2.2). Note

that this assumes no relation between M and ω. For the full sample β = 0.24, giving

Reff/rJ ∝ M−0.09. In the youngest age bin (1–10 Myr) β = 0.18, and Reff/rJ ∝

M−0.15. In either case, high-mass clusters fill less of their Jacobi radii than low-mass

clusters.

To examine the evolution of clusters with time, we also use the evolution model

from Gieles & Renaud (2016), known hereafter as GR16. This model includes two

processes that influence cluster evolution: tidal shocks and two-body relaxation. Tidal

shocks increase the energy of the cluster and result in mass loss, while two-body

relaxation is assumed to only increase the energy of the cluster without causing mass

loss. To show how this model would change the clusters in the sample, we take

clusters along the 1–10 Myr best fit relation and evolve them through this model for

300 Myr. Figure 2.17 shows contours of the observed distribution of clusters in the

three age bins, their best fit relations, and arrows illustrating how the GR16 model

affects clusters in this 300 Myr of evolution.

Figure 2.17 also includes two other toy models of cluster evolution, designed to

represent the tidally limited and not tidally limited extremes. When clusters are very

small compared to Jacobi radii, any energy injection will increase the radius without

causing substantial mass loss. On the other hand, any energy from either two-body

relaxation or shocks will cause mass loss in tidally limited clusters, and the cluster’s

effective radius will decrease along with the tidal radius.

To model these two cases we modify the mass loss prescriptions of GR16. They
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would change clusters lying on the 1–10 Myr relation after 300 Myr of evolution.

introduce a parameter f that relates mass loss to energy injection (their Equation 2):

dM

M
= f

dE

E
(2.26)

For shocks, they set fsh = 3, while setting frlx = 0 turns off mass loss from two-body

relaxation.

We change these f values to produce our two cases. In the case where clusters are

not tidally limited and mass loss does not happen, we set both fsh = frlx = 0. We

then rederive the model, and its results are shown by the “No Mass Loss” arrows in

Figure 2.17. In the tidally limited case, we keep the original fsh = 3 but also allow

for mass loss from two-body relaxation with frlx = 0.2 (Gieles et al., 2006). As the
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cluster loses mass, we require the radius to be proportional to the tidal radius:

Reff

Reff,0

=
rJ
rJ,0

=

(
M

M0

)1/3

(2.27)

The scaling relation presented above in Equation 2.25 indicates that low-mass

clusters are more likely to be tidally limited than high-mass clusters, and Figure 2.17

qualitatively supports this conclusion. If high-mass clusters are not tidally limited,

they will lose little mass and expand, matching the observations. While the mass

range of old clusters prohibits a detailed examination of low-mass clusters, the mass-

radius relation would steepen if the effective radius of low-mass clusters evolves pro-

portional to the tidal radius.

However, it is clear that none of these models do a good job of quantitatively

matching the full evolution. The GR16 model pushes clusters towards a mean relation

of Reff ∝ M1/9, making the relation shallower rather than steeper as required by the

observations. The toy model with no mass loss can increase the radius of massive

clusters, but its effects are weakest for the highest mass clusters where the observations

show the largest difference with age. The toy model that assumes the radius changes

with the tidal radius may work for low-mass clusters, but for high-mass clusters it

has nearly no effect.

Importantly, the time dependence of these models is in strong conflict with the

observations. We see a change from the 1–10 Myr age bin to the 10–100 Myr bin, with

no significant change afterwards. However, the models change clusters steadily with

time, leading to little change in the first ∼30 Myr but large changes after 300 Myr.

In addition, models would need to match the change in scatter with time. As

clusters evolve towards the mean relation of the GR16 model, the scatter decreases

dramatically. We tested this by taking the full 1–10 Myr sample and putting each

cluster through the GR16 model for 300 Myr. At this late time, the distribution of
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cluster radii has a much smaller scatter than seen in the observations of clusters at

late times. While the observed scatter does decrease with time, it decreases less than

this model predicts.

We note that stellar mass loss is not included in the GR16 model and the modified

versions presented here. In 1 Gyr, clusters can lose roughly 30% of their mass through

stellar evolution alone, and this can cause them to expand (Gieles et al., 2010).

In addition, one should be careful comparing the cluster mass from the models to

the observed mass. The models treat mass loss from stars leaving the cluster as

instantaneous, while in reality stars can remain in clusters for a long time before

escaping through the Lagrangian points (Fukushige & Heggie, 2000; Baumgardt, 2001;

Claydon et al., 2019). Once stars escape, their low velocity dispersion means that

unbound stars can remain near the cluster (Küpper et al., 2008, 2012; Webb et al.,

2013). These unbound but nearby stars may still be included in the SED fit and

radius fits. The observed mass of the cluster is therefore not necessarily the bound

mass of the cluster, which is what the models present.

From all of this, it is clear that more work needs to be done to understand how

cluster evolution models can be used to interpret this data set. The scaling relation

presented above in Equation 2.25 indicates that high-mass clusters may be less likely

to be tidally bound, but beyond that we refrain from drawing definitive conclusions

about cluster evolution.

2.5 Conclusions

We implemented a custom pipeline to measure the projected half-light radius

Reff of star clusters. This pipeline has several features designed to make it robust

to contamination and accurately estimate the local background, producing reliable

values of Reff (Section 2.2). We applied this pipeline to the star clusters in 31 LEGUS

galaxies, producing a uniformly-measured sample of 7242 star cluster radii. Of these,
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we identify 6097 as having reliable radii. This is currently the largest such catalog of

star cluster radii available.

We summarize the key results below:

• Most, but not all, galaxies share a common cluster radius distribution, with a

peak at around 3 pc (Figure 2.10). The shape of this distribution is asymmetric, with

a tail to small radii, and is well described by a Weibull distribution (Equation 2.19).

• We find a clear but shallow mass-radius relation (Figures 2.11, 2.13). This

relation takes the form Reff ∝ M0.24, with an intrinsic scatter of 0.25 dex (Table 2.2).

• This mass-radius relation is present in clusters of all ages probed by LEGUS

sample (Figure 2.12). The slope of this relation is shallower at 1–10 Myr than at

later times, but the slope does not evolve between the 10–100 Myr and 100 Myr–

1 Gyr bins. The intrinsic scatter decreases with time. Selection effects cause the

subsamples of different age to span different mass ranges, complicating interpretation

(Section 2.4.1).

• The majority of clusters identified in LEGUS are gravitationally bound (Fig-

ure 2.14). The majority of unbound clusters are younger than 10 Myr and tend to be

less massive (Figure 2.15).

• The distributions of both average density and surface density of LEGUS clusters

are well fit by lognormal distributions (Figure 2.16). The width of these distributions

is large but decreases with cluster age. The peaks of the distributions for the youngest

clusters are ρh ≈ 30 M⊙ pc−3 and Σh ≈ 100 M⊙ pc−2 (Table 2.3).

• While we do not directly calculate the Jacobi radii for the LEGUS clusters, the

shallow mass-radius relation implies that high-mass clusters fill less of their Jacobi

radius than low-mass clusters (Equation 2.25).

• We create simple toy models of cluster evolution based on the model in Gieles

& Renaud (2016) to interpret the trends we see with cluster age (Figure 2.17). None

of the models can successfully reproduce all aspects of the observed distributions.

73



CHAPTER III

Nuclear Star Clusters in Cosmological Simulations

This chapter was published as: Brown, G., Gnedin, O. Y., & Li, H. 2018, ApJ,

864, 94

Abstract

We investigate the possible connection between the most massive globular clus-

ters, such as ω Cen and M54, and nuclear star clusters of dwarf galaxies that exhibit

similar spreads in age and metallicity. We examine galactic nuclei in cosmological

galaxy formation simulations at z ≈ 1.5 to explore whether their age and metallicity

spreads could explain these massive globular clusters. We derive structural properties

of these nuclear regions, including mass, size, rotation, and shape. By using theo-

retical supernova yields to model the supernova enrichment in the simulations, we

obtain individual elemental abundances for Fe, O, Na, Mg, and Al. Our nuclei are

systematically more metal-rich than their host galaxies, which lie on the expected

mass-metallicity relation. Some nuclei have a spread in Fe and age comparable to the

massive globular clusters of the Milky Way, lending support to the hypothesis that

nuclear star clusters of dwarf galaxies could be the progenitors of these objects. None

of our nuclear regions contain the light element abundance spreads that characterize

globular clusters, even when a large age spread is present. Our results demonstrate

74



that extended star formation history within clusters, with metal pollution provided

solely by supernova ejecta, is capable of replicating the metallicity spreads of mas-

sive globular clusters, but still requires another polluter to produce the light element

variations.

3.1 Introduction

Globular clusters have traditionally been seen as having a single-age, single-

metallicity stellar population. However, recent evidence has shown that the formation

process of globular clusters is more complicated (e.g. Gratton et al., 2012). Color-

magnitude diagrams show multiple populations of stars, as evidenced by multiple

main sequences, the widening of the red giant branch, and the splitting of the hor-

izontal branch (e.g. Milone et al., 2017). Additionally, spectroscopy has revealed

correlations in the abundances of light elements such as N, O, Na, Mg, and Al (e.g.

Carretta et al., 2009a). A large fraction of globular cluster stars are affected.

Further deviations from a simple stellar population are present in a few of the most

massive clusters, which can have spreads in both metallicity and age. The measurable

spread in iron gives these objects the name “anomalous” or “iron-complex” clusters

(Marino et al., 2015). They include ω Cen (Johnson et al., 2009), M54 Carretta et al.

(2010a), and Terzan 5 (Massari et al., 2014). In clusters with an iron spread, the

light element abundances are present within each peak of the metallicity distribution

(Marino et al., 2011, 2015). An age spread may be present in these clusters as well.

For ω Cen the age spread has several claims in the literature, from around 500 Myr

(Tailo et al., 2016) to 1 Gyr (Joo & Lee, 2013) to several Gyr (Villanova et al.,

2014). Terzan 5 has a much larger age spread, at around 7.5 Gyr (Ferraro et al.,

2016). M54 is still embedded in the stellar population of its host galaxy, making

interpretation difficult, but this region has experienced star formation over at least

10 Gyr (Siegel et al., 2007). The extended formation history of these objects may
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imply a significantly different origin than typical globular clusters. These anomalous

clusters are more similar to the nuclei of dwarf galaxies, and thus may represent

transitional objects between star clusters and galaxies.

Most nearby galaxies contain nuclear star clusters (NSCs) (e.g. Leigh et al., 2012).

NSCs are more prevalent in smaller galaxies (M⋆ < 1010M⊙), but can coexist with

supermassive black holes in the mass range around 1010M⊙ (Ferrarese et al., 2006;

Seth et al., 2010; Georgiev et al., 2016). The Milky Way hosts both a NSC and a

central black hole (e.g. Feldmeier-Krause et al., 2017b). Since NSCs sit at the bottom

of the galaxy’s potential well, they can have inflows of gas that allow multiple star

formation episodes, compared to non-nuclear star clusters of the same mass. The

Milky Way’s NSC shows evidence of a complicated star formation history (Do et al.,

2015; Feldmeier-Krause et al., 2017a). Enriched gas processed by the stars in the

dense cluster is likely to remain near the cluster, allowing the later populations of

stars to have enriched elemental abundances. Of particular interest are the NSCs of

satellite galaxies. When a satellite galaxy merges with a larger host, its dense nucleus

is likely to survive the tidal interactions. After the galaxy is stripped, the NSC may

emerge as one of the host’s massive globular clusters. This hypothesis is potentially

capable of explaining the age and metallicity spreads of the most massive globular

clusters (Freeman, 1993; Böker, 2008). These spreads in metallicity may also result

in spreads in light elements, potentially explaining some of the observed spreads in

massive clusters.

For this to be a viable scenario, the NSCs of the satellites need to have similar

sizes, masses, and elemental abundances as the globular clusters we observe. Here

we test this scenario by analyzing the results of recent ultrahigh-resolution simu-

lations of galaxy formation by Li et al. (2017, 2018). These simulations include a

novel star formation prescription, where star clusters are the unit of star formation.

These star cluster particles form over time until the feedback from their stars termi-
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nates their growth. The clusters incorporate continuous enrichment of the interstellar

medium and encode some intrinsic metallicity spread. This realistic modeling results

in self-consistent cluster masses, age spreads, and metallicity distributions, making

the simulations an excellent tool to study this problem.

In this paper we identify nuclear regions in the simulations, then compare their

masses and sizes to a sample of observed NSCs (Georgiev et al., 2016). We check the

mass-metallicity relation for our galaxies and nuclear regions against the observed

relation for dwarf galaxies (Kirby et al., 2013). We use published supernovae yields

(Nomoto et al., 2006) to make predictions of the individual elemental abundances for

the stars in the nuclear regions. We then examine the age and metallicity spread of

the nuclear regions, as a direct comparison to the observed massive globular clusters.

Lastly, we compare the spreads in light elements to the observed spreads found in

globular clusters.

3.2 Structure of Nuclear Clusters in Simulations

The suite of cosmological simulations by Li et al. (2017, 2018) was run using the

Adaptive Refinement Tree (ART) code (Kravtsov et al., 1997; Kravtsov, 1999, 2003;

Rudd et al., 2008) in a 4 Mpc comoving box, with initial conditions selected to produce

one Milky Way-sized galaxy at z = 0 along with several satellite galaxies. The ART

code solves equations for the gravitational dynamics of the stars, dark matter, and

gas, as well as the hydrodynamics of the gas component. The code utilizes Adaptive

Mesh Refinement (AMR) to reach very high spatial resolution. The current suite has a

maximum resolution of Lcell = 3−6 physical pc (not comoving), which is high enough

to resolve giant molecular clouds. The code calculates run-time transport of UV

radiation (Gnedin & Abel, 2001) from both local stellar sources (Gnedin, 2014) and

the extragalactic background (Haardt & Madau, 2001). A non-equilibrium chemical

network is used to model the various ionization states of hydrogen and helium, and the
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formation and destruction of molecular hydrogen (Gnedin & Kravtsov, 2011). Stellar

feedback comes from the energy and momentum from supernovae, as well as winds and

radiation pressure from young massive stars, which is calibrated by stellar population

synthesis models. Chemical enrichment includes contributions from supernovae types

II and Ia. The most novel aspect of these simulations is the explicit modeling of stars

forming in clusters with a spectrum of masses that matches observations of young

star clusters in the nearby universe. Growth of star clusters is terminated by their

own feedback, and cluster masses are thus calculated self-consistently. This current

suite has completed runs to redshift z ≈ 1.5.

We use the outputs of several runs with different value of the local star formation

efficiency per free-fall time, ϵff . All runs start from the same initial conditions and

have the same physics, including the supernova momentum boost factor fboost = 5.

This boost factor accounts for the enhanced momentum feedback of clustered SNe vs

isolated SNe, and also compensates for the momentum loss due to advection errors

as the SN shell moves across the simulation grid (for details see Li et al., 2018).

We take four runs with a constant value of ϵff randing from 10% to 200% (SFE10,

SFE50, SFE100, and SFE200), plus one run with turbulence-dependent ϵff (SFEturb,

with the median of about 3%). One additional run, SFE50-3SNR with fboost = 3,

was chosen to test the sensitivity of results to the strength of feedback. Despite the

different choices of ϵff , all runs with fboost = 5 reproduce the galaxy stellar mass and

star formation rate as expected from the abundance matching technique; the SFE50-

3SNR run has an elevated star formation rate because of weaker feedback. While

ϵff has little effect on the global galaxy properties, the properties of individual star

cluster particles (such as the cluster mass function, maximum cluster mass, and the

cluster formation timescale) depend strongly on this parameter. For this reason, we

plot each of these runs separately, although it will be apparent that our results are

not affected by the numerical differences between the runs.
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3.2.1 NSC Masses and Sizes

We use the ROCKSTAR halo finder (Behroozi et al., 2013a) to identify the dark

matter halos in the simulation outputs. Then we find the stellar center of the galaxy

by doing an iterative centering process. To account for discreteness due to the small

number of stellar particles in the center, we use kernel density estimation (KDE) where

we smooth each star particle with a 3D Gaussian kernel, then sum the contributions to

create a full stellar density field. We start by smoothing the star particles with a large

kernel (σ = 2kpc). We pick the location with the highest density, then recalculate

the stellar density around that point using a kernel that is 3 times smaller. We repeat

until we reach the resolution limit of the simulation, given by the cell size at the finest

refinement level. The smallest kernel uses σ = Lcell,min = 3pc. This iterative process

has the effect of first picking out large-scale galactic structure, then focusing in on

the locations with the highest stellar density within those larger scale dense regions.

The location of the absolute highest stellar density sometimes is in a very massive

young cluster in the outskirts of the galaxy, but the algorithm avoids these clusters

in favor of true nuclear clusters. Using the large scale galactic structure is essential

to this process.

Next we define the plane of the galaxy. Following the formalism in Zemp et al.

(2011), we use the inertia matrix to calculate the axis ratios of the galaxy. The inertia

tensor can be written as

Iij =

∑
k Mk rk,i rk,j∑

k Mk

(3.1)

where Mk is the mass of the k-th particle, and rk,i is the i component of the position

of the k-th particle. We use only the star particles to calculate the axis ratios, as we

are interested in the stellar component. The eigenvalues of this tensor are a2/3, b2/3,

and c2/3, where a, b, and c are the semi-principal axes, and a ≥ b ≥ c. We define the

normal vector to the plane of the galaxy to be the eigenvector corresponding to the
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Figure 3.1 An illustration of a two-component fit of the surface density profile of a
typical galaxy. The two components of the fit are a nuclear region and an outside
disk. Vertical lines show the half-mass radius Rh and the full extent of the nuclear
cluster RNSC. The cluster mass is indicated at the bottom right.

smallest eigenvalue (c2/3).

We project all the star particles onto the plane of the galaxy, then perform a two

dimensional KDE to obtain the surface density profile. For star particles within the

inner 12 pc, we take the Gaussian kernel with a one sided width of 3 pc (Lcell,min).

Outside of 12 pc, we use a larger 6 pc kernel (Lcell,max) to reduce counting noise. The

surface density is calculated by integrating the KDE density over an annulus to get

the mass, then dividing by the area of the annulus. This KDE estimate is used only

for the central 100 parsecs, while outside this radius we simply bin the star particles.

To find the nuclear cluster, we perform a two-component fit of the stellar density
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profile. Galaxies at these redshifts are expected to be mostly disky with an additional

central component (nucleus or bulge), so we use the sum of an exponential disk and

a Plummer sphere:

Σdisk(R) ∝ exp (−R/ad), Σcluster(R) ∝ [1 + (R/ac)
2]−2,

where ad and ac are the scale radii for the two components (Dejonghe, 1987). We

define the size of the nuclear region, RNSC, to be the radius where Σcluster(RNSC) =

Σdisk(RNSC). Figure 3.1 shows an example of this fitting process.

To estimate the uncertainty of our determination of RNSC after marginalizing

over the other structural parameters, we construct a multivariate Gaussian distribu-

tion with dimensions given by the covariance of the parameters of the decomposition

(normalization and scale radius of both components). We then sample from this

multivariate Gaussian and re-calculate the radius of the nuclear region for each re-

alization. We take the range that encloses 68.3% of these radii to be the error of

RNSC.

The mass of the nucleus then is the sum of the star particles within this spherical

region, MNSC ≡ ∑
k Mk(rk < RNSC). We do not subtract off the disk component

within this region. We also calculate the half-mass radius of the nuclear cluster,

defined as

M(Rh) ≡
1

2
M(RNSC), M(R) =

R∫
0

ΣKDE(R) 2πR dR (3.2)

where ΣKDE(R) is the KDE surface mass density as described above. This half-mass

radius is calculated in projection, unlike the mass, for a more direct comparison

with observations. The errors on the mass and half-mass radius are estimated by

perturbing RNSC according to its error.

Figure 3.2 shows the masses and sizes of the galactic nuclei in the simulations,

along with observed NSCs in nearby late-type galaxies of intermediate and low mass
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(M⋆ < 1011) from Georgiev et al. (2016). We excluded one nuclear region with

mass above 109M⊙, in the SFE50-3SNR run that had insufficiently strong feedback

to suppress the formation of a very dense bulge. Simulated nuclear regions with

half-mass radii near 3 pc are due to a single star particle dominating the central

mass distribution. For these regions, where a single particle contributes more than

half of MNSC, we take the Rh given by Equation 3.2 to be an upper limit because

they just reflect the size of the smoothing kernel. At low masses, there are many of

these galaxies where a single star particle dominates. These unresolved clusters are

consistent with many of the compact clusters in the Georgiev et al. (2016) sample.

However, the nuclei that are resolved in the simulations tend to have Rh larger

than observed clusters of the same mass. This overestimate is particularly noticeable

at low masses, and can be an order of magnitude or more. At high masses the

discrepancy is a factor of several.

As discussed above, we select nuclear regions by means of a two-component fitting

procedure. While this procedure generally provided sizes larger than the observed

radii of the nearby NSCs, any more complicated model fit would be unwarranted

due to the irregular structure of our galaxies. Our fit also appears to be robust and

nuclear regions clearly defined. The central NSC density exceeds the extrapolated

central density of the disk component typically by a factor of 10 or greater.

However, the physical interpretation of these components is not always clear.

Strong feedback gives our galaxies an irregular structure at the redshift z ≈ 1.5 of

our last output, making the identification of a center unclear in some cases. Some

galaxies had a roughly constant density in the center, with one massive star particle

that was chosen by our algorithm to be the center. Others had a more extended

central component without a strongly peaked center, where the middle was chosen to

be the center. Even in these situations, however, a central component is present and

can represent a nuclear region, even if it is too large to be a typical NSC. Visually
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inspecting the profiles indicated that the returned sizes were an acceptable description

of this central component. These results indicate that higher resolution or improved

stellar physics are required to properly model NSCs.

Interestingly, we find that although NSC sizes are generally overestimated in the

simulations, the overall galaxy sizes match relatively well with the observed sample of

van der Wel et al. (2014). For late-type galaxies with 9.0 < logM⋆ < 9.5 at redshift

1.5 < z < 2, the median effective radius is 2.1 kpc, compared to 2.8 kpc for our

simulated galaxies in the same range of mass and redshift. The distribution of sizes

in the observed sample (68% lie between 1.2 and 3.7 kpc) is broader than in the

simulations, which range from 2.5 to 3.3 kpc. The sizes of our simulated galaxies are

thus statistically consistent with the available observations.

3.2.2 Ellipticity and Rotation

With the nuclear region defined, we can assess the spatial and kinematic structure

of the collection of stars in this region. Using the inertia tensor (Equation 3.1), we

calculate the axis ratios of the nuclear regions.

Figure 3.3 shows the axis ratios as a function of the NSC mass. Nuclear regions

that have less than 10 star particles are not shown, as they have too few particles to

reliably determine the axis ratios. Our nuclear regions are mildly triaxial, but all of

them are less flattened than the Milky Way NSC (Feldmeier-Krause et al., 2017b).

To investigate whether the flattening is caused by rotation, we calculate the rota-

tion velocity and the residual velocity dispersion of the NSCs. We define the plane of

the galaxy in the same way we did above, based on the inertia tensor. We found that

this definition works better than using the angular momentum vector of the nuclear

regions, because the latter is relatively small and does not determine the structure of

the NSCs. We find that the direction of the nuclear angular momentum is misaligned

with the normal to the plane of the galaxy by between 20 and 90 degrees, and has no

84



104 105 106 107 108 109

Mass [M�]

0.0

0.2

0.4

0.6

0.8

1.0

b
/a

,
c/

a

SFE 10

SFE 50 3 SNR

SFE 50

SFE 100

SFE 200

SFE turb

MW NSC

Figure 3.3 Axis ratios of our simulated galaxies as a function of mass of the nuclear
region. Each galaxy has two points connected with a line. The upper shows b/a,
while the lower shows c/a. Nuclear regions that had too few star particles to properly
calculate the axis ratios are not shown. The Milky Way NSC is shown as a star, for
comparison (Feldmeier-Krause et al., 2017b).

dependence on cluster mass.

The rotation velocity is calculated as the mass-weighted tangential velocity com-

ponent of the star particles within the nuclear region. Figure 3.4 shows the ratio

of rotational velocity to 3D velocity dispersion as a function of ellipticity, defined

as ϵ ≡ 1 − c/a. The black line shows the expected values for a system with an

isotropic velocity dispersion that is flattened only by rotation. This relation can be

approximated as

vrot
σ3D

≈
√

ϵ

1− ϵ

(e.g., Mo et al., 2010). The simulated nuclei are predominately below this line, in-

dicating that their non-sphericity is an intrinsic shape, not due to rotation. The

accretion of particles composing the NSCs must have proceeded anisotropically. In-

deed, we find that for nearly all clusters the radial velocity dispersion is larger than
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Figure 3.4 The amount of rotational support of the nuclear regions as a function
of their ellipticity. The black line shows the expected values for a system with an
isotropic velocity dispersion that is flattened only by rotation. Most points lie below
this line, indicating that the nuclear regions are intrinsically non-spherical.

the tangential dispersion by up to a factor of two.

3.2.3 Metallicity

As described above, our suite of simulations tracks enrichment from Type Ia and

II supernovae, but not AGB winds. We calculate the mass-weighted total metallicity

as the sum of all metals divided by the mass of all star particles in the nuclear regions.

To calculate the spread in metallicity, we consider two sources of variance: the

internal spread within a star cluster particle due to self-enrichment (recorded in the

simulation runtime as the cluster is forming), and the dispersion of final metallicity

among star particles.

To calculate the internal spread σ2
Z,k within the k-th particle, we transform the

spread in overall metallicity from SNII. The details of how this is derived from the
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simulation outputs is described in H. Li & O. Gnedin (2018, in preparation), but we

summarize the key points here. The star particles in the simulation contain a variable

MZZ =
∑

miZ
2
i,II that can be used to calculate the metallicity variance of a single

star particle without needing its full accretion history. Here we are summing over all

accreted mass elements mi of a specific cluster particle as it is forming at time steps

i. The final particle mass is Mk =
∑

mi. We only consider the spread in metallicity

from Type II supernovae, since the delay time for SNIa is significantly longer than the

formation timescale of star clusters and therefore enrichment from Type Ia supernovae

will not be relevant for this spread. The variance of the metallicity of a single star

particle k is defined as:

σ2
Z,k =

∑
i miZ

2
i,II∑

imi

−
(∑

i miZi,II∑
i mi

)2

=
MZZ

k

Mk

− Z2
k,II. (3.3)

We then combine this with the dispersion in metallicity among cluster particles

to obtain the total metallicity spread:

∆Z2 =

∑
Mk σ

2
Z,k∑

Mk

+

∑
Mk

(
Zk − Z

)2∑
Mk

(3.4)

where Z is the mass-weighted average metallicity of the nuclear region:

Z ≡
∑

MkZk∑
Mk

. (3.5)

Figure 3.5 shows the metallicities of the nuclear regions plotted against their mass.

We represent the metallicity spread with errorbars that cover the interval log(Z−∆Z)

to log(Z +∆Z). Our nuclear regions have a wide spread of metallicities in the range

−2 < [Fe/H] < −0.25. Other then the most massive nuclear regions typically having

higher metallicity, there is no correlation between metallicity and cluster mass.

87



103 104 105 106 107 108 109

Mass [M�]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

lo
g 1

0
Z
/Z
�

SFE 10

SFE 50 3 SNR

SFE 50

SFE 100

SFE 200

SFE turb

Figure 3.5 Total metallicity of the nuclear regions as a function of their mass. Error-
bars cover the interval log(Z −∆Z) to log(Z +∆Z).

3.3 Elements

3.3.1 Yields

To turn the total metallicity into abundances for individual elements, we use

computed supernova yields in the literature. We take the SNII yields of Nomoto et al.

(2006) and integrate them over the Kroupa (2001) IMF from 10 to 40 M⊙, using a

50% hypernova fraction for stellar masses where hypernova yields are available. Since

the Nomoto et al. (2006) yields are provided at several fixed progenitor metallicities

Z = 0, 0.001, 0.004, and 0.02, we interpolate between these models to get the yield

at any metallicity. We use the W7 model of Iwamoto et al. (1999) for SNIa yields at

all metallicities.

To get the elemental abundances of a given star particle, we use the SN yields

and scale them to produce the appropriate mass of metals, as set by the ZIa and ZII
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Figure 3.6 Mass-metallicity relation (MMR) for the whole simulated galaxies (open
circles) and their nuclear regions (filled circles). The lines connect the nuclei to their
host galaxies. Errorbars in [Fe/H] are the spread in [Fe/H] in a nuclear region or
galaxy (Equation 3.7). The black line and shaded region show the MMR for nearby
dwarf galaxies with its associated RMS scatter of 0.17 dex, shifted down by 0.36 dex
to account for evolution in the MMR to z = 1.5.

variables in the simulation.

The two sets of published SN yields depend on the metallicity of the supernova

progenitor star. Since this information is not recorded in the simulation output, we

are using the metallicity of the star particle itself as the metallicity of the progenitor.

This may overestimate the progenitor metallicity. However, as we discuss later, we

use elements whose yields do not vary strongly with metallicity of the progenitor,

reducing the effect on our results.
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3.3.2 Mass - Metallicity Relation

By using these yields, we calculate a mass-weighted value of [Fe/H] for both the

star particles in the nuclear regions and the stars in the whole galaxy. The average

contribution from all star cluster particles is

[Fe/H] = log

[∑
k Mk(Zk,IafFe,Ia + Zk,IIfFe,II)∑

k Mk Xk

]
− log

[
Z⊙fFe⊙
X⊙

]
(3.6)

where fFe is the mass fraction of the metals that is Fe. The numerator in each fraction

is the mass of iron, while the denominator is the mass of hydrogen. For the Sun we

use the solar abundances of Grevesse & Sauval (1998), which are Z⊙ = 0.0169 and

fFe = 0.0757.

We then transform the metallicity spread (Equation 3.4) into spread in [Fe/H] by

using:

∆[Fe/H]2 = ∆Z2

(
d[Fe/H]

dZII

)2

. (3.7)

We calculate this derivative numerically using interpolation of the published SN

yields. While this equation is written using [Fe/H], it will also be used to calcu-

late spreads in other elemental abundances.

We calculate the mean and total variance in [Fe/H] for both the nuclear regions

and the galaxy as a whole. The results of these calculations are shown in Figure 3.6,

along with an empirical mass-metallicity relation (MMR) for dwarf galaxies from

Kirby et al. (2013), shifted down by 0.36 dex to account for evolution in the MMR

from z = 0 to z = 1.5, based on the interpolation of the results of Mannucci et al.

(2009) for Lyman-break galaxies at z ≈ 3.

The model galaxies lie near the expected z = 1.5 relation, without any fitting,

which provides evidence that our simulations are modeling the chemical enrichment of

galaxies correctly. The nuclei are systematically more metal rich. This indicates that

our galaxies have a metallicity gradient, consistent with observations (e.g. Moustakas
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et al., 2010). The predicted iron abundances of NSCs span a wide range −2.5 <

[Fe/H] < −0.5, uncorrelated with their mass.

3.3.3 Effects of Extended Star Formation

To examine the effect of an extended star formation history, we first determine the

time it took to form the bulk of the stellar mass in each nuclear region. To minimize

the effect of few particles born much sooner or later than the bulk of the particles, we

pick the smallest time interval in which 90% of the mass was formed. This interval

is calculated using only the birth time of the particles, not including the time each

star particle took to form. To account for this additional time, we add the maximum

duration of star particle formation within the cluster (2 Myr ≲ τdur ≲ 10 Myr; Li

et al. 2017) to the initial time interval.

Figure 3.7 shows that the iron spread in the nuclear regions does not correlate with

the length of star formation history. In fact, several NSCs with the longest assembly

time have relatively small spread, ∆[Fe/H] < 0.15, most of which is due to different

metallicities of its constituent particles, rather than the intrinsic spread within each

particle. The largest spread is seen in NSCs that took only 2-3 Myr to form, where

all the spread is internal. These regions tend to be low metallicity ([Fe/H] < −1.8)

and consist of only one or few star particles.

The largest predicted iron spread is comparable with the spread in three massive

globular clusters in the Milky Way where it is clearly detected: ω Cen, M54, and

Terzan 5. To make a fair comparison to our models, we define the observed spread

as the RMS scatter of the [Fe/H] content of the stars in each cluster. This value

is calculated for M54 by Carretta et al. (2010a) and for Terzan 5 by Massari et al.

(2014), while we calculate it for ω Cen using the data from Marino et al. (2011) In

Figure 3.7 we do not show the observed age spreads, only the metallicity spreads. The

age spreads are uncertain, with inconsistencies between different studies of ω Cen (Joo
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& Lee, 2013; Villanova et al., 2014; Tailo et al., 2016). In our simulations we are able

to detect both age and metallicity spreads significantly below the observational limits,

which remain relatively large. However, the simulated assembly timescales are within

the inferred age spread of stellar populations in ω Cen of ∼ 500 Myr (Tailo et al.,

2016), while being shorter than the age spreads in M54 and Terzan 5 (Siegel et al.,

2007; Ferraro et al., 2016). As our simulations only reach z ≈ 1.5 (t ≈ 4.3 Gyr), we

are not able to model the large age spreads present in these two clusters. These results

lend support to the hypothesis that stripped NSCs could become progenitors of the

anomalous globular clusters. There are still quantitative differences that need to be

explored in future work: the nuclei with largest iron spread all have lower metallicity

than the three observed anomalous clusters and lie in the lower mass range below

106M⊙.

3.3.4 Reliability of Light Element Yields

When determining which elements can be modeled reliably by our simulations, we

consider several aspects.

(i) Our simulations only model supernovae, not AGB stars or other sources of

chemical enrichment, so we select elements without strong AGB contributions.

(ii) As discussed above, we are using the metallicity of the star particle itself as the

metallicity of the supernova progenitor star. To reduce the impact on our results, we

prefer elements whose yields do not vary strongly with metallicity of the progenitor.

(iii) Since the two sets of yields give generally different results, we prefer the

elements with low spread between the different model sets.

(iv) We select the elements whose abundances match observations, whether in

direct observation of SN ejecta, observations of low metallicity stars, or chemical

evolution models.

Figure 3.8 shows how our two yield sets (Woosley & Weaver, 1995; Nomoto et al.,
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Figure 3.7 Dispersion of Fe in the nuclear regions as a function of the time required to
assemble 90% of their mass. The contribution from internal star particle metallicity
spread is shown by hollow diamonds and labeled “Internal”, while the total dispersion
including spread among the multiple star particles in the nuclear region is shown by
filled circles and labeled “Total”. The internal and total components for each NSC
are connected by a vertical line. The points are color-coded by the mass of the nuclear
region. The horizontal lines on the right show the observed Fe spreads in massive
globular clusters of the Milky Way (see text for references).
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2006) vary with metallicity, to address the second and third points. Table 3.1 describes

in more detail several elements that are relevant for globular clusters and NSCs, the

production source of those elements, and comments on the reliability of the yields.

This table includes only elements that we deemed relevant for our analysis. We do not

discuss elements such as C and N, which have significant AGB contributions, or other

elements that are not strongly involved in the phenomenon of multiple populations.

To evaluate the reliability of our use of supernovae yields to extract elemental

abundances for these light elements, we surveyed the literature for studies examining

this issue. Romano et al. (2010) and Andrews et al. (2017) put different sets of yields

through the same chemical evolution model, then compared the result to observa-

tions, showing how different model choices affect the resulting abundances. These

papers show both the scatter among different models and the differences between

models and data, which are important for assessing reliability of the yields. Andrews

et al. (2017) and Pignatari et al. (2016) describe the production sites of the various

elements. Wiersma et al. (2009) implement the yields into cosmological smoothed-

particle-hydrodynamics simulations and show in their figure A4 the variations caused

by different yields.

The synopsis of these studies is that Oxygen is modeled reliably. It matches ob-

servations, has a weak metallicity dependence, and has a reasonably small spread be-

tween different yield sets. Magnesium is similar to Oxygen. Aluminum and Sodium

have much stronger metallicity dependences and wider spreads, making their pre-

dicted abundances less certain.

3.3.5 Predicted Correlations of Element Abundances

To test whether our nuclear regions may have properties similar to the observed

multiple populations in globular clusters, we examine their detailed elemental abun-

dances. First we compare the overall normalization of the abundances as a function
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Figure 3.8 Abundance ratios of the ejecta of SN type II as a function of metallicity
of the SN progenitor, for two yield models: solid lines are for Nomoto et al. (2006),
dashed lines are for Woosley & Weaver (1995). Note that we have adjusted the WW
Fe yields down by a factor of 2 and the Mg yields up by a factor of 2, as suggested by
other authors (Timmes et al., 1995; Wiersma et al., 2009; Andrews et al., 2017). We
aim to study elements that do not vary strongly with Z and have a low discrepancy
between the models.

of metallicity. Figure 3.9 and Figure 3.10 show [O/Fe] and [Mg/Fe] for our nuclear

regions and compare them to the compilation of 202 red giants from 17 globular clus-

ters presented in Carretta et al. (2009a). Because of the limited sample size of the

available measurements, we combine the available data from all clusters and plot the

regions enclosing 50% and 90% of all stars. We compare this total range of observed

abundances with our model predictions.

In each plot a solid line shows the track the objects would follow if their metal-

licity came entirely from Type II supernovae. Points below this line indicate some

enrichment from Type Ia supernovae, which contribute Fe, but not O or Mg.

Additionally, we examine the elemental anti-correlations (Na-O and Al-Mg) that

are key features of the multiple population phenomena in globular clusters. We

compute the [Na/Fe] and [O/Fe] ratios for each star particle. Since the underlying

metallicity dispersion is responsible for the elemental dispersion of a star particle, the
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Figure 3.9 Oxygen abundances for model nuclear regions. The dark (light) contours
show the location of 50% (90%) of globular cluster stars from Carretta et al. (2009a).
Black lines show the elemental ratios of the SN yields, for different percentage con-
tributions of SN type II.
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Figure 3.10 Same as Figure 3.9, but for Magnesium.
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elemental dispersions will be correlated. A given metallicity spread will cause a spread

along a certain direction in the [Na/Fe]-[O/Fe] plane. We smooth each star particle

by a Gaussian whose width along this direction will reproduce the elemental spreads

(see Equation 3.7). For visual clarity, a lower threshold on this width was chosen to

be 0.005 dex, which was also used as the width perpendicular to the direction of the

spread. We mass-weight the contributions of all star particles in a cluster, then plot

contours that enclose 50% and 90% of the mass for each cluster. Figure 3.11 shows the

results of this for the Na-O anticorrelation, while Figure 3.12 shows the Mg-Al anti-

correlation. Black lines show the tracks that objects would follow if their metallicity

came from a given percentage of Type II supernovae, for metallicities −3 < [Fe/H] <

0. Nuclear regions consisting of a single particle will exhibit spreads along these

lines, while regions with multiple particles can have spreads in any direction due to

potential variations between particles. It is apparent that nearly all of our simulated

nuclear regions do not have a significant spread in any elemental abundance, unlike

stars in globular clusters. It is also apparent that the yield lines are not capable of

producing the full range of elemental variations, especially for Al, even though they

include metallicities up to solar.

As seen in Equation 3.7, elements whose yields change more with metallicity will

have larger spreads. Na and Al yields change more than O and Mg (see Figure 3.8),

explaining their larger abundance spreads in these figures.
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Figure 3.12 Same as Figure 3.11, but for Al-Mg anticorrelation.
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3.4 Discussion

The results presented above test the hypothesis that the abundances of nuclear

star clusters are consistent with the observed trends in massive globular clusters. Here

we discuss these results and the possible presence of dark matter within the NSCs.

3.4.1 Elemental Abundances

As shown in Section 3.3.5, we are unable to reproduce the full spread in light

element abundances that are present in globular clusters. For [O/Fe] and [Mg/Fe],

the one-sided spread is less than 0.02 dex for all clusters, while for [Na/Fe] and [Al/Fe]

the spread is 0.1 dex at most. The observed one-sided spreads are significantly larger:

about 0.2 dex for [O/Fe] and [Na/Fe], 0.1 dex for [Mg/Fe], and 0.3 dex for [Al/Fe].

The higher spread in Na and Al in our clusters is due to the stronger variation in the

yields of these elements with metallicity (Figure 3.8). Even with this large variation,

even the yields themselves are not able to produce as much Al as is present in enriched

second-generation globular cluster stars.

The spread we calculate includes both the internal spread within a star particle

due to a metallicity variation in the accreted gas during its formation, as well as the

spread among different star particles within a given nuclear region. Even with both of

these sources, the elemental spreads are too small. Our simulations would be able to

reproduce the distinct stellar populations by having multiple star particles with differ-

ently enriched material, but we do not see this. Many nuclear regions consist of only

one star particle, but those that have multiple do not show the necessary variations.

In addition, a substantial age spread cannot be responsible for the elemental spreads,

as none of our nuclear regions reach the required light element spread, regardless of

their formation timescale.

As described in Section 3.2.1, the sizes of our nuclear regions are an acceptable

description of the central component of the central density component, even though
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they are typically larger than observed NSCs. This indicates that the particles that

are included within each NSC are a reasonable selection. The main conclusion of our

calculation is that the extended star formation histories, without internal pollution,

are insufficient to reproduce the observed abundance trends in globular clusters. This

conclusion would only be strengthened if our selection of NSC particles is an over-

estimate. If we reduce the sizes and masses of model NSCs, their abundance spread

would only decrease.

This indicates that our simulations do not contain the enrichment sources that

are the true cause of the spreads. As supernovae are the only enrichment source

we include, these results provide support to the idea that the polluter responsible for

globular cluster abundances must lie within the clusters during their formation epoch.

A number of models have been proposed to explain these light element abundance

variations. Most scenarios call for multiple generations of star formation within the

globular cluster’s formation epoch, with enriched material from a first generation

of stars seeding a second metal enriched generation. Possible versions suggested in

the literature include supermassive stars (Denissenkov & Hartwick, 2014), rotating

massive stars (Decressin et al., 2007; Krause et al., 2013), AGB stars (Cottrell & Da

Costa, 1981; Renzini et al., 2015), and interacting binaries (de Mink et al., 2009).

However, all of these current scenarios have some shortcomings in matching the full

set of available observations, as discussed by Bastian & Lardo (2018). These models

fail to produce correct elemental abundances of the globular clusters, both for the

elements listed above and Helium. Additionally, to reproduce the large fraction of

enriched stars in a globular cluster, most models require huge amounts of mass loss

(of only first generation stars), which does not appear to be realistic (Larsen et al.,

2012; Cabrera-Ziri et al., 2015).

One important aspect of our simulations is that they only reach z ∼ 1.5. As later

star formation would make the masses, metallicity spreads, and age spreads increase,
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the quantities we report for those properties are best interpreted as lower limits. This

complicates the comparison of our NSCs to observed NSCs and GCs, which are all

at z ≈ 0. For example, the later bursts of star formation in Terzan 5 and M54 would

not be present in our simulation.

With this caveat in mind, we will discuss the predicted iron spread in model

NSCs. The majority of clusters have a spread less than 0.1 dex, which is roughly the

limit of the observational sensitivity (e.g., Gratton et al., 2004; Willman & Strader,

2012). However, there are some clusters with [Fe/H] spreads larger than this that

could be the progenitors of the iron-complex GCs. These model NSCs are very

metal-poor, with the metallicity distribution dominated by internal dispersion. Our

simulations include also two nuclear regions that have a longer formation timescale

and a [Fe/H] spread dominated by variation among the star particles. These regions

may be analogous to clusters like ω Cen or M54, which may share a similar origin

(Carretta et al., 2010b). Our objects formed on a timescale consistent with that of

ω Cen, which appears to have an age spread of at least 500 Myr (Tailo et al., 2016).

The metallicity distribution of the object with the largest spread between particles has

a central peak at a metallicity consistent with the peak of the metallicity distribution

of ω Cen and M54, but the tail extends to lower metallicities rather than higher.

Our objects have lower mass than the observed clusters as well. These quantitative

differences need to be explored in future work, but our results lend support to the

hypothesis that objects like ω Cen could be made through tidal stripping of NSCs.

If this model is correct, it has implications for the location of the polluter re-

sponsible for the light element spreads of the massive GCs. If the NSC formed by

in-situ formation (e.g. Hartmann et al., 2011), the polluter must be present for each

new burst of star formation. However, if the NSC formed by the inspiral of globular

clusters (e.g. Antonini et al., 2012; Gnedin et al., 2014; Tsatsi et al., 2017), the pres-

ence of already existing light element spreads in each cluster would provide a natural
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explanation for the fact that light element spreads are found within each peak in the

metallicity distribution of the iron-complex GCs. No polluter would be needed in the

central region of the galaxy. Future observations may be able to test these hypotheses

by looking for light element abundance spreads in NSCs. If not detected, both the

model of massive GC formation discussed in this paper and the GC inspiral model

of NSC formation would need to be discarded. If light element abundance variations

are present in NSCs, these models would remain plausible.

3.4.2 Dark Matter

The amount of dark matter contained within the extent of NSCs is important for

their ability to represent progenitors of massive globular clusters. Even the largest

globular clusters can have only dynamically sub-dominant amount of dark matter

within their optical radii (e.g., Conroy et al., 2011; Ibata et al., 2013). Since NSCs

form at the bottom of the dark matter potential well, they could retain some of the

dark matter even if the rest of the galaxy is tidally stripped.

We find that only one in every 11 NSCs contains any dark matter particles within

RNSC. This does not necessarily imply that no dark matter is present. The mass

and spatial resolution for dark matter is relatively low in our simulations and may

prevent reliable estimate of the dark matter content within the compact clusters.

The dark matter particle mass is about 106M⊙, so that even one particle can be

more massive than the whole NSC. Also, the spatial force resolution for dark matter

is kept separate from the gas and star particle resolution, at 50− 100 pc, so that the

discreteness of massive dark matter particles does not affect the dynamics of gas and

stars. This resolution makes it difficult to put strict constraints on the amount of

dark matter present, but we can still conclude that dark matter is dynamically sub-

dominant within the model nuclear regions. If these central regions turned into an

object resembling a massive globular cluster after being tidally stripped by the host
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galaxy, the remaining amount of dark matter would likely not violate observational

constraints.

3.5 Summary

We have investigated the origin of stellar populations of nuclear star clusters in

galaxy formation simulations. We analyzed the outputs of a suite of simulations at

redshift z ≈ 1.5 and identified nuclear regions of galaxies using a two-component fit

of the stellar surface density profile. The range of inferred NSC masses is consistent

with the observed nuclear regions of nearby galaxies, although the sizes are generally

overestimated. We find that the shapes of model NSCs are moderately flattened, but

not by rotation.

We examine two of the deviations from a simple stellar population present in

massive globular clusters (age and metallicity spreads), and how they affect light el-

ement abundances. Age spreads are derived directly from the simulation outputs,

while we calculated the abundances of several elements (Fe, O, Na, Mg, Al) by ap-

plying theoretical model yields to Type II and Ia supernova ejecta calculated in the

simulations.

Our main results can be summarized as follows.

• The nuclear regions are systematically more metal-rich than their host galaxies.

The average metallicities of galaxies in the simulations match the observed mass-

metallicity relation for galaxies at z ≈ 1.5.

• We find some nuclear regions with a large spread in Fe that could be progenitors

of objects like M54 or ω Cen.

• The predicted spread of light element abundances in NSCs is significantly smaller

than that observed in globular clusters, even in clusters with a large age or [Fe/H]

spread.

• We find no clear dependence of these trends on the local efficiency of star for-
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mation ϵff used in our simulations.

• Our nuclear regions do not contain significant quantities of dark matter.

Our results show that NSCs can plausibly be the progenitors of the massive iron-

complex globular clusters. However, these metallicity spreads cannot contribute sig-

nificantly to the observed light element spreads. The observed abundance spread

must involve additional sources, internal to the clusters.
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CHAPTER IV

Improving Performance of Zoom-In Cosmological

Simulations using Initial Conditions with

Customized Grids

This chapter was published as: Brown, G., & Gnedin, O. Y. 2021, New Astron-

omy, 84, 101501

Abstract

We present a method for customizing the root grid of zoom-in initial conditions

used for simulations of galaxy formation. Starting from the white noise used to seed

the structures of an existing initial condition, we cut out a smaller region of interest

and use this trimmed white noise cube to create a new root grid. This new root

grid contains similar structures as the original, but allows for a smaller box volume

and different grid resolution that can be tuned to best suit a given simulation code.

To minimally disturb the zoom region, the dark matter particles and gas cells from

the original zoom region are placed within the new root grid, with no modification

other than a bulk velocity offset to match the systemic velocity of the corresponding

region in the new root grid. We validate this method using a zoom-in initial condition

containing a Local Group analog. We run collisionless simulations using the original
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and modified initial conditions, finding good agreement. The dark matter halo masses

of the two most massive galaxies at z = 0 match the original to within 15%. The

times and masses of major mergers are reproduced well, as are the full dark matter

accretion histories. While we do not reproduce specific satellite galaxies found in

the original simulation, we obtain qualitative agreement in the distributions of the

maximum circular velocity and the distance from the central galaxy. We also examine

the runtime speedup provided by this method for full hydrodynamic simulations with

the ART code. We find that reducing the root grid cell size improves performance,

but the increased particle and cell numbers can negate some of the gain. We test

several realizations, with our best runs achieving a speedup of nearly a factor of two.

4.1 Motivation

Numerical simulations are an indispensable tool for understanding the complex

processes that occur during galaxy formation. Various groups, using different numer-

ical approaches, have used simulations to successfully replicate galaxy properties and

interpret observations (e.g., Vogelsberger et al., 2020). One approach to simulating

individual galaxies within a cosmological context is with so-called ”zoom-in” initial

conditions (Navarro & White, 1994; Hahn & Abel, 2011). They rely on first simulat-

ing a large volume of the universe containing many galaxies with coarse resolution,

and selecting a region around a particular galaxy, such as one resembling the Milky

Way. Then this comparatively small region is resampled with many more resolution

elements while keeping the initial low resolution in the rest of the volume. The zoom-

in technique allows simulations to model galaxies specifically picked to have desirable

properties at very high resolution, enabling detailed modeling of the relevant physical

processes.

Particularly common are zoom-in simulations designed to target the Milky Way

or larger Local Group volume. Recent surveys (e.g. Gaia Collaboration et al., 2018;
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Majewski et al., 2017) have collected a large amount of data for Milky Way and

other Local Group galaxies. To help interpret these observations, theorists have

long been simulating isolated galaxies with similar masses to the Milky Way (e.g.,

Hopkins et al., 2014). However, recent advances both in the knowledge of the Local

Group’s formation history (Hammer et al., 2007; D’Souza & Bell, 2018) and improved

understanding from simulations of how isolated galaxies are different from those in

groups (Santistevan et al., 2020), have shown that the Local Group’s environment

is essential to understanding its formation. As a result, any computational setup

aiming to uncover the origin of the Milky Way must be specifically tailored to match

the known properties of the full Local Group, including the assembly histories of its

galaxies.

As several key galaxy properties such as halo mass and merger history are de-

termined by the initial conditions (ICs) used in a given simulation, these ICs play a

critical role in any comparison of results between different simulations. Many galaxy

formation simulations have been run by different groups, using different codes and

different ICs (e.g., Hopkins et al., 2014; Ceverino et al., 2014; Vogelsberger et al., 2014;

Wang et al., 2015; Schaye et al., 2015; Sawala et al., 2016; Wetzel et al., 2016; Grand

et al., 2017; Li et al., 2017; Hopkins et al., 2018). These different ICs can lead to

different galaxy properties, even before accounting for differences in modeled physics

or numerical implementation, making a comparison of results challenging. If groups

were to use the same ICs (particularly for zoom-in ICs that replicate the properties of

the entire Local Group), any differences caused by different ICs would be eliminated,

making it easier to understand how modeling differences affect the results. However,

such zoom-in simulations are often computationally expensive, requiring on the order

of 106 CPU hours (Wetzel et al., 2016; Hopkins et al., 2018). Importantly, the per-

formance of different codes may be affected by the details of the ICs, particularly for

zoom-in ICs, where the root grid cells are usually coarse and most of the volume of the
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box is uninteresting. This may make simulations using some ICs prohibitively expen-

sive when run using certain codes. Customizing these parameters, while preserving

the properties of the zoom region, may improve computational efficiency and lower

the cost of these high-resolution simulations of galaxy formation, making a commonly

used set of initial conditions more practical and facilitating code comparison.

Here we present a method of customizing the root grid in ICs to improve code

performance. This method can be used to reduce the box size and increase the

resolution of the root grid. As an example we use the “Thelma & Louise” IC, initially

presented in Garrison-Kimmel et al. (2014). It is a zoom-in IC that contains a Local

Group analog. In particular, the merger history of the Milky Way and M31 analogs

has a qualitative resemblance to the Local Group.

We validate the method using the Adaptive Refinement Tree (ART) code (Kravtsov

et al., 1997; Kravtsov, 1999, 2003; Rudd et al., 2008). The ART code uses adaptive

mesh refinement of the simulation grid to provide high resolution only in interesting

regions where it is needed. Specifically, it starts with a uniform grid of root cells

that are refined if they meet one of several criteria, such as a density threshold or

a comparison to the local Jeans length. The size of the root grid cells is relevant

because the load balancing algorithm operates on these root cells. Each root grid cell

and all its refined “children” are assigned to a given MPI rank. Very large root grid

cells therefore may contain entire structures that are all assigned to a given rank. For

example, in a Local Group-like simulation, both main galaxies may each be located

in single root grid cells, with very little in any other root grid cells. This decreases

efficiency for two reasons. First, it is difficult to evenly divide the needed workload

among different computational nodes. Such uneven load balancing may result in one

rank taking much longer than the rest, wasting computation time as other processors

wait. Second, it is difficult for the ART code to scale to a large number of nodes, as

adding more nodes will not bring any benefit if the work cannot be subdivided that
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finely. Reducing the root grid cell size will address both of these issues.

We also demonstrate that this method reproduces basic properties of the target

galaxies, such as their z = 0 dark matter halo masses, growth histories (including

times and masses of major mergers), and their populations of satellite galaxies.

4.2 Method

A detailed description of the process of creating our cosmological ICs can be found

in Hahn & Abel (2011), but we summarize some of the key points here to provide

context for our method. To start, a cube of a chosen cosmic volume is covered by

a uniform 3D grid, known as the “root grid.” A white noise field is obtained by

assigning a random value sampled from a N (0, 1) distribution to each cell in the

root grid. This is then convolved with the matter power spectrum to obtain realistic

matter overdensities. The convolution is done using a Fast Fourier Transform, which

enforces periodic boundary conditions on the cube. Lagrangian perturbation theory

(e.g. Zeldovich, 1970) is used to turn the overdensity field into particle positions and

velocities. When used for grid-based codes such as ART, this process creates the gas

densities and velocities for root grid cells, as well as the positions and velocities for

each cell’s corresponding dark matter particle (“root grid particle”).

When producing zoom-in ICs, a region of interest is selected, then a finer grid

is used in that region. The spacing of the finer grid can be arbitrarily small, only

limited by the computational resources required to run a simulation at such high

resolution. A buffer of intermediate grid levels is used around the zoom region to

transition smoothly to unrefined regions. The process for generating the properties

of the dark matter particles and gas cells (referred to as “zoom particles” and “zoom

cells”) in the zoom region follows the same basic process as the root grid, just on a

finer grid and with constraints to ensure consistency with the root grid (see Hahn &

Abel 2011 for full details).
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Figure 4.1 An illustration of how the grid structure changes when using our method.
Panel (a) shows the level of refinement in the original IC. The maximum zoom level
contains all the particles that end up in the main galaxies at z = 0. Note that this
is an inset of the original box, which is 70.4 Mpc across. Panel (b) shows a further
inset, with cell boundaries outlined. Panels (c) and (d) are the equivalents from
the modified IC with a box length of 17.6 Mpc and a 2563 root grid. Note how
the original root grid and lower-resolution intermediate levels are now replaced by a
new higher-resolution root grid, while the original zoom region and high resolution
intermediate levels are preserved.
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Figure 4.2 An illustration of the process of customizing ICs. All panels show the
z-axis component of the gas velocity in the same slice through the simulation volume,
with a dashed black line outlining the zoom region. Panel (a) shows the original
realization, while panel (b) shows an inset of the region that will become the new
full simulation volume. Note the higher resolution cells in the central refined region,
with low resolution cells in the outskirts. This region has a nonzero bulk velocity, so
we subtract it off to obtain panel (c). Panel (d) shows the new root grid constructed
with our method, which represents the same volume of space as the insets (b, c). A
comparison with panel (c) shows that many of the key features are present in both
panels, with differences near the edges. These are required for periodic boundary
conditions. Note that in panel (d) the velocity at the top boundary matches the
bottom, and left matches right, unlike panel (c). The higher resolution root grid cells
are also apparent in the new root grid, as the outskirts do not have the pixelation
present in panels (b) and (c). Panels (e) and (f) show the result of combining the
new root grid with the zoom region from panels (b) and (c) respectively. The velocity
correction is necessary to give a smooth velocity field. Panel (f) is used as our final
IC.
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Our goal is to customize the root grid while preserving the environment of the

zoom-in region. To achieve this, we create a hybrid IC, where we produce a new root

grid that uses a smaller box size with a higher resolution grid, then embed the zoom

region from the original IC. Keeping the original zoom region intact ensures that the

galaxies in this region are minimally disturbed.

Creating the new root grid starts by taking the white noise field of the original

cube and cutting out a smaller white noise cube. The same process (convolution

with the power spectrum and gravity calculations) is used to create a new IC from

this trimmed white noise cube. As the white noise cube is what seeds the resulting

structures, they will be nearly preserved in the new box. The only changes will be due

to the enforcement of periodic boundary conditions by the Fast Fourier Transform.

This process results in root grid cells and particles with properties nearly identical to

those in the original, with only slight modifications near the boundaries (far from the

region of interest) to ensure periodicity. The resulting root grid can be regenerated

at any desired resolution. This allows us to have significantly smaller root grid cells,

potentially improving performance in codes like ART that use root grid cells for load

balancing.

After creating the new root grid, we combine it with the particles and gas cells

from the original zoom region. We start by keeping all the particles and cells from

the zoom region of the original IC, as we want to minimally disturb the zoom region.

We also keep the particles and cells from the intermediate levels that are at the same

level or deeper than the new root grid. We then go through all the new root grid

particles and remove any that are in the same root grid cell as a previously kept

particle. Figure 4.1 shows an example of the new grid structure.

Importantly, we also need to correct the velocities of the zoom particles. The new

root grid will have a mean velocity of zero by construction, as the simulation box is

not moving in any particular direction, while the equivalent section of the original
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Table 4.1 List of initial conditions used to run dark-matter-only simulations. Note
that all realizations have the same zoom region that includes 47,517,792 particles,
which dominates the total count.

Run Box Length Number of Root Root Grid Cell Number of

[Mpc] Grid Cells Size [kpc] Particles

L1-128 70.4 (Original) 1283 550.0 51,196,181

L2-256 35.2 2563 137.5 65,589,360

L4-128 17.6 1283 137.5 50,908,382

L4-256 17.6 2563 68.75 64,538,268

volume may have some bulk velocity. We calculate the mean velocity of the root

grid particles that are replaced, and correct the mean velocity of the zoom particles

to match. This important correction minimizes the discontinuity between the zoom

region and the root grid and is illustrated in Figure 4.2.

This simple method, while designed to minimize the discontinuity between the

zoom region and root grid, nevertheless cannot fully eliminate the discontinuity. How-

ever, this approach allows us to preserve the properties of the zoom region as much

as possible (other than its bulk velocity). It results in z = 0 galaxy properties most

similar to the original. In addition, since there are intermediate levels between the

maximally refined zoom region and the root grid, the discontinuities will be far from

the galaxies of interest. As the zoom region is typically selected to include all particles

that end up within the virial radius of the main galaxies, the particles far outside do

not play a strong role in the evolution of the galaxies. This minimizes the affect of

velocity discontinuity.

We illustrate our method by generating several modified versions of the Thelma &

Louise IC. The original IC is a 70.4 comoving Mpc box with a 1283 root grid (Garrison-

Kimmel et al., 2014). A non-spherical zoom region is approximately 10 comoving Mpc

across. This zoom region is 5 levels below the root grid, with intermediate levels nested

around the zoom region (see Figure 4.1 for the grid structure in this IC). We create
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modified versions where we decrease the box size by factors of 2 and 4. A smaller box

should improve the simulation runtime, but may cause too much disruption to the

regions near the galaxies of interest, affecting their evolution (Neyrinck et al., 2004).

We also use two options for the number of root grid cells, as it is a primary driver

of ART’s load balancing. Table 4.1 details the suite of ICs we generated, including

abbreviated names for each realization, which we use throughout the rest of this

paper.

4.3 Comparison of Galaxy Properties

To verify the success of this method, we now evaluate how well the properties of

the galaxies at the present time are preserved. To do this, we use all the ICs detailed

in Table 4.1 to run dark-matter-onlysimulations. We use the ROCKSTAR halo finder

(Behroozi et al., 2013a) and the Consistent Trees code (Behroozi et al., 2013b) to

generate halo catalogs and merger trees.

As a visual representation of the simulations, Figure 4.3 shows the projected dark

matter density of the region surrounding the two main galaxies. Their halos are

clearly visible in similar positions, with similar large scale filamentary structures.

As the original IC was chosen because of its close match to the observed present-

day mass of the Milky Way and Andromeda galaxies, our simulations using modified

ICs must reproduce these final masses and growth histories. Figure 4.4 shows the

mass assembly history for the analogs of the Milky Way and Andromeda for different

simulation runs. The Milky Way analog has a smooth growth history with few mergers

(Hammer et al., 2007), while the Andromeda analog has a more violent accretion

history (D’Souza & Bell, 2018), qualitatively matching observations and making this

IC a good representation of the Local Group. The final halo masses are reproduced

well in all simulations. The z = 0 halo masses for the Andromeda analog are all

within 15% or the original, while the largest difference in the Milky Way analog is
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Figure 4.3 Projected dark matter density of the region surrounding the Local Group
analogs at z = 0 in our dark matter only simulation runs.
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Figure 4.4 The growth of the dark matter halos of the two most massive galaxies in the
Local Group. Symbols show when significant galaxy mergers occur, and are placed
at the time of the merger and the mass of the infalling satellite. The bottom panels
show the differences in mass as a function of time. Note the excellent agreement at all
times in the Milky Way analog, and at late times in the Andromeda analog. Larger
differences can occur near the times of mergers, but the final agreement is excellent.

30%, due to late growth in the L4-128 run. These halos are all still comparable to

the real Milky Way and M31, making them useful for studies of these galaxies.

While galactic mergers are extremely common in the first few billion years of

the universe’s history, later mergers can make a significant impact on galactic stellar

content, and so are more important to reproduce. The simulated Milky Way has no

significant mergers after about 2 Gyr in any realization. The Andromeda analog does

have a few major mergers, which are reproduced well. Note the clumps of points at

around 4 and 6 Gyr in Figure 4.4. These are two mergers that occur at roughly the

same time in all simulations.

The merger histories of the two galaxies are also reflected in their growth histories.

The Milky Way analog’s quieter accretion history results in smooth growth that is
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reproduced extremely well, with typical deviations of less than 10%. Some larger

deviations are driven by differences in timing, for example the more rapid growth

at z ≈ 2 that occurs later in the L4-128 run than in the original. The Andromeda

analog shows larger variations, driven primarily by its more violent accretion history.

Large differences in mass (up to nearly a factor of 2) can occur around the times of

these major mergers, primarily driven in the differences in timing of rapid growth

events. Once the mergers are completed, though, the agreement is excellent, with

typical deviations of 10% after z = 0.5.

In addition to the central Milky Way and Andromeda galaxies, each has many

smaller satellite galaxies. We examine the properties of all dark matter subhalos

within 200 kpc (approximately the virial radius) of the two main halos. The left

panels of Figure 4.5 show the distribution in the maximum circular velocities (vmax)

of the satellites. This quantity is calculated by ROCKSTAR using the dark matter

particles identified as belonging to a given satellite. This makes vmax subject to

numerical discreteness, making exact replication difficult. While the distributions

follow similar shapes, the normalization can differ between different runs. One other

noteworthy difference is the mass of the most massive satellite, where most modified

realizations have a largest satellite significantly more massive than the original run.

Interestingly, this larger circular velocity agrees better with the measured circular

velocities of the Large Magellanic Cloud around the Milky Way (van der Marel &

Kallivayalil, 2014) and M33 around Andromeda (Corbelli, 2003).

The positions of satellites relative to the central galaxies are also important. As

the trajectory of a particle is a solution to systems of partial differential equations,

small differences separate exponentially over time. This leads to chaotic non-linear

orbital dynamics, making it difficult to obtain exactly the same positions relative

to the galaxy center. In the Aquarius suite of simulations, positions of satellites

were reproduced very well when changing the resolution of the ICs, showing that
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Figure 4.5 Properties of the satellite galaxies within 200 kpc of the two central galaxies
at z = 0. The left two panels show the cumulative distribution of the maximum
circular velocity, while the right two panels show the cumulative radial distribution
of satellites with maximum circular velocity above 10 km s−1 (most likely to produce
observable stars).

positions can be preserved after small changes to the ICs (Springel et al., 2008). Unlike

Aquarius, our realizations change the large scale structures around the Local Group

analog, resulting in changes to the positions of the main galaxies, as well as significant

changes to the positions of the satellites around each central (see the visual differences

apparent in Figure 4.3). However, we find that the radial distributions of satellites

are similar. The right panels of Figure 4.5 show the cumulative radial distribution

of satellite galaxies of the Milky Way and Andromeda analogs with vmax > 10 km/s

(which selects halos likely to produce observable stars). For the Milky Way analog,

the agreement is excellent. The radial distributions of satellites agree within 150 kpc.

Beyond that, the modified realizations start to diverge, reflecting differences in the

total number of satellites with vmax > 10 km/s. In the Andromeda analog, while

the original realization does have significantly more satellites closer in, the shapes

of the distributions are quite similar, with differences in normalization again due to

differences in the total number of satellites. Note that in this comparison we only

considered satellites within 200 kpc, and for the radial distribution plots chose a cut

at 10 km/s in circular velocity. Changing these cuts would change the details of all

distributions, but does not change the qualitative agreement present in all panels.

As our method subtly modifies the large scale structure around the zoom region,

it may change which particles end up in the final z = 0 halos. While contamination
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from higher mass particles was not identically zero in the runs using modified ICs,

in most runs it remained insignificant. Figure 4.6 shows the fraction of mass within

the virial radii of the two central galaxies contributed by particles other than the

zoom particles. We found higher contamination in our smallest boxes, indicating

that moving the periodic boundary conditions closer to the target galaxy modified

the structure more strongly. In the L4-128 run, a satellite made entirely of root grid

particles flew by both two central galaxies at z ≈ 0.1, while in the L4-256 run a

smaller root grid satellite came near the Milky Way analog. The L2-256 run had

less contamination, with no infalling satellites made of root grid particles. However,

about 1% of the virial mass of the Milky Way analog came from intermediate level

particles. By identifying the contaminating particles in all runs and tracking them

back to the IC, we determined that all contaminating particles came from just outside

the zoom region. Regenerating the zoom region within the original IC to include the

region where the contamination originated, then embedding this larger zoom region

within the new root grid would solve this issue.

Similarly, one possible modification to the method presented here would be to

use the trimmed white noise cube to generate a new zoom region in addition to

the root grid, rather than copying the zoom region from the original IC. This would

eliminate the discontinuity between the zoom region and the root grid cells, but would

also likely lead to more significant changes in the galaxy properties. The hybrid IC

method results in minor changes to the halo growth history and satellite distributions

without changing the zoom region of the IC at all. Regenerating the zoom region

would likely lead to much larger changes in galaxy properties. A major reason to use

a hybrid IC is to facilitate code comparison with other groups using the same IC, and

large changes in galaxy properties would eliminate this benefit.
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Figure 4.6 The fraction of mass within the virial radii of the two most massive galaxies
contributed by particles other than the zoom particles. Not shown is Species 0, the
most highly refined zoom particles, which constitute most of the mass. Higher species
number corresponds to higher particle mass. The dramatic contamination in L4-128
run comes from several satellites that fly by the Milky Way analog to the Andromeda
analog.

4.4 Code Speedup

To test the code speedup provided by this method, we ran full hydrodynamic sim-

ulations of each realization of our IC using the latest version of the ART code. The

code utilizes adaptive mesh refinement to reach high spatial resolution. It includes

radiative transfer of ionizing and UV radiation from both stars and the extragalactic

background. Radiative transfer is calculated using an improved version of the Op-

tically Thin Variable Eddington Tensor method that minimizes numerical diffusion

(Gnedin, 2014). The ART code includes a non-equilibrium chemistry network that

calculates the abundances of all species of hydrogen (H i, H ii, H2) and helium (He i,

He ii, He iii), calibrated using observations in nearby galaxies (Gnedin & Kravtsov,

2011). A subgrid-scale model for numerically unresolved turbulence (Semenov et al.,

2016) follows turbulent motions in the interstellar medium generated by stellar feed-

back. The most novel aspect of these simulations is the time-resolved modeling of

star cluster formation (Li et al., 2017, 2018). Growth of star clusters is terminated by

their own feedback, allowing a self-consistent calculation of cluster masses. The re-
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Table 4.2 The runtime of full hydro simulations to z ≈ 10 for different realizations of
our IC using the ART code. These simulations were all done on Stampede2 with 8
Skylake nodes with identical setups (other than the IC). Here speedup is defined as
the walltime of the original divided by the walltime of the other run.

Run Time [hours] to z ≈ 10 Speedup Number of Cells at z ≈ 10

L1-128 80.0 — 217,326,943

L2-256 57.5 1.39 219,741,152

L4-128 43.3 1.85 191,168,251

L4-256 43.6 1.83 204,306,243

sulting mass function of modeled clusters matches observations of young star clusters

in nearby galaxies.

All of these simulations were run on the Stampede2 cluster at the Texas Advanced

Computing Center using 8 Skylake nodes. The code version and setup of all runs were

identical. The dark matter particle mass in the refined region is 1.57× 105M⊙, with

47.5 million particles in this region. Within the refined region, we use adaptive mesh

refinement to reach spatial resolution of ≈ 5 pc (physical, not comoving), which is

high enough to resolve giant molecular clouds. We refine cells if either their gas

mass or dark matter mass exceeds a given threshold, which acts to keep all cells with

roughly the same mass. Additionally, we use a Jeans length criterion, requiring at

least 3 cells to resolve the local Jeans length. At z ≈ 10, most of the cells in the

refined region are at the original level or with one additional level of refinement, but

densest regions within galaxies reach the maximum resolution of ≈ 5 pc.

Table 4.2 shows the walltime it took each of these simulations to reach z ≈ 10. All

of the modified versions show substantial improvement. The L2-256 run is nearly 1.4

times faster than the original, while both L4 runs are more than 1.8 times faster. To

determine the relative influence of different features of these realizations, we examine

the particle number, cell number at z ≈ 10, and the root grid cell size. While the cell

number initially equals the particle number, runtime adaptive mesh refinement can
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be affected by slightly different growth of structure and stellar feedback.

First, the L2-256 and L4-128 runs have the same root grid cell size, but different

particle and cell numbers. The L2-256 run took 1.33 times longer than the L4-128

run, consistent with the higher number of particles (1.28 times) and cells (1.15 times)

in L2-256 run. This indicates that the walltime scales roughly with the particle and

cell numbers, as expected. Second, we examine the effect of the root grid cell size.

The L2-256 run has more cells and particles than the L1-128 run, but also 4 times

smaller root grid cell size. It ran 1.4 times faster than the L1-128 run, indicating

that smaller cell size did improve computational performance. However, smaller root

grid cell sizes do not automatically lead to performance gains. In the L4-256 run the

root grid cell size is half that of the L4-128 run, but the finer root grid results in

more particles and cells, causing both runs to take nearly the same amount of time.

Together, these results indicate that for the ART code, smaller root grid cell size

does improve performance, but the increased particle and cell numbers required by

finer root grids can negate some of these gains. We expect that load balancing gains

enabled by the finer grid would become more important at later cosmic epochs.

4.5 Summary

We have presented a method for customizing the root grid surrounding the region

of interest in a zoom-in cosmological simulation. We use the original white noise

cube to produce structures that remain similar to the ones in the original IC, while

allowing for customized box size and root grid. The modified root grid is combined

with the original zoom region to produce an IC that minimally disturbs the galaxies

in the zoom region. This method results in galaxies with similar properties to those

in an unmodified simulation. The customization of the root grid can be tuned to

maximize computational performance for a given code.

By reducing the cost of cosmological zoom-in simulations, this method will allow
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for more groups to run simulations using a common well-tested IC. This will enable

more detailed code comparisons, as the confounding factor of groups using different

ICs will be removed, and will allow the community to determine which aspects of

galaxy formation are modeled most robustly.
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CHAPTER V

Testing Feedback from Star Clusters in

Simulations of the Milky Way Formation

This paper has been submitted to MNRAS with authors Brown, G., & Gnedin,

O. Y. As of March 28, 2022, it is awaiting the referee report.

Abstract

We present a suite of galaxy formation simulations that directly model star cluster

formation and disruption. Starting from a model previously developed by our group,

here we introduce several improvements to the prescriptions for cluster formation

and feedback, then test these updates using a large suite of cosmological simulations

of Milky Way mass galaxies. We perform a differential analysis with the goal of

understanding how each of the updates affects star cluster populations. Two key

parameters are the momentum boost of supernova feedback fboost and star formation

efficiency per freefall time ϵff . We find that fboost has a strong influence on the galactic

star formation rate, with higher values leading to less star formation. The efficiency

ϵff does not have a significant impact on the global star formation rate, but dramat-

ically changes cluster properties, with increasing ϵff leading to a higher maximum

cluster mass, shorter age spread of stars within clusters, and higher integrated star
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formation efficiencies. We also explore the redshift evolution of the observable cluster

mass function, finding that most massive clusters have formed at high redshift z > 4.

Extrapolation of cluster disruption to z = 0 produces good agreement with both the

Galactic globular cluster mass function and age-metallicity relation. Our results em-

phasize the importance of using small-scale properties of galaxies to calibrate subgrid

models of star cluster formation and feedback.

5.1 Introduction

Most stars form in clustered environments (Lada & Lada, 2003), and young mas-

sive clusters (YMCs) are found in the Milky Way and other star-forming galaxies.

The properties of young clusters are sensitive tracers of the star formation process.

Young clusters show a well-defined mass function typically described as a Schechter

(1976) function with a low-mass slope of −2 (Bastian, 2008; Portegies Zwart et al.,

2010). The cutoff mass scales with the star formation rate of the host galaxy, as does

the maximum cluster mass (Larsen, 2002).

Globular clusters (GCs) are also ubiquitous within galaxies, as they are found

in all nearby galaxies with stellar masses above 109M⊙ (Brodie & Strader, 2006).

GCs are typically old, with ages above 10 Gyr (Puzia et al., 2005; Strader et al.,

2005), and have sizes of a few parsecs that are consistent with YMCs found in the

local universe (Brown & Gnedin, 2021b). This naturally leads to the hypothesis that

GCs are the surviving subset of a larger population of YMCs that formed at high

redshift. However, the mass function of GCs is well characterized by a lognormal

distribution with a peak mass of around 2 × 105M⊙ (Harris, 1991; Jordán et al.,

2007), in contrast to the Schechter (1976) function commonly used to describe YMCs.

This transformation of the mass function over cosmic time requires a preferential

destruction of low-mass clusters (Fall & Zhang, 2001; Vesperini et al., 2003; Prieto &

Gnedin, 2008; Elmegreen, 2010; Kruijssen, 2015).
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The dynamical evolution of clusters results from a combination of stellar evolution,

two-body relaxation, tidal truncation, and tidal shocks (Spitzer, 1958; Elmegreen,

2010; Gnedin & Ostriker, 1997; Gieles & Renaud, 2016). While stellar evolution and

internal two-body relaxation can be well understood by studying isolated clusters,

dynamical evolution depends on the tidal field and requires more detailed modeling.

Throughout their lifetime, clusters experience tidal interactions with their natal giant

molecular clouds (GMCs), the galactic structure, and other GMCs, leading to complex

evolution that is not well-approximated by idealized models (Meng & Gnedin, 2022).

Simulations of galaxy formation are well-suited for a detailed investigation of clus-

ter formation and disruption (Renaud et al., 2017; Pfeffer et al., 2018). By situating

clusters within their galactic context, their formation and evolution can be realisti-

cally tracked. However, few cosmological simulations have the resolution required to

directly resolve cluster formation or disruption, so they must rely on subgrid models

(although see Kim et al. 2018; Lahén et al. 2019; Benincasa et al. 2020; Ma et al.

2020; Hislop et al. 2022). As cluster formation is terminated by feedback from the

newly-formed stars, simulations must self-consistently determine this feedback to ob-

tain reliable properties of star clusters. Prescriptions for stellar feedback, particularly

supernova feedback, have undergone many revisions over the years as they are cali-

brated against observations (Katz, 1992; Springel & Hernquist, 2003; Stinson et al.,

2006; Agertz et al., 2011, 2013; Hopkins et al., 2014; Keller et al., 2014; Hopkins

et al., 2018). However, these feedback models are often only tested against galaxy-

scale properties, such as the global star formation rate or Kennicutt-Schmidt relation

(Schmidt, 1959; Kennicutt, 1998). To properly model star cluster formation, these

feedback prescriptions must be calibrated on smaller scales.

In Li et al. (2017) and Li et al. (2018) (hereafter L18), our group introduced a

suite of cosmological simulations that directly models star cluster formation and dis-

ruption. The high spatial resolution of these simulations (3-6 pc) allows us to resolve
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GMCs where star cluster formation occurs. Star particles are seeded within GMCs

and accrete material from their surroundings until feedback from the newly-formed

stars stops further accretion. The final masses of these star particles are set self-

consistently and represent the masses of individual star clusters. These simulations

were able to reproduce many aspects of the observed young cluster populations, in-

cluding the shape of the initial cluster mass function, the total mass of stars contained

in bound clusters, the relationship between the maximum cluster mass and the star

formation rate surface density, and the formation timescales of star clusters. Some of

the central clusters in satellite galaxies have properties consistent with nuclear star

clusters in the local universe (Brown et al., 2018). Star formation sites in the modeled

galaxies at high redshift are temporarily contained in giant clumps, which dissolve

after ∼100 Myr (Meng & Gnedin, 2020). In addition, these simulations resolve dense

irregular structures within the thick galactic disk (Meng & Gnedin, 2021), allowing for

an accurate calculation of the tidal field and therefore the tidal disruption of clusters

(Li & Gnedin, 2019; Meng & Gnedin, 2022).

While these simulations advanced our modeling of star cluster formation in cosmo-

logical simulations, they still had several limitations. First, they reached only redshift

z = 1.5. This precludes a direct comparison to the GCs of the Milky Way (MW),

as the disruption up to z = 0 must be estimated. Second, these simulations include

only one MW-mass galaxy and its satellites, decreasing the statistical power of the

results and potentially making the results dependent on the specific initial condition

(IC) used.

In this paper, we present the next generation of simulations based on the pre-

scriptions of L18. These simulations use two Local Group-like ICs, with the goal of

reaching z = 0 with four MW-mass galaxies. In Section 5.2 we describe improvements

to the formation and feedback schemes, then describe the new suite of simulations.

This suite includes nine runs using Local Group-like ICs and 20 using the Milky
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Table 5.1 Key parameters of the star formation and feedback prescriptions with the
values used in this paper.

Parameter Value(s)
Molecular fraction threshold for cluster creation 50%
Maximum virial parameter for cluster creation 10
Density threshold for cluster creation and growth 1000 cm−3

Star formation efficiency per freefall time (ϵff) 1%, 10%, 100%
Radius of GMC 5 pc
Clumping factor (Cρ) 3, 10, 30
Stellar IMF range 0.08–50 M⊙
Stellar mass range for SNII 8–50 M⊙
Stellar mass range for HN 20–50 M⊙
Initial hypernova fraction (fHN,0) 0%, 5%, 20%, 50%
SNII momentum boost (fboost) 1, 2, 3, 5
Stellar mass range for AGB 0.08–8 M⊙
Number of SNIa per unit stellar mass 1.6× 10−3M−1

⊙

Way-like IC from L18. These runs vary a wide range of feedback and cluster forma-

tion parameters, allowing us to explore how different prescriptions affect the resulting

cluster properties in Section 5.3. We perform a differential analysis, systematically

exploring each of the parameters we vary. In Section 5.4 we present an application

of these simulations by presenting the redshift evolution of the observable cluster

mass function. We discuss remaining uncertainties and compare our results with

observations in Section 5.5, then summarize our results in Section 5.6.

5.2 Simulation Code and Setup

In this section we describe the ART code and the properties of the simulations.

Throughout this section we introduce several parameters of the code, which we list

for convenience in Table 5.1.

5.2.1 The ART Code

For our simulations we use the Adaptive Refinement Tree (ART) code (Kravtsov

et al., 1997; Kravtsov, 1999; Rudd et al., 2008; Li et al., 2017, 2018). The ART code
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includes many physical processes that are important for modeling the formation of

galaxies. Radiative transfer is calculated using an improved version of the Optically

Thin Variable Eddington Tensor method (Gnedin & Abel, 2001), which has been

revised to minimize numerical diffusion (Gnedin, 2014). Radiation from both stars

and the extragalactic background (Haardt & Madau, 2001) are included. A non-

equilibrium chemistry network of molecular hydrogen is used to identify star-forming

regions within GMCs. It was calibrated using observations in nearby galaxies (Gnedin

& Kravtsov, 2011) and updated to include line overlap in computing self-shielding of

molecular hydrogen (Gnedin & Draine, 2014). This chemical network also calculates

the ionization states of hydrogen and helium. This model uses the local abundance

of all these species to calculate the heating and cooling functions self-consistently,

without any assumptions of photoionization equilibrium or collisional equilibrium.

The ART code also includes a subgrid-scale (SGS) model for numerically unresolved

turbulence developed by Semenov et al. (2016), which follows the results of the MHD

simulations of Padoan et al. (2012).

A particularly novel aspect of the ART code is the direct modeling of time-resolved

star cluster formation (Li et al., 2017, 2018; Li & Gnedin, 2019). Star cluster particles

are seeded in dense gas, and accrete gas from a surrounding region until feedback

from the new cluster terminates gas accretion. This region, which we refer to as the

“GMC,” has a radius of 5 pc and is fixed in physical size at all cosmic epochs. With

the maximum spatial resolution of our simulations being set in the range of 3-6 pc,

the GMC can extend past the central cell, allowing the cluster to accrete gas from

neighbor cells. Specifically, the growth rate of a given cluster is

Ṁ =
ϵff
tff

∑
cell

fGMC Vcell fH2 ρgas (5.1)

where ϵff is the local star formation efficiency per freefall time tff , fGMC is the fraction
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of cell volume Vcell included within the GMC sphere, fH2 is the local mass fraction of

molecular gas, and ρgas is the local total gas density. This mass growth is accumulated

at each local timestep, which is typically in range of 102 − 103 years. As long as the

local gas density is above the threshold, clusters can continue accreting gas. This

accretion stops either when it has accreted no material in the last 1 Myr or when it

has reached an age of 15 Myr.

To avoid the spurious creation of many small clusters, we impose a threshold such

that clusters must have an expected mass (defined as the initial Ṁ times the maximum

allowed formation time of 15 Myr) of at least 6000 M⊙. As clusters typically form

over a few Myr, rather than the full 15 Myr, this results in the elimination of small

clusters below about 1000 M⊙.

Due to the complex dynamical evolution that occurs throughout the process of

cluster formation, not all stars in a given star-forming region will be bound to the

fully-formed cluster. To model this, star cluster particles include a variable tracking

the fraction of mass that is gravitationally bound. This is set at cluster formation (see

Section 5.2.2) and is updated as clusters undergo dynamical disruption throughout

their lifetime.

5.2.2 Updates to the Cluster Formation Modeling

We implement several updates to the ART code to improve the star cluster for-

mation algorithm. In the implementation of L18, a cluster particle is created if the

gas density in a cell reaches nH > 1000 cm−3 and the local H2 mass fraction is larger

than 0.5, meaning the cell contains mostly dense molecular gas. Here we introduce an

additional criterion based on the local virial parameter of the gas, intended to select

gravitationally bound gas. Generally, the virial parameter is

αvir =
5σ2R

3GM
(5.2)
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where σ is the local gas velocity dispersion, R is the radius of the sphere we consider,

and M is the mass within this sphere. We calculate this locally in any cell meeting

the other star formation criteria, assuming a sphere with a diameter equal to the size

of the cell (l = 2R), giving

αvir =
5σ2

πGρgasl2
. (5.3)

We use both the turbulent velocity and sound speed when calculating the velocity

dispersion (σ2 = v2turb + c2s), but do not include cell-to-cell velocity differences. We

require αvir < 10 to seed star clusters. This threshold is near the typical value for

observed GMCs in the Milky Way (Miville-Deschênes et al., 2017). Star formation is

allowed on the four finest refinement levels.

We also use a new prescription for the initial bound fraction of star clusters, as

determined by Li et al. (2019). These authors performed simulations of 80 isolated

molecular clouds with a range of mass, size, velocity configuration, and feedback

strength. After feedback terminates star formation, they calculate the integrated star

formation efficiency ϵint, which is the fraction of the initial gas mass that formed stars,

as well as the fraction of stars that are bound to the final cluster fbound. They then

determine the relation between these two parameters:

fbound =

[
erf

(√
3ϵint
α⋆

)
−
√

12ϵint
πα⋆

exp

(
−3ϵint

α⋆

)]
fsat (5.4)

where α⋆ = 0.48 and fsat = 0.94 are free parameters the authors fitted. Determining

ϵint in our simulations is not trivial. The initial gas mass when the cluster was seeded

is not an accurate representation of the available gas mass, as GMCs accrete material

over time. To account for this, we define ϵint as the ratio of the final stellar mass

to the maximum value of the stellar mass plus gas mass at any time during cluster

formation:

ϵint =
M⋆,final

max (M⋆(t) +Mg(t))
(5.5)
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We then use this directly in Equation 5.4 to calculate the initial bound fraction for

each star cluster.

5.2.3 Cluster Disruption Modeling

Our model for cluster disruption is unchanged from that described in detail in Li

& Gnedin (2019), but we summarize the key points here. At each global timestep

of the simulation (the length of the global timestep is typically a few Myr, with a

maximum of 50 Myr), we calculate the tidal tensor around all fully formed clusters

using the second-order finite difference of the gravitational potential across a 3×3×3

cell cube centered on the star particle. To determine cluster disruption in runtime,

we calculate the three eigenvalues of the tidal tensor λ1 > λ2 > λ3, which describe

the strength of the tidal field in the direction of their corresponding eigenvectors. We

use the maximum of the absolute value of the eigenvalues to determine the dynamical

timescale within the Roche lobe of the cluster:

Ω2
tid(t) =

λm

3
(5.6)

where

λm ≡ max
i

|λi| (5.7)

We then use it to determine the cluster disruption timescale:

ttid = 10 Gyr

(
M(t)

2× 105M⊙

)2/3
100 Gyr−1

Ωtid(t)
(5.8)

Finally, we use this cluster disruption timescale to decrease the mass bound to each

cluster. We track it with the variable fdyn, which describes the fraction of cluster

mass lost due to dynamical disruption. At the n-th global timestep of length dtn, we
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update this fraction as follows:

fn+1
dyn = exp (−dtn/ttid) f

n
dyn, (5.9)

We also output the full tidal tensor for each star particle at each global timestep,

allowing us to postprocess star cluster disruption and explore how different prescrip-

tions for tidal disruption, including capturing tidal shocks, may change cluster prop-

erties.

5.2.4 Updates to the Stellar Feedback Modeling

5.2.4.1 Abundances of Individual Elements

We have implemented runtime tracking of most important individual elements (C,

N, O, Mg, S, Ca, Fe) and ejecta of AGB stars. This gives 10 total fields tracking

chemical enrichment (C, N, O, Mg, S, Ca, Fe, ZSNIa, ZSNII, and ZAGB) in both gas

and stars. These elements are some of the most abundant in the universe, have

reliable yields, and enable comparisons with both gas-phase and stellar abundance

measurements at a variety of redshifts. N, O, and S are commonly used to measure

gas-phase metallicity (e.g. Kewley & Dopita, 2002; Maiolino & Mannucci, 2019). Fe,

Mg, and Ca are commonly measured in stellar spectra, with Fe representing total

metallicity and Mg and Ca being representative α elements (Gallazzi et al., 2005;

Kirby et al., 2013; Hayden et al., 2015).

5.2.4.2 Discrete Supernova Events

We have updated the supernova (SN) feedback prescriptions in the ART code to

include discrete SN explosions at rate calculated from the stellar lifetimes, IMF, and

total stellar mass of the particle. Conceptually, we use the stellar lifetimes to calculate

the mass range of stars leaving the main sequence during a given timestep, then
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integrate the IMF over this range to determine the total number of stars leaving the

main sequence. We explode an integer number of these as SN, leaving any fractional

SN to accumulate to the next timestep. This leads to only an integer number of SN

exploding in a given timestep while also appropriately conserving the total number

of SN over the life of the stellar population.

We calculate the number of SN in a given timestep:

NSN(τ)+NSN,leftover(τ + dt) =

M⋆(τ)

M(τ+dt)∫
M(τ)

Φ(M)dM+NSN,leftover(τ) (5.10)

where τ is the age of the stellar population (discussed in more detail in Section 5.2.4.7),

dt is the length of the current timestep, M⋆ is the total mass of the cluster particle,

M(τ) is the mass of the star leaving the main sequence at age τ , Φ(M) is the IMF

normalized such that M⋆ =
∫
MΦ(M)dM, and NSN,leftover is the fractional number

of SN not exploded in the previous timestep. NSN is always an integer value, and

0 ≤ NSN,leftover < 1. We use a Kroupa (2001) IMF with a mass range of 0.08 to 50M⊙,

and use 8M⊙ as the minimum mass to explode as a SN. We use the metallicity-

dependent analytic stellar lifetimes from Raiteri et al. (1996).

When SN explode, we inject energy and mass into the surroundings. The mass

of different elements is taken directly from the stellar yield tables of Kobayashi et al.

(2006). We use the yield for a star of massM = 0.5 (M(τ) +M(τ + dt)), and use the

metallicity of the star particle. We linearly interpolate the yield tables in both mass

and metallicity to determine the yields at arbitrary stellar masses and metallicities.

5.2.4.3 Introduction of Hypernovae

Hypernovae (HN) are SN explosions with significantly more energy than a typical

SN, and may be associated with gamma ray bursts (e.g. Iwamoto et al., 1998). The
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Kobayashi et al. (2006) yield tables include stellar yields and energies for HN so we

include them in our feedback model. We model both the energy and yields from HN

self consistently. SN with progenitor stellar masses above 20M⊙ are eligible to explode

as HN. Each explosion is randomly assigned to be either HN or SN, depending on a

metallicity-dependent HN fraction. We use the functional form proposed by Grimmett

et al. (2020):

fHN = max

(
fHN,0 exp

(
− Z

0.001

)
, 0.001

)
(5.11)

These authors suggest that fHN,0 = 0.5, but we leave it as a free parameter to test

how varying it affects galaxy properties. SN explosions always inject E51 ≡ 1051 ergs

of energy, while for HN we use the mass-energy relation from Kobayashi et al. (2006),

where the energy ranges from 10 to 30 E51, with high mass stars releasing the most

energy. We linearly interpolate the energy released by HN for stellar masses between

those given in Kobayashi et al. (2006). Increasing fHN significantly changes the energy

injected into the simulation. Figure 5.1 shows the cumulative energy injected from

SN as a function of cluster age. Different lines show different metallicity and therefore

different fHN. As HN are only active for stars with masses above 20M⊙, the difference

in fHN is apparent at early times, while at later times SN energy injection is the same.

As our stellar lifetimes are metallicity-dependent, the age of the onset of SN and the

age at which HN end changes as well. Of note, the Raiteri et al. (1996) lifetimes give

an onset of SN in this new prescription that is always later than the constant 3 Myr

onset adopted by L18.

5.2.4.4 Momentum Boost

To model SN feedback, we use the prescriptions from Martizzi et al. (2015). They

used simulations of inhomogeneous turbulent medium to parametrize the partition

of the SN remnant energy into the thermal, kinetic, and turbulent components. The

resulting energy and momentum input depend on the ambient gas density and spatial
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Figure 5.1 Cumulative energy injected by SN per unit stellar mass in units of 1051

erg M−1
⊙ as a function of time since beginning of star formation for different prescrip-

tions. Four lines show the model used in this set of simulations, while the last shows
that used by L18. The new prescription is plotted at several metallicities, with HN
fractions following Equation 5.11 with fHN,0 = 0.5. The metallicity-dependent stellar
lifetimes also change the time of the onset of SN. The line with fHN = 0.1% is visually
indistinguishable from a line with fHN = 0.
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resolution of the simulation. However, their simulations of isolated SN explosions

underestimate the effect for star clusters. Cluster-forming regions usually produce

a large number of massive stars that undergo simultaneous SN explosion. Gentry

et al. (2017) found that such clustering of SN can enhance momentum feedback by an

order of magnitude relative to that delivered by an isolated SN. L18 tested a boost

to the momentum feedback from SN remnants by a factor fboost = 3− 10 and found

that the value fboost = 5 can reproduce the galactic star formation history expected

from the abundance matching technique. As fboost is a key parameter of our feedback

model, we explore its ideal value in our new simulations below in Section 5.3.2. The

momentum created by stellar particles is distributed spherically to 26 nearest neighbor

cells surrounding the parent cell of the particle, as in Li et al. (2017).

5.2.4.5 Supernovae Type Ia

We have updated the SNIa feedback prescription, implementing discrete SN and

a new delay time distribution (DTD). We use the power-law DTD for field galaxies

from Maoz & Graur (2017):

dNSNIa

dt
∝ τ−1.13 (5.12)

normalized to produce 1.6× 10−3 SNIa per M⊙ of stellar mass. Similarly to how we

integrate over the IMF to produce the number of SNII, we integrate over the DTD to

produce the number of SNIa. We model these as discrete events as we do for SNII,

and use the yields from Nomoto & Leung (2018). The feedback from SNIa is modeled

simply as an injection of 2E51 of thermal energy.

5.2.4.6 AGB Feedback

Our final addition to the feedback prescription is chemical enrichment from AGB

stars, defined to be the last stages of evolution of stars with masses below 8M⊙. The

prescription for AGB stars is analogous to that for SNII as described by Equation 5.10.
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However, we abandon the requirement for integer numbers and simply use the full

integral in Equation 5.10. This is justified by the fact that this phase of stellar

evolution is not instantaneous like a SN. We use the yields from Ritter et al. (2018).

We only inject mass from AGB feedback. We do not inject the energy or momentum,

as their wind velocities are small and have little impact on the total feedback budget

(Goldman et al., 2017; Hopkins et al., 2018).

We also include two other sources of feedback, which are unchanged from the imple-

mentation of L18: radiation pressure from massive stars using the analytical fit by

Gnedin (2014), and momentum from stellar winds as an analytical fit to the results

of Leitherer et al. (1992).

5.2.4.7 Timing of Cluster Feedback

Since our star cluster particles accrete material over time, defining a single age to

use in the above feedback prescriptions is not trivial. Without storing the full cluster

growth histories, which are prohibitively large, we must make some assumptions. One

choice would be to simply use the time t since the star particle was seeded: τbirth(t) =

t. We refer to this as the “birth approach”, since it treats all stars as forming at the

same time as the first one in the cluster. This prescription is problematic if the cluster

has significant star formation after the onset of SN at about 4 Myr. For example,

consider some stars formed 6 Myr after the birth of that cluster particle. The birth

approach assigns all stars in the cluster an age of 6 Myr, including these newly formed

stars with a true age of zero. As these newly formed stars never had an age in the

0–6 Myr range, the feedback they should contribute during that age range is skipped

(particularly SN feedback from 4–6 Myr). This prescription also gets the timing of

feedback wrong, as the assumption that all the mass of the cluster formed at the

initial time is incorrect.

An alternative is to adjust the age based on the mass-averaged time of cluster
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formation: τave(t) = t− tave(t). This average time for cluster formation is calculated

in runtime as

tave(t) ≡
∫ t

0
t Ṁ(t)dt∫ t

0
Ṁ(t)dt

(5.13)

where Ṁ is the cluster star formation rate at time t (L18). This approach, which we

refer to as the “average approach”, does a much better job of reproducing the total

amount of feedback. However, this approach pushes back the onset of SN feedback,

allowing some clusters (particularly massive ones) to have unphysically long formation

timescales before their growth is terminated by feedback.

To solve this problem, we introduce a hybrid approach, where we allocate a fraction

of cluster feedback to use the birth approach and the rest to use the average approach.

Denoting the amount of feedback generally as F , we set

Ftot(t) = fbirth(t) F (τbirth(t)) + [1− fbirth(t)]F (τave(t)) (5.14)

such that fbirth is the fraction of the cluster mass assigned to the birth approach. This

hybrid approach gives the best of both worlds, as it gives the correct delay before

the first SN explodes while also accurately reproducing the total amount of feedback.

Using idealized test cases, we find that clusters with a larger age spread require a

larger fbirth. Conceptually, this is because clusters with a large age spread have a

larger fraction of their feedback that comes from stars formed away from the mean

cluster age. We use the following parametrization:

fbirth(t) =
τspread(t)

20 Myr
(5.15)

where the 20 Myr scale parameter was determined from idealized test cases, and
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τspread is the cluster age spread calculated in runtime as

τspread(t) ≡
M(t)

⟨Ṁ⟩
=

M2(t)∫ t

0
Ṁ2(t)dt

(5.16)

As cluster age spreads are typically a few Myr, this gives no more than 20% of the

feedback coming early, with the majority using the average age. Figure 5.2 shows

an example of this prescription for the feedback from a toy cluster consisting of a

4 Myr period of constant star formation rate. The delayed onset of SN when using

the average approach is clear, as is the increased energy output when assuming all

stars formed at the birth of the cluster. As this hybrid approach is a weighted sum

of the two other approaches, there is a break in the hybrid approach between 6 and

7 Myr due to the onset of SN in the average approach.

5.2.5 Hydrodynamics

When updating the code from the version used in L18 to ART version 2.0, we

updated the modeling of the energy equation that governs how thermal energy is

calculated in the presence of subgrid turbulence. This update more accurately tracks

thermal energy in shocks. It has little effect in the disc of the galaxy, as the ther-

mal energy generated by shocks is subdominant to other process that govern energy

balance such as heating, cooling, and stellar feedback. However, we find that the

circumgalactic medium is affected by this update. In our new runs, there is signifi-

cantly more hot gas in the halo. This in turn leads to less cold gas accreting onto the

galaxy, leading to less star formation. The decrease in the amount of cold gas requires

changes to the parameters governing star formation and feedback as we describe be-

low. We describe the update to the hydrodynamics in more detail in Appendix B. In

our suite of simulations, we used both this updated energy-based approach and the

new entropy-conserving scheme of Semenov et al. (2021). These authors found that
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Figure 5.2 The cumulative energy injected by SN per unit stellar mass as a function
of time since beginning of cluster formation for three approaches for the timing of SN.
The input star formation history is a constant star formation rate for 4 Myr. The
“True” line shows the actual energy injection produced by this stellar population,
while the other lines show the energy injection for different ways of treating this star
formation history as a simple stellar population, as described in the text. The hybrid
approach is a weighted combination of the other two.
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the entropy-conserving scheme is able to more accurately evolve nonthermal energy

components. They ran simulations of an L⋆ galaxy and found differences between

the energy-based and entropy-based schemes. However, these differences are much

smaller than those we find between the energy-based schemes of L18 and the updated

version that is the default in the ART code version 2.0.

5.2.6 Initial Conditions

In this work we use three different ICs. One is the IC used by L18, a periodic

comoving box of size 4 Mpc that contains a single central galaxy with a total mass

of 1012 M⊙ at z = 0, which we refer to as Isolated MW. We also use two zoom-in

ICs from the ELVIS project (Garrison-Kimmel et al., 2014): Thelma & Louise and

Romeo & Juliet. Both of these ICs contain a Local Group analog with two Milky

Way-mass galaxies, which we describe in more detail below. The Isolated MW box

is much less computationally expensive to run than the zoom-in runs, so we use it to

explore a broader range of parameter space.

Thelma & Louise is a desirable IC as it has qualitative agreement with the ac-

cretion histories of the MW and M31. The less massive (MW-like) halo has a quieter

accretion history (Hammer et al., 2007), with no significant mergers after z ≈ 5, while

the more massive (M31-like) halo has more mergers at later times as expected from

observations (D’Souza & Bell, 2018). Romeo & Juliet has two galaxies with much

quieter merger histories. Including two different sets of ICs allows us to explore how

our results vary with galaxy merger histories.

To improve computational performance with the ART code, we modify these

zoom-in ICs following the prescription of Brown & Gnedin (2021a). Our initial con-

ditions have a small zoom region in a large box (50-100 Mpc). This large box size with

a small zoom region is difficult for the ART code to parallelize well, so our method

decreases the box size and increases the resolution of the root grid. Starting from
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the white-noise cube used to seed the structures present in the original IC, we cut

out a smaller region of interest, then use this trimmed cube to regenerate the cosmic

structure using the MUSIC software (Hahn & Abel, 2011). To avoid disturbing the

zoom region, the particles from this region are transplanted into the new box with

a velocity offset to match the systemic velocity of this region in the new box. We

find that these modifications improve performance while minimally changing central

galaxy properties. Table 5.2 details some key properties of these ICs, and Figure 5.3

shows the halo mass growth of these galaxies in collisionless runs.

We run an initial suite of nine simulations with these zoom-in ICs, varying ϵff ,

fHN,0, and fboost. Table 5.3 details the parameters of these runs. We also ran a large

suite of 20 simulations on the Isolated MW initial condition varying many aspects of

stellar feedback, which are detailed in Table 5.4.
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Figure 5.3 Mass growth of the central halos from collisionless runs with three initial
conditions. Markers show major mergers with a mass ratio less than 4:1, and are
placed at the maximum virial mass of the satellite and the time at which it reached
this maximum mass before merging with the central galaxy. Note that Thelma and
Isolated MW have major mergers at z < 2, while the other three galaxies have quiet
merger histories.
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Table 5.3 The runs using the Local Group initial conditions included in this simulation
suite. zlast is the redshift of the last output of each run. All runs use average approach
for SN timing and the energy-based hydrodynamics scheme that is the default in the
ART code version 2.0.

Initial Condition ϵff fboost fHN,0 zlast
Thelma & Louise 1% 5 20% 3.32
Thelma & Louise 10% 5 20% 2.36
Thelma & Louise 100% 1 0% 3.17
Thelma & Louise 100% 3 0% 2.80
Thelma & Louise 100% 5 0% 1.83
Thelma & Louise 100% 5 5% 1.86
Thelma & Louise 100% 5 20% 2.66
Romeo & Juliet 10% 5 20% 2.78
Romeo & Juliet 100% 5 20% 1.87
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5.2.7 Run Setup

We keep the spatial resolution of the finest grid level between 3–6 physical pc at

all times. To accomplish this, we add refinement levels as the simulation progresses.

The specific levels and when they are added depend on the initial condition. In the

Isolated MW box, we start with 9 levels of refinement on the 1283 root grid, then add

levels at z = 9, 4, and 1.5. For Thelma & Louise, we allow 11 levels of refinement on

the 2563 root grid, then add additional levels at z ≈ 10.2, 4.6, 1.8, and 0.41. Romeo

& Juliet also starts with 11 levels, but its slightly different box size requires adding

levels at z ≈ 9.8, 4.4, 1.7, and 0.35.

We use three criteria to determine when to refine the grid. In this section we will

illustrate the refinement criteria using specific values from the Thelma & Louise IC,

but the principles are the same for all ICs. First, we use Lagrangian refinement for

both gas and dark matter. Cells are refined when their gas mass exceeds approx-

imately 1.6 × 105M⊙ or dark matter exceeds 3.9 × 106M⊙. The gas refinement is

active on all levels, while the dark matter criterion is not active on the four finest

levels. We also increase the dark matter mass refinement threshold above that from

the simple baryon fraction scaling. These changes are for two reasons. First, the

discrete dark matter particles (of mass 1.5 × 105M⊙) do not allow their mass to be

distributed evenly, so their distribution cannot be trusted on small scales. Second,

we find that there are times when the dark matter criterion will prevent a cell with

very small gas mass from derefining. If stellar momentum feedback is imparted on

this cell, it will acquire very high velocities due to its small mass, leading to small

timesteps and a slower runtime of the simulation. Restricting the levels on which the

dark matter Lagrangian criterion is active and increasing the mass threshold for dark

matter-triggered refinement mitigates this situation. The final refinement criterion

uses a local Jeans length. Cells are refined if their size exceeds twice the Jeans length.

This criterion is applied only on the four deepest levels. We find that with these re-
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finement criteria, cell gas masses remain around 2×104M⊙. Table 5.2 includes the

typical baryonic cell masses for all ICs.

While we do not record the level on which a star is formed in runtime, we post-

process the outputs to see the levels on which stars can form. In the runs using the

Local Group ICs, we find that 15% of the cells that satisfy the star formation criteria

are on the highest refinement level with sizes of 3–6 pc, 60% have sizes in the 6–12 pc

range, 25% are within 12–24 pc, and a very small fraction are on the fourth level with

sizes of 24–48 pc. The lower mass resolution of the Isolated MW runs results in the

corresponding fractions of 10%, 35%, 50%, and 5%, respectively.

The ART code uses adaptive time stepping, such that the finest levels have much

shorter timesteps than the coarse root grid. For the Thelma & Louise runs with

ϵff = 100%, the global timestep of the root grid is restricted to be less than 10 Myr.

We write outputs at each global timestep. For all other runs, the output spacing is

allowed to be at most 50 Myr. The timestep for the finest level is similar for all runs,

typically between 100–1000 years.

5.3 Effects of Cluster Formation and Feedback Modeling

In this section, we analyze the large suite of simulations laid out in Tables 5.3 and 5.4

to test the implementation of code updates and explore how parameter variation af-

fects our results. We will primarily focus on the galaxy star formation rate, cluster

mass function, and the timescales of cluster formation. In this section we exclusively

use the particle mass at the end of its star formation episode, which does not account

for the initial bound fraction, stellar evolution, or dynamical disruption of a star

cluster represented by that particle. We explore those quantities and the observable

cluster mass function in Section 5.4. We also note that when examining star cluster

populations, we include all clusters from the central galaxies in the simulations (the

one MW-mass galaxy in Isolated MW, and the two galaxies in the Local Group-like
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environments of Thelma & Louise and Romeo & Juliet). When plotting the star

formation rate of these galaxies we plot the two central galaxies in the Local Group-

like IC separately, but when plotting cluster properties of a given run we group these

two galaxies together.

5.3.1 Timing of Supernova Feedback

In Section 5.2.4.7 we describe how the finite length of cluster formation makes it

difficult to create an accurate prescription for the timing of stellar feedback. We ran

simulations with the birth approach, the average approach, and the hybrid approach.

We also compared these to the feedback model of L18, which has SNe that start earlier

(see Figure 5.1). We found no significant differences in any galaxy-scale properties

between these prescriptions. However, we did find that the cluster formation lifetimes

were different between these prescriptions. In particular, the average approach gave

significantly longer timescales for massive clusters. Figure 5.4 shows the cumulative

distribution of the length of star formation within clusters formed using different

timing choices, for the local efficiency ϵff = 100%. Note that the quantity we plot

here is the duration of star formation, defined as the age difference between the birth

of the cluster and its last accretion event. This is not tave or τspread as defined in

Section 5.2.4.7. We use this quantity as it clearly demarcates when feedback ends

cluster formation.

With all the approaches to SN feedback, the majority of low-mass clusters have

finished their accretion before the onset of SNe at 3–4 Myr, leading to little difference

in the durations between our approaches. Such short durations indicate that the

other sources of feedback are able to terminate cluster formation before the start of

SN feedback (Kruijssen et al., 2019b; Grudić et al., 2022). SN feedback remains more

relevant for massive clusters.

We do see a difference in the high mass clusters. The feedback prescriptions of
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Figure 5.4 The cumulative distribution of the duration of cluster formation for dif-
ferent approaches to determining the timing of SN feedback, as described in Sec-
tion 5.2.4.7. The left panel shows clusters less massive than 105M⊙, while the right
panel shows clusters more massive than 105M⊙. The dotted line shows the longest
median duration of cluster formation. Cluster growth is algorithmically truncated at
15 Myr. Note that here we use a new run with the L18 feedback model, not the L18
simulations themselves. The L18 prescription uses fboost = 5, while all other runs use
fboost = 1. All runs use the Isolated MW IC, ϵff = 100%, fHN,0 = 0, and show all
clusters formed before z = 1.5.

L18 produce the shortest durations of star formation. Among the three new models of

determining the timing of SN feedback, the average approach produces clusters with

the longest duration, the birth approach gives clusters with the shortest duration,

and the hybrid approach is in the middle. As the birth approach has the most early

feedback and the average approach has the least early feedback, these results indicate

that delaying the start of SN feedback tends to increase the time over which massive

clusters can accrete material. This matches what we see in the L18 model, which

allows SN feedback begin earlier and stop cluster growth earlier.

These trends are also reflected in the integrated star formation efficiency ϵint,

defined in Equation 5.5. Figure 5.5 shows the distribution of ϵint for the runs with

variations in the timing of SN feedback. The L18 feedback model has the earliest

SN feedback and the lowest mean value of ϵint (15%), while the average approach has

the latest SN feedback and the highest mean value of ϵint (35%). Interestingly, the
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Figure 5.5 Kernel density estimation for the distribution of integrated star formation
efficiency for clusters in the runs with variations in the timing of SN feedback, as
described in Section 5.2.4.7. We use a Gaussian kernel with a width of 0.05 dex.
Each curve is normalized to the same area for comparison purposes. Note that here
we use a new run with the L18 feedback model, not the L18 simulations themselves.
The L18 prescription uses fboost = 5, while all other runs use fboost = 1. All runs
use the Isolated MW IC, ϵff = 100%, fHN,0 = 0, and show all clusters formed before
z = 1.5.

hybrid approach and birth approach are very similar, with mean values at ϵff ≈ 25%.

This may be because early SN feedback (present in both variations to some extent)

is important for dispersing gas before it can be accreted by the cluster. While the

simulation with the L18 model uses fboost = 5 instead of fboost = 1, other runs

varying fboost show no little difference in either the duration of star formation or ϵint,

indicating that the SN timing is responsible.

Despite these differences in the duration of star formation and ϵint, we see no

significant differences in the star particle mass functions.
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5.3.1.1 Discreteness of Supernova

In addition to multiple runs with different prescriptions for SN feedback, we also

ran one simulation with continuous energy injection from SN. This run uses the

Isolated MW IC, ϵff = 100%, fboost = 1, and fHN,0 = 0. The number of SN still

follows the IMF integral as in Equation 5.10, but with the modification that we do

not require there to be an integer number of SN in each timestep. We find that this

change makes little difference to galaxy properties. The star formation rate was not

affected, and neither were star cluster properties, including their mass function and

age spread.

We note that the similarity between these two runs is despite real differences in

how the energy is injected over time. The SN rate changes with time, but is within the

range of (2−6)×10−10NSNM−1
⊙ yr−1. Our typical timesteps on the highest refinement

levels are below 103 yr, so even massive clusters with M = 106M⊙ do not have a SN

every timestep. Clusters of mass M = 103M⊙ have only 10 SN over the ∼ 40 Myr

timescale for SN feedback, resulting in significant gaps between SNe. The onset of

SN can also be delayed in low-mass clusters, as the decrease in the normalization

of the IMF means we need to integrate to lower stellar masses to reach one star

(Equation 5.10). These results indicate that the total injected energy and the timing

of the onset of SN cause larger differences than does discretizing SN events.

To summarize, we find that different prescriptions to change the onset of SN (without

changing the total energy injection) do not affect any galaxy-scale properties, but do

affect the properties of star clusters. When SN feedback is delayed, massive clusters

have longer formation timescales, and all clusters have higher ϵint. When comparing

disretized SN to continuous energy injection, we find no significant differences.
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Figure 5.6 A comparison of the star formation history for the central galaxy in the
Isolated MW IC when varying fboost and fHN,0. The shaded region shows the expected
star formation history as given by UniverseMachine. All runs use ϵff = 100%.

5.3.2 Strength of Supernova Feedback

Our simulations have two main parameters to control the strength of SN feedback:

fboost and fHN,0. In this section, we explore how those parameters affect our results.

In Figures 5.6 and 5.7 we show the impact of these two parameters on the star

formation history of the main galaxies. In Figure 5.6 we show the star formation

history of the single central galaxy of the Isolated MW IC, while in Figure 5.7 we

show two lines for each run representing the two main galaxies in a Local Group-

like environment. We also show the expected star formation history as given by

UniverseMachine (Behroozi et al., 2019). However, we note that the MW assembly

history may be atypical for halos of its mass, as both the ancient merger of Gaia-

Enceladus Sausage and the current infall of the LMC influence its evolution (Evans

et al., 2020).

First, we find that fboost has a strong impact on the global star formation rate.
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Figure 5.7 Same as Figure 5.6, but for the Thelma & Louise IC and only showing
variations in fboost. There are two main galaxies in each run. Circles represent the
MW analog, with squares representing M31. All runs use ϵff = 100% and fHN,0 = 0.

Higher values of fboost result in generally lower star formation rates. In the Isolated

MW runs shown in Figure 5.6, the run with fboost = 5 matches the UniverseMachine

prediction well until roughly z ≈ 4, at which point the star formation rates start to

decline significantly. This is similar to what we see for the fboost = 5 run in Thelma

& Louise in Figure 5.7. The star formation rate is reasonable until z ≈ 4, with a

significant decline afterwards. A value of fboost = 3 matches UniverseMachine

more closely in both ICs, but in the Isolated MW IC the star formation rate drops

off significantly after z = 3. The fboost = 3 run using Thelma & Louise has only

progressed to z = 2.8 at the time of writing, so it remains possible that its star

formation rate will drop as it did in the Isolated MW run. However, we must be

careful making direct comparisons between different ICs, as it is likely that they will

have different star formation histories. In particular, Santistevan et al. (2020) found

that Local Group-like galaxies form earlier than isolated galaxies. They conclude that
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the denser environment of Local Group-like pairs causes the initial collapse of halos

to happen earlier (Gallart et al., 2015). This leads to more mass forming earlier, and

this buildup of stellar mass may affect how feedback affects the galaxy at later times.

A slightly lower value of fboost = 2 matches UniverseMachine well up to z ≈ 2

before decreasing greatly. Finally, runs with fboost = 1 have the highest levels of

star formation in both initial conditions. This high level has persisted in Thelma &

Louise until the last available output, but in Isolated MW the star formation rate

dropped dramatically starting at z = 2. Even this low value of fboost is not able to

produce reasonable galactic star formation histories over the full time range spanned

by these simulations.

L18 calibrated fboost in their simulations, finding a preferred value of fboost = 5.

The difference in our result is due to the changes in hydrodynamics. As described

above in Section 5.2.5, that change led to a decrease in the amount of cold gas that

reaches the galaxy. This requires changes to the feedback modeling to compensate.

Without decreasing fboost, the galaxies have lower total gas mass and less cold gas,

which leads to less molecular gas. Since molecular gas is required by our star formation

prescription, this decrease leads to less star formation.

While we find that fboost has a strong impact on the star formation rate, we find

that fHN,0 does not. In Figure 5.6, runs with fboost = 1 have similar star formation

histories, regardless of the value of fHN,0. While we do not show runs varying fHN,0 in

Figure 5.7 for clarity, runs with fHN,0 = 0, 5%, and 20% all show similar star formation

rates (all using fboost = 5).

This is likely due to the metallicity dependence of the hypernova fraction fHN

(see Equation 5.11). The value of fHN is highest at low metallicity, but decreases

rather quickly with metallicity. Figure 5.8 shows the metallicity of stars forming at

different times and their fHN. This plot uses the run on the Isolated MW IC with

maximum fHN,0 = 50%, yet the quick enrichment means that the bulk of clusters have
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Figure 5.8 The stellar metallicity Z (not scaled to solar metallicity) of clusters forming
across cosmic time in the run using the Isolated MW IC, ϵff = 100%, fboost = 1, and
fHN,0 = 50%. The shaded region shows the interquartile range at a given age, while
the solid line shows the median. The right axis labels shown the hypernova fraction
at a given metallicity.

fHN < 10%. As shown in Figure 5.1, this small fHN produces energy injection rates

not too dissimilar from fHN = 0. This small change is in contrast to the large changes

in momentum feedback that come from varying fboost by a factor of 5, explaining why

fboost has a strong impact on galactic properties while fHN,0 does not.

While changes in fboost lead to dramatic changes in global galaxy properties, the

changes to the cluster mass function are more subtle. Figure 5.9 shows the initial

cluster mass function for the Isolated MW IC when varying fboost and fHN,0. We

show all clusters formed before z = 4, as this higher redshift reduces the differences

caused by variations in the star formation rate and includes a higher fraction of low-

metallicity clusters where fHN could potentially make a difference. The normalization
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changes reflect the change in total stellar mass. Interestingly, the high-mass end is

less affected by fboost than the low-mass end. A lower fboost serves to increase the

number of low-mass particles without systematically increasing the number of massive

clusters or the maximum cluster mass. While not shown in Figure 5.9, we see the

same trends when examining the runs using the Local Group ICs.

We find little difference in the cluster mass function when changing fHN,0. Fig-

ure 5.9 shows little difference between fHN,0 = 50% and fHN,0 = 0 for fboost = 1 for

masses below 106M⊙. However, the run with fHN,0 = 0 has several clusters with

masses above 106M⊙, while the run with fHN,0 = 50% does not. There are very few

clusters in these mass ranges, so stochasticity may play a role in these results. We also

examined the low-metallicity clusters separately, again finding no difference. This is

true as well of the runs with the Local Group ICs.

To quantitatively evaluate the shape of the mass functions, we fit them with a

power-law. As our mass functions do not show a power-law behavior down to low

masses, we restrict our fit to masses above 105M⊙ where it is approximately a power-

law. Again we note that we are using the particle masses without including the bound

fraction, so these results are not directly comparable to observations. Including the

bound fraction generally makes the mass function shallower, as high mass clusters

have a higher bound fraction (see Section 5.4). For fHN,0 = 0, we find slopes of −2.94,

−2.48, −2.16, and −2.31 for fboost = 1, 2, 3 and 5, respectively. For fHN,0 = 50% and

fboost = 1, we find −2.78. Lower values of fboost tend to have steeper slopes due to the

higher number of low mass clusters. The fboost = 3 run has the shallowest slope due

to the large number of clusters at ≈ 5× 105M⊙ that deviate from a pure power law

fit and draw the fit toward a shallower slope. This feature becomes less prominent

at z = 1.5 as more clusters form and fill out the mass function more evenly. We see

similar trends in the Local Group runs, where the slope takes values of −2.62, −2.40,

and −2.22 for fboost = 1, 3, and 5 respectively.
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Figure 5.9 A comparison of the initial cluster mass function for runs with varied fboost
and fHN,0 at z = 4. Black dashed lines indicate power-low slopes of −2 and −3. The
lower limit of the plot corresponds to one cluster. All runs use the Isolated MW IC
and ϵff = 100%.

Lastly, we examined the visual appearance of the gas distribution in these galaxies.

L18 found that reducing fboost to 3 led to a dramatic increase in star formation and

the formation of an axisymmetric disc, while runs with fboost = 5 produced very

irregular galaxies (Meng et al., 2019). Here, we find that all of our runs produce

irregular galaxies, even with fboost = 1.

In summary, we find that higher values of fboost can greatly decrease the galactic

star formation rate by decreasing the number of low mass clusters that form, without

changing the number of massive clusters. Increasing the initial hypernova fraction

fHN,0 has little effect on galaxy properties. The fraction quickly approaches zero as

metallicity increases, leading to little difference in the injected energy and momentum.
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5.3.3 Molecular Gas Prescription

A key ingredient in modeling star formation in our simulations is the amount of

molecular gas, as we require a given cell to have a mass fraction of molecular gas

greater than 50% to seed a cluster particle.

As discussed in Gnedin & Draine (2014) and Appendix A7 of Gnedin & Kravtsov

(2011), the clumping factor Cρ is one of the tunable parameters of the molecular gas

model. This factor accounts for the fact that gas is clustered on scales that are not

resolved in a given simulation, so H2 formation would be missed. Larger values of the

clumping factor produce more molecular gas at a given surface density. Numerical

simulations of turbulent molecular clouds find lognormal density distributions with

widths that imply Cρ ≈ 3−10 (McKee & Ostriker, 2007). Gnedin & Kravtsov (2011)

and Gnedin & Draine (2014) calibrated the clumping factor in the ART code based

on simulations, finding that values in the range of 10 to 30 work well. However, those

simulations had lower resolution than our runs. This would imply that our runs

should prefer a lower clumping factor, because they are resolving more substructure

and leaving less on subgrid scales.

Motivated by the disagreement between our simulations and the observed global

galactic star formation history (e.g. Figure 5.6), we explored a range of molecular gas

prescriptions. We ran simulations with a range of clumping factors, using Cρ = 3, 10,

and 30. L18 used 10, as do all other runs presented in this paper. We also used one

run with Cρ = 3 where we changed the prescription for shielding from that of Gnedin

& Draine (2014) to that of Gnedin & Kravtsov (2011). The Gnedin & Draine (2014)

model includes the effects of line overlap in the Lyman-Werner bands, increasing self-

shielding, which is particularly relevant in low metallicity environments with less dust

shielding. However, both models for self-shielding were calibrated using runs with

lower resolution than our runs (> 50 pc compared to 3–6 pc) and with a different

feedback model. These differences in simulation setup can affect the performance of
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the H2 formation model, so we decided to explore both shielding prescriptions. All

runs used fboost = 1, fHN,0 = 0, and ϵff = 100%.

As expected, the only significant differences caused by Cρ were in the amount of

molecular gas. While the mass of molecular gas in each run varies greatly with time,

we find a general trend that larger values of Cρ produce more molecular gas. We see

little change in molecular gas masses when changing the shielding prescription. These

differences in the amount of molecular gas when changing Cρ led to some differences

in star formation histories. The total stellar mass at z = 1.5 for the run with Cρ = 3

is 3× 109M⊙, while the mass for the run with Cρ = 30 is 6× 109M⊙. In particular,

a higher clumping factor leads to more late-time star formation.

5.3.4 Star Formation Efficiency

The local star formation efficiency per freefall time ϵff is a key parameter of our

model (see Equation 5.1). As L18 showed, this parameter strongly influences many

star cluster properties, particularly the mass function, while not strongly affecting

the global galaxy properties. We continue that exploration here.

As ϵff controls how fast star particles accrete material, we expect it to be reflected

in the duration of cluster formation episodes. We find that to be the case. In par-

ticular, we find that runs with low values of ϵff often fail to finish forming massive

clusters before the algorithmic end to a star formation episode at 15 Myr. For ex-

ample, in the run using the Isolated MW IC, ϵff = 1%, fboost = 1, and fHN,0 = 0,

only 20% of clusters with masses above 105M⊙ finished their formation before it was

automatically stopped.

When this time cap is imposed, cluster formation ends even when gas is available

to continue accreting onto the cluster. Therefore, we cannot interpret these particles

as the end-products of cluster formation. Their masses are not self-consistently de-

termined by their feedback. The masses we obtain are lower limits to the true masses
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that would have formed over longer timescales. However, as we will discuss more in

Section 5.5.3, such long age spreads of stars within a single cluster are ruled out by

observations. We define runs as having failed cluster formation if more than 50% of

clusters with masses above 105M⊙ have durations longer than 14 Myr. This applies

to all runs with ϵff = 1% and the run using the Isolated MW IC, ϵff = 10%, fboost = 1,

and fHN,0 = 0. While we still include these runs in plots in this section, we indicate

the cluster mass ranges where they are unreliable using dashed lines. We defer a full

investigation of this failed cluster formation to Section 5.5.4.

To illustrate the difference in the timescale of cluster formation, Figure 5.10 shows

the cumulative distribution of age spread τspread for runs using the Isolated MW IC.

The dependence on ϵff is clear. For massive clusters, the median age spread is 8.6 Myr

for ϵff = 1%, while it is 2.4 Myr for ϵff = 10% and 0.9 Myr for ϵff = 100%. For ϵff = 1%

many clusters have unphysically long age spreads, some longer than 15 Myr. We note

that the age spread can be longer than the duration of star formation in some cases,

as it is a measure of the variance in the star formation rate rather than simply its

length. Atypical star formation histories, such as one with bursts of star formation

at early and late times, can lead to large values of τspread. There is also a clear mass

dependence. Clusters with masses below 104M⊙ and ϵff ≥ 10% have median age

spreads less than 0.2 Myr, with all low-mass clusters from those runs having age

spreads less than 2 Myr. However, for ϵff = 1% there is a clear tail to long age

spreads even among low-mass clusters, with some clusters having age spreads as long

as 10 Myr.

We next investigate the effect of ϵff on the cluster mass functions. Figure 5.11

shows the initial cluster mass function for runs using the Isolated MW IC, and Fig-

ure 5.12 shows the same for the Local Group runs. Similar trends are seen in both

plots. Higher values of ϵff lead to more massive clusters and a higher maximum clus-

ter mass, while lower values of ϵff produce more low-mass clusters. The exception to
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Figure 5.10 The cumulative distribution of the star particle internal age spread τspread
for the Isolated MW IC runs with varied ϵff . Note that this is not the duration of star
formation as plotted in Figure 5.4, it is the age spread as defined in Equation 5.16
evaluated at the end of cluster formation. The left panel shows clusters less massive
than 105M⊙, while the right panel shows clusters more massive than 105M⊙. Note
the different range spanned by the two panels. The dotted line shows the longest
median age spread. All runs use fboost = 1, fHN,0 = 0, and show all clusters formed
before z = 1.5.

this is a handful of very massive clusters that formed in the Isolated MW ϵff = 1%

run, leading to a separate hump in the high-mass end of the mass function. The

indicates that even with low values of ϵff , massive clusters are still possible, although

typically rare. We note that we do not see such hump in the Thelma & Louise run

with ϵff = 1%.

The slope of the high-mass end of the mass function varies with ϵff , with the mass

function being shallower for higher values of ϵff . As with all calculations of the mass

function slope, we restrict our fit to clusters above 105M⊙. For ϵff = 1%, the slope

is between −3.78 and −4.41 for runs on the different ICs, while for ϵff = 10% it is

between −2.94 and −3.42, and for ϵff = 100% it is between −2.25 and −2.60.

The exact shape of the mass function is somewhat different between the runs that

use the Isolated MW IC and those that use the Local Group ICs, with the Local

Group runs having fewer low-mass particles. These Local Group runs used fboost = 5,

which decreases the number of low-mass clusters compared to lower values of fboost
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Figure 5.11 A comparison of the star particle initial mass function for the Isolated
MW IC runs with varied ϵff . For runs with failed cluster formation, dashed lines indicate
the range where more than 50% of clusters have formation durations longer than
14 Myr, indicating that their masses are likely underestimated. Black dashed lines
indicate power-low slopes of −2 and −3. The lower limit of the plot corresponds to
one cluster. All runs use fboost = 1, fHN,0 = 0, and show all clusters formed before
z = 1.5.

(see Figure 5.9). The different redshift of these runs also likely contributes. We find

that the majority of massive particles form at very high redshift or in galactic mergers,

when the star formation rate is high. This matches what was seen in L18, and agrees

with both observations and theoretical expectations (Portegies Zwart et al., 2010;

Kruijssen, 2014). In more quiescent epochs, high-mass particles do not form, giving

proportionally more low-mass particles. As time progresses, more low-mass clusters

are likely to form in the Local Group runs, possibly making their mass functions more

similar to those seen in the Isolated MW IC.
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Figure 5.12 A comparison of the star particle initial mass function for the Local Group
ICs with varied ϵff . For the ϵff = 1% run with failed cluster formation, dashed lines
indicate the range where cluster masses are likely underestimated. Black dashed lines
indicate power-low slopes of −2 and −3. The lower limit of the plot corresponds to
one cluster. All runs use fboost = 5, fHN,0 = 20%, and show all clusters formed before
the redshift listed in the legend.
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Figure 5.13 A comparison of the star formation rate of the central galaxy in the
Isolated MW IC when varying ϵff . All runs use fboost = 1 and fHN,0 = 0.

While ϵff significantly affects cluster properties, it does not change the galactic

star formation rate appreciably. Figure 5.13 shows the star formation histories of

runs when varying ϵff while holding fboost = 1 and fHN,0 = 0 constant. Here we

find that lower values of ϵff lead to somewhat higher star formation rates at early

times. These star formation rates at z ≈ 5 are significantly higher than predicted by

UniverseMachine, and tend to decline with time rather than increase. However,

we find opposite trends during the major merger at z ≈ 2.6, when the high ϵff runs

show a stronger burst. In the runs using the Local Group analogs, the star formation

history does not change significantly with ϵff .

In summary, we find that ϵff does not have a significant impact on the galactic

star formation rate, but does strongly influence star cluster properties. In particular,

higher values of ϵff lead to more massive star clusters and shorter timescales for cluster
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formation. These results confirm those found in L18, indicating that they are robust

predictions of our simulations.

5.3.5 Virial Criterion

One of the other changes to our star cluster formation prescription was the ad-

dition of a criterion restricting star-forming gas to be gravitationally bound (see the

beginning of Section 5.2.2). To investigate the difference this makes in cluster prop-

erties, we ran one simulation with the virial criterion turned off. While we find no

significant differences in large scale galactic properties, we find differences in the star

cluster populations. Figure 5.14 shows the mass function for runs with and without

the virial criterion. The addition of the virial criterion leads to more high-mass clus-

ters and fewer low-mass clusters. Quantitatively, the power-law slopes of the mass

functions for clusters above 105M⊙ are −2.60 for the run with the virial criterion and

−3.30 for the run without it. While the maximum cluster mass is similar between

the two runs, there are significantly more clusters with masses above 106M⊙ when

the virial criterion is enabled.

The increase in the number of high-mass clusters is expected, as Equation 5.3

shows lower gas densities lead to higher virial parameters. The cut on the virial

parameter prevents these lower density GMCs from forming stars until they accrete

more gas and collapse to higher density, leading to more total mass available for star

formation. The later onset of star formation also delays stellar feedback, allowing

more gas to accrete onto the cluster. These processes shift many low-mass clusters

to higher masses, explaining the decrease in the number of low-mass clusters. In

addition, as the virial criterion allows more gas accretion onto the GMC, its larger

mass becomes more difficult to disperse with feedback, leading to longer durations

of star formation. As a consequence of these effects, clusters have higher values of

ϵint when the virial criterion is enabled. In Figure 5.15 we show the distribution of
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Figure 5.14 A comparison of the initial cluster mass function for runs with and without
the virial criterion for seeding star formation. Black dashed lines indicate power-low
slopes of −2 and −3. Both runs used the Isolated MW IC, ϵff = 100%, fboost = 1,
fHN,0 = 0, and show all clusters formed before z = 1.5.
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Figure 5.15 Kernel density estimation for the distribution of integrated star formation
efficiency for clusters in the runs with and without the virial criterion. We use a
Gaussian kernel with a width of 0.05 dex. Each curve is normalized to the same area
for comparison purposes. Both runs used the Isolated MW IC, ϵff = 100%, fboost = 1,
fHN,0 = 0, and show all clusters formed before z = 1.5.

ϵint with and without the virial criterion. Both distributions have widths ≈ 0.25 dex,

but the mean value for the run with the virial criterion is significantly higher (35%

compared to 21%).

In the run where we did not impose the virial criterion, we output the virial

parameter αvir of each cluster as it formed. Using this information, we can postprocess

the results to see if there are any correlations between the virial parameter and the

resulting cluster properties. We find that clusters with αvir < 10 tend to have higher

initial masses, higher ϵint, and higher initial bound fractions than those with αvir > 10.

The virial criterion acts in a biased fashion to allow star formation to happen in regions
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that preferentially lead to higher mass clusters. Additionally, regions with αvir > 10

are able to accrete more material over time until they pass the αvir < 10 threshold,

increasing the cluster mass that formed out of a given GMC.

In summary, we find that adding the requirement that star-forming gas have a

virial parameter αvir < 10 increases the number of massive clusters, gives clusters a

longer formation timescale, and leads to higher values of ϵint.

5.4 Evolution of the Cluster Mass Function

In the previous section we exclusively used the masses of the star particles at the

end of their formation process. As not all stars are gravitationally bound to the newly

formed cluster, we must incorporate the initial bound fraction to obtain the observable

cluster masses. In addition, the plots in the previous section showed the distributions

of initial masses for all clusters formed over the full time spanned by the simulation.

This is not observable. In this section we include the cluster bound fraction and

present the instantaneous cluster mass function at a given redshift to allow for more

direct comparison with observations. While these are not true mock observations,

the results shown here accurately represent the existing cluster populations at a given

redshift in our simulations.

We start by examining the cluster initial bound fraction, which is needed to turn

raw particle masses into bound cluster masses. Figure 5.16 shows the initial bound

fraction of clusters as a function of mass. As in L18, we see the trend of higher mass

clusters having higher bound fraction. Additionally, runs with higher ϵff have higher

bound fractions at a given particle mass.

Our prescription for the initial bound fraction (Equation 5.4) makes it solely

dependent on the integrated star formation efficiency ϵint. In Figure 5.17 we show

the distributions of ϵint. Runs with lower ϵff have lower ϵint. For a given run, the

spread is due to trends with mass, where high-mass clusters have higher ϵint than
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Figure 5.16 The initial bound fractions for runs using the Thelma & Louise IC and
varying ϵff . The solid line shows the median, with the shaded region showing the
interquartile range of the distribution of the initial bound fraction at that mass. The
mass plotted here is the particle mass at the end of cluster formation, not the bound
cluster mass, so that the plotted variables are independent. For the ϵff = 1% run
with failed cluster formation, dashed lines indicate the range where cluster masses
are likely underestimated. We only show the Thelma & Louise IC for clarity, but
Romeo & Juliet and Isolated MW show the same behavior. All runs use fboost = 5,
fHN,0 = 20%, and show all clusters formed before the redshift listed in the legend.
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Figure 5.17 Kernel density estimation for the distribution of integrated star formation
efficiency for clusters in the Thelma & Louise IC with variations in ϵff . We use a
Gaussian kernel with a width of 0.05 dex. Each curve is normalized to the same area
for comparison purposes. All runs use fboost = 5, fHN,0 = 20%, and show all clusters
formed before the redshift listed in the legend. We plot the ϵff = 1% run with a
dashed line as that run had many clusters that failed to finish forming.

low-mass clusters. Quantitatively, the mean value of ϵint takes values of 1.2%, 7.2%,

and 30% for ϵff = 1%, 10%, and 100%, respectively. As ϵff increases, the widths of

these distributions decrease, with values of 0.30, 0.24, and 0.17 dex, respectively.

The trend of higher ϵint with higher ϵff is a direct consequence of ϵff controlling the

cluster formation rate (Equation 5.1). Higher ϵff leads to higher star formation rates,

allowing the cluster to accrete more of the gas from its surroundings. This is reflected

in the duration of cluster formation in runs with different ϵff . A lower value ϵff causes

clusters to form more slowly. With a slow star formation rate, feedback also starts

before the cluster has accreted a significant fraction of the surrounding gas, leading

to lower ϵint. The different timescales also likely lead to the change in width of the

distributions. As low values of ϵff lead to longer timescales of cluster formation, there

is more possibility for variation in the accretion history of the GMC. High values of

ϵff form quickly, so they are forming mostly out of the gas that was present at cluster

birth.
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In addition to the initial bound fraction, we also need to account for stellar evo-

lution and dynamical disruption, which both cause clusters to lose mass with time.

These processes are calculated in simulation runtime. In general, the mass Mb bound

to a cluster at time t can be written as

Mb(t) = Mi fi fse(t) fdyn(t) (5.17)

where Mi is the initial particle mass, fi is the initial bound fraction, fse(t) accounts

for mass loss due to stellar evolution, and fdyn accounts for mass lost due to tidal

stripping (Li & Gnedin, 2019; Meng & Gnedin, 2022). Our feedback scheme self-

consistently decreases the stellar mass of the cluster whenever mass is ejected into

the ISM, and dynamical disruption is calculated as described in Section 5.2.3. In

Figure 5.18, we show the impact of disruption on clusters of different mass, taking as

an example the run using the Isolated MW IC, ϵff = 100%, fboost = 1, and fHN,0 = 0.

We choose a run using the Isolated MW IC as it reached a lower redshift, so clusters

have more time to disrupt. Clusters with masses below 104M⊙ are entirely disrupted

within 500 Myr. Clusters of intermediate mass 104 − 105M⊙ persist for a few Gyr,

but do not survive until the present. However, clusters with masses above 105M⊙

survive throughout the lifetime of the simulation. Tidal disruption only decreases the

mass of these clusters by approximately 20% over the 4 Gyr length of this simulation.

Using these disruption calculations, we now present the mass function of bound

clusters at various redshifts. In Figure 5.19, we show the mass function of the surviv-

ing clusters at z = 4 in the Local Group runs with varied ϵff . This figure shows trends

similar to those seen in Figure 5.12, with several trends more exaggerated now that

bound cluster mass is included. First, we note similar shapes. Our mass functions

have a sharp cutoff at high masses, a peak, and a shallower decrease to low masses.

This shape is seen in all runs with ϵff ≥ 10%. The position of the peak depends
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Figure 5.18 Evolution of the dynamical bound fraction fdyn as a function of cluster
age for clusters in different mass ranges. Lines show the median, with the shaded
region showing the interquartile range. Clusters are grouped according to their initial
bound mass at formation. The plot shows clusters in the central galaxy of the run
using the Isolated MW IC, ϵff = 100%, fboost = 1, fHN,0 = 0, and shows all clusters
formed before z = 1.5.

strongly on ϵff . For ϵff = 100% it is at approximately 105M⊙, while it is closer to

104M⊙ for ϵff = 10%. This is due to a combination of three effects. First, as seen

in Figure 5.12, the initial particle masses are higher for higher values of ϵff . Second,

higher values of ϵff give higher bound fractions, as shown in Figure 5.16. The two

effects magnify each other, such that higher values of ϵff result in cluster mass func-

tions that reach to significantly higher masses. The disparity is further increased by

the effects of disruption, which preferentially removes low-mass clusters (Figure 5.18).

These three effects combine to produce dramatically different cluster mass functions

when changing ϵff . Of note, the ϵff = 1% run has no existing clusters above 104M⊙,

while the ϵff = 10% runs have no clusters above 3× 105M⊙.

We also note that, as described in Section 5.3.2, the low-mass end of the mass

function is sensitive to fboost, with higher values of fboost decreasing the number of

low-mass clusters. The runs shown in Figure 5.19 were all run with fboost = 5. Lower
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Figure 5.19 The bound mass function of all clusters present at z = 4 using the Local
Group ICs for different values of ϵff . We plot the ϵff = 1% run with a dashed line as
that run had many clusters that failed to finish forming. Black dashed lines indicate
power-low slopes of −2 and −3. The lower limit of the plot corresponds to one cluster.
All runs use fboost = 5 and fHN,0 = 20%.

values of fboost would increase the number of low-mass clusters and give it a shape

more similar to that seen in the local universe. Similarly, massive clusters tend to

form in epochs of intense star formation, while low-mass clusters dominate in more

quiescent epochs. As only the Thelma IC has any significant mergers after the redshift

shown in this plot, we expect there to be more low-mass clusters as time progresses.

In Figure 5.20 we show the evolution of the bound cluster mass function from

z = 6 to z = 1.9 for the run using the Romeo & Juliet IC, ϵff = 100%, fboost = 5,

and fHN,0 = 20%. A significant fraction of clusters with masses above 2× 105M⊙ are

in place already at z = 6. More massive clusters form by z = 4, but we see little
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Figure 5.20 The bound mass function of all clusters present at a range of redshifts.
All simulation lines are from the same run that uses the Romeo & Juliet IC, ϵff =
100%, fboost = 5, and fHN,0 = 20%. The dashed line indicates the cluster population
analytically evolved from z = 1.9 to z = 0. The shaded region shows the observed
mass function of clusters in the MW.

change in the massive end of the mass function beyond that redshift. At later epochs

low-mass clusters dominate the mass function, particularly increasing the number of

clusters around 104M⊙. Clusters of low mass that appear in this plot are mainly

from recent star formation. As Figure 5.18 shows, clusters with masses below 105M⊙

disrupt within a few Gyr, and clusters below 104M⊙ disrupt within several hundred

Myr.

We also show an analytical evolution of star clusters from the last output of this

run at z = 1.9 to the present, following Li & Gnedin (2019). The prescription for

tidal disruption (Equations 5.6–5.8) depends on the galactic tidal field. In simulation

runtime we calculate it self-consistently, but to extrapolate to z = 0 we simply assume
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a constant value of Ωtid = 175 Gyr−1. This value was chosen to produce the same

final number of clusters as are observed in the MW. It results in the disruption of

most clusters with masses below 105M⊙, and decreases the masses of all surviving

clusters, shifting the distribution to lower masses and decreasing the normalization.

This calculation also assumes that no new clusters form after z = 1.9.

Our chosen value of Ωtid = 175 Gyr−1 is quite high. It is equivalent to a maximum

eigenvalue of the tidal tensor λm ≈ 105 Gyr−2. Meng & Gnedin (2022) examined the

tidal field for the L18 simulations, finding that clusters experience such strong tidal

fields only shortly after their birth. As they migrate away from the high-density

star-forming regions, the tidal field decreases significantly to typical values λm ≈

3×103 Gyr−2, or Ωtid ≈ 30 Gyr−1. Choosing this low value of Ωtid would significantly

increase the number of low-mass clusters surviving to z = 0 in our simulations.

However, this analysis was done at z > 1.5. The value of the tidal field may increase

over time as the galaxy grows. Our adopted value is also similar to that used by

Choksi & Gnedin (2019a) in an analytic model for cluster formation and destruction.

These authors find that Ωtid = 200 Gyr−1 can reproduce several observational results,

including the GC mass function at z = 0 and the relation between galaxy halo mass

and mass of its globular cluster system.

We compare our results with the distribution of masses of the observed MW GCs.

We use the V-band absolute magnitude from Harris (1996) along with the luminosity

dependent mass-to-light ratio

M

LV

= 1.3 +
4.5

1 + exp (2MV + 21.4)
(5.18)

from Harris et al. (2017) to obtain GC masses. We find good agreement between

the two mass functions. While we match the normalization by construction through

our choice of Ωtid, the similarity of the MF shape to that in the MW system is a
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test of the model. The maximum cluster mass matches the MW GCs well. We note

that the Harris (1996) catalog includes both in-situ and ex-situ clusters in the MW.

As the simulation z = 0 result comes from analytic evolution of all clusters in the

central galaxies at z = 1.9, any later clusters that come in from later mergers would

be missed. However, Figure 5.20 uses the Romeo & Juliet IC, which has quick

early growth with no significant mergers after z = 1.9 (Figure 5.3). We therefore

expect few clusters from later infalling satellites, making a comparison to the full

MW population reasonable. We also note that the Romeo & Juliet IC has more

massive clusters than the Thelma & Louise IC. This is likely becuase of its quick

early growth (Figure 5.3), increasing the star formation density at early times and

leading to the formation of more massive clusters. For the Thelma & Louise runs,

a lower value of Ωtid is required to reproduce the high-mass end of the Galactic GC

mass function, leading to too many simulated low-mass clusters.

In the runs with ϵff = 100%, our present-day mass functions have more clusters

with masses above 3× 105M⊙ than seen in L18. This is a consequence of our initial

mass functions extending to higher masses than in L18. These changes are primarily

driven by the addition of the virial criterion. As Figure 5.14 shows, the addition of

this criterion significantly increases the number of massive clusters. The increase in

the number of massive clusters allows us to increase the value of Ωtid from 50 Gyr−1

(used by L18) to 175 Gyr−1. In that work higher values of Ωtid would have disrupted

too many clusters. In the runs presented in this work, stronger disruption is required

to produce an agreement for the massive end of the mass function while reducing the

number of low-mass clusters.

Similarly to the mass function at z = 4, the mass functions of surviving clusters

at z = 0 depend strongly on ϵff . For all runs with ϵff ≤ 10% (not shown), we find no

clusters above 4 × 105M⊙, and the overall distributions shift to lower masses. That

is clearly inconsistent with the observed mass function of MW GCs.
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Finally, in Figure 5.21 we show the age-metallicity relation for clusters in the run

using the Thelma & Louise IC, ϵff = 100%, fboost = 5, and fHN,0 = 0. There is broad

agreement with the observations of MW GCs presented in VandenBerg et al. (2013)

and Leaman et al. (2013). Metal-rich clusters form systematically later than metal-

poor clusters, as the galaxy enriches its interstellar medium with time. While the

plot shows only one run using the Thelma & Louise initial condition, we see similar

trends in all ICs. We note that the value of Ωtid used in the analytical disruption

calculation slightly affects this result. A change in the disruption rate would affect

which clusters that survive to the present. In particular, as most of the highest mass

clusters form early, increased disruption tends to remove younger, higher metallicity

clusters. While the shape of the age-metallicity relation changes little, the distribution

of clusters within it does.

5.5 Discussion

5.5.1 Timing of Supernova Feedback

In Section 5.2.4.7 we discussed several prescriptions for the timing of SN, then in

Section 5.3.1 we examined how these prescriptions affect the properties of star clusters.

We find that later SN feedback leads to longer timescales for cluster formation and

higher values of the integrated star formation efficiency. In this formalism, we assume

that there is no difference in the formation time of low and high mass stars within a

cluster. Individual stars of all masses have the same age. However, this assumption

may be incorrect. For example, using a simulation of a star cluster forming out of

a 2× 104M⊙ GMC, Grudić et al. (2022) find that massive stars (m > 10M⊙) finish

accreting 1 Myr later than the average star. Padoan et al. (2020) find a similar result

using a simulation of 2× 106M⊙ of gas in a (250 pc)3 box with several star-forming

regions. The delay in massive star formation in turn delays the onset of feedback.
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Figure 5.21 The age-metallicity relation for surviving clusters with masses above
3×103M⊙ at z = 0 in the run using the Thelma & Louise IC, ϵff = 100%, fboost = 5,
and fHN,0 = 0. The final output of this run corresponds to an age of 10 Gyr, meaning
that all regions on the plot are accessible to the simulation. Clusters from both central
galaxies are included as there are no systematic differences between the two. Grey
shaded regions and contours indicate the bulk of simulated clusters, with contours
enclosing 50 and 90% of the sample. Data points show MW GCs from VandenBerg
et al. (2013) and Leaman et al. (2013).
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While our simulations account for the stellar age spread within the cluster when

determining the timing of SN, they do not account for this systematic delay in the

formation of individual stars.

As shown in Figure 5.2, our hybrid approach to the timing of SN feedback ap-

proximates well the delay in SN feedback due to the age spread of the stars, so it

is our preferred model for future simulations. However, it may need to be further

refined to account for the delay in massive star formation. In particular, one possible

approach would be to calibrate a subgrid model for the timing of cluster feedback to

the results of GMC-scale simulations such as in Grudić et al. (2022). Further delays

in the onset of massive star feedback may increase the timescales of cluster formation

and the integrated star formation efficiency, but these effects are likely to be small

compared to the effects of other parameters, namely ϵff .

5.5.2 Strength of Stellar Feedback

In Figures 5.6 and 5.7 we showed how the star formation rate of the central galaxies

in our simulations changed when varying fboost. We found that fboost = 5 produces

too little star formation in the current simulation setup. In the Isolated MW runs we

find that fboost = 1 − 2 matches the UniverseMachine predictions fairly well, as

do fboost = 1− 3 in the Thelma & Louise runs. As we discuss more in Appendix B,

updates to the hydrodynamics are primarily responsible for the change in preferred

values of fboost. Such low values of fboost are unexpected. L18 calibrated fboost, finding

fboost = 5 to be their preferred value. Numerical tests in Semenov et al. (2017) have

also shown that values of fboost ≈ 5 best account for numerical losses of momentum

as a SN shell moves across the simulation grid. Theoretical grounds for fboost > 1 also

exist, with Gentry et al. (2017) finding that clustered SN can enhance momentum

feedback by up to an order of magnitude relative to an isolated SN.

We also note that all of these runs, even with fboost = 1, show a large decrease in
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the star formation rate at z < 2, in conflict with the abundance matching expecta-

tion. Both the hydrodynamics and feedback models have been updated to be more

physically realistic than those used in L18, but produce worse agreement in the star

formation histories. This may indicate that there is additional relevant physics that

needs to be included in our simulation.

Our model assumes that all stars above 8M⊙ explode as SN. However, this as-

sumption may not hold. Simulations of SN find that some progenitors collapse directly

to a black hole without a SN explosion (Heger et al., 2003; Horiuchi et al., 2014; Pe-

jcha & Thompson, 2015). If we were to include such scenarios in the feedback scheme,

it would decrease the total energy and momentum from SN. We would therefore re-

quire a higher value of fboost to obtain reasonable star formation rates. Additionally,

changing the minimum progenitor mass for SN makes a large difference in the energy

injected by SN (Keller & Kruijssen, 2022). We assume Mmin = 8M⊙, but this value

is uncertain. Increasing it would decrease the number of SN, again requiring a higher

fboost to compensate.

5.5.3 Constraints on Star Formation Efficiency

Figure 5.17 shows the distribution of ϵint for the runs varying ϵff . While we find

a clear trend that decreasing ϵff decreases ϵint, we can also examine the ratio ϵint/ϵff .

Figure 5.22 shows this ratio for the Thelma & Louise runs, which can be directly

compared with Figure 8 of L18. For all values of ϵff we consider, we find higher values

of ϵint/ϵff than did L18. Two of the changes discussed in Section 5.3 are responsible.

First, the modified SN feedback prescription delays SN feedback compared to L18,

which results in higher ϵint (Figure 5.5). Second, the introduction of the virial criterion

leads to higher ϵint at a given ϵff (Figure 5.15). Combined, these two effects shift our

distributions of ϵff/ϵint to higher values.

We still see the same trend with ϵff as did L18, where higher values of ϵff lead to
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Figure 5.22 The distribution of ϵint/ϵff for different values of ϵff in the Thelma &

Louise IC. All runs used fboost = 5, fHN,0 = 20%, and show all clusters formed before
the redshift listed in the legend. We plot the ϵff = 1% run with a dashed line as that
run had many clusters that failed to finish forming.

smaller ϵint/ϵff ratios. Quantitatively, the mean value of this ratio drops from 1.15 to

0.57 to 0.30 for ϵff = 1%, 10%, and 100%, respectively. Conceptually, this ratio is

proportional to the number of freefall times over which the cluster accreted material.

As discussed in Section 5.3.4, lower values of ϵff lead to longer formation timescales,

in accordance with this result.

As we have discussed throughout Section 5.3, the duration of a star formation

episode is sensitive to cluster feedback and formation prescriptions. While difficult to

constrain precisely, current observations indicate that the age spread within clusters

is less than ≈ 6 Myr (see the compilation of age data in L18). These age spreads
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can still be significantly larger than tff . One example is the Orion Nebula Cluster

(ONC), where star formation appears to have occurred over several freefall times

(Da Rio et al., 2014; Caldwell & Chang, 2018; Kounkel et al., 2018). In contrast,

simulations of individual molecular clouds generally show star formation ending after

one tff (Grudić et al., 2022, e.g.). Our simulated age spreads, shown in Figure 5.10,

are consistent with the observations for ϵff ≥ 10%. We see a strong mass trend, but

even for massive clusters the vast majority have age spreads smaller than 6 Myr.

However, our results rule out ϵff = 1%, which has unphysically long age spreads for

clusters of all masses.

The shape of the initial cluster mass function is another key observable. YMCs

in the MW and nearby galaxies are found to follow the functional form of Schechter

(1976), with a power law slope of −2 at the low-mass end (Portegies Zwart et al.,

2010). Our mass functions have a positive power law slope at low mass, peak at a

mass that depends on ϵff (105M⊙ for ϵff = 100%), then decline in a manner consistent

with a power-law. In essence, our simulations are missing low-mass clusters. While

our cluster formation algorithm only seeds clusters if they have an expected mass

of 6 × 103M⊙, runs with ϵff = 100% show the increasing mass function above this

mass. This may indicate that ϵff = 100% forms stars too efficiently, leading to too

few low-mass clusters. However, ϵff ≤ 10% results in too few massive clusters, with

no clusters projected to reach z = 0.

Lastly, ϵff has been measured in observations with several methods (Evans et al.,

2014; Usero et al., 2015; Lee et al., 2016; Ochsendorf et al., 2017; Utomo et al., 2018).

While the observations have somewhat different medians, uncertainties, and intrinsic

scatter in ϵff , a value of ϵff ≈ 1% is typical. However, we find that this value does

not produce reasonable star cluster properties in our simulations. The timescales of

cluster formation reach our algorithmically imposed limit of 15 Myr. Such timescales

are in conflict with observations. Low values of ϵff also produce few massive clusters.
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Even a value of ϵff = 10% produces few clusters with high enough mass to reach z = 0

as GCs. Our simulations prefer higher values of ϵff . Among the runs presented here,

ϵff = 100% produced the most realistic cluster properties, as it did in L18.

To compare with observations more directly, we postprocess the simulations to

calculate an effective value of ϵff in a way analogous to how it is derived in observations.

First we identify clusters that are actively forming in several simulation snapshots.

Within a sphere of radius r centered on the cluster, we calculate the inferred value of

ϵff as

ϵ̄ff(r) =
t̄ff(r) Ṁ(< r)

Mgas(< r)
(5.19)

where t̄ff ≡
√
3π/32Gρ̄ is calculated using the mean density ρ̄ within the sphere. In

the rest of this section we will use ϵ̄ff to refer to the inferred value from this procedure,

while ϵff will refer to the value used in runtime of the simulation. To calculate Ṁ ,

we use a procedure analogous to that used in studies that determine ϵff by counting

young stellar objects (YSOs) to determine the star formation rate within a cloud

(Evans et al., 2014; Heyer et al., 2016; Ochsendorf et al., 2017). These studies use

YSOs to estimate the mass of recently formed stars, then divide it by the lifetime of

the YSO phase typically set to a fixed time of 0.5 Myr. As we do not store the full

accretion histories of simulated clusters, we cannot directly obtain the star formation

rate over the last 0.5 Myr. Instead, we approximate it with the average star formation

rate over the relevant timescale:

Ṁ =
M

max (τspread, 0.5 Myr)
(5.20)

whereM is the current mass of the actively forming cluster. For clusters with large age

spreads this prescription gives the average star formation rate, while for clusters with

short age spreads this matches the rate inferred observations assuming an 0.5 Myr

timescale. We choose to use the cluster age spread rather than the full duration
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as it more accurately reflects the timescale over which the bulk of cluster formation

happens. The total Ṁ within a given sphere is the sum of Ṁ from all actively forming

clusters in the sphere.

This calculation of ϵ̄ff involves significant averaging both in time and space, com-

pared to the application in simulation runtime. A typical local timestep at the high-

est refinement levels is 100–1000 yr, orders of magnitude shorter than even 0.5 Myr.

Therefore, the finite difference calculation of the star formation rate Ṁ from Equa-

tion 5.1 is a much closer approximation to the true derivative than Equation 5.20.

Considering spheres of radius r > 5 pc also introduces averaging of the stellar and

gas mass on a larger scale than our adopted GMC radius. Both of these effects tend

to shift ϵ̄ff to smaller values than the input ϵff .

In Figure 5.23 we show the distribution of values of ϵ̄ff calculated for two choices

of the averaging radius: 5 pc and 30 pc. The radius of 5 pc matches the GMC sphere

actively participating in star formation. The inferred values peak at around 30%

with large scatter but are significantly below the simulation input ϵff = 100%. The

procedure to infer ϵ̄ff uses the cluster formation timescale to average the star formation

rate, which creates the wide spread and systematic shift. In addition, this procedure

calculates tff and Mgas at one instant, which may not reflect typical conditions over

the course of the cluster’s growth.

Considering a larger sphere radius of 30 pc adds also spatial averaging. For an

isolated cluster, increasing the size of the sphere would simply include more surround-

ing gas without increasing Ṁ , leading to smaller inferred values of ϵ̄ff . However, we

find that clusters often form in larger star-forming complexes with many clusters in

close proximity of each other. Our choice of 30 pc corresponds to the typical radius

of these star-forming complexes. Figure 5.23 shows that these complexes have a peak

value of ϵ̄ff ≈ 10%, with less scatter than the values inferred on 5 pc scales. The lower

mean value is due to the inclusion of more gas not participating in star formation,
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Figure 5.23 Kernel density estimation of the distribution of ϵff inferred from postpro-
cessing simulated star clusters and from observations. We use a normalized Gaussian
kernel with a width of 0.15 dex. The simulated clusters are from the run with the
Isolated MW IC, ϵff = 100%, fboost = 1, and fHN,0 = 0. The 5 pc line shows ϵ̄ff as
inferred from the region actively participating in cluster formation, while the 30 pc
line shows the value inferred for larger star-forming complexes.
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while the decreased scatter comes from averaging together multiple clusters within

each region.

This exercise shows that the inferred values of ϵ̄ff are a factor of 10 lower than

the simulation input. Still, for this run typical ϵ̄ff are higher than those seen in

observations. In Figure 5.23 we include observations from Evans et al. (2014), Heyer

et al. (2016), and Ochsendorf et al. (2017), which all use the YSO method but do so on

different scales. Evans et al. (2014) and Heyer et al. (2016) use clumps with typical

radii of a few pc, while Ochsendorf et al. (2017) uses star-forming complexes with

radii around 40 pc. Even with these differences of scale, all studies measure mean

values of ϵff consistent with ∼1%. However, we note that we cannot make a direct

comparison between these observations and our inferred values of ϵ̄ff . Each ingredient

of the calculation of ϵff has systematic differences. The mass of recently formed stars

is calculated differently, as we do not directly model the number of observable YSOs in

each cluster. The timescales for calculating the star formation rate are also different,

as many of our clusters have τspread longer than the 0.5 Myr used in observations.

Lastly, detailed modeling of CO and HCN abundances and ionization states is needed

to calculate Mgas exactly as is done in observations. To resolve these differences

would require a further analysis in the simulation runtime. Nevertheless, Figure 5.23

demonstrates that the discrepancy with observations is substantially smaller than

appears from a straightforward comparison with the simulation input.

5.5.4 Failed Cluster Formation

In Section 5.3.4 we showed that in some runs with low ϵff , clusters fail to finish

formation before it is automatically ended at 15 Myr. In this section, we investigate

the reasons for these failed clusters.

We find that no runs with the high value of ϵff = 100% have failed cluster for-

mation, all runs with the low value of ϵff = 1% fail, and among the runs with the
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intermediate value ϵff = 10%, only the run using the Isolated MW IC and fboost = 1

failed. All other runs with ϵff = 10% used higher fboost and did not fail.

These trends are due to an interplay between ϵff and fboost. When ϵff is low,

cluster formation progresses slowly, leaving significant amounts of gas. We find low

values of ϵint for low ϵff (Figure 5.17), meaning that at the end of cluster formation,

only a small fraction of gas has been turned into stars. This applies in the midst of

cluster formation, too. We examine the gas densities of the host cells of clusters as

they form and find that for lower values of ϵff there is more gas near the cluster at

a given time after the beginning of cluster formation, meaning that GMCs are more

massive with low values of ϵff . In addition, the slower star formation with low ϵff

leads to fewer stars to provide feedback. When SNe begin, they must first disperse

the gas within the cluster. Higher values of fboost make this process more efficient.

Therefore, higher values of fboost lead to shorter timescales for cluster formation when

ϵff is low. In contrast, when ϵff = 100%, clusters consume a high fraction of the gas

within their GMC. SN feedback of any fboost is able to clear the smaller amounts of

gas that remain.

In Figure 5.24 we illustrate this effect by presenting instantaneous distribution

of the molecular gas density within galaxies with different combinations of ϵff and

fboost. Runs with failed cluster formation have distributions that extend to higher

densities than runs without failed cluster formation. As feedback cannot terminate

star formation, gas continues to accrete onto the GMC, increasing the density. Of

particular note is the gas at densities higher than the star formation threshold. The

total gas number density must be greater than 103 cm−3 with a molecular fraction of

0.5, giving a minimum molecular number density of 500 cm−3. Above this threshold,

the failed runs have significantly more gas than runs that successfully terminate star

formation.

The prescription for SN feedback also contributes to why these runs had failed
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Figure 5.24 The distribution of cell mass-weighted molecular gas densities for different
combinations of ϵff and fboost in the Isolated MW IC. All runs used fHN,0 = 0 and
show the gas within 10 kpc of the galactic center. Dashed lines indicate runs with
failed cluster formation. Runs with fboost = 1 are shown at z = 1.56, while those
with fboost = 2 are shown at z = 2.57. The dotted line at 500 cm−3 indicates the
minimum density for star formation.

cluster formation while the runs of L18 did not. In the 15 Myr timescale for cluster

formation, the prescription of L18 injects significantly more energy than the updated

model (see Figure 5.1). For low hypernova fractions typical of most clusters, the new

prescription injects only 26% of the energy of L18 within the first 15 Myr, increasing

to about 50% after 40 Myr. This is exacerbated by the lower fboost used in the

updated runs. The total momentum injected by SN feedback during the 15 Myr of

cluster formation can be more than an order of magnitude lower than in L18. For

low values of ϵff , this results in SN feedback being unable to disperse the GMC.

The timing of SN also contributes to failed cluster formation. Compared to L18,

SN start later in the new prescription due to the stellar lifetimes chosen (Figure 5.1).

These runs also use the average approach for determining cluster feedback timing,

as they were run before the hybrid approach was finalized. This average approach

further delays the onset of SN (Figure 5.2). In addition, we find that runs with lower
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ϵff have later average times of cluster formation, tave, meaning that SN is delayed

even further in these runs. These delays in the onset of SN gives the gas outside

the GMC more time to accrete onto the GMC, leading to higher gas masses that

SN feedback then needs to disperse. This combines with the effect described in the

previous paragraphs to make GMCs more difficult to disperse for lower ϵff , further

explaining why we find that fboost affects the timescales of cluster formation for low

ϵff but not for ϵff = 100%.

To summarize our understanding of why massive star clusters fail to finish forming

when ϵff ≤ 10%, lower values of ϵff turn gas into stars at a slower pace. At a given

time after the beginning of cluster formation this results in fewer stars, and therefore

less stellar feedback, embedded in a more massive GMC. The onset of SN is delayed

compared to L18 due to our choice of stellar lifetimes (see Figure 5.1), and then is

delayed further after accounting for the age spread within the cluster. This allows

more material to accrete onto the GMC, making it even more difficult for feedback

to disperse. Once SN feedback starts, the updated feedback prescription injects less

momentum than L18. The new prescription has fewer SN and is further exacerbated

if low values of fboost are chosen. Although lower values of fboost produce more

reasonable star formation rates for z > 2, these low values fail to provide enough

feedback to disperse GMCs when ϵff is low. This may indicate that another source of

feedback is needed at early times to help disperse GMCs.

5.6 Conclusions

We have described improvements to the implementation of star cluster formation

and feedback in the ART code. We introduced a new criterion for the seeding of

cluster particles, requiring the star-forming gas to be gravitationally bound. We also

implemented a new prescription for the initial bound fraction of clusters based on

simulations of individual GMCs. We added runtime tracking of C, N, O, Mg, S,
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Ca, and Fe, with enrichment coming from SNIa, SNII, stellar winds, and AGB stars.

We updated the SN feedback prescriptions significantly. We now implement SN as

discrete events, with rates based explicitly on the stellar lifetimes and IMF. We also

explored effects of hypernovae, which inject more energy and have different elemental

yields. Lastly, we improved our prescription for the timing of SN to account for the

age spread of stars within a cluster.

With these code updates, we ran 20 simulations using the initial condition from

L18 and 9 simulations using two Local Group-like ICs from the ELVIS project. These

runs have a range of parameters, including variations in ϵff , fHN,0, fboost, and the

timing of SN feedback. We explored how these parameters affect the properties of

galaxies as well as the populations of star clusters within them. Our results are

summarized as follows.

• Delaying the onset of SN (without changing the total energy injection) results

in longer formation timescales for massive clusters and higher ϵint (Figures 5.4, 5.5),

but does not significantly change the galaxy star formation rate.

• Higher values of the momentum boosting factor for SN greatly decrease the

galactic star formation rate (Figures 5.6, 5.7). While no value of fboost can reproduce

the abundance matching expectation for the full redshift range explored here (z >

1.5), we find that the range 1 < fboost < 3 produces reasonable agreement for z > 2.

Higher values of fboost decrease the total stellar mass by decreasing the number of low-

mass clusters that form, without changing the number of massive clusters (Figure 5.9).

• The hypernova fraction fHN,0 makes little difference to galaxy or cluster prop-

erties (Figures 5.6, 5.9). The strong decrease in fHN with metallicity (Equation 5.11)

results in limited change in the total energy injected by SN (Figures 5.1, 5.8).

• The local star formation efficiency per freefall time does not have a strong impact

on the galactic star formation rate (Figure 5.13). However, it strongly changes cluster

properties. Higher values of ϵff lead to more massive clusters (Figures 5.11, 5.12),
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shorter timescales for cluster formation (Figure 5.10), higher initial bound fractions

(Figure 5.16), and higher ϵint (Figure 5.17).

• Adding the virial parameter criterion to require star-forming gas be gravita-

tionally bound produces more high-mass clusters (Figure 5.14), longer timescales for

cluster formation, and higher ϵint (Figure 5.15).

• In runs with low values of ϵff , we find a population of clusters that fail to finish

forming after 15 Myr. Low values of ϵff form stars slowly, leaving massive GMCs that

are difficult for feedback to disperse, especially with low values of fboost.

• We present the evolution of the observable mass function of clusters at various

redshifts (Figure 5.20). Most massive clusters form at high redshifts when the star

formation density is high, with low-mass clusters dominating in quiescent epochs.

• We analytically extrapolate the dynamical disruption of clusters from the last

available output to z = 0 (Figure 5.20). We can match the observed mass function

of MW GCs by assuming a high value for the cluster disruption rate. The surviving

clusters also match the age-metallicity relation of MW GCs (Figure 5.21).

• Among the values of ϵff we explored, only ϵff = 100% can match the MW GC

mass function. Runs with ϵff = 1% produces clusters with unphysically long age

spreads (Figure 5.10), and runs with ϵff = 10% produce too few high-mass clusters

(Figures 5.11, 5.12, 5.19).

This exploration emphasizes the importance of well-calibrated subgrid models for

modeling star clusters in simulations of galaxy formation. Some modeling choices,

such as the optimal value of ϵff , whether to enforce a virial criterion when seeding

star clusters, and different prescriptions for the timing of SN feedback all affect the

resulting cluster populations without significantly impacting global galaxy properties.

A successful model of star formation and feedback in simulations must be able to

reproduce not only galaxy-scale properties, but also the small-scale properties of

individual star clusters.
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CHAPTER VI

Future Directions and Conclusions

6.1 Summary

In this dissertation, I have investigated the formation and evolution of star clusters

in both simulations and observations. In this chapter I will summarize my work then

describe future directions.

In Chapter II, I present my measurements of the radii of over 6000 young star

clusters in nearby galaxies. This is the largest catalog of young star cluster radii

currently available. To effectively calculate these radii, I implemented a pipeline

with several features to make it robust against contaminating objects, allowing it to

produce reliable radii for as many clusters as possible. I find that most galaxies share

a common radius distribution, with a peak at around 3 pc. However, we find two

galaxies that have different distributions. While we do not currently understand the

reason, this will be a fruitful avenue for future research. One of the most important

results from this work is that we find a clear mass-radius relation of the form Reff ∝

M0.24, with a large intrinsic scatter of 0.25 dex. This is the clearest detection of

such a relation thus far, enabled by the large catalog of radii. This relation provides

constraints on models of clusters formation and gives the initial conditions for cluster

disruption. We also calculate cluster densities, finding a roughly lognormal surface

density distribution peaked at 100 M⊙pc
−2.
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Turning to my work with cosmological simulations, in Chapter III I present my

work analyzing the nuclear star clusters (NSCs) of an existing galaxy formation sim-

ulation. I developed a method to find NSCs in simulations, then analyzed their

structural properties such as mass, size, and shape. I also examined the chemical

properties of NSCs, finding that they are systematically more metal-rich than their

host galaxies. Finally, I used these simulations to test the hypothesis that nuclear

star clusters in dwarf galaxies may become the progenitors of the anomalous globular

clusters seen in the MW. I find that NSCs contain spreads in iron abundance and age

similar to those in anomalous GCs. This lends support to the idea that these GCs

may be remnant NSCs of disrupted dwarf galaxies.

In Chapter IV I begin describing my work to develop and run a new suite of

simulations. In this chapter I focus on the initial conditions (ICs) used in the cosmo-

logical simulations. While zoom-in ICs are very useful for studying the evolution of

galaxies in their cosmological context, they can be difficult for simulation codes like

ART to handle computationally. Specifically, the small fraction of the box occupied

by the galaxies of interest makes it difficult for the load balancing algorithm to evenly

divide the work. This makes simulation runtime impractically slow. As one of the

long-term goals of the new simulation suite is to reach z = 0, improving the runtime

of the simulation is important. In this chapter, I present a method to modify the grid

structure of zoom-in ICs. I decrease the box size while increasing the resolution of

the root grid cells. As the load balancing algorithm of ART operates on these root

grid cells, increasing their number allows for a more even distribution of work among

computing nodes, increasing computational efficiency. This method can produce a

speedup of nearly a factor of two. Importantly, this is done without changing the

growth histories of the galaxies in the zoom region. This enables my simulations

to progress faster than would otherwise be possible, laying the foundations for the

simulations I present in Chapter V.

196



I begin Chapter V with a description of the improvements I made to the model of

cluster formation in cosmological simulations of Li et al. (2017) and Li et al. (2018).

I add a criterion requiring that star forming gas is gravitationally bound before star

clusters are seeded. I significantly update the stellar feedback prescription, making

SN rates directly based on the IMF and stellar lifetimes. Some fraction of these SN

can explode as hypernovae, injecting more energy into the surrounding ISM. Lastly,

I updated the timing of SN feedback to better reflect the intrinsic age spreads within

clusters.

I then ran a large suite of 29 simulations, 9 of which use the updated Local Group-

like initial conditions as described in Chapter IV. While I did not reach z = 0 with

these simulations yet, in the future these runs will be able to progress to z = 0

and make direct comparisons with the MW cluster population. I first perform a

differential analysis with the goal of understanding how each of the updates affects star

cluster populations. I systematically explore a range of parameters including the star

formation efficiency per freefall time ϵff , the momentum boost from supernovae fboost,

and the initial hypernova fraction fHN,0. Some modeling choices, such as the value

of ϵff , whether or not to enforce a virial criterion when seeding star formation, and

different prescriptions for the timing of SN feedback all change the resulting cluster

populations without significantly impacting global galaxy properties. Observations of

clusters are the only way to constrain these parameters. This exploration emphasizes

the importance of well-calibrated subgrid models when modeling cluster formation in

simulations of galaxy evolution.

I also examine the evolution of star cluster populations in these simulations over

cosmic time. I find that most massive clusters form at high redshifts (z > 4) when

the star formation rate is high, while low-mass clusters are dominant in more qui-

escent epochs. By analytically extrapolating cluster disruption to z = 0, I make a

preliminary comparison of the simulated clusters to the MW. I find good agreement
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with both the GC mass function and age-metallicity relation.

6.2 Future Work with Cluster Radii

In Chapter II, I presented my measurements of the radii of young star clusters.

However, only the result that the cluster radius distribution is common among galax-

ies examined how cluster properties change with environment. This is an area with

many potential avenues for investigation.

One simple investigation would be to correlate cluster properties with their posi-

tion within galaxies. As tidal fields are stronger in denser regions near the center of

galaxies, tidal truncation may result in a trend where clusters at larger galactocentric

radii have larger radii. If this trend does not exist, it indicates that clusters do not

fill their tidal radii. Results in the literature are mixed about the observed trend with

galactocentric radius (Bastian et al., 2012; Ryon et al., 2015; Sun et al., 2016; Ryon

et al., 2017). Using the large sample size provided by my cluster catalog would give

the most definitive result yet.

Cluster properties can also be correlated with the properties of their host galaxy.

For example, the analytical model of Choksi & Kruijssen (2021) predicts that the

cluster radius depends on the surface density of starforming gas. This naturally arises

out of the star formation process, affecting clusters at birth. By compiling gas surface

density profiles for the galaxies in my sample, this can be directly tested across a wide

range of galaxies. This investigation may also shed light on what is happening with

the two galaxies with discrepant radius distributions. Similarly, the cluster disruption

rate should depend on the host galaxy, as higher density causes increased disruption.

Both cluster birth and evolution can be further tested by examining cluster radius as

a function of host galaxy properties.

Finally, detailed analytical models of cluster evolution are needed to interpret

the trends of cluster radius with age. My results show less evolution of the cluster
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radius with time than is expected by many models. The toy models I created were

unable to reproduce the key aspects of the observed distributions, and neither was

the full model of Gieles & Renaud (2016). These simple models must be refined to

match observations, both through improved constraints on cluster initial properties

and more detailed modeling of tidal disruption within galactic contexts.

6.3 Future Work with Simulations

In this dissertation I have only scratched the surface of what can be done with my

suite of simulations. I’ll sketch a few potential avenues of exploration in this section.

Most obviously, I was only able to run the Local Group simulations to z ≈ 2 − 3.

Reaching z = 0 would enable direct comparisons with the Milky Way. Instead of

needing an analytical extrapolation of cluster disruption to obtain cluster masses at

z = 0, the simulation will provide full self-consistent calculations of these masses.

This would enable a direct comparison with the MW GC population. The GC mass

function, metallicity distribution, and kinematics can be investigated. Taking the

selection of surviving clusters and tracking them back to their formation sites would

also reveal what conditions are needed at high redshift to form GCs. One particularly

interesting application of z = 0 outputs would be an investigation of the kinematics

of in-situ and ex-situ GCs. Many recent papers have attempted to use kinematics

and/or chemistry to distinguish in-situ from ex-situ clusters in the MW (Massari

et al., 2017; Helmi et al., 2018; Koppelman et al., 2019; Massari et al., 2019). In

the simulation we know which clusters are in-situ and ex-situ, and can directly test

proposed methods of reconstructing these populations.

These simulations will also be useful for tracking galactic chemical enrichment. I

have implemented the runtime tracking of C, N, O, Mg, S, Ca, and Fe, but so far

have not investigated the chemical properties of galaxies systematically. In partic-

ular, the high spatial and temporal resolution (3–6 pc, 10–50 Myr) and the state
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of the art physics allows for physically accurate modeling of individual galaxies and

their evolution over time, which is a powerful tool for disentangling the various pro-

cesses that act on a galaxy’s chemical content (Vincenzo & Kobayashi, 2018; Torrey

et al., 2019). Do galaxies move parallel to the mean mass-metallicity relation (MZR)

with some intrinsic scatter, or is the scatter due to galaxies taking more complex

paths? Tracking quantities proposed as possible additional parameters in a funda-

mental mass-metallicity relation such as star formation rate or gas mass will show

exactly how these parameters shape the MZR. This will enable tests of proposed an-

alytic galaxy evolution models that make predictions regarding the mass-metallicity

relation (Lilly et al., 2013; Forbes et al., 2014). In addition, my simulations are the

first of their kind (to my knowledge) to include hypernovae. These did not have signif-

icant impacts on galactic structure or cluster properties, but their different chemical

yields may change the metallicity evolution of galaxies.

Finally, integrating my radius measurements into the dynamical evolution cal-

culations of the simulations would be a big step forward. Currently the disruption

calculations do not depend on cluster radius, and it is not modeled in the simulation.

There are several ways the radius could be implemented in the simulation, and I willl

sketch a few ideas to close out this section. First, radius could be directly modeled

in runtime. At cluster birth, a radius is assigned to the cluster by randomly drawing

from the observed cluster radius distribution at the appropriate mass. This could

be improved if future work on observed star cluster radii reveals a correlation with

local properties such as the surface density of the gas. Once the radius is assigned, it

would self-consistently evolve with time, accounting for both internal evolution and

any tidal shocks the cluster experiences.

Alternatively, the radius information could be included when post-processing sim-

ulation outputs. The simulations output the tidal tensor at each global timestep

(every 10-50 Myr), so the tidal evolution of each cluster can be reconstructed. Clus-
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ters could be assigned radii in the same way as they would be assigned during runtime,

but would then be evolved analytically using the tidal tensor of the cluster as directly

resolved in the simulation. One advantage of this method is that multiple realizations

of the cluster population could be created by redoing the initial random draws that

assign cluster radii. Analytically evolving the tidal evolution of this new realization is

much cheaper than rerunning the whole simulation. This would allow an exploration

of how the cluster population statistics are sensitive to stochasticity, but also how

individual clusters evolve differently with different assigned radii.
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APPENDIX A

Methods for Fitting Mass-Radius Relation

In the main text, we use the orthogonal fitting method described in sections 7 and

8 of Hogg et al. (2010) (hereafter H10), which we summarize here. In evaluating the

Gaussian likelihood of each data point given a linear relation (with parameters of slope

m and intercept b), we use the displacements and variances projected perpendicular

to the line being evaluated. The projected displacement is given by Equation 30 of

H10, and can also be written as:

∆i =
yi − (mxi + b)√

1 +m2
(A.1)

where in our case x is the log of the mass, y is the log of the effective radius, β = m,

and we can calculate b given β and our pivot point R4.

The projected variance is given by Equation 31 of H10. In our case, the mass and

radius errors are independent, so the off-diagonal terms of the covariance matrix are

zero, allowing us to simplify that expression:

σ2
i =

m2σ2
x,i + σ2

y,i

1 +m2
(A.2)

Then we add an intrinsic scatter σint orthogonal to the line to the data variance,
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giving the likelihood for a single data point of

Li =
1√

2π (σ2
i + σ2

int)
exp

(
− ∆2

i

2(σ2
i + σ2

int)

)
(A.3)

The total data likelihood is the product of this over all data points. In the main text,

we maximize this likelihood to produce final parameter values.

This method does not incorporate any selection effects. As these do exist in the

LEGUS sample, we implemented an additional method to attempt to incorporate

those selection effects. We use a hierarchical Bayesian model, following Kelly (2007).

Each cluster has its observed mass and radius (Mobs,i, Reff,i) with corresponding

unobserved true quantities (mi, ri). We use the same relation as the main text

(Equation 2.20), but define it using the unobserved true quantities rather than the

observed values:

r̂i(mi) = r4

(
mi

104M⊙

)β

(A.4)

such that the normalizing factor r4 is the underlying effective radius at 104M⊙. In

addition, we include an intrinsic lognormal scatter σint.

For a given cluster, our data likelihood takes the general form:

P (Reff,i,Mobs,i, ri,mi|r4, β, σint) =P (Reff,i|ri) (A.5)

× P (Mobs,i|mi)

× P (ri|mi, r4, β, σint)

× P (mi)

where the first two terms are the likelihoods of the observed values given the unob-

served true values (which we treat as independent), the third term is the mass-radius

relation, and the final term is the prior on the true mass. We model the radius
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distribution at a given mass as a lognormal distribution:

P (ri|mi, r4, β, σint) =
1

σint

√
2π

exp

[
−1

2

(
log ri − log r̂i(mi)

σint

)2
]

(A.6)

where log r̂i(mi) is from Equation 2.20. The normalizing factor here is important, as

it includes a variable of interest σint.

We treat the mass and radius measurement errors as independent lognormal vari-

ables, with a width equal to the symmetrized observational uncertainties:

P (Reff,i|ri) ∝ exp

[
−1

2

(
log ri − logReff,i

σReff,i,err

)2
]

(A.7)

P (Mobs,i|mi) ∝ exp

[
−1

2

(
logmi − logMobs,i

σMobs,i,err

)2
]

(A.8)

This allows us to analytically marginalize over the unobserved radius ri.

P (Reff,i|mi, r4, β, σint) =

∫
P (Reff,i|ri)P (ri|mi, r4, β, σint)dri

=
1√

2π
(
σ2
int + σ2

Reff,i,err

) (A.9)

× exp

[
−1

2

(logReff,i − log r̂i(mi))
2

σ2
int + σ2

Reff,i,err

]

We also need to include the selection effects. There are two key selection variables:

radius and V band absolute magnitude.

To prevent contamination from unresolved sources, LEGUS selects clusters by

examining the concentration index (CI), the magnitude difference between a 3 pixel

and 1 pixel apertures. A hard boundary is drawn: anything above this is a cluster,

anything below this is a star (Adamo et al., 2017). The V band absolute magnitude

cut is simple: selected clusters have absolute V band magnitude brighter than −6.

Unfortunately, this causes selection effects as a function of both mass and age, as
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dying massive stars go away, making clusters fade with age. To properly account for

this, we need to include both age and V band magnitude into our analysis. In what

follows we will use T, τ for observed and true ages, respectively, and V, ν for observed

and true V band absolute magnitudes.

To renormalize our likelihood function, we need to determine the likelihood of a

given cluster of a given true mass and age being selected:

Φi(mi, τi, r4, β, σint) =∫
f(Reff)f(V )P (Reff |mi, r4, β, σint)P (V |mi, τi)dReffdV (A.10)

where f(Reff), f(V ) are the selection functions. For V , this is a simple step function:

f(V ) =


1 for V < −6

0 for V ≥ −6

(A.11)

For radius, this selection function is more complicated. Adamo et al. (2017) made a

first attempt at this in the NGC 628c field, finding that clusters with effective radii

of 2 pc were entirely recovered, while those with 1 pc were recovered roughly 50% of

the time. For this test, we simply represent the selection probability as

f(Reff) = max

(
Reff

0.05 arcsec
, 1

)
(A.12)

where 0.05 arcsec is roughly 2 pc at the distance of NGC 628. This gives a 100%

selection at 2 pc and 50% selection at 1 pc. While this functional form is likely

inaccurate, quantifying the selection effects in more detail is beyond the scope of this

paper.

The final two terms in Equation A.10 are the likelihood of a given radius being

selected at that mass (given by Equation A.9) and the likelihood of observing a
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given V band magnitude given a cluster’s mass and age. We obtain these using the

Yggdrasil models matching those used in LEGUS (Zackrisson et al., 2011). We can

then represent the V band term as a normal distribution:

P (Vi|mi, τi) ∝ exp

[
−1

2

(
Vi − ν(mi, τi)

σV,err

)2
]

(A.13)

where ν(mi, τi) is the expected V band magnitude obtained from Yggdrasil, and σV,err

is the observed uncertainty in V band magnitude. Note that since this term is for

an arbitrary cluster with true mass m and true age τ , we use typical errors of 0.04

magnitudes.

We use this selection probability to renormalize the likelihood. Φi is calculated

separately for each cluster and used to renormalize that cluster’s likelihood. In addi-

tion, we need to incorporate τ into the likelihood as it enters the selection effects:

P (Reff,i,Mobs,i, Ti,mi, τi|r4, β, σint) = (A.14)

Φ−1
i (mi, τi, r4, β, σint) (A.15)

× P (Reff,i|mi, r4, β, σint) (A.16)

× P (Mobs,i|mi)P (Ti|τi)P (mi)P (τi) (A.17)

We treat the age in the same way we treat the mass and radius errors, as a lognormal

distribution with a width equal to the symmetrized observational error:

P (Ti|τi) ∝ exp

[
−1

2

(
log τi − log Ti

σT,err

)2
]

(A.18)

As this likelihood is for one cluster, the total likelihood is the product of the

likelihood for all clusters. We also use Bayes’ Theorem to turn this into posterior

207



likelihoods on our parameters:

P (r4, β, σint|Reff,i,Mobs,i,mi) ∝ P (r4)P (β)P (σint)

×
∏
i

P (Reff,i,Mobs,i,mi|r4, β, σint) (A.19)

We use flat priors on all parameters. The slope β is uniform between −1 and 1, the

normalization r4 is uniform between 0.01 and 100 pc, and the intrinsic scatter σ is

uniform between 0 and 1 dex.

We sample this posterior distribution using the emcee implementation of MCMC

(Foreman-Mackey et al., 2013). This allows us to easily marginalize over mi and τi

in postprocessing of the MCMC chain.

As this implementation requires evaluating the integral in Equation A.10 for each

cluster at each step of the MCMC chain, it is computationally expensive, and scales

with the number of clusters. We therefore tested this method using a random sample

of only 100 clusters. Figure A.1 shows the fit parameters for regular least squares,

our fiducial orthogonal least squares method, and several variations of this method

with different selection functions enabled.

This hierarchical Bayesian MCMCmodel produced larger error bars, but otherwise

the results are consistent with those of the orthogonal fit. Additionally, removing the

selection function terms from the fit does not change the result. Because of this,

we decided to not use the hierarchical Bayesian method and instead use the simpler

orthogonal fit described at the beginning of this appendix. Another reason to use

the orthogonal fit is that we do not know the true selection effects in LEGUS, which

would be needed to do a proper analysis of their impact. A full accounting of these

is beyond the scope of this paper, making the functional form we assumed for the

selection effects overly simplistic. We therefore choose to use the orthogonal fit as

our method of choice in this paper.
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Figure A.1 The mass-radius relation fitted by several methods for a random sample
of 100 clusters.
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APPENDIX B

Hydrodynamics in the ART code

When updating from the version of the ART code used in L18, we changed the

model of how internal energy is calculated in the presence of subgrid turbulence. The

hydro solver independently tracks total energy, thermal energy, and energy of unre-

solved subgrid turbulence. The thermal energy and subgrid turbulence are assumed

to evolve adiabatically (other than energy injection from sources such as stellar feed-

back). As these are calculated independently, there is no initial restriction for the

sum of thermal, kinetic, and turbulent energies to equal the total. As the adiabatic

assumption is not always correct for thermal energy (particularly in shocks), the new

version calculates the thermal energy as Eth = Etot − Ekinetic − Eturb. This energy

synchronization allows for shocks to transfer energy from kinetic to thermal, as should

happen. The adiabatic assumption is only used in cases where the gas is highly su-

personic, such that Etot ≈ Ekinetic. In this case, the subtraction would be susceptible

to numerical errors, so we revert to the adiabatic assumption. In the old version of

the code, which always relied on the adiabatic assumption, shocks were not treated

properly and energy that should have been transferred from kinetic to thermal was

simply lost. This is visualized in the top row of Figure B.1, where we show the phase

diagram of gas within the virial radius at z = 13.3 before stars have formed. The

hydrodynamic scheme of L18 follows what is expected for pure adiabatic compression,
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while the new scheme shows gas being heated by virial shocks.

While the newer version of the code is better physically motivated, it significantly

changed the structure of modeled galaxies. We find large differences in temperature

distributions of the gas. The bottom panel of Figure B.1 shows the phase diagram of

gas within the virial radius at z = 1.5. Here the run with the updated hydrodynamics

has significantly more hot, low-density gas in the halo. This hot gas prevented cold

gas from accreting onto the disc, effectively reducing star formation. We show this

star formation in Figure B.2 using test runs that vary both the hydro and feedback

schemes. We test the stellar feedback model presented in this paper as well as the

model used by L18. All runs use fboost = 5, yet runs with the new hydro scheme

produce dramatically lower star formation rates.
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Figure B.1 Heatmap showing the temperature and density of gas within the virial
radius of the largest halo. In each panel, the shading shows the volume of gas at the
given temperature and density. The left column shows a run using the hydrodynamic
scheme of L18, ϵff = 100%, fboost = 5, and fHN,0 = 0, while the right column shows
the run with the energy-based hydrodynamics scheme that is the default in ART 2.0,
ϵff = 100%, fboost = 1, and fHN,0 = 0. The top row show these runs at z = 13.3 before
any stars formed, while the bottom row shows the runs at z = 1.5. In the top panels,
the red line shows the expected behavior for pure adiabatic compression. The code
version of L18 exactly follows this line, while the updated version has extra heating
from proper treatment of shocks.
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Figure B.2 The star formation history for galaxies in our test runs with varying
hydrodynamics and feedback. We compare the feedback model of L18 to the feedback
model presented in this paper. All runs use ϵff = 100%, fboost = 5, and fHN,0 = 0.
We compare to the UniverseMachine model (Behroozi et al., 2019). The change
in hydrodynamics is solely responsible for the change in star formation rate, while
our updates to feedback have little effect.
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