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ABSTRACT

Distributed energy resources (DERs), in particular renewable resources, are witnessing
substantial technology improvements and cost reductions. Large-scale integration of
DERs into electric power systems is therefore becoming technically and economically
viable. Various critical challenges must be addressed, however, to achieve a successful
transition to a clean energy future. Meanwhile, safety, stability, and optimality are of
paramount importance for power systems.

The uncertainties introduced by renewable DERs, such as solar photovoltaic (PV) and
wind generation, require careful treatments for achieving safe system operation. In the
first part of this dissertation, theoretical results and efficient algorithms are developed
to analyze the impacts of uncertainties and external disturbances on system dynamics.
First, theoretical results for characterizing the second-order trajectory sensitivities for gen-
eral nonlinear hybrid systems are established. Then, rigorous bounds are developed to
quantify all possible system behaviors for general nonlinear systems, by constructing the
second-order trajectory sensitivities and exploiting the mathematical tool of the logarith-
mic norm. Efficient algorithms are proposed for computing the reach-set, which enables
safety verification by checking if the reach-set intersects any unsafe region.

Furthermore, DERs are typically connected to power systems through inverter in-
terfaces, whose dynamics are dominated by the enforced control law. This dissertation
proposes a control scheme for inverters that can achieve autonomous switch between
grid-connected operation and islanded operation. A detailed dynamic model for inverter-
based power systems is presented. Discussions on system behavior at steady state and
system stability are provided. It is recognized that the fast dynamics introduced by
inverter-based resources add another layer of complexity for ensuring system safety. In
this dissertation, a barrier-function-based method is extended to construct distributed
control laws for inverters in microgrids, which can explicitly certify safety constraints for
the overall system. Algorithmic constructions of these control laws are proposed using
sum-of-squares optimization.
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With the critical issues of safety and stability handled, the second part of this dis-
sertation explores opportunities offered by renewable DERs. First, the collective reactive
power capability of multiple DERs such as solar PVs is exploited to balance voltages across
the distribution network. Distributed and decentralized Steinmetz-based controllers are
proposed, and the interactions and convergence of the controllers are analyzed. Rigorous
convergence guarantees are established for the overall system using the Banach fixed-
point theory. The convergence guarantee is essential to ensure robustness of the proposed
control algorithms in realistic settings where parameters are uncertain, disturbances are
prevalent, and control and measurement signals are prone to delays.

Second, the local energy supply from DERs enables off-grid energy systems, such as
renewable-only microgrids and community-based energy hub systems that incorporate
multiple energy carriers. Designing the system to achieve a balanced trade-off between
economic cost and operational reliability is increasingly important. In this dissertation, the
design problem is formulated as a stochastic chance-constrained optimization to explicitly
address the uncertainty induced by renewable resources and load. An original cluster-
based multi-policy formulation is proposed and incorporated in the chance-constrained
formulation, which achieves much more flexible storage dispatches. A novel iterative
optimization-validation algorithm is devised to efficiently solve the design problem,
where a scalar auxiliary parameter is dynamically adjusted for tuning the robustness
level. To achieve reliable and economic real-time operation, a two-level control strategy is
proposed, and several energy hubs are interconnected to exploit energy sharing capability
through electrical and gas networks.

xv



CHAPTER 1

Introduction

Increasing electricity demand together with the retirement of coal-fired power plants is
forcing power systems to operate ever closer to their limits. At the same time, distributed
energy resources (DERs), in particular renewable resources, are witnessing substantial
technology improvements and cost reductions [6]. Large-scale integration of DERs into
power systems is therefore becoming technically and economically viable. This disserta-
tion addresses the critical issues of safety and stability of power systems that integrate
substantial renewable DERs. Furthermore, this dissertation also explores opportunities
enabled by DERs, such as providing grid services, supplying local clean energy, and form-
ing multi-energy systems. The unifying theme throughout this dissertation is to manage
the uncertainties introduced by renewable DERs. Section 1.1 provides the background
on the emerging DERs in power systems, which motivates the investigation of challenges
arising from integrating DERs to the grid. In Section 1.2, the various technical challenges
and research gaps of integrating DERs, in particular in the presence of uncertainties, are
discussed. Section 1.3 explains the organization and structure of this dissertation and
provides the outline to the remaining chapters.

1.1 Background and Motivation

Conventional power systems are supplied by large centralized power plants, typically
utilizing fossil fuels such as coal and natural gas. However, the accompanying impacts on
the environment and public health caused by fossil-based generation have drawn growing
concerns. Much attention and efforts have been shifted to renewable energy resources [7],
including wind power, solar photovoltaics (PVs), solar thermal power, hydropower, and
bio-energy. Among these emerging renewable energy resources, wind and solar PV have
been proven to be both cost-efficient and accessible. Figure 1.1 shows the significant
decline of average installation cost and the increase of deployment of solar PV systems in
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Figure 1.1: Price decline and deployment growth of solar PV systems in the U.S. [1]. The
yellow curve shows the price decline, corresponding to the axis on the right. The blue
bars demonstrate the deployment growth, corresponding to the axis on the left.

the U.S. in recent years.
The fundamental operation principle of power systems is to balance the generation

and load in real time. In conventional power systems, the power output from dispatchable
generations is controlled by the power system operators to follow the varying load. The
key challenges with wind and solar resources are their intrinsic variability and uncertainty.
Variability refers to the nature that the maximum available power from wind turbines or
solar PVs is changing from time to time. Uncertainty means that we cannot predict
with accuracy of the maximum available power. Figure 1.2 demonstrates the variability
and uncertainty of a wind plant and a solar plant over 48 hours. It is clear that such
renewable generations are non-dispatchable, meaning that they are not able to adjust
their power output according to the request from power system operators. Therefore,
the increasing integration of renewable resources at the cost of replacing conventional
dispatchable generations leads to critical challenges for real-time power system operation.
Furthermore, the uncertainty from renewable resources also has profound impacts on the
long-term design of power systems, which demands efficient approaches to explicitly
manage uncertainty.

Figure 1.3 demonstrates the variability of solar generation in much higher time reso-
lution. The variation of renewable generation at such timescale would influence power
system dynamics. It is important that we carefully analyze and quantify the impacts, and
design control schemes to ensure system safety and stability.
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Figure 1.2: Examples of the variability and uncertainty of a wind plant and a solar plant [2].

Figure 1.3: Normalized power generation at a 5kW rooftop PV in Florida: Most variable
day (left) and 10-min period (right) over 1-year [3].

Traditionally, power systems are dominated by large synchronous generators whose
electro-mechanical dynamics are well-understood. In contrast, DERs are usually con-
nected to power systems through power electronics, whose dynamics are dominated by
the enforced control law. Representative configurations of wind turbine systems and
solar PV systems are displayed in Fig. 1.4 and Fig. 1.5, respectively. As more and more
inverter-based DERs replace synchronous generations, the dynamic characteristics of
power systems will inevitably change. For example, the convenient timescale separation
between frequency and voltage dynamics will vanish. The long-standing assumption of
neglecting transmission line dynamics in power system studies may no longer hold for
inverter-based systems. It is important to investigate the dynamics and stability charac-
teristics of such inverter-based power systems, to fully appreciate the impacts of DERs
on power systems. Moreover, such investigations form a solid basis for constructing
appropriate control schemes for DERs that ensure system safety and stability.
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Figure 1.4: Representative configuration of wind generation systems [4].

Figure 1.5: Representative configuration of solar PV systems [4].

Unlike large synchronous generators, DERs are typically small in capacity and are
usually connected to power systems in a decentralized manner. Figure 1.6 demonstrates
the evolution of power generation in Denmark from the centralized generation in 1985
to the decentralized generation in 2015, when more than 50% of the energy is supplied
by renewable resources. In future DER-based smart grids, there can easily be hundreds
of millions of control and actuation points. The current centralized control schemes are
not able to handle and process the data at such scale in real time. In practical scenarios,
communication between DERs may be expensive and limited, and subject to time delays.
Therefore, innovative distributed control schemes should be designed for coordinating
DERs, which utilize communication and information infrastructures wisely. On the other
hand, the decentralized deployment of DERs brings about valuable opportunities to
provide grid services, offer local clean energy supply, and enable interconnections between
multiple energy carriers to supply reliable energy in rural areas.

1.2 Research Gaps and Research Goals

Power systems are complex cyber-physical systems. The physical power system, con-
sisting of electricity generation, transmission system, distribution system, and load, is
supported by cyberinfrastructures in the form of energy management systems that pro-
vide monitoring and control functionality. Based on the characteristic timescales, analysis
of power systems can be categorized into three main types,
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Figure 1.6: Evolution of power generation in Denmark (left: centralized electric power
infrastructure in 1985, right: decentralized electric power infrastructure in 2015) [5].

• Dynamic analysis: modeled by ordinary differential equation (ODE), differential-
algebraic equation (DAE), or differential-algebraic impulsive switched (DAIS) model.

• Static and quasi-static analysis: modeled by power flow equations.

• Long-term design and planning: modeled by optimization and decision making
problems.

The challenges of the grid-integration of DERs need to be approached and addressed from
all three timescales to guarantee a comprehensive consideration on ensuring the safety,
stability, and optimality of power systems.

1.2.1 Safety Verification and Safety Synthesis

Many physical systems need to abide by a set of safety constraints established by engineers
for the purpose of ensuring the safe operation of the system [8,9]. A safety-critical system
refers to a system for which the violation of safety constraints will lead to serious economic
loss or personal casualty [10]. Power system falls into such category considering the loss
resulting from a large-scale blackout and failure to supply critical loads such as hospital
and process plant. To assist the discussion that follows, we give the definition of safety
based on the concept of reach-set.
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Definition 1. Reach-set is the union of all states in the state space that can be visited by trajectories
of a dynamic system that are:

• originating from a set consisting of uncertain initial conditions.

• under the influence of admissible parameter uncertainties and external disturbances.

Definition 2. A system is safe if there is no intersection of the reach-set and any unsafe region,
where the unsafe region is defined by the safety constraints established by system engineers.

Given the reach-set, system safety can be easily verified by checking set intersection of
the reach-set and the unsafe region. However, in general it is difficult, if not impossible, to
compute the exact reach-set for a nonlinear system [11]. Much research has been devoted
to computing over-approximations of the reach-set. A Taylor flowpipe model is used
in [12] to over-approximate the reach-set of hybrid systems for a set of initial conditions.
Other approaches to reach-set computation include abstraction-based methods [13], level-
set methods [14], and differential inequalities [15]. Reachability analysis of nonlinear
differential-algebraic systems is studied in [16] using a conservative linearization method,
where zonotopes are used to represent the reach-set. A common issue across all these
methods is conservativeness, which is partially because of the accumulation of error over
time, i.e., the wrapping effect. Computational burden is another issue when considering
high-dimensional applications such as power systems.

In power systems, safety verification is conducted through the so-called dynamic
security assessment [17], which involves repeated time-domain simulations of the power
system models for a set of uncertain parameters and initial conditions. For the information
to be valuable, such assessment needs to be completed in a timely manner at the scale
of minutes [18]. However, computational power restricts the number of simulations to
be performed therefore limiting the range of scenarios to be analyzed. Formal analysis
methods that are computationally efficient are needed to cater to the large scale and
nonlinearity of power systems.

In the context of reach-set computation, the safety verification problem boils down
to efficiently quantifying the impacts of uncertainties and disturbances on power system
dynamics. Trajectory approximation is an efficient approach that can be used to approx-
imate perturbed trajectories associated with uncertain parameters and initial conditions,
thus avoiding repeated simulations [19]. However, there is no guarantee that the com-
puted approximation is an enclosure of the true reach-set. In Chapter 3, we analytically
quantify the error inherent in trajectory approximation using the second-order trajectory
sensitivity as developed in Chapter 2. To quantify the impacts of external disturbances
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on the excursion of system trajectories, the mathematical tool of the logarithmic norm is
employed to improve and extend an existing result to DAE systems. Efficient algorithms
are proposed for computing the reach-set, which enables safety verification by checking
if the reach-set intersects any unsafe region.

In addition to verifying system safety by developing efficient and rigorous meth-
ods to compute the reach-set, we need to synthesize control schemes to guarantee by-
construction the satisfaction of safety constraints. One promising direction is based on
the concept of positively invariant set [20], which refers to a set that is forward invariant,
i.e., if the initial state is within the set, the system trajectory will remain in the set for all
future time. The control community has developed the methods of barrier certificates [21]
and control barrier functions [22] to certify safety by guaranteeing the forward invariance
of a set via Lyapunov-like conditions. The idea of a barrier certificate is to construct a
continuously differentiable barrier function that is non-negative in the safe set, negative
in the unsafe set, while ensuring at the zero-level set, the value of the barrier function
is increasing along the system trajectories. Control barrier function extends the previous
formulation to include control inputs, as inspired by control Lyapunov function. In Chap-
ter 5, a method based on control barrier functions is extended to a distributed scheme to
construct distributed control laws for inverters in microgrids.

1.2.2 Dynamics and Stability of Inverter-Based Power Systems

Ensuring stability is vital for power systems in order to avoid massive disruption arising
from large-scale blackouts. In 2004, the IEEE/CIGRE Joint Task Force on Stability Terms
and Definitions provided a physically motivated definition of power system stability [23],
which conforms to the precise system-theoretic mathematical definitions.

Definition 3. Power system stability is the ability of an electric power system, for a given initial
operating condition, to regain a state of operating equilibrium after being subjected to a physical
disturbance, with most system variables bounded so that practically the entire system remains
intact.

In particular, to facilitate identifying key contributors to instability and devising coun-
termeasures, power system stability is classified into three main categories which encom-
pass most practical instability scenarios [23, 24].

• Angle Stability: Rotor angle stability refers to the ability of synchronous machines
of an interconnected power system to remain in synchronism after being subjected
to a disturbance.
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• Frequency Stability: Frequency stability refers to the ability of a power system to
maintain steady frequency following a severe system upset resulting in a significant
imbalance between generation and load.

• Voltage Stability: Voltage stability refers to the ability of a power system to maintain
steady voltages at all buses in the system after being subjected to a disturbance from
a given initial operating condition.

However, the above classification is originated from conventional power systems that
are dominated by large synchronous generators, where under most scenarios the dy-
namic behaviors show convenient timescale separation for angle, frequency and volt-
age issues [7]. With the increasing penetration of inverter-based resources replacing
synchronous generations, the dynamic characteristics of power systems will inevitably
change. To incorporate the effects of fast-response power electronic devices, a Task Force
was established in 2016 to revisit and extend the stability classifications. Two new cat-
egories were added concerning the faster dynamics introduced by power electronic de-
vices [25].

• Converter-Driven Stability: Slow- and fast-interactions are differentiated based on
the frequencies of the observed phenomena.

– Slow-Interaction (typically, less than 10 Hz): Slow dynamic interactions of the
control systems of power electronic-based devices with slow-response compo-
nents of the power system such as the electro-mechanical dynamics of syn-
chronous generators and some generator controllers.

– Fast-Interaction (typically, tens to hundreds of Hz, and possibly into kHz):
Fast dynamic interactions of the control systems of power electronic-based sys-
tems with fast-response components of the power system such as the transmis-
sion network, the stator dynamics of synchronous generators, or other power
electronic-based devices.

• Resonance stability: The resonance, in general, occurs when energy exchange takes
place periodically in an oscillatory manner. These oscillations grow in case of in-
sufficient dissipation of energy in the flow path and are manifested (in electrical
power systems) in magnification of voltage/current/torque magnitudes. When these
magnitudes exceed specified thresholds, it is said that a resonance instability has
occurred.

– Torsional: Due to a resonance between series compensation and the mechanical
torsional frequencies of the turbine-generator shaft.
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– Electrical: Due to a resonance between series compensation and the electrical
characteristics of the generator.

Investigations, at a fundamental level, of the structural differences between the dynam-
ics of conventional power systems and inverter-dominated power systems are needed.
There is an extensive literature in the power electronic community which focuses on the
device-level analysis of inverters [26, 27]. At the system level, however, much debating
still needs answers regarding how inverter-based resources should interact with the rest
of the power system. It is still inconclusive about what kinds and levels of system services
inverter-based resources should provide and what control standards should be enforced.

Despite the various terminologies for categorizing control schemes for inverter-based
resources, two common modes are the grid-following mode [28] and the grid-forming
mode [29]. In the grid-following mode, the inverter aims to supply desired active and
reactive power, while tracking the terminal voltage set by the grid. The tracking is typically
achieved through a phase-locked loop [30]. Grid-following inverters can be viewed as a
current source, that is, the inverter follows network voltage and forms current to supply
desired power. Grid-forming inverters, on the other hand, establish terminal voltage
according to voltage magnitude and frequency set-points. Various techniques have been
proposed for grid-forming control, among which the most widely accepted method is
the droop-based control [31]. Grid-forming inverters can be viewed as a voltage source.
Grid-following has been the current practice since renewable resources are largely variable
and non-dispatchable unless paired with battery devices. However, with the increasing
replacement of synchronous generators, it is foreseeable that inverter-based resources will
be responsible for providing grid services in the near future.

In Chapter 4, a novel inverter control scheme is proposed which can achieve au-
tonomous mode switching between grid-following and grid-forming. Modeling and
analysis of inverter-based power systems are presented.

1.2.3 Opportunities Enabled by Distributed Energy Resources

Traditionally, distribution systems have been passive radial networks where energy flows
in a single direction from the substation to the loads. The operation of distribution
systems is currently based on centralized control schemes realized through Supervisory
Control and Data Acquisition (SCADA) system and Distribution Management System
(DMS) [32]. The increasing penetration of DERs, however, is transforming distribution
systems into Active Distribution Networks (ADN) [33]. The local supply from DERs
should be harnessed and the decentralized deployment of a large number of DERs can be
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exploited to collectively provide grid services.
One practical issue faced by distribution systems is the three-phase voltage unbal-

ance, primarily as a consequence of structural and operational factors [34]. Voltage un-
balance may cause induction motor overheating, transformer saturation, and increased
power losses [35, 36]. Much research has been devoted to phase balancing of distribution
systems, including system reconfiguration [37], static Var compensation [38], and three-
phase optimal power flow algorithms [39]. In Chapter 6, distributed and decentralized
Steinmetz-based controllers are proposed to balance voltages across the distribution net-
work, by exploiting the collective capability of multiple DERs. Convergence guarantees
are provided by analyzing the interactions between multiple controllers.

The various challenges of integrating renewable DERs are accompanied by great op-
portunities for revolutionizing power systems. Microgrids, i.e., small-scale power sys-
tems, offer a promising opportunity for achieving 100% of renewable generation. As
DER-based microgrid systems evolve, they will likely incorporate multiple energy carri-
ers, typically electricity, heat, natural gas, and hydrogen, along with the respective energy
conversion processes. We refer to such multi-energy systems as energy hubs [40]. It is
clear that energy hubs offer the potential for highly versatile operating strategies, though
depending on careful hub composition and component sizing. Sufficient capacity must
be available within the off-grid system to supply loads securely, while excessive capacity
should be avoided to minimize the overall cost. This implies that in rare cases where
renewable generation is extremely limited, loads with low priority are subject to load
shedding, as a last resort. Designing microgrids and energy hubs to achieve a balanced
trade-off between equipment cost and operational flexibility is becoming increasingly
important.

The problems of optimal capacity design and operation of microgrids and energy hubs
have been gaining attention due to the potential in hosting a high level of renewable DERs.
The key challenge in approaching the design and operation problem lies in the stochasticity
of renewable resources. In the design phase, all possible renewable generation scenarios
need to be taken into account, in order to achieve a proper trade-off between system
reliability and cost efficiency. In the operation phase, appropriate control strategies need
to be devised to respond to the stochasticity in renewable generation, in order to achieve
reliable and economic operation.

Most literature handles stochastic variables using Monte Carlo simulation and heuristic
algorithms, which cannot provide probability guarantees in a tractable way. Recently there
has been substantial interest in chance-constrained formulations. Chance-constrained
problems are generally difficult to solve analytically, except for rare cases where the un-
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certain variables are uniformly or normally distributed [41]. However, under certain light
assumptions, randomized optimization methods [42] can solve chance-constrained prob-
lems and provide solutions with a priori probability guarantees and appealing tractability
properties. Chapters 7 and 8 exploit the chance-constrained formulation and explicitly
deal with the stochasticity in renewable resources and load.

1.3 Dissertation Outline

The organization style of this dissertation is that each chapter is self-contained and the
mathematical notations and definitions are defined in each chapter. The remainder of this
dissertation is organized as follows.

Chapters 2 to 5 constitute the first part of this dissertation, which focuses on address-
ing the critical issues of power system safety and stability with the grid-integration of
DERs. Specifically, Chapters 2 and 3 develop theoretical results and efficient algorithms
to analyze the impacts of uncertainties and external disturbances on power system dynam-
ics. The proposed reach-set computation algorithm enables efficient safety verification.
Chapters 4 and 5 investigate the dynamics and stability characteristics of inverter-based
power systems. Two control schemes are proposed for inverters. The controller pre-
sented in Chapter 4 can achieve autonomous switch between grid-connected operation
and islanded operation. The controller presented in Chapter 5 can explicitly certify safety
constraints on voltage magnitude during transients. Both control schemes are distributed,
meaning that no centralized coordination is needed.

With the critical issues of safety and stability handled, the second part of this disser-
tation consists of Chapters 6 to 8, which focuses on exploring opportunities offered by
renewable DERs. Chapter 6 exploits the collective reactive power capability of multiple
DERs to balance voltages across the distribution network, while providing rigorous con-
vergence guarantees for the proposed distributed controllers. Chapters 7 and 8 exploit
the local energy supply from DERs to enable the design of renewable-only microgrids and
energy hub systems that incorporate multiple energy carriers. Managing the uncertainty
from renewable resources is the key consideration of these chapters.

Finally, Chapter 9 concludes this dissertation by summarizing the key contributions
and providing future perspectives.
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CHAPTER 2

Theoretical Development of the Second-Order
Trajectory Sensitivity for Hybrid Systems

2.1 Chapter Introduction

Hybrid dynamical systems refer to a class of systems where continuous dynamics and
discrete events intrinsically interact [43]. Such systems may exhibit complicated and
rich forms of behaviors. Examples of hybrid systems include power systems [44], motor
drives [45], temperature control systems [46] and robots [47]. Considering the potentially
complex nonlinear non-smooth behavior of such systems, opportunities for formal anal-
ysis are limited. Although Lyapunov-like methods are available for analyzing stability
and boundedness of certain hybrid systems [43,48,49], time-domain simulation is widely
adopted for evaluating hybrid system behavior [50]. The disadvantage of such a technique
is that one time-domain simulation only provides information for a single scenario. Slight
perturbations of system parameters or initial conditions require repeated time-domain
simulations. For large-scale system such as power systems, repetitive simulations are
computationally intensive.

Trajectory sensitivity analysis provides a means of avoiding such computational chal-
lenges. Instead of performing multiple simulations, it approximates the numerous per-
turbed trajectories using trajectory sensitivities that can be obtained through a single
simulation of the nominal case. This technique linearizes the system around the nomi-
nal trajectory, establishing an (approximate) relationship between variations in the initial
conditions and/or system parameters and the corresponding perturbed trajectories. Ref-
erence [51] has derived the first-order trajectory sensitivities for general hybrid dynamical
systems that are described via a differential-algebraic-discrete model. This provides an
important extension to the analysis of continuous models [52–56]. A modification for
sensitivity-based trajectory approximation is presented in [57] for improving accuracy in
the vicinity of the stability boundary. The computational burden grows linearly with the
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number of initial conditions and/or uncertain parameters of interest. Recent work [58]
developed a discrete adjoint sensitivity approach which requires a fixed computational
effort that is independent of the number of uncertain variables.

First-order trajectory sensitivity analysis offers only limited accuracy in situations
where higher-order dynamics become non-negligible. To improve the accuracy of trajec-
tory approximation in such situations, second-order trajectory sensitivities can be consid-
ered. Second-order trajectory sensitivities for continuous systems are derived in [59–61].
The objective of this chapter is to fully characterize second-order sensitivities with respect
to parameters and initial conditions for general hybrid systems. The chapter builds on the
results of [51] and extends the results of [62] by including algebraic variables in the system
model. The key contribution of this chapter is the development of the jump conditions
describing the evolution of second-order sensitivities at discrete (switching and state reset)
events. For completeness, the differential-algebraic equation (DAE) model that describes
second-order sensitivities for continuous dynamics is derived and compared with [60].
The jump conditions at discrete events and the DAE model for smooth dynamics together
enable second-order trajectory sensitivity analysis of hybrid dynamical systems.

Trajectory sensitivity analysis underpins numerous applications, including quantify-
ing the impact of uncertainty on dynamical systems [19, 60, 63], model predictive control
and tracking control [64–67], design optimization [68–70], and power system stability
assessment and enhancement [71–77]. The gradient information provided by trajectory
sensitivities has been used in parameter estimation and boundary value problems [78–80].
The results presented in this chapter form the basis for extending applications to incorpo-
rate second-order trajectory sensitivities.

This chapter is organized as follows: Section 2.2 presents a general hybrid system
model. An overview of first-order trajectory sensitivity analysis is given in Section 2.3,
along with the calculation of sensitivities for both continuous dynamics and discrete
events. Section 2.4 derives the second-order sensitivities away from events and provides
a comparison with previous work. The jump conditions describing second-order sen-
sitivities at discrete events are established in Section 2.5. Trajectory approximation is
introduced in Section 2.6 and a case study is presented in Section 2.7. Section 2.8 provides
conclusions.

2.2 Mathematical Models

Hybrid dynamical systems feature comprehensive interactions between smooth dynamics
and discrete events. To fully capture this intrinsic characteristic, a differential-algebraic
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impulsive switched (DAIS) model [19] has been adopted:

ẋ = f (x, y) (2.2.1a)

0m = g(x, y) ,

g(x, y), s(x, y) < 0

g(x, y), s(x, y) > 0
(2.2.1b)

x+ = h(x−, y−), s(x, y) = 0 (2.2.1c)

where x ∈ Rn are the dynamic states, y ∈ Rm are the algebraic states, f : Rn+m
→ Rn,

g : Rn+m
→ Rm, h : Rn+m

→ Rn, s : Rn+m
→ R, and 0m is the m-length vector of zeros.

The differential equations (2.2.1a) govern the continuous behavior of the system, under
the influence of the vector field f . The algebraic equations (2.2.1b) capture switching events
in the system. In particular, g is composed of the set of equations g when the switching
function s(x, y) is negative and the equations g when s(x, y) is positive. The scalar equation
s(x, y) = 0 defines the switching hypersurface, which is denoted by S , {(x, y) : s(x, y) =

0}. When s = 0, the system trajectory encounters the switching hypersurface and a
switching event is triggered. State reset events are described by equations (2.2.1c), where
the superscripts “−” and “+” indicate the time instants just prior to and just after the
event triggering time, respectively. Reset events imply a step change in the state variables
x. Based on the model (2.2.1b)-(2.2.1c), a switching event and a reset event are triggered
simultaneously when s = 0. The extension to multiple separate switching and reset events
is straightforward [19].

To incorporate parameters λ into trajectory sensitivity analysis, the dynamic states x
can be augmented by λ through the introduction of trivial differential equations λ̇ = 0.
In this way, parameters of interest can be included in the augmented initial conditions x0

rather than explicitly introducing them into the DAIS model.
Let τ be the junction time when a discrete event is triggered. Define τ− and τ+ to be the

instant just prior to and just after τ, respectively. The intersection point (x(τ), y(τ)) ∈ S is
referred to as the junction point. Based on the DAIS model, away from the junction time
τ, system dynamics are governed by the differential-algebraic equation (DAE) model:

ẋ = f (x, y) (2.2.2a)

0m = g(x, y), (2.2.2b)

where the algebraic equations g are determined by the triggering conditions.
Several important assumptions underpin trajectory sensitivity analysis. From the

Implicit Function Theorem [81], if the Jacobian matrix ∂g/∂y is nonsingular then there
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exists a unique (though possibly not explicit) function ϕ such that y = ϕ(x). Substituting
this function into equation (2.2.1a) gives ẋ = f (x, y) = f (x, ϕ(x)).

Assumption 1. The algebraic Jacobian matrix ∂g/∂y is nonsingular along system trajectories.

Other common assumptions for hybrid system analysis include:

Assumption 2. System trajectories must be transversal to the triggering hypersurface S.

Assumption 3. The triggering function s(x, y) has a unique normal at points that lie on the
triggering hypersurface S.

Assumption 4. At a junction point (x(τ), y(τ)) ∈ S, s(x(τ−), y(τ−)) × s(x(τ+), y(τ+)) < 0.

Assumption 2 ensures that trajectories cannot be tangential to the hypersurface S and
so avoids situations where the event triggering timeτ is infinitely sensitive to perturbations
in initial conditions and/or parameters. Assumption 3 eliminates degeneracies in the
triggering function. Assumption 4 eliminates switching deadlock [82]. Further details
can be found in [51, 83].

Define the system trajectory (also referred to as the flow):

x(t) = φ(x0, t) (2.2.3a)

y(t) = ψ(x0, t). (2.2.3b)

The corresponding initial conditions are given by:

x(t0) = φ(x0, t0) = x0 (2.2.4a)

y(t0) = ψ(x0, t0) = y0. (2.2.4b)

Note that the system flow does not explicitly depend on y0. This is because y0 is implicitly
related to x0 through g(x0, y0) = 0.

2.3 First-Order Trajectory Sensitivity

This section introduces the concept of first-order trajectory sensitivities and summarizes
their behavior during continuous dynamics and at discrete events.
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2.3.1 Trajectory Sensitivity Analysis

Trajectory sensitivity analysis quantifies the change in the system flow when initial con-
ditions and/or parameters are perturbed from their nominal values. Since parameters are
incorporated into the dynamic states x, analyzing the sensitivity of the flow with respect to
the augmented initial conditions x0 will fully cover both initial conditions and parameters.

Taylor series expansion of the system flow (2.2.3) yields:

φi(x0 + ∆x0, t) = φi(x0, t) +
∂φi(x0, t)
∂x0

∆x0 +
1
2

∆xᵀ0
∂2φi(x0, t)
∂x2

0

∆x0 + εφi (x0, t,∆x0), (2.3.1a)

ψ j(x0 + ∆x0, t) = ψ j(x0, t) +
∂ψ j(x0, t)
∂x0

∆x0 +
1
2

∆xᵀ0
∂2ψ j(x0, t)

∂x2
0

∆x0 + εψj (x0, t,∆x0), (2.3.1b)

for i = 1, ...,n and j = 1, ...,m. Keeping only the first-order terms of the Taylor series yields:

∆x(t) = φ(x0 + ∆x0, t) − φ(x0, t)

≈
∂φ(x0, t)
∂x0

∆x0 =
∂x(t)
∂x0

∆x0 , xx0(t)∆x0 (2.3.2a)

∆y(t) = ψ(x0 + ∆x0, t) − ψ(x0, t)

≈
∂ψ(x0, t)
∂x0

∆x0 =
∂y(t)
∂x0

∆x0 , yx0(t)∆x0, (2.3.2b)

where xx0(t) and yx0(t) are the first-order trajectory sensitivities. Hence, equation (2.3.2)
gives the first-order approximation for the change in the flow resulting from small per-
turbations ∆x0.

2.3.2 Computation of First-Order Sensitivities

The computation of first-order trajectory sensitivities for hybrid dynamical systems has
been fully described in [51]. A summary of the main results is provided for completeness.

Over regions of smooth behavior between events, the system is governed by the DAE
model (2.2.2). Taking the derivative of equations (2.2.2a) and (2.2.2b) with respect to
x0 gives the DAE model that describes the corresponding evolution of the first-order
sensitivities:

ẋx0 = fx(t)xx0 + fy(t)yx0 (2.3.3a)

0m×n = gx(t)xx0 + gy(t)yx0 , (2.3.3b)
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where 0m×n denotes the (m×n)-matrix of zeros, and fx, fy, gx, gy denote ∂ f/∂x, ∂ f/∂y, ∂g/∂x,
∂g/∂y, respectively. This partial derivative notation will be used throughout the chapter.
Note that these matrices are evaluated along trajectories and hence are time-varying.

The initial condition for xx0 is given by xx0(t0) = In, where In is the n-dimensional
identity matrix. The initial condition yx0(t0) follows from equation (2.3.3b) and is given
by:

yx0(t0) = −gy(t0)−1gx(t0). (2.3.4)

At the instant when a discrete event is triggered, the jump conditions for first-order
trajectory sensitivities are given by [51]:

xx0(τ
+) = h̃xxx0(τ

−) −
(

f +
− h̃x f −

)
τx0 , (2.3.5)

where h̃x, τx0 , f +, and f − are given by:

h̃x =
(
hx − hy(gy)−1gx

)∣∣∣
τ−

(2.3.6)

τx0 = −

(
sx − sy(gy)−1gx

)∣∣∣
τ−

xx0(τ
−)(

sx − sy(gy)−1gx

)∣∣∣
τ−

f −
(2.3.7)

f + , f
(
x(τ+), y(τ+)

)
(2.3.8)

f − , f
(
x(τ−), y(τ−)

)
, (2.3.9)

and τx0 ,
∂τ
∂x0

represents the dependence of the junction time τ on the initial condition x0.
It describes the variation of τ that results from a small perturbation in x0. A graphical in-
terpretation of equation (2.3.5) is provided in Subsection 2.5.4, where the jump conditions
for first- and second-order sensitivities are compared. After xx0(τ

+) has been computed,
yx0(τ

+) is given by:
yx0(τ

+) = −
(
g−1

y gx

)∣∣∣
τ+xx0(τ

+). (2.3.10)

In summary, first-order sensitivities are computed by firstly initializing xx0(t0) and
yx0(t0), then numerically integrating equation (2.3.3) along with the system trajectory.
If the trajectory encounters a switching hypersurface, jump conditions (2.3.5), (2.3.10)
determine the corresponding change in xx0 , yx0 . The post-event sensitivities xx0(τ

+), yx0(τ
+)

then serve as initial conditions for equation (2.3.3), which is integrated over the subsequent
section of smooth behavior.
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2.4 Second-Order Sensitivity Away from Events

Like any linearization, first-order trajectory sensitivities may lose accuracy when higher-
order nonlinearities become dominant. In such cases, accuracy can be improved by
considering the second-order trajectory sensitivities in equation (2.3.1), i.e., the terms,

∂2φi(x0, t)
∂x2

0

,
∂2xi(t)
∂x2

0

, ∀i = 1, ...,n, (2.4.1a)

∂2ψ j(x0, t)

∂x2
0

,
∂2y j(t)

∂x2
0

, ∀ j = 1, ...,m. (2.4.1b)

This section derives the DAE model that governs the evolution of second-order sensitivi-
ties when the underlying dynamics are smooth. The behavior of second-order sensitivities
at discrete events is derived in Section 2.5.

2.4.1 Second-Order Sensitivities for Smooth Dynamics

Away from events, system dynamics are governed by the DAE model (2.2.2). Differ-
entiating equation (2.2.2a) with respect to x0 results in equation (2.3.3a) which can be
written,

d
dt

(∂xk

∂x0

)
=

n∑
i=1

∂ fk

∂xi

∂xi

∂x0
+

m∑
j=1

∂ fk

∂y j

∂y j

∂x0
,

for k = 1, ...,n. Transposing this equation and taking partial derivatives with respect to x0

gives,

d
dt

(∂2xk

∂x2
0

)
=

∂
∂x0

( n∑
i=1

∂ fk

∂xi

∂xi

∂x0

ᵀ

+

m∑
j=1

∂ fk

∂y j

∂y j

∂x0

ᵀ)
=

n∑
i=1

∂
∂x0

(∂ fk

∂xi

∂xi

∂x0

ᵀ)
+

m∑
j=1

∂
∂x0

(∂ fk

∂y j

∂y j

∂x0

ᵀ)
=

n∑
i=1

(
∂xi

∂x0

ᵀ ∂
∂x0

(∂ fk

∂xi

)
+
∂ fk

∂xi

∂2xi

∂x2
0

)
+

m∑
j=1

(∂y j

∂x0

ᵀ
∂
∂x0

(∂ fk

∂y j

)
+
∂ fk

∂y j

∂2y j

∂x2
0

)
, (2.4.2)

for k = 1, ...,n. The terms ∂
∂x0

(
∂ fk
∂xi

)
and ∂

∂x0

(
∂ fk
∂y j

)
in equation (2.4.2) can be expanded as:

∂
∂x0

(∂ fk

∂xi

)
=
∂2 fk

∂xi∂x
∂x
∂x0

+
∂2 fk

∂xi∂y
∂y
∂x0

, (2.4.3a)
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∂
∂x0

(∂ fk

∂y j

)
=

∂2 fk

∂y j∂x
∂x
∂x0

+
∂2 fk

∂y j∂y
∂y
∂x0

. (2.4.3b)

Similarly, differentiating equation (2.2.2b) with respect to x0 results in equation (2.3.3b),
which can be written,

n∑
i=1

∂gl

∂xi

∂xi

∂x0
+

m∑
j=1

∂gl

∂y j

∂y j

∂x0
= 0ᵀn ,

for l = 1, ...,m. Transposing this equation and taking partial derivatives with respect to x0

gives,

0n×n =
∂
∂x0

( n∑
i=1

∂gl

∂xi

∂xi

∂x0

ᵀ

+

m∑
j=1

∂gl

∂y j

∂y j

∂x0

ᵀ)
=

n∑
i=1

∂
∂x0

(∂gl

∂xi

∂xi

∂x0

ᵀ)
+

m∑
j=1

∂
∂x0

(∂gl

∂y j

∂y j

∂x0

ᵀ)
=

n∑
i=1

(
∂xi

∂x0

ᵀ ∂
∂x0

(∂gl

∂xi

)
+
∂gl

∂xi

∂2xi

∂x2
0

)
+

m∑
j=1

(∂y j

∂x0

ᵀ
∂
∂x0

(∂gl

∂y j

)
+
∂gl

∂y j

∂2y j

∂x2
0

)
, (2.4.4)

for l = 1, ...,m. The terms ∂
∂x0

(
∂gl
∂xi

)
and ∂

∂x0

(
∂gl
∂y j

)
in equation (2.4.4) can be expanded as:

∂
∂x0

(∂gl

∂xi

)
=
∂2gl

∂xi∂x
∂x
∂x0

+
∂2gl

∂xi∂y
∂y
∂x0

, (2.4.5a)

∂
∂x0

(∂gl

∂y j

)
=

∂2gl

∂y j∂x
∂x
∂x0

+
∂2gl

∂y j∂y
∂y
∂x0

. (2.4.5b)

Substituting equation (2.4.3) into equation (2.4.2) and equation (2.4.5) into equa-
tion (2.4.4) results in the DAE model for the second-order sensitivities,

d
dt

(∂2xk

∂x2
0

)
=
∂x
∂x0

ᵀ(∂2 fk

∂x2

∂x
∂x0

+
∂2 fk

∂x∂y
∂y
∂x0

)
+
∂y
∂x0

ᵀ( ∂2 fk

∂y∂x
∂x
∂x0

+
∂2 fk

∂y2

∂y
∂x0

)
+

n∑
i=1

∂ fk

∂xi

∂2xi

∂x2
0

+

m∑
j=1

∂ fk

∂y j

∂2y j

∂x2
0

, (2.4.6a)

for k = 1, ...,n and,

0n×n =
∂x
∂x0

ᵀ(∂2gl

∂x2

∂x
∂x0

+
∂2gl

∂x∂y
∂y
∂x0

)
+
∂y
∂x0

ᵀ( ∂2gl

∂y∂x
∂x
∂x0

+
∂2gl

∂y2

∂y
∂x0

)
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+

n∑
i=1

∂gl

∂xi

∂2xi

∂x2
0

+

m∑
j=1

∂gl

∂y j

∂2y j

∂x2
0

, (2.4.6b)

for l = 1, ...,m.
This DAE model can be expressed more compactly by defining,

∂2x
∂x2

0

,


∂2x1
∂x2

0
...

∂2xn
∂x2

0

 ,
∂2y
∂x2

0

,


∂2 y1

∂x2
0
...

∂2 ym

∂x2
0

 ,
and arranging n copies of ∂x

∂x0
according to,

diagn

( ∂x
∂x0

)
,


∂x
∂x0

. . .
∂x
∂x0

 = In ⊗
∂x
∂x0

,

vecn

( ∂x
∂x0

)
,


∂x
∂x0
...
∂x
∂x0

 = 1n ⊗
∂x
∂x0

,

where In is the n-dimensional identity matrix, 1n is the n-dimensional vector of 1s, and
⊗ denotes the Kronecker product. The matrices diagm

(
∂x
∂x0

)
and vecm

(
∂x
∂x0

)
are defined

similarly, along with the “diag” and “vec” versions of ∂y
∂x0

. Also define,

∂2 f
∂x2 ,


∂2 f1
∂x2

. . .
∂2 fn
∂x2

 ,
∂2 f
∂x∂y

,


∂2 f1
∂x∂y

. . .
∂2 fn
∂x∂y

 ,
and likewise ∂2 f

∂y∂x , ∂
2 f
∂y2 , and the second-order partial derivatives of g. Then the DAE model

(2.4.6) can be written compactly as,

d
dt

(∂2x
∂x2

0

)
= diagn

( ∂x
∂x0

)ᵀ(∂2 f
∂x2 vecn

( ∂x
∂x0

)
+
∂2 f
∂x∂y

vecn
( ∂y
∂x0

))
+ diagn

( ∂y
∂x0

)ᵀ( ∂2 f
∂y∂x

vecn
( ∂x
∂x0

)
+
∂2 f
∂y2 vecn

( ∂y
∂x0

))
+

(∂ f
∂x
⊗ In

)∂2x
∂x2

0

+
(∂ f
∂y
⊗ In

)∂2y
∂x2

0

, (2.4.7a)
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and

0nm×n = diagm

( ∂x
∂x0

)ᵀ(∂2g
∂x2 vecm

( ∂x
∂x0

)
+
∂2g
∂x∂y

vecm
( ∂y
∂x0

))
+ diagm

( ∂y
∂x0

)ᵀ( ∂2g
∂y∂x

vecm
( ∂x
∂x0

)
+
∂2g
∂y2 vecm

( ∂y
∂x0

))
+

(∂g
∂x
⊗ In

)∂2x
∂x2

0

+
(∂g
∂y
⊗ In

)∂2y
∂x2

0

, (2.4.7b)

where 0nm×n refers to the (nm × n)-matrix of zeros. Initialization is given by ∂2x
∂x2

0
(t0) = 0n2×n

and solving equation (2.4.7b) at t0 for ∂2 y
∂x2

0
(t0). By Assumption 1, ∂g

∂y is nonsingular, therefore
∂g
∂y ⊗ In is also nonsingular. Hence, equation (2.4.7b) is solvable.

2.4.2 Computation

The DAE model (2.4.7) consists of n3 differential equations governing the n matrix vari-
ables ∂2xi

∂x2
0

together with n2m algebraic equations that couple the m matrix variables
∂2 y j

∂x2
0

.
Fortunately, the computational cost of evaluating this model along trajectories can be
reduced significantly by exploiting the problem structure. If trapezoidal integration is
used to simulate equation (2.4.7) then stepping from time-step t to time-step t + 1, with
time-step length h, involves solving the linear matrix equation,

h
2

(
∂ f
∂x ⊗ In

)
− In2

h
2

(
∂ f
∂y ⊗ In

)
∂g
∂x ⊗ In

∂g
∂y ⊗ In



∂2x
∂x2

0
(t + 1)

∂2 y
∂x2

0
(t + 1)

 =


F1

(
x(t + 1), y(t + 1), xx0(t + 1), yx0(t + 1),

x(t), y(t), xx0(t), yx0(t),
∂2x
∂x2

0
(t), ∂

2 y
∂x2

0
(t)

)
F2

(
x(t + 1), y(t + 1), xx0(t + 1), yx0(t + 1)

)
 , (2.4.8)

where the matrix on the left is evaluated at t + 1, and F1,F2 follow directly from the
trapezoidal rule. Solution for the unknowns ∂2x

∂x2
0
(t + 1), ∂2 y

∂x2
0
(t + 1) can be achieved by

decomposing the matrix on the left into its LU factors and performing forward and
backward substitution. Notice though that,

h
2

(
∂ f
∂x ⊗ In

)
− In2

h
2

(
∂ f
∂y ⊗ In

)
∂g
∂x ⊗ In

∂g
∂y ⊗ In

 =


(

h
2
∂ f
∂x − In

)
⊗ In

(
h
2
∂ f
∂y

)
⊗ In

∂g
∂x ⊗ In

∂g
∂y ⊗ In

 =


h
2
∂ f
∂x − In

h
2
∂ f
∂y

∂g
∂x

∂g
∂y

 ⊗ In. (2.4.9)
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As shown in [51], the LU factors of the matrix on the left of the Kronecker product in
equation (2.4.9) are already available as a by-product of computing the nominal trajectory,
and are also used in computing the first-order sensitivities. Hence, the LU factors required
for solving equation (2.4.8) can be built very efficiently. The computational cost of solving
for the second-order sensitivities is therefore effectively reduced to the cost of forward
and backward substitution of this very sparse problem.

2.4.3 Comparison with Prior Work

A DAE model for second-order sensitivities of continuous systems was derived in [60]. A
comparison with the model developed in Subsection 2.4.1 is quite informative.

A slightly different formulation was adopted in [60]. Instead of capturing all initial
conditions and parameters in x0, that work defined a new variable u which includes all
the parameters and inputs of the system. It should be noted that although the structure
of the results in [60] is correct, there are two missing x–y cross-terms in the resulting
DAE models (17),(19) of [60]. This can be seen from (37),(38),(40),(41) in Appendix A
of [60]. Considering (37) for example, the two missing terms are

∑D
m=1

∑A
j=1

∂2 gk
∂xm∂y j

∂y j

∂ui

∂xm
∂ui

and∑A
m=1

∑D
j=1

∂2 gk
∂ym∂x j

∂x j

∂ui

∂ym

∂ui
.

The formulation developed in Subsection 2.4.1 will be compared with the corrected
version of [60]. To do so, the results from [60] are translated by taking u = x0 and adopting
the notation of Subsection 2.4.1. The corrected DAE model given by [60] for second-order
sensitivities can then be expressed as,

d
dt

(∂2xk

∂x2
0p

)
=

n∑
i=1

( n∑
j=1

∂2 fk

∂xi∂x j

∂x j

∂x0p

∂xi

∂x0p
+

m∑
j=1

∂2 fk

∂xi∂y j

∂y j

∂x0p

∂xi

∂x0p
+
∂ fk

∂xi

∂2xi

∂x2
0p

)
+

m∑
i=1

( n∑
j=1

∂2 fk

∂yi∂x j

∂x j

∂x0p

∂yi

∂x0p
+

m∑
j=1

∂2 fk

∂yi∂y j

∂y j

∂x0p

∂yi

∂x0p
+
∂ fk

∂yi

∂2yi

∂x2
0p

)
, (2.4.10a)

for k = 1, ...,n and p = 1, ...,n;

d
dt

( ∂2xk

∂x0p∂x0q

)
=

n∑
i=1

( n∑
j=1

∂2 fk

∂xi∂x j

∂x j

∂x0q

∂xi

∂x0p
+

m∑
j=1

∂2 fk

∂xi∂y j

∂y j

∂x0q

∂xi

∂x0p
+
∂ fk

∂xi

∂2xi

∂x0p∂x0q

)
+

m∑
i=1

( n∑
j=1

∂2 fk

∂yi∂x j

∂x j

∂x0q

∂yi

∂x0p
+

m∑
j=1

∂2 fk

∂yi∂y j

∂y j

∂x0q

∂yi

∂x0p
+
∂ fk

∂yi

∂2yi

∂x0p∂x0q

)
, (2.4.10b)
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for k = 1, ...,n, p = 1, ...,n and q = 1, ...,n;

0 =

n∑
i=1

( n∑
j=1

∂2gl

∂xi∂x j

∂x j

∂x0p

∂xi

∂x0p
+

m∑
j=1

∂2gl

∂xi∂y j

∂y j

∂x0p

∂xi

∂x0p
+
∂gl

∂xi

∂2xi

∂x2
0p

)
+

m∑
i=1

( n∑
j=1

∂2gl

∂yi∂x j

∂x j

∂x0p

∂yi

∂x0p
+

m∑
j=1

∂2gl

∂yi∂y j

∂y j

∂x0p

∂yi

∂x0p
+
∂gl

∂yi

∂2yi

∂x2
0p

)
, (2.4.10c)

for l = 1, ...,m and p = 1, ...,n;

0 =

n∑
i=1

( n∑
j=1

∂2gl

∂xi∂x j

∂x j

∂x0q

∂xi

∂x0p
+

m∑
j=1

∂2gl

∂xi∂y j

∂y j

∂x0q

∂xi

∂x0p
+
∂gl

∂xi

∂2xi

∂x0p∂x0q

)
+

m∑
i=1

( n∑
j=1

∂2gl

∂yi∂x j

∂x j

∂x0q

∂yi

∂x0p
+

m∑
j=1

∂2gl

∂yi∂y j

∂y j

∂x0q

∂yi

∂x0p
+
∂gl

∂yi

∂2yi

∂x0p∂x0q

)
, (2.4.10d)

for l = 1, ...,m, p = 1, ...,n, and q = 1, ...,n.
A comparison of equation (2.4.6) and equation (2.4.10) indicates that they are equiva-

lent, with the only difference being that equation (2.4.6) is expressed in matrix form.

2.5 Second-Order Sensitivity at Discrete Events

To fully characterize the evolution of second-order sensitivities in hybrid dynamical sys-
tems, jump conditions governing their step change at a discrete event must be established.
This derivation is more involved than that of the smooth DAE model developed in Sec-
tion 2.4.

2.5.1 Second-Order Dependence of Switching Time

The time at which a discrete event is triggered, i.e., when the trajectory encounters the
switching hypersurface, is given by the switching time τ. Generally, if x0 is perturbed
slightly then τ will change accordingly. The first step in deriving the jump conditions for
the second-order sensitivities is to determine the (second-order) dependence of τ on x0,
denoted ∂2τ

∂x2
0
.

Consider the time instant τ− < τ incrementally prior to event triggering, where:

x− , x(τ−) = φ(x0, τ
−) (2.5.1a)

y− , y(τ−) = ψ(x0, τ
−) (2.5.1b)
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g(x−, y−) = 0m, (2.5.1c)

and the triggering condition is satisfied in the limit:

s(x−, y−) = 0. (2.5.2)

Assumption 1 guarantees that ∂g/∂y is nonsingular along system trajectories, so the
Implicit Function Theorem ensures the existence of a unique functionϕ such that y = ϕ(x).
Substituting this function into equation (2.5.2) gives,

s̃(x−) , s
(
x−, ϕ(x−)

)
, (2.5.3)

allowing the triggering condition (2.5.2) to be expressed as,

s̃(x−) = 0. (2.5.4)

The reduced function s̃(·) will be used in the following analysis to simplify notation. The
connection back to s(·, ·) is established in Subsection 2.5.3.

Differentiating equation (2.5.1a) gives,

dx−

dx0
=

( ∂x
∂x0

+
∂x
∂τ

∂τ
∂x0

)∣∣∣∣
τ−
, (2.5.5)

where from equation (2.3.2a), ∂x
∂x0
, xx0 is the first-order trajectory sensitivity matrix. The

perturbation dx− should be interpreted as the change in the state x along the triggering
hypersurfaceSwhen x0 is perturbed. A graphical interpretation of the difference between
dx−
dx0

and ∂x−
∂x0

is provided in Fig. 2.1.
From equation (2.2.1a),

∂x
∂τ

∣∣∣∣
τ−

= ẋ(τ−) = f
(
x(τ−), y(τ−)

)
= f (x−, y−) , f −.

Substituting into equation (2.5.5) gives,

dx−

dx0
=
∂x−

∂x0
+ f −

∂τ
∂x0

∣∣∣∣
τ−
. (2.5.6)

Differentiating equation (2.5.4) with respect to x0 gives,

ds̃
dx0

∣∣∣∣
τ−

=
(∂s̃
∂x

dx
dx0

)∣∣∣∣
τ−

= 0ᵀn . (2.5.7)
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The switching-time sensitivity ∂τ
∂x0

given by equation (2.3.7) follows by substituting equa-
tion (2.5.6) into equation (2.5.7).

The second-order sensitivity d2 s̃
dx2

0
can be obtained by taking the derivative of the trans-

pose of equation (2.5.7) with respect to x0. In doing so, all quantities refer to time τ−, though
for notational convenience this dependence is not explicitly shown. Consequently,

0n×n =
d2s̃
dx2

0

∣∣∣∣
τ−

=
d

dx0

(( ∂s̃
∂x

dx
dx0

)ᵀ)∣∣∣∣∣
τ−

=
d

dx0

( n∑
i=1

∂s̃
∂xi

dx−i
dx0

ᵀ)
=

n∑
i=1

d
dx0

( ∂s̃
∂xi

dx−i
dx0

ᵀ)
=

n∑
i=1

dx−i
dx0

ᵀ
d

dx0

( ∂s̃
∂xi

)
+

n∑
i=1

∂s̃
∂xi

d
dx0

(dx−i
dx0

ᵀ)
=

n∑
i=1

dx−i
dx0

ᵀ
∂2s̃
∂xi∂x

dx−

dx0
+

n∑
i=1

∂s̃
∂xi

d
dx0

(∂x−i
∂x0

ᵀ

+ f−i
∂τ
∂x0

ᵀ)
=

dx−

dx0

ᵀ ∂2s̃
∂x2

dx−

dx0
+

n∑
i=1

∂s̃
∂xi

∂
∂x0

(∂x−i
∂x0

ᵀ

+ f−i
∂τ
∂x0

ᵀ)
+

n∑
i=1

∂s̃
∂xi

∂
∂τ

(∂x−i
∂x0

ᵀ

+ f−i
∂τ
∂x0

ᵀ) ∂τ
∂x0

=
dx−

dx0

ᵀ ∂2s̃
∂x2

dx−

dx0
+

n∑
i=1

∂s̃
∂xi

(∂2x−i
∂x2

0

+
∂τ
∂x0

ᵀ∂ f−i
∂x0

+ f−i
∂2τ

∂x2
0

)
+

n∑
i=1

∂s̃
∂xi

(
∂
∂τ

(∂x−i
∂x0

)ᵀ
+
∂τ
∂x0

ᵀ∂ f−i
∂τ

+ f−i
∂
∂τ

( ∂τ
∂x0

)ᵀ) ∂τ
∂x0

, (2.5.8)

where

∂ f −

∂x0
=
∂ f −

∂x
∂x−

∂x0
+
∂ f −

∂y
∂y−

∂x0
(2.5.9)

and

∂ f −

∂τ
=
∂ f −

∂x
∂x−

∂τ
+
∂ f −

∂y
∂y−

∂τ
. (2.5.10)

Referring to equation (2.5.9), note that ∂x−
∂x0
, x−x0

and ∂y−

∂x0
, y−x0

are the trajectory sensitivities
evaluated at time τ−, so equation (2.3.3a) gives,

∂ f −

∂x0
= ẋx0(τ

−) =
∂
∂τ

(∂x−

∂x0

)
. (2.5.11)

Equation (2.5.10) can be expressed in a form that eliminates ∂y−

∂τ by differentiating equa-
tion (2.5.1c) with respect to τ, rearranging and substituting to give,

∂ f −

∂τ
=

(∂ f −

∂x
−
∂ f −

∂y

(∂g−

∂y

)−1∂g−

∂x

)
f −, (2.5.12)
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where by definition ∂x−
∂τ = f −. Lastly, equation (2.5.4) can be written s̃

(
φ(x0, τ−)

)
= 0, so by

the Implicit Function Theorem, τ− is a function only of x0. Hence, ∂
∂τ

(
∂τ−

∂x0

)
= 0ᵀn .

Therefore equation (2.5.8) can be written,

dx−

dx0

ᵀ ∂2s̃
∂x2

dx−

dx0
+

n∑
i=1

∂s̃
∂xi

d2x−i
dx2

0

= 0n×n, (2.5.13)

where,

d2x−i
dx2

0

=
∂2x−i
∂x2

0

+
∂τ
∂x0

ᵀ∂ f −i
∂x0

+
∂ f −i
∂x0

ᵀ
∂τ
∂x0

+
∂τ
∂x0

ᵀ∂ f −i
∂τ

∂τ
∂x0

+ f −i
∂2τ

∂x2
0

. (2.5.14)

Note that equation (2.5.13) can also be obtained by substituting,

∆2x−i =
dx−i
dx0

∆x0 +
1
2

∆xᵀ0
d2x−i
dx2

0

∆x0,

into

∆s̃ =
∂s̃
∂x

∆2x− +
1
2

∆2x−
ᵀ ∂2s̃
∂x2 ∆2x− = 0,

and ignoring terms where the order of ∆x0 is higher than two.
Rearranging equations (2.5.13), (2.5.14) gives:

∂2τ

∂x2
0

(τ−) = −
num
∂s̃
∂x f −

(2.5.15)

where

num =
dx−

dx0

ᵀ ∂2s̃
∂x2

dx−

dx0
+

n∑
i=1

∂s̃
∂xi

(∂2x−i
∂x2

0

+
∂τ
∂x0

ᵀ∂ f−i
∂x0

+
∂ f−i
∂x0

ᵀ
∂τ
∂x0

+
∂τ
∂x0

ᵀ∂ f−i
∂τ

∂τ
∂x0

)
, (2.5.16)

and all terms are evaluated at τ−. This second-order dependence of the junction time
τ on x0 is used in the following subsection to establish the desired second-order jump
conditions. The remaining two undefined terms in equations (2.5.15), (2.5.16), ∂s̃

∂x and ∂2 s̃
∂x2 ,

are derived in Subsection 2.5.3.

2.5.2 Jump Conditions for Second-Order Sensitivities

Analysis proceeds by deriving the jump conditions that govern the step change in second-
order sensitivities at discrete events. This derivation is based on a comparison of equa-
tion (2.5.14), which corresponds to time instant τ− < τ just prior to event triggering, with
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the equivalent term
d2x+

i
dx2

0
at time instant τ+ > τ immediately following event triggering. In

this latter case,

x+ , x(τ+) = φ(x0, τ
+) (2.5.17a)

y+ , y(τ+) = ψ(x0, τ
+), (2.5.17b)

and,
∂x
∂τ

∣∣∣∣
τ+

= ẋ(τ+) = f
(
x(τ+), y(τ+)

)
= f (x+, y+) , f +, (2.5.18)

with similar analysis to equation (2.5.8) giving,

d2x+
i

dx2
0

=
∂2x+

i

∂x2
0

+
∂τ
∂x0

ᵀ∂ f +
i

∂x0
+
∂ f +

i

∂x0

ᵀ
∂τ
∂x0

+
∂τ
∂x0

ᵀ∂ f +
i

∂τ
∂τ
∂x0

+ f +
i
∂2τ

∂x2
0

. (2.5.19)

The state reset equation h(·, ·) in equation (2.2.1c) governs the pre- to post-event tran-
sition. Using the Implicit Function Theorem, h(·, ·) can be expressed as,

h̃(x−) , h(x−, ϕ(x−)), (2.5.20)

and can therefore be written,
x+ = h̃(x−). (2.5.21)

The first-order jump condition (2.3.5) derived in [51] follows from differentiating equa-
tion (2.5.21),

dx+

dx0
=
∂h̃
∂x

dx−

dx0
, (2.5.22)

where ∂h̃
∂x , h̃x is given by equation (2.3.6). This can be seen by substituting equation (2.5.6)

and the equivalent expression for dx+

dx0
into equation (2.5.22). For each element xi of the

dynamic state x, differentiating the transpose of equation (2.5.22) with respect to x0 gives:

d2x+
i

dx2
0

=
d

dx0

(dx+
i

dx0

ᵀ)
=

d
dx0

((∂h̃i

∂x
dx−

dx0

)ᵀ)
=

d
dx0

( n∑
j=1

∂h̃i

∂x j

dx−j
dx0

ᵀ)
=

n∑
j=1

d
dx0

(∂h̃i

∂x j

dx−j
dx0

ᵀ)
=

n∑
j=1

dx−j
dx0

ᵀ
d

dx0

(∂h̃i

∂x j

)
+

n∑
j=1

∂h̃i

∂x j

d
dx0

(dx−j
dx0

ᵀ)
=

dx−

dx0

ᵀ∂2h̃i

∂x2

dx−

dx0
+

n∑
j=1

∂h̃i

∂x j

d2x−j
dx2

0

. (2.5.23)

Subtracting equation (2.5.14) from equation (2.5.19) and substituting equation (2.5.23)

27



gives,

∂2x+
i

∂x2
0

=
∂2x−i
∂x2

0

+
dx−

dx0

ᵀ∂2h̃i

∂x2

dx−

dx0
+

n∑
j=1, j,i

∂h̃i

∂x j

d2x−j
dx2

0

+
(∂h̃i

∂xi
− 1

)d2x−i
dx2

0

−
∂τ
∂x0

ᵀ(∂ f +
i

∂x0
−
∂ f −i
∂x0

)
−

(∂ f +
i

∂x0
−
∂ f −i
∂x0

)ᵀ ∂τ
∂x0

− ( f +
i − f −i )

∂2τ

∂x2
0

−
∂τ
∂x0

ᵀ(∂ f +
i

∂τ
−
∂ f −i
∂τ

) ∂τ
∂x0

, (2.5.24)

where dx−
dx0

is given by equation (2.5.5), ∂h̃
∂x is given by equation (2.3.6),

d2x−i
dx2

0
is given by

equation (2.5.14), ∂τ
∂x0

is given by equation (2.3.7), ∂
2τ
∂x2

0
is given by equations (2.5.15), (2.5.16),

∂ f−

∂x0
is given by equation (2.5.9), and ∂ f−

∂τ is given by equation (2.5.12). The terms ∂ f +

∂x0
and

∂ f +

∂τ take the same form as their τ− counterparts. The remaining term ∂2h̃
∂x2 is derived in

Subsection 2.5.3.
Equation (2.5.24) gives the post-event second-order sensitivities ∂2x+

∂x2
0

. The correspond-

ing value for ∂2 y+

∂x2
0

can be obtained by evaluating equation (2.4.7b) at τ+. Hence, equa-
tion (2.5.24) and equation (2.4.7b) together provide the jump conditions describing second-
order sensitivities at switching and reset events.

2.5.3 Deriving the Remaining Terms

Differentiating equation (2.5.1c) with respect to x gives,

∂g−

∂x
+
∂g−

∂y
∂y−

∂x
= 0m×n, (2.5.25)

which can be rearranged as,
∂y−

∂x
= −

(∂g−

∂y

)−1∂g−

∂x
. (2.5.26)

Hence, the term ∂s̃
∂x can be expressed as:

∂s̃
∂x

=
∂s
∂x

+
∂s
∂y
∂y−

∂x
(2.5.27a)

=
∂s
∂x
−
∂s
∂y

(∂g−

∂y

)−1∂g−

∂x
. (2.5.27b)
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Differentiating the transpose of equation (2.5.27a) with respect to x gives,

∂2s̃
∂x2 =

∂
∂x

(( ∂s
∂x

+
∂s
∂y
∂y−

∂x

)ᵀ)
+
∂
∂y

(( ∂s
∂x

+
∂s
∂y
∂y−

∂x

)ᵀ)∂y−

∂x

=
∂2s
∂x2 +

∂y−

∂x

ᵀ
∂2s
∂y∂x

+

m∑
j=1

∂s
∂y j

∂2y−j
∂x2 +

∂2s
∂x∂y

∂y−

∂x
+
∂y−

∂x

ᵀ
∂2s
∂y2

∂y−

∂x
, (2.5.28)

where ∂
∂y

(
∂y−

∂x

)
= 0 because y is an implicit function of x only. The terms

∂2 y−j
∂x2 in equa-

tion (2.5.28) can be derived by expanding equation (2.5.25),

∂g−k
∂x

+

m∑
j=1

∂g−k
∂y j

∂y−j
∂x

= 0ᵀn ,

for k = 1, ...,m, and taking the derivative of the transpose with respect to x,

0n×n =
∂
∂x

((∂g−k
∂x

+
∂g−k
∂y

∂y−

∂x

)ᵀ)
+
∂
∂y

((∂g−k
∂x

+
∂g−k
∂y

∂y−

∂x

)ᵀ)∂y−

∂x

=
∂2g−k
∂x2 +

∂y−

∂x

ᵀ ∂2g−k
∂y∂x

+

m∑
j=1

∂g−k
∂y j

∂2y−j
∂x2 +

∂2g−k
∂x∂y

∂y−

∂x
+
∂y−

∂x

ᵀ∂2g−k
∂y2

∂y−

∂x
. (2.5.29)

Rearranging gives,

m∑
j=1

∂g−k
∂y j

∂2y−j
∂x2 = −

∂2g−k
∂x2 −

∂y−

∂x

ᵀ ∂2g−k
∂y∂x

−
∂2g−k
∂x∂y

∂y−

∂x
−
∂y−

∂x

ᵀ∂2g−k
∂y2

∂y−

∂x
, (2.5.30)

for k = 1, ...,m. This problem has m matrix variables and m matrix equations (or n2m scalar

variables and n2m scalar equations). It can be written in matrix form and solved for
∂2 y−j
∂x2

for j = 1, ...,m.
Similarly, ∂h̃

∂x can be computed as,

∂h̃
∂x

=
∂h
∂x

+
∂h
∂y
∂y−

∂x
(2.5.31a)

=
∂h
∂x
−
∂h
∂y

(∂g−

∂y

)−1∂g−

∂x
. (2.5.31b)

Differentiating ∂h̃i
∂x

ᵀ
from equation (2.5.31a), for i = 1, ...,n, results in,

∂2h̃i

∂x2 =
∂
∂x

((∂hi

∂x
+
∂hi

∂y
∂y−

∂x

)ᵀ)
+
∂
∂y

((∂hi

∂x
+
∂hi

∂y
∂y−

∂x

)ᵀ)∂y−

∂x
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=
∂2hi

∂x2 +
∂y−

∂x

ᵀ
∂2hi

∂y∂x
+

m∑
j=1

∂hi

∂y j

∂2y−j
∂x2 +

∂2hi

∂x∂y
∂y−

∂x
+
∂y−

∂x

ᵀ
∂2hi

∂y2

∂y−

∂x
, (2.5.32)

where the
∂2 y−j
∂x2 are given by equation (2.5.30).

2.5.4 Visual Interpretation of the Jump Conditions

To simplify visualization of the jump conditions, consider the case where the state reset is
simply x+ = x−, i.e., only a switching event occurs at the junction time τ. That corresponds
to h̃(x) = x, so h̃x ,

∂h̃
∂x = In and ∂2h̃i

∂x2 = 0n×n for i = 1, ...,n. The first-order jump condition
equation (2.3.5) is reduced to,

xx0(τ
+) = xx0(τ

−) −
(

f +
− f −

)
τx0 . (2.5.33)

Likewise, the second-order jump condition (2.5.24) reduces to,

∂2x+
i

∂x2
0

=
∂2x−i
∂x2

0

−
∂τ
∂x0

ᵀ(∂ f +
i

∂x0
−
∂ f−i
∂x0

)
−

(∂ f +
i

∂x0
−
∂ f−i
∂x0

)ᵀ ∂τ
∂x0

− ( f +
i − f−i )

∂2τ

∂x2
0

−
∂τ
∂x0

ᵀ(∂ f +
i

∂τ
−
∂ f−i
∂τ

) ∂τ
∂x0

. (2.5.34)

Fig. 2.1 illustrates the behavior of system trajectories at a switching event and enables
a visual interpretation of the first- and second-order jump conditions.

2.5.4.1 Interpretation for First-Order Sensitivity

The nominal trajectory is denoted by x in Fig. 2.1. Assume ∆x0 is a perturbation in initial
conditions x0 which results in a perturbed trajectory. Denote the first-order trajectory
approximation by x̃, and the first-order approximation of the switching surface by S1.
Under the perturbation ∆x0, the junction point where the perturbed trajectory encounters
S1 will change, with the variation along the first-order switching hypersurface denoted
by ∆x , dx

dx0
∆x0. The perturbation ∆x0 will also result in a change in the junction time τ,

which is denoted by ∆τ , ∂τ
∂x0

∆x0.
Post-multiplying equation (2.5.6) by ∆x0 gives,

∆x− ,
dx−

dx0
∆x0 = x−x0

∆x0 + f −∆τ, (2.5.35a)
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Figure 2.1: Interpretation of jump conditions for first- and second-order sensitivity.

and likewise at time τ+,

∆x+ ,
dx+

dx0
∆x0 = x+

x0
∆x0 + f +∆τ. (2.5.35b)

With no reset event, dx−
dx0

= dx+

dx0
, so that,

∆x = x−x0
∆x0 + f −∆τ = x+

x0
∆x0 + f +∆τ. (2.5.36)

This relationship is illustrated in Fig. 2.1. At time τ, the nominal trajectory encounters
the triggering hypersurface S1 at the point x(τ). However, the perturbed trajectory x̃ has
not yet arrived at the hypersurface. It takes an extra ∆τ time to arrive at the new junction
point x̃(τ+ ∆τ) = x(τ) + ∆x. During the time interval ∆τ, the nominal trajectory evolves to
the new point x(τ + ∆τ) = x(τ) + f +∆τ. The post-event sensitivity x+

x0
∆x0 must therefore

compensate for the distance between the new point x(τ + ∆τ) and the new junction point
x(τ) + ∆x.
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2.5.4.2 Interpretation for Second-Order Sensitivity

Now consider the second-order trajectory approximation which is denoted by x̂. In this
second-order case the linear approximation S1 of the switching hypersurface is amended
to the hypersurface S2 which captures the second-order curvature. Under the same per-
turbation ∆x0, there is a new junction point where the perturbed trajectory x̂ encounters the
adjusted switching hypersurface S2. The change in x lying on the switching hypersurface
S2 is denoted by ∆2x = ∆x + 1

2∆2x where,

∆2xi =
dxi

dx0
∆x0 +

1
2

∆xᵀ0
d2xi

dx2
0

∆x0,

i.e., ∆x represents the first-order perturbation, 1
2∆2x is the second-order perturbation, and

∆2x is the total perturbation due to first- and second-order effects. The change in the
junction time is denoted by,

∆2τ = ∆τ +
1
2

∆2τ ,
∂τ
∂x0

∆x0 +
1
2

∆xᵀ0
∂2τ

∂x2
0

∆x0. (2.5.37)

The second-order approximate trajectory x̂ encounters the hypersurface S2 at the time
τ + ∆2τ, where the new junction point is,

x̂(τ + ∆2τ) = x(τ) + ∆2x = x̃(τ + ∆τ) +
1
2

∆2x.

The distance between the first-order junction point x̃(τ+∆τ) and the second-order junction
point x̂(τ+ ∆2τ) is 1

2∆2x = ∆2x−∆x, which can be considered a correction to the first-order
approximation.

The correction term 1
2∆2x is composed of multiple sections for both the pre- and

post-event cases. Pre-multiplying equation (2.5.14) and equation (2.5.19) by 1
2∆xᵀ0 and

post-multiplying by ∆x0 results in,

1
2

∆2x−i ,
1
2

∆xᵀ0
d2x−i
dx2

0

∆x0

=
1
2

∆xᵀ0
∂2x−i
∂x2

0

∆x0 + ∆τ∆ f−i +
1
2

∆τ
∂ f−i
∂τ

∆τ +
1
2

f−i ∆2τ, (2.5.38a)

1
2

∆2x+
i ,

1
2

∆xᵀ0
d2x+

i

dx2
0

∆x0

=
1
2

∆xᵀ0
∂2x+

i

∂x2
0

∆x0 + ∆τ∆ f +
i +

1
2

∆τ
∂ f +

i

∂τ
∆τ +

1
2

f +
i ∆2τ. (2.5.38b)
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With no reset event,
d2x−i
dx2

0
=

d2x+
i

dx2
0

, so equation (2.5.38a) and equation (2.5.38b) are equal. The
symmetry of this relationship can be seen in Fig. 2.1, where the terms for the pre-event
case are labeled:

(a1) :
1
2

∆xᵀ0
∂2x−i
∂x2

0

∆x0,

(a2) : ∆τ∆ f −i +
1
2

∆τ
∂ f −i
∂τ

∆τ +
1
2

f −i ∆2τ,

and for the post-event case:

(b1) :
1
2

∆xᵀ0
∂2x+

i

∂x2
0

∆x0,

(b2) : ∆τ∆ f +
i +

1
2

∆τ
∂ f +

i

∂τ
∆τ +

1
2

f +
i ∆2τ.

2.6 Second-Order Trajectory Approximation

Trajectory approximation is an important and very useful application of trajectory sen-
sitivities. Time-domain simulation for large-scale hybrid systems, such as power sys-
tem, is computationally intensive. Trajectory approximation is applicable when there are
small changes in initial condition and/or uncertain parameters. In such circumstances,
trajectory sensitivities can be used to approximate the perturbed trajectories instead of
performing repetitive full time-domain simulation. Having fully characterized the evolu-
tion of second-order sensitivities, second-order trajectory approximation is now possible
for hybrid systems. The inclusion of second-order sensitivity information improves the
accuracy of trajectory approximation.

Trajectory approximation requires the simulation of the nominal case together with
calculation of the first-order and second-order sensitivities along the nominal trajecto-
ries. Approximate perturbed trajectories follow directly from the Taylor series expansion
(2.3.1). Ignoring the remainder terms with order higher than two gives the second-order
trajectory approximation:

φi(x0 + ∆x0, t) ≈ φi(x0, t) +
∂φi(x0, t)
∂x0

∆x0 +
1
2

∆xᵀ0
∂2φi(x0, t)
∂x2

0

∆x0, (2.6.1a)

ψ j(x0 + ∆x0, t) ≈ ψ j(x0, t) +
∂ψ j(x0, t)
∂x0

∆x0 +
1
2

∆xᵀ0
∂2ψ j(x0, t)

∂x2
0

∆x0, (2.6.1b)
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Figure 2.2: Single machine infinite bus system with Q limit.

for i = 1, ...,n and j = 1, ...,m, and where ∂φi(x0,t)
∂x0
, ∂xi

∂x0
(t) and

∂ψ j(x0,t)
∂x0
,

∂y j

∂x0
(t) are the first-order

sensitivities, and ∂2φi(x0,t)
∂x2

0
, ∂2xi

∂x2
0
(t) and

∂2ψ j(x0,t)
∂x2

0
,

∂2 y j

∂x2
0

(t) are the second-order sensitivities.
The foregoing trajectory approximation is applicable for smooth sections of the trajec-

tory. At discrete events, however, certain refinements should be made over the ∆2τ time
interval defined in equation (2.5.37). This refinement for first-order trajectory approxima-
tion is developed in [19].

2.7 Case Study

To illustrate the jump conditions for second-order sensitivities, and demonstrate the im-
provement in trajectory approximation, a single machine infinite bus (SMIB) system, as
shown in Fig. 2.2, is considered. The infinite bus provides a constant voltage magni-
tude and angle. The generator is represented by a classical second-order model, though
an upper limit Qmax has been imposed on the generated reactive power Q to introduce
switching events. When Q is smaller than Qmax, the generator bus is modeled as a PV bus,
where voltage magnitude Vt is constant and equal to Vset, while Q is allowed to vary. If
Q increases to its upper limit Qmax, the generator switches to a PQ bus, where Q is fixed
at Qmax and the voltage magnitude Vt reduces. As Vt returns to the set-point Vset due to
swinging of the rotor angle δ and angular velocity ω, the bus switches back to a PV bus.

The dynamic behavior of the SMIB system is described by:

δ̇ = ω (2.7.1a)

ω̇ =
1
M

(Pm − Pe −Dω), (2.7.1b)

where δ is the rotor angle, ω is the angular velocity, M is the inertia constant, Pm is
mechanical power, Pe is electrical power, and D is the damping. The electrical power in
equation (2.7.1b) is given by,

Pe =
V∞Vt

X
sin(δ), (2.7.2)

where V∞ is the constant voltage magnitude of the infinite bus, Vt is the voltage magnitude
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of the generator bus, and X is the line reactance. Imposing an upper limit on reactive power
requires the relationship between injected electrical power Pe + jQ and the bus voltage
magnitude,

V2
∞

V2
t

X2 = P2
e +

(V2
t

X
−Q

)2
. (2.7.3)

The dynamic states are denoted by x = [x1, x2]ᵀ = [δ, ω]ᵀ, and the algebraic states by
y = [y1, y2]ᵀ = [Vt,Q]ᵀ. In the PV bus mode, Q varies while Vt is fixed at Vset, whereas in
the PQ bus mode, Vt varies with Q fixed at Qmax. A switching event is triggered when Q
encounters the switching surface Q = Qmax or V encounters the switching surface V = Vset.

The differential-algebraic impulsive switched (DAIS) model can be represented by:

d
dt

δω
 =


ω

1
M

(
Pm −

V∞Vt

X
sin(δ) −Dω

) (2.7.4a)

0 =
(V∞Vt

X
sin(δ)

)2
+

(V2
t

X
−Q

)2
−

V2
∞

V2
t

X2 (2.7.4b)

0 =

Vt − Vset, Q −Qmax < 0

Q −Qmax, Vset − Vt > 0.
(2.7.4c)

To be consistent with the DAIS model of Section 2.2, a new algebraic variable y3 is
introduced and the switched equation (2.7.4c) is reformulated as:

0 =

Vt − Vset

y3 − (Q −Qmax),
y3 < 0 (2.7.5a)

0 =

Q −Qmax

y3 − (Vset − Vt),
y3 > 0. (2.7.5b)

The implicit trapezoidal method was used to numerically integrate the DAE models
describing states, first- and second-order sensitivities. At junction times when events are
triggered, reset equations and jump conditions determine the post-event values for states
and sensitivities, respectively. The post-event values serve as initial conditions for the
DAE models over the subsequent smooth section.

The system parameters were set to M = 7.3784, Pm = 3.1831 pu, V∞ = 1 pu, X = 1/6 pu,
D = 1, Vset = 1 pu, and Qmax = 0.8 pu. For the nominal case, initial conditions x0 = [0.4, 0.2]ᵀ

were chosen. This gave y0 = [1, 0.4736,−0.3264]ᵀ.
In Fig. 2.3, the solid black line shows the nominal trajectory of x1 (rotor angle), the

blue dash-dot line shows the first-order sensitivity of x1 with respect to x0,1 (the initial
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Figure 2.3: First- and second-order sensitivities for rotor angle.
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Figure 2.4: First- and second-order sensitivities for voltage magnitude.
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condition for the first dynamic state x1), and the red dashed line shows the second-order
sensitivity of x1 with respect to x0,1, i.e., ∂2x1/∂x2

0,1. The relative magnitudes of the first-
and second-order sensitivities for this test case are clearly exhibited.

Similarly, the nominal trajectory of y1 (voltage magnitude) is shown as the solid black
line in Fig. 2.4. The first-order sensitivity of y1 with respect to x0,1 is shown as the blue
dash-dot line, and the second-order sensitivity of y1 with respect to x0,1, i.e., ∂2y1/∂x2

0,1, is
shown as the red dashed line. It can be seen that five events occur at times 0.5661s, 7.5459s,
10.6938s, 17.1205s and 19.7325s. The complementary nature of the first- and second-order
sensitivities for this case is also reflected in Fig. 2.4.

To demonstrate the application of sensitivities for approximating perturbed trajecto-
ries, initial conditions were altered to x0 = [0.47, 0.2]ᵀ. Note that the initial conditions
for algebraic variables have to change accordingly to y0 = [1, 0.6506,−0.1494]ᵀ to guar-
antee the algebraic equations are satisfied. The sensitivities resulting from the nominal
trajectory were utilized to synthesize approximations of the perturbed trajectory1. For
comparison, another time-domain simulation was run to generate the actual perturbed
trajectory resulting from the altered initial condition.

Figure 2.5 shows the nominal trajectory, the perturbed trajectory, the first-order ap-
proximation (using only first-order sensitivities), and the second-order approximation
(including both first- and second-order sensitivities) for rotor angle. It can be concluded
that the second-order approximation outperforms the first-order approximation especially
when the curvature of the perturbed trajectory is large. The l2-norm of the residual of the
first-order approximation is 0.2842 whereas it is 0.1528 for the second-order approxima-
tion. The error reduction is around 46%.

Similarly, Fig. 2.6 shows the nominal trajectory, the perturbed trajectory, and the first-
and second-order approximations for voltage magnitude. From Figs. 2.4 and 2.6 it can be
seen that step changes occur in the sensitivities, and hence the trajectory approximations,
at the event triggering times. The l2-norm of the residual of the first-order approximation
is 0.4631 whereas it is 0.1666 for the second-order approximation. The error reduction is
around 64%.

The angle-frequency phase portrait view of the trajectory approximations are shown
in Fig. 2.7. The blue line emanating from the initial point x0 = [0.4, 0.2]ᵀ represents
the nominal trajectory. The first- and second-order approximations are shown as the
dashed magenta line and the red dotted line, respectively. For comparison, the actual
perturbed trajectory is shown as the solid green line. It can be observed that the first-
order approximation is initially rather accurate but breaks away from the actual perturbed

1The refinement over the delay interval described in [51] was not considered in this case.
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Figure 2.5: First- and second-order trajectory approximations for rotor angle.

trajectory for a large portion of the trajectory. The second-order approximation, however,
constantly tracks the true perturbed trajectory with satisfactory accuracy.

2.8 Chapter Conclusion

Hybrid dynamical systems are characterized by coupling between continuous and discrete
dynamics. A general differential-algebraic impulsive switched (DAIS) model is adopted
in this chapter to represent such phenomena. Due to the intrinsic complexity of hybrid
system dynamics, analysis is usually based on time-domain simulation. Exploring be-
havior over a range of parameter values and initial conditions usually involves repeated
simulation. To overcome the associated computational burden, trajectory sensitivity anal-
ysis enables approximation of numerous perturbed trajectories using only the information
obtained from the nominal trajectory. This technique linearizes the system around the
nominal (nonlinear, non-smooth) trajectory and provides an approximate relationship
between variations in initial conditions and/or system parameters and the resulting per-
turbed trajectories. Derivation of first-order trajectory sensitivities was undertaken in [51].

It follows from the Taylor series expansion that first-order trajectory sensitivities lack
higher-order information that may be important in certain situations. This motivates the
development of second-order sensitivities to recover some of the higher-order information
and so improve the accuracy of trajectory approximation.
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Figure 2.6: First- and second-order trajectory approximations for voltage magnitude.
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Figure 2.7: Phase portrait showing trajectory approximations.
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This chapter formulates the differential-algebraic equation (DAE) model that governs
second-order sensitivities over regions where dynamics are smooth, i.e., away from events.
The jump conditions describing the step change of second-order sensitivities at discrete
(switching and state reset) events are also derived. The DAE model together with the jump
conditions fully characterize second-order sensitivities with respect to initial conditions
and/or uncertain parameters for general hybrid dynamical systems. This work forms the
basis for incorporating higher-order information into applications of first-order trajectory
sensitivity analysis.
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CHAPTER 3

Analysis and Quantification of Impacts of
Uncertainties on System Dynamics

3.1 Chapter Introduction

The concept of reach-set refers to the union of all possible states that can be visited
by system trajectories originating from a set of uncertain initial conditions, under the
influence of admissible parameter uncertainties and external disturbances. Given the
reach-set, safety specifications can be checked by verifying there is no intersection of the
reach-set and any unsafe region. This is important for safety-critical applications such as
power systems [84]. However, in general it is hard to compute the exact reach-set for a
nonlinear system.

Much research has been devoted to computing over-approximations of the reach-set.
A Taylor flowpipe model is used in [12] to over-approximate the reach-set of hybrid
systems for a set of initial conditions. Other approaches to reach-set computation include
abstraction-based methods [13], level-set methods [14], and differential inequalities [15].
Reachability analysis of nonlinear differential-algebraic systems is studied in [16] using a
conservative linearization method, where zonotopes are used to represent the reach-set.
A common issue across all these methods is conservativeness, which is partially because
of the accumulation of error over time, i.e., the wrapping effect. Computational burden is
another issue when considering high-dimensional applications.

This chapter explores reach-set approximation in the context of trajectory sensitivity
analysis. Trajectory sensitivities can be used to approximate perturbed trajectories as-
sociated with uncertain initial conditions and/or parameter sets, thus avoiding repeated
simulations [51, 62, 85]. It is shown in [86] that with sign-stable sensitivity matrices, only
a small subset of the boundary of the initial set is required to be evaluated. However,
sign-stability is a strong requirement. Reference [87] provide an extension that only re-
quires bounded sensitivity. However, the bound itself needs to be estimated through
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sampling and falsification. In [63], sensitivity analysis has been used for verification
through simulation of continuous and hybrid systems. However, there is no guarantee
that the computed approximation is an enclosure of the true reach-set, since there is no
explicit theoretical guarantee for the accuracy of such approximations. The same applies
for [60], where a semidefinite program is solved to search for the outermost trajectories.

In this chapter, we analytically quantify the error inherent in trajectory approxima-
tion using the second-order trajectory sensitivity [85]. We exploit results on multivariate
Taylor’s theorem and higher-order remainders to give a theoretical error bound for the
first-order trajectory approximation. Sampled-data approaches [87] can be used to es-
timate the bound. To ease computational effort, we also provide practical solutions for
computing an error bound estimate. With an explicit numerical error bound available,
we can provide a sufficiently accurate estimation of the reach-set by locating worst-case
vertices of the uncertainty set [19].

The effect of external disturbances on differential-algebraic equation (DAE) systems is
also investigated in this chapter. We first extend to DAE systems a Lipschitz-based result
from nonlinear systems theory that quantifies the effects of initial conditions and bounded
external disturbances. Then we improve the result by exploiting properties of the loga-
rithmic norm. The logarithmic norm, or matrix measure, is a useful tool for quantifying
bounds on the divergence of adjacent trajectories, hence is useful for providing error
bounds on linear approximation of nonlinear systems [88], and for analyzing contractive
systems [89]. In [90], the logarithmic norm has been used to compute over-approximation
of the reach-set for switched nonlinear systems with uncertain initial conditions. In this
chapter, we also quantify the effects of external disturbances on system dynamics.

The contributions of this chapter are as follows. Firstly, we provide an explicit theoret-
ical error bound for trajectory sensitivity analysis, using second-order trajectory sensitiv-
ities. This theoretical bound is then estimated using efficient trajectory-based approach.
Secondly, a theoretical result on quantifying the effects of external disturbances on non-
linear DAE systems is derived, using the mathematical tool of logarithmic norm. Thirdly,
we provide an efficient approach to compute an accurate estimation of the reach-set of
nonlinear DAE systems, under uncertain initial conditions and/or parameters, and exter-
nal disturbances. This is achieved by combining the results on error bound for trajectory
sensitivity analysis and the results on bounding the effects of external disturbances.

This chapter is organized as follows: Section 3.2 presents system model and provides
an overview of trajectory sensitivity analysis and logarithmic norm. The error bounds
for trajectory approximation are derived in Section 3.3. Section 3.4 establishes theoretical
results on quantifying the propagation of external disturbances. Reach-set computation
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with Minkowski sum formulation is described in Section 3.5. Simulation results are given
in Section 3.6 and conclusions are drawn in Section 3.7.

3.2 Preliminaries

In this chapter, we adopt a DAE model to describe the dynamic behavior of the system,

ẋ(t) = f (x(t), y(t)) + w(t), (3.2.1a)

0 = g(x(t), y(t)), (3.2.1b)

where x(t) ∈ Dx ⊂ Rn are the dynamic states at time t, y(t) ∈ Dy ⊂ Rm are the algebraic
states at time t, f : Dx × Dy → Rn is the vector field, and g : Dx × Dy → Rm describes
the algebraic manifold. Nonlinear functions f and g are assumed to be Lipschitz in their
arguments and of class C2. A bounded time-varying unknown external disturbance w(t)
is added to the differential equation. This disturbance term will not be considered until
Section 3.4. Several technical assumptions are required for subsequent analysis:

Assumption 5. The solution of equation (3.2.1) exists for initial conditions and disturbances of
interest, and is unique.

Assumption 6. The Jacobian ∂g/∂y is nonsingular along system trajectories.

For given initial conditions x(t0) = x0, y(t0) = y0, where g(x0, y0) = 0, the corresponding
system trajectory (or flow) can be expressed as,

x(t) = φ(x0, t), (3.2.2a)

y(t) = ψ(x0, t). (3.2.2b)

Uncertainty in initial conditions x0 will be considered, with y0 implicitly dependent upon
x0. To take into account uncertain parameters λ, the dynamic states x can be augmented
with λ and trivial differential equations λ̇ = 0 added. This way, uncertain parameters are
incorporated into the expanded initial conditions x0.

3.2.1 Trajectory Sensitivity and Trajectory Approximation

Trajectory sensitivities describe the change in the system flow resulting from a change in
initial conditions x0. Forming the Taylor series expansion of the flow (3.2.2) with respect
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to x0 along the nominal trajectory yields,

φi(x0 + ∆x0, t) = φi(x0, t) +
∂φi(x0, t)
∂x0

∆x0 +
1
2

∆xᵀ0
∂2φi(x0, t)
∂x2

0

∆x0 + εφi
2 (x0,∆x0, t), (3.2.3a)

ψ j(x0 + ∆x0, t) = ψ j(x0, t) +
∂ψ j(x0, t)
∂x0

∆x0 +
1
2

∆xᵀ0
∂2ψ j(x0, t)

∂x2
0

∆x0 + ε
ψ j

2 (x0,∆x0, t), (3.2.3b)

∀i = 1, ...n, ∀ j = 1, ...m,

where the terms ∂φi(x0,t)
∂x0

∈ R1×n and
∂ψ j(x0,t)
∂x0

∈ R1×n are first-order trajectory sensitivities

and ∂2φi(x0,t)
∂x2

0
∈ Rn×n and

∂2ψ j(x0,t)
∂x2

0
∈ Rn×n are second-order trajectory sensitivities. The terms

εφi
2 (x0,∆x0, t) and εψ j

2 (x0,∆x0, t) capture the higher-order terms beyond the second.
The DAE variational equations describing first- and second-order trajectory sensitiv-

ities are given in [51] and [85], respectively. We only summarize the DAE model for
the first-order trajectory sensitivity here. Taking the derivatives of equation (3.2.1) with
respect to x0 yields,

ẋx0 = fx(t)xx0 + fy(t)yx0 , (3.2.4a)

0 = gx(t)xx0 + gy(t)yx0 , (3.2.4b)

where xx0 and yx0 denote the first-order trajectory sensitivities. We use fx, fy, gx, gy to denote
∂ f/∂x, ∂ f/∂y, ∂g/∂x, ∂g/∂y respectively, which are time-varying matrices evaluated along
the nominal trajectory. Initial conditions are given by xx0(t0) = I, the identity matrix, and
yx0(t0) = −(gy(t0))−1gx(t0).

From equation (3.2.3), we have the first-order approximation,

φ̂(x0 + ∆x0, t) = φ(x0, t) +
∂φ(x0, t)
∂x0

∆x0, (3.2.5a)

ψ̂(x0 + ∆x0, t) = ψ(x0, t) +
∂ψ(x0, t)
∂x0

∆x0. (3.2.5b)

Since higher-order terms are neglected, there are discrepancies between the approximated
trajectory (3.2.5) and the true perturbed trajectory (3.2.3). Define the error in the first-order
approximation by,

εφ1 (x0,∆x0, t) , φ(x0 + ∆x0, t) − φ̂(x0 + ∆x0, t), (3.2.6a)

εψ1 (x0,∆x0, t) , ψ(x0 + ∆x0, t) − ψ̂(x0 + ∆x0, t). (3.2.6b)
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From classic perturbation theory [55], we know that the first-order approximation
errors are of order O(‖∆x0‖

2). That is, there exists positive constants kφ, kψ and c, such that
‖ε
φ
1 (x0,∆x0, t)‖ ≤ kφ ‖∆x0‖

2 and ‖εψ1 (x0,∆x0, t)‖ ≤ kψ‖∆x0‖
2, for all ‖∆x0‖ < c. However, the

magnitudes of kφ and kψ are not known. Therefore, the big-O notation cannot be translated
into a useful numerical error bound. This problem is investigated further in Section 3.3.

3.2.2 Logarithmic Norm

For any vector norm ‖·‖ on Rn, and its induced matrix norm ‖·‖ on Rn×n, the logarithmic
norm of a matrix A ∈ Rn×n is a real-valued functional µ : Rn×n

→ R, defined by [88],

µ(A) = lim
s→0+

‖I + sA‖ − 1
s

. (3.2.7)

Explicit expressions exist for common vector norms such as the l1, l2 and l∞-norms [91].
The logarithmic norm has a number of important properties [90],

1 For any eigenvalue λi(A) of A, we know,
−‖A‖ ≤ −µ(−A) ≤ Re(λi(A)) ≤ µ(A) ≤ ‖A‖.

2 µ(cA) = cµ(A),∀c ≥ 0.

3 µ(A + B) ≤ µ(A) + µ(B).

Fundamental results that connect the logarithmic norm to dynamical systems are sum-
marized in [92] for linear systems and [89] for nonlinear systems.

3.3 Error Bound for Trajectory Approximation

We are interested in deriving an explicit numerical bound for the error in the first-order
trajectory approximation. Such an error bound provides theoretical guarantees for the
accuracy of trajectory approximations and justifies their application to safety-critical sce-
narios such as dynamic security assessment [93]. In this section, we exploit multivariate
Taylor’s theorem and Lagrange’s remainder, and derive an error bound for trajectory
approximation by formulating an optimization problem. To ease the computational effort
of solving the global optimization, we then propose an efficient approach to practically
estimating the error bound.
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3.3.1 Multivariate Taylor’s Theorem and Remainder

Multi-index notation [94] is adopted to simplify the presentation of the following results.

Theorem 3.3.1. [95] Suppose f : Rn
→ R is of class Cκ+1 on an open convex set S. If a ∈ S and

a + h ∈ S then,

f (a + h) =
∑
|α|≤κ

∂α f (a)
hα

α!
+ Rκ(a,h), (3.3.1)

where the remainder is given in Lagrange’s form by,

Rκ(a,h) =
∑
|α|=κ+1

∂α f (a + ch)
hα

α!
, for some c ∈ (0, 1). (3.3.2)

Based on equation (3.3.2), an estimate for the remainder term is given by the following
corollary.

Corollary 3.3.1. If f is of class Cκ+1 on S and |∂α f (x)| ≤M for x ∈ S and |α| = κ + 1, then

|Rκ(a,h)| ≤
M

(κ + 1)!
‖h‖κ+1

1 , (3.3.3)

where ‖h‖1 = |h1| + |h2| + ... + |hn|.

3.3.2 Error Bound by Second-Order Trajectory Sensitivity

Assigning time t to be any fixed time instant τ in equation (3.2.3), we obtain a regular
Taylor expansion of φi(x̃0, τ) and ψ j(x̃0, τ), where x0 − ∆x0 ≤ x̃0 ≤ x0 + ∆x0 with the vector
inequality interpreted element-wise. Truncating all higher-order terms and applying
Taylor’s Inequality (3.3.3) gives remainders of the first-order approximations bounded as,

|Rφi

1 (x0,∆x0, τ)| ≤
Mφi(x0,∆x0, τ)

2
‖∆x0‖

2
1, (3.3.4a)

|Rψ j

1 (x0,∆x0, τ)| ≤
Mψ j(x0,∆x0, τ)

2
‖∆x0‖

2
1, (3.3.4b)

∀i = 1, . . . ,n and ∀ j = 1, . . . ,m, where,

Mφi(x0,∆x0, τ) ≥ max
x0−∆x0≤x̃0≤x0+∆x0

1≤k≤l≤n

∣∣∣∣{∂2φi(x̃0, τ)
∂x2

0

}
k,l

∣∣∣∣ (3.3.5a)

Mψ j(x0,∆x0, τ) ≥ max
x0−∆x0≤x̃0≤x0+∆x0

1≤k≤l≤n

∣∣∣∣{∂2ψ j(x̃0, τ)

∂x2
0

}
k,l

∣∣∣∣ (3.3.5b)
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where the scalars k, l are indices for the entries of the symmetric second-order trajectory
sensitivity matrices ∂2φi(x̃0,τ)

∂x2
0

,
∂2ψ j(x̃0,τ)

∂x2
0

whose expressions are given in [85].
Allowing τ to vary is equivalent to replacing τ with t in equations (3.3.4) and (3.3.5).

Also, larger ∆x0 implies larger Mφi(x0,∆x0, t) and Mψ j(x0,∆x0, t), since the maximum is
taken over a larger set.

3.3.3 Optimization Problem for the Error Bound

The question of finding a numerical error bound for the first-order trajectory approx-
imation (relative to the true perturbed trajectory), or equivalently of quantifying the
higher-order remainder of the first-order approximation, reduces to finding the entry-
wise maximum absolute value for second-order trajectory sensitivities (at each time in-
stant) corresponding to all possible trajectories originating from the initial condition set
X0 := {x̃0 ∈ Rn

∣∣∣x0 − ∆x0 ≤ x̃0 ≤ x0 + ∆x0}. This problem can be written explicitly as the
following optimization,

(P1) Mφi(t) = max
x̃0∈X0

1≤k≤l≤n

∣∣∣∣{∂2φi(x̃0, t)
∂x2

0

}
k,l

∣∣∣∣
Mψ j(t) = max

x̃0∈X0
1≤k≤l≤n

∣∣∣∣{∂2ψ j(x̃0, t)

∂x2
0

}
k,l

∣∣∣∣
∀i = 1, . . . ,n, ∀ j = 1, . . . ,m.

Although this establishes a theoretical form for the error bound, the global optimal
solution to (P1) is hard to obtain. Firstly, the second-order trajectory sensitivity infor-
mation is obtained by numerically integrating a DAE model, as given in [85]. Hence, no
analytical form of the function is available. Secondly, at each time instant t, for each of
the n dynamic states and each of the m algebraic states, we need to solve n(n + 1)/2 global
optimization problems. Such computational difficulty is to be expected, since in general
it is hard to quantify the error resulting from a linear approximation of its nonlinear coun-
terpart. Existing methods in [96] and the recent development of [97] for formally solving
this problem involve enforcing global conditions on a Lipschitz constant of the vector field
or on the logarithmic norm of the Jacobian matrix, and finding the global maximum of a
non-convex optimization problem. The resulting error bounds from such methods also
tend to be overly conservative.

To solve the non-convex problem (P1), we can use sampling-falsification methods such
as described in [87]. Firstly, we can select a few samples in the space of initial conditions,
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and evaluate their second-order trajectory sensitivities, resulting in an initial estimate
for the bound. Secondly, the previously estimated bounds are iteratively enlarged by
searching for other initial conditions to falsify the prior bounds. However, numerical test
cases show that computing only the nominal trajectory together with the trajectories for
the extreme vertices (which can be viewed as the coarsest grid for the uncertain set X0)
suffices to provide an accurate estimate for the error bound. In practice, if k out of n states
have uncertain initial conditions, we can simply evaluate 2k + 1 trajectories (2k vertex
cases and one nominal case) and find the maximum second-order trajectory sensitivities
at each time instant. This serves as an efficiently estimated error bound for the first-order
trajectory approximation. Following this idea, the optimization program (P1) is reduced
to the tractable problem,

(P2) M̂φi(t) = max
x̃0∈(Vert(X0)∪x0)

1≤k≤l≤n

∣∣∣∣{∂2φi(x̃0, t)
∂x2

0

}
k,l

∣∣∣∣
M̂ψ j(t) = max

x̃0∈(Vert(X0)∪x0)
1≤k≤l≤n

∣∣∣∣{∂2ψ j(x̃0, t)

∂x2
0

}
k,l

∣∣∣∣
∀i = 1, ...n, ∀ j = 1, ...m,

where the notation Vert(X0) denotes the operation of extracting the finite set of vertices of
the polytope X0.

3.4 Quantify External Disturbances

We wish to quantify the flow excursion caused by a bounded time-varying disturbance,
relative to the noise-free nominal trajectory. A well-known result for ordinary differential
equation (ODE) systems is based on knowledge of the Lipschitz constant of the vector
field, see for example, Theorem 3.4 in [55]. We first generalize this result to DAE systems
and then establish an improved result based on the logarithmic norm.

Referring to equation (3.2.1), by the Implicit Function Theorem and Assumption 6,
there exists (locally) a unique function ϕ such that y = ϕ(x). Furthermore, we make the
following assumption.

Assumption 7. There exists a function ϕ : Dx →Dy, whereDx ⊂ Rn andDy ⊂ Rm, such that
g(x, ϕ(x)) = 0, and ϕ is Lipschitz with constant Lϕ.

The existence of such a “global” implicit function holds under various conditions
[98, 99], for example, if Dx is simply connected together with some technical conditions
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as discussed in Theorem 4.2 of [99]. Inserting this implicit function into equation (3.2.1a)
yields ẋ = f (x, y) = f (x, ϕ(x)) , h(x).

We derive the following Corollary for DAE systems.

Corollary 3.4.1. Let f (x, y) be Lipschitz in x and y on Dx × Dy with Lipschitz constants Lx

and Ly, where Dx × Dy ⊂ Rn
× Rm is an open connected set. Let (x(t), yx(t)) be the solution of

ẋ = f (x, y), 0 = g(x, y), x(t0) = x0, and (z(t), yz(t)) be the solution of ż = f (z, y) + w(t), 0 =

g(z, y), z(t0) = z0, such that (x(t), yx(t)) ∈ Dx × Dy, (z(t), yz(t)) ∈ Dx × Dy for all t ∈ [t0, t1].
Suppose that ‖w(t)‖ ≤ w, ∀t ∈ [t0, t1] for some w > 0. Based on Assumption 7, we further assume
that yx = ϕ(x), and yz = ϕ(z). Let Lh = Lx + LyLϕ, where Lϕ is the Lipschitz constant of the
implicit function ϕ. Then, ‖x(t) − z(t)‖ ≤ ‖x0 − z0‖ exp[Lh(t − t0)] + w

Lh

(
exp[Lh(t − t0)] − 1

)
and∥∥∥yx(t) − yz(t)

∥∥∥ ≤ Lϕ‖x0 − z0‖ exp[Lh(t − t0)] + Lϕ w
Lh

(
exp[Lh(t − t0)] − 1

)
.

Proof. Using the implicit function ϕ in the differential equations gives ẋ = f (x, y) =

f (x, ϕ(x)) , h(x), ż = f (z, y) + w(t) = f (z, ϕ(z)) + w(t) , h(z) + w(t). Since the implicit
function ϕ and the vector field f (·, ·) are Lipschitz, the composite function h is also Lips-
chitz. For any two points x1, x2 ∈ Dx,

h(x1) − h(x2)
x1 − x2

=
f (x1, ϕ(x1)) − f (x2, ϕ(x2))

x1 − x2

=

(
f (x1, ϕ(x1))− f (x2, ϕ(x1))

)
+
(

f (x2, ϕ(x1))− f (x2, ϕ(x2))
)

x1 − x2

≤ Lx +
f (x2, ϕ(x1)) − f (x2, ϕ(x2))

ϕ(x1) − ϕ(x2)
·
ϕ(x1) − ϕ(x2)

x1 − x2

≤ Lx + LyLϕ. (3.4.1)

Therefore, the Lipschitz constant Lh for the composite function h is upper bounded by
Lx + LyLϕ. Apply Theorem 3.4 in [55] and the results follow. Furthermore, we have∥∥∥yx(t) − yz(t)

∥∥∥ =
∥∥∥ϕ(x(t)) − ϕ(z(t))

∥∥∥ ≤ Lϕ‖x(t) − z(t)‖. �

Next, we improve Theorem 3.4 in [55] and Corollary 3.4.1 by deriving a tighter bound,
using the logarithmic norm instead of Lipschitz constants. Property 1 in Section 3.2.2
indicates that the logarithmic norm of the Jacobian matrix is guaranteed to be upper-
bounded by the Lipschitz constant of the vector field. Consequently, we obtain the
following improved result.

Theorem 3.4.1. Let the Jacobian matrix fx satisfy µ( fx(x)) ≤ c, ∀x ∈ D, where D ⊂ Rn is an
open convex set. Let x(t) be the solution of ẋ = f (x), x(t0) = x0, and z(t) be the solution of
ż = f (z) + w(t), z(t0) = z0, such that x(t), z(t) ∈ D for all t ∈ [t0, t1]. Suppose that ‖w(t)‖ ≤ w,
∀t ∈ [t0, t1] for some w > 0. Then, ‖x(t)−z(t)‖≤‖x0−z0‖ exp[c(t − t0)] + w

c

(
exp[c(t − t0)] − 1

)
.
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Proof. Based on the fundamental theorem of calculus,

ẋ − ż = f (x) − f (z) − w(t)

=

∫ 1

0
fx(z + s(x − z))(x − z)ds − w(t)

=

∫ 1

0
fx(z + s(x − z))ds · (x − z) − w(t). (3.4.2)

Let x − z = e so that ė =
∫ 1

0
fx(z + se)ds · e − w(t). By convexity ofD and s ∈ [0, 1], we have

(z + s(x − z)) ∈ D,∀t ∈ [t0, t1]. Since µ( fx(x)) ≤ c, ∀x ∈ D, apply Proposition 1 of [97] and
the subadditivity property of the logarithmic norm to give D+

t ‖e‖ ≤ c‖e‖ + ‖w‖ ≤ c‖e‖ + w.
The notation D+

t is the upper right-hand Dini derivative with respect to time t. Based on
Duhamel’s formula and comparison lemma, we obtain,

‖e(t)‖ ≤ ‖e(t0)‖ exp[c(t − t0)] +

∫ t

t0

exp[c(t − τ)] ·wdτ

= ‖e(t0)‖ exp[c(t − t0)] +
w
c

(
exp[c(t − t0)] − 1

)
, (3.4.3)

where e(t0) = x0 − z0. �

Theorem 3.4.1 can be generalized to DAE systems.

Corollary 3.4.2. Let the Jacobian matrix ∂h
∂x (x, y) =

∂ f
∂x +

∂ f
∂y

∂y
∂x satisfy µ(∂h

∂x (x, y)) ≤ ch, ∀(x, y) ∈
Dx × Dy, where Dx × Dy ⊂ Rn

× Rm is an open convex set. Let (x(t), yx(t)) be the solution of
ẋ = f (x, y), 0 = g(x, y), x(t0) = x0, and (z(t), yz(t)) be the solution of ż = f (z, y) + w(t), 0 =

g(z, y), z(t0) = z0, such that (x(t), yx(t)) ∈ Dx × Dy, (z(t), yz(y)) ∈ Dx × Dy for all t ∈ [t0, t1].
Suppose that ‖w(t)‖ ≤ w, ∀(t) ∈ [t0, t1] for some w > 0. Based on Assumption 7, we further
assume that yx = ϕ(x), and yz = ϕ(z). Let Lh = Lx + LyLϕ, where Lϕ is the Lipschitz constant
of the implicit function ϕ. Then, ‖x(t) − z(t)‖ ≤ ‖x0 − z0‖ exp[ch(t − t0)] + w

ch

(
exp[ch(t − t0)]− 1

)
and

∥∥∥yx(t) − yz(t)
∥∥∥ ≤ Lϕ‖x0 − z0‖ exp[ch(t − t0)] + Lϕw

ch

(
exp[ch(t − t0)] − 1

)
.

Proof. Use similar techniques as in the proof for Corollary 3.4.1 and Theorem 3.4.1. �

Note that in using these results, we require the global information Lx,Ly,Lϕ (Corol-
lary 3.4.1), c (Theorem 3.4.1), and ch(Corollary 3.4.2). Furthermore, the terms Lϕ and ch

require special treatment because they involve the implicit function ϕ. Differentiating the
algebraic equation (3.2.1b) with respect to x yields ∂g

∂x +
∂g
∂y
∂y
∂x = 0, which gives,

∂y
∂x

= −
(∂g
∂y

)−1∂g
∂x
. (3.4.4)
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For implementation, these terms can be computed off-line and stored for later use.
However, global optimizations need to be solved. For example, computing ch requires
solving the non-convex problem,

(P3) ch = max
(x,y)∈Dx×Dy

µ
(∂h
∂x

(x, y)
)
.

We can either resort to global optimization solvers or estimate the value by sample-based
methods.

3.5 Reach-Set Computation

Designing tractable algorithms for computing reach-sets for nonlinear systems is a chal-
lenging problem. In this section, we use results from Sections 3.3 and 3.4 to propose an
efficient method for computing a sufficiently accurate reach-set estimate for nonlinear
DAE systems with uncertain initial conditions and external disturbances.

3.5.1 Reach-Set with Uncertain Initial Conditions

The orthotope X0 = {x̃0 ∈ Rn
∣∣∣x0 − ∆x0 ≤ x̃0 ≤ x0 + ∆x0} of all possible initial conditions

can be equivalently characterized as X0 := x0 ⊕ B, where x0 is the nominal initial point
and B := {∆x̃0 ∈ Rn : −∆x0 ≤ ∆x̃0 ≤ ∆x0}. In [19], it is shown that trajectory sensitivities
can be used to approximate the reach-set efficiently, by locating worst-case vertices of the
uncertainty set. Under the affine transformations (3.2.5), the orthotope B is shifted and
distorted to form time-dependent parallelotopes:

P
φ(t) = φ(x0, t) +

∂φ(x0, t)
∂x0

B, (3.5.1a)

P
ψ(t) = ψ(x0, t) +

∂ψ(x0, t)
∂x0

B. (3.5.1b)

Since the orthotope B is convex, the affine transformation (3.2.5) maintains its convexity.
Moreover, the vertices of B are mapped to the vertices of Pφ(t) and Pψ(t), which define
the approximated boundaries of the reach-set. However, there is no guarantee that such
approximated boundaries will cover the true reach-set since the first-order trajectory
approximations possess error. By taking advantage of the established error bounds, we
can compute an over-approximation of the reach-set. In practice, the error bound is
estimated from the simplified problem (P2), which increases the confidence of covering
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the true reach-set.
It follows that we only need to bound approximation error for the extreme vertex cases

of Pφ(t), Pψ(t). Define the time-dependent error bound tubes as,

E
φ(t) , {ẽ(t) ∈ Rn

∣∣∣|ẽi(t)| ≤
Mφi(t)

2
‖∆x0‖

2
1}, (3.5.2a)

E
ψ(t) , {ẽ(t) ∈ Rm

∣∣∣|ẽ j(t)| ≤
Mψ j(t)

2
‖∆x0‖

2
1}, (3.5.2b)

∀i = 1, . . . ,n, ∀ j = 1, . . . ,m,

where ∆x0 denotes the maximum deviations from the nominal initial point x0, i.e. the
vertices of X0. Theoretically, the terms Mφi and Mψi are computed from (P1). In practice,
we instead use the M̂φi and M̂ψi from (P2).

Consider uncertain initial conditions x̃0 within the set X0, and define the reach-set of
all perturbed trajectories x(t) = φ(x̃0, t), y(t) = ψ(x̃0, t) originating from X0 to be, X(t)

Y
x(t)

 =

 φ(X0, t)
ψ(X0, t)

 , {
x(t) ∈ Rn

y(t) ∈ Rm

∣∣∣∣ ẋ(t) = f (x(t), y(t))
0 = g(x(t), y(t)), x(t0) ∈ X0

}
. (3.5.3)

Based on the previous reasoning, we have the following over-approximation of the
reach-set X(t),Yx(t),

X(t) ⊂ Pφ(t) ⊕ Eφ(t), (3.5.4a)

Y
x(t) ⊂ Pψ(t) ⊕ Eψ(t), (3.5.4b)

where ⊕ denotes Minkowski sum. Since Pφ(t), Pψ(t), Eφ(t), and Eψ(t) are polytopes
represented by vertices, their Minkowski sum can be converted to taking combinations of
vertices and computing their convex hull, which is relatively tractable.

3.5.2 Reach-Set with External Disturbances

By using results from Section 3.4, we are also able to quantify the effects of external
disturbances. By Corollary 3.4.2, we know that for every initial point x0 ∈ X0, the trajectory
(x(t), yx(t)), x(t0) = x0 and (z(t), yz(t)), z(t0) = x0 have the relationship,

‖x(t) − z(t)‖ ≤
w
ch

(
exp[ch(t − t0)] − 1

)
, (3.5.5a)∥∥∥yx(t) − yz(t)

∥∥∥ ≤ Lϕ
w
ch

(
exp[ch(t − t0)] − 1

)
, (3.5.5b)
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which implies the trajectories z(t), yz(t) must lie within the tubes of time-varying radius
w
ch

(
exp[ch(t − t0)]− 1

)
, Lϕw

ch

(
exp[ch(t − t0)]− 1

)
around the disturbance-free trajectories x(t),

yx(t), respectively. Define the tubes as:

T
φ(t),

{
ξ̃(t)∈Rn

∣∣∣∥∥∥ξ̃(t)
∥∥∥ ≤ w

ch

(
exp[ch(t − t0)]−1

)}
, (3.5.6a)

T
ψ(t),

{
ξ̃(t)∈Rm

∣∣∣∥∥∥ξ̃(t)
∥∥∥ ≤ Lϕ

w
ch

(
exp[ch(t − t0)]−1

)}
, (3.5.6b)

where the vector norm is the same as the one used for defining the logarithmic norm.
Next consider all initial points in the set X0. In equation (3.5.3) we have defined the

reach-set of all disturbance-free trajectories originating fromX0 to beX(t),Yx(t). Similarly,
defineZ(t),Yz(t) to be the reach-set for system with disturbances,Z(t)

Y
z(t)

,{ z(t) ∈ Rn

y(t) ∈ Rm

∣∣∣∣∣ ż(t) = f (z(t), y(t)) + w(t)
0 = g(z(t), y(t)), z(t0) ∈ X0

}
. (3.5.7)

From equation (3.5.5), we know that the set of noisy trajectories Z(t), Yz(t) is over-
bounded by the Minkowski sum,

Z(t) ⊂ X(t) ⊕ T φ(t), (3.5.8a)

Y
z(t) ⊂ Yx(t) ⊕ T ψ(t). (3.5.8b)

Together with equation (3.5.4), we obtain the final expression for an estimated over-
approximation of the reach-set,

Z(t) ⊂ Pφ(t) ⊕ Eφ(t) ⊕ T φ(t), (3.5.9a)

Y
z(t) ⊂ Pψ(t) ⊕ Eψ(t) ⊕ T ψ(t), (3.5.9b)

wherePφ(t),Pψ(t) are defined in equation (3.5.1),Eφ(t),Eψ(t) are defined in equation (3.5.2),
and T φ(t), T ψ(t) are defined in equation (3.5.6).

3.6 Simulation Results

We demonstrate the proposed reach-set computation approach through a single machine
infinite bus (SMIB) power system, as shown in Fig. 3.1. The DAE model for the SMIB
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Figure 3.1: Single machine infinite bus power system.

system is given by:

d
dt

x1

x2

 =


x2

1
M

(
Pm −

V∞Vt

X
sin(x1) −Dx2

)
+ w(t)

(3.6.1a)

0 =
(V∞Vt

X
sin(x1)

)2
+

(V2
t

X
− y

)2
−

V2
∞

V2
t

X2 . (3.6.1b)

The dynamic states are x = [x1, x2]ᵀ = [δ, ω]ᵀ, where δ is the rotor angle and ω is the
angular velocity. The algebraic state is y = Q, the reactive power generation. V∞ is the
constant voltage magnitude of the infinite bus, Vt is the voltage magnitude of the generator
bus, M is the inertia constant, Pm is the mechanical power, X is the line reactance, and
D is the damping. An unknown external disturbance term w(t) is added to the second
differential equation. It is modeled as a uniformly distributed random variable, with a
bound of ‖w(t)‖ ≤ w = 0.005. The vector norm is defined as ‖·‖ =

√
(·)ᵀP(·), where P

solves the Lyapunov equation AᵀP + PA + Q = 0, where Q = I, and A is the Jacobian
matrix evaluated at the stable equilibrium. With this vector norm, the logarithmic norm is
defined accordingly as, µ(J) = λmax

(
(P1/2 JP−1/2)+(P1/2 JP−1/2)ᵀ

2

)
, where λmax represents the largest

eigenvalue.
The system parameters are set to V∞ = 1 pu, Vt = 1 pu, M = 7.3784 pu, Pm =

3.1831 pu, X = 1/6 pu, and D = 1 pu. For the nominal case, initial conditions are
x0 = [0.55, 0.15]ᵀ, giving y0 = 0.8849. The implicit trapezoidal method was adopted to
numerically integrate the DAE models describing the dynamics of states, the first- and
second-order sensitivities. When including the stochastic disturbance, the trapezoidal
integration method was modified as described in [100] to approximate the integration of
the stochastic differential equation. We assume that the initial condition for rotor angle δ
is uncertain and lies within the range [0.5, 0.6]. The logarithmic norm is estimated off-line
as µ(J(x, y)) ≤ ch = −0.0104, over the operating range.

Figure 3.2 shows the reach-set when there are only initial condition uncertainties but
no external disturbance. The red solid lines indicate the reach-set estimated using the
trajectory sensitivity (TS) method. The blue dash-dot lines give the theoretical bound de-

54



rived using the logarithmic norm (LN). The green dashed lines are eleven true trajectories
with their initial conditions uniformly distributed over the initial condition set. It can be
observed that all trajectories are contained within the estimated and theoretical bounds.
Moreover, the reach-set estimation given by the trajectory sensitivity method is much
tighter than the theoretical bound, while still encompassing all the true trajectories.
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Figure 3.2: Reach-set estimates based on the trajectory sensitivity and logarithmic norm
methods for uncertain initial conditions.

Figure 3.3 presents the case when there are only external disturbances but no initial
condition uncertainty. The bound provided by the logarithmic norm is shown by blue
lines. The green dashed lines are 30 randomly generated trajectories.

Finally, we consider the case when there are both uncertain initial conditions and ex-
ternal disturbances. The reach-set estimated by the trajectory sensitivity plus logarithmic
norm (TS+LN) method and by the logarithmic norm only are presented in Fig. 3.4. The
red solid lines refer to the bound given by the TS+LN method and the blue dash-dot lines
refer to the bound given by the logarithmic norm. The green dashed lines are 55 ran-
domly generated true trajectories emanating from the initial condition set and subjected
to external disturbances. It can be observed that the reach-set estimation given by the
TS+LN method is able to cover all realizations without being overly conservative, espe-
cially when the simulation horizon was quite short. The theoretical bound provided by
the logarithmic norm is guaranteed to enclose all the realizations but is more conservative.
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Figure 3.3: Reach-set estimate based on the logarithmic norm method under external
disturbances.
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Figure 3.4: Reach-set estimates based on the TS+LN and logarithmic norm methods for
uncertain initial conditions and external disturbances.

3.7 Chapter Conclusion

This chapter proposed an efficient approach to constructing a sufficiently accurate es-
timation of the reach-set of nonlinear DAE systems, under uncertain initial conditions
and/or parameters, and external disturbances. This approach is based on establishing
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an error bound for the trajectory sensitivity method, as well as characterizing the effects
of external disturbances using the logarithmic norm. Although the bound derived from
the logarithmic norm is guaranteed to enclose the true reach-set, the trajectory sensitivity
method provides a much less conservative reach-set estimation.
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CHAPTER 4

Modeling and Control of Inverter-Based
Resources for Autonomous Grid-Interconnection

4.1 Chapter Introduction

Due to environmental and sustainability considerations, power systems are currently
embracing a significant transition from fossil-fuel-based synchronous generation to re-
newable and distributed energy resources (DERs) [7]. It is well-known that the physics
of conventional synchronous machines guarantee an instantaneous inertial response to
power imbalance, which is a favorable feature for power systems. DERs such as fuel
cells, solar photovoltaics (PVs), and wind turbines, however, are typically connected to
power systems through power electronics, which possess drastically different dynamic
characteristics compared to synchronous machines. Careful control and coordination of
inverters are necessary to ensure a successful transition to future inverter-based smart
grids.

Microgrids offer a promising direction to provide coordinated control of DERs with
higher flexibility and efficiency, thereby increasing the penetration level of renewables in
power systems [101]. Microgrids, defined as small-scale power systems which aggregate
local DERs and loads, are interfaced with the main grid through a single point of common
coupling (PCC). The structure of a generic inverter-based microgrid is shown in Fig. 4.1.
From the point of view of the main grid, the microgrid can be treated as a single controllable
entity, which can operate either in grid-connected mode or in islanded mode, i.e., as a
stand-alone system. In grid-connected mode, the main grid dominates the system-level
dynamics, and any microgrid generation/load imbalance is satisfied by the main grid. In
islanded mode, the microgrid is responsible for establishing the voltage and frequency,
and generates the power needed to supply the local loads and losses.

Microgrids are expected to have the capability to switch between grid-connected and
islanded operation, upon the opening and reclosing of the circuit breaker at the PCC.
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Figure 4.1: Structure of a generic inverter-based network.

Such mode switching is typically achieved through a reconfiguration within the inverter
control scheme [102, 103]. In grid-connected operation, the inverter is controlled using
a grid-following scheme [28], where the inverter supplies pre-determined active and
reactive power, while tracking the terminal voltage set by the main grid. In islanded
operation, the inverter is controlled using a grid-forming scheme [29, 31], which estab-
lishes terminal voltage according to voltage magnitude and frequency set-points. Other
inverter control techniques exist in the literature [104,105] that avoid switching of inverter
control schemes. However, they rely on complex control architectures and are difficult to
implement in practice. In [105], a modified voltage-based droop control is developed in
order to achieve smooth switching between grid-connected and islanded operation, which
requires communication and selecting one particular inverter as the synchronization unit.

In this chapter, we present a novel inverter control scheme that can be used in mi-
crogrids to achieve autonomous mode switching between grid-connected and islanded
operations. The idea of the proposed controller is motivated by a previous control scheme
in [106]. The controller aims to regulate voltage magnitude at the inverter terminal bus and
the active power generation. A phase-locked loop (PLL) [30] is used for tracking grid fre-
quency and angle in grid-connected mode and for achieving synchronization in islanded
mode. Droop characteristics are enforced to achieve power sharing between inverters. We
design lower-level cascaded voltage and current controllers, and include the fast dynam-
ics of the output filter and the line dynamics when modeling the inverter-based network.
The proposed controller achieves islanding (i.e., the transition from grid-connected to
islanded mode) smoothly due to the voltage forming and power-sharing capability. Re-
connection (i.e., the transition from islanded to grid-connected mode) is achieved due to
the fact that the voltage in the microgrid is controlled close to the nominal value and the
PLL re-synchronizes the microgrid to the main grid.
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The chapter is organized as follows: Sections 4.2 presents preliminaries on rotational
reference frames and modeling considerations. The proposed inverter model and control
scheme are given in Section 4.3. Section 4.4 provides the model of the inverter-based
network. The steady-state characteristics of the inverter-based network in both grid-
connected and islanded modes are analyzed in Section 4.5. Small-signal stability and
simulation results are given in Section 4.6. Conclusions are provided in Section 4.7.

4.2 Preliminaries

Preliminaries on rotational reference frames and the transformations between representa-
tions with respect to different frames are introduced in this section.

4.2.1 Rotational Reference Frames

For ease of modeling and control, rotational reference frames, referred to as dq-frames, are
adopted for inverters to transform three-phase sinusoidal quantities into dq-quantities [26].
Each inverter adopts a local rotational dq-frame that rotates at a frequency defined locally.
All physical and control variables internal to the inverter are represented with respect
to its local dq-frame. The rotational speed of the dq-frame for inverter i is denoted by
(ωpll,i + ω0)ωb rad/s, where ωb is the base frequency, ω0 = 1 p.u. is the nominal frequency,
and ωpll,i will be determined by the corresponding phase-locked loop (PLL) block as fur-
ther explained in Section 4.3. A pictorial explanation of the rotational reference frames is
given in Fig. 4.2.

Figure 4.2: Diagram of local and global rotational reference frames.

The modeling of the interconnected network demands a global rotational reference
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frame, denoted by the DQ-frame. At the interface of the inverter terminal to the network,
the local variables are transformed to the global reference frame. We denote the rotational
speed of the DQ-frame to be ωgωb rad/s. In theory, the value of ωg can be selected
arbitrarily. However, there are two frequencies that are most useful, i.e., the nominal
frequency ω0 and the steady-state frequency ωss

pll + ω0 at which the system operates in
steady state.

In normal power system operation, the system frequency at steady state should be
quite close to the nominal frequency. Therefore, the nominal case where the system
operates at the nominal frequency is an important case to be analyzed. In the nominal
case, the rotational speed of the global reference frame should be chosen as the nominal
frequency ω0ωb rad/s, and we refer to this specific reference frame as the DQ-frame.

In general case, the actual system frequency at steady state may not be the nominal
frequency, that is, ωss

pll , 0. The angles of the system will never settle to a steady state

relative to the DQ-frame, but rather will continually vary over time by ωss
pllωbt rad relative

to the DQ-frame. Note though that all angle differences will achieve steady state. It is
desirable to express converged conditions as an equilibrium point. This can be achieved by
considering a reference frame, denoted by the D’Q’-frame, that is rotating at the constant
frequency (ωss

pll + ω0)ωb rad/s. The D’Q’-frame is rotating at ωss
pllωb rad/s relative to the

DQ-frame. Then angles in the DQ-frame and D’Q’-frame are related by,

θDQ = θD’Q’ + ωss
pllωbt. (4.2.1)

The formulation based on the D’Q’-frame requires the knowledge of the steady-state
frequencyωss

pll, which can be obtained from performing dynamic simulation and observing
the steady-state frequency, or by solving a set of nonlinear equations describing the
equilibrium condition. The model is useful since it is normal in power system simulation
to start from equilibrium (i.e., the power flow solution) and introduce a disturbance.
The steady-state frequency ωss

pll is obtained as part of that equilibrium solution. Other
formulations exist that are based on choosing one of the local dq-frame of a specific inverter
as the global reference frame [29]. Since we prefer a “plug-and-play” scheme where the
inverters serve equal roles, such formulations are not considered. The remaining results
of this chapter are firstly presented based on the general global DQ-frame that rotates at
the speed ωgωb rad/s. The special cases when ωg = ω0 and ωg = ωss

pll + ω0 will also be
discussed.
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4.2.2 Transformation of Variables in Local and Global Reference Frames

Define the rotation matrix R(θ) parameterized by the angle θ,

R(θ) =

cosθ − sinθ
sinθ cosθ

 , (4.2.2)

where θ denotes the angle of a local dq-frame with respect to the global DQ-frame, as
depicted in Fig. 4.2. We have that,

R(θ)−1 = R(−θ). (4.2.3)

For a variable y, let yDQ = [yD, yQ]ᵀ and ydq = [yd, yq]ᵀ denote the representation of
y with respect to the global DQ-frame and the local dq-frame, respectively. Then the
transformation between yDQ and ydq is expressed as,yD

yQ

 = R(θ)

yd

yq

 , (4.2.4)yd

yq

 = R(−θ)

yD

yQ

 . (4.2.5)

4.3 Inverter Model and Control Scheme

This section describes the proposed inverter model and inverter control scheme. The
inverter control scheme is demonstrated in Fig. 4.3. This controller aims to establish the
voltage magnitude at the inverter terminal and the active power delivered by the inverter.
It consists of the power calculation and filtering block (not shown in Fig. 4.3), the PLL,
the P-ω droop and Q-V droop, the active power controller, and the cascaded voltage and
current controllers.

4.3.1 Power Calculation and Filtering

The active and reactive power are computed based on dq-frame voltage and current.
The computed active and reactive power are filtered through a low-pass filter to remove
high-frequency components of the electrical quantities. The equations are given by,

p = vd
t id

t + vq
t iq

t (4.3.1)

q = vq
t id

t − vd
t iq

t (4.3.2)
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Figure 4.3: Schematic of the inverter model and control blocks.

˙̃p = ωc(p − p̃) (4.3.3)

˙̃q = ωc(q − q̃), (4.3.4)

where p and q are the instantaneous active and reactive power measured at the inverter
terminal bus, i.e., where the inverter is connected to the grid, p̃ and q̃ are the filtered
version of the active and reactive power, vd

t and vq
t are the d- and q-components of the

voltage at the inverter terminal bus, and id
t and iq

t are the d- and q-components of the
current at inverter terminal bus. The parameter ωc is the cut-off frequency of the low-pass
filter.

4.3.2 Phase-Locked Loop

In order to connect the inverter to the grid, it is necessary to establish a local AC waveform
that tracks the terminal bus voltage. This is typically achieved using a PLL, where a
modulated signal θpll, i.e., the PLL angle, serves as an estimate of the terminal voltage
angle θt. Note that θt is unknown to the inverter while θpll is accessible to the inverter
for control purpose. Also, the PLL frequency ωpll is a filtered version of the terminal
bus frequency and is also available for inverter control. The frequency variables are in
per unit, and represent deviations of the actual frequency from the nominal frequency
ω0 = 1 p.u..

The PLL dynamics can be written in the form,

ξ̇ = θt − θpll (4.3.5)

ωpll = Kp,pll(θt − θpll) + Ki,pllξ (4.3.6)

θ̇pll = (ωpll + ω0 − ωg)ωb (4.3.7)

0 = vD
t sin(θt) − vQ

t cos(θt), (4.3.8)
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where ξ is the integral state, ωpll is the PLL frequency, and θpll is the PLL angle. As shown
in Fig. 4.4, θpll establishes the angle of the local dq-frame with respect to the global DQ-
frame rotating at speed ωgωb rad/s. Fig. 4.4 also shows the real and imaginary parts of vt

which are denoted by vD
t and vQ

t , respectively, in the global DQ-frame. Their counterparts
in the local dq-frame are denoted by vd

t and vq
t , respectively. The angle θt is related to vD

t

and vQ
t by equation (4.3.8). The parameters Ki,pll and Kp,pll are the integral and proportional

gains.

Figure 4.4: Diagram showing different vectors in the inverter model.

The PLL dynamics seek to drive θt − θpll to zero. As can be seen from Fig. 4.4, that is
equivalent to aligning the d-axis of the local dq-frame with the terminal voltage. Therefore,
at steady state, vq

t = 0 and vd
t = |vt|, the magnitude of vt.

Typically, fast PLL dynamic response means fast phase locking. However, the fast
response also makes the PLL susceptible to noise. Therefore, a careful trade-off is required
to achieve a balance between fast response and suppression of noise.

4.3.3 Active Power Control and P-ω Droop

The P-ω droop characteristic is implemented where the term “droop” is standard in the
power systems community and refers to proportional control. We enforce,

p∗ = p0
−mpωpll, (4.3.9)

where p0 is the external reference value for active power, ωpll is the PLL frequency, the
parameter mp is the P-ω droop constant, and p∗ is the resulting set-point for active power,
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based on the droop characteristic. By properly choosing the droop constants for the
inverters, for example, based on the inverter capacity, we can achieve load sharing when
there is a power imbalance in the power system, just as in the case with conventional
synchronous machines.

We then use an integral controller to drive the filtered active power p̃ to its set-point
p∗. This is achieved through,

δ̇ = Ki,p(p∗ − p̃), (4.3.10)

where Ki,p is the integral gain, and δ is the angle between the d-axis of the dq-frame and
the inverter internal bus voltage vm. Because the angle difference δ strongly influences the
generated power p, it can be used to drive the active power to its set-point value.

4.3.4 Q-V Droop

A droop characteristic is also implemented between reactive power and voltage magni-
tude,

v∗ = v0
−mq(q0

− q̃), (4.3.11)

where v0 is the external reference value for the voltage magnitude of the inverter terminal
bus, q0 is the external reference value for reactive power, q̃ is the filtered reactive power,
mq is the reactive power droop constant, and v∗ is the resulting set-point for the terminal
voltage magnitude.

4.3.5 Inner-Loop Cascaded Voltage and Current Controllers

Faster inner-loop cascaded voltage and current controllers are widely used in inverter
control. They are designed to suppress high-frequency disturbances and damp the output
LC filter [29]. In the proposed inverter control scheme, we design a voltage and a current
controller, for controlling the d-component quantities.

The voltage controller is described by,

φ̇d = v∗ − vd
t (4.3.12)

îd
s = kv

p(v∗ − vd
t ) + kv

iφd + kv
f id

t − (ωpll + ω0)cfv
q
t , (4.3.13)

where φd is the integral state, kv
p, kv

i , kv
f are the proportional gain, integral gain, and

feedforward gain, respectively. The parameter cf denotes filter capacitance in per unit.
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The current controller is described by,

γ̇d = îd
s − id

s (4.3.14)

v̂d
m = ki

p(îd
s − id

s ) + ki
iγd + ki

fv
d
t − (ωpll + ω0)lfi

q
s , (4.3.15)

where γd is the integral state, ki
p, ki

i, ki
f are the proportional gain, integral gain, and

feedforward gain, respectively. The parameter lf denotes filter inductance in per unit.
Compared to standard cascaded voltage and current controllers in the literature, we

only control the d-component variables. This reflects the novel structure of our control
scheme, which exploits angle difference δ for active power control and manipulates v̂d

m for
voltage control.

4.3.6 Inverter Modulation

The current controller provides the set-point v̂d
m for the d-component of the inverter

internal bus voltage. The active power controller provides the set-point for the inverter
internal bus angle δ (relative to the d-axis). These set-points are fed into a PWM block to
provide a modulation signal for the inverter. For simplicity, we assume that the inverter
internal bus voltage can be perfectly controlled to the set-point, so vd

m = v̂d
m. Then, we can

solve the following algebraic equations to compute |vm| and vq
m,

|vm| cos(δ) = vd
m (4.3.16)

|vm| sin(δ) = vq
m, (4.3.17)

where |vm| is the magnitude of the inverter internal bus voltage vm, and vq
m is the q-

component of vm.

4.3.7 Output LC Filter

An output LC filter is augmented to remove undesired switching-frequency components
from the output current spectrum [107]. The inductor is designed to limit the inductor
current ripple, while the capacitor and inductor work together to filter high-frequency
harmonics.

The dynamics of the output LC filter is given as follows,

i̇d
s =

ωb

lf
(vd

m − vd
t ) + ωb(ωpll + ω0)iq

s (4.3.18)
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i̇q
s =

ωb

lf
(vq

m − vq
t ) − ωb(ωpll + ω0)id

s (4.3.19)

v̇d
t =

ωb

cf
(id

s − id
t ) + ωb(ωpll + ω0)vq

t (4.3.20)

v̇q
t =

ωb

cf
(iq

s − iq
t ) − ωb(ωpll + ω0)vd

t , (4.3.21)

where idq
s is the current flowing through the inductor and idq

t is the current flowing to the
grid, as shown in Fig. 4.3. Again, vdq

m and vdq
t are the internal and terminal voltages of the

inverter, respectively. lf denotes filter inductance and cf denotes filter capacitance. Note
that the equations are written using per unit variables.

At steady state, the left-hand-sides of equations (4.3.18) to (4.3.21) are zero, and the
dynamic model of the output filter reverts to the algebraic equations,

vd
m − vd

t = −(ωpll + ω0)lfi
q
s (4.3.22)

vq
m − vq

t = (ωpll + ω0)lfid
s (4.3.23)

id
s = id

t − (ωpll + ω0)cfv
q
t (4.3.24)

iq
s = iq

t + (ωpll + ω0)cfvd
t . (4.3.25)

4.3.8 Compact Inverter Model

For analysis of the inverter-based network, the model of an individual inverter developed
in previous subsections is rewritten compactly as,

ẋ = f (x) + g(x)idq
t + Fu0, (4.3.26)

where idq
t denotes the current flowing out of the inverter, u0 = (p0, q0, v0)ᵀ collects the

external reference inputs. The vector x collects all the dynamic states in an individual
inverter, that is, x = (p̃, q̃, ξ, θpll, δ, φd, γd, i

dq
s , v

dq
t ) ∈ R11. The functions f (x), g(x), and the

matrix F are derived from the inverter model.

4.4 Network Model

In this section, we present the model for the inverter-based network, including the line
model and load model. The network topology is modeled by a weighted graph G,
consisting of node (bus) set N , and edge (branch) set E ⊆ N ×N . To model the inverter-
based network, we consider three types of nodes. The infinite bus is indexed number 0,
which represents the interface with the main grid and is viewed as a stiff voltage source
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with voltage vDQ
∞ = [1, 0]ᵀ 1. There are n ≥ 1 inverter buses collected in the index set

NI = {1, . . .n}. We consider l load buses in the network, which belong to the index set
NL = {n + 1, . . . ,n + l}. Overall, the index set can be written as N = {0} ∪ NI ∪ NL with
cardinality |N| = 1 + l + n , N. We assume that there are in total |E| = m branches in the
network.

4.4.1 Phasor-Based Line Model

In the analysis of conventional power systems with synchronous machines, phasor-based
representation is typically adopted for the network model, where fast line dynamics are
omitted and the system frequency is assumed to be the nominal frequency. We first
give the phasor-based representation of the network using line admittances. For each
branch (i, j) ∈ E that connects node i and node j, the complex weight is given by the line
admittance 2 yi j = y ji = 1/(ri j + jω0li j), where ri j is the line resistance and li j is the line
inductance. Let Y ∈ CN×N denotes the complex admittance matrix of the network 3,

Yi j =


∑

k∈Ni
yik, if i = j

−yi j, if (i, j) ∈ E

0, otherwise

where the index setNi represents the neighboring nodes connected to bus i.
Denote the nodal current injection at all buses by i = (i∞, i

ᵀ
I , i
ᵀ
L)ᵀ ∈ CN, where i∞,

iI, and iL denote the nodal current injections from the infinite bus, the inverter buses,
and the load buses, respectively. Similarly, denote the nodal voltage at all buses by
v = (v∞,v

ᵀ
I ,v
ᵀ
L)ᵀ ∈ CN, where v∞, vI, and vL denote the nodal voltage at the infinite bus,

the inverter buses, and the load buses, respectively. Note that quantities in the phasor-
based network model are represented as a complex number in the global DQ-frame. For
example, v∞ = vD

∞
+ jvQ

∞.
The phasor-based line model assumes that the network satisfies the nodal representa-

tion of the circuit equations,

i = Yv. (4.4.1)
1This is under the assumption that the infinite bus has the same frequency as the rotational speed of the

global DQ-frame. If, however, the infinite bus has a frequency ω1 , ωg, the voltage vDQ
∞ = [1, 0]ᵀ would be

assumed at the initial time t = 0 s and would rotate at a frequency (ω1 − ωg)ωb rad/s.
2Note that typically the nominal frequency is assumed when computing the line admittances. The true

system frequency at steady state, however, may not be the nominal frequency but should be quite close.
3The shunt components are neglected for simplicity of the line model.
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4.4.2 Dynamic Line Model and the Steady State

With the existence of inverter-based resources, it may be important to include the fast
line dynamics to fully investigate the dynamic interactions of inverters with the network.
The line branch ε ∈ E connecting bus i and bus j is modeled by series resistance rε and
inductance lε, with dynamic equations given by,

i̇D
ε =

ωb

lε
(vD

i − vD
j ) −

(rε
lε
ωbiD

ε − ωbωgiQ
ε

)
(4.4.2)

i̇Q
ε =

ωb

lε
(vQ

i − vQ
j ) −

(rε
lε
ωbiQ

ε + ωbωgiD
ε

)
, (4.4.3)

where iDQ
ε is the current flowing through the line branch from bus i to bus j, represented

in the global DQ-frame that rotates at speed ωgωb rad/s.
To obtain the steady-state representation that relates to the phasor-based line model,

we first discuss the nominal case, where the system operates at the nominal frequency
ω0 at steady state. In this case, we choose ωg = ω0, that is, selecting the DQ-frame as
the global reference frame. This choice leads to constant DQ-quantities at steady state.
Therefore, the left-hand-sides of equations (4.4.2) and (4.4.3) are set to zero and we revert
to the algebraic line model,

vD
i − vD

j = rεiD
ε − ω0lεiQ

ε (4.4.4)

vQ
i − vQ

j = rεiQ
ε + ω0lεiD

ε . (4.4.5)

Note that stating equations (4.4.4), (4.4.5) are satisfied for every line branch is equivalent
to stating equation (4.4.1) is satisfied in the phasor-based line model.

In general case, the system at steady state may operate at an off-nominal frequency
ω1 = ωss

pll + ω0 , ω0. In this case, the electrical quantities represented in the DQ-frame are
sinusoidal signals with frequencyω1−ω0 = ωss

pll. Their time derivatives are also sinusoidal

signals with the same frequency. In fact, recalling the definition of the DQ-quantities (i.e.,
the projections to the DQ-axes), we know that, i̇D

ε = −(ω1−ω0)ωbiQ
ε and i̇Q

ε = (ω1−ω0)ωbiD
ε .

Implementing these into the left-hand-sides of equations (4.4.2) and (4.4.3) respectively,
we obtain,

−(ω1 − ω0)ωbiQ
ε =

ωb

lε
(vD

i − vD
j ) −

(rε
lε
ωbiD

ε − ωbω0iQ
ε

)
(ω1 − ω0)ωbiD

ε =
ωb

lε
(vQ

i − vQ
j ) −

(rε
lε
ωbiQ

ε + ωbω0iD
ε

)
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Cancelling out the same terms on both sides of the equations and rearranging gives,

0 =
ωb

lε
(vD

i − vD
j ) −

(rε
lε
ωbiD

ε − ωbω1iQ
ε

)
(4.4.6)

0 =
ωb

lε
(vQ

i − vQ
j ) −

(rε
lε
ωbiQ

ε + ωbω1iD
ε

)
(4.4.7)

Further rearranging gives,

(vD
i − vD

j ) =
(
rεiD

ε − ω1lεiQ
ε

)
(4.4.8)

(vQ
i − vQ

j ) =
(
rεiQ

ε + ω1lεiD
ε

)
. (4.4.9)

Comparing equations (4.4.8), (4.4.9) back to equations (4.4.4), (4.4.5), it is clear that the
same relationships hold except that the frequency terms are changed from ω0 to ω1.

For this general case, we can select the rotational speed of the global reference frame to
beω1 = ωss

pll +ω0, that is, selecting the D’Q’-frame. At steady state, iD’
ε and iQ’

ε are constants,
and equations (4.4.2), (4.4.3) become,

vD’
i − vD’

j = rεiD’
ε − ω1lεiQ’

ε (4.4.10)

vQ’
i − vQ’

j = rεiQ’
ε + ω1lεiD’

ε . (4.4.11)

where ω1 = ωss
pll + ω0.

4.4.3 Load Model

For simplicity, constant resistive loads are considered, which gives,

vL = −diag(rL)iL, (4.4.12)

where rL is a vector collecting the value of resistive loads in per unit, and the operator
“diag” turns a vector into a diagonal matrix.

4.5 Steady-State Behavior of the Inverter-Based Network

In this section, we study the steady-state behavior of the inverter-based network. As in the
discussion in Subsection 4.4.2, two cases are considered, i.e., the nominal condition and
off-nominal condition. For illustration purposes, we assume that in the grid-connected
mode, the system operates in the nominal condition. In the islanded mode, the system is
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perturbed to an off-nominal condition.

4.5.1 Grid-Connected Operation Mode

In grid-connected mode, an infinite bus indexed by bus 0 exists in the network, represent-
ing the stiff voltage source provided by the main grid. We assume that the infinite bus
sets the nominal frequency for the network, that is, ω0 = 1 p.u.. The DQ-frame is adopted
as the global reference frame. We study the equilibrium of the grid-connected system.

To begin with, we set the reactive power droop constant of all inverters to zero, that
is, Rq = 0. In the nominal operating point, the inverter output power is p = p0, and the
terminal bus voltage magnitude is |vt| = v0.

Partition the admittance matrix Y as,

Y =


Y00 Y0I Y0L

YI0 YII YIL

YL0 YLI YLL

 .
Using relationship (4.4.12), we obtain from equation (4.4.1) that,

iI = YredvI + Y∞v∞, (4.5.1)

where,

Yred , YII − YIL

(
YLL + (diag(rL))−1

)−1
YLI

Y∞ , YI0 − YIL

(
YLL + (diag(rL))−1

)−1
YL0.

In addition, we have the constraints at inverter terminals,

|vI| = v0 (4.5.2)

Re(diag(vI)iI) = p0, (4.5.3)

where the operator | · | : Cn
→ Rn returns the magnitude of the entries of a complex vector,

the operator Re(·) : Cn
→ Rn takes the real part of the entries of a complex vector, and

the operator (·) takes entry-wise complex conjugate of a complex vector. The vectors v0

and p0 collect the external reference inputs for terminal voltage magnitude and output
active power of all inverters. Equations (4.5.2), (4.5.3) coupled with equation (4.5.1) form
the power flow equations, and we denote the power flow solution by vnom

I and inom
I ,
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represented in the DQ-frame. For each individual inverter, the solution is denoted by
the complex numbers vnom

t and inom
t , i.e., vnom

t = vD,nom
t + jvQ,nom

t and inom
t = iD,nom

t + jiQ,nom
t .

This solution corresponds to the equilibrium of the inverter-based network in the nominal
operating point in the grid-connected mode. At steady state, the PLL angle satisfies,

θnom
pll = ∠vnom

t , (DQ-frame),

Therefore, we have, vd,nom
t

vq,nom
t

 = R(−θnom
pll )

vD,nom
t

vQ,nom
t

 , (4.5.4)id,nom
t

iq,nom
t

 = R(−θnom
pll )

iD,nom
t

iQ,nom
t

 . (4.5.5)

It follows from equation (4.5.4) that vq,nom
t = 0.

The equilibrium of other dynamic states in an inverter is given by the constants,

p̃nom = p0,

q̃nom = Im(vnom
t inom

t ),

ξnom = 0,

φnom
d =

1 − kv
f

kv
i

id,nom
t ,

γnom
d =

1 − ki
f

ki
i

v0,

id,nom
s = id,nom

t − ω0cfv
q,nom
t ,

iq,nom
s = iq,nom

t + ω0cfvd,nom
t ,

δnom = ∠vnom
m , (vnom

m = vd,nom
m + jvq,nom

m in dq-frame), where

vd,nom
m = vd,nom

t − ω0lfi
q,nom
s ,

vq,nom
m = vq,nom

t + ω0lfid,nom
s .

4.5.2 Islanded Operation Mode

We then analyze the general case where the steady-state frequency differs from the nominal
frequency. The islanded inverter-based network is used as an example to illustrate the
idea, since in this mode the operating point is typically perturbed away from the nominal
frequency. In particular, the PLL frequency of inverters could converge to ωss

pll , 0. In the
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DQ-frame, the converged inverter terminal voltage and current are time-varying. The PLL
angle is also time-varying. Since it is desirable to obtain the equilibrium at convergence,
the D’Q’-frame is adopted, leading to constant quantities at steady state. We denoted the
converged inverter terminal voltage and current, with respect to the D’Q’-frame, by vss

t

and iss
t . These quantities are constant, along with the converged PLL angle θss

pll = ∠vss
t . We

have, vd,ss
t

vq,ss
t

 = R(−θss
pll)

vD’,ss
t

vQ’,ss
t

 , (4.5.6)id,ss
t

iq,ss
t

 = R(−θss
pll)

iD’,ss
t

iQ’,ss
t

 . (4.5.7)

which gives constant values vdq,ss
t , idq,ss

t . Note that the local variables represented in the
local dq-frame are constant at steady state regardless of which global reference frame is
chosen.

The equilibrium of other dynamic states in an inverter is given by the constants,

p̃ss = p0
−mpω

ss
pll,

q̃ss = Im(vss
t iss

t ),

ξss = ωss
pll/Ki,pll,

φss
d =

1 − kv
f

kv
i

id,ss
t ,

γss
d =

1 − ki
f

ki
i

v0,

id,ss
s = id,ss

t − (ωss
pll + ω0)cfv

q,ss
t ,

iq,ss
s = iq,ss

t + (ωss
pll + ω0)cfvd,ss

t ,

δss = ∠vss
m, (vss

m = vd,ss
m + jvq,ss

m in dq-frame), where,

vd,ss
m = vd,ss

t − (ωss
pll + ω0)lfi

q,ss
s ,

vq,ss
m = vq,ss

t + (ωss
pll + ω0)lfid,ss

s .

4.6 Simulation Results

We demonstrate the proposed controller using the five-bus inverter-based network as
shown in Fig. 4.1. This system is comprised of a four-bus microgrid and an infinite bus
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Table 4.1: Parameters of the Inverter.

Parameter Symbol Value Unit

Active power control integral gain Ki,p 0.2 p.u.

PLL integral gain Ki,pll 0.2 p.u.

PLL proportional gain Kp,pll 0.2 p.u.

Reference input for active power p0 0.5 p.u.

Reference input for voltage v0 1 p.u.

Reference input for reactive power q0 0.1 p.u.

Droop gain for active power mp 500 -

Droop gain for reactive power mq 0.05 -

Base value of frequency ωb 2π60 rad/s

Voltage control proportional gain kv
p 1 -

Voltage control integral gain kv
i 2 -

Voltage control feedforward gain kv
f 1 -

Current control proportional gain ki
p 1 -

Current control integral gain ki
i 2 -

Current control feedforward gain ki
f 0 -

Output filter capacitance c f 0.074 p.u.

Output filter inductance l f 0.08 p.u.

representing the main grid. In the microgrid, two inverters are connected to buses 1 and
2, and two constant resistive loads are connected to buses 3 and 4. The microgrid is
connected to the main-grid through a circuit breaker at the PCC. In the nominal operating
condition, the circuit breaker is closed and the microgrid is operated in grid-connected
mode. During an event (planned or unplanned) in the main grid, the circuit breaker is open
and the microgrid is isolated from the main grid and operates in islanded mode. When
the event in the main grid is cleared, the circuit breaker will be closed, re-connecting the
microgrid to the main grid. The small-signal stability of the inverter-based network under
nominal condition is analyzed. We discuss the dynamic behavior of the inverter-based
network, especially focusing on the transients during islanding and re-connection.

The system is modeled using per unit quantities. The two inverters have the same
parameters, as given in Table 4.1. The active power droop constants of the two inverters
were set to be the same, in order to equally share the active power load. The parameters
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Table 4.2: Parameters of the Network.

Parameter Symbol Value Unit

Nominal value of frequency ω0 1 p.u.

Line resistance rε 0.2 p.u.

Line impedance lε 0.2 p.u.

Load active power consumption p0
L 0.6 p.u.

Load reactive power consumption q0
L 0 p.u.

Infinite bus voltage vD
∞

+ jvQ
∞ 1 + j0 p.u.

Table 4.3: Nominal Operating Condition.

Variable Value Variable Value

p̃ [0.50, 0.50] q̃ [−0.22,−0.22]

ξ [0, 0] θpll [0.085, 0.085]

δ [0.042, 0.042]

φd [0, 0] γd [0.49, 0.49]

id
s [0.51, 0.51] iq

s [0.29, 0.29]

vd
t [0.98, 0.98] vq

t [0, 0]

id
ε [0.16, 0.33, 0.16, 0.33] iq

ε [0.26, 6e-3, 0.26, 6e-3]

of the network, including the line parameters and the load values are given in Table 4.2.
The network has a high R/X ratio which is typical in low voltage distribution systems.
The two resistive loads have the same value, each consuming 0.6 p.u. active power under
nominal voltage.

The network was initially set to be in the nominal condition, with the circuit breaker
closed and the devices operating in the specified conditions. The nominal condition is
computed by solving the power flow solution and is reported in Table 4.3. The entries for
inverter states collect the values for inverter 1 and inverter 2, respectively. The entries for
id
ε and iq

ε collect the values of the states of line 1-3, 1-4, 2-3, 2-4, respectively. All quantities
are expressed in per unit values, except for the angles, which are expressed in radians.

4.6.1 Small-Signal Stability

The eigenvalues of the inverter-based network for the nominal condition are shown in
Fig. 4.5. The values of the eigenvalues and the major participation factors are listed
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in Table. 4.4. The first 16 eigenvalues are largely dominated by the line dynamics and
inverter output filter dynamics, which correspond to the fast dynamics in the system
and are relatively well-separated from the other slower modes (i.e., clustered around the
origin in Fig. 4.5). The slower modes are dominated by the power filters, the active power
control, the voltage and current controls, and the PLL. The slower modes are well-damped
for the selected control parameters.
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Figure 4.5: Eigenvalues of the inverter-based network for the nominal condition.

4.6.2 Dynamic Behavior During Islanding and Re-Connection

The dynamic behavior of the inverter-based network is analyzed in this subsection. We
adopt the DQ-frame as the global reference frame to demonstrate the dynamic results.
We assume that an event occurs in the main grid and the circuit breaker is opened at time
T = 1 s. The event lasted for 2 s and the circuit breaker is signaled to close at T = 3 s. Note
that due to the symmetry of the test system, the same dynamic behavior of inverter 1 also
applies to the states of inverter 2. The dynamics of active power generated by inverter 1
or 2, consumed by load 1, consumed by load 2, and supplied by the infinite bus is shown
in Fig. 4.6 (a)-(d). The dynamics of voltage magnitude at the terminal bus of inverter
1 or 2, the load 1 bus, the load 2 bus, and the infinite bus are shown in Fig. 4.7 (a)-(d),
respectively.

Before the circuit breaker opens, the inverter-based network operates in the nominal
condition. Referring to Fig. 4.6, both inverters each supplies active power of 0.5 p.u. to the
system, and both loads each consumes 0.6 p.u. of active power, while 0.28 p.u. of active
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Table 4.4: Eigenvalues and Participation Factors of the Inverter-Based Network.

Index Eigenvalues Major participants

1, 2 −2.75e+3 ± 7.77e+3 id
s1, vd

t1, id
s2, vd

t2

3, 4 −2.37e+3 ± 7.90e+3 id
s1, vd

t1, id
s2, vd

t2

5, 6 −1.41e+2 ± 6.54e+3 iq
s1, vq

t1, iq
s2, vq

t2

7, 8 −5.11e+2 ± 6.22e+3 iq
s1, vq

t1, iq
s2, vq

t2

9, 10 −4.86e+3 ± 3.53e+2 iDQ
1-4 , iDQ

2-4

11, 12 −2.97e+2 ± 3.40e+2 iDQ
1-3 , iDQ

2-3

13, 14 −2.50e+2 ± 3.14e+2 idq
s1 , idq

s2 , iDQ
1-3 , iDQ

1-4 , iDQ
2-3 , iDQ

2-4

15, 16 −3.77e+2 ± 3.77e+2 iDQ
1-3 , iDQ

1-4 , iDQ
2-3 , iDQ

2-4

17 −52.18 p̃1, p̃2

18 −51.01 p̃1, p̃2, q̃1, q̃2

19 −46.82 p̃1, p̃2, q̃1, q̃2

20 −44.80 p̃1, p̃2, q̃1, q̃2

21 −30.13 δ1, θpll1, δ2, θpll2,

22 −26.98 δ1, θpll1, δ2, θpll2,

23, 24 −0.91 ± 0.93 φd1, γd1, φd2, γd2

25, 26 −0.75 ± 0.85 φd1, γd1, φd2, γd2

27 −1.57 δ1, δ2

28 −1.24 ξ1, ξ2

29 −0.89 ξ1, ξ2

30 −0.98 ξ1, ξ2

power is drawn from the main grid with the 0.08 p.u. surplus compensating for the loss
in distribution lines. Referring to Fig. 4.7, the voltage magnitude at inverter terminal bus
is 0.98 p.u. which is slightly different from the reference input of v0 = 1 p.u., due to the
reactive power droop characteristic. The voltage magnitude at load 1 bus is 1 p.u. and the
voltage magnitude at load 2 bus is 0.92 p.u. in the nominal condition.

When the circuit breaker opens at T = 1 s, the connection between bus 3 (the load 1
bus) and the infinite bus is lost. The infinite bus remains the original voltage 1∠0, but has
zero current flow, therefore providing zero power to the system. Referring to Fig. 4.7, the
voltage magnitude at the load 1 bus and load 2 bus drop instantaneously due to the loss
of connection to the infinite bus. The voltage magnitude at the inverter terminal bus also
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Figure 4.6: Dynamics of active power: (a) generated by inverter 1 or 2; (b) consumed by
load 1; (c) consumed by load 2; and (d) supplied by the infinite bus.
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Figure 4.7: Dynamics of voltage magnitude at: (a) terminal bus of inverter 1 or 2; (b) load
1 bus; (c) load 2 bus; and (d) the infinite bus.

drops immediately. The microgrid begins to operate in islanded mode. Due to the voltage
regulation capability of the proposed inverter control scheme, the voltage magnitude at
the inverter terminal bus is restored to 0.998 p.u. after transients. The voltage at the
load 1 bus and load 2 bus are also restored to 0.94 p.u. and 0.93 p.u., respectively. This
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test case demonstrates the capability of the proposed inverter control scheme to form
microgrid voltage autonomously upon loss of grid connection. Referring to Fig. 4.6, it can
be observed that when the circuit breaker is opened, the instantaneous drop of voltage
leads to the instantaneous drop of active power consumption of the loads. The active
power output of inverters, however, increase immediately to compensate for the loss
of power supply from the infinite bus. As can be observed, during the 2 s of islanded
operation, the system is perturbed away from the nominal condition and converges to a
different steady state, where the active power generation from the inverter is 0.61 p.u., the
active power consumption by load 1 and load 2 are 0.53 p.u. and 0.62 p.u., respectively.

At the instant of circuit breaker reclosing at time T = 3 s, the voltage at the infinite bus
is higher than the load 1 bus. Therefore, the load 1 bus voltage increases instantaneously
when the circuit breaker recloses4, leading to an instant increase of power consumption
by the loads. There is a surge of active power flow from the infinite bus, and thereby a
large dip of active power generation from the inverters.
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Figure 4.8: Dynamics of phase-locked loop frequency.

The dynamics of PLL frequencyωpll and PLL angleθpll are shown in Fig. 4.8 and Fig. 4.9.
It is shown that initially the PLL frequency is zero in the nominal condition during the
grid-connected mode, and the PLL angle stays at 0.085 rad, relative to the global DQ-
frame. When the circuit breaker opens at time T = 1 s, the operating point is perturbed
away from the nominal condition, and the PLL frequency converges toωss

pll = −0.085 rad/s,

4The circuit breaker is designed such that, after receiving the reclosing signal, the closing will not take
place until the voltage difference appearing across the circuit breaker has a magnitude that is less than a
certain threshold.
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Figure 4.9: Dynamics of phase-locked loop angle.

based on the active power droop characteristic. Accordingly, the PLL angle continues to
vary, until the circuit breaker is closed at time T = 3 s. At that point, the microgrid is
reconnected to the main grid, and the PLL dictates the inverter frequency and angle to
track the voltage angle established by the main grid.

4.7 Chapter Conclusion

This chapter introduces a novel inverter control scheme that can achieve autonomous
mode switching between grid-connected operation and islanded operation, and vice-
versa. In grid-connected operation, where a frequency reference exists, a phase-locked
loop estimates the grid frequency and grid bus voltage angle for the inverter to follow
and therefore achieves synchronization to the grid. In islanded operation, the inverters
themselves establish a frequency for the microgrid based on active power droop charac-
teristics and continue to supply the loads. Note that unlike existing control schemes in
the literature, such switching between grid-connected and islanded modes is achieved
autonomously, that is, there is no need to reconfigure the controller for the inverter. The
proposed control scheme can also achieve autonomous operation when multiple inverters
exist in the network, with no need for communication and central coordination. Small-
signal analysis of the inverter-based network shows that the proposed controller achieves
well-damped performance. The dynamics of the proposed controller have been exten-
sively tested and discussed. The interactions between the inverters and the network are
considered.
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CHAPTER 5

Synthesis of Safety-Certifying Distributed
Control Laws for Inverter-Based Resources

5.1 Chapter Introduction

Safety-critical system refers to a system for which the violation of safety constraints will
lead to serious economic loss or personal casualty. Power system falls into such category
considering the loss resulting from large-scale blackout and critical loads such as hospital
and process plant. Modern power system has been evolving towards distributed oper-
ation. With the increasing integration of distributed energy resources (DERs), especially
renewable resources, challenges have arisen in safely operating power systems as well
as guaranteeing stability. Microgrid is a promising direction to tackle the intermittency
and uncertainty characteristics that are intrinsic in renewable resources such as wind and
solar. An islanded microgrid is a standalone small-scale power system that groups a va-
riety of DERs, especially renewables, together with energy storages and loads to provide
better control and operation, higher efficiency and reliability [29]. It is a viable solution
for power supply to rural area. Microgrid also provides a new perspective to increase the
penetration level of renewables in modern power system. Unlike traditional power sys-
tem that has large inertia from conventional synchronous generators, DERs in a microgrid
are connected to the network through power electronic interface. Considering the stochas-
ticity in renewables and the negligible physical inertia, control of voltage and frequency
for microgrids is challenging [108]. While stability analysis and control of inverter-based
microgrids have received a lot of attention in the literature [106, 109–112], safety of the
microgrids has largely been ignored. For microgrids, the safe region can be defined for
voltage magnitudes at every node in the network. The transient voltage in a microgrid
can fluctuate by a large amount, causing serious power quality and safety issues, even
causing damages to the electrical equipment [113, 114]. Flexible power injections at the
droop-controlled inverter nodes can be utilized to stabilize the phase angle, frequency
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and voltage magnitude, as well as ensuring the voltage magnitudes at all nodes within
the safe region.

Control Lyapunov function (CLFs) have long been used to synthesize stabilizing con-
trollers for nonlinear systems [115]. On the other hand, barrier functions are used to certify
safety by guaranteeing the forward invariance of a set via Lyapunov-like conditions. Al-
though barrier function originated in the field of optimization as a penalty function to
replace constraints, it prospers in the field of control design too. For example, [116]
considers the safety verification problem in both worst-case and stochastic settings by
constructing barrier certificates. The ideas of the barrier functions and the CLF were
combined to construct the control barrier functions (CBFs) [22] which have since been
used in designing safety controllers. Reference [117] applied CBF method to automotive
systems to achieve lane keeping and adaptive cruise control simultaneously with safety
constraints. Application of CBF method to establish set invariance with the existence of
disturbance and uncertainty is considered in [118]. Simultaneous satisfaction of safety
and performance objectives via design is not a trivial task. The stabilization objective
expressed by a CLF and the safety constraints established by a CBF can be potentially in
conflict. In [119], the authors proposed a quadratic program formulation that unifies CLF
and CBF to synthesize a controller that enforces the safety constraints but relaxes the sta-
bility (performance) requirement when these two objectives are in conflict. Reference [120]
proposed an iterative algorithm using sum-of-squares (SOS) technique to search for the
most permissive barrier function that gives maximum volume for the certified region,
therefore maximize the estimate for safe stabilization region. All trajectories that start
within the safe stabilization region can be made to converge to the (equilibrium of interest
at the) origin as well as constrained in the safe region.

The main contribution of this chapter is in applying barrier functions based method
to certify safety of an inverter-based microgrid considering transient voltage limits. We
propose a distributed safety certification method and present computational algorithms to
compute safety-ensuring decentralized and distributed control policies. To treat the con-
trol design problem in a decentralized perspective, the microgrid is firstly decomposed
into several subsystems. Barrier functions are generated for each subsystem by firstly
ignoring the interactions from neighboring subsystems. The interaction terms are consid-
ered as disturbances with upper limits in the control design phase, resulting in robust local
state feedback control strategies. The rest of the chapter is organized as follows: Section 5.2
presents the necessary background; Section 5.3 explains the microgrid model; the main
computational and algorithmic developments are described in Section 5.4, with numerical
results presented in Section 5.5. We conclude the chapter in Section 5.6. Throughout the
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text, we will use | · | to denote both the Euclidean norm of a vector and the absolute value
of a scalar; and use R [x] to denote the ring of all polynomials in x ∈ Rn.

5.2 Preliminaries

5.2.1 Stability Certificates: Lyapunov Functions

Consider a nonlinear dynamical system of the form

ẋ(t) = f (x(t)), ∀t ≥ 0 , x ∈ Rn , (5.2.1)

with an equilibrium at the origin (i.e., f (0) = 0), where f : Rn
→ Rn is locally Lipschitz.

For brevity, we would drop the argument t from the state variables, whenever obvious.
The equilibrium point at the origin of (5.2.1) is Lyapunov stable if, for every ε>0 there is
a δ> 0 such that |x(t)|<ε, ∀t≥ 0 whenever |x(0)|<δ . Moreover, it is asymptotically stable
in a domain X⊆Rn, 0∈X, if it is Lyapunov stable and limt→∞ |x(t)|=0 for every x(0)∈X .

Theorem 5.2.1. [55, 121] If there is a continuously differentiable radially unbounded positive
definite function V : X→ R≥0 such that ∇xVTf (x) is negative definite in X, then the origin of
(5.2.1) is asymptotically stable and V(x) is a Lyapunov function.

Here ∇x denotes the partial differentiation with respect to x . Using an appropriately
scaled Lyapunov function V(x) , the region of attraction (ROA) of the origin of (5.2.1) can
be estimated by {x ∈ X |V(x) ≤ 1 } [122, 123].

5.2.2 Safety Certificates: Barrier Functions

In contrast to asymptotic stability which concerns with the convergence of the state vari-
ables to the stable equilibrium, the notion of “safety” comes from engineering design
specifications. From the design perspective, the system trajectories are not supposed to
cross into the certain regions in the state-space marked as “unsafe”. Let us assume that
the “unsafe” region of operation for the system (5.2.1) is given by the domain

Xu := {x ∈ Rn
|wi(x) > 0 , i = 1, 2, . . . , l }, (5.2.2)

where wi : Rn
7→ R are a set of l (≥ 1) polynomials. These are usually engineering

constraints that ensure that the system is always operated (controlled) to avoid going
into “unsafe” modes of operation. Safety of such systems can be verified through the
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existence (or, construction) of continuously differentiable barrier functions B : Rn
7→ R of

the form [22, 116, 119, 120]:

B(x) ≥ 0, ∀x ∈ Rn
\Xu (5.2.3a)

B(x) < 0, ∀x ∈ Xu (5.2.3b)

(∇xB)Tf (x) + α (B(x)) ≥ 0, ∀x ∈ Rn (5.2.3c)

where α(·) is an extended class-K function1. The third condition ensures that at the level-
set B = 0 the value of the barrier function is increasing along the system trajectories. Safety
is guaranteed for all trajectories starting inside the domain {x |B(x) ≥ 0 }which is invariant
under the dynamics (5.2.1).

5.2.3 Sum-of-Squares Optimization

Relatively recent studies have explored how SOS-based methods can be utilized to find
Lyapunov functions by restricting the search space to SOS polynomials [123–126]. Let
us denote by R [x] the ring of all polynomials in x ∈ Rn. A multivariate polynomial
p ∈ R [x] , x ∈ Rn, is an SOS if there exist some polynomial functions hi(x), i = 1 . . . s such
that p(x) =

∑s
i=1 h2

i (x). We denote the ring of all SOS polynomials in x by Σ[x]. Whether
or not a given polynomial is an SOS is a semi-definite problem which can be solved with
SOSTOOLS, a MATLAB® toolbox [127], along with a semi-definite programming solver
such as SeDuMi [128]. An important result from algebraic geometry, called Putinar’s
Positivstellensatz theorem [129,130], helps in translating conditions such as in (5.2.3) into
SOS feasibility problems.

Theorem 5.2.2. Let K = {x ∈ Rn
| k1(x) ≥ 0 , . . . , km(x) ≥ 0} be a compact set, where k j are

polynomials. Define k0 = 1 . Suppose there exists a µ ∈
{∑m

j=0σ jk j

∣∣∣ σ j∈Σ[x], ∀ j
}

such that{
x ∈ Rn

| µ(x) ≥ 0
}

is compact. Then,

p(x)>0, ∀x∈K =⇒ p∈
{∑m

j=0
σ jk j

∣∣∣ σ j∈Σ, ∀ j
}
.

Remark 1. Using Theorem 5.2.2, one can translate the problem of checking that p>0 on K into
an SOS feasibility problem where we seek the SOS polynomials σ0 , σ j, ∀ j such that p−

∑
j σ jk j

is SOS. Note that any equality constraint ki(x) = 0 can be expressed as two inequalities ki(x)≥ 0
and ki(x) ≤ 0. In many cases, especially for the ki used throughout this work, a µ satisfying the
conditions in Theorem 5.2.2 is guaranteed to exist (see [130]), and need not be searched for.

1A continuous function α : (−a, b) 7→ (−∞,∞) , for some a, b > 0 , is extended class-K if it is strictly
increasing and α(0) = 0 [55].
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5.3 Microgrid Model

We consider the following droop-based grid-forming inverter model [110, 131]:

θ̇i = ωi , (5.3.1a)

τiω̇i = −ωi + λp
i

(
Pset

i − Pi

)
(5.3.1b)

τiv̇i = v0
i − vi + λq

i

(
Qset

i −Qi

)
, (5.3.1c)

where λp
i > 0 and λq

i > 0 are the droop constants associated with the active power vs.
frequency and the reactive power vs. voltage droop curves, respectively; τi is the time-
constant of a low-pass filter used for the active and reactive power measurements; θi , ωi

and vi are, respectively, the phase angle, speed and voltage magnitude; v0
i is the desired

(nominal) voltage magnitude; Pset
i and Qset

i are the active power and reactive power set-
points, respectively. Finally, Pi and Qi are, respectively, the active and reactive power
injected into the network which relate to the neighboring bus voltage phase angle and
magnitudes as:

Pi = vi

∑
k∈Ni

vk
(
Gi,k cosθi,k + Bi,k sinθi,k

)
(5.3.2a)

Qi = vi

∑
k∈Ni

vk
(
Gi,k sinθi,k − Bi,k cosθi,k

)
, (5.3.2b)

where θi,k = θi − θk , and Ni is the set of neighbor nodes. Gi,k and Bi,k are respectively the
transfer conductance and susceptance values of the line connecting the nodes i and k .

At the equilibrium (steady-state) operation:

∀i : Pi = Pset
i , Qi = Qset

i , ωi = 0, vi = v0
i .

As the conditions on the network change (such as changes in load or generation), inverters
have the capability to change the control set-points of the active and reactive power output
to adjust to the new operating conditions. This is modeled as:

Pset
i = P0

i + up
i , Qset

i = Q0
i + uq

i , (5.3.3)

where P0
i and Q0

i are the set-points for the unperturbed (or nominal) operating condition;
and up

i and uq
i are some feedback control inputs.

Due to the low-inertia of the microgrids, large voltage and frequency fluctuations are
quite common during transients [114]. While designing stabilizing control policies, it is
therefore important to keep track of the transient voltage and frequency magnitudes to
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ensure that those are within the “safety” limits determined via engineering design. In
this work, we will restrict ourselves to the consideration of transient voltage limits which
are usually higher than the steady-state operational limits [113]. Fluctuations of transient
voltage beyond the tolerable (“safe”) region cause power quality issues, including the risk
of damaging the electrical equipment. In this chapter, we will define the “safe” operational
region as:

vi ≤ vi(t) ≤ vi .

Typical values for the limits during transients operation could be vi = 0.6 p.u. and
vi = 1.2 p.u..

5.4 Distributed Safety Certificates

The dynamical model of the interconnected microgrid with m droop-controlled inverters
is expressed compactly as:

ẋi = fi(xi) + gi(xi)ui +
∑

j∈Ni
hi j(xi, x j) , (5.4.1a)

Xu,i := {xi |w j(xi) ≥ 0 , j = 1, 2, . . . , li} (5.4.1b)

where each i ∈ {1, 2, . . . ,m} identifies an inverter. xi ∈ Rni is the ni-dimensional state vector
associated with the i-th inverter, while ui are some control inputs. We assume that the
origin is an equilibrium point of interest of the networked system, and that the control
input vanishes at the equilibrium point (i.e. ui = 0, ∀i at the origin). Moreover fi, gi and
hi j are locally Lipschitz functions. The problem we are interested in is:

Problem 1. Identify continuous functions Bi(xi) , feedback control policies ui and non-negative
scalars ci such that

∀i : Bi(0) > ci (5.4.2a)

Bi(xi) < 0, ∀xi ∈ Xu,i (5.4.2b)

Ḃi ≥ 0, ∀xi ∈ ∂Di[ci], ∀x j ∈ D j[c j],∀ j ∈ Ni (5.4.2c)

Ḃi = ∇xiB
T
i

(
fi(xi) + gi(xi)ui +

∑
j∈Ni

hi j(xi, x j)
)
,

where we defineDi[ci] := {xi |Bi(xi) ≥ ci},∀i and ∂Di[ci] := {xi |Bi(xi) = ci} as the boundary set of
the domainDi[ci] .
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Theorem 5.4.1. If there exist continuous functions Bi(xi) , feedback control policies ui and non-
negative scalars ci satisfying (5.4.2), then the safety of the interconnected system (5.4.1) is guar-
anteed for all t ≥ 0 whenever Bi(xi(0)) ≥ ci, ∀i , i.e.

xi(0) ∈ Di[ci], ∀i =⇒ xi(t) ∈ Rni\Xu,i, ∀i, ∀t ≥ 0 .

Moreover, there is a neighborhood Xi around origin (i.e., 0 ∈ Xi,∀i) such that Xi ⊆ Di[ci] .

Proof. Note that because of the condition (5.4.2c), Bi is non-decreasing on the boundary of
the domainDi[ci] whenever x j ∈ D j[c j] for every neighbor j . Extending this argument to
all the subsystems, we conclude that

D1[c1] ×D2[c2] × · · · × Dm[cm]

is an invariant domain. Since Bi(xi) < 0 for every xi ∈ Xu,i, we conclude the safety of the
system is guaranteed for all t ≥ 0 whenever xi(0) ∈ Di[ci],∀i . Finally, since Bi(0) > ci and
Bi is a continuous function, there exists a neighborhood Xi around origin such that for all
xi ∈ Xi , Bi(xi) ≥ ci . �

Computation of such barrier functions is not trivial. Recent works have explored the
use of sum-of-square optimization methods to compute the barrier certificates for poly-
nomials networks [116, 120] . Note that the power-flows as described in equation (5.3.2)
are non-polynomial. Using the polynomial recasting technique proposed in [123] , the
power systems dynamics can be expressed in a higher-dimensional space as a polynomial
differential-algebraic system. In this work, however, we resort to Taylor series expansion
(up to the third order) to approximate the dynamics into a polynomial form.

In the rest of this section, we describe a three-step procedure to obtain the distributed
barrier certificates. In the first two steps, we consider the isolated and autonomous
subsystem model of the form (which we assume to be locally asymptotically stable around
the origin):

(isolated) ẋi = fi(xi) ,

and compute the Lyapunov function which is then used to compute a barrier function for
the isolated subsystem using the method similar to [120].
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5.4.1 Computation of Lyapunov Functions

SOS-based expanding interior algorithm [123, 124] has been used to construct Lyapunov
functions and ROA in an iterative search process. In this work, we use a variant of
the process, which does not require the bisection search process and hence speeds up the
computation at each iteration stage. The algorithmic steps used to implement the modified
expanding interior algorithm can be summarized as follows (for notational convenience,
we have dropped the subscript i from the subsystem variables to explain the algorithm):

1 Step 0: Compute a Lyapunov function V0 such that V0
≤ 1 is an estimate of the ROA.

The following two steps are then repeated until convergence, such that (hopefully)
the final estimate of the ROA is much larger than initial one. Define a positive
definite and radially unbounded function p(x) (e.g. p = ε|x|2 for some small ε > 0).

2 Step k-1: Starting from a Lyapunov function V̂ with ROA estimated by V̂ ≤ 1 ,
compute the largest level-set βk of a positive definite function p(x) contained within
V̂ ≤ 1 . This is done by solving the following SOS problem:

max
sk

2,s
k
3,s

k
4

βk (5.4.3a)

ŝ1(p − βk) − sk
2(V̂ − 1) ∈ Σ[x] (5.4.3b)

−sk
3(1 − V̂) − sk

4
˙̂V − ε2|x|2 ∈ Σ[x] (5.4.3c)

where s are SOS polynomials. The ·̂ implies it is borrowed from the previous step,
while k denotes the variables being currently computed. At the first instance of the
problem (5.4.3), we initialize ŝ1 = 1 .

3 Step k-2: In this sub-step at the k-th iteration, a new Lyapunov function Vk is found
such that the level-set Vk = 1 is an estimate of the ROA, while trying to expand the
estimated ROA by maximizing δ such that p ≤ β̂ is contained within the level-set
Vk
≤ 1 − δk, i.e.,

max
Vk,sk

1

δk (5.4.4a)

Vk
− ε1|x|2 ∈ Σ[x] (5.4.4b)

sk
1(p − β̂) − ŝ2(Vk

− 1 + δk) ∈ Σ[x] (5.4.4c)

−ŝ3(1 − Vk) − ŝ4V̇k
− ε2|x|2 ∈ Σ[x] (5.4.4d)

The algorithm stops when δk is sufficiently small. Set V = Vk as the Lyapunov function
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with V ≤ 1 providing the largest estimate of the ROA .

5.4.2 Computation of Barrier Functions

For the barrier functions computation we adopt a similar approach as in the Algorithm 2
in [120], except that we use the algorithm to compute only the barrier functions, while the
original algorithm was used to also search for a “safe” and stabilizing control policy. For
completeness we present the algorithm here (once more, for notational convenience, we
have dropped the subscript i from the subsystem variables to explain the algorithm):

1 Step 0: As the first step of the iterative process, we compute the maximum level-set
of V contained completely inside the safe region. This is done by solving the following
SOS problem:

max
sk

0

z , subject to V − z −
l∑

i=1

sk
0,iwi ∈ Σ[x] .

Set B0 = zmax
− V , where zmax is the solution of the above problem, i.e. the maximal

level-set of V wholly contained inside the safe region. Note that B0 is a barrier
function by construction. Choose a small scalar γ>0 .

2 Step k-1: Using the barrier function B̂ computed in the previous step, find the largest
ε>0 such that ˙̂B ≥ −γB̂ + ε whenever B̂ ≥ 0 , i.e. solve the SOS problem

max
sk

1

εk, subject to ˙̂B + γ B̂ − εk
− sk

1 B̂ ∈ Σ[x] .

3 Step k-2: In this sub-step we search for a new barrier function of the form Bk(x) =

z(x)TQkz(x) where z(x) is a vector of monomials in x , and Qk is a symmetric matrix,
such that Bk(0) > 0 . The barrier function satisfies Bk(x) < 0 on the unsafe set
{x |wi(x) > 0 , i = 1, 2, . . . , l} , along with the constraint on its time-derivative. The
following problem is solved:

max
sk

2,i

trace (Qk)

Ḃk + γBk
− η − ŝ1 Bk

∈ Σ[x]

−Bk
−

∑l

i=1
sk

2,iwi ∈ Σ[x]
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where η is a small positive number chosen to avoid the trivial zero solution. The
objective function is a proxy for maximizing the volume of the safety region [120].

The algorithm stops when trace(Qk) converges within some tolerance. Set B = Bk as the
barrier function with B ≥ 0 providing the largest estimate of the certified safety region for
the isolated subsystems.

5.4.3 Safety-Certifying Control Policies

In this subsection, we describe an SOS problem to compute control policies ui such that
(5.4.2c) is satisfied for some ci ∈ [0,Bi(0)) . Without any loss of generality, we will assume
that the barrier functions satisfy Bi(0) = 1 (which is always achievable through scaling),
such that we are interested in ci ∈ [0, 1) . Moreover, we will assume, for simplicity, uniform
ci = c,∀i , while the more generic case can be easily extended. Then we are seeking the
existence of control laws ui such that for some chosen c ∈ [0, 1),

∀i : ∀xi ∈ ∂Di[c] , ∀x j ∈ D j[c], j ∈ Ni (5.4.5a)

∇xiB
T
i ( fi + giui +

∑
j∈Ni

hi j) ≥ 0 . (5.4.5b)

In this chapter, we will focus on state-feedback control policies. Two alternatives will be
considered: 1) a decentralized state-feedback policy of the form ui(xi) , and 2) a distributed
state-feedback policy of the form ui = uii(xi) +

∑
j∈Ni

ui j(x j) .
The following problem concerns the design of an optimal decentralized state-feedback

control policy ui(xi):

min
ui(xi)

Ui (5.4.6a)

subject to (5.4.5) and ‖ui(xi)‖∞ ≤ Ui, ∀xi ∈ Di[c] . (5.4.6b)

Note that the controller is only used on or near the boundary of the domainDi[c] since it is
only needed to guarantee that the trajectories never cross the boundary. This can be solved
using an equivalent SOS problem, noting that the constraint ‖ui(xi)‖∞ ≤ Ui translates to
polynomial constraints. Similar problem can be formulated for the distributed controller
design, with the constraint ‖ui(xi)‖∞ ≤ Ui needed to be satisfied on x j ∈ D j[c], ∀ j ∈ Ni as
well as xi ∈ Di[c] .

Remark 2. Note that the constraint (5.4.5) is satisfied whenever (i.e., sufficient condition) we
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choose a ui such that

∇BT
i giui ≥ µ := max

xi∈∂Di[c],x j∈D j[c]

∣∣∣∣∣∑ j∈Ni
∇BT

i hi j

∣∣∣∣∣
If for every xi ∈ ∂Di[c] there always exists a k such that

∣∣∣∣[∇BT
i

]
k

[ui]k

∣∣∣∣ > 0 then we can always find
a ui satisfying the above condition.

5.5 Numerical Results

For illustration purpose, we consider the 6-bus (bus 0 to bus 5) microgrid network de-
scribed in [132] . Disconnecting the utility, we replace the substation (bus 0) by a droop-
controlled inverter, with three other inverters placed on buses 1, 4 and 5 . The inverter
dynamics were modeled in the form of (5.3.1). Bus 0 was considered as the reference
bus for the phase angle. The droop constants λp

i and λq
i were chosen to be 2.43 rad/s/p.u.

and 0.2 p.u./p.u., while the filter time-constant τi was set to 0.5 s [110]. Nominal values of
voltage and frequency, as well as the active and reactive power set-points were obtained
by solving the steady-state power flow equations (5.3.2), which were then used to shift
the equilibrium point to the origin. The loads were modeled as constant power loads, and
Kron reduced network with only the inverter nodes were used for analysis. The unsafe
set was defined in terms of the shifted (around the 1 p.u.) nodal voltage magnitudes as
follows:

(unsafe) vi < −0.4 p.u. or vi > 0.2 p.u.

In Fig. 5.1, we illustrate how the iterative search algorithm presented in Section 5.4 obtains
an expanded certified region of safety (marked by the boundary of the outermost green
ellipse) starting from the initial estimate given by a level-set of the Lyapunov function
(marked by the smaller black dashed ellipse boundary). The plot shows the projections
of the ROA and the barrier certified regions on the frequency-voltage space obtained
by setting the phase angle differences to 0. The black dashed boundary of the larger
ellipse is the estimate of the ROA, while the red dashed lines denote the unsafe region
boundary (in voltage magnitudes). Note that the certified invariant region of safe stability
is much smaller than the estimated ROA of the isolated inverter. Next we investigate
the control efforts needed to guarantee safety of the network over some domain defined
using the subsystem barrier function level-sets. Fig. 5.2(a) shows the results of the optimal
decentralized control design problem (5.4.6), for a range of different values of the barrier
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Figure 5.1: Illustration of the iterative search for a barrier certified region of an isolated
inverter subsystem. The red dashed lines mark the boundary of the unsafe region. The
outer black dashed line marks the estimated ROA, while the inner black dashed line
marks the largest Lyapunov functions level-set contained within the safe region. Green
lines mark the iterative (growing) estimates of the certified safe region using barrier
function.

level-set c ∈ [0, 1) such that Bi ≥ c,∀i gives a distributed certificate of safety. As expected,
the control effort increases (monotonically, in this case) as the value of c decreases, or
the certified region of safety increases. Figs. 5.2(b)-5.2(c) show the results when the states
of neighboring subsystems are used in the control design in addition to the subsystem’s
local states, for which we refer as the “distributed control” design. Clearly, distributed
control policies require lower minimum control efforts as compared to the decentralized
control policy. This observation aligns with the conclusion in [133] regarding the value
of communication in distribution network voltage regulation problem. In particular, two
different choices of distributed controllers are explored - one in which all of the neighboring
subsystems’ states are used in the feedback (Fig. 5.2(b)) and another in which the only
neighboring subsystem states used in feedback are the voltage magnitudes (Fig. 5.2(c)). In
this example, additional measurements from the neighboring subsystems help decrease
the minimum control effort needed.
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Figure 5.2: Computation of the minimum control effort (Ui) needed to certify safety of
the network via subsystem barrier functions, for varying values of c ∈ [0, 1) , using: (a) a
decentralized control policy, ui(xi) , that uses only the subsystem’s states; (b) a distributed
control policy that uses all the neighbor states into the feedback, in addition to the subsys-
tem’s states; and (c) a distributed control policy that uses the neighbor voltage magnitudes
into the feedback, in addition to the subsystem’s states.
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5.6 Chapter Conclusion

In this chapter we consider the problem of safety in inverter-based microgrids. Using
the barrier functions based methods, we propose a distributed safety certification of the
microgrid network. Sum-of-squares based algorithm is used to present a computational
approach to obtain these safety certificates in a distributed manner. Moreover, using a
microgrid example, we show how decentralized vs. distributed control policies could
pose different requirements on the control effort.
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CHAPTER 6

Establishing Convergence Guarantees for
Distributed Voltage Balancing Controllers

6.1 Chapter Introduction

Distribution networks are subject to three-phase unbalance, primarily as a consequence of
structural and operational factors [34]. Structural factors refer to the inherently unbalanced
nature of distribution networks, for example poorly transposed distribution lines and
missing phase laterals. The impact of structural unbalance is usually small [134] and is
assumed to be the utility’s concern. In contrast, operational unbalance caused by single-
phase and two-phase loads, unbalanced three-phase loads, and increasing integration of
single-phase distributed energy resources (DERs), can be considerable [135]. This chapter
seeks to exploit the collective reactive power capability of multiple unbalanced DERs such
as solar photovoltaic (PV) to balance voltages in the distribution network.

Symmetrical components are commonly used to assess unbalance, with negative and
zero sequence quantities indicative of undesirable conditions. For example, negative se-
quence voltages can cause induction motor overheating and transformer saturation while
zero sequence currents increase power losses [35, 36]. Much research has been devoted
to phase balancing of distribution systems, including system reconfiguration [37], static
Var compensation [38], and three-phase optimal power flow algorithms [39]. Steinmetz
circuit design [136] was applied in [137] to mitigate voltage unbalance at particular nodes
in a distribution network.

This chapter considers distribution-network nodes, referred to as critical nodes, at
which failure to maintain a relatively balanced voltage may have detrimental effects on
the connected devices. We are interested in strategies for balancing multiple critical nodes
simultaneously across a distribution network. Initially the Steinmetz-based controller
of [137] is applied at multiple critical nodes, resulting in a decentralized control structure
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that requires no communications. However, it relies on local DERs connected at the critical
nodes that are to be balanced. Therefore, we also consider a more flexible distributed
control structure that relies on partitioning the radial distribution network based on the
locations of the critical nodes. Further details of both control strategies are provided in
Section 6.2.

It is important to note that the control actions arising from balancing each critical node
will interact with the controllers associated with all the other critical nodes in the network.
Such interactions could potentially be destabilizing. Therefore, the chapter undertakes
rigorous analysis to establish conditions that guarantee convergence. The derivation of
this convergence result is based on Banach fixed-point theory [138].

The analysis begins by adopting a linear multi-phase power flow model [139] derived
from a fixed-point form of the power flow equations. An efficient optimization program
is formulated to compute an accurate approximation for the final converged point. This
results in a high-quality linear power flow model. The Steinmetz-based control scheme
can be modeled as an iterative process and expressed explicitly as a quadratic mapping
of the reactive power injections from one step to the next. This allows the use of Banach
fixed-point theory to prove stability of the control scheme.

This chapter is organized as follows: Section 6.2 provides an introduction to the con-
cepts of voltage unbalance and Steinmetz-based balancing, and presents the proposed
decentralized and distributed control structures. Problem formulation, convergence anal-
ysis and the main results are given in Section 6.3. Section 6.4 extends the formulation to
incorporate time delays. Case studies are discussed in Section 6.5 and conclusions are
provided in Section 6.6.

6.2 Steinmetz-Based Control Structure

In a perfectly balanced three-phase system, phasor quantities of all three phases have
equal magnitude and angle differences of 120 degrees. Unlike transmission systems,
which are approximately balanced and can be represented by their single-line equivalent,
distribution systems are usually unbalanced. Various definitions of voltage unbalance
exist in the power system community, among which the standards defined by IEC, NEMA
and IEEE are most common. The relationships between these definitions were studied in
[140]. Since the voltage unbalance factor (VUF) definition from the IEC standard captures
unbalance in both voltage magnitude and phase angle, we adopt VUF to characterize
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Figure 6.1: Steinmetz circuit design: equivalent load (local plus downstream) and reactive
power compensation.

voltage unbalance,

VUF % =
V−
V+
× 100, (6.2.1)

where the positive sequence voltage V+, negative sequence voltage V− and zero-sequence
voltage V0 are the so-called symmetrical components [141] given by,

V0

V+

V−

 =
1
3


1 1 1
1 a a2

1 a2 a



Va

Vb

Vc

 , (6.2.2)

with a = − 1
2 + j

√
3

2 , and Va, Vb, and Vc form the set of (possibly unbalanced) three-phase
voltages.

6.2.1 Steinmetz-Based Controller

Steinmetz circuit design [36] can be used to compute the delta-connected reactances that
are required to make a delta-connected impedance load appear balanced, thus balancing
the voltage. Such a Steinmetz-based method was developed in [137] to compute the delta
reactive power injections that balance the total local plus downstream load, i.e., the total
load seen at the balancing point. For a three-phase feeder as shown in Fig. 6.1, the required
compensation can be expressed as:

Qc
LL = E · PLL + F ·QLL, (6.2.3)
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Figure 6.2: Decentralized Steinmetz control scheme.

where Qc
LL = [Qc

ab,Q
c
bc,Q

c
ca]ᵀ is the required line-to-line reactive power compensation,

PLL = [Pab,Pbc,Pca]ᵀ and QLL = [Qab,Qbc,Qca]ᵀ are the delta-connected active and reactive
power loads, respectively, and,

E =
1
√

3


0 1 −1
−1 0 1
1 −1 0

 , F =
1
3


−2 1 1
1 −2 1
1 1 −2

 . (6.2.4)

In order to maintain the voltage profile, the matrix F incorporates an additional constraint
that ensures the sum of the reactive power compensation is zero. To implement this
strategy, PLL and QLL are computed from measurements of phase-to-neutral voltages and
line currents at the critical node.

A feedback control strategy was proposed in [137] that was based on successively
implementing Steinmetz design equation (6.2.3). However, no convergence guarantee
was provided for the closed-loop system.

6.2.2 Decentralized Control

The Steinmetz controller can be generalized to simultaneously balance multiple critical
nodes along a radial distribution network. Fig. 6.2 provides an example (which will
be considered in Section 6.5) where multiple critical nodes, marked by red stars, are to
be balanced. Assume initially that three-phase delta-connected solar PV systems are
available at each critical node, allowing Steinmetz controllers to be deployed at each
location. Note that in this decentralized scenario, control decisions are made locally and
no communication is required.

Because decentralized controllers affect the voltages and currents across the network,
they interact, with each acting as a disturbance that affects all the others. Such mutual
couplings must be analyzed to ensure the stability of the overall system.
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Figure 6.3: Distributed Steinmetz control scheme.

6.2.3 Distributed Control

Since DERs, especially those with three-phase connections, are not necessarily available
at all critical nodes, a more general distributed control structure is required. To achieve a
distributed scheme, the radial distribution network is subdivided1 into disjoint partitions
that are determined by the locations of the critical nodes, as depicted in Fig. 6.3. Control-
lable DERs within each partition, potentially open-delta connected, are clustered together
and coordinated to balance the single critical node assigned to that partition. In this
distributed scenario, each partition is controlled by a single Steinmetz-based controller,
with communication only required within each partition. Similarly to the decentralized
control case, however, stability guarantees are essential to avoid undesirable interactions
between partitions and between DERs within each partition.

6.3 Convergence Analysis

To analyze convergence of the decentralized and distributed control strategies, we first
represent the distribution network using a linear multi-phase power flow model. This
enables the closed-loop control system to be formulated as an explicit quadratic mapping.
The Banach fixed-point theorem [138] is then used to prove existence and uniqueness of
the fixed-point of the quadratic mapping.

1Since we assume radial structure for the distribution network, it is straightforward to develop an
automated procedure for uniquely partitioning the network into disjoint sections.
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6.3.1 Problem Formulation

6.3.1.1 Linear Multi-Phase Power Flow Model

Analysis builds on a linear multi-phase power flow model derived from a fixed-point
formulation of the power flow equations [139]. This model is suitable for generic multi-
phase distribution networks. Assume there is a slack bus and N three-phase PQ buses in
the radial distribution network.2 As shown in [139], the voltage profile v is given by the
fixed-point equation,

v = G(v) = w + Y−1
LL

(
diag(v)−1sY

+ Hᵀdiag(Hv)−1s∆
)
, (6.3.1)

where v ∈ C3N collects the three-phase line-to-neutral voltages at all PQ buses, sY, s∆
∈ C3N

are the grounded wye-connected and delta-connected complex power injections at all
PQ buses, and the overline denotes the conjugate of the complex quantity. The term
w = −Y−1

LLYL0v0 denotes the zero-load voltage profile, where v0 ∈ C3 is the voltage at the
slack bus and YLL,YL0 are submatrices of the three-phase admittance matrix. The matrix H
is 3N × 3N block diagonal, with the block Γ = [1,−1, 0; 0, 1,−1;−1, 0, 1] down the diagonal
and zeros elsewhere3. The existence, uniqueness and non-singularity properties of the
power flow model (6.3.1) are established in [139].

A linear model is obtained by taking only the first iteration of the fixed-point equation
(6.3.1), initialized at a given operating point v̂. The fixed-point linearization model has
the form,

ṽ = MYxY + M∆x∆ + w (6.3.2)

ĩ = YL0v0 + YLLṽ, (6.3.3)

where ṽ ∈ C3N collects the line-to-neutral voltages at all PQ buses, ĩ ∈ C3N collects the
net phase current injections at all PQ buses, xY :=

[
(pY)ᵀ, (qY)ᵀ

]ᵀ
∈ R6N stacks the vectors

of wye active and reactive power injections, and x∆ :=
[
(p∆)ᵀ, (q∆)ᵀ

]ᵀ
∈ R6N stacks the

vectors of delta injections. The expressions for MY and M∆ are given by,

MY :=
[
Y−1

LLdiag(v̂)−1
− jY−1

LLdiag(v̂)−1
]

(6.3.4)

M∆ :=
[
Y−1

LLHᵀdiag(Hv̂)−1
− jY−1

LLHᵀdiag(Hv̂)−1
]
. (6.3.5)

We are interested in the changes in voltages and currents at critical nodes that result

2The assumption of three-phase buses is purely for ease of exposition.
3The corresponding rows in H are removed when there are missing phases.
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from reactive power compensation at injection nodes. We number the nodes in the
distribution network from the substation to the feeder end as i = 1, · · · ,N, as shown
in Fig. 6.2. The critical nodes that are to be balanced, where measurements of voltages
and currents are available, are indexed j = 1, · · · ,m, with the corresponding bus number
given by c j. Injection nodes, where DERs with reactive power capability are located, may
be distributed within a partition, as in Fig. 6.3. However, for notational simplicity, we
initially focus on three-phase reactive power injections. These three-phase injection nodes
are indexed by k = 1, · · · ,m, with corresponding bus numbers ik. We define the selection
matrix for the k-th injection node by Tik =

[
0|Iik |0

]
∈ R3×3N, which has a 3×3 identity matrix

at the (3ik − 2)↔ 3ik columns and zeros elsewhere.
Let Qk =

[
Qab

k ,Q
bc
k ,Q

ca
k

]ᵀ
, for k = 1, · · · ,m, denote the delta-connected reactive power

compensation at the k-th injection node. The line-to-neutral voltage profile can be ex-
pressed as,

ṽ : = M̃∆
1 Q1 + M̃∆

2 Q2 + · · · + M̃∆
mQm + u, (6.3.6)

where u := MYxY + M∆x∆ + w. The coefficients M̃∆
k ∈ C

3N×3 correspond to the k-th
compensation node and are the (3ik − 2) ↔ 3ik columns of the second block of M∆ given
by (6.3.5). Denoting that second block by M∆

2 , we can write M̃∆
k = M∆

2 Tᵀik , where Tik is the
previously defined selection matrix for the k-th injection node.

Even though equation (6.3.6) considered three-phase reactive power injections, cater-
ing for single-phase injections at multiple locations within a partition, as in Fig. 6.3, is
straightforward. To do so, the single-phase injections, which act together as the k-th injec-
tion node, are grouped into Qk ∈ R3 and the selection matrix Tik uses indices corresponding
to the applicable injection locations.

Line-to-neutral voltages V j = [Va
j ,V

b
j ,V

c
j]
ᵀ at the j-th critical node are recovered from

the voltage profile ṽ using the extraction matrix Tc j = [0|Ic j ||0] ∈ R3×3N, which has a 3 × 3
identity matrix at the (3c j − 2)↔ 3c j columns and zeros elsewhere. For j = 1, · · · ,m,

V j = Tc jṽ

= Tc j

(
M̃∆

1 Q1 + M̃∆
2 Q2 + · · · + M̃∆

mQm + u
)

= Tc jM̃
∆
1 Q1 + · · · + Tc jM̃

∆
mQm + Tc ju

:= A j1Q1 + A j2Q2 + · · · + A jmQm + µ j

:= A jQ + µ j, (6.3.7)

where Q = [Qᵀ1 , · · ·,Q
ᵀ
m]ᵀ ∈ R3m collects all reactive power compensation, A j :=

[
A j1 · · ·A jm

]
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and µ j := Tc ju.
Line currents at the j-th critical node (with bus number c j) are equal to the phase sum-

mation of net current injections at that node together with the current flow to downstream
nodes. Let d j denote the last node downstream from the j-th critical node. Then,

I j =

d j∑
l=c j


ia
l

ib
l

ic
l


=

(
Tc j + Tc j+1 + ... + Td j

)
ĩ

= T̃ jĩ, (6.3.8)

where the summation matrix T̃ j is of the form [0|Ic j |...|Id j |0]. Thus, we have line currents at
the j-th critical node given by,

I j = T̃ j ĩ = T̃ j

(
YL0v0 + YLLṽ

)
= T̃ jYL0v0 + T̃ jYLL

(
M̃∆

1 Q1 + · · · + M̃∆
mQm + u

)
= T̃ jYLLM̃∆

1 Q1 + · · · + T̃ jYLLM̃∆
mQm + T̃ jYL0v0 + T̃ jYLLu

:= B j1Q1 + B j2Q2 + · · · + B jmQm + η j

:= B jQ + η j, (6.3.9)

where B j := [B j1 · · ·B jm] and η j := T̃ jYL0v0 + T̃ jYLLu.

6.3.1.2 Mapping Expression for Steinmetz Control Schemes

The iterative process of decentralized and distributed Steinmetz-based control proceeds
as follows:

1 Measure line-to-neutral voltages V j and line currents I j at critical nodes that are to
be balanced.

2 Compute VUF at critical nodes.

3 Use the Steinmetz equation (6.2.3) to compute the required compensations Qk for
k = 1, · · · ,m.

4 Apply Qk at injection nodes where DERs are available.

5 Return to Step 1.
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In an on-line setting, this control algorithm would run continuously. From an off-line
analysis perspective, the algorithm repeats until convergence is achieved.

To analyze convergence characteristics, this iterative procedure can be expressed as
a mapping. For every injection node k ∈ {1, · · · ,m}, the compensation Qk is updated
according to,

Q+
k = St

{(
D(AkQ− + µk)

)
×

(
WI(BkQ− + ηk)

)∗
− jQ−k

}
, (6.3.10)

where the operator St{·} denotes the Steinmetz equation (6.2.3), St{·} = E ·Re(·) + F · Im(·),
D =

[
1,−1, 0; 0, 1,−1;−1, 0, 1

]
converts line-to-neutral voltages to line-to-line voltages,

WI =
[
1,−1, 0; 1, 2, 0;−2,−1, 0

]
/3 converts line currents to equivalent delta currents, and

the operator “×” denotes element-wise multiplication. Therefore, the term inside the curly
braces is the equivalent local plus downstream delta-connected load.4

6.3.1.3 Quadratic Mapping

The expression (6.3.10) can be expanded and reorganized into a quadratic mapping,

Q+ := [(Q+
1 )ᵀ, · · · , (Q+

m)ᵀ]ᵀ = f (Q−), (6.3.11a)

where for k = 1, · · · ,m,

Q+
k =


Q+

k1

Q+
k2

Q+
k3

 =


(Q−)ᵀ[αk1]Q− + βᵀk1Q− + γk1

(Q−)ᵀ[αk2]Q− + βᵀk2Q− + γk2

(Q−)ᵀ[αk3]Q− + βᵀk3Q− + γk3

 , (6.3.11b)

and Qk1 = Qab
k , Qk2 = Qbc

k , and Qk3 = Qca
k are the three phase-to-phase reactive power

compensations. Quadratic coefficients [αkφ] ∈ R3m×3m, linear coefficients βkφ ∈ R3m, and
constant coefficients γkφ ∈ R, ∀k ∈ {1, · · · ,m}, φ ∈ {1, 2, 3} collect system parameters such
as line impedances, nominal loading conditions, and transformer tap ratios. It is clear
from equation (6.3.11) that the Qk of all the controllers are coupled and thereby influence
each other. In fact, certain patterns exist in these coefficients due to the radial structure of
distribution systems. This is considered further in the case studies of Section 6.5.

4This formulation does not cater for unbalance arising from zero-sequence voltages. Accordingly, we do
not consider unbalanced wye-connected load.
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6.3.2 Estimate for the Fixed-Point

Since linear multi-phase power flow equation (6.3.2), (6.3.3) is adopted for analyzing
convergence properties, we desire an initialization point v̂ that is sufficiently close to the
converged voltage profile to ensure an acceptable approximation to the nonlinear power
flow. This requires a good estimate for the converged fixed-point. This value also affects
the stability region estimate provided by the contraction proof of Subsection 6.3.3.

The special radial structure of distribution networks motivates a heuristic for estimat-
ing the fixed-point. This heuristic seeks to minimize certain dominant terms that appear
in the self-mapping relationship (6.3.12) that is presented in the following convergence
proof. This results in the simple linear program,

(P1) min
Q0

m∑
k=1

3∑
φ=1

m∑
j=1

v j
kφ + ε

∥∥∥Q0
∥∥∥

1

subject to
∥∥∥2αkφ(1 : 3, :) ·Q0 + βkφ(1 : 3)

∥∥∥
1
≤ v1

kφ∥∥∥2αkφ(4 : 6, :) ·Q0 + βkφ(4 : 6)
∥∥∥

1
≤ v2

kφ

· · ·∥∥∥2αkφ(3m−2 : 3m, :) ·Q0 + βkφ(3m−2 : 3m)
∥∥∥

1
≤ vm

kφ

∀k ∈ {1, · · · ,m}, φ ∈ {1, 2, 3},

where ε > 0 is a small constant to penalize the norm of the fixed point Q0, αkφ(1 : 3, :)
represents the first three rows of matrix [αkφ], βkφ(1 : 3) represents the first three entries of
vector βkφ, and so on.

The optimizer Q0 serves as a sufficiently accurate approximation for the final fixed-
point Q∗ of the mapping (6.3.11). Substituting Q0 into equation (6.3.6), we obtain a good
initialization v̂ that results in an accurate linear power flow model.

6.3.3 Convergence Proof

The Banach fixed-point theorem [138] can be used to prove contraction of the quadratic
mapping (6.3.11), and provide conditions that certify convergence of the decentralized and
distributed Steinmetz-based control schemes. The existence and uniqueness of the fixed-
point are guaranteed provided those conditions are satisfied. We proceed by establishing
two characteristics, 1) the mapping is a self-mapping, and 2) the mapping is a contraction.
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6.3.3.1 Self-Mapping

For a certain r ∈ Rm
+ , define the set,

S(r) =
{
Q ∈ R3m

∣∣∣‖Qk −Q0
k‖∞ ≤ rk,∀k ∈ {1, · · · ,m}

}
,

where Q0 = [Q0
1
ᵀ
, · · · , Q0

m
ᵀ]ᵀ are computed from the linear program P1, and keeping in

mind that Qk ∈ R3. We need to show that the mapping (6.3.11) maps from S(r) to S(r),
i.e., Q+ := f (Q−), where f : S(r) → S(r). Hence, we need to show that

{
‖Qk − Q0

k‖∞ ≤

rk,∀k ∈ {1, · · · ,m}
}

leads to
{
‖Q+

k −Q0
k‖∞ ≤ rk,∀k ∈ {1, · · · ,m}

}
. Equivalently, we can instead

show that
{
‖Qk −Q0

k‖∞ ≤ rk,∀k ∈ {1, · · · ,m}
}

leads to
{
|Q+

kφ −Q0
kφ| ≤ rk,∀k ∈ {1, · · · ,m},∀φ ∈

{1, 2, 3}
}
. Accordingly,

|Q+
kφ −Q0

kφ| = |Q
ᵀ[αkφ]Q + (βkφ)ᵀQ + γkφ −Q0

kφ|

= |(Q −Q0)ᵀ[αkφ](Q −Q0) +
(
(βkφ)ᵀ + 2(Q0)ᵀ[αkφ]

)
· (Q −Q0)

+ (Q0)ᵀ[αkφ]Q0 + (βkφ)ᵀQ0 + γkφ −Q0
kφ|

≤ ‖Q −Q0
‖1 · ‖[αkφ]‖∞ · ‖Q −Q0

‖∞ +

m∑
l=1

(
‖

(
(βkφ)ᵀ + 2(Q0)ᵀ[αkφ]

)
[l]
‖1 · ‖Ql −Q0

l ‖∞

)
+ |(Q0)ᵀ[αkφ]Q0 + (βkφ)ᵀQ0 + γkφ −Q0

kφ|

≤ 3(r1 + · · · + rm) max(r1, · · · , rm) · ‖[αkφ]‖∞ +

m∑
l=1

(
rl · ‖

(
(βkφ)ᵀ + 2(Q0)ᵀ[αkφ]

)
[l]
‖1

)
+ |(Q0)ᵀ[αkφ]Q0 + (βkφ)ᵀQ0 + γkφ −Q0

kφ|, (6.3.12)

where the subscript [l] denotes the (3l − 2)↔ 3l rows of the matrix. To ensure S(r) maps
to S(r), we require equation (6.3.12) ≤ rk for all k ∈ {1, · · · ,m} and φ ∈ {1, 2, 3}.

Define sets

Mkφ =
{
[αkφ] ∈ R3m×3m, βkφ ∈ R

3m, γkφ ∈ R
∣∣∣

3(r1 + · · · + rm) · r̂ · ‖[αkφ]‖∞ +

m∑
l=1

(
rl · ‖

(
(βkφ)ᵀ + 2(Q0)ᵀ[αkφ]

)
[l]
‖1

)
+ |(Q0)ᵀ[αkφ]Q0 + (βkφ)ᵀQ0 + γkφ −Q0

kφ| ≤ rk

}
, (6.3.13)

∀k ∈ {1, · · · ,m} and∀φ ∈ {1, 2, 3}, where r̂ = max(r1, · · · , rm). For given fixed rk, k = 1, · · · ,m,
we require the intersection of the 3m setsMkφ given by (6.3.13) to be non-empty for S(r)
to be a self-mapping set.
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Alternatively, for a given system with fixed parameters [αkφ], βkφ, γkφ, ∀k ∈ {1, · · · ,m}, φ
∈ {1, 2, 3}, define the sets,

M̃kφ =
{
r ∈ Rm

+

∣∣∣3(r1 + · · · + rm) r̂ · ‖[αkφ]‖∞ +

m∑
l=1

(
rl · ‖

(
(βkφ)ᵀ + 2(Q0)ᵀ[αkφ]

)
[l]
‖1

)
+ |(Q0)ᵀ[αkφ]Q0 + (βkφ)ᵀQ0 + γkφ −Q0

kφ| ≤ rk

}
, (6.3.14)

∀k ∈ {1, · · · ,m} and ∀φ ∈ {1, 2, 3}. In this case, the mapping (6.3.11) is a self-mapping on
S(r) when r ∈ ∩m

k=1 ∩
3
φ=1 M̃kφ , ∅.

6.3.3.2 Contraction

Next, we establish conditions under which the mapping (6.3.11) is a contraction on S(r).
Define a norm ‖Q‖δ := a1 ‖Q1‖∞+· · ·+am ‖Qm‖∞, where a1 = 1, ak ≥ 1,∀k = 2, · · · ,m. We need
to show that for any two points Qx and Qy inS(r), ‖Qx+

−Qy+
‖δ ≤ ρ · ‖Qx

−Qy
‖δ, where 0 ≤

ρ < 1. Expanding the δ-norm, this implies
∑m

k=1(ak ‖Qx+
k −Qy+

k ‖∞) ≤ ρ ·
∑m

k=1(ak ‖Qx
k −Qy

k‖∞).
Each of the m DERs consists of three reactive power injections Qk = [Qab

k ,Q
bc
k ,Q

ca
k ]ᵀ, so

there are 3m ways of choosing injections across the m DERs. Let φi
∈ {1, 2, 3}m represent

the i-th choice of the 3m arrangements. Then the contraction requirement is equivalent to
ensuring,

m∑
k=1

(
ak |{Qx+

k −Qy+

k }φi
k
|

)
≤ ρi ·

m∑
k=1

(
ak ‖Qx

k −Qy
k‖∞

)
, (6.3.15)

for every i = 1, · · · , 3m, with φi
k ∈ {1, 2, 3} being the k-th element of φi, and ρ = max(ρi) < 1.

For every arrangement i, we can write,

m∑
k=1

(
ak |{Qx+

k −Qy+

k }φi
k
|

)
=

m∑
k=1

(
ak

∣∣∣(Qx)ᵀ[αkφi
k
]Qx
−(Qy)ᵀ[αkφi

k
]Qy+βᵀ

kφi
k
(Qx
−Qy)

∣∣∣)
=

m∑
k=1

(
ak

∣∣∣((Qx
−Q0) + (Qy

−Q0) + 2Q0
)ᵀ

[αkφi
k
](Qx

−Qy) + βᵀ
kφi

k
(Qx
−Qy)

∣∣∣)
=

m∑
k=1

(
ak

∣∣∣((Qx
−Q0) + (Qy

−Q0)
)ᵀ

[αkφi
k
](Qx

−Qy) +
(
βᵀ

kφi
k
+ 2(Q0)ᵀ[αkφi

k
]
)
(Qx
−Qy)

∣∣∣)
≤

m∑
k=1

(
ak

(
‖(Qx

−Q0)+(Qy
−Q0)‖∞ ·‖[αkφi

k
]‖1 ·‖Qx

−Qy
‖1

+

m∑
l=1

‖

(
βᵀ

kφi
k
+ 2(Q0)ᵀ[αkφi

k
]
)

[l]
‖1 · ‖Qx

l −Qy
l ‖∞

))
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≤

m∑
k=1

(
ak

(
2r̂ · ‖[αkφi

k
]‖1 ·

( m∑
l=1

‖Qx
l −Qy

l ‖1

)
+

m∑
l=1

‖

(
βᵀ

kφi
k
+ 2(Q0)ᵀ[αkφi

k
]
)

[l]
‖1 · ‖Qx

l −Qy
l ‖∞

))
≤

m∑
k=1

(
ak

(
6r̂ · ‖[αkφi

k
]‖1 ·

( m∑
l=1

‖Qx
l −Qy

l ‖∞
)

+

m∑
l=1

‖

(
βᵀ

kφi
k
+ 2(Q0)ᵀ[αkφi

k
]
)

[l]
‖1 · ‖Qx

l −Qy
l ‖∞

))
≤

m∑
l=1

((
6r̂ ·

( m∑
k=1

(ak ‖[αkφi
k
]‖1)

)
+

m∑
k=1

ak ‖
(
βᵀ

kφi
k
+ 2(Q0)ᵀ[αkφi

k
]
)

[l]
‖1

)
· ‖Qx

l −Qy
l ‖∞

)
:=

m∑
l=1

(
δi

l · ‖Q
x
l −Qy

l ‖∞
)
, (6.3.16)

where r̂ = max(r1, · · · , rm). Therefore, we require δi
l/al < 1, ∀l = 1, · · · ,m. For i = 1, · · · , 3m,

define the sets,

Ci =
{
[αkφi

k
] ∈ R3m×3m, βkφi

k
∈ R3m,∀k ∈ {1, · · · ,m}

∣∣∣δi
l/al < 1,∀l = 1, · · · ,m

}
. (6.3.17)

For any fixed rk, ak, where k = 1, · · · ,m, the mapping (6.3.11) is a contraction on S(r) if
there exist [αkφ] and βkφ that are contained in the intersection ∩3m

i=1Ci , ∅.
Alternatively, for a given system with fixed parameters [αkφ], βkφ, γkφ, ∀k ∈ {1, · · · ,m},

φ ∈ {1, 2, 3}, define the sets,

C̃i =
{
r ∈ Rm

+ , a1 = 1, ak ≥ 1,∀k = 2, · · · ,m
∣∣∣δi

l/al < 1,∀ l = 1, · · · ,m
}
, ∀i = 1 · · · 3m. (6.3.18)

In that case, the mapping (6.3.11) is a contraction on S(r) for {r, a} ∈ ∩3m

i=1C̃i , ∅.

6.3.3.3 Computation

It is anticipated that most distribution feeders will have few critical nodes that require
balancing, so m will be small. Therefore verifying the 3m intersections of equation (6.3.18)
will be manageable. Moreover, the computation required for checking each condition is
negligible.

If, however, m is large, a heuristic can be exploited to reduce the dimensionality.
The proposed heuristic is motivated by the observation that if two critical nodes are
on different branches, then the reactive power injections of one controller have little
impact on the other controller. Therefore, when analyzing the interactions between such
Steinmetz controllers, those controllers can be (approximately) decoupled. Based on this
intuition, controllers can be categorized into multiple groups, where interactions within
groups are relatively tight but interactions between groups are weak. When analyzing the
convergence of the controllers from one group, the injections from the other groups can be
neglected. By doing so, the total number of intersections required to be checked reduces
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to 3m1 + 3m2 + · · · + 3mn , where n is the number of groups, mi is the number of Steinmetz
controllers within the i-th group, and m1 + m2 + · · · + mn = m.

6.3.3.4 Interpretations

The theoretical results that have been derived may be viewed from two perspectives,
operation and design. In the first setting, the network topology and system parameters,
such as line impedances and loading conditions, are given. Based on that information, an
injection range can be certified for the reactive power resources such that starting from
within that range ensures the decentralized and distributed controllers will converge to
the unique operating point. The second interpretation suggests that given the network
topology and a desired injection range, system parameters that ensure convergence can
be determined.

Note that the Banach fixed-point theorem is a sufficient result, so the derived conditions
are conservative relative to the true convergence region. Nevertheless, they provide
valuable guidance for determining convergence characteristics for realistic systems, as
discussed further in Section 6.5.

The analysis in this chapter considers a general quadratic mapping which is suitable
for modeling many applications. For example, the power flow equations are formulated
as affinely parameterized quadratic equations in [142], where existence of power flow
solutions is studied.

6.4 Time Delays in Measurement and Control Implemen-

tation

The previous analysis can be extended to incorporate time delays in the measurement
process and in updating reactive power injections. In generic cases, different controllers
could have different time delays. For a specific control injection Qk, the measurement
delay τm

k and the control implementation delay τc
k can be combined as τk := τm

k + τc
k. Such

time-delay effects can be incorporated in the mapping model by,

Q(t + 1) = [(Q1(t + 1))ᵀ, · · · , (Qm(t + 1))ᵀ]ᵀ, (6.4.1)

where for k = 1, · · · ,m,

Qk(t + 1) = [Qk1(t + 1),Qk2(t + 1),Qk3(t + 1)]ᵀ
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=


(Q(t−τk))ᵀ[αk1]Q(t−τk) + βᵀk1Q(t−τk) + γk1

(Q(t−τk))ᵀ[αk2]Q(t−τk) + βᵀk2Q(t−τk) + γk2

(Q(t−τk))ᵀ[αk3]Q(t−τk) + βᵀk3Q(t−τk) + γk3


:= fk

(
Q(t − τk)

)
. (6.4.2)

It can be observed from equation (6.4.1) that the injections from all distributed con-
trollers Qk where k = 1, · · · ,m, from time t up until time t− τ̂where τ̂ = max(τ1, · · · , τm)+1
are coupled together to determine the control injection at time t + 1, i.e., Q(t + 1). To
analyze the convergence property of the time-delayed system (6.4.1), we need to enlarge
the state Q by defining an augmented state Q̂, where

Q̂+ = [Q(t + τ̂), · · · ,Q(t + 1)]ᵀ, (6.4.3)

Q̂− = [Q(t), · · · ,Q(t − τ̂ + 1)]ᵀ, (6.4.4)

where τ̂ = max(τ1, · · · , τm) + 1. For τ̃ = 1, · · · , τ̂,

Q(t + τ̃) = [(Q1(t + τ̃))ᵀ, · · · , (Qm(t + τ̃))ᵀ]ᵀ, (6.4.5)

in which for k = 1, · · · ,m,

Qk(t + τ̃) = [Qk1(t + τ̃),Qk2(t + τ̃),Qk3(t + τ̃)]ᵀ

=


Q(t+τ̃−τk− 1)ᵀ[αk1]Q(t+τ̃−τk− 1) + βᵀk1Q(t+τ̃−τk− 1) + γk1

Q(t+τ̃−τk− 1)ᵀ[αk2]Q(t+τ̃−τk− 1) + βᵀk2Q(t+τ̃−τk− 1) + γk2

Q(t+τ̃−τk− 1)ᵀ[αk3]Q(t+τ̃−τk− 1) + βᵀk3Q(t+τ̃−τk− 1) + γk3

 . (6.4.6)

Now, the enlarged system with state Q̂ can be written into a new quadratic mapping
form,

Q̂+ = F̂ (Q̂−). (6.4.7)

The same contraction analysis as shown in Section 6.3 can be applied to equation (6.4.7).
As a result, the convergence property of the time-delayed system (6.4.1) can be established.

6.5 Case Studies

This section presents a number of case studies that demonstrate the balancing results of
the decentralized and distributed Steinmetz controllers and test the convergence results.
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Table 6.1: Constant-Power Loads of the 5-Bus System.

Index Sab Sbc Sca

node 5
50 kVA

p.f.=0.85 lag.
30 kVA

p.f.=0.90 lag.
100 kVA

p.f.=0.95 lag.

node 4
40 kVA

p.f.=0.95 lag.
20 kVA

p.f.=0.80 lag.
70 kVA

p.f.=0.85 lag.

node 3
50 kVA

p.f.=0.85 lag.
30 kVA

p.f.=0.90 lag.
100 kVA

p.f.=0.95 lag.

node 2
40 kVA

p.f.=0.95 lag.
20 kVA

p.f.=0.80 lag.
70 kVA

p.f.=0.85 lag.

Substation

4.16 kV

1 2 3 4 5

~

Figure 6.4: One-line diagram for the 5-bus network of Case 1.

Various control schemes and distributed resource deployment options are investigated.
The cases consider a 5-bus distribution network, the IEEE standard 13-bus test feeder and
the IEEE standard 34-bus test feeder.

The one-line diagram for the 5-bus network is shown in Fig. 6.2 and Figs. 6.4–6.6. This
network is considered in cases 1 to 4. In each of these cases, a black arrow indicates a
constant-power load, the value of which is specified in Table 6.1. The voltage at node 1 is
balanced 4.16 kV line-to-line.

Case 1. We first test the balancing and convergence properties of a single Steinmetz
controller. Consider node 4 in Fig. 6.4 to be the critical node that is to be balanced, and
assume that a three-phase PV inverter and Steinmetz controller are deployed there. For
the given system parameters, the certified operating region for PV reactive power injection
at node 4 is S =

{
Q4 ∈ R3

∣∣∣‖Q4 − Q0
4‖∞ ≤ 43.5 p.u.

}
, where5 Q4 = [Qab

4 ,Q
bc
4 ,Q

ca
4 ]ᵀ. Since the

certified region is large, it was not necessary to estimate the fixed point. Therefore Q0
4 was

chosen as the zero vector. Although the convergence condition provided in the chapter is
a sufficient condition, it is clear that in this single Steinmetz controller case the certified
region of 43.5 p.u. is much larger than the normal operating range of inverters. Hence,
this individual Steinmetz controller is robust to disturbances.

The VUF at the critical node 4 is reduced from 1.35% to 0.0089%. In fact, the VUF is also
5For clarity of presentation we use node number throughout this section, i.e., the subscript refers to the

4-th node in the system.
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Figure 6.5: One-line diagram for the 5-bus network of Case 3.

reduced at the other three nodes, from 0.44% to 0.0029% (node 2), from 0.89% to 0.0059%
(node 3), and from 1.66% to 0.32% (node 5). The converged reactive power compensation
injected at node 4 is Q4 = [−0.5920, 0.6165,−0.0245]ᵀ.

Case 2. This case provides an initial analysis of interactions between two Steinmetz
controllers. Referring to Fig. 6.2, both nodes 4 and 5 are critical nodes that are to be
balanced, and three-phase PV inverters and Steinmetz controllers are placed at these
two nodes. Based on the estimate provided by the linear program P1, Q0

4 is chosen as
[−0.1681, 0.2118,−0.0197]ᵀ, and Q0

5 is [−0.4234, 0.4046, 0.0096]ᵀ. The certified convergence
regions for the two PV inverters are S4 =

{
Q4 ∈ R3

∣∣∣‖Q4 −Q0
4‖∞ ≤ 3.5 p.u.

}
, and S5 =

{
Q5 ∈

R3
∣∣∣‖Q5 − Q0

5‖∞ ≤ 1.65 p.u.
}
, where Q4 = [Qab

4 ,Q
bc
4 ,Q

ca
4 ]ᵀ, and Q5 = [Qab

5 ,Q
bc
5 ,Q

ca
5 ]ᵀ. The

coefficients ak of the norm ‖ · ‖δ in Subsection 6.3.3.2 are a4 = 1 and a5 = 2.6. Note that
when determining the certified convergence regions, there is flexibility to choose from a
range of feasible combinations of radii rk and norm scale parameters ak. We report the
largest achievable radius.

In this test example, the VUF at nodes 4 and 5 reduced from 1.35% to 0% and from 1.66%
to 0%, respectively. The VUF at both nodes 2 and 3 also reduced to 0%. At convergence,
the reactive power compensation at nodes 4 and 5 was Q4 = [−0.1714, 0.2086,−0.0372]ᵀ

and Q5 = [−0.4203, 0.4077, 0.0127]ᵀ, respectively. Note that these fixed points are very
close to the estimates provided by the linear program.

Case 3. To further explore the interactions between multiple decentralized Steinmetz
controllers, we now consider three controllers. Assume that nodes 3, 4 and 5 are critical
nodes, each equipped with a three-phase PV inverter and a Steinmetz controller. The
corresponding system diagram is shown in Fig. 6.5.

The estimated fixed points provided by the linear programP1 are Q0
3 = [−0.3486, 0.4742,

0.0826]ᵀ, Q0
4 = [−0.1971, 0.1831,−0.0628]ᵀ and Q0

5 = [−0.4623, 0.3661,−0.0290]ᵀ. The cer-
tified convergence regions for the three PV inverters are S3 =

{
Q3 ∈ R3

∣∣∣‖Q3 − Q0
3‖∞ ≤

0.9 p.u.
}
, S4 =

{
Q4 ∈ R3

∣∣∣‖Q4 −Q0
4‖∞ ≤ 0.35 p.u.

}
and S5 =

{
Q5 ∈ R3

∣∣∣‖Q5 −Q0
5‖∞ ≤ 0.2 p.u.

}
,

where as usual Q3, Q4 and Q5 denote line-to-line reactive power compensation injected at
the corresponding nodes. Across a large range of feasible solutions, we chose the solution
that achieved the largest region for the furthest downstream node. The corresponding
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Figure 6.6: One-line diagram for the 5-bus network of Case 4.

norm scale parameters were a3 = 1, a4 = 2.1, a5 = 5. In this example, the VUF at nodes 3,
4 and 5 reduced from 1.53%, 2.01% and 2.34%, respectively, to 0% in all cases. The VUF
at node 2 also reduced from 0.75% to 0%. The converged reactive power compensation at
nodes 3, 4 and 5 was Q3 = [−0.4206, 0.4078, 0.0127]ᵀ, Q4 = [−0.1715, 0.2087,−0.0372]ᵀ and
Q5 = [−0.4205, 0.4078, 0.0127]ᵀ, respectively.

We are now in a position to provide an interpretation of the construction of the norm
which is used to show contraction when multiple controllers interact. Given the radial
structure of the distribution network, it is clear that the power injection at a downstream
node has a direct effect on the power seen at an upstream node. However, the power
injection at an upstream node only influences the power of a downstream node through
changing the voltage profile, which affects the losses between the two nodes. This obser-
vation is also reflected in the relative magnitudes of the coefficient matrices [αkφ], βkφ, γkφ,
∀k ∈ {1, · · · ,m}, φ ∈ {1, 2, 3}. When there are multiple controllers, the injections of the other
controllers behave as disturbances. It follows from the strong/weak coupling relationship
that the injection at a downstream node can be viewed as a significant disturbance to
the upstream node and therefore should be penalized by placing higher weight in the
contraction norm. Doing so effectively distorts the state space to enforce contraction.

In cases 1, 2 and 3, it was assumed that three-phase DERs with Steinmetz controllers
were available at the critical nodes. This led to a totally decentralized scheme where
individual controllers did not communicate with each other, nor was a central energy
management system required. Only local measurements of line-to-neutral voltages and
line currents were needed. The resulting control system is cheap to implement, while
the convergence guarantees ensure robustness to disturbances. However, DERs are not
always available at critical nodes. In particular, three-phase PV inverters are rare in actual
distribution networks. To address this issue, the distributed control scheme discussed
in Subsection 6.2.3 can be employed. By taking advantage of the radial structure of
distribution feeders, the network is first subdivided into partitions based on the critical
nodes that must be balanced. The DERs within each partition are deployed for balancing
the associated critical node. Only limited communication is required within each partition.

Case 4. The balancing and convergence properties of the distributed control scheme
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Figure 6.7: IEEE 13-bus test feeder.

were further tested using the 5-bus system. As shown in Fig. 6.6, nodes 2 and 4 are critical
nodes, while two three-phase PV inverters and Steinmetz controllers are sited at nodes 3
and 5. In this test case, the only communication required is to send the measurements
of voltage and current at nodes 2 and 4 to nodes 3 and 5, respectively. The certified
convergence regions at nodes 3 and 5 are S3 =

{
Q3 ∈ R3

∣∣∣‖Q3 − Q0
3‖∞ ≤ 7.8 p.u.

}
, and

S5 =
{
Q5 ∈ R3

∣∣∣‖Q5 − Q0
5‖∞ ≤ 4.2 p.u.

}
, where Q3 and Q5 refer to the line-to-line reactive

power compensation, and Q0
3 and Q0

5 were chosen to be zero vectors. Here we report the
solution that gave the largest contraction region for the downstream node, i.e., node 5. The
coefficients ak in the contraction norm were a3 = 1 and a5 = 2.5. The VUF at nodes 2 and 4
reduced from 0.90% to 0%, and from 2.17% to 0.14%, respectively. The VUF at nodes 3 and 5
also reduced, from 1.68% to 0.14% and from 2.50% to 0.29%, respectively. The converged
reactive power compensation at nodes 3 and 5 was Q3 = [−0.5911, 0.6108,−0.0197]ᵀ and
Q5 = [−0.5922, 0.6122,−0.0199]ᵀ, respectively.

We further tested the distributed Steinmetz controller and the convergence results on a
modified IEEE 13-bus system shown in Fig. 6.7. The system configuration is documented
in [143]. We considered delta-connected constant-power spot loads in this example. The
in-line voltage regulator was fixed at its default value, having identical taps on all three
phases. The impedance of line 650–632 was balanced. The lines 684–611 and 684–652
were changed to configuration 604.

Case 5. In this example, node 2 (632) is the critical node that must be balanced. Three
single-phase PV inverters are connected to nodes 7 (671), 6 (646) and 12 (611), on phases
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Figure 6.8: Initial and controlled VUF at three-phase buses, for Case 5.

ab, bc and ca, respectively. In this case the only communication required was to send the
voltage and current measurements at node 632 to the three nodes which were equipped
with PV inverters. Coordinating three single-phase inverters to balance the critical node
was effectively equivalent to using a three-phase inverter.

We were able to certify a contraction region S =
{
Q ∈ R3

∣∣∣‖Q − Q0
‖∞ ≤ 102.9 p.u.

}
,

where Q = [Qab
7 ,Q

bc
6 ,Q

ca
12]ᵀ, and Q0 was chosen as the zero vector. The result demonstrates

that this distributed control scheme, which utilizes three highly-dispersed single-phase
PV inverters, is very robust to disturbances. Starting from any reactive power injection
within the certified contraction region, the system is guaranteed to converge to the unique
fixed point, assuming system parameters are constant. The VUF at the critical node 2 was
reduced from 0.38% to 0%. The initial and controlled VUF of all three-phase nodes in the
network are shown in Fig. 6.8. The converged reactive power injections were Qab

7 = 1.6307,
Qbc

6 = −0.6853, Qca
12 = −0.9455.

Case 6. Interactions between multiple distributed single-phase Steinmetz controllers
were investigated using the modified IEEE 13-bus system. Referring to Fig. 6.7, consider
both nodes 2 (632) and 7 (671) to be critical nodes. The network was subdivided into two
partitions based on these two critical nodes, as shown by the two dashed rectangles in
Fig. 6.7. The DERs within each partition were available to assist in balancing the associated
critical node. For this example, there are three single-phase PV inverters within the first
partition, connected to phases ab and ca at node 3 (633) and to phase bc at node 6
(646). Similarly, within the second partition there are three single-phase PV inverters,
connected to nodes 8 (675), 9 (680) and 12 (611), on phases ab, bc and ca, respectively.
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Figure 6.9: Initial and controlled VUF at three-phase buses, for Case 6.

Note that only local communication within each partition is required. These single-
phase inverters effectively form two full Steinmetz controllers. The interactions between
distributed controllers were analyzed and a convergence guarantee was achieved. We
certified a contraction region of Sp1 =

{
Qp1 ∈ R3

∣∣∣‖Qp1 −Q0
p1‖∞ ≤ 20 p.u.

}
and Sp2 =

{
Qp2 ∈

R3
∣∣∣‖Qp2 − Q0

p2‖∞ ≤ 9 p.u.
}

for controllers in the first and second partitions, where Qp1 =

[Qab
3 ,Q

bc
6 ,Q

ca
3 ]ᵀ, Qp2 = [Qab

8 ,Q
bc
9 ,Q

ca
12]ᵀ. The certified contraction region was relatively large

compared to the normal operating range of inverters. The linear program P1 provided
the estimates Q0

p1 = [4.0392, 0.1747,−0.8055]ᵀ and Q0
p2 = [−1.5752, 0.8831, 0.0001]ᵀ. The

contraction norm coefficients were ap1 = 1, and ap2 = 3.
The VUF at critical nodes 2 and 7 was reduced from 0.38% to 0.0044% and from

0.71% to 0.53%, respectively. Fig. 6.9 shows the initial and controlled VUF at all three-
phase nodes in the system. Note that the IEEE 13-bus network has a very unbalanced
structure, with unbalanced line configurations and missing phases. Steinmetz-based
control, however, aims to balance the load, i.e., make the equivalent local plus downstream
load appear balanced. Nevertheless, it still attenuated VUF at the critical nodes in this
example. Fig. 6.10 shows the convergence of the reactive power injections at the six
distributed controllers. Convergence was achieved in two iterations, with the converged
reactive power injections being Qab

3 = 3.0434, Qbc
6 = −1.8804, Qca

3 = −1.1630, Qab
8 = −1.3447,

Qbc
9 = 1.1145, Qca

12 = 0.2302.
Finally the performance of the distributed Steinmetz controller was evaluated using a

modified IEEE 34-bus system shown in Fig. 6.11. This network is long and lightly loaded,
with full details provided in [144]. We fixed the two in-line voltage regulators at their
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Figure 6.10: Convergence of the Steinmetz controllers, for Case 6.

default values. Similarly to prior work [145, 146], we translated all constant-impedance
and constant-current loads into constant-power loads. We also included balanced wye-
connected constant-power loads in this example. Distributed load was aggregated at the
adjacent node farthest from the substation. The load profile is given in Table 6.2.

Table 6.2: Constant-Power Loads of the IEEE 34-Bus System.

Index Connection Constant power load
node 27 wye [135 + j105, 135 + j105, 135 + j105]
node 30 wye [20 + j16, 20 + j16, 20 + j16]
node 32 wye [9 + j7, 9 + j7, 9 + j7]
node 13 delta [0 + j0, 5 + j2, 0 + j0]
node 16 delta [10 + j5, 10 + j5, 25 + j10]
node 22 delta [150 + j75, 150 + j75, 150 + j75]
node 23 delta [7 + j3, 2 + j1, 6 + j3]
node 25 delta [4 + j2, 15 + j8, 13 + j7]
node 29 delta [20 + j16, 20 + j16, 20 + j16]
node 30 delta [16 + j8, 20 + j10, 110 + j55]
node 31 delta [30 + j15, 10 + j6, 42 + j22]
node 32 delta [18 + j9, 22 + j11, 0 + j0]

Case 7. Interactions between multiple distributed single-phase Steinmetz controllers
were again considered, this time using the modified IEEE 34-bus network. Referring to
Fig. 6.11, both nodes 4 (808) and 23 (858) are critical nodes, and the network is subdivided
into the two corresponding partitions shown by the dashed frames. There are three single-
phase PV inverters within the first partition, connected to phases ab at node 7 (814), bc at
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Figure 6.11: IEEE 34-bus test feeder.

node 9 (816), and ca at node 17 (854). Similarly, there are three single-phase PV inverters
within the second partition, connected to nodes 26 (842), 32 (840) and 33 (862), on phases
ab, bc and ca, respectively. These single-phase inverters effectively form two full Steinmetz
controllers. As in the previous cases, we analyzed the interactions between distributed
controllers and certified contraction regions ofSp1 =

{
Qp1 ∈ R3

∣∣∣‖Qp1−Q0
p1‖∞ ≤ 2.6 p.u.

}
and

Sp2 =
{
Qp2 ∈ R3

∣∣∣‖Qp2−Q0
p2‖∞ ≤ 1.2 p.u.

}
for the controllers in the first and second partitions,

where Qp1 = [Qab
7 ,Q

bc
9 ,Q

ca
17]ᵀ, Qp2 = [Qab

26,Q
bc
32,Q

ca
33]ᵀ. The linear program P1 provided the

estimates Q0
p1 = [0.0, 0.0, 0.0]ᵀ and Q0

p2 = [−0.1904, 0.6642, 0.0]ᵀ. The contraction norm
coefficients were ap1 = 1 and ap2 = 4.3.

The VUF at critical nodes 4 and 23 was reduced from 0.3769% and 2.3659% to 0.1546%
and 0.8817%, respectively. Fig. 6.12 shows the initial and controlled VUF at all three-phase
nodes in the network. Note that the distributed Steinmetz controller attenuated VUF at
all the three-phase nodes in this example, including the critical nodes. The largest VUF of
3.4450%, at node 22, was reduced to 1.7646% after applying the Steinmetz controllers.

Fig. 6.13 shows the reactive power injections at the six distributed controllers converged
in a few iterations. The converged reactive power injections in per unit were Qab

7 = −0.0266,
Qbc

9 = 0.0598, Qca
17 = −0.0331, Qab

26 = −0.3484, Qbc
32 = 0.5061, Qca

33 = −0.1577. Note that the
estimates provided by the linear program P1 are close to the final converged reactive
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Figure 6.12: Initial and controlled VUF at three-phase buses, for Case 7.

power injections.
Case 8. To test the performance of the controllers in an extremely unbalanced case, the

loads at nodes 13, 16 and 23 were increased to ten times their values given in Table 6.2.
Everything else remained the same as in Case 7. The interactions between distributed
controllers were analyzed and contraction regions of Sp1 =

{
Qp1 ∈ R3

∣∣∣‖Qp1 − Q0
p1‖∞ ≤

2.1 p.u.
}

and Sp2 =
{
Qp2 ∈ R3

∣∣∣‖Qp2 − Q0
p2‖∞ ≤ 0.8 p.u.

}
were certified, where again Qp1 =

[Qab
7 ,Q

bc
9 ,Q

ca
17]ᵀ, Qp2 = [Qab

26,Q
bc
32,Q

ca
33]ᵀ. The contraction norm coefficients were ap1 = 1 and

ap2 = 3.8.
The VUF at critical nodes 4 and 23 was reduced from 0.7829% and 4.8148% to 0.2205%

and 1.3357%, respectively. Fig. 6.14 shows the initial and controlled VUF at all three-phase
nodes in the network. Note that the initial VUF in Case 8 was around twice that of Case 7.
Distributed Steinmetz controllers attenuated VUF at all the three-phase nodes including
the critical nodes. The VUF at node 22 was reduced from 6.6876% to 2.58%. Fig. 6.15
shows the reactive power injections at the six distributed controllers again converged in
just a few iterations. The converged values for reactive power injections in per unit were
Qab

7 = −0.2816, Qbc
9 = 0.6129, Qca

17 = −0.3313, Qab
26 = −0.5989, Qbc

32 = 0.6530, Qca
33 = −0.0541.

These reactive power injections were generally more extreme than case 7. Nevertheless,
they were all within the certified contraction region.
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Figure 6.13: Convergence of the Steinmetz controllers, for Case 7.

6.6 Chapter Conclusion

The chapter derives convergence guarantees for decentralized and distributed Steinmetz-
based controllers for mitigating voltage unbalance in distribution networks. The pro-
posed control strategies balance voltages by utilizing the reactive power availability of
distributed energy resources (DERs) such as solar photovoltaic (PV). Analysis of in-
teractions between multiple Steinmetz-based controllers is undertaken and convergence
conditions are established.

The analysis adopts a linear multi-phase power flow model derived from a fixed-
point form of the power flow equations. An optimization formulation was developed to
compute a sufficiently accurate approximation for the final converged point, resulting in
a high-fidelity linear power flow model. This power flow model allowed the Steinmetz-
based control schemes to be written explicitly as a quadratic mapping of the reactive
power injections from one iteration to the next. Banach fixed-point theory was used to
prove convergence of the control scheme. The analysis can be extended to incorporate
time delays in the measurement process and in implementing updated reactive power
injections.

Convergence conditions were tested using one small network and two IEEE standard
distribution test feeders. Results illustrate the convergence analysis, and highlight the
effectiveness and robustness of the proposed decentralized and distributed Steinmetz-
based controllers.
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Figure 6.14: Initial and controlled VUF at three-phase buses, for Case 8.
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Figure 6.15: Convergence of the Steinmetz controllers, for Case 8.

120



CHAPTER 7

Chance-Constrained Optimal Capacity Design
for a Renewable-Only Islanded Microgrid

7.1 Chapter Introduction

Microgrids are defined as small-scale power systems that group a variety of distributed
energy resources (DERs), such as renewable resources, storage systems and loads, to pro-
vide high reliability. A microgrid can operate in either grid-connected mode or islanded
mode. This chapter considers islanded microgrids supplied solely by renewable resources,
where backup power supply from the main power grid is not available. Sufficient capacity
must be available within the microgrid to safely supply loads, while excessive capacity
should be avoided to minimize the overall cost. This implies that in rare cases where re-
newable generation is extremely limited, for example cloudy breezeless days, loads with
low priority are subject to load shedding, as a last resort. Optimal design of the capacity
of DERs within islanded microgrids must therefore consider the trade-off between energy
sufficiency and economics.

Numerous aspects of optimal microgrid capacity design have been considered previ-
ously. Optimal sizing of a microgrid with a wind turbine, solar photovoltaic (PV) and
fuel cell is studied in [147] using an evolutionary computation technique. Sizing a variety
of DERs in a microgrid is considered in [148] where the focus is on satisfying regulatory
constraints imposed by government. Much work has been done on incorporating mul-
tiple objectives into the design of microgrids. A multi-objective optimization problem is
formulated in [149] to consider both cost and power availability. A genetic algorithm is
applied to solve the optimization problem, however a trade-off is required between the
multiple feasible solutions. Simultaneous minimization of levelized cost of energy and
CO2 emissions is considered in [150] through application of a strength pareto evolution-
ary algorithm. Design criteria considered in [151] include minimum cost, CO2 emissions
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and maximum reliability. Markov models for wind generation, solar PV and loads are
generated in [152] and [153].

Most literature handles stochastic variables using Monte Carlo simulation and heuris-
tic algorithms, which cannot provide probability guarantees in a tractable way. Recently
there has been substantial interest though in chance-constrained (CC) formulations. CC
problems are generally difficult to solve analytically, except for rare cases where the un-
certain variables are uniformly or normally distributed [41]. However, under certain light
assumptions, randomized optimization methods [42] can solve CC problems and provide
solutions with a priori probability guarantees and appealing tractability properties. A CC
formulation for the optimal power flow (OPF) problem was first proposed in [154] using
a solution methodology that does not scale well, while the scenario approach [42] was
applied in [155] to solve the CC OPF problem.

In this chapter, we explicitly pose microgrid capacity design as a stochastic optimiza-
tion problem with chance constraints, and solve it using a randomized optimization
method. The scenario approach [42] may require a large number of scenarios, depending
on the number of decision variables. Considering the high dimension of our problem
with respect to the decision variables, we have instead adopted a related randomized
optimization technique, the probabilistically robust method [156], in which the required
number of scenarios depends on the number of uncertain variables. This approach [156]
initially constructs a CC problem to establish a robust set for the uncertain variables, then
a robust counterpart of the original problem is solved with uncertain variables confined
to the computed robust set.

To apply [156], we need to choose the shape of the robust set that encloses the randomly
selected scenarios. We have found that a hyper-rectangular robust set, as proposed
in [156], can be overly conservative. This chapter therefore introduces two methods for
reshaping the robust set to reduce conservativeness. Firstly, a cutting-based reshaping
method is proposed which takes into account the physical characteristics of wind and solar
generation and load. This method is efficient and does not incur many extra scenarios for
maintaining the desired probability guarantee. Secondly, a reshaping method that exploits
principal component analysis (PCA) [157] is proposed. PCA identifies the principal
directions that capture the most variation in data and thereby provides a way to reduce
data dimensionality. Its applications in power systems are largely related to wind speed
forecasting [158] and data compression [159]. In this chapter, we use PCA to remove
unnecessary parts in the robust set and hence improve the solution for the original CC
problem.

To facilitate the use of randomized methods we need a formulation where certain
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decision variables are defined as a function, i.e., a “control policy”, of the uncertain
variables. In our microgrid design problem, an affine control policy [160] is proposed
to dispatch battery power under uncertain renewable generation and load. In contrast,
a nonlinear control policy is designed for load shedding control. These control policies
are integrated into the stochastic CC problem, the solution to which provides the optimal
policy parameters, DER capacities, the upper bound on the load shedding ratio, and a
forecast dispatch for the battery power. Note that both the affine policy for battery dispatch
and the nonlinear policy for load shedding are purely to aid the design process and should
not be interpreted as determining the actual operating strategy.1 In an operational setting,
the battery in a renewable-only islanded microgrid has to continually compensate for
power shortages due to insufficient renewable generation, while load shedding is rather
an emergency action scheme.

The chapter is organized as follows: Section 7.2 describes the microgrid structure and
presents the problem description. Control policies for battery power dispatch and load
shedding are proposed in Section 7.3, and the stochastic CC optimization problem is
formulated in Section 7.4. Section 7.5 introduces the robust reformulation as well as the
two methods for refining the robust set. Robust reformulation of the original CC problem
is provided in Section 7.6. Shrinking horizon implementation of the control policy is
proposed in Section 7.7. Numerical results and validation tests are provided in Section 7.8
and conclusions are given in Section 7.9.

7.2 Microgrid Structure and Problem Description

7.2.1 Microgrid Structure

The chapter considers an islanded microgrid system that is built around a central electrical
bus. Various DERs, including a wind turbine, solar PV and energy storage, together with
load are connected to the central bus. Fuel-based power plants are excluded on the basis
of their environmental impact, and grid connection is not considered due to the high cost
of rural area electrification. We assume a load shedding scheme is available to cope with
rare weather conditions when renewable generation is extremely limited.

The stochasticity of renewable resources and load must be carefully considered. The
uncertainty and intermittency of renewable generation make reliable power supply chal-
lenging especially in our setting where backup from conventional power generation or the

1Though a shrinking horizon implementation of the battery control policy is developed for on-line
operation.
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grid is not available. Battery energy storage is vital in managing this issue, charging when
there is excess generation from renewable resources and discharging when generation is
insufficient. Such battery management will be taken into account in the microgrid design
process.

7.2.2 Problem Description

The problem of interest is the optimal capacity design for DERs and load shedding in an
isolated microgrid. Specifically, our objective is to determine the power rating pw of wind
turbines, the power rating ppv of solar PV, the power rating pb and energy capacity eb of
battery energy storage, and the maximum allowable proportion of load that may be shed,
which we refer to as the load shedding ratio limit rsh. We consider a time horizon of T = 24
hours with one-hour resolution, indexed by t = 0, . . . ,T − 1.

The uncertain variables consist of the normalized (unit capacity) wind power p̃0
w ∈ R

T
+,

normalized solar PV power p̃0
pv ∈ R

T
+, and actual load p̃d ∈ RT

+. We use tilde to denote
random variables and the superscript “0” to denote normalized variables throughout the
chapter.

Define p̃w ∈ RT
+ and p̃pv ∈ RT

+ as the random variables for the actual power outputs of
the wind turbine and solar PV system, respectively,

p̃w = pw · p̃
0
w, p̃pv = ppv · p̃

0
pv.

For each type of random variable, we assume there is a single forecast trajectory,
which is deterministic and obtained based on exogenous information. The forecasts for
normalized wind power, normalized solar PV power, and actual load are denoted by
p0f

w ∈ R
T
+, p0f

pv ∈ R
T
+, and pf

d ∈ R
T
+, respectively. Similarly, define the forecasts for actual

wind and solar power output as pf
w ∈ R

T
+, pf

pv ∈ R
T
+ with,

pf
w = pw · p

0f
w, pf

pv = ppv · p
0f
pv.

The optimal design problem can be formulated as a CC optimization problem of the
form,

min
x∈Rnx

J(x)

subject to Pr
(
δ ∈ ∆| max

j=1,...,m
g j(x, δ) ≤ 0

)
≥ 1 − ε, (7.2.1)

where δ ∈ ∆ ⊆ Rnδ are the random variables, x ∈ Rnx are the decision variables, Pr(B|A)
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denotes the probability of A conditioned on B, and ε is a pre-defined maximal probability
of violation. Instead of enforcing hard constraints, we only require the constraints to be
satisfied with high probability so as to render a less conservative design.

7.3 Control Policies

To handle the stochasticity introduced by renewable resources and load, control policies
are designed to generate trajectories for battery charging/discharging and load shedding
under arbitrary generation and load conditions.

7.3.1 Affine Policy for Battery Dispatch

In this subsection, we develop an affine policy for battery power dispatch p̃b(t), t =

0, . . . ,T − 1. The policy must ensure that the battery state of charge (SoC) at the end-of-
horizon, t = T, is equal to the SoC at the beginning of the horizon, t = 0, with both being
equal to a target value. Furthermore, there should be a mechanism for encouraging extra
charging (discouraging discharging) when net generation exceeds its forecast value and
vice versa when net generation is less than forecast.

Let the net generation/load mismatch from forecast at each time-step t = 0, ...,T − 1 be
given by,

p̃mis(t) = p̃w(t) + p̃pv(t) − p̃d(t)−
(
pf

w(t) + pf
pv(t) − pf

d(t)
)

= pw

(
p̃0

w(t) − p0f
w(t)

)
+ ppv

(
p̃0

pv(t) − p0f
pv(t)

)
−

(
p̃d(t) − pf

d(t)
)

= pw · ∆p̃0
w(t) + ppv · ∆p̃0

pv(t) − ∆p̃d(t), (7.3.1)

where the new uncertain variables ∆p̃0
w(t), ∆p̃0

pv(t), ∆p̃d are defined as,

∆p̃0
w(t) , p̃0

w(t) − p0f
w(t),

∆p̃0
pv(t) , p̃0

pv(t) − p0f
pv(t),

∆p̃d(t) , p̃d(t) − pf
d(t).

Assuming perfect efficiency, the battery SoC for both the forecast and the uncertain
trajectory are given by,

ef
b(t + 1) = ef

b(t) + pf
b(t), (7.3.2)

ẽb(t + 1) = ẽb(t) + p̃b(t), (7.3.3)

125



for t = 0, ...,T − 1, where pf
b(t) is the forecast battery power dispatch and p̃b(t) is the

(stochastic) battery power dispatch, with positive values acting as load on the microgrid.
Consider the battery dispatch policy,

p̃b(t) = pf
b(t) + d(t) · p̃mis(t) − d2(t)

T−1∑
i=0

d(i) · p̃mis(i), (7.3.4)

where the weights d(t),d2(t) ∈ RT are decision variables. If the policy satisfies
∑T−1

t=0 d2(t) =

1 then equation (7.3.4) ensures that ẽb(T) = ef
b(T).

Note however that policy (7.3.4) involves multiplication of the decision variables d(t)
and d2(t), causing the optimization problem underpinning the design process to be nonlin-
ear and difficult to handle. This can be addressed by replacing the bilinear terms d(·)d2(·)
in equation (7.3.4) with a matrix design variable D ∈ RT×T to give,

p̃b(t) = pf
b(t) + d(t) · p̃mis(t) −

T−1∑
i=0

D(t, i) · p̃mis(i)

= pf
b(t) + d(t)pw∆p̃0

w(t) + d(t)ppv∆p̃0
pv(t) − d(t)∆p̃d(t)

−

T−1∑
i=0

D(t, i)
(
pw · ∆p̃0

w(i) + ppv · ∆p̃0
pv(i) − ∆p̃d(i)

)
, (7.3.5)

where it is required that
∑T−1

i=0 D(i, t) = d(t), ∀t = 0, ...,T−1, to guarantee that ẽb(T) = ef
b(T).

It should be further noted that the mismatch p̃mis involves design variables pw and ppv,
so the optimization problem is still nonlinear. This motivates a further transformation of
the control policy,

p̃b(t) = pf
b(t)+dw(t)∆p̃0

w(t)+dpv(t)∆p̃0
pv(t)−d(t)∆p̃d(t)

−

T−1∑
i=0

(
Dw(t, i)∆p̃0

w(i)+Dpv(t, i)∆p̃0
pv(i)−D(t, i)∆p̃d(i)

)
, (7.3.6)

where we require ∑T−1

i=0
Dw(i, t) = dw(t), (7.3.7a)∑T−1

i=0
Dpv(i, t) = dpv(t), (7.3.7b)∑T−1

i=0
D(i, t) = d(t), (7.3.7c)

in order to guarantee that ẽb(T) = ef
b(T). The resulting policy is affine in the decision
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variables and will be used to dispatch the battery in the optimization problem.
Affine policy (7.3.6), (7.3.7) will be integrated into the stochastic optimization problem

(P1) in Subsection 7.4.4. The solution to (P1) will provide the optimal values for the policy
parameters dw,dpv,d ∈ RT, Dw,Dpv,D ∈ RT×T, the optimal capacities for the wind turbine,
solar PV, battery energy storage system, the maximum allowable load shedding ratio, as
well as the nominal forecast trajectory pf

b(t) of the battery power.

7.3.2 Policy for Load Shedding

The proportion of load that must be shed at any time t = 0, . . . ,T − 1 is described by the
load shedding ratio rsh(t), with the policy governing load shedding given by,

rsh(t)=

1 − p̃g(t)/p̃d(t), if p̃g(t) ≤ p̃d(t)

0, if p̃g(t) ≥ p̃d(t),
(7.3.8)

where p̃g(t) = p̃w(t) + p̃pv(t) − p̃b(t). Note that when p̃g(t) ≥ p̃d(t), it is implied that the
excess renewable generation can be curtailed without penalty.

This load shedding policy is not explicitly included in the optimization formulation,
but rather enters implicitly through power sufficiency requirements. Consequently, only
one design variable is required, the upper limit rsh on the load shedding ratio. This
variable appears in both the stochastic and deterministic power sufficiency constraints
(7.4.2), (7.4.3), as well as in the non-negativity constraints (7.4.7) and the objective function
(7.4.1). A high penalty is applied to the limit rsh since we hope to satisfy load for the
majority of the time, only invoking load shedding as a last resort to deal with rare periods
of low generation.

7.4 Chance-Constrained Problem Formulation

The overall objective is to design the capacities for DERs and load shedding ratio limit
in a microgrid to guarantee energy sufficiency with a priori probability guarantee while
minimizing the net present cost (NPC) of the microgrid system.
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7.4.1 Objective Function

The objective is to minimize the overall NPC of the microgrid, which is composed of the
NPC for each component as follows:

pw ·NPCw + ppv ·NPCpv + pb ·NPCb + eb ·NPCb + csh(rsh), (7.4.1)

where csh(·) denotes a two-piece linear penalty function for the upper limit rsh of the load
shedding ratio. For low values of rsh the slope of csh(·) is relatively gentle whereas for
high values, beyond the break-point, the slope is steep in order to penalize undesirably
high load shedding. NPC is computed as the difference between the present value of cash
outflows and cash inflows over the microgrid lifetime. The cash flows in the future are
discounted to present value through a discount rate. For each type of component, NPC
consists of capital cost, replacement cost, operation and maintenance (O&M) cost, and
salvage value over the system lifetime [161, 162]. Typical parameters for the economic
model for each type of DER are provided in Section 7.8.

7.4.2 Stochastic Constraints

To manage the stochasticity from renewable resources and load, we formulate a stochastic
chance constraint. Rather than requiring the constraints to hold for all time, we only
require them to be satisfied with a pre-defined probability,

Pr
(
p̃w(t) + p̃pv(t) − p̃b(t) ≥ p̃d(t)(1 − rsh),

− pb ≤ p̃b(t) ≤ pb,

SoC eb ≤ ẽb(t) ≤ SoC eb,

t = 0, ...,T − 1
)
≥ 1 − ε, (7.4.2)

where ε is a pre-defined maximal probability of violation. We assume a minimum SoC
(SoC) of 30% and a maximum SoC (SoC) of 90%, in order to prolong the battery life. The
first inequality in (7.4.2) captures the power sufficiency requirement, under the assumption
that excess renewable generation can be curtailed. The second and third inequalities
are the power and energy capacity constraints for the battery, where p̃b(t) and ẽb(t) are
governed by equations (7.3.6), (7.3.7) and (7.3.3) in Subsection 7.3.1.

128



7.4.3 Deterministic Constraints

The forecast trajectory must satisfy the deterministic power sufficiency requirement,

pw · p
0f
w(t) + ppv · p

0f
pv(t) − pf

b(t) ≥ pf
d(t)(1 − rsh), (7.4.3)

for t = 0, ...,T − 1. Additional constraints for the battery include:

−pb ≤ pf
b(t) ≤ pb, (7.4.4)

SoC eb ≤ ef
b(t) ≤ SoC eb, (7.4.5)

for t = 0, ...,T − 1. Also, we assume that the battery SoC at the end of each day is equal to
that at the beginning of the day, with both set at 60% of the battery capacity,

eb(0) = ef
b(0) = 60% · eb = ef

b(T). (7.4.6)

Non-negativity constraints need to be enforced for the power and energy capacities of
the DERs, and for the load shedding limit,

pw ≥ 0, ppv ≥ 0, pb ≥ 0, eb ≥ 0, 1 − rsh ≥ 0, rsh ≥ 0. (7.4.7)

7.4.4 Chance-Constrained Problem Formulation

The stochastic CC optimization problem described in Subsections 7.4.1-7.4.3 is summa-
rized in the following compact form,

(P1) min (7.4.1)

subject to Chance constraint (7.3.3), (7.3.6), (7.4.2),

Affine policy constraints (7.3.7),

Deterministic constraints (7.3.2), (7.4.3) − (7.4.6),

Non-negativity constraints (7.4.7).

7.5 Robust Set Formulation

A standard scenario-based approach [42] can be used to solve the CC problem (P1)
for a given probability guarantee. However, a large number of scenarios are required to
achieve a sufficiently high confidence level. This results in a heavy computational burden.
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Furthermore, it may be challenging to obtain a sufficiently large data-set. Instead, we
resort to a robust reformulation approach proposed in [156], which firstly constructs a CC
problem (P2) to search for a hyper-rectangular robust set for the uncertain variables,

(P2) min ||λw − λw||1 + ||λpv − λpv||1 + ||λd − λd||1

subject to Pr
(
(∆p̃0

w,∆p̃0
pv,∆p̃d) ∈ ∆ ⊆ R3T

∣∣∣
∆p̃0

w ∈ [λw, λw],∆p̃0
pv ∈ [λpv, λpv],∆p̃d ∈ [λd, λd]

)
≥ 1 − ε,

where vector inclusion should be interpreted as element-wise.
This first step is solved using a standard scenario-based approach, by replacing the

chance constraint with a set of scenarios, each of which is a realization of the random
variables. The required number of scenarios Nt is given by [156] as,

Nt ≥ d
1
ε

e
e − 1

(nx − 1 + ln
1
β

)e, (7.5.1)

where nx = 2nδ is the number of design variables and nδ = 3T is the number of uncertain
variables, ε is the specified maximal probability of violation, and 1 − β is the confidence
level. After solving (P2), we obtain a robust set

B∗ = [λ∗w, λ
∗

w] × [λ∗pv, λ
∗

pv] × [λ∗d, λ
∗

d]. (7.5.2)

Next a robust counterpart of the original problem (P1) is solved with uncertain vari-
ables constrained to the robust set B∗. This hyper-rectangular robust set can be very
conservative when it comes to high-dimensional random vectors or random variables
with large variance, both of which can occur in microgrid design. The following two
subsections therefore present methods to reduce conservativeness of the robust set for-
mulation.

7.5.1 Cutting-Based Approach

The box-shaped robust set is conservative because it cannot account for temporal rela-
tionships in stochastic renewable generation and load. This can result in the robust set in-
corporating the unlikely situation where wind and solar are at minimum availability over
the entire horizon.2 We therefore propose an approach to reshape the hyper-rectangular
robust set, so as to better capture temporal relationships and reduce conservativeness.

2This situation arises when one scenario is at minimum availability at the first time-step, another is at
minimum for the second time-step, and so on.
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The portion of the hyper-rectangular robust set that induces high design cost is the part
where renewable generation is minimal over the entire time horizon while load is maximal.
Such realizations are unlikely to occur in reality but are included in the robust set as a
consequence of the hyper-rectangular shape. We therefore introduce a hyperplane to cut
off this unrealistic portion. Referring to Fig. 7.1(a), which represents a three-dimensional
case for illustration, this hyperplane is defined by the following steps:

1 Compute the original hyper-rectangular robust set.

2 Compute the diagonal direction of this hyper-rectangle, starting from the corner of
minimum wind and solar generation and maximum load.

3 Project all the scenario points onto the diagonal direction and locate the closest
scenario to the starting corner of step 2.

4 Define the hyperplane such that it contains this closest scenario and is orthogonal to
the diagonal direction. This hyperplane defines a halfspace opposite to the diagonal
direction.

5 Reshape the original robust set by cutting off its intersection with the halfspace.
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Figure 7.1: Reshape the box robust set by: (a) cutting-based method; (b) PCA-based
method.

By introducing this hyperplane, we only introduce one extra design variable in (P2),
namely the distance of the hyperplane to the corner. Thus only a small number of
extra scenarios are required. If the corresponding number of extra scenarios are included,
solutions with the same probability guarantee can be achieved. We can similarly introduce
more hyperplanes to cut off different corners of the hyper-rectangular robust set. However,
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the first hyperplane is the most helpful, since it corresponds to the case of minimal wind
and solar generation with maximal load.

7.5.2 PCA-Based Approach

To further refine the robust set, we exploit principal component analysis (PCA) [157].
PCA searches for a linear coordinate transformation of the original random variables,
and converts the data into a new set of coordinates, i.e., the principal components (PCs).
These PCs are uncorrelated and arranged such that the first few PCs capture most of the
variations in the data whereas the last few PCs describe near constant relationships in the
data. Usually, PCA is used for data reduction and reconstruction, by neglecting most of
the small PCs. However, in this chapter we use PCA to extract the directions of the PCs
and use this information to guide the reshaping of the robust set.

In data analysis, we consider normalized random variables p̃0
w, p̃0

pv, and p̃0
d, where the

uncertain load p̃d is scaled by its maximum value to obtain p̃0
d. Define the normalized

random vector x̃ = [(p̃0
w)ᵀ (p̃0

pv)ᵀ (p̃0
d)ᵀ]ᵀ ∈ R3T

+ . Assume we have obtained the required
number of scenarios x1, x2, . . . , xN, each of which is a realization of the random vector,
i.e., the observations. Stack these observations together to obtain the data matrix X =

[x1 x2 . . . xN]ᵀ ∈ RN×3T
+ , and center the data matrix by subtracting the mean of each column

from the entries of that column. Formally, we define the mean vector as x0 = 1
N

∑N
i=1 xi,

then the centred data matrix can be expressed as Xc = X− 1N · x
ᵀ
0 , where 1N is the N-length

vector of 1s. Construct the sample covariance matrix S ∈ R3T×3T as,

S =
1

N − 1
Xᵀc Xc. (7.5.3)

Singular value decomposition (SVD) provides an efficient way of computing PCs.
Apply SVD to the data matrix Xc, which gives Xc = ULAᵀ. The diagonal matrix L ∈ R3T×3T

collects
√

lk, k = 1, . . . , 3T as its diagonal entries in descending order, where lk
N−1 are

the eigenvalues of the covariance matrix S. Matrices A ∈ R3T×3T and U ∈ RN×3T have
orthonormal columns, with the columns ak of A being the eigenvectors of S. The k-th PC
is denoted by zk = aᵀk · x̃. Since A is orthogonal, we have Z := XcA = UL, and now the
data points are converted to a 3T-dimension space with coordinates zk, k = 1, . . . , 3T in the
orthogonal coordinate system given by the columns of A.

To refine the robust set, we introduce two hyperplanes for each PC. These two hyper-
planes are normal to the PC direction and their offsets to the origin are determined by the
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two outermost data points in this PC direction.3 As illustrated by Fig. 7.1(b), the intersec-
tion of the halfspaces defined by these four hyperplanes give rise to a hyper-rectangle (the
light blue rectangle) in the PC space. Intersecting this set with the original robust set (the
gray rectangle) gives a smaller robust set, i.e., the polytope with red boundary. The refined
robust set still encompasses all the data points yet is less conservative. Furthermore, as
an implication of PCA, the last few PC directions contain the least variance in the data,
which suggests they give very efficient cuts. Finally, the polytopic shape of the refined
robust set makes it computationally tractable for optimization problem reformulation as
shown in Section 7.6.

Note that the probability guarantee can again be achieved if the appropriate number
of extra scenarios are added. For each hyperplane that we introduce, one extra design
variable is added that describes the offset in the PC direction. We can in total introduce
2 × 3T hyperplanes for all the PCs.

7.6 Robust Reformulation

With the refined robust set computed from Section 7.5, we now reformulate the original
CC problem (P1) into its robust counterpart. The stochastic constraints in (7.4.2) can be
reformulated using affine policy (7.3.6), (7.3.7). The expression for p̃b over the entire time
horizon in vector form is given by,

p̃b = pf
b + Aw∆p̃0

w + Apv∆p̃0
pv − Ad∆p̃d, (7.6.1)

where Aw , diag(dw) − Dw, Apv , diag(dpv) − Dpv, and Ad , diag(d) − D. The notation
diag(·) expands a vector into a matrix with the vector lying on its diagonal.

Based on battery energy dynamics (7.3.3), ẽb can be expressed in vector form as,

ẽb = Tr · p̃b + 1T · ẽb(0), (7.6.2)

where Tr denotes the lower triangular matrix with ones, and 1T denotes the T-length
vector of ones. Substituting equation (7.6.1) into equation (7.6.2) gives,

ẽb = Trpf
b + TrAw∆p̃0

w + TrApv∆p̃0
pv − TrAd∆p̃d + 1Teb(0). (7.6.3)

3Alternatively, we can take advantage of statistical results to further shrink the robust set. For exam-
ple, we could exclude the data points outside the 3-σ range when determining the offsets of the cutting
hyperplanes.
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The power sufficiency constraint can be written as,

diag(pw)p̃0
w + diag(ppv)p̃0

pv − p̃b ≥ diag(1 − rsh)p̃d. (7.6.4)

Substituting equation (7.6.1) into equation (7.6.4) gives,

pf
b + A′w∆p̃0

w + A′pv∆p̃0
pv − A′d∆p̃d ≤ Bf, (7.6.5)

where

A′w , diag(dw) −Dw − diag(pw) = Aw − diag(pw),

A′pv , diag(dpv) −Dpv − diag(ppv) = Apv − diag(ppv),

A′d , diag(d) −D − diag(1 − rsh) = Ad − diag(1 − rsh),

Bf , diag(pw)p0f
w + diag(ppv)p0f

pv − pf
d.

Substituting expressions (7.6.5), (7.6.1) and (7.6.3) into (7.4.2), the chance constraint can
be written as a function of design variables and uncertain variables directly. The robust
reformulation of (P1) can therefore be expressed as the robust linear program (LP):

(P3) min (7.4.1)

subject to pf
b + A′w∆p̃0

w + A′pv∆p̃0
pv − A′d∆p̃d ≤ Bf,

pf
b + Aw∆p̃0

w + Apv∆p̃0
pv − Ad∆p̃d ≤ 1Tpb,

pf
b + Aw∆p̃0

w + Apv∆p̃0
pv − Ad∆p̃d ≥ −1Tpb,

Tr · (pf
b + Aw∆p̃0

w + Apv∆p̃0
pv − Ad∆p̃d) + 1Teb(0) ≤ 1T(SoC eb),

Tr · (pf
b + Aw∆p̃0

w + Apv∆p̃0
pv − Ad∆p̃d) + 1Teb(0) ≥ 1T(SoC eb),

∀ [∆p̃0
w,∆p̃0

pv,∆p̃d] ∈ B∗,

Affine policy constraints (7.3.7),

Deterministic constraints (7.3.2), (7.4.3) − (7.4.6),

Non-negativity constraints (7.4.7),

where B∗ is determined in Section 7.5.
From Proposition 1 in [156], any feasible solution of (P3) is an ε-level feasible solution

of the original CC problem (P1), with probability at least 1 − β. Problem (P3) is a robust
LP with polytopic uncertainty set, which can be converted into a tractable regular LP by
transforming to its dual problem [41].
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7.7 Shrinking Horizon Implementation

At the off-line microgrid design phase, we obtain optimal capacity design for DERs
and load shedding, a forecast battery trajectory pf

b, and control policy parameters for
dispatching battery power pb, over the horizon t = 0, . . . ,T − 1. In this section we discuss
on-line implementation of the designed battery control policy, where the microgrid has
been constructed according to the optimal capacity design.

Direct on-line implementation of the proposed policy uses day-ahead weather forecasts
and generates a schedule for battery power pb over the complete horizon. This is an
open-loop scheme. On the other hand, the proposed policy can be implemented using a
shrinking horizon formulation. The motivation is that updated weather forecasts for the
remaining time horizon can become available. We thereby modify the affine policy (7.3.6),
(7.3.7) to take into account the varying horizon, and update battery power dispatch for
the remaining period according to updated forecast information. This then provides a
closed-loop implementation.

Consider closed-loop implementation at time-step k, i.e., we are interested in the
horizon t = k, ...,T − 1. The modified affine policy over the reduced horizon has the form,

pb(t) = pf
b(t) + a(t)

(
ef

b(k) − eb(k)
)

+ dw(t)∆p̃0
w(t) + dpv(t)∆p̃0

pv(t) − d(t)∆p̃0
d(t)

−

T−1∑
i=k

bw(i) ·Dw(t, i)∆p̃0
w(i) −

T−1∑
i=k

bpv(i) ·Dpv(t, i)∆p̃0
pv(i)

+

T−1∑
i=k

bd(i) ·D(t, i)∆p̃d(i). (7.7.1)

where a(t) ,
∑T−1

i=k

(
Dw(t,i)+Dpv(t,i)+D(t,i)

)
∑T−1

i=k
∑T−1

j=k

(
Dw(i, j)+Dpv(i, j)+D(i, j)

) , bw(i) , dw(i)∑T−1
j=k Dw( j,i)

, bpv(i) , dpv(i)∑T−1
j=k Dpv( j,i)

, bd(i) ,

d(i)∑T−1
j=k D( j,i)

.

7.8 Results and Analysis

7.8.1 Data Resources and Model Parameters

7.8.1.1 Renewable Generation and Load Data

Wind and solar are the two renewable resources under consideration. Aggregated wind
generation data with five-minute resolution are drawn from Bonneville Power Admin-
istration (BPA)’s website [163], and averaged within each hour to give hourly resolution
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data. Due to the pure renewable microgrid setting under consideration, we target regions
with adequate wind resource. Thus, we make the assumption that the minimum hourly
wind power is no less than 1% of its rating, and that wind goes above 10% of its rating
at least once during the day. Five-minute resolution solar power data are collected from
NREL’s Solar Power Data for Integration Studies data base [164], and averaged within
each hour to give hourly resolution data. Both the wind and solar power data are scaled
to give normalized data. Load data are collected from the same BPA data-set. We consider
the microgrid to be on the scale of 100 kW peak demand. The original load data are thus
scaled to match that microgrid peak.

7.8.1.2 Economic Model Parameters

The overall life time of the microgrid is assumed to be 20 years and the interest rate is
assumed to be 12% in our analysis [149]. The piece-wise linear penalty function for load
shedding bound is set to be,

csh(rsh) := max
(
107rsh , 108(rsh − 0.7) + 0.7 × 107

)
. (7.8.1)

Economic parameters for each component in the microgrid are selected based on relevant
literature and are summarized in Table 7.1, representing unit capacity (kW) costs. The bat-
tery parameters apply to both power rating and energy capacity. NPC for all components
is computed as described in [161, 162], and are given in Table 7.1.

Table 7.1: Economic Parameters for DERs in the Microgrid.

Type of DER Wind Turbine Solar PV Battery
Life Time 20 years [165] 25 years [165] 5 years [149]
Capital $2776 [153] $3800 [166] $274 [153]
Replacement $2776 $3800 $274
O&M (/kW/yr) $32.15 [167] $32.64 [167] $10 [148]
NPC ($) $3180 $4210 $913

7.8.2 Results and Discussion

Numerical test cases are presented in this subsection to explore the proposed formulations.
The performance of the two robust-set reshaping processes, i.e. cutting-based and PCA-
based approaches, are compared. Combining the two approaches is also considered.
Monte Carlo tests are undertaken to validate results. The Matlab-based CVX toolbox with
the Gurobi solver is used to solve the optimization problem (P3). The number of scenarios
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required to solve for the robust set is given by equation (7.5.1). We set the violation level
at ε = 0.1, with a confidence level of 1 − β = 0.999. The number of design variables nx

depends on the number of hyperplanes that are added to refine the robust set.
The optimal design results are summarized in Table 7.2. The base case using the

original box robust set is computed first, where nx = 2nδ = 6T and the required number
of scenarios is Nt = 2372. Based on the data and parameters presented earlier, the
optimal design ratings for microgrid components are given in the column labeled “Box”
in Table 7.2. The cost refers to the optimal value of the objective function (7.4.1), including
the penalty term for load shedding. The shedding rate refers to the ratio of scenarios that
require load shedding among the total scenarios that are used to form the robust set.

Table 7.2: Optimal Design Results for the Microgrid.

Type Box Cut PCA Cut + PCA
pw(kW) 2684 1907 2681 1857
ppv(kW) 0 59 0 63
pb(kW) 6 120 6 97
eb (kWh) 62 1866 64 1426
rsh(%) 70 70 70 70
Cost (Million) $15.59 $15.12 $15.58 $14.55
Shedding rate 0.1771 0.1838 0.1771 0.1400

Next the cutting-based robust set reshaping approach described in Subsection 7.5.1 is
tested, where nx = 2nδ + 1 = 6T + 1 and the required number of scenarios is Nt = 2388
for one extra hyperplane. The capacity design results are given in the column “Cut” of
Table 7.2. The PCA-based robust set reshaping method of Subsection 7.5.2 is also tested,
where we include the 3-σ limits and all 3T PC directions. Although nx = 2nδ + 2nδ = 12T,
we still implement 2388 scenarios for comparison. The capacity design results are given
in the “PCA” column of Table 7.2.

In the robust optimization formulation under consideration, using the cutting ap-
proach to eliminate the small corner of the robust set effectively reduces conservatism and
leads to cost reduction. In contrast, the PCA method eliminates more volume from the
robust set. In fact, since the last few PCs have near zero variances, we can even reduce
the dimension of the robust set by identifying these near constant relationships. The
resulting robust set becomes a “slice” of the original robust set. Note that such dimen-
sional reduction may not directly affect the performance of the LP. However, performance
improvement is often attained because the smaller robust set allows more freedom for
optimizing the battery-dispatch affine policy.

These results demonstrate the effectiveness of the cutting- and PCA-based robust set
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Figure 7.2: Profile of maximum load shedding for scenarios in the data-set.

reshaping concepts. Combining these two reshaping methods gives the capacity design
results in the last column of Table 7.2. The cost is the lowest among all the cases, and the
cost reduction is larger than the sum of the reductions achieved by the individual reshaping
methods. Moreover, the load shedding rate is also the lowest among all the cases. This
synergistic improvement is a consequence of the smaller robust set for this combined
method, which allows a less restrictive, and hence more effective, battery dispatch policy.
As a result, by combining these two robust-set reshaping methods we achieve both lower
design cost and reduced probability of load shedding.

The upper limit rsh for the load shedding ratio is 70% for all cases. This corresponds to
the break point of the piece-wise linear cost function (7.8.1) governing the load shedding
limit. This may seem large, however the percentage of scenarios in the data-set that
actually invoke load shedding is small. Due to the robust nature of our approach, scenarios
that actually require load shedding are rare, and the amount of load shedding is small
for most of them. For the combined design approach, among the entire 2388 scenarios,
only 14% require some load shedding. Fig. 7.2 shows the profile for the maximum load
shedding for each of the 2388 scenarios, ordered from the highest load shedding amount
to the lowest. The curve drops quickly and is zero for most scenarios.

To demonstrate the affine control policy for battery dispatch, we plot the SoC dynamics
for various cases in Fig. 7.3. The nominal forecast trajectory is shown as a purple line, and
four random scenarios are plotted as dashed lines. It is clear that the SoC at the end of the
horizon is always driven back to its initial value, and all trajectories satisfy the upper and
lower SoC constraints. The plot also shows, as dash-dot blue lines, two boundary cases
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Figure 7.3: Battery SoC dynamics under affine policy.

that approach the upper and lower SoC limits. Fig. 7.4 shows the renewable generation,
the negative of battery power dispatch (−p̃b), load and net power for the boundary case
that (almost) touches the lower SoC limit. Here, the net power is defined as the total
generation minus the total load, without taking into account load shedding. As can be
seen, there is very limited wind over the initial six hours of this day and no sunshine over
the initial nine hours, so the battery has to discharge to supply the load. Then, in the
second half of the day, the wind generation is exceptionally high, allowing the battery to
charge at high power based on the policy. Such cases highlight the need for high battery
capacity in purely-renewable microgrids.

Fig. 7.3 shows two randomly selected scenarios, labeled Case 1 and Case 2. The
renewable generation, the negative of battery power dispatch, load and net power for
Case 1 are plotted in Fig. 7.5. It is clear that the net power is positive for the entire
time horizon, so all the load can be supplied by the microgrid. There are rare occasions
when the load cannot be met entirely, with load shedding required in such situations. An
illustration is provided in Fig. 7.6, which corresponds to Case 2. In this case, renewable
generation is insufficient overnight to meet the load requirement. The battery discharges
at high power to compensate for the generation deficiency. However, load shedding is
required, with the control policy (7.3.8) addressing the deficiency. The maximum load
shedding is 27.3 kW. Case 2 also illustrates the necessity for high wind power rating in
the design of the purely-renewable microgrid. In this case, wind generation is low over
most of the day, and solar generation is only available during the daytime. As a result,
the wind turbine rating needs to be sufficiently high to meet the demand.
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Figure 7.4: Generation and load: a boundary case.
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Figure 7.5: Generation and load: a randomly selected case in the data-set.

7.9 Chapter Conclusion

This chapter considers the optimal capacity design for DERs in a renewable-only islanded
microgrid. This is a challenging problem due to the stochasticity of renewable resources
and load. To address the stochasticity explicitly, we formulate the problem as a stochastic
chance-constrained (CC) optimization problem. An affine policy for dispatching battery
power is proposed and integrated into the optimization formulation. A probabilistically
robust method is adopted to solve this CC problem by first computing a robust set for
uncertain variables and then solving a robust counterpart of the original optimization
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Figure 7.6: Generation and load: a case requiring load shedding and large wind turbine
capacity.

problem.
Two methods are proposed for reducing the conservativeness of the robust formula-

tion. The first cutting-based approach is motivated by the physical characteristics of the
random variables and the geometry of the robust set. The second approach makes use
of principal component analysis (PCA) to identify the principal directions in the data,
which guides the reshaping of the robust set. These two methods can be combined to con-
siderably reduce the original hyper-rectangular robust set, resulting in less conservative
designs for microgrid capacity.

A probability guarantee can be provided with this technique. The optimal solution
gives design capacities for the wind turbine, solar PV, battery system and load shedding.
A forecast trajectory for battery power is obtained, as well as an affine policy that governs
battery dispatch for different realizations of the stochastic generation and load. For on-line
implementation, the proposed policy can be modified to a shrinking horizon scheme to
take into account updated forecast information at each time-step. Numerical results show
that the proposed methods balance design cost and reliability.
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CHAPTER 8

Interconnecting Multiple Energy Carriers:
Optimal Design and Operation of Energy Hubs

8.1 Chapter Introduction

Distributed energy resources (DERs), including renewable generation and storage, are ex-
periencing substantial technology improvements and cost reductions, with off-grid energy
systems becoming technically and economically viable. As such systems evolve, it is likely
that they will incorporate multiple energy carriers, typically electricity, heat, gas (natu-
ral gas or liquefied petroleum gas) and hydrogen (H2), along with the respective energy
conversion processes. These energy hubs [168–170] offer the potential for highly versatile
operating strategies, depending on hub composition and component sizing. Designing
energy hubs to achieve a balanced trade-off between equipment cost and operational
flexibility is becoming increasingly important.

In this chapter, we consider energy hubs that incorporate electricity, heat, gas and
hydrogen. Figure 8.1 provides a schematic diagram showing typical energy flow paths,
storage and conversion processes, though the methodology developed in the chapter is
applicable for generic energy hub configurations [171]. Energy hubs of interest have no
electrical connection to the distribution grid; rather, they are self-powered by solar and
wind resources. However, guaranteeing energy sufficiency under all possible weather
conditions would require excessively large component sizes, resulting in very high cost.
Instead, purchase of gas (either from a network or by delivery) as a backup energy source
is allowed, but only under rare weather conditions.

Two forms of energy storage are considered, namely batteries and hydrogen, with
the latter requiring electrolysis and fuel-cell conversion. These two forms of storage
offer complementary characteristics, with batteries better for shorter-term storage, and
hydrogen having longer-term benefits [172]. Furthermore, hydrogen offers a number of
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Figure 8.1: Schematic diagram of an isolated energy hub.

advantages which may see it play a greater role in future energy hubs. Firstly, it eliminates
end-of-life environmental challenges associated with batteries, and secondly, it offers
another energy transfer mechanism, potentially enabling energy delivery via hydrogen
to neighboring hubs and/or fuel-cell vehicles. We have not, however, considered such
hydrogen-based energy transfer in this chapter.

This chapter begins by considering the capacity design of isolated energy hubs. The
design problem takes into account uncertainty in solar and wind resources and electrical
load, and seeks a minimum cost design while ensuring that the electrical and heat loads
can be satisfied with high probability. We have chosen to formulate capacity design as
a chance-constrained optimization problem that explicitly accounts for stochasticity and
enforces probabilistic constraints. Doing so allows a more prescriptive specification of
the likelihood that a design will incur abnormal operation, in particular, excessive load
shedding.

Chance-constrained problems are in general computationally challenging [173]. Con-
sidering the high dimension of our capacity design problem, we do not solve the chance-
constrained problem directly, but derive and solve a robust reformulation. This robust
reformulation conveniently allows the battery charging/discharging complementarity to
be expressed via an equivalent linear representation, under an affine battery dispatch pol-
icy. The resulting problem can be solved as a linear program, which is computationally
attractive. However, a consequence of the robust reformulation, and restriction to an
affine policy, is that the design may be conservative. Accordingly, we propose a novel
algorithm which iterates between the robust design problem and a validation problem,
dynamically adjusting the level of conservativeness. The proposed algorithm is compu-
tationally tractable, and effectively reduces the design conservativeness. Furthermore,
a novel cluster-based multi-policy strategy is proposed, which enables a more flexible
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control structure. The clustering is based on principal component analysis (PCA) [157].
The design problem considered in this chapter assumes a fixed energy hub structure

and determines the optimal sizes for hub components. Related work includes [174] which
studied the optimal sizing of a combined heat and power (CHP) plant for a residential cus-
tomer, where a storage tank and back-up boiler are considered. Reference [175] adopted
a linearized model for energy hubs and optimized component type and size, with a focus
on reliability constraints. These previous references did not consider the integration of
renewable resources. The design of a wind-integrated energy hub is considered in [176].
Unlike the current chapter which formulates energy hub design as a chance-constrained
optimization problem, [176] considered reliability indices such as “loss-of-load expec-
tation” and “expected energy not supplied”. However, such a formulation does not
provide a formal probabilistic guarantee on operational reliability, which can be provided
by chance-constrained methods. Reference [177] considered the sizing of DERs within a
multi-source energy plant, focusing on the effect of different climatic scenarios. Structural
design of energy hubs has also been investigated. For instance, in [178, 179], energy hub
structure is characterized by a coupling matrix, the elements of which are treated as de-
sign variables. In [180], configuration planning is formulated as a mixed-integer linear
program based on the modeling of branch energy flows within an energy hub.

Reliable and efficient operation of energy hubs can be achieved through a two-level
control strategy. Higher level day-ahead scheduling uses weather and load forecast
information in a multi-period optimization to establish reference trajectories for battery
state of charge (SoC) and hydrogen tank storage level, as well as for the dispatch of the
reformer and the CHP plant. Lower level on-line control uses the most up-to-date forecast
information in a model predictive control (MPC) scheme [181] to track the reference
trajectories established by the higher-level optimization, and compensate for errors in the
day-ahead forecasts for renewable generation and load. MPC is an optimization-based
control method which achieves feedback through repeated optimization over a moving
horizon. MPC is well suited for achieving (near) optimal operation of energy hub systems.
It can continually adapt to updated forecast information, while the feedback inherent in
MPC can reject noise and suppress the effects of unmodeled dynamics. The shorter time
horizon of the lower-level MPC ensures the computational demand is consistent with
on-line implementation.

This two-level control strategy is motivated by the use of unit commitment and eco-
nomic dispatch in power systems. Optimal power flow of energy hub systems has been
studied in [168, 182]. References [183] and [184] considered unit commitment and eco-
nomic dispatch of energy hub systems, respectively. Case studies were undertaken in [185]
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to explore potential benefits of networked operation of energy hubs for achieving cost and
greenhouse gas emission reduction. In [186], two-level MPC was applied to multi-carrier
energy systems, taking into account heat storage in conjunction with CHP. An exten-
sion [187] further considered the intermittency of renewable resources and investigated
the value of battery and heat storage. Reference [188] used economic MPC in a two-layer
architecture for applications including microgrids.

The stochasticity introduced by renewable generation and load has drawn particu-
lar attention recently. An energy hub approach to building energy management was
considered in [189], where exogenous uncertain in-feeds were modeled as stochastic pro-
cesses. This resulted in a multi-stage stochastic optimization formulation. In follow-up
work [190], a robust approach was adopted by constructing a family of distributions for
the exogenous disturbance.

Beyond small-scale energy hub systems, a variety of studies have considered large-
scale energy networks that involve electricity and gas infrastructures [191–193]. An opti-
mization framework for large-scale energy hub networks was developed in [171] and used
in [194], [195] to investigate mitigation of cascading outages. Joint expansion planning
of coupled natural gas and power systems is studied in [196], where tractable convex
relaxations are proposed.

This chapter makes the following contributions:

1 Energy hub capacity design is formulated as a chance-constrained optimization
problem, allowing the stochasticity of renewable generation and load to be explicitly
taken into account. This is an extension of Chapter 7 on microgrid capacity design
to an energy hub setting with multiple energy carriers.

2 An affine policy is proposed for battery dispatch. This enables the chance-constrained
optimal design problem to be reformulated as a robust counterpart problem. Con-
sequently, the complementarity arising from battery charging/discharging can be
manipulated such that the resulting optimization problem is a straightforward lin-
ear program. This builds on the formulation in Chapter 7 by allowing imperfect
battery charging/discharging efficiency.

3 To resolve the conservativeness of the robust design problem, we develop an iterative
framework to adjust the reliability level of the design based on the results of a
validation problem. We provide two algorithms, based on the bisection method
and the stochastic gradient method, to achieve this adjustment. This framework
effectively addresses conservativeness yet is computationally tractable.

145



4 A cluster-based multi-policy strategy is proposed to achieve more flexible battery
dispatch control, thereby improving the design outcomes.

5 A two-level operating strategy, incorporating day-ahead scheduling and on-line
reference-tracking MPC, is used for operating isolated and networked energy hub
systems. The benefits of energy sharing provided by networked operation are
showcased.

The chapter proceeds as follows. Section 8.2 provides an overview of the energy hub
design and operational issues that are addressed by the chapter. Section 8.3 develops the
mathematical models for hybrid energy hubs. The capacity design problem is formulated
and addressed in Section 8.4, while Section 8.5 focuses on energy hub operation. Section 8.6
presents a case study that illustrates optimal design and operation of an isolated energy
hub. The extension to networked operation of multiple energy hubs is considered in
Section 8.7, and a three-hub networked example is presented in Section 8.8. Conclusions
are provided in Section 8.9.

8.2 Problem Statement

8.2.1 System Models

We consider autonomous (isolated) energy hubs that accommodate emerging distributed
energy technologies, such as wind turbines, solar photovoltaic (PV) panels, battery stor-
age, fuel cells, hydrogen production from both steam reforming and electrolysis, hydrogen
storage and CHP. The aim is to reliably supply electrical and heat loads at minimum cost.
An example of an energy hub is shown in Fig. 8.1. There is no grid connection, therefore
backup electric power from the grid is not available.

Renewable resources, primarily wind and solar, form the main source of electrical
energy. Energy storage plays a vital role in mitigating the stochasticity and intermittency
of the renewable resources. Battery storage reacts quickly to provide short-term power
balance, by discharging when renewable generation is deficient and charging when there
is excess generation. Compared to batteries, fuel cells have relatively slower dynamics.
Fuel cells can be deployed together with an electrolyzer and hydrogen tank to provide
bulk energy storage. The electrolyzer decomposes water to generate hydrogen which is
stored in the hydrogen tank. The fuel cell uses the hydrogen as a feedstock to supply the
load. A steam reforming process can also produce hydrogen from gas to feed the fuel
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cell. However, our overall aim is to minimize the use of fossil fuel by exploiting clean and
cheap renewable resources whenever available.

Also note that the fuel cell generates heat as a by-product. This can be captured and
used to supply heat load. Our energy hub model also incorporates CHP which can produce
electricity and heat simultaneously by consuming gas. In addition, an electricity-to-heat
path is modeled. It can be realized through various technologies, the most common of
which is water heating.

An electrical load-shedding scheme is available to cope with rare weather conditions
where renewable generation is limited throughout the entire day. Such a scheme helps
ensure energy hub designs are not overly conservative.

8.2.2 Optimal Capacity Design

The capacity design problem for isolated energy hubs seeks to determine the optimal
capacity of DERs as well as the optimal electrical load-shedding limit, such that the
loads can be reliably supplied while plant costs are minimized. The uncertainty inherent
in renewable resources requires careful treatment. To explicitly take into account such
stochasticity, the optimal capacity design problem is formulated as a chance-constrained
optimization problem of the form,

(P0) min
x∈X⊆Rnx

J(x)

subject to Pr
(

max
j=1,...,m

g j(x, δ) ≤ 0|δ ∈ ∆
)
≥ 1 − ε, (8.2.1)

where x ∈ X ⊆ Rnx are the decision variables, with the set X denoting deterministic
constraints, J(x) is the objective function, δ ∈ ∆ ⊆ Rnδ is the random vector, and the
notation Pr(A|B) denotes the probability of A conditioned on B. Constraint (8.2.1) is a
chance constraint, where instead of enforcing a hard constraint, we only require the inner
constraint to be satisfied with high probability. Parameter ε is a pre-specified maximal
probability of violation. We use β to denote the confidence parameter, which characterizes
the bound on the probability of failure, where (8.2.1) is not satisfied, associated with a
solution to P0 provided by a scenario approach [42].

8.2.3 Optimal Operation

With the capacity of the energy hub components determined by the design process, the
operation problem considers the design of an optimal dispatch policy for operating the

147



energy hub system. Unlike the design problem where a range of possible scenarios must
be considered, in the operational setting the controller responds to the actual system
condition and the current forecast, effectively a single scenario. We require a controller
that achieves optimal operation with respect to specified objectives. The operation of
isolated energy hubs will initially be investigated. We then consider the operation of
several energy hubs that are connected via electrical and/or gas networks

8.3 Energy Hub Models

The mathematical models for each component in the hybrid energy hub are described
in this section. The models are developed in the context of a time horizon of T = 24
time-steps, each of one hour duration.

8.3.1 Uncertain Renewable Resources and Load

Energy hub design and operation must take into account the uncertain nature of renewable
generation and load. We capture this uncertainty in wind generation, solar PV genera-
tion and load through the random vector variables p̃w, p̃pv, p̃d ∈ RT

+, respectively. Their
collection is defined as the random trajectory p̃ , [(p̃w)ᵀ, (p̃pv)ᵀ, (p̃d)ᵀ]ᵀ ∈ R3T

+ .
For the capacity design problem, we further define the normalized random trajectory

p̃0 , [(p̃0
w)ᵀ, (p̃0

pv)ᵀ, (p̃d)ᵀ]ᵀ ∈ R3T
+ , where p̃0

w and p̃0
pv denote normalized (unit capacity)

wind power and solar PV power. The load p̃d takes actual values.

8.3.2 Power Balance/Sufficiency Constraints

This work assumes that excess renewable generation can be curtailed. The design problem
therefore enforces the electrical power sufficiency constraint,

pwp̃0
w(t) + ppvp̃0

pv(t) + pfc(t) + prfm(t) ηrfm ηfc + pchp(t) ηe
chp

≥ p̃d(t)(1 − r̂e
sh) + f (pb(t))pb(t) + pelz(t) + pe2h(t), (8.3.1)

where pb(t) ≥ 0 implies battery charging with efficiency f (pb(t)) = 1/ηc, and pb(t) < 0
when the battery is discharging with efficiency f (pb(t)) = ηd. The design variables pw

and ppv refer to the power capacities of the wind turbine and solar PV units, respectively.
The bold letter p refers to the power trajectory for each of the corresponding DERs, as
indicated by the subscripts. The reformer produces hydrogen from gas with efficiency
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ηrfm, with the hydrogen converted to electricity by the fuel cell with efficiency ηfc. Also,
the proportion of the CHP that is utilized for electricity production is given by ηe

chp. Note
that the electrical load-shedding limit 0 ≤ r̂e

sh ≤ 1 is a parameter (not a decision variable)
in the capacity design problem.

Due to the presence of random variables p̃0
w, p̃0

pv and p̃d, constraint (8.3.1) will be
formulated as a stochastic constraint in the chance-constrained design problem of Subsec-
tion 8.4.1.

The heat load pheat(t) is assumed to be an exogenous deterministic input. A sufficiency
constraint needs to be enforced for heat power,

(pfc(t)
ηfc

+ prfm(t)ηrfm

)
(1 − ηfc)ηh + pe2h(t) + pchp(t)ηh

chp ≥ pheat(t), (8.3.2)

where
(

pfc(t)
ηfc

+ prfm(t)ηrfm

)
(1 − ηfc) gives the portion of the total fuel cell power that is

not converted to electricity (the losses), while ηh specifies the proportion of those losses
that are recovered for usable heat. The proportion of the CHP that is utilized for heat
production is given by ηh

chp.
In the validation sub-problem of the design process of Section 8.4, and in the operation

problem, a specific realization of the random variables is considered. This results in
(8.3.1) becoming a deterministic power balance constraint, with the realization replacing
the random variables. A renewable curtailment term pe

curt(t) ≥ 0 is introduced to enforce
electrical power balance,

pw(t) + ppv(t) + pfc(t) + prfm(t)ηrfmηfc + pchp(t)ηe
chp

= pd(t)(1 − re
sh(t)) + f (pb(t))pb(t) + pelz(t) + pe2h(t) + pe

curt(t). (8.3.3)

Similarly, a heat balance constraint needs to be enforced during validation and operation,
with (8.3.2) becoming,

(pfc(t)
ηfc

+ prfm(t)ηrfm

)
(1 − ηfc)ηh + pe2h(t) + pchp(t)ηh

chp = pheat(t) + ph
curt(t), (8.3.4)

where the curtailment term ph
curt(t) ≥ 0 has been introduced to enforce heat balance.

8.3.3 Battery Energy Storage

From (8.3.1), the battery power exchanged with the grid is given by f (pb(t))pb(t), which
takes into account efficiency loss. Hence, the battery state of charge (SoC) evolves accord-
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ing to,

eb(t + 1) = eb(t) + pb(t), (8.3.5)

eb(0) = ωbeb, (8.3.6)

where ωb specifies the initial SoC as a proportion of the battery energy capacity eb. To
ensure equitable use of battery storage over consecutive days, its SoC should return to a
level that is no less than its value at the start of the 24-hour period,

eb(T) ≥ eb(0). (8.3.7)

We recognize that repetition of this requirement over successive days might result in a
build up of stored energy. However, the gist of this constraint is that energy storage
should be accounted for fairly over the period of interest.

A control policy for battery dispatch is desirable in the chance-constrained capacity
design problem of Subsection 8.4.1 to ensure appropriate charging/discharging in response
to realizations of random renewable generation and load. Such a policy could be quite
general. However, to ensure a tractable chance-constrained formulation, we assume it
has an affine structure,

pb , pn
b + Aδ, (8.3.8)

where δ , p̃0
− p0n, the affine policy matrix A is a design variable and,

• p0n , [(p0n
w )ᵀ, (p0n

pv)ᵀ, (pn
d)ᵀ]ᵀ ∈ R3T

+ describes a deterministic nominal trajectory for
the normalized random variables, which is provided as exogenous information1,

• pn
b is a nominal dispatch trajectory for the battery, which is determined by the

optimization problem.

Based on battery energy dynamics (8.3.5), (8.3.6), eb and en
b can be expressed in vector

form as,

eb = Tr pb + eb(0)1T+1, (8.3.9)

en
b = Tr pn

b + en
b(0)1T+1, (8.3.10)

where Tr ∈ R(T+1)×T denotes a concatenated matrix consisting of a zero row vector as
its first row and a lower triangular matrix with entries of ones, and 1T+1 denotes the

1This nominal trajectory may be generated, for example, by averaging over a collection of scenarios.
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vector of dimension T + 1 with all ones as its entries. Substituting equation (8.3.8) into
equation (8.3.9), using equation (8.3.10) and noting that eb(0) = en

b(0) gives,

eb = Tr (pn
b + A δ) + eb(0)1T+1

= en
b + TrA δ. (8.3.11)

If the condition,

T∑
i=1

A(i, j) = 0, ∀ j = 1, . . . 3T, (8.3.12)

is satisfied then eb(T) = en
b(T).

Further discussion of affine battery-dispatch policies is provided in Chapter 7. We
remark that response policies could be introduced for other DERs. We are only considering
a policy for the battery because it is the most complex due to the charging/discharging
complementarity arising from imperfect efficiency, and the requirement that the battery
SoC returns at least to its initial value. Similar techniques can be used for designing affine
policies for other devices.

8.3.4 Hydrogen Storage

The variation in the mass of hydrogen in the hydrogen tank is given by,

mh2(t + 1) = mh2(t) +
(pelz(t)ηelz

Celz
−

pfc(t)
Cfcηfc

)
, (8.3.13)

where pelz and pfc are the “charging” power of the electrolyzer and the “discharging”
power of the fuel cell, with efficiencies ηelz and ηfc, respectively. It is assumed that the
electrolyzer consumes Celz kWh of electrical energy from the energy hub for electrolyzing
water to produce 1 kg of hydrogen, and that the fuel cell produces Cfc kWh of energy by
consuming 1 kg of hydrogen from the hydrogen tank [162].

Similar to battery storage, an additional constraint,

mh2(T) ≥ ωh2mh2 = mh2(0), (8.3.14)

is imposed to ensure that the storage level of the hydrogen tank is at least as high as it was
at the beginning of the day. In (8.3.14),ωh2 specifies the initial storage level as a proportion
of the hydrogen tank mass capacity mh2 .
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8.3.5 Non-Negativity Constraints

In the energy hub design problem, the capacity values for energy hub components are
decision variables. Non-negativity constraints ensure realistic designs:

pw ≥ 0, ppv ≥ 0, pb ≥ 0, eb ≥ 0, pelz ≥ 0,

mh2 ≥ 0, pfc ≥ 0, pe2h ≥ 0, prfm ≥ 0, pchp ≥ 0. (8.3.15)

Upper limits on the capacity variables are not explicitly shown, but reasonability limits
are enforced.

8.3.6 Capacity Constraints

Trajectories for energy hub components must satisfy capacity limits:

−pb ≤ pb(t) ≤ pb, (8.3.16)

ωleb ≤ eb(t) ≤ ωueb, (8.3.17)

0 ≤ pelz(t) ≤ pelz, (8.3.18)

0 ≤ mh2(t) ≤ mh2 , (8.3.19)

0 ≤ pfc(t) + prfm(t) ηrfm ηfc ≤ pfc. (8.3.20)

0 ≤ pe2h(t) ≤ pe2h, (8.3.21)

0 ≤ prfm(t) ≤ prfm, (8.3.22)

0 ≤ pchp(t) ≤ pchp, (8.3.23)

0 ≤ re
sh(t) ≤ re

sh, (8.3.24)

where ωl and ωu denote the lower and upper energy level specifications for the battery.
The electrical load-shedding limit re

sh is enforced in the validation sub-problem and in
operation. It is a parameter specifying the proportion of the total load that is controllable,
and is not a design variable.

8.4 Capacity Design

The capacity design problem for an isolated energy hub is challenging because of the
intrinsic stochasticity in the renewable resources and load, and the fact that the capacity
design needs to take into account a wide range of possible scenarios. This section presents
the complete formulation of an iterative algorithm for determining the optimal capacity
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design for such energy hubs. This design process computes the optimal capacities for
the DERs (including storage devices), for a specified load-shedding limit, such that the
electrical and heat loads are satisfied with sufficiently high probability while the overall
net present cost (NPC) of the energy hub is minimized.

The capacity design algorithm consists of two phases. A chance-constrained opti-
mization problem determines optimal component capacities for a given value of a virtual
load-shedding parameter r̂e

sh. The resulting design is then validated by checking a set of
deterministic multi-period feasibility problems that use the true load-shedding limit re

sh.
The outcome of this feasibility test guides the selection of a new value for the virtual load-
shedding limit r̂e

sh and the process repeats. The proposed iterative framework effectively
achieves a trade-off between reliability and cost. The remainder of this section provides
full details of each phase of this algorithm.

8.4.1 Chance-Constrained Optimization Formulation

The chance-constrained optimization problem consists of an objective function together
with stochastic and deterministic constraints. This subsection describes these various
components of the problem together with the complete formulation.

8.4.1.1 Objective Function

The objective function to be minimized is composed of the NPCs of all the devices that
form the energy hub, with the capacities of less desirable (gas utilizing) units, namely the
reformer and CHP, being penalized:

Jdesign = pw ·NPCw + ppv ·NPCpv + pb ·NPCb + eb ·NPCb

+ pelz ·NPCelz + mh2 ·NPCh2 + pfc ·NPCfc

+ pe2h ·NPCe2h + crfm(prfm) + cchp(pchp), (8.4.1)

where crfm(·) and cchp(·) denote two-piece linear penalty functions for the capacities of the
reformer and CHP, respectively. The case study of Subsection 8.6.1 provides examples of
these penalty functions.

8.4.1.2 Stochastic Constraints

Chance constraints are formulated to explicitly deal with the random variables in the
model. Compared with the usual hard constraints that require a condition to hold at all
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time, chance constraints only require constraint satisfaction with a pre-specified probabil-
ity. The chance constraint for the capacity design problem can be written,

Pr
(
(8.3.1), (8.3.7), (8.3.16), (8.3.17) are satisfied, t = 0, ...,T − 1

)
≥ 1 − ε, (8.4.2)

where ε is a specified tolerance on the probability of violation. The chance constraint
(8.4.2) gathers the constraints that involve random variables, namely the electrical power
sufficiency constraint (8.3.1), and the battery power (8.3.16) and energy (8.3.7), (8.3.17)
capacity constraints. The term pb that appears in (8.3.1), (8.3.16) is dispatched according
to the policy (8.3.8). This dispatch policy also determines eb in (8.3.7), (8.3.17) through
(8.3.11).

8.4.1.3 Deterministic Constraints

The nominal battery dispatch trajectory pn
b used by the affine policy (8.3.8) must satisfy

the deterministic version of the electrical power sufficiency constraint,

pwp0n
w (t) + ppvp0n

pv(t) + pfc(t) + prfm(t) ηrfm ηfc + pchp(t) ηe
chp

≥ pn
d(t)(1 − r̂e

sh) + f (pn
b(t))pn

b(t) + pelz(t) + pe2h(t), (8.4.3)

where p0n , [(p0n
w )ᵀ, (p0n

pv)ᵀ, (pn
d)ᵀ]ᵀ is the (exogenous) normalized nominal trajectory for

the random variables.

8.4.1.4 Complete Formulation

The decision variables for the chance-constrained optimization problem consist of the ca-
pacities Pcap = [pw, ppv, pb, eb, pelz,mh2 , pfc, prfm, pchp, pe2h], the policy variables pn

b, A, and the
dispatch trajectories pdis = [(pelz)ᵀ, (mh2)

ᵀ, (pfc)ᵀ, (prfm)ᵀ, (pchp)ᵀ, (pe2h)ᵀ]ᵀ. The optimiza-
tion problem can be expressed as,

(P1) min (8.4.1)

subject to Chance constraint (8.4.2) with equation (8.3.5) used implicitly,

Non-negativity constraints (8.3.15),

Deterministic constraints

(8.3.2), (8.3.6), (8.3.12)-(8.3.14), (8.3.18)-(8.3.23), (8.4.3), and

(8.3.5)-(8.3.7), (8.3.16), (8.3.17) applied to pn
b and en

b.

154



Chance-constrained optimization problems are strongly NP hard [173] and are in
general computationally challenging [197]. However, if the problem is convex, i.e., the
objective function is convex and the constraints are convex in the decision variables, a
scenario approach [42] can be used to solve the chance-constrained problem. Theoretical
results certify the number of scenarios required to provide an a priori probability guar-
antee for the solution. Unfortunately, the capacity design problem P1 is nonconvex due
to the binary variables describing battery charging/discharging. A priori performance
bounds on a scenario approach for mixed-integer problems are provided in [198], though
they are quite conservative. A more recent development [199] establishes results for a
generalization of the scenario approach for nonconvex optimization and decision making
problems. It uses an important concept of support subsample, and provides an a posteriori
level of violation for the obtained solution. This result is very general in the sense that
the probabilistic guarantee holds for a solution that can be obtained based on an arbitrary
scenario decision rule, in fact not even necessarily from an optimization problem.

Our problem has a large number of decision variables, so satisfying the scenario
requirements of [198] is infeasible due to both data limitations and computational re-
quirements. Therefore, Subsection 8.4.4 introduces a robust reformulation of the chance-
constrained problem P1. By exploiting the affine structure of the battery dispatch policy
(8.3.8), P1 can be transformed into a robust linear program (LP). Furthermore, by consid-
ering the dual problem of the robust LP, we can transform the problem into a regular LP,
which is computationally attractive.

However, the robust reformulation and the restriction to an affine policy may result in
conservative designs. We therefore propose an algorithm that iterates between the robust
reformulation of P1 and a validation problem that is described in Subsection 8.4.2. The
iterative procedure is presented in Subsection 8.4.3. After a solution is obtained, an a
posteriori probability guarantee can be provided using a result from [200].

8.4.2 Validation

Validation of the capacity design provided by the robust optimization program uses Ns

scenarios that are randomly selected from the data-set of N scenarios. Each of the Ns

scenarios is checked to determine whether, for the latest capacity design and the true
load-shedding limit re

sh, there exist feasible trajectories such that conditions (8.3.3), (8.3.4),
(8.3.5)-(8.3.7), (8.3.13), (8.3.14), and (8.3.16)-(8.3.24) are satisfied. If such dispatches exist for
all Ns scenarios then the current design is assumed to be feasible. Otherwise, if a feasible
dispatch policy cannot be computed for any one of the selected scenarios then the current
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design is infeasible. This feasibility problem can be reformulated through McCormick
relaxation (exact in the case of binary variables) [201], which leads to a multi-period
mixed-integer linear feasibility problem.

In order to establish a meaningful value for Ns, we consider the situation where a small
number αN of the data-set scenarios are infeasible. We wish to ensure that by checking
Ns randomly selected scenarios, infeasibility will be identified with probability 1 − ϑ. For
this setting, the relationship between α, ϑ and Ns is given by,

ϑ =
((1 − α)N

Ns

)/(N
Ns

)
. (8.4.4)

In the design example of Section 8.6, the data-set consists of N = 1000 scenarios and we
have chosen to check feasibility of Ns = 100 scenarios. For these values of N and Ns, if
at least 5% of the scenarios are infeasible then equation (8.4.4) gives ϑ ≤ 0.0045. In other
words, we will identify infeasibility with probability at least 1 − 0.0045 = 0.9955.

8.4.3 Iterative Design Method

To address the conservativeness that arises in reformulating the chance-constrained prob-
lem as a tractable problem, we propose an iterative design method to determine the
optimal capacities for energy hub components. The proposed method consists of iterating
between the chance-constrained design problem and the validation problem. We utilize
the maximum allowable load shedding r̂e

sh as a scalar auxiliary parameter to bridge the
two problems. Variation of this parameter, which we refer to as the virtual load-shedding
limit, allows a trade-off between reliability and economics of the design. The design
process is expressed diagrammatically in Fig. 8.2.

The chance-constrained design problem solves a robust optimization program, where
a robust set is constructed using the available data-set describing random renewable gen-
eration and load. A capacity design result is produced by this robust design problem
and supplied to the validation problem. The validation problem randomly selects a set
of scenarios from the data-set. Note that the validation problem solves a multi-period
optimization to determine whether there exist feasible dispatch policies for the selected
scenarios, given the capacities designed by the chance-constrained design problem. Ac-
cordingly, battery dispatch is no longer restricted to the affine policy, but rather reflects the
fact that actual operation of the energy hub could utilize a more flexible control strategy.
This allows more realistic behavior, alleviating some of the conservativeness inherent in
the chance-constrained design problem.
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Chance-constrained design problem

Validation problem

Randomly sample Ns scenarios from the data-set  
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Is the design 
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Update virtual load-shedding limit through  
bisection or stochastic gradient method

Is convergence  
achieved?

Yes Output  
capacity  
design

No

Increase virtual 
load shedding

No YesReduce virtual 
load shedding

Figure 8.2: Block diagram of the iterative design method.

As previously mentioned, the virtual load-shedding term is in place to bridge be-
tween the two sub-problems. In the chance-constrained design problem, the virtual
load-shedding parameter appears in the electrical power sufficiency constraints (8.3.1)
and (8.4.3). Decreasing the value of r̂e

sh tightens the sufficiency constraint and therefore
increases the conservativeness of the design. Conversely, increasing r̂e

sh relaxes the con-
straint, admitting a less conservative design but potentially resulting in an unacceptably
high level of load shedding.

In contrast, the multi-period validation assessment enforces the actual value of the
load-shedding limit, which is chosen to meet the desired level of reliability. Given that
true load-shedding limit, the validation problem assesses whether the current design is
viable for all the randomly selected scenarios. If the design is not viable, then the value
of the virtual load-shedding limit r̂e

sh is increased, otherwise it is decreased. A variety of
methods can be used to achieve the appropriate change in r̂e

sh. Two algorithms, based on
the bisection method and the stochastic gradient method, are presented in Subsection 8.4.5.

Conceptually, the multi-period optimization could be embedded into the chance-
constrained capacity design problem, yielding a bi-level optimization formulation. How-
ever, the inner multi-period optimization would need to be solved for every sampled sce-
nario, yielding a computationally intractable problem. In contrast, the proposed design
procedure iterates between a standard LP and a mixed-integer linear feasibility problem,
so computations are straightforward and convergence is fast.
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8.4.4 Robust Reformulation

The chance-constrained problem P1 can be solved through a robust reformulation. Ref-
erence [156] introduces such a robust reformulation approach for problems where the
constraints are convex in the random variables. In such cases an a priori probability
guarantee can be provided for any feasible solution of the reformulated problem. This
approach firstly formulates a new chance-constrained problem,

(P̂2) min ||ξ − ξ||1

subject to Pr
(
δ ∈ [ξ, ξ]

∣∣∣δ ∈ ∆ ⊆ R3T
)
≥ 1 − ε,

to construct a hyper-rectangular robust set B∗ = [ξ∗, ξ
∗

] for the random vector. Then a
robust counterpart of the original problemP1, which we will refer to asP2, is solved with
the random vector confined to the computed robust set.

8.4.4.1 Robust Set Reshaping Methods

The hyper-rectangular robust set proposed in [156] can lead to very conservative results,
especially when the dimension of the random vector is high or the random variables have
large variance. Two methods are proposed in Chapter 7 to address this conservativeness
by reshaping the robust set. Full details are provided in [202] and we only summarize the
main ideas here.

The box-shaped robust set includes an unnecessary portion corresponding to minimal
renewable generation and maximal load occurring over the entire horizon. Such condi-
tions are rarely encountered in reality. Motivated by this observation, a cutting-based
approach is proposed that trims off this troublesome portion of the robust set by introduc-
ing a single new hyperplane. Only one extra design variable is added, that being the offset
of the hyperplane from the corner of the original box-shaped robust set. The resulting
robust set is still polytopic, so by adding the appropriate number of scenarios, the same
probability guarantee can be achieved.

Furthermore, the box-shaped robust set is conservative because it completely ignores
the auto-correlation inherent in the trajectories of random scenarios. Therefore, a PCA
method is exploited to further refine the robust set. The PCA method transforms the data
into new coordinates given by the principle components (PCs). These PCs are arranged
in descending order such that the first few PCs capture the largest variance in the data,
whereas the last few PCs describe near constant relationships in the data. Two hyperplanes
can be introduced for each PC direction. The hyperplanes lie normal to the PC direction,
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with their offsets from the origin determined by the two outermost data points along the
PC direction.

8.4.4.2 Reformulation for Battery Dispatch

This subsection considers reformulation of the robust counterpart problem P2 to resolve
the complementarity introduced by battery charging and discharging. Recall that pb is
the power received/released by the battery terminals, with positive pb acting as a load
on the energy hub. The charging and discharging efficiencies are denoted by ηc and ηd,
respectively, with the usual assumption that 0 ≤ ηc, ηd ≤ 1. Referring to the affine policy
(8.3.8), we have at each time t,

pb(t) = pn
b(t) + atδ, (8.4.5)

where at is the t-th row of matrix A. If pb(t) = pn
b(t) + atδ ≥ 0, then the battery is charging

at time t with efficiency ηc. If pb(t) = pn
b(t) + atδ < 0, then the battery is discharging at

time t with efficiency ηd. Substituting equation (8.4.5) into the electrical power sufficiency
constraint (8.3.1) and reorganizing gives,

f (pn
b(t) + atδ)(pn

b(t) + atδ) − ctδ ≤ Bn(t), (8.4.6)

where ct is the t-th row of the matrix,

C , [pwIT, ppvIT, −(1 − r̂e
sh)IT],

with IT referring to the identity matrix of dimension T, and Bn(t) is the t-th entry of the
vector,

Bn , Cp0n
− pelz + pfc − pe2h + prfm ηrfm ηfc + pchpη

e
chp.

We assume that a polytopic robust set has been constructed, based on the techniques
described in Subsection 8.4.4.1. This robust set can be described by Dδ ≤ d. In the robust
counterpart problem, constraint (8.4.6) can be written as,

max
Dδ≤d
{ f (pn

b(t) + atδ)(pn
b(t) + atδ) − ctδ} ≤ Bn(t). (8.4.7)

Claim 1. Constraint (8.4.7) is equivalent to,

max
Dδ≤d
γt∈{0,1}

{(
γt

1
ηc

+ (1 − γt)ηd

)
(pn

b (t) + atδ) − ctδ
}
≤ Bn(t). (8.4.8)
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Proof. Given any δ̂ ∈ {Dδ ≤ d}, we have,

max
γt∈{0,1}

{(
γt

1
ηc

+ (1 − γt)ηd

)(
pn

b(t) + atδ̂
)}
≥ f (pn

b(t) + atδ̂)(pn
b(t) + atδ̂).

Hence, (8.4.8)⇒ (8.4.7).
Let (δ∗, γ∗t) be the optimal solution of the left hand side of equation (8.4.8). Due to

maximization, it can be seen that γ∗t = 0 if pn
b(t) + atδ∗ < 0, and γ∗t = 1 if pn

b(t) + atδ∗ ≥ 0.
By definition of the function f , we have f (pn

b(t) + atδ∗) = γ∗t
1
ηc

+ (1 − γ∗t)ηd. Hence (8.4.7)⇒
(8.4.8). �

It is then straightforward to show that (8.4.8) is equivalent to the condition,

max
Dδ≤d

{
max

{ 1
ηc

(pn
b(t) + atδ) − ctδ, ηd(pn

b(t) + atδ) − ctδ
} }
≤ Bn(t). (8.4.9)

There are two sub-problems in condition (8.4.9),

max
Dδ≤d
{

1
ηc

(pn
b(t) + atδ) − ctδ} ≤ Bn(t), (8.4.10)

max
Dδ≤d
{ηd(pn

b(t) + atδ) − ctδ} ≤ Bn(t). (8.4.11)

At this point, the robust counterpart problem P2 has been reformulated into a robust
LP, with polytopic uncertainty set. It can be converted to a regular LP by taking the dual.
For example, taking the dual of (8.4.10) and (8.4.11) gives,

min
1
ηc at−ct=(λc

t )ᵀD
λc

t≥0

{
dᵀλc

t − (Bn(t) −
1
ηc

pn
b(t))

}
≤ 0, (8.4.12)

min
ηdat−ct=(λd

t )ᵀD
λd

t ≥0

{
dᵀλd

t − (Bn(t) − ηdpn
b(t))

}
≤ 0, (8.4.13)

where λc
t and λd

t are the t-th columns of the dual variable matrices λc, λd
∈ RL×T, with L

denoting the number of constraints used to define the robust set.
Recombining constraints (8.4.12) and (8.4.13) gives,

dᵀλc
t − (Bn(t) −

1
ηc

pn
b(t)) ≤ 0, (8.4.14)

dᵀλd
t − (Bn(t) − ηdpn

b(t)) ≤ 0, (8.4.15)
1
ηc

at − ct = (λc
t )
ᵀD, (8.4.16)
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ηdat − ct = (λd
t )ᵀD, (8.4.17)

λc
t ≥ 0, (8.4.18)

λd
t ≥ 0. (8.4.19)

8.4.5 Numerical Algorithms

Two algorithms have been considered for updating the virtual load-shedding parameter
r̂e

sh during the iterations between the robust optimization and the validation problem,
namely the bisection method [203] and the stochastic gradient (SG) method [204]. The
bisection algorithm is straightforward to implement while the stochastic gradient method
can compensate for the randomness in scenario selection and guarantee convergence in a
probabilistic sense. In both cases, the iterative update is applied to the scalar r̂e

sh. Therefore
the required gradient information at each iteration is reduced to a scalar indicator variable,
namely a flag indicating whether or not the validation problem is feasible.

The bisection and stochastic gradient methods are presented in Algorithms 1 and 2,
respectively. Note that for both algorithms, when the virtual load-shedding limit r̂e

sh ∈

[0, re
sh], the validation problem is guaranteed to be feasible due to the robust formulation

of the design problem.

8.4.6 Cluster-Based Multi-Policy Design

One of the main reasons for the conservativeness of the robust counterpart reformulation
is that the affine control policy for battery dispatch does not have sufficient flexibility
to cope with the wide range of possible realizations of the random variables. In this
subsection we propose a novel multi-policy design approach based on clustering the
random trajectories to reformulate the chance-constrained problem P0, and hence the
capacity design problem P1.

We first subdivide the total probability space into k disjoint clusters, and design for
each cluster a different nominal battery dispatch trajectory pn

b and parameterization A of
the affine control policy. The problem P0 is transformed into,

(P3) min
x∈X⊆Rnx

J(x)

subject to Pr
(

max
j=1,...,m1

g1
j (x, δ) ≤ 0 | δ ∈ ∆1

)
≥ 1 − ε, (8.4.20)

Pr
(

max
j=1,...,m2

g2
j (x, δ) ≤ 0 | δ ∈ ∆2

)
≥ 1 − ε, (8.4.21)

· · ·

Pr
(

max
j=1,...,mk

gk
j(x, δ) ≤ 0 | δ ∈ ∆k

)
≥ 1 − ε. (8.4.22)
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Algorithm 1 Bisection algorithm for iterative design

1: Input: Data-set Ω of renewable generation and load, sample size Ns > 0, actual
load-shedding limit re

sh ∈ [0, 1], and convergence tolerance tol > 0.
2: Output: Capacity design Pcap and corresponding virtual load-shedding limit r̂e

sh.
3: Initialization: µ← 0, µ← 1, µ← 0.
4: while µ − µ ≥ tol do
5: Solve the robust design problem of Subsection 8.4.4 with r̂e

sh = µ to obtain a capacity
design Pcap(µ).

6: Randomly sample Ns scenarios from Ω.
7: Solve the validation problem of Subsection 8.4.2 with the designed Pcap(µ), the

actual load-shedding limit re
sh, and the Ns sampled scenarios to check the feasibility of

the design.
8: if feasible then
9: µ← µ

10: else
11: µ← µ
12: end if
13: µ← (µ + µ)/2
14: end while
15: Pcap ← Pcap(µ) and r̂e

sh ← µ

Note that the design variables Pcap (component capacities) for problemP3 are the same
across all the clusters. Therefore, the objective functions of P3 and P0 are the same, since
the cost is only a function of Pcap. However, the nominal dispatch trajectory and the affine
policy will generally be different for each different cluster, leading to different functions
gi

j for the different chance constraints, i = 1, · · · , k.
We enforce the requirement that every specific scenario (realization of the random

trajectory) belongs to exactly one cluster,

Pr(δ ∈ ∆1) + Pr(δ ∈ ∆2) + · · · + Pr(δ ∈ ∆k) = 1. (8.4.23)

Thus, the total probability of constraint satisfaction is given by,

k∑
i=1

Pr
(

max
j=1,...,mi

gi
j(x, δ) ≤ 0 | δ ∈ ∆i

)
· Pr(δ ∈ ∆i) ≥ 1 − ε, (8.4.24)

where the 1 − ε lower bound is a direct consequence of the structure of the chance-
constraints in P3, taking into account equation (8.4.23). Thus, by formulating the chance-
constrained problem as P3, we achieve the desired bound on the violation probability ε.
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Algorithm 2 Stochastic gradient algorithm for iterative design

1: Input: Data-set Ω of renewable generation and load, sample size Ns > 0, actual load-
shedding limit re

sh ∈ [0, 1], initial step size ηini ∈ [0, 1], and convergence tolerance
tol > 0.

2: Output: Capacity design Pcap and corresponding virtual load-shedding limit r̂e
sh.

3: Initialization: iteration index k ← 0, step size η0
← ηini, virtual load-shedding limit

µ0
← 0, phase flag υ← 1.

4: while ηk
≥ tol do

5: Solve the robust design problem of Subsection 8.4.4 with r̂e
sh = µk to obtain a

capacity design Pcap(µk).
6: Randomly sample Ns scenarios from Ω.
7: Solve the validation problem of Subsection 8.4.2 with the designed Pcap(µk), the

actual load-shedding limit re
sh, and the Ns sampled scenarios to check the feasibility of

the design.
8: if υ = 1 and feasible then
9: ηk+1

← ηk, µk+1
← µk + ηk+1

10: else if υ = 2 and feasible then
11: ηk+1

← ηk/2, µk+1
← µk + ηk+1

12: else
13: υ← 2, ηk+1

← ηk, µk+1
← µk

− ηk+1

14: end if
15: k← k + 1
16: end while
17: Pcap ← Pcap(µk−1) and r̂e

sh ← µk−1

We can proceed as in Subsection 8.4.4 to compute robust sets for each cluster. The
aforementioned cutting- and PCA-based robust set reshaping approaches can be applied
to each cluster. We set the confidence parameters to be β1, · · · , βk for the k chance constraints
in P3. Recall that 1 − βk denotes the confidence bound for the validity of each chance
constraint. Then by subadditivity of probability measure [205], the overall confidence
level is at least 1 − β̂, with β̂ =

∑k
i=1 βi.

The process of clustering results in a more flexible control structure, which leads to less
conservative capacity design. Furthermore, the clustering approach can be used to discard
unwanted data, though at the cost of reducing the violation probability guarantee. Assume
that the last cluster ∆k gathers scenarios that correspond to bad cases (random renewable
generation and load trajectory realizations) with low probabilities. Let ρ , Pr(δ ∈ ∆k).
Then

∑k−1
i=1 Pr(δ ∈ ∆i) = 1 − ρ. We delete the last chance constraint (8.4.22) in P3. Then the
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Figure 8.3: Block diagram of the two-level operating framework.

total probability of constraint satisfaction is,

k−1∑
i=1

Pr
(

max
j=1,...,mi

gi
j(x, δ) ≤ 0 | δ ∈ ∆i

)
· Pr(δ ∈ ∆i) ≥ (1 − ε)(1 − ρ), (8.4.25)

with overall confidence level of at least 1 −
∑k−1

i=1 βi. The probability ρ of the event δ ∈ ∆k

can be estimated using the available data.

8.5 Operation

Operation of an isolated energy hub involves dispatching the DERs and regulating storage
devices to reliably and economically satisfy demand. In the operational setting the capac-
ities of energy-hub components are fixed at the values determined by the design process
of Section 8.4. We consider a two-level operating scheme that incorporates day-ahead
optimal scheduling together with real-time MPC. A schematic diagram of this operating
strategy is provided in Fig. 8.3.

8.5.1 Higher-Level Day-Ahead Scheduling

At the higher-level, a multi-period optimization problem is solved using the day-ahead
forecast of the renewable generation and load. The higher-level optimization problem
minimizes the fuel cost, i.e., the cost of gas being purchased from external sources, as well
as penalizes electrical load shedding, over the entire time horizon of T = 24 hours. The
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higher-level problem encourages charging of the storage devices, namely the battery and
hydrogen tank, whenever possible, and guarantees that the SoC of each storage device
at the end of the day is no less than its starting energy level. The scheduled dispatch
trajectories provided by the higher-level problem are taken as reference trajectories for
the lower-level real-time MPC scheme, which has a shorter prediction horizon but finer
resolution.

For simplicity of notation, all the control variables for the isolated energy hub are
collected into the control vector, u = [(pb)ᵀ, (pelz)ᵀ, (pfc)ᵀ, (prfm)ᵀ, (pchp)ᵀ, (pe2h)ᵀ, (re

sh)ᵀ]ᵀ,
and pg = prfm + pchp denotes the amount of gas purchased from an external gas supply.
The multi-period day-ahead scheduling problem is summarized as,

(P4) min Jsch =

T−1∑
t=0

(
cgpg(t) + ce

shre
sh(t) − ch2mh2(t) − cbeb(t)

)
,

subject to Power balance constraints (8.3.3), (8.3.4),

Battery storage dynamics (8.3.5)-(8.3.7),

Hydrogen storage dynamics (8.3.13), (8.3.14),

Capacity constraints (8.3.16)-(8.3.24),

where cg, ce
sh, ch2 and cb are weighting parameters for the corresponding components. The

last two terms in the objective function Jsch encourage higher energy level in the storage
devices. The optimal dispatch trajectories, given by êb, m̂h2 , p̂rfm, and p̂chp, are passed to
the lower-level MPC and serve as the reference trajectories for the SoC of the battery and
hydrogen tank, and as the dispatch goals for the reformer and CHP.

Similar to the validation problem, the multi-period day-ahead scheduling problem
for an isolated energy hub is reformulated into a mixed-integer LP through McCormick
relaxation, enabling efficient solution.

8.5.2 Lower-Level On-Line Operation Using MPC

During on-line operation the energy hub faces real-time realizations of renewable gen-
eration and load which differ from the day-ahead forecast. To manage these deviations
the lower-level MPC seeks to track the reference trajectories provided by the higher-level
day-ahead schedule while minimizing load shedding. The tracking errors for the vari-
ous quantities are weighted by parameters σ1, ..., σ5. A four-hour prediction horizon is
used, with a fifteen-minute time-step. The desired tracking control is achieved via the
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optimization formulation,

(P5) min
U(t)

JMPC(t) =

Nc−1∑
k=0

(
σ1

(
eb(k|t) − êb(k + t)

)2
+ σ2

(
mh2(k|t) − m̂h2(k + t)

)2

+ σ3

(
prfm(k|t) − p̂rfm(k + t)

)2
+ σ4

(
pchp(k|t) − p̂chp(k + t)

)2

+ σ5re
sh(k|t)

)
,

subject to Power balance constraints (8.3.3), (8.3.4),

Battery storage dynamics (8.3.5), (8.3.6),

Hydrogen storage dynamics (8.3.13), (8.3.14),

Capacity constraints (8.3.16)-(8.3.24),

∀k = 0, · · · ,Nc − 1,

where t is the discrete time index and Nc is the horizon length. Standard notation x(k|t) is
adopted, which stands for the predicted value of x at time t + k, based on the information
available at time t. The decision variables in P5 are U(t) =

(
u(0|t), · · · ,u(Nc−1|t)

)
.

8.6 Design and Operational Results for an Isolated Energy

Hub

8.6.1 Capacity Design Results

8.6.1.1 Renewable Generation and Load Data

To demonstrate the proposed methodology, we used real renewable generation data and
electrical load data from online databases. Five-minute resolution aggregated wind gen-
eration data were collected from Bonneville Power Administration (BPA)’s website [163],
and averaged within each hour to give hourly resolution data. Since the chapter focuses
on cases where it is reasonable to assume reliance on renewable energy resources, we
only considered regions with adequate renewable generation. Accordingly, we made the
assumption that the minimum hourly wind power should be no less than 10% of its rating.
Electrical load data were obtained from the same BPA database. Solar generation data
with five-minute resolution were obtained from NREL’s Solar Power Data for Integration
Studies database [164]. The five-minute resolution data were averaged within each hour
to give hourly resolution data.
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Table 8.1: Economic Parameters for DERs in the Energy Hub.

DERs Life (yrs) Capital/Replace O&M NPC ($/kW)
WT 20 [165] $2776 [153] $32.15 [167] $3180
PV 25 [165] $3800 [166] $32.64 [167] $4210
Battery 5 [149] $274 [153] $10 [148] $913.32
Elz 25 [206] $2000 [206] $25 [206] $2310
H2 tank 15 [206] $1300 [206] $15 [206] $2110
FC 10 [206] $3000 [206] $175 [206] $7020

Table 8.2: Efficiency Parameters for DERs in the Energy Hub.

ηc ηd ηelz ηfc ηrfm ηe
chp ηh

chp ηh

0.9 0.9 0.9 0.75 0.8 0.3 0.4 1

The wind and solar generation data were scaled by their maximum values to give
normalized data. We considered the isolated energy hub to be on the scale of 100 kW
peak electricity demand, and the load data were scaled accordingly. The heat load was
assumed to be deterministic.

8.6.1.2 Model Parameters

The energy hub was assumed to have a life of 20 years, and we used an interest rate
of 12% [149]. The piece-wise linear penalty functions for reformer capacity and CHP
capacity were set as,

crfm(prfm) = max
(
104prfm, 106(prfm − 15) + 15 × 104

)
,

cchp(pchp) = max
(
104pchp, 106(pchp − 15) + 15 × 104

)
.

The NPC for each component in the energy hub was computed based on the descrip-
tions in [161, 162], and the resulting values are given in Table 8.1. The electricity-to-heat
path can be fulfilled by various approaches, and the NPC was estimated to be $500/kW.
Other economic parameters for the energy hub components were chosen based on rele-
vant literature and are provided in Table 8.1. The costs are for unit capacity, and the NPC
for battery systems applies to both power and energy capacity. The efficiency parameters
are given in Table 8.2. The remaining parameters for the capacity design problem are
collected together in Table 8.3.
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Table 8.3: Parameters for DERs in the Energy Hub.

ωb ωh2 ωl ωu Celz Cfc

0.6 0.5 0.3 0.9 41.97 37.8

8.6.1.3 Results and Discussion

Algorithms 1 and 2 as described in Subsection 8.4.5 were tested and compared. In the
robust design problem, the data-set describing the renewable generation and load was
clustered into four clusters, based on two of the PC directions computed using PCA
analysis. Within each cluster, the PCA-based method was again used to reshape the robust
set. For comparison, the original single-cluster box-shaped robust set was also tested. The
robust problem P2 was transformed to a regular LP as described in Subsection 8.4.4.2,
which was solved using the Matlab-based CVX toolbox in conjunction with the Gurobi
solver. For the validation problem, the true load-shedding limit was set at re

sh = 0.25, and
Ns = 100 scenarios were randomly selected from the data-set at each iteration. Note that
the set of test scenario differed from one iteration to the next. However, for comparison,
at each iteration the same set of scenarios was used by both the bisection algorithm and
the stochastic gradient algorithm. Each scenario in the test set was validated individually.
Once a scenario was identified as infeasible, the corresponding value of the virtual load-
shedding limit was flagged as unacceptable and the remainder of the scenarios in the test
set were not considered. We remark that the validation problem for each scenario is a
mixed-integer linear feasibility problem.

The optimal capacity design results are presented in Table 8.4. Note that we report the
converged virtual load-shedding limit in the row labeled r̂e

sh. (This is not to be confused
with the true load-shedding limit, which remained fixed at re

sh = 0.25.)
It can be observed that for both the bisection algorithm and the stochastic gradient

algorithm, the four-cluster design always gave a lower design cost compared to the one-
cluster design, although their corresponding converged virtual load-shedding limits are
the same. Interestingly, the four-cluster design results in the participation of solar PV, as
well as more significant deployment of the battery.

The iterations of the algorithms for the four cases of Table 8.4 are illustrated in Figs. 8.4
and 8.5. Variation of the virtual load-shedding limit during algorithm convergence is
shown in Fig. 8.4, while Fig. 8.5 shows the corresponding variation of the design cost.
The bisection algorithm increased the virtual load-shedding limit aggressively at the
beginning but reduced back to a safe design. In this test case, the bisection algorithm
approached the converged point from the unsafe side (corresponding to larger virtual
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Table 8.4: Optimal Design Results for the Energy Hub.

Type Bisection Stochastic Gradient
1-Cluster 4-Cluster 1-Cluster 4-Cluster

pw(kW) 354.44 291.31 367.61 302.15
ppv(kW) 0.00 2.56 0.00 2.68
pb(kW) 5.86 10.42 5.89 10.85
eb (kWh) 23.11 62.47 23.30 65.20
pelz(kW) 6.03 9.38 6.15 9.61
mh2(kg) 1.55 2.92 1.58 3.00
pfc(kW) 11.43 12.06 11.48 12.14
prfm(kW) 15.00 15.00 15.00 15.00
pchp(kW) 15.00 15.00 15.00 15.00
pe2h(kW) 8.19 7.98 8.17 7.95
r̂e

sh(kW) 0.5005 0.5005 0.4859 0.4859
Cost (Million) $1.54 $1.39 $1.59 $1.43

load-shedding limit), while the stochastic gradient algorithm converged from the safe
side (corresponding to smaller virtual load-shedding limit). The optimal design cost
shown in Fig. 8.5 demonstrates that for the same value of the virtual load-shedding limit,
the four-cluster design always gave a lower design cost than the one-cluster design.

Recall from Algorithms 1 and 2 that the robust capacity design is parameterized by
the virtual load-shedding limit, which can be expressed as Pcap(r̂e

sh). Figure 8.6 plots this
dependence of Pcap over the range 0 ≤ r̂e

sh ≤ 1. The four-cluster case was considered. This
provides insights into the role of the virtual load-shedding limit in the iterative design
process. As expected, the design capacity for most of the components in the energy hub
decreased as the virtual load-shedding limit was increased. One exception is the capacity
of electricity-to-heat, which slightly increased. This indicates that as more and more
electrical load can be shed, the extra available electrical power generation can be used to
supply the heat load.

The previous results of this subsection used a true load-shedding limit of r̄e
sh = 0.25

in the validation problem. Recall that this actual load-shedding limit represents an en-
gineering requirement and should not be confused with the virtual load-shedding limit,
which is simply an auxiliary variable. We can test the sensitivity of the design with
respect to the true load-shedding limit to explore the impact of that design choice. In
particular, cases with true load-shedding limit of 0.15 and 0.35 have been further tested,
using the stochastic gradient algorithm and the four-cluster robust set. Figure 8.7 shows
the convergence of the virtual load-shedding limit for the cases with re

sh = 0.15, 0.25, 0.35.
The corresponding design cost is shown in Fig. 8.8. As can be observed, the cases with
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Figure 8.4: Virtual load-shedding limit variation during algorithm convergence.

true load-shedding limit of 0.25 and 0.35 gave almost the same converged virtual load-
shedding limit and optimal design cost. Therefore, by choosing the level of 0.25, we
effectively gained 10 kW (10% of the peak demand) of safety for almost no extra cost. In
contrast, the true load-shedding level of 0.15 led to a large increase in the design cost.

The load-shedding limit of 0.25 implies that in the extreme case 25% of total electrical
load can be shed. Even though this seems large, the percentage of scenarios that actually
require load shedding is quite small. Figure 8.9 shows the maximum load-shedding ratio
for every scenario in the data-set, ordered from the highest to the lowest. The curve drops
quickly with no load shedding required for 90% of the scenarios.

An a posteriori probability guarantee for the design can be obtained using a result
from [200],

ε = max
ζ∈[0,1]

{
ζ :

Nv∑
z=0

(N
z

)
ζz(1 − ζ)(N−z)

)
≥ β

}
, (8.6.1)

where 1 − β is the required confidence level, and ε is a corresponding upper bound on
the violation probability ε. For our example, N = 1000 is the number of scenarios that
were used in the evaluation, and Nv = 7 is the number of scenarios that had constraint
violations, i.e., those that required more load shedding than permitted. For a specified
confidence parameter β = 0.1%, the upper bound on the violation probability given by
equation (8.6.1) is ε = 1.95%. Therefore, the design will be safe for a specified violation
probability of ε = 2%.
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Figure 8.5: Design cost variation during algorithm convergence.

8.6.2 Operational Results for an Isolated Energy Hub

The operational characteristics of the optimally designed isolated energy hub are demon-
strated in this subsection. Operation is based on the proposed two-level control scheme,
consisting of higher-level day-ahead scheduling and lower-level on-line MPC.

8.6.2.1 Day-Ahead Scheduling

To illustrate day-ahead scheduling of an isolated energy hub, we considered a specific
realization of renewable generation and load. The profiles for wind and solar PV genera-
tion, and for electrical and heat loads, are shown in Fig. 8.10. These curves represent the
day-ahead forecast information used by the day-ahead scheduling problem.

The multi-period day-ahead scheduling problem P4 for an isolated energy hub was
reformulated into a mixed-integer LP, which we solved using the CVX toolbox with the
Gurobi solver. The weighting parameters in the cost function ofP4 were chosen as cg = 105,
ce

sh = 1011, ch2 = 10−4, and cb = 10−5, taking into consideration the relative importance of the
four quantities. Figure 8.11 shows the schedules for the electrolyzer, fuel cell, electricity-
to-heat and electrical load shedding, over the entire day. In this specific scenario, a large
amount of load shedding was invoked. This was because of the drop in wind generation
at hour 7, whereas the electrical load peaked at that same time. Moreover, the heat load
was increasing around that time. As shown in Fig. 8.11, the electricity-to-heat power was
non-zero even when the electrical load shedding was invoked. Between hours 5 and 10,
the fuel cell was scheduled to produce electrical power. It can be observed that although
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Figure 8.6: Dependence of robust capacity design Pcap on the virtual load-shedding limit
r̂e

sh.

load shedding was invoked, the fuel cell did not operate at rated power to minimize
instantaneous load shedding. This was due to the limited hydrogen storage. If the fuel
cell had reached maximum power at an earlier time, the stored hydrogen would have
been quickly depleted, and greater load shedding would have been required at a later
time. This illustrates the predictive capability of multi-period scheduling.

The scheduled trajectories for the other energy hub components, namely the battery
energy level, hydrogen tank storage level, reformer and CHP power, are tracked in the
MPC problem, the performance of which is demonstrated next.

8.6.2.2 On-Line MPC Operation

On-line MPC operation of the optimally designed isolated energy hub must account for
deviations from the forecast used in the day-ahead scheduling. To explore MPC behavior,
it was assumed that updated forecast information was progressively revealed for on-line
MPC use. To simulate forecast deviations, Gaussian noise was added to the forecast
trajectories.

The day-ahead scheduling problem established reference trajectories for on-line MPC.
In particular, the reference trajectories for battery energy levels, hydrogen tank storage
levels, reformer power and CHP power were interpolated to obtain finer resolution track-
ing data. A step-size of 15 minutes and a control horizon of 4 hours were chosen as a
balance between computational burden and control performance. The weighting param-
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eters in the cost function of the MPC optimization P5 were chosen as σ1 = 1, σ2 = 3 × 104,
σ3 = 102, σ4 = 102, and σ5 = 1/3 × 104, taking into account the relative magnitudes of the
related quantities.

The reference storage levels of the battery and hydrogen tank are shown in Fig. 8.12,
along with the MPC tracking trajectories. It is clear that MPC accurately tracked the
reference trajectory for hydrogen mass. At the two critical points around hours 5 and 16,
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Figure 8.9: Maximum load-shedding ratio for all scenarios in the data-set.

MPC predicted a future shortage and guided the battery to respond accordingly. During
the hours between 6 and 10, the two storage devices made up for insufficient generation,
since in this specific scenario the electrical load peaked at hour 7, whereas the wind
generation dipped at around that same time, as can be seen in Fig. 8.10. Both devices
ended the day with storage levels that were at least as high as their staring values, as
required by the problem formulation.

The tracking performance of the reformer and CHP is shown in Fig. 8.13. Again, MPC
tracking is admirable for both devices. Moreover, the predictive capability of MPC is
apparent at hour 13, where instead of completely shutting down the reformer and CHP
units, the tracking trajectories remained relatively constant and smoothly increased back
to high power output when the heat load started to increase at hour 17.

8.7 Networked Operation

Even though energy hubs may be designed for autonomous operation, opportunities may
arise for interconnection of adjacent energy hubs. Such interconnection can potentially
offer economic and reliability benefits. We therefore consider this possibility by introduc-
ing electrical and gas networks between several energy hubs. Examples of electrical and
gas network structures are shown in Fig. 8.14. Other forms of energy networks, such as
heat (hot water) and hydrogen [207], are also possible but will not be considered.

Such networked operation allows extra flexibility. For example, excess renewable
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Figure 8.10: Renewable generation and load profiles for an isolated energy hub.

generation from an energy hub can be exported to adjacent energy hubs where generation
may be temporarily deficient. The two-level operating scheme described in Section 8.5 can
be adapted to operate networked energy hub systems to achieve this desired flexibility.

An energy network can be viewed as a graph with additional innate physical laws.
The electrical network must satisfy electrical circuit laws, whereas the gas network must
comply with gas laws that govern the relationship between pressure, volume, temperature
and quantity of gas.

8.7.1 Energy Network Models

From an abstract perspective, an energy network can be viewed as a graph, with a set of
nodes (buses)B = {1, 2, . . . ,Nb} and a set of arcs (branches)A = {1, 2, . . . ,Na}. Flow balance
needs to be satisfied at every node in the network and additional physical constraints are
enforced depending on the specific type of network. The most common energy networks,
electricity and gas, are introduced in the following subsections.

8.7.1.1 Electrical Network

Generator and load buses of an electrical network are interconnected through distribution
lines and transformers. Power flow equations describe the mathematical relationship
between the complex power injected at buses and the complex voltages at those buses.
These equations are nonlinear and non-convex, posing challenges for optimal power flow
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problems. Various power flow approximations exist, among which the so-called DC
power flow is the simplest and most widely used linear approximate model [208]. For
the purpose of illustrating interactions between multiple energy hubs through an energy
network, we will use the DC power flow to model the electrical network. This model is
based on the approximation,

Pi(θ) ≈
Ne

b∑
k=1

Bik(θi − θk), (8.7.1)

where Pi is the net active power injection at bus i. The DC power flow equations are in per
unit, so Pi = pe

net/Sbase, where Sbase is the power base for the system. The power balance
constraint (8.3.3) within an energy hub is modified to incorporate the electrical power
network interface term pe

net,

pw(t) + ppv(t) + pfc(t) + prfm(t)ηrfmηfc + pchp(t)ηe
chp

= pd(t)(1 − re
sh(t)) + f (pb(t))pb(t) + pelz(t) + pe2h(t) + pe

curt(t) + pe
net(t). (8.7.2)

8.7.1.2 Gas Network

Gas pipelines can be modeled in different levels of details. An accurate treatment takes
into account space and time dependent hydrodynamic properties described by partial
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differential equations [209]. Typical assumptions that allow model simplification include
slow dynamic effects and isothermal flow. The constraints of a simplified gas network
model can be piecewise linear or convexified [196].

Compressor units are a key component of gas networks. They increase the pressure
of gas in the pipeline and deliver gas to consumers at specified conditions. The power
consumption of a compressor can be modeled in various ways [210]. In this chapter, since
we are modeling a small-scale gas network between energy hubs, we adopt a relatively
precise model [168] that considers the dependence of power consumption on the pressure
increase and gas volume flow rate. The model of a gas pipeline with compressor is shown
in Fig. 8.15.

The nodal balance for a gas network is written,

Qi =
∑
k∈Ni

Qik, (8.7.3)

where Qik is the gas flow from node i to its neighboring node k ∈ Ni, and Qi is the nodal
net volume flow injected at node i.

Figure 8.15 represents the model for a gas pipeline together with a compressor unit.
The gas flow Qik is determined by,

Qik = kiksik

√
sik(p2

i − p2
k), (8.7.4)
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Figure 8.13: MPC performance, tracking the reference trajectories of the reformer and
CHP output in an isolated energy hub.

where pi and pk are the pressures at nodes i and k, respectively. The term kik is a constant
describing the properties of the pipe and the fluid [211]. The term sik represents the flow
direction and is given by,

sik =

+1, if pi ≥ pk,

−1, if pi < pk.

As mentioned earlier, the additional flow absorbed by the compressor unit can be
modeled as,

Qcom = kcomQik(pi − pr), (8.7.5)

where pi and pr are the pressures after and before compression, and kcom is a constant
describing the properties of the compressor unit.

The relationship between volume flow rate Qik and the effective power flow Pik is given
by,

Pik = GHV ·Qik, (8.7.6)

where the parameter GHV is the gross heating value of the gas mass.
In view of the networked energy hub system, the nodal net volume flow injection in

equation (8.7.3) is given by,

Qi = Gi −Qcom − pg
net/(GHV · Sbase), (8.7.7)
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Figure 8.15: Model of gas pipeline with compressor.

where Gi is the amount of gas being purchased from an external gas supply resource. The
interface pg

net between the gas network and the energy hub is given by,

pg
net = prfm + pchp. (8.7.8)

8.7.2 Two-Level Operation

Two-level operation, as described in Section 8.5, can be modified to include multiple en-
ergy hubs and the energy network model. The control variables for the l-th energy hub are
collected into the control vector, ul = [(pl

b)ᵀ, (pl
elz)ᵀ, (pl

fc)
ᵀ, (pl

rfm)ᵀ, (pl
chp)ᵀ, (pl

e2h)ᵀ, (re,l
sh)ᵀ]ᵀ,

for all l = 1, · · · , h. Collecting ul together for all energy hubs gives u = [(u1)ᵀ, · · · , (uh)ᵀ]ᵀ.
The multi-period day-ahead scheduling problem P4 is modified to give,

(P6) min Jsch-net =

h∑
l=1

T−1∑
t=0

(
cgpg,l

net(t) + ce
shre,l

sh(t) − ch2m
l
h2

(t) − cbel
b(t)

)
,
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subject to Power balance constraints (8.3.4), (8.7.2),

Battery storage dynamics (8.3.5)-(8.3.7),

Hydrogen storage dynamics (8.3.13), (8.3.14),

Capacity constraints (8.3.16)-(8.3.24),

Electricity network equations (8.7.1),

Gas network equations (8.7.3)-(8.7.8),

where cg, ce
sh, ch2 and cb are weighting parameters.

As in the operation of isolated energy hubs, the optimal dispatch trajectories êl
b, m̂l

h2
,

p̂l
rfm, and p̂l

chp are passed to the lower-level MPC and serve as the reference trajectories for
the l-th energy hub.

The MPC optimization formulation for a networked energy hub system is given by,

(P7) min
U(t)

JMPC-net(t) =

h∑
l=1

Nc−1∑
k=0

(
σ1

(
el

b(k|t) − êl
b(k + t)

)2
+ σ2

(
ml

h2
(k|t) − m̂l

h2
(k + t)

)2

+ σ3

(
pl

rfm(k|t) − p̂l
rfm(k + t)

)2
+ σ4

(
pl

chp(k|t) − p̂l
chp(k + t)

)2

+ σ5 re,l
sh(k|t)

)
,

subject to Power balance constraints (8.3.4), (8.7.2),

Battery storage dynamics (8.3.5), (8.3.6),

Hydrogen storage dynamics (8.3.13), (8.3.14),

Capacity constraints (8.3.16)-(8.3.24),

Electricity network equations (8.7.1),

Gas network equations (8.7.3)–(8.7.8),

∀k = 0, · · · ,Nc − 1,

with respect to the decision variables U(t) = (u(0|t), · · · , u(Nc − 1|t)). Again, the tracking
errors for the various quantities are weighted by parameters σ1, ..., σ5. Note that the
formulationP7 corresponds to a centralized control architecture where a central controller
schedules the real-time dispatch of energy hubs connected to the network. Alternatively,
a distributed implementation is possible, following approaches such as [212, 213].
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Figure 8.16: (a) Scenario profiles for EH2; (b) Scenario profiles for EH3.

8.8 Operational Results for a Networked Energy Hub Sys-

tem

Three energy hubs were interconnected through electrical and gas networks that have
the structures shown in Fig. 8.14. All three energy hubs share the same design, which is
also the same as the isolated energy hub of Section 8.6. Operational characteristics of the
isolated and networked energy hub systems are compared to show the energy sharing
capability provided by networked operation.

Due to spatial diversity, different renewable generation and load profiles are specified
for the three energy hubs. The first energy hub EH1 is assumed to experience the same
scenario as in the isolated case shown in Fig. 8.10. The scenarios for the other two energy
hubs, EH2 and EH3, are shown in Fig. 8.16.

The multi-period day-ahead scheduling problem P6 was solved first. The weighting
parameters in the cost function of P6 were chosen as cg = 5 × 102, ce

sh = 105, ch2 = 10−1,
and cb = 10−3. Due to the nonlinearity of the gas network equations, the problem is a
mixed-integer nonconvex program, so no global optimality guarantee can be provided.
The problem was solved using the Matlab-based Yalmip toolbox with the branch and
bound solver BMIBNB. This solver requires upper and lower solvers, with IPOPT and
Gurobi chosen, respectively.

For the MPC optimization problemP7, a step-size of 15 minutes and a control horizon
of 4 hours were chosen. The weighting parameters in the cost function of P7 were chosen
as σ1 = 1, σ2 = 3 × 104, σ3 = 102, σ4 = 102 and σ5 = 104.

The reference and tracking trajectories for the battery SoCs are shown in Fig. 8.17.
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Good tracking performance was achieved for all three energy hubs, especially during the
second half of the day when renewable generation was abundant. The batteries in all
three energy hubs were able to be charged back to their upper limits since EH3 provided
plenty of wind generation during the later half of the day.

The reference and tracking trajectories of the hydrogen tank storage levels are shown
in Fig. 8.18. The tracking performance of all three energy hubs was very good. Compared
to Fig. 8.12, the energy sharing capability of the networked energy hubs allowed the
hydrogen storage of EH1 to always remain at least half full, rather than being fully
depleted and then requiring significant recharging.

The tracking performance of the reformer and CHP is shown in Figs. 8.19 and 8.20.
In both plots, it can be seen that EH2 and EH3 provided perfect tracking. The tracking
trajectory of the reformer in EH1, as shown by the green dashed line in Fig. 8.19, had a
maximum power of 0.63 kW and a total energy consumption of 2.93 kWh. This compares
with the yellow dashed line in Fig. 8.13 which shows that with the same local renewable
generation and load profiles, the reformer unit required a maximum power of 11 kW
and a total energy of 161.22 kWh to supply the isolated energy hub. The green lines in
Fig. 8.20 show the reference and tracking trajectories of the CHP in EH1. The peak power
of the CHP was 9.38 kW and it consumed total energy of 57.51 kWh. Referring to the
purple dotted line in Fig. 8.13, for the isolated energy hub, the peak CHP power and the
total energy consumption were 15 kW and 204.56 kWh, respectively. The reduction in
gas-related energy consumption for networked operation compared to that of the isolated
energy hub was 98% for the reformer and 72% for the CHP. Furthermore, the electrical
load shedding was zero for all three networked energy hubs, whereas the isolated energy
hub incurred peak electrical load shedding of 21.35 kW, as indicated by the purple dotted
curve in Fig. 8.11.

8.9 Chapter Conclusion

This chapter considers the optimal capacity design and operation of energy hubs, which
incorporate multiple energy carriers including electricity, gas, hydrogen and heat. The
stochasticity of renewable generation and load is explicitly taken into account in the design
of autonomous (isolated) energy hubs through a chance-constrained optimization formu-
lation. An affine policy has been considered for battery dispatch, based on which a robust
reformulation of the chance-constrained problem is derived with battery charging/dis-
charging complementarity being expressed via an equivalent linear representation. The
reformulated robust problem is a tractable linear program, having a significantly lower
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Figure 8.17: MPC performance, tracking the reference trajectories of battery energy level
in a networked energy hub system.

computational complexity compared to other solution strategies, such as the scenario
approach.

Although the reformulated robust design problem offers significant computational
benefits, it may result in designs that are conservative. Accordingly, we propose a novel
design framework which consists of iteration between a robust design problem and a
validation problem. The two problems interact via a scalar auxiliary variable which acts
as a virtual load-shedding term in the robust problem. It is adjusted dynamically using a
bisection or stochastic gradient algorithm. This process addresses conservativeness while
maintaining computational efficiency.

To further reduce design conservativeness, a novel cluster-based multi-policy formu-
lation has been proposed and tested using publicly available data-sets for renewable
generation and load. The simulation results demonstrate that the multi-cluster approach
achieves less costly designs.

A strategy for achieving reliable and economic operation of energy hubs has also
been considered. A two-level control structure which consists of higher-level day-ahead
scheduling and lower-level on-line model predictive control has been proposed. This two-
level operating strategy has been tested on isolated energy hubs as well as on networked
energy hub systems. In the latter case, the energy sharing capability provided by the
electrical and gas networks considerably reduces both the amount of gas purchased and
the requirement for electrical load shedding.
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Figure 8.18: MPC performance, tracking the reference trajectories of hydrogen storage
level in a networked energy hub system. (SoC=1 implies the hydrogen tank is at capacity.)
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Figure 8.19: MPC performance, tracking the reference trajectories of reformer output in a
networked energy hub system.
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Figure 8.20: MPC performance, tracking the reference trajectories of CHP output in a
networked energy hub system.
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CHAPTER 9

Conclusions and Perspectives

In this dissertation, the technical challenges and opportunities faced by power systems,
when shifting from centralized fossil-fuel-based generation to renewable resources and
distributed energy resources (DERs) are investigated comprehensively. This disserta-
tion addresses the critical issues of safety and stability of power systems that integrate
substantial renewable DERs. Furthermore, this dissertation establishes a design pro-
cess for next-generation off-grid energy systems, such as renewable-only microgrids and
community-based energy hub systems. This chapter summarizes the key contributions
of this dissertation and provides a discussion of future research directions.

9.1 Summary of Key Contributions and Findings

The first part of this dissertation (Chapters 2 to 5) concerns the safety and stability of
power systems with the integration of variable renewable DERs. We summarize the
contributions from control- and system-theoretic perspectives.

Chapters 2 and 3 analyze and quantify the impacts of uncertainties on system dynamics
which enables efficient safety verification algorithms.

Chapter 2 establishes the theoretical development of the second-order trajectory sen-
sitivity for general hybrid systems. For such complex systems, trajectory sensitivity
analysis is a powerful tool for describing the perturbations of system trajectory in re-
sponse to small variations in initial conditions and uncertain parameters. In this chapter,
we establish the jump conditions describing the step change of second-order sensitivities
at discrete (switching and state resetting) events and provide a pictorial interpretation of
the mechanism. We also formulate the differential-algebraic equation (DAE) that governs
second-order sensitivities over continuous pieces. These results together fully charac-
terize second-order sensitivities for general hybrid systems, which recovers parts of the
neglected information in the first-order analysis and hence improves the accuracy of
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trajectory approximation.
Chapter 3 proposes an efficient method to compute numerical error bounds for the

first-order trajectory approximation, based on the second-order trajectory sensitivities
developed in Chapter 2. A theorem that quantifies the excursion of trajectories induced
by uncertain initial conditions and external disturbances is improved and extended to
DAE systems, using the mathematical tool of the logarithmic norm. This result provides a
guaranteed over-approximation of the reach-set of nonlinear DAE systems. By combining
this result with the efficient bound obtained from trajectory sensitivities, We provide
a much less conservative reach-set estimate for DAE systems under uncertain initial
conditions, uncertain parameters, and external disturbances.

Chapters 2 and 3 contribute to the fields of hybrid system analysis and nonlinear system
analysis by forming the theoretical foundations for trajectory-based analysis. Various
applications can be pursued, including uncertainty quantification, safety verification, and
trajectory optimization. In particular, Chapter 2 considers the modeling and analysis
of general hybrid systems, which is useful to capture a range of practical phenomena
in power systems, including protection actions, control limits, and physical limits. The
analysis reveals the behaviors of system trajectory when encountering discrete events and
shows the improvements by incorporating higher-order information. Chapter 3 brings
new perspectives to reach-set computation for nonlinear systems, by demonstrating the
value of exploiting trajectory approximation in improving the efficiency and accuracy of
reach-set computation.

Chapters 4 and 5 analyze the dynamics and stability of inverter-based power systems
and propose two novel inverter control schemes.

Chapter 4 discusses how inverter-based resources should interact with other devices
and the main grid in a distributed and autonomous manner. A novel inverter control
scheme that can regulate the terminal bus voltage magnitude and the active power gener-
ation is proposed. This inverter control scheme can achieve autonomous switch between
grid-connected operation and islanded operation, which is a desirable feature for micro-
grids. A detailed dynamic model for the inverter-based network is constructed, which
captures the fast line dynamics and output filter dynamics, and lower-level cascaded
voltage and current controllers. The steady-state behavior at both grid-connected and
islanded modes is analyzed. Small-signal stability of the system is studied and the key
contributing factors are characterized using a microgrid example.

Chapter 5 designs distributed and decentralized control laws for inverters in micro-
grids, which can explicitly certify safety constraints. A method based on barrier functions
is extended to a distributed scheme. Distributed control laws are then computed for the
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active and reactive power setpoints of inverters to certify the satisfaction of voltage limits
during transients. Algorithmic construction of these control laws is proposed using sum-
of-squares optimization. Numerical simulations are provided to illustrate the proposed
method using a microgrid example. It is demonstrated that communication to neighbor-
ing subsystems in the distributed control scheme leads to lower minimum control efforts
than the decentralized control scheme where only local states are used in the feedback
law.

Chapters 4 and 5 contribute to the field of modeling and control of inverter-based
power systems, which is of significant importance to transforming to future smart grids.
Chapter 4 focuses on the detailed modeling of inverter-based systems and designs a novel
inverter control scheme. This controller builds a basis for achieving future energy sys-
tems in the form of interconnected microgrids, which have the capability of autonomous
islanding and re-connecting yet maintaining the safety and stability of the overall sys-
tem. Chapter 5 identifies the importance of explicitly treating safety constraints for power
systems with the increasing penetration of inverter-based resources. This work also recog-
nizes the need of designing distributed and decentralized controllers for inverters due to
the consideration that the current centralized control scheme is unable to handle hundreds
of millions of control points in the future.

With the critical issues of safety and stability handled, the second part of this disser-
tation (Chapters 6 to 8) explores opportunities offered by renewable DERs. Chapter 6
exploits the collective reactive power capability of multiple DERs such as solar photo-
voltaics to balance the voltage at critical nodes across the distribution network. Dis-
tributed and decentralized Steinmetz-based controllers are presented. It is important to
note that the control actions arising from one controller will interact with all the other con-
trollers in the network. Such interactions could potentially be destabilizing. Therefore, the
key contribution is in undertaking rigorous analysis to establish convergence guarantees
for the proposed control schemes based on Banach fixed-point theory. Providing such
convergence results ensures system robustness under realistic settings where parameter
uncertainties and disturbances exist, and control and measurement delays remain. This
work demonstrates the potential of exploiting DERs for providing grid services in future
power systems.

Chapters 7 and 8 provide methods for design and operation of next-generation off-grid
energy systems, including microgrids and energy hub systems.

Chapter 7 addresses the optimal capacity design problem for an islanded microgrid
supplied purely by a wind turbine, solar panel, and battery system. The stochasticity of
renewable generation is explicitly addressed by formulating the problem into a chance-
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constrained optimization, which is then solved using a probabilistically robust method.
The key contribution is the development of two approaches to reshaping the robust set,
i.e., the cutting-based technique and the principal component analysis-based technique,
which enable less conservative designs.

Chapter 8 takes an integrated view of optimized capacity design and operation of
islanded energy hubs, which incorporate emerging DERs as well as energy storage devices
to fully support the electricity and heat demand of a neighborhood. Both battery and
hydrogen storage are incorporated. The problem is first expressed as a chance-constrained
optimization and then reformulated as a robust counterpart problem, where the battery
responds to stochastic renewable generation through a control policy. We propose an
original algorithm, which iterates between the design problem and a validation process,
by dynamically adjusting a scalar auxiliary variable indicating the reliability level. It is
shown that the resulting design achieves a balanced trade-off between robustness and cost-
efficiency. Finally, we demonstrate the potential for increasing the reliability of energy hub
systems while decreasing operational costs by sharing energy between multiple energy
hubs through electric and natural gas networks.

Chapters 7 and 8 are motivated by the vision that off-grid energy systems will play
a greater role in the future. The world is experiencing fast advancement in smart grid
technologies. However, a significant portion of households is still experiencing “energy
poverty”. These households have difficulty accessing modern forms of energy for cooking
and heating and are often vulnerable to energy tariffs. This means that much greater effort
is needed to reduce the cost of electricity so that access to convenient energy is available
to all. Promoting renewable resources in energy systems will help achieve this, and the
work in Chapters 7 and 8 demonstrate the potential for bringing electricity to rural areas
and undeveloped countries - where it may be expensive or unfeasible to build traditional
power system infrastructures - in a cost-efficient way.

9.2 Future Work

Several immediate extensions can be pursued based on the developments in this disser-
tation:

• Identify further applications of the theoretical results developed in Chapter 2 on
the second-order trajectory sensitivities for general hybrid systems. One potential
application scenario is to consider the physical and control limits that are appearing
in inverter-based power systems.
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• Extend the reach-set computation methods developed in Chapter 3 to hybrid systems
where discrete events interact with the continuous dynamics. The difficulty lies in
bounding the approximation error around the discrete events. The method could
also be extended to incorporate probability distribution information.

• Incorporate the formulation of frequency-dependent reactances in the model devel-
oped in Chapter 4 for inverter-based power systems. Compare the modeling error
with the case when frequency deviation is ignored.

• Replace the droop-based grid-forming model for inverters in Chapter 5 with more
advanced inverter controllers. In particular, the controller developed in Chapter 4
can be considered.

• Generalize the proof given in Chapter 6 to a decoupled scheme, in order to reduce
the number of conditions to be verified for a large number of controllers.

• Devise more general control policies for battery and hydrogen storage in the formu-
lation of the chance-constrained optimization in Chapter 7 and Chapter 8.

With the aim of facilitating a successful transformation of power systems into future
inverter-based smart grids, several future directions can be pursued based on the results
in this dissertation.

• Much more effort is needed in understanding the fundamental dynamic properties
of inverter-based power systems. System stability should be analyzed in both small-
signal and large-signal senses.

• Efficient and scalable approaches that can certify the safety of networked microgrid
systems need to be designed. Various types of safety constraints could be considered.
Moreover, networked microgrid systems should have the capability to handle the
discrete events of autonomous islanding and reconnection of multiple microgrids
yet maintain the safety of the overall system.
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three-phase optimal power-flow algorithm to mitigate voltage unbalance. IEEE
Transactions on Power Delivery, 28(4):2394–2402, October 2013.

[40] Sijia Geng, Maria Vrakopoulou, and Ian A Hiskens. Optimal capacity design and op-
eration of energy hub systems. Proceedings of the IEEE, 108(9):1475–1495, September
2020.

[41] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, Cambridge, U.K., 2004.

[42] Giuseppe C Calafiore and Marco C Campi. The scenario approach to robust control
design. IEEE Transactions on Automatic Control, 51(5):742–753, May 2006.

[43] Hui Ye, Anthony N Michel, and Ling Hou. Stability theory for hybrid dynamical
systems. IEEE Transactions on Automatic Control, 43(4):461–474, April 1998.

[44] Ian A Hiskens. Analysis tools for power systems-contending with nonlinearities.
Proceedings of the IEEE, 83(11):1573–1587, November 1995.

[45] Roger W Brockett. Hybrid models for motion control systems. In Essays on Control:
Perspectives in the Theory and its Applications, pages 29–53. Birkhäuser, 1993.
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