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Abstract 
 

Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer 

related death, with a five-year survival rate of 11%. Not only is PDA often diagnosed at 

advanced stages, but the standard of care chemotherapy is largely ineffective. The 

distinctive biologic characteristics of PDA make it difficult to treat. PDA is typically driven 

by an oncogenic Kras mutation. Oncogenic Kras is required for the maintenance of 

PDA, but inhibitors for this oncogene are few. Another key feature of PDA is the 

extensive fibroinflammatory stroma that constitutes the bulk of the tumor volume. The 

stroma includes fibroblasts, extracellular matrix and abundant infiltrating immune cells. 

The latter are largely immunosuppressive immune cells, including regulatory T cells, 

myeloid-derived suppressor cells, and tumor associated macrophages. Data from our 

laboratory and many others show that immune cells are a key determinant of PDA 

progression and metastasis. The overarching goal of my project is to understand the 

nature and regulation of the immune response in the PDA tumor microenvironment by 

dissecting the crosstalk between tumor cells and immune cells to devise strategies to 

reverse the immune suppression that characterizes PDA.  

 First, we performed a multimodal analysis of human PDA tumors and PBMCs, 

using multiplex immunohistochemistry, mass cytometry, and single cell RNA 

sequencing to describe the composition of human PDA and hypothesize possible 

interactions between the various cell types based on abundance, localization, and 

receptor-ligand expression. The combination of these techniques highlighted the 
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prevalence of understudied immune checkpoint TIGIT in human PDA compared to 

normal pancreas. Functionally, we discovered that TIGIT expression is significantly 

elevated in exhausted CD8 T cells than in effector CD8 T cells, while classical immune 

checkpoint protein PD-1 was not significantly different. This work demonstrates the 

efficacy of the discovery pipeline pioneered by members of the lab, using a combination 

of high resolution techniques to uncover novel and potentially efficacious treatment 

strategies in PDA.  

 Secondly, we used single cell RNA sequencing to analyze the transcriptome of 

the various cell types present in the liver metastases of PDA patients. We characterized 

the different cell populations and performed differential expression analyses to 

determine genes upregulated in PDA metastases vs. primary tumors. We then 

determined putative receptor-ligand interactions based on expression of receptors and 

ligands on source and target cells in the PDA TME showing preliminary evidence of 

immune suppression in PDA liver metastases. 

 Finally, using mouse models of both pancreatic and lung cancer, we studied the 

effects of oncogenic Kras on the maintenance of the tumor microenvironment in both 

pancreatic and lung cancers with the goal of discovering the effect oncogenic KrasG12D 

has on the tumor microenvironment in both primary and metastatic tumors. We verified 

the functionality of two mouse models of inducible Kras driven pancreas and lung 

cancer and performed mfIHC on the model of lung cancer to characterize the shifting 

immune populations in the progression and regression of the lung tumor.  

 Together, these studies illustrate the importance of understanding cell signaling 

in the tumor microenvironment. By uncovering previously understudied mechanisms of 
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immune suppression and elucidating the requirement of KRAS in establishing the TME, 

our work represents the first step in the identification of interactions required for the 

maintenance of PDA tumors. Further work is necessary to evaluate the physiological 

importance of these interactions and subsequently determine their translational 

potential.  
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Chapter 1: Introduction 
 

Pancreatic cancer overview 

Pancreatic cancer is a fatal malignancy. Using mortality as an indicator of 

progress against cancer, major strides have been made against many types of cancer 

during the past several decades, owing to more widespread campaigns for cancer 

prevention, advancements in early detection, and improvements in both non-targeted 

treatment with cytotoxic drugs as well as targeted therapies (Siegel et al. 2021). 

Unfortunately, many of these advances have either not been applied to pancreatic 

cancer, or the efficacy of the discoveries has not had an appreciable effect on the 

mortality rate of pancreatic cancer (Figure 1.1A). The mortality rate of pancreatic cancer 

is so extreme that although pancreatic cancer incidence only makes up for 

approximately 3% of new cancer cases, pancreatic cancer is projected to be the second 

leading cause of cancer-related death by 2030 (Rahib et al. 2021).  The five-year 

survival rate, a measure of the percentage of patients that survive five years after 

diagnosis, for pancreatic cancer patients is the lowest among the ten most common 

cancers with only a 11% five-year survival rate across all stages. The lethality of 

pancreatic cancer comes from a variety of sources across the various stages of cancer 

treatment, starting with the difficulty in diagnosing the disease. 

The difficulty in diagnosing pancreatic cancer begins with physiological aspects 

of the pancreas itself. The pancreas is a dual-function secretory organ that has both 
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exocrine and endocrine functions (Mizrahi et al. 2020). Acinar cells perform the exocrine 

functions, secreting digestive pancreatic juice into pancreatic ducts lined by ductal cells. 

Islet cells perform the endocrine functions, secreting hormones into the bloodstream to 

regulate blood glucose homeostasis. Disruption of the exocrine functions can lead to 

inflammation of the pancreas, termed pancreatitis, due to the inappropriate activation of 

digestive enzymes damaging the cells of the pancreas. Disruption of the endocrine 

functions can result in diabetes, a group of disorders characterized by impaired blood 

sugar regulation. Pancreatitis and diabetes are maladies that occur much more 

commonly than pancreatic cancer and the symptoms of the diseases overlap greatly [see 

review: (Eibl et al. 2018) ]. The symptoms pancreatic cancer patients present with are 

usually mild, non-specific symptoms such as abdominal or back pain, nausea, and other 

symptoms common to any sort of gastrointestinal distress, including pancreatitis and 

diabetes [see review: (Mizrahi et al. 2020)]. To further complicate the relationship between 

this group of diseases, a history of chronic pancreatitis and/or diabetes is a risk factor of 

pancreatic cancer, but pancreatitis and new-onset diabetes are also potential symptoms 

that arise as complications from having pancreatic cancer. The attribution of the 

symptoms of pancreatic cancer to more common, benign conditions can significantly 

delay a proper diagnosis until the tumor advances and the symptoms get worse, as the 

location of the pancreas, nested between the stomach, small intestine, liver and spleen, 

in the retroperitoneal cavity makes non-invasive imaging or biopsy difficult and time 

consuming. An in-depth examination of the pancreas does not tend to occur until more 

serious symptoms such as new-onset diabetes, jaundice, weight loss, and abnormal 

liver function occur as the tumor grows and metastasizes and begins to significantly 



3 
 

affect the function of the pancreas and/or nearby organs. The delay in diagnosis is 

reflected in the statistics of pancreatic cancer staging upon diagnosis.  

Pancreatic cancer is typically diagnosed at advanced tumor stages where 

treatment options are limited. 52% of patients are diagnosed with overt metastatic 

disease, 30% diagnosed with a regionally advanced tumor, and only 11% diagnosed 

with a localized tumor. Unfortunately, the five-year survival rate for pancreatic cancer 

significantly decreases once the tumor is advanced beyond a localized tumor with clear 

margins. The five-year survival rate for localized pancreatic cancer is 39% but 

decreases to 13% upon regional advancement and further decreases to 3% once the 

cancer becomes distally advanced (Figure 1.1B and 1.1C)(Siegel et al. 2021). The 

decrease in the five-year survival rate between localized and regionally advanced 

tumors is indicative of the fact that the only curative treatment for pancreatic cancer is 

complete surgical resection via a complicated surgical procedure, combined with 

adjuvant or neoadjuvant therapy (Carpenter et al. 2021). However, surgical resection of 

resectable and borderline resectable tumors only has a five-year survival rate of 10-20% 

with a median disease-free survival time of 7-8 months, the result of unresected 

margins, undetectable microlesions, and/or possible early metastases (Chikhladze et al. 

2019; Versteijne et al. 2020). The current standard of care outside of surgical resection 

is palliative chemotherapy, with the FOLFIRINOX or gemcitabine/nab-paclitaxel 

regimens. The new standards of care demonstrate a modest increase in median overall 

survival, from about 6-7 months with the previous standard of care, gemcitabine 

monotherapy, to 11.1 months with FOLFIRINOX and 8.5 months with gemcitabine and 

nab-paclitaxel. While these chemotherapeutic therapies are the current standard of 
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care, there are multiple other treatment modalities being developed to target the various 

components of the pancreatic cancer microenvironment, from the tumor cells 

themselves to the mass of non-tumor cells that make up the bulk of the pancreatic 

cancer tumor. 

Figure 1.1 Pancreatic cancer 
statistics 
(A) The death rate of pancreatic 
cancer has not significantly changed in 
the past two decades as most patients 
that develop pancreatic cancer will die 
from the disease. (B) Only a small 
minority of patients are diagnosed with 
localized disease while most patients 
are diagnosed with metastatic disease. 
(C) Patients with localized disease 
have the highest 5-year survival rate, 
but due to the low percentage of 
patients diagnosed at this stage and 
the poor 5-year survival rates of 
patients diagnosed with regional and 
metastatic disease, the overall 5-year 
survival rate of pancreatic cancer 
remains low. 
 
 
 

The pancreatic tumor microenvironment 

 Pancreatic ductal adenocarcinoma (PDA) is the primary subtype of pancreatic 

cancer. PDA is the result of the transformation of a cell involved in the exocrine function 

of the pancreas and represent most pancreatic cancer cases, while the rarer 

transformations of cells involved in endocrine functions are termed neuroendocrine 

tumors. The exocrine pancreas includes acinar cells, ductal cells, and centroacinar 

cells; of those, both acinar and ductal cells have been identified as potential cells of 

origin for PDA (J.L. Kopp et al. 2011; L. Kopp, Janel et al. 2012; Espinet et al. 2021; 

Flowers et al. 2021). When the pancreas undergoes an injury from sources including 
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alcohol abuse, smoking, or duct blockage, the acinar cells transform from their normal 

secretory state to become a proliferative duct-like cell in order to facilitate tissue repair. 

This process is called acinar-to-ductal metaplasia (ADM) and is the result of a 

downregulation of genes that maintain acinar identity such as PTF1A and an 

upregulation of ductal genes such as SOX9 and CK19 (L. Zhu et al. 2007; L. Kopp, 

Janel et al. 2012). This trans-differentiation is reversible upon resolution of the injury. 

However, if the acini or ADM acquire an activating mutation in an oncogene such as 

KRAS, the cells will remain in the proliferative ADM state even if the source of the injury 

is resolved (Shi et al. 2009). This persistent, proliferative ADM can give rise to 

pancreatic intraepithelial neoplasia (PanIN). The presence of PanINs is not predictive of 

developing PDA, however, also being found in cases of chronic pancreatitis and in 

healthy individuals, where prevalence increases with age (Basturk et al. 2015). Of note, 

most cases of PDA in human patients are not linked with a history of diagnosed 

pancreatitis, thus other routes to cellular transformation are likely to exist. It is through 

the stepwise accumulation of genetic mutations including the loss of tumor suppressors 

INK4A/ARF, TP53, CDKN2A, BRCA2, or gain of known oncogenes such as 

EGFR/HER2, among others, that the PanINs advance from low-grade dysplasia to high-

grade dysplasia until they form a carcinoma in situ, the most advanced stage of PanIN 

that is predictive of development of invasive PDA (R. H. Hruban et al. 2000; Biankin et 

al. 2001; Nowak et al. 2005; Jones et al. 2008; Kanda et al. 2012). This model of the 

carcinogenesis of PDA has led to the development of multiple genetically engineered 

mouse models of PDA for use in pre-clinical research. 
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 Mouse models of PDA can be used to model the disease and perform valuable 

pre-clinical research. There are multiple mouse models of PDA available. Mouse 

models typically involve expression of Cre-recombinase controlled by a pancreas/acinar 

cell specific promoter. Expression of the recombinase results in either the activation of 

oncogenic Kras, or inactivation of a tumor suppressor, or both. The combination of 

oncogenic Kras and Cre-recombinase (KC) results in age-dependent PanIN progression 

that will occasionally result in PDA (Hingorani et al. 2003; Ralph H. Hruban et al. 2006). 

Inactivation of a tumor suppressor such as Ink4a/Arf (KIC) or p53 (KPC) in tandem with 

the activation of oncogenic Kras accelerates the development of PanINs and increases 

the occurrence of progression to PDA (Aguirre et al. 2003; Hingorani et al. 2005). While 

these genetically engineered mouse models do replicate the carcinogenesis of human 

PDA, one confounding factor is how early these models express oncogenic Kras. The 

impact of expressing oncogenic Kras early on in embryonic mouse development instead 

of in an adult mouse both fails to mimic the timeline of human PDA development and 

can also affect the physiological response of the mouse to the developing tumor. In 

order to bypass this, an inducible model of the KC was generated.  

In the iKras model, activation of the cre-recombinase results in expression of a 

reverse tetracycline transactivator which can activate transcription of oncogenic Kras 

only in the presence of doxycycline (Collins et al. 2012; Ying et al. 2012). The later 

activation of oncogenic Kras results in less PanIN development than in a KC mouse of a 

comparable age but can be accelerated by inducing acute pancreatitis. This model 

recapitulates the development of PanINs similar to the KC model, and can also be 

combined with mutant p53 to develop full blown PDA similar to the KPC model. Another 
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advantage of the iKras model is the ability to withdraw the doxycycline from the mice 

and stop expression of oncogenic Kras. There are currently no inhibitors of Kras 

available but being able to stop expression of oncogenic Kras can be used to mimic 

inhibition of Kras to analyze how the tumor will respond to the loss of the primary driving 

oncogene. The mouse models of PDA are incredibly useful for understanding the 

biology of PDA, though the controlled sequence and combinations of mutations fail to 

recapitulate the genetic variability of human PDA and the influence that genetic 

variability can have on the pathology of the tumor.  

 The subtypes of PDA are characterized by their gene expression profiles and 

cellular composition, both of which can influence the prognosis and treatment of PDA. 

RNA sequencing had been performed on PDA tumors to further characterize the 

mutational profile of PDA. In addition to the genes already found to be important in the 

carcinogenesis of PDA, gene signatures were found to correlate with both the pathology 

of the disease as well as patient outcome. Originally, the subtypes were characterized 

based on bulk RNA sequencing. Bulk RNA sequencing stratified PDA tumors into three 

subtypes, “Classical”,“Quasimesenchymal”, and “Exocrine-like”, largely based upon the 

high expression of epithelial genes, mesenchymal genes, and digestive enzyme genes, 

respectively (Collisson et al. 2011). In addition to describing the differentiation state of 

the tumor, these subclasses were found to have prognostic value as well. Patients with 

more classical-type tumors survived longer than those with quasimesenchymal tumors. 

However, bulk RNA sequencing does not allow for differentiation between tumor 

epithelium and the surrounding stromal content. One method of circumventing this 

limitation is virtual microdissection, where the gene signature of normal tissue and 
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stromal cells can be deconvoluted from the overall expression data to selectively 

analyze the expression data from the tumor epithelium (Bailey, Chang, Nones, et al. 

2016). Using this method, the “exocrine-like” subtype was found to be comprised of 

either normal tissue with low tumor cellularity, or tumors expressing normal pancreas 

genes with aberrant methylation patterns. The “quasimesenchymal” subtype was found 

to be comprised of mostly stromal gene expression, but partially recapitulated a gene 

signature found in other poorly-differentiated cancers and were re-labeled as “basal-

like/squamous”. The limitations with bulk RNA sequencing were ultimately circumvented 

through the use of laser microdissection, allowing for physical separation of tumor 

epithelium from the stromal compartment (Moffitt et al. 2015). This advance in 

technology confirmed the presence of the “classical” and “basal-like” gene signatures 

present in PDA tumors (Maurer et al. 2019). While sequencing studies have been 

successful in better understanding the biology of PDA, there has been less success 

finding an actionable target for PDA treatment. 

 Clinical trials involving targeted therapies against pathways frequently altered in 

PDA tumor cells have failed to produce broadly efficacious results. There are two drugs 

approved by the FDA for treatment of PDA. Erlotinib is an inhibitor of EGFR signaling 

and has been found to demonstrate an extremely modest survival benefit when 

combined with gemcitabine, increasing overall survival by weeks (Moore et al. 2007). 

Olaparib is an inhibitor of PARP that is used to create synthetic lethality in the subgroup 

of BRCA1/2 mutant PDA tumors and has demonstrated a modest increase in 

progression free survival on the scale of months but demonstrated no difference in 

overall survival (Golan et al. 2019). The efficacy of erlotinib and olaparib are 
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representative of the course most successful clinical trials in PDA have followed. 

Historically, the drug trials that demonstrated a positive effect, rather than no effect or 

an adverse effect, were terminated due to demonstrating minimal benefit. However, all 

the aforementioned trials were targeted towards the PDA tumor cells, ignoring one of 

unique and most important aspects of the PDA. The tumor cellularity of a PDA tumor is 

typically quite low, with the bulk of the PDA tumor comprised of stromal components 

and infiltrating immune cells which provide an exciting avenue for treatment of PDA. 

The tumor microenvironment (TME) of PDA contains a multitude of cell types capable of 

performing various functions, both tumor supporting and tumor inhibiting. Reversing the 

tumor supportive functions of these cell types may be crucial in developing an 

efficacious treatment regimen for PDA. 

Stromal elements  

The stromal compartment of the PDA TME is made up of a diverse family of 

fibroblasts and vascular endothelial cells. The fibroblasts are responsible for the fibrotic 

nature of the PDA tumor, depositing a dense extracellular matrix (ECM) that both 

constrains and protects the PDA tumor [see review (Zhang, Crawford, and Pasca di 

Magliano 2019)]. The mechanical barrier impedes penetration of both anticancer drugs 

as well as nutrients, further exacerbated by the high interstitial pressure within the PDA 

tumor (Dufort et al. 2016). PDA tumors are also hypovascular and the vasculature 

present is largely collapsed due to the interstitial pressure, resulting in poor intratumor 

oxygen, nutrient, and metabolic waste exchange. This harsh intratumor environment 

conversely benefits the tumor, as the hypoxic and stressed TME results in the activation 

of multiple survival pathways, promoting tumor cell survival and metastasis.  
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Fibroblasts 

The bulk of the stromal cells within the PDA tumor are an assortment of 

fibroblasts [see review:(G. Biffi and Tuveson 2021)]. Fibroblasts are cells that primarily 

function to deposit extracellular matrix such as collagen, glycoproteins, and 

proteoglycans, providing structural and mechanical support in connective tissue and 

during wound healing (Tian et al. 2019). However, in PDA they can have multiple, even 

contradictory functions. Fibroblasts are one of the first cell populations that expand in 

preinvasive lesions during the carcinogenesis of PDA (Collins, Bednar, et al. 2012). 

Upon entering receiving signals from PDA tumor cells, the fibroblasts become polarized 

and activated, performing different functions based on the signals received. These 

cancer-associated fibroblasts (CAFs) can be characterized into three groups. The 

myCAF population functions similarly to an activated myofibroblast by actively 

depositing ECM. The iCAF population secretes various cytokines that promote 

inflammation and maintain an immunosuppressive TME. The apCAF population is the 

most recently described population marked by expression of MHC II, though the 

function of this population is still being elucidated. 

The function of the CAF populations is related to their localization within the 

tumor. iCAFs are found more distally from the tumor cells, receiving paracrine IL-1 

secreted by PDA tumor cells that start an autocrine feedforward loop of JAK/STAT 

activation (Giulia Biffi et al. 2019). This JAK/STAT signaling is inhibited by TGFβ 

secreted by PDA tumor cells in a juxtacrine paracrine fashion that also promotes 

myofibroblastic phenotypes, resulting in the presence of myCAFs surrounding the 

tumors (Vaughan, Howard, and Tomasek 2000). The resulting deposition of ECM 
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functions to both protect the tumor and restrain the growth of the tumor (Olive et al. 

2009; Özdemir et al. 2014; Rhim et al. 2014). iCAFs are largely considered to be tumor 

supportive, as most of the cytokines secreted by the cells function in the recruitment 

and polarization of immunosuppressive cells or suppression and exclusion of effector T 

cells (Zhang et al. 2013; Feig et al. 2013). The contrasting functions of fibroblasts in 

tumor promotion and inhibition are reflected in the contradictory responses that occur 

when fibroblasts are globally inhibited in PDA. Some studies report that inhibition of 

fibroblasts increases susceptibility of the tumor to treatment, while other studies, 

including a failed clinical trial, demonstrate that inhibition of fibroblasts accelerates PDA 

growth and dissemination (Olive et al. 2009; Amakye, Jagani, and Dorsch 2013; 

Özdemir et al. 2014; Rhim et al. 2014). It is becoming increasingly apparent that the 

heterogeneity of the fibroblast population should be reflected in the target of treatments, 

as dosage of fibroblast signaling and the ratio of myCAFs/iCAFs have been shown to 

influence PDA tumor progression (Mathew et al. 2014; N.G. Steele et al. 2021). 

Fibroblasts remain an attractive target for therapy, but more needs to be understood 

about the heterogeneity and function of the cells before any translational work can be 

done.   

Endothelial cells 

 PDA is a hypovascular tumor, but there is evidence that modulating tumor 

vasculature can influence PDA tumor growth. As with the fibroblasts, the evidence is 

similarly contradictory and the biology has to be further investigated before a choice can 

be made [see review: (Annese et al. 2019)]. Increased vascularization is correlated with 

more aggressive PDA tumors, so anti-angiogenic treatment could be efficacious if 
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causality was established between the increased vascularization and the 

aggressiveness of the disease (Barău et al. 2013). However, increasing vascular 

perfusion can help potentiate the efficacy of drugs due to the increase in drug delivery 

(Chauhan et al. 2013). The effect of angiogenesis on hypoxia is another important 

aspect to consider, as there is evidence of other cancers becoming more aggressively 

metastatic in response to the increased hypoxia cause by long term anti-angiogenic 

treatment (Bergers and Hanahan 2008).   

Immune compartment 

The immune compartment of pancreatic cancer is diverse and complex. The 

primary population of immune cells are immunosuppressive, actively shutting down any 

active immune cells. There are multiple populations of myeloid cells that tend to be 

polarized by the cancer cells to promote tumor growth and inhibit antitumor activity. This 

is true of the lymphocyte populations as well, with an increase in immunosuppressive B 

cell subtypes and immunosuppressive T cells subtypes. If effector T cell subtypes are 

present, they are usually inactivated or rendered exhausted by mechanisms of T cell 

inhibition. There are both active and passive mechanisms of immunosuppression in 

PDA. There is expression of immune checkpoint proteins to shut down potential T cell 

responses, but there is also passive exclusion of various cell types. Only by elucidating 

the various mechanisms of immune suppression and evasion in PDA can an efficacious 

combination of treatments be used to treat the disease.  

Myeloid compartment 

Myeloid cells are a diverse population of cell types that are vital for multiple 

bodily processes, such as oxygen exchange, wound repair, and the innate immune 
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response. While they stem from a common progenitor, fully differentiated myeloid cells 

have multitudes of forms and functions. Erythrocytes, or red blood cells, primarily 

function in respiration, exchanging oxygen for CO2 . Megakaryocytes are myeloid cells 

that produce platelets, which are important in blood clotting and wound healing. Mast 

cells are myeloid cells that primarily function in the allergy response. The final class of 

myeloid cells are leukocytes, or white blood cells. The primary function of leukocytes 

are to surveil the body and react to any potential disturbances discovered as part of the 

innate immune system. There are subpopulations of leukocytes that perform specialized 

roles, ranging from activation and amplification of immune responses, or promoting an 

anti-inflammatory response. Leukocytes can be divided into two classes based on the 

number of lobes developed by their nuclei during myelopoiesis.  

Granulocytes are multilobular leukocytes with diverse functions largely 

dependent on the content of protein granules developed by the cells. The most 

prominent granulocyte is the neutrophil. Neutrophils are the most abundant leukocyte in 

human blood. They usually remain in circulation in the blood but are extremely mobile 

and chemotactically responsive. They are professional phagocytes and contain 

antimicrobial granules and have a unique mechanism of pathogen killing where the 

nuclear envelope is dissolved and the mixture of DNA and the cytoplasmic antimicrobial 

granules are expelled extracellularly to both physically constrain and kill pathogens, 

called NETosis.  

Monocytes are unilobular leukocytes that circulate in the bloodstream. They can 

directly sense pathogens present in the blood or react to signaling cues from infected or 

damaged tissue and exit the blood stream to surveil the source of damage. Depending 
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on the type of disturbance the monocyte encounters and the localization of the 

interaction, the monocyte can perform any number of actions. If the disturbance is a 

bacteria, the monocyte can phagocytose the bacteria, additionally releasing cytokines to 

promote inflammation and recruit additional immune cells. The monocyte can then 

present antigens found on the digested bacteria to active the adaptive immune 

response. If the monocyte has extravasated into a tissue, the cell can also mature into a 

macrophage. Macrophages function very similarly to monocytes but express more 

receptors that allows for macrophage polarization and a greater range of activity. 

Macrophages that encounter bacteria or receive pro-inflammatory cytokines from other 

cells feed forward the pro-inflammatory signaling while increasing anti-microbial 

activities such as nitric oxide production (iNOS) and increased phagocytosis and 

antigen presentation. This is termed classically activated, previously M1 polarization. If 

the macrophage encounters signal from the destruction of tissue, they become anti-

inflammatory, secreting cytokines that dampen the immune response to prevent further 

damage while promoting tissue repair, termed alternatively activated, previously M2 

polarization. The classical and alternatively activated designations represent the 

extremes of the pro/anti-inflammatory macrophage phenotypes, with macrophages 

existing in a spectrum between the two depending on physiological context. In addition 

to maturing into macrophages, monocytes also have the capability to mature into 

dendritic cells. Dendritic cells are major promoters of the adaptive immune response. 

Dendritic cells are constantly sampling antigens in the environment through 

phagocytosis, pinocytosis, or receptor-mediated endocytosis. When dendritic cells 

encounter pathological antigens, they secrete pro-inflammatory signals and can initiate 
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an adaptive immune response. The diverse biological functions of these myeloid are 

required for a person to stay healthy but can also be used to initiate and promote tumor 

growth and metastasis. 

Immunosuppressive myeloid cells make up the bulk of immune cells present in 

the PDA TME. The myeloid cell population can be found expanding in the pancreas 

during the formation of the premalignant PanIN lesions. Cancer is often colloquialized 

as “a wound that never heals” which is a fitting description of the mechanism of 

macrophage polarization in PDA. ADMs are formed due to tissue injury, attracting 

macrophages which become alternatively activated to facilitate tissue repair. However, 

in the presence of an oncogenic Kras mutation, the ADM persist and can progress to 

PanIN and subsequently to PDA, accompanied by macrophages now termed tumor-

associated macrophages (TAMs). TAMs are marked by the expression of functional 

markers such as CCR2 and Arginase. CCR2 is a chemokine receptor that responds to 

CCL2, a chemokine highly expressed by PDA tumor cells, promoting migration of 

macrophages to the tumor (Sanford et al. 2013). Multiple cell types in the PDA TME 

produce M2 promoting cytokines such as CSF1, resulting in TAMs that have 

immunosuppressive functions, including increased arginase production and immune 

checkpoint expression (Y. Zhu et al. 2014; Zhang, Yan, et al. 2017; Zhang, Velez-

Delgado, et al. 2017). Arginase can deplete the PDA TME of arginine, an amino acid 

crucial to T cell proliferation, promoting immunosuppression by staunching T cell 

proliferation (Rodriguez et al. 2004). A phase 1b clinical trial combining CCR2 inhibition 

with FOLFIRINOX treatment was carried out and was well tolerated and showed 
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promising efficacy (Nywening et al. 2016). Similarly, neutrophils have also been found 

to promote an immunosuppressive TME.  

An increased neutrophil-lymphocyte ratio in the PDA TME of a patient is a poor 

prognostic factor (Stotz et al. 2013). This relationship between neutrophils and 

lymphocytes turned out to be causal, as a population of CXCR2 expressing neutrophils 

was found to be capable of inhibiting a productive CD8 T cell response against PDA 

tumors in KPC mice (Stromnes et al. 2014; Chao, Furth, and Vonderheide 2016). 

Inhibition of CXCR2 or ablation of neutrophils resulted in increased T cell entry and 

abrogation of metastasis (C.W. Steele et al. 2016). Combination of CCR2 macrophage 

and CXCR2 neutrophil inhibition demonstrated further benefit, increasing survival of 

mice treated with FOLFIRINOX (Nywening et al. 2018). In addition to ablation of pro-

tumor populations, another treatment modality is to increase the proportion of anti-tumor 

cells. There is only a small population of dendritic cells in the PDA TME, such that in a 

mouse model with engineered neo-antigen expression there was no productive CD8 T 

cell response as there was not significant dendritic cell surveillance (Hegde et al. 2020). 

Increasing the dendritic cell population in the pancreas slowed down disease 

progression in the early PanIN lesions and stabilized established PDA tumors and, 

when combined with an agonist to dendritic cell costimulatory receptor CD40, sensitized 

them to radiation therapy and increased survival. This occurred in a different mouse 

model without the engineered neo-antigen, demonstrating that just increasing dendritic 

cell population and activation requirements can be efficacious in treatment of PDA.  
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Lymphocytes 

Lymphocytes are the other major component of the immune response and 

function in both the innate and adaptive immune responses. NK cells are the 

lymphocytes that function in the innate immune response. B cells and T cells are the 

lymphocytes that function in the adaptive immune response. B cells function in a more 

supportive role, where, instead of directly killing cells that are recognized by their unique 

cell surface receptor, they mature and produce one of various classes of antibodies, 

each of which have their own effects, that is specific to the detected antigen. IgG 

antibodies are the most common and are used to bind antigens. These antibodies can 

coat their targets to initiate opsonization and removal via phagocytosis, activate the 

complement cascade to promote inflammation and subsequent opsonization, or bind 

the antigens in a way to block their function. T cells act more directly, though their 

functions can vary based on the combination of cell surface receptors expressed by the 

T cell, cell polarization from environmental signals, and stimulation from the local cues.  

The cell surface receptors that differentiate most T cells are CD8 and CD4. CD8 

T cells, known as effector T cells (TEff), function in killing the cells they recognize, while 

CD4 T cells, known as helper T cells (TH), release various cytokines to properly 

coordinate an immune response in response to recognition of their target. There are 

several immune checkpoint processes involved in making sure the CD8 T cells are 

killing the right cells at the right time. First, a CD8 T cell needs to be activated before it 

can initiate cell killing. A professional antigen presenting cell (APC) such as a dendritic 

cell or CD4 T cell needs to present the antigen recognized by the CD8 T cell on their 

MHC class I complex through the T cell receptor (TCR). Once the antigen is recognized, 
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a costimulatory signal must be sent to the CD8 T cell from the APC to finish activating 

the CD8 T cell. After this, the T cell undergoes rapid proliferation and is primed to kill its 

target cells. If a pro-inflammatory cytokine such as IFNγ is present, the CD8 T cell can 

differentiate into memory CD8 T cells (TMem) after the proliferative spike. Once the CD8 

T cell is activated, it will test the MHC class I complexes of any cells it encounters. If 

there is antigen recognition, the CD8 T cell will initiate the killing process, preparing to 

release cytotoxic granules directly towards the cell its bound to. However, this process 

can be stopped if the CD8 T cell receives any inhibitory immune checkpoint signals, 

such as PD-L1. These signals result in an exhausted CD8 T cell phenotype (TEx) where 

the CD8 T cell is no longer able to function. Regulatory CD4 T cells (TReg) function 

specifically to exhaust CD8 T cells and prevent prolonged TEff activation and 

autoimmunity. Other CD4 subtypes include pro-inflammatory TH1 and anti-inflammatory 

TH2. Similarly to the macrophage populations which derive their nomenclature from 

these subtypes, TH1 and TH2 cells are polarized by signaling cues in the 

microenvironment and change the kinds of cytokines released depending on their 

subtype, all of which serve to amplify the signals that originally polarized the cells. The 

diversity of CD4 T cells and the immune checkpoints preventing CD8 T cell 

autoimmunity are both used by tumors to suppress anti-tumor immune responses. 

B cells remain relatively understudied in PDA, but they have been implicated in 

promoting PDA progression. B cells were found to be increased in the PDA TME when 

compared to normal pancreas (Gunderson et al. 2016; Pylayeva-Gupta et al. 2016). 

When B cells were depleted in mouse models of PDA, there was suppression of PDA 

growth (K.E. Lee et al. 2016). Specifically blocking the BTK receptor found on B cells 
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resulted in an shift from M2 macrophages to more M1 macrophages, promoting TEff 

function (Gunderson et al. 2016). Regulatory B cells (BReg) are a rare subtype of B cells 

with known immunosuppressive functions and are more prevalent in PDA than normal 

mouse pancreata (K.E. Lee et al. 2016).  

The most prominent CD4 subtypes in PDA are the immunosuppressive subtypes, 

TH2 and TReg (Clark et al. 2007; De Monte et al. 2011; De Monte et al. 2016). Cells in 

PDA TME secrete chemokines that attract both TH2 and TReg (Tan et al. 2009; De Monte 

et al. 2011). Additionally, the cytokines that can polarize TH cells into TH2 and TReg are 

expressed by multiple cell types in the PDA TME, including the tumor cells (Prokopchuk 

et al. 2005; Zhang et al. 2013; De Monte et al. 2016; Giulia Biffi et al. 2019). The CD4 

compartment in PDA is largely focused on maintaining an immunosuppressive 

environment, with cells like TAMs and TH2 secreting cytokines promoting immune 

suppression, while the TReg suppress any attempted TEff response. Even so, CD8 T cell 

exhaustion is not the first line of defense the PDA tumor has against a TEff response. 

CD8 T cell are excluded from the tumor through expression of certain cytokines or the 

presence of certain cell types (Feig et al. 2013; Beatty et al. 2015; Steele et al. 2016). 

Studies have shown that there are neoantigens present in the PDA TME for CD8 T cells 

to recognize to kill tumor cells, but if since there are so few dendritic cells present in the 

TME, there is no way to deliver that antigen to a lymph node to initiate a TEff response 

(Bailey, Chang, Forget, et al. 2016; Balachandran et al. 2017; Hegde et al. 2020). There 

are so many layers and complex cellular networks involved in maintaining the 

immunosuppressive PDA TME. The complexity of the PDA TME has been shown to be 

functionally redundant, where removing one population of cells can invoke a 
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compensatory response from another cell population. In some cases this compensatory 

reaction has accelerated PDA growth, demonstrating that there are cells required for 

PDA growth as well as cells required for PDA restraint (Zhang et al. 2014; Nywening et 

al. 2018; Zhang et al. 2020). While there are still multiple underexplored cell types in the 

PDA TME and much more to elucidate about the ones covered here, there are some 

actionable targets that should be considered for translation into potential therapies. 

Immunotherapy 

 The appeal of immunotherapy comes from its systemic benefit, as the immune 

system surveils the entire body and should theoretically be able to clear both the 

primary tumor and any distant metastases. There are multiple modalities of 

immunotherapy, but all of them seek to achieve reactivation of the immune system in 

order to clear PDA. There are mechanisms to overcome immune evasion, making a 

tumor previously undetectable by the immune system targetable [see review:(Kunk et al. 

2016)]. There is boosting general immune function to make an already effective immune 

response even more effective, to prevent the development of resistance and 

subsequent progression. And then there are methods to overcome mechanism of 

immune suppression. Given the immunosuppressive PDA TME, the final modality of 

overcoming immune suppression has been the major focus of most of the 

immunotherapy trials.  

 Immune checkpoint proteins are the target of multiple immunotherapies. The 

physiological function of immune checkpoint proteins is to prevent excessive T cell 

activation and subsequent autoimmunity [see review: (Buchbinder and Desai 2016;Marin-

Acevedo, Kimbrough, and Lou 2021)]. Two examples of immune checkpoint therapy 
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that have demonstrated clinical efficacy are CTLA-4 inhibition and PD-1/PD-L1 

inhibition. CTLA-4 normally functions to inhibit CD8 T cells during CD8 T cell activation 

by APCs. In addition to TCR:MHC II recognition, CD8 T cells require co-stimulatory 

signaling from B7 proteins located on the cell surface of APCs to the CD28 protein on 

the CD8 T cell. Effective B7:CD28 signaling results in an increase in IL-2 production, a 

cytokine required for CD8 T cell proliferation. CTLA-4 dampens this co-stimulatory 

signaling, as it has a higher affinity for binding the B7 proteins than CD28. High levels of 

CTLA-4 expression, common on TReg, sequester more B7 protein and prevent CD8 T 

cell activation. The PD-1/PD-L1 interaction occurs later, as PD-1 expression is only 

upregulated upon CD8 T cell activation. Both pathways are important in blocking the 

proliferation and function of self-reactive T cells, as genetic loss of the genes the code 

these proteins are implicated in autoimmune disorders. However, they can both by used 

by cancer cells to prevent anti-tumor responses, by promoting polarization of CD4 T 

cells to TReg or upregulating expression of PD-1 ligand PD-L1. Immune checkpoint 

blockade is a modality of immunotherapy designed to overcome this inhibition. 

Immune checkpoint blockade has demonstrated success in immunogenic tumors 

like melanoma, where the high presence of neo-antigens can lead to curative immune 

clearance once immunosuppression is overcome (Schadendorf et al. 2015). There are 

many FDA-approved immunotherapy drugs, blocking inhibitory immune checkpoint 

proteins like the PD-1/PD-L1 axis or CTLA-4 (Vaddepally et al. 2020). However, all 

these treatments failed to show efficacy in clinical trials of PDA (Royal et al. 2010; 

Brahmer et al. 2012). There are multiple reasons as to why these single target trials 

may have failed, as there are multiple mechanisms of immunosuppression present in 
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the PDA TME. Re-activation of a single pathway of anti-tumor immunity may be 

compensated for by other immunosuppressive mechanisms, or patients may have 

variable expression of immune checkpoint proteins. Much like other therapies targeting 

signaling pathways, combination treatment of immunotherapies may be required to be 

efficacious. There have also been recent clinical trials demonstrating the efficacy of 

combining immunotherapy modalities. CD40 agonism is an immunotherapy modality 

that promotes dendritic cell activation of CD8 T cells [see review: (Vonderheide 2020)]. 

Increasing CD8 T cell activation and decreasing immune checkpoint inhibition of CD8 T 

cells have demonstrated early but promising pre-clinical or clinical results (O'Hara et al. 

2021; Freed-Pastor et al. 2021). Both a deeper understanding of the broader biology of 

PDA as well as specific insight into the composition of an individual patient’s tumor will 

be important in developing efficacious treatments against this fatal malignancy.   

Thesis Overview 

RNA sequencing (RNA-seq) has been a great platform for understanding the 

biology of cancers as whole as well as individual patient tumors. Major strides have 

been made in sequencing technology, decreasing costs as well as increasing the 

resolution. Bulk RNA-seq has been used to make many of the major discoveries in the 

field, but as previously stated, the whole-tumor resolution makes detection of 

compartment specific changes difficult. Cell sorting, virtual deconvolution, and laser 

microdissection have all been functional methods of increasing the specific resolution of 

sequencing, but even then, most of those strategies are limited by cell numbers and can 

only assess individual populations, at the loss of detection of smaller or rarer sub-

populations. A major stride in RNA-sequencing technology has been the advent of 
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single cell RNA sequencing (scRNA-seq), allowing for sequencing of individual cells. 

scRNA-seq has already been used to great effect in many cancer types including PDA, 

uncovering previously undiscovered cell populations or elucidating the depth of 

heterogeneity of the cells in the TME and the results that heterogeneity can have on 

both cancer progression and treatment (Elyada et al. 2019; Peng et al. 2019; J.J. Lee et 

al. 2021; Raghavan et al. 2021). In this thesis I will present the findings that have come 

about from our lab’s work with scRNA-seq. 

In Chapter 2 I present our lab’s work in multimodal, comprehensive analysis of 

the human PDA TME. We focused our analysis on the immune compartment of primary 

human PDA, specifically looking at the mechanisms and extent of immune checkpoint 

inhibition present across all the cell types in the PDA TME. This work highlighted the 

diversity of checkpoint inhibitors expressed across the cells present in the PDA TME, 

demonstrating why immune checkpoint blockade of a single pathway may not be 

efficacious. Additionally, we found that understudied immune checkpoint protein TIGIT 

was the only immune checkpoint protein that was differentially expressed on TEx 

compared to TEff. We then performed a putative ligand-receptor mapping using our 

scRNA-seq data and found expression of PVR, the cognate receptor of TIGIT, 

expressed on multiple cell types throughout the PDA TME. This data highlighted the 

value of single cell RNA sequencing in a cancer as complex as PDA, allowing for a high 

resolution look at previously understudied populations of cells to generate and test 

hypotheses that have potential translational value.  

In Chapter 3 I use scRNA-seq to characterize the cells present in liver 

metastases of PDA, comparing them to both primary tumor and adjacent normal 
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pancreas. As PDA is a disease that is largely diagnosed at the metastatic stage, 

understanding the biology of metastases is vital for efficacious treatment. As is 

demonstrated by surgical resection, only eliminating the primary tumor will usually not 

be curative, as local micrometastases or distal metastases can supplant the primary 

tumor and lead to recurrence. It was found that the majority of the cell types found in the 

primary TME were also found in the liver TME, which will allow for comparisons to be 

drawn between the populations to determine whether therapies effecting the primary 

tumor will also be efficacious against the metastases or whether a separate treatment 

strategy has to be developed for PDA metastases.  

 In Chapter 4 I characterize a mouse model of inducible lung cancer (LC) to be 

used as a comparison of PDA metastasis to the lung. Preliminary work by another 

member of our lab has found that activation of oncogenic Kras in the pancreas results in 

a shift in the lung microenvironment. We plan on using this model of lung cancer to 

determine the effects of local oncogenic Kras remodeling of the LC TME to compare to 

the effects of distal pro-metastatic remodeling by distally expressed oncogenic Kras. I 

functionally confirm that the model of inducible oncogenic Kras functions, developing 

tumors when Kras is expressed and regressing upon Kras withdrawal, and confirming 

that inactivation of p53 results in more aggressive tumor development in combination 

with Kras. Using multiplex immunofluorescence, I characterized the immune 

composition of the lung mouse model during tumor progression and regression.  

 In Chapter 5 I cover the implications of my work on the fields of both PDA and LC 

and discuss the future directions of each project.  
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Chapter 2: Multimodal Mapping of the Tumor and Peripheral Blood Immune 
Landscape in Human Pancreatic Cancer1,2 

Abstract 

Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-

suppressive tumor microenvironment that renders it largely refractory to 

immunotherapy. We implemented a multimodal analysis approach to elucidate the 

immune landscape in PDA. Using a combination of CyTOF, single-cell RNA 

sequencing, and multiplex immunohistochemistry on patient tumors, matched blood, 

and non-malignant samples, we uncovered a complex network of immune-suppressive 

cellular interactions. These experiments revealed heterogeneous expression of immune 

checkpoint receptors in individual patient’s T cells and increased markers of CD8+ T cell 

dysfunction in advanced disease stage. Tumor-infiltrating CD8+ T cells had an 

increased proportion of cells expressing an exhausted expression profile that included 

upregulation of the immune checkpoint TIGIT, a finding that we validated at the protein 

level. Our findings point to a profound alteration of the immune landscape of tumors, 

 

1 Data from Chapter 2 have been published in Nature Cancer in a manuscript entitled, “Multimodal Mapping of the 
Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer” (2020). 
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Lawrence Delrosario, Jenny Lazarus, El-ad David Amir, Valerie Gunchick, Carlos Espinoza, Samantha Bell, Lindsey 
Harris, Fatima Lima, Valerie Irizarry-Negron, Daniel Paglia, Justin Macchia, Angel Ka Yan Chu, Heather Schofield, 
Erik-Jan Wamsteker, Richard Kwon, Allison Schulman, Anoop Prabhu, Ryan Law, Arjun Sondhi, Jessica Yu, Arpan 
Patel, Katelyn Donahue, Hari Nathan, Clifford Cho, Michelle A. Anderson, Vaibhav Sahai, Costas A. Lyssiotis, 
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and to patient-specific immune changes that should be taken into account as 

combination immunotherapy becomes available for pancreatic cancer. 

  

Figure 2.1 Graphical Abstract 
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Introduction 

Pancreatic ductal adenocarcinoma (PDA), one of the deadliest human 

malignancies, is distinguished by an extensive and complex tumor microenvironment 

(TME) containing abundant infiltrating immune cells. Immunotherapy clinical trials using 

checkpoint inhibitors PD-1 and CTLA4 as single agents have been unsuccessful (Royal 

et al. 2010; Brahmer et al. 2012), but recent clinical trials using combination of immune 

regulatory agents have shown positive initial results (NCT02588443), indicating the 

need to target multiple components of the stroma and better understand the immune 

landscape of human PDA. The prevalence of CD8+ T cells varies across patients 

(Ingunn M. Stromnes et al. 2017). Deconvolution of bulk RNA sequencing data from 

The Cancer Genome Atlas (TCGA) stratified tumors based on their cytolytic index, 

including a high cytolytic index group (Balli et al. 2017). These data indicate that the 

CD8+ T cell landscape in pancreatic tumors might be more complex than previously 

believed, and the mechanisms of immune suppression may vary across patients. While 

pancreatic cancer is most often diagnosed when locally invasive or metastatic, most 

existing datasets are limited to surgical samples representing earlier stages of the 

disease. 

The presence and distribution of cytotoxic T cells in PDA has important 

prognostic correlations; CD8+ T cells in proximity to PDA cells correlate with increased 

overall survival (Carstens et al. 2017). Further, analysis of rare long-term PDA survivors 

revealed persistence of T cell clones specific to tumor antigens (Balachandran et al. 

2017). Conversely, infiltration of myeloid cells, specifically tumor associated 

macrophages, negatively correlates with prognosis (Tsujikawa et al. 2017), consistent 
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with an immune-suppressive role of these cells (Vonderheide 2018). CD4+ T cells are 

abundant within tumors, with a prevalence of regulatory T cells (Clark et al. 2007); their 

nature in human PDA is currently poorly understood. Similarly, our understanding of 

other immune cell types within tumors is limited. 

Here, we used multiple, complementary approaches [mass cytometry (CyTOF), 

single-cell RNA sequencing (scRNA seq), and multiplex fluorescent 

immunohistochemistry (mfIHC)] to investigate the immune landscape of pancreatic 

tumors from a collection of samples that included both surgical and fine needle biopsy 

samples, as well as matched patient blood (graphical abstract). Our work adds an in-

depth immune characterization to complement recent single cell characterization on 

pancreatic tumor cells (Moncada et al. 2020; Chan-Seng-Yue et al. 2020) and cancer 

associated fibroblasts (Elyada et al. 2019; Dominguez et al. 2020). We observed that 

immune landscapes in each individual patient were heterogeneous, although some 

common features emerged. Cytotoxic T cells in patients displayed an exhausted gene 

expression signature, which was progressively more pronounced in advanced disease. 

The specific combinations of immune checkpoint genes expressed in each patient’s 

CD8+ T cells was unique. Tumor infiltrating CD8+ T cell had a higher proportion of cells 

expressing genes previously associated with T cell exhaustion, and these cells had 

enriched expression of the immune checkpoint T-cell immunoglobulin and ITIM domains 

(TIGIT) (Manieri, Chiang, and Grogan 2017). Predicted interaction analysis (Cohen et 

al. 2018; Qiming Zhang et al. 2019) revealed multiple potential cellular interactions 

upregulated in tumors compared with non-malignant tissue. Overall, our study provides 

a wealth of hypothesis-generating data to benefit the PDA community at large. 
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Results 

CyTOF and multiplex immunohistochemistry mapping reveal heterogeneous immune 

infiltration in human pancreatic cancer 

To map the immune infiltration in pancreatic cancer, we performed CyTOF on 10 

pancreatic tumor samples and 8 samples from non-malignant pancreas specimens 

[Whipple pancreaticoduodenectomy (n=2), distal pancreatectomy (n=4), partial 

pancreatectomy (n=1) or endoscopic fine needle biopsy (n=3)]. Clinical pathology 

review provided the diagnosis for samples (Supplemental Figure 2.1A); histology of 

surgical specimens is shown in Supplemental Figure 2.1B. Our validated antibody panel 

contained 30 immune markers (Supplemental Table 2.1) (Bendall et al. 2011). We used 

the Astrolabe Cytometry platform for batch correction to account for differences in the 

timing of sample acquisition, and selected live singlets for downstream analysis 

(Nowicka et al. 2019; Amir et al. 2019). 

Principal component analysis (PCA) showed a minor shift between adjacent or 

normal pancreas and tumor samples (Figure 2.2A), indicating differences in immune cell 

composition. To visualize the distribution of cell populations within individual samples, 

we utilized unbiased hierarchical clustering algorithms (Nowicka et al. 2019), along with 

supervised annotation (Figure 2.2B,C and Supplemental Figure 2.1C,D). While 

adjacent/normal samples contained mostly non-immune cells, tumor samples had an 

abundance of immune cells (Figure 2.2C). Multiple immune populations were elevated 

in tumor samples: myeloid cells, B cells, NK cells, CD4+ T cells, regulatory T cells and 

CD8+ T cells (Figure 2.2D and Supplemental Figure 2.1E). We observed an inverse 

correlation between the percentage of myeloid cells and CD8+ T cells (Figure 2.2E),  
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Figure 2.2 CyTOF and multiplex fluorescent immunohistochemistry (mfIHC) mapping reveals 
heterogeneous immune infiltration in human pancreatic cancer. 

consistent with previous observation in mouse models and in agreement with the notion 

that myeloid cells are a key immunosuppressive component in pancreatic cancer 

(A) PCA analysis comparing intensity of marker staining of n=8 normal or adjacent pancreata tissue 
samples (blue) compared to n=9 PDA tumor samples (red). (B) Merged adj/norm panc (left) and PDA 
(right) t-SNE analysis of defined cell clusters from CyTOF analysis on tissue samples. The size of the dot 
represents the number of cells in the cluster. Each color represents a cell population: CD4 T cells (red), 
CD8 T cells (pink), B cells (blue), Myeloid (light orange), Macrophages (orange), CD45− cells (light 
purple), Unknown (purple). (Continued on next page)  
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(Ingunn M. Stromnes et al. 2017; Clark et al. 2007; Y. Zhang et al. 2017; Panni et al. 

2019; Ingunn M Stromnes et al. 2014). 

To measure immune composition in undisturbed tissue and define the spatial 

relationships between immune cells in the microenvironment, we performed seven-color 

multiplex fluorescent immunohistochemistry (mfIHC) on a formalin fixed paraffin 

embedded tissue tumor microarray (TMA) comprised of 71 PDA and 34 chronic 

pancreatitis samples, as previously described (Lazarus et al. 2018) (Supplemental 

Figure 2.1F). Representative images from individual samples are shown in Figure 2.2F, 

Supplemental Figure 2.1G–H. Chronic pancreatitis samples contained a higher 

epithelial cell component than the PDA samples. Conversely, immune cell infiltration 

was more abundant in PDA tissue (Figure 2.2G). In agreement with our CyTOF 

analysis, mfIHC demonstrated an increase in Tregs (FOXP3+) and macrophages 

(CD163+). However, unlike in the CyTOF data, CD8+ T cells did not change (Figure 

2.2G), likely reflecting differences in the control tissues (chronic pancreatitis versus 

adjacent/normal pancreas). Individual patient tumors were variable in terms of CD8+ T 

cell infiltration. As in the CyTOF data, we observed a negative correlation between 

CD8+ T cells and myeloid cells in PDA samples (Figure 2.2H and 2.2E) (Tsujikawa et al. 

(C) Bar plot representation from FlowSOM CyTOF analysis of n=8 adj/norm tissue samples and n=9 PDA 
tumor samples. Analysis was only performed on samples with greater than 3,000 live singlets. (D) Manual 
quantitation of total immune cells (CD45+), myeloid cells (CD11b+), CD4+ T cells, CD8+ T cells, potential 
Tregs (CD4+ CD25+), and B cells. Manual gating included n=8 adj/norm patients and n=10 PDA patients 
per group. Asterisk denotes a p-value less than 0.05 determined by two-sided Student’s t-test. (E) 
Correlation plot of total CD11b+ myeloid cells compared to total CD8+ T cells. (F) mfIHC composite 
images of formalin-fixed, paraffin-embedded tissue specimens from four different patients with chronic 
pancreatitis (top row) and four patients with PDA (bottom row). Antibodies and colors are as follows: 
CD163 (orange), PD-L1 (magenta), Pancytokeratin (PanCK; white), CD3 (green), CD8 (yellow), FOXP3 
(red), and DAPI (blue). (G) Comparison of cellular infiltration between n=34 chronic pancreatitis patients 
and n=71 PDA patients (P-values: Other 0.0001, CD163+ cells 0.020, CD8+ T cells 0.3483, Treg 
<0.0001, Epithelial <0.0001). (H) Correlation between percentage of CD8+ T cells and CD163+ cells in 
chronic pancreatitis and PDA. 
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2017; Clark et al. 2007), supporting a key immunosuppressive role of this cell 

population (Y. Zhang et al. 2017; Beatty et al. 2015; Sanford et al. 2013; Denardo and 

Ruffell 2019; Nywening et al. 2018; Zhu et al. 2017; Zhu et al. 2014). Overall, our data 

show a complex microenvironment and considerable variability across individual 

patients. 

Single cell RNA sequencing reveals a complex immune landscape with heterogeneous 

expression of immune checkpoints and ligands in the pancreatic cancer 

microenvironment 

We performed single cell RNA sequencing (scRNA seq) on 16 PDA samples, 

including surgical (n=6) and fine needle biopsy specimens (n=10) (Supplemental Figure 

2.2A). All the patients were treatment-naïve at the time of sample acquisition. We also 

included three non-malignant pancreas samples (1196, 1258, 19732) from patients 

undergoing surgery for duodenal adenoma, ampullary carcinoma, or adjacent to PDA, 

respectively, where an uninvolved portion of pancreas was included in the resection (as 

determined by pathologic evaluation). To capture a window into the systemic immune 

response in PDA patients, we also collected peripheral blood mononuclear cells 

(PBMCs) from these patients and healthy subjects (Supplemental Figure 2.2A, right 

panel). 

In total, we sequenced 8541 cells from adjacent/normal samples and 46,244 

from PDA, while from the blood samples we sequenced 14,240 cells from 4 healthy 

subjects, and 55,873 cells from 16 PDA patients. To define and visualize cell 

subpopulations, we batch corrected our tumor and blood sequencing samples 

(Supplemental Figure 2.2B) and then used unbiased clustering and a dimensionality 
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reduction through Uniform Manifold Approximation and Projection (UMAP) (Figure 2.3A 

and Supplemental Figure 2.3A). We identified each subpopulation based on published 

lineage markers (Figure 2.3B and Supplemental Figure 2.3B). We observed variability in 

the total immune cell composition of individual tumors, and in the relative abundance of 

individual immune cell components similar to CYTOF and mfIHC data (Supplemental 

Figure 2.2C and 2.2D). 

Figure 2.3 Single cell RNA sequencing reveals heterogenous expression of immune 
checkpoints in PDA tissue.  

(A) PCA analysis comparing intensity of marker staining of n=8 normal or adjacent pancreata tissue
samples (blue) compared to n=9 PDA tumor samples (red). (B) Merged adj/norm panc (left) and PDA
(right) t-SNE analysis of defined cell clusters from CyTOF analysis on tissue samples. The size of the dot
represents the number of cells in the cluster. Each color represents a cell population: CD4 T cells (red),
CD8 T cells (pink), B cells (blue), Myeloid (light orange), Macrophages (orange), CD45− cells (light
purple), Unknown (purple). (C) Bar plot representation from FlowSOM CyTOF analysis of n=8 adj/norm
tissue samples and n=9 PDA tumor samples. Analysis was only performed on samples with greater than
3,000 live singlets. (D) Manual quantitation of total immune cells (CD45+), myeloid cells (CD11b+), CD4+ T 
cells, CD8+ T cells, potential Tregs (CD4+ CD25+), and B cells. Manual gating included n=8 adj/norm
patients and n=10 PDA patients per group. Asterisk denotes a p-value less than 0.05 determined by two-
sided Student’s t-test. (E) Correlation plot of total CD11b+ myeloid cells compared to total CD8+ T cells.
(F) mfIHC composite images of formalin-fixed, paraffin-embedded tissue specimens from four different
patients with chronic pancreatitis (top row) and four patients with PDA (bottom row). Antibodies and
colors are as follows: CD163 (orange), PD-L1 (magenta), Pancytokeratin (PanCK; white), CD3 (green),
CD8 (yellow), FOXP3 (red), and DAPI (blue). (G) Comparison of cellular infiltration between n=34 chronic
pancreatitis patients and n=71 PDA patients (P-values: Other 0.0001, CD163+ cells 0.020, CD8+ T cells
0.3483, Treg <0.0001, Epithelial <0.0001). (H) Correlation between percentage of CD8+ T cells and
CD163+ cells in chronic pancreatitis and PDA.
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We identified abundant pro-inflammatory cells in the PDA microenvironment 

including CD8+ T cells and natural killer cells (NK) (Figure 2.3A). To gather insight into 

the possible mechanisms preventing anti-tumor immune responses, we profiled average 

expression of immune checkpoint receptors and ligands by cell type, both in tumors and 
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PBMCs of PDA patients (Figure 2.3C and Supplemental Figure 2.3C). We observed 

expression of multiple immune checkpoint receptors in T and NK cell subsets, while 

myeloid populations were enriched for their corresponding ligands (Figure 2.3C). CD8+ 

T cells had elevated ICOS, TIGIT, PDCD1 and LAG3, among others, but relatively low 

expression of CTLA4. CTLA4, as well as all other checkpoints except for LAG3, was 

high in CD4+ T cells. NK cells also had elevated CD47, TIGIT, TNFRSF18 and LAG3, 

and modest expression of PDCD1. The expression of checkpoint ligands was 

heterogeneous, with epithelial cells mainly expressing PVR and LGALS9 (encoding for 

PVR and GALECTIN 9, ligands for TIGIT and HAVCR2(TIM3) respectively). Myeloid 

and dendritic cells expressed several genes encoding checkpoint ligands, including 

SIRPA, LGALS9, PVR, and ICOSLG (Figure 2.3C). Similarly, in PBMC samples, CD4+ 

T cells, CD8+ T cells and NK cells had elevated expression of multiple immune 

checkpoint receptors (TIGIT was elevated in all three cellular compartments), and 

granulocytes, monocytes and B cells, plasma cells and dendritic cells expressed the 

ligands (Supplemental Figure 2.3C). We also detected expression of immune 

checkpoint ligands in other non-immune cell types, which included fibroblasts, 

endocrine, and endothelial cells (Figure 2.3C). Our single cell data revealed a complex, 

patient-specific landscape of immune checkpoint ligand and receptor expression across 

multiple immune and non-immune cell types. 

Tumor-infiltrating CD8+ T cells have a distinct gene expression profile, with progressive 

dysfunction in advanced disease 

Cytotoxic T cells are a fundamental component of anti-tumor immune responses 

and the target of immunotherapy (for review see (Rosenberg 2014)). To gather deeper 
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insight into the functional status of tumor-infiltrating CD8+ T cells, we investigated their 

transcriptional profile. To investigate patient-specific variability, we mapped the average 

expression of immune checkpoint receptors in CD8+ T cells in each individual patient’s 

tumor and blood samples (Figure 2.3D and Supplemental Figure 2.3D). Infiltrating CD8+ 

T cells expressed markedly distinct immune checkpoint profiles in individual patient 

samples, both in tumors and blood (Figure 2.3D and Supplemental Figure 2.3D). In 

tumor samples, LAG3 was elevated in patients 1141, 1294, 1261 and 1229. Patient 

1229 (locally advanced) also had high expression of ICOS, CTLA4, TIGIT and CD47. 

Conversely, patient 1261 (also locally advanced), had elevated CD27, LAG3, PDCD1, 

HAVCR2, TNFRSF18, CSF1, TIGIT, CD40LG, CD47 and CD28, but not CTLA4. The 

immune checkpoint landscape did not cluster by disease stage, and while some 

metastatic patients had high expression of multiple immune checkpoints (3210) others 

expressed only a limited subset (1253). Analysis of circulating CD8+ T cells revealed a 

similarly complex landscape, but no clear overall correlation in the expression of 

individual checkpoints between patient tumor and blood T cells at a gene expression 

level (Supplemental Figure 2.3D). 

We then investigated tumor-infiltrating CD8+ T cells compared to CD8+ T cells in 

normal/adjacent tissue. By functional annotation, we observed pathways relating to cell 

cytotoxicity, chemokine signaling, T cell receptor signaling, and antigen processing were 

significantly enriched in PDA samples, compared to adjacent/normal tissue CD8+ T 

cells, an indication that immune responses had been elicited in the tumors (Figure 

2.3E). We performed unbiased clustering of the CD8+ T cell gene expression signatures 

in patients. Circulating CD8+ T cells gene expression patterns did not clearly segregate 
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by disease stage (Supplemental Figure 2.3E). We then performed an unbiased 

differential expression analysis on the tissue-infiltrating CD8+ T cells in tumors versus 

adjacent/normal tissue. This analysis revealed distinct expression patterns in healthy 

versus tumor infiltrating total CD8+ T cells (Figure 2.3F). We noted that the CD8+ T cells 

in adjacent/normal samples clustered together, while tumor-infiltrating CD8+ T cell 

signatures spanned a spectrum in individual samples. Some tumor signatures partially 

resembled non-malignant tissue and others were greatly diverging. Interestingly, upon 

clinical annotation, we discovered that the divergence from the normal signature was 

more pronounced in samples from advanced disease stage. When we considered which 

genes were differentially expressed across the groups, we observed an increase in T 

cell activation and trafficking markers (GZMB, GZMA, KLF2) (Ingunn M. Stromnes et al. 

2017; Balli et al. 2017; Carlson et al. 2006) in tumor CD8+ T cells, compared to 

adjacent/normal tissues. Further, T cell exhaustion markers such as EOMES and GZMK 

were low in healthy CD8+ T cells, and elevated in the majority of tumor CD8+ T cell 

samples (Wherry et al. 2007; Li et al. 2018). The only immune checkpoint receptor 

identified as differentially overexpressed in tumor-infiltrating CD8+ T cells, compared to 

CD8+ T cells in adjacent/normal tissue, was TIGIT, a gene encoding a receptor 

belonging to the Ig superfamily (Manieri, Chiang, and Grogan 2017). Overall, 

comparison of the transcriptional profile of tumor and adjacent/normal infiltrating CD8+ T 

cells revealed unique profiles of expression of immune checkpoint genes in individual 

patients. However, some common features emerged, such as expression of activation 

markers, as well as an exhausted gene expression signature which progressively 

increased with advanced disease stage. 
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Tumor infiltrating CD8+ T cells include an expanded exhausted population characterized 

by TIGIT expression 

Distinct populations of tumor infiltrating CD8+ T cells have been described 

(Jansen et al. 2019). Given the progressive dysfunction of tumor-infiltrating CD8+ T 

cells, we hypothesized that the transcriptional profile shift might be caused by changes 

in CD8+ populations. By unbiased clustering, we distinguished 6 populations of CD8A-

expressing T cells in both adjacent/normal and PDA samples (Figure 2.4A). To identify 

sub-populations, we plotted the top expressed genes per cluster (Figure 2.4B), and 

compared them with published signatures of CD8+ T cells subtypes (Wherry et al. 

2007). We identified two populations of effector CD8+ T cells (Teff), expressing PRF1 

and GZMB; a population of likely memory (mem)/ precursor effector (pec) CD8+ T cells 

(Tmem/pec) expressing CCR6 (Kondo, Takata, and Takiguchi 2007); and two populations 

of exhausted CD8+ T cells (Tex) expressing EOMES, GZMK, and TIGIT (Figure 2.4C, 

Supplemental Figure 2.4A and average expression heatmap in Supplemental Figure 

2.4C). Interestingly, comparison of tumor infiltrating versus adjacent/normal CD8+ T 

cells revealed a relative increase in exhausted T cells and memory T cells, with 

converse reduction of effector T cell levels (Figure 2.4D and Supplemental Figure 2.4B). 

We then examined expression of immune checkpoints and immune activation markers 

across CD8+ T cell subsets, and observed uniform expression of PDCD1, HAVCR2 and 

LAG3 (Figure 2.4C), while TIGIT was enriched in exhausted and memory CD8+ T cells. 

We found that 13.3% of effector CD8+ T cells, compared to 44.2% of exhausted CD8+ T 

cells expressed TIGIT. To compare gene expression changes within distinct clusters of 

CD8+ T cells, we performed two separate differential expression analyses. We first  
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Figure 2.4 Single cell RNA sequencing reveals exhausted CD8+ T cell phenotype in PDA patients 
is defined by the immune checkpoint TIGIT. 
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compared PDA effector CD8+ T cells to adjacent/normal effector CD8+ T cells, and we 

found that GZMA and GZMB were higher in tumor infiltrating effector CD8+ T cells, 

suggesting T cell activation (Figure 2.4E). RORA expression, a marker associated with 

effector T cells, was also upregulated (Wherry et al. 2007) (Figure 2.4E), consistent with 

an ongoing immune response. We then compared PDA exhausted CD8+ T cells to 

adjacent/normal exhausted CD8+ T cells and tumor infiltrating exhausted CD8+ T cells 

had higher expression of EOMES and KLF2, markers of exhaustion (Wherry et al. 2007) 

(Figure 2.4F). 

Our data suggest that exhausted CD8+ T cells are abundant in pancreatic 

tumors, and that their exhausted phenotype is more profound than the equivalent 

population in adjacent/normal tissue. Further, TIGIT was the sole immune checkpoint 

Receptor that specifically defined exhausted CD8+ T cells.  

A complex landscape of NK and CD4+ T cells cell subsets in pancreatic cancer 

Similar to effector CD8+ T cells, NK cells display cytotoxic activity and express 

immune checkpoint receptor (Figure 2.3C), however these cells are not well defined in 

human PDA (Ducimetière, Vermeer, and Tugues 2019). Unsupervised sub-clustering of 

NK cells revealed three populations (Figure 2.5A and 2.5B). Along with the three NK cell 

(A) UMAP analysis of CD8+ T cells from n=3 adjacent/normal pancreas samples (left) and n=16 PDA 
tumors (right). The 6 identified subsets of CD8+ T cells were collapsed into potential memory (blue), 
effector (pink) and exhausted (green). (B) Single cell resolution heatmap analysis of top 10 genes for 
each identified CD8+ T cell subset. (C) Violin plots of normalized expression for selected markers 
mapped across the CD8+ T cell subsets. (D) Quantitation of potential exhausted (p=9.11E-6), effector 
(p=2.209E-5) and memory (p=0.0031) T cells in adjacent/normal pancreas and PDA patients, plotted as 
% total CD8+ T cells. Plots represent n=3 adj/norm and n=16 PDA patients. Two-sided Student’s t-test 
was performed to compare between groups and a p value of 0.05 or less was considered statistically 
significant. Panel of genes differentially expressed in (E) effector and (F) exhausted CD8+ T cells in PDA 
(red) compared to adjacent/normal pancreas (blue). Plots represent n=3 adj/norm and n=16 PDA 
patients. Violin plots are shown as normalized expression. All violin plots in (E) and (F) have an adjusted 
p-value of p<0.01 and are considered statistically significant. 
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subsets, we found two additional populations that we labeled cluster 1 and 2, which 

expressed NKG7, CD3E, and CD8A. While these cells did not cluster with the CD8 T 

cells based on their transcriptional profile, they could potentially be highly cytolytic CD8 

T cells expressing some NK markers (Arlettaz et al. 2004; Mcmahon et al. 2002). A 

“NK” cell population expressing CD8A was identified in a recent PDA scRNA-seq paper 

(Elyada et al. 2019). Highly variable gene expression analysis highlighted differences 

among subpopulations (Figure 2.5B). In NK subsets we detected expression of markers 

of antigen presentation (HLA-DRA), cytolytic activity (PRF1, GZMB), and 

chemokines/chemokine receptors (CCL3, IL7R), in agreement with a recently published 

characterization of human NK cells by single cell RNA sequencing (Smith et al. 2020). 

NK cluster 1 was enriched for immune checkpoint HAVCR2, while NK cluster 3 

expressed high levels of immune checkpoint TNFRSF4 (Figure 2.5B and 2.5C). We 

then performed differential gene expression analysis and unbiased clustering of 

individual patient samples to compare tumor infiltrating NK cells with NK cells in non-

tumor tissue. The signatures of tumor-infiltrating and non-tumor NK cells were not as 

divergent as was the case for CD8+ T cells, and, with one exception (1324), resectable 

tumor samples clustered closely with the non-tumor samples (Figure 2.5D). However, 

advanced disease samples had a different expression signature than healthy 

counterparts, with increased expression of activation markers such as GZMA and 

elevated expression of two immune checkpoint genes, TIGIT and HAVCR2. The role of 

NK cells in PDA is not well understood; our findings set the stage for future functional 

studies on the role of NK cells in this disease. 
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Figure 2.5 Single cell RNA sequencing of pancreatic tissues reveals TIGIT is 
differentially expressed in NK cells from PDA patients and is a defining marker of Tregs. 

(A) Merged UMAP of 5 identified subsets of NK cells from adjacent/normal pancreas (left) and PDA
(right). Plots represent n=3 adj/norm and n=16 PDA patients. (B) Single cell resolution heatmap of each
NK cell subset identified. Immune checkpoints (HAVCR2, TNFRSF4) are bolded. (C) Violin plots of
normalized average expression within NK cell subsets demonstrating specific lineage markers for NK
cells (such as NCAM1/FCGR3A) and immune checkpoint receptors. (D) Unbiased differential average
expression of merged NK cells from adjacent/normal pancreas (black) and PDA (grey). Disease stage is
plotted on the left. (E) Merged UMAP of all CD4+ T cells with 13 identified cell subsets. Naïve CD4+ T
cells are denoted as TH0 (CCR7+) and Tregs as Tregs (FOXP3+). All other subsets are denoted as CD4 T
cells. (F) Single cell resolution heatmap of each CD4+ T cell subset. Boxes on the left designate naïve
CD4+ T cells (TH0) and the CD4+ T cell subsets that are defined by immune checkpoint expression
(TIGIT, TNFRSF18, PDCD1). (G) Feature plots of CTLA4 and TIGIT in regulatory CD4+ T cells (outlined).
In all panels, plots represent n=3 adj/norm and n=16 PDA patients.
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We then investigated CD4+ T cells, a complex population that includes regulatory 

T cells, and plays a fundamental role in regulating pancreatic carcinogenesis (Y. Zhang 

et al. 2014; Y. Zhang et al. 2020; Jang et al. 2017). Unlike the CD8+ T and NK cells, we 

could not perform differential expression on CD4+ T cells as we did not capture enough 

cells from adjacent/normal tissue samples; instead we focused on studying the tumor-

infiltrating component. We identified 13 transcriptionally distinct populations of CD4+ T 

cells, although many of the different clusters tended to merge together (Figure 2.5E). A 

highly enriched gene analysis of CD4+ subsets revealed expression of naïve T cell 

markers CCR7 and SELL (Sckisel et al. 2017) in cluster 0 and expression of regulatory 

T cell marker FOXP3 in cluster 3 (Figure 2.5F). As expected, based on previous 

studies, CTLA4 was highly expressed within Tregs (Bengsch et al. 2017) (Figure 2.5G). 

Specific immune checkpoint genes were highly expressed in individual clusters, such as 

TNFRSF18 and PDCD1. TIGIT appeared as a top expressed gene in Tregs (Figure 

2.5F), although it was also expressed in other clusters more sparsely (Figure 2.5G). The 

other clusters did not correspond to known subsets of CD4+ T cells, and were relatively 

similar to one another, a possible reflection of low transcriptional activity of non-Treg 

CD4+ T cells. Taken together, these analyses suggest multiple immune checkpoint 

receptors are expressed in CD4+ and NK cell subsets. In particular, the immune 

checkpoint TIGIT was differentially overexpressed on tumor-infiltrating PDA CD8+ T 

cells, regulatory T cells and NK cells. 

Myeloid and dendritic cells are an important source of immune checkpoint ligands in 

human PDA 
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We next analyzed myeloid cells, which are an important source of immune 

checkpoint ligands in PDA. By unbiased clustering, we identified 6 transcriptionally 

distinct populations of myeloid cells. (Figure 2.6A). We observed an abundant 

granulocyte population expressing CXCR1 and CXCR2, FCGR3B and S100A8 (Figure 

2.6B). Consistent with previous studies (Elyada et al. 2019; Sanford et al. 2013), we 

detected resident macrophages and alternatively activated macrophages (MARCO+), 

and classical monocytes (Figure 2.6A and 2.6B). We also observed an additional 

myeloid population, denoted as alternatively activated macrophages 2, that resembled 

alternatively activated macrophages and was uniquely defined by abundant expression 

of CHIT1 and multiple immune checkpoint ligands (Figure 2.6A, 2.6B and Supplemental 

Figure 2.5A). We next mapped immune checkpoint ligand expression within specific 

myeloid compartments and observed heterogeneous expression of immune checkpoints 

in specific clusters (Figure 2.6C). Differential expression analysis between 

adjacent/normal and tumor-infiltrating myeloid sub-clusters revealed multiple 

upregulated checkpoint ligands. LGALS9, the ligand for HAVCR2 (encoding for TIM3), 

was significantly increased within alternatively activated macrophages, while SIRPA, the 

ligand for CD47, was higher in PDA granulocytes compared to granulocytes in 

adjacent/normal tissue (Figure 2.6D). PVR, the ligand for TIGIT was enriched in total 
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Macrophages (Figure 2.6D). Average expression heatmaps of macrophages 

(Supplemental Figure 2.6B) and granulocytes (Supplemental Figure 2.5C)  

demonstrated that the expression of immune checkpoint ligands was highly variable in 

individual patients.  
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Figure 2.6 Single cell RNA sequencing reveals distinct myeloid and dendritic cell subsets. 

Dendritic cells (DCs) cells are professional antigen presenting myeloid cells, and 

support anti-tumor activity by stimulating T cells; their relative rarity in PDA is one of the 

potential causes for ineffective immune responses in this disease (Hegde et al. 2020). 

Clustering analysis revealed multiple populations of tumor-infiltrating DCs (Figure 2.6E). 

We found two populations of plasmacytoid DCs (IRF8, GZMB) and two populations of 

Langerhans-like DCs (CD207, CD1A) as previously described (Elyada et al. 2019) 

(Figure 2.6F and 2.7A). Langerhans-like DC2 had robust expression of IL22RA2, also 

known as IL22BP, and the IL-22-IL22BP axis is known to be a crucial mediator of 

tumorigenesis in the colon (Huber et al. 2012) and pancreas (Perusina Lanfranca et al. 

2020). We also detected a population of conventional DC1s (CLEC9A, IRF8) (Elyada et 

al. 2019; Collin and Bigley 2018), and two additional populations of potential 

conventional DC2s that expressed immune checkpoint ligand SIRPA (Figure 2.6F and 

2.7A). We also detected two unique populations of activated DCs (LAMP3, CCL22) 

(Elyada et al. 2019) (Figure 2.6F and 2.7A). We then plotted the average expression of 

known immune checkpoint ligands in the different DC subsets. We discovered that 

activated DC1 had elevated expression of nearly all the immune checkpoint ligands, 

including PVR (Figure 2.7B), suggesting that in pancreatic tumors some subsets of DCs 

may be immunosuppressive (Veglia and Gabrilovich 2017). 

(A) Merged UMAP of 6 identified myeloid cell subsets in adjacent/normal pancreas (left) and PDA (right).
(B) Single cell resolution heatmap of each myeloid cell subset identified. Boxes on the left designate the
top expressing genes for each myeloid subset. (C) Selected feature plots of the immune checkpoints,
LGALS9, CD274, PVR, CSF1R, SIRPA, HLA-DQA1 in myeloid cells. (D) Selected feature plots of
markers that define alternatively activated macrophages, granulocytes, and total macrophage subsets
(left) and violin plots of immune checkpoint ligands that are upregulated in PDA patients (right). (E) UMAP 
analysis of dendritic cells in merged normal/adjacent pancreas and PDA. (F) Top ten highly enriched
gene signature analysis of dendritic cell subclusters identifying potential DC subsets, including
plasmocytoid DCs (pDCs), Langerhans-like DCs (Lang_DCs), conventional DCs (cDCs), and activated
DCs (Act_DCs). In all panels, plots represent n=3 adj/norm and n=16 PDA patients.
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Mapping predicted interactions and tissue heterogeneity in pancreatic cancer samples 

by single cell sequencing 

To explore potential cross-talk between T/NK and myeloid populations, we 

applied a predicted interaction algorithm (Cohen et al. 2018) based on known ligand-

receptor (LR) pairs interacting with high affinity (Ramilowski et al. 2015). We curated the 

list to specifically add immune checkpoints and limit the receptor-ligand pairs to 

cytokines, chemokines and specific signaling pathways [for a comprehensive list, see 

Supplemental Table 2.7]. We first plotted all the receptor-ligand interactions that were 

statistically higher in tumor versus non-malignant samples, based on the level of ligand 

expression, and observed a complex landscape of potential interactions involving 

multiple cell types (Supplemental Figure 2.5D). We then visualized upregulated ligands 

in macrophages (Figure 2.7C), granulocytes (Figure 2.7D), dendritic cells (Figure 2.7E), 

endothelial cells (Figure 2.7F) and epithelial cells (Figure 2.7G) and mapped the 

predicted binding partners in CD4, CD8, and NK cells. Among interactions upregulated 

in cancer compared to adjacent/normal, we detected known putative immune 

suppressive interactions, such as those mediated by the chemokine receptors CXCR2 

in granulocytes and CCR2 in macrophages (Sanford et al. 2013; Denardo and Ruffell 

2019). Predicted interactions mediated by IL1A and IL1B with their receptor encoding 

genes IL1R1 and IL1R2 were also upregulated, consistent with their known roles in 

pancreatic cancer (Elyada et al. 2019; Das et al. 2020; Öhlund et al. 2017). Multiple 

putative interactions linked T and NK cells to myeloid immune checkpoint ligands, which 

is consistent with a key role for myeloid cells in establishing immune suppression in 

pancreatic cancer (for review see (Vonderheide 2018)). Predicted immune checkpoint-
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mediated interactions such as ICOS/ICOSLG and SIRPA/CD47 were among those 

upregulated in pancreatic cancer compared to healthy/adjacent tissue. TIGIT/PVR 

interactions were elevated between macrophages and CD4+ T cells, CD8+ T cells and 

NK cells (Figure 2.7C). Interestingly, the putative TIGIT/PVR interaction was also 

elevated between tumor endothelial and epithelial cells, T cell and NK cell subsets 

(Figure 2.7F and 2.7G). We then endeavored to investigate the expression of other 

genes involved in the TIGIT pathway. We investigated the expression of TIGIT’s 

costimulatory counter receptor, DNAM1 (CD226), which competes for PVR and PVRL2 

and promotes T cell activation (Fourcade et al. 2018). We found that while TIGIT was 

significantly increased on PDA CD8+ T cells (P= 4.8e-32), CD226 expression was not 

altered in CD8+ T cells between adjacent/normal and PDA cells (Figure 2.7H). CD96 

and PVRIG act similarly to TIGIT, inhibiting T cell activation. Expression analysis 

showed that mRNA levels of these receptors were not altered between adjacent/normal 

and PDA CD8+ T cells (Figure 2.7H). PVRL2 encodes a second ligand for TIGIT, 

although it binds with a lower affinity compared to PVR (Yu et al. 2009). We detected 

expression of PVRL2 in epithelial, myeloid, and endothelial cells (Figure 2.7I). TIGIT, 

CD96, PVRIG, and CD226 were mainly expressed by T and NK cells in PDA tissue 

(Figure 2.7I). We then investigated the Adenosine pathway, because of its immune 

suppressive role (Maj et al. 2017). We profiled this pathway in tumor samples and found 

expression of the adenosine receptor ADORA1 in epithelial and mast cells, ADORA2B 

in epithelial, mast cells, and dendritic cells, ADORA3 in dendritic, mast, and myeloid 

cells (Supplemental Figure 2.5E). 
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Figure 2.7 Predicted ligand receptor mapping in PDA patients demonstrate myeloid and 
non-immune cell types as sources of immune checkpoint ligands. 

The expression of multiple immune checkpoints has been previously described in 

pancreatic cancer (Balli et al. 2017). Since a deconvolution approach was used, the 

specific immune cell types expressing receptors and ligands could not be assessed. In 

contrast, our analysis provides a comprehensive view of the multiple, redundant 

potential immune suppressive interactions within the pancreatic cancer 

microenvironment. 

TIGIT protein expression is increased on T and NK cells in pancreatic cancer, and its 

expression in the tumors correlates with matched blood 

To determine whether mRNA expression of immune checkpoints was reflected 

by protein levels, we performed mass cytometry on tumor and normal/adjacent 

uninvolved tissue samples (Figure 2.8A). TIGIT expression was elevated in tumor-

infiltrating CD8+ T cells in the majority of samples, albeit not all, while PD1 and LAG3 

were not significantly altered (Figure 2.8A). Interestingly, we detected an increase in 

expression in PD-1 ligand, PD-L1, in CD68+ macrophages from PDA patients 

(Supplemental Figure 2.7B). CTLA4 expression was significantly increased in CD4+ T 

(A) Violin plots, where each dot represent a single cell, of select dendritic cell lineage markers across all
9 identified subsets. (B) Immune checkpoint ligand expression heatmap within dendritic subclusters. (C)
Circos plot map of all putative ligand receptor interactions that are upregulated in PDA macrophages, (D)
granulocytes, (E) dendritic cells, (F) endothelial cells (G) epithelial cells compared to adjacent/normal
pancreas visualized by circos plot using the Circos software V0.69-9 (circos.ca). The heatmap within the
circos plots is the scaled average expression of each gene within PDA tissue cell populations. The
interactions plotted are those in which the expression level of either the ligand, the receptor, or both are
increased in expression in PDA samples compared to adjacent/normal tissue. (H) Violin plots for the
normalized expression of TIGIT, CD96, and CD226 in CD8+ T cells in PDA (red) compared to
adjacent/normal pancreas (blue). Between adj/norm and PDA groups, the asterisk indicates P<0.0001,
and exact P=4.8E-32. For Figure 6 panels A through H, n=3 adj/norm samples were examined and n=16
PDA patients were analyzed. (I) Dot plot analysis of TIGIT family members within PDAC tissue. Color of
dot represents average expression, while the size of the dot represents percent expression. Dot plot
represent n=16 PDA patients gene expression.
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cells in most PDA samples versus adjacent/normal tissues (Figure 7B). TIGIT+ 

CD4+;CD25+ T cells were more frequent in PDA samples, compared to controls (Figure 

2.8B). Similarly, TIGIT+ NK cells (CD56+) were more frequent in PDA, although this 

finding is limited by the small number of samples analyzed (Figure 2.8C). In one patient, 

where matched tumor and uninvolved adjacent tissue were analyzed, we observed a 

higher frequency of TIGIT expression on both CD8+ and CD4+ T cells in the tumor 

(Figure 2.8D). We then performed immunostaining for both TIGIT and PVR on patient 

tissue in situ (Figure 2.8E) and observed TIGIT in CD8+ T cells, and PVR (red) in 

epithelial and stromal cells (Figure 2.8E and single channels shown in Supplemental 

Figure 2.7A). 

Lastly, as we observed that TIGIT was commonly upregulated in tumors, we 

investigated whether protein expression of TIGIT in blood correlated with the individual 

patient’s tumor, an attractive possibility given the relatively easy accessibility of blood 

samples. We performed CyTOF on the peripheral white blood cell (PBMC) component 

in 36 pancreatic cancer patients, 18 healthy volunteers, and 8 patients with chronic 

pancreatitis (Supplemental Figure 2.6A). Cellular subtyping and frequency of circulating 

immune cells present are shown in Supplemental Figure 2.7B–E. Principal component 

analysis failed to show any major distinction between our three patient populations 

(Supplemental Figure 2.6G). Blood from both PDA and chronic pancreatitis patients had 

fewer circulating CD8+ T cells, but higher expression of TIGIT CD8+ T cells (Figure 2.8F, 

2.8G and Supplemental Figure 2.6F). PD1 and CTLA4 protein expression was elevated 

in PDA circulating CD8+ and CD4+ T cells, respectively, compared to healthy subjects 

(Figure 2.8G). We then analyzed the subset of patients for whom we had matched mass 
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cytometry of tumor and PBMCs and found a positive correlation of TIGIT expression, 

but not PD1 expression, in CD8+ T cells (Figure 2.8H and 2.8I). Thus, different immune 

checkpoint molecules are prevalent in individual patients, and further validation of 

potential targets, including TIGIT, is warranted. 

Figure 2.8 CyTOF and immunofluorescence protein validation of immune checkpoint 
expression in human pancreatic tissues and PBMCs. 
(A) Violin plots, where each dot represent a single cell, of select dendritic cell lineage markers across all
9 identified subsets. (B) Immune checkpoint ligand expression heatmap within dendritic subclusters. (C)
Circos plot map of all putative ligand receptor interactions that are upregulated in PDA macrophages, (D)
granulocytes, (E) dendritic cells, (F) endothelial cells (G) epithelial cells compared to adjacent/normal
pancreas visualized by circos plot using the Circos software V0.69-9 (circos.ca). The heatmap within the
circos plots is the scaled average expression of each gene within PDA tissue cell populations. The
interactions plotted are those in which the expression level of either the ligand, the receptor, or both are
increased in expression in PDA samples compared to adjacent/normal tissue. (H) Violin plots for the
normalized expression of TIGIT, CD96, and CD226 in CD8+ T cells in PDA (red) compared to
adjacent/normal pancreas (blue). Between adj/norm and PDA groups, the asterisk indicates P<0.0001,
and exact P=4.8E-32. For Figure 6 panels A through H, n=3 adj/norm samples were examined and n=16
PDA patients were analyzed. (I) Dot plot analysis of TIGIT family members within PDAC tissue. Color of
dot represents average expression, while the size of the dot represents percent expression. Dot plot
represent n=16 PDA patients gene expression.
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Discussion 

Recent reports examining gene expression in pancreatic tumors by scRNAseq or 

high content in situ hybridization have largely focused on the complexity of the fibroblast 

populations (Elyada et al. 2019; Dominguez et al. 2020; Ligorio et al. 2019), however 

the heterogeneity of the immune reaction in PDA at a single cell level remained unclear. 

We have used a multi-modal approach combining CyTOF (Bendall et al. 2011; Amir et 

al. 2019), multiplex immunohistochemistry, and scRNA seq to map the immune 

infiltration, as well as the systemic immune response through patient blood, in human 

PDA (Stuart and Satija 2019). 

Multiparameter mapping of the TME demonstrated a highly heterogeneous 

immune infiltration in individual patients, consistent with previous reports (Ingunn M. 

Stromnes et al. 2017), suggesting that immune-modulatory therapies should potentially 

be targeted to specific individuals based on their checkpoint expression profile within 

tumors. Both CyTOF and mfIHC also revealed an inverse correlation between infiltration 

of myeloid and CD8+ T cells. scRNA seq analysis suggests that CD8+ T cells express 

markers of exhaustion at levels that increase in advanced stages of disease, consistent 

with a recent study of peripheral T cells in pancreatic cancer patients showing 

diminished fitness (Xu et al. 2019). Importantly, we included fine needle biopsy samples 

for both single cell sequencing and CyTOF, which allowed us to study the immune 

infiltration in patients with unresectable advanced stages of disease. These tumors 

included CD8+ T cells with a more pronounced exhaustion signature compared with 

early stage patients, a possible indication of progressive immune dysfunction. 
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We found differential expression of TIGIT, both at the gene and at the protein 

level, in patient CD8+ T cells. We chose to focus on TIGIT in particular as one example 

of an immune checkpoint ligand/receptor pair given our ability to evaluate this relatively 

understudied checkpoint across multiple modalities. TIGIT expression was enriched 

specifically within EOMEShigh CD8+ T cells, or exhausted T cells, similar to recent 

findings in human prostate, bladder, and kidney cancer (Jansen et al. 2019). TIGIT was 

also elevated in NK cells within the tumor, where its role is less understood, although 

there is at least some evidence TIGIT inhibition in NK cells might be beneficial (Qing 

Zhang et al. 2018). Elevated TIGIT expression is a feature of Tregs, and again its role in 

this cell population is not well understood. However, it has been proposed that inhibition 

of TIGIT on Tregs may suppress the secretion of the immunosuppressive cytokine IL-10 

(Manieri, Chiang, and Grogan 2017). The expression of TIGIT, and other immune 

checkpoint receptors in multiple cellular compartments, as well as the observation that 

expression of immune checkpoints is highly heterogeneous across patients, will have to 

be further investigated as new combination immunotherapy approaches are devised for 

preclinical testing. Further, it is interesting to note that multiple cellular compartments 

express a variety of immune checkpoint ligands in a similar heterogeneous manner. At 

the protein level, we validated that PVR, the ligand for TIGIT, was expressed in tumor, 

endocrine, and endothelial cells (while low in non-malignant acinar cells). PVR and 

other immune checkpoint ligands were also upregulated in myeloid subsets, supporting 

the notion of myeloid cells as key mediators of immune suppression in PDA. 

Intriguingly, TIGIT protein expression in the blood correlated with TIGIT expression in 

the tumors of individual patients, although a similar correlation was not observed for 
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other immune checkpoints such as PD-1. Of note, while functional studies on the role of 

TIGIT in different patients and different cellular compartments within each tumor are still 

needed, TIGIT blocking agents are available and are currently being evaluated in 

clinical trials (Solomon and Garrido-Laguna 2018). 

In summary, our study provides a multimodal characterization of the immune 

landscape in PDA, highlights the complexity of this disease in human patients, and 

provides a resource for future functional studies. 

Materials and methods 

Study Approval and Patient Consent 

Patient Selection/Sample procurement: Medical chart review was used to screen for 

potential study patients with pancreatic disease at the University of Michigan. Fine 

needle biopsies: Patients over the age of 18 referred for diagnostic endoscopic 

ultrasound of a pancreas mass lesion suspected of PDA were consented according to 

IRB HUM00041280 or HUM00025339. Up to 2 extra passes using at 22 Gauge 

SharkCore™ needle were taken for research after biopsy obtained for clinical use. 

Surgical specimens: Surgical specimens of either tumor tissue or adjacent normal 

pancreas were obtained from patients referred for Whipple procedure or distal 

pancreatectomy according to IRB HUM00025339. Blood collection: Up to 40 cc of whole 

blood were collected pre-procedurally or intra-operatively for all patients consented. For 

patients not undergoing interventional procedures (i.e. chemotherapy visit), only whole 

blood was collected. Supplemental Table 2.2 contains extended clinical data associated 

with clinical samples. 
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Multiplex fluorescent immunohistochemistry (mfIHC) imaging, cell segmentation, and 

basic phenotyping 

Images were taken using the Mantra™ Quantitative Pathology Work Station (Akoya 

Biosciences) as described in the Online Methods. 

 

Cytometry Time-of-Flight (CyTOF) Immune Phenotyping and Data Analysis 

For CyTOF, we collected 8 samples from non-malignant pancreas specimens, including 

non-involved pancreas tissue adjacent to a duodenal adenoma (1196, (patient ID)), 

ampullary carcinoma (1258), insulinoma (19–700), and non-involved pancreas tissue 

adjacent to PDA (1172, 19–262, 19–561, 19–732, 1252), all obtained surgically 

(Supplemental Figure 2.1A). PDA samples were collected from either surgical (n=7) or 

fine needle biopsy (FNB) (n=3) procedures, and clinical annotation is shown in 

Supplemental Figure 2.1A. Human patient tissues from FNB or surgery were 

immediately placed into DMEM media supplemented with Y27632 (Rho-Kinase 

inhibitor) for transport to the laboratory. Sample Preparation, Analysis and Data analysis 

are described in detail in the Online Methods. 

 

Immunofluorescent staining 

Patient tissue slides were rehydrated in xylene, 100% ethanol, 95% ethanol, then 

running deionized water sequentially. Antigen retrieval was performed with sodium 

citrate, pH 6.0. Tissue was blocked in 10% donkey serum overnight at 4°C. Primary 

antibodies (PVR/CD155 (1:100, Cell Signaling Technology), VE-Cadherin/CD144 

(1:250, R&D), FOXP3 (1:100, Cell Signaling), Vimentin (1:100, Cell Signaling), CD163 
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(1:100, Novus Biologicals), or Pan Cytokeratin-488 (1:250, Thermo Fisher Scientific) 

were diluted in 5% donkey serum in PBST (DS/PBST) and incubated overnight at 4°C. 

For tissue co-stained for TIGIT-FOXP3 and PVR-Vimentin: the tyramide signal 

amplification kit with Alexa Fluor 488 (Thermo Fisher Scientific) was used following the 

manufacturer’s recommendation to enhance signaling for PVR and FOXP3. Samples 

underwent a second citrate antigen retrieval and were then multiplexed with TIGIT and 

Vimentin following the aforementioned standard IFC protocol. A 1% BSA block was 

used throughout the TSA protocol and subsequent multiplex staining. Tissue was 

mounted with DAPI ProLong™ Gold Antifade Mountant (Thermo Fisher Scientific) and 

subsequently imaged by confocal microscopy on a Leica SP5. Supplemental Table 2.6 

lists the antibodies used. 

 

Statistical Analysis and Reproducibility 

Significance was evaluated by the following statistical analyses: two-tailed, parametric, 

unpaired Student’s t-test, Student’s t-test with Welch’s correction, Wilcoxon rank-sum 

test, or a Mann–Whitney U-test in GraphPad Prism (version 7) or JMP Pro software 

(version 14). The data were presented as means ± standard error (SEM) or means ± 

standard deviation (STDV). A p value of p<0.05 was considered statistically significant. 

Pearson correlation coefficients were used to measure R and R2. Intergroup 

comparisons (differential expression) of scRNA seq was performed using Wilcoxon 

ranked test and p-values were adjusted for multiple comparisons with the Bonferroni 

correction method. For the interactome analysis, differences of the ligand and receptors 

between groups were determined using Wilcoxon ranked test, and p-values were 
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adjusted for multiple comparisons with the Bonferroni correction method. 

Ligand/Receptor pairs were considered significantly different if the p < 1.0×10−4. 

Ligand/Receptor pairs were then sorted by the adjusted ligand expression p-value. No 

statistical method was used to predetermine sample sizes, experiments were not 

randomized and mass cytometric analysis of samples was not blinded. No data were 

excluded from the analyses. Each patient is considered an independent biological 

sample in the analyses. For comparison of differential abundance analysis of mass 

cytometry data, the edegR package (version 3.11) was used. 

 

Data Availability 

All raw data are publicly available without restrictions. All mass cytometry data used for 

this publication have been deposited in the FlowRepository. All fcs files of tissue (tumor 

and adjacent normal) have been uploaded to FlowRepository Experiment FR-FCM-

Z2S4 and PBMC files have been uploaded to FlowRepository Experiment FR-FCM-

Z2S3. Single cell RNA sequencing data with clinical metadata are available at NIH 

dbGAP database under the accession phs002071.v1.p1. Deidentified single cell RNA 

sequencing data are available at NIH GEO database under the accession GSE155698. 

Source data are available for this study. All other data supporting the findings of this 

study are available from the corresponding author on reasonable request. 

 

Code Availability 

Code is publicly available on GitHub.com (https://github.com/PascaDiMagliano-

Lab/MultimodalMappingPDA-scRNASeq). 

https://github.com/PascaDiMagliano-Lab/MultimodalMappingPDA-scRNASeq
https://github.com/PascaDiMagliano-Lab/MultimodalMappingPDA-scRNASeq
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Multiplex fluorescent immunohistochemistry (mfIHC) imaging, cell segmentation, and 

basic phenotyping 

Images were taken using the Mantra™ Quantitative Pathology Work Station (Akoya 

Biosciences) as described in the Online Methods. One image was taken of each patient 

core. All cube filters were used for each image capture (DAPI, CY3, CY5, CY7, Texas 

Red, Qdot) and the saturation protection feature was utilized. After all images were 

acquired, images were analyzed using inForm® Cell Analysis™ software versions 2.3.0 

and 2.4.2 (Akoya Biosciences). Using this software, chronic pancreatitis specimens and 

PDA specimens were batch analyzed by their separate diagnoses. Cell segmentation 

was completed using DAPI as a basis of cell location and size and all cells segmented 

into the following subsets (nucleus, cytoplasm, and membrane). Using the automated 

training software, basic phenotypes (T cells, tumor epithelial cells, other cells, CD163+ 

cells) were created. Software output consisting of mean fluorescent intensity (mfi) of 

each antibody-fluorophore pair, basic phenotypes, and x and y coordinates were 

acquired for further processing. A total of 34 chronic pancreatitis patients and 71 PDA 

patients were included in this study. Supplemental Table 2.3 details the antibodies used 

for mfIHC. 

 

Cytometry Time-of-Flight (CyTOF) Immune Phenotyping 

Tissues were mechanically minced and enzymatically digested with collagenase P 

(1mg/mL DMEM) at 37 degrees Celsius with gentle shaking and subsequently filtered 

through a 40μm mesh to obtain single cells. Whole blood was collected pre-operatively 
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into two 10mL EDTA tubes. EDTA tubes were inverted 10 times before centrifugation at 

room temperature (RT), 1700 × g for 20 minutes. Serum was removed and using a 

P1000 tip, the white layer of PBMCs at the interface between serum and RBCs was 

removed and placed into 15mL falcon tube. PBMCs were washed in 3X volume PBS 

centrifuged at RT, 300 × g for 15 minutes. Following centrifugation, the supernatant was 

removed, and 10ml ACK lysis buffer was added to lyse RBCs for 10 minutes at RT. 

Following this, PBMCs were centrifuged at 300 × g for 5 minutes. PBMC and tissue 

samples were washed twice with MaxPar® PBS (Fluidigm) prior to Cell-ID™ Cisplatin 

(Live/Dead staining). Cell-ID™ Cisplatin reagent (1.67μM) was incubated with tissue 

and PBMCs single cell suspensions for 5 minutes at RT. To quench this reaction, 4mL 

of Cell Staining Buffer (Fluidigm) was added to each sample and samples were 

centrifuged at 300 g for 5 minutes. The supernatant was removed, and cells were 

washed with 2 mL of MaxPar® Cell Staining Buffer. Cell fixation was achieved by 

removing the supernatant, and re-suspending the cell pellet in residual volume, prior to 

the addition of freshly prepared cell fixation buffer (1.6% Methanol-free Formaldehyde; 

Thermo Fisher 28906 in MaxPar® PBS) for 10 minutes at RT. After fixation, samples 

were washed twice with 2mL of MaxPar® Cell Staining Buffer and centrifuged at 300 g 

for 5 minutes. Samples were re-suspended in 1mL MaxPar® Cell Staining Buffer and 

stored at 4 degrees Celsius for up to one week prior to staining. Up to 3 million cells per 

sample were stained with cell surface antibody cocktail (All antibodies were purchased 

from Fluidigm and used at the following dilutions: (CD3 (1:200); CD19 (1:300); CD15 

(1:400); CD163 (1:100); CD64 (1:100); CD16 (1:400); LAMP1 (1:100); CD66b (1:200); 

CCR2 (1:200); TIGIT (1:100); PD-1 (1:100); PD-L1 (1:100); CD8a (1:200); CD33 
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(1:200); CD45RO (1:200); CD34 (1:100); CD45RA (1:100); CD206 (1:100); CD25 

(1:100); CTLA-4 (1:100); CD68 (1:100); PD-L2 (1:100); HLA-DR (1:400); CD14 (1:100); 

CD4 (1:100); CD11b (1:200); CD45 (1:200); LAG3 (1:100); CD23 (1:100); CD56 

(1:100)). (see Supplemental Table 2.1 for additional antibody information) in 100μl 

volume of MaxPar® Cell Staining Buffer for 30 minutes at room temperature. After being 

washed once in 1mL MaxPar® Cell Staining Buffer cells were re-suspended in 2mL cell 

intercalation solution (125 nM Cell-ID Intercalator-Ir in MaxPar® Fix and Perm Buffer) 

and shipped to either the Flow Cytometry core at the University of Rochester Medical 

Center or the Indiana University Simon Cancer Center Flow Cytometry where CyTOF2 

Mass Cytometer cell acquisition was performed. 

 

CyTOF Data Preprocessing 

Normalized FCS files were analyzed using the Premium CytoBank Software V7.3.0 

(cytobank.org). Data were checked for quality of staining and normalized by the use of 

internal bead standards. Live singlet cells were identified using the combination of Ir191 

DNA Intercalator, Event Length, and Pt195 Cisplatin staining intensity channels. Filtered 

live single cells were exported as new FCS files for downstream analysis. 

 

CyTOF Analysis 

Unbiased identification of cellular subpopulations was performed in parallel using 

multiple approaches – visualization through FlowSOM-viSNE in R, where an initial 

FlowSOM clustered cells into 100 initial nodes, followed by the ConsensusClusterPlus 

package which, along with manual annotation helped to further consolidate the clusters 
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based on cell surface marker expression (Nowicka et al. 2019), or Astrolabe Cytometry 

Platform (Astrolabe Diagnostics, Inc.), where single-cell data was clustered using the 

FlowSOM R package (Van Gassen et al. 2015) and labeled using the Ek’Balam 

algorithm (Amir et al. 2019). The hierarchical clustering for all heatmaps uses the 

Pearson’s correlation as a distance metric. Differential abundance analysis was 

performed using the edgeR V3.11 R package (Mccarthy, Chen, and Smyth 2012; 

Robinson, Mccarthy, and Smyth 2010). We used a combination of manual gating 

validation and unbiased approaches to analyze our datasets and included samples with 

>3000 live singlets in clustering algorithms. 

 

Treatment of Batch Effects 

In order to avoid batch effects within the data analysis, the Astrolabe Cytometry 

Platform did not compare numerical intensities between samples (Amir et al. 2019). 

Each sample was analyzed separately, and then comparisons were done using either 

cell frequencies (such as comparing T Cell counts) or qualitative values (“CD3 high” 

versus “CD3 low”). The underlying assumption was that a given subset was the same 

regardless of if underlying marker intensity has shifted; in other words, a T Cell was 

defined as a T Cell whether the CD3+ peak was centered around a transformed intensity 

of 4, or a transformed intensity of 6. This mirrors the approach utilized in manual gating 

analysis. 

 

t-SNE Visualization 
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For the t-SNE maps, each sample was uniformly downsampled into at most 10,000 

cells. Samples were then concatenated, and the complete data set was uniformly 

downsampled into at most 500,000 cells. t-SNE algorithm was run using the Rt-SNE 

package: https://github.com/jkrijthe/Rt-SN. 

 

Single-cell RNA sequencing 

Tissues were mechanically minced and enzymatically digested with collagenase P 

(1mg/mL DMEM) and subsequently filtered through a 40μm mesh to obtain single cells. 

Dead cells were removed using MACS® Dead Cell Removal Kit (Miltenyi Biotec Inc.). 

Single-cell cDNA libraries were prepared and sequenced at the University of Michigan 

Sequencing Core using the 10x Genomics Platform. Samples were run using paired 

end 50 cycle reads on HiSeq 4000 or the NovaSeq 6000 (Illumina) to a depth of 

100,000 reads. The raw data were processed and aligned by the University of Michigan 

DNA Sequencing Core. Cellranger count version 3.0.0 with default settings was used, 

with an initial expected cell count of 10,000. In all cases the hg19 reference supplied 

with the cellranger software was used for alignment. R Studio V3.5.1 and R package 

Seurat version 3.0 was used for single cell RNA-seq data analysis similarly as previous 

described. Data were initially filtered to only include all cells with at least 200 genes and 

all genes in greater than 3 cells. Data were initially normalized using the NormalizeData 

function with a scale factor of 10,000 and the LogNormalize normalization method. 

Variable genes were identified using the FindVariableFeatures function. Data were 

assigned a cell cycle score using the CellCycleScoring function and a cell cycle 

difference was calculated by subtracting the S phase score from the G2M score. Data 
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were scaled and centered using linear regression on the counts and the cell cycle score 

difference. PCA was run with the RunPCA function using the previously defined variable 

genes. Violin plots were then used to filter data according to user-defined criteria. All 

tissue samples were batch corrected through the R package Harmony V1.0 

(https://github.com/immunogenomics/harmony). Harmony is a flexible multi-dataset 

integration algorithm for scRNA-seq by correcting the low-dimensional embedding of 

cells from principal component analysis (PCA). It first uses soft clustering to find 

potential clusters, and then uses a soft k-means clustering algorithm to find clusters that 

favors the cells from multiple datasets and penalizes for any specified unwanted 

technical or biological factors. It then learns a simple linear adjustment function by 

computing cluster-specific linear correction factors, such as individual cell-types and cell 

state, from the cluster-specific centroids from each dataset. Each cell is weighted and 

corrected by its cell-specific linear factor. It then iterates the clustering and correction 

until the cell cluster assignments are stable. We used Harmony V1.0 to integrate our 

scRNA-seq patient data, correcting for individual scRNA-seq Run IDs (as each 

individual patient was each their own Run ID). Cell clusters were identified via the 

FindNeighbors and FindClusters function using a resolution of 1.2–2 for all samples and 

Uniform Manifold Approximation and Projection (UMAP) clustering algorithms were 

performed. FindAllMarkers table was created and clusters were defined by user-defined 

criteria. Code is publicly available on GitHub.com (https://github.com/PascaDiMagliano-

Lab/MultimodalMappingPDA-scRNASeq). 

 

Interactome 
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Ligand and receptor pairs were defined based off of a curated literature supported list in 

(Ramilowski et al. 2015). The average of expression of ligands and receptors (LR) in all 

the population for each group were calculated. LR pairs in each group (adjacent/normal 

and PDA) were determined to be expressed by setting the median average expression 

for all groups as a threshold. LR’s above the threshold were considered as expressed in 

the group. LR pairs were then filtered out if the ligand and receptor in the LR pairs were 

not expressed in both groups. Differences of the LR’s between groups were determined 

using Wilcoxon ranked test, and p-values were adjusted for multiple comparisons with 

the Bonferroni correction method. LR’s were considered significantly different if the p < 

1.0×10−4. LR pairs were then sorted by the adjusted ligand expression p-value. The 

interactomes were visualized using the Circos software V0.69-9 and the heatmap 

values within the circos plots displays the average expression of each ligand/receptor 

within the PDA tissues (Krzywinski et al. 2009). 
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Chapter 3: Characterization of the Tumor Microenvironment of Pancreatic Liver 
Metastases 

Summary 

 Pancreatic cancer is a deadly malignancy that is often only diagnosed as 

metastatic disease. Previous studies have primarily focused on the metastatic potential 

of primary tumors. These studies have characterized PDA as an aggressive, early 

metastasizing disease, prompting the need to better understand the biology of PDA 

metastases. Here, we perform single cell RNA sequencing on biopsies of human PDA 

liver metastases. We use the transcriptome of the cells captured and compare them to 

adjacent normal pancreas and PDA primary tumor samples. We identified the diverse 

population of cells that make up the LM TME and compared their transcriptomes to their 

counterparts in the PDA TME. We found that fibroblasts and myeloid cells have 

increased expression of pro-metastatic genes, decreasing expression of certain 

immunomodulatory genes present in the primary PDA TME. We found that there are a 

higher percentage of exhausted CD8 T cells in the LM TME and that the exhausted 

CD8 T cells express higher levels of exhaustion markers. Finally, we perform putative 

ligand-receptor interactome mapping, visualizing ligand-receptor pairs that are 

upregulated in the LM TME versus the PDA TME. We find that there are many 

mechanisms of immune suppression with potential to be activated between the multiple 

cell populations present in the LM TME. The goal of this work is to better characterize 

the LM TME using scRNAseq to find potential mechanisms of immune suppression to 
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validate in tissue samples to determine which mechanism is the primary driver of 

immunosuppression in the LM TME. Once the mechanism is determined, treatment 

plans can be developed to overcome immune suppression in both the primary and 

metastatic tumors to increase the efficacy of treatment systemically.  

Introduction 

Metastasis is the process by which tumor cells disseminate from the primary and 

grow in a secondary location [see review:(Welch and Hurst 2019; Lambert, 

Pattabiraman, and Weinberg 2017)]. The process of metastasis is highly inefficient as 

the metastatic cancer cells may encounter a variety of cellular environments different 

than the primary tumor they originate from and are subject to a variety of barriers and 

environmental stressors. This inefficiency can be overcome however, resulting in 

metastatic growth that is the primary cause of cancer related mortality. There are many 

sub-processes involved in formation of metastases, termed the invasion-metastatic 

cascade. The invasion-metastatic cascade begins within the primary tumor aberrantly 

activating pathways that promote the dissociation of cells from the primary tumor. This 

includes processes such as angiogenesis, immune suppression, and secretion of 

factors that can create a pre-metastatic niche, the modulation of a distal 

microenvironment that makes the site amenable to metastatic growth. Next, the tumor 

cells must disseminate from the primary tumor and leave the local microenvironment. 

This step is often aided by a process called epithelial-to-mesenchymal transition (EMT). 

Solid tumors are generally epithelial-like, expressing proteins like cadherins and 

keratins, proteins important in maintenance of cellular structure and cell-to-cell 

adhesion. EMT describes the process whereby tumor cells decrease expression of 
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these structural proteins in favor of proteins found in more motile cells, endowing 

increased migration capacity. The tumor cells then leave the local environment, either 

invading adjacent organs or intravasating into the body’s lymphatic or circulatory 

systems. To complete the process of metastasis, the tumor cells must enter the 

secondary location and successfully colonize the new site. The requirements for 

successful colonization and growth differ between cancers and specific organs, but one 

observed process is the re-expression of epithelial markers in tumor cells at the 

secondary site, termed the mesenchymal-to-epithelial transition (MET). Different types 

of cancers demonstrate different organ tropism, preferentially growing in certain organs 

due to either physical factors, such as proximity and connection via vasculature, or due 

to the biological properties of the organ being more easily amenable to supporting 

metastatic growth. Metastasis introduces additional complexity to the successful 

treatment of cancer. Firstly, the distant colonization renders all forms of local therapy, 

such as radiation therapy and surgical resection, ineffective. Secondly, the 

microenvironment of the metastatic site may confer different selective pressures to the 

metastases, resulting in a metastatic tumor with different mutational and phenotypic 

properties than the primary tumor (Yachida et al. 2010; Campbell et al. 2010; Stein et al. 

2019). Regardless of the primary tumor, advanced metastatic disease has proven to be 

incurable by current treatment regiments.  

Pancreatic cancer is most frequently diagnosed when the disease is at the 

metastatic stage, commonly metastasizing to the liver, peritoneum, and lung (Siegel et 

al. 2021) [see review:(Mizrahi et al. 2020)]. There are many hypotheses to explain this. 

First, there is difficulty in diagnosing early disease due to a lack of specific symptoms 



 
 

88 

and biomarkers. Then, given that the only curative treatment is surgery, there is the 

possibility of unresected margins and/or undetectable microlesions. However, even 

surgical resection only has a five-year survival rate on 10-20%. The possibilities 

become even more complicated once metastasis is considered. There is evidence for 

and against early metastasis of PDA. Creating a phylogenetic tree detailing the series of 

mutations or epigenetic events that need to occur between the oncogenesis of the very 

first PDA tumor cell and the cell that make up the metastases portray PDA at an 

incredibly late metastasizing tumor, suggesting a decades long window for surgical 

resection (Campbell et al. 2010; Yachida et al. 2010). However, mathematical modeling 

using the growth kinetics and dissemination of PDA from patient data determined that 

cells bearing metastatic potential arose early in the primary tumor and that even 

patients that were diagnosed early enough to receive surgery would have harbored 

metastases at the time of diagnosis (Haeno et al. 2012; Rhim et al. 2012). Given the 

prevalence of metastases in PDA patients, it is important understand the biology of PDA 

tumor metastases. 

 Primary PDA tumors demonstrate activation of many pro-metastatic pathways 

[see review:(Kalluri and Weinberg 2009)]. KRAS, the most frequently mutated driving 

oncogene in PDA, regulates multiple pathways that can promote metastasis such as the 

PI3K and NF-κB pathways [see review: (Wang et al. 2021)]. While there are conflicting 

reports about the role of EMT and the specific EMT-inducing transcription factors 

involved in PDA, there is evidence that disseminated PDA tumor cells express more 

mesenchymal markers than primary tumor cells, regaining expression of epithelial 

markers (Rhim et al. 2012; Zheng et al. 2015; Aiello et al. 2016). Additionally, like the 
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primary PDA tumor, PDA metastases also demonstrate a similar infiltration of fibroblasts 

and immune cells. However, unlike the primary PDA tumor, the specific composition of 

the subpopulations present in the metastatic PDA TME is different than the primary 

tumor (Aiello et al. 2016). Here, we further characterize the differences between the 

primary and metastatic PDA TME, using single cell RNA sequencing to identify 

populations present in both TMEs and compare the transcriptomes of those populations 

to gauge similarities and differences in the functions of the cell types present. Our study 

offers preliminary insight into the transcriptional changes that occur between cells 

polarized by primary tumor cells and metastatic tumor cells, demonstrating the need to 

better understand the biology of PDA metastases to decide on systemic treatments that 

would be efficacious against both the primary tumor and metastases. 

Results 

Single cell RNA sequencing reveals a complex immune landscape with heterogenous 

expression of immune checkpoints and ligands in liver metastases of pancreatic cancer 

We performed single cell RNA sequencing (scRNA-seq) on 16 primary PDA (PD) 

samples, 3 adjacent/normal (Adj/Norm) pancreas samples, and 5 PDA liver metastases 

(LM) (Figure 3.1A). To define the cell populations, we processed the data as previously 

described and identified the population clusters based on published lineage markers 

(Figure 3.1A and 3.1B) (N. G. Steele et al. 2020). We previously profiled the average 

expression of immune checkpoint receptors and ligands by cell types in the primary 

samples and found expression of multiple immune checkpoint receptors in T cells, with 

enriched expression of their cognate ligands expressed on myeloid cells. We similarly 
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profiled expression of immune checkpoint genes in the liver metastases. Similarly to the 

primary tumor, the CD8 and CD4 T cells in the liver metastases expressed TIGIT and 

PDCD1. LAG3 is more highly expressed in CD8 T cells and low in CD4 T cells. CTLA-4 

expression was high in CD4 T cells and low in CD8 T cells. The cognate ligands of 

these immune checkpoints are expressed on multiple other cell types. Epithelial cells, 

fibroblasts, and endothelial cells express TIGIT ligand PVR. PD-1 ligand CD274 is 

expressed on myeloid cells, B and plasma cells, and appears to be expressed on CD4 

and CD8 T cells in the liver metastases. LAG3 binds to the MHC-II proteins, of which 

HLA-DQA1 is expressed on myeloid, B and plasma cells. CTLA-4 ligands CD80 is 

expressed on myeloid cells, B cells, and CD4 T cells, and CD86 is expressed on 

myeloid cells. Combining this data with protein level expression would be necessary to 

confirm these findings. Next, we wanted to understand the expression of genes within 

specific subsets of cells.   

Figure 3.1 The TME of liver metastases recapitulates the immunosuppressive TME of primary PDA 
tissue 

(A) UMAP on 3 adjacent/normal pancreas (left) and 16 PDA patient (middle) tissues and 5 LM patient 
(right) tissues. Populations identified as follows: T cell (dark blue), epithelial (red), fibroblasts (green), B 
cells (brown), plasma cells (yellow), mast cells (purple), myeloid (orange), endothelial cells (hot pink), 
acinar (pink), and nerves (blue-grey). (B) Dot plot of key markers used to define the identified cell 
populations. Color of dot represents average expression, while the size of the dot represents percent 
expression. Dot plot represents merged n=3 adj/norm patients and n=16 PDA patients and n=5 LM 
patients gene expression of lineage markers. (C) Average expression of immune checkpoint ligands and 
receptors in the identified cell populations in n=5 LM tissue samples. 
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Fibroblasts in PDA liver metastases upregulate pro-metastatic genes compared to 

primary PDA tumors 

Fibroblasts are a major part of the primary PDA TME that have heterogenous 

subpopulations with distinct functions and characteristics. We sought out to characterize 

whether the cancer associated fibroblast (CAF) populations in the LM TME were similar 

to the populations found in the PDA TME [see review:(Biffi and Tuveson 2021)]. To 

define the cell populations, we processed the data as previously described and 

identified the fibroblast populations based on previously published markers (N. G. 

Steele et al. 2020; Nina G. Steele et al. 2021). We found the same populations as 

previously described, myCAFs, iCAFs, and apCAFs, additionally discovering a subset of 

pericytes (Figure 3.2A and 3.2B). We then performed differential expression analysis of 

the four populations to confirm their identity based on expression of genes related to 

their previously reported functions in the PDA tumor. Pericytes expressed pericyte 

specific genes such as RGS5 and FABP4 (Figure 3.2A-C). myCAFs are myofibril-like 

CAFs that function in depositing ECM in the PDA TME. As expected, many of the top 

expressed myCAF genes are ECM genes such as COL10A1, LUM, COL1A2, COL3A1, 

COL1A1, and COL11A1 (Figure 3.2C). iCAFs are inflammatory CAFs that function in 

secretion of immunomodulatory ligands, typically resulting in the promotion of an 

immunosuppressive TME in PDA. While genes for immunosuppressive ligands are 

present, such as CXCL12, the top most differentially expressed genes were involved in 

the complement system, C7 and C3 (Figure 3.2C). The final population of CAFs are the 

antigen-presenting CAFs, a rare population of MHC expressing CAFs, the function of 

which are still being elucidated. apCAFs are present in the LM, but differential 
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expression analysis did not reveal any expected expression of MHC in the apCAF 

population. We then performed differential expression analysis of the AdjNorm, PDA, 

and LM populations. We selected a few significantly (padj. > 0.05) differentially 

expressed genes to highlight potential differences between CAFs in the PDA and LM 

TMEs. We found that there was an increase in pro-metastatic genes in the LM CAFs. 

POSTN, VEGFC, and LOXL2 were increased in the LM CAF populations compared to 

PDA and AdjNorm, specifically being highly expressed in the myCAF population (Figure 

3.2D and Supplemental Figure 3.1A). This demonstrates that while the cell types may 

be present and broadly phenotypically similar, they may have different nuances 

depending on the specific environmental niche they exist in. 

Figure 3.2 LM Fibroblasts express higher levels of metastasis supportive genes 

(A) UMAP on 3 adjacent/normal pancreas (left) and 16 PDA patient (middle) tissues and 5 LM patient 
(right) tissues. Populations identified as follows: myCAF (dark green), iCAF (light green), apCAF (teal), 
and pericytes (pink). (B) Dot plot of key markers used to define the identified cell populations. Color of dot 
represents average expression, while the size of the dot represents percent expression. Dot plot 
represents merged n=3 adj/norm patients and n=16 PDA patients and n=5 LM patients gene expression 
of lineage markers. (C) Single cell resolution heatmap analysis of top 20 genes for each identified 
fibroblast subset. (D) Panel of genes differentially expressed in fibroblasts in LM tissue (red) compared to 
primary PDA tissue (blue) adjacent/normal pancreas (black). Plots represent n=3 adj/norm and n=16 PDA 
patients and n=5 LM patients. Violin plots are shown as normalized expression. All violin plots in have an 
adjusted p-value of p<0.05 and are considered statistically significant. 
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Myeloid cells in PDA liver metastases upregulate pro-metastatic genes and express 

less immunomodulatory genes compared to primary PDA tumors 

Myeloid cells demonstrate major immunosuppressive functions in the PDA TME. 

The myeloid cells found in the PDA TME are often polarized or recruited by the PDA 

tumor cells promote a more immunosuppressive phenotype.  We sought out to 

characterize the myeloid populations in the LM TME and determine their polarization 

state and function. To define the cell populations, we processed the data as previously 

described and identified the fibroblast populations based on previously published 

markers (Elyada et al. 2019; N. G. Steele et al. 2020). We found granulocytes, 

macrophages, classical monocytes, and dendritic cells (DC) (Figure 3.3A and 3.3B). We 

then performed differential expression analysis of the four populations to confirm their 

identity based on expression of genes related to their previously reported functions in 

the PDA tumor. Granulocytes expressed previously reported markers such as FCGR3B 

and CXCR2 (Figure 3.3C). Macrophages expressed previously reported markers such 

as APOE as well as a multiple completement genes C1QB, C1QA (Figure 3.3C) 

(Samantha B. Kemp, Carpenter, et al. 2021; Samantha B Kemp, Steele, et al. 2021). 

Dendritic cells function as antigen presenting cells, and subsequently express many 

antigen presentation component genes such as HLA-DPB1, HLA-DPA1, HLA-DQA1 

(Figure 3.3C). We next mapped immune checkpoint ligand expression with the various 

myeloid compartments. Some genes were more broadly expressed like HLA-DQA1, 

LGALS9, SIRPA, and CSF1R, while others were more specifically expressed like higher 

PVR in macrophages (Figure 3.3D). Next, we isolated the macrophage population to 
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determine the polarization status of the macrophage population. We found that the 

macrophages were extremely heterogenous in their expression, with some populations 

expressing high M1 pro-inflammatory markers such as HLA-DQB2 and IL2RA, while 

others expressing more M2 or TAM-associated markers such as MARCO and CCR2 

(Figure 3.3E)[see review: (Martinez and Gordon 2014)](Elyada et al. 2019; N. G. Steele 

et al. 2020).  We then performed differential expression analysis of the AdjNorm, PDA, 

and LM populations. We selected a few significantly (padj. > 0.05) differentially 

expressed genes to highlight potential differences between myeloid cells in the PDA 

and LM TMEs. We found that there was an increase in genes such as VCAN, CD52, 

CD36, S100A4, CD48, and CSF1R in the LM myeloid cells compared to PDA and 

AdjNorm (Figure 3.3F and Supplemental Figure 3.2A-B). These genes cover a wide 

array of functions related to metastasis, from anti-adhesion, to promotion and inhibition 

of angiogenesis, to both pro-inflammatory and anti-inflammatory functions [see reviews: 

(Wight et al. 2020; Rudnik et al. 2021; Febbraio, Hajjar, and Silverstein 2001; Helfman 

et al. 2005; Mcardel, Terhorst, and Sharpe 2016). There is a simultaneous decrease in 

expression of genes important in maintenance of immunosuppression in the primary 

PDA tumor, such as CD97, IL6R, CXCR2, SIRPA, and CSF3R [see review: (Safaee et 

al. 2013)]. The diversity and contradictory downstream functions of these genes 

demonstrate the need to better understand the LM TME to determine what the 

homeostatic phenotype of these antiparallel processes are. 

Figure 3.3 Myeloid cells in liver metastases express levels of metastasis supportive genes 

(A) UMAP on 3 adjacent/normal pancreas (left) and 16 PDA patient (middle) tissues and 5 LM patient 
(right) tissues. Populations identified as follows: macrophage (dark orange), monocyte (tan), granulocytes 
(orange), and dendritic cells (brown). (continued) 
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(continued) (B) Dot plot of key markers used to define the identified cell populations. Color of dot 
represents average expression, while the size of the dot represents percent expression. Dot plot 
represents merged n=3 adj/norm patients and n=16 PDA patients and n=5 LM patients gene expression 
of lineage markers. (C) Single cell resolution heatmap analysis of top 20 genes for each identified 
fibroblast subset. (D) Selected feature plots of the immune checkpoints, LGALS9, CD274, PVR, CSF1R, 
SIRPA, HLA-DQA1 in myeloid cells. (E) Selected feature plots of the macrophage polarization markers, 
HLA-DQB2, IL2RA, MARCO, and CCR2 in macrophages. Panel of genes differentially expressed in 
myeloid cells that are up in (F) LM or in (G) PDA tissue. LM expression (red) is compared to PDA 
expression (blue) and adjacent/normal pancreas expression (black). Plots represent n=3 adj/norm and 
n=16 PDA patients and n=5 LM patients. Violin plots are shown as normalized expression. All violin plots 
in have an adjusted p-value of p<0.05 and are considered statistically significant. 

CD8 T cells in PDA liver metastases demonstrate an exhausted phenotype 

We have previously shown that CD8 T cells are present in the PDA TME, but that 

the majority of CD8 T cells present demonstrate an exhausted phenotype (N. G. Steele 

et al. 2020). We sought out to determine if the CD8 T cells in the LM TME demonstrated 

a similarly exhausted phenotype. To define the cell populations, we processed the data 

as previously described and determined the phenotype of the CD8 T cells based on 

expression of specific functional markers (Wherry et al. 2007; N. G. Steele et al. 2020). 

We discovered four CD8 T cell populations, the majority of which demonstrate and 

Effect or Exhausted phenotype (Figure 3.4A and 3.4B). We then performed differential 

expression analysis of the four populations to confirm their identity based on expression 

of genes related to their previously reported functions. As expected Teff cells expressed 

genes like GZMB, the pro-apoptotic enzyme secreted by active CD8 T cells, while Tex 

expressed genes related to exhaustion such as GZMK, EOMES, AND TIGIT (Figure 

3.4C)(Wherry et al. 2007). We quantified the percentage of T cells we captured in our 

scRNA seq and found that there was a decrease in Teff from AdjNorm to PDA and LM, 

and that there was a significant increase in Tex between AdjNorm, PDA, and LM, with 

LM having the highest percentage of exhausted CD8 T cells (Figure 3.4D). We then 

performed differential expression analysis of the PDA, and LM populations. We selected 
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a few significantly (padj. > 0.05) differentially expressed genes to highlight potential 

differences between CD8 T cells in the PDA and LM TMEs. CD8 T cells in LM express 

a significantly higher amount of exhaustion genes than in the primary PDA tumor Figure 

3.4E). Having identified and characterized many of the cell types present in the LM 

TME, we wanted to determine mechanisms these cell types could signal to each other. 

Figure 3.4 CD8 T cells in liver metastases demonstrate an exhausted phenotype 

(A) UMAP on 3 adjacent/normal pancreas (left) and 16 PDA patient (middle) tissues and 5 LM patient 
(right) tissues. Populations identified as follows: Naïve CD8 T cell (blue), Teff (navy blue), Tex (light blue), 
and Tmem/pec (purple, bottom). (B) Selected feature plots of CD8 T cell phenotype markers, GZMK, and 
EOMES. (C) Single cell resolution heatmap analysis of top 6 genes for each CD8 T cell phenotype. (D) 
Quantitation of the percentage of CD8 T cell phenotypes (of total CD8 T cells) from scRNAseq of healthy, 
PDA, and LM patient tissue. Quantitation of data represent n=3 healthy, n=16 PDA, and n=5 LM patients. 
(E) Panel of genes differentially expressed in CD8 T cells that are up in LM tissue. LM expression (black) 
is compared to PDA expression (red). Plots represent n=16 PDA patients and n=5 LM patients. Violin 
plots are shown as normalized expression. All violin plots in have an adjusted p-value of p<0.05 and are 
considered statistically significant. 
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Predicted ligand receptor mapping shows immunosuppressive signaling networks 

upregulated in PDA liver metastases versus primary PDA tumors 

To identify potential signaling between cell populations in the LM TME, we 

applied a predicted interaction algorithm based on known ligand-receptor (LR) pairs 

interacting with high affinity. We curated the list to specifically add immune checkpoints 

and limit the receptor-ligand pairs to cytokines, chemokines and specific signaling 

pathways [for a comprehensive list, see Supplemental Table 2.7]. We first plotted all the 

receptor-ligand interactions that were statistically higher in LM versus PDA samples, 

based on the level of ligand expression. Then we visualized connections between 

expressed ligands or receptors on a single cell type and their cognate binding partners 

on other cell types, filtering connections based on ligand and receptor expression. First, 

we visualized connections between epithelial cells and the major myeloid and 

lymphocytic subtypes, demonstrating putative inhibitory immune checkpoint signaling 

between epithelial PVR and TIGIT on CD8 T cells, or signaling that would promote 

immunosuppression such as recruitment of myeloid derived suppressor cells (MDSCs) 

through the IL-8:CXCR2 interaction from epithelial cells and granulocytes (Figure 3.5A). 

Next, we visualized putative signaling between macrophages and lymphocytes, with 

potential engagement of inhibitory immune checkpoints HLA-DQA1:LAG3 with CD8 and 

CD4 T cells and LGALS9:HAVCR2 with CD4 T cells (Figure 3.5B). Next, we looked at 

the interactions between the iCAF and myCAF populations and their interactions with 

myeloid cells. The two populations largely express the same ligands, but iCAFs 

exclusively express CCL20, IL33, TNFSF14, IL6, IL11, DLK1, CXCL5, CXCL3, CCL8, 
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and CCL5 while myCAFs exclusively express CX3CL1 and DLL1 (Figure 3.5C). Finally, 

we plotted CD8 T cell receptors versus the non-immune compartment, lymphocytes, 

and myeloid cell compartment to highlight the various potential mechanisms of immune 

suppression upregulated in the LM TME. TIGIT, PD-1, and LAG3 are all potentially 

engaged by multiple cell types in the LM TME (Figure 3.5D).   

Figure 3.5 Predicted ligand receptor mapping shows putative signaling networks upregulated in 
liver metastases versus primary PDA tumors 

(A) Circos plot map of all putative ligand receptor interactions that are upregulated in LM epithelial cells, 
(B) macrophages, (C) iCAFs and myCAFs compared to PDA and visualized by circos plot. (D) Circos plot 
map of all putative receptor ligand interactions that are upregulated in LM CD8 T cells. Plotted using the 
Circos software V0.69-9 (circos.ca). The heatmap within the circos plots is the scaled average expression 
of each gene within PDA tissue cell populations. The interactions plotted are those in which the 
expression level of either the ligand, the receptor, or both are increased in expression in LM samples 
compared to PDA. 
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Discussion 

This work represents the first step towards deeper understanding of the human 

LM TME. Most of the work previously done on the metastatic TME was done in 

metastatic mouse models of pancreas cancer. Previous studies of PDA metastasis were 

performed following rapid autopsy programs where the cell integrity would not have 

been high enough to perform single cell transcriptome studies, and mostly relied on bulk 

RNA sequencing of patient derived cell lines or protein-level analyses such as 

immunohistochemistry or proteomics (Yachida et al. 2010; Campbell et al. 2010; Law et 

al. 2020). The importance of being able to analyze PDA metastasis at this level cannot 

be understated. That being said, transcriptomic data is only the first step in validating 

the function of the various cell types detected. CD4 T cells, for example, are incredibly 

hard to subtype using scRNAseq data. In Supplemental Figure 4.3A, the grouped CD4 

T cells demonstrate ligands for TH1, TH17, Treg, and TFH CD4 T cells. Proper 

identification of those subsets using flow cytometry or CyTOF are required in order to 

further complete this work. Protein-level verification is also necessary for any 

transcriptomic study, as there are many layers of regulation that occur after mRNA 

transcription that cannot be determined from a purely transcriptomic study. Even so, 

identification of potential pathways or genes of interest significantly narrow down the 

scope of work that needs to be done. Particularly interesting are the changes between 

the CAFs and myeloid cells between PDA and LM. First, protein level verification would 

be necessary to determine if the increased RNA-level expression results in increased 

protein expression. And if that is the case, culturing the fibroblasts or myeloid cells with 

media conditioned by a metastasis-derived PDA cell line vs a primary PDA cell could 
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determine if a secreted signaling from metastatic tumor cells is sufficient to increase 

expression of the protein of interest. If not, an overexpression vector can be knocked 

into an immortalized fibroblast cell line to determine the effect the upregulated protein 

has on the cell itself. If there is an increase in some cell signaling pathway, it would be 

interesting to co-culture the knock-in cells with primary PDA tumor cells and perform a 

motility/metastasis assay. This is just a hypothetical example of one way this data could 

be used. This major importance of this work is that it can be used to generate testable 

hypotheses that lead to translationally actionable targets. 

Materials and methods 

Study approvals 

For human research, this study included a dataset that included patients over the age of 

18 yr who received diagnostic endoscopic ultrasound for a suspected pancreas mass 

who were consented under the Institutional Review Board HUM00041280 (Two 

additional passes using a 22 Gauge SharkCore needle was performed for research 

once biopsy for clinical use was obtained). For surgically resected tissue, patients who 

underwent either Whipple of distal pancreatectomy were consented under Institutional 

Review Board HUM00025339. For liver metastasis samples, patients over the age of 18 

referred for percutaneous liver biopsy of a mass suspected to be metastatic PDA were 

consented according to HUM00025339. Up to 2 extra biopsies were taken for research. 

All patients provided written consent and procedures and studies performed were 

carried out in accordance to ethical standards. 

Single-cell RNA sequencing 
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Tissues were mechanically minced and enzymatically digested with collagenase P 

(1mg/mL DMEM) and subsequently filtered through a 40μm mesh to obtain single cells. 

Dead cells were removed using MACS® Dead Cell Removal Kit (Miltenyi Biotec Inc.). 

Single-cell cDNA libraries were prepared and sequenced at the University of Michigan 

Sequencing Core using the 10x Genomics Platform. Samples were run using paired 

end 50 cycle reads on HiSeq 4000 or the NovaSeq 6000 (Illumina) to a depth of 

100,000 reads. The raw data were processed and aligned by the University of Michigan 

DNA Sequencing Core. Cellranger count version 3.0.0 with default settings was used, 

with an initial expected cell count of 10,000. In all cases the hg19 reference supplied 

with the cellranger software was used for alignment. R Studio V3.5.1 and R package 

Seurat version 3.0 was used for single cell RNA-seq data analysis similarly as previous 

described. Data were initially filtered to only include all cells with at least 200 genes and 

all genes in greater than 3 cells. Data were initially normalized using the NormalizeData 

function with a scale factor of 10,000 and the LogNormalize normalization method. 

Variable genes were identified using the FindVariableFeatures function. Data were 

assigned a cell cycle score using the CellCycleScoring function and a cell cycle 

difference was calculated by subtracting the S phase score from the G2M score. Data 

were scaled and centered using linear regression on the counts and the cell cycle score 

difference. PCA was run with the RunPCA function using the previously defined variable 

genes. Violin plots were then used to filter data according to user-defined criteria. All 

tissue samples were batch corrected through the R package Harmony V1.0 

(https://github.com/immunogenomics/harmony). Harmony is a flexible multi-dataset 

integration algorithm for scRNA-seq by correcting the low-dimensional embedding of 
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cells from principal component analysis (PCA). It first uses soft clustering to find 

potential clusters, and then uses a soft k-means clustering algorithm to find clusters that 

favors the cells from multiple datasets and penalizes for any specified unwanted 

technical or biological factors. It then learns a simple linear adjustment function by 

computing cluster-specific linear correction factors, such as individual cell-types and cell 

state, from the cluster-specific centroids from each dataset. Each cell is weighted and 

corrected by its cell-specific linear factor. It then iterates the clustering and correction 

until the cell cluster assignments are stable. We used Harmony V1.0 to integrate our 

scRNA-seq patient data, correcting for individual scRNA-seq Run IDs (as each 

individual patient was each their own Run ID). Cell clusters were identified via the 

FindNeighbors and FindClusters function using a resolution of 1.2–2 for all samples and 

Uniform Manifold Approximation and Projection (UMAP) clustering algorithms were 

performed. FindAllMarkers table was created and clusters were defined by user-defined 

criteria. Code is publicly available on GitHub.com (https://github.com/PascaDiMagliano-

Lab/MultimodalMappingPDA-scRNASeq). 

Interactome 

Ligand and receptor pairs were defined based off of a curated literature supported list in 

(Ramilowski et al. 2015). The average of expression of ligands and receptors (LR) in all 

the population for each group were calculated. LR pairs in each group (adjacent/normal 

and PDA) were determined to be expressed by setting the median average expression 

for all groups as a threshold. LR’s above the threshold were considered as expressed in 

the group. LR pairs were then filtered out if the ligand and receptor in the LR pairs were 

not expressed in both groups. Differences of the LR’s between groups were determined 
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using Wilcoxon ranked test, and p-values were adjusted for multiple comparisons with 

the Bonferroni correction method. LR’s were considered significantly different if the p < 

1.0×10−4. LR pairs were then sorted by the adjusted ligand expression p-value. The 

interactomes were visualized using the Circos software V0.69-9 and the heatmap 

values within the circos plots displays the average expression of each ligand/receptor 

within the PDA tissues (Krzywinski et al. 2009). 

Statistics 

GraphPad Prism V7 software was used for graphical representation and statistical 

analysis. Two-tailed Student’s t-tests were performed. A P < 0.05 was considered 

statistically significant. Data are presented as means ± standard error (SEM). 

Differential expression analysis in single-cell RNA sequencing data was performed 

using Wilcoxon rank sum test, with adjusted P-values for multiple comparisons. 
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Chapter 4: Comparisons of the L-iKras and P-iKras Mouse Models Demonstrate 
the Effects of KRASG12D Inhibition on the Primary and Premetastatic TME 

 

Summary 

 Oncogenic Kras is a frequently mutated driver of cancer, including PDA and lung 

cancer. Creating drugs inhibiting the function of oncogenic KRAS is difficult and prone 

to the development of resistance. Our lab has previously generated and characterized 

the iKras model of PDA, a mouse model that allows for inducible, reversible expression 

of KRASG12D. This model demonstrated how dependent PDA is on oncogenic KRASG12D 

expression, as withdrawal of the oncogene results in tumor shrinking and can result in 

complete reversion to healthy pancreas. However, this model also demonstrated that 

withdrawal of KRASG12D does not lead to complete tumor clearance and that residual 

tumor cells can reactivate Kras signaling independently of induced expression, leading 

to tumor relapse. The iKras mouse model gives both a hopeful glimpse at the benefits of 

Kras inhibition, with the sobering reminder of how short lived those successes can be 

when evolutionary pressure is combined with high proliferation and high mutation rate. 

One potential mechanism of circumventing resistance to Kras inhibition is the co-

activation of an effective anti-tumor immune response. The adaptive immune system 

can systemically detect and kill any recognized tumor cells. Unfortunately, one of the 

functions of oncogenic Kras is the generation of an immunosuppressive TME. Work in 

our lab has previously described the immunosuppressive TME in primary tumors and in 
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liver metastases. Here, we generate an inducible, reversible mouse model of lung 

cancer to model the progression, regression, and relapse of KrasG12D driven tumors. 

Firstly, we characterize the lung iKras mouse model and analyze the immune infiltration 

upon oncogenic Kras expression and withdrawal. We compare the changes in the LC 

TME caused by local KRAS modulation to changes in the immune population caused by 

distal KRAS modulation using the P-iKras model. Finally, we compared the immune 

infiltration of the LC TME during initial tumor progression to the immune infiltration 

during tumor relapse. By characterizing and comparing these two models, we hope to 

better understand the mechanisms of immune suppression promoted by both local and 

distal oncogenic KRAS as well as during primary tumor growth and relapse to determine 

which treatment regimens will need to be combined to eradicate tumors and metastasis, 

and what second-line treatments could be used upon the development of resistance.  

Introduction 

 The mutational landscape of solid tumors has been described as a landscape 

made up of few mountains amongst multiple lower lying hills (Jones et al. 2008; Wood 

et al. 2007). The mountains represent the most frequently genes, typically the main 

oncogenic driver of the cancer, while the hills represent other genes important for 

progression that can vary due to pathway or functional redundancy, such as tumor 

suppressors. This is especially true for pancreatic cancer, where KRAS is the most 

mutated the gene, with the second most common mutations being a host of various 

tumor suppressor genes such TP53, SMAD4, and CDKN2A (Waddell et al. 2015). It 

was previously thought that KRAS was undruggable, but given its prevalence in multiple 

cancers, a massive effort was put towards making the undruggable druggable. Inhibitors 
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were designed against pathways downstream of KRAS, against the upstream 

mechanisms required for KRAS localization and signal transduction, and against KRAS 

itself. Some indirect inhibitors of KRAS were efficacious in certain contexts, with PI3K 

and MAPK inhibitors being commonly used. It was only recently that a direct inhibitor of 

KRAS was developed, and it is now FDA approved for treatment of Non-small cell lung 

cancer (NSCLC). However, this inhibitor only targets one specific point mutation 

encoding KRASG12C. There are multiple mutational hotspots on KRAS that can result in 

oncogenic activation. The codon 12 hotspot is the most frequently mutated codon on 

KRAS, with many of those point mutations able to drive cancer progression. KRASG12C 

is the most frequently mutated isoform of oncogenic KRAS in NSCLC, but even so the 

majority of NSCLC tumors are driven by non- KRASG12C isoforms (Cox et al. 2014). 

Another one of the major mutant isoforms of KRAS that can drive NSCLC is KRASG12D, 

which also drives most PDA tumors. Unlike KRASG12C, KRASG12D does not have an 

available inhibitor. It is important, then, to understand the biology of oncogenic KRAS, to 

develop strategies against the specific oncogenic properties of KRAS in lieu of a direct 

inhibitor.  

 Activation of KRAS is the first step in multiple signaling pathways. KRAS 

normally exists in an inactive state, but upon extracellular stimulation, KRAS becomes 

activated, promoting the phosphorylation of downstream pathways. Oncogenic KRAS 

mutations abrogate the need for the activation step, resulting in constitutive activation of 

KRAS signaling. Two of the most well-described downstream targets of KRAS signaling 

are the MAPK and PI3K signaling pathways. In the context of the MAPK signaling 

cascade, activated KRAS promotes dimerization and phosphorylation of RAF kinase. 
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Activated RAF can then phosphorylate downstream kinase MEK, which continues a 

kinase cascade that ultimately promotes cellular growth and proliferation. In the context 

of PI3K signaling, activated Kras promotes the formation of the PI3K complex, which 

phosphorylates plasma membrane lipids that result in the colocalization of kinases such 

as PDPK1 and AKT. AKT is then phosphorylated and becomes active, potentially 

activating multiple downstream targets involved in promoting survival and inhibiting 

apoptosis, proliferation, or cell migration. There have been inhibitors developed for 

these downstream targets, with multiple MEK and PI3K inhibitors (MEKi and PI3Ki) 

approved for use in the treatment of many cancers. While these inhibitors can be 

extremely efficacious, there are multiple mechanisms of resistance that can occur. The 

target proteins can mutate and prevent functional drug binding, non-classical pathway 

activation may occur, or another signaling pathway may become upregulated as a 

compensatory mechanism. For example, the YAP/HIPPO signaling pathway can 

function as a mechanism of escape from in primary PDA tumors (Kapoor et al. 2014). 

Development of mechanisms of resistance are common in any therapy, but when the 

mechanism that is being targeted is as adaptive as the evolutionary pressure exerted by 

a tumor, there is a greater possibility of success.  

 Reactivation of the immune system against tumors through immunotherapy can 

be used as a parallel treatment modality to targeting signaling pathways. Oncogene 

addiction refers to the dependency tumor cells have on the pro-growth, pro-survival 

signals derived from the driving oncogene. The mutational burden and/or metabolic 

stress that tumor cells experience would normally trigger any number of cell death 

pathways in cells that were not actively inhibiting cell death pathways and upregulating 
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survival pathways. Effective blocking of oncogenic signaling will result in the death of 

tumor cells. The death of tumor cells is always something to be celebrated, but this is 

especially true when there is an active immune response. Cell death triggers an 

immune response, prompting immune surveillance and clearance of dead tissue by 

phagocytes. This presents a great window of opportunity for development of an anti-

tumor immune response, as the phagocytosed tumor cells can lead to the detection and 

presentation of tumor neo-antigens which can be used to educate T cells to mount a 

productive T cell response. However, this concept is predicated on the assumption that 

the immune system can function properly in the TME. Unfortunately, it is known that 

oncogenic KRAS signaling promotes an immunosuppressive TME. Previous work in the 

lab has been done to characterize immunosuppression in human PDA, both at the level 

of the primary tumor and again within liver metastases (Steele et al. 2020). Both studies 

were carried out using established tumors, allowing for a comprehensive analysis of 

established tumors, but are not able to demonstrate the development of the 

immunosuppressive TME and what role KRAS has in promoting it. 

 The iKras mouse model accurately models the progression of PDA development 

and allows us to mimic the effect of KRAS inhibition on the PDA TME. Our lab 

developed an inducible, reversible model of KrasG12D driven PDA (Collins, Brisset, et al. 

2012; Collins, Bednar, et al. 2012). Using this model, we found that PDA tumor cells are 

dependent on oncogenic KRAS for survival and progression, and that upon KRAS 

withdrawal PanINs regress back to normal pancreatic tissue, and established tumors 

significantly shrunk. Additionally, we found that oncogenic KRAS is similarly required in 

the development and maintenance of the immunosuppressive microenvironment. This 
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was most apparent when we compared the regression of PanIN lesions from mice 

pancreata after 3 versus 5 weeks of oncogenic Kras expression. After 3 weeks of 

oncogenic KRAS expression, the pancreas was able to almost fully recover, but after 5 

weeks of oncogenic KRAS expression, a significant number of PanIN lesions remained 

after KRAS withdrawal, demonstrating that mechanisms against KRAS loss were 

already established in pre-invasive lesions. Having established the local effects KRAS 

has on the TME, we next wanted to understand the distal effects KRAS can impart on 

the microenvironment of the pre-metastatic niche.  

It is known that certain cancers preferentially metastasize to certain locations. 

For PDA, those sites are the liver, peritoneum, and lung. This phenomenon has been 

described as the “seed and soil” hypothesis, that certain distal tissues are more 

amenable to supporting the growth of a metastasis than other tissues. Whether this 

preference is due to ease of migration or due to favorable growth conditions is context 

and cancer specific. There is a large body of evidence, however, that shows that this 

preference is not entirely passive on the part of the primary tumor. Rather, there is 

active, distant remodeling of the microenvironment by the primary tumor, preparing the 

distant site for metastatic colonization. We can use the iKras model to detect distal 

remodeling of the pre-metastatic niche, but lung metastases in the iKras model are 

infrequent. While we lack a reliable model of lung metastasis, we hypothesized that 

local expression of oncogenic Kras from cells in the lung may demonstrate a similar 

effect to local expression of oncogenic Kras from metastasized pancreas cells in the 

lung. To this end, we generated a mouse model of lung cancer (LC) in the same vein as 

the iKras mouse model of PDA.  
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There was a previously developed lung cancer iKras (L-iKras) model that 

demonstrated progression and regression of LC upon expression of oncogenic 

KRASG12D(Fisher et al. 2001). Similarly to the PDA iKras (P-iKras) model, expression of 

KrasG12D is driven by doxycycline-induced binding of rtTA to the Tet operon upstream of 

KrasG12D. rtTA expression controlled by the CCSP promoter, a lineage marker of one of 

the cells of origin for LC (Jackson et al. 2001; Kim et al. 2005). Activation of oncogenic 

KRAS in the lung results in the infiltration of largely immunosuppressive immune cells 

(Ji et al. 2006; Lavin et al. 2017; Seo et al. 2018). Unlike the PDA iKras (P-iKras) model, 

there was almost complete regression to normal lung tissue regardless of the length of 

oncogenic KRAS expression. This is not unexpected, as the pancreas and lung have 

different functions and subsequently experience different levels of immune surveillance. 

The lung is a barrier organ while the pancreas is an internal secretory organ, so the 

removal of immune suppression in the lung has greater potential for anti-tumor immune 

activity. Yet, despite this immune presence, the expression of oncogenic KRAS locally 

and distally is sufficient to suppress an anti-tumor immune response that allows primary 

tumors to grow and metastases to seed.   

The aim of this work is to use the L-iKras and P-iKras models in tandem to 

understand the microenvironmental remodeling by KRAS in the lung, using the two 

models to dissect the local and distal effects of oncogenic KRAS on the lung 

microenvironment both during tumor progression as well as upon KRAS withdrawal. 

The goal of this study is to understand the tissue specific effects of KRAS in the primary 

tumor and the mechanisms of distal remodeling in lung metastases. By understanding 

the mechanisms of KRAS driven immunosuppression on a local and distal level, we can 
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find strategies to reverse the immunosuppression and promote clearance of both 

primary and metastatic tumors.   

Results 

The L-iKras model demonstrates the requirement of oncogenic KrasG12D in the 

maintenance of LC tumors 

 We generated the L-iKras mouse model by crossing CCSP-rtTA mice with TetO-

KrasG12D mice, resulting in double transgenic CCSP-rtTA;TetO- KrasG12D L-iKras mice 

(Figure 4.1A). Additionally, we crossed in L-iKras mice with an LSL-p53R172H cassette 

inserted into the endogenous p53 locus, allowing for expression of mutant p53 upon 

treatment with Adenoviral Cre (AdCre) (details in Materials and Methods). The CCSP-

rtTA cassette results in expression of rtTA in club cells (formerly known as Clara cells), 

one of the possible cells-of-origin for LC. rtTA remains inactive in the cell until 

doxycycline is supplied. Doxycycline activates the rtTA, which can then bind the Tet 

operon and initiate transcription of KrasG12D. This transcription can be reversed upon 

doxycycline withdrawal from supplying the mice with regular water. We had generated  

 

 

 

 

 

 

 

(A) The genetic makeup of the 
L-iKras mouse model of lung 
tumorigenesis with CCSP-
rtTA;TetO-KrasG12D;LSL-
p53R172H. (B) H&E staining of 
L-iKras murine lung after 20W 
treatment with doxycycline or 
with removal of doxycycline at 
indicated time points. 

Figure 4.1 The L-iKras mouse 
demonstrates Kras dependent 
tumor progress and 
maintenance 
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the P-iKras;LSL-p53R172H as previously described (Supplemental Figure 4.1A and 4.1B) 

(Collins, Brisset, et al. 2012; Collins, Bednar, et al. 2012). 

 

Next, we wanted to verify that the L-iKras model produced tumors in the lung as 

effectively as the previously described inducible model of KrasG12D driven LC. We used 

single transgenic mice containing only the CCSP-rtTA or TetO- KrasG12D cassette to 

confirm that doxycycline administration, expression of rtTA, and treatment with AdCre 

did not confer a noticeable phenotype to the mouse lungs. Additionally, we harvested 

the lungs of triple transgenic mice without doxycycline or AdCre to confirm that there 

was no aberrant expression of KRASG12D or p53R172H without the administration of 

doxycycline or AdCre. Neither condition demonstrated a significant phenotype in the 

lung. We administered doxycycline and/or AdCre to a cohort of mice and generated a 

survival curve (Supplemental Figure 4.1C). Multiple LC lesions were observed in L-iKras 

mice after 20 weeks of doxycycline treatment regardless of p53 status (Figure 4.1B left 

panel). As previously reported, withdrawal of doxycycline resulted in smaller tumors, 

with most tumors completely cleared one month after withdrawal of doxycycline (Figure 

4.1B middle and left panels). Having phenotypically confirmed the function of the L-

iKras;p53 model, we next sought to understand the changes that occur in the TME 

during progression and regression of the LC tumor.  

Local expression of oncogenic Kras in the L-iKras mouse model effects a change in the 

LC TME 

 We performed OPAL multiplex fluorescent immunohistochemistry (mfIHC) to 

understand the composition and spatial dynamics of the immune infiltration in L-iKras 
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mice upon modulation of KRAS expression. The ON context describes when L-iKras 

mice are treated with doxycycline until the treatment endpoint. The ON/OFF context 

describes when mice are initially given doxycycline until 20-24 weeks to allow for tumors 

to develop and are then taken off doxycycline for varying timepoints, allowing for tumors 

to regress or clear. We performed mfIHC with markers of epithelium (CK19), 

macrophages (F4/80), alternatively activated macrophages (ARG1), and CD8 T cells 

(CD3 and CD8) (details in Materials and Methods) (Figure 4.2A). One caveat to the data 

is that CK19 is also present on certain types of cells already present in the lung, so 

images were selected by their histological appearance rather than through more 

unbiased methods. Tumors were identified by their dense, disorganized mass of CK19+ 

cells versus the typically more spacious alveolar structures that make up the lung. 

However, it was not uncommon for an atypical structure such as a pinched bronchiole 

or tertiary lymphoid structure to be mistaken for a tumor lesion. Nonetheless, most of 

the images selected appeared to be LC tumors that were cleared after withdrawal of 

KRASG12D, as expected.  (Figure 4.2B). Next, we analyzed the population data that 

came from the phenotype maps. The presence of F4/80+ macrophages was decreased 

upon withdrawal of Kras compared to the percentage of macrophages in  (Figure 4.2C). 

While there was no significant change in the total number of T cells in the presence of 

KRASG12D, there was a surprising decrease in the percentage of CD8 T cells present 

after KRASG12D withdrawal (Figure 4.2D). The advantage of mfIHC is the ability to use 

the phenotype mapping to generate spatial data. We computed two parameters, 

engagement and mean distance (Supplemental Figure 4.2A). While there were no 

significant changes in mean distance between both CD8 T cells and epithelial cells or 
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macrophages, there was an observed decrease in engagement (Figure 4.2E and 

Supplemental Figure 4.2C). This data paints a very contradictory picture of T cell 

presence and function in the presence of KRASG12D in the L-iKras TME. T cells appear 

to be both present and engaged with tumor cells while simultaneously failing to initiate a 

productive tumor response. To explore this contradiction further, the exhaustion status 

of these T cells needs to be characterized.  

Figure 4.2 mfIHC reveals changes in the lung TME upon modulation of oncogenic KRAS 
(A) The OPAL mfIHC pipeline, using a tertiary lymphoid structure as example staining and phenotype 
mapping. (B) mfIHC composite images of formalin-fixed paraffin-embedded lung samples from L-iKras 
mice treated with doxycycline for 17w and removed from doxycycline for the indicated timepoints. 
Antibodies and colors are as followed: CK19 (teal), F4/80 (magenta), ARG1 (orange), CD3 (green), CD8 
(yellow) and DAPI (blue). (C) Comparison of the macrophage composition between triplicate pictures of 
n=3 ON mice and triplicate pictures of n=1 ON/OFF mice per timepoint. (D) Comparison of the T cell 
composition between triplicate pictures of n=3 ON mice and triplicate pictures of n=3 ON/OFF mice  
(E) Comparison of the %CTL-Mac and %CTL-Epithelial engagement. Asterisk denotes a p-value less 
than 0.05, 2 asterisks denote less than 0.001, determined by Two-way ANOVA.  
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Models of L-iKras tumor relapse demonstrate different immune composition to initial 

tumor growth 

 We performed mass cytometry (cyTOF) of L-iKras lungs in different contexts of 

tumor growth. After 4 weeks, the mice are put back on doxycycline, representing a 

tumor relapse caused by resistance to oncogene inactivation. We compared both 

groups to untreated, triple transgenic control or to doxycycline treated single transgenic 

mice. First, we performed H&E staining to confirm the presence of lesions in the ON 

and ON/OFF/ON context and no lesions in the control and low or small lesions in the 

ON/OFF context. Then we performed cyTOF on the lungs and analyzed the immune 

populations present in the ON and ON/OFF/ON context compared to the controls. There 

was a striking increase in the myeloid derived suppressor cell (MDSC) population 

between the ON group and the controls (Figure 4.3B). MDSCs are immunosuppressive 

myeloid cells characterized by dual expression of LY6G and LY6C. This increase was 

not observed in the ON/OFF/ON cohort, which did not demonstrate an increase in the 

MDSC population at all. Instead, there was a trend that indicated a higher population of 

B cells in the ON/OFF/ON group than in the ON group (Figure 4.3C). No other cell type 

detected demonstrated a difference between control, ON, or ON/OFF/ON contexts 

(Supplemental Figure 4.3A-C). This data highlights the importance of MDSCs in the 

primary LC tumors represented by the ON context, but the absence od MDSCs in the 

ON/OFF/ON context demonstrate that MDSC-derived immunosuppression is not the 

mechanism of immune suppression in the TME of a relapsing tumor represented by the 

ON/OFF/ON context. Having described the changes in the LC TME upon local 

KRASG12D modulation in primary tumor growth and relapse, we wanted to determine if 
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there were any changes to the lung microenvironment upon modulation of distal 

KRASG12D. 

 

Figure 4.3 The L-iKras ON/OFF/ON TME differs from the ON TME   

(A) H&E staining of iKras murine lung after 24 weeks treatment with doxycycline or 20 weeks with 
removal of doxycycline for 4 weeks. ON/OFF/ON mice were re-administered doxycycline for 4 weeks, 
resulting in tumor relapse. Triple transgenic (TT) mice were not treated with doxycycline. (B-D) Manual 
quantitation of MDSCs (LY6G+/ LY6C+), CD3+ T cells, and B cells. Manual gating included n = 5 control 
mice, n = 6 ON mice, and n = 4 ON/OFF/ON mice. Asterisk denotes a p-value less than 0.05 determined 
by two-sided Student’s t-test.  
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Distal expression of oncogenic Kras in the P-iKras mouse model effects a change in the 

lung microenvironment during early carcinogenesis 

 We performed flow cytometry on the lungs of P-iKras mice to assess if 

modulation of distally expressed KRASG12D effected the development of the 

premetastatic niche in the lung. Administration of doxycycline for three weeks resulted 

in a decrease in the CD8 T cells in the lung compared to control mice, demonstrating 

that even distally expressed KRASG12D can affect immune suppression in a systemic 

manner (Figure 4.4A right panel). Upon withdrawal of KRAS there was a temporal 

increase in both CD8 and CD4 T cells, resulting in a higher proportion of total T cells in 

the lung than in control mice (Figure 4.4A left and middle panels). There was no 

observed change in the proportions of macrophage or LY6G+/LY6C+ myeloid 

populations (Figure 4.4B).  Given the early prevalence of myeloid cells in the primary P-

iKras tumor and even the L-iKras primary tumor, this lack of a change in the myeloid 

population demonstrates that myeloid recruitment is not the mechanism of immune 

suppression at this early stage of setting up the premetastatic niche in P-iKras mice. 

Further characterization of the polarization states of the myeloid cells as well as the 

proportions of the other metastatic niche supporting cells needs to be performed.  

Figure 4.4 Modulation of KRASG12D expression in P-iKras pancreatic tissue effects immune cell 
populations in the lung 

(A-B) Flow cytometry analysis of immune cells, specifically T cells and CD11b+ myeloid cells as a 
percentage of total cells in control or P-iKras* lung at the indicated time points. n = 6-12 mice per group, 
shown as mean ± SD, multiple comparison ANOVA and multiple comparison Kruskal Wallis. 
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Discussion 

 While this project is still very much in its infancy, there are already some exciting 

implications for the work done. Characterization of the L-iKras model is a necessary 

baseline for designing future experiments. By understanding the mortality rate of the L-

iKras model, we can better design experiments to fit the life expectancy of our 

experimental mice. We have carried out some of these experiments already, changing 

the temporal activation and withdrawal of doxycycline to mimic specific tumor contexts. 

We have cohorts of mice that stay on doxycycline to model continuous, untreated tumor 
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progression, the ON cohort. The ON/OFF cohort mimics successful inhibition of 

KRASG12D and demonstrates the efficacy of inhibiting KRAS in both LC and PDA. This is 

important, as treatment with just inhibitors of MAPK signaling in the P-iKras model were 

efficacious in reversing tumor progression but did not promote tumor cell death, 

resulting in progression upon termination of inhibitor treatment (Collins et al. 2014). The 

ON/OFF/ON model is an effective model of KRASG12D inhibitor resistance, 

demonstrating tumor relapse upon reactivation of KRASG12D signaling. The preliminary 

characterizations from this study revealed some interesting immune phenotypes in the 

various LC TMEs. The prevalence of CD8 T cells in all stages of the tumor demonstrate 

a stark difference to the relative CD8 T cell paucity in PDA. In spite of CD8 T cell 

presence and engagement however, there is still tumor growth, hinting at an alternate 

mechanism of immune suppression. Previous studies have indicated that, similar to 

PDA, there is expression of myriad immune checkpoint proteins (Thommen et al. 2015). 

The expression of these proteins needs to be confirmed in the L-iKras model. While I 

have yet to analyze the data, we have already harvested cohorts of mice in the ON, 

ON/OFF, and ON/OFF/ON contexts for bulk RNA sequencing and a cohort of ON and 

ON-OFF mice for scRNA-Seq. The scRNA-Seq especially represents an exciting future 

development, as most of this work is focused on specific subsets of lymphocytes and 

myeloid cells, though previous studies have shown that the LC TME is as diverse and 

important to LC progression as the PDA TME is in PDA [see review: (Altorki et al. 2019)]. 

Comparison of a broader selection of cells present in the LC TME will be important to 

understanding the mechanisms of KRASG12D driven immune cell recruitment and 

immune evasion in the lung, furthering understanding of KRASG12D signaling in the lung, 
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as well as providing a comparison for how distal KRASG12D expression promotes 

metastasis in lung tissues. Additionally, we presently only have short term changes in 

the lung premetastatic niche. In the pancreas, the PanIN formation after 3 weeks of 

doxycycline administration can still recover to phenotypically normal pancreas, though 

there are lesions that remain after 5 weeks of doxycycline administration (Collins, 

Bednar, et al. 2012). If there is a different phenotype at 3 vs 5 weeks of local KRASG12D 

expression, it stands to reason that there may also be a similar shift in the lung 

premetastatic niche. It is also important to monitor changes in the lung premetastatic 

niche upon development of frank PDA and when there is metastatic growth in the lung. 

The L-iKras and P-iKras mouse models are invaluable models for understanding how 

KRASG12D signaling supports tumor growth, survival, progression, and relapse that can 

be used in designing combinations of first-line and second-line treatments to bolster the 

efficacy of KRASG12D inhibition and reduce the fatality of both primary LC and metastatic 

PDA. 

Materials and methods 

Mice 

All animals were maintained in accordance with the University of Michigan's Institutional 

Animal Care and Use Committee (IACUC) guidelines approved protocol.  

Doxy treatment 

Doxycycline was administered in the drinking water at a concentration of 500mg/L in 

sterile water and replaced every 3–4 days. 

Adenoviral-Cre administration 
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Stocks of Adenoviral-Cre are diluted in MEM with 10 mM CaCl2 to 3x107 PFU. 50 μL of 

diluted Adenovirla-cre is applied intranasally per mouse.  

Pancreas histology 

Pancreatic tissue from experimental and control mice were fixed in 10% neutral-

buffered formalin (FisherBrand) overnight and then embedded in paraffin and sectioned 

into slides. Embedding and sections were performed by the University of Michigan 

histology core or by Daniel Lang from Howard Crawford laboratory at University of 

Michigan. Hematoxylin and eosin (H&E) was performed as previously described (Collins 

et al. 2012). Microscope: Olympus BX53F microscope, Olympus DP80 digital camera, 

and CellSens Standard software.  

Lung harvesting scheme 

 

Lung tissue from experimental and control 

mice were perfused with sterile PBS. fixed in 

10% neutral-buffered formalin (FisherBrand) 

overnight and then embedded in paraffin and 

sectioned into slides. Embedding and 

sections were performed by the University of 

Michigan histology core or by Daniel Lang 

from Howard Crawford laboratory at University of Michigan. Hematoxylin and eosin 

(H&E) was performed as previously described (Collins et al. 2012). Microscope: 

Figure 4.5 Lung tissue harvesting schema  
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Olympus BX53F microscope, Olympus DP80 digital camera, and CellSens Standard 

software.  

Multiplex IHC staining 

Paraffin embedding for pancreatic tissue from experimental and control mice was 

performed by the University of Michigan histology core or by Daniel Lang from Howard 

Crawford laboratory at University of Michigan. Multiplex immunofluorescent staining was 

performed as follows. Slides were baked in a hybridization oven for one hour at 60 

degrees Celsius, cooled for 10 minutes at room temperature, then dipped sequentially 

(x3) into xylene for 10 minutes each for removal of paraffin. Slides were then rehydrated 

in alcohol with dilutions of 100%, 95%, then 70% for 10 minutes each followed by a 

wash in deionized water for 2 minutes. Slides were then placed in neutral buffered 

formalin for 30 minutes. The slides were then washed for 2 minutes in deionized water 

then microwaved at 100% power in Rodent Decloaker (Biocare Medical) for 30 

seconds, the power level was reduced to 20% and microwaving continued for an 

additional 10 minutes followed by a resting step of 15 minutes at room temperature. 

Microwaving continued at 10% power for an additional 10 minutes. Prior to microwaving 

with Rodent Decloaker, plastic wrap was secured on top of the microwave-proof slide 

box with rubber bands and a partial opening for steam escape to prevent loss of 

solution. After the last microwaving step, slides were left to cool until slides and solution 

achieved room temperature. The multiplex staining was performed for each primary-

color combination. Sides were placed in a deionized water wash for two minutes 

followed by a TBST wash for 2 minutes. Slides were placed in a slide incubation 

chamber and Bloxall was applied for 10 minutes followed by an additional blocking step 
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of 1% BSA (in TBST) for 20 minutes, primary antibody was applied after tapping slide to 

remove the primary antibody and was left to incubate for 1 hour, slides were washed in 

TBST (x3) for 2 minutes each, secondary antibody was applied, followed by TBST wash 

(x3) for 2 minutes each, Opal color was applied for 10 minutes and a TBST wash (x3) 

for 2 minutes each was performed. The slides were then microwaved with either AR6 or 

AR9 for 45 seconds at 100% followed by 15 minutes at 20%. The previous steps were 

then repeated for each of the following antibodies and Opal colors in exact listed order: 

F480 at 1:600 (abcam ab6640), CD3 at 1:400 (Dako A0452)-TSA 520, CD8 at 1:400 

(Cell Signaling 98941), Arg1 at 1:100 (Cell Signaling 93668), CK19 at 1:400 (Max Plank 

Institute Troma III). After the last application of multiplex was completed, sides were 

washed as above and placed in AR6, then microwaved. After cooling the slides were 

washed in deionized water followed by TBST for 2 minutes each. Opal spectral DAPI 

solution was applied (3 drops diluted in 1mL of TBST for 10 minutes followed by a wash 

in TBST for 30 seconds. Coverslips were mounted with Prolong Diamond, slides were 

left to lie flat overnight away from light. If the entire multiplex was not able to be 

completed without interruption, the slides were left in AR6 or AR9 after a microwaving 

step, covered from light until the next day. All primary antibodies were diluted in 1% 

BSA and all TSA Opal colors were diluted in TSA diluent at 1:50. 

Multiplex fluorescent immunohistochemistry (mfIHC) imaging, cell segmentation, and 

basic phenotyping 

Images were taken using the Mantra™ Quantitative Pathology Work Station (Akoya 

Biosciences) as described in the Online Methods. One image was taken of each patient 

core. All cube filters were used for each image capture (DAPI, CY3, CY5, CY7, Texas 
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Red, Qdot) and the saturation protection feature was utilized. After all images were 

acquired, images were analyzed using inForm® Cell Analysis™ software versions 2.3.0 

and 2.4.2 (Akoya Biosciences). Using this software, chronic pancreatitis specimens and 

PDA specimens were batch analyzed by their separate diagnoses. Cell segmentation 

was completed using DAPI as a basis of cell location and size and all cells segmented 

into the following subsets (nucleus, cytoplasm, and membrane). Using the automated 

training software, basic phenotypes (T cells, F4/80+ myeloid cells, CK19+ epithelial cells) 

were created. Software output consisting of mean fluorescent intensity (mfi) of each 

antibody-fluorophore pair, basic phenotypes, and x and y coordinates were acquired for 

further processing. A total of n = 3 L-iKras ON mice and n = 3 L-iKras ON/OFF mice 

were included in this study. Supplemental Table 2.1 details the antibodies used for 

mfIHC. 

Statistical Analysis and Reproducibility 

Significance was evaluated by the following statistical analyses: two-tailed, parametric, 

unpaired Student’s t-test, Student’s t-test with Welch’s correction, Wilcoxon rank-sum 

test, or a Mann–Whitney U-test in GraphPad Prism (version 7) or JMP Pro software 

(version 14). The data were presented as means ± standard error (SEM) or means ± 

standard deviation (STDV). A p value of p<0.05 was considered statistically significant. 

Flow cytometry 

Lung was harvested and disrupted to single cells by mincing the tissue finely using 

scissors and further disruption was completed using Collagenase IV (Sigma) for 30 

minutes at 37°C while shaking to release the cells. A 40um mesh strainer was used to 
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force the cells into single cells. RBC lysis buffer was used to lyse all the red blood cells. 

Cells were stained for surface markers using antibodies listed in Supplemental Table 

2.2. Cells were also fixed and permeabilized before intracellular staining using 

antibodies (Supplemental Table 2.2). Flow-cytometric analysis were performed on the 

Cyan ADP analyzer (Beckman coulter) and the ZE5 analyzer (Bio-Rad). Data was 

analyzed using the FlowJo v10 software. 
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Chapter 5: Discussion and Future Directions 
 

 The sum of this work is to generate and demonstrate the use of a single cell RNA 

sequencing study pipeline to study the complex TME of PDA. First, we performed 

scRNAseq of biopsies of human PDA (Steele et al. 2020). This was important as 

previous human studies could only be done on resected PDA tumors. As resection was 

only ever done on patients with locally, non-advanced disease, there was a major gap in 

resources for the field due to the lack of patient samples from the most common, 

metastatic disease. By using biopsies, we were able to use samples from patients at 

any staging. Additionally, we used a combination of high-resolution techniques to 

interrogate the data we received. scRNAseq allowed us to capture an almost unbiased 

glimpse at the transcriptomes of the individual cells present in the human PDA TME. 

We were able to verify the composition of human PDA with CyTOF and mfIHC. Then, 

we are able to use the scRNAseq data to generate hypotheses (Kemp et al. 2021; 

Steele et al. 2020; Nina G. Steele et al. 2021). In this work, we presented the work 

looking for the mechanism of immune checkpoint inhibition in human PDA. We were 

able to use the scRNAseq to phenotype the CD8 T cells in human PDA and identify 

TIGIT as a uniquely expressed marker on exhausted CD8 T cells. Then, using CyTOF 

and IF, we were able to verify expression of TIGIT and its cognate ligand PVR. Previous 

immunotherapy trials had failed in treating human PDA, specifically PD-1. Here, we 

show that TIGIT expression may be the primary mechanism of immunosuppression 
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rather than PD-1. Subsequent work has been done by other labs in the functional 

validation of TIGIT in human PDA from which clinical trials are being designed (Freed-

Pastor et al. 2021).  

We then applied this model to study liver metastases of PDA, using our pipeline 

to characterize the cell types present and their phenotypes. Again, using biopsies 

instead of tissue from rapid autopsies or from a tissue bank has allowed us to perform 

scRNAseq on tissue that has never been analyzed at this resolution by another lab. 

While the project is still in the protein verification step, once the scRNAseq data has 

been validated, we will be able to use the data to derive hypotheses about PDA liver 

metastases, filling another huge gap in the resources required by the field. Finally, we 

seek to understand more about lung metastases of PDA tumors.  

As there are no protocols for getting biopsies of human lung metastases, we 

used two mouse models we generated to gain understanding of the tumor in a different 

system. We previously generated the Pancreas-iKras mouse and have thoroughly 

characterized the importance of oncogenic KRASG12D signaling in that model (Collins, 

Brisset, et al. 2012; Collins, Bednar, et al. 2012; Collins et al. 2014). Here, we 

generated the Lung-iKras model and began characterizing the model in the context of 

lung cancer. Similarly to the P-iKras mouse model, the L-iKras mouse model 

demonstrates a requirement for KRASG12D in maintenance of the L-iKras tumor. We are 

still only beginning to characterize the changing L-iKras TME. We have even performed 

scRNAseq of L-iKras tumors, but the analysis of that data remains ongoing. We have 

some incredibly preliminary data demonstrating that modulation of KRASG12D in the P-

iKras mouse model results in a shift in the immune composition of the P-iKras lung. The 
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future directions for this project will be to describe the shift in the immune composition of 

the lung in the P-iKras model more thoroughly, to compare it to the shifts in the lung of 

the L-iKras mouse model. If the shifts in the immune composition are similar, we may be 

able to use the L-iKras mouse as a model for studying the requirement of KRASG12D in 

PDA lung metastases. Generating this mouse model will simultaneously fill two unmet 

needs. There are no inhibitors available for KRASG12D, so generating a model of 

inducible, reversible KRASG12D expression in the lung will help mimic the effects of 

KRASG12D inhibition to discover potential mechanisms of resistance to KRASG12D 

inhibition in lung cancer. Finally, the combination of these two mouse models could be a 

useful system for studying PDA lung metastases. If the TME of the distal P-iKras and 

the local L-iKras lungs are comparable, then the two autochthonous models can be 

used to test hypotheses about PDA metastases. It has previously been difficult to study 

metastases in PDA, but the result of this work is a good step forward in the 

development of tools to better understand this deadly malignancy. 
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Appendices 
 

Appendix 1: Supplemental Figures 

Supplemental Figure 2.1 CyTOF and multiplex fluorescent immunohistochemistry (mfIHC) 
mapping can be readily performed on patient tumor samples and show a heterogeneous immune 
infiltration in human pancreatic cancer.  

(A) Patient breakdown and tumor characteristics of CyTOF performed on 8 adj/norm pancreas and 10 
PDA tumor samples (surgical (7) vs. fine needle biopsy (FNB) (3)). (B) Representative H&E stains of 
samples DS20191258 (Adj/Norm), DS20191299 (PDA tumor from surgical resection), and DS20191324 
(PDA tumor from fine needle biopsy). (C) The ConsensusClusterPlus and FlowSOM R packages were 
used to define the initial 22 clusters identified in the tissue CyTOF samples. (D) Final heatmap 
demonstrating marker expression used to define cell populations. (E) mfIHC composite image of PDA 
(left). Phenotype map with the following basic phenotypes at their x and y coordinates: T cell (green), 
epithelial cells (pink), APCs (orange), other cells (grey) (right). (F) Relative cellular composition by 
quantitation of mfIHC of surgical PDA tissue DS20181166 (PDA tumor from distal pancreatectomy), 
DS20181121 (PDA tumor from distal pancreatectomy) (G) Corresponding mfIHC images of DS20181166, 
and DS20181121. 
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Supplemental Figure 2.2 Single Cell RNA Sequencing of PDA tissue reveals heterogeneous 
cellular composition and expression of immune checkpoints. 

(A) Single cell RNA sequencing tissue sample breakdown (Adj/Norm, PDA tissue from fine needle biopsy, 
and PDA tissue from surgical resection), patient clinical data, and tumor characteristics (grade and stage) 
(Left panel).  Breakdown of sequenced PBMC samples with corresponding patient clinical data (Right 
panel). (B) UMAP of the merged tissue colored by Patient ID prior to batch correction (Left panel) and 
post batch correction (Right panel). (C) UMAP of 3 individual adjacent/normal samples and (D) 16 PDA 
tissues. We distinguished two epithelial populations: tumor cells and acinar cells. In the non-epithelial 
compartment, we identified fibroblasts, CD8+ T cells, CD4+ T cells, Tregs, NK cells, B cells, plasma cells, 
mast cells, macrophages, granulocytes, dendritic cells, endothelial cells, and a small endocrine 
population. 
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Supplemental Figure 2.3 Single Cell RNA Sequencing of PDA PBMCs reveals heterogeneous 
cellular composition and expression of immune checkpoints.  
(A) Merged UMAP plots of PBMCs from 4 healthy donors and 16 PDA patients (total of 70,113 cells). CD8 
T cells (green), CD4 T cells (light green), NK cells (purple), pDCs (blue), Granulocyte (light orange), 
Monocyte (orange), B cells (yellow), Plasma cells (light yellow). (B) Dot plot analysis of key markers to 
define the 8 identified cell populations. Color of dot represents average expression, while the size of the 
dot represents percent expression.  (C) Average expression of immune checkpoint ligands and receptors 
in the identified cell populations in merged blood samples. (D) Average expression of immune checkpoint 
receptors on CD8+ T cells in merged PBMCs. (E) Average expression of differentially expressed genes in 
CD8+ T cells comparing healthy (black) to PDA (grey) PBMCs. Disease stage is plotted on the left.
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Supplemental Figure 2.4 Single cell RNA sequencing reveals 3 CD8+ T cell populations: effector, 
exhausted, and memory CD8+ T Cells.
(A) Feature plots of immune checkpoints (PDCD1, LAG3, TIGIT, HAVCR2), activation markers (IFNG, 
GZMB), and exhaustion markers (GZMK, EOMES) in CD8+ T cells. (B) Number of effector (pink), 
exhausted (green), and memory (blue) CD8+ T cells captured in each individual tissue sample by scRNA 
seq. (C) Average scaled expression heatmap of highly enriched genes by potential effector, exhausted, 
and memory cell populations.



 147 

Supplemental Figure 2.5 Single cell RNA sequencing of myeloid subsets in human pancreatic 
cancer. 
(A) Map of all putative ligand receptor differential interactions that are upregulated in 16 PDA compared to 
3 adjacent/normal pancreas. The line color denotes cellular source of the ligand, and putative interactions 
were visualized in Cytoscape. (B) Average expression heatmap of checkpoint ligands in merged 
macrophages (all cells expressing CD68 within the myeloid population) and (C) merged granulocytes (all 
cells expressing FCGR3B within the myeloid population). Left panels denote disease state (adjacent/normal 
vs. PDA tissue) and stage.  (D) Violin Plots illustrating comparison of immune checkpoint ligands in myeloid 
clusters in PDA vs. adjacent normal/pancreas samples.
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Supplemental Figure 2.6 CyTOF analysis of PBMCs from healthy, chronic pancreatitis, and PDA 
patients.  
(A) Patient breakdown and characteristics of CyTOF performed on patient blood samples (healthy, chronic 
pancreatitis, and PDA).  (B) t-SNE analysis of CyTOF of all merged PBMC samples with granulocytes 
(CD66b+). (C) t-SNE analysis of CyTOF of all merged PBMC samples without granulocytes. Key marker t-
SNE feature plots of CD3 (total T cells), CD4 (Helper CD4+ T cells), CD8 (Cytotoxic T cells), CD19 (B cells), 
CD11b (Myeloid cells), CCR2, PDL-1, and CD68 (Macrophage marker). (D) Bar plots of relative cell type 
abundance (B cell, CD4+/CD8+ T cell, CD4+ T cell, CD4-/CD8- T cell, Dendritic cell, CD14+/CD16+ Monocyte, 
CD14+/CD16- Monocyte, and CD14- CD16+ Monocyte) from CyTOF of PBMCs of healthy, chronic 
pancreatitis, and PDA patients. (E) Quantification of unbiased analysis (Astrolabe pipeline) of PBMC 
immune populations in healthy (n=18), PDA (n=36), and chronic pancreatitis (n=8). (F) Relative CyTOF 
marker expression in CD8+ T Cells from PDA tumor tissue. (G) PCA analysis of PBMCs at different disease 
states. Healthy (neon blue), PDA (red), and Chronic Pancreatitis (green).  
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Supplemental Figure 2.7 Immunofluorescence of immune checkpoints in pancreatic tumors.  
(A) Individual channels 
of immunofluorescent 
staining of patient 
tissues with antibodies 
specific for 
TIGIT/CD8A, 
TIGIT/FOXP3, 
PVR/Pan-cytokeratin, 
PVR/CD163, 
PVR/Vimentin, and 
PVR/VE-cadherin.  

(B) Manual gating of 
PD-L1+ CD68+ 
macrophages in 
normal adjacent and 
PDA tissue. 
Representative 
individual CyTOF 
biaxial density plots 
from normal adjacent 
and PDA tissue of a 
matched patient (19-
262) of PD-L1 
expression in CD68+ 
macrophages (as a 
percentage of total 
CD11b+ cells).  
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Supplemental Figure 3.1 myCAF signaling is more prevalent in upregulated LM genes
(A) Panel of genes differentially expressed in fibroblasts. Plots represent n=3 adj/norm and n=16 PDA 
patients and n=5 LM patients. Violin plots are shown as normalized expression. All violin plots in have an 
adjusted p-value of p<0.05 and are considered statistically significant.
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Supplemental Figure 3.2 LM 
myeloid cells express less 
antigen presentation genes 

(A) Panel of antigen presentation 
genes differentially upregulated in 
PDA myeloid cells versus LM and 
Adj/Norm samples. Plots represent 
n=3 adj/norm and n=16 PDA 
patients and n=5 LM patients. Violin 
plots are shown as normalized 
expression. All violin plots in have 
an adjusted p-value of p<0.05 and 
are considered statistically 
significant. (B) Panel of genes 
differentially expressed in myeloid 
cells. Plots represent n=3 adj/norm 
and n=16 PDA patients and n=5 LM 
patients. Violin plots are shown as 
normalized expression. All violin 
plots in have an adjusted p-value of 
p<0.05 and are considered 
statistically significant. 
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Supplemental Figure 3.3 CD4 interactome mapping demonstrates expression 
of multiple CD4 subsets 

(A) Circos plot map of all putative ligand receptor interactions that are upregulated 
in LM CD4 T cells compared to PDA and visualized by circos plot. Plotted using 
the Circos software V0.69-9 (circos.ca). The heatmap within the circos plots is the 
scaled average expression of each gene within PDA tissue cell populations. The 
interactions plotted are those in which the expression level of either the ligand, the 
receptor, or both are increased in expression in LM samples compared to PDA. 
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Supplemental Figure 4.1 Addition of mutant p53 results in worse survival for L-iKras mice 

(A) The genetic makeup of the P-iKras mouse model of pancreas tumorigenesis with p48-Cre;R26-LSL-
rtTA-IRES-EGFP;TetO-KrasG12D;LSL-p53R172H. (B) H&E staining of P-iKras murine pancreas after 
treatment with doxycycline or with removal of doxycycline at indicated time points. (C) Survival curve of L-
iKras mice ON doxycycline with p53 ON or OFF versus control.  
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Supplemental Figure 4.2 mfIHC reveals steady T cell engagement in the L-iKras lung TME  

(A) Schematic of inForn® Cell Analysis™ (A) engagement and (B) mean distance calculation. (C) 
Comparison of the mean CTL-Epithelial/Macrophage distance. No significant p value was found in these 
comparisons. 
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Supplemental Figure 4.3 T cells and myeloid cell levels remain steady during tumor regrowth 

(A-C) Flow cytometry analysis of immune cells, specifically gd/CD4/CD8 T cells and CD11b+ myeloid 
cells as a percentage of total cells in control or P-iKras* lung at the indicated time points. (D) Ratio of 
CD4:CD8 T cells. n = 6-12 mice per group, shown as mean ± SD, multiple comparison ANOVA and 
multiple comparison Kruskal Wallis. 

D 
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Appendix 2: Supplemental Tables 

Supplemental Table 2.1 CyTOF antibody panel 

Catalog Number Metal Tag Marker Clone Dilution Source 
3141019B 141Pr CD3 UCHT1 1:200 Fluidigm 

3142001B 142Nd CD19 HIB19 1:300 Fluidigm 

3144019B 144Nd CD15 (SSEA-1) W6D3 1:400 Fluidigm 

3145010B 145Nd CD163 GHI/61 1:100 Fluidigm 

3146006B 146Nd CD64 10.1 1:100 Fluidigm 

3148004B 148Nd CD16 3G8 1:400 Fluidigm 

3151002B 151Eu CD107a (LAMP1) H4A3 1:100 Fluidigm 

3152011B 152Sm CD66b 80H3 1:200 Fluidigm 

3153023B 153Eu CD192 (CCR2) K036C2 1:200 Fluidigm 

3154016B 154Sm TIGIT MBSA43 1:100 Fluidigm 

3155009B 155Gd CD279 (PD-1) EH12.2H7 1:100 Fluidigm 

3156026B 156Gd CD274 (PD-L1) 29E.2A3 1:100 Fluidigm 

3162015B 162Dy CD8a RPA-T8 1:200 Fluidigm 

3163023B 163Dy CD33 WM53 1:200 Fluidigm 

3165011B 165Ho CD45RO UCHL1 1:200 Fluidigm 

3166012B 166Er CD34 581 1:100 Fluidigm 

201167A 167Er CD45RA HI100 1:100 Fluidigm 

3168008B 168Er CD206 (MMR) 15-2 1:100 Fluidigm 

3169003B 169Tm CD25 (IL-2R) 2A3 1:100 Fluidigm 

3170005B 170Er CD152 (CTLA-4) 14D3 1:100 Fluidigm 

3171011B 171Yb CD68 Y1/82A 1:100 Fluidigm 

3172014B 172Yb CD273 (PD-L2) 24F.10C12 1:100 Fluidigm 

3173005B 173Yb HLA-DR L243 1:400 Fluidigm 

3175015B 175Lu CD14 M5E2 1:100 Fluidigm 

3176010B 176Yb CD4 RPA-T4 1:100 Fluidigm 

3209003B 209Bi CD11b (Mac-1) ICRF44 1:200 Fluidigm 

3089003B 89Y CD45 HI30 1:200 Fluidigm 

3150030B 150Nd LAG3 11C3C65 1:100 Fluidigm 

3160020B 160Gd CD23 EBVCS-5 1:100 Fluidigm 

3149021B 149Sm CD56 (NCAM) NCAM16.2 1:100 Fluidigm 
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Supplemental Table 2.2 Clinical information 

Patient ID Sex Age BMI Disease 
State 

Stage Grade 

20191245 M 58 23 PDAC ypT1cN1 Well 
Differentiated 

20191176t1 F 84 28 PDAC ypT2N1Mx Well 
Differentiated 

20191176t2 F 84 28 PDAC ypT2N1Mx Well 
Differentiated 

20181129 M 62 29 PDAC ypT1N0Mx Poorly 
Differentiated 

20181157 F 65 17 PDAC pT3N1R0 Poorly 
Differentiated 

20191180 F 60 25 PDAC pT3N1MX Poorly 
differentiated 

20191210 F 46 17 PDAC Metastatic Poorly 
Differentiated 

20191225 F 58 16 PDAC yoT2N1Mx poorly 
Differentiated 

20191231 M 58 26 PDAC Metastatic Poorly 
Differentiated 

19-384 M 51 28 Bile Duct 
Carcinoma 

pT2N1Mx Poorly 
Differentiated 

8839995 ? ? ? Healthy N/A N/A 
8839996 ? ? ? Healthy N/A N/A 
8839999 ? ? ? Healthy N/A N/A 
20191194 F 63 35 Healthy N/A N/A 
20191195 F 64 ? Healthy N/A N/A 
20191196 F 70 18 Duodenal 

Adenoma 
N/A N/A 

20191203 M 71 24 Healthy N/A N/A 
20191205 M 63 26 Healthy N/A N/A 
20191206 F 43 25 Healthy N/A N/A 
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Patient ID Sex Age BMI Disease 
State 

Stage Grade 

20191209 F 64 37 Chronic 
Pancreatitis 

N/A N/A 

20191211 M 45 ? Healthy N/A N/A 
20191212 F 46 ? Healthy N/A N/A 
20191219 F 74 29 Chronic 

Pancreatitis 
N/A N/A 

20191226 M 31 29 Chronic 
Pancreatitis 

N/A N/A 

20191228 M 58 23 Chronic 
Pancreatitis 

N/A N/A 

20191230 F 57 28 Chronic 
Pancreatitis 

N/A N/A 

20191232 F 57 ? Healthy No N/A 
20191233 F 52 ? Healthy No N/A 
20191234 M 70 ? Healthy No N/A 
20191235 F 69 27 Duodenal 

Adenoma 
N/A N/A 

20191236 F 42 23 Healthy N/A N/A 

20191237 M 62 38 Chronic 
Pancreatitis 

N/A N/A 

20191244 F 62 16 Chronic 
Pancreatitis 

N/A N/A 

20191247 F 33 29 Healthy N/A N/A 
20191249 M 40 25 Chronic 

Pancreatitis 
N/A N/A 

20191257 F 65 24 Healthy N/A N/A 
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Patient ID Sex Age BMI Disease 
State 

Stage Grade 

19-249 F 73 35 Serous 
Cystadeno
ma 

N/A N/A 

19-469 M 74 31 IPMN N/A N/A 
20171064 M 66 38 PDAC Initially 

ypT3N0, now 
metastatic 

Moderately 
differentiated 

20171085 M 63 32 PDAC pT3N1 Moderately 
differentiated 

20181121 F 69 22 PDAC pT2N1M0 Moderately 
differentiated 

20191172 F 81 17 PDAC pT1cN0 Moderately 
differentiated 

20191204 M 60 22 PDAC ypT1c N0 Moderately 
differentiated 

20191207 M 74 28 PDAC pT2N0 Moderately 
differentiated 

20191262 F 63 29 PDAC pT2 N0 Moderately 
differentiated 

19-262 M 55 26 PDAC pT2N2 Moderately 
differentiated 

20191258 F 77 25 Ampullary 
Carcinoma 

pT1b N1 Moderate to 
poorly 
differentiated 
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Patient ID Sex Age BMI Disease 
State 

Stage Grade 

20191227 F 40 23 Metastatic 
Ovarian 
Carcinoma 

IVB High-grade 

20191223 M 56 23 PDAC ypT3N0M0 GX cannot be 
assessed 

20181141 F 80 27 PDAC pT2N1R1 G2 
Moderately 
differentiated 

20181107 F 49 19 PDAC pT2N0M1 Cannot be 
assessed due 
to treatment 
effect 

20160897 M 67 26 PDAC Metastatic ? 

20171027 F 53 30 PDAC Metastatic ? 

20171040 F 62 29 PDAC Initially 
ypT3N1Mx, 
now 
Metastatic 

? 

20191198 F 47 34 PDAC Borderline 
resectable 

? 

20191201 F 70 22 PDAC Borderline 
resectable 

? 

20191202 F 74 19 PDAC Metastatic ? 

20191213 M 61 23 oncocytic 
IPMN, 
possible 
PDAC 

Borderline 
resectable 

? 
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Patient ID Sex Age BMI Disease 
State 

Stage Grade 

20191214 M 54 40 PDAC Localized ? 

20191215 F 70 32 PDAC Borderline 
resectable 

? 

20191216 M 68 23 PDAC Resectable ? 

20191221 M 76 19 PDAC Metastatic ? 

20191222 M 58 49 PDAC Metastatic ? 

20191229 M 65 21 PDAC Localized ? 

20191243 M 83 27 PDAC Metastatic ? 

20191246 M 47 30 PDAC locally 
advanced 

? 

61353210 F 68 24 PDAC Metastatic ? 

61354860 F 73 20 PDAC Borderline 
resectable 

? 

61619600 F 47 39 PDAC Metastatic ? 

20160882t1 F 71 22 PDAC Metastatic ? 

20160882t2 F 71 22 PDAC Metastatic ? 

20191222t2 M 58 49 PDAC Metastatic ? 

20191229 
(6750) 

M 65 21 PDAC Localized ? 

20191238t1 F 70 30 PDAC Borderline 
resectable 

? 
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Patient ID Sex Age BMI Disease 
State 

Stage Grade 

20191238t2 F 70 30 PDAC Borderline 
resectable 

? 
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Patient ID Collected 
on 
Surgery 
Day? 

Pre-
Surgical 

s/p 
Surgery 

Metastatic Lymphovascular 
Invasion (in 
surgical 
samples) 

Perineural 
Invasion 

(in 
surgical 
samples) 

20191245 Yes No No No Yes Yes 

20191176t1 Yes No No No Yes No 

20191176t2 No No Yes No Yes No 

20181129 No No Yes No No No 

20181157 No No Yes No Yes No 

20191180 No No yes No Yes Yes 

20191210 No No No Yes N/A N/A 

20191225 Yes No No No Yes Yes 

20191231 No N/A No Yes N/A N/A 

19-384 Yes No No No Yes Yes 

8839995 No N/A No N/A N/A N/A 
8839996 No N/A No N/A N/A N/A 
8839999 No N/A No N/A N/A N/A 
20191194 No N/A No N/A N/A N/A 
20191195 No N/A No N/A N/A N/A 
20191196 Yes N/A No N/A N/A N/A 

20191203 No N/A No N/A N/A N/A 
20191205 No N/A No N/A N/A N/A 
20191206 No N/A No N/A N/A N/A 
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Patient ID Collected 
on 
Surgery 
Day? 

Pre-
Surgical 

s/p 
Surgery 

Metastatic Lymphovascular 
Invasion (in 
surgical 
samples) 

Perineural 
Invasion 

(in 
surgical 
samples) 

20191209 No N/A No N/A N/A N/A 

20191211 No N/A No N/A N/A N/A 
20191212 No N/A No N/A N/A N/A 
20191219 No N/A No N/A N/A N/A 

20191226 No N/A No N/A N/A N/A 

20191228 No N/A No N/A N/A N/A 

20191230 No N/A No N/A N/A N/A 

20191232 No N/A N/A N/A N/A N/A 
20191233 No N/A N/A N/A N/A N/A 
20191234 No N/A N/A N/A N/A N/A 
20191235 Yes N/A No N/A N/A N/A 

20191236 No N/A No N/A N/A N/A 

20191237 No N/A No N/A N/A N/A 

20191244 No N/A No N/A N/A N/A 

20191247 No N/A No N/A N/A N/A 
20191249 No N/A No N/A N/A N/A 
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Patient ID Collected 
on 
Surgery 
Day? 

Pre-
Surgical 

s/p 
Surgery 

Metastatic Lymphovascular 
Invasion (in 
surgical 
samples) 

Perineural 
Invasion 

(in 
surgical 
samples) 

20191257 No N/A No N/A N/A N/A 
19-249 Yes No No N/A N/A N/A 

19-469 Yes No No N/A N/A N/A 
20171064 No No Yes Yes Yes Yes 

20171085 No No Yes No Yes Yes 

20181121 No No Yes No Yes No 

20191172 Yes No No No No No 

20191204 Yes No No No No No 

20191207 Yes No Yes No Yes Yes 

20191262 Yes No No No Yes Yes 

19-262 Yes No No No Yes Yes 

20191258 Yes N/A N/A No N/A N/A 
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Patient ID Collected 
on 
Surgery 
Day? 

Pre-
Surgical 

s/p 
Surgery 

Metastatic Lymphovascular 
Invasion (in 
surgical 
samples) 

Perineural 
Invasion 

(in 
surgical 
samples) 

20191227 Yes No yes - cyt Yes N/A N/A 

20191223 Yes No No No Yes Yes 

20181141 Yes Yes No No Yes Yes 

20181107 Yes Yes No Yes, liver 
met 
extending 
to resected 
margin 

Yes Yes 

20160897 No N/A Yes, 
Pall 

Yes N/A N/A 

20171027 No N/A No Yes N/A N/A 

20171040 No No Yes Yes N/A N/A 

20191198 No Yes No No N/A N/A 

20191201 No Yes No No N/A N/A 

20191202 No No No Yes N/A N/A 
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Patient ID Collected 
on 
Surgery 
Day? 

Pre-
Surgical 

s/p 
Surgery 

Metastatic Lymphovascular 
Invasion (in 
surgical 
samples) 

Perineural 
Invasion 

(in 
surgical 
samples) 

20191213 No Yes Yes, dist No N/A N/A 

20191214 No Yes No No N/A N/A 

20191215 No Yes No No N/A N/A 

20191216 No Yes No No N/A N/A 

20191221 No N/A No Yes N/A N/A 

20191222 No N/A No Yes N/A N/A 

20191229 No Yes yes - 
pall 

No N/A N/A 

20191243 No N/A No Yes N/A N/A 

20191246 No Yes No No N/A N/A 

61353210 No No No Yes N/A N/A 

61354860 No Yes No No N/A N/A 

61619600 No N/A No Yes N/A N/A 

20160882t1 No N/A No Yes N/A N/A 

20160882t2 No N/A No Yes N/A N/A 
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Patient ID Collected 
on 
Surgery 
Day? 

Pre-
Surgical 

s/p 
Surgery 

Metastatic Lymphovascular 
Invasion (in 
surgical 
samples) 

Perineural 
Invasion 

(in 
surgical 
samples) 

20191222t2 No N/A No Yes N/A N/A 

20191229 
(6750) 

No Yes No No N/A N/A 

20191238t1 No Yes No No N/A N/A 

20191238t2 No Yes No No N/A N/A 

 
  



 
 

170 

 
Patient ID Treatment Prior Treatment Current 

treatment 
Regimen 

20191245 s/p neoadjuvant chemo -> 
Whipple 

FOLFOXIRI -> nab-
paclitaxel/gemcitabine-> Whipple 

None 

20191176t1 neoadjuvant gem/cap -> 
distal panc 

N/A None 

20191176t2 neoadjuvant gem/cap -> 
distal panc ->adjuvant 
capecitabine/radation 

N/A Capecitabine 

20181129 s/p neoadjuvant chemo, 
whipple 

folfirinox -> Gem/abraxane None 

20181157 s/p whipple, adjuvant 
chemo 

N/A mFOLFIRINOX 

20191180 s/p chemo and distal panc Neoadjuvant modified FOLFIRINOX 
-> distal pancreatectomy -> FOLFOX 

FOLFOX 

20191210 s/p chemo s/p nab-paclitaxel+gemcitabine +/- 
PegPH20 -> mFOLFIRINOX 

mFOLFIRINOX 

20191225 s/p neoadjuvant chemo -> 
distal panc 

s/p gemcitabine/paclitaxel None 

20191231 Treatment Naïve N/A None 

19-384 Treatment Naïve N/A Whipple 

8839995 N/A N/A N/A 
8839996 N/A N/A N/A 
8839999 N/A N/A N/A 
20191194 N/A N/A N/A 
20191195 N/A N/A N/A 
20191196 N/A N/A N/A 

20191203 N/A N/A N/A 
20191205 N/A N/A N/A 
20191206 N/A N/A N/A 
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Patient ID Treatment Prior Treatment Current 
treatment 
Regimen 

20191209 N/A N/A N/A 

20191211 N/A N/A N/A 
20191212 N/A N/A N/A 
20191219 N/A N/A N/A 

20191226 N/A N/A N/A 

20191228 N/A N/A N/A 

20191230 N/A N/A N/A 

20191232 N/A N/A N/A 
20191233 N/A N/A N/A 
20191234 N/A N/A N/A 
20191235 N/A N/A N/A 

20191236 N/A N/A N/A 

20191237 N/A N/A N/A 

20191244 N/A N/A N/A 

20191247 N/A N/A N/A 
20191249 N/A N/A N/A 

20191257 N/A N/A N/A 
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Patient ID Treatment Prior Treatment Current 
treatment 
Regimen 

19-249 Treatment Naïve N/A distal 
pancreatectom
y 

19-469 N/A N/A distal 
pancreatectom
y 

20171064 s/p whipple -> chemo for 
recurrance 

N/A Gem/Abraxane 

20171085 s/p whipple -> adjuvant 
chemo 

N/A Gem/Capecitab
ine 

20181121 s/p distal pancreatectomy, 
chemo 

Gem/capectabine, gem discontinued Capecitabine 

20191172 Treatment Naïve N/A distal 
pancreatectom
y 

20191204 s/p neoadjuvant chemo -> 
Whipple 

Neoadjuvant gemcitabine and nab-
□paclitaxel 

None 

20191207 s/p distal pancreatectomy N/A None 

20191262 Treatment Naïve N/A distal 
pancreatectom
y 

19-262 Treatment Naïve N/A Whipple 

20191258 Treatment Naïve Whipple N/A None 
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Patient ID Treatment Prior Treatment Current 
treatment 
Regimen 

20191227 s/p chemo and 
cytoreductive surgery 

carboplatin/docetaxel -> 
cytoreduction surgery -> carboplatin 
and docetaxel -> niraparib 

nirapanib 

20191223 s/p neoadjuvant chemo 
and radiation -> distal 
panc 

s/p mFOLFIRINOX -> 
chemoradiation with gemzar 

None 

20181141 Treatment naïve N/A None 

20181107 s/p Liver resection, Partial 
pancreatectomy, partial 
gastrectomy, s/p chemo 

neoadjuvant gem/abraxane None 

20160897 on chemo N/A Gem/Abraxane 

20171027 s/p chemo mFOLFIRINOX Break (last 
chemo 2 
months prior) 

20171040 s/p neoadjuvant chemo -> 
whipple 

s/p neoadjuvant gem/cis, whipple 
8/2/17, adjuvent with gem/cap -> 
recurrance with metastatic disease 

None, about to 
start 
mFOLFIRINOX 

20191198 on neoadjuvant chemo N/A mFOLFIRINOX 

20191201 on neoadjuvant chemo N/A mFOLFIRINOX 

20191202 On chemo FOLFIRINOX -> 
gemcitabine/Abraxane -> FOLFOX 

FOLFOX 

20191213 s/p distal pancreatectomy 
for IPMN, palliative 
gastro-jej 

s/p distal pancreatectomy for IPMN, 
palliative gastro-jej 

None 
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Patient ID Treatment Prior Treatment Current 
treatment 
Regimen 

20191214 Treatment Naïve N/A none, about to 
start 
mFOLFIRINIX 

20191215 Treatment Naïve N/A none, about to 
start 
neoadjuvant 
mFOLFIRINIX 

20191216 Treatment Naïve N/A none, about to 
start 
neoadjuvant 
mFOLFIRINIX 

20191221 Treatment Naïve N/A None, about to 
start 
gemcitabine/ab
raxane 

20191222 Treatment Naïve N/A None, about to 
start 
gemcitabine, 
cisplatin, and 
fluorouracil 

20191229 s/p palliative gastrojej and 
ptc, neoadjuvant chemo 

N/A GAX-P - 
gamcitabine, 
abraxane, 
capecitabine, 
and cisplatin 

20191243 s/p chemo/RT gemcitabine-RT -> gemcitabine -> 
gemcitabine/capecitabine -> 
gemcitabine 

Gemcitabine 

20191246 Treatment Naïve N/A None 

61353210 Treatment Naïve N/A None 

61354860 Treatment Naïve N/A None 

61619600 Treatment Naïve N/A None 

20160882t1 on chemo Mk1775+Gemcitabine -> FOLFOX6 -
> Gem/Capecitadine -> progression -
> abraxane monotherapy 

Gem/Abraxane 

20160882t2 on chemo Mk1775+Gemcitabine -> FOLFOX6 -
> Gem/Capecitadine -> progression -
> abraxane monotherapy 

Gem/Abraxane 
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Patient ID Treatment Prior Treatment Current 
treatment 
Regimen 

20191222t2 on chemo N/A gemcitabine, 
cisplatin, and 
fluorouracil 

20191229 
(6750) 

Treatment Naïve N/A None 

20191238t1 Treatment Naïve N/A None 

20191238t2 s/p chemo GAX (capecitabine, gemcitabine, 
abraxane)-> capecitabine/abraxane 

capecitabine/A
braxane 
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Patient ID Time

point 
Disease 
Years 

CA19-9 
Initial 

Date Initial 
CA19-9 

CA19-9 
Current 

Date 
current 
CA19-9 

Associate
d IPMN 

20191245 1 <1 203 3/29/2019   No 

20191176t1 1 1 13 8/6/2018 4 12/13/2018 No 

20191176t2 2 1 13 8/6/2018 4 12/13/2018 No 

20181129 1 1 7 7/11/2018 21 4/15/2019 No 

20181157 1 <1 5 11/30/2018 6 2/4/2019 No 

20191180 1 <1 431 1/7/2019 40 3/19/2019 Yes 

20191210 1 2 854 8/14/2017 627 3/12/2019 No 

20191225 1 1 25 7/26/2018 6.1 2/4/2019 No 

20191231 1 <1 199 3/13/2019   No 

19-384 1 <1 N/A N/A N/A N/A No 

8839995 1 N/A N/A N/A N/A N/A N/A 
8839996 1 N/A N/A N/A N/A N/A N/A 
8839999 1 N/A N/A N/A N/A N/A N/A 
20191194 1 N/A N/A N/A N/A N/A N/A 
20191195 1 N/A N/A N/A N/A N/A N/A 
20191196 1 N/A N/A N/A N/A N/A N/A 
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Patient ID Time
point 

Disease 
Years 

CA19-9 
Initial 

Date Initial 
CA19-9 

CA19-9 
Current 

Date 
current 
CA19-9 

Associate
d IPMN 

20191203 1 N/A N/A N/A N/A N/A N/A 

20191205 1 N/A N/A N/A N/A N/A N/A 
20191206 1 N/A N/A N/A N/A N/A N/A 
20191209 1 N/A N/A N/A N/A N/A No 

20191211 1 N/A N/A N/A N/A N/A N/A 
20191212 1 N/A N/A N/A N/A N/A N/A 
20191219 1 N/A N/A N/A N/A N/A Yes 

20191226 1 N/A N/A N/A N/A N/A No 

20191228 1 N/A N/A N/A N/A N/A No 

20191230 1 N/A N/A N/A N/A N/A No 

20191232 1 N/A N/A N/A N/A N/A ? 
20191233 1 N/A N/A N/A N/A N/A ? 
20191234 1 N/A N/A N/A N/A N/A ? 
20191235 1 N/A N/A N/A N/A N/A No 

20191236 1 N/A N/A N/A N/A N/A No 

20191237 1 N/A N/A N/A N/A N/A No 
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Patient ID Time
point 

Disease 
Years 

CA19-9 
Initial 

Date Initial 
CA19-9 

CA19-9 
Current 

Date 
current 
CA19-9 

Associate
d IPMN 

20191244 1 N/A N/A N/A N/A N/A No 

20191247 1 N/A N/A N/A N/A N/A No 

20191249 1 N/A N/A N/A N/A N/A No 

20191257 1 N/A N/A N/A N/A N/A No 

19-249 1 N/A N/A N/A N/A N/A Yes 

19-469 1 N/A N/A N/A N/A N/A Yes 

20171064 1 2 310 5/8/2017 16,649 4/30/2019 Yes 

20171085 1 2 484 8/8/2017 28 4/22/2019 No 
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Patient ID Time
point 

Disease 
Years 

CA19-9 
Initial 

Date Initial 
CA19-9 

CA19-9 
Current 

Date 
current 
CA19-9 

Associate
d IPMN 

20181121 1 1 5 7/23/2018 9 8/10/2018 Yes 

20191172 1 <1 <2 10/25/2018 <2 12/28/2018 No 

20191204 1 1 218 7/23/2018 29 4/1/2019 Yes 

20191207 1 <1 83 12/13/2018 73 1/14/2019 No 

20191262 1 <1 59 5/9/2019   No 

19-262 1 <1 159 2/11/2019 17 2/28/2019 No 

20191258 1 <1 13 3/18/2019 N/A N/A No 

20191227 1 4 N/A N/A N/A N/A No 

20191223 1 1 7122 8/20/2018 289 3/18/2019 No 

20181141 1 <1 2454 10/1/2018 N/A N/A Yes 
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Patient ID Time
point 

Disease 
Years 

CA19-9 
Initial 

Date Initial 
CA19-9 

CA19-9 
Current 

Date 
current 
CA19-9 

Associate
d IPMN 

20181107 1 1 670 6/6/2018 182 1/29/2019 No 

20160897 1 3 89 8/2/2016 2062 4/2/2019 No 

20171027 1 2 1384 4/3/2017 152 4/29/2019 no 

20171040 1 2 16 3/24/2017 54 4/17/2019 No 

20191198 1 <1 10 3/11/2019 33 4/8/2019 No 

20191201 1 <1 17 2/14/2019 20 4/23/2019 No 

20191202 1 1 26,000 3/13/2019 17523 4/23/2019 No 

20191213 1 <1 7 12/29/2014   Yes 

20191214 1 <1 36 3/4/2019   No 

20191215 1 <1 698 3/19/2019   No 

20191216 1 <1 16 3/18/2019   No 

20191221 1 <1 32 4/2/2019   No 

20191222 1 <1 813853 3/18/2019   No 
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Patient ID Time
point 

Disease 
Years 

CA19-9 
Initial 

Date Initial 
CA19-9 

CA19-9 
Current 

Date 
current 
CA19-9 

Associate
d IPMN 

20191229 2 <1 10 3/8/2019 24 4/19/2019 No 

20191243 1 <1 312 10/16/2018 920 4/16/2019 No 

20191246 1 <1 447 3/4/2019   No 

61353210 1 <1 9 2/25/2019   No 

61354860 1 <1 154 12/10/2018   No 

61619600 1 <1 5767 10/29/2018   No 

20160882t1 1 3 2402 8/1/2016 50305 4/30/2019 No 

20160882t2 2 3 2402 8/1/2016 50305 4/30/2019 No 

20191222t2 2 <1 813853 3/18/2019 240,473 5/13/2019 No 

20191229 
(6750) 

1 <1 10 3/8/2019   No 

20191238t1 1 <1 190 1/18/2019   No 

20191238t2 1 <1 190 1/18/2019 42 4/5/2019 No 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

20191245 No No 0 Yes No None 

20191176t1 No No 0 No No sister–colorectal 
cancer, brother–
prostate cancer 

20191176t2 No No 0 No No sister–colorectal 
cancer, brother–
prostate cancer 

20181129 No No 12, quit 
1985 

Yes No Father - pancreatic 
cancer, paternal 
grandmother - 
cancer, paternal 
grandfather - 
cancer 

20181157 No No 25 Yes No Mother - Colon 
cancer 

20191180 No No 1.25 
pack 
years, 
quit 1985 

Yes No Maternal 
grandmother–
pancreatic cancer, 
maternal uncle–
pancreatic cancer 

20191210 No No 0 Yes No Maternal 
grandmother - 
colon cancer 

20191225 No No 11.25, 
current 

No No Maternal 
grandfather - lung 
cancer 

20191231 No No 40, 
currect 

No No Mother - gastric 
cancer 

19-384 No Yes 0 No No None 

8839995 ? ? ? ? ? ? 
8839996 ? ? ? ? ? ? 
8839999 ? ? ? ? ? ? 
20191194 No Yes ? ? ? ? 
20191195 ? ? ? ? ? ? 
20191196 No No 0 Yes Yes–

basal 
cell 

Mother–lung 
cancer, father–
colon cancer, 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

carcino
ma 

sister–breast 
cancer 

20191203 No No 1.8 pack 
years–
quit 1992 

No No Mother–breast 
cancer 

20191205 No No 0 No No None 
20191206 No No 0 Yes No None 
20191209 Yes No 0 No No None 

20191211 ? ? ? ? ? ? 
20191212 ? ? ? ? ? ? 
20191219 Yes Yes 60 pack 

years, 
quit 2014 

No No Mother - cancer, 
brother - cancer 

20191226 Yes No 0 Yes No None 

20191228 Yes No 0 No No Mother - pancreatic 
cancer, father - 
colon cancer, sister 
- lung cancer, 
brother - brain 
cancer 

20191230 Yes Yes ? Quit 
1999 

No No Mother - colon 
cancer, brother - 
lymphoma 

20191232 ? ? ? ? ? ? 
20191233 ? ? ? ? ? ? 
20191234 ? ? ? ? ? ? 
20191235 No No 0 No No Father - colon 

cancer, sister - 
colon cancer, 
brother - bladder 
cancer 

20191236 Yes, one 
episode of 
acute 
pancreatiti
s 

No 17 pack 
years, 
quit 2014 

Yes No Mother - Cancer, 
Grandmother - 
stomach cancer 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

20191237 Yes, one 
episode of 
acute 
pancreatiti
s <1 
month 
prior 

Yes 68 pack 
years, 
quit 2019 

Yes No Mother - Cancer, 
brother -cancer 

20191244 Yes No 7.5 pack 
years, 
current 

No No Mother - cancer 

20191247 No No 6.5 pack 
years, 
current 

No No Mother - cancer 

20191249 Yes No 11 pack 
years, 
current 

No No None 

20191257 No No 50 pack 
years, 
current 

Yes No Brother - mouth 
cancer, stomach 
cancer, sister - 
basal cell 
carcinoma, sister - 
stomach cancer 

19-249 No No 15 pack 
years, 
quit 2006 

Yes No Father - prostate 
cancer, sister - 
gallbladder cancer 

19-469 No No 5 pack 
years, 
quit 1975 

Yes No None 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

20171064 No No 0 Yes No Mother - lung 
cancer, father - 
cancer 

20171085 No Yes 0 Yes No Father - lung 
cancer, brother - 
liver cancer 

20181121 No No 0 No No None 

20191172 Yes - 
Acute and 
chronic 

Yes 0 No N Y - sister 
(sarcoma), mother 
(breast) 

20191204 No No 60 pack 
years–
quit in 
1990 

No No Brother–throat 
cancer 

20191207 No Yes 120, quit 
1997 

Yes Yes - 
Colon 
cancer 

Sister - Breast 
Cancer, brother 
prostate cancer 

20191262 No No 0 No No None 

19-262 No No 38 pack 
years, 
quit 
1/1/14 

Yes No Mother - lung 
cancer 

20191258 No No 20 pack 
years, 
quit 1995 

No No Mother - cancer 

20191227 No No 0 No No Mother - breast 
cancer, sister 
breast cancer, 
maternal Aunt - 
breast cancer, 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

maternal aunt - 
uterine cancer, 

20191223 No Yes 0 Yes No Mother - colon 
cancer, sister - 
breast cancer, 
maternal 
grandmother - 
lymphoma 

20181141 No No 18 pack 
years, 
quit 2015 
years a 

No No Lung cancer in 
brother and 
maternal aunt 

20181107 Yes No 33 pack 
years, 
quit 2019 

No No Mother - 
gallbladder cancer, 
father - lung cancer 

20160897 No Yes 0 Yes No Mother - pancreatic 
and colon cancer, 
father - prostate 
cancer 

20171027 No No 25 pack 
years, 
quit 2011 

No No Mother - Breast 
cancer, maternal 
aunt Breast cancer, 
father Prostate 
cancer 

20171040 No No 0 No No Sister- pancreatic 
cancer, brother - 
pancreatic cancer 

20191198 No No 16 pack 
years, 
quit 2005 

Yes No Maternal 
grandmother–colon 
cancer, maternal 
aunt–breast 
cancer, paternal 
aunt–breast 
cancer, paternal 
uncle–colon cancer 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

20191201 No No 7 pack 
years, 
quit 1972 

Yes No Father–cancer, 
brother–prostate 
cancer, brother–
oral cancer 

20191202 No No 0 Yes No Father–colon 
cancer 

20191213 No Yes 0 No No Mother - pancreatic 
cancer 

20191214 No Yes 0 Yes Yes - B 
Cell 
lympho
ma 

maternal 
grandmother - 
pancreatic cancer, 
mother - 
melanoma, father - 
prostate cancer 
and melanoma 

20191215 No Yes 0 Yes No Father - colon 
cancer, paternal 
grandmother - lung 
cancer, maternal 
uncle - lung cancer 

20191216 No Yes 0 No No Sister - breast 
cancer, father - 
colon cancer, 
maternal 
grandmother - 
breast cancer 

20191221 No No 0 No No Father - lung 
cancer 

20191222 No Yes 0 Yes No Mother - lung 
cancer, father - 
mesothelioma, 
maternal aunt - 
pancreatic cancer 
and lung cancer 

20191229 No No 0 Yes No Father - prostate 
cancer, sister - 
breast cancer 

20191243 No No 11 pack 
years, 
quit 1968 

Yes Yes - 
basal 
cell 
carcino
ma 

Mother - skin 
cancer, father - skin 
cancer 
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Patient ID History of 
Pancreati
tis 

Hx 
diabetes 
(before 

prognosis) 

Smoking 
(pack 
years) 

Current 
Alcohol 

Use 

Prior 
Cancer 
History 

Family Hx Cancer 

20191246 No No 0 No No Mother - breast 
cancer, sister - 
breast cancer 

61353210 No No 7.5 pack 
years, 
quit 1986 

Yes No Sister - Breast 
Cancer 

61354860 No No 15 pack 
years, 
quit 1989 

Yes No None 

61619600 No No 0 Yes No Father - prostate 
cancer 

20160882t1 No Yes 0 No No Mother and brother 
- cancer 

20160882t2 No Yes 0 No No Mother and brother 
- cancer 

20191222t2 No Yes 0 Yes No Mother - lung 
cancer, father - 
mesothelioma, 
maternal aunt - 
pancreatic cancer 
and lung cancer 

20191229 
(6750) 

No No 0 Yes No Father - prostate 
cancer, sister - 
breast cancer 

20191238t1 No No 0 No No Father - lung 
cancer, brother - 
prostate cancer 

20191238t2 No No 0 No No Father - lung 
cancer, brother - 
prostate cancer 
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Supplemental Table 2.3 OPAL Antibodies 

PRIMARY 
ANTIBODY 

COMPANY- 
CATALOGUE 
NUMBER 

CONCENTRATION SECONDARY 
ANTIBODY 

COMPANY- 
CATALOGUE 
NUMBER 

OPAL TSATM 

FLUOROPHORE 

CD8 SpringBio-
M5390 

1:400 Opal 
Polymer® 

ARH1A01EA 570 

CD3 Dako-A0452 1:400 Opal 
Polymer® 

ARH1A01EA 520 

CD163 Leica-NCL-L-
CD163 

1:400 Opal 
Polymer® 

ARH1A01EA 650 

PD-L1 CST-13684 1:200 Opal 
Polymer® 

ARH1A01EA 540 

Pancytokeratin Dako-M3515 1:500 Opal 
Polymer® 

ARH1A01EA 690 

FOXP3 CST-12653 1:400 Opal 
Polymer® 

ARH1A01EA 620 
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Supplemental Table 2.4 OPAL Phenotypes for Chronic Pancreatitis 

COMPLEX 
PHENOTYPES FOR 
CHRONIC 
PANCREATITIS 

BASIC 
PHENOTYPE 
(inForm®) 

MEAN 
FLUORESCENT 
INTENSITY (MFI) 

CELL SEGMENT 
OF MFI 

POSITIVE OR 
NEGATIVE MFI 

Tumor epithelial cell 
(TC) 

Epithelial cell N/A N/A N/A 

PD-L1+ TC Epithelial cell PD-L1 (5 mfi) Membrane Positive 

PD-L1- TC Epithelial cell PD-L1 (5 mfi) Membrane Negative 

Antigen presenting cell 
(APC) 

APC N/A N/A N/A 

PD-L1+ APC APC PD-L1 (5 mfi) Membrane Positive 

PD-L1- APC APC PD-L1 (5 mfi) Membrane Negative 

Tregulatory cell (Treg) Tcell FOXP3 (4.75 mfi) 
CD8 (3 mfi) 

Nucleus Cytoplasm Positive 
Negative 

Cytotoxic Tcell (CTL) Tcell CD8 (3 mfi) Cytoplasm Positive 

Thelper cell (Th) Tcell CD8 (3 mfi) 
FOXP3 (4.75 mfi) 

Cytoplasm Nucleus Negative 
Negative 
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Supplemental Table 2.5 OPAL Phenotypes for PDA samples 

COMPLEX 
PHENOTYPES 
FOR 
PDASAMPLES 

BASIC 
PHENOTYPE 
(inForm®) 

MEAN 
FLUORESCENT 
INTENSITY (MFI) 

CELL 
SEGMENT 
OF MFI 

POSITIVE OR 
NEGATIVE MFI 

Tumor epithelial cell 
(TC) 

Epithelial cell N/A N/A N/A 

PD-L1+ TC Epithelial cell PD-L1 (2 mfi) Membrane Positive 

PD-L1- TC Epithelial cell PD-L1 (2 mfi) Membrane Negative 

Antigen presenting 
cell (APC) 

APC N/A N/A N/A 

PD-L1+ APC APC PD-L1 (2 mfi) Membrane Positive 

PD-L1- APC APC PD-L1 (2 mfi) Membrane Negative 

Tregulatory cell (Treg) Tcell FOXP3 (2 mfi) 
CD8 (3 mfi) 

Nucleus 
Cytoplasm 

Positive Negative 

Cytotoxic Tcell 
(CTL) 

Tcell CD8 (3 mfi) Cytoplasm Positive 

Thelper cell (Th) Tcell CD8 (3 mfi) 
FOXP3 (2 mfi) 

Cytoplasm 
Nucleus 

Negative Negative 
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Supplemental Table 2.6 Antibodies for Immunofluorescent Staining  

Marker Clone Dilution Source Catalog Number 

PVR/CD155 D8A5G 1:100 Cell Signaling 
Technology 

Cat# 81254S 

Recombinant Anti-TIGIT 
antibody 

BLR047F 1:100 Abcam Cat# ab243903 

CD8α C8/144B 1:100 Cell Signaling 
Technology 

Cat# 70306S 

Anti-human CD163 10D6 1:100 Novus Biologicals Cat# NB110- 
59935SS 

Pan Cytokeratin Monoclonal 
Antibody, Alexa Fluor 488 

AE1/AE3 1:250 Thermo Fisher 
Scientific 

Cat# 53-9003-82 

FoxP3 D6O8R 1:100 Cell Signaling 
Technology 

Cat# 12653S 

Vimentin XP® D21H3 1:100 Cell Signaling 
Technology 

Cat# 5741S 

VE- Cadherin/CD144 123413 1:250 R&D #MAB9381 
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Supplemental Table 2.7 Literature Supported Receptor Ligand Pairs 

Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

APOB LDLR 

APOE LDLR 

APOE LRP5 

APOE LRP8 

APOE SORL1 

APOE VLDLR 

CCL11 ACKR2 

CCL11 CCR2 

CCL11 CCR3 

CCL11 CCR5 

CCL11 CXCR3 

CCL13 ACKR2 

CCL13 CCR1 

CCL13 CCR2 

CCL13 CCR3 

CCL13 CCR5 

CCL13 CXCR3 

CCL14 ACKR2 

CCL14 CCR1 

CCL14 CCR5 

CCL15 CCR1 

CCL15 CCR3 

CCL16 CCR1 

CCL16 CCR2 

CCL16 CCR5 

CCL16 HRH4 

CCL17 CCR4 

CCL17 CCR8 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

CCL19 ACKR4 

CCL19 CCR7 

CCL19 CCRL2 

CCL19 CXCR3 

CCL1 CCR8 

CCL20 CCR6 

CCL20 CXCR3 

CCL21 ACKR4 

CCL21 CCR7 

CCL21 CXCR3 

CCL22 CCR4 

CCL23 CCR1 

CCL24 CCR2 

CCL24 CCR3 

CCL25 ACKR4 

CCL25 CCR9 

CCL26 CCR2 

CCL26 CCR3 

CCL27 CCR10 

CCL28 CCR10 

CCL28 CCR3 

CCL2 ACKR2 

CCL2 CCR1 

CCL2 CCR2 

CCL2 CCR3 

CCL2 CCR4 

CCL2 CCR5 

CCL2 DARC 

CCL3 CCR1 

CCL3 CCR5 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

CCL4 ACKR2 

CCL4 CCR1 

CCL4 CCR5 

CCL4 CCR8 

CCL5 ACKR2 

CCL5 CCR1 

CCL5 CCR3 

CCL5 CCR4 

CCL5 CCR5 

CCL5 CXCR3 

CCL5 DARC 

CCL5 GPR75 

CCL7 ACKR2 

CCL7 CCR1 

CCL7 CCR2 

CCL7 CCR3 

CCL7 CCR5 

CCL7 CXCR3 

CCL8 ACKR2 

CCL8 CCR1 

CCL8 CCR2 

CCL8 CCR3 

CCL8 CCR5 

CD24 SELP 

CD34 SELL 

CD40LG CD40 

CD55 CD97 

CD70 CD27 

CX3CL1 CX3CR1 

CXCL10 CCR3 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

CXCL10 CXCR3 

CXCL11 ACKR3 

CXCL11 CCR3 

CXCL11 CXCR3 

CXCL12 ACKR3 

CXCL12 CXCR3 

CXCL12 CXCR4 

CXCL13 CXCR5 

CXCL16 CXCR6 

CXCL1 CXCR1 

CXCL1 CXCR2 

CXCL1 DARC 

CXCL2 CXCR1 

CXCL2 CXCR2 

CXCL2 XCR1 

CXCL3 CXCR1 

CXCL3 CXCR2 

CXCL5 CXCR1 

CXCL5 CXCR2 

CXCL6 CXCR1 

CXCL6 CXCR2 

CXCL9 CCR3 

CXCL9 CXCR3 

GZMB IGF2R 

HLA-A KIR3DL2 

HLA-B KIR3DL1 

HLA-C KIR2DL1 

HLA-C KIR2DL3 

HLA-C KIR2DS4 

HLA-E KLRC1 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

HLA-E KLRC2 

HLA-E KLRD1 

HLA-G KIR2DL4 

HLA-G KLRC1 

HLA-G KLRD1 

HLA-G LILRB1 

IFNG IFNGR1 

IFNG IFNGR2 

IL10 IL10RA 

IL10 IL10RB 

IL11 IL11RA 

IL11 IL6ST 

IL12A IL12RB1 

IL12A IL12RB2 

IL12B IL12RB1 

IL12B IL12RB2 

IL13 IL13RA1 

IL13 IL13RA2 

IL13 IL2RG 

IL13 IL4R 

IL15 IL15RA 

IL15 IL2RB 

IL15 IL2RG 

IL16 CD4 

IL17A IL17RA 

IL17B IL17RB 

IL18 IL18R1 

IL18 IL18RAP 

IL18 IL1RAPL1 

IL19 IL20RA 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

IL19 IL20RB 

IL1A IL1R1 

IL1A IL1R2 

IL1B IL1R1 

IL1B IL1R2 

IL1B IL1RAP 

IL1RN IL1R1 

IL1RN IL1R2 

IL20 IL20RA 

IL20 IL20RB 

IL20 IL22RA1 

IL21 IL21R 

IL21 IL2RG 

IL22 IL10RA 

IL22 IL22RA1 

IL22 IL22RA2 

IL23A IL12RB1 

IL23A IL23R 

IL24 IL20RA 

IL24 IL20RB 

IL24 IL22RA1 

IL25 IL17RB 

IL2 IL2RA 

IL2 IL2RB 

IL2 IL2RG 

IL31 IL31RA 

IL31 OSMR 

IL3 CSF2RB 

IL3 IL3RA 

IL4 IL13RA1 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

IL4 IL2RG 

IL4 IL4R 

IL5 CSF2RB 

IL5 IL5RA 

IL6 IL6R 

IL6 IL6ST 

IL7 IL2RG 

IL7 IL7R 

IL8 CXCR1 

IL8 CXCR2 

IL8 DARC 

IL9 IL2RG 

IL9 IL9R 

CCL11 ACKR4 

CCL13 ACKR4 

CCL14 CCR3 

CCL16 CCR8 

CCL17 DARC 

CCL18 C14orf1 

CCL19 ACKR2 

CCL19 CCR10 

CCL21 ACKR2 

CCL25 ACKR2 

CCL25 CCR10 

CCL26 CCR1 

CCL27 ACKR2 

CCL28 ACKR2 

CCL2 ACKR4 

CCL2 CCR10 

CCL3L1 CCR1 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

CCL3L1 CCR3 

CCL3L1 CCR5 

CCL3L3 ACKR2 

CCL3L3 CCR5 

CCL3 ACKR2 

CCL3 CCR3 

CCL3 CCR4 

CCL4 CCR3 

CCL5 ACKR4 

CCL5 SDC1 

CCL5 SDC4 

CCL7 ACKR4 

CCL7 CCR10 

CCL7 DARC 

CCL8 ACKR4 

CCL8 DARC 

CD14 ITGA4 

CD14 ITGB1 

CD55 CR1 

CD5L CD5 

CXCL10 SDC4 

CXCL12 CD4 

CXCL12 ITGB1 

CXCL13 ACKR4 

CXCL13 CCR10 

CXCL13 CXCR3 

CXCL5 DARC 

HLA-A APLP2 

HLA-A ERBB2 

HLA-A KIR3DL1 
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Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

HLA-A LILRB1 

HLA-A LILRB2 

HLA-B CANX 

HLA-B KLRD1 

HLA-B LILRB1 

HLA-B LILRB2 

HLA-C LILRA3 

HLA-C LILRB1 

HLA-C LILRB2 

HLA-G LILRB2 

IL12A CD28 

IL12B IL23R 

IL15 IL2RA 

IL16 GRIN2C 

IL16 GRIN2D 

IL16 KCNA3 

IL16 KCND1 

IL16 KCND2 

IL16 KCNJ10 

IL16 KCNJ15 

IL16 KCNJ4 

IL17A IL17RC 

IL17F IL17RA 

IL18 IL1RL2 

IL1A IL1RAP 

IL1B ADRB2 

IL1F10 IL1R1 

IL22 IL10RB 

IL27 IL27RA 

IL2 CD53 



 
 

202 

Ligand.ApprovedSymbol Receptor.ApprovedSymbol 

IL2 NGFR 

IL34 CSF1R 

IL4 CD53 

IL4 IL13RA2 

IL8 SDC1 

IL8 SDC2 

CD274 PDCD1 

CD80 CTLA4 

LGALS9 HAVCR2 

PVR TIGIT 

HLA-DQA1 LAG3 

TNFRSF14 BTLA 

ADORA1 ADORA2A 

CD80 CD28 

ICOSLG ICOS 

TNFSF9 TNFRSF9 

TNFSF4 TNFRSF4 

TNFSF18 TNFRSF18 

CD47 SIRPA 

CSF1 CSF1R 
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