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ABSTRACT

Turbulent reacting flows drive many energy conversion devices and play crucial roles

in the power generation and transportation sectors. Due to their chaotic and multi-

scale nature, predicting and optimizing such systems is challenging. Over the past sev-

eral decades, direct numerical simulation (DNS) and large-eddy simulation (LES) have

gained in popularity within the scientific and engineering community for simulating this

class of flows. However, owing to their high computational cost, they have primarily

been used to investigate micro-scale physics or develop sub-grid scale models. Mean-

while, optimizing new engineering systems or improving existing devices requires iterat-

ing upon many design/input parameters. A brute-force trial-and-error approach involves

performing many simulations and is thus not practical even with modern computational

resources. Current approaches typically reduce the complexity of the model, which com-

promises its fidelity and decreases dimensionality of the physical system.

Discrete adjoint-based methods provide exact sensitivity of a quantity of interest

(QoI) to many input parameters with a tractable computational cost. The sensitivity gra-

dient obtained from an adjoint solution provides a direction to adjust parameters for min-

imizing (i.e., improving) the QoI. However, computing discrete adjoint sensitivity from

high-fidelity numerical simulations like DNS or LES is challenging. Modern numerical

methods are typically developed for solving the original governing equations and are not

necessarily consistent with the discrete adjoint formulation.

The objective of this dissertation is to develop a high-fidelity numerical framework

that provides exact sensitivity of a QoI for turbulent reacting flows. This builds off state-

xv



of-the-art numerical discretization methods and extends them to be compatible with a

discrete adjoint solver. The adjoint sensitivity is combined with gradient-based optimiza-

tion techniques to find optimal parameters. The numerical framework solves the multi-

component compressible Navier–Stokes equations using high-order narrow-stencil finite

difference operators that satisfy the summation-by-parts (SBP) property. Simultaneous-

approximation-term boundary treatment is used to enforce the boundary conditions. A

SBP adaptive artificial dissipation scheme with a compatible adjoint solver is introduced

to minimize boundedness errors in the scalars and retain high-order accuracy of the so-

lution. In addition, a flamelet/progress variable approach is employed for combustion

modeling, and its adjoint is formulated. This approach avoids transporting many chem-

ical species and makes the adjoint solver flexible with respect to the choice of chemical

reactions. The adjoint solver makes use of an efficient check-pointing scheme, and it

computes analytic Jacobians of the Navier–Stokes equations instead of automatically

differentiating them. The cost of the combined forward-adjoint simulation is about 3–3.5

times the cost of the forward run.

The framework is applied to several challenging cases to assess its performance and

demonstrate its efficacy in optimizing various QoIs. The methodology is used to en-

hance and suppress mixing and growth of high-resolution multi-mode Rayleigh–Taylor

instabilities by strategically manipulating the interfacial perturbations. This example

demonstrates the utility of the adjoint framework on chaotic variable-density flows be-

fore introducing complexities associated with chemical reactions and unboundedness of

the mass fraction. Next, a momentum actuator is optimized to control the temporal evo-

lution of scalar mixing in a shear layer, where more than one hundred million parameters

are manipulated simultaneously by the adjoint solver. Using a coarse grid necessitates the

adaptive dissipation scheme to preserve scalar boundedness. Finally, the adjoint solver

is used to identify optimal forcing to control flame position in a non-premixed turbulent

round jet.
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CHAPTER 1

Introduction

1.1 Predicting turbulent reacting flows

Many engineering systems involve turbulent reacting flows, examples include industrial burners

and furnaces; stationary gas turbine engines; and internal combustion and aircraft engines. Pre-

dicting the flow dynamics within these devices is challenging due to the complexities of turbulence,

combustion, and their interactions.

Turbulent flows are characterized by chaotic, random, and unsteady behavior, and their kinetic

energy is distributed among a broad spectrum of length and time scales. Large-scale eddies, whose

sizes are constrained by the geometry of the device, are unstable and break down into smaller

ones. This ‘cascade’ of energy ceases at the Kolmogorov length scale, where molecular viscosity

eventually dissipates the kinetic energy associated with the eddies. According to Kolmogorov’s

hypothesis, these small-scale eddies are homogeneous and isotropic at sufficiently high Reynolds

(Re) numbers. Re is defined as the ratio of inertia to dissipation forces, also distinguishing the ratio

of the largest (l0) to the smallest (η) length scales, given by (e.g., see Pope, 2000)

Re ∼
(
l0

η

)4/3

, (1.1)

where η denotes the Kolmogorov length scale.

Combustion typically involves many chemical species and reactions even with simple fuels

such as hydrogen and methane (e.g., see Li et al., 2004). The rate at which chemical species are
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(a) (b)

Figure 1.1: (a) Isosurfaces of the temperature (1700 K and 2000 K) and its contours in a medium
size model of industrial gas turbine combustor via LES. Adapted from Tyliszczak et al. (2016). (b)
From left to right: Distribution of velocity magnitude, temperature, and mass fraction of H2O on
vertical slices of an internal combustion engine model, using DNS. Adapted from Schmitt et al.
(2016).

consumed or produced can vary by orders of magnitude. The chemical length scale associated with

the flame thickness is typically smaller than the Kolmogorov length scale. The Karlovitz number

denotes the ratio of a chemical length scale δ to the Kolmogorov length scale, given by

Ka =

(
δ

η

)2

, (1.2)

which is typically Ka < 1.

Two-way coupling between turbulence and combustion further complicates the system dynam-

ics. High kinetic energy and inertial forces associated with turbulent velocity fluctuations are able

to either enhance fuel-oxygen mixing and increase the heat release rate or quench the flame (e.g.,

see Poinsot et al., 1991). On the other hand, temperature variations associated with the released

heat could change local molecular diffusion, altering the dissipation rate of turbulent fluctuations.

Recent advancements in numerical methods and growing computational resources have made

high-fidelity simulations appealing for studying turbulent reacting flows. Over the past several

decades, direct numerical simulation (DNS) and large-eddy simulation (LES) have become at-
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Figure 1.2: Historical trend of the growth of computational problem size and DNS of turbulent
reacting flows by showing five representative examples. Adapted from Kolla & Chen (2018).

tractive among the scientific and engineering community. DNS solves the governing conservation

equations, i.e., the reacting Navier–Stokes equations, without any assumption on turbulence. Thus,

the computational grid must be able to resolve all scales of turbulence and combustion. The com-

putational cost of DNS of an unsteady three-dimensional non-reacting and reacting turbulent simu-

lations are O
(
Re3

)
and O

(
Re3/Ka2

)
, respectively, according to (1.1) and (1.2). On the other hand,

LES captures large eddies by solving the filtered Navier–Stokes equations and models sub-grid

scale fluctuations.

Both DNS and LES have been used for simulating non-reacting and reacting turbulent flows

within engineering systems (see Fig. 1.1). Figure 1.1a shows an LES study performed on a medium

size model of an industrial gas turbine combustor (Tyliszczak et al., 2016). This figure demon-

strates a variety of length scales and the unsteady behavior of a swirling turbulent flame in an

engineering device, which cannot be obtained by low-fidelity simulations. Figure 1.1b shows in-

stantaneous snapshots of flow quantities obtained from DNS of an internal combustion engine

model (Schmitt et al., 2016). This figure reveals crucial flow features that was captured by DNS,
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i.e., mixing, randomness, and the multi-scale nature of the turbulence. However, due to the high

computational cost of DNS and LES, they have mainly been employed to investigate micro-scale

physics or develop new sub-grid scale models (see Fig. 1.2).

1.2 Beyond prediction of turbulent reacting flows

As described above, turbulent reacting flows play crucial roles in many energy conversion de-

vices involved in the power generation and transportation sectors. Because of economic, public

health, and environmental concerns, reducing fuel consumption and pollutant emission from these

devices have historically been a crucial target. Despite new advancements in technologies that

employ renewable resources for electricity generation and transportation fuels, it is still expected

that petroleum and natural gas will remain the most-consumed fuels in the U.S. over the upcoming

decades (see Fig. 1.3a). This is anticipated to result in a large increase in carbon dioxide and other

pollutant emissions in the environment (see Fig. 1.3b), which has negative impacts on public health

and the environment. Thus, it is necessary to improve engineering systems involving turbulent re-

acting flows by decreasing fuel consumption and reducing pollutant emission, just to cite a few

examples.

Despite decades of research focused on this class of flows (e.g., see Peters, 2000; Poinsot &

Veynante, 2005; Pitsch, 2006, and references therein), improvements of relevant engineering appli-

cations remain challenging due to the chaotic behavior of turbulent flows, nonlinear and multi-scale

nature of turbulent combustion, and nonlinear response of system outputs to inputs, as discussed in

the previous section. Improving designs (e.g., increasing efficiency or mitigating negative effects

associated with pollutants) and measuring sensitivity of quantities of interest to design parame-

ters remain challenging and impractical via a trial-and-error approach. This is associated with

high computational cost (see Fig. 1.2) and a large number of input/design/control parameters that

influence quantities of interest. Existing approaches typically compromise model fidelity and/or

reduce dimensionality of the physical system (e.g., via Reynolds-averaged Navier–Stakes, RANS,
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Petroleum remains the most-consumed fuel in the United States, as energy-
related carbon dioxide emissions dip through 2035 before climbing in later years 

Figure 3.  

 

Vehicles and industrial processes are the main petroleum consumers in the Reference Case 
Petroleum and other liquids remain the most-consumed fuel in the AEO2021 Reference case. The 
transportation sector is the largest consumer of petroleum and other liquids, particularly motor gasoline 
and distillate fuel oil. In the Reference Case, EIA assumes that current fuel economy standards stop 
requiring additional efficiency increases in 2026 for light-duty vehicles and in 2027 for heavy-duty 
vehicles. As travel continues to increase, consumption of petroleum and other liquids increases later in 
the projection period. 

For industrial uses, petroleum remains the primary fuel for refining processes and for agriculture. 

Coal continues a steady decline, as solar, wind, and natural gas use increases 
In all cases, consumption of non-hydroelectric renewable energy is projected to be the fastest growing 
energy source. Policies at the state and federal level have encouraged significant investment in 
renewable resources for electricity generation and transportation fuels. New technologies have driven 
down the cost to install wind and solar generation, further increasing their competitiveness in the 
electricity market even as policy effects moderate over time. Federal regulation continues to encourage 
the use of biofuels, primarily ethanol, in the projection period. However, relatively modest increases in 
overall electricity and liquid fuel demand slow the projected growth of renewable energy in the 
Reference case.     

EIA projects that consumption of natural gas will keep growing as well, driven by expectations that 
natural gas prices will remain low compared with historical levels. In the Reference case, the industrial 
sector becomes the largest consumer of natural gas starting in the early 2020s. This sector will expand 
the use of natural gas as a feedstock in the chemical industries, as well as for industrial heat and power.  

(b)

February 2021 

U.S. Energy Information Administration   |   AEO2021 Narrative 8 

Figure 4. 

 
Coal use through 2050 generally declines with the retirement of coal-fired electricity generating units in 
the United States. In 2020, all power generation types, including coal, saw a decline in power demand 
because of COVID-19 response measures, but the decline in power demand affected coal to a greater 
extent because the annual average natural gas price fell to its lowest level in more than 20 years and as 
a result coal-fired generation was displaced by natural gas-fired generation.    

Changes in fuel mix reduce Reference case emissions through 2035 
Changes over time in carbon dioxide (CO2) emissions in the Reference case reflect the shift in fuel 
consumption: emissions decrease from 2023 to 2035 as a result of a transition away from more 
emission-intensive coal and a rise in the use of natural gas and renewable energy. After 2035, U.S. 
emissions begin to trend upward, reflecting the overall increase in the use of energy as a result of 
increasing population and economic growth. This trend holds true in all AEO2021 side cases. The High 
Economic Growth case has the largest increase in emissions, and the Low Economic Growth case has the 
lowest. Reductions in both energy intensity (energy consumption per gross domestic product) and 
carbon intensity (CO2 per energy consumption) both lessen the effects of economic growth. Even in the 
High Economic Growth case, energy-related CO2 emissions remain lower than the 2007 peak of 6 billion 
metric tons through 2050.   

  

Figure 1.3: (a) Energy consumption (in quadrillion British thermal units) and (b) energy-related
carbon dioxide emissions (billion metric tons) by fuel over the past three decades with future
predictions. Adapted from U.S. Energy Information Administration, Annual Energy Outlook 2021.

equations). However, low-fidelity simulations cannot sufficiently capture small-scale physics that

significantly contributes to flow and flame dynamics.

1.3 Adjoint-based optimization

In recent years, adjoint-based methods have emerged as a powerful technique to measure paramet-

ric sensitivity. These methods provide sensitivity of a quantity of interest (QoI) to a large number

of design parameters with a computational cost comparable to the cost of the primal simulation

that predicts the flow. Combining adjoint-based methods with gradient-based optimization tech-

niques results in a scalable solution for ‘improving’ engineering systems dealing with turbulent

reacting flows without compromising model fidelity. Adjoint-based sensitivity is computed via

two different approaches: continuous and discrete adjoint formulation.

In continuous adjoint methods, the adjoint equations are first derived via linearizing the partial

differential equations (PDEs) governing the system (also called the primal equations). Adjoint so-

lutions are then obtained via discretizing and solving the corresponding adjoint PDEs. However,

the sensitivity obtained from the adjoint solution can be susceptible to spatial and temporal trun-
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cation errors that are known to become significant in unsteady or chaotic flows (Lea et al., 2000;

Nadarajah & Jameson, 2000; Vishnampet et al., 2015). Discrete adjoint methods address this by

taking into account the numerical discretization prior to perturbing and linearizing the flow equa-

tions, which provides sensitivity that is exact up to machine-precision roundoff errors (Nadarajah

& Jameson, 2001). Because of the exact sensitivity, discrete adjoint methods are more effective

in optimizing chaotic flows compared to its continuous counterpart (e.g., see Vishnampet et al.,

2015).

Adjoint methods have successfully been employed in many fluid dynamic application, includ-

ing shape optimization and drag reduction for aerostructures (Jameson, 1989; Jameson & Mar-

tinelli, 2000; Martins et al., 2004), aeroacoustic control of free shear flows (Wei & Freund, 2006;

Vishnampet et al., 2015), scalar mixing (Vikhansky, 2002; Liu, 2006; Thiffeault, 2012; Foures

et al., 2014b; Miles, 2018; Vermach & Caulfield, 2018), and variable-density instabilities (Lopez-

Zazueta et al., 2016; Kord & Capecelatro, 2019).

Only recently have adjoint methods been applied to reactive flows. For instance, adjoint meth-

ods were effective in computing sensitivity of the parameters appearing in combustion models,

which has been studied in one- and two-dimensional laminar configurations (Braman et al., 2015;

Hassan et al., 2021). Adjoint sensitivity can also be employed to find optimal control parame-

ters in reacting flows. This has been done in one- and two-dimensional laminar flame configura-

tions, where the numerical solutions obtained by solving compressible Navier–Stokes equations

with single-step chemistry are compared with a desired/trusted solution, e.g., experimental inves-

tigations, and the adjoint gradient is then used to reduce this discrepancy by either manipulating

chemistry and diffusion parameters (Gray et al., 2017) or an external source term (Lemke et al.,

2014). In another work, gradient-based optimization combined with discrete adjoint sensitivity

was able to enhance ignition in steady and unsteady laminar non-premixed jets, where the Navier–

Stokes equations in an axisymmetric coordinate are solved with a simple one-step reaction (Qadri

et al., 2021). Capecelatro et al. (2016) used discrete-adjoint sensitivity to control ignition in a

two-dimensional hydrogen-air mixing layer, where the compressible Navier–Stokes equations are
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solved with a single-step chemistry model. Adjoint-based methods have been also used for hy-

drodynamic stability analysis of a lifted flame in a laminar reacting jet (Qadri et al., 2015) and

frequency response analysis of premixed (Skene & Schmid, 2019) and diffusion flames (Sayadi &

Schmid, 2021), all of them used a single-step chemistry model. Also, risk assessment of scramjet

unstart via an inviscid flow solver with a simple heat-release model is studied using discrete adjoint

schemes (Wang et al., 2012).

Only a few studies have applied adjoint methods for turbulent reacting flows. In one

study, the discrete adjoint-based method was used for uncertainty quantification and adaptive

mesh-refinement in low-fidelity turbulent flows (i.e., RANS) with combustion modeling of a

flamelet/progress variable approach (Duraisamy & Alonso, 2012). Also, Capecelatro et al. (2017,

2018) employed discrete adjoint sensitivity and optimization for improving localized ignition ap-

plied on a non-premixed turbulent flame, using DNS and one-step chemistry.

However, to date, discrete-adjoint methods of high-fidelity reacting flow solvers with detailed

chemistry are non-existent. Indeed, most of the aforementioned studies have been employed simple

one-step chemistry even for laminar reacting flows. Deriving an adjoint-based formalism from a

high-fidelity numerical framework combined with advanced combustion models is still challenging

due to the chaotic and nonlinear behaviors of the flow and complexities associated with the adjoint-

based formulation. In the following section, these challenges are reviewed.

1.4 Challenges of employing adjoint methods to turbulent re-

acting flows

1.4.1 Adjoint compatible flow solver

Despite huge progress in state-of-the-art numerical schemes for predicting turbulent reacting flows,

most existing approaches are not necessarily compatible with the discrete adjoint formulation.

As mentioned before, discrete adjoint sensitivity is obtained via linearizing the variations of dis-
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cretized governing equations with respect to the state variables. However, most existing models

designed for turbulent reacting flows (e.g., subgrid-scale turbulence closures, flux discretization

schemes, shock capturing) are typically developed for solving the primal equations governing the

flow and may not be differentiable. For instance, a low-order upwinding scheme is able to han-

dle numerical discontinuities such as shocks. However, its operator coefficients locally vary from

one grid point to another depending on the flow direction. This makes it a non-differentiable

technique with respect to flow variables. This issue becomes more pronounced when advanced

shock-capturing techniques such as weighted essentially non-oscillatory (WENO) methods are

considered.

Even turbulent reacting flows in low Mach number regimes can involve discontinuities. Tur-

bulent fluctuations enhance mixing of species and generate high gradients in their mass fractions.

Also, enhancement in fuel-air mixing results in localized released heat that generates sharp gradi-

ents in temperature. Thus, the flame thickness could vary within few grid points. It is necessary

to avoid spurious oscillations leading to non-physical overshoots and undershoots on flow vari-

ables. Developing a robust and high-order accurate technique for this purpose with an efficient and

compatible adjoint solver is thus required.

A high-order numerical framework with a discrete adjoint solver was recently developed for

compressible non-reacting (Vishnampet, 2015) and reacting (Capecelatro et al., 2018) turbu-

lent flows. It employs high-order centered finite difference operators satisfying the summation-

by-parts (SBP) property (Kreiss & Scherer, 1974; Strand, 1994) combined with simultaneous-

approximation-term (SAT) boundary treatments (Carpenter et al., 1994; Svärd et al., 2007; Svärd

& Nordström, 2008). Combined SBP-SAT schemes provide an energy stable numerical framework

(e.g., see Fernández et al., 2014, and references therein). In addition, their discrete adjoint formu-

lation can be ‘consistent’ with their continuous counterpart since the SBP property is the discrete

version of integrating by parts that is employed in formulating continuous adjoint equations. Such

‘consistency’ between continuous and discrete adjoint solvers, also called dual-consistency, mit-

igate spurious numerical waves observed in discrete adjoint solutions (e.g., see Hicken & Zingg,
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2014; Vishnampet, 2015). In addition, dual consistent SBP-SAT schemes yield ‘superconvergence’

in computing the QoI (Hicken & Zingg, 2011). These properties make the combined SBP-SAT

formalism a natural framework for computing adjoint-based sensitivity. Adjoint sensitivity de-

rived from a SBP-SAT numerical framework has shown great success in controlling different flow

configurations if sufficient grid resolution is applied (e.g., see Vishnampet et al., 2015; Kord &

Capecelatro, 2019). However, this framework may not be able to effectively capture numerical

discontinuities in under-resolved flow simulations.

High-order centered finite difference operators yield dispersion errors that generate spurious os-

cillations when the flow field is not sufficiently resolved. These oscillations can lead to excursion

errors (i.e., unphysical overshoots and undershoots) in the flow state variables, including passive

scalars. Many of these scalars have physical limits, e.g., the mass fraction of a chemical species

must be bounded in [0, 1]. To suppress unresolved spurious modes, high-order artificial dissipa-

tion operators that preserve stability and accuracy of SBP schemes were introduced by Mattsson

et al. (2004), and their dual consistency was also verified by Hicken & Zingg (2014). However,

these schemes are not effective at absorbing spurious oscillations in regions with sharp gradients.

Although high-order dissipation operators of Mattsson et al. (2004) were extended and improved

to handle sharp gradients and discontinuities (e.g., see Svärd & Mishra, 2009; Craig P. & Zingg,

2018; Ranocha et al., 2018), these approaches are not readily usable in an adjoint solver.

To the best of our knowledge, a straightforward, robust, and high-fidelity numerical frame-

work based on SBP operators with a dual consistent adjoint formulation for turbulent reacting

flows does not exist. The numerical scheme must be able to effectively capture discontinuities

in under-resolved flow simulations or ensure their realizability constraints such as scalar bounded-

ness. Moreover, the numerical scheme should retain high-order accuracy of predictive simulations.

1.4.2 Combustion modeling and its adjoint formulation

Accounting for detailed chemistry typically requires tracking many reactions and transporting a

large number of chemical species. For instance, Li et al. (2004) has provided detailed mechanism

9



of H2-O2 reaction, i.e., the simplest combustion mechanism, which involves at least nine chemical

species. This becomes more sophisticated for hydrocarbon fuels. In addition, changing the chem-

istry in the primal equations requires reformulating, implementing, and verifying its adjoint solver,

which is a tedious task. Although automatic differentiation techniques can be used to address this

issue, they typically increase the computation cost. As mentioned in the previous section, it is typ-

ical to employ simple chemistry models in predicting laminar and turbulent flames when adjoint

sensitivity is computed.

Flamelet approaches address this by mapping the chemical kinetics into a pre-calculated lookup

table (e.g., see Peters, 1984, 1986; Cook et al., 1997; Pitsch et al., 1998; Pitsch & Steiner, 2000;

Pitsch, 2000; Pierce & Moin, 2004). Altering the chemical reaction, thus, requires updating the

lookup table only, and the flow and adjoint equations remain unchanged. Flamelet/progress vari-

able (FPV) approaches (Pierce, 2001; Pierce & Moin, 2004) have gained in popularity within the

combustion community over the past two decades. The FPV approach is formulated by transport-

ing two or three additional scalars (as opposed to each chemical species): a mixture fraction repre-

senting the degree of mixing between the fuel and oxidizer; and a progress variable accounting for

the progress of the chemical reaction. The state quantities associated with the chemical reaction

are precomputed and tabulated as a function of the mixture fraction and the progress variable (and

their statistics if required), and their values are interpolated from a lookup table.

Although FPV approaches have shown great success in predicting flame dynamics or pollutant

emissions such as soot and NOx in turbulent reacting flows (e.g., see Ihme & Pitsch, 2008a,b,c;

Mueller & Pitsch, 2012; Saghafian et al., 2015; Yang et al., 2019), their adjoint counterpart has only

been used in limited studies (see Duraisamy & Alonso, 2012). In FPV approaches, thermochemical

quantities are interpolated from the lookup table, and linear interpolation is commonly used as

an efficient and straightforward estimation. As mentioned before, adjoint equations are obtained

by computing variations of the primal equations to flow variables. However, linear interpolation

provides a piecewise continuous function that its derivatives do not smoothly change. To address

this issue, high-order interpolation methods such as B-spline interpolation can be considered in the
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flamelet approach (Bode et al., 2019). However, they increase the computational cost since their

interpolation algorithm performs more arithmetic operations.

1.4.3 Chaos and divergence of adjoint sensitivity

Previous studies have confirmed that adjoint sensitivity in chaotic dynamical systems can expo-

nentially diverge when their equations are integrated over a long-time horizon (e.g., see Lea et al.,

2000; Wang & Gao, 2013). This is a well-known limitation of adjoint methods and other ap-

proaches that compute sensitivity in turbulent flows or other chaotic dynamical systems. The

divergence of adjoint sensitivity is associated with the amplification of roundoff errors by chaos.

These errors are generated due to operating finite-precision floating-point arithmetic, and they can-

not be prohibited even by using a discrete adjoint formulation. However, it is shown that the adjoint

formulation can be successfully employed when adjoint equations are integrated over finite- but

not long-time intervals (e.g., see Wang, 2013; Kord & Capecelatro, 2019). Different techniques

have been introduced to enable adjoint sensitivity over long time horizons, including ensemble-

averaging of adjoint sensitivities (e.g., see Lea et al., 2000, 2002; Eyink et al., 2004), Lyapunov

eigenvector decomposition (Wang, 2013), least squares shadowing (e.g., see Wang et al., 2014;

Blonigan, 2017; Ni & Talnikar, 2019), and the approaches developed based on the probability dis-

tribution function (PDF) (Thuburn, 2005). The least squares shadowing approach has also been

tested in turbulent flows (e.g., see Blonigan, 2017; Ni & Talnikar, 2019). Although these ap-

proaches can increase the accuracy of adjoint sensitivity in chaotic systems, they tend to increase

the computational cost (Thuburn, 2005; Wang, 2013; Wang et al., 2014; Blonigan, 2017), and they

may not provide exact sensitivity (Lea et al., 2000, 2002) or slowly converge to it (Eyink et al.,

2004).

Only limited work has been introduced to improve optimization procedures of chaotic dynami-

cal systems with adjoint-based methods. Recently, Chung & Freund (2021) introduced a multi-step

penalty method for addressing the non-convexity of QoIs caused by the chaos. They addressed

this issue by breaking the time domain into multiple shorter intervals. This method, combined
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with adjoint sensitivity, was successfully tested in a series of problems, including the Kolmogorov

turbulent flow. This method showed better performance compared to standard gradient search tech-

niques. However, to date, a computationally efficient approach to make use of adjoint sensitivity

in turbulent flows over long time horizons for general flow configurations remains an outstanding

challenge.

1.5 Objectives of the dissertation

The main objective of this dissertation is to develop a high-order numerical framework capable of

providing sensitivity from high-fidelity simulations of turbulent reacting flows. The aim is to com-

bine the sensitivity gradient obtained from the adjoint solution with gradient-based optimization

techniques to provide a means of minimizing/maximizing a well-defined QoI. We demonstrate its

utility on a series of challenging problems dealing with flow instabilities, combustion, and turbu-

lence. Throughout this dissertation, we make use of and extend state-of-the-art numerical methods

developed for DNS and LES of turbulent reacting flows in a manner that is compatible with a

discrete adjoint formulation. The specific objectives of this dissertation include:

(i) Compute exact sensitivity using discrete-adjoint methods and apply it to gradient-based op-

timization techniques to find optimal quantities of interest associated with high-fidelity sim-

ulations of turbulent combustion.

(ii) Formulate the discrete-adjoint method to be compatible with the state-of-the-art numerical

schemes and models without compromising flow solver properties (i.e., stability, high-order

accuracy, robustness, and scalar boundedness).

(iii) Develop a flexible flow-adjoint solver for different chemical mechanisms using the

flamelet/progress variable approach.

(iv) Demonstrate capabilities of the developed adjoint-based framework via a variety of chal-

lenging flow problems, including variable-density instabilities, scalar mixing, and turbulent
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combustion.

1.6 Organization of the dissertation

This dissertation includes seven chapters. Its material is reorganized from journal publications and

conference presentations that are either in print or have been submitted. The rest of this dissertation

is organized as follows.

Chapter 2 (Kord & Capecelatro, 2019, 2021, 2022) introduces a high-order numerical frame-

work with its adjoint formulation developed for turbulent reacting flows. This chapter provides

governing equations of reacting flows and briefly describes the high-order spatial and temporal

discretization schemes and their adjoint counterpart. A flamelet/progress variable approach and its

adjoint formulation is also presented in this chapter. Finally, details on the optimization algorithms

that make use of the sensitivity gradient obtained from the adjoint solution are provided.

An adaptive artificial dissipation technique is presented in Chapter 3 (Kord & Capecelatro,

2021, 2022) as an effective and efficient approach to preserve scalar boundedness. This chap-

ter starts with an overview of standard first derivative and dissipation operators that satisfy the

summation-by-parts property. The order of accuracy of the dissipation operator and its effec-

tiveness in absorbing energy from different modes of the solution are studied. We leverage this

property by locally adjusting the order of accuracy of the dissipation operator in regions of over-

shoots and undershoots to reduce boundedness errors. The corresponding adjoint formulation is

also derived and provided. The accuracy and effectiveness in preserving scalar boundedness are as-

sessed with a series of numerical tests. Their adjoint formulation combined with a gradient-based

optimization technique is also tested.

Chapter 4 (Kord & Capecelatro, 2019) employs the adjoint-based optimization solver on high-

resolution multi-mode Rayleigh–Taylor (RT) instabilities to perform sensitivity analysis and opti-

mization of unsteady multi-component flows. These flow instabilities isolate the effects of chaos

and turbulent mixing before introducing complexities associated with combustion. Different quan-
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tities of interest are presented to measure mixing and growth, and their adjoint sensitivity to in-

terfacial perturbation modes is studied at different RT regimes, which target the most unstable

interfacial modes. Finally, the adjoint-based framework combined with a gradient-based optimiza-

tion solver is used to suppress and enhance multi-mode RT instabilities.

Chapters 5 and 6 (Kord & Capecelatro, 2022) demonstrate the efficacy of the adjoint-based

solver in finding optimal space-time fields that contain a massive number of control parameters.

A solenoidal momentum actuator is applied to a free shear flow to control scalar mixing evolution

in Chapter 5. A diffusion H2-air flame in a three-dimensional turbulent reacting jet is also stud-

ied in Chapter 6, and its combustion is modeled by the flamelet/progress variable approach. An

optimal external acoustic forcing is manipulated in space and time via the adjoint sensitivity to

control the flame lift-off position. The adaptive dissipation scheme is employed to preserve scalar

boundedness in both chapters.

Finally, Chapter 7 summarizes the major achievements and contributions of this dissertation

and provides an outlook on the future of controlling turbulent reacting flows using high-fidelity

simulations.
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CHAPTER 2

Adjoint-Based Optimization Framework

2.1 Quantity of interest

Numerical simulations provide a quantity of interest (QoI), denoted by J , that depends on the

flow solution ~Q (density, momentum, energy, and species mass fractions for multi-component

flows) and a set of design/control parameters ~f (e.g., external body forces, boundary conditions)

within the simulation domain D and time horizon [t0, t f ]. The QoI (also referred to as the objective

function interchangeably throughout this dissertation) is given by

J( ~Q[ ~f ], ~f ) =

t f∫
t0

∫
D

I( ~Q, ~f )WTar(x, t) dx dt, (2.1)

where the integrand I denotes the local temporal value of QoI provided by a high-fidelity sim-

ulation that solves the governing equations (see Chapters 2.2 and 2.3). The weighting function

WTar(x) specifies a region of interest within D. The choice of I in (2.1) is critical for measuring

the QoI, and it has to be defined carefully depending on the goal of each optimization problem.

Different QoIs have been employed in the previous studies. For instance, pressure or velocity

distributions over a body (such as an airfoil) or their drag and lift coefficients are widely considered

as a QoI for shape optimization and drag reduction of aerostructures (Jameson & Martinelli, 2000;

Martins et al., 2004). Quantifying mixing is also desired for different applications such as those

that involve combustion. Mathew et al. (2005) proposed the so-called mix-norm to measure the
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degree of mixing of an advected scalar, which is effective for targeting small-scale variations in

chaotic flows. Minimizing the mix-norm has also been considered as a practical approach for

enhancing mixing (e.g., see Mathew et al., 2007; Foures et al., 2014b; Vermach & Caulfield, 2018).

Heat release and temperature distribution have also been considered as a QoI to optimize ignition

location and timing in reacting flows (e.g., see Capecelatro et al., 2018; Qadri et al., 2021). Data-

driven techniques such as machine learning and data assimilation define a QoI as the discrepancy

between a numerical solution and trusted data (i.e., from experiments or high-fidelity solutions),

and minimizing such a QoI is performed for developing new numerical models or adapting some

model parameters (e.g., see Gray et al., 2017; Singh et al., 2017).

The vector ~f contains a set of parameters associated with an ‘actuator’ or a controller, by

which the flow and eventually the value of J is modified. Several types of actuators have been

imposed in non-reacting and reacting flows (e.g., see Kral, 2000; Cattafesta III & Sheplak, 2011,

and references therein). A reacting flow can be controlled passively (i.e., without an external

source of energy), where the geometry of a combustion chamber is modified, or external obstacles

such as swirlers and bluff-bodies are placed within the flow field (Schadow & Gutmark, 1992) to

enhance fuel-oxidizer mixing and stabilize the flame. An external source of energy can also be

applied to change the flame dynamics, and its location and timing are strategically manipulated

to achieve the desired flame behavior. For instance, combustion instabilities are controlled by

acoustic forcing that can be applied via loudspeakers located upstream of nozzle exits (e.g., see

McManus et al., 1993; Baillot & Demare, 2002; Dowling & Morgans, 2005; Baillot & Demare,

2007, and references therein). Acoustic forcing has been applied on lifted flames to control their

stability (Chao et al., 2002; Abdurakipov et al., 2013), reduce emissions (Chao et al., 1996), avoid

anchoring the flame (Demare & Baillot, 2004), and modify flame shapes (Kozlov et al., 2013).
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2.2 Governing equations

The objective of this dissertation is to develop an approach capable of measuring sensitivity in

high-fidelity simulations of turbulent reacting flows. To this end, this work is built upon the multi-

component compressible Navier–Stokes equations, written compactly as

~N( ~Q) =
∂ ~Q
∂t

+
∂

∂xi

(
~F I

i −
~FV

i

)
− ~S = 0, (2.2)

where ~Q = [ρ, ρu, ρE, ρY1, . . . , ρYN−1]T is the vector of conserved variables that contains density

ρ, velocity vector u = [u1, u2, u3]T, total energy E, and mass fraction Yn for n = 1, ...,N with N

number of chemical species. To ensure global mass conservation, YN does not appear in ~Q, and

instead is computed according to YN = 1 −
∑N−1

n=1 Yn.

The inviscid flux ~F I
i , viscous flux ~FV

i , and volumetric source term ~S are given in non-

dimensional form by

~F I
i =



ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

ui(ρE + p)

ρY1ui

...

ρYN−1ui



, ~FV
i =



0

τ1i

τ2i

τ3i

u jτi j − qi

− f V
1,i

...

− f V
N−1,i



, ~S =



0

0

−ρ/Frc

0

−ρu2/Frc

ω̇1

...

ω̇N−1



, (2.3)

respectively. Non-dimensional pressure p is obtained from the total energy E, according to

p = (γ − 1)ρ

E −
1
2

uiui +
T 0

f

W
−

N∑
n=1

∆h0
f ,nYn

 , (2.4)

where γ is the ratio of specific heats, Yn is the mass fraction of species n with mass enthalpy of
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formation ∆h0
f ,n at temperature T 0

f and molecular weight Wn, for n = 1, . . . ,N, and the mixture

molecular weight W is given by

1
W

=

N∑
n=1

Yn

Wn
. (2.5)

The viscous stress tensor τi j is given in non-dimensional form as

τi j =
µ

Rec

(
∂ui

∂x j
+
∂u j

∂xi

)
+

λ

Rec

∂uk

∂xk
δi j, (2.6)

where Rec = Re/Ma with the Mach number Ma = u?∞/c
?
∞ and Reynolds number Re =

ρ?∞u?∞L?∞/µ
?
∞. The subscript ∞ denotes a reference value, and dimensional quantities are denoted

via superscript ? in this dissertation. ρ?∞, u?∞, c?∞, L?∞, and µ?∞ are the reference density, velocity,

speed of sound, length scale, and viscosity, respectively. µ and λ denote the first and second vis-

cosities, respectively, related to each other by λ = µB − 2/3µ with bulk viscosity µB. The first

viscosity has a temperature dependence through power b according to

µ = (T/T∞)b (2.7)

with reference temperature T∞ = 1/(γ − 1). The non-dimensional heat flux qi and mass species

flux f V
n,i are given by

qi = −
µ

Rec Pr
∂T
∂xi
−

µ

Rec

N∑
n=1

T − T 0
f

WnScn
+

∆h0
f ,n

Scn

 ∂Yn

∂xi
, (2.8)

and

f V
n,i = −

µ

RecScn

∂Yn

∂xi
, for n = 1, 2, . . . ,N − 1, (2.9)

respectively, with the Prandtl number Pr = C?
p,∞µ

?/κ? and Schmidt number Scn = µ?/ρ?D?
n for

n = 1, . . . ,N − 1. Here, C?
p,∞ is the reference specific heat at constant pressure, and κ denotes the
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thermal conductivity. D?
n is mass diffusivity of species n. Pr and Scn for n = 1, . . . ,N − 1 remain

constant through the entire domain. Temperature is given by the non-dimensional equation of state

for a mixture of ideal gases, i.e.,

T =
γpW

(γ − 1)ρ
. (2.10)

Finally, the Froude number is Frc = c?∞
2/(g?L?∞) in (2.3) with gravity g? acting in the negative

x2-direction, which accounts for buoyancy effects, and chemical reaction source terms are denoted

by ω̇n for n = 1, . . . ,N − 1.

2.3 Discretization of the governing equations

In the present work, physical coordinates x = (x1, x2, x3) are transformed into computational space

ξ = (ξ1, ξ2, ξ3) by the Jacobian matrix J = det
(
∂ξi/∂x j

)
and normalized metrics Mi j = J−1∂ξi/∂x j.

Thus, the governing equations (2.2) are rewritten in the computational space according to

~N( ~Q) =
∂ ~Q
∂t

+ J
∂

∂ξi

[
Mi j

(
~F I

j −
~FV

j

)]
− ~S = 0. (2.11)

Spatial derivatives appearing in the governing equations (2.11) and (2.6)–(2.9) are obtained via

narrow-stencil finite difference operators that satisfy the summation-by-part (SBP) property (Kreiss

& Scherer, 1974; Strand, 1994, see Chapter 3.2.1 for more details). Second and mixed derivatives

are obtained by applying the first derivative consecutively. High-order SBP dissipation opera-

tors (Mattsson et al., 2004; Vishnampet, 2015) are employed to damp spurious numerical waves

that arise due to repeated first derivatives (see Chapter 3.2.2 for more details). The dissipation

operators of Mattsson et al. (2004) are extended to preserve scalar boundedness Yn ∈ [0, 1] in

Chapter 3. The flow equations are integrated in time using a standard fourth-order Runge–Kutta

(RK4) scheme.

The SBP scheme is combined with the simultaneous-approximation-term (SAT) boundary
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treatment to ensure provable stability (Carpenter et al., 1994; Svärd et al., 2007; Svärd & Nord-

ström, 2008; Bodony, 2010; Vishnampet, 2015). Different boundary conditions including walls

(impenetrable, isothermal, and adiabatic walls), inflows/outflows, and characteristic non-refracting

far-field boundary conditions are available for different problems, where more details can be found

in Vishnampet (2015), and a review of them is also provided in Appendix B with new treatments

for imposing inflow and outflow conditions.

As discussed later, the SBP property will benefit the discrete-adjoint solver since it is equivalent

to the integration-by-parts property that is employed in deriving the continuous-adjoint equation.

The consistency between the continuous- and discrete adjoint solvers, also called dual consistency,

mitigates spurious numerical waves generated in discrete adjoint methods (e.g., see Hicken &

Zingg, 2014; Vishnampet, 2015). In addition, dual consistent SBP–SAT schemes yield ‘supercon-

vergence’ in computing the QoI (Hicken & Zingg, 2011). This is favorable in cases where accuracy

of a QoI is preferred instead of accuracy of flow state quantities, such as optimization problems.

2.4 Adjoint-based sensitivity approach

We seek the sensitivity of a QoI, J , with respect to control parameters ~f . The sensitivity can

be used within a gradient-based optimization technique (see Chapter 2.6) to find values of ~f for

‘improving’ J . Considering the variations of J with respect to ~f , the sensitivity is given by the

chain rule as (note that ~Q depends on ~f )

δJ

δ ~f
=
∂J

∂ ~Q

δ ~Q

δ ~f
+
∂J

∂ ~f
, (2.12)

where δ denotes small variations. A brute-force approach for evaluating δ ~Q/δ ~f would require per-

turbing each control parameter individually and performing a new simulation for each to measure

the change in flow solution δ ~Q. Thus, that would require N f solutions of the time-dependent multi-

component Navier–Stokes equations, with N f denoting the size of ~f , resulting in a prohibitively

large number of simulations when many control parameters are involved. An alternative, more
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computationally efficient approach is to solve the corresponding adjoint equations by linearizing

the perturbed flow equations. The adjoint solution yields the sensitivity of a desired QoI to a set

of parameters with a cost independent of the number of parameters, as described in the following

section.

2.4.1 Continuous adjoint formulation

In order to obtain the sensitivity gradient, we consider the Lagrangian L of J constrained by the

governing equations ~N , given by

L( ~Q, ~f , ~Q†) = J( ~Q, ~f ) −

t f∫
0

∫
D

~Q†T ~N( ~Q, ~f ) dx dt, (2.13)

where ~Q† =
[
ρ†, u†, E†, Y†1 , . . . , Y†N−1

]T
with u† =

[
u†1 u†2 u†3

]T
is the Lagrange multiplier,

referred to here as the adjoint variable. Variations of L are expressed as

δL( ~Q, ~A) = δJ( ~Q, ~A) −

t f∫
0

∫
D

δ ~Q†T ~N( ~Q, ~A) dx dt −

t f∫
0

∫
D

~Q†Tδ ~N( ~Q, ~A) dx dt. (2.14)

The last two terms on the right-hand side of (2.14) are always zero according to (2.11), leading to

δL = δJ . Taking variations of δJ and δ ~N and substituting them into (2.14) yields

δJ =

t f∫
0

∫
D

(∂I
∂ ~Q

)T

WTar − ~Q†T
∂ ~N

∂ ~Q

 δ ~Q dx dt

+

t f∫
0

∫
D

∂I
∂ ~f

T

WTar − ~Q†T
∂ ~N

∂ ~f

 δ ~f dx dt. (2.15)

The adjoint variables ~Q† are chosen such that the first line of (2.15) vanishes, leading to the adjoint

partial differential equations provided in Appendix A. Putting this together, the local temporal
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sensitivity of J to ~f denoted by ~g = δJ/δ ~f is given by

~g =
∂I

∂ ~f
WTar −

∂ ~N
∂ ~f

T

~Q†, (2.16)

and the total sensitivity is obtained via integrating ~g in space and time. Note that it is not required

to repeat primal simulations for each parameter to compute adjoint sensitivity according to (2.16).

Also, ∂/∂ ~f is not the total derivative, and thus, not computationally expensive as compared to

δ ~Q/δ ~f in (2.12). Thus, adjoint methods are powerful for computing sensitivity when a large num-

ber of parameters exist. The first-term on the right-hand side of (2.16) is typically zero since most

QoIs do not explicitly depend on parameters ~f . However, we keep it here for the sake of generality.

In this section, we derived the corresponding adjoint equation directly from the governing equa-

tions without taking into account the numerical discretization. Discretization of the adjoint PDEs

need not be the same as the forward (or primal) equations. The sensitivity provided by the adjoint

solution after discretizing (2.16) is known to induce truncation errors accumulated in ~Q† that may

become significant in unsteady or chaotic flows (Nadarajah & Jameson, 2000; Carnarius et al.,

2010). Simulations of turbulent reacting flows are particularly sensitive to this since the numerical

resolution is often close to the limits of the discretization. In addition, we have ignored spatial

and temporal boundary conditions for adjoint equations in the this section. Obtaining these condi-

tions for adjoint PDEs can be challenging when complicated boundary conditions are imposed in

the primal simulation. These issues are addressed via the discrete adjoint formulation in the next

section.

2.4.2 Discrete adjoint formulation

Adjoint-based sensitivity can also be obtained from the discretized primal PDEs with imposed

boundary conditions (e.g., through SAT boundary treatments), which are a set of algebraic equa-

tions considered as primal equations. Transposing them into adjoint space leads to algebraic adjoint

equations and sensitivity. Thus, discrete adjoint sensitivity is exact up to the machine precision
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roundoff error, and employing discrete adjoint sensitivity instead of continuous one can accelerate

the optimization process (e.g., see Vishnampet et al., 2015).

In the discrete adjoint formulation, the governing equations are discretized prior to being per-

turbed and linearized. Here,N( ~Q) denote the discretized governing equations (2.11) , given by

N[Q, ~f ] ≡ DtQ − R[Q, ~f ] ≡ 0, (2.17)

where Q =
[
~Q0, ~Q1,1, ~Q1,2, . . . , ~QNt ,3, ~QNt ,4

]T
is the vector of space-time discrete conserved variables

with Nt time steps. ~Qn,s for n = 1, . . . ,Nt and s = 1, 2, 3, 4 (for a standard fourth-order Runge–Kutta

scheme) denote the conserved flow variables discretized in space at time step ‘n’ and sub-step ‘s’,

and ~Q0 are the discretized initial conditions. The right-hand side vector R[Q] contains all unsteady

terms in (2.2) as well as the SAT boundary terms, artificial dissipation, and damping (absorbing

sponge) terms. Matrix Dt is a discrete representation of the standard fourth-order Runge–Kutta

scheme, andN =
[
~N1,1, ~N1,2, . . . , ~NNt ,3, ~NNt ,4

]T
.

Similar to the continuous adjoint approach given in Chapter2.4, the Lagrangian is defined ac-

cording to (Vishnampet et al., 2015)

L[Q,Q†, ~f ] = J[Q, ~f ] −
Nt∑

n=1

4∑
s=1

βn,s∆t
(
~Q†n,s

)T (
P ⊗ INq

)
~Nn,s[Q, ~f ], (2.18)

where ~Q†n,s for n = 1, . . . ,Nt and s = 1, 2, 3, 4 denote the space-time discrete adjoint variables. Nq

is the number of state variables in ~Q, e.g., Nq = 5 + N − 1 for three-dimensional multi-component

flows with N species. In (2.18), ⊗ is the Kronecker product, and P = Px ⊗ Py ⊗ Pz with a diagonal

positive-definite matrix Pxi ∈ R
Nxi in direction xi that satisfies the SBP property (Kreiss & Scherer,

1974; Strand, 1994, see Chapter 3.2.1 for a review of SBP). ∆t is the timestep size, and βn,s denotes

the temporal quadrature weight coefficients. Vishnampet et al. (2015) discussed possible choices

of βn,s and noted that the discrete adjoint time integrator is at least an O(∆t) approximation of the

continuous adjoint equations if βn,1 = βn,4 = 1/6 and βn,2 = βn,3 = 1/3.
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Similarly, the objective function is computed discretely as

J[Q, ~f ] =

Nt∑
n=1

4∑
s=1

βn,s∆t
(
~In,s

)T
P ~Wn,s

Tar, (2.19)

where ~In,s = I( ~Qn,s) is the integrand defined in (2.1) evaluated at time step ‘n’ and sub-step ‘s’.

~Wn,s
Tar also denotes the discrete space-time vector of the weighting functionWTar defined in (2.1).

Similar to the continuous adjoint formulation provided in Chapter 2.4 and Appendix A, variations

of the Lagrangian (2.18) with respect to ~f and ~Qn,s for n = 1, . . . ,Nt and s = 1, 2, 3, 4 are set to

zero, where the latter provides the discrete adjoint equations, given by

N
†[Q,Q†, ~f ] ≡ D†t Q† − R†[Q, ~f ]Q† = G (2.20)

with

R†[Q, ~f ] =
(
P ⊗ INq

)−1
(
∂R
∂Q

)T (
P ⊗ INq

)
(2.21)

and

G =

[
1
2
~G1,1, ~G1,2, 2 ~G1,3, ~G1,4, . . . ,

1
2
~GNt ,1, ~GNt ,2, 2 ~GNt ,3, ~GNt ,4

]T

, (2.22)

and the former yields the sensitivity ofJ to control parameters. ~Gn,s =
(
∂~In,s/∂ ~Qn,s

)
◦ ~Wn,s

Tar, where

◦ denotes the element-wise multiplication. The initial adjoint solution is also given by

~Q†Nt ,4 =
∆t
6

∂~INt ,4

∂ ~QNt ,4

 ◦ ~WNt ,4
Tar . (2.23)

To this end, the dissertation has presented a discrete-adjoint method that provides sensitivity

with accuracy independent of the underlying numerical scheme and is only limited by machine-

precision roundoff error. This is achieved by considering the discrete counterpart of the inner prod-

uct (2.1) and the fully discretized Navier–Stokes equations (in space and time) prior to employing
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the Lagrangian (2.13). Details of the space-time discrete adjoint formulation consistent with the

SBP–SAT discretization outlined in Chapter 2.3 and advanced in time with the standard fourth-

order Runge–Kutta scheme can be found in Vishnampet (2015) for unsteady single-component

flows. It can easily be extended for multi-component reacting flows and is not provided here.

2.5 Combustion modeling

Employing detailed chemistry requires transporting a large number of chemical species that are

governed by many intermediate chemical mechanisms. Thus, it is preferred to reduce complex-

ity of combustion modeling by decreasing the number of scalars being transported. In addition,

combustion modeling depends strongly on the chemical mechanism under consideration. Imple-

menting a new combustion model in the flow solver requires adding/modifying a source term to

the governing equations. As shown in Chapter 2.4, the adjoint-based formulation is based on

linearizing the perturbed governing equations. Thus, altering chemical mechanisms requires re-

formulating, implementing, and verifying adjoint equations, which is not a tractable solution for a

broad dissemination of adjoint-based methods for turbulent reacting flows. Most previous studies

applying adjoint methods to reacting flow simulations considered simplified chemistry. For in-

stance, adjoint sensitivity was used to manipulate chemistry and diffusion parameters (Gray et al.,

2017), to enhance ignition in non-premixed flames (Capecelatro et al., 2018; Qadri et al., 2021),

and to perform frequency response analysis of premixed (Skene & Schmid, 2019) and diffusion

flames (Sayadi & Schmid, 2021), all of them used a one-step chemistry model.

To address the aforementioned issues, we decouple the flow and adjoint field computations

from the detailed chemistry using a flamelet approach. In this approach, the thermodynamical

quantities are precomputed, using detail mechanisms, and stored in lookup tables. Therefore, both

the flow and adjoint solvers achieve flexibility with respect to the choice of chemical reactions.
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2.5.1 Flamelet approach

Flamelet approaches have been widely used due to their computational efficiency and simplicity

of implementation (e.g., see Peters, 1984, 1986; Cook et al., 1997; Pitsch et al., 1998; Pitsch &

Steiner, 2000; Pitsch, 2000; Pierce & Moin, 2004). In these approaches, thermochemical quantities

φ are mapped into a low-dimensional space according to

φ = G(~q), (2.24)

where ~q is a set of state variables by which φ is formulated via the mapping function (i.e., the

combustion model) G. In flamelet approaches, G(~q) is usually obtained by gathering diffusion

flamelet solutions of standard laminar flames (e.g., counterflow diffusion flames), which are solved

via considering detailed chemistry.

Flamelets are thin flame regions assumed to have a one-dimensional structure with infinity fast

chemical reactions. In other words, the flow timescale is supposed to be much greater than the

chemical reaction timescale, leading to an infinite Damköhler number (Da). Da is defined as the

ratio of the flow timescale to the chemical timescale. Thus, the mixing of fuel and oxidizer is the

determining factor in forming a flamelet. It is common to map amounts of fuel and oxidizer into a

conserved variable, called mixture fraction Z, to measure the degree of mixing, given by

Z =
sYF − YO + Y0

O

sY0
F + Y0

O

, (2.25)

where s denotes the mass stoichiometric ratio. YF and YO are fuel and oxidizer mass fractions,

respectively, and their reference values are denoted by Y0
F and Y0

O, respectively. It has been shown

that the distributions of species mass fractions and temperature in a laminar diffusion flame with

infinity fast chemistry only depends on Z (e.g., see Poinsot & Veynante, 2005). Thus, the mixture

fraction is typically considered as an input variable ~q for the mapping function G in diffusion

flames.
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However, the flow timescale in turbulent flows is much smaller compared to laminar flows, and

the assumption of an infinite Da is not valid in turbulent flows. In steady flamelet approaches, the

scalar dissipation rate, χ, given by

χ = 2D
∂Z
∂xi

∂Z
∂Xi

, (2.26)

is also included into ~q to account for the strain rate effects of the flow on flame dynamics (Peters,

1983, 1984; Cook et al., 1997). It has been shown that the stoichiometric scalar dissipation rate

χst is proportional to the inverse of Da (e.g., see Cuenot & Poinsot, 1996; Vervisch & Poinsot,

1998), and the scalar dissipation rate at the flame front is proportional to the flow strain rate of a

one-dimensional diffusion counterflow flame with irreversible infinity fast chemistry (Poinsot &

Veynante, 2005).

Although using Z and χst is a straightforward and non-expensive approach to model complex

chemistry in turbulent flows, this approach is not suitable for some events such as local extinc-

tion and reignition, and it is not also a robust technique to simulate lifted flames (Pierce & Moin,

2004). To better demonstrate these drawbacks, the maximum flamelet temperature with respect to

stoichiometric scalar dissipation rates is plotted for a H2-air counterflow diffusion flame at 300 K

(see Fig. 2.1). The FlameMaster solver (Pitsch, 1998) was used to generate the laminar flamelet so-

lutions. As shown in Fig. 2.1, considering a specific value of χst would not give a unique maximum

flamelet temperature, and three different branches exist (also see Pierce & Moin, 2004, for more

detials). The bottom branch corresponds to the non-burning (or complete extinction) solution, i.e.,

only mixing of fuel and oxidizer occurs. The middle branch contains the unstable solutions corre-

sponding to partially extinguished events, which are important for modeling extinction stages. The

upper branch includes the stable burning solutions. The steady-flamelet approach only considers

the stable burning and non-burning branches. Because of not considering the intermediate branch,

some important flame dynamics such as extinction or reignition stages have been missed in this

approach.
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Figure 2.1: Maximum flamelet temperature with respect to the stoichiometric scalar dissipation
rate for counterflow diffusion flame of H2-air with temperatures of 300 K.

2.5.2 Flamelet/progress variable approach

The flamelet/progress variable (FPV) approach (Pierce, 2001) was developed to address the afore-

mentioned issues. To achieve this goal, all three branches of Fig. 2.1 have to be accounted into

the tabulated chemistry, which cannot be done via χst. Thus, a new quantity, called the progress

variable, was defined to account for the progress of the chemical reaction, given by

C =
∑

Seleceted Products

YSeleceted Products , (2.27)

where mass fractions of selected products depend on the chemical reaction. Although these se-

lected products are determined by the user, they should account for certain features of flame dy-

namics such as the reignition stages. For instance, YCH4 , YH2O, YCO, and YH2 are typically taken

to define the progress variable for methane-air reactions. Also, it is common to normalize the

progress variable such that C ∈ [0, 1]. Unlike the scalar dissipation rate, the progress variable can

also be used for generating a lookup table for premixed flames (e.g., see van Oijen et al., 2001).

The FPV approaches were used successfully for studying flame behaviors or pollutant emissions

such as soot and NOx in complex problems involving turbulent reacting flows (e.g., see Ihme
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& Pitsch, 2008a,b,c; Mueller & Pitsch, 2012; Saghafian et al., 2015; Yang et al., 2019). In the

following section, details on the generation of the lookup table are provided.

2.5.3 Generating lookup tables

As mentioned before, thermochemical quantities have to be obtained through Eq. (2.24). In the

steady-flamelet and FPV approaches, laminar flamelet solutions are first collected by solving

steady flamelet equations to compute thermochemical quantities within laminar diffusion flames,

given by (e.g., see Poinsot & Veynante, 2005)

−
1
2
ρχ

∂2Yn

∂Z∂Z
= ω̇n, (2.28)

−
1
2
ρχ

∂2T
∂Z∂Z

= ω̇T ,

where ω̇T is the energy source term. Thus, thermochemical quantities φ (e.g., Yn, ω̇n,T, ρ, µ,Cp)

only depend on Z, χ (which also depends on Z), and boundary conditions (i.e., mass fraction,

velocity, and temperature of the fuel and oxidizer). Considering the counterflow diffusion flame,

which is typically used for the FPV approach, χst depends on the flow strain rate of the counterflow

configuration. Thus, different values of χst are set for each flamelet simulation, and φ(Z, χst) is

stored. Each point in Fig. 2.1 corresponds to a laminar flamelet simulation. It is important to make

sure all three branches of Fig. 2.1 are captured via the set of flamelet simulations.

Recall that the laminar flamelet solutions contain distributions of chemical products that will be

used to compute the progress variable, and they are functions of Z and χst. However, as discussed

before, χst is not an appropriate choice to parameterize the flamelet solutions. It is favorable to

parameterize them with other quantities instead of χst, such as the maximum value of C or the

temperature value at stoichiometric Z (Pierce & Moin, 2004). The former parameter is used here,

and we denote this parameter with λ, given by

λ = max

 ∑
Seleceted Products

YSeleceted Products

 . (2.29)
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The FPV approach is originally developed for LES. Thus, its lookup table provides Favre

(density-weighted) filtered values of thermochemical quantities φ̃, given by

φ̃ =

∫ 1

0

∫ 1

0
φ(Z,C)P(Z,C)dZdC, (2.30)

where P(Z,C) is the probability distribution function (PDF). Details of generating φ̃ from the

laminar flamelet solutions were provided by (Pierce & Moin, 2004). We use a similar approach,

which is reviewed here. It is necessary to choose a joint PDF P(Z,C) to compute φ̃ according

to (2.30), which is assumed to be (using Bayes’ theorem)

P(Z,C) = P(C|Z)P(Z). (2.31)

A beta-distribution is used for P(Z), given by

P(Z; a, b) =
Γ(a + b)
Γ(a)Γ(b)

Za−1 (1 − Z)b−1 , (2.32)

where Γ denotes the gamma function, and a and b are given by

a =

Z̃
[
Z̃ −

(
Z̃
)2
− Z̃′′2

]
Z̃′′2

, b =

(
1 − Z̃

) [
Z̃ −

(
Z̃
)2
− Z̃′′2

]
Z̃′′2

, (2.33)

respectively, with the mean (or filtered) Z̃ and variance Z̃′′2 of the mixture fraction.

It is also required to determine the conditional PDF P(C|Z). If it is assumed that each grid point

in Z̃−C̃ space (i.e., the chemical space, not to be confused with the spatial grid) belongs to a single

flamelet solution with a corresponding λ0 value, a delta-distribution can then be taken to describe

the conditional PDF, given by

P(C|Z) = δ(C − C̃|Z) with C̃|Z = C(Z, λ0), (2.34)
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where λ0 is a reference parameter corresponding to the appropriate flamelet solution. If multiple

flamelet solutions exist at a single grid point in the chemical space, either one of the flamelet

solutions or their average can be taken. Putting this together leads to

φ̃(Z̃, Z̃′′2, λ0) =

∫ 1

0
φ(Z, λ0)P(Z; Z̃, Z̃′′2)dZ. (2.35)

Finally, the value of λ0 has to be taken such that the below constraint is satisfied (Pierce & Moin,

2004)

C̃ =

∫ 1

0
C(Z, λ0)P(Z; Z̃, Z̃′′2)dZ. (2.36)

Thus, all thermochemical quantities now depend on statistics of the mixture fraction and the

progress variable, given by

φ̃ = G(Z̃, Z̃′′2, C̃), (2.37)

and it is required to solve transport equations of Z̃ and C̃. Also, Z̃′′2 can either be (dynamically)

modelled (e.g., see Pierce & Moin, 1998) or solved through its partial differential equation (e.g.,

see Saghafian et al., 2015). If DNS is used instead of LES, then Z̃′′2 = 0 (i.e., no sub-grid-scale

exists). In this work, we assume that small scale physics of flame dynamics are captured by the

spatial grid spacing, leading to Z̃ = Z, C̃ = C, and Z̃′′2 = 0.

2.5.4 Forward simulation using a lookup table

In the FPV approach, the flow governing equations (2.11) are considered with conserved variables

~Q = [ρ, ρu, ρE, ρZ, ρC]T. The non-dimensional species flux f V
n,i in (2.9) is rewritten according to

f V
Z,i = −

µ

RecScZ

∂Z
∂xi

, f V
C,i = −

µ

RecScC

∂C
∂xi

, (2.38)
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where the Schmidt numbers are defined according to ScZ = µ/ρDZ and ScC = µ/ραDC with

DZ and DC denoting the mass diffusivity of Z and C, respectively. A unity Lewis number is

commonly taken among all species with the FPV approach, leading to Pr = ScZ = ScC = Scn

for species n = 1, . . . ,N with N chemical species. It can be shown that the mixture fraction is a

conserved variable, i.e., ω̇Z = 0 (Poinsot & Veynante, 2005). As explained in the previous section,

the species mass fraction Yn for n = 1, . . . ,N and the source term for the progress variable ω̇C are

precomputed by solving quasi-steady laminar flame equations with complex chemistry models, in

which all chemical species and intermediate chemical schemes are considered. These values are

stored in a lookup table as a function of Z and C. When the flow governing equations are being

solved, values of Yn for n = 1, · · · ,N in (2.4) and (2.8) and also values of ω̇C in (2.3) are obtained

by interpolation (and extrapolation if necessary) of the flamelet lookup table.

The most straightforward and common interpolation technique used for the FPV approach is

linear interpolation. In this case, G would be a piecewise continuous function but not a smooth

function since the derivatives of G to Z and C do not continuously change. Although this approach

has been successful in predicting turbulent reacting flows using tabulated chemistry, it is not desired

for the adjoint formulation since it makes the system of governing equations not differentiable

with respect to ~Q. In other words, it could impact dual consistency of the numerical framework

and generate spurious waves in the adjoint solution (see Chapter 3.3.4 for more details on dual

consistency). Instead, high-order interpolation techniques can be used, such as the high-order

B-spline interpolation, which also increases the accuracy of the predictive solution (Bode et al.,

2019). Using high-order interpolation requires performing more arithmetic operations during the

simulation. But, the memory cost can be reduced by taking a fewer number of grid points in the

Z−C space because a higher-order of accuracy would be achieved by the interpolation (Bode et al.,

2019).

In this dissertation, both linear and cubic Hermit spline interpolation are implemented in the

flow and adjoint solver. The latter one provides a continuously differentiable interpolation (i.e.,

their derivatives are continuous).
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2.5.4.1 Linear interpolation

Linear interpolation is performed according to

φ(Z,C) =w21(C; Ck,Ck+1)
(
w11(Z; Zk,Zk+1)φ̂(Zk,Ck) + w12(Z; Zk,Zk+1)φ̂(Zk+1,Ck)

)
+w22(C; Ck,Ck+1)

(
w11(Z; Zk,Zk+1)φ̂(Zk,Ck+1) + w12(Z; Zk,Zk+1)φ̂(Zk+1,Ck+1)

)
, (2.39)

where φ denotes either Yn or ω̇C, and φ̂ is the corresponding value in the lookup table, and Zk <

Z < Zk+1 and Ck < C < Ck+1. If Z or C are either smaller than 0 or greater than 1, extrapolation

is employed by considering the closest boundary points in the lookup table. The weights on the

above relation are given by

w11(Z; Zk,Zk+1) =
Zk+1 − Z
Zk+1 − Zk

, w12(Z; Zk,Zk+1) = 1 − w11,

w21(C; Ck,Ck+1) =
Ck+1 −C
Ck+1 −Ck

, w22(C; Ck,Ck+1) = 1 − w21. (2.40)

2.5.4.2 Cubic Hermit spline interpolation

Cubic Hermit spline (CHS) interpolation employs a third-degree polynomial such that the slopes

of the obtained function remain continuous at the grid points. First, we perform CHS interpolation

for Zk < Z < Zk+1 at a fixed Ck. Also, we assume that the slopes of φ with respect to Z at Zk and

Zk+1 are known and given by mk(Ck) and mk+1(Ck), respectively. Using CHS provides a third-degree

polynomial pCHS ,Z, given by

pCHS ,Z(Z; Zk,Zk+1,Ck) =H00(Z; Zk,Zk+1)φ̂(Zk,Ck) +H10(Z; Zk,Zk+1)(Zk+1 − Zk)mk(Ck)

+H01(Z; Zk,Zk+1)φ̂(Zk+1,Ck) +H11(Z; Zk,Zk+1)(Zk+1 − Zk)mk+1(Ck), (2.41)
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where

H00(X; Xk, Xk+1) = 2X̄3 − 3X̄2 + 1,

H10(X; Xk, Xk+1) = X̄3 − 2X̄2 + X̄,

H01(X; Xk, Xk+1) = −2X̄3 + 3X̄2,

H11(X; Xk, Xk+1) = X̄3 − X̄2 (2.42)

with X̄ = (X − Xk)/(Xk+1 − Xk). Note that the slopes mk and mk+1 are typically not known, but they

can be estimated by finite-different approximations, such as a centered finite difference method

given by

mk(Ck) =
φ̂(Zk+1,Ck) − φ̂(Zk−1,Ck)

2 (Zk+1 − Zk−1)
. (2.43)

Using (2.43) yields a Catmull-Rom spline. When Zk−1 and Zk+1 do not exist, a first-order forward

or backward finite-difference approximation are used, respectively.

Then, CHS interpolation is preformed for Ck < C < Ck+1 according to

φchs(Z,C) =H00(C; Ck,Ck+1)pchs,Z(Z; Zk,Zk+1,Ck)

+H10(C; Ck,Ck+1) (Ck+1 −Ck)
pchs,Z(Z; Zk,Zk+1,Ck+1) − pchs,Z(Z; Zk,Zk+1,Ck−1)

2 (Ck+1 −Ck−1)

+H01(C; Ck,Ck+1)pchs,Z(Z; Zk,Zk+1,Ck+1)

+H11(C; Ck,Ck+1) (Ck+1 −Ck)
pchs,Z(Z; Zk,Zk+1,Ck+2) − pchs,Z(Z; Zk,Zk+1,Ck)

2 (Ck+2 −Ck)
. (2.44)

2.5.5 Adjoint of the flamelet/progress variable approach

As mentioned in Chapter 2.4, the adjoint equations are derived by considering variations of the

governing equations (2.11) with respect to conserved variables ~Q (see Appendix A for more de-

tails). We employ the chain rule for computing variations of the lookup table output φ(Z,C) to ~Q,
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given by

∂φ

∂ ~Q
δ ~Q = −

1
ρ

(
Z
∂φ

∂Z
+ C

∂φ

∂C

)
δρ +

1
ρ

∂φ

∂Z
δ(ρZ) +

1
ρ

∂φ

∂C
δ(ρC). (2.45)

If linear interpolation was used in the forward (predictive) simulation, derivatives of φ with respect

to Z and C are obtained according to (2.39), given by

∂φ

∂Z
=w21(C; Ck,Ck+1)

(
dw11(Z; Zk,Zk+1)

dZ
φ̂(Zk,Ck) +

dw12(Z; Zk,Zk+1)
dZ

φ̂(Zk+1,Ck)
)

+w22(C; Ck,Ck+1)
(
dw11(Z; Zk,Zk+1)

dZ
φ̂(Zk,Ck+1) +

dw12(Z; Zk,Zk+1)
dZ

φ̂(Zk+1,Ck+1)
)
, (2.46)

and

∂φ

∂C
=

dw21(C; Ck,Ck+1)
dC

(
w11(Z; Zk,Zk+1)φ̂(Zk,Ck) + w12(Z; Zk,Zk+1)φ̂(Zk+1,Ck)

)
+

dw22(C; Ck,Ck+1)
dC

(
w11(Z; Zk,Zk+1)φ̂(Zk,Ck+1) + w12(Z; Zk,Zk+1)φ̂(Zk+1,Ck+1)

)
, (2.47)

respectively, where

dw11(Z; Zk,Zk+1)
dZ

= −
1

Zk+1 − Zk
,

dw12(Z; Zk,Zk+1)
dZ

= −
dw11(Z; Zk,Zk+1)

dZ
,

dw21(C; Ck,Ck+1)
dC

= −
1

Ck+1 −Ck
,

dw22(C; Ck,Ck+1)
dC

= −
dw21(C; Ck,Ck+1)

dC
. (2.48)

This method is employed to compute variations of the pressure, heat flux, etc. to ~Q (see Ap-

pendix A for more details).

If CHS interpolation was employed instead of linear interpolation, variations of φCHS with
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respect to Z and C are computed by

∂φchs

∂Z
=H00(C; Ck,Ck+1)

dpchs,Z(Z; Zk,Zk+1,Ck)
dZ

+H10(C; Ck,Ck+1)
Ck+1 −Ck

2 (Ck+1 −Ck−1)

(
dpchs,Z(Z; Zk,Zk+1,Ck+1)

dZ
−

dpchs,Z(Z; Zk,Zk+1,Ck−1)
dZ

)
+H01(C; Ck,Ck+1)

dpchs,Z(Z; Zk,Zk+1,Ck+1)
dZ

+H11(C; Ck,Ck+1)
Ck+1 −Ck

2 (Ck+2 −Ck)

(
dpchs,Z(Z; Zk,Zk+1,Ck+2)

dZ
−

dpchs,Z(Z; Zk,Zk+1,Ck)
dZ

)
,

(2.49)

and

∂φchs

∂C
=

dH00(C; Ck,Ck+1)
dC

pchs,Z(Z; Zk,Zk+1,Ck)

+
dH10(C; Ck,Ck+1)

dC
(Ck+1 −Ck)

pchs,Z(Z; Zk,Zk+1,Ck+1) − pchs,Z(Z; Zk,Zk+1,Ck−1)
2 (Ck+1 −Ck−1)

+
dH01(C; Ck,Ck+1)

dC
pchs,Z(Z; Zk,Zk+1,Ck+1)

+
dH11(C; Ck,Ck+1)

dC
(Ck+1 −Ck)

pchs,Z(Z; Zk,Zk+1,Ck+2) − pchs,Z(Z; Zk,Zk+1,Ck)
2 (Ck+2 −Ck)

, (2.50)

respectively, where

pCHS ,Z(Z; Zk,Zk+1,Ck) =
dH00(Z; Zk,Zk+1)

dZ
φ̂(Zk,Ck) +

dH10(Z; Zk,Zk+1)
dZ

(Zk+1 − Zk)mk(Ck)

+
dH01(Z; Zk,Zk+1)

dZ
φ̂(Zk+1,Ck) +

dH11(Z; Zk,Zk+1)
dZ

(Zk+1 − Zk)mk+1(Ck),

(2.51)
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q Contain thermochemical quantities

q Perform linear interpolation

q Solve N—S Eqs.  and transport Eqs. for mixture 
fraction (Z) and progress variable (C)

q Solve variations of thermochemical quantities to 
conserved variables

Flow/Adjoint 
Solver

Chemical Library
(Tabulated Chemistry)

Figure 2.2: Summary of the flamelet/progress variable approach and its adjoint formulation.

and

dH00(X; Xk, Xk+1)
dX

=
1

Xk+1 − Xk

(
6X̄2 − 6X̄

)
,

dH10(X; Xk, Xk+1)
dX

=
1

Xk+1 − Xk

(
3X̄2 − 4X̄ + 1

)
,

dH01(X; Xk, Xk+1)
dX

=
1

Xk+1 − Xk

(
−6X̄2 + 6X̄

)
,

dH11(X; Xk, Xk+1)
dX

=
1

Xk+1 − Xk

(
3X̄2 − 2X̄

)
. (2.52)

Figure 2.2 summarizes the FPV approach with linear interpolation and its adjoint formulation.

2.6 Optimization

The sensitivity of a QoI J to ~f obtained from the adjoint-based method described in the previous

sections is used within a gradient-based optimization framework to find optimal values of J (see

Fig. 2.3). Once the sensitivity (i.e., gradient ∇J = δJ/δ ~f ) is provided by the adjoint solver, the

optimizer determines a ‘search direction’ based on the gradient. The search direction could be set

as −∇J in the steepest descent algorithm; however, it can also be computed based on the history
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Objective function, J
Objective function gradient, ∇J
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Compute 
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Converged?
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DoneSetup

No

f(n) ← f(n+1)

Step size, !
J

∇J

Control parameters, f(0)

f(n+1) J, ∇J

Optimized !*

Figure 2.3: Adjoint-based optimization framework.

of previous gradients as in the conjugate gradient method. Then, a line-search algorithm is used

to obtain an ‘optimal value’ within this search direction. Depending on the line search algorithm,

this ‘optimal value’ either provides a new J that is smaller than the baseline J (e.g., the sufficient

decrease condition), is based on how much the magnitude of its gradient, |∇J|, is reduced (e.g.,

the sufficient curvature condition), or combination of both, e.g., the strong Wolfe conditions (see

Martins & Ning, 2021, for more details). Depending on a user-defined tolerance, either the adjoint-

based optimization is terminated, or a new optimization iteration restarts to obtain a new search

direction.

In this work, the following gradient-based optimization algorithms have been implemented as

an in-house optimization library:

(i) Steepest descent,

(ii) Conjugate gradient,

(iii) Broyden-Fletcher-Goldfarb-Shanno (BFGS),

with the following line search algorithms:

(i) Backtracking,

(ii) Bracketing with the pinpoint function.
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More information about these algorithms can be found in Martins & Ning (2021). In addition,

the FORTRAN-based code solving the Navier–Stokes and adjoint equations communicates with

the SciPy minimize package, an open-source Python library (Jones et al., 2001; Oliphant, 2007;

Millman & Aivazis, 2011) providing many optimization solvers. With this, the SciPy minimize

solver updates design parameters and sends them back to the flow or adjoint code for recomput-

ing the QoI (and its sensitivities if requested). This is repeated until the optimization procedure

converges to a threshold tolerance.

2.6.1 Seeking an optimal space-time field

As previously mentioned, the computational cost of adjoint-based methods does not significantly

depend on the number of control parameters ~f ; thus, they are very powerful in cases when a

large number of control parameters are involved. In some applications, ~f is a space-time field,

and its size, denoted by N f = Nct × Nt × Nst, is thus proportional to the grid size of the control

region (Nct) and the number of timesteps Nt and sub-steps Nst, where Nst = 4 for the standard

fourth-order Runge–Kutta time integrator. In these cases, it might not be possible to store all

values of ~f ∈ RN f and the gradient ∇J ∈ RN f when the flow or adjoint governing equations are

integrated in time. Instead, their values are saved on disk, and only a portion of them is stored in

memory. Thus, efficient data management for reading from/writing to disk is required. It is also

necessary to store flow state variables ~Q for the adjoint simulation. Adjoint equations typically

have to be integrated reversely in time as shown in Chapter 3.3.1, and adjoint equations depends

on ~Q ∈ RNq×Ng×Nt×Nst with Nq conserved/state variables and Ng grid points in the computational

domain. Unlike ~f and ∇J , it would not be practical to store all values of ~Q in disk since the

control region is typically a small portion of the domain, i.e., Nct � Ng. Instead, checkpointing is

performed (e.g., see Vishnampet, 2015). Note that flow solutions at sub-timesteps do also have to

be known during the discrete adjoint simulation. For continuous adjoint, on the other hand, flow

state solutions at fractional sub-steps can be approximated via interpolation (Vishnampet et al.,

2015), which reduces the computational cost. Also, the adjoint equations are linear with respect to
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Figure 2.4: Adjoint-based optimization framework with space-time field ~f . Dashed boxes are disk
storages, and arrows toward/from them means writing/reading data to/from disk.

adjoint variables according to (2.20), and making use of this property in time integration and data

management accelerates the time-integration portion of the discrete-adjoint solver (e.g., see Skene

et al., 2021).

The adjoint-based optimizer is extended to manage subset values of ~f during the simulation

via reading them from/writing them to disk, which is summarized in Fig. 2.4. After setting-up the

problem configuration, the flow solver integrates the Navier–Stokes equations from t = 0 to t = t f

with constant timestep ∆t = t f /Nt, and snapshots of the flow solution ~Q are frequently written to

disk at t = 0, Nch∆t, 2Nch∆t, . . . , Nt∆t with Nch < Nt denoting the checkpointing frequency. A

subset of ~f with a size of Nct × Nch × Nst that is required within t ∈ [0,Nch∆t], t ∈ [Nch∆t, 2Nch∆t],

. . ., t ∈ [(Nt − Nch)∆t,Nt∆t] is read from disk at t = 0, Nch∆t, . . ., and (Nt − Nch)∆t, respectively,

and stored in memory. After finishing the flow simulation, the adjoint solver initializes the adjoint

solution at t = t f according to (2.23) via reading the corresponding snapshot of the flow solution

~Q from the disk . Then, the solver reads the subset of ~f for t ∈ [(Nt − Nch),Nt∆t] and stores them

in memory, but it reads the snapshot of ~Q at t = (Nt − Nch)∆t from disk and integrates the flow
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governing equations from t = (Nt−Nch)∆t−Nt∆t, during which ~Q values are now stored in memory.

Then, the adjoint simulation integrates reversely in time for t = Nt∆t−(Nt−Nch)∆t, using the stored

~Q and ~f values in memory. The adjoint sensitivity is computed and stored in memory during this

time horizon and then writes to disk when the adjoint simulation reaches t = (Nt − Nch)∆t. This

procedure repeats until the adjoint simulation approaches t = 0. Then, the optimizer framework

starts a new flow simulation to obtainJ (n+1), during which the control parameters f (n+1) are updated

using the steepest descent method according to

f (n+1) = f (n) − α(n)g(n), (2.53)

where superscript n denotes the optimization iteration, g is the local temporal sensitivity in the

control region, and α(n) > 0 is a step length. Note that subsets of ~f (n) and ~g(n) have to be read from

disk and stored in memory with a timestep frequency of Nch during integrating the flow equations.

Several line searching algorithms exist to obtain an optimal value of α(n). In this work, a

backtracking algorithm is implemented as follows. IfJ (n+1) does sufficiently decrease with respect

to J (n), i.e.,

J (n+1) ≤ J (n) − µlsα
(n)

∫ t=t f

t=t0

∫
x

g(n) · g(n) dx dt, (2.54)

then α? = α(n). The inequality (2.54) is called the sufficient decrease condition or Armijo condition

(e.g., see Martins & Ning, 2021), and a user-defined parameter µls = 10−4 is used. Then, the new

~f according to (2.53) is updated and written to disk, and a new optimization iteration begins (next

optimization iteration n + 1) until the optimization procedure converges. If (2.54) has not been

satisfied yet, a new line searching iteration is performed with a smaller step, i.e., α(n) ← 10−1/4α(n).

Note that −g(n) · g(n) in (2.54) denotes the negative directional derivative, which is the opposite of

adjoint sensitivity, as used in the steepest descent method.
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CHAPTER 3

Adaptive Dissipation Framework for Preserving Scalar

Boundedness

3.1 Introduction

In this dissertation, we seek a robust numerical framework and its discrete adjoint counterpart

for compressible flows involving scalar mixing, turbulence, chemical reactions, and potentially,

shocks. The numerical framework should provide high-fidelity predictions of such complex flow

problems with a manageable computational cost. Therefore, we leverage high-order discretization

methods. Although advanced numerical techniques exist for this purpose, they could yield oscil-

latory discrete adjoint solutions. Discrete adjoint equations are derived by computing variations

of discretized governing equations with their numerical models (e.g., flux limiters) to flow state

variables. Thus, it is challenging to obtain a high-order numerical framework with a compatible

discrete adjoint solution for complex flow problems.

Despite huge progress in developing high-order numerical schemes, applications of high-order

methods to under-resolved simulations of turbulent flows remain challenging. Namely, without the

aid of numerical diffusion, dispersion errors generate spurious oscillations when sharp gradients

are not sufficiently resolved (Johnsen et al., 2010). This results in excursion errors (i.e., unphysical

overshoots and undershoots) in flow state variables, which can violate realizability constraints. For

example, the mass fraction of a chemical species, Y , must be bounded Y ∈ [0, 1].

Several methods have been proposed in recent years to preserve scalar boundedness in high-
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fidelity numerical solvers. Examples include flux correction and limiter schemes (Herrmann et al.,

2006; Subbareddy et al., 2017; Sharan et al., 2018) and artificial dissipation operators (Cook, 2007;

Kawai & Lele, 2008). High-order artificial dissipation operators that retain stability and accuracy

of SBP schemes were introduced by Mattsson et al. (2004) to suppress unresolved spurious modes,

and their dual consistency was also verified by Hicken & Zingg (2014). However, the proposed

high-order dissipation operators are not capable of absorbing oscillations in regions with sharp

gradients and could generate excursion errors. SBP operators have been extended to upwind-

based (Mattsson et al., 2004; Svärd et al., 2005; Mattsson et al., 2007; Mattsson, 2017), mono-

tonic upstream-centered scheme for conservation laws (MUSCL) (Abbas et al., 2010), weighted

essentially non-oscillatory (WENO) (Yamaleev & Carpenter, 2009b,a), and adaptive discretiza-

tion (Abbas et al., 2009; Eriksson et al., 2011; Eriksson & Nordström, 2018) schemes. Yet, these

approaches could be computationally expensive. Also, these schemes may add remarkable numeri-

cal dissipation and suppress physical fluctuations such as small-scale turbulent eddies and acoustic

waves (e.g., see Herrmann et al., 2006; Matheou & Dimotakis, 2016).

In this chapter, an adaptive dissipation operator is presented to preserve scalar boundedness

in turbulent flows in a computationally efficient manner that retains overall high-order accuracy

and is compatible with the adjoint solver. Its effects on the boundedness error and accuracy of the

solution are studied via a series of numerical tests, including a three-dimensional turbulent round

jet. Adjoint formulation for adaptive dissipation operators is derived, and it is studied via a few

numerical simulations.

3.2 High-order SBP framework with scalar boundedness

In this section, we present an adaptive dissipation operator to yield scalar boundedness in

convection-dominated flows. A one-dimensional advection equation of a passive scalar is first

considered, which isolates the dispersive behavior that generates excursion errors. An energy esti-

mate of the proposed adaptive SBP dissipation operators is then presented.
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3.2.1 An overview of SBP operators

Consider a one-dimensional linear advection equation of a scalar quantity u, given by

∂u
∂t

+ a
∂u
∂x

= 0, −l ≤ x ≤ l,

u(x, t = 0) = u0(x),

u(x = −l, t) = uL(t), (3.1)

where a > 0 is a constant advection velocity, and u must be bounded within umin ≤ u ≤ umax. For

example, if u represents the mass fraction of a chemical species we require u ∈ [0, 1]. Initial and

left boundary conditions are denoted by u0(x) and uL(t), respectively.

The spatial coordinate x is uniformly discretized with Nx grid points, resulting in grid spacing

∆x = Lx/(Nx − 1), where Lx = 2l is the domain length. The discrete counterpart of x is denoted by

~x =
[
x1, x2, . . . , xNx

]T with xi = (i− 1)∆x for i = 1, 2, . . . ,Nx. The semi-discrete form of (3.1) can

be expressed as

d~u
dt

+ aD2s~u = ~RSAT, (3.2)

where ~u =
[
u(x1), u(x2), . . . , u(xNx)

]T contains the numerical approximation of u(x) via a solution

to (3.2) at time t. The first-derivative operator D2s ∈ R
Nx×RNx is a finite difference approximation of

a smooth solution u(x) with 2s-order of accuracy for the interior grid points, i.e., D2su = ∂u/∂x +

O(∆x2s). In this work, D2s satisfies the summation-by-parts (SBP) property (Kreiss & Scherer,

1974; Strand, 1994)

P2sD2s + (P2sD2s)T = diag[−1, 0, . . . , 0, 1] ∈ RNx , (3.3)

where P2s is a symmetric positive-definite matrix (the SBP norm matrix). We consider D2s to be

a skew-symmetric operator that contains centered finite-difference stencils for interior grid points
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and specific boundary closures that satisfy (3.3). If P2s is a diagonal matrix, first derivative opera-

tors D2s satisfying (3.3) provide 2s-order of accuracy in the interior domain and s-order of accuracy

near the boundaries with global accuracy of s + 1 (e.g., see Kreiss & Scherer, 1974; Strand, 1994,

for s = 1, 2, 3, 4). Diagonal norms also preserve the SBP property under a coordinate transforma-

tion for arbitrary orders of accuracy (Svärd, 2004).

Boundary conditions are enforced weakly via the simultaneous-approximation-term (SAT)

boundary treatment, given by ~RSAT in (3.2). The combined SBP–SAT formulation ensures en-

ergy stability of the discrete system (Bodony, 2010). Details on the specific SAT treatment used

in this dissertation are provided in Appendix B. The interested reader may refer to Carpenter et al.

(1994); Svärd et al. (2007); Svärd & Nordström (2008); Nordström et al. (2009) for further details

on SAT boundary conditions.

The SBP property (3.3) is the discrete counterpart of the integration by parts. This yields

numerical stability of combined SBP–SAT schemes. Dual consistency of SBP–SAT can also yield

superconvergence (Hicken & Zingg, 2011). This results in a 2s-order of accuracy when a cost

functional of u is numerically approximated even though the u has a (s + 1)-order of accuracy due

to boundary restrictions. In fluid dynamic applications, this function can be a drag force depending

on the flow velocity and pressure fields.

3.2.2 Standard SBP dissipation operators

It is well known that centered finite difference operators are capable of generating spurious oscil-

lations due to dispersion errors. A common approach to alleviate this, which is adopted here, is to

introduce artificial dissipation. Following Mattsson et al. (2004), a 2s-order dissipation operator,

denoted by D(diss)
2s , is added to the right-hand side of (3.2) (neglecting the SAT term for brevity)

according to
d~u
dt

+ aD2s~u = D(diss)
2s ~u, (3.4)
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which is given by (Mattsson et al., 2004)

D(diss)
2s = −σ(diss)

2s P̃−1
2s D̃(s)T

BD̃(s) = −σ(diss)
2s P̃−1

2s R2s, (3.5)

where B is a positive semidefinite matrix that will be defined later, and D̃(s) is an undivided dif-

ference operator such that D(s) = ∆x−sD̃(s) is a consistent approximation of ∂s/∂xs with minimum

stencil size. Similarly, P̃2s = ∆x−1P2s, where the SBP norm matrix P2s corresponds to the first

derivative operator of D2s according to (3.3). In this expression, σ(diss)
2s > 0 is a user defined coeffi-

cient that controls the amount of dissipation, whose magnitude depends upon the grid spacing and

order of accuracy of the dissipation operator, i.e., σ(diss)
2s ∝ ∆x−12−2s. The factor 2−2s in σ(diss) was

suggested by Diener et al. (2007) to ensure the strength of the numerical dissipation is independent

of s at high wavenumbers.

Mattsson et al. (2004) showed that when a diagonal P2s is considered and B = cI (a constant

value multiplied by the identity matrix I), Ddiss
2s has 2s-order of accuracy for interior grid points and

s-order of accuracy near the boundaries, consistent with the first derivative operator D2s in (3.4).

It is possible to modify B near the boundaries to increase accuracy of the dissipation operator as

shown by Mattsson et al. (2004). The original dissipation operator (3.5) has since been extended

and improved, namely through modifications of B, e.g., by making it dependent on the local grid

metrics (Vishnampet, 2015) or advection velocity (Nordström, 2006). Dissipation operators satis-

fying the SBP property with provable entropy-stability have also been developed (Ranocha et al.,

2018; Craig P. & Zingg, 2018). Also, dissipation operators (3.5) are extended and improved by

modifying B to create MUSCL schemes (Abbas et al., 2009, 2010). In the current work, B is taken

to be an identity matrix for the standard scheme and will be modified for the proposed adaptive

scheme.

When examining the numerical stability of (3.4), it is useful to define an inner product operator
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according to

〈
~f , ~g

〉
P

= ~f TP2s~g, (3.6)

where ~f and ~g are projections of arbitrary smooth functions f (x) and g(x), respectively, on the

grid. The corresponding norm is given by ‖ f ‖2P = ~f TP2s ~f . Thus, numerical stability of the dissi-

pation term in (3.4) is determined by evaluating d ‖u‖2P /dt = (d~u/dt)TP2s~u + ~uTP2s(d~u/dt), given

by (Mattsson et al., 2004)

d
dt
‖u‖2P = − ∆xσ(diss)

2s

(
D̃(s)~u

)T (
BT + B

) (
D̃(s)~u

)
, (3.7)

where the advection term is neglected. The right-hand side of the above equation is always non-

positive if B is a positive semidefinite matrix.

To evaluate the efficacy of the dissipation operator (3.5) in absorbing energy across different

wavenumbers, we consider a periodic domain and obtain the solution of (3.5) at a grid point xi =

i∆x in Fourier space via u(xi, t) =
∑
ω

∑
κ û(κ, t)e jωte jκi∆x, where κ and ω are spatial and temporal

modes, respectively, and j =
√
−1. Inserting this into (3.4) yields (Mattsson et al., 2004)

jω(κ) = −22sσ(diss)
2s sin2s

(
κ∆x

2

)
. (3.8)

Note that jω is a non-positive real number according to (3.8); thus, it determines the strength of

exponential decay (i.e., dissipation) of the solution through time with u ∝ e jωt. As previously

mentioned, we may consider

σ(diss)
2s = σ̃(diss)/22s; (3.9)

thus, the factor of 22s on the right-hand side of (3.8) cancels with σ(diss)
2s .

Figure 3.1a shows − jω(κ) with 22sσ(diss)
2s = 1. According to (3.8), − jω(κ) is positive except for
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(a) (b)

Figure 3.1: (a) Exponential decay (dissipation strength) according to (3.8) corresponding to the
dissipation operator (3.5). (b) Numerical solution to (3.4) with an initial conditions of a rectangular
pulse (−−) advanced in time for one rotation using second-order (s = 1; black), fourth-order (s = 2;
blue), sixth-order (s = 3; red), and eighth-order (s = 4; green) operators.

κ = 0, where − jω(κ) = 0. This confirms that the numerical solution of (3.4) exponentially decays

with time for s ≥ 1 except for mode κ = 0 whose solution remains constant. As can be seen, all

dissipation operators exhibit similar amount of dissipation at the highest resolvable wavenumbers

(κ∆x → π), when normalizing the dissipation amount by 22s. However, important differences

can be observed at smaller wavenumbers. Namely, the exponential factor − jω drops sharply as

the wavenumber decreases for high-order dissipation operators (i.e., dissipation operators using

high-order derivatives target the smallest scale fluctuations only). On the other hand, dissipation

using low-order derivatives exhibit larger values of − jω at small κ, resulting in broadband energy

reduction (dissipation across all scales).

Figure 3.1b shows the solution to Eq. (3.4) for a square pulse advected in a periodic domain of

length 2l = 1 discretized using with Nx = 51 points after one rotation for dissipation orders s =

1, 2, 3, 4. In each case, dissipation and first derivative operators have the same order of accuracy,

and σ̃(diss) = ∆x−1. The initial condition is a rectangular pulse (see Fig 3.1b). To eliminate temporal

truncation errors, the solution is advanced in time using an explicit first-order Euler method with a

small Courant–Friedrichs–Lewy (CFL) number of ∆ta/∆x = 0.02, where ∆t is the timestep size.

It can be seen that all dissipation operators, except for s = 1, yield spurious fluctuations with
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overshoots/undershoots near discontinuities. On the other hand, the second-order scheme provides

an overly diffused solution. In summary, the second-order solution is bounded while higher-order

operators yield unbounded solutions with improved accuracy. Therefore, it is favorable to employ

second-order dissipation in regions with sharp gradients, such as regions with shocks or when the

solution is locally unbounded, but use high-order dissipation operators in smooth regions to retain

small scale fluctuations. Such a procedure is presented in the following section.

3.2.3 Adaptive dissipation for preserving scalar boundedness

We begin with the 2s-order dissipation term (3.5) in its continuous form, given by (Mattsson et al.,

2004)

∂u
∂t

= (−1)s−1 ∂
s

∂xs

(
b
∂su
∂xs

)
, (3.10)

where b(x) is a non-negative smooth function that represents the continuous counterpart of B

in (3.5). Here, ∂s/∂xs corresponds to the difference operator D(s) = ∆x−sD̃(s), where D̃(s) is used

in (3.5).

To demonstrate the dissipative behavior of the right-hand side of (3.10), we define the contin-

uous counterpart of (3.6), given by

〈 f , g〉 =

x=l∫
x=−l

f (x)g(x) dx, (3.11)

where f and g are arbitrary smooth functions. A corresponding norm is also defined according to

‖ f ‖2 =
∫ l

−l
f 2 dx. Multiplying both sides of (3.10) by u and integrating by parts yields

1
2

d
dt
‖u‖2 = (−1)2s−1

l∫
−l

b
(
∂su
∂xs

)2

dx, (3.12)

where the boundary terms of b and their derivatives are assumed to be zero for simplicity. The
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right-hand side of (3.12) is always non-positive since b(x) ≥ 0, consequently the energy of the

continuous system decays in time. In other words, the dissipation term on the right-hand side

of (3.10) effectively ‘absorbs’ global energy of the system. In the previous section, we demon-

strated how this dissipative property dampens spurious oscillations generated in the discrete equa-

tions. Namely, the discrete second-order dissipation operator absorbs a broad range of spurious

oscillation modes, especially at low wavenumbers. Thus, we propose to locally switch to second-

order in regions that exhibit excursion errors. To dampen spurious high wavenumber unresolved

modes, the high-order dissipation operator is employed in the rest of the domain.

A sensor, ψ, is introduced to locally switch between dissipation operators, where ψ = 0 and

ψ = 1 activate the high-order and second-order operators, respectively, and therefore we require

ψ ∈ [0, 1]. Several sensors have been introduced in the literature (e.g., see Zhao et al., 2020, and

references therein), which are typically defined based on variations of a flow state variable (Harten,

1978; Jameson et al., 1981; Ren et al., 2003). Physics-based sensors have also been considered

based on vorticity and the rate of dilatation (Ducros et al., 1999; Larsson et al., 2007; White et al.,

2012). In the present study, as motivated by Herrmann et al. (2006), the sensor activates the

second-order dissipation operator in unbounded regions, according to

ψ(u) =


1; u > umax + ε or u < umin − ε

0; otherwise,
(3.13)

where ε ≥ 0 is a user-defined tolerance. In some cases, even a small amount of unboundedness

cannot be handled by the computational solver, in which case ε = 0 should be considered. How-

ever, ε = 0 could potentially activate the second-order operator in undesired regions of the flow,

e.g., where u slightly exceeds its limits due to round off errors, which could result in an overly dis-

sipative system. Thus, a trade-off between accuracy of the solution and unboundedness is made,

which will be evaluated in later sections.
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3.2.3.1 Unconditionally stable formulation

The sensor can be applied to the dissipation operator (3.10) in a number of ways. We first propose

to blend the second-order (s = 1) and high-order (s > 1) operators by replacing b with ψ for the

former and b = 1 − ψ for the latter, according to

∂u
∂t

+ a
∂u
∂x

=
∂

∂x

(
ψ
∂u
∂x

)
+ (−1)s−1 ∂

s

∂xs

[
(1 − ψ)

∂su
∂xs

]
. (3.14)

Its discrete counterpart is given by

d~u
dt

+
a

∆x
D2s~u = − σ(diss)

2 P̃−1
2s D̃(1)T

ΨD̃(1)~u

− σ(diss)
2s P̃−1

2s D̃(s)T (
INx − Ψ

)
D̃(s)~u, (3.15)

where Ψ is a diagonal matrix whose diagonal elements are ψ(xi), and INx denotes a Nx×Nx identity

matrix. A similar approach was used in Abbas et al. (2009) and Eriksson et al. (2011) for activating

a MUSCL-type SBP dissipation operator near discontinuities. In their approach, the right-hand

side of (3.15) is replaced with −P−1D̃1T
ΨBMD̃1~u with diagonal matrix BM, resulting in the standard

MUSCL formulation near shocks when ψ = 1.

If 0 ≤ ψ ≤ 1 is a smooth function, (3.14) and (3.15) will not add energy to the system according

to (3.12) and (3.7), respectively (note that Ψ and INx−Ψ are positive semidefinite matrices). In other

words, the right-hand side of (3.14) is dissipative and its discrete counterpart (3.15) is numerically

stable. However, expressing ψ in terms of a Heaviside function, as is done in (3.13), results in

a non-differentiable function that could generate local dispersion errors. However, to distinguish

between the formulation presented below, we refer to this scheme as unconditionally stable. Its

effect on preserving boundedness will be assessed in later sections. Note that (3.13) could be

replaced by a smooth sensor (e.g., a regularized Heaviside function), which would indeed provide

an energy estimate, but could result in overly dissipative solution near gradients.

Regarding the discrete form of the adaptive dissipation (3.15), note that both low- and high-
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order operators use the same SBP norm matrix P2s given by (3.3). P2s corresponds to the 2s-order

first-derivative operator D2s of the advection term on the left-hand side of (3.15). This is essential

to preserve numerical stability of the scheme with respect to the P2s inner product (3.6) as shown

in (3.7).

3.2.3.2 Conditionally stable formulation

An alternative approach is to place the sensor outside of the dissipation operator to avoid differen-

tiating (a potentially non-differentiable) ψ, according to

∂u
∂t

+ a
∂u
∂x

= ψ
∂2u
∂x2 + (−1)s−1 (1 − ψ)

∂2su
∂x2s , (3.16)

where b in (3.10) is set to unity. However, this form does not guarantee an energy estimate in

general. Considering the second-order dissipation term in (3.16) and neglecting the advection

term, its stability is analyzed according to

1
2

d
dt
‖u‖2 = −

l∫
−l

∂ψu
∂x

∂u
∂x

dx = −

l∫
−l

ψ

(
∂u
∂x

)2

dx −

l∫
−l

u
∂ψ

∂x
∂u
∂x

dx, (3.17)

where integration by part has been applied and resulting boundary terms are neglected. It can be

seen that the first term on the right-hand side of (3.17) is always non-positive since ψ ≥ 0, and thus

does not add energy to the system. However, the second term can be positive or negative and thus

may add energy to the system. Noting that ψ given by (3.13) is expressed as a Heaviside function

in terms of u, the chain rule can be employed, such that ∂ψ/∂x = (dψ/du)(∂u/∂x) where dψ/du

yields a Dirac delta function in regions where the sensor changes. Thus, it is reasonable to assume

that the amount of energy added to the system via the second term on the right-hand side of (3.17)

is minimal. A similar analysis is performed on the high-order dissipation term (the second term on

the right-hand side of (3.16)) in Appendix C, which yields similar results. Thus, we consider the

formulation in (3.16) to be conditionally stable.
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Finally, the discrete form of (3.16) is given by

d~u
dt

+
a

∆x
D2s~u = −σ(diss)

2 ΨP̃−1
2s R2~u − σ

(diss)
2s (INx − Ψ)̃P−1

2s R2s~u, (3.18)

where R2s = −D̃(s)T
BD̃(s) is a positive semi-definite matrix given by (3.5). Similar to the condi-

tionally stable formulation (3.15), we use P−1
2s for both dissipation operators in (3.18). Thus, it can

be shown that

d
dt

∥∥∥~u∥∥∥2

P2s
= − ∆xσ(diss)

2 ~uT
[
(ΨR2s)T + ΨR2s

]
~u

− ∆xσ(diss)
2s ~uT

{[
(INx − Ψ)R2s

]T
+ (INx − Ψ)R2s

}
~u. (3.19)

Here, we applied the identify P−1
2s Ψ = ΨP−1

2s since both Ψ and P2s are diagonal matrices. While R2,

Ψ, R2s, and IN −Ψ are positive semidefinite matrices, R2Ψ and R2s(IN −Ψ) will not necessarily be.

However, as previously mentioned, the right-hand side of (3.19) is not expected to be positive in

the majority of the flow.

3.3 Adjoint-based formulation

3.3.1 Continuous adjoint formulation with standard dissipation

In this section, the corresponding adjoint equation of linear advection equation (3.1) with dissipa-

tion (3.10) is presented. We rewrite the governing equation (also known as the primal equation)

of (3.1) and (3.10) according to

N1d[u; ~f ] ≡
∂u
∂t

+ a
∂u
∂x
− (−1)s−1 ∂

s

∂xs

(
b
∂su
∂xs

)
= 0. (3.20)
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A QoI J is computed, based on state values u and control parameter ~f , over a time horizon

t ∈ [0, t f ] and domain space x ∈ [−l, l], given by

J[u; ~f ] =

t=t f∫
t=0

x=l∫
x=−l

I[u; ~f ] dx dt, (3.21)

where integrand I determines local and temporal values of the QoI, and it should be specified

depending on the problem of interest. Following what was done in Chapter 2.4.1 yields the adjoint

PDE and sensitivity, given by

∂u†

∂t
+ a

∂u†

∂x
= −(−1)s−1 ∂

s

∂xs

(
b
∂su†

∂xs

)
−
∂I

∂u
, (3.22)

and

δJ

δ ~f
=

t=t f∫
t=0

x=l∫
x=−l

∂I

∂ ~f
dx dt −

t=t f∫
t=0

x=l∫
x=−l

u†
∂N

∂ ~f
dx dt, (3.23)

respectively. Here, it is assumed that b in (3.10) is independent of u. The first term on the right-

hand side of (3.23) is typically zero since most of QoIs do not explicitly depend on ~f . However,

we keep it here for the sake of generality.

Neglecting the right-hand side of the adjoint equation (3.22), it is the same as the primal linear

advection equation (3.1) with the same advection velocity a in the same direction. As can be seen

on the first term of the right-hand side of the adjoint equation, the dissipation term has an opposite

sign compared to the primal dissipation term (3.10). Thus, the dissipation term adds energy to the

adjoint energy
∥∥∥u†

∥∥∥2
/2 instead of dissipating it. To overcome this issue, adjoint equations must be

integrated reversely in time, which is from t f to t0. This results in a moving wave in the opposite

direction of the primal simulation. In addition, the QoI controls adjoint solutions and applies as an

external source term in (3.22) via ∂I/∂u. In other words, the adjoint solution completely depends

on the definition of the QoI.
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3.3.2 Discrete adjoint formulation with standard dissipation

We first show the semi-discrete adjoint formulation and briefly describe the full-discrete one later.

We rewrite the spatially discretized primal equation according to

d~u
dt
− ~R

[
~u; ~f

]
= 0, (3.24)

where ~R
[
~u; ~f

]
includes all the advection and dissipation terms discretized via the SBP operators

and also contains SAT boundary terms as shown in (3.2) and (3.4). Following what was done

in 2.4.2, the discrete adjoint equation and sensitivity are obtained, given by

d~u†

dt
= −P−1

2s

∂~R∂~u
T

P2s~u† −
∂I

∂~u
, (3.25)

and

δJ

δ ~f
=

t=t f∫
t=t0

∂I
∂ ~f
− ~u†

T
P2s

∂~R
∂ ~f

 ∆x dt, (3.26)

respectively. Substituting the terms of ~R from (3.2) and (3.4) into the adjoint equation (3.25) yields

d~u†

dt
= aP−1

2s D2s
TP2s~u† − P−1

2s D(diss)
2s

T
P2s~u† − P−1

2s

∂~RSAT

∂~u

T

P2s~u† −
∂I

∂~u
. (3.27)

Neglecting all terms on the right-hand side excluding the dissipation and substituting (3.5) into it

yields

d~u†

dt
= σ(diss)

2s P̃−1
2s D̃(s)T

BTD̃(s)~u† = σ(diss)
2s P̃−1

2s RT
2s~u
†. (3.28)

Except a minus sign behind the adjoint dissipation, it is equal to the primal dissipation (3.5) if B is

a symmetric matrix, e.g., a diagonal matrix.
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For simplicity, we only showed semi-discrete adjoint formulation in this section. Once the time

integrator is determined, the full-discrete primal equation (3.10), inner product (3.11), and quantity

of interest (3.21) are considered, and the corresponding discrete adjoint equation and sensitivity

are obtained similar to the procedure presented before. In this work, we consider a standard fourth-

order Runge–Kutta (RK) time integrator. For brevity, we skip fully discrete adjoint formulation in

this section. The fully-discrete QoI formulation and adjoint equations for such a time integrator

can be found in Chapter 2.4.2, and its full description is provided by Vishnampet et al. (2015).

3.3.3 Adjoint formulation of adaptive dissipation

3.3.3.1 Unconditionally stable adaptive dissipation

Adjoint equations of the adaptive dissipation schemes are computed through a similar approach

performed for the standard SBP dissipation operator. Corresponding adjoint equations for the

stable scheme (3.14) is given by

∂u†

∂t
+ a

∂u†

∂x
= −

∂

∂x

(
ψ
∂u†

∂x

)
− (−1)s−1 ∂

s

∂xs

[
(1 − ψ)

∂su†

∂xs

]
−
∂I

∂u

+
∂ψ

∂u
∂u
∂x
∂u†

∂x
+
∂(1 − ψ)
∂u

∂su
∂xs

∂su†

∂xs . (3.29)

Note that ψ depends on u. Besides changing of sign in the dissipation term and the added source

term of the QoI, additional terms exist in the adjoint equation compared to the adjoint formulation

of the standard dissipation operator (3.22). These terms come from variations of the sensor ψ with

respect to u. In this work, ψ is combinations of Heaviside functions according to (3.13); thus,

dψ/du is combinations of Dirac delta functions. If the sensor is activated only in small regions of

the domain, dψ/du is non-zero only in a few areas of the domain. In this case, we could neglect

dψ/du in (3.29).

Similar to the primal equation (3.14), it would be preferred that the sensor ψ smoothly changes

with u since its spatial derivatives have appeared in the adjoint equation as well. In this case, both
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primal and adjoint solutions would be smooth. However, it may not be able to sufficiently preserve

boundedness or could add more dissipation to the state solutions.

Similarly, the semi-discrete adjoint formulation of unconditionally stable dissipation scheme is

given by

d~u†

dt
= σ(diss)

2 P̃−1
2s D̃(1)T

ΨD̃(1)~u† + σ(diss)
2s P̃−1

2s D̃(s)T (
INx − Ψ

)
D̃(s)~u† −

∂I

∂~u
, (3.30)

where the advection term, SAT boundary terms, and the variations of the sensor to u have been

neglected.

3.3.3.2 Conditionally stable adaptive dissipation

We can similarly derive an adjoint equation of (3.16), given by

∂u†

∂t
+ a

∂u†

∂x
= −

∂2ψu†

∂x2 − (−1)s−1∂
2s(1 − ψ)u†

∂x2s −
∂I

∂u

−
∂ψ

∂u
∂2u
∂x2 u† − (−1)s−1∂(1 − ψ)

∂u
∂2su
∂x2s u†. (3.31)

We can similarly neglect addition terms on the second line of the above equation as mentioned

before unless ψ smoothly changes with u. In contrast to the adjoint formulation of the uncondi-

tional stable adaptive dissipation, we can see that the adjoint of the conditionally stable dissipation

operator is different than its corresponding primal dissipation term. In the primal equation, ψ is

outside of ∂2s/∂x2s, which makes the method effective when the sensor is not a smooth function.

However, the sensor should be 2s-times differentiable in its adjoint equations, and we will show

that the adjoint solution can become noisy if a discontinuous sensor such as (3.13) is employed.

Similarly, the semi-discrete adjoint dissipation of conditionally adaptive dissipation (3.18) is
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given by

d~u†

dt
=σ(diss)

2 P̃−1
2s RT

2Ψ~u† + σ(diss)
2s P̃−1

2s RT
2s(INx − Ψ)~u† −

∂I

∂~u

+σ(diss)
2 P̃−1

2s (R2u)T dΨ

du
~u† + σ(diss)

2s P̃−1
2s (R2su)T

(
−

dΨ

du

)
~u†, (3.32)

where the advection and SAT boundary terms are neglected, and dΨ/d~u is a diagonal matrix whose

diagonal values are dψ(ui)/dui. This matrix may be neglected when ψ is combinations of Heaviside

functions of u. Equation (3.32) is similar to continuous adjoint dissipation formulation of the

conditionally adaptive scheme (3.31) according to definition of R2s in (3.5).

3.3.4 Dual consistency of adaptive schemes

Employing SBP–SAT discretization and artificial dissipation operators of Mattsson et al. (2004)

provide consistency between continuous and discrete adjoint formulation if special care is consid-

ered in SAT parameters and discretization of the QoI (Hicken & Zingg, 2011, 2014; Vishnampet,

2015). This ‘dual consistency’ has two major outcomes: (i) A discrete adjoint sensitivity is not

contaminated by spurious waves associated with discretizing governing equations (Vishnampet,

2015), and (ii) Accuracy of an appropriately discretized QoI is equal to interior accuracy used

in the SBP discretization, also known as superconvergent functional estimates (Hicken & Zingg,

2011).

Recall that discrete adjoint formulation is obtained from discretized primal PDEs. Thus, nu-

merical modes associated with the discretization scheme can strongly affect adjoint stability and

generate oscillations in the adjoint solutions even though they are not observed in primal simula-

tions (e.g., see Sirkes & Tziperman, 1997). However, consistency between discrete and continuous

adjoint formulations (i.e., dual consistent property) avoids these oscillations (e.g., see Hicken &

Zingg, 2014; Vishnampet, 2015).

The superconvergence outcome of dual consistency is also important since overall accuracy

of state variables is usually restricted by the accuracy of boundary stencils. In many practical
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applications, however, accuracy of a cost functional or a QoI is instead favorable, especially in

optimization applications. When a coordinate transformation is required for complex geometries

(e.g., flow passing an airfoil), the stability of SBP schemes constrains its accuracy (Svärd, 2004).

In other words, we have to use SBP operators whose order of accuracy for boundary and interior

stencils is ‘s’ and ‘2s’, respectively, resulting in global accuracy of ‘s + 1’. Despite boundary

restriction on global accuracy, it is shown that a properly discrete approximation of a QoI has

2s-order of accuracy (superconvergence) due to dual consistency of SBP–SAT (Hicken & Zingg,

2011).

Provided smooth primal and adjoint solutions, it is shown that including the standard SBP

dissipation (3.5) to the Euler equations discretized by an SBP–SAT scheme does not impact dual

consistency (Hicken & Zingg, 2014). Inspecting dual consistency of the proposed adaptive SBP

dissipation operators is beyond the scope of this work; however, the same procedure of Hicken &

Zingg (2014) would illustrate that including adaptive dissipation operators (3.15) and (3.18) should

be dual consistency.

In adjoint formulation of both unconditionally- and conditionally stable adaptive dissipation

schemes, the sensor and its high-order derivatives have to be continuous according to (3.29) and

(3.31), respectively. However, we introduced a sensor (3.13) that employs Heaviside functions

and is not thus differentiable. We study a one-dimensional numerical test in Chapter 3.4.2, which

shows that using a discontinuous sensor could result in spurious oscillations in the adjoint solution

especially with the conditionally stable adaptive scheme (3.18). Thus, we expect that both adaptive

dissipation schemes would not be dual consistent when a non-differentiable sensor is employed,

as we will show its noisy adjoint solution in Fig. 3.4d. Even if the sensor choice does not affect

dual consistency, we anticipate that superconvergent functional estimates are not observed in both

adaptive schemes when their continuous adjoint solution is not smooth (Hicken & Zingg, 2011).

Alternatively, a regularized Heaviside function can be used as a sensor to ensure being differ-

entiable. In this case, more than one user-defined parameter as ε in (3.13) should be required to

be manipulated. Also, such a sensor will potentially add more second-order dissipation in the so-
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lution and damp more physical fluctuations. In addition, it might not be able to properly preserve

boundedness of scalars. We will show that employing adjoint-based optimization of conditionally

stable adaptive dissipation (3.32) with a simple sensor of (3.13) is able to suppress mixing even

though the SBP–SAT scheme would not be dual consistent.

3.4 1D advection equation

In this section, the accuracy and unboundedness of the adaptive dissipation schemes are evaluated

for both smooth and non-smooth solutions. In addition, their adjoint formulations are studied on

a non-smooth solution, and an adjoint-based optimizer is employed to improve boundedness via

manipulating the sensor (3.13).

3.4.1 Smooth initial condition

The one-dimensional advection equation (3.1) is solved with initial condition u0(x) = sin4(πx)

in a domain of x ∈ [−1/2, 1/2] with periodic boundary conditions discretized using Nx = 33,

65, 129, and 257 grid points. The sixth-order first derivative operator is used for all of the tests.

Comparisons are made between the sixth-order dissipation operator and the unconditionally stable

and conditionally stable formulations, with a dissipation coefficient of σ(diss)
2s of (3.5) set to 2−2s.

The sensor threshold in (3.13) is set to ε = 0. The simulation is integrated for one rotation of the

initial condition with a standard explicit fourth-order Runge–Kutta scheme. The timestep size is

kept the same in each case, with CFL=0.02 for the finest grid. Thus, temporal discretization errors

are expected to be minimal.

To assess the accuracy of the solution, Lp norm errors are computed according to

L2(t) =

√√
1
Lx

Nx−1∑
i=1

[ui(t) − uexact(xi, t)]2 ∆x , (3.33)
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and

L∞(t) = max
i=1,...,Nx−1

|ui(t) − uexact(xi, t)| , (3.34)

where uexact(xi, t) denotes the exact solution at a grid point xi and time t. The degree of local

unboundedness is measured according to

εb(xi, t) =


0 if 0 ≤ u(xi, t) ≤ 1

−u(xi, t) if u(xi, t) < 0

u(xi, t) − 1 if u(xi, t) > 1.

(3.35)

With this, the following norms are considered:

εb
1(t) =

1
Lx

Nx−1∑
i=1

εb(xi, t) ∆x, (3.36)

and

εb
∞(t) = max

i=1,...,Nx−1
εb(xi, t). (3.37)

We briefly note that because periodic boundary conditions are enforced, the value at i = Nx is

omitted.

A summary of these norms after one-rotation of the initial condition is provided in Table 3.1.

It can be seen that the order of accuracy, as given by the Lp norms, remains relatively unchanged

between the sixth-order and adaptive formulations, exhibiting sixth-order convergence under grid

refinement. As previously mentioned, the adaptive schemes consider ε = 0, which provides the

most second-order dissipation, yet this is not seen to impact the order of accuracy. Also, the con-

ditionally stable formulation is seen to preserve boundedness for all of the grid sizes considered.

The unconditionally stable formulation provides lower boundedness error compared to the tradi-

tional (high-order) scheme for the coarsest grids, and preserves boundedness with finer resolution.
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Table 3.1: Accuracy and boundedness errors for u0 = sin4(πx).

Dissipation scheme Nx L2 error L2 order L∞ error L∞ order εb
∞ error εb

∞ order
Sixth-order 33 2.87e-05 —– 4.11e-05 —– 6.45e-06 —–

65 4.58e-07 5.97 6.66e-07 5.95 1.04e-07 5.96
129 7.20e-09 5.99 1.05e-08 5.99 1.64e-09 5.99
257 1.13e-10 6.00 1.64e-10 6.00 2.56e-11 6.00

Adaptive 33 2.86e-05 —– 4.19e-05 —– 2.65e-06 —–
(unconditionally 65 4.58e-07 5.96 6.71e-07 5.96 7.16e-09 8.53
stable) 129 7.20e-09 5.99 1.05e-08 6.00 0 —–

257 1.13e-10 6.00 1.64e-10 6.00 0 —–
Adaptive 33 2.85e-05 —– 4.14e-05 —– 0 —–
(conditionally 65 4.58e-07 5.96 6.67e-07 5.95 0 —–
stable) 129 7.20e-09 5.99 1.05e-08 5.99 0 —–

257 1.13e-10 6.00 1.64e-10 6.00 0 —–

It is evident from these results that the conditionally stable scheme is more effective at preserving

boundedness compared to its unconditionally stable counterpart. In addition, the adaptive schemes

retain high-order accuracy for the smooth solution considered here.

3.4.2 Discontinuous initial condition

The one-dimensional advection equation (3.1) is solved with a canonical discontinuous initial con-

dition (Jiang & Shu, 1996) as shown in Fig 3.2. A domain of size 2l = 2 with periodic boundary

conditions is discretized with Nx = 129 grid points. The solution is integrated in time by a standard

fourth-order Runge–Kutta scheme with CFL = 0.5. Simulations were performed for four rotations

of the initial condition using sixth-order derivative operators combined with different artificial dis-

sipation schemes. Both unconditionally- and conditionally-stable schemes are considered with

ε = 0 and σdiss
2s = ∆x−12−2s.

As can be seen in Fig. 3.2a, the second-order scheme provides an overly diffused solu-

tion. The sixth-order scheme, however, produces a more accurate result, albeit with maximum

over/undershoots of εb
∞ = 0.092 after four rotations (see Fig. 3.2b). On the other hand, both

the unconditionally- and conditionally-stable adaptive schemes significantly reduce the excursion

errors, with maximum boundedness errors of εb
∞ = 0.021 and εb

∞ = 0, respectively. The condition-
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(a) 2nd-order scheme (b) 6th-order scheme

(c) Adaptive (unconditionally stable) (d) Adaptive (conditionally stable)

Figure 3.2: Effect of artificial dissipation scheme after four rotations from the initial condition.
Numerical solution (◦), exact solution (–).

63



Figure 3.3: Time-averaged boundedness of the one-dimensional advection equation with discon-
tinuous initial condition as a function of sensor thresholds ε for the unconditionally stable (�)
and conditionally stable (©) formulations. Standard dissipation with sixth-order (−−) and second-
order (. . .) operators shown for reference.

ally stable dissipation scheme is more successful in preserving boundedness (compare Figs. 3.2c

and 3.2d) since the non-smooth sensor ψ is outside of the spatial derivatives.

The time-averaged boundedness norms εb
1 for various schemes are reported in Fig. 3.3. The

threshold ε controls the level of unboundedness, with large values producing errors similar to

those that would be produced from the high-order dissipation operator, and small values yielding

smaller errors comparable to the second-order operator. As before, the error associated with the

conditionally-stable formulation is always smaller than the unconditionally-stable scheme.

The boundedness norm approaches a (non-zero) constant when ε < 10−3 for the uncondition-

ally stable formulation and ε < 10−5 for the conditionally stable formulation. Because the norm

is averaged over all timesteps, these errors could be produced during an early stage and eventu-

ally dissipate. It should be emphasized that the adaptive dissipation scheme is activated after the

solution has become unbounded. Thus, it may require several timesteps to suppress any excur-

sion errors, especially in cases with discontinuous initial conditions. An alternative approach is

to identify regions of unboundedness at the end of each timestep and recompute the solution with

the updated dissipation scheme within a timestep. This could be done iteratively until a desired
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threshold is met. A similar approach is employed in the bounded quadratic-upwind biased inter-

polative convective (BQUICK) scheme (Herrmann et al., 2006). This potentially increases the

computational cost, and is not considered in the present study. Thus, the proposed adaptive dissi-

pation could still lead to some small amount of excursion errors even when ε = 0, but significantly

reduces the boundedness error without remarkable effect on the accuracy or computational cost.

In summary, the present case demonstrates that the conditionally stable adaptive scheme is

more effective in preserving scalar boundedness compared with the unconditionally stable formu-

lation. According to Fig. 3.3, ε = 10−5−10−4 could be a reasonable choice to sufficiently reduce the

unboundedness while avoiding adding excessive dissipation. However, if 1% boundedness error is

acceptable, ε ≈ 10−3 − 10−2 may be chosen according to Fig. 3.3.

We also study adjoint solutions of unconditionally- and conditionally-stable adaptive dissipa-

tion schemes introduced in the previous sections. The solution of the one-dimensional advection

equation is taken as the primal solution, and the fully-discrete adjoint solver is employed to obtain

its adjoint solution. As mentioned, the corresponding adjoint equation (3.22) contains an advection

term with the same velocity as the primal equation but opposite sign in dissipation, and it requires

to be integrated reversely in time. Also, the adjoint solution depends on the definition of the QoI

because of the ∂I/∂u term on the right-hand side of (3.22). We want to merely focus on the effect

of the dissipation term on the adjoint equation. For this purpose, we set the adjoint simulation at

t = t f as the exact solution of the primal solution at t = t f when the artificial dissipation term is not

included, and we set ∂I/∂u = 0 during the adjoint simulation. Thus, the adjoint solution at t = t f is

the same as the primal solution at t = 0 (since the primal solution was advected for four rotations).

By integrating reversely in time, the adjoint solution moves in negative x-direction while adjoint

dissipation acts on it. With this consideration, we are able to compare adjoint results between

different dissipation operators. Recall that sensor ψ depends on the primal solution instead of the

adjoint one.

Figure (3.4) illustrates adjoint solution at t = 0 compared with its ‘exact solution’ (when

dissipation is zero). Similar to the primal solution, the adjoint solution using the second-order
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(a) 2nd-order scheme (b) 6th-order scheme

(c) Adaptive (unconstionally stable) (d) Adaptive (conditionally stable)

Figure 3.4: Effect of artificial dissipation scheme on the adjoint solution at t = 0, which is after
four rotations of the adjoint simulation. Numerical solution (◦), exact solution (–). The adjoint
solutions correspond to the primal solutions of Fig. 3.2.
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Figure 3.5: L2 norm error of adjoint solutions of Fig. 3.4 as a function of sensor thresholds ε for
the unconditionally stable (�) and conditionally stable (©) formulations. Standard dissipation with
sixth-order (−−) shown for reference.

dissipation is extremely diffused, and employing the traditional six-order scheme yields over-

shoots/undershoots. On the other hand, the solution of the unconditionally stable adaptive scheme

is well-bounded at t = 0 and close to the exact solution, and several oscillations are observed when

the conditionally stable adaptive formulation is employed.

The adjoint solutions of the adaptive dissipation schemes are in contrast with the primal solu-

tions. In the primal solutions, the conditionally stable operator is more successful in preserving

boundedness rather than the unconditionally stable one. The difference can be interpreted by com-

paring adaptive adjoint dissipation terms with their corresponding primal ones. The conditionally

stable adaptive scheme involves the sensor ψ outside of the dissipation operators. On the other

hand, the sensor is set inside of the dissipation operator in adjoint equations (compare Eqs. (3.16)

and (3.31)). This results oscillations in adjoint solutions when a non-continuous sensor (3.13) is

employed as can be seen in 3.4d. However, the unconditionally stable adaptive dissipation operator

and its adjoint formulation are similar (compare Eqs. (3.14) and (3.29)), which provides similar

primal and adjoint solutions (compare Figs. 3.2c and 3.4c). Therefore, the conditionally stable

scheme is preferred for preserving boundedness in the primal problem, but it could give oscillatory
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adjoint solutions. On the other hand, the unconditionally stable formulation provides smoother

adjoint solutions as well as decreasing overshoots/undershoots in the primal solution (but less than

the conditionally stable one).

We also study the effect of the sensor threshold ε on the accuracy of adjoint solutions. Fig-

ure 3.5 shows the L2 norm error

L2 =

√√
1
Lx

Nx−1∑
i=1

(u†i (t) − u†exact(xi, t))2 ∆x (3.38)

of the adjoint solution at t = 0. The L2 error of the adjoint solution increases by decreasing ε

for the conditionally stable scheme. Surprisingly, it is shown that this behavior is opposite for

the unconditionally stable scheme, and its L2 norm error is even better than the six-order adjoint

solution. In other words, increasing the amount of second-order dissipation leads to damping

oscillations in the adjoint solution and makes it closer to its exact one. This can be observed by

comparing the adjoint solutions to the exact one in Figs. 3.4b and 3.4c.

3.4.3 Adjoint-based optimization

In the previous sections, we have demonstrated how the adaptive dissipation schemes are employed

to preserve scalar boundedness, and their adjoint equations have been formulated to compute sen-

sitivity of a QoI to a set of input/design parameters. We also studied effects of parameter ε of (3.13)

in the accuracy and excursion errors. Generally, selecting an appropriate sensor function can be

challenging in complex problems such as supersonic or turbulent reacting flows. Several methods

are available for computing sensor values as mentioned before (e.g., see Zhao et al., 2020, and

references therein). In this section, we use the adjoint method to ‘design’ a sensor.

For this purpose, a QoI is defined based on an L2 norm error of the numerical solution with

68



respect to the exact solution of an advection equation (3.1), uexact, given by

JL2[u; ~f ] =

t=t f∫
t=0

x=l∫
x=−l

(u − uexact(x, t))2
W(x, t) dx dt, (3.39)

whereW is a weight function to locally or temporally limitJL2 . The goal is to minimize this error

by locally manipulating the sensor values. As discussed before, sensor is a function of state value

u. In order to obtain optimal values of ψ(u), we subdivide it into N f discrete values in u-space,

given by

ψ(u) =



ψ1; u < umin

ψ2; umin ≤ u < umin + ∆u
...

...

ψN f−1; umax − ∆u ≤ u < umax

ψN f ; umax ≤ u

, (3.40)

where N f , umin, umax are user-defined parameters, and ∆u = (umax − umin)/(N f − 2). For instance,

the previous sensor (3.13) can be obtained by considering N f = 3, umin = −ε and umax = 1 + ε.

Thus, optimized values of parameters ~f =
[
ψ1, ψ2, . . . , ψN f

]T
are sought such that the QoI (3.39)

is minimized, resulting in the minimum value of the L2-norm error between numerical and exact

solutions. Sensitivity of JL2 to ψi is obtained via the adjoint method according to (3.23), i.e.,

δJL2

δ fi
=

t=t f∫
t=0

x=l∫
x=−l

u†
[
∂

∂x

(
dψ
d fi

∂u
∂x

)
− (−1)s−1 ∂

s

∂xs

(
dψ
d fi

∂su
∂xs

)]
, (3.41)

and

δJL2

δ fi
=

t=t f∫
t=0

x=l∫
x=−l

u†
dψ
d fi

(
∂2u
∂x2 − (−1)s−1∂

2su
∂x2s

)
dx dt, (3.42)

for unconditionally- and conditionally stable adaptive dissipation schemes, respectively, where fi
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denotes ψi for i = 1, . . . ,N f . Values of dψ/d fi are obtained via (3.40), given by

dψ
d f1

(u) =


1; u < umin

0; otherwise
,

dψ
d fi

(u) =


1; umin + (i − 2)∆u ≤ u < umin + (i − 1)∆u

0; otherwise
, for i = 2, . . . ,N f ,

dψ
d fN f

(u) =


1; umax ≤ u

0; otherwise
. (3.43)

We employ a simple test case with discontinuities to find optimal sensor values for non-smooth

problems. The advection equation (3.1) is solved with N = 51 grid points in a domain of length

2l = 1 and periodic boundary conditions. The initial condition is a rectangular pulse as depicted

in Fig. 3.6, and it is marched through time for a one rotation via a standard fourth-order RK

time integrator and with CFL=0.5. σ̃(diss) = ∆x−1 is taken as dissipation strength. Due to the

discontinuities in the exact solution and the fact that a∆t < ∆x (CFL< 1), the L2 error (3.39) is

computed when the exact solution passes one grid point, i.e., through each ∆x/a∆t = 2 timesteps.

Thus, the weight function of (3.39) is set to W = 2∆t when t = i∆t for i = 2, 4, . . . ,Nt and

zero otherwise, where Nt = 100 is the total number of timesteps. The Sixth-order first derivative

operator is used with standard sixth-order and adaptive dissipation operators (see Fig. 3.6). We

first consider combinations of Heaviside functions according to (3.13) with ε = 0 as the reference

case (also called the Heaviside sensor in this work). Similar to the previous one-dimensional

solutions of Fig. 3.2, the sixth-order scheme yields overshoots/undershoots while adaptive schemes

significantly reduce them. At t = t f , the boundedness error εb
∞ is about 0.09 for sixth-order scheme,

which drops to 0.05 for the unconditionally stable adaptive scheme and a negligible error for the

conditionally stable scheme (see Table 3.2). Similar to the previous sections, the conditionally

stable scheme was able to significantly reduce overshoots/undershoots, and the stable scheme only

slightly decreases them.

The standard L2 norm errors (3.33) at t = t f are also summarized in Table (3.2). It is interesting
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(a) (b) (c)

Figure 3.6: Numerical solution (− © −) compared to its exact solution (–) after marching one
rotation of the initial condition (–). Sixth-order first-derivative operator is employed with (a) sixth-
order dissipation, (b) unconditionally stable adaptive dissipation, and (c) conditionally stable adap-
tive dissipation.

that the sixth-order scheme results lower error value while it contains more overshoots/undershoots

compared to adaptive schemes. As can be seen in Fig. 3.6a, the sixth-order solution is closer to

the discontinuities of the exact solution despites its overshoots/undershoots. Although the L2 norm

error is computed at t = t f , we conclude that JL2 is not a sufficient measure of boundedness, and

we expect that an optimal solution of (3.39) cannot significantly preserve boundedness (as will be

shown later). Thus, we modify (3.39) such that it only computes at locations that unboundedness

occurs, given by

Jb[u; ~f ] =

t=t f∫
t=0

x=l∫
x=−l

(u − uexact(x, t))2 ψstep(u)W(x, t) dx dt, (3.44)

where ψstep is determined from (3.13) with ε = 0. Thus, we only compute the error where over-

shoots/undershoots exist. In addition to (3.44), we also consider a linear combination of JL2 and

Jb to decrease error as well as to preserve boundedness of the solution simultaneously, given by

JL2b[~u; ~ψ; λ] = λJb + (1 − λ)JL2 , 0 ≤ λ ≤ 1, (3.45)

where λ is a user-defined parameter. If λ = 1, the QoI only computes the boundedness error,

i.e., (3.44), and λ = 0 makes it equivalent to the L2 norm error of (3.39).
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Table 3.2: Accuracy and boundedness errors for adaptive dissipation schemes with the Heaviside
sensor (3.13) with ε = 0 and the optimized sensor (3.40). The objective function is (3.45) with dif-
ferent values considered for λ. The corresponding values using the standard sixth-order dissipation
operator are L2 error =0.104 and εb

∞ error=8.94e-2. See Fig. 3.6 for problem configuration.

Dissipation Type Quantity Heaviside Optimized Sensor
at t = t f Sensor (ε = 0) λ = 0 λ = 0.8 λ = 0.9 λ = 0.95 λ = 1

Unconditionally L2 error 0.106 0.105 0.107 0.108 0.104 0.185
Stable (3.14) εb

∞ error 4.99e-2 2.27e-2 2.05e-2 6.01e-4 0 0
Conditionally L2 error 0.117 0.104 0.109 0.112 0.113 0.147
Stable (3.16) εb

∞ error 4.45e-7 5.21e-2 2.03e-2 1.20e-2 6.94e-3 0

3.4.3.1 Verification of adjoint sensitivity

We provided continuous QoI and adjoint sensitivity formulations in the previous section, but their

discrete-counterparts are used to obtain exact sensitivity. To verify adjoint gradients, they are com-

pared with complex-step derivative approximations (Squire & Trapp, 1998; Martins et al., 2000,

2001, 2003) with different step sizes, h (see Fig. 3.7), which provides derivatives with second-

order accuracy, i.e., O(h2), and this scheme is not susceptible to subtraction cancellations. For this

purpose, a three-parameter sensor (3.40) is considered (N f = 3) with umin = 0 and umax = 1, and

also ~f = [ψ1, ψ2, ψ3]T = ~0, where ~0 is a zero vector.

Adjoint sensitivity for unconditionally stable (3.41) and conditionally stable (3.42) formula-

tions are verified. We can see that the adjoint gradients are converged to the complex-step approxi-

mations with a second-order rate when the step size approaches zero (see Fig. 3.7), illustrating that

adjoint sensitivities are exact within machine precision roundoff errors. As mentioned, complex-

step derivative approximations are second-order accurate and not affected with subtraction cancel-

lations in contrast with standard finite difference methods.

3.4.3.2 Optimizing sensor parameters using adjoint sensitivity

For improving the sensor, we subdivide sensor (3.40) into N f = 122 discrete values with umin =

−0.1, umax = 1.1, and ∆u = 0.01, in which all ψi for i = 1, . . .N f are initially set to zero (baseline

solution). Thus, the baseline solution is equivalent to a standard six-order dissipation operator,
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(a) Stable adaptive dissipation (b) Conditionally stable adaptive dissipation

Figure 3.7: Sensitivity δJL2/δ ~f with ~f = [ψ1, ψ2, ψ3]T = ~0 is computed by the adjoint method, and
its error with respect to complex-step derivative approximations (normalized with adjoint sensitiv-
ity) is depicted for each parameter ψ1 (◦), ψ2 (�), and ψ3 (4) as a function of step sizes (h). See
Fig. 3.6 for problem configuration.

and the goal is to manipulate the sensor parameters such that both boundedness and accuracy will

be improved. During the optimization procedure, all sensor parameters can continuously vary

between 0 and 1, i.e., 0 ≤ ψi ≤ 1 for i = 1, . . .N f . Thus, ‘blended’ dissipation of high- and low-

order operators could be locally achieved when the sensor value is between 0 and 1. The problem

configuration and numerical scheme are described in the previous sections and in Fig. 3.6, in

which a rectangular pulse initial condition is integrated over one rotation within the domain. The

QoI is defined by (3.45), and different λ values are taken. Its adjoint sensitivity is incorporated

with the SciPy minimize package, an open source Python library (Jones et al., 2001; Oliphant,

2007; Millman & Aivazis, 2011), in which a Sequential Least SQuares Programming (SLSQP)

algorithm (Kraft, 1988) is employed to find minimum values of JL2b with constrain 0 ≤ ψi ≤ 1 for

i = 1, . . .N f .

Accuracy and boundedness errors of the optimized solution at t = t f is summarized in Table 3.2

for different values of λ, and they are compared with the adaptive dissipation operators using the

Heaviside sensor (3.13). Both unconditionally- and conditionally stable dissipation schemes are

employed. When a conditionally stable dissipation scheme is used, the optimized sensors are
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(a) (b)

Figure 3.8: (a) The Heaviside sensor (–) and optimized sensor (gray) as function of u, the optimal
sensor is obtained in problem of Fig. 3.6 via minimizing JL2b (3.45) with λ = 0.95 using a ‘un-
conditionally stable’ dissipation scheme (3.14). (b) Numerical solution after one rotation of initial
condition. Unconditionally stable adaptive dissipation with optimal sensor of (a) (•), Heaviside
sensor (3.13) with ε = 0 (�), and the exact solution (–).

not able to reduce overshoots/undershoots compared to the Heaviside sensor (see Table 3.2) even

though the L2 error has been reduced. In the unconditionally stable dissipation scheme, the optimal

sensor performs better in preserving overshoots/undershoots compared to the Heaviside sensor.

Especially, we observed that L2 error is decreased as well as the solution is bounded with λ = 0.95

compared to the Heaviside sensor solution (see Table 3.2 and Fig.3.8). However, the optimized

ψ is not a trivial function of u that can be applied on other applications (see Fig. 3.8a). We can

see that the sensor ψ is activated around u = 0 and u = 1 to avoid unboundedness. Besides, it is

surprising that the sensor is also activated for some values of 0.1 < u < 0.9.

The numerical solution of u when the unconditionally stable adaptive dissipation is employed

with the optimized sensor and the Heaviside sensor (3.13) are also compared (see Fig. 3.8b). As

can be seen, using the optimized sensor yields a bounded solution after one rotation of the initial

condition.

74



3.5 Turbulent round jet

In this section, we take a configuration of a three-dimensional turbulent round jet and apply the con-

ditionally stable adaptive dissipation operator on compressible Navier–Stokes equations to solve

the flow, and effects of the adaptive scheme on the accuracy and scalar boundedness of a passive

scalar Z is investigated.

3.5.1 Governing equations and discretization

The non-reacting compressible Navier–Stokes equations (2.11) are solved for conserved variables

~Q = [ρ, ρui, ρE, ρZ]. A Reynolds number of Re = ρ∞U jD j/µ∞, where the viscosity remains

constant in the domain, i.e., b = 0 in (2.7), and the bulk viscosity is µB = 0. The Prandtl and

Schmidt numbers are given by Pr = Cp,∞µ/κ = 0.7 and Sc = µ/(ρD) = 0.7, respectively, with

reference specific heat at constant pressure Cp,∞, conductivity κ, and mass diffusivity D. The

reference Mach number is given by Ma = Re/Rec = U j/c∞ = 0.36. Mixing fraction Z is taken

as a passive scalar; thus, the pressure (2.4) and heat flux (2.8) equations and the equation state of

state (2.10) are modified, given

p = (γ − 1)ρ
(
E −

1
2

uiui

)
, (3.46)

qi = −
µ

Rec Pr
∂T
∂xi

, (3.47)

and

T =
γp

(γ − 1)ρ
, (3.48)

respectively. Finally, buoyancy effects are neglected in this configuration, i.e., Frc → ∞.

The governing equations (2.11) are discretized using SBP finite difference operators with sixth-
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order accuracy in the interior and third-order near the boundaries (s = 3), resulting in fourth-order

global accuracy (see Chapter 3.2.1). Second and mixed derivatives are obtained by consecutively

applying the first-derivative operators. The standard (high-order) SBP dissipation operator is ap-

plied to density, momentum, and energy equations, while the conditionally stable adaptive dissi-

pation scheme is applied to the passive scalar to enforce Z ∈ [0, 1]. The governing equations are

advanced in time using a standard fourth-order explicit Runge–Kutta scheme.

3.5.2 Flow configuration

A round jet with exit velocity U j enters a rectangular domain of size 16D j × 12D j × 12D j, corre-

sponding to Re = 3000. The domain is discretized with 265 × 193 × 193 grid points. Axial grid

spacing decreases exponentially towards the jet inlet, leading to minimum axial grid spacing of

∆xmin = 0.04D j. Grid stretching is applied in the radial direction with minimum grid resolution

in the cross-flow directions of ∆ymin = ∆zmin = 0.02D, and nearly uniform grid resolution with

49 × 49 points across the jet region −D j/2 < y, z < D j/2.

A top-hat profile is considered for the mean jet exit velocity, given by

U(x) =
U j + Uc

2
−

U j − Uc

2
tanh

[
1
4

R
δθ

( r
R
−

R
r

)]
, (3.49)

where an overbar denotes a time-averaged quantity, r is the radial distance from the jet centerline,

R = D j/2 is the jet radius, and a co-flow velocity of Uc = 0.03U j is considered. The momentum

thickness of the initial shear layer is given by δθ = 0.05R, whose value is consistent with pre-

vious works at similar Reynolds numbers (da Silva & Métais, 2002; Tyliszczak & Geurts, 2014;

Tyliszczak, 2015b, 2018). The passive scalar Z varies from Z = 1 at the jet centerline to Z = 0 at

lateral boundaries via a similar top-hat profile (Nichols et al., 2007; Tyliszczak, 2018), according

to

Z =
1
2
−

1
2

tanh
[
1
4

R
δθ

( r
R
−

R
r

)]
. (3.50)
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Following Wang et al. (2010a,b), turbulence is seeded at the inflow via time-dependent

three-dimensional pseudo-turbulent velocity perturbations generated by a digital filtering tech-

nique (Klein et al., 2003) superimposed to (3.49) in a region of −D j < y, z < D j with a turbulence

intensity of 4% and an integral length scale of ≈ 0.2D. The resulting velocity perturbations are

multiplied by 0.5 {1 + tanh [R/(4δθ) (R/r − r/R)]} to decay smoothly towards zero outside the jet

radius. The mean radial velocity and its perturbations are set to zero at the jet exit.

Boundary conditions are weakly imposed via the SAT boundary treatment. Non-reflecting

boundary conditions (Svärd et al., 2007; Vishnampet, 2015) are enforced at the lateral boundaries.

The standard non-reflecting SAT boundary condition at the outflow plane is modified to weakly

enforce a Neumann condition (see B.5). In addition, a new SAT treatment is employed at the inlet

that weakly imposes time-dependent inflow conditions to facilitate the digital filtering technique

(see B.4). As shown in Appendix B.7, the modified SAT treatment was found to minimize domain

size effects on turbulence statistics.

3.5.3 Accuracy and boundedness

Instantaneous snapshots of the turbulent round jet are shown in Fig. 3.9. Comparisons are made

between the standard (high order) dissipation and the proposed conditionally stable adaptive dis-

sipation scheme with ε = 0.001. The vorticity magnitude remains unchanged between each case

since the adaptive dissipation is only applied to the mixture fraction. The contour of Z = 0.055

(corresponding to the stoichiometric mixture fraction of methane-air combustion) is also qualita-

tively similar. However, the traditional dissipation scheme using high-order derivative operators

exhibits overshoots and undershoots in mixture fraction near the shear layer. The adaptive dissi-

pation scheme using ε = 0.001 does not show any regions of overshoots and undershoots greater

than 0.001.

Instantaneous profiles of mixture fraction at various axial locations are reported in Fig. 3.10.

It can be seen that the adaptive dissipation scheme ensures Z remains bounded without significant

changes to the solution in regions where it was already bounded
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(a) 6th-order dissipation (b) Adaptive dissipation

Figure 3.9: Instantaneous snapshots of the jet simulation in the z = 0 plane with different dissipa-
tion schemes applied to the ρZ equation in (2.11). Mixture fraction (orange). The black regions
indicate overshoots and undershoots in Z greater than 0.001. Contour of Z = 0.055 (green line)
and vorticity magnitude (navy).

(a) (b)

Figure 3.10: Instantaneous distribution of mixture fraction associated with jet simulation at z = 0,
(a) x/D j = 5.70, and tU j/D j = 504, and (b) x/D j = 4.07, and tU j/D j = 918 with high-order (–)
and adaptive dissipation operators (−−).
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(a) (b)

Figure 3.11: (a) Mean axial velocity and (b) RMS velocity across the jet at x = 12D j (black),
x = 13D j (blue), and x = 14D j (red) when adaptive dissipation is used. Experimental data (Pan-
chapakesan & Lumley, 1993) (−−).

As shown in Fig. 3.11, the mean axial velocity, 〈U〉, and root-mean-square (RMS) velocity,

urms = 〈(U − 〈U〉)2
〉

1/2
, agree well with experimental data of Panchapakesan & Lumley (1993).

Angles brackets 〈·〉 denote averages over both time and azimuthal directions. For a consistent

comparison, results are shown as a function of the jet half-width r1/2, which represents the radial

location where the mean axial velocity U = 0.5Uc, with Uc the mean centerline velocity. The mean

and RMS mixture fraction statistics also exhibit excellent agreement with the experimental data

of Dowling & Dimotakis (1990) (see Fig. 3.12). Here, rZ/2 is the scalar half-width that represents

the radial location where Z = 0.5Zc with Zc the mean centerline mixture fraction.

Comparisons between the adaptive dissipation scheme and standard approach using high-order

operators are shown in Fig. 3.13. A small reduction in mixture fraction fluctuations can be seen

when the adaptive dissipation is used, but the changes are not noticeable unless sufficiently zoomed

in. It can be seen that using different values of ε does not significantly change the mixture fraction

statistics, though it does impact the boundedness errors.

Finally, the temporal evolution of the maximum boundedness norm εb
∞ is given in Fig. 3.14a.

The maximum unboundedness over all simulation timesteps is: 0.1281 (high-order dissipation);

0.0111 (adaptive dissipation with ε = 10−2); 0.0043 (adaptive dissipation with ε = 10−3); and
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(a) (b)

Figure 3.12: Radial profiles of (a) the mean mixture fraction and (b) its fluctuations at x = 12D j

(black), x = 13D j (blue), and x = 14D j (red) when adaptive dissipation (–) is used. Experimental
data (Dowling & Dimotakis, 1990) (−−).

(a) (b)

Figure 3.13: (a) Mixture fraction fluctuations across the jet at x = 12D j and (b) zoom-in view near
the maximum value for high-order (black) and adaptive dissipation with ε = 10−2 (red), ε = 10−3

(blue), and ε = 0 (green).
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(a) (b)

Figure 3.14: Temporal evolution of (a) maximum boundedness errors and (b) the fraction of grid
points that second-order dissipation is activated. High-order dissipation (black circles) and adap-
tive dissipation with ε = 10−2 (red triangles), ε = 10−3 (blue squares), and ε = 0 (green diamonds).

0.0360 (adaptive dissipation with ε = 0). The fraction of the grid points where the sensor is

activated is also reported. It can be seen that lower values of ε results in more activation of second-

order dissipation (see Fig. 3.14b).

3.6 Conclusions

A discrete adjoint framework for sensitivity analysis and optimization of compressible flows in-

volving scalar mixing, turbulence, chemical reactions, and potentially shocks has been provided.

The numerical solver is able to provide high-fidelity solutions to such flows. Moreover, an efficient

scheme to preserve scalar boundedness and possibly being dual consistent was a matter of inter-

est in this work. Also, the discrete-adjoint solver yields exact sensitivity up to machine precision

roundoff errors with a tractable computational cost, making it more effective for chaotic dynamical

systems such as turbulent flows.

We reviewed the first derivative and dissipation operators that satisfy the summation-by-parts

(SBP) property. It was demonstrated that the standard SBP dissipation operator that relies on high-

order derivatives is effective at absorbing the highest wavenumber components, but the dissipation

operator based on second derivatives absorbs energy across all scales. Thus, locally adjusting
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between the two is a natural choice for controlling dispersion errors.

A sensor was used that activates the lower-order dissipation operator where the solution is un-

bounded. We considered two formulations, one in which places the sensor inside the derivative op-

erator that ensures an energy estimate for continuous sensors (unconditionally stable formulation),

and another where the sensor is placed outside the derivatives (conditionally stable formulation).

Adjoint formulations of both adaptive schemes were also provided.

The various formulations were assessed in a series of one-dimensional numerical experiments.

In each case, both adaptive dissipation formulations provided lower excursion errors compared

to the standard high-order dissipation operator. However, due to the placement of the sensor in-

side the derivative in the unconditionally stable formulation, the conditionally stable approach

systematically provided better performance, especially in flows with discontinuous solutions. On

the other hand, numerical oscillations were found in the adjoint solution of the conditionally sta-

ble approach. The unconditionally stable adaptive method provides smoother adjoint solutions,

but greater amounts of excursion errors are found in its primal simulation, compared to the other

adaptive scheme.

We employed a data assimilation technique to find the optimized sensor that preserves bound-

edness and accuracy of the solution with an adaptive dissipation scheme. A one-dimensional nu-

merical test with a discontinuous initial condition was employed. We were not able to improve the

conditionally stable scheme compared to the Heaviside sensor; however, it was succeeded in the

optimized sensor of the unconditionally stable adaptive dissipation scheme. Its optimized sensor

was not a trivial function of the state values, which makes its implementation more difficult for

fluid dynamic applications.

We applied the adaptive dissipation scheme to the compressible Navier–Stokes equations to

assess its utility in preserving boundedness in a three-dimensional turbulent round jet. Overall

good performance is observed. The proposed approach is found to reduce boundedness errors

without significant effects on small-scale fluctuations.

A numerical solver with the adaptive scheme is able to preserve scalar boundedness, and its
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discrete adjoint formulation can be efficiently implemented for gradient-based optimization. We

note that a similar approach can be adopted in other applications for reducing dispersion errors in

the presence of discontinuities (e.g., shock capturing).
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CHAPTER 4

Sensitivity Analysis and Optimization of Rayleigh–Taylor

Instabilities

4.1 Introduction

Turbulent mixing of variable density flows is ubiquitous in nature and plays an important role

in many engineering applications. Such examples include supernova explosions and neutron

stars (Woosley & Weaver, 1986; Janka & Müller, 1996; Fujimoto, 1993; Piro & Bildsten, 2007),

turbulent combustion (Peters, 2000; Pitsch, 2006, and references therein) and inertial confinement

fusion (ICF) (Lindl, 1995; Nakai & Takabe, 1996). Turbulent mixing directly affects the over-

all performance of many engineering systems. For example, hydrodynamic instabilities that in-

duce mixing decrease the efficiency of implosion performance in ICF (Nakai & Takabe, 1996;

Lindl, 1995). Hydrodynamic mixing in ICF is thought to be controlled by Rayleigh–Taylor (RT)

and Richtmyer–Meshkov instabilities originating from non-uniformities associated with irradia-

tion laser intensity and the fuel target surface (Nakai & Takabe, 1996). Control of RT-induced

mixing is therefore of great importance to improve the performance of such devices.

Since the 1950s, a large number of theoretical (e.g., Chandrasekhar, 1961; Duff et al., 1962),

numerical (e.g., Cook & Dimotakis, 2001; Cabot & Cook, 2006) and experimental (e.g., Read,

1984; Roberts & Jacobs, 2016) studies have provided a great deal of insight into the mixing prop-

erties of RT instabilities. In addition, several studies have been conducted to determine stabilizing

or suppressing agents of RT growth, e.g., via shear rate and surface tension actions (Babchin et al.,
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1983), wall oscillations (Halpern & Frenkel, 2001) and electric fields imposed on dielectric flu-

ids (Cimpeanu et al., 2014). It has also been observed that the RT growth rate can be modified

by altering the structure of initial interfacial perturbations (Cook & Dimotakis, 2001; Ristorcelli

& Clark, 2004; Ramaprabhu et al., 2005; Youngs, 2009; Banerjee & Andrews, 2009; Xie et al.,

2017), suggesting that one might be able to control the extent of fluid mixing by carefully adjusting

the initial conditions. While such a strategy for manipulating fluid mixing might appear imprac-

tical in practice, it is interesting to note that Carles et al. (2006) and Huang et al. (2007) recently

demonstrated that it is feasible to impose precise and arbitrary controlled initial perturbations

using magnetic fields.

Several studies in the literature have examined the importance of initial perturbations on RT

growth rates, yet it remains unclear to what extent details of the initial perturbations are retained

throughout evolutionary stages of the instability. Many studies have shown that variations of initial

interfacial perturbations in spectral space can affect the growth rate (e.g., Cook & Dimotakis, 2001;

Ristorcelli & Clark, 2004; Ramaprabhu et al., 2005; Youngs, 2009; Banerjee & Andrews, 2009;

Xie et al., 2017). For example, Banerjee & Andrews (2009) simulated several three-dimensional

multi-mode RT configurations with different interfacial perturbation spectra, and obtained differ-

ent growth rates in some cases. Xie et al. (2017) showed that it is possible to suppress or enhance

growth by perturbing the amplitude of an individual mode of a two-dimensional multi-mode RT

instability. In addition, it has been observed that including low wavenumber modes in the ini-

tial perturbations increases the late-time RT growth (Cook & Dimotakis, 2001; Youngs, 2003;

Ramaprabhu et al., 2005; Banerjee & Andrews, 2009). Despite the dependence of large scale mix-

ing and penetration on initial perturbations, it has been seen that small scale features (e.g., molec-

ular mixing) are usually less sensitive to the distribution of initial perturbations (Dimonte et al.,

2004; Ramaprabhu et al., 2005; Banerjee & Andrews, 2009). Contrary to these observations, some

studies have shown that the RT growth rate can be insensitive to changes in initial interfacial pertur-

bations (e.g., Livescu et al., 2011; Roberts & Jacobs, 2016), especially if the growth is dominated

by nonlinear mode-coupling effects (e.g., Dimonte et al., 2004; Ramaprabhu et al., 2005; Banerjee
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& Andrews, 2009).

Despite recent progress, practical methods to control mixing of multi-component fluids remain

limited, and the extent to which instabilities can be altered remains an open question. In recent

years, advancements in numerical methods and growing computational resources have enabled

predictive simulations of realistic multi-component turbulent flows. Yet, the use of high-fidelity

simulations for optimization in general remains challenging due to the high computational cost

and large number of parameters capable of influencing mixing. In recent years, adjoint-based

methods have emerged as a powerful technique to measure parametric sensitivity in fluid dynamic

applications, including shape optimization and drag reduction for aerostructures (Jameson, 1989;

Jameson & Martinelli, 2000; Martins et al., 2004), sensitivity analysis of laminar flames (Braman

et al., 2015), aeroacoustic control of free shear flows (Wei & Freund, 2006; Vishnampet et al.,

2015), scalar mixing (Vikhansky, 2002; Liu, 2006; Thiffeault, 2012; Foures et al., 2014b; Miles,

2018; Vermach & Caulfield, 2018) and hydrodynamic instability of lifted diffusion flames (Qadri

et al., 2015). Only recently have adjoint methods been applied to multi-component unsteady flows,

including variable-density Kelvin–Helmholtz instabilities (Lopez-Zazueta et al., 2016) and turbu-

lent combustion (Capecelatro et al., 2016, 2017, 2018).

The sensitivity obtained from the adjoint solution can be susceptible to spatial and temporal

truncation errors that are known to become significant in unsteady or chaotic flows (Lea et al.,

2000; Nadarajah & Jameson, 2000; Vishnampet et al., 2015). Discrete-adjoint methods address

this by taking into account the numerical discretization prior to perturbing and linearizing the flow

equations, which provides sensitivity that is exact up to machine roundoff errors. Such an approach

is expected to accelerate and improve optimization for simulations of turbulence. For example, the

discrete adjoint method has been shown to improve the minimum drag coefficient for flow around

a rotating cylinder (Carnarius et al., 2010), and achieve 2.2× more reduction in aeroacoustic noise

compared to the continuous-adjoint approach (Vishnampet et al., 2015). Vishnampet et al. (2015)

recently developed a discrete-adjoint method for unsteady turbulent flows using high-order spa-

tial and temporal discretization. In this work, we extend the space–time discrete adjoint approach
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of Vishnampet et al. (2015) to buoyancy-driven variable density flows and measure sensitivity of

multi-mode RT growth to local perturbations of the fluid interface. In Chapter 4.2, the RT con-

figuration, governing equations and discretization are presented. In Chapter 4.3, different means

for quantifying mixing are discussed, and the adjoint method is formulated for quantifying their

sensitivity. Local sensitivity is analysed in Chapter 4.4 at different times during the evolution of

the instability. In Chapter 4.5, the sensitivity obtained from the adjoint method is employed in

gradient-based optimization to both suppress and enhance the growth rate, and the optimal pertur-

bations associated with different RT regimes are evaluated.

4.2 Predictive model

4.2.1 System configuration

We consider two miscible fluids with molecular weight ratio W2/W1 = 3, corresponding to an

Atwood number

At =
W2 −W1

W2 + W1
(4.1)

of At = 0.5. The fluids are contained within a box of length L × 2L × L with L = 2π. Gravity g is

aligned in the negative y-direction. Periodic boundary conditions are imposed in the homogeneous

x- and z-directions. A no-slip wall is enforced at the upper and lower boundaries, i.e., y = ±2π.

The reference velocity is taken to be u∞ =
√

gl with the reference length scale l = L/2π, resulting

in a Froude number Fr = u∞2/(gl) = 1. The subscript ∞ denotes a reference quantity throughout

the remainder of this chapter.

The domain is discretized on a mesh with 256 × 1025 × 256 grid points, corresponding to grid

spacing ∆x = ∆z = 0.025l in the horizontal directions and ∆y = 0.012l in the vertical direction.

The average kinematic viscosity at the interface ν̄ is chosen such that the Kolmogorov length scale
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η is properly resolved, as determined by the Reynolds number

Re =
u∞l
ν̄

=

(
l
η

) 4
3

, (4.2)

which is taken to be Re = 353.3 with η = ∆x/2. The average kinematic viscosity is related to

the light (µ1) and heavy (µ2) fluid viscosities via ν̄ = (µ1 + µ2)/(ρ1 + ρ2), where ρ1 and ρ2 are the

densities of the fluid below and above the interface, respectively. The dynamic viscosity of the

mixture, µ, is taken to be constant, i.e., µ = µ1 = µ2 = µ∞.

4.2.2 Governing equations

In this work, we consider the non-dimensional non-reacting Navier–Stokes equations of (2.11) for

the non-dimensional conserved variables ~Q =
[
ρ ρu ρE ρY

]T, where ρ is the mixture density,

u = [u v w]T is the velocity vector, E is the total non-chemical energy (including thermal and

kinetic energy), Y is the heavy fluid mass fraction with 1 − Y the mass fraction of the light fluid,

and p is the pressure given by p = (γ − 1) (ρE − ρuiui/2), where γ = 1.4 is the specific heat

ratio. In (2.11) , Frc = Fr/Ma2 and Rec = Re/Ma denote the Froude and Reynolds numbers,

respectively, based on the reference sound speed c∞ =
√
γpI/ρI with interfacial pressure pI and

density ρI = (ρ1+ρ2)/2. The Mach number Ma = u∞/c∞ = 0.189 is taken such that compressibility

effects on the RT instability are not important (Livescu, 2004). The viscosity remains constant in

the domain, i.e., b = 0 in (2.7), and the bulk viscosity is µB = 0. The non-dimensional heat

flux (2.8) is simplified for the non-reacting case according to

qi = −
1

RecPr
∂T
∂xi
−

T
RecSc

[
1

W1

∂(1 − Y)
∂xi

+
1

W2

∂Y
∂xi

]
, (4.3)
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where T is the temperature that is determined by the ideal gas law for a mixture (2.10) with the

mixture molecular weight, W given by

W =

(
Y

W2
+

1 − Y
W1

)−1

. (4.4)

In (4.3), Pr = Cp,∞µ/κ is the Prandtl number with κ and Cp,∞ the thermal conductivity and reference

specific heat at constant pressure, respectively, and Sc = µ/(ρD) is the Schmidt number with mass

diffusivityD. Values of κ/Cp,∞ and ρD are chosen to be constant such that Pr = 0.7 and Sc = 1.

4.2.3 Initialization

The mole fraction of the heavy fluid, X = YW/W2, is initialized as

X =
1
2

{
1 + erf

[
y − h0(x, z)

δD

]}
, (4.5)

where δD = 5∆y is the initial diffusion thickness of the interface, and h0(x, z) denotes the interfacial

perturbations, composed of M modes in the x-direction and N modes in the z-direction, according

to

h0(x, z) =

M∑
m=1

N∑
n=1

Am,n cos
(
kx,mx + θx,m

)
cos

(
kz,nz + θz,n

)
. (4.6)

Here, kx,m = 2π/λx,m and kz,n = 2π/λz,n are the perturbation wavenumbers with wavelengths λx,m

and λz,n in x- and z-direction, respectively, with phase shift θx,m and θz,n, and amplitude Am,n.

The fluid is taken to be initially at rest, i.e., ui = 0, and thus the momentum conservation equa-

tion of (2.2) provides a hydrostatic relation for pressure, given by ∂p/∂y = −ρ/Frc. Substituting ρ

for p in the hydrostatic equation via (2.10) and integrating from y = h0(x, z) to an arbitrary vertical

position y yields

p = pI exp
(
−

γ

(γ − 1)T0

1
Frc

[
W (y − h0) +

δD (W2 −W1)
2
√
π

{
exp

[
−

(y − h0)2

δ2
D

]
− 1

}])
. (4.7)
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Here, pI is the fluid interface pressure and T0 denotes the initial temperature that is assumed to

be constant throughout the entire domain, resulting in an initially isothermal state. The density is

initialized by substituting the resulting pressure into (2.10). It is important to note that employing

stationary initial conditions with the hydrostatic pressure distribution ∂p/∂y = −ρ/Frc will generate

spurious acoustic waves near the interface. These waves originate from pressure disturbances as

a result of non-zero enthalpy diffusion that appears in the energy equation (Cook, 2009; Livescu,

2013; Reckinger et al., 2016). Recent work has shown that the spurious waves can be suppressed

by modifying the velocity field near the interface (Movahed, 2014; Reckinger et al., 2016). In the

current work, we follow a similar approach described by Reckinger et al. (2016) to eliminate these

spurious oscillations, resulting in the following initial velocity

ui = −
1

RecSc
1

ρW

∂W
∂xi

. (4.8)

4.2.4 Discretization of the governing equations

In the present work, spatial derivatives appearing in the governing equations (2.11) and (2.6)–

(4.3) are obtained via a narrow-stencil finite difference operator that satisfies the summation-by-

part (SBP) property (Kreiss & Scherer, 1974; Strand, 1994). We employ spatial derivatives with

eighth-order accuracy in the interior domain and fourth-order near the boundaries, resulting in fifth-

order global accuracy. Second and mixed derivatives are obtained by applying the first derivative

consecutively. Sixth-order SBP dissipation operators (Mattsson et al., 2004; Vishnampet, 2015) are

employed to damp spurious numerical waves that arise due to repeated first derivatives. The flow

equations are integrated in time using a standard fourth-order Runge–Kutta scheme. A constant

simulation timestep of ∆t = 2.67−4τ with τ =
√

FrcL/lAt a characteristic time scale is maintained

such that the Courant–Friedrichs–Lewy (CFL) condition remains below CFL < 0.9.

The SBP scheme is combined with the simultaneous-approximation-term (SAT) boundary

treatment to ensure provable stability (Carpenter et al., 1994; Svärd & Nordström, 2008; Bodony,

2010; Vishnampet, 2015). The SAT treatment is used to impose no-slip isothermal boundary con-
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ditions at y = ±2π (Svärd & Nordström, 2008; Vishnampet, 2015). In addition, absorbing sponge

regions (Freund, 1997) are applied near the walls by adding a damping term to suppress numerical

acoustic waves and to enforce the solution to a target state ~Qt (taken to be the unperturbed initial

conditions). The damping term σs(y)
(
~Q − ~Qt

)
is added to the right-hand side of the governing

equations, where the sponge strength σs(y) varies quadratically in the y-direction from unity at the

walls to zero at ≈ 0.7l away from the wall.

4.3 Controlling the Rayleigh–Taylor instability

We seek to control RT growth by manipulating individual mode amplitudes Am,n of the initial

perturbations at the fluid interface h0, given by (4.6). Sensitivity of the instability with respect to

each mode provides a direction that is useful in gradient-based optimization. In order to calculate

this sensitivity, a quantitative measure of the RT instability is required. In this section, important

features and concepts of RT growth are summarized. We then introduce various definitions of

mixing that will be considered and provide a formal methodology for measuring its sensitivity to

each individual amplitude Am,n.

4.3.1 A background on Rayleigh–Taylor growth

RT instabilities are known to undergo a range of stages during their growth. In the limit that either

the Schmidt number, the perturbation amplitude, or gravity is sufficiently small, the initial growth

will be dominated by diffusion (Duff et al., 1962; Cook & Dimotakis, 2001; Wei & Livescu, 2012).

Following diffusional growth, the perturbation amplitude grows exponentially with time according

to linear stability theory (Chandrasekhar, 1961; Duff et al., 1962; Livescu, 2004). The exponen-

tial growth holds when the perturbation amplitude h is significantly smaller than the perturbation

wavelength λ, i.e., h � λ. When h is not sufficiently small, nonlinearities become important,

and bubbles and spikes form as the two fluids penetrate each other, resulting in a growing mix-

ing zone. During the nonlinear regime, the bubble tip velocity of a single-mode RT instability
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is known to reach a constant value proportional to
√

gλ (Layzer, 1955; Baker & Freeman, 1981;

Hecht et al., 1994; Goncharov, 2002). After sufficiently long time, the mixing zone grows quadrat-

ically (Anuchina et al., 1978; Youngs, 1984), and the acceleration of bubbles and spikes becomes

constant, given by (Read, 1984; Youngs, 1984)

hb/s(t) = αb/sAtgt2, (4.9)

where indices ‘b’ and ‘s’ denote bubbles and spikes, respectively, and α is the growth parame-

ter. There are two primary mechanisms responsible for bubbles approaching self similarity. The

first mechanism, referred to as bubble competition, suggests that each ambient mode grows in-

dependently and exponentially until reaching its saturation limit, resulting in a set of saturated

bubbles (Hecht et al., 1994; Alon et al., 1994; Dimonte, 2004; Ramaprabhu et al., 2005; Banerjee

& Andrews, 2009). Such a mechanism results in a weak correlation between αb and the amplitudes

of the interfacial perturbations (Dimonte, 2004; Ramaprabhu et al., 2005; Banerjee & Andrews,

2009). The second mechanism, referred to as bubble merger, suggests that different bubbles merge

and couple nonlinearly to create larger and faster bubbles (Sharp, 1984; Alon et al., 1994; Di-

monte, 2004; Dimonte et al., 2004; Ramaprabhu et al., 2005; Banerjee & Andrews, 2009). In

contrast to bubble competition, the resulting αb of pure mode-coupling does not depend on initial

perturbations (Alon et al., 1994; Dimonte et al., 2004; Ramaprabhu et al., 2005; Banerjee & An-

drews, 2009). Thus, no universal value for α exists, and a wide range of growth parameters have

been reported from experiments and numerical simulations, ranging from 0.015 / α / 0.085 (Di-

monte et al., 2004; Ramaprabhu et al., 2005). In order to more effectively control RT instabilities,

it is important to identify to what extent α is influenced by the structure of the initial interfacial

perturbations.
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4.3.2 Quantifying mixing

In this work, the objective function,J , is defined within the simulation domainD and time horizon

[0, t f ] as

J( ~Q, ~A) =

t f∫
0

∫
D

I( ~Q, ~A)W(y) dx dt, (4.10)

where the integrand I denotes the local temporal mixing provided by a high-fidelity simulation

that solves the governing equations (2.11), and ~A = [A1,1, · · · , AM,N]T. The weighting function

W(y) enforces compact support near the interface and smoothly decays to zero towards the vertical

boundaries, given by

W(y) =
1
2

{
tanh

[
σW (y + 1 − fW/2)

]
− tanh

[
σW (y − 1 + fW/2)

]}
, (4.11)

where σW = 25.0/l determines the slope, and fW = 0.25l controls the fraction of the span for

which W is maximum. The choice of these parameters have negligible effect on the results re-

ported here.

The choice of I in (4.10) is critical for measuring mixing and growth of the RT instability.

Several definitions for I can be found in the literature. One measure is the bubble-spike distance

ht (e.g., see Cook & Dimotakis, 2001), given by

ht = hb − hs. (4.12)

For multi-mode RT instabilities, thresholds on spanwise-averaged mole, volume or mass fraction

are typically used to measure bubble and spike heights (e.g., see Cook & Dimotakis, 2001; Di-

monte et al., 2004; Movahed, 2014). In the present work, we consider 〈X〉 = 0.99 and 〈X〉 = 0.01

thresholds for determining bubble hb and spike hs heights, respectively, where 〈·〉 denotes a span-
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wise average, given by

〈φ〉(y) =
1
L2

L/2∫
−L/2

L/2∫
−L/2

φ(x, y, z) dz dx, (4.13)

where φ can be the mole, volume or mass fraction. Another common measure is the mixing width,

given by (e.g., see Dimonte et al., 2004; Cabot, 2006)

w =

L∫
−L

〈φ〉 (1 − 〈φ〉) dy. (4.14)

In addition, mixed fluid can be defined as the product of a hypothetical fast-kinetic reversible chem-

ical reaction between two pure fluids, such that a corresponding mixing length is given by (e.g.,

see Cook & Dimotakis, 2001; Movahed, 2014)

hm =

L∫
−L

φm (〈φ〉) dy, (4.15)

where hm is the mixing height, and φm(φ) is a corresponding mixed fluid fraction, where φm = 2φ

for φ ≤ 0.5; φm = 2 (1 − φ) otherwise. In the current work, 〈φ〉 = 〈X〉 is considered in (4.14)

and (4.15).

In the present work, the adjoint of the perturbed and linearized governing equations is solved

to determine the sensitivity of mixing and growth, which requires the objective function to be

differentiable with respect to flow variables ~Q and perturbation parameters ~A. However, com-

puting derivatives of the aforementioned quantities can be problematic, and thus necessitates a

new measure of mixing. An initial candidate for I in (4.10) is to utilize the form of (4.14) with

I = X (1 − X), leading to J that quantifies mixing, defined as

MIX =

t f∫
0

∫
D

X (1 − X)W(y) dx dt, (4.16)

94



in which its maximum value occurs at X = 0.5 (representing the fully mixed fluid), and MIX = 0

within a pure fluid. It is important to note that due to the initial smooth distribution of X as given

by (4.5), MIX(t = 0) , 0 even for an unperturbed interface.

Alternatively, the definition of mixing can be defined based on the perturbation kinetic en-

ergy (Aamo et al., 2003; Foures et al., 2014b; Lopez-Zazueta et al., 2016; Vermach & Caulfield,

2018). Because the interfacial fluid movement is closely related to the local velocity of the inter-

face, it is reasonable to consider an L2-norm of vertical velocity v, resulting in J that quantifies

the kinetic energy, given by

KE =

t f∫
0

∫
D

v2W(y) dx dt. (4.17)

Foures et al. (2014b) and Vermach & Caulfield (2018) showed that maximizing the perturbation

kinetic energy does not effectively enhance mixing of a passive scalar in plane channel flows. Even

so, the utility of this definition for controlling RT growth will be analysed in later sections.

In addition to the definitions above, we consider a third quantity that represents the deviation

of mole fraction from its unperturbed initial value X∞, according to

VAR =

t f∫
0

∫
D

(X − X∞)2
W(y) dx dt, (4.18)

where X∞ is determined by (4.5) with h0(x, z) = 0. VAR can be considered as the ‘variance’ of X

with respect to the unperturbed field X∞.

4.3.3 Quantifying sensitivity of mixing

The flow variables ~Q and initial perturbation amplitudes ~A are governed by the Navier–Stokes

equations and its initial conditions, given by

~M( ~Q, ~A) = ~N( ~Q) +
[
~Q(~A) − ~Q0

]
δt=0 ≡ 0, (4.19)
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where ~N denotes the flow equations (2.11), ~Q0(~A) are the flow variables at t = 0, and δt=0 denotes

the Dirac Delta function, which is unity for t = 0 and zero otherwise. The last term in (4.19)

enforces the initial conditions and is presented as such to obtain the sensitivity ofJ to ~A. A similar

formulation can be found in Foures et al. (2014b). Following what was done in Chapter 2.4, the

adjoint sensitivity is computed as

δJ

δ~A
=

∫
D

~Q†T0
∂ ~Q0

∂~A
dx at t = 0. (4.20)

To avoid measuring sensitivity near the domain boundaries, we multiply a weighting function,

WΓ, with initial perturbation h0(x, z) that enforces compact support near the interface, and ap-

proaches zero towards the walls in a similar manner as (4.11). Therefore, the initial mole fraction

equation (4.5) is modified according to

X =
1
2

{
1 + erf

[
y − h0(x, z)WΓ(y)

δD

]}
. (4.21)

This modification does not significantly change the initial conditions provided that the weighting

function is near unity in the vicinity of the interface and the imposed perturbation h0 is small.

The sensitivity provided by the adjoint solution after discretizing (4.20) can induce truncation

errors accumulated in ~Q† that may become significant in unsteady or chaotic flows (Nadarajah &

Jameson, 2000; Carnarius et al., 2010). Simulations of turbulent mixing like the ones considered

here are particularly sensitive to this since the numerical resolution is often close to the limits of

the discretization. To this end, the present work employs the discrete counterpart of the inner prod-

uct (4.10) and the fully discretized Navier–Stokes equations (in space and time) prior to employing

the Lagrangian (2.13). Details of the space-time discrete adjoint formulation consistent with the

SBP-SAT discretization outlined in Chapter 4.2.4, and verification of its sensitivity gradient, can

be found in Vishnampet et al. (2015); Capecelatro et al. (2018).
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4.3.4 Verification of the adjoint sensitivity

The accuracy of the adjoint sensitivity (2.16), i.e., (4.20) for this problem, can be verified by

comparing to finite difference approximations of δJ/δ ~f . For this purpose, J is recomputed via

perturbing the parameter ~f (i.e., ~A in this case) in the direction of the adjoint sensitivity. The

modified J is related to the baseline QoI by considering the first-order Taylor series, given by

J

 ~Q + δ ~Q, ~f + ε
δJ

δ ~f

 = J(Q, ~f ) + ε
δJ

δ ~f
·
δJ

δ ~f
+ O(ε2) + Ot(∆xa′

i ,∆tb′), (4.22)

where δJ/δ ~f is computed via (2.16), and ε denotes the step size of the finite difference approxima-

tion. Ot(∆xa′
i ,∆tb′) represents truncation errors due to discretizing the governing equations (2.11)

and adjoint equations provided in Appendix A. ∆xi and ∆t denotes the grid spacing and timestep

size, respectively. A sensitivity error is obtained by rearranging (4.22), given by

J

(
~Q + δ ~Q, ~f + ε δJ

δ ~f

)
− J( ~Q, ~f )

ε
−
δJ

δ ~f
·
δJ

δ ~f
= O(ε) + Ot(∆xa

i ,∆tb). (4.23)

As can be seen, the above expression compares the adjoint sensitivity solution δJ/δ ~f with a first-

order finite difference approximation that uses ε as its step size. The truncation error Ot(∆xa
i ,∆tb)

is zero in discrete-adjoint methods since the adjoint sensitivity is obtained via perturbing the dis-

cretized flow equations. Thus, the discrete-adjoint equations are algebraic equations instead of

partial differential equations and no discretization is required.

The adjoint sensitivity of a two-dimensional RT instability is investigated according to (4.23)

as can be seen in Fig. 4.1, which suggests that the error is proportional to the step size as expected

by (4.23) until machine-precision roundoff errors become dominate.
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Figure 4.1: Verification of the adjoint sensitivity of a two-dimensional RT instability by comparing
its error (− • −) (4.23) with a linear slope (−−).

.

4.4 Sensitivity of a three-dimensional RT instability

4.4.1 Rayleigh–Taylor growth

In this section a three-dimensional multi-mode RT instability is considered. The interfacial ampli-

tudes Am,n are initially distributed uniformly, i.e., Am,n = A0 for m = 1, . . . ,M and n = 1, . . . ,N,

and the phases are distributed randomly, 0 ≤ θm,x, θn,z ≤ 2π. Thirty-two modes are considered

in each horizontal direction (i.e., M = N = 32), and the smallest wavelength in each direction

is λmin = 8∆x. Linear stability theory predicts that the exponential growth rate of the incom-

pressible (pI → ∞) RT instability is negative for k > 21 (Duff et al., 1962). Thus, the present

configuration should account for all active modes. The root-mean-square (RMS) of initial per-

turbation h0,RMS = 3.15 × 10−4L is chosen based on Banerjee & Andrews (2009), which leads to

A0 = 1.97 × 10−5L.

The evolution of bubble height hb and tip velocity ḣb in Fig. 4.2a depict the various stages

of RT growth up to t = 4τ. The instability begins in the diffusion growth (DG) regime until

t ≈ τ. Afterwards, gravitational effects become important, leading to the exponential growth (EG)
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Figure 4.2: (a) Evolution of bubble height (–) and bubble tip velocity (−−) of the three-dimensional
RT instability through the diffusion growth (DG), exponential growth (EG), potential flow growth
(PFG) and late-stage growth (LSG). (b) Corresponding bubble growth parameter αb.

regime until t ≈ 1.9τ. Then, nonlinearities become important, giving rise to a potential flow growth

(PFG) stage where the bubble tip velocity is approximately constant until t ≈ 2.4τ. Afterwards,

additional nonlinearities cause the bubble tip velocity to decrease. It then reaccelerates at t ≈ 3.9τ.

The corresponding bubble growth parameter becomes approximately constant for t > 2.5τ, where

a self-similar late-stage growth (LSG) regime exists (see Fig. 4.2b). The bubble growth parameter

is seen to approach αb ≈ 0.04, consistent with values reported in the literature (e.g., Dimonte et al.,

2004; Ramaprabhu et al., 2005). Two-dimensional snapshots of the mole fraction within different

regimes do not show significant mixing until reaching the PFG stage (see Fig. 4.3).

The conventional measures for RT mixing, defined according to (4.12), (4.14) and (4.15), are

compared with the objective functions defined in Chapter 4.3.2 as given by (4.16)–(4.18) (see

Fig. 4.4). Each quantity shows relatively small growth during the DG and EG stages, and a rapid

increase in mixing after t ≈ 2τ, consistent with Figs. 4.2 and 4.3. It is interesting to note that

the trend of each objective function is approximately similar. However, the growth of the kinetic

energy norm KE (defined using I = v2) is seen to be delayed until t ≈ 2τ due to diffusion effects.

It then increases exponentially according to linear stability theory during the EG regime (t ' 1.6τ).

Both MIX (defined using I = X(1 − X)) and the mixing width w are observed to evolve in a

similar manner, which is not unexpected due to their similarities in definition. The initial growth
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(a) t = 0 (b) t = 0.13τ (DG) (c) t = 1.3τ (EG) (d) t = 2.2τ (PFG) (e) t = 4.0τ (LSG)

x x x x x

Figure 4.3: Evolution of mole fraction X in the z = −π plane. The gray scale shows mole fraction
from X =0 (white) to X = 1 (black). The blue line depicts the fluid interface (X = 0.5).

of bubble-spike distance ht is similar to that of the mixing height, mixing width and MIX. This

suggests the objective functions presented in Chapter 4.3.2 act as good surrogates for quantifying

RT growth and mixing. Sensitivity of these quantities to the initial interfacial perturbations will be

presented in the following section.

4.4.2 Sensitivities to different measures of mixing

The sensitivity ofJ to ~A over duration t f are evaluated across the averaged perturbation wavenum-

bers k =
√

k2
x + k2

z (see Fig. 4.5). It can immediately be seen that at early stages of the RT instability

the distribution of sensitivity varies between the different quantities of interest, and collapse at late

time. Within the DG stage, VAR and KE are most sensitive to low and intermediate wavenumber

perturbations, and are least sensitive at the highest wavenumbers (see Fig. 4.5a). Perhaps surpris-

ingly, MIX exhibits an opposite trend, with sensitivity increasing with increasing k. This suggests

that when diffusion dominates, the largest changes to the quantity X(1 − X) can be achieved by

perturbing the perturbation amplitude at the highest wavenumbers. This early-time behaviour can

be predicted analytically by assuming the mole fraction evolves according to a diffusion equation.
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Figure 4.4: Conventional measures for RT mixing: ht (–), w (−−) and hm (· · · ). Instantaneous
values of the objective functions MIX (−©−), KE (−�−) and VAR (−4−). All data are normalized
by their final values (at t = 4τ).

Assuming purely diffusional growth, the distribution of sensitivity with k can be shown to be a

consequence of the functional dependence of J on X and initial conditions. A detailed compari-

son of the theoretical estimates of early-time sensitivity and the adjoint solution for each objective

function is provided in Appendix D.

Inertial effects from buoyancy become more significant as time increases. Linear stability

theory predicts that the exponential growth rate within the EG regime, σ(EG)
k , is given by (Duff

et al., 1962)

σ(EG)
k =

 Atk
ψFrc

+
k4

ρ2
I Re2

c

1/2

−
(
1 + Sc−1

) k2

ρIRec
, (4.24)

where ψ depends on the Atwood number, wavenumber and the thickness of the diffusive layer (see

Duff et al., 1962). The above relation predicts k = 7.58 as the most unstable wavenumber at

t = 0. As shown in Fig. 4.5b, this is consistent with the most sensitive wavenumber provided by

the adjoint solution in the EG regime. As the time duration increases, the most sensitive modes

corresponding to MIX shifts from the highest wavenumbers to lower ones. Within the PFG and

LSG regimes, the distribution of sensitivity is similar for all objective functions, with maximum

sensitivity remaining close to the most unstable wavenumber predicted by linear stability theory.
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(c) t f /τ = 2.2 (PFG)
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(d) t f /τ = 4.0 (LSG)
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Figure 4.5: Magnitude of sensitivity |δJ/δ~A| integrated over different durations t f for MIX (−©−),
KE (−�−) and VAR (− 4 −). The sensitivities are shown as a function of initial perturbation
wavenumber k =

√
k2

x + k2
z and normalized by their corresponding maximum value.

Except for MIX in the DG regime, the objective functions are generally unaffected by perturbation

modes at wavenumbers k > 20. Linear stability theory predicts that these modes are damped by

diffusion during the EG regime.

It is interesting to note that the most sensitive wavenumber throughout the growth of the RT

instability remains approximately constant and consistent with the most unstable wavenumber pre-

dicted by linear stability theory. However, its distribution varies. This suggests that employing

linear stability theory for manipulating growth of the instability may have only limited success due

to the broadband nature of sensitivity. This will be confirmed in Chapter 4.5.
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It is important to note that the sensitivity obtained by the adjoint solution in chaotic dynamic

systems are known to diverge when measured over long time horizons (e.g., see Lea et al., 2000;

Wang & Gao, 2013). Thus, the values used for normalization in Fig. 4.5 will change depending on

the duration considered. Following Wang & Gao (2013), its chaotic behaviour is characterized by

estimating the first Lyapunov exponent, Λ, for the adjoint solution of each objective function over

the duration t f = 4.0τ, according to

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

6∑
i=1

Q†i (x, t)WΓ(y)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∝ exp(−Λt), (4.25)

where ||·||2 is a spatial L2 norm operator, and i = 1, . . . , 6 denotes the i-th component of adjoint

variable. The value of Λ estimates the average growth rate in δJ due to small changes in initial

interfacial perturbations (e.g., see Trevisan & Legnani, 1995). As can be seen in Fig. 4.6, the

magnitude of the adjoint variables exponentially increase in inverse time with rates Λ = 3.42τ−1,

3.48τ−1 and 3.45τ−1 for MIX, KE and VAR, respectively. From this, the rate at which sensitivity

diverges does not significantly differ among the different objective functions. We note that the

positive first Lyapunov exponents of each objective function limits the time horizon that can be

considered, which may affect the optimization of the instability during late-time growth. The

utility of the adjoint solution for controlling the RT instability will be addressed in Chapter 4.5.3.

The next section will analyse local sensitivity at various stages of the instability.

4.4.3 Spatial sensitivity at various stages of the RT instability

In this section we evaluate the spatial distribution of sensitivity at different stages of the instability.

The sensitivity gradient defined in (4.20) can be rewritten as

δJ

δ ~Q0

=

∫
D

t f∫
0

δI

δ ~Q0

dt dx =

∫
D

~Q†0 dx. (4.26)
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Figure 4.6: The L2 norm of adjoint solutions for MIX (©), KE (�) and VAR (4). The L2 norms
are normalized by the corresponding values at t = 3.87τ. The dashed lines estimate the growth in
the adjoint solution based on the first Lyapunov exponent, which was found to be Λ = 3.42τ−1,
3.48τ−1 and 3.45τ−1 for MIX, KE and VAR, respectively.

Thus, the local adjoint variables Q†i at t = 0 provide spatial sensitivity of the mixing norms to the

flow state. With this, the local sensitivity of J with respect to initial mole fraction variations can

be expressed as
δJ

δX0
= ρY†

∂Y
∂X

, (4.27)

where the chain rule is used, and ∂Y/∂X can be determined using the relation Y = XW1/W.

The spatial distribution of δJ/δX0 for VAR integrated over different durations in the vertical

plane z = −π are compared in Figs. 4.7a–4.7d and at the fluid interface X = 0.5 in Figs. 4.7e–

4.7h. As can be seen in Figs. 4.7a–4.7d, local sensitivity exhibits a periodic distribution that is

maximum near the interface. As was shown in the previous section, the dominant wavenumber of

local sensitivity at the interface during the EG stage corresponds to k ' 7, consistent with the most

unstable wavenumber mode predicted by liner stability theory (see Fig. 4.7f). Local sensitivity

does not significantly change from EG to PFG (see Fig. 4.7g). However, the sensitivity in the LSG

stage exhibits more variations near the interface, suggesting a broader range of modes contribute to

mixing. Figures 4.7e– 4.7h show that adjusting the perturbations at the fluid interface could both

locally increase (positive sensitivity) or decrease (negative sensitivity) the mixing norm. Non-
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Figure 4.7: Normalized sensitivities of VAR to initial mole fraction (δJ/δX0) in physical space
for different time durations t ∈ [0, t f ]. The sensitivities are normalized by their maximum value.
(a–d): Normalized sensitivity magnitude at z = −π. (e–h): Normalized sensitivity at the fluid
interface (X = 0.5).

uniformities in sensitivity observed at the x–z plane suggest that the effects of spatial variations in

the initial conditions on mixing persist at late time stages of the growth.

4.4.4 The role of initial conditions on late-time sensitivity

In the previous sections we considered initial interfacial perturbations with uniform amplitude and

random phase. In order to evaluate the effects of initial perturbations on different stages of the

RT growth, phases θx,m and θz,n are varied while holding the amplitudes constant. Haan (1989)
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Figure 4.8: Evolution of (a) the bubble tip velocity, (b) bubble growth parameter and (c) instanta-
neous objective function VAR (I = (X − X∞)2), for four different initial interfacial perturbations
of the three-dimensional RT instability.

showed that a group of perturbation modes with similar phases can regionally combine and create

a net perturbation amplitude during an RT instability. Thus, we expect that changing the initial

perturbation phases while holding the initial amplitudes constant should lead to different nonlinear

growth. The evolution of ḣb, αb and I = (X − X∞)2 with different initial random phases are

compared in Fig. 4.8. The bubble growth during the DG and EG stages are insensitive to the

initial random phases, while deviations appear during the PFG and LSG regimes (see Fig. 4.8a).

The bubble tip velocity corresponding to one of the realization decelerates following a PFG state,

and later reaccelerates. On the other hand, another realization exhibits a reacceleration regime

after PFG, prior to deceleration. Another realization exhibits a long PFG regime, with a slight

deceleration in the bubble growth rate αb while the other illustrates a combination of short-time

accelerations and decelerations during the LSG regime. A chaotic behaviour is observed during the

LSG regime. Meanwhile, it can be seen that the bubble growth parameter αb marginally changes

for these initial conditions (see Fig. 4.8b). In addition, the objective function I = (X − X∞)2

corresponding to different initial phases are similar until t ≈ 2τ at which point it diverges (see

Fig. 4.8c).

Figure 4.8 shows that the growth is insensitive to initial random phases until t ≈ 2τ. For each k,

the sensitivity averaged over all realization during early (t f = 2.2τ) and late (t f = 4.0τ) nonlinear

stages is shown in Fig. 4.9. It can be seen that randomly adjusting the phases leads to significant
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Figure 4.9: Ensemble-averaged sensitivities of VAR (δJ/δ~A) for different random initial phases.
The sensitivities are shown as a function of initial perturbation wavenumber k =

√
k2

x + k2
z . The

vertical bars illustrate the minimum and maximum sensitivities at each wavenumber.

variations in sensitivity at late stages. A set of modes 2 ≤ k ≤ 10 are highly sensitive to initial

phases when t f = 2.2τ (see Fig. 4.9a). At later times, a broader range of modes are sensitive to

the initial phases (see Fig. 4.9b). This is consistent with the positive values of the first Lyapunov

exponent discussed in Chapter 4.4.2 (see Fig. 4.6).

4.5 Optimizing a two-dimensional RT instability

In the previous section, sensitivity of multi-mode three-dimensional RT instabilities were anal-

ysed. The sensitivity δJ/δ~A provides the direction towards which the objective function increases

(or decreases) with changes to each individual amplitude. In this section, sensitivity obtained

from the adjoint solution is employed in a gradient-based optimization framework in order to seek

the optimal interfacial perturbations for suppressing and enhancing mixing during the growth of

the RT instability. Despite the increased efficiency in computing the sensitivity provided by the

adjoint, a direct numerical simulation of three-dimensional multi-mode RT instabilities remain

computationally demanding. Thus, optimization of the three-dimensional RT instability would

be limited to a small number of iterations. To this end, optimization is performed in two dimen-
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sions, with all other parameters considered in Chapter 4.4 kept unchanged. Therefore, only the

perturbation amplitudes Am and phases θx,m are varied. In addition, the same RMS of initial per-

turbation h0,RMS = 3.15 × 10−4L is considered. The baseline solution has a uniform distribution of

perturbation energy across all wavenumbers, corresponding to an initial amplitude for each mode

A0 = 7.875 × 10−5L.

The optimization procedure can be summarized as

minimize/maximize J(Am, ~Q(Am)),

with respect to Am, m = 1, . . . ,M,

subject to
M∑

m=1

A2
m = constant,

|Am| ≤ 4.5 × 10−4L. (4.28)

The constraint
∑M

m=1 A2
m enforces the perturbation energy to be constant, preventing a trivial solu-

tion (e.g., Am = 0 or Am � A0). Keeping the perturbation energy constant also provides an upper

bound for each amplitude. This bound is imposed on the amplitudes to constrain the optimizer.

The amplitudes can take negative values which are interpreted as changes in perturbation phase

θx,m. The optimization procedure (4.28) is solved by a Sequential Least SQuares Programming

(SLSQP) algorithm (Kraft, 1988) that leverages the SciPy minimize package, an open source

Python library (Jones et al., 2001; Oliphant, 2007; Millman & Aivazis, 2011). The tolerance for

termination is set to 10−6. The objective function, constraint and gradients are taken as inputs to

the optimization library that enforces the amplitude bounds of (4.28).

4.5.1 Selectively assigning the perturbation energy

Before performing the optimization, two-dimensional simulations of RT instabilities are reported

with carefully chosen interfacial perturbations for comparison in later sections. As discussed in

Chapter 4.4, perturbations with wavenumbers k > 21 are suppressed during the EG stage accord-
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ing to linear stability theory (Duff et al., 1962). Therefore, it is expected that the optimized solution

for minimizing RT mixing corresponds to an interface with all of the energy contained in the high-

est wavenumbers, leading to pure diffusional growth. Yet, the optimized solution for enhancing

mixing is less obvious. In the context of scalar mixing, it is well known that large flow struc-

tures are controlled by advection while small length scales are mainly mixed by diffusion (e.g.,

see Foures et al., 2014b; Miles, 2018). For RT instabilities, it has been observed that assigning

more perturbation energy into low wavenumber modes increases the growth parameter α (e.g.,

see Cook & Dimotakis, 2001; Ristorcelli & Clark, 2004; Youngs, 2009; Banerjee & Andrews,

2009). In addition, Cook & Dimotakis (2001) showed that seeding the lowest wavenumbers leads

to ‘the largest unmixedness’. In summary, it is expected that increased bubble/spike penetration

occurs when more perturbation energy is added to low wavenumbers of the initial interface. When

the perturbations are distributed among the highest wavenumber modes mixing is dominated by

diffusion.

With this in mind, three different initial conditions are considered: (i) a uniform distribution

of modal energy with random phases (similar to the configuration used in Chapter 4.4) serving as

the baseline solution for the remainder of the chapter; (ii) all the energy contained in the lowest

wavenumber denoted here as Case A; and (iii) all the energy contained in the highest wavenum-

ber referred to here as Case B. As shown in Fig. 4.10, the baseline case yields bubble and spike

penetration associated with low perturbation wavenumbers as well as diffusion mixing associ-

ated with high wavenumbers. Nonlinear mode-coupling also occurs due to the existence of high

wavenumber interfacial perturbations. Case A produces large amounts of penetration through the

formation of a bubble and spike. The interfacial perturbation is suppressed in Case B during early-

time regimes according to linear stability theory (Duff et al., 1962), and mixing is dominated by

diffusion throughout the duration of the simulation.

Values of the corresponding objective functions for the three cases are reported in Table 4.1.

Both the lowest and highest wavenumber distributions produce smaller MIX values compared to

the uniform distribution. The corresponding integrand, I = X(1 − X), is maximum for completely
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(a) (b) (c)

Figure 4.10: Bubble and spike structures of a two-dimensional RT instability at t = 4.0τ with dif-
ferent initial interfacial perturbations. (a) Baseline (uniform amplitude among all wavenumbers),
(b) Case A (all energy contained in the lowest mode) and (c) Case B (all energy contained in the
highest mode). Same color scheme as Fig. 4.3.

mixed fluid (X = 0.5) and zero for pure fluids. Thus, neither single-mode cases produce as much

mixing as in the uniform case as a result of nonlinear mode-coupling. Case A demonstrates solely

large-scale fluid penetration, resulting in high interfacial velocity and thus larger values of KE

compared to the other objective functions. Assigning the initial perturbation energy into the lowest

mode increases KE by almost a factor of 2 compared to the baseline case. Comparatively, putting

all the perturbation energy into the highest wavenumber decreases KE by 5 orders of magnitude

due to dissipation of kinetic energy by diffusion. Putting all the energy into the lowest mode

increases VAR by almost 30% compared to the baseline case. The largest possible value of the

VAR integrand, I∞ = (X−X∞)2, occurs when the two fluids are inverted (i.e., the light fluid on top

and heavy fluid on bottom). Thus, larger values of VAR occur in the presence of fluid penetration

rather than pure mixing.

Figure 4.11 shows a comparison of the bubble height, bubble tip velocity and mixing width

of the two-dimensional RT instability with the three different initial conditions. The bubble tip

velocity in Case A approaches the PG regime at a later time compared to the baseline case due to

the baseline case containing energy in modes with greater exponential growth rate. In addition,
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Normalized objective function Case A Case B min
Am
J( ~Q, Am) max

Am
J( ~Q, Am)

MIX 0.432 0.397 0.397 1.386
KE 1.987 5.13 × 10−5 6.70 × 10−5 8.853
VAR 1.266 0.075 0.075 3.111

Table 4.1: Objective functions measured over duration t f = 4.0τ normalized by their baseline
solution J (0) (uniformly distributed perturbation energy).
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Figure 4.11: Evolution of (a) bubble height, (b) bubble tip velocity and (c) mixing width of the
two-dimensional RT instability with different initial interfacial perturbation energy: Baseline (–),
Case A (−−) and Case B (··).

nonlinear mode-coupling effects absent in Case A and Case B result in increased growth. The EG

stage holds while h0 � λ, and thus Case A will not exceed the EG regime until a greater time

interval has passed compared with the baseline case. In contrast, the bubble tip velocity of Case B

decreases due to diffusion.

Finally, it can be seen that the two-dimensional multi-mode RT instability (Figs 4.10 and 4.11)

grows more slowly compared to the three-dimensional flow (Figs 4.2 and 4.3). This is consistent

with previous work that shows how three-dimensional RT instabilities grow faster than their two-

dimensional counterparts during the early nonlinear regime (Layzer, 1955; Hecht et al., 1994;

Oron et al., 2001; Goncharov, 2002). This is due to reduced kinematic drag associated with three-

dimensional bubbles compared to elongated two-dimensional bubbles, leading to a greater terminal

bubble tip velocity in three-dimensions.
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Figure 4.12: (a) Reduction of the objective functions normalized by their corresponding baseline
valuesJ (0) for MIX (©), KE (�), and VAR (4). (b) The spectrum of interfacial perturbation energy
for the baseline case (−−) and the optimized solution (symbols).

4.5.2 Optimal solution for suppressing mixing

As discussed in the previous section, we expect mixing and growth to be suppressed by transferring

all of the perturbation energy into the highest wavenumber modes such that diffusion dominates.

In this section, this solution is sought by minimizing the objective functions via the gradient-based

optimization method described earlier. Figure 4.12a shows the value of each objective function

during the iterative process of the optimization procedure. Different levels of reduction are ob-

served for each objective function. The optimized quantities are listed in Table 4.1. Adjoint-based

optimization is capable of reducing KE and VAR by more than an order of magnitude compared

to their baseline values while MIX is only reduced by approximately 60%. Due to the initially

smooth distribution of mole fraction as defined in (4.5), MIX will remain finite even in the absence

of any mixing or growth. As a consequence, its optimal solution approaches the value from Case

B and not zero. As expected, the perturbation energy of the optimized solution for each objective

function is transferred to high wavenumber modes, resulting in diffusion dominated growth (see

Fig. 4.12b).
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Figure 4.13: (a) Enhancement of the objective functions over duration t f = 4τ normalized by their
corresponding baseline valuesJ (0) for MIX (©), KE (�), and VAR (4). (b) The spectrum of initial
interfacial perturbation energy of the optimized solution.

4.5.3 Optimal solution for enhancing mixing

Based on previous studies of multi-mode RT instabilities (e.g., see Cook & Dimotakis, 2001; Ris-

torcelli & Clark, 2004; Youngs, 2009; Banerjee & Andrews, 2009), it is anticipated that maximiz-

ing late-time growth requires shifting the perturbation energy towards the low wavenumber modes.

In this section, we seek the optimal distribution of modal energy that enhances the three objective

functions with respect to the baseline case denoted by J (0) – an interface with uniform amplitude

and random phase. It should be noted that gradient-based optimization provides a local extremum

and there is no guarantee that such a solution holds globally. To this end, different initial config-

urations were considered as the starting point in the optimization process. The optimized spectra

reported here correspond to an initial distribution of modal energy that was found to produce the

greatest changes in J .

The iteration history of the three objective functions shows that MIX is increased by approxi-

mately 40%, KE by 900% and VAR by 300% (see Table 4.1 and Fig. 4.13a). The initial interfacial

perturbation energy of the three enhanced solutions indicates that low wavenumber modes have a

greater contribution to RT growth and mixing (see Fig. 4.13b). It can be seen that the majority of

perturbation energy of the high wavenumber modes are transferred to the first five wavenumbers.
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(a) (b) (c)

Figure 4.14: Mole fraction at t = 4.0τ of the optimized solution for enhancing the three objective
functions (a) MIX, (b) KE and (c) VAR. Compared to the baseline case, MIX, KE and VAR are
enhanced by a factor of 1.4, 8.9, and 3.1, respectively. Same color scheme as Fig. 4.3.

The optimized solutions exhibit non-trivial mode competition and coupling effects that enhance

mixing. Nonlinear mode-coupling generates lower wavenumber modes that move faster in the

flow during the potential regime. Mode-coupling also creates high wavenumber modes that are di-

minished by molecular diffusion. These effects are reflected in the optimized initial perturbations

shown in Fig. 4.13b, especially for the objective functions that measure the fluid penetration and

growth, i.e., KE and VAR. It can be seen that the perturbation energy sharply decreased for k > 21,

where the exponential growth rate is expected to be negative according to linear stability theory.

The optimized solutions at t = 4.0τ for KE and VAR exhibit greater fluid penetration com-

pared to the baseline case, while MIX appears qualitatively to be more mixed (see Fig. 4.14).

The optimized solutions admit enhancement in conventional measures for RT mixing as well (see

Fig. 4.15). The values of αb at t = 4τ are increased by 17%, 32% and 31%, with respect to the

baseline case for MIX, KE and VAR, respectively. The mixing width w was also increased by as

much as 54% compared with the baseline case. It is notable that although k ≈ 8 corresponds to

the most unstable wavenumber according to linear stability theory, and is thus the fastest growing

mode during the EG stage, a single-mode initial perturbation of k = 8 is not sufficient to optimize
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growth at later times.

The effect of the time duration over which the objective function is computed (t f ) on enhancing

mixing is also studied. The optimization of the three forms ofJ over duration t f = 2τ is performed.

At this stage of the instability the bubble tip velocity was observed to saturate due to nonlinearities

(see Fig. 4.11b). Evolution of RT growth (hb, ḣb and αb) and mixing width w corresponding to the

optimal values of J over duration t f = 2τ are compared with the baseline case and the enhanced

values over duration t f = 4τ (see Fig. 4.15). While the optimized t f = 2τ solutions predict larger

values for some of the quantities when t < 2τ, they are found to be suboptimal when t & 2τ

compared to the solutions optimized for t f = 4τ. Interestingly, the initial perturbations optimized

for t f = 2τ were found to be suboptimal compared to the baseline solution when t & 2τ as well.

For the baseline case, low wavenumber initial perturbations and nonlinear mode-coupling effects

augment RT growth at later times, while they are not as present in the optimal t f = 2τ solutions.

These differences become more obvious by observing the evolution of the mole fraction of optimal

VAR for t f = 2τ and t f = 4τ (see Fig. 4.16). Initially, there is more fluid penetration in the optimal

t f = 2τ solution as the initial perturbation assigns more energy to wavenumbers close to the most

unstable mode predicted by linear stability theory. However, at later times, the lower wavenumber

modes grow faster. These results indicate that optimization of late-time stages of RT instabilities

requires late-time sensitivity information.

4.5.4 Enhancing three-dimensional mixing using optimal two-dimensional

perturbations

Here we evaluate the ability to enhance mixing of a three-dimensional RT instability using the op-

timal interfacial perturbations determined from the two-dimensional simulations in Chapter 4.5.3.

The initial perturbation energy shown in Fig. 4.13b is used to initialize the three-dimensional

configuration presented in Chapter 4.4. The optimized amplitudes Am in two dimensions are

transformed into Am,n in three dimensions by ensuring the average wavenumber components

k =
√

k2
x + k2

z are approximately equal to the values obtained from the two-dimensional enhanced
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Figure 4.15: Evolution of (a–c) bubble height, (d–f ) bubble tip velocity, (g–i) bubble growth pa-
rameter and (j–l) mixing width of the uniform distribution solution (−−), from the optimized solu-
tion over duration t f = 2τ (· · · ) and t f = 4τ (–).
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(a) t = 1.1τ (b) t = 2.0τ (c) t = 3.1τ (d) t = 4.0τ

(e) (f) (g) (h)

Figure 4.16: Evolution of mole fraction using the optimized perturbation amplitudes that maximize
VAR over duration (a–d) t f = 2τ and (e–h) t f = 4τ. Same color scheme as Fig. 4.3.
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(a) t = 1.1τ (b) t = 2.0τ (c) t = 3.1τ (d) t = 4.0τ

Figure 4.17: Evolution of mole fraction using the optimized perturbation amplitudes that maximize
VAR. Same color scheme as Fig. 4.3.

solution.

The evolution of the mole fraction using the interfacial perturbations that optimize VAR is

shown in Fig. 4.17. It can immediately be seen that substantial mixing and penetration is achieved

compared to the baseline solution over the same time horizon (see Fig. 4.3). Despite being ini-

tialized with the same perturbation energy in two dimensions, compared to the evolution in two

dimensions (Fig. 4.16e–4.16h), the flow exhibits three-dimensional behaviour as early as t = 2τ,

resulting in significantly more mixing compared to its two-dimensional counterpart. Figure 4.18

shows the conventional measures of mixing corresponding to the enhanced objective functions

compared to the baseline case. Overall, significant increase in growth and mixing is observed.

The objective functions are increased by factors of 1.7, 5.8 and 3.4 for MIX, KE and VAR, re-

spectively, compared to the three-dimensional baseline case reported in Chapter 4.4. Interestingly,

greater enhancement is observed for two of the objective functions compared to the enhanced two-

dimensional solutions, which were increased by factors of 1.4, 8.9 and 3.1 for MIX, KE and VAR,

respectively. As shown in Figs.4.18a and 4.18b, the top and bottom walls act to decelerate the

bubble heights and bubble tip velocities at later times. Thus, even greater enhancement might be

achieved if a larger domain size was considered.
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Figure 4.18: Evolution of (a) bubble height, (b) bubble tip velocity, (c) bubble growth parameter
and (d) mixing width of the three-dimensional RT instabilities with the baseline case (−−) and
with the initial interfacial perturbations of the enhanced two-dimensional RT instabilities of MIX
(−© −), KE (−�−) and VAR (− 4 −).
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4.6 Conclusions

We have studied the role of interfacial perturbations on the evolution of a multi-mode Rayleigh–

Taylor (RT) instability. The objective was to determine the extent to which the RT growth rate and

mixing can be enhanced and suppressed through careful manipulation of the initial conditions. A

discrete-adjoint-based method was used to compute sensitivity of mixing and growth to the ampli-

tudes of the initial fluid interface. To quantify RT growth and mixing, three objective functions,

J , are defined: (i) a mixing quantity based on the variance of fluid mole fraction (MIX), (ii) a

kinetic energy norm based on the vertical velocity (KE) and (iii) an objective function based on the

variations of the mole fraction with respect to the unperturbed initial state (VAR). These quantities

are integrated in time through different stages of the RT instability.

First, a three-dimensional RT instability was considered with thirty-two perturbation modes and

constant amplitude in each horizontal direction. Four main stages during RT growth are observed:

a diffusion growth (DG) regime where molecular diffusion dominates, an exponential growth (EG)

regime where the perturbations grow exponentially and the growth rate can be estimated by linear

stability theory, a potential flow growth (PFG) stage where nonlinearities become important and

saturate the bubble tip velocity, and a late-stage growth (LSG) regime where self-similar RT growth

(hb ∝ t2) is observed. Except for the DG regime, the most sensitive wavenumber of each objective

function approximately equals the most unstable wavenumber predicted by linear stability theory

(k ≈ 8). At early times, the spectrum of interfacial perturbations was found to differ between the

different objective functions. However, they were found to collapse at later stages of the instability.

It was found that randomly varying the phase distribution of initial perturbations can significantly

alter both the growth rate and its sensitivity during the PFG and LSG stages. The sensitivity of the

objective function to local mole fraction was also evaluated. Maximum sensitivity exists within

the vicinity of the fluid interface, and becomes noisier as the integration time t f increases. This

is attributed to the chaotic behaviour of the instability, characterized by positive values of the first

Lyapunov exponent associated with each objective function.
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Sensitivity obtained from the adjoint solution is then used to suppress and enhance mixing

of two-dimensional multi-mode RT instabilities. First, the objective functions are integrated over

a duration t f = 4τ. The adjoint-based optimization approach was capable of suppressing the

instability by shifting all of the initial perturbation energy into the highest wavenumber modes.

This result is supported by linear stability theory which predicts that initial perturbation amplitudes

exponentially decay for k > 21. The optimal solutions for enhancing growth and mixing are

less trivial. The optimization procedure was able to enhance MIX, KE and VAR relative to the

baseline solution (uniform distributed perturbations) by 40%, 300% and 880%, respectively. This

corresponds to a maximum increase in the bubble growth parameter and mixing width by 32% and

54%, respectively. Initial perturbations of all mixing quantities demonstrate that low wavenumbers

are favored. The perturbation energy for wavenumber modes k & 20 is eliminated, as anticipated

by linear stability theory.

Enhancing RT growth and mixing over a shorter duration (t f = 2τ) was also studied. The

majority of initial perturbation energy of the optimal solutions shifts towards the most unstable

mode predicted by linear stability theory compared with the optimal perturbations when t f = 4τ.

Comparing the optimized solutions for t f = 2τ and t f = 4τ yields two main conclusions: (i) lower

wavenumber modes are more effective in enhancing growth for later times while the modes near

the most unstable mode have greater effect in the linear and early nonlinear regimes; and (ii) due to

the nonlinear, chaotic behaviour of RT instabilities at late stages of its growth, the optimal solution

of early-time growth provides sub-optimal solutions at later times.

The adjoint-based optimization methodology used here demonstrates its capability to enhance

and suppress mixing in unsteady multi-component flows. While it is well known that long time

horizons can result in diverging adjoint sensitivities due to chaos (e.g., see Lea et al., 2000; Wang

& Gao, 2013), we demonstrate that the discrete adjoint approach provides useful sensitivity for

optimizing mixing throughout the nonlinear RT regime, despite the existence of positive Lyapunov

exponents. It was also shown that the optimized perturbations obtained from two-dimensional

simulations admit similar (and sometimes better) improvement when imposed in three-dimensional
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configurations, making adjoint-based optimization particularly attractive for controlling large-scale

unsteady flows. Such a technique can be extended to study the role of viscous and compressibility

effects on the growth of fluid instabilities at late-time nonlinear stages. The utility of such an

approach at even later stages must be addressed.
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CHAPTER 5

Controlling Scalar Mixing in a Free Shear Flow

5.1 Introduction

In Chapter 4, the adjoint-based solver was applied to the flow fields sufficiently resolved by the

computational grids. Thus, it was not required to employ the adaptive dissipation scheme in-

troduced in Chapter 3, and the standard high-order dissipation operators were effective to damp

unresolved spurious modes.

In this chapter, we use the adjoint-based optimization framework to control the evolution of a

passive scalar Z ∈ [0, 1] in a spatially evolving mixing layer configuration. The non-reacting com-

pressible Navier–Stokes equations and their discrete adjoint equations are solved. The adaptive

dissipation scheme is necessary to preserve scalar boundedness in the considered problem config-

uration. Both unconditionally- and conditionally stable adaptive dissipation schemes are applied

to the predictive simulation. The latter one is more effective in preserving scalar boundedness.

Both instantaneous distributions and statistics of the passive scalar are compared with a simulation

using a standard high-order dissipation operator. A quantity of interest is defined to measure the

evolution of the passive scalar in the mixing layer. Adjoint formulation of conditionally stable

adaptive dissipation scheme is used to compute sensitivity to a space-time control field with more

than one-hundred million parameters, and its optimal value is obtained with a few dozens of op-

timization iterations. We demonstrate success in controlling the passive scalar evolution with a

tractable computational cost.
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5.2 Mixing layer configuration

A two-dimensional mixing layer configuration is considered with an upper stream flow of mixture

fraction Zu = 0 and velocity uu = 0.6c∞ and lower stream flow of Zl = 1 and ul = 0.1c∞ (see

Fig. 5.1), where c∞ denotes the reference speed of sound. Z is taken to be a passive scalar and

chemistry is neglected. Both upper and lower streams have density ρ∞, pressure 1/γ, and tempera-

ture 1/(γ − 1), where γ = 1.4 denotes the ratio of specific heats. The vorticity thickness separating

the two streams at the inflow, δω = ∆u/|du/dy|max with ∆u = uu − ul = 0.5c∞, is taken as the

reference length scale. The inflow Mach number is defined as Ma = ∆u/c∞ = 0.5. The size of

the computational domain is 210δω and 100δω in streamwise and spanwise directions, respectively,

which is discretized with 513 × 257 grid points. The spanwise grid is smoothly stretched from the

middle of the domain towards the lateral boundaries.

The initial distributions of streamwise velocity u and mixture fraction Z are given by

u = ul +
∆u
2

{
1 + tanh

[
y/δω

2 + 2s max (x/δω − x0, 0)

]}
,

Z =
1
2
−

1
2

erf
[

y/δω
1 + s max (x/δω − x0, 0)

]
, (5.1)

respectively, with x0 = 30δω and growth factor s = 0.1δ−1
ω .

5.2.1 Governing equations and discretization

The unsteady compressible non-reacting Navier–Stokes equations (2.11) are solved for the con-

served variables ~Q = [ρ, ρu1, ρu2, ρE, ρZ] with density ρ, velocity components ui for i = 1, 2,

and specific energy E = p/[(γ − 1)ρ] + uiui/2, where p denotes pressure, and the Reynolds

number is Re = ρ∞∆uδω/µ = 5, 000, where the viscosity remains constant in the domain, i.e.,

b = 0 in (2.7), and the bulk viscosity is µB = 0. The Prandtl and Schmidt numbers are given

by Pr = Cp,∞µ/κ = 0.7 and Sc = µ/(ρD) = 0.7, respectively, with reference specific heat at

constant pressure Cp,∞, conductivity κ, and mass diffusivity D. Since the mixture fraction Z is a
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Figure 5.1: Mixing layer configuration. Mixture fraction is shown in gray scale. The QoI is
computed in target regions downstream (right blue boxes), and the momentum actuation is applied
within the control region upstream (left blue box).

passive scalar, the heat flux and temperature are given by (3.47) and (3.48), respectively. Finally,

buoyancy effects are neglected in this configuration, i.e., Frc → ∞.

The governing equations (2.11) are discretized in space via the SBP first-order derivative op-

erators with sixth-order of accuracy interiorly and third-order near the boundaries, resulting in

fourth-order global accuracy (see Chapter 3.2.1). Second and mixed derivatives are computed by

consecutively applying the first-derivative operators.

The standard sixth-order artificial dissipation operator is applied to the density, momentum,

and energy equations, but different dissipation operators are applied to ρZ in different simulations:

(i) standard sixth-order dissipation operators, (ii) unconditionally-, and (iii) conditionally stable

adaptive dissipation operators presented in 3.2. Since the goal of this study is to ensure bound-

edness of Z without compromising accuracy of the other flow state variables, adaptive dissipation

schemes are only imposed for the ρZ equation.

The non-reflecting boundary conditions are enforced via the SAT boundary treatment (see

Svärd et al., 2007; Vishnampet, 2015, and Appendix B.3) for all boundaries, in which the bound-

ary values are weakly imposed to a target solution ~Qt taken to be the initial condition. In addition,
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absorbing sponge regions (Freund, 1997) are applied near the inflow and lateral boundaries via

σs(x)( ~Q − ~Qt), where the sponge strength σs(x) quadratically decreases from σs = 0.2 at the

boundary towards zero 6.2δω away from the inflow and 10.5δω away from the lateral boundaries.

The governing equations are integrated in time by a standard fourth-order Runge–Kutta (RK4)

time integration scheme.

5.3 Mixing layer evolution

As explained in the previous section, mixing layer simulations are studied with three different

dissipation operators for the ρZ equation: the high-order operator, the unconditionally-, and the

conditionally stable adaptive dissipation schemes. Figure 5.2a illustrates maximum boundedness

error values (maximum amounts of overshoots/undershoots) of mixture fraction through the mixing

layer evolution, given by (3.37).

(a) (b)

Figure 5.2: (a) Boundedness errors of mixture fraction, εb
∞ (3.37), associated with the mixing

layer simulation, and (b) instantaneous distribution of mixture fraction at x = 186.2δω when high-
order dissipation (black), unconditionally stable (red), and conditionally stable (blue) adaptive
dissipation schemes are employed.

The standard high-order dissipation operator is not able to preserve scalar boundedness, and

the maximum value of εb
∞ within all timesteps is 0.220. On the other hand, the conditionally stable

adaptive dissipation scheme is able to reduce the excursion errors, i.e. the maximum value of εb
∞
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within all timesteps is 0.006. The unconditionally stable adaptive scheme is not as effective as

the conditionally stable scheme (the maximum value of εb
∞ within all timesteps is 0.052), but the

scheme improves the boundedness error compared to the simulation with the standard high-order

dissipation operator.

The fraction of the grid points that the second-order dissipation is applied is below 0.08% and

10% within all timesteps for conditionally stable and unconditionally stable dissipation schemes,

respectively. These results suggest that the unconditionally stable scheme does not sufficiently ab-

sorb spurious overshoots and undershoots compared to the conditionally stable scheme, but the the

second-order dissipation operator is more activated in the unconditionally stable scheme. As men-

tioned, the second-order dissipation of conditionally stable scheme is activated only in a negligible

fraction of the grid points (maximum of ∼0.1%), but it has a significant contribution to suppress

the excursion errors.

The error associated with adaptive schemes is evaluated by comparing their mixture fraction

distribution with the case using the high-order dissipation operator. An instantaneous distribution

of mixture fraction is depicted at x = 186.2δω for different dissipation schemes (see Fig. 5.2b). As

can be seen, the simulation using the high-order dissipation operator has overshoots/undershoots.

Both adaptive schemes are able to approximately capture the mixture fraction distribution (within

0 < Z < 1) of the simulation with the high-order dissipation operator. Thus, local activation

of the second-order dissipation does not significantly destroy instantaneous variations of Z but

remarkably reduces unboundedness.

The boundedness capability of different schemes are consistent with one-dimensional numer-

ical tests illustrated in Chapter 3.4 (see Fig. 3.2). We employ the conditionally stable scheme for

the rest of this chapter, which has shown great success in preserving scalar boundedness.

We compare the temporal mean and variance of Z, denoted by Z and Z′2, respectively, between

simulations using high-order and conditionally stable adaptive dissipation operators (see Fig. 5.3).

The effects of the adaptive dissipation scheme on the accuracy of Z is also studied in two differ-

ent grid resolutions: the current (coarse) one (513 × 257) and a fine grid (1025 × 513), where the
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(a) (b)

Figure 5.3: Temporal (a) mean and (b) variance of mixture fraction at x = 160.0δω when high-
order dissipation (black) and conditionally stable (blue) adaptive dissipation schemes are employed
with 513× 257 (—) and 1025× 513 (· · · ) grid points. A zoom-in view near the maximum value of
mixture fraction variance was also depicted in (b).

physical and numerical parameters and coefficients of these simulations are the same except for

the dissipation coefficient σ̃(diss), which is set to 0.5J and 0.2J for the coarse and fine grids, respec-

tively, where J is the local Jacobian of the grid, see Eq. (2.11). The higher value for the coarse grid

should be considered to keep the scalar excursion error εb
∞ < 0.01 within all timesteps when the

conditionally stable scheme is employed.

As can be seen in Fig. 5.3, the adaptive scheme provides sufficiently close values for the mean

and variance of Z compared to the case with the high-order dissipation operator, especially for the

fine mesh simulation. The maximum scalar excursion errors within all timesteps on the fine grid

(0.188 and 0.005 for high-order and adaptive dissipation schemes, respectively) do not significantly

different compared to the corresponding simulations using the coarse one. The fraction of grid

points with activated second-order dissipation operator is below 0.03% within all timesteps via the

fine grid, compared to below 0.08% for the coarse grid as mentioned before. This lower fraction

leads to having a similar scalar variance distribution between the results using the high-order and

adaptive dissipation operators in the fine grid according to Fig. 5.3b.

Therefore, we conclude that the adaptive dissipation scheme does not significantly impair the

physical fluctuations, and it is able to remarkably decrease spurious overshoots/undershoots asso-
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ciated with the unresolved modes.

5.4 Controlling scalar mixing via adjoint-based optimization

To investigate the discrete adjoint framework with conditionally stable adaptive dissipation, we

incorporate the adjoint sensitivity into the steepest descent optimizer to suppress mixing. The

objective is to constrain mixing of Z within a narrow region downstream (between the two blue

boxes shown in Fig. 5.1). To quantify the evolution of Z, the QoI is computed within a time horizon

of [t0, t f ], where (t f − t0)∆u/Lx = 4.76, and the solution reaches a statistically steady-state state

prior to t0. The QoI is given by

J =

∫ t=t f

t=t0

∫
x
(Z − Zt)2WTar(x, y) dx dt, with Zt =


0; y ≥ 0,

1; y < 0,
(5.2)

which computes the deviation of the local mixture fraction from the target value Zt according

to (5.2) and as depicted in Fig. 5.1. The target weight functionWTar spans [109.9 δω, 200.2 δω] ×

[−25.11 δω, 25.11 δω], whose value smoothly decays towards zero with −6δω < y < 6δω, i.e., the

middle region between the downstream boxes in Fig 5.1. Also, WTar smoothly decays to zero at

the prescribed borders via hyperbolic tangent functions. Thus, minimizing (5.2) constrains any

mixing 0 < Z < 1 within the region between the right blue boxes in Fig. 5.1.

A momentum actuator is considered to control the mixing layer evolution. In laboratory ex-

periments, a manipulated momentum actuator can be applied through different techniques such as

synthetic jet actuators (e.g., see Smith & Glezer, 1998; Jankee & Ganapathisubramani, 2021). In

this work, a momentum actuator is applied upstream by adding a solenoidal source term to the

right-hand side of the momentum equations in (2.11), given by

N2[ ~Q] =
∂WCtl f
∂y

, N3[ ~Q] = −
∂WCtl f
∂x

, (5.3)

where f (x, y, t) is a space-time field applied in the control region WCtl(x, y) that spans
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(a) t − t0 = 4.52∆u/Lx (b) t − t0 = 4.29∆u/Lx (c) t − t0 = 4.05∆u/Lx

Figure 5.4: The mixture fraction contour of Z = 0.5 (black) and evolution of adjoint sensitivity
∂u†2/∂x−∂u†1/∂y (color) from the target regions (the right gray boxes) to the control region (the left
gray box). The momentum actuator f is set to zero (baseline simulation).

[29.94 δω, 40.20 δω] × [−4.936 δω, 4.936 δω] (see Fig. 5.1). WCtl smoothly decays to zero at

the prescribed borders via hyperbolic tangent functions.

Considering governing equations (2.11) with the QoI (5.2), the adjoint equations solving ad-

joint variables ~Q† =
[
ρ†, u†1, u†2, E†, Y†

]T
and the adjoint sensitivity can be derived as explained

in Chapter 3.3 . The space-time adjoint sensitivity of J to f (x, y, t) is given by

g(x, y, t) =

∂u†2
∂x
−
∂u†1
∂y

WCtl(x, y). (5.4)

Similar to momentum actuator f (x, y, t), the adjoint sensitivity g(x, y, t) is also a discrete space-

time field, and it is non-zero only in the control region. Note that the fully discrete adjoint method

is employed during optimization.

We first study adjoint sensitivity of the primal simulation with zero actuator field, i.e., f = 0.

Different snapshots of adjoint sensitivity ∂u†2/∂x − ∂u†1/∂y are depicted in Fig. 5.4. According to

the adjoint equations in Appendix A, the adjoint solution is generated and forced by the QoI in

the target region (see the last term on the left-hand side of (A.17)), and it propagates from the

target region through the rest of the computational domain (see Fig. 5.4). Once the adjoint solution

reaches the control region, the sensitivity is computed according to (5.4).

Local positive sensitivity as seen in Fig. 5.4 means that a small increment in f at the particular

space and time will potentially increase the QoI J . Thus, adjoint sensitivity can also be used to

130



Figure 5.5: Optimization history (–•–) of (5.2) relative to its baseline value, J (0), corresponding
to the mixing layer simulation with no momentum actuation. The red star (?) shows the QoI value
when the solenoidal excitation (5.6) and (5.7) is applied with the same amount of energy as the
optimized actuator.

update the momentum actuator, e.g., by the steepest descent algorithm according to

f (n+1) = f (n) − α(n)g(n), (5.5)

where superscript n denotes the optimization iteration, and α(n) > 0 is a step length. Several line

searching algorithms exist to obtain an optimal value of α(n). In this work, we use an in-house

steepest decent code with backtracking line searching to find optimal values of f to minimize (5.2)

(see Chapter 2.6.1 for more details). As mentioned before, the baseline simulation has a zero

actuator field. The control region contains 26×53 grid points, and the simulation is performed over

20, 000 timesteps. Considering four sub-steps in the standard RK4 time integrator, the discretized

control parameter f (x, y, t) contains more than 108 degrees of freedom. The solver writes the

space-time field of f to disk after line searching, and it reads f (and also g if required) from and

writes g to disk every 2, 500 timesteps during the primal and adjoint simulations, respectively (see

Chapter 2.6.1 for more details on data management).

Figure 5.5 shows the optimization history. Using the steepest descent algorithm with backtrack-

ing line searching, J is reduced by 40% compared to the case with no actuation ( f = 0) within 30
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optimization iterations. We also compare the optimized f (x, y, t) (final iteration of Fig. 5.5) with a

solenoidal excitation employed by Wei & Freund (2006), which is added to the momentum equa-

tions according to (5.3) with a Gaussian weight functionWe (instead ofWCtl) and trigonometric

function fe, given by

We = e−0.2[(x−x0)2+(y−y0)2], (5.6)

and

fe(x, y, t) = ρ∞ fe,0

8∑
i=1

sin
[
2πωi(x − x0 − Uct)

Uc
+ βx,i

]
sin

[
2πωi(y − y0)

Uc
+ βy,i

]
, (5.7)

respectively. The center of solenoidal excitation is (x0, y0) = (35δω, 0). The mode frequency of

excitation is given by ωi = ω0(i +αi)/4 for i = 1, . . . , 8, where αi are uniformly distributed random

numbers within [−0.5, 0.5), and ω0 is chosen to give a Strouhal number of St0 = ω0δω/(4Uc) =

0.032, which is also used by Wei & Freund (2006), and Uc = (uu + ul)/2 = 0.35c∞. Phase shifts

βx,i and βy,i for i = 1, . . . , 8 are uniformly distributed random number within [0, 2π). The amplitude

of solenoidal excitation, fe,0, is set such that total imposed energy to the mixing layer from the

solenoidal excitation and the adjoint-based optimal momentum actuator becomes equal, i.e.,

∫ t=t f

t=t0

∫
x

(−∂ feWe

∂y

)2

+

(
∂ feWe

∂x

)2 dx dt ≈∫ t=t f

t=t0

∫
x

(−∂ f (30)WCtl

∂y

)2

+

(
∂ f (30)WCtl

∂x

)2 dx dt, (5.8)

where f (30) is the optimal momentum forcing at iteration n = 30 in Fig. 5.5. Such solenoidal

excitation provides a new QoI (5.2) which is smaller than the baseline case (no actuator) but much

greater than the adjoint-based optimal solution (see Fig. 5.5).

Snapshots of the mixing layer simulations with no actuator (baseline), solenoidal excitation,

and the optimized momentum actuator are shown in Fig. 5.6. In the baseline solution, the velocity

difference across the shear layer gives rise to a Kelvin–Helmholtz instability that results in growth
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(a) t = t0 (b) t = t0 + 3
4 (t f − t0) (c) t = t f

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Evolution of mixture fraction excited with different momentum actuators: (a–c) no
actuator (baseline solution), (d–f ) solenoidal excitation, and (g–i) adjoint-based optimal solution
after 30 iterations. Same color scheme as Fig. 5.1.
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of the mixing layer and penetration of both streams within the target region (see Figs. 5.6a –

5.6c). We can see that the solenoidal excitation generates small perturbations upstream around the

Z = 0.5 interface, which eventually leads to large vortices downstream. These vortices carry the

upper stream into the lower blue box and vise versa (see Figs. 5.6d – 5.6f). On the other hand,

the optimized momentum actuator is able to generate perturbations with specific wavelengths and

frequencies informed by the adjoint sensitivity field. From Figs. 5.6g – 5.6i, we can see that the

optimized momentum actuator is able to constrain mixing between the two boxes. These results

demonstrate that the adjoint-based optimization using the proposed conditionally stable adaptive

dissipation scheme is successful to control the mixing layer evolution.

5.5 Conclusions

The adjoint-based optimization solver was applied to control the evolution of a passive scalar in

a two-dimensional mixing layer configuration. The adaptive dissipation operator was successfully

used to preserve scalar boundedness. The unconditionally stable adaptive dissipation was not very

effective in reducing scalar boundedness. On the other hand, the conditionally stable scheme was

able to significantly reduce the boundedness error. The adjoint-based formulation of the condi-

tionally stable scheme was used to control the evolution of the passive scalar. Momentum forcing

with more than one hundred million degrees of freedom was optimized using adjoint sensitivity

such that mixing of a passive scalar was constrained within a target region downstream, and the

corresponding quantity of interest is reduced by about 40%. This chapter demonstrated the ef-

fectiveness of the adaptive dissipation scheme in preserving scalar boundedness in under-resolved

flow simulations. Also, its adjoint-based formulation was capable to find optimal forcing with

a manageable computational cost when a massive number of control parameters were involved.

Extracting physical interpretations from the optimal space-time field, such as obtaining the spatial

and temporal modes with greatest influence on flow instabilities and mixing, was beyond the scope

of this chapter, and it is suggested for future studies.
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CHAPTER 6

Controlling Flame Position in a Turbulent Jet

6.1 Introduction

Flame stabilization is a key factor in designing combustion devices. It is crucial to avoid undesired

flame behavior such as flashback (e.g., see Lewis & von Elbe, 1943; von Elbe & Mentser, 1945; Ebi

& Clemens, 2016), lifted flames oscillations (e.g., see Nichols & Schmid, 2008; Qadri et al., 2015),

and flame extinction. It is well understood that turbulence plays a large role in such behavior.

Flame flashback has been observed in premixed flames such as stationary gas turbine engines.

During flashback, the flame front propagates inside the mixing chamber, which affects the effi-

ciency or life endurance of the device. Thus, it is necessary to circumvent such transient effects.

Lifted flame oscillations have been observed in non-premixed flames, where fuel and oxidizer

enter the combustion chamber through separate inlets. Thus, the mixing of fuel and oxidizer occurs

before igniting the flame. If the momentum of fuel and oxidizer is large compared to the heat

release rate of combustion, the flame does not anchor to the fuel nozzle. The ratio of reaction rate

to fluid convection rate, i.e., the Damköhler number, plays a significant role in lift-off height and

its oscillation frequency (Nichols & Schmid, 2008). Also, the density difference of unburned jet

fuel and oxidizer could generate instabilities around the nozzle exit (e.g., see Monkewitz & Sohn,

1988; Nichols et al., 2007), which might grow when traveling downstream and eventually oscillate

the lifted flame (e.g., see Nichols & Schmid, 2008). Although detachment of the flame and the fuel

nozzle reduces its corrosion, the position of the flame and its oscillations have to be controlled to

stabilize it and avoid its blow-off downstream of the jet nozzle.
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Several approaches have been proposed within the past two decades for controlling non-

reacting and reacting flows (e.g., see Kral, 2000; Cattafesta III & Sheplak, 2011, and references

therein). In reacting flows, it is crucial to control the flow for enhancing mixing, stabilizing the

flame shape and its position, and reducing emissions (Docquier & Candel, 2002). In general, flow

control is categorized into passive (without an external energy source) and active (with an external

energy source) techniques. Reacting flows can be controlled passively via modifying a combustion

chamber geometry or adding external obstacles on the flowing fluid such as bluff-bodies (Schadow

& Gutmark, 1992), which eventually enhances fuel-oxidizer mixing and stabilizes the flame. How-

ever, there is less flexibility and fewer degrees of freedom on passive controllers, especially during

the operation of the combustion system. On the other hand, active controllers use external en-

ergy sources such as loudspeakers, which systematically add energy to the flow and strategically

manipulate it. Their input energy value could be predetermined (e.g., certain amplitude and fre-

quency) or instantaneously updated regarding the current flow-flame interactions. Combination of

passive (e.g., swirlers and bluff-bodies) with active control techniques (acoustic forcing) was also

considered in the previous studies (e.g., see Paschereit et al., 1999; Hardalupas & Selbach, 2002;

Balachandran et al., 2005).

Acoustic forcing has been widely imposed to control combustion instabilities, and it can be

applied via loudspeakers located upstream of nozzle exits (e.g., see McManus et al., 1993; Baillot

& Demare, 2002; Dowling & Morgans, 2005; Baillot & Demare, 2007, and references therein).

Acoustic forcing are able of generating both large-scale vortex structures and small-scale turbulent

eddies. They could impact fuel-air mixing, modify flame-flow interactions, and eventually change

the combustion regime. It can thus enhance flame stability or undermine it (Baillot & Demare,

2002, 2007). Acoustic forcing has been applied on lifted flames to control their stability (Chao

et al., 2002; Abdurakipov et al., 2013), reduce emissions (Chao et al., 1996), avoid anchoring the

flame (Demare & Baillot, 2004), and modify flame shapes (Kozlov et al., 2013).

In this chapter, we use adjoint sensitivity to control an H2 lifted flame in a turbulent round jet.

The flamelet/progress variable (FPV) approach is used to model the combustion. The adaptive
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dissipation scheme developed in Chapter 3 is applied to preserve boundedness of the mixture

fraction and progress variable. A quantity of interest is defined to target the flame location, and

acoustic forcing is applied upstream of the lifted flame to change its height.

6.2 Turbulent reacting jet configuration

We consider a non-premixed H2 flame in a three-dimensional turbulent reacting jet to demonstrate

the combined features of the proposed adjoint solver. A similar configuration can be found in

previous experimental (Markides & Mastorakos, 2005) and numerical (Tyliszczak, 2015a) studies.

H2 (YH2 = 0.13) and N2 (YN2 = 0.87) enters a rectangular domain of 30D j × 15D j × 15D j with jet

nozzle diameter D j = 0.004 m, jet velocity U j = 120 m/s, and jet temperature T j = 691 K (see

Fig. 6.1). A hot co-flow of air is supplied upstream with velocity Uc = 0.05U j and temperature

Tc = 980 K. A lookup table is generated via a set of laminar flamelet solutions obtained by solving

the laminar counterflow diffusion configuration of H2-air with the aforementioned mass fractions

and temperatures. The FlameMaster solver (Pitsch, 1998) is employed for obtaining the laminar

flamelet solutions, and it uses nine species and 19 chemical reactions. The progress variable is

defined based on the mass fraction of H2O.

The mean exit jet velocity U(x) is given by a top-hat profile distribution, given by (e.g. see

Morris, 1976; Michalke, 1984; Tyliszczak, 2018)

U(x) =
U j + Uc

2
−

U j − Uc

2
tanh

[
1
4

R
δθ

( r
R
−

R
r

)]
, (6.1)

where r is the radial coordinate, and R = D j/2 denotes the jet radius. An overbar denotes a time

averaged quantity. δθ = 0.05R is the momentum thickness of the initial shear layer, and its value

is taken to be consistent with previous works using similar Reynolds numbers (da Silva & Métais,

2002; Tyliszczak & Geurts, 2014; Tyliszczak, 2015b,a, 2018). A similar top-hat profile is taken for
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Figure 6.1: Instantaneous snapshot of the three-dimensional turbulent jet showing temperature
(red/yellow) and mixture fraction contours (black lines) at the z = 0 plane. The Z = Zst contour is
depicted by dark blue line and the burning zone (Z ≈ Zst) is shown by light blue. The small and
large boxes correspond to the control and target regions, respectively.

the mixture fraction distribution at the inflow (Nichols et al., 2007; Tyliszczak, 2018), given by

Z =
1
2
−

1
2

tanh
[
1
4

R
δθ

( r
R
−

R
r

)]
. (6.2)

To seed turbulent fluctuations at the inlet plane, time-varying three-dimensional pseudo-turbulent

velocity fluctuations are superimposed to (6.1) in a region of −D j < y, z < D j using a

digital filtering technique (Klein et al., 2003). The generated velocity fluctuations are mul-

tiplied by a weight function to decay smoothly towards zero outside of r > R, given by

0.5 {1 + tanh [R/(4δθ) (R/r − r/R)]}. The turbulent intensity and integral length scale for the digital

filtering are taken to be 0.125U j (Tyliszczak, 2015a) and ≈ 0.2D j (Wang et al., 2010a,b), respec-

tively. The mean and perturbations of radial velocity are set to zero at the jet exit.

The computational domain is discretized using a Cartesian mesh of 396 × 241 × 241 grid

points. The grid spacing in the axial direction decreases exponentially towards the inlet plane with

a minimum grid spacing of ∆x = 0.04D j. The cross-flow grid spacing is smoothly stretched from

∆y = ∆z = 0.02D j at the jet centerline towards the lateral boundaries.
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The compressible Navier–Stokes equations (2.11) are solved for conserved variables ~Q =

[ρ, ρu, ρE, ρZ, ρC]T with density ρ, velocity vector u = [u1, u2, u3]T, total specific energy

E, mass fraction Z, and progress variable C. In this work, we assume that all sub-grid scales are

resolved by the computational grid. Thus, the mixture fraction variance Z̃′′2 is taken to be zero

when the lookup table is used. Linear interpolation is employed to compute species mass frac-

tions and the progress variable source term from the lookup table. Pressure is obtained via (2.4)

with γ = 1.32. In this work, γ is taken to be constant, corresponding to the mean value ob-

tained from the lookup table. The stress tensor is given by (2.6), and the jet Reynolds number

is Re = ρ jU jD j/µ j ≈ 3, 000 with the corresponding Mach number Ma = 0.14. The jet density

ρ j and viscosity µ j are taken as reference values, which are obtained from the lookup table with

Z = 1 and C = 0, i.e., the mixture of YH2 = 0.13 and YN2 = 0.87. The bulk viscosity µB = 0, and

the first viscosity has a temperature dependence according to (2.7) with b = 0.78. The value of b

is taken based on the variations of the viscosity with respect to the temperature from the lookup

table. The Prandtl number is given by Pr = Cp,∞µ/κ = 0.7 with reference specific heat at constant

pressure Cp,∞ and thermal conductivity κ. As common with the FPV approach, we take a unity

Lewis number among all species, leading to Pr = Sc = 0.7, where the Schmidt number is given

by Sc = µ/(ρD) = 0.7 with mass diffusivity D. Finally, buoyancy effects are neglected in this

configuration, i.e., Frc → ∞.

The governing equations are discretized in space via the narrow-stencil finite difference opera-

tors satisfying the summation-by-parts (SBP) property (Kreiss & Scherer, 1974; Strand, 1994) with

sixth-order of accuracy for the interior grid points and third-order of accuracy near the boundaries,

leading to fourth-order global accuracy. Second- and mixed-derivatives are obtained by consecu-

tively applying the first-derivative operators. The conditionally stable adaptive dissipation scheme

proposed in Chapter 3.2.3.2 is applied to all governing equations to damp any spurious unresolved

modes and ensure boundedness of Z ∈ [0, 1] and C ∈ [0, 1], and the Heaviside sensor (3.13) is

taken with ε = 0.001, which activates the low-order dissipation operator. The maximum value of

boundedness error (3.37) of Z and C within all timesteps is εb
∞ < 0.0021. The governing equations
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are advanced in time using the standard fourth-order Runge–Kutta (RK4) time integration scheme.

The SBP operators are combined with the simultaneous-approximation-term (SAT) boundary

treatment that weakly imposes the boundary conditions. Non-reflecting SAT boundary treatment

(see Svärd et al., 2007; Vishnampet, 2015, and Appendix B.3) is enforced at the lateral boundaries.

A modified SAT treatment is employed to impose an inflow boundary condition at the inlet and

the convective (Neumann) condition at the outlet (see Appendices B.4 and B.5, respectively). The

proposed SAT inflow-outflow boundaries are able to handle turbulent fluctuations at the inlet and

outlet planes; otherwise, a longer computational domain is required to avoid boundary effects on

the intermediate numerical solution (see Appendix B.7). Also, turbulence-flame interactions are

avoided at the outflow by taking a buffer region with a size of 2D j near the outlet plane, where only

the low-order artificial dissipation operator is applied. The low-order artificial dissipation strongly

damps any fluctuations, which leads to a smooth and laminar flow near the exit of the domain. In

addition, absorbing sponge regions (Freund, 1997) are added to the governing equations (2.11) via

a σs(x)( ~Q − ~Qt) source term that damps acoustic waves, where the coefficient σs(x) quadratically

decreases from 0.2 at the lateral boundaries towards zero within a region of 1.2D j away from the

boundaries, and ~Qt is taken to be the initial conserved variables.

6.3 Control force

During the forward simulation, the lift-off height of the flame is located at x ≈ xB = 1.5D j after

a transient regime. Then, thermal forcing is applied upstream of the flame to relocate its position.

The external source term mimics an acoustic actuator, which is added to the energy equation as an

external source term according to

N5[ ~Q] =WCtl(x) fE(x, t), (6.3)

where a weighting function WCtl is taken to specify a region of interest where fE applies. The

control region, depicted by the small box in the left of the domain in Fig. 6.1, is located within
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[0.32D j, 0.70D j]×[−1.00D j, 1.00D j]×[−1.00D j, 1.00D j], discretized using 10×97×97 grid points.

The weighting function WCtl(x) decays to zero at the prescribed borders via hyperbolic tangent

functions. The control force is applied over 10, 000 timesteps (corresponding to (t f − t0)U j/D j =

14.10), each containing four sub-steps in the RK4 time integrator. Thus, fE contains > 3 × 109

degrees of freedom that has to be optimized in order to modify the flame location.

6.4 Quantity of interest

The target flame location is defined using a QoI similar to the one proposed by Capecelatro et al.

(2016), which measures the difference between the current temperature distribution to a desired

one, according to

J( ~Q; ~f ) =

∫
t

∫
x

(
T − TTar(x)

TF − T∞

)2

WZ(Z)WTar(x) dx dt, (6.4)

where the weight functionWZ specifies a burning zone around the stoichiometric mixture fraction,

Zst = 0.184, where the majority of heat is released, given by

WZ(Z) = e−(Z−Zst)2/2r2
F , (6.5)

where rF = 0.1R j is the burning zone radius. The target temperature TTar is given by

TTar(x) =
TF + T0

2
+

TF − T0

2
tanh [sF (x − xF)] , (6.6)

where sF = 10D−1
j and xF = 1.2D j denote a user-defined slope and flame location, respectively. T0

is set to T 0
f as defined in (2.4), and the flame temperature TF is set as the maximum value obtained

from the lookup table. A weighting function WTar(x) is applied in (6.4) to cover a target region

[0.82D j, 3.01D j]× [−2.53D j, 2.53D j]× [−2.53D j, 2.53D j] (larger box in Fig. 6.1), and it decays to

zero at the prescribed borders via hyperbolic tangent functions. Thus, J is forced to zero outside
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(a) tU j/D j = 1.41 (b) tU j/D j = 7.05 (c) tU j/D j = 12.69

Figure 6.2: Instantaneous snapshots of E† (adjoint variable corresponding to local sensitivity, blue:
negative, green: positive) of the baseline solution (without forcing) at the z = 0 plane near the target
and control regions. Same coloring as Fig. 6.1.

of the target region.

6.5 Adjoint sensitivity and optimization

Adjoint sensitivity of the QoI (6.4) to fE is given by Eq. (2.16), i.e.,

g =WCtlE†, (6.7)

where E† is the adjoint variable corresponding to the energy equation. Instantaneous snapshots

of E† are shown in Fig. 6.2. The adjoint sensitivity is generated in the vicinity of the flame and

propagates in the reverse flow direction to the control region. Its instantaneous values at the control

region are used as a search direction to impose acoustic forcing via a steepest descent algorithm,

given by (2.53). A backtracking line searching is employed, as described in Chapter 2.6.1 and

Eq. (2.54), to identify the step size for updating the control parameter. The history of optimization

iterations are provided in Fig. 6.3. As can be seen, the value of QoI is reduced by more than 10%

compared to the baseline case with no forcing after eight optimization iterations. Instantaneous

snapshots of temperature are compared in Fig. 6.4, where the baseline (i.e., without forcing) and
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Figure 6.3: Optimization history of (6.4) with respect to the baseline solution, J (0), i.e., the react-
ing jet with no thermal actuation.

the optimal control forcing are applied to the turbulent jet. As can be seen, the adjoint-based

optimization algorithm is able to retard the lift-off height from x ≈ xB to the desired location

x ≈ xF via manipulating the thermal actuator (see the middle vertical lines in Fig. 6.4, which are

depicted at x = xF and x = xB). Although the distance between the optimal and baseline lift-off

heights is small (< 0.5D j), this numerical study shows the capability of the adjoint sensitivity in

finding optimal forcing of a turbulent reacting jet, in which a massive number of control parameters

exist.

6.6 Conclusions

In this chapter, we used the FPV approach and corresponding adjoint solution to control a lifted H2

flame in a turbulent round jet. A lookup table was generated via detailed chemistry of the H2-air

reaction, i.e., nine chemical species and 19 chemical reactions. Acoustic forcing was optimized

using the discrete adjoint sensitivity to alter the flame location. The controller was a discrete

space-time field with more than three billion degrees of freedom. Thus, it was not practical to

use a brute-force approach to find the optimal forcing. However, the adjoint sensitivity combined
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(a) tU j/D j = 9.87 (b) tU j/D j = 14.10 (c) tU j/D j = 9.87 (d) tU j/D j = 14.10

Figure 6.4: Instantaneous snapshots of the turbulent reacting jet at the z = 0 plane near the lift-off

height of the flame: (a–b) no actuator (baseline solution), and (c–d) adjoint-based optimal solution
after eight iterations. The vertical lines are located at x = xF (left) and x = xB (right). Same color
scheme as Fig. 6.1.

with the steepest descent algorithm and backtracking line searching was able to obtain the optimal

forcing with a tractable computational cost (i.e., the QoI was reduced by more than 10% after eight

optimization iterations). Although the flame location was retarded slightly (i.e., < 0.5D j), this

demonstrates the ability of the adjoint solver for controlling a high-fidelity simulation of a turbulent

reacting jet. The optimal forcing can be analyzed to obtain the spatial and temporal frequencies

that modify the lift-off height of the flame and have greatest influence on the hydrodynamic and

combustion instabilities associated with the turbulent jet. This post-processing step is beyond the

scope of this work and is considered for future studies.

144



CHAPTER 7

Conclusions

7.1 Summary of achievements

The main contribution of this work is the development of a discrete-adjoint framework for comput-

ing sensitivity of high-fidelity simulations associated with turbulent reacting flows. Many engineer-

ing systems involve this class of flows, and the ability to actively control such flows has impacts on

the economy, public health, and the environment. The developed adjoint-based method provides

sensitivity to a large number of input parameters with a tractable computation cost. The adjoint

solver was implemented by using analytic Jacobians, and the cost of the combined forward-adjoint

simulation was about 3–3.5 times the cost of the forward run. In addition, the sensitivity ob-

tained from the discrete adjoint solver was combined with gradient-based optimization techniques

to strategically manipulate design/input parameters for improving various quantities of interest.

In summary, the following achievements were made: (i) A discrete-adjoint framework was

developed for computing sensitivity of a quantity of interest (QoI) associated with a high-fidelity

turbulent reacting flow simulation; (ii) An adaptive artificial dissipation scheme was introduced

to preserve scalar boundedness with negligible effects on accuracy of the results, which is com-

patible with adjoint formulation; (iii) Flexible combustion modeling was achieved using the

flamelet/progress variable (FPV) approach, which avoids transporting a large number of chemi-

cal species and reformulating adjoint sensitivity whenever new chemistry is desired; and (iv) The

capability of the adjoint framework was demonstrated on several representative examples, includ-

ing flow instabilities and turbulent combustion.
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In Chapter 2, the governing equations of multi-component flows were provided, and their ad-

joint formulation was derived. In this chapter, we presented the FPV approach and its adjoint

derivation. Finally, the adjoint-based sensitivity was combined with external and in-house opti-

mization packages, and specific data management was employed when the controller is a discrete

space-time field.

In Chapter 3, the adaptive dissipation scheme and its adjoint sensitivity were presented to pre-

serve scalar boundedness. We first reviewed the standard low-order and high-order dissipation

operators. The former is able to absorb a broad spectrum of spurious oscillation modes, and the

latter is only effective for high-order wavenumbers. Thus, we combined these operators using

a sensor that locally activates the low-order operator where the solution is unbounded, and the

high-order operator is applied through the rest of the domain. Two formulations were introduced,

corresponding to unconditionally- and conditionally stable schemes. The unconditionally stable

method ensures energy stability of the numerical framework. Although the conditionally stable

adaptive dissipation cannot guarantee energy stability, it has negligible effects on it if an appropri-

ate sensor is employed. We assessed the capability of both schemes and their adjoint formulation

in a series of numerical tests. Also, adjoint-based sensitivity was used to design a sensor in a one-

dimensional problem. Finally, a turbulent round jet was considered to demonstrate the utility of

the adaptive scheme on preserving scalar boundedness and retaining accuracy of the solution.

In Chapter 4, adjoint-based sensitivity analysis and optimization were performed for unsteady

multi-component non-reacting flows before considering the complexities associated with chemical

reactions and under-resolved simulations. Summary of outcomes of this chapter includes

(i) Sensitivity analysis of a three-dimensional multi-mode Rayleigh–Taylor (RT) instability

showed that except for the diffusion growth regime, the most sensitive wavenumber of each

objective function approximately equals the most unstable wavenumber predicted by linear

stability theory (k ≈ 8).

(ii) The adjoint-based optimization approach was capable of suppressing the instability by shift-

ing all of the initial perturbation energy into the highest wavenumber modes as expected by
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linear stability theory.

(iii) The optimization procedure was able to enhance mixing and growth relative to the baseline

solution (uniform distributed perturbations) to a maximum increase in the bubble growth pa-

rameter and mixing width by 32% and 54%, respectively. Initial perturbations of all mixing

quantities demonstrate that low wavenumbers are favored.

(iv) We also showed that the optimized perturbations obtained from two-dimensional simulations

admit similar (and sometimes better) improvement when imposed in three-dimensional con-

figurations, making adjoint-based optimization particularly attractive for controlling large-

scale unsteady flows.

After computing adjoint sensitivity in well-resolved flow simulations, we employed the flow

and adjoint framework on a free shear flow transporting a passive scalar in Chapter 5. We intention-

ally considered an under-resolved configuration. This required the use of the adaptive dissipation

scheme to preserve scalar boundedness. The adaptive dissipation scheme significantly reduced the

excursion errors (i.e., artificial overshoots and undershoots). Also, a discrete space-time field with

more than a hundred million parameters was applied to control the evolution of the passive scalar.

Combining the discrete adjoint sensitivity with the steepest descent algorithm and backtracking

line searching was able to reduce the QoI, associated with the mixing layer evolution, by about

40% compared to the uncontrolled one.

Finally in Chapter 6, the adjoint solver was employed to control a lifted H2 flame in a turbulent

reacting jet. The detailed chemistry is applied to generate the lookup table, where nine chemical

species and 19 chemical reactions are involved. A control field with discrete space-time values is

applied upstream of the lifted flame, and the total number of parameters was more than a billion. A

QoI was defined to measure the discrepancy of the lift-off height with the desired position, and the

discrete adjoint optimizer was able to reduce the QoI by more than 10% within a few optimization

iterations. Although the high-fidelity simulations were computationally expensive, the discrete-

adjoint framework was able to relocate the flame with a tractable computational cost.
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The proposed adjoint-based framework has shown great success in determining optimal space-

time fields that control quantities of interest associated with turbulent reacting flows. The optimal

solution can be further analyzed to precisely investigate the underlying physical mechanisms that

contribute to flow instabilities. For instance, it can be used to identify the most active physical

modes or frequencies. Other suggestions for future studies are provided in the following section.

7.2 Future prospectives

7.2.1 Accelerating data-driven methods

In recent years, data-driven methods such as machine learning and data assimilation have gained in

popularity among the fluid dynamics community (e.g., see Brenner et al., 2019; Duraisamy et al.,

2019; Duraisamy, 2021, and references therein), especially for constructing and developing tur-

bulence models. In these methods, the discrepancy between numerical results and ‘trusted’ data

is defined as a QoI that is minimized to extract new models or manipulate some user-defined pa-

rameters. The trusted data can be obtained from high-fidelity simulations or experiments. Adjoint

sensitivity can thus be employed to accelerate the gradient-based optimization and to minimize

the QoI via obtaining the model parameters. For instance, adjoint sensitivity was used to acceler-

ate neural network models that learn sub-filter closures for LES (Sirignano et al., 2020; MacArt

et al., 2021). Adjoint-based methods have been widely used with data assimilation techniques in

different applications (e.g., see Le Dimet & Talagrand, 1986; Foures et al., 2014a; Lemke & Ses-

terhenn, 2016) including combustion. For instance, Gray et al. (2017) introduced an adjoint-based

variational data framework, which manipulates Arrhenius-based chemistry parameters and diffu-

sion coefficients associated with the reactive Navier–Stokes equations, which solves the laminar

flow inside of a pulse detonation combustor model. Reducing the number of inputs to a machine

learning framework, also called feature reduction, can be performed by analyzing their adjoint

sensitivities.

Developing reduced-order models that provide high-fidelity solutions for turbulent reacting

148



flows is also attractive. The present dissertation provided a discrete-adjoint solver that can be

combined with data-driven methods. This framework can be used to improve current LES sub-

grid scale models, introduce new ones, or manipulate their user-defined parameters. Combustion

and turbulence models involve many model parameters, and accuracy of simulations typically re-

lies on them. Although ‘dynamic’ approaches exist for adapting some of these parameters, these

techniques usually increase computational cost. Adjoint sensitivity will investigate how much the

numerical solution is sensitive with variations of these parameters. Also, the adjoint solver will be

employed to accelerate the gradient-based optimization to obtain the optimal parameters. More-

over, spatial and temporal dependence on the model parameters can be studied via adjoint fields.

These approaches will enhance the accuracy of reduced-order numerical simulations of turbulent

reacting flows by strategically manipulating their model parameters via adjoint sensitivity.

7.2.2 Chaos and adjoint-based optimization

In Chapter 1.4.3, we reviewed challenges of adjoint-based optimization on chaotic dynamical sys-

tems and turbulent flows, which are divergence of adjoint sensitivity and non-convexity of QoIs

(e.g., see Chung & Freund, 2021, and references therein). Several approaches were proposed to

address the divergence of adjoint sensitivity (e.g., see Lea et al., 2000, 2002; Eyink et al., 2004;

Thuburn, 2005; Wang, 2013; Wang et al., 2014; Blonigan, 2017; Ni & Talnikar, 2019). How-

ever, their utility for optimization techniques is still in question regarding their computational cost

and accuracy of adjoint sensitivity. Also, Chung & Freund (2021) introduced a multi-step penalty

method and combined it with adjoint sensitivity to overcome the non-convexity of QoIs associated

with chaos. However, its capability of overcoming extreme chaotic effects in turbulent flows over

long time intervals is still unknown.

Although we did not employ the aforementioned approaches in this dissertation, the adjoint-

method proposed by this work was successful in controlling representative multi-component flow

instabilities and turbulent reacting flows within relatively short time horizons. However, the

method has to be extended for overcoming chaotic effects within longer simulations.
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Appendix A

Continuous Adjoint Equations

In this appendix, the continuous adjoint equations are derived for three-dimensional reacting flows

combined with the flamelet/progress variable approach. Adjoint equations of non-reacting flows

and reacting flows with a single-step chemistry model can be found in Vishnampet (2015) and

Capecelatro et al. (2018), respectively. As mentioned in Chapter 2.4, the first line of (2.15) must

vanish to exclude the variations of ~Q in δJ , leading to

~Q†T
∂ ~N

∂ ~Q
δ ~Q −

(
∂I

∂ ~Q

)T

δ ~QWTar = 0. (A.1)

Variations of the governing equations (2.11) with respect to ~Q are given by

∂ ~N

∂ ~Q
δ ~Q =

∂δ ~Q
∂t

+ J
∂

∂ξi

{
Ai[ ~Q]δ ~Q − Bi j[ ~Qp]

∂

∂ξ j

(
C[ ~Q]δ ~Q

)
−BFPVA

i j [ ~Qp]
∂

∂ξ j

(
CFPVA[ ~Q]δ ~Q

)}
−
∂~S

∂ ~Q
δ ~Q = 0, (A.2)

where operators A, B, BFPVA are derived by considering variations of the inviscid and viscous

fluxes (2.3) with respect to ~Q, given by

∂~F I
i

∂ ~Q
δ ~Q = ÂI

j[ ~Q]δ ~Q, (A.3)
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and

∂~FV
i

∂ ~Q
δ ~Q = ÂV

j [ ~Q]δ ~Q + B̂i j[ ~Qp]
∂

∂x j

(
C[ ~Q]δ ~Q

)
+ B̂FPVA

i j [ ~Qp]
∂

∂x j

(
CFPVA[ ~Q]δ ~Q

)
, (A.4)

respectively, and the variation of the source term with respect to ~Q is given by

∂~S

∂ ~Q
=



0 0 0 0 0 0 0

−1/Frc 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1/Frc 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

− 1
ρ

(
Z ∂ω̇C

∂Z + C ∂ω̇C
∂C

)
0 0 0 0 1

ρ
∂ω̇C
∂Z

1
ρ
∂ω̇C
∂C



, (A.5)

where (2.45) is employed for obtaining ∂ω̇C/∂ ~Q. ∂ω̇C/∂Z and ∂ω̇C/∂C are computed accord-

ing to (2.46) and (2.47), respectively. Note that A = AI
i − A

V
i , AI

i [ ~Q] = Mi jÂ
I
j[ ~Q], AV

i [ ~Q] =

Mi jÂ
V
j [ ~Q], Bi j[ ~Qp] = MikB̂k j[ ~Qp], and BFPVA

i j [ ~Qp] = MikB̂
FPVA
k j [ ~Qp]. ~Qp = [ρ, u, T, Z, C]T is the

list of primitive variables, and ~QY = [Y1, . . . , YN]T is the list of species mass fractions. Jacobian

matrices C[ ~Q] and CFPVA[ ~Q] are given by

C =
∂ ~Qp

∂ ~Q
=



1 0 0 0 0 0 0

−u1/ρ 1/ρ 0 0 0 0 0

−u2/ρ 0 1/ρ 0 0 0 0

−u3/ρ 0 0 1/ρ 0 0 0

∂T
∂ρ

∂T
∂ρu1

∂T
∂ρu2

∂T
∂ρu3

∂T
∂ρE

∂T
∂ρZ

∂T
∂ρC

−Z/ρ 0 0 0 0 1/ρ 0

−C/ρ 0 0 0 0 0 1/ρ



, (A.6)
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and

CFPVA =
∂ ~QY

∂ ~Q
=



− 1
ρ

(
Z ∂Y1

∂Z + C ∂Y1
∂C

)
0 0 0 0 1

ρ
∂Y1
∂Z

1
ρ
∂Y1
∂C

− 1
ρ

(
Z ∂Y2

∂Z + C ∂Y2
∂C

)
0 0 0 0 1

ρ
∂Y2
∂Z

1
ρ
∂Y2
∂C

...
...

...
...

...
...

...

− 1
ρ

(
Z ∂YN

∂Z + C ∂YN
∂C

)
0 0 0 0 1

ρ
∂YN
∂Z

1
ρ
∂YN
∂C


, (A.7)

respectively, where ∂Yn/∂Z and ∂Yn/∂C for n = 1, . . . ,N are computed according to (2.46)

and (2.47), respectively. Variations of temperature to conserved variables is derived via consid-

ering the equation of state (2.10), leading to

∂T

∂ ~Q
δ ~Q = −

T
ρ
δρ +

T
p
∂p

∂ ~Q
δ ~Q +

T
W
∂W

∂ ~Q
δ ~Q, (A.8)

where variations of mixture molecular weight, given by (2.5), to ~Q is computed considering the

chain rule (2.45), leading to

∂W

∂ ~Q
δ ~Q = −

W2

ρ

 N∑
n=1

1
Wn

(
−Z

∂Yn

∂Z
−C

∂Yn

∂C

) δρ
−

W2

ρ

 N∑
n=1

1
Wn

∂Yn

∂Z

 δ(ρZ)

−
W2

ρ

 N∑
n=1

1
Wn

∂Yn

∂C

 δ(ρC). (A.9)

Similarly, variations of p, given by (2.4), is obtained according to

∂p

∂ ~Q
δ ~Q =

[
φ2 + (γ − 1)

(
f (Y) − Z

∂ f
∂Z
−C

∂ f
∂C

)]
δρ − (γ − 1)u1δ(ρu1)

− (γ − 1)u2δ(ρu2) − (γ − 1)u3δ(ρu3) + (γ − 1)δ(ρE)

+ (γ − 1)
∂ f
∂Z
δ(ρZ) + (γ − 1)

∂ f
∂C

δ(ρZ) (A.10)
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with φ2 = (γ − 1)uiui/2 and

f ( ~QY) =
T 0

f

W
−

N∑
n=1

∆h0
f ,nYn =

N∑
n=1

 T 0
f

Wn
− ∆h0

f ,n

 Yn. (A.11)

The operatorsA, B, and BFPVA are obtained according to (2.3) and (A.3)–(A.4), given by

AI
i [ ~Q] =



0 Mi1 Mi2

∂p
∂ρ

Mi1 − u1ûi ûi − (γ − 2)u1Mi1 u1Mi2 − (γ − 1)u2Mi1

∂p
∂ρ

Mi2 − u2ûi u2Mi1 − (γ − 1)u1Mi2 ûi − (γ − 2)u2Mi2

∂p
∂ρ

Mi3 − u3ûi u3Mi1 − (γ − 1)u1Mi3 u3Mi2 − (γ − 1)u2Mi3

(∂p
∂ρ
− h)̂ui hMi1 − (γ − 1)u1ûi hMi2 − (γ − 1)u2ûi

−Zûi ZMi1 ZMi2

−Cûi CMi1 CMi2

Mi3 0 0 0

u1Mi3 − (γ − 1)u3Mi1 (γ − 1)Mi1 (γ − 1) ∂ f
∂Z Mi1 (γ − 1) ∂ f

∂C Mi1

u2Mi3 − (γ − 1)u3Mi2 (γ − 1)Mi2 (γ − 1) ∂ f
∂Z Mi2 (γ − 1) ∂ f

∂C Mi2

ûi − (γ − 2)u3Mi3 (γ − 1)Mi3 (γ − 1) ∂ f
∂Z Mi3 (γ − 1) ∂ f

∂C Mi2

hMi3 − (γ − 1)u3ûi γûi (γ − 1) ∂ f
∂Z ûi (γ − 1) ∂ f

∂C ûi

ZMi3 0 ûi 0

CMi3 0 0 ûi



, (A.12)
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AV
i [Q] =

0 0 0 0 0 0 0

b̂τ1i
T

∂T
∂ρ

b̂τ1i
T

∂T
∂ρu1

b̂τ1i
T

∂T
∂ρu2

b̂τ1i
T

∂T
∂ρu3

b̂τ1i
T

∂T
∂ρE

b̂τ1i
T

∂T
∂ρZ

b̂τ1i
T

∂T
∂ρC

b̂τ2i
T

∂T
∂ρ

b̂τ2i
T

∂T
∂ρu1

b̂τ2i
T

∂T
∂ρu2

b̂τ2i
T

∂T
∂ρu3

b̂τ2i
T

∂T
∂ρE

b̂τ2i
T

∂T
∂ρZ

b̂τ2i
T

∂T
∂ρC

b̂τ3i
T

∂T
∂ρ

b̂τ3i
T

∂T
∂ρu1

b̂τ3i
T

∂T
∂ρu2

b̂τ3i
T

∂T
∂ρu3

b̂τ3i
T

∂T
∂ρE

b̂τ3i
T

∂T
∂ρZ

b̂τ3i
T

∂T
∂ρC

−
u ĵτi j

ρ
+ Φ̂i

∂T
∂ρ

τ̂1i
ρ

+ Φ̂i
∂T
∂ρu1

τ̂2i
ρ

+ Φ̂i
∂T
∂ρu2

τ̂3i
ρ

+ Φ̂i
∂T
∂ρu3

Φ̂i
∂T
∂ρE Φ̂i

∂T
∂ρZ Φ̂i

∂T
∂ρC

−
b f̂ V

Z,i

T
∂T
∂ρ

−
b f̂ V

Z,i

T
∂T
∂ρu1

−
b f̂ V

Z,i

T
∂T
∂ρu2

−
b f̂ V

Z,i

T
∂T
∂ρu3

−
b f̂ V

Z,i

T
∂T
∂ρE −

b f̂ V
Z,i

T
∂T
∂ρZ −

b f̂ V
Z,i

T
∂T
∂ρC

−
b f̂ V

C,i

T
∂T
∂ρ

−
b f̂ V

C,i

T
∂T
∂ρu1

−
b f̂ V

C,i

T
∂T
∂ρu2

−
b f̂ V

C,i

T
∂T
∂ρu3

−
b f̂ V

C,i

T
∂T
∂ρE −

b f̂ V
C,i

T
∂T
∂ρZ −

b f̂ V
C,i

T
∂T
∂ρC



,

(A.13)
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Bi j[Qp] =
J

Rec



0 0

0 µMikM jk + (µ + λ)Mi1M j1

0 µMi1M j2 + λMi2M j1

0 µMi1M j3 + λMi3M j1

0 µu1MikM jk + µ̂u jMi1 + λ̂uiM j1

0 0

0 0

0 0

µMi2M j1 + λMi1M j2 µMi3M j1 + λMi1M j3

µMikM jk + (µ + λ)Mi2M j2 µMi3M j2 + λMi2M j3

µMi2M j3 + λMi3M j2 µMikM jk + (µ + λ)Mi3M j3

µu2MikM jk + µ̂u jMi2 + λ̂uiM j2 µu3MikM jk + µ̂u jMi3 + λ̂uiM j3

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

µMikM jk/Pr 0 0

0 µMikM jk/ScZ 0

0 0 µMikM jk/ScC



, (A.14)
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and

BFPVA
i j [ ~Qp] =

JMikM jkµ

Rec



0 . . . 0

0 . . . 0

0 . . . 0

0 . . . 0

1
Sc1

(
T−T 0

f

W1
+ ∆h0

f ,1

)
. . . 1

ScN

(
T−T 0

f

WN
+ ∆h0

f ,N

)
0 . . . 0

0 . . . 0



, (A.15)

respectively, with total enthalpy h = E + p/ρ, and the contravariant velocity ûi = Mi ju j, and

τ̂i j = Mikτk j, q̂i = Mi jq j, f̂ V
Z,i = Mi j f V

Z, j, f̂ V
C,i = Mi j f V

C, j, and

Φ̂i =
b
(
u ĵτi j − q̂i

)
T

+ Mi j
µ

Rec

N∑
n=1

1
WnScn

∂Yn

∂ξ j
. (A.16)

Substituting ∂ ~N/∂ ~Q from (A.2) into (A.1), employing integration-by-parts, and decomposing each

component of δ ~Q yields the following adjoint equations

∂ ~Q†

∂t
+ J

AT
i [ ~Q]

∂ ~Q†

∂ξi
+ CT[ ~Q]

∂

∂ξ j

BT
i j[ ~Qp]

∂ ~Q†

∂ξi

 + CFPVAT[ ~Q]
∂

∂ξ j

(
BFPVA

i j
T[ ~Qp]

∂Q†

∂ξi

)
+

∂~S
∂ ~Q

T

~Q† +
∂I

∂ ~Q
WTar = 0. (A.17)
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Appendix B

SAT Boundary Conditions and Its Adjoint Formulation

In this appendix, a review of employed SAT boundary treatment with corresponding adjoint for-

mulation is provided, and two new boundary conditions are introduced. More details can be found

in Vishnampet (2015).

B.1 Notation

The SAT boundary treatment is added to the right-hand-side of the governing equation (2.11)

discretized with the SBP operators according to

d ~Q
dt

= ~R[ ~Q] +

3∑
α=1

(
~R+

SAT,α[ ~Q] + ~R−SAT,α[ ~Q]
)
. (B.1)

In this Appendix, ~Q denotes the conserved flow variables that are discretized in space, and ~R con-

tains all inviscid and viscous fluxes, external source, artificial dissipation, and damping (absorbing

sponge) terms. The SAT boundary treatment is denoted by ~R±SAT,α, which enforces a boundary

condition for a boundary with a normal vector along the ±ξα-direction for α = 1, 2, 3 (if it is

not a periodic boundary condition). Throughout this chapter, Einstein notation is not implied for

repeated or non-repeated indices of the Greek letter α. A diagonal matrix ~E±α is used in the fol-

lowing sections, whose diagonal components are not zero only at the desired boundary point of

the computational grid, e.g., ~E+
1 = diag[1, 0, . . . , 0] ∈ RNx×Nx and ~E−1 = diag[0, . . . , 0, 1] ∈ RNx×Nx

in a one-dimensional grid of size Nx. ~E±α can be easily constructed for higher dimensions using
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Kronecker product.

The corresponding adjoint formulation of (B.1) is given by

d ~Q
dt

= ~R†[ ~Q] ~Q† −
3∑
α=1

(
~R†+SAT,α[ ~Q] ~Q† + ~R†−SAT,α[ ~Q] ~Q†

)
, (B.2)

where the adjoint formulation of the SAT boundary treatment are given by

~R†±SAT,α[ ~Q] = ~P−1

∂~R±SAT,α

∂ ~Q


T

~P. (B.3)

The SBP norm matrix is denoted by ~P.

B.2 No-penetration wall

An impenetrable wall boundary condition is introduced by Svärd & Nordström (2008), and a dif-

ferent form is provided by Vishnampet (2015). We use the latter approach, which weakly enforces

the normal component of the momentum to zero, given by

~R±impenetrable,α = ∓ σSAT
I J~P−1~E±αMαi

[
ρui, ρuiu1, ρuiu2, ρuiu3, ρuih, ρuiY1, . . . , ρuiYN−1

]T , (B.4)

where the specific enthalpy is given by h = E + p/ρ. Energy stability of (B.4) has been ver-

ified as σSAT
I ≥ 1/2 (Vishnampet, 2015) for single-component flows. Note that the vector[

ρui, ρuiu1, ρuiu2, ρuiu3, ρuih, ρuiY1, . . . , ρuiYN−1
]T in (B.4) is the same with the inviscid flux

term (2.3) excluding the pressure term in the momentum fluxes. Thus, adjoint formulation of (B.4)
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is given by

~R†±impenetrable,α = ∓ σSAT
I J~P−1~E±α



AI
α −



0

Mα1

Mα2

Mα3

0

0
...

0



[
∂p
∂ρ
,
∂p
∂ρu1

,
∂p
∂ρu2

,
∂p
∂ρu3

,
∂p
∂ρE

,
∂p
∂ρY1

, . . . ,
∂p

∂ρYN−1

]



T

.

(B.5)

B.3 Far-field

The SAT boundary treatment that enforces a non-reflecting boundary condition is given by (Svärd

et al., 2007; Vishnampet, 2015)

~R±far-field,α = ∓ σSAT
I J~P−1~E±αAα,inc[ ~Qb]( ~Q − ~Qb) ± σSAT

V J~P−1~E±αMαi

(
~FV

i [ ~Q] − ~FV
i [ ~Qb]

)
, (B.6)

where ~Qb is a desired value at the far-field boundary, and the inviscid and viscous penalty param-

eters are denoted by σSAT
I and σSAT

V , respectively. Aα,inc is the Jacobian of inviscid fluxes in which

the outgoing characteristic waves are forced to zero, where more details can be found in Pulliam &

Chaussee (1981) for single-component and in Fedkiw et al. (1997) for multi-component reacting

flows. The above SAT treatment requires that σSAT
I ≥ 1/2 and σSAT

V = 1 for being stable (Svärd

et al., 2007) in single-component flows. Its adjoint formulation is given by

~R†±far-field,α = ∓ σSAT
I J~P−1~E±αA

T
α,inc[ ~Qb]

± σSAT
V J~P−1~E±α

(
AV

α

T[ ~Q] + CT[ ~Q]DT
i B

T
αi[ ~Q] + CFPVAT[ ~Q]DT

i B
FPVA
αi

T[ ~Qp]
)
, (B.7)
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where AV , Bi j, C, BFPVA
i j , and CFPVA are defined in Appendix A. Di denotes the first-derivative

operator in direction ξi, satisfying the SBP property. Note that the term CFPVAT[ ~Q]DT
i B

FPVA
αi

T[ ~Qp]

is used with FPVA.

The proposed SAT term (B.6) can also be used to enforce inflow and outflow boundary condi-

tions. In these cases, the SAT non-reflecting treatment weakly enforces the state values ~Q to the

boundary value ~Qb at the inlet or outlet planes. However, ~Q might not sufficiently remain close to

~Qb, especially when ~Qb varies in time, such as seeding time-dependent velocity perturbations at

the inlet. Also, the target value ~Qb is typically set to a mean value in turbulent flows. Thus, such

SAT boundary term could suppress inflow/outflow fluctuations, necessitating a longer simulation

domain to avoid domain size effects on the interior solution. We present new SAT inflow/outflow

treatment in the following sections to address the aforementioned issues.

B.4 Inflow

To account for a time-dependent inflow, we consider a modified version of the SAT no-penetration

boundary treatment of (B.4) to provide a desired normal momentum, given by (Kord & Capecela-

tro, 2021)

~R±inflow,α = ∓ σSAT
I J~P−1~E±αMαi





ρui

ρuiu1

ρuiu2

ρuiu3

ρuih

ρuiY1

...,

ρuiYN−1



−



ρbui,b

ρbui,bub,1

ρbui,bub,2

ρbui,bub,3

ρbui,bhb

ρbui,bY1,b

...,

ρbuα,bYN−1,b





, (B.8)
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where superscript b denotes the desired inflow values. Note that if the normal inflow velocity

Mαiui,b = 0, the no-penetration SAT boundary treatment given by (B.4) will be recovered. To im-

pose (B.8), the inflow ~Qb(t) has to be known, and a desired velocity and mass fraction distributions

at the inlet plane have to be taken. These values can be set constant, or vary in space and time

via trigonometric functions (e.g., see da Silva & Métais, 2001; Tyliszczak & Geurts, 2014), or be

seeded by a time-dependent three-dimensional pseudo-turbulent algorithm (e.g., see Klein et al.,

2003). The target energy Eb and enthalpy hb = Eb + pb/ρb are then updated according to (2.4) when

ub changes while the target pressure pb could be considered constant. Also, since ~Qb is updated

independently of ~Q, the adjoint formulation of (B.8) is the same as the adjoint formulation of the

no-penetration wall, i.e., (B.4).

B.5 Outflow

We employ only the inviscid term of the non-reflecting far-field SAT (B.6) to impose the new out-

flow boundary condition, but ~Qb is carefully selected at the outflow to make the non-reflecting

SAT treatment consistent with convective (Neumann) boundary conditions and to avoid suppress-

ing outflow perturbations (Kord & Capecelatro, 2021). In this work, ~Qb is chosen such that

uα,b = max
(
uα,b−1, 0

)
, where b − 1 is the grid point next to the outlet plane through its normal

direction. The tangent components of the velocity in ~Qb are set the same with the corresponding

value at the grid point b − 1. In addition, ρb = ρb−1, pb = pb−1, and Yn,b = Yn,b−1 for n = 1, . . . ,N.

This strategy ensures that the flow can only convect out of the domain and prevents recirculation.

The adjoint formulation of the proposed outflow treatment is more complicated since ~Qb is also

updated based on the flow state variables. The outflow velocity condition uα,b = max
(
uα,b−1, 0

)
can

generate discontinuity with respect to ~Q. Thus, for adjoint simulations, we only set uα,b = uα,b−1.

Considering this ~Qb and taking variations of (B.6) with respect to ~Q yields the adjoint formulation
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of the SAT outflow term, given by

~R†±outflow,α = ∓ σSAT
I J~P−1~E±αA

T
α,inc[ ~Qb]

± σSAT
I J~P−1~E±α−1A

T
α,inc[ ~Qb]

∓ σSAT
I J~P−1~E±α−1

∂Aα,inc[ ~Qb]

∂ ~Q
( ~Q − ~Qb)

T

, (B.9)

where ~E±α−1 is similar to ~E±α except that its unity value is shifted to the grid point next to the

outflow boundary in its normal direction, e.g., ~E+
α−1 = diag[0, 1, 0, . . . , 0] ∈ RNx×Nx and ~E−α−1 =

diag[0, . . . , 0, 1, 0] ∈ RNx×Nx in a one-dimensional grid of size Nx.

B.6 Isothermal wall

An isothermal stationary wall is achieved via a SAT term of (Svärd & Nordström, 2008; Vishnam-

pet, 2015)

~R±isothermal,α = ~R†±impenetrable,α − σ
SAT
V J2~P−1~E±αMαiMαi



0

ρu1

ρu2

ρu3

ρE − ρTW
γW

ρY1 − ρY1,W

...

ρYN−1 − ρYN−1,W



(B.10)

with target wall temperature and mass fraction values of TW, Y1,W, ..., and YN−1,W, respectively.

More details can be found in Svärd & Nordström (2008) and Vishnampet (2015) for single-
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component flows. Its adjoint term is computed according to

~R†±isothermal,α = ~R†±impenetrable,α

− σSAT
V J2~P−1~E±αMαiMαi



0 0 0 0 0 0 . . . 0

0 1 0 0 0 0 . . . 0

0 0 1 0 0 0 . . . 0

0 0 0 1 0 0 . . . 0

−
TW
γWN

0 0 0 1 −
TW
γ

(
1

W1
− 1

WN

)
. . . −TW

γ

(
1

WN−1
− 1

WN

)
−Y1,W 0 0 0 0 1 . . . 0
...

...
...

...
...

...
. . .

...

−YN−1,W 0 0 0 0 0 . . . 1



T

.

(B.11)

B.7 Demonstration of proposed SAT Inflow-Outflow

We consider the three-dimensional turbulent jet configuration introduced in Chapter 3.5 with the

standard inviscid SAT far-field boundary conditions at the inflow and outflow, and we compare the

solution with simulation using the proposed inflow and outflow terms.

Comparing with the desired target velocity, the proposed inflow treatment is seen to correctly

enforce the target solution at the time plotted in Fig. B.1a. Note that the target velocity contains

perturbations generated via the digital filtering technique (Klein et al., 2003) that is updated ev-

ery timestep (see Chapter 3.5.2 for more details). It is possible to improve the boundary error

either via increasing the SAT penalty magnitude or decreasing the frequency at which the target

perturbations are updated. It can also be seen that the traditional far-field SAT term at the outlet

significantly reduces the fluctuations at the outlet since the target velocity contains zero perturba-

tions (see Fig. B.1b). On the other hand, the modified outflow gives a finite value at the outlet,

which is similar to a simulation with a longer domain (30D j × 15D j × 15D j with 396 × 241 × 241
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(a) (b)

Figure B.1: (a) Instantaneous inflow velocity at x = 0 and z = 0 when an inflow (–) and a far-field
(−−) SAT is applied. The target velocity is also plotted (−·). (b) Axial-component of the Reynolds
stress at the jet centerline for different boundary conditions. Simulation with a larger domain (. . .).

grid points).
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Appendix C

Stability of the Adaptive Dissipation Scheme

In this appendix, we assess the stability of the high-order dissipation term in (3.16). Following

what was done in Chapter 3.2.3.2 (i.e., multiplying (3.16) by u and neglecting advection, the low-

order dissipation term, and boundary term that arise after integrating by parts) with s = 2, yields

1
2

d
dt
‖u‖2 = −

l∫
−l

(1 − ψ)u
∂4u
∂x4 dx =

−

l∫
−l

(
∂2u
∂x2

)2

dx +

l∫
−l

∂2ψu
∂x2

∂2u
∂x2 dx =

−

l∫
−l

(
∂2u
∂x2

)2

dx +

l∫
−l

ψ

(
∂2u
∂x2

)2

dx + 2

l∫
−l

∂ψ

∂x
∂u
∂x
∂2u
∂x2 dx +

l∫
−l

u
∂2ψ

∂x2

∂2u
∂x2 dx =

−

l∫
−l

(1 − ψ)
(
∂2u
∂x2

)2

dx + 2

l∫
−l

dψ
du

(
∂u
∂x

)2
∂2u
∂x2 dx +

l∫
−l

u
dψ
du

(
∂2u
∂x2

)2

dx

+

l∫
−l

u
d2ψ

du2

(
∂u
∂x

)2
∂2u
∂x2 dx, (C.1)

where it was assumed that ψ = ψ(u). As previously mentioned, the sensor ψ is taken to be combi-

nations of Heaviside functions of u according to (3.13). Without loss of generality, we assume ψ is

comprised of a single Heaviside function such that dψ/du = δ(u), and ud2ψ/du2 = −dψ/du. Thus,
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we simplify (C.1) according to

1
2

d
dt
‖u‖2 = −

l∫
−l

(1 − ψ)
(
∂2u
∂x2

)2

dx +

l∫
−l

dψ
du

(
∂u
∂x

)2
∂2u
∂x2 dx +

l∫
−l

u
dψ
du

(
∂2u
∂x2

)2

dx. (C.2)

The first term on the right-hand side of (C.2) is always non-positive since 0 ≤ ψ ≤ 1. Also, if

dψ/du is only non-zero where the value of sensor changes, it would not significantly affect the

stability of the system (similar to discussion about stability of the first term on the right-hand side

of (3.16) in Chapter 3.2.3.2). A similar procedure could be performed for cases with s = 3 and 4.
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Appendix D

Theoretical Estimates of Early-Time RT Sensitivity

In Chapter 4.4.2, the adjoint sensitivities of mixing and growth to initial interfacial perturbations

were reported for different stages of the RT instability. In this appendix, we employ established

theories that describe the early-time RT growth rates to estimate sensitivity and compare with the

adjoint solutions. During the DG regime, the flow is dominated by molecular diffusion. During

the diffusion dominated regime, the diffusion thickness broadens according to
√
δ2

D + 4Dt (Duff

et al., 1962; Cook & Dimotakis, 2001). In addition, the amplitude of an initial perturbation with

wavenumber k at the interface decays in time with an exponential rate of −k2D (Duff et al., 1962).

With this, the mole fraction evolution in a diffusion dominated flow can be expressed as

X(x, y, z, t) ≈
1
2

1 + erf

y − h(x, z, t)√
δ2

D + 4Dt


 , (D.1)

where the evolution of the interface is

h(x, z, t) =

M∑
m=1

N∑
n=1

Am,n cos
(
kx,mx + θx,m

)
cos

(
kz,nz + θz,n

)
exp

[
σm,nt

]
. (D.2)

The interfacial growth rate during the diffusion regime is given by

σ(DG)
m,n = −D(k2

x,m + k2
z,n), (D.3)

where kx,m and kz,n are wavenumbers in the x and z-directions, respectively.
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Figure D.1: Temporal evolution of the objective functions of a three-dimensional multi-mode RT
instability from the simulation (–) and the model given by (D.1) (−−).

Figure D.1 compares the integral of IW(y) over the entire domain from the numerical simula-

tions and the model (D.1) for both MIX and VAR. As can be seen, the model solution deviates from

the simulation with increasing t. As time increases, the inertial effects of the fluid become more

important due to buoyancy, and in this regime, the diffusion model approximation is less robust at

capturing these effects. However, as can be seen, the model provides an excellent approximation

of the objective functions when t < 0.2τ.

Recalling (4.18), the sensitivity of VAR is obtained by taking its derivative with respect to the

initial interfacial amplitudes, given by

δJ

δAm,n
=

t f∫
0

∫
D

2
δX
δAm,n

(X − X∞)W(y) dx dt, for J = VAR, (D.4)

where δX/δAmn is derived according to (D.1) and (D.2), which yields

δX
δAm,n

≈ −
cos

(
kx,mx + θx,m

)
cos

(
kz,nz + θz,n

)√
π
(
δ2

D + 4Dt
) exp

− [
y − h(x, z)

]2

δ2
D + 4Dt

+ σ(DG)
m,n t

 . (D.5)

The VAR sensitivities computed by substituting (D.1) and (D.5) into (D.4) are compared with the

adjoint sensitivity for early-time durations (see Fig. D.2a). The sensitivity predicted by the model
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Figure D.2: Magnitude of VAR sensitivity |δJ/δ~A| integrated over different durations t f from
adjoint simulations (symbols) and the model given by (D.5) (−−) with the growth rate applicable
to (a) the DG regime, i.e., (D.3) and (b) the EG regime, i.e., (4.24). The sensitivities are shown as
a function of initial perturbation wavenumber k =

√
k2

x + k2
z .

closely matches the adjoint-based sensitivity at early times and deviates at later times. This effect

is more evident at low wavenumbers since they have more substantial growth in the EG regime

according to (4.24). In order to include the fluid inertial effects in the model, the diffusion growth

rate of the interface σ(DG) in (D.2) can be replaced by the exponential growth rate predicted by

linear stability theory, i.e., σ(EG) given by (4.24) (see Fig. D.2b). Even with these simplifications,

the model is able to predict the trends in sensitivity with respect to wavenumber reasonably well.

Similarly, the sensitivity of MIX is obtained by taking derivatives of (4.16) with respect to

initial interfacial amplitudes, given by

δJ

δAm,n
=

t f∫
0

∫
D

δX
δAm,n

(1 − 2X)W(y) dx dt, for J = MIX, (D.6)

where δX/δAmn is given by (D.5). However, directly employing the model described in (D.1)

results in zero sensitivity. This can be shown by substituting (D.1) and (D.5) into (D.6) and rear-
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Figure D.3: Sensitivity δJ/δ~A for J = MIX integrated over different durations t f from adjoint
simulations (symbols) and model (−−) obtained by (D.6).

ranging, giving

δJ

δAm,n
=

t f∫
t=0

exp
[
−D(k2

x,m + k2
z,n)t

] π∫
x=−π

cos
(
kx,mx + θx,m

) π∫
z=−π

cos
(
kz,nz + θz,n

)
(2π−h)/

√
δ2

D+4Dt∫
y′=(−2π−h)/

√
δ2

D+4Dt

exp(−y′2)erf(y′)W(y′∆(t) + h(x, z, t)) dy′ dz dx dt, for J = MIX, (D.7)

where y′ = y − h(x, z, t)/
√
δ2

D + 4Dt. Since h is sufficiently small at early times, the integrand

reduces to an odd function with respect to y′. Due to the symmetry of the domain, the result-

ing integral is null. Alternatively, the sensitivity can be provided via a numerical solution to the

following diffusion equation

∂X
∂t

= D
∂2X
∂xi∂xi

, (D.8)

where D denotes the mass diffusivity. This is derived by neglecting fluid inertia and taking the

density and molecular weight of the mixture to be constant in ρY equation of (2.2). As shown in
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Figure D.4: Magnitude of sensitivity |δJ/δ~A| for J = KE integrated over different durations,
t f = 0.13τ from simulation (©) and (D.10) (−−) and t f = 1.33τ from simulation (4) and (D.10)
(–). The sensitivities are shown as a function of initial perturbation wavenumber k =

√
k2

x + k2
z and

normalized by their corresponding maximum value.

Fig. D.3, the resulting sensitivity obtained by solving (D.8) closely matches the adjoint solution.

The small differences can be related to assumptions of constant density, diffusivity and molecular

weight, and neglecting inertial forces and gravity effects.

It is also possible to find an estimate for the sensitivity of KE with respect to k. Assuming the

dominant vertical velocity at early time is located at the interface, the objective function can be

rewritten as

KE =

t f∫
0

∫
D

v2W(y) dx dt ∝

t f∫
0

∫
D

(
dh
dt

)2

W(y) dx dt. (D.9)

Substituting (D.2) into (D.9) and taking the derivative with respect to Am,n yields

δJ

δAm,n
∝ Am,nσ

(EG)
m,n

[
exp

(
2σ(EG)

m,n t f

)
− 1

]
, for J = KE, (D.10)

where the growth rate is estimated from linear stability theory. In (D.9), σ(EG)
m,n is taken to be

time independent even though the EG growth rate (4.24) might vary with time according to Duff

et al. (1962). As can be seen in Fig. D.4, the model is able to predict the sensitivity behaviour
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with respect to wavenumber. The differences between the adjoint sensitivities and the model is

attributed to neglecting velocities farther from the interface and also from any errors that might

arise in (4.24).
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