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ABSTRACT

This dissertation presents two bodies of work on the theoretical and numerical study of

plasma waves via kinetic models, resolving the fine-scale structures that arise in phase space,

and the implications for plasma-based particle acceleration.

First, we present the plasma simulation method FARSIGHT, a first step toward solving

problems in relativistic plasma physics such as photon acceleration. It is a forward semi-

Lagrangian particle method for the Vlasov-Poisson system in which the particle number

density is represented on adaptively refined and remeshed panels in phase space, and an

integral form of the Poisson equation is solved using a regularized electric field kernel and

a GPU-accelerated hierarchical treecode. We describe the method and implementation and

present numerical results encompassing Landau damping, two-stream instability, and halo

formation in a particle beam. These results show the method’s ability to resolve fine-scale

features in phase space.

Second, we present unlimited photon acceleration, (PA∞), a scheme for dephasingless

photon acceleration in a particle-beam-driven wake. Photon acceleration and deceleration

occurs when electromagnetic radiation experiences a time-varying plasma density; the time-

varying density causes frequency changes in the laser pulse. In PA∞, a relativistic electron

bunch propagates through a plasma and leaves density variations in its wake. A laser pulse

propagates behind the electron beam so as to experience a region of frequency-upshifting

density variation in the wake. Using a tapered density profile to keep the laser pulse at the

phase in the wake where the frequency of the pulse is increasing, simulations suggest that the

xiii



laser pulse can see sustained frequency shift, as well as energy gain, intensity enhancement,

and pulse compression. In one dimension, the frequency increases 25×, energy 6×, intensity

25×, and compression 33×. In quasi-3d simulations, the frequency increases 10×, energy 5×,

intensity 20×, and compression 3×. It is mathematically demonstrated that the frequency

shift of the laser pulse is limited only by the ability to maintain the wake, that is, the photon

acceleration is unlimited.
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CHAPTER I

Introduction

This dissertation presents two bodies of work on the theoretical and numerical study

of plasma waves via kinetic models, resolving the fine-scale structures that arise in phase-

space, and the implications for plasma-based particle acceleration. Chapter I introduces

the work. Chapter II presents an adaptive semi-Lagrangian method for the Vlasov-Poisson

system inspired by vortex methods in fluid dynamics; the method is called FARSIGHT.

Chapter III presents a scheme for frequency shifting an electromagnetic wave in a tailored

plasma density profile. Frequency upshift with this tailored profile is one of the applications

eventually intended for the semi-Lagrangian method FARSIGHT. In this chapter we present

motivation for the work, followed by descriptions of the remaining chapters.

1.1 Motivation

Particle beams and intense radiation have a myriad of uses, including imaging, beam

therapy, photolithography for microchip manufacture, space thrusters, high-energy-physics,

material science, generation of warm, dense matter, heating in nuclear fusion applications,

and as objects of study in their own right. Fundamental particle physics uses kilometer-

scale accelerators and high-energy particle beams to probe the fundamental structure of

matter. Accelerators and radiation sources across a range of scales are used in imaging

1
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technology for the study of biological and chemical systems and material science and in

medicine as radiography, imaging, and beam therapy. Conventional accelerators are limited

to accelerating gradients of about 100 MV/rmm [5], beyond which the material surface of the

accelerator ionizes and breaks down. On the other hand, a plasma is already broken down and

can sustain accelerating gradients of 100 GV/m or more, 1000× greater than the limiting

gradients in conventional accelerators. Thus plasma-based particle acceleration schemes

can accomplish comparable acceleration in a fraction of the size and cost of conventional

accelerators. Plasma-based schemes are actively being investigated as candidates for the

next generation of particle colliders [6] and as sources of radiation [7]. Analogous to plasma-

based particle acceleration, the same plasma structures that can accelerate particles to high

energies can cause frequency shifts and energy gains of electromagnetic waves propagating

in plasmas. To highlight the analogy, the phenomenon was termed ‘photon acceleration’ [8].

Particle kinetics are essential to understanding plasma-based acceleration of electrons

and photons. A kinetic model describes the evolution of the particle distribution function

fs(x,p, t) for a species s where fs is the probability distribution of species s taking values

at position x and momentum p at time t. For massive particles, the momentum is p =

γmsv where ms is the species mass, v is the particle velocity, and γ = (1− v2/c2)
1/2

is

the Lorentz factor. Analogously, a frequency-time representation describes the position-

frequency evolution of an electromagnetic wave. In the short wavelength, slowly changing

envelope limit of geometric optics we can treat the light as photons with frequency ω and

wavenumber k, in which case v = ω/k is the phase velocity of a photon in the medium. In

each case the details of the accelerating structure can be understood with a kinetic model

described by the Vlasov equation [9],

∂fs(x,p, t)

∂t
+

3∑
i=1

vi
∂fs(x,p, t)

∂xi
+

3∑
i=1

Fi(x,p, t)
∂fs(x,p, t)

∂pi
= 0 . (1.1)
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For charged particle species s with charge qs, the force F is given by the Lorentz force

qs (E + v ×B) and the electromagnetic fields E,B are determined by Maxwell’s equations.

For photons with frequency ω(x,p, t) in the limit of geometric optics, F = −∇ω [10].

There are several numerical challenges to solving the Vlasov equation. Even for the

electrostatic Vlasov-Poisson system, these include:

• the general Vlasov equations are 7 dimensional, having one time, three position, and

three momentum coordinates,

• physical quantities that should be conserved, such as mass/charge, momentum, and

energy, are not dependent variables but are moments of the distribution function,

• the distribution function admits evolution at a large range of momenta and so multiple

time scales must be resolved,

• the collisionless nature of the Vlasov equation means that phase-space structures can

develop on increasingly smaller spatial scales,

• multiple plasma species with disparate charge-to-mass ratios can introduce even more

time scales that have to be resolved.

The phase-space structures mentioned in the penultimate point include phase-space vor-

tices arising in the simplest plasma systems, for example in periodic 1D Vlasov-Poisson, and

throughout many branches of plasma physics, including inertial confinement fusion (cross-

beam energy transfer [11]), astrophysics (shock acceleration [12, 13]), and space physics

(electron holes in the solar wind [14]), to name but a few examples. Consider the phase-

space shown in figure 1.1. In addition to horizontal layering, there is an intricate mixing of

high- and low-density distribution regions in phase-space vortices. This dissertation seeks

to accurately model and use these complex phase-space structures for applications such as

particle acceleration.
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t = 0 t = 30 t = 60

Figure 1.1: Phase-space of the two-stream instability at times t = 0, 30, and 60, showing
the progressive filamentation and development of phase-space vortices that this dissertation
seeks to resolve and understand. These images are generated from a FARSIGHT simulation.

1.2 FARSIGHT

Chapter II of this dissertation presents a numerical method called FARSIGHT for solving

the Vlasov-Poisson system. The motivation for FARSIGHT is to develop efficient adaptive

refinement of phase-space to resolve fine-scale structures of kinetic plasma models.

FARSIGHT uses a kinetic model of a single-component plasma described by the normal-

ized Vlasov-Poisson system

∂tf + v∂xf − E∂vf = 0, E = −∂xφ, −∂2
xφ = ρ, (1.2)

where f(x, v, t) is the particle distribution function in (x, v) phase-space, with electric field

E(x, t), potential φ(x, t), and charge density ρ(x, t). This is the 1D nonrelativistic elec-

trostatic version of eqn. (1.1) where velocity, v, is used instead of momentum, p. It is

normalized by the particle charge-to-mass ratio. Periodic boundary conditions are enforced

on 0 ≤ x ≤ L, and the charge density is

ρ(x, t) = 1−
∫ ∞
−∞

f(x, v, t)dv,

∫ ∞
−∞

f(x, v, t)dx = 1 . (1.3)

One physical interpretation of this single-component plasma model is a mobile electron

species in a static uniform distribution of positive ions.
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A semi-Lagrangian approach combines the accuracy advantages of Lagrangian particle

tracking with the smoothness of a grid-based Eulerian representation of the particle distribu-

tion. A hierarchical tree of quadrilateral panels is used to represent the distribution, as shown

in figure 1.2. Each panel consists of a 3×3 grid of Lagrangian particles, with particle charge

determined from the panel area and the particle’s distribution value. The panel structure,

including some adaptively refined panels, is shown in Fig. 1.2. The particles are advected

forward in time according to Newton’s equations of motion. To solve Poisson’s equation for

the electric potential, the charge density is convolved with a regularized Green’s function

and the potential is then differentiated to obtain the electric field, which can be understood

as a convolution of a regularized electric field kernel with the charge density. The convolu-

tion integral is computed by summing over the tree of panels. The quadrature scheme loses

accuracy as the mesh distorts, so remeshing is applied. The distribution is interpolated from

its values on the distorted mesh to a regular mesh using biquadratic interpolation. When

remeshing, panels are adaptively refined whenever the variation in distribution is too large

in a panel. The particles then continue to advect.

x

v

Figure 1.2: FARSIGHT representation of phase-space as panels and their constituent 3× 3
grid of particles.
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Several features of FARSIGHT enable efficient adaptive refinement of phase-space to

resolve fine-scale phase-space structures. The panels in the hierarchical tree are adaptively

refined with a local refinement scheme. This promotes parallel efficiency as the leaves are

independent for purpose of field evaluation and interpolation. Another feature promoting

efficient resolution of phase-space is the regularization of the electric field kernel, which allows

larger time steps and, hence, fewer field evaluations. A third feature is the use of a treecode.

In a system with N particles, the integral field evaluation requires O(N2) operations via

direct summation. In this work the cost is reduced to O(N logN) with a GPU-accelerated

treecode for further computational speedup.

In the implementation of FARSIGHT, the GPU was found to give a speedup of 10× over a

36 core CPU compute node. The FARSIGHT code is then demonstrated on several test cases,

including Landau damping, the two-stream instability, and halo formation in a mismatched

thermal equilibrium sheet beam in a continuous focusing channel. These examples highlight

the scheme’s ability to maintain resolution over long time. In these examples, the use of

adaptive refinement leads to as much as 4× speedup over uniform mesh calculations.

1.3 Unlimited photon acceleration

The second work on plasma waves and plasma-based acceleration treated in this disserta-

tion is unlimited photon acceleration. The concept of photon acceleration involves frequency

shift of an electromagnetic wave propagating in a plasma with a time-varying plasma density.

The shift can be understood as follows. In moving window coordinates z, ζ = t− z/c, time

variation becomes variation in ζ. Consider an underdense plasma, meaning that the plasma

density n is much less than the critical density nc of the electromagnetic wave. The critical

density is given by nc = 4π2c2meε0/λ
2e2 where λ is the wavelength of the electromagnetic

wave. If the electromagnetic wave experiences a positive gradient in phase velocity with
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respect to ζ, as illustrated in figure 1.3, then leading wavefronts move slower than trailing

wavefronts and the wavelength λ decreases. For frequency ω2 = ω2
p + (2πc/λ)2 where the

plasma frequency is defined by ω2
p = ne/meε0 and the phase velocity is vφ, photon accelera-

tion can be expressed by the frequency shift relation [15, 16],

1

ω

∂ω

∂z
=
∂vφ
∂ζ

. (1.4)

The phase velocity of the wave is increasing in ζ, which means leading wave fronts have a

slower phase velocity so the trailing wavefronts catch up. Then the wavelength is compressed

and the frequency increases.

v 1 + n/2nc

v

0

Figure 1.3: Photon acceleration of an electromagnetic wave seeing a time-varying plasma
density. In the special case of a density structure moving at the speed of light, the space-
time variation becomes a gradient in the moving window coordinate ζ = t − z/c. In this
figure there is an increasing gradient in index of refraction, indicated by the gradient in phase
velocity vφ. In the case of an underdense plasma, vφ ∼ 1+2n/nc where nc = 4π2c2meε0/λ

2e2

and being underdense means n/nc < 1. The dashed curve is the initial wave with wavelength
λ0 and the solid line shows the wave after some propagation time with wavelength λ. The
gradient in n and hence in vφ results in the leading wave fronts moving less than the trailing
wave fronts and a corresponding decrease in wavelength λ compared to λ0, i.e. λ < λ0.

Photon acceleration was first presented in 1989 by Wilks et al. [8], wherein 10% frequency

shifts were observed in simulation. The shift was analyzed more rigorously by Esarey et al.

[17] and proposed theoretical limits on possible frequency shifts presented by Mironov et



8

al. [18]. Photon acceleration/deceleration has been explored as a wakefield diagnostic [19].

Related phenomena for generating frequency shifts have been recently studied and frequency

shifts of as much as 10× have been considered, but energy retention frequency was found to

decrease with increasing frequency shift [20, 21, 22].

Photon acceleration has not yet been realized as a mechanism for generating significant

frequency shift. One substantial issue to overcome is the dephasing of the electromagnetic

wave from the point in the wake where positive frequency shift occurs. To overcome de-

phasing, we introduce a tailored plasma density profile to match the wake phase of the

co-propagating laser pulse with the frequency shifting region of the wake. Simulations show

that more than 10× frequency shift can be realized by a laser pulse propagating behind an

ultrarelativistic electron beam through the tailored plasma density profile. In chapter III we

present the frequency shift relations, derive the phase matching conditions, and present nu-

merical studies of phase matched plasma wakefield photon acceleration in 1D and quasi-3D,

realizing 10× frequency shift, 5× energy gain, 20× increase in intensity of the laser pulse,

and 3× increase in laser compression.

1.4 Summary

Chapter IV summarizes the FARSIGHT method and results and unlimited photon ac-

celeration. Future directions for each topic are discussed.



CHAPTER II

Vlasov Simulation with FARSIGHT

This chapter presents the FARSIGHT method for Vlasov simulation. The rest of this

section, section 2.1, introduces the Vlasov-Poisson system of equations, discusses previous

numerical methods for solving the Vlasov-Poisson system, and outlines some key features of

FARSIGHT and how FARSIGHT is distinguished from other methods. Section 2.2 presents

several preliminary topics including the flow map, electric field integral, kernel regularization,

and the electric field following a particle. Section 2.3 presents the details of the FARSIGHT

numerical method. Section 2.4 presents numerical results for weak and strong Landau damp-

ing, warm and cold two-stream instability, and halo formation for a mismatched thermal

equilibrium sheet beam in a focusing channel [4]. Section 2.5 summarizes the chapter and

outlines directions of future work in FARSIGHT.

2.1 Introduction

Collisionless plasmas modeled using the 1D1V Vlasov-Poisson system of equations arise

in many applications including shock acceleration [12, 13], beam physics [3, 4], inertial con-

finement fusion [23, 24], and plasma-wakefield acceleration [25, 26]. Here we consider the

kinetic model of a one-component electron plasma described by the 1D1V Vlasov-Poisson

9
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equations in non-dimensional form,

∂tf + v∂xf − E∂vf = 0, E = −∂xφ, −∂2
xφ = ρ, (2.1)

where f(x, v, t) is the electron distribution function in (x, v) phase-space, with electric field

E(x, t), potential φ(x, t), and charge density ρ(x, t). Periodic boundary conditions are en-

forced on 0 ≤ x ≤ L, and the charge density is

ρ(x, t) = 1−
∫ ∞
−∞

f(x, v, t)dv,

∫ ∞
−∞

∫ ∞
−∞

f(x, v, t)dxdv = 1, (2.2)

where a static, uniform distribution of charge is present to satisfy neutrality. We will uti-

lize this formulation to simulate Landau damping and two-stream instability; we will also

simulate halo formation for a mismatched thermal equilibrium sheet beam in a focusing

channel [4], and the changes to the formulation needed in that case will be given later on.

To set the context for the present work, next we give a brief partial overview of numerical

methods for plasma simulations.

2.1.1 Previous numerical methods

The conventional choice for kinetic plasma simulations is the particle-in-cell (PIC) method

in which the plasma is represented by a finite set of particles in phase-space and the electric

field is computed using a grid-based Maxwell or Poisson solver [27, 28]. PIC is in widespread

use, but difficulties may arise due to discrete particle noise unless sufficiently many particles

are used [4, 29]. In addition, particle-grid interactions may induce thermal heating and en-

ergy drift [27, 28]. Several methods were developed to address these issues within the PIC

framework including Complex Particle Kinetics (CPK) using Gaussian-shaped particles that

can merge or fragment [30], Linearly Transformed PIC (LTPIC) using deformation matrices

to give each particle a finite width in velocity [4], and Shape Function Kinetics (SFK) using

several particles to track the local deformation of the phase-space distribution [31]. For elec-
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trostatic PIC simulations with periodic boundary conditions, the potential and electric field

are computed using fast grid-based Poisson solvers such as the FFT, but boundary integral

methods have also been employed for problems with complex geometry [32, 33, 34].

Alternatively, Eulerian methods were developed that directly solve the Vlasov equation on

a grid or using a spectral representation of the distribution function. These representations

are typically smoother than those provided by PIC, and this is beneficial for example in

simulating halo formation in particle beams [23, 4] and the dynamics of electron holes [35, 36].

Eulerian approaches include finite volume methods [37, 38] finite element and discontinuous

Galerkin methods [39], and spectral methods [40, 41, 26].

Eulerian methods, however, may require small time steps for stability, and this is al-

leviated in semi-Lagrangian methods that permit large time steps by combining particle

tracking with a grid-based representation of the distribution function [42, 43, 44]. In these

codes the spatial discretization is often done using discontinuous Galerkin methods [1, 45, 46]

or weighted essentially non-oscillatory (WENO) methods [2, 47, 48]. While early semi-

Lagrangian methods used operator splitting [43], multidimensional methods have been em-

ployed recently [49, 50]. Since uniform grids are inefficient for problems with low particle

density regions in phase-space, another recent trend is the use of spatially adaptive methods;

the techniques employed include adaptive mesh refinement [51, 52], multi-grid remeshing [53],

block decomposition [54] and multiresolution wavelet representations [55, 56, 57].

2.1.2 Present work

We present a forward semi-Lagrangian scheme called FARSIGHT for collisionless electro-

static plasmas described by the 1D1V Vlasov-Poisson equations. The phase-space distribu-

tion function is represented by quadrilateral panels having a hierarchical tree structure, and

each panel is a 3×3 grid of particles that is evolved by 4th order Runge-Kutta time-stepping.

The electric field is expressed as a convolution integral of the charge density with a regu-
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larized electric field kernel. The particles are remeshed at every time step using biquadratic

interpolation on the panels, and the panels are adaptively refined to resolve the phase-space

distribution function. The electric field integral is discretized by the trapezoid rule, and the

discrete sums are computed by a GPU-accelerated barycentric Lagrange treecode [58].

A few comments follow to explain this choice of techniques: the overriding goal was

efficient, adaptive, high-fidelity modeling of phase-space. Previous work in fluid mechanics

advantageously represented flow on the surface of a sphere with adaptively refined triangular

or quadrilateral panels [59]; this success motivated the choice in developing FARSIGHT to

represent the distribution function by a hierarchical tree of adaptively refined quadrilateral

panels. The electric field is expressed as an integral and computed by summing over the

leaf panels in the tree; this promotes parallel efficiency because the leaves are independent

of each other, and it avoids the artificial diffusion and communication costs that may arise

in discretizing and solving the Poisson equation on a regular grid. The electric field kernel

has a discontinuity which obstructs accurate particle tracking, so the kernel is regularized

to overcome this problem. In a system with N particles, the integral field solver requires

O(N2) operations using direct summation, but the cost is reduced to O(N logN) using the

treecode. The barycentric Lagrange version of the treecode used here is kernel-independent,

so it can handle the regularized electric field kernel, and it is GPU-accelerated for efficiency.

The outline of this chapter is as follows. Section 2.2 discusses several preliminary topics

including the flow map, electric field integral, kernel regularization, and the electric field

following a particle. Section 2.3 develops the numerical method. Section 2.4 presents numer-

ical results for weak and strong Landau damping, warm and cold two-stream instability, and

halo formation for a mismatched thermal equilibrium sheet beam in a focusing channel [4].

Section 2.5 summarizes the work.
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2.2 Preliminary topics

This section discusses several preliminary topics needed for the numerical method in-

cluding the flow map, electric field integral, kernel regularization, and the electric field at a

particle position.

2.2.1 Flow map

The particle flow map, x(x0, v0, t), v(x0, v0, t), gives the location of a particle in phase-

space at time t, labeled by its initial coordinates x0, v0. The governing equations are

∂tx(x0, v0, t) = v(x0, v0, t), ∂tv(x0, v0, t) = −E(x(x0, v0, t), t), (2.3)

where E(x, t) is the electric field. It follows from the Vlasov equation that the distribution

function is invariant in the phase flow,

f(x(x0, v0, t), v(x0, v0, t), t) = f0(x0, v0), (2.4)

where f0(x0, v0) is the initial distribution. The Vlasov-Poisson equations conserve several

quantities including the total charge Q, total current I, and total energy E ,

Q =

∫ L

0

∫ ∞
−∞

fdvdx, I =

∫ L

0

∫ ∞
−∞

vfdvdx, E =
1

2

∫ L

0

∫ ∞
−∞

v2fdvdx+
1

2

∫ L

0

E2dx. (2.5)

2.2.2 Electric field integral

The Poisson equation for the electric potential can be solved by convolving the charge

density with the 1D periodic Laplace Green’s function G,

φ(x, t) = −
∫ L

0

∫ ∞
−∞

G(x, y)f(y, v, t)dvdy , (2.6)
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and then negating and differentiating the resulting expression, which yields the electric field

integral,

E(x, t) =

∫ L

0

∫ ∞
−∞

K(x, y)f(y, v, t)dvdy, (2.7)

where the electric field kernel is

K(x, y) = k

(
x− y
L

)
, k(s) = mod (s, 1)− 1

2
, (2.8)

and the elementary kernel k(s) has the sawtooth form in Fig. 2.1a. Note that k(s) is 1-

periodic (k(s+1) = k(s)), piecewise linear with slope 1 between the integers s = 0,±1,±2, . . . ,

and has a negative jump discontinuity at the integers; hence the associated charge density

k′(s) is a periodic array of negative delta functions with a uniform neutralizing positive

background (Fig. 2.1d).

2.2.3 Kernel regularization

The discontinuity in k(s) implies a discontinuity in the electric field kernel K(x, y) at

x = y, which is problematic for discretizing the electric field integral and numerically solving

the flow map equations in Eq. (2.3); in particular, when particles cross each other in physical

space, the discontinuous force makes it difficult to obtain high accuracy unless excessively

small time steps are used. To overcome this we follow the approach taken in vortex methods

for incompressible fluid flow in which the kernel is regularized [60, 61, 62]. The regularization

presented here is novel, to the best of our knowledge. We start by writing the elementary

kernel as the sum of two terms,

k(s) = k1(s) + k2(s), k1(s) = k

(
s− 1

2

)
, k2(s) = −1

2
sign(k1(s)), (2.9)

i.e., k1(s) is the shifted sawtooth shown in Fig. 2.1b and k2(s) is the tophat function shown

in Fig. 2.1c. Note that k1(s) can be understood as the field due to a periodic array of
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Figure 2.1: Elementary electric field kernel (a) sawtooth k(s) in Eq. (2.8), splitting k(s) =
k1(s) + k2(s) in Eq. (2.9), (b) shifted sawtooth k1(s), (c) tophat k2(s), associated charge
density (d) k′(s), (e) k′1(s), (f) k′2(s), regularized elementary electric field kernel (g) kε(s) in
Eq. (2.11), (h) shifted sawtooth k1(s), (i) regularized tophat kε2(s), associated charge density
(j) k′ε(s), (k) k′1(s), (l) k′2,ε(s).

negative discrete charges at the half-integers with a uniform neutralizing positive background

(Fig. 2.1e), while k2(s) can be understood as the field due to two periodic arrays, negative

discrete charges at the integers and positive discrete charges at the half-integers (Fig. 2.1f).

Based on this splitting we define the regularized elementary kernel,

kε(s) = k1(s) + k2,ε(s), k2,ε(s) = −cε
2

k1(s)

(k1(s)2 + ε2/L2)1/2
, cε = (1 + 4ε2/L2)1/2, (2.10)
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where ε > 0 is the regularization parameter. Figure 2.1g depicts kε(s) for a representative

value of ε, and Figs. 2.1h,i show the two components, where k1(s) has not changed and

k2,ε(s) is a regularized version of the tophat. Figure 2.1j shows the charge density k′ε(x) of

the regularized elementary kernel, which is the superposition of the charge densities k′1(x)

and k′2,ε(x) in Figs. 2.1k,l.

In principle, other forms of regularization are possible, but the form given here performed

well. The regularization requires fewer elementary operations than more complex options.

This lends to fast run times and fewer dependencies in the GPU implementation. Note

that kε(s) → k(s) as ε → 0 when s is not an integer, while the choice of cε ensures that

kε(s) is continuously differentiable for all s, with a discontinuity in the second derivative

k′′ε (s) of order O(ε2) at the half-integers. Since kε(s) = 0 at the integers, a particle feels

no self-force; moreover since k′ε(s) ≈ 1 away from the integers and kε(s) is zero at the half-

integers, a particle induces the correct far-field force. Note that the regularized elementary

charge density satisfies
∫ 1

0
k′ε(s)ds = 0, so the regularization preserves charge neutrality. The

regularized electric field kernel is defined by

Kε(x, y) = kε

(
x− y
L

)
, (2.11)

and using this in place of the singular kernel K(x, y) yields a regularized form of the Vlasov-

Poisson equations.

2.2.4 Electric field at a particle position

The electric field at a particle position is

E(x(x0, v0, t), t) =

∫ L

0

∫ ∞
−∞

K(x(x0, v0, t), y)f(y, v, t)dvdy. (2.12)
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Then changing variables by the flow map, (y, u) = (x(y0, u0, t), v(y0, u0, t)), yields

E(x(x0, v0, t), t)

=

∫ L

0

∫ ∞
−∞

K(x(x0, v0, t), x(y0, u0, t))f(x(y0, u0, t), v(y0, u0, t), t)J(y0, u0, t)du0dy0 . (2.13)

Using Eq. (2.4) for the invariance of the distribution function and setting the Jacobian

J(x0, v0, t) = 1 since the phase flow is divergence-free, we obtain

E(x(x0, v0, t), t) =

∫ L

0

∫ ∞
−∞

K(x(x0, v0, t), x(y0, u0, t))f0(y0, u0)du0dy0 . (2.14)

Hence Eq. (2.14) expresses the electric field as a convolution of the electric field kernel with

the initial electron distribution.

2.3 Numerical method

This section describes the numerical method comprising the phase-space discretization

and adaptive mesh refinement, data structures, electric field quadrature and particle motion,

remeshing, interpolation, barycentric Lagrange treecode, and GPU implementation.

2.3.1 Phase-space discretization and adaptive mesh refinement

The computational domain is [0, L]× [−vmax, vmax], comprising one period in x-space and

an interval in v-space. The domain is discretized by Lagrangian particles and panels, where

each panel is a rectangle defined by a 3× 3 particle grid as shown in Fig. 2.2a. The panels

have a tree structure and, as in previous work in fluid dynamics [59], are adaptively refined;

for example in Fig. 2.2, (a) the root panel at level 0 is the entire computational domain, (b)

the panels at level 1 were refined in x and v, (c) the panels at level 2 were refined only in

v, and (d) two panels at level 3 were refined in x and v. In general, the code performs a

user-specified number of uniform panel refinements either in x and v, or only in v, and then

applies adaptive mesh refinement (AMR) to the leaf panels to further resolve the electron
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distribution function f(x, v, t). For each leaf panel P , the AMR scheme checks the variation

in the electron distribution over the nine particles indexed by i, j = 1 : 3 comprising the

panel to enforce the following refinement criterion,

var(P ) = max
i,j=1:3

fij − min
i,j=1:3

fij ≤ εvar, (2.15)

where εvar is a user-specified tolerance. If the criterion in Eq. (2.15) is satisfied, then the

scheme proceeds to check the next leaf panel; otherwise the panel is refined and the resulting

subpanels become new leaf panels. The process repeats until the refinement criterion is

satisfied for all leaf panels or a user-specified maximum number of AMR levels is reached.

The decision on whether to refine in x and v or only in v is problem-dependent and examples

will be given in the numerical results section below. At the initial time t = 0, the electron

distribution in Eq. (2.15) is known analytically, while at later times when remeshing is

applied it is computed by interpolation as explained below.

a

v

x

level 0
b

v

x

level 1
c

v

x

level 2
d

v

x

level 3

Figure 2.2: phase-space discretization by Lagrangian particles and panels, each panel is a
rectangle with a 3×3 particle grid (•), panels have a tree structure and are adaptively refined,
(a) level 0, root panel comprising the entire computational domain, (b) level 1, uniformly
refined in x and v, (c) level 2, refined only in v, (d) level 3, two panels refined in x and v.

2.3.2 Storage of panel and particle information

The particle information is stored in arrays containing the phase-space coordinate (xi, vi)

and electron distribution function value fi of each particle indexed by i = 1 : N . The
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panel information is organized as a tree with the entire computational domain being the

root node and the most refined panels being the leaf nodes. Each panel has 2 or 4 child

nodes, depending on whether it was refined in the v direction only or in x and v. The tree

is stored in an array of structures, where a panel data structure contains the indices of the

parent panel, child panels, and neighbor panels in the panel array, as well as the indices of

the panel’s member particles in the particle arrays, and boolean variables indicating whether

the panel resides on the boundary of the computational domain. The panel data structure

is summarized in Table 2.1.

(a) panel data (b) data representation
parent panel 1 index in panel array
child panels 4, 2, or 0 indices in panel array

neighbor panels 4 indices in panel array indicating left, right, top, bottom neighbor
member particles 9 indices in particle arrays
domain boundary 4 boolean variables indicating left, right, top, bottom boundary

Table 2.1: Panel data, (a) data associated with each panel, (b) representation of data.

2.3.3 Electric field quadrature and particle motion

Given a phase-space discretization in terms of particles and panels as described above,

the electric field integral in Eq. (2.14) is computed as a sum of integrals over the leaf panels,

where the integral on each leaf is evaluated by the 2D trapezoid rule in each quadrant of the

leaf. This is a O(N2) method with the advantage of being spectrally accurate in the case

of periodic functions such as we have. The higher-order Simpson’s method was investigated

but not found to scale significantly better than the trapezoidal quadrature in the cases we

studied. Higher-order methods may still prove to be advantageous and will be the subject of

future investigations. When substituted into Eq. (2.3), the trapezoidal discretization yields
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a set of ODEs for the motion of the particles in phase-space,

x′i = vi, v′i = q2

N∑
j=1

Kε(xi, xj)f0j∆x0j∆v0jwj, xi(0) = x0i, vi(0) = v0i, i = 1 : N,

(2.16)

where Kε(x, y) is the regularized kernel in Eq. (2.11), f0j = f0(x0j, v0j) is the electron

density of a particle, ∆x0j,∆v0j are panel dimensions, and wj are the trapezoid rule weights

(1/16 for panel vertices, 1/8 for edge midpoints, 1/4 for the panel midpoint). In this work

the ordinary differential equations (ODEs) are solved using the classical 4th order Runge-

Kutta (RK) method. The use of the regularized kernel motivates higher-order methods

and the computational gain over second-order time-stepping was clear early on. Earlier

FARSIGHT implementations used the second-order standard centered-difference leapfrog

method. While both methods show the expected accuracy scalings, gains in run time needed

for a given accuracy were observed with the 4th-order RK method over the second-order

methods. Higher-order and symplectic time integration are possible subjects of future work.

Discrete analogues of the conserved quantities are obtained by applying the trapezoid

rule to the integrals in Eq. (2.5),

QN =
N∑
i=1

f0i∆x0i∆v0iwi, IN =
N∑
i=1

vif0i∆x0i∆v0iwi,

EN =
1

2

N∑
i=1

v2
i f0i∆x0i∆v0iwi +

1

2

M∑
`=1

E2
`∆x`w`,

(2.17)

where the sums for Q, I, and the first term of E are over the particles (xi, vi) in phase-space,

the sum in the second term of E is over particles with distinct positions (x` 6= xk if ` 6= k),

and wi, w` are the appropriate quadrature weights.

What has been described so far is a Lagrangian particle method for the Vlasov-Poisson

system. However, a problem arises; the particles are chosen to resolve the initial electron

density, but as time goes on their phase-space distribution is progressively sheared and they
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may no longer accurately represent the evolving particle distribution. Figure 2.3 shows

this deformation in a Landau damping simulation, where a coarse distribution is used for

illustration. Accuracy will always degrade eventually due to deformation, regardless of the

resolution. The loss of accuracy can be delayed by increasing the number of particles and

panels, but this is only a partial solution since it becomes costly for a long-time calculation.

It should be noted that the deformation is not due to time discretization errors in solving

the ODEs in Eq. (2.16), but instead shows the limitations of using the same fixed set of

Lagrangian particles in long-time calculations. This issue has been noted previously in

PIC plasma simulations [53] and also occurs in vortex methods for incompressible fluid

flow [63, 62].

a b c

Figure 2.3: Landau damping simulation by Eq. (2.16) illustrating how a fixed set of La-
grangian particles and panels is progressively deformed, (a) t = 0, (b) t = 3, (c) t = 9.

To overcome this problem and maintain resolution of the electron phase-space density

over long times, we employ remeshing (also called remapping). The benefit of remeshing has

been demonstrated in vortex simulations [64] as well as PIC plasma simulations [53, 65].

2.3.4 Remeshing

Figure 2.4 illustrates the remeshing scheme. For simplicity, assume the particles initially

lie on a uniform mesh with regular panels as in Fig. 2.4a (in practice they can lie on an

adaptively refined mesh as in Fig. 2.2d or Fig. 2.3a). After some time, the particles and

panels are deformed as in Fig. 2.4b. The remeshing scheme replaces these particles and
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panels by new particles and panels on a new uniform regular mesh, as in Fig. 2.4c. The

electron density is transferred from the old particles to the new particles using biquadratic

interpolation in the old panels, and AMR is employed to ensure that the new particles resolve

the electron density at the current time.

a b c

Figure 2.4: Remeshing, (a) regular particles/panels at initial time, (b) irregular parti-
cles/panels after evolving for some time, (c) new regular particles/panels (red), old irregular
particles/panels (light blue), electron distribution is transferred from old particles to new
particles using biquadratic interpolation in old panels, old particles/panels are then deleted
and calculation proceeds with new particles/panels.

Given a new particle with coordinates (xnew, vnew), the scheme descends the tree of old

deformed panels starting from the root and determines which subpanel contains the particle,

then which subpanel at the next level contains the particle, and so on until the leaf level is

reached. The search has two possible outcomes; if the new particle lies outside the deformed

computational domain, then its density is set to zero; otherwise it lies inside a unique old

leaf panel P old and then its density is assigned by interpolation, as described below. In

checking whether a new particle lies in a given old subpanel, the check is done using the

subpanel vertices and assuming the subpanel edges are straight lines. Efficiency is gained

for new particles lying on uniform mesh points, where instead of starting from the root, the

search employs neighbor panel information from the previous new particle. In problems with

periodic boundary conditions, the neighbor panel search takes x-periodicity into account.
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2.3.5 Interpolation

The interpolation scheme used in this work is biquadratic. Bilinear interpolation was

investigated first but was found to be too diffusive. Using more points per panel and imple-

menting higher-order interpolation schemes could be the subject of future work. Consider

a new particle (xnew, vnew) lying in an old panel P old with its 3 × 3 grid of particles and

their electron density, (xoldij , v
old
ij , f

old
ij ), i, j = 1 : 3. The old panel data defines a biquadratic

polynomial,

p(x, v) =
3∑

i,j=1

cij(x− xold22 )i−1(v − vold22 )j−1, (2.18)

where (xold22 , v
old
22 ) is the panel midpoint particle, and the coefficients cij are determined by

the interpolation conditions,

p(xoldij , v
old
ij ) = f oldij , i, j = 1 : 3. (2.19)

Then the electron density of the new particle is set to fnew = p(xnew, vnew).

There remains the question of how often remeshing should be carried out. It is often

thought that remeshing should be done infrequently, to diminish numerical errors arising

from interpolation. Hence, in most previous plasma simulations, remeshing was performed

every several time steps [1, 53, 65]. In the present work, remeshing is carried out every time

step; the rationale is that the phase-space density varies relatively little from one time step

to the next, and the interpolation scheme is able to accurately resolve these variations, while

a longer interval between remeshings would stress the accuracy of the interpolation scheme.

This is a conservative decision and future tuning of the algorithm may find that it is more

efficient to remesh less often.
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2.3.6 Barycentric Lagrange treecode

The discrete approximation of the electric field in Eq. (2.16) has the form of an N -body

interaction,

Ei =
N∑
j=1

Kε(xi, xj)qj, qj = qf0j∆x0j∆v0jwj, i = 1 : N, (2.20)

where xi denotes a target particle and xj are source particles with corresponding charges

qj. Note that the number and charge of the particles changes each at each remeshing. If

the field Ei is evaluated by direct summation using loops over i, j, then the operation count

is O(N2), which is costly for large N . In this work we employ the barycentric Lagrange

treecode (BLTC) to reduce the operation count to O(N logN) [66, 67]. More particularly,

we use the implementation developed in [58].

The BLTC starts by partitioning the particles into clusters, where a cluster in this context

is a subinterval of the x-domain [0, L]. The set of all clusters has a hierarchical tree structure

as depicted in Fig. 2.5a. Given a target particle xi, the sum over source particles xj is replaced

by a sum over clusters, and these fall into two categories; for clusters Cnear that are near

xi, the particle-particle interactions are performed directly, while for clusters Cfar that are

far from xi, the interactions are approximated using barycentric Lagrange interpolation [68].

The resulting approximation has the form,

Ei ≈
∑
Cnear

∑
xj∈Cnear

Kε(xi, xj)qj +
∑
Cfar

n∑
k=0

Kε(xi, sk)q̂k, q̂k =
∑

xj∈Cfar

Lk(xj)qj, (2.21)

where n is the degree of polynomial interpolation, sk are Chebyshev points adapted to a

cluster Cfar, q̂k are associated charges, and Lk(x) are the Lagrange interpolating polynomials.

A cluster is considered to be far from a target particle when the multipole acceptance criterion

(MAC) is satisfied, r/R < θ, where r is the cluster radius, R is the distance between the

target and the cluster center, and θ is a user-specified parameter. Figure 2.5b,c depicts the
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particle-particle interactions.

a

b

c

Figure 2.5: Treecode schematic, (a) the particles are partitioned into clusters (subintervals of
[0, L]) with a hierarchical tree structure, in (b,c) the target particles (left,•) interact with (b)
source particles (right,•) or with (c) Chebyshev points (right,×) if there are enough source
particles as determined by the MAC, cluster radius r, particle-cluster distance R.

The barycentric form of the Lagrange polynomials is employed,

Lk(x) =

wk
x− sk

n∑
k′=0

wk′

x− sk′

, wk = (−1)kδk, δk =

1/2, k = 0, n,

1, k = 1 : n− 1,

(2.22)

which is computationally stable and efficient [68]. Note that the proxy charges q̂k of a cluster

C in Eq. (2.21) can be precomputed and reused for all targets xi interacting with C. The

operation count of the BLTC is O(N logN), where the factor N is the number of target

particles and the factor logN is the number of levels in the tree.

2.3.7 GPU implementation

A key feature of the BLTC is that the electric field approximation Ei in Eq. (2.21)

consists of direct sums between the target particle xi and either the source particles xj ∈

Cnear or the Chebyshev points sk ∈ Cfar, but in either case the necessary kernel evaluations

(Kε(xi, xj), Kε(xi, sk)) are independent of each other and can be computed concurrently. This

enables an efficient GPU implementation of the BLTC using OpenACC [58]. The particle

interactions are organized into target batch/source cluster interactions which efficiently map
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onto the GPU, where target batching provides an outer level of parallelism and the direct

sum form of the particle-particle and particle-cluster interactions provides an inner level of

parallelism.

2.3.8 BLTC performance

This section documents the accuracy and efficiency of the BLTC with the regularized

kernel developed in section 2.2.3 for the field solver used in FARSIGHT. The computations

were done on a single node of the Great Lakes cluster at the University of Michigan, where

each node has 36 CPU cores (3.0 GHz Intel Xeon Gold 6154 processors) and one GPU

(NVIDIA Tesla V100 with 5120 CUDA cores). The code was written in C++ and compiled

with a PGI compiler. The CPU runs were parallelized using OpenMP. For these tests we

consider a single evaluation of the electric field in Eq. (2.20), with particles distributed on a

cold wave,

xi = i∆x+ 0.5 cos(2πi∆x), ∆x = 1/N, fi = 1, i = 1 : N. (2.23)

The regularization parameter is set to ε = 0.1. The maximum number of particles per leaf

is N0 = 3000. We consider the effect of the system size N , MAC parameter θ, and degree n

on the BLTC performance.

Figure 2.6 plots the BLTC error versus system size N for a representative value of the

MAC parameter θ = 0.6 and several values of the barycentric Lagrange interpolation degree

n = 2 : 2 : 12. The error is the relative 2-norm of the difference between the field computed

by direct summation and by the BLTC, and the results agree to machine precision for

calculations on the 36 CPU cores and the GPU. The results show that for a given system

size the error decreases as the degree increases, and for a given degree the error increases

only slightly as the system size increases. Note that polynomial interpolation at Chebyshev

points is spectrally accurate for smooth functions, but the jump in the 2nd derivative of
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the regularized electric field constrains the rate of convergence in this case and the error

decreases more slowly as the degree increases.
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Figure 2.6: BLTC performance, single field evaluation, particles given by Eq. (2.23), error
versus system size N , MAC θ = 0.6, degree n = 2 : 2 : 12.

Figure 2.7 plots the run time (s) versus the error with four values of the MAC parameter

θ = 0.8, 0.6, 0.4, 0.2 constant on each connected curve and several values of the degree n =

2 : 2 : 12 given by symbols increasing from right to left on each curve. The calculations

use system size N = 10242. Figure 2.7a shows results for 36 CPU cores and Fig. 2.7b

shows results for one GPU. The error decreases as the MAC θ decreases and as the degree

n increases. The horizontal line in each plot is the direct sum run time. The BLTC is faster

than direct summation and the GPU is faster than 36 CPU cores. These results can be

used to select optimal BLTC parameters for a given level of accuracy; for example to achieve

about 6-digit accuracy on the GPU, we choose MAC θ = 0.6 and degree n = 8. A parameter

we don’t vary here is the maximum number of particles per leaf; this is set to 3000. It is

important to recall that the quadtree structure of panels in phase-space is distinct from the

tree used to cluster points for evaluation of the electric field; the former tree has 9 points per

leaf panel whereas the treecode structure has a variable number of particles in leaf nodes,

with a user-defined maximum number of particles per leaf. This is a tunable parameter that
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is set to 3000 for the computations in this dissertation.
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Figure 2.7: BLTC performance, single field evaluation, particles given by Eq. (2.23), run
time (s) versus error, N = 10242 particles, MAC θ = 0.2, 0.4, 0.6, 0.8 constant on each curve,
symbols give degree n = 2, 4, 6, 8, 10, 12 increasing from right to left on each curve, (a) 36
CPU cores, (b) one GPU, note different vertical scales in (a) and (b), horizontal lines give
direct sum run time (s).

Figure 2.8 plots the run time (s) versus system size N for the direct sum and BLTC on

36 CPU cores and one GPU. The BLTC parameters are MAC θ = 0.6 and degree n = 8

yielding about 6-digit accuracy. The direct sum run time scales like O(N2), while the BLTC

run time scales like O(N logN), where the logN factor varies only slightly over this limited

range of N . For system size N ≤ 1282, the GPU direct sum is the most efficient option,

but for system size N ≥ 5122, the GPU BLTC is the most efficient option. For system size

N = 20482, the direct sum run time is 2167 s on 36 CPU cores and 214.8 s on one GPU,

while the BLTC run time is 23.6 s on 36 CPU cores and 2.5 s on one GPU. While work

was done by Vaughn et al. [58] to ensure the treecode utilizes the GPU efficiently, there is

substantial room to improve the performance of the field solver and the treecode on both

CPUs with OpenMP and on GPU with OpenACC or another GPU-accessing language. This

is a possible avenue of future work.



29

64
2

128
2

256
2

512
2

1024
2

2048
2

system size, N

10
-4

10
-2

10
0

10
2

10
4

ru
n
 t
im

e
 (

s
)

O(N
2
)

O(N)

direct sum 36 CPU cores

direct sum 1 GPU

BLTC 36 CPU cores

BLTC 1 GPU

Figure 2.8: BLTC performance, single field evaluation, particles given by Eq. (2.23), MAC
θ = 0.6, degree n = 8 yielding error ≈ 10−6, run time (s) vs. system size N , direct sum and
BLTC on 36 CPU cores and 1 GPU.

2.4 Numerical Results

The Maxwellian distribution with thermal width vth defined by

fM(v; vth) =
1√

2πvth

exp

(
− v2

2v2
th

)
, −∞ < v <∞, (2.24)

is a spatially independent equilibrium of the Vlasov-Poisson system. First we consider sev-

eral problems involving the stability of the Maxwellian with respect to spatial perturbations

including Landau damping and two-stream instability. These problems are posed with peri-

odic boundary conditions in x-space and cutoff vmax = 6 in v-space. The BLTC parameters

are MAC θ = 0.6 and degree n = 8, yielding about 6-digit accuracy in the treecode approx-

imation to the discrete convolutions sums for the electric field. Afterwards we consider a

problem involving halo formation around an ion beam propagating in free-space. The com-

putations were done on one GPU with maximum number of particles per leaf N0 = 3000.

Additional numerical parameters will be specified when each problem is described.
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2.4.1 Landau damping

In this case the initial electron density is a spatially perturbed Maxwellian,

f0(x, v) = fM(v; vth)(1 + α cos (kx)), (x, v) ∈ [0, 4π]× [−6, 6], (2.25)

with perturbation amplitude α, wavenumber k = 0.5, and thermal width vth = 1.

Weak Landau damping

First we consider small perturbation amplitude, α = 0.01. Figure 2.9 plots the 2-norm

of the electric field versus time for phase-space discretization N = 2562, time step ∆t =

0.25, and regularization parameter ε = 0.1. The electric field decays exponentially due to

Landau damping, as originally derived for the linearized Vlasov-Poisson equations [69], and

the computed results are in good agreement with the predicted decay rate γ = 0.1533 [1]

indicated by the dashed line.
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Figure 2.9: Weak Landau damping, 2-norm of electric field versus time, phase-space dis-
cretization N = 2562, time step ∆t = 0.25, regularization parameter ε = 0.1, dashed line
gives predicted decay rate γ = 0.1533 [1], GPU run time 34.6 s.

Figure 2.10 shows the dependence of the electric field on the numerical parameters. The

top row varies the phase-space discretization N , the middle row varies the time step ∆t, and

the bottom row varies the regularization parameter ε. The computed electric field converges

to the correct decay rate as the numerical parameters are refined.
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Figure 2.10: Weak Landau damping, 2-norm of electric field versus time, effect of numerical
parameters, top row: phase-space discretization N = 322, 642, 1282, middle row: time step
∆t = 2, 1, 0.5, bottom row: regularization parameter ε = 1.6, 0.8, 0.4.

Next we consider the electron distribution. Figure 2.11a shows the initial distribution,

where the perturbation is too small to be seen. Figures 2.11b-f plot the perturbation from the

Maxwellian, δf(x, v, t) = f(x, v, t)− fM(v), where blue indicates an excess and red indicates

a deficit. At time t = 0 the perturbation is an alternating sequence of blue and red patches

located symmetrically around velocity v = 0. Due to free-streaming, portions of a patch

with v > 0 travel to the right and portions with v < 0 travel to the left, but in addition some

electrons accelerate to higher velocity. The patches are progressively stretched, but their

width is not uniform. The patches enter neighboring spatial periods and overlap in physical

space, tending to a stack of nearly horizontal thin filaments. To resolve this structure,



32

this computation used phase-space discretization N = 10242, time step ∆t = 0.125, and

regularization parameter ε = 0.05.

! = 0 ! = 0 ! = 5

! = 10 ! = 20 ! = 60

Figure 2.11: Weak Landau damping, (a) initial electron distribution f0(x, v), (b)-(f) per-
turbation from Maxwellian, δf(x, v, t) = f(x, v, t) − fM(v), time t ∈ [0, 60], phase-space
discretization N = 10242, time step ∆t = 0.125, regularization parameter ε = 0.05, run time
1372 s.

Figure 2.12 plots slices of the electron density perturbation from the Maxwellian, δf(0, v, t) =

f(0, v, t)−fM(v), at a representative spatial location x = 0. As time proceeds, the perturba-

tion oscillates more rapidly and the envelope broadens into a roughly triangular shape. This

gives a physical interpretation of Landau damping; the electron distribution f(x, v, t) tends

to zero weakly, while the charge density ρ(x, t), which integrates f(x, v, t) over v, tends to

zero pointwise, and this in turn causes the electric field to decay. The weak convergence seen

here has been rigorously proven for the full nonlinear Vlasov-Poisson equations [70].

Next we demonstrate convergence of the computed electron distribution at time t = 60

for the small amplitude case. The reference is a highly resolved calculation with phase-space

discretization N = 20482, time step ∆t = 0.125 and regularization parameter ε = 0.05. In
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Figure 2.12: Weak Landau damping, slices through electron density deviation from
Maxwellian, δf(0, v, t) = f(0, v, t)− fM(v), time t ∈ [0, 60], same parameters as Fig. 2.11.

each case, one parameter was varied and the other two were kept fixed. Figure 2.13a shows

that the error scales like O(∆x3), the expected rate for biquadratic interpolation and 2D

trapezoid quadrature. Figure 2.13b shows that the error scales like O(∆t4), the expected

rate for 4th order Runge-Kutta time-stepping. Figure 2.13c shows that the error scales like

O(ε2), which is the rate at which the regularized electric field kernel in Eq. (2.10) converges

away from the singularity. Convergence with respect to a regularization parameter has been

considered in analyses of particle methods [71, 62, 72] , but we are not aware of any rigorous

result for the present case.

Next we consider the conserved quantities in Eqs. (2.17). Fig. 2.14 presents a sequence of

calculations with refinements in the regularization parameter ε, number of particles N , and

time step ∆t, showing improved conservation as the numerical parameters are refined. In

Fig. 2.14 the variations in (a) total charge QN , (b) total current IN , and (c) total energy EN

are shown. In the case of weak Landau damping, the minimal distortion of the phase-space
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Figure 2.13: Weak Landau damping, convergence of electron density with respect to numer-
ical parameters, time t = 60, reference solution computed with phase-space discretization
N = 20482, time step ∆t = 0.125, regularization parameter ε = 0.05, solid line shows asymp-
totic error scaling, (a) N ∈ [322, 10242], error = O(∆x3), (b) ∆t ∈ [0.25, 2], error = O(∆t4),
(c) ε ∈ [0.1, 0.8], error = O(ε2).

panels implies that the remeshing interpolation is highly accurate, and each refinement in

numerical parameters gives an extra order of magnitude better conservation in total initial

charge QN0 and total initial current IN0 and at least 2× better conservation of total initial

energy EN0.

a b c
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Figure 2.14: Weak Landau damping, variation in conserved quantities vs. time, effect of nu-
merical parameters, (a) charge QN , (b) current IN , (c) energy EN , phase-space discretization
N , time step ∆t, regularization parameter ε, blue (−): (N,∆t, ε) = (1282, 1.0, 0.4), orange
(−): (N,∆t, ε) = (2562, 0.5, 0.2), green (−): (N,∆t, ε) = (5122, 0.25, 0.1).

Strong Landau damping

Figure 2.15 plots the 2-norm of the electric field versus time with large perturbation

amplitude, α = 0.5. In this case the electric field decays until time t = 10, then grows

until time t = 40, and then oscillates in time. The damping rate γ1 = 0.2920 and growth

rate γ2 = 0.0815 are illustrated by the dashed lines in Fig. 2.15 and documented in the
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literature [2, 73, 74].
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Figure 2.15: Strong Landau damping, 2-norm of electric field vs. time, phase-space dis-
cretization N = 512× 2048, time step ∆t = 0.25, regularization parameter ε = 0.1, run time
754 s, decay rate (γ = −0.2920, orange line), growth rate (γ = 0.0815, black line) [2].

Figure 2.16 shows the corresponding electron distribution, which exhibits significant non-

linear particle-wave interactions. The growth of the electric field starting at time t = 10, is

correlated with particle trapping as indicated by the formation of phase-space vortices cen-

tered at the wave phase velocity, vph = ωr/k ≈ 2.75, since k = 1/2 and ωr is approximately

determined by the Bohm-Gross dispersion relation, ωr ≈ 1 + 3
2
(kvth)

2 = 11/8. The vortices

develop gradually in time and are clearly visible by time t = 36. The vortices show complex

evolution between times t = 36 and t = 60, traveling at approximately the estimated phase

velocity.

Figure 2.17 shows the behavior of conservation metrics with refinement in parameters.

Fig. 2.17(a) shows the variation in total numerical charge QN , (b) total current IN , (c) total

energy EN , (d) fmax, (e) fmin, and (f) fraction of negative distribution f , FN− ≡ |QN−/QN |,

where the integrated negative f is QN− ≡ q
∑N

i=1, f0i<0 f0i∆x0i∆v0iwi. The fraction of

negative f in Fig. 2.17(f) is included because FARSIGHT does not employ any limiters

to enforce positivity or mass conservation. This diagnostic provides a measure of the the

interpolation error. We note that all errors are controlled as numerical parameters are refined.

Also, for the fraction of negative f and the maximum and minimum f values, the errors start
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Figure 2.16: Strong Landau damping, electron distribution f(x, v, t), discretization N =
512× 2048, time step ∆t = 0.25, regularization parameter ε = 0.1, run time 754 s.

at one level and increase at some time where nonlinear mixing stresses the simulation, and

this mixing time also increases with a refinement in parameters. The conservation in energy

is comparable with the literature [1, 75, 76].

The calculations presented so far used a uniform mesh. In Fig. 2.18 we present the AMR

phase-space for the strong Landau problem. In this computation, which took 345 s, we use

N = 16 × 64 + 5 levels of refinement and the variation criterion with εAMR = 0.01. The

dynamic adaptive refinement tracks the filaments and vortices as they evolve, demonstrating

the ability of the AMR scheme to efficiently resolve features in phase-space. The panels at
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Figure 2.17: Strong Landau damping, conservation properties, BLTC parameters MAC
θ = 0.6, degree n = 8, mesh size N , regularization parameter ε, time step ∆t refined si-
multaneously, (a) total charge QN , (b) total current IN , (c) total energy EN , (d) fmax, (e)
fmin, (f) fraction of negative f , |QN−/QN |, blue (−): (N,∆t, ε) = (1282, 0.5, 0.8), orange
(−): (N,∆t, ε) = (2562, 0.25, 0.4), green (−): (N,∆t, ε) = (5122, 0.125, 0.2), GPU times (s)
19.3, 156.9, 1356.4

the highest level are too small to be seen clearly in the figure, so instead they are shaded

by level of refinement. In Fig. 2.19 a smaller region of phase-space at time t = 60 is shown

so that the panels can be seen. Fig. 2.19(a) shows the phase space at time t = 60 with a

red box indicating the smaller region that is looked at in greater detail in (b). Fig. 2.19(c)

shows the actual panel outlines as opposed to a heat map coloring panels by AMR level.

This affords a different perspective on the ability of the AMR scheme to resolve phase-space

features, and illustrates the amount of detail attained with the highest level of refinement.

The uniform and AMR phase-spaces are nearly indistinguishable, as seen by comparing

the uniform refinement calculation performed with resolution N = 512 × 2048, shown in

Fig. 2.16, and the AMR calculation performed with N = 16× 64 + 5 levels of refinement,

shown in Fig. 2.18. The uniform resolution computation at N = 512 × 2048 took 754 s

whereas the AMR computation took 345 s; the AMR computation is more than 2× faster

than the uniform calculation. The AMR calculation began with N = 154297 points which
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is 14.7% of the number of points in the uniform calculation, and ended with N = 538601

which is 51.2% of the uniform N .

𝑡 = 0 𝑡 = 9 𝑡 = 36 𝑡 = 60

Figure 2.18: Strong Landau damping, AMR simulation, tf = 60, N = 16 × 64 + 5 AMR
levels, N0 = 154297, Nf = 538601, or 14.7% to 51.2% of the number of points in the
uniform calculation, comparable uniform resolution is N = 512× 2048, time step ∆t = 0.25,
regularization parameter ε = 0.1, εAMR = 0.01, GPU time 345 s, top: phase-space, bottom:
panel level.

2.4.2 Two-stream instability

There are several commonly studied forms of the two-stream instability. Following [1, 46],

we consider the initial distribution

f0(x, v) = v2fM(v; vth) (1 + α cos (kx)) , (x, v) ∈ [0, 4π]× [−6, 6], (2.26)

with thermal width vth = 1, perturbation amplitude α = 0.5 and wavenumber k = 0.5.

Computations are carried out to time t = 60 with cutoff velocity vm = 6, phase-space

discretization N = 16× 64 + 5 AMR levels, time step ∆t = 0.25, regularization parameter

ε = 0.1, and AMR tolerance εAMR = 0.008. Figure 2.20 shows the electron phase-space

density. The first row shows times 0, 3, 6, and 9 highlighting the formation of the central

vortex that is characteristic of the two-stream instability. The second row shows times
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Figure 2.19: Strong Landau damping, AMR simulation, N = 16 × 64 + 5 AMR levels,
comparable uniform resolution is N = 512 × 2048, regularization parameter ε = 0.1, time
step ∆t = 0.25, AMR tolerance εAMR = 0.01, run time 345 s, (a) phase-space at time t = 60,
(b) zoom of small region in phase-space centered at (x, v) = (2, 2), (c) phase-space panels in
zoom region of (b).

between 12, 15, 18, and 20. Here we see the instability of the cat’s eye at x = 0/4π as

phase-space density crosses between periods. The third row shows times 49, 50.5, 51.5, and

60 and the formation of secondary vortices on the outer tails of the distribution.

While the central phase-space vortex of the two-stream instability is not present in the

Landau damping scenario, similarities can be observed between the two problems. At high

velocities, the entrainment of low density phase fluid forms small vortices near velocity

v = ±3 and these small vortices propagate from one period to the next. As in the strong

Landau damping simulations, thin filaments develop as the electron distribution is stretched

and wrapped around the phase-space vortices.

The AMR computation with phase-space discretization N = 16 × 64 + 5 AMR levels

took 437 s and the corresponding uniform calculation with N = 512× 2048 took 745 s. The

phase-spaces for the two computations at time t = 60 are compared in Fig. 2.21. Fig. 2.21(a)

shows the uniform phase-space calculation at time t = 60, (b) shows the AMR phase-space,

and (c) shows the level of panel refinement. As in the strong Landau damping problem, the

uniform and AMR phase-spaces are nearly indistinguishable and the image of refinement

level indicates the ability of the AMR to track features in phase-space. In the two-stream
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instability, features develop throughout most of phase-space and so most of phase-space is

maximally resolved. The next examples will have features more localized in phase-space and

thus highlight further the benefit of AMR.

𝑡 = 0

𝑡 = 12

𝑡 = 45

𝑡 = 6

𝑡 = 15

𝑡 = 50.5

𝑡 = 9

𝑡 = 20

𝑡 = 60

Figure 2.20: Two-stream instability, phase-space electron distribution, initial condition
Eq. (2.26), discretization N = 16 × 64 + 5 AMR levels, N = 264325 initially, which is
25.1% of the uniform N and N = 639165 ultimately which is 60.8% of the uniform N ,
regularization parameter ε = 0.1, run time 437 s compared to uniform run time 739 s.
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Figure 2.21: Two-stream instability, time t = 60, time step ∆t = 0.25, regularization
parameter ε = 0.1, compare AMR with uniform resolution, (a) uniform discretization,
N = 528 × 2048, run time 739 s, (b) AMR, εAMR = 0.008, N = 16 × 64 + 5 AMR lev-
els, equivalent to 25.1% to 60.8% of uniform N , run time 435 s, (c) AMR panels shaded by
refinement level.

2.4.3 Cold two-stream instability

Next we consider a problem in which the initial density has two Maxwellians centered at

v = ±vs with a spatially periodic perturbation,

f0(x, v) =
1

2
(fM(v − vs; vth) + fM(v + vs; vth)) (1 + α cos kx) , (x, v) ∈ [0, 4π]× [−6, 6].

(2.27)

In these computations the thermal width is vth = 0.25 and the stream velocity is vs = 2,

yielding two well-separated cold streams. The perturbation amplitude is α = 0.5 and the

wavenumber is k = 0.5.

We pursued this problem in order to test the AMR on a problem that would be espe-

cially costly to resolve uniformly. The resulting phase-spaces resemble problems of practical

interest in plasma-based acceleration, where particles are accelerated to such high energies

that the background plasma has a relatively small thermal energy. The cold two-stream

instability phase-spaces are shown in Fig. 2.22. Times t = 0 to t = 10 show acceleration

of some particles to velocities 2.5× the initial streaming velocity as filaments are pushed

to v = ±5. By time t = 16 the central phase-space vortex is well established and there is
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some crossing of phase-space density between periods. Between times t = 14 and t = 22 the

faint high-velocity filaments frame secondary vortices on the higher velocity slopes of the

two initial streams as in the previous warm two-stream instability.

The calculation in Fig. 2.22 has discretization is N = 16×32 + 5 levels of AMR and uses

AMR tolerance εAMR = 0.008. The uniform and AMR calculations are compared in Fig. 2.23.

Fig. 2.23(a) shows the uniform phase-space with phase-space discretization N = 512× 1024,

(b) shows the AMR phase-space with discretization N = 16 × 32 + 5 levels of AMR, and

(c) shows the refinement levels in the AMR calculation. In the AMR calculation, the initial

N is 129245, which is 24.6% of the uniform N , and the final N is 193345, which is 36.8% of

the uniform resolution. The uniform resolution simulation took 123.5 seconds and the AMR

calculation took 44.1 seconds; the uniform calculation took 2.8 times longer.

2.4.4 Halo formation in a mismatched thermal equilibrium sheet beam

Our last example concerns a thermal equilibrium sheet beam previously simulated by

Campos Pinto et al. using the LTPIC method [4]. The model describes an axially thin

transverse slice of a continuously focused ion beam in an accelerator [3]. The ion number

distribution of the slice is f(x, x′, s), where x is a transverse spatial coordinate, x′ is the angle

between particle trajectories and the longitudinal machine axis, and s is the timelike axial

coordinate of a reference particle along the design orbit in the machine. The phase-space

(x, x′) is infinite, −∞ < x, x′ <∞. The ion distribution is given at s = 0 and the goal is to

compute f(x, x′, s) for s > 0.

In dimensional form, the Vlasov-Poisson equations describing the transverse phase-space

are

∂sf + x′∂xf +

(
q

mγ3
bβ

2
b c

2
E − κx

)
∂x′f = 0, E = −∂xφ, −∂2

xφ =
q

ε0
n, (2.28)

where E(s, x) is the electric field, φ(s, x) is the potential, n(s, x) =
∫∞
−∞ f(x, x′, s)dx′ is the
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Figure 2.22: Cold two-stream instability, initial distribution Eq. (2.27), phase-space dis-
cretization N = 16 × 32 + 5 AMR levels, N0 = 129245 which is 24.6% of the uniform N ,
Nf is 193345, which is 36.8% of he uniform N , AMR tolerance εAMR = 0.008, regularization
parameter ε = 0.1, time step ∆t = 0.25, run time time 44.1 s.

particle number density, q,m are the ion charge and rest mass, γb = (1 − β2
b )
−1/2 is the

Lorentz factor, βbc is the beam slice speed, and κ = (2π/3)2 m−2 > 0 is the focusing

strength. The potential satisfies the following free-space boundary conditions,

− ∂xφ(s, x)→ ± q

2ε0
Ni, x→ ±∞, (2.29)

where Ni =
∫∞
−∞

∫∞
−∞ f(s, x, x′)dxdx′ is the total number of particles in the beam slice.

Lund et al. [3] showed that the model gives rise to an equilibrium distribution,

f eq(x, x′) =
n̂√

2πT ∗
exp

(
− x′2

2T ∗

)
ñ∆

(
x

γbλD

)
, (2.30)

where n̂ is the peak density, T ∗ is the dimensionless temperature, λD is the Debye length,



44

a b c

Figure 2.23: Cold two-stream instability, compare AMR with uniform resolution at time 22,
ε = 0.1,∆t = 0.25 (a) N = 512 × 1024 , GPU time 123.5 s, (b) N = 16 × 32 + 5 levels of
AMR, εAMR = 0.008, GPU time 44.1 s, (c) AMR resolution.

ω̂p is the plasma frequency, ∆ is a dimensionless parameter,

n̂ =
ε0mγ

3
bβ

2
b c

2κ

q2(1 + ∆)
, T ∗ =

T

mγbβ2
b c

2
, λD =

(
T

mω̂2
p

)1/2

,

ω̂p =

(
q2n̂

ε0m

)1/2

, ∆ =
γ3
bβ

2
b c

2κ

ω̂2
p

− 1,

(2.31)

and the scaled density ñ∆ satisfies the following equation and normalizing conditions,

ñ′′∆ + (1 + ∆)ñ∆ − ñ2
∆ +

1

ñ∆

(ñ′∆)
2

= 0, ñ∆(0) = 1, ñ′∆(0) = 0. (2.32)

We solved Eq. (2.32) numerically using the parameter values in Table 2.2 [4], and Fig. 2.24

shows the resulting equilibrium distribution which has a smooth top-hat profile. The con-

nection of the scaled density ñ∆ to quantities from Campos Pinto et al. [4] is the relation

ñ∆ = e−ψ∆ where ψ∆ is an effective potential defined to be the solution of the transformed

Poisson equation,

ψ′′∆(x̂) = 1 + ∆− e−ψ∆(x̂) , (2.33)

satisfying ψ′∆(0) = ψ∆(0) = 0. Identifying ñ∆ = e−ψ∆ , differentiating, and substituting

Eqn. (2.33) leads to the Eqn. (2.32) for ñ∆.

At this point it is convenient to scale variables,

x→ κ1/2x, φ→ q

mγ3
bβ

2
b c

2
φ, f → q2κ

mγ3
bβ

2
b c

2ε0
f, (2.34)
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parameter ∆ temperature T ∗ Debye length λD peak density n̂
5.522× 10−8 3.463× 10−7 2.810× 10−4 m 4.848× 1013

Table 2.2: Parameters for equilibrium sheet beam distribution from Campos Pinto et al. [4].

Figure 2.24: Scaled density ñ∆ for equilibrium sheet beam distribution [3, 4].

after which the Vlasov-Poisson equations are

∂sf + x′∂xf + (E − x) ∂x′f = 0, E = −∂xφ, −∂2
xφ = n, n =

∫ ∞
−∞

fdx′ , (2.35)

satisfying open boundary conditions. Following [4] we consider a mismatched beam in which

the equilibrium is perturbed,

f(x, x′, s = 0) = f eq(x/µ, µx′), µ = 1.25, (2.36)

and the resulting ion distribution f(x, x′, s) for s > 0 is obtained using the FARSIGHT

method. In this case the electric field convolution integral is

E(s, x) =

∫ ∞
−∞

∫ ∞
−∞

Kε(x, y)f(y, x′, s)dydx′, Kε(x, y) =
1

2

x− y
((x− y)2 + ε2)1/2

, (2.37)

where the regularized 1D free-space kernel converges to the exact kernel, Kε(x, y)→ 1
2
sign(x−

y), as ε→ 0.

The calculation used phase-space domain |x| ≤ √κ 15 mm = π/100 and |x′| ≤ 14.5 mrad,
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uniform discretization N = 10242, axial increment ∆s =
√
κ Lp/10 = π/3, regularization

parameter ε =
√
κ 0.1 mm ≈ 2.09× 10−4, and BLTC pararameters MAC θ = 0.8 and degree

n = 4. Figure 2.25 shows the evolution of the phase-space density with halo formation. The

filled colored contours show the density in the core of the beam and the open black contours

show the low density halo that emerges around the core (contour levels 10−p, p = 1 : 5).

The results agree well with the LTPIC reference solution in [4], which used 5122 linearly

transformed (LTPIC) particles each with four degrees of freedom, and ∆s =
√
κLp/16 =

π/48.

Figure 2.26 presents the solution at axial position s =
√
κ 40Lp = 40π/3 with (a) uniform

discretization N = 10244, (b) discretization N = 162 +6 AMR levels, initially N = 135253 or

12.9% of Nu, finally N = 310901 or 29.6% of Nu and (c) the panels in the AMR calculation.

Comparing frames (a) and (b) shows that the uniform and AMR phase-space distributions

are nearly indistinguishable. The run time of the uniform calculation was 1169 s, while

the run time of the AMR calculation was 245 s. The result in frame (c) shows that the

AMR scheme refined panels within the core of the beam and around the halo, leaving the

complementary low-density regions unrefined.

Table 2.3 presents some profile information, including the number of initial, final, and

average number of particles used as well as the total run time, field evaluation time, and

remeshing time for the uniform and AMR calculations. The results show that the AMR

calculation is about 5× faster, using on average 5× fewer points. The AMR calculation

requires only 15% of the uniform field evaluation time and one third of the uniform remeshing

time.
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Figure 2.25: Mismatched beam problem, uniform phase-space discretization N = 10242,
axial increment ∆s = 0.1Lp, regularization parameter ε = 0.1 mm, GPU run time 1169 s,
results agree well with LTPIC reference solution in [4].

2.5 Summary

A forward semi-Lagrangian scheme called FARSIGHT was presented for collisionless

electrostatic plasmas described by the 1D1V Vlasov-Poisson equations. The distribution
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Figure 2.26: Mismatched beam problem, phase-space at axial position s = 40Lp, (a) uniform
discretization, N = 10242, run time 1169 s, (b) AMR, N = 642 + 6 AMR levels, initially
N = 135253 or 12.9% of Nu, finally N = 207721 or 19.8% of Nu, run time 245 s, (c) panels
in AMR calculation.

N N0 Nfinal Nave total field remeshing
run evaluation time
time time

uniform 10242 1050625 1050625 1050625 1169 s 735 s 349 s
82+ 6 AMR levels 135253 310901 198624 247 s 114 s 116 s

% of uniform 12.9% 29.6% 18.9% 21.1% 15.5% 33.3%

Table 2.3: Mismatched beam profile, profile of results in Fig. 2.26, discretization N , initial
and final values N0, Nf , average value Nave, total run time, field evaluation time, remeshing
time

function is represented by quadrilateral panels having a hierarchical tree structure, and each

panel is a 3× 3 grid of particles which are tracked by 4th order Runge-Kutta timestepping.

The electric field is expressed as a convolution integral of the charge density with a regu-

larized electric field kernel. The particles are remeshed at every time step using biquadratic

interpolation on the panels, and the panels are adaptively refined to resolve the phase-space

distribution function. The electric field integral is discretized by the trapezoid rule, and the

discrete sums are computed by a GPU-accelerated barycentric Lagrange treecode [58].

In calculations of Landau damping, FARSIGHT reproduced the well-known damping

and growth rates, while in strong Landau damping, two-stream instability, and beam halo

formation, the code was able to resolve small-scale structures in phase-space. The benefit

of adaptive mesh refinement was shown by significantly decreasing the run time for the cold
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two-stream instability and beam halo formation problems. It was shown that conservation

errors decrease and fewer negative f -values occur when the numerical parameters are refined.

FARSIGHT resembles other forward semi-Lagrangian schemes such as LTPIC [4], SFK [31],

and the cloudy Vlasov solver [51] in tracking the deformation of the phase-space flow map,

however here this is done using Lagrangian panels with a tree structure. The scheme does

not use operator splitting.

There are several directions for future development of FARSIGHT. The present simula-

tions did not use a positivity-preserving limiter, but this could be considered in the future.

It would be interesting to test the effect of using finer particle grids in each panel and

higher order interpolation and quadrature. The adaptive refinement procedure could be im-

proved by enabling panel refinement independently in the x and v directions. We believe the

approach developed here can be extended to higher-dimensional electromagnetic plasmas in

confined geometry, using an integral formulation of Maxwell’s equations, adaptive refinement

of phase-space, and a fast summation method that scales well on multiple GPUs [77].



CHAPTER III

Unlimited Photon Acceleration

This chapter presents unlimited photon acceleration (PA∞), a scheme for unlimited fre-

quency shift of a laser pulse trailing an electron beam through plasma with a tapered density

profile.

The many applications of bright, coherent XUV light have motivated substantial interest

in source development, such as the construction of XUV wavelength Free Electron Lasers

(FELs) including FLASH [78] as well as nonlinear frequency mixing [79], high harmonic

generation [80], and XUV lasing [81], to name a few. Another method for generating short

wavelengths is ‘photon acceleration’ [8, 16]. Dressed by a background plasma, ‘quasi-photons’

gain an effective mass ~ωp/c2, where ω2
p = e2n/meε0 for a plasma of number density n. In the

presence of co-propagating density gradients, the quasi-photons experience local frequency

shifts due to spatiotemporal variations in the phase velocity, and are therefore accelerated

(i.e. experience an increase in group velocity). The resulting quasi-photon phase-space

trajectories in plasma wakefields are similar to those of leptons [82].

Photon acceleration can arise as a result of plasma wakefields [8], ionization fronts [83, 84]

and even using metamaterials [85]. Photon acceleration was measured in ionization front

[86] and laser wakefield acceleration experiments [87, 88]. Recent results include cascaded

sequences of localized ionizations [20], resulting in large frequency shifts and the use of plasma

50
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wakes to downshift radiation to very long wavelengths [22]. Limits to photon acceleration

in plasma wakefields in the linear [17] and nonlinear regimes [18] were previously studied,

identifying dephasing of the photon beam with respect to the accelerating refractive index

gradient as placing a ceiling on the frequency shift. Dephasing occurs when the difference

between the phase velocity of the wake and the high-frequency photon pulse results in it

slipping out of the accelerating refractive index gradient. A recent scheme for overcoming

this restriction using an ionization front is dephasingless frequency shift using a ‘flying focus,’

a combination of a chirped laser pulse and an achromatic lens for spatiotemporal shaping

of a laser pulse [21]. The flying focus was also used to mitigate the analogous process of

electron beam dephasing in a plasma wakefield [89], in addition to related spatiotemporally

structured focusing schemes [90, 91].

Another method for mitigating dephasing, in the context of electron acceleration is the

use of tapered plasma density ramps [92, 93, 94, 95]. By having a non-uniform density,

the plasma wavelength varies along the propagation length, which allows for locking the

accelerating phase with the particle beam. Tapered density ramps were previously suggested

as a way of increasing the frequency shifts in photon acceleration [8, 17].

This chapter develops an analytic model for dephasingless photon acceleration in the

nonlinear plasma wake regime, based on a tapered plasma density profile. The model shows

that if a wake can be sustained for arbitrary distance, there is no limit to the frequency shift

achievable. The 1D model is used to design the density profile for quasi-3D particle-in-cell

simulations for a broad driver beam, which demonstrates a frequency upshift of an 800 nm

witness laser pulse to 80 nm by maintaining the phase matching between the wake and pulse

centroid. The pulse experiences net energy gain of 5× to 250 mJ and is compressed, leading

to an ultrashort pulse of XUV radiation with relativistic intensity.

The rest of this chapter is outlined as follows. Section 3.1 presents background material on
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photon acceleration and frequency shift. Section 3.2 presents the phase matching condition

on which PA∞ is based. Section 3.3 derives expressions for key locations and gradients in the

wake behind the driver, dependent on quantities determined within the driver. Section 3.4

derives expressions for plasma fluid quantities at the end of the drive beam as functions of the

drive beam parameters. Section 3.5 unites the work of the previous sections and completes

the map from drive beam and unperturbed plasma density to plasma wake necessary for

phase matched photon acceleration. The map is summarized and numerical verification is

presented. Section 3.6 expands the PA∞ model in the ultrashort and weak driver limits to

find analytical expressions for the frequency shift and phase matching conditions. Using

formulas obtained in section 3.6 or solving directly the differential system consisting of the

frequency shift and phase matching conditions leads to the phase matched plasma density

profile and expected frequency shift. This section mathematically demonstrates that the

frequency shift is constrained only by the ability to maintain the wake, i.e. the photon

acceleration is unlimited. Section 3.8 uses the PA∞ tapered density profile in particle-in-cell

(PIC) simulations to investigate the predicted frequency shift. Section 3.9 summarizes the

results of the simulations and looks ahead to future research into photon acceleration.

3.1 Background : photon acceleration

A laser pulse that experiences a co-moving plasma density gradient will be upshifted in

frequency. From eikonal solutions to the wave equation, well known ray-tracing solutions can

be used for the temporal variation in the light [96, 16] to relate it to the density gradients

generated in a wakefield. For a given dispersion relation D, the frequency ω and wavenumber

kz of an optical mode propagating in the z direction satisfy the following relations:
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dz/dτ = ∂D/∂kz, dkz/dτ = −∂D/∂z

dt/dτ = ∂D/∂ω, dω/dτ = ∂D/∂t ,

(3.1)

where τ parametrizes the ray path of the optical mode.

The optical mode will vary with distance propagated as

dω

dz
=
dω/dτ

dz/dτ
=

∂D/∂t

∂D/∂kz
. (3.2)

We assume that the laser pulse is propagating in a wakefield generated by a relativistic

driver (either a relativistic particle beam or second laser pulse) propagating at velocity vd(z)

and therefore change coordinates from (x, y, z, t) to (x, y, z, ζ = t−
∫ z

0
dz′/vd(z

′)) [93]. The

change in the frequency can, therefore, be expressed as

dω

dz
=

∂D/∂ζ

∂D/∂kz
. (3.3)

For example, for linear plasma dispersion, D = ω2 − ω2
p/γ − k2

zc
2, and assuming that

ions are immobile and the variations in the plasma density with respect to ζ are much larger

than the variations in ω and k,

dω

dz
' 1

2kzc2

∂(ω2
p/γ)

∂ζ
. (3.4)

Note that the γ factor in the linear dispersion relation is to allow for relativistically streaming

electrons rather than, e.g. oscillations in the laser field, and therefore this dispersion relation

is considered exact for a weak laser pulse.
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Figure 3.1: Schematic of unlimited photon acceleration. (a) Line drawing of PA∞ layout,
drive beam (in orange) propagates to the right through the plasma, laser pulse (red) co-
propagates at the point ζδ where density (theory in green, simulation in blue) is increasing
with distance ζ from the leading edge of the drive beam. (b) 3D visualization of PA∞, drive
beam in purple propagates to the right through the plasma, laser pulse in blue and red
co-propagates, wake indicated with isocontours of plasma density depression (in green) and
elevation (in yellow).

3.2 Matching condition to mitigate dephasing

For positive frequency shift, the laser pulse must be at a phase in the wake where the

density gradient is positive. However, the laser centroid moves at the group velocity of the

laser pulse and so as the laser pulse shifts in frequency, its group velocity increases and

the pulse will change position in the wake. To mitigate dephasing of the photon pulse,

we use an ultrarelativistic electron beam to create the wake and a tapered density profile

(similar to that proposed for mitigating dephasing in electron acceleration [93, 95, 97, 98]) to

continuously increase the plasma wavelength and keep the laser pulse experiencing a positive

plasma density gradient. The layout is shown in figure 3.1. A drive beam propagates to the

right in the figures. Behind the drive beam, situated at the point in the wake where the

plasma density is increasing with distance behind the drive beam, is the laser pulse. Not

shown is the plasma density profile n(z); obtaining n is a key part of this chapter.

For convenience, we choose the point where the density perturbation in the wake δn =



55

0 within the region of positive density gradient, hereby labelled as ζδ, as the location of

the reference density gradient we are trying to track. This is not the maximum density

gradient except in the linear regime, but the maximum is in general slightly behind ζδ, and

using ζδ greatly simplifies the analysis. It can be shown that the maximum refractive index

gradient occurs where the electric field of the wake is zero, which is close to where the density

perturbation goes to zero. It can also be shown that the refractive index gradient is equal

to the density gradient at the point where δn = 0 for a 1D wake.

To keep the pulse experiencing the greatest possible frequency shift, we require ζcentroid =

ζδ for all times, where ζcentroid denotes the center of the witness laser pulse. Expressed in

differential form, we have

dζcentroid

dz
=
dζδ
dz

, (3.5)

which may be written as

1

vcentroid

− 1

vd
=
dζd
dn

dn

dz
. (3.6)

For an ultrarelativistic particle beam driver, we make the approximation vd → c. Assuming

that the laser pulse moves at the linear group velocity and the plasma is underdense, ω2
p/ω

2 �

1, we obtain an equation relating the z profile of the plasma number density to the variation

in the wake position of the zero density perturbation ζδ with plasma density,

dn

dz
' 1

2c

ω2
p

ω2

[
dζδ
dn

]−1

. (3.7)

Note that γ(ζδ) = 1, where the density perturbation is zero.

The phase matching condition in equation (3.7) and the frequency shift relation in equa-

tion (3.4) together are a coupled pair of differential equations for the plasma density profile

that will give phase matched photon acceleration as well as the predicted frequency shift

given the phase matched density profile. To close them, it remains to determine the depen-
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dence of the quantities
∂(ω2

p/γ)

∂ζ

∣∣∣
ζδ

and dζδ
dn

on n, ω, and possibly z.

3.3 Description of the wake behind the driver

In this section, the position ζδ in the wake where there is a positive density gradient and

δn = 0, and the density gradient there,
∂(ω2

p/γ)

∂ζ

∣∣∣
ζδ

, are obtained. The wake behind the driver,

the region indicated by the dashed black box in Fig. 3.2, is modeled with the Akhiezer-

!!

Figure 3.2: PA∞ requires analytic expressions for position ζδ of zero perturbation and in-

creasing plasma density and for the gradient there,
∂(ω2

p/γ)

∂ζ

∣∣∣
ζδ

. These expressions are obtained

by solving the plasma fluid equations behind the driver, the region indicated by the dashed
black box here. The driver density is the orange line, creating the plasma response shown
in blue. The analytic expression for the plasma response in the absence of the witness pulse
is in green. Information about the fluid quantities at the end of the driver, where ζ = ζd, is
also needed, but this is determined in section 3.4.

Polovin (AP) [99] relativistic wave. This is a nonlinear plasma wave with a given amplitude

γm and velocity β = vp/c. The Lagrangian form of the plasma equations describing the AP

wave is used here to develop a solution parametrized in terms of a periodic coordinate ϕ as

derived by Infeld and Rowland in [100] (particularly, the expression of the Infeld-Rowland-

Akhiezer-Polovin wave derived in Verma et al. [101, 102].) With the parametrization of the

wake behind the driver, the position of zero density perturbation, ζδ, and the plasma density

gradient there,
∂(ω2

p/γ)

∂ζ

∣∣∣
ζδ

, are found as functions of the wake parameters ϕst and amplitude
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γm defining the wake behind the driver. Then, the dependence of the starting phase ϕst on

the wake within the driver is found, particularly on the fluid Lorentz factor γd, momentum

pd, and electric field Ezd at the end of the driver. The dependence of the wake amplitude

γm on fluid quantities in the wake will be determined in the subsequent section, section 3.4.

Under the assumption that d log(n)/dz � kp(z) for all z, i.e. the plasma density gradients

are long compared to the wake period scale, to lowest order the wake may be assumed to

follow the uniform plasma solution with local density n(z). Hence, the density in the wake

nw(ζ; z) is a function of ζ and is parametrized by z, i.e. by the local density n(z).

In a 1D model the density in the wake nw(ζ; z), together with the fluid momentum p and

velocity v and electric field Ez, satisfies the cold unmagnetized fluid equations

p = γmv, γ = (1− v2/c2)−1/2 , (3.8a)

∂nw
∂t

+
∂nwv

∂z
= 0 , (3.8b)

∂p

∂t
+ v

∂p

∂z
= qEz , (3.8c)

∂Ez
∂z

= 4πq(nw − n) , (3.8d)

0 =
4π

c
qnwv +

1

c

∂Ez
∂t

. (3.8e)

The plasma particles are electrons with charge q = −e and mass m = me and there is a

static neutralizing background of positive ions. The last two equations, Gauss’ law (3.8d)

and Ampére’s law (3.8e), combine to give

∂Ez
∂t

+ v
∂Ez
∂z

= −4πqnv . (3.9)

Performing a Lagrangian change of coordinates,

z(α, τ) = z0(α) +

∫ τ

0

v(α, τ ′)dτ ′, t(α, τ) = τ , (3.10)
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leads to the Lagrangian form of the fluid equations,

nw(α, τ) =
nw(α, 0)∂z0

∂α
(α)

∂z0
∂α

(α) +
∫ τ

0
∂v
∂α

(α, τ ′)dτ ′
, (3.11a)

∂p

∂τ
= qEz , (3.11b)

∂Ez
∂τ

= −4πqn0
p

mγ
. (3.11c)

The last two equations combine to form the equation for the relativistic harmonic oscillator

∂2p

∂τ 2
= −4πq2np

mγ
= −ω2

p

p

γ
, (3.12)

where ω2
p = 4πq2n

m
.

The relativistic harmonic oscillator equation can be directly integrated:∫ τ

0

∂2p

∂τ ′2
∂p

∂τ ′
dτ ′ = −ω2

p

∫ τ

0

p√
1 + p2/m2c2

∂p

∂τ ′
dτ ′

= 2m2c2ω2
p(B − γ) ,

(3.13)

where B is a constant of integration. In the last line, it must be that B ≥ γ(α, τ), which

implies that B(α) = γm(α) =
√

1 + pm(α)2/m2c2. While the constant of integration can be

distinct for each α, the solutions for a traveling wave will see a uniform γm so the α can be

suppressed.

The units are removed with the substitutions p→ p/mc, τ → ωpτ, to obtain

∂p

∂τ
= ±
√

2

√
γm −

√
1 + p2 . (3.14)

This integral separates for direct integration:∫
±
√

2dτ =

∫
dp√

γm −
√

1 + p2

. (3.15)
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At this point the change of variables

(γm − 1) sin2 ϕ = γm −
√

1 + p2, (γm − 1) sin 2ϕdϕ = − 1√
1 + p2

pdp , (3.16)

leads to the solution [100, 101]

τ =
√

2(γm + 1)E(ϕ, κ2)−
√

2

γm + 1
F (ϕ, κ2) +D , (3.17)

where F,E are the incomplete elliptic integrals of the first and second kind (note E is not

the electric field), κ2 = γm−1
γm+1

, κ′2 = 2
γm+1

, and D(α) is another constant of integration.

Verma et. al. [101] showed that a traveling wave is obtained if γm is independent of α and

if D(α) = ωpα/vp and vp = cβ is the wave phase velocity. The AP wave can be expressed in

Lagrangian coordinates α, τ as:

z(α, τ) = z0(α) + ∆z(ϕ(α, τ)) , (3.18a)

∆z(ϕ) =
c

ωp

2κ

κ′
sin(ϕ) , (3.18b)

γ(ϕ) = γm − (γm − 1) sin2(ϕ) , (3.18c)

p(ϕ) = cosϕ
√
γm − 1

√
1 + γ , (3.18d)

qEz(ϕ) =
∂p

∂τ
= sinϕ

√
2(γm − 1) , (3.18e)

ωpτ =
2

κ′
E(ϕ, κ2)− κ′F (ϕ, κ2) +

ωpα

vp
. (3.18f)

The last equation determines ϕ implicitly as a function of α, τ.

The AP solution to the cold relativistic fluid equations is a traveling wave that can be

expressed in the single parameter ζ = t − z/vp. To obtain the traveling wave solution, the

condition z0(α) = α is imposed. Expressed in Eulerian coordinates, the relativistic traveling

wave has the form

ωpζ =
2

κ′
E(ϕ, κ2)− κ′F (ϕ, κ2)− 1

β

2κ

κ′
sinϕ (3.19a)
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γ(ϕ) = γm − (γm − 1) sin2(ϕ) , (3.19b)

p(γ) = cosϕ
√
γm − 1

√
1 + γ , (3.19c)

qEz(ϕ) =
∂p

∂τ
= sinϕ

√
2(γm − 1) , (3.19d)

nw(γ) =
n

1− p(γ)/γ
, (3.19e)

where parameters ϕ = 2jπ, j = . . . ,−2,−1, 0, 1, 2, . . . correspond to maxima in the plasma

density and ϕ = j + π/2 correspond to points of zero perturbation, i.e. nw = n. Fur-

thermore, we demonstrate that ϕ = (2j + 3/2)π corresponds to points of zero perturbation

and increasing plasma density, ∂nw/∂ζ > 0. These equations completely describe the wake

behind the drive electron beam, given the mapping from drive beam to amplitude γm and

starting parameter ϕst.

With the wake behind the driver completely described in terms of amplitude γm and

parameter ϕst, the quantities ζδ and
∂(ω2

p/γ)

∂ζ

∣∣∣
ζδ

can be derived. The position ζδ, measured

from the leading edge of the drive beam, may be expressed as

ζδ = ζ(3π/2)− ζ(ϕst) + Ld/c , (3.20)

where ζ(ϕ) is the position in the undriven wake as a function of ϕ, Ld is the length of the

drive beam, and ϕst is determined so that the wake is continuous across the transition from

drive beam to undriven wake. To enforce continuity of the wake, we will require that electric

field and momentum are continuous at the transition from within the drive beam to behind

the drive beam. Let γd denote the plasma Lorentz factor at the end of the drive beam, pd

be the plasma momentum at the end of the drive beam, and Ezd the electric field at the end

of the driver. The equations for p and Ez behind the driver can be arranged to determine ϕ
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in terms of fluid quantities:

cosϕ =
p√

γm − 1
√

1 + γ
, (3.21a)

sinϕ =
qEz√

2(γm − 1)
. (3.21b)

These equations combine to determine tanϕst as a function of the fluid quantities:

tanϕst =
sinϕst
cosϕst

=
qEzd√

2(γm − 1)
·
√
γm − 1

√
1 + γd

pd

=
qEzd
pd

√
1 + γd

2
.

(3.22)

Now ϕst is determined by the fluid quantities within the drive beam as well as γm. The

dependence of these on the drive beam parameters will be derived in the next section.

Next, the dependence of
∂(ω2

p/γ)

∂ζ

∣∣∣
ζδ

on the unperturbed plasma density n and the wake

amplitude γm is determined. Because ω2
p is proportional to nw with constant of proportional-

ity e2/meε0, it suffices to calculate ∂(nw/γ)/∂ζ|ζδ . Because evolution in z is considered to be

much slower than evolution in ζ, in this section n, ωp, γm(z), β, κ, and κ′ are treated as con-

stants. Hence, all quantities ultimately depend only on ζ and we will derive d(nw/γ)/dζ|ζδ .

When δn = 0, then nw = n so β = p = 0, γ = 1, and ϕ = (j+1/2)π, j = . . . ,−2,−1, 0, 1, . . ..

First, we’ll show that d(nw/γ)
dζ

∣∣∣
ζδ

= dnw
dζ

∣∣∣
ζδ

, by observing that dγ
dζ

∣∣∣
ζδ

= 0:

dγ

dζ

∣∣∣∣
ζδ

=
dγ

dϕ

∣∣∣∣
ϕ=(n+1/2)π

dϕ

dζ

∣∣∣∣
ζδ

= −(γm − 1) sin([2j + 1]π)
1

1
ωp

(
2
κ′

√
1− κ2 sin2 ϕ− κ′

1−κ2 sin2(2n+π)
− 2 κ

κ′
sin2(2n+ 1)π

)
= −(γm − 1) sin([2j + 1]π)

ωpκ
′

κ′ + 2κ
= 0 .

(3.23)
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Then, because γm(ϕ = (j + 1/2)π) = 1, we have

d(nw/γ)

dζ

∣∣∣∣
ζδ

=
dnw
dζ

∣∣∣∣
ζδ

. (3.24)

We evaluate dnw
dζ

∣∣∣
ζδ

by the chain rule,

dnw
dζ

∣∣∣∣
ζδ

=
dn

dβ

∣∣∣∣
β=0

dβ

dϕ

∣∣∣∣
ϕ=(j+1/2)π

dϕ

dζ

∣∣∣∣
ζδ

. (3.25)

Writing the wake plasma density in terms of β = p/γ, nw = n(z)/(1 − β), we calculate

dnw/dβ and evaluate at β = 0:

dnw
dβ

=
n(z)

(1− β)2
,

dnw
dβ

∣∣∣∣
β=0

= n(z) .

(3.26)

Then we write the wave velocity in terms of the Lorentz factor γ and use the relation for

γ(ϕ):

dβ

dϕ
=

(
∂β

∂p

dp

dγ
+
∂β

∂γ

)
dγ

dϕ

= −2 sinϕ
√
γm − 1√

γ + 1
,

dβ

dϕ

∣∣∣∣
ϕ=(j+1/2)π

= − sinϕ
√

2(γm − 1) .

(3.27)

Since ωpζ = 2
κ′
E(ϕ, κ2)− κ′K(ϕ, κ2)− 2κ

βκ′
sinϕ, we have

ωp
dζ

dϕ
=

2

κ′

√
1− κ2 sin2 ϕ− κ′ 1

1− κ2 sin2 ϕ
− 2κ

βκ′
cosϕ

=
2

κ′

√
1− κ2 − κ′ 1

1− κ2
,

ωp
dζ

dϕ
|ϕ=(j+1/2)π =

2

κ′
κ′ − κ′ 1

κ′
= 1 .

(3.28)

Altogether, the plasma gradient where δn = 0 is

dnw
dζ

∣∣∣∣
ζδ

= n(z)(− sin(ϕ))
√

2(γm − 1)ωp(z), ϕ = (j + 1/2)π . (3.29)
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The positive plasma gradient required for positive frequency shift then means that ζδ occurs

at ϕ = (2j + 3
2
)π. We can therefore write

d(ω2
p/γ)

dζ

∣∣∣∣
ζδ

= ωp(z)3
√

2(γm − 1) . (3.30)

In this section, we have modeled the wake behind the driver as a traveling relativistic

plasma wave. We presented a periodic parametrization of this wave and derived from this

representation quantities ζδ and
∂ω2

p/γ

∂ζ

∣∣∣
ζδ

necessary for understanding frequency shift and

phase matching. It remains to determine the dependence of the amplitude γm on the drive

beam, as well as the dependence of the electric field Ezd, fluid momentum p, and fluid gamma

factor γd at the end of the drive beam on the drive beam parameters.

3.4 Description of the wake within the driver

In this section we determine the map from drive beam parameters to wake behind the

driver. In the previous section we found that the wake behind the driver can be completely

understood in terms of its amplitude γm and a continuity condition between the wake within

the drive beam and the wake behind the drive beam. The continuity condition depends on

the plasma particle Lorentz factor γd, momentum pd, and electric field Ezd at the end of

the drive beam. In this section we derive γm, γd, pd, and Ezd in terms of the drive beam

parameters. To determine the wake quantities at the end of the drive beam, we solve the

fluid equations within the drive beam, the region indicated the dashed black box in Fig. 3.3,

where there is a nonzero drive beam density contribution to the plasma density.

This section consists of three parts. First, the plasma fluid equations within the drive

beam are presented. Next, these are solved in three cases depending on the relation between

the drive beam density nd and the unperturbed plasma density n = n(z), namely when

nd < n/2, nd = n/2, and nd > n/2. Since there are three solution sets, the quantities γd, pd,
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Figure 3.3: PA∞ requires analytic expressions for plasma fluid quantities at the end of the
driver, ζ = ζd. These expressions are obtained by solving the plasma fluid equations within
the driver, the region indicated by the dashed black box in this figure. The driver density
is the orange line, creating the plasma response within the driver shown in red (not to be
confused with the oscillatory laser pulse further back in the wake, also in red).

and Ezd are expressed in three different cases. The electric potential at the end of the driver,

φd, will also be presented in each case, since it is needed for determining the amplitude γm

of the wake behind the driver. This section ends by deriving the relation γm = 1 − ndφd

between the drive beam parameters and the amplitude of the wake behind the driver.

We begin with the plasma fluid equations within the drive beam. We assume an ultra-

relativistic (βd → 1) drive beam, in which case the fluid equations are

nw
n

=
1

1− β , (3.31a)

1

ω2
p

∂2

∂ζ2
(γ(1− β)) =

β

1− β + nd/n . (3.31b)

Using the approximation that the plasma density n(z) is slowly varying, we may use the

wake solutions in constant density to find nw(ζ;n(z)). We therefore treat n(z) as a constant,

n, and write ζ = ωpζ, nd = nd/n, and Ld = ωpLd/c.

Following Rosenzweig [103], we let

x(ζ) ≡ γ(1− β) =

√
1− β
1 + β

. (3.32)
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This leads to

∂2x

∂ζ2
=

1

2

(
1

x2
− 1 + 2nd

)
. (3.33)

We assume that the plasma is quiescent ahead of the driver, so for ζ ≤ 0, β = 0 = p = E,

and n = 1 = γ = x.

This integrates once to give(
∂x

∂ζ

)2

= 2(1− nd)− 1/x+ (2nd − 1)x . (3.34)

We make a detour to discuss the electric field and the choice of sign for the square root

that equals ∂x
∂ζ
. Recall that Gauss’ law in this ultrarelativistic problem states

− 1

vd

∂Ez
∂ζ

= 4πe(ni − ne − nd)

∂Ez
∂ζ

= −(1− nw − nd) =
∂2x

∂ζ2
.

(3.35)

We can make the identifications Ez = ±∂x
∂ζ

and φ = ±(−x+ 1) since Ez = 0 = ∂x
∂ζ

for ζ ≤

0. Since we made the assumption that the plasma species and beam particles are electrons,

immediately behind the driver the electron density is decreased; then ∂Ez
∂ζ

= nw +nd− 1 > 0

and we start with the positive square root for ∂x
∂ζ

.

For identifying dependence of fluid quantities on drive beam parameters we first determine

the dependence on x:

γ =
1 + x2

2x
, (3.36a)

p =
1− x2

2x
, (3.36b)

Ez =
∂x

∂ζ
= sgn(Ez)

√
2(1− nd)− 1/x+ (2nd − 1)x , (3.36c)

φ = 1− x . (3.36d)

The term (2nd−1)x changes sign based on the relation of nd and 1/2, as does the qualitative

behavior of the solution and the technique used to derive the solution. There are three cases
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to consider:

1. 0 < nd < 1/2

2. nd = 1/2

3. nd > 1/2

Case 1: 0 < nd < 1/2

This is the case studied in Rosenzweig [103] but we include the derivation for complete-

ness. We will find that x is oscillatory in ζ where as in the other cases x is monotone.

The equation for x is

∂x

∂ζ
=
√

1 + 1− 2nd − 1/x− (1− 2nd)x . (3.37)

Following Rosenzweig, we rearrange the equation and integrate:

√
1− 2nd

∫ x

1

∂ζ

∂x′
dx′ =

∫ x

1

√
x′

(x′ − 1) (1/(1− 2nd)− x′)
dx′ . (3.38)

Let

(x′ − 1)(1− 2nd) ≡ t2, (3.39)

so dx′(1− 2nd) = 2tdt′. We have

√
1− 2nd(ζ(x)) =

∫ t(x)

0

√√√√ 1 + t′2/(1− 2nd)

t′2

1−2nd

(
1

1−2nd
− 1 + 1− x′

) 2t′dt′

1− 2nd

=
2√

1− 2nd

∫ t(x)

0

√
1− 2nd + t′2

2nd − t′2
dt′ .

(3.40)

Now we let

t′√
2nd

= cos θ , (3.41a)

dt′ = −
√

2nd sin θdθ , (3.41b)
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and arrive at

(1− 2nd)ζ(x) = 2

∫ t(x)

0

√
1− 2nd + 2nd cos2 θ

2nd − 2nd cos2 θ
(−
√

2nd sin θdθ)

= 2

∫ π/2

θ

√
1− 2nd sin2 θdθ .

(3.42)

We can write this expression in terms of the incomplete elliptic integral of the second kind,

E(k, ϕ) ≡
∫ ϕ

0

√
1− k2 sin2 θdθ , (3.43)

and the complete elliptic integral of the second kind,

E(k) = E(k, π/2). (3.44)

This gives an implicit relation for θ as a function of ζ:

(1− 2nd)ζ(θ) = 2(E(
√

2nd)− E(
√

2nd, θ)). (3.45)

Recall that the above relation is valid within the driver, for −Ld ≤ ζ ≤ 0. Solving for

θ(ζ), we can find x:

x(ζ) = 1 +
2nd

1− 2nd
cos2 θ(ζ) . (3.46)

Here x(ζ) is oscillatory, so determining the electric field requires determining sign changes.

Since the electric field is equal to ±∂x
∂ζ
, ∂x
∂θ

= 2nd
1−2nd

sin 2θ(ζ), and

∂θ

∂ζ
=

2nd − 1

2
√

1− nd sin2 θ
> 0 , (3.47)

we know that

sgn(Ez) = sgn(sin(2θ)) . (3.48)

In summary, xd is a function of an intermediate variable θd which is determined implicitly
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from the following equations:

(1− 2nd)Ld = 2
(
E(
√

2nd)− E(θd,
√

2nd)
)
, (3.49a)

xd = 1 +
2nd

1− 2nd
cos2 θd , (3.49b)

sgn(Ezd) = sgn(sin(2θd)) . (3.49c)

Case 2: nd = 1/2

In this case, the equation for x simplifies to

∂x

∂ζ
=

√
1− 1

x
. (3.50)

Since ∂ζ
∂x

> 0 when x = 1, and ζ = 0 and ∂x
∂ζ

> 0 for all ζ, it must be that x(ζ) is a

positive, monotonically increasing function.

Integrating, we have

ζ =

∫ x

1

√
x′

x′ − 1
dx′ . (3.51)

Performing a change of variables

x− 1 = sinh2 θ, dx = 2 sinh(θ) cosh(θ)dθ , (3.52)

leads to

ζ =

∫ θ

0

2
√

1 + sinh2 θ cosh θdθ

= sinh−1
√
x− 1 +

√
x− 1

√
x .

(3.53)

Since x(ζ) is non-oscillatory, Ez and nw will be monotonic and in particular, Ez stays positive

within the drive beam. Similarly, the electric potential φ is negative within the drive beam.

The quantity xd is determined implicitly from the equation

Ld = sinh−1
√
xd − 1 +

√
xd − 1

√
xd (3.54)
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and sgn(Ezd) = +1.

Case 3: nd > 1/2

This case is not considered in prior works, that we are aware of. The equation for x is

∂x

∂ζ
=
√

2(1− nd)− 1/x+ (2nd − 1)x . (3.55)

Note that this is positive and increasing with x, so x is a positive, monotonically increasing

function of ζ. Rearranging so we can solve for ζ(x) :

∂ζ

∂x
=

1√
[(2− 2nd)x− 1 + (2nd − 1)x2] /x

(3.56)

√
2nd − 1

∂ζ

∂x
=

√
x√

(x− 1)
(
x+ 1

2nd−1

) . (3.57)

Integrating, we have

√
2nd − 1

∫ ζ

0

dζ ′ =

∫ x

1

√
x′√

(x′ − 1)
(
x′ + 1

2nd−1

)dx′ . (3.58)

Following a similar vein to Rosenzweig’s solution technique for nd < 1/2n [103], we use

the substitution:

(x− 1)(2nd − 1) = t2, (2nd − 1)dx = 2tdt , (3.59)

after which the integral becomes

√
2nd − 1ζ =

2√
2nd − 1

∫ t

0

√
t2 + 2nd − 1√
t2 + 2nd

dt . (3.60)
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This integral can be found in Byrd and Friedman [104][221.04,313.02]:

∫ t

0

√
t′2 + b2

√
t′2 + a2

dt′ =
gb2

k′2

[
k′2F

(
tan−1

(
t

b

)
, k

)
− E

(
tan−1

(
t

b

)
, k

)
+

√
1− k2 sin2

(
tan−1

(
t

b

)
, k

)
t

b

]
, (3.61)

where

k2 =
a2 − b2

a

2

=
1

2nd
, k′2 = 1− k2 =

2nd − 1

2nd
,

a2 = 2nd , b2 = 2nd − 1 , g =
1

a
=

1√
2nd

.

(3.62)

To compare the solution for nd > 1/2 with the other cases, an angle substitution can be

employed,

tan θ =
t

b
. (3.63)

With this substitution, the integral becomes

(2nd − 1)ζ = 2

(
gb2

{
1

k′2

[
k′2F (θ, k)− E(θ, k) +

√
1− k2 sin2 θ tan θ

]})
. (3.64)

Observing that

gb2

k′2
=
√

2nd , (3.65)

the relation for ζ can be expressed as

(2nd − 1)ζ = 2
√

2nd

(
k′2F (θ, k)− E(θ, k) + tan θ

√
1− k2 sin2 θ

)
. (3.66)

In summary, xd is a function of θd, which is implicitly a function of nd and Ld, and

Ezd > 0:

(2nd − 1)Ld = 2
√

2nd

(
k′2F (θd, k)− E(θd, k) + tan θd

√
1− k2 sin2 θd

)
, (3.67a)

xd = 1 + tan2 θd , (3.67b)
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sgn Ezd = +1 . (3.67c)

3.4.1 Discussion of the wake solutions within the driver

In each of these cases, the equations (3.36) can be used to determine the fluid Lorentz

factor γ, the plasma electric field Ez, and the fluid momentum p as functions of x within

the driver. The dependence of x on ζ is typically implicit. In each case, the dependence of

xd and the sign of Ezd on nd and Ld is determined as detailed in equations (3.67), (3.54),

and (3.49). With γd, pd, and Ezd, continuity condition φst can be evaluated using equation

(3.22) as determined in section 3.3.

Next the amplitude of the wake behind the driver γm is derived along with its dependence

on drive beam parameters. This derivation was provided by Rosenzweig [103]. Behind the

wake, nd = 0, and equation (3.33) becomes

∂2x

∂τ 2
− 1

2

(
1

x2
− 1

)
= 0 . (3.68)

Integrating this equation, we obtain

1

2

(
∂x

∂τ

)2

+
1

2

(
1

x
+ x

)
= C (3.69)

for C a constant. Recall that x =
√

1−β
1+β

so

1

x
+ x =

√
1 + β

1− β +

√
1− β
1 + β

(3.70)

= 2γ (3.71)

and

1

2

(
∂x

∂τ

)2

+ γ = C. (3.72)

Since we know from section 3.3 that the wake behind the driver is oscillatory, we achieve

∂x
∂τ

= 0 and we can make the identification C = γm.
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By the continuity of the wake,

γm =
1

2

(
∂x

∂ζ

∣∣∣∣
Ld

)2

+ γd

=

{
1− nd −

1

2xd
+

(
nd −

1

2

)
xd

}
+

{
1

2

(
1

xd
+ xd

)}
= 1− nd + ndxd .

(3.73)

If we recall that φd = 1− xd, we can express the wake amplitude in terms of fluid quantities

just as we did ϕst. Just as with the other fluid quantities γd, pd, and Ezd, we know φd in

terms of xd and xd implicitly in terms of drive beam parameters nd, Ld. Hence, the equation

for γm,

γm = 1− ndφd , (3.74)

is the final equation needed to describe ζd and ∂δn
∂ζδ

∣∣∣
ζδ

in terms of the drive beam parameters.

Using the solutions in this section, we can determine the fluid quantities at the end of

the drive beam γd, pd, Ezd, and φd from the drive beam parameters nd, Ld and the plasma

density n(z). We can then calculate ϕst and γm from the fluid quantities at the end of the

drive beam. This map can be used to calculate the wake for any flattop drive beam and

any density n. To evaluate this map, we compare the theoretical wake profile with the wake

profile computed in 1D PIC simulations for drive beams of various lengths and of densities

at, greater than, and less than the plasma densities. As seen in figure 3.4, the theoretical

prediction agrees very well with the computed wake.

3.5 Obtaining the phase matched density profile and frequency

We found previously that we could determine a plasma density profile that would guar-

antee phase matching of a laser pulse and the position of positive density gradient in the
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𝑘!"𝑧 𝑘!"𝑧 𝑘!"𝑧

Figure 3.4: Analytic expressions in the wake compared to OSIRIS 1D simulation data. Top
row: kp0Ld0 = 1.9, nd0/n = 0.2, 0.5, 0.8. Middle row: kp0Ld0 = 6.28, nd0/n = 0.1, 0.5, 0.6
Bottom row: kp0Ld0 = 9.5, nd0/n = 0.1, 0.5, 0.6. The expressions are exact in a uniform
density plasma (here n = 1 but any value of n is possible).
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wake of an electron beam if we could solve the system of equations (3.4) and (3.7):

dω

dz
=

1

2kzc2

∂(ω2
p/γ)

∂ζ
, (3.75a)

dn

dz
=

1

2c

ω2
p

ω2

[
dζδ
dn

]−1

. (3.75b)

For clarity, we will express the equations in normalized units, with n → n/n0, where

we use n0 as a reference plasma density, ωp → ωp/ωp0, and ω → ω/ωp0 etc., where ωp0
2 =

e2n0/meε0. In the underdense approximation, kzc ≈ ω. Substituting in equation (3.30) for

∂(ω2
p/γ)

∂ζ
, the frequency shift equation is

dω2

dz
' n3/2

√
2 [γm − 1] . (3.76)

In dimensionless form, the phase matching condition is

dn

dz
' 1

2

n

ω2

[
dζδ
dn

]−1

. (3.77)

Using the work in the previous sections, we have maps from the drive beam parameters

nd, Ld and the unperturbed plasma density n to ζδ, the position of positive density gradi-

ent where δn = 0, and γm(n;nd0, Ld0), the amplitude of the wake behind the drive beam.

From ζδ(n;nd0, Ld0), the gradient dζδ
dn

(n) can be determined numerically. Thus we can close

the system of equations (3.76)(3.77) and solve for n, ω. We summarize the procedure for

obtaining the density profile and frequency shift in algorithm 1, together with references to

the relevant equations in the text. In figure 3.5 we show a sample profile as predicted by

algorithm 1. This computation was performed for a drive beam with density nd = 0.4, and

length Ld = 1. The tapered density profile is shown on the left in (a) and the relative gain

in frequency, ω/ω0, is show on the right in (b).
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Figure 3.5: Numerically determined profiles for unlimited photon acceleration, computed by
algorithm 1 with nd = 0.4, Ld = 1, and A = 0.4. (a) shows the computed plasma density
and (b) shows the relative gain in laser frequency.

Algorithm 1 Determining the PA∞ density profile and expected frequency shift

1: Input: Drive parameters nd, Ld
2: Determine xd implicitly from nd, Ld . Equations (3.49), (3.54), (3.67)
3: Evaluate γd, pd, Ezd, and φd as functions of xd . Equations (3.36)
4: Evaluate ϕst and γm as functions of γd, pd, Ezd, and φd . Equations (3.22), (3.74)
5: Use ζd(n) to numerically evaluate ∂ζd

∂n
. Equation (3.20)

6: Numerically solve dω2

dz
' n3/2

√
2 [γm − 1], dn

dz
' 1

2
n
ω2

[
dζδ
dn

]−1
. Equations (3.76)(3.77)

Eqns. (3.76) and (3.77) are a coupled system of differential equations that can be evalu-

ated to determine the density profile and expected frequency shift for phase matched photon

acceleration driven by an ultrarelativistic beam driver. However, finding the variation of ζδ

with density in the nonlinear case is a challenge as it is the solution of an implicit equation.

This can be evaluated numerically for specific cases but is not tractable for analytic predic-

tions of long-term behavior or scaling laws. Insight can be gained by using ultrashort and

weak driver approximations, for which analytic solutions can be found. The ultrashort and

weak driver limits are presented in the following section.
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3.6 Ultrashort and weak driver limits and unlimited photon ac-
celeration

In this section, we consider the phase matched photon acceleration in the ultrashort and

weak driver limits. Analytic expressions are obtained for the frequency ω and unperturbed

plasma density n. Following the asymptotic trajectory of the ω and n as propagation distance

z tends to ∞, it is demonstrated that ω → ∞. This mathematically rigorous, arbitrary

frequency shift motivates the phrase ‘unlimited photon acceleration.’

3.6.1 Ultrashort limit

The ultrashort approximation means fixing A = ndLd and letting Ld → 0, so that

nd = A/Ld → ∞. Recall Eqn. (3.74), γm = 1 − ndφd, and that in the case that the driver

density nd is larger than twice the background density, nd > 2n(z), the electric potential φd

satisfies the relation φd = − tan2 θd and θd satisfies Eqn. (3.67),

(2nd/n− 1)kpLd = 2
√

2nd/n
(
k′2F (θd, k)− E(θd, k) + tan θd

√
1− k2 sin2 θd

)
, (3.78)

where k2 = n/2nd.

Evaluating in the ultrashort limit, where θd � 1, we get

(nd/n)kpLd − kpLd/2√
2nd/n

' (1− k2)

[(
θd +

k2θ2
d

8

)
−
(
θd −

k2θ2
d

8

)]
+ θd

[
1− k2

2

(
1 + θ2

d

)]
A√
n

√
n√

2nd
' θd − k2θd +

k2θ2
d

8
− θd +

k2θ2
d

8
+ θd

[
1− k2

2
+

(
−k

2

2

)
θ2
d

8

]
A√
2nd
' θd .

(3.79)

This leads to expansions for the potential φd at the end of the drive beam,

φd ' −
A2

2nd
, (3.80)
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and the amplitude γm of the wake behind the driver,

γm ' 1 +
(nd
n

)( A2

2nd

)
= 1 +

A2

2n
. (3.81)

Hence, the frequency shift relation in the ultrashort limit is

dω2

dz
' nA . (3.82)

Eqns. (3.82) and (3.77) may be combined,

dω2

dz
=
dω2

dn

dn

dz
= nA

(
1

2

n

ω2

[
dζδ
dn

]−1
)−1

= 2Aω2dζδ
dn

,

(3.83)

and directly integrated,

∫ ω

ω0

1

ω′2
dω′ = 2A

∫ n

n0

dζδ
dn′

dn′ , (3.84)

to obtain

ω(n) = ω0 exp [A (ζδ(n)− ζδ0)] , (3.85)

where n(0) = n0. Since dω2/dz > 0 and dn/dz < 0, there are no fixed points or periodic

orbits and so, by the Poincaré-Bendixson theorem [105], there are no limit sets to the orbits.

In fact, it can be shown that as n→ 0, ζδ(n)→∞ and therefore ω(n)→∞.

3.6.2 Unlimited photon acceleration

In this section we show that photon acceleration is a function of propagation distance

within the model defined by the phase matching condition, Eqn. (3.77), and the ultrashort

frequency shift relation, Eqn. (3.82), or as expressed in the integrated relation for frequency

ω(n) as a function of n given by Eqn. 3.85. That is, arbitrary frequency shifts can be achieved

provided the wake can be sustained for a prescribed distance and therefore the photon
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acceleration is potentially unlimited. There are several steps involved in the demonstration.

First, ϕst is shown to be π/2. Then, a simpler expression for ζδ is found. This expression is

then shown to diverge as n→ 0.

First we determine ϕst = π/2. Using the ultrashort approximation γm ' 1 + A2/2n,

we can find expansions for γd, Ezd, and pd and combine them to determine ϕwakestart =

tan−1
(
−Ezd

pd

√
1+γd

2

)
. Evaluating Ezd:

Ezd = sin 2θd
√

2(1− nd/n)− 1/xd + (2nd/n− 1)xd

' +A
√
nd/n .

(3.86)

Now we evaluate pd:

pd =
1

2

(
1

xd
− xd

)
' −A

2

4n
. (3.87)

Finally, we expand γd:

γd =
1

2

(
1

xd
+ xd

)
' 1

2

(
1− A2

2n
+ 1 +

A2

2n

)
= 1 . (3.88)

Combining the three, we find the expansion for ϕst:

tanϕwakestart ' −
A
√
nd/n

−A2/4n

√
1 + 1

2
,=

nd
A
→∞ (3.89)

and hence ϕst → π/2 as Ld → 0.

Next an ultrashort expression for ζδ is derived. Note that in the ultrashort limit, equations

(3.19) and (3.20) are

ζδ = ζ(3π/2)− ζ(π/2)

=
1

ωp

[
2

κ′

{
E

(
3π

2
, κ2

)
− E

(π
2
, κ2
)}
− κ′

{
F

(
3π

2
, κ2

)
− F

(π
2
, κ2
)}

+ 4
κ

κ′

]
.

(3.90)

Using the identities E(3π/2, κ) = 3E(π/2, κ) and F (3π/2, κ) = F (π/2, κ) [104], ζδ further



79

simplifies to

ζδ =
1

ωp

[
4

κ′
E(κ)− 2κ′K(κ) + 4

κ

κ′

]
. (3.91)

Now the ultrashort expression ζδ can be evaluated in the limit n → 0. Recall that

κ2 = A2

4n+A2 → 1 as n → 0 and so κ′2 → 0. It can be shown [104] that E(κ) → 1 as κ → 1

and

K(κ) ∼ ln

(
4

κ′

)
as κ→ 1 . (3.92)

Now ζδ simplifies to

ζδ ∼
1√
n

[
4

κ′
(1 + 1)− 2κ′ ln

4

κ′

]
. (3.93)

Because limx→0 x lnx = 0,

ζδ ∼
1√
n

8

κ′
→∞ as n→ 0 . (3.94)

Hence, the laser frequency ω is unbounded as plasma density tends to 0 and the model

name ‘unlimited photon acceleration’ is justified. This is quite significant in that a physical

mechanism for frequency shift is now rigorously proven to admit arbitrary frequency shifts,

provided that the drive beam and wake can be sustained.

Larger frequency shifts require lower densities and longer propagation distances. For a

given frequency ω to be realized, equation (3.85) indicates the plasma density n that must

be attained. Then, the propagation distance z can be determined as a function of n. The

differential relation between z and n is

dz

dn
=
dω2

dn

dz

dω2
=

2ω2

n

dζδ
dn

. (3.95)

This equation can be integrated to give

z = 2ω2
0

∫ n

n0

1

n′
dζδ
dn′

e2A(ζδ(n)−ζδ0)dn′ , (3.96)
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which implicitly defines the phase-matched density profile n(z). Equations (3.85) and (3.96)

provide a complementary and more analytic method of determining density profiles and

frequency shifts to the numerical integration of equations (3.76) and (3.77).

3.6.3 Weak driver limit

For a moderate strength driver, A < 1, we can use small angle expansions to approximate

the quantities

κ2 =
γm − 1

γm + 1
=

A2/2n

2 + A2/2n
=
A2

4n
− A4

16n2
+ · · · , (3.97a)

κ′
2

=
2

γm + 1
=

1

1 + A2/4n
= 1− A2

4n
+

A4

16n2
+ · · · , (3.97b)

E(ϕ, κ) =

∫ ϕ

0

√
1− κ2 sin2 ϕ′dϕ′ = ϕ(1− A2/16n) + sin(2ϕ)A2/32n+O(A4) , (3.97c)

F (ϕ, κ) =

∫ ϕ

0

1/

√
1− κ2 sin2 ϕ′dϕ′ = ϕ(1 + A2/16n)− sin(2ϕ)A2/32n+O(A4) . (3.97d)

The function ζ(n) is

ωpζ = ϕ− A

n1/2
sinϕ+

A2

16n
(3ϕ+ sin 2ϕ) . (3.98)

The location of the zero density perturbation, ζδ, can be described accurately by the

expansion

ζδ =
π

n1/2
+

2A

n
+

3π

16

A2

n3/2
+ · · · . (3.99)

Retaining up to the third term in this expansion, the phase-matching relation, Eqn. 3.77,

is

dn

dz
= −n

5/2

πω2

(
1 +

4A

πn1/2
+

9A2

16n

)−1

. (3.100)

The expansions developed in this section are seen to be accurate over a larger parameter

range than may be expected. In figure 3.6 we present γm, ζd, n, and kL for A = 0.01, 0.1, 1,

and 10 and for kp0Ld0 = 0.01. This short driver length guarantees that the ultrashort limit

holds very well. This is why the dashed and solid lines in the top row, which shows the
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wake amplitude γm, agree so well for all values of A calculated. The second row shows the

position of zero density perturbation ζδ and its approximations, which agree with the exact

function to A = 1. The next rows show the predicted density profile and frequency gain.

The density profile is accurately predicted with the expansion for A as large as 1. The slow

variation in n in all cases means that the predicted frequency gain of the analytic expansion

matches the numerical prediction for all A. We see that generally the expansion is good for

A = 1 and surprisingly accurate even for A = 10.

3.7 3D considerations

There are several multi-dimensional effects to consider in using the 1D density profile for

frequency upshift. These include laser pulse diffraction, the transverse wake profile, drive

beam self-focusing and the qualitatively different axial density profile in the blowout regime.

These affect both the laser pulse dynamics, the electron beam dynamics, and the wake profile.

In one dimension, the region of frequency upshift has length ≤ λp/2 since there is no

transverse evolution and so for the entire laser pulse to see frequency upshift, the pulse width

must be shorter than λp/2. We note, as did Esarey et al. [17] that the wake itself has the

shape of a plasma channel and can focus a laser pulse. The region of frequency upshift and

laser focusing has width λp/4; for frequency upshift and guiding, the pulse width must be

less than λp/4. Additionally, for higher intensity pulses above the critical power, relativistic

self-focusing can maintain the pulse profile.

In linear theory, the wake profile is the product of the longitudinal and transverse profiles,

where the transverse profile of the wake is the transverse profile of the drive beam. Given a

drive beam creating a quasilinear wake with a transverse gaussian profile, the wake transverse

profile will be gaussian. On axis, the laser pulse experiences a parabolic transverse density

profile, which if deep and wide enough will guide the laser pulse. We use a gaussian drive
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Figure 3.6: Comparing numerical and ultrashort small A expansions. We show that the
wake amplitude γm, the position of 0 density perturbation ζδ, and the predicted density n
and frequency gain kL/kL0 profiles for A = 0.01, 0.1, 1, and 10 when kp0Ld0 = 0.01. The
length satisfies kp0Ld � 1 so γm = 1 +A2/2n is always accurate. The expansion to O(A2) is
quite accurate for ζδ,n, and kL for A as large as 1. The expansion when A = 10 is not good
for ζδ but is surprisingly accurate in predicting n and kL even for A = 10.
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electron beam and find that the laser pulse stays focused over more than 100 Rayleigh ranges.

The tail of the electron drive beam experiences radial focusing forces in the wake created

by the drive beam and is pinched. Once the beam radius decreases below a threshold value,

the wake develops the quasi-spherical shape characteristic of the blowout regime [5, 106], a

regime unique to 2- and 3-dimensions. In the blowout regime, the longitudinal wake profile

becomes singular and the region with a density gradient becomes vanishingly small with

slope tending to infinity. The laser pulse doesn’t fit in the region of frequency upshifting

and so the blowout wake regime is to be avoided. Even if the drive beam is initially broad

and creates an almost 1D wake, in simulations the beam can be pinched until it creates a

wake in the blowout regime. This is a significant effect that is detrimental to the current

frequency shifting scheme and we are actively investigating how to mitigate this.

3.8 Results

We use the profile determined by equations (3.76) and (3.77) in a series of simulations to

demonstrate unlimited photon acceleration.

• First, we demonstrate the utility of the phase matched profile by comparing a simula-

tion of a uniform plasma profile with the phase matched PA∞ profile. The laser pulse

quickly dephases from the upshifting region of the wake.

• Next we use realistic beam parameters to demonstrate 10× frequency shift. This

simulation will then be repeated in 3D; comparison indicates the effective 1D nature

of the scheme even in 3D geometry.

• We perform a 1D simulation with a long drive beam to demonstrate a profile not

obtainable in the ultrashort limit. This simulation demonstrates 30× frequency shift

and 6× energy gain
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• We repeat the previous simulation with a piecewise approximation to the density profile

and still realize 30× frequency shift.

• We perform a quasi-3D simulation demonstrating 10× frequency shift and 5× energy

gain

• Finally, we demonstrate 10× frequency shift and 5× energy gain in quasi-3D using a

piecewise approximation to the phase matched profile. This demonstrates the robust-

ness of the phase matched profile to perturbations.

The simulations in this chapter are performed using particle-in-cell (PIC) codes [27,

28]. The particle-in-cell method represents the plasma phase-space with finite particles.

To calculate forces on the particles, charge and current densities are evaluated on a grid

by interpolating charge and current from the particle positions to the grid. Then Maxwell’s

equations are solved on the grid to obtain the electric and magnetic fields. Then the fields are

interpolated back onto the particle positions and forces on the particles can be determined.

The particle equations of motion are evaluated and the particle positions and momenta are

updated. This completes a cycle called the PIC cycle for updating the particle positions and

electromagnetic fields, as shown in figure 3.7. The simulations in this dissertation use the

1D version of the PIC code OSIRIS [107, 108] and the quasi-3D code FBPIC [109].

To measure the efficiency of the PA∞ scheme, we define the average energy transfer

efficiency as

η =
∆Ulaser
−∆Ubeam

=
Ulaser − Ulaser,initial
Ubeam,initial − Ubeam

, (3.101)

with energy changes measured between the initial and final times.

3.8.1 1D simulations with and without the PA∞ density profile

In this section we use 1D simulations to compare position of the laser in the case of the

tapered plasma density profile with a uniform plasma density case. The drive beam has
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Figure 3.7: Schematic of the PIC cycle.

density nd = 0.4np0 and length kp0Ld = 1.0 for A = 0.4. Initially the laser has ωL = 10ωp0.

The laser has a normalized vector potential a0 of 0.5, with an intensity full-width at half-max

(FWHM) of 3 fs. We start with 618 cells per λ and in the tailored density case end with

61.8 cells per λ. We use a CFL condition of ∆t = 0.9995∆x and 4 particles per cell.

We see in figure 3.8 the position of the laser centroid in the wake, as a function of

propagation distance. Three panels are shown, comparing the effects of a uniform plasma

density with the PA∞ tapered plasma density profile and a piecewise-constant approximation

to the PA∞ density profile. The top panel shows the laser centroid and wake in the case

of uniform plasma density. In the uniform density case, the laser centroid clearly slips past

the density peak and out of the frequency-shifting region, back into the density gradient of

the next density peak, past that and on through the wake. No sustained frequency shift is

attained. On the other hand, the middle panel shows the benefit of the PA∞ tapered plasma

density profile. The laser centroid maintains its position in front of the first density peak

in the wake, at the phase where the density gradient is increasing with τ = −cξ and the

frequency shifts up. The bottom panel shows the effect of a piecewise-constant approximation

to the PA∞ plasma density profile. The wake shows discontinuities at the plasma density
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jumps, but the laser centroid maintains a smooth phase in the region of increasing density

gradient, near where δn = 0. Even an approximation to the PA∞ density profile can be

clearly seen to eliminate dephasing of the laser in the wake.

3.8.2 1D PA∞ simulation for comparison with quasi-3D simulation

In this section we perform a 1D simulation using the PA∞ density profile and drive beam

parameters also used in a later quasi-3D simulation. Initially the laser has ωL = 10 ωp0. The

drive beam has density nd = 0.2 np0 and length kp0Ld = 1.9. These parameters correspond

to A = 0.38, which is the value of A used in the quasi-3D simulation. The laser has a

normalized strength parameter a0 = eE
mcωp0

of 2.4, with an intensity full-width at half-max

(FWHM) of 3 fs. We start with 618 cells per λ and in the tailored density case end with

61.8 cells per λ. We use a CFL condition of ∆t = 0.9995∆x and 4 particles per cell.

We can see in figure 3.9 that the mean laser wavenumber matches the predicted wavenum-

ber and increases by a factor of more than 10. The drive beam is linearly chirped in energy

so that each section of the beam is depleted at roughly the same time. The chirp has the

trapezoidal form γ(ζ) = 4000 + 32000(ωp0ζ/1.9). The form of the chirp is chosen so that

most of the drive beam energy is extracted, and 7.2% of that extracted energy is transferred

to the witness laser pulse. The frequency shift and energy change stop around 120, 000kp0z,

at which point the drive beam is depleted of energy.

3.8.3 1D PA∞ simulation with a long drive beam

In this section we demonstrate the ability of the model to generate frequency shift for

finite length drive beams. We can see shifts of 30× in frequency, 6× in energy, 25× in

intensity, and 13× in compression. The frequency gain stops once the driver is depleted of

energy, indicating that the gain is limited only by the ability of the driver to maintain the

wake.
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Figure 3.8: Laser centroid in wake plotted over propagation distance, calculated with and
without the PA∞ tapered plasma density profile. Top panel: uniform density; the laser
centroid dephases rapidly from the wake when the plasma density is uniform. Middle panel:
PA∞ tapered density profile; the laser centroid maintains its position relative to the wake.
Bottom panel: piecewise-constant aproximation to the tapered density profile; the laser
maintains phase in the wake even in the case of only a piecewise approximation to the PA∞

tapered density profile. To illustrate the wake we plot δn = nw(ξ; z) − n(z). Note that in
these images the wake coordinate is ξ = z − ct not ζ, but for vp → c, ξ ' −cζ.
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(a) (b) (c)

Figure 3.9: 1D Results for a drive beam with density nd = 0.2 and length Ld = 1.9 and
a laser pulse with normalized strength parameter a0 = 2.4, (a) spectrum of laser pulse
versus propagation distance, the red curve shows the predicted frequency as determined by
equations (3.76) and (3.77) and the black line shows the mean frequency, note that the mean
frequency increases by a factor of 10, (b) Tapered density profile for dephasingless photon
acceleration as determined by equations (3.76) and (3.77), (c) drive beam energy in blue
and laser pulse energy in red, shown to different scales, the electron drive beam loses energy
linearly to the wake and is almost completely depleted of energy, the laser gains about 7%
of the initial energy in the drive beam

The drive beam has density nd = 0.3np0 and length kp0Ld = 12.56. The beam has an up-

chirp in energy similar to the previous section of the form γ(ζ) = 4000 + 32000(ωp0ζ/12.56).

The chirp helps prevents partial beam depletion but is not optimal; an item of future work

is better tuning of the chirp. Initially the laser has ωL = 10ωp0. The laser has an a0 of 4.0,

with an intensity FWHM of ωp0τ = 0.85. We use 30000 cells for 618 cells per λL0 and about

21 cells per λLf , a CFL condition of ∆t = 0.9995∆x, and 4 particles per cell.

Figure 3.10 shows that the mean laser wavenumber matches or exceeds the predicted

wavenumber and increases by a factor of more than 30. About 5% of the energy lost by the

drive beam is transferred to the witness laser pulse. The frequency energy transfer sees a

discontinuity around 60, 000kp0z. This is the drive beam depletion length; at this point a

portion of the beam has lost enough energy to move at sub-relativistic velocities and gets

caught by the electron-accelerating fields. This loads the wake, so the laser pulse behind no

longer sees an increasing density gradient and doesn’t experience any more frequency shift.

The reported values of this 1D dimensionless simulation can be understood in physical

units if we impose some initial scales. Assuming the initial laser wavelength is 800 nm and
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Figure 3.10: 1D results for a drive beam having density nd = 0.3, length Ld = 12.56 and
a laser pulse having normalized strength parameter a0 = 4.5, (a) spectrum of laser pulse
versus propagation distance, the red curve shows the predicted frequency as determined by
equations (3.76) and (3.77) and the black line shows the mean frequency, note that the mean
frequency increases by a factor of 30, (b) Tapered density profile for dephasingless photon
acceleration as determined by equations (3.76) and (3.77), (c) drive beam energy in blue
and laser pulse energy in red, shown to different scales, the electron drive beam loses energy
linearly to the wake and loses about half its energy before parts of the beam are depleted
and the wake is disrupted. Laser energy increases monotonically, with most of the energy
gain occurring early in the simulation.

the drive beam has an initial root-mean-square radial extent σr = 16 µm, then the system

propagates about 10 cm and the shifts are 30× in frequency, from an initial wavelength

λ = 800 nm to 27 nm, 6× in energy, from U = 50 mJ to 900 nm, 25× in intensity, and

13× in compression, from an initial full-width half-maximum in intensity pulse duration of

cτ = 900 nm to 69 nm.

3.8.4 1D PA∞ with a piecewise approximation to the exact profile

The PA∞ plasma density profile is integral to sustained frequency shift, so an important

consideration is how sensitive the shifts are to the profile. To investigate the robustness of

PA∞, we repeat the previous simulation using a piecewise constant approximation to the

tapered plasma density profile. We still measure 30× frequency shift and 6× energy gain,

demonstrating that the density profile is robust to perturbations.

The drive beam has density nd = 0.3np0 and length kp0Ld = 12.56. Initially the laser

has ωL = 10ωp0. The laser has an a0 of 4.5, with an intensity FWHM of 3fs. We use 30000

cells for 618 cells per λL0 and about 21 cells per λLf , a CFL condition of ∆t = 0.9995∆x, 4
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particles per cell.

Figure 3.11 shows that the mean laser wavenumber matches or exceeds the predicted

wavenumber and increases by a factor of more than 30. About 5% of the energy lost by

the drive beam is transferred to the witness laser pulse. The frequency energy transfer sees

a discontinuity around 60, 000kp0z. As in the previous section, a portion of the beam is

depleted of energy, dephases, loads the wake, and stops the frequency shift of the trailing

laser pulse.
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Figure 3.11: Results in 1D for drive beam nd = 0.3, Ld = 12.56 and laser a0 = 4.5, (a)
spectrum of laser pulse versus propagation distance, measured in kL/kL0 where kL = kz is the
laser wavenumber, the red curve shows the predicted frequency as determined by equations
(3.76) and (3.77) and the black line shows the mean frequency, note that mean frequency
increases by a factor of 30, (b) Tapered density profile (dashed red) for dephasingless photon
acceleration as determined by equations (3.76) and (3.77) and piecewise approximation (solid
blue), (c) drive beam energy in blue and laser pulse energy in red, shown to different scales,
the electron drive beam loses energy linearly to the wake and loses about half its energy
before parts of the beam are depleted and the wake is disrupted.

This simulation uses a piecewise approximation to the density profile obtained from

solving equations (3.76) and (3.77). Using a scaling for 100× underdense initial plasma

density n0 relative to an initial laser wavelength of λL0 = 800 nm, the step lengths are 1,

1, 4, 6, 8, 10, and 70 mm. The density over each interval is the density of the numerically

evaluated tapered profile at the midpoint of the interval. Significant frequency shift is still

obtained, demonstrating that the phase matched photon acceleration scheme is robust to

perturbations in the density profile, and could be achieved with a sequence of gas cell targets

of increasing length and decreasing plasma density.
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3.8.5 Quasi-3D PA∞ simulation with a short, broad drive beam

We use the PIC code FBPIC [109] to study PA∞ in a quasi-3D geometry. FBPIC runs on

GPU. The advantage to FBPIC is its spectral cylindrical representation. The spectral field

solve reduces numerical dispersion with fewer grid points than the standard Yee finite dif-

ference scheme. The spectral cylindrical representation decomposes the azimuthal direction

into a Fourier representation. Our problem is nearly cylindrically symmetric, with the most

significant asymmetry in the linear polarization of the laser. We use two angular modes,

which is enough to capture the linearly polarized laser as well as the cylindrically symmetric

wake from the drive beam.

Figure 3.12: Isocontours from quasi-3d simulation data demonstrating phase matched photon
acceleration; the purple disk at the right is the drive electron beam, yellow and green are
the positive and negative density perturbations of the wake, and the blue and red spheroid
is a contour of the envelope of the transverse electric field, colored to show the laser pulse
field phase.

We use the quasi-3d particle-in-cell code FBPIC [109] to demonstrate unlimited photon

acceleration. In the simulation, the drive electron beam has a charge Q = 8.6 pC, length

cτ = 0.4 µm, focused radial extent σr = 32 µm, and a divergence σr′ = 0.4 mrad. The

beam has a linear up-chirp of the form γ(ζ) = 5 × 104 + 5 × 104(cζ/Ld) for an average
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beam particle energy of 50 GeV. The chirp mitigates beam erosion somewhat but there

is room for tuning. The beam parameters are similar to those accessible at the SLAC

FACET-II facility [110]. The laser has a normalized field strength parameter a0 = 1 and

initial wavelength λL0 = 800 nm, corresponding to a peak intensity I = 2.1× 1018 Wcm−2,

a pulse width cτ = 1.25 µm, and a spot size of w0 = 2λp0 = 20λL0 = 16 µm, starting

with its centroid ζcent = 6.6 µm/c behind the front of the electron drive beam. For these

parameters, ζδ = 5.4 µm/c, so we see some robustness to variation in initial position of the

laser pulse. Single cycle laser pulses at this intensity have been demonstrated experimentally

[97]. Visualization of the drive beam, its wake and the witness laser pulse in the quasi-3d

simulation is shown in Fig. 3.12.

We use the plasma density profile shown in Fig. 3.13 and determined through algorithm

1 from equations (3.76- 3.77), scaled by n0 = 1.74× 1019 cm−3, which is 100× less than the

initial critical density of the laser. For numerical parameters we use 3200× 200 grid points

and 2 angular modes. This gives 85 cells per λL0 and about 8 cells per λLf , which therefore

requires a dispersion-free solver or numerical dispersion would be an impediment. For the

plasma we use 2 × 2 particles per cell (ppc) in the z and r directions times 8 ppc in the

azimuthal direction.

The results of the quasi-3d simulation of PA∞ can be seen in Fig. 3.14. Figure (a) shows

the spectrum as a function of length propagated in the simulation. Overlaid is the theoretical

model of Eqns. (3.76) and (3.77) (red line, identical to the analytic predictions of equations

(3.85 and 3.96)), which predicts the shift of the photons well. Figure (b) shows the initial

spectrum and the spectrum at the end of the simulation. As well as showing that the pulse

maintains a narrow bandwidth, the amplitude of the spectrum has increased, indicating the

energy of the laser pulse increased. Figure (c) shows the energy evolution of the drive beam

and the laser pulse. The drive beam loses 25 J of energy over the course of the simulation
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Figure 3.13: Density profile for unlimited photon acceleration driven by an ultrashort driver
with A = (kp0Ld0)(nd0/n0) = 0.38.

while the laser pulse, initially having 50 mJ, gains 200 mJ for about 1% energy transfer

efficiency, which could be increased by optimization of the driver. Note that overall pulse

energy gain is not unexpected, as to within the quasistatic approximation, local field action

is conserved [15], and so the energy gain by the pulse would be expected to scale with the

frequency increase. In the simulations, the nearly 10× frequency shift results in a lower 5×

pulse energy gain, because of losses due to diffraction/dispersion.

Due to the nonlinear wake, the back of the pulse sees a steeper plasma gradient than the

front of the pulse. The pulse develops significant up-chirp, which, together with dispersion,

leads to a 2.7× compression of the pulse from an initial duration of cτ = 1.25 µm to 0.51 µm.

The intensity sees a significant increase of 20× from an initial intensity I = 2× 1018 W/cm2

to 4× 1019 W/cm2, a relativistic intensity corresponding to a0 = 0.4 at 80 nm.

We note that the laser pulse stays focused throughout the course of the simulation. The

drive beam has a gaussian radial profile, which is therefore parabolic close to axis. Thus the

wake has an approximately parabolic transverse profile and acts as a guiding channel for the

laser pulse. The pulse stays focused over more than 10 centimeters when the Rayleigh range

corresponding to the final wavelength is zR = πw2
0/λLf ≈ 10 mm, meaning that the pulse
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Figure 3.14: Quasi-3D simulation results from FBPIC for a drive beam with kp0Ld0 = 0.5.
(a) Comparing the initial and final spectra. The spectrum has shifted to about 10× the
initial wavenumber. (b) Plot of the spectrum over time. The red line is the theoretical 1D
frequency shift. (c) Drive beam energy (blue) and witness laser energy (red)

was effectively guided for more than 10 Rayleigh lengths.

The simulation is shown ending at 72 mm. Beyond this length, the beam driver has

lost sufficient energy to break up. Going beyond this length would also start to reach the

resolution limit of the simulation for the maximum frequency. In 1d simulations at higher

resolution with a longer drive pulse, where tuning of the drive beam propagation was easier

through parametric studies of many simulations, we have demonstrated even 30× frequency

shifts. Beginning with the 2nd harmonic of a Ti:Sapph laser at 400 nm, a 30 times shift

(scaling the plasma / initial conditions to maintain similarity and fixing a0) would result in

125 mJ pulses of coherent 13.3 nm light, which may be useful for photolithography.

3.8.6 Quasi-3D PA∞ simulation with piecewise-density profile

In this section we repeat the simulation of the previous section but use a piecewise-

constant approximation to the density profile, as shown in figure 3.15. We still find 10×

frequency shift and 5× energy gain, demonstrating that the tapered density profile is robust

to variations in plasma density even in 3D.

The approximation is made on progressively longer intervals, as in the previous 1D piece-

wise simulation. The first two steps are each 1 mm long, then 4 mm, 6 mm, 8 mm, 10 mm,

and the last step here is 70 mm long. The density over each interval is the density of the
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Figure 3.15: Piecewise approximation to the profile used for quasi-3D simulation

numerically evaluated tapered profile at the midpoint of the interval.

We can see the results of propagating through the piecewise constant approximation to

the phase matched density profile in figure 3.16. Similar to the simulation with the phase

matched density profile, in part (a) we see that the final frequency is almost 10 times the

initial frequency, and the amplitude of the spectrum has increased, indicating the energy

of the laser pulse increased. The frequency shift is shown over the course of the simulation

in (b), following the theoretical prediction indicated by the red line. The center of the

distribution follows the theoretical prediction.

In figure 3.14(c) we see the loss of drive beam energy is linear with propagation distance,

as the beam energy is continuously transferred to the wake. On the other hand, the laser

gains about 200 mJ for a 5× shift in energy. For this simulation about 1% of the energy lost

by the drive beam to the wake was transferred to the laser pulse.

Comparing the piecewise results in figure 3.16 with the results using the exact tapered

profile 3.14, we see similar frequency shifts and energy gains. We see slightly more shift in

the exact case, where the center of the spectrum is above the predicted frequency, than in

the piecewise case, where the center of the spectrum is close to the predicted frequency. We

also see in the late-time spectra plots in figures 3.16(a) and 3.16(b) that the amplitude of

the the spectrum is slightly lower in the piecewise case, and in figures 3.16(c) and 3.16(c)
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that the energy gain of the laser pulse is slightly less. These discrepancies are slight and

speak strongly to the reliability of the tapered density profile for attaining frequency shift.
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Figure 3.16: Quasi-3D simulation results from FBPIC for a drive beam with kp0Ld0 = 0.5
using a piecewise approximation to the phase matched density profile. (a) Comparing the
initial and late-time (z = 72 mm) spectra. The spectrum has shifted to almost 10x the
initial wavenumber. (b) Plot of the spectrum over time. The red line is the theoretical 1D
frequency shift. (c) Drive beam energy (blue) and witness laser energy (red)

3.9 Summary

In summary, we have demonstrated a scheme for large frequency upshift of a laser pulse

using the wake generated by a relativistic particle beam propagating through a tapered

plasma density profile. Our analytic model predicts arbitrary frequency shift limited only

by the drive beam, that is, unlimited photon acceleration. We demonstrate the model in

several 1- and quasi-3D simulations. These demonstrate how quickly a laser dephases in the

wake if the phase-matched density profile is not used. 1D simulations show frequency shifts

of 30× or more if a sufficient drive beam is used, as well as demonstrating that drive beams

of arbitrary length and density can be used and that non-ideal, physically realizable density

profiles still lead to 30× frequency shifts.

In the quasi-3D simulations shown here, a short, unoptimized driver was used, but in

principle there is much scope for increasing coupling of driver energy to the wake/witness

laser pulse, including advancements in spatiotemporally evolving electron beam drivers [111].

Quasi-3D simulation results directly demonstrated a 10× frequency shift with 1% energy
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transfer efficiency. Guiding of the laser pulse is achieved by the wake itself, in addition to the

lengthening of the Rayleigh range as the frequency increases and possibly relativistic self-

focusing. In quasi-3D simulations we have also demonstrated the robustness of the plasma

density profile to perturbations, as well as a route to practical realization of the tapered

density profile, using a piecewise constant approximation to the density profile. Frequency

shifts of 10× are still observed in quasi-3D simulations with a non-ideal profile.

Our results indicate that using an electron beam driver is a viable route to generate

high-power, high-frequency coherent radiation. It may also be possible to demonstrate these

shifts with a laser beam driver, although dispersion and frequency shifting of the lead pulse

require compensation.

3.9.1 Future work

Several broad directions for future research in unlimited photon acceleration are discussed

here. First, understanding 3D transverse effects and feasible acceleration with finite-duration

electron beams. Second, optimization of electron beam, laser beam, and plasma density

profile. Third, developing the phase matched system of equations for laser-driven photon

acceleration. Finally, investigating other methods of maintaining the driver and wake for

extended photon acceleration.

The evolution of the drive beam has a significant effect on the wake profile. In particular,

the radial focusing forces of the wake cause the drive beam to pinch. A drive beam that

is initially broad enough for the 1D wake expressions to be valid will shrink until radial

effects change the plasma wavelength and ultimately the highly nonlinear blowout regime is

reached, which is undesirable for photon acceleration.

Several open questions remain with regards to understanding and controlling the trans-

verse drive beam dynamics and their effects on photon acceleration. First, while effort was

made to avoid the blowout regime in pursuit of finite duration plasma gradients, it may be
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possible to realize frequency shifts within the blowout regime. If not, then it is necessary to

avoid the blowout regime somehow. Perhaps there are matching conditions so that the elec-

tron beam propagates without self-focusing into a blowout-producing profile. It may be that

a gaussian beam will self-focus too strongly, but perhaps beams can be constructed having

a higher divergence at the back of the beam and so not self-focusing before the depletion

length is reached.

Also, simple expressions for the index of refraction and laser group velocity are used.

Several nonlinear effects were neglected in the analysis, including relativistic, intensity and

channel effects on the wake profile and laser evolution. The effects of these corrections are

unknown but could be large enough to affect the wake or laser pulse.

The next broad category of future directions is in optimizing the frequency shift and

efficiency of the PA∞ scheme. As in electron acceleration [112, 113], a properly shaped

laser pulse should admit laser beam loading of the wake. This could enhance energy gain,

frequency shift, or the amount of light that can be shifted. Also, in this work very short,

single cycle laser pulses are used. While such pulses have been experimentally demonstrated

[97], the model isn’t restricted to single cycle pulses. It is still unknown how well longer

pulses can be shifted in this scheme.

The third category of future directions is laser-driven photon acceleration. Laser-driven

photon acceleration has been studied more than electron-beam-driven photon acceleration

but not with a profile such as was developed in this chapter. In the case of laser-driven

photon acceleration a density upramp is used since the frequency-shifting pulse would have

a higher group velocity than the drive pulse and so would eventually catch up to the drive

pulse. This limits how long and how much the frequency can be increased. There have

been theoretical investigations [18] into laser-driven frequency upshift but little successful

simulation and even less on dephasingless frequency upshift such as demonstrated in this
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chapter.

The last direction of photon acceleration research considered here is concerning the ability

of spatiotemporally shaped light and matter [90, 91, 111] to enhance the frequency shifts

observed in simulations in this dissertation. We stated previously that ‘unlimited photon

acceleration’ is limited by the ability to maintain the wake. Recent research in ‘flying focuses’

and other spatiotemporally shaped light and matter has been applied to electron [89] and

photon [21] acceleration. In the previous study of photon acceleration with a ‘flying focus’

[21], a photoionization front was used rather than the finite-extent density gradient and

photon acceleration used in this dissertation. Combining a spatiotemporally shaped light or

electron beam with the PA∞ model and density profile introduced in this dissertation could

be useful in maintaining the PA∞ driver over the distances needed for significant frequency

shift.



CHAPTER IV

Summary

This dissertation presented two works in the numerical study of plasma waves via kinetic

models, resolving the fine-scale structures that arise in phase-space, and the implications for

plasma-based acceleration. Chapter I outlined and motivated the dissertation. Chapter II

presented the development of an adaptive semi-Lagrangian method called FARSIGHT for

the Vlasov-Poisson system inspired by vortex methods in incompressible fluid dynamics. In

chapter III the second work was presented, exploring frequency shifting of an electromagnetic

wave in a tailored plasma. In the rest of this chapter, we summarize the main results,

conclusions, and future directions for each work.

4.1 FARSIGHT

Chapter II presented FARSIGHT, a forward semi-Lagrangian scheme for collisionless

electrostatic plasmas described by the 1D1V Vlasov-Poisson equations. The distribution

function is represented by quadrilateral panels having a hierarchical tree structure, and each

panel is a 3× 3 grid of particles which are tracked by 4th order Runge-Kutta timestepping.

The electric field is expressed as a convolution integral of the charge density with a regu-

larized electric field kernel. The particles are remeshed at every time step using biquadratic

interpolation on the panels, and the panels are adaptively refined to resolve the phase-space

100
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distribution function. The electric field integral is discretized by the trapezoid rule, and the

discrete sums are computed by a GPU-accelerated barycentric Lagrange treecode [58].

FARSIGHT performs as well as the state-of-the-art codes in the standard test cases.

In calculations of Landau damping, FARSIGHT reproduced the well-known damping and

growth rates, while in strong Landau damping, two-stream instability, and beam halo for-

mation, the code was able to resolve small-scale structures in phase-space.

The adaptive mesh refinement was shown to significantly decrease the run time in all

cases, especially in the cold two-stream instability and beam halo formation problems. It

was shown that conservation errors decrease and fewer negative f -values occur when the

numerical parameters are refined.

4.1.1 Future directions

This dissertation has demonstrated the utility of the FARSIGHT method for modeling

the Vlasov-Poisson system. However, some of the design choices were made for convenience

or simplicity in developing the initial idea and are not optimal. There are several possi-

ble directions for future optimization and development of FARSIGHT, falling in the broad

categories of algorithmic improvements, additional features for the modeling of additional

physics, and extensions of the code to higher-dimensions and different physics regimes.

Several aspects of the FARSIGHT method admit algorithmic and implementation im-

provements. These possibilities include:

• Conservative remeshing Long-time simulations can see significant degradation in

physical properties such as positivity, mass, momentum, and energy that should be

conserved. The current implementation of FARSIGHT is not exactly conservative but

there is work in the literature in limiters for positivity preservation [1] and interpolation

schemes that conserve moments [38, 73, 75]. Conservation in the context of AMR is
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more involved than these uniform grid methods but some of these ideas could be applied

to our adaptive remeshing.

• Higher order interpolation and quadrature Finer particle grids in each panel

and higher order interpolation and quadrature could admit higher accuracy with fewer

panels and reduced computational cost. For example, the current implementation

of FARSIGHT could incorporate a biquartic interpolation scheme where each panel

consists of 25 points in each direction.

• More sophisticated refinement scheme Panel refinement independently in the x

and v directions, along with interpolation schemes that are accurate on panels with

extreme aspect ratios. This could allow more efficient simulation of problems such as

Landau damping, where there is filamentation in the v direction suggesting a much

higher need of resolution in v than in x.

• Improved treecode The current treecode incorporated in FARSIGHT, the Barycen-

tric Lagrange Treecode (BLTC), is O(N logN) and is designed for 3D geometry. There

is an O(N) improved version of the BLTC called the Barycentric Lagrange Dual Tree

Traversal (BLDTT) fast multipole method. Speedups are anticipated in using a 1D

version of the BLDTT.

Some additional physics are accessible through features that can be added without sig-

nificantly altering the current FARSIGHT code. Examples include:

• An external driver This would allow for the study of driven waves and dynamically

accessible phase-space structures [24, 114, 115, 116].

• Relativistic time stepping This would allow for the basic test problems of Landau

damping and the two-stream instability in the relativistic regime [117]. Relativistic
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time integration is also prerequisite to many applications of interest that require other

simple features, as will be explained subsequently.

• Tracking of multiple plasma species This allows for ion-electron or positron-

electron problems in basic physics [118] and more applied problems such as ion shock

acceleration [12, 13].

We believe the approach developed here can be extended to higher-dimensional electro-

magnetic plasmas in confined geometry, using an integral formulation of Maxwell’s equa-

tions. The adaptive refinement of phase-space should be even more beneficial for higher

dimensional implementations of FARSIGHT and the use of the treecodes BLTC or BLDTT

means the method already has access to a fast summation method that scales well on multi-

ple GPUs [77]. These extensions open up challenging problems such as the study of energy

transport in hohlraums for inertial confinement fusion or in tokamaks for magnetic confine-

ment fusions, or potentially 3D simulations of plasma-based acceleration.

4.2 Unlimited photon acceleration

Chapter III presented unlimited photon acceleration (PA∞), a scheme for dephasingless

photon acceleration in a particle-beam-driven wake. This scheme is based on the phenomenon

that electromagnetic radiation seeing a decreasing plasma gradient shifts up in frequency.

In PA∞, a laser pulse is situated in the wake behind a relativistic electron bunch so that, in

moving window coordinates, it sees an increasing plasma density gradient. An appropriately

tapered plasma density (meaning plasma density that decreases in propagation distance)

allows the witness laser pulse to stay where the plasma density is increasing in the moving

window coordinate. Shifts of 30× in frequency (λ : 800 nm → 25 nm), 6× in energy

(50 mJ→ 900 mJ), 25× in intensity, and 13× in compression (pulse duration: 3 fs→ 230 as

were observed in 1D simulations. Shifts of 10× in frequency (800 → 80 nm), 5× in energy
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(50 → 250 mJ), 20× in intensity (2 × 1018 → 4 × 1019 W/cm2), and 2.7× in compression

(pulse duration 4.9 fs→ 1.7 attoseconds(as)) were observed in quasi-3D simulations.

4.2.1 Future directions

As discussed in the summary of chapter III, there are several promising directions for

future research in beam-driven photon acceleration.

• understanding 3D transverse effects in finite-duration electron beams

The studies in this dissertation used a (a) longitudinally short, (b) radially broad

electron beam of (c) moderate amplitude to (a) mitigate self-focusing, (b) avoid cre-

ating a wake in the blowout regime and (c) to create a 1D-like wake profile near the

axis. Future work includes understanding frequency shift in the blowout regime, other

strategies to mitigate self-focusing, and finding expressions for 3D modifications to the

wake profile.

• Optimization of electron beam, laser beam, and plasma density profile

The profiles of the electron beam, laser beam, and tapered plasma density can all

be tuned for greater frequency shift, better energy transfer efficiency, beam loading

[112, 113], or other figures of merit.

• Laser-driven photon acceleration

A similar model to the PA∞ differential equations (3.76-3.77) for a laser driver can be

derived. While arbitrary frequency shifts may not be possible, significant frequency

shifting of one pulse by another should.

• investigating other methods of maintaining the driver and wake for ex-

tended photon acceleration
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In particular, combining a spatiotemporally shaped light or electron beams [90, 91, 111]

with the PA∞ model and density profile introduced in this dissertation could be useful

in maintaining the PA∞ driver over the distances needed for significant frequency

shift. Spatiotemporally shaped light has been demonstrated in theory and simulations

of electron [89] and photon [21] acceleration, and spatiotemporally matter has been

demonstrated in theory and simulations of electron acceleration [111].

To evaluate the prospects of the unlimited photon acceleration scheme for attaining

greater frequency shifts, consider the relation for frequency gain as a function of plasma

density given in equation (3.85). In figure 4.1(a) are the plots of several curves indicating

how the frequency shift as the laser propagates through decreasing plasma density are given

for drive beams of charge Q = 1, 2, and 5 nC, corresponding to amplitudes A = 0.18,

0.35, and 0.88. In associating charge Q with amplitude A, the electron beam is assumed

to have a root-mean-square radial extent σr = 16 µm. This is smaller than the radial

extent σr = 32 µm used in the quasi-3D simulation, chosen to match the laser beam waist

w0 = 16 µm. It is conceivable that a similarly sized drive beam could accelerate and guide a

similarly sized laser pulse, or that the laser pulse could be focused down to a beam waist of

w0 = 8 µm. From the figure it can be seen that the stronger driver leads to greater frequency

shifts for the same change in plasma density. Several points are marked on each trajectory

indicating how far the laser and drive beam must propagate to reach that frequency-density

point on the trajectory, if the initial laser pulse has wavelength λ = 800 µm and the initial

plasma density is n0 = 1.7 × 1019 cm−1. For a drive beam with Q = 5 nC, the model

predicts 100× frequency shift in 2 m of propagation. On the other hand, for a drive beam

with Q = 1 nC a frequency shift of 100× would require 1 km of propagation. The enhanced

shifts with higher drive beam amplitude and more nonlinear wakes show the need for the

nonlinear model derived in this chapter and the need to pursue higher-amplitude drivers in
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subsequent research.
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Figure 4.1: (a) Relative frequency gain as a function of density, (ω/ω0)(n), is plotted for
beam drive charges Q = 1 nC, 2 nC, and 5 nC. The frequency gain-density curves are labeled
with markers indicating the distance that the laser and drive beam must propagate to achieve
the indicated shift. (b) Relative frequency gain as a function of z in meters, plotted for beam
drive charges Q = 1 nC, 2 nC, and 5 nC.

In Fig. 4.1(b), the equation for ω as a function of n, Eqn. (3.85), is combined with the

equation for z as a function of n, Eqn. (3.96), to plot relative frequency gain, ω/ω0, as a

function of propagation distance, z. For a beam charge of Q = 5 nC, 100× frequency shift

is possible in less than 3 meters of propagation, 500× frequency shift is possible in about

100 m, and 1000× shift is possible in about 400 m. Beginning with the 2nd harmonic of

a Ti:Sapph laser at 400 nm, a 1000 times shift (scaling the plasma / initial conditions to

maintain similarity and fixing a0) would result in pulses of coherent 4 Å (̊angstrom) light.

The photons in these pulses would have about 3 keV of energy each, well into the X-ray

region of the electromagnetic spectrum. The pulse itself would have several joules of energy

and would have a sub-femtosecond pulse duration if the energy enhancement and compres-

sion evidenced in this dissertation hold. To place these numbers in context, consider the

ångstrom-wavelength free electron laser (FEL) at the Stanford Linear Accelerator (SLAC)

facility [119], which produces X-ray pulses with 1012 photons per pulse, having wavelengths

of 0.15 nm with energy U = 3 mJ and pulse duration τ = 100 fs. The length of the SLAC

FEL is about 1 km — the PA∞ propagation length would be on the same order, about 400
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m, but the PA∞ X-ray pulse is 1000× shorter and has 1000× more energy.

The comparison becomes even more favorable if the pulse compression evidenced in the

PA∞ frequency shift is leveraged to stage acceleration. Noting that the frequency shift scales

roughly as O(
√
z) and hence that most shift occurs early in the propagation, more frequency

shift can be attained in less propagation distance if the plasma density n is reset after a short

time. Using a sawtooth density profile and restarting the PA∞ scheme, it would be possible

to achieve 100× frequency shift in 3 meters, then 100× again in 3 more meters, for 10000×

frequency shift in 10 m or less. In a smaller distance and at the same wavelength as the

SLAC FEL, the staged unlimited photon acceleration scheme PA∞ could generate X-ray

beams 1000× shorter and with 1000× more photons and energy.
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APPENDIX A

On-line materials, including source code and

animations

The FARSIGHT Vlasov-Poisson source code and documentation can be found on-line at

https://github.com/RTSandberg/FARSIGHT.

In chapter II, several sequences of phase-space images were presented as part of the

FARSIGHT test case studies. Each test case presented in this dissertation has an animation

that can be found on YouTube:

• Weak Landau damping: https://youtu.be/TTUCK9DrS1o

• Strong Landau damping showing panels: https://youtu.be/RH131FfbLms

• Strong Landau damping: https://youtu.be/lU-ed4AYQrM

• Halo formation: https://youtu.be/UlHV1ezdnFY

• Warm two-stream instability: https://youtu.be/vMXde63Nrec

• Cold two-stream instability: https://www.youtube.com/watch?v=rD-8xj-KJME

https://github.com/RTSandberg/FARSIGHT
https://youtu.be/TTUCK9DrS1o
https://youtu.be/RH131FfbLms
https://youtu.be/lU-ed4AYQrM
https://youtu.be/UlHV1ezdnFY
https://youtu.be/vMXde63Nrec
https://www.youtube.com/watch?v=rD-8xj-KJME
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F. Fiuza, L. O. Silva, J. T. Mendoņa, W. B. Mori, J. G. Gallacher, R. Viskup, D. A.
Jaroszynski, S. P.D. Mangles, A. G.R. Thomas, K. Krushelnick, and Z. Najmudin.
Evidence of photon acceleration by laser wake fields. Physics of Plasmas, 13(3), 2006.

[20] Matthew R. Edwards, Kenan Qu, Qing Jia, Julia M. Mikhailova, and Nathaniel J.
Fisch. Cascaded chirped photon acceleration for efficient frequency conversion. Physics
of Plasmas, 25(5), 5 2018.

[21] A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro.
Photon Acceleration in a Flying Focus. Physical Review Letters, 123(12):124801, 9
2019.

[22] Zan Nie, Chih Hao Pai, Jianfei Hua, Chaojie Zhang, Yipeng Wu, Yang Wan, Fei Li,
Jie Zhang, Zhi Cheng, Qianqian Su, Shuang Liu, Yue Ma, Xiaonan Ning, Yunxiao He,
Wei Lu, Hsu Hsin Chu, Jyhpyng Wang, Warren B. Mori, and Chan Joshi. Relativistic
single-cycle tunable infrared pulses generated from a tailored plasma density structure.
Nature Photonics, 12(8):489–494, 8 2018.

[23] Eric Sonnendrucker, John J Barnard, Alex Friedman, David P Grote, and Steve M
Lund. Simulation of heavy ion beams with a semi-Lagrangian Vlasov solver. Nuclear
Instruments and Methods in Physics Research A, 464:470–476, 2001.



113

[24] Bedros Afeyan, Fernando Casas, Nicolas Crouseilles, Adila Dodhy, Erwan Faou, Michel
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