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ABSTRACT

Well-conducted field experiments, broadly construed to contain both randomized controlled trials
and quasi-experiments, involve extensive planning with substantive deliberation. Such delibera-
tion has the potential to fuel and strengthen the analysis stage of the study. Each field experiment
is unique in its own manner, from the subgroups on which effects are expected to concentrate to
the design of the study itself. Reliance on off-the-shelf methods to analyze field experiments may
exclude this potentially valuable information that, if handled properly, would provide a greater op-
portunity to detect an effect. In this dissertation, we propose two novel methods that look to extract
information unique to a specific study and translate it into additional power. We demonstrate these
methods on a large-scale education intervention aimed at correcting the stalled reading trajectories
of early elementary students.

The first method, Power-maximizing Weighting for Repeated-measurements and Delayed-
effects (i.e. PWRD) aggregation, converts the theory of change behind a class of education in-
terventions into a test statistic that maximizes the asymptotic relative efficiency (Pitman, 1948)
over standard methods, thus providing greater power. The scheme emphasizes cohorts and years-
of-follow-up on which effects are expected to accrue with appropriate attention paid to the relative
precision of estimates within cohorts. We find through a simulation study mirroring the design
of the reading intervention that this method provides stark gains in power over methods common
to education research. While PWRD aggregation increases power, confidence interval estimation
is more difficult. To alleviate this problem, we partition our parameter space into three regions:
equivalence, superiority, and inferiority. In the first, we employ PWRD aggregation to provide
the greatest opportunity to detect an effect. In the latter two regions, we employ a method com-
mon to the domain in which the research occurs such that when we are able to detect an effect,
interpretation of the point estimate and confidence interval proceeds in a standard fashion.

The second method we propose is a dry run simulation scheme that creates a pseudo-experiment
replicating the initial randomized trial in a manner that preserves blinding to impact estimates. This
procedure, which uses real rather than synthetic data, provides a sandbox in which various mod-
els may be tested to discover the model specification that most precisely estimates an artificially
imposed treatment effect. The dry run method, similar in motivation to cross-validation and uni-
formity trials (Rosenbaum, 2018), allows the statistician advising field experiments to estimate

xi



expected losses for each of a variety of methods, enabling them to elect a novel or unfamiliar
method if it demonstrably outperforms methods more familiar to the broader team. When applied
to the reading intervention that motivated dry runs, results from this method challenged precon-
ceived notions about covariate choice, suggesting we control for covariates beyond pre-test scores.

xii



CHAPTER 1

Introduction

Though causal inference has a long history, the central question of the discipline under the mod-

ern framework —proposed by Donald Rubin in 1974 —is whether and how an outcome differs

under the presence of a treatment as opposed to in its absence (Rubin, 1974). To answer this

question, researchers in the social sciences often rely on randomized controlled trials (RCTs) or

quasi-experiments. Randomized trials are generally viewed as the “gold standard” in establishing

causal relationships. Due to random treatment assignment, they are typically free from bias from

confounding variables and thus, the observed gap between the treatment and the control is often a

reasonable estimate of the treatment effect.

However, these “field experiments” may be prohibitively expensive and thus involve detailed

planning and substantive deliberation, which has the ability to strengthen the analysis of the study.

Each of these field experiments is unique, from the study design to the mechanism by which the

treatment is hypothesized to provide a benefit or detriment. While standard, off-the-shelf meth-

ods offer good analysis strategies in general, such techniques may exclude potentially valuable

information about the study and therefore may not be the optimal method when studying a spe-

cific randomized trial or quasi-experiment. In this dissertation, we propose two novel methods

—power-maximizing weighting for repeated measurements with delayed effects (PWRD) aggre-

gation and dry-run simulations—that look to extract information unique to a randomized trial or

quasi-experiment and convert it into statistical power. We demonstrate the benefits of these meth-

ods both through simulation studies and through their application on problems of substantive im-
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portance in health and education.

These methods emerge from the analysis of a large-scale cluster-randomized trial assessing an

education intervention, BURST[R]: Reading (BURST), that aimed to correct the stalled learning

trajectories of early elementary students (Rowan et al., 2019). The intervention, equipped with a

well-developed theory of change, provided supplemental learning to a subset of students once they

required intervention; thus, the effect was delayed (students must have tested into the intervention

before receiving a potential benefit) and scattered across the study population (not every student

required supplemental instruction). As a consequence, the effect was not uniform across those

students assigned to the treatment, but concentrated to a greater or lesser extent on certain cohorts

and in certain years-of-follow-up. While we found this intervention to be unsuccessful at assisting

students in their ability to read, BURST served as the motivating example for many of the methods

presented in this dissertation which seek to leverage such information about the study to conduct

more precise and powerful outcome analysis.

1.1 PWRD Aggregation

In Chapter 2, we introduce a method of effect aggregation that converts the theory of change behind

this intervention into statistical power. Our method, Power-maximizing Weighting for Repeated-

measurements and Delayed-effects (i.e. PWRD) aggregation, provides greater weight to those

cohorts and occasions of follow-up that are best-positioned to demonstrate an effect of the in-

tervention, while accounting for the relative precision of estimates within these subgroups. This

scheme maximizes the asymptotic relative efficiency of our test statistic (Pitman, 1948) when the

theory of change holds, which in turn maximizes our ability to detect an effect. A simulation study

mirroring the design of BURST lends evidence to this claim. Simulations show that PWRD aggre-

gation provides substantial increases in one’s ability to detect an effect when that theory of change

holds over methods common in education such as mixed models. We additionally find that when

the theory of change does not hold, the detriment in terms of power to using PWRD aggregation is

2



minimal.

PWRD aggregation is related in concept, although not in its aims, to instrumental variables

estimation (Bloom, 1984; Angrist et al., 1996) and principal stratification (Frangakis and Rubin,

2002). The connection to the principal stratification method of Sales and Pane (2021) is perhaps

most clear. Sales and Pane (2021) apply principal stratification with the goal of estimating separate

effects for latent subgroups determined through their dosage. We too estimate separate effects for

different subgroups, yet those subgroups are determined based on projected differing dosages and

our method’s ultimate goal is to aggregate those separate effects into a single test statistic. As

with instrumental variables estimation in experimental settings without full compliance, PWRD

aggregation also typically assumes that the effect is proportional to the dosage received. In contrast

to instrumental variables, however, our method is fully compatible with intention-to-treat (ITT)

estimation. In fact, PWRD aggregation may be viewed as ITT analysis with an “as-treated” flavor:

every treatment observation is incorporated into our outcome analysis regardless of whether they

received the treatment itself, yet we implicitly attach greater importance to those observations

most likely to have received stronger dosages of the treatment. While this may lead to fears of

exploitation rather than exploration on our part, note that this method is centered around the theory

of change of an intervention which must be determined prior to outcome analysis. Furthermore, our

method attaches greater importance to those observations that we expect to demonstrate a greater

treatment effect; in practice, this may be a faulty assumption.

1.2 Confidence Intervals for PWRD Aggregation

A standard method for constructing confidence intervals with effects proportional to the dosage

is to estimate a confidence interval for that proportionality constant (see (Rosenbaum et al., 2010,

p.135-6)). While PWRD aggregation implicitly assumes that the effect will be proportional to the

dosage, our aggregation scheme is not compatible with the method outlined in Rosenbaum et al.

(2010). Furthermore, PWRD aggregation was constructed with hypothesis testing, rather than
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confidence intervals, in mind and as a consequence, the standard point estimate for PWRD aggre-

gation may not be easily interpretable to less technical audiences. In Chapter 3, we propose a novel

method of constructing confidence intervals in tandem with PWRD aggregation through adaptation

of the three-sided hypothesis testing scheme of Goeman et al. (2010). We partition the parameter

space into regions of equivalence (i.e. no effect), inferiority (a negative effect), and superiority (a

positive effect). Within equivalence, we apply PWRD aggregation, giving us the greatest oppor-

tunity to yield a non-zero effect. Outside the equivalence region, we apply a standard method to

ensure our confidence interval and point estimates are easily interpretable. A key step behind this

method requires partitioning the parameter space into the three regions described previously, so

Chapter 3 additionally provides guidance for setting the thresholds of the equivalence region. This

includes proposing a threshold that, like PWRD aggregation, leverages the benefits of PWRD ag-

gregation in terms of asymptotic relative efficiency versus commonly implemented methods. This

sets the bounds of the equivalence region such that the power advantage of PWRD aggregation will

be maximized. Chapter 3 demonstrates this method through the same simulation study described

in Chapter 2 and on Medicaid expansion through the Affordable Care Act.

1.3 The Dry Run Simulation Scheme

Research has shown that incorporating covariates in outcome analysis may improve precision,

both in education settings and elsewhere in the social sciences. Yet which covariates should be

incorporated remains an open debate. Some argue that merely controlling for pre-test scores will

fully account for baseline differences between the treatment and the control and thus is sufficient

covariate adjustment (Bloom et al., 2007). Others suggest that incorporating additional covariates

may further improve one’s precision (Raudenbush, 1997). Ultimately, there is no one-size-fits-all

approach and the set of covariates selected a priori may not provide researchers with the most

powerful test in a given experiment.

To address this issue, we present an adaptation of the dry-run simulation scheme of Wyss et al.
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(2017) in Chapter 4. Wyss et al. (2017) initially proposed their dry run method as an evaluation

strategy for a prognostic score model’s ability to control for confounding in observational studies.

We extend this method to randomized trials, not with the aim of assessing prognostic score models,

but with the aim of estimating the future performance of models in outcome analysis. In addition,

we enhance the method through an additional subsampling step that lessens the risk of overfitting.

Briefly, this method replicates the full randomized trial solely using observations assigned to the

control which creates a pseudo-experiment that preserves blinding to impact estimates. Repeating

this process then provides many different simulated “realizations” of the study on which various

models may be tested to determine which specification most precisely estimates some artificially

imposed treatment effect.

Dry runs in their simplest form may be viewed as a variant on cross-validation: rather than

dividing our sample into training and test sets to estimate a model’s predictive performance, we

divide our control data into pseudo-treatment and pseudo-control groups to estimate the precision

of different model specifications. Cross validation typically iterates through different folds to

examine alternative training and testing sets. Similarly, dry runs iterate through different sets of

pseudo-treatment and pseudo-control groups to examine alternative pseudo-experiments. Dry runs

are also akin in motivation to uniformity trials (Rosenbaum, 2018, p.33), a technique popular in

the 1920s and 1930s in which plots of land were randomly divided into treatment and control

groups yet all received the control condition. This allowed researchers to empirically test how

much the treatment and control could differ through random chance. Dry runs may be viewed as a

uniformity trial embedded within a randomized trial: the control is divided into pseudo-treatment

and pseudo-control groups, yet no observation received the treatment in actuality. This then allows

the researcher to examine model performance without any imposed treatment. Where our method

deviates from uniformity trials, however, is that we additionally allow for artificially imposed

treatment effects on the pseudo-groups originating from control data in order to compare model

performance in the presence of a treatment.

This procedure, compatible with both standard randomized trials incorporating simple random
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assignment as well as cluster randomized trials or randomized trials embedded within survey de-

signs, facilitates selection of covariate adjusted models in a manner that uses real rather than syn-

thetic data. In addition to covariate selection, it also allows researchers to estimate expected losses

for a variety of methods, from the methods standard to education research (e.g. hierarchical linear

models (Raudenbush and Bryk, 2002; Bryk and Raudenbush, 1987) or ordinary least squares) to

novel methods like a Peters-Belson approach that models covariate adjustment strictly on control

observations (Peters, 1941; Belson, 1956). The statistician advising field experiments may use

dry-runs to select one of those more novel methods so long as it demonstrably outperforms the

standard methods familiar to the broader team. In our application on BURST, this technique re-

vealed a distinct advantage to ignoring certain preconceived articles of education methodology,

suggesting we control for covariates beyond pre-tests.
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CHAPTER 2

PWRD Aggregation

2.1 Introduction

Many large-scale randomized controlled trials (RCTs) and high-quality quasi-experiments are con-

ducted only after careful vetting in national funding competitions. In the United States, a leading

competition for education efficacy studies is the Institute of Education Sciences’s (IES) Education

Research Grants program, which aims to contribute to education theory by informing stakeholders

of learning interventions’ costs and benefits. “Strong applications” to the program are expected to

detail and justify an intervention’s “theory of change” (NCER, 2020, p.48): How and why does a

desired improvement in outcomes occur as a consequence of the intervention?

This paper introduces a novel scheme, PWRD aggregation of effects, converting theories of

change into statistical power. Given an efficacious program, a correct theory of change, and

measurements indicating which students stand to benefit, this power-maximizing weighting for

repeated measurements with delayed effects method can increase the probability of detecting pro-

gram benefits, in some cases dramatically. It is compatible with the range of clustering accom-

modations and covariate adjustment techniques that are commonly used for analysis of education

RCTs. It maintains the canonical intention-to-treat (ITT) perspective on program benefits. While

applicable to studies with or without measures of implementation, with single as well as multiple

occasions of follow-up, it maximizes its advantage when there are baseline or post-treatment mea-

sures of intervention delivery or availability, in combination with primary outcomes measured on
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varying numbers of occasions.

We illustrate our scheme on an IES Education Research Grant-funded efficacy trial of an inter-

vention for early elementary students at risk of falling behind in learning to read. This intervention,

BURST[R]: Reading (BURST), aims to detect and correct deflections from what would other-

wise be students’ upward trajectory in reading ability. The theory of change for BURST posits

this “trajectory correction” arises by providing targeted instruction to students whose progress

has deviated from the expected course (e.g. tested below a certain benchmark). Thus, effects

are delayed—students do not immediately obtain an effect but must first receive targeted reme-

diation—and non-uniform in that only students with stalled reading abilities are affected. As a

consequence of this theory of change, the treatment effect will be anything but constant; if the in-

tervention works in the hypothesized manner, its effects will be greatest at those ages and for those

subgroups for which student learning has already begun to stall. Accordingly, beginning from

estimates of the average treatment effect (ATE) calculated separately for different subgroups and

occasions of follow-up, as well as information about the extent of stalled progress at each occasion,

PWRD aggregation combines effect estimates not only with attention to their mutual correlations,

but also with attention to their expected sizes relative to one another. These expectations are de-

termined by a carefully structured set of alternative hypotheses, which PWRD aggregation in turn

adduces from the environing theory of change.

In underlying concept if not in its goals, the method relates to instrumental variables estimation

(Bloom, 1984; Angrist et al., 1996; Baiocchi et al., 2014) and principal stratification (Frangakis and

Rubin, 2002; Page, 2012; Sales and Pane, 2019). But whereas Sales and Pane (2021), for example,

use principal stratification to estimate separate effects for latent subgroups distinguished in terms

of dosage level, we marshal related considerations to inform aggregation of effects across manifest

subgroups receiving or likely to receive differing doses. For recent evaluation methodology using

dosage information in other manners (e.g. to determine fidelity of implementation or to define the

causal parameter of interest) see Schochet (2013) and White et al. (2019).
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2.1.1 Literature Review

Extensive literature addresses the issue of causal effect estimation for time-varying exposures but

largely through methods other than effect aggregation. Instrumental variables (IV) (Bloom, 1984)

are one prominent example. This technique, utilized broadly in economics literature, is gaining

influence in other fields as well. Briefly, researchers use regression-based instrumental variables

in scenarios where the explanatory variable of interest is correlated with the error of a regression,

potentially through measurement error, omitted variable bias, or confounding. By applying a valid

instrument, i.e. a variable that itself is not predictive of the outcome but is conditionally correlated

with predictors, researchers can consistently estimate the causal effect of that predictor despite its

correlation with the error.

While not their primary aim, IV approaches are not entirely incompatible with intention-to-treat

(ITT) analysis or randomized trials. Sussman and Hayward (2010) actually refer to instrumen-

tal variable analysis in randomized trials as a contamination-adjusted intention-to-treat (CAITT)

analysis where treatment assignment serves as the instrument. Under this framework, the ITT es-

timator is then adjusted by the proportion of participants who receive the treatment. IV analysis

in this setting can be referred to as as a contamination adjusted intention-to-treat analysis because

the two-stage least squares estimator is equivalent to the ITT estimate prior to its scaling by the

proportion of compliers (Baiocchi et al., 2014). Nonetheless, this scaling marks a departure from

standard intention-to-treat analysis. Under certain conditions, this IV estimand will be identical

to the complier-average causal effect (CACE) (Angrist et al., 1996; Baiocchi et al., 2014), which

measures the average effect of treatment in the subgroup of compliant individuals, i.e. individuals

who adhered to their treatment assignment. To illustrate, among those assigned to the treatment,

the CACE only examines the subgroup who actually received the treatment.

IV approaches are applicable in scenarios with partial compliance as well; here, the researcher

tests the hypothesis that the effect is proportional to the dose of treatment received (Rosenbaum

et al., 2010). Under this framework, ITT analysis rejects a hypothesis of no effect if and only

if the IV method also rejects the hypothesis of no effect. IV analysis and the CACE have both
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been extended to the longitudinal setting, allowing for repeated observations and subjects with

incomplete observations over time.

Another area of research addressing the issue of causal effect estimation for time-varying ex-

posures revolves around three related but distinct methods: the g-computation algorithm formula

(i.e. the “g-formula”), inverse probability of treatment weighting (IPTW) of marginal structural

models, and g-estimation of structural nested models (Robins, 1986; Robins et al., 1992) of which

instrumental variables is a form (Hernán and Hernández-Dı́az, 2012). These three methods fall

under the general umbrella of “g-methods” and will provide identical estimates of the treatment

effect under certain conditions.

Much of this literature is constructed with sequentially randomized experiments with differing

treatment regimes across time in mind, similar to how students in BURST who test into the in-

tervention receive a different treatment regimen than those who do not. For example, let us allow

Zit to denote the treatment received by individual i in time t with Zit = 1 signifying receiving

the treatment. Then Z̄i is the treatment regime throughout the length of the experiment; we could

observe Z̄i = (1, 1, . . . , 1) for continuous exposure, Z̄i = (1, 0, . . . , 0) if they are only exposed to

the treatment in the first time period, or some more complicated regime.

One formulation for time-varying exposures allows us to apply marginal structural models to

test a null hypothesis of no effect versus an alternative hypothesis that the outcome Y increases

linearly as a function of the individual’s cumulative exposure to the treatment,
P

t Zit. For exam-

ple, we could test this hypothesis by using ordinary least squares with IPTW (Robins et al., 2000).

Note that with respect to BURST, we do not work under an assumption of increasing effect as a

function of exposure (e.g. an effect of the form �D where D represents dosage), but under the

assumption of increasing probability of exposure (e.g. �P(D = 1)). Under the first, individuals in

the treatment group could receive any effect of size �d for d 2 {0, D} whereas under the second,

the effect is binary in the sense that those who are exposed receive an effect of size � and those

who are not receive an effect of size 0. Nonetheless, this distinction is small and the parallel to

g-methods is readily apparent. For a more in depth review of g-methods, see Fitzmaurice et al.
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(2008).

Both instrumental variables and the broader class of g-methods generally formulate outcome

analysis in a manner such that the mode of estimation (e.g. a difference in means or a regression

coefficient) is consistent for a specific target parameter. In contrast, our goal is to conduct outcome

analysis with the intention of providing a foundation for hypothesis tests about the value of a

specific target parameter; as a consequence, this formulation possesses power against alternative

methods. Additionally, IPTW and other flavors of g-method techniques do not fully adhere to

principles of intention-to-treat analysis; PWRD aggregation, however, fully respects this form of

analysis.

2.1.2 Roadmap

In this chapter, we first discuss the connection of longitudinal data in education settings to interven-

tions with supplemental instruction to correct stalled learning trajectories. After, we use the theory

of change behind this class of interventions to define assumptions under which PWRD aggrega-

tion will be power-maximizing. We then explicitly present the formulation for PWRD aggregation

weights. In Section 2.3, we present a simulation study mirroring BURST design to show PWRD

aggregation performance in comparison with commonly used methods under various assumptions.

In Section 2.4, we then illustrate how PWRD aggregation compares with those same methods

for BURST itself. Finally, in Section 2.5, we conclude by summarizing how PWRD aggregation

provides researchers with a tool that will best help them detect an effect for interventions with

supplemental instruction.
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2.2 Method

2.2.1 Review: Comparative studies with repeated measurements of the out-

come

In educational settings assessing the efficacy of interventions, students frequently enter and exit

studies at different points. For example in BURST, we examined a reading intervention on early

elementary students across four years. Depending on their grade at the study’s outset, the number

of observations on each student varied from one to four. Table 2.1 illustrates this phenomenon for

BURST’s first of four total cohorts.

Grade at Entry Year 1 Year 2 Year 3 Year 4

Cohort 1

3 3 - - -
2 2 3 - -
1 1 2 3 -
0 K 1 2 3

Table 2.1: Progression of Cohort 1 through the four years of the BURST study.

Data sources for similarly structured efficacy trials will incorporate an analogous design, with

varying numbers of observations on any given participant. Thus, the method chosen to handle

multiple observations is of great importance not only in BURST but in other longitudinal settings

as well. The simplest outcome analysis might sidestep this debate entirely by solely examining

outcomes when students exit the study (e.g. 3rd grade observations in BURST). For Cohort 1 in

Table 2.1, this entails using data from the diagonal and discarding the remaining data. This method,

herein termed “exit observation” analysis, treats the student rather than the student-year as the unit

of analysis. Exit observation analysis is appropriate to such models as

Yij3 = �0 + ⌧Zij3 + �Xij3 + ✏ij3
�
E(✏ij3) = 0; Var(✏ij3) = �2

�
, (2.1)

where Yij3 denotes the outcome of student i in school j in the third grade, X represents a set of
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demographic covariates, and Z denotes the treatment status. An example of this method may be

found in Simmons et al. (2008). In addition to its simplicity, exit observation analysis provides one

notable benefit: an easily defined and identified overall average treatment effect, i.e. E[Y (Z=1)
ij3 �

Y (Z=0)
ij3 ].

However, complications emerge. According to BURST’s theory of change, students are more

likely to benefit when they participate in the intervention for a longer period. Therefore, we are less

likely to observe an effect in Cohort 1.3 than in Cohort 1.0, and treating these two groups equally

may hinder a researcher’s ability to detect an effect. Table 2.2 demonstrates this occurrence in

BURST where we observe larger differences between unadjusted treatment and control means as

students participate in the study for a greater length of time.

Entry Entry Exit
�Grade Year Year

Cohort 1

3 5.2 5.2 -
2 -1.3 -0.4 0.9
1 0.3 3.2 2.9
0 -7.0 2.1 9.1

Table 2.2: Differences in mean reading scores between treatment and control groups for the first
of four cohorts of students. � refers to the difference in the differences during the first year of
participation and the final year of participation.

In addition to the aforementioned drawback, researchers often simply prefer to use all of their

available data. Perhaps the easiest way to handle repeated measurements is to fit a linear model

predicting student-year observations from independent variables identifying the time of follow-up

before estimating standard errors of these coefficients with appropriate attention to “clustering”

by student or by school; in mixed modeling and general estimating equations literature, this is

known as the linear model with “working independence structure” (Fox, 2015; Laird, 2004). These

analyses effectively attach equal weight to each student-year observation and thus we refer to them

as “flat” weights. In combination with least squares, flat weighting delivers minimum-variance
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unbiased coefficient estimates under the model that

Yijk = �0 + ⌧Zijk + �Xijk + ✏ijk
�
E(✏ijk) = 0; Var(✏ijk) = �2

�
, (2.2)

where the disturbances {✏ijk : i, j, k} are all independent of one another. The model is said only

to have “working” independence structure because even if in actuality the disturbances are not

mutually independent, its least squares estimates remain unbiased under (2.2), while clustering

ensures consistency of standard errors by taking into account heterogeneity across groups. Model

(2.2) differs from the exit-observations-only model (2.1) in allowing multiple values of k for each

student i; in BURST, k ranges from one to four under flat weighting. An example of flat weighting

may be found in Meece and Miller (1999).

With multiple observations per student, (2.2) may be realistic but independence of its distur-

bances is not; as a result, flat weighting is inefficient. Instead of adopting this scheme, many

researchers apply mixed effects models like hierarchical linear models (Bryk and Raudenbush,

1987; Raudenbush and Bryk, 2002) when conducting outcome analysis. This third option implic-

itly chooses a middle ground between flat weighting and exit observation analysis. Mixed effects

models allow for some correlation between observations but not complete correlation. In parallel

with (2.1) and (2.2), we may represent the two-level mixed effects model appropriate to analysis

of BURST within the single regression equation

Yijk = �0 + ⌧Zijk + �Xijk + µj + ✏ijk
�
E(✏ijk) = 0; Var(✏ijk) = �2

�
,

where we adopt the same structure as with flat weighting, including independence of {✏ijk :

(i, j, k)}, but now incorporate random effects {µj : j} at the school level where µj ⇠ N(0, ⌫).

This allows researchers to account for unobserved heterogeneity by school. Other formulations

might incorporate an additional random effect at the student-level. For examples of studies that

apply mixed effects models, see Ethington (1997), Guo (2005), and Lee (2000).

One notable drawback arises when applying the two methods incorporating complete, longi-
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tudinal data. Exit observation analysis allowed us to articulate a well-defined overall average

treatment effect: the expected difference in outcomes among third grade students. Making use of

the complete data removes that possibility. The overall average treatment effect still represents an

expected difference in outcomes between treatment and control students, but students contribute to

that ATE in varying quantities depending on the length of time they participated in the study and

perhaps the intraclass correlation (ICC).

The presence of clustered observations, either within schools or within students, has implica-

tions beyond regression-based modeling decisions. Within-group dependence, perhaps arising due

to the presence of panel data or random assignment of blocks of units, complicates standard error

estimation as well. BURST data exhibit within-group dependence as a consequence of both these

phenomena: treatment assignment occurred by school and we have repeated observations on multi-

ple students. Thus, both classical and heteroskedasticity-robust standard error calculations (Huber,

1967; White, 1980) are inappropriate. Nonetheless, dependent observations within BURST are

grouped into mutually exclusive and non-overlapping clusters where every observation within the

cluster received the same treatment assignment, allowing us to calculate standard errors that are

robust to heterogeneity by group. For this purpose, we employ the “cluster robust” standard errors

outlined in Pustejovsky and Tipton (2016), who in turn extended the work of Bell and McCaffrey

(2002).

2.2.2 PWRD Aggregation

The three estimation methods presented in Section 2.2.1 all possess certain benefits. For exam-

ple, exit observation analysis allows for a well-articulated overall average treatment effect and flat

weighting allows researchers to use all of their data. Mixed effects models are particularly ap-

plicable in education settings with treatment assigned to clusters of units. Nonetheless, all three

methods fail to take into account which observations will best allow researchers to detect a treat-

ment effect according to the intervention’s theory of change. In this section, we introduce an

aggregation method that, similar to mixed effects models, is intermediate to flat weighting and exit
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observation analysis yet in contrast to each of those methods, leverages the theory of change to

determine which observations are most likely to demonstrate a treatment effect.

To simplify the presentation of PWRD aggregation, we first illustrate our method on students

who were in kindergaten during the first year of the study (i.e. Cohort 1.0 in Table 2.1) for a collec-

tion of schools that implemented the intervention with some fidelity. These students participated

in BURST for the entire study and thus, had the greatest opportunity to benefit from the interven-

tion. Implementation is a post-treatment variable so we do not recommend results from this subset

to serve as an estimate of the effectiveness of BURST (presented in Section 2.4), but rather we

use this subset as an example that best-serves to illustrate the intuition and process behind PWRD

aggregation.

To implement PWRD aggregation, we need to estimate a separate treatment effect for each sub-

group of interest. In the case of BURST, subgroup refers to the cohort year-of-follow-up because

the theory of change suggests that students were more likely to have received targeted remediation

when they had participated in the intervention for longer. We treat years-of-follow-up differently

for the various cohorts because schools may implement the intervention differently over time.

These treatment effect estimates for Cohort 1.0 during each year-of-follow-up are presented in

Table 2.3. PWRD aggregation then serves as the tool by which we aggregate the four estimated

effects into a single estimate for hypothesis testing. Note that while this aggregated treatment ef-

fect need not correspond to a simple average of individual treatment effects, it serves to address

one basic research question of interest in all experiments and quasi-experiments: was there a treat-

ment effect? This formulation simultaneously allows us to sidestep the debate as to what the best

parameterization of the treatment effect should be, while making use of the full, longitudinal data

in a fashion best suited to detect that effect.

PWRD aggregation is particularly beneficial in terms of power versus extant alternatives in tra-

jectory correction interventions. In these interventions, students only receive the treatment once

their performance stalls, resulting in effects that are scattered and delayed rather than concentrated

and instantaneous. Prior to this occurrence, students receive the same instruction they otherwise
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Cohort 1 Coef. S.E.

Year 1 2.3 19.6
Year 2 -9.7 22.6
Year 3 8.7 8.5
Year 4 12.8 10.9

Table 2.3: Estimated change in outcome in each year-of-follow-up for a subset of Cohort 1.0

would have received if no intervention took place. As a consequence, the theory of change main-

tains that students only obtain an effect once they have received the supplemental instruction.

It follows that the longer an individual participates in an intervention of this nature, the greater

the likelihood their reading performance will require trajectory correction. We observe this phe-

nomenon in Cohort 1.0 in BURST.

Years in BURST Tested In

1 66.8%
2 75.4%
3 76.7%
4 79.3%

Table 2.4: The proportion of students in Cohort 1.0 who have “tested in” to BURST to receive
supplemental instruction by how long they have participated in the study.

Table 2.4 illustrates how students enrolled in the study for a greater length of time are more

likely to have required trajectory correction, and thus, are more likely to have benefitted from the

intervention. Consequently, the theory of change posits that the expected size of the effect in cohort

year g will be proportional to the percentage of students in a given cohort-year g who were eligible

for supplemental instruction by that point in time, i.e. proportional to p0
..=
�
p0g : g

�
, where

p0g ..= P(An individual in cohort-year g is eligible to receive the supplemental instruction). PWRD

aggregation takes advantage of this structure by attaching greater importance to observations from

students in their fourth year in BURST than to observations from earlier periods of the study.

Nonetheless, the expected size of the effect as estimated through p̂0 is not the only consideration of

PWRD aggregation. Rather, the estimated relative covariances (i.e. ⌃̂) between the treatment effect
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estimates also factor into our method. Thus in our example on Cohort 1.0, PWRD aggregation does

not merely utilize p̂0, but also:

⌃̂ =

0

BBBBBBB@

81.2 59.2 1.6 �8.8

59.2 106.8 13.7 11.6

1.6 13.7 21.4 13.8

�8.8 11.6 13.8 25.8

1

CCCCCCCA

. (2.3)

PWRD aggregation is constructed under the potential outcomes framework of Rubin (1974), Hol-

land (1986), and Splawa-Neyman et al. (1990) and for the class of intention-to-treat estimators

(Gupta, 2011; Montori and Guyatt, 2001). We let Z = 1 denote those who were assigned to the

treatment and Z = 0 denote those assigned to the control. Y is our outcome of interest.

We can then define �g as the parameter representing the treatment effect during cohort-year g,

i.e.,

�g = E(Y (Z=1)
g � Y (Z=0)

g |G = g).

Note that our unit of observation is at the student-year level rather than at the student-level. We then

define our overall average treatment effect as a linear combination of parameters for the treatment

effect in each cohort-year �g, i.e.
P

g !g�g, where !g denotes the relative weight attached to each

treatment effect �g.

In other words, we calculate separate ITT estimates for each cohort during each year-of-follow-

up. PWRD aggregation then looks to uncover the specific linear combination, i.e. the specific !,

that maximizes the power of tests based on the following aggregated statistic:

�̂agg
..=
X

g

!g�̂g. (2.4)

We know that ! will account for the expected size of the effect (p0) and the relative precision

of each �g (⌃), but to find the specific linear combination that maximizes our power to detect an

effect, we first make multiple assumptions about the nature of the treatment, given the theory of
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change behind the trajectory correction intervention with targeted remediation holds:

Condition 2.2.1 Individuals who receive supplemental instruction as a result of the intervention

at time j receive an effect ⌧ � 0 between j and ti, where ti denotes the time at which individual i

exits the study. Individuals who do not receive supplemental instruction are unaffected.

Condition 2.2.2 Effect ⌧ received by individual i at time j is retained by individual i in full

throughout the duration of the study, i.e. from [j, ti].

Condition 2.2.1 is an extension of the Stable Unit Treatment Value Assumption (SUTVA) (Ru-

bin, 1980). Briefly, SUTVA states that the treatment received by one individual will not affect the

potential outcomes of other individuals. SUTVA generally refers to the treatment not affecting the

potential outcomes of individuals in the control group. With respect to BURST, we argue this ad-

ditionally implies individuals testing into the intervention to receive targeted remediation will not

affect the potential outcomes of individuals in the treatment who do not test in but instead remain

in the classroom. This corresponds to a situation where there is no interference across individuals

(Sobel, 2006). We illustrate this distinction in Figure 2.1. With no interference, those students in

treatment schools who receive the supplemental instruction do not affect the potential outcomes of

those who remain in the classroom to receive standard instruction.

A technical condition simplifies the development by excluding pathological cases.

Condition 2.2.3 Cov(�̂) = n�1⌃, with ⌃ a positive-definite symmetric matrix.

From these conditions, we now construct PWRD aggregation.

Proposition 2.2.4 Consider test statistics of the form
P

g !g�̂g,
P

g !g�̂g �
P

g !g�0g, or

bV �1/2(
P

g !g�̂g �
P

g !g�0g) where �0 is a vector of hypothesized values of �, � ..= (�g : g) and

nbV !p c, c > 0. Additionally, take the family of hypotheses K⌘ : � = ⌘p0 . Under Conditions

2.2.1, 2.2.2, and 2.2.3, and for tests of H0 = K0 against any alternative K⌘, ⌘ � 0, aggregation

weights ! that satisfy the following formula will maximize the asymptotic relative efficiency of the
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Figure 2.1: BURST design for a pair of schools.

above test statistics:

! = (⌃�1p0)+

�X

j

(⌃�1p0)+j , (2.5)

where (⌃�1p0)+ denotes the element-wise maximum of (⌃�1p0) and 0, and (·)+j denotes the jth

element of (·)+ such that !01 = 1.

In other words, the slope (Pitman, 1948) of test statistics described in Proposition 2.2.4 may be

maximized by weights proportional to both the expected size of the effect for each cohort-year p0

and also the relative precisions between each cohort-year effect estimate ⌃: ! / ⌃�1p0. Note that

any test statistic of the form: P
g !g�̂g �

P
g !g�0g

bV 1/2
, (2.6)

such as the t-statistic combining estimates �̂g with fixed weights !g, will be covered by Proposi-

tion 2.2.4.

By maximizing the test slope, PWRD aggregation provides test statistics with greater asymp-

totic relative efficiency, represented by the square of the quotient of two test slopes, than alternative

test statistics. Improving relative efficiency by 20% corresponds with a 20% reduction in the sam-

ple size required to achieve the same level of power (Van der Vaart, 2000). Consequently, by max-
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imizing the slope of the test statistic, PWRD aggregation maximizes the power of tests H0 = K0

against any K⌘, ⌘ � 0, i.e. for effects that are proportional to the dosage. In other words, we may

view PWRD aggregation as maximizing the signal-to-noise ratio for test statistics of the form pre-

sented in Equation 2.6, which includes t-statistics. Given the theory of change holds, test statistics

incorporating PWRD aggregation weights will provide researchers with a greater opportunity to

detect an effect of the intervention.

Very generally, we derive these weights by taking the gradient of the test slope of (2.4) (the

argument for the other forms of test statistic being similar) with respect to !. After setting this

term equal to zero and simplifying through a grouping of scalar quantities, we obtain PWRD

aggregation weights. We additionally add a constraint to ensure that our aggregation weights are

non-negative. For a proof, see Appendix B.1.

Neither p0 nor ⌃ are directly observed, but both can be estimated easily. We estimate p0

through the proportion p̂0 observed among students assigned to the control. Note that this is the

probability of ever having tested in to receive supplemental instruction rather than the probability

of having tested into the treatment during that year. This alleviates fears of selection bias due to

post-treatment conditioning because once a student tests in once, each subsequent observation for

that student is designated as having tested in as well. Thus, the treatment received by a student in

year t, does not affect their weight in year t + 1. Estimating ⌃ requires a slightly more elaborate

calculation centered around control-group residuals. Briefly, we fit a model onto control observa-

tions predicting the outcome and controlling for potential confounders. We then fit a second model

estimating the residuals generated by the previous model, solely controlling for each cohort-year.

The subsequent cluster-robust covariance matrix serves as ⌃̂.

PWRD aggregation combines with standard techniques to address complexities of study design

such as block randomization and assignment to treatment conditions by cluster, such as the school

or the classroom, rather than by the individual student. We scale the “bread” component of Huber-

White sandwich estimators of the variance using a similar method as that presented by Pustejovsky

and Tipton (2016). With these cluster-robust standard errors, we are then able to conduct Wald tests
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to reject or accept the null hypotheses previously presented.

Covariate adjustment may be incorporated while estimating each individual �g either through

design-based approaches outlined in Lin et al. (2013), Hansen and Bowers (2009), or Middleton

and Aronow (2015), or through more conventional model-based formulations. While not con-

structed around attributable effects (Rosenbaum, 2001), we can extend PWRD aggregation into

that setting with minor adjustments.

2.2.3 Considerations when the Theory of Change Fails

When the theory of change holds, PWRD aggregation maximizes the test slope and thus, the

corresponding power for the family of hypotheses K⌘ : � = ⌘p0. That is, when the treatment

effect is proportional to the dosage received, PWRD aggregation maximizes power. Nonetheless,

there may be fears that when the theory of change does not hold and the effect is not proportional

to the dosage received, using PWRD aggregation will have adverse effects on outcome analysis.

For example, there may be worries that PWRD aggregation will lead to seriously biased impact

estimates. However, PWRD aggregation is used for testing rather than for estimation so this fear

is unfounded. There may instead be the following issues:

• When there is no effect of the intervention, PWRD aggregation leads to incorrect Type I

errors.

• When the effect accrues in a different fashion than the theory of change hypothesizes, PWRD

aggregation loses power versus alternative methods.

To alleviate the first issue, we prove that when a few technical conditions hold, PWRD aggregation

will maintain proper Type I error rates rather than over or under-rejecting a null hypothesis of no

effect. For a greater examination of Type I errors with PWRD aggregation, see Appendix A.

To address the second fear, we show through simulations in Section 2.3 that when the theory

of change fails to hold, PWRD aggregation either leads to a trivial amount of power lost or, at
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times, provides substantially greater power. For an example of the latter, we present the following

scenario that often arises in education research.

2.2.3.1 Addressing within-cluster interference

We have interpreted the BURST theory of change to hold that a student’s outcomes may depend

on her own treatment assignment but not that of any other student — that is, that the experiment

was free of interference (Cox, 1958; Sobel, 2006). As applied to students within a school, this

may be simplistic. A school possesses finite resources, so its adopting a supplemental instruction

regime may transfer resources away from students not receiving the supplement. In this scenario,

Condition 2.2.1 no longer holds: students not targeted for a BURST supplement may suffer an

instructional detriment, with adverse effects on their learning.

Addressing such spillover effects within a classroom or school is an area of active methodolog-

ical research (Fletcher, 2010; Vanderweele et al., 2013; Gottfried, 2013), often calling for special-

ized methods or other accommodations (Sobel, 2006; Rosenbaum, 2007; Vanderweele et al., 2013;

Bowers et al., 2018). To address the common scenario of spillover within but not across clusters,

where clusters denote experimental units as assigned to treatment conditions, the PWRD aggre-

gation method applies without change. Specifically, we may relax Condition 2.2.1 in favor of the

following:

Condition 2.2.5 Individual i receiving supplemental instruction due to the intervention at time j

gains non-negative effect ⌧ between j and ti. Individuals who do not receive the supplemental in-

struction may experience an effect, positive or negative, so long as the overall effect of all students

is positive in aggregate.

From Condition 2.2.5, we now present Proposition 2.2.6, a corollary to Proposition 2.2.4:

Proposition 2.2.6 Under Conditions 2.2.2, 2.2.3, and 2.2.5, the following aggregation weights

! will maximize the slope of test statistics of the form
P

g !g�̂g,
P

g !g�̂g �
P

g !g�0g, or
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bV �1/2(
P

g !g�̂g �
P

g !g�0g) for the family of hypothesis tests and alternative hypotheses elabo-

rated in Proposition 2.2.4:

! = (⌃�1p0)+

�X

j

(⌃�1p0)+j .

According to Proposition 2.2.6, PWRD aggregation maintains its advantage in the presence

of spillover within clusters, so long as the interference is compatible with a suitable adjustment

of the theory of the intervention. This is the situation arising in BURST: a greater proportion

of a school’s students directly receiving the intervention corresponds with a lower proportion of

those students being at risk of corresponding adverse spillover; its theory of change must hold that

benefits accruing to the first group exceed any detriment toward the latter in aggregate.

The derivation of Proposition 2.2.6 follows the same structure as the derivation of Proposi-

tion 2.2.4 found in Appendix B.1.

2.3 Simulations

In order to demonstrate how PWRD aggregation performs in comparison to flat weighting and

mixed effects models when the theory of change works as intended, we construct a simulation

study mirroring the design of BURST. We generate student outcomes to compare statistical power

across different scenarios using the following two-level model:

Yijk = �0 + �1Gradeijk + µk + ✏ijk

µk = �0 + ⌫k

, (2.7)

with ⌫k ⇠ N(0, ⇠). The outcome of student i in year-of-follow-up j at school k is a function of

the grade of the student and the random intercept of the school at which the student is enrolled, µk.

Note that fixed effects like race, gender, socio-economic status, and others could be added to this

process, but were excluded as we have presented PWRD aggregation without covariate adjustment.

Once we generate these outcomes, we perform the following two steps. First, we flag outcomes

that fall below a given threshold as having tested into the intervention. Once a student tests in, all
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of their subsequent observations are flagged as well. The threshold changes by grade to adjust for

natural improvement with age. Second, we impose artificial treatment effects on students within

treatment-schools and find the corresponding power across iterations of this data generation.

We compare three variations of treatment effects in this simulation study. Under the first, all

treatment observations flagged as having tested into the intervention receive some constant, posi-

tive effect ⌧ . Under the second, flagged treatment observations receive a constant, positive effect ⌧

and unflagged treatment observations, i.e. individuals in the treatment who do not test into the in-

tervention, receive a constant negative effect �p⌧ where p 2 (0, 1]. The third version of treatment

effect imposes ⌧ ⇠ N(l, 2.5 ⇤ l) for some l to all treatment observations.

To mirror BURST, we generate 32,000 student-year observations across 26 pairs of schools

with students divided roughly evenly across kindergarten through third grade. We assess the power

provided by each of the models across 1,000 iterations of this simulation study for each artificially

imposed effect size. Power for a given effect size is determined by calculating how often a model

rejects a null hypothesis of no effect at the 5% level out of the 1,000 iterations. We use cluster-

robust standard errors with clusters at the school level from the clubSandwich package in R

(Pustejovsky, 2017; Pustejovsky and Tipton, 2016).

2.3.1 Simulation Results

We now present results from these simulations across the three variations of imposed treatment

effect described previously. For reference, the standard deviation of the outcome variable is 23.5.

Following guidance from Kraft (2020), we will denote effect sizes smaller than 0.05� (1.2 points in

our simulation study) as small, those between 0.05� and 0.2� (4.7 points) as moderate, and those

greater than 0.2� as large. Across 1,260 effect sizes on reading outcomes from 495 randomized

controlled trials, the mean effect size is 0.17� (4 points) and the 90th percentile is 0.5� (11.8

points) (Kraft, 2020). Thus, our simulation study examines these three methods on effect sizes that

frequently appear in reading interventions.
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2.3.1.1 Effect 1

Figure 2.2 shows the power for 1000 replications of the synthetic experiment across three analyt-

ical schemes: PWRD aggregation, flat weighting, and a mixed effects model specified according

to (2.7), but with an independent variable representing the treatment. It is immediately apparent

that PWRD aggregation outperforms the other two methods, especially for medium effect sizes

under which we observe a 35-50% increase in power. This is unsurprising as PWRD aggrega-

tion attaches greater importance to student-year observations most likely to have received an effect

from the intervention and down-weights the remaining observations. Power as observed when the

effect is 0 is simply the empirical size of the test; thus the left side of the plot indicates that use of

the PWRD method did not negatively affect Type I error rates.

Figure 2.2: Power for the three methods under Effect 1, i.e. across increasing effect sizes.

It is natural to ask whether the gains in power present in Table 2.2 hold across different levels of

correlation of observations within a school. To examine this we conducted additional simulations
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holding the imposed effect constant, but varying the intraclass correlation (ICC). We present these

results in Figure 2.3.

Figure 2.3: Power for the three methods under Effect 1 with increasing intraclass correlations.

In Figure 2.3, PWRD aggregation consistently outperforms flat weighting and mixed effects

models across ICCs that typically arise in educational settings (Hedges et al., 2007). For intraclass

correlations between 0.1 and 0.2, PWRD aggregation provides 35-45% more power than the com-

petitors. That gap decreases for larger ICCs, although this is at the upper range of reasonable ICC

values. Furthermore, we still obtain a 25% improvement in power.

2.3.1.2 Effect 2

We now relax the assumption that students who do not receive targeted remediation through the

intervention are unaffected. Instead, we impose a negative effect that is in magnitude 40% of the

positive effect imposed on students who receive the supplemental instruction. This is a scenario
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where there is interference within a school, corresponding to replacing Condition 2.2.1 with Con-

dition 2.2.5 and thus Proposition 2.2.4 with Proposition 2.2.6. We chose 40% to ensure the overall

effect is positive in aggregate.

Figure 2.4: Power for the three methods under Effect 2, i.e. across increasing effect sizes when
Condition 2.1 does not hold.

In Figure 2.4, we observe that under the relaxed assumption, PWRD aggregation performs

even better in comparison to the other two methods than it did under the standard assumptions.

This relative gain in power is expected. We weight down effect estimates that are more likely

to incorporate students with negative effects, attaching greater importance to those more likely to

have received a positive effect. Neither flat weighting nor our school random effects model perform

a similar function and their power to detect an effect is substantially reduced as a consequence. For

small effect sizes, PWRD aggregation increases power by nearly 20% and this gap only widens as

the effect size increases. For example, our method more than doubles the power of mixed effects

models and flat weighting for large effect sizes.
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Figure 2.5: Power for the three methods under Effect 2 with increasing negative effects. Here we
add a positive effect of size 8 to students in the intervention and a negative effect that increases
from 0% to 100% of the positive effect.

The phenomenon present in Figure 2.4 holds when the magnitude of the negative effect varies

as well. We observe this in Figure 2.5. Under this scenario, the size of the benefit remains constant.

Instead, the adverse effect for those treatment students who do not test into the intervention varies

from 0% of the benefit to 100% of the benefit. PWRD aggregation provides a persistent 15-20

percentage point advantage in power for negative effects up to 60% of the positive effect before

narrowing out. This corresponds to at least a 40% improvement in power for all magnitudes of

the negative effect; under certain circumstances, our method provides double the power. When the

negative effect is equal in magnitude to the positive effect, PWRD aggregation no longer provides

gains in power.

2.3.1.3 Effect 3

We now examine what occurs in cases where the theory behind interventions of this sort entirely

fails. This does not necessarily mean the intervention does not provide a benefit, just that it does
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not work as hypothesized by the theory of change. Here, we impose an artificial treatment effect

on all treatment observations such that ⌧ijk ⇠ N(l, 2.5 ⇤ l) for l = 1, . . . , 10. Note that while the

aggregate effect is still positive, any given student may be negatively affected. Furthermore, effects

are neither stacked nor persistent across time. We present these results in Figure 2.6.

Figure 2.6: Power for the three methods under Effect 3, i.e. across increasing effect sizes when
none of the conditions hold.

We immediately observe that while the school random effects model and flat weighting slightly

outperform PWRD aggregation, this improvement is minimal and never exceeds 3%. For ef-

fect sizes greater than 6 (roughly 0.25�), we are able to reject frequently under any of the three

schemes. From these simulations, it is clear that our method provides substantial gains in power in

situations where the theory behind the intervention holds. When the theory does not hold, we see

marginal decreases in our ability to detect an effect. These results hold in smaller samples as well,

providing gains to power when the theory of change holds and a minimal loss in power when the

theory of change is incorrect. For a deeper examination, see Appendix C.
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2.4 PWRD analysis findings

This section presents results for BURST, both on Cohort 1.0 and on the overall randomized trial

using PWRD aggregation and commonly applied alternative methods. The theory behind BURST

was presented in Section 2.2. Nonetheless, its data structure merits additional discussion to clarify

analysis in this section. We utilized a large-scale cluster randomized trial to test the efficacy of

BURST, a reading intervention designed to assist early-elementary students at risk of falling below

grade-level proficiency. The experiment was block-randomized at the school level with 26 total

blocks, 24 of which were pairs of schools. The remaining two blocks were a triplet of schools, in

which two schools were assigned to treatment, and a singleton. The singleton originally belonged

to a pair until the school assigned to the control attrited. Nearly every school was matched within

its school district. Across these 52 schools, we observed 27,000 unique students on 1–4 occasions

each, for a total of 52,000 student-year observations. As discussed in Section 2.2.1, the length of

time for which each student participated in the study depended on the grade and year during which

they entered the study. While we encountered some missing data, we had demographic information

(race, gender, age, free lunch status, etc.) for the vast majority of students. In addition, we had

Dynamic Indicators of Basic Early Literacy Skills (DIBELS) scores and end-of-year assessment

scores for each student. DIBELS, a widely used reading assessment, served as the diagnostic by

which students were designated to receive targeted instruction and additionally functioned as a

pre-test. The end-of-year assessments were our primary outcome of interest.

2.4.1 BURST Cohort 1.0

In this section, we begin by showing how the aggregation weights !̂ were generated before pre-

senting the results themselves. In order to calculate !̂, we need to estimate p0 and ⌃. We know

from Section 2.2.2 that we estimate p0 using the proportion of control students who tested in to

receive supplemental instruction for each year-of-follow-up. These values are presented in Ta-

ble 2.4. We then calculate ⌃ with the grouping of control-group residuals described in greater
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detail in Section 2.2.2. For this example, ⌃̂ may be found in (2.3). We then formulate:

!̂ = (⌃�1p0)+

�X

j

(⌃�1p0)+j = (0.25, 0, 0.32, 0.43).

Note that while more students were eligible for supplemental instruction by the second year than

in the first, the relative precision of the estimate in the second year-of-follow-up and its mutual cor-

relations with the other estimates were prohibitively large. Thus, PWRD aggregation determined

that outcome analysis would be best served by attaching no weight to those observations.

We then employ a Peters-Belson (Peters, 1941; Belson, 1956) approach to estimating the aver-

age treatment effect both under standard analyses like flat weighting and mixed effects models with

a random effect at the school level, and also under PWRD aggregation incorporating !̂ described

above. Briefly, Peters-Belson methods apply covariate adjustment to the control group rather than

to the treatment and control simultaneously. That control-adjusted model is then used to predict

treatment outcomes. The differences between the fitted and observed values serve to estimate the

average treatment effect. Results are presented in Table 2.5.

Method Est. S.E. t value Sig. Test Slope

Exit 9.88 9.72 1.02 - -
Flat 2.50 10.61 0.24 - 0.070
Sch. RE -1.10 10.47 -0.11 - 0.071
PWRD 8.87 6.89 1.28 - 0.109

Table 2.5: BURST results on a subset of Cohort 1.0 for various methods, including PWRD aggre-
gation. Note that we do not present the test slope for exit observation analysis, as this method does
not make full use of the data.

As we can see, none of the methods are able to detect an effect of the intervention, although

PWRD aggregation provides the greatest test statistic. In this scenario, exit observation analysis

also performs relatively well, perhaps because students in their fourth year-of-follow-up, i.e. in

third grade, were best situated to benefit from BURST.
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2.4.2 BURST[R]: Reading

We now conduct the same analysis as previously, yet using the complete data from BURST. For

PWRD aggregation, we now calculate separate effect estimates and aggregation weights for each

cohort-year. As with analysis on Cohort 1.0, we employ a Peters-Belson approach to outcome

analysis. Results are presented in Table 2.6.

Method Est. S.E. t value Sig. Test Slope

Exit 0.40 2.76 0.15 - -
Flat -0.09 4.17 -0.02 - 0.152
Sch. RE -3.70 3.91 -0.95 - 0.162
PWRD -0.34 3.03 -0.11 - 0.216

Table 2.6: BURST for various methods, including PWRD aggregation. Note that we do not present
the test slope for exit observation analysis, as this method does not make full use of the data.

None of these methods detect an effect of BURST on student achievement: unfortunately, this

program appears not to have provided a benefit. A possible explanation for the lack of an effect

is that schools possess limited resources; more students required supplemental instruction than

schools had the ability to serve at levels recommended by the theory of change (Rowan et al.,

2019). Thus, schools had to ration resources and make choices about depth of implementation

versus breadth of implementation. These factors, along with many others, may have contributed to

BURST not providing a reading benefit. Despite the theory of change not holding, PWRD aggre-

gation still provides valid standard errors and a valid hypothesis test. This additionally remains the

case when the intervention provides detrimental effects to students.

Nonetheless, if the theory of change held true, the relative Pitman efficiency of PWRD ag-

gregation versus flat weighting and mixed effects modeling was 2.02 and 1.78 respectively. This

suggests that we would have required over 52 and 40 additional schools in BURST in order to

achieve the same power we possessed under PWRD aggregation. Note that while in this case, exit

observation analysis came the closest to detecting a positive effect, it too did not come close to

rejecting the null hypothesis.
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For an example where PWRD aggregation detects an effect where other methods fail to reject a

null hypothesis of no effect, see the Massachusetts healthcare reform example in Appendix D.

2.5 Discussion

In this chapter, we have presented a novel method of aggregation that converts an intervention’s

theory of change into statistical power for a broad class of interventions. This method is compatible

both on its own and in tandem with commonly used methods of analysis including regression based

techniques.

The strategy of using a regression coefficient to conduct a hypothesis test is standard in settings

across the social sciences. Nonetheless, these conventional regressions may not prove optimal in

any given scenario because they fail to account for which observations are most likely to benefit

from the treatment. PWRD aggregation, constructed to maximize the test slope for a family of

hypotheses, offers a solution by providing greater efficiency and thus, greater power than extant

methods when the theory of change holds.

A suitable theory of change will generally be available in educational settings because they play

featured roles in competitive funding proposals. We demonstrated extraction of PWRD aggrega-

tion from a theory of change likely to be typical of interventions providing supplemental instruc-

tion. In it and similar circumstances, our method gives researchers the best possible opportunity to

detect an effect.

While PWRD aggregation is optimal when its supporting theory of change holds, no benefit

is gained when that theory is incorrect. Nonetheless, this scheme does not greatly hamper one’s

ability to detect an effect in this situation. We believe PWRD aggregation can be extended to many

other scenarios, both experimental and quasi-experimental, with longitudinal data and a treatment

that accrues heterogeneously across observations. In each of these scenarios, similar aggregation

weights can be formulated around the theory of change that will maximize power.
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CHAPTER 3

Confidence Intervals for Effects Proportional to

Dosage

3.1 Introduction

Randomized trials and observational studies in the social sciences often result in effects that accrue

heterogeneously across subgroups of the study population. For example, one flavor of education in-

tervention provides supplemental instruction to a subset of students who require corrections to their

otherwise stalled learning trajectories. In studies of this type, according to the theory of change,

the groups which are most likely to require supplemental instruction are most likely to demonstrate

a benefit from the intervention as well. Lycurgus and Hansen (2021) introduce a mode of hypothe-

sis testing structured around these subgroups to increase power for such interventions. Briefly, the

method emphasizes cohorts and years-of-follow-up on which effects are expected to concentrate,

with appropriate attention to the relative precision of these estimated effects. Simulations found

that when the theory of change behind the intervention held, this method provided much greater

power to detect an effect (at times twice the power) than commonly used techniques. For a more

detailed presentation of this method, Power-maximizing Weighting for Repeated-measurements

and Delayed-effects (i.e. PWRD) aggregation, see Chapter 2.

While designed with supplemental instruction interventions in mind, PWRD aggregation may

be extended to settings outside of education so long as there is a) some measure of the dosage

received by different subgroups and b) the effect accrues in a manner that is proportional to that
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dosage. To illustrate, Massachusetts extended Medicaid eligibility to adults with incomes below

138% of the federal poverty limit in 2006. PWRD aggregation is a natural fit when conducting

county-level analysis of this reform’s effect on mortality (see Appendix D). Health insurance is

the vehicle by which mortality would be reduced, so counties with greater numbers of low-income

residents newly eligible for health insurance stood to reap a larger mortality benefit from this

expansion than wealthier counties with fewer residents gaining health insurance.

Despite the broad applicability of PWRD aggregation, this method was designed to maximize

power for hypothesis testing, rather than to be applied when estimating an overall average treat-

ment effect across subgroups or constructing a confidence interval around that estimate. As a

consequence, confidence interval construction is not as simple as inverting hypothesis tests that

employ PWRD aggregation and retaining values that are accepted by the test.

In this chapter, we propose multiple methods that may be used in tandem with PWRD aggrega-

tion to construct confidence intervals. These allow researchers to benefit from PWRD aggregation

when conducting a hypothesis test of no effect while still attaching interpretable confidence in-

tervals to the estimated effect. The first method is motivated through the three-sided hypothesis

testing strategy proposed in Goeman et al. (2010), where the parameter space is partitioned into

three regions. Different hypothesis tests are simultaneously applied depending on the partition.

Those hypothesis tests may then be inverted to construct a confidence interval. The next method

takes one of the underpinnings of PWRD aggregation—that the effect is proportional to the level of

dosage received—and attaches a confidence interval on that proportionality constant in a manner

similar to Rosenbaum et al. (2010, p.135-6).

In this chapter, we use Medicaid expansion through the Affordable Care Act (ACA) as a test

case to illustrate how the combination of PWRD aggregation and these confidence interval tech-

niques provides researchers with an invaluable tool when conducting outcome analysis. Similar

to Massachusetts healthcare reform, counties with greater numbers of residents newly eligible for

Medicaid, i.e. those counties with greater dosage levels, should reap a larger benefit from Medi-

caid expansion than those counties with fewer newly eligible individuals given mortality is, in fact,
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reduced. We demonstrate how it is possible to realize gains in power through PWRD aggregation

while simultaneously attaching easily interpretable confidence intervals bounded away from the

null hypothesis.

3.1.1 Roadmap

We begin with a review of PWRD aggregation, first introduced in Chapter 2. Then in Section 3.2.2,

we adapt the three-sided hypothesis testing method into a confidence interval scheme that may be

used in tandem with PWRD aggregation. This method requires partitioning the parameter space, so

we provide guidance as to how that division should occur. After, we present a confidence interval

method for the proportionality constant as both an alternative to the three-sided confidence interval

scheme and also as a check on the validity of PWRD aggregation. In Section 3.3, we adapt the

simulation scheme presented in Lycurgus and Hansen (2021) (and in Section 2.3) to the three-sided

confidence interval method, showing power and confidence intervals under different partitions of

the parameter space. We then demonstrate these methods on Medicaid expansion through the ACA

in Section 3.4. We conclude with a discussion summarizing the benefits and drawbacks of using

PWRD aggregation in tandem with these confidence interval techniques.

3.2 Method

3.2.1 Review of PWRD Aggregation

PWRD aggregation was first introduced in Chapter 2 and additionally in Lycurgus and Hansen

(2021) with the intention of increasing power in education interventions where students only re-

ceive the treatment if they fall sufficiently behind their peers. The motivation behind PWRD ag-

gregation is that some cohorts or groups of students—e.g. those cohorts with a greater proportion

of students who require supplemental instruction—are more likely to manifest a treatment effect

than others. Consequently, those cohorts receive greater emphasis in hypothesis tests for primary
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outcome analysis attempting to detect a benefit of the intervention.

Briefly, PWRD aggregation is constructed around the potential outcomes framework of Rubin

(1974), Holland (1986), and Splawa-Neyman et al. (1990) and the class of intention-to-treat esti-

mators. We define �g as the treatment effect for group g, i.e. �g = E(Y (Z=1)
g � Y (Z=0)

g |G = g).

The overall average treatment effect is formulated by aggregating each �g into a single estimate,

i.e.
P

g !g�g, where !g denotes the relative weight of each �g. PWRD aggregation looks to

uncover which !g, i.e. which specific linear combination, will provide the greatest power.

Take the family of hypotheses K⌘ : �g = ⌘p0, where p0
..=
�
p0g : g

�
, p0g ..= P(An individual

in group g is eligible to benefit from the treatment), and ⌘ represents some proportionality con-

stant. Under appropriate conditions (see Conditions 2.2.1, 2.2.2 & 2.2.3), the asymptotic relative

efficiency (first introduced in Section 2.2), and consequently the power, of test statistics with the

form bV �1/2(
P

g !g�̂g�
P

g !g�0g) where �0 is a vector of hypothesized values of �, � ..= (�g : g)

and nbV !p c, c > 0, will be maximized by the following aggregation weights !:

! = (⌃�1p0)+

�X

j

(⌃�1p0)+j . (3.1)

where ⌃ ..= Cov{(�̂g : g)} and (·)+ ..= max(·, 0). Here, (·)+ denotes the element-wise maximum

of (⌃�1p0) and ~0 and (·)+j denotes the jth element of (·)+. This normalizes ! such that !01 = 1.

In summary, the test slope of test statistics described previously, such as the t-statistic, will be

maximized by the aggregation weights defined in Equation 3.1 (Equation 2.4 in Chapter 2).

While originally constructed with education interventions in mind, PWRD aggregation may be

extended to other scenarios where the treatment accrues heterogeneously across groups of obser-

vations, so long as a measure of the extent to which each group stands to benefit is available. For

example, we intend to illustrate the performance of PWRD aggregation on restricted-use mortality

data to estimate the effect of Medicaid expansion on mortality. Here, the measure of the extent to

which each subgroup stands to benefit is the proportion of newly eligible residents in a county.
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3.2.2 Confidence Interval Construction

PWRD aggregation is shown to provide substantial gains in power when applied in appropriate

situations (see Section 2.3). Nonetheless, the method is best suited for hypothesis testing rather

than for confidence interval estimation because �̂PWRD
..=
P

g !̂g�̂g does not represent an easily

interpretable treatment effect estimate. Thus, inverting hypothesis tests using PWRD aggregation

will not provide an interpretable confidence interval of the overall average treatment effect.

To combat this, we adapt the approach to constructing confidence intervals introduced in Goe-

man et al. (2010). There, the authors present two methods. The first coarsens the parameter space

into three regions, which they define as regions of inferiority, superiority, and equivalence. The

regions not rejected by the three-sided hypothesis test serve as the confidence region. When testing

H0 : � = 0, this is equivalent to a confidence interval on the sign of �. For instance, rejecting the

superiority and equivalence regions points towards a negative effect and thus, a negative sign on

�.

The second method allows for construction of confidence intervals with specific values of � in

mind. Briefly, the method tests each of H0,m where the appropriate test for m is determined through

its membership in a given partition. The confidence interval may be formed by inverting each of

these hypothesis tests and retaining values of m that are not rejected. Note that the definition of a

confidence interval solely necessitates a valid level ↵ test for each value m, not that the same test

is performed across the entire domain. Goeman et al. (2010) use this to justify different sided tests

in different partitions of the parameter space. For example, when m < ��, where � represents

some previously chosen threshold demarcating the equivalence region, they apply a left-sided test.

When m > �, they apply a right-sided test and when testing values of m within their equivalence

region, they employ a two-sided test.

We expand upon this idea by additionally employing different estimates of � in different par-

titions. When testing equivalence, we employ PWRD aggregation through �̂PWRD to give us the

greatest opportunity to detect a treatment effect. Outside of that partition, we use a method from

a class of methods fstd(X, Y, Z) that are standard to the field in which the research is conducted.
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We denote the treatment effect estimate provided by a method from fstd(X, Y, Z, ) as �̂std. When

working with education data, for example, fstd(X, Y, Z) may denote the class of hierarchical linear

models that are common in that field. Employing these standard methods outside of the equivalence

region ensures our point estimate and confidence interval are easily interpretable. This provides

us with the following confidence interval bounds when conducting a t-test where s denotes the

standard error and t↵ denotes the critical value for significance level ↵:

l =

8
>>>>>>>>>><

>>>>>>>>>>:

�̂std + st↵ if �̂PWRD < ��� st↵

�� (inclusive) if ��� st↵  �̂PWRD  ��� st↵/2

�̂PWRD + st↵/2 if ��� st↵/2 < �̂PWRD < �� st↵/2

� if �� st↵/2  �̂PWRD

,

u =

8
>>>>>>>>>><

>>>>>>>>>>:

�� if �̂PWRD  ��� st1�↵/2

�̂PWRD + st1�↵/2 if ��� st1�↵/2 < �̂PWRD < �� st1�↵/2

� (inclusive) if �� st1�↵/2  �̂PWRD  �� st1�↵

�̂std + st1�↵ if �� st1�↵ < �̂PWRD

.

We use PWRD aggregation when testing within the equivalence region and a standard analysis

when testing within the inferiority and superiority regions. Confidence intervals are constructed

by employing the appropriate estimate of � and the appropriate one or two-sided test within each

region. Despite applying one-sided tests in the inferiority and superiority partitions, our confidence

intervals will be bounded on both sides. One of the bounds will be the standard bound from the

one-sided test. The second bound is set at the edge of the rejected equivalence region rather than

at positive or negative infinity.

We motivate this method in a manner similar to Caughey et al. (2021), who extend randomiza-

tion tests to test bounded null hypotheses rather than solely sharp null hypotheses. They argue that

one-sided rejection of the sharp null that the treatment effect ⌧ equals some constant � also implies
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rejection of any null hypothesis under which ⌧ is bounded on one side by its corresponding �. To

simplify, they introduce bounded null hypotheses where ⌧  � and argue that one-sided rejection

of a null of ⌧ = � implies one-sided rejection of ⌧  �. Despite using classical methods rather

than randomization inference, the connection to our scenario is readily apparent: the hypotheses

we test remain interpretable as a bounded null hypothesis, H0 : � < �, where our bounds are

denoted through �.

In addition to the earlier conditions for PWRD aggregation, this method requires one more con-

dition adapted from Caughey et al. (2021): the test statistic must be effect increasing (Rosenbaum,

2002).

Condition 3.2.1 The test statistic, t(·, ·) must be effect increasing, i.e. t(z, y+ z · ⌧ +(1� z) ) �

t(z, y) for any ⌧ � 0 �  .

In other words, take the vector of outcomes Y and the vector of treatment assignments Z. An

effect increasing statistic will be increasing in Yi when Zi = 1 and decreasing in Yi when Zi = 0.

This holds trivially for the class of statistics compatible with PWRD aggregation centered around
P

g !g�̂g, where �̂g may be estimated through
P

i ZiYiP
i Zi

�
P

i(1�Zi)YiP
i(1�Zi)

. Clearly,
P

i Zi(Yi + ⌧) �
P

i(1 � Zi)(Yi �  ) �
P

i ZiYi �
P

i(1 � Zi)Yi whenever ⌧ � 0 �  . Thus, these statistics are

effect increasing.

Caughey et al. (2021) show that when the test statistic is effect increasing for any constant �,

the corresponding randomization p-value pZ,� for the sharp null H� will remain valid for testing

the bounded null H�. We argue this will similarly hold when the test statistic is effect increasing

for classical inference and formalize this in Proposition 3.2.2.

Proposition 3.2.2 If the test statistic t(·, ·) is effect increasing, then for any constant �, the cor-

responding classical p-value p� for the sharp null H� is also valid for testing the bounded null

H�.

In other words, when testing the bounded null H� (i.e. equivalence), P(p�  ↵)  ↵ for any

↵ 2 [0, 1] under H�. For a short proof, see Appendix E.
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3.2.2.1 Selection of partition thresholds

When testing for equivalence, a natural threshold of interest examines the null hypothesis H0 : � =

0. Yet when implementing the method of Goeman et al. (2010), confidence intervals will stretch

from some upper or lower bound to 0 (the edge of the equivalence region), even when equivalence

is rejected. Researchers may instead prefer a confidence interval bounded away from zero. For this

to occur, we need to select some threshold �, � > 0 when partitioning the parameter space into

three. While this ensures the confidence interval will be bounded away from zero, this also lessens

the power to reject the equivalence region, i.e. to reject H� : �  �. PWRD aggregation offers

a solution. Under PWRD aggregation, it is possible to set � > 0 while simultaneously providing

power to detect non-equivalence, i.e. to reject H� : �  �, that is at least as large as the power

to reject H0 : � = 0 using a method from fstd(X, Y, Z).

Given we are able to reject equivalence, the following method allows researchers to select �

such that the confidence interval will be bounded as far from zero as possible while providing com-

parable power to reject H� : �  � as a standard method from the class of models fstd(X, Y, Z)

yields when testing H0 : � = 0.

1. Calculate the asymptotic relative efficiency (PE) (Pitman, 1948) of PWRD aggregation ver-

sus a standard t-test.

2. Estimate the minimum detectable effect size (MDES) for a desired level of power (1 � �)

under a standard t-test, i.e. MDES1�� .

3. �PWRD
..= (

p
PE � 1)MDES1�� .

We observe how this works in Figure 3.1. As the asymptotic relative efficiency grows, the

minimum detectable effect size for PWRD aggregation as a proportion of the minimum detectable

effect size from a standard mode of analysis from fstd(X, Y, Z) decreases. For example, when

the asymptotic relative efficiency is 1, the two methods have an identical MDES. Alternatively, an

asymptotic relative efficiency of 4 suggests that the MDES using PWRD aggregation is half the
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magnitude of the MDES under a standard method from fstd(X, Y, Z). This allows us to shift the

threshold of the equivalence region away from zero while still providing comparable (or greater)

power to reject H� : �  � than we would possess when testing H0 : � = 0 and applying

a method from fstd(X, Y, Z). Note that the MDES is typically determined prior to the analysis

stage. Thus, the threshold �PWRD is dependent on decisions made before outcome analysis. For a

complete derivation of �PWRD, see Appendix F.

Figure 3.1: This figure shows relative improvements in MDES for PWRD aggregation over a
standard analysis for asymptotic relative efficiencies (i.e. relative Pitman efficiencies). When the
asymptotic relative efficiency is 4, the MDES for PWRD aggregation is 0.5 that of the MDES for
a standard method.

This threshold �PWRD then allows researchers to weigh providing meaningful confidence inter-

vals bounded away from zero with power considerations. For example, selecting � = 0 (and thus

testing H0 : � = 0) realizes the complete gain in power from PWRD aggregation but the interval

will stretch from zero to some upper or lower bound. Conversely, selecting � = �PWRD will pro-

vide a confidence interval bounded as far from zero as possible while providing identical power to

reject H� : �  � as a standard mode of analysis from fstd(X, Y, Z) yields to reject H0 : � = 0
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at the level of power (1 � �) used when calculating the MDES. Under this threshold, PWRD ag-

gregation will provide less power to reject H� : �  � than fstd(X, Y, Z) yields when testing

H0 : � = 0 for effect sizes smaller than the MDES yet greater power to reject H� : �  � when

the effect size is larger. Thus, selecting a MDES for a lower level of power (leading to a bound

closer to zero, albeit greater power) may best serve a researcher’s interests. Alternatively, selecting

� 2 (0,�PWRD) leads to an intermediate scenario: greater power to reject H� : �  � than

fstd(X, Y, Z) yields when testing H0 : � = 0 and intervals bounded away from zero.

Threshold Bound Power at MDES

� = 0 0 (1� �)PWRD

0 < � < �PWRD (0,�PWRD)
�
(1� �)std, (1� �)PWRD

�

� = �PWRD �PWRD (1� �)std

Table 3.1: Power and confidence interval bounds for various choices of �

It is also possible to use the effect size to select a threshold � that bounds the equivalence region.

The standard approach to interpreting effect sizes uses the following guidelines: (1) effect sizes

of 0.2-0.5 standard deviations of the outcome are small effect sizes; (2) those from 0.5 to 0.8 are

medium effect sizes; and (3) any effect of 0.8 standard deviations or greater is a large effect size

(Cohen, 2013). Researchers in education initially adopted these interpretations for effect sizes;

at one point, the What Works Clearinghouse (WWC) determined that “substantively important”

effect sizes arise at 0.25 standard deviations or larger. Nonetheless, Hedges et al. (2007) propose

that effect sizes smaller than 0.20 may still be of substantive importance. WWC guidelines have

adjusted accordingly. This reversal by WWC may have arisen because education research typically

results in modest effects. To illustrate, Cheung and Slavin (2016) and Fryer Jr (2017) analyze

results from randomized trials in education and find average effect sizes substantially beneath

Cohen’s cutoff.

In response, Kraft (2020) proposes new thresholds for effect size categorization. Effect sizes

of less than 0.05 standard deviations are small, effects from 0.05 to 0.20 standard deviations are

moderate, and effects greater than 0.20 standard deviations are large. From these thresholds, the
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researcher may select � at either � = 0.05� or � = 0.2� depending on the magnitude of the effect

they would like their confidence interval to cover, where � denotes the standard deviation of the

outcome.

For example, selecting � = 0.05� guarantees that, given we are able to detect non-equivalence,

the confidence interval will strictly cover effect sizes of at least moderate magnitude. Similarly,

the confidence interval will strictly cover large effect sizes with a threshold of � = 0.2� when we

are able to reject the equivalence region.

3.2.2.2 Alternative Confidence Intervals

We previously presented a method of confidence interval construction for PWRD aggregation that

adapts the three-sided confidence intervals of Goeman et al. (2010). That scheme provides a con-

fidence interval for the overall average treatment effect � with power at least as large as under a

standard analysis. Nonetheless, this method fails to account for different effect sizes on different

groups of observations which was the initial motivation behind PWRD aggregation.

Instead, researchers may be interested in a confidence interval on ⌘, the proportionality constant

present in our family of hypotheses: K⌘ : �g = ⌘p0. Through the duality between hypothesis tests

and confidence intervals, this is comparable to testing whether the effect is proportional to dosage,

an underlying tenet of PWRD aggregation. Thus, this confidence interval implicitly tests the as-

sumptions underlying PWRD aggregation. Implementing this method and finding a significant,

non-zero proportionality constant prior to employing PWRD aggregation ensures the validity be-

hind the hypothesis testing scheme. PWRD aggregation may still be valid in certain situations

when the confidence interval around the proportionality constant contains zero, but the researcher

should proceed with caution. An additional benefit of this method is that the confidence interval

on ⌘ implicitly allows for separate confidence intervals for the effect size on separate groups or

cohorts, i.e. confidence intervals for each �g.

To calculate a confidence interval around ⌘, perform the following steps (Rosenbaum et al.,

2010, p.135-6):
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1. Calculate the adjusted response: aij = Yijk � ⌘p0g1(Z=1).

2. Test a null hypothesis of no effect on the adjusted responses.

3. Record whether the null hypothesis is accepted or rejected.

By iterating through these three steps across different hypothesized values of ⌘, it is possible to

obtain a confidence interval for ⌘ where the confidence interval is the set of hypothesized values of

⌘ that are accepted. With this confidence interval, it is also possible to construct separate confidence

intervals for each �g through [⌘LB, ⌘UB]p0g, where ⌘LB and ⌘UB represent the lower and upper

bounds for the confidence interval on ⌘ and p0g represents the proportion of individuals in group g

who stood to benefit from the intervention.

3.3 Simulations

To demonstrate how varying thresholds for � provide different levels of power and varying confi-

dence bounds, we extend the simulation study present in Lycurgus and Hansen (2021) (addition-

ally found in Section 2.3). This study, mirroring the design of a reading intervention for early-

elementary students (BURST in Chapters 2 and 4, generated student outcomes with the following

two-level model:

Yijk = �0 + �1Gradeijk + µk + ✏ijk

µk = �0 + ⌫k

, (3.2)

where ⌫k ⇠ N(0, ⇠). The outcome Y of student i in school j in time-period k is a function of their

school and grade. Those with sufficiently low scores are flagged as eligible to receive supplemental

instruction from the intervention.

We then impose three variations of treatment effects on students in treatment schools. Under

the first, each treatment observation flagged as eligible receives some constant, positive effect

⌧ . Under the second, flagged treatment observations receive a constant, positive effect ⌧ and

46



unflagged treatment observations receive a constant negative effect �p⌧ where p 2 (0, 1]. The

third version of treatment effect imposes an effect ⌧ ⇠ N(l, 2.5 ⇤ l) for some l to each treatment

observation.

The first two variations of imposed treatment effect may be viewed as scenarios where the

theory of change holds —the effect will be proportional to the number of individuals who stood to

benefit from the intervention. Under these scenarios, we have maximized the asymptotic relative

efficiency of PWRD aggregation over the standard method and thus, should be able to set � > 0

without losing power to reject H� : �  � (i.e. equivalence) in comparison to the power to reject

H0 : � = 0 provided by a method drawn from fstd(X, Y, Z). Scenario 3 demonstrates a violation

in the theory of change; effects are no longer related to the proportion who stood to benefit. We

should lose power to reject H� : �  � by adopting PWRD aggregation and expanding the size

of the equivalence region. But how much power is lost?

3.3.1 Effect 1

Figure 3.2 illustrates the power for various thresholds across increasing effect sizes when the theory

of change holds. As expected, PWRD aggregation with a threshold of � = 0 (thus testing H0 :

� = 0) provides the most power. This is the base scenario under which PWRD aggregation is

asymptotically efficient. To examine the performance of � = �PWRD and � = �PWRD/2, we

created our threshold using an MDES for � = 0.50, i.e. we select the minimum detectable effect

size that will provide 50% power to reject H0 : � = 0. If our method works as intended, PWRD

aggregation with � = �PWRD will provide 50% power to reject H� : �  � and a method from

fstd(X, Y, Z) will provide 50% power to reject H0 : � = 0 at the same effect size. This is, in fact,

what happens. The standard method provides greater power to reject H0 : � = 0 than PWRD

aggregation yields when testing H� : �  � until an imposed effect of roughly nine, at which

point both methods attain 50% power. For effect sizes greater than nine, PWRD aggregation with a

threshold at � = �PWRD provides more power. A threshold at � = �PWRD/2 overtakes the power

provided by the standard method at a much smaller level. Interestingly, in this case � = �PWRD/2
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tracks closely with a threshold set at � = 0.05�, i.e. the threshold that demarcates the boundary

between small and moderate effect sizes

Selecting a threshold � = 0.2� decreases power to reject H� : �  � substantially and may

be unreasonable as a consequence. For these simulations, we let � denote the standard deviation

of the gain score rather than the standard deviation of covariate adjusted student scores. While the

WWC recommends reporting effect sizes using the second, these standard deviations will be larger

(Clearinghouse, 2020, p.58), and thus, rejecting equivalence using a threshold calculated from

the student-level standard deviation would be prohibitively difficult. For simulations comparing

power for thresholds calculated using gain score standard deviations versus student-level standard

deviations, see Appendix G. In addition, note that each threshold greater than zero provides slightly

deflated Type I errors. Unsurprisingly, larger thresholds provide smaller Type I errors. This is

consistent with what we expect to see from Caughey et al. (2021) and from Proposition 3.2.2. The

p-value for the sharp null will be conservative when testing the bounded null rather than rejecting

too frequently.

Figure 3.2: Power under various thresholds for Effect 1, i.e. across increasing effect sizes.
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Figure 3.3 presents 20 confidence intervals from these simulations provided by the standard

method and by PWRD aggregation under varying thresholds. Each subfigure presents the intervals

in the same order—the third interval from the left in Figure 3.3d corresponds to the same simulation

iteration as the third interval from the left in each of the other subfigures. Note that, under the

base scenario and with �PWRD/2, PWRD aggregation rejects equivalence more frequently than the

standard method. The intervals constructed using �PWRD reject equivalence less frequently, but

this is merely a function of the randomly selected intervals.

In Figures 3.3a and 3.3b, the lower bounds of intervals that reject equivalence are set at zero

as both are testing H0 : � = 0. Lower limits are bounded away from zero in Figures 3.3c and

3.3d because the equivalence regions are set at �PWRD/2 and �PWRD, respectively. Note that the

rejection thresholds in Figure 3.3c, denoted by the points, are exactly half the magnitude of the

rejection thresholds in Figure 3.3d. Thus, intervals 5, 9, 10, and 12 are rejected under �PWRD/2

but not under �PWRD. These intervals (and some others) are entirely greater than zero yet we

are unable to reject the equivalence region. In other words, we would have been able to detect

non-equivalence when testing H0 : � = 0, yet we were not able to detect non-equivalence for

H� : �  �. This arises because the threshold � lies within our interval, so while the 95%

confidence interval is entirely non-zero, the entire equivalence region cannot be rejected. Instead,

we have evidence that � > 0 but not that � > �. Despite failing to reject equivalence, the method

still provides an interval comparable to those intervals constructed with alternative thresholds.

3.3.2 Effect 2

Figure 3.4 illustrates the power for various thresholds across increasing effect sizes when those who

receive supplemental instruction benefit and those who do not are adversely affected. This, too, is

consistent with a related theory of change and thus, we should see benefits to PWRD aggregation.

Similar to Figure 3.2, PWRD aggregation does provide a benefit and that benefit is relatively larger

than under Effect 1. Thresholds set at � = �PWRD and � = �PWRD/2 both provide large gains in

power to detect non equivalence when compared to the power when testing H0 : � = 0 yielded
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(a) Standard Method (b) Base PWRD with � = 0

(c) PWRD with � = �PWRD/2 (d) PWRD with � = �PWRD

Figure 3.3: Confidence intervals with varying thresholds and methods for Effect 1. The point
represents the threshold that demarcates the equivalence region.

by a standard method from fstd(X, Y, Z). Furthermore, the power to reject H� : �  � provided

by PWRD aggregation surpasses the standard method’s ability to reject H0 : � = 0 at a smaller

imposed effect than under Effect 1. The difference is particularly stark when those individuals

who receive the supplemental instruction see a large benefit and individuals who do not receive the

supplemental instruction are adversely affected.

Note that the power to reject H� : �  � provided by PWRD aggregation using �PWRD no

longer intersects the power to reject H0 : � = 0 from fstd(X, Y, Z) at the same effect size, but

well before that point. This occurs because the threshold was determined using assumptions from

the original theory of change; in particular, the threshold assumed that those who do not receive

supplemental instruction are unaffected (i.e. no interference is present (Sobel, 2006)). Nonetheless,

PWRD aggregation still provides large gains in power over a standard method from fstd(X, Y, Z)
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because a related theory of change holds. If the threshold were calculated using assumptions from

the revised theory of change, we expect the two methods would intersect at the same effect size as

they did under Effect 1.

Setting the threshold at � = 0.05� also provides a boost to power that once again tracks closely

to the power provided by � = �PWRD/2. This suggests that it is reasonable to select a threshold

using � when � is calculated using the standard deviation of the gain score.

As with Effect 1, setting a threshold at � = 0.2� greatly reduces power to reject H� : �  �.

Rejecting at this threshold requires a very large effect size to overtake the power to reject H0 : � =

0 provided by a standard method. While this occurs when both methods attain 25% power, this is

more so attributable to the standard method struggling to detect this form of effect than because

� = 0.2� provides a reasonable threshold.

Figure 3.4: Power under various thresholds for Effect 2.

Figure 3.5 presents confidence intervals obtained through the standard method, along with

through PWRD aggregation with varying thresholds for Effect 2. As with Figure 3.3, the lower

bounds for rejected confidence intervals in Figures 3.5a and 3.5b are zero. Setting � > 0 pro-
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vides confidence intervals bounded away from zero at the expense of some power to detect non-

equivalence compared to PWRD aggregation with � = 0, yet still yields more power to reject

H� : �  � than the power to reject H0 : � = 0 yielded by a standard method. The relative

improvement in power for moderate to large effect sizes is greater than under Effect 1. As with

Effect 1, using the most aggressive threshold for � leads to accepting equivalence for intervals

that are entirely non-zero. Similarly, doubling the magnitude of the equivalence threshold from

Figure 3.5c to that present in Figure 3.3c costs the researcher the ability to reject equivalence in

intervals 8, 12, and 13 despite these intervals strictly covering non-zero values.

(a) Standard Method (b) Base PWRD with � = 0

(c) PWRD with � = �PWRD/2 (d) PWRD with � = �PWRD

Figure 3.5: Confidence intervals with varying thresholds and methods for Effect 2. The point
represents the threshold that demarcates the equivalence region.
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3.3.3 Effect 3

Figure 3.6 illustrates the power for various thresholds across increasing effect sizes when the theory

of change fails. Under this scenario, PWRD aggregation should be detrimental to one’s ability to

reject H0 : � = 0 and that detriment should grow when setting thresholds further from zero, thus

testing H� : �  �. We do in fact observe this. PWRD aggregation with a threshold at � = 0

yields less power to reject H0 : � = 0 than the standard method, although this gap is never greater

than 3%.

A threshold at � = �PWRD/2 decreases power to reject the entire equivalence region by roughly

25% for moderate effect sizes but by under 15% for large effect sizes. While harmful in relative

terms, this gap is smaller in absolute terms, as it corresponds to at most a 12 percentage point

difference in power provided. The gulf widens when selecting a threshold at � = �PWRD. Under

small effect sizes, a standard method from fstd(X, Y, Z) yields over double the power to reject

H0 : � = 0 as PWRD aggregation yields when testing H� : �  � using � = �PWRD. For

moderate effect sizes, this decreases to 50% greater power and narrows to under a 20% gap for

large effect sizes. While a substantial difference, this is never larger than a 20 percentage point

deficit in power.

Unsurprisingly, partitioning based on the effect size, i.e. � = 0.05� or � = 0.2�, greatly

harms power to detect non-equivalence when the theory of change fails. The thresholds � = 0.05�

and � = �PWRD/2 are generally comparable in this simulation study. Thus, we observe a similar

loss in power to reject H� : �  � using � = 0.05� as we did when using � = �PWRD/2

when in comparison to the power yielded by a standard method drawn from fstd(X, Y, Z) to reject

H0 : � = 0. The gap is much larger with � = 0.2�. For small effect sizes, the standard method

yields over three times the power of PWRD aggregation with � = 0.2�. Even for large effect sizes,

the standard method offers 35% more power. In terms of absolute power lost, selecting � = 0.2�

costs researchers 36 percentage points of power to detect non-equivalence for some effect sizes.

Figure 3.7 shows confidence intervals provided under the standard method, along with under

PWRD aggregation for varying thresholds. As with Figures 3.3 and 3.5, the lower bounds for
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Figure 3.6: Power under various thresholds for Effect 3.

rejected confidence intervals in Figures 3.7a and 3.7b remain at zero. Setting � > 0 generates con-

fidence intervals bounded away from zero at the expense of some power to detect non-equivalence.

Note that under Effect 3, both � = �PWRD and � = �PWRD/2 lead to intervals greater than 0 where

equivalence is accepted. The gap in power to detect non-equivalence provided by � = �PWRD in

Figure 3.7d compared to the other three figures is stark.

From these results, it is clear that PWRD aggregation harms a researcher’s ability to detect non-

equivalence when the theory of change fails. This detriment is very small under the base version of

PWRD aggregation with � = 0 (and testing H0 : � = 0), but steadily widens as the bounds of the

equivalence region widen. Nonetheless, setting � in relation to �PWRD may still represent a fair

tradeoff. A moderate amount of power to detect non-equivalence is lost using this threshold when

compared to PWRD aggregation with a threshold at � = 0. However, confidence intervals for the

effect estimate will include non-trivial bounds when the equivalence partition is rejected. Setting

� in relation to the effect size is riskier, particularly when the standard deviation of the outcome is

large.
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(a) Standard Method (b) Base PWRD with � = 0

(c) PWRD with � = �PWRD/2 (d) PWRD with � = �PWRD

Figure 3.7: Confidence intervals with varying thresholds and methods for Effect 3. The point
represents the threshold that demarcates the equivalence region.

To ensure PWRD aggregation does not fail in this manner, researchers may benefit from first

constructing a confidence interval on the proportionality constant, ⌘. This provides an initial check

of whether the theory of change holds, and thus whether PWRD aggregation may safely be em-

ployed. When the interval for the proportionality constant is centered close to zero, the researcher

has evidence to avoid implementing PWRD aggregation. This is the case with Effect 3: each stu-

dent benefits on average regardless of their level of dosage so the effect is not proportional to the

dosage received. For example, let us look at Effect 3 with an imposed effect of size 7. Among

all simulations where PWRD aggregation failed to detect non-equivalence, 74% of the intervals on

the proportionality constant included zero, suggesting a standard method drawn from fstd(X, Y, Z)

would have provided a greater opportunity to reject equivalence. Furthermore, when solely exam-

ining simulations where the standard method rejected equivalence and PWRD aggregation did not,
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i.e. those situations when PWRD aggregation directly had adverse consequences, the interval on

the proportionality constant included zero one third of the time. Thus, only implementing PWRD

aggregation when the interval on the proportionality constant does not include zero would cut the

gap in power yielded by PWRD aggregation and the standard method by one third.

3.4 Medicaid Expansion through the Affordable Care Act

We now demonstrate three-sided confidence interval construction using our adapted scheme on

the Affordable Care Act’s Medicaid expansion. Beginning in 2014, states were allowed to expand

Medicaid through the Affordable Care Act, vastly increasing access to health insurance in states

that implemented this policy. Under the expansion, all adults with incomes below 138% of the

federal poverty limit were newly eligible for health insurance through Medicaid whereas before,

eligibility depended on multiple factors like age and assets. Nonetheless, many states chose not to

implement the policy.

Numerous studies have examined the effect of Medicaid expansion. However, the results are

mixed with some finding it reduced mortality (Borgschulte and Vogler, 2020), others finding no ef-

fect (Black et al., 2019), and still some finding mortality reductions in particular subgroups (Miller

et al., 2019; Swaminathan et al., 2018). We look to add to this literature by leveraging an under-

studied feature: the newly eligible. Medicaid directly targets low-income individuals who would

otherwise be unable to afford health insurance. Thus, we believe that given health insurance serves

as the vehicle by which mortality would decrease, the benefits to expanding Medicaid will dispro-

portionately accrue in counties that contain larger numbers of newly eligible individuals.

To assess the effect Medicaid expansion had on mortality, we use county-level full match-

ing (Hansen, 2004; Rosenbaum, 1991) using the optmatch package in R (Hansen and Klopfer,

2006). This matching uses propensity scores and propensity score calipers where counties in states

that expanded Medicaid are matched with counties in states that opted not to expand. We addi-

tionally attach penalties on pairings that are either not physically adjacent or are poor matches;
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poor matches are determined through the match’s Mahalanobis distance in comparison to the Ma-

halanobis distances of adjacent counties. The propensity score accounts for important covariates

that are likely associated with a state expanding Medicaid (e.g. income, political leaning, educa-

tion levels, etc.) along with general pre-ACA mortality. This analysis solely examines working

age adults (ages 20-64), removing both children (who have different eligibility requirements) and

older adults who qualify for Medicare. For a more in depth explanation of the matching strategy,

see Mann et al. (2021).

To analyze Medicaid expansion and the resulting effect on healthcare amenable mortality, we

apply a variation of PWRD aggregation that divides counties into six distinct brackets based on

the proportion of adults that would be newly eligible for Medicaid under expansion. We then

incorporate interactions between treatment status and the newly eligible bracket along with a host

of demographic covariates into a generalized linear mixed effects model for the negative binomial

family with random effects for the matched sets. From this model, we obtain six effect estimates

(i.e. one for each bracket), �̂b, where b 2 (1, . . . , 6). We aggregate those estimates into a single test

statistic, �̂PWRD =
P

b !̂b�̂b, where !̂ depends on the proportion of adults who would be newly

eligible for Medicaid, calibrated by the relative precision of estimates �̂b. For a more thorough

description of our intended analysis, see Lycurgus et al. (2021).

3.4.1 Selecting �

To begin, we partition the parameter space into three distinct regions by selecting �. The natural

threshold in this situation is � = 0 because we would like to determine whether there is a mortal-

ity benefit to Medicaid expansion. Nonetheless, we would like to construct confidence intervals

bounded away from zero. Thus when selecting �, we first determine the maximum value of � that

will provide comparable power when testing H� : �  � as a standard analysis yields testing

H0 : � = 0. That is, we would like to select �PWRD.

To calculate �PWRD, we calculate the asymptotic relative efficiency between PWRD aggrega-

tion and a standard method drawn from fstd(X, Y, Z). In this case, the standard method imple-
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ments the model described previously, yet with a single indicator denoting treatment status rather

than treatment status interacted with the bracket of newly eligible individuals. We estimate test

slopes for PWRD aggregation and the standard method to be 12.5 and 9.61, respectively. The

corresponding asymptotic relative efficiency is 1.69. We then employ the minimum detectable

effect size determined in advance of estimation. The minimum detectable effect for 80% power

to reject H0 : � = 0 when applying a method from fstd(X, Y, Z) and testing at the 95% level

with 25 degrees of freedom is 0.04. This translates to requiring at least a 4% reduction in health-

care amenable mortality. We then apply our asymptotic relative efficiency with the MDES to set

� = (
p
1.69� 1) · 0.04 = 0.012.

This divides our parameter space for � into three distinct partitions: [0, 1� �), [1� �, 1 + �],

and (1 + �,1). These regions correspond with a 1.2% or larger reduction in mortality, a 1.2%

reduction to a 1.2% increase in mortality, and at least a 1.2% increase in mortality. We may then

conduct three simultaneous hypothesis tests for � while retaining conservative type I error control.

3.4.2 Confidence Interval Construction

We then construct confidence intervals as described in Section 3.4.2. We begin by inverting two-

sided hypothesis tests using PWRD aggregation within the region [1 � �, 1 + �]. We obtain the

results presented in Figure 3.8.

It is clear that our interval lies entirely outside of this partition. We invert hypothesis tests using

a standard mode of analysis in the remaining regions, [0, 1� �) and (1 + �,1), using right-sided

and left-sided tests respectively within those regions. We obtain the following confidence interval:

(0.911, 0.988), with a point estimate of 0.942. In other words, we estimate expanding Medicaid

through the ACA reduced healthcare amenable mortality by 5.8%, with a 95% confidence interval

on that estimate of (1.2%, 8.9%). As mentioned in Section 3.2.2, the lower bound corresponds

with the edge of our equivalence region thus providing an interval finitely bounded on both sides.
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Figure 3.8: Test statistics under the standard method and PWRD analysis within the equivalence
region. The horizontal line denotes the value at which we reject equivalence. This occurs using
both methods.

3.4.3 Confidence Intervals for Different Values of �

To illustrate how changing the thresholds affects confidence intervals, Figure 3.9 presents con-

fidence intervals that we would have obtained under alternative thresholds for �. Note that for

� 2 [0, 0.083], the upper bound of the confidence interval remains fixed at 0.089, an 8.9% decrease

in mortality, as does the point estimate of 0.058, a 5.8% reduction in mortality. The lower bound

changes and is equal to the value of �. For any value of � > 0.083, both the lower and upper

bounds remain fixed at [0.083, 0.142] as we fail to reject equivalence in this scenario. This interval

is computed using PWRD aggregation since we are technically within our equivalence region and

corresponds to the intervals in our simulation study that fail to reject H� : �  � despite solely

containing non-zero values. Note that this does not mean that 0, i.e. no effect, falls within our

interval. It merely suggests that we were unable to reject the entire equivalence region.

This is a rather extreme example. PWRD aggregation provided substantially greater power than
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Figure 3.9: Confidence intervals for various thresholds of �. The black points represent the interval
bounds for the � presented in Section 3.4.2. We reject equivalence and use a standard mode
of analysis to the left of the vertical line, i.e. for any � < 0.083. For � > 0.083, we accept
equivalence and use the PWRD aggregate to estimate our interval.

would have been available otherwise and we are able to reject equivalence at thresholds far beyond

what reasonably may have been selected a priori. Thus, we only fail to reject equivalence when

� is roughly five standard deviations from zero. For any level of � beneath that value, we reject

equivalence and use a standard analysis in the inferiority and superiority regions.

3.4.4 Supermajority White Analysis

We previously demonstrated PWRD aggregation and the resulting confidence intervals when exam-

ining the effect Medicaid expansion had on healthcare amenable mortality. In this scenario, PWRD

aggregation provided a substantial increase in power over the standard method. This proved to be

unnecessary as a standard analysis would have rejected the null hypothesis of no effect.

To demonstrate a less extreme scenario, we conduct the same analysis, but only on counties

that are deemed “supermajority white”, which we define as the set of counties above the 97.5th
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weighted quantile for the proportion of the county’s population that was white (Mann et al., 2021).

For this analysis, our model is fit on every county in a matched set with a supermajority white

county. Nonetheless, through an additional interaction term differentiating supermajority white

counties from the others, only supermajority white counties themselves are incorporated into our

test statistic. We use a three-sided approach to construct a confidence interval estimating the effect

Medicaid expansion had on healthcare amenable mortality in supermajority white counties.

We find the test slopes to be 7.05 and 5.64 for PWRD aggregation and the standard method,

respectively. This leads to an asymptotic relative efficiency of 1.56. With a minimum detectable ef-

fect size of 0.07 (with 80% power), we select a threshold of � = (
p
1.56�1)·0.07 = 0.018. PWRD

aggregation (but not a standard method) allows us to reject the equivalence region of [1��, 1+�].

By inverting hypothesis tests within the inferiority and superiority regions, we obtain a confidence

interval of (0.897, 0.982) with a point estimate of 0.938. This suggests that supermajority white

counties that expanded Medicaid experienced a 6.2% reduction in mortality from 2015-2018 com-

pared to supermajority white counties that did not expand Medicaid. The 95% confidence interval

on this estimate is (1.8%, 10.3%).

Note that in this scenario, we would not have been able to reject equivalence at � = 0.017

despite rejecting a null hypothesis of � = 0. Under a standard analysis with neither PWRD

aggregation nor three-sided confidence intervals, the 95% confidence interval would have stretched

from a 1.2% reduction in mortality to a 11.2% reduction in mortality. This estimate entails both

wider bounds and a smaller minimum effect.

3.4.5 Confidence Intervals for Effects Proportional to Dosage

We now construct confidence intervals for the proportionality constant, working under the assump-

tion that the effect is proportional to dosage. First, we calculate adjusted responses for each county.

Let Mij represent the mortality in county i in year j and pb denote the proportion of adults in a

county belonging to bracket b who would be newly eligible for Medicaid under expansion through
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the ACA. The adjusted mortality may then be written as:

aij = Mij � ⌘pb1(Z=1), (3.3)

where ⌘ denotes the proportionality constant. For a given value of ⌘, ⌘ 2 (�1, 1), we calculate

the adjusted mortality responses through Equation 3.3. We then test a null hypothesis of no effect

using a two-sided t-test at the 5% level and record whether we reject or accept the null hypothesis

for that proportionality constant ⌘. We iterate through this process for each possible ⌘ from �1

to 1 and keep the values for ⌘ where the hypothesis test fails to reject the null. We obtain a point

estimate of ⌘ = 0.55 (i.e. the ⌘ that provided a test statistic of zero), with a 95% confidence

interval of ⌘ = [0.27, 0.83]. This suggests that if 10% of adults in a county stood to benefit from

Medicaid expansion, that county would see a 0.55 ⇤ 10 = 5.5% reduction in healthcare amenable

mortality. Table 3.2 provides the proportion of newly eligible residents by bracket, along with

Bracket Newly Eligible LB: ⌘ = 0.27 Est: ⌘ = 0.55 UB: ⌘ = 0.83

1 0.01 0.00 0.01 0.01
2 0.07 0.02 0.04 0.06
3 0.10 0.03 0.05 0.08
4 0.12 0.03 0.07 0.10
5 0.15 0.04 0.08 0.12
6 0.20 0.06 0.11 0.17

Agg. 0.11 0.03 0.06 0.09

Table 3.2: The estimated effects on healthcare amenable mortality for each of the six brackets
under different values of ⌘, the proportionality constant.

bracket specific confidence intervals on the reduction in healthcare amenable mortality under the

assumption that the effect accrues proportionally to dosage. These results provide evidence that

the proportionality assumption behind PWRD aggregation does, in fact, hold and it was proper

to use that method when conducting outcome analysis. These results are consistent with the idea

that counties with lower proportions of residents who were newly eligible for Medicaid benefitted

less from the expansion. For example, Bracket 1, with roughly 1% of residents newly eligible,
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experienced a reduction in mortality of under 1%. Bracket 6, on the other hand, likely saw more

than a 10% reduction in mortality due to the expansion.

In addition, note that the confidence interval provided on the aggregated estimate is very similar

to the confidence interval from the three-sided method. That method provided a point estimate of

a 5.8% reduction in mortality with a 95% confidence interval stretching from 1.2% to 8.9%. Here,

we obtained a point estimate of 6% with an interval stretching from 3% to 9%. The smaller lower

bound with the three-sided method results from the threshold � selected in Section 3.4.1.

We now calculate an interval on the proportionality constant for the supermajority white anal-

ysis. Following the steps outlined above, we estimate the proportionality constant to be ⌘ = 0.56

with a 95% confidence interval of ⌘ = [0.11, 0.99]. This interval is substantially wider than the

interval yielded by the overall analysis of healthcare amenable mortality. Nonetheless, this is un-

derstandable. The sample size for supermajority white counties is 496 compared to 2996 counties

overall and the issue is more pronounced when looking at population size since supermajority

white counties tend to be smaller (as a result of being more rural). The full results are presented in

Table 3.3. Interpretation follows as before.

Bracket Newly Eligible LB: ⌘ = 0.11 Est: ⌘ = 0.56 UB: ⌘ = 0.99

1 0.03 0.00 0.02 0.03
2 0.07 0.01 0.04 0.07
3 0.10 0.01 0.06 0.10
4 0.12 0.01 0.07 0.12
5 0.15 0.02 0.09 0.15
6 0.20 0.02 0.11 0.20

Agg. 0.11 0.01 0.06 0.11

Table 3.3: The estimated effects on healthcare amenable mortality in supermajority white counties
for each of the six brackets under different values of ⌘, the proportionality constant.

Note that the confidence interval on the overall effect stretches from a 1.2% reduction in mor-

tality to an 11% reduction in mortality with a point estimate at 6.3%. The three-sided method

resulted in an interval of (1.8%, 10.3%) and an estimate of a 6.2% reduction in mortality. Once

again, these two methods provide similar confidence intervals on the overall reduction in mortality.
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In this case, the three-sided method through PWRD aggregation provided a larger lower bound of

the effect than did the dosage interval.

3.5 Discussion

In this chapter, we present two methods for confidence interval construction that are compatible

with PWRD aggregation. The first is a novel adaptation of the three-sided testing scheme of

Goeman et al. (2010) that allows for implementation of PWRD aggregation for increased power

to detect non-equivalence while attaching easily interpretable and valid confidence intervals on the

overall effect estimate. The second, working under the assumption of an effect proportional to the

dosage, calculates a confidence interval on the proportionality constant. This additionally serves

as a check on PWRD aggregation. When the proportionality constant is non-zero, the assumptions

behind PWRD aggregation likely hold and the method may be safely implemented. When the

interval on the proportionality constant contains zero, the assumptions may hold (in which case

PWRD aggregation still provides a benefit), but the researcher should proceed with caution.

Simulations demonstrate that PWRD aggregation in tandem with the three-sided confidence

interval presented in Section 3.2 will provide additional power over a standard flavor of analysis,

given assumptions behind PWRD aggregation hold. Nonetheless, there may be a detriment, albeit

a small one, in situations where the standard analysis would have detected an effect as well. In

this scenario, the lower bound of the confidence interval may be closer to zero at times than it

otherwise would have been. Thus, unsurprisingly, PWRD aggregation provides the greatest benefit

in settings where there is an effect, but the signal is drowned out by the noise. In this scenario,

PWRD aggregation allows the researcher to detect the effect and additionally bound the confidence

interval away from zero while other methods may not detect any effect. From our simulations,

the benefit to calculating the interval on the proportionality constant first becomes apparent as

well. When the simulated effect was not proportional to dosage, i.e. when assumptions failed,

calculating the proportionality interval first and only proceeding with PWRD aggregation if the
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interval did not contain zero reduced the difference in power between PWRD aggregation and the

standard method by one third.

We demonstrated these methods on a case study examining whether expanding Medicaid

through the Affordable Care Act led to a reduction in mortality. This scenario was appropriate for

PWRD aggregation since counties with larger numbers of newly eligible individuals likely stood

to benefit more from the policy. Yet the scenario also necessitated a method of estimating the over-

all potential reduction in mortality. PWRD aggregation allowed us to detect a highly significant

reduction in mortality both overall and on the subset of supermajority white counties. Using our

three-sided confidence interval method, we were able to estimate the magnitude of that reduction

to be roughly 6% both overall and solely examining supermajority white counties. The confidence

intervals on the proportionality constant led to similar estimates of the reduction in mortality as

a result of Medicaid expansion through the ACA, demonstrating the cohesion between the two

methods when assumptions behind PWRD aggregation hold.
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CHAPTER 4

Power Enhancement for Cluster Randomized Trials

via Dry Runs

4.1 Introduction

Randomized controlled trials (RCTs) are considered the gold-standard among applied research

organizations because of their strong internal validity and general lack of bias in large samples.

Consequently, RCTs have become increasingly popular over the last few decades across diverse

disciplines like medicine and criminology. They have especially flourished in the field of educa-

tion. From 1980 to 2016, researchers conducted over 1000 randomized trials to answer education-

related questions; three quarters of these trials were conducted in the final ten years of that period

(Connolly et al., 2018).

Despite their widespread use, much debate remains as to the best method for outcome analysis

in education settings. For example, some propose that because of the lack of bias in well-balanced

randomized trials, covariate adjustment is entirely unnecessary and a simple difference-in-means

suffices for estimating the treatment effect. Others suggest that while researchers can substantially

improve precision by controlling for pre-tests, further covariate adjustment remains unnecessary

(Bloom et al., 2007). A third line of thought argues that while pre-tests often improve precision,

other covariates may also help in different scenarios (Raudenbush, 1997). Nonetheless, that merely

leads to questions of which covariates should be incorporated.

Even among those who favor covariate adjustment, questions about model type abound. The
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prevailing technique is to fit a hierarchical linear model to account for the clustered nature of many

designs in education, incorporating random effects at the school, classroom, or student-level, or

potentially some combination of the three (Raudenbush and Bryk, 2002; Bryk and Raudenbush,

1987). Others, however, opt for standard covariate adjusted linear regression (see Meece and Miller

(1999) and Simmons et al. (2008)). Ultimately, as argued in Bloom et al. (2007), there is no one-

size-fits-all approach; instead different studies require different covariate adjustment and perhaps,

different modeling entirely. The question is then how to best select covariates and model type.

One common strategy to assist in variable selection is the LASSO, a penalized regression tech-

nique first proposed in Tibshirani (1996) that sets certain coefficients with less predictive power

to zero. While it has been adapted for use in randomized trials (e.g. in Bloniarz et al. (2016)),

it is applied less frequently in education settings as it may select covariates without theoretical

backing and remove others that are grounded in theory. On the other hand, lists of mandatory co-

variates specified in analysis plans may exclude important predictors while including less relevant

variables. This is because researchers frequently have inadequate prior knowledge as to which

covariates will provide the most precise estimate of the effect (Pocock et al., 2002). Instead, some

researchers merely choose covariates that are imbalanced between treatment and control groups,

and others still adopt a stepwise variable selection procedure (Pocock et al., 2002). Stepwise vari-

able selection, however, tends to overestimate how well the model fits the data, among other issues,

and should be performed with caution (Hurvich and Tsai, 1990).

As an alternative to one of these methods, we introduce a “dry run” simulation method that al-

lows for model and covariate selection by sampling strictly from the control data. This method may

be viewed as a form of cross-validation adapted to an experimental context. In cross-validation,

models are trained on a randomly divided portion of the data before being tested on the remaining

data. By iterating through this process, it is possible to estimate the predictive performance of

the tested models. In our dry run simulation scheme, certain observations are sampled from the

control data and assigned to the “pseudo-treatment” while the remaining observations remain part

of the “pseudo-control”. Notably, each observation originates from the control data and therefore,
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has not been exposed to any treatment effect. Thus, iterating through this procedure of generat-

ing a “pseudo-experiment” allows for comparisons of different model specifications in terms of

mean-squared-error, power and bias among others.

This may also be viewed as a form of uniformity trial (Rosenbaum, 2018, p.33), a process

popular in the 1920s and 1930s where plots of land were divided into treatment and control, yet

all received the control. After a uniformity trial, researchers possess each yc, i.e. every potential

outcome under the control. This allows for researchers to learn empirically how much the treat-

ment and control could differ under the presence of no treatment effect. A full uniformity trial is

impossible for a randomized trial: a subset of observations receive the treatment and thus, we do

not observe their potential outcomes under the control. Nonetheless, the dry run process serves as

a uniformity trial within the randomized trial. Inferences drawn from the dry run uniformity trial

from a subset of the yc’s should be informative about the full, theoretical uniformity trial.

This method allows us to avoid incorporating any assumption of the form Y = X� + ✏ into

our model selector. This provides us with an alternative method to covariate selection strategies

common among field trialists like stepwise variable selection using R2. To illustrate the advantage

of avoiding model selectors reliant on the above form, we present a trivial example. We generate

outcomes Y using the following model:

Y = 0.9Z + �X2 + ✏, (4.1)

where Z is a binary variable indicating treatment status and ✏ ⇠ N(0, 1). Figure 4.1 presents these

observations and the regression Y ⇠ Z + X� fit to this data when � = 1. The above model

provides an R2 of 0.92 suggesting a very good fit. Nonetheless, potential outcomes are clearly

not linear in X . In addition, the estimates of �, the treatment effect, and even the intercept are

imprecise. While data were generated without an intercept, the model in Figure 4.1 estimates an

intercept of -4. Worse, the treatment effect is estimated to be 0.47, far undershooting the true

value of 0.90 and limiting our ability to detect a treatment effect. As the coefficient � increases in
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Figure 4.1: Linear regressions of the form Y ⇠ Z + X� for data generated from the non-linear
model specified in Equation 4.1, where � = 1.

magnitude, the model’s R2 increases yet the estimated coefficients grow increasingly imprecise.

Our alternative method is motivated through the dry run simulations proposed in Wyss et al.

(2017) for nonrandomized studies. We construct pseudo-treatment and pseudo-control clusters

strictly using observations assigned to the control. By pseudo-treatment and pseudo-control, we

mean separate clusters from the control data that we randomly “assign” to the treatment and the

control. If performed properly, the pseudo-experiment should resemble the true experiment pro-

viding a sandbox on which we can test various models and sets of covariates on real rather than

contrived data to determine how best to maximize power and precision.

This simulation scheme is similar to standard power analyses often conducted in the design

stage of randomized trials, which are typically performed to ensure that the randomized trial has

a sample size large enough to detect an effect, conditional on the presence of a treatment effect.

Generally, these are closed-form power analyses, although power analyses with simulated data ap-

pear in the literature as well (Black et al., 2019; Croke et al., 2016; Hannon et al., 1993). Adopting

a simulation-based power analysis rather than a closed-form approach removes the need to fully

model the data generating process, a particularly difficult task with clustered standard errors often

present in education research.
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Simulated power analyses usually take two forms: those with synthetic data and those with real

data. The first is an entirely artificial process and possesses many of the same drawbacks as a

closed-form analysis. The researcher must make assumptions about both the data generation pro-

cess and the covariance matrix. On the other hand, synthetic data provide one notable advantage:

a known treatment effect. Since the data are entirely artificial, any treatment effect present must

have been artificially incorporated by the researcher. Thus, the magnitude of that effect is known.

However, the dry run simulation scheme presented in this chapter best corresponds to the power

analyses conducted in Black et al. (2019) and Hannon et al. (1993), which employ real data. Black

et al. (2019) achieve this by using and modifying pre-treatment data (which may be unavailable in

many cases) whereas Hannon et al. (1993) bootstrap their data. Neither of these methods offers

precise control over the simulated treatment effect. Our simulation scheme can make this promise.

Every simulated data point is constructed from observations drawn from the control group and

thus, has not been exposed to the treatment. As a result, our method possesses the same benefit

of a power analysis with synthetic data without needing to make any assumptions about the data

generation process. Furthermore, dry runs create treatment and control groups that are realistic in

terms of covariate balance.

4.1.1 Roadmap

In Section 4.2 of this chapter, we outline the general process for creating our sandbox simulation

method. First, we present the base scenario where the randomized control trial uses simple random

assignment to designate treatment versus control groups. We then extend the method to the cluster

randomized trials common in education research. We demonstrate this process on both a small,

contrived data set, and on a large-scale, IES-funded cluster-randomized trial. Section 4.4 illustrates

benefits and possible applications of this simulation method with reference to the aforementioned

IES study. In particular, we demonstrate how our scheme assists with model selection by providing

precision estimates for different model specifications and effect sizes. We then examine whether

inferences drawn from this method are valid using re-randomization inference on the complete
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data. Finally in Section 4.5, we finish with a discussion summarizing how this dry run sandbox

simulation scheme helps researchers increase precision and power through model and covariate

selection.

4.2 The Dry Run Simulation Method

In this section, we discuss how pseudo-clusters are generated and assigned a treatment status. We

provide steps outlining the process on a randomized trial with simple random assignment and a

cluster randomized trial. We then discuss how this method fits into randomized trials embedded

within surveys.

4.2.1 Dry Runs for Randomized Trials with Simple Random Assignment

We first illustrate the dry run simulation scheme on the most straightforward scenario: a random-

ized trial with simple random assignment. Under simple random assignment, each observation

or participant has the same probability of assignment to the treatment. Thus, the steps necessary

to generate a pseudo-experiment solely using control data are simple. Let nc and nt denote the

number of observations in the randomized trial assigned to the control and treatment respectively.

Researchers then have the following two options for sampling students into pseudo-groups:

• Sample without replacement: Form the pseudo-treatment group by sampling nc

�
nt

nt+nc

�

observations without replacement from the nc control observations. In other words, if 40%

of observations were randomly assigned to the control in the randomized trial, 40% of the

control observations will be assigned to the pseudo-treatment within the pseudo-experiment.

The remaining observations are grouped into the pseudo-control.

• Sample with replacement: Form the pseudo-treatment group by sampling nt observations

with replacement from the nc control observations. Then, form the pseudo-control group by

sampling nc observations with replacement from the nc control observations.
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This setting, particularly when sampling without replacement, most closely adheres to cross vali-

dation since each observation has the same likelihood of appearing in the pseudo-treatment versus

pseudo-control groups. As with cross-validation, the dry run method iterates through different re-

alizations (although unlike cross-validation, we do not require each observation to belong to the

pseudo-treatment during a single iteration) and estimates the squared error on each iteration. Those

errors are then averaged to estimate the mean-squared-error for the randomized trial.

We briefly illustrate this process on the 2006 Massachusetts Healthcare Reform. This reform,

on which the Affordable Care Act was modeled, employed a three-pronged approach to providing

universal health care coverage to Massachusetts residents: expansion of Medicaid, subsidized pri-

vate health insurance, and an individual mandate. To analyze the benefits, if any, this legislation

had on mortality, Sommers et al. (2014) employs propensity score methods to construct a control

group of counties that closely resemble counties in Massachusetts, i.e. those counties that received

the treatment. For more background, see Appendix D.

While this is a quasi-experimental setting rather than a randomized trial with simple random

assignment, they share many similar characteristics. Furthermore, once the control group is for-

mulated, analysis proceeds as if the treatment were assigned randomly. Thus, we implement the

dry run method outlined above on this example after constructing the control group by applying a

revised propensity score that accounts for county population.

There are 14 counties in Massachusetts and 512 counties in our control group, so we sample 526

counties with replacement from the 512 control counties and randomly assign 14 of them to the

pseudo-treatment. We then fit two models to this pseudo-experiment: a negative binomial model

controlling for demographic covariates and fixed effects at the state level and the same model but

with random effects at the state level. Since each county belongs to the true control group, the

treatment effect is necessarily zero. Thus, we can estimate the bias and error of each model. We

iterate through this process 500 times, assigning 14 counties randomly to the treatment at each

iteration. Across these 500 iterations, we estimate the bias and root mean-squared-error of the

two models (RMSE). Results are presented in Table 4.1. We see that both models are unbiased
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Bias RMSE

Fixed Eff. 0.000 0.0376
Random Eff. 0.000 0.0375

Table 4.1: Dry run results across 500 iterations.

and while the random effects model is slightly more efficient, its performance with the model

incorporating fixed effects is comparable.

4.2.2 Dry Runs for Cluster Randomized Trials

We previously discussed how to implement dry runs in the base scenario: randomized trials with

simple random assignment. Nonetheless many interventions, particularly those in the social sci-

ences, involve cluster random assignment. For example, an entire school or classroom is assigned

to the treatment or control rather than assigning students individually. Thus, while each school

may have the sample probability of assignment to the treatment, those schools themselves often

possess different demographic profiles. The dry run method must be adapted to account for these

potential discrepancies and to ensure that the pseudo-treatment cluster resembles the true treatment

cluster and the pseudo-control cluster resembles the true control cluster.

To divide control observations into two pseudo-clusters, we perform the following steps:

1. Fit a propensity score model within each block: Use a parametric binary regression model,

such as a propensity score model (Rosenbaum and Rubin, 1983), to summarize baseline

differences among observations belonging to the treatment or control cluster. This estimates

the probability of belonging to the treatment within a block of observations. We fit a new

propensity model within each block rather than employing one model across all blocks.

2. Form the first cluster using propensity scores: Create pseudo-cluster A by sampling from

the control observations in a manner proportional to their propensity scores. This may be

performed in one of two ways:
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• Sample with replacement from the control observations, where the probability of plac-

ing an observation into pseudo-cluster A is equivalent to the propensity score, PSij ,

for that observation calculated in the previous step.

• Sample without replacement from the control observations. The sampling probability

is performed in a manner such that the odds of assignment into pseudo-cluster A are

proportional, although not equivalent, to the propensity scores from the preceding step.

To elaborate, calculate pij (the probability that observation i block j is placed in

pseudo-treatment cluster A) as follows:

pij =
exp(d+ ✓ij)

1 + exp(d+ ✓ij)
.

In this case, ✓ij represents the log-odds of propensity score PSij of observation i be-

longing to the treatment cluster within match j, i.e. ✓ij = log( PSij

1�PSij
). In addition, d is

a constant chosen such that:

ncjX

i=1

pij =
ntj

ncj + ntj

ncj ,

where ncj and ntj denote the number of observations in the control and treatment clus-

ters within block j respectively. Assigning observations to pseudo-cluster A using this

scaled quantity pij (with the correct constant d) rather than the propensity score en-

sures that the proportion of observations within A is equivalent in expectation to the

proportion of observations within the actual treatment cluster for each block. That is,

the expected number of observations in pseudo-cluster A will equal
ntj

ntj+ncj
ncj .

To illustrate, take a block of classrooms with 50 total students. The treatment classroom

of 20 students is matched with a control classroom of 30 students. 40% of students in

this block belong to the treatment classroom so we would like 40% of students in the

pseudo-block to belong to the pseudo-treatment classroom. This process ensures that,

in expectation, the pseudo-treatment classroom will consist of 12 of the 30 students
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from the control classroom, or 40% of the control students.

3. Form the second cluster: If sampling with replacement was chosen in the previous step,

form pseudo-cluster B by sampling with replacement from the same set of observations, but

with a probability equal to (1�PSij) rather than PSij , i.e. the propensity of an observation

belonging to the control cluster.

If sampling without replacement was chosen in the previous step, form pseudo-cluster B by

grouping together all the remaining observations that were not selected into pseudo-cluster

A.

The above steps will divide the control observations in a block into two pseudo-clusters that

largely mimic the true clusters in the block. In an education context, a “block” refers to clusters

(e.g. classrooms, schools, or school districts) that are matched together based on common charac-

teristics and randomly assigned to the treatment or control. Note that we use “block” and “matched

set” interchangeably throughout this chapter.

While the pseudo-clusters within a pseudo-block will resemble the true clusters within the ac-

tual block, small discrepancies in covariate balance between the actual treatment and control clus-

ters will widen in the dry run analysis. For example, if the true treatment and control clusters are

55% and 50% white respectively, the pseudo-clusters may be 57% and 47% white respectively. To

combat this, researchers can randomly apply “treatment” and “control” labels after dividing obser-

vations into two groups, which is similar to how treatment is reassigned at each permutation during

re-randomization inference. Random assignment within each pair yields perfectly balanced blocks

across many iterations of the simulation whereas trial and error of different treatment assignment

probabilities can recreate the relative covariate imbalance found in the actual experiment.

For the purpose of this chapter, we choose the first option: within each pair, a pseudo-cluster

has a 50% chance of receiving the treatment. While this will leave perfectly balanced groups

across all iterations of the simulation scheme, we will still observe minor covariate imbalances

within any given iteration of our simulations. This corresponds neatly with the theory behind
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randomized trials. Although any specific experiment will likely possess minor discrepancies in

covariate balance between treatment and control clusters, those discrepancies disappear over an

infinite number of realizations because each cluster is equally likely to receive the treatment.

Naturally, researchers may worry that this simulation method will lead to invalid inferences

after model selection, either as a consequence of overfitting or inflated Type I errors. The first

issue may arise because we directly use control data to select our model, which may over-adapt

idiosyncrasies of the control data onto the treatment data as well. Many different non-parametric

resampling tools are available to protect against this worry, from the jackknife (Quenouille et al.,

1949; Quenouille, 1956) to the bootstrap (Efron et al., 1979). In this chapter, we choose to apply the

subsampling method outlined in Politis et al. (1999) where only a subset of blocks are selected at

each iteration of the dry run process. We additionally address fears of over-rejection by leveraging

a unique aspect of the cluster randomized trial serving as the motivating example. For a more

complete examination of complications following model selection, see Section 4.4.4.

4.2.3 Dry Runs for Experiments Embedded within Surveys

The dry run method for cluster randomized trials is also compatible for cluster randomized trials

embedded within complex survey designs involving a single stage of cluster sampling where the

same clusters serve as both sampling units and as units of assignment in the experiment. In this

scenario, it suffices to take precisely the sampling weights that govern the original survey and

use them in tandem with the inverse probability of assignment weights during estimation of model

performance. Under this simplest formulation, each observation within a given cluster may possess

the same weight although adjustments for factors like nonresponse will typically lead to different

sampling weights even within the same cluster.

Nonetheless, dry runs do not require that the same clusters serve as both the sampling units and

the units of assignment in the experiment. For example, schools could be sampled as clusters but

have intact classrooms within the schools randomly assigned to the treatment or control. In this

scenario, the inverse probability of assignment weights could differ for classrooms within a school
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despite the entire school potentially possessing the same sample inclusion weights. However, the

sample inclusion weights and the inverse probability of assignment weights can still be used in

tandem during the estimation of model performance.

More complex designs with multiple stages of cluster sampling should be compatible with dry

runs as well. To illustrate, let us consider mode tests within the National Assessment of Educa-

tional Progress (NAEP). Often referred to as “the nation’s report card”, NAEP has provided insight

into how American students are performing in mathematics and reading since 1969. These mode

tests examine aspects of switching the delivery of the test from paper exams to computer exams.

For example, a mode test might estimate how consistent the scores are from year to year when

transitioning from paper to computer exams. Sampling for NAEP involves three stages of selec-

tion (Rust and Johnson, 1992). 94 primary sampling units (PSUs) are sampled out of roughly

1,000 total PSUs. Within each PSU, metropolitan statistical areas (MSAs), non-MSA counties, or

contiguous non-MSA counties are sampled. Finally, schools are sampled within each MSA. This

three-stage design leads to varying sample inclusion weights so analysis of the embedded random-

ized trial must account for those unequal weights in order to attain unbiased effect estimates.

As with one stage of cluster sampling, the same clusters need not serve as both the sampling

units and the units of assignment. For a mode test within NAEP, different treatments (e.g. paper

tests versus computer tests) may be applied to different classrooms within the same school. This

may in turn lead to different probabilities of assignment for observations within the same school.

That being said, it should once again suffice to take the sampling weights from the original survey

that already account for different probabilities of selection at different stages of cluster sampling

and use them in tandem with different inverse probability of assignment weights during the esti-

mation stage of dry runs.

Note that dry runs are fully compatible with complex survey designs when estimating bias

and mean-squared-error but may require adjustments when estimating power. Prior to estimating

power, standard variance estimation approaches would need to be updated to account for complex

sampling features. This will ensure standard errors are valid during hypothesis testing, allowing
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for proper power estimates.

4.3 Illustration of Pseudo-Cluster Construction

In this section, we begin by illustrating how pseudo-clusters are generated for cluster randomized

trials on a small, contrived dataset. This should detail the process and intuition behind the method

in an easy to understand manner. We then illustrate pseudo-cluster generation on one matched set

from a large scale, cluster randomized trial assessing a reading intervention designed to assist early

elementary students.

4.3.1 Example of construction on a small, contrived dataset

We first demonstrate the steps outlined in Section 4.2.2 on a small, contrived dataset to illus-

trate how to divide blocks, i.e. matched sets, into pseudo-clusters. Let Block A consist of two

classrooms matched together, one of which received the treatment whereas the other received the

control. Table 4.2 illustrates how the pseudo-cluster generation process occurs when students are

divided based on race and sex.

We fit a logistic regression to these 22 students to find the propensity of a student belonging to

the treatment classroom. In Table 4.2, this value is denoted P(A1). We then use those propensity

scores to assign the 10 control students to pseudo-classrooms A1 and A2 by sampling without

replacement, weighted by that propensity score. This assignment is denoted by “Classroom” in

Table 4.2. We also sample with replacement, weighted by the propensity score. These classroom

demographics are found in Table 4.3.

It is unlikely that this method will perfectly recreate the demographic breakdowns from the toy

example in any given iteration due to variability in the data. For example, white students were

oversampled in classroom A1 relative to the initial treatment classroom in the above example.

Nonetheless, we attain rates of white and female students comparable to the true rates across

multiple realizations of this process.
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Classroom # Students % Female % White

Treatment 12 50% 67%
Control 10 50% 60%

Student Classroom Sex Race P(A1)
1 A2 Female White 0.57
2 A1 Male White 0.57
3 A1 Female White 0.57
4 A1 Male White 0.57
5 A1 Female White 0.57
6 A2 Male White 0.57
7 A2 Female Non-White 0.50
8 A1 Male Non-White 0.50
9 A1 Female Non-White 0.50

10 A2 Male Non-White 0.50

Table 4.2: Breakdown of demographic characteristics of a pair of classrooms along with how
individual control students may be divided into pseudo-classrooms A1 & A2

Pseudo-Classroom # Students % Female % White

A1 12 50% 75%
A2 10 50% 60%

Table 4.3: One realization of the pseudo-cluster generation process.

Under this initial formulation when sampling with replacement, classroom sizes in the pseudo-

school remain the same as in the actual school. As a result, our classrooms in the toy example

are always of size 12 and 10. However, the researcher has the option to incorporate variation in

cluster sizes. For example, allowing 20% variation from the true classroom size allows different

realizations of classroom sizes; classroom A1 could contain anywhere from 8 to 12 students and

classroom A2 could contain 9 to 14 students. In expectation, we would still observe classroom

sizes of 10 and 12 students, respectively.
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4.3.2 Example of construction on BURST data

We now extend the previous contrived example to real data. In particular, we allow propensity

scores calculated on more covariates, incorporate more than one matched set, and allow matched

sets of triplets rather than solely pairs of schools.

4.3.2.1 Motivating Example

The data used in the subsequent sections come from a research project conducted jointly with

Amplify, Inc., a digital education company that provides assessments and analytics for data-driven

instruction along with digital curriculum. In particular, the aim of the research project was to

evaluate the efficacy of BURST[R]: Reading. BURST is a personalized reading program designed

to improve literacy among early elementary students who are at risk of falling behind their peers,

henceforth referred to as Tier 2 students. BURST uses a proprietary algorithm to assign these Tier 2

students to small groups where they receive additional instruction based on their needs as identified

through Dynamic Indicators of Basic Early Literacy Skills (DIBELS) test scores—a widely used

early-literacy assessment provided by Amplify, Inc.

4.3.2.2 Description of BURST Data Set

We now briefly describe the data used in the following sections. We have observations on nearly

27,000 unique students over 52 schools and 4 years for a total of over 52,000 observations (hence-

forth called records). Each student participated in the study for somewhere between one and four

years depending on their grade and the year they entered the study. While we encounter some miss-

ing data, we have demographic information (Race/Gender/Date of Birth/Free Lunch Status/etc.) on

the majority of students. Furthermore, our dataset contains both DIBELS scores and end-of-year

assessment scores for the vast majority of participants. Along with those scores, we have the date

each student took their end-of-year assessment and their date of birth so we can calculate their age

on the test date. These end-of-year assessments are our primary outcome of interest.

The 52 schools were divided into 24 pairs of schools, 1 triplet of schools, and one single-
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ton based on common, school-wide characteristics such as race, enrollment size, socio-economic

status, and pre-intervention reading and math proficiencies. When available, these rates were

averaged over the three pre-intervention years. Matching was performed using the R package

nbpMatching for optimal nonbipartite matching to group schools prior to random assignment.

Nearly every match occurred within a school district. One school in each pair was randomly as-

signed to the treatment. Within the triplet, two schools randomly received the treatment. The

singleton originally belonged to a pair of schools before the school assigned to the control attrited.

4.3.2.3 Burst Pseudo-School Creation

Within each matched set of schools (either pairs or triplets), we fit a propensity score model to

determine the probability that a given student within that block belonged to the treatment school.

We possess multiple observations on many students, but only allow each student to contribute once

to our propensity score model. The propensity score model incorporates baseline characteristics

such as gender, race, and socioeconomic status, as well as their DIBELS pre-test score. For more

guidance on determining which baseline covariates should be incorporated into the propensity

score model, see Section 4.4.1.1. Once each student receives a propensity score, all students in

treatment schools are removed and the control students are sampled with replacement into pseudo-

schools A1 and A2. Note that the student’s complete set of records will be placed into the same

pseudo-school. For example, if we observe a control student in BURST across three years, those

three records are sampled as a group into either pseudo-school A1 or pseudo-school A2.

This process is repeated for each matched set, with appropriate attention paid to the triplet such

that we have two pseudo-treatment schools rather than just one. Note that within each matched set,

our dry run simulation scheme strictly samples students from the control. As a consequence, the

singleton is entirely discarded because it lacks a corresponding control school. Table 4.4 provides

a demographic comparison for the treatment and control school in Block A across the covariates

incorporated into our propensity score model.

Table 4.5 presents the output of one realization of pseudo-school division in Block A. As
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School # Students Female White Pre-Test Free Lunch ELL

Treatment 1420 46% 40% 85 68% 6%
Control 1094 48% 33% 106 69% 6%

Table 4.4: Demographics of schools in Block A.

School # Students Female White Pre-Test Free Lunch ELL

A1 1141 46% 38% 93 69% 5%
A2 1094 48% 31% 119 69% 6%

Table 4.5: One realization of the pseudo-school generation process for Block A.

expected, the contrived schools and the observed schools largely possess similar demographic

profiles. Nonetheless, contrived school means shift slightly towards the observed control school

means. This is a consequence of solely sampling from the control school. To illustrate with a

trivial example, if the control school were 100% white and the treatment school were 0% white,

both pseudo-schools would be 100% white. Nonetheless, we do not expect large gaps in practice,

as high-quality randomized trials are well-balanced in terms of covariates. The gap between the

pseudo-schools also mirrors the gap between the true treatment and control schools for the majority

of covariates, with pre-test score the sole exception.

4.4 Applications through Simulations and Permutations

In this section, we apply the framework outlined in Section 4.2 on the BURST reading interven-

tion in order to demonstrate how dry run sandbox simulations can assist with model and covariate

selection. We illustrate how to select a model that provides both high power and precision deter-

mined through root mean-squared-error by utilizing this dry run simulation scheme. In turn, this

allows us to answer two primary questions of interest:

• Do meaningful benefits to precision accrue when estimating student achievement by ad-

justing for student demographics over and above pre-tests in cluster randomized trials of
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lower-grade education interventions?

• In the context of BURST, can Peters-Belson type adjustment strategies (Peters, 1941; Belson,

1956; Cochran, 1969) —i.e. techniques that apply covariate adjustment to the control group

rather than to the treatment and control simultaneously—offer precision comparable to or-

dinary least squares with covariate adjustment and hierarchical linear models with covariate

adjustment?

We begin by demonstrating the particulars of the pseudo-school division process. We then

proceed to use the dry run simulation method to answer the aforementioned questions.

4.4.1 Pseudo-School Division

The first step when conducting a dry run analysis is to divide control observations into pseudo-

schools within each block. We provided a detailed walk-through of the process in Section 4.2.2.

Researchers have flexibility at three different points:

1. What covariates should be included in the propensity score model?

2. Should we sample students with or without replacement?

3. Should we apply subsampling and if so, what size should we select for our subsampling

blocks?

4.4.1.1 Considerations for the Propensity Score Model

We begin with the first question: which covariates should we incorporate into our propensity score

model? What Works Clearinghouse (WWC) (Clearinghouse, 2020) serves as a natural resource for

research design questions when analyzing education experiments and quasi-experiments. How-

ever, they provide little guidance for covariate adjustment besides stressing the importance of pre-

test scores. Generally, variables that may explain the outcome or selection into the treatment or
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control groups are of interest (Fan and Nowell, 2011). In education research, these typically in-

clude student demographics, school characteristics, income, and parental education level (Barth

et al., 2008; Nguyen et al., 2006), although the particular covariates available will generally be

situation-specific (Domingue and Briggs, 2009). One school of thought suggests that all of these

available covariates should be included (Powell et al., 2020). An alternative method of selecting

covariates to incorporate into each propensity score model is to solely include covariates that are

not well-balanced between the treatment and control. These are the covariates that best differen-

tiate the two schools in the matched set and thus, are important additions to a propensity score

model.

For BURST, we choose to select all demographic covariates in our possession that are not time-

variant. This includes pre-test score (as recommended from WWC), gender, race, socio-economic

status, English Language Learner status, and an indicator denoting a learning disability. Some of

these covariates, e.g. pre-test scores or English Language Learning status, likely help to explain

the outcome whereas others like race may differentiate treatment and control schools. We do not

incorporate school-specific covariates, although we implicitly account for school size through our

sampling methods.

We additionally omit time-dependent variables for two reasons. First, each school should pos-

sess roughly similar distributions of students by grade. Thus, controlling for grade in our propen-

sity score model is unnecessary. Second, we fit our propensity score model on students rather than

student-years, which ensures each student will have one propensity of belonging to the treatment

school rather than multiple depending on their grade. This facilitates sampling the complete set of

student records into the same pseudo-school rather than having the same student appear in different

schools depending on their grade. Student age is not incorporated into our model as a consequence.

Note that in the rare case where schools in the same matched set come from distinct states, age

may need to be incorporated. Different states use different age cutoffs for grade eligibility so age

would serve as an important confounder.

We then fit a propensity score model by applying a generalized logistic regression with a
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Student-t prior distribution on each coefficient using the R package arm. This Bayesian logis-

tic regression model largely prevents extreme propensity scores, ensuring that every student will

be assigned to each pseudo-school with some frequency.

4.4.1.2 Pseudo-School Sampling Method

Once we have constructed propensity scores for each control observation and discarded the treat-

ment observations, we need to determine how to sample students into pseudo-schools. From Sec-

tion 4.2.2, we know we can perform this step either with or without replacement. When selecting

between the options, there are two primary considerations:

• The size of the pseudo-schools, where closer to the true size is preferable.

• The discrepancy in covariate balance of the pseudo-schools, where we would like to recreate

the gap in covariate balance found in the actual randomized trial.

The importance of the first consideration is readily apparent. We would like to accurately

estimate the power and precision each method provides the researcher. Sample size affects those

issues. As a consequence, we want to mimic school size as closely as possible. The relevance of

the second issue may not be as salient. Mirroring randomized trials, we know that each block of

schools will be perfectly balanced in expectation because we permute the treatment assignment

within that block. Nonetheless, any given realization of the randomized trial will likely possess

some covariate imbalance, a feature we would like to replicate in our dry run analysis.

Sampling without replacement will roughly halve our sample size; control observations are

divided into pseudo-treatment and pseudo-control schools. Sampling with replacement, on the

other hand, does not have this drawback. However, sampling with replacement may yield pseudo-

schools that are too similar to one another with respect to covariate balance. To study this

possibility, we examine the average of the within-block Mahalanobis distance between pseudo-

schools—we calculate this within each matched set before taking the mean of each of these dis-

tances.
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(a) Sampling without replacement. (b) Sampling with replacement.

Figure 4.2: Average Mahalanobis distances across 1000 iterations of pseudo-school division. For
comparison, we include distances for an unweighted version where each student has a 50% prob-
ability of assignment to a given school rather than using the probabilities from propensity score
models. The true average Mahalanobis distance between Treatment and Control schools is 10.42.

Figure 4.2 presents Mahalanobis distances across 1000 iterations for with and without replace-

ment sampling schemes. We also provide these distances for the unweighted scenario where we

discard propensity scores and sample students into schools with 50% probability. From these cal-

culations, we see an immediate benefit to dividing students based on propensity scores rather than

through random division. Using propensity scores provides both greater separation on average and

a larger range of Mahalanobis distance separation. This holds both with and without replacement.

Figure 4.3 presents Mahalanobis distances from propensity score sampling with and without

replacement, and we observe a slightly greater separation in the latter. In certain iterations of

pseudo-school division, both methods attain a separation greater than the separation of 10.42 ob-

served in the actual experiment, but this occurs more frequently when sampling without replace-

ment. Nonetheless, the two distributions are largely overlapping. This overlap, in tandem with

substantially larger sample sizes, leads us to select sampling with replacement for pseudo-school

division in our dry run analysis.
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Figure 4.3: Comparison of average Mahalanobis distances across 1000 iterations of pseudo-school
division when sampling with and without replacement. The true average Mahalanobis distance
between Treatment and Control schools is 10.42.

4.4.1.3 Subsampling Block Size Determination

In this analysis, we choose to apply subsampling as outlined in Section 4.2.2, of which a brief

overview may be necessary. Generally, subsampling takes b observations without replacement

from some sample n to form a new sample. A statistic, such as an estimate of an average treatment

effect, is then calculated on that subsample and the process is repeated for a new subsample. Both

subsampling and bootstrapping generate new samples by drawing observations from the initial

data in order to estimate the sampling distribution of that statistic. Nonetheless, subsampling is

less assumption laden as it is valid under weak assumptions on b whenever the statistic has a

limiting distribution. Bootstrapping requires the distribution of the statistic to be locally smooth as

a function of the unknown model.

The intuition behind incorporating subsampling into this simulation scheme is rather simple.

Subsampling occurs without replacement. Thus, each subsample of size b from a sample of size n

is merely a sample of size b from the larger population. The parallel to randomized trials is readily

apparent. Each subsample may be viewed as a unique sample from the population; consequently,

different subsamples correspond to different realizations of the experiment itself. This serves to

address fears as to whether one model’s superiority in this simulation scheme occurs solely due to
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randomness unique to a particular sample.

To implement subsampling, we must first determine the proper block size b. Asymptotic con-

ditions typically require b ! 1 and b/n ! 0 as n ! 1 but that leaves a wide range of potential

block sizes (Politis et al., 1999). One such possible block size is n/ log(n) but even this formula-

tion leads to a broad set of possible sizes. Applying a base-ten logarithm more than doubles the

block size attained from applying a natural logarithm. Rather than selecting arbitrarily within this

range, we implement the minimum volatility method outlined in Politis et al. (1999):

1. For b = bsmall to b = bbig, compute a subsampling interval at the desired confidence level,

resulting in endpoints Ib,low and Ib,high.

2. For each b, compute volatility index V Ib, i.e. the standard deviation of the

endpoints within neighborhood k of b. V Ib denotes the standard deviation of

lower bounds {Ib�k,low, . . . , Ib+k,low} plus the standard deviation of upper bounds

{Ib�k,high, . . . , Ib+k,high}. Setting k = 2 or k = 3 is standard. For our analysis, we use

the first.

3. Select block size b with the smallest volatility index.

When implementing this algorithm, we chose to conduct analysis on our simplest model—the

difference in Hajek estimators discussed in greater depth in Section 4.4.2. The difference in Ha-

jek estimators will serve as our “null model” in future sections. We examined block sizes from

n/ ln(n) to n/ log10(n), i.e. from 8 to 18.

In Figure 4.4, we present interval width across different subsample sizes for our point estimate

and for the error of our point estimate. Note that we are not trying to minimize the width of the

interval, but rather minimize the variability of the interval from block size to block size. Thus,

Figure 4.4 suggests the least variability occurs for block sizes between 15 and 18. Calculating the

Volatility Index allows us to select a specific value.

Table 4.6 presents the Volatility Index for all potential subsample sizes. For intervals of both

the point estimate and the mean-squared-error, the volatility is smallest for b = 16. We intend to
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(a) Point Estimates. (b) Squared Errors.

Figure 4.4: Confidence Interval volatility for different block sizes. We would like to select the
block size that provides the least volatility in interval length. In this figure, that will be the block
size with the flattest slope.

now perform our simulation method using subsampling with blocks of size 16 in each iteration.

4.4.2 Models for Comparison

With our pseudo-school sampling method fully formulated, we now use dry runs to compare mod-

els for analysis of BURST. Ideally, we would like to select a model that provides an accurate

estimate of the treatment effect while also possessing maximum power. However, as outlined in

Section 4.1, there are many competing theories as to which strategy best achieves this. Some sug-

gest looking at the difference-in-means between treatment and control groups. Others recommend

controlling for pre-test results, working under the assumption that this will adequately account for

baseline differences between students in the treatment and control groups (Bloom et al., 2007). A

different school of thought suggests including additional covariates may further improve precision.

We aim to assess that claim in this section.

However, adding covariates further complicates the picture. Which method of covariate ad-

justment provides the most precision? Standard methods point towards ordinary least squares or
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Block Size Point Est.
VI

MSE
VI

8 3.19 52.2
9 2.81 34.3

10 2.16 21.2
11 1.50 14.6
12 1.91 20.8
13 1.74 24.2
14 1.55 20.4
15 1.07 15.3
16 0.77 10.5
17 1.07 11.0
18 0.97 12.4

Table 4.6: Subsampling Volatility Indices of different block sizes for point estimates and squared
errors.

hierarchical linear models. Yet, recent literature proposes group-specific covariate adjustment in-

stead, i.e. covariate adjustment based on the control group (Peters, 1941; Belson, 1956), or separate

covariate adjustment for the control and treatment groups (Lin et al., 2013).

To examine these questions, we compare the performance of the following 8 models:

• Model 0: Difference in treatment and control outcomes as estimated through Horvitz-

Thompson estimators (Horvitz and Thompson, 1952).

• Model 1: Difference in treatment and control outcomes as estimated through Hajek estima-

tors (Hajek, 1971).

• Model 2: Linear model examining the outcome on the treatment, controlling for pre-test

scores.

• Model 3: Linear model examining the outcome on the treatment, controlling for pre-test

scores along with other demographic covariates (age, race, gender, socioeconomic status,

etc.).

• Model 4: A mixed effects linear model with random effects at the school level and fixed
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effects for the covariates included in Model 3 (Raudenbush and Bryk, 2002).

• Model 5: A Peters-Belson technique incorporating the covariates from Model 3. Briefly,

this technique models outcomes for the control and uses that model to predict treatment

outcomes. The difference between the fitted and observed values is used to estimate the

treatment effect.

• Model 6: A linear model with full treatment by covariate interactions (Lin et al., 2013).

• Model 7: A covariate-adjusted linear model with fixed effects at the block level (Schochet,

2008), a method proportional to weighting clusters by the harmonic mean of the number of

treatment students and number of control students in a given matched set (Kalton, 1968).

The first two models are not models per se, but rather difference-in-means estimators and as a

result, do not incorporate covariate adjustment. The difference in treatment and control outcomes

as estimated through Horvitz-Thompson estimators, i.e. Model 0, should provide an unbiased

estimate and thus, serves as a check that dry runs provide valid results. If Model 0 yields a biased

point estimate, dry runs may be invalid. We do not expect Model 0 to serve as a true competitor to

the other seven models. Model 2 adds to Model 1 by examining the difference in Hajek estimators

after controlling for pre-test scores. Model 3 through Model 7 all incorporate substantial covariate

adjustment. Models 3 and 4 are standard methods of performing this adjustment whereas Model 5

and Model 6 use Peters-Belson type adjustment strategies. Model 7 adds to Model 3 by including

fixed effects at the block level to weight by the size of a given matched set.

We compare these models by generating different realizations of the experiment through

pseudo-school creation and treatment assignment permutation. For each of those realizations, we

fit the above models and examine their attributes. In the base scenario under which no students

receive the treatment, a precise model should not detect a treatment effect. We then artificially

impose a treatment effect on students belonging to pseudo-treatment schools; ideally each model

will detect the magnitude of that imposed effect. To compare these different models, we begin by

examining the following two scenarios:
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• No treatment effect added on average, i.e. each treatment student receives an effect generated

from a N(0, 80) distribution. This differs from a sharp null of no effect where YTi = YCi 8 i.

• All students who tested into the intervention to receive supplemental instruction receive a

treatment effect generated randomly from a N(32, 80) distribution.

In Section 4.4.2.2 we will compare model performance under two additional scenarios: one

where the treatment effect is correlated with student-level characteristics and the other where the

treatment effect is correlated with the school itself.

We present the results for the first two scenarios in Table 4.7. Note that bias is generally viewed

as E(µ̂) � µ̂, i.e. the difference between the parameter itself and an estimate of that parameter.

Here, however, we refer to bias as the mean of µ̂� µ where µ =
P

i2T yTi � yCi . In other words,

we are trying to estimate the attributable effect (Rosenbaum, 2001; Hansen and Bowers, 2009).

Bias and RMSE results shift slightly under the standard form for bias but generally results still

hold. For a vignette that illustrates how to implement this process, see here.

No Effect Imposed Effect

Bias RMSE Bias RMSE

Unadjusted Model 0 -0.05 33.89 -0.10 34.20
Model 1 1.10 5.67 0.98 5.63

Pre-Test Model 2 1.49 4.61 1.38 4.56

Adjusted

Model 3 1.07 3.49 0.94 3.46
Model 4 -1.39 5.56 -1.73 5.69
Model 5 0.83 3.48 0.83 3.47
Model 6 0.60 3.69 0.50 3.68
Model 7 0.41 3.20 0.27 3.19

Table 4.7: Model Performance with 1000 simulations under no effect (⌧ ⇠ N(0, 80) added to
each Tier 2 treatment student) and under an imposed effect (⌧ ⇠ N(32, 80) added to each Tier 2
treatment student).

A few points of interest are apparent from Table 4.7. First, the Horvitz-Thompson estimator in

Model 0 suggests that this simulation scheme provides unbiased estimates. In addition, we observe

that our simplest models, those that are fully unadjusted or merely control for a student’s pre-test,
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are generally more biased and less precise than models with covariate adjustment. Among those

covariate adjusted models, ordinary least squares performs similarly to the group specific covariate

adjustment strategies (i.e. Models 5 and 6). Furthermore, inclusion of fixed effects at the block

level provides an additional improvement to both bias and RMSE. The hierarchical linear model is

an outlier among these covariate adjusted models with performance similar to that of the entirely

unadjusted difference in Hajek estimators. This phenomenon merits closer consideration in the

following section.

To assist with model comparison, Table 4.8 provides standard errors for the differences in

RMSE between each pair of models. Generally, the standard errors for models in comparison

with Model 1 (the unadjusted, difference in Hajek estimators) and Model 4 (the random effects

model) are larger than the standard errors for the difference in RMSEs between the covariate ad-

justed models. This is unsurprising, as Models 1, 2, and 4 have particularly large variation in their

performance from iteration to iteration.

M1 M2 M3 M4 M5 M6 M7

M1 -
M2 0.14 -
M3 0.13 0.11 -
M4 0.14 0.13 0.12 -
M5 0.13 0.11 0.10 0.12 -
M6 0.13 0.11 0.10 0.12 0.10 -
M7 0.12 0.11 0.09 0.12 0.09 0.09 -

Table 4.8: Standard errors for the difference in RMSE between each of the seven models examined
through dry runs.

4.4.2.1 Random Effects and the Hierarchical Linear Model

The base hierarchical linear model incorporates complete demographic covariate adjustment and

attaches a random effect at the school level. We re-fit this model twice more, once with random

effects at the block level, i.e. a random effect for each matched set, and once with random effects

at both the school and block level. Table 4.9 presents these results.
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Bias RMSE

School Cluster REs -1.39 5.56
Block Clusters REs 0.19 3.04
Block/School REs 0.00 5.22

Table 4.9: Model performance with 1000 simulations for a mixed model with random effects at
the school level, the block level, or block level random effects nested within school level random
effects. We impose an effect of N(0, 80) on students in treatment schools.

Including random effects at the block level shows a marked improvement over random effects

at the school level. RMSE drops by roughly 40% and bias improves by an even greater amount.

The model with school random effects nested within block random effects performs similarly to the

initial model and well-illustrates the “bias-variance tradeoff”. This model is entirely free of bias but

yields a substantially larger RMSE than the model with block random effects. This demonstrates

how introducing some bias can greatly reduce variance.

Why do these results occur? One explanation may simply be that this is the nature of the dry

run simulation method. Students in both pseudo-schools in a given pseudo-block were initially

drawn from the same actual school; as a result, the hierarchical linear model may detect that the

natural grouping occurs at the pseudo-block level. On the other hand, some literature recommends

applying random effects for each matched set in observational studies settings. This suggests these

results may not be a consequence of the dry run design but rather an inference to be drawn from the

method (Smith, 1997). The majority of schools within each matched set in BURST were drawn

from the same school district and students frequently transferred schools; thus, some students

appear in both treatment and control schools depending on the year. As a result, these dry run

simulation results may accurately recommend inclusion of random effects at the block rather than

school level.

4.4.2.2 School and Student Specific Effects

We now compare model performance across two different realizations of imposed treatment ef-

fects, both of which may better represent the heterogeneous effects that often arise in education
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settings:

• The effect is school specific, i.e. every student who tests into the intervention in a subset

of pseudo-treatment schools receives the effect whereas students in the remaining pseudo-

treatment schools receive no effect.

• The effect is student specific, i.e. every pseudo-treatment student who tests into the interven-

tion and receives free or reduced price lunch receives an effect and the rest are unaffected.

Imposition of an intervention rarely occurs exactly as intended. Furthermore, complicated inter-

ventions are more likely to be implemented to a varying extent across schools. By only imposing

treatment effects on certain schools, we mimic the scenario in which certain schools faithfully

implement the intervention and other schools fail to implement it properly or, potentially, at all.

This replicates the implementation observed in BURST; many schools assigned to the treatment

solely implemented the intervention in one of the four study years and some failed to implement

it whatsoever (Rowan et al., 2019). It is also possible that interventions are more or less effective

on certain subgroups of students. To examine this scenario, we impose the treatment effect on

individuals of a certain subgroup and then determine which method is best at detecting the overall

effect of the intervention.

In Table 4.10, the trends observed under the standard imposed effect in Section 4.4.2 largely per-

sist. In comparison with no covariate adjustment, for example, strictly controlling for the pre-test

improves precision at the expense of some additional bias under both school and student specific

effects. Furthermore, we still realize substantial gains in RMSE and a smaller reduction in bias

when applying additional covariate adjustment. Model 4, the hierarchical linear model, is the ex-

ception. Finally, the full covariate model with fixed effects at the block level remains the most

precise and least biased model. It should be noted that all seven models perform slightly worse

when compared to their performance under the standard imposed effect. This is unsurprising as

the treatment effect is accruing in a more heterogeneous fashion than before; students must now

fulfill an additional criterion on top of testing in to the intervention (i.e. free or reduced price lunch
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School Effect Student Effect

Bias RMSE Bias RMSE

Unadjusted Model 1 0.88 5.66 1.17 5.73

Pre-Test Model 2 1.22 4.61 1.37 4.69

Adjusted

Model 3 0.90 3.58 1.12 3.67
Model 4 -1.93 6.13 -1.51 5.67
Model 5 0.65 3.57 0.78 3.69
Model 6 0.64 3.59 0.76 3.54
Model 7 0.11 3.33 0.48 3.33

Table 4.10: Model Performance with 1000 simulations. Under the school-specific effect, eligible
students in 50% of pseudo-treatment schools receive an imposed effect of N(µ, �). Under the
student-specific effect, eligible students in pseudo-treatment schools who receive free or reduced
price lunch receive an imposed effect of N(µ, �).

or belonging to a specific treatment school) in order to receive a benefit.

4.4.3 Covariate Selection using Dry Runs

For ease of presentation, the covariate adjusted models in Section 4.4.2 used the full set of co-

variates available to us: race, sex, pre-test scores, socio-economic status, normalized grade (a

student’s expected grade given their age), and indicators for students who are English language

learners (ELL) or differently-abled. Nonetheless, this method also allows for selection of specific

sets of covariates. We use a forward variable selection procedure to perform this process. We fit

Model 3 (covariate-adjusted OLS) on 1000 iterations of the dry run process, controlling for each

of the seven covariates one at a time. The covariate from the model with the lowest RMSE is

then permanently added to our model and we refit these models with each of the six remaining

covariates added one by one. The results are presented in Table 4.11.

Unsurprisingly, pre-test scores provide the largest gains to RMSE. Race and a student’s normal-

ized grade are also important covariates that yield substantial gains in precision. Socioeconomic

status and the indicator for differently-abled students form the third tier of covariates: they improve

precision, but by relatively small quantities. Interestingly, incorporating sex or an indicator for En-
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Number of Covariates
1 2 3 4 5 6 7

Pre-Test 4.61
Race 4.95 3.87
Grade 4.82 4.47 3.40
Diff. Abled 5.45 4.60 3.86 3.33
Low SES 5.47 4.60 3.83 3.34 3.28
Sex 5.59 4.70 3.93 3.45 3.37 3.32
Eng. Learner 5.11 4.63 3.94 3.59 3.53 3.45 3.50

Table 4.11: RMSEs for different covariate adjustment strategies. For a given number of covariates
i and for covariate j, the covariates included are j and the blank entries for the given column. Thus
for Sex with 3 covariates, the model incorporates Sex, Pre-Test, and Race.

glish language learners hurts our RMSE. The English language learner indicator harming RMSE

may seem surprising at first. English language learners likely perform worse on reading exams

than native speakers. Nonetheless, much of that information is soaked up by pre-test scores. Note

that when controlling for a single variable, the ELL indicator provided a substantially lower RMSE

than socioeconomic status, sex, and an indicator for differently-abled students. After controlling

for pre-test, however, its RMSE falls in line with the other less informative covariates. These re-

sults suggest that the covariate adjusted models could be further improved by removing two of our

covariates: ELL and sex.

4.4.4 Complications Following Selection

Naturally, concerns may arise that inferences drawn from dry run simulations could prove invalid

across different iterations of the randomized trial. For example, it is easy to argue that while

this particular realization of the experiment found covariate adjustment improved precision, an

unadjusted model would perform better under other realizations. Here, “other realizations” speaks

to different permutations of the treatment assignment, holding fixed the set of covariates X and the

potential outcomes yc and yt.

This argument may be extended to suggest that the most precise method from dry runs might
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not even be the most precise method for the true realization when working with the complete data

rather than merely control observations. For example, dry runs may select a method that over-

adapts idiosyncracies of the control data onto the full data, leading to overfitting. This in turn

has the potential to increase the Type II error rate. We addressed these concerns by subsampling

matched sets of schools, allowing each iteration of the dry run analysis to represent a different

pseudo-randomized trial. In the case of BURST, each iteration served as a different experiment of

16, rather than 26, matched sets. To assess whether dry runs remain at risk of overfitting despite

the subsampling step, we leverage an aspect of BURST data: an estimated treatment effect of zero.

Analysis of the BURST reading intervention failed to uncover a treatment effect of any magni-

tude (Rowan et al., 2019). We make the assumption that our treatment effect estimate of zero is, in

fact, correct. As a consequence, we can permute treatment assignments (while holding fixed X , yc,

and yt) within each matched set of schools which yields different realizations of the randomized

trial. This allows us to conduct the same dry run analysis on each permutation of the complete

randomized trial. Table 4.12 presents the average RMSE across 1000 permutations of the treat-

ment assignment along with the proportion of permutations where each model provided the lowest

RMSE.

Avg. RMSE Var(RMSE) Best Mod.

Unadjusted Model 1 5.22 0.10 0%

Pre-Test Model 2 3.69 0.54 0%

Adjusted

Model 3 2.61 0.23 11%
Model 4 4.04 1.74 5%
Model 5 2.55 0.20 6%
Model 6 2.59 0.22 0%
Model 7 2.36 0.17 77%

Table 4.12: Average RMSE across dry runs for 1000 permutations of the original treatment assign-
ment. “Best Mod.” refers to the proportion of permutations where the given model possessed the
lowest RMSE.

These results are largely consistent with what we observed in the dry run analysis in Sec-

tion 4.4.2. The entirely unadjusted model performs poorly, as does the model simply controlling
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for the pre-test. Among the covariate adjusted models, the standard linear model and its group-

specific analogs perform comparably, whereas the hierarchical linear model generally provides a

much larger RMSE and the model including fixed effects at the block level performs better. In

fact, Model 7 possesses the lowest RMSE in over three quarters of permutations suggesting that

its superiority in Section 4.4.2 was not dependent on idiosyncrasies of that particular realization of

the intervention.

One other observation merits noting. Despite an average RMSE roughly 50% higher than Mod-

els 3 and 5, the hierarchical linear model has the lowest RMSE in nearly as many permutations as

do those models. We believe this is due to the variance in the performance of Model 4. While the

RMSEs of most of the other models are rather stable across permutations, the RMSEs of Model

4 (and to a lesser extent, Model 2) are much more volatile. This substantially greater variance

for Model 4 allows for permutations when its performance is superior to the other six models.

Conversely, it also provides the largest RMSE in 14% of permutations, a phenomenon that never

occurs with the other covariate adjusted models.

Concerns about the validity of inference following model selection may persist despite the

consistency of results across permutations of the randomized trial. While we solely use control

data to select a method through dry run simulations, we still leverage data from our experiment

to select the best method to analyze that experiment. As a consequence, we may have inflated or

deflated Type I errors when testing a null hypothesis of no effect, leading to over or under-rejection

of the null. To assess this possibility, we use the same permutation strategy elaborated previously

(including the assumption that our estimated average treatment effect of 0 is correct), but now

check the Type I error rate by determining how frequently we reject a null hypothesis of no effect

on the overall permuted data when implementing the best model as selected through dry runs.

In other words, we permute the treatment assignment within each matched set on the true data.

On that permuted data, we use dry runs to select a best model as determined through RMSE. We

then fit that model on the permuted, true data and determine whether that model rejects or accepts

a null hypothesis of no effect.
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We use the same 1000 permutations described previously and calculate an overall Type I error

rate of 0.049, just beneath our desired threshold of 0.05. With only 1000 permutations, 0.05 lies

well within the margin of error so it is clear that we have not substantially increased or decreased

our Type I error rate. As a consequence, we believe we are protected against fears of inflated or

deflated Type I error rates due to dry run model selection.

4.5 Discussion

In this chapter, we have presented a novel method to assist with model and covariate selection

in randomized trials. Ideally, researchers would like to select an analysis strategy that provides a

precise estimate of the treatment effect while avoiding post-hoc justification for their choices. We

believe the method presented in this chapter provides the tool by which researchers can achieve this

goal. Our dry run simulation scheme, similar in motivation to uniformity trials, reconstructs the

design of the study by sampling observations solely from the control group. Each reconstruction

presents an opportunity to test the power and precision of various models after imposing assorted

treatments (including no treatment effect) onto the generated data. This allows researchers to make

informed decisions about which model will provide the best opportunity to detect a treatment

effect.

Our method provides an alternative to other model and covariate selection strategies typical in

the analysis stage of field experiments and can assist at both the larger model level (e.g. OLS ver-

sus Peters-Belson versus mixed models) and at the covariate level (e.g. different levels of covariate

adjustment). This method is compatible with standard randomized trials as well as cluster random-

ized trials and trials embedded within complex survey designs. We demonstrated this process on a

large, IES-funded cluster randomized trial for an early elementary reading intervention. Due to the

nature of that randomized trial—we found the intervention provided no treatment effect, neither

positive nor negative—we were able to test the validity of this method by comparing performance

under different permutations of the treatment assignment. While there is some minor deviation,
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results largely hold and retain proper Type I error rates, protecting against claims of post-selection

inference.

Thus, the dry run method serves as a simple, easy to implement tool assisting with model and

covariate selection for field trialists. Researchers can construct many different pseudo-randomized

trials, forming a “sandbox” on which a variety of model specifications may be compared in terms

of their precision and power to detect an effect.
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CHAPTER 5

Conclusion

In this dissertation, we have proposed two novel methods which aim to extract information unique

to a randomized controlled trial or quasi-experiment and translate it into statistical power and

precision. The first, PWRD aggregation, converts the theory of change behind an intervention into

a test statistic that maximizes its relative efficiency over standard methods which in turn, provides

greater power. We showed the advantages of PWRD aggregation when the theory of change is valid

both through a simulation study and through a study examining the effects of a reading intervention

on early elementary students. We then provide a method of constructing confidence intervals that

leverages the power advantages behind PWRD aggregation while providing intervals and point

estimates that adhere to standard, widely used methods. The second method we propose in this

dissertation is the dry run simulation scheme. This procedure, using real rather than synthetic

data, creates a pseudo-experiment mimicking the initial randomized trial that preserves blinding to

impact estimates. These pseudo-experiments then form a sandbox on which various models may

be compared to discover the model specification that best estimates the treatment effect.

5.1 Future Work

Both methods may be implemented in their current state. Nonetheless, there are promising av-

enues of research that extend both of these methods in different fashions. PWRD aggregation, for

example, may be extended safely to experiments embedded within surveys so long as the sample
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design is simple enough (e.g. one stage of cluster sampling) to be summarized by sample inclu-

sion weights. The extension would simply incorporate the inclusion probabilities into the model

that estimates the effects for each of the various subgroups. Nonetheless, how to modify PWRD

aggregation to admit expansion to experiments embedded in complex surveys with multiple stages

of cluster sampling remains an open question. This is particularly the case with variance estima-

tion, as standard errors need to additionally account for complex sampling features. In addition,

this dissertation shows that PWRD aggregation is fully compatible with classical inference and we

believe it is compatible with randomization inference as well. However, we have yet to formally

extend PWRD aggregation to randomization inference. Another extension for PWRD aggregation

is to develop software allowing applied researchers to implement the method in analysis of their

randomized trials.

Dry runs have some similar and some alternative lines of future research. Like PWRD aggre-

gation, this method too requires development of software for easy implementation of the dry run

scheme. Another different line of future research would involve strengthening the connection of

dry runs serving as a uniformity trial within a randomized trial. Unlike standard uniformity trials,

within dry runs we only possess some of the potential outcomes under the control rather than all of

them. However, the dry runs embedded uniformity trial should remain informative about the true

uniformity trial, as the experimental control is simply a subsample of the study population. Yet,

dry runs exist in a finite population setting whereas subsampling literature assumes each observa-

tion is independent and identically distributed. Thus, the underlying assumption fails. Future work

may generalize subsampling to finite populations, including generalizing results from Bardenet

and Maillard (2015), to better fit the theoretical justification for dry runs.
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APPENDIX A

PWRD Aggregation and Type I Errors

In Section 2.2.2, we demonstrated how PWRD aggregation maximizes the test slope and thus, the

corresponding power for the family of hypotheses K⌘ : � = ⌘p0. That is, when the treatment

effect is proportional to the dosage received, PWRD aggregation maximizes power. Here, we

remove that assumption and all assumptions about the form of the treatment effect. We do require

joint limiting Normality of �̂ and a consistent estimator of its covariance.

Condition A.0.1 The estimator dCov(�̂) is consistent for Cov(�̂), in the sense that kndCov(�̂)�

⌃k2 !P 0, where ⌃ is as in Condition 2.2.3.

Condition A.0.2
p
n(�̂��) !d N

�
0,Cov(�)

�
.

With Conditions 2.2.3, A.0.1 and A.0.2, we formulate a simple proposition about the distribution

of the test statistic specified in Equation 2.6.

Proposition A.0.3 Take fixed aggregation weights w. Under the null hypothesis H0 and when

Conditions 2.2.3, A.0.1, and A.0.2 hold,

P
g wg�̂g �

P
g wg�0g

(w0Cov(�̂)w)1/2
!d N(0, 1).

Proposition A.0.3 states that with a consistent estimator of the covariance and an estimator

that is asymptotically multivariate normal, the test statistic specified in Equation 2.6 with fixed

aggregation weights w will converge to a standard multivariate normal distribution. For finite
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sample sizes n, this test statistic should approximately follow a t-distribution with n � k degrees

of freedom, where k represents the number of estimated parameters. Note that the denominator,

bV 1/2, present in Equation 2.6 and Section 2.2.2 at large denotes the quadratic form of estimated

covariances of �̂. PWRD aggregation requires statisticians provide a covariance estimator with

consistency guarantees, i.e. Condition A.0.1.

While Proposition A.0.3 allows us to determine the asymptotic distribution of test statistics with

the form in Equation 2.6 for fixed aggregation weights w, PWRD aggregation does not incorporate

fixed weights. Rather, two components of PWRD aggregation, p̂0 and ⌃̂, are random variables.

Consequently, the aggregated statistic
P

g !̂g�̂g includes an auxiliary statistic: !̂g. Addressing

additional variation of this type generally requires analysis through stacked estimating equations,

a technique not readily compatible with the best-in-class clustered standard error estimation of

Pustejovsky and Tipton (2016). Thus, our standard error scales the covariance between each �̂g

by aggregation weights !̂, yet does not incorporate the covariance between each !̂g. To address

this issue, we first present a mild condition on p̂0.

Condition A.0.4 p̂0 is root-n consistent, i.e. kp̂0 � p0k2 = OP (n�1/2).

As applied to the BURST study, Condition A.0.4 is immediate from the Weak Law of Large Num-

bers. Conditions 2.2.3, A.0.1, and A.0.4 allow us to circumvent our standard error not incorporat-

ing additional variation from !̂ through Proposition A.0.5.

Proposition A.0.5 Consider t-statistics of the form

(
P

g !̂g�̂g �
P

g !̂g�0g)

(!̂0dCov(�̂)!̂)1/2
, (A.1)

where !̂ = (dCov[�̂]�1p̂0)+

�P
j(
dCov[�̂]�1p̂0)+j 2 [0, 1] represents weights for PWRD aggre-

gation. Under Conditions 2.2.3, A.0.1, and A.0.4, the difference between (A.1) and

(
P

g !g�̂g �
P

g !g�0g)

(!0Cov(�̂)!)1/2
,
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where ! = (⌃�1p0)+

�P
j(⌃

�1p0)+j , is asymptotically negligible:

"P
g !̂g�̂g �

P
g !̂g�0g

(!̂0dCov(�̂)!̂)1/2
�
P

g !g�̂g �
P

g !g�0g

(!0Cov(�̂)!)1/2

#
!P 0. (A.2)

Simply, Proposition A.0.5 states that the t-statistic centered around
P

g !̂g�0g, where !̂ =

(⌃̂�1p̂0)+

�P
j(⌃̂

�1p̂0)+j , and scaled by a consistently estimated standard error will converge

in probability to the “proto” t-statistic appearing in Prop. A.0.3 and covered by Prop. 2.2.4, which

is centered around the parameter
P

g !g�0g and scaled by the sampling s.d. of
P

g !g�̂g. As a

consequence, hypothesis tests incorporating PWRD aggregation will maintain proper Type I er-

ror rates. Therefore, PWRD aggregation provides valid hypothesis tests even when the theory of

change does not hold. The proof of Proposition A.0.5 can be found in Appendix B.2.
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APPENDIX B

PWRD Aggregation Proofs

B.1 Proof of Proposition 2.2.4

Notation Description

�̂g Estimated effect in cohort year-of-follow-up g
�̂ Vector of estimated effects of dimension (1⇥G)
�g E�̂g, i.e. true effect in cohort year-of-follow-up g
!g Weight attached to cohort year-of-follow-up g
! Vector of weights of dimension (1⇥G)P

g !g�̂g Pooled estimated effect
⌃� Covariance of effects across cohort years g
p0g Probability control student in cohort year g received supp. instruction
p0 Vector of dimension (1⇥G) of p0g

Table B.1: Notation for Appendix B.1.

Consider the parameter �agg = E(
P

g !g�̂g) = !0� where �g, and thus �agg, follow a pro-

portionality assumption, i.e. �g / ⌘p0g. The variance of !0� satisfies Var(
P

g !g�̂g) = !0⌃�!,

where ⌃� denotes the covariance of effects across cohort-years g, and is assumed fixed at a com-

mon value across hypotheses K⌘, �1 < ⌘ < 1.

Now examine the test statistic
P

g !g�̂g, the argument for the other forms being similar. Our

problem is to select ! = (!1, . . . ,!G) � 0 that maximizes the test slope of
P

g !g�̂g which in turn

will maximize the relative Pitman efficiency for PWRD aggregation versus alternative methods of

aggregation given the theory of change is true. Following the definition of test slope provided in
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(Van der Vaart, 2000, p.201):

h(!) =
�0

agg(0)

Cov1/20 (!0�̂)
=

�0
agg(0)⇥

!0⌃�!
⇤1/2 , (B.1)

where �0
agg(0) denotes the derivative at zero of a function of the form d 7! �(d). The correspond-

ing relative Pitman efficiency for different ! may be represented by
�
h(!1)/h(!2)

�2. The form of

the two test statistics is identical; they merely incorporate different aggregation weights !. Thus,

it follows that finding !opt, where !opt maximizes the test slope, will also maximize the relative

Pitman efficiency
�
h(!opt)/h(!alt)

�2. Under flat weighting, !altg
..= ng/N , where ng denotes the

number of observations in cohort-year g and N denotes the total number of observations.

B.1.1 Determining the Optimum !opt

We would like to determine which ! maximizes the test slope in (B.1). Under the assumption that

�g / ⌘p0g, then �0
g(0) / p0g as well. Thus, to determine which ! maximizes the test slope in

(B.1), we maximize the following:

max
!

!0p0

Var1/2(!0�̂)
. (B.2)

We first transform B.2 logarithmically which is equivalent to maximizing the following:

f(!) = log(!0p0)�
1

2
log(Var(!0�̂)). (B.3)

To maximize, we take the gradient of f(!) and set the gradient equal to the zero-vector, 0:

rf(!) :
p0
0

!0p0
� !0⌃�

!0⌃�!
= 0.

Note that both !0p0 and !0⌃�! are scalars, so we can rewrite this as follows:

(!0p0)
�1p0

0 � (!0⌃�!)
�1!0⌃� = 0.
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We now rearrange the terms to solve for !opt:

!opt =

 
!0⌃�!

!0p0

!
p0
0⌃

�1
� .

B.1.2 Estimation of !opt

From Slutsky’s Theorem, we can then estimate !opt as follows:

!̂opt =

 
!0⌃�!

!0p̂0

!
p̂0
0⌃

�1
� . (B.4)

If we allow ↵ =
⇣

!0⌃�!
!0p̂0

⌘
, we can then rewrite this as !̂opt = ↵·p̂0

0⌃
�1
� . To check this simplifies,

plug ↵ · p̂0
0⌃

�1
� back into ! in B.4. We have thus uniquely specified !̂opt. Furthermore, in principle

we can define !̂opt only up to a constant of proportionality such that !̂opt = p̂0
0⌃

�1
� . Since ⌃�1

� is

symmetric, we can rewrite this as !̂opt = ⌃�1
� p̂0.

B.1.3 !opt with a Non-Negativity Constraint

In Equation B.3, we wished to maximize f(!) = log(!0p0) � 1
2 log(Var(!

0�̂)). We now add in

two constraints to prevent !g < 0. In particular, we would now like to find max! log(!0p0) �
1
2 log(Var(!

0�̂)) such that !g � 0 8 g and 10! = 1. In other words, we would like to maximize !

such that each !g is non-negative and
PG

g=1 !g = 1.

This is equivalent to:

max
!

log(!0p0)�
1

2
log(Var(!0�̂))� u0! + v0!.

We begin by looking at the KKT conditions (Karush, 1939; Kuhn and Tucker, 2014):

• Stationarity

(!0p0)
�1p0

0 � (!0⌃�!)
�1!0⌃� � u0 + v0 = 0.
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Note: Both (!0p0)�1 and (!0⌃�!)�1 are scalar random variables, so for ease we redefine

them as c1 and c2 respectively, i.e. c1p0
0 � c2!0⌃� � u0 + v0 = 0.

• Complementary Slackness

u0! = 0.

• Primal Feasibility

! � 0,10! = 1

• Dual Feasibility

u � 0

To solve this, we begin by eliminating u, giving us

v0 � u0 = c2!
0⌃� � c1p

0
0 ) v0 � c2!

0⌃� � c1p
0
0,

from stationarity, and

(c1p
0
0 � c2!

0⌃� + v0)! = 0,

from complementary slackness. After rearranging, we see that

0  !0  v0 + c1p0
0

c2
⌃�1

� .

From this, we then argue that !opt is maximized by the following:

!g =

8
>><

>>:

⇣
v0+c1p0

0
c2

⌃�1
�

⌘

g
if vg � �c1p0g

0 if vg < �c1p0g

.

In other words, !0
opt = (v

0+c1p0
0

c2
⌃�1

� )+ where 10! = 1. We can then estimate !opt following the

same argument as in Appendix B.1.2.
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B.2 Proof of Proposition A.0.5

To show Proposition A.0.5, we begin by showing that k!̂ � !k2 !P 0. Writing ⌃̂ ..= ndCov(�̂),

Condition A.0.1 says k⌃̂ � ⌃k2 = oP (1). Because ⌃ is positive-definite (Condition 2.2.3), it

is invertible and k⌃̂�1k !P k⌃�1k. Applying sub-multiplicativity of the spectral norm to the

algebraic identity ⌃̂�1 � ⌃�1 = ⌃̂�1(⌃̂� ⌃)⌃�1,

k⌃̂�1 � ⌃�1k2 k⌃̂�1k2k⌃̂� ⌃k2k⌃�1k2

= OP (1)oP (1)O(1) = oP (1).

Combining this with kp̂0 � p0k2 = OP (n�1/2) by Condition A.0.4, k⌃̂�1p̂0 � ⌃�1p̂0k2 =

oP (1)OP (1) = oP (1). Separately k⌃�1p̂0 � ⌃�1p0k2 = OP (1)OP (n�1/2) = OP (n�1/2).

Thus, k⌃̂�1p̂0 � ⌃�1p0k2 = oP (1). Now !̂ = [
P

j(⌃̂
�1p̂0)+j ]

�1(⌃̂�1p̂0)+, and similarly

! = [
P

j(⌃
�1p0)+j ]

�1⌃�1p0; through an application of the Continuous Mapping Theorem,

k⌃̂�1p̂0 � ⌃�1p0k2 = oP (1) entails that the normalizing constant in the definition of !̂ converges

to the one in that of !. As a result, k!̂ � !k2 !P 0.

We adopt a similar argument for the denominator. k!̂0⌃̂!̂ � !̂0⌃!̂k2 = OP (1)oP (1)OP (1) =

oP (1) and k!̂0⌃!̂ � !0⌃!k2 = oP (1)OP (1)oP (1) = oP (1). Thus, |!̂0⌃̂!̂ � !0⌃!| !P 0, i.e. in

(B.5) below the left denominator converges to the denominator at the right, a positive constant:

p
n(
P

g !̂g�̂g �
P

g !̂g�0g)

(!̂0ndCov(�̂)!̂)1/2
�

p
n(
P

g !g�̂g �
P

g !g�0g)

(!0nCov(�̂)!)1/2
. (B.5)

Noting that (B.5) is equivalent to the left-hand side of (A.2) in the statement of the Proposition,

we just need to show that
p
n
⇥P

g !̂g�̂g �
P

g !̂g�0g �
P

g !g�̂g +
P

g !g�0g
⇤
!P 0, which

is equivalent to showing
p
n
⇥P

g(!̂g � !g)(�̂g � �0g)
⇤
!P 0. We have already demonstrated

k!̂ � !k2 = oP (1) and under the null distribution, k�̂ � �0k2 = OP (n�1/2) through another

application of the Weak Law of Large Numbers. Thus, n1/2[(!̂ � !)(�̂� �0)] = oP (1).
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APPENDIX C

PWRD Aggregation in Smaller Samples

In this appendix, we demonstrate PWRD aggregation versus alternative methods using the same

simulation study present in Section 2.3, yet on three pairs of schools rather than 26 pairs of schools.

This illustrates how PWRD aggregation performs in much smaller sample sizes.

Figure C.1: Power for the three methods under Effect 1, i.e. across increasing effect sizes.

For Effect 1 in Figure C.1, PWRD aggregation provides a clear benefit over the other two

methods common to education outcome analysis, although the results for all three methods are

much noisier than with the full 26 pairs of schools. PWRD aggregation provides an even larger
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benefit in terms of power compared to flat weighting and the school random effects model under

Effect 2 (presented in Figure C.2). Finally, under Effect 3 in Figure C.3, PWRD aggregation

performs comparably to the other two methods, showing that even when the theory of change does

not hold, implementing PWRD aggregation will not have large, adverse consequences in terms of

power.

A good portion of the noise in these power curves is likely due to the form of the imposed

effect. Under Effect 1, only students who test into the intervention receive a benefit. With only

three matched sets, different iterations of this simulation study likely have greatly varying numbers

of students who stood to benefit. This issue is exacerbated under Effect 2 due to the presence of a

negative effect on those who do not receive the intervention but not an issue under Effect 3 where

all students in the treatment receive a benefit on average.

Figure C.2: Power for the three methods under Effect 2, i.e. across increasing effect sizes when
Condition 2.1 does not hold.
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Figure C.3: Power for the three methods under Effect 3, i.e. across increasing effect sizes when
none of the conditions hold.
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APPENDIX D

PWRD Aggregation and Massachusetts Healthcare

Reform

We draw from a 2006 health care initiative in Massachusetts to motivate the aggregation method

presented in this paper. This reform, on which the Affordable Care Act was modeled, employed

a three-pronged approach to providing universal health care coverage to Massachusetts residents:

expansion of Medicaid, subsidized private health insurance, and an individual mandate. Though

there is little doubt that access to healthcare increased due to this reform, it is less clear what

benefits, if any, the legislation had on mortality (Sommers et al., 2014; Kaestner, 2016; Sommers

et al., 2017).

Counties stood to gain from this coverage expansion to varying degrees, just as people did. To

illustrate, we examine two Massachusetts counties, whose demographic information is presented

in Table D.1.

County Poverty Uninsured Median Income

Middlesex County, MA 7.2% 14.5% $75494
Suffolk County, MA 17.1% 18.1% $48683

Table D.1: A comparison of average rates of poverty and uninsurance, and average median income
for 2001-2006.

Medicaid expansion and subsidized private health insurance primarily target low-income indi-

viduals. Middlesex County, home to Harvard University and MIT, is one of the wealthiest counties
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in the United States. Prior to health care reform, merely 7.2% of its residents were living in poverty

and fewer than 15% were uninsured. In contrast, in Suffolk County, which includes most of Boston

proper, uninsurance and poverty rates were much higher (17.1% and 18.1%, respectively). Con-

sequently, if this Massachusetts healthcare reform decreases mortality, we would expect such a

benefit to accrue more in Suffolk than Middlesex.

Based on this supposition—that counties with greater proportions of low-income residents will

realize larger mortality benefits—we group each of Massachusetts’ 14 counties into one of four

brackets delineated by their 2006 poverty rates. We calculate separate effect estimates for each of

these brackets. All else equal, we expect the effect to increase across brackets, with counties in

the high-poverty bracket experiencing the largest mortality benefit from Massachusetts healthcare

reform.

D.1 Analysis of Mortality

We follow an analytic procedure adapted from Sommers et al. (2014), who used negative binomial

regression to model healthcare-amenable mortality as a linear function of the treatment and prior

demographics. Our modified version is similar, but we incorporate four treatment variables rather

than one, corresponding to the interaction of the Sommers et al. treatment variable with 2001-2006

poverty categories as shown in Figure D.1. This provides the effect estimates presented in Table

D.2.

Poverty Coef. S.E.

Low -0.001 0.023
Low/Moderate -0.030 0.019
Moderate/High -0.035 0.021

High -0.035 0.019

Table D.2: Estimated change in health care-amenable mortality due to Massachusetts Health Care
Reform, by 2001-2006 county level poverty rate.

The magnitude of the mortality benefit increases across the four brackets, while the standard
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Figure D.1: Massachusetts counties by poverty bracket.

errors generally decrease. The following question then arises: what single aggregate of these

coefficients is best suited to demonstrate a program benefit, if the reform in fact reduced mortality?

D.2 Massachusetts Healthcare Results

We previously presented four treatment effect estimates, one for each of the brackets based on pre-

intervention poverty levels. To aggregate the four estimates into an overall estimate of the effect

of the healthcare reform on mortality, we apply a variation of PWRD aggregation described in

Section 2.2.2 and find a benefit to employing this scheme. Results are presented in Table D.3. All

methods incorporate small sample corrections for the p-values (Pustejovsky and Tipton, 2016).

While Sommers et al. (2014) find significance at the 5% level, Kaestner (2016) failed to discover

a benefit when they replicated the analysis but calculated p-values through a permutation inference

technique. We found the significant result in Sommers et al. (2014) to be sensitive to analysis

decisions on their part. After replicating their analysis and findings, we made the minor change

of incorporating clustered standard errors with clusters at the county rather than the state level.
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Method Test Slope t value Sig.

Replication 1.67 -1.88 -
Mixed Effects 1.79 -2.05 -
PWRD 2.44 -2.45 *

Table D.3: Massachusetts Health Care Reform Results: the test slope and t-statistic for our repli-
cated adjustment of Sommers et al. (2014), a mixed-effects adjusted version of Sommers et al.
(2014), and our PWRD aggregation method.

Under this specification, significance disappears even without applying permutation techniques.

The same holds for a mixed-models variant of Sommers et al. (2014), using state random effects

rather than state fixed effects; this is also reported in Table D.3. Although not reported in the

table, adapting this mixed effects specification to fit four poverty-bracket fixed effects that are then

combined using PWRD aggregation also provides significance at the 5% level.
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APPENDIX E

Proof of Proposition 3.2.2

Suppose the bounded null holds, i.e. �  � where � denotes the true average treatment effect

and � denotes the threshold of our equivalence region. Additionally, let us take some test statistic

t(Z, Y ), a function of outcome vector Y and the random assignment Z. Let us additionally assume

that t(·, ·) is effect increasing (see Condition 3.2.1).

We then need to show that the p-value under the bounded null, p�, is at least as large as the

p-value under the sharp null, p�. This is equivalent to showing the test-statistic under the sharp

null, t�(Z, Y ), is at least as large as the test statistic under the bounded null, t�(Z, Y ). We begin

by decomposing our test statistic under the bounded null.

P(t�(Z, Y ) � c|�  �) = P(t�(Z, Y ) � c|� = �) · P(� = �)+

P(t�(Z, Y ) � c|� < �) · P(� < �).
(E.1)

When � = �, then P(t�(Z, Y ) � c|�  �) = P(t�(Z, Y ) � c|� = �) = P(t�(Z, Y ) � c).

Thus, equality holds between the bounded null and the sharp null.

Now let us look at scenarios when � < �. Now, we define ⌧ = � � �; ⌧ represents the

difference between the true average treatment effect � and the hypothesized average treatment

effect under the sharp null, �. Let us additionally define the imputed treatment and control potential

outcomes under the sharp null H� as follows, where Y (1) and Y (0) denote the observed outcomes
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for the treatment and control respectively:

Y�(1) = Z · Y (1) + (1� Z) · (Y (0) + �)

Y�(0) = Z · (Y (1)� �) + (1� Z) · Y (0).
(E.2)

When � < �, we can write the difference between the realized and potential outcomes as

follows:

Y�(1)� Y (1) = Z · Y (1) + (1� Z) · (Y (0) + �)� Y (1)

= (Z � 1) · Y (1) + (1� Z) · (Y (0) + �)

= (1� Z) · (���) > 0,

Y�(0)� Y (0) = Z · (Y (1)� �) + (1� Z) · Y (0)� Y (0)

= Z · (Y (1)� Y (0)� �)

= Z · (�� �) < 0.

(E.3)

In other words, the true treatment observations are smaller than the imputed treatment observations

and the true control observations are greater than the imputed control observations. Yet, if we add

⌧ to each outcome, equality would hold. Thus, t�(Z, Y + Z · ⌧) = t�(Z, Y ). Furthering this

argument, t�(Z, Y ) < t�(Z, Y ) when � < � because the test statistic t(Z, Y ) is effect increasing.

Therefore, P(t�(Z, Y ) � c|� < �) < P(t�(Z, Y ) � c|� = �).

Thus, P(t(Z, Y ) � c|�  �)  P(t(Z, Y ) � c|� = �) or in other words, the probability that

our test statistic will be large enough to reject the bounded null, given �  �, is no greater than

the probability that our test statistic will be large enough to reject the sharp null. It trivially follows

that using the p-value for the sharp null will provide valid tests when testing the bounded null.
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APPENDIX F

Derivation of Optimal Threshold

We would like to determine the maximum bounds for the equivalence region at which we can

reject a null hypothesis of no effect using PWRD aggregation with comparable power as we would

possess under a standard mode of analysis. For the purposes of this derivation, we will be using

t-statistics and their corresponding power.

Take the family of hypotheses described in Section 3.2 where K⌘ : � = ⌘p0. A standard mode

of analysis would provide the following t-statistic:

tstd =
!0
std(⌘̂p0)
bV 1/2
std

, (F.1)

with !stdg
..= ng/N , !std

..= (!stdg : g), where ng denotes the number of observations in cohort-

year g and N denotes the total number of observations. We let bV 1/2
std denote the standard error using

aggregation weights !std.

We would then like to calculate the minimum detectable effect size (MDES) for 1 � � power

with ↵ = 0.05 when applying the standard method:

Power ⇡ P

 
t > t⇤(df,1�↵/2) �

⌘̂(!0
stdp0)
bV 1/2
std

!
,

and thus,

MDESstd,1�� ⇡ (t⇤(df,1�↵/2) + t⇤(df,1��))
bV 1/2
std

!0
stdp0

.
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Under PWRD aggregation, we write these quantities as follows:

tPWRD =
!0
PWRD(⌘̂p0)
bV 1/2
PWRD

, (F.2)

and

MDESPWRD,1�� ⇡ (t⇤(df,1�↵/2) + t⇤(df,1��))
bV 1/2
PWRD

!0
PWRDp0

.

If the assumptions behind PWRD aggregation hold, then PWRD aggregation should be Pitman

efficient and thus provide greater power for the same sample size. As a consequence, MDESP,1��

should be smaller than MDESstd,1�� and we can shift the threshold for equivalence away from

zero while, through PWRD aggregation, still obtaining comparable power to the standard analysis.

Note that under the assumption that �g / ⌘p0g, then �0
g(0) / p0g as well. We can then

estimate the test slope of PWRD aggregation and the standard analysis as (!0
PWRDp0)/bV 1/2

PWRD

and (!0
stdp0)/bV 1/2

std respectively. Thus, we can write the difference in minimum detectable effect

sizes, or the maximum threshold for PWRD aggregation �PWRD, as

�PWRD =

 
bV 1/2
std (!0

PWRDp0)
bV 1/2
PWRD(!

0
stdp0)

� 1

!
MDESstd,1��.

This simplifies to:

�PWRD = (
p
PE � 1)MDESstd,1��.
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APPENDIX G

Considerations for Effect Size Based Thresholds

In this appendix, we provide power comparisons for thresholds selected using the standard de-

viation of both gain scores student performance. WWC recommends using student standard de-

viations rather than gain score standard deviations and notes that “the standard deviation of gain

scores is typically smaller than the standard deviation of unadjusted posttest scores” (Clearing-

house, 2020, p.58). Nonetheless, the larger standard deviations resulting from using student-level

standard deviations may result in thresholds that are too large for our purposes.

Figure G.1 presents power under Effect 1 from the simulation study presented in Section 2.3

for the standard method, along with PWRD aggregation using thresholds determined through the

effect size. If we let �g and �s denote the standard deviations of the gain scores and student-level

test scores respectively, then the vertical blue lines demarcate thresholds � = 0.05�g and � = 0.2�g

and the vertical red lines demarcate thresholds � = 0.05�s and � = 0.2�s.

Unsurprisingly, thresholds using gain scores rather than student-level scores provide greater

power, as do thresholds using � = 0.05� compared to those using � = 0.2�. Using � = 0.05�s,

however, does seem to be a reasonable proposition. This threshold actually provides greater power

than does � = 0.2�g. The real outlier among the four potential thresholds is � = 0.2�s. This

threshold provides prohibitively less power than the other three and fails to provide comparable

power to the standard method for any plausible effect size.

The trends present in Figure G.1 persist in Figure G.2 with Effect 2. Under this effect, three of

the thresholds provide reasonable power with � = 0.2�s the outlier once again. This final threshold
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Figure G.1: Power under various thresholds for Effect 1. The vertical blue lines denote the thresh-
old boundaries for � = 0.05� and � = 0.2� and the vertical red lines denote the boundaries for
� = 0.05� and � = 0.2� determined through gain score standard deviations and student-level
standard deviations respectively.

fails to provide any power to detect an effect until an effect size of over 10. While this counts as a

“large” effect size, note that the effect size presented in these figures solely speaks to the size of the

effect for those who receive the supplemental instruction. The average treatment effect across all

students is much lower as many do not receive supplemental instruction or are adversely affected

by the intervention.

Additionally note that while the power curve for � = 0.2�g seems comparable to � = 0.05�g

and � = 0.05�g, it takes a far larger effect to overtake the power provided by the standard method.

These two surpass the standard method with an imposed effect of size 7, whereas � = 0.2�g does

not surpass the standard method until an imposed effect of size 12.

Under Effect 3, each of these thresholds provides substantially less power than the standard

method. The deficit is particularly pronounced for the two intervals requiring large effect sizes, i.e.

� = 0.2�.
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Figure G.2: Power under various thresholds for Effect 2. The vertical blue lines denote the thresh-
old boundaries for � = 0.05� and � = 0.2� and the vertical red lines denote the boundaries for
� = 0.05� and � = 0.2� determined through gain score standard deviations and student-level
standard deviations respectively.

From these simulations it is evident why we chose to select thresholds using the standard devi-

ation of the gain score rather than the standard deviation of student-level scores. While selecting a

threshold of � = 0.05�s is reasonable in situations where the theory of change holds, � = 0.2�s is

thoroughly unreasonable. While the power provided by that threshold will eventually surpass that

of the standard method, this only occurs for implausibly large effect sizes.
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Figure G.3: Power under various thresholds for Effect 3. The vertical blue lines denote the thresh-
old boundaries for � = 0.05� and � = 0.2� and the vertical red lines denote the boundaries for
� = 0.05� and � = 0.2� determined through gain score standard deviations and student-level
standard deviations respectively.
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