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ABSTRACT

Response estimation of structural systems characterized by large numbers of degrees of freedom

(DOF) is universally needed in practical engineering for performance evaluation and design. When

subjected to extreme events, e.g., destructive earthquakes or hurricanes, such structural systems

typically experience significant damage and therefore nonlinearity in their response. This can lead

to extremely computationally cumbersome problems. Further, if repetitions of such analyses are

required, e.g., in uncertainty propagations or optimizations, the associated computational burden

can quickly become intractable. This has created a need for efficient response simulation methods

for nonlinear dynamic structural systems. To address this need, innovative mechanics and data-

driven approaches are investigated in this research.

The mechanics-based approaches address the problem by exploring strategies for increasing

the efficiency of the response simulation algorithms. In particular, a novel adaptive fast nonlinear

analysis (AFNA) algorithm is developed for solving nonlinear structural systems discretized at the

level of the fibers or stress resultants. In the proposed AFNA scheme, algorithm configurations,

such as the bases for model order reduction (MOR) and time step sizes, are determined adaptively.

Compared to direct integration schemes, the AFNA approach is seen to have comparable accuracy

with, however, speedups of an order of magnitude. Further, the solution scheme is embedded into a

sampling-based wind reliability analysis framework that enables not only more accurate reliability

assessment but also a full range of time history analyses for shakedown and beyond.

The data-driven approaches, on the other hand, center on training efficient surrogates of the

original high-fidelity model. In particular, the data-driven approaches were developed by leveraging

MOR and time series metamodeling. Firstly, a data-driven Galerkin projection is introduced to

reduce the response space of the original structural system. Subsequently, techniques based on

xiii



the multi-input-multi-output nonlinear autoregressive model with exogenous input (MIMO NARX)

system identification and long-short term memory (LSTM) deep learning are introduced to capture

the dynamics of the reduced system. These approaches are capable of accurately reproducing both

the global displacement and local hysteretic curves, with speedups over the high-fidelity simulations

of three to five orders of magnitude.

As a separate application of metamodeling, a real-time risk forecast framework for hurricane-

induced damage in building systems is developed, where metamodels were created to reduce

the computational demand to enable the real-time use of high-fidelity performance assessment

frameworks. The methodology was used to show the strong potential of metamodeling for informing

early emergency response.
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CHAPTER 1

Introduction

1.1 Overview

Performance evaluation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and de-

sign/optimization [19, 20, 21, 22, 23, 24, 25, 26, 27] generally require the estimation of the response

of structural systems characterized by a large number of degrees of freedom (DOF). In addition,

motivated by performance-based engineering, the explicit consideration of extreme events, e.g.,

destructive earthquakes or hurricanes, during performance evaluations is of ever-growing interest.

In these cases, the structural systems typically experiences significant damage and therefore general

nonlinearity in its response. This can lead to extremely computationally cumbersome problems.

Further, if repetitions of such analyses are required, e.g., in uncertainty propagation or optimization,

the associated computational burden can quickly become intractable. This has created a need for ef-

ficient response simulation methods for nonlinear dynamic structural systems. To address this need,

innovative mechanics and data-driven approaches are investigated in this research. An overview of

related major techniques, namely model order reduction and metamodeling, are presented below.

1.1.1 Model order reduction for nonlinear structural systems

A major computational bottleneck is the high dimensionality associated with many typical engi-

neering structures. Model order reduction (MOR) is a solution directly targeted at this problem.

The basic aim is to convert the original high-dimensional model to a lower-dimensional space.

1



The projection-based MOR is the most widely used. The two major building blocks in projection-

based MOR are a reduced-order basis and a projection scheme. The construction of the reduced-

order basis is usually related to the choice of reduced coordinates. In general, these can be

classified as physical, general, or a combination [28]. Physical coordinate reduction, also known

as condensation, typically entails identifying a subset of DOFs (master DOFs). The motion of the

rest DOFs (slave DOFs) are then constrained to the master DOFs. This allows the reducing of

the dynamic equations of motion to the master DOFs. Guyan reduction [29], dynamic reduction,

and improved reduction system [30] are of this kind, where the latter two are based on the Guyan

reduction but attempted to preserve inertia effects in creating the reduced-order basis. A major

advantage of the physical coordinate reduction is that DOFs of the resultant reduced models have,

in general, a clear physical meaning, as the master DOFs are still in the original physical space.

However, the process of choosing the master DOFs, which influences the MOR performance

significantly, is usually subjective. As an alternative free of this limitation, the general coordinate

reductions construct a reduced-order basis typically without intended correspondence to any specific

DOFs, e.g., lower-order normal modes (by considering elastic/initial or tangential [31] stiffness),

load-dependent vectors (Ritz vectors or Krylov space) [32, 33], balanced truncation [34, 35], proper

orthogonal decomposition (POD) modes [36, 37, 38, 39]. The classical reduction by lower-order

normal modes is generally not applicable to structures experiencing nonlinearity. This issue can

potentially be resolved by considering reduction using load-dependent vectors, balanced truncation,

or proper orthogonal decomposition (POD) modes, as the load-dependent vectors account for the

load profiles, the balanced truncation method explicitly considers controllability (the ability of

excitation to influence a state) as well as observability (the influence of a state on outputs), and

the POD modes, typically directly extracted from responses, are naturally optimal in representing

the responses. The balanced truncation method is widely used in the control area, in which

the reduced-order basis is optimal both in controllability and observability. As for structural

engineering, results at all DOFs as well as derived local responses (e.g., strain and stress) are often

of interest, the concept of observability is thus rarely considered, without which, the balanced
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truncation based on empirical Gramian can be directly resolved by POD [34, 35, 40]. However, the

load-dependent vectors and balanced truncation are originally intrusive and based on linear elastic

system properties, thus the non-intrusive POD scheme is more suitable for nonlinear cases.

In addition to the purely physical or general coordinate reduction, for structures with complex

geometry or localized nonlinearity, the general coordinate reductions, e.g., lower-order normal

modes [41, 42], load-dependent vectors [43, 44], junction modes [45, 46], etc., are nested into the

condensation concept therefore defining what are generally known as substructuring schemes; or

are directly applied before performing the condensation on their mode shape matrix, e.g., system

equivalent reduction and expansion process [47, 48]. Further, for problems with much larger

variation in structural or excitation properties, due, for instance, to uncertainty, a single basis may

not be adequate. To address this issue, reduction via adaptive POD basis for the variation of the

structure or excitation properties can be adopted, based on, for example, the domain partitioning

through snapshot clustering [49], and interpolation in the tangent space of the Grassmann manifold

[50, 51]. Alternative approaches for solving problems of this kind by interpolating reduced-order

model matrices directly have also be developed [52, 53]. These approaches are, however, limited to

linear cases. In addition to linear transformations, it is worth noting that recently the autoencoder

is introduced as a nonlinear coordinate transformation for model order reduction [54, 55, 56]. This

technique is expected to be of great potential, but still requires further exploration [56].

With the basis identified, a model is typically reduced by performing a two step projection,

namely the coordinate transformation by a left reduced-order basis TL and residual weight via

a right reduced-order basis TR, which reduces respectively the number of coordinates and the

number of equations. The most popular projection scheme is the Galerkin projection [57], which

uses the same basis for both the TL and TR. The Petrov-Galerkin projection, on the other hand,

uses different bases in TL and TR, requiring extra effort in optimizing TL while allowing more

flexibility in defining the residual weights [58, 59].

While the resultant reduced models can be directly solved by any numerical integration algo-

rithms, a potential limitation still lies in the efficiency, due to the evaluation of nonlinear force

3



terms, which have to be calculated in the full space which in general involves high complexity. To

address this issue, hyper reduction schemes, e.g., missing point estimation [60], discrete empirical

interpolation [61, 58, 59, 62, 63], and the energy-conserving sampling and weighting [51], have

been introduced for seeking a lower-order approximation for the nonlinear force terms. Applica-

tions in nonlinear structural systems show a speed-up factor that varies from 5 to 40 [51, 64]. It

is worth noting that the speed-up is typically closely related to whether the dimensionality of the

nonlinear force terms is effectively reduced or not, an aspect that is usually more important than

the dimensionality of the reduced space.

1.1.2 Metamodeling

The metamodeling technique entails finding a computational tractable but accurate enough surrogate

for the original model. Different from model order reduction of the previous section, the surrogate,

or metamodel, is not necessarily explicitly related to the original model, and thus larger flexibility

is allowed in reducing the computational effort. Based on the approaches in establishing the

surrogates, the current existing metamodeling techniques can be divided into three categories,

regression or interpolation, auto-regression, and sequence to sequence deep learning.

1.1.2.1 Regressions and interpolations

The polynomial regression is the earliest metamodeling technique and has been widely used for

its ease in implementation and high efficiency in predictions [65]. This approach has been nested

in Monte Carlo simulation for making predictions of the response of stochastic systems [66, 67],

the mean and standard deviation of response samples (dual response surface) [66, 68, 69, 70],

and the responses of random structure - excitation pairs [71, 72, 73]. The high efficiency of this

approach allows rapid assessments for building portfolios [66, 70]. Nonetheless, it is generally

not a trivial task to determine an appropriate polynomial order, as an order that is too low leads

to low accuracy due to not being capable of capturing enough local details, while an excessively

high order can lead to overfitting and numerical problems. To address this issue, adaptive order

4



schemes, e.g. the subset search [74, 75, 71], the multivariate adaptive regression splines (MARS)

[76, 77, 78], and the adaptive basis function construction (ABFC) [79, 77, 78], were introduced.

The MARS, which can be viewed as a hierarchical forward/backward stepwise subset selection

procedure, introduced recursive partitioning while using spline basis, and thus have not only good

continuity but also the adaptiveness to capture localized features. The ABFC, on the other hand,

describes polynomials as a state matrix while performing searches through heuristic schemes, and

therefore does not require a predesignated basis, and needs less effort in the searching process.

Improvements have been reported to enhance the ability to capture local features while avoiding

overly high polynomial orders by, for example, piece-wise polynomial (spline [77, 71, 78]) and

moving least square techniques [80, 81, 82]. In addition to polynomial basis, radial basis function

[83, 71, 78], fully connected [84, 85], Bayesian [86], and deep [87] neural networks, random forest

[78], etc., can also be found in the literature. However, most of the aforementioned schemes assume,

in general, all known data points are equally important in the prediction at new inquiry points, i.e.,

they do not consider the distances from the inquiry point to known data points. While the moving

least square technique has this merit, it gains accuracy at the cost of efficiency, since the least square

process with a matrix inverse procedure is necessary for every new data point. As an alternative, by

combining regression and radial interpolation, Kriging schemes keep the merit of the adaptiveness

in placing more emphasis on the data closer to the inquiry point, while retaining efficiency by not

requiring any computational intensive operations when making predictions [88, 77, 82, 89, 78]. In

addition, this best linear unbiased predictor [90] is perfectly accurate at given data points and is

capable of estimating the associated epistemic uncertainty. These merits make Kriging one of the

most robust approaches among regression and interpolation-based metamodeling schemes.

A common difficulty with regression/interpolation-based metamodels lies in approximating high

dimensional mappings, making it inconvenient to reproduce response time histories, of which the

dimension/time steps can be of several thousand. Although low dimensional features, e.g., peak

or residual responses, are usually of interest, of which the statistics, including mean or standard

deviations, can be fitted either separately [66, 68, 69, 70, 91, 92] or simultaneously [93, 94, 95]

5



by egression/interpolation-based metamodels, this limitation is still a hindrance in applications

requiring response time histories, e.g., progressive damage analysis, as well as explicit uncertainty

propagation of the record to record stochasticity in excitation. To address this issue, metamodeling

techniques that map between excitation time histories and response time histories are therefore

needed.

1.1.2.2 Time history metamodeling

Auto-regression schemes can capture the dynamics of the original system by approximating the

mapping from the response of a few past time steps to the current response (hence the name auto-

regression). This mapping is generally low dimensional and thus can be handled by the typical

regression or interpolation schemes introduced in the previous section. The auto-regressive model

with exogenous input (ARX) model, which was firstly formulated for structural identification, has

been introduced as a metamodeling technique for this class of problems and was further combined

with the polynomial chaos (PC) expansion for propagating parameterized uncertainties in the exci-

tation and structural system [96]. The ARX model was calibrated by the linear least square method

as well as numerical optimization algorithms, and has been applied to the time history metamod-

eling of a five-floor nonlinear steel frame [96]. By further augmenting the PC expansion with a

scheduling variable related to time, this method can be applied to complex structures with time-

dependent characteristics, e.g., wind turbines [97]. The ARX model assumes linear function forms

in the auto-regression, which has limited flexibility in modeling nonlinearity in practical problems.

To overcome this, nonlinear terms can be added to the ARX model, leading to what is commonly

denominated a nonlinear ARX (NARX) model [98, 99, 100, 101, 102]. Together with the ordinary

least square (OLS) approach and/or numerical optimization for NARX coefficient calibration, var-

ious NARX schemes have been developed for term selection (structure determination) including,

feature matrix condition number check [96], genetic algorithms [98, 99], and least angle regression

[100, 101, 102]. On the other hand, regression or interpolation techniques, e.g. polynomial chaos

[99, 98, 102] and Kriging [103], have been adopted to approximate the mapping from random
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excitation or structural parameters to NARX coefficients. These approaches were applied in to var-

ious case studies, including single degree of freedom (SDOF) Duffing [99, 102, 103] or Bouc-Wen

systems without [99, 102, 103] or with [104] degradation, 2-DOF quarter car models [102, 103],

as well as multi-story 2-D frame structures [99, 98]. In particular, the Kriging-NARX outperforms

PC-NARX in the 2-DOF quarter car model cases. The aforementioned approaches were found to

have particular difficulty in metamodeling MDOF cases and only provide responses of a few specific

DOFs, and thus are not directly applicable to practical engineering problems that typically require

multiple outputs from systems with a significant number of DOFs. To address this problem, MOR

with lower-order normal modes was introduced to project the potentially high dimensional original

system into a much lower-dimensional space, and subsequently construct metamodels in the re-

duced space and approximate the response of any DOFs with reduced coordinate superpositioning

[105]. This scheme was successfully applied to a stochastic wind-excited high-rise building system

equipped with nonlinear viscous dampers. In all the research reviewed above, the general idea is

to capture system dynamics, and therefore propagate record-to-record stochasticity in excitation,

through an appropriate (N)ARX model, while seeking a mapping between the random parameters

governing the system or excitation to the (N)ARX coefficients through regression/interpolation.

It should be noted, however, that regressing or interpolating NARX coefficients may lead to in-

accurate or even unstable models, as the NARX coefficients from different training data points

will not necessarily have consistent physical meanings. To the best of the author’s knowledge,

alternatives to the auto-regression approach for solving this issue is still an open topic to explore. In

addition, in highly nonlinear cases, the normal mode truncation based model order reduction may

not be effective due to the potentially important higher-order mode effects and coupling between

the reduced order coordinates that may not be captured through classic (N)ARX models trained

separately to each reduced order coordinate.

State-of-the-art deep learning techniques, e.g., typical recurrent neural network (RNN), long

short term memory (LSTM) networks, and convolutional neural networks (CNN), have shown to

be versatile and promising for a broad range of applications [106] and are emerging as a possible
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sequence-to-sequence metamodeling approach. Recently, these techniques have been implemented

as a multiple sequence to multiple sequence mapping for the prediction of seismic interstory drift

time history responses of several types of system, including a bilinear [107, 108] or cubic [109, 108]

SDOF oscillator, MDOF shear building model with nonlinear damper [110, 111], bilinear base-

isolation [112], cubic stiffness [113], Bouc-Wen [110, 111] or trilinear inter-story resistance [114],

response estimation of detailed finite element models of building structures [114], and a subway

station subject to seismic excitation [115]. In particular, in [115], the three-layer LSTM network

was found to be worse than the multi-layer perceptron, while the one-dimensional convolutional

neural network (1D-CNN) was shown to have the best performance, especially for non-pulse-like

ground motions. This indicates how the use of a deeper LSTM network is not necessarily beneficial.

On the other hand, with input and output time series divided into small stacks and considered as

a 2D structure, a metamodeling approach was proposed in [116, 115] that is based on the hybrid

convolutional-LSTMs neural network for structural prediction given ground motion accelerations

input. Overall, the aforementioned research has shown the fast-emerging deep learning techniques

to be a powerful alternative to auto-regression.

1.2 Objectives

This research is centered on the development and applications of computationally efficient tools for

rapid stochastic response estimation of dynamic nonlinear structures. The major objectives are as

follows:

• Objective 1: Extending strain-driven dynamic shakedown to response time history

analysis allowing strong nonlinearity

Development of a highly efficient mechanics-based scheme for providing response time his-

tories both at and beyond the state of dynamic shakedown. Incorporation of the scheme

within reliability-based wind performance assessment frameworks for the probabilistic char-

acterization of performance over a full range of uncertainties and load intensities.
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• Objective 2: Data-driven metamodeling of the stochastic response of general nonlinear

dynamic structures

Extension of the NARX-based approach to high-dimensional structures with strong hysteretic

nonlinearity, so as to enable its application to practical engineering problems. Development

of metamodeling approaches suitable for high-dimensional nonlinear systems subject to

stochastic excitation through the fast-emerging deep learning techniques.

• Objective 3: Enabling real-time forecast of hurricane-induced damage through meta-

modeling

Development of a real-time forecasting framework for hurricane-induced damage to building

systems, with rapid damage quantification via metamodeling.

1.3 Organization of the dissertation

This dissertation is organized as following:

• Chapter 1: Introduction

An overview of relevant techniques on model order reduction and metamodeling is provided.

The objectives and organization of the dissertation are subsequently outlined.

• Chapter 21: Efficient Reliability Assessment of Inelastic Wind Excited Structures

through Adaptive Fast Nonlinear Analysis (AFNA)

This chapter is focused on the development of a novel step-by-step adaptive fast nonlinear

analysis (AFNA) scheme that is capable of estimating entire response time histories at and

beyond the state of dynamic shakedown without loss of efficiency. By integrating the AFNA

scheme into a recently introduced stochastic simulation-based wind reliability-based assess-

ment framework, an approach is defined for rapidly estimating the inelastic performance of

1Li, B., Chuang, W. C., Spence, S. M. J. (2022). Efficient Reliability Assessment of Inelastic Wind Excited
Structures through Adaptive Fast Nonlinear Analysis (AFNA). Draft manuscript submitted for publication.
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wind excited structures from first yield to incipient collapse with full knowledge of the global

and local time evolution of the system.

• Chapter 32: Nonlinear Stochastic Dynamic Response Metamodeling through MIMO

NARX

This chapter is centered on extending the NARX approach to high-dimensional systems

with hysteretic nonlinearity. A data-driven Galerkin projection is used for MOR with bases

obtained through the proper orthogonal decomposition (POD). The MIMO NARX is sub-

sequently calibrated to learn the dynamics of the reduced system. In calibrating the MIMO

NARX free of spurious terms, a novel least angle regression and pruning (LARP) algorithm

is proposed.

• Chapter 43: Nonlinear Stochastic Dynamic Response Metamodeling through LSTM

This chapter is focused on exploring the potential of the fast-emerging deep learning tech-

niques in solving the same problem as Chapter 3. In particular, after the high-dimensional

system has been projected into a low-dimensional space, the LSTM network is trained to

learn the dynamics of the reduced system. This metamodeling framework is seen to provide

even higher efficiency and generality as compared with the MIMO NARX of Chapter 3.

• Chapter 54: Real-time Forecast of Hurricane-induced Damage Risk to Envelope Sys-

tems of Engineered Buildings through Metamodeling

The remarkable efficiency seen in metamodeling enables computationally intensive damage

assessment to be carried out in real-time. In this chapter, through metamodeling, a real-time

damage risk forecast framework is developed for building envelope systems subject to im-

minent hurricanes. The potential of the framework is demonstrated within the context of

emergency response.

2Li, B., Chuang, W. C., Spence, S. M. (2021). Response Estimation of Multi-Degree-of-Freedom Nonlinear
Stochastic Structural Systems through Metamodeling. Journal of Engineering Mechanics, 147(11), 04021082.

3Li, B., Spence, S. M. (2022). Metamodeling through Deep Learning of High-dimensional Dynamic Nonlinear
Systems Driven by Stochastic Seismic Excitation. Journal of Structural Engineering, Under review.

4Li, B., Spence, S. M. (2022). Real-time Forecast of Hurricane-induced Damage Risk to Envelope Systems of
Engineered Buildings through Metamodeling. Draft manuscript submitted for publication.
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• Chapter 6: Summary and Conclusions

This chapter consists of a summary and conclusions for this research, with key findings and

future directions outlined.
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CHAPTER 2

Efficient Reliability Assessment of Inelastic Wind

Excited Structures through Adaptive Fast Nonlinear

Analysis (AFNA)

2.1 Overview

The ever-growing interest in performance-based wind engineering has created a need for assessment

frameworks that can efficiently deal with inelasticity. The computationally efficient strain-driven

dynamic shakedown approach has provided a solution that is not only capable of identifying

failure mechanisms that are potentially critical during extreme winds, e.g., low cycle fatigue and

ratcheting, but also allows direct estimation of inelastic deformations. This approach, however, can

only solve problems at dynamic shakedown, i.e., with limited nonlinearity, and is not capable of

providing response time histories. To address these limitations, this chapter presents an efficient

framework for reliability assessment of inelastic structures at dynamic shakedown and beyond, with

the capability of simulating a full range of response time histories. To this end, a novel step-by-step

integration algorithm is developed for effective response time history analysis. The scheme is

based on advancing fast nonlinear analysis through introducing schemes for enabling at each time

step the adaptive selection of the step size, number of normal modes to be included, and number

of potentially nonlinear elements. Inelasticity is modeled as distributed at the level of the stress

resultants through a return mapping scheme based on the Haar-Karman principle. The scheme is
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seen to be up to an order of magnitude faster than state-of-the-art direct integration algorithms. To

enable reliability analysis, the scheme is embedded in a general uncertainty propagation model.

2.2 Introduction

With the recent introduction of performance-based wind engineering, the potential of designing

wind-excited buildings with controlled inelasticity at ultimate load levels has attracted strong interest

among researchers and practicing engineers. Since the majority of current design codes are based

on linear elastic analysis, the reliability of such inelastic systems must be carefully investigated to

ensure safety against any undesirable failure scenarios. To this end, an efficient framework has been

proposed for assessing the reliability of wind excited systems against various elastic and inelastic

limit states [18]. In particular, an inelastic system-level limit state was presented in addition to the

traditional component level yield limit state, thereby providing insight into the plastic reserve of

buildings designed in accordance with current code requirements.

To estimate the reliability of inelastic systems at affordable computational costs, the stochastic

simulation-based framework outlined in [18] requires a means to rapidly estimate inelastic responses

for each sample of the simulation. Over the years, various studies have been carried out to explore

the inelastic behavior of wind excited systems [117, 118, 24, 119, 120, 15, 121, 122, 123, 124, 18].

To overcome the computational challenges stemming from the long duration of typical wind storms,

which rule out the possibility of using existing methods based on direct integration [7], as well as

the need to capture failure mechanisms associated with accumulation of damage, which rule out

the possibility of using approaches based on nonlinear static pushover analysis [25], the framework

presented in [18] uses recently developed concepts rooted in the theory of plasticity [123, 124, 18].

In particular, based on the dynamic shakedown theory and the assumption of elastic-perfectly

plastic (EPP) material behavior, this approach allows not only rapid identification of the safety

against potential failure mechanisms of interest to wind engineering, e.g., low cycle fatigue and

ratcheting, but also direct estimation of inelastic deformations occurring at shakedown. Despite the
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comprehensiveness and efficiency of this approach, it does not provide the time history responses

that are vital for directly estimating the hysteretic behavior of the system as well as the evolution

of the inelastic deformations over the duration of the event. In addition, all inelastic response

quantities are estimated at dynamic shakedown. As dynamic shakedown is an asymptotic behavior

of the system after infinite repetition of the loading, the inelastic response quantities are in general

greater than those actually occurring during the wind storms. This can lead to overly conservative

estimates of reliability. Furthermore, this approach can only provide inelastic deformations if the

structure is capable of reaching the state of dynamic shakedown. For samples for which dynamic

shakedown is not achieved, such information remains unknown. Importantly, since the state of

dynamic shakedown generally involves only a limited amount of inelasticity, this limitation hinders

the application of the approach to collapse assessment where large deformations are expected.

To address these issues, an alternative approach is required for efficiently estimating the inelastic

response of wind excited structures.

As an efficient alternative to classic direct integration methods, fast nonlinear analysis (FNA)

was developed for rapidly carrying out nonlinear time history analysis where nonlinear behavior is

restricted to a small number of predefined locations within a structure [125]. This approach solves

the nonlinear system through a set of modal equations by treating nonlinear forces as external

loads. This greatly improves the computational efficiency as compared to classic direct integration

methods. Similar to direct integration methods, this approach provides a full range of global and

local time history responses. The major limitation of the approach is the need to know a priori

which structural members will experience inelasticity. This practically limits the approach to the

time history analysis of structural systems that are equipped with nonlinear energy dissipation

devices (components that are expected to respond with inelastic behavior while the rest of the

structure remains elastic). To extend such an approach to structures without prior knowledge of

the locations and extent of inelastic elements, an adaptive fast nonlinear analysis (AFNA) scheme

will be developed in this chapter. The scheme will be developed within the setting of stress

resultant dynamic shakedown therefore enabling the benefits of shakedown analysis, i.e., the direct
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assessment of potential failure due to low cycle fatigue and ratcheting, to be integrated with the

benefits afforded by direct integration schemes, i.e., knowledge of the evolution of inelasticity over

the duration of the wind event and beyond the state of dynamic shakedown. Finally, the scheme

will be integrated into a reliability assessment framework therefore defining a framework that is

capable of rapidly providing not only comprehensive inelastic time history information, but also

estimates of incipient collapse performance.

2.3 The stress resultant setting and dynamic shakedown

2.3.1 The stress resultant setting and elastic solution

To model plasticity distributed along beam-column elements, a displacement-based formulation

is adopted in this work for the development of the AFNA approach. The displacement fields of

the 𝑖𝑒th element of the structure v𝑖𝑒 (𝑥) = {𝑣𝑥 (𝑥), 𝑣𝑦 (𝑥), 𝑣𝑧 (𝑥)}𝑇 are discretized and interpolated in

terms of element end displacements u𝑖𝑒 through the following equation:

v𝑖𝑒 (𝑥) = N𝑖𝑒 (𝑥)u𝑖𝑒 (2.1)

where N𝑖𝑒 (𝑥) is a matrix containing interpolation functions for the displacement fields for the 𝑖𝑒th

element. Based on the assumption of Euler-Bernoulli beam theory, the associated deformation

fields of the element, d𝑖𝑒 (𝑥), can be expressed as:

d𝑖𝑒 (𝑥) = {𝜖𝑥 (𝑥), ^𝑦 (𝑥), ^𝑧 (𝑥)}𝑇

=

{
𝜕𝑣𝑥 (𝑥)
𝜕𝑥

,
𝜕2𝑣𝑦 (𝑥)
𝜕𝑥2 ,−𝜕

2𝑣𝑧 (𝑥)
𝜕𝑥2

}𝑇 (2.2)
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where 𝜖𝑥 , ^𝑦 and ^𝑧 are the axial deformation and curvatures in the local 𝑥, 𝑦 and 𝑧 coordinate

system for the 𝑖𝑒th element, which can be expressed in terms of element end displacements as:

d𝑖𝑒 (𝑥) = B𝑖𝑒 (𝑥)u𝑖𝑒 (2.3)

with B𝑖𝑒 (𝑥) the strain-deformation matrix containing first and second derivatives of the displacement

interpolation functions. The internal forces at each section along the 𝑖𝑒th element D𝑖𝑒 (𝑥), including

axial force 𝑁𝑥 (𝑥) and bending moments 𝑀𝑦 (𝑥) and 𝑀𝑧 (𝑥), can be described by the following

constitutive relation:

D𝑖𝑒 (𝑥) = {𝑁𝑥 (𝑥), 𝑀𝑦 (𝑥), 𝑀𝑧 (𝑥)}𝑇

= k𝑠,𝑖𝑒 (𝑥)d𝑖𝑒 (𝑥)
(2.4)

where k𝑠,𝑖𝑒 (𝑥) is the section stiffness matrix. Based on the principal of virtual displacements, the

element end forces can be related to the section forces through the equilibrium condition:

q𝑖𝑒 =
∫ 𝐿𝑖𝑒

0
B𝑇𝑖𝑒 (𝑥)D𝑖𝑒 (𝑥)𝑑𝑥 (2.5)

where 𝐿𝑖𝑒 is the length of the 𝑖𝑒th element. Replacing d𝑖𝑒 (𝑥) with Eq. (2.3) in the constitutive

relation of Eq. (2.4), the linearization of Eq. (2.5) with respect to the element end displacements

gives the element stiffness matrix k𝑖𝑒 :

k𝑖𝑒 =
𝜕q𝑖𝑒
𝜕u𝑖𝑒

=

∫ 𝐿𝑖𝑒

0
B𝑇𝑖𝑒 (𝑥)k𝑠,𝑖𝑒 (𝑥)B𝑖𝑒 (𝑥)𝑑𝑥 (2.6)

Given the mechanical model described above, the elastic solution of the structural system subject

to stochastic excitation F(𝑡) can be described through the following equation:

M ¥X(𝑡) + C ¤X(𝑡) +KX(𝑡) = F(𝑡) (2.7)
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where X(𝑡), ¤X(𝑡), and ¥X(𝑡) are vectors of the displacement, velocity, and acceleration responses in

global coordinates while M, C, and K are the full mass, damping, and elastic stiffness matrices of

the system. The stiffness matrix K can be determined by assembling the element stiffness matrix

of Eq. (2.6) over the entire structure. The displacement response X(𝑡) can be solved efficiently

through a set of uncoupled equations using the modal approach, as follows:

𝚯 ¥Y(𝑡) + 𝚲 ¤Y(𝑡) +𝛀Y(𝑡) = 𝚽TF(𝑡) (2.8)

where 𝚽 = [𝝓1, . . . , 𝝓𝑚] is a matrix containing the stiffness normalized mode shapes of the first 𝑚

modes, Y(𝑡) = {𝑌1(𝑡), . . . , 𝑌𝑚 (𝑡)}𝑇 , ¤Y(𝑡) = { ¤𝑌1(𝑡), . . . , ¤𝑌𝑚 (𝑡)}𝑇 , and ¥Y(𝑡) = { ¥𝑌1(𝑡), . . . , ¥𝑌𝑚 (𝑡)}𝑇

are vectors of the first 𝑚 modal displacement, velocity, and acceleration responses, while 𝚯, 𝚲, and

𝛀 are the generalized mass, damping, and stiffness matrices calculated as:

𝚯 = 𝚽TM𝚽, 𝚲 = 𝚽TC𝚽, 𝛀 = 𝚽TK𝚽 (2.9)

It is worth noting that, in this formulation, the total modes can be divided into two parts, i.e., the

dynamically significant modes with non-zero masses and the static modes corresponding to the

massless DOFs. For the dynamic modes, the corresponding terms within the generalized damping

matrix 𝚲 are 2b𝑙/𝜔𝑙 in which b𝑙 and 𝜔𝑙 are the 𝑙th modal damping ratio and circular frequency

while the terms in the generalized mass matrix 𝚯 are 𝜔−2
𝑙

(𝜔𝑙 → ∞ for static modes). By solving

the uncoupled Eq. (2.8), the response of the system can now be expressed by transforming the

modal responses back to the physical coordinates as:

X(𝑡) = 𝚽Y(𝑡), ¤X(𝑡) = 𝚽 ¤Y(𝑡), ¥X(𝑡) = 𝚽 ¥Y(𝑡) (2.10)

2.3.2 Stress resultant dynamic shakedown

For an external dynamic load that is periodic and of infinite duration, F∞(𝑡), a necessary and suffi-

cient condition for dynamic shakedown of an elastic-perfectly plastic structural system discretized
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into 𝑛e elements, is that there exists time-independent generalized self stress, D𝑟
𝑖e
(𝑥), such that the

following condition holds for each integration point, 𝑥𝑖, of each element of the discretization [126]:

N𝑖e (𝑥𝑖)T
(
DE
𝑠,𝑖e
(𝑡; 𝑥𝑖) + D𝑟

𝑖e
(𝑥𝑖)

)
− R𝑖e (𝑥𝑖) ≤ 0 𝑥𝑖 ∈ [0, 𝐿𝑖e] (2.11)

where 𝐿𝑖e is the length of the 𝑖e element, R𝑖e (𝑥𝑖) is the plastic resistance vector defined from the

linearization of the stress-resultant yield domains associated with each integration point of the

discretization, N𝑖e (𝑥𝑖) is the matrix that collects the unit external normals associated with each

surface of the linearized yield domains, and D𝐸
𝑠,𝑖e
(𝑡; 𝑥𝑖) is the steady-state elastic generalized stress

vector.

The above condition requires the definition of F∞(𝑡). Without loss of generality, F∞(𝑡) can be

defined from F(𝑡) by simply considering F(𝑡) repeated indefinitely:

F∞(𝑡 + 𝑘𝑇) = F(𝑡) for 𝑘 = 0, 1, ..., +∞ and 𝑡 ∈ [0, 𝑇) (2.12)

where 𝑇 is the original duration of F(𝑡). In particular, if it is assumed that 𝐹 (𝑡) = 0 for 𝑡 = 0

and a period of calm is considered before each repetition of F(𝑡), then the elastic response of the

structure can be considered steady-state from 𝑡 = 0 and DE
𝑠,𝑖e
(𝑥; 𝑡) can be obtained from Eqs. (2.3)

and (2.4) as:

DE
𝑠,𝑖e
(𝑡; 𝑥𝑖) = ks,𝑖e (𝑥)Bs,𝑖e (𝑥)ue(𝑡) (2.13)

In general, to use Eq. (2.11) to check for the achievement of the state of dynamic shakedown, it

is convenient to introduce a load multiplier 𝑠 of F∞. The satisfaction of the dynamic shakedown

condition of Eq. (2.11), can then be evaluated by solving the following linear programming problem
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[120, 15, 123]:

𝑠p = max
𝑠,D𝑟

𝑠

subject to

D̃E
𝑠 = max

𝑡∈[0,𝑇]
DE
𝑠 (𝑡)

N𝑇
(
𝑠D̃𝐸 + D𝑟

)
− R ≤ 0

(2.14)

where D𝑟 is vector collecting the generalized self stresses at all integration points of the discretiza-

tion; DE
𝑠 (𝑡) is the vector collecting the associated steady-state elastic generalized stress responses;

and R and N are respectively the vectors of plastic resistances associated with the linearized yield

domains and the block diagonal matrix collecting the unit external normals to the linearized yield

domains all integration points. In addition, when solving Eq. (2.14), D𝑟 is expected to define a

residual stress state that is self-balanced.

A similar linear programming problem can be defined for solving the elastic multiplier, 𝑠e, i.e.,

the load multiplier beyond which nonlinearity will occur. To obtained 𝑠e, Dr
𝑖e
(𝑥𝑖) in Eq. (2.14) is set

to zero. It is important to note that, because high-dimensional linear programming problems can,

in general, be very efficiently solved, evaluating 𝑠e and 𝑠p does not generally pose a computationally

challenging problem. The multipliers 𝑠e and 𝑠p convey plenty of useful information on structural

safety. For instance, 𝑠p/𝑠e expresses the plastic reserve, i.e., the safety margin beyond the system-

level first yield [18] before shakedown will no longer occur and the system becomes potentially

susceptible to failure due to low-cycle fatigue and ratcheting. In addition, 𝑠e ≥ 1 indicates the

structure will remain elastic under a given load and therefore responses estimated through the modal

integration, and therefore by solving Eq. (2.8), are accurate. For samples with 𝑠e < 1, however,

nonlinear analyses will in general be required. The strain-based schemes outlined in [123, 124, 18],

serve this need with, however, the limitations discussed in Section 5.2. In the following, a step-by-

step integration scheme will be developed that overcome these limitations and that can be naturally

integrated within the dynamic shakedown setting outlined above.
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2.4 Proposed adaptive fast nonlinear analysis (AFNA)

2.4.1 Problem formulation

The AFNA approach developed in this work is based on the fast nonlinear analysis (FNA) schemes

that were developed for rapid time history analysis of a special class of nonlinear system (i.e., systems

with predefined locations of inelasticity) [125]. The FNA approach satisfies the fundamental

equations of mechanics, including equilibrium, force-deformation, and compatibility. The exact

force equilibrium of an inelastic system can be expressed by the following equations of motion:

M ¥X(𝑡) + C ¤X(𝑡) + FNL( ¤X,X; 𝑡) = F(𝑡) (2.15)

where FNL( ¤X,X; 𝑡) is a vector of nonlinear forces. By treating the nonlinear force as external force

and introducing the elastic stiffness matrix K, Eq. (2.15) can be rewritten in a form similar to the

linear elastic system, as follows:

M ¥X(𝑡) + C ¤X(𝑡) +KX(𝑡) = F(𝑡) − FNLC( ¤X,X; 𝑡) (2.16)

where FNLC( ¤X,X; 𝑡) = FNL( ¤X,X; 𝑡) − KX(𝑡) is the nonlinear correction force. To further take

into account the P-Delta effect in estimating structural responses, a reduced stiffness matrix can be

considered based on the linearized P-Delta model [127, 125]. Eq. (2.16) can then be solved in the

modal space as:

𝚯 ¥Y(𝑡) + 𝚲 ¤Y(𝑡) +𝛀Y(𝑡) = 𝚽T [
F(𝑡) − FNLC( ¤Y,Y; 𝑡)

]
(2.17)

This formulation greatly reduces the size of the nonlinear system to be solved by considering a

reduced set of modal equations. However, unlike the elastic form of Eq. (2.8), Eq. (2.17) is not

uncoupled because of the existence of the nonlinear force vector FNLC( ¤Y,Y; 𝑡). Hence, it must be

solved for all required modes simultaneously. To improve the efficiency of nonlinear time history

analysis, the FNA uses a piece-wise exact method [125], summarized in A, to solve the modal
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responses iteratively at each time instant 𝑡 with initial values determined from the following Taylor

series expansion:


Y(𝑡 + Δ𝑡) = Y(𝑡) + ¤Y(𝑡)Δ𝑡 + 0.5 ¥Y(𝑡)Δ𝑡2 + O(Δ𝑡3)

¤Y(𝑡 + Δ𝑡) = ¤Y(𝑡) + ¥Y(𝑡)Δ𝑡 + O(Δ𝑡2)
(2.18)

where Δ𝑡 is the time step considered in the analysis and O is the big O notation that refers to

the infinitesimal functions of the same order. In particular, by first identifying the locations of

nonlinear elements in the structure, the iterative process within each time step is only carried out

for those predefined locations. This results in a significant reduction in computational efforts and

therefore computer time required to obtain a solution. However, the requirement to identify a priori

the locations of the nonlinear elements is a major limitation as in general it is not possible to know

where nonlinearity may occur in the system.

2.4.2 The proposed stress resultant adaptive solution process

Based on the mechanical model of Section 2.3.1, an adaptive fast nonlinear analysis (AFNA) scheme

is developed in this work to efficiently estimate the inelastic response histories. The key feature

of the proposed approach is the capability to update, at each time step, the potential nonlinear

locations, time step sizes, and the number of modes to be considered in the analysis. The overall

solution process is shown in Figure 2.1. In particular, to identify the locations of nonlinearity at

each time step and therefore the associated modes to be considered, it is first convenient to introduce

the section deformation - modal coordinate transformation matrix, 𝚿, where each column of the

matrix, 𝚿𝑙 with 𝑙 = 1, ..., 𝑚, represents the section deformations, i.e., axial strains and curvatures,

of all sections of the structure due to a unit modal displacement at mode 𝑙, as follows:

𝚿 = BT𝚽 (2.19)
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in which T = diag[T1, · · · ,T𝑛𝑒] is a block diagonal matrix collecting the global to local coordinate

transformation matrices, T𝑛, for all 𝑛𝑒 elements of the system, while B = diag[B1, · · · ,B𝑛𝑒] is a

block diagonal matrix collecting the strain-deformation matrices, B𝑛, for all elements, where B𝑛 =

[B𝑛 (𝑥1),B𝑛 (𝑥2), · · · ,B𝑛 (𝑥𝑛𝑠 )]𝑇 consists of the strain-deformation matrices for all 𝑛𝑠 integration

points along the 𝑛th element. To further determine the importance of the 𝑙th mode in the evaluation

of each section deformation parameter, each term of the column 𝚿𝑙 is respectively divided by the

maximum value of all the terms in the column that are associated with the same type of section

deformation parameter, i.e., axial strain 𝜖𝑥 or curvatures ^𝑧, ^𝑦. By evaluating over all modes, the

resulting terms are then collected in the matrix �̂� with |Ψ̂𝑖, 𝑗 | ∈ [0, 1] indicating the importance of

the 𝑗 th mode to the evaluation of the 𝑖th section deformation parameter. This information can now

be used to select the necessary modes for the evaluation of each section deformation parameter

considering a predefined threshold value, i.e., a mode is deemed necessary if |Ψ̂𝑖, 𝑗 | > 𝑒Ψ̂.

With the list of necessary modes for each section deformation, the first step of the solution

process is to calculate the modal responses considering an initial time step Δ𝑡 and only the first

(background) �̄� modes of interest through the piece-wise exact method [125]. The corresponding

responses at the section level can then be determined by:


d(𝑡 + Δ𝑡) = �̄�Ȳ(𝑡 + Δ𝑡)

¤d(𝑡 + Δ𝑡) = �̄� ¤̄Y(𝑡 + Δ𝑡)
(2.20)

where d = {d1, · · · , d𝑛𝑒×𝑛𝑠 }𝑇 is a vector of section deformations for all integration points of all

elements of the structure while ¤d represents the rate of deformation d; �̄�, Ȳ, and ¤̄Y are respectively

truncated𝚿, Y, and ¤Y, with terms related to the background modes being kept. The elastic predictor

of the section forces can then be determined and checked against the yielding criteria using linear

elastic section constitutive relation of Eq. (2.4) for all sections, i.e., D𝐸 (𝑡 +Δ𝑡) = Ksd(𝑡 +Δ𝑡) where

Ks = diag[k𝑠1 , · · · , k𝑠𝑛𝑒×𝑛𝑠 ] is the block diagonal matrix containing section stiffness matrices k𝑠

for all integration points of the structure. The solution process moves on to the next time step only
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if the sum of the elastic forces and the nonlinear correction forces for all integration points remain

within the yield domain, i.e., the structure remains elastic or is in the linear unloading/reloading

stage, as follows:

NT (
D𝐸 (𝑡 + Δ𝑡) + DNLC(𝑡)

)
− R ≤ 0 (2.21)

where N = diag[N1, · · · ,N𝑛𝑒×𝑛𝑠 ] is a block diagonal matrix collecting the unit external normals to

the piece-wise linear yield surfaces for all sections of the structure, R = [R1, · · · ,R𝑛𝑒×𝑛𝑠 ]𝑇 consists

of the plastic resistance vectors, defined as the linearized yield domain of an integration point, for

all integration points of the structure, while DNLC(𝑡) is the nonlinear section correction forces at

the previous step:

DNLC(𝑡) = D(𝑡) − D𝐸 (𝑡) = D(𝑡) −Ksd(𝑡) (2.22)

in which D(𝑡) is the vector of section forces determined from the inelastic constitutive law. If the

condition of Eq. (2.21) is not met, i.e., inelasticity occurs, the solution process moves back to the

previous step and begins an adaptive process with a smaller step size Δ𝑡/[, where [ ∈ Z+ is a step

size modifier, to estimate the corresponding nonlinear section correction force, DNLC(𝑡 +Δ𝑡/[). To

ensure numerical stability, the modified time step Δ𝑡/[ should be taken to be less than or equal to

𝑇min/4, where 𝑇min is the smallest dynamic modal period considered in the analysis.

During the adaptive process, the modal responses for the adjusted smaller time step, i.e.,

Y(𝑡 + Δ𝑡/[) and ¤Y(𝑡 + Δ𝑡/[) are first estimated by the Taylor series expansion of Eq. (2.18). The

corresponding section forces are once again determined based on the section constitutive relation

of Eq. (2.4) by first transforming the modal responses to section deformations using Eq. (2.20).

The locations of the nonlinearity in the structural system can then be determined by the following

criterion:

NT(D𝐸 (𝑡 + Δ𝑡/[) + DNLC(𝑡)) − aR ≥ 0 (2.23)

where a ∈ [0, 1] is the scaling factor. A smaller value should be used if a more conservative

consideration of the distribution of nonlinearity is desired. If no sections meet the criterion of Eq.

(2.23), the responses at the current time step will be solved directly through the piece-wise exact
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method. The solution process then proceeds to the next small time step, 𝑡 + 2Δ𝑡/[, and reevaluates

Eq. (2.23). If there is any section identified as a potential nonlinear location, i.e., any section

satisfying Eq. (2.23), an iterative approach will be adopted to evaluate the nonlinear responses.

The associated static modes necessary for estimating nonlinear responses will be identified for each

potential nonlinear location from the mode list created at the start of the analysis.

The iterative process commences from the trial responses estimated by the Taylor series expan-

sion, i.e., Y(1) (𝑡 + Δ𝑡/[) = YTaylor(𝑡 + Δ𝑡/[) and ¤Y(1) (𝑡 + Δ𝑡/[) = ¤YTaylor(𝑡 + Δ𝑡/[). For each step

𝑘 of the iterative process, by considering only the potential nonlinear sections identified from Eq.

(2.23) and the associated necessary modes, the local states, i.e., the section deformations, can be

determined as: 
d̃(𝑘) (𝑡 + Δ𝑡/[) = �̃�Ỹ(𝑘) (𝑡 + Δ𝑡/[)

¤̃d(𝑘) (𝑡 + Δ𝑡/[) = �̃� ¤̃Y(𝑘) (𝑡 + Δ𝑡/[)
(2.24)

where d̃(𝑡 + Δ𝑡/[), ¤̃d(𝑡 + Δ𝑡/[),�̃�, Ỹ(𝑡 + Δ𝑡/[) and ¤̃Y(𝑡 + Δ𝑡/[) are respectively the subsets of

d(𝑡 + Δ𝑡/[), ¤d(𝑡 + Δ𝑡/[),𝚿, Y(𝑡 + Δ𝑡/[) and Ȳ(𝑡 + Δ𝑡/[) containing only relevant terms for the

identified nonlinear sections and modes. Based on the responses calculated from Eq. (2.24)

and the corresponding response increments with respect to the previous time step, the nonlinear

section force increments ΔD̃(𝑘) (𝑡 + Δ𝑡/[), can be estimated from the basic nonlinear properties

and deformation history of each nonlinear section. By relating ΔD̃(𝑘) (𝑡 + Δ𝑡/[) back to the full

nonlinear section force increment vector ΔD(𝑘) (𝑡 +Δ𝑡/[) at the corresponding nonlinear locations,

the associated increment in nonlinear section correction forces, ΔD(𝑘)NLC(𝑡 + Δ𝑡/[), can then be

solved by:

ΔD(𝑘)NLC(𝑡 + Δ𝑡/[) = ΔD(𝑘) (𝑡 + Δ𝑡/[) −K𝑠Δd(𝑘) (𝑡 + Δ𝑡/[) (2.25)

where Δd(𝑘) (𝑡 + Δ𝑡/[) is the increment of d(𝑘) (𝑡 + Δ𝑡/[) at the current time step. For a particular

case where section forces and deformations are assumed to follow an EPP relation, the increment in

nonlinear section correction forces, ΔD(𝑘)NLC(𝑡 + Δ𝑡/[), can be efficiently identified through solving
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the following Haar-Kàrmàn condition:

min
ΔD(𝑘 )NLC (𝑡+Δ𝑡/[)

1
2
ΔD(𝑘)NLC(𝑡 + Δ𝑡/[)

𝑇K−1
s ΔD(𝑘)NLC(𝑡 + Δ𝑡/[)

subject to

N𝑇
(
Ksd(𝑘) (𝑡 + Δ𝑡/[) + D(𝑘)NLC(𝑡 + Δ𝑡/[)

)
− R ≤ 0

(2.26)

where D(𝑘)NLC(𝑡 + Δ𝑡/[) = DNLC(𝑡) + ΔD(𝑘)NLC(𝑡 + Δ𝑡/[). The corresponding increment in nonlinear

correction force vector can then be determined through the following transformation:

ΔF(𝑘)NLC(𝑡 + Δ𝑡/[) = T𝑇Δq(𝑘)NLC(𝑡 + Δ𝑡/[) (2.27)

where Δq(𝑘)NLC(𝑡+Δ𝑡/[) is a vector collecting increments in element end nonlinear correction forces,

Δq(𝑘)NLC,𝑛 (𝑡 +Δ𝑡/[), for all elements, which can be determined from Eq. (2.5) or more conveniently

through a numerical integration scheme. In particular, for the 𝑙th element, the following expression

can be adopted:

Δq(𝑘)NLC,𝑛 (𝑡 + Δ𝑡/[) =
𝑛𝑠∑︁
𝑖=1

𝐿𝑛

2
B𝑇𝑛 (𝑥𝑖)ΔD(𝑘)NLC,𝑛 (𝑡 + Δ𝑡/[; 𝑥𝑖)𝑤𝑖 (2.28)

where 𝑤𝑖 is the weight of the 𝑖th integration point. The nonlinear correction forces are then

updated using Eq. (2.29) for the next iteration where the modal responses, Y(𝑘+1) (𝑡 + Δ𝑡/[) and

¤Y(𝑘+1) (𝑡 + Δ𝑡/[), are solved through the piece-wise exact method [125].

F(𝑘+1)NLC (𝑡 + Δ𝑡/[) = FNLC(𝑡) + ΔF(𝑘)NLC(𝑡 + Δ𝑡/[) (2.29)

Within each time step Δ𝑡/[, Eqs. (2.24) to (2.29) will be evaluated and updated recursively until

reaching a user-defined convergence criterion. The convergence tolerance can be defined in terms

of any response parameter of interest, e.g., the differences in nonlinear correction forces converge

to within a given tolerance, i.e., |F(𝑘+1)NLC −F(𝑘)NLC | < 𝑒𝐹𝑁𝐿𝐶
, or the changes in estimated deformations.
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Within this context, starting from time 𝑡 + Δ𝑡/[, the adaptive process solves the responses for

each small time increment Δ𝑡/[ until reaching the time 𝑡 + Δ𝑡. In particular, if nonlinearity is

detected in the time increment Δ𝑡/[, the responses will be solved through an iterative approach

until the convergence criterion is satisfied. The solution process then proceeds to the next time step

considering the initial step size Δ𝑡 and starts another adaptive process if necessary, i.e., if Eq. (2.21)

is not satisfied. The process is terminated when reaching the end of the time sequence, providing a

full range of inelastic response histories for structures subject to dynamic external loads.

2.5 Validation

2.5.1 Preamble

In order to validate the proposed AFNA approach, the AFNA approach is applied to the inelastic

response analysis of 2-dimensional (2D) steel frame of Figure 2.2. To validate, the results obtained

from AFNA are compared to those obtained directly from the direct integration carried out in

OpenSees. To enable this comparison, the steel frame was modeled using a fiber approach as

OpenSees does not have a stress resultant modeling environment. As such, as outlined in B, the

AFNA approach was reformulated at the fiber level.

2.5.2 Description

2.5.2.1 Model description

The 37-story 2D steel moment-resisting frame was assumed to be located in the Miami region of

Florida, USA. As illustrated in Figure 2.2, typical story heights are 6 m at ground level and 4 m for

all other levels. The overall height of the building is 150 m above ground. The moment resisting

frame consists of wide flange standard W24 beams with 5 m spans and square box columns. In

particular, the dimension of the box column is defined by the centerline diameters 𝐷, while the

thickness is taken as 𝐷/20. Table 2.1 reports a summary of the section sizes. The steel composing
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Figure 2.1: Flowchart of the proposed AFNA algorithm.
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the frame is assumed to follow an EPP constitutive law with an elastic modulus 𝐸s of 200 GPa and a

yield stress 𝐹y of 355 MPa. The mass of the structure consists of the self-mass and carried mass of

100 kg/m3, leading to a super dead load of 23.5 kN/m acting on each beam. Rayleigh damping was

considered with damping ratios of the first two modes equal to 2.5%. The structure was designed

to remain elastic under a combination of vertical loads, including dead load and super dead load,

and wind loads calibrated to a wind speed at building top of �̄�𝑦 = 52.5 m/s, corresponding to a

mean recurrence interval (MRI) of 700 years in Miami.

In modeling distributed plasticity through the fiber approach, each section of the steel frame

was discretized into several fibers, as illustrated in Figure 2.3 for all beam and column sections.

To compare the inelastic responses obtained from the AFNA approach and those from direct

integration, the steel frame was modeled in OpenSees using displacement-based beam column

elements with 5-point Gauss-Legendre integration scheme. The nonlinear responses were solved

adaptively through a series of algorithms based on the average constant acceleration integration

scheme. In particular, the Newton-Raphson (NR) algorithm with line search was first considered

for initial trial with a basic time step Δ𝑡 of 0.02 s. If the solution failed to converge, the following

series of algorithms were then adopted sequentially until convergence was achieved: (1) modified

NR algorithm with a smaller time step Δ𝑡 = 0.002 s, (2) NR with line search algorithm with

Δ𝑡 = 0.002 s, (3) NR algorithm with Δ𝑡 = 0.001 s, and (4) Broyden algorithm with Δ𝑡 = 0.001 s.

The convergence criteria were defined as reaching the norm of the displacement increment of 10−8

and the increment of total deformation energy of 10−10. The first 6 modes were initially considered

in the AFNA as the dynamic modes while all remaining modes were treated as static modes that

were added to the adaptive process if needed. The threshold and initial time step were respectively

taken as 𝑒Ψ = 0.1 and Δ𝑡 = 0.5 s. In the adaptive process, the scaling factor a for identifying

nonlinearity was taken as 1.0. A time step modifier [ = 3 was considered for time steps that were

expected to have nonlinearity. Maximum absolute increments in fiber strains of 10−6 were chosen

as the convergence criteria for the iterative process.
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Table 2.1: Section sizes of the steel frame.

Wide-flange Beams Box Columns
Level Section size Plastic modulus (m3) Section size (m) Plastic modulus (m3)
1-10 W24 × 192 0.0092 𝐷 = 0.5 0.0094
11-20 W24 × 192 0.0092 𝐷 = 0.5 0.0094
21-30 W24 × 103 0.0046 𝐷 = 0.4 0.0048
31-37 W24 × 103 0.0046 𝐷 = 0.35 0.0032

2.5.2.2 Dynamic wind loads

Two wind directions 𝛼 = 0◦ and 𝛼 = 90◦, corresponding to acrosswind and alongwind direction

respectively (see Figure 2.2), were considered in the comparison of this section. The mean wind

speeds at the building top, �̄�𝑦, were set to 70 and 65 m/s respectively for the acrosswind and

alongwind loads in order to achieve a high level of nonlinearity. The stochastic wind loads for

the two directions of interest were simulated from the wind tunnel informed proper orthogonal

decomposition (POD) model [128, 129, 26, 123]. In particular, the wind tunnel data from the

Tokyo Polytechnic University’s (TPU) aerodynamic database [130] was collected on a 1/300 rigid

model and was measured considering a sampling frequency of 1000 Hz and wind speed at the

building top of 11 m/s for a total recorded duration of 32 s. In this validation example, 1/6 of

the X direction loads were considered for the 2D moment resisting frame. The first five loading

modes were considered in simulating the stochastic wind loads with a sampling frequency of 2

Hz. To ensure stability and accuracy when carrying out direct integration, wind loads between

two adjacent sampling points were determined by linear interpolation. Due to the significant effort

involved in performing direct integration, the total length of the wind storm was set to 𝑇 = 600 s,

in which the first and last minute were linearly ramped.

2.5.3 Results

The comparison was carried out for two randomly generated wind load histories acting respectively

in the alongwind and acrosswind directions. Figure 2.4 reports the time histories of the displacement

responses at three different levels of the frame, as indicated in Figure 2.2, for the alongwind loads
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Ground level

6 @ 5 m = 30 m
Level 37
150 m
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122 m
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Level 20
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Level 0

0 m

The frame considered

Strain stress recorder

Displacement recorder

(a)

(b)

X

Y
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60 m

Figure 2.2: Schematic of the 37-story 6-span 2D steel moment-resisting frame (a) Plane view and
frame selection (b) elevation view.
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(a) (b) (c)

(d) (e)

Figure 2.3: Fiber discretization for (a) Box column: 𝐷 = 0.35, (b) Box column: 𝐷 = 0.4m, (c)
Box column: 𝐷 = 0.5, (d) Beam: W24 × 103, (e) Beam: W24 × 192.
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Table 2.2: Runtime of the direct integration method and proposed AFNA approach for the steel
frame under alongwind and acrosswind loads.

Acrosswind (�̄�𝑦 = 70 m/s) Alongwind (�̄�𝑦 = 65 m/s)
Direct integration 74.15 71.93
AFNA 7.61 10.75

estimated from both direct integration method in OpenSees and the proposed AFNA approach.

As can be seen, the two responses are almost identical to each other, proving the accuracy of the

proposed AFNA approach. The comparison of stress and strain histories as well as the hysteretic

curve under alongwind loads for the two methods are shown in Figure 2.5 for the extreme fiber of

the first section from the bottom of the exterior first floor column, indicated in Figure 2.2 as strain

stress recorder. It can be observed that even for those highly localized responses, the AFNA is

still capable of accurately reproducing the response time history. The same accuracy can also be

observed for responses under acrosswind loads, as shown in Figures 2.6 and 2.7 for the displacement

time histories as well as fiber stress-strain time histories and hysteretic curve.

Finally, it should be noted that this validation was carried out on a personal computer with

Intel(R) Core(TM) i7-8700 @ 3.20 GHz processor. Table 2.2 reports the runtime of nonlinear

time history analysis based on both direct integration method and the proposed AFNA approach.

It can be seen that the AFNA can provide a whole range of time history information with around

an order of magnitude speedup as compared to traditional direct integration methods without loss

of accuracy. The efficiency of this proposed approach further allows direct application in the

simulation based framework for reliability assessment.

2.6 Reliability Assessment Framework through AFNA

2.6.1 Problem setting

The efficiency and accuracy in analyzing inelastic responses, together with the natural synergy

with dynamic shakedown analysis, makes the AFNA scheme an ideal inelastic response simulator
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(a)

(b)

(c)

Figure 2.4: Horizontal displacement time histories at the (a) 10th (b) 20th and (c) 37th floors of
the steel frame under alongwind loads.

(a)

(b) (c)

Figure 2.5: (a) Fiber strain, (b) fiber stress time histories, and (c) hysteretic curve for a representative
fiber of the exterior first floor column under alongwind loads.
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(a)

(b)

(c)

Figure 2.6: Horizontal displacement time histories at the (a) 10th (b) 20th and (c) 37th floors of
the steel frame under acrosswind loads.

(a)

(b) (c)

Figure 2.7: (a) Fiber strain, (b) fiber stress time histories, and (c) hysteretic curve for a representative
fiber of the exterior first floor column under acrosswind loads.
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within the dynamic shakedown-based wind reliability analysis framework outlined in [18]. To this

end, the reliability of a structure against a limit state of interest, described through a limit state

function, 𝑔, that by convention assumes negative values when the limit state is violated, can be

directly measured in terms of the probability of 𝑔 assuming negative values and therefore as:

𝑃 𝑓 = 𝑃(𝑔(Y) < 0) =
∫

...

∫
𝐼
[
𝑔(y)

]
𝑓Y(y)𝑑y (2.30)

where Y is a vector of random variables that includes uncertainties in both the structural system

and external loads; 𝑓Y(y) is the joint probability density function of Y; and 𝐼
[
𝑔(Y)

]
is the indicator

function which assumes the value of unity if failure occurs and zero otherwise. Based on the

estimated value of 𝑃 𝑓 , the corresponding reliability index can be evaluated through the first-order

reliability method (FORM) as:

𝛽 = Φ−1(1 − 𝑃 𝑓 ) (2.31)

where 𝛽 is the reliability index associated with the limit state 𝑔 = 0.

As outlined in [18], Eq. (2.30) can be effectively estimated through Monte Carlo methods, and

in particular, advanced approaches based on stratified sampling that allow efficient simulation of

rare events [17]. In addition, to enable comprehensive treatment of wind directionality, the scheme

can be embedded with a wind sector-by-sector approach in which Eq. (2.30) is solved for wind

blowing from a limited number of predefined sectors and the failure probability associated with

critical sector (i.e., the sector with highest failure probability) is taken as the failure probability of

the system.

2.6.2 Integration with AFNA

In integrating the AFNA scheme with the Monte Carlo based stratified sampling scheme outlined

in [18], elastic solutions for all samples are first obtained through modal analysis (Eq. 2.8), based

on which the multipliers 𝑠𝑒 and 𝑠𝑝 can be efficiently evaluated as outlined in Section 2.3.2.

Subsequently, the AFNA scheme is used to estimate the inelastic response time histories for all

35



samples in which inelasticity occurs (i.e., 𝑠𝑒 < 1). It is important to note that, unlike the strain-

based scheme used in the framework outlined in [18], the AFNA scheme is capable of accurately

estimating responses for both shakedown and non-shakedown samples. Therefore, in estimating

the probabilities associated with exceeding any displacement-based limit state, these will no longer

be conditioned on the system reaching the state of shakedown, i.e., the failure probabilities and

associated distribution functions will fully capture behavior subsequent to shakedown. In addition,

for each sample of the simulation full responses time histories are generated for the displacements,

velocities, and accelerations at all degrees of freedoms, as well as hysteretic behaviors including

deformations and forces at all integration points of the discretization, therefore providing a far more

comprehensive picture of the inelastic response of the structural system at and beyond the state of

dynamic shakedown.

2.7 Case Study

2.7.1 Description

2.7.1.1 Building system and numerical modeling

A 3D 45 story reinforcement concrete (RC) core building located in New York city and designed

by the ASCE 7-22 committee on performance-based wind engineering is considered for this case

study. As shown in Figure 2.8(a-c), the core is composed of multiple shear walls, coupled through

the link beams at each floor, as indicated in Figure 2.8(c). The total height of the building is

180.59 m (592.5 ft), with a story height of 4.01 m (13.17 ft). The material properties (concrete

compressive strength 𝑓 ′𝑐 , reinforcement strength 𝑓 𝑦), structural properties (modal damping ratios

b, gravity loads (dead loads 𝐷 and “arbitrary point-in time” live loads 𝐿𝑎𝑝𝑡) are all considered as

random as summarized in Table 2.3. In addition, the Young’s modulus of concrete is assumed to

be given by 𝐸𝑐 = 57, 000
√︁
𝑓 ′𝑐 (psi) and is therefore a derived random variable.

In developing the finite element model of the structure, rigid diaphragm constraints were used
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(a)

(b)
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Node

Rigid link
DBE

(d)

Figure 2.8: The case study building: (a) Core; (b) Plan view; (c) Modeling strategy; (d) 3D finite
element model.

Table 2.3: Description of random variables considered for the 45-story reinforced concrete building.

Nominal Mean
Nominal CoV* Distribution Reference

𝑓 ′𝑐
10 (ksi) 1.09 0.11 Normal [131]
12 (ksi) 1.08 0.11 Normal [131]

𝑓𝑦 60 (ksi) 1.13 0.03 Normal [131]
b 2% 1 0.4 Lognormal [132]
𝐷 - 1.05 0.1 Normal [133, 134]
𝐿𝑎𝑝𝑡 - 0.24 0.6 Gamma [133, 134]
𝑤1 1.0 1.0 0.075** Normal [135]
𝑤2 1.0 1.0 0.05 Normal [136]
𝑤3 1.0 1.0 0.05 Normal [136]
* CoV: coefficient of variation.
** Related to record duration, takes 0.075 since the full scale loads have a duration of 1 hour.

Table 2.4: Nominal floor loads of the 45-story reinforced concrete building. (Units: psf).

Self Load Superimposed Dead Load Live Load
50 15 50+15 (partitions)
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to model the in-plane stiffness of each floor. The shear walls were modeled using equivalent

columns (modeled with displacement-based beam-column elements) and rigid links (Figure 2.8c).

To properly model the torsional stiffness of the building, the rotational constraints at the ends of

each rigid link are released. The link beams were modeled with displacement-based beam-column

elements. All the displacement-based beam-column elements had five integration points. The

natural frequencies of the first third modes were 𝑓1 = 0.246 Hz, 𝑓2 = 0.305 Hz, and 𝑓3 = 1.01 Hz

when all random variables assumed their nominal values. In addition, 3D piecewise linear yield

surfaces with 32 surfaces were considered for modeling the yield domains associated with each

shear wall and link beam section. Geometric nonlinearity was considered through the linearized

P-Delta model outlined in [125].

2.7.1.2 Wind loads

The stochastic wind loads were generated through application of the wind tunnel informed spectral

POD model outlined in [26, 18]. Wind tunnel data, provided by Cermak Peterka Petersen (CPP),

was collected through the instantaneous measurement of pressures on the surface of a 1:400 scale

building model. Data was collected for 131.04 s at a sampling frequency of 250 Hz and 36 wind

directions, 𝛼 = {0◦, 10◦, ..., 340◦, 350◦}. Through appropriate scaling based on Strouhal number

matching and integration to the floor centers, the data provided an experimental realization of

the two translational forces and torsional moment (about a vertical axis) acting at the center of

mass of each floor. From the cross power spectral density of this data, the first five frequency

dependent spectral POD modes and eigenvalues were estimated and used to calibrate the stochastic

wind load model. In particular, given a wind building top mean hourly wind speed of interest, 𝑣𝐻 ,

and associated direction, 𝛼, the model was calibrated to generate realizations of the vector-valued

stochastic wind loads, F(𝑡; 𝑣𝐻 , 𝛼), with a total duration of 3840 s with a sampling frequency of 2

Hz. The loads were subsequently modified by first ramping up/down the first/last 2 minutes and

then multiplying by 𝑤1, 𝑤2, and 𝑤3 to account for the epistemic uncertainties in the wind tunnel
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experiments:

F̃(𝑡; 𝑣𝐻 , 𝛼) = 𝑤1𝑤2𝑤3F(𝑡; 𝑣𝐻 , 𝛼) (2.32)

where the factor 𝑤1 accounts for the finite length of the wind tunnel record, 𝑤2 accounts for the use

of scale models, and 𝑤3 accounts for the observational errors. The probabilistic properties of 𝑤1,

𝑤2, and 𝑤3 are reported in Table 2.3.

To characterize the intensity of wind events, probability distribution of the site-specific annual

largest non-directional mean hourly wind speed is required. This was estimated from the point

values of the 3 s gust wind speeds, 𝑣3, reported in the wind speed maps of the ASCE 7-22 for the

mean recurrence intervals of: 300, 700, 1700, 3000, 10,000, 100,000, 1,000,000 years. These were

transformed to site-specific mean hourly wind speeds through the expression:

𝑣𝐻 = �̄�

( 𝐻
10

) �̄�
𝑣3 (2.33)

where �̄� and �̄� are terrain exposure constants respectively taken as 0.45 and 1/4 which correspond to

Exposure Category B [137], while𝐻 is the height of the building. The obtained annual mean hourly

wind speeds were subsequently fit to a Weibull distribution. This distribution was subsequently

transformed, based on the classic assumption of independent maximum annual wind speeds, to

the distribution function of the largest mean hourly speeds to occur in an observation period of 50

years, lifespan over which the reliability analysis will be carried out. The resulting non-directional

hazard curve is shown in Figure 2.9.

To account for wind directionality, the sectorial simulation strategy outlined in [18] was adopted.

Eight wind sectors were therefore defined. As illustrated in Figure 2.10, the sectors coincided with

the compass directions: N, E, S, W, NE, SE, SW, and NW. In particular, the mean hourly wind

speed for occurring in a given sector, �̃�𝐻 , was linearly related to the non-directional site specific

mean hourly wind speed, 𝑣𝐻 , as:

�̃�𝐻 =
√
𝐿𝑅𝑣𝐻 (2.34)

where 𝐿𝑅 is a location specific load ratio. Values of the load ratio for New York City were provided
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Figure 2.9: The hazard curve and stratification of the largest 50-year non-directional mean hourly
wind speed at the reference height.

Table 2.5: Values of 𝐿𝑅 for different wind direction sectors.

Sector N NE E SE S SW W NW
𝐿𝑅𝐸𝛼

𝑙
0.78 0.78 0.7 0.7 0.7 0.78 1 0.84

by CPP and are reported in Table 2.5. The uncertainty in the wind direction within a given sector

was model by considering 𝛼 as uniformly distributed in each sector.

2.7.2 Reliability analysis

In calibrating the AFNA-based reliability analysis of Section 2.6, the stratified sampling scheme

was based on dividing the hazard curve into 𝑁𝑤 = 8 wind speed strata, 𝐸𝑣𝐻 ,𝑤, of equal difference

of squared wind speed, as illustrated in Figure 2.9. The lower bound of the 8th and last strata was

calibrated by setting the annual failure probability as 3.0 × 10−5, which corresponds to the annual

failure probability of an ASCE 7-16 Risk Category II building [137]. Using this stratification of the

non-directional hazard curve together with the relationship of Eq. (2.34), 400 samples per sector

were used to estimate the failure probability in each sector for a total of 3,200 samples.

Failure probabilities, and associated reliability indices, were estimated for the following limit
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Bldg.

Figure 2.10: Illustration of wind direction sectors.

states:

1. LS1: component-level yield (traditional limit state used in current design);

2. LS2: system-level yield;

3. LS3: inability to achieve the state of dynamic shakedown;

4. LS4: inelastic displacement-based limit states:

(a) LS4a: peak interstory drift 𝐷𝑟𝑋,𝑖 or 𝐷𝑟𝑌,𝑖 ≥ ℎ𝑖/100;

(b) LS4b: peak drift at the building top �̂�𝑋,45 or �̂�𝑌,45 ≥ 𝐻/200;

(c) LS4c: permanent set 𝐷𝑟𝑋,𝑖 or 𝐷𝑟𝑌,𝑖 ≥ ℎ𝑖/1000.

where ℎ𝑖 is the height of the 𝑖th floor; 𝐻 is the total height of the structure; while 𝐷𝑟𝑋,𝑖, 𝐷𝑟𝑌,𝑖,

𝐷𝑟𝑋,𝑖, and 𝐷𝑟𝑌,𝑖 are respectively the peak interstory drift in the 𝑋 direction, peak interstory drift

in 𝑌 direction, residual interstory drift in 𝑋 direction, and residual interstory drift in 𝑌 direction at

the 𝑖th floor.

In estimating the nonlinear responses through the AFNA algorithm, the first three modes are

considered as dynamic (i.e., characterized by both a dynamic and background component), the
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subsequent three modes are considered as background modes, while all remaining modes are

considered static. The threshold, 𝑒
Ψ̂

, was taken as 0, i.e., all dynamic, background, and static

modes were considered in estimating nonlinear responses. The initial time step was taken as

Δ𝑡 = 0.5 s. In the adaptive process, the scaling factor a for identifying nonlinearity was taken as

0.9. For time steps that were expected to have nonlinearity, the time step modifier [ for each sample

was taken as an integer such that the modified time step, Δ𝑡/[, was less than or equal to 1/4 of the

third dynamic modal period considered in the analysis. The tolerance for the convergence of the

nonlinear correction forces was set to 𝑒𝐹𝑁𝐿𝐶
= 1 × 10−6 in the iterative process.

2.7.3 Results

2.7.3.1 Preamble

The results obtained through the reliability analysis are discussed in this section. In particular, the

responses of a representative shakedown and non-shakedown sample are first discussed in detail.

The responses of the shakedown sample obtained through AFNA are verified by comparing with

those obtained from the strain-driven stress resultant dynamic shakedown scheme. Second, the

resulting reliability indices and exceedance probabilities curves are discussed.

2.7.3.2 Responses of representative samples

To illustrate the capability of the AFNA scheme for efficiently simulating a full range of response

time histories for both shakedown and non-shakedown samples, two such samples are discussed

here. In particular, the shakedown sample is for a wind direction of 𝛼 = 280◦ and wind speed

�̃�𝐻 = 65.22 m/s. The multipliers of for this sample are 𝑠𝑒 = 0.83 and 𝑠𝑝 = 1.16. The peak and

residual interstory drifts obtained through the strain-driven stress resultant shakedown scheme and

AFNA are comparatively shown in Figure 2.11. It is observed that both the peak and residual

interstory drifts by the two schemes are consistent. The residual interstory drifts by AFNA are

smaller than those of the strain-driven stress resultant shakedown scheme. This can be traced back
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to how the strain-driven shakedown schemes estimate the asymptotic response under an infinitely

repeated wind load [123], which will in general cause overestimation, while the AFNA scheme

provides estimates of the actual response from the excitation. In addition, as a step-by-step solution

method, the AFNA scheme is capable of estimating the entire response time history, at any degree

of freedom or integration point of the discretized system. As an illustration, the roof displacement

in the 𝑋 and 𝑌 directions, as well as rotation about the 𝑍 direction, are shown in Figure 2.12. The

locations of the 68 elements experiencing inelasticity (out of the 585 total displacement-based beam

column elements of the discretization) are shown in Figure 2.13(a). Among the integration points

experiencing inelasticity, the 1st integration point of the 4th element is selected as representative.

Figure 2.13(b) reports the section deformation and forces, including axial deformation 𝜖𝑥 and

force 𝑁𝑥 , curvatures ^𝑦, ^𝑧 and moments 𝑀𝑦, 𝑀𝑧 where the inelastic response is clearly visible.

Figure 2.13(c) illustrates how the force 𝑁𝑥 −𝑀𝑦 −𝑀𝑧 trajectory moves around within the 3D yield

domain as the proposed AFNA scheme finds the solution considering yielding in the 3D domain

with plastic deformations governed by the associated flow rule. Figure 2.13(c) also illustrates

how yielding occurs with respect to the yield domain of the selected integration point. Similar

information is also available for any integration point of interest. Moreover, in addition to the

full range of response time histories and hysteretic behaviors, the AFNA scheme exhibited high

efficiency requiring only 16.16 s to find the solution, which is considerably less than the 124.15 s

taken by the strain-driven stress resultant shakedown approach (times estimated using a personal

computer with Intel(R) Core(TM) i7-8700 @ 3.20 GHz processor).

The strain-based shakedown scheme is not capable of estimating inelastic responses for non-

shakedown samples. The responses of these samples, however, can be solved by the AFNA scheme.

This enables the AFNA approach to analyze samples with strong inelasticity and facilitates the

estimation of reliabilities associated with limit states that are closer to incipient collapse. To

illustrate this, a strongly inelastic non-shakedown sample, caused by wind loading with 𝛼 = 270◦

and �̃�𝐻 = 64.35 m/s, is discussed in the following. The multipliers of this sample were 𝑠𝑒 = 0.41

and 𝑠𝑝 = 0.60. Figure 2.14 shows the nonlinear modal hysteretic curves, i.e., 𝑄𝑖 vs 𝝓T
𝑖 FNL, for the
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(a) (b) (c) (d)

Figure 2.11: Comparison of peak (a-b) and residual (c-d) interstory drifts in the 𝑋 and 𝑌 directions
between the stress resultant shakedown and AFNA schemes.

(a)

(b)

(c)

Figure 2.12: Time history of roof displacement in (a) 𝑋 direction, (b) 𝑌 direction, and rotation in
(c) rotation about the 𝑍 direction estimated by AFNA.
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Figure 2.13: (a) Location of the nonlinear elements (marked in red); (b) time histories of section
deformations and forces; and (c) 3D yield domain and trajectory of 𝑁𝑥 − 𝑀𝑦 − 𝑀𝑧, estimated by
AFNA at the 1st integration point (red points in a) of the 4th element.
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three dynamic modes considered in the analysis. This provides a clear picture of the global inelastic

behavior of the system and is an output that is exclusive to the AFNA approach (i.e., traditional

step-by-step integration schemes do not provide this information as they are not based on model

decomposition). In particular, it can be seen that all three modes have observable inelasticity, with

the second mode exhibiting extremely strong nonlinearity with significant residual deformation. The

peak and residual interstory drift ratios are shown in Figure 2.15. It is observed from Figure 2.15(c)

that the residual interstory drift is large and close to the peak value of Figure 2.15(a). This is

consistent with Figure 2.16, where, compared to the dynamic component of the roof displacement

in 𝑋 direction, the residual component is dominant and accumulates throughout the entire history

indicating a ratcheting type failure of the system. In total 411 out of the 585 displacement-based

beam column elements experienced inelasticity, as illustrated in Figure 2.17(a). Figure 2.17(b)

reports the section deformations and forces at the 1st integration point of the 4th element. These

include the axial deformation 𝜖𝑥 and force 𝑁𝑥 , curvatures ^𝑦 and ^𝑧, and moments 𝑀𝑦, 𝑀𝑧.

Consistent with the observation concerning the roof displacement response in the 𝑋 direction,

this element has experienced extreme axial deformation and bending about the local 𝑦 axis that is

accumulating with time. In addition, Figure 2.13(c) shows how the force 𝑁𝑥 − 𝑀𝑦 − 𝑀𝑧 trajectory

moves on the yield surface and how yielding occurs with respect to the yield domain of the selected

integration point. It is worth noting that even for this strongly nonlinear non-shakedown sample,

the AFNA algorithm is still capable of simulating a full range of response time histories, including

global displacements as well as local hysteretic curves. This both extends the range of responses

that can be used in reliability analysis as compared to the strain-driven stress resultant shakedown

scheme, but also provides vital insights into the response of individual samples.

2.7.3.3 Reliability results

With responses samples estimated through the AFNA algorithm, reliability indices for component-

level yield limit state (LS1), system-level yield limit states (LS2 and LS3), as well as displacement-

based limit state (LS4) were estimated and are summarized in Table 2.6. It is seen that some
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Figure 2.14: The nonlinear modal hysteretic curves, 𝑄𝑖 vs 𝝓T
𝑖 FNL, of the three nonlinear dynamic

modes.

(a) (b) (c) (d)

Figure 2.15: Peak (a-b) and residual (c-d) interstory drifts in 𝑋 and 𝑌 directions by AFNA.
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(a)

(b)

(c)

Figure 2.16: Time history of roof displacement in: (a) 𝑋 direction; (b) 𝑌 direction; and (c) rotation
about 𝑍 direction by AFNA.
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Figure 2.17: (a) Location of nonlinear elements (marked as red); (b) time histories of section
deformations and forces; and (c) 3D yield domain and trajectory of 𝑁𝑥 − 𝑀𝑦 − 𝑀𝑧, estimated by
AFNA at the 1st integration point (red points in a) of the 4th element.
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Table 2.6: Failure probabilities and reliability indices for the archetype building.

Limit state Description Failure probability Reliability index
LS1 First component yield 0.0026 2.80
LS2 First system yield 0.0029 2.76
LS3 Non-shakedown 5.12×10−4 3.28

LS4a ∃𝑖, 𝐷𝑟 𝑖 ≥ ℎ𝑖/100 in X 2.54×10−5 4.05
∃𝑖, 𝐷𝑟 𝑖 ≥ ℎ𝑖/100 in Y 1.56×10−4 3.61

LS4b �̂�𝑋,45 ≥ 𝐻/200 3.90×10−4 3.36
�̂�𝑌,45 ≥ 𝐻/200 2.20×10−4 3.51

LS4a ∃𝑖, 𝐷𝑟 𝑖 ≥ ℎ𝑖/1000 in X 2.49×10−5 4.06
∃𝑖, 𝐷𝑟 𝑖 ≥ ℎ𝑖/1000 in Y 1.53×10−4 3.61

reliability indices, e.g., for LS1 and LS2, are smaller than 3.0, the target reliability for the archetype

building of this case study. Notwithstanding how the system does not meet the target component

reliability, it is interesting to observe how the building has a reliability index of nearly 3.3 at dynamic

shakedown. This illustrates how the system has an important plastic reserve in which controlled

inelasticity can occur without risk of potential failure due to low cycle fatigue and ratcheting, i.e.,

excluded as the state of dynamic shakedown occurs.

In addition, the exceedance probabilities of peak and residual interstory drift ratios at the critical

floors in both the 𝑋 and 𝑌 directions are shown in Figure 2.18(a-d). The exceedance probabilities

of the peak drift at the building top in both the 𝑋 and 𝑌 directions are shown in Figure 2.18(e-

f). It is worth noting that, unlike the distributions estimated when using the strain-driven stress

resultant shakedown scheme, these distributions include all non-shakedown samples and therefore

provide estimates of the unconditional failure probabilities. These distributions therefore include

the contributions of near-collapse samples and thus better reflect the actual performance of the

building in extreme winds.

2.8 Summary and conclusions

In this chapter, an efficient adaptive fast nonlinear analysis (AFNA) integration scheme was proposed

as a powerful alternative to the recently introduced strain-driven dynamic shakedown method. The

50



(a) (b)

(c) (d)

(e) (f)

Figure 2.18: Exceedance probabilities of the interstory drift ratios for: (a) peak 𝑋 direction drift at
floor 30; (b) peak 𝑌 direction drift at floor 42; (c) residual drift in the 𝑋 direction at floor 33; (d)
residual drift in the 𝑌 direction at floor 2; (e) peak drift at the building top in the 𝑋 direction; and
(f) peak drift at the building top in the 𝑌 direction.
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scheme was derived for both fiber-based and stress resultant distributed plasticity formulations. The

method is based on a step-by-step iterative solution process over the entire duration of the dynamic

load history, therefore providing a full range of global and local response time histories for scenarios

both below and above the state of dynamic shakedown. This enables the assessment of reliability

for limit states ranging from component first yield to incipient collapse. Because the scheme is

developed within the context of dynamic shakedown, the evaluation of this inelastic system level

limit state is naturally encompassed. The algorithm is fully adaptive in terms of solver configurations

therefore ensuring high efficiency. This ensures speedups of up to an order of magnitude over state-

of-the-art direct integration schemes. The accuracy of the AFNA scheme was validated against

the direct integration schemes of OpenSees. The scheme was subsequently integrated within a

recently introduced stochastic simulation-based wind reliability-based assessment framework. A

3D full-scale archetype reinforced concrete tower subject to extreme winds was considered as a

case study for illustration. The AFNA scheme was seen to estimate inelastic responses that are

consistent in terms of accuracy with the recently proposed strain-driven stress resultant dynamic

shakedown method, but at a significantly lower computational cost. The capability of the scheme

to estimate a full range of inelastic responses beyond shakedown was illustrated.
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CHAPTER 3

Nonlinear Stochastic Dynamic Response

Metamodeling through MIMO NARX

3.1 Overview

The ever-growing reliance on probabilistic performance-based frameworks in assessing and de-

signing structural systems is creating a need for efficient tools for propagating uncertainty through

general nonlinear and dynamic structural systems. This research is focused on the development

of metamodeling strategies for rapid response evaluation of a class of non-linear multi-degree-of-

freedom (MDOF) structural systems driven by stochastic excitations. In particular, the nonlinear

auto-regressive with exogenous input (NARX) model has been demonstrated to be versatile and

effective in this respect. However, significant difficulties in NARX model calibration and execu-

tion have been encountered when directly applying this approach to practical MDOF systems with

large numbers of degree-of-freedoms. To overcome this limitation, a new metamodeling approach

is proposed in this work through combining projection-based model order reduction with multi-

input multi-output NARX models. The effectiveness and accuracy of the proposed approach are

illustrated on a 40-story nonlinear steel-frame subject to stochastic earthquake excitation.
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3.2 Introduction

The rapid rise of available computational power has made the Monte Carlo method, or more in

general the stochastic simulation method, a widely used strategy for uncertainty quantification.

Indeed, these approaches enable the direct estimation of the uncertain response characteristics of

a wide variety of engineering problems and are often at the core of the frameworks developed

to estimate the performance metrics used in state-of-the-art probabilistic performance-based de-

sign frameworks [138, 11, 15, 139, 140]. performanceNotwithstanding this increase in available

computational power, these approaches require a large number of model realizations in order to

provide reliable response statistics and can easily become computationally cumbersome in the

case of nonlinear dynamic systems. To overcome this computational difficulty, approaches based

on metamodeling techniques have recently been explored for estimating the stochastic responses

of dynamic systems [141, 142, 143, 91, 102, 144, 103]. In particular, researchers have recently

developed a promising metamodeling approach base on the use of nonlinear autoregressive with

exogenous input (NARX) models [99, 102]. This approach has been successfully applied to various

nonlinear single-degree-of-freedom (SDOF) systems. While this approach has been further applied

to multi-degree-of-freedom (MDOF) systems [99, 101], difficulties in calibration and accuracy have

been observed [101]. It should also be noted that, even in the case of MDOF systems, the approach

is based on a single-input single-output (SISO) formulation. Therefore, a separate metamodel is

required for each output of a MDOF system. These limitations create the need for alternative

metamodeling approaches for MDOF nonlinear dynamic systems.

To effectively evaluate the response of MDOF nonlinear structures subject to stochas-

tic excitations, methods based on model order reduction (MOR) have been investigated

[145, 146, 147, 148, 39, 149, 150]. The basic idea of these approaches is to represent the full

system in a nonlinear reduced order subspace that preserves, with sufficient accuracy, the main

dynamic behavior of the system. The possibility of combining MOR with metamodeling for repli-

cating the behavior of nonlinear MDOF systems was recently investigated in [105]. Despite the

capability of efficiently replicating the time evolution of the system, the approach outlined in [105]
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can only be applied to a special class of nonlinear system with limited and concentrated sources

of nonlinearity. The limitations of the approach lie in the use of a normal mode MOR, difficulties

associated with identifying appropriate NARX models that do not have spurious model terms, and

in the inability to capture response coupling between the coordinates of the reduced space.

To address these limitations, this chapter proposes an advanced metamodeling approach for a

more general class of MDOF systems. The approach is based on combining a proper orthogo-

nal decomposition (POD) based model order reduction and a multi-input multi-output (MIMO)

NARX model. In particular, the POD model order reduction converts the original system into a

low-dimensional space, while the MIMO NARX model captures the dynamics of the reduced order

system, including any coupling between the reduced coordinates. To calibrate the metamodel, a

non-intrusive least angle regression with pruning (LARP) scheme is developed for model structure

identification and an ordinary least square (OLS) method is implemented for coefficient determi-

nation. A case study consisting in a nonlinear steel frame subject to non-stationary stochastic

earthquake excitation is presented to illustrate the efficiency and practicability of the proposed

approach.

3.3 Problem Definition

A general 𝑛-dimensional MDOF dynamic structural system driven by stochastic excitation can be

modeled through a mapping,M(·) : R𝑛 × T ↦→ R𝑛 × T , between the spaces of the stochastic input

and output as:

M(¥𝒙(𝑡), ¤𝒙(𝑡), 𝒙(𝑡)) = 𝒇 (𝑡), 𝑡 ∈ T (3.1)

where ¥𝒙(𝑡), ¤𝒙(𝑡), 𝒙(𝑡) ∈ R𝑛 × T are the stochastic acceleration, velocity, and displacement output

vectors while 𝒇 (𝑡) ∈ R𝑛 × T is the input stochastic excitation vector.

To model the stochastic input, it is generally convenient to consider a probability space (Ω,B, P)

defined by a sample spaceΩ, the𝜎-algebraB onΩ, and the probability measure P. The stochasticity

of the excitation 𝒇 (𝑡) can then be described by a vector random process {𝒘 : 𝒘(𝑡) ∈ Ω, 𝑡 ∈ T },
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under the influence of which the excitation becomes 𝒇 (𝒘, 𝑡). The focus of this work is to define a

computationally tractable approach based on advanced metamodeling techniques for propagating

the uncertainty in 𝒇 (𝒘, 𝑡) through the systemM whenM is nonlinear.

3.4 The Proposed Approach

This section outlines the proposed metamodeling approach together with a non-intrusive training

scheme. The metamodeling approach combines a proper orthogonal decomposition-based model

order reduction (POD-MOR) and MIMO NARX, which respectively extracts the underlying low-

dimensional reduced-order model from the general system (Eq. 3.1) and captures the dynamics of

the reduced-order model. In particular, the key step in the metamodeling approach is MIMO NARX

training, which entails MIMO NARX structure determination and coefficient estimation. A least

angle regression with pruning (LARP) scheme is proposed in this work for structure determination,

while an ordinary least square (OLS) method is implemented for estimating the coefficients.

3.4.1 Model order reduction

Most structural systems of practical interest have a large number of DOFs, which not only increases

the computational effort required for estimating structural responses but causes difficulties in

applying metamodeling techniques to represent the system [99, 105]. To overcome this issue,

a MOR is used in this work for reducing the order of the system. This approach is based on

approximating the response of the system through the following transformation:

𝒙(𝑡) ≈ 𝚽𝑛r𝒒(𝑡) (3.2)

where 𝚽𝑛r is an appropriate 𝑛 × 𝑛r coordinate transformation matrix with 𝑛r ≪ 𝑛, while 𝒒(𝑡) ∈

R𝑛r × T is the response vector in the reduced space. From the above transformation, Eq. (3.1) can
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be written in the following 𝑛r-dimensional reduced-order form:

𝚽T
𝑛rM(𝚽𝑛r ¥𝒒(𝑡),𝚽𝑛r ¤𝒒(𝑡),𝚽𝑛r𝒒(𝑡)) = 𝒑(𝑡; 𝒘). (3.3)

where 𝒑(𝑡; 𝒘) = 𝚽T
𝑛r 𝒇 (𝑡; 𝒘) ∈ R

𝑛r × T is the excitation in the reduced space. For simplicity,

𝒑(𝑡; 𝒘) will be denoted in the following as 𝒑(𝑡).

In this work, the coordinates transformation matrix, 𝚽𝑛r ∈ R𝑛×𝑛r , is obtained through proper

orthogonal decomposition (POD), an unsupervised learning approach that extracts principal com-

ponents, or basis functions, from a set of known data [151]. To this end, various approaches

have been proposed including, the method of Lagrangian multipliers [152], eigen-decomposition

[153, 152], and singular value decomposition (SVD) [153, 152]. In general, the most widely used

approach is SVD and is also adopted in this work. To apply this approach to the problems of interest

to this work, it is first necessary to directly evaluate the full system of Eq. (3.1) for 𝑛s samples of the

stochastic excitation 𝒇 (𝒘𝑖, 𝑡). From the output of Eq. (3.1), the following discrete time snapshot

matrix can be defined:

𝑿 = [𝒙1(𝑡1), ..., 𝒙1(𝑡𝑛𝑡 ), ..., 𝒙𝑛𝑠 (𝑡1), ..., 𝒙𝑛𝑠 (𝑡𝑛𝑡 )], 𝑿 ∈ R𝑛×𝑛𝑡𝑛𝑠 (3.4)

where 𝑛𝑡 is the total number of discrete time steps, i.e. snapshots, considered for each of the 𝑛s

samples. In general, 𝑛𝑡 can be taken as a subset of the total number of time steps evaluated in solving

Eq. (3.1). In generating 𝑿, it is important to ensure that the snapshots, i.e. 𝒙𝑖 (𝑡 𝑗 ) for 𝑖 = 1, ..., 𝑛𝑠

and 𝑗 = 1, ..., 𝑛𝑡 , are capable of capturing not only the nonlinear behavior of the system, but also

the stochasticity of the excitation. The snapshot matrix, 𝑿, can then be decomposed through SVD

as [151]:

𝑿 = 𝑼𝚲𝑽T (3.5)

where𝑼 is a 𝑛×𝑛 orthonormal matrix containing the left singular vectors of 𝑿,𝑽 is the (𝑛𝑠𝑛𝑡)×(𝑛𝑠𝑛𝑡)

orthonormal matrix of the corresponding right singular vectors, while 𝚲 is a 𝑛 × (𝑛𝑠𝑛𝑡) pseudo-
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diagonal matrix containing the singular values with Λ( 𝑗 , 𝑗) = _ 𝑗 ∈ R+ the 𝑗 th largest singular

value for 𝑗 = 1, 2, ..., 𝑛. In general, the size of 𝑽 is extremely large as 𝑛𝑠𝑛𝑡 ≫ 𝑛. Hence, a more

computationally effective economy-size SVD is adopted in this work, in which only the first 𝑛

columns of 𝑽 and the first 𝑛 singular values are estimated. As outlined in [153, 152], the left

singular vectors, 𝑼, are the POD modes.

In defining the coordinates transformation matrix, 𝚽𝑛r , for the reduced-order system, the first

𝑛r POD modes, and so columns of 𝑼, are considered, i.e., 𝚽𝑛r = [𝑼1,𝑼2, ...,𝑼𝑛r]. In terms of the

snapshot matrix 𝑿, this corresponds to the following approximation:

𝑿 ≈ 𝚽𝑛r𝚲Trunc𝑽
T
Trunc + 𝝐𝑿 (3.6)

where 𝚲Trunc is the diagonal matrix of the first 𝑛𝑟 singular values, 𝑽Trunc is the first 𝑛𝑟 columns

of 𝑽; while 𝝐𝑿 is the error process given tr(𝝐𝑿𝝐T
𝑿) =

∑𝑛
𝑗=𝑛r+1 _

2
𝑗

[152]. As a trade-off between

accuracy and computational efficiency, 𝑛r can be chosen by ensuring the energy captured in the

truncated representation of 𝑿,
∑𝑛r
𝑗=1 _

2
𝑗
, is not less than [ of the total energy, tr(𝑿𝑿T) = ∑𝑛

𝑗=1 _
2
𝑗
,

i.e.,
∑𝑛r
𝑗=1 _

2
𝑗
≥ [∑𝑛

𝑗=1 _
2
𝑗
, where [ is typically assumed to be close to 1, e.g., 0.99 [154]. A properly

chosen [ can bring significant dimensional reduction to the system, leading to a considerable

reduction in dimensions from Eq. (3.1) to Eq. (3.3), i.e. 𝑛𝑟 ≪ 𝑛.

3.4.2 The MIMO NARX metamodel

3.4.3 Overview

Despite the computational savings gained through model order reduction, Eq. (3.3) is still a coupled

nonlinear dynamic equation that must be solved through computationally intensive numerical

integration schemes, e.g. Newmark or Runge-Kutta methods. It should also be observed that, in

general, the nonlinear model, M, still requires evaluation in the full space at each time step. In

other words, the computational gains associated with directly integrating the reduced system of

Eq. (3.3), are related mainly to the possibility of choosing a much larger time step as compared to
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that used in integrating the full system. To overcome this computational barrier, the idea that will

be explored in this work is to develop a non-intrusive metamodel, based on MIMO NARX, of the

reduced space that, once calibrated, does not require the evaluation of the full model at each time

step.

Under the assumption that the current output, 𝑞(𝑡𝑖), of a nonlinear single-degree-of-freedom

dynamic system depends on its past output values, [𝑞(𝑡𝑖−Δ𝑡), ..., 𝑞(𝑡𝑖−𝑛𝑞Δ𝑡)] with 𝑛𝑞 the maximum

output lag and Δ𝑡 the time step size, and current and past load inputs, [𝑝(𝑡𝑖), 𝑝(𝑡𝑖 − Δ𝑡), ..., 𝑝(𝑡𝑖 −

𝑛 𝑓Δ𝑡)] with 𝑛 𝑓 the maximum load lag, the nonlinear dynamic behavior of the system can be

captured through the following NARX model:

𝑞(𝑡𝑖) = 𝐺 (𝑝(𝑡𝑖), 𝑝(𝑡𝑖 − Δ𝑡), ..., 𝑝(𝑡𝑖 − 𝑛 𝑓Δ𝑡), 𝑞(𝑡𝑖 − Δ𝑡), ..., 𝑞(𝑡𝑖 − 𝑛𝑞Δ𝑡)) + 𝜖 (𝑡𝑖) (3.7)

where 𝐺 (·) : R𝑛 𝑓 +𝑛𝑞+1 ↦→ R is the mapping from the recent inputs and outputs to the current

output, and {𝜖 : 𝜖 (𝑡𝑖) ∼ N (0, 𝜎2
𝜖 (𝑡𝑖))} is the error process which is generally assumed as a Gaussian

process [155]. Under the assumption that the dependence between the coordinates, 𝒒(𝑡), of the

reduced space is negligible, SISO NARX models can be applied to MDOF systems [105]. This

model, however, is incapable of capturing the inevitable response coupling between the reduced

coordinates for general nonlinearity. To overcome this limitation, the possibility of applying a

MIMO NARX [156] strategy is explored in this work as a means to capture nonlinear and coupled

dynamic behavior of Eq. (3.3). The general form of the MIMO NARX model is:

𝒒(𝑡𝑖) = 𝑮 (𝒛(𝑡𝑖)) + 𝝐 (𝑡𝑖) (3.8)

where 𝑮 (·) : R(𝑛 𝑓 +𝑛𝑞+1)𝑛r ↦→ R𝑛r is the MIMO NARX model to be identified, 𝒛(𝑡𝑖) =

[ 𝒑T(𝑡𝑖), 𝒑T(𝑡𝑖 − Δ𝑡), ..., 𝒑T(𝑡𝑖 − 𝑛 𝑓Δ𝑡), 𝒒T(𝑡𝑖 − Δ𝑡), ..., 𝒒T(𝑡𝑖 − 𝑛𝑞Δ𝑡)] is the regression vector of

current and past input and output values, and 𝝐 : 𝝐 (𝑡𝑖) ∼ N (0,𝚺𝝐 (𝑡𝑖)) is a vector-valued Gaussian

error process.

A common structure for 𝑮 (·), and that will be considered in this work, is the following linear-
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in-the-parameter form:

𝒒(𝑡𝑖) = 𝚯T𝒈(𝒛(𝑡𝑖)) + 𝝐 (𝑡𝑖) (3.9)

where 𝒈(·) = [𝒈T
1 (·), 𝒈

T
2 (·), ..., 𝒈

T
𝑛r (·)]

T is the vector collecting all 𝑛𝑟 NARX model terms 𝒈 𝑗 (·),

in which 𝒈 𝑗 (·) : R(𝑛 𝑓 +𝑛𝑞+1)𝑛r ↦→ R𝑙 𝑗 is a 𝑙 𝑗 -dimensional function of the regression vector 𝒛(𝑡) for

the 𝑗 th reduced coordinate; while 𝚯 = diag[𝚯1, · · · ,𝚯𝑛𝑟 ] is a block-diagonal matrix collecting the

NARX coefficients of the 𝑛𝑟 DOFs of the reduced system.

3.4.4 The LARP scheme

3.4.4.1 Model identification

In general, the identification of the MIMO NARX metamodel entails structure determination, i.e.

selecting NARX terms, and coefficient calibration. An efficient approach based on implementing

the least angle regression (LARs) algorithm for structure determination and the ordinary least square

(OLS) method for coefficient calibration has been proposed for identifying the NARX model of

SISO systems [102]. In this work, the basic idea underpinning this approach is extended for the

identification of the MIMO NARX model of Eq. (3.9). To this end, consider the following form for

the 𝑗 th reduced coordinate:

𝑞 𝑗 (𝑡𝑖) = 𝚯T
𝑗 𝒈 𝑗 (𝒛(𝑡𝑖)) + 𝜖 𝑗 (𝑡𝑖) (3.10)

The first step towards calibrating the MIMO NARX model is to obtain a set of potential NARX

terms/features 𝒈p
𝑗
(𝒛(𝑡)) for each reduced coordinate based on a pre-designated form of basis function

(e.g. polynomial [155], rational [157], wavelet [158], neural network [157]), and maximum time

delays 𝑛 𝑓 and 𝑛𝑞. The potential NARX feature matrix 𝒁
p
𝑗

of the 𝑗 th reduced coordinate can then
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be written in the following discrete form:

𝒁
p
𝑗
=



𝒈
p
𝑗
(𝒛(𝑡1))T

𝒈
p
𝑗
(𝒛(𝑡2))T

...

𝒈
p
𝑗
(𝒛(𝑡𝑛𝑡 ))T


(3.11)

where 𝑡1, 𝑡2, ..., 𝑡𝑖, ..., 𝑡𝑛𝑡 is the discrete time sequence while 𝒈
p
𝑗
(𝒛(𝑡𝑖)) contains 𝑙𝑠 ≥ 𝑙 𝑗 potential

NARX features. It is important to note that the regression vector 𝒛(𝑡𝑖) of the MIMO NARX model

contains input and output values from all reduced coordinates, in contrast to the SISO NARX

model, where only terms of the 𝑗 th reduced coordinate are considered. This enables the coupling

between the reduced coordinates to be captured.

The LARs algorithm [159] can then be employed to select the most relevant NARX features in

𝒁
p
𝑗

by computing the correlation of each potential model term to the system output [156], leading

to a candidate NARX model term that contains a subset of the potential NARX features. By

simulating over 𝑛s samples, a total of 𝑛c, 𝑗 , where 𝑛c, 𝑗 ≤ 𝑛s, unique candidate model terms will be

identified for the 𝑗 th reduced coordinate of the system. For the 𝑘th identified candidate model,

the corresponding NARX coefficients can then be estimated by the following OLS method that

minimizes the one-step-ahead prediction error:

𝚯 𝑗 ,𝑘 = arg min
Θ 𝑗 ,𝑘

𝑒PE, 𝑗 ,𝑘 = [𝒁T
𝑗 ,𝑘𝒁 𝑗 ,𝑘 ]−1𝒁T

𝑗 ,𝑘𝑸
T
𝑗 (3.12)

where 𝒁 𝑗 ,𝑘 for 𝑘 = 1, 2, ..., 𝑛c, 𝑗 is the candidate feature matrix of the 𝑘th candidate model, while

𝑸 𝑗 is the response of the 𝑗 th reduced coordinate. The prediction error 𝑒PE, 𝑗 ,𝑘 can be defined as

[105, 102]:

𝑒PE, 𝑗 ,𝑘 =

𝑸T
𝑗 − 𝒁 𝑗 ,𝑘𝚯 𝑗 ,𝑘

2𝑸T
𝑗 − 𝜾E𝑡 [𝑸 𝑗 ]

2 (3.13)

where 𝜾 is a all-ones vector, while E𝑡 [𝑸 𝑗 ] is the expected value (in a time average sense) of the
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response time series 𝑸 𝑗 . The prediction error 𝑒PE, 𝑗 ,𝑘 measures one-step-ahead error, i.e. the

error of the current output given that 𝒛(𝑡), or the recent outputs and inputs, are perfectly accurate

(one-step-ahead prediction).

Once the candidate NARX model terms and the associated coefficients are determined, the next

step is to select the most appropriate MIMO NARX model from the candidates for representing

the system of interest. An appropriate error measure must be defined to this end. Since the goal of

metamodeling is to reproduce the whole time history with only inputs and a few initial conditions,

the MIMO NARX model must run recursively to generate the entire time history. The prediction

error criterion, however, is incapable of taking into account error accumulation during the recursive

process, making it unsuitable for model selection to be used defining metamodels. To avoid such

issues, the simulation error criterion can be employed to estimate the error produced by recursively

running the model. This approach, nevertheless, requires NARX models of all reduced coordinates

to run simultaneously. Given that each reduced coordinate has 𝑛c, 𝑗 candidate NARX models, the

total number of candidate MIMO NARX models,
∏𝑛r

𝑗=1 𝑛c, 𝑗 , can become extremely large. In this

work, it is proposed to overcome this issue by decoupling the identification of the NARX models

for each reduced coordinate. This is achieved by considering the following form for the NARX

model of the 𝑗 th reduced coordinate during identification:

𝑞 𝑗 ,𝑘 (𝑡𝑖) = 𝚯T
𝑗 ,𝑘 𝒈 𝑗 ,𝑘 ( �̃�(𝑡𝑖)) (3.14)

where �̃�(𝑡𝑖) is the following modified regression vector:

�̃�(𝑡𝑖) = [ 𝒑T(𝑡𝑖), 𝒑T(𝑡𝑖 − Δ𝑡), ..., 𝒑T(𝑡𝑖 − 𝑛 𝑓Δ𝑡),

𝑞1(𝑡𝑖 − Δ𝑡), ..., 𝑞 𝑗−1(𝑡𝑖 − Δ𝑡), 𝑞 𝑗 ,𝑘 (𝑡𝑖 − Δ𝑡), 𝑞 𝑗+1(𝑡𝑖 − Δ𝑡), ..., 𝑞𝑛r (𝑡𝑖 − Δ𝑡),

...,

𝑞1(𝑡𝑖 − 𝑛𝑞Δ𝑡), ..., 𝑞 𝑗−1(𝑡𝑖 − 𝑛𝑞Δ𝑡), 𝑞 𝑗 ,𝑘 (𝑡𝑖 − 𝑛𝑞Δ𝑡), 𝑞 𝑗+1(𝑡𝑖 − 𝑛𝑞Δ𝑡), ..., 𝑞𝑛r (𝑡𝑖 − 𝑛𝑞Δ𝑡)]
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in which only the responses of the 𝑗 th reduced coordinate, 𝑞 𝑗 ,𝑘 (𝑡𝑖 − Δ𝑡), ..., 𝑞 𝑗 ,𝑘 (𝑡𝑖 − 𝑛𝑞Δ𝑡), are

estimated from the MIMO NARX model. The responses of all other reduced coordinates are directly

obtained from the high-fidelity data therefore decoupling the identification of the 𝑗 th NARX model

from the identification of the other NARX models without losing the effects of reduced coordinate

interdependence. The corresponding error measure 𝑒SE, 𝑗 ,𝑘 is defined as:

𝑒SE, 𝑗 ,𝑘 =

𝑸 𝑗 − �̃� 𝑗 ,𝑘

2𝑸T
𝑗 − 𝜾E𝑡 [𝑸 𝑗 ]

2 (3.15)

where �̃� 𝑗 ,𝑘 = [𝑞 𝑗 ,𝑘 (𝑡1), 𝑞 𝑗 ,𝑘 (𝑡2), ..., 𝑞 𝑗 ,𝑘 (𝑡𝑛𝑡 )]. By simulating over 𝑛𝑠 samples, the accuracy of

the 𝑘th candidate model can be measured by the expected error measure, ¯̃𝑒SE, 𝑗 ,𝑘 , from which the

optimal NARX model can be determined.

In selecting the optimal NARX model, a simpler model with less terms are generally preferred

as spurious NARX terms and features have been found to not only cause deleterious effects on the

accuracy of the model, e.g. over-fitting, but also induce spurious dynamics [160, 161, 102]. The

optimal model, i.e. model terms 𝒈 𝑗 (·) and associated coefficients 𝚯 𝑗 , is therefore chosen as the

NARX model with the least number of NARX terms that achieves a sufficiently small overall error,

i.e. ¯̃𝑒SE, 𝑗 ,𝑘 ≤ �̃� , where �̃� is a predefined threshold value. The aforementioned process is then

carried out for each reduced coordinate over all samples. The final MIMO NARX metamodel is

given by:

�̂�(𝑡) = �̄�
T
𝒈( �̂�(𝑡)) (3.16)

where �̂�(𝑡) = [ 𝒑T(𝑡), 𝒑T(𝑡 − Δ𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓Δ𝑡), �̂�(𝑡 − Δ𝑡)T, ..., �̂�(𝑡 − 𝑛𝑞Δ𝑡)T] in which output

feedback from all reduced coordinates is considered, and �̄� is the expected value of 𝚯 over all 𝑛𝑠

samples.
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3.4.4.2 Model refinement

The MIMO NARX model of Eq. (3.16), however, can still include spurious NARX terms even

though the simplest model is selected. This problem originates from the LARs approach, which

selects candidate terms based on correlation analysis that is not necessarily a reflection of the

contribution of a term to the model [161]. To address this issue, an iterative simulation error based

pruning procedure [161] is introduced in this work to identify and remove the spurious NARX

terms. In particular, starting from the model of Eq. (3.16), the procedure progressively identifies

and deletes the most deleterious NARX term at each iteration until an predefined error tolerance

is met. Within each iteration, a set of trial models is first generated, with each of them obtained

by removing one unique term from the current MIMO NARX model, and then compared with

the current model. The coefficients associated with each trial model are estimated by the OLS

approach. To assess the performance of trial models, a MIMO NARX simulation error measure is

defined for a user-defined DOF of interest, as follows:

𝑒𝑆𝐸,𝑚 =

𝑿𝑚 −𝚽𝑚
𝑛r�̂�

2

∥𝑿𝑚 − 𝜾E[𝑿𝑚] ∥2
(3.17)

where 𝑚 is the DOF of interest, 𝑿𝑚 is the 𝑚th row of the snapshot matrix 𝑿 of Eq. (3.4) (i.e. the

response of the 𝑚th DOF), 𝚽𝑚
𝑛r is the 𝑚th row of 𝚽𝑛r , �̂� = [�̂�(𝑡1), �̂�(𝑡2), ..., �̂�(𝑡𝑛𝑡 )]. The error

describes the goodness of the MIMO NARX model in reproducing the response of the 𝑚th DOF in

the physical/full space. The performance of the current MIMO NARX model in each iteration can

be evaluated by taking the expectation over all training samples, ¯̂𝑒𝑆𝐸,𝑚. Similarly, the error measure

for each trial model can be calculated from the expectation over all samples, denoted as ¯̂𝑒′
𝑆𝐸,𝑚

. The

deleterious effect of removing each term is then evaluated by calculating the error increase of each

trial model against the current MIMO NARX model i.e. ¯̂𝑒′
𝑆𝐸,𝑚
− ¯̂𝑒𝑆𝐸,𝑚. Within each iteration, the

current MIMO NARX model is then replaced by the optimal trial model with min{ ¯̂𝑒′
𝑆𝐸,𝑚
− ¯̂𝑒𝑆𝐸,𝑚}.

The pruning process then proceeds to the next iteration with the new MIMO NARX model serving

as the current model and reevaluates until a user-defined error change threshold �̂� is satisfied, i.e.,
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¯̂𝑒′
𝑆𝐸,𝑚
− ¯̂𝑒𝑆𝐸,𝑚 ≥ �̂� .

3.4.4.3 The algorithm and overall procedure

The LARP algorithm of this section is outlined in Algorithm 1. The data flow associated with the

algorithm is schematically illustrated in Fig. 3.1(a), while in Fig. 3.1(b) a flowchart illustrates the

three main phases of the algorithm, which can be summarized as follows:

• Phase 1: Data collection and model order reduction

– Generate 𝑛s samples of the stochastic excitation 𝒇 (𝒘𝑖, 𝑡), solve Eq. (3.1) for the high-

fidelity response samples, and define the snapshot matrix 𝑿.

– Estimate the coordinate transformation matrix 𝚽𝑛r through SVD on 𝑿. Solve the

reduced-order model of Eq. (3.3) therefore defining 𝑛s reduced-order input 𝑷𝑖 and

output 𝑸𝑖 samples.

• Phase 2: LARs based MIMO NARX training

– For each reduced coordinate, propose a set of potential NARX terms (e.g. polynomial,

rational, wavelet, neural network). Loop over all training samples to identify the most

relevant NARX terms via the LARs algorithm, and estimate the NARX coefficients by

OLS. Keep the 𝑛c, 𝑗 unique candidate NARX models over all samples.

– Estimate the error measure ¯̃𝑒SE, 𝑗 ,𝑘 for all candidate NARX models of Eq. (3.14). Keep

the most appropriate NARX models, in the sense of both accuracy and simplicity, and

define the MIMO NARX model.

• Phase 3: MIMO NARX pruning

– Apply the simulation error based pruning procedure to identify and remove the un-

necessary terms from the MIMO NARX iteratively, therefore defining the final MIMO

NARX metamodel.
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Figure 3.1: Schematic illustration of the proposed approach: (a) data flow; (b) flow chart.
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Algorithm 1: Least angle regression with pruning algorithm
Data: 𝑸𝑖 , 𝑷𝑖 for 𝑖 = 1, 2, ..., 𝑛s, 𝚽𝑛r

Result: �̂�, �̄�
// I.1 LARs to identify relevant features
Set errors threshold �̃� and user defined DOF 𝑚;
for 𝑗 ← 1 to 𝑛r do

for 𝑖 ← 1 to 𝑛s do
Construct 𝒁p

𝑖, 𝑗
by Eq. (3.11);

LARs [159] select relevant features (column indices 𝒓𝑖, 𝑗);
if 𝒓i,j is unique then

𝒓 𝑗 ,𝑘 ← 𝒓𝑖, 𝑗 ;
𝒁𝑖, 𝑗 ,𝑘 ← 𝒁

p
𝑖, 𝑗
(:, 𝒓𝑖,𝑘);

end
end
// I.2 Select the NARX model
for 𝑗 ← 1 to 𝑛r do

for 𝑘 ← 1 to �̃�c( 𝑗) do
for 𝑖 ← 1 to 𝑛s do

𝚯𝑖, 𝑗 ,𝑘 ← [𝒁T
𝑖, 𝑗 ,𝑘

𝒁𝑖, 𝑗 ,𝑘]−1𝒁T
𝑖, 𝑗 ,𝑘

𝑸T
𝑖, 𝑗 ; // Eq. 3.12

for 𝑡 ← 𝑡0 to 𝑡final do
�̃� 𝑗 ← 𝒈 𝑗 ( [ 𝒑T(𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓Δ𝑡), 𝑞1(𝑡 − Δ𝑡), ..., �̃�𝑖, 𝑗 ,𝑘 (𝑡 − Δ𝑡), ..., 𝑞𝑛r (𝑡 − Δ𝑡),
..., 𝑞1(𝑡 − 𝑛𝑞Δ𝑡), ..., �̃�𝑖, 𝑗 ,𝑘 (𝑡 − 𝑛𝑞Δ𝑡), ..., 𝑞𝑛r (𝑡 − 𝑛𝑞Δ𝑡)]);

�̃�𝑖, 𝑗 ,𝑘 (𝑡) ← 𝚯T
𝑗 �̃� 𝑗 (𝒓 𝑗 ,𝑘); // Eq. 3.14

end
�̃�𝑆𝐸 (𝑖, 𝑗 , 𝑘) ←

�̃�𝑖, 𝑗 − �̃�𝑖, 𝑗 ,𝑘

 /�̃�𝑖, 𝑗 − 𝜾E[�̃�𝑖, 𝑗]
; // Eq. 3.15

end
¯̃𝒆𝑆𝐸 ( 𝑗 , 𝑘) ← E𝑖 [�̃�𝑆𝐸 (𝑖, 𝑗 , 𝑘)];

end
𝑘opt, 𝑗 ← arg min𝑘∈{𝑘: ¯̃𝒆𝑆𝐸 ( 𝑗 ,𝑘 )≥�̃� }cardinality(𝒓 𝑗 ,𝑘); // Accurate & simplest

end
�̄�opt ← diag{E𝑖 [𝚯𝑖,1,𝑘opt,1] ...E𝑖 [𝚯𝑖,𝑛r,𝑘opt,𝑛r ]};
Collect 𝒓 𝑗 ,𝑘opt, 𝑗 +

∑ 𝑗−1
𝑗 𝑗=1 𝑙 𝑗 𝑗 for all 𝑗 into �̂�;

// I.3 Run the NARX model over the training data set
for 𝑖 ← 1 to 𝑛s do

for 𝑡 ← 𝑡0 to 𝑡final do
�̂� = 𝒈( [ 𝒑T(𝑡), 𝒑T(𝑡 − Δ𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓Δ𝑡), �̂�𝑖 (𝑡 − Δ𝑡)T, ..., �̂�𝑖 (𝑡 − 𝑛𝑞Δ𝑡)T]);
�̂�𝑖 (𝑡) ← �̄�

T
opt �̂�( �̂�); // Eq.3.16

end
�̂�𝑆𝐸,𝑚(𝑖) ←

𝑿𝑖,𝑚 −𝚽𝑚
𝑛r�̂�𝑖

2 /
𝑿𝑖,𝑚 − 𝜾E[𝑿𝑖,𝑚]

2; // Eq. 3.17
end
¯̂𝒆𝑆𝐸,𝑚 = E𝑖 [�̂�𝑆𝐸,𝑚]; // The error of the NARX model
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// II. Pruning phase

Set error threshold �̂� ∈ R;
while ¯̂𝑒′

𝑆𝐸, 𝑗
− ¯̂𝑒𝑆𝐸, 𝑗 ≤ �̂� do

for 𝑖term ← 1 to cardinality( �̂�) do
�̂�′ ← �̂� \ �̂� (𝑖term); // Remove 𝑖termth term
for 𝑗 ← 1 to 𝑛r do

for 𝑖 ← 1 to 𝑛s do
𝚯′𝑖, 𝑗 ← [𝒁T(:, �̂�′)𝒁(:, �̂�′)]−1𝒁T(:, �̂�′)𝑸T

𝑖, 𝑗 ;
end

end
�̄�𝑖term ← diag{E𝑖 [𝚯′𝑖,1] ... E𝑖 [𝚯

′
𝑖,𝑛r
]};

for 𝑖 ← 1 to 𝑛s do
for 𝑡 ← 𝑡0 to 𝑡final do

�̂� ← 𝒈( [ 𝒑T(𝑡), ..., 𝒑T(𝑡 − 𝑛 𝑓Δ𝑡), �̂�(𝑡 − Δ𝑡)T, ..., �̂�(𝑡 − 𝑛𝑞Δ𝑡)T]);
�̂�
′
𝑖 (𝑡) ← �̄�

T
𝑖term �̂�( �̂�

′);
end

�̂�′𝑆𝐸,𝑚(𝑖) ←
𝑿𝑖,𝑚 −𝚽𝑚

𝑛r�̂�
′
𝑖

2
/
𝑿𝑖,𝑚 − 𝜾E[𝑿𝑖,𝑚]

2;
end
¯̂𝒆′
𝑆𝐸,𝑚
(𝑖term) = E𝑖 [�̂�′𝑆𝐸,𝑚];

end
if min( ¯̂𝒆′

𝑆𝐸,𝑚
) − ¯̂𝑒𝑆𝐸,𝑚 ≤ �̂� then

𝑖delete ← the index of min( ¯̂𝒆′
𝑆𝐸,𝑚
) in ¯̂𝒆′

𝑆𝐸,𝑚
;

�̂� ← �̂� \ �̂� (𝑖delete);
�̄� = �̄�𝑖delete ;
¯̂𝑒𝑆𝐸,𝑚 ← ¯̂𝒆′

𝑆𝐸,𝑚
(𝑖delete)

end

3.5 Case Study

In this section, the proposed metamodeling approach is illustrated on the 2D steel frame of Fig. 3.2

that was extracted from the archetype structure outlined in [162]. The inter-story heights are 6.1 m

for the 1st floor and 3.9 m for the others, leading to a total height of 154.7 m. The influence width

of the frame is taken as 12.2 m. The steel frame consists of AISC (American Institute of Steel

Construction) wide flange beams with 6.1 m spans and square box columns. Table 3.1 reports a

summary of the section sizes used in defining the frame, as suggested in [162]. In addition to the

self-weight of the structure, a carried weight of 13.53ℎ 𝑗 [kN/m2], where ℎ 𝑗 is the story height, was

considered for each floor.
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Level 40
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0 m
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(a) (b)

Figure 3.2: Case study steel frame: (a) schematic of the frame layout; (b) shear building idealization.

Table 3.1: Element sections used in the steel frame.

Floors Beams Interior columns Exterior columns
1 W36×282 66 × 7.6 66 × 6.4
2-10 W36×282 56 × 7.6 51 × 6.4
11-20 W36×194 51 × 5.0 51 × 5.0
21-30 W33×169 46 × 2.5 46 × 2.5
31-40 W27×84 46 × 1.9 46 × 1.9
Columns sections: (outer side size)×(wall thickness)
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3.5.1 Structure and earthquake modeling

The structure was considered as a shear building model, where the mass at each floor was assumed

to be lumped at its center and was directly calculated from the corresponding self and carried

weight. The inherent damping was modeled as Rayleigh damping, with damping ratios of the 1st

and 2nd modes equal to 1.5%. The nonlinearity was lumped at each floor and modeled by the

following Bouc-Wen model:


𝑴 ¥𝒙(𝑡) + 𝑪 ¤𝒙(𝑡) + 𝑩T𝑲𝒚(𝑡) = 𝑴𝜾 ¥̂𝑤(𝑤, 𝑡)

¤𝒚(𝑡) = 𝑩 ¤𝒙(𝑡) − 𝛼 |𝑩 ¤𝒙(𝑡) | ◦ 𝒚(𝑡)
(3.18)

where 𝑴 and 𝑪 are the 𝑛×𝑛mass and damping matrices of the system; 𝑲 is a diagonal 𝑛×𝑛matrix

collecting the lateral stiffness at each floor; 𝜾 is a 𝑛×1 vector of ones; ¥̂𝑤(𝑤, 𝑡) is the base acceleration

with stochasticity defined by the white noise process {𝑤 : 𝑤(𝑡) ∼ i.i.d. N(0, 1), 𝑡 ∈ [𝑡0, 𝑡final]};

𝒚 and ¤𝒚(𝑡) are the non-observable hysteretic parameter and its first derivative; 𝑩 is the global

displacements to inter-story drifts transformation matrix; |·|, ◦ are element-wise absolute value and

multiplication; and 𝛼 is a Bouc-Wen nonlinearity parameter taken as 10. In particular, the choice

of 𝛼 = 10 was made so as to produce a nonlinear response similar to that reported in [162] from

which the frame was extracted.

The structure was assumed to be located in downtown San Francisco with subsurface ground

conditions consistent with Site Class D [137] and subjected to a 10% exceedance probability in

50 years ground motion hazard [162]. Synthetic ground motions were generated from the model

proposed by [163] with target spectrum constructed from the USGS unified hazard tool. This

model assumes that the ground motion �̃�(𝑡) is a time-modulated and filtered white noise process,

as follows:

�̃�(𝑡) = 𝐴(𝑡,𝜶) 1√︃∑𝑡final
𝜏=𝑡0

ℎ2(𝑡 − 𝜏, 𝜿(𝜏))

𝑡final∑︁
𝜏=𝑡0

[ℎ(𝑡 − 𝜏, 𝜿(𝜏))𝑤(𝜏)] (3.19)

where 𝐴(𝑡,𝜶) is a time modulating function defining the temporal characteristics; ℎ(𝑡, 𝜿(𝜏)) is the
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impulse-response function of the time-varying filter. In particular, the time modulating function,

𝐴(𝑡,𝜶), is assumed to be of the following gamma type:

𝐴(𝑡,𝜶) = 𝛼1𝑡
𝛼2−1 exp(−𝛼3𝑡) (3.20)

where 𝜶 = [𝛼1, 𝛼2, 𝛼3]; 𝛼1 ∈ R+ controls the intensity; 𝛼2 ∈ (1, +∞) controls shape; 𝛼3 ∈ R+

controls duration. These parameters are related to Arias intensity 𝐼𝑎, effective duration 𝐷5−95,

defined as the time interval between the instants in which 5%𝐼𝑎 and 95%𝐼𝑎 are reached, and the

time instant 𝑡mid when 45% of 𝐼𝑎 is reached. The impulse-response function ℎ(𝑡, 𝜿(𝜏)) of the

time-varying filter is given by:

ℎ(𝑡 − 𝜏, 𝜿(𝜏)) =


𝜔f (𝜏)√︃
1−Z2

f (𝑡)
exp[−Zf(𝜏)𝜔f(𝜏) (𝑡 − 𝜏)] sin[𝜔f(𝜏)

√︃
1 − Z2

f (𝜏) (𝑡 − 𝜏)], 𝜏 ≤ 𝑡

0, 𝜏 > 𝑡
(3.21)

where 𝜿(𝜏) = [𝜔f(𝜏), Zf(𝜏)] contains the undamped circular frequency 𝜔f(𝜏) and damping ratio

Zf(𝜏) of the filter. In this case, 𝜔f(𝜏) and Zf(𝜏) were assumed to be:

𝜔f(𝜏) = 𝜔mid + 𝜔′(𝜏 − 𝑡mid) (3.22)

Zf(𝜏) = Zf (3.23)

where the 𝜔mid is the undamped circular frequency at the time instant 𝑡mid; 𝜔′ is a constant slope

of the varying 𝜔f(𝜏).

The initial ground motion process �̃�(𝑡) is then high-pass filtered to remove unrealistic velocity

and displacement residuals [163]. The final ground motion input ¥̂𝑤(𝑡) can be obtained by

¥̂𝑤(𝑡) + 2𝜔𝑐 ¤̂𝑤(𝑡) + 2𝜔2
𝑐�̂�(𝑡) = �̃�(𝑡) (3.24)

where 𝜔𝑐 is the high-pass filter frequency, which is suggested to be 𝜔𝑐/2𝜋 = 0.1 Hz [163].
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Figure 3.3: Comparison between the target and simulated spectra.

In summary, the parameter vector 𝝃 = [𝐼𝑎, 𝐷5−95, 𝑡mid, 𝜔mid, 𝜔
′, Zf] uniquely defines the ground

motion model. Among the parameters, 𝜔mid and Zf were calibrated by the Nelder-Mead simplex

algorithm to fit the target spectrum, while all other parameters were obtained from the Loma Prieta

records (Moment magnitude = 6.93, Rupture distance = 18.3 km). The process leads to a model

setting of 𝝃 = [0.045, 12.62, 4.73, 2𝜋 × 3.27,−2𝜋 × 0.08, 0.48]. The total time duration 𝑡final − 𝑡0

was taken as 30 s with a time step of Δ𝑡 = 0.005 s. Fig. 3.3 shows the comparison between the

target spectrum and the spectra of 300 synthetic ground motions.

Under these excitations, the system experiences a significant nonlinear hysteretic behavior, as

illustrated in Fig. 3.4 for one of the ground motion samples of Fig. 3.3. Fig. 3.5 shows the peak

and residual inter-story drift ratios (IDR) for all 300 synthetic ground motions. It is seen that the

magnitude and distribution of the peak and residual IDR is similar to that reported in [162] for the

full 3D archetype building, therefore ensuring the case study of this section is representative of

practical engineering problems.

3.5.2 Model Training

A three-dimensional reduced space was considered in defining the reduced space, i.e., 𝑛r = 3, as

the corresponding sum of squares of the first 3 singular values is greater than 99.9% of the total, i.e.

[ = 0.999. Based on the identified reduced basis 𝚽𝑛r , Eq. (3.18) can be rewritten in the reduced
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Figure 3.4: Typical nonlinear restoring force at floor 1 for a representative ground motion.

Residual IDR samples

Mean residual IDR
Peak IDR samples

Mean peak IDR

Figure 3.5: Inter-story drift ratio response over all 300 synthetic ground motions.
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space as:

𝚽T
𝑛r𝑴𝚽𝑛r �̈� +𝚽T

𝑛r𝑪𝚽𝑛r ¥𝒒 +𝚽T
𝑛r𝑩

T𝑲𝑩𝚽𝑛r ¤𝒒 =

𝚽T
𝑛r𝑴𝜾 ¨̂𝑤(𝑤, 𝑡) + 𝛼𝚽T

𝑛r𝑩
T𝑲 |𝑩𝚽𝑛r ¤𝒒(𝑡) | ◦ [𝑩T𝑲]−1 [𝑴𝜾 ¥̂𝑤(𝑤, 𝑡) − 𝑴𝚽𝑛r ¥𝒒 − 𝑪𝚽𝑛r ¤𝒒]

(3.25)

The high-fidelity references solutions were determined by directly solving Eq. (3.18) and (3.25)

through the 4th order Runge-Kutta (RK) algorithm, which were then used for calibrating the

metamodel.

The MIMO NARX model was trained for representing the velocity of the reduced coordinates,

¤𝒒(𝑡), with a maximum time delay of 3 for both inputs and outputs, i.e. 𝑛 𝑓 = 𝑛𝑞 = 3. The

displacement responses, 𝒒(𝑡), are then obtained by integrating ¤𝒒(𝑡). For each reduced coordinate,

the potential NARX terms include: 1, ¤𝑞 𝑗 (𝑡−𝑙Δ𝑡), ¥̂𝑤(𝑡−𝑙Δ𝑡), |𝚽𝑚
𝑛r
¤𝒒(𝑡−Δ𝑡) |, |𝚽𝑚

𝑛r
¤𝒒(𝑡−Δ𝑡) | ¤𝑞 𝑗 (𝑡−𝑙Δ𝑡),

|𝚽𝑚
𝑛r
¤𝒒(𝑡 − Δ𝑡) | ¥̂𝑤(𝑡 − 𝑙Δ𝑡) for 𝑙, 𝑗 = 1, 2, 3, and 𝑚 = 1, 2, ..., 40, which leads to a total of 575 terms.

To investigate the convergence properties of the proposed approach, training set sizes of 𝑛s equal

to 10, 50, 100, 200, 300, and 400 were considered. In calibrating the metamodel to each training set,

an error tolerance of �̂� = −10−4 was considered. The expected simulation errors over the training

sets for roof displacement, ¯̂𝑒𝑆𝐸,40, are summarized in Table 3.2. The corresponding convergence

curves associated with ¯̂𝑒𝑆𝐸,40 are shown in Fig. 3.6 for both the three-dimensional reduced space

and the full space. As can be seen, for 𝑛s ≥ 200, the expected simulation error becomes, for

all intents and purposes, constant. It is interesting to observe how, even for small training sets

(𝑛s < 200), the proposed approach still succeeds in achieving relatively low simulation errors, e.g.

less than 0.1 in the full space. In the following, results will refer to the case of a training sample

size of 𝑛s = 300, for which the most appropriate MIMO NARX models identified by the LARP

scheme contain 209, 232, and 226 terms respectively for the three coordinates of the reduced space.

The velocity responses of the reduced coordinates estimated from the metamodel were compared

with the high-fidelity reference solutions, as shown in Fig. 3.7 for a representative sample with

median level of error. As can be seen, the metamodel reproduced the responses for all three reduced

coordinates with remarkable accuracy. Fig. 3.8(a) presents the comparison for the representative
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Table 3.2: Simulation errors associated with roof displacement and various training set sizes.

Training set size 10 50 100 200 300 400
¯̂𝑒𝑆𝐸,40 in the reduced space 0.0627 0.0436 0.0411 0.0289 0.0354 0.0369
¯̂𝑒𝑆𝐸,40 in the full space 0.0867 0.0793 0.0679 0.0624 0.0652 0.0631

Figure 3.6: Variation of the expected simulation error for the roof displacement.

sample between the reference and reproduced top floor velocity responses, ¤𝑥40(𝑡), of the system,

obtained by transforming the responses of the reduced space back to the full space. Similar to the

results seen for the reduced space, the responses reconstructed by the MIMO NARX model were

in excellent agreement with the reference solutions. In addition, a strong correspondence can be

observed between the reference and reconstructed peak velocities over all samples, as shown in

Fig. 3.8(b), indicating that a high level of accuracy was maintained over the entire training set. The

corresponding displacement responses were then obtained by integrating the velocity responses.

Fig. 3.9 reports the comparison between the reference and reconstructed displacements at the top

floor. It is noteworthy that the top floor displacement was reproduced with the same level of

accuracy as the velocity. Both the exceedance probability and peak displacements were reproduced

with excellent accuracy over the entire training set.
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(a)

(b)

(c)

Figure 3.7: Comparison between the reconstructed and reference velocity solutions in the reduced
space for a typical sample: (a) first reduced coordinate; (b) second reduced coordinate; (c) third
reduced coordinate.

(a) (b)

Figure 3.8: Comparison between the reference and reconstructed solutions in the full space: (a)
velocity responses at the top floor for a representative sample of the training set; (b) peak velocities
at the top floor over all training samples.
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(a) (b)

(c)

Figure 3.9: Comparison between the reference and reconstructed solutions in the full space: (a)
exceedance probabilities of peak displacements at the top floor; (b) peak displacements at the top
floor over all samples; (c) displacement responses at the top floor for a representative sample.
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3.5.3 Simulation Results

To investigate the performance of the trained MIMO NARX model, a new set of 300 samples,

denoted “test set” in the following, were generated to evaluate the performance of the calibrated

metamodel in simulation/prediction mode. It is important to observe that the aforementioned test

set is generated independently from the set that was considered in training the metamodel (i.e.

none of the test set samples were used in training the metamodel). This will allow the prediction

capability of the metamodeling approach to be investigated in this section, therefore providing an

initial verification of the proposed approach. The reference solutions were once again estimated

using the 4th order Runge-Kutta (RK) algorithm. In particular, reference solutions in the reduced

and full spaces were obtained. Fig. 3.10 shows the comparison between the reference and simulated

velocity responses in the reduced space for a representative test sample. It can be seen that the

accuracy of the metamodel for predicting responses maintained a similar level of accuracy as seen

in the training set (Fig. 3.7). By transforming the responses in the reduced space back to the full

space, the velocity responses shown in Fig. 3.11 were obtained. As can be seen, the trained MIMO

NARX model accurately predicted both the time history response and the peak responses over all

test samples.

To illustrate the validity of the reduced model for representing the displacements responses of

the full system, Fig. 3.12 reports the comparison of the displacements at the top floor, 𝑥40, with the

references solutions determined from the transformation of the reduced space response to the full

space. As can be seen, remarkable accuracy is seen in both the individual responses, as illustrated

in Fig. 3.12(c) for a typical sample, as well as over all samples, as illustrated in Fig. 3.12(a) that

shows the exceedance probability associated with the top floor response as well as Fig. 3.12(b)

that shows the peak displacement responses over all test samples. To illustrate the effectiveness

of the reduce model of the “Model order reduction” section, Fig. 3.13 reports the comparison

of the displacement response at the top floor obtained from the proposed metamodel with those

obtained by directly integrating the full system. As can be seen, while there is an increase in error

as compared to Fig. 3.12, the metamodel retains remarkable accuracy over all test samples.
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Overall, and without a particular optimization of the codes, the metamodel was well over an order

of magnitude more efficient than the full model while preserving a remarkable level of accuracy.

It should also be observed that the proposed metamodeling approach provides the output for all

the DOFs of the MDOF system, i.e. the response vectors 𝒙(𝑡), ¤𝒙(𝑡) and ¥𝒙(𝑡), with ¥𝒙(𝑡) derived

from the knowledge of 𝒙(𝑡) and ¤𝒙(𝑡). This property makes the proposed approach particularly well

suited for integration into probabilistic performance-based frameworks that generally require the

entire response of the system for evaluating the performance metrics. While this work illustrated

the applicability of the proposed approach to a shear type building, it is believed that the framework

can have a wide range of practical applications involving various types of nonlinearity. This

belief stems from how the POD-based model order reduction has been shown to be effective in

reducing complex nonlinear structural systems, e.g. [39], while NARX-based metamodeling of

(a)

(b)

(c)

Figure 3.10: Comparison for a representative test set sample between the simulated and reference
reduced space velocity response: (a) first reduced coordinate; (b) second reduced coordinate; (c)
third reduced coordinate.
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(a) (b)

Figure 3.11: Comparison for the test set samples between the reference and simulated velocity after
transformation to the full space: (a) velocity responses at the top floor for a representative sample
of the test set; (b) peak velocity at the top floor over all test samples.

(a) (b)

(c)

Figure 3.12: Comparison for the test set samples between the displacements at the 40th floor
estimated from the metamodel and the reference reduced model after transformation to the full
space: (a) exceedance probability; (b) peak values; (c) representative time history and overall error
evolution.
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low-dimensional nonlinear dynamic systems has shown promise for various types of nonlinearity,

e.g. [102]. These properties, together with the efficiency and accuracy shown in this section,

illustrates the strong potential of the proposed metamodeling approach.

3.6 Conclusion

This chapter proposes a metamodeling approach which combines reduced-order modeling with

multi-input multi-output nonlinear auto-regressive models with exogenous input for representing a

class of nonlinear hysteretic MDOF systems subject to general stochastic excitation. An important

property of the approach is that it enables the representation of the response of the entire system

(a) (b)

(c)

Figure 3.13: Comparison for the test set samples between the displacements at the 40th floor
estimated from the metamodel and the reference full model: (a) exceedance probability; (b) peak
values; (c) representative time history and overall error evolution.
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through a single metamodel. For calibration, a framework base on the combination of a least angle

regression algorithm with pruning scheme and an ordinary least squares approach was developed.

To demonstrate the applicability of the approach, a case study consisting in a high-dimensional

structural system with distributed hysteretic nonlinearity and subject to general stochastic earth-

quake excitations was presented. The proposed approach was seen not only to be capable of

reproducing the dynamic response of the system with remarkable accuracy, but also to be over an

order of magnitude faster than classic integration approaches. The general versatility of POD-based

reduction of nonlinear systems, coupled with the general capability of NARX-based metamodels in

capturing nonlinearity in low-dimensional spaces, points towards the applicability of the proposed

approach to various problems of practical interest with a variety of nonlinear behaviors. Future

research will focus on better understanding the true versatility of the proposed approach.
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CHAPTER 4

Nonlinear Stochastic Dynamic Response

Metamodeling through LSTM

4.1 Overview

Modern performance evaluation and design procedures for structural systems against severe natural

hazards generally require the propagation of uncertainty through the repeated evaluation of high-

dimensional nonlinear dynamic systems. This often leads to intractable computationally problems.

A potential remedy to this situation is to accelerate the evaluation of the dynamic system through

leveraging metamodeling techniques. In this chapter, deep learning is combined with a data-driven

model order reduction technique for defining a highly efficient and non-intrusive metamodeling

approach for nonlinear dynamic systems subject to general stochastic excitation. Potentially high-

dimensional building structures are reduced first through Galerkin projection by leveraging a

set of proper orthogonal decomposition basis via singular value decomposition. A long-short

term memory deep learning network is subsequently trained to mimic the mapping from the

space of the excitation to the responses of the reduced model. In addition, to accelerate the

efficiency of the network, wavelet approximations of the reduced excitation and responses are

incorporated. The potential of the metamodeling framework is illustrated through the application

to both a multi-degree-of-freedom Bouc-Wen system as well as a multi-degree-of-freedom fiber-

discretized nonlinear steel moment resisting frame. The calibrated metamodels are shown to be

over three orders of magnitude faster than state-of-the-art high-fidelity nonlinear dynamic solvers
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while preserving remarkable accuracy in reproducing both the global and local dynamic response.

4.2 Introduction

Dynamic response simulation of nonlinear multi-degree-of-freedom (MDOF) structural systems

is widely needed in the performance evaluation and design of structures against extreme natural

hazards. In practical engineering situations, the structural systems are often high-dimensional, due

to the large number of degrees of freedom (DOFs) involved, while exhibiting complex nonlinear

behavior due to damages or the presence of response mitigation devices. This can lead to significant

computational run times that become exasperated if repeated nonlinear dynamic simulation is

required, e.g., uncertainty propagation or design optimization, notwithstanding the ever-growing

computational power at the disposal of engineers. A possible solution to the issue is to accelerate

each nonlinear dynamic simulation through metamodeling.

The basic idea behind metamodeling is to define a model that is significantly less compu-

tationally demanding but is capable of accurately mimicking the outputs of the original system

(the high-fidelity model). The most widely used metamodeling strategy is to establish a map-

ping between a parameterized input and output space through regression or interpolation by, for

example: polynomial functions [65, 66, 68, 70, 69, 67, 78]; radial basis functions, including

kriging [164, 83, 72, 91, 165, 166, 167]; support vector machines [85, 78]; least-square boosting

[168]; and fully connected, Bayesian and deep neural networks [84, 85, 86, 87]. These methods,

however, are in general not directly applicable for reproducing dynamic response time histories

generated by stochastic excitation, which is a sequence-to-sequence mapping problem that can

become prohibitively high dimensional for typical regressions or interpolations due to the gen-

erally large number of time steps. This limitation not only causes difficulties in propagating the

record-to-record stochasticity in excitation, but also hinders the application of the metamodeling

approaches to cases where response time histories are needed, e.g., performance evaluation of

structural systems subject to wind or seismic excitation.
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To address this limitation, nonlinear auto-regression with exogenous output (NARX), originally

proposed for system identification purposes [169, 160], has been introduced as a metamodeling

approach for sequence-to-sequence problems and successfully applied to various nonlinear dynamic

systems [98, 101, 102, 103]. These approaches, however, exhibit difficulties in treating general high-

dimensional MDOF systems, thus hindering their applications to practical engineering problems.

To address this issue, [105] introduced a model order reduction based on normal modes. NARX

models were subsequently used as a metamodel of the reduced space. The scheme was successfully

applied to a MDOF building system equipped with nonlinear viscous dampers and subject to

stochastic wind excitation. This scheme is not, however, capable of treating systems with general

nonlinearity due to the diminishing effectiveness of the equivalent elastic system from which the

normal modes are extracted. Moreover, the NARX model of the reduced space did not capture the

influence of coupling between the reduced coordinates. To enhance the applicability of the scheme,

Chapter 3 proposed the use of a reduction scheme based on proper orthogonal decomposition

(POD) while capturing the dynamics, including potential coupling, of the reduced space through

multi-input-multi-output (MIMO) NARX models. Since the POD-based model order reduction is

capable of capturing strong nonlinearity while the MIMO NARX model captures coupling between

the reduced coordinates, the scheme is capable of reproducing the response of more general

nonlinear systems. Nonetheless, the performance of the scheme was seen to be sensitive to the pre-

selected function forms (candidate MIMO NARX terms), the selection of which generally requires

detailed knowledge of the high-fidelity models, which is to some degree either intrusive or arbitrary,

limiting the generalizability of the scheme. Moreover, although the resultant metamodel can be an

order of magnitude faster than high-fidelity models, the training process is often time-consuming

if a large number of candidate MIMO NARX terms are involved.

A promising alternative to circumvent the limitations of NARX-based metamodeling are the

fast emerging deep learning neural networks [106], including the long short term memory (LSTM)

and convolutional neural networks (CNN). Recently, deep learning neural networks have been con-

sidered as a sequence-to-sequence mapping from system excitation to responses and successfully
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applied in several SDOF or MDOF cases [107, 111, 109, 112]. In particular, [111, 109, 112]

considered physical information, e.g., the equations of motion, in the training process and success-

fully enhanced the accuracy, training efficiency, as well as robustness to noisy data. However, it

should be noted that in these works potential limitations may exist when extending the approach to

practical high-dimensional systems. Firstly, only a small group of specific DOFs were learned in

these works as it is computationally expensive to train neural networks to simultaneously give the

responses of all DOFs for high-dimensional systems. In addition, introducing physical information

requires the repeated evaluation of the equations of motion of the system during training process,

leading to a computationally challenging training problem in the case of high-dimensional systems.

These issues have to be addressed if deep learning neural networks are to be successfully applied

to practical engineering systems involving multiple outputs of interest.

To address the aforementioned limitations, a model order reduction aided deep learning meta-

modeling framework is developed in this work. Model order reduction is achieved through a

proper orthogonal decomposition (POD) based Galerkin projection while a long-short term mem-

ory (LSTM) neural network is considered to capture the dynamics of the reduced model. Once

trained, the metamodel enables the estimation of the dynamic time history response of any DOF

without the need to train any new networks. To further enhance the efficiency of the LSTM

network, both in training and prediction, the wavelet approximation is implemented to decrease

the length of the reduced inputs and outputs. For illustration, the metamodeling framework is

applied to two earthquake engineering case studies consisting in a MDOF Bouc-Wen system and

a fiber-discretized nonlinear steel moment resisting frame. Both case studies are driven by gen-

eral stochastic excitation. The calibrated metamodels are shown to be more than three orders of

magnitude more efficient than the high-fidelity full models, while being capable of reproducing

with remarkable accuracy both the global response time histories of all DOFs as well as any local

hysteretic responses.
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4.3 Problem formulation

The response of a dynamic nonlinear MDOF systems subjected stochastic excitation can in general

be modeled as:

M(¥x(𝑡), ¤x(𝑡), x(𝑡)) = F(𝑡), 𝑡 ∈ T (4.1)

where ¥x(𝑡), ¤x(𝑡), x(𝑡) ∈ R𝑛 × T are respectively the stochastic acceleration, velocity, and displace-

ment vectors of dimension 𝑛;M(·) : R3𝑛 × T ↦→ R𝑛 × T is the mapping from the space of ¥x(𝑡),

¤x(𝑡), x(𝑡) to the system forces that balance the stochastic excitation F(𝑡).

The record-to-record stochasticity within the excitation F(𝑡) can be characterized through a

vector random process w ∈ {w : w(𝑡) ∈ 𝛀, 𝑡 ∈ T } defined by the sample space 𝛀, 𝜎-algebra

B(𝛀), and probability measure P. Within this context, the stochastic excitation, acceleration,

velocity, and displacement are all under the influence of w, i.e. ¥x(w; 𝑡), ¤x(w; 𝑡), x(w; 𝑡), and

F(w; 𝑡). For simplicity of presentation, the dependency of these variables on w will be omitted in

the following. The following work is centered on metamodeling the sequence-to-sequence mapping

from F(𝑡) to x(𝑡).

4.4 Model order reduction

In many practical engineering problems the dimensionality of x(𝑡), i.e. 𝑛, is often in the hundreds

if not higher. This leads to high-dimensional mappings of the from F(𝑡) ↦→ x(𝑡). Directly creating

metamodels for such high-dimensional mappings can be not only computationally prohibitively

but also numerically unstable. Model order reduction has been widely investigated as a means for

reducing the dimensionality of a system [145, 146, 147, 148, 39, 150]. In this section, a model order

reduction scheme, centered on a POD driven Galerkin projection, will be introduced to address this

issue.

The Galerkin projection typically relies on a spatial coordinate transformation, 𝚽, composed of
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a set of bases such that:

x(𝑡) ≈ 𝚽q(𝑡) (4.2)

where q ∈ R𝑛r × T are the reduced outputs. The spatial dimensionality, 𝑛r, can be significantly

lower than 𝑛 if 𝚽 is appropriately chosen. A feasible way to determine 𝚽 is through carrying out

POD on a snapshot matrix X ∈ R𝑛×𝑛x that collects a set of 𝑛x snapshots, sampling the temporal

dimension 𝑡 ∈ T of the system, of the 𝑛-dimensional response vectors.

To this end, a set of F(𝑡) samples are generated and Eq. (4.1) is directly solved (i.e. the high-

fidelity system is explicitly evaluated) therefore providing corresponding samples of x(𝑡). For each

sample of x(𝑡), a subset of time points are selected as snapshots and collected in X. Subsequently,

POD is carried out through singular value decomposition (SVD) [153, 152]. This enables X to be

given the following representation:

X = U𝚲VT (4.3)

where U =
[
u1, u2, ..., u 𝑗 , ..., u𝑛

]
∈ R𝑛×𝑛 and V ∈ R𝑛x×𝑛x are unitary matrices containing respec-

tively as their columns the left-singular vectors, i.e. the POD modes, and right-singular vectors of

X; 𝚲 is a pseudo-diagonal matrix of size 𝑛 × 𝑛x collecting the 𝑗 th largest singular value _ 𝑗 of X at

position ( 𝑗 , 𝑗). In particular, the magnitude of _2
𝑗
indicates the amount of signal energy of X lying

in the space spanned by the 𝑗 th left-singular vector u 𝑗 . Typically, most of the POD modes will have

negligible values of _2
𝑗
and can be ignored in representing X. Within this context, a truncation can

be performed by keeping the first 𝑛r POD modes, where 𝑛r satisfies an energy-based criterion of

the type: ∑𝑛r
𝑗=1 _

2
𝑗∑𝑛

𝑗=1 _
2
𝑗

≥ [ (4.4)

where [ ∈ [0, 1] is a truncation threshold that reflects a specific trade-off between accuracy and
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efficiency. For example, a larger [ will retain more POD modes, leading to higher accuracy but also

higher dimensionality of the reduced space. With the truncation performed based on Eq. (4.4), the

spatial transformation matrix 𝚽 identifying the reduced space can be defined through the matrix

collecting the first 𝑛r POD vectors, i.e. 𝚽 =
[
u1, ..., u𝑛r

]
. From 𝚽, Eq. (4.1) can be reduced by

Galerkin projection as:

𝚽𝑇M(𝚽¥q(𝑡),𝚽 ¤q(𝑡),𝚽q(𝑡)) = F̂(𝑡), 𝑡 ∈ T (4.5)

where F̂(𝑡) = 𝚽𝑇F(𝑡) is the reduced inputs while ¤q(𝑡) and ¥q(𝑡) are respectively the first and second

derivatives of q(𝑡).

With this model order reduction scheme, the original high-dimensional mapping, F(𝑡) ↦→ x(𝑡),

is reduced to the mapping, F̂(𝑡) ↦→ q(𝑡), which is a far more tractable for metamodeling. Moreover,

once the metamodel for F̂(𝑡) ↦→ q(𝑡) is established, the responses at any DOF can be rapidly

reconstructed based on 𝚽 and the predicted q(𝑡). In the next section, a deep learning-based

metamodeling framework will be developed to learn the mapping F̂(𝑡) ↦→ q(𝑡). For clarity of

presentation, in the following, Eq. (4.1) and (4.5) are referred to as the full and reduced models,

respectively.

4.5 A deep learning-based metamodeling framework

4.5.1 Overview of artificial neural networks

Artificial neural networks (ANN) originated from biological neural networks and are composed

of neurons and connections. When data flows through an ANN, the connections perform linear

transformations on the data, including scaling through multiplicative weights and shifting through

adding biases. Each neuron processes it inputs through a typically simple but nonlinear function,

denominated an activation function, and produces a scalar output. The neurons and connections

work as a network, which can be adjusted by modifying its structure and/or parameters, including
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Figure 4.1: Illustration of neural network architectures for: (a) a typical RNN layer; (b) a LSTM
layer.

the weights and biases, to approximate targeted input-output relationships. Typically, for clarity,

the neurons are organized as layers that communicate through connections. The neurons in each

layer take as input the processed data from the connections of the previous layer and then passes

outputs through the connections to the next layer. Within this setting, each layer can be considered

as a vectorized nonlinear transformation of the form:

y𝑙 = 𝜎(𝜽Ty𝑙−1 + b) (4.6)

where y𝑙 ∈ R𝑚𝑙 and y𝑙−1 ∈ R𝑚𝑙−1 collect respectively the outputs of the artificial neurons in the

𝑙th and 𝑙 − 1th layer; 𝜎(·) : R𝑚𝑙 ↦→ R𝑚𝑙 is the activation function that takes the form of, for

example, hyperbolic tangent functions, sigmoid functions, or rectified linear unit functions; while

90



𝜽 ∈ R𝑚𝑙−1×𝑚𝑙 and b ∈ R𝑚𝑙 are the vectors of weights and biases.

Typically, the first layer within an ANN is the input layer, the last is the output layer, and

the rest is/are hidden layer(s). ANNs with multiple hidden layers are generally referred to as

deeper network structures or deep learning architectures. Combined with big data, networks of this

type have achieved immense success in learning patterns within signals and images [106]. These

networks include typical deep neural networks, recurrent neural networks (RNN), convolutional

neural networks (CNN), etc. The RNN contains a feedback mechanism that can be unfolded to be a

chain-like structure along a temporal sequence, as shown in Figure 4.1(a), and is therefore suitable

for sequence-to-sequence mapping problems with inherent dynamic behaviors. In particular, the

RNN layer contains as many RNN cells as time steps of the layer’s input and output sequences

while sharing the same set of tunable parameters. Each of the RNN cells takes in the previous

output y𝑙 (𝜏 − 1) and the current input y𝑙−1(𝜏), then produces the current output (or hidden state)

y𝑙 (𝜏) and passes it to the next RNN cell. In this manner, the RNN layer forms a mapping from the

layer’s input and output sequence.

The performance of the neural networks are usually quantified through a measure (loss function

L) of the discrepancy between the neural network outputs and the ground truth data. Training a

neural network is essentially minimizing/optimizing the loss function with respect to the tunable

parameters. Regardless of the complexity of network architectures, the neural networks are, in

general, composed of only simple linear or nonlinear operations, allowing the gradient of the

loss function with respect to the tunable parameters to be efficiently evaluated through the back-

propagation process [170]. Within this context, this potentially high-dimensional optimization

problem can be effectively solved through gradient-based methods. However, due to potentially

long time sequences of interest, the chain-like RNN architecture have to contain a large number

of RNN cells, leading to long back-propagation paths and potentially causing gradient vanishing

or exploding problems [171, 172]. These problems may lead to difficulties in learning long term

dependency in the sequences of interest and stability problems in training. To address this issue,

[173] refined the typical RNN to be the LSTM architecture, which is adopted in this work.
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4.5.2 LSTM layer and network architecture

The typical LSTM layer architecture adopted in this work is shown in Figure 4.1(b). Similar to

typical RNN cells, each of the LSTM cells takes as input y𝑙 (𝜏 − 1) and y𝑙−1(𝜏) while providing

as output y𝑙 (𝜏) that is passed to the next LSTM cell. The key feature that differentiates the LSTM

architecture from a typical RNN architecture, is the cell state C𝑙 that flows through the entire LSTM

layer with only linear operations, e.g., multiplications and summations. This feature allows the

gradient information to be back-propagated in a far more straightforward fashion (constant error

back-propagation [173]) and therefore mitigates any gradient vanishing and exploding problems.

Each LSTM cell produces an updated state, C𝑙 (𝜏), by first passing the previous cell state, C𝑙 (𝜏−1),

through the forget gate gf(𝜏). This partially discards previous information by updating it with the

information ΔC𝑙 (𝜏), obtained by passing y𝑙 (𝜏 − 1) and y𝑙−1(𝜏) through the activation function

𝜎s(·), with scaling performed by the input gate gi(𝜏). The updated cell state, C𝑙 (𝜏), is then passed

through the activation function, 𝜎s(·), and scaled based on the output gate, go(𝜏), before becoming

the current output y𝑙 (𝜏). The mathematical processes described above can be summarized as:

gf(𝜏) = 𝜎g(𝜽T
f,Hy𝑙 (𝜏 − 1) + 𝜽T

f,Iy𝑙−1(𝜏) + bf) (4.7)

gi(𝜏) = 𝜎g(𝜽T
i,Hy𝑙 (𝜏 − 1) + 𝜽T

i,Iy𝑙−1(𝜏) + bi) (4.8)

go(𝜏) = 𝜎g(𝜽T
o,Hy𝑙 (𝜏 − 1) + 𝜽T

o,Iy𝑙−1(𝜏) + bo) (4.9)

ΔC𝑙 (𝜏) = 𝜎s(𝜽T
c,Hy𝑙 (𝜏 − 1) + 𝜽T

c,Iy𝑙−1(𝜏) + bc) (4.10)

C𝑙 (𝜏) = gf(𝜏) ◦ C𝑙 (𝜏 − 1) + gi(𝜏) ◦ ΔC𝑙 (𝜏) (4.11)

y𝑙 (𝜏) = go(𝜏) ◦ 𝜎s(C𝑙 (𝜏)) (4.12)

where gf(𝜏), gi(𝜏), and go(𝜏) ∈ R𝑚𝑙 are respectively the forget, input, and output gates; C𝑙 (𝜏)

and ΔC𝑙 (𝜏) ∈ R𝑚𝑙 are the LSTM cell state and updated information; 𝜎g(·) and 𝜎s(·) are the gate

and state activation functions, which typically take the form of sigmoid and/or hyperbolic tangent

functions; ◦ is the Hadamard (element-wise) product operator; while {𝜽 f,H, 𝜽 i,H, 𝜽o,H, 𝜽c,H} ∈
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R𝑚𝑙×𝑚𝑙 , {𝜽 f,I, 𝜽 i,I, 𝜽o,I, 𝜽c,I} ∈ R𝑚𝑙−1×𝑚𝑙 , and {bf, bi, bo, bc} ∈ R𝑚𝑙 are the tunable parameters

consisting respectively of the weights associated with previous layer output, y𝑙 (𝜏 − 1), weights of

the current layer input, y𝑙−1(𝜏), and biases of gf(𝜏), gi(𝜏), go(𝜏), and ΔC𝑙 (𝜏).

The LSTM network of this work is composed of the LSTM layers and a fully connected layer. In

particular, the LSTM layers capture the dynamics within the sequence-to-sequence mapping, while

the fully connected layer provides additional flexibility in learning the transformation between the

output of the last LSTM layer and the output sequence. The fully connected layer can be expressed

as:

y𝑙 = 𝜽Ty𝑙−1 + b (4.13)

In addition, immediately subsequent to each LSTM layer, a dropout layer is added to mitigate

overfitting by preventing co-adaption problems and by acting as a regularizer through efficient

model combination [174]. Specifically, in every training iteration, the dropout layer removes each

of the neurons in its previous layer with a probability 𝑝 so to avoid co-adaption by forcing each

neuron to capture useful information without relying on the presence of other neurons. The dropout

layer can be viewed as randomly sampling pruned networks to train. The prediction by the final

network is equivalent to averaging the outputs of the network samples. This process is a form of

regularization that is effective in mitigating overfitting. In addition, as fewer parameters are present

in the network after dropout, the training process is also accelerated.

4.5.3 Data pre-processing

In practical problems, the reduced excitation, F̂, and response time histories, q, generally involve

a large number of time steps. The LSTM layers will accordingly have an equally large number

of cells, potentially leading to an excessively high computational demand and computer memory

requirement. To address this issue, instead of directly considering F̂ and q as network inputs and

outputs, a wavelet approximation is introduced to reduce the size of the time histories.
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The wavelet approximation is a projection technique that converts signals from the time domain

to the space defined by a set of wavelets, a type of well-localized function in both the time and

frequency domains that effectively capture local characteristics in signals. In particular, in this

work, the widely adopted dyadic wavelets are considered:

𝜓𝑠 (𝜏; 𝑡) = 2
𝑠
2𝜓(2𝑠𝑡 − 𝜏) (4.14)

where 𝑠 ∈ Z is the wavelet scale parameter; 𝜏 ∈ Z is the time shift parameter, here defining

where the wavelet is located, which can also be viewed as a generalized time step with consistent

meaning to 𝜏 of Section “A deep learning-based metamodeling framework”; while 𝜓𝑠 (𝜏; 𝑡) is the

wavelet. Among dyadic wavelets, the Daubechies wavelet family is suitable for engineering use for

its compact support and orthogonality [175]. In particular, the Daubechies wavelets are defined

based on a set of scaling functions, 𝜙(𝑡), satisfying:

𝜙(𝑡) =
∑︁
𝜏

𝑐(𝜏)𝜙(2𝑡 − 𝜏) (4.15)

where 𝑐(𝜏) is the scaling coefficient. Based on 𝜙(𝑡), the mother wavelet function of the Daubechies

wavelets can be obtained as:

𝜓(𝑡) =
∑︁
𝜏

(−1)𝜏𝑐(𝜏 + 1)𝜙(2𝑡 + 𝜏) (4.16)

Subsequently, all the wavelets can be obtained through Eq. (4.14).

With the Daubechies wavelets, the wavelet transformation and its approximation for a time

history of interest, 𝜒(𝑡), are:

𝜒(𝑡) =
∑︁
𝜏

𝑊𝑠,𝜒 (𝜏)𝜙𝑠 (𝜏; 𝑡) +
𝑠∑︁

𝑠d=0

∑︁
𝜏

𝑊𝑠d,𝜒 (𝜏)𝜓𝑠d (𝜏; 𝑡)

≈
∑︁
𝜏

𝑊𝑠,𝜒 (𝜏)𝜙𝑠 (𝜏; 𝑡) (4.17)
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where 𝑊𝑠,𝜒 (𝜏) and 𝑊𝑠d,𝜒 (𝜏) ∈ R × Z are respectively the approximation and detail coefficients.

Accordingly, in Eq. (4.17) before the approximation, the first term represents the low frequency

or main trend component, while the second term is the detail component. The approximation is

performed by ignoring the detail component. Applying this approximation to the reduced inputs

and outputs leads to [176, 112]:

𝑞 𝑗 (𝑡) ≈
∑︁
𝜏

𝑊𝑠,𝑞 𝑗
(𝜏)𝜙𝑠 (𝜏; 𝑡) (4.18)

�̂�𝑗 (𝑡) ≈
∑︁
𝜏

𝑊𝑠,�̂�𝑗
(𝜏)𝜙𝑠 (𝜏; 𝑡) (4.19)

where 𝑞 𝑗 (𝑡) and �̂�𝑗 (𝑡) ∈ R × T are the 𝑗 th reduced input and output. Subsequently, {𝑊𝑠,𝑞 𝑗
(𝜏) :

𝑗 = 1, 2, ..., 𝑛r} and {𝑊𝑠,�̂�𝑗
(𝜏) : 𝑗 = 1, 2, ..., 𝑛r} are taken respectively as the network input

and output data for training. It should be noted that the values of these data sequences vary

with different problems and unit systems, and can influence the gradients of the loss functions.

Gradient values that are too high may destabilize the training while values that are too low can

cause slow convergence or convergence to a local minimum. Thus, data normalization through

linear transformation of the input and output data to a common scale should be implemented.

4.5.4 Training configurations

To account for the potentially significant coupling between the reduced outputs, a single LSTM

network is considered. As illustrated in Figure 4.2, this network takes the wavelet coefficients

of the excitation as input while predicting the wavelet coefficients of all the reduced outputs

simultaneously. To evaluate its performance, the loss function, L, for the LSTM network is defined

as:

L =
1
2
E𝜏

[∑︁
𝑗

(𝑊𝑠,𝑞 𝑗
(𝜏) − �̂�𝑠,𝑞 𝑗

(𝜏))2
]

(4.20)

The entire dataset is separated into training, validation, and testing sets. The training and
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Figure 4.2: The LSTM network-based metamodeling framework.

validation sets are considered as “known” to the neural network and are used for its calibration,

while the testing set is “unknown” and is kept separate to check the generalization of the network

to “new” inputs. In particular, the training set is the basis for the evaluation of gradients, so to

facilitate the minimization of L. During training, the gradient of L with respect to all tunable

parameters can be obtained by the back-propagation algorithm over a randomly selected subset of

the training data with tunable parameters updated by any gradient-based method, e.g., stochastic

gradient descent, adaptive moment estimation [177]. The training process continues until L over

the validation data ceases to show a decreasing tendency. It should be noted that the validation set

is not required for the network training, but it is essential to monitor possible overfitting, i.e., by

monitoring the discrepancy between the training and validation losses, meaningless training can be

terminated and adjustments to the dataset and/or network can be made if the discrepancy begins to

diverge with training.
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Table 4.1: Sections sizes of the steel frame.

Floors Beams Interior columns Exterior columns
1 W36×282 66 × 7.6 66 × 6.4
2-10 W36×282 56 × 7.6 51 × 6.4
11-20 W36×194 51 × 5.0 51 × 5.0
21-30 W33×169 46 × 2.5 46 × 2.5
31-40 W27×84 46 × 1.9 46 × 1.9
Columns sizes: (outer side size)×(wall thickness) in cm.

4.6 Case studies

To illustrate the efficiency and applicability of the proposed metamodeling approach, case studies

consisting of a MDOF Bouc-Wen system and a nonlinear fiber-discretized frame, both of which

represent commonly adopted high-fidelity structural modeling approaches in practical engineering,

were carried out in Sections “MDOF Bouc-Wen system” and “Fiber-discretized nonlinear frame”.

All calculations for these case studies were performed on a personal computer with Intel(R) Xeon(R)

E-2236 CPU @3.40 GHz, NVIDIA Quadro RTX 4000 GPU, and 32 Gb RAM.

4.6.1 MDOF Bouc-Wen system

The first case study considers a 2D steel frame with Bouc-Wen type nonlinearity. The structure is

considered located in downtown San Francisco and subjected to stochastic seismic excitation. The

design of the frame was based the structure outlined in [162], as shown in Figure 4.3(a). The total

height of the frame was 154.7 m. The first floor had a height of 6.1 m while all remaining floors

had a height of 3.9 m. Each level is characterized by four spans of equal width of 6.1 m, leading to

a total width of 24.4 m. The beams of the structural system belong to the AISC (American Institute

of Steel Construction) family of wide-flange sections while columns are squared box sections, as

summarized in Table 4.1. The structural mass is calculated based on the self-weight of the structural

members and a carried weight evaluated by considering a building density of 150 kg/m3 and an

influence depth for the frame of 9.15 m.
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Figure 4.3: The 2D steel frame with Bouc-Wen type nonlinearity: (a) structural layout; (b) the
shear building model.
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4.6.1.1 Structural model and seismic excitation

The lateral response of the frame was modeled using a shear building assumption with nonlinear

interstory resistance forces simulated through a Bouc-Wen model, as illustrated in Figure 4.3(b).

The structural mass was lumped at each floor. A Rayleigh damping model, calibrated by assigning

the 1st and 2nd modal damping ratios equal to 1.5%, was considered for capturing inherent damping.

Within this context, the equations of motion of the structural system can be expressed as:


M¥x + C¤x + BTKz = M𝜾 ¥̂𝑤(𝑤; 𝑡)

¤z = B¤x − 𝛾 |B¤x| ◦ z
(4.21)

where M and C are 40×40 diagonal structural mass and tridiagonal symmetric damping matrices;

K is the 40×40 diagonal shear building elastic inter-story stiffness matrix of the 2D frame; B is

a 40×40 transformation matrix transferring global displacements to inter-story drifts; 𝜾 is a 40×1

vector of ones; ¥̂𝑤(𝑤; 𝑡) is the ground motion acceleration time history, of which the record-to-

record stochasticity is defined by the white noise process 𝑤(𝑡); z and ¤z are 40×1 vectors collecting

non-observable hysteretic parameters and their first derivatives; while 𝛾 is a parameter governing

the hysteretic behavior.

A site-specific seismic hazard with a 10% exceedance probability in 50 years for the subsurface

ground condition of Site Class D was considered [162, 137]. Based on this, stochastic ground

motions were generated through the model outlined in [163]. This model simulates ground motions

as filtered white noise from the expression:

�̃�(𝑡) = 𝐴(𝜷; 𝑡)
∫ 𝑡

−∞ ℎ[𝜿(𝑟); 𝑡 − 𝑟]𝜔(𝑟)d𝑟√︃∫ 𝑡

−∞ ℎ
2 [𝜿(𝑟); 𝑡 − 𝑟]d𝑟

(4.22)

where �̃�(𝑡) a the filtered white noise process; 𝐴(𝜷; 𝑡) is a time-modulating function; ℎ[𝜿(𝑟); 𝑡−𝑟] is

a impulse-response function of the time-varying filter. In particular, the time-modulating function
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is given by:

𝐴(𝜷; 𝑡) = 𝛽1𝑡
𝛽2−1 exp (−𝛽3𝑡) (4.23)

where 𝜷 includes 𝛽1 ∈ R+, 𝛽2 ∈ (1, +∞), and 𝛽3 ∈ R+ governing respectively the intensity, shape,

and duration of the ground motion. These parameters can be determined from the expected Arias

intensity 𝐼𝑎, effective duration 𝐷5−95 (defined as the time interval between the time points when

the 5% and 95% of 𝐼𝑎 are reached), and 𝑡mid (defined as the time point when 45% 𝐼𝑎 is reached).

The filter ℎ[𝜿(𝑟); 𝑡 − 𝑟] of Eq. (4.22) is defined as:

ℎ(𝜿(𝑟); 𝑡 − 𝑟) =


𝜔f (𝑟)√︃
1−Z2

f (𝑡)
𝑒−Zf (𝑟)𝜔f (𝑟) (𝑡−𝑟) sin[𝜔f(𝑟)

√︃
1 − Z2

f (𝑟) (𝑡 − 𝑟)], 𝑟 ≤ 𝑡

0, 𝑟 > 𝑡
(4.24)

where the time-varying parameter vector 𝜿(𝑟) is composed of a circular filter frequency, 𝜔f(𝑟), and

damping ratio, Zf(𝑟), defined as:

𝜔f(𝑟) = 𝜔mid + 𝜔′(𝑟 − 𝑡mid) (4.25)

Zf(𝑟) = Zf (4.26)

where 𝜔mid defines the filter circular frequency at 𝑡mid while 𝜔′ controls the rate of change for

𝜔f(𝑟).

It should be noted that the �̃�(𝑡) may contain unrealistic displacement or velocity residuals,

leading to the overestimation of spectral responses in the long period range. To address this

problem, �̃�(𝑡) is further processed by a high-pass filter, such that:

¥̂𝑤(𝑡) + 2𝜔𝑐 ¤̂𝑤(𝑡) + 𝜔2
𝑐�̂�(𝑡) = �̃�(𝑡) (4.27)

where 𝜔𝑐 is the high-pass filter frequency, suggested to be 𝜔𝑐/2𝜋 = 0.1 Hz [163]; �̂�(𝑡), ¤̂𝑤(𝑡), and

¥̂𝑤(𝑡) are respectively the ground motion displacement, velocity, and acceleration.
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In summary, this model is calibrated through the parameters 𝐼𝑎, 𝐷5−95, 𝑡mid, 𝜔mid, 𝜔′, and

Zf. For the example structure of this section, 𝐼𝑎, 𝐷5−95, 𝑡mid, 𝜔′ take the values of the Loma

Prieta records (Moment magnitude = 6.93, Rupture distance = 18.3 km), while 𝜔mid and Zf are

tuned to reproduce, on average, the site-specific target unified hazard spectrum of the United States

Geological Survey (USGA). The resulting parameters are: 𝐼𝑎 = 0.045; 𝐷5−95 = 12.62 s; 𝑡mid = 4.73

s; 𝜔mid = 2𝜋 × 3.27 rad/s; 𝜔′ = −2𝜋 × 0.08 rad/s; and Zf = 0.48. In addition, the ground motion

duration was taken as 30 s with time step size 0.005 s.

The hysteretic parameter, 𝛾, of Eq. (4.21) significantly influences the dynamic properties of the

system. To ensure the engineering significance of the case study, 𝛾 was carefully calibrated. To this

end, a set of 300 synthetic ground motions were simulated, and 𝛾 = 10 was chosen as this led to

an interstory drift ratio response, as shown in Figure 4.4(a), that was in reasonable agreement with

that reported in [162]. As shown in Figure 4.4(b) for a representative sample of the restoring force

at the first floor, significant nonlinearity in the system is expected. The capability of the stochastic

ground motion model of producing records that meet, on average, the USGA target spectrum is

illustrated in Figure 4.4(c) for the 300 records used to calibrate the system.

4.6.1.2 Metamodel training

The dataset of 300 ground motions outlined in the previous section were used for training and

validating the metamodel. In particular, the dataset was separated into a training set with 250

samples and a validation set with 50 samples. From the high-fidelity responses of the training set,

POD modes were extracted through the SVD of Eq. (4.3). Truncation was performed based on

the criterion of Eq. (4.4) with [ = 0.999. The first three POD modes, i.e. 𝑛r = 3, were seen to

meet criterion. The reduced model was solved through a 4th order Runge-Kutta algorithm, with a

relative error tolerance of 10−5, to obtain reduced outputs. Each of the reduced outputs was paired

with the corresponding reduced inputs therefore defining an input/output pair within the reduced

space. It should be noted that, since the randomness of the input is characterized through the

ground motions, the reduced input data is directly taken as the ground motions. Both the reduced
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Residual IDR samples
Mean residual IDR
Peak IDR samples
Mean peak IDR

(a)

(b)

(c)

Figure 4.4: Response of the high-fidelity full model: (a) interstory drift ratios; (b) typical restoring
force at the first floor for a representative ground motion; and (c) comparison between the spectra
of the stochastic ground motions and the site-specific target spectrum.
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Training loss

Validation loss

Figure 4.5: Loss function trend during training and validation of the metamodel of the MDOF
Bouc-Wen system.

inputs, i.e., the ground motions, and the reduced outputs are firstly normalized by their average peak

value (averaged over the dataset for calibration), and subsequently processed through the wavelet

transformation based on 6th order Daubechies wavelets with a scale parameter 𝑠 = 2.

For this case, a single LSTM network was calibrated to predict all three reduced outputs

simultaneously from the reduced input. In particular, the LSTM network contained a LSTM layer

with 150 hidden units, a dropout layer with a dropout probability of 0.5, and a fully connected layer.

The network was trained by the widely used adaptive moment estimation (Adam) algorithm, with

the learning rate set to 0.002. During the training process, a mini-batch size of 50 was used for

the loss function and associated gradient calculation. The training was carried out in Matlab with

the results shown in Figure 4.5. It can be seen that both the training and validation loss functions

converge to a low and stable level after around 2,000 epochs. This indicates that the LSTM network

is well-trained while exhibiting excellent generalization without overfitting.

4.6.1.3 Metamodel performance on testing set

The calibrated LSTM metamodel was used to make predictions for a new set of 300 stochastic

ground motion samples, i.e. the testing set. The resulting predictions are compared with those
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(a)

(b)

(c)

Figure 4.6: Comparisons between typical time histories of the: (a) 1st; (b) 2nd; and (c) 3rd reduced
coordinates of the high-fidelity reduced model, LSTM metamodel, and MIMO NARX metamodel.

obtained from the recently introduced MIMO NARX metamodel (Chapter 3) as well as the high-

fidelity reduced and full model outputs.

Figure 4.6 reports the comparisons between typical reduced space time histories responses from

the high-fidelity reduced model, LSTM metamodel, and MIMO NARX metamodel. As can be

seen, both the LSTM metamodel and the MIMO NARX metamodel are capable of reproducing the

entire time histories of all the reduced coordinates with excellent accuracy.

From the reduced coordinates, the response of any DOF can be reconstructed through the

transformation 𝚽. The roof responses from the high-fidelity reduced model, LSTM metamodel,

and MIMO NARX metamodel, are comparatively shown in Figure 4.7, in terms of typical response

and error time histories, peak values, and associated exceedance probability curves. It is seen from

Figure 4.7(a) and (b) that the peak values and associated exceedance probability curves obtained
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(a) (b) (c)

Reference (Reduced model) LSTMMIMO NARX

MIMO NARX
LSTM

Figure 4.7: Comparison of roof responses from the high-fidelity reduced model, LSTM metamodel,
and MIMO NARX metamodel, in terms of: (a) peak values; (b) exceedance probabilities; and (c)
typical response and error time histories.

from the metamodels are effectively reproduced, indicating that high accuracy is achieved over

the entire testing set. Typical sample responses are reported in Figure 4.7(c) for both the LSTM

and MIMO NARX metamodels illustrating the remarkable accuracy achieved over the entire time

history, enabling the accurate estimation of both the peak and residual displacements.

To evaluate the effect of model order reduction on accuracy, the same comparisons as reported

in Figure 4.7 are shown in Figure 4.8 while considering responses estimated directly from the high-

fidelity full model. As is seen from Figures 4.8(a)-(b), the peak values and exceedance probability

curves are once again remarkably consistent with the full model, showing that the model order

reduction did not introduce significant additional errors. Figure 4.8(c) reports a typical time history

illustrating the stability of the metamodel over the entire duration of the excitation, i.e., a realization

of the stochastic input.

Efficiency comparisons between the MIMO NARX and LSTM metamodels and the full model

are summarized in Table 4.2. It can be seen that the LSTM metamodel is over three orders

of magnitude more efficient than directly solving the high-fidelity full model through a 4th order

Runge-Kutta scheme, while the MIMO NARX metamodel is only an order of magnitude faster. The

massive speed-up of the LSTM metamodel over the MIMO NARX metamodel clearly illustrates its

superiority, especially considering how no loss of accuracy was seen. It should also be noted that

the LSTM metamodel is non-intrusive, i.e. it does not require any prior knowledge of the system
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(a) (b) (c)

Reference (full model) LSTMMIMO NARX

MIMO NARX
LSTM

Figure 4.8: Comparison of roof responses from the high-fidelity full model, LSTM metamodel,
and MIMO NARX metamodel, in terms of: (a) peak values; (b) exceedance probabilities; and (c)
typical response and error time histories.

Table 4.2: Efficiency of the metamodeling approaches compared to the full model.

Full model MIMO NARX LSTM
Time elapses 455.76 37.92 0.26
Speed-up ratio - 12 1751

for application.

4.6.2 Fiber-discretized nonlinear frame

The second case study is focused on a 2D 37-story six-span steel frame subjected to the same

seismic hazard, characterized through stochastic ground motion model, of the previous case study.

A schematic of the frame is shown Figure 4.9. The first floor has a height of 6 m while all remaining

floors are 4 m in height, leading to an overall building height of 150 m. Each floor has six spans of

equal 5 m width. Columns and beams are respectively square box sections and AISC wide-flange

standard W24 sections with dimensions summarized in Table 4.3. All the sections are composed of

structural steel with Young’s modulus 𝐸s=200 GPa and yield stress 𝜎𝑦=355 MPa. For the structural

mass, apart from member self-weight, each floor has a carried mass calculated by considering a

building density of 100 kg/m3.
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Table 4.3: Sections sizes of the fiber-discretized steel frame.

Floors Beams Columns
1-10 W24×192 50 × 2.5
11-20 W24×192 50 × 2.5
21-30 W24×103 40 × 2.0
31-40 W24×103 35 × 1.8
Columns sections: (centerline size)×(wall thickness) in cm.

Ground level

6 @ 5 m = 30 m

Level 37

150 m

Level 30

122 m

Level 10

42 m

Level 20

82 m

Level 0

0 m

The frame considered

X

Y

30 m

60 m

X

Z

Figure 4.9: The 2D 37-story six-span steel frame.
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4.6.2.1 Structural model and seismic excitation

The structure was modeled in the OpenSees (Open System for Earthquake Engineering Simula-

tion). All structural components within the structure were modeled as displacement-based fiber-

discretized finite elements with five integration points along their length with integration carried

out through a Gauss-Legendre integration scheme. An elastic-perfectly-plastic constitutive rela-

tionship is adopted for each fiber of the discretization, which can be challenging for metamodeling

due to the non-differentiable yield point of the strain-stress curve. Inherent damping was modeled

through a Rayleigh damping model calibrated to provide damping ratios of 2.5% at the first two

natural frequencies. The excitation was generated through the stochastic ground motion model of

the Section “MDOF Bouc-Wen system”, with duration 30 s and time step 0.005 s.

The Newmark-beta direct integration scheme was adopted to solve for the responses of the

high-fidelity full model. An adaptive nonlinear solver is adopted, which initially attempts to find a

solution through a Newton-Raphson (NR) algorithm with line search and time step Δ𝑡 of 0.005 s. If

this is unsuccessful, the following succession of algorithms are attempted: a modified NR algorithm

with Δ𝑡 =0.002 s; a NR with line search and Δ𝑡 = 0.002 s; a NR algorithm with Δ𝑡 = 0.001 s; and

finally a Broyden algorithm with Δ𝑡 = 0.001 s. A convergence tolerance of 10−8 for the 2-norm

displacement change and 10−10 for deformation energy change was considered.

A dataset of 1,000 ground motions were used for training, validating and testing the metamodel.

The dataset was separated into a training/validation set with 800 samples and a test set of 200

samples. POD modes were identified from 800×1,200 snapshots of the displacement response

vector of the high fidelity model. The snapshots were collected by considering 1,200 equally

spaced time points. POD-based model order reduction was performed while considering, for

consistency with the first case study, [ = 0.999 therefore leading to a three-dimensional reduced

space, i.e., 𝑛r = 3. The reduced model was solved through a 4th order Runge-Kutta algorithm, with

a relative error tolerance of 10−5. Reduced-order outputs were obtained for the 800 ground motion

samples of the training dataset. The reduced output, 𝑞 𝑗 (𝑡), and corresponding ground motion were

then normalized by their average peak values (averaged over the training dataset), and processed
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through 6th order Daubechies wavelets with a scale parameter of 𝑠 = 2.

4.6.2.2 Metamodel training

An LSTM network is trained to simultaneously predict the wavelet coefficient sequences of the three

reduced coordinates based on the given wavelet coefficient sequence of ground motions. To examine

the robustness of the LSTM metamodel for different application scenarios, the same network and

training setup as used in Section “MDOF Bouc-Wen system” was considered. The LSTM network

therefore contains an LSTM layer with 150 hidden units, a dropout layer with dropout probability of

0.5, and a fully connected layer. The Adam algorithm was again implemented to train the network,

with a learning rate of 0.002. In the set for LSTM calibration, 750 out of the 800 input-output pairs

are considered as a training set with a batch size of 50, for loss and associated gradient calculation,

while the remaining 50 are left out as a validation set to monitor potential overfitting. The training

process was continued until the trend of the loss function over the validation set stopped showing

a decreasing tendency. The loss functions of training and validation versus epochs are shown in

Figure 4.10. It is seen that the values of the loss function converge with the progress of the training

process with stabilization after around 1,200 epochs. The values of the loss function in training

and validation are close, indicating no overfitting is detected and thus excellent generalization to

new inputs is expected.

4.6.2.3 Metamodel performance on testing set

To evaluate the calibrated LSTM metamodel, its performance is evaluated over the test set. Fig-

ure 4.11 reports a comparison between the high-fidelity reduced model and LSTM metamodel in

terms of the reduced coordinate responses. It is seen that the predictions by the LSTM metamodel

achieved excellent accuracy for all three reduced coordinates. In addition, high accuracy is seen to

be maintained throughout the time history for all the three reduced responses.

To validate the capability of the LSTM metamodel in predicting the response of any arbitrary

DOF, the comparisons between the high-fidelity reduced model and the LSTM metamodel are
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Training loss
Validation loss

Figure 4.10: Loss function trend during training and validation of the metamodel of the fiber-
discretized nonlinear steel frame.

(a)

(b)

(c)

Figure 4.11: Comparison between typical time histories of the: (a) 1st; (b) 2nd; and (c) 3rd reduced
coordinates of the high-fidelity reduced model and LSTM metamodel.
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shown in Figure 4.12. In particular, the comparisons are for the displacements in the horizontal

(𝑋) direction, vertical (𝑍) direction, and in-plane rotations (denoted with a subscript 𝑅) at node

147 (at floor 20) and 266 (at the top floor), in terms of their peak values, exceedance probability

curves, and typical time history responses. It can seen that the LSTM metamodel is capable of

reconstructing the entire response time histories of multiple nodal displacements and rotations

with remarkable accuracy. Meanwhile, the excellent match of the peak values and exceedance

probability curves indicate that the remarkable accuracy is maintained over the entire testing set,

therefore validating the capability of the LSTM metamodel in predicting the responses of multiple

DOFs to new excitation. To validate the process of model order reduction, a similar comparison

with respect to the high-fidelity full model is shown in Figure 4.13. A near identical accuracy

can be observed from Figure 4.13, therefore illustrating how the model order reduction did not

introduce any additional errors.

Because the proposed LSTM metamodeling approach enables the estimation of all DOFs of the

system simultaneously, any local response of interest can be predicted. For example, Figure 4.14

reports the comparison between the strain and stress response of an exterior fiber of the left external

column at the first floor predicted by the LSTM metamodeling and that of the full model. From

Figure 4.14(a), it can be seen that high accuracy is observed for nearly all samples of the test

set, with only dependencies seen for the extreme samples. Figures 4.14(b)-(c) reports a typical

comparison between the strain and stress histories of the LSTM metamodel and those of the full

model illustrating how accuracy is maintained over the entire time history. Finally, Figure 4.14(d)

reports the predicted and full model hysteretic curves, again showing the capability of the LSTM

metamodeling approach in reproaching local responses.

Efficiency comparisons between the LSTM metamodel and the full model are summarized in

Table 4.4, where the numbers refer to running all 200 samples of the test set. It can be seen

that the LSTM metamodel is over four orders of magnitude more efficient than the state-of-the-art

direct integration scheme of OpenSees. It is interesting to observe that the speed-up of the LSTM

metamodel over the high-fidelity model is similar to that seen for the first case study of Section
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x266,X

x266,Z

x266,R

x147,X

x147,Z

x147,R

Figure 4.12: Comparison between the high-fidelity reduced model and the LSTM metamodel
for the displacement in the horizontal (𝑋) direction, vertical (𝑍) direction, and in-plane rotations
(denoted with a 𝑅 in subscript) at node 147 (at floor 20) and 266 (at the top floor), in terms of their
peak values, exceedance probability curves, and typical time histories.

112



x266,X

x266,Z

x266,R

x147,X
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x147,R

Figure 4.13: Comparison between the high-fidelity full model and the LSTM metamodel for the
displacement in the horizontal (𝑋) direction, vertical (𝑍) direction, and in-plane rotations (denoted
with a 𝑅 in subscript) at node 147 (at floor 20) and 266 (at the top floor), in terms of their peak
values, exceedance probability curves, and typical time histories.
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(a)

(b)

(c) (d)

Figure 4.14: Comparison between loacl responses obtained from the high-fidelity OpenSees model
and the LSTM metamodel: (a) the peak strains; (b) typical strain time histories; (c) associated
stress time history; and (d) hysteretic curve.

Table 4.4: Efficiency of the LSTM metamodel approach as compared to the full model.

Full model LSTM
Time elapsed (s) 21,046 0.39
Speed-up ratio - 53,964

“MDOF Bouc-Wen system”, i.e., speed-ups would seem to be insensitive to the complexity/type

of high-fidelity model. It should also be recalled that the LSTM metamodel is non-intrusive and

does not require any prior knowledge of the system for calibration. These observations, along with

the remarkable accuracy of LSTM metamodeling approach, clearly illustrates the potential of the

proposed metamodeling framework.

4.7 Summary and conclusions

In this work, a metamodeling framework is proposed based on coupling model order reduction with

deep learning. Model order reduction is achieved through a set proper orthogonal decomposition

(POD) basis extracted through singular value decomposition. The space of the original high-

dimensional system is then reduced by projecting onto the reduced space spanned by the POD

basis. To increase the efficiency of the approach, the inputs and outputs of the reduced model are

pre-processed through a wavelet approximations. Deep learning, in the form of long-short term

memory (LSTM) networks, is then used as a metamodel of the sequence-to-sequence mapping
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between the wavelet coefficients of the reduced inputs and outputs. The metamodeling framework

was validated on a multi-degree-of-freedom Bouc-Wen system and a fiber-discretized nonlinear

steel frame. The following conclusions were drawn:

• The calibrated metamodel is capable of reproducing the global response time histories of any

degree-of-freedom and local hysteretic curves with remarkable accuracy, while achieving

speed-ups of more than three orders of magnitude relative to high-fidelity simulations.

• The metamodeling framework is non-intrusive, thus does not require prior knowledge of

the high-fidelity model, and exhibits excellent generalizability to problems with different

physical behaviors.

• Compared to recently proposed multi-input-multi-output metamodeling approaches for non-

linear dynamic systems based on auto-regressive models with exogenous inputs, the proposed

LSTM metamodeling framework exhibits far greater flexibility and efficiency without any

loss of accuracy.

Overall, the excellent accuracy, efficiency, and generalizability of the proposed LSTM metamodel-

ing framework illustrate the potential of the approach for significantly reducing the computational

demand associated with high-fidelity models and applications such as uncertainty propagation

and/or optimization.
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CHAPTER 5

Real-time Forecast of Hurricane-induced Damage

Risk to Envelope Systems of Engineered Buildings

through Metamodeling

5.1 Overview

The growing intensity and frequency of extreme wind events, together with the continued economic

and population growth of coastal areas, has created an urgent need for methodologies that can inform

emergency responders and managers of the increasing risk to the infrastructure of these areas. To

this end, this work outlines a real-time risk forecast framework for hurricane-induced damage

to building envelope systems of engineered buildings. Damage is quantified through a recently

introduced multi-demand and coupled progressive fragility model, with a full range of uncertainty

in structural properties, capacities, and wind stochasticity. To enable real-time assessment, an

efficient Kriging metamodel is introduced to capture the damage statistics conditioned on intensity

measures. From official real-time hurricane advisories, site-specific intensity measures are forecast

based on a parametric wind field model while considering the uncertainty in, among others, the

hurricane track, pressure deficit, and filling model. Damage risk is predicted through propagating

uncertainty by Monte Carlo simulation through the Kriging metamodels calibrated to forecast

intensity measures. For illustration, the real time damage risk of the envelope system of a 45-story

building located in downtown Miami was estimated for hurricanes Matthew (2016), Irma (2017),
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and Dorian (2019). The efficiency and accuracy of proposed is demonstrated.

5.2 Introduction

The growing frequency and intensity of hurricanes is increasing the risk of catastrophic wind-

induced damage to coastal areas [178, 179, 180, 181]. This is especially true if it is kept in mind

that coastal areas often have significant socioeconomic importance to a region with expanding

populations and economies [182]. Within this context, emergency response and management is

vital when these areas are subject to upcoming hurricanes [183]. Typically, successful emergency

response and management relies on decision-making that requires real time information on the risks

and consequences of catastrophic damage and loss from upcoming hurricanes [82, 89]. Within this

context, the goal of this research is to develop a real-time forecast framework for estimating the

risk of damage to building envelope systems of engineered buildings, e.g., critical facilities, from

imminent hurricanes. Important to this goal is to recognized that although notable advancements

have been in frameworks for detailed quantification of hurricane induced structural [184, 185, 186,

187, 15, 16, 188, 189] and non-structural damage [184, 16, 139, 189, 17, 140], a major difficulty in

applying these frameworks for real-time damage prediction is the significant computational effort

required for their evaluation. To circumvent this issue, metamodeling techniques, which seek to

define a computationally efficient model of the model without loss of accuracy, is an approach

with strong potential. Indeed, metamodeling techniques have been gaining immense interest in

computationally intensive applications, e.g., uncertainty propagation and optimization. Polynomial

regression is among the earliest of these approaches and has been widely used due to its ease in

implementation and high efficiency in predictions [65]. Nonetheless, the determination of an

appropriate polynomial order is generally not trivial, as an order that is too low will generally lead

to low accuracy due to incapability to capture local details, while an excessively high order can

lead to overfitting and numerical problems. A candidate solution to this issue is to determine the

basis function adaptively, e.g., through subset search [74, 75, 71], multivariate adaptive regression
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splines (MARS) [76, 77, 78], or adaptive basis function construction (ABFC) [79, 77, 78]. The

MARS approach, which can be viewed as a hierarchical forward/backward stepwise subset selection

procedure, introduced recursive partitioning while using spline basis, and thus have not only good

continuity but also the malleability to capture localized features. The ABFC approach, on the other

hand, describes the polynomials through a state matrix while performing searches with heuristic

schemes, and therefore avoids the requirement of a predesignated set of basis while also reducing

the effort required during the search process. The aforementioned schemes generally assume all

known data points are equally important in the prediction at new inquiry points, i.e., in assigning

importance, they do not consider the distances from the inquiry point to known data points. To

overcome this, the moving least square scheme [80, 81, 82] introduced a distance-related weight

therefore emphasizing the contribution to the prediction of the data points closer to the current

inquiry point. This enabled higher prediction accuracy given the same set of basis functions. A

limitation of this scheme is the relatively large computational burden associated with the matrix

inversion necessary in making the prediction for each new inquiry point. As an alternative, Kriging-

based schemes retain the merit of emphasizing data closer to the inquiry point, while also achieving

high computational efficiency by not requiring any intensive operations in making predictions

[88, 77, 82, 89, 78]. In addition, this best linear unbiased predictor [90] is interpolative, and

therefore exact at the support data points, while also providing a direct estimate of the epistemic

uncertainty introduced by the model itself.

In this work, a real-time risk forecast framework for hurricane-induced damage to envelope

systems of engineered buildings is introduced. Damage is estimated through a recently introduced

high-fidelity multi-demand progressive fragility model that enables probabilistic evaluation of

hurricane-induced damage while considering a full range of uncertainties [139, 17]. To address

the computational demand of the high-fidelity damage model, and therefore enable real-time

application, a Kriging metamodeling scheme is introduced for describing the mapping from site-

specific intensity measures, e.g., wind speeds and directions, to conditional statistics of the envelope

damages. For real-time forecast of damage, the metamodel is developed to accept information from
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parametric wind field models that provide prediction of the site specific intensity measures from

typical information provided by hurricane advisories issued by the national hurricane center (NHC).

Uncertainty in forecasting the site specific intensity measures is considered through introducing

uncertainty in the predicted hurricane tracks, pressure deficit, and filling model. Monte Carlo

simulation is used to propagate uncertainty through the metemodels and therefore provide estimates

of the risk of wind-induced damage to the building envelope. To illustrate the framework, the real

time prediction of damage risk to the envelope system of a 45-story building located in Miami,

Florida, and subject to three historical hurricane scenarios is considered. The calibrated metamodel

is seem to maintain high accuracy while being over four orders of magnitude faster than the high-

fidelity model therefore successfully enabling real time damage risk forecast.

5.3 Real-time forecast of site-specific wind intensity

5.3.1 Preamble

This section outlines a scheme for forecasting site-specific wind intensity based on the parametric

wind field models outlined in [190], as well as information from official hurricane advisory streams,

e.g., those from the national hurricane center of the United States. In particular, for an imminent

hurricane, information from the advisories on hurricane track and intensity is used as input to

the parametric wind field model therefore enabling forecast of the site-specific wind intensity

measures, e.g., the maximum site specific wind speed and associated direction to occur over the

evolution of the imminent hurricane. As outlined in [191], this site specific information on the

hurricane intensity can be used to provide high-fidelity probabilistic estimates of envelope damage

to engineered buildings.
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5.3.2 Hurricane forecast

Hurricane forecasting has experienced significant advances over the past several decades. The

NHC, for example, provides forecast/advisory for all Atlantic, eastern Pacific, and central Pacific

tropical and subtropical regions [192]. The forecast/advisory for each hurricane contains, among

other information: the current watches and warnings; the track forecast, defined by the latitude, 𝜙𝑡T ,

and longitude, _̄𝑡T , of the center of the hurricane at 𝑡T = 0 (present), 12, 24, 36, 48, 72, 96, and 120

hours into the future; and current intensity expressed as the central pressure 𝑝0. This information

is usually released every six hours at 03:00, 09:00, 15:00, and 21:00 UTC. In addition, the NHC

verifies the forecasts against the hurricane’s “best track” database by NHC’s post-storm analyses,

and provides the associated error data for the period 1970 to the present [193].

Based on the aforementioned information, stochastic hurricane track samples (𝜙𝑡T , _𝑡T) can be

generated, as shown in Figure 5.1, by adding to the track forecast coordinates (𝜙𝑡T , _̄𝑡T) random

errors (𝑒𝜙,𝑡T , 𝑒_,𝑡T):

(𝜙𝑡T , _𝑡T) = (𝜙𝑡T , _̄𝑡T) + (𝑒𝜙,𝑡T , 𝑒_,𝑡T) (5.1)

In particular, the statistical properties of the errors (𝑒𝜙,𝑡T , 𝑒_,𝑡T) are expected to be consistent with

the official error database. To this end, along- and cross-track forecast errors (𝑒A,𝑡T , 𝑒C,𝑡T) are

assumed to follow a multivariate Gaussian distribution:

[
𝑒A,0, 𝑒C,0, 𝑒A,12, 𝑒C,12, ...

]
∼ N(

[
𝑒A,0, 𝑒C,0, 𝑒A,12, 𝑒C,12, ...

]
,𝚺𝑒) (5.2)

where the mean error vector
[
𝑒A,0, 𝑒C,0, 𝑒A,12, 𝑒C,12, ...

]
and covariance matrix 𝚺𝑒 are calculated

from the forecast error database of the last five years after official NHC verification [193]. Sub-

sequently, error samples (𝑒A,𝑡T , 𝑒C,𝑡T) at all 𝑡T can be generated from Eq. (5.2), transformed to

the geographic coordinate system as longitude 𝑒𝜙,𝑡T and latitude 𝑒_,𝑡T , and added to the original

prediction (𝜙𝑡T , _̄𝑡T) therefore defining the track samples of Eq. (5.1). In addition, techniques such

as cubic spline interpolation can be implemented to infer hurricane positions between any two

consecutive predicted times.
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Figure 5.1: Real-time track forecast and generation of track samples.

5.3.3 Wind field model

At each time instant of a track sample, to evaluate the site-specific wind intensity, a parametric

hurricane wind field model is implemented [190]. This model takes the current central pressure

deficit Δ𝑝0 (the difference between the standard air pressure and the current central pressure 𝑝0)

and the radius of the maximum wind, 𝑟𝑀 , as parameters, and gives both the tangential and radial

velocity components at 500 m above the sea level as:

v(𝑟, 𝛽; 𝑡) = 𝑣M

[√︃
𝑟′−𝐵 exp(1 − 𝑟′−𝐵) + 𝑎2𝑟′2 − 𝑎𝑟′

]
(e sin 𝛽 − n cos 𝛽), 𝑟′ = 𝑟

𝑟𝑀
, 𝑎 =

𝑓 𝑟M
2𝑣M

(5.3)

u(𝑟, 𝛽; 𝑡) =

𝐾
𝑟
𝜕
𝜕𝑟

(
𝑟 𝜕𝑣
𝜕𝑟

)
− 𝐾 𝑣

𝑟2 − 𝐶𝑑𝑣
2

ℎ

√︃
1 + 𝛼2

𝑀

𝜕𝑣
𝜕𝑟
+ 𝑣
𝑟
+ 𝑓

 (e cos 𝛽 − n sin 𝛽), 𝑣 = | |v| | (5.4)

where v(𝑟, 𝛽; 𝑡) and u(𝑟, 𝛽; 𝑡) are respectively the tangential and radial velocity fields in the polar

coordinate system (𝑟, 𝛽) with origin at the hurricane center; 𝐵 is the Holland number that defines

the air pressure distribution; 𝐾 is the diffusion coefficient; 𝑓 is the Coriolis parameter, evaluated

as 𝑓 = 2Ω sin 𝜙𝑡 , with Ω ∼ 7.2921 × 10−5 rad/s the rotation rate of the Earth and 𝜙𝑡 the latitude

121



of the hurricane center; 𝐶𝑑 ∼ 0.0015 is the drag coefficient related to the boundary layer averaged

velocity; ℎ is the boundary layer thickness; 𝛼𝑀 = − | |u| || |v| | is the deflection coefficient that can be

assumed to be constant [194, 195]; 𝑣𝑀 is the maximum wind field velocity than can be estimated

as:

𝑣𝑀 =

√︄
𝐵Δ𝑝(𝑡)

𝑒𝜌𝑎 (1 + 𝛼2
𝑀
)

(5.5)

where 𝑒 is Euler’s number; 𝜌a ∼ 1.15 kg/m3 is the air density; Δ𝑝(𝑡) is the center pressure deficit

(with Δ𝑝(0) = Δ𝑝0), which can be estimated through the filling-rate model [196];

Δ𝑝(𝑡) = Δ𝑝(𝑡l) exp [−𝑎f(𝑡 − 𝑡l)] (5.6)

where 𝑡l is the time instant when the hurricane makes landfall; 𝑎 𝑓 is the filling constant, with the

uncertainty considered through a zero mean Gaussian variable 𝜖 :

𝑎f = 𝑎f,0 + 𝑎f,1Δ𝑝0 + 𝜖 (5.7)

where 𝑎f,0 and 𝑎f,1 are region-specific coefficients available in [196]. The filling model simulates

the decay process of the hurricane intensity after making landfall due to the increase of its central

pressure, i.e., the “filling” of the pressure deficit.

By superimposing the translation speed of the hurricane with the tangential and radial velocity

components relative to the hurricane center, the resultant wind speed field, i.e., relative to the

ground, is given by:

vs(𝑟, 𝛽; 𝑡) = v(𝑟, 𝛽; 𝑡) + u(𝑟, 𝛽; 𝑡) + c exp(− 𝑟
𝑟G
) (5.8)

where c is the translation speed vector of the hurricane; 𝑟G is the environmental length scale that

governing the radial decay of c.

Based on Eq. (5.8), the site-specific hourly-mean wind speed �̃�𝐻 (𝑡) can be obtained through:

�̃�𝐻 (𝑡) = 0.68 ·
(
𝑧0
𝑧01

)𝛿 ln [𝐻/𝑧0]
ln [𝐻met/𝑧01]

| |vs(𝑟s, 𝛽s; 𝑡) | | (5.9)

122



where (𝑟s, 𝛽s) are the polar coordinates locating the building site of interest with respect to the

hurricane eye; 𝑧0 and 𝑧01 are respectively the roughness length at the building site and meteorological

site; 𝐻 and 𝐻met (typically 10 m) are the height at the top of the building and the meteorological

site reference height, respectively; 𝛿 is an empirical constant; 0.68 is dimensionless coefficient used

for converting the wind speeds at the height of 500 m to the meteorological reference height, 𝐻met,

in open terrain [197, 196, 198]. The associated wind direction, �̃�(𝑡) ∈ [0◦, 360◦), defined as the

angle between vs( | |rsc | |, 𝛽; 𝑡) and n, can also be obtained. The site-specific wind intensity measures,

namely the site-specific maximum wind speed, 𝑣𝐻 = �̃�𝐻 (𝑡) = max |�̃�𝐻 (𝑡) |, and associated direction

𝛼 = �̃�(𝑡), can be subsequently estimated.

Through Monte Carlo simulation, the aforementioned forecast model can be used to provide

samples of the the site-specific wind intensity measures (𝑣𝐻 , 𝛼) with full consideration of the

uncertainty inherent to hurricane forecast (e.g., track stochasticity and central pressure deficit) and

adopted models (e.g., the radius of the maximum wind and filling rate). Moreover, this framework

is computationally treatable, allowing for the rapid generation of a large number of samples of

(𝑣𝐻 , 𝛼) in real-time.

5.4 High-fidelity building envelope damage assessment model

To evaluate hurricane-induced damage to envelope systems of engineered buildings, the coupled

multi-demand progressive damage assessment framework outlined in [139, 17] is adopted. This

high-fidelity assessment framework allows for the consideration of the coupled and time-evolving

nature of damages induced by different wind demands.

5.4.1 Data-informed stochastic wind pressure

The estimation of damage to building envelopes for a given realization of the intensity measures, i.e.

a realization of the the pair (𝑣𝐻 , 𝛼), requires the modeling of the external dynamic wind pressures.

These can be seen to represent realizations of stationary multivariate non-Gaussian stochastic
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processes. As outlined in [17], the generation of realizations of this stochastic process can be

informed by building specific wind tunnel test data in the form of time-varying vectors of external

dynamic pressure coefficients, C𝑝,e(𝛼; 𝑡), measured at a series of carefully located taps on the

surface of a rigid scale model of the building for a series of discrete wind directions 𝛼 ∈ {𝛼1, 𝛼2, ...}.

After appropriate scaling, this data can be used to calibrate a Gaussian representation of the external

pressure coefficients that captures the complex aerodynamics seen in the wind tunnel (e.g., vortex

shedding and detached flow). Data-driven translation models can then be used to capture any

non-Gaussian features.

The Gaussian process, CGP𝑝,e (𝑡;𝛼), is defined from the estimation of the second order statistical

properties, i.e., the mean C̄𝑝,e(𝑡;𝛼) and cross power spectral density matrix 𝚺C𝑝,e (𝜔;𝛼), of the

measured wind tunnel data. Subsequently, a proper orthogonal decomposition (POD)-based re-

duction of 𝚺P𝑝,e (𝜔;𝛼) is performed for each wind direction, 𝛼, and discrete frequency point, 𝜔, by

solving the following eigenvalue problem [199]:

𝚺C𝑝,e (𝜔;𝛼)𝚿𝑖 (𝜔;𝛼) = Λ𝑖 (𝜔;𝛼)𝚿𝑖 (𝜔;𝛼) (5.10)

where 𝚿𝑖 (𝜔;𝛼) and Λ𝑖 (𝜔;𝛼) are respectively the 𝑖th spectral POD mode shape and eigenvalue of

𝚺C𝑝,e . Typically, as the energy of the signal is generally associated with a few lower-order POD

modes, the Gaussian process can thus be well-approximated from the first 𝑚𝑝,e subprocesses, as:

CGP𝑝,e (𝑡;𝛼) ≈ ĈGP𝑝,e (𝑡;𝛼) = C̄𝑝,e(𝑡;𝛼) +
𝑚𝑝,e∑︁
𝑖=1

CGP𝑖
𝑝,e (𝑡;𝛼) (5.11)

where CGP𝑖
𝑝,e (𝑡;𝛼) is the 𝑖th independent subprocess generated for the 𝑖th POD mode 𝚿𝑖 (𝜔;𝛼) and

eigenvalue Λ𝑖 (𝜔;𝛼) as:

CGP𝑖
𝑝,e (𝑡;𝛼) =

𝑛𝜔−1∑︁
𝑗=0

2|𝚿𝑖 (𝜔 𝑗 ;𝛼) |
√︃
Λ𝑖 (𝜔 𝑗 ;𝛼)Δ𝜔 cos (𝜔 𝑗 𝑡 + 𝜽 𝑗 (𝜔 𝑗 ) + \𝑖 𝑗 ) (5.12)

where 𝜔 𝑗 = 𝑗Δ𝜔 is the 𝑗 th frequency point with 𝑛𝜔 the total number of frequency points and Δ𝜔
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the frequency step size, while 𝜽 𝑗 (𝜔 𝑗 ) is given by:

𝜽 𝒋 (𝜔 𝑗 ) = arctan
[ Im(𝚿𝑖 (𝜔 𝑗 ;𝛼))
Re(𝚿𝑖 (𝜔 𝑗 ;𝛼))

]
(5.13)

with \𝑖 𝑗 an additional random phase angle uniformly distributed in [0, 2𝜋].

The non-Gaussian features of the pressure coefficients can be effectively introduced by trans-

forming the marginal Gaussian distributions of ĈGP𝑝,e (𝑡;𝛼) to non-Gaussian marginal distributions

using translation models [200], therefore defining a stationary and multivariate non-Gaussian repre-

sentation of the external pressure coefficients C𝑝,e(𝑡;𝛼). In particular, the element-wise translation

models capturing the non-Gaussian features are calibrated once again to the building specific wind

tunnel test data. To this end, kernel-Pareto mixture models are adopted in which the raw wind

tunnel data is partitioned into into a lower tail region, a central region, and an upper tail region.

Kernel density is then used to represent the distribution of the data of the central region, while

extreme Pareto distributions are considered for the tail regions [201]. Once C𝑝,e(𝑡;𝛼) is generated,

the external dynamic pressure coefficient at an arbitrary location 𝝃, i.e., a point outside of where

pressures were measured on the building model used in the wind tunnel tests, can be obtained

through instantaneous interpolation of C𝑝,e(𝑡;𝛼), therefore defining C𝑝,e(𝑡;𝛼, 𝝃).

5.4.2 Wind demands

The demands of the envelope damage assessment framework are the in-plane deformations of

the envelope components due to the interstory drift response of the structural system, as well as

the out-of-plane net pressure on the envelope components. To evaluate the interstory drifts, the

structural responses of the system is estimated by solving the following equation of motion:

M ¥U(𝑡) + C ¤U(𝑡) +KU(𝑡) = F(𝑡; 𝑣𝐻 , 𝛼) (5.14)

where ¥U(𝑡), ¤U(𝑡), and U(𝑡) are respectively the acceleration, velocity, and displacement response

vectors; M, C, and K are respectively the mass, damping, and stiffness matrices of the structural
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system; and F(𝑡; 𝑣𝐻 , 𝛼) are the stochastic wind loads obtained through the integration of the external

wind pressures derived from the external pressure coefficients of Section 5.4.1 as:

p𝑒 (𝑡; 𝑣𝐻 , 𝛼, 𝝃) =
1
2
𝜌a𝑣

2
𝐻C𝑝,e(𝑡;𝛼, 𝝃) (5.15)

where 𝜌a is the density of air. It should be noted while Eq. (5.14) is written as a linear elastic

system, this assumption is by no means central to the framework of this work that can be equally

applied to general nonlinear systems From U(𝑡), the interstory drift ratios, 𝐷𝑟 (𝑡), at any location,

𝝃, of the building envelope can be directly estimated. Due to the progressive and coupled nature of

wind-induced damage to building envelopes, the entire time history of interstory response, 𝐷𝑟 (𝑡),

must be considered as the engineering demand parameter (as opposed to the commonly adopted

peak peak value in seismic damage modeling).

The out of plane net pressure demand acting on an envelope component of location 𝝃 is defined

as the difference between the external and the internal pressure and therefore as:

𝑝n(𝑡; 𝑣𝐻 , 𝛼, 𝝃) =
1
2
𝜌a𝑣

2
𝐻

[
𝐶𝑝,e(𝑡;𝛼, 𝝃) − 𝐶𝑝,i(𝑡; 𝝃)

]
(5.16)

where 𝐶𝑝,i( ¯𝑡, 𝝃) is the internal dynamic pressure coefficient at the envelope element, obtained as

outlined in [139]. In particular, in evaluating 𝑃𝑝,i(𝝃; 𝑡), the building system is considered as a set

of interconnected air spaces with both internal/external openings. The external openings are those

in the building envelope. In general, at the beginning of a hurricane the building is considered

enclosed, i.e., no external openings exist. As damage occurs, external openings will appear. As

discussed in [139], this not only significantly changes the internal pressure stochastic process but

also couples the drift and pressure demands as external openings generated by drift will in general

effect the net pressure demand. Once external openings occur, the internal dynamic pressure

coefficient, 𝐶𝑝,i(𝑡, 𝝃), can be estimated from solving the unsteady-isentropic Bernoulli equation of

transient airflow at each opening [202, 203] through an explicit 4th order Runge-Kutta method. It

should be noted that envelope components will in general experience static fatigue/delayed failure,
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which, instead of being related to instantaneous pressure, 𝑝n(𝑡; 𝝃), are better related to equivalent

net pressure [204]:

𝑝eq(𝑡; 𝑣𝐻 , 𝛼, 𝝃) =
(

1
𝑡eq

∫ 𝑡

0
[𝑝𝑛 (𝑡; 𝑣𝐻 , 𝛼, 𝝃)]𝑠

) 1
𝑠

(5.17)

where 𝑡eq is the reference duration, typically taken between 3 s to 60 s and 𝑠 is an empirical exponent.

5.4.3 Envelope capacities and damage measures

The susceptibility of each envelope component of the building system to damage induced by

excessive net pressure, 𝑝eq(𝑡; 𝑣𝐻 , 𝛼, 𝝃), and/or dynamic drift, 𝐷𝑟 (𝑡; 𝑣𝐻 , 𝛼, 𝝃), demands, is modeled

through considering suites of 𝑁𝑝 pressure-induced damage states {DS𝑝
𝑖

: 𝑖 = 1, 2, ..., 𝑁𝑝} and

𝑁𝐷𝑟 drift-induced damage states {DS𝐷𝑟𝑖 : 𝑖 = 1, 2, ..., 𝑁𝐷𝑟}. Each suite of damage states are

considered to follow a sequential damage logic, i.e., the occurrence of a certain damage state implies

that all preceding damage states have occurred. Each suite of damage states is associated with a

suite of sequential thresholds, i.e., capacities of the form {𝐶𝐷𝑟
𝑖

: 𝑖 = 1, 2, ..., 𝑁𝐷𝑟 , 𝐶𝐷𝑟𝑖−1 ≤ 𝐶
𝐷𝑟
𝑖
}

and {𝐶 𝑝

𝑖
: 𝑖 = 1, 2, ..., 𝑁𝑝, 𝐶 𝑝

𝑖−1 ≤ 𝐶
𝑝

𝑖
}. The exceedance at any point during the evolution of

a hurricane of a threshold by the respective pressure or drift demand, i.e., 𝑝eq(𝑡; 𝝃) or 𝐷𝑟 (𝑡; 𝝃),

indicates the occurrence of the damage state. Uncertainty in the capacities is modeled through

suites of sequential fragility functions (one fragility function or each damage state). In practice,

for a given time instant 𝑡 ∈ [0, 𝑇] with 𝑇 the duration of the event, the current damage states,

DS(𝑡), of an envelope component are the damage states associated with the highest capacities to

have been exceeded in [0, 𝑡] for each of the groups. In addition, it should be noted that the drift

and pressure induced damage states will in general be coupled, as, for instance, cracks induced

by excessive drift deformation will generally reduce the capacity of the envelope components to

resist net pressure and viceversa. To account for this coupling, a reduction factor, 𝜌𝐶 (DS), for the

capacities is generally considered. Initially 𝜌𝐶 (DS) = 1 and will degrade upon the occurrence of

a coupled damage state. This coupling, together with the coupling between the demands discussed

in Section 5.4.2, makes the process of damage accumulation progress in nature and requires the
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simulation of the damage process over the entire duration, 𝑇 , of the wind event.

5.4.4 High fidelity probabilistic envelope performance evaluation

As outlined in [139, 17, 140, 191], by embedding the models of Sections 5.4.1 to 5.4.3 in general

uncertainty propagation frameworks (e.g., Monte Carlo simulation schemes and their derivatives),

high-fidelity estimates of the probabilistic performance of the envelope system of engineered

buildings subject to extreme winds can be obtained. In particular, the generality of the models enable

a full range of uncertainty/stochasticity in, for example, the structural properties (e.g., M, C, and

K), the wind excitation (e.g.,𝐶𝑝,e(𝑡;𝛼, 𝝃)), the envelope capacities through the fragility functions of

the damage thresholds, and damage coupling through 𝜌𝐶 (DS), to be included. The computational

burden of this high-fidelity approach to probabilistic performance estimation of envelope systems is

significant as it requires time stepping through the entire hurricane event of duration 𝑇 and solving

at each time step the models of Sections 5.4.1 to 5.4.3. This includes simulating external stochastic

wind pressures, solving nonlinear internal pressure models (multiple times if cascading failure

occurs), integrating the dynamic equations of motions of the structural system, and performing the

coupled damage analysis of Section 5.4.3 for each damageable component of the envelope system

(typically in the order of thousands). Notwithstanding how in [191] it was shown that for accurate

estimation of envelope damage, the simulation need only be carried for the pair (𝑣𝐻 , 𝛼) with 𝑇 = 1

hour, typical run times on powerful multi-core desktop machines are in the order of days therefore

precluding real-time damage predication.

5.5 Metamodeling

5.5.1 Damage measures

As discussed in Section 5.4.4, the high-fidelity assessment framework is computationally prohibitive

for application in real-time damage assessment. To circumvent this issue, this work is focused
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on developing a metamodel on the assessment framework that is capable of providing equally

comprehensive information on the damage to the envelope system while requiring a fraction of

computational effort. To facilitate metamodeling, it is convenient to introduce, without any loss of

generality, the following dimensionless damage measure for each damage state of each damageable

envelope component:

𝐷𝐶 =
min𝑡∈[0,𝑇] [𝜌𝐶 (DS)𝐶 − 𝑒𝑑𝑝(𝑡)]

�̄�
(5.18)

where 𝐶 is the initial capacity of the envelope component to one of it potential damage states while

�̄� is the expected capacity. In particular, 𝐷𝐶 is a strictly decreasing function over the duration of

the wind event with 𝐷𝐶 < 0 indicating damage and E[𝐷𝐶] = 1 prior to any damage and in absence

of demand. Given specific values of the intensity measures, (𝑣𝐻 , 𝛼), the uncertainty/stochasticity

considered in the damage assessment framework leads to randomness associated with 𝐷𝐶 which, in

general, can be expressed through the probability density function 𝑝(𝐷𝐶 |𝑣𝐻 , 𝛼). In this research,

the first two moment of the 𝑝(𝐷𝐶 |𝑣𝐻 , 𝛼), namely the conditional mean `𝐷𝐶 |𝑣𝐻 ,𝛼 and standard

deviation 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼, are of interest for characterizing 𝑝(𝐷𝐶 |𝑣𝐻 , 𝛼). In the next section, the Kriging

metamodels will be introduced to approximate `𝐷𝐶 |𝑣𝐻 ,𝛼 and 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼 for each damage state of

all envelope components composing the system. It should be noted that this does not exclude the

possibility of implementing this framework with different measures for representing 𝑝(𝐷𝐶 |𝑣𝐻 , 𝛼),

e.g., higher-order statistic or kernel smoothing.

5.5.2 The Kriging metamodel

To address the computational bottleneck of the high-fidelity assessment framework, a Kriging

metamodel will be introduced. As in many metamodeling techniques, Kriging seeks to establish a

computationally efficient surrogate mapping from the space of the inputs x, i.e., the wind intensity

measures (𝑣𝐻 , 𝛼) in this case, to the space of the output 𝑦, i.e., the conditional statistics `𝐷𝐶 |𝑣𝐻 ,𝛼

and 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼 for each damage state of each envelope component of the system. In particular,
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Kriging is based on the prior assumption that is 𝑦 is a Gaussian process over the space of x:

�̂�(x) = gT(x)a + 𝜖x (5.19)

where g(x) is a vector of basis functions, with coefficients a to be calibrated; 𝜖x is a zero-mean

Gaussian process with its autocovariance 𝜎2
𝑦 𝑅(x, x′, 𝜽) characterized by the parameters collected

in 𝜽 .

Given a set of observations S = {(x𝑖, 𝑦𝑖), 𝑖 = 1, 2, ..., 𝑛x}, the joint distribution between S and

any new data points, e.g., S′ = {(x′
𝑖
, 𝑦′

𝑖
), 𝑖 = 1, 2, ..., 𝑛′x}, can be written as:


Y

Y′

 ∼ N
©«

GT

G′T

 a,


𝑹YY 𝑹YY′

𝑹T
YY′ 𝑹Y′Y′

 𝜎
2
𝑦

ª®®¬ (5.20)

where Y = [𝑦1, . . . , 𝑦𝑛x]T, Y′ = [𝑦′1, . . . , 𝑦
′
𝑛′x
]T, G = [g(x1), . . . , g(x𝑛x)], G′ =

[g(x′1), . . . , g(x
′
𝑛′x
)], while 𝑹YY is given by:

𝑹YY =


𝑅(x1, x1, 𝜽) . . . 𝑅(x1, x𝑛x , 𝜽)

...
. . .

...

𝑅(x𝑛x , x1, 𝜽) . . . 𝑅(x𝑛x , x𝑛x , 𝜽)


(5.21)

with 𝑹YY′ and 𝑹Y′Y′ defined similarly when considering 𝑅(x, x′, 𝜽) and 𝑅(x′, x′, 𝜽).

The predictive distribution at new points given the known observations S can therefore be derived

as [205]:

Y′|Y ∼ N
(
𝝁Y′ |Y,𝚺Y′ |Y

)
(5.22)

where 𝝁Y′ |Y = G′Ta + 𝑹T
YY′𝑹

−1
YY(Y −GTa) and 𝚺Y′ |Y = 𝑹Y′Y′𝜎

2
𝑦 − 𝑹T

YY′𝑹
−1
YY𝑹YY′𝜎

2
𝑦 are respec-

tively the mean and covariance of Y′ conditioned on Y. The Kriging predictor is exactly the mean

function in Eq. (5.22). For instance, the Kriging predictor for only a single new point �̂�(x) is given
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by:

�̂�(x) = gT(x)a + rT(x)b (5.23)

where r(x) = 𝑹Y�̂� =
[
𝑅(x1, x, 𝜽) . . . 𝑅(x𝑛x , x, 𝜽)

]T and b = 𝑹−1
YY(Y −GTa).

Overall, the predictive distribution contains unknown parameters a (b fully depends on a),

𝜎2
𝑦 and 𝜽 , which can be estimated by the maximum likelihood method [206]. In particular, the

likelihood function 𝐿 is can be defined as:

𝐿 (a, 𝜎2
𝑦 , 𝜽) = ln 𝑝(Y|a, 𝜎2

𝑦 , 𝜽 , x1, ..., x𝑛x)

= −𝑛x ln 2𝜋
2

− ln |𝑹YY |
2

−
𝑛x ln𝜎2

𝑦

2
−

(
Y −GTa

)T
𝑹−1

YY

(
Y −GTa

)
2𝜎2

𝑦

(5.24)

The maximum likelihood estimate of a can be obtained by imposing 𝜕𝐿
𝜕a = 0, therefore giving:

â =

(
G𝑹−1

YYGT
)−1

G𝑹−1
YYY (5.25)

Similarly, 𝜎2
𝑦 can be inferred by imposing 𝜕𝐿

𝜕 (𝜎2
𝑦 )

= 0 which yields:

�̂�2
𝑦 =

(
Y −GTâ

)T
𝑹−1

YY

(
Y −GTâ

)
𝑛x

(5.26)

Unlike a and𝜎2
𝑦 , the parameter 𝜽 depends on the generally nonlinear function 𝑅(x, x′, 𝜽). Therefore,

numerical optimization is generally required for its estimation. This optimization problem can be

simplified by substituting Eqs. (5.25) and (5.26) into Eq. (5.24), therefore yielding:

�̂� = arg min
𝜽

[
ln |𝑹YY | + 𝑛x ln �̂�2

𝑦

]
(5.27)

In Eq. (5.23), the first term gT(x)a in �̂�(x) is essentially a regression model with basis functions

collected in g(x). This term captures the global trend within the observations S. The second term

rT(x)b, on the other hand, acts as an interpolation model defined through the radial bases in r(x),
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which enables �̂�(x) to learn local behaviors in S, in addition to the global trend captured by the

regression model. Moreover, r(x) can be viewed as a weighting function that gives higher weights

to observations that are closer to the point x, indicated as �̂�(x), with adaptiveness as in the moving

least squares approach [82]. In addition, Eq. (5.23) is highly efficient since all time-consuming

calculations, e.g., matrix inversions and numerical optimizations involved in Eqs. (5.25) to (5.27),

will only need to be performed once for the training set S. This is an important advantage over, for

instance, the moving least squares approach [207]. These properties ensure, that once calibrated,

the Kriging metamodel possess the efficiency that will enable real-time damage assessment while

maintaining the fidelity and resolution of the framework outlined in Section 5.4.

5.6 Real-time damage risk forecast

By assuming that the conditional probabilities, 𝑃(𝐷𝐶 |𝑣𝐻 , 𝛼), can be described by an appropriate

two parameter distribution, the Kriging metamodels for `𝐷𝐶 |𝑣𝐻 ,𝛼 and 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼 can be used to

directly estimate 𝑃(𝐷𝐶 |𝑣𝐻 , 𝛼). From the knowledge of 𝑃(𝐷𝐶 |𝑣𝐻 , 𝛼), the unconditional risk of

damage, 𝑃(𝐷𝐶 < 0), for each envelope component and damage state of the building system, can

be directly evaluated through the law of total probability as:

𝑃(𝐷𝐶 < 0) =
∬
𝑣𝐻 ,𝛼

𝑃(𝐷𝐶 < 0|𝑣𝐻 , 𝛼)𝑝(𝑣𝐻 , 𝛼)𝑑𝑣𝐻𝑑𝛼 (5.28)

where 𝑝(𝑣𝐻 , 𝛼) is the joint probability density function between 𝑣𝐻 and 𝛼 while 𝑃(𝐷𝐶 < 0|𝑣𝐻 , 𝛼)

is the conditional probability of {𝐷𝐶 : 𝐷𝐶 < 0}, i.e., of damage. In practice, by generating in

real-time 𝑁 samples of 𝑣𝐻 and 𝛼 belonging to 𝑝(𝑣𝐻 , 𝛼) through the forecast model of Section

5.3.2, Eq. (5.28) can be directly estimated through Monte Carlo simulation as:

𝑃(𝐷𝐶 < 0) ≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑃(𝐷𝐶 < 0|𝑣𝐻,𝑖, 𝛼𝑖) (5.29)

were 𝑣𝐻,𝑖 and 𝛼𝑖 for 𝑖 = 1, 2, ..., 𝑁 are the samples belonging to 𝑝(𝑣𝐻 , 𝛼).
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Figure 5.2: Schematic of the proposed real-time damage risk forecasting framework.

The risk of damage of Eq. (5.29) can be seen as a direct measure of disaster consequence and

provides powerful information in support to early emergency response and management. Figure 5.2

presents an overview flow chart of the proposed risk forecasting framework for envelope systems

of engineered buildings. It should be noted that this framework can be applied to portfolios of

engineered buildings, e.g., all the critical facilities of a given county, as the Kriging metamodels

can be completely calibrated offline.
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5.7 Case study

5.7.1 The building system

A rectangular 45-story building located in downtown Miami, Florida, is considered as a case study

(Figure 5.3a). The total height of the building is 180 m, with each story height 4 m. The building’s

structural system is a steel braced frame with box sections for columns and standard W24 (American

Institute for Steel Construction (AISC) standard members) for beams and braces. The structure

was designed to meet the requirement of interstory drift ratios not exceeding 1/400 under a wind

speed with the mean recurrence interval (MRI) of 50 years and to have all members remaining

linear elastic for wind speeds with MRIs of 1700 years. In addition to the structural mass, a carried

mass of 0.38 t/m2 at each floor level was considered. As a result, the first three natural frequencies

of the structure were 1.30, 1.67, and 2.70 rad/s, respectively. For the dynamic response analyses,

the first 10 vibration modes were considered sufficient. In integrating the modal equations, the

modal damping ratios were considered fully correlated with uncertainty describe by a lognormal

distribution with mean 1.4% and coefficient of variation of 0.3.

The envelope system consists of a total of 8,100 damageable glazing components, with 180

elements on each floor (Figure 5.3b). Each of the envelope components is composed of an internal

and external laminated glass pane, both with a size of 1.2 m × 2 m and thickness of 6 mm. Each

envelope component was assumed to be susceptible two drift induced damage states, DS𝐷𝑟1 and

DS𝐷𝑟2 respectively, and one pressure-induced damage state, DS𝑝. The drift induced damage states

physically refer to the occurrence of hair-line cracking or cracking of the laminated glass panes,

while the pressure induced damage state refers to glass blow-out. In evaluating 𝑝eq, 𝑡eq and 𝑠 were

taken respectively as 60 s and 16 in Eq. (5.17). The parameters of the fragility functions describing

the uncertainties in the damage states are summarized in Table 5.1 [208, 209]. In addition, to

account for the coupling between the occurrence of a drift induced damage state and the reduction

in the capacity of the component to resist net pressure, a random reduction factor 𝜌𝐶 𝑝 is considered

for 𝐶 𝑝. In particular, it is assumed that 𝜌𝐶 𝑝 follows a truncated normal distribution in [0, 1] with a
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Table 5.1: Parameters of fragility functions.

Damage state Phenomenon Median Dispersion Mean Std
DS𝐷𝑟

1 (rad) Hair-line crack 0.021 0.45 - -
DS𝐷𝑟

2 (rad) Crack 0.024 0.45 - -
DS𝑝 (kPa) Blow-out - - 5.29 0.91

coefficient of variance of 0.1. The mean reduction in capacity to resist net pressure upon occurrence

of DS𝐷𝑟1 or DS𝐷𝑟2 was set to 90% and 10% respectively.

5.7.2 Kriging-based rapid damage assessment: Offline stage

5.7.2.1 Kriging training

A high-fidelity training dataset, S, was simulated through the framework in Section 5.4. In

particular, the support points x𝑖 = (𝑣𝐻,𝑖, 𝛼𝑖) were generated through a grid sampling plan defined

by 𝛼 belonging to the discrete set {0◦, 10◦, ..., 350◦} and the axis of 𝑣𝐻 divided into three, five,

three equispaced intervals of ranges 0 m/s to 43.90 m/s (MRI = 50 years), 43.90 m/s to 75.66 m/s
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Figure 5.3: (a) The case study building and (b) the unfolded envelope system.

135



(MRI = 50 years) 

(MRI = 107 years) 

(MRI = 1013 years) 

Training dataset Testing dataset

Figure 5.4: The training dataset (support points) and the testing dataset.

(MRI = 107 years), and 75.66 m/s to 94.70 m/s (MRI = 1013 years), as shown in Figure 5.4. The

data grid is denser for higher 𝑣𝐻 where stronger nonlinearity is expected in the Kriging metamodel.

Further, it should be noted that 𝛼 is periodic, and thus the training dataset is augmented by adding

a grid at 𝛼 = 360◦, with data copied from 𝛼 = 0◦. Within this context, a total of 𝑛x = 444

support points were generated for the Kriging training. At each of the support points, the first two

conditional moments, i.e., `𝐷𝐶 |𝑣𝐻 ,𝛼 and 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼, were estimated for all 24,300 potential damage

states (8,100 envelope components with three damage states each) of the envelope system. To this

end, Monte Carlo simulations were carried out using 1,000 samples at each support point from

which `𝐷𝐶 |𝑣𝐻 ,𝛼 and 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼 were directly estimated for all 24,300 potential damage states.

In defining a Kriging metamodel, the selection of the correlation function 𝑅(x, x′, 𝜽) is critical

to accurate predictions. To this end, the commonly used forms summarized in Table 5.2 will

be comparatively discussed so as to determine the most appropriate correlation function for the

applications of this work. The second-order polynomial bases g(𝑣𝐻 , 𝛼) = [1, 𝑣𝐻 , 𝛼, 𝑣2
𝐻
, 𝑣𝐻 �̂�, 𝛼

2]

was considered to enable a reasonable extrapolation at inquiry points that fall outside of the range

covered by the support points. Within this context, a single output Kriging predictor is calibrated
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Table 5.2: Correlation functions considered in calibrating the Kriging metamodel.

Function 𝑅 𝑗

Exponential exp
(
−\ 𝑗 |𝑥 𝑗 − 𝑥′𝑗 |

)
Generalized exponential exp

(
−\ 𝑗 |𝑥 𝑗 − 𝑥′𝑗 |\𝑛+1

)
Gaussian exp

(
−\ 𝑗 |𝑥 𝑗 − 𝑥′𝑗 |2

)
Linear max{0, 1 − \ 𝑗 |𝑥 𝑗 − 𝑥′𝑗 |}

Spherical 1 − 1.5[ 𝑗 + 0.5[3
𝑗
, [ 𝑗 = min{1, \ 𝑗 |𝑥 𝑗 − 𝑥′𝑗 |}

Spline


1 − 15[2

𝑗
+ 30[3

𝑗
, [ 𝑗 ∈ [0, 0.2]

1.25(1 − [ 𝑗 )3, [ 𝑗 ∈ (0.2, 1)
0, [ 𝑗 ∈ [1, +∞)

, [ 𝑗 = \ 𝑗 |𝑥 𝑗 − 𝑥′𝑗 |

Note: 𝑅(x, x′, 𝜽) = ∏𝑛
𝑗=1 𝑅 𝑗 .

Table 5.3: The computational effort measured by elapsed time during training (in seconds).

Kernel `𝐷
𝐶𝐷𝑟

1
|𝑣𝐻 ,𝛼 𝜎𝐷

𝐶𝐷𝑟
1
|𝑣𝐻 ,𝛼 `𝐷

𝐶𝐷𝑟
2
|𝑣𝐻 ,𝛼 𝜎𝐷

𝐶𝐷𝑟
2
|𝑣𝐻 ,𝛼 `𝐷𝐶𝑝 |𝑣𝐻 ,𝛼 𝜎𝐷𝐶𝑝 |𝑣𝐻 ,𝛼

Exponential 382.16 282.69 366.70 281.84 306.86 356.07
Generalized exponential 434.18 411.47 410.63 406.51 940.09 451.07

Gaussian 333.22 322.46 320.46 319.45 309.77 319.45
linear 128.78 115.22 121.68 108.77 222.99 145.13

Spherical 121.91 100.45 118.51 100.52 199.49 164.72
Spline 197.61 144.92 186.53 144.33 287.34 268.02

Note: Minimum training times indicated with underlining.

for each of the three pairs of damage statistics, i.e., `𝐷
𝐶𝐷𝑟

1
|𝑣𝐻 ,𝛼, 𝜎𝐷

𝐶𝐷𝑟
1
|𝑣𝐻 ,𝛼, `𝐷

𝐶𝐷𝑟
2
|𝑣𝐻 ,𝛼, 𝜎𝐷

𝐶𝐷𝑟
2
|𝑣𝐻 ,𝛼,

`𝐷𝐶𝑝 |𝑣𝐻 ,𝛼, and 𝜎𝐷𝐶𝑝 |𝑣𝐻 ,𝛼, for the 8,100 envelope components. In this work, the calibration is

performed through the highly efficient and robust Design and Analysis of Computer Experiments

(DACE) toolbox [210]. The computational effort is measured in terms of the total time elapsed in

learning the damage statistics for all 8,100 envelope components in the training set. A comparative

summary is reported in Table 5.3. It is seen that the spherical correlation function is the most

efficient for calibrating. Note that all computations of this work were performed on a personal

computer with Intel(R) with i7-8700 Core(TM) with 32 GB RAM.

5.7.2.2 Kriging testing

To test the generality of the calibrated Kriging predictor, a testing dataset composed of 𝑛′x = 60

random samples was considered (asterisks in Figure 5.4). The average mean error (𝐴𝑀𝐸) [207] is
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considered to quantify the accuracy:

𝐴𝑀𝐸 =
1
𝑛e

𝑛e∑︁
𝑘=1

[∑𝑛′x
𝑖=1

��𝑦′
𝑖
(x′
𝑖
; �̄� 𝑘 ) − �̂�′𝑖 (x′𝑖; �̄� 𝑘 )

��∑𝑛′x
𝑖=1

��𝑦′
𝑖
(x′
𝑖
; �̄� 𝑘 )

��
]

(5.30)

where 𝑘 = 1, 2, ..., 𝑛e are the indices of the envelope elements, and 𝑛e = 8, 100 in this case. This

error measure is defined to reflect the global performance of the predictor in reproducing a certain

damage statistic for all envelope elements and testing samples. The 𝐴𝑀𝐸 by Kriging considering

each of the correlation functions is summarized in Table 5.4. In addition, the Kriging surfaces and

predicted values of `𝐷𝐶 |𝑣𝐻 ,𝛼 and `𝐷𝐶 |𝑣𝐻 ,𝛼 ± 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼 for a representative envelope component are

compared to the high-fidelity data in Figure 5.5. The prediction accuracy demonstrated in Figure 5.5

is consistent with Table 5.4. It is seen from Table 5.4 that overall the exponential correlation is

shows the best accuracy, while the spherical correlation exhibited similar performance. However,

the most widely used Gaussian correlation performs the worst among the considered correlation

function. It can be observed from the Kriging surfaces in Figure 5.5 that the predictor using

the Gaussian correlation is showing an erroneous fluctuation around lower wind speeds. This

fluctuation is the major reason for the worst performance of the Gaussian correlation function. In

addition, the simulation efficiency relative to the high-fidelity damage assessment framework is

shown in Table 5.5, where all the correlation functions enable the Kriging metamodel to be more

than four orders of magnitude faster than the high-fidelity framework. In particular, the linear

correlation function is seen to have the highest efficiency, which is reasonable as it is the simplest

in terms of function operations. The exponential and spherical correlation functions are seen to

have similar efficiency, with both accelerating the damage evaluation by more than 30,000 folds.

The spline correlation is seen to have the lowest efficiency due to the more complex operations

involved. Overall, the spherical correlation is excellent in training, simulation efficiency, as well as

accuracy, and thus will be adopted in the following online stage, i.e., real-time forecast.
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Figure 5.5: The Kriging surfaces and predicted values of `𝐷𝐶 |𝑣𝐻 ,𝛼 and `𝐷𝐶 |𝑣𝐻 ,𝛼 ± 𝜎𝐷𝐶 |𝑣𝐻 ,𝛼
compared to the high-fidelity data. The results shown are for the 20th (count from the left)
envelope element on the front elevation in Figure 5.3(b) at the 10th floor.
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Table 5.4: Prediction accuracy measured by 𝐴𝑀𝐸 over the testing dataset.

Kernel `𝐷
𝐶𝐷𝑟

1
|𝑣𝐻 ,𝛼 𝜎𝐷

𝐶𝐷𝑟
1
|𝑣𝐻 ,𝛼 `𝐷

𝐶𝐷𝑟
2
|𝑣𝐻 ,𝛼 𝜎𝐷

𝐶𝐷𝑟
2
|𝑣𝐻 ,𝛼 `𝐷𝐶𝑝 |𝑣𝐻 ,𝛼 𝜎𝐷𝐶𝑝 |𝑣𝐻 ,𝛼

Exponential 1.77% 3.38% 1.72% 3.38% 0.76% 2.57%
Generalized exponential 1.79% 3.90% 1.74% 3.91% 0.76% 2.59%

Gaussian 3.07% 5.60% 2.89% 5.60% 4.70% 5.97%
linear 1.87% 3.82% 1.83% 3.82% 0.77% 2.65%

Spherical 1.81% 3.27% 1.75% 3.27% 0.76% 2.58%
Spline 2.04% 3.25% 1.95% 3.25% 0.84% 2.94%

Table 5.5: Comparison of the simulation efficiency between the high-fidelity and Kriging models
over the testing dataset.

Kernel High-fidelity Kriging Speed-up by
Exponential

15.45 days

42.26 sec 31,578
Generalized exponential 52.22 sec 25,559

Gaussian 44.58 sec 29,946
linear 39.03 sec 34,196

Spherical 42.62 sec 31,317
Spline 78.71 sec 16,956

5.7.3 real-time damage forecast: Online stage

To demonstrate the applicability of the calibrated Kriging metamodel for real-time damage risk

forecasting, three historical hurricanes that impacted Florida, namely hurricane Matthew in 2016

[211], hurricane Irma in 2017 [212], and hurricane Dorian in 2019 [213], are considered. The

intensity of each hurricane is described through the evolution of the pressure deficit, Δ𝑝0. This

is reported in Figure 5.6 together with the best track estimate. To implement the framework, the

site-specific wind intensity is forecast every six hours from when the hurricane event begins. The

forecast is based on the scheme outlined in Section 5.3 and therefore the real-time advisories issued

by NHC during the hurricane events. In particular, for the scheme outlined in Section 5.3, the

Holland number was taken as 𝐵 = 1.5, the boundary layer thickness was taken as ℎ = 1000 m, and

the diffusion coefficient was taken as 𝐾 = 0.5^2𝐵𝑣𝑟 with ^ = 0.4 [190]. In addition, the deflection

coefficient was taken as 𝛼𝑀 = tan 20◦. The environmental length scale 𝑟G in Eq. (5.8) was taken

as 500 km. For the wind speed transformation of Eq. (5.9), the terrain roughness length at the

site of interest and the meteorological station were respectively 𝑧0 = 1.28 m and 𝑧01 = 0.03 m,

while the height at the building top and the meteorological station were 𝐻 = 180 m and 𝐻met = 10
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m. The empirical constant was taken as 𝛿 = 0.0706. Within this context, samples of the forecast

site-specific wind intensity were generated every six hours, and input into the calibrated Kriging

metamodel to predict for the conditional damage statistics. These were used to calibrate prescribed

conditional distribution functions for 𝑃(𝐷𝐶 |𝑣𝐻 , 𝛼) and the damage risks of all envelope elements

were subsequently evaluated through Eq. (5.29). In particular, based in experience, the prescribed

conditional distribution functions for 𝑃(𝐷𝐶 |𝑣𝐻 , 𝛼) were assumed as shifted lognormal distributions

for drift-induced damage and normal distributions for pressure-induced damage. Following these

assumptions, the conditional probability of a given envelope component damage state can be written

as:

𝑃(𝐷𝐶 < 0|𝑣𝐻 , 𝛼) = Φ

(
𝑙 − 𝑚
𝑠

)
(5.31)

with Φ(·) the standard normal distribution function and where for one of the two (𝑖 = 1, 2)

drift-induced damage states: 𝑙 = ln(1 − `𝐷
𝐶𝐷𝑟
𝑖
|𝑣𝐻 ,𝛼), 𝑚 = − ln

(√︂
𝜎2
𝐷

𝐶𝐷𝑟
𝑖
|𝑣𝐻 ,𝛼 + 1

)
, and 𝑠 =√︂

ln(𝜎2
𝐷

𝐶𝐷𝑟
𝑖
|𝑣𝐻 ,𝛼 + 1); while for the pressure-induced damage state: 𝑙 = 0, 𝑚 = `𝐷𝐶𝑝 |𝑣𝐻 ,𝛼, and

𝑠 = 𝜎𝐷𝐶𝑝 |𝑣𝐻 ,𝛼.

In terms of uncertainty, in addition to the randomness of the structural properties, capacities,

stochasticity of the wind loads, and storm tracks, the radius to the maximum wind, 𝑟𝑀 , and filling

model of Eq. (5.7), through the parameter 𝜖 , are considered as uncertain with, [214, 196], 𝑟𝑀

following a lognormal distribution and 𝜖 a normal distribution. Additionally, the current central

pressure deficit Δ𝑝0 is assumed to follow a normal distribution, with mean set to the value of Δ𝑝0

obtained from the real-time hurricane advisory and standard deviation set to 9.5 mb, as suggested

in [215].

Through the developed framework, real-time damage forecasts during the entire lifetime of the

three hurricanes were generated. The framework was used to provide forecasts up to five days

ahead. In particular, forecasts for three and five days ahead for hurricane Matthew (2016), Irma

(2017), and Dorian (2019) are shown in Figures 5.7, 5.8, and 5.9, respectively. The five day

forecast for hurricane Matthew and Dorian are not included as the damage risks were seen to
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Dorian 2019

(24 Aug – 09 Sep)

Matthew 2016

(28 Sep – 09 Oct)

Irma 2017

(30 Aug – 12 Sep )

Δp0

Figure 5.6: Best tracks and pressure deficits of the three considered historical hurricanes.

be negligible. The results contain comprehensive information on the likelihood of an envelope

component experiencing damage ranging form glazing unit cracking to complete blowout. The

computational time to generate/update these results was eight minutes on the desktop computer

of Section 5.7.2.1. This efficiency clearly illustrates the potential of the approach as a real-time

damage risk framework. The comprehensive information of damage risk to the building envelope

would allow disaster managers to order preventative measures to be implemented or evacuation

of personnel and equipment to be performed ahead of time in certain parts of the building or, if

deemed necessary, the entire building.

5.8 Conclusion

In this chapter, a metamodel-driven real-time risk forecast framework for hurricane-induced build-

ing damage was outlined for the envelope systems of engineered buildings. The framework consists
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Figure 5.7: Real time damage forecast on Oct 04 at 03:00 AM UTC (3 days ahead) for envelope
components during hurricane Matthew.
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Figure 5.8: Real time damage forecast on Sep 05 at 21:00 PM UTC (5 days ahead) and Sep 07
21:00 PM UTC (3 days ahead) for envelope components during hurricane Irma.

144



NHC Cone of 

uncertainty

Forecasted track

Best track

Front      Right        Back        Left

Front      Right        Back        Left

Front      Right        Back        Left

Figure 5.9: Real time damage forecast on Aug 30 at 21:00 PM UTC (3 days ahead) for envelope
components during the hurricane Dorian.
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of a scheme for site-specific wind intensity forecasting and the Kriging metamodeling technique

for rapid probabilistic damage quantification. In particular, with high-fidelity damage being sim-

ulated through a recently developed probabilistic multi-demand progressive and coupled fragility

model, the Kriging metamodeling technique is introduced as a surrogate to gain the efficiency

needed for real-time applications. The Kriging metamodel, once calibrated, is further used in

Monte Carlo simulations for rapidly estimating damage risk from real time forecasts of site-specific

wind intensity of an imminent hurricane obtained by integrating real-time hurricane advisories

with parametric wind field models. The efficiency and applicability of the developed framework

was illustrated through a case study consisting in a 45-story building located in Miami, Florida.

Through a comparative study, it was found that Kriging with spherical correlation function has

the best overall performance for the applications of this work. This Kriging configuration, once

calibrated, can predict the second order conditional damage statistics associated with each compo-

nent of a envelope system with remarkable accuracy and an efficiency of more than four orders of

magnitude as compared to the high-fidelity reference solution. Subsequently, with the calibrated

Kriging metamodel, real-time forecast of damage risks is successfully demonstrated by consid-

ering the real-time advisories of three historical hurricane events. The efficiency and accuracy

of the developed framework demonstrates its potential as a decision support tool for emergency

response and management of buildings in hurricanes prone regions. Moreover, the framework

can be extended to portfolios of buildings or infrastructures therefore defining a regional real-time

hurricane-induced damage alert framework.
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CHAPTER 6

Summary and Conclusions

6.1 Summary

This dissertation explores rapid stochastic response estimation of high-dimensional dynamic nonlin-

ear structures as well as related applications. A set of mechanics-based and data-driven approaches

were developed for efficient response time history simulation. Enabled by the immense gain in

efficiency, a real-time risk forecast framework for hurricane-induced damage to envelope systems

was developed. Detailed key contributions are summarized as follows:

6.1.1 Efficient reliability assessment through AFNA

A novel step-by-step solution scheme, denoted AFNA, was developed. The scheme is based on

the generalization of the fast nonlinear integration approach through enabling large deflections

while incorporating adaptiveness into all algorithm parameters, including time step size, number

of reduced coordinates, and potential elements experiencing nonlinearity. The algorithm was

developed to handle, but is not limited to, fiber-based/stress resultant-based discretizations, both

of which allow distributed plasticity along the members of the discretization. The algorithm

was compared to and validated against the state-of-the-art implementation of direct integration

in OpenSees. The AFNA scheme was shown to be of comparable accuracy while reducing

the computational time by up to an order of magnitude. The scheme was incorporated within the

setting of dynamic shakedown therefore providing a means to not only evaluate the state of dynamic
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shakedown, but also a comprehensive understanding of the performance of structural systems post

shakedown.

6.1.2 Nonlinear stochastic dynamic response metamodeling

Two new metamodeling approaches were proposed in this work by combining data-driven Galerkin

projection-based MOR with dynamic simulators, including MIMO NARX models and LSTM

networks. In particular, the data-driven Galerkin projection is first performed to reduce the original

structural system with bases constructed through a data-driven POD approach. In the first proposed

approach, a MIMO NARX model is subsequently introduced to capture the dynamics of the

nonlinear and coupled reduced system. In addition, a novel least angle regression with pruning

(LARP) algorithm is developed for the training of the MIMO NARX model. Further, in the second

proposed approach, the aforementioned MIMO NARX model is replaced by the LSTM network, as

an exploration of using the fast-emerging deep learning techniques in metamodeling. In addition,

to accelerate the efficiency of the network, the wavelet approximation is introduced to convert

the reduced excitation and responses to significantly shorter wavelet coefficient sequences, which

were subsequently taken as the inputs and outputs of the LSTM network. The efficiency and

applicability of the metamodeling approaches were illustrated through full-scale structural systems

with hysteretic nonlinearity.

6.1.3 Real-time risk forecast of hurricane-induced damage

A Kriging metamodel-based real-time damage forecasting scheme for envelope systems of engi-

neered buildings was developed. Based on a recently proposed framework [139], envelope damage

is characterized through progressive multi-demand coupled fragility models. Within this context,

damage measures are defined for each coupled damage state of the system with a full range of

uncertainties in structural properties, capacities, as well as wind load stochasticity. By calibrating

the metamodels for damage prediction, deterministic mappings are defined from the input space of

the site-specific wind speed and direction to the output space of the means and standard deviations

148



of the damage measures of the envelope components. In addition, a real-time hazard forecasting

framework is developed, based on parametric hurricane models, to quantify the joint distribution

of the site-specific wind speed and direction. This real-time hazard forecasting framework is

integrated with the kriging metamodel to provide comprehensive forecasts on envelope damage

statistics.

6.2 Conclusions

Conclusions from this research are summarized as follows:

6.2.1 Efficient reliability assessment through AFNA

• A highly efficient mechanics-based scheme is developed for providing response time histories

both at and beyond the state of dynamic shakedown.

• The scheme is nested in a reliability framework for a probabilistic analysis of performance

over a full range of uncertainties, limit states, and wind directions, enabling more accurate

response evaluation for extremely nonlinear scenarios, as well as rapid time history analysis

for any samples of interests.

• the scheme allows for the first time the integration of dynamic shakedown with time stepping

approaches during the probabilistic assessment of structural systems in extreme winds.

6.2.2 Nonlinear stochastic dynamic response metamodeling

• In exploring metamodeling through MIMO NARX models:

– The NARX-based metamodeling was extended to high-dimensional structures with

strong hysteretic nonlinearity, enabling its application in practical engineering problems.

– A LARP algorithm was developed for NARX calibration, resulting in enhanced accuracy

in metamodeling high-dimensional systems with strong and complex nonlinearity.
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– The resultant metamodel was seen not only to be capable of reproducing the dynamic

response of the system with remarkable accuracy, but also to be over an order of

magnitude faster than classic integration approaches.

• In exploring the possibility of using the fast-emerging deep learning techniques in metamod-

eling:

– An LSTM-based metamodeling approach suitable for high-dimensional nonlinear sys-

tems under stochastic excitation is developed.

– The calibrated metamodels are shown to be capable of accurately reproducing both the

global response time histories of any DOF as well as the local hysteretic response, with

computational speedups of over three orders of magnitude as compared to state-of-the-

art high-fidelity nonlinear dynamic solvers.

– This non-intrusive metamodeling technique has excellent generalization and involves

less human intervention as compared to MIMO NARX approaches.

6.2.3 Real-time risk forecast of hurricane-induced damage

• The developed real-time risk forecasting framework for the estimation of hurricane-induced

damage to envelope systems, opened the door to real-time damage forecast of portfolios of

engineered buildings (i.e., critical facilities).

• The metamodeling scheme for rapid damage quantification achieved computational speedups

of around four orders of magnitude as compared to the high-fidelity models.

• The possibility of probabilistic real-time forecast of site-specific wind intensity measures

(e.g., maximum site specific wind speed and associated direction for a imminent hurricane)

was shown to be feasible.

150



6.3 Future work

The continued development of tools that enable better rapid response quantification of dynamic

nonlinear structures and their applications are worth pursuing. Because of how a major aim of such

tools is to serve as a response simulator under extreme events, the detailed behaviors of structures

exhibiting strong nonlinearity, or near collapse behavior, needs to be emphasized. For mechanics-

based approaches, such as the AFNA method of this work, a broader set of formulations that are

capable of considering a wider range of nonlinear mechanisms, e.g., hardening and degradation,

buckling, etc., require development. This would enable more realistic modeling of structural

systems near collapse without loss of efficiency. For data-driven approaches, data associated with

strongly nonlinear structures will in general not only be more time-consuming to obtain but also

exhibit a much greater variability. To handle this situation, it would be worth exploring efficient

algorithms that integrate available physical information into the metamodel training. This has

the potential to alleviate the increased demand for data while guiding the metamodel to learn the

essential features at the root of the increased response variability.

In the light of the powerful response estimation tools that are likely to be developed in the

future, efficient holistic regional simulation frameworks for estimating the consequences of natural

disasters to general engineering systems, including structures or infrastructures, should be explored.

This research would entail the development and maintenance of an inventory of rapid simulators

for groups of closely related systems in a considered region. Once developed, this would create a

platform that could either serve as a real-time information support system for emergency response

and management under imminent extreme events, or be a simulation tool for regular decision-

making given expected hazards.
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APPENDIX A

Piece-wise exaction solutions for dynamic equations

The standard form of the piece-wise exact solution for the 𝑙th mode can be expressed as:


𝑌𝑙 (𝑡 + Δ𝑡) = 𝑎1𝑌𝑙 (𝑡) + 𝑎2 ¤𝑌𝑙 (𝑡) + 𝑎3�̄�𝑙 (𝑡) + 𝑎4�̄�𝑙 (𝑡 + Δ𝑡)

¤𝑌𝑙 (𝑡 + Δ𝑡) = 𝑏1𝑌𝑙 (𝑡) + 𝑏2 ¤𝑌𝑙 (𝑡) + 𝑏3�̄�𝑙 (𝑡) + 𝑏4�̄�𝑙 (𝑡 + Δ𝑡)
(A.1)

where �̄�𝑙 (𝑡) = 𝜙𝑇𝑙 [F(𝑡) − FNLC] is the effective external modal loads with 𝜙𝑇
𝑙

the mass normalized

mode shape of the 𝑙th model. The coefficients in Eq. (A.1) are calculated for each mode depending

on whether it is a dynamically significant mode or massless static mode. In particular, for dynamic

modes, the modal equations of motion can be expressed as the following second order differential

equation:

¥𝑌𝑙 (𝑡) + 2𝜔𝑙b𝑙 ¤𝑌𝑙 (𝑡) + 𝜔2
𝑙𝑌𝑙 (𝑡) = �̄�𝑙 (𝑡) (A.2)
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The coefficients in Eq. (A.1) are given by [216]:



𝑎1 = 𝑒−b𝜔Δ𝑡
(

b√
(1−b2)

𝑠𝑖𝑛𝜔DΔ𝑡 + 𝑐𝑜𝑠𝜔DΔ𝑡

)
𝑎2 = 𝑒−b𝜔Δ𝑡

(
1
𝜔D
𝑠𝑖𝑛𝜔DΔ𝑡

)
𝑎3 = 1

𝑘

{
2b
𝜔Δ𝑡
+ 𝑒−b𝜔Δ𝑡

[(
1−2b2

𝜔DΔ𝑡
− b√

1−b2

)
𝑠𝑖𝑛𝜔DΔ𝑡 −

(
1 + 2b

𝜔Δ𝑡

)
𝑐𝑜𝑠𝜔DΔ𝑡

]}
𝑎4 = 1

𝑘

[
1 − 2b

𝜔Δ𝑡
+ 𝑒−b𝜔Δ𝑡

(
2b2−1
𝜔DΔ𝑡

𝑠𝑖𝑛𝜔DΔ𝑡 + 2b
𝜔Δ𝑡

𝑐𝑜𝑠𝜔DΔ𝑡
)]

𝑏1 = −𝑒−b𝜔Δ𝑡
(

𝜔√
(1−b2)

𝑠𝑖𝑛𝜔DΔ𝑡

)
𝑏2 = 𝑒−b𝜔Δ𝑡

(
𝑐𝑜𝑠𝜔DΔ𝑡 + b√

(1−b2)
𝑠𝑖𝑛𝜔DΔ𝑡

)
𝑏3 = 1

𝑘

{
− 1

Δ𝑡
+ 𝑒−b𝜔Δ𝑡

[(
𝜔√
1−b2
+ b

Δ𝑡
√

1−b2

)
𝑠𝑖𝑛𝜔DΔ𝑡 − 1

Δ𝑡
𝑐𝑜𝑠𝜔DΔ𝑡

]}
𝑏4 = 1

𝑘Δ𝑡

[
1 − 𝑒−b𝜔Δ𝑡

(
b√
(1−b2)

𝑠𝑖𝑛𝜔DΔ𝑡 + 𝑐𝑜𝑠𝜔DΔ𝑡

)]

(A.3)

where 𝜔D = 𝜔
√︁
(1 − b2); 𝑘 = 𝜔2. The subscripts 𝑙 for the 𝑙th mode are dropped in the equation

above for clarity.

For massless static modes, the modal equations of motion can be expressed as the following first

order differential equation:

𝑐𝑙 ¤𝑌𝑙 (𝑡) + 𝑘 𝑙𝑌𝑙 (𝑡) = �̄�𝑙 (𝑡) (A.4)

where 𝑐𝑙 and 𝑘 𝑙 are respectively the corresponding terms of the generalized damping and stiffness
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matrices for the 𝑙th mode. The coefficients in Eq. (A.1) can then be calculated as:



𝑎1 = 𝑒−
𝑘
𝑐
Δ𝑡

𝑎2 = 0

𝑎3 =
𝑐

(
1−𝑒− 𝑘

𝑐 Δ𝑡
)

𝑘2Δ𝑡
− 𝑒−

𝑘
𝑐 Δ𝑡

𝑘

𝑎4 = 1
𝑘
+
𝑐

(
𝑒−

𝑘
𝑐 Δ𝑡−1

)
𝑘2Δ𝑡

𝑏1 = − 𝑘
𝑐
𝑒−

𝑘
𝑐
Δ𝑡

𝑏2 = 0

𝑏3 = 𝑒−
𝑘
𝑐 Δ𝑡

𝑐
+ 𝑒−

𝑘
𝑐 Δ𝑡

𝑘Δ𝑡
− 1

𝑘Δ𝑡

𝑏4 = 1−𝑒− 𝑘
𝑐 Δ𝑡

𝑘Δ𝑡

(A.5)

in which the subscripts 𝑙 are dropped for clarity.
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APPENDIX B

Fiber-based AFNA

The fiber-based AFNA starts from creating a mode list containing necessary modes for local fiber

strain representation that will be later used in the adaptive process. In particular, a fiber strain

modal coordinate transformation matrix, 𝚿f, is first introduced to determine the importance of each

mode to the evaluation of each fiber strain parameter, as follows:

𝚿f = LBT𝚽 (B.1)

where L = diag[l1, · · · , l𝑛𝑏×𝑛𝑠 ] is a block-diagonal matrix collecting section compatibility matrices,

which define the locations of all fibers of the integration point, for all integration points of the

discretization. By dividing each column of the matrix 𝚿f by its maximum absolute value then

assembling in the new matrix �̂�f, the necessary modes for the 𝑖th fiber strain parameter can be

determined by selecting all 𝑗 th modes with importance factors larger than a predefined threshold,

i.e., |Ψ̂ 𝑓,𝑖, 𝑗 | > 𝑒Ψ̂.

Similar to the stress resultant-based AFNA presented in Section 2.4.2, the solution process starts

from determining if inelasticity occurs in the time step Δ𝑡 through the following equation while

considering only the dynamic modes:

NT (
𝝈𝐸 (𝑡 + Δ𝑡) + 𝝈NLC(𝑡)

)
− R ≤ 0 (B.2)

where 𝝈NLC(𝑡) is the nonlinear fiber correction stresses at the previous time step for all fibers of the
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structure, while 𝝈𝐸 (𝑡 +Δ𝑡) = E𝝐 (𝑡 +Δ𝑡) is the elastic predictor of fiber stresses for all fibers of the

structure, in which E = diag[E1, · · · ,E𝑛 𝑓
] is a diagonal matrix containing elastic moduli for all 𝑛 𝑓

fibers of the structure, while the fiber strains of all fibers of the structure 𝝐 (𝑡 + Δ𝑡) are determined

from the modal responses estimated by the piece-wise exact method, as follows:

𝝐 (𝑡 + Δ𝑡) = 𝚿f,dynYdyn(𝑡 + Δ𝑡) (B.3)

If nonlinearity occurs, i.e., Eq. (B.2) is not satisfied for all fibers, the solution process moves back to

the previous time step 𝑡 and starts the adaptive process with a smaller step size Δ𝑡/[ until reaching

the time 𝑡 + Δ𝑡. Within each small time step Δ𝑡/[, the following equation is first used to check if

there is any potential nonlinear fiber, and if not, the responses are estimated directly through the

piece-wise exact method and the solution process moves on to the next small step.

NT (
𝝈𝐸 (𝑡 + Δ𝑡/[) + 𝝈NLC(𝑡)

)
− aR ≤ 0 (B.4)

If any potential nonlinear fiber is identified from the equation above, the nonlinear responses

will be solved through the iterative process until satisfying a user-defined convergence criterion.

In particular, with the identified potential nonlinear fibers and the associated necessary modes

extracted from the mode list created at the start of the analysis, the iterative process solves the

responses for each step 𝑘 considering only relevent fibers and modes to ensure computational

efficiency, as follows: 
𝝐 (𝑘) (𝑡 + Δ𝑡/[) = �̃�fỸ

(𝑘) (𝑡 + Δ𝑡/[)

¤̃𝝐 (𝑘) (𝑡 + Δ𝑡/[) = �̃�f
¤̃Y(𝑘) (𝑡 + Δ𝑡/[)

(B.5)

The corresponding increment in nonlinear fiber stresses, Δ𝝈 (𝑘) (𝑡 + Δ𝑡/[), with respect to the

previous time step 𝑡 can be determined from the responses estimated from Eq. (B.5) using basic

nonlinear properties. The associated increment in nonlinear fiber correction stresses is then given
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by:

Δ𝝈 (𝑘)NLC(𝑡 + Δ𝑡/[) = Δ𝝈 (𝑘) (𝑡 + Δ𝑡/[) − EΔ𝝐 (𝑘) (𝑡 + Δ𝑡/[) (B.6)

By integrating Δ𝝈 (𝑘)NLC(𝑡 + Δ𝑡/[) over the section and along the element, the element end force

increments can then be transformed to the increment in nonlinear correction forces in global

coordinates using Eq. (B.6). In particular, the increment in element end forces for the 𝑛th element

can be determined by

Δq(𝑘)NLC,𝑛 (𝑡 + Δ𝑡/[) =
𝑛𝑠∑︁
𝑖=1

𝐿𝑛

2
B𝑇𝑛 (𝑥𝑖)l𝑇𝑛 (𝑥𝑖)A𝑛 (𝑥𝑖)Δ𝝈 (𝑘)NLC,𝑛 (𝑡 + Δ𝑡/[; 𝑥𝑖)𝑤𝑖 (B.7)

in which A𝑛 (𝑥𝑖) is a diagonal matrix collecting the areas of all fibers at the 𝑖th integration point

of the 𝑛th element, while l𝑛 (𝑥𝑖) is the section compatibility matrix at the 𝑖th integration point of

the 𝑛th element. The nonlinear correction forces are then updated for the next iteration using Eq.

(2.29) until the user defined convergence criterion is met.
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