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ABSTRACT

Cavitation bubbles are widely observed in a variety of applications, from naval engineer-

ing to biomedical science. One of the major outcomes of cavitation is structural damage

produced by the repeated collapse of bubbles, which is undesirable in naval applications.

Due to limited optical access and the destructive nature of bubbles, damage induced by

cavitation bubbles is not well understood.

As cavitation bubbles undergo a rapid compression that concentrates energy into a

small volume, some of this energy is released through a shock wave that has the poten-

tial to induce damage to the nearby rigid surface. To develop strategies to mitigate the

damage induced by bubbles, it is essential to understand the relationship between the

shock properties and the initial conditions (e.g., bubble size, and the liquid and bubble

pressures). For this purpose, we consider the canonical problem of the collapse of a

single bubble in a liquid, both in a free field and near a solid surface. In particular, we

investigate energy transport in the system comprising the bubble and surrounding liquid,

with a focus on the role of compressibility.

We first examine the role of liquid compressibility in energy concentration and re-

lease during the inertial collapse of a spherical gas bubble. We develop an improved

approach for calculating energy transport during bubble collapse, which enables more

accurate predictions of energy transport. We also provide closed-form expressions for

the energy and size of the bubble at collapse in terms of the parameters governing the

problem, which can account for the effects of liquid compressibility. We further provide

an analytical model relating the shock pressure to the parameters governing the problem.
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Our framework and scaling relations could be used in conjunction with single-phase

simulations as a means to estimate the cavitation activity and to help devise strategies to

mitigate cavitation.

We identify the dependence of the bubble response and key shock properties on

waveform parameters in ultrasound-driven bubble growth and collapse. We develop a

framework to understand how energy is transferred from the wave to the system, and to

determine the effect of viscosity and surface tension on energy transport in the system.

This framework enables us to identify relationships describing bubble expansion during

growth and energy concentration at collapse based on the waveform properties.

When the bubble is adjacent to a neighboring boundary, the boundary breaks the

symmetry, such that the bubble collapses in a non-spherical fashion, thereby producing

a re-entrant jet that penetrates the bubble, impacts the distal side, and thus generates a

water-hammer shock. We investigate the role of compressibility in the dynamics of a gas

bubble collapsing near a rigid surface. By comparing direct simulations with potential

flow simulations, we assess the effects of compressibility on the dynamics of the bubble

and the re-entrant jet. We observe a delay between the two approaches, attributed to

differences in the pressure fields at an early stage due to compressibility effects. Never-

theless, the bubble morphologies are similar for most of the collapse, with discrepancies

visible only in the final stages of collapse. We discuss the effects of compressibility on

the dynamics of the bubble and the jet at jet impact. This knowledge will improve the

understanding of the importance of waves generated during collapse and will inform ef-

forts to develop a better model to predict shock properties.
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CHAPTER 1

Introduction

This chapter provides an introduction to (i) cavitation, (ii) the damage induced by cavitation bub-

bles, (iii) knowledge gaps in damaging mechanisms, and (iv) an overview of the thesis. First, this

chapter begins with a general description of cavitation and how it damages solids. Then, the chap-

ter provides a general overview of cavitation bubble dynamics, before engaging in a more detailed

discussion of dynamics of a single bubble, with a focus on the energy transfer between liquid and

bubble. Finally, the chapter concludes with an overview of the thesis, research objectives, and

highlights key contributions to the field of cavitation erosion and ultrasound-induced cavitation.

1.1 Cavitation in science and engineering

Cavitation is the process whereby vapor bubbles are formed due to the reduction of local pressure

in a liquid. Conventionally, in contrast to boiling, cavitation occurs when the local pressure drops

below the saturation vapor pressure, such that the liquid undergoes a phase transition to vapor at a

given temperature (Brennen, 1995).

Once cavitation bubbles are generated, they interact dynamically with the surrounding flow

fields, such that the behavior of these bubbles depends on the local pressure variations. For a

small increase in pressure, a bubble collapses and rebounds at a small amplitude. Conversely, for

a large increase in pressure, a bubble undergoes a violent collapse, called inertial collapse. During

inertial collapse, the liquid inertia dominates the motion of the bubble wall and accelerates the

collapsing motion, such that the bubble volume is reduced by several orders of magnitude relative
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to the maximum bubble volume. Through this process, the energy of a system is concentrated

into the bubbles during the collapse. As a result, pressure and temperature build up inside the

bubble at collapse. As the bubbles rebound, they emit high-amplitude pressure waves (or shock

waves) propagating outward. These strong waves are one of the major consequences of cavitation,

which damages the neighboring rigid surfaces (Tomita & Shima, 1986; Philipp & Lauterborn,

1998; Lindau & Lauterborn, 2003; Johnsen & Colonius, 2009).

The destructive nature of cavitation bubbles plays a critical role in determining the sustainabil-

ity of a system in a large variety of applications, including naval hydrodynamics (Knapp et al.,

1970; Plesset & Prosperetti, 1977), turbomachinery (Arndt, 1981), and the Spallation Neutron

Source (SNS) (Riemer et al., 2014; Winder et al., 2020), as illustrated in figure 1.1. In naval hy-

drodynamics, cavitation bubbles can cause severe structural damage to the facilities, leading to

financial losses. Low-pressure regions are created due to rapid changes in the velocity field near

the solid surfaces and lead to the generation of cavitation bubbles. The repeated collapse of cav-

itation bubbles can erode the surface of naval structures (e.g., rudders, hydropropellers, etc.), as

illustrated in figure 1.1(a), and can significantly reduce the performance of these structures. In an-

other example, cavitation erosion also reduces the sustainability of the SNS at Oak Ridge National

Laboratory (Riemer et al., 2014; Winder et al., 2020). The left sides of figure 1.1(b) shows the

schematic of the SNS target. In the SNS, an accelerator-based system directs short proton pulses

to a steel target filled with liquid mercury. However, these proton pulses create large, transient

increases in the local pressure in the mercury, leading to the generation of cavitation bubbles. As

the bubbles collapse inertially, the surface of the target container is damaged, as shown in the right

side of figure 1.1(b), and must be replaced.

While cavitation erosion is undesirable in hydraulic applications, cavitation bubbles are utilized

to provide better strategies for therapeutic and diagnostic ultrasound. Figure 1.1(c) schematically

depicts the histotripsy procedure, which employs focused ultrasound and cavitation bubbles to

homogenize soft tissue into acellular debris for treatment of prostate diseases, blood clots (throm-

bolysis), kidney stones, and solid tumors (Maxwell et al., 2009; Khokhlova et al., 2015). When the
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Figure 1.1: Cavitation phenomena in various applications; (a) erosion along rudders (Chahine
et al., 2014); (b) schematic of the SNS target with mercury supply and return passages (Winder
et al., 2020) and eroded target container (Riemer et al., 2014); (c) histotripsy procedure and disin-
tegration of tissue after treatment (Bader et al., 2019); (d) bubble cluster collapse near an artificial
kidney stone and damage on stone (Pishchalnikov et al., 2003).

focused ultrasound pulses interact with a gas nucleus, the negative pressure regions in the pulses

break the mechanical equilibrium sustained at the nucleus–liquid interface, which leads to the

growth and collapse of bubbles. For the purpose of the histotripsy, pulses with a sufficiently large

amplitude are used to cause the bubble to undergo inertial cavitation (i.e., explosive growth and

inertial collapse) (Khokhlova et al., 2015; Bader et al., 2019). During this process, the surrounding

medium is significantly deformed, and shock waves are produced at collapse, thus damaging the

nearby tissue. In extracorporeal shock wave lithotripsy, cavitation also plays a role in fractionat-

ing kidney stones (Pishchalnikov et al., 2003). Focused shock waves fractionate kidney stones by

inducing large tensile stresses within the stones as the shock waves are reflected (Zhong, 2013).

In addition, cavitation bubbles are generated near the kidney stones due to rarefactional pressures,
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and as the bubbles collapse inertially, the nearby kidney stones can also be damaged (Zhong et al.,

1993; Brujan, 2004; Weinberg & Ortiz, 2009), as shown in figure 1.1(d).

With the numerous aforementioned applications, it is essential to have a better understanding

of the damaging mechanisms of cavitation bubbles to both mitigate or utilize cavitation bubbles.

The following subsection identifies the knowledge gaps in cavitation erosion.

1.1.1 Cavitation erosion

Cavitation erosion is a challenging problem in the field of multiphase flows and fluid–structure

interactions. The wide range of length scales, as well as multiple physical phenomena, involved

in cavitation erosion poses a challenge to investigating this phenomenon. For instance, cavitating

flows include micro-size vapor cavities and millimeter-scale macroscopic flows that interact with

each other (Ghahramani et al., 2021), such that the ability to experimentally measure all flow

structures simultaneously is limited. In addition, for the numerical analysis of cavitation erosion, a

framework for simultaneously considering changes in solids (e.g., structural deformation) and fluid

flows (e.g., transient pressure fields) is needed, which requires excessive computing capabilities.

This section offers a detailed overview of the erosion process.

The process of cavitation erosion to hard and metallic surfaces can be explained by a sequence

of four steps (Kim et al., 2014). The first step is the production of vapor bubbles; local pressure

reduction in the flows near the surfaces leads to generation of large-scale vapor structures, which

break up into small vapor bubbles. Second, when the bubbles are subjected to high pressure re-

gions, large liquid pressure drives the collapse of the bubble, which is often inertial. The outcomes

of such collapse (e.g., shocks) give rise to a localized, high intensity on material surface over a

short duration, on the order of a microsecond. Thus, the mechanical energy concentrated on a

small area of surface produces high stresses that can exceed the resistance of the material (e.g.,

yield stress or ultimate strength), such that local damage is induced (Franc & Michel, 2006; Kim

et al., 2014). In the third step, the repeated collapse of bubbles causes pit formation on the surface

(Philipp & Lauterborn, 1998; Dular et al., 2013). Finally, a large number of superimposed pits
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Figure 1.2: Cavitation bubble traveling on the curved surface; series of photograph of (a) a hy-
drodynamically generated bubble traveling on the Schiebe headform (Ceccio & Brennen, 1991)
and (b) a bubble traveling on the wall of an elliptical profile mounted in the tunnel cavitation
(Guennoun, 2006), and (c) superposition of the images of a laser-induced bubble generated above
hydrofoil (Tinguely, 2013).

leads to the mass loss of the material (Chahine et al., 2014).

While most of these steps in the erosion process have been well characterized, the impact loads

due to cavitation bubble collapse in the second step still remains unclear. Several studies have

revealed how the problem parameters (i.e., bubble size, driving pressure, and distance between

the bubble centroid and a surface) are dependent on the impact pressure on a nearby rigid surface

(Naudé & Ellis, 1961; Tomita & Shima, 1986; Vogel et al., 1989; Supponen et al., 2016, 2017).

However, these relations are only applicable to limited cases, and a more comprehensive descrip-

tion of the relationship is needed to predict damage potential in bubble collapse.

1.2 Cavitation bubble dynamics

In industrial applications, microscopic bubbles interact with the underlying macroscopic flows,

which significantly affect the surrounding pressure fields near the bubbles (Bark & Bensow, 2014).

Figure 1.2 shows the growth and collapse of a bubble traveling on the surface of structures (i.e.,

a Schiebe headform, elliptic profile in a tunnel, and hydrofoil) (Ceccio & Brennen, 1991; Guen-
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noun, 2006; Tinguely, 2013). Although the bubble is generated by different mechanisms (i.e.,

hydrodynamics and lasers), it shows similar shapes and behaviors due to the strong effects of the

macroscopic flows on bubble dynamics (Tinguely, 2013). Specifically, the bubble shows a par-

ticular shape in the final stage of collapse (Ceccio & Brennen, 1991; Guennoun, 2006; Tinguely,

2013); thus, bubble dynamics during collapse depend on the macroscopic properties of the flows.

The interactions between microbubbles and macroscopic phenomena also play a key role in

therapeutic and diagnostic ultrasound. Figure 1.3(a) shows the growth of nanobubbles induced

by ultrasound in histotripsy treatment, which has a wavelength much greater than the size of the

bubbles. The ultrasound significantly changes the surrounding pressure fields near the bubbles,

such that it leads to the growth and collapse of the bubble. The bubble oscillations contribute to

the fragmentation of kidney stones in lithotripsy therapy, as illustrated in figure 1.3(b). Thus, the

consequences of bubble oscillations depend on the macroscopic properties of the waveform.

For bubbles that are smaller than spatial variations in the surrounding instantaneous pressure

fields, the individual bubble dynamics are linked to the macroscopic flows or external waves by

pressure difference p∞(t) − pb(t), where p∞(t) is the pressure fields in large-scale flows and pb is

the pressure inside the microbubble, through the well-known Rayleigh–Plesset equation (Rayleigh,

1917; Plesset, 1949). This equation assumes a perfectly spherical bubble in inviscid, incompress-

ible flows, which is given by

RR̈ +
3
2

Ṙ2 =
pb(t) − p∞(t)

ρl
−

4µl

ρl

Ṙ
R
−

2S
ρlR

, (1.1)

where R is the bubble radius, ρl is the liquid density, µl is the dynamic viscosity of the liquid and

S is the surface tension. Other advanced models of bubble dynamics are typically based on this

equation (Keller & Kolodner, 1956; Flynn, 1975b; Nigmatulin et al., 1981; Prosperetti, 1991); for

these models, the pressure difference is still a bridge relating the microscopic bubble dynamics to

macroscopic flows or external waves. In naval hydrodynamics, these bubbles are often observed in

vortical flows, including in the flows near a rotating machine (e.g., a hydropropeller) (Kim et al.,
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Figure 1.3: Ultrasound-induced cavitation; (a) (Left) focal pressure waveforms with a 10-cycle
pulse used in histotripsy and (right) growth of cavitation bubbles (Bader et al., 2019). (b) (Left)
Pressure wavesforms produced by shock wave lithotripers and (right) fragmented kidney stones in
water (Zhong, 2013).

2014). Thus, it is critical to understand the dynamics of individual bubbles and their relation to

the macroscopic flows or waves to reduce or control cavitation-induced damage. This area is still

not well understood. Specifically, understanding of the dependence of impact loads and bioeffects

on the problem parameters is key to develop a predictive model for cavitation-induced damage

in naval hydrodynamics and therapeutic ultrasound. The following subsections describe a current

understanding of single bubble dynamics and discuss the energy transport in a system needed for

describing the relationship between the individual bubbles and macroscopic phenomena.

1.2.1 Spherical bubble dynamics

Rayleigh collapse occurs when a spherical bubble in an infinite sea of liquid collapses due to an

instantaneous increase in the surrounding pressure fields (Brennen, 1995). The Rayleigh collapse

problem also corresponds to the limiting case of bubble collapse induced by a shock wave prop-
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agating at an infinite speed. This problem has been investigated, in the context of cavitation ero-

sion (Brennen, 1995). The dynamics of a spherical bubble are described by the Rayleigh–Plesset

equation (equation 1.1). Other complex physics (e.g., liquid compressibility, thermal conduction,

viscosity, surface tension) have been introduced to this equation to better describe bubble collapse

in practical applications (Gilmore, 1952; Keller & Kolodner, 1956; Keller & Miksis, 1980; Pros-

peretti, 1991).

In the Rayleigh collapse problem, when the far-field liquid pressure is sufficiently large, the

bubble collapses inertially. During inertial collapse, the initial energy in a system is concentrated

in the bubble. However, as the bubble perturbs the liquid during collapse, acoustic waves propa-

gate radially outward from the bubble wall, such that the bubble loses its energy through acoustic

radiation. As a result, the concentration of energy in the bubble is limited, such that the strength of

a shock produced at collapse is reduced (Obreschkow et al., 2011; Tinguely, 2013). To predict the

damage induced by inertial collapse, a model for shock strength based on initial conditions (e.g.,

bubble sizes, driving pressures), is needed. However, a more precise understanding of the effects

of liquid compressibility is required to achieve this goal.

When subjected to high-amplitude ultrasound waves, bubble dynamics are significantly af-

fected by temporal variations in the surrounding pressure fields. As waves interact with a pre-

existing bubble, they introduce energy to the liquid–bubble system, which drives the explosive

growth and inertial collapse of the bubble, followed by energy release via shocks produced at col-

lapse. The input energy is concentrated into the bubble during collapse, while some of the energy is

transferred to the surrounding medium via shock waves. The outcomes of such collapse (e.g., iner-

tial collapse, shock emission) may lead to damage to the surrounding medium, which can produce

undesirable bioeffects (Patterson et al., 2012; Versluis et al., 2020) and mechanically ablate tissue

in biomedical applications (Xu et al., 2004; Parsons et al., 2006; Khokhlova et al., 2015). Further

investigation of the dependence of the bubble response on external waves is needed to better utilize

cavitation bubbles and control bioeffects.
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Figure 1.4: Dynamics of a non-spherical bubble near a rigid boundary; (a) Growth and collapse
of a laser-induced cavitation bubble near a boundary and (b) non-spherical collapse of a bubble,
leading to the formation of the re-entrant jet and emission of the shock (Supponen et al., 2017).

1.2.2 Non-spherical bubble dynamics

When the bubble is adjacent to a neighboring boundary, the presence of the boundary breaks the

symmetry, such that the bubble collapses in a non-spherical fashion (Naudé & Ellis, 1961; Plesset

& Chapman, 1971; Blake et al., 1986; Vogel et al., 1989; Philipp & Lauterborn, 1998; Brujan et al.,

2002; Supponen et al., 2016). Figure 1.4 shows the dynamics of a non-spherical bubble collapsing

near a rigid boundary. At the very beginning of the collapse, the initial pressure difference leads

to the generation of rarefaction waves, propagating radially outward, hitting a nearby object, and

reflecting off objects with negligible attenuation due to a large impedance mismatch between the

boundary and liquid. The reflected waves interact with the collapsing bubble, leading to significant

changes in nearby pressure fields. However, with the assumption of an incompressible liquid flow,

the bubble instantaneously communicates with the nearby boundary; there are significant differ-

ences in the surrounding pressure fields between the compressible and incompressible cases. Thus,

the overall bubble and jet dynamics are expected to depend significantly on liquid compressibility.

In addition, the hydrodynamic interactions between the bubble and the boundary drive the for-

mation of a high-speed liquid re-entrant jet toward the boundary, penetrating the bubble. When the

re-entrant jet impacts the opposite side of the bubble wall, a water-hammer shock wave is produced
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(see figure 1.4(b)), propagating radially outward and subsequently impinging upon the neighbor-

ing wall, thus creating an impact load. In non-spherical collapse, as with spherical collapse, the

initial energy is concentrated into the bubble at collapse. However, the re-entrant jet hinders the

converging bubble–wall motion such that non-spherical collapse is less effective in energy concen-

tration than spherical collapse (Pearson et al., 2004; Wang, 2016). In addition, when the bubble

collapses farther from the boundary, it remains spherical for a longer time during its collapse until

the waves reflect back onto the bubble. Furthermore, during non-spherical collapse, energy con-

centration also becomes less efficient due to liquid compressibility, similar to spherical collapse. In

particular, due to energy losses through acoustic radiation, the formation of the re-entrant jet and

the subsequent emission of shocks are significantly affected by liquid compressibility, especially

at high driving pressures. Thus, a better understanding of the effect of compressibility on non-

spherical bubble dynamics is needed to build a predictive model for damage potential in bubble

collapse near a rigid boundary.

1.3 Thesis overview

This thesis aims to use theoretical modeling and high-fidelity simulations to (i) better understand

the growth and collapse of gas bubbles in an infinite medium and near a rigid surface, and (ii)

predict the properties of shocks produced at collapse. This knowledge is instrumental in estimating

the damage potential of bubble collapse as well as in predicting the dynamics of a bubble in an

acoustic field. The key contributions to the field of cavitation bubble dynamics are summarized

below:

• We present the role of liquid compressibility in energy concentration and release during

inertial collapse of a spherical gas bubble. We develop an improved approach for calculating

energy transport during bubble collapse, which enables more accurate predictions of energy

transport. We also provide closed-form expressions for the energy and size of the bubble at

collapse in terms of the parameters governing the problem, which can account for the effects
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of liquid compressibility. We further provide an analytical model relating the shock pressure

to the parameters governing the problem (Chapter 2).

• We identify the dependence of the bubble response and key shock properties on waveform

parameters in ultrasound-driven bubble growth and collapse. We develop a framework to

understand how energy is transferred from the wave to the system, and to distinguish the

effect of viscosity and surface tension on energy transport in the system. This framework

enables us to obtain the relationships describing bubble expansion during the growth and

energy concentration at collapse based on the waveform properties. We further employ these

relationships to predict damage potential in bubble growth in histotripsy (Chapter 3).

• We investigate the role of compressibility in the dynamics of a gas bubble collapsing near

a rigid surface. By comparing direct simulations with potential flow calculations, we assess

the effects of compressibility on the dynamics of the bubble and the re-entrant jet. We show

that for a given jet thickness, there exists a time difference between the compressible and

incompressible results. For the most part of the collapse, similar overall bubble kinematics

were observed for both results after implementing a time shift. In the final stages of the

collapse, observable discrepancies between the compressible and incompressible results are

visible. Finally, we demonstrate how liquid compressibility plays a role in the dynamics of

the bubble and re-entrant jet (chapter 4).

11



CHAPTER 2

Energy Concentration and Release during the Inertial Collapse

of a Spherical Gas bubble in a Liquid

The inertial collapse of a cavitation bubble concentrates energy into a small volume and subse-

quently releases it into the surroundings in the form of a shock wave. While the incompressible

solution to this problem is known and effectively governed by a single parameter (the normalized

initial pressure ratio), the compressible version additionally depends on a measure of compressibil-

ity. The present chapter examines the role of compressibility on energy concentration and release

during inertial collapse of a spherical gas cavity. This work improves both the methods for and un-

derstanding of this problem in several ways. First, a correction is made to the calculation of energy

losses due to compressibility effects, thus enabling more accurate predictions of energy transport.

We also provide closed-form expressions for the energy and size of the bubble at collapse (i.e.,

at minimum volume) in terms of the parameters governing the problem, which account for the

effects of compressibility. Finally, we develop an analytical model relating the shock pressure to

the parameters governing the problem.

2.1 Introduction

When a cavitation bubble reaches a size much greater than its equilibrium radius (Noltingk &

Neppiras, 1950; Flynn, 1975a,b; Leighton, 2012; Gaudron et al., 2015; Barajas & Johnsen, 2017),

its collapse is inertially dominated: driven by the pressure difference between the far field and its
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contents, the bubble collapses as inward-rushing liquid confines the non-condensible gas inside the

bubble and vapor condenses. Under such conditions, cavitation bubbles undergo a rapid compres-

sion such that the bubble volume decreases by several orders of magnitude between its maximum

and minimum sizes. This collapse concentrates energy into a small volume, thereby producing

high localized pressures/temperatures and emitting a pressure wave (or shock wave) propagating

radially outward, with the potential to damage neighboring objects (Plesset & Prosperetti, 1977;

Arndt, 1981; Johnsen & Colonius, 2009; Kim & Kim, 2014; Beig et al., 2018). Cavitation-bubble

collapse gives rise to a variety of outcomes, including erosion of metallic structures (e.g., naval

propellers (Knapp et al., 1970; Plesset & Prosperetti, 1977), turbomachinery (Arndt, 1981), the

Spallation Neutron Source target (Riemer et al., 2014; Winder et al., 2020)), damage to soft ma-

terials (e.g., ultrasound-generated tissue homogenization (Xu et al., 2004; Maxwell et al., 2009)),

ice formation (Hunt & Jackson, 1966; Hickling, 1994), and medical treatments (removal of cal-

cified coronary stenoses (Brinton et al., 2019; Karimi Galougahi et al., 2020) and drug delivery

to the brain (Pouliopoulos et al., 2020; Todd et al., 2020)). Predicting such outcomes requires an

accurate description of the collapse process and associated transient pressure fields. In particular,

shock waves are known to play an important role in cavitation-induced damage (Rayleigh, 1917;

Hickling & S., 1964; Vogel et al., 1989; Johnsen & Colonius, 2009; Kim et al., 2014; Supponen

et al., 2017).

Although in practice bubbles are commonly observed to collapse in a non-spherical fashion

due to symmetry-breaking actions such as the presence of a solid object or an accelerating field

(Tomita & Shima, 1986; Vogel et al., 1989, 1996; Johnsen & Colonius, 2009; Supponen et al.,

2016, 2017; Beig et al., 2018), a large body of theoretical investigations have considered spherical

bubble dynamics (Besant, 1948; Rayleigh, 1917; Plesset, 1949; Gilmore, 1952; Keller & Kolod-

ner, 1956; Flynn, 1975a; Plesset & Prosperetti, 1977; Keller & Miksis, 1980; Vogel et al., 1989;

Prosperetti, 1991; Brennen, 1995; Leighton, 2012; Tinguely et al., 2012; Obreschkow et al., 2013).

In fact, careful experiments (Supponen et al., 2016, 2017) demonstrate that in the absence of per-

turbations bubbles can remain highly spherical until the very last instants of collapse. The present
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work examines spherical bubble dynamics as a limiting case that most effectively concentrates

energy. Assuming incompressible flow of the surrounding liquid, spherical bubble dynamics are

determined by the Rayleigh–Plesset (RP) nonlinear ordinary differential equation (Rayleigh, 1917;

Plesset, 1949). From its maximum size, an inertially collapsing bubble converts potential energy

into kinetic energy of the surroundings. The kinetic energy is itself converted to internal energy

of the bubble at collapse. The resulting pressure build-up inside the bubble causes the bubble to

eventually rebound. In the surrounding medium, the transient pressure fields thereby produced can

readily be determined (Brennen, 1995):

pl(r, t) = p∞ + ρl

(
R2R̈ + 2RṘ2

r

)
−
ρl

2

(
R4Ṙ2

r4

)
, (2.1)

where pl is the liquid pressure, p∞ is the liquid pressure in the far field, ρl is the liquid density,

R is the bubble radius, r is the radial position, and the dot denotes a time derivative. However,

under inertially dominated conditions, velocities achieved in the liquid can be large enough that

liquid compressibility effects cannot be neglected. Compressibility manifests in two primary ways:

the accelerating bubble interface continuously radiates waves into the surroundings and energy is

released at collapse in the form of a shock. Predicting the transient pressure fields produced by

collapsing bubbles thus requires an accurate representation of both energy losses during collapse

and shock generation/propagation. In particular, the dependence of the pressure on the parameters

governing the problem has yet to be fully determined.

A variety of models have been developed to extend the RP equation to account for energy

losses via acoustic radiation in a weakly compressible medium during collapse, such as the Her-

ring (Herring, 1941), Keller–Kolodner (Keller & Kolodner, 1956), Keller–Miksis (Keller & Miksis,

1980), and Trilling (Trilling, 1952) equations. Herring (1941) and Keller & Kolodner (1956) intro-

duced a first-order correction to consider the acoustic propagation of small perturbations in liquid,

and Keller & Miksis (1980) further determined the effect of viscosity and surface tension on the

acoustic radiation. Trilling (1952) used the hypothesis introduced by Kirkwood & Bethe (1942) to
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consider characteristics propagating with constant sound speed during bubble oscillations. The en-

ergy balance in the liquid-bubble system for these models has recently been investigated to obtain

energy losses due to acoustic radiation. Holzfuss (2010), and Fortes-Patella et al. (2013) evalu-

ated the energy losses due to acoustic radiation, approximating the pressure field in the acoustic

limit; Yasui et al. (2011) estimated the energy release through shock wave using acoustic theory.

Wang (2016) developed an approach to calculate the energy losses by partitioning the liquid into

near- and far-field regions, and Tinguely et al. (2012) quantified the energy release via shock wave,

subtracting the change in the bubble internal energy during collapse and rebound and in potential

energy of the liquid at the maximum radius after first rebound from the initial potential energy.

However, as shown in the present study, the total energy evolution predicted by these models is not

fully conserved.

Energy release into the surroundings as a shock has been investigated using theory (Kirkwood

& Bethe, 1942; Arons & Yennie, 1948; Cole, 1948; Gilmore, 1952; Brennen, 1995; Geers &

Hunter, 2002; Hunter & Geers, 2004), direct simulations (Johnsen & Colonius, 2009; Shaw &

Spelt, 2010; Beig et al., 2018), and experiments (Vogel et al., 1996, 1989; Pecha & Gompf, 2000;

Lauterborn & Kurz, 2010) with application to underwater explosions and bio-medical applications.

The wave emitted upon collapse exhibits a blast profile expected in this diverging flow. The shock

amplitude is a key quantity to estimate the damage induced by shock on the neighboring objects

(Kirkwood & Bethe, 1942; Gilmore, 1952; Johnsen & Colonius, 2009; Shaw & Spelt, 2010), de-

caying inversely proportional to the shock radius or faster near the source of the shock (Cole, 1948;

Arons, 1954; Shaw & Spelt, 2010; Holzfuss, 2010; Aganin & Mustafin, 2021). Determining the

dependence of the shock peak pressure produced by bubble collapse on the initial conditions could

thus improve predictions of cavitation-induced damage and enable the development of mitigation

strategies.

The objective of this study is to determine the dependence of the maximum pressure produced

some distance away by an inertially collapsing bubble on the parameters governing the problem.

For this purpose, we developed an improved approach for calculating energy transport during bub-
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ble collapse, which enables us to understand the mechanisms by which energy is transferred and

released into the shock. This understanding is critical to determine the relationship between the

shock pressure and the parameters governing the problem, namely the driving pressure ratio and

an effective Mach number. The chapter is organized as follows. First, an improved framework to

calculate energy transfer for a bubble obeying the general Keller–Herring (KH) equation is intro-

duced in section 2.2. This framework is used to examine energy transfer during bubble collapse

in section 2.3, in which scaling relations are developed and comparisons to other approaches are

made. Section 2.4 discusses specific regimes and different collapse types, including comparisons

to experiments. Concluding remarks close the chapter in section 2.5.

2.2 Energy transport in bubble oscillations in a weakly com-

pressible medium

2.2.1 Problem description and bubble dynamics equations

We seek to determine the dependence of the pressure produced by a collapsing bubble some dis-

tance away on the parameters governing the problem. Simply put, assuming we know the energy

of our system at a given time (e.g., at maximum bubble radius), we expect the collapse to concen-

trate a fraction of this energy into the bubble at minimum volume and determine the dependence

of the bubble properties at collapse on the parameters governing the problem. This bubble energy

is then released as a shock, whose pressure we seek to relate to the bubble conditions at collapse.

For simplicity, we start by considering the classical Rayleigh collapse problem (Rayleigh, 1917),

illustrated in figure 2.1. A perfectly spherical bubble (ΩB) in an infinite liquid (Ω∞) is initially in

thermal and mechanical equilibrium with its surroundings at pressure peq and temperature Teq. For

simplicity, the bubble is filled with non-condensible gas; mass transport could be included in the

analysis but is beyond the present scope. An instantaneous increase in surrounding liquid pressure

∆p from peq at t = 0 then initiates the collapse. This problem corresponds to the limiting case of
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Figure 2.1: Schematics of Rayleigh collapse in (a) incompressible and (b) compressible media.

shock-induced collapse for an infinitely fast shock.

The classical incompressible analysis (Rayleigh, 1917; Plesset, 1949) considers the bubble to

be in an infinite sea of liquid, as it would feel the presence of any foreign object in the liquid given

the infinite sound speed, though the interaction may be weak. In a compressible medium, the

bubble is informed of the presence of a boundary by the wave emitted at the beginning of collapse

propagating to that boundary and reflecting back to the bubble. Taking the time from maximum to

minimum volume, the Rayleigh collapse time (Rayleigh, 1917; Plesset, 1949; Brennen, 1995), it

follows that a bubble beyond a critical distance δcr from the boundary,

δcr

Ro
≈

1
2

1 + 0.915
(
ρla2

l

peq

)1/2 (
peq

∆p

)1/2 , (2.2)

is not affected by the boundary during its collapse, where Ro is the initial maximum radius, and al

is the speed of sound. It further follows that a spherical bubble starting its collapse at a distance

greater than δcr from a boundary would remain spherical throughout its collapse. The dependence

of the critical distance beyond which bubble collapse is expected to be spherical on the driving

pressure ratio ∆p/peq is shown in figure 2.2. The right-hand side of Eq. (2.2) should be multiplied

by 2 when considering the growth phase.

The oscillations of a spherical bubble in a weakly compressible liquid can be described, to

first-order in effective Mach number M = U/al based on the characteristic velocity U =
√
∆p/ρl,
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Figure 2.2: Critical stand-off distance δcr for a bubble not affected by the rigid object during
collapse for Rayleigh collapse.

by a single-parameter family of equations for the bubble radius (Herring, 1941; Keller & Kolodner,

1956; Prosperetti & Lezzi, 1986):

RR̈
[
1 − (λ + 1)

Ṙ
al

]
+

3
2

Ṙ2
[
1 −

(
3λ + 1

3

)
Ṙ
al

]
=

(
pl − p∞
ρl

) [
1 + (1 − λ)

Ṙ
al

]
+ R

ṗl

ρlal
(2.3)

where pl is the pressure at the bubble wall (r = R), λ is the model parameter (0 ≤ λ ≤ 1). Different

values of λ correspond to different models for compressibility. For instance, the Keller–Kolodner

(KK) (Keller & Kolodner, 1956) and Keller–Miksis (Keller & Miksis, 1980) equations require

λ = 0 and the Herring equation (Herring, 1941) is obtained with λ = 1. Prosperetti & Lezzi

(1986) recommend using the KK equation for the bubble collapse problem based on comparisons

with numerical simulations. In the limit of Ṙ/al → 0, which is reasonable for relatively small-

amplitude bubble oscillations, the incompressible limit (RP equation (Rayleigh, 1917; Plesset,

1949)) is recovered.

Balance of stresses at the bubble wall implies

pb = pl + 4µl
Ṙ
R
+

2S
R
, (2.4)

where pb is the gas pressure inside the bubble, µl is the dynamic viscosity of the liquid and S is
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the surface tension. The KK equation is Eq. (2.3), which, when combined with Eq. (2.4) yields

the KM equation (Keller & Miksis, 1980). The bubble is assumed to contain a gas whose pressure

follows the polytropic relation pb = peq(Ro/R)3k, where k is the specific heat ratio. The bubble can

be assumed homobaric because the bubble–wall velocity is much smaller than the speed of sound

in gas for most of the collapse (Prosperetti, 1991). The water properties are ρl = 998 kg/m3 and

al = 1, 510 m/s. To solve the equation of motion, the Cash-Karp Runge-Kutta method (Barajas &

Johnsen, 2017) is used for the time integration of the equation.

Using Ro and U to non-dimensionalize, Eq. (2.3) can be rewritten in dimensionless form:

R∗R̈∗
[
1 − (λ + 1) Ṙ∗M

]
+

3
2

Ṙ∗2
[
1 −

(
3λ + 1

3

)
Ṙ∗M

]
=

(
p∗l − p∗∞

) [
1 + (1 − λ) Ṙ∗M

]
+ R∗ ṗl

∗M,

(2.5)

and Eq. (2.4) is: p∗b = p∗l + 4Ṙ∗/R∗Re + 2/R∗We, where the Reynolds number is Re = ρlURo/µl

and the Weber number is We = ρlU2Ro/S . Here, p∗b = p∗eq(1/R∗)3k. For given initial conditions

R∗o and Ṙ∗o, R∗(t∗) is uniquely determined by two parameters, the driving pressure ratio ∆p/peq,

which is a measure of (static) compression of the bubble, and the effective Mach number M =√
∆p/ρla2

l , which is a measure of compressiveness of the medium for a given driving pressure. In

an incompressible limit, R∗(t∗) is determined only by the driving pressure ratio provided R∗o = 1

and Ṙ∗o = 0. In the following sections, we investigate the dependence of the bubble dynamics,

energy transfer, and shock emission on ∆p/peq and M by varying these parameters in the ranges

0.8 ⩽ ∆p/peq ⩽ 2.8 × 103 and 1.1 × 10−3 ⩽ M ⩽ 6.6 × 10−2. This driving pressure range is

relevant to both shock-induced collapse and free collapse in shock-wave lithotripsy (Ohl & Ikink,

2003; Zhong, 2013) and inertial collapse of acoustically generated bubbles as well as underwater

explosions (Cole, 1948; Hunter & Geers, 2004). The effective Mach numbers are selected such

that compressibility effects are within a range accurately represented by the model.

In the present study, the KK equation forms the starting point of our analysis (Knapp et al.,

1970; Plesset & Prosperetti, 1977; Prosperetti & Lezzi, 1986; Holzfuss, 2010; Kim et al., 2014;
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Wang, 2016), and a bubble in incompressible limit using the RP equation is used as references

cases. The initial bubble wall velocity is set to Ṙo = ∆p/ρlal to account for the release correspond-

ing to the initial Riemann problem when accounting for compressibility (Gilmore, 1952; Plesset &

Prosperetti, 1977; Barajas & Johnsen, 2017); in the incompressible limit, Ṙo = 0. For a bubble in

the 102–103 µm range, the thermal boundary layer thickness ∼
√
α∆t (Prosperetti, 2017), where α

is the thermal diffusivity, reaching O(1) µm in the liquid and O(10) µm in the gas. Although those

length scales are comparable to the bubble radius in the very last stages of collapse [∼ O(1) µm],

they are only observed over nanoseconds, such that thermal conduction and phase change are con-

sidered negligible for inertial collapse (Johnsen & Colonius, 2009; Beig et al., 2018; Prosperetti,

1991) and thus a polytropic representation of the bubble with k = 1.4 is satisfactory; these ef-

fects will be investigated in detail in subsequent work on thermal transport. The Reynolds number

O(103 − 105) and Weber number O(101 − 105) are sufficiently large for a micro-to-millimeter size

bubble such that the viscosity and surface tension are negligible as they would affect the bubble

volume during collapse by less than a percent for the relevant range of parameters. The present

discussion ignores gravity, whose role is argued to be negligible for micron- to millimeter-sized

bubbles (Tinguely et al., 2012; Obreschkow et al., 2011).

As a baseline for this study, we consider driving pressure ratios of 27 and 280, which are

relevant to therapeutic ultrasound. Figure 2.3 shows the time evolution of the bubble radius, with

time non-dimensionalized by the Rayleigh collapse time tc = 0.915Ro
√
ρl/p∞ of an empty cavity.

If the liquid and gas pressure are equal (equilibrium case), the bubble motion is stationary with

no collapsing motion. While small-amplitude, linear oscillations result from infinitesimally small

increases in liquid pressure, oscillations become nonlinear at high driving pressures, achieving high

velocities and accelerations in the final stage of collapse. Discrepancies between the compressible

and incompressible cases are negligible at low pressure ratios (∆p/peq = 27) since the effective

Mach numbers are small (Prosperetti & Lezzi, 1986; Brennen, 1995). At high pressure ratios

(e.g., ∆p/peq = 280), differences are visible between the compressible and incompressible case, in

particular in the minimum radius, maximum radius after rebound, and time for them. The bubble
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Figure 2.3: Time evolution of the bubble radius vs. bubble radius in one cycle for different pres-
sure ratios for the compressible and incompressible cases, including the empty cavity case and an
equilibrium bubble for reference.

radius during rebound is significantly damped in the compressible case, while in the incompressible

limit, the initial bubble radius is recovered with no damping at maximum radius during rebound.

In the incompressible limit, as the pressure ratio becomes large (∆p/peq → ∞), the bubble radius

tends to that of an empty cavity until the very last stages of collapse because the effect of gas inside

the bubble is negligible for most of the collapse.

2.2.2 Energy transfer during bubble oscillations

Discrepancies between compressible and incompressible cases, as well as differences between the

dynamics at different driving pressures, can be explained by examining energy transfer during the

process. In our analysis, we take our system to consist of a bubble in a sea of liquid sufficiently

large such that the velocity in the far-field is effectively zero. For an ideal, non-condensible gas,

the bubble internal energy is

EBIE =

∫
ρgedV =

pbV
k − 1

, (2.6)

where ρg is the gas density, e is the specific internal energy, and V is the bubble volume. The liquid

near the bubble (inner region) has finite kinetic energy (Lamb, 1932; Cole, 1948; Pearson et al.,

21



2004; Wang, 2016)

ELKE =
ρl

2

(∫
ΩB

φ
∂φ

∂n
dS +

∫
ΩI

φ
∂φ

∂n
dS

)
= 2πρlR3Ṙ2, (2.7)

where ΩB is the bubble wall, ΩI is the outer boundary of the inner region, and S is the surface

integral. We assume that temperature changes are small enough that changes in internal energy

can be neglected. Given the conservative hydrostatic force acting on the liquid in the far-field, the

potential energy stored in the liquid is (Arons & Yennie, 1948; Obreschkow et al., 2006; Tinguely

et al., 2012; Vogel et al., 1996)

ELPE = p∞V. (2.8)

Other energy modes related to the thermal conduction, viscosity, and surface tension are neglected

in this study.

Given that the liquid is compressible, acoustic waves may leave the outer boundary, thus giving

rise to energy losses due to acoustic radiation. This mode of energy transfer requires discussion.

We start our analysis by following that of Prosperetti & Lezzi (1986) and extend it to more accu-

rately represent acoustic radiation losses by summing up the energy transferred by waves propa-

gating away from the bubble. As illustrated in figure 2.1(b) for weakly compressible analysis, we

divide the liquid into two sub-regions of sizes determined by characteristic lengths relevant to bub-

ble oscillations Prosperetti & Lezzi (1986); Prosperetti (1987). Near the bubble (inner region), the

bubble oscillations induce liquid motion with characteristic length scale Ro; the near-field flow can

be assumed solenoidal since the characteristic time corresponding to pressure wave propagation is

much shorter than the collapse time. On the other hand, far from the bubble (outer region), veloc-

ity changes are primarily due to wave propagation. Linear acoustics reasonably approximate the

dynamics, with characteristic length scale al(Ro/U). Taking appropriate limits based on the ratio

ϵ = U/al, which corresponds to an effective Mach number, singular perturbation analysis can be

used to match the velocity potential and enthalpy at the outer boundary of the inner region to those

at the inner boundary of the outer region. The equation of motion for bubble radius and velocity
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potential can be expressed, to order ϵ2

Ḟ
R
−

F2

R4 −
F̈
al
=

pl − p∞
ρl

, φ = −
F
r
+

Ḟ
al
, (2.9)

where φ is the velocity potential, and the function F = R2Ṙ = V̇/4π. This equation can be rewritten

as (Prosperetti & Lezzi, 1986; Prosperetti, 1987, 1991)

RR̈ +
3
2

Ṙ2 −
F̈
al
=

pl − p∞
ρl

, where F̈ = 2Ṙ3 + 6RṘR̈ + R2 ...
R . (2.10)

However, it is a well-known problem in acoustics that a solution growing exponentially in time

is obtained when a perturbation theory is applied inappropriately (Burke, 1970; Templin, 1999;

Keller & Miksis, 1980; Prosperetti & Lezzi, 1986). To avoid this divergent solution, the third-

order derivative of R is replaced by low-order derivatives while confining the error to order of ϵ2

(Keller & Miksis, 1980; Prosperetti & Lezzi, 1986). Taking the derivative of Eq. (2.9) yields

F̈ =
Ṙ3

2
+ RṘR̈ + Ṙ

(
pl − p∞
ρl

)
+ R

ṗl

ρl
, (2.11)

where the O(ϵ) term is ignored. The KK equation (2.3) (Keller & Kolodner, 1956) is obtained by

substituting Eq. (2.11) into Eq. (2.10). Expressing F̈ as λF̈ + (1 − λ)F̈ and using the RP equation

and Eq. (2.11), we obtain:

F̈ = (1 + 3λ)
Ṙ3

2
+ (1 + λ) RṘR̈ + (1 − λ) Ṙ

(
pl − p∞
ρl

)
+ R

ṗl

ρl
. (2.12)

By substituting Eq. (2.12) into Eq. (2.10), the general KH equation (2.3) is obtained (Prosperetti

& Lezzi, 1986).

The first law of thermodynamics requires the change in energy at any given time relative to the
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initial energy to be balanced as follows:

p∞Vo +
pb,oVo

k − 1
+ 2πρlR3

oṘ2
o = p∞V +

pbV
k − 1

+ 2πρlR3Ṙ2 + EAE, (2.13)

where EAE is the acoustic radiation energy (i.e., energy losses due to acoustic radiation). All

energy terms except for the last term are introduced in Eqs. (2.6)–(2.8). The last term EAE should

be evaluated accurately for not violating energy balance.

Thus, following the framework introduced above by (Prosperetti & Lezzi, 1986), we propose

an approach to more accurately calculate EAE. The energy of pressure waves perturbing the liquid

near the bubble can be computed at the outer boundary of the inner region:

EAE =

∫ t

0

[
lim
ΩI→∞

∫
ΩI

(pl − p∞) urdS
]

dt, (2.14)

where EAE is the acoustic radiation energy, and ur = dφ/dr is the liquid velocity. Here, EAE

is evaluated by integrating the energy flux along the outer boundary. In a weakly compressible

liquid (acoustic limit), pressure waves propagate with no dissipation such that these pressure waves

transport energy away from the bubble. Hence, EAE is evaluated at the outer boundary of the inner

region infinitely far from the bubble center, at which the initial far–field pressure is only modified

by pressure waves emitted from the bubble wall. Using Eq. (2.9), the acoustic radiation energy is

EAE = −
4πρl

al

∫ t

0
FF̈dt. (2.15)

Plugging Eq.(2.12) into Eq. (2.15) yields the explicit form of EAE, which satisfies energy balance

in Eq. (2.13). Again, λ is a model parameter in the general KH equation; in this study, since the KK

equation is used, λ = 0 is used for obtaining EAE. For other choices of λ, the general KH equation

produces equations to first-order in ϵ with considering weak compressibility of liquid, and same

choices of λ should be used for Eq. (2.15) to accurately calculate EAE. In past studies (Wang,

2016; Yasui et al., 2011; Holzfuss, 2010; Herring, 1941), theories underlying the KH equation
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introduced in this section are not considered and EAE is explicitly calculated using acoustic theory,

such that EAE are not obtained accurately and energy balance [Eq. (2.13)] cannot be satisfied. In

the incompressible limit, the last term of Eq. (2.13) is zero. In Table 2.1, our approach and several

past approaches (Wang, 2016; Yasui et al., 2011; Holzfuss, 2010; Herring, 1941) for calculating

EAE are introduced, and they are compared in the next section.

2.3 Results

2.3.1 Analysis of energy transport during bubble collapse

We first examine energy transport during the collapse and the early rebound stage of a gas bubble

corresponding to the nominal cases in figure 2.3, investigate the effects of compressibility on the

energy transport, and assess performance of the different approaches.

Figures 2.4(a) and 2.4(b) shows the time evolution of the total energy (E), the liquid potential

energy (PE) and kinetic energy (KE), the bubble internal energy (IE), and the acoustic radiation

Table 2.1: Previous approaches for energy losses due to acoustic radiation.

Present approach EAE = −
4πρl

al

∫ t

0
FF̈dt

Wang (2016) EAE = −
ρl

4πal

[
V̇(t)V̈(t) − V̇(0)V̈(0) −

∫ t

0
V̈2dt

]
(2.16)

Yasui et al. (2011) EAE =
ρl

4πal

∫ t

0
V̈2dt (2.17)

Holzfuss (2010) EAE =
4π
ρlal

∫ t

0
R2

(
pl − p∞ +

ρlṘ2

2

)2

dt (2.18)

Herring (1941) EAE = −
4π
al

∫ t

0
ṗlR3Ṙdt (2.19)
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Figure 2.4: Time evolution of each mode of energy normalized by the initial total energy ET E,o

during collapse and early rebound of a gas bubble for the (a,c,d) compressible and (b) incompress-
ible cases at ∆p/peq =280. A to G marked in (a) an (b) imply the events for characterization of the
energy transport, which are introduced in Table 2.2.

energy for an driving pressure ratio of ∆p/peq = 280. For a better description of the local energy

transport in the system, we choose the specific events, A to G, at which important phenomena

occur, introduced in Table. 2.2. In both the compressible and incompressible cases, the liquid

only contains the potential energy at the initial instant (event A). During collapse, a converging

motion of the bubble wall leads to the increase in the kinetic energy of the liquid. Simultaneously,

Table 2.2: Important events during bubble collapse.

Label A B C D E F G
Event t = 0 ELPE = ELKE max ELKE ELPE = EBIE ELKE = EBIE max Ṙ t = tcol
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the pressure at the interface works on the bubble, such that the more energy is concentrated to

the bubble. Hence, as the bubble collapses, the potential energy initially stored in the liquid is

transferred to the kinetic energy of the liquid and the internal energy of the bubble. In the early

stage of the collapse, a greater portion of the total energy is transferred to the liquid kinetic energy

than the bubble internal energy, leading to event B when ELPE = ELKE. In the compressible case,

as the bubble collapses more, ELKE reaches the maximum (event C), and thereafter, ELPE reduces

to become equal to EBIE (event D). However, in the incompressible limit, the order of these two

events are reversed. Then, after some time, ELKE decreases and becomes equal to the rising EBIE

(event E). Prior to collapse when the bubble reaches to minimum volume, Ṙ has the maximum

value (event F), and finally at collapse (event G), Ṙ = 0, such that ELKE = 0. In particular, in the

compressible cases, a less amount of the initial ELPE is concentrated to the bubble in the final stage

of collapse due to EAE, compared with the incompressible limit.

We turn our attention to the assessment of different approaches for EAE calculation in figures

2.4(a), 2.4(c), and 2.4(d). Our approach is compared to that of Wang (2016) and that of Holzfuss

(2010); results with the approach of Yasui et al. (2011) and Herring (1941) are not considered

since the former is very similar to that of Wang (2016) and the latter is only related to the Herring

equation. During the oscillation, the total energy should be always equal to the initial total energy

because of the balance of the mechanical energy in the liquid–bubble system. In the case where

the present approach [equation (2.15)] is employed, ET E has no deviation from one [figure 2.4(a)].

However, ET E is deviated from one when Wang’s approach [equation (2.16)] is used, as shown

in figure 2.4(c). In addition, there exist larger deviations in the total energy when Holzfuss’s

approach [equation (2.18)] is employed, as shown in figure 2.4(d). Thus, these results verify that

our approach has a high fidelity on EAE calculation. It should be noted that, the KK equation,

which is equivalent to equation (2.3) with λ = 0, is used, and the same analysis can be conducted

for the Herring equation, which is equivalent to equation (2.3) with λ = 1.

To better understand the effects of compressibility on the local details of energy transport, a

portion of each energy mode at event A to G in the compressible and incompressible cases is
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Figure 2.5: Energy partitions at event A to G characterizing the energy transport during collapse
at ∆p/peq = 280 for the (a) compressible and (b) incompressible cases. (c) The portions of energy
differences at event B to G evaluated by subtracting the energy in the incompressible limit from
that in the compressible liquid; the differences in ELPE, ELKE and EBIE.

compared in figures 2.5(a) and 2.5(b). Although the trend in the direction of energy transport

between each energy mode is similar in both cases, the magnitude of each energy mode at time A

to G in the compressible case is somewhat affected by the energy losses due to acoustic radiation

occupying some portion of the total energy in later times. Figure 2.5(c) depicts differences in each

energy mode (i.e., ELPE, ELKE, and EBIE) ∆E by subtracting the energy mode in the incompressible

limit from that in the compressible case at a given event (i.e., event B to G), normalized by the sum

of these three energy modes. For most of the events, ∆ELKE, ∆EBIE < 0 because the bubble

and near-field liquid lose their energy acoustically during collapse, such that ELKE and EBIE in

the compressible case are smaller those in the incompressible limit. At event B (ELPE = ELKE),
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Figure 2.6: Absolute value of maximum deviations of the total energy |∆ET E |max during collapse
and rebound for different approaches used to calculate energy losses due to acoustic radiation;
solid circles: present approach, open upward triangles: Wang (2016), open downward triangles:
Holzfuss (2010).

∆ELPE = ∆ELKE. At event C (maximum ELKE) and D (ELPE = EBIE), the liquid primarily loses its

kinetic energy due to acoustic radiation, so most of the energy losses are observed in ELKE at this

time. From time D to G occurring in the moderate and final stage of the collapse, the losses in ELKE

decrease while the losses in EBIE increase. In particular, ∆ELKE = ∆EBIE at event E (ELKE = EBIE).

As time evolves, ∆ELPE becomes negligible. Overall, the lower values of ELKE in the compressible

case due to acoustic radiation also give rise to the lower values of EBIE at collapse.

2.3.2 Dependence of energy transport during collapse on driving pressure

ratio

The deviations of the total energy during collapse and rebound from its initial value for different

approaches to evaluate EAE [equations (2.15), (2.16), and (2.18)], shown in figure 2.4, depend on

the driving pressure ratios primarily determining the energy losses due to acoustic radiation. Figure

2.6 shows the absolute value of maximum deviations of the total energy from its initial value for

different approaches. For larger pressure ratios, the deviations for all approaches rise because

large energy is lost through acoustic radiation. The deviations in our approach are ranging from

O(10−10) to O(10−7) occurring in the integration of equation (2.15). However, as depicted in figure
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Figure 2.7: Event B to G normalized by the actual collapse time tcol as a function of driving pressure
ratios for the (a) compressible and (b) incompressible cases. The portions of differences in ELKE

and EBIE at event B to G evaluated by subtracting the energy in the incompressible limit from that
in the compressible case for ∆p/peq = 27, 280, and 2800.

2.4, other approaches [equations (2.16) and (2.18)] produce larger deviations comparable to the

initial energy at larger pressure ratios. Our approach thus shows a better performance, specifically

at larger pressure ratios where the compressibility effects are crucial.

The order and time of events introduced in Table 2.2 reveal the direction and speed of the

energy transport during collapse. Figures 2.7(a) and 2.7(b) show event B to G normalized by the

actual collapse time tcol. Overall, the event B is observed earlier than other events, and event E

to G occur in sequence. However, there exists the reverse of the order of event C and D in the

compressible case because the acoustic radiation in a compressible liquid pushes event C forward

while postponing event D. Thus, at low pressure ratios (∆p/peq < 180), event D is observed earlier

than event C while it is reversed at high pressure ratios (∆p/peq > 180). In addition, at very low
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pressure ratios (∆p/peq < 9), event D occurs earlier than event B because the initial potential

energy of the liquid is comparable to the initial internal energy of the bubble in this regime, such

that they become equal at earlier times. For both cases, as the driving pressure ratios are increased,

the collapsing motion of the bubble and corresponding energy transport become violent, such that

a gap between events decreases. We note that event B and E are not observed at low pressure ratios

where the energy transport is less violent, leading no crossover between ELPE, ELKE, and EBIE.

Figure 2.7(c) demonstrates the portions of ∆ELKE and ∆EBIE at ∆p/peq = 27, 280, and 2800. As

also illustrated in the figure 2.5(c), greater losses are observed for ELKE than in EBIE in the earlier

stage of the collapse (event B to E) while the opposite occurs in the later stage of the collapse

(event E to G). At higher pressure ratios, the instant for event B to G occurs at later times, such

that a more portion of the energy losses arises in the kinetic energy.

2.3.3 Bubble volume and energy at collapse

During the collapse, the potential energy in liquid is concentrated to the bubble, and some of the

energy in the bubble is released through a high-amplitude (or shock) wave produced at collapse.

A larger fraction of total energy confined in a smaller volume as internal energy at collapse leads

to a stronger explosion, i.e., stronger emitted pressure/shock wave. In the following, we examine

the dependence of various dynamically and energetically relevant quantities at collapse on the

two parameters characterizing the problem, namely the driving pressure ratio and effective Mach

number, which are linearly proportional to each other in the Rayleigh collapse. Figure 2.8 shows

the dependence of the liquid potential energy, bubble internal energy, and acoustic radiation energy

normalized by the initial total energy on the driving pressure ratio. As demonstrated in figures 2.4

and 2.6, our approach naturally conserves total energy. At low pressure ratios (∆p/peq ∼ 0.7),

nearly 80% of the initial total energy is concentrated into bubble internal energy, with the remaining

being liquid potential energy. As the pressure ratio is increased, the fraction of bubble internal

energy increases until ∆p/peq ≈ 10 at which point acoustic energy losses are no longer negligible.

As the pressure ratio is further increased, energy losses due to acoustic radiation increase to 95%
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Figure 2.8: Energy partitions at collapse for a wide range of driving pressure ratios. x axis is
uniformly spaced in log scale, and ∆p/peq = 2.7, 28, 280, and 2800 are marked on the x axis.

of the initial energy for ∆p/peq ≈ 2800.

As the bubble energy and size at collapse provide the “initial conditions” for the energy release,

we examine the role of compressibility on the energy and minimum volume at collapse. Figures

2.9(a)–2.9(c) show the dependence of the bubble volume, the bubble internal energy, and the en-

ergy losses due to acoustic radiation through the collapse, normalized by initial total energy, on

the intial pressure ratio for the compressible and incompressible cases. The compressibility of the

liquid, via acoustic radiation, is the reason that the bubble is less compressed and the efficiency of

energy concentration into the bubble is reduced at collapse, compared to the incompressible limit.

Higher pressure ratios lead to smaller volume at collapse for both cases while causing larger dis-

crepancies between them. For the compressible case shown in figure 2.9(b), the normalized bubble

internal energy has a local maximum at ∆p/peq ≈ 17, and when ∆p/peq > 17 the bubble loses a

significantly greater fraction of internal energy through acoustic radiation due to the higher bubble

wall velocities and M. Figure 2.9 shows the bubble internal energy at collapse normalized by the

initial internal energy. In both cases, as the driving pressure ratio is increased, a greater amount of

energy is concentrated to a smaller bubble volume because the larger potential energy is initially

stored in liquid at higher pressure ratios, such that a stronger shock is produced at collapse. The
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Figure 2.9: (a) Bubble volume, (b) bubble internal energy at collapse and (c) energy losses due to
acoustic radiation through the collapse normalized by initial total energy, and (d) bubble internal
energy at collapse normalized by initial internal energy for the compressible (solid circles) and
incompressible (open triangles) cases as a function of driving pressure ratios; dashed line: (a)
equation (2.24), (b) equation (2.26), and (d) equation (2.28); dash-dotted line: (a) equation (2.23),
(b) equation (2.25), and (d) equation (2.27).

liquid compressibility significantly reduces the bubble internal energy at collapse, compared to the

incompressible limit.

To explain the behaviors observed in figures 2.9, we analyze the energy balance equation to

obtain scalings for limiting cases. At high pressure ratios (i.e., for highly compressible cases), a

large fraction of energy is lost through acoustic radiation, such that

p∞Vo ≈ −
4πρl

al

∫ tcol

0
FF̈dt = F(tcol)Ḟ(tcol) − F(0)Ḟ(0) −

∫ tcol

0
Ḟ2dt. (2.20)

where on the right-hand side, the first term is zero because Ṙ(t = tcol) = 0, and the second term is
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negligible because Ṙ(t = 0) is small. Using equation (2.9), the time derivative of the function F

can then be expressed as

Ḟ ≈ R
(
Ṙ2 +

pb − p∞
ρl

)
+ O(ϵ), (2.21)

where ϵ = U/al. As observed in figure 2.4(a), at high pressure ratios, most of the energy losses are

accumulated in the final stage of the collapse where the gas pressure inside the bubble dominates

the motion of the bubble–wall. Therefore, Ḟ ≈ pb,colRcol/ρl in the third term of equation (2.20)

where pb,col is the gas pressure inside the bubble at collapse. Substituting this relation into equation

(2.20) gives

p∞Vo ∼
4πρl

al
R2

col

(
pb,col

ρl

)2

tc, (2.22)

where the time scale in the integration is approximately tc. Combining equation (2.22) with the

polytropic relation for pb,col yields

Vcol

Vo
∼

(
∆p
peq

)−3/(3k−1)

M3/2(3k−1), (2.23)

which implies that the bubble volume would solely depend on the driving pressure ratio and effec-

tive Mach number because they uniquely determine the solution of the general KH equation (2.3)

(see section 2.2.1). In the incompressible limit, the bubble volume at collapse achieves a power-law

scaling with respect to driving pressure ratio, as shown in figure 2.9(a). At high pressure ratios in

the incompressible case, most of the initial potential energy is concentrated to the bubble as an in-

ternal energy with no energy losses, so equation (2.13) can be expressed as p∞Vo ≈ pb,colVcol/(k−1),

which can be simplified with the polytropic relation of pb,col:

Vcol

Vo
≈ (k − 1)−1/(k−1)

(
∆p
peq

)−1/(k−1)

. (2.24)

For a given k, the bubble volume scales with driving pressure ratio, which uniquely determines the

solution of the RP equation (see section 2.2.1).

Using the scaling relations (2.23) and (2.24) for the bubble volume at collapse, the internal
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energy of the bubble at collapse can be determined as follows. The internal energy of the bubble

at collapse EBIE,col normalized by the initial total energy can be approximated by

EBIE,col

ET E,o
≈

1
p∞Vo

pb,colVcol

k − 1
∼

(
∆p
peq

)− 2
3k−1

M−
3(k−1)

2(3k−1) , (2.25)

for the compressible case, and

EBIE,col

ET E,o
≈

1
p∞Vo

pb,colVcol

k − 1
≈ 1, (2.26)

for the incompressible limit. At small pressure ratios, only some fraction of the potential energy

of liquid is transferred to the bubble. As the driving pressure ratio is increased, the bubble internal

energy at collapse tends to unity in the incompressible case, while in the compressible case energy

losses due to acoustic radiation tend to unity.

The internal energy of the bubble at collapse normalized by initial internal energy is EBIE,col/EBIE,o =

(Vcol/Vo)1−k. Using equations (2.23) and (2.24), we obtain the relation:

EBIE,col

EBIE,o
∼

(
∆p
peq

)−3(1−k)/(3k−1)

M3(1−k)/2(3k−1), (2.27)

for the compressible case, and
EBIE,col

EBIE,o
≈ (k − 1)

(
∆p
peq

)
, (2.28)

for the incompressible case. As illustrated in figure 2.9, the scaling relations (2.23)–(2.28) correctly

describe the behavior of the energy and the bubble volume, thus confirming that the bubble volume

and internal energy at collapse are determined by the initial conditions, i.e., driving pressure ratio

and effective Mach number.
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2.3.4 Shock pressure after collapse

At the instant of collapse, the internal energy is confined to the bubble volume, whose volume is

finite, albeit small. In the incompressible limit, most of the potential energy is converted to inter-

nal energy of the bubble at collapse, while in the compressible case a significant fraction is lost

due to acoustic radiation in the compressible case. For an inertially dominated collapse, the rapid

compression of the gas gives rise to a large build-up in bubble pressure until the instant of col-

lapse. At collapse, the pressure decreases rapidly and monotonically to ambient pressure in radial

direction from the center of the bubble, such that the bubble rebound after collapse corresponds

to a spherical Riemann problem (Zel’dovich, 2002). The bubble internal energy is then released

as an explosion, including the emission of a shock. This explosion process cannot be accurately

represented by potential flow, and by contrast to the Taylor–Sedov problem (Zel’dovich, 2002),

the explosion energy is initially distributed over a finite volume and the surrounding medium has

non-negligible inertia, such that classical analysis no longer holds.

Assuming conservation of the characteristics propagating outward from a spherical surface,

Kirkwood & Bethe (1942) developed a theory to approximate the peak pressure of a spherical

shock propagating outward pm: pm ∼ (R/r) /
[
log(r/R)

]1/2 for r ≫ R, where r is the radial location

of the shock front, and R is the radius of sphere at the instant of shock emission. For simplicity, pm

can be expressed as a similitude relation: pm ≈ c0(R/r)1+α, where c0 and α are material-dependent

constants, and α = 0.13 describes the logarithmic part of formula by Kirkwood and Bethe suffi-

ciently and shows the best-fit to experimental data for TNT (Cole, 1948; Arons, 1954; Geers &

Hunter, 2002; Hunter & Geers, 2004). Making the analogy between underwater explosions and

bubble rebound, we apply this similitude relation to estimate the pressure of a shock produced in

the spherical bubble collapse. Thus, as a model of the peak pressure of the shock (Supponen et al.,

2017), an empirical relation can be formulated as

pm ∼ pb,col

(Rcol

r

)1+α

= pb,col

(
Rcol

Ro

)1+α (Ro

r

)1+α

, (2.29)

36



Figure 2.10: (a) Normalized pressure profile of the radiated shock wave as a function of distance at
different times for ∆p/peq = 280, 1400, 2800. (b) Normalized peak pressure of the shock produced
at collapse as a function of radial distance. Pressures are normalized according to the scaling of
equation (2.29); solid circles: Vogel et al. (1989); solid upward triangles: Lauterborn & Kurz
(2010); solid downward triangles: Isselin et al. (1998); hollow circles: ∆p/peq = 280; hollow
upward triangles: ∆p/peq = 1400; hollow downward triangles: ∆p/peq = 2800; solid line: slope
-1.13.

where r ≫ Rcol, such that the position r = Rcol at which the shock is released has no effect on pm.

The liquid pressure profile and the peak pressure of shock shown in figure 2.10 confirms the

relation (2.29). The time history of normalized pressure profiles of the emitted shock from direct

simulations (Johnsen & Colonius, 2009; Beig et al., 2018) at different pressure ratios manifests

the peak pressure obeying the relation (2.29). However, there are some discrepancies in the tail of

the shock pressure profile where the liquid flow velocity is significant compared to the local speed

of sound and interferes with the shock propagation. In addition, rarefaction waves produced at

collapse propagate toward the bubble center, reflect at the center, reach to the shock front, and may

affect the tail of the shocks and their strength. As introduced in figure 2.10(b), the peak pressure of

the shock observed in spherical bubble experiments (Vogel et al., 1989; Lauterborn & Kurz, 2010;

Isselin et al., 1998) and direct simulations (Johnsen & Colonius, 2009; Beig et al., 2018) collapse

onto the expression given by equation (2.29), particularly at small distances. For r/Ro ∼ O(10),

simulation results show discrepancies from the scaling relation because the shock has become so

weak that it propagates as an acoustic wave with peak pressure decaying as 1/r. Nevertheless, the

relation (2.29) is a simple model for the shock that can be applied to estimate the shock pressure
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Figure 2.11: (a) Bubble energy density and (b) peak liquid pressure in the compressible (solid
circles) and incompressible (open triangles) cases at r/Ro = 2 as a function of driving pressure
ratio; dashed line: (a) equation (2.31), (b) equation (2.34); dash-dotted line: (a) equation (2.30),
(b) equation (2.32).

at some distance from the bubble.

A quantitative measure of energy entrapped in the bubble is the energy density EBIE/V , i.e.,

the bubble internal energy divided by bubble volume, normalized by the initial energy density

(Ramsey & P., 2013). As shown in figure 2.11(a), the energy density of bubble increases as the

driving pressure ratios is raised. The liquid compressibility significantly reduces the energy density

at collapse, compared to the incompressible limit. As integrating the relations (2.23)–(2.25), we

approximate the bubble energy density:

(EBIE/V)col

(EBIE/V)o
∼

(
∆p
peq

)−3k/(3k−1)

M3k/2(3k−1), (2.30)

for the compressible case, and

(EBIE/V)col

(EBIE/V)o
≈ (k − 1)−k/(k−1)

(
∆p
peq

)−k/(k−1)

. (2.31)

for the incompressible limit. Those relations show good agreement with the simulations in figure

2.11(a).

The peak pressure of the shock produced at collapse is directly explained by the input parame-

ters (i.e., driving pressure ratio and effective Mach number) because they are linked by the scaling
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relations for the bubble volume and energy [equations (2.23)–(2.26)]. Combining equations (2.23)

and (2.29), the peak pressure of the shock can be related to the driving pressure ratio and effective

Mach number:
pm

peq
∼

(
∆p
peq

) 3k−(1+α)
3k−1

M−
3k−(1+α)
2(3k−1)

(Ro

r

)1+α

. (2.32)

In the incompressible limit, the maximum liquid pressure at collapse is approximated as

pl(r) = p∞ +
(
pb,col − p∞

) Rcol

r
−
ρl

2

(
R4Ṙ2

r4

)
≈ pb,col

(
Rcol

Ro

) (Ro

r

)
, (2.33)

which is equivalent to equation (2.29) with α = 0 and can be expressed:

pl

peq
≈ (k − 1)

3k−1
3(k−1)

(
∆p
peq

) 3k−1
3(k−1) (Ro

r

)
. (2.34)

Figure 2.11(b) shows the peak pressure at r = 2Ro for the compressible and incompressible

cases. This distance is chosen such that the shock front is neither too close to the bubble, so that

the incoming liquid flow does not interfere with the shock propagation, or too far, in which case the

shock propagates as an acoustic wave. In the compressible case, the peak pressure corresponds to

that of the shock. However, in the incompressible case, the pressure is determined from equation

(2.34) (Brennen, 1995) and does not actually correspond to that of a shock. An increase in the

driving pressure ratio leads to a larger energy density (or gas pressure) inside the bubble, and thus

a stronger shock. The good agreement between the simulations and the relations (2.32) and (2.34)

for the compressible and incompressible case confirms that by ignoring acoustic energy losses the

incompressible model vastly overpredicts the shock pressure. The current model is thus capable

of determining the amplitude of shocks produced by inertially collapsing bubbles given the initial

conditions (driving pressure ratios and effective Mach number).
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2.4 Discussion

2.4.1 Application of energy budget framework to experimental data

Our framework can readily be applied to experimental data for analysis. Here, we consider the

single-bubble laser-generated experiments of Tinguely et al. (2012), which produced a highly

spherical bubble under microgravity conditions. In their experiments, the bubble with a maxi-

mum size of 2 to 5.6mm were generated at three distinct liquid pressures (p∞ = 10, 30, 80 kPa).

Their analysis was focused on the bubble collapse, which is driven by the difference between liq-

uid pressures and the reduced gas pressures, and the subsequent rebound. We examine the time

evolution of different energy partitions to understand overall energy transport in these experiments,

quantify the losses, and evaluate the shock produced upon collapse. Figure 2.12 shows the time

history of the bubble radius and energy budget corresponding to the experiments in Tinguely et al.

(2012). One of the bubble radius–time curves for each initial gas pressure (po = 6, 8, 10 Pa) is

chosen from data sets, and the KK equation [equation (2.3) with λ = 0] is used for the simulation

because thermal and viscous effects are negligible for milimeter-size bubbles and gas diffusion is

much slower than the first collapse and rebound. The simulation results show excellent agreement

with the experimental data throughout the collapse and rebound. Overall, the potential energy at

maximum radius is transferred to kinetic energy of the bubble. Compressible losses and bubble

internal energy undergo significant changes starting just before collapse. Again, it is confirmed

that our framework [equation (2.15)] assures the constant total energy with an integration error in

O(10−7), while the deviations in the total energy are ranging from 0.3 to 0.8 for Wang’s approach

[equation (2.16)] and from 0.3 to 0.5 for Holzfuss’s approach [equation (2.18)].

Figure 2.13 quantifies the bubble volume and bubble internal energy at collapse, and energy

losses due to acoustic radiation through the collapse, and relates these quantities to the predicted

shock strength. For the lowest gas pressure, the bubble has the smallest volume, and the greatest

fraction of the total energy is lost through acoustic radiation, as expected since the resulting pres-
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Figure 2.12: Time evolution of the bubble radius and energy budgets evaluated using experimental
data in Tinguely et al. (2012). The initial gas pressure po =6 Pa, and p∞ =(a,d) 80, (b,e) 30, and
(c,f) 10 kPa. Dots in (d,e,f): bubble internal energy at collapse.

sure ratio is the highest of the three cases such that higher velocities are achieved at collapse. It

follows that the smallest portion of the total energy is concentrated to the bubble for the experi-

ments with the lowest gas pressure. As the gas pressure is increased, the driving pressure ratio is

smaller, leading to larger bubble volume, lower bubble wall velocities, smaller losses of the total

energy due to acoustic radiation, and therefore larger energy concentration of the total energy to

the bubble. A resulting lower gas pressure at collapse leads to smaller peak pressure of the shock

produced at collapse. It further follows that the rebounds are larger as the gas pressure is increased,

since less energy is lost by and more energy is available to the bubble, compared to those cases

with lower initial gas pressure. The observed behavior is consistent with that discussed in section

2.3.3 and section 2.3.4, including the scalings with driving pressure ratio.

In application of our framework to experimental data, several uncertainties should be consid-

ered. First, the initial gas pressure inside a bubble must be estimated for the experimental data. In

Tinguely et al. (2012), the liquid pressure and temperature are readily controlled in the experiment,

and the maximum bubble radius can be measured from optical images. However, the driving pres-
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Figure 2.13: (a) Bubble volume and (b) bubble internal energy at collapse, (c) energy losses due to
acoustic radiation through the collapse, and (d) shock peak pressure at r = 2Ro for po = 6, 8, and
10 Pa, and p∞ = 10, 30, and 80 kPa. Dashed line: (a) equation (2.23), (b) equation (2.25), and (d)
equation (2.32).

sure of the gas inside a bubble is not directly measurable, leading to uncertainties in the driving

pressures, which, as we showed here, determines the bubble dynamics and energy transport in the

system. In Tinguely et al. (2012), the initial gas pressure was estimated by fitting simple models

(RP, KK equation) to the experimental data. In another related study, Estrada et al. (2018) deduced

the initial gas pressure by invoking mechanical equilibrium as t → ∞. Assuming that the gas mass

remains constant in time and that the gas temperature is the same at t = 0 and t → ∞, Boyle’s

law can be used to obtain the initial gas pressure. Another uncertainty is that thermal and viscous

effects on the gas and liquid may be important for micron-size bubbles, for which the gas Fourier

number αthtc/R2
o and Reynolds number ρlURo/µl are large. Here, αth is the thermal diffusivity of

the gas. In Tinguely et al. (2012), the laser pulse energy varying from 55 to 230 mJ results in maxi-
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mum bubble radii from 2 to 5.6 mm, so these effects are negligible. However, for lower laser pulse

energy and thus smaller bubble, energy losses due to thermal conduction and viscous dissipation

may become important and should be accounted for in the energy budget analysis.

2.4.2 Effects of compressibility on the bubble collapse

As illustrated in figure 2.9, we observe two regimes in the bubble dynamics, energy transport, and

subsequent shock emission: up to a certain pressure ratio (∼ 100), the bubble dynamics described

by the incompressible and compressible models are indistinguishable from each other; beyond that

pressure ratio, the compressible solution departs from the incompressible limit. At low driving

pressure ratios, the bubble oscillations are linear. As the driving pressure ratio is raised, nonlinear

inertially dominated effects become increasingly important, though compressible is not (yet) sig-

nificant. As the driving pressure ratio is further increased, effective Mach numbers are no longer

negligible; compressible effects (acoustic radiation) significantly affect the bubble dynamics, re-

sulting in significant damping of oscillations.

A more quantitative description of these different regimes can be provided. In the linear regime,

R ≈ Req(1 + x), where Req is the equilibrium radius, Req = Ro, and x is the small perturbation, thus

yielding the linearized RP equation ẍ+ω2
eqx = (peq− p∞)/ρlR2

o, where ω2
eq = 3kpeq/ρlR2

eq (Brennen,

1995; Leighton, 2012). Although |x| ≪ 1, we also approximates a criterion that roughly classifies

transition from linear to inertial regime by 1 + x > 0, which produces ∆p/peq < 1.5k ≈ 2.1 for air.

Thus, the bubble collapse is (i) linear as long as ∆p/peq ≪ 2.1, (ii) inertial at ∆p/peq ≫ 2.1, and

are (iii) transitioned from linear to inertial collapse around ∆p/peq ≈ 2.1.

To estimate the driving pressure ratio at which the compressible case becomes distinguished

from the incompressible limit as the pressure ratio is increased, we use the modified Herring equa-

tion (Vokurka, 1986), in which only the bubble pressure term is retained, as it can be manipulated

in forms advantageous for the present analysis. The normalized volume of the bubble at collapse
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Figure 2.14: Contour map of the logarithmic value of the (a) bubble volume and (b) bubble internal
energy at collapse, and (c) energy losses due to acoustic radiation until collapse for the compress-
ible case, and of the absolute value of difference in the (d) bubble volume |∆Vcomp/Vcomp| and (e)
bubble internal energy |∆EBIE,comp/EBIE,incomp| between the compressible and incompressible cases
as a function of driving pressure ratio and effective Mach number. The left column map in (a) and
(b) corresponds to the incompressible limit. The differences in (d) and (e) are non-dimensionalized
by the larger of the two values; Solid line: equation (2.37); Dashed line: isoline.

can be expressed purely in terms of non-dimensional quantities describing the problem:

Vcol

Vo
≈ ηV

(
∆p
peq

)−2/(2k−1)

M2/(2k−1), (2.35)

where ηV = k−1/(k−1)(6k2)1/(2k−1). A full derivation is provided in Appendix A. Equating this relation

and the scaling relation for the bubble volume in the incompressible limit [equation (2.24)] yields

the condition at which the compressibility effects become distinguishable as the driving pressure

ratio is increased:
∆p
peq
≈ ηoM−2(k−1), (2.36)

where ηo = [k/(k − 1)]2k−1(6k2)−(k−1). In figures 2.9 and 2.11, this regime transition occurs at

∆p/peq ≈ 111; beyond this ratio, the bubble falls within the regime where the compressibility
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plays a role. This transition beyond which the compressible solution departs from the incompress-

ible behavior is naturally not abrupt, but rather gradual as the driving pressure ratio is increased.

Nevertheless, equation (2.36) provides an estimate.

The dependence of the key collapse quantities on both the driving pressure ratio and the effec-

tive Mach number can be determined based on the KK solution. Figure 2.14 shows maps of X vs.

M and ∆p/peq on logarithmic scales; the incompressible limit is added for the bubble volume and

internal energy at collapse. The driving pressure ratios and effective Mach numbers considered for

the Rayleigh and out-of-equilibrium collapse are shown in symbols. A discussion for the out-of-

equilibrium collapse will be introduced in the next section. For M→ 0, the compressible solution

tend to the incompressilbe limit, as expected. For a given ∆p/peq, an increasing M leads to an in-

crease in energy losses due to acoustic radiation and thus a reduction in bubble compression (larger

minimum volume) and in energy concentration (smaller bubble internal energy). For a given M,

raising ∆p/peq leads to increased bubble compression (smaller minimum volume); the bubble in-

ternal energy also increased due to large energy transfer from the potential energy, but eventually

reaches a local maximum as the energy losses due to acoustic radiation become important.

To better understand the role of the liquid compressibility, we calculate the absolute value of

difference in the bubble volume and energy between the compressible cases and incompressible

limits, ∆Vcomp = Vcomp − Vincomp or ∆Ecomp = Ecomp − Eincomp, which is non-dimensionalized by the

larger of the two values. As ∆p/peq or M are increased, this normalized difference becomes larger,

thus illustrating the increasingly important effect of liquid compressibility. Furthermore, equations

(2.35) and (2.24) can be used to establish the approximate dependence of these changes on the

parameters governing the problem:

Vincomp

Vcomp
= 1 −

∆Vcomp

Vcomp
≈

(
1
ηo

∆p
peq

)−1/(2k−1)(k−1)

M−2/(2k−1), (2.37)

whose slopes show good agreement with those of isolines depicted in figures 2.14(d) and 2.14(e).
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2.4.3 Dependence of energy concentration and release on types of collapse

problems

The classical Rayleigh collapse problem where the liquid is overpressurized has been primarily ex-

amined to understand the cavitation bubble dynamics (Besant, 1948; Rayleigh, 1917; Noltingk &

Neppiras, 1950; Brennen, 1995; Johnsen & Colonius, 2009; Barajas & Johnsen, 2017; Beig et al.,

2018). However, initial conditions driving the bubble collapse may change the bubble dynam-

ics, energy concentration, and shock emission at collapse. Under the standard ambient pressure

p∞, a bubble with larger radius than the equilibrium bubble radius has lower gas pressure po than

the equilibrium gas pressure peq, such that the initial state is out of equilibrium (Flynn, 1975a,b;

Leighton, 2012; Gaudron et al., 2015; Barajas & Johnsen, 2017; Estrada et al., 2018). In this

out-of-equilibrium collapse, same as the Rayleigh collapse, pressure difference between the sur-

roundings and the gas drives the bubble collapse from maximum to minimum size. During the

collapse, some fraction of the initial potential energy of liquid is concentrated to the bubble during

the collapse with energy losses due to acoustic radiation, while the magnitudes of concentrated

energy and the peak pressures of released shock show large discrepancies between those two col-

lapse problems. The out-of-equilibrium collapse is a simpler case of an acoustically-oscillated gas

bubble primarily used in bio-medical applications (e.g., histotripsy for tissue ablation), where the

driving pressure ratio is ∆p/po where p∞ = 0.1 MPa and po < peq.

Figure 2.15 shows the bubble dynamics, energy, energy density, shock pressure, and effective

Mach number in the Rayleigh and out-of-equilibrium collapse for a bubble in a compressible liq-

uid. In both cases, the energy losses due to acoustic radiation increase with increasing pressure

ratio as the bubble wall velocity also increases [equation (2.15)], such that the bubble has a smaller

volume at collapse and less fraction of the total energy is concentrated to the bubble. It follows that

the peak shock pressure 2Ro away from the bubble is larger at high pressure ratios due to larger

bubble energy density.

Although both collapse problems show similar behavior for change in the driving pressure

46



Figure 2.15: (a) Bubble volume and (b) bubble internal energy at collapse, (c) energy losses due to
acoustic radiation through the collapse, (d) bubble energy density at collapse, (e) maximum peak
pressure of the shock at r/Ro = 2, and (f) effective Mach number as a function of driving pressure
ratio for the Rayleigh and out-of-equilibrium collapse.

ratios, there are some discrepancies between them even for the same pressure ratio, which are de-

scribed by the dependence of effective Mach number on the driving pressure ratio. As the driving

pressure ratio is increased, once it crosses over at ∆p/po ∼ 27, the effective Mach number in the

out-of-equilibrium collapse becomes smaller than that in the Rayleigh collapse, such that com-

pressibility effects become less important and a smaller fraction of total energy is lost in the out-

of-equilibrium collapse. Therefore, at ∆p/po > 27, the bubble in the out-of-equilibrium collapse

case is more compressed, i.e., has a smaller minimum volume, with larger energy concentration to

the bubble, leading to larger bubble energy density and higher peak shock pressure 2Ro away from

the bubble. Up to driving pressure ratios on the order of 10s where the energy losses is smaller

than 10%, the discrepancies between two collapse cases are negligible due to small compressibility

effects.
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2.5 Conclusion

In summary, we propose a theoretical approach to accurately represent energy transport, including

direct calculations of compressible losses during the oscillation of a spherical bubble in a weakly

compressible liquid described by the general Keller–Herring equation. This approach is used to

build an energy budget framework identifying energy modes in the liquid–bubble system and for

elucidation of energy transport between these modes. As the bubble begins to collapse, the poten-

tial energy in the liquid is primarily transferred to kinetic energy of the liquid; in the final stage of

collapse, energy losses due to acoustic radiation and bubble internal energy become significant. In

the early stage of the collapse, the liquid primarily loses its kinetic energy due to acoustic radiation,

and these losses lead to less energy concentration to the bubble in the final stage of the collapse.

We quantitatively demonstrate that the energy concentration during the collapse obeys one of

two scenarios: up to the driving pressure ratio of 112, most of the initial energy is concentrated

into the bubble, whereas beyond that pressure ratio, a significant fraction of the initial energy is

lost via acoustic radiation, thus reducing the efficiency of the energy concentration process. Liquid

compressibility also reduces the energy density and thus the strength of the shock emitted upon

collapse. Overall, as the driving pressure ratio is increased, the liquid has a larger potential energy

initially, such that a larger energy is concentrated to a smaller bubble confinement at collapse, thus

increasing the bubble energy density and demonstrating a stronger shock is released. Using our en-

ergy budget framework, we develop scaling relations for the bubble volume, energy concentration,

bubble energy density, and shock emission at collapse depending on the parameters governing

the problem, i.e., the driving pressure ratio and effective Mach number. These scaling relations

are employed to identify the driving pressure ratios at which the compressibility effects become

important. Finally, we apply our framework to experimental data for validation and analysis.

Additional effects (e.g., thermal conduction, viscous dissipation, surface tension) are expected

to affect the energy transfer in other regimes. In the future, we plan to incorporate these effects

into our model. Furthermore, the present results will form the basis for better understanding energy
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concentration and shock emission in non-spherical bubble collapse.
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CHAPTER 3

Energy Transfer during the Growth and Collapse of a

Cavitation Bubble in an Acoustic Field

Acoustic cavitation has been used for a variety of applications including therapeutic ultrasound

procedures (e.g., lithotripsy, histotripsy) and ultrasonic cleaning. When a gas nucleus is exposed to

strong transient rarefaction waves, it undergoes an explosive growth and violent collapse, leading to

the generation of shock waves and large deformation of the surrounding material, which may lead

to local damage. However, the relation between input parameters (e.g., external waveform, nucleus

size) and outputs (e.g., maximum bubble radius and energy concentration at collapse), which is

necessary to predict damage, is not known due to the large parameter space and complex physics.

In this study, we develop a framework to understand how energy is transferred from the wave

to the medium. Using this framework, we obtain scaling relations describing bubble expansion

during the growth and energy concentration at collapse based on the waveform properties. These

relations will help to better understand cavitation-induced damage and develop strategies to control

cavitation bubble dynamics.

3.1 Introduction

Under the action of ultrasound waves, a pre-existing gas nucleus grows and collapses when it is

exposed to negative pressure regions in the ultrasound waves. In the presence of the gas nucleus,

the interactions between the ultrasound waves and the nucleus lead to a different type of energy
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transfer from the waves (energy source) to the medium. When the amplitude of the waves is

sufficiently large, the bubble undergoes explosive growth, followed by rapid compression, called

inertial collapse. During inertial collapse, the input energy is concentrated into the bubble, such

that high pressure and temperature build up inside the bubble at collapse. As the bubble rebounds,

some of the bubble energy is released via a shock wave. In addition to the shock emission, large-

amplitude bubble oscillations also lead to local changes in the surrounding medium (e.g., large

deformations).

The outcomes of such oscillations may lead to damage in the surrounding medium; this damage

is observed and even used in a variety of biomedical applications. The damage produced by inertial

cavitation is used to homogenize soft tissue into acellular debris during histotripsy treatment (Xu

et al., 2004; Parsons et al., 2006; Khokhlova et al., 2015; Bader et al., 2019). Large deformations

and shock waves observed in inertial collapse may be responsible for disrupting the blood-brain

barrier (BBB), enabling targeted drug delivery to the brain in the BBB opening technique (Mc-

Dannold et al., 2006; Tung et al., 2010). On the other hand, the damage produced by cavitation

bubbles causes undesirable bioeffects (e.g., capillary ruptures in tissue) in contrast-enhanced ul-

trasound treatment, in which lipid-coated microbubbles are injected intravenously to enhance the

contrast in imaging (Patterson et al., 2012; Versluis et al., 2020). However, the relationship be-

tween waveform properties and cavitation-induced damage is unclear. Thus, further investigation

of dependence of bubble response and key shock properties on initial conditions (i.e., waveform

properties and initial bubble size) is needed to better utilize bubbles and control bioeffects for the

safety and efficacy of these applications.

For freely-oscillating bubbles whose growth is initially driven by an impulse or pulsed ultra-

sound waveform, the first of many oscillations is typically responsible for the results desirable or

undesirable for the applications. The amplitude of subsequent oscillations rapidly attenuates due

to energy transfer by compressibility, thermal conduction, and viscosity. In the present study, we

focus on the first oscillation, which can be divided into two sequential components: bubble growth

(the initial equilibrium state to the maximum bubble radius) and bubble collapse (the maximum
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bubble radius to the minimum bubble radius at collapse). In chapter 2, we develop a model for

inertial collapse to predict bubble radius and energy at collapse using the parameters at maximum

size:
Rcol

Rmax
∼

(
∆p

pb,max

) −1
3k−1

M
1

2(3k−1) ,
EBIE,col

ET E,max
∼

(
∆p

pb,max

)− 2
3k−1

M−
3(k−1)

2(3k−1) , (3.1)

where Rcol is the bubble radius at collapse, Rmax is the bubble radius at maximum size, ∆p is the

driving pressure, ∆p = p∞ − pb,max, p∞ is the liquid pressure at far field, pb,max is the bubble

pressure at maximum size, M is the effective Mach number, M =
√
∆p/ρla2

l , al is the speed of

sound, EBIE,col is the energy of the bubble at collapse, ET E,max is the total energy at maximum size.

Then, an empirical relation for peak pressure of the shock pm is

pm

pb,max
∼

(
∆p

pb,max

) 3k−1.13
3k−1

M−
3k−(1+α)
2(3k−1)

(Rmax

r

)1.13

. (3.2)

Although helpful for assessing energy concentration during collapse, these relations depend on the

maximum radius, which is not known a priori. The goal of this work is to determine the dependence

of the quantities at collapse on the initial conditions, namely the initial nucleus forcing (waveform

properties).

In the context of ultrasound-induced cavitation, several models have been developed to predict

the maximum bubble radius using initial conditions. By examining energy transfer during bubble

growth in water, Apfel (1981) derived a model for predicting Rmax based on Req and the continuous

sinusoidal waveform, by assuming that the change in the potential energy between Req and Rmax

is the same as the maximum kinetic energy of the liquid. However, this model does not apply

to freely-oscillating bubbles. Although Bader & Holland (2016) empirically obtained the relation

for predicting the maximum bubble diameter after growth of the bubble in water for the purpose

of histotripsy, the relation is only valid for the specific pulsed ultrasound waveform considered in

their study.

The objective of this work is to determine the dependence of the maximum bubble radius

on the input parameters (i.e., equilibrium bubble radius, and wave amplitude and period) for a
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bubble oscillating in water driven by a pulsed ultrasound waveform. For this purpose, we present a

framework to decompose the energy of the liquid–bubble system into different modes and to track

their evolution during bubble oscillations. The framework introduced in section 2 is extended to

also quantify heat energy into liquid via thermal conduction at the bubble wall, as well as energy

transport via viscous and surface tension effects. This chapter is organized as follows. First, the

dynamic equations describing the bubble dynamics and energy transport are introduced in section

3.2. This framework is used to track the time evolution of each energy mode and to understand the

energy transfer during the bubble growth, thus enabling the development of a model predicting the

maximum radius and energy at that time in section 3.3. In section 3.4, we apply this knowledge to

histotripsy and different regimes. Concluding remarks close the chapter in section 3.5.

3.2 Energy transport in bubble oscillations driven by an acous-

tic field

3.2.1 Problem description and modeling of gas bubble dynamics

Initially, a bubble filled with non-condensible gas at pressure peq is in mechanical and thermal

equilibrium with its surroundings, such that

peq = p∞ + 2S/Req, (3.3)

where p∞ is the far-field liquid pressure, S is the surface tension, and Req is the equilibrium radius.

As illustrated in Fig. 3.1(a), acoustic waves from the far-field (Ω∞) disrupt the equilibrium and

cause the bubble (ΩB) to oscillate. The interaction of the ultrasound with the bubble is a means by

which energy is transferred from the wave to the medium as the bubble oscillates and eventually

loses energy via a variety of mechanisms. We expect that the waveform and initial bubble radius

determine bubble growth (i.e., maximum bubble radius Rmax) and subsequent collapse (i.e., bub-

ble radius at collapse Rcol). For simplicity, a Gaussian pulse is considered because it is general
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Figure 3.1: (a) Schematic of bubble oscillations in an acoustic wave field.

enough to represent ultrasound waves (Flynn, 1975b). The acoustic period τ corresponding to the

Gaussian pulse is assumed as τ = 4σ, within which over 95 % of the Gaussian pulse is contained.

The frequency is f = 1/τ. The bubble is assumed to maintain its spherical shape during oscilla-

tions, which is a reasonable assumption given that ultrasound wavelength is much larger than the

equilibrium radius, i.e., alτ ≫ Req, where τ is the acoustic period.

The oscillations of a spherical bubble in an acoustic field can be described by the Keller–Miksis

(KM) equation (Keller & Miksis, 1980):

RR̈
(
1 −

Ṙ
al

)
+

3
2

Ṙ2
(
1 −

Ṙ
3al

)
=

[
pl − p∞ − p f

ρl

] (
1 +

Ṙ
al

)
+ R

(
ṗl − ṗ f

ρlal

)
, (3.4)

where p f = −pAexp[−0.5((t − w f )/σ)2], pA is the peak amplitude, w f is the mean pressure, and

σ is the standard deviation. As introduced in section 2.2.1, weak compressibility of medium is

considered to first order in effective Mach number M = U/al based on the characteristic velocity

U =
√
∆p/ρl, where ∆p = peq + pA − p∞. At the bubble wall, normal components of the stresses

are balanced, as described in Eq. (2.4).

During such bubble oscillations, heat conduction may lead to inhomogeneous temperature

fields inside the bubble (Prosperetti, 1977, 1991). To account for such effects, we solve the en-
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ergy equation inside the bubble,

(
k

k − 1

)
pb

Tb

dTb

dt
= ṗb +

1
r2

in

(
2rinKb

∂Tb

∂rin
+ r2

inKb
∂2Tb

∂r2
in

)
, (3.5)

where Tb(t, r) is the gas temperature inside the bubble, and k is the specific heat capacity ratio, t is

the time, Kb is the gas thermal conductivity, and rin is the radial coordinate inside the bubble. Mass

diffusion is neglected because the corresponding time scales over which those processes affect the

dynamics are far longer than those under consideration. To account for the dependence of the

thermal conductivity of gas on the temperature Kb(Tb) = ATb + B, where A = 5.3 × 10−5W/mK2,

and B = 1.17 × 10−2W/mK are empirically determined coefficients (Prosperetti et al., 1988), we

change variables (Prosperetti et al., 1988; Barajas & Johnsen, 2017):

θb =

∫ T

Teq

Kb(T ′)dT ′, (3.6)

and Eq. (3.5) becomes

(
k

k − 1

)
pb

KbTb

dθb

dt
= ṗb +

1
r2

in

(
2rin

∂θb

∂rin
+ r2

in
∂2θb

∂r2
in

)
. (3.7)

Combining this equation with the continuity equation for the gas inside the bubble, the velocity

field inside the bubble ub(rin, t) can be obtained:

ub(rin, t) =
1

kpb

[
−

rin

3
ṗb + (k − 1)

∂θb

∂rin

]
. (3.8)

Since the bubble wall velocity is much smaller than the gas speed of sound for the most part of the

oscillation, the gas pressure can be assumed uniform (Prosperetti, 1977; Nigmatulin et al., 1981;

Prosperetti et al., 1988; Prosperetti, 1991, 2017; Zhou & Prosperetti, 2020). At the bubble wall,
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ub(rin = R) = Ṙ, such that the gas pressure inside the bubble can be expressed:

ṗb =
3
R

[
−kpbṘ + (k − 1)Kb

∂Tb

∂rin

∣∣∣∣∣
w

]
, (3.9)

where the subscript w indicates the bubble wall. In liquid, we use the cold-water assumption Tl =

T∞ because the thermal conductivity of liquid are much larger than those of gas. This assumption

is verified in Appendix B.

Making use of Req, U, Teq, and Keq, Eqs. (3.4), (2.4) (3.7)–(3.9) can be rewritten in dimension-

less form:

R∗R̈∗
(
1 − Ṙ∗M

)
+

3
2

Ṙ∗2
(
1 −

Ṙ∗

3
M

)
=

(
p∗l − p∗∞ − p∗f

) (
1 + Ṙ∗M

)
+ (ṗl

∗ − ṗ f
∗)R∗M, (3.10)

p∗b = p∗l +
4

Rel

Ṙ∗

R∗
+

2
WelR∗

(3.11)

∂θ∗b
∂t∗
+

(
u∗ − Ṙ∗y

R∗

)
∂θ∗b
∂y
= ṗ∗b

(
k − 1

k

)
K∗bT ∗b

p∗b
+

FobK∗b
R∗2

(
2
y
∂θ∗b
∂y
+
∂2θ∗b
∂y2

)
, (3.12)

u∗b = −
y

3k

(
R∗ ṗ∗b

p∗b

)
+

Fob

R∗T ∗
∂θ∗b
∂y

, (3.13)

ṗ∗b =
3k
R∗

[
−p∗bṘ∗ +

(
Fob p∗b
R∗T ∗b

)
∂θ∗b
∂y

∣∣∣∣∣
w

]
, (3.14)

where the Reynolds number is Rel = ρlUReq/µl, the Weber number is Wel = ρlU2Req/S , the

thermal Fourier number is Fob = αb(Req/U)/R2
eq, αb is the thermal diffusivity of gas, p∗f =

−p∗Aexp[−0.5((t∗ − w∗f )t
∗
r )2], where t∗r = Req/Uσ, and for simplicity in the spatial discretization,

the radial coordinate is transformed as y = rin/R, where y ∈ [0, 1]. A fifth-order Cash–Karp

Runge–Kutta method is used to march a set of ordinary and partial differential equations with

adaptive stepsize control (Barajas & Johnsen, 2017). The spatial derivatives are discretized in

radial direction with a uniform spacing ∆y from the bubble center to the bubble wall using second-

order central differences. The boundary conditions at the bubble center and wall are ∂θ∗b/∂y|y=0 = 0

and θ∗b = 0. The number of grid points inside the bubble is Nin = 1000. To demonstrate con-

vergence, the simulation results are compared to two limiting cases; isothermal and adiabatic gas
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Figure 3.2: (a) Pulsed ultrasound shape for the baseline case and relevant waveforms, and corre-
spnoding bubble oscillations: normalized (b) bubble radius and (c) bubble–wall velocity, including
an equilibrium bubble case for reference; inset: bubble–wall velocity in the early stage of growth.

behavior inside the bubble, for which deviations are < 0.2% with Nin = 1000 In the following

sections, we investigate the dependence of the bubble dynamics and energy transfer on the equi-

librium radius and waveform properties (i.e., pA and f ) by varying these parameters in the ranges

0.1 µm ≤ Req ≤ 10 µm, 0.1 MPa ≤ pA ≤ 5 MPa, and 1 MHz ≤ f ≤ 10 MHz. This equilibrium

radius range is relevant to the bubble size commonly used in contrast-enhanced ultrasound and

drug delivery; the size is approximately equal to or smaller than the size of a red blood cell (Sirsi

& Borden, 2009; Tung et al., 2010; Patterson et al., 2012). The waveform properties are selected,

accounting for inertial collapse and bioeffects induced by this collapse, observed in the process

of contrast-enhanced ultrasound and drug delivery (Ignee et al., 2016; Cammalleri et al., 2020;

Versluis et al., 2020).
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As a baseline for this study, we consider Req,base = 2.5 µm with pA,base = 0.5 MPa and

fbase = 1.25 MHz, which correspond to a waveform practically used in contrast-enhanced ul-

trasound (Patterson et al., 2012). Figure 3.2 shows different waveforms of interest along with the

corresponding bubble response and bubble–wall velocity. The baseline case and other relevant

waveforms are provided; in other waveforms, one of the problem parameters (i.e., Req, pA, and f )

is doubled, relative to the baseline waveform. As the bubble is exposed to tension, the bubble be-

gins to expand, continuing its growth even after the passage of the wave. As the negative pressure

decreases and approaches zero, the bubble expands more slowly, eventually reaching its largest

size. The bubble then collapses due to the large pressure difference between the far field and gas

inside the bubble. During the collapse, the bubble reaches a size smaller than its equilibrium radius

(minimum radius). At this point, the pressure build-up within the bubble is achieved such that the

bubble rebounds. For waves with larger negative peak pressure, higher bubble–wall velocities are

achieved during both the growth and collapse, such that the growth is more explosive and the col-

lapse is more violent. Hence, larger maximum radius and smaller minimum radius are achieved.

For larger equilibrium radius, the growth is less explosive and the collapse is less violent because

the pressure difference that drives the growth, ∆p, is smaller. For higher frequency, the bubble is

exposed to the negative pressure for shorter time, such that the growth is less explosive and the

collapse is less violent. Clearly, the bubble oscillations are significantly affected by the problem

parameters.

3.2.2 Energy budgets for bubble oscillations driven by an acoustic field

The dependence of the bubble response on the waveform properties can be explained by examining

energy transfer in the liquid–bubble system, illustrated in figure 3.3. In the present study, following

the theoretical framework proposed by Prosperetti & Lezzi (1986) and Yang & Church (2005),

we develop a framework to distinguish the individual contributions of compressibility, viscous

stresses, surface tension, and input energy from ultrasound to energy transfer. We first describe our

framework and examine the energy transfer during bubble oscillations in later sectoins. The first
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Figure 3.3: Schematic of energy transfer during bubble oscillations in a weakly compressible
liquid.

law of thermodynamics states that the energy in the system must be balanced at anytime:

ET E,eq + EWIE = ET E, (3.15)

where ET E is the total energy, EWIE is the wave input energy, and the subscript eq indicates the

quantity at equilibrium. The total energy is comprised of seven energy modes:

ET E = ELPE + ELKE + EBIE + EARE + EHEL + EVIE + ES FE, (3.16)

where ELPE is the liquid potential energy, ELKE is the liquid kinetic energy, EBIE is the bubble

internal energy, EARE is the acoustic radiation energy, EHEL is the heat energy transferred to the

liquid, EVIE is the energy losses due to viscosity, and ES FE is the surface tension energy. At

equilibrium, the kinetic energy and energy losses are zero, so the total energy is

ET E,eq = ELPE,eq + EBIE,eq + ES FE,eq. (3.17)
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Compared to the Rayleigh collapse problem (Rayleigh, 1917) typically studied for cavitation ero-

sion, additional mechanisms have visible effects on the energy transfer when accounting for bubble

growth; waves introduce energy into the system and the effects of heat conduction and viscosity

cannot be negligible in the early stage of growth.

In our analysis, we take our system to consist of a bubble in a sea of liquid. Given the conser-

vative hydrostatic force acting on the liquid in the far-field, the potential energy stored in the liquid

is (Arons & Yennie, 1948; Obreschkow et al., 2006; Tinguely et al., 2012; Vogel et al., 1996)

ELPE = p∞V. (3.18)

The liquid kinetic energy is (Lamb, 1932; Cole, 1948; Pearson et al., 2004; Wang, 2016)

ELKE = 2πρlR3Ṙ2. (3.19)

For an ideal, non-condensible gas, the bubble internal energy is

EBIE =

∫
ρgedV =

pbV
k − 1

, (3.20)

where ρg is the gas density and e is the specific internal energy. The heat conduction across the

bubble wall due to temperature difference between the liquid and gas leads to changes in internal

energy of the gas and liquid. Assuming a cold liquid, heat conduction across the liquid is infinitely

fast. The heat energy transferred from bubble to liquid is calculated at the bubble wall:

∆EHEL = 4π
∫ t

0
R2Kb

(
∂Tb

∂rin

) ∣∣∣∣∣∣
w

dt. (3.21)

We start our analysis with Yang & Church (2005)’s framework, which provided theories to

understand the terms implying external waves, viscosity, and surface tension in the KM equation.

The motion of the bubble–wall is dominant near the bubble while fluctuations due to that motion
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are attenuated and the stresses become negligible. By matching the solutions to approximated

continuity and momentum conservation equations in each sub-region, the equation of motion for

bubble radius to the first order of ratio of characteristic length scales ϵ = U/al can be obtained:

RR̈ +
3
2

Ṙ2 −
F̈
al
=

pl − p∞ − p f

ρl
−
τrr(R)
ρl
+

3
ρl

∫ ∞

R

τrr

r
dr, (3.22)

where τrr is the normal viscous stress in the radial direction and the function accounting for liquid

compressibility F̈ is

F̈ = 2Ṙ3 + 6RṘR̈ + R2 ...
R . (3.23)

The effect of bulk viscosity can be negligible for the liquid with small shear viscosity (Shen et al.,

2017; Nazari-Mahroo et al., 2018). Equation 3.22 can be rewritten as

RR̈ +
3
2

Ṙ2 −
F̈
al
=

pb − p∞ − p f

ρl
−

4µl

ρl

Ṙ
R
−

2S
ρlR

. (3.24)

The work done by external waves (i.e., input energy introduced via waves) is

EWIE = 4π
∫ t

0
p f R2Ṙdt. (3.25)

Work done by pressure difference across the interface is dissipated by normal viscous stresses and

stored as surface tension energy (Prosperetti, 1979) as well. Thus, the energy of viscous dissipation

to first-order in ϵ is

EVIE = 16πµl

∫ t

0
RṘ2dt. (3.26)

Since the surface tension only acts on the interface, the energy of surface tension is

ES FE = 4πS R2. (3.27)
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Finally, the energy losses due to acoustic radiation are

EAE = −
4πρl

al

∫ t

0
FF̈dt. (3.28)

In the formulation of the KM equation, the third-order derivative of R in Eq. (3.23) is replaced by

low-order derivatives while confining the error to order ϵ2, and thus F̈ can be expressed as follows:

F̈ =
Ṙ3

2
+ RṘR̈ + Ṙ

(
pl − p∞ − p f

ρl

)
+ R

ṗl − ṗ f

ρl
. (3.29)

Thus, the acoustic radiation energy can be calculated by substituting F = R2Ṙ and equation 3.29

into equation 3.28.

3.3 Results

3.3.1 Energy transport during bubble growth

The bubble response (i.e., R(t)) to the prescribed waveforms in figure 3.2 can be interpreted from

an energy perspective, which we analyze in detail in this section. Figure 3.5 shows the time history

of the different energy modes (described in section 3.2.2) normalized by the total energy at equi-

librium and of the the rate of input energy via waves normalized by the total energy at equilibrium

over acoustic period. The energy transfer during growth and collapse of a bubble can be described

by dominant modes of energy transfer: (i) energy input via the ultrasound waves, (ii) liquid poten-

tial energy, (iii) liquid kinetic energy, (iv) bubble internal energy, and (v) acoustic radiation energy.

As it experiences the tension, the bubble starts to grow rapidly at a high velocity (see figure 3.2(c)).

The corresponding rapid increase in liquid kinetic energy implies that the energy input via the ul-

trasound waves, during the early stages of growth, is directly transferred to the kinetic energy. At

the same time as working on the liquid, the bubble contributes to the increase in the kinetic en-

ergy although its contribution is negligible compared with the input energy. As the bubble volume
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Figure 3.4: Time evolution of (a) the input energy via waves and the input energy rate, and (b)
different energy modes normalized by the total energy at equilibrium and the total energy over the
acoustic period for the baseline case.

increases, hydrostatic force in the far field works on the liquid, such that the potential energy of

liquid rises. After the negative peak pressure of the waves passes, the rate of energy input reduces,

causing the bubble–wall velocity to reduce, while the energy input continues. The bubble–wall

velocity finally reaches zero as the bubble attains its largest size, at which point the liquid kinetic

energy is zero and the liquid potential energy is largest. As the collapse progresses, the bubble
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volume decreases, also leading to a decrease in potential energy and a corresponding increase in

liquid kinetic energy. In the final stages of collapse, the bubble–wall velocity rises rapidly (see

figure 3.2(c)), causing large energy losses due to acoustic radiation. Simultaneously, the bubble

pressure (and thus internal energy) builds up rapidly, eventually arresting the liquid and confining

the gas inside the bubble. The bubble subsequently rebounds, driven by an explosion process, i.e.,

a localized high pressure and energy spot causing growth, which is different from the initial growth

driven by a drop in local pressure near the bubble.

Interestingly, as illustrated in figure 3.5, there is an asymmetry in the kinetic energy change

during growth and collapse due to two reasons. First, the initial state of growth and final state

of collapse are different as growth is initiated by a drop in surrounding pressure fields rather than

the high bubble pressure achieved at collapse; in laser-induced cavitation or underwater explosion,

the kinetic energy change during growth and collapse would be more symmetric than the acoustic

cavitation because the initial and final states are expected to be closer to each other. Secondly, the

energy losses due to acoustic radiation are significant at collapse only; the Mach number corre-

sponding to growth is much smaller than the Mach number corresponding to collapse.

Additional energy modes are present but are not significant. As the bubble grows, gas temper-

ature inside the bubble drops, such that temperature gradient at the bubble wall drives the transfer

of heat energy into the bubble, and thus the heat energy transferred to the liquid is negative and

reduces during growth, as shown in figure 3.5. On the other hand, as the bubble obtains energy

through heat conduction, change in the bubble internal energy is not visible during growth. Con-

versely, during most of the collapse, the internal energy of the bubble is transferred to the liquid

through heat conduction, due to the continuously increasing gas temperature. Thus, the bubble

internal energy is almost constant over time during most of the collapse. The energy losses due to

viscosity are negligibly small during the growth. In the final stages of collapse, as the bubble is

more compressed than its equilibrium radius, viscous effects on the energy transport cannot be ig-

nored. The surface tension energy proportional to R2 increases during the growth and subsequently

decreases during the collapse. Even though these modes of energy transfer are not particularly sig-
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Figure 3.5: Time evolution of (a) the input energy via waves, (b) the liquid potential energy, (c) the
liquid kinetic energy, (d) the bubble internal energy, and (e) acoustic radiation energy normalized
by the total energy at equilibrium for the baseline case and relevant waveform cases.

nificant, they must be accurately calculated to determine the total energy that no longer changes

once the wave has passed and the input energy rate has become zero.

Change in the problem parameters (i.e., Req, pA, f ) leads to large difference in energy transfer

during bubble growth, compared to the baseline case. Figure 3.2 shows the time evolution of dom-
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inant modes of energy transfer for the baseline case and other relevant waveforms, as illustrated in

figure 3.2. For all cases, a general trend in energy transfer is similar; the energy input introduced

in the early stages of growth is transferred to the kinetic energy of liquid, which is ultimately

transferred to the potential energy of liquid at maximum bubble size. During bubble collapse, the

potential energy of liquid is concentrated into the bubble, while some of the potential energy is

lost through acoustic radiation. However, the amount of energy transferred between energy modes

depend upon the bubble response to different waveforms. As shown in figure 3.2(a), for waves with

larger negative peak pressure, a greater amount of energy is introduced to the system via waves

due to more explosive growth. Hence, the liquid attains larger kinetic and potential energy during

the growth. Similar to the growth, the collapse is also more violent, such that more energy is con-

centrated into the bubble and more energy is lost through acoustic radiation, relative to the total

energy at equilibrium. Conversely, for larger equilibrium radius, the growth is less explosive, such

that a smaller amount of energy is introduced to the system, leading to weak energy transfer during

the growth and collapse. Similarly, for higher frequency, the shorter exposure time of bubble to the

negative pressure causes the limited energy input, which provides a smaller amount of energy into

the energy modes. Thus, understanding of the dependence of the bubble response on the waveform

is crucial to describe the relationship between the waveform and the energy transfer in the system.

3.3.2 Dependence of the bubble radius and energy at maximum size on the

problem parameters

The state of the system (e.g., bubble size, energy) is important as it often serves as a starting

point in experimental (Vogel et al., 1989; Tinguely et al., 2012; Supponen et al., 2016, 2017),

computational (Johnsen & Colonius, 2009; Beig et al., 2018), and theoretical (Brennen, 1995;

Kim et al., n.d.) studies. In this section, we first determine the dependence of key properties (i.e.,

maximum bubble radius, and bubble pressure and energy modes at maximum size) on the problem

parameters, namely the wave amplitude and frequency, as well as the equilibrium radius. Figure

3.6 shows the dependence of maximum bubble radius and bubble pressure at maximum size on
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Figure 3.6: (a) Maximum bubble radius normalized by equilibrium radius and (b) bubble pressure
at maximum size normalized by equilibrium pressure as a function of normalized peak negative
pressure for Req = 0.1–10 µm; f = fbase.

the wave amplitude for different equilibrium radii, which are used to equations 3.31 and 3.32 to

predict bubble radius and energy at collapse, as well as shock emission. As the wave amplitude is

increased, larger amount of energy is introduced to the system, such that the normalized maximum

radius rises, and thus the bubble pressure at maximum size reduces. In particular, at pA/p∞ < 10,

the bubble growth for Req = 0.1 µm is negligibly small due to large surface tension that suppresses

bubble growth, such that the bubble undergoes a small-amplitude oscillation. At pA/p∞ > 10, the

bubble grows more explosively for smaller equilibrium radii because of larger driving pressures

for growth. Accordingly, the bubble pressure at maximum size becomes smaller.

The energy modes at maximum size also exhibits a similar trend to the bubble expansion. Fig-

ure 3.7 shows the dependence of dominant modes of energy transfer at maximum size on the wave

amplitude for different equilibrium radii. As the wave amplitude is increased, more energy is in-

troduced to the system via waves as the bubble grows more explosively. Since the bubble–wall

attains higher velocities, more input energy is transferred to the kinetic energy in the early stages

of the collapse, which is ultimately stored as the potential energy in liquid. In addition, as the

bubble–wall attained higher velocities, the bubble loses more energy through acoustic radiation.

Interestingly, the internal energy of bubble does not depend on the wave amplitude due to isother-

mal process of gas during bubble growth. As it grows, the bubble works on the liquid, such that
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Figure 3.7: (a) Input wave energy and (b) liquid potential energy at maximum size, (c) maximum
kinetic energy during growth, (d) bubble internal energy and (e) acoustic radiation energy at maxi-
mum size normalized by the total energy at equilibrium as a function of normalized peak negative
pressure for Req = 0.1–10 µm; f = fbase.

gas temperature inside the bubble drops. Then, due to high thermal conductivity of liquid, heat en-

ergy instantaneously supplements the decrease in the internal energy of bubble. Thus, the overall

change in bubble internal energy is negligibly small, and the bubble maintains most of its initial
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Figure 3.8: (a) Negative value of heat energy transferred to the liquid, (b) energy losses due to
viscosity, and (c) surface tension energy at maximum size normalized by the total energy at equi-
librium as a function of normalized peak negative pressure for Req = 0.1–10 µm; f = fbase.

internal energy during the growth. As also shown in figure 3.6, at pA/p∞ < 10, the change in each

energy mode is negligible for Req = 0.1 µm, while at pA/p∞ > 10, more energy is provided and

transferred to other energy modes for Req = 0.1 µm. The initial internal energy of bubble depends

on the bubble size; larger equilibrium bubble contains more internal energy, such that for larger

equilibrium radii, the bubble has more energy at maximum size.

Other energy modes also shows a similar trend although their effects on energy transport are

not significant. Figure 3.8 shows the dependence of energy modes at maximum size, which are

less significant in energy transport (i.e., heat energy transferred to the liquid, energy losses due

to viscosity, and surface tension energy), on the wave amplitude for different equilibrium radii.

Negative values of heat energy are shown to plot them in a logarithmic scale. Again, similar trends
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Figure 3.9: (a) Maximum bubble radius normalized by equilibrium radius and (b) bubble pressure
at maximum size normalized by equilibrium pressure as a function of normalized peak negative
pressure for f = 1–10 MHz; Req = Req,base.

are also observed in those energy modes, indicating that the larger wave amplitude and smaller

equilibrium radius lead to a larger amount of energy transfer.

The bubble response and energy transfer during bubble growth are also depend on the wave

frequency. Figure 3.9 shows the dependence of the maximum bubble radius and bubble pressure at

maximum radius on the wave frequency and amplitude. For a given wave amplitude, the maximum

bubble radius rises as the wave frequency decreases because the bubble is exposed to negative

pressures for a longer time. Thus, the bubble pressure at maximum size decreases. As discussed in

figure 3.6, for larger wave amplitudes, the bubble attains larger maximum radius, and accordingly,

the bubble pressure decreases.

The dominant modes of energy transfer also depend on the wave frequency. Figure 3.10 shows

the dependence of the dominant modes of energy transfer on the wave frequency and amplitude.

For a given wave amplitude, the bubble grows more explosively at smaller frequencies, such that

more input energy is introduced to the system, which is transferred to other dominant energy

modes, such as the kinetic and potential energy of liquid. Furthermore, at smaller frequencies, the

bubble–wall reaches higher velocities, such that more energy is lost through acoustic radiation. The

wave frequency has negligible effects on the bubble internal energy at maximum size because this

energy does not change during the growth due to large heat energy input to the bubble. For different

70



frequencies, the initial internal energy of bubble is the same, such that the bubble internal energy

at maximum size collapses to a single value for a given wave amplitude. As discussed in figure

3.7, for larger wave amplitudes, a greater amount of energy is achieved in each dominant mode,

excepted for the bubble internal energy, which are almost the same for different wave amplitudes.

Other energy modes relevant to heat conduction, viscosity and surface tension depend on the

wave frequency although their contributions to the overall energy transport are not significant.

Figure 3.11 shows the dependence of those energy modes on the wave frequency and amplitude.

For a given wave amplitude, larger input energy is introduced at smaller frequencies, such that a

larger amount of energy is transferred through heat conduction and viscosity and is stored as the

surface tension energy.

The dependence of the bubble response and energy transport on the problem parameters can be

summarized as follows: for larger wave amplitudes, smaller equilibrium radius, and smaller wave

frequencies, the bubble grows more explosively at higher bubble–wall velocities, such that larger

normalized maximum bubble radius and energy modes at maximum size are achieved. Under some

circumstances (e.g., small equilibrium radius and wave amplitude), the bubble undergoes a small

amplitude oscillation. The bubble maintains its internal energy at equilibrium due to instantaneous

heat energy input from the surrounding liquid.

3.3.3 Modeling for predicting maximum bubble radius and energy at maxi-

mum size

During bubble growth, the bubble response and energy transport shows a similar trend for dif-

ferent problem parameters, indicating the presence of possible scaling relations that can univer-

sally describe their dependency on the problem parameters. In the following, we investigate the

dependence of the maximum bubble radius and each energy mode at maximum size on a sin-

gle dimensionless parameter that can represent the waveform properties and equilibrium bubble.

For theoretical analysis of the relation between the Gaussian pulse and corresponding bubble re-

sponses, we start our analysis with the top-hat waveform to derive the analytical relation. Then,
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Figure 3.10: (a) Input wave energy and (b) liquid potential energy at maximum size, (c) maximum
kinetic energy during growth, (d) bubble internal energy and (e) acoustic radiation energy at maxi-
mum size normalized by the total energy at equilibrium as a function of normalized peak negative
pressure for f = 1–10 MHz; Req = Req,base.

we apply this relation to describe the maximum bubble radius and energy at maximum size for the

Gaussian waveform case.

The partition of each energy mode of the total energy at maximum size is useful to assess the
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Figure 3.11: (a) Negative value of heat energy transferred to the liquid, (b) energy losses due
to viscosity, and (c) surface tension energy at maximum size normalized by the total energy at
equilibrium as a function of normalized peak negative pressure for f = 1–10 MHz; Req = Req,base.

Figure 3.12: Liquid potential energy at maximum size normalized by total energy at maximum
size for (a) Req = 0.1–10 µm and f = fbase, and for (b) f = 1–10 MHz and Req = Req,base as a
function of the wave amplitude.
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dominant energy mode in the system at maximum size. Figure 3.12 shows the liquid potential

energy at maximum size normalized by the total energy at maximum size. For larger wave am-

plitudes, more fraction of the total energy is stored as the potential energy of liquid for different

bubble radii and frequencies. In addition, for smaller wave frequencies, more faction of the total

energy is stored as the potential energy. Thus, the energy balance equation (3.15) can be simplified

as

EWIE ≈ ELPE, (3.30)

which is expressed as

−

∫ t′

0
p f

(
4πR2Ṙ

)
dt′ = p∞Vmax. (3.31)

Then, for top-hat waveform, which has a rectangle shape and consists of constant flat pressures

between zero pressures, Eq. (3.31) is given by

pA
4π
3

[
R(τ)3 − R3

eq

]
= p∞

4π
3

R3
max, (3.32)

where τ is the acoustic period and R(τ) is the bubble radius at p f = 0. In the early stages of the

growth, the bubble–wall velocity rapidly increases to the inertial growth velocity
√

2pA/3ρl and is

saturated during most of the growth (Apfel, 1981, 1982; Leighton, 2012). The time duration for

achieving this saturated velocity (i.e., inertial velocity-rising time) is given by tI = Req
√

3ρl/2pA.

For large wave amplitudes or frequencies, we can assume tI ≪ τ, such that R(τ) is given by

R(τ) = Req + τ

√
2pA

3ρl
. (3.33)

Since R(τ) ≫ Req for large pA or τ, substituting Eq. (3.33) into Eq. (3.32) gives

Rmax

Req
≈

(
pA

p∞

) 1
3 ( tI

τ

)−1
= η, (3.34)

where the term in the right-hand side is defined as a single dimensionless parameter η, and Rmax/Req ≈
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η. This relation implies that the expansion ratio of the bubble is determined by two parameters;

acoustic pressure ratios pA/p∞ and inertial-to-acoustic time ratios tI/τ. For larger pressure am-

plitudes, the acoustic pressure ratio rises and the inertial velocity-rising time reduces, such that

the bubble grows with larger expansion ratios. For longer acoustic periods, the expansion ratio

becomes larger because the bubble is exposed to negative pressure for longer times. To under-

stand both growth and collapse of the bubble using initial conditions, we also find the relation for

the gas pressure inside the bubble at R = Rmax. Since the bubble growth tends to be isothermal

(Leighton, 2012) due to its thermal penetration length
√
αb(Req/U) comparable to Req, the gas

pressure becomes
pb,max

peq
=

(
Req

Rmax

)3

≈

(
pA

p∞

)−1 ( tI

τ

)3
= η−3. (3.35)

Eqs. (3.34) and (3.35) are derived for the top-hat waveform. However, the Gaussian waveform

can be approximated to the corresponding top-hat waveform as follows. As the waves act on the

bubble, the bubble–wall velocity rises from zero to the saturated velocity, leading to the rapid

bubble expansion in the early stages of the growth, Ṙ ≈
√

(2/3)(pA/ρl), such that the bubble radius

during the growth can be estimated by R =
∫ t

o
Ṙ(t′)dt′. R and Ṙ are substituted into Eq. (3.25)

to approximate the energy provided by the Gaussian waveform EWIE,gauss. The amplitude of the

top-hat waveform pA,T H is set to be same as pA of the Gaussian waveform. To make the top-hat

waveform producing the same energy, we evaluate the acoustic period of the top-hat waveform τT H

as follows:

τT H = EWIE,gauss

/ 4π
3

(
2
3

)3/2 p5/2
A,T H

ρ3/2
l

 . (3.36)

Using the input wave energy by the Gaussian waveform, we find the corresponding top-hat wave-

form (i.e., τT H and pA). Figure 3.13 shows the Gaussian waveform and the corresponding top-hat

waveform for the baseline case and the dependence of the input energy introduced by those wave-

forms on the wave amplitude. The estimated energy EWIE,gauss using the approximated top-hat

waveform shows good agreement with the exact input energy by the Gaussian waveform at various

acoustic pressure ratios.
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Figure 3.13: (a) Waveform of the Gaussian pulse and approximated top-hat wave for the baseline
case and (b) their input energy for Req = Req,base and f = fbase as a function of the normalized wave
amplitude.

Making use of Eqs. (3.34) and (3.35), we derive the relations between energy at maximum size

and initial conditions as follows. The input energy provided by waves normalized by equilibrium

energy is given by

EWIE,max

ET E,eq
≈

(4π/3)pAR(τ)3

peqVeq/(k − 1)
= (k − 1)

(
pA

p∞

)−1 ( tI

τ

)3
(

p∞
peq

)
= (k − 1)η3

(
p∞
peq

)
, (3.37)

where p∞/peq is the equilibrium pressure ratio. While the expansion ratio is solely described by η,

the energy is described by two parameters: η and equilibrium pressure ratio. Since it is assumed

that most of the input energy is transferred to the liquid kinetic energy during the growth and finally

stored as the potential energy in liquid, Eq. (3.37) can also describe the maximum liquid kinetic

energy during the growth and liquid potential energy at maximum size.

The normalized maximum bubble radius and bubble pressure at maximum size can be de-

scribed by Eqs. (3.34) and (3.35). Figure 3.14 shows the dependence of the maximum bubble

radius and bubble pressure at maximum size for different bubble radii, wave amplitudes, and wave

frequencies on η. The relations (3.34) and (3.35) correctly describe the bubble growth ratio for

larger η, indicating that the bubble growth ratio rises for larger acoustic pressure ratios and smaller

inertial-to-acoustic time ratios. In particular, as the bubble growth begins with smaller equilibrium
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Figure 3.14: (a) Maximum bubble radius normalized by equilibrium bubble radius and (b) bubble
pressure at maximum size normalized by equilibrium bubble pressure for pA/p∞ = 1 − 50 and
f = 1 − 10 MHz as a function of a single dimensionless parameter η; Req = (blue) 0.1 µm, (red)
0.25 µm, (green) 0.5 µm, (orange) 1 µm, (brown) 2.5 µm, (cyan) 5 µm, and (pink) 10 µm; solid
line: Eq. (3.34); dashed line: Rmax/Req = η(24/3/35/6π) (Apfel, 1981).

radii, the bubble–wall reaches the saturated (maximum) velocity more rapidly, such that the bubble

reaches larger maximum size with smaller bubble pressure, compared to its equilibrium values. For

smaller η, there are some differences between scaling relations and the simulation results because

(i) inertial velocity-rising time is comparable to acoustic period and (ii) wave amplitude is compa-

rable to the equilibrium gas pressure or far-field liquid pressure. The scaling relation proposed by

Apfel (1981), Rmax/Req = η(24/3/35/6π), is introduced in figure 3.14(a) and shows some discrepan-

cies with the calculated expansion ratios. Because only the continuous sine waveform is treated in

their study to understand the forced bubble oscillation, their relations cannot be directly used for
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Figure 3.15: (a) Input wave energy, (b) liquid potential energy, and (c) liquid kinetic energy nor-
malized by the total energy at equilibrium for pA/p∞ = 1 − 50 and f = 1 − 10 MHz as a function
of η(p∞/peq)(1/3); Req = (blue) 0.1 µm, (red) 0.25 µm, (green) 0.5 µm, (orange) 1 µm, (brown)
2.5 µm, (cyan) 5 µm, and (pink) 10 µm; solid line: Eq. (3.37).

the pulsed ultrasound waveform (i.e., Gaussian waveform), where the acoustic period need to be

accurately evaluated in the scaling relations.

The normalized energy modes at maximum size can be described by Eq. (3.37). Figure 3.15

shows the dependence of the input energy, and potential and kinetic energy of liquid normalized

by equilibrium total energy on acoustic pressure ratios and periods, and equilibrium bubble radius.

Larger maximum bubble radius leads to larger energy input, and correspondingly, larger maximum

kinetic energy and potential energy at maximum size. Hence, for larger amplitudes, longer acous-

tic periods, and smaller equilibrium radius, more energy is provided to the system and is finally

stored to the potential energy at maximum size. Eq. (3.37) correctly describes the energy mode

illustrated in figure 3.15, while there exists some deviations from the simulation results at smaller
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η(p∞/peq)1/3 because the assumptions used for deriving the scaling relations are not valid at this

regime. When the pressure amplitude or equilibrium bubble radius is smaller than some thresholds,

the bubble maintains its equilibrium state or undergoes stable oscillations, such that the expansion

ratios and gas pressures at maximum size are close to one, and energy ratios are much smaller than

one. This will be discussed in section 3.4.

3.4 Discussion

3.4.1 Application of energy budget framework to histotripsy

Our energy budget framework and scaling relations can readily be applied to other various wave-

forms for therapeutic ultrasound. In the present study, we choose the ultrasound waveform to

predict the maximum bubble radius using our scaling relations, which is closely relevant to tissue

damage induced by bubble oscillations in histotripsy. The waveform for the intrinsic-threshold

histotripsy is given by (Mancia et al., 2020, 2021):

p f =


pA

[
1+cos[ω(t−δ)]

2

]n
, |t − δ| ≤ π

ω
,

0, |t − δ| > π
ω
,

(3.38)

where pA is the peak amplitude, f is the frequency, and ω = 2π f , δ =5 µs, n =3.7, and the gas

nuclei size is O(1–10) nm. As described in section 3.3.3, the histotripsy waveform is projected

to obtain the corresponding top-hat waveform and τ as preserving the total input energy by the

histotripsy waveform. Similar to the Gaussian form cases in section 3.3.3, larger acoustic pressure

ratios and inertial-to-acoustic rime ratios lead to larger bubble expansion ratios. The scaling rela-

tion (Eq. (3.34)) shows a good agreement with the histotripsy waveform case. This is because for

explosive bubble growth, most of the input energy is finally stored as the potential energy of liquid,

which is the fundamental assumption used to derive the scaling relation. Therefore, our framework

and scaling relations introduced in section 3.3 provides a baseline case to predict damage potential
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Figure 3.16: Maximum bubble radius normalized by equilibrium radius for pA/p∞ = 120 − 1000
and f = 0.3−3 MHz as a function of η; Req = (blue) 2.32 nm, (red) 2.5 nm, (green) 4 nm, (orange)
5 nm, (brown) 10 nm, (cyan) 25 nm, (pink) 50 nm, and (gray) 100 nm; solid line: Eq. (3.34)

in oscillating bubbles surrounded by medium.

3.4.2 Cavitation thresholds for bubble growth

As observed in figures 3.14, 3.15, and 3.16, there exist two distinct regimes that classifies the bub-

ble behavior during the growth. At lower acoustic pressure ratios, the bubble oscillation is affected

by the surface tension, leading to the stable oscillation. For smaller bubble radius where the sur-

face tension becomes more significant, the bubble oscillation tends to be stable at larger acoustic

pressure ratios. On the other hand, at higher acoustic pressure ratios, the bubble grows explo-

sively and collapse violently, such that bubble oscillations have remarkable effects on surrounding

medium. These two regimes can be theoretically classified using the perturbation theory (Blake,

1949; Brennen, 1995; Mancia et al., 2020). With the small perturbation ϵ ≪ 1, R = Req(1 + ϵ),

the Rayleigh–Plesset equation is linearized, and the stability of the solutions is evaluated to get the

critical pressure amplitude (i.e., the Blake threshold pressure):

(
pA

p∞

)
Blake
= 1 +

8
9

(
S

p∞Req

) √
3S/Req

2k(p∞ + 2S/Req)
, (3.39)
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and this equation can be rewritten as

Req,Blake =

(
1
3k
− 1

) (
2S

p∞ − pA

)
, (3.40)

where the equilibrium is stable and the bubble undergoes stable oscillations at pA < PA,Blake or

Req < Req,Blake. The equilibrium becomes unstable at pA > PA,Blake or Req > Req,Blake. It should

be noted that only the peak pressure amplitude determines whether the oscillations are stable or

unstable; the bubble would undergo stable oscillation for longer acoustic periods if the pressure

amplitude is smaller than the Blake threshold pressure. However, once the oscillation becomes

unstable, the bubble achieves larger maximum radius and longer acoustic periods, as observed in

figures 3.14 and 3.16.

While the equilibrium state and bubble growth are focused on understanding the bubble oscil-

lations, the bubble collapse is also essential to describing the effects of bubble oscillations on sur-

rounding medium. As comparing the inertial term (i.e., Ṙ2) with the pressure term in the Rayleigh–

Plesset equation, the criterion for the inertial bubble collapse is obtained as (Rmax/Req)I = ηI = 2.3

(Flynn, 1975b). This implies that if Rmax/Req > 2.3, the bubble collapses inertially, and the bub-

ble undergoes non-inertial collapse if Rmax/Req < 2.3 (Leighton, 2012). Substituting the critical

expansion ratio ηI into Eq. (3.34) yields the critical acoustic pressure ratio:

(
pA

p∞

)
I
=

(
3ρl

2p2/3
∞

)3/5 (
ηIReq

τ

)6/5

, (3.41)

which implies that the bubble collapses inertially if pA/p∞ > (pA/p∞)I .

Understanding more strict criteria among those thresholds is important to predict bubble growth.

Figure 3.17 shows the dependence of the Blake and inertial cavitation thresholds on critical acous-

tic pressure ratios. Different from the Blake threshold, the acoustic period is also a key parameter;

at longer acoustic periods, smaller pressure ratios are needed for the inertial collapse. For f = 1

MHz, the critical pressure ratio for the inertial cavitation is smaller than that for the Blake threshold

at Req < 1µm, such that in this regime, the bubble undergoes unstable growth and inertial collapse
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Figure 3.17: The acoustic pressure ratio for the Blake threshold and inertial cavitation threshold
for f = 0.1–5 MHz as a function of equilibrium bubble radius.

at acoustic pressure ratios larger than (pA/p∞)Blake. At Req > 1µm, acoustic pressure ratios larger

than (pA/p∞)I are needed for unstable growth and inertial collapse. For f = 10 MHz, the transition

for threshold criteria occurs at smaller equilibrium radius (∼ 0.2 µm).

The simulations results that are deviated from the scaling relations in figures 3.14, 3.15, and

3.16 can be described by the Blake and inertial cavitation thresholds: Eqs. (3.39) and (3.41).

This is because the scaling relations only well describe the explosive growth of the bubble where

pA ≫ p∞ and tI ≪ τ. The growth ratio of the bubble around one belongs to the regime of

stable oscillation due to the low acoustic pressure ratios (∼ 1) smaller than (pA/p∞)Blake , and the

explosive bubble growth following the scaling relations can only be achieved under waves with

higher pressure amplitudes. On the other hand, the bubble with 1 < Rmax/Req < 2.3 belongs to the

regime of the non-inertial growth and collapse, such that the expansion ratio begins to follow the

scaling relations for larger acoustic pressure ratios and longer acoustic periods.

3.5 Conclusions

In summary, we study the dependence of the bubble response and energy transport on the prop-

erties of ultrasound waveform. We propose a theoretical approach to accurately represent energy

transport, considering the contributions of external forcing (e.g., ultrasound waves), thermal con-

duction, viscosity, and surface tension. This approach is used to build a framework to track the
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evolution of individual energy modes in the system. During the growth and collapse of the bubble

exposed to an ultrasound wave, the energy is transferred as follows. Energy is input to the system

via the ultrasound, which decreases the liquid pressure. As a result, the higher-pressure bubble

expands rapidly with the surrounding liquid, which also moves outward and thus acquires kinetic

energy. As the bubble expands, its pressure and velocity decrease, thereby causing liquid kinetic

energy to decrease and potential energy to increase. At this point, the state of the system is the

same as the initial condition of the problem described in chapter 2, in which case potential energy

is converted to liquid kinetic energy, which confines the bubble, raising its pressure and thus its

kinetic energy. In the final stages of the collapse, a significant fraction of the bubble internal en-

ergy is lost through acoustic radiation as bubble–wall velocities become comparable to the speed

of sound. We showed that, for larger wave amplitudes, smaller frequencies, and smaller equilib-

rium radii, a greater amount of energy is introduced to the system via waves, such that the bubble

reaches a larger maximum radius relative to the equilibrium radius; the different energy modes also

increase at maximum radius, relative to the equilibrium total energy.

Assuming that most of the input energy is finally stored as liquid potential energy at maximum

size, we find that the growth ratio of the bubble is determined by two dimensionless parameters;

the acoustic pressure ratio and inertial-to-acoustic time ratio. We develop scaling relations for the

maximum bubble radius, as well as the gas pressure and the dominant energy modes at that radius.

The maximum bubble radius follows one of two scenarios; the bubble undergoes stable oscillation

when the equilibrium radius is smaller than the Blake threshold radius, while inertial cavitation is

observed when the equilibrium radius is smaller than the critical radius. Our scaling relations can

be employed to predict the bubble radius, energy concentration, and shock emission at collapse.

We also apply our framework and scaling relations to the nano-size bubble under the histotripsy

waveform, which demonstrates wide applicability of our approach to diverse waveforms. The

present results form the basis for better understanding of energy concentration and shock emission

in non-spherical bubble collapse. The effects of vapor inside the bubble are expected to affect the

energy transfer in other regimes. For future work, we plan to extend our framework to describe
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energy transfer for the gas/vapor mixture bubble. Furthermore, the present results for a bubble in

water would provide guidelines to understand energy transfer during bubble oscillation in biologi-

cal material.
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CHAPTER 4

Effects of Compressibility on Bubble Dynamics during the

Collapse of a Cavitation Bubble Near a Rigid Boundary

Cavitation-bubble collapse is known to cause structural damage in a variety of industrial applica-

tions such as naval hydrodynamics and turbomachinery. When cavitation bubbles are subjected to

high-pressure regions, they undergo a rapid compression that concentrates energy into a small vol-

ume. As the bubble rebounds, a high-amplitude pressure (or shock) wave is generated, propagat-

ing radially outward and subsequently producing impact loads on the nearby objects. In addition,

when a bubble collapses near a boundary, asymmetrical surroundings causes the bubble to collapse

non-spherically. The concentration of energy and shock emission during non-spherical collapse is

expected to depend on the liquid compressibility. Thus, a better understanding of role of compress-

ibility is essential to predicting cavitation erosion. In this study, we compare direct simulations to

potential flow calculations to assess the effects of compressibility on the collapse of a gas bubble

near a rigid boundary. The 3D compressible Navier-Stokes are solved in the gas and liquid using

a high-order shock- and interface-capturing scheme; potential calculations are conducted using a

boundary integral method. We observe a delay between the two approaches, attributed to the dif-

ferences in the pressure fields at early times due to compressibility effects. Nevertheless, bubble

morphologies are similar for the most part of collapse, with discrepancies visible only in the final

stages of collapse. We discuss the effects of compressibility on the dynamics of the bubble and jet

at jet impact. This understanding will help better understand the importance of waves generating

during the collapse and will inform efforts to develop a better relation to predict shock properties.
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4.1 Introduction

Cavitation is the process whereby vapor bubbles are formed due to the reduction of local pressure

in a liquid. When the bubbles are subjected to high pressure regions, they undergo a rapid compres-

sion, which concentrates energy into a small volume. Subsequently, at collapse, some of the en-

ergy inside the bubble is released through shock waves, propagating outward and impinging upon

neighboring boundaries, thus producing an impact load. The destructive nature of inertial cavita-

tion plays a critical role in determining the sustainability of a system in a variety of applications,

including naval hydrodynamics (Knapp et al., 1970; Plesset & Prosperetti, 1977), turbomachinery

(Arndt, 1981), and the Spallation Neutron Source (SNS) (Riemer et al., 2014; Winder et al., 2020).

However, inertial cavitation has recently been exploited for therapeutic and diagnostic ultrasound

treatment, including histotripsy (Parsons et al., 2006; Khokhlova et al., 2015), lithotripsy (Zhong,

2013), contrast-enhanced ultrasound (Patterson et al., 2012; Versluis et al., 2020), and targeted

drug delivery to the brain (McDannold et al., 2006; Tung et al., 2010).

In an infinite sea of liquid, which is perfectly symmetrical, the bubble collapses spherically.

However, the presence of the nearby object breaks the symmetry and causes the bubble to collapse

in non-spherical fashion, which is often observed in aforementioned applications (Plesset & Pros-

peretti, 1977; Arndt, 1981; Tomita & Shima, 1986). During the collapse, a high-speed re-entrant

jet is formed in the direction of the boundary, piercing the bubble. When the re-entrant jet impacts

the opposite side of the bubble wall, a water-hammer shock wave is produced (Tomita & Shima,

1986; Philipp & Lauterborn, 1998). Furthermore, as the bubble reaches its minimum volume and

subsequently rebounds, an implosion shock wave is produced. These shock waves propagate out-

ward, resulting in high pressures on neighboring boundaries (Lindau & Lauterborn, 2003; Johnsen

& Colonius, 2009). Thus, it is essential to understand the dynamics of a bubble collapsing near a

solid surface and of the re-entrant jet to build a predictive model for the impact loads induced by

shock waves.

During the process of inertial collapse, liquid compressibility has significant effects on bubble
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dynamics and jet formation. In the early stages of collapse, due to the initial pressure difference,

a rarefaction wave propagates outward. As the waves interact with a nearby boundary, they are

reflected with negligible attenuation due to the large impedance mismatch between the boundary

and liquid. The reflected waves interact with the collapsing bubble and change nearby pressure

fields. On the other hand, in the incompressible limit, the bubble would instantaneously be made

aware of the nearby boundary. It is clear that pressure fields would be significantly different in the

compressible and incompressible cases. Thus, the overall bubble and jet dynamics are expected to

depend significantly on liquid compressibility.

Liquid compressibility may explain discrepancies between different past studies (Naudé & El-

lis, 1961; Tomita & Shima, 1986; Blake et al., 1986; Vogel et al., 1989; Philipp & Lauterborn,

1998; Supponen et al., 2016). In past studies, different relationships have been proposed to de-

scribe jet velocity, which is one of the key quantities for estimating water-hammer shock pressure.

For investigation of bubble collapse, Naudé & Ellis (1961) employed the potential flow theory,

which neglected liquid compressibility and determined that the maximum jet velocity is 50–76

m/s and the corresponding maximum peak pressure along the boundary is 0.1–10 MPa. Tomita

& Shima (1986) experimentally studied bubble collapse at high driving pressures, where liquid

compressibility cannot be ignored. They showed that the maximum jet velocity ranges from 30 to

120 m/s and the corresponding maximum peak pressure ranges from 2 to 10 MPa. Blake & Gib-

son (1987) empirically found scaling relations to describe the jet velocity as a function of driving

pressure. Supponen et al. (2016) conducted experiments and proposed scaling relations to univer-

sally explain the maximum jet velocity observed in the collapse of a bubble near a boundary and

a free surface, and of a bubble under the action of gravity. However, their relations are based on

potential flow theory, only valid at low driving pressures where liquid compressibility is negligi-

ble. As shown in these studies, liquid compressibility adds great complexity to building a more

comprehensive, predictive model for the dynamics of bubble and jet. Thus, a better understanding

of the effect of liquid compressibility is required to achieve this goal.

The objective of this work is to understand the effects of liquid compressibility on bubble and
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Figure 4.1: Schematics of the Rayleigh collapse of a bubble near a rigid boundary.

jet dynamics. For this purpose, we compare compressible flow simulations to potential flow results

to assess the contributions of compressibility to bubble collapse. The article is organized as fol-

lows. First, numerical methods for compressible flow simulations and potential flow calculations

are introduced in section 4.2. In section 4.3, both approaches are used to quantify the effects of

compressibility on the bubble and jet dynamics (i) during the collapse and (ii) at jet impact. This

article ends with concluding remarks in section 4.4.

4.2 Physical and numerical models

4.2.1 Problem description

We investigate the classical Rayleigh collapse (Rayleigh, 1917) of an isolated bubble in water near

a rigid boundary. Initially, a spherical gas bubble of radius Req = 500 µm at pressure peq = 3.55

kPa and temperature Teq = 300 K is in mechanical and thermal equilibrium with the surrounding

water. The bubble centroid is located a distance Heq from a rigid wall. In the direct simulation,

the domain size is typically 10 × 6 × 6 to make sure that the initial distance between the domain

boundary and the bubble centroid is larger than 6. The problem symmetry is leveraged such that
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one fourth of the domain is considered by applying symmetry boundary conditions along the xz

and xy planes. Non-reflecting conditions are applied along the remaining planes. A no-slip wall

condition is applied along the yz plane. In the following sections, we investigate the dependence

of the bubble and jet dynamics on the driving pressure ratio ∆p/peq, the effective Mach number

M =
√
∆p/ρla2

l and the normalized initial stand-off distance δeq. The range of these parameters

are ∆p/peq = 1.4−2.8×103, M = 3.3−6.6×10−2 and δeq = 1.25−5.00. The driving pressure range

is relevant to inertial collapse of acoustically generated bubble as well as underwater explosions

(Cole, 1948; Hunter & Geers, 2004). Bubble collapse from maximum bubble volume to jet impact

is our interest in the present study; the bubble dynamics after jet impact will be discussed in a

subsequent study.

4.2.2 Numerical simulations for compressible multiphase flows

We numerically solve the three-dimensional compressible Navier-Stokes (NS) equations for a gas-

liquid system consisting of mass conservation, momentum and energy balance equations:

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0, (4.1a)

∂ρui

∂t
+

∂

∂x j
(ρuiu j + pδi j) =

∂τi j

∂x j
, (4.1b)

∂E
∂t
+

∂

∂x j
[u j(E + p)] =

∂

∂x j
(uiτi j − Q j), (4.1c)

where ρ is the density, t is the time, ui is the velocity vector, p is the pressure, δi j is the identity

tensor, τi j is the viscous stress tensor, x j is the spatial vector in the Cartesian coordinate, E is the

total energy per unit volume, Q j is the heat flux, and i, j = 1, 2, and 3. The total energy E per unit

volume comprises the internal and kinetic energy:

E = ρe +
1
2
ρu2

i , (4.2)
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where e is the internal energy per unit mass. The viscous stress tensor and heat flux are expressed

as follows:

τi j = µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j

)
+ µB

∂uk

∂xk
δi j, (4.3a)

Q j = −κ
∂T
∂x j

, (4.3b)

where µ is the dynamics shear viscosity, µB is the bulk viscosity, and κ is the heat conductivity.

For a micro-to-millimeter size bubble, the Reynolds number O(103 − 105) and Weber number

O(101 − 105) are sufficiently large, such that the inertial effects dominates the bubble collapse, and

viscous and surface tension effects can be ignored. (Johnsen & Colonius, 2009; Tiwari et al., 2015;

Beig et al., 2018; Trummler et al., 2020).

To capture gas/liquid interfaces, additional transport equations for volume fraction are solved

(Murrone & Guillard, 2005; Beig & Johnsen, 2015; Saurel & Pantano, 2018):

∂

∂t
(ρ(k)α(k)) +

∂

∂x j

(
ρ(k)α(k)u j

)
= 0, (4.4a)

∂α(k)

∂t
+ u j

∂α(k)

∂x j
= Γ(k)∂u j

∂x j
, (4.4b)

where

Γ(k) =
α(k)

K(k)
s

 1∑
l
α(l)

K(l)
s

− K(k)
s

 , K(k)
s = ρ

(k)(a(k))2, (4.5)

where k represents phases, and k = 1 and 2. In this multifluid modeling, the volume fraction ap-

proach prevents generation of spurious oscillations in pressure and temperature across the material

discontinuities Beig & Johnsen (2015).

To close the system and relate the internal energy to pressure and temperature, the Noble-Abel
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Stiffened-Gas (NASG) equation of state (EOS) (Métayer & Saurel, 2017) is used:

ρe =
p

n − 1
(1 − ρb) +

nB
n − 1

(1 − ρb) + ρq, (4.6a)

= ρcT + B(1 − ρb) + ρq, (4.6b)

where b, B, n, q, and c are parameters, depending on the materials. For water vapor and liquid

water, the coefficients introduced in Table 4.1 produces a good fit to experimental data (Métayer &

Saurel, 2017). Using this EOS, the pressure and temperature can be obtained:

p =

ρe −
∑

k

α(k)
( nB
n − 1

)(k)

+
∑

k

(ρα)(k)
(

nBb
n − 1

)(k)

−
∑

k

(ρα)(k)q(k)

 /α(k)
(

1
n − 1

)(k)

−
∑

k

(ρα)(k)
(

b
n − 1

)(k) (4.7)

T =

ρe −
∑

k

α(k)B(k) +
∑

k

(ρα)(k)(bB)(k) −
∑

k

(ρα)(k)q(k)

 /∑
k

(ρα)(k)c(k), (4.8)

where (ρα)(k) is calculated from the conservative from of the volume fraction transport equation

(4.4a) and α(k) is calculated from the non-conservative form of the volume fraction transport equa-

tion (4.4b). The speed of sound in gas/liquid mixture follows the Wood’s formula (Wood, 1930)

1
ρa2 =

∑
k

α(k)

ρ(k)(a(k))2 , (4.9)

where a(k) is the speed of sound for k component. The NASG–EOS is used to express this equation

Table 4.1: Coefficients in the NASG–EOS for water vapor and liquid water.

Coefficients Water vapor Liquid water
n 1.47 1.19

b (m3/kg) 0 6.61 × 10−4

B (MPa) 0 702.8
c (J/kg-K) 955 3610
q (J/kg) 2.077 × 106 -1.177 × 106
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as the mixture form:

a2 =
n(p + B)
ρ(1 − ρb)

. (4.10)

The physical models described in this section is numerically implemented to an in-house code

to simulate cavitation bubble collapse. For spatial discretization of Eqs. (4.1) and (4.4), a solution-

adaptive high-order accurate finite difference scheme is used to approximate advection fluxes while

appropriately capturing discontinuities (Movahed & Johnsen, 2013; Beig & Johnsen, 2015). A sen-

sor is used to detect the discontinuities (i.e., interface, contacts, shocks) (Henry de Frahan et al.,

2015). For smooth regions, a fourth-order central difference scheme is used, while for discontin-

uous regions, a fifth-order weighted essentially non-oscillatory (WENO) reconstruction (Jiang &

Shu, 1996) and the Harten-Lax-van Leer (HLL) (Harten et al., 1983) Riemann solver is used. For

the diffusive terms, a fourth-order explicit central difference scheme is used. For time marching,

a third-order accurate explicit strong-stability-preserving Runge-Kutta scheme (Gottlieb & Shu,

1996) is used, and the time step size is controlled adaptively by the advection and diffusion con-

straints. The high-order solution-adaptive techniques may prevent interfaces being overly smeared

(Beig, 2018). The code leverages Message Passing Interface (MPI) to accelerate the computation,

and parallel Hierarchical Data Format (HDF5) is used to efficiently manage extremely large data

sets (Beig, 2018).

The convergence of our in-house code for spherical bubble collapse is demonstrated in Beig

(2018). Comparing the minimum bubble volume at collapse in the simulations to the solution

of the Keller–Miksis equation (Keller & Miksis, 1980), Beig (2018) showed that the resolution

with 192 cells per initial bubble radius represents the dynamics with sufficient accuracy to inform

physics, so this is also used in the present study. This result also means that the interface smeared

over a number of cells has negligible effects on the bubble dynamics.
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4.2.3 Potential flow theory for collapse of a bubble in a liquid

To examine the role of compressibility in the context of collapse of a cavitation bubble, we consider

a framework for potential flow calculations using the Boundary Integral Method (BIM) (Blake

et al., 1986). For incompressible, inviscid, and irrotational flows, there exists a velocity potential

ϕ satisfying Laplace’s equation:

∇2ϕ = 0, (4.11)

obtained from the continuity equation for the liquid domain Ω. By Green’s theorem, a solution of

equation (4.11) also satisfies the following integral equation:

c(p)ϕ(p) =
∫
∂Ω

(
∂ϕ(q)
∂n

G(p,q) − ϕ(q)
∂G(p,q)
∂n

)
dS , (4.12)

where the point p ∈ Ω + ∂Ω, the point q ∈ ∂Ω, ∂n is the normal derivative, and S is the surface

integral. The coefficient c(p) is 4π if p ∈ Ω and 2π if p ∈ ∂Ω. The three-dimensional Green’s

function G(p,q) is

G(p,q) =
1

|p − q|
+

1
|p − q′|

, (4.13)

where the point q′ is the image of q reflected with respect to the rigid wall. The momentum balance

equation can be simplified as the unsteady Bernoulli equation:

Dϕ
Dt
=
|u|2

2
+

(peq + ∆p) − pb

ρl
, (4.14)

where peq is the equilibrium gas pressure, ∆p is the driving pressure, and pb is the gas pressure, ρl

and u are the liquid density and velocity. The bubble wall is advected, following the liquid velocity

at the wall:
dx
dt
= ∇ϕ, (4.15)

where the point x ∈ ∂Ω. In figure 4.2, the bubble wall is discretized into n + 1 Lagrangian nodes

and n segments in axisymmetric coordinates, and each segment and variable along the bubble wall
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Figure 4.2: Schematic and discretization of the bubble wall for implementation of the Boundary
Integral Method.

is represented by cubic splines. Since the gradient in the radial direction at r = 0 should be zero

for ϕ(s) and z(s), a clamped spline is used to enforce zero gradient boundary conditions at the first

and (n+1)th node. In addition, the second derivative of r(s) should be zero at r = 0, and the natural

spline is used to enforce this boundary condition.

Following this discretization, equation (4.12) can be expressed as

2πϕ(pi) =
n∑

j=1

∫ s j+1

s j

∂ϕ(q j)
∂n

(∫ 2π

0
G

(
pi, q j

)
dθ

)
r(s)ds

−

n∑
j=1

∫ s j+1

s j

ϕ(q j)

∫ 2π

0

∂G
(
pi, q j

)
∂n

dθ

 r(s)ds,

(4.16)

where pi and q j are the jth node at ∂Ω, s j is the arc length from the reference point (r1,z1) to jth

node (r j,z j), r is the paramter in the radial direction, θ is the parameter in the azimuthal direction,

and s is the parameter for the surface integral. This integral equation can be rewritten:

2πϕ(pi) +
n∑

j=1

Ai j =

n∑
j=1

(
Bi jψ j +Ci jψ j+1

)
, (4.17)
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where ψ j is the normal velocity at node j, and ψ j = (∂ϕ/∂n) j. The matrices for segment j with

respect to node i, Ai j, Bi j, and Ci j are given by

Ai j =

∫ s j+1

s j

ϕ(q j)βi j(s)ds, (4.18a)

Bi j =

∫ s j+1

s j

(
s j+1 − s
s j+1 − s j

)
αi j(s)ds, (4.18b)

Ci j =

∫ s j+1

s j

(
s − s j

s j+1 − s j

)
αi j(s)ds, (4.18c)

where βi j(s) and αi j(s) are the integration term in the azimuthal direction, multiplied by r(s). A 10-

points Gauss quadrature is used to compute the integration terms with complete elliptic integrals of

the first and second kind (Blake et al., 1986; Best, 1993). To treat the singularities at the leftmost

and rightmost points of the segment, logarithmic terms in the integration (4.18) are decomposed

into singular and non-singular terms:

log(1 − k2
j ) = log

 1 − k2
j

((s j+1 − s)/∆s j)2

 + 2log
(

s j+1 − s
∆s j

)
, (4.19)

where the left term is the non-singular term, the right term is the singular term, and k j is given by

k2
j =

4r jri

(r j + ri)2 + (z j − zi)2 . (4.20)

For the singular term, the 10-points Stroud quadrature is used (Stroud, 1966).

The velocity in the normal direction, ∂ϕ/∂n is computed using Eq. (4.16). Then, for given

velocity potential, the tangential velocity is obtained using a fourth-order central difference scheme

on non-uniform grids. After the total velocity is computed, ϕ at each node i is marched forward in

time by a time step with adaptive size (Blake et al., 1986):

∆t =
∆tmax

max
[
|1 − pb| + (1/2)|u|2

] , (4.21)

which is in accordance with the Courant−Friedrichs−Lewy (CFL) condition to limit the rapid
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increment in the velocity potential and to capture a violent change in bubble dynamics with ∆tmax =

0.001 (Best, 1993; Pearson et al., 2004). At each time step, the nodes on the bubble surface

are redistributed with the same arc length to prevent numerical instabilities (Best, 1993; Pearson

et al., 2004). The five-point smoothing formula of Longuet-Higgins & Cokelet (1976) is also

implemented to suppress these instabilities at every 200 time steps (Best, 1993; Lind, 2014).

4.3 Results

4.3.1 Effects of compressibility on bubble dynamics during the collapse

To qualitatively describe the effects of compressibility on the bubble dynamics, we first observe the

bubble morphology and pressure fields. Figures 4.3 and 4.4 show (i) contours for the pressure and

density gradient (i.e., bubble shape) fields during the collapse in the direct simulations at the left

column and (ii) bubble shapes and surrounding pressure fields during bubble collapse at different

times for the compressible and potential flow cases. As the bubble begins to collapse, overall

the pressure in the liquid decreases over time. As the bubble collapses more, due to asymmetrical

surroundings, a re-entrant jet is formed in the direction of the wall, piercing the bubble, and a water-

hammer shock wave is produced when the jet impacts the opposite side of the bubble surface.

At the beginning of the collapse, both cases show the same bubble shape, even though the

pressure fields are significantly different. At this stage, in the compressible case, the initially

generated rarefaction waves propagating radially outward have not hit the neighboring wall yet,

such that the liquid pressure remains unaffected by the presence of the wall. On the other hand, in

the potential flow case, the bubble instantaneously knows about the presence of the nearby wall,

and thus the pressure fields adjust accordingly, as shown in figure 4.3(a). In the compressible case,

after the passage of initially generated rarefaction waves, which are reflected off the rigid wall, the

pressure fields in both cases become similar, as shown in figure 4.3(b).

This difference between the compressible and potential flow cases in the early stages of collapse

causes large discrepancies in the later stages of collapse. Figure 4.4 shows the bubble shapes and
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Figure 4.3: Bubble shapes and surrounding pressure fields for the compressible and potential flow
simulations at t/tc = (a) 0.01 and (b) 0.18 for δeq = 1.25. Left column: central cross section of
pressure and density gradient contours for the direct simulations. Right column: pressure field
along the axis across the bubble centroid and bubble shape along the central cross section. Time is
normalized by the Rayleigh collapse time tc = 0.915Req

√
ρl/∆p

surrounding pressure fields at late and in the final stages of the collapse. In the compressible case,

the bubble is exposed to a higher pressure over a longer period of time, compared to the potential

flow case. As a result, the bubble compresses to a greater extent and collapses more rapidly in the

compressible case. At t/tc = 0.86, the bubble in the compressible case is smaller than that in the

potential flow case, as shown in figure 4.4(a). As the bubble collapses further, the discrepancies

in bubble shape and near-field pressure field become more significant, such that the formation of a

re-entrant jet is observed in the compressible case, which is not yet observed in the potential flow

case (see figure 4.4(b)). Thus, jet impact occurs in the compressible case at t/tc = 1.10, while a jet
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Figure 4.4: Bubble shapes and surrounding pressure fields for the compressible and potential flow
cases at t/tc = (a) 0.86, (b) 1.06, and (c) 1.10 for δeq = 1.25. Left column: central cross section
of pressure and density gradient contours for the compressible case. Right column: pressure field
along the axis across the bubble centroid and bubble shape along the central cross section. Time is
normalized by the Rayleigh collapse time tc = 0.915Req

√
ρl/∆p.
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Figure 4.5: (a) Time as a function of jet thickness normalized by the initial radius for non-spherical
(δeq = 1.25) and spherical (δeq = ∞) collapse for the compressible and potential flow case. (b) Time
shift as a function of jet thickness for different distances δeq = 1.25 − 3.00,∞.

only begins to appear in the potential flow case at the same time, as shown in figure 4.4(c).

To appropriately compare time differences during the collapse for the compressible and poten-

tial flow cases, figure 4.5 shows the normalized time and the time shift as a function of normalized

jet thickness for non-spherical collapse; as a comparison, spherical collapse is also considered.

Here, jet thickness λ is the distance along the x axis between the points at the bubble surface, nor-

malized by the equilibrium radius, such that it changes from 2 to 0. For spherical and non-spherical

collapse, the bubble in the compressible case collapses faster than the bubble in the potential flow

case. We also compute the time difference ∆tshi f t between the instants when both compressible and

potential flow simulations yield the same jet thickness. As shown in figure 4.5, the time shift is

more pronounced in the early stages of collapse due to the greater difference in the liquid pressure

fields, and it decreases as the collapse proceeds. As the initial stand-off distance is increased, the

initially emitted rarefaction wave takes a longer time to propagate to the wall and reflect back to

the bubble, such that the time shift increases. However, when the bubble collapses infinitely far

from the wall, the near-field pressure fields in the compressible case are qualitatively similar to

those obtained in the potential flow case at earlier time because the near-field pressure fields are

not affected by the reflected waves.

To make meaningful comparisons, figure 4.6 compares the bubble morphologies during the
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Figure 4.6: Bubble morphologies during bubble collapse for the compressible and potential flow
simulations; δeq =1.25 and p∞/peq = 2800.

collapse for both compressible and potential flow cases for a given jet thickness, such that each

case has the same jet thickness at different times. Interestingly, when both cases have the same

jet thickness, the bubble morphologies are similar during most of the collapse. Apart from the

time shift, the bubble shows similar kinematics throughout the collapse for both compressible and

potential flow cases. Figure 4.7 shows the normalized bubble displacement d/Req and collapse

non-sphericity η for different initial stand-off distances for compressible and potential flow simu-

lations. Here the collapse non-sphericity is calculated as η = 1 − πλ/P, where P is the perimeter

of the toroidal bubble in the centerplane (Beig et al., 2018). For most of the collapse, the bubble

displacement and the collapse non-sphericity are almost identical in the compressible and potential

flow cases. However, slight discrepancies are observed between the two cases in the final stages of

collapse (small jet thicknesses), where the liquid compressibility effects are no longer negligible.

4.3.2 Bubble dynamics at jet impact

As described earlier, in non-spherical collapse, a water-hammer shock wave is produced at jet

impact, propagating outward and leading to impact loads on a nearby wall. Emission of the water-

hammer shock wave relies on the bubble dynamics at jet impact, which are significantly affected by
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Figure 4.7: (a) Bubble displacement and (b) non-sphericity as a function of jet thickness for the
compressible and potential flow simulations for different distances δeq = 1.25–3.00, and p∞/peq =

2800.

liquid compressibility. Thus, to develop a model to predict the dynamics of a water-hammer shock

wave, a better understanding of the dependence of the bubble dynamics at jet impact on liquid

compressibility is required. Figure 4.8 shows the normalized time timp, bubble volume Vimp, bubble

displacement dimp and jet velocity V jet at jet impact as a function of initial stand-off distance for

both compressible and potential flow simulations. The jet impact time demonstrates the duration

of jet formation during the collapse. For all cases, the normalized jet impact time decreases as

the initial stand-off distance increases. For smaller initial stand-off distances, bubble collapse

becomes more non-spherical, leading to longer jet impact times. Furthermore, in the potential flow

simulations, the normalized jet impact time is very similar for different driving pressure ratios. In

the potential flow cases, the driving pressure ratios are already high enough, such that the bubble

collapse tends to be collapse of an empty bubble (i.e., no gas inside the bubble); normalized jet

impact time can be scaled analytically as a function of δeq (Plesset & Chapman, 1971). However,

in the compressible cases, the jet impact time is delayed at low driving pressure ratios, where the

compressibility is less important. In addition, as explained in section , in the compressible cases,
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Figure 4.8: (a) Time, (b) bubble volume, (c) bubble displacement, and (d) jet velocity at jet impact
for different distances δeq = 1.25–5 and p∞/peq = 1400, 2800; gray dashed line: (a) 1+0.205/δeq

(Plesset & Prosperetti, 1977), (c) slope: -1.2, and (d) slope: +2 (Supponen et al., 2016).

the bubble is exposed to a high pressure over a longer period of time, leading to short jet impact

time, compared to the potential flow cases.

The bubble volume at jet impact is one of the important parameters to estimate the implosion

shock produced at collapse. For all cases, the normalized bubble volume at jet impact reduces

as the initial stand-off distance increases. If the bubble is initially located closer to the wall, the

collapse becomes more non-spherical, and thus at jet impact, the bubble has larger volume. As the

bubble collapses farther from the wall, the interactions between a bubble and wall are no longer

strong, and thus bubble collapses more spherically and the jet impacts the opposite bubble wall at

the smaller volume. Additionally, the bubble is less compressed at jet impact in the compressible
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cases, compared to the potential flow cases, because lower bubble–wall velocity is achieved in the

compressible case.

The bubble displacement characterizes the dynamics of a bubble during the collapse and demon-

strates the effects of a nearby wall on bubble motion during the collapse. For all simulations, the

normalized bubble displacement at jet impact reduces as the initial stand-off distance increases. As

illustrated in figure 4.1(b), the effect of a nearby wall can be roughly replaced by an image sink

located at the wall side with the same distance to the wall. The image sink draws the bubble toward

itself; its effects are inversely proportional to the distance between the bubble and the sink. Thus,

as the bubble begins to collapse farther from the wall, the bubble translates a smaller distance.

Furthermore, for small driving pressures, the bubble translates large distance in the compressible

case due to large impact time. In the potential flow case, driving pressure has negligible effects

on the bubble displacement. In addition, in the compressible case, the bubble translates smaller

distance than the potential flow case because of smaller jet impact time.

The jet velocity characterizes the dynamics of a re-entrant jet and can be used to estimate the

strength of a shock produced at jet impact. For all simulations, the normalized jet velocity at jet

impact rises as the initial stand-off distance increases. At larger driving pressures, in the potential

flow simulations, the bubble is more compressed, such that the higher jet velocities are achieved.

However, in the compresssible simulations, the increase in the jet velocity is limited by liquid

compressibility, such that the normalized jet velocity is smaller at larger driving pressures. In

addition, the jet velocity in the compressible case is smaller than the incompressible case.

Thus, as the initial stand-off distance is decreased, the presence of the wall leads to larger

minimum bubble volume, bubble migration, and lower jet velocities. In addition, for a given

driving pressure ratio and initial stand-off distance, in the compressible case, the bubble volume

is larger and the jet velocity is smaller, compared to the potential flow case. In addition, the jet

impact occurs at a location farther from the wall. As a result, the peak pressure along the boundary

produced by a water-hammer shock is expected to be lower than the peak pressure in the potential

flow case.
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4.4 Conclusions

In summary, we assess the effects of compressibility on the dynamics of the bubble and the re-

entrant jet by comparing direction simulations with potential flow simulations. At the beginning

of the collapse, both cases show similar bubble morphologies even though the pressure fields are

significantly different; in the compressible case, the bubble is exposed to a higher pressure over

a longer period of time compared to the potential flow case. As a result, the bubble compresses

further and the collapse becomes more rapid.

We choose the jet thickness to compare bubble morphologies and collapsing time in the com-

pressible and potential flow cases. We also calculate the time shift, which is the time difference

between the instants where both cases yield the same jet thickness. This time shift is more pro-

nounced in the early stages of collapse due to the difference in the surrounding pressure fields

and decreases as the collapse progresses. For the most part of the collapse, similar overall bubble

kinematics are observed for both cases after implementing a time shift. In the final stages of col-

lapse, there are discrepancies in the dynamics of the bubble and jet between the compressible and

potential flow cases.

We finally investigate the effects of compressibility on the bubble dynamics (i.e., time, bubble

volume, bubble displacement, and jet velocity) at jet impact. For all cases, as the initial stand-off

distance increases, the normalized time, bubble volume, and bubble displacement at jet impact

reduce, while the normalized jet velocity rises because the bubble remains spherical for a longer

time during its collapse. Furthermore, the driving pressure ratio changes the bubble dynamics

significantly in the compressible cases. For a given driving pressure ratio and initial stand-off

distance, in the compressible case, the bubble volume is larger and the jet velocity is smaller,

compared to the potential flow case. In addition, the jet impact occurs at a location farther from

the wall. As a result, the peak pressure along the boundary produced by a water-hammer shock is

expected to be lower than the peak pressure in the potential flow case.

Even after jet impact, liquid compressibility is expected to affect the bubble collapse and shock
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wave emission. In the future, we plan to investigate the bubble collapses and rebounds after jet

impact. This understanding will help better understand the importance of liquid compressibility to

develop a model for impact loads produced by bubble collapse.
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CHAPTER 5

Conclusions

This chapter summarized the research, discusses the results, and proposes directions for future

studies.

5.1 Summary and conclusions

The main objective of this study was to better understand the dynamics and energy transport of

individual oscillating bubbles and their relation to the macroscopic phenomena. Towards that

purpose, this thesis primarily investigated the growth and collapse of a gas bubble in an infinite

medium and near a rigid surface. Specifically, the present study aimed to (i) develop a theoretical

framework to better describe energy transport in the liquid–bubble system, (ii) explore the role

of compressibility in the overall bubble dynamics, energy transport, and shock emission, and (iii)

develop a predictive model for energy transport, concentration and release during bubble growth

and collapse. The following subsections summarize chapters 2 through 4 in the present study.

5.1.1 Spherical bubble dynamics

The study of spherical bubble dynamics is the first step toward understanding and predicting bubble

dynamics in practically relevant geometries, in which case the bubble dynamics are typically non-

spherical. In particular, it is critical to understand the energy concentration and shock emission in

spherical bubble collapse in order to build a predictive model for damage induced by cavitation

bubbles in applications.
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In chapter 2, we considered the classical Rayleigh collapse problem of spherical bubble col-

lapse driven by an instantaneous increase in liquid pressure. We proposed a theoretical approach

to accurately represent energy transport, including direct calculations of energy losses due to liq-

uid compressibility. This approach was used to build an energy framework for identifying energy

modes in the liquid–bubble system and for understanding energy transport between these modes.

The overall energy transport can be described as follows: as the bubble collapses, the potential

energy in the liquid is primarily transferred to kinetic energy of the liquid, which is ultimately con-

centrated into the internal energy of the bubble; in the final stages of collapse, energy losses due to

acoustic radiation become significant. In the early stages of the collapse, the liquid primarily loses

its kinetic energy due to acoustic radiation, while in the final stages of the collapse, the bubble

primarily loses its internal energy due to acoustic radiation.

Using our energy budget framework, we quantitatively showed that the energy concentration

during the collapse follows one of two scenarios: up to the driving pressure ratio of 112, most of

the initial potential energy is concentrated into the bubble at collapse, whereas beyond that pres-

sure ratio a significant fraction of the initial energy is lost via acoustic radiation as the bubble-wall

velocity becomes comparable to the speed of sound, thus reducing the efficiency of the energy

concentration process. Overall, as the driving pressure ratio is increased, the liquid has a larger ini-

tial potential energy, such that a larger energy is concentrated into a smaller bubble confinement as

internal energy although larger fraction of initial potential energy is lost through acoustic radiation.

Hence, the bubble energy density increases and a stronger shock is released at collapse. Finally,

we derived, for the first time, scaling relations for the bubble volume, energy concentration, bubble

energy density, and shock emission at collapse accounting for liquid compressibility and depend-

ing on the parameters governing the problem, i.e., the driving pressure ratio and effective Mach

number.

Our framework and scaling relations could be used in conjunction with single-phase simula-

tions as a means to estimate the cavitation activity. For instance, the expected cavitation activity

of a nucleus/bubble following a Lagrangian trajectory could be determined for the corresponding
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pressure. Further, the resulting shock produced by the collapsing bubble could be determined.

Such information could help devise strategies to mitigate cavitation, for instance by modifying the

geometry accordingly.

In chapter 3, we studied the dependence of the bubble response and energy transport on the

properties of ultrasound waveform. We proposed a theoretical approach to accurately represent

energy transport, considering the contributions of external forcing (e.g., ultrasound waves), thermal

conduction, viscosity, and surface tension. This approach was used to build a framework to track

the evolution of individual energy modes in the system. During the growth and collapse of the

bubble exposed to an ultrasound wave, the energy is transferred as follows. Energy is input to the

system via the ultrasound, which decreases the liquid pressure. As a result, the higher-pressure

bubble expands rapidly with the surrounding liquid, which also moves outward and thus acquires

kinetic energy. As the bubble expands, its pressure and velocity decrease, thereby causing liquid

kinetic energy to decrease and potential energy to increase. At this point, the state of the system

is the same as the initial condition of the problem described in chapter 2, in which case potential

energy is converted to liquid kinetic energy, which confines the bubble, raising its pressure and

thus its kinetic energy. In the final stages of the collapse, a significant fraction of the bubble

internal energy is lost through acoustic radiation as bubble–wall velocities become comparable to

the speed of sound. We showed that, for larger wave amplitudes, smaller frequencies, and smaller

equilibrium radii, a greater amount of energy is introduced to the system via waves, such that the

bubble reaches a larger maximum radius relative to the equilibrium radius; the different energy

modes also increase at maximum radius, relative to the equilibrium total energy.

Assuming that most of the input energy is finally stored as liquid potential energy at maximum

size, we found that the growth ratio of the bubble is determined by two dimensionless parameters;

the acoustic pressure ratio and inertial-to-acoustic time ratio. We developed scaling relations for the

maximum bubble radius, as well as the gas pressure and the dominant energy modes at that radius.

The maximum bubble radius follows one of two scenarios; the bubble undergoes stable oscillation

when the equilibrium radius is smaller than the Blake threshold radius, while inertial cavitation is
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observed when the equilibrium radius is smaller than the critical radius. Our scaling relations can

be employed to predict the bubble radius, energy concentration, and shock emission at collapse.

We also applied our framework and scaling relations to the nano-size bubble under the histotripsy

waveform, which demonstrates wide applicability of our approach to diverse waveforms. The

present results form the basis for better understanding of energy concentration and shock emission

in non-spherical bubble collapse.

5.1.2 Non-spherical bubble dynamics

We showed in chapter 2 that spherical bubble collapse is fully characterized by two parameters, the

driving pressure ratio and the effective Mach number. In practice, impact loads with the greatest

potential for damage are produced by bubbles collapsing sufficiently close to the surface under

consideration, in which case the collapse is no longer spherical as a re-entrant jet develops and

penetrates the bubble. In chapter 4, we investigated the role of compressibility on the collapse of

a gas bubble near a rigid surface. In particular, we examined the bubble dynamics using direct

simulations and potential flow calculations. In addition to the driving pressure ratio and the effec-

tive Mach number, key collapse quantities are governed by a third parameter, the initial stand-off

distance of the bubble from the wall.

By comparing direct simulations with potential flow calculations, we assessed the effects of

compressibility on the dynamics of the bubble and the re-entrant jet. At the beginning of the

collapse, both cases show similar bubble morphologies even though the pressure fields are signifi-

cantly different: in the compressible case, the bubble is exposed to a higher pressure over a longer

period of time compared to the incompressible case. As a result, the bubble compresses further

and delays its collapse in the compressible case. We observed that, for a given jet thickness, which

is the thickness of the bubble along the centerline, there exists a time difference between the com-

pressible and incompressible; this difference is more pronounced in the early stages of collapse

and reduces as the collapse progresses. For the most part of the collapse, similar overall bubble

kinematics were observed for both cases after implementing a time shift. In the final stages of the

109



collapse, there are observable discrepancies in bubble dynamics at jet impact between the com-

pressible and incompressible results. We finally investigated the effects of compressibility on the

bubble dynamics at jet impact. In the compressible case, the bubble volume is larger and the jet

velocity is smaller compared to the incompressible case. In addition, the jet impact occurs at a

location farther from the boundary. As a result, the peak pressure along the boundary produced by

a water-hammer shock is expected to be lower than the peak pressure in the incompressible case.

5.2 Suggestions for future research directions

This study provided insight into further investigation of cavitation bubble dynamics, especially in

terms of energy. The following subsections propose future studies that can be examined as a next

step of the present study: (i) energy budget framework for cavitation bubbles and (ii) spherical and

(iii) non-spherical bubble dynamics.

5.2.1 Energy budget framework for cavitation bubbles

We presented a framework that identifies energy modes in the liquid–bubble system and describes

energy transport between these modes, based on models considering different levels of compress-

ibility. Figure 5.1 outlines numerical methods and physical models for simulations of spherical and

non-spherical bubble dynamics, considering different levels of compressibility. The compressible

Navier–Stokes equation, which is a fundamental equation for compressible flows, can be approx-

imated to the equations for compressible BIM and the Keller–Miksis equation with the assump-

tion of weakly compressible flows. It can be further simplified to the equations for BIM and the

Rayleigh–Plesset equation with the assumption of incompressible flows. In our study about energy

transport in the system, we used models (i.e., the Keller–Miksis and Rayleigh–Plesset equation,

and compressible and incompressible BIM) assuming weakly compressible and incompressible

flows, which correspond to a flow velocity smaller than the speed of sound. Although our frame-

work is limited when it comes to describing energy transport corresponding to bubbles driven by
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Figure 5.1: Numerical methods and physical models for simulations of spherical and non-spherical
bubble dynamics, categorized by the level of compressibility and transient Mach number.

high-amplitude (shock) waves, it is relevant to describe the damage induced by bubbles in environ-

ments where the dynamics of shock waves are critical (e.g., underwater explosion, shock-induced

bubble collapse). In past studies, Vogel et al. (1996) and Tomita et al. (2003) proposed an ap-

proach for evaluating the energy of the shock wave produced at collapse. However, their approach

is derived from the acoustic limit and does not strictly satisfy the energy balance. We recommend

that future research efforts consider developing an energy budget framework based on models for

cases where the flow Mach number is larger than 1, such as the Gilmore equation and the com-

pressible Navier–Stokes equation. Such future research would help quantify energy losses due to

shock waves at collapse and the delivery of energy via shock waves to a nearby object and provide

a better estimation of damage induced by cavitation bubbles.

In practical applications (e.g., lithotripsy and naval hydrodynamics), cavitation bubbles are of-

ten generated in the form of a cloud. Although our energy framework is only applied to individual

bubbles in the present study, it could also be used to describe energy transport in bubble clouds

(Ando et al., 2011; Fuster & Colonius, 2011). Continuum bubbly flow models assume that bubbles

are spherical. To close the model, the Rayleigh–Plesset–type equations are employed, such that
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the individual microscopic bubbles and macroscopic bubbly flows communicate through the en-

ergy transport process. Thus, the pressure in macroscopic flows becomes an input for introducing

potential energy into each bubble, affecting the oscillations of the bubble, energy transport, and en-

ergy losses in the liquid–bubble system. Our energy budget framework could be used to describe

the flow of energy, which starts with the energy input of macroscopic flows to energy release by

microscopic bubbles.

Furthermore, nearby vapor structures of cavitation bubbles, which reduce the speed of sound

in flows, may change the dynamics of bubbles. In high-speed flows, local pressure reduction near

the surface of structures (e.g., hydrofoil, wedge) leads to the generation of large vapor structures

broken up into small micro-size bubbles. Compared to single-phase liquid flows, high volume

fractions in flows cause the speed of sound to be reduced (Bhatt et al., 2021), such that effects

of liquid compressibility may become significant due to larger Mach number in the flows. In

the present work, we consider only an isolated bubble in an infinite sea of liquid. However, our

framework can consider a transient change in the speed of sound due to motion of nearby vapor

structures, which may enhance the energy losses due to acoustic radiation.

5.2.2 Spherical bubble dynamics

We proposed an approach identifying energy modes that cannot be neglected in the growth and

collapse of a gas (single component) bubble. In the present study, we investigated the growth and

collapse of a gas bubble by incorporating bubble dynamics equations with equations accounting

for additional effects (e.g., thermal conduction, viscous dissipation, surface tension) (Nigmatulin

et al., 1981; Barajas & Johnsen, 2017; Hao et al., 2017). However, in a variety of cavitation

phenomena, such as hydrodynamic and laser-induced cavitation, the bubble consists of both gas

and vapor, such that a more comprehensive framework is needed to accurately describe energy

transport in the system of liquid and gas-vapor bubble. For example, a phase transition is one of

the key characteristics of vapor bubbles, such that the phenomenon should be considered pertaining

to energy conservation in the system. In addition, multiple phenomena, including gas diffusion,
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heat conduction, and phase transition, occur at the bubble wall, so the boundary conditions at the

bubble wall would need careful treatment.

We investigated dynamics of a bubble in water, which may show different behaviors in soft

materials. Although our work focused on liquid with low viscosity and zero elasticity, we can

extrapolate possible results when the bubble collapses in soft medium, summarized below. Due

to higher viscoelasticity in soft materials, the bubble would be less compressed, compared to the

bubble in water. In addition, a smaller fraction of the total energy would be concentrated into

the bubble due to the energy losses due to viscosity and elastic energy. Thus, a shock with a

smaller peak pressure would be produced at collapse. To better understand the dependence of

shock pressures on the properties of soft materials, a model for describing energy transport in a

system of a bubble and a soft material is required.

5.2.3 Non-spherical bubble dynamics

In our non-spherical bubble dynamics study, we observed that during collapse, a re-entrant jet is

formed toward the boundary, piercing the bubble, which produces a water-hammer shock wave.

However, the complex geometries or nearby surfaces often cause the bubble to collapse differently,

and thus our study has limitations on describing impact loads due to bubble collapse near practical

geometries. Han et al. (2015) and Supponen et al. (2016) showed that nearby interfaces (e.g., bub-

ble, free surface) change the dynamics of a bubble and a jet, which then cause the jet to be formed

in different directions. These studies demonstrated that nearby surfaces or interfaces can enhance

or suppress the formation of a re-entrant jet, and they can even cause the formation of multiple

jets, such that impact loads produced by bubbles are significantly affected by the neighboring ge-

ometries. In our simulations, different boundary conditions could be considered to investigate the

effects of complex geometries (e.g., corner, channel, cube) on the bubble dynamics. Future work

considering even more complex geometries (e.g., textured surface) could improve our understand-

ing of the impact loads due to bubble collapse in practical applications.
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Appendix A

Scaling Relations Using the Modified Herring Equation

The Modified Herring equation, which is a simplified version of the general Keller–Herring equa-

tion Prosperetti & Lezzi (1986) with λ = 1, is given by

RR̈ +
3
2

Ṙ2 =
peq

ρl

(Ro

R

)3k (
1 − 3k

Ṙ
al

)
−

p∞
ρl
. (A.1)

When the interface velocity is maximum with zero acceleration (i.e., R = RI), Eq. (A.1) reduces to

3
2

Ṙ2
I ≈

peq

ρl

(Ro

R

)3k (
−3k

Ṙ
al

)
. (A.2)

For most of the collapse, the interface velocity tends to the limit Brennen (1995); Lauterborn &

Kurz (2010): Ṙ→ (2p∞/3ρl)1/2(Ro/R)3/2. Combining this relation with Eq. (A.2) yields

VI

Vo
≈

(
p∞
peq

)−2/(2k−1)

M2/(2k−1)
(
6k2

)1/(2k−1)
. (A.3)

After manipulating the RP equation, a relation between VI and Vcol can be obtained: Vcol/Vo =

(VI/Vo)k1/(k−1). Thus, the bubble volume at collapse at high p∞/peq is given by

Vcol

Vo
≈ ηV

(
p∞
peq

)−2/(2k−1)

M2/(2k−1), (A.4)

where ηV = k−1/(k−1)(6k2)1/(2k−1).
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Appendix B

Verification of Cold Liquid Assumption for Thermal Energy

Equation of Liquid

The thermal energy equation of liquid can be modified as the temperature equation:

∂Tl

∂t
+ ul

∂Tl

∂rout
=

αl

r2
out

∂

∂rout

(
r2

out
∂Tl

∂rout

)
+

12µl

ρlcp,l

(
R4Ṙ2

r6
out

)
, (B.1)

where Tl is the liquid temperature, rout is the radial coordinate in liquid, ul is the liquid velocity,

αl = Kl/ρlcp,l is the thermal diffusivity of liquid, Kl is the thermal conductivity in liquid, ρl is the

liquid density, cp,l is the liquid heat capacity at constant pressure, and µl is the liquid viscosity.

Since changes in liquid temperature mostly occur near the bubble interface due to large liquid heat

capacity, the acoustic component of liquid velocity is neglected, and ul = R2Ṙ/r2
out (Barajas &

Johnsen, 2017; Hao et al., 2017). The liquid domain is discretized with the following transforma-

tion, x = 2/[1+ (y−1)/L]−1 and y = rout/R, to consider infinitely large and spherically symmetric

domain.

The balance of thermal energy at the bubble wall can be written as Barajas & Johnsen (2017);

Hao et al. (2017)
∂θb

∂rin

∣∣∣∣∣
w
= Kl

∂Tl

∂rout

∣∣∣∣∣
w
, (B.2)

where the gas diffusion and phase change are neglected. This equation implies at the bubble wall,

the heat flux from the bubble side should be equal to the heat flux into the liquid side.

Using the dimensional variables Req, U, and T∞, the temperature equation for liquid (B.1) is
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nondimensionalized as follows:

∂T ∗l
∂t∗
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4
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Ṙ∗2
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where Fol is the liquid Fourier number and Fol = αl(Ro/U)/R2
o, αl is the liquid thermal diffusivity,

Rel is the liquid Reynolds number and Rel = ρlURo/µl, and Ecl is the liquid Eckert number and

Ecl = U2/cp,lT∞. Eq. (B.2) also becomes

Keq
∂θ∗b
∂y

∣∣∣∣∣
w
= −

2Kl

L
∂T ∗l
∂x

∣∣∣∣∣
w
. (B.4)

For verification of cold liquid assumption, we choose the combination of the gaussian pulse and

the equilibrium bubble radius (pA =1 MPa, σ = 1 µs, Req =1 µm), in which the bubble oscillations

is most explosive. For Nin = 1000 and Nout = 1000, Rmax/Req =127.904 and Rcol/Req =0.04361 for

the cold liquid case, and Rmax/Req =127.903 and and Rcol/Req =0.04369 for the liquid with thermal

conduction. Differences are below 0.001 %. Thus, the cold liquid assumption is reasonable for the

parameter space in this study.
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