
Reduced-Complexity Modeling of Multi-Scale
Problems in the Low Data Regime

by

Jiayang Xu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2022

Doctoral Committee:

Associate Professor Karthik Duraisamy, Chair
Professor Krzysztof Fidkowski
Assistant Professor Cheng Huang
Associate Professor Eric Johnsen

Jiayang Xu

davidxu@umich.edu

ORCID iD: 0000-0002-9567-124X

© Jiayang Xu 2022

For my parents.

ii

ACKNOWLEDGEMENTS

Thank you for your time and interest if you are reading this part. I would like to

take the privilege to acknowledge the great people I met during my journey in Ann

Arbor. Before anyone else is my advisor, Professor Karthik Duraisamy. I first met

him in his welcome talk at the department orientation for new graduate students.

Honestly, limited by my English listening and background knowledge at the time, I

could not follow all of the details. However, I was deeply excited by his passionate

speech, and the blueprint he depicted about studying at the University of Michigan

and conducting research about scientific computing. I was fortunate enough to be his

student in CFD-I, and to join his lab afterward. Over the past 6 years, in classrooms

and offices, I asked countless questions, mostly starting with “I have a stupid ques-

tion”, and he always replies with “there is no stupid question”. He granted me enough

freedom in research, and at the same time guided me on how to formulate, study,

conclude, and present every single problem rigorously before pivoting. He devoted

a tremendous amount of time discussing and advising every single piece of work of

mine. This paragraph should have been summarized with words like “wisdom” and

“vision”, but they are not special enough to describe my incredible advisor. I am

very grateful to him.

Secondly, I would like to thank my other committee members, Professors Krzysztof

Fidkowski, Eric Johnsen, and Cheng Huang, for their support and comments since the

planning stage of the thesis. I want to give additional thanks to Prof. Fidkowski for

the knowledge I gained from his computational methods course. I believe he provides

iii

a lifetime warranty for his courses since he never rejected my bothers with various

questions long after graduating from the class. I also want to give special thanks to

Cheng. He joined our lab as a research scientist a few years ago, since when I had

the privilege to work with him on the same research project. He helped everyone in

the project by educating us about combustion simulation, organizing meetings, and

designing test cases that shapes the whole project. He is also a good friend outside

the lab, leading me during my first conferences, and also showing me around Ann

Arbor, although arrived later than I did.

I also enjoyed tremendous support and help from everyone in CASLAB. Dr.

Davoudi encouraged me to continue into the Ph.D. program together with him when I

was not self-confident. I learned a lot from his spirit of challenging, experiencing, and

climbing. Chris and Nick deserve special thanks for taking my daily bugs patiently.

I never learned how to respond properly when they sometimes say “sorry I couldn’t

be of more help”. Hangouts with Hindi speakers, Aniruddhe, Vishal, and Shaowu

were great refreshing moments during busy work. Our “employee benefits” also kept

improving over the years. Official group meeting food has been switched from pizzas

to sandwiches for our health. Recently, a coffee machine also arrived. It is a two-in-

one model supporting both ground coffee and capsules, which made me very proud

in front of students from other labs. The happy moments shared by everyone in the

weekly online social meetings during the pandemic were relaxing and healing.

The journey could not have been completed without the companion of my friends.

In particular, I would like to thank my roommate Zhe “Dashen” Du. We came to

the U.S. together and shared all the happy moments. I took the initial challenges

in a new environment with my friends in Aerospace Engineering, Guodong Chen,

Xunwei “Jack” Zhang, Yucheng Liu, Di Wu, Pengxin Zhao, and Chenxing Yu. Over

the years, I had several wonderful trips across the country with Shaowu Pan, Xingzuo

& Xingyou Wang, Zezhi Zhang, Chenlan Wang & Chen Li, and Di “Wendy” Zhang.

iv

Special thanks should be given to my warriors in the King’s Valley, Bruce Huang,

Ziyi Ye, and Tingting Liu; we are the best team! In addition, Tingting is an excellent

psychologist who supported me largely during the pandemic. I am also fortunate to

receive remote supports from friends in other cities of the planet, especially from Zhe

Yan, Shusen “Sensen” Zhang, Junchen “Dahuang” Huang, Han Gao, and Tianjiao

Zhou.

Lastly and most importantly, I want to thank my parents. Since my childhood,

they have kept saying they could not help or guide me on this or that, and have en-

couraged me to make decisions as I wish. I enjoy the freedom, and at the same time,

I am sure I would have achieved nothing without their support and encouragement. I

also wish to mention our family dog, Xiaohuo, who brought happiness to our family,

especially to my parents when I am abroad. He always has a special position in our

memory.

The research in this thesis is supported by the Air Force under the Center of Ex-

cellence grant FA9550-17-1-0195, titled Multi-Fidelity Modeling of Rocket Combustor

Dynamics (Program Managers: Dr. Mitat Birken and Dr. Fariba Fahroo).

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xiv

LIST OF APPENDICES . xv

LIST OF ABBREVIATIONS . xvi

ABSTRACT . xix

CHAPTER

I. Introduction . 1

1.1 Numerical Simulations and the Need for Reduced-Complexity
Modeling . 1

1.2 State-of-the-Art Reduced-Complexity Models 4
1.2.1 Model Augmentation and Inference 5
1.2.2 Coarse-Graining Solver Acceleration 6
1.2.3 Reduced Order Modeling 7
1.2.4 Surrogate Modeling 9

1.3 Overview of Model Development and Inference 13
1.3.1 Full Order Model 13
1.3.2 POD-Galerkin ROM 15
1.3.3 Model Training . 17
1.3.4 Model Inference and Noise Injection 18

1.4 Manifestations of the Low Data Limit and the Need for Domain
Decomposition . 20

1.4.1 An Example Full-System Modeling Strategy. 23
1.4.2 Challenges in Model-Solver Coupling 27

1.5 Contributions . 31

vi

1.6 Outline . 34

II. Reduced-Domain Training and Coupled Prediction 35

2.1 Introduction . 35
2.2 Problem Statement . 35
2.3 Full Order Model . 37
2.4 Framework Details . 39

2.4.1 Characteristic ROM Training on a Reduced Domain 39
2.4.2 ROM-FOM Coupling in Online Prediction 41
2.4.3 Control Groups . 42

2.5 FOM Results . 43
2.6 ROM Results . 45

2.6.1 Singular Values and Offline Projection-Reconstruction 45
2.6.2 Coupled Online Prediction 48
2.6.3 Off-Design Condition Performance 50

2.7 Summary . 53

III. Non-Intrusive ROMs . 56

3.1 Introduction . 56
3.2 Nonlinear Dimensionality Reduction with Neural Networks . 57

3.2.1 Feed-Forward Network 57
3.2.2 Autoencoder . 58
3.2.3 Convolutional Autoencoder 59

3.3 Autoregressive Models . 61
3.3.1 MLP for a Special Case 62
3.3.2 Recurrent Neural Networks 63
3.3.3 Long Short-Term Memory Network 63
3.3.4 Temporal Convolutional Network 64

3.4 Comparison of Autoregressive ROMs on a Wave Propagation
Problem . 66

3.4.1 Problem Statement 66
3.4.2 Models Details . 67
3.4.3 Offline Projection-Reconstruction 69
3.4.4 Online Future-State Prediction 70

3.5 Multi-Level Convolutional Autoencoder Networks for Para-
metric Prediction of Spatio-Temporal Dynamics 70

3.5.1 Constitute Levels 72
3.5.2 Training Procedure 74

3.6 Parametric Prediction for Flow Over a Cylinder 75
3.6.1 Problem Statement 75
3.6.2 Results . 76

3.7 Summary . 78

vii

IV. Conditional Parameterization and Local Surrogate Models . 81

4.1 Introduction . 81
4.2 Conditional Parameterization (CP) 82
4.3 Local CP model: a Proof-of-Concept Demonstration 83

4.3.1 Limitations of Global Projection-Reconstruction . . 85
4.3.2 Results for a Local CNN 87
4.3.3 Exact Fitting with a CP-CNN 88

4.4 Graph Representation of a Discretized System 89
4.4.1 Mapping Between a Mesh and a Graph 89
4.4.2 Node and Edge Features 90
4.4.3 Representations for Boundary Conditions 91

4.5 Conditionally Parameterized Graph Neural Networks 92
4.5.1 The FVM . 92
4.5.2 Architecture . 94

4.6 Applications of CP-GNet . 97
4.6.1 Reacting Flow in A Rocket Engine Injector 97
4.6.2 Incompressible Flow Over A Cylinder 103

4.7 Summary . 107

V. Coupling a Reduced-Complexity Model with a High-Fidelity
Solver . 109

5.1 Introduction . 109
5.2 Overview of Domain Decomposition and Coupling Procedures 110

5.2.1 Coupling Intrusive Models 111
5.2.2 Coupling with the CP-GNet 111

5.3 Coupling with Reduced Order Variables 111
5.3.1 Strategy 1: Flux Projection 112
5.3.2 Strategy 2: Interface MLP 113
5.3.3 Strategy 3: Integration Through an Overlapped Pro-

jection . 114
5.3.4 Comparison Between Interface Models 114

5.4 Coupling Between Mismatched Time-Integration Schemes . . 116
5.4.1 Comparison of Staggered Schemes 117
5.4.2 Numerical Tests on Subsonic Inviscid Flow 121

5.5 Coupled Prediction for Viscous Burgers Equation 125
5.5.1 Problem Statement 125
5.5.2 Models . 126
5.5.3 Results . 129

5.6 Coupled Prediction for a Single-Injector Rocket Engine Com-
bustor . 133

5.6.1 Problem Statement 133
5.6.2 Domain Decomposition and Reduced-Domain Training133
5.6.3 Model Details . 134

viii

5.6.4 Results . 136
5.7 Summary . 141

VI. Conclusions and Perspectives . 146

6.1 Reduced-Domain Training . 147
6.2 Model Design . 148
6.3 Model-Solver Coupling . 150
6.4 Limitations and Perspectives 151

APPENDICES . 155

BIBLIOGRAPHY . 175

ix

LIST OF FIGURES

Figure

1.1 Example rocket engine combustor. 25
1.2 Example full-system modeling strategy. 26
1.3 Contributions of the thesis in the roadmap towards full-system mod-

eling. 31
2.1 Decomposed computation domain and shape of the flame model. . . 36
2.2 Schematic of the framework. 40
2.3 Comparison of training (outlined in black) and prediction (outlined

in blue) approaches. 43
2.4 Example response with positive growth rate, α = 3.4, Lc = 0.5715 m. 44
2.5 Example response with negative growth rate, α = 3.1, Lc = 0.254 m. 45
2.6 The complementary part of cumulative energy in the singular values

at α = 3.25 . 46
2.7 Relative L2 error in POD projection-reconstruction for α = 3.25. . . 47
2.8 Relative L2 error in ROM solutions. Numerically unstable cases are

shown as ceiling points. 49
2.9 Predicted growth rate and error. 50
2.10 LCO peak-to-peak amplitude of pressure oscillation 0.0127 m up-

stream of the nozzle . 51
2.11 Spatial profiles of pressure . 52
2.12 Results at off-design Lc . 53
2.13 Results at off-design α . 53
3.1 Sample CAE architecture. The leftmost and rightmost slabs repre-

sent a spatial field. 61
3.2 Pipeline schematic for a sample autoregressive prediction for 3 fu-

ture steps beginning at k. Blue slabs: known solution, green slabs:
prediction. 62

3.3 Sample TCN architecture, d = 2, s = 2. 65
3.4 Spatial and temporal profiles of the perturbed wave. 68
3.5 CAE architecture. 68
3.6 Projection-reconstruction RMSE, axes in log scale. 69
3.7 Predicted unsteady response in ρ. 71
3.8 Model pipeline for multi-level autoencoder networks. 71

x

3.9 Sample TCAE architecture. 73
3.10 Comparison of flow fields at k = 2500, Re = 200. 77
3.11 Probed variables. 78
3.12 Comparison of intermediate latent variables for Re = 200. 78
4.1 Sample solution for ∆x = 0.02,∆y = 0.02, a = [1.2, 1.2]T , ν = 0.035. 84
4.2 Training data. Each case consists of only the IC and two solution steps. 85
4.3 Projection-reconstruction (POD, CAE) and prediction (CNN, CP-

CNN) results for unseen parameters ∆x = 0.02,∆y = 0.016, a =
[−1.5, 1.5]T , ν = 0.02. CP-CNN fits the discretized model exactly. . 86

4.4 Sample POD modes. 87
4.5 Example 2D mesh-to-graph mappings. Graph node/edge A (in black)

for the vertex-node mapping, B (in blue) for the cell-node mapping. 90
4.6 Schematic of CP-GNet architecture 95
4.7 Illustrations for the reacting flow problem setup. 99
4.8 Probe history for 0.2 ms/400 snapshots following the end of training. 101
4.9 Predicted (CP-GNet10L, GNet15L) and reconstructed (POD) flow

fields. From top to bottom: pressure p, x-velocity u, temperature T ,
mass fractions YCH4. 101

4.10 Zoomed-in view for results on a graph without ghost edges. The
accumulation of error in the near-wall regions is clearly visible. . . . 102

4.11 Probe history from a distanced time instance t = 2 ms, and for a
longer period of 0.4 ms/800 snapshots. 103

4.12 Predictions (CP-GNet10L)/reconstructions (POD) for the new IC
and longer period. From top to bottom: pressure p, x-velocity u,
temperature T , mass fractions YCH4. The selected time instances are
not evenly spanned. 103

4.13 Two sample irregular meshes for the flow over a cylinder, with a
zoomed-in view on the right. 104

4.14 Velocity magnitude for the last step in the rollout prediction for ran-
dom testing trajectories. From top to bottom: ground truth, CP-
GNet, MGN. 106

5.1 Definitions in domain decomposition (top), and model-solver cou-
pling procedures (bottom). 110

5.2 FOM-ROM-FOM domain decomposition. 115
5.3 Interface cell responses and the RMSE for the coupled solution. Each

color represents a pair of cells around a different interface. The titles
consist of the autoregressive model name followed by the interface
model name, i.e. the “LSTM MLP” denotes a LSTM autoregressive
model combined with an interface MLP model. 117

5.4 Comparison of staggered schemes for nI = 2, P = 3. 118
5.5 Geometry and sub-domains for 2D channel flow. 121
5.6 Pressure profile envelope comprised of 50 steps. 122
5.7 Zoomed-in results around the interface for truth-solver coupling with

different staggered schemes. The vertical dashed line marks the in-
terface. 123

xi

5.8 Zoomed-in results around the interface for model-solver coupling with
different staggered schemes. The vertical dashed line marks the in-
terface. 124

5.9 Schematic for domain decomposition. Two model-solver interfaces
are present after the decomposition. 126

5.10 Schematic for ghost cells for the top-bottom periodic boundary. . . 126
5.11 Architecture for MLP with tunable hyper-parameters. 128
5.12 RMSE for online rollout predictions and POD reconstructions (Re-

con.), with numbers above 10 clipped. For the POD-based results,
the solid line marks the minimum error across all nr at a given ntrain.
The dashed lines with different opacity show the results for individual
nr, with a higher opacity denoting a larger nr. 131

5.13 Contours for u in rollout predictions. For each type of model, the
best-performing hyper-parameter is shown. 132

5.14 Experimental geometries. Contours are for temperature. The orange
triangle marks the probe location. 134

5.15 Average pressure on the x-direction for the longer (in-design) testing
geometry. Zoomed-in around the domain interface, marked by the
vertical line. 139

5.16 Temperature contours for the longer (in-design) testing geometry. . 140
5.17 Probed histories for the longer (in-design) testing geometry. 141
5.18 Average pressure on the x-direction for the shorter (off-design) testing

geometry. Zoomed-in around the domain interface, marked by the
vertical line. 142

5.19 Temperature contours for the shorter (off-design) testing geometry. . 143
5.20 Probed histories for the shorter (off-design) testing geometry. 144
1.3 Contributions of the thesis in the roadmap towards full-system mod-

eling (replicated). 147
A.1 Closure modeling network architectures. Solid arrow: input feature;

dashed arrow: condition parameter; numbers: layer width. 158
A.2 Closure modeling results. The first t ≤ 0.2 s for the left case is used

for training, marked by the black dashed line in the first contour.
The x-t contours show the evolution of ū. The reference DDP
model solution grows into infinity, shown as white areas in
the contour. The gaps between models are more visible in the
spatial profiles at time steps marked by the red dashed lines. 160

A.3 Average MAE for ū (online) C (offline) under different low resolution
mesh sizes. The CNN model blows up at nx = 24 and no data
point is plotted. 161

A.4 Snapshots for super-resolution. 162
A.5 Super-resolution network architectures. Solid arrow: input feature;

dashed arrow: condition parameter; numbers: layer width. 162

xii

A.6 Super-resolved flow field and stream-wise energy spectra ex for ex-
ample test cases (z+ = 650, L = π/4) and (z+ = 750, L = π/8). The
CP-MLP shows finer details on the edge of elements (adja-
cent squares), showing a better prediction of high-order coefficients.
The observation is proved by a richer high kx energy spectra in the
right plot. 164

B.1 Predicted reacting flow. For each variable from top to bottom: ground
truth, CP-GNet, 128-unit MGN, 256-unit MGN. 166

B.2 Pressure contours for the longer (in-design) testing geometry. 167
B.3 x-velocity (u) contours for the longer (in-design) testing geometry. . 168
B.4 Flamelet mixture fraction contours for the longer (in-design) testing

geometry. 169
B.5 Flamelet progress parameter contours for the longer (in-design) test-

ing geometry. 170
B.6 Pressure contours for the shorter (off-design) testing geometry. . . . 171
B.7 x-velocity (u) contours for the shorter (off-design) testing geometry. 172
B.8 Flamelet mixture fraction contours for the shorter (off-design) testing

geometry. 173
B.9 Flamelet progress parameter contours for the shorter (off-design) test-

ing geometry. 174

xiii

LIST OF TABLES

Table

2.1 Geometry parameters . 38
2.2 CVRC operating conditions . 39
2.3 Off-design condition results (f, gr, amp are listed in a “FOM/ROM”

style, all errors are relative) . 53
3.1 Autoregressive model details. 68
3.2 Percentage errors in different stages of output. 79
3.3 Training and inference time. 79
4.1 Training hyper-parameters. 88
4.2 Averaged inference time and RMSE for flow over a cylinder. 106
5.1 Problem setup. 123
5.2 Geometry parameters. 135
5.3 Test configurations. 136
A.1 Closure model MAE. ū Avg.: averaged over all steps for online pre-

diction for ū; ū final: for the final step of online prediction; Inf.:
Unbounded cases. 159

A.2 Average and maximum absolute errors in the integral of super-resolved
energy spectra. 164

B.1 Averaged inference time and RMSE for reacting flow. 166

xiv

LIST OF APPENDICES

Appendix

A. Other Applications of CPNets . 156
A.1 Closure Modeling . 156
A.2 Super Resolution . 159

B. Additional Results . 165
B.1 Comparison Between CP-GNet and MeshGraphNet on the Re-

acting Flow . 165
B.2 Visualizations for Other Variables in 2D CVRC 166

xv

LIST OF ABBREVIATIONS

BC boundary condition

BDF backward difference formula

CAE convolutional autoencoder

CFD computational fluid dynamics

CNN convolutional neural network

CP conditional parameterized/parameterization

CP-GNet conditional parameterized graph neural network

CPS conventional parallel staggered

CSS conventional serial staggered

CVRC continuously variable resonance combustor

DEIM discrete empirical interpolation method

DG discontinuous Galerkin

DL deep learning

DNS direct numerical simulation

DoF degree of freedom

FD-FD full-domain training and full-domain prediction

FD-MD full-domain training and multi-domain prediction

FDM finite difference method

FEM finite element method

FIML field inversion and machine learning

xvi

FOM full order model

FVM finite volume method

GCN graph convolutional network

GNN graph neural network

IC initial condition

LCO limit cycle oscillation

LES large eddy simulation

MGN MeshGraphNet

ML machine learning

MLP multi-layer perceptron

MPE missing point estimation

MPNN message passing neural network

MSE mean squared error

ODE ordinary differential equation

PDE partial differential equation

PINN physics-informed neural network

POD proper orthogonal decomposition

RANS Reynolds-averaged Navier-Stokes

RBE reduced basis element

RBF radial basis function

RCM reduced-complexity model(ing)

RD-MD reduced-domain training and multi-domain prediction

RK Runge-Kutta

RMSE root mean square error

RNN recurrent neural network

ROM reduced order model(ing)

SDF signed distance function

xvii

SISS sub-iteration serial staggered

SR super-resolution

SVD singular value decomposition

TCAE temporal convolutional autoencoder

TCN temporal convolutional network

UQ uncertainty quantification

WM-LES wall-modeled large eddy simulation

xviii

ABSTRACT

Many-query scientific and industrial applications, such as design, demand afford-

able yet accurate computational models. Data-driven Reduced-Complexity Models

(RCMs), which are the focus of this thesis, typically require a significant amount of

training data. Despite efficiency gains in the prediction stage, the large expense in

the generation of the training data contradicts the low-cost pursuit of a RCM, and

can make the creation of the RCM unaffordable. With this motivation, this the-

sis proposes a number of techniques towards the end of addressing the development

of RCMs in what we refer to as the low data regime, which can manifest itself in

three ways in practical problems: 1) Spatially, high-fidelity simulations can only be

conducted on a truncated sub-domain, or for an individual component of a larger

system; 2) Temporally, only a short period of dynamics can be simulated, spanned by

a limited number of snapshots; and 3) Parameterically, only a limited set of operating

conditions can be covered in training.

As a motivating example, this thesis considers a rocket engine combustor, for

which a direct full-system simulation is not affordable. In concert with the underly-

ing physics and design requirements, the computational domain is decomposed into

1) individual injectors and their neighboring downstream regions, which share a few

types of identical geometries, yet experience computationally expensive reacting flow

dynamics; and 2) the further downstream chamber and nozzle, which experiences

relatively simple acoustics-dominated dynamics, yet can be connected with different

numbers and arrangements of injectors. The responses to different upstream config-

xix

urations, and possible consequential changes in the computational grid and even the

geometry cannot be addressed by current data-driven RCMs. Our approach uses a

RCM for the former, and an inexpensive PDE solver for the latter, such that the

efficiency of a RCM and the flexibility of a PDE solver are utilized at the same time.

Ideally, the training of the RCM only depends on independently-generated solutions

for a single injector region, and no full-system full-order simulation is required. The

realization of the strategy depends on three key aspects: 1) reduced-domain training

– training data generation in an isolated reduced-domain, 2) model design – design

of efficient and predictive RCMs, and 3) model-solver coupling – effective interfacing

methods to couple a data-driven RCM and a high-fidelity solver.

In the reduced-domain training aspect, the truncation interface of an isolated

reduced-domain is treated as a characteristic boundary, on which perturbation sig-

nals are imposed to represent the possible external responses from a coupled domain.

In the model-design aspect, a series of techniques and integrated models are pro-

posed in response to common limitations of existing methods. The Convolutional

Autoencoder (CAE) is introduced as a nonlinear and more effective dimensionality

reduction method in contrast to Proper Orthogonal Decomposition (POD) in Re-

duced Order Models (ROMs). Autoregressive deep-learning models are introduced

to replace the expensive intrusive computation of nonlinear residuals, and form a

family of non-intrusive ROMs in combination with either a POD or a CAE. In pur-

suit of even higher efficiency, a model based on multi-level autoencoder networks is

proposed, which predicts the entire spatio-temporal field at unseen parameters in a

“one-shot” manner. To avoid the geometry dependency generated by global dimen-

sionality reduction, local surrogate models such as Convolutional Neural Networks

(CNNs) and Graph Neural Networks (GNNs) are studied. For the latter in particular,

mesh-to-graph mapping procedures, including boundary treatments, are introduced

for different types of spatial discretization methods, which enables a model to pro-

xx

cess irregular data structures widely used in scientific computing. To alleviate the

brute-force fitting of high-order terms, and naive concatenation of hierarchical, het-

erogeneous features, the idea of Conditional Parameterization (CP) is utilized. CP

is generalized to transform network weights into learnable functions of parameters,

which is shown to result in significant drop-in improvements in a variety of tasks.

In combination with a GNN, physical quantities, as well as graph edge features, are

used to parameterize the weights of node features, and the resulting Conditionally

Parameterized Graph Neural Network (CP-GNet) model is shown to be predictive on

complex reacting flows and unseen irregular meshes.

Two major challenges in coupling RCMs with PDE solvers are: 1) incorporating

physical interface conditions into non-intrusive ROMs that process non-physical re-

duced order variables, and 2) coupling a RCM with a high-fidelity PDE solver that

uses a finer time-step and multiple sub-iterations. To address the former, a number

of interface coupling strategies are realized. For the latter, the existing Conventional

Serial Staggered (CSS) procedure is discussed and specifically improved for the RCM-

PDE solver coupling context, leading to the Sub-Iteration Serial Staggered (SISS) pro-

cedure. The aforementioned techniques in the three key aspects are validated in both

a stand-alone and integrated fashion on a hierarchy of test problems, beginning with

the Burgers equation. In the final test case of a single-injector rocket engine chamber,

a CP-GNet is independently trained for the upstream physics-intensive sub-domain

with limited data, and coupled with a solver for the downstream variable chamber

using SISS. The realization of a single-interface framework is shown to be predictive

for unseen testing geometries.

The data-driven RCMs proposed in this work are not restricted to specific appli-

cations, except for the need to adapt the inputs and outputs. For predictions on a

fixed geometry, non-intrusive ROMs provide remarkable efficiency improvements, es-

pecially when the time period of interest is also fixed across different parameters such

xxi

that the multi-level autoencoder network is viable. Local surrogate models eliminate

the dependence on the global spatio-temporal domain, and generalize to more ap-

plications. With the help of interface models, the model-solver coupling approaches

are also shown to generalize to different types and schemes of models and solvers.

The resulting multi-domain framework endows significantly more flexibility to the

applications of ROMs, yet still requires a fixed geometry in the ROM sub-domain.

For more generalizable models such as the CP-GNet, the framework also reduces the

training effort and improves the prediction performance. Despite the encouraging

results, error estimation and stability properties require formal quantification, and

remains an open topic for further research.

xxii

CHAPTER I

Introduction

1.1 Numerical Simulations and the Need for Reduced-

Complexity Modeling

Numerical experiments are critical in many scientific and industrial problems that

are risky, hard to measure, or expensive, such as nuclear reactions (Khan et al., 2017;

Becker and Laurien, 2003), nano-scale processes (Sheikholeslami , 2017; Kundrapu and

Keidar , 2012), hypersonic flows (Fu et al., 2018; Zhong and Wang , 2012), and rocket

engines (Harvazinski et al., 2015; Urbano et al., 2017). The core processes of such

experiments are the numerical simulations that enable the virtual representation and

evolution of physical systems. They are also used as an indispensable tool to verify

theories and mathematical models through digital reproductions of real-life observa-

tions, such as social interactions (Vallacher et al., 2017), gravity waves (Remmler

et al., 2013), and biochemistry processes (Lane et al., 2013). Accurate and predic-

tive simulations benefit the public and the planet every day in the forecasting for

weather (Schalkwijk et al., 2015), climate (Fuhrer et al., 2018), and pollution propa-

gation (Prants et al., 2011).

Although the quantities of interest involved in a numerical simulation, e.g., pres-

sure, velocity, temperature, time, etc., are continuous in nature, their solutions have

1

to be completed in a discrete manner, in order to represent infinite Degrees of Freedom

(DoFs) using finite ones. The fidelity of simulations increases with the resolution of

the discretization, together with the cost. Taking the methods in the Computational

Fluid Dynamics (CFD) field for example, the highest-fidelity method, the Direct Nu-

merical Simulation (DNS) (Moin and Mahesh, 1998; Lee and Moser , 2015; Domingo

et al., 2005) solves the complete Navier-Stokes equations without approximations, and

requires a resolution finer than the smallest length scale for the eddies in turbulent

flow, the Kolmogorov scale. Denoting the streamwise characteristic Reynolds num-

ber by ReL, the required number of discrete grid points by DNS is estimated to be

Re
37/14
L (Choi and Moin, 2012), which translates to more than 1015 points for an aver-

age airplane. The Large Eddy Simulation (LES) (Smagorinsky , 1963; Lilly , 1966; Lee

and Cant , 2017) relaxes the requirement on the grid resolution by using a sub-scale

model for the dynamics smaller than the grid size. A resolution that can resolve 80%

to 90% of the turbulence kinetic energy is suggested in practice (Pope, 2004; Math-

eou and Chung , 2014), which effectively reduces the required number of grid points

to Re
13/7
L (Choi and Moin, 2012). However, this is still prohibitively expensive for

industrial applications in the decades to come (Jameson, 1999; Slotnick et al., 2014).

Based on the fact that the small eddies consuming the most grid points are prevalent

in the near-wall regions, models of even lower fidelity, such as the Reynolds-Averaged

Navier–Stokes (RANS) models (Baldwin and Barth, 1991; Spalart and Allmaras , 1992;

Wilcox et al., 1998; Launder and Spalding , 1983) are used to replace the LES in these

regions, and form a hybrid model called Wall-Modeled LES (WMLES) (Piomelli and

Balaras , 2002; Choi and Moin, 2012; Bose and Park , 2018), which is the current

state-of-the-art approach for full vehicle simulations (Slotnick et al., 2014; Goc et al.,

2020). RANS models are also often used independently due to their affordable cost.

Similar low-fidelity approximations are common in other fields, such as the reduced

chemical kinetic mechanisms for combustion (Ra and Reitz , 2008; Gou et al., 2010).

2

In many-query scenarios such as design, computations are cost-sensitive both

resource- and time-wise, and therefore, trade-offs between the fidelity and the effi-

ciency become inevitable. Classic low-fidelity options such as RANS, however, risk

losing a considerable amount of detail, and are not reliable in problems where it de-

viates from canonical configurations (Tinoco et al., 2005; Slotnick et al., 2014). As a

consequence, Reduced-Complexity Modeling (RCM), including Reduced Order Mod-

eling (ROM) and other data-driven surrogate modeling methods, have emerged as a

promising future direction for research. In these approaches, an offline stage aims to

extract problem-specific information (such as a projection basis or a latent space) such

that inexpensive computations can be performed during the online predictive stage.

Among existing approaches, non-intrusive methods, including the recently emerging

deep learning models (neural networks), have demonstrated impressive advantages in

computational cost reduction and robustness. However, such methods discard the

governing equations of the original dynamical system, thus face challenges dealing

with different types of boundary conditions, which are commonly formulated as con-

straints to these equations. The generation of the prerequisite training data itself can

also be expensive, which places a low data limit on the training process. Moreover,

most neural networks are originally designed for tasks such as computer vision and

natural language processing, and are migrated to scientific computation fields with

minor modifications. The designs do not take physical relationships, or the often

irregular and non-uniform spatial discretization into consideration, which imposes in-

trinsic limitations on the efficiency and flexibility of their applications to numerical

simulations. This work is conducted with the hope that it can be of value to these

challenges.

3

1.2 State-of-the-Art Reduced-Complexity Models

RCMs and other data-driven models, even restricted to the CFD field, have

countless flavors and applications. Broad applications include mesh optimization,

parameter planning, model augmentation, surrogate modeling, flow control, uncer-

tainty quantification, and flow mechanism interpretation, etc. In this section, we

provide an overview of the current state-of-the-art RCMs directly used in the solution-

computation process. Based on the role of the model in the process, the approaches

are classified into four categories, namely:

1. Model augmentation and inference, where the RCM output is an improved set

of parameters for an existing low-fidelity model, or a direct replacement for the

latter.

2. Coarse-graining solver acceleration, where the RCM learns an efficient high-

order numerical scheme, or performs coarse-graining as an appended step to

the existing solver.

3. Reduced order modeling, where a low-cost approximated solution is performed

on a low-dimensional subspace.

4. Surrogate modeling, where the RCM replaces the most expensive component(s)

of a solver, or the entire solver, and directly outputs quantities of interest.

A shared goal of the models is to reduce the total computational complexity in achiev-

ing high-fidelity solutions. It should be pointed out that although arranged in a

hierarchical order, there is no definite relationship between the complexities of the

approaches.

4

1.2.1 Model Augmentation and Inference

Even before the recent rise of data science, traditional turbulence modeling ap-

proaches had already been relying heavily on data for the manual validation, cor-

rection, and calibration of empirical formulations and their parameters. With the

complexity limited by the processing power of any human researcher, a traditional

turbulence model either is a global one for all flow conditions and regions, or has a

limited number of parameter sets, corresponding to a few simple representative types

of flow, such as a channel or pipe flow. In practice, the choice of model has to be

made based on a review of different models on a comparable problem (Yusuf et al.,

2020).

In the past decade, with the help of Machine Learning (ML) techniques, the porta-

bility and accuracy of turbulence models have been largely improved. In pioneering

work (Oliver and Moser , 2011; Dow and Wang , 2011), Bayesian Uncertainty Quan-

tification (UQ) approaches are used to describe the discrepancy in model-predicted

terms as Gaussian random fields instead of scalars. Tracey et al. (2013) used kernel

regression to train a local error model that describes the discrepancy as a probabilistic

function of local features from a low-fidelity solution. Similar UQ approaches were

validated on richer feature sets and more complex ML models (Xiao et al., 2016b;

Vollant et al., 2014; Wang et al., 2017). For predictive tasks, the Field Inversion and

Machine Learning (FIML) family of approaches (Duraisamy et al., 2015; Tracey et al.,

2015; Singh et al., 2017c; Parish and Duraisamy , 2016; Srivastava and Duraisamy ,

2022) were developed, which enforces consistency between the target output data and

the optimal prediction from the baseline low-fidelity model, and effectively improved

the model robustness in a predictive setting. FIML models have been successfully

applied to a wide range of flow conditions and baseline models (Singh et al., 2017a,b;

Holland et al., 2019; Sirignano et al., 2020).

In addition to augmenting existing low-fidelity models, ML is also applied to infer

5

a full closure model. Schmelzer et al. (2020) performs a symbolic regression to learn

the optimal model-form from a library of candidates. A more popular approach is to

train an equation-free model in a “purely” data-driven manner. Point-wise closures

are learned using simple fully-connected neural networks in Maulik et al. (2019); Subel

et al. (2021); Xie et al. (2020). Quantities within a local neighborhood of the flow field

are included in a richer set of input features using Convolutional Neural Networks

(CNNs) in Yuan et al. (2020) to bring potentially higher accuracy and robustness.

Um et al. (2020) introduced an interactive training method, where the low-fidelity

solver is integrated into the training loop for its correction term, and demonstrated

significant performance improvement over traditional offline training methods.

1.2.2 Coarse-Graining Solver Acceleration

While being more accurate than baseline turbulence models, the augmented or

inferred models do not bring improvements to the computational efficiency. In pursuit

of the latter, ML-enabled coarse-graining is being widely used. Different from a

closure/turbulence model in the previous level that aims to minimize the gap between

a low-fidelity model and the projected solution from a high-fidelity model on the same

coarse grid, a coarse-graining model provides a high-order accuracy solution (spatially,

such as applying a non-zero gradient within a discretized volume) on a coarse grid

to match the low-order accuracy solution on a fine grid. It is hard to determine

when was the first exploration on using ML in this direction, but it is clear that a

few early inspirations were drawn from the image Super-Resolution (SR) models such

as the SRCNN (Dong et al., 2015) and SRGAN (Ledig et al., 2017) in the computer

vision field. Fukami et al. (2019a) examined the possibility of applying variants of the

SRCNN for flow-field SR and demonstrated promising results on both laminar and

turbulent flows. More tailored SR approaches towards CFD applications have also

been proposed, such as separating different velocity components (Guo et al., 2020), or

6

predicting high-order Discontinuous Galerkin (DG) coefficients (Pradhan et al., 2020;

Pradhan and Duraisamy , 2021).

For predictive tasks, Obiols-Sales et al. (2020) used a CNN to bypass a large

number of converging iterations in the solution of steady problems. Bar-Sinai et al.

(2019) used neural networks to learn the interpolation coefficients for discretization

schemes, and achieved comparable performance to existing mathematically derived

high-order schemes on simple 1D problems. The approach was further validated on 2D

turbulent flows in Zhuang et al. (2020). Kochkov et al. (2021) applied the data-driven

discretization together with a data-driven closure term, and outperformed traditional

baselines in both accuracy and efficiency. Pathak et al. (2020) appended an upscaling-

processing-downscaling CNN to an existing solver as an explicit coarse-graining step.

A similar approach is taken in Belbute-Peres et al. (2020), with the CNN replaced by

a more flexible Graph Neural Network (GNN).

1.2.3 Reduced Order Modeling

1.2.3.1 Projection-Based Dimensionality Reduction

ROMs, based on projection-based dimensionality reduction methods, are among

the most popular applications of machine learning in computational physics. Such

methods construct a low-dimensional subspace, on which the original high dimen-

sional system is approximated by a set of reduced order variables. ROM computa-

tions are then performed on the reduced order variables instead of the full system,

which leads to a significant decrease in the DoFs to be solved. Projection-based

ROMs commonly use a linear subspace constructed using the Proper Orthogonal De-

composition (POD) (Berkooz et al., 1993; Rowley et al., 2004). Other linear basis

construction methods include balanced truncation (Moore, 1981; Safonov and Chi-

ang , 1989), reduced basis methods (Peterson, 1989; Prud’Homme et al., 2001; Rozza

et al., 2007), rational interpolation (Baur et al., 2011), and proper generalized decom-

7

position (de Almeida, 2013; Berger et al., 2016). Linear basis ROMs have achieved

considerable success in complex problems such as turbulent flows (Rowley , 2005; Carl-

berg et al., 2011; Hijazi et al., 2020) and combustion instabilities (Huang et al., 2018;

Xu et al., 2019). Recently, a special type of neural network, the autoencoder (DeMers

and Cottrell , 1993), has been used to replace the POD in ROMs. An autoencoder

performs data compression and decompression through stacked nonlinear operations,

which can be regarded as a projection process onto nonlinear manifolds. With au-

toencoders, significant improvements on the compression rate and prediction accu-

racy over POD-based models have been demonstrated on multiple problems (Carlberg

et al., 2019; Lee and Carlberg , 2020; Murata et al., 2020; Xu and Duraisamy , 2020),

in the cost of a higher model complexity, and sometimes additional requirements on

the input-data structure, e.g. Euclidean data for convolutional autoencoders.

1.2.3.2 Intrusive ROMs

Independent of the type of basis that is employed, ROM approaches can be broadly

categorized into intrusive and non-intrusive methods. Intrusive ROMs perform a for-

mal projection of the original governing equations onto the reduced dimensional mani-

fold using Galerkin (Rowley et al., 2004; Couplet et al., 2005) or Petrov Galerkin (Carl-

berg et al., 2011; Parish et al., 2020) formulations. In nonlinear systems, however,

intrusive ROMs require additional constructs for efficiency. Although it has been

shown that acceleration can be achieved courtesy of the decreased stiffness of the

ROM compared to the FOM (Marley et al., 2015; Amsallem and Farhat , 2011), no

reduction of the computing cost for the nonlinear terms is realized within each time-

step because the full residual will still have to be computed before projection to the

reduced space. Sparse acceleration methods such as the Missing Point Estimation

(MPE) (Astrid , 2004; Astrid et al., 2008) and the Discrete Empirical Interpolation

Method (DEIM) (Chaturantabut and Sorensen, 2009; Drmac and Gugercin, 2016)

8

have been developed to reduce the cost by restricting the computation of nonlinear

terms to a subset of the state variables in reduced order systems. However, these

methods require further development and are reported to suffer from accuracy and

numerical instability problems, especially when applied in a predictive stage (Huang

et al., 2018) or when noise is present (Argaud et al., 2017). Recently, adaptive (Pe-

herstorfer and Willcox , 2015; Zimmermann et al., 2018) and oversampling meth-

ods (Peherstorfer et al., 2020) have been introduced to stabilize DEIM methods and

to provide improved predictive capabilities. It has to be mentioned that effective

sampling approaches have not been developed for nonlinear manifolds.

1.2.3.3 Non-Intrusive ROMs

Non-intrusive methods bypass the governing equations, and compute the reduced

order variables using a second level of RCMs (the POD/autoencoder being the first

level). Nearly 20 years ago, Milano and Koumoutsakos (2002) used a fully-connected

neural network to predict the POD coefficients for near-wall turbulent flows. For tran-

sient problems, the most popular choice is the autoregressive DL models, such as the

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1988; Gonzalez and Balajewicz ,

2018; Maulik et al., 2021), Long Short-Term Memory networks (LSTMs) (Hochreiter

and Schmidhuber , 1997; Mohan et al., 2019; Maulik et al., 2020), Temporal Con-

volutional Networks (TCNs) (Oord et al., 2016; Xu and Duraisamy , 2020). These

methods are discussed in more detail in Chapter III.

1.2.4 Surrogate Modeling

The aforementioned ROMs and other solver acceleration methods require the as-

sistance of a companion computation, either in the form of a projection or conducted

with the existing solver. Seeking for an even lower computation cost, an end-to-end

surrogate model is a single model that directly outputs the quantities of interest over

9

the computation domain.

1.2.4.1 Convolutional Neural Networks (CNNs)

As the name suggests, a CNN refers to a network that involves convolution com-

putations. The most basic element of a CNN is a convolution kernel, which is a set of

trainable parameters arranged in a fixed small spatial frame, such as a 3× 3 square,

that is used to swipe through the discrete spatial points. For each centering point

during the swiping process, the output is computed by a local convolution between

the kernel parameters and the features on the points covered inside the kernel frame.

Multiple such kernels are used to swipe through the discrete spatial points. Multiple

parallel and serial stacks of such kernels can be used in a single CNN. Due to the

fact that the number of parameters in the convolution kernels is independent of the

domain size, CNNs have long been the most popular choice for processing large-scale

spatially distributed data. In early applications of CNNs for full-field predictions,

computations are performed in a one-shot manner for either derived statistic quanti-

ties such as the pressure coefficients (Yilmaz and German, 2017) or steady flows (Guo

et al., 2016; Sekar et al., 2019), which usually requires a lower model complexity and

training effort than a full spatio-temporal system. For applications not sensitive to the

point-wise accuracy, CNNs are also used to generate qualitatively realistic unsteady

flows (Kim et al., 2019; Fukami et al., 2019b).

Tompson et al. (2017) took a pioneering step towards an accurate transient full-

field surrogate model by using a CNN to replace the expensive pressure computa-

tion for incompressible flows, with the velocity computation retained in a traditional

solver. More recently, end-to-end transient surrogate models for a complete set of

variables have been developed successfully (Kim et al., 2019). Qin (2020) used a flat-

tened concatenation of the variables within a local neighborhood as the input to a fully

connected network. The local selection and the concatenation of inputs reproduces

10

the essence and benefits of a CNN on the simpler network architecture. There are

also convolutional models that are able to process spatial and temporal dimensions si-

multaneously, such as the ConvLSTM (Xingjian et al., 2015) and the spatio-temporal

convolution (Yu et al., 2017), which have been successfully applied to popular deep

learning tasks such as video generation. However, complex spatio-temporal systems

in scientific computing often exhibit a much larger data size per unit time, therefore

such models cannot be easily applied. Xu and Duraisamy (2020) introduced a multi-

level convolutional approach that efficiently encodes the full spatio-temporal domain,

and realized parametric prediction for unsteady flows on different Reynolds numbers

and inflow angles.

1.2.4.2 Graph Neural Networks (GNNs)

Despite promising results on canonical problems, an outstanding limitation of

CNNs is that they can only work with problems discretized on a Euclidean space,

represented by a uniform linear/rectangular/cuboid mesh, which largely restricts its

application on complex geometries and multi-scale physics. Additional cost and er-

ror are introduced when existing data is interpolated from a non-uniform grid onto

a uniform one and back. Encoded geometric labels e.g. Signed Distance Function

(SDF) (Guo et al., 2016; Bhatnagar et al., 2019), and more mathematically formal

treatments e.g. elliptic coordinate transformation (Gao et al., 2021) have also been

used to alleviate this restriction. However, they are still bound to meshes with quadri-

lateral cells and require additional pre-processing of the geometric information, which

is often difficult to be automated.

The Graph Convolutional Network (GCN) (Kipf and Welling , 2016) and more

generally, the GNNs, work directly on graph representations of non-uniform grids,

and thus become a natural alternative to CNN for CFD applications. Multiple

architectures in the family of GNNs have shown successes in processing irregular,

11

non-Euclidean features. Applications include cloud classification (Landrieu and Si-

monovsky , 2018; Wang et al., 2019b), action recognition (Yan et al., 2018) and

control (Sanchez-Gonzalez et al., 2018), traffic forecasting (Yu et al., 2017; Zhang

et al., 2018), quantum chemistry (Gilmer et al., 2017). Most GNNs used as end-

to-end surrogate models fall into a more specific sub-category, the Message Passing

Neural Network (MPNN) (Gilmer et al., 2017), which treats graph convolutions as

messages passed between nodes through edges. Initial attempts were made on (Li

et al., 2018; Sanchez-Gonzalez et al., 2020). Li et al. (2018) made an initial attempt

on particle-based systems. The Graph Network-based Simulators (GNS) (Sanchez-

Gonzalez et al., 2020) introduced a tailored encoder-processor-decoder structure for

simulations. MeshGraphNets (Pfaff et al., 2020) extended the structure to mesh-

based simulations, and demonstrated impressive performance on a wide range of

physical systems.

1.2.4.3 Physics-Informed Neural Networks

A substantial difference between tasks in the computational physics field and other

popular machine learning tasks is the availability of governing equations, usually in

the form of PDEs. In a Physics-Informed Neural Network (PINN) (Raissi et al., 2019),

the violation of physics, quantified by the residual of the governing PDEs, is included

as a regularization term in the loss function in the training process. PINNs have been

shown to sufficiently reduce the required amount of labeled training data (Raissi

et al., 2019). With proper treatment of the boundary and initial conditions, even

data-free training can be realized (Sun et al., 2020). It should be noted that PINNs

are characterized by the training method instead of a specific network architecture.

The idea has been successfully incorporated into fully-connected networks (Raissi

et al., 2019; Yang et al., 2019b), as well as CNNs (Geneva and Zabaras , 2020; Gao

et al., 2021).

12

1.2.4.4 Data-Driven System Identification

Compared with the aforementioned direct data-driven predictions, a more inter-

pretable approach towards surrogate modeling is to exploit the latent data structures

to infer ROM equations. Data-driven identification and solution of dynamical sys-

tems have a long history. As early as more than 40 years ago, neural networks had

been used for autoregressive approximations for nonlinear responses (Kumpati et al.,

1990; Narendra and Parthasarathy , 1992). Close connections with PDE models were

quickly made (Dissanayake and Phan-Thien, 1994; Lagaris et al., 1998). Brunton

et al. (2016) performed sparse system identification based on a pre-collected dictionary

of nonlinear equations. Accurate and reliable surrogate solutions have already been

realized for many paradigmatic dynamical systems, such as the FitzHugh–Nagumo

model (Kevrekidis et al., 2003), the Lorenz attractor (Brunton et al., 2016), and the

Kepler problem (Qin, 2020). Gu (2011) introduced the idea of reducing arbitrary

nonlinearity to quadratic-bilinearity via lifting, which have been successfully applied

to complex reacting flows (Kramer and Willcox , 2019b,a; McQuarrie et al., 2021).

1.3 Overview of Model Development and Inference

1.3.1 Full Order Model

We consider time-evolving dynamic systems that can be represented by a PDE of

the following form:

∂q(x, t, µ)

∂t
+ f(q(x, t, µ),x) = 0,

x ∈ Ω, t ∈ [0, tend],

q(x, 0, µ) = q0(x, µ),

a� q(∂Ω, t, µ) + b� (∇q(∂Ω, t, µ) · n∂Ω) = f∂Ω,

(1.1)

13

where q ∈ Rnv denotes the vector for the unknown state variables, t denotes the time,

x denotes the spatial coordinates in domain Ω, µ is a parameter vector describing

the operating condition of the system, f is a nonlinear operator that includes spatial

derivatives and source terms, and the symbol � denotes an element-wise vector mul-

tiplication. The pre-defined spatial field q0(x) at t = 0 is called the Initial Condition

(IC). The function f∂Ω represents a set of constraints on the domain boundary ∂Ω,

which is called the Boundary Condition (BC). A BC is commonly defined on a lin-

ear combination of the boundary value q(∂Ω, t) and the boundary-normal gradients

∇q(∂Ω, t) ·n∂Ω, with n∂Ω being the boundary-normal vector. A BC is categorized as

Dirichlet when a = 1,b = 0, Neumann when a = 0,b = 1, and Robin for other com-

binations. In practice, different BCs can be applied to different parts of the domain

boundary simultaneously.

In general, the numerical solution of Eq. (1.1) is performed in a discrete manner,

where Ω is spatially discretized into nx grid nodes or cells. The solution is represented

by the corresponding nodal or cell-centered values at discrete time-steps. In a discrete

setting, q denotes the set of unknowns at all discrete locations. We take the space

index i as a subscript and the time index k as the superscript, such that qki denotes

the values for the i-th node/cell located at xi, at the k-th time-step.

The solution requires a spatial discretization of the operator f , common approaches

including the Finite Difference Method (FDM), the Finite Volume Method (FVM)

and the Finite Element Method (FEM). After the spatial discretization, an ODE is

obtained:

dq

dt
+ f(q, t) = 0,

q(0) = q0,

(1.2)

which is called the semi-discrete form for Eq. (1.1). The IC for Eq. (1.2) can be

directly inherited from that for Eq. (1.1) in a discrete-sampling manner. The imple-

14

mentation of different BCs, however, is less straightforward and depends closely on

the specific type of spatial discretization applied. For example, a Dirichlet BC for

a finite-volume cell immediately inside the domain boundary can only be imposed

weakly by specifying the values for an adjacent “ghost cell” across the boundary.

Schemes for time-integrating Eq. (1.2) include methods such as the Runge-Kutta

(RK) schemes and the Backward Difference Formula (BDF), etc. In this work, we

focus on the development of RCMs. When no dimensionality reduction or fidelity re-

duction is performed, any combination of the spatial discretization and time-marching

schemes for Eq. (1.2) will be regarded as a Full Order Model (FOM), and their solution

is regarded as the ground truth for the data-driven RCMs. A RCM is called intrusive

when the FOM scheme is accessed in the computation, and otherwise non-intrusive.

1.3.2 POD-Galerkin ROM

The POD-Galerkin ROM is an intrusive model achieved by performing the Galerkin

projection of the FOM Eq. (1.2) using POD bases. It is probably the most basic, and

also the most widely used type of RCM in numerical simulations. The procedures

for developing a standard POD-Galerkin ROM are introduced below, which can be

contrasted with the more complex model developments in the rest of the thesis.

Assume that the possible discrete FOM solutions span a high-order space Vq =

Rnq , where nq = nxnv is the total DoFs per time-step. Projection-based dimen-

sionality reduction is achieved through a mapping from Vq to a low order subspace

Vr = Rnr . Then a ROM can be obtained by solving for a vector r ∈ Vr, as an ap-

proximation for q, such that the total DoFs are reduced from nq to nr. The vector r

is called a reduced order variable.

POD seeks a L2-optimal low rank representation of a data matrix using the Singu-

lar Value Decomposition (SVD) technique. To perform SVD, a training set of FOM

data with nt steps is collected as a snapshot matrix Q ∈ Rnq×nt , for which each

15

column is the solution for one time-step:

Q =

q1

1 · · · qnt1

...
. . .

...

q1
nx · · · qntnx

 (1.3)

Considering real solutions only, the SVD of Q is:

Q = UΣZT , (1.4)

where the left singular matrix U ∈ Rnq×nq and the right singular matrix Z ∈ Rnt×nt

are orthogonal matrices1, and Σ ∈ Rnq×nt is a rectangular diagonal matrix, whose

diagonal entries are the singular values of Q. The columns of U can be regarded as

linearly independent spatial modes for the FOM solution. By selecting the first nr

columns, a POD projection basis V is formed. When nr is selected properly to be

smaller than rank(Q), then V spans Vr. The rest columns form a complementary

basis V⊥ spanning V⊥, such that Vr ⊕ V⊥ = Rrank(Q).

A L2-optimal approximation to q on the reduced space Vr is given by:

q ≈ Vr =
nr∑
l=1

rlV:,l, (1.5)

where r = VTq.

Finally, Galerkin projection is conducted using the POD bases V, and the resulting

POD-Galerkin ROM equation is given by:

dr

dt
+ VT f(Vr, t) = 0. (1.6)

1The right singular matrix is more commonly denoted by V, and Z is used here due to a conflict
of notations.

16

1.3.3 Model Training

Model training refers to the process of fitting a model to a target input-output

relationship. In data-driven approaches, the relationship is usually implied by an

existing set of solutions, called training data. For linear models, the training is done

with explicit computations, such as performing the SVD for the POD, or solving

the linear regression equation. For nonlinear models, the training process consists of

iterative updates for the model parameters to minimize a loss function that measures

the gap between the target output and the model output.

1.3.3.1 The Minimization Problem

For regression problems, a common choice for the loss function is the Mean

Squared Error (MSE). Between a target vector y ∈ Rny and an approximation ỹ,

the MSE is given by:

MSE(y, ỹ) =
(ỹ − y)T (ỹ − y)

ny
. (1.7)

To alleviate overfitting, a penalty on the model parameters is added as a regulariza-

tion term to the loss function. Common choices of regularization include the `1-norm

and `2-norm. In this work, the latter is used. For a nonlinear model F(h; Θ) that

takes an input vector h corresponding to the target output y, with model parameters

Θ, the final expression for the loss function is given by:

L(h,y; Θ) = MSE(y,F(h; Θ)) + λ ‖Θ‖2 , (1.8)

where λ is a penalty coefficient. The optimal parameters Θ∗ can be expressed as:

Θ∗ = arg min
Θ

∑
{h,y}∈{H,Y}

L(h,y; Θ), (1.9)

where H and Y are the training sets of input and output.

17

For neural networks, Back propagation is used to solve Eq. (1.9) based on the

gradient ∇ΘL. At an optimization step k, the update to the parameter can be

expressed in a general form as:

Θk+1 = Θk − ηM(∇ΘLk), (1.10)

where η is the learning rate, and M is a function that corrects the gradient with

momentum terms. There are numerous types of such functions, and the Adam opti-

mizer (Kingma and Ba, 2014) is used in this thesis.

1.3.3.2 Feature Scaling

Scaling is necessary for the development of data-driven models to avoid over-fitting

to the features with larger magnitudes. For example, in common fluid problems,

the measurement of pressure in Pascal is often several orders larger than that for

temperature in Kelvin, and will dominate the parameter optimization process without

proper scaling. In this thesis, each physical quantity or each digit in a reduced order

variable vector is regarded as an individual feature, and is scaled independently.

Unless otherwise specified, the standard deviation scaling is used by default. For a

feature h, the scaling is given by:

h∗ =
h− µ(h)

σ(h)
, (1.11)

where h∗ is scaled feature, and µ(·) and σ(·) denotes the spatio-temporal mean and

standard deviation, respectively.

1.3.4 Model Inference and Noise Injection

Model inference, or testing, refers to the process of computing quantities of interest

based on unseen data (not included in the training process). For surrogate modeling of

18

a transient unsteady flow, a rollout prediction is required, which consists of recurrent

model inference steps – the output from a leading step is used in the input for the

following step. Inevitably, the inference error introduced will be carried out to the

next, and consequentially all the future steps. This accumulation of error can quickly

lead to unrealistic values and “blow-up” the prediction process. To alleviate the

problem and enable robust long-term prediction, the training noise injection technique

is commonly used. In this technique, an assumption is made that the inference error

can be modeled by a random Gaussian noise field. In the training process, such a noise

is added to the input in order to make the model robust against the accumulative

error and compensate for it.

In this thesis, the surrogate model predicts the increment between two consecutive

steps of the same variable(s). Without feature scaling and noise injection, the target

model is given by:

F
(
hk; Θ

)
= ∆hk = hk+1 − hk, (1.12)

where the input h can be either a physical quantity or a reduced variable. In practice,

the output and the input are independently scaled. After training noise injection and

scaling using Eq. (1.11), the target model becomes:

F(
hk + ε− µ(h)

σ(h)
; Θ) =

hk+1 − hk − µ(∆h)

σ(∆h)
, (1.13)

where ε is a zero-mean Gaussian noise of the same shape as h. The standard devia-

tion of ε is set to be close to that for the single-step inference error in h through a

priori tests. It should be made clear that ε is only manually injected in the train-

ing process, and is supposed to be implicitly represented by the model error in the

rollout prediction. Although can be obtained through a simple transformation from

19

Eq. (1.13), the expression for a complete online update step is provided for clarity:

hk+1 = hk + σ(∆h)

(
F
(

hk − µ(h)

σ(h)
; Θ

)
+ µ(∆h)

)
, (1.14)

For simplicity, the un-scaled form Eq. (1.12) is used instead of the complete form

Eq. (1.14) in the rest of the thesis. All models are supposed to be trained and inferred

with proper noise injection and feature scaling.

1.4 Manifestations of the Low Data Limit and the Need for

Domain Decomposition

Generally speaking, RCMs work inside the interpolation range of training data

in a broadly defined “hyper-parameter” space. For numerical simulations, critical

hyper-parameters include magnitudes, dynamic patterns, discretization characteris-

tics, geometries, external forcing, etc. To create a training set that covers a large-

enough envelope along all of the dimensions, the number of training points grows

exponentially. It should be reminded that behind each training point is not a scalar,

but instead, a complete spatio-temporal solution obtained from a full order simulation

at that combination of hyper-parameters. Considering the example costs provided in

Sec 1.1, it is important for the models to learn along every hyper-parameter dimen-

sion efficiently on a small number of training points. However, this is not the case for

existing RCMs.

Among the models of our interest, ROMs are probably the most efficient in the in-

ference stage, but they face challenges in processing certain types of hyper-parameters.

A shared problem in POD, autoencoders, and the resulting ROMs based on them, is

that they are typically formulated to generate a fixed mapping between the geometric

coordinates and the compressed digits. Through its full lifespan, a basic projection-

based model is restricted to a single discretized geometry or very limited variants of

20

it through transformations such as the elliptic coordinate transformation (Gao et al.,

2021). On the other hand, there are many cases in which the computation-intensive

complex physics that requires a less expensive model concentrates in a small section

of the domain, rather than spanning the full system. In these cases, an intuitive way

to combine the efficiency of a RCM and the flexibility of a FOM is to allocate different

parts of the domain to their most suitable models, and perform full-system predictions

in a coupled manner. This model-solver coupling idea has been successfully verified

with intrusive ROMs and solvers with simple time-integration schemes (Baiges et al.,

2013; Huang et al., 2016; Xu et al., 2019). However, as will be discussed in Sec. 1.4.2,

certain challenges remain to be addressed in the development of a generic model-solver

coupling strategy.

Even for a fixed geometry, using a single global set of bases for the whole domain

also limits the training efficiency and predictive capability of the ROM w.r.t. different

dynamic patterns. The limit is especially obvious in advection-dominated problems

– a global projection basis is informative for the regions that are passed through

by the local dynamic structures in the training, and will not be predictive when the

structures travel outside the regions, no matter how locally simple they are. While the

situation can be improved to a certain degree by using adaptive bases (Peherstorfer

and Willcox , 2015; Peherstorfer , 2020; Amsallem and Farhat , 2011), some of the

fundamental challenges persist. In this case, domain decomposition is also applied

in a purely ROM setting, leading to the Reduced Basis Element (RBE) family of

approaches (Maday and Rønquist , 2002; Iapichino et al., 2016; Hoang et al., 2021), in

which the ROM bases are truncated into, or individually built for, the component sub-

domains. With multiple sets of bases, the dynamics in different regions of the domain

can be generated and learned individually, resulting in a higher training efficiency.

However, training multiple parallel ROMs introduces additional workloads to the

workflow. Challenges in synchronizing the different sub-domains are also raised.

21

The situation is improved with local surrogate models such as CNNs and GNNs.

The models are regarded as “local” because the convolution and message-passing op-

erations are defined as kernels on a center spatial point and a small neighborhood

around it. The local kernels bring a weight-sharing property to the models – when

a kernel slides through the input coordinates, it can be regarded as a single model

called repeatedly with independent inputs. In the training, each point in a spatially

discretized field can be regarded as an individual training sample, which significantly

reduces the training cost. The kernels also efficiently capture local features, thus pro-

viding better predictive performance especially for propagating small-scale dynamics.

However, in scientific computing practice, the local kernels face new challenges.

The spatial discretization of the computation domain is often irregular, exhibiting

significant changes in local characteristics such as the number of neighboring points,

edge lengths, and directions. The challenges are even worse on domain bound-

aries/interfaces, where the points within the range of a single kernel can be het-

erogeneous. Actually, this leads our view to a common problem with existing neural

networks, that they often ignore the hierarchical relations between heterogeneous fea-

tures, and concatenate them into a single input vector. In a GNN/MPNN, this is

reflected by frequent concatenations of the graph edge and graph node features. The

learning of high-order terms also remains mostly unguided – even simple quadratic

terms are often fitted via a number of hidden units in a brute-force manner. Indeed,

current successful surrogate models such as the MeshGraphNets (Pfaff et al., 2020)

require a large amount of training data (thousands of trajectories) to be portable

between meshes and dynamic patterns. Such problems can be potentially addressed

by conditional parameterization, i.e. to make the network parametric to certain fea-

tures, such as connectivity patterns (Stanley et al., 2009), layer embedding (Ha et al.,

2016), mean image features (Yang et al., 2019a). More related to the scope of this

thesis, the Edge Conditioned Convolution (Simonovsky and Komodakis , 2017) makes

22

the weights for graph node features dependent on edge features. The CP-GNet (Xu

et al., 2021) applied conditional parameterization to the encoder-processor-decoder

structure with an extended choice of parameters including physical quantities and

discretization characteristics, and successfully predicted a reacting flow in a complex

geometry.

1.4.1 An Example Full-System Modeling Strategy.

In practice, the challenges imposed by different types of hyper-parameters can be

intricately coupled, and the low data limit can be more severe. We take the study of

a rocket engine combustor shown in Fig. 1.1 for example. As outlined in Fig. 1.1a,

fuel and oxidizer from upstream manifolds are injected, mixed, and ignited through

injector elements on an injector plate. Downstream to the plate is a combustion

chamber, in which the gases further react and finally exit from a choked nozzle. In

practice, a hurdle in the development of such engines is the combustion instability

caused by the in-phase coupling between acoustic pressure oscillations and heat re-

lease, both of which can experience destructively high unsteady amplitudes, and lead

to catastrophic engine failures. Within each injector element, the coupling is char-

acterized by the disruption and resumption of fuel injection as pressure waves pass

through, and consequential in-phase oscillations in the heat release. Extending to

the entire multi-injector engine, the instability is further complicated by transverse

modes, which create even greater amplitudes and require careful treatments, partic-

ularly an optimized design of the injector plate configuration (Young , 1995; Harrje

and Reardon, 1972; Harvazinski et al., 2019).

In the real world, the geometry requires hundreds of injectors. In an ideal and

complete computer-aided design and engineering process, the exact number and ar-

rangement of these injectors should be determined iteratively through multiple full-

combustor simulations. However, even a coarsely-resolved simulation of the simplified

23

9-injector geometry in Fig. 1.1c took around 10 million CPU hours (Harvazinski et al.,

2019), and thus a completely simulation-based approach would be impossible. Unfor-

tunately, traditional ROMs, and many other RCMs such as the PINN lack portability

between different geometries. Even provided with such portability, a naive training

process would require multiple full-system training runs to be predictive for new ge-

ometries, which would still be meaningless for a practical design purpose.

To improve the situation, a modeling strategy as outlined in Fig. 1.2 can be used.

This strategy is based on two observations/assumptions:

1. The small-scale dynamics and detailed combustion processes that require the

highest resolution and consequently the largest computational effort concen-

trate in the injectors and their neighboring downstream regions, as marked in

Fig. 1.1c, whereas the large-scale dynamics in the further downstream chamber

and nozzle can be simulated at an affordable cost.

2. The dynamics between these computation-intensive regions are statistically sim-

ilar. This is because that they have identical geometries and inlet conditions,

and interact with similar downstream responses that are dominated by the same

group of pressure waves. As visualized in Fig. 1.1c, despite phase differences,

the magnitude and frequency of the downstream responses only vary in a small

range between the regions.

Based on the above, it is reasonable to expect that an efficient single-injector model

can be trained, and mirrored for the required number of injectors in a full-system

prediction, in combination with an inexpensive downstream solver that handles the

variable geometry.

However, the mirrored models are not simple replications of the outputs from

a single model – their downstream responses can be largely asynchronous due to

span-wise dynamics in the chamber, which can be visualized by the phase differences

24

(a) Engine overview (Lawson,
2015).

(b) Real-world geometry: hundreds of injector posts in the in-
jector plate of a Russian RD-170 engine (Haeseler and Haidn,
2017).

(c) Simulation geometry taking 10 million CPU hours: 9 injectors (Harvazinski et al., 2019).

Figure 1.1: Example rocket engine combustor.

between different injectors in Fig. 1.1c. Therefore, the model is required to communi-

cate effectively with the downstream domain retained in a CFD solver. It also has to

be predictive under different downstream response patterns. The training of such a

model is especially challenging as even a full-system FOM simulation is unaffordable,

and a single run with a fixed number of injectors is not guaranteed to be representa-

25

Figure 1.2: Example full-system modeling strategy.

tive for other configurations. In a series of papers (Huang et al., 2016, 2017; Xu et al.,

2019; Huang et al., 2019a), a multi-fidelity framework specialized for efficient ROMs

for a decomposed domain has been proposed and studied. In this framework, the

training data for the ROM sub-domain is generated without coupling with the rest

of the system. Instead, characteristic perturbations are applied at the decomposition

interface, which is designed to be representative of the possible responses from the pre-

assumed FOM partner to be used in the coupled online prediction. This framework

is shown to effectively reduce the number of training runs required for the prediction

of a quasi-1D combustion system with a variable-length downstream chamber, but

remains to be tested on more complex problems or non-intrusive models. Huang

(2022) further validated the framework with intrusive ROMs for a 2D single-injector

combustor, and the test case is also adopted in this thesis. The strategy in Fig. 1.2 ex-

tends this framework to multi-injector cases, with characteristic perturbations added

to both the downstream boundary and the span-wise boundaries in the training run

for the model sub-domains. This work contributes to the realization of this strategy.

26

1.4.2 Challenges in Model-Solver Coupling

It is not hard to find successful applications of domain-decomposition RCMs, in

either a model-model coupling setting or a model-solver one. In the former, most

works fall into the aforementioned RBE family of methods, and recent explorations

focus on improving the compatibility between sub-domains projected to different sets

of bases, such as the work Iapichino et al. (2016) and Hoang et al. (2021). In the

model-solver coupling setting, intrusive ROMs have been used almost exclusively. For

the full-system modeling strategy of our interest, however, two important challenges

in the model-solver coupling remain under-explored, as discussed in the following two

sub-sections.

1.4.2.1 Coupling Between Mismatched Time-Integration Schemes

It is typically assumed that the same time-integration scheme is used for both the

solver and the RCM. However, this is often not desired in real applications. Actually,

most RCMs, especially the non-intrusive ones, can work robustly with fewer sub-

stages in the time-integration compared with a FOM, and can sometimes even work

at larger time-steps. The robustness can be attributed to multiple reasons, such

as the filtering (through processes like the POD projection and reconstruction) of

small-scale physics where the numerical stability usually originates, or the use of an

autoregressive model which directly works on the time series patterns and bypasses

the CFL condition. Under these circumstances, The efficiency of the RCMs will be

undermined if the time-integration is forced to be as strict as in the coupled solver.

Due to the obvious analogy in the domain decomposition and the block parti-

tioning in a traditional parallel solver, it is natural to think of a direct application

of the widely used implicit coupling schemes, such as the Newton-Raphson pro-

cedures (Matthies and Steindorf , 2002; Fernández and Moubachir , 2005), and the

Schwarz procedures, including the additive/parallel ones known as the block Jacobi

27

method (Schwarz , 1972; Shroff and Schreiber , 1989), and the multiplicative ones

known as the block Gauss-Seidel method (Smith et al., 1996; Grippo and Scian-

drone, 2000). Such implicit schemes are also known as strongly coupled schemes,

as they require the full computation domain to operate in a strictly aligned time-

integration scheme with multiple (often O(10)) iterative computations within each

time-step, known as sub-iterations or sub-cyclings. The requirement, however, is not

suitable for most RCMs, which often use a simpler time-integration scheme, e.g. the

forward-Euler. Although in principle, an intrusive ROM can be designed to operate

identically to a FOM computation-wise, a large number of sub-iterations in implicit

schemes conflicts with the efficiency demand of a ROM, and thus, to the author’s

best knowledge, only used with inexpensive ROMs under certain linear assumptions

in practice. Kerfriden et al. (2013) and Corigliano et al. (2015) performed iterative

coupling between intrusive ROMs for sub-domains exhibiting linear dynamics, and

FOMs for other sub-domains requiring nonlinear residuals. Buffoni et al. (2009) used

an intrusive ROM with nonlinear residual terms, and the linear assumption is made

by approximating the Jacobian matrix in the iterative Newton’s algorithm at a fixed

point, i.e. a quasi-Newton’s method is used. Another way to avoid a mismatch in the

time-integration schemes is to restrict the solver to also use a simple explicit scheme

such as the forward-Euler or the RK schemes (Huang et al., 2016; Xu and Duraisamy ,

2017), or a non-iterative implicit scheme such as the backward-Euler (Baiges et al.,

2013). However, such choices are often not capable of dealing with stiff problems

and thus impractical. Moreover, RCMs are shown to often be able to run at a larger

time-step size than a solver (Marley et al., 2015; Xu and Duraisamy , 2017; Pfaff et al.,

2020; Xu et al., 2021), and the advantage has to be discarded when a strongly coupled

scheme is used.

Schemes for coupling solvers/models with different time-step sizes and number

of sub-iterations are commonly referred to as staggered schemes (Felippa and Park ,

28

1980; Piperno et al., 1995; Felippa et al., 2001), also known as weakly coupled schemes.

In conventional staggered schemes, communications only take place at the beginning

of each time-step. Within each step, the received values from a partner remain as

a fixed boundary condition regardless of the time-integration schemes used inside a

sub-domain. When different time-step sizes are used, the coarser solution can be

first advanced, then linearly interpolated at the finer steps, and used for advancing

for the latter. In this case, a serial staggered scheme is required, which means that

the computations of the sub-domains are performed sequentially. When no interpo-

lation is needed, either with aligned time-step sizes, or by keeping the interface value

fixed through multiple fine time-steps, a parallel staggered scheme can be used, in

which the different sub-domains are advanced simultaneously. Farhat and Lesoinne

(2000) proved that both the serial and the parallel conventional staggered schemes

are first-order accurate, regardless of the schemes for the different sub-domains. The

parallel scheme is shown to be more efficient at the cost of a slightly lower accu-

racy (Farhat and Lesoinne, 2000; Gatzhammer , 2014). Second-order accurate stag-

gered schemes with backward difference have also been proposed (Farhat et al., 2006,

2010). Comprehensive reviews of staggered schemes can be found in Felippa et al.

(2001) and Gatzhammer (2014), and it can be realized that staggered schemes have

been most widely studied in the simulations for fluid-structure interactions (Bathe

et al., 1995; Löhner et al., 2007; Dettmer and Perić, 2013; Bathe and Kamm, 1999).

Existing explorations on staggered model-solver coupling also inherit such heteroge-

neous partitions (Erbts and Düster , 2012; Kafkas and Lampeas , 2020), and it is hard

to distinguish the potential error caused by the interface coupling from the intrinsic

discontinuity in many variables across the fluid-structure interface. The performance

of staggered model-solver coupling between homogeneous sub-domains remains to be

studied.

29

1.4.2.2 Coupling with Non-Intrusive Models

Our discussions so far have been focused on the coupling scheme, without taking

into account the fact that even with the same time-integration scheme, a RCM can

behave differently from a FOM at the interface. In fact, the RCMs in all aforemen-

tioned successful applications, even the ones taking linear assumptions, are limited to

intrusive ROMs, which are able to process the interface value from the coupled partner

with the help of governing equations. However, such a capability is not guaranteed

by the non-intrusive models, and few relevant studies can be found. In a series of

papers (Xiao et al., 2016a, 2017, 2019), researchers performed domain decomposition

for a Radial Basis Function (RBF)-based non-intrusive ROMs, and demonstrated

the possibility to couple non-intrusive ROMs in both ROM-FOM and ROM-ROM

settings. However, the ROM-FOM coupling is again performed at fluid-structure

interfaces, and the effect of the coupling scheme is not discussed.

Because of the similarity between a domain interface and a physical boundary

with transient values, beneficial inspirations can be drawn from explorations on in-

corporating parametric boundary conditions into the non-intrusive models. Swischuk

et al. (2020) and McQuarrie et al. (2021) used a linear transformation to account

for the impact of an external forcing onto the POD coefficients in a non-intrusive

ROM. Xu and Duraisamy (2020) used a MLP to predict the encoded variables at

different inflow angles for an autoencoder. For non-projection-based deep learning

models such as the PINN, a popular choice is to impose a soft constraint by training

with an additional penalty term for the mismatches at the boundaries (Raissi et al.,

2019; Márquez-Neila et al., 2017). For convolutional and graph-based deep learning

models, a vanilla incorporation of boundary values can appear straight-forward: the

convolutional domain or graph is designed to include the boundary region, and the

input boundary values are automatically passed into the rest of the domain through

convolutions or message passing. However, when multiple convolutional or message

30

Figure 1.3: Contributions of the thesis in the roadmap towards full-system modeling.

passing layers are used, the desired size of the informative boundary region grows

linearly, otherwise, a “zero” boundary condition will be implicitly imposed due to

the use of padding or a missing graph edge. Additional treatments in the boundary

regions are designed to alleviate the problem, such as adding labels to distinguish the

boundary and inner regions (Pfaff et al., 2020), or using independently trained net-

work parameters for edges at the boundaries (Xu et al., 2021). It should be mentioned

that the treatments can also be used to learn non-parametric boundary conditions,

such as a no-slip wall, which by itself forms a hot area of study (Gao et al., 2020;

Sun et al., 2020; Chen et al., 2021). However, such boundaries are less relevant to

the sub-domain coupling of our interest, and fall outside the scope of this section.

1.5 Contributions

This thesis addresses the aforementioned challenges imposed by the low data limit

in the development of RCMs. Fig. 1.3 illustrates the areas that the thesis contributes

to in a roadmap towards the full-system modeling strategy introduced in Sec 1.4.1.

The key contributions are listed below:

1. Multiple classes of deep-learning models are introduced to the development of

31

non-intrusive ROMs. Improvements over the traditional POD-based intrusive

ROM are demonstrated in a number of numerical tests.

2. A model based on multi-level convolutional autoencoder networks is proposed

for highly efficient parametric and future-state predictions of spatio-temporal

dynamics.

3. The idea of Conditional Parameterization (CP) is generalized to enable the effi-

cient learning of complex physical terms and mesh discretization characteristics.

It is demonstrated that a drop-in CP modification can bring significant improve-

ments for various existing models on several tasks essential to the modeling of

physical systems.

4. A Conditionally Parameterized Graph Neural Network (CP-GNet) is proposed,

which effectively models complex physics such as chemical source terms, ir-

regular mesh discretizations, and different types of boundary conditions. Suc-

cessful future-state predictions are performed on reacting flows, changing ge-

ometries, and cases originating from different spatial discretization methods

(FEM/FVM).

5. Multiple model-solver coupling formulations are proposed and investigated.

Effective incorporation of boundary/interface conditions for the non-intrusive

ROMs is enabled. The staggered schemes from fluid-structure interactions are

migrated for model-solver coupling with specialized improvements for individual

time-integration schemes with largely mismatched numbers of sub-stages and

time-step sizes.

6. The reduced-domain training, full-domain prediction framework is thoroughly

investigated in a quasi-1D model at multiple operating conditions and prediction

geometries.

32

7. The aforementioned techniques are applied jointly to extend the framework for

non-intrusive models, which is verified on a realistic single-element combustor.

Most of the above contributions are documented in the following publications:

1. Xu, J., and K. Duraisamy (2017), Reduced-order modeling of model rocket

combustors, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, p. 4918.

2. Huang, C., J. Xu, K. Duraisamy, and C. Merkle (2018), Exploration of reduced-

order models for rocket combustion applications, in 2018 AIAA Aerospace Sci-

ences Meeting, p. 1183.

3. Xu, J., C. Huang, and K. Duraisamy (2018), Multi-domain reduced-order mod-

eling with sparse acceleration of combustion instability, in 2018 Joint Propulsion

Conference, p. 4680.

4. Xu, J., C. Huang, and K. Duraisamy (2019), Reduced-order modeling framework

for combustor instabilities using truncated domain training, AIAA Journal, pp.

1–15.

5. Sharma, A., J. Xu, A. K. Padthe, P. P. Friedmann, and K. Duraisamy (2019),

Simulation of maritime helicopter dynamics during approach to landing with

time-accurate wind-over-deck, in AIAA Scitech 2019 Forum, p. 0861.

6. Xu, J., and K. Duraisamy (2020), Multi-level convolutional autoencoder net-

works for parametric prediction of spatio-temporal dynamics, Computer Meth-

ods in Applied Mechanics and Engineering, 372, 113,379.

7. Xu, J., A. Pradhan, and K. Duraisamy (2021), Conditionally parameterized,

discretization-aware neural networks for mesh-based modeling of physical sys-

tems, Advances in Neural Information Processing Systems, 34 .

33

1.6 Outline

The rest of the thesis is organized as follows: Chapter II demonstrates the full-

system coupling framework in a simplified setting, which sets the stage for the sub-

sequent chapters. Chapter III presents the projection-based non-intrusive ROMs.

Chapter IV describes the graph representation of discretized systems and the condi-

tional parameterization method, which is followed by the proposal of the Condition-

ally Parameterized Graph Neural Network (CP-GNet) model. Chapter V presents

model-solver coupling methods. Besides the individual demonstrations in their cor-

responding chapters, the different models are integrated and demonstrated in two

numerical tests at the end of Chapter V. Concluding remarks and perspectives are

given in Chapter VI.

34

CHAPTER II

Reduced-Domain Training and Coupled Prediction

2.1 Introduction

The goal of this chapter is to provide a brief yet complete tour of the full-system

modeling framework introduced in Sec. 1.4.1. For illustrative purposes, a quasi-1D

representation of a model rocket combustor is addressed with a basic RCM, the static-

basis intrusive ROM, which is coupled with a FOM using strictly aligned explicit time-

integration schemes in the online prediction. After a clear outline of the workflow is

depicted, detailed studies on more complex models, coupling schemes, and test cases

are presented in the subsequent chapters.

2.2 Problem Statement

A numerical experiment is designed to demonstrate the workflow and capability

of the framework in a combustion system with a variable geometry. The task is to

develop a single ROM for the reactive region only, and couple it with a

FOM solver to perform predictions for multiple unseen geometries. The

study is based on a quasi-1D version of the Continuously Variable Resonance Com-

bustor (CVRC) (Yu, 2009; Yu et al., 2012), shown in Fig. 2.1, which is a small-scale

single-injector rocket engine combustor with a variable chamber length. At differ-

35

Figure 2.1: Decomposed computation domain and shape of the flame model.

ent lengths, the acoustic profile in the chamber is changed, which will consequently

change the coupled combustion process, and challenges the predictive capability of

the ROM.

As shown in Fig. 2.1, the domain is decomposed into two sub-domains. The

truncation interface is located at x = 0.096 m, such that the first sub-domain contains

the physics-complex areas including the injector, back-step, and the leading part of

the chamber where the flame is located. The second sub-domain includes the rest of

the geometry, which has a variable length in design evaluations. In our framework,

a ROM is used in the first sub-domain, and a FOM is used in the second. The

allocations are based on consistent assumptions with these made in Sec. 1.4.1. More

specifically, for the single-element configuration used in this quasi-1D study, and its

2D high-fidelity version to be present in Sec. 5.6:

1. The complex, computation-intensive area is fully covered in the first sub-domain.

The accurate modeling of this domain requires high-resolution simulations. The

FOM computation in the second sub-domain is expected to be much less chal-

lenging than the first domain and affordable with coarser resolution modeling

approaches (e.g. coarse-mesh LES and unsteady RANS), which makes a ROM

replacement unnecessary.

2. In design evaluations, the chamber length in the second sub-domain is vari-

36

able. Traditionally, a new ROM training is required for each chamber length,

which violates the goal of reducing the computing cost using ROM. It improves

the overall efficiency of the framework to use a FOM to handle the different

geometries flexibly.

2.3 Full Order Model

The quasi-1D unsteady Euler equations with species transport are taken as the

FOM in this study, represented as:

∂q

∂t
+
∂F

∂x
= SA + Sf + Sq, (2.1)

where

q =

ρA

ρuA

ρEA

ρYoxA

,F =

ρuA(
ρu2 + p

)
A

(ρE + p)uA

ρuYoxA

,SA =

0

pdA
dx

0

0

,Sf =

ω̇f

ω̇fu

ω̇f∆h0

−ω̇ox

,Sq =

0

0

q′

0

.

(2.2)

In the conservative variable vector q, ρ is the density, u is the velocity, E is the

total internal energy, Yox is the oxidizer mass fraction, and A is the cross-sectional

area. The corresponding convective fluxes are represented by the vector F, where p

is the static pressure. The first source term SA accounts for the force of pressure on

the area variation.

The latter two terms model the unsteady combustion process jointly. In the

original experiment, the fuel is injected through an annular ring located at the back-

step, and reacts at a finite rate with the oxidizer injected. In this work, we follow

the choice of Frezzotti et al. (2015a,b) and take an infinitely-fast one-step combustion

model. An important assumption behind the model is that, when fuel is injected,

it will react with the oxidizer instantaneously to form products and no intermediate

37

species are produced, thus only one species transport equation is needed. The fuel

injection and immediate consumption of oxidizer are modeled by Sf . As suggested

in the same work, to represent a realistic flame region of a finite width, and to avoid

discontinuities with the infinitely fast model, the fuel is injected at a sinusoidal spatial

function ω̇f (x) given by:

ω̇f (x) =
ṁf∫

(1 + sin ξ(x))dx
(1 + sin ξ(x)) ,

ξ(x) = −π
2

+ 2π
x− ls
lf − ls

,with ls < x < lf ,

(2.3)

where ṁf is the total mass flow rate of fuel injection, and ls and lf are the starting

and ending location of the flame, respectively. The resulting shape of the flame model

is shown in Fig. 2.1 along with the model geometry. Due to the infinitely-fast model,

the consumption rate of the oxidizer is given by a simple conversion:

ω̇ox =
ω̇f
Cf/o

, (2.4)

where Cf/o is the stoichiometric fuel-to-oxidizer ratio.

The last source term Sq models the coupling between heat release and acoustics.

Introduced by Crocco et al. (1958), the model assumes the unsteady part of heat

release as a time-delayed function of pressure, with an amplification factor α and a

time lag τ , yielding:

q′ = ω̇f∆h0α
p (x, t− τ)− p̄ (x)

p̄ (x)
. (2.5)

The same geometry parameters, gas properties, and operating conditions as in the

work Xu and Duraisamy (2017) are adopted and listed in Table 2.1 and 2.2.

Table 2.1: Geometry parameters

Section Injector Back-step Nozzle converging part Nozzle diverging part
Length (m) 0.1397 0.0064 0.0127 0.034
Radius (m) 0.0102 0.0102 to 0.0225 0.0225 to 0.0104 0.0104 to 0.0195

38

Table 2.2: CVRC operating conditions

Parameter Value
Fuel mass flow rate, kg/s 0.027

Fuel temperature, K 300
Oxidizer mass composition 57.6% H2O + 42.4% O2

Oxidizer mass flow rate, kg/s 0.32
Oxidizer temperature, K 1030

Fuel composition 100% CH4

Equivalence ratio 0.8

2.4 Framework Details

In this section, we describe the detailed procedures for applying the multi-fidelity

framework to the aforementioned domain-decomposed single-element combustor, and

contrast it with conventional ROM development. A schematic is given in Fig. 2.2.

The major steps of our framework include:

1. Perform a FOM training simulation on the first sub-domain with a broadband

perturbation added on the truncation interface, which is treated as a character-

istic boundary.

2. Generate the POD bases for different variables using SVD of the solution from

the training simulation.

3. Use the POD bases in a ROM solver for the first sub-domain and couple it

with a FOM solver for the variable-length, acoustics-dominated chamber for

predictions.

2.4.1 Characteristic ROM Training on a Reduced Domain

For the proposed training method, a FOM simulation is performed in the first

sub-domain for each α. To obtain a basis that is representative of the physics in such

a reduced domain, we take a similar training procedure as in the work Huang et al.

(2016, 2017). In this procedure, the truncation interface is treated as a characteristic

39

Figure 2.2: Schematic of the framework.

outlet boundary in the training FOM simulations. The specified properties at the

characteristic boundary are as follows:

Ωbc = {J, u, T, Yox}T , (2.6)

where c is the speed of sound, J = − p
ρc

+ u is one-dimensional approximation of the

characteristic invariant for the in-coming acoustic wave, ρc is obtained from the steady

state solution, and the other three primitive variables are extrapolated from the values

of the interior cells. Compared with a standard outflow condition, the characteristic

boundary helps to eliminate the undesirable resonant acoustic modes corresponding to

the reduced-domain geometry. As demonstrated in Huang et al. (2017), the presence

of such resonant acoustic modes can significantly affect the predictive capabilities of

the ROMs.

The FOM for the reduced-domain is also started from the steady state as in the

self-excited simulations on the full domain. The difference is that instead of a single

40

frequency inlet perturbation, a broadband perturbation J ′ is imposed on the incoming

(upstream-running) characteristic wave at the truncation boundary:

J ′ (t) = 0.01J0

nf∑
i=1

sin (2π(f0 + (i− 1)∆f)t), (2.7)

where the range of frequencies specified by f0, ∆f , and nf can be estimated from

a priori analysis (Grenda et al., 1995) such that the range of resonant frequencies

corresponding to different chamber lengths are covered. This perturbation is imposed

over the entire duration of the FOM simulation. The bases V for the conserved

variables are then obtained from the reduced domain solution snapshots, and used in

POD-Galerkin projection to derive the ROM for the first sub-domain.

2.4.2 ROM-FOM Coupling in Online Prediction

In the online predictions for each α, the same ROM is used, in coupling with

FOMs for different chamber lengths. In this chapter, we consider strictly aligned

time-integration schemes – both models are advanced with forward-Euler at the same

time-step size. In this case, the sub-domains communicate at every time-step by

exchanging the cell-values adjacent to the interface. Similar to the interior of the

computing domain, Roe’s upwind flux Roe (1986) is used at the interface. Using

subscript I and II for the first and second sub-domain, and superscript (1) and (end)

for the first and last cell in the corresponding sub-domain, respectively, the flux at

the interface is given by

F̂ =
1

2

(
F

(end)
I + F

(1)
II

)
− 1

2

∣∣∣∣∂F

∂q
(q∗)

∣∣∣∣ (q
(1)
II − q

(end)
I

)
, (2.8)

where q∗ is the Roe-averaged state calculated from q
(end)
I and q

(1)
II . q

(end)
I is computed

from the last row of the basis and the reduced variable, q
(end)
I = V(end)qr. The

interface flux represents the necessary information for the coupling between the sub-

41

domains, and is used as part of the nonlinear term f in the corresponding ROM

Eq. (1.6) and FOM Eq. (1.2), respectively.

2.4.3 Control Groups

The methodology detailed above is compared to the following control groups using

the conventional ROM approach:

Control group A also uses a hybrid multi-domain solver, i.e. the first sub-domain

is solved using the ROM and the second solved using the FOM. The difference

from the proposed framework is in the training data generation and collection

stage. In control group A, for each combination of chamber length and α, a

full-domain FOM simulation is performed instead of the proposed characteristic

training on the truncated domain. Then the solution is restricted to the first

sub-domain and collected to generate the POD bases for the ROM of the sub-

domain.

Control group B uses a traditional full-domain ROM. The same FOM training

simulations as in control group A are used and the POD bases are directly

generated on the full-domain solution.

To summarize, let nLc and nα be the number of chamber lengths and amplification

factors studied, respectively. In the proposed framework, nα FOMs simulated on the

reduced domain are used in total 1 using characteristic perturbations. Then the

first sub-domain is simulated using the ROM, second sub-domain using the FOM. In

control groups A&B, nLc ×nα self-excited FOM simulations are conducted. In group

A, the first sub-domain is solved using a ROM, and the second is solved using the

FOM. In group B, the whole domain is solved using a ROM.

For conciseness, the proposed framework will be referred to as “Reduced-Domain

training and Multi-Domain prediction” (RD-MD), control group A as “Full-Domain

1although as shown in the next section, this can be reduced

42

Figure 2.3: Comparison of training (outlined in black) and prediction (outlined in
blue) approaches.

training and Multi-Domain prediction” (FD-MD), and control group B as “Full-

Domain training and Full-Domain prediction” (FD-FD). A schematic of the different

methods is given in Fig. 2.3.

2.5 FOM Results

Numerical tests are conducted for chamber lengths Lc ranging from 0.254 m

to 0.762 m at an interval of ∆Lc = 0.0635 m, each at three amplification factors

α = 3.1, 3.25 and 3.4. For each test, a steady state is first achieved with the unsteady

source term Sq turned off. From the steady state, a low-amplitude perturbation is

applied to the inlet boundary to trigger the instability at the beginning of predic-

tive unsteady simulations (either FOM or ROM). At different combinations of Lc

and α, two general categories of responses after the termination of perturbation are

identifiable: one with positive growth rate, in which the pressure oscillation grows

and settles into a limit cycle oscillation (LCO), and one with negative growth rate

in which the instability starts to decay after the perturbation ends and the flow con-

43

verges to a steady state again. The predicted response is visualized using pressure

signals obtained 0.0127 meters upstream of the converging part of the nozzle, which is

a typical location selected to probe combustion instabilities (Frezzotti et al., 2015b).

The definition of the growth rate, gr, is based on the peak-to-peak amplitude of the

unsteady part of the pressure signal for t = [0.01, 0.05] s, the growth for which is

fitted to an exponential function:

|p′(t)| = |p′(0.01)|e(t−0.01)·gr. (2.9)

To better distinguish the categories, two representative examples (at α = 3.4, Lc =

0.5715 m for the growing category and α = 3.1, Lc = 0.254 m for the decaying cate-

gory, respectively) are presented in Fig. 2.4 and 2.5, where the difference in growth rate

can be clearly observed via the monitored pressure signals and the spatio-temporal

diagrams of the pressure evolution. Similar responses can be found in previous stud-

ies Xu and Duraisamy (2017); Wang et al. (2019a).

(a) Pressure signal at the monitored location (b) Spatio-temporal diagram of the pressure evolution

Figure 2.4: Example response with positive growth rate, α = 3.4, Lc = 0.5715 m.

44

(a) Pressure signal at the monitored location (b) Spatio-temporal diagram of the pressure evolution

Figure 2.5: Example response with negative growth rate, α = 3.1, Lc = 0.254 m.

2.6 ROM Results

From a priori analysis (Grenda et al., 1995), the longitudinal frequency of the

chamber spans approximately between 700 and 2000 Hz for the tested configurations,

and the parameters for broadband perturbation signal Eq. (2.7) is set to f0 = 700 Hz,

∆f = 100 Hz, nf = 14.

To train the control groups, a full-domain self-excited FOM simulation is con-

ducted at each combination of Lc and α. In all three methods, snapshots of the

training solution are collected every 100 time-steps over a period of 0.5 s following

the initial steady state.

2.6.1 Singular Values and Offline Projection-Reconstruction

The POD singular values from different training methods are compared at α =

3.25, Lc = 0.254, 0.508, 0.762 m. Since the number of snapshots is larger than the

mesh size, the maximum number of modes and singular values from SVD is limited

to the mesh size, nx. Fig. 2.6 shows the complementary part of the normalized

cumulative sum η of the singular values at α = 3.25. For the first nr POD modes, η

45

Figure 2.6: The complementary part of cumulative energy in the singular values at
α = 3.25

is given by:

ηnr =
nr∑
i=1

σi/
nx∑
i=1

σi. (2.10)

It should be noted that there is only one curve for RD-MD as it uses the same

training simulation and POD bases for all chamber lengths. It can be observed that

for both FD-MD and FD-FD, the decay in the complementary part increases as the

chamber length decreases. This is due to the fact that the dynamics have a higher

frequency when the chamber length is shorter, which is easier to be captured by fewer

modes in SVD. In all cases, the decay in FD-FD is slower than FD-MD, because it

covers a larger domain with more spatial variations in geometry and physics, and

more modes are therefore needed to contain the same portion of information stored

in the training data. For medium-to-high Lc, the proposed framework gives the best

decay since its training data contains more high-frequency contents. At small Lc, the

decay in the leading modes for the two full-domain training methods becomes slightly

better than RD-MD as the response frequency in their training data is comparable

to the highest one included in the reduced-domain training, whereas there are also

lower frequencies contained in the latter. Results for other variables and α follow a

similar pattern.

More intuitively, the quality of a set of projection bases can be evaluated by

46

performing projection-reconstruction with it. For a given set of POD bases V, the

approximation Q̃ to the snapshot matrix Q using POD projection-reconstruction is

given by:

Q̃ = VVTQ. (2.11)

The accuracy of the approximation can be evaluated using the relative L2 error,

defined as:

ε =

∥∥∥Q− Q̃
∥∥∥

2

‖Q‖2

. (2.12)

Again, at α = 3.25, Lc = 0.254, 0.508, 0.762 m, error in the projection-reconstruction

results at different sizes of bases up to nr = 100 is shown in Fig. 2.7. It can be ob-

served that both RD-MD and FD-MD provide a monotonic decrease in the projection

error. However, for FD-FD, the error increases with nr in a few cases, which is not

desirable for ROM development as it makes the choice of basis size more uncertain.

The increase can be again attributed to the fact that the POD method solves a global

minimization problem and the optimal bases for the full domain are not necessarily

optimal for the reduced domain. The improved projection error property with the

multi-domain method implies a higher accuracy and stability of ROM, which is con-

firmed in the following sections.

(a) Lc = 0.254 m (b) Lc = 0.508 m (c) Lc = 0.762 m

Figure 2.7: Relative L2 error in POD projection-reconstruction for α = 3.25.

47

2.6.2 Coupled Online Prediction

The three methods are compared at the two basis sizes, nr = 20, 100. The relative

L2 error of the ROM solution is shown in Fig. 2.8. It should be mentioned that in

several cases, the ROMs in the control groups are numerically unstable. The error is

set to 1 under these circumstances, which is higher than the error in all stable cases.

When the basis size is sufficiently large, i.e. at nr = 100, RD-MD performs

similarly to FD-MD, except for one case at α = 3.25, Lc = 0.5715 m, where the

latter is unstable. At high α, where the instability is stronger, the advantage of

RD-MD becomes more significant. This can be observed from the medium Lc cases

at α = 3.4, where the gap between RD-MD and FD-MD is apparent. Also, FD-FD

performs worse as α increases, resulting in higher errors and more unstable cases. It

should be noted that FD-FD sometimes outperforms the other two methods at low

Lc, which is consistent with an improved decay in the singular values. However at

Lc = 0.254 m, it becomes unstable.

When the basis size is reduced to nr = 20, all the predictions deteriorate consid-

erably. The two full-domain training methods become unstable in most conditions.

In contrast, RD-MD remains stable at all combinations of parameters, although the

ROM solution error is approximately one order higher than that of the nr = 100

cases. The advantage in stability confirms the conclusion that the reduced-domain

training results in a better set of basis functions. By virtue of using a smaller basis

set, the computational cost, e.g. the projection computation in Eq. (1.6), decreases

linearly when an explicit time-marching scheme is used. In contrast to the traditional

full-domain training methods, for which the stability is less predictable, the proposed

framework provides a broader stability envelope, and consequentially a more flexible

balance between ROM accuracy and efficiency.

Major quantities of interest in rocket combustor design include the dominant

acoustic frequencies, the growth rates, and LCO peak-to-peak amplitudes of the pres-

48

(a) α = 3.1 (b) α = 3.25

(c) α = 3.4

Figure 2.8: Relative L2 error in ROM solutions. Numerically unstable cases are shown
as ceiling points.

sure oscillations. It should be noted that the dominant acoustic frequencies have been

well-predicted by all three methods. Therefore only the comparisons of the other two

quantities, growth rates and LCO amplitudes, are shown in the current study, which

are visualized in Figs. 2.9 and 2.10, respectively. The relative performance between

different methods follows a similar relation as in the L2 error analysis. It can be

seen that the proposed RD-MD framework is able to predict the relation between the

growth rate and Lc accurately with an error below 0.5% at nr = 100 and below 5%

at nr = 20 in most cases, which illustrates its effectiveness.

Finally, to provide a more direct comparison between the ROM solution from

the framework and the FOM solution, spatial pressure profiles for Lc = 0.508 m,

α = 3.25, nr = 100 are provided at several time instances in Fig. 2.11. These plots

are focused on the back-step area for better visualization, and are selected by the

49

(a) α = 3.1

(b) α = 3.25

(c) α = 3.4

Figure 2.9: Predicted growth rate and error.

end of the simulation when the error is maximum. It is observed that the RD-MD

solution correlates well with the FOM, and connects smoothly across the interface.

2.6.3 Off-Design Condition Performance

To further assess the RD-MD framework, the ROM trained using α = 3.25, nr =

100 is evaluated at several off-design conditions. The evaluations include two cases

at chamber lengths Lc = 0.1905 m and 1.016 m. These cases are characterized

50

(a) α = 3.1

(b) α = 3.25

(c) α = 3.4

Figure 2.10: LCO peak-to-peak amplitude of pressure oscillation 0.0127 m upstream
of the nozzle

by dominant acoustic frequencies 2550 and 500 Hz, respectively, which are outside

the range of the training frequencies given by Eq. (2.7). The other conditions have

amplification factors that deviate significantly from the training simulation, including

α = 2.85, 3.05, 3.45, 3.65. The results for the relative L2 error in ROM solutions

(εq), frequency (f), growth rate (gr), LCO peak-to-peak amplitude (amp), and their

relative errors are summarized in Table 2.3. It should be noted that due to the

51

(a) t = 0.098 s (b) t = 0.09825 s

Figure 2.11: Spatial profiles of pressure

characteristic training method, the training case does not have a growing response as

in the predictions, thus no growth rate or LCO amplitude is reported for the training

set. Moreover, the results are plotted along with the designed conditions in Fig. 2.12

and 2.13 for a better illustration of their relation.

It is observed that, at all the off-design conditions, the relative L2 errors are below

1.2× 10−3. For the case with shorter Lc and higher instability frequency (OD Lc1),

and the four cases with deviated α (OD α1 to OD α4), the ROM performance is

comparable to that in the designed conditions. However for the case with longer Lc

and lower instability frequency (OD Lc2), the error in LCO amplitude is 2.5%, which

is more than 5 times higher than the other cases. The result indicates that for this

problem, when operating within the frequency range of the training perturbation, the

RD-MD method is not only independent of the chamber lengths, but also insensitive

to changes in the unsteady heat release term. When beyond the training range,

the instability frequency influences the predictive capabilities of the framework, and

demonstrates the importance of the multi-frequency perturbation in the characteristic

training.

52

Table 2.3: Off-design condition results (f, gr, amp are listed in a “FOM/ROM” style,
all errors are relative)

Case Lc (m) α εq f (Hz) gr (s−1) εgr amp (Mpa) εamp

Training N/A 3.25 N/A 700 to 2100 N/A N/A N/A N/A

OD Lc1 0.1905 3.25 9.6 × 10−5 2516/2516 -139.98/-139.79 1.4 × 10−3 0/0 0

OD Lc2 1.016 3.25 2.7 × 10−4 490/490 12.91/12.84 5.0 × 10−3 0.4576/0.4688 2.5 × 10−2

OD α1 0.508 2.85 1.2 × 10−4 1000/1000 28.87/28.87 2.3 × 10−5 0.0522/0.0521 1.4 × 10−3

OD α2 0.508 3.05 3.3 × 10−4 1000/1000 61.99/62.00 9.1 × 10−5 0.1545/0.1543 1.2 × 10−3

OD α3 0.508 3.45 1.2 × 10−3 980/980 122.38/122.41 2.5 × 10−4 0.6366/0.6366 8.5 × 10−5

OD α4 0.508 3.65 1.6 × 10−3 980/980 130.19/130.27 6.3 × 10−4 0.8368/0.8368 4.4 × 10−5

(a) Growth rate (b) LCO peak-to-peak amplitude

Figure 2.12: Results at off-design Lc

(a) Growth rate (b) LCO peak-to-peak amplitude

Figure 2.13: Results at off-design α

2.7 Summary

In this chapter, the full-system modeling framework is investigated for POD-

based intrusive ROMs on a quasi-1D problem. An α − τ model that couples the

pressure oscillation and heat release is used to represent the unstable behavior of the

combustor. In the proposed framework, the domain is split into two sub-domains with

the first sub-domain containing the main reaction dynamics and the second covering

the adjustable chamber of the CVRC. Characteristic training is conducted in the first

53

sub-domain, resulting in a ROM that can be directly integrated with a FOM solver

of the second sub-domain with any length.

Numerical tests are conducted at different chamber lengths Lc and amplification

factors α. The framework is compared against the FOM solution, and other ROM

approaches where traditional training approaches are taken. A major advantage of

the current framework is that it significantly reduces the number of FOM simulations

required to train ROMs while the traditional method requires a separate FOM sim-

ulation for each individual target chamber length, which does not fit the needs for a

more efficient rocket engine design. Moreover, the proposed method shows faster de-

cay of the singular value spectrum at medium-to-high chamber lengths, which implies

better basis quality and ROM reliability at a low number of modes. The advantage

is especially distinct in the tests with nr = 20, where the proposed method shows

significantly improved stability.

In predictive tests at conditions outside the training set, the framework showed

significant improvement in both stability and accuracy over the traditional methods,

especially when the instability is more pronounced at high α, and when the number of

modes is low. Comparisons of L2 error, growth rate, and LCO peak-to-peak amplitude

show that the framework is able to predict accurately at all combinations of α and

Lc at nr = 100.

In summary, with a significant reduction in the number of training runs needed,

and an improvement in the predictive capability for off-design conditions, the multi-

fidelity framework proves to be a promising approach for modeling rocket combustion

instability. While the results are encouraging, the success is limited to intrusive ROMs

and strictly aligned time-integration schemes, which is in favor of the model-solver

coupling in the online stage, but can be less efficient compared with non-intrusive

models at coarser time-step sizes. It should also be recognized that the flow and

combustion models used in this study are highly simplified. In the following chapters,

54

more complex RCMs, and mismatched time-marching schemes are studied on more

complex flow problems.

55

CHAPTER III

Non-Intrusive ROMs

3.1 Introduction

As introduced in Sec. 1.2.3, ROMs are characterized by formulating computations

on a low-order space in an approximation to the original high-order system, and can

be categorized into intrusive and non-intrusive types based on the use of governing

equations. Intrusive ROMs, such as the POD-Galerkin ROM demonstrated in the

previous chapter, benefit from the access to the equations, and exhibit advantages

such as a low model complexity and straight-forward implementations of boundary

conditions and inter-domain communications. However, at the same time, multiple

limitations also originate from the intrusive procedure, major ones including:

1. The original source code for the FOM solver is required.

2. The computation for nonlinear terms still takes place in the high-order space.

Acceleration methods such as the DEIM can help, but may not be effective in

chaotic multi-scale problems.

3. A formal Galerkin/Petrov-Galerkin projection limits the high-dimensional part

(such as the residual computation) of a model to the original spatial data struc-

ture. This limits the application of certain model reduction methods such as

the convolutional autoencoder to be introduced in this chapter.

56

4. The solution process has to respect the form of a PDE/ODE, and be conducted

in an iterative/“rollout” manner, despite a possibly different time-marching

scheme.

Non-intrusive ROMs, in contrast, bypass the governing equations and can be

viewed as completely data-driven surrogate models. In this vein, complex models

such as deep neural networks have been extensively applied, and the advantages and

disadvantages listed above are reverted, which, in many cases, results in a more ef-

ficient model. In this chapter, common neural network layers and architectures are

introduced, which is followed by the explorations for multiple different techniques

in the development of non-intrusive ROMs, including a nonlinear dimensionality re-

duction model – the (convolutional) autoencoder, several autoregressive models for

the rollout prediction of reduced-order variables, and lastly a model based on multi-

level autoencoder networks for a “one-shot” parametric prediction of spatio-temporal

dynamics without any time-integration.

3.2 Nonlinear Dimensionality Reduction with Neural Net-

works

3.2.1 Feed-Forward Network

A neural network is a computation model that is comprised of stacked layers of

“neurons”. The model inputs are taken as the neurons for the first layer, i.e. the input

layer. The neurons for the last layer, i.e. the output layer, are used as the output

of the model. Any layer between the input and the output is called a hidden layer.

The type of a layer is determined by the underlying computation, which in general

is comprised of a set of trainable parameters, a linear operation, and a nonlinear

activation function. Besides the different types of layers used, a neural network is

also characterized by its architecture, i.e. how layers are interconnected.

57

The feed-forward network is the simplest architecture. The computation of a

L-layer feed-forward network can be expressed as:

h(L) = f (L) ◦ f (L−1) ◦ · · · ◦ f (2) ◦ f (1)(h(0); Θ(1)), (3.1)

where h(l) denotes the output from the l-th layer, which is called a hidden output or

a latent variable, and can be either a vector, a matrix or a tensor. f : Rnh → Rw

denotes the function form of a hidden layer. The most popular choice is the dense

layer (also called the fully-connected layer), given by:

fdense(h; Θ) = σ(Wh + b), (3.2)

where nh is the input size, and w is the output size, which is called the width of the

layer. The parameter Θ ∈ Rw×(nh+1) consists of a weight part W ∈ Rw×nh , and a bias

part b ∈ Rw. σ is an element-wise activation function, which is usually nonlinear,

e.g. the ReLU function. A feed-forward network consists of only dense layers is called

a Multi-Layer Perceptron (MLP).

3.2.2 Autoencoder

Eq. (3.1) is a serial process, which can be cut after any hidden layer, indexed by

l, into two parts, Φ : Rn
(0)
h → Rn

(l)
h and Ψ : Rn

(l)
h → Rn

(L)
h as:

h(l) = Φ(h(0); ΘΦ) = f (l) ◦ f (l−1) ◦ · · · ◦ f (2) ◦ f (1)(h(0); Θ(1)), (3.3)

h(L) = Ψ(h(l); ΘΨ) = f (L) ◦ f (L−1) ◦ · · · ◦ f (l+2) ◦ f (l+1)(h(l); Θ(l+1)), (3.4)

where the intermediate variable h(l) can be viewed as a set of latent representations

for the full variable h(L).

The separated computation, Eq. (3.3) and Eq. (3.4), represents the functional form

58

of an autoencoder, which is a type of feedforward network with two main characteris-

tics: 1) The output is a reconstruction of the input, i.e. h(L) ≈ h(0); 2) Autoencoders

- in general - take a converging-diverging shape, i.e. the size of the latent variable

first decreases then increases along the hidden layers. By cutting an autoencoder

after its “bottleneck”, i.e. the hidden layer with the smallest size, the leading part

Φ will compress h(0) into h(l) with the dimension reduced from n
(0)
h to n

(l)
h , and the

following part Ψ will try to recover the approximation h(L) from h(l).

In an autoencoder, Φ is called an encoder, and the transformation to the latent

space is called encoding. Ψ is referred to as a decoder, and the reconstruction process

is called decoding. The latent variable h(l) is commonly referred to as code, and n
(l)
h

is called latent dimension.

In the problems of our interest, h(0) and h(L) would be q and its approximation.

Compared with the POD-based dimensionality reduction, encoding is analogous to

the POD projection, decoding is analogous to the POD reconstruction, and the code

becomes a reduced order variable for q. Due to the analogy, an autoencoder is

considered as a model for a nonlinear projection. For consistency and simplicity, we

will use r to denote the reduced order variable regardless of the projection process in

the rest of the paper.

3.2.3 Convolutional Autoencoder

Another type of layer widely used in neural networks is the convolutional layer.

A convolutional layer convolves filters with trainable weights with the inputs. Such

filters are commonly referred to as convolutional kernels. A network is called a CNN

when one or more convolutional layers are used. On the same spatial grid point used

in a CNN, the inputs and outputs can both have multiple parallel sets of variables

called channels, such as the red, green, and blue components in a colored digital

image. For a convolutional layer with nin input channels and nout output channels,

59

the total number of convolutional kernels is nk = nin × nout. Each kernel slides over

the one input channel along all spatial directions, and one dot product is computed at

each sliding stop, i.e. a spatial location.The functional form of a convolutional layer

is given by:

fconv(h; k) = σ(h ∗ k). (3.5)

In a 2D problem, at a sliding stop centered at (ix, iy), the 2D convolution of a

kernel k ∈ R(2wx+1)×(2wy+1) on an input h is given by

(h ∗ k)ix,iy =
−wx∑
p=wx

−wy∑
q=wy

hix−p,iy−qkp,q. (3.6)

Eq. (3.6) can be easily generalized for 1D or 3D as in Eq. (3.7) and (3.8):

(h ∗ k)ix =
−wx∑
p=wx

hix−pkp, (3.7)

(h ∗ k)ix,iy ,iz =
−wx∑
p=wx

−wy∑
q=wy

−wz∑
r=wz

hix−p,iy−q,iz−rkp,q,r. (3.8)

An autoencoder with convolutional layers is called a Convolutional Autoencoder

(CAE). To perform efficient dimensionality reduction, local pooling layers are ap-

pended to the convolutional layers in the encoder Φ, in which local neighbors of

spatial points are down-sampled into single points through homogeneous computa-

tions such as taking the maximum (max-pooling) or average (average-pooling). The

range of the neighbor is determined by a pooling kernel, usually defined by a uniform

shape such as a 3× 3 square.

The convolution-pooling operations can only perform dimensionality reduction in

a division manner, which brings two limits: 1) the dimension (number of axes) of

the input will not be changed. 2) The choice of nr is not arbitrary. To improve the

flexibility of a CAE, the output from the last convolution-pooling block is usually

60

Figure 3.1: Sample CAE architecture. The leftmost and rightmost slabs represent a
spatial field.

flattened into a 1D vector. Dense layers are then appended to generate a reduced

order variable of arbitrary size.

The decoder Ψ usually takes an inverse structure of the encoder, with the convolution-

pooling blocks replaced by upsampling-convolution blocks. The upsampling operation

is the inverse of pooling, which expands the spatial dimension of the input, and fills

in the blanks with repeated or zero values.

A schematic of a sample CAE architecture with two convolution-pooling blocks

and two dense layers is given in Fig. 3.1. In our applications, the different variables in

the flow field data are treated as different channels in the input layer. This treatment

enables the network to process an arbitrary number of variables of interest without

substantial change in structure.

3.3 Autoregressive Models

Without accessing the FOM scheme, non-intrusive models are purely data-driven,

i.e. developed by fitting the dynamics from existing solutions. In this section, au-

toregressive deep-learning models are introduced, which predict the future states of

r based on its previous values. More formally, an autoregression process can be

61

Figure 3.2: Pipeline schematic for a sample autoregressive prediction for 3 future
steps beginning at k. Blue slabs: known solution, green slabs: prediction.

expressed using a non-linear function F : Rnτ×nr → Rnr as:

rk+1 = F(Rk
τ), (3.9)

where Rk
τ = [rk−nτ+1, . . . , rk]T is called a look-back window, which stores nτ previous

values for r before step k. In an online prediction, R0
τ is initialized with the existing

solution, and then gets updated step-by-step, with the latest predicted value appended

to the end, and the oldest value popped from the head. A pipeline schematic for the

autoregressive prediction is shown in Fig. 3.2. After generating the prerequisite data

necessary for the initial look-back window, which is usually included in the training

data, the FOM model is no longer accessed. In the online model prediction stage, all

computations are performed for the reduced order variables. The POD reconstruction

or decoder is only used to output the solution for time-steps of interest.

3.3.1 MLP for a Special Case

In the special case where nτ = 1, Eq. (3.9) simplifies to

rk+1 = F(rk). (3.10)

62

In this case, F can be modeled by a simple MLP.

3.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed to process sequences. In contrast

to a layer in a feed-forward network, whose output will not be seen by itself, a RNN

layer uses its own previous output as an additional input for its next computation.

The recurrent process can be formulated as a function g : Rnh → Rw:

g(hk; Θ) = σo(Woaa
k + bo),

ak = σa(Waaa
k−1 + Wahh

k + ba),

(3.11)

where 1 ≤ k ≤ nτ is the step index in the sequence, which should be distinguished

from the time-step index. ak ∈ Rna is an intermediate state variable called activation,

which can be regarded as a latent memory of the previous steps. The shapes of the

trainable parameters are Woa ∈ Rw×na ,bo ∈ Rw,Waa ∈ Rna×na ,Wah ∈ Rna×nh ,ba ∈

Rna .

Function g swaps through the input sequence, with a zero initial activation a0,

and generates an output sequence of the same length as the input one. For a task as

ours, i.e. predict for one step based on a sequence, a RNN works in a many-to-one

manner. In this case, all hidden layers (layers except the input and the output ones)

still output a sequence, which is sent as the input for the next layer. Whereas in the

final output layer, only the output for the last step is kept.

3.3.3 Long Short-Term Memory Network

Due to the recurrent computation, gradients become multiplicative in the back-

propagation process during training. Thus the gradient vanishing (decaying to zero)

and exploding (growing to infinity) phenomena are often encountered by RNNs when

processing long sequences.

63

The Long Short-Term Memory (LSTM) unit is designed to replace the normal

recurrent unit Eq. (3.11) in order to solve the gradient problems. Additional latent

states, and four gates Γ, that act as scaling vectors for the latent states are introduced.

The gates share an identical architecture with independently trained parameters,

given by:

Γ = Wahh
k + Waaa

k−1 + ba. (3.12)

The shapes of the parameters are consistent with these for Eq. (3.11).

More specifically, the gates include: an update gate Γu that scales the current

latent state c̃k, a relevance gate Γr that scales the previous activation ak−1, a forget

gate Γf that scales the previous latent state ck−1, and a output gate Γo that converts

the c̃k to the current activation ak. The computation for the activation ak in a LSTM

unit is then given by:

c̃k = tanh(Wc[Γr ∗ ak−1; hk] + bc),

ck = Γu ∗ c̃k + Γf ∗ ck−1,

ak = Γo ∗ ck,

(3.13)

where [·; ·] denotes an concatenation, Wc ∈ Rna×(na+nh),bc ∈ Rna .

3.3.4 Temporal Convolutional Network

A Temporal Convolutional Network (TCN) is a special 1D CNN that works on

sequential inputs, like our look-back window R. The receptive field is an important

concept in CNNs, which indicates the range of elements in the input that each output

element is dependent on. In standard convolutions, the receptive field grows linearly

with the number of layers and the kernel size. This becomes a major disadvantage

when applied to long sequential data, leading to a need for an extremely deep network

or large kernels. As a solution, dilated 1D convolution is used in TCNs, which is a

64

Figure 3.3: Sample TCN architecture, d = 2, s = 2.

modified convolution operation with dilated connectivity between the input and the

kernel. Around the i-th step in a vector h, the dilated convolution is given by:

(h ∗d k)i =
w∑
p=0

hi−dpkp, (3.14)

where d is called the dilation order, and w is the 1D kernel size. By increasing d

exponentially with the depth of the network, the receptive field also grows exponen-

tially, thus long sequences can be efficiently processed. A visualization of a TCN with

multiple dilated convolutional layers of different dilation orders can be found in Oord

et al. (2016).

It should be realized that the dilation only affects the kernel connectivity and does

not change the output shape, therefore, a sequence processed through it will remain

a sequence. To compress the sequence dimension using TCN, the dilated convolution

will be performed in a strided manner. A stride s refers to the distance between two

convolution centers, with s = 1 for a standard convolution. The output size of each

convolution layer is divided by s, and thus reduces exponentially across the layers.

At the last TCN layer, only one number is output for each channel. Additional dense

layers can be appended to increase the capacity of the model. A schematic of a sample

TCN architecture is shown in Fig. 3.3, where d = 2, s = 2 for the dilated convolution

layers and one dense layer is used.

65

3.4 Comparison of Autoregressive ROMs on a Wave Propa-

gation Problem

3.4.1 Problem Statement

To demonstrate the advantage and limitations of the non-intrusive ROMs, a com-

parison is performed on a 1D supersonic wave propagation problem. A uniform steady

state is used as the IC. Unsteady dynamics are then triggered by imposing a pertur-

bation p′ on the inlet pressure, given by:

p′ = 0.01p̄ sin(2π1000t(1− 0.5e−0.005/t)), (3.15)

where p̄ is the steady-state pressure. The perturbation signal is visualized in Fig. 3.4a.

Following the time-dependent function, a pressure wave at a gradually varying fre-

quency is generated and propagates downstream, which can be visualized by the

spatial profiles at a few sample time instances in Fig. 3.4b. The task is to predict the

future states of such waves based on their history.

The problem is designed to be used for the study of non-intrusive models either in

the current “standalone” manner (i.e. without external inputs, purely learning from

the history dynamic patterns), or in a model-solver coupling setting as will be demon-

strated in Sec. 5.3.4. The idealized design is based on the following considerations:

1. Different scales of dynamics should be present in different periods of the prob-

lem, such that the predictive capability of the projection-based dimensionality

reduction methods can be evaluated. This is reflected by the different spatial

frequencies for the pressure profiles at different time-steps.

2. Due to the mechanism of the autoregressive models, the future states of the dy-

namics should be learnable from its history. However, at the same time it can-

not be purely periodic or linearly non-periodic, otherwise, the development of a

66

complex model would be meaningless. This is reflected by the time-dependent

perturbation function.

3. Impact of a boundary/interface condition should be clearly visible. Within

the overall multi-fidelity framework of the thesis, it is important to investigate

the characteristics of different methods in response to a boundary/interface

condition, especially for the study in Sec. 5.3.4. The present wave propagation

problem sets a strong dependency for the internal dynamics on the boundary

condition.

3.4.2 Models Details

The problem is governed by the 1D unsteady Euler equation, which is taken as

the FOM:

∂q

∂t
+
∂F

∂x
= 0,

q =

ρ

ρu

ρE

 , F =

ρu

(ρu2 + p)

(ρE + p)u

 .
(3.16)

The solution is performed on a 200-cell mesh using a finite volume discretization

solver with forward-Euler time-integration at CFL=0.5. For the tests below, data for

the first 0.03 s, including 1800 time-steps, is used for training, and the next 0.01 s,

including 600 steps, is used for testing.

6 non-intrusive ROMs from the combinations between 2 dimensionality reduction

methods (POD, CAE) and 3 autoregressive models (MLP, LSTM, TCN) are studied.

The CAE architecture is illustrated in Fig. 3.5, which consists of an encoder with

three 1D convolution-pooling blocks followed by one dense layer and a symmetric

decoder. The width of the layers scales with nr. The MLP consists of 4 128-unit

67

Table 3.1: Autoregressive model details.

Model nτ Width Depth Number of parameters RMSE POD RMSE CAE

MLP 1 128 4 50688 0.83 0.53
LSTM 25 32 3 21508 0.13 0.11
TCN 25 32 3 67396 0.20 0.22

Galerkin N/A 0.18 N/A

dense layers, followed by a nr-unit output dense layer. The two more complex models

consist of three 32-unit LSTM/TCN layers, also followed by an output dense layer.

More details for the autoregressive models are provided in Table 3.1.

(a) Pressure perturbation signal (b) Sample spatial profiles

Figure 3.4: Spatial and temporal profiles of the perturbed wave.

Figure 3.5: CAE architecture.

68

3.4.3 Offline Projection-Reconstruction

The two dimensionality reduction methods, POD and CAE, are first compared

in projection-reconstruction (encoding-decoding) tests at 6 reduced order dimensions

nr = {1, 2, 4, 8, 16, 32}. The reconstruction fidelity is evaluated using the Root-Mean-

Square Error (RMSE). As mentioned in Sec. 1.3.3.2, all variables in the input (also

the target output) are scaled to zero mean and unit standard deviation, thus a single

joint RMSE can be used, and the results are plotted in Fig. 3.6. It can be observed

that at a small nr, CAE provides a lower error in both the training and the testing

stage. Beyond nr = 16, the CAE RMSE saturates and the POD starts to perform

better. Actually, at this point the number of trainable parameters in the CAE is

on the same order as the number of training samples or even larger, thus the CAE

cannot be trained sufficiently.

Figure 3.6: Projection-reconstruction RMSE, axes in log scale.

69

3.4.4 Online Future-State Prediction

In this subsection, online prediction is performed with the 6 combinations of non-

intrusive models, in addition to an intrusive POD-Galerkin ROM. A reduced order

dimension nr = 4 is used in both the POD and the CAE. When combined with

different dimensionality reduction methods, the models are independently trained.

The last nτ steps of the Qr from the training period are used as the initial condition

for the rollout computation.

Again, RMSE on the scaled variables is used as the accuracy metric. In addition,

the predicted unsteady response in density ρ at the center of the domain is also plotted

in Fig. 3.7. In the POD-based group of methods, we can see that the LSTM provides

the lowest error, which is even lower than that for the intrusive POD-Galerkin. The

LSTM also has the smallest number of trainable parameters. The TCN result is close

to the POD-Galerkin, and both are significantly better than the MLP. It should be

reminded that in this case, no boundary condition is accessible to the non-intrusive

models, thus they are not directly informed of the change of frequency for inlet per-

turbation. With a moderately sized look-back window nτ = 25 or approximately

20% of a cycle, the LSTM and the TCN are able to learn and predict the change

dominated by Eq. (3.15). Switching to the CAE, a decrease in the error is observed

for the MLP and LSTM, partly due to a lower projection error. The performances

for the POD-TCN and the CAE-TCN are similar.

3.5 Multi-Level Convolutional Autoencoder Networks for Para-

metric Prediction of Spatio-Temporal Dynamics

In many applications, the task is not to predict for the future states following a

known state, but instead, is to predict the spatio-temporal field at different parameters

for the same span as existing data. In this case, the design of non-intrusive ROMs

70

Figure 3.7: Predicted unsteady response in ρ.

can be more flexible and deviate further from the intrusive ones. In this section, we

propose a model consisting of multi-level autoencoder networks for the parametric

prediction of spatio-temporal dynamics in a “one-shot” manner, i.e. in one inference

procedure, solutions for all time-steps of interest are computed.

Figure 3.8: Model pipeline for multi-level autoencoder networks.

71

3.5.1 Constitute Levels

As outlined in Fig. 3.8, the model has the following three levels of networks.

3.5.1.1 CAE

The CAE serves the same purpose as it does as a leading level to the autoregressive

models introduced in Sec. 3.3 – to perform spatial compression/decompression of

the flow field frame-by-frame. In this setting, the encoding and decoding processes,

Eq. (3.3) and Eq. (3.4), can be simplified as:

rk = Φ(qk), (3.17)

qk = Φ(rk). (3.18)

3.5.1.2 Temporal Convolutional Autoencoder

For a spatio-temporal collection of snapshots, Q ∈ Rnq×nt , the frame-by-frame

encoded outputs from a CAE encoder can be assembled as R = [r1, . . . , rnt]T . This

is similar to the look-back window Rτ used in the autoregressive models, but with a

complete set of nt steps, instead of the nτ look-back steps only. In practical problems,

nt can be O(103) or beyond, thus the total DoF in R is still large and hard to be

processed by a single model efficiently. In our model, a Temporal Convolutional

Autoencoder (TCAE) is used to further compress/decompress the temporal dimension

of R. The encoding and decoding processes are given by:

s = Φt(R), (3.19)

R = Ψt(s), (3.20)

where we use the sub-script t to distinguish the TCAE encoder/decoder from the

CAE ones.

72

Figure 3.9: Sample TCAE architecture.

A schematic of a sample TCAE architecture is shown in Fig. 3.9. The encoder

Φt : Rnr×nt → Rns is essentially a TCN by itself, where R is processed as a sequence of

length nt with nr channels. For each of the channels, strided dilated convolutions are

performed along the temporal dimension, and all steps in the sequence are integrated

into one number at the last convolution layer. At this point, the temporal dimension

is eliminated. After the convolution layers, several dense layers are used to further

compress the intermediate variable into the output code vector s ∈ Rns . The decoder

Ψt : Rns → Rnr×nt is in general an inverted counter-part of Φt, but with non-strided

dilated convolution layers, and with a dense layer added to the end as the output

layer.

3.5.1.3 MLP

After two levels of encoding, the output s is an efficient representation for the full

spatio-temporal field. If s can be predicted at a new condition, the corresponding

flow field at that condition can then be obtained by performing two levels of decoding

using Φt and Φ. In this case, the DoF to be predicted is reduced from nq × nt to

ns. In this model, we assume that the condition of interest can be described by a set

of parameter(s) µ ∈ Rnµ , which can be either a scalar or a vector, and that s is a

function of µ. To learn the function, nonlinear regression is performed in the third

level X : Rnµ → Rns of the model, which is a MLP by itself.

73

Finally, for an unseen parameter µ∗, a prediction for the complete nt steps of the

corresponding flow field is given by:

R∗ = Ψt(X(µ∗)),

Q∗ = [Ψ(r∗) for r∗ ∈ R∗].

(3.21)

In practice, the spatial decoding using Ψ can be performed on selected time-steps of

interest only, which will further reduce the computation cost.

3.5.2 Training Procedure

The constitute networks are trained sequentially. This choice avoids the training

of an overly deep network, and also makes the detailed design for each level easier.

We consider ntrain (should be distinguished from nµ, which is the size of µ for each

case) sets of training data provided, each being a set of spatio-temporal snapshots

at a different µ. For the CAE, every frame q in each of the training sets is taken as

a training input as well as the corresponding target output, resulting in ntrain × nt

training samples in total.

After the CAE is trained, the encoder Φ is used to encode all training snapshots.

The outputs for each µ is arranged into an individual sequence Rµ, and used as a

sample input/target output for the TCAE, resulting in ntrain training samples in total.

Finally, after the TCAE is trained, Φt is used to encode each Rµ into a vector

sµ, which is used as the target output for the MLP X for the corresponding input µ.

The total number of training samples is also ntrain.

74

3.6 Parametric Prediction for Flow Over a Cylinder

3.6.1 Problem Statement

In this test, transient flow over a cylinder is considered. Despite the simple two-

dimensional flow configuration, the complexity is characterized by the evolution of the

flow from non-physical, attached flow initial conditions to boundary layer separation

and consequently, vortex shedding. The flow dynamics is determined by a global

parameter, the Reynolds number Re, which is taken as the parameter of interest µ,

defined as :

Re =
U∞D

ν
, (3.22)

where U∞ is the inflow velocity, D is the diameter of the cylinder and ν is the

viscosity of the fluid. Solutions for x-velocity u and y-velocity v at 6 different

Retrain = {125, 150, 175, 225, 250, 275} are used as the training data, and prediction

is performed at Retest = 200 for the same variables.

For every Re, the solution is started from the same IC corresponding to Re = 20.

Depending on Re, the unsteady vortex shedding initializes and develops at different

rates, and finally settles into Limit Cycle Oscillation (LCO) at different frequencies.

To cover the full transition process at all Re studied, a large number of frames,

nt = 2500, is included in each set of snapshots. In every frame, the solution to

the incompressible Navier-Stokes equations is interpolated onto a 384× 192 uniform

grid, spanning a domain of 20D in the x-direction and 10D in the y-direction. A

sample contour of the flow field at the final step k = 2500 at the testing parameter

Re = 200 is given in Fig. 3.10a. To better illustrate the transition process, as well

as the difference between different Re, a point monitor is placed 1D downstream of

the center of the cylinder. The velocity at this location is shown for two training

parameters Re = {125, 275} and the testing parameter Re = 200 in Fig. 3.11a.

75

3.6.2 Results

In the model used for the numerical test, the CAE includes 4 convolutional layers

and 1 dense layer in the encoder, and a symmetrically arranged set of layers in the

decoder. The total input DoF to the CAE is nq = 384× 192× 2 = 147456, which is

encoded into a latent size nr = 60. A qualitative evaluation of the CAE performance

in the testing condition is provided by the contours in Fig. 3.10b for the reconstruction

result Ψ(Φ(q)), as well as the probed history in Fig. 3.11b. In both figures, deviation

from the truth can be hardly observed.

The TCAE includes 12 dilated convolutional layers followed by 2 dense layers in

the encoder, and 3 dense layers followed by 12 convolutional layers in the decoder.

The input R ∈ R2500×60 is encoded to a latent size ns = 100. For the last level,

a MLP of 3 dense layers is used. The reconstruction and prediction results for the

intermediate variables are visualized in Fig. 3.12. Except for the oscillating noise

in the initial period of R, the results also follow the truths closely. The results are

especially encouraging considering that only 6 training samples are available for the

TCAE and the MLP. Based on the results for the constitute levels, it is reasonable

to expect a well-predicted result from the framework, as also visualized in Fig. 3.10b

and 3.11b.

In addition, POD is used to replace the CAE as the top level using the same

number of modes nr = 60, and the numerical tests are repeated with independently

trained following levels. The prediction result is visualized in Fig. 3.10d, where a

noticeable deviation from the truth and the CAE-based results is observed, charac-

terized by blurred vortex structures and over-predicted magnitudes.

Quantitatively, percentage errors in different stages of output, each normalized by

the maximum absolute value of the corresponding truth, are summarized in Table 3.2.

Error for the predicted velocity components is below 1.5%, and the maximum error in

all stages is below 2%. With a larger number of training samples than other levels, the

76

(a) Truth (b) CAE reconstruction

(c) Framework prediction (d) POD-based framework prediction

Figure 3.10: Comparison of flow fields at k = 2500, Re = 200.

error for the CAE is especially low, which is below 0.2%. The POD-based results are

also provided in the same table, which is around 3 times larger in the reconstruction

stages, and 1.5 times larger in the prediction. Finally, timing results for the training

and inference of different parts of the framework are listed in Table 3.3. The total

prediction time for 2500 frames is less than 5 s. In comparison, the original CFD

simulation is conducted with an in-house solver GEMS (General Equation and Mesh

Solver) developed by Purdue University (Huang et al., 2019b), which uses an implicit

77

(a) Responses at different Re. (b) Truth, CAE reconstruction and framework
(MLP+TCAE+CAE) prediction for Re = 200.

Figure 3.11: Probed variables.

(a) Truth (Φ(Q)), TCAE reconstruction, and
framework (MLP+TCAE) prediction for the first
dimension of R

(b) Truth (Φt(R)) and MLP prediction for s.

Figure 3.12: Comparison of intermediate latent variables for Re = 200.

time integration method with 10 sub-iterations per time-step. The simulation takes

more than 13000 s on an 18-core Intel Xeon Gold 6154 CPU running at 3.70GHz. An

acceleration of more than 2500 times is achieved.

3.7 Summary

In this chapter, non-intrusive ROMs based on the combinations of multiple tech-

niques are studied. Led by a few basic neural network layers and architectures, the

78

Table 3.2: Percentage errors in different stages of output.

Stage Truth Output Percent error

Training
reconstruction

q (u/v) Ψ(Φ(q)) 0.05%/0.09%
R = Φ(Q) Ψt(Φt(R)) 0.82%

Φt(R) X(Re) 0.56%
POD-based q (u/v) VVT (q) 0.39%/0.41%
Testing
reconstruction

q (u/v) Ψ(Φ(q)) 0.11%/0.19%
R = Φ(Q) Ψt(Φt(R)) 1.71%

POD-based q (u/v) VVT (q) 0.38%/0.45%

Prediction
s = Φt(R) s∗ = X(Re) 1.02%
R = Φ(Q) R∗ = Ψt(s

∗) 1.99%
Q (u/v) Ψ(R∗) 0.68%/1.37%

POD-based Q (u/v) V(R∗) 1.01%/1.97%

Table 3.3: Training and inference time.

Training
Component CAE TCAE MLP Total

Training epochs 200 1500 2000 -
Computing time (s) 8735 979 84 9798

Prediction
Component Ψ (2500 frames) Ψt MLP Total

Computing time (s) 4.55 0.13 0.011 4.691

(convolutional) autoencoder is introduced as an alternative dimensionality reduction

method to POD. Through the encoding and decoding processes, an autoencoder tries

to compress and reconstruct the network input with the smallest hidden variable.

CAE, often interchangeably with POD, serves as the first level for the non-intrusive

ROMs introduced in the rest of the chapter. Based on the form of prediction, the

subsequent levels are designed differently.

In a closer relation to the intrusive ROM, in which time-integration is necessary,

autoregressive models are used to predict the future states of reduced order vari-

ables in a rollout (iterative) manner, based on a look-back window. Architectures

for several models, mainly the LSTM and the TCN, are introduced. A wave propa-

gation problem is designed to compare the different combinations of dimensionality

79

reduction methods and the autoregressive models, as well as the baseline intrusive

ROM. It is demonstrated that, even without the knowledge of a constantly changing

boundary condition, an autoregressive model can learn from the history dynamic pat-

terns, and sometimes perform even better than an intrusive ROM. In the same case,

the limitation of models without a long look-back window, i.e. the MLP, is clearly

illustrated.

For the direct one-shot parametric prediction of spatio-temporal dynamics, a

model based on multi-level autoencoder networks is proposed. The model uses a

TCAE to perform an additional level of dimensionality reduction in the temporal

dimension. The use of dilated convolutions results in an exponential growth of the

reception field, allowing the TCAE to compress long sequences efficiently with a small

number of layers. A MLP is used to predict the spatio-temporally compressed code

at unseen parameters, from which the prediction for the full spatio-temporal field can

be decoded. In the numerical test of predicting transient flow over a cylinder at a

new Reynolds number, 2500 frames of the flow field are predicted within 5 seconds,

bringing an acceleration of over 2500 times. At the same time, the transition process

at a different rate and frequency from any training case is predicted with an error be-

low 1.5%. In this and the previous wave propagation test, the advantage of CAE over

POD is also demonstrated with smaller errors in both reconstruction and prediction.

In the larger landscape of this thesis, this chapter initiates the discussion on non-

intrusive models. However, only ROMs have been covered so far, which depend on

global dimensionality reduction methods and does not solve many problems in the low

data limit, such as a lack of portability between different geometries. The CAE even

brings an additional requirement of Euclidean data. The coupling method between

a non-intrusive model and a solver also remains to be explored. These problems are

discussed and addressed in the next two chapters.

80

CHAPTER IV

Conditional Parameterization and Local Surrogate

Models

4.1 Introduction

Despite promising results on canonical problems, commonly used ROMs have

inherent limitations. As mentioned in Sec. 1.4, a global dimensionality reduction

method, such as POD or autoencoder, generates a fixed mapping between the ge-

ometric coordinates and the encoded digits. This limits their portability for new

geometries and dynamic patterns. This limitation can be alleviated by local surro-

gate models such as a purely convolutional CNN (to be distinguished from a standard

CAE that uses dense layers to process flattened convolution outputs), however, the

latter requires an interpolation of existing data to a structured, Euclidean space,

introducing additional cost and error, especially at irregular geometry boundaries.

In a broader scope of deep learning models, a few more commonly shared problems

also hinders the development of efficient models for physical simulations in the low

data regime, such as the frequent concatenation of heterogeneous features like graph

node and edge features, or a brute-force fitting of high-order terms. Indeed, even a

simple quadratic term needs to be fitted via a number of hidden units with standard

ReLU-activated dense layers.

81

In this chapter, with a focus on mesh-based modeling of physical systems, we

demonstrate the advantages of local surrogate models, Conditional Parameterization

(CP), and GNNs. With a combination of the three, we propose a Conditionally

Parameterized Graph Neural Network (CP-GNet), which effectively models complex

physics such as chemical source terms, irregular mesh discretizations, and different

types of boundary conditions.

Among the related work mentioned in Sec. 1.4, there are a few pieces that are es-

pecially inspiring for the work in this chapter. The Message Passing Neural Network

(MPNN) (Gilmer et al., 2017) is a special type of GNN that treats local computations

on a graph as messages passed between nodes through edges. Such messages can be

designed flexibly into different types of functions, and have largely boosted the variety

of GNNs. The Edge Conditioned Convolution (ECC) (Simonovsky and Komodakis ,

2017) makes the parameters for message-passing functions dependent on edge fea-

tures, and achieved excellent performance on graphs built from irregular point cloud

data. On the application of GNNs for physical simulations, Graph Network-based

Simulators (GNS) (Sanchez-Gonzalez et al., 2020) introduced an encoder-processor-

decoder architecture for particle-based simulations, which is further extended to mesh-

based simulations in the MeshGraphNets (Pfaff et al., 2020).

4.2 Conditional Parameterization (CP)

The idea of CP is to use trainable functions of input parameters to generate the

trainable parameters of a neural network. In the inference computation of a standard

dense layer Eq. (3.2), the values of the parameters are fixed regardless of the inputs.

Thus the performance of the model is largely limited by the interpolation range of

training data.

By introducing a parameter vector p ∈ Rnp and a trainable function θ(p) : Rnp →

Rnh×w that computes the weights W based on p, the CP modification for Eq. (3.2)

82

is formulated as:

f(h; θ(p),b) = σ(θ(p)h + b). (4.1)

An easy way to incorporate the formulation into existing neural network frame-

works is by making θ a single-layer MLP, the conditionally parameterized dense (CP-

Dense) layer can be represented by:

f(h,p; Θ) = σh (σθ (〈W,p〉+ B) u + b) , (4.2)

where 〈·, ·〉 denotes a tensor product. It should be noted that this would bring a

change in the dimensions of weights and biases, which become W ∈ R(nh×w)×np ,

B ∈ Rnh×w. When the layer width is kept the same, the total number of trainable

parameters increases linearly with the parameter size np.

In applications, p is not limited to an additionally-introduced parameter. When

simply taking h as the parameter for itself, the quadratic terms will be introduced.

High-order terms, which are prevalent in physical systems, can be easily modeled

using multiple such layers.

4.3 Local CP model: a Proof-of-Concept Demonstration

In this section we demonstrate - as a proof-of-concept problem - 1) the limitations

of global projection-based methods in advection-dominated problems, and 2) how dis-

cretized PDE terms can be fitted exactly with simple CP layers in the solution of the

2D advection-diffusion equation. With periodic boundary conditions, the governing

equations are:

83

∂u(x, y, t)

∂t
+ a∇u(x, y, t)− ν∇2u(x, y, t) = 0,

x ∈ [0,W], y ∈ [0, H], t ∈ [0, tend],

u(0, y, t) = u(W, y, t), u(x, 0, t) = u(x,H, t),

(4.3)

where u is the quantity of interest, such as the mass or temperature, a = [ax, ay]
T

is the advection velocity vector at which u is transferred, and ν is the diffusion

coefficient. The initial condition (IC) has a rectangular frame with u = 1 in the

center, and u = 0 elsewhere. The Ground Truth (GT) for the test is generated with

the first-order upwind finite difference discretization and Forward Euler (FE) time

integration, given by:

∆uki,j
∆t

+
ax + |ax|

2∆x
(uki,j − uki−1,j) +

ax − |ax|
2∆x

(uki+1,j − uki1,j) +
ay + |ay|

2∆y
(uki,j − uki,j−1)

+
ay − |ay|

2∆y
(uki,j+1 − uki,j)− ν

uki−1,j − 2uki,j + uki+1,j

∆x2
− ν

uki,j−1 − 2uki,j + uki,j+1

∆y2
= 0,

(4.4)

where i and j are the grid indices in the x and y directions, respectively, and ∆x and

∆y are the distances between grid points. A sample solution for ∆x = 0.02,∆y =

0.02, a = [1.2, 1.2]T , ν = 0.035 is visualized in Fig. 4.1.

Figure 4.1: Sample solution for ∆x = 0.02,∆y = 0.02, a = [1.2, 1.2]T , ν = 0.035.

In common data-driven applications, a large amount of training data is required

to train the model sufficiently, and to avoid overfitting. In this test case, however, we

84

assess the ability of the model to approximate the truth at a machine precision level

in the limit of extremely sparse data snapshots. As a demonstration, we use only 3

sets of training data, each for a different set of parameters {∆x,∆y, a, ν} to train a

model represented by Eq. (4.5). All of the training cases are present in Fig. 4.2 – each

set only has 3 snapshots: the IC and the solutions for the initial 2 steps. Testing is

performed at a new initial condition and set of parameters outside the interpolation

range of training ones, ∆x = 0.02,∆y = 0.016, a = [−1.5, 1.5]T , ν = 0.02. The testing

case and results are present in Fig. 4.3.

(a) ∆x = 0.03,∆y = 0.02,
a = [1,−0.8]T , ν = 0.035

(b) ∆x = 0.02,∆y = 0.02,

a = [1.2, 1.2]
T
, ν = 0.035

(c) ∆x = 0.02,∆y = 0.024,
a = [−1, 1]T , ν = 0.04

Figure 4.2: Training data. Each case consists of only the IC and two solution steps.

4.3.1 Limitations of Global Projection-Reconstruction

We first demonstrate the limitations of the global projection-based methods in

such an advection-dominated problem. Regardless of the intrusive or non-intrusive

model used, the predictive capability of such methods is within an upper limit de-

termined by the reduced-order subspace, which can be quantified by the projection-

reconstruction result. In this case of a small number of training snapshots, the number

of the total POD modes available is limited to the same number, nr = 9, all of which

are used in the projection-reconstruction. In Fig. 4.3 it is shown that the POD is

unable to capture either the advection or the diffusion (except for a decay in the

maximum magnitude). This can be clearly explained by the POD modes visualized

85

Figure 4.3: Projection-reconstruction (POD, CAE) and prediction (CNN, CP-CNN)
results for unseen parameters ∆x = 0.02,∆y = 0.016, a = [−1.5, 1.5]T , ν = 0.02.
CP-CNN fits the discretized model exactly.

in Fig. 4.4. The POD, and all global model order reduction methods, learn a fixed

mapping between the dynamics and the global coordinates (grid indices i, j in this

case). To be expressive for dynamics at a specific location of the domain, a repre-

sentative feature must be present in the training data at the same location. However

in this test, we only included the two solution steps in the training, in which the

informative features are limited to a small scope around the initial location, and as a

consequence, the POD modes only contain information within this scope. Due to the

different grid sizes, even the IC is not present at the same grid indices across different

cases and therefore cannot be correctly reconstructed.

A 4-layer CAE, which is a 2D version of the one used in Sec. 3.4 is also tested in

a similar manner. Despite the visually different results, the CAE is also not able to

86

Figure 4.4: Sample POD modes.

reconstruct the testing case correctly. Indeed, CAE faces an additional limitation: to

maintain the output size the same as the input through poolings and upsamplings,

the input grid size has to be padded or cropped to a exact power of the pooling kernel

size. For the results presented, a pooling kernel of 2 is used, and the input is cropped

to the center 48× 48 grids.

4.3.2 Results for a Local CNN

The vanilla CNN (not in the form of a CAE) is probably the simplest local model:

each convolution kernel swipes through the domain and outputs a local output at

each stop through the swiping process. The convolution computation itself is not

aware of the global coordinates, thus no mapping is built into the model. As an

additional remark, the CAE is made a global model due to the use of reshaping and

dense layers. A fully-convolutional autoencoder can also be regarded as a local model,

but such a model is rarely used in practice due to the lack of flexibility, and a low

dimensionality-reduction efficiency.

A CNN model with two convolution layers is trained on the same sparse train-

ing data. For a predictive purpose instead of reconstruction, the effective training

snapshots is reduced to 2 pairs per case, with the IC and u1 as the inputs, and u1

and u2 as the target outputs. Online rollout prediction is performed for 200 steps

from the testing IC. As shown in Fig. 4.3, the CNN is able to predict a quantitatively

advection-diffusion process. However, wrong advection velocity and diffusion speed

87

are predicted, because the model is not parametric to the operating parameters. To

achieve an exact fitting, a CP-CNN has to be used.

4.3.3 Exact Fitting with a CP-CNN

Inspired by Eq. (4.4), a CP-CNN model is constructed using a dense layer and

two 2D CP-Convolution (CP-Conv) layers in the form:

h = ReLU(W1a),

∆uk =

〈
W2,

∆t

∆x
h

〉
∗ uk +

(〈
W2,

∆t

∆y
h

〉
∗ (uk)T

)T
+

(
W3

ν∆t

∆x2

)
∗ uk +

((
W3

ν∆t

∆y2

)
∗ (uk)T

)T
,

(4.5)

where W1 ∈ R2×2 is the weight for the dense layer, and h is the hidden output.

W2 ∈ R3×1×1×2 is weight for the first CP-Conv kernel, taking ∆t
∆x

h or ∆t
∆y

h as the

condition parameter. W3 ∈ R3×1×1×1 is weight for the second CP-Conv kernel, taking

ν∆t
∆x2

or ν∆t
∆y2

as the condition parameter. (· ∗ ·) denotes the convolution operation.

The model is trained with Adam optimizer with the training hyperparameters

listed in Table 4.1, and the weights learnt 1 are:

W1 =

0.33237486 0

0 −0.5253752

 ,W2 =

3.00869074 2.38949641× 10−5

−3.00892553 −1.90361486

−8.69012577× 10−5 1.90334544

 ,W3 =

0.99999235

−1.99994342

1.00001345

 .

Table 4.1: Training hyper-parameters.

Number of training input-output pairs 6
Grid points per snapshot 51× 51

Batch size 1
Initial learning rate 0.1
Final learning rate 0.0003
Number of epochs 10000

The rollout prediction result by the CP-CNN is visually identical to the ground

1W2 and W3 squeezed for simplicity

88

truth, with a RMSE less than 1× 10−4. Indeed when the weights are substituted

into Eq. (4.5), we recover Eq. (4.4) to 4-decimal-point precision, as the ideal weight

combination is:

W1 =

0.5c1 0

0 −0.5c2

 ,W2 =

1/c1 0

−1/c1 −1/c2

0 1/c2

 ,W3 =

1

−2

1

 ,

where c1, c2 ∈ R6=0.

It is thus clear that for this class of problems, the utility of conventional deep

learning is questionable. The author notes that, in practical and more complex appli-

cations, an exact fitting will not be achievable even with CP. However, as an idealized

demonstration, this test serves the purpose to show how CP networks can represent

functional relations between parameters and variables to reduce the training effort

for certain terms, improve accuracy, and offer generalizable predictions.

Although the potential of a local model is demonstrated, not all systems can be

easily processed by a CNN. The most fundamental limitation is that a CNN requires

image-like uniform Euclidean data, but the geometries for real-life objects are often

irregular. In the following sections, we discuss how to build a more generic local

model using graphs.

4.4 Graph Representation of a Discretized System

4.4.1 Mapping Between a Mesh and a Graph

As mentioned in Sec. 1.3.1, a computation domain is divided into small discrete

elements. The discretized domain is represented by a mesh, and the discrete elements,

in the form of closed areas (in 2D) or volumes (in 3D) are called cells (or just “ele-

ments”, in the FEM community). The shape of a cell is determined by the convex

89

hull of a set of composing spatial points called vertices2. The interface shared by two

adjacent cells is called an edge (in 2D) or a face (in 3D). Fig. 4.5 shows an example

2D mesh with these components.

Figure 4.5: Example 2D mesh-to-graph mappings. Graph node/edge A (in black) for
the vertex-node mapping, B (in blue) for the cell-node mapping.

With different schemes, the numerical solution can either be stored at the mesh

vertices as nodal values (e.g. FDM, node-centered FVM, FEM without interpolation),

or at the cell centroids as cell-averaged values (cell-centered FVM). In either case,

the discretized system can be mapped to a graph G(U,E), defined by nodes U of

size |U | = nx connected by edges E ⊂ U × U of size |E| = ne. For the former, the

mesh vertex and edges are directly mapped to the graph nodes and edges. For the

latter, each node ui is located at the corresponding cell centroid xi, and an edge eij

is defined by the connection between any pair of nodes ui and uj that correspond to

a pair of neighboring cells.

4.4.2 Node and Edge Features

So far, the graph definition G(U,E) only represents the identification and adja-

cency information for the discretization. To represent variables, positional informa-

tion and other information such as boundary conditions, node and edge features need

2The mesh vertices are more often called nodes. In this section “vertex” is used to distinguish
from a graph node.

90

to be defined. We use a vector ui to denote the node features for node ui, and a vector

eij to denote edge features for edge eij. A graph-based model such as a GNN can then

be represented as G(G,u, e). We use the physical quantities q as the node inputs,

uin
i = qi. For each edge, distance between the two connected nodes |xi − xj|, and an

directional vector nij = (xi−xj)/|xi−xj| are used as the inputs ein
ij = [nij; |xi − xj|].

Across different layers of a GNN, u and e are updated as hidden variables, and

u for the last layer is taken as the model output. A surrogate model for Eq. (1.2) is

then defined by:

∆qk = G(G,qk, ein). (4.6)

where ∆qk = qk+1−qk is the increment of state variables between two adjacent time

steps k and k + 1.

4.4.3 Representations for Boundary Conditions

The computational domain of a practical problem includes multiple types of

boundaries, e.g. the one shown in Fig. 4.5 and the cases in Sec. 4.6.1 & 4.6.2. In

classic PDE solvers, they are treated with different boundary conditions, which define

explicit formulations to compute relationships of the domain with the external world.

For boundaries with known values, such as the Dirichlet, their values can be directly

input to the corresponding nodes at every time step. For other types of boundaries

that impose certain constraints, such as Neumann and the symmetry boundaries,

their conditions and formulations are only defined for the physical quantities, thus

cannot be easily transferred for latent variables, especially when multiple layers are

used. Therefore, special representations are necessary.

Boundary Node Labels. For the vertex-node mapping, different boundary nodes,

corresponding to the boundary vertices in Fig. 4.5, along with the inner nodes, are

labeled with one-hot encodings, which is a vector, whose size equals the total number

91

of types of boundaries plus one (for the inner node type). The vector for each node

has a single “1” on the digit corresponding to the current node type, and “0” at all

other digits. This label is concatenated with q as the input node features.

Ghost Edges. For the cell-node mapping, the boundary vertices are no longer

represented in the graph. Instead, ghost edges are introduced. For a cell i with a face

lying on a boundary, we introduce a ghost edge vector that connects the corresponding

node ni to the center of the boundary face, as shown in Fig. 4.5. These edges are

processed slightly differently from the inner edges, as introduced in Sec. 4.5.2.

4.5 Conditionally Parameterized Graph Neural Networks

4.5.1 The FVM

4.5.1.1 Conservative Equations

The proposed Conditionally Parameterized Graph Neural Network (CP-GNet)

model is inspired by the FVM. For a system of conservation laws, Eq. (1.1) can be

written in a general form as:

∂q

∂t
+∇ · ~F(q) = S(q), (4.7)

where ~F is a flux that describes the direction and rate at which the conserved variables

pass through the space, and S is a source term that describes the production or

destruction of quantities such as the chemical species in a reacting flow.

The FVM divides the computational domain into contiguous small cells and solve

for the cell-averaged values. By applying the Green’s law, and assuming that the flux

between two cells either is a constant or varies linearly on the interface, the flux term

92

for a 2D cell i is approximated by:

∇ · ~F(q)
∣∣∣
i
≈ 1

Ai

∑
j∈N(i)

F̂ (qi,qj,nij)Lij, (4.8)

where Ai is the area (volume in 3D) of the cell , N(i) is the neighborhood set of

cells around i, Lij is the length (area in 3D) of the shared interface between a pair

of neighboring cells. F̂ (qi,qj,nij) is a complex function involving both cell values as

well as the directional vector. A popular choice if the Roe flux Roe (1981).

Finally the FVM form of Eq. (4.7) is given by:

dqi
dt

+
1

Ai

∑
j∈N(i)

F̂ (qi,qj,nij)Lij = S(qi). (4.9)

4.5.1.2 Solving for Primitive Variables with Dual Time-Stepping

In many applications, the quantities of interest are primitive variables, such as the

pressure and the temperature, which are non-conservative. The Dual Time-Stepping

(DTS) method enables the FVM to solve for such variables. The DTS introduces an

additional pseudo-time-derivative to implicit time-marching schemes. For simplicity,

we use the more general form of ODE Eq. (1.2) in place of Eq. (4.9), for which the

Backward-Euler scheme with DTS can be written as:

∂p

∂τ
+

p− qk

∆t
+ f(p) = 0, (4.10)

where τ is the so-called “pseudo time” or “dual time”, and p is the solution at

τ . Eq. (4.10) converts the solution within each physical time step for an unsteady

problem into a converging process for a steady problem. The process involves iterative

pseudo time-integration of p with schemes such as the forward-Euler. Each pseudo

time step is called a subitration, indexed by p, for which the initial stage p0 = qk, and

the final stage pP converging to qk+1. The choice of P is usually based on preliminary

93

convergence tests.

To solve for the primitive variables using the conservative equations, Eq. (4.10) is

modified as:

Γ
∂pprim

∂τ
+

pconsv − qkconsv

∆t
+ f(pconsv) = 0, (4.11)

where subscripts “consv” and “prim” are used to distinguish the conservative and

the primitive variables, and Γ = ∂qconsv

∂qprim
is a Jacobian matrix that transforms the

derivatives of primitive variables into the conservative ones, such that the rest of the

conservative equation can be maintained.

4.5.2 Architecture

The architecture for the CP-GNet takes an encoder-processor-decoder form, sim-

ilar to the ones introduced by Sanchez-Gonzalez et al. (2020) and Pfaff et al. (2020).

To be distinguished from the encoder and decoder in an autoencoder that seek global

dimensionality reduction and reconstruction, the encoder and decoder in this archi-

tecture perform local conversions between physical variables and the latent ones that

are used in message passing. A schematic is provided in Fig. 4.6, in which a cell-node

mesh-to-graph mapping is used as an example. In practice, the type of mapping can

be selected based on the form of data provided (see 4.4.1). The input node feature q

can also be flexibly selected between the conservative and the primitive ones, without

further modifications in the network architecture.

4.5.2.1 Encoder

The flux and the source terms in Eq. (4.9) require the processing of arbitrarily

complex interactions between mesh elements. While large MLP architectures can rep-

resent this complexity, the data requirements to reliably train such networks might

be large. In contrast, our proposed encoder takes two CP-Dense layers, taking the

output from the previous layer as both the input and the conditional parameter.

94

Figure 4.6: Schematic of CP-GNet architecture

Through the encoder, high-order interactions can be easily extracted, allowing a de-

gree of extrapolation by virtue of linearity. The CP-GNet uses two separate, but

similarly constructed encoders to process the input node and edge features inde-

pendently. The output encoded node and edge features are denoted as uφ and eφ,

respectively. When ghost edges are present, multiple identical sets of edge encoders

with independent weights are created, each processing one type of ghost edge, or the

inner edges individually.

4.5.2.2 Processor

The processor is a stack of multiple identical blocks with independent weights,

with residual connections (He et al., 2016) added between the blocks. As shown in

Fig. 4.6, each block includes a “source term” section and a “flux term” section.

The source term section consists of a dense layer followed by a CP-Dense layer,

which processes the output from a previous encoder or processor block, and keeps

extracting high-order terms through the blocks.

The flux function F̂ in Eq. (4.9) can be approximated by a message-passing process

between adjacent nodes. A standard message-passing layer can be regarded as a stack

of two dense layers. The first dense layer takes the concatenation of the node features

95

on both ends of an edge, along with the edge feature itself, as the input, and outputs

an edge hidden state. For each node, the hidden states for all the connected edges

are summed input a node hidden state s, which is then concatenated with u on the

same node as the input for the second dense layer. The output nodal variable hMP

from the second layer is used as the result for the message passing. The process can

be expressed as:

si =
∑
j∈N(i)

σ (〈W1, [ui; uj; eij]〉+ b1) ,

hMP
i = σ (〈W2, [ui; si]〉+ b2) .

(4.12)

In Eq. (4.12), the hierarchical relation between edge and node features are ig-

nored, and they are concatenated in a “homogeneous” manner. A large number of

parameters are required in the dense layers to process the concatenation. In contrast,

CP Message-Passing (CP-MP) reserves the relation, and takes the edge feature as the

condition parameter for the weights that acts on the node features. Modified from

the Edge Conditioned Convolution (ECC) (Simonovsky and Komodakis , 2017), the

CP-MP computation is formulated as:

Wij = σ (〈W, eij〉+ B) ,

hCPMP
i =

∑
j∈N(i)

wijσ (〈Wij, [ui; uj]〉) ,
(4.13)

where wij = Lij/Ai is the flux weight from Eq. (4.9).

For the ghost edges in the cell-node mapping, the CP-MP layer is slightly modified.

More specifically, the concatenation [ui; uj] in Eq. (4.13) is replaced by ui only. And

for each type of boundary, the weights for the CP-MP layer are trained independently,

to let the model learn different types of boundary conditions for the latent variables.

The outputs from the two sections are added as the processor block output. It

can be realized that only the node features are updated through the blocks, thus the

96

edge feature in Eq. (4.13) remains eφ across all blocks. The final output node feature

from the last block is denoted as uχ.

4.5.2.3 Decoder

It is common in a PDE solver to use a Jacobian matrix Γ = ∂u/∂h to transform

the variable increments as ∆u = Γ∆h, such as in Eq. (4.11). The decoder in the

GP-GNet serves a similar purpose – to convert hidden variables to the output on

the physical space. Similar to the encoder, the decoder consists of three conditionally

parameterized dense layers. The first two layers can actually be viewed as a dedicated

“encoder” that is similar to the initial node encoder, taking qk as the input, but with

independent weights. The purpose of this “encoder” is to extract a final conditional

parameter, which is used in the third CP-Dense layer in the decoder to determine

the weights for the output uχ from the processor. The third decoder layer is also the

final layer of the model, which outputs the prediction for ∆qk.

Except for the edge encoder and the last two layers in the decoder, all dense, CP-

Dense, CP-MP layers are appended with LayerNormalization (LN) layers to reduce

overfitting and accelerate training.

4.6 Applications of CP-GNet

4.6.1 Reacting Flow in A Rocket Engine Injector

We use a highly complex public dataset (Huang et al., 2019b) as a model of com-

bustion processes in a rocket engine injector (Huang et al., 2021). The ground truth

simulation is performed using the finite-volume based General Equation and Mesh

Solver (GEMS) (Harvazinski et al., 2015) on a 2D 38523-cell mesh. 8 primitive vari-

ables are solved at each discretized cell: q = [p, u, v, T, YCH4, YO2, YH2O, YCO4]T , where

p is the pressure, u and v are the x- and y-velocity components, T is the temperature

97

and {YCH4, YO2, YH2O, YCO4} are the mass fractions for the chemical species involved

in the combustion process.

The injector is outlined in Fig. 4.7a. The oxidizer (O2 diluted in H2O vapor) and

fuel (CH4) are injected from the large and the small inlets, respectively, into a tube-

like combustion chamber, in which they mix and react. The products (CO2, H2O) are

exhausted through the outlet. A probe monitor is placed inside the physics-intensive

area, which is also marked in the figure. The strong instabilities in the simulation

are triggered by a strong 2000 Hz pressure perturbation at the outlet. Fig. 4.7b

shows the responses for p and T at the probe. It should be noted that, although the

pressure perturbation at the outlet is periodic, the upstream behavior is affected by

complex coupled physics and is not as periodic, especially for other variables such as

T . Fig. 4.7c shows the graph generated using the cell-node mapping, where special

nodes and edges, as well as irregular local structures, are provided in zoomed-in views.

Two groups of ghost edges are used, corresponding to two types of wall boundary

conditions in the simulation: no-slip and symmetry, respectively.

In this experiment, we attempt to predict the future states of q using the CP-

GNet. Two CP-GNets of two different depths, with a 5-block and a 10-block processor

respectively, are tested. Both CP-GNets work with an encoded node feature size of 36,

and an encoded edge feature size of 4. The baseline model for comparison replaces

all CP layers with standard dense layers of 128 units. More specifically, after the

replacement, the layers taking node features as conditional parameters will retain the

original input. The layers originally taking edge features as conditional parameters

will take a concatenation of the original inputs and the edge features as the new input.

The non-CP model is referred to as the GNet, for which a 10-block-processor and a

15-block-processor version are studied.

The original simulation is performed at a time-step size of 1 × 10−4 ms, and the

results sampled at a time interval of 5× 10−4 ms are used as the ground truth. Tests

98

(a) Injector outline. Orange marker shows the probe loca-
tion.

(b) Probed response for p and T . L/S: long (0.2 s)/short (0.02 s) training period (0.2 s);
P: prediction period (0.2 s).

(c) Graph details. Black dots: standard nodes; black lines: standard edges; red dots:
inlet/outlet nodes; green/blue lines: two groups of ghost edges (extruded for visualization).

Figure 4.7: Illustrations for the reacting flow problem setup.

are conducted on two different lengths of training data. The long period consists

of 400 steps, spanning 0.2 ms, the last 10% of which is used as the short training

period. Thus, both periods end at the same point, and rollout prediction is carried

out from the end of training for another 0.2 ms. These periods are illustrated in

Fig. 4.7b. For simplicity, we add the number of processor blocks, and L (long) or

99

S (short) as suffixes to the model names to distinguish them. For example, “CP-

GNet10L” refers to the CP-GNet with 10 processor blocks trained on the long period.

In addition, the projection-reconstruction result from a 50-mode POD based on the

long training period is also used for comparison. The number of modes is larger than

those used in the related work (McQuarrie et al., 2021; Swischuk et al., 2020), and

should reasonably represent the upper limit of any static POD-based result.

The probed results for all models and variables are plotted in Fig. 4.8. In addi-

tion, predicted flow fields for 4 representative variables, p, u, T, YCH4, from the two

deeper models, CP-GNet10L and GNet15L, are visualized in Fig. 4.9 at 4 steps evenly

spanned over the prediction period, along with the POD reconstructions. It is notable

that a small phase shift in the resolved structures can cause a high level of deviation in

the probe measurements, and thus the flow field contours should be viewed as broader

indicators of the performance. It is seen that the CP-GNET predicts the evolution

of the reacting flow accurately over hundreds of prediction steps. In comparison, the

non-CP model deviates quickly from the ground truth within 100 steps. Even with

a smaller model (CP-GNet5L, 1.3M parameters), or a small fraction of training data

(CP-GNet10S), the CP models still show comparable or even better performances

compared with the largest baseline (GNet15L, 1.8M parameters). There is no sig-

nificant difference in the level of error across the predicted field from our model, in

spite of the vast changes in mesh density and distortion, whereas the GNets clearly

suffer from more errors around the inner corners, where the mesh is the most irreg-

ular. This shows that, by combining CP with graph, discretization information can

be efficiently processed. The POD reconstructions are even worse than the baseline

GNet model in this case, except for the pressure, which behaves close to periodi-

cally due to the direct pressure perturbation. The advantage of local models over the

global-projection-based ones for the advection of small-scale dynamics is again clearly

demonstrated.

100

Figure 4.8: Probe history for 0.2 ms/400 snapshots following the end of training.

Figure 4.9: Predicted (CP-GNet10L, GNet15L) and reconstructed (POD) flow fields.
From top to bottom: pressure p, x-velocity u, temperature T , mass fractions YCH4.

Results without the boundary treatment. The CP-GNet10L model is re-trained

on a graph without ghost edges for the wall boundaries. The prediction is again

started at the end of the training (t = 0.2 ms). The results for two representative

variables, p and u, at the last prediction step t = 0.4 ms are shown in Fig. 4.10. The

101

predictions deviate noticeably further from the ground truth, and the accumulation

of error is clearly visible in several near-wall regions, which validates our proposed

boundary treatment in such a complex case with multiple types of boundaries.

Figure 4.10: Zoomed-in view for results on a graph without ghost edges. The accu-
mulation of error in the near-wall regions is clearly visible.

Prediction for a distanced and longer period. To test generalization perfor-

mance, the CP-GNet10L model is used to perform prediction at a new time instance

t = 2 ms, which is away from the training period. The predicted period is also doubled

to 0.4 ms. The results are provided in Fig. 4.11 and 4.12, in comparison to the POD

reconstructions. For the first 0.15 ms, a similar level of accuracy is obtained compared

with the previous run that is appended to the end of the training period. However,

the prediction is unstable in the long term, illustrated by scattered extreme values

in the contours. Despite a significant improvement over the POD, which is again

unable to capture meaningful dynamics, the author acknowledges that the lack of a

long-time stability guarantee is still a major limitation of the current - and existing

- work in the domain of data-driven flow predictions.

Timing. The prediction for 0.1 ms of flow with the CP-GNet10L model takes 53 sec-

onds on one Nvidia RTX A6000 GPU, or 599 seconds on 40 CPU cores. In comparison,

the original simulation for 6 ms of flow takes approximately 1200 CPU hours (Mc-

102

Figure 4.11: Probe history from a distanced time instance t = 2 ms, and for a longer
period of 0.4 ms/800 snapshots.

Figure 4.12: Predictions (CP-GNet10L)/reconstructions (POD) for the new IC and
longer period. From top to bottom: pressure p, x-velocity u, temperature T , mass
fractions YCH4. The selected time instances are not evenly spanned.

Quarrie et al., 2021). Due to different hardware configurations, no direct comparison

can be made. However, we can safely estimate a 2.5x∼3x speedup on CPUs, and a

25x∼30x speedup when a GPU is utilized.

4.6.2 Incompressible Flow Over A Cylinder

For this experiment, the setting for incompressible flow over a cylinder from the

MeshGraphNets (MGN) (Pfaff et al., 2020) is adopted. The task is to predict the 2D

103

velocity components stored on the vertices on different irregular triangular meshes.

The corresponding graphs are generated using the vertex-node mapping, with a 4-

digit one-hot label added to the input node features to distinguish the 4 different

node types: inner, inlet, outlet, and no-slip wall. The data includes 1000 training

trajectories and 100 testing ones, each with 600 steps. Fig. 4.13 shows two sample

meshes.

Figure 4.13: Two sample irregular meshes for the flow over a cylinder, with a zoomed-
in view on the right.

The MGN results are generated using the official code, and compared against

as the baseline. The MGN takes a 2-layer 128-unit MLP as the encoder for the

node features, and an identical but independently trained one for the edge features.

Each processor block also consists of two such MLPs with residual connections, f e

and fu, for updating the edge and node latent features, respectively. The processor

computation is formulated as:

e′ij = f e(eij,ui,uj),

u′i = fu(ui,
∑
j∈N(i)

e′ij).
(4.14)

It can be seen that the MGN also concatenates the node and edge features. More

complicated than the baseline GNet, a large (128-unit) edge feature is used, and gets

updated through the processor blocks, with the node and edge features from the

previous block. The node features are then updated in a following step in a similar

104

manner. Following the processors, another 2-layer MLP is used as the decoder that

only works on the node features.

A 64-unit CP-GNet with 15 processor blocks is also migrated to the same pipeline.

A two-layer MLP is added to the node encoder to process the node-type labels. An

increase in the network width is made (from 36 in the previous test to 64) due to the

additional processing of the additional features. The CP-Dense layer in the “source

term” section in the CP-GNet processor is removed as there is no chemical reaction

taking place in this test.

In the original setting, 10 million training steps are used, which takes several

days on a single GPU. In this work, an additional comparison is performed after 2.5

million training steps to evaluate the training efficiency of the models. The averaged

inference time and RMSE for the testing trajectories are summarized in Table 4.2.

It should be noted that a single A6000 GPU is used in our tests, and a V100 is used

by Pfaff et al. (2020), and noticeably different numbers are reported. At a smaller

number of training steps (2.5 M), our model provides a higher single-step RMSE,

yet a lower long-rollout RMSE. Compared with the previous test, the efficiency of

our model is largely affected by the additional processing of node labels and a larger

network width, running significantly slower than the MeshGraphNets. The predicted

final steps for 5 randomly selected testing trajectories are visualized in Fig. 4.14. At

2.5 M training steps, the CP-GNet performs better in two unsteady cases (trajectories

#8 and #17). However, it over-predicts the velocity magnitude in the two steady

cases (trajectories #32 and #72). Meanwhile, the MeshGraphNet under-predicts

in one of them (trajectory #72). At the larger number of training steps (10 M),

the MeshGraphNets shows a lower error across the prediction period, with the gap

between the two models decreasing with the number of rollout steps. The differences

in the final step predictions become less significant.

The MGN is also applied to the previous reacting flow prediction task, where

105

Table 4.2: Averaged inference time and RMSE for flow over a cylinder.

Model (training steps)
Time/step

ms
RMSE 1-step
×10−3

RMSE rollout-50
×10−3

RMSE rollout-all
×10−3

CP-GNet (2.5 M) 16 3.3 12.4 62.5
CP-GNet (10 M) 16 2.8 9.9 54.0
MGN (2.5 M, tested) 9 2.1 8.7 68.5
MGN (10 M, tested) 9 1.9 6.9 50.1
MGN (10 M, reported) 21 2.34± 0.12 6.3± 0.7 40.88± 7.2

additional node-type labels are added to maintain the original MGN architecture in

the cell-node mapping. The results are provided in Appendix B.1, where the CP-

GNet outperforms the MGN. It should be pointed out that between these problems,

there are many factors that can lead to changes in model performances, including

the type of the ground truth solver and data (cell-centered FVM vs. vertex-centered

FEM), the number of variables (8 vs. 2), the implement of boundary conditions (ghost

edges vs. node labels). Based on these specific results, one cannot make a definitive

statement on the relative merits of the MGN (updating a wide set of edge features

through each processing block) and the CP-GNet (parameterizing on a narrow and

fixed set of edge features.).

Figure 4.14: Velocity magnitude for the last step in the rollout prediction for random
testing trajectories. From top to bottom: ground truth, CP-GNet, MGN.

106

4.7 Summary

This chapter starts with an introduction to the idea of CP and its implementation

in neural networks. The advantage of a local CP model is clearly demonstrated

by fitting a discretized 2D advection-diffusion equation exactly with less than 10

snapshots, which is not possible with projection-based ROM even when the same

equations are used intrusively.

After the idealized demonstration, the mesh-to-graph mapping procedures for dif-

ferent spatial discretion methods are then described formally, which is followed by

the introduction of the CP-GNet. The CP-GNet draws inspiration from discretized

numerical methods, and generalizes the idea of CP for mesh-based models, which

enables a flexible incorporation of physical quantities as well as numerical discretiza-

tion information into trainable weights, leading to efficient learning of high-order and

unstructured features. In a test of future state prediction of a rocket injector that is

closely related to the target application of our multi-fidelity framework, the CP-GNet

is shown to be capable of predicting the flow with complex combustion processes for a

few hundred steps on an irregular mesh. In another test case, the CP-GNet is shown

to be able to predict transient flow over a cylinder in unseen geometries/meshes, and

trains more efficiently than the MeshGraphNet. Although a direct CP modification

will cause a linear increase in the number of parameters w.r.t. the chosen parameter,

such an increase can be compensated by reducing the size of the latent vectors. In-

deed, the CP-GNet is more efficient than the non-CP variant with only a fraction of

the training data or with a more shallow architecture.

In Appendix A, drop-in CP modifications are demonstrated on different archi-

tectures for two other important tasks related to mesh-based modeling of physical

systems, coarse-graining, and super-resolution. Considerable performance improve-

ments are achieved compared with the traditional counterparts. Overall, the pro-

posed architecture improves the potential for incorporating physical intuition as well

107

as knowledge of numerical discretization, and serves as a promising model for our

framework.

108

CHAPTER V

Coupling a Reduced-Complexity Model with a

High-Fidelity Solver

5.1 Introduction

The core merit of the overall framework of this thesis is to exploit the efficiency

of a reduced-complexity model and the flexibility of a high-fidelity solver simulta-

neously. Besides the standalone development of RCMs, an important but largely

under-explored aspect of this strategy is the coupling method between different types

of models and solvers. In this chapter, we first provide an overview of the model-

solver coupling procedures in a decomposed domain, with a few definitions that are

used throughout the rest of the chapter, which is further explained with the relatively

straightforward intrusive coupling between physical variables. Two major challenges

are then considered: 1) effective communication with non-intrusive models where

the interface conditions cannot be directly processed by governing equations; and 2)

coupling between mismatched time-integration schemes.

109

Figure 5.1: Definitions in domain decomposition (top), and model-solver coupling
procedures (bottom).

5.2 Overview of Domain Decomposition and Coupling Pro-

cedures

Fig. 5.1 shows a few definitions for different parts in a decomposed domain, and

overall procedures in model-solver coupling. The computational domain is assumed to

be decomposed into a RCM sub-domain ΩM, and a solver sub-domain ΩS. The layer

of cells immediately adjacent to the interface ∂ΩI is marked as ΩMI and ΩSI on the two

sides of the interface, respectively. The “self-contained” parts are denoted as ΩMC and

ΩSC, respectively. In the coupled online prediction, the values in the interfaces layers

qkMI = {qki ;ni ∈ ΩMI} and qkSI = {qki ;ni ∈ ΩSI} are sent to the opposite sub-domains.

For demonstration purposes, the schematic assumes that communications take place

at the beginning of a time-step k. As will be demonstrated in Sec. 5.4, communications

may also be performed at a different interval when mismatched schemes are used.

110

5.2.1 Coupling Intrusive Models

In a FOM Eq. (1.2) or an intrusive POD-Galerkin ROM Eq. (1.6), the “external”

interface values, i.e. the received qkMI/q
k
SI, are directly used in the computation in the

non-linear term f for the “internal” interface values qkSI/q
k
MI as their neighboring cells.

This is similar to communicating different partitions in a parallel computation, which

can usually be accomplished with existing routines, and have been verified in related

work (Huang et al., 2016, 2017; Xu et al., 2019). One observation worth pointing out

is that the dependency on neighboring cells for f only lies in the computation for the

spatial derivative, e.g. the flux F̂ in Eq. (4.8), which is important for the development

of the interface models for the non-intrusive coupling in the next section.

5.2.2 Coupling with the CP-GNet

The coupling with the CP-GNet is similar to the intrusive coupling, because the

model also directly works on the physical quantities. To receive the external interface

values, the graph G should include both ΩM and ΩSI. In the online prediction, the

values on the graph nodes corresponding to the mesh for ΩSI are updated with the

received values from the coupled solver, instead of using the graph-based model1.

5.3 Coupling with Reduced Order Variables

Due to an inconsistency in the variables used, the coupling with a non-intrusive

POD ROM requires additional treatments. First, the values to send to the other side

of the interface need to be reconstructed from the reduced variables as:

qkMI = VMIr
k, (5.1)

1A graph-based model such as the CP-GNet will still predict for these nodes, but the predictions
are ignored.

111

where VMI denotes a POD basis for qMI.

Secondly, an interface model is needed to incorporate the received physical vari-

ables qkSI with the existing model Eq. (3.9). In this work, three types of interface

models are realized.

5.3.1 Strategy 1: Flux Projection

It can be realized that the prediction of rk+1 and ∆rk is interchangeable. Assum-

ing a forward-Euler time-integration scheme, which is common for RCMs, the ideal

prediction for the latter equals a linear combination:

∆rk = −∆t
∑
ni∈ΩM

VT
i,:f

k
i . (5.2)

In a FVM-based system Eq. (4.9), fki is again a linear combination of the fluxes

on all cell edges/faces, and the source term. As pointed out in the previous sec-

tion, external interface cells are only involved in the fluxes for interface edges/faces.

Therefore, Eq. (5.2) can be further decomposed as:

∆rk = ∆rkM + ∆rkI ,

∆rkM = −∆t

 ∑
ni∈ΩMC

VT
i,:f

k
i +

∑
eij 6∈∂ΩI

Lij
Ai

VT
i,:F̂

k
ij −

∑
ni∈ΩMI

VT
i,:S

k
i

 ,
∆rkI = −∆t

∑
eij∈∂ΩI

Lij
Ai

VT
i,:F̂

k
ij,

(5.3)

where ∆rkM denotes the terms that only depends on qkM, and ∆rkI denotes those

depending on both qkMI and qkSI. Because Rτ and VM only stores sufficient information

for the former, the non-intrusive model Eq. (3.9) should not be expected to predict

for both terms when coupled with a solver. Therefore, it modified as:

FM(Rk
τ) = rk + ∆rkM . (5.4)

112

After the modification, the coupled online prediction is given by:

rk+1 = FM(Rk
τ) + ∆rkI . (5.5)

5.3.2 Strategy 2: Interface MLP

In the previous method, the interface model is a direct projection of the interface

flux onto the basis for the internal interface cells, and the autoregressive model works

independently on the complementary part in the increment ∆r. One problem with

this approach is that ∆r is often zero-centered statistically, whereas ∆rI is not, be-

cause the mean of the fluxes is usually non-zero, determined by the flow direction. 2

Therefore the complementary part ∆rM, which is the target output for F , is also

not zero-centered. In long-term prediction, this makes the accumulative error more

significant, due to the existence of a possibly large non-zero bias. Even when the

target output is carefully scaled, the influence of such a bias cannot be eliminated,

because in the online prediction the output has to be re-scaled and the bias is added

back.

One way to address the problem is to design an interface model that works with

F , such that both models predict for ∆r jointly instead of independently. In our

work, a MLP model FI(qi,qj) is used, which takes the values for both the internal

and the external interface cells as the input. The coupled prediction is then given by:

rk+1 = FM(Rk
τ) +

∑
eij∈∂ΩI

FI(q
k
i ,q

k
j). (5.6)

It should be noted that although ∆rI is assumed to be the summed output for

FI by concept, this relationship does not present explicitly in the training process

for Eq. (5.6). Instead, the two models FM and FI are trained jointly for one target

2There are exceptions such as when two interfaces are present at the two ends of a conservative
duct, so that their fluxes compensate for each other. We focus our discussion on more general cases.

113

output ∆q, which solves the problem described at the beginning of this section.

5.3.3 Strategy 3: Integration Through an Overlapped Projection

The shared target for all coupling methods in this section is to use the information

on ΩM and ΩSI, and predict for the reduced order variable r. If we make the domain

decomposition slightly more flexible, and take ΩSI as an overlapped “buffer” layer

such that qSI is stored in the high order space in the solver, and at the same time

included in an extended projection basis VM∪SI in the solver, then the corresponding

reduced order variable is computed by a projection:

r = VT
M∪SI

qM

qSI

 = [VT
M,V

T
SI]

qM

qSI

 = VT
MVMr + VT

SIqSI. (5.7)

In the expression above, the influence of the external interface layer on the reduced

order variable is integrated in the projection process. If we build an autoregressive

model for the first term as FM(Rk
τ) = VT

MVMrk+1, then a coupled model is given by:

rk+1 = FM(Rk
τ) + VT

SIqSI, (5.8)

5.3.4 Comparison Between Interface Models

The wave propagation problem from Sec. 3.4, and the POD-MLP, POD-LSTM

models are used to compare the different reduced order interface models. The con-

tinuity in the test case helps to illustrate the importance of an effective interface

coupling strategy. To focus on the influence of the coupling, and increase the signif-

icance of the interface models, the 1D domain is truncated into three sub-domains,

following a FOM-ROM-FOM arrangement, as shown in Fig. 5.2. The ROM part is

made short, including only 20 cells (leaving 90 cells in each FOM sub-domain), such

that the ratio of ∆rI over ∆rM is larger. When a trainable interface model, i.e. the

114

interface MLP, is used, two identical but independently trained models are used for

the two interfaces. Each MLP is similar to the one used as the autoregressive model,

with the input size increased from nr to 2nv (for variables on both sides of the inter-

face). When combined with different interface models, the autoregressive models are

also identical but independently trained. For additional reference, a coupled intrusive

POD-Galerkin ROM as described in Sec. 5.2 is also tested.

Figure 5.2: FOM-ROM-FOM domain decomposition.

To examine the effectiveness of the coupling method, the response at the four

interface cells, ΩSI-L,ΩMI-L,ΩMI-R,ΩSI-R, are plotted in Fig. 5.3. In supersonic flow,

the response curve for the downstream cells should follow the upstream ones with a

phase difference proportional to their distance. Marked in different colors, the curves

fall into two pairs, with the left pair, ΩSI-L and ΩMI-L, reflecting the capability of

a model processing information from a solver, and the right pair, ΩMI-R and ΩSI-R,

reflecting a solver processing information from a model. The RMSE for the coupled

solution is also reported in the same figure.

Similar to the full-domain model behaviors in Sec. 3.4, when no interface model

is used (“standalone”), the MLP is unable to predict the change in the dynamic

frequency, which is well learned by the LSTM. When interface models are applied,

however, the relevant performance between the two models becomes different. The

flux projection (“flux”) model enables the MLP to accurately capture the upstream

change of frequency, resulting in the lowest RMSE among all non-intrusive models.

However, the “LSTM flux” combination performs even worse than the standalone

115

LSTM model. This is caused by a change of target output to ∆rk − ∆rkI , from the

original ∆rk that is in favor of the RNN type of autoregression based on a long look-

back window for r, instead of r − rI. In comparison, the MLP interface model is

able to improve both original models significantly, demonstrating the effectiveness of

the use of joint optimization in the model training. The overlapped projection model

(“overlapped”) however, is only able to correct the phase of the MLP prediction, but

causes both models to predict wrong overall dynamics. Based on the results, a jointly

optimized trainable boundary model is a more favorable one for the non-intrusive

models in this study.

5.4 Coupling Between Mismatched Time-Integration Schemes

The discussions in this chapter so far have assumed a shared time-integration

scheme for both the solver and the RCM. As introduced in Sec. 1.4.2, it is not straight-

forward to couple a solver with a model at a coarser scheme. Taking a FVM solver

for example, we assume that Ωi is an internal cell that is time-integrated using a

multi-stage scheme, e.g. the Runge Kutta method. We also assume that Ωj is an

external cell adjacent to Ωi, but time-integrated using a forward-Euler-like scheme

that updates only once every time-step, corresponding to the last stage for Ωi. At the

first stage for Ωi, the flux between the two cells is computed in a conservative way,

i.e. the amount of conserved variables going out from Ωi (can be negative) through

the interface should be equal to that going into Ωj from the interface. However, be-

cause that only qi gets updated by the flux after the first stage and qj does not, the

conservation assumption is broken. Actually, except for the last stage, the fixed qj

can be viewed as a Dirichlet boundary condition imposed on qi, which will lead to

problems such as reflections of waves.

116

Figure 5.3: Interface cell responses and the RMSE for the coupled solution. Each
color represents a pair of cells around a different interface. The titles consist of the
autoregressive model name followed by the interface model name, i.e. the “LSTM
MLP” denotes a LSTM autoregressive model combined with an interface MLP model.

5.4.1 Comparison of Staggered Schemes

There exist multiple flavors of staggered schemes that may be applicable to alle-

viate the mismatching problem. However, their effectiveness remains to be evaluated

in a model-solver coupling setting. In this sub-section, two of the most popular stag-

117

gered schemes for Fluid-Structure Iterations (FSI), the Conventional Serial Staggered

(CSS), and the Conventional Parallel Staggered (CPS) schemes are introduced. The

introductions are in a specialized setting for the purpose of this work, in which we as-

sume: 1) that the time-step size of a RCM ∆tM is a nI multiple of that of a solver ∆tS,

and 2) that no sub-iterations are used by the RCM, and multiple ones are used by

the solver. For the more general introduction of the schemes, mostly in FSI, readers

are referred to Farhat and Lesoinne (2000) and Gatzhammer (2014). Subsequently,

a development of the CSS specialized for the coupling between a RCM and a multi-

stage solver is proposed, which applies additional temporal interpolation to the RCM

solution, corresponding to the sub-iterations of the solver. The resulting scheme is

named the Sub-Iteration Serial Staggered (SISS) scheme. In the presentation of the

following algorithms, the main loop of time-integration is based on the model time-

step k from 0 (IC) to nt. Within k, the finer solver steps are denoted as k0, . . . , knI
,

where k0 matches k, k1 leads k by ∆tS, and knI
matches k + 1. For sub-stages of the

finer step, we follow the nomenclature used in Sec. 4.5.1.2, use p for the sub-stage

solution up to P total sub-stages, and use kpi to denote the p-th sub-stage in the ki-th

finer step. Fig. 5.4 provides a direct comparison of the schemes for nI = 2, P = 3.

(a) CSS (b) CPS (c) SISS

Figure 5.4: Comparison of staggered schemes for nI = 2, P = 3.

118

CSS. In CSS, one of the coupled models/solvers is time-integrated first, and the

updated solution is used for the time-integration of the other one. In our setting, the

CSS procedure is given in Algorithm. 1, in which the RCM is first advanced from k to

k + 1. For nI > 1, linear interpolation is performed for qMI at ki+1. the interpolated

result is used to advance qS from ki to ki+1.

Algorithm 1 CSS procedure

1: for k=0 to nt − 1 do
2: compute qk+1

M in RCM
3: for i=0 to nI − 1 do
4: if nI > 1 then
5: perform linear interpolation of qMI to ki+1.
6: end if
7: send q

ki+1

MI to solver

8: compute q
ki+1

S in solver {Sub-iterations omitted in the absence of interface
communication}

9: end for
10: send qk+1

SI to RCM
11: end for

CPS. The CPS procedure is given in Algorithm. 2. The major difference from the

CSS is that the interpolated model solution for ki, instead of ki+1, is used for the time-

integration of the solver from ki to ki+1. The scheme is regarded as “parallel” because

when the same time-step sizes are used, i.e. nI = 1, the computations for qk+1
M and

qk+1
S are both based on the old solution of their partners. Therefore, the computation

can be performed in parallel. When mismatched time-steps are used, such parallelism

is limited to the computation of the first finer step. In Farhat and Lesoinne (2000),

the CPS is shown to be less accurate than the CSS, and only recommended when

parallelism is necessary.

SISS. Neither the CSS nor the CPS perform interpolation and communication at

the sub-stages of the solver. Therefore, the problem due to a fixed interface value

could still take place for P > 1. The SISS procedure is given in Algorithm. 3, which

119

Algorithm 2 CPS procedure

1: for k=0 to nt − 1 do
2: compute qk+1

M in RCM
3: compute qk1S in solver
4: if nI > 1 then
5: for i=1 to nI − 1 do
6: perform linear interpolation of qMI to ki.
7: transfer qkiMI to solver

8: compute q
ki+1

S in solver {Sub-iterations omitted in the absence of interface
communication}

9: end for
10: end if
11: send qk+1

MI to solver
12: send qk+1

SI to RCM
13: end for

can be viewed as an extension of the CSS to the sub-stage level. It should be pointed

out that, although proposed in the present model-solver coupling context for the

first time, the idea behind SISS, to perform communication at the sub-stages, is not

entirely novel. Similar approaches have been taken for the coupling of two high-order

schemes, leading to the High Order Implicit-Explicit (IMEX) schemes (van Zuijlen

and Bijl , 2004; Van Zuijlen et al., 2007).

Algorithm 3 SISS procedure

1: for k=0 to nt − 1 do
2: compute qk+1

M in RCM
3: for i=0 to nI − 1 do
4: for p=0 to P − 1 do
5: perform linear interpolation of qMI to kp+1

i .

6: send q
kp+1
i

MI to solver

7: compute q
kp+1
i

S in solver
8: end for
9: end for

10: send qk+1
SI to RCM

11: end for

120

5.4.2 Numerical Tests on Subsonic Inviscid Flow

To demonstrate the aforementioned problem, and to examine the effectiveness of

different staggered schemes, subsonic inviscid flow is used. Fig. 5.5 shows the geome-

try and different sub-domains, and the problem setup is summarized in Table 5.1. It

should be pointed out that the flow is span-wise uniform, despite the 2D computa-

tional domain. A sinusoidal perturbation at a relative amplitude of 10% is added to

the outlet back-pressure, which triggers unstable dynamics represented by upstream-

running waves. Fig. 5.6 shows an envelope comprised of the pressure profiles along

the streamwise centerline for a complete cycle spanning 50 time-steps. The problem

is solved with the GEMS, with a DTS scheme (Eq. (4.10)) with P = 20. It should

be reminded that the initial stage p0 = qk, and the final stage pP converges to qk+1.

Any stage between 0 and P does not match with either qk or qk+1, and the afore-

mentioned problem will take place, and a consequential mismatch will be reflected by

a steep gradient across the interface.

Figure 5.5: Geometry and sub-domains for 2D channel flow.

5.4.2.1 Truth-Solver Coupling

To eliminate the potential influence of an inaccurate model, and to narrow down

the source of error to the time-integration mismatch only, we first couple GEMS with

a “ground truth feeder” instead of a real model. The truth to be injected is pre-

121

Figure 5.6: Pressure profile envelope comprised of 50 steps.

generated using GEMS for the full domain. Therefore, without any error introduced

by the coupling, the feeder can be viewed as an exact model. This truth-solver

coupling is single-directional – at the beginning of each time-step, the feeder sends

the ground truth for qkMI to GEMS, regardless of what GEMS predicted in the previous

step. Two coarse-to-fine ratio, nI = 1 and nI = 2 are tested. In either case, the solver

time-step size is fixed, and the model time-step size, i.e. the frequency that the GT

is fed, is adjusted.

The results are visualized Fig. 5.7 for two fine time-steps, kS = 1 and kS = 25. For

the CPS, the error across the interface is severe even at the first step, and increases

with kS. In comparison, the CSS reduces the error significantly. For nI = 1, the profile

for the CSS stays close to the truth at the interface, and deviates linearly with an

increased distance. However, for nI = 2, a steep gradient is observed at the interface.

122

Table 5.1: Problem setup.

Parameter Value
Geometry length×height 0.065m× 0.0135m
Inflow velocity 200 m/s
Inflow temperature 2400 K
Inflow pressure 1.1 MPa
Mean outflow back-pressure 0.8 MPa
Back-pressure perturbation amplitude 0.08 MPa (10%)
Back-pressure perturbation frequency 2000 Hz
Time-step size 1× 10−5 s
Number of subiterations 20

The SISS is noticeably more accurate than the CSS even for nI = 1, and the advantage

becomes more obvious for nI = 2. It should be noticed that in all staggered schemes

compared, the computation costs are consistent, and the parallelism advantage of the

CPS only exists for the first sub-stage and thus negligible in this case (assuming a

model runs faster than a solver).

(a) kS = 1 (b) kS = 25

Figure 5.7: Zoomed-in results around the interface for truth-solver coupling with
different staggered schemes. The vertical dashed line marks the interface.

123

5.4.2.2 Model-Solver Coupling

To further validate the choice in a more realistic setting, the experiment is repeated

in a model-solver coupling setting. The ground truth feeder is replaced by a CPGNet

identical to the one used in Sec. 4.6.1, except for the input and output sizes. The

model is trained independently for nI = 1 and nI = 2 on a period covering 50 fine

steps. The online prediction results are shown in Fig. 5.8. The behaviors of different

schemes are qualitatively consistent with these in the previous truth-model coupling

test. Moreover, a smaller error from the solver also in return leads to a smaller online

modeling error across the interface in this test. The results illustrate the efficiency of

the proposed SISS scheme.

(a) kS = 1 (b) kS = 25

Figure 5.8: Zoomed-in results around the interface for model-solver coupling with
different staggered schemes. The vertical dashed line marks the interface.

124

5.5 Coupled Prediction for Viscous Burgers Equation

5.5.1 Problem Statement

In this section, we compare the intrusive ROM, non-intrusive ROM, and the CP-

GNet in both a standalone and a coupled setting. The 2D viscous Burgers equation

with periodic boundary conditions is studied. An important reason for using a pe-

riodic boundary condition is that even when no coupling is used, the evolution of

the dynamics is self-contained, in contrast to the wave propagation problem used in

Sec. 5.3.4, where the change in dynamics caused by the imposed boundary condition

can only be inferred by autoregressive models with a long nτ if not coupled with a

solver. In this case, the use of coupling will not introduce benefits such as additional

information input to the models, and the model behaviors in either the standalone

setting or the coupled setting can be compared more directly, even for a short-nτ

model such as the MLP.

5.5.1.1 Domain Decomposition and Graph Generation

The domain decomposition for the coupled tests is illustrated in Fig. 5.9. The

square-shaped domain is split along the vertical center-line into a left ROM part

and a right FOM part. After the decomposition, two interfaces need to be coupled:

the vertical center-line, and the left-right periodic boundaries. The top and bottom

boundaries remain periodic and self-contained within a single type of model or solver,

thus no coupling is needed.

For the graph used by the CP-GNet, the vertex (grid point in this case)-node

mapping is used, with a special treatment for the periodic boundaries. The top-

bottom periodic boundaries are used as the example and illustrated in Fig. 5.10.

Below the bottom-most nodes, an additional layer of ghost nodes is added, whose

values are kept updated to be the same as the up-most layer of nodes. Similarly,

125

Figure 5.9: Schematic for domain decomposition. Two model-solver interfaces are
present after the decomposition.

a ghost layer mirroring the bottom-most nodes is added above the top-most layer.

This choice, instead of connecting the top-most and bottom-most nodes directly with

edges, is to provide the edges with correct features, including the direction and length.

The same is done for the left-right periodic boundary in the standalone setting.

Figure 5.10: Schematic for ghost cells for the top-bottom periodic boundary.

5.5.2 Models

5.5.2.1 FOM

With periodic boundary conditions, the 2D viscous Burgers equation is given by:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− ν

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0,

x ∈ [0,W], y ∈ [0, H], t ∈ [0, T],

u(0, y, t) = u(W, y, t),u(x, 0, t) = u(x,H, t),

(5.9)

126

where u = [u, v]T is the 2D velocity vector, and ν is the diffusion coefficient. It must

be pointed out that the set-up for this test problem is slightly modified from Geneva

and Zabaras (2020), with parameters W = 2, H = 2, ν = 0.0025, T = 0.5, and the IC

is determined by a spatially periodic function g:

g(x, y) =
L∑

i=−L

L∑
i=−L

aij sin(2π(ix+ jy)) + bij cos(2π(ix+ jy)),

u(x, y, 0) =
2g(x, y)

max{x,y} |g(x, y)|
+ c,

(5.10)

where {aij,bij} ∼ N (0, I2), L = 4, c ∼ U(−1, 1) ∈ R2.

A finite-difference solver with a forward-Euler time integration scheme at ∆t =

0.001 is used as the FOM. The spatial discretization is performed on a 64 × 64 grid

point mesh using first-order upwinding for the convection, and central differencing

for the diffusion. In the x-direction, the discretization is formulated as:

f± ,
1

2

u± |u|
2

u, (5.11)

u
∂u

∂x

∣∣∣∣
i,j

,
f+
i,j − f+

i−1,j

∆x
+
f−i+1,j − f−i,j

∆x
, (5.12)

ν
∂2u

∂x2

∣∣∣∣
i,j

, ν
ui+1,j − 2ui,j + ui−1,j

∆x2
. (5.13)

The discretization in the y-direction can be easily obtained by substituting v for u,

∆y for ∆x, and index shifting in j for shifting in i.

5.5.2.2 RCMs

The POD-Galerkin intrusive ROM, the POD-MLP non-intrusive ROM, and the

CP-GNet are compared. To demonstrate the capability of the non-intrusive model to

its largest potential, automated hyper-parameter tuning is applied to the MLP. We

consider a MLP model that can be described by the following 5 hyper-parameters:

127

1. Depth, an integer describing the number of hidden dense layers before the out-

put layer.

2. Width, a shared integer describing the number of units per hidden layer.

3. USE LN, a shared boolean describing whether to use layer normalization (Ba

et al., 2016) after a hidden layer.

4. USE RES, a shared boolean describing whether to add residual connections

between hidden layers.

5. Dropout ratio, the individual dropout (Srivastava et al., 2014) ratio (can be

zero) for each hidden layer.

Following the hidden dense layers, another dense layer with linear activation is used

as the output layer, whose size is fixed to the number of POD modes nr. Fig. 5.11

shows the architecture of the resulting MLP. The hyper-parameter is tuned with the

HyperBand (Li et al., 2017) algorithm based on the training convergence rate.

Figure 5.11: Architecture for MLP with tunable hyper-parameters.

For the CP-GNet, 5 processor blocks are used, each with 16-unit latent node

features and 4-unit latent edge features.

128

5.5.2.3 Coupling

In this test, both sub-domains are time-integrated using the same forward-Euler

scheme. For the coupling with an intrusive ROM, or a CP-GNet, the updated interface

values are directly sent to the neighboring cells or corresponding graph nodes, as

described in Sec. 5.2. For POD-MLP models, the interface flux projection method is

used, which is shown to be the most accurate choice for this type of model in Sec. 5.3.

For the present finite difference FOM with upwinding, the equivalent “flux” term in

the x-direction, which is the one needed by the vertical interface, is given by:

F̂i+0.5,j = (f+
i,j + f−i+1,j)− ν

ui+1,j − ui,j
∆x

. (5.14)

5.5.3 Results

129 FOM runs are generated, each with 501 snapshots including a random IC.

Training is performed on the first 251 snapshots for 8 different numbers of training

runs ntrain = {1, 2, 4, 8, 16, 32, 64, 128}. For the POD-based ROMs, 5 different num-

bers of POD modes nr = {5, 10, 20, 40, 80} are studied. For each combination of

ntrain and nr, the hyper-parameter tuning, as well as the model training, is conducted

independently. The POD and models are also independent between the standalone

setting and the coupled setting. CP-GNets are also independently trained for each

ntrain.

For each model, testing is conducted by performing a 500-step rollout prediction

from the IC for runs #1 (always within training) and #129 (always outside training).

It should be noted that even for run #1, the second half of the prediction is beyond the

training period. The RMSE for the rollout predictions are plotted in Fig. 5.12, where

the errors for the first and second halves of run #1 are reported separately, and a single

full-period error is reported for run #129. Some models are numerically unstable in

the online prediction, and the RMSE is clipped to 10 in these cases. For the POD

129

models, combined curves for the lowest possible RMSE at each ntrain, as well as the

individual curves for each nr are plotted. It is obvious that for the POD reconstruction

and POD-Galerkin ROM, the error decays with nr almost monotonically under both

seen and unseen conditions. However, for the POD-MLP, many combinations of nr

and ntrain are unstable, although at least one stable model has been obtained for

each ntrain. This reflects a common problem with many deep learning models for long

rollout predictions - additional treatments such as regularization and noise injection

are necessary to improve the robustness, which are often developed heuristically. If we

focus on the best possible performances, the non-intrusive ROM shows a close level

of error to the intrusive one. In contrast, the CP-GNet remains stable in all cases

beyond ntrain = 4, which is a rather small amount of training data. Actually, the

CP-GNet provides a lower testing RMSE than any POD model on the unseen data

once it is sufficiently trained. In most cases, the online CP-GNet rollout prediction

is even more accurate than the offline POD projection-reconstruction.

Fig. 5.13 shows contours for u as qualitative results for the rollout predictions.

For each type of model, the combination of hyper-parameters with the lowest RMSE

for run #129 is selected. Either POD model is only able to predict a visually similar-

to-truth field within the training period, whereas the GP-GNet result is close to the

truth in all conditions. The gap between different models is especially significant in

the coupled results for run #129, where a clear discontinuity in the centerline interface

is visible for the POD-based models.

130

(a) Standalone, run #1, first half (seen) (b) Standalone, run #1, second half (unseen)

(c) Standalone, run #129, full period (unseen) (d) Coupled, run #1, first half (seen)

(e) Coupled, run #1, second half (unseen) (f) Coupled, run #129, full period (unseen)

Figure 5.12: RMSE for online rollout predictions and POD reconstructions (Recon.),
with numbers above 10 clipped. For the POD-based results, the solid line marks the
minimum error across all nr at a given ntrain. The dashed lines with different opacity
show the results for individual nr, with a higher opacity denoting a larger nr.

131

(a) Run #1

(b) Run #129

Figure 5.13: Contours for u in rollout predictions. For each type of model, the best-
performing hyper-parameter is shown.

132

5.6 Coupled Prediction for a Single-Injector Rocket Engine

Combustor

5.6.1 Problem Statement

As the final test case of the thesis, the framework is applied again to a single-

injector rocket engine combustor, which echos back to the initial demonstration of

the framework in Chapter II. The 2D numerical test is adopted from Huang (2022),

which can be viewed as a high-fidelity and complete combination of the quasi-1D

model used in Chapter II, and the reacting injector used in Sec. 4.6.1. As in our

quasi-1D study, the single-injector rocket engine combustor is decomposed into two

sub-domains, with the first, reaction-intensive sub-domain to be predicted by a RCM,

and the second, geometry-variable sub-domain to be predicted by a solver. The most

promising combination of RCM and coupling scheme in the thesis, CP-GNet and SISS

are applied.

5.6.2 Domain Decomposition and Reduced-Domain Training

The FOM-related settings for this test, including the domain decomposition and

reduced-domain training, are adopted from Huang (2022). As shown in Fig. 5.14,

3 geometries are studied in total, including a truncated one for the generation of

training data, and two complete ones of different lengths for testing. The geometry

for the first sub-domain, separated by an interface at x = 0.0551 m, is shared by all

three cases. In the training case, a straight channel is appended after the interface as

a buffer region, in which the grids coarsens gradually in the x-direction. The end of

the channel is taken as a characteristic boundary, on which span-wise uniform charac-

teristic perturbations are applied. The effectively-1D perturbations gain 2D features

through the buffer region, and representative unsteady behaviors are triggered in the

first sub-domain. In the two testing geometries, downstream chambers of different

133

lengths Lc are appended, followed by a shared nozzle. As discussed in Chapter II,

different acoustic profiles, and consequently different coupled flow dynamics. More

detailed parameters are provided in Table. 5.2.

As listed in the same table, two sets (nf = 1 and nf = 2) of characteristic per-

turbations are applied in two independent training runs. In the first set, a 10%

single-frequency perturbation at 1150 Hz is applied. As estimated in Huang (2022),

this approximately corresponds to the resonant frequency for the longer testing ge-

ometry. In practice, it is hard to include a corresponding perturbation frequency for

each geometry to be predicted. To evaluate the performance under this restriction,

a second training set with two offset frequencies, 1100 Hz and 1300 Hz, is used. The

magnitude for each frequency is reduced to 5% to maintain the super-imposed max-

imum amplitude consistent with the single-frequency case. The estimated resonant

frequency for the shorter testing geometry is 2200 Hz, which deviates significantly

from the training frequencies, and can be regarded as an off-design case.

Figure 5.14: Experimental geometries. Contours are for temperature. The orange
triangle marks the probe location.

5.6.3 Model Details

The FOM solutions are conducted with the GEMS solver, with a laminar flamelet

combustion model (Peters , 1988). The model relies on a pre-generated look-up table,

and represents the detailed combustion processes with locally 1D flamelet structures.

134

Table 5.2: Geometry parameters.

Case Training Testing, short Testing, long
nx in first sub-domain 37340
nx in second sub-domain 9400 19740 47940
Chamber length (m)
(backstep to the end of geometry)

0.11 0.0876 0.17

Perturbation frequency (Hz)
nf = 1: 1150

nf = 2: 1100 + 1300
N/A N/A

Estimated resonant frequency (Hz) N/A 1150 2200
Span 0.2 ms/200 steps 0.8 ms/800 steps

In each 1D structure, properties such as chemical species fractions and temperature

are assumed to be completely described by two parameters corresponding to the di-

mensions of the look-up table: 1) the mixture fraction describing the fuel-to-oxidizer

ratio 3, and 2) the progress parameter describing the non-equilibrium state. In addi-

tion to the 2 flamelet variables, 4 other variables, p, u, v, T are also solved. A time-step

size of ∆t = 1×10−6 s is used, with 20 DTS sub-iterations included in each step. For

each training set, only 200 snapshots are included, which spans approximately 25%

of an oscillation cycle for the longer testing geometry. 800 snapshots are generated

as the ground truth for each testing case.

A 10-processor-block CP-GNet architecture with 56-unit latent node features is

used. Except for changes in the latent dimension and input/output sizes due to the

switch to a flamelet model, the architecture is similar to the one in Sec. 4.6.1. The

model is trained to work at a time-step size twice coarser than the one for FOM. Two

identical models CP-GNet1 and CP-GNet2 are trained independently for the single-

and dual-frequency training sets, respectively, which are distinguished by subscripts

“1” and “2” in the rest of the section.

In addition to model-solver coupling, a few other configurations are also studied as

listed in Table 5.3. First, in order to evaluate the predictive capability of the CP-GNet

for the reduced-domain independently, the model is coupled with a “ground truth

3The mixture fraction can be further separated into a mean and a variance term. In the current
study, a zero-variance model is used, and thus a single variable is sufficient.

135

feeder”, similar to that used in Sec. 5.4.2.1. The feeder loads in the pre-computed

testing data for the downstream sub-domain at an interval equivalent to the time-

step size of the upstream CP-GNet, i.e. ∆t = 2 × 10−6 s, and send the interface

values to the model in the online prediction. This test narrows the source of error to

the CP-GNet only. Secondly, the CP-GNet is shown to be portable and predictive

for unseen geometries in Sec. 4.6.2, which leads to our exploration on the possibility

that the model trained for the reduced-domain can be directly used for full-domain

predictions without coupling with a solver. What adds value to the exploration is

that the geometric and flow-dynamic features in the downstream nozzle are largely

different from these covered in the reduced-domain training, which leads to a more

challenging task compared with predictions between moderately varied geometries,

such as the one in Sec. 4.6.2 and similar ones in related work. Lastly, full-domain POD

projection-reconstructions are performed for each testing case. For each geometry, an

individual set of 100-mode POD bases is obtained from the first 200 snapshots of the

pre-computed solution. The reconstruction results are supposed to reflect the upper

limit of any classic full-domain POD ROMs.

Table 5.3: Test configurations.

Test configuration
Model/solver

First sub-domain Second sub-domain

Truth GEMS, ∆t = 1× 10−6 s, P=20

CP-GNet+Truth
CP-GNet1,

∆t = 2× 10−6 s
Ground truth feeder,

∆t = 2× 10−6 s

CP-GNet+GEMS
CP-GNet1/CP-GNet2,

∆t = 2× 10−6 s
GEMS,

∆t = 1× 10−6 s, P=20

CP-GNet (full-domain) CP-GNet1, ∆t = 2× 10−6 s

POD Offline POD projection-reconstruction

5.6.4 Results

The results of the prediction are interpreted based on two representative variables,

pressure p and temperature T . More specifically, profiles for the average pressure in

136

the x-direction are plotted in Fig. 5.15 and 5.18 for the longer and shorter testing

geometries, respectively. Contours for the temperature field are present in Fig. 5.16

and 5.19. In each of the figures, 4 snapshots based on the finer (solver) time-step,

k = {100, 200, 400, 800}, are present. For a more continuous visualization, a probe

monitor is placed 0.01 m downstream the span-wise center of the back-step, which

is marked in Fig. 5.14. The probed histories for p and T are plotted in Fig. 5.17

and 5.20. In Appendix B.2, contours for the rest variables are present, which further

supports the observations below.

CP-GNet1 + truth. Starting from the “in-design” case that couples CP-GNet1

with the truth feeder for the longer testing geometry. In this case, the 1150 Hz charac-

teristic perturbation in the reduced-domain training ideally aligns with the acoustic

response frequency of the chamber. In this single-directional coupling (from truth

to model) test, the model’s capabilities of processing unseen downstream interface

conditions, and predicting the future states in the designed reduced-domain are eval-

uated. The former is validated mainly by the centerline pressure profiles, where the

CP-GNet follows the downstream truth closely, with a small gap at the interface that

saturates after 200 model prediction steps (shown as k = 400 based on solver steps).

For the latter, a strong future-state predictive capability is demonstrated by the tem-

perature contours and the probed histories. It can be observed that the prediction

results match the truth closely up to k = 400, which is already twice longer than the

training period. At k = 800, the deviation from the truth becomes more visible, and

local extreme values start to occur.

CP-GNets + GEMS. When the coupled truth feeder is replaced with GEMS in

online prediction, a bi-directional coupling system is formed. The prediction is this

situation is more challenging as the downstream responses would deviate even more

from the training. Encouragingly, CP-GNet1 is still able to generate similar results

137

in the upstream sub-domain. Meanwhile, with online updates in the downstream

sub-domain through SISS, the pressure profiles connect smoothly across the inter-

face. Inevitably, the downstream flow is not as accurate as predicted by a complete

full-domain FOM, demonstrated by blurred small-scale structures. Nevertheless, the

large-scale features are predicted reasonably well, which is encouraging for the future

applications of the framework, as the coupled FOM is supposed to be low-cost and

low-fidelity by design. With 2 offset frequencies used in the training, the performance

of CP-GNet2 deteriorates slightly compared with the CP-GNet1, which is reflected

by an earlier onset of visible errors at k = 200, and larger deviations in the probed

histories.

Full-domain CP-GNet1. When CP-GNet1 trained in the reduced-domain is di-

rectly applied for a full-domain prediction, a similar result in the upstream region as

in the coupled predictions is observed up to k = 400. The prediction for the majority

of the downstream chamber is actually even more accurate than a coupled GEMS

solver at k = 100, which clearly illustrates the generalizability advantage of a local

CP-model to unseen geometries and a reasonably wide range of dynamic patterns.

However, the model is unable to make accurate predictions in the nozzle region, in

which the flow dynamics are tremendously different from these covered in the training

data. The error in the nozzle region gradually propagates upstream, and ultimately

“pollutes” the full domain towards the end of the testing period.

Off-design test case. In the shorter testing geometry, for which the resonant fre-

quency is not included in either training case, the predictive capability of the CP-GNet

is challenged. The model is still able to predict accurately up to k = 100 in all cou-

pling configurations. However, the gap in the pressure profiles across the interface

grows and saturates much earlier when coupled with the truth feeder. When coupled

with a solver, the bi-directional coupling with SISS is able to keep the pressure profiles

138

Figure 5.15: Average pressure on the x-direction for the longer (in-design) testing
geometry. Zoomed-in around the domain interface, marked by the vertical line.

as well as flow structures consistent across the interface. As both training sets are

away from the target resonant frequency, the difference between their results is less

clear, with visible errors starting to present at k = 200 in the temperature fields for

both CP-GNet1 and CP-GNet2. The off-design results show that even for a highly

portable and training-data-efficient model such as the CP-GNet, the representative-

ness of the training data still has a strong impact on the predictive capabilities, and

a careful design of the training FOM is necessary.

POD projection-reconstruction. In both test cases, POD is able to perform a

perfect reconstruction of the training period up to k = 200, yet becomes ineffective

quickly afterward. Indeed, it is hard to observe any meaningful features in the POD

139

Figure 5.16: Temperature contours for the longer (in-design) testing geometry.

140

(a) Pressure (b) Temperature

Figure 5.17: Probed histories for the longer (in-design) testing geometry.

reconstruction results at k = 400 and k = 800. The probed histories also show an

immediate deviation after the end of the training. The sharp contrast between the

training and testing stages serves as a clear example of overfitting for global dimen-

sionality reduction in a low data condition, and reflects the training-data-efficiency

advantage of a local model.

Timing. For a direct comparison, timing results for the full-domain prediction of

the shorter testing geometry are used. A CP-GNet covers the 0.8 ms testing period

with 400 time-steps, which takes 131 seconds on one Nvidia RTX A6000 GPU. In

comparison, a FOM simulation with GEMS for the same period involves 800 time-

steps, which takes over 6490 seconds on 60 CPU cores.

5.7 Summary

This chapter mainly focused on explorations of interface models applicable to non-

intrusive models, and staggered procedures for coupling mismatched time-integration

schemes. In the former, three types of models, flux projection, interface MLP, and

overlapped projection, are proposed and compared. The flux projection model deals

141

Figure 5.18: Average pressure on the x-direction for the shorter (off-design) testing
geometry. Zoomed-in around the domain interface, marked by the vertical line.

with the interface communication in an intrusive manner by computing the formal

flux term, and which is then projected onto the basis for the interface cell in order

to update the reduced order variables. The interface MLP bypasses the need for

governing equations, and models the flux term implicitly with a MLP that takes

variables in the internal and external interface cells as the input. The overlapped

projection method extends the projection bases into the solver sub-domain, such that

the coupling is directly enforced in the projection process. The interface models are

applied to two non-intrusive models: MLP and LSTM, and tested on the same wave

propagation problem from Sec. 3.4, on which the non-intrusive models have been

studied in a standalone manner. The flux projection and interface MLP are shown to

effectively communicate with the non-intrusive models, enabling the MLP to match

142

Figure 5.19: Temperature contours for the shorter (off-design) testing geometry.

143

(a) Pressure (b) Temperature

Figure 5.20: Probed histories for the shorter (off-design) testing geometry.

with the FOM solver in the prediction of the constantly varying wave frequency,

which was impossible when no coupling was applied in Sec. 3.4. Through a joint

training, the interface MLP is also able to further improve the performance of the

LSTM model.

In the study of staggered schemes, two popular procedures in fluid-structure in-

teractions, CSS and CPS, and a specialized improvement for model-solver coupling,

SISS, are introduced. Among the three, CPS is the most straightforward one as the

communications in both directions take place simultaneously at the beginning of each

solver time-step. However, it is also shown to give the largest error in our coupling

test between a model that takes a coarser time-step without any sub-iteration, and a

solver with a large number of sub-iterations (P = 20). Both the CSS and the SISS

advances the model before the solver, and are shown to significantly reduce the inter-

face error compare with the CPS. By extending interpolations and communications

to the sub-stage level, the SISS shows a even better performance than the CSS.

With the findings in this and preceding chapters, the most promising RCMs,

interface model, and coupling scheme are integrated and demonstrated in two coupled

tests. In the test with 2D viscous Burgers equation, an intrusive POD-Galerkin

144

ROM, a non-intrusive POD-MLP ROM, and a CP-GNet model are compared in both

standalone and coupled settings. With the help of hyper-parameter tuning, the POD-

MLP is able to outperform the POD-Galerkin in multiple cases. The flux-projection

interface method is also shown to enable the non-intrusive model to couple effectively

with the FOM across both interfaces, resulting in a guided flow pattern. However, the

POD-MLP occasionally suffers from stability issues across all training configurations,

despite the hyper-parameter tuning applied. In contrast, the CP-GNet remains stable

and provides the lowest prediction error once sufficiently trained (beyond ntrain = 4).

Indeed, the online CP-GNet rollout prediction is even more accurate than the offline

POD projection-reconstruction in most cases. In the final test case of a 2D CVRC,

SISS is used to couple a CP-GNet with a high-fidelity FOM solver across different

time-step sizes and numbers of sub-stages. With a single training process based on

limited provided data from a FOM for the reduced-domain (plus a buffer region) with

a characteristic boundary and perturbation, the CP-GNet is shown to be predictive

not only for the training sub-domain, but also for a large downstream region before

the nozzle. With the help of the coupled solver, the integrated framework is shown to

be predictive at different chamber lengths for a much longer period than the training

period.

145

CHAPTER VI

Conclusions and Perspectives

This thesis is composed in the background of a “low data regime” that lies at the

heart of the contradiction between the challenges in training a data-driven Reduced-

Complexity Model (RCM), and its supposed benefits. We use the term RCM to

broadly define reduced order models as well as surrogate techniques that can model

spatio-temporal fields of variables. The low data regime is a consequence of the fact

that the training data available to the RCM may be limited in spatial and temporal

coverage and parametrically sparse. In fact, considering the motivating example of a

rocket combustor, existing high-fidelity methods are unaffordable even to perform a

single full-system simulation. Against this backdrop, a RCM demands the training

data to cover a large-enough envelope in the hyper-parameter space to be predictive

in many-query scenarios.

In the present work, a number of ideas were proposed towards the end of addressing

the development of RCMs in the low data limit. In Sec. 1.4.1, the framework of a

full-system modeling strategy in this regime was described. The framework is multi-

fidelity, which uses a data-driven RCM and its mirrored copies for the regions with

complex physics that require a high-fidelity solution, in coupling with a solver for the

rest of the domain with simpler physics that can be solved with a lower fidelity, but

with variable geometries that cannot be easily handled by a RCM. Fig. 1.3 (replicated

146

Figure 1.3: Contributions of the thesis in the roadmap towards full-system modeling
(replicated).

below) shows the scope of this work in the roadmap towards the realization of the

framework. The techniques involved in the roadmap cover previous, current, and

future work, and can be categorized into three main aspects:

1. Reduced-domain training: training data generation in an isolated reduced-

domain.

2. Model design: design of efficient and predictive RCMs

3. Model-solver coupling: effective interfacing methods to couple a data-driven

RCM and a high-fidelity solver.

6.1 Reduced-Domain Training

In this aspect, the characteristic training method first introduced by Huang et al.

(2016) is used in the study of a quasi-1D model for the Continuously Variable Res-

onance Combustor (CVRC) in Chapter II. The Proper Orthogonal Decomposition

(POD) bases generated from a single training set with broadband characteristic per-

turbations is shown to provide a comparable or even lower projection-reconstruction

147

error than a specifically trained one using the traditional full-domain training method

at different testing geometries. The advantage is further verified in the online pre-

diction tests and off-design evaluations with an intrusive POD-Galerkin ROM. In the

final test case of a 2D version of the CVRC in Sec. 5.6, data generated from a similar

manner for the upstream sub-domain is used to train a Conditionally Parameterized

Graph Neural Network (CP-GNet), which is then shown to be predictive not only for

the training sub-domain, but also for a large downstream region before the nozzle.

The same test is repeated with offset perturbation frequencies, as well as an off-design

testing chamber length with a significantly different resonant frequency. In these ad-

ditional tests, the model performance noticeably deteriorates, which emphasizes the

importance of a carefully designed training configuration, even for a highly portable

model.

6.2 Model Design

The RCMs studied in this thesis fall into two broad categories, the non-intrusive

ROMs in Chapter III, and the local surrogate models in Chapter IV, distinguished by

whether a global dimensionality reduction is performed. The reduction serves as the

first step in ROM procedures, followed by a second step in which the resulting reduced

order variables are computed as an approximation to the high-order FOM. Bypassing

the formal intrusive computation using projected governing equations, non-intrusive

ROMs benefit from a higher flexibility in the choices for both steps. By replacing

the POD with a convolutional autoencoder in the first step, improvements in both

reconstruction fidelity and final prediction accuracy are demonstrated in both test

cases (future-state prediction for wave propagation, parametric prediction for flow

over a cylinder). Independently of the first step, the second step can be replaced

by either an autoregressive model for future-state predictions, or a combination of

a temporal dimensionality reduction model and a regression model for parametric

148

predictions of a fixed spatio-temporal domain. The efficiency gain in the second type

of model is especially significant as it bypasses not only the expensive computation of

the high-order nonlinear term per time-step, but also the time-integration procedure.

The advantage is clearly demonstrated in the flow-over-cylinder case, in which the

multi-level autoencoder networks achieved a more than 2500-time acceleration, with

an error below 2%.

Linearly or nonlinearly projected, intrusively, or non-intrusively computed, a lim-

itation exists for most ROMs, that a global dimensionality reduction model, as well

as the ROM based on it, is fixed to the training geometry and range of dynamics,

which is demonstrated in Sec. 4.3 on an advection-diffusion problem. Although our

framework can effectively alleviate the restriction on the geometry using domain de-

composition and coupling, the training data still needs to be sufficient to cover the

possible range of dynamics. In the low data regime that this thesis is set for, this

may be a serious drawback as shown by the large POD projection errors for the 2D

CVRC in Sec. 5.6.

A more flexible and less training-data hungry type of model is the local surrogate

model, most popularly exemplified by Convolutional Neural Networks (CNNs). A

local surrogate model performs local computations through individual discrete points

with the same set of parameters in a “swiping-through” manner, without generating

a fixed mapping to the global coordinates. Due to the weight-sharing property, each

spatial point in a snapshot becomes an effective training sample for the model, which

leads to a tremendous reduction in the total number of training snapshots needed.

To deal with irregular, non-Euclidean features, Graph Neural Networks (GNNs) are

widely used in the place of CNNs. As described in Sec. 4.4.1, existing spatial dis-

cretization methods in CFD can be easily mapped to graphs suitable for GNNs.

However, GNNs often concatenate graph-node features with graph-edge ones, ignor-

ing their heterogeneous natures. The naive treatment, along with similar approaches

149

such as a brute-force fitting of high-order terms, undermines the credibility of current

GNN architectures as a simulation tool, which has much higher accuracy demands

than other tasks of GNNs such as classification ones. This has motivated our ex-

plorations on conditional parametrization, and ultimately led to the development of

the CP-GNet, which can efficiently learn the hierarchical and/or high-order relations

between heterogeneous features by making model parameters for certain features into

trainable functions of other ones. The CP-GNet, and other CP-modified models, are

shown to bring significant improvements to their non-CP versions and other state-

of-the-art baselines in multiple tasks including closure modeling (Appendix A.1),

super-resolution of turbulent flow (Appendix A.2), and flow simulations with chemi-

cal reactions (Sec. 4.6.1, Sec. 5.6), as well as on unseen irregular meshes (Sec. 4.6.2,

Sec. 5.6). The improvements are especially worth noting given that the form of CP

modification to existing layers, described in Sec. 4.2, is relatively straightforward.

6.3 Model-Solver Coupling

It is mentioned in Sec. 1.4.2 that the specialized coupling method between RCMs

and solvers has not been actively explored. Indeed, the necessity of such methods

is directly reflected by the obvious improvement brought by the interface models to

the non-intrusive models used in the wave propagation problem. In Sec. 3.4, neither

the frequency nor the amplitude can be predicted by a simple POD-MLP model. In

Sec. 5.3.4, visible errors are eliminated when a proper coupling method is added to

the same model. We also demonstrated the benefit of a joint training of an “inner”

model and an interface model, which can produce an even lower error than the formal

flux projection procedure when applied to complex autoregressive models.

Regardless of the complexity in the interface model itself, additional treatments

are necessary when time-step sizes or numbers of sub-stages are different between

the time-integration schemes across the interface. In this work, three staggered pro-

150

cedures are compared, including two existing ones, Conventional Serial Staggered

(CSS) and Conventional Parallel Staggered (CPS), and a specialized modification,

Sub-Iteration Serial Staggered (SISS) which can be viewed as an extension of the

CSS to the sub-stage level. The advantage of using a serial procedure, especially one

with sub-stage-level interpolations, is demonstrated in Sec. 5.4.2.

In the final full-system test on a single-element rocket combustor, SISS is used

to couple the best performing RCM in this work, CP-GNet, with a high-fidelity

FOM solver across different time-step sizes and numbers of sub-stages. With a single

training process based on limited provided data from a FOM with a characteristic

boundary and perturbation, the integrated framework is shown to be predictive at

different chamber lengths for a much longer period than the training interval. At this

point, the author would like to conclude that the thesis has introduced promising

model candidates to the framework, and paved their road to be coupled with a solver

in the challenge of efficiently modeling complex physics for many-query scenarios in

the low data regime.

6.4 Limitations and Perspectives

Although the findings of this work are mostly validated in rocket-combustion-

related applications, the data-driven methods are not restricted to the underlying

problem-specific equations or physics. Indeed, various equations (ranging from 2 for

the viscous Burgers problem in Sec. 5.5 to 8 for the reacting injector in Sec. 4.6.1),

and types of variables (primitive or conservative) have been covered in the test cases,

across which the models are easily applied by modifying the sizes of the input and

output layers. More limitations are observed in cases involving the prediction for a

different spatio-temporal domain than the training. As classic POD-Galerkin ROMs,

the non-intrusive ROMs in this work face the same restriction to a single fixed ge-

ometry through the training and prediction stages. The multi-domain framework

151

endows significantly more flexibility to the applications of ROMs, yet still requires a

fixed geometry in the ROM sub-domain. Additionally, the multi-level autoencoder

network requires a fixed time period to be predicted between different parameters.

Local surrogate models, especially the CP-GNet, eliminate the dependence on the

global spatio-temporal domain, and generalize to more applications. With the help

of interface models such as the interface MLP, the model-solver coupling approaches

in this work are also shown to generalize to different types and schemes of models

and solvers.

However, a few gaps still need to be filled between the thesis and a complete and

reliable realization of the multi-fidelity framework for practical industrial problems.

These gaps are aligned with the suggested future work in Fig. 1.3:

1. Data requirement for generalizability. As illustrated in the study of the 2D

CVRC (Sec. 5.6), even for a highly portable model such as the CP-GNet, the

representativeness of the training data still has a strong impact on the pre-

dictive capabilities of the resulting model. It can be expected that even with

the help of broadband characteristic perturbations in the reduced-domain train-

ing, multiple sets of training data would still be necessary to make the model

generalizable to a wide range of testing configurations. To minimize the total

training cost, pre-defined criteria on the data requirement need to be devel-

oped, such that the design of training simulations (e.g. number of simulations,

frequencies included, snapshots per training set, etc.) can be guided. On the

other hand, further improvements on the training-data efficiency of models will

remain necessary.

2. Reduced-domain FOM with multiple characteristic boundaries. The character-

istic training method has only been applied to reduced-domains with a single

interface in this thesis. In a larger system with multiple adjacent reduced-

domains, each of them will include multiple interfaces. To perform training

152

FOM in such a reduced-domain, multiple groups of characteristic perturbations

may be applied, the interactions of which still need to be explored.

3. Long-time stability of surrogate models. Currently, most surrogate models in

the thesis and related work suffer from numerical instabilities in long-time roll-

out predictions. Stability improvements are commonly achieved through treat-

ments in the training stage, such as additional regularization terms or injection

of training noises, at the cost of a lower inference accuracy. The parameters for

these treatments are often determined heuristically, and do not guarantee un-

conditional stability. In pursuit of the latter, more efforts are needed throughout

the life-cycle of a model, including architecture design, training, and inference.

For example, Pan and Duraisamy (2020) developed a stabilized Koopman op-

erator surrogate model for nonlinear dynamics, which enforces stabilization in

the lifted space.

4. Coupling with mirrored models and different FOMs. In our framework for

a complete multi-injector rocket engine combustor, multiple mirrored models

are coupled together with a solver of a lower fidelity. Besides implementation

challenges brought by multiple interfaces, a different FOM solver in the coupled

sub-domain will probably result in misaligned mesh grids, possibly coarser time-

step sizes than the model, or even a different set of variables to be solved. The

current coupling schemes and interface models are not prepared to deal with

these mismatches.

Beyond the current target framework, in a broader landscape for the efficient,

portable, and predictive modeling of physical systems, more challenges occur. A few

examples are:

1. Effective training method for more complicated features. If external responses

are not acoustics-dominated, and cannot be well represented by a super-imposition

153

of simple boundary perturbation functions, a more complicated training data

generation method will be needed.

2. A priori error bounds and uncertainty quantification. Most recent non-intrusive

models fall into deep-learning models, which are significantly less interpretable

compared with intrusive ones. Even in more intuitive architectures such as the

CP-GNet, exact computations are still hidden. In this situation, a priori error

bounds and uncertainty quantification are critical for a convincing application

of model outcomes.

3. Benchmark cases and metrics. As a rapidly evolving research area, researchers

on data-driven models for scientific computing have not reached any tacit agree-

ment on how to evaluate different models and methods systematically. Even

the widely used flow-over-a-cylinder case has countless flavors. A few commonly

recognized benchmark cases and metrics will largely improve the situation, and

consequently accelerate the realization of a reliable data-driven RCM approach.

On this path, a prototyping environment for ROM methods (Wentland , 2021)

has been recently developed, which provided test cases along with an easy-to-use

coding framework.

With these challenges, it is currently not possible to completely rely on data-driven

models in most current applications. However, advancements in related techniques

are happening at a rapid pace. The author wishes that the leap from the initial quasi-

1D CVRC test case with simplified combustion models, to the final 2D CVRC case

with much more complex physics, will serve as a thumbnail for a promising future of

scientific modeling.

154

APPENDICES

155

APPENDIX A

Other Applications of CPNets

A.1 Closure Modeling

In many practical problems, high fidelity simulations are not affordable. Instead,

computations are performed using coarse-grained models, e.g. the Large Eddy Simu-

lation (Moin, 2002). In such models, the small-scale physics are unresolved, and are

approximated using additional closure terms in the PDEs, the development of which

constitutes an important area of research. In fact, even for the seemingly simple (yet

richly non-linear) equation presented below, a perfect closure model is unknown. In

this work, we demonstrate how CP models can be used to develop a closure model

for the coarse-grained 1D viscous Burgers equation that is often used in the study

of shock formation, traffic flows, and turbulent interactions, etc. For the unknown

spatio-temporal field u(x, t) on a spatially periodic domain x ∈ [0, L], the original

equation is given by:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0, (A.1)

156

where ν is a diffusion coefficient and u(x, 0) is a random IC. For the present case, it

is given by:

u(x, 0) =
8∑

k=1

√
2E(k) sin(kx+ βk), (A.2)

where for each k, βk ∼ U(−π, π), and E(k) = max(k, 5)−5/3. Other choices of param-

eters include domain length L = 2π, viscosity ν = 0.01.

A 2048 mesh point high-resolution solution is generated using the Fourier-Galerkin

spectral method (Basdevant et al., 1986) with 4th order Runge-Kutta method for time

stepping, and used as the ground truth for the fine solution. In this setting, u can be

regarded as fully resolved, thus the numerical residual r(u), defined in Eq. (A.3), is

zero.

r(u) = −u∂u
∂x

+ ν
∂2u

∂x2
− ∂u

∂t
. (A.3)

However, the same does not hold when a solution is attempted on a coarse mesh

with Eq. (A.1) without any additional treatments, in which case the solution becomes

inaccurate and numerically unstable, thus a closure operator C(·) is needed to com-

pensate for the non-zero residual. Representing the quantity on the lower resolution

mesh by ū, the “closed” equation is:

∂ū

∂t
+ ū

∂ū

∂x
− ν ∂

2ū

∂x2
+ C = 0. (A.4)

In this experiment, two baseline models for C and their CP developments are

compared. The first model is 2-layer CNN with a dense layer with ReLU activation,

followed by a 1D convolution layer. This model assumes the closure term to be a

function of convection term ū∂ū
∂x

and the diffusion term ν ∂
2ū
∂x2

, and takes their concate-

nation q = [ū∂ū
∂x
, ν ∂

2ū
∂x2

] as the input. Its CP variant, CP-CNN, replaces the first layer

with a CP-Dense layer that takes q as the parameter for its own weights. The sec-

ond baseline model is a reference Data-Driven Parameterization (DDP) model (Subel

157

et al., 2021). The model takes C as a function of the filtered variable ū, which is mod-

eled by an 8-layer MLP with swish activation. Similarly, the CP variant, CP-DDP

replaces the first layer with a CP-Dense layer that takes q as the parameter for the

weights for ū. The network architectures are presented in Fig. A.1.

(a) CNN (b) CP-CNN (c) DDP (d) CP-DDP

Figure A.1: Closure modeling network architectures. Solid arrow: input feature;
dashed arrow: condition parameter; numbers: layer width.

Two sets of high resolution data are generated from two different ICs on a shared

2048-grid-node mesh. The low resolution solutions are obtained by applying a box-

filter to each step of the high resolution solutions onto a 32-grid-node mesh. The

ground truth for C is then computed based on the offline-filtered low resolution data

as C∗ = −r(ū). Each set of data consists of 267 time steps, spanning a period of 2 s.

The first 0.2 s of data for one IC is used for training.

Online testing computations are then carried out from the filtered, low resolution

ICs using Eq. (A.4), with C computed based on the online solution at every time

step. Central differencing is used for the spatial derivatives, which does not introduce

additional artificial viscosity; thus, the solution without closure is naturally unstable.

x-t contours for the online computations are present in Fig. A.2 to compare the

evolution of ū. Spatial profiles are also plotted at a few steps to provide more details.

Despite a small time step ∆t = 0.0075 s (CFL number< 0.5), without any closure

term, the computation is numerically unstable and the error grows unbounded. The

baseline CNN model is able to keep the solution stable within the period studied,

and the CP-CNN improves the accuracy noticeably. The baseline DDP model is only

158

Table A.1: Closure model MAE. ū Avg.: averaged over all steps for online prediction
for ū; ū final: for the final step of online prediction; Inf.: Unbounded cases.

Training IC Testing IC
ū Avg. ū final ū Avg. ū final

CNN 0.23 0.41 0.16 0.23
CP-CNN 0.15 0.21 0.09 0.13

DDP Inf. Inf. Inf. Inf.
CP-DDP 0.42 0.89 0.3 0.41

able to postpone the “blow-up” to slightly later. The solution with CP-DDP closure

is bounded throughout the period. The improevments are also valid for both the

unseen IC. The Mean Absolute Error (MAE) for ū is provided in Table. A.1.

The comparison between CP-CNN and CNN is repeated on 4 other low resolution

meshes of different sizes nx = {24, 64, 128, 256}. The average MAE for the online

computation for ū, and the offline single-step computation for C from the training IC

is plotted in Fig. A.3. The CP-CNN outperforms the CNN on all meshes. Moreover,

the CNN closure is unstable at the most coarse mesh, nx = 24, whereas the CP-CNN

remains stable.

A.2 Super Resolution

In this experiment, we perform enrichment of low-resolution snapshots of turbulent

flow fields. In an enrichment/super-resolution process, one inputs a low-resolution

snapshot of the solution, and seeks a snapshot with better resolution. One way to

achieve different resolutions on a given mesh is to use Discontinuous Galerkin (DG)

projection (Cockburn et al., 2012). In this method, the solution within a mesh element

i is represented by coefficients ai for a set of polynomial bases, of which the size is

determined by the polynomial order P . The final resolution of the solution is jointly

determined by P and the element width L.

More specifically, a public DNS dataset (Del Alamo et al., 2004) is studied, which

solves a turbulent channel flow at a friction Reynolds number Reτ = uτh
2ν
≈ 950, where

159

(a) Training IC

(b) Testing IC

Figure A.2: Closure modeling results. The first t ≤ 0.2 s for the left case is used for
training, marked by the black dashed line in the first contour. The x-t contours show
the evolution of ū. The reference DDP model solution grows into infinity,
shown as white areas in the contour. The gaps between models are more visible
in the spatial profiles at time steps marked by the red dashed lines.

160

Figure A.3: Average MAE for ū (online) C (offline) under different low resolution mesh
sizes. The CNN model blows up at nx = 24 and no data point is plotted.

h is the channel height, uτ =
√
τ/ρ is the wall-friction velocity, defined on the aver-

aged wall-friction τ and the density ρ. DG projection is performed for wall-parallel

slices at different normalized wall-distances z+ = zuτ/ν, where z is the distance be-

tween the plane to the closer wall. The task is to recover high-order (P = 3) DG

coefficients ahi ∈ R9 for the x-velocity from lower-order (P = 1) ones ali ∈ R4. 5 snap-

shots are generated in total at z+ ∈ {650, 700, 750, 800, 850}, as illustrated in Fig. A.4.

Each snapshot spans an area of X × Y = 2π × π, and is projected onto a shared set

of uniform meshes with 6 different widths L ∈ {π/4, π/8, π/12, π/16, π/24, π/32}, for

the two studied polynomial orders P ∈ {1, 3}. Thus, for each z+, 12 sets of data,

each for one combination of L and P , are provided. Fig. A.4 shows a few example

contours at different combinations for z+ = 800. The data for z+ ∈ 700, 800 is used

for training. It should be noted that the coefficients are computed independently

for each mesh element, thus the total number of training points is a few thousand,

instead of 24 (which should be multiplied by the number of elements).

In this task, the baseline model is from the compact super-resolution model by

Pradhan and Duraisamy (2021). It takes ahi as a function of two inputs. The first in-

put is a concatenation of normalized low-order basis coefficients for i and its neighbors

N(i):

[ac]i = [{acj − āc; j ∈ N(i) ∪ i}]/uRMS
i , (A.5)

161

Figure A.4: Snapshots for super-resolution.

(a) MLP (b) CP-MLP

Figure A.5: Super-resolution network architectures. Solid arrow: input feature;
dashed arrow: condition parameter; numbers: layer width.

where [{·}] denotes the concatenation of all elements in a set, and āc is the mean of

the set. In our case, we include all immediate neighbors, including corner ones in

N(i), thus [ac]i ∈ R36. The second input to the model is an indicator li = log(ReLi)

for the loss of information in the low-order projection process. ReLi =
uRMS
i L

ν
is the

local Reynolds number. The indicator reflects that the loss is a function of the kinetic

energy, measured by uRMS
i , mesh resolution L, and fluid viscosity ν. Because ReLi can

vary by orders of magnitude across elements, log scaling is used. The two inputs

are first concatenated and then processed in a 4-layer MLP in the baseline model.

162

In contrast, the conditionally parameterized model CP-MLP processes only the first

input [ac]i in the dense layers. The second dense layer is replaced by a CP-Dense layer,

where the second input li is instead taken as a conditional parameter for the weights

for the latent output of the first layer. A comparison of the model architectures are

provided in Fig. A.5.

Results for two sample testing cases, (z+ = 650, L = π/4) and (z+ = 750, L = π/8)

are shown in Fig. A.6. It can be observed that the CP-MLP is able to reconstruct more

small scale structures compared with the MLP. The performance can be qualified by

the stream-wise and span-wise energy spectra, ex and ey, defined as:

ex(kx) =
1

π

∞∫
−∞

〈u(x0, y0)u(x0 + x, y0)〉 e−ikxxdx, (A.6)

ey(ky) =
1

π

∞∫
−∞

〈u(x0, y0)u(x0, y0 + y)〉 e−ikyydy, (A.7)

where 〈·〉 denotes the average over homogeneous directions, which is the entire plane

in this case. Similar to the power spectral density for a time series that describes

the energy distribution over different frequencies, the energy spectra describes the

energy distribution of a spatial field over different wave-numbers k = 2π/λ, λ being

the wavelength.

ex for different stream-wise wave numbers kx is shown in Fig. A.6. It can be ob-

served that for high-order projection or super-resolution, the high-wave-number spec-

tra is much richer than that for the low-order projection. The CP-MLP plots follow

the truth noticeably better than the MLP baseline, which confirms our observation

from the contours. Absolute error in the integrals of energy spectra, Ex =
∫
kx
exdkx

and Ey =
∫
ky
eydky are computed for the 24 training and 36 testing sets and summa-

rized in Table A.2. Both training and testing errors are reduced significantly when

CP is applied.

163

Figure A.6: Super-resolved flow field and stream-wise energy spectra ex for example
test cases (z+ = 650, L = π/4) and (z+ = 750, L = π/8). The CP-MLP shows
finer details on the edge of elements (adjacent squares), showing a better
prediction of high-order coefficients. The observation is proved by a richer high kx
energy spectra in the right plot.

Table A.2: Average and maximum absolute errors in the integral of super-resolved
energy spectra.

Training Testing
Ex Avg. Ex Max. Ey Avg. Ey Max. Ex Avg. Ex Max. Ey Avg. Ey Max.

MLP 0.0145 0.0391 0.0272 0.0609 0.0098 0.0364 0.0184 0.0675
CP-MLP 0.0120 0.0328 0.0217 0.0429 0.0081 0.0260 0.0158 0.0519

164

APPENDIX B

Additional Results

B.1 Comparison Between CP-GNet and MeshGraphNet on

the Reacting Flow

The long-training-period experiment setting from Sec. 4.6.1 is used. To apply

the MeshGraphNet (MGN), one-hot labels distinguishing fluid cells and different

boundary cells (inner/inlet/outlet/symmetric wall/no-slip wall), as well as the cell

volumes are added to the node features. Face areas between cells are added to the

edge features. Moreover, we also tested a wider version of the MGN, with the default

128-unit MLPs replaced by 256-unit ones, due to the complex reaction physics in this

task. Both MeshGraphNets are trained using the same training hyper-parameters as

the CP-GNet10L model from Sec. 4.6.1, and compared with the latter.

Evaluations are again performed on the representative variables p, u, T, YCH4. The

predicted flow fields are visualized in Fig. B.1. It can be seen that the CP-GNet is

visually closer to the truth, especially in the phases of the probed peaks. The averaged

inference time and RMSE for the normalized variables (with mean subtracted, divided

by standard deviation) at different rollout steps is reported in Table B.1. The present

model provides a lower RMSE throughout the prediction.

165

Table B.1: Averaged inference time and RMSE for reacting flow.

Model
Time/step

ms
RMSE 1-step
×10−3

RMSE rollout-50
×10−3

RMSE rollout-all
×10−3

CP-GNet 261 0.29 6.8 46.1
128-unit MGN 203 0.42 10.4 62.8
256-unit MGN 296 0.41 10.8 58.4

Figure B.1: Predicted reacting flow. For each variable from top to bottom: ground
truth, CP-GNet, 128-unit MGN, 256-unit MGN.

B.2 Visualizations for Other Variables in 2D CVRC

As a supplement for Fig. 5.16 and 5.19, contours for the rest variables, p, u, flamelet

mixture fraction and progress parameter, are provided. They further validate the

conclusions in Sec. 5.6.

166

Figure B.2: Pressure contours for the longer (in-design) testing geometry.

167

Figure B.3: x-velocity (u) contours for the longer (in-design) testing geometry.

168

Figure B.4: Flamelet mixture fraction contours for the longer (in-design) testing
geometry.

169

Figure B.5: Flamelet progress parameter contours for the longer (in-design) testing
geometry.

170

Figure B.6: Pressure contours for the shorter (off-design) testing geometry.

171

Figure B.7: x-velocity (u) contours for the shorter (off-design) testing geometry.

172

Figure B.8: Flamelet mixture fraction contours for the shorter (off-design) testing
geometry.

173

Figure B.9: Flamelet progress parameter contours for the shorter (off-design) testing
geometry.

174

BIBLIOGRAPHY

175

BIBLIOGRAPHY

Amsallem, D., and C. Farhat (2011), An online method for interpolating linear para-
metric reduced-order models, SIAM Journal on Scientific Computing, 33 (5), 2169–
2198.

Argaud, J., B. Bouriquet, H. Gong, Y. Maday, and O. Mula (2017), Stabilization of
(g) eim in presence of measurement noise: application to nuclear reactor physics,
in Spectral and High Order Methods for Partial Differential Equations ICOSAHOM
2016, pp. 133–145, Springer.

Astrid, P. (2004), Reduction of process simulation models: a proper orthogonal de-
composition approach, Technische Universiteit Eindhoven Eindhoven, Netherlands.

Astrid, P., S. Weiland, K. Willcox, and T. Backx (2008), Missing point estimation
in models described by proper orthogonal decomposition, IEEE Transactions on
Automatic Control, 53 (10), 2237–2251.

Ba, J. L., J. R. Kiros, and G. E. Hinton (2016), Layer normalization, arXiv preprint
arXiv:1607.06450.

Baiges, J., R. Codina, and S. Idelsohn (2013), A domain decomposition strategy for
reduced order models. application to the incompressible navier–stokes equations,
Computer Methods in Applied Mechanics and Engineering, 267, 23–42.

Baldwin, B., and T. Barth (1991), A one-equation turbulence transport model for
high reynolds number wall-bounded flows, in 29th aerospace sciences meeting, p.
610.

Bar-Sinai, Y., S. Hoyer, J. Hickey, and M. P. Brenner (2019), Learning data-driven dis-
cretizations for partial differential equations, Proceedings of the National Academy
of Sciences, 116 (31), 15,344–15,349.

Basdevant, C., M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R. Peyret, P. Or-
landi, and A. Patera (1986), Spectral and finite difference solutions of the burgers
equation, Computers & fluids, 14 (1), 23–41.

Bathe, K., C. Nitikitpaiboon, and X. Wang (1995), A mixed displacement-based
finite element formulation for acoustic fluid-structure interaction, Computers &
Structures, 56 (2-3), 225–237.

176

Bathe, M., and R. Kamm (1999), A fluid-structure interaction finite element analysis
of pulsatile blood flow through a compliant stenotic artery, Journal of biomechanical
engineering, 121 (4), 361–369.

Baur, U., C. Beattie, P. Benner, and S. Gugercin (2011), Interpolatory projection
methods for parameterized model reduction, SIAM Journal on Scientific Comput-
ing, 33 (5), 2489–2518.

Becker, S., and E. Laurien (2003), Three-dimensional numerical simulation of flow
and heat transport in high-temperature nuclear reactors, Nuclear Engineering and
Design, 222 (2-3), 189–201.

Belbute-Peres, F. d. A., T. Economon, and Z. Kolter (2020), Combining differentiable
pde solvers and graph neural networks for fluid flow prediction, in International
Conference on Machine Learning, pp. 2402–2411, PMLR.

Berger, J., S. Gasparin, M. Chhay, and N. Mendes (2016), Estimation of temperature-
dependent thermal conductivity using proper generalised decomposition for build-
ing energy management, Journal of Building Physics, 40 (3), 235–262.

Berkooz, G., P. Holmes, and J. L. Lumley (1993), The proper orthogonal decompo-
sition in the analysis of turbulent flows, Annual review of fluid mechanics, 25 (1),
539–575.

Bhatnagar, S., Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik (2019), Prediction
of aerodynamic flow fields using convolutional neural networks, Computational Me-
chanics, 64 (2), 525–545.

Bose, S. T., and G. I. Park (2018), Wall-modeled large-eddy simulation for complex
turbulent flows, Annual review of fluid mechanics, 50, 535–561.

Brunton, S. L., J. L. Proctor, and J. N. Kutz (2016), Discovering governing equations
from data by sparse identification of nonlinear dynamical systems, Proceedings of
the National Academy of Sciences, 113 (15), 3932–3937.

Buffoni, M., H. Telib, and A. Iollo (2009), Iterative methods for model reduction by
domain decomposition, Computers & Fluids, 38 (6), 1160–1167.

Carlberg, K., C. Bou-Mosleh, and C. Farhat (2011), Efficient non-linear model re-
duction via a least-squares petrov–galerkin projection and compressive tensor ap-
proximations, International Journal for Numerical Methods in Engineering, 86 (2),
155–181.

Carlberg, K. T., A. Jameson, M. J. Kochenderfer, J. Morton, L. Peng, and F. D.
Witherden (2019), Recovering missing cfd data for high-order discretizations using
deep neural networks and dynamics learning, Journal of Computational Physics.

177

Chaturantabut, S., and D. C. Sorensen (2009), Discrete empirical interpolation for
nonlinear model reduction, in Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pp. 4316–4321, IEEE.

Chen, W., Q. Wang, J. S. Hesthaven, and C. Zhang (2021), Physics-informed machine
learning for reduced-order modeling of nonlinear problems, Journal of Computa-
tional Physics, 446, 110,666.

Choi, H., and P. Moin (2012), Grid-point requirements for large eddy simulation:
Chapman’s estimates revisited, Physics of fluids, 24 (1), 011,702.

Cockburn, B., G. E. Karniadakis, and C.-W. Shu (2012), Discontinuous Galerkin
methods: theory, computation and applications, vol. 11, Springer Science & Business
Media.

Corigliano, A., M. Dossi, and S. Mariani (2015), Model order reduction and domain
decomposition strategies for the solution of the dynamic elastic–plastic structural
problem, Computer Methods in Applied Mechanics and Engineering, 290, 127–155.

Couplet, M., C. Basdevant, and P. Sagaut (2005), Calibrated reduced-order pod-
galerkin system for fluid flow modelling, Journal of Computational Physics, 207 (1),
192–220.

Crocco, L., J. Grey, and D. Harrje (1958), On the importance of the sensitive time
lag in longitudinal high-frequency rocket combustion instability, Jet Propulsion,
28 (12), 841–843.

de Almeida, J. M. (2013), A basis for bounding the errors of proper generalised
decomposition solutions in solid mechanics, International Journal for Numerical
Methods in Engineering, 94 (10), 961–984.

Del Alamo, J. C., J. Jiménez, P. Zandonade, and R. D MOSER (2004), Scaling of
the energy spectra of turbulent channels, Journal of Fluid Mechanics, 500, 135.

DeMers, D., and G. W. Cottrell (1993), Non-linear dimensionality reduction, in Ad-
vances in neural information processing systems, pp. 580–587.

Dettmer, W. G., and D. Perić (2013), A new staggered scheme for fluid–structure
interaction, International Journal for Numerical Methods in Engineering, 93 (1),
1–22.

Dissanayake, M., and N. Phan-Thien (1994), Neural-network-based approximations
for solving partial differential equations, communications in Numerical Methods in
Engineering, 10 (3), 195–201.

Domingo, P., L. Vervisch, and J. Réveillon (2005), Dns analysis of partially premixed
combustion in spray and gaseous turbulent flame-bases stabilized in hot air, Com-
bustion and Flame, 140 (3), 172–195.

178

Dong, C., C. C. Loy, K. He, and X. Tang (2015), Image super-resolution using deep
convolutional networks, IEEE transactions on pattern analysis and machine intel-
ligence, 38 (2), 295–307.

Dow, E., and Q. Wang (2011), Quantification of structural uncertainties in the k-w
turbulence model, in 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures
Conference 13t, p. 1762.

Drmac, Z., and S. Gugercin (2016), A new selection operator for the discrete empir-
ical interpolation method—improved a priori error bound and extensions, SIAM
Journal on Scientific Computing, 38 (2), A631–A648.

Duraisamy, K., Z. J. Zhang, and A. P. Singh (2015), New approaches in turbulence
and transition modeling using data-driven techniques, in 53rd AIAA Aerospace
Sciences Meeting, p. 1284.

Erbts, P., and A. Düster (2012), Accelerated staggered coupling schemes for problems
of thermoelasticity at finite strains, Computers & Mathematics with Applications,
64 (8), 2408–2430.

Farhat, C., and M. Lesoinne (2000), Two efficient staggered algorithms for the serial
and parallel solution of three-dimensional nonlinear transient aeroelastic problems,
Computer methods in applied mechanics and engineering, 182 (3-4), 499–515.

Farhat, C., K. G. Van der Zee, and P. Geuzaine (2006), Provably second-order time-
accurate loosely-coupled solution algorithms for transient nonlinear computational
aeroelasticity, Computer methods in applied mechanics and engineering, 195 (17-
18), 1973–2001.

Farhat, C., A. Rallu, K. Wang, and T. Belytschko (2010), Robust and provably
second-order explicit–explicit and implicit–explicit staggered time-integrators for
highly non-linear compressible fluid–structure interaction problems, International
Journal for Numerical Methods in Engineering, 84 (1), 73–107.

Felippa, C. A., and K.-C. Park (1980), Staggered transient analysis procedures for
coupled mechanical systems: formulation, Computer Methods in Applied Mechanics
and Engineering, 24 (1), 61–111.

Felippa, C. A., K.-C. Park, and C. Farhat (2001), Partitioned analysis of coupled me-
chanical systems, Computer methods in applied mechanics and engineering, 190 (24-
25), 3247–3270.

Fernández, M. A., and M. Moubachir (2005), A newton method using exact jacobians
for solving fluid–structure coupling, Computers & Structures, 83 (2-3), 127–142.

Frezzotti, M. L., F. Nasuti, C. Huang, C. Merkle, and W. E. Anderson (2015a),
Parametric analysis of response function in modeling combustion instability by

179

a quasi-1d solver, in 6th EUROPEAN CONFERENCE FOR AEROSPACE SCI-
ENCES.

Frezzotti, M. L., F. Nasuti, C. Huang, C. Merkle, and W. E. Anderson (2015b),
Response function modeling in the study of longitudinal combustion instability by
a quasi-1d eulerian solver, in 51st AIAA/SAE/ASEE Joint Propulsion Conference,
p. 3840.

Fu, L., M. Karp, S. Bose, P. Moin, and J. Urzay (2018), Equilibrium wall-modeled
les of shock-induced aerodynamic heating in hypersonic boundary layers, Center
for Turbulence Research Annual Research Briefs, pp. 171–181.

Fuhrer, O., et al. (2018), Near-global climate simulation at 1 km resolution: estab-
lishing a performance baseline on 4888 gpus with cosmo 5.0, Geoscientific Model
Development, 11 (4), 1665–1681.

Fukami, K., K. Fukagata, and K. Taira (2019a), Super-resolution reconstruction of
turbulent flows with machine learning, Journal of Fluid Mechanics, 870, 106–120.

Fukami, K., Y. Nabae, K. Kawai, and K. Fukagata (2019b), Synthetic turbulent inflow
generator using machine learning, Physical Review Fluids, 4 (6), 064,603.

Gao, H., J.-X. Wang, and M. J. Zahr (2020), Non-intrusive model reduction of large-
scale, nonlinear dynamical systems using deep learning, Physica D: Nonlinear Phe-
nomena, 412, 132,614.

Gao, H., L. Sun, and J.-X. Wang (2021), Phygeonet: physics-informed geometry-
adaptive convolutional neural networks for solving parameterized steady-state pdes
on irregular domain, Journal of Computational Physics, 428, 110,079.

Gatzhammer, B. (2014), Efficient and flexible partitioned simulation of fluid-structure
interactions, Ph.D. thesis, Technische Universität München.

Geneva, N., and N. Zabaras (2020), Modeling the dynamics of pde systems
with physics-constrained deep auto-regressive networks, Journal of Computational
Physics, 403, 109,056.

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl (2017), Neural
message passing for quantum chemistry, in International conference on machine
learning, pp. 1263–1272, PMLR.

Goc, K., S. Bose, and P. Moin (2020), Wall-modeled large eddy simulation of an
aircraft in landing configuration, in AIAA Aviation 2020 Forum, p. 3002.

Gonzalez, F. J., and M. Balajewicz (2018), Deep convolutional recurrent autoencoders
for learning low-dimensional feature dynamics of fluid systems, arXiv preprint
arXiv:1808.01346.

180

Gou, X., W. Sun, Z. Chen, and Y. Ju (2010), A dynamic multi-timescale method
for combustion modeling with detailed and reduced chemical kinetic mechanisms,
Combustion and Flame, 157 (6), 1111–1121.

Grenda, J., S. Venkateswaran, and C. Merkle (1995), Application of computational
fluid dynamics techniques to engine instability studies, PROGRESS IN ASTRO-
NAUTICS AND AERONAUTICS, 169, 503–528.

Grippo, L., and M. Sciandrone (2000), On the convergence of the block nonlinear
gauss–seidel method under convex constraints, Operations research letters, 26 (3),
127–136.

Gu, C. (2011), Qlmor: A projection-based nonlinear model order reduction approach
using quadratic-linear representation of nonlinear systems, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30 (9), 1307–1320.

Guo, L., S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen, J.-X. Wang, and C. Wang
(2020), Ssr-vfd: Spatial super-resolution for vector field data analysis and visual-
ization, in 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 71–80,
IEEE Computer Society.

Guo, X., W. Li, and F. Iorio (2016), Convolutional neural networks for steady flow
approximation, in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 481–490, ACM.

Ha, D., A. Dai, and Q. V. Le (2016), Hypernetworks, arXiv preprint
arXiv:1609.09106.

Haeseler, D., and O. J. Haidn (2017), Russian Engine Technologies, pp. 427–462,
Springer International Publishing, Cham.

Harrje, D. T., and F. H. Reardon (1972), Liquid propellant rocket combustion insta-
bility, vol. 1, Scientific and Technical Information Office, National Aeronautics and
Space

Harvazinski, M. E., C. Huang, V. Sankaran, T. W. Feldman, W. E. Anderson, C. L.
Merkle, and D. G. Talley (2015), Coupling between hydrodynamics, acoustics, and
heat release in a self-excited unstable combustor, Physics of Fluids, 27 (4), 045,102.

Harvazinski, M. E., R. Gejji, D. G. Talley, M. R. Orth, W. E. Anderson, and T. L.
Pourpoint (2019), Modeling of transverse combustion instability, in AIAA scitech
2019 forum, p. 1732.

He, K., X. Zhang, S. Ren, and J. Sun (2016), Deep residual learning for image recog-
nition, in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 770–778.

181

Hijazi, S., G. Stabile, A. Mola, and G. Rozza (2020), Data-driven pod-galerkin re-
duced order model for turbulent flows, Journal of Computational Physics, 416,
109,513.

Hoang, C., Y. Choi, and K. Carlberg (2021), Domain-decomposition least-squares
petrov–galerkin (dd-lspg) nonlinear model reduction, Computer Methods in Applied
Mechanics and Engineering, 384, 113,997.

Hochreiter, S., and J. Schmidhuber (1997), Lstm can solve hard long time lag prob-
lems, in Advances in neural information processing systems, pp. 473–479.

Holland, J. R., J. D. Baeder, and K. Duraisamy (2019), Field inversion and ma-
chine learning with embedded neural networks: Physics-consistent neural network
training, in AIAA Aviation 2019 Forum, p. 3200.

Huang, C. (2022), Unpublished work, unpublished work.

Huang, C., W. E. Anderson, C. L. Merkle, and V. Sankaran (2016), Multi-fidelity
framework for modeling combustion instability, Tech. rep., AFRL/RQR Edwards
AFB United States.

Huang, C., W. E. Anderson, and C. Merkle (2017), Multi-fidelity framework explo-
rations for nonlinear euler equations, in 53rd AIAA/SAE/ASEE Joint Propulsion
Conference.

Huang, C., J. Xu, K. Duraisamy, and C. Merkle (2018), Exploration of reduced-
order models for rocket combustion applications, in 2018 AIAA Aerospace Sciences
Meeting, p. 1183.

Huang, C., W. E. Anderson, C. L. Merkle, and V. Sankaran (2019a), Multifidelity
framework for modeling combustion dynamics, AIAA Journal, 57 (5), 2055–2068.

Huang, C., K. Duraisamy, and C. L. Merkle (2019b), Investigations and improvement
of robustness of reduced-order models of reacting flow, AIAA Journal, 57 (12),
5377–5389.

Huang, C., C. R. Wentland, K. Duraisamy, and C. Merkle (2021), Model reduction for
multi-scale transport problems using model-form preserving least-squares projec-
tions with variable transformation, Journal of Computational Physics, p. 110742.

Iapichino, L., A. Quarteroni, and G. Rozza (2016), Reduced basis method and do-
main decomposition for elliptic problems in networks and complex parametrized
geometries, Computers & Mathematics with Applications, 71 (1), 408–430.

Jameson, A. (1999), Re-engineering the design process through computation, Journal
of Aircraft, 36 (1), 36–50.

Kafkas, A., and G. Lampeas (2020), Static aeroelasticity using high fidelity aerody-
namics in a staggered coupled and rom scheme, Aerospace, 7 (11), 164.

182

Kerfriden, P., O. Goury, T. Rabczuk, and S. P.-A. Bordas (2013), A partitioned
model order reduction approach to rationalise computational expenses in nonlinear
fracture mechanics, Computer methods in applied mechanics and engineering, 256,
169–188.

Kevrekidis, I. G., C. W. Gear, J. M. Hyman, P. G. Kevrekidid, O. Runborg,
C. Theodoropoulos, et al. (2003), Equation-free, coarse-grained multiscale com-
putation: Enabling mocroscopic simulators to perform system-level analysis, Com-
munications in Mathematical Sciences, 1 (4), 715–762.

Khan, M. I., M. Waqas, T. Hayat, M. I. Khan, and A. Alsaedi (2017), Numerical sim-
ulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions
in convective flow by a variable thicked surface, Journal of Molecular Liquids, 246,
259–267.

Kim, B., V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler (2019),
Deep fluids: A generative network for parameterized fluid simulations, in Computer
Graphics Forum, vol. 38, pp. 59–70, Wiley Online Library.

Kingma, D. P., and J. Ba (2014), Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.

Kipf, T. N., and M. Welling (2016), Semi-supervised classification with graph convo-
lutional networks, arXiv preprint arXiv:1609.02907.

Kochkov, D., J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer (2021),
Machine learning–accelerated computational fluid dynamics, Proceedings of the Na-
tional Academy of Sciences, 118 (21).

Kramer, B., and K. E. Willcox (2019a), Balanced truncation model reduction for
lifted nonlinear systems, arXiv preprint arXiv:1907.12084.

Kramer, B., and K. E. Willcox (2019b), Nonlinear model order reduction via lifting
transformations and proper orthogonal decomposition, AIAA Journal, 57 (6), 2297–
2307.

Kumpati, S. N., P. Kannan, et al. (1990), Identification and control of dynamical
systems using neural networks, IEEE Transactions on neural networks, 1 (1), 4–27.

Kundrapu, M., and M. Keidar (2012), Numerical simulation of carbon arc discharge
for nanoparticle synthesis, Physics of Plasmas, 19 (7), 073,510.

Lagaris, I. E., A. Likas, and D. I. Fotiadis (1998), Artificial neural networks for solving
ordinary and partial differential equations, IEEE transactions on neural networks,
9 (5), 987–1000.

Landrieu, L., and M. Simonovsky (2018), Large-scale point cloud semantic segmenta-
tion with superpoint graphs, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4558–4567.

183

Lane, T. J., D. Shukla, K. A. Beauchamp, and V. S. Pande (2013), To milliseconds
and beyond: challenges in the simulation of protein folding, Current opinion in
structural biology, 23 (1), 58–65.

Launder, B. E., and D. B. Spalding (1983), The numerical computation of turbulent
flows, in Numerical prediction of flow, heat transfer, turbulence and combustion,
pp. 96–116, Elsevier.

Lawson, B. (2015), Rocket propulsion basics.

Ledig, C., et al. (2017), Photo-realistic single image super-resolution using a genera-
tive adversarial network, in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4681–4690.

Lee, C. Y., and S. Cant (2017), Assessment of les subgrid-scale models and inves-
tigation of hydrodynamic behaviour for an axisymmetrical bluff body flow, Flow,
Turbulence and Combustion, 98 (1), 155–176.

Lee, K., and K. T. Carlberg (2020), Model reduction of dynamical systems on non-
linear manifolds using deep convolutional autoencoders, Journal of Computational
Physics, 404, 108,973.

Lee, M., and R. D. Moser (2015), Direct numerical simulation of turbulent channel
flow up to, Journal of Fluid Mechanics, 774, 395–415.

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2017), Hy-
perband: A novel bandit-based approach to hyperparameter optimization, The
Journal of Machine Learning Research, 18 (1), 6765–6816.

Li, Y., J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba (2018), Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids,
arXiv preprint arXiv:1810.01566.

Lilly, K. (1966), On the application of the eddy viscosity concept in the inertial sub-
range of turbulence, National Center for Atmospheric Research manuscript.

Löhner, R., C. Yang, and E. Onate (2007), Simulation of flows with violent free
surface motion and moving objects using unstructured grids, International Journal
for Numerical Methods in Fluids, 53 (8), 1315–1338.

Maday, Y., and E. M. Rønquist (2002), A reduced-basis element method, Journal of
scientific computing, 17 (1), 447–459.

Marley, C. D., K. Duraisamy, and J. F. Driscoll (2015), Reduced order modeling of
compressible flows with unsteady normal shock motion, in 51st AIAA/SAE/ASEE
Joint Propulsion Conference, p. 3988.

Márquez-Neila, P., M. Salzmann, and P. Fua (2017), Imposing hard constraints on
deep networks: Promises and limitations, arXiv preprint arXiv:1706.02025.

184

Matheou, G., and D. Chung (2014), Large-eddy simulation of stratified turbulence.
part ii: Application of the stretched-vortex model to the atmospheric boundary
layer, Journal of the Atmospheric Sciences, 71 (12), 4439–4460.

Matthies, H. G., and J. Steindorf (2002), Partitioned but strongly coupled iteration
schemes for nonlinear fluid–structure interaction, Computers & structures, 80 (27-
30), 1991–1999.

Maulik, R., O. San, A. Rasheed, and P. Vedula (2019), Subgrid modelling for two-
dimensional turbulence using neural networks, Journal of Fluid Mechanics, 858,
122–144.

Maulik, R., A. Mohan, B. Lusch, S. Madireddy, P. Balaprakash, and D. Livescu
(2020), Time-series learning of latent-space dynamics for reduced-order model clo-
sure, Physica D: Nonlinear Phenomena, p. 132368.

Maulik, R., B. Lusch, and P. Balaprakash (2021), Reduced-order modeling of
advection-dominated systems with recurrent neural networks and convolutional
autoencoders, Physics of Fluids, 33 (3), 037,106.

McQuarrie, S. A., C. Huang, and K. E. Willcox (2021), Data-driven reduced-order
models via regularised operator inference for a single-injector combustion process,
Journal of the Royal Society of New Zealand, 51 (2), 194–211.

Milano, M., and P. Koumoutsakos (2002), Neural network modeling for near wall
turbulent flow, Journal of Computational Physics, 182 (1), 1–26.

Mohan, A., D. Daniel, M. Chertkov, and D. Livescu (2019), Compressed convolutional
lstm: An efficient deep learning framework to model high fidelity 3d turbulence,
arXiv preprint arXiv:1903.00033.

Moin, P. (2002), Advances in large eddy simulation methodology for complex flows,
International journal of heat and fluid flow, 23 (5), 710–720.

Moin, P., and K. Mahesh (1998), Direct numerical simulation: a tool in turbulence
research, Annual review of fluid mechanics, 30 (1), 539–578.

Moore, B. (1981), Principal component analysis in linear systems: Controllability,
observability, and model reduction, IEEE transactions on automatic control, 26 (1),
17–32.

Murata, T., K. Fukami, and K. Fukagata (2020), Nonlinear mode decomposition with
convolutional neural networks for fluid dynamics, Journal of Fluid Mechanics, 882.

Narendra, K. S., and K. Parthasarathy (1992), Neural networks and dynamical sys-
tems, International Journal of Approximate Reasoning, 6 (2), 109–131.

Obiols-Sales, O., A. Vishnu, N. Malaya, and A. Chandramowliswharan (2020), Cfd-
net: A deep learning-based accelerator for fluid simulations, in Proceedings of the
34th ACM International Conference on Supercomputing, pp. 1–12.

185

Oliver, T. A., and R. D. Moser (2011), Bayesian uncertainty quantification applied
to rans turbulence models, in Journal of Physics: Conference Series, vol. 318, p.
042032, IOP Publishing.

Oord, A. v. d., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu (2016), Wavenet: A generative model for
raw audio, arXiv preprint arXiv:1609.03499.

Pan, S., and K. Duraisamy (2020), Physics-informed probabilistic learning of linear
embeddings of nonlinear dynamics with guaranteed stability, SIAM Journal on
Applied Dynamical Systems, 19 (1), 480–509.

Parish, E. J., and K. Duraisamy (2016), A paradigm for data-driven predictive mod-
eling using field inversion and machine learning, Journal of Computational Physics,
305, 758–774.

Parish, E. J., C. R. Wentland, and K. Duraisamy (2020), The adjoint petrov–galerkin
method for non-linear model reduction, Computer Methods in Applied Mechanics
and Engineering, 365, 112,991.

Pathak, J., M. Mustafa, K. Kashinath, E. Motheau, T. Kurth, and M. Day (2020),
Using machine learning to augment coarse-grid computational fluid dynamics sim-
ulations, arXiv preprint arXiv:2010.00072.

Peherstorfer, B. (2020), Model reduction for transport-dominated problems via online
adaptive bases and adaptive sampling, SIAM Journal on Scientific Computing,
42 (5), A2803–A2836.

Peherstorfer, B., and K. Willcox (2015), Online adaptive model reduction for nonlin-
ear systems via low-rank updates, SIAM Journal on Scientific Computing, 37 (4),
A2123–A2150.

Peherstorfer, B., Z. Drmac, and S. Gugercin (2020), Stability of discrete empirical
interpolation and gappy proper orthogonal decomposition with randomized and de-
terministic sampling points, SIAM Journal on Scientific Computing, 42 (5), A2837–
A2864.

Peters, N. (1988), Laminar flamelet concepts in turbulent combustion, in Symposium
(International) on Combustion, vol. 21, pp. 1231–1250, Elsevier.

Peterson, J. S. (1989), The reduced basis method for incompressible viscous flow
calculations, SIAM Journal on Scientific and Statistical Computing, 10 (4), 777–
786.

Pfaff, T., M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia (2020), Learning
mesh-based simulation with graph networks, arXiv preprint arXiv:2010.03409.

Piomelli, U., and E. Balaras (2002), Wall-layer models for large-eddy simulations,
Annual review of fluid mechanics, 34 (1), 349–374.

186

Piperno, S., C. Farhat, and B. Larrouturou (1995), Partitioned procedures for the
transient solution of coupled aroelastic problems part i: Model problem, theory
and two-dimensional application, Computer methods in applied mechanics and en-
gineering, 124 (1-2), 79–112.

Pope, S. B. (2004), Ten questions concerning the large-eddy simulation of turbulent
flows, New journal of Physics, 6 (1), 35.

Pradhan, A., and K. Duraisamy (2021), Variational multi-scale super-resolution :
A data-driven approach for reconstruction and predictive modeling of unresolved
physics.

Pradhan, A., R. Biswas, and K. Duraisamy (2020), Super-resolution of finite element
spaces using physics-informed deep learning networks for turbulent flows, Bulletin
of the American Physical Society.

Prants, S., M. Y. Uleysky, and M. Budyansky (2011), Numerical simulation of prop-
agation of radioactive pollution in the ocean from the fukushima dai-ichi nuclear
power plant, in Doklady Earth Sciences, vol. 439, pp. 1179–1182, Springer.

Prud’Homme, C., D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and
G. Turinici (2001), Reliable real-time solution of parametrized partial differential
equations: Reduced-basis output bound methods, J. Fluids Eng., 124 (1), 70–80.

Qin, H. (2020), Machine learning and serving of discrete field theories, Scientific
Reports, 10 (1), 1–15.

Ra, Y., and R. D. Reitz (2008), A reduced chemical kinetic model for ic engine com-
bustion simulations with primary reference fuels, Combustion and Flame, 155 (4),
713–738.

Raissi, M., P. Perdikaris, and G. E. Karniadakis (2019), Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems in-
volving nonlinear partial differential equations, Journal of Computational Physics,
378, 686–707.

Remmler, S., M. Fruman, and S. Hickel (2013), Direct numerical simulation of a
breaking inertia–gravity wave, Journal of Fluid Mechanics, 722, 424–436.

Roe, P. L. (1981), Approximate riemann solvers, parameter vectors, and difference
schemes, Journal of computational physics, 43 (2), 357–372.

Roe, P. L. (1986), Characteristic-based schemes for the euler equations, Annual review
of fluid mechanics, 18 (1), 337–365.

Rowley, C. W. (2005), Model reduction for fluids, using balanced proper orthogonal
decomposition, International Journal of Bifurcation and Chaos, 15 (03), 997–1013.

187

Rowley, C. W., T. Colonius, and R. M. Murray (2004), Model reduction for compress-
ible flows using pod and galerkin projection, Physica D: Nonlinear Phenomena,
189 (1-2), 115–129.

Rozza, G., D. B. P. Huynh, and A. T. Patera (2007), Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive partial
differential equations, Archives of Computational Methods in Engineering, 15 (3),
1.

Rumelhart, D. E., G. E. Hinton, R. J. Williams, et al. (1988), Learning representations
by back-propagating errors, Cognitive modeling, 5 (3), 1.

Safonov, M. G., and R. Chiang (1989), A schur method for balanced-truncation model
reduction, IEEE Transactions on Automatic Control, 34 (7), 729–733.

Sanchez-Gonzalez, A., N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Had-
sell, and P. Battaglia (2018), Graph networks as learnable physics engines for infer-
ence and control, in International Conference on Machine Learning, pp. 4470–4479,
PMLR.

Sanchez-Gonzalez, A., J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia
(2020), Learning to simulate complex physics with graph networks, arXiv preprint
arXiv:2002.09405.

Schalkwijk, J., H. J. Jonker, A. P. Siebesma, and E. Van Meijgaard (2015), Weather
forecasting using gpu-based large-eddy simulations, Bulletin of the American Me-
teorological Society, 96 (5), 715–723.

Schmelzer, M., R. P. Dwight, and P. Cinnella (2020), Discovery of algebraic reynolds-
stress models using sparse symbolic regression, Flow, Turbulence and Combustion,
104 (2), 579–603.

Schwarz, H. A. (1972), Gesammelte mathematische abhandlungen, vol. 260, American
Mathematical Soc.

Sekar, V., Q. Jiang, C. Shu, and B. C. Khoo (2019), Fast flow field prediction over
airfoils using deep learning approach, Physics of Fluids, 31 (5), 057,103.

Sharma, A., J. Xu, A. K. Padthe, P. P. Friedmann, and K. Duraisamy (2019), Simula-
tion of maritime helicopter dynamics during approach to landing with time-accurate
wind-over-deck, in AIAA Scitech 2019 Forum, p. 0861.

Sheikholeslami, M. (2017), Numerical simulation of magnetic nanofluid natural con-
vection in porous media, Physics Letters A, 381 (5), 494–503.

Shroff, G., and R. Schreiber (1989), On the convergence of the cyclic jacobi method
for parallel block orderings, SIAM journal on matrix analysis and applications,
10 (3), 326–346.

188

Simonovsky, M., and N. Komodakis (2017), Dynamic edge-conditioned filters in con-
volutional neural networks on graphs, in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3693–3702.

Singh, A. P., K. Duraisamy, and S. Pan (2017a), Characterizing and improving pre-
dictive accuracy in shock-turbulent boundary layer interactions using data-driven
models, in 55th AIAA Aerospace Sciences Meeting, p. 0314.

Singh, A. P., R. Matai, A. Mishra, K. Duraisamy, and P. A. Durbin (2017b), Data-
driven augmentation of turbulence models for adverse pressure gradient flows, in
23rd AIAA Computational Fluid Dynamics Conference, p. 3626.

Singh, A. P., S. Medida, and K. Duraisamy (2017c), Machine-learning-augmented
predictive modeling of turbulent separated flows over airfoils, AIAA journal, 55 (7),
2215–2227.

Sirignano, J., J. F. MacArt, and J. B. Freund (2020), Dpm: A deep learning pde
augmentation method with application to large-eddy simulation, Journal of Com-
putational Physics, 423, 109,811.

Slotnick, J. P., A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. J.
Mavriplis (2014), Cfd vision 2030 study: a path to revolutionary computational
aerosciences, NASA Technical Reports.

Smagorinsky, J. (1963), General circulation experiments with the primitive equations:
I. the basic experiment, Monthly weather review, 91 (3), 99–164.

Smith, B. F., P. Bjorstad, and W. D. Gropp (1996), Parallel multilevel methods for
elliptic partial differential equations, Domain Decomposition.

Spalart, P., and S. Allmaras (1992), A one-equation turbulence model for aerodynamic
flows, in 30th aerospace sciences meeting and exhibit, p. 439.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014),
Dropout: a simple way to prevent neural networks from overfitting, The journal of
machine learning research, 15 (1), 1929–1958.

Srivastava, V., and K. Duraisamy (2022), Generalizable physics-constrained modeling
using learning and inference assisted by feature space engineering, arXiv preprint
arXiv:2103.16042.

Stanley, K. O., D. B. D’Ambrosio, and J. Gauci (2009), A hypercube-based encoding
for evolving large-scale neural networks, Artificial life, 15 (2), 185–212.

Subel, A., A. Chattopadhyay, Y. Guan, and P. Hassanzadeh (2021), Data-driven
subgrid-scale modeling of forced burgers turbulence using deep learning with gen-
eralization to higher reynolds numbers via transfer learning, Physics of Fluids,
33 (3), 031,702.

189

Sun, L., H. Gao, S. Pan, and J.-X. Wang (2020), Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data, Computer
Methods in Applied Mechanics and Engineering, 361, 112,732.

Swischuk, R., B. Kramer, C. Huang, and K. Willcox (2020), Learning physics-based
reduced-order models for a single-injector combustion process, AIAA Journal,
58 (6), 2658–2672.

Tinoco, E., D. Bogue, T. Kao, N. Yu, P. Li, and D. Ball (2005), Progress toward cfd
for full flight envelope, The Aeronautical Journal, 109 (1100), 451–460.

Tompson, J., K. Schlachter, P. Sprechmann, and K. Perlin (2017), Accelerating eule-
rian fluid simulation with convolutional networks, in International Conference on
Machine Learning, pp. 3424–3433, PMLR.

Tracey, B., K. Duraisamy, and J. Alonso (2013), Application of supervised learning
to quantify uncertainties in turbulence and combustion modeling, in 51st AIAA
aerospace sciences meeting including the new horizons forum and aerospace expo-
sition, p. 259.

Tracey, B. D., K. Duraisamy, and J. J. Alonso (2015), A machine learning strategy
to assist turbulence model development, in 53rd AIAA aerospace sciences meeting,
p. 1287.

Um, K., R. Brand, P. Holl, N. Thuerey, et al. (2020), Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers, arXiv preprint
arXiv:2007.00016.

Urbano, A., Q. Douasbin, L. Selle, G. Staffelbach, B. Cuenot, T. Schmitt, S. Ducruix,
and S. Candel (2017), Study of flame response to transverse acoustic modes from the
les of a 42-injector rocket engine, Proceedings of the Combustion Institute, 36 (2),
2633–2639.

Vallacher, R. R., S. J. Read, and A. Nowak (2017), Computational social psychology,
Routledge.

van Zuijlen, A., and H. Bijl (2004), Implicit and explicit higher order time integration
schemes for fluid-structure interaction computations, in International Conference
on Computational Science, pp. 604–611, Springer.

Van Zuijlen, A., A. de Boer, and H. Bijl (2007), Higher-order time integration through
smooth mesh deformation for 3d fluid–structure interaction simulations, Journal of
Computational Physics, 224 (1), 414–430.

Vollant, A., G. Balarac, G. Geraci, and C. E. Corre (2014), Optimal estimator and
artificial neural network as efficient tools for the subgrid-scale scalar flux modeling,
in Proceedings of the Summer Program, p. 435, Stanford University Stanford, CA.

190

Wang, J.-X., J.-L. Wu, and H. Xiao (2017), Physics-informed machine learning ap-
proach for reconstructing reynolds stress modeling discrepancies based on dns data,
Physical Review Fluids, 2 (3), 034,603.

Wang, Q., J. S. Hesthaven, and D. Ray (2019a), Non-intrusive reduced order modeling
of unsteady flows using artificial neural networks with application to a combustion
problem, Journal of computational physics, 384, 289–307.

Wang, Y., Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon (2019b),
Dynamic graph cnn for learning on point clouds, Acm Transactions On Graphics
(tog), 38 (5), 1–12.

Wentland, C. (2021), Prototyping environment for reacting flow order reduction meth-
ods (perform), https://doi.org/10.5281/zenodo.5517532.

Wilcox, D. C., et al. (1998), Turbulence modeling for CFD, vol. 2, DCW industries
La Canada, CA.

Xiao, D., P. Yang, F. Fang, J. Xiang, C. C. Pain, and I. M. Navon (2016a), Non-
intrusive reduced order modelling of fluid–structure interactions, Computer Meth-
ods in Applied Mechanics and Engineering, 303, 35–54.

Xiao, D., P. Yang, F. Fang, J. Xiang, C. C. Pain, I. M. Navon, and M. Chen (2017),
A non-intrusive reduced-order model for compressible fluid and fractured solid cou-
pling and its application to blasting, Journal of Computational Physics, 330, 221–
244.

Xiao, D., F. Fang, C. E. Heaney, I. Navon, and C. Pain (2019), A domain decomposi-
tion method for the non-intrusive reduced order modelling of fluid flow, Computer
Methods in Applied Mechanics and Engineering, 354, 307–330.

Xiao, H., J.-L. Wu, J.-X. Wang, R. Sun, and C. Roy (2016b), Quantifying and re-
ducing model-form uncertainties in reynolds-averaged navier–stokes simulations:
A data-driven, physics-informed bayesian approach, Journal of Computational
Physics, 324, 115–136.

Xie, C., J. Wang, and E. Weinan (2020), Modeling subgrid-scale forces by spatial
artificial neural networks in large eddy simulation of turbulence, Physical Review
Fluids, 5 (5), 054,606.

Xingjian, S., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo (2015),
Convolutional lstm network: A machine learning approach for precipitation now-
casting, in Advances in neural information processing systems, pp. 802–810.

Xu, J., and K. Duraisamy (2017), Reduced-order modeling of model rocket combus-
tors, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, p. 4918.

191

Xu, J., and K. Duraisamy (2020), Multi-level convolutional autoencoder networks for
parametric prediction of spatio-temporal dynamics, Computer Methods in Applied
Mechanics and Engineering, 372, 113,379.

Xu, J., C. Huang, and K. Duraisamy (2018), Multi-domain reduced-order modeling
with sparse acceleration of combustion instability, in 2018 Joint Propulsion Con-
ference, p. 4680.

Xu, J., C. Huang, and K. Duraisamy (2019), Reduced-order modeling framework for
combustor instabilities using truncated domain training, AIAA Journal, pp. 1–15.

Xu, J., A. Pradhan, and K. Duraisamy (2021), Conditionally parameterized,
discretization-aware neural networks for mesh-based modeling of physical systems,
Advances in Neural Information Processing Systems, 34.

Yan, S., Y. Xiong, and D. Lin (2018), Spatial temporal graph convolutional net-
works for skeleton-based action recognition, in Thirty-second AAAI conference on
artificial intelligence.

Yang, B., G. Bender, Q. V. Le, and J. Ngiam (2019a), Condconv: Conditionally pa-
rameterized convolutions for efficient inference, in Advances in Neural Information
Processing Systems, pp. 1307–1318.

Yang, X., S. Zafar, J.-X. Wang, and H. Xiao (2019b), Predictive large-eddy-simulation
wall modeling via physics-informed neural networks, Physical Review Fluids, 4 (3),
034,602.

Yilmaz, E., and B. German (2017), A convolutional neural network approach to
training predictors for airfoil performance, in 18th AIAA/ISSMO multidisciplinary
analysis and optimization conference, p. 3660.

Young, V. (1995), Liquid rocket engine combustion instability, vol. 169, Aiaa.

Yu, B., H. Yin, and Z. Zhu (2017), Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting, arXiv preprint arXiv:1709.04875.

Yu, Y., J. C. Sisco, S. Rosen, A. Madhav, and W. E. Anderson (2012), Spontaneous
longitudinal combustion instability in a continuously-variable resonance combustor,
Journal of Propulsion and Power, 28 (5), 876–887.

Yu, Y. C. (2009), Experimental and analytical investigations of longitudinal combus-
tion instability in a continuously variable resonance combustor (cvrc), Ph.D. thesis,
Purdue University.

Yuan, Z., C. Xie, and J. Wang (2020), Deconvolutional artificial neural network
models for large eddy simulation of turbulence, Physics of Fluids, 32 (11), 115,106.

Yusuf, S. N. A., Y. Asako, N. A. C. Sidik, S. B. Mohamed, and W. M. A. A. Japar
(2020), A short review on rans turbulence models, CFD Letters, 12 (11), 83–96.

192

Zhang, J., X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung (2018), Gaan: Gated
attention networks for learning on large and spatiotemporal graphs, arXiv preprint
arXiv:1803.07294.

Zhong, X., and X. Wang (2012), Direct numerical simulation on the receptivity, in-
stability, and transition of hypersonic boundary layers, Annual Review of Fluid
Mechanics, 44, 527–561.

Zhuang, J., D. Kochkov, Y. Bar-Sinai, M. P. Brenner, and S. Hoyer (2020), Learned
discretizations for passive scalar advection in a 2-d turbulent flow, arXiv preprint
arXiv:2004.05477.

Zimmermann, R., B. Peherstorfer, and K. Willcox (2018), Geometric subspace up-
dates with applications to online adaptive nonlinear model reduction, SIAM Jour-
nal on Matrix Analysis and Applications, 39 (1), 234–261.

193

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Numerical Simulations and the Need for Reduced-Complexity Modeling
	State-of-the-Art Reduced-Complexity Models
	Model Augmentation and Inference
	Coarse-Graining Solver Acceleration
	Reduced Order Modeling
	Surrogate Modeling

	Overview of Model Development and Inference
	Full Order Model
	POD-Galerkin ROM
	Model Training
	Model Inference and Noise Injection

	Manifestations of the Low Data Limit and the Need for Domain Decomposition
	An Example Full-System Modeling Strategy.
	Challenges in Model-Solver Coupling

	Contributions
	Outline

	Reduced-Domain Training and Coupled Prediction
	Introduction
	Problem Statement
	Full Order Model
	Framework Details
	Characteristic ROM Training on a Reduced Domain
	ROM-FOM Coupling in Online Prediction
	Control Groups

	FOM Results
	ROM Results
	Singular Values and Offline Projection-Reconstruction
	Coupled Online Prediction
	Off-Design Condition Performance

	Summary

	Non-Intrusive ROMs
	Introduction
	Nonlinear Dimensionality Reduction with Neural Networks
	Feed-Forward Network
	Autoencoder
	Convolutional Autoencoder

	Autoregressive Models
	MLP for a Special Case
	Recurrent Neural Networks
	Long Short-Term Memory Network
	Temporal Convolutional Network

	Comparison of Autoregressive ROMs on a Wave Propagation Problem
	Problem Statement
	Models Details
	Offline Projection-Reconstruction
	Online Future-State Prediction

	Multi-Level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-Temporal Dynamics
	Constitute Levels
	Training Procedure

	Parametric Prediction for Flow Over a Cylinder
	Problem Statement
	Results

	Summary

	Conditional Parameterization and Local Surrogate Models
	Introduction
	Conditional Parameterization (CP)
	Local CP model: a Proof-of-Concept Demonstration
	Limitations of Global Projection-Reconstruction
	Results for a Local CNN
	Exact Fitting with a CP-CNN

	Graph Representation of a Discretized System
	Mapping Between a Mesh and a Graph
	Node and Edge Features
	Representations for Boundary Conditions

	Conditionally Parameterized Graph Neural Networks
	The FVM
	Architecture

	Applications of CP-GNet
	Reacting Flow in A Rocket Engine Injector
	Incompressible Flow Over A Cylinder

	Summary

	Coupling a Reduced-Complexity Model with a High-Fidelity Solver
	Introduction
	Overview of Domain Decomposition and Coupling Procedures
	Coupling Intrusive Models
	Coupling with the CP-GNet

	Coupling with Reduced Order Variables
	Strategy 1: Flux Projection
	Strategy 2: Interface MLP
	Strategy 3: Integration Through an Overlapped Projection
	Comparison Between Interface Models

	Coupling Between Mismatched Time-Integration Schemes
	Comparison of Staggered Schemes
	Numerical Tests on Subsonic Inviscid Flow

	Coupled Prediction for Viscous Burgers Equation
	Problem Statement
	Models
	Results

	Coupled Prediction for a Single-Injector Rocket Engine Combustor
	Problem Statement
	Domain Decomposition and Reduced-Domain Training
	Model Details
	Results

	Summary

	Conclusions and Perspectives
	Reduced-Domain Training
	Model Design
	Model-Solver Coupling
	Limitations and Perspectives

	APPENDICES
	Closure Modeling
	Super Resolution
	Comparison Between CP-GNet and MeshGraphNet on the Reacting Flow
	Visualizations for Other Variables in 2D CVRC

	BIBLIOGRAPHY

