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ABSTRACT

This dissertation considers the problem of estimation and inference in four high-dimensional
models: (i) high-dimensional linear models, (ii) high-dimensional linear mixed effects models,
(iii) high-dimensional varying coefficient models with functional random effects, and (iv) low-
rank trace regression models. In the context of linear models, we propose procedures to con-
struct asymptotic confidence intervals for low-dimensional parameters in the presence of high-
dimensional nuisance covariates without the compatibility condition. Then, for linear mixed effects
models, we consider a high-dimensional analogue of the Wald test for random effects, establish-
ing its asymptotic distribution and power. In addition, we show that empirical Bayes estimation
performs as well as the oracle asymptotically in estimating a part of the mean vector. Next, we
consider a high-dimensional varying coefficient model with functional random effects. Under sam-
pling times that are either fixed and common or random and independent, we propose a projection
procedure to estimate and construct confidence bands for the varying coefficients. Finally, in low-
rank trace regression, we establish an in-sample prediction error bound for the rank-constrained
least-squares estimator and consider a permutation test for the entire matrix of regression coeffi-
cients.
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CHAPTER 1

Introduction

In the modern era, we increasingly encounter high-dimensional datasets, where the number of
potential explanatory variables exceeds our number of subjects. For example, in the social sciences,
we may be interested in the effect of many socio-economic factors. Similarly, in large genetic
studies, we may be interested in how individual genomes affect the underlying disease status.
While these modern datasets have the potential to allow scientists to simultaneously control for
many sources of variability, it necessitates the development of new statistical techniques when the
tools of classical statistics are no longer applicable.

In this dissertation, we contribute to the growing literature on high-dimensional statistics in four
aspects:

1. Linear models: As the prototypical example of a high-dimensional model, consider a linear
model given by

yi = ⟨xi,β∗⟩2 + εi, (1.0.1)

where i = 1, . . . , n and xi ∈ Rp is the vector of covariates. Here, yi is the response and εi is
independent and identically distributed noise.

In classical statistics, when p < n, the performance of the least-squares estimator is well un-
derstood; least-squares is the best linear unbiased estimator and semi-parametrically efficient
when the errors are Gaussian. However, when p > n, the coefficient vector β∗ is no longer
identified and we need additional assumptions in order to conduct estimation and inference
for β∗. The most common assumption is coordinatewise sparsity, where s∗ ≜ ∥β∗∥0 < n.
The seminal work of Tibshirani (1996) introduced the lasso estimator, a popular regularized
estimator that induces a sparse estimate of β∗. Ten years elapsed before Candes and Tao
(2007) provided the first statistical guarantees for the Dantzig selector, another regularized
estimator for β∗, which was then extended to the lasso estimator by Bickel et al. (2009).

Later, Javanmard and Montanari (2014), van de Geer et al. (2014), and Zhang and Zhang
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(2014) provided the first guarantees to obtain an asymptotic distribution on a modified ver-
sion of the lasso estimator, enabling statistical inference for low-dimensional parameters in
the high-dimensional context. Despite the theoretical breakthrough, they required a techni-
cal condition known as the compatibility condition to ensure the validity of their estimator.
In Chapter 2, we consider the problem of inference for low-dimensional parameters in a
high-dimensional linear model without the technical compatibility condition. This chapter
is published as Law and Ritov (2021b).

2. Linear mixed effects models: In many practical applications, our observations naturally
exhibit structured dependence. A canonical example arises in the design of experiments,
where each subject is randomly assigned to one of many treatment groups; in such a situa-
tion, we expect individuals who received the same treatment to be dependent. Similarly, it
is common practice in medical settings to perform longitudinal studies, where individuals
are observed over a fixed time period. Then, it is not surprising that measurements from the
same individual are highly correlated.

The linear mixed effects model is a natural extension of the linear model to account for this
type of dependence. Consider the linear mixed effects model given by

yi = ⟨xi,β∗⟩2 + ⟨zi,ν⟩2 + εi (1.0.2)

where i = 1, . . . , n, xi ∈ Rp, and zi ∈ Rq. Again, yi is the response and εi is inde-
pendent and identically distributed noise. Here, β∗ is the vector of regression coefficients
corresponding to the fixed effects with covariates xi while ν is the vector of regression coeffi-
cients corresponding to the random effects with covariates zi. In the context of a longitudinal
design, zi is a standard basis vector encoding the individual and ν is a vector containing the
individual heterogeneity. Compared to the linear model given in equation (1.0.1), there is an
additional term ⟨zi,ν⟩2 to characterizes the dependence structure in our observations.

In Chapter 3, we consider the problem of inference and estimation of the vector ν when
q < n < p, where the fixed effects are high-dimensional but the random effects are low-
dimensional. This chapter is published as Law and Ritov (2022).

3. Varying coefficient models with functional random effects: In the previous two models,
we have implicitly assumed either (i) the data is collected within a short time horizon or
(ii) the underlying data generating mechanism is static over time. Modeling average human
height data across generations is a natural example where we do not expect this assumption
to hold.

The varying coefficient model is a further refinement of the linear model to account for
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temporal influence. Consider the varying coefficient model with functional random effects
given by

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j) (1.0.3)

for i = 1, . . . , n, ti,j ∈ (0, 1), xi ∈ Rp, and zi : (0, 1) → Rq. Here, i corresponds to our
experimental units and ti,j are the sampling times for individual i. Again, yi(·) represents
our response while εi(·) is independent and identically distributed noise. The quantities xi
and zi(·) represent our time invariant and time varying covariates respectively while ξi(·)
denotes the functional random effect. Similar to the linear mixed effects model, by incorpo-
rating functional random effects, we can encapsulate the induced heterogenity arising from
repeated measurements on the same experimental unit. Note that the covariate correspond-
ing to the random effect is simply an indicator for the subject. Thus, the model in equation
(1.0.3) is an extension of the model in equation (1.0.2) to allow for temporal dependence.

In Chapter 4, we consider the problem of estimation and inference for both β∗(·) and γ∗(·).
This chapter is published as Law and Ritov (2021a).

4. Low-rank trace regression models: Finally, we consider the low-rank trace regression
model, an extension of the linear model to accommodate matrix valued covariates, which is
given by

yi = ⟨Xi,Θ
∗⟩HS + εi

for i = 1, . . . , n, where ⟨Xi,Θ
∗⟩HS ≜ tr(XT

i Θ
∗). Here, yi is the response, Xi ∈ Rd1×d2 ,

Θ∗ is a matrix of regression coefficients, and εi is independent and identically distributed
noise. In the high-dimensional context, we have n < d1d2. Compared to the linear model
in equation (1.0.1), we do not assume that Θ∗ is coordinatewise sparse, but rather Θ∗ is
low-rank, which preserves the matrix structure of the data.

The existing literature focuses on the nuclear norm regularized estimator, the analogue of the
lasso estimator to the matrix setting. Like the lasso estimator, the nuclear norm regularized
estimator requires a technical condition on the design matrix to ensure consistent prediction.

In Chapter 5, we consider the problem of prediction under no assumptions on the design
matrix and inference for Θ∗ with independent and identically distributed observations. This
chapter is published as Law et al. (2021).

3



CHAPTER 2

Inference Without Compatibility: Using Exponential
Weighting for Inference on a Parameter of a Linear

Model

2.1 Introduction

In the past decade, there has been much interest in high-dimensional linear models, particularly
following the work of Tibshirani (1996). However, it was not until the past few years that there
have been methods to construct confidence intervals and p-values for particular covariates in the
model. Consider a high-dimensional partially linear model

y = Xβ∗ + µ+ ε, (2.1.1)

with X ∈ Rn×q, and y,µ, ε ∈ Rn. In addition, we also observe covariates Z ∈ Rn×p such
that µ ≈ Zγ∗ for some sparse vector γ∗ ∈ Rp (see Section 2.1.2 for details). The vector µ
represents some underlying random nuisance parameters in the model that affect the response y;
the covariates Z allow us to control for these confounding factors. Regarding the size of each
matrix, we assume that q < n is fixed but p > n is high-dimensional. Our goal is to construct a
confidence region for the entire vector β∗ ∈ Rq.

In recent years, there have been mainly two approaches to constructing confidence intervals
in high-dimensional linear models. There have been approaches such as Lee et al. (2016), which
construct conditional confidence intervals for β∗ given that β∗ was selected by a procedure, such
as the lasso. Simultaneously, there has been work to construct unconditional confidence intervals
for β∗, where X is the a priori selected covariate of interest, such as Javanmard and Montanari
(2014), van de Geer et al. (2014), and Zhang and Zhang (2014); the latter is also our focus. To
avoid digressions, we do not elaborate on the former. A review of many of the current methods is
available in Dezeure et al. (2015). Much of the existing literature relies on using a version of the
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de-sparsified lasso introduced simultaneously by Javanmard and Montanari (2014), van de Geer
et al. (2014), and Zhang and Zhang (2014). The idea behind the existing approaches is to invert
the KKT conditions of the lasso and perform nodewise lasso to approximate the inverse covariance
matrix of the design, which attempts to correct the bias introduced by the lasso.

Since the lasso forms the basis for the procedure, certain assumptions must be made in order to
ensure that the lasso enjoys the nice theoretical properties that have been developed over the past
two decades. The paper by van de Geer and Bühlmann (2009) provides an overview of various
assumptions that have been used to prove oracle inequalities for the lasso. These assumptions are
a consequence of the fact the lasso is used rather than being needed for the statistical problem. In
particular, for confidence intervals, van de Geer et al. (2014) assume that the compatibility condi-
tion holds for the Gram matrix, which is the weakest assumption from van de Geer and Bühlmann
(2009), and is essentially a necessary assumption for the lasso to enjoy the fast rate (cf. Bellec
(2018)). To quote the popular book by Bühlmann and van de Geer (2011), “In fact, a compatibility
condition is nothing else than simply an assumption that makes our proof go through.” However,
this raises an important question on necessity: Is the compatibility condition necessary for con-
structing confidence intervals in high-dimensions?

The main contribution of this paper is proving that the compatibility condition or any of its
variants is indeed not necessary for the statistical problem. To this end, we provide an estimator
which does not require the compatibility condition but still attains the semi-parametric efficiency
bound. Our assumption regarding sparsity is slightly stronger than the minimax rate required by
Javanmard and Montanari (2018) since we allow a broader class of designs. In particular, we show
that, in the absence of compatibility, the rate established by Javanmard and Montanari (2018) is
not attainable and a stronger sparsity assumption is required.

To help clarify the connection between our notion of partially linear model and the high-
dimensional linear models of the aforementioned works, we note that our model is many times
written as a linear model y = ⟨x,β∗⟩2+ ⟨z,γ∗⟩2+ ε, reserving the notion of partially linear model
to y = ⟨x,β∗⟩2 +µ(t) + ε for some unknown smooth function µ(·). We use the PLM terminology
to emphasize that (i) ⟨z,γ∗⟩2 is only an approximation, and (ii) z is a high-dimensional nuisance
parameter, which plays the role of the nonparametric part of a semi-parametric model. For more
details, see Remark 1.1 below.

There is also the recent work of Chernozhukov et al. (2018a), who consider the general problem
of conducting inference on low-dimensional parameters with high-dimensional nuisance parame-
ters. One application of their general theory is for high-dimensional partially linear models, which
is also our problem of interest. A further discussion of their procedure is given in Remark 2.2.1
below.

As a consequence of our estimation procedure for β∗, we are able to construct a
√
n-consistent
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estimator of the signal strength and the noise variance, which we denote by σ2
µ and σ2

ε respectively,
also without the compatibility condition. The paper by Reid et al. (2016) provides a nice overview
of different proposals for estimation of σ2

ε using the lasso. An early work in this direction is Fan
et al. (2012), who construct asymptotic confidence intervals for σ2

ε under a sure screening property
of the covariates; in the setting of the lasso, this requires a β-min condition. Dicker (2014) consider
a similar problem of variance estimation using moment estimators that do not require sparsity of
the underlying signal. However, they do not consider the ultra high-dimensional setting nor the
problem of inference. Later, Janson et al. (2017) considered inference on the signal-to-noise ratio
but the theory developed only applies to Gaussian designs. For the problem of inference for σ2

µ, the
work most similar with ours is Cai and Guo (2020), who consider a more general problem in the
semi-supervised setting, but their results for the supervised framework require minimal non-zero
eigenvalues on the covariance matrix. To this end, we construct estimators that attain asymptotic
variances equal to that of the efficient estimator in low-dimensions.

For both problems, our approach involves using exponential weighting to aggregate over all
models of a particular size. Prima facie, this is a computationally hard problem but can be well
approximated in practice. To this end, we propose an algorithm inspired by Rigollet and Tsybakov
(2011).

2.1.1 Organization of the Chapter

We end the current section with the notation that is used throughout the paper. In Section 2.2, we
discuss the problem of conducting inference for low-dimensional β∗ in the presence of a high-
dimensional nuisance vector µ. The setting of univariate β∗ is considered separately in Section
2.2.1 to motivate the general multivariate procedure of Section 2.2.3. We take a slight detour
in Section 2.2.2 to consider inference when the errors are correlated. The section ends with a
discussion on the necessity of the sparsity assumption in Section 2.2.4. Then, in Section 2.3.1
and Section 2.3.2, we consider the problems of inference for σ2

µ and σ2
ε respectively. In Section

2.4, we provide an overview of the computation of the estimators, which we apply in Section 2.5
for numerical simulations. The proofs for Sections 2.2.1 and 2.2.4 are provided in Section 2.6.
Additional simulation tables and the proofs for the remaining results are available in Appendix 1.

2.1.2 General Notation and Definitions

Throughout, all of our variables (except β∗) have a dependence on n, but when it should not cause
confusion, this dependence is suppressed. For a general vector a and a matrix A, aj denotes the
jth entry of a, Aj the jth column of A, and A(j) the jth row of A. Then, ∥a∥2 denotes the standard
Euclidean norm, with the dimension of the space being implicit from the vector, ∥a∥1 the L1-norm,
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and ∥a∥0 the L0-norm. Furthermore, ∥A∥2 will denote the operator norm and ∥A∥HS the Hilbert-
Schmidt norm. If A is square, A−1 is to be interpreted in a generalized sense whenever the matrix
A is rank deficient.

Before defining weak sparsity, we need to introduce some notation. For u ∈ N,Mu will denote
the collection of all models of Z of size u. That is,

Mu ≜ {m ⊆ {1, . . . , p} : |m| = u} .

Then, for each m ∈Mu, Zm will denote the n× u sub-matrix of Z corresponding to the columns
indexed by m. Moreover, Pm will denote the projection onto the column space of Zm and P⊥

m the
projection onto the orthogonal complement. We can now state the definition of weak sparsity.

Definition 2.1.1. A sequence of vectors µ is said to satisfy the weak sparsity property relative to

Z with sparsity s at rate k if the set

Sµ ≜
{
m ∈Ms :

∥∥P⊥
mµ
∥∥2 = o(k)

}
is non-empty. A set S ∈ Sµ is said to be a weakly sparse set for the vector µ.

If the sequence of vectors µ is random, then they satisfy the weak sparsity property relative to

Z in probability with sparsity s at rate k if the set

Sµ =
{
m ∈Ms :

∥∥P⊥
mµ
∥∥2 = oP(k)

}
is non-empty. A set S ∈ Sµ is said to be a weakly sparse set in probability for the vector µ.

Remark. There are two distinctions to be made, between strong and weak sparsity on one hand,
and between weak sparsity and weak sparsity in probability. The following examples may help to
clarify these notions.

First, suppose that µ = Zγ∗ for a sparse vector γ∗ ∈ Rp with support S. We refer to this case
as strong sparsity and is the commonly assumed setting in high-dimensional linear models (for
example, van de Geer et al. (2014)). Since ∥P⊥

Sµ∥2 = 0, strong sparsity implies weak sparsity.
Second, consider a smooth function µ(·) : R → R. This corresponds to a standard partially

linear model, where µ(t) might denote a dependence of the mean on time. Let Z be a dictionary of
basis functions, say, the harmonic or wavelet basis. Then, µ may be well approximated by a linear
combination of a few basis functions, with the remainder converging to zero, and weak sparsity
holds.

Third, in random designs, it may be that with small probability µ is not well approximated by
any members ofMs, but only holds with high probability. This case is referred to as weak sparsity
in probability.
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In general, if Sµ is non-empty, then we may let γ∗ = (ZT
SZS)

−1ZSµ for any S ∈ Sµ. Depend-
ing on context, we either view γ∗ as a vector in Rp or Rs.

Finally, similar to other works on de-biased inference, we will consider sub-Gaussian errors,
which is defined below.

Definition 2.1.2. A mean zero random vector ξ ∈ Rn is said to be sub-Gaussian with parameter
K if

E exp
(
λTξ

)
≤ exp

(
K2 ∥λ∥22

2

)

for all vectors λ ∈ Rn.

2.2 Inference for β∗

In this section, we consider the main problem of constructing confidence regions for β∗. The model
that we consider is given in equation (2.1.1), which we reproduce below for convenience,

y = Xβ∗ + µ+ ε. (2.2.1)

We write σ2
ε ≜ Var(ε1). For this section, we assume that µ satisfies the weak sparsity property

relative to Z at rate
√
n, but the results still hold if we assume the weak sparsity property in

probability.

2.2.1 The Special Case: q = 1

In this sub-section, we assume throughout that q = 1. In addition to the partially linear model
given in equation (2.2.1), we also assume that xsatisfies a partially linear model, denoted by

x = ν + η, (2.2.2)

where ν satisfies the weak sparsity property relative to Z at rate
√
n. We allow the weakly sparse set

for ν to be different from that of µ. We also assume that η is a sub-Gaussian vector with variance
σ2
η ≜ Var(η1). The sub-Gaussianity assumption is needed to ensure that the empirical estimate of

the norm squared residuals approximates the expectation well enough. By direct substitution, it
follows that

y = νβ∗ + µ+ ηβ∗ + ε.
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Since µ and ν both satisfy the weak sparsity property relative to Z at rate
√
n, the vector νβ∗ +µ

also satisfies the weak sparsity property relative to Z at rate
√
n. To motivate our procedure, we

assume temporarily that the models are in fact low-dimensional linear models. That is, suppose
there are sets Sδ and Sγ such that ν = ZSδ

δ∗ and µ = ZSγγ
∗ for sparse vectors δ∗ and γ∗.

Moreover, assume that the set S ≜ Sδ ∪ Sγ is known and ε ∼ Nn (0n, σ2
εIn). Thus, we are

temporarily assuming the low-dimensional linear models

y = xβ∗ + ZSγγ
∗ + ε = ZSθ+ηβ∗+ε,

x = ZSδ
δ∗ + η,

where θ∗ = δ∗β∗ + γ∗. Then, by the Gauss-Markov Theorem, it is known that the efficient
estimator in this low-dimensional problem is given by least-squares, which may be framed as the
following three stage procedure:

1. Regress y on ZS using least-squares to obtain the fitted values ŷ.

2. Regress x on ZS using least-squares to obtain the fitted values x̂.

3. Regress the residuals y − ŷ on the the residuals x − x̂ using least-squares to obtain the
least-squares estimator β̂LS.

In the high-dimensional setting, the first two stages can no longer be achieved using the classical
least-squares approach. However, since we are only interested in the fitted values ŷ and x̂, this sug-
gests using a high-dimensional prediction procedure to obtain the fitted values, and then applying
low-dimensional least-squares on the residuals in the third stage. The high-dimensional procedure
that we adopt is the exponential weights of Leung and Barron (2006), which has the salient feature
of prediction consistency under very mild assumptions on the design.

Before defining our estimators, we state all of our assumptions.

(2.1) The means µ and ν have squared norms that are OP(n).

(2.2) The entries of η and ε are mutually independent and also independent of Z. Moreover, the
entries of η and ε are each identically distributed sub-Gaussians with parameters Kη and Kε

respectively.

(2.3) The means µ, ν, and νβ∗ + µ are weakly sparse relative to Z with sparsities sγ , sδ, and sθ
respectively at rate

√
n. Furthermore, it is assumed that the statistician knows sequences uγ ,

uδ and uθ with uγ ≥ sγ , uδ ≥ sδ, and uθ ≥ sθ for n sufficiently large and max (uγ, uδ, uθ) =

o(
√
n/ log(p)).
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Condition (2.1) ensures that the trivial situations in which the signal to noise ratios, ∥µ∥22/nσ2
ε

and ∥ν∥22/nσ2
η , respectively, are bounded away from zero and infinity asymptotically. Now, we

may define two sets of exponential weights, wm,y and wm,x, to estimate ŷ and x̂ respectively. Let

wm,y ≜
exp

(
− 1
αy

∥∥P⊥
my
∥∥2
2

)
∑

k∈Muθ
exp

(
− 1
αy

∥∥P⊥
ky
∥∥2
2

)
with αy > 4K2

ε .

Remark. The exponential weights defined above do not subtract off the rank of the projection in
the exponent as in Leung and Barron (2006) since we only consider models of size uθ; the rank
will cancel from the numerator and the denominator.

Now, let θ̂m ≜
(
ZT

mZm

)−1
ZT

my be the least-squares estimator for θ using the covariates Zm.
We identify θ̂m with a vector in Rp, with the support of θ̂m being indexed by m. Then, we may
estimate θ by

θ̂EW ≜
∑

m∈Muθ

wm,yθ̂m,

with the prediction ŷ given by ŷ = Zθ̂EW. Similarly, we define

wm,x ≜
exp

(
− 1
αx

∥∥P⊥
mx
∥∥2
2

)
∑

k∈Muδ
exp

(
− 1
αx

∥∥P⊥
kx
∥∥2
2

) ,
with αx > 4K2

η . Letting δ̂m denote the least-squares estimator of δ∗ using the covariates Zm and
identifying it with a vector in Rp, we may define

δ̂EW ≜
∑

m∈Muδ

wm,xδ̂m.

Then, the fitted values of x are x̂ = Zδ̂EW. Finally, for the last stage, the regression of y − Zθ̂EW

on x− Zδ̂EW is given by

β̂EW ≜

(
x− Zδ̂EW

)T (
y − Zθ̂EW

)
∥∥∥x− Zδ̂EW

∥∥∥2
2

.

Before stating our main result, we state a proposition regarding exponential weighting with
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sub-Gaussian errors.

Proposition 2.1. Consider a high-dimensional linear model given by

y = µ+ ξ,

for ξ sub-Gaussian with parameter Kξ. Assume that µ is weakly sparse relative to Z with sparsity

s and that lim supn→∞ ∥µ∥
2
2 = O(n). Assume further that the chosen sequence of sparsities u ≥ s

satisfy u = o(nτ/ log(p)) for τ > 0 fixed. Letting γ̂m denote the least-squares estimator for γ∗

using the covariates Zm, define the exponential weights as

wm ≜
exp

(
− 1
α

∥∥P⊥
my
∥∥2
2

)
∑

k∈Mu
exp

(
− 1
α

∥∥P⊥
ky
∥∥2
2

) ,
with α > 4K2

ξ . Then,

E

∥∥∥∥∥ ∑
m∈Mu

wmZγ̂m − µ

∥∥∥∥∥
2

2

= o(nτ ).

Remark. We would like to remark that the choice of α is consistent with Leung and Barron
(2006). In particular, when ξ ∼ Nn

(
0n, σ

2
ξIn
)
, the sub-Gaussian parameter is K2 = σ2

ξ , which
gives the requirement that α > 4σ2

ξ . In this setting, we emphasize that the required value of α is
not consistent with a simple Bayesian interpretation since the Bayes procedure requires a leading
constant of 2, as shown by Leung and Barron (2006). However, one of the referees pointed out
that Grünwald and van Ommen (2017) show a way of explaining this in a Bayesian way in some
extended models.

Remark. The assumption that lim supn→∞ ∥µ∥
2
2 = O(n) can be relaxed to hold in probability by

weakening the conclusion to hold in probability rather than expectation (cf. Corollary 2.6.1).

For the remainder of the paper, we only consider the setting where τ = 1/2. As an immediate
corollary, we have the following.

Corollary 2.1.1. Consider the models given in equations (2.2.1) and (2.2.2) with q = 1. Under

assumptions (2.1) – (2.3), ∥∥∥νβ∗ + µ− Zθ̂EW

∥∥∥2
2
= oP(

√
n),∥∥∥ν − Zδ̂EW

∥∥∥2
2
= oP(

√
n).
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Finally, we can state the main result for β̂EW.

Theorem 2.2. Consider the models given in equations (2.2.1) and (2.2.2) with q = 1. Under

assumptions (2.1) – (2.3),

√
n
(
β̂EW − β∗

)
L→ N

(
0,
σ2
ε

σ2
η

)
.

We would like to note that β̂EW attains the information bound for estimating β∗ (cf. Exam-
ple 2.4.5 of Bickel et al. (1993) and Section 2.3.3 of van de Geer et al. (2014)). Moreover, the
convergence of β̂EW is actually uniform. Consider the following parameter space

B ≜
{
(β∗, σ2

η, σ
2
ε , Kη, Kε) : β

∗ ∈ R, σ2
η > 0, σ2

ε > 0, Kη > 0, Kε > 0
}
.

This induces a set of probability measures (Pϑ)ϑ∈B. Then, we have the following corollary.

Corollary 2.2.1. Let K be a compact set of (Pϑ)ϑ∈B with respect to variational distance. Under

the setup of Theorem 2.2,

√
n
(
β̂EW − β∗

)
= a+ b,

where

a ∼ N
(
0,
σ2
ε

σ2
η

)
,

|b| = oP(1)

uniformly for ϑ ∈ K .

Corollary 2.2.1 asserts that β̂EW is uniformly Gaussian regular. Like Theorem 2.3 of van de
Geer et al. (2014), the estimator β̂EW is regular on one-dimensional parametric sub-models of (14)
of van de Geer et al. (2014) and attains asymptotic semi-parametric efficiency. The main difference
is replacing the assumption of compatibility of the design with the sparsity assumption (2.3).

Remark. The estimator, β̂EW, at first glance seems similar to the double/de-biased estimator of
Chernozhukov et al. (2018a) by considering exponential weighting as the estimation procedure for
the propensity function. However, the primary difference is that we do not rely on cross fitting
to estimate the conditional mean of x and y given the covariates Z. Therefore, β̂EW does not
fall within the general framework of Chernozhukov et al. (2018a) since we are using exponential
weighting to solve in the in-sample prediction problem.
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To construct confidence intervals, we need to estimate both σ2
ε and σ2

η . We defer explicitly
defining estimators for the variance until Section 2.3.2 but let σ̂2

ε and σ̂2
η be any of the three estima-

tors proposed by Theorem 2.10 for estimating variance. Then, an asymptotic (1 − α) confidence
interval for β∗ is given by (

β̂EW − zα/2

√
σ̂2
ε

σ̂2
ηn
, β̂EW + zα/2

√
σ̂2
ε

σ̂2
ηn

)
,

where zα/2 denotes the α/2 upper quantile of the standard Gaussian distribution.

2.2.2 Correlated Gaussian Errors

In this sub-section, we take a slight detour away from classical high-dimensional partially linear
models and consider the setting where the errors, ε, are Gaussian but not necessarily independent
and identically distributed. The goal is to conduct inference on β∗, but, for simplicity, we only
consider the setting where q = 1. This model arises naturally if the model was a linear mixed
model given by

y = xβ∗ + µ+Wζ + ξ,

where ζ are Gaussian random effects and ξ is independent Gaussian noise. Bradic et al. (2019)
and Li et al. (2019) consider more general problems of testing fixed effects in high-dimensional
linear mixed models, whereas we simply view the problem as a linear model with correlated noise.
Even when the errors are correlated, β̂EW still has a Gaussian limit under proper rescaling. Before
stating the theorem, we will slightly modify assumption (2.2) to the setting where ε is correlated:

(2.2 ∗) The entries of η ∼ Nn
(
0, σ2

ηIn
)

are independent of Z and ε. The vector ε ∼ Nn (0,Σε) is
independent of Z with ∥Σε∥ = O(1) and tr(Σε)/n→ d̄ > 0.

Now, we may state the main result for β̂EW under correlation.

Theorem 2.3. Consider the models given in equations (2.2.1) and (2.2.2) with q = 1. Under

Assumptions (2.1), (2.2 ∗), and (2.3),

√
n
(
β̂EW − β∗

)
L→ N

(
0,
d̄

σ2
η

)
.

Again, we defer defining an estimator for d̄ and σ2
η until Section 2.3.2, in particular Corollary

2.3.2. Similar to the previous section, we may now construct confidence intervals for β∗ under this
setting of correlation.
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2.2.3 The General Case: q > 1

In the general setting where q > 1, we may still rely on the perspective of high-dimensional
prediction. Analogous to Section 2.2.1, we assume that each column of X satisfies a partially linear
model. That is, there exist matrices N,H ∈ Rn×q (read, capital N and capital H, respectively)
such that each column of X satisfies Xj = Nj+Hj , where Nj satisfies the weak sparsity property
relative to Z at rate

√
n for each 1 ≤ j ≤ q. The weakly sparse set for each Nj may be different

but the sparsity rate is uniformly
√
n. In matrix form, we have that

X = N+H. (2.2.3)

Since q is fixed and µ and each Nj satisfy the weak sparsity property relative to Z at rate
√
n,

the vector Nβ∗ + µ also satisfies the weak sparsity property relative to Z at rate
√
n. Moreover,

H is assumed to be sub-Gaussian with the covariance matrix of each row of H given by ΣH ≜

Var(H(1)).
Then, for 1 ≤ j ≤ q, we may let δ̂EW,j denote the analogue of δ̂EW for regressing Xj on Z

and estimate Xj by Zδ̂EW,j . Let ∆̂EW ∈ Rp×q denote the matrix with columns given by δ̂EW,j for
1 ≤ j ≤ q. Then, the multidimensional analogue of β̂EW from Section 2.2.1 is given by

β̂EW ≜

((
X− Z∆̂EW

)T (
X− Z∆̂EW

))−1 (
X− Z∆̂EW

)T (
y − Zθ̂EW

)
.

We would like to emphasize that the definition here is identical to that given in Section 2.2.1 when
q = 1.

Then, we will make the following assumptions.

(2.4) The mean vectors µ and Nj for 1 ≤ j ≤ q have squared norms that are uniformly OP(n).

(2.5) The rows of H and the entries of ε are independent and also independent of Z. Moreover,
the entries of the rows of H and the entries of ε are each identically distributed sub-Gaussian
with parameters Kη,j and Kε respectively. Furthermore, ΣH is an invertible matrix.

(2.6) All the mean vectors µ, Nj for 1 ≤ j ≤ q, and Nβ∗+µ are weakly sparse relative to Z with
sparsities sγ , sδ,j for 1 ≤ j ≤ q, and sθ respectively at rate

√
n. Furthermore, it is assumed

that the statistician knows sequences uγ , uδ,j , and uθ with uγ ≥ sγ , uδ,j ≥ sδ,j for 1 ≤ j ≤ q

and uθ ≥ sθ for n sufficiently large and max (uγ,max1≤j≤q (uδ,j) , uθ) = o(
√
n/ log(p)).

We can now state the asymptotic distribution for β̂EW.

14



Theorem 2.4. Consider the models given in equations (2.2.1) and (2.2.3). Under assumptions

(2.4) – (2.6),

√
n
(
β̂EW − β∗

)
L→ Nq

(
0q, σ

2
εΣ

−1
H

)
.

Similar to before, to construct confidence regions, we need to estimate ΣH . Therefore, we
consider

Σ̂H ≜
1

n

(
X− Z∆̂EW

)T (
X− Z∆̂EW

)
.

This leads to the following proposition.

Proposition 2.5. Consider the models given in equations (2.2.1) and (2.2.3). Under assumptions

(2.4), (2.5), and (2.6),

Σ̂H
P→ ΣH .

Then, an asymptotic (1− α) confidence region for β∗ is given by{
β ∈ Rq :

n

σ̂2
ε

(
β̂EW − β

)T
Σ̂H

(
β̂EW − β

)
≤ χ2

q,α

}
,

where χ2
q,α denotes the α upper quantile of a χ2

q random variable.

2.2.4 Necessity of Sparsity Assumption

In Section 2.2.1, it was assumed that both µ and ν are weakly sparse with sparsity sγ and sδ re-
spectively at rate

√
n in order for β̂EW to have an asymptotic Gaussian distribution. For simplicity,

in the ensuing discussion, we will only consider the case where q = 1, that there exists an S ∈ Sµ
such that

∥∥P⊥
Sµ
∥∥2
2
= 0, and the design (X,Z) is fully Gaussian with population covariance matrix

Σ. That is, Σ = Var(X1,Z
(1)). We write ΣZ,Z to denote the p× p sub-block of Σ corresponding

to Z. Letting Ω = Σ−1, it follows that

sδ = |{1 ≤ j ≤ p : Ω1,j ̸= 0}| ,

which is equivalent to sΩ from Javanmard and Montanari (2018). Compared to the de-biased
lasso, Javanmard and Montanari (2018) showed that, if sγ = o(n/ log2(p)) and min(sγ, sδ) =

o(
√
n/ log(p)), then the de-biased lasso has an asymptotic Gaussian distribution. However, β̂EW is

a valid estimator on a larger class of designs, in particular incompatible designs, and Theorem 2.6
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formalizes this trade-off between sparsity and compatibility. Before stating the theorem, we will
need to introduce a bit of notation regarding our parameter space Θ, which is defined as

Θ(sγ, sδ) ≜ {ϑ =
(
β∗,γ∗, δ∗,ΣZ,Z , σ

2
η, σ

2
ε

)
: ∥γ∗∥0 ≤ sγ, ∥δ∗∥0 ≤ sδ,

max
(
(γ∗)TΣZ,Zγ

∗, (δ∗)TΣZ,Zδ
∗, σ2

η, σ
2
ε

)
= O(1)}.

Theorem 2.6. For ϑ ∈ Θ(sγ, sδ), consider the following model

Z(1), . . . ,Z(n) i.i.d∼ Np (0p,ΣZ,Z) ,

ε ∼ Nn
(
0n, σ

2
εIn
)
,

η ∼ Nn
(
0n, σ

2
ηIn
)
,

y = Xβ∗ + Zγ∗ + ε,

X = Zδ∗ + η.

Assume that either sγ = o(
√
n/ log(p)) or sδ = o(

√
n/ log(p)). If there exists a

√
n-consistent

estimator of β∗ for all ϑ ∈ Θ(sγ, sδ), then both sγ = O(
√
n/ log(p)) and sδ = O(

√
n/ log(p)).

In light of the results of Javanmard and Montanari (2018), to construct a
√
n-consistent esti-

mator of β∗, it must be the case that either sγ = o(
√
n/ log(p)) or sδ = o(

√
n/ log(p)). The

previous theorem implies that the other sparsity must satisfy O(
√
n/ log(p)). Assumption (2.3) is

only mildly stronger, requiring max (sγ, sδ) = o(
√
n/ log(p)).

Corollary 2.6.1. For ϑ ∈ Θ(sγ, sδ), consider the model in Theorem 2.6. If there exists
√
n-

consistent estimator of β∗ for all ϑ ∈ (sγ, sδ), then max(sγ, sδ) = O(
√
n/ log(p)).

2.3 Inference for σ2µ and σ2ε
In this section, we consider the problem of conducting inference for both σ2

µ and σ2
ε . Dicker

(2014), Janson et al. (2017), and Cai and Guo (2020) provide interesting applications of both
estimation and inference to which we refer the interested reader. The main model that we consider
is slightly different than that considered in the previous section. Since we are not interested in the
contribution of any particular covariate, we do not need to distinguish X from Z. Hence, we set
q = 0 and consider the following model,

y = µ+ ε. (2.3.1)

Unlike Section 2.2, we viewµ as a random quantity, with σ2
µ ≜ Var(µ1). Thus, σ2

µ can be viewed as
the explained variation in the data using the covariates Z. Throughout this section, Sγ will denote
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the weakly sparse set for µ with sparsity sγ . When constructing a
√
n-consistent estimator for σ2

µ,
the asymptotic distribution depends on the variance of µ2

1, which we denote by κµ ≜ Var (µ2
1).

Similarly, we need to let κε ≜ Var (ε21) when constructing confidence intervals for σ2
ε .

2.3.1 Inference for σ2µ
To motivate our high-dimensional procedure, we start by considering the low-dimensional setting.
Letting Sγ denote a weakly sparse set for µ relative to Z and identifying γ∗ with a vector in Rsγ ,
we temporarily consider the linear model

y = ZSγγ
∗ + ε. (2.3.2)

The natural estimator for σ2
µ is given by n−1

∥∥PSγy
∥∥2
2
. The following proposition shows that this

natural estimator is in fact efficient for estimating σ2
µ with Gaussian errors.

Proposition 2.7. Consider the model given in equation (2.3.2). Assume that the design ZSγ has

full column rank and sγ < n is fixed. Then, the estimator n−1
∥∥PSγy

∥∥2
2

is efficient for estimating

σ2
µ.

From the Central Limit Theorem, it is immediate that

√
n
(
n−1

∥∥PSγy
∥∥2
2
− σ2

µ

)
L→ N

(
0, κµ + 4σ2

µσ
2
ε

)
.

In the high-dimensional setting, there are three natural extensions of this low-dimensional effi-
cient estimator using exponential weighting. The first idea is to view PSγy as the predicted values
of y and directly use take the squared norm of the predicted values given by exponential weighting.
For m ∈Muγ , let γ̂m denote the least-squares estimator for γ∗ using the covariates Zm and set

µ̂ ≜
∑

m∈Muγ

wm,yγ̂m,

where wm,y is defined in Section 2.2.1. Then, we may consider the estimator

σ̂2
µ,I ≜

1

n
∥µ̂∥22 .

Alternatively, we may take the perspective that exponential weights concentrate well around the
models with high predictive capacity, which would suggest aggregating the squared norms,

σ̂2
µ,II ≜

1

n

∑
m∈Muγ

wm,y ∥Pmy∥22 .
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The last estimator that we consider is inspired by the low-dimensional maximum likelihood esti-
mator for σ2

ε and the fact that Var(y1) = σ2
µ + σ2

ε :

σ̂2
µ,III ≜

1

n

(
∥y∥22 − ∥y − µ̂∥

2
2

)
.

Before stating the main results for these estimators, we first provide all of our assumptions.

(2.8) The mean vector µ has independent and identically distributed entries with finite fourth
moment.

(2.9) The entries of ε are independent of Z. Moreover, the entries of ε are independent and
identically distributed sub-Gaussians with parameter Kε.

(2.10) The vectorµ is weakly sparse relative to Z with sparsity sγ . Furthermore, the chosen sparsity
uγ satisfies uγ = o(

√
n/ log(p)) and uγ ≥ sγ for n sufficiently large.

Assumption (2.8) implies that ∥µ∥22 = OP(n). By Jensen’s inequality, it is immediate that
σ̂2
µ,I ≤ σ̂2

µ,II ≤ σ̂2
µ,III . However, it turns out that, under the above assumptions, these estimators

are asymptotically equivalent at the
√
n-rate. Recall that κµ ≜ Var(µ2

1). The following theorem
provides the asymptotic distribution of the three estimators.

Theorem 2.8. Consider the model given in equation (2.3.1). Suppose that σ2
µ > 0. Under assump-

tions (2.8) – (2.10),

√
n
(
σ̂2
µ − σ2

µ

) L→ N
(
0, κµ + 4σ2

εσ
2
µ

)
.

where σ̂2
µ is either σ̂2

µ,I , σ̂
2
µ,II , or σ̂2

µ,III .

Since our interest is mainly asymptotic, we write σ̂2
µ to denote generically one of the estimators

for σ2
µ. To construct confidence intervals for σ2

µ, we need to estimate κµ, which may be accom-
plished by considering

κ̂µ ≜
1

n

n∑
j=1

(
µ̂2
j − σ̂2

µ

)2
.

The following proposition shows that κ̂µ is a consistent estimator for κµ.

Proposition 2.9. Consider the model given in equation (2.3.1). Under assumptions (2.8) – (2.10),

κ̂µ
P→ κµ.
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Therefore, an asymptotic (1− α) confidence interval for σ2
µ is given by(

σ̂2
µ − zα/2

√
κ̂µ + 4σ̂2

ε σ̂
2
µ

n
, σ̂2

µ + zα/2

√
κ̂µ + 4σ̂2

ε σ̂
2
µ

n

)
. (2.3.3)

2.3.2 Inference for σ2ε
In this section, we are interested in constructing confidence intervals for σ2

ε . In the low-dimensional
setting with Gaussian errors, an estimator for σ2

ε is given by maximum likelihood, which may be
written as

σ̂2
ε,ML =

1

n

∥∥y −PSγy
∥∥2
2
.

From classical parametric theory, σ̂2
ε,ML is an efficient estimator for σ2

ε that achieves the information
bound. A natural extension in the high-dimensional setting is to view PSγy as the predicted value
and consider the estimator

σ̂2
ε,I ≜

1

n
∥y − µ̂∥2 ,

where µ̂ is defined in Section 2.3.1. Recalling that Var (y1) = σ2
µ+σ

2
ε , we may consider two more

estimators of σ2
ε in light of the results of Section 2.3.1, which are

1.
σ̂2
ε,II ≜

1

n
∥y∥22 − σ̂

2
µ,II .

2.
σ̂2
ε,III ≜

1

n
∥y∥22 − σ̂

2
µ,I .

Again, by Jensen’s inequality, it is immediate that σ̂2
ε,I ≤ σ̂2

ε,II ≤ σ̂2
ε,III . Similar to before, these

three estimators are asymptotically equivalent at the
√
n-rate and the following theorem provides

the asymptotic distribution for all three.

Theorem 2.10. Consider the model given in (2.3.1) with σ2
µ > 0. Under assumptions (2.8) –

(2.10),
√
n (σ̂2

ε − σ2
ε)

L→ N (0, κε) , where σ̂2
ε is one of σ̂2

ε,I , σ̂
2
ε,II , or σ̂2

ε,III .

This gives us an immediate corollary to estimating d̄ from Section 2.2.2, which requires the
following assumption:

(2.2∗) The vector ε ∼ Nn (0,Σε) is independent of Z with ∥Σε∥2 = O(1) and tr(Σε)/n→ d̄ > 0.
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Consider the model given in equation (2.3.1). Under assumptions (2.8), (2.2∗), and (2.10), σ̂2
ε,I

P→
d̄.

Remark. Currently, in this section, we have assumed that q = 0 but the theory for all three
estimators of σ2

ε are still valid when q > 0. In this setting, Xβ∗ + µ is weakly sparse relative
to (X,Z) with sparsity sγ at rate

√
n. Therefore, by using exponential weighting with the design

(X,Z), the above theorem implies that all three estimators are consistent for σ2
ε .

Remark. In practice, one may consider a version of the three estimators dividing by n−uγ instead
of n, consistent with the low-dimensional unbiased mean squared error estimator. Asymptotically,
since uγ = o(

√
n), they have the same asymptotic distribution but seem to have better performance

empirically in finite sample.

Again, since σ̂2
ε,I , σ̂

2
ε,II , and σ̂2

ε,III are asymptotically equivalent, we write σ̂2
ε to denote a generi-

cally any of the three estimators. To construct confidence intervals for σ2
ε , we will need to estimate

κε. The estimator that we propose is similar to κ̂µ, namely we will defined κ̂ε as

κ̂ε ≜
1

n

n∑
j=1

((
yj − µ̂j

)2 − σ̂2
ε

)2
.

Analogous to Proposition 2.9, the following provides the consistency of κ̂ε.

Proposition 2.11. Consider the model given in equation (2.3.1). Under assumptions (2.8) – (2.10),

κ̂ε
P→ κε.

Therefore, an asymptotic (1− α) confidence interval for σ2
ε is given by(

σ̂2
ε − zα/2

√
κ̂ε
n
, σ̂2

ε + zα/2

√
κ̂ε
n

)
. (2.3.4)

2.4 Implementation

In this section, we describe a method to approximate all of the proposed estimators. Since all of our
estimators are based on exponential weighting, we will only detail the task of estimating θ̂EW, with
the others being analogous. Then, the goal of approximating θ̂EW can be split into the following
two tasks:

1. Determining the values of the tuning parameters αy and uθ.

2. Aggregating over
(
p
uθ

)
models.
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We start with the second task. Suppose temporarily that values of αy and uθ have been selected.
To aggregate the models, we follow the Metropolis Hastings scheme of Rigollet and Tsybakov
(2011). Our approach slightly differs from theirs since we restrict our attention to uθ-sparse models
whereas they consider models of varying sizes.

Conditional on the data, the values of θ̂EW and θ̂m for each m ∈ Muθ are fixed. We may view
Muθ as the vertices of the Johnson graph J(p, uθ, uθ − 1) (cf. Godsil and Royle (2013)). Then,
for each m ∈ Muθ , by assigning weight wm,y to vertex m, the target θ̂EW may be viewed as the
expectation of the fixed estimators θ̂m over the graph J(p, uθ, uθ− 1), conditional on the observed
data. Hence, by taking a random walk over J(p, uθ, uθ − 1), we may approximate θ̂EW.

Before describing the algorithm, we need to introduce a bit of notation. For any model m ∈
Muθ , we let Km denote the neighbors of m, which is given by

Km ≜ {k ∈Muθ : |k ∩m| = uθ − 1} .

Moreover, we write RSSm ≜
∥∥P⊥

my
∥∥2
2
, the residual sum of squares. Furthermore, recall that if

ZT
mZm is rank deficient, then (ZT

mZm)−1 denotes any generalized inverse. Finally, let T0 denote
some burn-in time for the Markov chain and T denote the number of samples from the Markov
chain. This yields the following algorithm, which closely parallels Rigollet and Tsybakov (2011).
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Algorithm 1: Exponential weighting algorithm

Result: Approximates θ̂EW

Initialize a random point m0 ∈Muθ and compute RSSm0;
for t = 0, . . . , T do

Uniformly select k ∈ Kmt and compute RSSk;
Generate a random variable mt+1 by

mt+1 =

mt with probability exp
(
− 1
αy
(RSSk −RSSmt)

)
;

k with probability 1− exp
(
− 1
αy
(RSSk −RSSmt)

)
;

if t > T0 then
Compute θ̂t+1 ← (ZT

mt+1
Zmt+1)

−1ZT
mt+1

y, embedded as a vector in Rp;
end

end
return

1

T

T0+T∑
t=T0+1

θ̂t+1;

Then, analogous to Theorem 7.1 of Rigollet and Tsybakov (2011), it will follow that

lim
T→∞

1

T

T0+T∑
t=T0+1

θ̂t+1 = θ̂EW P almost surely.

Now, for the first task, we may construct a grid of parameter points and use cross-validation
to jointly tune the parameters using the above algorithm. Since both αY and uθ do not need to be
known exactly, but need to be tuned to be larger than a threshold, the grid can be quite coarse to
ease the computational burden.

Computation in the ultrahigh-dimension is inherently difficult. In view of Zhang et al. (2014),
there is no polynomial time algorithm that achieves the minimax rate for prediction without the
restricted eigenvalue condition. However, we do not know any algorithm that verifies the restricted
eigenvalue condition in polynomial time (cf Raskutti et al. (2010)). In this paper, we completely
avoid assuming a condition like the restricted eigenvalue condition and therefore we cannot guar-
antee polynomial time convergence. Yet, the algorithm behaves well in practice, as can be seen
from the simulations in the following section.
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2.5 Simulations

We divide this section into two parts, corresponding to simulations for β∗ and simulations for
variance components σ2

µ and σ2
ε . Additional simulation tables are included in the Supplement.

2.5.1 Simulations for β∗

For ease of comparison, our simulations will be similar to those given in van de Geer et al. (2014).
For the linear models

y = Xβ∗ + µ+ ε,

Xj = Nj +Hj,

we consider the setting where n = 100 and p = 500. There are a few parameters with which we
experiment: q, β∗, the distribution of the design and errors, the sparsities, and the signal to noise
ratio. For each parameter pairing, we run 500 simulations. All confidence intervals are constructed
at the nominal 95% level.

Since the number of parameters of interest is fixed and low-dimensional, we consider the set-
tings where q ∈ {1, 3}. To assess both the coverage and the power, we let β∗ be a vector in Rq

with values in {0, 1}. To experiment with the robustness to the sub-Gaussianity assumption, we use
Gaussian, double exponential, and t(3) distributions for the errors, all scaled to have mean zero and
unit variance. We denote these distributions by z, e, and t respectively. Therefore, σ2

ε = 1 through-
out this section. The design have the same distribution as the error, but with an equi-correlation
covariance matrix. That is, we consider the covariance matrix, Σ(Z) to be

Σ(Z)i,j =

1 if i = j

ρ if i ̸= j

for ρ ∈ {0, 0.8}. When q = 3, the covariance matrix for H(1), denoted by Σ(H), also is equi-
correlation,

Σ(H) =

σ2
η if i = j.

0.5σ2
η if i ̸= j,

where σ2
η is chosen so that Var(X1) = 1.

Similar to van de Geer et al. (2014), we let the sparsity sγ ∈ {3, 15}, and, for simplicity, set
sδ = sγ . We set the signal to noise ratio of µ to ε, which is given by σ2

µ/σ
2
ε , to be 2. Since large
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values of the signal to noise ratio (SNR) of Nj to Hj correspond to highly correlated designs, we
also consider SNRX ≜ σ2

ν/σ
2
η ∈ {2, 1000}.

For our simulations, we say µ is weakly sparse relative to Z with sparsity sγ at rate
√
n if there

exists an sγ-sparse set S and vector γS such that Var(µ1 − (ZSγ
∗
S)1) ≤ n−1/2. In particular, we

consider vectors γ∗ of the form

γ∗
j ∝ π(j)−κ j = 1, . . . , p

for some value κ > 0 and permutation π : {1, . . . , p} → {1, . . . , p}. A similar approach is applied
for ∆.

We will compare our estimators with a few other procedures:

1. (LS) Oracle least-squares that knows the true weakly sparse set Sγ .

2. (DLA) De-biased lasso from Dezeure et al. (2015) as implemented in the R package hdi.
We only apply this when q = 1.

3. (SILM) Simultaneous inference for high-dimensional linear models of Zhang and Cheng
(2017) as implemented in the R package SILM.

4. (DML) Double/de-biased machine learning of Chernozhukov et al. (2018a) with 4 folds
using the scaled lasso of Sun and Zhang (2012) as the estimation procedure as implemented
in the R package scalreg. We only apply this when q = 1.

5. (EWI), (EWII), (EWIII) Exponential weights using σ̂2
ε,I , σ̂

2
ε,II , and σ̂2

ε,III respectively. We
tune the parameters using cross-validation with T0 = 3000 and T = 7000.

To evaluate the procedures, we use the following two measures

1. (AvgCov) Average coverage: The percentage of time the true value of β∗ falls inside the
confidence region.

2. (AvgLen) Average length: The average length of the confidence interval (only when q = 1).

The results are given in Table 1 and Tables A.2.1–A.2.11 from the Supplement. In the q = 1

setting with SNRX = 2, the coverage is comparable amongst all of the estimators. However, the
de-biased lasso and the SILM procedure are slightly preferable in this regime since the length of the
intervals are slightly shorter. When β∗ = 0, SNRX = 1000, and ρ = 0.8, the coverage of the de-
biased lasso is quite poor, with less than a 25% coverage against a nominal rate of 95%. The result
should not be surprising since this corresponds to a setting of high correlation in the design, which
weakens the compatibility condition. The double/de-biased machine learning approach has strong
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Table 2.1: Simulations for β∗ with Gaussian design and errors when q = 1 and β∗ = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.946 0.880 0.946 0.958 0.942 0.908 0.938 0.930
DLA 0.958 0.884 0.976 0.978 0.954 0.870 0.218 0.170
SILM 0.970 0.872 0.962 0.970 0.958 0.812 0.900 0.902

AvgCov DML 0.966 0.850 0.956 0.946 0.982 0.844 1.000 1.000
EWI 0.956 0.868 0.956 0.962 0.960 0.828 0.954 0.968
EWII 0.978 0.912 0.976 0.980 0.972 0.898 0.966 0.984
EWIII 0.984 0.938 0.984 0.994 0.980 0.936 0.980 0.994
LS 0.427 0.462 0.589 0.684 0.430 0.467 0.919 1.440
DLA 0.493 0.532 0.689 0.700 0.530 0.547 0.544 0.501
SILM 0.529 0.559 0.670 0.697 0.623 0.609 0.666 0.646

AvgLen DML 0.650 0.634 0.694 0.692 1.510 0.881 10.600 11.100
EWI 0.623 0.636 0.700 0.716 1.060 0.774 1.910 1.830
EWII 0.690 0.710 0.768 0.797 1.170 0.868 2.100 2.040
EWIII 0.749 0.776 0.830 0.871 1.280 0.951 2.270 2.240

nominal coverage in this regime (about 100%), but the length of the intervals are significantly
longer than the other procedures (about four to five times longer than exponential weighting).
When β∗ = 1, SNRX = 1000, and ρ = 0.8, we note that the SILM procedure no longer maintains
nominal coverage. At first glance, it may seem odd that the oracle procedure based on least-squares
does not always achieve the nominal coverage, but this is a consequence of weak sparsity. Since
there is non-negligible bias in the model approximation in finite sample, this affects the empirical
coverage of the oracle procedure. The results remain the same when we consider q = 3 and
different distributions for the design and the errors. These results suggest that the compatibility
assumption is crucial to the success of the lasso based procedures, and in the absence of such an
assumption, the procedures based on exponential weighting maintain competitive coverage and
length.

2.5.2 Simulations for σ2µ and σ2ε
In this section, we set q = 0 and only consider the setting of strong sparsity (ie. µ = Zγ∗ for some
vector γ∗ ∈ Rp satisfying ∥γ∗∥0 = sγ). This reduces the linear model to y = Zγ∗ + ε. We still
consider the setting where n = 100 and p = 500. The value of σ2

µ = 2 and σ2
ε = 1 throughout

these simulations. The parameters with which we experiment are the distributions of the design
and errors and the sparsity.

Again, we consider Gaussian, double exponential, and t(3) distributions for the design and the
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errors. The design will have an equi-correlation structure with ρ ∈ {0, 0.8} and the sparsity will
satisfy sγ ∈ {3, 15}.

The vector of coefficients, γ∗, have sγ components generated from uniform(-1,1) and p − sγ

components that are zero. The values are then scaled such that σ2
µ = (γ∗)TΣZγ

∗ = 2.
For estimation of σ2

µ, we will compare our results with an oracular estimator based on low-
dimensional least-squares and the recent proposal of CHIVE.

1. (LS) Oracle least-squares that knows the true strongly sparse set Sγ using equation (2.3.3).

2. (CHIVE) The calibrated inference for high-dimensional variance explained of Cai and Guo
(2020). We follow Algorithm 1 of the paper with τ 20 ∈ {0, 2, 4, 6}.

3. (EWI), (EWII), (EWIII) Exponential weighting using σ̂2
µ,I , σ̂

2
µ,II , and σ̂2

µ,III respectively.
We tune the parameters using cross-validation with T0 = 3000 and T = 7000.

The results are presented in Table 2.2 and Table A.2.12 from the Supplement. We note that
the coverage of the least-squares procedure is close to the nominal 95% rate when sγ = 3 and the
errors are either Gaussian or double exponential. The coverage is significantly worse for the t(3)
design, which should not be surprising since the fourth moment is not defined for this distribution.
However, when sγ = 15, the coverage of least-squares falls, which establishes a reference for the
problem difficulty, since Proposition 2.7 establishes the efficiency of least-squares in this problem.

Amongst the exponential weighting estimators, when sγ = 3 and the errors are Gaussian or
double exponential, the procedure based on σ̂2

µ,I has the best performance and σ̂2
µ,III has the cover-

age when the errors are t distributed. For higher sparsity, no one estimators dominates the others;
depending on our assumptions, any of the three estimators may be preferable. Compared with
CHIVE, the best exponential weighting procedure seems to be able to achieve comparable cover-
age with significantly shorter intervals, which can be seen across all of our simulation settings.
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Table 2.2: Simulations for σ2
µ with sγ = 3

Distribution z z e e t t
ρ 0 0.8 0 0.8 0 0.8

LS 0.922 0.948 0.914 0.934 0.808 0.802
CHIVE0 0.698 0.532 0.690 0.604 0.554 0.526
CHIVE2 0.818 0.668 0.792 0.702 0.712 0.634

AvgCov CHIVE4 0.888 0.748 0.848 0.762 0.770 0.704
CHIVE6 0.890 0.772 0.898 0.790 0.860 0.746
EWI 0.852 0.850 0.854 0.862 0.780 0.778
EWII 0.804 0.772 0.820 0.838 0.812 0.828
EWIII 0.708 0.644 0.744 0.762 0.820 0.866

LS 1.520 1.510 1.800 1.950 2.430 2.950
CHIVE0 0.998 0.937 1.160 1.190 1.670 2.130
CHIVE2 1.520 1.560 1.650 1.740 2.150 2.640

AvgLen CHIVE4 1.890 1.970 2.010 2.120 2.500 2.980
CHIVE6 2.210 2.300 2.310 2.440 2.780 3.270
EWI 1.470 1.440 1.750 1.850 2.390 2.840
EWII 1.420 1.390 1.710 1.810 2.370 2.810
EWIII 1.370 1.320 1.670 1.760 2.340 2.780

For the estimation of σ2
ε , we will consider the oracular least-squares, the scaled lasso estima-

tor, and the refitted cross-validation with Sure Independence Screening, along with our proposed
procedures based on exponential weighting.

1. (LS) Oracle least-squares that knows the true strongly sparse set Sγ using equation (2.3.4).

2. (SL) Scaled lasso as implemented in the R package scalreg with a confidence interval
constructed using Theorem 2 of Sun and Zhang (2012).

3. (RCV-SIS) Refitted cross-validation of Fan et al. (2012) using the Sure Independence
Screening of Fan and Lv (2008) as implemented in the R package SIS in the first stage.
The confidence interval is constructed using Theorem 2 of Fan et al. (2012), with Eε4 esti-
mated by Proposition 2.11 of the present paper.

4. (EWI), (EWII), (EWIII) Exponential weighting using σ̂2
ε,I , σ̂

2
ε,II , and σ̂2

ε,III respectively. We
tune the parameters using cross-validation with T0 = 3000 and T = 7000.
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The results are given in Table 2.3 and Table A.2.13 from the Supplement. When the signal is
very sparse, sγ = 3, and there is no correlation in the design, scaled lasso has better coverage than
exponential weighting. However, as the correlation increases to ρ = 0.8, the confidence intervals
constructed using σ̂2

ε,II outperforms scaled lasso both in terms of coverage and average length.
When the model is less sparse, σ̂2

ε,I has comparable or better performance than scaled lasso. The
poor performance of refitted cross-validation with Sure Independence Screening in the sγ = 15

case should not come as a surprise since the signal to noise ratio is kept constant. The task of sure
screening 15 active covariates out of 500 with low signal strength from 50 observations is very
difficult.

Table 2.3: Simulations for σ2
ε with sγ = 3

Distribution z z e e t t
ρ 0 0.8 0 0.8 0 0.8

LS 0.938 0.912 0.952 0.940 0.918 0.912
SL 1.000 0.730 0.998 0.730 0.994 0.756

AvgCov RCV-SIS 0.684 0.646 0.688 0.644 0.638 0.606
EWI 0.616 0.608 0.678 0.674 0.650 0.690
EWII 0.862 0.828 0.872 0.846 0.852 0.814
EWIII 0.672 0.458 0.660 0.488 0.636 0.430

LS 0.532 0.529 0.545 0.528 0.534 0.534
SL 0.599 0.670 0.602 0.665 0.602 0.659

AvgLen RCV-SIS 0.485 0.509 0.508 0.514 0.554 0.539
EWI 0.430 0.427 0.442 0.438 0.435 0.447
EWII 0.441 0.444 0.453 0.453 0.446 0.463
EWIII 0.462 0.475 0.473 0.480 0.466 0.492

2.6 Proofs

2.6.1 Proofs for Section 2.2.1

Before proving our main results, we state a simplified version of Theorem 2.1 of Hsu et al. (2012)
will be useful in the subsequent proofs.

Lemma 2.12 (Theorem 2.1 of Hsu et al. (2012)). Let P ∈ Rn×n be a rank u projection matrix. Let

28



ξ ∈ Rn be a mean zero sub-Gaussian vector with parameter Kξ. Then, for all t > 0,

P
(
∥Pξ∥22 > K2

ξ

(
u+ 2

√
ut+ 2t

))
≤ exp(−t).

For ease of reference in later proofs, we prove Proposition 2.1 as two lemmata.

Lemma 2.13. Let {wm : wm ≥ 0,
∑

m∈Mu
wm = 1,m ∈Mu} be weights, possibly random, and

ξ be a sub-Gaussian vector with parameter Kξ, independent of Z. If u = o(nτ/ log(p)), then

E

( ∑
m∈Mu

wm ∥Pmξ∥22

)
= o(nτ ).

Proof. Fix t > 0 arbitrarily. Define the event Tt as

Tt ≜
⋂

m∈Mu

{
∥Pmξ∥22 ≤ K2

ξ

(
u+ 2

√
utnτ + 2tnτ

)}
.

For any fixed m ∈Mu, it follows from Lemma 2.12 that

P
(
∥Pmξ∥2 > K2

ξ

(
u+ 2

√
utnτ + 2tnτ

))
≤ exp (−tnτ ) .

Therefore,

P (T c
t ) ≤ exp (−tnτ + log (|Mu|)) . (2.6.1)

We observe that the above tends to zero from the assumption that u log(p) = o(nτ ) and the standard
bound on binomial coefficients |Mu| =

(
p
u

)
≤ (ep/u)u. Now, note that

E

( ∑
m∈Mu

wm ∥Pmξ∥22

)
= E

( ∑
m∈Mu

wm ∥Pmξ∥22 1Tt

)
+ E

( ∑
m∈Mu

wm ∥Pmξ∥22 1T c
t

)
.

For the first term, by the definition of Tt,

lim sup
n→∞

n−τE

( ∑
m∈Mu

wm ∥Pmξ∥22 1Tt

)
≤ 2tK2

ξ .
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For the second term, by Cauchy-Schwarz and equation (2.6.1), it follows that

lim sup
n→∞

n−τE

( ∑
m∈Mu

wm ∥Pmξ∥22 1T c
t

)
≤ lim sup

n→∞
n−τE

(
∥ξ∥22 1T c

t

)
≤ lim sup

n→∞
n−τE

(
∥ξ∥42

)1/2 P (T c
t )

1/2

= 0.

Therefore,

lim sup
n→∞

n−τE

( ∑
m∈Mu

wm ∥Pmξ∥22

)
≤ 2tK2

ξ .

Since t > 0 was arbitrary, this finishes the proof.

Lemma 2.14. Under the assumptions and setup of Proposition 2.1, for any sub-Gaussian vector

ζ with parameter Kζ independent of Z,

1.

E

( ∑
m∈Mu

wm

∥∥P⊥
mµ
∥∥2
2

)
= o(nτ ).

2.

E

( ∑
m∈Mu

wmµ
TP⊥

mζ

)
= o(nτ ).

Note that ζ is not necessarily independent of ξ.

Proof. For m ∈Mu, let

rm ≜
∥∥P⊥

mµ
∥∥2
2
.

Fixing t > 0 arbitrarily, define the set

At ≜ {m ∈Mu : rm ≤ tnτ} .

Now,

E

( ∑
m∈Mu

wmrm

)
= E

(∑
m∈At

wmrm

)
+ E

∑
m∈Ac

t

wmrm
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By the definition of At,

lim sup
n→∞

n−τE

(∑
m∈At

wmrm

)
≤ t.

For Ac
t , fix a value of a > 0, which will be determined later, and define the set Ta as

Ta ≜
⋂

m∈Mu

{
∥Pmξ∥22 ≤ K2

ξ

(
u+ 2

√
uanτ + 2anτ

)}
.

By the calculations from equation (2.6.1), it follows that

P (T c
a ) ≤ exp (−anτ + log (|Mu|)) . (2.6.2)

Moreover, note that, by assumption,

lim sup
n→∞

sup
m∈Mu

n−1rm ≤ lim sup
n→∞

n−1 ∥µ∥22 ≤ C,

for some constant C > 0. Then, for n sufficiently large,

n−τE

∑
m∈Ac

t

wmrm

 ≤ 2Cn1−τ
∑
m∈Ac

t

E (wm) ≤ 2Cn1−τ
∑
m∈Ac

t

(E (wm1Ta) + P (T c
a )) .

(2.6.3)

Fix m ∈ Ac
t temporarily and let S be any weakly sparse set for µ. Then, we have that

wm1Ta ≤ exp

(
− 1

α

(∥∥P⊥
my
∥∥2
2
−
∥∥P⊥

Sy
∥∥2
2

))
1Ta

≤ exp

(
− 1

α

(
rm − rS + 2µTP⊥

mξ − 2µTP⊥
Sξ −K2

ξ

(
u+ 2

√
uanτ + 2anτ

)))
.

By Cauchy-Schwarz,

E (wm1Ta) ≤ exp

(
− 1

α

(
rm − rS −K2

ξ

(
u+ 2

√
uanτ + 2anτ

)))
×
(
E exp

(
− 4

α
µTP⊥

mξ

))1/2(
E exp

(
4

α
µTP⊥

Sξ

))1/2

.
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Computing each of the Laplace transforms directly, it follows that

E exp

(
− 4

α
µTP⊥

mξ

)
≤ exp

(
8K2

ξ

α2
rm

)
.

Here, we have used Definition 2.1.2. Similarly,

E exp

(
4

α
µTP⊥

Sξ

)
≤ exp

(
8K2

ξ

α2
rS

)
.

Hence,

E (wm1Ta) ≤ exp

(
− 1

α

((
1−

4K2
ξ

α

)
rm −

(
1 +

4K2
ξ

α

)
rS −K2

ξ

(
u+ 2

√
uanτ + 2anτ

)))
≤ exp

(
− 1

α

((
1−

4K2
ξ

α

)
tnτ −

(
1 +

4K2
ξ

α

)
rS −K2

ξ

(
u+ 2

√
uanτ + 2anτ

)))
.

The second inequality follows from the fact that m ∈ Ac
t . Since u = o(nτ/ log(p)), setting

a <
(
1− 4K2

ξ /α
)
t/2 yields

E (wm1Ta) ≤ exp

(
− 1

α

((
1−

4K2
ξ

α

)
t− 2a

)
nτ + o(nτ )

)
(2.6.4)

Combining equations (2.6.2), (2.6.3), and (2.6.4), it follows that

lim sup
n→∞

n−τE

∑
m∈Ac

t

wmrm

 = 0.

Therefore,

lim sup
n→∞

n−τE

( ∑
m∈Mu

wmrm

)
≤ t.

Since t > 0 was arbitrary, the first claim follows. For the second half, let the set Ft be

Ft ≜
⋂
m∈At

{∣∣µTP⊥
mζ
∣∣ ≤ tnτ

}
.

For a fixed m ∈ At, it follows by a Chernoff bound that, for some constant c > 0,

P
(∣∣µTP⊥

mζ
∣∣ > tnτ

)
≤ 2 exp

(
−ct

2n2τ

K2
ζ rm

)
≤ 2 exp

(
−ctn

τ

K2
ζ

)
.
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Therefore, an upper bound for P (F c
t ) is given by

P (F c
t ) ≤ 2 exp

(
−ctn

τ

K2
ζ

+ log(|At|)

)
. (2.6.5)

Now,

E

(∑
m∈At

wm

∣∣µTP⊥
mζ
∣∣) = E

(∑
m∈At

wm

∣∣µTP⊥
mζ
∣∣1Ft

)
+ E

(∑
m∈At

wm

∣∣µTP⊥
mζ
∣∣1F c

t

)
.

By the definition of Ft, it follows that

E

(∑
m∈At

wm

∣∣µTP⊥
mζ
∣∣1Ft

)
≤ tnτ .

On F c
t , two applications of Cauchy-Schwarz and equation (2.6.5) yields

lim sup
n→∞

n−τE

(∑
m∈At

wm

∣∣µTP⊥
mζ
∣∣1F c

t

)
≤ lim sup

n→∞
n−τ ∥µ∥2 E

(
∥ζ∥2 1F c

t

)
≤ lim sup

n→∞
n−τ ∥µ∥2

(
E ∥ζ∥22

)1/2
(P (F c

t ))
1/2

= 0.

Furthermore, on Ac
t , by another two applications of Cauchy-Schwarz,

lim sup
n→∞

n−τE

∑
m∈Ac

t

wm

∣∣µTP⊥
mζ
∣∣

≤ lim sup
n→∞

n−τ ∥µ∥2
∑
m∈Ac

t

E (wm ∥ζ∥2)

≤ lim sup
n→∞

n−τ ∥µ∥2
∑
m∈Ac

t

(
Ew2

m

)1/2 (E ∥ζ∥22)1/2
≤ lim sup

n→∞
n−τ ∥µ∥2

(
E ∥ζ∥22

)1/2 ∑
m∈Ac

t

(Ewm)1/2

≤ lim sup
n→∞

n−τ ∥µ∥2
(
E ∥ζ∥22

)1/2 ∑
m∈Ac

t

(E (wm1Ta) + P (T c
a ))

1/2

= 0,
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where the limit follows by equations (2.6.2) and (2.6.4). Since t > 0 was arbitrary, this proves the
second claim and finishes the proof.

Immediately, we have the following corollary for random designs when the mean vector is
assumed to be weakly sparse in probability. Consider the setup of Lemma 2.14. If µ is weakly
sparse relative to Z in probability and ∥µ∥22 = OP(n

τ ), then

1. ( ∑
m∈Mu

wm

∥∥P⊥
mµ
∥∥2
2

)
= oP(n

τ ).

2. ( ∑
m∈Mu

wmµ
TP⊥

mζ

)
= oP(n

τ ).

With these lemmata, we can now prove Proposition 2.1.

Proof of Proposition 2.1. Indeed, by convexity of the norm, it follows that∥∥∥∥∥ ∑
m∈Mu

wmZγ̂m − µ

∥∥∥∥∥
2

2

≤
∑

m∈Mu

wm

∥∥P⊥
mµ
∥∥2
2
+
∑

m∈Mu

wm ∥Pmξ∥22 .

Applying Lemmata 2.13 and 2.14 finishes the proof.

Instead of directly proving Theorem 2.2, we decompose the estimator and prove each part
separately. Indeed, we note that

β̂EW =

(
ν − Zδ̂EW + η

)T (
µ− Zθ̂EW + ηβ∗ + ε

)
∥∥∥x− Zδ̂EW

∥∥∥2
2

.

Then,

√
nβ̂EW =

((
ν − Zδ̂EW

)T (
µ− Zθ̂EW + ηβ∗ + ε

)
+ ηT

(
µ− Zθ̂EW

)
+ ηTηβ∗ + ηTε

)
× 1√

nσ2
η

×
nσ2

η∥∥∥x− Zδ̂EW

∥∥∥2 .
We start by proving that the first line, which corresponds to the bias from inexact orthogonalization,
converges to zero.
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Lemma 2.15. Consider the models given in equations (2.2.1) and (2.2.2). Under assumptions

(2.1) – (2.3),(
ν − Zδ̂EW

)T (
µ− Zθ̂EW + ηβ∗ + ε

)
+ ηT

(
µ− Zθ̂EW

)
= oP(

√
n).

Proof. Without the loss of generality, we assume that u ≜ uθ = uδ. Expanding, we have(
ν − Zδ̂EW

)T (
µ− Zθ̂EW

)
+
(
ν − Zδ̂EW

)T
(ηβ∗ + ε) + ηT

(
µ− Zθ̂EW

)
.

We consider each of the three terms separately. By Cauchy-Schwarz and Corollary 2.1.1, it follows
that ∣∣∣∣(ν − Zδ̂EW

)T (
µ− Zθ̂EW

)∣∣∣∣ ≤ ∥∥∥ν − Zδ̂EW

∥∥∥
2

∥∥∥µ− Zθ̂EW

∥∥∥
2
= oP(

√
n).

For the second term, we may further expand to obtain(
ν − Zδ̂EW

)T
(ηβ∗ + ε) =

∑
m∈Mu

wm,x

(
P⊥

mν −Pmη
)T

(ηβ∗ + ε)

=
∑

m∈Mu

wm,xν
TP⊥

m (ηβ∗ + ε) +
1

2

∑
m∈Mu

wm,x ∥Pmε∥22

− 1

2

∑
m∈Mu

wm,x ∥Pm (η + ε)∥22

−
(
β∗ − 1

2

) ∑
m∈Mu

wm,x ∥Pmη∥22 .

In the model x = ν + η, applying Lemma 2.13 with ξ = ε, ξ = η + ε, and ξ = η and Corollary
2.6.1 with ζ = ηβ∗ + ε implies that(

ν − Zδ̂EW

)T
(ηβ∗ + ε) = oP(

√
n).

Finally,

ηT
(
µ− Zθ̂EW

)
=
∑

m∈Mu

wm,yη
T
(
P⊥

mµ−Pm (ηβ∗ + ε)
)

=
∑

m∈Mu

wm,yη
TP⊥

mµ−
1

2

∑
m∈Mu

wm,y ∥Pm (η(β∗ + 1) + ε)∥22

+
1

2

∑
m∈Mu

wm,y ∥Pm (ηβ∗ + ε)∥22 +
1

2

∑
m∈Mu

wm,y ∥Pmη∥22 .
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To finish the proof, we similarly apply Lemma 2.13 and Corollary 2.6.1 in the model y = µ +

ηβ∗ + ε. It follows that

ηT
(
µ− Zθ̂EW

)
= oP(

√
n).

Lemma 2.16. Consider the models given in (2.2.1) and (2.2.2). Under assumptions (2.1)– (2.3),

1.

√
n

 ηTηβ∗∥∥∥x− Zδ̂EW

∥∥∥2
2

− β∗

 P→ 0.

2.

n−1/2η
Tε

σ2
η

L→ N
(
0,
σ2
ε

σ2
η

)
.

3.
nσ2

η∥∥∥x− Zδ̂EW

∥∥∥2
2

P→ 1.

Proof. Indeed, expanding the denominator, we see that∥∥∥x− Zδ̂EW

∥∥∥2
2
=
∥∥∥ν − Zδ̂EW

∥∥∥2
2
+ 2ηT

(
ν − Zδ̂EW

)
+ ∥η∥22 .

By Corollary 2.1.1 and Lemma 2.15, it follows that∥∥∥x− Zδ̂EW

∥∥∥2
2
= oP(

√
n) + ∥η∥22 .

Then, by the Law of Large Numbers, n−1
∥∥∥x− Zδ̂EW

∥∥∥2
2

P→ σ2
η. This proves the third claim. Now,

by direct substitution, we have that

√
n


(∥∥∥x− Zδ̂EW

∥∥∥2
2
+ oP(

√
n)

)
β∗∥∥∥x− Zδ̂EW

∥∥∥2 − β∗

 =
n∥∥∥x− Zδ̂EW

∥∥∥2
2

oP(
√
n)√
n

= oP(1),

which proves the first claim. The second claim follows by the Central Limit Theorem, which
finishes the proof.

Proof of Theorem 2.2. The proof follows by combining Lemmata 2.15 and 2.16.
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Proof of Corollary 2.2.1. By possibly enlarging K , we note that K can be written as

K = {(β∗, σ2
η, σ

2
ε , Kη, Kε) : |β∗| ≤ β∗

U , σ
2
η ∈ [σ2

η,L, σ
2
η,U ], σ

2
ε ∈ [σ2

ε,L, σ
2
ε,U ],

Kη ∈ [Kη,L, Kη,U ], Kε ∈ [Kε,L, Kε,U ]}

for fixed positive constants β∗
U , σ2

η,L, σ2
η,U , σ2

ε,L, σ2
ε,U , Kη,L, Kη,U , Kε,L, and Kε,U . Observe that

the vectors η, ηβ∗, and ε are uniformly sub-Gaussian with parameters Kη,U β∗
UKη,U , and Kε,U

for ϑ ∈ K respectively. Thus, applications of Lemmata 2.13 and 2.14 are uniform. Therefore,
Lemmata 2.15 and 2.16 also hold uniformly for ϑ ∈ K , which will prove the claim.

2.6.2 Proofs for Section 2.2.4

Proof of Theorem 2.6. Suppose that sδ = o(
√
n/ log(p)). We consider a sequence of ∈ Θ(sγ, sδ)

such that Sγ ∩ Sδ = ∅ and δ∗ ≥ 0n componentwise. We construct ΣZ,Z implicitly. For j ∈ Sc
δ,

let

Zj
i.i.d.∼ Nn (0n, In) .

Before defining Zj for j ∈ Sδ, we need to define another Gaussian matrix Ξ ∈ Rn×p. For j ∈ Sc
δ,

set Ξj = 0n. Then, for j ∈ Sδ,

Ξj
i.i.d.∼ Nn

(
0n, τ

2
nIn
)
,

independent of Zk for all k ∈ Sc
δ; the value τ 2n > 0 is determined later. Now, for j ∈ Sδ, we let

Zj = Zγ∗ +Ξj. Therefore, it follows that Zδ∗ = Zγ∗ ∥δ∗∥1 +Ξδ∗. By a direct calculation,

Cov((Zδ∗)1 , (Zγ
∗)1) = Cov((Zγ∗)1 ∥δ

∗∥1 + (Ξδ∗)1 , (Zγ
∗)1) = Var((Zγ∗)1) ∥δ

∗∥1 .

Moreover,

Var((Zδ∗)1) = Var((Zγ∗)1 ∥δ
∗∥1 + (Ξδ∗)1) = Var((Zγ∗)1) ∥δ

∗∥21 + τ 2n ∥δ∗∥
2
2 .

Choosing τ 2n → 0 sufficiently fast, it follows that

Var((Zδ∗)1) = Var((Zγ∗)1) ∥δ
∗∥21 + o

(
n−1/2

)
.
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Hence, this implies that

Cov ((Zδ∗)1 , (Zγ
∗)1) =

√
Var((Zδ∗)1)Var((Zγ∗)1) + o(n−1/2).

Now, note that

Cov ((Zδ∗)1 , (Zγ
∗)1) = Cov (x1,y1)− β∗Var (x1) .

Let β̂ be any
√
n-consistent estimator for β. Then, n−1

(
xTy − β̂xTx

)
is a
√
n-consistent estima-

tor for Cov ((Zδ∗)1 , (Zγ
∗)1). Consider an oracle that has access to the setSδ, knowsSδ∩Sγ = ∅,

and knows the covariance structure of the design. Then, since sδ = o(
√
n/ log(p)), a

√
n-

consistent estimator for Var((Zδ∗)1) is given by Theorem 2.8. This implies that there exists a
√
n-consistent estimator for Var((Zγ∗)1). By the minimax lower bounds established by Cai and

Guo (2020), it follows that, in order to have a
√
n-consistent estimator for Var((Zγ∗)1), it must

be the case that sγ = O(
√
n/ log(p)). This proves half of the claim. The other half follows by

symmetry, which finishes the proof.
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CHAPTER 3

Inference and Estimation for Random Effects in
High-Dimensional Linear Mixed Models

3.1 Introduction

In the past two decades, there has been a lot of progress in the theory for high-dimensional linear
models. However, its close cousin, the high-dimensional linear mixed model, has received signif-
icantly less attention; it was not until the past decade until there were procedures for estimation.
Consider a linear mixed model given by

y = µ+ Zν +Wγ + ε, (3.1.1)

with Z ∈ Rn×q, W ∈ Rn×d, and y,µ, ε ∈ Rn; the vector µ and the pair ν and γ are the fixed
effects and the random effects respectively. In addition, we observe covariates X ∈ Rn×p such
that µ ≈ Xβ∗ for some sparse vector β∗ ∈ Rp (see Section 3.1.2 for a rigorous definition). Here,
X is the component of the design corresponding to the fixed effects and (Z,W) the component
corresponding to the random effects. We consider the setting where the random effects are low-
dimensional, q + d < n, but the fixed effects are high-dimensional, p > n. We have separated
the random effects in two to emphasize that later we are interested in ν and view γ as nuisance
parameters. Various authors have considered different aspects of this problem.

The earliest work of Schelldorfer et al. (2011) proposed an estimator for both β∗ and the vari-
ance components using a lasso-type approach. These types of approaches were later extended
by several authors who considered estimation with both convex penalties, such as Groll and Tutz
(2014), and non-convex penalties, such as Wang et al. (2012). There is also a growing literature on
model selection in high-dimensional linear mixed models (for example, see the review article by
Müller et al. (2013)).

The problem of inference is slightly less well studied. To the best of our knowledge, hypothe-
ses testing problems were first considered by Chen et al. (2015) for random effects and Bradic
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et al. (2019) for fixed effects. However, the work of Chen et al. (2015) only consider the special
case of ANOVA designs for random effects. During the preparation of this manuscript, we be-
came aware of the independent work of Li et al. (2019), who consider the problem of inference in
high-dimensional linear mixed models. In particular, they discuss inference for fixed effects and
estimation of variance components. A more detailed comparison of our methodology with Li et al.
(2019) is deferred to Section 3.2.4. We also note that there is a parallel notion of high-dimensional
mixed models, where the number of fixed effects is low-dimensional while the random effects are
high-dimensional. Under this setting, Jiang et al. (2016) established asymptotic results for the
restricted maximum likelihood for variance components.

The goal of the present paper is to contribute to this growing literature on high-dimensional
linear mixed models where the fixed effects are high-dimensional, both in terms of estimation and
inference. In particular, we consider three related problems:

1. Testing whether a collection of random effects is zero.

2. Constructing confidence intervals for the variance of a single random effect.

3. Estimating using empirical Bayes in Gaussian ANOVA Type Models.

Our methodology is inspired by both low-dimensional linear mixed models as well as high-
dimensional linear models. Specifically, our approach to all three problems starts with considering
a procedure in the corresponding low-dimensional problem and retrofitting it with tools and tech-
niques from high-dimensional linear models to produce a procedure for high-dimensional linear
mixed models. Throughout the paper, while we consider the general linear mixed effects mod-
els, we use the balanced one-way ANOVA model to simplify the discussion of our estimators and
assumptions.

3.1.1 Organization of the Chapter

We end the current section with a description of the notation that we adopt throughout the pa-
per. Sections 3.2, 3.3, and 3.4 consider the three problems outlined in the Introduction in suc-
cession. Each one starts with a description of the problem setup, a brief motivation from the
low-dimensional problem, and a description of the estimator that is considered, and ends with
some theoretical results. In Sections 3.5 and 3.6, we provide the results of our simulations and a
real data application respectively. For the ease of presentation, we defer all proofs and additional
simulation results to Appendix 2.
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3.1.2 Notation

Throughout, all of our variables have a dependence on n, but we suppress this dependence when
it does not cause confusion. For a general vector a and matrix A, let ∥a∥2 denote the standard
Euclidean norm with the dimension of the space being implicit from the vector, ∥A∥2 the opera-
tor norm, and ∥A∥HS the Hilbert-Schmidt norm. Furthermore, if A is square, then λmax(A) and
λmin(A) denote the maximal and minimal eigenvalue of A respectively. For any k ∈ N, we let
λmax,k(A) denote the kth largest eigenvalue of A if A is square. Moreover, we write 1k ∈ Rk and
Ik ∈ Rk×k to denote the k-dimensional vector of all ones and the k-dimensional identity matrix
respectively. For two matrices A and B, the notation A⊖B denotes the intersection of the column
space of A and the orthogonal complement of the column space of B. Then, for a matrix A, we
write PA to denote the projection onto the column space of A and P⊥

A the projection onto the
orthogonal complement. Moreover, we write rA to denote the rank of A.

Consistent with other high-dimensional works, we assume that β∗ is a sparse vector. There
are various notions of sparsity, but we assume the general setting of weak sparsity from Chapter
2. For u ∈ N, we let Mu ≜ {m ⊆ {1, . . . , p} : |m| = u} denote the collection of all models
with the dimension of the fixed effects design equal to u. For a model m ∈ Mu, Xm denotes
the n × u sub-matrix of X corresponding to the columns indexed by m. Then we write Sµ ≜{
m ∈M∗

s : ∥P⊥
Xm
µ∥22 = o(k)

}
and let S ∈ Sµ denote any weakly sparse set for µ. We note that

the usual high-dimensional setting of strong sparsity, where µ = XSβ
∗
S for |S| = s∗, implies that

µ is weakly sparse relative to X with sparsity s∗.
Note that if ξ is sub-Gaussian with parameter K and A ∈ Ra×n is any deterministic matrix,

then Aξ is also sub-Gaussian with parameter K λmax(A
TA). Finally, the asymptotic distributions

of some of our estimators depend on the fourth moments of the underlying distributions. We write
κε ≜ Var(ε21), ωε ≜ E(ε41), κν ≜ Var(ν2

1), and ων ≜ E(ν4
1) when ν corresponds to a single

random effect.

3.2 Hypotheses Testing for Random Effects

In this section, we consider the problem of inference for a collection of random effects. Consider
the high-dimensional linear mixed model (3.1.1) and let Ψ ≜ Var(ν). We are interested in the
hypotheses testing problem

H0 : λmax(Ψ) = 0, H1 : λmax(Ψ) > 0. (3.2.1)

We propose two procedures in this section depending on whether ε is Gaussian.
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3.2.1 Model and Motivation

Suppose temporarily that we are in the low-dimensional Gaussian setting with s∗ = p, p+q+d < n,
µ = XSβ

∗
S , ε ∼ Nn(0n, σ2

εIn) for some positive constant σ2
ε > 0, and ν ∼ Nq(0q,Ψ) for some

symmetric positive semi-definite matrix Ψ. Then, in this problem, the standard procedure for
testing ν is through the Wald F -test. Writing rZ⊖(XS ,W) ≜ rank(PZ⊖(XS ,W)) and r(XS ,Z,W)⊥ ≜

rank(P⊥
(XS ,Z,W)), the Wald F -test is defined as

Fld =
∥PZ⊖(XS ,W)y∥22/rZ⊖(XS ,W)

∥P⊥
(XS ,Z,W)y∥22/r(XS ,Z,W)⊥

. (3.2.2)

Under the null hypothesis, the above statistic has an FrZ⊖(XS ,W),r(XS ,Z,W)⊥
distribution. The

main obstacle to directly using the Wald F -test in the high-dimensional setting is removing the
contribution of the fixed effects. One possibility is to perform model selection and choose the rele-
vant covariates from X and then use the Wald F -test. Chen et al. (2015) consider a similar problem
in the growing dimensional setting and they use a SCAD based approach for variable selection. As
a consequence, they require p = o(

√
n). Instead, we leverage the fact that a projection onto a

particular space is a regression onto a design whose columns span the same space.
Expanding both the numerator and the denominator of the Wald F -statistic, we have that

PZ⊖(XS ,W)y = PZ⊖(XS ,W)Zν + PZ⊖(XS ,W)ε,

P⊥
(X,Z,W)y = P⊥

(XS ,Z,W)ε.

In both matrices above, they project onto the orthogonal complement of W, which may still be
achieved in the high-dimensional problem since W is a low-dimensional matrix. Thus, we may
find two projection matrices, PZ⊖W and P⊥

(Z,W), such that

PZ⊖Wy = PZ⊖WXβ∗ +PZ⊖WZν +PZ⊖Wε,

P⊥
(Z,W)y = P⊥

(Z,W)Xβ
∗ +P⊥

(Z,W)ε.

If PZ⊖WX was low-dimensional, obtaining the projection of PZ⊖Wy onto the orthogonal comple-
ment of PZ⊖WX is equivalent to finding the residuals of PZ⊖Wy using the covariates PZ⊖WX;
this yields PZ⊖Wy−PZ⊖WXβ̂∗, where β̂∗ is the least-squares estimator for β∗. The same holds
for P⊥

(Z,W)X and P⊥
(Z,W)y. Then, we have that

PZ⊖Wy −PZ⊖WXβ̂∗ = (PZ⊖WXβ∗ −PZ⊖WXβ̂∗) +PZ⊖WZν +PZ⊖Wε,

P⊥
(Z,W)y −P⊥

(Z,W)Xβ̂
∗ = (P⊥

(Z,W)Xβ
∗ −P⊥

(Z,W)Xβ̂
∗) +P⊥

(Z,W)ε.
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Hence, this recasts the problem into one of high-dimensional prediction, for which there have
been many procedures suggested to estimate PZ⊖WXβ∗ and P⊥

(Z,W)Xβ
∗, such as the lasso and ex-

ponential weighting (cf. Tibshirani (1996) and Leung and Barron (2006) respectively). Therefore,
we propose using a plug-in estimator for PZ⊖WXβ∗ and P⊥

(Z,W)Xβ
∗ using exponential weight-

ing of all models of a particular size and then consider the resultant residuals. Since we view the
fixed effects as nuisance parameters, we consider exponential weighting instead of the lasso since
exponential weighting does not require any assumptions on the design matrix X. However, most
of the theory developed also applies to other plug-in estimators, albeit with simple modifications
and much stronger conditions. This idea, under some mild assumptions, provides an asymptotic
F -test.

However, there are two asymptotic regimes for the random effects: (i) the number of random
effects increases to infinity and (ii) the number of random effects stays bounded. These two settings
require slightly different analyses, so we consider separate exponential weighting estimators for the
two cases.

Besides providing an asymptotic F distribution when ε is Gaussian, the F -ratio in equation
(3.2.2) simultaneously removes the scaling effect from σ2

ε . When ε is known only to be sub-
Gaussian, the ratio no longer follows an F -distribution. However, after appropriate rescaling, we
may still achieve the ancillary property relative to σ2

ε by looking at the difference instead of the
ratio. This approach, under slightly stronger sparsity assumptions, leads to an asymptotic z-test
with only the sub-Gaussian assumption on the error distribution.

3.2.2 Estimator

In the setting where the number of random effects increases to infinity, instead of estimating
PZ⊖WXβ∗ and P⊥

(Z,W)Xβ
∗ separately, we estimate P⊥

WXβ∗ and then project the resultant vector
onto PZ⊖W and P⊥

(Z,W) respectively. In addition to saving on computational time by only using
exponential weighting once, this also allows us to leverage a larger sample size when estimating
the mean vector. To apply exponential weighting, we fix a sequence of sparsities u = un. Let β̂m

denote the least-squares estimator of β∗ using the model m ∈ Mu with covariates P⊥
WXm. Let

KZν+ε denote the sub-Gaussian parameter for Zν + ε. We define the exponential weights by

wm ≜
exp

(
− 1
α
∥P⊥

W(y −Xβ̂m)∥22
)

∑
k∈Mu

exp
(
− 1
α
∥P⊥

W(y −Xβ̂k)∥22
) ,
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where α > 4KZν+ε. Then, the estimator for β∗ is given by

β̂EW ≜
∑

m∈Mu

wmβ̂m.

Note that the bound on α is to ensure P⊥
WXβ̂EW is a consistent estimator of P⊥

WXβ∗. In the case
where both ν and ε are Gaussian, the above bound on α becomes α > 4

(
σ2
ε + λmax

(
ZΨZT

))
.

Then, we estimate PZ⊖WXβ∗ and P⊥
(Z,W)Xβ

∗ by PZ⊖WXβ̂EW and P⊥
(Z,W)Xβ̂EW respectively.

The corresponding F -statistic is

FEW ≜
∥PZ⊖W(y −Xβ̂EW)∥22/rZ⊖W

∥P⊥
(Z,W)(y −Xβ̂EW)∥22/r(Z,W)⊥

.

Similar to the Wald F -statistic, we reject the null hypothesis for large values of FEW. In particular,
for a value δ ∈ (0, 1), let Fa,b,δ denote the δ upper quantile of the Fa,b distribution. Then, we
consider tests of the form

φF,δ ≜ 1

(
FEW > FrZ⊖W,r

(Z,W)⊥ ,δ

)
.

For the second setting where the number of random effects stay bounded, we estimate the nu-
merator differently. Let U(Z,W)⊥ ∈ Rn×r

(Z,W)⊥ be any orthogonal matrix such that P⊥
(Z,W) =

U(Z,W)⊥U
T
(Z,W)⊥; for example, the matrix U(Z,W)⊥ may be computed by taking the spectral de-

composition of P⊥
(Z,W). Define ỹ = UT

(Z,W)⊥y and let ỹ(1), ỹ(2) ∈ Rr
(Z,W)⊥/2 be a partition of ỹ.

We similarly define X̃(1) and X̃(2). Then, letting β̃
(1)

m (respectively β̃
(2)

m ) denote the least-squares
estimator of β∗ using the model m ∈Mu with covariates X̃(1)

m (respectively X̃
(2)
m ), the exponential

weights are defined as

w̃(1)
m ≜

exp
(
− 1
α̃
∥y(1) −X

(1)
m β̃

(1)

m ∥22
)

∑
k∈Mu

exp
(
− 1
α̃
∥y(1) −X

(1)
k β̃

(1)

k ∥22
)

and similarly for w̃(2)
m , where α̃ is delineated in Theorem 3.4 below. Now, define

β̃
(1)

EW ≜
∑

m∈Mu

w̃(1)
m β̃

(2)

m , β̃
(2)

EW ≜
∑

m∈Mu

w̃(2)
m β̃

(1)

m .

Then, the estimator of β∗ is

β̃EW ≜ (β̃
(1)

EW + β̃
(2)

m )/2
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and the corresponding F -statistic is

F̃EW ≜
∥PZ⊖W(y −Xβ̃EW)∥22/rZ⊖W

∥P⊥
(Z,W)(y −Xβ̂EW)∥22/r(Z,W)⊥

.

At first sight, computation of these estimators may seem prohibitive since we need to aggregate
over

(
p
u

)
models. However, they may be well approximated by Algorithm 1 from Chapter 2.

In the setting where the ε is not distributed Gaussian, we consider the following z-statistic

zEW ≜ ∥PZ⊖W(y −Xβ̂EW)∥22 − rZ⊖Wr−1
(Z,W)⊥

∥P⊥
(Z,W)(y −Xβ̂EW)∥22.

Under proper scaling, the statistic zEW has an asymptotic Gaussian distribution under the null
hypothesis. Let

σ2
ς,z ≜ κε

n∑
i=1

(PZ⊖W − rZ⊖Wr−1
(Z,W)⊥

P⊥
(Z,W))

2
i,i + 2σ4

ε

∑
i ̸=j

(PZ⊖W − rZ⊖Wr−1
(Z,W)⊥

P⊥
(Z,W))

2
i,j,

with σ̂2
ς,z a consistent estimator of σ2

ς,z. The quantity σ2
ς,z is the scaling factor to ensure a central

limit for zEW. Then, letting zδ denote the δ upper quantile of the standard Gaussian distribution,
we consider tests of the form

φz,δ ≜ 1 (zEW > zδσ̂ς,z) .

A general discussion regarding σ̂2
ς,z is deferred to Section 3.3.4. When ε is not Gaussian, we only

consider the setting where the number of random effects increases to infinity since the analysis of
zEW relies of a central limit theorem for quadratic forms.

As mentioned in Section 3.2.1, under appropriate conditions, we may also use the lasso instead
of exponential weighting. For a suitable choice of λ > 0, define the lasso estimator of β∗ as

β̂LA ≜ argmin
β∈Rp

∥P⊥
W(y −Xβ)∥22 + λ∥β∥1.

Then, the corresponding F -statistic is

FLA ≜
∥PZ⊖W(y −Xβ̂LA)∥22/rZ⊖W

∥P⊥
(Z,W)(y −Xβ̂LA)∥22/r(Z,W)⊥

.

3.2.3 Assumptions

In this section, we make the following assumptions.
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(3.1) The mean vector µ = µn has squared norm, ∥µn∥22/n, that is bounded.

(3.2) The vector ε is sub-Gaussian with parameter Kε and has independent components.

(3.2∗) The vector ε ∼ Nn (0n, σ2
εIn).

(3.3) The random effects ν are sub-Gaussian with parameter Kν .

(3.3∗) The random effects ν satisfy Zν ∼ Nn
(
0n,ZΨZT

)
.

(3.4) The matrix Z satisfies λmax(ZZ
T) being bounded and (Z,W) is independent of X.

(3.5) The mean vector µ = µn is weakly sparse relative to X with sparsity s∗n, with weak sparsity
defined in Definition 2.1.1. Furthermore, the statistician chooses a sequence of sparsities un
such that un ≥ s∗n for n sufficiently large and un = o (nτ/ log(p)) for some τ ∈ [1/2, 1].
Moreover, the number of observations in the reduced models, rZ⊖W and r(Z,W)⊥ , satisfy
rZ⊖W ≍ r(Z,W)⊥ ≍ n.

(3.6) The mean vector µ = µn satisfies µ = Xβ∗ with ∥β∗∥0 = s∗n. Furthermore, the statis-
tician chooses a sequence of sparsities un such that un ≥ s∗n for n sufficiently large and
un = o (nτ/ log(p)) for some τ ∈ [1/2, 1]. Moreover, the rows of X are independent and
identically distributed Np(0p,ΣX) with max(diag(ΣX)) = O(1) and r(Z,W)⊥ ≍ n.

(3.7) The vector ε = εn satisfies

inf
n

{(
min

i=1,...,n
Var(εn,i)

)
∧
(

min
i=1,...,n

Var(ε2n,i)
)}

> 0,

lim
x→∞

sup
n

{(
max
i=1,...,n

E
(
ε2n,i : |εn,i| > x

))
∨
(

max
i=1,...,n

E
(
ε4n,i : |εn,i| > x

))}
= 0.

Remark. Assumptions (3.1) and (3.2) are standard assumptions in high-dimensional linear mod-
els. Calling ε the noise and Zν+ε the random component, assumption (3.1) is a scaling assumption
to ensure the ratio of the fixed components to the random components remains bounded asymptot-
ically and is analogous to the assumptions of Bradic et al. (2019), who assume that the population
covariance matrix of X has bounded maximal eigenvalue and ∥β∗∥2 = O(1). Next, (3.2) is used
for consistency of the prediction procedure under the null hypothesis and assumption (3.3) allows
for concentration of the prediction procedure under the alternative hypothesis. Both assumptions
are used by various authors, such as Bradic et al. (2019) and Cai and Guo (2017). We note that
(3.2) and (3.3) are implied by (3.2∗) and (3.3∗) respectively, but the additional Gaussian distribution
assumption allows us to relate our methodology to the vast literature on low-dimensional Gaussian
mixed models.
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Next, the first part of assumption (3.4), like (3.1), ensures that the ratio of the fixed components
to the random components of the variance noise ratio remains bounded under the alternative hy-
pothesis. To elucidate this point, consider the Gaussian setting with ε ∼ Nn(0n, σ2

εIn) and ν ∼
Nq(0q, σ2

νIq). Then, Zν + ε ∼ Nn(0n, σ2
νZZ

T + σ2
εIn). Since λmax(ZZ

T) ≥ max(diag(ZZT)),
assumption (3.4) bounds the variance of the noise. Moreover, (3.3) and (3.4) together imply that
Zν is sub-Gaussian with parameter Kν λmax(ZZ

T). This requirement is similar to Condition 1 of
Bradic et al. (2019) and Condition 3.1 of Cai and Guo (2017). The assumption that (Z,W) is
independent of X is common in the literature (see the discussion before Condition 3.2 of Cai and
Guo (2017)).

The following two assumptions, (3.5) and (3.6), are about the sparsity of the fixed effects. The
two assumptions consider different asymptotic regimes regarding the random effects; (3.5) as-
sumes that the number of random effects increases to infinity while (3.6) allows for the number of
random effects to stay bounded. The first part of both (3.5) and (3.6) is a sparsity assumption com-
monly found in the high-dimensional linear models literature, which is discussed further in Remark
3.2.4 below. Note that since the selected sequence of sparsities un satisfies un = o(nτ/ log(p)),
then the true sequence of sparsities s∗n also satisfies the same requirement.

The second half of (3.5) is an assumption on the component of the design for the random effects,
requiring the number of realizations of the random effects to increase to infinity. The requirement
that rZ⊖W ≍ r(Z,W)⊥ ≍ n is for convenience and can be weakened to only min(rZ⊖W, r(Z,W)⊥)→
∞ if the sparsity requirement is accordingly relaxed to un = o

(
min(rZ⊖W, r(Z,W)⊥)

τ/ log(p)
)
.

The second half of (3.6) is a technical requirement to ensure consistency of exponential aggregation
for out-of-sample predictions. Since the number of random effects remains bounded, the regression
of PZ⊖Wy on PZ⊖WX does not necessarily yield a consistent estimator of PZ⊖Wµ for arbitrary
designs. With the Gaussian assumption, we may estimate β∗ by regressing P⊥

(Z,W)y on P⊥
(Z,W)X

and obtain a consistent estimator of PZ⊖Wµ. Again, the requirement that r(Z,W)⊥ ≍ n can be
weakened to r(Z,W)⊥ →∞ by adjusting the sparsity requirement to un = o(rτ

(Z,W)⊥/ log(p)).
Assumption (3.7) is a mild assumption on the distribution of ε to ensure a central limit theorem.

For example, (3.7) is satisfied by the Gaussian distribution. Note that no assumption is necessary
on γ as the nuisance parameters are projected out in the first stage.

Example 1 (Balanced one-way ANOVA). As an example of a design satisfying the above assump-
tions on , consider a balanced one-way ANOVA design, with q subjects, m observations per sub-
ject, and n = mq total observations. In this setting, there are no nuisance random effects, so d = 0.
Assume further that the number of observations per subject remains bounded (ie., m = O(1)),
which is commonly satisfied in practice. Then, the matrix Z may be represented by Z = Iq ⊗ 1m.
It is immediate that rZ⊖W = q and r(Z,W)⊥ = (m − 1)q, implying that the second half of (3.5) is
satisfied. Finally, assumption (3.4) is satisfied since λmax(ZZ

T) = λmax(mIq) = m.

47



3.2.4 Main Results

Since FEW is motivated by the classical F -statistic Fld, the following theorem shows that, up to a
small bias term depending on the sparsity, the two statistics are asymptotically equivalent.

Theorem 3.1. Consider the model given in equation (3.1.1) and the hypotheses testing problem

from equation (3.2.1). Assume (3.1), (3.2∗), (3.3∗), (3.4), and (3.5). If α ≥ 4
(
σ2
ε + λmax

(
ZΨZT

))
,

then

FEW = Fld + oP(n
τ−1).

As mentioned in Section 3.2.1, under the null hypothesis, the statistic Fld ∼
FrZ⊖(XS ,W),r(XS ,Z,W)⊥

. However, since the weakly sparse set S is unknown, the value of rZ⊖(XS ,W)

and r(XS ,Z,W)⊥ cannot be determined in practice. From assumption (3.5), as s∗ = o(nτ/ log(p)),
then FrZ⊖(XS ,W),r(XS ,Z,W)⊥

= FrZ⊖W,r
(Z,W)⊥

+ oP(1). Thus, the statistic FEW can also be compared
to the reference distribution FrZ⊖W,r

(Z,W)⊥
.

Despite being asymptotically equivalent to the Wald F -test, FEW has an additional bias term of
oP(n

τ−1), which impacts the power of the testing procedure. This leads us to consider the following
hypotheses testing problem; for any τ ∈ [1/2, 1], we consider the contiguous hypotheses

H0 : λmax(PZ⊖WZΨZTPZ⊖W) = 0, H1 : λmax,rZ⊖W
(PZ⊖WZΨZTPZ⊖W) = hnτ−1. (3.2.3)

Example 2. Consider the setting of Example 1 with ν corresponding to a single random effect and
ν ∼ Nq(0q, σ2

νIq). Then, with τ = 1/2, the above hypotheses becomes

H0 : σ
2
ν = 0, H1 : mσ

2
ν = hn−1/2,

which is a standard hypotheses testing problem, such as in the balanced one-way random effects
model. In this model, in the low-dimensional setting, the rate of

√
n is optimal.

Theorem 3.2. Consider the model given by equation (3.1.1) and the hypotheses testing problem

from equation (3.2.3). Assume further (3.1), (3.2∗), (3.3∗), (3.4), and (3.5) for any τ ∈ [1/2, 1]. Fix

a value of δ > 0. Under the alternative hypothesis with h > 0 sufficiently large (not depending on

n) and α ≥ 4
(
σ2
ε + λmax

(
PZ⊖WZΨZTPZ⊖W

))
, the sum of type I and type II errors for the test

statistic φF,δ is less than one.

Remark. The above theorem implies that FEW can distinguish at the classical parametric
√
n rate

if the model is in the ultra-sparse regime, s∗ = o(
√
n/ log(p)). This sparsity rate is common in

high-dimensional inference problems for low-dimensional parameters at the parametric rate; in
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particular, for high-dimensional linear models, a version of this rate is required (cf. Cai and Guo
(2017) and Javanmard and Montanari (2018)). When the value of τ ∈ (1/2, 1], we are limited by
the ability to remove the bias from the mean vector; in the setting where τ = 1/2, we are limited
by the noise level. This seems to suggest a trade-off between the sparsity and the achievable rate
of separation.

This comparison with the linear models literature that the inferential procedure requires an
additional factor of

√
n for sparsity assumption appears to be consistent with the recent results

by Li et al. (2019). In particular, their proposed estimator for the variance components requires a
consistent estimator of β∗. They show in Theorem 3.1 that the minimax rate for estimating β∗ is
s∗ log(p/s2)/ tr(Σ−1

a ), where Σa ∈ Rn×n is a proxy for the true covariance matrix of y. Thus, this
suggests that tr(Σ−1

a ) ≍ n, and they require s∗ log(p)/n→ 0 to consistently estimate the variance
components.

Remark. Compared to the recent work of Li et al. (2019), who only suggest an asymptotic distri-
bution for their variance components estimators, Theorem 3.1 also demonstrates that FEW enjoys
certain optimality properties. In addition to providing a distribution under the null hypothesis,
Theorem 3.1 also demonstrates under a sparsity assumption, FEW is asymptotically equivalent to
the classical Wald F -test, which is known to enjoy certain optimality properties, such as uniformly
most powerful unbiased and uniformly most powerful invariant unbiased in certain ANOVA mod-
els (cf. Mathew and Sinha (1988)). In addition, Lu and Zhang (2010) showed that the Wald F -test
and likelihood ratio tests are equivalent for balanced one-way ANOVA models while Qeadan and
Christensen (2020) showed that the Wald F -test renders the likelihood ratio test inadmissible in
generalized split plot designs. Moreover, unlike Li et al. (2019), who assume a compatibility con-
dition, our procedure imposes no such requirement on the design matrix X.

We now turn our attention to the setting of sub-Gaussian errors. When τ > 1/2, zEW no longer
has an asymptotic Gaussian distribution at the

√
n rate since the variance dominates the signal.

Therefore, in this setting, we only consider hypotheses testing problems as given in equation (3.2.3)
with τ = 1/2.

Theorem 3.3. Consider the model given by equation (3.1.1) and the hypotheses testing problem

from equation (3.2.3). Assume further (3.1), (3.2), (3.3), (3.5) for τ ≤ 1/2, and (3.7). Under the

null hypothesis, if α ≥ 4Kε, then

√
nzEW

L→ N
(
0, σ2

ς,z

)
.

Remark. Compared to Theorem 3.1, Theorem 3.3 trades the Gaussian assumption for a sub-
Gaussian assumption under a slightly stronger sparsity assumption in order to obtain an asymptotic
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distribution. From Theorem 3.2, FEW exhibits a continuous tradeoff between sparsity and power,
which does not hold for zEW. This is a consequence of using a central limit theorem for zEW,
which requires scaling by

√
n. This implies that the bias should be o(

√
n) and the signal from the

alternative should be Ω(n−1/2).

Finally, we end this section by considering the setting where the number of random effects
remains bounded.

Theorem 3.4. Consider the model given in equation (3.1.1) and the hypotheses testing problem

from equation (3.2.1). Assume (3.1), (3.2∗), (3.3∗), (3.4), and (3.6). If α > 4KZν+ε and α̃ >

16max(diag(ΣX), σ
2
ε), then

F̃EW = Fld + oP(n
τ−1).

3.3 Confidence Intervals for a Single Random Effect

3.3.1 Model and Motivation

In the previous section, we considered the problem of testing a collection of random effects. How-
ever, it is often of interest to construct confidence intervals for the variance of a particular random
effect. Suppose that Ψ = σ2

νIv. In the low-dimensional setting, there have been many procedures
suggested to construct confidence intervals, from likelihood based approaches to F -test inversions
(for example, see Jiang (2007) for a non-exhaustive list). In this section, we deal with a confidence
interval for a single variance component, which can easily be extended using a Bonferroni correc-
tion or similar procedures for simultaneous confidence intervals. Alternatively, we may also invert
the F -statistic from Section 2 to obtain confidence intervals for parameters of the form σ2

ν/σ
2
ε , with

such ratios being first studied by Hartley and Rao (1967).
Our high-dimensional approach is inspired by F -test inversion. However, instead of using the

ratio, we again use the difference. Define

Q ≜

(
PZ⊖W − rZ⊖Wr−1

(Z,W)⊥
P⊥

(Z,W) PZ⊖WZ

ZTPZ⊖W ZTPZ⊖WZ

)
, ξ ≜

(
ε

ν

)
.
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Then, expanding the statistic zEW from Section 3.2, we have that

zEW = ∥PZ⊖W(y −Xβ̂EW)∥22 − rZ⊖Wr−1
(Z,W)⊥

∥P⊥
(Z,W)(y −Xβ̂EW)∥22

= ∥PZ⊖W(Zν + ε)∥22 − rZ⊖Wr−1
(Z,W)⊥

∥P⊥
(Z,W)ε∥22 + oP(n

τ )

= ∥PZ⊖W(Zν + ε)− r1/2Z⊖Wr
−1/2

(Z,W)⊥
P⊥

(Z,W)ε∥22 + oP(n
τ )

= ξTQξ + oP(n
τ ),

where the second equality follows from Lemma A3.1 in the supplement. A direct calculation
shows that EξTQξ = σ2

ν tr(Z
TPZ⊖WZ). Then, with proper centering and scaling, we may apply

a central limit theorem for quadratic forms under a mild condition on the matrix Q.

3.3.2 Estimator

To estimate σ2
ν , we consider σ̂2

ν defined by

σ̂2
ν ≜ [tr(ZTPZ⊖WZ)]−1

(
∥PZ⊖W(y −Xβ̂EW)∥22 − rZ⊖Wr−1

(Z,W)⊥
∥P⊥

(Z,W)(y −Xβ̂EW)∥22
)
.

By a direct calculation, it can be shown that

σ2
ς ≜ Var(ξTQξ) = κε

n∑
i=1

Q2
i,i + κν

n+q∑
i=n+1

Q2
i,i

+ 2
∑
i ̸=j

Q2
i,j(σ

2
ε11≤i≤n + σ2

ν1n+1≤i≤n+q)(σ
2
ε11≤j≤n + σ2

ν1n+1≤j≤n+q).

From the above, we see that the asymptotic distribution of σ̂2
ν depends on the second and fourth

moments of ν and ε. To estimate the second moment of ε, we consider the estimator

σ̂2
ε ≜ r−1

(Z,W)⊥
∥P⊥

(Z,W)(y −Xβ̂EW)∥22.

The problem of estimation of fourth moments requires some technical assumptions on the design,
even in the low-dimensional setting. For simplicity, we only consider the setting of Gaussian mixed
models and the balanced one-way ANOVA design, but we note that the arguments may be extended
under suitable regularity on the design matrices Z and W. In the setting Gaussian mixed models,
the fourth moment is entirely determined by the second moment. For the setting of the balanced
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one-way ANOVA design with m observations per subject, we consider the estimator

ω̂ε ≜ q−1m2∥P⊥
(Z,W)(y −Xβ̂EW)∥44 − 3(m− 1)σ̂4

ε ,

ω̂ν ≜ (mq)−1∥PZ⊖W(y −Xβ̂EW)∥44 − 6m−1σ̂2
ε σ̂

2
ν −m−3ω̂ε − 3m−3(m− 1)σ̂4

ε ,

κ̂ε ≜ ω̂ε − σ̂4
ε , κ̂ν ≜ ω̂ν − σ̂4

ν .

In both settings, we obtain a plug-in estimator σ̂2
ς of σ2

ς . By setting κ̂ν = 0 and σ̂2
ν = 0, we obtain

an estimator σ̂2
ς,z of σ2

ς,z for Section 3.2.

Remark. The statistic σ̂2
ν is related to the classical analysis of variance method for estimating

random effects. Consider the setting of a balanced one-way ANOVA model from Example 1 with
µ = 0n. Let

MSTreatments = q−1∥PZy∥22 = q−1∥PZ(Zν + ε)∥22,

MSError = (n− q)−1∥P⊥
Zy∥22 = (n− q)−1∥P⊥

Zε∥22.

Then, the analysis of variance estimate is given by

σ̂2
ν,AOV ≜ m−1(MSTreatments −MSError).

Now, note that rZ⊖W = q, r(Z,W)⊥ = (m − 1)q, n = mq, and tr(ZT
ZZ) = tr(ZTZ) = mq. From

the calculations in Section 3.3.1, we have that

σ̂2
ν = (mq)−1

(
∥PZ(Zν + ε)∥22 − (m− 1)−1∥P⊥

Zε∥22 + oP(q
τ )
)

= σ̂2
ν,AOV + oP(1).

Thus, the two statistics are asymptotically equivalent in the balanced one-way ANOVA setting.

3.3.3 Assumptions

In addition to the assumptions from Section 3.2, we need additional assumptions on the matrix Q

and on the distribution of the random effects ν.

(3.8) The matrix Q satisfies

λmax(Q
2)

tr(Q2)
→ 0.
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(3.9) The vector ν = νn satisfies

inf
n

{(
min

i=1,...,qn
Var(νn,i)

)
∧
(

min
i=1,...,qn

Var(ν2
n,i)

)}
> 0,

lim
x→∞

sup
n

{(
max

i=1,...,qn
E
(
ν2
n,i : |νn,i| > x

))
∨
(

max
i=1,...,qn

E
(
ν4
n,i : |νn,i| > x

))}
= 0.

Remark. Assumptions (3.8) and (3.9), along with (3.7), are used for a central limit theorem for
quadratic forms. For a thorough discussion on these assumptions, we refer the interested reader
to Section 5 of Jiang (1996). As a consequence of using a central limit theorem, we require that
the number of random effects increases to infinity. Thus, we only consider the sparsity assumption
(3.5) in this section.

Example 3 (Balanced one-way ANOVA (ctd.)). Continuing with Example 1, we note that ZZT =

mPZ⊖W. Also, recall that rZ⊖W = q and r(Z,W)⊥ = (m− 1)q. Then,

Q2 =

(
(m+ 1)PZ⊖W + (m− 1)−2P⊥

(Z,W) (m+ 1)Z

(m+ 1)ZT (m2 +m)Iq

)
.

A direct calculation shows that λmax(Q
2) = (m + 1)2 and tr(Q2) = (m + 1)q + (m − 1)−1q +

(m2 +m)q, which satisfies assumption (3.8).

3.3.4 Main Results

We start by stating the asymptotic distribution of σ̂2
ν .

Theorem 3.5. Consider the model in equation (3.1.1). Assume (3.1), (3.2), (3.3) with Ψ = σ2
νIq,

(3.4), (3.5) with τ = 1/2, (3.7), (3.8), and (3.9). If α > 4(Kν λmax(ZZ
T) +Kε), then

σ−1
ς [tr(ZTPZ⊖WZ)](σ̂2

ν − σ2
ν)

L→ N (0, 1).

Next, we consider the following lemma, which shows that κ̂ε and κ̂ν are consistent estimators
of κε and κν .

Proposition 3.6. Consider the balanced one-way ANOVA from Example 1. Under the assumptions

of Theorem 3.5,

κ̂ε
P→ κε, κ̂ν

P→ κν .

Thus, the preceding two results allow us to construct confidence intervals in the Gaussian mixed
model and the balanced one-way ANOVA setting. Let σ̂2

ς be a consistent estimator for σ2
ς . Then,
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an asymptotic (1− δ) confidence interval for σ2
ν may be given by

(σ̂2
ν − zδσ̂ς [tr(ZTPZ⊖WZ)]−1, σ̂2

ν + zδσ̂ς [tr(Z
TPZ⊖WZ)]−1)

where zδ is the δ upper quantile of a standard Gaussian distribution. Since the above interval may
be negative, we may truncate negative values to zero.

3.4 Empirical Bayes in ANOVA Type Models

The motivating example of this problem framework is in terms of the Rasch model, originally
proposed by Rasch (1960). The model that we consider is different than the classical Rasch model
in that we have Gaussian responses as opposed to binary responses. Our interest in this section is
not in testing whether the variance of the random effect is different from zero, but, assuming that
it is different from zero, in estimating the individual components of the random effect. We use
the term empirical Bayes, or compound decision, in the sense of Efron (2019) and the references
therein (specifically Greenshtein and Ritov (2019)).

As an example of this model, the data that we consider in Section 3.6 is from the Trends in
Mathematics and Sciences Study (TIMSS), an international study conducted every four years to
measure fourth and eighth grade student achievement in mathematics and science. We only con-
sider data from the year 2015. Polities randomly sample a collection of nationally representative
schools to take standardized examinations in both mathematics and science, with questions being
either multiple choice or constructed response. Then, each student within schools takes only a sub-
set of the questions on the exams but all questions are answered by some students in each school. In
addition to recording student responses, the data also contains background covariates for schools.
Martin et al. (2016) provides a more detailed description of the methods and procedures employed
by TIMSS and more general information about TIMSS is available in Mullis et al. (2016b).

For our analysis, we only consider multiple choice questions and analyze on the level of school
rather than students. To construct a response variable for school, we compute the proportion of
questions answered correctly by students in that school. Note that, unlike the classical Rasch
model, we assume a linear model and, for all schools, we have answers for all questions. Thus,
by a central limit theorem, our response y is approximately Gaussian. The fixed effects design X

include the background covariates for the school and the random effects design Z is an indicator
for the polity, with ν corresponding to the unobserved variability of the polities. In this example,
since we have averaged over questions, we do not have any nuisance random effects. The problem
that we consider in this section is ranking the polities based on mathematical ability and trying to
estimate the average number of questions that any particular polity will answer correctly. That is,
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we would like to estimate µ+ Zν for all polities in our data set.

3.4.1 Model and Motivation

The general problem framework that we consider is for K-factor ANOVA models. However, we
derive the results in the setting when K = 2. That is, we consider the model

y = µ+ Zν +Wγ + ε.

We do not assume that the design is fully crossed in the random effects. The goal in the problem
is to estimate a subset of the mean vector, η ≜ µ + Zν, since we view the random effects W

as nuisance. However, as the sample size increases, the number of observations per group stays
bounded. In the context of the motivating data example, each school still only answers a finite
number of questions as we increase the sample size. A standard approach in the low-dimensional
setting would be to use an empirical Bayes estimator by placing a Gaussian prior on both ν and
γ (for example, see Brown et al. (2018)), which transforms the problem into a standard high-
dimensional linear mixed model. Therefore, we use a Nv (0v, σ2

νIv) and Nr
(
0r, σ

2
γIr
)

prior on ν
and γ respectively.

Since we need to estimate both σ2
ν and σ2

γ for the prior, our estimator for σ2
γ is analogous to σ̂2

ν

from Section 3.3. To this end, we need an additional matrix PW⊖Z such that

PW⊖Zy = PW⊖ZXβ
∗ +PW⊖ZWγ +PW⊖Zε.

3.4.2 Estimator

Since we are also interested in estimating PW⊖ZXβ
∗, we define β̃EW to be the exponentially

weighted estimator using the covariates X, as opposed to using the covariates P⊥
WX for β̂EW.

Then, analogous to Section 3.2.2 let β̃m denote the least-squares estimator of β∗ using the model
m ∈ Mu with covariates Xm and KZν+Wγ+ε be the sub-Gaussian parameter for Zν +Wγ + ε.
For α̃ > 4KZν+Wγ+ε, defining the exponential weights as

w̃ ≜
exp

(
− 1
α̃
∥y −Xβ̃m∥22

)
∑

k∈Mu
exp

(
− 1
α̃
∥y −Xβ̃k∥22

) ,
we have

β̃EW ≜
∑

m∈Mu

w̃mβ̃m.
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For convenience, we write µ̃EW ≜ Xβ̃EW. Now, the estimators for the variance are given by

σ̃2
ν ≜ [tr(ZTPZ⊖WZ)]−1

(
∥PZ⊖W(y − µ̃EW)∥22 − rZ⊖Wr−1

(Z,W)⊥
∥P⊥

(Z,W)(y − µ̃EW)∥22
)
,

σ̃2
γ ≜ [tr(WTPW⊖ZW)]−1

(
∥PW⊖Z(y − µ̃EW)∥22 − rW⊖Zr

−1
(Z,W)⊥

∥P⊥
(Z,W)(y − µ̃EW)∥22

)
,

σ̃2
ε ≜ r−1

(Z,W)⊥
∥P⊥

(Z,W)(y − µ̃EW)∥22.

As we do not require an asymptotic distribution for σ̃2
ν and σ̃2

γ , under weaker assumptions that
Theorem 3.5, we have that σ̃2

ν and σ̃2
γ are consistent estimators of σ2

ν and σ2
γ respectively. This

suggests the the following empirical Bayes estimator for η,

η̃EW ≜ µ̃EW + σ̃2
νZZ

T
(
σ̃2
νZZ

T + σ̃2
γWWT + σ̃2

εIn
)−1

(y − µ̃EW) .

To compare our estimator, we consider an oracle that has access to µ, σ2
ν , σ2

γ , and σ2
ε . Then, this

oracle uses the Bayes estimator for η (see Lemma 3.8), given by

η̃oracle ≜ µ+ σ2
νZZ

T
(
σ2
νZZ

T + σ2
γWWT + σ2

εIn
)−1

(y − µ) .

3.4.3 Assumptions

As previously mentioned, we do not need to establish the asymptotic distribution of σ̂2
ν , rather we

only need the estimator to be consistent. Accordingly, we may weaken our assumptions to the
following

(3.10) The designs Z and W satisfy tr(ZTPZ⊖WZ) ≍ tr(WTPW⊖ZW) ≍ n.

(3.11) The matrix W satisfies λmax(WWT) being bounded.

Remark. Assumption (3.10) ensures that the component of the design for the random effects is
sufficiently well balanced. This assumption in the presence of (3.4) implies the second half of
(3.5). Note that tr(ZTPZ⊖WZ) ≤ λmax(ZZ

T) tr(PZ⊖W) = λmax(ZZ
T)rZ⊖W. Since rZ⊖W ≤ n,

tr(ZTPZ⊖WZ) ≍ n and λmax(ZZ
T) being bounded imply that rZ⊖W ≍ n.

The other assumption (3.11) is analogous to (3.4).

3.4.4 Main Results

We start this section by noting that σ̂2
ν , σ̂2

γ , and σ̂2
ε are all consistent estimators under a weaker

sparsity assumption than in Section 3.3. Since we no longer require an asymptotic distribution for
the variance estimates, we only need the prediction rate to ensure consistency, which is the content
of the ensuing proposition.
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Proposition 3.7. Consider the model given in equation (3.1.1). Assume (3.1), (3.2∗), (3.3∗) with

Ψ = σ2
νIv, (3.4), (3.5) with τ = 1, (3.10), and (3.11). If α > 4(σ2

ν λmax(ZZ
T)+σ2

γ λmax(WWT)+

σ2
ε), then

σ̃2
ν

P→ σ2
ν , σ̃2

γ
P→ σ2

γ, σ̃2
ε

P→ σ2
ε .

The following is a standard lemma regarding the empirical Bayes estimators in this problem
setup, which we prove for the sake of completeness.

Lemma 3.8. For a fixed vector µ ∈ Rn and fixed values σ2
ν > 0, σ2

γ > 0, and σ2
ε > 0, the Bayes

estimator of η is given by

E (η|y) = µ+ σ2
νZZ

T
(
σ2
νZZ

T + σ2
γWWT + σ2

εIn
)−1

(y − µ) .

We conclude this section with the main result regarding η̃EW; the empirical Bayes estimator
performs nearly as well as the oracle Bayes estimator η̃oracle asymptotically.

Theorem 3.9. Consider the model given in equation (3.1.1). Under the assumptions of Proposition

3.7,

n−1
(
∥η̃EW − η∥

2 − ∥η̃oracle − η∥
2) = oP(1).

3.5 Simulations

3.5.1 Methods and Models

We consider the linear mixed model given by

y = Xβ∗ + Zν +Wγ + ε,

with n = 1000, p = 2000, and q = 200. The parameters that we vary throughout the experiment
are the sparsity s, the distribution of X, ν, γ, and ε, the value of σ2

ν , and the number of nuisance
random effects d. For each parameter setting, the results are averaged over 100 replications.

For the sparsity, we set s∗ ∈ {3, 15}. Each row of X is independent and identically distributed
Np (0p,Σ) with

Σi,j =

1 if i = j,

ρ if i ̸= j,
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for ρ ∈ {0, 0.8}. Then, β∗ is chosen such that the signal strength, (β∗)TΣβ∗, is four times the
noise level with σ2

ε = 1. This is accomplished by first generating s uniform random variables in
[−1, 1] and then rescaling to the desired level.

For the random effects, we either generate them from a Gaussian distribution or a double ex-
ponential distribution, which we denote by “z” and “e” respectively. For the variances, we let
σ2
ν ∈ {0, 1} while σ2

γ = 1.
Finally, for the component of the design corresponding to the random effects, we let d ∈

{0, 200}. When d = 0, the design is a balanced one-way ANOVA design with m = 5. When
d = 200, we generate from a two-way crossed design and down sample to have n observations.
We only consider the sub-Gaussian procedures when d = 0.

All of our simulations are conducted in R. For each of our three problems, we compare the
exponential weighting estimator, denoted by “EW” with an oracle low-dimensional estimator as
well as a low-dimensional version of our proposed high-dimensional statistic.

For exponential weighting, we follow Algorithm 1 from Law and Ritov (2021b). Regarding
the tuning parameters, we perform four fold cross-validation over a grid of values for α and the
sparsity.

For the oracle estimators, in the setting of the F -test, we directly apply the classical low-
dimensional F -test that has access to the true sparse set S, as given in equation (2.3) of Jiang
(2007). For the confidence intervals, we fit the linear mixed models with the true sparse set S
using lmer and applying the confint function. Finally, in the setting of estimation, we di-
rectly compute the oracle Bayes estimator η̃oracle described in Section 3.4. Collectively, these
low-dimensional estimators are denoted by “LD”.

In addition to comparing with the low-dimensional estimators, we also construct low-
dimensional versions of our proposed high-dimensional statistics. To do so, we use the exact same
statistic as in the high-dimensional setting but replace exponential weighting with least-squares
using the sparse set S. We make this comparison since all of our proposed statistics rely on two
layers of asymptotics:

1. In the prediction of the mean vector via exponential weighting.

2. In the convergence once the residuals are obtained.

To differentiate between these two, we introduce an intermediate statistic that relies on least-
squares, which we think of as low-dimensional versions of our statistics. For example, letting
β̂∗

S be the least-squares estimator of β∗ using the covariates XS , we also consider the statistic

FLS ≜
∥PZ⊖W(y −Xβ̂S)∥2/rZ⊖W

∥P⊥
(Z,W)(y −Xβ̂S)∥2/r(Z,W)⊥

∼ FrZ⊖W,r
(Z,W)⊥

+ oP(1).
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These estimators are denoted by “LS”.
Finally, we also include a version of our statistics using scaled lasso, which we denote by “SL”.

Then, for “EW”, “SL”, and “LS”, we subscript them by either “G” or “SG” to distinguish between
the Gaussian and sub-Gaussian methods.

To compare the procedures, we consider the following metrics

1. Type I/II Error: The percentage of time the procedure produces a type I or type II error in
hypothesis testing.

2. Average Coverage: The percentage of time the correct hypothesis is selected for F -tests or
the percentage of time the true value of σ2

ν is in the confidence interval.

3. Average Length: The average length of the confidence interval, taken as the upper endpoint
minus the lower endpoint.

4. Average Loss: The average squared Euclidean distance between the estimated vector η̂ and
the true vector η divided by n.

3.5.2 Results

The results are presented in Tables A.3.1 – A.3.3 from the Supplement. We notice that for hypoth-
esis testing, all the procedures control type I and type II error well throughout the settings. For
confidence intervals, when d = 0 and s = 3, we notice that all of the methods perform well in cov-
erage. However, the length of our procedures appears to be shorter when σ2

ν = 0 and longer when
σ2
ν = 1, whereas the low-dimensional procedure is more uniform across the parameter space. This

is not surprising in view of our estimation procedure. From Section 3.3.2, the asymptotic variance
of σ̂2

ν depends monotonically on the second and fourth moments of ν and ε, which is reflected in
the lengths of the resulting intervals.

When σ2
ν = 0, the empirical coverage of our confidence intervals are close to the nominal

level, even when the distribution of the random effects and errors are double exponential. When
σ2
ν = 1, the empirical coverage drops to around 80% for the Gaussian procedure and 90% for the

sub-Gaussian procedure when the distribution is double exponential, against a nominal coverage
of 95%. We note that the double exponential distribution is not a sub-Gaussian distribution, which
seems to suggest that the confidence intervals are somewhat robust to slight departures from the
distributional assumptions.

Moreover, when increasing the sparsity from s∗ = 3 to s∗ = 15, the performance of our confi-
dence intervals decreases slightly since it is harder to remove the contribution of the fixed effects.
Finally, for empirical Bayes estimation, our methods are competitive with the oracle. However,
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we notice that exponential weighting outperforms scaled lasso when s∗ = 15, particularly when
ρ = 0.8. Since larger values of ρ implies that the columns of X are more correlated, this highlights
a salient feature of exponential weighting.

3.6 Real Data Application

Following in the motivating example of Section 3.4, we consider the TIMSS dataset, which is
freely available at https://timssandpirls.bc.edu/. To simplify our analysis, we only consider the
mathematics questions. After filtering out for complete cases on background covariates, we are
left with 146 questions, q = 43 unique polities, p = 106 covariates, and 6808 schools. There-
fore, we had a total of n = 6808 responses after averaging over the students and questions within
the schools. Here, there are no nuisance random effects so d = 0. Due to averaging over stu-
dents within schools, we expect the distributions to be approximately Gaussian by a central limit
theorem.

To demonstrate our methodology, we use both exponential weighting as well as scaled lasso as
our estimation procedure. When applying exponential weighting, we jointly tune the value of u
and α using four fold cross-validation. The high-dimensional F -test rejected the null hypothesis
that σ2

ν = 0 and a 95% confidence interval for σ2
ν is (0.0021, 0.0056), which suggests that, even

controlling for school background characteristics, the polity of the school impacts mathematical
ability. For the last part, we define a polity’s background characteristics X to be the arithmetic
average of all the schools’ background characteristics within that polity. Then, applying the empir-
ical Bayes procedure, we rank the polities based on the predicted number of questions they would
answer correctly. The top five polities in order from our analysis are South Korea, Singapore,
Hong Kong, Chinese Taipei, and Japan. Up to some reordering, our results are mostly consistent
with the report of Mullis et al. (2016a) based on individual student data, who had the same top five
polities. The results using scaled lasso produced the same ranking as exponential weighting and
similar conclusions regarding σ2

ν .
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CHAPTER 4

High-Dimensional Varying Coefficient Models with
Functional Random Effects

4.1 Introduction

Consider the following varying coefficients model with functional random effects given by

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j) (4.1.1)

for i = 1, . . . , n and j = 1, . . . ,mi. Here, xi ∈ Rp is a vector of time invariant covariates, zi(·) :
(0, 1)→ Rq is a vector function representing the time varying covariates, and β∗(·) : (0, 1)→ Rp

and γ∗(·) : (0, 1)→ Rq are time varying coefficients. Moreover, ξi(·) : (0, 1)→ R is a continuous
time mean zero stochastic process representing the individual random effect and εi(·) : (0, 1)→ R
is an independent error. Finally, the values ti,j ∈ (0, 1) are the sampling times.

The model in (4.1.1) is useful for longitudinal data, where for the ith individual, we record mi

observations over time. Traditionally, varying coefficients models for longitudinal data consider
errors that are mean zero stochastic process with unknown covariance structure, such as Hoover
et al. (1998), whereas we partition the error into continuous time individual random effects, ξi(ti,j),
and independent errors, εi(ti,j). Such a partitioning is reasonable whenever the mean function,
ξi(·), for each individual is smooth. The model in equation (4.1.1) admits many special cases both
in the low-dimensional setting and the ultra high-dimensional setting; we list two such examples
below:

1. Let p = 1, q = 0, and xi = 1 for all i = 1, . . . , n, yielding the model

yi(ti,j) = β∗(ti,j) + ξi(ti,j) + εi(ti,j). (4.1.2)

Then, the problem of estimating β∗(·) is equivalent to the mean function estimation problem
from Cai and Yuan (2011).
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2. Let p > n, q = 0, and mi = 1 for all i = 1, . . . , n, yielding the model

yi(ti) = ⟨xi,β∗(ti)⟩2 + εi(ti). (4.1.3)

Here, in the model, since we only have a single observation per individual, we slightly
abuse notation and write εi(ti) to denote ξi(ti) + εi(ti). If the function β∗(·) is sparse, then
this corresponds to the sparse varying coefficients model considered by Klopp and Pensky
(2015).

The goal of the present paper is estimation and inference for the varying coefficients β∗(·)
and γ∗(·). Much of the extant literature on high-dimensional varying coefficient models focus on
estimation and variable selection, such as Wei et al. (2011), Lian (2012), Xue and Qu (2012), Klopp
and Pensky (2015), and Lee et al. (2016). The problem of inference is less well understood in the
high-dimensional setting. To the best of our knowledge, the only paper exploring this problem is
Chen and He (2018), who only consider local hypothesis testing. However, all of the current works
assume that the time varying covariates, zi(·), are independent of the functional random effects,
ξi(·). In practice, this assumption is not necessarily satisfied. To motivate this, consider modeling
the average height of five year old boys in different countries over time. For each country, our
time varying covariates consist of variables, such as Human Development Index (HDI), health
expenditure, and urbanization rate, that are likely to be correlated with the functional random
effect of country, which encapsulates, among other things, environmental factors. This example
is revisited in Section 4.6. Moreover, most of the current works in high-dimensions assume either
independent errors (cf. Wei et al. (2011), Xue and Qu (2012), and Klopp and Pensky (2015)) or
a single individual, ie. n = 1 but m → ∞ (cf. Lee et al. (2016)). The work most similar to ours
is Bai et al. (2019), who assume mi observations for individual, i = 1, . . . , n. However, they only
consider random and independent sampling times with correlated Gaussian errors in a Bayesian
paradigm.

Thus, our contribution to high-dimensional varying cofficient models is fourfold: (i) estimation
of β∗(·) in the presence of ξi(·), (ii) estimation of γ∗(·) under dependence of zi(·) and ξi(·), (iii)
estimation of both β∗(·) and γ∗(·) under both random and independent or fixed and common
sampling times, and (iv) construction of confidence bands for single components of β∗(·) and
γ∗(·) with and without dependence.

To these ends, we propose a framework for estimation and inference in both the low-
dimensional and the high-dimensional setting. Our estimators utilize orthogonal series to leverage
recent developments in the high-dimensional linear models literature. We revisit the two examples
in equations (4.1.2) and (4.1.3) later when analyzing the convergence rate of our estimators.
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4.1.1 Organization of the Chapter

We end this section with a description of the notation that is used in the remainder of the chapter.
Since our estimator has two-stages, we consider each stage separately. In Section 4.2, we consider
the special case when there are no time invariant covariates (p = 0) while in Section 4.3, we
consider the setting where there are no time varying covariates (q = 0). Then, we combine these
results together into the two-stage estimator in Section 4.4. In Section 4.5, we consider the problem
of constructing confidence bands for a fixed varying coefficient. Finally, Section 4.6 provides the
simulations and Section 4.7 presents an analysis of the height data mentioned above. For ease
of presentation, we defer all of the proofs to Appendix 3. In addition, the appendix contains the
assumptions for Section 4.3, the additional results of the simulations, and an analysis of yeast cell
cycle data.

4.1.2 Notation and Definitions

Throughout, all of our variables have a dependence on n, but, when it does not cause confusion,
we suppress this dependence. Since our interest is mainly asymptotic, we adopt a random design
regression framework embedded in a triangular array. The vector of covariates xi is drawn from
a distribution that does not depend on time whilst the vector of covariates zi(ti,j) is drawn from
a distribution conditioned on the sampling times. Furthermore, the ξi(·)s are independent realiza-
tions of smooth mean zero stochastic processes and εi(·)s are random errors. Then, we write E to
denote the expectation with respect to the joint probability measure of (ξi(·))ni=1 and (εi(·))ni=1.

Regarding the sampling times, there are two commonly used paradigms: (i) independent ran-
dom sampling times and (ii) common fixed sampling times. In the first setting, we assume that
the time points are all independently sampled from a distribution f on (0, 1), which is bounded
away from zero and infinity. In this setting, ET denotes the expectation with respect to the sam-
pling times ti,j . On the other hand, for the common sampling times, we assume that mi = m and
ti,j = j/m for all i = 1, . . . , n and j = 1, . . . ,m, viewing the sampling times as deterministic. In
either case, for a fixed value of i = 1, . . . , n, we write (ti,(j))

mi
j=1 to denote the order statistics for

(ti,j)
mi
j=1.

As mentioned in the Introduction, we consider an orthogonal series estimator. For technical
convenience, we use the trigonometric basis since the functions are uniformly bounded by

√
2.

There are many definitions of the trigonometric basis, but we use the following definition as in
Tsybakov (2008).

Definition 4.1.1. For t ∈ (0, 1), the trigonometric basis functions, denoted by (φk(·))∞k=1, are given
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by

φk(t) ≜


1, k = 1
√
2 cos(πkt), k = 2, 4, . . .
√
2 sin(π(k − 1)t), k = 3, 5, . . . .

Occasionally, it is useful to view these as functions on the complex plane; we write i to denote
the imaginary unit. Later, to simplify notation, we assume that both the varying coefficients and
random effects are in the same periodic Sobolev class with smoothness α, denoted byWper(α,R)

(for example, see Definition 1.11 of Tsybakov (2008)). Then, the functions β∗(·), γ∗(·), and ξi(·)
admit an expansion over the trigonometric basis. Let ℶ∗

k ∈ Rp (Hebrew letter Bet), k∗ג ∈ Rq

(Hebrew letter Gimel), and oi,k ∈ R (Hebrew letter Samek) for k = 1, 2, . . . denote the Fourier
coefficients of β∗(·), γ∗(·), and ξi(·) for i = 1, . . . , n. Then, we may write

β∗(·) =
∞∑
k=1

ℶ∗
kφk(·), γ∗(·) =

∞∑
k=1

,(·)kφk∗ג ξi(·) =
∞∑
k=1

oi,kφk(·). (4.1.4)

Let β̂(·), with expansion

β̂(t) =
∞∑
k=1

ℶ̂kφk(t),

denote an arbitrary estimator for β∗(·). To evaluate β̂, we consider either integrated squared error
(ISE) defined by

ISE(β̂) ≜
∫ 1

0

(
β̂(t)− β∗(t)

)2
dt

or mean integrated squared error (MISE), where MISE(β̂) ≜ ETE(ISE(β̂)). We use MISE for the
low-dimensional estimators and bound ISE for high-dimensional estimators with high probability.
By Parseval’s Theorem, it follows that integrated squared error is equivalent to

ISE(β̂) =
∞∑
k=1

∥∥ℶ̂k − ℶ∗
k

∥∥2
2
. (4.1.5)
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It follows from Proposition 1.14 of Tsybakov (2008) that

∞∑
k=Kβ+1

∥ℶ∗
k∥

2
2 = O(s

∗
βK

−2α
β ). (4.1.6)

Therefore, it suffices to estimate the Fourier coefficients up to a truncation level Kβ to balance
the bias-variance tradeoff. Similarly, for γ∗(·), we find a truncation level Kγ . Thus, we may then
define the low and high frequency components of the varying coefficient functions β∗(·) and γ∗(·)
as

β∗(·) ≜
Kβ∑
k=1

ℶ∗
kφk(·), β∗(·) ≜

∞∑
k=Kβ+1

ℶ∗
kφk(·),

γ∗(·) ≜
Kγ∑
k=1

,(·)kφk∗ג γ∗(·) ≜
∞∑

k=Kγ+1

.(·)kφk∗ג

Like other works in high-dimensional statistics, sparsity plays a crucial role. For simplicity, we
assume the setting of strong sparsity, whereby both β∗(·) and γ∗(·) have s∗β and s∗γ components
that are nonzero. When considering the inferential problem, we need another notion of sparsity
from van de Geer et al. (2014). Let Σ to denote the population covariance matrix of xi, Θ the
inverse of Σ, and sθ = maxj=1,...,p |{k ̸= j : Θj,k ̸= 0}|. Thus, sθ is the maximal sparsity when
regressing a component of xi against the remaining xi’s.

4.2 Estimation with No Time Invariant Covariates

In this section, we assume that p = 0. That is, the model we consider is

yi(ti,j) = ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j). (4.2.1)

Since the processes zi(·) and ξi(·) may have arbitrary dependence, to remove the effect of ξi(·)
from the model, we difference the observations that are sufficiently close. As the function ξi(·) is
assumed to be smooth, the value of ξi(t) is approximately constant in a small neighborhood of t.
Let h > 0 be a bandwidth tuning parameter. For simplicity, we temporarily assume that mi is even
for each i = 1, . . . , n. Then, we may define the set Ah as

Ah ≜
{
(i, j) : 1 ≤ i ≤ n, j ∈ {1, 3, . . . ,mi − 1} , ti,(j+1) − ti,(j) < h

}
.
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Let N ≜ Nh = |Ah|. For (i, j) ∈ Ah, define the differenced observations vi,j as

vi,j ≜ yi(ti,(j+1))− yi(ti,(j))

= ⟨zi(ti,(j+1)),γ
∗(ti,(j+1))⟩2 − zi(ti,(j)),γ

∗(ti,(j))⟩2 + ξi(ti,(j+1))− ξi(ti,(j))

+ εi(ti,(j+1))− εi(ti,(j))

=

Kγ∑
k=1

⟨φk(ti,(j+1))zi(ti,(j+1))− φk(ti,(j))zi(ti,(j))︸ ︷︷ ︸
ψT
i,j,k

, k⟩2∗ג + εi(ti,(j+1))− εi(ti,(j))︸ ︷︷ ︸
ηi,j

+
∞∑

k=Kγ+1

⟨φk(ti,(j+1))zi(ti,(j+1))− φk(ti,(j))zi(ti,(j)), k⟩2∗ג + ξi(ti,(j+1))− ξi(ti,(j))︸ ︷︷ ︸
∆

(γ)
i,j

= ψT
i,jג

∗ + ηi,j +∆
(γ)
i,j ,

where ψi,j = (ψT
i,j,1, . . . ,ψ

T
i,j,Kγ

)T and ∗ג = 1∗ג)
T, . . . , Kγ∗ג

T)T. In matrix notation, we write this
model as

v = Ψג∗ + η +∆(γ). (4.2.2)

This is a sparse high-dimensional partially linear model with uncorrelated errors, for which there
are many proposals for estimating .∗ג Commonly, in high-dimensional nonparametric models, a
version of group lasso (cf. Yuan and Lin (2006)) is used to select relevant functions after a basis
expansion, such as the SpAM estimator of Ravikumar et al. (2009) or the block lasso estimator
of Klopp and Pensky (2015). While such approaches lead to more interpretable estimators, we
estimate ∗ג by the classical lasso of Tibshirani (1996) but note that our approach generalizes to
using the group lasso. We use the classical lasso to motivate the inferential procedure in Section
4.5, which is based on a version of the de-biased lasso estimator. Therefore, we estimate ∗ג in the
low-dimensional case by

ג̂
LD

≜
(
ΨTΨ

)−1
ΨTv

and

ג̂
HD

≜ argmin
RqKγ∋ג

N−1 ∥v −Ψ22∥ג + λ 1∥ג∥
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in the high-dimensional setting for a suitable tuning parameter λ > 0. By identifying the vectors
ג̂

LD and ג̂
HD as Kγ vectors in Rq, the estimators for γ∗(·) are given by

γ̂LD(·) ≜
∞∑
k=1

Kγ ג̂
LD
k φk(·), γ̂HD(·) ≜

∞∑
k=1

Kγ ג̂
HD
k φk(·).

Remark. In the above formulation, we pair the observations in Ah to ensure that the resultant er-
rors η are independent. However, this reduces the number of observations that we have to estimate
.∗ג To circumvent this problem, we may alternatively consider the set

Bh ≜
{
(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ mi − 1, ti,(j+1) − ti,(j) < h

}
.

Using the set Bh, we may likewise form the model given in equation (4.2.2), where the resultant
partially linear model has, by construction, correlated errors with known correlation structure.
Hence we may find a matrix B such that

Bv = BΨג∗ +Bη +B∆(γ),

where Bη is uncorrelated. For simplicity, we consider only the set Ah, but in practice, we recom-
mend adjusting using Bh when the sampling times are random and independent but Ah when the
sampling times are fixed and common (see Table A.4.3 in Section A.4.6 of the Supplement).

4.2.1 Sample Size

In this subsection, we consider the expected number of observations after differencing under a few
asymptotic regimes for n, m, and h. This leads us to the following proposition.

Proposition 4.1. Suppose the sampling times ti,j
i.i.d.∼ f for a density f on (0, 1) bounded away

from zero and infinity and mi = m > 0 for all i = 1, . . . , n. Let Ñh = |Bh|.

1. If m = O(1) and n→∞, then ET Ñh ≍ nh.

2. If m→∞ and mh≪ 1, then ET Ñh ≍ nm2h and ET (Nh + 1)−1 ≍ (nm2h)−1.

3. If m → ∞ and mh ≫ 1, then ET Ñh ≍ nm. If, in addition, mh − log(mn) → ∞, then

P(Ñh = mn)→ 1.

Remark. It is easy to see that |Ah| ≍ |Bh|.
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4.2.2 Assumptions

The following assumptions are used when p = 0.

(4.1) If s∗γ = q < N , then the matrix Ψ satisfies tr[(ΨTΨ)−1] = O(s∗γKγ/N) and
∥(ΨTΨ)−1∥2 = OP(N

−1).

(4.2) The columns of the matrix Ψ have squared norms that are uniformly OP(N).

(4.3) The design matrix Ψ satisfies the compatibility condition with compatibility constant ϕcc,Ψ >

0.

(4.4) The design matrix Ψ satisfies the adaptive restricted eigenvalue condition with constant
ϕadap,Ψ > 0.

(4.5) The errors εi(ti,j) are independent and identically distributed with mean zero and variance
σ2
ε . Moreover, the errors are independent of the sampling times.

(4.6) The errors εi(ti,j)
i.i.d.∼ SG(ς2ε ). Moreover, the errors are independent of the sampling times.

(4.7) The functional random effects (ξi(·))ni=1 are uniformly Lipschitz with constant L.

(4.8) Each coordinate of the coefficient γ∗(·) satisfies γ∗
k(t) ∈ Wper(α,R) for some constant

α ≥ 2 and R > 0 with s∗γ coordinates nonzero. Moreover,

ET

 ∞∑
k=Kγ+1

⟨zi(t), k⟩2φk(t)∗ג

2

= O(s∗γK−2α
γ ).

Remark. Assumptions (4.1), (4.2), and (4.5) are standard scaling assumptions for the design in
the low-dimensional setting.

Assumptions (4.3) and (4.4) are both compatibility conditions on the design matrix, with (4.4)
implying (4.3). In Theorem 4.3 below, we use (4.3) to obtain slow rates on ISE while (4.4) yields
a fast rate on ISE. For a more detailed discussion on assumptions (4.3) and (4.4), including defi-
nitions, we refer the reader to Section 6.2 of Bühlmann and van de Geer (2011) and Section 4 of
Bickel et al. (2009) respectively.

Next, assumption (4.6) is standard in the high-dimensional linear models literature and (4.7) is
reasonable whenever the underlying mean function for each individual is smooth. Further, (4.7) is
implied whenever (ξi(·))ni=1 ⊆ Wper(α,R).

The first half of assumption (4.8) is standard in the literature on nonparametric regression while
the second half ensures that the varying coefficients can be well approximated by a few basis
functions. In Example 4 below, we consider an instance where the second half is satisfied.
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Example 4 (Example for Assumption (4.8): Time random covariates). Suppose that the distribu-
tion of zi(ti,j) does not depend on ti,j . That is, assume that L {zi(ti,j)|ti,j} = L {zi(ti,k)|ti,k} for
every j, k = 1, . . . ,mi with j ̸= k. Then,

ET

 ∞∑
k=Kγ+1

⟨zi(t), k⟩2φk(t)∗ג

2

=
∞∑

k=Kγ+1

ET ⟨zi(t), k⟩22∗ג

=
∞∑

k=Kγ+1

k∗ג
TET

(
[zi(t)][zi(t)]

T
)
k∗ג

≤
∥∥ET ([zi(t)][zi(t)]T)∥∥22 ∞∑

k=Kγ+1

∥k∗ג∥
2
2

= O
(
s∗γK

−2α
γ

)
.

4.2.3 Main Results

We start by stating a result for the low-dimensional setting.

Proposition 4.2. Consider the model given in equation (4.2.2). Assume (4.1), (4.5), (4.7), and

(4.8). Then

EET
LDג̂∥∥∥ − ∗ג

∥∥∥2
2
= O

(
s∗γKγETN−1 + s∗γK

−2α
γ + L2h2

)
.

Remark. As noted in Section 4.1.2, the MISE of γ̂LD(·) can be bounded by

MISE(γ̂LD) = O
(
s∗γKγETN−1 + s∗γK

−2α
γ + L2h2

)
.

Choosing Kγ ≍ (ETN−1)−1/(2α+1) yields

MISE(γ̂LD) = O
(
s∗γ(ETN−1)2α/(2α+1) + L2h2

)
.

The choice of h is less straightforward as it depends on the asymptotic growth of m relative to n,
which can be seen from Proposition 4.1.

Now, turning our attention to the high-dimensional setting, we have the following result.

Theorem 4.3. Consider the model given in equation (4.2.2). Assume (4.2), (4.6), (4.7), and (4.8).

For t > 0, let

λ0 ≜ 2ςε

√
N−1 max

j=1,...,p
∥Ψj∥22

√
t2 + 2 log(qKγ)

N
. (4.2.3)
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Suppose λ ≥ 2λ0.

1. If, in addition, (4.3) holds, then with probability at least 1− 2 exp(−t2/2),

2N−1
∥∥∥Ψ̂ג

HD −Ψג∗ −∆(γ)
∥∥∥2
2
+ λ

HDג̂∥∥∥ − ∗ג
∥∥∥
1
≤ 6N−1

∥∥∥∆(γ)
∥∥∥2
2
+ 24ϕ−2

cc,Ψλ
2s∗γKγ.

2. If, in addition to the above, (4.4) holds, then with probability at least 1− 2 exp(−t2/2),

HDג̂∥∥∥ − ∗ג
∥∥∥2
2
= O

(
λ2s∗γKγ

(
s∗γK

−2α
γ + L2h2

λ2s∗γKγ

+ ϕ−2
adap,Ψ

)2
)
.

Example 5. As a special case, consider the setting where n = 1 and m = m1 → ∞. Note that
this problem is a generalization of the model in equation (4.1.3) from the Introduction. Under
the additional assumption that ξi(·) ≡ 0, obtaining m observations from a single individual with
time varying covariates is equivalent to obtaining a single observation from m individuals. Set
λ = 2λ0, Kγ ≍ (m/ log(q))1/(2α+1) and h ≍ s∗γ(log(q)/m)2α/(2α+1). Since q > Kγ , it follows that
log(q) ≤ log(qKγ) ≤ 2 log(q). Moreover, the choice of h implies that mh ≫ 1; thus, N = m

with high probability for m sufficiently large by Proposition 4.1. Then, with probability at least
1− 2 exp(−t2/2), it follows from Theorem 4.3 that

HDג̂∥∥∥ − ∗ג
∥∥∥2
2
= O

(
s∗γm

K4α+1
γ log(qKγ)

+
h2m

s∗γKγ log(qKγ)
+
s∗γKγ log(qKγ)

m

)
= O

(
s∗γ

(
log(q)

m

)2α/(2α+1)
)
.

From equation (4.1.6), it follows that

∞∑
k=Kγ+1

∥k∗ג∥
2
2 = O

(
s∗γK

−2α
γ

)
.

Combining these facts yields the following bound on ISE with probability at least 1−2 exp(−t2/2).

ISE(γ̂HD) =
HDג̂∥∥∥ − ∗ג

∥∥∥2
2
+

∞∑
k=Kγ+1

∥k∗ג∥
2
2 = O

(
s∗γ

(
log(q)

m

)2α/(2α+1)
)
.

From Theorem 1 of Klopp and Pensky (2015), assuming that the functions have uniform smooth-
ness α, then, up to the logarithmic factor, γ̂HD(·) attains the minimax rate.
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4.3 Estimation with No Time Varying Covariates

In this section, we assume that q = 0. That is, the model we consider is

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j). (4.3.1)

Now, by directly substituting the expansions from equation (4.1.4), it follows that

yi(ti,j) =
∞∑
k=1

(⟨xi, ℶ∗
k⟩2 + oi,k)φk(ti,j) + εi(ti,j).

The above factoring suggests that, to estimate the kth Fourier coefficient ℶ∗
k, we should look at the

observations in the frequency domain as opposed to the time domain. That is, we should form new
observations in the frequency domain as

ωi,k ≜ m−1
i

mi∑
j=1

yi(ti,j)φk(ti,j).

By projecting the observations onto a fixed frequency given by φk, the above is an approximate
linear model. Depending on whether the sampling times are viewed as fixed and common or
random and independent, we partition the above model differently.

In the setting where the sampling times are random and independent for each individual, we
define

ζi,k ≜ m−1
i

mi∑
j=1

(⟨xi, β∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j))φk(ti,j)− ⟨xi, ℶ∗
k⟩2,

yielding a linear model

ωi,k = ⟨xi, ℶ∗
k⟩2 + ζi,k. (4.3.2)

In matrix notation, we write

Ωk = Xℶ∗
k + ζk.

When the sampling times are fixed and common, we write

ωi,k = ⟨xi, ℶ∗
k + ℸk⟩2 + ζi,k, (4.3.3)
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where

ℸk ≜ m−1

∞∑
l=1
l ̸=k

ℶ∗
l

m∑
j=1

φk(ti,j)φl(ti,j), (Hebrew letter Dalet)

ζi,k ≜ oi,k +m−1

m∑
j=1

φk(ti,j)

εi(ti,j) + ∞∑
l=1
l ̸=k

oi,lφl(ti,j)

 .

In matrix notation, this is expressed as

Ωk = X(ℶ∗
k + ℸk) + ζk.

The main difference between the perspectives in equations (4.3.2) and (4.3.3) is how we con-
sider the inexact orthogonalization. When the sampling times are random, the projection of
⟨xi, β∗(·)⟩2 over the k’th frequency is unbiased for ⟨xi, ℶ∗

k⟩2 with respect to the probability measure
on ti,j . Conversely, since the common sampling times are deterministic, this inexact orthogonaliza-
tion is viewed as bias; the vector ℸk is the sum of the Fourier coefficients of the aliased frequencies.

Regardless of the sampling times, in the low-dimensional setting, least-squares provides a con-
venient estimator for ℶ∗

k, while in the high-dimensional setting, one may directly apply the lasso.
That is,

ℶ̂
LD
k ≜


(
XTX

)−1
XTΩk, k = 1, . . . , Kβ,

0p, k > Kβ,

ℶ̂
HD
k ≜

argminℶ∗∈Rp n−1 ∥Ωk −Xℶ∗∥22 + λk ∥ℶ∗∥1 , k = 1, . . . , Kβ,

0p, k > Kβ.

Like in Section 4.2, this provides the estimators for β∗(·) as

β̂
LD
(·) ≜

∞∑
k=1

ℶ̂
LD
k φk(·), β̂

HD
(·) ≜

∞∑
k=1

ℶ̂
HD
k φk(·).

4.3.1 Assumptions

We begin with the assumptions we use in this section.

(4.9) The sampling times satisfy ti,j
i.i.d.∼ U(0, 1) and are independent of the errors εi(ti,j).

(4.10) The number of observations per individual is the same, mi = m for all i = 1, . . . , n. More-
over, the sampling times satisfy ti,j = j/m for all i = 1, . . . , n and j = 1, . . . ,m.
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(4.11) The columns of X have squared norms that are uniformly O(n) and the entries of X satisfy
supi=1,...,n ∥xi∥∞ = g(n) for some function g(n).

(4.12) The design matrix X satisfies the compatibility condition with compatibility constant
ϕcc,X > 0.

(4.13) The design matrix X satisfies the adaptive restricted eigenvalue condition with constant
ϕadap,X > 0.

(4.14) Each coordinate of the coefficient β∗(·) satisfies β∗
k(·) ∈ Wper(α,R) for some constant

α ≥ 2 and R > 0 with s∗β coordinates nonzero. Moreover, the product ⟨xi,β∗(·)⟩2 ∈
Wper(α,O(g(n)) uniformly and

sup
i=1,...,n

∫ 1

0

⟨xi,β∗(t)⟩22dt = O(g(n))

for some function g(n).

(4.15) The individual random effects (ξi(·))ni=1 ⊆ Wper(α,R) almost surely and are independent
and identically distributed. Furthermore, for each i = 1, . . . , n and t ∈ (0, 1), the function
ξi(·) satisfies Eξi(t) = 0 and

E
∫ 1

0

ξ2i (t)dt <∞.

(4.16) The individual random effects (ξi(·))ni=1 ⊆ Wper(α,R) almost surely and are independent
and identically distributed. Furthermore, for each i = 1, . . . , n, the Fourier coefficients
oi,k ∼ SG(ς2o,k) with

∑∞
k=K ς

2
o,k = O(K−2α).

There are two assumptions regarding the sampling times, (4.9) and (4.10). As first pointed
out by Cai and Yuan (2011) in the context of mean function estimation, the rate of convergence
is different between random and independent or fixed and common sampling times. The first
assumption, (4.9), considers the independent sampling times, with an additional convenience that
the sampling times are uniform since the trigonometric basis is orthogonal with respect to this
measure on (0, 1). This assumption may be relaxed to allow for ti,j

i.i.d.∼ f from some density f
bounded from zero and infinity by taking an appropriate change of measure. The other assumption,
(4.10), considers the common sampling time setting. Again, we make a simplifying assumption
that the sampling times are on a uniformly spaced grid, though this assumption may similarly be
relaxed. These two settings are analyzed separately below.

Assumptions (4.11) – (4.13) are analogous (4.2) – (4.4).

73



Next, assumption (4.14) assumes that the signal is uniformly bounded by some function g(n).
This assumption is the finite sample analogue of maintaining a bounded signal to noise ratio in a
varying coefficients model. We conflate the function g(n) in assumptions (4.11) and (4.14) since
g(n) may normally be taken to be a slowly varying function of n. For example, if the design is
sub-Gaussian, then g(n) = log(n) is sufficient. If the design is bounded, then g(n) may be a
constant. Further, we note that this assumption implies that

sup
i=1,...,n

sup
t∈(0,1)

⟨xi,β∗(t)⟩22dt = O(g(n)).

Assumption (4.15) is a slightly stronger version of (4.7). It automatically implies that Eoi,k = 0

for all k = 1, 2, . . . , and
∑∞

k=Kβ
σ2
o,k = O(K−2α

β ) where σo,k = Var(oi,k). Finally, (4.16) is
a technical requirement for the high-dimensional regime to ensure concentration of the resultant
high-dimensional linear models after projection.

4.3.2 Main Results: Independent Sampling Times

We start by considering the low-dimensional regime.

Proposition 4.4. Consider the model given in equation (4.3.1) with s∗β = p < n. Let M =

diag((m1, . . . ,mn)). Under assumptions (4.9), (4.14), and (4.15), the MISE is given by

MISE(β̂
LD
) = tr

((
XTX

)−1
XT
(
O (1) In +O(g(n)Kβ)M

−1
)
X
(
XTX

)−1
)
+O(s∗βK−2α

β ).

Then, Kβ is chosen to minimize the right hand side. In general, the optimal value of Kβ is de-
pendent on the specific sequence of designs. We consider a special case where we can characterize
the exact tradeoff between the number of unique individuals, n, and the number of samples per
observation mi.

Example 6 (Minimax Estimation of the Mean Function). Consider the model given in equation
(4.1.2) with independent uniform sampling times, which is reproduced below for convenience.

yi(ti,j) = β∗(ti,j) + ξi(ti,j) + εi(ti,j).

Here, s∗β = p = 1 with xi = 1 for i = 1, . . . , n. In this case, we may set g(n) = 1. For now, we
write m =

(∑n
i=1m

−1
i

)−1 to denote the harmonic mean of the (mi)
n
i=1. Then,

tr
((

XTX
)−1

XTInX
(
XTX

)−1
)
= O

(
n−1
)
.
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Next, by a direct calculation,

Kβ∑
k=1

tr
((

XTX
)−1

XTM−1X
(
XTX

)−1
)
= O

(
Kβ(mn)

−1
)

Thus, the risk from Proposition 4.4 can be simplified to

MISE(β̂
LD
) = E

∫ 1

0

∥∥∥β̂LD
(t)− β∗(t)

∥∥∥2 dt = O (n−1 +Kβ(mn)
−1 +K−2α

β

)
.

This yields the optimal choice of Kβ ≍ (mn)1/(2α+1). Then, the risk is

E
∫ 1

0

∥∥∥β̂LD
(t)− β∗(t)

∥∥∥2 dt = O (n−1 + (mn)−2α/(2α+1)
)
,

which coincides with the minimax rate from Theorem 3.1 of Cai and Yuan (2011).

The next result is the analogue of Proposition 4.4 for the high-dimensional setting.

Theorem 4.5. Consider the model given in equation (4.3.1). Assume (4.6), (4.9), (4.11), (4.14),

and (4.16). For k ≤ Kβ and t > 0, let

λ0,k ≜

√√√√ max
j=1,...,p

n−1

n∑
i=1

ς2ζ,i,kx
2
i,j

√
t2 + 2 log(p)

n
,

where ς2ζ,i,k = O(ς2o,k + g(n)m−1
i ). Suppose λk ≥ 2λ0,k.

1. If in addition (4.12) holds, then with probability at least 1− 2 exp(−t2/2),

n−1
∥∥X (ℶ̂k − ℶ∗

k

)∥∥2
2
+ λk

∥∥ℶ̂k − ℶ∗
k

∥∥
1
≤ 4λ2ks

∗
β/ϕ

2
cc,X .

2. If in addition (4.13) holds, then with probability at least 1− 2 exp(−t2/2),

∥∥ℶ̂k − ℶ∗
k

∥∥2
2
= O

(
λ2ks

∗
βϕ

−4
adap,X

)
.

Example 7. As a special case, consider the setting where mi = m for all i = 1, . . . , n. Then,

λ20,k = O
((
ς2o,k + g(n)m−1

) log(p)
n

)
.
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Thus, under assumptions (4.9), (4.11), (4.13), (4.14), and (4.16), we have for k = 1, . . . , Kβ that

∥∥ℶ̂k − ℶ∗
k

∥∥2
2
= O

((
ς2o,k + g(n)m−1

) s∗β log(p)
n

)
.

Then, with probability at least 1− 2 exp(−t2/2 + log(Kβ)),

ISE(β̂
HD

) = O
((

1 +Kβm
−1g(n)

) s∗β log(p)
n

+ s∗βK
−2α
β

)
.

This yields an optimal choice of Kβ ≍ (nm/(g(n) log(p))1/(2α+1) with risk

ISE(β̂
HD

) = O

(
s∗β log(p)

n
+ s∗β

(
g(n) log(p)

nm

)2α/(2α+1)
)
.

If we assume that m = 1, then this corresponds to the model in equation (4.1.3), which is a
simplification of the model of Klopp and Pensky (2015) under uniform smoothness. Then, with
probability at least 1− 2 exp(−t2/2 + log(Kβ)),

ISE(β̂
HD

) = O

(
s∗β log(p)

n
+ s∗β

(
g(n) log(p)

n

)2α/(2α+1)
)
,

which, up to the slowly varying functions g(n) and log(p), achieves the minimax rate from Theo-
rem 1 of Klopp and Pensky (2015).

4.3.3 Main Results: Common Sampling Times

Again, we start by considering the low-dimensional estimator.

Proposition 4.6. Consider the model given in equation (4.3.1) with s∗β = p < n. Under assump-

tions (4.5), (4.10), (4.14), and (4.15), the MISE for Kβ ≤ m− 1 is given by

MISE(β̂
LD
) = O

(
s∗βm

−2α + (1 +Kβm
−1)tr[(XTX)−1] + s∗βK

−2α
β

)
.

Remark. In Proposition 4.6, if we make a scaling assumption analogous to (4.2) with
tr[(XTX)−1] = O(s∗β/n), then by choosing Kβ ≤ m − 1 and Kβ ≍ m, we may further ob-
tain the bound

MISE(β̂
LD
) = O

(
s∗βn

−1 + s∗βm
−2α
)
.
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Example 8 (Minimax Estimation of the Mean Function). Consider again the model given in equa-
tion (4.1.2) with common sampling times, which is reproduced below for convenience.

yi(ti,j) = β∗(ti,j) + ξi(ti,j) + εi(ti,j).

In this case, it is clear that g(n) = 1 satisfies assumption (4.14). Next, observe that

tr
((

XTX
)−1

XTX
(
XTX

)−1
)
= n−1.

Thus, the MISE simplifies to

MISE = O
(
n−1 + (nm)−1Kβ +m−2α +K−2α

β

)
.

Choosing Kβ ≤ m− 1 and Kβ ≍ m, it follows that

MISE = O
(
n−1 +m−2α

)
,

which coincides with the minimax rate from Theorem 2.1 of Cai and Yuan (2011).

The next result is the analogue of Theorem 4.5 for the common sampling times setting.

Theorem 4.7. Consider the model given in equation (4.3.3). Assume (4.6), (4.9), (4.11), (4.14),

and (4.16). For k ≤ Kβ and t > 0, let

ck ≜


ς2o,k +

√
2
∑∞

r=1 ς
2
o,2rm, k = 1,

ς2o,k +
∑∞

r=1 ς
2
o,2rm+k + ς2o,2rm−k, k = 2, 4, . . . ,m− 1,

ς2o,k +
∑∞

r=1 ς
2
o,2rm+k + ς2o,2rm+2−k, k = 3, 5, . . . ,m− 1,

λ0,k ≜
√
ck +m−1ς2ε

√
t2 + 2 log(p)

n
.

Suppose λk ≥ 2λ0,k.

1. If, in addition (4.12) holds, then with probability at least 1− 2 exp(−t2/2),

∥X(ℶ̂
HD
k − ℶ∗

k − ℸk)∥22 + λk∥ℶ̂
HD
k − ℶ∗

k − ℸk∥1 ≤ 4λ2ks
∗
β/ϕ

2
cc,X .

2. If, in addition (4.13) holds, then with probability at least 1− 2 exp(−t2/2),

∥ℶ̂HD
k − ℶ∗

k − ℸk∥22 = O(s∗βλ2k).
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3. If, in addition (4.13) holds, Kβ ≤ m− 1, Kβ ≍ m, and λk = 2λ0,k, then with probability at

least 1− 2 exp(−t2/2 + log(Kβ)),

ISE(β̂
HD

) = O
(
s∗β log(p)

n
+ s∗βm

−2α

)
.

4.4 Two-Stage Estimation

So far, we have only considered the special cases where either p = 0 or q = 0. In practice, it is
more common to have a mixture of both time varying and time invariant covariates. In this section,
we briefly describe how to extend the theory developed in the preceding two sections to consider
the general model from Section 5.1, which is reproduced below.

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j).

Since β∗(·) is smooth and xi is time invariant, the product ⟨xi,β∗(·)⟩2 is smooth. Thus, we may
similarly consider the differencing approach from Section 4.2 to simultaneously remove the effect
of ⟨xi, β∗(·)⟩2 and ξi(·). Again, for simplicity, we consider the differencing given by Ah. That is,
we may likewise form the differenced linear model from equation (4.2.2)

v = Ψג∗ + η +∆(γ),

where

∆
(γ)
i,j =

∞∑
k=Kγ+1

⟨φk(ti,(j+1))zi(ti,(j+1))− φk(ti,(j))zi(ti,(j)), k⟩2∗ג

+ ξi(ti,(j+1))− ξi(ti,(j)) + ⟨xi,β∗(ti,(j+1))− β∗(ti,(j))⟩2.

Then, we may use the same estimators for γ∗(·) from Section 4.2. To estimate β∗(·), we consider
the residuals after estimating γ∗(·). That is, define

ỹi(ti,j) ≜ yi(ti,j)− ⟨zi(ti,j), γ̂(ti,j)⟩2.

Then, we may again convert these observations to the frequency domain and use the estimators for
β∗(·) from Section 4.3. Depending on whether the sampling times are random and independent or
fixed and common, we let

ωi,k = ⟨xi, ℶ∗
k⟩2 + ζi,k +∆

(β∗)
i,k ,
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or

ωi,k = ⟨xi, ℶ∗
k + ℸk⟩2 + ζi,k +∆

(β∗)
i,k ,

where

∆
(β∗)
i,k ≜ m−1

i

mi∑
j=1

⟨zi(ti,j),γ∗(ti,j)− γ̂(ti,j)⟩2φk(ti,j).

The arguments are nearly identical to the preceding sections, with the only change being the change
in the bias terms. Hence, we omit the results of this section.

4.5 Confidence Bands

In this section, we consider the problem of constructing a confidence band for a particular varying
coefficient. The problem of inference in high-dimensional varying coefficient models was first
considered by Chen and He (2018). However, they only considered the problem of conducting
inference at a prespecified time. To the best of our knowledge, there have been no proposals
for confidence bands in high-dimensions. Since the proof technique is similar between the time
invariant covariates and the time varying covariates, we only provide the details for β∗

1(·) with
independent sampling times, but describe the procedure for γ∗1(·). For simplicity, we assume that
mi = m for all i = 1, . . . , n. Let σ2

ζ,k ≜ Var(ζi,k).
Recall that β∗

1(·) admits a decomposition as

β∗
1(·) = β∗

1
(·) + β∗

1(·),

where β∗
1
(·) and β∗

1(·) are the low and high frequency components of β∗
1(·) respectively. Under

some regularity conditions, we may bound the high frequency signal by∣∣∣∣∣∣
∞∑

k=Kβ+1

ℶ∗
k,1φk(t)

∣∣∣∣∣∣ = O (K−α
β log(Kβ)

)
uniformly for all t ∈ (0, 1). Therefore, it suffices to construct a confidence band for β∗

1(·) and tune
Kβ to balance with the above bias. By the definition of β∗

1
(·), we have that

β∗
1
(·) =

Kβ∑
k=1

ℶ∗
k,1φk(·).
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For each k = 1, . . . , Kβ , a confidence interval for ℶ∗
k,1 may be constructed using the debiased

lasso. We write Σ̂ ≜ XTX/n and define Θ̂ ∈ Rp×p as the relaxed inverse of Σ̂ using nodewise
lasso as in van de Geer et al. (2014). The debiased estimator for ℶ∗

k is given by

ℶ̂
DB
k ≜ ℶ̂

HD
k + Θ̂XT

(
Ω−Xℶ̂

HD
k

)
/n.

Writing θ̂
T

to denote the first row of Θ̂, the debiased estimator for ℶ∗
k,1 is

ℶ̂
DB
k,1 ≜ ℶ̂

HD
k,1 + θ̂

T
XT
(
Ω−Xℶ̂

HD
k

)
/n.

By using a multiple comparisons correction procedure, we may construct simultaneous confidence
intervals for ℶ∗

k,1 for k = 1, . . . , Kβ . We may then use these simultaneous confidence intervals to
extend to a confidence band for β∗(·). Let ak and bk be the lower and upper bounds for a 1 − τ
simultaneous confidence interval of ℶ∗

k,1. Then, the 1 − τ lower and upper confidence bands for
β∗

1
(·) will be given by

l(β
∗)(t) ≜ min

ck:{ak≤ck≤bk}

Kβ∑
k=1

ckφk(t), u(β
∗)(t) ≜ max

ck:{ak≤ck≤bk}

Kβ∑
k=1

ckφk(t).

By slightly enlarging these values, we may account for the bias of β∗(·) asymptotically. That is,
for a value of δ > 0, define

l
(β∗)
δ (t) ≜ l(t)− δ, u

(β∗)
δ (t) ≜ u(t) + δ.

For γ1(·), we may use a similar idea. First, consider the simpler problem of constructing con-
fidence intervals at an arbitrary point t∗ ∈ (0, 1). Let (t∗) = (φ1(t

∗), . . . , φKγ (t
∗))T denote a

loading vector, which we identify (t∗) as a vector in RKγ as well as a vector in RqKγ . Since, as a
vector in RqKγ , (t∗) is a sparse loading vector, to construct a confidence interval interval for γ∗(·),
we may consider the approach of Cai and Guo (2017) for estimating linear functionals. This yields
a confidence interval for γ∗(t∗).

Then, consider the time grid 1/(2Kγ), 2/(2Kγ), . . . , 2Kγ/(2Kγ). By using a multiple compar-
isons adjustment, we may construct simultaneous 1−τ confidence intervals at the 2Kγ time points.
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To extend this to a confidence band for γ∗(·), consider the following lower and upper bounds:

l(γ)(t) ≜ min
ck:{ak≤ck≤bk}

Kγ∑
k=1

ck
sin(π(2Kγt− k))
π(2Kγt− k)

,

u(γ)(t) ≜ max
ck:{ak≤ck≤bk}

Kγ∑
k=1

ck
sin(π(2Kγt− k))
π(2Kγt− k)

.

At first glance, this definition may seem strange. However, our confidence band is leverag-
ing the Nyquist-Shannon Theorem (cf. Shannon (1949)). Since every low-frequency signal,
with maximal frequency Kγ , can be recovered by interpolation of the signal at the grid points
1/(2Kγ), 2/(2Kγ), . . . , 2Kγ/(2Kγ) using the sinc function, the above band simultaneously cov-
ers all possible interpolations that can arise given the confidence intervals for the signal value.
Then, to incorporate the bias in γ∗(·), we may again enlarge these intervals by a value of δ > 0.

We note that the idea of using a multiple comparisons correction to construct confidence bands
is not new in the literature. Earlier works such as Knafl et al. (1985) and Wu et al. (1998) use
a Bonferroni adjustment at various gridpoints and interpolate over the interval by bounding the
derivative. Conversely, for β∗(·), we construct simultaneous confidence intervals on the Fourier
coefficients, which induces simultaneous confidence intervals for all linear combinations. Like-
wise, for γ∗(·), instead of bounding the derivatives, we exploit the Nyquist-Shannon Theorem to
provide uniformity over the entire interval.

4.5.1 Assumptions

(4.17) The sparsity s∗β satisfies s∗β = o(
√
n/ log(p)).

(4.18) The projected error term ζ satisfies σ2
ζ,k ≜ Var(ζi,k) ≍ ς2ζ,k.

(4.19) The estimator Θ̂ satisfies
√
n∥Ip − Θ̂Σ̂∥∞ = OP(

√
log(p)).

Remark. The first assumption (4.17) is the standard sparsity requirement in high-dimensional
inference. Next, (4.18) is a technical requirement that is satisfied, for example, by the Gaussian
distribution. Sufficient conditions for (4.19) are given in van de Geer et al. (2014).

4.5.2 Main Results

Theorem 4.8. Consider the model given in equation (4.3.1). Assume (4.5), (4.9), (4.14), (4.16),

and (4.17) – (4.19). Moreover, let the tuning parameters for lasso satisfy λk ≍ λ0,k and λk ≥ 3λ0,k
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for k = 1, . . . , Kβ . Similarly, letting νj for j = 1, . . . , p denote the tuning parameters for nodewise

lasso, assume that the parameters satisfy νj ≍ K0

√
log(p)/n and νj ≥ 3K0

√
log(p)/n.

For each k = 1, . . . , Kβ , write√
nσ−2

ζ,k

(
ℶ̂

DB
k,1 − ℶ∗

k,1

)
= Wk +∆k,

Wk = σ−1
ζ,kθ̂

T
XTζk/

√
n,

∆k =
√
nσ−2

ζ,k

((
Ip − Θ̂Σ̂

)(
ℶ̂

HD
k − ℶ∗

k

))
1
.

Let (V1, . . . , VKβ
)T ∼ NKβ

(0Kβ
,Var((W1, . . . ,WKβ

)T|X)).

1. Letting A denote the class of all hyperrectangles in RKβ , then

sup
A∈A

∣∣P ((W1, . . . ,WKβ
)T ∈ A|X

)
− P

(
(V1, . . . , VKβ

)T ∈ A|X
)∣∣→ 0.

2. Then,

sup
k=1,...,Kβ

|∆k| = oP(1).

Remark. In practice, one may use the scaled lasso of Sun and Zhang (2012) to estimate σ2
ζ,k,

denoted by σ̂2
ζ,k.

For concreteness, we consider simultaneous confidence intervals constructed by Bonferroni
correction. Let zτ denote the τ upper quantile of a standard Gaussian distribution. Then, the
confidence intervals for ℶ∗

k,1 are given by ℶ̂
DB
k,1 ± zτ/(2Kβ)σ̂ζ,k/

√
n. Then, we have the following

proposition regarding the coverage and asymptotic performance of the confidence band.

Proposition 4.9. Consider the setup of Theorem 4.8 with the simultaneous confidence in-

tervals constructed by Bonferroni correction. Suppose that Kβ ≍ min((n log(n))1/(2α),

(nm log(n)/g(n))1/(2α+2))) and δ ≍ K−α
β log(Kβ).

1. For n sufficiently large,

P
(
∀t ∈ (0, 1) : l

(β∗)
δ (t) ≤ β∗

1(t) ≤ u
(β∗)
δ (t)

)
≥ 1− τ.

2. For all t ∈ (0, 1),∣∣∣u(β∗)
δ (t)− l(β

∗)
δ (t)

∣∣∣ ≤ max
(
(n log(n))−1/2, (nm log(n)/g(n))−α/(2α+2) log(n)

)
.
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Remark. We note that the maximal width of the confidence band has two rates, depending on
the growth rate of m relative to n. If m is very large, then most of the error in the resultant
linear model comes from the random Fourier coefficients of ξi(·). Since the variance for the high-
frequency components is relatively low, this encourages oversmoothing to reduce the bias. This
leads to a near parametric rate of

√
log(n)/n in the width. Conversely, when m is small, the

noise is dominated by the inexact orthogonalization. This variance accumulates as we increase
the number of frequencies to be estimated, resulting in less smoothing compared to the large m
setting.

This phenomenon is related to the two part rate for estimation, as seen in Example 7. After a
certain threshold of m, additional observations per subject do not improve the risk in estimation
since the bottleneck is in averaging the random effects.

4.6 Simulations

The general model that we consider is given by

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j),

Throughout, the covariates and the noise are independent and identically distributed standard Gaus-
sian variables; that is, xi

i.i.d.∼ Np(0p, Ip), zi(ti,j)
i.i.d.∼ Nq(0q, Iq), and εi,j

i.i.d.∼ N (0, 1). When gen-
erating the varying coefficients and the random effects, we use either the trigonometric basis or
by the B-spline basis; the choice of the coefficients is described below. We consider both fixed
and common sampling times as well as random and independent sampling times. When the sam-
pling times are fixed and common (denoted “com”), we set ti,j = j/m for all i = 1, . . . , n and
j = 1, . . . ,m. On the other hand, when the sampling times are random and independent (denoted
“ind”), we let ti,j

i.i.d.∼ U(0, 1).
All of our tuning parameters, λ, Kβ , and Kγ are chosen via five-fold cross-validation. For each

combination of parameter values that we consider, we simulate the data 200 times and compute
the high-dimensional estimator. To evaluate the performance of our estimator, we consider three
metrics: average loss, average coverage, and average length. Average loss is integrated squared
error in estimating β∗(·) averaged over the trials. Average coverage is the proportion of times the
confidence band covers the true varying coefficient function β∗

1(·) with a nominal coverage of 95%
and average length is maxt∈(0,1)(u

(β∗)(t)− l(β∗)(t)) averaged over the trials. We consider average
loss for both γ∗(·) and β∗(·) while average coverage and average length are only considered for
β∗(·). For our simulations, we consider the two special cases of Section 4.2 and 4.3.
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In the setting when q = 0, we have

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j).

When β∗(·) is generated from the trigonometric basis, the Fourier coefficients are given by

ℶ∗
k,l =


ζk,l((k + 1)/2)−2.1 k = 1, 3, . . . , 29 and l = 1, . . . , s∗β

ζk,l((k + 2)/2)−2.1 k = 2, 4, . . . , 30 and l = 1, . . . , s∗β

0 else

where ζk,l
i.i.d.∼ U(−1, 1). Then, we rescale ℶ∗

k such that
∫ 1

0
(xTi β

∗(t))2dt = 4 to keep the signal to
noise ratio constant. For the B-spline basis, we consider

ℶ∗
k,l =

ζk,l k = 1, 2, 3 and l = 1, . . . , s∗β

0 else,

which is then rescaled to keep the signal to noise ratio constant. Similarly, for the random effects,
ξi(·), we rescale the coefficients so the variance is constant at one.

In this setting, we let n ∈ {200, 500}, m ∈ {25, 50, 75, 150}, p ∈ {500, 1000}, and
s∗β ∈ {15, 25}. The results are presented in Tables A.4.1 and A.4.2 in Section A.4.6 of the Sup-
plement for the trigonometric and B-spline basis respectively. For both bases, consistent with
Theorems 4.5 and 4.7, as s∗β increases, the average loss increases while the loss decreases as n or
m increase. Surprisingly, the loss for the fixed and common sampling times seems to be better
than for the random and independent sampling times for the same value of n and m despite the
rate of convergence for the random and independent sampling times being faster. Similarly, the
confidence bands exhibit higher coverage with shorter lengths in the fixed and common sampling
times as opposed to the random and independent sampling times. We note that the confidence
bands for the spline basis are significantly wider than for the trigonometric basis to account for the
fact that the trigonometric basis functions periodic. Since the spline functions are aperiodic, the
confidence bands are wider to be able to cover allow coverage at both endpoints. In Figure 4.1, the
plot on the left shows a confidence band with the B-spline basis and the plot on the right with the
trigonometric basis; note the difference in the widths of the two bands.

In the setting when p = 0, we have

yi(ti,j) = ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j).

Here, we set n = 200, m ∈ {25, 50, 75}, q = 500, and s∗γ ∈ {15, 25}. The coefficients k,l∗ג are
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Figure 4.1: 95% Confidence bands for β∗
1(t) when n = 500, m = 50, s∗β = 15, and p = 1000

with independent and random sampling times. On the left, the data is generated using the b-spline
basis. Then, “B-Splines” denotes the true signal, “Trig. Approx.” denotes the best approxima-
tion of β∗

1(t) using 30 trigonometric basis function, and “Estimate” and “CB” are the estimate
and confidence band from Section 4.5 respectively. On the right, the data is generated using the
trigonometric basis. Then, “Trig.” denotes the true signal and “Estimate” and “CB” are the esti-
mate and confidence band from Section 4.5 respectively.

generated similar to ℶ∗
k,l. The results are presented in Table A.4.3 in Section A.4.6 of the Sup-

plement. We see that Ah outperforms Bh when the sampling times are independent and random
whereas Bh outperforms Ah when the sampling times are common and fixed. As s∗γ increases, the
estimation error increases while the estimation error decreases as m increases, which is consistent
with our theoretical results. Moreover, similar to estimating β∗(·), our estimation error is higher
for the B-spline basis as compared to the trigonometric basis.

4.7 Human Height Data

In this section, we are interested in analyzing the average height across countries.
The height data is freely available from the NCD Risk Factor collaboration at
https://ncdrisc.org/index.html, which includes the average height of birth cohorts aged five
through nineteen over many decades for both sexes. A detailed description of the data is provided
in Rodriguez-Martinez et al. (2020). Although the data contains 95% credible intervals for the
average height in a country of each age group at a particular time, our response comprises solely of
the point estimate. To supplement this data, we use a variety of United Nations data on countries,
including the World Health Organization (https://www.who.int/data/collections), the Human
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Development Reports (http://www.hdr.undp.org/en/data), and the United Nations International
Children’s Emergency Fund (https://data.unicef.org/). In addition, we also use information on
caloric, protein, and fat supply from Our World in Data (https://ourworldindata.org/food-supply).
For covariates that are time varying but not collected annually, we impute the values for interme-
diate years using an exponentially weighted moving average. We focus on the average height of
five year old boys, the youngest age in the dataset. The model that we consider is model (4.1.1),
which is reproduced below for convenience:

yi(ti,j) = ⟨xi,β∗(ti,j)⟩2 + ⟨zi(ti,j),γ∗(ti,j)⟩2 + ξi(ti,j) + εi(ti,j).

Since some covariates are only available for a subset of countries, we only consider the n = 98

countries that have some measurements for all covariates. We constrain our analysis to the years
1990 to 2019 to limit the imputation of our time-varying covariates. Therefore, we have common
sampling times, with m = 30. When normalizing our sampling times to the unit interval, t = 0

and t = 29/30 correspond to 1990 and 2019 respectively. Our time invariant covariates are various
classifications of the countries according to the United Nations; in particular, we consider develop-
ment status and geographic regions and sub-regions, with sub-regions being nested within regions.
Expanding out these groupings, we have p = 25 time invariant covariates. Our time varying co-
variates consist of various socioeconomic factors, such as human development index, urbanization
rate, gross domestic product per capita, etc. When synthesizing the height data, Finucane et al.
(2014) considered the interaction between income and urbanization rate. Thus, we include all
possible two-way interactions of our time-varying covariates, leaving us with q = 212 covariates.
Finally, the random effects represent the unobserved heterogeneity amongst countries, which, as
mentioned in the Introduction, encapsulates environmental factors. These environmental factors
are potentially correlated with our observed time-varying covariates.

The goal in our data analysis is to analyze the trend in the average height, controlling for other
covariates. That is, we are interested in estimating the intercept term. Since our time-invariant
covariates consist of many geographic regions, our reference region is North Africa. A plot of the
estimate is given in Figure 4.2.
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Figure 4.2: Estimated coefficient for the intercept, with North Africa as the reference region.

From the plot, we notice that the estimate of the average height in North Africa, controlling
for other covariates, is almost linearly increasing, which is not specified apriori. Note that the
precipitous drop near t = 1 is an artifact of the estimation procedure using the trigonometric
basis. As we do not believe that the average height over the span of thirty years is periodic,
our estimator β̂(·) is estimating the best periodic approximation to the underlying non-periodic
intercept function. Thus, the interpretation of the plot is valid only away from the two endpoints.
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CHAPTER 5

Rank-Constrained Least-Squares: Prediction and
Inference

5.1 Introduction

In this work, we focus on the trace regression model:

y = ⟨X,Θ∗⟩HS + ε. (5.1.1)

Here y is a real-valued response, X is a feature matrix valued in Rd1×d2 , Θ∗ ∈ Rd1×d2 is the
parameter of our interest, and ε is a noise term that is independent of X. Throughout, objects with
a superscript * denote true model paramters and we define ⟨·, ·⟩HS as the trace inner product in the
sense that given any A,B ∈ Rd1×d2 , ⟨A,B⟩HS ≜ tr(A⊤B). Throughout, we write d ≜ d2 and
assume without the loss of generality that d1 ≤ d2 by possibly transposing the data.

Suppose we have n independent observations (Xi, yi)i∈[n] generated from model (5.1.1). Under
a high-dimensional setup, n is much smaller than d1d2, and some structural assumptions on Θ∗

are necessary to reduce the degrees of freedom of Θ∗ to achieve estimation consistency. Here,
we assume that Θ∗ is low-rank; that is, r∗ ≜ rank(Θ∗) with r∗d1 ≪ n. Given that one needs at
most (2r∗ + 1)d1 parameters to determine Θ∗ through a singular value decomposition, intuitively
a sample of size n should suffice to achieve estimation consistency. The high-dimensional low-
rank trace regression model was first introduced by Rohde and Tsybakov (2011) and admits many
special cases of wide interest. For instance, when Θ∗ and X are diagonal, model (5.1.1) reduces
to a sparse linear regression model:

y = ⟨x,β∗⟩2 + ε, (5.1.2)

where β∗ = diag(Θ∗). Note that β∗ is sparse because ∥β∗∥0 = r∗ ≪ d1. When X is a singleton
in the sense that X = eie

⊤
j , where ei and ej are the ith and jth canonical basis vectors respec-
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tively, model (5.1.1) reduces to a low-rank matrix completion problem (Candès and Recht (2009),
Koltchinskii et al. (2011), Recht (2011), Negahban and Wainwright (2012)).

Perhaps the most natural approach to incorporate the low-rank structure in estimating Θ∗ is to
enforce a rank-constraint directly. Consider the following rank-constrained least-squares estimator:

Θ̂L0(r) = argmin
Θ∈Rd1×d2 ,rank(Θ)≤r

n∑
i=1

(yi − ⟨Xi,Θ⟩HS)
2 . (5.1.3)

Note that the rank constraint is non-convex, thereby imposing a fundamental challenge computa-
tionally in obtaining this estimator. To resolve this issue, one can resort to nuclear-norm regular-
ization to encourage low-rank structure of the estimator. Specifically, for some λ > 0, consider

Θ̂N(λ) = argmin
Θ∈Rd1×d2

{ 1

2n

n∑
i=1

(yi − ⟨Xi,Θ⟩HS)
2 + λ∥Θ∥N

}
, (5.1.4)

where ∥·∥N denotes the nuclear norm. Problem (5.1.4) is convex and thus amenable to polynomial-
time algorithms. The past decade or so has witnessed a flurry of works on statistical guarantees
for Θ̂N; a partial list includes Negahban and Wainwright (2011), Rohde and Tsybakov (2011),
Candès and Plan (2011), and Fan et al. (2021), among others. For instance, with a restricted strong
convexity assumption on the loss function, Negahban and Wainwright (2011) showed that with an
appropriate choice of λ, ∥Θ̂N(λ) − Θ∗∥F is of the order

√
rd1/(κn) up to a logarithmic factor,

where κ is a lower bound of the minimum restricted eigenvalue (Bickel et al. (2009)) of the Hessian
matrix of the loss function.

To the best of our knowledge, it remains open whether κ is inevitable for statistical guarantees
on learning Θ∗. At this point, it is instructive to recall related results for sparse high-dimensional
linear regression. Zhang et al. (2014) showed that under a standard conjecture in computational
complexity, the in-sample mean-squared prediction error of any estimator, β̂poly, that can be com-
puted within polynomial time has the following worst-case lower bound:

E
{
1

n

n∑
i=1

⟨xi, β̂poly − β∗⟩22
}

≳
(r∗)1−δ log d1

nκ
, (5.1.5)

where δ is an arbitrarily small positive scalar. This result demonstrates the indispensable depen-
dence on κ for any polynomial-time estimator of β∗, which includes convex estimators like lasso.
On the other hand, Bunea et al. (2007) and Raskutti et al. (2011) showed that the L0-constrained
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estimator β̂L0
(also known as the best subset selection estimator), which is defined as

β̂L0
(r) ≜ argmin

β∈Rd1 ,∥β∥0≤r

n∑
i=1

(yi − ⟨xi,β⟩2)2 , (5.1.6)

satisfies the following κ-free prediction error bound:

E
{
1

n

n∑
i=1

⟨xi, β̂L0
(r∗)− β∗⟩22

}
≲
r∗ log d1

n
. (5.1.7)

This demonstrates the robustness of β̂L0
against collinearity in the design. However, under the

general trace regression model, there are currently no κ-free statistical guarantees for the rank-
constrained estimator Θ̂L0 .

The first contribution of our work is an in-sample prediction error bound for the rank-
constrained least-squares estimator Θ̂L0 without a restricted strong convexity requirement. We
emphasize that this result is much more challenging to achieve than the counterpart result (5.1.7)
for β̂L0

and requires a completely different technical treatment. We shall see in the sequel that the
in-sample prediction error of both Θ̂L0 and β̂L0

boils down to a supremum process of projections
of the noise vector (ε1, . . . , εn)⊤ onto a family of low-dimensional subspaces. For β̂L0

, the family
of subspaces is finite; for Θ̂L0 , however, the family of subspaces is a continuous subset of a Stiefel
manifold, which is infinite. The main technical challenge we face here is to characterize the com-
plexity of this infinite subspace family. In Theorem 5.2, we leverage a real algebraic geometry tool
due to Basu et al. (2007) to bound the Frobenius-norm-based covering number of this family of
subspaces.

We then investigate a permutation test for the presence of sparse and low-rank signals re-
spectively as applications of the previous results. In the context of hypotheses testing for high-
dimensional sparse linear models, Cai and Guo (2020) and Javanmard and Lee (2020) both con-
sider a debiasing-based test that controls the probability of type-I error uniformly over the null
parameter space of sparse vectors. There, the sparsity s∗ of the regression coefficients needs to
satisfy s∗ = o{n1/2/ log(p)} for the asymptotic variance of the test statistic to dominate the bias.
By considering a permutation test, we circumvent the challenge of characterizing the asymptotic
distribution of a test statistic and accommodate denser alternative parameters. Moreover, under a
mild assumption on the design, we are able to leverage the super-efficiency of the origin, which
was rather seen as a challenge in high-dimensional group inference (Guo et al. (2021)), to test at a
faster rate than n−1/2. To the best of our knowledge, this is the first proposal to conduct inference
for the presence of low-rank signals.
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5.1.1 Organization of the Chapter

In Section 5.2, we consider a discretization scheme of all possible models in low-rank trace re-
gression and derive the covering number of the corresponding Stiefel sub-manifold that is used to
analyze the performance of Θ̂L0 for in-sample prediction. Next, in Section 5.3, we consider global
hypotheses testing in signal plus noise models. We start with a general power analysis for signal
plus noise models in Section 5.3.1, which we then apply to the sparse high-dimensional linear
model and low-rank trace regression model in Sections 5.3.2 and 5.3.3 respectively. By leveraging
the projection structure of the rank-constrained estimator, in Section 5.3.4, we demonstrate the
robustness of our power analysis to misspecification of the rank. Finally, we analyze the empirical
performance of our proposed methodologies in Section 5.4. For the ease of presentation, most of
the proofs for Section 5.2 and all of the proofs for Section 5.3 are deferred to Section A.4.6.

5.2 In-Sample Prediction Risk of the Rank-Constrained Esti-
mator

Given an estimator Θ̂ of Θ∗, define its in-sample prediction risk as

R(Θ̂) ≜
1

n

n∑
i=1

⟨Xi, Θ̂−Θ∗⟩2HS. (5.2.1)

This section focuses on characterizing the in-sample prediction risk of the rank-constrained esti-
mator Θ̂L0 . For any Θ∗ with rank r∗, there exist two matrices U∗ ∈ Rd1×r∗ and V∗ ∈ Rd2×r∗

such that Θ∗ = U∗V∗T. The existence of U∗ and V∗ is guaranteed, for example, by a singular
value decomposition of Θ∗. Note that this representation is not unique, since for any invertible
matrix A ∈ Rr×r, we have Θ∗ = U∗AA−1V∗⊤. Now the trace regression model (5.1.1) can be
represented as

y = ⟨X,Θ∗⟩HS + ε = ⟨X,U∗V∗T⟩HS + ε = ⟨XV∗,U∗⟩HS + ε. (5.2.2)

Throughout, for a matrix A ∈ Rk1×k2 , we write vec(A) ∈ Rk1k2 to denote the vectorization of
A. For any V ∈ Rd2×r, let XV ∈ Rn×rd1 denote the matrix whose ith row is vec(XiV). Writing
γU ≜ vec(U), y = (y1, . . . , yn)

⊤, and ε = (ε1, . . . , εn)
⊤, we then deduce from (5.2.2) that

y = XV∗γU + ε.

Figure 5.1 illustrates the construction of XV∗ when r∗ = 2. Suppose V∗ is known in ad-
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Figure 5.1: Illustration of the construction of XV∗ with oracle V∗ when r∗ = 2.

vance. When n ≫ rd1, γU can be consistently estimated by ordinary least-squares to yield
an estimator of Θ∗. Given that ordinary least-squares is projecting y onto the column space
of XV, the rank-constrained least-squares problem (5.1.3) reduces to finding the optimal V so
that the resulting XV captures the most variation of the response y. This motivates our initial
step to analyze the in-sample prediction risk. For any V ∈ Rd2×r, define the projection matrix
PV := XV(X

⊤
VXV)

−1X⊤
V. The following lemma shows that the in-sample prediction risk of Θ̂L0

can be bounded by the supremum of projections of the noise vector ε onto the column space of
XV.

Lemma 5.1. Consider the model in equation (5.1.1). If r ≥ r∗, then, the rank-constrained least-

squares estimator satisfies

R(Θ̂L0) ≤
4

n
sup

V∈Rd2×2r∗
∥PVε∥22. (5.2.3)

Lemma 5.1 suggests that the complexity of the set P ≜ {PV}V∈Rd2×2r∗ determines the in-
sample prediction risk of Θ̂L0(r

∗). Note that the number of columns of V is 2r∗ instead of r∗,
which is due to the fact that the maximum rank of (Θ̂L0(r

∗) −Θ∗) is 2r∗. To quantify this com-
plexity, we consider the metric space (P , ∥ · ∥HS). We say that Nδ ⊆ P is an δ-net of P if for any
P ∈ P , there exists a P̃ ∈ Nδ such that ∥P− P̃∥HS ≤ δ. We define the covering number, Nδ(P),
as the minimum cardinality of an δ-net of P . The following theorem leverages a result from real
algebraic geometry to bound Nδ(P). To the best of our knowledge, this tool is new to statistical
analyses in high-dimensions. To highlight the power of the tool, we give the proof immediately
after the statement of the theorem.

Theorem 5.2. For any δ < 1, we have that

Nδ(P) ≤ 2r
∗d1

{
12r∗d1n

3

δ

}r∗d2+1

.
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Proof of Theorem 5.2. To simplify notation, we drop the superscript ∗ in r∗ for convenience within
this proof. For an integer k, let [k] ≜ {1, . . . , k}. Now, for S ⊆ [rd1], write XV,S to denote the
Rn×|S| submatrix of XV with the columns indexed by S. Then, for any fixed S ⊆ [rd1], define the
collection of projection matrices PS as

PS ≜ {XV,S(X
T
V,SXV,S)

−1XT
V,S : V ∈ Rd2×2r, det(XT

V,SXV,S) ̸= 0}.

Note that

P ≜ {PV}V∈Rd2×r ⊆
⋃

S⊆[rd1]

PS .

To further simplify notation, throughout this proof, we identify the matrix V ∈ Rd2×r with the
vector v ∈ Rrd2 by viewing v as the vectorization of V. Fix {Xi}i∈[n] and i, j ∈ [n] and consider
the map

Φij : Rrd2\{v : det(XT
V,SXV,S) = 0} → [−1, 1],

v 7→ (PV,S)i,j = {XV,S(X
⊤
V,SXV,S)

−1X⊤
V,S}ij.

We claim that Φij is a rational function of polynomials of order at most 2|S|. To see this, for
any invertible matrix A ∈ Rp×p and u, t ∈ [p], the (u, t) entry of the adjugate of A is given by
adj(A)ut ≜ (−1)u+t det(A−u,−t). Then, by Cramer’s rule,

A−1
i,j = (det(A))−1 adj(A)ij.

Given that each entry of XT
VXV ∈ R|S|×|S| is a quadratic function with respect to v, it follows

that (det(XT
VXV))

−1 is a polynomial of order at most 2|S| and adj(A)ut is a polynomial of order
at most 2|S| − 2. Hence, each entry of PV is a rational function of polynomials of order at most
2|S|. Denote the (i, j) entry of PV by Φi,j(v), which has representation Φi,j(v) = Fi,j(v)/γ(v)

for polynomials Fi,j(v) and γ(v) in the domain of Φi,j .
Now for any δ > 0, consider a monotonically increasing sequence −1 = s1 < . . . < sm = 1

such that m = ⌈2/δ⌉ + 1 and |st+1 − st| ≤ δ for any t ∈ [m − 1]. Consider the level sets:
Cijt ≜ {v ∈ R2rd2 : (Fi,j(v) − γ(v)st) = 0}, t ∈ [m]. Note that these level sets partition
the entire Rrd2 into multiple connected components, within each of which any two points v1,v2

satisfy |Φij(v1)− Φij(v2)| ≤ δ. Consider the union of all such level sets over i, j, t:

C ≜
⋃

i,j∈[n],t∈[m]

Cijt =
{
v ∈ Rrd2 :

∏
i,j∈[n],t∈[m]

(Fi,j(v)− γ(v)st) = 0

}
.
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For any two points v1 and v2 in a single connected component of the complement, Cc, |Φij(v1)−
Φij(v2)| ≤ δ for all (i, j) ∈ [n] × [n]. Therefore, ∥Pv1,S − Pv2,S∥F ≤ nδ. This implies that
Nnδ(PS) is bounded by the number of connected components of Cc. Define

Φ : Rrd2+1 → R, (v0,v⊤)⊤ 7→
{
γ(v)×

∏
i,j∈[n],t∈[m]

v0(Fi,j(v)− γ(v)st)
}
− 1.

We have that Φ−1(0) shares the same number of connected components as Cc. By Theorem 7.23 of
Basu et al. (2007), the number of connected components of Φ−1(0), which is the 0th Betti number
of Φ−1(0), is bounded by {(4|S| − 1)n2m}rd2+1. Therefore, for any δ < 1,

Nnδ(P) ≤
{
(4|S| − 1)n23

δ

}rd2+1

.

Then we deduce that

Nδ(PS) ≤
{
3(4|S| − 1)n3

δ

}rd2+1

.

Finally, since P ⊆
⋃

S⊆[rd1]
PS , we have

Nδ(P) ≤
∑

S⊆[rd1]

Nδ(PS) ≤
∑

S⊆[rd1]

{
3(4|S| − 1)n3

δ

}2rd2+1

≤ 2rd1
{
12rd1n

3

δ

}rd2+1

,

which concludes the proof.

To bound the in-sample prediction risk with high-probability, we need the following mild as-
sumption, which is standard in high-dimensional models. In order to state our assumption, we first
define sub-Gaussian random variables.

Definition 5.2.1. For a random variable ξ valued in R, define the ψ2-norm of ξ, denoted ∥ξ∥ψ2 , as

∥ξ∥ψ2 ≜ inf
t>0
{E exp(t−2ξ2) ≤ 2}.

Then, define the family of sub-Gaussian random variables with parameter K as

SG(ς) ≜
{
ξ : ∥ξ∥ψ2 ≤ K

}
.

More generally, for p-dimensional real-valued random vectors, we define the sub-Gaussian family
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with parameter K as

SGp(ς) ≜
{
ξ : sup

v∈Rp,∥v∥2=1

∥⟨ξ,v⟩2∥ψ2 ≤ K
}
.

Assumption 5.1. The noise ε ∈ SG(Kε) with mean zero and variance σ2
ε and is independent of

X.

Now, we can state our main result for Θ̂L0 .

Theorem 5.3. Suppose we have n observations (Xi, yi)i∈[n] from model (5.1.1) with (εi)i∈[n] inde-

pendent. Under Assumption (5.1), if r ≥ r∗, then there exist c1, c2 > 0 depending on σ2
ε and Kε

such that

R(Θ̂L0) ≤ c1
rd log(n)

n

with probability at least 1− 4 exp(−c2rd log(n)).

Theorem 5.3 should be compared with the results of Rohde and Tsybakov (2011) and Koltchin-
skii et al. (2011), who proved bounds on in-sample prediction for the estimator Θ̂N. Up to loga-
rithmic factors, both Θ̂L0 and Θ̂N achieve the same in-sample prediction risk; however, the crucial
difference between our result and the existing results is the assumption, or lack thereof, on the
design matrices, Xi. The estimator Θ̂N, much like the lasso estimator for linear models, requires a
restricted eigenvalue type assumption in order to enjoy near optimal rates of in-sample prediction
risk. By comparison, Theorem 5.3 imposes no such requirement.

In above theorem, we have assumed that the tuning parameter, r, exceeds the true rank, r∗. The
following corollary extends the result to the risk bound to the setting where r < r∗.

Corollary 5.3.1. Consider n observations from a signal-plus-noise model

y = f + ε.

For r > 0, define

Θ̂L0(r) ≜ argmin
Θ∈Rd1×d2 ,rank(Θ)≤r

n∑
i=1

(yi − ⟨Xi,Θ⟩HS)
2.

Assume that εi are independent and identically distributed sub-Gaussian random variables with

parameter Kε. Then, there exist constants c1, c2 > 0 depending on σ2
ε and Kε such that

R(Θ̂L0) ≤
{[

min
Θ∈Rd1×d2 ,rank(Θ)≤r

R(Θ)
]1/2

+
[
c1
rd log(n)

n

]1/2}2
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with probability at least 1− 4 exp(−c2rd log(n)).

Compared with Theorem 5.3, Corollary 5.3.1 has an additional term denoting the best attainable
risk using a rank r approximation; when r ≥ r∗, the best approximation error is zero and we
recover Theorem 5.3.

5.3 Testing in Signal Plus Noise Models

5.3.1 A General Power Analysis of a Permutation Test

Consider the following general signal-plus-noise model:

y = f(x) + ε ≜ E(y|x) + ε, (5.3.1)

where x is a random covariate vector valued in X . For simplicity, write f(x) ≜ E(y|x). Then, we
are interested in the hypotheses testing problem

H0 : f ≡ 0 H1 : f ∈ F , f ̸≡ 0 (5.3.2)

for some prespecified function class F . We discuss some examples of F in Sections 5.3.2 – 5.3.3.
To test these hypotheses, we consider a flexible permutation test. We note that the application
of permutation tests to signal plus noise models is not novel. For example, the seminal work of
Freedman and Lane (1983) proposed a permutation test for a collection of covariates in a low-
dimensional linear model. However, to the best of our knowledge, the theory of permutation tests
for high-dimensional models has not been explored, particularly the power of permutation tests.
Under mild assumptions, such as exchangability of (εi)i∈[n] given (xi)i∈[n], it is easy to derive a test
statistic that controls type I error under the permutation null hypothesis. However, the sparsity rate
only enters in the power under the alternative. In Theorem 5.6 below, we characterize explicitly
this dependence of power on the sparsity.

Before presenting the test statistic, we need to establish some notation and facts from enumera-
tive combinatorics regarding permutations that are used throughout the section. Let Π = Πn denote
the set of all permutations over [n]. For a given π ∈ Π, we write f (π)(xi) ≜ E(yπ(i)|xi), noting
that if π(i) ̸= i, then f (π)(xi) = 0. We define π0 to be the identity permutation on [n]. Moreover,
a permutation π ∈ Π induces a partition of [n] into K(π) cycles, where a cycle is i1, . . . , ik such
that π(ij) = ij+1 for j ∈ [k − 1] and π(ik) = ii. Let

Π̃ ≜ Π̃n = {π ∈ Π : K(π) ≤ log2(n)}.
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Suppose we have n independent and identically distributed observations (xi, yi)i∈[n] of (x, y) that
follows model (5.3.1). We make the following assumptions.

Assumption 5.2. The mean f(x) satisfies that E[f(x)] = 0, E[f 2(x)] = σ2
f , and E[f 4(x)] < ∞.

The error ε satisfies that E(ε1) = 0 and E(ε21) = σ2
ε and is independent of x1, . . . , xn.

Assumption 5.2∗. The mean f satisfies that Var(f 2(x)) ≤ ϑσ2
f
4 for some constant ϑ > 0.

Assumption 5.3. For a fixed δ > 0, there exists an estimator f̂ : X × (X ×R)n ×Π→ R and a
sequence ℓn (possibly depending on δ) such that

(i) the estimator f̂ is equivariant in the sense that for any π ∈ Π,

f̂(xi; (xj, yj)
n
j=1; π) = f̂(xi; (xj, yπ(j))

n
j=1; π0).

(ii) for n sufficiently large,

min
π∈Π̃∪{π0}

P
{ n∑

i=1

[f̂(xi; (xj, yj)
n
j=1; π)− f (π)(xi)]

2 ≤ ℓn

}
≥ 1− δ.

Temporarily fix π ∈ Π. For convenience, let f̂ (π)(·) ≜ f̂(·; (xj, yj)nj=1; π). Now, given an
estimation procedure f̂ : X × (X × R)n × Π → R satisfying Assumption (5.3), we define Λ(π)

as

Λ(π) ≜ Λ(π)(f̂) =
n∑
i=1

[f̂ (π)(xi)]
2.

Then, our p-value is given by

φ(f̂) ≜
1

|Π|
∑
π∈Π

1Λ(π0)(f̂)≤Λ(π)(f̂).

Assumption (5.2) is a weak requirement, imposing an independence assumption and some mo-
ment conditions on the model. The requirement for the existence of the fourth moment of fi is to
ensure the concentration of ∥f∥22 around nσ2

f . The next assumption, (5.2∗), is a technical condition
that allows for a faster concentration of ∥f∥22; the faster concentration yields a sharper rate in the
contiguous alternative. For example, if the fi are Gaussian, then Assumption (5.2∗) is satisfied
with ϑ = 3.

Assumption (5.3) is a very natural assumption, albeit technical. For the first part, the symmetry
in the estimation procedure, f̂(·), implies that Λ(π) is identically distributed under the null hypoth-
esis for all π ∈ Π. For the second half, we assume that f̂ (π)(·) is a consistent estimator of f (π)(·)
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for any π ∈ Π at a rate slightly faster than ℓn. In particular, for most π ∈ Π, the estimator f̂ (π)(·)
approximates the zero function. To see this, let C1, . . . , CK(π) denote a fixed representation of the
K(π) cycles, for example as expressed in standard representation (see Stanley (2012) for a formal
definition). For j ∈ [K(π)] and i ∈ Cj , let m(i) denote the index of i in Cj . Then, define the sets
A(π)

1 , A(π)
2 , and A(π)

3 as follows:

A(π)
1 ≜

⋃
j∈[K(π)]

{i ∈ Cj : m(i) is odd and m(i) ̸= |Cj|},

A(π)
2 ≜

⋃
j∈[K(π)]

{i ∈ Cj : m(i) is even},

A(π)
3 ≜ [n] ∩ (A(π)

1 ∪ A
(π)
2 )c.

For example, for the permutation expressed by the cycles (4321)(765)(8), we have A(π)
1 =

{2, 4, 7}, A(π)
2 = {1, 3, 6}, and A(π)

3 = {5, 8}. Intuitively, A(π)
1 and A(π)

2 are two sets of observa-
tions such that, within each set, the covariates and responses are mutually independent. Therefore,
for i ∈ A(π)

1 ∪A
(π)
2 , we have that f (π)(xi) = 0. The other set,A(π)

3 , are the remaining observations.
To bound the error in the remaining observations, we note that EK(π)/ log(n)→ 1 as n→∞ (cf.
Stanley (2012)). Now, by Markov’s inequality, for large values of n,

|Π̃c|
|Π|

= P(K(π) > log2(n)) ≤ 2

log(n)
→ 0.

This leads to the following lemma, which asserts that, for π ∈ Π̃, the conditional mean function,
f (π)(·), is approximately zero.

Lemma 5.4. Under Assumption (5.2), for any δ > 0, there exists a constant c1 > 0 such that

min
π∈Π̃

P
{ ∑
i∈A(π)

3

[f (π)(xi)]
2 ≤ log2(n)σ2

f + c1 log(n)
}
≥ 1− δ.

As an immediate consequence of Lemma 5.4, we have the following corollary, which yields an
alternative way to check the second half of Assumption (5.3).

Suppose that, for a fixed δ > 0, there exists an estimator f̂ : X × (X × R)n × Π → R and a
sequence ℓn with log2(n) = o(ℓn) such that for n sufficiently large,

P
{ n∑

i=1

[f̂(xi; (xj, yj)
n
j=1; π0)− f (π0)(xi)]

2 ≤ ℓn

}
≥ 1− δ
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and

min
π∈Π̃

P
{ n∑

i=1

[f̂(xi; (xj, yj)
n
j=1; π)]

2 ≤ ℓn

}
≥ 1− δ.

Then, under Assumption (5.2), for n sufficiently large,

min
π∈Π̃∪{π0}

P
{ n∑

i=1

[f̂(xi; (xj, yj)
n
j=1; π)− f (π)(xi)]

2 ≤ ℓn

}
≥ 1− δ.

We can now state our first result that φ controls the type-I error.

Theorem 5.5. Consider model (5.3.1) with the hypotheses testing problem in (5.3.2). Under As-

sumptions (5.2), (5.3) and the null hypothesis, we have that

lim sup
n→∞

PH0(φ(f̂) ≤ α) ≤ α.

To analyze the power of the test, we consider two contiguous hypotheses testing problems,
depending on whether we impose Assumption (5.2∗). First, consider

H0 : f ≡ 0 v. H1 : f ̸≡ 0, f ∈ F , σ2
f = h

( 1√
n
+
ℓn
n

)
. (5.3.3)

Then, we have the following theorem that

Theorem 5.6. Consider model (5.3.1) with the hypotheses testing problem (5.3.3). Suppose As-

sumptions (5.2) and (5.3) hold with δ < α(1 − α)/4. If h is sufficiently large (not depending on

n), then, under the alternative hypothesis in (5.3.3),

lim inf
n→∞

PH1(φ(f̂) ≤ α) > α.

If we further assume (5.2∗), we consider the following hypotheses

H0 : f ≡ 0 v. H1 : f ̸≡ 0, f ∈ F , σ2
f = h

ℓn
n
. (5.3.4)

We have the following corollary.

Corollary 5.6.1. Consider model (5.3.1) with the hypotheses testing problem in (5.3.4). Under

Assumptions (5.2), (5.2∗), (5.3) with δ < α(1− α)/4 and the alternative hypothesis in (5.3.4), if h
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is sufficiently large (not depending on n), then we have that

lim inf
n→∞

PH1(φ(f̂) ≤ α) > α.

Comparing the hypotheses in equations (5.3.3) and (5.3.4), one can see that Assumption (5.2∗)
allows for testing at a rate faster than n−1/2. In view of Corollary 5.3.1, we emphasize that the bot-
tleneck of testing power under Assumption (5.2∗) is the rate at which we can predict the conditional
mean given the permuted covariates.

5.3.2 Sparse High-Dimensional Linear Model

In this section, we focus on model (A.3.1.1) and consider F ≜ {f : Rp → R | f(x) =

⟨x,β∗⟩2,β∗ ∈ Rp, ∥β∗∥0 ≤ s∗}.

Assumption 5.4. The covariate vector x ∈ SGp(Kx) has mean zero and variance Σ, and the error
ε ∈ SG(Kε) has mean zero and variance σ2

ε . Moreover, x is independent of ε.

Assumption 5.4∗. There exists ϑ > 0 such that

∥⟨x,v⟩2∥2ψ2
≤ ϑE

(
⟨x,v⟩22

)
for all v ∈ Rp.

The first half of Assumption (5.4) is mild, assuming a random sub-Gaussian design framework
that is standard in the high-dimensional setting. In particular, it implies Assumption (5.2). As-
sumption (5.4∗) is a technical assumption that is used in the literature for concentration of the
sample covariance matrix. For example, see Definition 2 of Koltchinskii and Lounici (2017) or
Theorem 4.7.1 of Vershynin (2018). In particular, it implies Assumption (5.2∗), and, as an exam-
ple, the Gaussian distribution satisfies this assumption.

Then, the pairs of contiguous testing problems that we consider are

H0 : β
∗ = 0p v. H1 : ∥β∗∥0 = s∗ > 0, (β∗)TΣβ∗ = h

( 1√
n
+
s∗ log(p)

n

)
(5.3.5)

and, under Assumption (5.4∗),

H0 : β
∗ = 0p v. H1 : ∥β∗∥0 = s∗ > 0, (β∗)TΣβ∗ = h

s∗ log(p)

n
. (5.3.6)

Now, for any π ∈ Π, we define the lasso estimator as

f̂LA(xi; (xj, yj)
n
j=1; π) ≜ ⟨xi, β̂

(π)

LA ⟩2,
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where

β̂
(π)

LA ≜ argmin
β∈Rp

{ 1
n

n∑
i=1

(yπ(i) − ⟨xi,β⟩2)2 + λ∥β∥1
}
. (5.3.7)

Then, we have the following result for the lasso estimator.

Theorem 5.7. Consider model (A.3.1.1). Suppose that Assumption (5.4) holds with 0 < λmin(Σ) ≤
λmax(Σ) < ∞. Then for a fixed value of δ > 0, there exists sequence ℓn = O(snλ2) such that the

lasso estimator f̂LA satisfies (i) and (ii) of Assumption (5.3), provided that the tuning parameter λ

in (5.3.7) satisfies λ ≥ 2λ0 and λ ≍ λ0, where

λ0 ≥ c1

√
Kx(Kf +Kε)

log(6/δ) + log(p)

n

for some universal constant c1 > 0.

Given Theorem 5.7, applying Theorems 5.5, 5.6 and Corollary 5.6.1 yields the following corol-
lary on the asymptotic validity of the permutation test based on f̂LA.

Corollary 5.7.1. Under the assumptions of Theorem 5.7,

lim sup
n→∞

PH0(φ(f̂LA) ≤ α) ≤ α

In addition, if h is sufficiently large (not depending on n), then

lim inf
n→∞

PH1(φ(f̂LA) ≤ α) > α

for the hypotheses testing problem in equation (5.3.5) and also for the hypotheses in equation

(5.3.6) if Assumption (5.4∗) holds.

Similarly, we define the L0 estimator as

f̂L0(xi; (xj, yj)
n
j=1; π) ≜ ⟨xi, β̂

(π)

L0
⟩2,

where

β̂
(π)

L0
≜ argmin

β∈Rp,∥β∥≤s

n∑
i=1

(yπ(i) − ⟨xi,β⟩2)2. (5.3.8)

Now, the following theorem is the analogue of Theorem 5.7 for the L0 estimator.

Theorem 5.8. Consider model (A.3.1.1). Suppose that s ≍ s∗ with s ≥ s∗ in (5.3.8). Then under

Assumption (5.4), for a fixed value of δ > 0, the L0 estimator, f̂L0(·), satisfies Assumption (5.3)
with ℓn = O(s log(p) + log(1/δ)).
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It is worth emphasis that Theorem 5.8 does not require the minimum eigenvalue of Σ to be
well bounded from below as in Theroem 5.7. This demonstrates the robustness of the L0 estimator
against collinearity of the covariates when it is compared with the lasso. In the following, we es-
tablish the asymptotic validity of the permutation test based on f̂L0 , again without any requirement
on λmin(Σ).

Corollary 5.8.1. Under the assumptions of Theorem 5.8, then

lim sup
n→∞

PH0(φ(f̂L0) ≤ α) ≤ α

In addition, if h is sufficiently large (not depending on n), then

lim inf
n→∞

PH1(φ(f̂L0) ≤ α) > α

for the hypotheses testing problem in equation (5.3.5) and also for the hypotheses in equation

(5.3.6) if Assumption (5.4∗) holds.

Remark. If Σ = Ip, then we are interested in testing if ∥β∗∥22 = 0. Our results should be compared
to the minimax lower bound of Guo et al. (2019), who show that the minimax lower bound of the
estimation error of ∥β∗∥22 is n−1/2+s∗n−1 log(p) over all s∗-sparse vectors with bounded Euclidean
norms. However, under Assumption (5.4∗), we are able to test at a faster rate since β∗ = 0p is a
super-efficient point in the parameter space.

5.3.3 Low-Rank Trace Regression

Now we return to the main subject of this paper, the low-rank trace regression model (5.1.1). Here,
we let F ≜ {f : Rd1×d2 → R | f(X) = ⟨X,Θ⟩HS, rank(Θ) ≤ r∗}. Similarly to the setting of
high-dimensional linear models, we require the following mild assumption on the covariates and
noise.

Assumption 5.5. The vectorized covariate matrix vec(X) ∈ SGd1d2(Kx) with mean zero and
covariance matrix Σ ∈ Rd1d2×d1d2 . The error ε ∈ SG(Kε) and has mean zero and variance σ2

ε .
Moreover, X is independent of ε.

Assumption 5.5∗. There exists a ϑ > 0 such that

∥⟨vec(X),v⟩2∥2ψ2
≤ ϑE⟨vec(X),v⟩22

for all v ∈ Rd1d2 .
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The corresponding two pairs of contiguous hypotheses we consider for the low-rank trace re-
gression model are

H0 : Θ
∗ = 0d1×d2 v. H1 : rank(Θ

∗) = r∗ > 0,

vec(Θ∗)TΣvec(Θ∗) = h
( 1√

n
+
r∗d log(n)

n

) (5.3.9)

and

H0 : Θ
∗ = 0d1×d2 , v. H1 : rank(Θ

∗) = r∗ > 0, vec(Θ∗)TΣvec(Θ∗) = h
r∗d log(n)

n
.

(5.3.10)

For any π ∈ Π, we define the rank-constrained estimator as

f̂L0(Xi; (Xj, yj)
n
j=1; π) ≜ ⟨Xi, Θ̂

(π)
L0
⟩HS,

where

Θ̂
(π)
L0

≜ Θ̂
(π)
L0

(r) = argmin
Θ∈Rd1×d2 ,rank(Θ)≤r

n∑
i=1

(yπ(i) − ⟨Xi,Θ⟩HS)
2. (5.3.11)

Next, we show that f̂L0(·) satisfies Assumption C without any requirement on Σ.

Theorem 5.9. Suppose that Assumption (5.5) holds and that r ≍ r∗ with r ≥ r∗ in (5.3.11). Then

for some δ > 0, f̂L0 satisfies (i) and (ii) of Assumption (5.3) with some ℓn = O(r∗ log(d1d2) +

log(1/δ)).

We can now establish the asymptotic validity of the low-rank test, again through applying The-
orems 5.5, 5.6 and Corollary 5.6.1.

Corollary 5.9.1. Under the assumptions of Theorem 5.9, we have that

lim sup
n→∞

PH0(φ(f̂L0) ≤ α) ≤ α.

In addition, if h is sufficiently large (not depending on n), then

lim inf
n→∞

PH1(φ(f̂L0) ≤ α) > α

for the hypotheses testing problem in equation (5.3.9) and also for the hypotheses in equation

(5.3.10) if Assumption (5.5∗) holds.
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5.3.4 Robustness of the Rank-Constrained Test

In the previous sections, we assume that our test statistics have been optimally tuned, either through
λ for regularized estimation or through r for rank-constrained estimation. However, such oracles
are not available in practice. In this section, we consider the performance of the permutation test
with a possibly misspecified rank. Fix r and define

Θ̃ ≜ Θ̃(r) = argmin
Θ∈Rd1×d2 ,rank(Θ)≤r

E⟨X,Θ∗ −Θ⟩2HS.

In words, Θ̃ is the best rank-r approximation to Θ∗ in terms of prediction risk if 1 ≤ r < r∗ and
Θ̃ = Θ∗ if r ≥ r∗. Then given h > 0, consider the hypotheses testing problems

H0 : Θ
∗ = 0d1×d2 v. H1 : vec(Θ̃)TΣvec(Θ̃) = h

( 1√
n
+
rd log(n)

n

)
(5.3.12)

and

H0 : Θ
∗ = 0d1×d2 v. H1 : vec(Θ̃)TΣvec(Θ̃) = h

rd log(d)

n
. (5.3.13)

Note that the alternative hypotheses above are stated in terms of Θ̃ and thus vary with respect to
r̃. Intuitively, underestimating the rank refrains one from capturing the complete signal. It is thus
hopeless to detect the presence of a nonzero Θ∗ if the signal encapsulated by Θ̃ is too weak.

Theorem 5.10. Consider model (5.1.1) and choose r = r in (5.3.11). Under Assumption (5.5), we

have that

lim sup
n→∞

PH0(φ(f̂L0) ≤ α) ≤ α.

In addition, if h is sufficiently large (not depending on n), then

lim inf
n→∞

PH1(φ(f̂L0) ≤ α) > α

for the hypotheses testing problem in equation (5.3.12) and also for the hypotheses in equation

(5.3.13) if Assumption (5.5∗) holds.

Theorem 5.10 should be compared with Corollary 5.9.1. In particular, by considering Θ̃ rather
than Θ∗, we can still distinguish between the null and the alternative hypotheses as long as the
best rank-r approximation captures sufficient amount of signal; hence, this allows for the situation
where the rank of Θ∗ is misspecified. In particular, by setting r = r∗, the hypotheses in equations
(5.3.12) and (5.3.13) are equivalent to equations (5.3.9) and (5.3.10) respectively, and Corollary
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5.9.1 can be viewed as a special case of Theorem 5.10. As another special case, by setting r = 1,
we obtain a tuning-parameter free test that allows for testing the best rank-one approximation of
Θ∗. To the best of our knowledge, this is the first test in the high-dimensional literature that is
robust to misspecification of the tuning parameter.

Theorem 5.10 seems to imply that the test is more likely to detect the signal if r̃ is large.
However, it should be noted that the required minimal power depends linearly on r while the
signal increases at most by a factor of r. Thus, the rank-one test, being focused on the leading
eigenvalue, may have higher efficiency than a test that is more omnidirectional (for example, see
Bickel et al. (2006)).

The proof of Theorem 5.10 relies on the least-squares structure of the rank-constrained estima-
tor; in particular, the vector of fitted values can be written as PVy for some V ∈ Rd2×r. Thus,
the result can immediately be extended to sparse high-dimensional linear models with best subset
selection.

By comparison, the choice of the tuning parameter λ for the lasso and nuclear norm regularized
estimator is inherently challenging. For estimation, the value of λ is usually chosen through cross-
validation. However, for inference, there are a few natural methods to perform cross-validation,
which we discuss in Section 5.4.3.

5.4 Simulations

5.4.1 Models and Methods

In this section, we demonstrate the empirical performance, both in terms of estimation and in-
ference, of the rank-constrained estimator on synthetic data. We assume the model in equation
(5.1.1), which is reproduced below

yi = ⟨Xi,Θ
∗⟩HS + εi.

In our simulations, we set n = 200 and d1 = d2 = 20 and let r∗ ∈ {1, 2, 3, 4}. Regarding the
design, we consider two distinct settings, corresponding to two common examples of low-rank
trace regression: (i) compressed sensing and (ii) matrix completion. In the setting of compressed
sensing, we let vec(Xi) have independent and identically distributed standard Gaussian entries.
For matrix completion, we let {X1, . . . ,Xn} be a uniform random sample from {ejeTk }j∈[d1],k∈[d2]
without replacement, where ej denotes the jth standard basis vector.

In both scenarios, we generate εi as independent and identically distributed standard Gaus-
sian random variables. Finally, we define the signal to noise ratio, denoted by “SNR,” as the
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variance of ⟨Xi,Θ
∗⟩HS; the value of SNR is a monotonic function of the power represented by

h in equations (5.3.3) and (5.3.4). For in-sample prediction, we consider a logarithmic scale
and let SNR ∈ {1, 1.43, 2.04, 2.92, 4.18, 5.98, 8.55, 12.23, 17.48, 25} and, for inference, we let
SNR ∈ {0, 0.125, 0.25, 0.375, 0.5, 0.75, 1, 2}. To achieve this, we first generate r∗ values uni-
formly from (−1, 1) to form a diagonal matrix Λ. Then, we draw U∗ and V∗ from the uni-
form Haar measure on the Stiefel manifold of dimension d1 × r∗ and d2 × r∗ respectively and set
Θ∗ = U∗Λ(V∗)T. Finally, we scale Θ∗ such that vec(Θ∗)TΣvec(Θ∗) = SNR.

5.4.2 In-Sample Prediction

For estimation, we compare the in-sample prediction risk of the rank-constrained estimator with
that of an oracle least-squares estimator (LS) and the nuclear norm regularized estimator (NN)
from equation (5.1.4). The oracle least-squares estimator has access to the right singular space
V∗. Computationally, we use alternating minimization (AM) to approximate the rank-constrained
estimator (for example, see Hastie et al. (2015) and the references therein). We employ multi-
ple restarts to avoid local stationary points, using a coarse grid of nuclear norm estimators and a
spectral estimator to initialize the AM algorithm; this yields a total of six initializations. Then,
our final rank-constrained estimator is the one that minimizes equation (5.1.3) out of the six dif-
ferent initializations. To avoid misspecification of the tuning parameter for both estimators (r for
the rank-constrained estimator and λ for the nuclear norm estimator), we consider oracle tuning
parameters. To accomplish this, we run both estimators over a grid of tuning parameters for each
setting over 1000 Monte Carlo experiments and choose the tuning parameter that yields the mini-
mum prediction risk, which is defined as in (5.2.1).

The results of our simulation are presented in Tables 5.1 and 5.2 and Figures 5.2 and 5.3. In
general, we see that the performance of the rank-constrained estimator relative to the nuclear norm
regularized estimator improves as SNR increases. This is consistent with the simulation results
of Hastie et al. (2020), who noticed that best subset selection outperforms the lasso for high SNR
regimes in high-dimensional linear models.

5.4.3 Inference

For inference, we evaluate the performance of our permutation approach from Section 5.3 and
consider the permutation test using both alternating minimization and nuclear norm regularization.
Throughout, we are testing at level α = 0.05, and our permutation tests randomly draw nineteen
permutations from Π\{π0}. To provide a benchmark for the performance of our testing procedure,
we consider two oracles that have access to the right singular space V∗: (i) an oracle that uses the
low-dimensional F -test (FT) and (ii) an oracle that uses our permutation test using least-squares
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Figure 5.2: Plots of in-sample prediction error for Gaussian design

Figure 5.3: Plots of in-sample prediction error for matrix completion
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Table 5.1: Simulations for In-Sample Prediction Risk for Gaussian Design

SNR 1.00 1.43 2.04 2.92 4.18 5.98 8.55 12.23 17.48 25.00
LS 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

r∗ = 1 AM 0.24 0.22 0.22 0.21 0.21 0.20 0.20 0.20 0.20 0.20
NN 0.26 0.28 0.30 0.31 0.33 0.34 0.35 0.36 0.37 0.38
LS 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

r∗ = 2 AM 0.43 0.48 0.53 0.51 0.48 0.47 0.45 0.44 0.43 0.42
NN 0.32 0.35 0.39 0.42 0.45 0.48 0.50 0.53 0.55 0.57
LS 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

r∗ = 3 AM 0.56 0.64 0.63 0.64 0.67 0.73 0.71 0.69 0.67 0.65
NN 0.36 0.41 0.45 0.49 0.53 0.57 0.60 0.64 0.67 0.69
LS 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

r∗ = 4 AM 0.65 0.72 0.75 0.80 0.84 0.84 0.84 0.87 0.90 0.88
NN 0.39 0.44 0.49 0.54 0.59 0.63 0.67 0.71 0.75 0.78

estimation (LS).
For nuclear norm regularization, we consider four procedures to choose λ. First, we consider

oracle tuning. Since we use 100 Monte Carlo experiments, when choosing the oracle value of
λ for nuclear norm regularization, we only consider the values of λ for which the number of
rejections under the null hypothesis (SNR = 0) is less than or equal to nine. The nine arises
from constructing a confidence interval for α based on 100 independent Bernoulli experiments
with success probability 0.05 as it is two standard errors above 0.05. The other three approaches
to choosing λ are all variations on cross-validation. The first procedure, denoted DS for “data
splitting,” splits the data into two halves, estimating λ on the first half and using estimated value of
λ for all π ∈ Π. In our simulations, we split the data in half since we need sufficient observations
in both halves to estimate rank three and rank four matrices. The second procedure, denoted IS
for “in-sample,” performs five-fold cross-validation for each π ∈ Π to obtain λ̂(π). After λ̂(π) is
selected, the model is refit using all the observations to obtain in-sample predictions. Finally, the
third procedure, denoted OS for “out-of-sample,” also performs five-fold cross-validation for each
π ∈ Π, obtaining five values of λ̂(π), one for each of the five folds. Instead of refitting the model
as before, we use the out-of-sample predicted values for each of the folds.

For alternating minimization, we report all the results for r ∈ {1, 2, 3, 4}. Note that we are
using the oracle value of λ for nuclear norm regularization. Thus, we view this as a theoretical
benchmark with which to compare the rank-constrained estimator for testing.

The results are presented in Tables 5.3 and 5.4 and Figures 5.4 and 5.5. We note that, as the
SNR increases for a fixed rank, the power of our testing procedure increases. In general, even under
misspecification of the tuning parameter for the rank-constrained estimator, we are able to maintain
nominal coverage. Moreover, even when r∗ > 1, it seems that the rank-constrained estimator with
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Table 5.2: Simulations for In-Sample Prediction Risk for Matrix Completion

SNR 1.00 1.43 2.04 2.92 4.18 5.98 8.55 12.23 17.48 25.00
LS 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

r∗ = 1 AM 0.23 0.22 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20
NN 0.38 0.44 0.50 0.56 0.62 0.67 0.73 0.77 0.82 0.86
LS 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

r∗ = 2 AM 0.44 0.50 0.52 0.49 0.47 0.46 0.44 0.43 0.43 0.42
NN 0.42 0.48 0.55 0.61 0.68 0.74 0.79 0.84 0.88 0.92
LS 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

r∗ = 3 AM 0.60 0.65 0.65 0.66 0.71 0.72 0.69 0.67 0.65 0.64
NN 0.44 0.51 0.58 0.65 0.71 0.77 0.83 0.87 0.91 0.94
LS 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

r∗ = 4 AM 0.69 0.74 0.78 0.83 0.83 0.84 0.86 0.89 0.87 0.86
NN 0.45 0.53 0.60 0.67 0.74 0.80 0.85 0.89 0.93 0.95

r = 1 has comparable performance to the optimal nuclear norm regularized estimator as well as
permutation testing with larger values of r. Thus, even without any oracular knowledge of Θ∗, we
may obtain a valid and powerful test that is tuning parameter free by using the rank-constrained
estimator with r = 1, which is consistent with Theorem 5.10.

However, when λ is chosen via cross-validation, the performance of the nuclear-norm regular-
ized estimator degrades significantly relative to the oracle. For data-splitting, which has the best
empirical performance for non-oracle nuclear norm regularization, we lose half of our observa-
tions to selecting λ and, compared to the cross-fitting of Chernozhukov et al. (2018b), we cannot
switch the roles of the two halves of the dataset. For the remaining two settings, where λ̂ depends
on π ∈ Π, we notice that λ̂(π) < λ̂(π0) for π ̸= π0. Thus, Λ(π) compensates the poorer model fit
compared to Λ(π0) by increasing the complexity of the model, thus enabling overfitting.
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Figure 5.4: Plots of power for Gaussian design

Figure 5.5: Plots of power for matrix completion

110



Table 5.3: Simulations for Inference for Gaussian Design

SNR 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 2.000
FT 0.02 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.06 0.74 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NN-OR 0.05 0.23 0.64 0.85 0.92 0.98 0.99 1.00 1.00 1.00
NN-DS 0.08 0.09 0.13 0.17 0.26 0.27 0.37 0.48 0.43 0.55
NN-IS 0.04 0.04 0.06 0.11 0.14 0.08 0.08 0.14 0.09 0.02

r∗ = 1 NN-OS 0.06 0.09 0.03 0.10 0.06 0.04 0.07 0.07 0.01 0.05
AM-1 0.06 0.22 0.49 0.80 0.92 0.99 1.00 1.00 1.00 1.00
AM-2 0.03 0.18 0.41 0.66 0.84 0.92 0.98 1.00 1.00 1.00
AM-3 0.03 0.14 0.22 0.48 0.62 0.80 0.92 0.92 0.98 1.00
AM-4 0.07 0.10 0.15 0.28 0.45 0.60 0.72 0.75 0.83 1.00
FT 0.02 0.65 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.01 0.54 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NN-OR 0.06 0.20 0.54 0.78 0.90 0.92 0.94 0.99 0.99 1.00
NN-DS 0.00 0.05 0.16 0.25 0.24 0.33 0.41 0.40 0.42 0.52
NN-IS 0.07 0.07 0.15 0.05 0.13 0.08 0.12 0.13 0.09 0.01

r∗ = 2 NN-OS 0.07 0.05 0.04 0.02 0.04 0.06 0.08 0.08 0.02 0.04
AM-1 0.04 0.13 0.45 0.71 0.88 0.90 0.96 0.98 0.98 1.00
AM-2 0.07 0.15 0.33 0.56 0.79 0.89 0.96 0.97 0.99 1.00
AM-3 0.05 0.10 0.25 0.44 0.67 0.78 0.91 0.94 0.94 1.00
AM-4 0.07 0.10 0.18 0.25 0.41 0.54 0.64 0.78 0.77 1.00
FT 0.02 0.56 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.03 0.48 0.84 0.96 1.00 1.00 1.00 1.00 1.00 1.00
NN-OR 0.05 0.20 0.45 0.67 0.85 0.93 0.96 0.98 0.97 1.00
NN-DS 0.05 0.08 0.12 0.24 0.31 0.33 0.37 0.40 0.43 0.59
NN-IS 0.01 0.08 0.16 0.09 0.17 0.11 0.10 0.09 0.16 0.00

r∗ = 3 NN-OS 0.02 0.03 0.10 0.04 0.07 0.03 0.06 0.03 0.06 0.05
AM-1 0.08 0.12 0.25 0.61 0.71 0.80 0.86 0.96 0.94 1.00
AM-2 0.04 0.15 0.27 0.49 0.69 0.80 0.91 0.95 0.96 1.00
AM-3 0.08 0.09 0.22 0.38 0.53 0.70 0.83 0.88 0.96 1.00
AM-4 0.08 0.09 0.15 0.27 0.44 0.39 0.57 0.68 0.80 1.00
FT 0.02 0.43 0.84 0.98 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.05 0.40 0.75 0.93 0.99 1.00 1.00 1.00 1.00 1.00
NN-OR 0.03 0.21 0.39 0.71 0.82 0.85 0.95 0.98 0.98 1.00
NN-DS 0.02 0.11 0.12 0.16 0.28 0.23 0.35 0.36 0.33 0.55
NN-IS 0.07 0.02 0.10 0.11 0.10 0.15 0.13 0.11 0.10 0.01

r∗ = 4 NN-OS 0.02 0.06 0.03 0.03 0.05 0.06 0.06 0.04 0.05 0.04
AM-1 0.07 0.12 0.28 0.49 0.63 0.64 0.78 0.88 0.90 0.96
AM-2 0.10 0.15 0.22 0.48 0.56 0.71 0.78 0.88 0.90 0.99
AM-3 0.06 0.13 0.21 0.41 0.55 0.64 0.74 0.81 0.82 0.99
AM-4 0.05 0.08 0.20 0.30 0.33 0.52 0.53 0.61 0.73 0.97
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Table 5.4: Simulations for Inference for Matrix Completion

SNR 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 2.000
FT 0.08 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.06 0.80 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NN-OR 0.03 0.20 0.53 0.74 0.81 0.97 0.96 0.97 1.00 1.00
NN-DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NN-IS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r∗ = 1 NN-OS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AM-1 0.07 0.17 0.51 0.75 0.91 0.99 0.99 0.99 1.00 1.00
AM-2 0.09 0.12 0.39 0.62 0.77 0.90 0.93 0.97 1.00 1.00
AM-3 0.07 0.13 0.21 0.38 0.60 0.70 0.79 0.87 0.90 1.00
AM-4 0.06 0.05 0.15 0.21 0.30 0.41 0.55 0.69 0.66 0.95
FT 0.08 0.65 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.08 0.61 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00
NN-OR 0.05 0.16 0.36 0.54 0.68 0.81 0.84 0.87 0.93 1.00
NN-DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NN-IS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r∗ = 2 NN-OS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AM-1 0.09 0.16 0.29 0.56 0.73 0.79 0.84 0.92 0.93 0.99
AM-2 0.05 0.14 0.19 0.36 0.64 0.77 0.86 0.91 0.92 1.00
AM-3 0.08 0.05 0.18 0.31 0.46 0.62 0.73 0.77 0.88 0.98
AM-4 0.08 0.09 0.15 0.11 0.20 0.25 0.43 0.48 0.52 0.94
FT 0.08 0.52 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.06 0.44 0.87 0.97 1.00 1.00 1.00 1.00 1.00 1.00
NN-OR 0.07 0.11 0.23 0.37 0.51 0.64 0.75 0.85 0.90 0.98
NN-DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NN-IS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r∗ = 3 NN-OS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AM-1 0.06 0.14 0.22 0.29 0.52 0.64 0.70 0.73 0.80 0.95
AM-2 0.04 0.08 0.18 0.29 0.47 0.55 0.73 0.74 0.81 1.00
AM-3 0.08 0.08 0.09 0.22 0.28 0.40 0.49 0.65 0.72 0.98
AM-4 0.09 0.06 0.09 0.12 0.14 0.24 0.25 0.36 0.42 0.86
FT 0.08 0.36 0.79 0.98 1.00 1.00 1.00 1.00 1.00 1.00
LS 0.06 0.31 0.67 0.97 0.99 1.00 1.00 1.00 1.00 1.00
NN-OR 0.09 0.17 0.23 0.36 0.42 0.48 0.61 0.63 0.73 0.96
NN-DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NN-IS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r∗ = 4 NN-OS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AM-1 0.05 0.10 0.18 0.25 0.35 0.48 0.54 0.60 0.65 0.82
AM-2 0.08 0.09 0.18 0.24 0.31 0.44 0.48 0.58 0.69 0.92
AM-3 0.07 0.07 0.09 0.19 0.22 0.29 0.39 0.48 0.60 0.86
AM-4 0.05 0.04 0.09 0.07 0.13 0.15 0.30 0.31 0.40 0.75
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APPENDIX 1

Appendix of Chapter 2

This is the Appendix to Chapter 2.

A.2.1 Additional Simulation Results

In this section, we include additional results for the simulations of Section 2.5.

Table A.2.1: Simulations for β with Gaussian design and errors when q = 3 and β = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15

LS 0.924 0.886 0.922 0.936 0.910 0.872 0.942 0.946
SILM 0.936 0.894 0.960 0.964 0.940 0.788 0.896 0.874

AveCov EWI 0.944 0.886 0.956 0.950 0.952 0.800 0.976 0.978
EWII 0.978 0.942 0.978 0.976 0.976 0.908 0.992 0.994
EWIII 0.992 0.964 0.988 0.990 0.990 0.952 0.998 0.994
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Table A.2.2: Simulations for β with Gaussian design and errors when q = 1 and β = 1

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15

LS 0.946 0.878 0.938 0.946 0.934 0.900 0.948 0.944
DLA 0.928 0.880 0.934 0.946 0.904 0.856 0.352 0.238
SILM 0.932 0.872 0.936 0.956 0.918 0.858 0.130 0.034

AvgCov DML 1.000 0.996 0.998 0.994 0.990 0.982 1.000 1.000
EWI 0.830 0.768 0.922 0.932 0.932 0.862 0.976 0.984
EWII 0.866 0.810 0.952 0.962 0.956 0.900 0.984 0.992
EWIII 0.904 0.852 0.974 0.976 0.964 0.922 0.990 0.998

LS 0.428 0.463 0.591 0.688 0.429 0.466 0.932 1.450
DLA 0.502 0.539 0.693 0.699 0.539 0.555 0.548 0.506
SILM 0.549 0.579 0.683 0.709 0.647 0.636 0.673 0.640

AvgLen DML 1.190 1.180 1.180 1.160 2.800 1.670 17.300 17.200
EWI 0.640 0.655 0.711 0.717 1.080 0.805 1.910 1.870
EWII 0.696 0.717 0.778 0.801 1.180 0.883 2.130 2.120
EWIII 0.746 0.773 0.839 0.877 1.270 0.953 2.320 2.350

Table A.2.3: Simulations for β with Gaussian design and errors when q = 3 and β = 1

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15

LS 0.914 0.882 0.928 0.938 0.950 0.848 0.924 0.948
SILM 0.862 0.684 0.886 0.916 0.892 0.644 0.020 0.004

AveCov EWI 0.522 0.636 0.766 0.838 0.832 0.736 0.858 0.928
EWII 0.568 0.696 0.828 0.886 0.876 0.790 0.908 0.968
EWIII 0.630 0.746 0.858 0.938 0.900 0.828 0.952 0.978
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Table A.2.4: Simulations for β with double exponential design and errors when q = 1 and β = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.942 0.900 0.966 0.954 0.950 0.892 0.940 0.946
DLA 0.960 0.876 0.974 0.964 0.950 0.872 0.154 0.102
SILM 0.954 0.876 0.968 0.960 0.954 0.838 0.892 0.868

AvgCov DML 0.960 0.878 0.930 0.914 0.980 0.848 1.000 1.000
EWI 0.950 0.858 0.962 0.962 0.956 0.866 0.960 0.954
EWII 0.972 0.918 0.978 0.976 0.976 0.914 0.970 0.976
EWIII 0.980 0.938 0.990 0.984 0.990 0.950 0.980 0.990
LS 0.456 0.492 0.683 0.829 0.432 0.466 0.910 1.450
DLA 0.534 0.565 0.813 0.821 0.530 0.545 0.520 0.490
SILM 0.574 0.596 0.785 0.825 0.619 0.603 0.611 0.592

AvgLen DML 0.756 0.702 0.874 0.875 1.480 0.892 12.700 13.300
EWI 0.716 0.691 0.856 0.877 1.070 0.798 2.000 1.910
EWII 0.792 0.772 0.932 0.974 1.180 0.891 2.180 2.120
EWIII 0.860 0.844 1.000 1.060 1.280 0.973 2.330 2.300

Table A.2.5: Simulations for β with double exponential design and errors when q = 3 and β = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.928 0.834 0.904 0.930 0.940 0.884 0.926 0.940
SILM 0.954 0.856 0.956 0.966 0.950 0.782 0.874 0.858

AveCov EWI 0.958 0.850 0.954 0.958 0.946 0.794 0.966 0.976
EWII 0.984 0.936 0.990 0.978 0.972 0.886 0.990 0.992
EWIII 0.992 0.966 0.992 0.992 0.984 0.932 0.990 0.996
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Table A.2.6: Simulations for β with double exponential design and errors when q = 1 and β = 1

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.934 0.902 0.946 0.930 0.940 0.914 0.934 0.954
DLA 0.940 0.884 0.920 0.918 0.910 0.876 0.332 0.280
SILM 0.946 0.892 0.910 0.904 0.922 0.842 0.082 0.014

AvgCov DML 0.998 1.000 0.994 0.994 0.986 0.956 1.000 1.000
EWI 0.894 0.818 0.910 0.942 0.934 0.860 0.958 0.974
EWII 0.920 0.856 0.938 0.968 0.958 0.880 0.972 0.986
EWIII 0.942 0.886 0.956 0.974 0.974 0.902 0.988 0.990
LS 0.454 0.495 0.677 0.831 0.434 0.468 0.899 1.470
DLA 0.541 0.573 0.803 0.829 0.545 0.550 0.519 0.491
SILM 0.602 0.629 0.788 0.842 0.652 0.627 0.603 0.586

AvgLen DML 1.360 1.270 1.480 1.460 2.830 1.660 22.200 22.000
EWI 0.726 0.715 0.854 0.892 1.100 0.806 2.020 1.910
EWII 0.791 0.789 0.941 1.000 1.190 0.884 2.250 2.170
EWIII 0.851 0.855 1.020 1.100 1.280 0.953 2.460 2.390

Table A.2.7: Simulations for β with double exponential design and errors when q = 3 and β = 1

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.936 0.878 0.950 0.940 0.948 0.854 0.934 0.942
SILM 0.864 0.682 0.876 0.906 0.878 0.624 0.010 0.002

AveCov EWI 0.582 0.692 0.818 0.844 0.828 0.714 0.868 0.950
EWII 0.658 0.760 0.870 0.904 0.880 0.774 0.920 0.976
EWIII 0.714 0.822 0.914 0.936 0.912 0.820 0.960 0.986
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Table A.2.8: Simulations for β with scaled t design and errors when q = 1 and β = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.958 0.910 0.942 0.938 0.956 0.904 0.950 0.960
DLA 0.954 0.878 0.962 0.948 0.946 0.878 0.198 0.114
SILM 0.968 0.882 0.968 0.960 0.946 0.838 0.866 0.834

AvgCov DML 0.980 0.868 0.920 0.880 0.976 0.822 0.998 0.998
EWI 0.950 0.846 0.956 0.956 0.966 0.816 0.968 0.974
EWII 0.972 0.902 0.984 0.974 0.976 0.880 0.986 0.982
EWIII 0.988 0.940 0.984 0.980 0.982 0.904 0.990 0.994
LS 0.490 0.515 0.750 0.933 0.453 0.479 0.951 1.600
DLA 0.559 0.591 0.886 0.892 0.525 0.547 0.569 0.544
SILM 0.611 0.620 0.884 0.928 0.618 0.607 0.687 0.672

AvgLen DML 0.819 0.751 1.140 1.170 1.410 0.902 13.200 14.400
EWI 0.806 0.739 0.967 0.982 1.100 0.817 2.240 2.110
EWII 0.882 0.828 1.060 1.090 1.210 0.914 2.450 2.330
EWIII 0.952 0.907 1.140 1.180 1.300 0.999 2.640 2.530

Table A.2.9: Simulations for β with scaled t design and errors when q = 3 and β = 0

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.922 0.872 0.940 0.944 0.936 0.856 0.926 0.936
SILM 0.954 0.866 0.964 0.972 0.954 0.822 0.846 0.796

AveCov EWI 0.958 0.832 0.958 0.968 0.950 0.798 0.962 0.972
EWII 0.980 0.924 0.978 0.990 0.986 0.886 0.986 0.994
EWIII 0.990 0.958 0.988 0.994 0.990 0.916 0.996 0.996
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Table A.2.10: Simulations for β with scaled t design and errors when q = 1 and β = 1

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.938 0.894 0.926 0.948 0.946 0.894 0.952 0.952
DLA 0.924 0.888 0.908 0.936 0.900 0.874 0.412 0.348
SILM 0.886 0.934 0.900 0.914 0.908 0.842 0.112 0.046

AvgCov DML 0.998 1.000 0.992 0.998 0.984 0.978 1.000 1.000
EWI 0.882 0.790 0.940 0.954 0.926 0.816 0.976 0.978
EWII 0.920 0.836 0.964 0.978 0.956 0.868 0.982 0.990
EWIII 0.942 0.868 0.972 0.990 0.968 0.890 0.988 0.994
LS 0.487 0.521 0.742 0.938 0.458 0.478 0.956 1.610
DLA 0.565 0.608 0.892 0.910 0.549 0.558 0.573 0.548
SILM 0.643 0.657 0.902 0.957 0.659 0.638 0.696 0.668

AvgLen DML 1.540 1.370 1.850 1.750 2.870 1.730 22.800 23.200
EWI 0.814 0.753 0.983 1.010 1.110 0.831 2.140 2.150
EWII 0.886 0.830 1.090 1.140 1.210 0.911 2.390 2.420
EWIII 0.952 0.898 1.190 1.250 1.300 0.983 2.610 2.670

Table A.2.11: Simulations for β with scaled t design and errors when q = 3 and β = 1

snrX 2 2 2 2 1000 1000 1000 1000
ρ 0 0 0.8 0.8 0 0 0.8 0.8
sδ, sγ 3 15 3 15 3 15 3 15
LS 0.950 0.906 0.944 0.918 0.918 0.874 0.950 0.948
SILM 0.894 0.704 0.890 0.874 0.874 0.746 0.052 0.008

AveCov EWI 0.638 0.644 0.820 0.832 0.840 0.694 0.926 0.940
EWII 0.682 0.716 0.904 0.906 0.890 0.746 0.962 0.984
EWIII 0.724 0.766 0.944 0.952 0.908 0.792 0.974 0.994
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Table A.2.12: Simulations for σ2
µ with sγ = 15

Distribution z z e e t t
ρ 0 0.8 0 0.8 0 0.8

LS 0.762 0.734 0.768 0.816 0.892 0.906
CHIVE0 0.134 0.492 0.152 0.464 0.228 0.460
CHIVE2 0.380 0.584 0.392 0.560 0.408 0.554

AvgCov CHIVE4 0.514 0.676 0.554 0.638 0.540 0.674
CHIVE6 0.646 0.740 0.632 0.698 0.624 0.690
EWI 0.328 0.696 0.422 0.732 0.388 0.652
EWII 0.628 0.756 0.630 0.784 0.588 0.786
EWIII 0.690 0.606 0.672 0.690 0.718 0.816

LS 1.450 1.440 1.500 1.850 1.990 3.080
CHIVE0 0.538 0.873 0.583 0.999 1.060 2.140
CHIVE2 1.410 1.550 1.420 1.670 1.810 2.700

AvgLen CHIVE4 1.910 1.980 1.910 2.090 2.270 3.070
CHIVE6 2.310 2.320 2.300 2.440 2.630 3.380
EWI 1.200 1.370 1.260 1.640 1.720 2.830
EWII 1.280 1.340 1.320 1.630 1.790 2.820
EWIII 1.230 1.250 1.270 1.560 1.770 2.780
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Table A.2.13: Simulations for σ2
ε with sγ = 15

Distribution z z e e t t
ρ 0 0.8 0 0.8 0 0.8

LS 0.874 0.864 0.870 0.848 0.876 0.864
SL 0.308 0.646 0.386 0.620 0.466 0.606

AvgCov RCV-SIS 0.004 0.238 0.006 0.256 0.012 0.254
EWI 0.514 0.630 0.554 0.650 0.532 0.648
EWII 0.026 0.362 0.042 0.358 0.058 0.376
EWIII 0.000 0.110 0.006 0.092 0.002 0.126

LS 0.481 0.462 0.467 0.478 0.479 0.483
SL 0.781 0.702 0.766 0.722 0.753 0.717

AvgLen RCV-SIS 1.030 0.711 1.030 0.746 1.210 0.724
EWI 0.613 0.498 0.600 0.515 0.589 0.507
EWII 0.676 0.536 0.660 0.553 0.644 0.541
EWIII 0.793 0.605 0.770 0.623 0.746 0.604

A.2.2 Proofs

A.2.2.1 Proofs for Section 2.2.2

Lemma A2.1. Consider the models given in equations (2.2.1) and (2.2.2). Under assumptions
(2.1), (2.2 ∗), and (2.3),

ηTε

ση tr(Σε)

L→ N (0, 1) .

Proof. By the Spectral Theorem, there exists a unitary matrix Γ and a diagonal matrix D such that
Σε = ΓDΓT. Since ε and η are both Gaussian and independent, there exists Gaussian vectors
ζ ∼ Nn (0n, In) and ξ ∼ Nn (0n, In) such that

ηTε
L
= σηζ

TD1/2ξ.

Then, by the Lindeberg Central Limit Theorem, it follows that

ζTD1/2ξ√
tr(D)

L→ N (0, 1) .
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Noting that tr(D) = tr(Σ) finishes the proof.

Proof of Theorem 2.3. The proof follows by combining Lemmata 2.15, 2.16, and A2.1.

A.2.2.2 Proofs for Section 2.2.3

Similar to the setting where q = 1, we will proceed in a few stages.

Lemma A2.2. Consider the models given in equations (2.2.1) and (2.2.2). Under assumptions
(2.4) – (2.6),

1. ∥∥∥∥(N− Z∆̂EW

)T (
N− Z∆̂EW

)∥∥∥∥ = oP(
√
n).

2. ∥∥∥∥(N− Z∆̂EW

)T
H

∥∥∥∥ = oP(
√
n).

3.

n

((
N− Z∆̂EW

)T (
X− Z∆̂EW

))−1
P→ Σ−1

H .

Proof. Indeed, note that
(
N− Z∆̂EW

)T (
N− Z∆̂EW

)
is a positive definite matrix. By q appli-

cations of Lemma 2.15, each diagonal element is oP(
√
n), which proves the first claim. For the

second part, Lemma 2.15 again shows that each diagonal element is oP(
√
n). It is left to show that

each off diagonal element is also oP(
√
n). By symmetry, it suffices to consider the (1, 2) element

of
(
N− Z∆̂EW

)T
H. For simplicity, we write ν to denote the first column of N, δ̂EW to denote

the first column of ∆̂EW, wm to denote the exponential weights of δ̂EW, η to denote the first column
of H, and ξ to denote the second column of H. Then, the (1, 2) element can be expressed as(

ν − Zδ̂EW

)T
ξ =

∑
m∈Mu

wmν
TP⊥

mξ −
∑

m∈Mu

wmη
TPmξ

=
∑

m∈Mu

wT
mP⊥

mξ −
1

2

∑
m∈Mu

wm ∥Pm (ξ + η)∥22

+
1

2

∑
m∈Mu

wm ∥Pmξ∥22 +
1

2

∑
m∈Mu

wm ∥Pmη∥22 .
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Applying Lemma 2.13 and Corollary 2.6.1 proves the second claim. Finally, note that∥∥∥∥∥(X− Z∆̂EW

)T (
X− Z∆̂EW

)
− nΣH

∥∥∥∥∥
2

≤
∥∥∥∥(N− Z∆̂EW

)T (
N− Z∆̂EW

)∥∥∥∥
2

+ 2

∥∥∥∥(N− Z∆̂EW

)T
H

∥∥∥∥
2

+
∥∥HTH− nΣH

∥∥
2
.

We have already shown that the first two terms are oP(
√
n). For the last term, by the Law of Large

Numbers, it follows that

∥∥HTH− nΣH

∥∥
2
= oP(n).

Therefore,

1

n

(
X− Z∆̂EW

)T (
X− Z∆̂EW

)
P→ ΣH .

Since ΣH is assumed to be invertible, applying the Continuous Mapping Theorem finishes the
proof.

Proof of Theorem 2.4. For convenience, define the following matrices

A ≜

((
X− Z∆̂EW

)T (
X− Z∆̂EW

))
,

B ≜
(
N− Z∆̂EW

)T
H,

C ≜
(
N− Z∆̂EW

)T (
N− Z∆̂EW

)
.

Applying Lemma 2.15 to each row separately, we see that

β̂EW =
√
nA−1

(
X− Z∆̂EW

)T (
y − Zθ̂EW

)
=
√
nA−1

(
HTHβ +HTε+R

)
,

where ∥R∥1 = oP(
√
n). But, from Lemma A2.2, we have that

n
∥∥A−1

∥∥
2

P→
∥∥Σ−1

H

∥∥
2
,
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which is finite since ΣH is invertible by assumption. Therefore,

∥∥√nA−1R
∥∥ ≤ (n∥∥A−1

∥∥
2

) (
n−1/2 ∥R∥1

) P→ 0.

Now, note that

HTH =A−B−BT −C.

Hence,

√
nA−1HTHβ =

√
nβ −

√
nA−1

(
B+BT +C

)
β.

Again, by Lemma A2.2,

∥∥√nA−1
(
B+BT +C

)
β
∥∥
2
≤
(
n
∥∥A−1

∥∥
2

) (
n−1/2

∥∥B+BT +C
∥∥
2

)
∥β∥2

P→ 0.

Finally, by the Multivariate Central Limit Theorem,

n−1/2HTε
L→ Nq

(
0q, σ

2
εΣH

)
.

Since nA−1 P→ Σ−1
H , it follows by Slutsky’s Theorem that

√
nA−1HTε

L→ Nq
(
0q, σ

2
εΣ

−1
H

)
,

which finishes the proof.

Proof of Proposition 2.5. This follows from Lemma A2.2.

A.2.2.3 Proofs for Section 2.3.1

Proof of Proposition 2.7. Letting γ̂ denote the least-squares estimator for γ, it is known that γ̂ is
efficient for estimating γ in the low-dimensional linear model. Since Z is assumed to be of full
rank, there exists a smooth re-parameterization of the problem given by (γ, σ2

ε) 7→
(
σ2
µ,ϑ, σ

2
ε

)
,

where
(
σ2
µ,ϑ

)
is the polar representation of

∥∥ZSγγ
∥∥2
2
. Taking the bowl-shaped loss to be quadratic

in the first component, the result follows from the arguments of Section 2.3 of Bickel et al. (1993)
since

∥∥PSγy
∥∥2
2
= ∥Zγ̂∥22.

The proof for Theorem 2.8 will rely on the proof of Theorem 2.10 from Section A.2.2.4.
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Proof of Theorem 2.8. Indeed, we may write

1

n
∥y∥22 =

1

n
∥µ∥22 +

2

n
µTε+

1

n
∥ε∥22

Note that, from equations (A.2.2.3), (A.2.2.4) and (A.2.2.5), it follows that

σ̂2
µ,I =

1

n
∥µ∥22 +

2

n
µTε+ oP

(
n−1/2

)
,

σ̂2
µ,II =

1

n
∥µ∥22 +

2

n
µTε+ oP

(
n−1/2

)
,

σ̂2
µ,III =

1

n
∥µ∥22 +

2

n
µTε+ oP

(
n−1/2

)
.

By the Multivariate Central Limit Theorem, it follows that

√
n

(
n−1 ∥µ∥2 − σ2

µ

2n−1µTε

)
L→ N

((
0

0

)
,

(
κ 0

0 4σ2
εσ

2
µ

))
.

Applying the Cramér-Wold device finishes the proof.

Proof of Proposition 2.9. Indeed,

κ̂µ =
1

n

n∑
j=1

((
µ2
j − σ2

µ

)
+
(
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))2
=
1

n

n∑
j=1

(
µ2
j − σ2

µ

)2
+

1

n

n∑
j=1

((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))2
+

2

n

n∑
j=1

(
µ2
j − σ2

µ

) ((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))
.

Applying the Law of Large Numbers yields

1

n

n∑
j=1

(
µ2
j − σ2

µ

)2 P→ κµ. (A.2.2.1)
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By the triangle inequality and Cauchy-Schwarz, it follows that

1

n

n∑
j=1

((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))2
≤ 4

n
∥µ̂− µ∥44 +

8

n

n∑
j=1

(
µ̂j − µj

)2
µ2
j + 4

(
σ̂2
µ − σ2

µ

)2
≤ 4

n
∥µ̂− µ∥42 +

8

n
∥µ̂− µ∥22 ∥µ∥

2
2 4 + 4

(
σ̂2
µ − σ2

µ

)2
.

From Theorem 2.8, we see that σ̂2
µ

P→ σ2
µ. Therefore, combining this with Proposition 2.1 shows

that

1

n

n∑
j=1

((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))2 P→ 0. (A.2.2.2)

Now, by another application of Cauchy-Schwarz,

2

n

n∑
j=1

∣∣∣(µ2
j − σ2

µ

) ((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))∣∣∣
≤ 2

n

(
n∑
j=1

((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))2)1/2

×

(
n∑
j=1

(
µ2
j − σ2

µ

)2)1/2

.

From equations (A.2.2.1) and (A.2.2.2), it will follow that

2

n

n∑
j=1

∣∣∣(µ2
j − σ2

µ

) ((
µ̂j − µj

)2
+ 2

(
µ̂j − µj

)
µj −

(
σ̂2
µ − σ2

µ

))∣∣∣ P→ 0.

Combining the results finishes the proof.

A.2.2.4 Proofs for Section 2.3.2

Proof of Theorem 2.10. Indeed, note that

σ̂2
ε,I =

1

n

(
∥µ− µ̂∥22 + εT (µ− µ̂) + ∥ε∥22

)
=

1

n
∥ε∥22 + oP

(
n−1/2

)
, (A.2.2.3)
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where the last equality follows from Proposition 2.1 and Lemma 2.15. Next, some algebra shows
that σ̂2

ε,III may be decomposed as

σ̂2
ε,III =

1

n
∥ε∥22 +

1

n

∑
m∈Muγ

wm,y

(∥∥P⊥
mµ
∥∥2 + 2µTP⊥

mε
)

− 1

n

∑
k∈Muγ

∑
m∈Muγ

wk,ywm,y

(
µTP⊥

kP
⊥
mµ+ εTPkPmε

)
.

Applying Corollary 2.6.1 yields

1

n

∑
m∈Muγ

wm,y

(∥∥P⊥
mµ
∥∥2
2
+ 2µTP⊥

mε
)
= oP

(
n−1/2

)
.

For the other term, it follows from Cauchy-Schwarz, Lemma 2.13, and Corollary 2.6.1 that

1

n

∑
k∈Muγ

∑
m∈Muγ

wk,ywm,y

(
µTP⊥

kP
⊥
mµ+ εTPkPmε

)
= oP

(
n−1/2

)
.

Thus, this implies that

σ̂2
ε,III =

1

n
∥ε∥22 + oP

(
n−1/2

)
. (A.2.2.4)

Now, by Jensen’s inequality,

σ̂2
ε,I ≤ σ̂2

ε,II ≤ σ̂2
ε,III .

Therefore, we may conclude that

σ̂2
ε,II =

1

n
∥ε∥22 + oP

(
n−1/2

)
. (A.2.2.5)

The asymptotic distribution for all three estimators follows by applying the Central Limit Theorem,
which finishes the proof.

Proof of Corollary 2.3.2. Indeed,

σ̂2
ε,I =

1

n
∥ε∥22 + oP

(
n−1/2

)
.

From the proof of Lemma A2.1, we may apply the Spectral Theorem to obtain the following
decomposition: Σε = ΓDΓT. Then, for ξ ∼ Nn (0n, In), it follows that D1/2ξ

L
= ε. A direct

variance calculation for n−1
∥∥D1/2ξ

∥∥2
2

finishes the proof.
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Proof of Proposition 2.11. The proof is similar to the proof of Proposition 2.9.
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APPENDIX 2

Appendix of Chapter 3

A.3.1 Proofs

A.3.1.1 Proofs for Section 5.3

We start with a simple lemma, which is a consequence of Lemma 6.3 of Law and Ritov (2021b).

Lemma A3.1. Consider the model given in equation (3.1.1). Assume (3.1), (3.2), (3.3), (3.4), and
(3.5). Then,

∥PZ⊖W(y −Xβ̂EW)∥22 = ∥PZ⊖W(Zν + ε)∥22 + oP(n
τ ),

∥P⊥
(Z,W)(y −Xβ̂EW)∥22 = ∥P⊥

(Z,W)ε∥22 + oP(n
τ ).

Proof. Indeed, we may expand the left hand side to obtain

∥PZ⊖W(y −Xβ̂EW) = ∥PZ⊖W(µ−Xβ̂EW)∥22 + 2(µ−Xβ̂EW)TPZ⊖W(Zν + ε)

+ ∥PZ⊖W(Zν + ε)∥22.

By assumptions (3.2) and (3.3), it follows that P⊥
W(Zν + ε) ∼ SG(Kν λmax(ZZ

T) +Kε). Thus,
applying both parts of Lemma 6.3 of Law and Ritov (2021b) yields

∥PZ⊖W(µ−Xβ̂EW)∥22 = oP(n
τ ),

2(µ−Xβ̂EW)TPZ⊖W(Zν + ε) = oP(n
τ ).

This proves the first claim. The proof for the other claim is identical and is omitted.

Proof of Theorem 3.1. Indeed, expanding the numerator of Fld, we have that

r−1
Z⊖(XS ,W)∥PZ⊖(XS ,W)y∥22 = r−1

Z⊖(XS ,W)∥PZ⊖(XS ,W)(Zν + ε)∥22.
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For FEW, using Lemma A3.1, we may similarly expand the numerator to obtain

r−1
Z⊖W∥PZ⊖W(y −Xβ̂EW)∥22 = r−1

Z⊖W∥PZ⊖W(Zν + ε)∥22 + oP(n
τ−1).

Since Z⊖ (XS,W) ⊆ Z⊖W, by Pythagoras, we have that

r−1
Z⊖W∥PZ⊖W(Zν + ε)∥22 = r−1

Z⊖W∥PZ⊖(XS ,W)(Zν + ε)∥22 + r−1
Z⊖W∥(PZ⊖W −PZ⊖(XS ,W))(Zν + ε)∥22.

Note that rank(XS) = s, so rank(PZ⊖W−PZ⊖(XS ,W)) = rZ⊖W− rZ⊖(XS ,W) ≤ s, implying that
rZ⊖W ≍ rZ⊖(XS ,W) by assumption (3.5). Therefore,

r−1
Z⊖W∥PZ⊖W(Zν + ε)∥22 = r−1

Z⊖(XS ,W)∥PZ⊖(XS ,W)(Zν + ε)∥22 + oP(n
τ−1).

By a similar argument, it can be shown for the denominators that

r−1
(XS ,Z,W)⊥

∥P⊥
(XS ,Z,W)y∥22 = r−1

(Z,W)⊥
∥P⊥

(Z,W)(y −Xβ̂EW)∥22 + oP(n
τ−1).

Dividing the last two displays finishes the proof.

Proof of Theorem 3.2. We start by recalling the definition of φF,δ,

φF,δ = 1

(
FEW > FrZ⊖W,r

(Z,W)⊥ ,δ

)
.

Applying Lemma A3.1, we may lower bound FEW by

FEW =
∥PZ⊖W(Zν + ε)∥22/rZ⊖W

∥P⊥
(Z,W)ε∥22/r(Z,W)⊥

+ oP(n
τ−1)

≥
λmax,rZ⊖W

(PZ⊖WZΨZTPZ⊖W) + σ2
ε

σ2
ε

FrZ⊖W,r
(Z,W)⊥

+ oP(n
τ−1)

≥ hnτ−1 + σ2
ε

σ2
ε

FrZ⊖W,r
(Z,W)⊥

+ oP(n
τ−1),

We would like to show that, for n sufficiently large,

PH0

(
FEW > FrZ⊖W,r

(Z,W)⊥ ,δ

)
+ PH1

(
FEW ≤ FrZ⊖W,r

(Z,W)⊥ ,δ

)
< 1.

It suffices to show that

PH1

(
FEW > FrZ⊖W,r

(Z,W)⊥ ,δ

)
> δ.
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We start by providing an upper bound on FrZ⊖W,r
(Z,W)⊥ ,δ

. From Lemma 1 of Laurent and Massart
(2000), it follows that, for a χ2

d random variable,

P
(
χ2
d > d+ 2

√
dx+ 2x

)
≤ exp(−x),

P
(
χ2
d ≤ d− 2

√
dy
)
≤ exp(−y).

Therefore, it follows that, for any x, y > 0,

P

(
FrZ⊖W,r

(Z,W)⊥
>

1 + 2
√
x/rZ⊖W + 2x/rZ⊖W

1− 2
√
y/r(Z,W)⊥

)
≤ exp(−x) + exp(−y).

By choosing x, y > 0 such that

exp(−x) + exp(−y) ≤ δ,

then

FrZ⊖W,r
(Z,W)⊥ ,δ

≤
1 + 2

√
x/rZ⊖W + 2x/rZ⊖W

1− 2
√
y/r(Z,W)⊥

= 1 +O(n−1/2).

Let a, b > 0 be constants that will be chosen later. Define the event T as

T ≜
{
χ2
rZ⊖W

> rZ⊖W − 2
√
rZ⊖Wa, χ2

r
(Z,W)⊥

≤ r(Z,W)⊥ + 2
√
r(Z,W)⊥b+ 2b

}
.

Again, by Lemma 1 of Laurent and Massart (2000),

P (T c) ≤ exp (−a) + exp (−b) .

On T , it follows that

FrZ⊖W,r
(Z,W)⊥

= 1 +O(n−1/2).

Now,

PH1

(
FEW > FrZ⊖W,r

(Z,W)⊥ ,δ

)
≥ PH1

(
FEW > FrZ⊖W,r

(Z,W)⊥ ,δ
,T
)

≥ PH1

(
hnτ−1 + σ2

ε

σ2
ε

(
1 +O(n−1/2)

)
+ oP(n

τ−1) >
(
1 +O(n−1/2)

)
,T

)
.

Noting that τ − 1 ≥ −1/2 and letting h be sufficiently large, independent of n, finishes the

130



proof.

Proof of Theorem 3.3. The proof is an immediate consequence of Theorem 3.5 by setting ν to
follow a degenerate distribution at zero.

Before proving Theorem 3.4, we present an extension of Proposition 2.1 of Law and Ritov
(2021b) to the setting of out of sample prediction for exponential weighting with Gaussian designs.

Consider a high-dimensional linear model given by

y = Xβ + ε, (A.3.1.1)

with X ∈ Rn×p, y, ε ∈ Rn, and ∥β∥0 = sn = s. Let X(1),X(2) ∈ Rn/2×p and y(1),y(2), ε(1), ε(2) ∈
Rn/2 be the data obtained by data splitting into two equal halves. For m ∈ M, denote by β̃

(1)

m ≜

(X(1)TX(1))−X(1)Ty(1). Then, the exponential weights are given by

w̃(1)
m ≜

exp
(
− 1
α
∥y(1) −X

(1)
m β̃

(1)

m ∥22
)

∑
k∈Mu

exp
(
− 1
α
∥y(1) −X

(1)
k β̃

(1)

k ∥22
) .

Define β̃
(2)

m and w̃(2)
m similarly. Then,

β̃EW ≜
∑
m∈M

(
w̃(1)

m β̃
(2)

m + w̃(2)
m β̃

(1)

m

)
.

Lemma A3.2. Consider the model given in equation (A.3.1.1). Assume that the rows of X

are independent and identically distributed Np(0p,ΣX) with max(diag(ΣX)) = O(1) and ε ∼
Nn(0n, σ2

εIn). Assume further that the chosen sequence of sparsities un = u ≥ s for n suf-
ficiently large with u = o(nτ/ log(p)). If xnew ∼ Np(0p,ΣX) is independent of X and ε and
α > 16max(diag(ΣX), σ

2
ε), then

E
(
xT

new(β̃ − β)
)2

= o(nτ−1).

where the expectation is over the joint distribution of xnew, X, and ε.

Proof. By properties of the Gaussian distribution, for any m ∈ M, there exists vectors θm ∈ Ru

and ξm ∈ Rn such that

Xβ = Xθm + ξm.

Here, the vector θm is a fixed vector of regression coefficients and ξm ∼ Nn(0n, σ2
ξ,mIn) is inde-
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pendent of Xm. Similarly, xT
newβ = xT

new,mθm + ξnew,m. Then, by convexity, it follows that

E
(
xT

new(β̃EW − β)
)2

≤ 2E

{∑
m∈M

w̃(1)
m

[
xT

new

(
(X(2)

m

T
X(2)

m )−X(2)
m

T
(X(2)

m θm + ξ(2)m + ε(2))− θm
)
− ξnew,m

]}2

+ 2E

{∑
m∈M

w̃(2)
m

[
xT

new

(
(X(1)

m

T
X(1)

m )−X(1)
m

T
(X(1)

m θm + ξ(1)m + ε(1))− θm
)
− ξnew,m

]}2

.

By symmetry, it suffices to only consider the first term. Note that

E

{∑
m∈M

w̃(1)
m

[
xT

new

(
(X(2)

m

T
X(2)

m )−X(2)
m

T
(X(2)

m θm + ξ(2)m + ε(2))− θm
)
− ξnew,m

]}2

= E

{∑
m∈M

w̃(1)
m

[
xT

new(X
(2)
m

T
X(2)

m )−X(2)
m

T
(ξ(2)m + ε(2))− ξnew,m

]}2

≤ 2
∑
m∈M

E
{
w̃(1)

m

(
xT

new(X
(2)
m

T
X(2)

m )−X(2)
m

T
(ξ(2)m + ε(2))

)2}
+ 2

∑
m∈M

E
(
w̃(1)

m ξ
2
new,m

)
.

Now, a direct calculation shows that

∑
m∈M

E
{
w̃(1)

m

(
xT

new(X
(2)
m

T
X(2)

m )−X(2)
m

T
(ξ(2)m + ε(2))

)2}
= O

(
u

n− u− 1

)
.

By assumption, since u = o(nτ/ log(p)), it follows that

∑
m∈M

E
{
w̃(1)

m

(
xT

new(X
(2)
m

T
X(2)

m )−X(2)
m

T
(ξ(2)m + ε(2))

)2}
= o(nτ−1).

Hence, it is left to show that ∑
m∈M

E
(
w̃(1)

m ξ
2
new,m

)
= o(nτ−1).

To this end, for an arbitrary fixed value of t > 0, define

At ≜ {m ∈M : σ2
ξ,m ≤ tnτ−1}.

Since β = βS with ∥β∥0 = s and u ≥ s for n sufficiently large, then S ∈ At for n sufficiently
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large. Now, ∑
m∈M

E
(
w̃(1)

m ξ
2
new,m

)
=
∑
m∈At

E
(
w̃(1)

m ξ
2
new,m

)
+
∑
m∈At

E
(
w̃(1)

m ξ
2
new,m

)
≤ tnτ−1 +

∑
m∈At

E
(
w̃(1)

m ξ
2
new,m

)
.

For m ∈M, write P(1)
m to denote the projection onto the column space of X(1)

m . Then, for m ∈ Ac
t ,

w̃(1)
m ≤ exp

(
− 1

α

(
∥(In/2 −P(1)

m )(ξ(1)m + ε(1))∥22 − ∥(In/2 −P
(1)
S )ε(1)∥22

))
≤ exp

(
− 1

α

(
∥(In/2 −P(1)

m )ξ(1)m ∥22 + 2ε(1)
T
(In/2 −P(1)

m )ξ(1)m + ∥P(1)
S ε

(1)∥22 − ∥P(1)
m ε

(1)∥22
))

≤ exp

(
− 1

α

(
∥(In/2 −P(1)

m )ξ(1)m ∥22 + 2ε(1)
T
(In/2 −P(1)

m )ξ(1)m + ∥P(1)
S ε

(1)∥22
))

.

Now, by the Cauchy-Schwarz inequality, it follows that

Ew̃(1)
m ≤

{
E exp

[
− 2

α

(
∥(In/2 −P(1)

m )ξ(1)m ∥22 + ∥P
(1)
S ε

(1)∥22
)]}1/2

×
{
E exp

[
− 4

α
ε(1)

T
(In/2 −P(1)

m )ξ(1)m

]}1/2

.

A direct calculation yields,

E exp

[
− 2

α

(
∥(In/2 −P(1)

m )ξ(1)m ∥22 + ∥P
(1)
S ε

(1)∥22
)]
≤
(
1 +

4σ2
ξ,m

α

)−(n/2−u)/2(
1 +

4σ2
ε

α

)−u/2

,

E exp

[
− 4

α
ε(1)

T
(In/2 −P(1)

m )ξ(1)m

]
≤
(
1−

16σ2
ξ,mσ

2
ε

α2

)−(n/2−u)/2

.

Using the inequality

(1− 2x)−1/2 ≤ exp(2x2 + x)

for |x| < 1/4, it follows that

Ew̃(1)
m ≤ exp

{
−
σ2
ξ,m(n− 2u)

4α

[
1−

(
4(σ2

ξ,m + σ2
ε)

α
+

64σ2
ξ,mσ

2
ε

α3

)]
− σ2

εu

2α

(
1− 8σ2

ε

α

)}
.
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By the choice of α,

1−
(
4(σ2

ξ,m + σ2
ε)

α
+

64σ2
ξ,mσ

2
ε

α3

)
> 0,

then

Ew̃(1)
m ≤ exp

{
−tn

τ−1(n− 2u)

4α

[
1−

(
4(σ2

ξ,m + σ2
ε)

α
+

64σ2
ξ,mσ

2
ε

α3

)]
− σ2

εu

2α

(
1− 8σ2

ε

α

)}
since m ∈ Ac

t . Therefore, ∑
m∈At

E
(
w̃(1)

m ξ
2
new,m

)
→ 0.

Combining these calculations, it follows that

lim sup
n→∞

n1−τ
∑
m∈M

E
(
w̃(1)

m ξ
2
new,m

)
≤ t.

Since t > 0 is arbitrary, this implies that∑
m∈M

E
(
w̃(1)

m ξ
2
new,m

)
= o(nτ−1),

which finishes the proof.

Proof of Theorem 3.4. Note that (Z ⊖W) ⊕ (Z,W)⊥ ⊕ C(W) = Rn, where C(W) denotes
the column space of W. Then, let UZ⊖W ∈ Rn×rZ⊖W (respectively U(Z,W)⊥ ∈ Rn×r

(Z,W)⊥ )
be a matrix with orthonormal rows that spans Z ⊖W (respectively (Z,W)⊥). Denote by U ∈
Rn×(rZ⊖W+r

(Z,W)⊥ ) the orthogonal matrix where U = (UZ⊖W,U(Z,W)⊥). By properties of the
Gaussian distribution, UTX has rows that are independent and identically distributed Np(0p,ΣX)

and the entries of UTε are independent. Thus, we partition UTX into two parts, UT
Z⊖WX and

UT
(Z,W)⊥X, with UT

(Z,W)⊥X being further decomposed into X̃(1) and X̃(2). Thus, UT
Z⊖WX, X̃(1),

and X̃(2) have independent and identically distributed rows. By Lemma A3.2, it follows that

E∥UT
Z⊖WX(β̃EW − β)∥22 = o(nτ−1rZ⊖W).

But, since UZ⊖WUT
Z⊖W = PZ⊖W, we have that

E∥PZ⊖WX(β̃EW − β)∥22 = o(nτ−1rZ⊖W).
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Next, since ν and PZ⊖Wε are independent of β̃EW, standard arguments show that

(Zν + ε)TPZ⊖WX(β̃EW − β) = oP(n
τ−1rZ⊖W).

Therefore,

∥PZ⊖W(y −Xβ̃EW)∥22 = ∥PZ⊖WX(β̃EW − β)∥22 + 2(Zν + ε)TPZ⊖WX(β̃EW − β) + ∥PZ⊖W(Zν + ε)∥22
= ∥PZ⊖W(Zν + ε)∥22 + oP(n

τ−1rZ⊖W).

From Lemma A3.1, we have

∥P⊥
(Z,W)(y −Xβ̂EW)∥22 = ∥P⊥

(Z,W)ε∥22 + oP(n
τ ).

Now, the remainder of the proof is identical to that of Theorem 3.1 and is omitted, which finishes
the proof.

A.3.1.2 Proofs for Section ??

Lemma A3.3. Assume (3.4) and (3.5). Then, σ2
ς ≍ n.

Proof. By a direct calculation, we have that

σ2
ς = Var

(
ξTQξ

)
= κε

n∑
i=1

Q2
i,i + κν

n+q∑
i=n+1

Q2
i,i

+ 2
∑
i ̸=j

Q2
i,j(σ

2
ε11≤i≤n + σ2

ν1n+1≤i≤n+q)

× (σ2
ε11≤j≤n + σ2

ν1n+1≤j≤n+q).

Therefore,

min(κε, κν , 2σ
4
ε , 2σ

4
ν)∥Q∥2HS ≤ Var

(
ξTQξ

)
≤ max(κε, κν , 2σ

4
ε , 2σ

4
ν)∥Q∥2HS.

Expanding Q2, we see that

Q2 =

(
PZ⊖W + r2Z⊖Wr−2

(Z,W)⊥
P⊥

(Z,W) +PZ⊖WZZTPZ⊖W PZ⊖WZ+PZ⊖WZZTPZ⊖WZ

ZTPZ⊖W + ZTPZ⊖WZZTPZ⊖W ZTPZ⊖WZ+ ZTPZ⊖WZZTPZ⊖WZ

)
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Thus,

∥Q∥2HS = tr(Q2) = rZ⊖W + r2Z⊖Wr−1
(Z,W)⊥

+ 2 tr(PZ⊖WZZTPZ⊖W) + tr(ZTPZ⊖WZZTPZ⊖WZ).

Now,

rZ⊖W + r2Z⊖Wr−1
(Z,W)⊥

≤ ∥Q∥2HS ≤ rZ⊖W + r2Z⊖Wr−1
(Z,W)⊥

+ rZ⊖W λmax(ZZ
T)(2 + λmax(ZZ

T)).

Invoking the two assumptions finishes the proof.

Proof of Theorem 3.5. Recall from the calculations in Section 3.3.1 that

σ̂2
ν = [tr(ZTPZ⊖WZ)]−1

(
ξTQξ + oP(n

1/2)
)
.

Thus,

σ−1
ς tr(ZTPZ⊖WZ)(σ̂2

ν − σ2
ν) = σ−1

ς (ξTQξ − σ2
ν tr(Z

TPZ⊖WZ)) + σ−1
ς oP(n

1/2).

For the first term, noting that

EξTQξ = σ2
ν tr(Z

TPZ⊖WZ),

Var(ξTQξ) = σ2
ς ,

we may apply Theorem 5.1 of Jiang (1996) to conclude that

σ−1
ς (ξTQξ − σ2

ν [tr(Z
TPZ⊖WZ)])

L→ N (0, 1).

For the other term, we may invoke Lemma A3.3 to obtain

σ−1
ς oP(n

1/2) = oP(1).

This finishes the proof.

Lemma A3.4. Consider the model given in equation (3.1.1). Assume (3.1), (3.2), and (3.5). Then,

σ̂2
ε

P→ σ2
ε .

Proof of Lemma A3.4. Indeed, from Lemma A3.1,

σ̂2
ε = r−1

(Z,W)⊥
∥P⊥

(Z,W)ε∥22 + oP(1).
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Now, by the Hanson-Wright inequality (Theorem 1.1 of Rudelson and Vershynin (2013)), for any
constant a > 0,

P
(
|∥P⊥

(Z,W)ε∥22 − σ2
εr(Z,W)⊥| > a

)
≤ 2 exp

(
−cmin

(
a2

K4
ε r(Z,W)⊥

,
a

K2
ε

))
(A.3.1.2)

where c > 0 is a universal constant. Setting a = r
3/4

(Z,W)⊥
, it follows that

P
(
|∥P⊥

(Z,W)ε∥22 − σ2
εr(Z,W)⊥| > r

3/4

(Z,W)⊥

)
→ 0.

This implies that

r−1
(Z,W)⊥

∥P⊥
(Z,W)ε∥22

P→ σ2
ε ,

which finishes the proof.

Proof of Proposition 3.6. Temporarily, let ∆ = ∥P⊥
(Z,W)(µ−Xβ̂EW)∥4. Then,

∥P⊥
(Z,W)ε∥4 −∆ ≤ ∥P⊥

(Z,W)(y −Xβ̂EW)∥4 ≤ ∥P⊥
(Z,W)ε∥4 +∆. (A.3.1.3)

Now, applying Lemma 6.3 of Law and Ritov (2021b),

∆ ≤ ∥P⊥
(Z,W)(µ−Xβ̂EW)∥2 ≤ ∥µ−Xβ̂EW∥2 = oP(n

1/4).

Let tn be a sequence depending on n that will be chosen later. Define the event T as

T ≜ {∥P⊥
(Z,W)ε∥4 ≥ tnn

1/4}.

By norm equivalence, we have that

∥P⊥
(Z,W)ε∥4 ≥ n−1/4∥P⊥

(Z,W)ε∥2.

Setting a = σ2
εr(Z,W)⊥/2 in equation (A.3.1.2), it follows that

P
(
∥P⊥

(Z,W)ε∥22 ≥ σ2
εr(Z,W)⊥/2

)
≤ 2 exp

(
−cmin

(
σ2
εr(Z,W)⊥

4K4
ε

,
r(Z,W)⊥

2K2
ε

))
.
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Therefore, choosing tn =
√

(σ2
εr(Z,W)⊥)/(2n), we have that

P(T ) ≥ 1− 2 exp

(
−cmin

(
σ2
εr(Z,W)⊥

4K4
ν

,
r(Z,W)⊥

2K2
ν

))
→ 1.

Note that lim infn→∞ tn > 0 by assumption (3.5). Thus, on T for n sufficiently large, it follows
that

∥P⊥
(Z,W)ε∥4 −∆ ≥ 0.

Now, raising all terms in equation (A.3.1.3) to the fourth power, we see that

(
∥P⊥

(Z,W)ε∥4 −∆
)4
1T ≤ ∥P⊥

(Z,W)(y −Xβ̂EW)∥441T ≤
(
∥P⊥

(Z,W)ε∥4 +∆
)4
1T .

Expanding the left and right hand side and using the fact that ∆ = oP(n
1/4), the above implies that

∥P⊥
(Z,W)(y −Xβ̂EW)∥441T = ∥P⊥

(Z,W)ε∥441T + oP(n).

Recalling that n = mq, Lemma A3.4 and the above calculations show that

ω̂ε1T = q−1m2∥P⊥
(Z,W)ε∥441T − 3(m− 1)σ4

ε1T + oP(1).

A direct calculation yields

q−1m2E∥P⊥
(Z,W)ε∥44 = 3(m− 1)σ4

ε + ωε.

Now, since Z = Iq ⊗ 1m, P⊥
(Z,W) is a block diagonal matrix, with q blocks of m−11m1

T
m. Hence,

we may partition P⊥
(Z,W)ε into q blocks of length m, whereby each block is independent and

identically distributed. Then, it follows by a law of large numbers that

q−1m2∥P⊥
(Z,W)ε∥44

P→ 3(m− 1)σ4
ε + ωε.

Thus,

(ω̂ε − ωε)1T = oP(1).

Since P(T )→ 1, this proves the claim.
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A.3.1.3 Proofs for Section ??

Proof of Proposition 3.7. Indeed, from the calculations in Section 3.3.1, we have that

σ̃2
ν = [tr(ZTPZ⊖WZ)]−1

(
ξTQξ + oP(n)

)
.

By a variance calculation, we have that

Var([tr(ZTPZ⊖WZ)]−1ξTQξ) = σ2
ς [tr(Z

TPZ⊖WZ)]−2.

Applying Lemma A3.3 and assumption (3.10) shows that Var([tr(ZTPZ⊖WZ)]−1ξTQξ) → 0.
Noting that [tr(ZTPZ⊖WZ)]−1EξTξ = σ2

ν proves the first claim. The proof for σ̃2
γ is analogous.

Finally, the last claim that σ̃2
ε

P→ σ2
ε is identical to the proof of Lemma A3.4, which finishes the

proof.

Proof of Lemma 3.8. By independence, the joint distribution of (ν, γ, ε) is given byνγ
ε

 ∼ Nv+r+n

0v

0r

0n

 ,

σ
2
νIv 0v×r 0v×n

0r×v σ2
γIr 0r×n

0n×v 0n×r σ2
εIn


 .

Therefore, the joint distribution of Y and η is given by(
y

η

)
∼ N2n

((
µ

µ

)
,

(
σ2
νZZ

T + σ2
γWWT + σ2

εIn σ2
νZZ

T

σ2
νZZ

T σ2
νZZ

T

))
.

By standard results on the conditional mean of η given y, it follows that

E (η|y) = µ+ σ2
νZZ

T
(
σ2
νZZ

T + σ2
γWWT + σ2

εIn
)−1

(y − µ) .

which finishes the proof.

Proof of Theorem 3.9. From Proposition 3.7, it follows that

σ̃2
ν = σ2

ν + δ2ν σ̃2
γ = σ2

γ + δ2γ σ̃2
ε = σ2

ε + δ2ε ,

where δ2ν , δ2γ , and δ2ε are all oP(1). We write δ2∗ ≜ max{δ2ν , δ2γ, δ2ε}. Define

Σ ≜ σ2
νZZ

T + σ2
γWWT + σ2

εIn,

∆ ≜ δ2νZZ
T + δ2γW

T + δ2εIn.
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Note that Σ is positive definite and ∆ is invertible almost surely. Then, by the Matrix Inversion
Lemma,

(Σ+∆)−1 = Σ−1 −Σ−1
(
∆−1 +Σ−1

)−1
Σ−1.

Some algebra yields

η̃EW =µ̃EW + σ̃2
νZZ

T
(
σ̃2
νZZ

T + σ̃2
γWWT + σ̃2

εIn
)−1

(y − µ̃EW)

=µ̃EW +
(
σ2
ν + δ2ν

)
ZZT (Σ+∆)−1 (y − µ̃EW)

= (µ̃EW − µ) +
(
σ2
ν + δ2ν

)
ZZT (Σ+∆)−1 (µ− µ̃EW)

+ δ2νZZ
T (Σ+∆)−1 (Zν +Wγ + ε)

− σ2
νZZ

TΣ−1
(
∆−1 +Σ−1

)−1
Σ−1 (Zν +Wγ + ε)

+ µ+ σ2
νZZ

TΣ−1 (Zν +Wγ + ε) ,

where we have added and subtracted µ and applied the Matrix Inversion Lemma. From Lemma
3.8, recall that

η̃oracle = µ+ σ2
νZZ

TΣ−1 (Zν +Wγ + ε) .

Define ξ ≜ η̃EW − η̃oracle. Therefore,

n−1
(
∥η̃EW − η∥

2
2 − ∥η̃oracle − η∥

2
2

)
= n−1

(
∥ξ∥22 + 2ξT (η̃oracle − η)

)
.

We will prove each of the two terms on the right hand side are oP(1). Before doing so, we prove a
few useful facts to facilitate the remainder of the proof.

(I) ∥Σ∥22 = O(1).

(II) ∥Zν +Wγ + ε∥22 = OP(n) and ∥Zν∥22 = OP(n).

(III) ∥∆∥22 = oP(1) and ∥(Σ+∆)−1∥22 = OP(1).

(I) is immediate since Σ by the triangle inequality and assumptions (3.4) and (3.11). The first part
of (II) follows from the fact that

∥Zν +Wγ + ε∥22 ⪯ λmax (Σ)χ2
n = OP(n),

where ⪯ denotes stochastic ordering and λmax (Σ) = O(1) by assumptions (3.4) and (3.11). The
second part of (II) is similar. Finally, for (III), the first part follows from δ2∗

P→ 0 and ∥Σ∥2 = O(1).
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For the second part, note that the minimal singular value of Σ is bounded away from zero. Since
δ2∗

P→ 0, it follows that for n sufficiently large, the minimal singular value of Σ + ∆ is bounded
away from zero. This proves all three claims. We can now show that ∥ξ∥22 = oP(n), which we
show in parts. To this end, note that

∥(In − (σ2
ν + δ2ν)ZZ

T(Σ+∆)−1)(µ̃EW − µ)∥22
≤ ∥In − (σ2

ν + δ2ν)ZZ
T(Σ+∆)−1∥22∥µ̃EW − µ∥22

= oP(n).

Similarly,

∥δ2νZZT(Σ+∆)−1(Zν +Wγ + ε)∥22
≤ δ4ν∥ZZT∥22∥(Σ+∆)−1∥22∥Zν +Wγ + ε∥22
= oP(1).

For the last term, we apply the Matrix Inversion Lemma again to obtain

(∆−1 +Σ−1)−1 = ∆−∆(∆+Σ)−1∆.

Hence,

∥σ2
νZZ

TΣ−1(∆−1 +Σ−1)−1Σ−1(Zν +Wγ + ε)∥22
≤ σ4

ν∥ZZT∥22∥Σ−1∥42∥∆∥22∥In − (∆+Σ)−1∆∥22∥Zν +Wγ + ε∥22
= oP(n).

Combining these three results with the triangle inequality, this proves that

∥ξ∥22 = oP(n).

For the other quantity, we have that

∥η̃oracle − η∥22 = ∥σ2
νZZ

TΣ−1(Zν +Wγ + ε)− Zν∥22
≤ 2∥σ2

νZZ
TΣ−1(Zν +Wγ + ε)∥22 + 2∥Zν∥22

≤ 2σ4
ν∥ZZT∥22∥Σ−1∥22∥Zν +Wγ + ε∥22 + 2∥Zν∥22.
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Applying all three facts from above demonstrates that

∥η̃oracle − η∥22 = OP(n).

Using the Cauchy-Schwarz inequality yields

2|ξT(η̃oracle − η)| ≤ 2∥ξ∥2∥η̃oracle − η∥2 = oP(n),

which finishes the proof.

A.3.2 Additional Simulation Results

In this section, we include all the simulation tables for Section 5.4.

Table A.3.1: Simulations with d = 0 and s = 3

Simulations with d = 0 and s = 3
σ2
ν 0 0 0 0 1 1 1 1

Distr z z e e z z e e
ρ 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8
EWG 0.04 0.03 0.05 0.04 0.00 0.00 0.00 0.00
SLG 0.04 0.03 0.04 0.04 0.00 0.00 0.00 0.00
LSG 0.03 0.03 0.05 0.05 0.00 0.00 0.00 0.00

Type I/II LD 0.02 0.01 0.02 0.02 0.00 0.00 0.00 0.00
Error EWSG 0.12 0.12 0.09 0.11 0.00 0.00 0.00 0.00

SLSG 0.13 0.11 0.09 0.12 0.00 0.00 0.00 0.00
LSSG 0.10 0.10 0.09 0.10 0.00 0.00 0.00 0.00
EWG 1.00 1.00 0.99 1.00 0.93 0.93 0.81 0.81
SLG 1.00 1.00 0.99 1.00 0.94 0.92 0.82 0.82
LSG 1.00 1.00 0.99 1.00 0.94 0.93 0.82 0.82

Average LD 0.98 0.99 0.97 0.98 0.97 0.96 0.87 0.86
Coverage EWSG 0.95 0.96 0.95 0.96 0.89 0.91 0.89 0.90

SLSG 0.95 0.95 0.95 0.94 0.90 0.90 0.89 0.89
LSSG 0.94 0.95 0.95 0.95 0.92 0.91 0.90 0.91
EWG 0.04 0.04 0.04 0.04 0.43 0.43 0.43 0.42
SLG 0.04 0.04 0.04 0.05 0.43 0.43 0.43 0.43
LSG 0.04 0.04 0.04 0.04 0.43 0.43 0.43 0.43

Average LD 0.22 0.22 0.22 0.22 0.24 0.24 0.24 0.24
Length EWSG 0.04 0.04 0.04 0.04 0.42 0.42 0.60 0.60

SLSG 0.04 0.04 0.04 0.04 0.42 0.42 0.61 0.60
LSSG 0.04 0.04 0.04 0.04 0.42 0.42 0.61 0.61
EW 0.01 0.02 0.01 0.02 0.19 0.19 0.18 0.19

Average SL 0.03 0.03 0.03 0.02 0.21 0.20 0.21 0.19
Loss LS 0.01 0.01 0.01 0.01 0.17 0.17 0.17 0.17

LD 0.00 0.00 0.00 0.00 0.17 0.17 0.17 0.17
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Table A.3.2: Simulations with d = 200 and s = 3

Simulations with d = 200 and s = 3
σ2
ν 0 0 0 0 1 1 1 1

Distr z z e e z z e e
ρ 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8
EWG 0.04 0.03 0.05 0.04 0.00 0.00 0.00 0.00

Type I/II SLG 0.04 0.03 0.04 0.04 0.00 0.00 0.00 0.00
Error LSG 0.03 0.03 0.05 0.05 0.00 0.00 0.00 0.00

LD 0.02 0.01 0.02 0.02 0.00 0.00 0.00 0.00
EWG 1.00 1.00 0.99 1.00 0.93 0.93 0.81 0.81

Average SLG 1.00 1.00 0.99 1.00 0.94 0.92 0.82 0.82
Coverage LSG 1.00 1.00 0.99 1.00 0.94 0.93 0.82 0.82

LD 0.98 0.99 0.97 0.98 0.97 0.96 0.87 0.86
EWG 0.04 0.04 0.04 0.04 0.43 0.43 0.43 0.42

Average SLG 0.04 0.04 0.04 0.05 0.43 0.43 0.43 0.43
Length LSG 0.04 0.04 0.04 0.04 0.43 0.43 0.43 0.43

LD 0.22 0.22 0.22 0.22 0.24 0.24 0.24 0.24
EW 0.01 0.02 0.01 0.02 0.19 0.19 0.18 0.19

Average SL 0.03 0.03 0.03 0.02 0.21 0.20 0.21 0.19
Loss LS 0.01 0.01 0.01 0.01 0.17 0.17 0.17 0.17

LD 0.00 0.00 0.00 0.00 0.17 0.17 0.17 0.17
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Table A.3.3: Simulations with Gaussian errors when s = 15

Simulations with Gaussian errors when s = 15
σ2
ν 0 0 0 0 1 1 1 1
d 0 0 200 200 0 0 200 200
ρ 0 0.8 0 0.8 0 0.8 0 0.8
EWG 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00
SLG 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00
LSG 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00

Type I/II LD 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00
Error EWSG 0.12 0.09 - - 0.00 0.00 - -

SLSG 0.15 0.11 - - 0.00 0.00 - -
LSSG 0.12 0.09 - - 0.00 0.00 - -
EWG 0.99 0.99 0.99 0.99 0.85 0.84 0.85 0.84
SLG 0.98 0.99 0.98 0.99 0.86 0.88 0.86 0.88
LSG 0.99 0.99 0.99 0.99 0.89 0.90 0.89 0.90

Average LD 0.97 0.97 0.97 0.97 0.95 0.95 0.95 0.95
Coverage EWSG 0.94 0.95 - - 0.84 0.82 - -

SLSG 0.95 0.95 - - 0.86 0.89 - -
LSSG 0.95 0.96 - - 0.90 0.91 - -
EWG 0.05 0.05 0.05 0.05 0.42 0.42 0.42 0.42
SLG 0.05 0.06 0.05 0.06 0.44 0.45 0.44 0.45
LSG 0.05 0.05 0.05 0.05 0.43 0.43 0.43 0.43

Average LD 0.22 0.22 0.22 0.22 0.24 0.24 0.24 0.24
Length EWSG 0.04 0.04 - - 0.42 0.41 - -

SLSG 0.05 0.06 - - 0.43 0.45 - -
LSSG 0.04 0.04 - - 0.42 0.42 - -
EW 0.04 0.06 0.04 0.06 0.22 0.25 0.22 0.25

Average SL 0.17 0.45 0.17 0.45 0.43 0.61 0.43 0.61
Loss LS 0.02 0.02 0.02 0.02 0.19 0.19 0.19 0.19

LD 0.00 0.00 0.00 0.00 0.17 0.17 0.17 0.17
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APPENDIX 3

Appendix of Chapter 4

In Section 4.3, we use the following assumptions.

A.4.1 Some Technical Lemmata

In this section, we provide some technical lemmata regarding the trigonometric basis that are used
in the proofs. We start with a lemma regarding the fourth moments of the trigonometric basis
functions.

Lemma A4.1. Let a, b, k, l ∈ N be fixed positive integers and (φk)
∞
k=1 denote the trigonometric

basis as defined in Definition 4.1.1. Then,∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

≤δa+b,k+l + δa+b+k,l + δa+b+l,k + δa+k+l,b + δa,b+k+l + δa+k,b+l + δa+l,b+k

+ δl,1 (δa+b,k + δa+k,b + δa,b+k) + δk,1 (δa+b,l + δa+l,b + δa,b+l)

+ δb,1 (δa+k,l + δa+l,k + δa,k+l) + δa,1 (δb+k,l + δb+l,k + δb,k+l) .

Proof. We consider a few cases:
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1. a, b, k, l > 1 and a, b, k, l are even.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 4

∫ 1

0

cos(πat) cos(πbt) cos(πkt) cos(πlt)dt

=

∫ 1

0

(cos(π(a+ b)t) + cos(π(a− b)t))

× (cos(π(k + l)t) + cos(π(k − l)t))dt

=
1

2

∫ 1

0

(cos(π(a+ b+ k + l)t) + cos(π(a+ b− k − l))) dt

+
1

2

∫ 1

0

(cos(π(a+ b+ k − l)t) + cos(π(a+ b− k + l))) dt

+
1

2

∫ 1

0

(cos(π(a− b+ k + l)t) + cos(π(a− b− k − l))) dt

+
1

2

∫ 1

0

(cos(π(a− b+ k − l)t) + cos(π(a− b− k + l))) dt

=
1

2
(δa+b,k+l + δa+b+k,l + δa+b+l,k

+ δa+k+l,b + δa,b+k+l + δa+k,b+l + δa+l,b+k).

2. a, b, k, l > 1, a, b, k are even, and l is odd.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 4

∫ 1

0

cos(πat) cos(πbt) cos(πkt) sin(π(l − 1)t)dt

=

∫ 1

0

(cos(π(a+ b)t) + cos(π(a− b)t))

× (sin(π(k + l − 1)t)− sin(π(k − l + 1)t))dt

=
1

2

∫ 1

0

(sin(π(a+ b+ k + l − 1)t) + sin(π(a+ b− k − l + 1))) dt

− 1

2

∫ 1

0

(sin(π(a+ b+ k − l + 1)t) + sin(π(a+ b− k + l − 1))) dt

+
1

2

∫ 1

0

(sin(π(a− b+ k + l − 1)t) + sin(π(a− b− k − l + 1))) dt

− 1

2

∫ 1

0

(sin(π(a− b+ k − l + 1)t) + sin(π(a− b− k + l − 1))) dt

= 0.
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3. a, b, k, l > 1, a, b are even, and k, l are odd.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 4

∫ 1

0

cos(πat) cos(πbt) sin(π(k − 1)t) sin(π(l − 1)t)dt

=

∫ 1

0

(cos(π(a+ b)t) + cos(π(a− b)t))

× (cos(π(k − l)t)− cos(π(k + l − 2)t))dt

=
1

2

∫ 1

0

(cos(π(a+ b+ k − l)t) + cos(π(a+ b− k + l))) dt

− 1

2

∫ 1

0

(cos(π(a+ b+ k + l − 2)t) + cos(π(a+ b− k − l + 2))) dt

+
1

2

∫ 1

0

(cos(π(a− b+ k − l)t) + cos(π(a− b− k + l))) dt

− 1

2

∫ 1

0

(cos(π(a− b+ k + l − 2)t) + cos(π(a− b− k − l + 2))) dt

≤ 1

2
(δa+b+k,l + δa+b+l,k + δa+k,b+l + δa+l,b+k).

4. a, b, k, l > 1, a is even, and b, k, l are odd.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 4

∫ 1

0

cos(πat) sin(π(b− 1)t) sin(π(k − 1)t) sin(π(l − 1)t)dt

=

∫ 1

0

(sin(π(a+ b− 1)t)− sin(π(a− b+ 1)t))

× (cos(π(k − l)t)− cos(π(k + l − 2)t))dt

=
1

2

∫ 1

0

(sin(π(a+ b+ k − l − 1)t) + sin(π(a+ b− k + l − 1))) dt

− 1

2

∫ 1

0

(sin(π(a+ b+ k + l − 3)t) + sin(π(a+ b− k − l + 1))) dt

− 1

2

∫ 1

0

(sin(π(a− b+ k − l + 1)t) + sin(π(a− b− k + l + 1))) dt

+
1

2

∫ 1

0

(sin(π(a− b+ k + l − 1)t) + sin(π(a− b− k − l + 3))) dt

= 0.
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5. a, b, k, l > 1 and a, b, k, l are odd.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 4

∫ 1

0

sin(π(a− 1)t) sin(π(b− 1)t) sin(π(k − 1)t) sin(π(l − 1)t)dt

=

∫ 1

0

(cos(π(a− b)t)− cos(π(a+ b− 2)t))

× (cos(π(k − l)t)− cos(π(k + l − 2)t))dt

=
1

2

∫ 1

0

(cos(π(a− b+ k − l)t) + cos(π(a− b− k + l))) dt

− 1

2

∫ 1

0

(cos(π(a− b+ k + l − 2)t) + cos(π(a− b− k − l + 2))) dt

− 1

2

∫ 1

0

(cos(π(a+ b+ k − l − 2)t) + cos(π(a+ b− k + l − 2))) dt

+
1

2

∫ 1

0

(cos(π(a+ b+ k + l − 4)t) + cos(π(a+ b− k − l))) dt

≤ 1

2
(δa+b,k+l + δa+k,b+l + δa+l,b+k).

6. a, b, k > 1, a, b, k are even, and l = 1.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 2
√
2

∫ 1

0

cos(πat) cos(πbt) cos(πkt)dt

=
√
2

∫ 1

0

(cos(π(a+ b)t) + cos(π(a− b)t)) cos(πkt)dt

=
1√
2

∫ 1

0

(cos(π(a+ b+ k)t) + cos(π(a+ b− k))) dt

+
1√
2

∫ 1

0

(cos(π(a− b+ k)t) + cos(π(a− b− k))) dt

=
1√
2
(δa+b,k + δa+k,b + δa,b+k).

7. a, b, k > 1, a, b are even, k is odd, and l = 1.
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∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 2
√
2

∫ 1

0

cos(πat) cos(πbt) sin(π(k − 1)t)dt

=
√
2

∫ 1

0

(cos(π(a+ b)t) + cos(π(a− b)t)) sin(π(k − 1)t)dt

=
1√
2

∫ 1

0

(sin(π(a+ b+ k − 1)t)− sin(π(a+ b− k + 1))) dt

+
1√
2

∫ 1

0

(sin(π(a− b+ k − 1)t)− sin(π(a− b− k + 1))) dt

= 0.

8. a, b, k > 1, a is even, b, k are odd, and l = 1.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 2
√
2

∫ 1

0

cos(πat) sin(π(b− 1)t) sin(π(k − 1)t)dt

=
√
2

∫ 1

0

cos(πat)(cos(π(b− k)t)− cos(π(b+ k − 2)t))dt

=
1√
2

∫ 1

0

(cos(π(a+ b− k)t) + cos(π(a− b+ k))) dt

− 1√
2

∫ 1

0

(cos(π(a+ b+ k − 2)t) + cos(π(a− b− k + 2))) dt

≤ 1√
2
(δa+b,k + δa+k,b).
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9. a, b, k > 1, a, b, k are odd, and l = 1.∫ 1

0

φa(t)φb(t)φk(t)φl(t)dt

= 2
√
2

∫ 1

0

sin(π(a− 1)t) sin(π(b− 1)t) sin(π(k − 1)t)dt

=
√
2

∫ 1

0

sin(π(a− 1)t)(cos(π(b− k)t)− cos(π(b+ k − 2)t))dt

=
1√
2

∫ 1

0

(sin(π(a+ b− k − 1)t) + sin(π(a− b+ k − 1))) dt

− 1√
2

∫ 1

0

(sin(π(a+ b+ k − 3)t) + sin(π(a− b− k + 1))) dt

= 0.

10. a, b > 1 and k, l = 1.
∫ 1

0
φa(t)φb(t)φk(t)φl(t)dt = δa,b.

11. a > 1 and b, k, l = 1.
∫ 1

0
φa(t)φb(t)φk(t)φl(t)dt = δa,1.

Combining these cases together and considering all permutations finishes the proof.

Next, we have a lemma regarding the aliasing effect in Fourier transforms on the uniform grid.

Lemma A4.2. For k even and m ∈ N,

m−1

m∑
j=1

exp (iπkj/m) =

1, if k = cm for c even,

0, else.

Proof of Lemma A4.2. Suppose that k = cm for c ∈ Z. Then, we have that exp(iπkj/m) =

exp(iπcj) = (−1)cj for all j = 1, . . . ,m. If c is even, then

m−1

m∑
j=1

exp (iπkj/m) = m−1

m∑
j=1

1 = 1.

Now, if c is odd, this implies that m is even since k is even. Thus,

m−1

m∑
j=1

exp (iπkj/m) = m−1

m∑
j=1

(−1)j = 0.

Finally, suppose that k ̸= cm for any c ∈ Z. In this setting, we have that exp(iπk/m) ̸= 1 while
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exp(iπk) = 1. Therefore,

m−1

m∑
j=1

exp(iπkj/m) = m−1 exp(iπk/m)
1− exp(iπk)

1− exp(iπk/m)
= 0.

This finishes the proof.

Finally, the following lemma is a refinement of Lemma 1.7 of Tsybakov (2008) regarding the
orthogonality of the trigonometric basis on the uniform grid.

Lemma A4.3. Let m ∈ N and k ≤ 1, 2, . . .m− 1.

1. If l = 1, . . . ,m− 1, then

m−1

m∑
j=1

φk(j/m)φl(j/m) = δk,l.

2. If l = m,m+ 1, . . . , then

m−1

m∑
j=1

φk(j/m)φl(j/m) =


√
21l/m∈2Z, k = 1,

1(l−k)/m∈2Z + 1(l+k)/m∈2Z, k = 2, 4, . . . ,m− 1,

1(l−k)/m∈2Z − 1(l+k−2)/m∈2Z, k = 3, 5, . . . ,m− 1.

Proof of Lemma A4.3. The setting where l = 1, . . . ,m − 1 is exactly Lemma 1.7 of Tsybakov
(2008). For the other setting, we consider a few separate cases. Note that the last line in each of
the following cases is a consequence of Lemma A4.2.

1. k = 1 and l is even.

m−1

m∑
j=1

φk(j/m)φl(j/m) =
√
2m−1

m∑
j=1

cos(πlj/m)

=
1√
2m

m∑
j=1

(exp (iπlj/m) + exp (−iπlj/m))

=
√
21l/m∈2Z.
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2. k = 1 and l is odd.

m−1

m∑
j=1

φk(j/m)φl(j/m) =
√
2m−1

m∑
j=1

sin(π(l − 1)j/m)

=
1√
2mi

m∑
j=1

(exp (iπ(l − 1)j/m)− exp (−iπ(l − 1)j/m))

= 0.

3. k, l are both even.

m−1

m∑
j=1

φk(j/m)φl(j/m)

= m−1

m∑
j=1

(cos(π(l − k)j/m) + cos(π(l + k)j/m))

=
1

2m

m∑
j=1

(exp (iπ(l − k)j/m) + exp (−iπ(l − k)j/m))

+
1

2m

m∑
j=1

(exp (iπ(l + k)j/m) + exp (−iπ(l + k)j/m))

= 1(l−k)/m∈2Z + 1(l+k)/m∈2Z.

4. k is even and l is odd.

m−1

m∑
j=1

φk(j/m)φl(j/m)

= m−1

m∑
j=1

(sin(π(l − k − 1)j/m) + sin(π(l + k − 1)j/m))

=
1

2mi

m∑
j=1

(exp (iπ(l − k − 1)j/m)− exp (−iπ(l − k − 1)j/m))

+
1

2mi

m∑
j=1

(exp (iπ(l + k − 1)j/m)− exp (−iπ(l + k − 1)j/m))

= 0.
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5. k > 1 is odd and l is even.

m−1

m∑
j=1

φk(j/m)φl(j/m)

= m−1

m∑
j=1

(sin(π(l + k − 1)j/m)− sin(π(l − k + 1)j/m))

=
1

2mi

m∑
j=1

(exp (iπ(l + k − 1)j/m)− exp (−iπ(l + k − 1)j/m))

− 1

2mi

m∑
j=1

(exp (iπ(l − k + 1)j/m)− exp (−iπ(l − k + 1)j/m))

= 0.

6. k, l > 1 are both odd.

m−1

m∑
j=1

φk(j/m)φl(j/m)

= m−1

m∑
j=1

(cos(π(l − k)j/m)− cos(π(l + k − 2)j/m))

=
1

2m

m∑
j=1

(exp (iπ(l − k)j/m) + exp (−iπ(l − k)j/m))

− 1

2m

m∑
j=1

(exp (iπ(l + k − 2)j/m) + exp (−iπ(l + k − 2)j/m))

= 1(l−k)/m∈2Z − 1(l+k−2)/m∈2Z.

Combining these calculations together proves the claim.

A.4.2 Proofs for Section 4.2

A.4.2.1 Proofs for Section 4.2.1

The proof of Proposition 4.1 relies on the following two lemmata, which we state for completeness.

Lemma A4.4 (Chao and Strawderman (1972)). Let X ∼ Bin(n, p). Then,

E
(

1

X + 1

)
=

1− (1− p)n+1

(n+ 1)p
.

153



Lemma A4.5 (Boland et al. (2002)). Let Y ∼ Bin(n, p) and X =
∑n

i=1Xi, where the
Xi ∼ Bin(1, pi) are independent. Then, Y is stochastically smaller than X if and only if
p ≤ (

∏n
i=1 pi)

1/n.

Proof of Proposition 4.1. Let F denote the distribution function corresponding to f . Then,

ET Ñh = ET
n∑
i=1

m∑
j=1

1{∃j′ ̸=j:ti,j′∈(ti,j ,ti,j+h]}

=
n∑
i=1

m∑
j=1

P (∃j′ ̸= j : ti,j′ ∈ (ti,j, ti,j + h])

=
n∑
i=1

m∑
j=1

∫ 1

0

P (∃j′ ̸= j : ti,j′ ∈ (t, t+ h]|ti,j = t) f(t)dt

=
n∑
i=1

m∑
j=1

∫ 1

0

(1− P (∀j′ ̸= j : ti,j′ /∈ (t, t+ h]|ti,j = t)) f(t)dt

=
n∑
i=1

m∑
j=1

(
1−

∫ 1

0

(1− F (t+ h)− F (t))m−1 f(t)dt

)

=
n∑
i=1

m∑
j=1

(
1−

∫ 1

0

(1− hf(t) + o(h))m−1 f(t)dt

)
.

Under the setting of the first claim, note that∫ 1

0

(1− hf(t) + o(h))m−1 f(t)dt = 1− h+ o(h).

Substituting this into the previous display yields the first claim. For the third claim note that For
the third claim, observe that∫ 1

0

(1− hf(t) + o(h))m−1 f(t)dt ≍ exp(−mh),

which implies that

P
(
Ñh ̸= N

)
≤

n∑
i=1

m∑
j=1

∫ 1

0

(1− hf(t) + o(h))m−1 f(t)dt→ 0.

This proves the third claim.
For the remaining case, consider a non-homogeneous Poisson process with intensity function

mf(·) on (0, 1). It is well known that the unordered arrival times have the same distribution as the
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ti,j . Let M denote the corresponding point process. It is easy to see that

P (∃j′ ̸= j : ti,j′ ∈ (t, t+ h]|ti,j = t) ≍ P (M((t, t+ h]) ≥ 1) .

But, the right hand side of the above display satisfies P (M((t, t+ h]) ≥ 1) = mf(t)h + o(mh)

since M is a Poisson process. Since f is bounded from above and below, it follows that∫ 1

0

P (∃j′ ̸= j : ti,j′ ∈ (t, t+ h]|ti,j = t) f(t)dt ≍ mh.

Finally, it is left to show that E(Nh + 1)−1 ≍ (nm2h)−1. Without the loss of generality, assume
that m is even. For i = 1, . . . , n and j = 1, . . . ,m/2, define

ui,j ≜ ti,(2j+1) − ti,(2j−1)

with the convention that ti,(2m+1) = 1 for all i = 1, . . . , n. Define the following sets of random
variables:

Wi,j ≜ 1ti,(2j)∈(ti,(2j−1),ti,(2j−1)+h],

Xi,j
i.i.d.∼ Bin(1,min(ch/ui,j, 1)),

Yi ∼ Bin(m/2, cmh),

for i = 1, . . . , n and j = 1, . . . ,m/2. Then, it follows that

Nh =
n∑
i=1

m/2∑
j=1

Wi,j.

Since f(·) is bounded away from zero and infinity, there exists a constant c > 0 such that for
all Wi,j , i = 1, . . . , n and j = 1, . . . ,m, we have P(Wi,j|{u·,·}) ≥ min(ch/ui,j, 1). Moreover,
conditioned on {u·,·}, it is easy to see thatWi,j is independent ofWi′,j′ if (i, j) ̸= (i′, j′). Therefore,
we have thatXi,j ⪯ Wi,j , where⪯ denotes stochastic ordering. Now, by construction,

∑m/2
j=1 ui,j ≤

1, so it follows that

chm ≤

m/2∏
j=1

min

(
ch

ui,j
, 1

)2/m

.
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Thus, Lemma A4.5 implies that Yi ⪯
∑m/2

j=1 Xi,j . Combining these calculations, we see that

ET
(

1

Nh + 1

)
= ET

(
1∑n

i=1

∑m/2
j=1 Wi,j + 1

)

≤ ET

(
1∑n

i=1

∑m/2
j=1 Xi,j + 1

)

≤ ET
(

1∑n
i=1 Yi + 1

)
=

1− (1− chm)nm/2+1

(nm/2 + 1)mh/2

≤ 1

nm2h/2 + hm/2
,

where the penultimate line follows from Lemma A4.4. By Jensen’s inequality, we have

ET
(

1

Nh + 1

)
≥ 1

ETNh + 1
=

1

nm2h/2 + 1
.

Thus,

1

nm2h/2 + 1
≤ ET

(
1

Nh + 1

)
≤ 1

nm2h/2 +mh/2
.

Since mh→ 0, this finishes the proof.

A.4.2.2 Proofs for Section 4.2.3

We start by bounding the squared bias of the resultant differenced linear model from equation
(4.2.2).

Lemma A4.6. Consider the model given in equation (4.2.1). Assume (4.7) and (4.8). The bias
term satisfies

ET
(
N−1

∥∥∥∆(γ)
∥∥∥2
2

)
= O

(
s∗γK

−2α
γ + L2h2

)
.

Proof of Lemma A4.6. Recall that each entry of ∆(γ) may be written as

∆
(γ)
i,j =

∞∑
k=Kγ+1

[φk(ti,(j+1))zi(ti,(j+1))− φk(ti,(j))zi(ti,(j))]Tג∗k + ξi(ti,(j+1))− ξi(ti,(j))
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for some (i, j) ∈ Ah. We consider the two parts separately. For the first term, it follows immedi-
ately from assumption (4.8) that

ET

 ∞∑
k=Kγ+1

[φk(ti,(j+1))zi(ti,(j+1))− φk(ti,(j))zi(ti,(j))]Tג∗k

2

= O(s∗γK−2α
γ ).

By assumption (4.7), we may bound the second term by

(
ξi(ti,(j+1))− ξi(ti,(j))

)2 ≤ L2h2.

Combining these two bounds finishes the proof.

Next, we prove the result for the low-dimensional setting.

Proof of Proposition 4.2. Indeed, note that

ג̂
LD

=
(
ΨTΨ

)−1
ΨT
(
Ψג∗ + η +∆(γ)

)
= ∗ג +

(
ΨTΨ

)−1
ΨTη +

(
ΨTΨ

)−1
ΨT∆(γ).

Bounding each of the two terms separately, we have for the first term that

E
∥∥∥(ΨTΨ

)−1
ΨTη

∥∥∥2
2
= tr

[(
ΨTΨ

)−1
]
σ2
η = O

(
s∗γKγ

N

)
,

which follows from assumption (4.1). For the second term, invoking Lemma A4.6 implies that

ET
∥∥∥(ΨTΨ

)−1
ΨT∆(γ)

∥∥∥2
2
≤ ET

∥∥∥(ΨTΨ
)−1

ΨT
∥∥∥2
2

∥∥∥∆(γ)
∥∥∥2
2
= O

(
s∗γK

−2α
γ + L2h2

)
,

which finishes the proof.

Proof of Theorem 4.3. The first claim follows immediately from Theorem 6.2 of Bühlmann and
van de Geer (2011). Then, for the second claim, applying Corollary 6.5 of Bühlmann and van de
Geer (2011) yields

HDג̂∥∥∥ − ∗ג
∥∥∥2
2
≤ 6λ2s∗γKγ

(
3ET (N−1∥∆(γ)∥22)

λ2s∗γKγ

+
16

ϕ2
adap,Ψ

)2

.
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Now, Lemma A4.6 implies that

HDג̂∥∥∥ − ∗ג
∥∥∥2
2
= O

(
λ2s∗γKγ

(
s∗γK

−2α
γ + L2h2

λ2s∗γKγ

+ ϕ−2
adap,Ψ

)2
)
,

which finishes the proof.

A.4.3 Proofs for Section 4.3

A.4.3.1 Proofs for Section 4.3.2

Proof of Proposition 4.4. Throughout this proof, we consider the model given by equation (4.3.2).
Recall from equation (4.1.5) that

MISE(β̂
LD
) = EET

Kβ∑
k=1

∥∥∥ℶ̂LD
k − ℶ∗

k

∥∥∥2
2
+ EET

∞∑
k=Kβ+1

∥ℶ∗
k∥

2
2 .

We consider each of the two sums separately. Suppose temporarily that k ≤ Kβ . Then, the risk in
estimating ℶ∗

k by ℶ̂
LD
k is given by

EET
∥∥∥ℶ̂LD

k − ℶ∗
k

∥∥∥2
2
= EET

∥∥∥(XTX
)−1

XTζk

∥∥∥2
2

= tr
((

XTX
)−1

XT
(
EETζkζTk

)
X
(
XTX

)−1
)
.

We directly compute EζkζTk . Note that Eζi,k = 0 for all i = 1, . . . , n. Then, the covariance matrix
is diagonal since observations corresponding to different individuals are independent. Therefore,
it is left to compute the value of the diagonal entries. Fix i = 1, . . . , n arbitrarily. Then,

EET ζ2i,k ≤3Eo2i,k + 3m−2
i EET

(
mi∑
j=1

εi(ti,j)φk(ti,j)

)2

+ 3m−2
i EET

(
mi∑
j=1

(
xT
i β(ti,j) + ξi(ti,j)

)
φk(ti,j)− xT

i ℶ
∗
k − oi,k

)2

We bound each of the three terms separately. By definition, we have that Eo2i,k = σ2
o,k. Next,

m−2
i EET

(
mi∑
j=1

εi(ti,j)φk(ti,j)

)2

= m−2
i

mi∑
j=1

Eε2i (ti,j)ETφ2
k(ti,j) = m−1

i σ2
ε .
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For the last term, an expansion yields

EET

(
mi∑
j=1

(
xT
i β(ti,j) + ξi(ti,j)

)
φk(ti,j)− xT

i ℶ
∗
k − oi,k

)2

= EET

(
∞∑
a=1

(
xT
i ℶ

∗
a + oi,a

)( mi∑
j=1

φa(ti,j)φk(ti,j)− δa,k

))2

= E
∞∑
a=1

∞∑
b=1

(
xT
i ℶ

∗
a + oi,a

) (
xT
i ℶ

∗
b + oi,b

)
× ET

(
mi∑
j=1

φa(ti,j)φk(ti,j)− δa,k

)(
mi∑
j=1

φb(ti,j)φk(ti,j)− δb,k

)

Applying Lemma A4.1 shows that

ET

(
mi∑
j=1

φa(ti,j)φk(ti,j)− δa,k

)(
mi∑
j=1

φb(ti,j)φk(ti,j)− δb,k

)
≤ mi(δa+b,2k + δa+2k,b + δa,b+2k + 2δa,b + 2δa+1,b + 2δa,b+1 + δa,2kδb,1 + δb,2kδa,1).

By substitution, we have the following bound

EET

(
mi∑
j=1

(
xT
i β(ti,j) + ξi(ti,j)

)
φk(ti,j)− xT

i ℶ
∗
k − oi,k

)2

≤miE
2k−1∑
a=1

∣∣xT
i ℶ

∗
a + oi,a

∣∣ ∣∣xT
i ℶ

∗
2k−a + oi,2k−a

∣∣
+ 2miE

∞∑
a=1

∣∣xT
i ℶ

∗
a + oi,a

∣∣ ∣∣xT
i ℶ

∗
2k+a + oi,2k+a

∣∣
+ 2miE

∞∑
a=1

(
xT
i ℶ

∗
a + oi,a

)2
+ 4miE

∞∑
a=1

∣∣xT
i ℶ

∗
a + oi,a

∣∣ ∣∣xT
i ℶ

∗
a+1 + oi,a+1

∣∣
+ 2miE

∣∣xT
i ℶ

∗
1 + oi,1

∣∣ ∣∣xT
i ℶ

∗
2k + oi,2k

∣∣ .
From assumptions (4.14) and (4.15) in conjunction with Parseval’s Theorem, it follows that

2miE
∞∑
a=1

(
xT
i ℶ

∗
a + oi,a

)2
= O(mig(n)).
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Now, using the inequality 2uv ≤ u2 + v2 and the above, we have that

2miE
∞∑
a=1

∣∣xT
i ℶ

∗
a + oi,a

∣∣ ∣∣xT
i ℶ

∗
2k+a + oi,2k+a

∣∣
≤ miE

∞∑
a=1

(
xT
i ℶ

∗
a + oi,a

)2
+miE

∞∑
a=1

(
xT
i ℶ

∗
2k+a + oi,2k+a

)2
= O(mig(n)).

Similarly,

miE
2k−1∑
a=1

∣∣xT
i ℶ

∗
a + oi,a

∣∣ ∣∣xT
i ℶ

∗
2k−a + oi,2k−a

∣∣ = O(mig(n)),

4miE
∞∑
a=1

∣∣xT
i ℶ

∗
a + oi,a

∣∣ ∣∣xT
i ℶ

∗
a+1 + oi,a+1

∣∣ = O(mig(n)).

Thus, combining all the results yields

EET
∥∥∥ℶ̂LD

k − ℶ∗
k

∥∥∥2
2
= tr

((
XTX

)−1
XT
(
σ2
o,kIn +O(g(n))M−1

)
X
(
XTX

)−1
)
,

where M ∈ Rn×n is a diagonal matrix whose i’th entry is mi. Therefore,

Kβ∑
k=1

∥∥∥ℶ̂LD
k − ℶ∗

k

∥∥∥2
2
= tr

((
XTX

)−1
XT
(
O (1) In +O(g(n)Kβ)M

−1
)
X
(
XTX

)−1
)
,

since
∑Kβ

k=1 σ
2
o,k = O(1). Recalling that

∞∑
k=Kβ+1

∥ℶ∗
k∥

2
2 = O(s

∗
βK

−2α
β )

finishes the proof.

Lemma A4.7. Consider the model from equation (4.3.2). Assume (4.6), (4.14), and (4.16). Then,
ζi,k ∼ SG(ς2ζ,i,k) with respect to the joint probability measure on εi(ti,j), ξi(·), and ti,j , where
ς2ζ,i,k = O(ς2o,k + g(n)m−1

i ).

Proof of Lemma A4.7. Consider first the model from equation (4.3.2). We partition ζi,k into four
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terms and show each term is sub-Gaussian.

ζi,k = oi,k︸︷︷︸
(I)

+m−1
i

mi∑
j=1

εi(ti,j)φk(ti,j)︸ ︷︷ ︸
(II)

+m−1
i

mi∑
j=1

xT
i (β(ti,j)φk(ti,j)− ℶ∗

k)︸ ︷︷ ︸
(III)

+m−1
i

mi∑
j=1

(ξi(ti,j)φk(ti,j)− oi,k)︸ ︷︷ ︸
(IV )

.

For the first term, by assumption (4.16), oi,k ∼ SG(ς2o,k). Next, we have, for any fixed λ > 0,

EET exp

(
λm−1

i

mi∑
j=1

εi,jφk(ti,j)

)
=

mi∏
j=1

EET exp
(
λm−1

i εi,jφk(ti,j)
)

=

mi∏
j=1

ET exp
(
ς2ελ

2φ2
k(ti,j)

2m2
i

)
≤ exp

(
2ς2εm

−1
i λ2

2

)
.

In the second equality, we have used assumption (4.6). Thus, (II) ∼ SG(2ς2εm−1
i ). Then, for the

third term, we see that for λ > 0,

EET exp

(
λm−1

i

mi∑
j=1

xT
i (β(ti,j)φk(ti,j)− ℶ∗

k)

)

≤ E
mi∏
j=1

ET exp
(
λm−1

i xT
i (β(ti,j)φk(ti,j)− ℶ∗

k)
)

≤ E
mi∏
j=1

exp

(
O(g(n))m−2

i λ2

2

)
≤ exp

(
O(g(n)m−1

i )λ22
2

)
.

Hence, m−1
i

∑mi

j=1 x
T
i (β(ti,j)φk(ti,j)− ℶ∗

k) ∼ SG(O(g(n)m−1
i ). Finally, from Lemma 1.8 of Tsy-

bakov (2008), assumption (4.16) implies that (ξi(·))ni=1 are uniformly bounded by a constant, which
we temporarily denote by c > 0. Then, by an analogous argument as above, it follows that

m−1
i

mi∑
j=1

(ξi(ti,j)φk(ti,j)− oi,k) ∼ SG(c2m−1
i ).
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Combining these results finishes the proof.

Proof of Theorem 4.5. We proceed by modifying the standard lasso arguments to account for the
different sub-Gaussian parameters of the noise term. From the Basic Inequality (Lemma 6.1 of
Bühlmann and van de Geer (2011)), it follows that

n−1
∥∥X (ℶ̂k − ℶ∗

k

)∥∥2
2
+ λk

∥∥ℶ̂k∥∥1 ≤ 2n−1ζTkX
(
ℶ̂k − ℶ∗

k

)
+ λk ∥ℶ∗

k∥1 .

To bound the first term on the right hand side, we similarly apply an ℓ1 − ℓ∞ bound to obtain

2n−1
∣∣ζTkX (ℶ̂k − ℶ∗

k

)∣∣ ≤ 2n−1 max
j=1,...,p

∣∣ζTkXj

∣∣ ∥∥ℶ̂k − ℶ∗
k

∥∥
1
.

Define the set Tk as

Tk ≜

{
2n−1 max

j=1,...,p

∣∣ζTkXj

∣∣ ≤ λ0,k

}
.

Then, for any value of r > 0,

P (T c
k ) ≤ 2

p∑
j=1

P
(
2n−1ζTkXj > λ0,k

)
≤ 2

p∑
j=1

P
(
exp

(
rζTkXj

)
> exp

(
rnλ0,k

2

))

≤ 2

p∑
j=1

exp

(
−rnλ0,k

2

)
E exp

(
rζTkXj

)
≤ 2

p∑
j=1

exp

(
−rnλ0,k

2

)
exp

(
r2

2

n∑
i=1

ς2ζ,i,kx
2
i,j

)

Since the value of r > 0 was arbitrary, setting

r =

(
n∑
i=1

ς2η,i,kx
2
i,j

)−1
nλ0,k
2

yields the bound

P (T c) ≤ 2p exp
(
−
(
t2/2 + log(p)

))
≤ 2 exp

(
−t2/2

)
.

Thus, we may restrict our attention to the event Tk. The desired results follow by applying Theo-
rem 6.1 and Corollary 6.5 of Bühlmann and van de Geer (2011) respectively.
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A.4.3.2 Proofs for Section 4.3.3

Lemma A4.8. Assume (4.10) and (4.14). Then,

m−1∑
k=1

∥ℸk∥22 = O(s∗βm−2α).

Proof of Lemma A4.8. Indeed, by the second half of Lemma A4.3, it follows that

ℸk =


√
2
∑∞

r=1 ℶ
∗
2rm, if k = 1,∑∞

r=1 ℶ
∗
2rm+k + ℶ∗

2rm−k, if k = 2, 4, . . . ,m− 1,∑∞
r=1 ℶ

∗
2rm+k − ℶ∗

2rm+2−k, if k = 3, 5, . . . ,m− 1.

Define the following sequence of constants (ak)∞k=1 from Tsybakov (2008)

ak =

kα, for even k,

(k − 1)α, for odd k.

Since α > 1/2, let c > 0 be a constant such that
∑∞

r=1 r
−2α ≤ c. Now, for k = 1, it follows that

∥ℸk∥22 ≤ 2

(
∞∑
r=1

a22rm∥ℶ∗
2rm∥22

)(
∞∑
r=1

a−2
2rm

)
≤ 2cm−2α

(
∞∑
r=1

a22rm∥ℶ∗
2rm∥22

)
.

Similarly, for k = 2, . . . ,m− 1 and k = 3, . . . ,m− 1, we have

∥ℸk∥22 ≤ 2cm−2α

∞∑
r=1

(
a22rm+k∥ℶ∗

2rm+k∥22 + a22rm−k∥ℶ∗
2rm−k∥22

)
and

∥ℸk∥22 ≤ 2cm−2α

∞∑
r=1

(
a22rm+k∥ℶ∗

2rm+k∥22 + a22rm+2−k∥ℶ∗
2rm+2−k∥22

)
respectively. Thus, combining the above calculations yields

m−1∑
k=1

∥ℸk∥22 ≤ 2cm−2α

∞∑
r=m

a2r∥ℶ∗
r∥22 = O(s∗βm−2α),

which finishes the proof.
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Proof of Proposition 4.6. Note that MISE is given by

MISE(β̂
LD
) =

Kβ∑
k=1

E∥̂גLD
k − k∥22∗ג +

∞∑
k=Kβ+1

k∥22∗ג∥

≤ 2

Kβ∑
k=1

(
∥ℸk∥22 + E∥(XTX)−1XTζk∥22

)
+

∞∑
k=Kβ+1

.k∥22∗ג∥

For the variance term, we have that

E∥(XTX)−1XTζk∥22 = tr
(
(XTX)−1XTE(ζkζTk )X(XTX)−1

)
.

By independence, for 1 ≤ i < j ≤ n, it follows that

E(ηkηT
k )i,j = 0.

Thus, E(ηkηT
k ) is a diagonal matrix. For i = 1, . . . , n and k = 1,

E(ηkηT
k )i,i = E

(
oi,k +m−1

m∑
j=1

φk(ti,j)εi(ti,j) +
√
2

∞∑
r=1

oi,2rm

)2

= E

(
oi,k +

√
2

∞∑
r=1

oi,2rm

)2

+ σ2
εm

−1

≤ 2c

(
a2kEo2i,k +

∞∑
r=1

a22rmEo2i,2rm

)
+ σ2

εm
−1.

By performing similar calculations when k = 2, . . . ,m− 1 and k = 3, . . . ,m− 1, we have that

E(ηkηT
k )i,i ≤


2c
(
a2kEo2i,k +

∑∞
r=1 a

2
2rmEo2i,2rm

)
+ σ2

εm
−1, k = 1,

2c
∑∞

r=1

(
a22rm+kEo2i,2rm+k + a22rm−kEo2i,2rm

)
+ σ2

εm
−1, k even

2c
∑∞

r=1

(
a22rm+kEo2i,2rm+k + a22rm+2−kEo2i,2rm+2−k

)
+ σ2

εm
−1, otherwise.

Since ξi(·) ∈ Wper(α,R) almost surely by assumption (4.15), it follows from Proposition 1.14 of
Tsybakov (2008) that

∞∑
r=1

a2kEo2i,r = O(1).
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Thus,

Kβ∑
k=1

E(ηkηT
k )i,i = O(1 +Kβm

−1).

Hence,

Kβ∑
k=1

E∥(XTX)−1XTηk∥22 = O(1 +Kβm
−1)tr[(XTX)−1].

Invoking Lemma A4.8 and recalling that

∞∑
k=Kβ+1

k∥22∗ג∥ = O(s∗βK−2α
β )

finishes the proof.

Proof of Theorem 4.7. We start by showing that ζi,k is sub-Gaussian with parameter ck +m−1ς2ε .
By the second half of Lemma A4.3, we have that

ζi,k =


oi,k +m−1

∑m
j=1 φk(ti,j)εi(ti,j) +

√
2
∑∞

r=1 oi,2rm, k = 1,

oi,k +m−1
∑m

j=1 φk(ti,j)εi(ti,j) +
∑∞

r=1 oi,2rm+k + oi,2rm−k, k = 2, 4, . . . ,m− 1,

oi,k +m−1
∑m

j=1 φk(ti,j)εi(ti,j) +
∑∞

r=1 oi,2rm+k − oi,2rm+2−k, k = 3, 5, . . . ,m− 1.

By the first half of Lemma A4.3, it is easy to see that

m−1

m∑
j=1

φk(ti,j)εi(ti,j) ∼ SG(m−1ς2ε ).

Then, by the triangle inequality and assumption (4.16), it follows that

ζi,k ∼ SG(ck +m−1ς2ε ).
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Next, the ISE can be bounded by

ISE(β̂
HD

) =

Kβ∑
k=1

∥ℶ̂HD
k − ℶ∗

k∥22 +
∞∑

k=Kβ+1

∥ℶ∗
k∥22

≤ 2

Kβ∑
k=1

∥ℶ̂HD
k − ℶ∗

k − ℸk∥22 + 2

Kβ∑
k=1

∥ℸk∥22 +
∞∑

k=Kβ+1

∥ℶ∗
k∥22

≤ 2

Kβ∑
k=1

∥ℶ̂HD
k − ℶ∗

k − ℸk∥22 +O(s∗βm−2α + s∗βK
−2α
β ),

where we have used Lemma A4.8 in the last line. Now, by Corollary 6.5 of Bühlmann and van de
Geer (2011), it follows that, with probability at least 1− 2 exp(−t2/2),

∥ℶ̂HD
k − ℶ∗

k − ℸk∥22 = O(s∗βλ2k).

By assumption (4.16),

Kβ∑
k=1

ck = O(1).

Assuming λk = 2λ0,k, we have that

ISE(β̂
HD

) = O
(
s∗β log(p)

n
+
s∗βKβ log(p)

mn
+ s∗βm

−2α + s∗βK
−2α
β

)
.

Choosing Kβ ≍ (mn/ log(p))1/(2α+1),

ISE(β̂
HD

) = O

(
s∗β log(p)

n
+ s∗β

(
log(p)

mn

)2α/(2α+1)

+ s∗βm
−2α

)
.
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A.4.4 Proofs for Section 4.5

Proof of Theorem 4.8. Indeed, for each k = 1, . . . , Kβ , we may rewrite ℶ̂
DB
k as√

nσ−2
ζ,k

(
ℶ̂

DB
k − ℶ∗

k

)
=
√
nσ−2

ζ,k

(
ℶ̂k − ℶ∗

k + Θ̂XT
(
Xℶ∗

k −Xℶ̂
HD
k + ζk

)
/n
)

=
√
nσ−2

ζ,k

(
Ip − Θ̂Σ̂

)(
ℶ̂

HD
k − ℶ∗

k

)
+
√
nσ−2

ζ,kΘ̂XTζk/n.

Now, since ℶ̂
DB
k,1 is the first entry of ℶ̂

DB
k , we set Wk to be the first entry of

√
nσ−2

ζ,kΘ̂XTζk/n and

∆k to be the first entry of
√
nσ−2

ζ,k

(
Ip − Θ̂Σ̂

)(
ℶ̂

HD
k − ℶ∗

k

)
. The first claim follows by Proposition

2.1 of Chernozhukov et al. (2017). Then, an ℓ1 − ℓ∞ bound yields

sup
k=1,...,Kβ

|∆k| ≤
√
n
∥∥∥Ip − Θ̂Σ̂

∥∥∥
∞

sup
k=1,...,Kβ

∥∥∥ℶ̂HD
k − ℶ∗

k

∥∥∥
1
.

For the other term, Theorem 4.5 implies, with probability at least 1 − 2 exp(− log2(p)/2 +

log(Kβ))→ 1, that

sup
k=1,...,Kβ

∥∥∥ℶ̂HD
k − ℶ∗

k

∥∥∥
1
≤ 4s∗β/ϕ

2
cc,X sup

k=1,...,Kβ

λk = O
(
s∗β
√

log(p)/n
)
.

Combining these bounds, we see that

sup
k=1,...,Kβ

|∆k| = OP(s
∗
β log(p)/

√
n) = oP(1),

which finishes the proof.

Proof of Proposition 4.9. Recall the decomposition for β1(·) as

β1(·) = β1
(·) + β1(·).

Note that the event

{∀t ∈ (0, 1) : l(t) ≤ β
1
(t) ≤ u(t)} ∩

{
∀t ∈ (0, 1) : |β1(t)| ≤ δ

}
⊆
{
∀t ∈ (0, 1) : lδ(t) ≤ β1

(t) ≤ uδ(t)
}
.
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For the high-frequency signal, we have under assumption (4.14) that

∣∣β(t)∣∣ = O (K−α
β log(Kβ)

)
from Chapter 1.21 of Jackson (1941) and Section 87 of Achieser (1992). Since δ ≍ K−α

β log(Kβ),
for n sufficiently large, the event

{
∀t ∈ (0, 1) : |β1(t)| ≤ δ

}
occurs with probability one. More-

over, for n sufficiently large, Theorem 4.8 implies that

P
(
∀t ∈ (0, 1) : l(t) ≤ β

1
(t) ≤ u(t)

)
≥ 1− τ.

This proves the first claim. For the second claim, note that

sup
t∈(0,1)

|uδ(t)− lδ(t)| = sup
t∈(0,1)

Kβ∑
k=1

(bk − ak + 2δ) |φk(t)|

≤
√
2

 Kβ∑
k=1

(bk − ak) + 2Kβδ

 .

Now, since zτ/Kβ
= O(

√
log(Kβ)), assumption (4.18) implies that

Kβ∑
k=1

(bk − ak) = OP

(√
log(Kβ)/n+Kβ

√
g(n) log(Kβ)/(nm)

)
.

Moreover, note that log(Kβ) ≤ log(n). Thus, we have that

sup
t∈(0,1)

|uδ(t)− lδ(t)| = OP

(√
log(n)/n+Kβ

√
g(n) log(n)/(nm) +K−α

β log(n)
)
.

Substituting the choice of Kβ finishes the proof.

A.4.5 Yeast Cell Cycle Data

In this section, we apply our methodology to analyze transcription factors affecting the cell cycle of
yeast. Versions of this data was previously analyzed in the high-dimensional varying coefficients
framework by Wei et al. (2011) and Bai et al. (2019), to which we refer the interested reader for
a more detailed description of the data. For our analysis, we use the data from Bai et al. (2019),
which consists of n = 47 genes and p = 96 transcription factors. The response y is the mRNA
level, measured seven minutes apart for 119 minutes, yielding m = 18 time points for each gene.
Since the time points are evenly spaced, we set ti,j = j/m. There are no time varying covariates
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in this data. The model that we consider is

yi(ti,j) = xT
i β(ti,j) + ξi(ti,j) + εi(ti,j).

This is analogous to the model fit by Bai et al. (2019), who instead combine the noise ξi(ti,j) +
εi(ti,j) and assume an AR(1) covariance structure. In Figure A.4.1, we provide marginal confi-
dence bands for two selected transcription factors: ABF1 and MAC1.
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Figure A.4.1: Marginal confidence bands for ABF1 and MAC1. “Estimate” and “CB” are the
estimate and confidence band from Section 4.5 respectively while “NVC-SSL” is the methodology
from Bai et al. (2019).

From the plot for ABF1, the estimated function seems to follow the general shape of the estimate
from Bai et al. (2019), with both estimates entirely contained within the confidence bands. For
MAC1, we observe that the estimated curves differ for the two estimation procedures, but the
confidence band contains the majority of the estimated curve by NVC-SSL, with the discrepancies
at the two endpoints. We remark that the performance of our confidence bands may be anomalous
at the boundary points since the theory in Section 4.3 assumes that the varying coefficients are
periodic Sobolev functions. In the setting where coefficients are not periodic, convergence still
holds on the interior of the interval.

A.4.6 Additional Simulation Results

In this section, we provide the results of the simulations from Section 4.6.
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Table A.4.1: Simulations for β(·) with Trigonometric Basis

Simulations for β(·) with Trigonometric

Basis

s∗β 15 25 15 25 15 25 15 25
n 200 200 500 500 200 200 500 500
ti,j ind ind ind ind com com com com
m = 25 0.395 0.582 0.195 0.246 0.150 0.252 0.065 0.086

Average m = 50 0.242 0.368 0.118 0.149 0.091 0.153 0.038 0.051
Loss m = 75 0.182 0.276 0.089 0.114 0.068 0.114 0.028 0.038

m = 150 0.116 0.180 0.054 0.068 0.042 0.071 0.017 0.023
m = 25 0.685 0.625 0.810 0.815 0.965 0.945 0.970 0.975

Average m = 50 0.830 0.780 0.940 0.940 0.975 0.985 0.990 0.985
Coverage m = 75 0.885 0.850 0.950 0.945 0.970 0.960 0.970 0.985

m = 150 0.925 0.920 0.945 0.965 0.990 0.995 0.985 0.980
m = 25 1.368 1.333 1.012 0.933 1.098 1.024 0.928 0.846

Average m = 50 1.266 1.124 0.963 0.844 1.042 0.969 0.831 0.795
Length m = 75 1.159 1.001 0.968 0.873 0.986 0.887 0.770 0.694

m = 150 1.019 0.869 0.841 0.734 0.868 0.789 0.681 0.644

Table A.4.2: Simulations for β(·) with B-Spline Basis

Simulations for β(·) with B-Spline

Basis

s∗β 15 25 15 25 15 25 15 25
n 200 200 500 500 200 200 500 500
ti,j ind ind ind ind com com com com
m = 25 1.492 2.140 0.738 0.940 1.031 1.645 0.443 0.570

Average m = 50 1.257 1.883 0.584 0.764 0.970 1.551 0.383 0.506
Loss m = 75 1.158 1.755 0.522 0.682 0.930 1.490 0.372 0.489

m = 150 1.031 1.625 0.432 0.580 0.889 1.451 0.337 0.452
m = 25 0.870 0.755 0.945 0.945 1.000 1.000 1.000 1.000

Average m = 50 0.930 0.910 0.980 0.985 1.000 1.000 1.000 1.000
Coverage m = 75 0.990 0.970 0.990 1.000 1.000 1.000 1.000 1.000

m = 150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
m = 25 3.755 3.296 3.449 3.050 3.751 3.809 2.870 2.868

Average m = 50 3.923 3.645 3.709 3.406 4.013 4.089 2.915 2.904
Length m = 75 4.587 4.208 3.583 3.447 4.407 4.554 3.130 3.038

m = 150 5.155 4.863 4.096 4.015 4.709 4.871 3.309 3.296
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Table A.4.3: Simulations for γ(·)

Simulations for γ(·)
s∗γ 15 25 15 25 15 25 15 25
ti,j ind ind com com ind ind com com
diff type A A A A B B B B

Trigonometric m = 25 1.4526 2.1085 0.3633 0.4806 0.7348 0.9096 1.3686 1.5289
Splines m = 25 3.0488 4.0465 0.9057 1.1462 1.2152 1.4874 1.5288 1.7016
Trigonometric m = 50 0.4231 0.5647 0.2007 0.2598 0.3992 0.4844 1.9385 1.9891
Splines m = 50 1.0675 1.3570 0.5743 0.7048 0.6556 0.7819 2.0637 2.1226
Trigonometric m = 75 0.2453 0.3167 0.1493 0.1899 0.3692 0.4238 2.0780 2.1017
Splines m = 75 0.6807 0.8494 0.4437 0.5311 0.5615 0.6430 2.1772 2.2064
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APPENDIX 4

Appendix of Chapter 5

A.4.6 Proofs

Proof of Lemma 5.1. By definition of Θ̂L0 , we have that

1

n

n∑
i=1

(yi − ⟨Xi, Θ̂L0⟩HS)
2 ≤ 1

n

n∑
i=1

(yi − ⟨Xi,Θ
∗⟩HS)

2,

which implies that

1

n

n∑
i=1

⟨Xi, Θ̂L0 −Θ∗⟩2HS ≤
2

n

n∑
i=1

εi⟨Xi, Θ̂L0 −Θ∗⟩HS.

If n−1
∑n

i=1⟨Xi, Θ̂L0 − Θ∗⟩2HS = 0, then the result follows. Therefore, we only consider the
case where n−1

∑n
i=1⟨Xi, Θ̂L0 − Θ∗⟩2HS > 0. Dividing both sides of the above display by

(n−1
∑n

i=1⟨Xi, Θ̂L0 −Θ∗⟩2HS)
1/2 yields

( 1
n

n∑
i=1

⟨Xi, Θ̂L0 −Θ∗⟩2HS

)1/2
≤
(
4

n

)1/2 ∑n
i=1 εi⟨Xi, Θ̂L0 −Θ∗⟩HS

(
∑n

i=1⟨Xi, Θ̂L0 −Θ∗⟩2HS)
1/2

≤
(
4

n

)1/2

sup
M∈Rd1×d2

rank(M)≤2r∑n
i=1⟨Xi,M⟩2HS>0

∑n
i=1 εi⟨Xi,M⟩HS

(
∑n

i=1⟨Xi,M⟩2HS)
1/2
.

The second inequality follows from the fact that rank(Θ̂L0−Θ∗) ≤ 2r. Now, for any M satisfying
the above, there exist matrices U ∈ Rd1×2r and V ∈ Rd2×2r such that M = UVT. Note that
⟨Xi,UVT⟩HS = ⟨XiV,U⟩HS. Let XV ∈ Rn×rd1 be the matrix whose ith row is vec(XiV) and
γU ≜ vec(U) ∈ Rrd1 . Denote by PV ∈ Rn×n the projection operator onto the column space of
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XV. Therefore, we may further bound the above display by

( 1
n

n∑
i=1

⟨Xi, Θ̂L0 −Θ∗⟩2HS

)1/2
≤
(
4

n

)1/2

sup
U∈Rd1×2r

V∈Rd2×2r∑n
i=1⟨XiV,U⟩2HS>0

∑n
i=1 εi⟨XiV,U⟩HS

(
∑n

i=1⟨XiV,U⟩2HS)
1/2

≤
(
4

n

)1/2

sup
U∈Rd1×2r

V∈Rd2×2r

∥XVγU∥2>0

εTXVγU
∥XVγU∥2

≤
(
4

n

)1/2

sup
V∈Rd2×2r

∥PVε∥2,

where the last line follows from the Cauchy-Schwarz inequality and the identity PVXV = XV.
The conclusion follows immediately by squaring both sides.

Proof of Theorem 5.3. Now, for a fixed V ∈ Rd2×2r, there exists a matrix Ṽ ∈ Nδ(P) such that
∥PV −PṼ∥HS ≤ δ. Then,

∥PVε∥22 ≤ 2∥(PV −PṼ)ε∥
2
2 + 2∥PṼε∥

2
2 ≤ 2δ2∥ε∥22 + 2∥PṼε∥

2
2.

Define T = Tn as

T ≜
⋂

Ṽ∈Nδ(P)

{∥PṼε∥
2
2 ≤ a2rmax(d1, d2 log(d1n

3/δ)) + 2σ2
εrd2} ∩ {∥ε∥22 ≤ a1n+ nσ2

ε}

for some constants a1, a2 ≥ max(1, K2
ε ) to be chosen later. By the Hanson-Wright inequality

(Theorem 1.1 of Rudelson and Vershynin (2013)), it follows that

P(∥ε∥22 > t+ σ2
εn) ≤ 2 exp

[
−a3min

(
t2

nK4
ε

,
t

K2
ε

)]
,

P(∥PṼε∥
2
2 > t+ 2σ2

εrd2) ≤ 2 exp

[
−a3min

(
t2

2rd2K4
ε

,
t

K2
ε

)]
,

for some universal constant a3 > 0. Hence, a union bound implies

P(T c) ≤ 2 exp
[
−a2a3K−2

ε rmax(d1, d2 log(d1n
3/δ)) +Nδ(P)

]
+ 2 exp[−a1a3K−2

ε n]

≤ 2 exp
[
−a2a3K−2

ε rmax(d1, d2 log(d1n
3/δ)) + 2rd1 log(2) + (2rd2 + 1) log(24rd1n

3/δ)
]

+ 2 exp[−a1a3K−2
ε n]

≤ 2 exp[−a4rmax(d1, d2 log(d1n
3/δ))] + 2 exp[−a4n].
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for some constant a4 > 0 depending on Kε, a1, a2, and a3. Now, on the event T , it follows that

∥PVε∥22 ≤ 2δ2(a1 + σ2
ε)n+ 2a2rmax(d1, d2 log(d1n

3/δ)) + 4rd2σ
2
ε .

Letting δ = rn−1max(d1, d2), we have

∥PVε∥22 ≤ 2(a1 + σ2
ε)r

2n−1max(d21, d
2
2) + 2a2rmax(d1, d2 log(r

−1n2min(1, d1d
−1
2 ))) + 4rd2σ

2
ε .

Since this holds for an arbitrary V ∈ Rd2×2r, we conclude that

1

n

n∑
i=1

⟨Xi, Θ̂L0 −Θ∗⟩2HS ≤ 8(a1 + σ2
ε)r

2max(d21, d
2
2)n

−2 + 16σ2
εrd2n

−1

+ 8a2rmax(d1, d2 log(r
−1n2min(1, d1d

−1
2 )))n−1.

Let c1 = 8a1 + 24σ2
ε + 8a2 and c2 = a4. Using the fact that d1 ≤ d2 = d and rd < n finishes the

proof.

Proof of Corollary 5.3.1. Let Θ̃ be defined as

Θ̃ ≜ Θ̃(r) = argmin
Θ∈Rd1×d2 ,rank(Θ)≤r

n∑
i=1

(fi − ⟨Xi,Θ⟩HS)
2.

Then, by the definition of Θ̂L0 , we have that

n∑
i=1

(yi − ⟨Xi, Θ̂L0⟩HS)
2 ≤

n∑
i=1

(yi − ⟨Xi, Θ̃⟩HS)
2.

Expanding the square and rearranging yields

n∑
i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2 ≤

n∑
i=1

(fi − ⟨Xi, Θ̃⟩HS)
2 + 2

n∑
i=1

εi⟨Xi, Θ̂L0 − Θ̃⟩HS.

If
∑n

i=1(fi−⟨Xi, Θ̂L0⟩HS)
2 = 0, then the result immediately follows. Hence, for the remainder of

the proof, we assume that
∑n

i=1(fi − ⟨Xi, Θ̂L0⟩HS)
2 > 0. Now, dividing both sides, it follows that

{ n∑
i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2
}1/2

≤
∑n

i=1(fi − ⟨Xi, Θ̃⟩HS)
2{∑n

i=1(fi − ⟨Xi, Θ̂L0⟩HS)2
}1/2

+ 2

∑n
i=1 εi⟨Xi, Θ̂L0 − Θ̃⟩HS{∑n

i=1(fi − ⟨Xi, Θ̂L0⟩HS)2
}1/2

.
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By the construction of Θ̃, we deduce that

n∑
i=1

(fi − ⟨Xi, Θ̃⟩HS)
2 ≤

n∑
i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2

and

n∑
i=1

⟨Xi, Θ̂L0 − Θ̃⟩2HS ≤ 2
n∑
i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2 + 2

n∑
i=1

(fi − ⟨Xi, Θ̃⟩HS)
2

≤ 4
n∑
i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2.

Therefore, we have that∑n
i=1(fi − ⟨Xi, Θ̃⟩HS)

2{∑n
i=1(fi − ⟨Xi, Θ̂L0⟩HS)2

}1/2
≤
{ n∑

i=1

(fi − ⟨Xi, Θ̃⟩HS)
2
}1/2

.

Moreover, note that rank(Θ̂L0 − Θ̃) ≤ 2r; hence, by the Cauchy-Schwarz inequality,

n∑
i=1

εi⟨Xi, Θ̂L0 − Θ̃⟩HS ≤ sup
V∈Rd2×2r

∥PV∥2
{ n∑

i=1

⟨Xi, Θ̂L0 − Θ̃⟩2HS

}1/2

≤ 4 sup
V∈Rd2×2r

∥PV∥2
{ n∑

i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2
}1/2

.

Combining these calculations, it follows that

{ n∑
i=1

(fi − ⟨Xi, Θ̂L0⟩HS)
2
}1/2

≤
{ n∑

i=1

(fi − ⟨Xi, Θ̃⟩HS)
2
}1/2

+ 8 sup
V∈Rd2×2r

∥PV∥2.

It is left to bound supV∈Rd2×2r ∥PV∥22, which is provided in the proof of Theorem 5.3.

Proof of Lemma 5.4. Temporarily fix π ∈ Π̃. Since f (π)(xi) = 0 for i ∈ A(π)
1 ∪ A

(π)
2 by construc-

tion, we have that

n∑
i=1

[f (π)(xi)]
2 =

∑
i∈A(π)

3

[f (π)(xi)]
2 ≤

∑
i∈A(π)

3

f 2(xπ(i)) ≤ 2 log2(n)σ2
f + c1 log(n)

for some constant c1 > 0 by Chebyshev’s inequality when n is sufficiently large with probability
at least 1− δ. Since π ∈ Π̃ is arbitrary, this finishes the proof.
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Proof of Theorem 5.5. The proof is standard. For example, see Section 15.2 of Lehmann and
Romano (2006).

Proof of Theorem 5.6. Fix 0 < δ < α(1− α)/4. Then, by the triangle inequality, it follows that

Λ(π0) =
n∑
i=1

[f̂ (π0)(xi)]
2 ≥ 2−1

n∑
i=1

[f (π0)(xi)]
2 −

n∑
i=1

[f̂ (π0)(xi)− f (π0)(xi)]
2.

From Assumption (5.2), the Chebyshev’s inequality implies that there exists a constant t1 > 0 (not
depending on n) such that, for n sufficiently large,

n∑
i=1

[f (π0)(xi)]
2 ≥ nσ2

f − t1n1/2 (A.4.6.1)

with probability at least 1− δ. Assumption (5.3) ensures that

n∑
i=1

[f̂ (π0)(xi)− f (π0)(xi)]
2 ≤ ℓn

with probability at least 1− δ. Hence, it holds with probability at least 1− 2δ that

Λ(π0) ≥ 2−1(nσ2
f − t1n1/2)− ℓn.

Now, temporarily fix π ∈ Π̃. Again, by the triangle inequality, it follows that

Λ(π) ≤ 2
n∑
i=1

[f̂ (π)(xi)]
2 − f (π)(xi)]

2 + 2
n∑
i=1

[f (π)(xi)]
2

Assumption (5.3) implies that

n∑
i=1

[f̂ (π)(xi)]
2 − f (π)(xi)]

2 ≤ ℓn

with probability at least 1− δ. Moreover, we have from Lemma 5.4 that∑
i∈A(π)

3

[f (π)(xi)]
2 ≤ log2(n)σ2

f + t2 log(n)

with probability at least 1− δ for some constant t2 > 0. Hence, with probability at least 1− 2δ,

Λ(π) ≤ 2ℓn + 2 log2(n)σ2
f + 2t2 log(n).
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Combining the above calculations, for n sufficiently large,

Λ(π0) − Λ(π) ≥ 2−1(nσ2
f − t1n1/2)− 3ℓn − 2 log2(n)σ2

f − 2t2 log(n)

≥ 2−1{h(n1/2 + ℓn)− t1n1/2} − 3ℓn − 2h(n−1/2 + ℓnn
−1) log2(n)− 2t2 log(n)

> 0

with probability at least 1− 4δ if h > 0 is sufficiently large (not depending on n). Thus,

PH1(Λ
(π0) > Λ(π)) ≥ 1− 4δ

for n sufficiently large. Since π is arbitrary, it follows that

lim inf
n→∞

min
π∈Π̃

PH1(Λ
(π0) > Λ(π)) ≥ 1− 4δ.

Hence,

lim sup
n→∞

EH1φ = lim sup
n→∞

|Π|−1EH1

∑
π∈Π

1Λ(π0)≤Λ(π)

= 1− lim inf
n→∞

|Π|−1
∑
π∈Π̃

PH1(Λ
(π0) > Λ(π))

≤ 4δ.

Since δ < α(1− α)/4, the result follows from Markov’s inequality.

Proof of Corollary 5.6.1. By Chebyshev’s inequality, there exists a constant t3 > 0 such that

n∑
i=1

[f (π0)(xi)]
2 ≥ nσ2

f − t3n1/2σ2
f

with probability at least 1 − δ. The remainder of the proof is identical, replacing the bound in
equation (A.4.6.1) with the above bound.

Proof of Theorem 5.7. It is immediate from the definition of f̂LA(·) that f̂LA(xi; (xj, yj)
n
j=1; π) =

f̂LA(xi; (xj, yπ(j))
n
j=1; π0) for any π ∈ Π. Now, if π = π0, the compatibility condition for the

design is satisfied for some constant φcc with probability at least 1 − δ/2. Then, it follows from
Theorem 6.1 of Bühlmann and van de Geer (2011) that

P
{ n∑

i=1

⟨xi, β̂LA − β∗⟩22 ≤ c2λ
2sn/φ2

cc

}
≥ 1− δ/2
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for some constant c2 > 0. Now, let π ∈ Π̃ be arbitrary and define the event

T ≜
{
max
j∈[p]

∣∣∣ n∑
i=1

xi,jyπ(i)

∣∣∣ ≤ 3c
−1/2
3 n1/2Lξ log

1/2(6p/δ)
}
,

where xi,j denotes the jth entry of xi. Fix j ∈ [p] and let ξi,j ≜ xi,jyπ(i). By the triangle inequality,
we have that ∣∣∣ n∑

i=1

ξi,j

∣∣∣ ≤ ∣∣∣ ∑
i∈A(π)

1

ξi,j

∣∣∣+ ∣∣∣ ∑
i∈A(π)

2

ξi,j

∣∣∣+ ∣∣∣ ∑
i∈A(π)

3

ξi,j

∣∣∣.
Then, by the construction of A(π)

1 , we have that (ξi,j)i∈A(π)
1

are independent and identically dis-
tributed sub-exponential random variables with parameter Lξ ≤ Kx(Kf + Kε). By Bernstein’s
inequality, for any t1 > 0, it follows that

P
(∣∣∣ ∑

i∈A(π)
1

ξi,j

∣∣∣ > t1

)
≤ 2 exp

[
− c3min(|A(π)

1 |−1t21L
−2
ξ , t1L

−1
ξ )
]

for some universal constant c3 > 0. Let

t1 ≜ c
−1/2
1 n1/2Lξ log

1/2(6p/δ).

Noting that |A(π)
1 | ≤ n, we have for n sufficiently large,

P
(∣∣∣ ∑

i∈A(π)
1

ξi,j

∣∣∣ > c
−1/2
3 n1/2Lξ log

1/2(6p/δ)
)
≤ δ/(3p).

Taking a union bound shows that

P
(
max
j∈[p]

∣∣∣ ∑
i∈A(π)

1

ξi,j

∣∣∣ > c
−1/2
3 n1/2Lξ log

1/2(6p/δ)
)
≤ δ/3.

A similar calculation for A(π)
2 yields

P
(
max
j∈[p]

∣∣∣ ∑
i∈A(π)

2

ξi

∣∣∣ > c
−1/2
3 n1/2Lξ log

1/2(6p/δ)
)
≤ δ/3.
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Now, ∣∣∣ ∑
i∈A(π)

3

ξi,j

∣∣∣ ≤ |A(π)
3 |max

j∈[p]
max
i∈A(π)

3

|ξi,j|.

Again, by Bernstein’s inequality, for n sufficiently large,

P
{
max
j∈[p]

max
i∈A(π)

3

|ξi,j| > c−1
3 Lξ log(6p|A(π)

3 |/δ)
}
≤ δ/3.

Combining the above calculations, we have that

P(T ) ≥ 1− δ

for n sufficiently large. On T , for any β ∈ Rp, it follows that

1

n

n∑
i=1

(yπ(i) − ⟨xi,β⟩2)2 + λ∥β∥1 =
1

n
{∥y(π)∥22 − 2⟨y(π),Xβ⟩2 + ∥Xβ∥22}+ λ∥β∥1

≥ 1

n
{∥y(π)∥22 − 6c

−1/2
3 n1/2Lξ log

1/2(6p/δ)∥β∥1 + ∥Xβ∥22}+ λ∥β∥1

≥ 1

n
{∥y(π)∥22 + ∥Xβ∥22}+ (λ− 2λ0)∥β∥1.

Thus, the above is minimized when β = 0p. Therefore,

P(β̂
(π)

LA = 0p) ≥ 1− δ.

Invoking Corollary 5.3.1 finishes the proof.

To facilitate the proof of Theorem 5.8, we define three auxiliary estimators. Let

β̂
(A(π)

k )

L0
≜ argmin

β∈Rp,∥β∥=s

∑
i=A(π)

k

(yπ(i) − ⟨xi,β⟩2)2

for k = 1, 2, 3. Thus, β̂
(A(π)

k )

L0
is the L0 estimator of β using only the data (xi, yπ(i))i∈A(π)

k
for k =

1, 2, 3. The following lemma relates the squared predicted values of β̂
(π)

L0
with (β̂

(A(π)
k )

L0
)3k=1. The

result allows us to decouple the dependence between the covariates and the response by analyzing
the observations in A(π)

1 and A(π)
2 separately.
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Lemma 5.11. Consider the model given in equation (A.3.1.1). Then,

n∑
i=1

⟨xi, β̂L0
⟩22 ≤

∑
i∈A(π)

1

⟨xi, β̂
(A(π)

1 )

L0
⟩22 +

∑
i∈A(π)

2

⟨xi, β̂
(A(π)

2 )

L0
⟩22 +

∑
i∈A(π)

3

⟨xi, β̂
(A(π)

3 )

L0
⟩22.

Proof of Lemma 5.11. Indeed, for any β ∈ Rp, we have that

n∑
i=1

(yi − ⟨xi,β⟩2)2 =
3∑

k=1

∑
i∈A(π)

k

(yi − ⟨xi,β⟩2)2.

Minimizing both sides with respect to β, it follows that

n∑
i=1

(yi − ⟨xi, β̂
(π)

L0
⟩2)2 = min

β∈Rp:∥β∥0=s

3∑
k=1

∑
i∈A(π)

k

(yi − ⟨xi,β⟩2)2

≥
3∑

k=1

min
β∈Rp:∥β∥0=s

∑
i∈A(π)

k

(yi − ⟨xi,β⟩2)2

=
3∑

k=1

∑
i∈A(π)

k

(yi − ⟨xi, β̂
(A(π)

k )

L0
⟩2)2.

Applying the Pythagorean Theorem finishes the proof.

Proof of Theorem 5.8. It is clear that f̂L0(xi; (xj, yj)
n
j=1; π) = f̂L0(xi; (xj, yπ(j))

n
j=1; π0) for any

π ∈ Π. Moreover, from Theorem 2.6 of Rigollet and Hütter (2017), there exists a constant c1 > 0

such that

P
{ n∑

i=1

⟨xi, β̂L0
− β∗⟩22 ≤ c1Kε(log

(
p

2s

)
+ log(1/δ))

}
≥ 1− δ.

Now, fix π ∈ Π̃. Since (xi)i∈A(π)
1

and (yπ(i))i∈A(π)
1

are mutually independent, Theorem 2.6 of
Rigollet and Hütter (2017) implies there exists a constant c2 > 0 such that

P
{ ∑
i∈A(π)

1

⟨xi, β̂
(A(π)

1 )

L0
⟩22 ≤ c2(Kf +Kε)(log

(
p

2s

)
+ log(3/δ))

}
≥ 1− δ/3.
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Analogously, we see that

P
{ ∑
i∈A(π)

2

⟨xi, β̂
(A(π)

2 )

L0
⟩22 ≤ c2(Kf +Kε)(log

(
p

2s

)
+ log(3/δ))

}
≥ 1− δ/3.

Next, by an argument identical to that of Lemma 5.4, it follows that

∑
i∈A(π)

1

⟨xi, β̂
(A(π)

3 )

L0
⟩22 ≤

∑
i∈A(π)

1

y2π(i) ≤ log2(n)(σ2
f + σ2

ε) + c3 log(n)

with probability at least 1− δ/3 for some constant c3 > 0. Hence, Lemma 5.11 implies that

n∑
i=1

(⟨xi, β̂L0
⟩2)2 ≤ 2c2(Kf +Kε)(log

(
p

2s

)
+ log(3/δ)) + log2(n)(σ2

f + σ2
ε) + c3 log(n)

with probability at least 1− δ. The result now follows from Corollary 5.3.1.

Proof of Theorem 5.9. The proof is identical to that of Theorem 5.8, replacing Theorem 2.6 of
Rigollet and Hütter (2017) with Theorem 5.3 of the present paper.

Proof of Theorem 5.10. Let Θ̃ = ŨṼT with Ũ ∈ Rd1×r and Ṽ ∈ Rd2×r, f̃i ≜ ⟨Xi, Θ̃⟩HS with
variance σ2

f̃
≜ Var(f̃1) = vec(Θ̃)TΣvec(Θ̃), and ηi ≜ ⟨Xi,Θ

∗ − Θ̃⟩HS, yielding the decomposi-
tion

yi = ⟨Xi, Θ̃⟩HS + ηi + εi = ⟨XiṼ, Ũ⟩HS + ηi + εi.

Since Θ̃ satisfies

Θ̃ = argmin
Θ∈Rd1×d2 ,rank(Θ)≤r

E⟨X,Θ∗ −Θ⟩2HS,

it follows from the population first-order condition that

Evec(XṼ)⟨X,Θ∗ − Θ̃⟩HS = Evec(XṼ)η = 0rd1 ,

implying that vec(XiṼ) is uncorrelated with ηi. Now, consider an auxiliary oracle estimator Θ̂Ṽ

given by

ÛṼ ≜ argmin
U∈Rd1×r

n∑
i=1

(yi − ⟨Xi,UṼT⟩HS)
2 and Θ̂Ṽ ≜ ÛṼṼ

T.
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Since Θ̂L0 is the empirical risk minimizer, it follows from the Pythagorean Theorem that

Λ(π0) =
n∑
i=1

⟨Xi, Θ̂L0⟩2HS ≥
n∑
i=1

⟨Xi, Θ̂Ṽ⟩
2
HS = ∥PṼy∥

2
2 = ∥f̃∥22 + 2⟨f̃ ,η + ε⟩2 + ∥PṼ(η + ε)∥22.

Fix δ > 0 arbitrarily. Now, proceeding as in the proof of Theorem 5.6 and Corollary 5.6.1, there
exists t1 > 0, depending on δ, ∥Θ̃∥F and Kx, such that with probability at least 1− δ/2,

∥f̃∥22 ≥ nσ2
f̃
− t1n1/2.

If in addition Assumption (5.5∗) is satisfied, then

∥f̃∥22 ≥ nσ2
f̃
− t′1n1/2σ2

f̃

with probability at least 1−δ/2, where t′1 depends on δ and ϑ. For the second term, since vec(XiṼ)

is uncorrelated with ηi, it follows that E⟨f̃ ,η + ε⟩2 = 0. Now, by Chebyshev’s inequality, there
exists t2 > 0 depending only on δ such that

2|⟨f̃ ,η + ε⟩2| ≤ t2n
1/2σf̃ (σ

2
f + σ2

ε)

with probability at least 1− δ/2. Therefore, with probability at least 1− δ,

Λ(π0) ≥ nσ2
f̃
− t1n1/2 − t2n1/2σf̃ (σ

2
f + σ2

ε).

It remains to bound Λ(π) for π ∈ Π̃. Define the auxiliary estimators

Θ̂
(A(π)

k )

L0
≜ argmin

Θ∈Rd1×d2 ,rank(Θ)≤r

∑
i∈A(π)

k

(yπ(i) − ⟨Xi,Θ⟩HS)
2.

By an identical argument as in Lemma 5.11, it follows that

Λ(π) =
n∑
i=1

⟨Xi, Θ̂
(π)
L0
⟩2HS ≤

3∑
k=1

∑
i∈A(π)

k

⟨Xi, Θ̂
(A(π)

k )

L0
⟩2HS.

By Theorem 5.3, there exists a constant t3, depending on δ, σ2
f , σ2

ε , Kx, and Kε, such that

∑
i∈A(π)

k

⟨Xi, Θ̂
(A(π)

k )

L0
⟩2HS ≤ t3rd log(n)
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for j = 1, 2 with probability at least 1− δ/3. Similarly, following Lemma 5.4, we have that

∑
i∈A(π)

k

⟨Xi, Θ̂
(A(π)

k )

L0
⟩2HS ≤ log2(n)(σ2

f + σ2
ε) + t4 log(n)

with probability at least 1−δ/3 for a constant t4 depending on δ, ∥Θ∗∥F, Kx, and Kε. Combining,
we have

Λ(π) ≤ 2t3rd log(n) + log2(n)(σ2
f + σ2

ε) + t4 log(n)

with probability at least 1− δ. Proceeding as in Theorem 5.6 finishes the proof.
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