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Preface 

 
Watching my grandchildren is fascinating! One of the most fascinating parts is 

seeing how they use language. Our six-year-old can carry on a very complex 

conversation, even about abstract things like future dates. She speaks mainly in 

English, but she understands a lot of Spanish. Her two older sisters prefer 

English, but they understand and speak Spanish very well. They can even do 

simultaneous interpretation when necessary. How do they do all that? How did 

they learn to do that? 

 Another fascinating thing is artificial intelligence. A dream I have is to be 

able to build a robot that can do our household chores: make the beds, wash the 

dishes and put them away, mop the floors, clean the bathrooms, and on and on. 

To be useful, this robot will have to be able to understand the instruction, given 

in natural language, that it gets from my wife or from me. It will also have to be 

able to get along with those grandchildren. How can we make an artificial agent 

that can understand and learn from situated, interactive natural language 

instruction and then carry out the tasks it has learned? 

This thesis attempts to make a contribution to understanding these big 

questions by building a model we call Lucia. Lucia tries to model human 

comprehension processing computationally, giving us a window into what might 

be happening in the human mind and brain. At the same time, it tackles the 

challenge of using this same Lucia model to work inside a robotic agent called 

Rosie to give it the ability to learn new tasks from interactive instruction by a 

human. It leaves many questions unanswered, but also gives insights that have 

not been available before. I hope this new knowledge will eventually bless those 

grandchildren, and maybe even help get them the sort of robot helpers I have 

dreamed of. 
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Abstract 

AI systems with language for robots don’t try to model human processing. 

Psycholinguistic models of human language processing don’t have operational 

computational models. To solve these problems, this thesis contributes to 

progress in answering two interlocking scientific questions: how does the human 

mind do sentence comprehension, and how can we enable artificial agents to use 

natural language to collaborate with humans. We do this with a system called 

Lucia, which is a computational cognitive model of human sentence 

comprehension that works by constructing the meaning of a sentence piece by 

piece. 

The Lucia model is designed according to five overriding qualitative 

principles of human language comprehension. To show that its results are 

useful, it does embodied, end-to-end comprehension (E3C) within an artificial 

agent called Rosie. To model key characteristics of human comprehension, it 

draws on research in cognitive linguistics, psycholinguistics, artificial 

intelligence, and robotics to: represent composable knowledge of the meaning of 

linguistic forms (CKM), do incremental, immediate interpretation processing 

(I3P), and do it using general cognitive mechanisms (GCM). The model leads to a 

theory of language acquisition from experience (LAE), some parts of which have 

been implemented experimentally. 

To conform to these principles, the Lucia model is implemented in a robotic 

agent called Rosie to do E3C. It uses Embodied Construction Grammar (ECG) as 

its method of representing composable knowledge of meaning (CKM), and 

demonstrates that this knowledge can be processed incrementally (I3P) using a 

novel comprehension algorithm that relies on the general cognitive mechanisms 

(GCM) of the Soar cognitive architecture to produce embodied, end-to-end 

comprehension (E3C). 



 xxii 

Lucia makes several contributions to answering the broader scientific 

questions. It provides a novel theory for incremental processing (I3P) based on a 

three-phase construction cycle. It provides a theory of how memories interact 

during comprehension. It demonstrates grounded comprehension in an 

embodied robotic agent. Finally, it provides a detailed, functional model of 

cognitive E3C processing that can serve as a basis for further research in 

modeling human language processing in the brain and in designing larger-scale 

language models for artificial agents. 
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Chapter 1 Introduction 

 

This thesis addresses the question of how a computational cognitive model of 

human sentence comprehension within an autonomous robotic agent can model 

qualitatively certain aspects of human comprehension in the context of 

understanding natural language instructions from a human instructor. Our 

approach is to draw inspiration from human language processing to develop a 

computational model that is useful for an autonomous robot. 

Previous research has led to many insights on specific aspects of human 

language processing. Still missing is a comprehensive model of comprehension 

that addresses five key qualitative principles of human processing: 1) the 

external functional property of embodied, end-to-end comprehension; the 

internal cognitive properties of 2) representing composable knowledge of the 

meaning of language to provide generality, 3) incremental processing with 

immediate interpretation, and 4) performing real-time comprehension using 

domain-general cognitive mechanisms; and 5) the ability to acquire language 

from experience. 

This thesis describes Lucia, an implemented theory of sentence 

comprehension that serves as the language comprehension component of an 

embodied autonomous agent called Rosie, which learns new tasks from situated 

interactive instruction. Lucia conforms to the first four of these qualitative 

principles and provides insight for pursuing the fifth. This research gives insight 

into two important questions about human-like language comprehension. 

Q1: How do humans comprehend sentences? 

Natural language is an important part of human cognition. Much research 

has been done on ways of measuring human language processing from the 
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outside. A problem for cognitive science is the lack of the ability to see inside the 

mind and brain to understand in detail their inner workings. This leaves the 

important question of how the internal mechanisms of human sentence 

comprehension work. Lucia provides some insight into this question by providing 

a working model of the computational processing required for language 

comprehension. 

Q2: How can robots comprehend sentences well enough to collaborate with 

humans? 

A computational cognitive model of human sentence processing could 

guide artificial agent development. Lucia is an implemented model that conforms 

to the first four functional and cognitive principles mentioned, and is designed 

to serve as a basis for future work on acquisition. It satisfies the sentence 

comprehension needs of a robotic agent within the domain considered here. 

Lucia does not attempt to model all the quantitative details of human processing; 

rather it satisfies the functional principle while being implemented according to 

the three cognitive principles. 

1.1 Defining the Problem 

This section further defines the five qualitative principles listed above, which 

become constraints, or goals, for the model of sentence comprehension 

presented in this thesis.  Satisfying each of them will contribute to answering 

the cognitive science question (Q1) and provide guidance for developing artificial 

agents (Q2). The thesis demonstrates how the implemented Lucia system 

satisfies the four functional and cognitive principles, and provides a theory for 

the acquisition principle, only small parts of which have been implemented. 

E3C: Embodied, End-to-End Comprehension – Human-like comprehension 

occurs within an embodied agent, human or artificial, so that the agent 

can act in the world in a way corresponding to the intent of the speaker 

and the goals of the agent. 

Human-like comprehension by either a human or an artificial agent 

collaborating with a human instructor in a real-world environment requires 

transforming each input sentence into an internal meaning representation 
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grounded to the agent’s perception, action abilities, and knowledge of the world 

in order to take internal or external action based on the meaning representation. 

 

CKM: Composable Knowledge of the Meaning of Language – Knowledge 

of the meaning of language is represented in composable units, called 

constructions, in order to have generality, so that it can be used to 

comprehend (E3C) many sentences that have never been previously 

experienced. 

Compositionality is necessary to achieve the generality and creativity of 

human language use, and to give flexibility and generality to the language 

capability of an artificial agent. Knowledge of the meaning of language maps 

small composable units of linguistic form to their internal meanings with form-

meaning mappings that can be composed into larger and larger units, to 

ultimately construct the meaning of a sentence.  

I3P: Incremental, Immediate Interpretation Processing The meaning of a 

sentence is constructed incrementally in real time, each new 

construction unit (CKM) added is immediately grounded (as possible) to 

embodied world knowledge (I3P), and the meaning of each full sentence 

is interpreted as an action message (E3C). 

Psycholinguistic evidence given in Chapter 4 shows that during sentence 

comprehension humans immediately ground the meanings of words and phrases 

to their internal representations of the world, sometimes making commitments 

that must later be retracted when more of the sentence is processed. This key 

property of human comprehension is a challenge for computational models that 

Lucia is designed to meet. 

GCM: General Cognitive Mechanisms – Comprehension processing is done 

using domain-general mechanisms of cognition. In practice, this implies 

that our computational cognitive model will be built using a cognitive 

architecture. 

This work assumes that human language processing uses domain-general 

cognitive mechanisms rather than any innate language-specific faculty in the 

brain. Many researchers agree with this assumption (Christiansen & Chater, 

2016; Dąbrowska, 2015; Newell, 1990), while others disagree (Chomsky, 1986). 
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We argue that the success of this work can lend support to our assumption. 

Thus, we create our model within a cognitive architecture. 

LAE: Language is Acquired from Experience – Knowledge of how to map 

form to meaning is learned incrementally from individual experiences 

where situational knowledge and reasoning are used to learn 

increments of form-meaning mapping called constructions, and these 

constructions are modified as indicated by further experiences. 

Research on language acquisition (Goldberg, 2019; Krashen, 2003; 

Tomasello, 2003) suggests that humans acquire language incrementally from 

experience. An artificial agent that can learn more language as it interacts with 

a human collaborator can collaborate better in the future. An automatic system 

for acquiring Lucia’s knowledge of the meaning of language is beyond the scope 

of this thesis. However, we describe a theory of how this could be done that is 

consistent with the existing components of Lucia and explore an implementation 

of some parts of that theory. 

 Our approach to creating a computational cognitive model to satisfy our 

qualitative principles comes from a branch of science that overlaps both cognitive 

science and artificial intelligence: the study of cognitive architectures. The theory 

developed there is consistent with the cognitive architecture principle (Lehman et 

al., 1996): 

 

ARCHITECTURE + KNOWLEDGE = BEHAVIOR 

 

The behavior we want to model is embodied, end-to-end comprehension 

within an agent that performs interactive task learning (ITL; Gluck & Laird, 

2018). The architecture we use is the Soar cognitive architecture (Laird, 2012), 

which contains memories and processing mechanisms intended to model the 

general mechanisms of human cognition. The work of this thesis developed the 

knowledge necessary to make this architecture produce the desired language 

comprehension behavior within the ITL behavior of the Rosie agent. That 

knowledge defines Lucia, which models human comprehension computationally 
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by constructing meaning, piece by piece. This makes it a computational cognitive 

model of human sentence comprehension. 

1.2 The Lucia Comprehension System 

This section introduces Lucia and describes abstractly how it satisfies each of 

the four plus one principles of human-like sentence comprehension we have 

defined, as well as the implementation commitments we make to achieve this. 

1.2.1 E3C: Embodied, End-to-End Comprehension 

For a robot to perform tasks in the real world based on interactive instruction 

from a human, it must be able to create a grounded interpretation, called a 

message, for each input sentence. For our purposes we define language 

understanding in an artificial agent to mean the agent can act appropriately in 

the world based on its language input. We define end-to-end comprehension as 

the ability to transform each input sentence into an internal message grounded 

to the agent’s knowledge such that the agent can then interpret that message to 

take appropriate internal or external action. 

Figure 1-1 shows how an agent could achieve language understanding by 

coordinating, using shared knowledge, a Comprehender subsystem with an 

Operations subsystem, each of which has its own private knowledge. 

Yes, 
sir!

Agent

Shared 
Knowledge

model of scene
colors, shapes, sizes

available actions
map of environment

current situation
dialog context 

Knowledge of 
Perception, Action, 

and the World

Knowledge of 
Language

form-meaning mappings

Comprehender
Incremental

Builds structured meanings
Composes small units
Grounds immediately

Builds messages

Operations
Analyzes perception
Integrates language

Reasons about world
Chooses actions
Performs actions 

Rosie, please 

clean up the 

kitchen.

Messages

 

Figure 1-1: Comprehension in an autonomous agent 
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The Comprehender subsystem, of which Lucia is one possible 

implementation, does the sentence comprehension part. Consider sentence (1) 

which a human instructor might say to Rosie: 

 

(1) Pick up the green sphere. 
 
For Rosie to act on this sentence, it needs a message defining a command with 

internal symbols (which we call identifiers) that identify the action to take and 

an object to act on, as in (2): 

 
(2) command(op_pick-up1, O15) 

 

This message is grounded to the agent’s knowledge and is actionable, leading to: 

Commitment 1: Lucia performs E3C by being embodied in Rosie and 

producing an internal message for each input sentence as needed for ITL. 

Chapter 2 describes the sentences Rosie uses to learn a variety of new tasks, 

the interfaces between Lucia and Rosie, the short- and long-term knowledge they 

share, and the kinds of messages Lucia can send to Rosie. 

1.2.2 CKM: Composable Knowledge of Meaning 

Comprehending a sentence (E3C) involves using CKM to transform its form, a 

sequence of words, into an internal message, which is its meaning. A trivial 

approach to this problem would be to use a lookup table that maps every 

sentence in the agent’s domain to its corresponding message. However, human 

knowledge of language has the generality to comprehend an unbounded number 

of sentences that have never been heard or seen before, and an artificial agent 

needs a degree of this generality. 

One way to achieve generality is for knowledge of mapping form to meaning 

to be composable, consisting of small units of form-meaning mapping that can 

be composed into larger structures. A branch of cognitive linguistics is devoted 

to theories of construction grammar (CxG; Hoffman & Trousdale, 2013), where 

constructions are units of form-meaning mapping that can be composed into 

sentence meanings. Figure 1-2 sketches the mapping of (1) to (2) and the 
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comprehension state graph in between. Each node represents a construction with 

its meaning, and these are grounded as shown by the green arrows. 

Pick up the green sphere.

PICK UP THE GREEN SPHERE

PickUp RefExpr

TransitiveCommand

1 2

3

4 5 6

7

8

shapes

colors command(op_pick-up1, o15)
o12

o14
o15

visible 
objects

op_pick-up1

actions

 

Figure 1-2: Results of processing a simple sentence  

Lucia adopts the Embodied Construction Grammar (ECG; Bergen & Chang, 

2013) theory, in which a construction describes an input form, names a schema 

which it evokes to represent its meaning, and specifies how to populate the parts 

of that schema with the information needed for grounding. 

Commitment 2: Lucia uses ECG to represent composable knowledge of the 

meaning of language (CKM). 

Chapter 3 gives details of the ECG formalism (Bryant, 2008) used to define 

a large network of ECG elements called a grammar. Lucia uses that formalism to 

represent composable knowledge and to comprehend the sentences needed for 

Rosie’s ITL. 

1.2.3 I3P: Incremental, Immediate Interpretation Processing 

Evidence discussed in Chapter 4 suggests that humans achieve real-time 

comprehension by incremental, word-by-word processing with immediate 

interpretation, grounding each word or phrase to the current context as it is 

processed. In Figure 1-2, the nodes are numbered in the order they are created, 
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with one lexical node for each word and additional composite nodes added: node 

3 while processing up, and nodes 7 and 8 while processing sphere.  

 

Figure 1-3: Incremental processing cycles 

Lucia constructs meaning piece by piece using a word cycle and a 

construction cycle, as shown in Figure 1-3. Each construction cycle has three 

phases: a selection phase chooses which construction to apply next, an 

integration phase builds a new form-meaning node and adds it to the graph, and 

a grounding phase grounds the node’s meaning to the agent’s world knowledge. 

The selection phase resolves many local ambiguities to result in a single 

grounded path through the space of possible comprehensions, and local repairs 

are made later if subsequent input indicates that a previous choice was incorrect. 

Commitment 3: Lucia does immediate interpretation processing (I3P) using 

construction cycles that select, integrate, and ground one construction at 

a time, often with multiple construction cycles for a single input word. 

Chapter 4 describes this incremental processing algorithm in detail, using 

a number of case studies to show how ambiguities are resolved in construction 

selection and how local repairs are made when necessary. 

1.2.4 GCM: General Cognitive Mechanisms 

Human language processing is done using the cognitive mechanisms of the 

human mind and brain, and we model these using the mechanisms of a cognitive 
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architecture. Following decades of work on cognitive architectures (Kotseruba & 

Tsotsos, 2020), Laird, Lebiere, and Rosenbloom (2017) abstracted ideas from 

several of the prominent architectures to produce a theoretical model now called 

The Common Model of Cognition (CMC). We take this as a guide to general 

cognitive mechanisms. 

 

External 
Environment

Human User Physical World

Perception
Speech Vision

Motor
Speech Motion

Working Memory

Knowledge

Procedural
Long-term Memory

Declarative
Long-term Memory

 

Figure 1-4: General cognitive mechanisms in the CMC 

Figure 1-4, adapted from Laird et al. (2017), shows the structure of the 

CMC with a working memory (WM) at its center that communicates with 

knowledge in long-term memories as well as perception and motor modules. 

Rules in procedural long-term memory that match against WM are selected to 

fire and change WM in a cognitive cycle, approximately every 50ms in humans. 

Rosie and Lucia are implemented in the Soar cognitive architecture (Laird, 2012), 

one of those on which the CMC is based. 

Commitment 4: Lucia is built within the Soar cognitive architecture. 

Lucia’s CKM is implemented as procedures stored in Soar’s procedural 

long-term memory that implement each element of the ECG grammar. Chapter 

5 describes in detail how Lucia uses the general cognitive mechanisms in Soar 
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to achieve end-to-end comprehension and discusses Lucia’s real-time 

performance. Chapter 6 describes an experimental version where CKM is stored 

in Soar’s declarative long-term semantic memory and through run-time 

interpretation and compilation is transformed into procedural knowledge by 

Soar’s learning mechanism. 

The above four principles have been inspired by the literature on human 

comprehension, and the thesis demonstrates that Lucia does in fact function in all 

these ways. However, circling back to compare Lucia’s results on these points to 

data on human performance is something we leave for future work. 

1.2.5 LAE: Language is Acquired from Experience 

The Lucia system as implemented does not include automatic LAE. We have 

explored a theory and practice toward implementing such a capability, which is 

described in Chapter 6. 

1.3 Related Work 

From the literature on computational language comprehension, we have 

assembled a list of systems that attempt to satisfy two or more of the human-

like principles defined above. This section analyzes briefly the goals, approach, 

implementation, and results of each system, comparing them to our five 

principles. Many of these systems differ from Lucia primarily in their ad-hoc 

approach to knowledge of the meaning of language as compared to our use of 

construction grammar theory, and that many do not do incremental processing 

or use a cognitive architecture. Table 1-1 summarizes our analysis. 

1.3.1 Classic systems 

SHRDLU (Winograd, 1972) is “a computer system for understanding English” 

built with modules written in LISP for syntax, semantics, action planning, and 

language generation. It succeeds in processing complex dialogs in a simulated 

blocks-world environment. It has a procedural language for syntactic analysis 

that parses incrementally left-to-right, but without the generality from a 

compositional theory of form-meaning mapping. Its grounding is done after the 
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fact, rather than immediately. It makes not attempt to model human cognitive 

mechanism or propose a theory of language acquisition.  

 LAS/HAM (Anderson, 1977) is a system for “The study of language 

acquisition.” The system, also written in LISP, is based on a general theory of 

mathematical induction and a memory system called HAM that is intended to 

model human associative memory, but is not a complete cognitive architecture. 

It has program code to construct “HAM conceptualizations” of meaning for 

comprehension that are far from actionable sentence meanings. It uses an 

“augmented transition network” to represent syntax, but without compositional 

mapping to meaning. It parses left-to-right, but does not do grounding or I3P. It 

succeeds in inducing syntax rules for a very limited context-free grammar. 

1.3.2 Systems in Robots (E3C) 

Tellex et al. (2011) present a system that does E3C in a robot using a probabilistic 

language model. Later work in this group (Gopalan et al., 2020; Nguyen et al., 

2020) replaces this model with one using a recurrent neural network. Both do 

E3C in their limited domains and some language learning. Neither of these 

approaches models the cognitive aspects of CKM, I3P, or GCM. 

 Chai et al. (2016; Liu et al., 2016) have built systems to teach tasks to 

robots with a combination of language instruction and visual demonstration. 

These systems do E3C using an off-the-shelf semantic parser. That parser has 

general knowledge of syntax and semantics, but ignores incremental grounding 

and modeling cognitive mechanisms. Its knowledge comes from batch learning 

from large corpora, but not acquisition from individual experiences (LAE). 

 SGGOL (Chen, 2012; Chen & Mooney, 2011) is a system that learns a 

lexicon and a semantic parser for understanding navigation instructions in a 

simulated environment. Their approach has a context-free grammar that is 

learned from a large dataset of labeled instructions. The semantic lexicon is 

learned incrementally from individual examples using free-form instructions 

built by users on Amazon Mechanical Turk. The simulated environment is quite 

simple. End-to-end performance with the learned knowledge is about 58% for 
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individual sentences and 20% for complete tasks. No attempt is made to model 

human processing.  

LEIA (McShane & Nirenburg, 2019) is a theory of “language-endowed 

intelligent agents (LEIAs)” built on the OntoAgent cognitive architecture. This 

approach satisfies E3C in a robot doing a form of ITL. The overall agent uses a 

cognitive architecture, but the “Language Understanding Service” uses 

“externally developed engines” in a separate module that does not do I3P or use 

GCM. The model has some ability to learn new words. 

1.3.3 Construction Grammar Systems (CKM) 

ECG-ICSI (Eppe, Trott, & Feldman, 2016; Eppe, Trott, Raghuram, et al., 2016) 

added a back end to the original ECG processor (Bryant, 2008) to connect to a 

robot. Bryant’s semantic parser uses ECG as CKM to produce semantic 

representations of sentences using a global optimization approach, which is not 

incremental and does not consider GCM. The added back end provides 

grounding to do E3C with the robot. (Chang, 2008) and (Mok, 2009) have done 

experiments on language acquisition from experience (LAE) within the ECG 

context. 

 Fluid Construction Grammar (FCG; Steels, 2013; Steels & Hild, 2012) is 

designed to experiment with multiple agents evolving a language from scratch. 

Its constructions are bi-directional for use with both comprehension and 

production. Processing is incremental without immediate interpretation. There 

is no consideration of GCM. FCG has been used for LAE based on “Insight 

Grammar Learning” (Garcia-Casademont & Steels, 2016; van Eecke & Steels, 

2016). 

1.3.4 Systems Developed in a Cognitive Architecture (GCM) 

NL-Soar (Lewis, 1993) is built in the Soar cognitive architecture and is intended 

to model human comprehension in a way “that accounts for a broad range of 

psycholinguistic phenomena,” primarily those involving syntactic structures. It 

does not include a theory of compositional form-meaning mapping. It shows 

incremental processing in simulated real time, but has no embodiment to ground 
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to for E3C or full I3P. It demonstrates parsing using GCM. It does not do full LAE 

but does do learning of a skill for syntactic processing. 

 ACT-R-2005 (Lewis & Vasishth, 2005) is a model built in the ACT-R 

cognitive architecture designed to support a theory of sentence processing based 

on memory retrievals with the goal of simulating human reading time data. It 

models cue-based retrievals of long-distance dependencies where other items in 

memory may interfere. Its simulations match some human data sets well and 

others not so well. Although it is implemented in a cognitive architecture, it does 

not do grounding or produce full sentence meanings, and it does not include a 

theory of how language is acquired. 

 ACT-R-RR (J. Ball et al., 2010) is an ACT-R model based on the Double-R 

theory of language comprehension (J. T. Ball, 2004). This model of 

comprehension has been used in a “synthetic teammate” (Demir et al., 2015; 

McNeese et al., 2018) where it simulates a human pilot interacting with human 

teammates in real time. It does E3C and uses concepts similar to construction 

grammar for CKM. It does not do I3P or LAE. 

 ACT-R-2020 (Jones, 2020) is an ACT-R model of sentence processing 

whose goal is to do sentence processing for both English and Korean using the 

same procedural knowledge for both and language-specific declarative 

knowledge of words. Jones explores the question of how to represent working 

memory limits in ACT-R “parsimoniously.” The model represents grammatical 

structure according to Lexical Functional Grammar (LFG) without any 

embodiment or grounded semantics. It processes word-by-word, but without 

immediate interpretation. The paper does not address language acquisition. 

1.3.5 Lucia 

LUCIA is the reference system described in this thesis and elsewhere (Lindes, 

2018, 2019, 2020; Lindes et al., 2017; Lindes & Laird, 2016, 2017a, 2017b). As 

we show in subsequent chapters, within the limits of the Rosie domain it 

achieves E3C using CKM, I3P, and GCM. We also present exploration of a theory 

of LAE, and evidence of implementation of some parts of that theory. Overall, no 
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other system has attempted to answer our original Q1 or Q2 with all five of the 

properties of human language comprehension we have defined. 

1.3.6 Summary 

Table 1-1 summarizes our best-effort evaluations for all these systems. 

Table 1-1: Lucia compared to AI models 

System E3C CKM I3P GCM LAE 

SHRDLU +
     

LAS/HAM 
     

Tellex et al. +
     

Chai et al. +
     

SGOLL 

 +
   +

 
LEIA +

     

ECG-ICSI +
 

+
    

FCG +
 

+
   +

 
NL-Soar 

   +
  

ACT-R-2005 
   +

  

ACT-R-RR +
   +

  

ACT-R-2020 
   +

  

LUCIA +
 

+
 

+
 

+
  

 

Key: +
 
Does this 

well  

Does some 

of this  
Does not 

do this 
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1.3.7 Machine Learning Systems 

There is a substantial literature on semantic parsers (Artzi et al., 2015; Damonte 

& Monti, 2021; Goldwasser & Roth, 2011; Liang, 2016) that build up their 

knowledge of language by statistical analysis of large corpora. These systems 

produce formal semantic representations from natural language input but 

without incremental grounding or conforming to any of our cognitive properties. 

Several of the robotic systems cited above use semantic parsers, while others are 

not embodied to do E3C, so they are not included in our comparisons. 

Today’s literature on natural language processing is dominated by large-

scale artificial neural networks (Brown et al., 2020; Devlin et al., 2019; Vaswani 

et al., 2017). These systems do a form of language acquisition by processing 

corpora of many millions of sentences. They do not produce correct, grounded, 

actionable messages for individual sentences, they do not create identifiable 

compositional knowledge of meaning, they do not do incremental, immediate 

interpretation, nor do they explicitly attempt to model cognitive mechanisms. 

They do not model incremental acquisition from individual language experiences. 

Their goals are different ours, so it is difficult to compare them directly. 

1.4 Contributions and Explorations 

Here are the five principal contributions we see Lucia making, which will emerge 

in subsequent chapters and are discussed further in Chapter 7: 

C1: A demonstration of incremental, cognitive, embodied, end-to-end 

comprehension (E3C) using Embodied Construction Grammar (ECG). 

C2: A demonstration of incremental, immediate interpretation processing (I3P) 

based on the construction cycle. 

C3: A theory of how memories interact during comprehension. 

C4: A demonstrated model of grounding in an embodied agent. 

C5: A detailed, functional model of E3C processing that can serve as a basis 

for future research. 

Chapter 6 presents three initial explorations that introduce possible lines 

of future research. The first shows how the Lucia’s ECG grammar can be 

extended to cover aspects of human language not present in the sentence 
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corpora used for Lucia development, and how the Lucia model can explain 

certain limitations of human processing where seemingly grammatical sentences 

seem difficult or impossible to understand. 

The second explores an alternative way of using the Soar architecture. A 

new version of Lucia, which we call System B, stores Lucia’s grammar as 

declarative knowledge in Soar’s semantic memory. Spreading activation enables 

bias from context to resolve ambiguity among word senses. For selection of 

composite constructions, extensions to the architecture were made to add an 

attention mechanism in WM and allow parallel retrievals. System B also converts 

the declarative representations of knowledge of meaning of language into 

procedural knowledge using Soar’s existing chunking mechanism.  

 The third exploration involves the development of a three-phase theory of 

how CKM is acquired from experience. Deliberate reasoning creates hypotheses 

for new constructions based on individual episodes of experience, these episodes 

are generalized into declarative knowledge, and this is then gradually converted 

into procedural knowledge to become an automatic skill as it is processed. 

Exploratory experiments on parts of the theory are also covered. 

1.5 Thesis Preview 

Chapters 2 through 5 discuss Lucia’s implementation of E3C, CKM, I3P, and 

GCM, respectively. Each of these chapters includes a section that reviews briefly 

the related literature on that subject. After describing the implementation 

details, data on appropriate quantitative evaluations for that aspect are 

presented. Additional details are presented in appendices. 

 Chapter 6 begins with a brief summary of the achievements of the Lucia 

model, and some of its limitations. It then presents a more detailed description 

of our three exploratory experiments: extending the grammar for wider coverage 

and using it to model human parsing limitations, a System B with the grammar 

in semantic memory, and our theory of LAE and how it relates to the development 

and implementation of Lucia. 
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In Chapter 7, we discuss further contributions of this thesis and suggest 

future work. We discuss ways to scale up the model to much larger language 

coverage, ways to drill down to detailed modeling of human reading times and 

brain data, and how to model human language acquisition. Specific research 

questions are suggested.   

Now we’re ready to dive in. Happy reading!
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Chapter 2 Embodied, End-to-End Comprehension 

This chapter presents the environment surrounding the computer program that 

is the computational implementation of Lucia’s theoretical model of human 

sentence comprehension. Lucia is part of an AI agent called Rosie that has been 

developed over a number of years by John Laird’s Soar research group at the 

University of Michigan (Laird et al., 2018). Rosie’s purpose is to learn tasks in 

certain well-defined domains in the physical world, or a simulation of it, using 

Interactive Task Learning (ITL; Gluck & Laird, 2018; Laird et al., 2017). As a 

major component of Rosie, Lucia takes each input sentence and transforms it 

into an internal message that enables Rosie to act, either internally to increase 

its knowledge of the task being taught, or externally in the world in which it 

performs that task. In summary Lucia, performs embodied, end-to-end 

comprehension (E3C). 

E3C: Embodied, End-to-End Comprehension – Human-like comprehension 

occurs within an embodied agent, human or artificial, so that the agent 

can act in the world in a way corresponding to the intent of the speaker 

and the goals of the agent. 

Showing that Lucia’s comprehension is sufficient to enable Rosie to learn 

and perform new tasks taught by a human instructor using situated interactive 

instruction is evidence that Lucia does embodied, end-to-end comprehension. 

This chapter describes the kinds of ITL tasks Rosie performs and the 

messages Lucia produces in order for Rosie to be successful in learning and 

performing these tasks. We discuss the various kinds of world knowledge that 

the agent uses, and how Lucia grounds the language to it. We evaluate end-to-

end comprehension based on corpora of input sentences defined by the larger 

Rosie ITL project. A discussion of other systems that do E3C is in Chapter 1. 
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2.1 Defining the Problem 

Many cognitive psychologists argue that human cognition is deeply connected to 

the body (Barsalou, 1999; Fincher-Kiefer, 2019; Glenberg, 2015; Lakoff, 2012; 

van Elk & Bekkering, 2018). Cognitive linguists argue that language is inherently 

embodied (Johnson, 1987, 2018; Johnson & Lakoff, 2002), and that language 

for abstract concepts is derived from language for physical perception and action 

(Dove, 2014; Lakoff & Johnson, 1980). Evidence from neuroscience is that 

perceptual and motor areas of the brain are activated during comprehension 

(Bergen, 2012; Kemmerer, 2015; Pylkkänen, 2019).  Embedding a 

comprehension model in an embodied agent helps model this aspect of human 

comprehension, and gives a direct, practical method to test whether the model 

produces meaningful messages from each input sentence. 

Interactive Task Learning (ITL; Gluck & Laird, 2018) as a field studies “the 

processes by which new tasks are acquired through natural interaction between 

humans, humans and agents, and agents.” In this paradigm an agent interacts 

with both a human instructor and the physical world to learn arbitrary new tasks 

(Laird, Anderson, et al., 2017). Figure 2-1 gives an abstract overview of an ITL 

agent. 
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Figure 2-1: An abstract ITL agent 

2.1.1 Lucia in context 

Rosie (Laird et al., 2018) is an artificial agent used for research on a number of 

topics, including task learning (J. Kirk et al., 2016; J. R. Kirk & Laird, 2016, 

2019; Mininger & Laird, 2018), human-robot interaction (Ramaraj, 2021; 

Ramaraj & Laird, 2018), and language comprehension (Lindes et al., 2017). Two 

recent dissertations (J. R. Kirk, 2019; Mininger, 2021) describe major ITL 

projects using Rosie and the language used for these projects. They provide a 

framework in which to test our theory of E3C. We show that Lucia does E3C by 

implementing the following commitment: 

Commitment 1: Lucia performs E3C by being embodied in Rosie and 

producing an internal message for each input sentence as needed for ITL. 

Figure 2-2 shows how Lucia fits into the overall Rosie agent, showing that 

the main interfaces between Lucia and the operational part of Rosie are shared 

world knowledge and action messages, and the fact that they are both 

implemented within the same Soar agent. 
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Figure 2-2: Lucia embodied in Rosie 

Figure 2-3 is a schematic representation of the major computational 

processes and knowledge sources in the complete Rosie agent. Lucia uses 

knowledge of its ECG grammar that has been translated from a set of ECG files. 

Shared short-term knowledge, primarily about the scene provided by the visual 

system, is contained in a World Model in short-term memory. References to 

objects, locations, and their spatial relations are usually grounded to this scene 

data, and Lucia will add objects to the World Model when a sentence refers to an 

object not previously seen. Shared long-term knowledge, including bindings 

between language semantics and perceptual symbols, actions the agent knows 

how to perform, and knowledge of the larger physical environment, are in an 

Ontology in semantic memory. This shared world knowledge enables Lucia to do 

grounded comprehension and Rosie to act in the world based on language input.  
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Figure 2-3: Schematic of Lucia in Rosie 

 Lucia’s processing of a sentence consists of two phases: the comprehend 

process that incrementally transforms a sentence into an internal representation 

(IR) of the syntax, semantics, and grounding of the sentence, and the interpret, 

or sentence interpretation, process that formats an action message (AM) from the 

IR. The operations part of Rosie does its reasoning and learning and then acts in 

the world through its embodiment. Performing the task produces a result state 

(RS) that contains both the final state of the world after performing the task and 

the sequence of actions that were taken to get there. 

Rosie learns tasks through human instruction, using language 

represented in three lists, or corpora, defined further below: a Baseline corpus 

used for initial Lucia development, a Games corpus used for learning games and 

puzzles, and a Robot corpus used for learning navigation and operations tasks. 

2.1.2 Games and Puzzles 

James Kirk (2019) added learning and reasoning logic into Rosie for learning how 

to solve puzzles and play games, and used ITL to teach Rosie 60 games and 

puzzles. Figure 2-4 is a list of the groups of games and puzzles that he 

implemented and that we used to develop and test Lucia. 
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Grid Puzzles (7) 

Chess Problems (7) 

Side Swapping Puzzles (4) 

River Crossing Puzzles (6) 

Board Games (8) 

Marking/Logic Puzzles (13) 

Block Puzzles (9) 

Solitaires (6) 

Figure 2-4: Rosie's games and puzzles1 

In the puzzle called Tower of Hanoi, the task is to move a stack of three 

blocks, one at a time, from one of three locations to another, always maintaining 

graduated sizes in each stack, to rebuild the stack on a designated goal location. 

 

Figure 2-5: Rosie solving Tower-of-Hanoi2 

Figure 2-5 shows Rosie connected to a table-top arm in the process of 

solving the Tower-of-Hanoi puzzle with blocks in the real world. James Kirk is 

the instructor in the background. Figure 2-6 is the script used to teach Rosie the 

goal and legal actions of the puzzle. Once these are learned, Rosie plans a 

solution and then moves the physical blocks to solve the puzzle. 

 

                                       
 

1 A complete list is online at http://www-personal.umich.edu/~jrkirk/ijcai2019.html, along with 

an instruction script for each, diagrams of the puzzles and games, and a video example. 
2 Photo from Kirk (2019), p. 10. Video at https://www.youtube.com/watch?v=N6jOkKnpaHo. 

http://www-personal.umich.edu/~jrkirk/ijcai2019.html
https://www.youtube.com/watch?v=N6jOkKnpaHo
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I: The name of the puzzle is tower-of-hanoi. 
The instructor has set up the blocks in the goal state. 
R: OK, what are the actions and goals of the game? 
I: You can move a clear block onto a clear object that is larger than the block. 
R: I don’t know the concept clear. 
I: If a block is not below an object then it is clear. 
R: Ok, I now understand the concept clear. 
R: I have learned the action. 
I: The goal is that a large block is in a right location and a medium block is on 
   the large block and a small block is on the medium block. 
R: I've learned the goal. 
The instructor moves the blocks to an initial state. 
I: Done. 
Rosie moves the blocks, one at a time, according to the rules, until the goal state 
   has been achieved. 
R: That was easy! 

Figure 2-6: A script for teaching Tower-of-Hanoi3 

Lines with “I:” are input sentences from the instructor and lines with “R:” 

are Rosie’s responses. Interleaved lines in italics are comments that describe the 

actions taken by Rosie or the instructor. Rosie is not solving the puzzle during 

the teaching phase. Rather, it is learning the task elements, which include task 

concepts, goals, actions, and failure states. After Done. is entered, Rosie plans 

the actions necessary to solve the puzzle and then executes them. 

2.1.3 Robot tasks 

Aaron Mininger (2021) developed the ITL knowledge in Rosie to learn and perform 

tasks involving navigating in a building environment and manipulating objects 

there. Figure 2-7 is a screen shot from a video of Rosie performing a number of 

tasks in a simulated kitchen. 

  

                                       
 

3 Lucia was tested on a different version of this puzzle script for use in simulation. 
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Figure 2-7: Rosie working in the kitchen 

Figure 2-8 gives the script for this simple task to test Rosie’s ability to 

move objects around in a kitchen.4 

 

I: Move the fork onto the table. 
Rosie tries to plan to move the fork and realizes it doesn’t know how. 
R: What is the next goal or subtask of move? 
I: The only goal is that the fork is on the table. 
Rosie picks up the fork and puts it down on the table. 
R: I'm ready for a new task 
I: Move the fork into the drawer. 
Rosie opens the drawer, picks up the fork, and puts it down in the drawer. 
R: I'm ready for a new task 
I: Close the drawer. 
Rosie closes the drawer. 
R: I'm ready for a new task 
I: Move the fork onto the table. 
Rosie opens the drawer, picks up the fork, and puts it down on the table. 
R: I'm ready for a new task 
I: Move the mug into the fridge. 
Rosie opens the fridge, picks up the mug, and puts it down in the fridge. 
R: I'm ready for a new task 
I: Close the fridge. 
Rosie closes the fridge. 
R: I'm ready for a new task 
I: Store the soda. 
Rosie tries to plan to store the soda and realizes it doesn’t know how. 
R: What is the next goal or subtask of store? 
I: The only goal is that the soda is in the fridge and the fridge is closed. 

                                       
 

4 Videos of Rosie performing a variety of tasks using ITL are available at: 

https://www.youtube.com/channel/UCf5R6KZ2JDZKjR2-CjgCnEw. 

https://www.youtube.com/channel/UCf5R6KZ2JDZKjR2-CjgCnEw
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Rosie opens the fridge, picks up the soda, puts it down in the fridge, and closes 
   the fridge. 
R: I'm ready for a new task  
I: Store the apple. 
Rosie does all the steps of storing the apple without further instruction. 
R: I'm ready for a new task 

Figure 2-8: Rosie's kitchen task 

Rosie uses the knowledge it already has to decide how to act. Once Rosie 

has learned the goal of the move or store task, it plans how to execute the task. 

In these Robot tasks, the agent is moving around in the world during the dialog, 

so Rosie needs to keep track of its current state in the world. Lucia grounds each 

sentence to that current state, since objects will move around and doors will 

open and close, etc. 

This is a fairly simple script, but Mininger (2021) has built the ITL 

capability in Rosie to do diverse tasks, both goal-based and procedural, using 

diverse actions, physical, mental, and communicative, and diverse control 

structures. This corpus of sentences greatly expands the language structures 

and meanings Lucia needs to handle, including language to describe time 

intervals, conditional or repeated execution, interrupts, naming people to 

interact with, and questions Rosie should ask or messages it should deliver. 

2.2 Sentence Corpora 

The development of Lucia’s knowledge of language and processing has been done 

incrementally, one sentence at a time. Three different corpora of ITL sentences 

have been used, as Figure 2-9 shows. The Baseline corpus of 207 sentences that 

was used for the original Lucia development was selected from a much larger list 

of sentences used with Rosie to give a broad range of linguistic phenomena. The 

two other corpora, one for Games and Puzzles (J. R. Kirk, 2019) and one for 

Robot Tasks (Mininger, 2021), were built by concatenating all the sentences from 

all the scripts used for those respective domains, and then selecting all the 

unique sentences from that list. 
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Figure 2-9: A comprehension algorithm for Rosie 

Each sentence must be grounded to the current world state, which 

changes as Rosie executes a script. To test Lucia on each sentence 

independently, different world states are set up for each sentence when 

necessary. Appendix 1 lists all the unique sentences for each corpus, along with 

some additional information on the development needed for each sentence and 

the world models required. 

 These sentences were developed by James Kirk and Aaron Mininger, with 

help from John Laird. They created the sentences that were needed to provide 

instruction for each of the tasks implemented. They also determined what the 

output message should be for each sentence. In developing the sentences and 

messages, there was a preference to reuse existing message and grammatical 

structures. Thus, some of the sentences have somewhat tortured grammatical 

structure, and the message structures can be similarly idiosyncratic. 

Historically, during the development of the Rosie agent, there have been 

two different versions of the comprehension algorithm. The first we call the Laird 
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parser, a system built by John Laird that was inspired by construction grammars 

but did not use the ECG formalism and instead used an ad-hoc grammar 

developed incrementally in parallel with Rosie. Later Lucia was created to take 

its place. Development of Rosie was done with the Laird parser, and the messages 

it produces are used as a “gold standard” reference for the development of Lucia, 

although some of the resulting messages are idiosyncratic due to the ad-hoc 

nature of their development. These sentence/message pairs were given to the 

Lucia project as is, and Lucia must turn each input sentence into a correct 

internal message with the information needed to allow Rosie to do the rest of the 

reasoning necessary to learn the task. If a message does not convey the right 

meaning, Rosie will fail in learning its task. As we shall see Chapter 3, Lucia and 

Rosie can handle a much larger space of sentences than those in these corpora. 

2.3 Knowledge of the World 

There are two main interfaces between the Lucia Comprehender and Rosie 

Operations modules of the Rosie agent, called Shared World Knowledge and 

Action Messages in Figure 2-2. For Rosie to act on messages produced by Lucia, 

linguistic units such as action verbs and referring expressions need to be 

represented in terms of the shared knowledge. This world knowledge has two 

major parts: information about the current perceived scene in working memory 

(WM), and information kept permanently in long-term declarative memory (LTM). 

The LTM knowledge includes several types: fixed items that define perceptual 

symbols and concepts, long-term information about the environment such as a 

map of the building or information about known people and places, and 

information about objects the agent has seen previously but that are not 

currently visible. 

The language used to refer to items in the world can vary substantially. 

For example, the green block can refer to any object of category block that has 

the color green. However, suppose there are three green blocks in the current 

scene. In that case, a longer phrase such as the green block on the stove may be 

needed to identify a specific block. Therefore, Lucia must incorporate the 
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flexibility to specify things in the world in a variety of ways. This will be discussed 

further in Chapters 3, 4, and 5. 

2.3.1 Perceptual properties 

Many lexical items refer to properties of object, such as colors, shapes, and sizes. 

Information about each of these properties is stored in LTM, with a unique 

handle for each. Handles are arbitrary symbols needed to internally identify 

uniquely an element of Rosie’s world knowledge, independent of language. The 

strings for some handles contain English words to aid the developers, but these 

words mean nothing to Lucia or Rosie. Rather, a handle provides a necessary 

level of indirection between a word and its internal meaning. Lucia’s knowledge 

of language includes handles that are part of the meaning representation of 

many lexical items. When such a word is grounded, a retrieval is made from LTM 

using that handle as the cue. Table 2-1 shows some correspondences: 

Table 2-1: Handles for perceptual properties 

Color Word Handle Shape Word Handle Size Word Handle 

red red1 sphere sphere1 tiny tiny1 

green green1 triangle triangle1 small small1 

blue blue1 rectangle rectangle1 medium medium1 

orange orange1 square square1 large large1 
 

 Internally, these handles are associated in LTM with the agent’s knowledge 

of its perceptual system. For instance, red1 is a handle applied by Rosie’s visual 

system to the color property of an object that is seen as being in the red part of 

the color spectrum. The form-meaning mapping for the word red includes this 

handle. 

2.3.2 Objects and relations in the World Model 

Rosie has a World Model in working memory that represents the objects that its 

visual perception system is currently aware of, as well as visible locations and 

spatial relations between those things. A typical World Model consists of a list of 

objects and locations, a list of spatial relations, and a special entry for Rosie 
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itself. A representation of the objects and locations in a world model instance 

that was used for developing Lucia for the Baseline corpus is given in Table 2-2. 

Table 2-2: Objects and locations in a simple World Model 

ID Handle Predicates 
O6 large-orange-triangle1 category(block) color(orange1) indicated(pointed)  

shape(triangle1) size(large1) 

O7 small-red-triangle1 category(block) color(red1) shape(triangle1)           

size(small1) 

O8 medium-green-block1 category(block) color(green1) shape(rectangle1)           

size(medium1) 

O9 large-green-block1 category(block) color(green1) shape(rectangle1)           

size(large1) 

O10 large-green-sphere1 category(block) color(green1) shape(sphere1)           

size(large1) 

O11 small-orange-triangle1 category(block) color(orange1) shape(triangle1)           

size(small1) 

O12 medium-purple-triangle1 category(block) color(purple1) shape(triangle1)           

size(medium1) 

O13 small-green-box1 category(block) color(green1) shape(box1) 

size(small1) 

O14 conference-room-lights1 category(fixture) shape(lights1) 

L2 1 category(location) door(closed) name(pantry) 

L3 2 category(location) door(closed) heat(off) 

name(stove) 

L4 3 category(location) door(closed) name(garbage) 

L5 4 category(location) name(sink) 

L6 6 category(location) name(table) 

L7 7 category(location) name(waypoint) 

L8 8 category(location) name(conference) 

property(current) spatial-shape(room1) 

L9 office1 category(location) name(office) spatial-shape(room1) 

L10 building1 category(location) name(building) 

spatial-shape(building1) 

L11 loc-main1 category(location) name(main1) spatial-shape(room1) 

L12 loc-soar1 category(location) name(soar1) spatial-shape(room1) 

T1 trash1 category(block) shape(trash1) 

 

 The IDs are used in Soar as the primary way to reference these items. They 

are arbitrary and unique, with a single letter followed by one or more digits. The 

Properties shown here are the ones that Lucia can use to ground referring 

expressions in the language to these objects in the World Model. The indicated 

property on O6 means that the instructor is currently pointing to this object. 
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This is used to ground a deictic pronoun such as this or that. There are a number 

of additional properties on these objects not shown in the table that indicate 

things such as spatial position or affordances. These are important to Rosie in 

its planning of actions, but do not connect to Lucia or language. 

Table 2-3: Spatial relations in a simple World Model 

Type Instances 
in1 in1(O7, L2)        in1(O14, L8) 

left-of1 left-of1(O8, O9) 

right-of1 right-of1(O9, O8) 

on1 on1(O8, L3)        on1(O6, O7) 

 

Table 2-3 shows the spatial relations in the same example World Model, 

referencing the objects shown above. For example, it shows that O7, the small 

red triangle, is in the pantry (L2), that the medium green rectangle (O8), is to the 

left of the large green rectangle (O9), that O8 is on the stove (L3), and that O6 is 

on O7. 

 Given this world model, Lucia can ground referring expressions to the 

objects in the world. Table 2-4 shows examples of sentences with the referring 

expressions and the objects in the world that they are grounded to in italics. 

Table 2-4: Examples of grounding to the World Model 

Pick up the green sphere (O10). 

Pick up the green block (O8) on the stove (L3). 

Move the orange triangle (O6) on the red triangle (O7) to the stove (L3). 

The goal is that the box (O13) is in the office (L9). 

If you see some trash (T1) then throw it (T1) away. 

2.3.3 Actions, concepts, and the environment 

In addition to the perceptual properties, a number of other words and phrases 

are grounded to items in LTM. The grounding retrieves representations from LTM 

that provide important information to Rosie. Actions are grounded to their 

representations in LTM using a handle that is defined in the ECG grammar. For 

example, for the sentence Pick up the green sphere. the pick up action is attached 

by the grammar to the handle pick-up1. The action retrieved from LTM by this 

handle defines an action procedure labeled internally as op_pick-up1. Other 
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details returned with the action are information Rosie needs to perform the 

action, but those details don’t influence language comprehension. 

This is a general property of grounding referents in the action messages: 

the language provides enough information to identify the desired entity, and the 

representation of that entity has additional information that is needed for the 

agent to act on. This is part of the difference between comprehension and 

understanding. 

 Concepts such as goal, north, or meters are also retrieved from LTM in a 

similar way. Again, Lucia knows only the handle specified for a word to use as a 

cue to retrieve the item, and Rosie knows how to use the additional information 

that is retrieved. Another kind of information in LTM is knowledge about the 

environment, such as a labeled map of the building, which includes rooms, their 

location, and sometimes their possible contents. This information is retrieved 

based on cues for either a name or a handle. 

2.4 Messages as Sentence Meanings 

The input-output relation for Lucia can be thought of as a function that takes 

two arguments, a new input sentence and the current agent state, and produces 

an action message. Previous sections have described the input sentences and 

the agent’s world knowledge. This section describes, at a high level, the structure 

of the action messages that Lucia can send to Rosie. 

There is a fixed set of action messages in Rosie. These were developed by 

James Kirk, Aaron Mininger, and John Laird to be effective in instructing Rosie 

without any consideration for Lucia. Each message has a type and a list of 

arguments. The descriptions here are organized by case studies. As shown below, 

each case study shows an example sentence that produce each type of message, 

along with the structures produced for that type of message. Each example is 

labeled by the identifier it has in the corpus listings in Appendix 1, with “B-” 

sentences from the Baseline corpus, “G-” sentences from the Games corpus, and 

“R-” sentences from the Robot corpus. 
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We use an abbreviated notation for messages and other Soar data 

structures to show only the most important aspects. A message is shown as a 

type name followed by its arguments in parentheses. Some arguments are 

themselves complex structures that are abbreviated. Action and object 

descriptions derived from grounding are shown simply as their handles or 

internal identifiers, which lead internally to complex data structures. 

2.4.1 Simple messages and quoted sentences 

Some sentences are very simple, and those messages need no arguments at all. 

For example, there are times when the instructor needs to responde to a yes/no 

question asked by Rosie, or tell Rosie that an instruction is done. 

Case Study 2.1: Simple sentences 

B-043 Yes. 

yes() 

B-060 No. 

no() 

B-103 Done. 

finished() 

Case Study 2.2: Quoted sentences 

R-087 "Hello Charlie”. 

quoted-sentence(|Hello Charlie|) 

 

In the case of a quoted-sentence message, the argument is the actual 

string that was quoted in the input. Quoted strings are used by Rosie to 

represent questions or messages Rosie should say to a person it will interact 

with. 

2.4.2 Declarative sentences 

Case Study 2.3: Definitions 

Often a sentence will identify or describe some object. An object-definition 

message is used for expressions that refer to some object, usually used as an 

answer to a question from Rosie. An adjective-definition is used to define a new 

word that denotes a property. 
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R-123 The pantry. 

object-definition(pantry1_6) 

B-044 Octagon is a shape. 

adjective-definition(word(octagon), property(shape)) 

 

An object-description message can describe a property of an object, a 

relation an object is in, or the definition of a goal state to be achieved. 

Case Study 2.4: Descriptions of objects 

B-001 The sphere is green. 

object-description(O10, predicate(green1)) 

B-007 The red triangle is on the stove. 

object-description(O7, on1(L3)) 

R-068 You are done. 

object-description(rosie, task-completed) 

R-072 Alice is in Alice's office. 

object-description(person-alice1, in1(loc-alice-off1)) 

 

Case Study 2.5: Goal definitions 

B-145 The goal is that the box is in the office.  

object-description(concept(goal), 

  subclause(O13, in1(L9))) 

R-009 The only goal is that the fork is on the table. 

object-description(concept(goal), modifier1(only1), 

  subclause(action(is1), O530, on1(O118)) ) 

R-117 The goal is that the fork is in the drawer. 

object-description(concept(goal), 

  subclause(action(is1), fork1_10, in1(drawer1_4))) 

R-015 The only goal is that the soda is in the fridge and the fridge is closed. 

object-description(concept(goal), modifier1(only1), 

  subclause( 

    subclause(action(is1), soda1_12, in1(fridge1_1)), 

    subclause(action(is1), fridge1_1, not-open1))) 

G-006 The goal is that a red block is on a green block and the red 

  block is below an orange block. 

object-description(concept(goal), 

  subclause( 

    subclause(action(is1), NO-ID1, on1(NO-ID1)), 

    subclause(action(is1), NO-ID1, below1(NO-ID3)))) 

 

A subclause is used for a clause that defines a goal. Often a goal is stated 

as “The only goal is that …” to indicate that Rosie does not have to ask for 

additional goals. If a sentence defining a goal has a conjunction of two goal 

conditions, then the subclause of the message points to a structure that in turn 
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has two subclauses. The messages for the Games and Robot corpora define “is1” 

as an “action.” This is an anomaly of the message formats used, and was not 

used in the Baseline corpus. 

2.4.3 Commands 

Many of the messages used with Rosie have the message type command. Each 

such message specifies an action to be performed at that point in a task, and 

most also have an object argument to be acted upon. Some cases have a modifier 

for the action. 

Case Study 2.6: Simple commands 

Some commands have just an action with no arguments. 

B-082 Go. 

command(initiate-go1) 

B-051 Go forward. 

command(initiate-go1) 

B-036 Stop. 

command(initiate-stop1) 

R-022 Scan. 

command(op_scan1) 

 

 Both B-051 and B-080 produce the same message. Lucia figures out that 

the word forward does not change the meaning in this case. 

Case Study 2.7: Communication commands 

In the Robot corpus, some commands tell the robot to say something to a person 

in the environment. 

R-039 Ask "What drink would you like?". 

command(op_ask1, |What drink would you like?|) 

R-041 Ask Alice "What drink would you like?". 
command(op_ask1, agent(person-alice1), |What drink would you like?|) 

R-034 Say "Hello there!" to Alice. 
command(op_ask1, |What drink would you like?|, to1(person-alice1)) 

R-086 First, ask "What is the message?". 

command(op_ask1, modifier(first1), |What is the message?|) 

 

 Both R-041 and R-034 specify the name of a person to talk to, but the 

structure of both the sentence and the message is different. In R-086, first is 

treated as a modifier of the action. 
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Case Study 2.8: Commands with objects 

Many commands tell the robot to take some action on a given object. Some of 

these also specify a target location for the action. 

B-009 Pick up the green sphere. 

command(op_pick-up1, O10) 

B-017 Put that in the pantry. 

command(op_put-down1, O6, in1(L2)) 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O8) 

B-028 Pick the green block that is small. 

command(op_pick-up1, O13) 

B-032 Move the green rectangle to the left of the large green rectangle to the 

  pantry. 

command(move1, O8, to1(L2)) 

R-001 Find the fork. 

command(op_find1, NO-ID1(fork1)) 

R-002 Move the fork onto the table. 

command(move1, O530, on1(O118)) 

 

 B-009 shows a simple case with an object uniquely identified. In B-017 

that refers to the object the instructor is pointing to. B-020, B-028, and B-032 

show different linguistic forms to select a specific object by adding a qualifying 

expression to a simple noun phrase that is semantically ambiguous. In the 

messages, only the result of resolving this ambiguity appears. B-032 and R-002 

show a more complex action verb that requires a target location, and in B-032 

Lucia sorts out the correct interpretations of the two prepositional phrases. For 

R-001 Lucia creates a new data structure for the fork with new-object-id1 as its 

handle since there is no fork currently in the world model. Here and hereafter 

the notation NO-IDn is a shorthand for new-object-idn. 

Case Study 2.9: Commands with multiple objects 

Some commands have multiple objects. 

R-084 Tell Charlie a message. 

command(tell1, person-charlie1, NO-ID34(message)) 

R-096 Serve Mary a desired drink. 

command(op_serve157, chef1_16, NO-ID72(drink1, modifier1(desired1))) 

R-101 Permanently remember the fridge as the storage location of a juice. 

command(op_remember1, modifier(permanent1), 

  fridge1_1, NO-ID7(storage1), NO-ID8(juice1)) 
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 The representation here for Charlie is an entry for a known object in LTM, 

whereas the representation for Mary comes from the world model when Rosie 

knows that Mary is also the chef in this situation. 

Case Study 2.10: Navigation commands 

B-035 Orient north. 
command(initiate-orient1, cardinal-direction1(north1)) 

B-040 Turn around. 

command(initiate-turn1, relative-direction1(around1)) 

B-052 Turn right. 

command(initiate-turn1, relative-direction1(right1)) 

R-026 Turn right twenty-five degrees. 

command(op_turn1, relative-direction1(right1), number(25), unit(degrees)) 

B-054 Go to the kitchen. 

command(op_go-to-location1, to1(L28)) 

R-008 Go to the starting location. 

command(op_go-to-location1, to1(NO-ID1(location), modifier1(starting1))) 

 

 Most of these command messages are straightforward. R-026 gives 

quantitative turn angle, which is represented on the message with a number and 

a unit type. R-008 is more complicated because the starting location is not 

usually something in the immediate vicinity of the robot. Lucia creates a new 

data structure for a location labeled as new-object-id1 and a modifier starting1 

is added. It is up to Rosie to search its memories to find a location that was 

marked as the starting location for the current task. 

Case Study 2.11: Terminated commands 

A number of commands have termination conditions that use clauses starting 

with until. The messages used with the Baseline corpus represented these with 

an until-clause structure. With the Robot corpus a different message format was 

used, as in R-045, in order to agree with the format for messages specifying a 

time period, as in R-159. 

B-119 Drive until you sense a wall. 

command(initiate-go1, 

  until-clause(agent(rosie), action(initiate-sense1), NO-ID3(wall1))) 

B-120 Drive down the hall until you reach the end. 

command(initiate-go1, hall1, 

  until-clause(agent(rosie), action(initiate-sense1), NO-ID10(end1))) 
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R-045 Explore until you see a stapler. 
command(explore1, 

  temporal-clause(rosie, op_sense1, until1, stapler1), 

  temporal-predicate(unitl1)) 

R-159 Observe Bob for ten minutes. 
command(observe1, person_29,  

  temporal-clause(number(10), unit(minutes)), 

  temporal-predicate(for1)) 

 

Case Study 2.12: Enabled commands 

In the Games corpus there are a number of sentences which are command 

sentences preceded by You can … . The meaning of these within the context of a 

game or puzzle is that in some future situation the action defined by the 

command is available. 

G-004 You can move a clear block onto a clear object. 

command(agent(R5), action(move1), action-modifier(can), 

        NO-ID1(clear), on1(NO-ID2(clear))) 

2.4.4 Conditionals 

Many sentences in our corpora are conditional, of the form If <declarative-

condition> then followed by either a command or declarative clause. 

Case Study 2.13: Conditional sentences 

B-046 If the green box is large then go forward. 

conditional(if-subclause(O13, predicate(large1)), 

            then-subclause(action(op_go-to-location1))) 

G-005 If a location is not below an object then it is clear. 

conditional( 

  if-subclause(action(is1), modifier(negation), NO-ID8(location) 

               below1(NO-ID9(object))), 

  then-subclause(action(is1), NO-ID8(location), predicate(clear))) 

G-024 If the volume of a block is more than the volume of an 

  object then the block is larger than the object. 

conditional( 

  if-subclause(action(is1), 

               volume-of(NO-ID10(block)), 

               more-than(volume-of(NO-ID11(object)))), 

  then-subclause(action(is1), 

               larger-than(NO-ID10(block), NO-ID11(object)))) 
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G-011 If the number of the locations between a location and a covered location 

  is the number of the blocks that are on the covered location 

  then you can move it onto the former location. 

conditional( 

  if-subclause(action(is1), 

               number-of(NO-ID9(location, multiple), 

                         between(NO-ID7(location), 

                                 NO-ID8(location, covered))), 

               number-of(NO-ID10(block, multiple), 

                         on1(NO-ID8(location, covered)))), 

  then-subclause(agent(R5), 

                 action(move1), action-modifier(can), 

                 NO-ID10(block, multiple), on1(NO-ID7(location)))) 

 

 In these sentences there are often multiple references to the same object, 

and these coreferences have the same NO-IDn. If two different sentences have 

the same NO-IDn number, that is not a coreference but just an artifact of how 

the data was captured. 

2.4.5 Questions 

Lucia knows how to process several types of questions that are used in Rosie’s 

ITL scripts, and each type has a separate message type. 

Case Study 2.14: Object questions 

B-098 Is this red? 

object-question(O6, color(red1)) 

B-077 Is this a sphere? 

object-question(O6, shape(sphere1)) 

B-078 Is the green sphere on the table? 

object-question(O10, on1(L6)) 

Case Study 2.15: What-is questions 

B-096 What is this? 

what-is-question(O6) 

B-062 What is on the red triangle? 

what-is-question(predicate(on1, O7)) 

Case Study 2.16: Where-is questions 

B-048 Where is the red triangle? 

where-is-question(O7) 

Case Study 2.17: Predicate questions 

B-090 What color is the large sphere? 

predicate-question(O6, predicate(color)) 
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2.5 Evaluation 

There are several ways to evaluate a system like Lucia. Some would look only at 

the external performance as an input-output relation. Other methods would look 

at the system’s internal workings and compare these to appropriate criteria. This 

chapter is focused on an external view of the input-output relation of Lucia in 

its Rosie context, so here we only consider this type of evaluation. Other chapters 

will evaluate Lucia’s internal knowledge, processing, and mechanisms. 

 One way to do an external evaluation is to compare to other systems 

qualitatively, or quantitatively with respect to a benchmark if possible. Chapter 

1 gave a qualitative comparison of several systems to the five comprehension 

principles we defined there. We have found no relevant published benchmarks 

other than the one we published for Rosie and Lucia (Lindes et al., 2017). 

 Since Lucia is embodied in Rosie, another approach is to test Rosie’s 

behavior when using Lucia to do its sentence comprehension. Figure 2-10, which 

is based on the Figure 2-3, shows this approach, and two possible shortcuts. 
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Figure 2-10: Ways to test Lucia's output 
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 At the RS point in this schematic, we have a document that describes the 

final state of Rosie in the world after processing an entire ITL script, along with 

the sequence of actions it performed to get there. We also have documentation 

of expected results based on running Rosie with the Laird parser mentioned 

above. If these two documents are the same, it means Lucia produced a set of 

messages for that script sufficiently correct so that Rosie’s behavior was 

equivalent to that done with the Laird parser. We have done some testing in this 

way for Lucia in Rosie. 

 At the AM point we test Lucia’s output for each sentence against a gold 

standard message produced by the Laird parser for the same sentence using the 

same state of Rosie’s world knowledge, giving a more precise measure of the 

correctness of Lucia’s comprehension of each individual sentence. This is the 

technique used for most of our evaluation of Lucia’s embodied, end-to-end 

comprehension. 

 At the IR point we can do a validity check on an internal representation of 

the result which includes syntactic and semantic structure and grounding for a 

particular sentence. This can verify that the IR for that sentence is a complete 

and well-formed structure, but does not guarantee that all the semantic analysis 

and grounding were done correctly. Some of our sentences have been tested only 

at this level due to lack of sufficient time to develop the logic needed to map these 

IR structures into the often-idiosyncratic pre-defined message in the gold 

standard. Our testing at all three of these test points produces only a binary 

pass/fail result for each sentence, no other quality score is used. 

 At the RS test point, 9 of the 60 Games scripts have been completed and 

2 of the eight Robot scripts have been completed. For all these completed scripts, 

all the sentences are correct at the IR and AM test points, and the full scripts 

produce the expected results.  The results of testing all the sentences in the three 

corpora at the IR and AM test point are shown in Table 3-1. 
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Table 2-5: Results of testing5 

Corpus All 

Sentences 

Sentence 

Forms 

Dev 

Set 

Forms 

Working 

at IR 

Forms 

Working 

at AM 

Generality 

Ratio 

IR/AM 

Baseline 207 207 143 207 207 1.45/1.45 

Games 1,104 172 48 92 51 1.92/1.06 

Robot 228 160 60 115 110 1.92/1.83 

Total 1,539 539 251 414 368 1.65/1.47 

 

 The generality ratio shown is the ratio of the number of sentence forms 

working to the number of forms used for development to achieve that. The 

ratios defined this way are relatively small due to the fact that the sentences 

were developed to represent unique meanings not encountered before. The 

large difference between the ratios at IR and at AM is because we decided, due 

to the fact that the idiosyncrasies of the message formats for Rosie make it very 

hard to get the sentence interpretation right, to do further development of the 

grammar without completing the related interpretation. These data show how 

far we have come to date in covering the Rosie corpora. 

 

                                       
 

5 These data are as of 3 March 2022. 
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Chapter 3 Composable Knowledge of Meaning 

The primary goal of the language comprehension system we are building is to 

produce an actionable internal message from each input sentence. Each input 

sentence is a sequence of words that encodes some meaning that the speaker 

intends to convey. We call this sequence of words the form of the sentence, and 

the resulting internal message the meaning of the sentence. 

To make this transformation from form to meaning, a comprehension 

system needs knowledge of how to map form to meaning. Humans do this, and 

with knowledge that is general enough to be applied to many sentences never 

heard or seen before. Such generality is important for an artificial agent as well, 

so that it can respond flexibly and creatively. Achieving this generality of form-

meaning mapping requires that the knowledge of how linguistic forms map to 

their meanings be organized in units at word, phrase, and clause levels that can 

be composed in many different and novel ways. Therefore, Lucia needs 

composable knowledge of the meaning of language (CKM). 

CKM: Composable Knowledge of the Meaning of Language – Knowledge 

of the meaning of language is in composable units, called constructions, 

in order to have generality, so that it can be used to comprehend (E3C) 

many sentences that have never been previously experienced. 

Incremental, immediate interpretation processing (I3P) also requires 

compositionality so that each element of form, whether a word, a phrase, or a 

clause, can have its meaning immediately grounded and then combined with the 

ongoing interpretation of a sentence. It is important that the meaning produced 

for each sentence be correct. For Lucia to succeed in Rosie, it must provide 

semantic precision, the ability to produce a specific, precise, and accurate 

meaning-in-context for each sentence it processes. This precision must be at 

every level so that Rosie can understand exactly how it needs to act, internally 
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or externally, on each sentence it receives. Thus generality, incrementality, and 

semantic precision all require composable knowledge of meaning. 

 

3.1 Defining the Problem 

To achieve a model for transforming the form of each sentence to its meaning, 

the model must have knowledge of how the elements of language map to 

elements of meaning, and this knowledge must be compositional. This leads to 

a computational question: 

What representation of composable knowledge of meaning (CKM) 
is sufficient for the range of language to be comprehended? 

 

Form can be mapped to meaning at any level, for words, phrases, or 

clauses. A representation of knowledge of language as a large inventory of 

composable elemental pairings of form to meaning enables these elements to be 

composed in many different ways to provide generality. Constructing meaning 

piece by piece by composing instances of these composable form-meaning 

mappings provides a general way to construct the meanings of full sentences, as 

well as the ability to ground, or interpret, each element of meaning incrementally 

(I3P).  

 A possible approach to creating such a system of representation of 

knowledge of meaning comes from research in cognitive linguistics on an 

approach called construction grammar (CxG; Hoffman & Trousdale, 2013). We 

have chosen to adopt a specific formalism called Embodied Construction 

Grammar (ECG; Bergen & Chang, 2013) as the foundation for how we represent 

composable linguistic knowledge in Lucia. 

Commitment 2: Lucia uses ECG to represent composable knowledge of the 

meaning of language (CKM). 

In this chapter, after reviewing related work, we explore the general field 

of construction grammar theory, and explain the choice of ECG by describing its 

theory and formalism and how it has been used to represent a grammar that 

Lucia uses in Rosie. We also describe the process of developing this grammar, 
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and evaluate it with respect to the requirements for generality, incrementality, 

and semantic precision from composable knowledge of meaning. 

3.2 Related Work 

This section briefly reviews linguistic research relevant to this thesis and how it 

has led to the theory of construction grammar, and ECG in particular. 

3.2.1 Generative Linguistics 

Noam Chomsky (1957) began a revolution that launched the modern study of 

linguistics. Chomsky lays out theoretical principles which are fundamental to 

this approach. These principles, summarized under the term generative 

grammar, include: a distinction between competence and performance, that 

language can be understood in terms of a representation called deep structure 

and rules for transformation that produce a surface structure that can be 

communicated and interpreted, and that language is creative. 

Chomsky (1965, p. 4) defines competence as the knowledge an ideal 

speaker-hearer has of her language, and performance as “the actual use of 

language in concrete situations.” He excludes performance as of interest in his 

theory, saying: “a generative grammar is not a model for a speaker or a hearer. 

(p. 9)” 

This line of research has produced rich fruit in understanding what 

Chomsky calls competence. However, since we are concerned with modeling a 

“hearer” and “the actual use of language in concrete situations,” this theory has 

limited value for our purposes. Our work is clearly focused on performance. 

Nevertheless, this tradition gives us a resource of research on language 

phenomena, principles of linguistic creativity, and syntactic structure. 

3.2.2 Cognitive Linguistics 

Jackendoff (2003) describes how as early as 1963 a group of generative linguists, 

“pushed very hard on the idea that Deep Structure should directly encode 

meaning.” This led to a trend separate from mainstream generative linguistics to 
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seek ways of understanding meaning in terms of how humans represent and 

reason about concepts. 

 This movement began to flourish in the 1970’s. Roger Schank (1972) 

described a theory of natural language understanding based on concepts and 

their relationships. The basic idea that language is built on the human 

conceptual system is the foundation of the field now called Cognitive Linguistics. 

Schank and Abelson (1977) describe a theory that humans have “scripts” 

relating all the meaningful parts of a typical event, such as eating in a restaurant. 

Charles Fillmore (1976) began the study of an approach called Frame Semantics, 

which is both more detailed and more flexible than Schank’s scripts. 

 A different thread of research was advanced by Lakoff and Johnson (1980), 

drawing on work by several others in the 1970’s. They argued that abstract 

concepts are built from metaphorical projections of more concrete physical and 

social concepts. Johnson (1987) carries this approach further, exploring “ways 

in which structures of bodily experience work their way up into abstract 

meanings and patterns of inference.” He introduces the concept of an image 

schema as a schematic mental representation of an object or event. 

 This same idea has been used by a number of others. Mandler & Pagán 

Cánovas (Mandler & Pagán Cánovas, 2014), for example, describe the 

relationship between image schemas and the development of concepts in 

children. Lakoff (1987) takes a different direction by exploring how the mind 

represents categories, and relates these ideas closely with the idea of image 

schemas. 

 This body of work has led to the development of the theory of embodied 

cognition and its relation to language, and to the concept of embodied 

comprehension. McNerney (2011) summarizes this idea as “our cognition is 

influenced, perhaps determined by, our experiences in the physical world.” 

Several papers develop the theme (Gallese & Lakoff, 2005; Johnson & Lakoff, 

2002; Lakoff, 1990, 2012). Bergen (2012) summarizes a large body of empirical 

evidence that perceptual and motor areas of the brain are activated during 
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language comprehension, which suggests that language comprehension relies 

on making connections between language and embodiment. 

3.2.3 Construction Grammar Theory 

Charles Fillmore (1988) presented a new perspective on linguistic structure, 

which he called “Construction Grammar” (Fillmore et al., 1988). This approach 

“gives central place to the notion of grammatical construction” and differs “from 

transformational grammars in not having transformations.” The work of Fillmore 

and others represents the birth of a radically different approach to analyzing 

linguistic structure and the relationship between syntax and semantics. The 

fundamental idea that has emerged from this work is the idea of a construction 

as a concept that maps a certain form to its meaning, and that comprehending 

a sentence involves composing smaller mappings to get the sentence meaning. 

There are many examples of further work in this area since 1988 

(Goldberg, 1995, 2003, 2006; Jurafsky, 1992; Kay & Fillmore, 1999; Michaelis, 

2006). Hoffman and Trousdale (2013) edited an Oxford Handbook with 27 papers 

by different authors on different views of construction grammar (CxG) theory. In 

2017, AAAI held a Spring Symposium on Computational Construction Grammar 

and Natural Language Understanding (AAAI, 2017), including a paper about 

work being done toward this thesis (Lindes & Laird, 2017b). As construction 

grammar theory in general, and the ECG approach (Bergen & Chang, 2013) in 

particular, are central to our theory, we describe them in more detail. 

3.2.4 Goldberg’s Five Principles 

Adele E. Goldberg (2013) laid out five principles which are common to most 

theories of construction grammar and provide a good approach to defining this 

field. Here we summarize and paraphrase her definitions of these principles in a 

way that shows how they apply to Lucia. 

1) Constructions are learned pairings of form and meaning, at many levels. 

Lexical items have associated meanings and/or grammatical functions. 

Similarly, larger structures, such as noun phrases, clauses, and complete 
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sentences have meaning structures associated with their forms. The meaning of 

a sentence can be built up by composition of the meanings of its components. 

2) Construction grammar approaches are based on starting with the 

surface structure, the sequence of lexical items, and composing their meanings 

into larger structures. Rather than transformation of deep structure into surface 

structure as in the generative grammar approach (Adger, 2003), comprehension 

begins with surface structure and uses the form patterns specified by 

constructions to compose a syntactic and semantic analysis of a sentence. 

3) Constructions are interrelated in a network. Constituency relations 

enable composition, and a hierarchy of types allows some constructions to be 

very specific while also belonging to a more general class. This type hierarchy 

enables having semantic precision and syntactic generality at the same time.  

4) Goldberg (2013, p. 23) states that “Constructionist approaches do not 

rely on innate universal principles.” Instead, there is wide variation in 

constructions over the close to 7,000 languages in the world, which are different 

from each other in many important ways. 

5) Knowledge of language is usage-based. Goldberg (2013, p. 27) says: 

“Particular languages are learned by generalizing over utterances that a learner 

has heard used” and comprehension involves “combining … basic form-function 

correspondences.” She goes on to say (p. 28) that “Creativity stems from 

generalizing instances to form more abstract constructions.” These ideas are 

similar to the process used to develop Lucia’s grammar, and to ideas on language 

acquisition we discuss in Chapter 6. 

3.2.5 ECG in Context 

In the early 2000’s, a research group at UC Berkeley, under Professors Jerome 

Feldman of Computer Science and George Lakoff of Linguistics, developed a 

constructionist theory of grammar called Embodied Construction Grammar (ECG; 

Bergen & Chang, 2013; J. Feldman et al., 2009). Several PhD dissertations came 

out of this work (Bryant, 2008; Chang, 2008; Dodge, 2010; Mok, 2009). This 

theory provides a formal language for defining a constructionist grammar that 
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includes both lexical and composite constructions, both constituent and type 

hierarchies, and a model for representing complex meaning structures. 

 The ECG theory is a fruit of the research on cognitive linguistics and 

construction grammar since the 1970’s. Its approach to usage-based syntax is 

based on construction grammar theory (Fillmore, 1988; Goldberg, 1995, 2006). 

Its theory of how to represent meaning is based on the work in cognitive 

linguistics on scripts, frames, and image-schemas (Fillmore, 1976; Fillmore & 

Baker, 2009; Johnson, 1987; Lakoff, 1987; Lakoff & Johnson, 1980; Schank, 

1972; Schank & Abelson, 1977). This theory, and a well-developed formalism, 

make ECG a tool that has worked well in the development of Lucia. 

 The research on ECG at UC Berkeley did not include consideration of 

cognitive processing as related to our principles of I3P and GCM. Neither did it 

make a connection to real robots to achieve E3C. Several years after the original 

development of ECG, additional work was done to connect the ECG parser 

(Bryant, 2008) to a robot (Eppe, Trott, & Feldman, 2016; Eppe, Trott, Raghuram, 

et al., 2016). These additions are a step toward E3C, but they are not built into 

the language processing nor related to models of human cognitive processing. 

 When considering how the constructionist approach used in this thesis 

could be compared to a possible generative approach, our claims are very limited. 

This thesis shows a detailed implementation of how ECG in particular can be 

used to perfrom E3C in a way that also does I3P using GCM. This is an existence 

proof. We make no claims about whether or not similar end results could be 

achieved using a generative approach, though we have not found any system 

that does so.  When and if such a system is built, only then will it possible to 

compare the two approaches. 

3.3 Embodied Construction Grammar in Lucia 

Lucia uses a pre-existing formal language for Embodied Construction Grammar 

(ECG; Bryant, 2008) to represent its knowledge of grammar. This is a declarative 

language that provides a way of describing mappings from form to meaning. A 

grammar is represented as a large network of items called constructions and 
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schemas. Each construction describes a pattern of input form and how it maps 

to a corresponding meaning, and the meanings are represented by schemas. 

Both constructions and schemas are organized in type hierarchies that make 

possible both semantic precision and syntactic and semantic generality. 

3.3.1 An Example Sentence 

To give a reference point for discussing the details of ECG, Figure 3-1 shows a 

simplified diagram of the data structures resulting from processing a simple 

sentence. At the bottom is the input sentence: Pick up the green sphere. At the 

top is the action message created at the end of comprehension, in this case a 

command with two arguments: an internal identifier for the pick up action, and 

an internal identifier for the object referred to by the green sphere. Green arrows 

represent grounding links to the agent’s knowledge on the periphery.  

 

Figure 3-1: Results of processing a simple sentence 

In the middle of the figure is a tree structure representing the 

comprehension state at the end of comprehending this sentence, with each blue 

box representing an instance of a construction. The comprehension algorithm 

builds these instances one at a time, in the order in which they are numbered. 
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3.3.2 Types of Constructions 

There are three types of constructions: lexical, composite, and general. All types 

have both a form part and a meaning part. The form part of a lexical construction 

matches a single word or a fixed sequence of words. A composite construction 

matches a sequence of other constructions that are constituents of a larger 

linguistic unit. A general construction does not specify its own form pattern, but 

can be referenced by other constructions as a generalization. The complete 

network of constructions forms two overlapping hierarchies: a compositional 

hierarchy defined by the constituents of composite constructions, and a type 

hierarchy formed by constructions labeled as subcases of general constructions. 

3.3.3 An ECG Example 

In Figure 3-1, there are eight construction instances: five lexical constructions 

for the five words in the sentence (rectangles), and three composite constructions 

(rounded rectangles). Each of these instance nodes in the tree is a complex data 

structure that includes the name of the construction and its generalizations, 

connections to its constituents for composite constructions, and its meaning 

schema as populated with the appropriate semantics. To get some idea of the 

details of the formalism, Figure 3-2 shows the items involved in building the 

TransitiveCommand node. On the left is the full description of the 

TransitiveCommand construction, and on the right are the meaning schemas 

that it evokes and populates. 

construction TransitiveCommand

  subcase of Imperative

  constructional

    constituents

      verb: ActionVerb

      object: RefExpr

  meaning: ActOnIt

    constraints

      self.m.action <--> verb.m

      self.m.object <--> object.m

schema Action

  roles

    action

    direction

    location

schema ActOnIt

  subcase of Action

  roles

    object

 

Figure 3-2: An example of ECG items 
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 TransitiveCommand, a subcase of Imperative, is a composite construction 

which has two constituents: an ActionVerb and a RefExpr (short for Referring 

Expression). It also evokes an instance of ActOnIt, a subcase of Action, as its 

meaning. The constraints shown are used to populate the roles of the meaning 

structure from the meanings of the constituents, thus composing meanings into 

larger meanings. In Figure 3-1 this construction is instantiated as node 8, with 

nodes 3 and 7 as its constituents. Not shown in the figures is that PickUp is a 

subcase of ActionVerb, to match the verb constituent of TransitiveCommand. 

3.3.4 Hierarchies and Recursion 

Constructions in ECG exist in a network that includes a composition hierarchy 

and a type hierarchy. In Figure 3-2 we see examples of both kinds of connections. 

The TransitiveCommand construction has two typed constituents for downward 

links in the composition hierarchy, and it is a subcase of Imperative, giving an 

upward link in the type hierarchy. 

 Recursion has been proposed as a fundamental principle of human 

language. Hauser, Chomsky, and Fitch (2002, p. 1569), for example, claim that 

“the faculty of language … includes … the computational mechanisms for 

recursion, providing the capacity to generate an infinite range of expressions 

from a finite set of elements.” They even hypothesize that recursion “is the only 

uniquely human component of the faculty of language.” The ECG formalism 

includes recursion, and Lucia’s ECG grammar for Rosie uses it. For example, a 

referring expression can be made up of a noun phrase and a prepositional phrase 

or relative clause, with these modifiers including another noun phrase or 

referring expression. We discuss and show examples of recursion below. 

3.3.5 The ECG Formalism 

Bryant (2008, p. 43) defined a formal language for writing declarative grammars 

in ECG. We use his exact formal BNF definition of this language, simply changing 

the format to conform to the syntax used by the ANTLR tool (Parr, 2012) used to 

build a program to translate ECG grammar into knowledge in Soar. Our version 

of the formal definition of ECG is shown in Figure 3-3. 
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Figure 3-3: A formal definition of the ECG language 

// An ANTLR grammar for ECG, adapted from Bryant (2008) 

// 

 

grammar ECGL; 

@header {package edu.umich.plprelim.ecgantlr;} 

 

ecgl            : (schema | cxn)+ ; 

 

cxnKind         : ('abstract' | 'general')? 'construction' ; 

cxn          : cxnKind IDENT parentL? cBlock? fBlock? mBlock? ; 

cBlock          : 'constructional' blockType constitsL? constraintL? ; 

fBlock          : 'form' blockType  constraintL? ; 

mBlock          : 'meaning' blockType evokedL? rolesL? constraintL? ; 

 

schemaKinds     : ('feature' | 'semantic')? 'schema' ;  

schema          : schemaKinds IDENT parentL? evokedL?  rolesL? constraintL? ; 

 

role            : IDENT (':' typeSpec)? ; 

rolesL          : rolesL role | 'roles' ; 

 

evokedElement   : 'evokes' typeSpec 'as' IDENT ; 

evokedL         : evokedElement evokedL? ; 

 

constitsL       : constitsL constit | 'constituents' ; 

constit         : 'optional' IDENT ':' IDENT constitAnno? 

                | 'extraposed' IDENT ':' IDENT constitAnno? 

                | IDENT ':' IDENT constitAnno? ; 

constitAnno     : '[' probL ']' ; 

probL           : PROB | PROB ',' PROB ; 

 

constraintL     : constraintL constraint | 'constraints' ; 

constraint      : 'ignore'? (var chainOperator var | var '<--' identOrString) ; 

chainOperator   : '<-->' | 'before' | 'meets' ; 

var             : SLOTCHAIN | IDENT ; 

identOrString   : EXTERNALTYPE | IDENT | STRING ; 

 

subcaseOf       : 'subcase' 'of'? ; 

parentL         : parentL ',' IDENT | subcaseOf IDENT ; 

blockType       : (':' typeSpec)? ; 

typeSpec        : IDENT | EXTERNALTYPE ; 

 

IDENT           : [A-Za-z] [A-Za-z0-9_\-]* ; 

SLOTCHAIN       : (IDENT '.')+ IDENT ; 

EXTERNALTYPE    : '@' [0-9a-zA-Z.\-_]+ ; 

STRING          : '"' .*? '"' ; 

PROB            : '.' [0-9]+ | '1.0' | '1' ; 

COMMENT         : ('#' | '//') .*? ('\r' | '\n')+ -> skip ; 

WS              : [ \t\r\n]+ -> skip ; 
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3.4 Lucia’s ECG Grammar for Rosie 

Lucia processes input sentences using a large network of ECG items which 

constitute what we call its grammar. The grammar consists of a number of files 

containing definitions of constructions and schemas according to the ECG 

formalism. This is the compositional knowledge of meaning (CKM) Lucia uses, 

and it is automatically translated by a custom-built compiler into Soar’s long-

term memories for processing. 

The items described in the grammar are abstract in the sense that they 

are like templates that can be applied to many situations. Processing instantiates 

them to form concrete nodes in the comprehension state. The items in Figure 

3-2 are abstract items, while the nodes in Figure 3-1 are concrete instantiations. 

The entire Lucia ECG grammar for Rosie consists of 517 constructions and 

175 schemas, a total of 692 items. In this section we examine parts of this 

grammar in both abstract form and with concrete examples. It is impossible here 

to cover all the details, and Appendix 2 provides more detail of the complete 

grammar. 

3.4.1 Lexical Items 

The most specific constructions are ones that define lexical items directly. To 

illustrate we consider the same sentence shown in Figure 3-1. 

Case Study 3.1: A transitive command 

B-009 Pick up the green sphere. 

command(op_pick-up1, O10) 

 

 Figure 3-4 shows all the lexical constructions used for this sentence, along 

with the general constructions they are subcases of. As a convention, we name 

lexical constructions in all capital letters. Every lexical construction has a form 

constraint that sets its orth slot to the string constant that is the spelling, or 

orthography, of that item. The orth property may include multiple words, in 

which case that construction will recognize that sequence as a single lexical item, 

for example for a preposition such as to the left of. 
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 Most lexical items also name meaning schemas to be evoked and/or have 

meaning constraints that set the values of the slots, or roles, of those schemas. 

For instance, THE will evoke a RefDesc schema (short for Referent Descriptor) 

through its NPSpecifier generalization, GREEN evokes a PropertyDescriptor 

directly, and SPHERE-noun evokes a specific Sphere schema. The constraints 

under a meaning clause set values of the schema’s roles, as where THE sets its 

givenness to “definite” and GREEN sets the name of the color to “green1.” 

general construction ActionVerb 

 

construction PICK 

   subcase of ActionVerb 

   form 

      constraints 

         self.f.orth <-- "pick" 

 

construction UP 

    form 

        constraints 

            self.f.orth <-- "up" 

 

general construction NPSpecifier 

  meaning: RefDesc 

 

general construction Determiner 

   subcase of NPSpecifier 

 

construction THE 

   subcase of Determiner 

   form 

      constraints 

         self.f.orth <-- "the" 

   meaning 

      constraints 

         self.m.givenness <-- "definite" 

general construction Property 

 

construction GREEN 

   subcase of Property 

   form 

      constraints 

         self.f.orth <-- "green" 

   meaning: PropertyDescriptor 

      constraints 

         self.m.class <-- @color 

         self.m.name <-- "green1" 

 

general construction Noun 

 

general construction CommonNoun 

   subcase of Noun 

 

construction SPHERE-noun 

   subcase of CommonNoun 

   form 

      constraints 

         self.f.orth <-- "sphere" 

   meaning: Sphere 

 

Figure 3-4: Lexical constructions for CS-3.1 

3.4.2 Referring Expressions 

A major part of Lucia’s grammar for Rosie is used to comprehend referring 

expressions. These can be proper names, pronouns, or noun phrases with or 

without determiners and adjectives. They can also be modified by prepositional 

phrases or relative clauses. 
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 To continue with Case Study 3.1:, Figure 3-5 shows the meaning 

structures built for the green sphere, including the name of the construction that 

evoked each one and the data structures they get grounded to in black 

rectangles. The word green is grounded to Rosie’s Ontology, giving L28, which is 

Rosie’s internal representation of its perceptual symbol for the color green. When 

the RefDesc for the green sphere is grounded, this color information, along with 

the shape defined by sphere, is used to find an object in Rosie’s World Model that 

has those properties, in this case O10. 

RefDesc

name:
category:

givenness:
modifiers:

referent:
relation:

quantified:

nil
nil
definite
nil
nil
nil
nil

4
Entity

RosieObject
Block

Sphere

rosie-category:
handle:

movable:
shape:
color:

size:
state:

block
nil
true
sphere1
nil
nil
nil

6

(L28 ^handle green1
     ^item-type predicate
     ^property L29 )
 (L29 ^handle color
          ^item-type property
          ^type visual)

PropertyDescriptor
class:

name:
next:

predicate:

color
green1
nil

5

RefDesc
name:

category:
givenness:
modifiers:

referent:
relation:

quantified:

Sphere

definite

nil
nil

7

THE
GREEN

SPHERE

RefExpr
(O10 ^handle large-green-sphere1
     ^item-type object
     ^predicates P10)
(P10 ^category block
         ^color green1
         ^movable true
         ^shape sphere1
         ^size large1
         ^visible true)

 

Figure 3-5: Meaning structures for CS-3.1 

 All the variations of referring expressions require a substantial network of 

constructions to process them. Below is a case study to illustrate this network. 

Case Study 3.2: A complex referring expression 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O8) 
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 The object of the command here has a noun phrase modified by a 

prepositional phrase. This is needed since there are several green blocks in the 

scene, but only one of them is on the stove. Figure 3-6 shows a graphical 

representation of the network of constructions needed to comprehend this 

sentence, along with the main meaning schemas evoked. 

Pick up the green block on the stove.

Construction Schema Evoked schemaInheritance

verb object

TransitiveCommand

ActionVerb

PICK UP
PickUp

UPPICKTHE STOVE BLOCK GREEN ON

Specifier CommonNoun Property Preposition

Action 
Descriptor

ActOnItRefDesc

RefExpr

refExpr prepPhrase

RefExprPrepPhrase

spec noun

SpecPropNoun

prop

spec noun

SpecNoun

prep object
PrepPhrase

 

Figure 3-6: The network of constructions for a complex referring expression 

This diagram shows the two types of construction hierarchies. The blue 

arrows coming from constituent points, which point downward, represent top-

down references in the compositional hierarchy. The purple arrows with open 

triangles as their points show the subcase of relations which make up the type 

hierarchy. This diagram shows that the definition of RefExpr is recursive since 

RefExprPrepPhrase has RefExpr as both a parent and a constituent, and again 

as a constituent at the second level through PrepPhrase. In Appendix 2 there is 

a list of all the types of referring expressions and how they are composed. 
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3.4.3 Imperative Sentences 

A large proportion of the sentences used with Rosie are imperative sentences, or 

sentences that give Rosie a command to do something. Consider a simple case. 

Case Study 3.3: A command to go to a known location 

B-054 Go to the kitchen. 

command(op_go-to-location1, to1(L28)) 

 

This case, while being simple, shows a number of important properties of 

the ECG grammar we have developed for Rosie. For this particular case, Figure 

3-7 shows the construction instances that are built with their full parent 

hierarchies. 

Go to the kitchen.

VerbWithArguments
Imperative

DriveVerbToTarget

verb target

7

ActionVerb
SimpleMotionVerb

DriveVerb
DRIVE

 go 

1

Preposition
TO

 to 

2

NPSpecifier
Determiner

THE

 the 

3
Noun
CommonNoun
KITCHEN

 kitchen 

4

RefExpr
SpecifierNP
TheKitchen

spec noun

5

PrepPhrase
SimplePrepPhrase

prep object

6

 

Figure 3-7: Details of syntax with semantic precision 

 This figure shows how the type hierarchy comes into play to provide 

semantic precision. Within each construction block, the part below the line 

shows the composition and above the line is a list of all the types for this 

construction, with the most specific at the bottom and the most general at the 

top. Each type name can be a target for composition. Each composition arrow 

points to the dot corresponding to the type that fits that constituent slot in the 

parent construction, which can be at any level in the type hierarchy. It turns out 

that the phrase the kitchen represents something that in Rosie is called a known 

object, meaning that it should be grounded to Rosie’s map of the building rather 

than to the World Model. By defining a construction called TheKitchen as a 
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specific subcase of SpecifierNP, it can have a precise semantic representation 

that will only match this object in the map. 

Case Study 3.4: A command to move an object 

B-022 Put it on the stove. 

command(op_put-down1, O6, on1(O50)) 

 

Imperative sentences can be recursive. Figure 3-8 shows the network of 

constructions needed for this case study along with their schemas.   

Construction Schema Evoked schemaInheritance

Put it on the stove.

verb object
TransitiveCommandAction 

Descriptor

RefDesc

IT

ImperativeWithLocation
command location

prep object
SimplePrepPhrase

ON THE STOVE

spec noun
SpecNoun

RefDesc

Prep 
Relation

ActionActOnIt

RefExpr

PUT

PutVerb

Imperative

 

Figure 3-8: Construction network for a simple command 

 ImperativeWithLocation is the composite construction that spans the 

whole sentence. It is a subcase of the general Imperative, and also has Imperative 

as its first constituent, and is thus recursive. For this case, that constituent will 

be a TransitiveCommand, another Imperative, that spans Put it. All together we 

get an action with both an object to act on and a target location. 

3.4.4 Declarative Sentences 

The grammar for declarative sentences is complicated because it includes both 

conjunctions and recursion. A specific case study below shows some of the 

complexities. 
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Case Study 3.5: A complex declarative sentence 

G-010 The goal is that a red block is on a green block 

  and the red block is below an orange block. 

object-description(concept(goal), 

  subclause(subclause(action(is1), NO-ID1, on1(NO-ID2)), 

    subclause(action(is1), NO-ID1, below1(NO-ID3)))) 

 

 Here NO-ID1 is a new red block object, NO-ID2 is a new green block, and 

NO-ID3 is a new orange block. (The notation NO-IDn is shorthand for new-object-

idn, which is used for indeterminate objects such as these.) The syntactic and 

semantic structures built from ECG for this sentence look like the following in 

an abbreviated text form. This example shows the high-level syntactic structure 

first, followed by the high-level semantic structure after “m:”. 

ConceptIsThatDeclarative[ 

  ConceptIsThat[SpecNoun, IS, THAT-complementizer], 

  DeclarativeAndDeclarative[ 

    RefIsPrepPhrase[SpecPropNoun, IS, SimplePrepPhrase], 

    AndDeclarative[AND, 

      RefIsPrepPhrase[SpecPropNoun, IS, SimplePrepPhrase]]] 

] 

m: 

ConceptIsThatAssertion[RefDesc[concept(goal)], 

 CompoundAssertion[ 

   PrepPhraseAssertion[RefDesc[NO-ID1], PrepRelation[on1, RefDesc[NO-ID2]], 

   PrepPhraseAssertion[RefDesc[NO-ID1], PrepRelation[below1, RefDesc[NO-ID3]], 

 ] 

      ] 

 

  Figure 3-9  shows the subset of the ECG grammar network needed to 

comprehend this sentence. Here again we see recursion. Both 

ConceptIsThatDeclarative and DeclarativeAndDeclarative are subcases of the 

general Declarative, and both also have Declarative as a constituent. A second 

level recursion goes from DeclarativeAndDeclarative through AndDeclarative and 

back to Declarative. This example also shows one possible way of handling 

conjunctions. The AndDeclarative construction looks for and followed by some 

Declarative, and is in turn a constituent of DeclarativeAndDeclarative, giving the 

syntactic structure shown above. The figure shows the abstract constructions 

and schemas, while the above text structure shows their instances. 
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Construction Schema Evoked schemaInheritance

The goal is that a red block is on a green block 
and the red block is below an orange block.
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Figure 3-9: Construction network for a complex declarative 

3.4.5 Questions and Conditionals 

In addition to Imperative and Declarative sentences, Lucia’s ECG grammar for 

Rosie handles a number of kinds of questions and conditional sentences. Figure 

3-10 shows the top-level grammar network for all the question types along with 

examples of each. 
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Figure 3-10: Construction network for questions 

Traditional generative grammar approaches to analyzing questions in 

English depend on a transformational operation called Move (Adger, 2003, pp. 

132, 236–237, 341–375). The constructionist approach, however, is different, 

simply defining constructions that recognize the surface structure used in a 

particular class of sentences, as the figure shows. The advantage of this 

approach is that it is usage-based, to that constructions can be learned from 

examples of their usage. 

A number of sentences in the Rosie corpora have an if-condition-then-action  

or if-condition-then-statement structure. Figure 3-11 shows the top-level 

grammar used for these sentences, along with an example sentence for each of 

the three main types. IfConditionThenCommand puts a condition on an 

Imperative sentence, while IfConditionThenStatement does the same for a 

Declarative. The IfConditionThen construction is an auxiliary that builds up the 

if-condition-then part of these two sentence types. IfConditionCommand is an 
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intermediate form where the word then has been elided or replaced with a 

comma. The meaning schemas, not shown, simply compose the meanings of the 

constituents. Since Imperative and Declarative are recursive structures, 

conditional sentences can be long and complex. 

If the green box is large
  then go forward.

If a location is
    not below an object
  then it is clear.

If you see the soda,
  pick it up.

Conditional

IfConditionThenCommand
commandconditionThen

IfConditionThenStatement
conditionThen statement

IfConditionCommand
commandconditionif

Declarative

Imperative

IfConditionThen
conditionif then

IF THEN

IF

 

Figure 3-11: Construction network for conditional sentences 

3.5 The Grammar Development Process 

The ECG grammar used in this project was developed incrementally, in a usage-

based manner, by manually designing each new construction or schema when 

it was needed to process a new sentence. A development set of sentences has 

grown, one new sentence at a time, over the course of the project. Lucia currently 

has no mechanism for the agent to learn new language knowledge automatically, 

but the manual development process is consistent with both the usage-based 

constructionist approach and with our theory of how language acquisition might 

work in humans, discussed in Chapter 6. Here we show how the accumulation 

of ECG items progressed as the development process proceeded for the three 

sentence corpora used to develop Lucia’s grammar for Rosie. Importantly, the 
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Rosie corpora are not “natural” sentences, but were developed deliberately to 

stretch the system with a high density of new syntactic and semantic structures. 

The grammar for each corpus was developed fairly independently from the 

others, except that the Baseline corpus was developed first and its grammar 

served as a baseline for the Games and Robot corpora. The development process 

consisted of repeating three steps: 1) add a sentence that does not work to the 

development set, 2) add new ECG items and related code to make that sentence 

work, and 3) identify other sentences that “just work” with no further 

development. Table 3-1 summarizes the statistics for the three corpora. 

Table 3-1: Corpus development statistics 

Corpus Forms Dev Set ECG Items Just Work Working 

Baseline 207 143 461 64 207 

Games 172 48 127 44 92 

Robot 160 60 104 50 110 

Total 539 251 692 158 409 

 

We learned much from developing the Baseline corpus. Figure 3-12 shows 

the growth of ECG items for the development of the grammar to cover this 

corpus. Constructions are categorized as lexical (L), composite (C), or general (G). 

 

 

Figure 3-12: Growth of ECG items for the Baseline corpus 
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 Historically, we began collecting this data after 50 sentences were working, 

and this graph shows the growth through 206 sentences. Data was accumulated 

in groups of four sentences. The lines are flat between 50 and 82 sentences 

because once the first 50 sentences were developed and the system was run on 

the whole corpus, 82 sentences “just worked” without more development. Before 

154, lexical constructions were added as needed by specific sentences. There is 

a big jump in lexicals between 154 and 162 because new vocabulary was added 

without making any other changes needed to get more sentences working. 

Details of 200 of these sentences, along with the Rosie data needed to ground 

them and the messages they produce, are given in Lindes et al. (2017) and its 

supplemental material. 

Beyond these historical artifacts, this graph shows more principled 

information as well. Lexical constructions grow a lot faster than composites since 

many different words can fit into the same composite syntactic construction. 

General constructions grow relatively slowly since often many specific 

constructions in the same general category are needed to achieve the semantic 

precision required to do E3C. The need for semantic precision also explains why 

there is an ongoing need to add more composite constructions. The total number 

of constructions is about three times the number of schemas, since many 

schemas are shared by several constructions, and other constructions, such as 

those for some function words, refer to no schemas at all. 

 Figure 3-13 and Figure 3-14 show graphs similar to Figure 3-12 for the 

Games and Robot corpora respectively, where new ECG items were added later 

to the grammar developed for the Baseline. Note that these two figures show only 

the ECG items added on top of the Baseline grammar for either the Games or 

the Robot corpus, for all of the sentence forms shown. A sentence form is a 

sentence with a unique sequence of words. In these corpora many sentences are 

repeated; for the Games corpus, for instance, there are 1,104 total sentences but 

only 172 unique sentence forms. Three of these already worked before starting 

on the Games corpus, and ten already worked for the Robot corpus. These figures 

show somewhat different trends for the three corpora. 
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Figure 3-13: Growth of ECG items for the Games corpus 

 The Games graph shows the need for a lot of new composite constructions 

early on. This shows that in the first few Games scripts that were considered, 

the necessary vocabulary already existed in the Baseline, but many new 

composite constructions were needed to handle new syntactic forms. These new 

composite constructions also required new schemas to represent their 

semantics, and often new general constructions were needed as well. Once these 

items were established, lexical items started contributing most of the growth. 

More Games sentence forms than these are now working, but we abandoned 

maintaining these detailed statistics after 44 working sentences. 

 

Figure 3-14: Growth of ECG items for the Robot corpus 
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 The Robot graph shows a different pattern. Many new lexical items are 

introduced, while early on the syntactic forms from the Baseline covered the 

necessary composite and general constructions. Later more new syntax was 

introduced, requiring more composites, but new general constructions were 

needed only rarely. This shows that many of the syntactic structures used in the 

Robot corpus were already in the Baseline. 

It is difficult to draw too many general conclusions from this data since 

much of the relative variation between the different curves is due to the arbitrary 

order in which new sentences were chosen for development. However, for the 

Games and Robot corpora, new sentence forms were chosen for development 

based on the order in which they occurred in the scripts for various tasks. Thus, 

the order of new knowledge needed may roughly correspond to what is needed 

as the domain of semantic and syntactic coverage grows in a task-related way. 

3.6 Evaluation 

In this chapter, our evaluation is mostly qualitative and focuses on ECG’s value 

for representing composable knowledge of meaning (CKM) and Lucia’s ECG 

grammar for Rosie. Here again is our definition of CKM: 

CKM: Composable Knowledge of the Meaning of Language – Knowledge 

of the meaning of language is in composable units, called constructions, 

in order to have generality, so that it can be used to comprehend (E3C) 

many sentences that have never been previously experienced. 

This states two essential attributes of our representation of knowledge of 

meaning: that it must be composable and have generality. The problem definition 

given above expands on this with a computational question: 

What representation of composable knowledge of meaning (CKM) 
is sufficient for the range of language to be comprehended? 

 

The point of this question is that we must evaluate the sufficiency of our 

knowledge representation by its language coverage. We have chosen as a 

proposed answer to this question a commitment to an approach: 
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Commitment 2: Lucia uses ECG to represent composable knowledge of 

meaning (CKM). 

To evaluate Lucia and its ECG grammar for Rosie against these criteria we 

address three issues in this section: composability, coverage, and generality. This 

evaluation builds on the prior work on ECG (Bryant, 2008; Dodge, 2010; J. 

Feldman et al., 2009) by applying it to Lucia’s  specific grammar for Rosie.  

3.6.1 Composability 

Our evaluation of composability is mostly by inspection. The case studies we 

have presented show cases where the same word, phrase, or clause structure 

can be composed in different contexts to form larger structures. Appendix 2 

expands on this by providing an inventory of all the constructions and how they 

can be composed. Appendix 3 gives more case studies to show how the 

composability of semantic structures is used to represent meaning. This is 

evidence that Lucia’s ECG grammar for Rosie is indeed composable. 

3.6.2 Coverage 

In Chapter 2 we have shown that Lucia’s ECG grammar does indeed cover the 

language of the majority of sentences needed for Rosie’s ITL tasks. Other 

questions arise. What is the scope of language covered? What limits are there to 

the ECG formalism for representing the necessary knowledge? Here we examine 

how Lucia and its ECG grammar measure up on these dimensions. 

Language phenomena covered 

We list language phenomena that were chosen for the Rosie corpora, by other 

developers independent of Lucia, where there is demonstrated coverage by the 

Lucia grammar. Key phenomena covered include: 

• Complex referring expressions – The Lucia grammar covers many types of 

referring expressions, including proper names, pronouns, and a variety of 

noun phrases, including subject relative clauses, both reduced and not 

reduced, and recursion. Figure 3-6 shows a few options. 
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• Imperative sentences – In the Rosie corpora, imperative sentences show up 

as command sentences, of which there are many. Figure 3-8 shows a 

subset of the structures possible. 

• Declarative sentences – Sentences in the corpora cover a complex structure 

of declaratives, including conjunctions and recursion, as in Figure 3-9. 

• Yes/No and Wh- questions – Figure 3-10 gives some examples of questions 

that Lucia handles, with more in the corpora, and shows the possible 

structural options. Questions are handled according to their surface 

structure, in accordance with the construction grammar principles 

described above, and not with movement transformations as done with 

generative grammar approaches.  

• Conditional sentences – The conditional sentences shown in Figure 3-11 

have smaller complete sentences embedded in larger sentences with 

conditions. Negations are also processed correctly. 

• Subordinate clauses – Some sentences have subordinate clauses, such as 

goal-defining sentences that use a complementary clause, like the one in 

Figure 3-9, or in the definition of an enabled command like G-034: You 

can move a clear block onto a clear object that is larger than the block. 

• Recursion – Recursion is often considered an essential feature of human 

language, or even the fundamental distinguishing feature of human 

language (Hauser et al., 2002). The Lucia grammar for Rosie includes 

recursion in referring expressions (Figure 3-6), in imperatives (Figure 3-8), 

and in declaratives (Figure 3-9). Some sentences even show recursion a 

few levels deep, like G-015: If the number of the locations between a location 

and a covered location is the number of the blocks that are on the covered 

location then you can move it onto the former location. 

Language phenomena not covered 

Many language phenomena in common human use of language are not covered 

by this grammar since they don’t appear in our corpora. Prior work with ECG 

has dealt with many of these issues (Bryant, 2008; Dodge, 2010), but Lucia has 
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not dealt with them so far because they are not needed for any of the ITL tasks 

taught to Rosie so far. Some of the important ones are described here. 

• Event descriptions – Much of human language use involves describing 

events with agents, action verbs, tense, aspect, mood, etc. Given the prior 

work, the constructions described above suggest that our approach can 

handle these phenomena, but they are outside the scope of this thesis. 

• Grammatical features – Much grammatical analysis is concerned with 

grammaticality, confirming whether a particular sentence conforms to 

certain linguistic conventions. These conventions often involve matching 

such features as number, case, etc. Humans can judge grammaticality, 

and a great deal of research in linguistics has been based on these 

judgements. The ECG formalism can deal with these features, and Lucia 

keeps track of some of them. However, actual day-to-day language use is 

often ungrammatical according to these standards. Due to Lucia’s focus 

on producing actionable sentence meanings, we have chosen to ignore 

many grammaticality issues that had no impact on producing actionable 

meaning. However, Lucia can detect when a sentence cannot be parsed 

using its grammar, giving it the ability to judge grammatically relative to 

its knowledge of language.  

• Tenses – Lucia does not deal with tenses in any comprehensive way. 

Almost all the sentences in the Rosie corpora are confined to the present 

tense, although was appears in two sentences, where Lucia treats it as 

equivalent to is. 

• Metaphor and other abstract concepts – Work in cognitive linguistics, 

beginning with Lakoff and Johnson (1980), indicates that abstract 

concepts are derived from more concrete ones through things like 

metaphoric projections. Lucia and Rosie deal mostly with concrete 

concepts in the here and now. Some abstract concepts such as goal are 

dealt with, but without reference to how such concepts might be derived 

from more concrete ones. 
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• Discourse dependencies – The overall Rosie agent does language 

understanding, as we have defined it for this thesis, while Lucia does only 

language comprehension, i.e., transforming input sentences into 

grounded, actionable messages. Lucia does include a limited ability to 

resolve anaphoric references, such as when Pick up the green sphere. is 

followed by Put it on this. The Rosie agent does complex discourse analysis 

to understand instructions in their dialog context, but Lucia is not directly 

involved in that part of the process. 

 

Limits of the ECG Formalism 

We have found that ECG’s ability to support compositionality and generality have 

made it a good tool for developing a grammar for Rosie. However, there are three 

important aspects of transforming sentences into actionable messages that the 

ECG formalism does not cover. The three aspects are: making local repairs, 

grounding to the agent’s knowledge, and formatting the final action messages. 

Lucia resolves these issues using hand-written Soar code that is distinct from 

the ECG grammar. Explanations of how they are resolved requires an 

explanation of the processing algorithm, and are given in Chapter 4. Overcoming 

these limits is a topic for future work. 

3.6.3 Generality 

In the context of this thesis, we use the term generality to mean that a 

comprehension system is capable of comprehending a larger set of sentences 

than those that were used to develop it. It is important to note that while 

generality is necessary, semantic precision and accuracy of meaning are also 

essential, thus creating a tradeoff between the two. Here we present evidence to 

support the claim that Lucia’s ECG grammar for Rosie has substantial 

generality. Measuring generality can be challenging, but here we present three 

strategies: corpus-based generality, syntactic productivity, and semantic 

breadth. The following explains each of these strategies and documents their 

results. 
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Corpus-based generality 

A quantitative question to ask is how the coverage grows as the set of sentences 

used for development grows. As discussed, the development of Lucia’s grammar 

for Rosie proceeds one sentence form at a time. A sentence form that is not 

currently working is chosen and added to a dev set. Development proceeds by 

adding or modifying ECG items and hand-built rules until that sentence is 

processed correctly. Then a test is run on that entire corpus.  Any sentence that 

works that did not work before is labeled as “JUST WORKS” at that point in the 

process. One way to measure generality is to look at a particular corpus and 

record how many more sentences worked correctly for each new sentence added 

to the dev set. Some examples will illustrate. 

Case Study 3.6: An example of grammar growth for the Games corpus 

G-006 The goal is that a red block is on a 

green block and the red block is below 

an orange block. 

Add to grounding 

G-031 The goal is that a red location is 

below a red block. 
JUST WORKS 

G-082 The goal is that a blue block is on a 

blue location. 
JUST WORKS 

G-009 The goal is that a blue block is on a 

purple block and the blue block is 

below a yellow block. 

Add blue and yellow lexicals 

Add to grounding 

G-112 The goal is that a red block is on a 

red location and a green block is on a 

green location. 

JUST WORKS 

 

 Sentence G-006 was added to the dev set. An additional hand-built rule 

for grounding was added to make this work, and then G-031 and G-082 also 

worked. G-009 did not work, however, until lexical items for blue and yellow and 

another grounding rule were added. With these, both G-009 and G-112 worked. 

The development for G-006 produced three working sentences for a generality 

ratio of 3.0, and that for G-009 produced two for a ratio of 2.0. 

Case Study 3.7: An example of grammar growth for the Robot corpus 

R-047 Put the stapler on the desk. Add desk lexical and schema 

R-046 Pick up the stapler. JUST WORKS 



 73 

R-082 Fetch a stapler. JUST WORKS 

R-075 Deliver the stapler to Bob's office. Add to interpretation 

R-077 Deliver the stapler to the copy room. Add to interpretation 

R-079 Fetch a stapler from the copy room. Add to interpretation 

R-080 The only goal is that the stapler is in 

the starting location. 
Add to interpretation 

R-122 The only goal is that the plate is in 

the storage location. 
JUST WORKS 

 

 For this set of sentences, the only new ECG items needed were the lexical 

item for desk and its associated schema added for R-047. In adding that schema, 

a problem was discovered in a detail of the schema for stapler from the Baseline 

grammar that needed to be fixed to get stapler to work with the Robot grounding 

system. After this, two more sentences worked, for a ratio of 3.0. For R-075, R-

077, R-079, and R-080 no more ECG items were needed, but more interpretation 

code was needed for each one, giving each but the last a ration of just 1.0. With 

the interpretation for R-080 working, R-122 worked also, for a ratio of 2.0 for 

that sentence. If we consider only ECG items, the generality ratio for R-047 would 

be 8.0, but it is a lot less due to interpretation. This shows some of our challenges 

for getting all sentences to work fully end-to-end. 

Beyond these examples, we measure generality with respect to the Games 

and Robot corpora, and three subsets of sentences for each. First is the set of all 

sentences in all the scripts for a particular corpus. This includes many sentence 

forms that are repeated multiple times. Next is the list of sentence forms, the 

subset of all sentences that are distinct, since often the same sentence is used 

many times in the scripts. Last is the development set, the set of sentences used 

as linguistic experiences for our process to actively develop new grammar. 

Section 3.5 gave graphs showing the growth of different kinds of ECG items 

in the grammar as more and more sentences were developed. Here we look at 

how each increment of developing the grammar for a new sentence also made 

additional sentences work that had not worked before. 
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Figure 3-15: Generality for sentence forms 

 The graphs in Figure 3-15 show the how the number of working sentence 

forms, out of 172 for Games and 160 for Robot, grows as the development set 

grows. In these graphs the Dev Set line represents 1-to-1 growth as if no 

additional sentences ever worked when one new development set sentence was 

made to work. The Y-intercept of these lines shows the number of sentences that 

were already working, based on the grammar that was developed for the Baseline 

corpus, when work on this corpus began. The data show a faster growth for the 

sentence forms than for the development set, and also that occasionally a new 

sentence is developed that is similar enough to other sentence forms that several 

more work without further development. 

These data do not show how many more sentences could be covered by the 

grammar as it grows, but only how many more sentences in the pre-defined 

corpus are covered. Because of the way the sentences in the corpora were 

designed by the Rosie developers, there are not many sentences that use exactly 

the same set of constructions. The transfer from one sentence to others is limited 

because sentences were deliberately designed to be different to stretch the 

system, so that many sentences have linguistic forms that others don’t have. 

There are also some anomalies of development in these data. The big jump 

in the robot data around development sentences 35 and 36 is due to the fact 

that at that point in the process it was discovered that many of the gold standard 

messages we were using for testing were obsolete and needed to be brought up 

to date. A number of sentences were being processed to the IR test point correctly 
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by Lucia, but the formatted messages did not match the obsolete gold standard. 

Those changes to the gold standard made these sentences start working without 

any changes to the grammar. 

 

  

Figure 3-16: Generality for all sentences 

 Figure 3-16 shows similar trends for the growth of working sentences in 

the all-sentences sets as the development sets grow, out of 1,104 for Games and 

228 for Robot. Due to the repetition of sentence forms in the all sentences set, 

especially for Games, the number working in this set grows much faster than 

that for sentence forms alone. For the Games corpus there were already 120 

sentences working when development on this corpus began, and the first two 

sentences developed were ones that were used many times throughout all the 

scripts. These effects were not as great for the Robot corpus. 

 These data raise the question: What will happen in the future if we add 

new sentences or new sentence corpora? That is hard to say. Each new corpus 

or domain likely will introduce a lot of new vocabulary and, since our coverage 

is still rather limited, new syntactic and semantic structures as well. Especially 

since our focus is on constructing the full meaning of a sentence, the range of 

meanings of all human language is enormous if not unbounded. Learning 

language for new domains or situations will always require more work. That is 

why future use of Lucia or some similar system needs to have a system for 

language acquisition from experience. That is a major area for future work. In 

Chapter 6 we propose an approach to solving that problem. 
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Syntactic productivity 

By studying the grammar as presented in this chapter and in Appendix 2, it is 

clear that the composable units can be combined in many more ways than those 

captured in our corpora. If the system can comprehend and ground a phrase like 

the green sphere, and if the words red and blue are defined similarly to green and 

can be composed in the same way, then the red sphere and the blue sphere can 

also be comprehended. We have developed two quantitative methods to evaluate 

this intuition, one based solely on syntax and the other more on semantics. 

 We have written an algorithm that calculates a measure called productivity 

for each construction by calculating the number of all the possible phrases or 

sentences that it could produce. A lexical construction is assigned a productivity 

of 1, a composite construction gets the product of the productivities of its 

constituents, and a general construction gets the sum of the productivities of its 

children. Since this is infinite when recursion is involved, we limit the expansion 

to a single level of recursion. Table 3-2 presents the productivity numbers for a 

number of important constructions. 

Table 3-2: Productivity of selected constructions 

Construction Productivity 

RefExpr 755,683 

  CommonNoun 50 

  SpecifierNP 755,551 

    SpecNoun 300 

    SpecPropNoun 13,800 

    SpecProps2Noun   634,800 

  RefExprPrepPhrase 1 

  RefExprRelClause 4 

Imperative 4,568,650,852,994 

  TransitiveCommand 34,005,735 

  ImperativeWithLocation 15,113,682 

Declarative 25,698,594,172,099 

  DeclarativeAndDeclarative 1 

  ConceptIsThatDeclarative 1 

  ConceptIsThat 1,511,366 

  RefIsPrepPhrase 1,511,366 



 77 

Question 22,842,552,973,638 

  YesNoQuestion 22,842,462,291,676 

  WhQuestion 90,681,962 

Conditional long integer overflow 

  IfConditionThen 25,698,594,172,099 

  IfConditionThenCommand 2,157,736,395,692,839,833 

  IfConditionCommand 7,070,298,445,444,069,771 

  IfConditionThenStatement 25,698,594,172,099 
 

Semantic breadth 

The above approach produces large productivity numbers, but they are not 

realistic since many of the sentences generated in this way would not be 

semantically meaningful, such as Pick up the green kitchen. Therefore, we have 

built a system for testing the meaningful generality of at least parts of Lucia’s 

grammar for Rosie. Using a test version of a single instance of the World Model 

and knowledge of Rosie’s messages, we’ve generated a set of messages that could 

be meaningful in that situation. The algorithm maps these messages onto the 

grammar to produce sentences that are both generated by the grammar and 

meaningful to Rosie. 

 Using this method, we have tested the productivity of a part of the 

grammar involving simple commands, with 12 different verbs and a variety of 

referring expressions that can be grounded to the particular World Model. The 

sentence generator produced 1,020 such sentences using the grammar needed 

for the Baseline corpus, only 8 of which appear in the Baseline. This list of 

sentences was processed with Lucia, and all 1,020 sentences produced messages 

conforming to the Rosie message format. This gives a generality ratio of 127.5 

generated sentences for each sentence used in development. We expect similar 

or even greater ratios would result for other parts of the grammar. 

 These calculations indicate that this grammar, despite its limitations and 

a small vocabulary, can generate a large number of sentences. If a human were 

to process one sentence every second, 24 hours a day, 365 days a year, over a 

lifetime of 100 years that would be a total of a little more than 3x109 sentences. 
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The numbers in Table 3-2 go beyond 7x1018 for some kinds of sentences. The 

grammar should grow exponentially with a larger vocabulary, giving much large 

numbers for, say, 50,000 words instead of a few hundred. Given this difference 

of many orders of magnitude, and that the productivity numbers were calculated 

while limiting recursion, it seems clear that Lucia’s grammar has a high degree 

of generality within the scope of what its grammar can cover. 

3.7 Conclusions and Implications 

This chapter describes a theory of representing composable knowledge of 

meaning of language (CKM), as well as data on its practical application to the 

scope of language used by Rosie in learning and performing its ITL tasks. In the 

Related Work section, we discussed briefly the traditional generative grammar 

theory of knowledge of language, as well as the radically different construction 

grammar (CxG) approach. We then presented the ECG theory of CKM and the 

extensive ECG grammar developed for Lucia in Rosie. 

 This aspect of our work makes several contributions. First and foremost is 

a demonstration that a grammar based on CxG theory, and ECG in particular, 

made up of a network of form-meaning mappings that apply to surface structure 

and were developed with a usage-based paradigm, can be used to provide 

embodied, end-to-end comprehension (E3C) . We have shown that such a 

grammar has substantial generality while at the same time providing the 

semantic precision required by the E3C application in Rosie. A key idea of CxG 

and ECG that allows us to achieve the semantic precision needed for E3C along 

with generality is that many specific constructions can provide precise semantics 

while being subcases of a few general constructions that assemble referring 

expressions, clauses, and sentences. Constructions are cheap, precision is 

critical. 

The next question is whether an algorithm that does incremental, 

immediate interpretation processing (I3P) can indeed realize this capability using 

the ECG grammar we have defined. Chapter 4 dives into that question. 
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Chapter 4 Constructing Meaning, Piece by Piece 

A major contribution of this thesis is the design and implementation of an 

algorithm that performs incremental, immediate interpretation processing (I3P), 

using ECG to represent composable knowledge of meaning (CKM) and Soar to 

model general cognitive mechanisms (GCM), to achieve embodied, end-to-end 

comprehension (E3C). That algorithm is the subject of this chapter. 

 Human processing is incremental, word-by-word. Meanings are 

interpreted immediately in the sense that each word or complete phrase is 

immediately grounded (when possible) to the person’s perception and/or world 

knowledge to permit the person to act on intermediate results, such as moving 

the eyes to focus on objects referred to (Tanenhaus et al., 1995). In order to act 

immediately, a single interpretation must be chosen out of what may be multiple 

possibilities to provide a single-path process. This immediate commitment is 

sometimes wrong, so a correction mechanism is also needed. Lewis (1993) 

summarizes empirical data on incremental processing and presents an approach 

to modeling that uses local repair to resolve local ambiguities, which is adopted 

in this work. 

 Given this requirement, this chapter addresses the following principle of 

the Lucia theory: 

I3P: Incremental, Immediate Interpretation Processing The meaning of a 

sentence is constructed incrementally in real time, each new 

construction unit (CKM) added is immediately grounded (as possible) to 

embodied world knowledge (I3P), and the meaning of each full sentence 

is interpreted as an action message (E3C). 

As listed in Chapter 1, there are several AI systems that do some form of 

embodied, end-to-end comprehension (E3C). However, none of these attempts to 

model the incremental, immediate interpretation processing (I3P) of humans, 

which is one of the design goals of Lucia. This chapter addresses this problem. 



 80 

4.1 Research Background 

Before looking at the details of the problem and Lucia’s I3P algorithm, we review 

briefly some of the research on human incremental processing. Lewis (1993) 

presents a discussion of the immediacy of syntactic, semantic, and referential 

processing (what we call grounding), including references to empirical studies 

that support the idea that humans process incrementally and with immediate 

interpretation. 

A classic paper by Tanenhaus et al. (1995) reports human eye-tracking 

behavior in an experiment where subjects are looking at a visual scene while 

listening to sentences. They show that with an ambiguous sentence using a 

reduced relative clause, the subjects make an eye movement to an object that 

turns out to be incorrect for the full sentence and return to the correct object 

when the disambiguating information is received. Their data on the time course 

of eye tracking shows that the eyes move shortly after a referring expression has 

been heard and before subsequent words have been processed. This eye 

movement could not happen unless the referring expression were interpreted 

immediately. For sentences using an unreduced relative clause there is no 

ambiguity, and the incorrect eye movement does not happen. 

Evidence from neuroscience is that perceptual and motor areas of the 

brain are activated during comprehension (Kemmerer, 2015; Pylkkänen, 2019). 

Psychologists often use the term simulation to describe this activation (Barsalou, 

1999; Bergen, 2012). Although “simulation” may mean something different to 

computer scientists, this is the term some psychologists and neuroscientists use 

for this phenomenon. The evidence presented by Bergen (2012) shows that the 

language interpretation required to produce this simulated activation must be 

immediate. 

A key consequence of this evidence for immediate interpretation is that 

human processing, in many cases at least, must choose a single path through 

the space of possible interpretations during incremental processing. Whenever 

action, or even simulated activation, is required, only one choice is possible. The 
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eyes cannot move in two directions at once. Lewis (1993) uses this as the basis 

for his theory of parsing with local repairs when an incorrect choice was made. 

Christianson and Chater (2016) present a theory they call “chunk-and-

pass,” which states that multiple elements of a comprehension must be 

combined into larger chunks fairly quickly to avoid being lost due to limits of 

working memory, which they call the “now-or-never bottleneck.” This implies 

immediacy of processing, although they do not provide any computational model 

of how this might be done, nor do they address grounding of references in their 

theory. The piece-by-piece processing described below implements the 

theoretical constraints of chunk-and-pass processing, and it was developed 

concurrently and independently  (Lindes & Laird, 2016). 

Another aspect of human processing is semantic priming (Carroll, 2008, 

pp. 123–124; Ferrand & New, 2004), where processing one word increases the 

activation and thus reduces the retrieval time for semantically related words. 

There is also literature on the idea of syntactic priming (Bock et al., 2007; Reitter 

et al., 2011). The empirical data indicate that both lexical items and syntactic 

structures spread activation in the brain such that similar or related items are 

retrieved more easily afterward. These effects have a strong influence on detailed 

measures of human processing and reading times. This aspect of human 

processing is not modeled by Lucia at this time. However, in Chapter 6 we 

discuss experimental explorations of adding priming to Lucia. 

4.2 Defining the Problem 

Together, this research on human incremental processing implies three 

constraints that a model of this processing must satisfy. When a sequence of 

linguistic elements that compose a larger element is encountered, these elements 

must be combined into larger chunks fairly quickly to avoid loss of information 

due to limits on human working memory (Christiansen & Chater, 2016). 

Individual words and phrases must be interpreted immediately, or grounded in 

our terminology, as soon as they are processed, as indicated by Tanenhaus et 

al.  and the research on simulation cited above.  (Tanenhaus et al., 1995). When 
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a local ambiguity arises, a single choice must be made for further processing, 

and later corrected if the choice conflicts with subsequent input (Lewis, 1993). 

We call these the rapid composition constraint, the immediate grounding 

constraint, and the single path constraint, and we show how Lucia satisfies each 

of them. 

The implication for Lucia of the I3P requirement and these three 

constraints is that the meaning of a sentence must be composed from small units 

of form-meaning mapping with an incremental process that performs immediate 

interpretation of intermediate results. The full sentence meaning must then be 

interpreted as an action message for E3C. This leads to the computational 

question of what algorithm can do this I3P processing. This chapter describes 

Lucia’s I3P algorithm at a conceptual, architecture-independent level, while 

Chapter 5 describes the implementation of that algorithm in the Soar 

architecture. 

The algorithm needs an internal representation of the current state of the 

comprehension, and a way of updating and grounding this state incrementally 

as each new unit of form-meaning mapping is added. Lucia’s algorithm is built 

around its comprehension state, a central data structure that represents the 

current state of the comprehension. This state is updated and grounded using 

the constructions defined in Chapter 3 in a dynamic construction cycle, which is 

the central increment of processing that constructs meaning piece by piece in 

three phases: a selection phase chooses which construction to apply next, an 

integration phase builds a new form-meaning node and adds it to the graph, and 

a grounding phase grounds the node’s meaning to the agent’s world knowledge. 

Commitment 3: Lucia does immediate interpretation processing (I3P) using 

construction cycles that select, integrate, and ground one construction at 

a time, often with multiple construction cycles for a single input word. 

Construction cycles perform compositional processing as they build up the 

comprehension state. For each word cycle, one lexical construction cycle 

processes the lexical construction for that word, and then as many composite 

construction cycles as possible combine items in the comprehension state 
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according to composite constructions, performing rapid composition. Each 

construction cycle has three phases: select which construction to apply next, 

integrate that construction with the current state, and ground that construction 

as much as possible. Since each construction is grounded in the same cycle, this 

process achieves immediate grounding. Additional logic performs local repairs 

when needed to maintain single path processing, . This approach satisfies all 

three of the constraints from related research outlined in the previous section. 

At the end of a sentence, the final comprehension state is encoded as an action 

message in a process called sentence interpretation. 

4.3 Overview of the Lucia Processing Algorithm 

This section summarizes key points of Lucia’s I3P algorithm. Figure 4-1 is a 

simple sketch of the information flow for a comprehension system, C, in the 

context of an embodied agent.  

World

M AC

WK

LK

PK

S E

Embodied 
Agent

 

Figure 4-1: Comprehension in context 

The World provides situations, S, to the agent, which consist of sentences 

in natural language along with other perceptual input. The comprehension 

engine C gathers information from S as well as from its linguistic knowledge, LK, 

its processing knowledge, PK, and the agent’s world knowledge, WK, to process 

each input sentence to produce an output message M, which is grounded to WK. 

The operational part of the agent, A, uses each message M to choose one or more 
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internal or external actions to perform. These actions produce an effect, E, on 

the external world, and the cycle repeats. 

 Within this general model, Lucia is the comprehension engine C. Its 

linguistic knowledge, LK, is the ECG grammar described in Chapter 3. Its 

processing knowledge, PK, is a set of hand-built Soar production rules to be 

described in Chapter 5. Lucia produces action messages, M, using the world 

knowledge, WK, that it shares with Rosie. The Rosie operations module, A, takes 

actions based on these messages, causing the overall agent to learn and perform 

new tasks through interactive instruction. 

 The Lucia comprehension engine, C in Figure 4-1, presented before in 

Chapter 1, performs a part of the perception, cognition, action cycle shown for 

each sentence. From Lucia’s perspective, the flow of information for each 

sentence is in the hierarchy of cycles shown in Figure 4-2. 

 

 

Figure 4-2: Cycles in incremental comprehension processing 

 Lucia processes one sentence at a time, mostly independently of other 

sentences. A new input sentence comes in at box 1 and is processed and encoded 

to produce an action message at box 9. Based on that message, the agent does 

some reasoning, decides what action to take next, and performs that action. A 
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variety of actions are possible, including changing the agent’s internal knowledge 

state, outputting a sentence to the instructor, and/or performing a physical 

action in the world. 

 Box 1 in the figure shows the processing involved in setting up the 

algorithm state to start a new sentence. Boxes 2-7 do the comprehension 

processing, and when the end of the sentence is reached, the complex meaning 

structure that has been built is interpreted in box 8 to encode the action message 

that is then sent to the agent. Box 9 posts the message produced in a place for 

Rosie to reason about it and act on it. 

 Lucia’s processing of an input sentence is incremental on a word-by-word 

basis in a word cycle. Box 2 in the figure represents the logic to bring the next 

input word into the part of WM where Lucia accesses it. The processing of a word 

happens in one or more inner cycles, one for each construction to be added to 

the current state of the comprehension. 

The core of Lucia’s theory of comprehension processing is this inner cycle 

we call the construction cycle. A single construction is selected, integrated into 

the comprehension state, and grounded in each construction cycle. Every word 

cycle has at least one construction cycle where a lexical construction is selected 

in box 3 to match the current input word. Once this lexical construction is added 

to the state, in box 3, the algorithm attempts to select a composite construction 

to add. This can be repeated more than once. In box 4, if no composite 

construction is found to match the current state, control proceeds to box 7. 

Box 7 looks to see if there are more words to process, or if the end of the 

sentence has arrived. If another word is present, control proceeds back to box 2, 

where that word is sent to Lucia and processing continues. Otherwise, control 

proceeds to box 8. 

There is level of interpretation for the whole sentence, shown in box 8 in 

Figure 4-2, that produces an action message. This involves taking the 

comprehension state that has been built up for the whole sentence and encoding 

it by projecting it onto the space of possible action messages. Often this involves 

considerable simplification of the data structures. For example, often the final 



 86 

message need only contain the internal representations for an action to be 

performed and an object to act on, rather than all the complexity of the lexical 

items, syntax, and semantics that were needed to represent the action in natural 

language. Chapter 5 provides details of how this encoding is done. 

4.4 Piece-by-Piece Processing 

This section describes how construction cycles build the complete structure of 

the analysis of a sentence, piece-by-piece. While most other approaches to 

incremental processing consider simply processing one word at a time, our more 

granular approach processes one construction at a time. This is consistent with 

our model of representing knowledge of meaning, since the constructions, or 

pieces, are the units of mapping form to meaning. Several new constructions 

may be added for each word, and each one has its own meaning that is grounded 

before going on to the next construction. This section focuses on building 

syntactic structure, including the selection phase and part of the integration 

phase of each construction cycle. The following sections elaborate further on 

achieving immediate interpretation and single path processing along the way. 

4.4.1 An example sentence comprehension 

To make our discussion concrete, consider an example comprehension. 

Case Study 4.1: An example sentence comprehension 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O15) 

 

Figure 4-3 shows the comprehension state and its grounding after this 

sentence has been fully processed. In the middle of the figure is a sketch of the 

tree of construction nodes built up over fifteen construction cycles, along with 

the input sentence underneath and the output message at the top. The message 

only needs three pieces of information: the fact that it is a command, and internal 

identifiers for the action and its object. 
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Figure 4-3: The grounded meaning of a sentence 

Nodes in the comprehension state represent instantiated constructions 

with their meanings, and are numbered in the order they were created. Node 

number 8 is missing because, as we explain below, a node 8 was created but 

later discarded as part of a local repair. 

The block on the left represents the Ontology, knowledge in Rosie’s LTM, 

with purple arrows showing how lexical items are grounded to elements there. 

The block on the right is a sketch of the World Model, or Rosie’s internal 

representation of what it currently sees in its visual perception. Blue arrows 

show grounding to elements there. 

 The RefExpr (short for referring expression) at node 7, which represents 

the green block, can ground to three green blocks in the world. The phrase on the 

stove allows further grounding for node 14 to select from these three possibilities 

and ground only to O15, thus resolving the semantic ambiguity. 

4.4.2 A tree of chunks with a root 

Figure 4-4 shows a different view of the final comprehension state for this 

example sentence that shows only the syntactic structure. The nodes are much 
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abbreviated as shown in the key, and the grounding is not shown here. Several 

important points are illustrated in this diagram. 

 The structure of the tree in the diagram has a root node, the C in this case. 

Each composite node has parent-child links to its children, while lexical nodes 

are leaves of the tree. There are sibling links between the children of a composite 

node, which appear in the same left-to-right order as their addition to the tree. 

The structure shows what we mean by a chunk6 in the context of chunk-

and-pass processing. Each of the circular nodes is an instance of a composite 

construction, and each of these is the root of a subtree made up of its 

constituents. For our purposes, we consider each such subtree as a chunk. For 

instance, the phrase Pick up is represented as the chunk made up of the A action 

verb node and the p and u lexical nodes. 

p u

A R

R P

t g b o R

t s

C

 

Figure 4-4: The final structure of the example sentence 

                                       
 

6 This use of the word chunk is very different from its use in Soar and ACT-R. See Chapter 5. 
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 This structure can appear to be similar to a standard parse tree diagram. 

However, it has a feature that is unique to how Lucia implements its processing. 

We have found through our experience with designing and implementing the 

grammar for Rosie that only the top three levels of the tree need to be accessible 

for selecting the next construction to add during incremental processing. Nodes 

at level 4 or below are not considered in processing, but they are not forgotten 

and may later become accessible again as the shape of the tree changes through 

composition of nodes covering larger parts of the sentence. The figure represents 

this with the waterline that divides the upper nodes that are actively engaged in 

processing from the lower ones that are still remembered but not actively 

engaged. This idea is implemented by convention, since Soar has no 

architectural mechanism for it. In Chapter 6 we explore experimentally ways to 

implement this constraint using architectural mechanisms. 

4.4.3 Evolution of the tree with rapid composition 

The final state shown in Figure 4-4 is built by a sequence of fifteen construction 

cycles, as shown in Figure 4-5. The following analysis of this figure reveals many 

of the features of Lucia’s incremental processing. 

Examination of the fifteen frames from the figure explains how the 

computational process in Lucia works. The discussion here is limited to 

structure building, which involves the selection phase and the first part of the 

integration phase of each construction cycle. Consider the first row of Figure 4-5. 

p

uAp
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A

g

t

A1 2 3

4 5  

 In frame (1) the lexical node for Pick is built and becomes the initial root 

of the tree. In frame (2) the node for up is built and replaces the p node as the 

root. The u node is connected to the p node by a previous link, and an A node is 
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considered to compose these two lexical items. Construction cycle (3) creates a 

new chunk for A with its two constituents. 

 

Figure 4-5: Fifteen construction cycles for the example sentence 

 Frames (4) and (5) show two more lexical nodes for the and green being 

added. This gives a sequence of three nodes connected by previous links. This 

sequence of three nodes illustrates that the root node with a sequence of previous 
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nodes emanating from it forms a subset of the comprehension state tree, which 

we call the stack. As shown in frame (2), the stack is the primary set of nodes 

that are candidates for forming a new composite chunk. 

bgt
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A

Cb
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 The second row of the diagram shows further growth of the stack and 

further composition. In frame (6) three different RefExpr constructions are 

candidates for composition, with one, two, or three constituents, respectively. 

Lucia’s processing knowledge, PK, includes a preference heuristic so that when 

multiple composite constructions all match the stack, one that spans more 

nodes is preferred. In this case, the R with three constituents is selected. 

 The above shows three examples of creating a new chunk, in frames (3), 

(7), and (8). Each new chunk is composed of constituents that are removed from 

the stack, and the new chunk is “passed” on to the next cycle as the new root of 

the tree. Hence chunk-and-pass. 

 Each frame in Figure 4-5 represents the result of a single comprehension 

cycle. In each cycle, the selection phase chooses a new construction to be added 

and the integration phase restructures the tree with that new construction 

added. At this point we need to explain further the selection phase, which 

operates differently for lexical and composite constructions. 

 Although the details of architectural mechanisms must wait until Chapter 

5, at the conceptual level of this chapter, we can think of each construction 

contained in the linguistic knowledge, LK, of Lucia as an independent active 

pattern recognizer. When the flow of control enters the selection phase, all these 

recognizers are matched in parallel at the state of the comprehension. Any of 

them that matches the state is a candidate to be selected. When there is more 

than one candidate, as mentioned above for going from (6) to (7), Lucia’s PK uses 
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a set of heuristics to select one candidate to process on its single path. The 

section on single path processing below explains how this works for many more 

cases. 

 One more detail about the selection phase. The multitude of parallel 

pattern matchers, or abstract constructions, is divided into two classes: lexical 

and composite. When the algorithm is in the first construction cycle of a new 

word cycle, only the lexical constructions are active. Each looks for a match of 

its known orthography to the current input word, which is not shown in the 

diagrams. After a lexical construction has been processed for that word, 

subsequent construction cycles only activate the composite constructions. This 

process continues until no composite construction is found to match the state, 

at which point a new word cycle is initiated, as shown in Figure 4-2. 

4.5 Immediate Interpretation 

The previous section described how construction cycles build the comprehension 

state one piece at a time, covering the selection phase of construction cycles and 

the part of the integration phase. This section discusses the whole integration 

phase, including that described above in more detail, and the grounding phase, 

which together provide immediate interpretation. 

4.5.1 Integration 

Once a construction has been selected, a new node must be constructed and 

integrated into the comprehension state. There are several parts of this process. 

1. The selected construction is instantiated by building a data structure 

representing it, with the construction name as the bottom level of its type 

hierarchy. 

2. Based on subcase of specifications, the construction instance is 

generalized by labeling it with the names of all the general constructions 

in the sequence of subcases. 

3. This new node is attached into the tree by making it the new root node. 

4. A new lexical node gets the previous root node as its previous node. 
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5. For a composite construction, its constituent nodes are linked as its 

children, and whatever was on the stack before its first child is linked as 

its previous node. 

6. Whatever meaning schemas the construction specifies are evoked, 

meaning they are instantiated and the node is linked to them. 

7. The meaning schemas are populated by using the constraints specified in 

the ECG for the construction and the schemas involved. 

4.5.2 Details of nodes in the tree 

The diagrams above represent the syntactic structure of the sentence, but what 

is needed is a process to construct the meaning of the sentence. To see how this 

is done, we examine in more detail the inside of a node. For this purpose, 

consider a simpler sentence. 

Case Study 4.2: A simple command 

B-054 Go to the kitchen. 

command(op_go-to-location1, to1(L28)) 

 

 An overview of the final comprehension state for this sentence is shown in  

Figure 4-6. 

Go to the kitchen.

command(op_go-to-location1, to1(L28))
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Figure 4-6: Full tree for a simple command 



 94 

 Here there are instances of constructions in blue and instances of schemas 

in green. The schemas show pointers to items they have been grounded to. To 

fully understand the algorithm, we need a more detailed view.  Figure 4-7 shows 

just the construction instances with their detail, while  Figure 4-8 shows the 

schema instances in detail, including details of the items they are grounded to. 

Not explicitly shown in these two diagrams is that each construction instance 

also has a link to the corresponding schema that was evoked for that 

construction, as seen in Figure 4-6. What we have been calling a node in our 

tree consists of a construction instance along with zero, one, or more schema 

instances that it evokes. 

Go to the kitchen.

VerbWithArguments
Imperative
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verb target
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ActionVerb
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Figure 4-7: Details of construction instances 

 This sentence also serves as a good example of how semantic precision is 

implemented. The TheKitchen construction shown as node (5) in Figure 4-6 is 

chosen over a more general SpecNoun construction that would also match the 
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current stack because TheKitchen specifies specific lexical items to match to. 

This is an instance of a preference heuristic for a more specific versus a more 

general construction. 

Go to the kitchen.

command(op_go-to-location1, to1(L28))
Action
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Figure 4-8: Details of schema instances 

 Each construction or schema in these diagrams has two parts separated 

vertically. The part above the line is a list of all the labels from the type hierarchy 

that apply to this item, from most specific, which is also the construction or 

schema name, at the bottom to the most general at the top. For instance, the 

construction for the is named THE, which is a subcase of Determiner, which is 

a subcase of NPSpecifier. Depending on the amount of semantic precision needed 

for a particular construction, a link from parent to child goes to the child label 

at the proper level of specificity. For example, the TheKitchen construction needs 

to be specific to be grounded properly, so it refers to its constituents at the lowest 

level, THE and KITCHEN. The SimplePrepPhrase, on the other hand, can accept 

any Preposition and any RefExpr as its children. In the design of the grammar, 
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the choice of specificity for the constituents of each construction is important to 

achieve the amount of semantic precision desired. Below the line in each 

instance are the slots for detailed data, namely the orthography (spelling) of a 

lexical construction and pointers to the constituents of a composite one. 

 The schemas work a little differently. Their slots are filled with either 

constant values or pointers to other schemas. They also have their levels from 

the type hierarchy, but this is not used to connect them. Instead, the ECG for a 

construction defines what type of schema to evoke, and the schemas themselves 

define the type hierarchy, which is important for their grounding. ECG 

constraints in both the evoking construction and the schema itself specify how 

to populate the values of a schema’s slots. When a node is built, the construction 

and its evoked schemas are instantiated, the type hierarchy is filled out, and the 

various slots are populated. The piece-by-piece construction of the tree one node 

at a time results in the meaning composition needed to comprehend each 

individual sentence, as well as a large space of possible sentences. 

4.5.3 Grounding 

Figure 4-8 shows the network of grounded schemas for our example sentence B-

054. The action slot of schema (1) points to a data structure in Rosie’s LTM that 

represents the action for going to a location. The referent slot of schema (5) points 

to a representation of the kitchen in the current world model.  Figure 4-3 shows 

a more complicated example of how the different nodes in a tree are grounded to 

Rosie’s world knowledge in both LTM on the left and WM on the right. Chapter 2 

provided details of the kinds of world knowledge to be grounded to, along with 

descriptions of hypothetical and dynamic grounding. Chapter 5 will discuss the 

details of the algorithm for making this happen. 

4.6 Achieving a Single Path 

Natural human language is full of a variety of ambiguities. Some sentences in 

some contexts may be ambiguous at the full sentence level. These are global 

ambiguities and can only be resolved by additional dialog or exploration in the 

world, so they are beyond the scope of Lucia’s focus on sentence comprehension. 
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There are also local ambiguities, cases where at some intermediate point in 

incremental processing of a sentence there are two or more possible choices of 

what to do next, and the information needed to make the choice correctly comes 

later on in the sentence. Due to our single path constraint, immediate 

interpretation requires making a single choice in these cases. 

In Lucia’s I3P model using ECG, these choices for local ambiguities come 

down to which construction to select next, so the details of the selection phase 

are key to resolving these ambiguities. Lucia’s general strategy for these 

situations is to make a single, sometimes called greedy, choice of a construction 

based on heuristics, and then make a correction later if necessary. This section 

examines many cases and how Lucia handles them (see also Lindes & Laird, 

2017a). There are also cases where local repair is not sufficient, and more 

complex deliberative processing would be needed. This is discussed further in 

Chapters 5 and 6. 

4.6.1 Lexical ambiguities 

At the beginning of each word cycle, Lucia selects a specific lexical construction 

to integrate with the comprehension state. However, many words have multiple 

meanings or uses. Words can be categorized as function words or content words. 

Function words, like determiners and prepositions, come from limited sets, and 

each is often used in many ways with the meaning determined by the context. 

Content words, like nouns, adjectives, and verbs, carry meaning with the word 

itself, but may have multiple senses. Lucia has four ways to choose between the 

multiple options available: resolution by design of the grammar, resolution by 

syntactic context, and immediate or delayed resolution of multiple senses. 

Case Study 4.3: Resolution by design of the grammar 

Many function words have meanings that vary depending on the syntactic 

context. For example, up can be a particle together with a verb as in pick up, or 

it can be a preposition. Various forms of to be, such as is, have many possible 

uses. When possible, Lucia has a single construction for a word defined in the 

grammar and resolves the meaning from the syntactic context of what phrasal 
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construction uses that word. This follows the principle in construction grammar 

theory that both words and larger constructions contribute to meaning 

(Goldberg, 1995). Consider some of the many uses of is: 

B-001 The sphere is green. 

object-description(O10, predicate(green1)) 

B-007 The red triangle is on the stove. 

object-description(O7, on1(L3)) 

B-042 Go until there is a doorway. 

command(op_go-to-location1, until(object(shape(door)))) 

B-044 Octagon is a shape. 

adjective-definition(word(octagon), property(shape)) 

B-078 Is the green sphere on the table? 

object-question(O10, on1(L6)) 

 

Is can declare an object property (B-001) or a relation (B-007). With there, 

is can declare the existence of something (B-042). Is can also define an adjective 

(B-044) or introduce a question (B-078). None of this information is derived from 

the lexical construction, but is added as phrasal constructions are recognized. 

Case Study 4.4: Resolution by syntactic context 

Another function word that has multiple senses is that. In this case the grammar 

defines three distinct lexical constructions that all use the same spelling but are 

of different types. These examples show abbreviated syntactic structures. 

B-017 Put that in the pantry. 

ImperativeWithLocation[ 

  TransitiveCommand[PutVerb[PUT]], THAT-deictic], 

  SimplePrepPhrase[in the pantry.] ] 

command(op_put-down1, O6, in1(L2)) 

B-028 Pick the green block that is small. 

TransitiveCommand[PickVerb[PICK], 

  RefExprRelClause[SpecPropNoun[the green block], 

    RelativeClauseProperty[ 

      HeadRelativeClause[THAT-relative, IS], SMALL] ]] 

object-description(O7, on1(L3)) 

B-145 The goal is that the box is in the office. 

ConceptIsThatDeclarative[ 

  ConceptIsThat[SpecNoun[The goal], IS[is], THAT-complementizer], 

  RefIsPrepPhrase[the box is in the office.] ] 

object-description(concept(goal), subclause(action(is1), O13, in1(L9))) 

 

 In B-017, that follows a verb as its object, causing THAT-deictic to be 

selected and grounded to the object currently pointed to. In B-028 that follows a 
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RefExpr, and THAT-relative is selected to head a relative clause. B-145 uses a 

ConceptIsThat construction, forcing the selection of THAT-complementizer to 

connect The goal is to the complement clause. 

Case Study 4.5: Immediate resolution of multiple senses 

Content words often have multiple senses, with context needed to select from 

among them. In these cases, the grammar defines two or more alternative lexical 

constructions. A phrasal construction that matches one of them chooses that 

one and deletes the others, as in these cases: 

B-058 The sphere is red. 

RefIsProperty[SpecNoun[THE, SPHERE-noun], IS, RED] 

object-description(O35, predicate(color(red1))) 

B-048 Where is the red triangle? 

WheresWaldo[WHERE, IS, SpecPropNoun[THE, RED, TRIANGLE-noun] ] 

where-is-question(O51) 

B-077 Is this a sphere? 

IsObjectPropSetQ[IS, THIS, Property1Set[A, SPHERE-class] ] 

object-question(O6, predicate(shape(sphere1))) 

 

These three sentences show different senses for both sphere and red. 

Sphere has two senses, a noun and a class name. The noun sense is recognized 

by a SpecNoun construction in B-058, while a sphere in B-077 is matched by a 

Property1Set construction that uses the class sense, discarding the noun. In 

both B-058 and B-048, red is matched as a property, but in B-058 it is applied 

to the sphere by is, while in B-048 it is used as an adjective to modify triangle. 

Case Study 4.6: Delayed resolution of multiple senses 

The word square can be a property to be applied, a noun, or an adjective, as 

these sentences (not in our corpora) illustrate. 

4.6a This is a square. 

ThisIsAThat[THIS, IS, Property1Set[A, SQUARE-class] ] 

object-description(O6, predicate(shape(square1))) 

4.6b Put the square in the square box. 

ImperativeWithLocation[ 

  TransitiveCommand[PutVerb[PUT], SpecNoun[THE, SQUARE-noun]], 

  SimplePrepPhrase[IN, SpecPropNoun[THE, SQUARE-adjective, BOX] ] 

command(op_put-down1, O46, in1(O84)) 
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 All three senses are candidates each time. For a property application as in 

4.6a and the noun in 4.6b, the property or noun sense is chosen as above. The 

second case in 4.6b is more complicated: during incremental processing of this 

instance of square, the noun will be chosen as before. When box is being 

processed, the system recognizes that the chosen sense is wrong, and a local 

repair is needed. The SpecNoun construction that recognized the second the 

square phrase is discarded. Next, the previously ignored adjective sense of 

square replaces the noun sense. Now the whole phrase the square box can be 

recognized, with the adjective sense of square. Many nouns can be used as 

adjectives like this. 

 The case of square as an adjective illustrates the delayed resolution 

strategy. In immediate resolution, other senses are not completely forgotten; they 

are linked to the chosen sense and can be brought back and selected in a later 

context. This is one kind of repair process that makes incremental parsing 

possible by allowing the comprehender to maintain only a single path in its 

comprehension state, yet still have enough information available to make a local 

repair when necessary. However, we shall see that there is a limit to how much 

delay is possible. 

 Some lexical ambiguities must be resolved by semantic rather than 

syntactic context. The meaning of bank, for example, depends on whether the 

semantic context is related to rivers, finances, airplanes, or billiards. Chapter 6 

will show how we address this issue using an experimental version of Lucia. 

4.6.2 Grammatical ambiguities 

Lucia uses one of several strategies when multiple composite constructions 

match a given comprehension state. 

Case Study 4.7: Selecting among competing composite constructions 

B-001 The sphere is green. 

object-description(O10, predicate(color(green1))) 

B-094 This is a big triangle. 

object-description(O6,predicate(size(large1)),predicate(shape(triangle1))) 
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 Both of these sentences have noun phrases. However, to produce 

grounded meaning Lucia must treat The sphere in B-001 as a reference to an 

object, while a big triangle in B-094 represents simply some predicates to 

describe the object referred to by This. Lucia has preference heuristics that select 

SpecNoun over Property1Set for The sphere and Property1Set over 

SpecPropNoun for a big triangle based on whether the determiner is definite or 

indefinite. 

 In a similar way, a heuristic selects from among BareNoun, SpecNoun, 

and SpecPropNoun for the phrase the green block in cycle 6 of  Figure 4-5 by 

preferring a construction that spans more constituents. In the discussion of 

Figure 4-7, we described how a construction like TheKitchen that is specific to 

certain lexical items is preferred over SpecNoun that is much more general. 

4.6.3 Structural ambiguities 

Often the immediate context suggests one way of integrating a word into the 

ongoing parse, but later on that decision turns out to be wrong, as in the square 

box where the word square should be used as an adjective and not a noun. At 

the phrasal level, of particular importance are the attachment of prepositional 

phrases and relative or subordinate clauses. Lucia implements a strategy of local 

repair, modeled after that used by Lewis (1993), to resolve these ambiguities, as 

the following examples show. 

Case Study 4.8: Local repairs for phrase and clause attachment 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O15) 

B-030 Pick the green block that is on the stove. 

command(op_pick-up1, O15) 

B-015 Put the green sphere in the pantry. 

command(op_put-down1, O50, in1(O68)) 

 

 We have discussed previously how a local repair is needed for B-020 to 

attach on the stove to the green block in order to get an unambiguous grounding. 

Figure 4-9 sketches the steps for performing this repair, derived from Figure 4-5. 
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Figure 4-9: A local repair 

 At frame 8 the incremental processing has built what appears to be a 

complete TransitiveCommand sentence for Pick up the green block. However, by 

frame 13 the phrase on the stove has been added, and the previous command is 

below it on the stack. At this point there are two candidate composite 

constructions: an ImperativeWithLocation that would compose the C and the P 

into a new command sentence, and a RefExprPrepPhrase that would compose 

the R for the green block, which is at level 3 in the tree, with the new P. A heuristic 

based on the type of verb in the A node selects the R alternative. When this R is 

composed and integrated with the tree, the C node built in frame 8 is discarded, 

and the A node moves up to be right under the new R in the stack. Now the A 

and the R can be composed into a new C, which completes the sentence. 

 This form of local repair is used by Lucia for many sentences in the Rosie 

corpora. It shows two important aspects of the Lucia model. First, during the 

selection phase leading to cycle 14, the R candidate, a RefExprPrepPhrase 

construction, “reaches down” in the tree to find the RefExpr for the green block, 

even though this node is not on the stack. This is something not considered 

possible in many symbolic parsing algorithms. Second, this selection of the new 

R only requires reaching down to level 3 of the tree to consider the R node at that 

level. When a local repair would have to reach down to level 4, that repair fails, 

consistent with our theory that three and only three levels of the tree need to be 

accessible for selection of composite constructions. 

Continuing with our case study, B-030 shows that when that is added to 

convert the reduced relative clause into an unreduced one, a similar repair is 

still needed to build a RefExprRelClause after the relative clause has been 
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constructed, since Pick the green block is first processed as a complete sentence. 

The logic is different for B-015, since the verb Put requires the prepositional 

phrase to give it a target location for the action. In this case, the green sphere is 

not semantically ambiguous, and a different heuristic selects the C alternative 

instead of the R in a situation analogous to frame 13 in Figure 4-9. 

4.6.4 Semantic ambiguities 

We have mentioned the importance of semantic precision for achieving E3C, and 

that the type and compositional hierarchies of ECG give us tools for resolving 

semantic ambiguities. Prepositions give an example of this effect. 

Case Study 4.9: Resolving the semantics of prepositions 

B-054 Go to the kitchen. 

command(op_go-to-location1, to1(L13)) 

B-099 Go down the hall. 

command(op_go-to-location1, O46) 

 

Most generative grammar approaches produce the same exact 

grammatical structure for both of these sentences. Such an approach fails in an 

incremental semantic parse that must produce actionable meanings. The final 

messages that are to be sent to the robot for these two sentences are different. 

For B-054, the message specifies a specific waypoint as the goal of the go action, 

whereas for B-099 no specific goal is given, just an object representing the hall 

to guide the motion. Consider a number of other possible prepositions that could 

have appeared in one of these sentences: across, along, around, behind, in, into, 

out of, past, through, to the left of, and so on. Some of these would work perfectly 

well in one of the sentences while making the other infelicitous7. 

In B-054, to is treated as an ordinary preposition. For down in B-099, we 

created a construction that can only be a constituent of a corresponding special 

subcase of a prepositional phrase. This type of construction provides an 

                                       
 

7 Linguists use the term infelicitous to describe a sentence which is syntactically correct but does 

not make sense semantically. 
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alternative parse, which depends on the particular preposition involved, 

ultimately producing a different meaning structure. This is an example of how 

grammatical constructions, not just lexical items, carry meaning in construction 

grammar theory, as Goldberg (1995) insists. 

4.6.5 Grounding ambiguities 

In Chapter 2 we discussed how referring expressions can be grounded directly 

to the World Model, grounded hypothetically, or grounded dynamically. For 

grounding to the World Model, the language used determines whether a unique 

result is possible. In general, Lucia depends on Rosie’s instructor to use the 

language necessary to produce unique grounding, as illustrated by the sentence 

B-020 we discussed earlier. When the language given leaves remaining 

ambiguity in the grounding for a whole sentence, Lucia does not have a 

mechanism to resolve this. The best it can do is report all the options to Rosie, 

and let Rosie either use task and environmental knowledge to figure out the 

resolution or ask the instructor to clarify. Hypothetical and dynamic grounding 

do not have the same ambiguity issues, but they do present other issues that 

are discussed in Chapter 5. 

4.7 Evaluation 

Chapter 2 provided evidence that Lucia can in fact produce correct messages for 

sentences in the Rosie corpora, thus performing E3C. Chapter 3 presented the 

grammar used to do this, thus implementing CKM. This chapter has described 

the dynamic, incremental algorithm that is used to apply the grammar to the 

sentences to produce correct output messages. Together, these chapters show 

that Lucia’s processing algorithm works correctly in this sense. The other thing 

to evaluate here is how well it does I3P. 

 As Figure 4-2 shows, Lucia’s processing is incremental, word-by-word. It 

also shows construction cycles within the processing of each word, each one of 

which grounds, when possible, an individual word or phrase to Rosie’s world 

knowledge. This incremental grounding works, since the messages to Rosie 

produced by Lucia are correct in that they enable Rosie to learn and perform 
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tasks as intended by the instructor. Grounding is an essential part of this 

correctness, and as this chapter shows it is done incrementally and with 

immediate interpretation as needed in every construction cycle. 

 This shows that the algorithm does incremental, immediate interpretation 

processing (I3P). However, at this stage of development it does not provide 

detailed predictions of timings in human processing or the relation of the model’s 

workings to human brain data. In Chapter 7 we examine research on detailed 

measures of human comprehension and how the Lucia model might serve as a 

basis of future research on modeling those more detailed aspects of human 

processing. 
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Chapter 5 Lucia in a Cognitive Architecture 

We have seen conceptually how Lucia performs embodied, end-to-end 

comprehension (E3C) in Rosie using a compositional knowledge of meaning 

(CKM) in the form of a large ECG grammar with incremental, immediate 

interpretation processing (I3P). The next phase of our journey is to see how all 

this is implemented using general cognitive mechanisms in a cognitive 

architecture. Underlying these architectures is the hypothesized cognitive 

architecture principle (Lehman et al., 1996): 

 

ARCHITECTURE + KNOWLEDGE = BEHAVIOR 

 

which implies that humans achieve complex behaviors such as language 

comprehension by applying general cognitive mechanisms to the knowledge 

needed for a particular task. Applying this principle to sentence comprehension, 

this complex behavior should arise from an architecture applied to knowledge 

relevant to that behavior. For Lucia, the behavior desired is E3C in Rosie, and 

knowledge involved is the ECG grammar described in Chapter 3 and the I3P 

algorithm described in Chapter 4 (Lindes, 2018). 

 Based on this idea, this chapter addresses the following principle of the 

Lucia theory: 

GCM: General Cognitive Mechanisms – Comprehension processing is done 

using domain-general mechanisms of cognition. In practice, this implies 

that our computational cognitive model will be built using a cognitive 

architecture. 

This project has chosen to adopt the Soar cognitive architecture: 

Commitment 4: Lucia is built within the Soar cognitive architecture. 

 The Soar architecture is described briefly below. Its key features are an 

unbounded working memory, a long-term procedural memory that stores 
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production rules, long-term declarative memories for storing facts (smem) and 

previous experiences (epmem), and a decision cycle that applies procedures to 

the memories in a way that implements the problem-space computational model 

(PSCM Laird, 2012). Newell (1990) provides extensive arguments on how these 

mechanisms can produce a variety of human behaviors documented in the 

empirical psychological literature. For our work we simply assume that Soar is 

an adequate representation of the general cognitive mechanisms we need.  

 Given that assumption, our problem here is to show how Lucia’s linguistic 

and processing knowledge can be represented and applied in Soar to produce 

the desired E3C behavior. The following section describes how we have solved 

this problem to achieve the performance already documented. In the evaluation 

section we describe what is working well and what are some of the limitations of 

the current implementation. Chapter 6 examines a further analysis of the 

structure and use of working memory, an analysis of how this model might 

explain certain limitations of human comprehension ability, and experiments 

how limitations of the model might be overcome. 

This chapter describes how to use the mechanisms of an architecture that 

models cognitive mechanisms that are both general and plausible to exist in the 

human mind and brain to represent and apply the knowledge described to 

produce the desired sentence comprehension behavior. We first review the 

relevant literature on cognitive architectures, and related work on applying these 

architectures to language comprehension. Then we give a detailed explanation 

of how Lucia uses the Soar cognitive architecture to achieve E3C in Rosie using 

the ECG grammar from Chapter 3 and the I3P algorithm from Chapter 4. Since 

ambiguity is such a challenge for incremental language processing, we then 

examine how Lucia models resolving ambiguities and processing sentences that 

are difficult for humans. Finally, we evaluate this use of the architecture. 

5.1 Cognitive Architectures 

An important line of AI research for several decades has been cognitive 

architectures. A cognitive architecture defines a set of memories, processing 
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mechanisms, and learning mechanisms designed to model general human 

cognitive abilities. The Human Associative Memory (HAM; Anderson & Bower, 

1973) was an early attempt to model human memory. A series of successors 

(Ritter et al., 2019) adding procedural memory and other capabilities has 

culminated in the Adaptive Control of Thought-Rational architecture (ACT-R; 

Anderson, 2007) that has been widely used for modeling human behavior. In a 

similar approach, inspired by earlier work by Newell and Simon (Laird & 

Rosenbloom, 1996), an architecture called Soar (Laird, 2012; Newell, 1990) was 

developed with different initial goals and some variations in structure. Kotseruba 

and Tsotsos (2020) survey 84 cognitive architectures, 49 still being developed 

actively. We have chosen to use Soar for our implementation of Lucia and Rosie, 

so we concentrate on Soar with some comparisons to ACT-R (Laird, 2021). 

5.1.1 The Common Model of Cognition 

Newell (1990) and Anderson (2007) develop theoretical arguments for how their 

architectures, Soar and ACT-R respectively, model general human cognition. 

Laird, Labiere, and Rosenbloom (2017) merged and abstracted key features of 

these two architectures, as well as a new one called Sigma (Rosenbloom et al., 

2016), to form the Common Model of Cognition (CMC; Laird, Lebiere, et al., 

2017). 

The CMC8 is a fairly simple model that serves as a good entry into this 

field. Figure 5-1, adapted from Laird et al. (2017), shows the principal 

components of the model. At the center is Working Memory (WM), which holds 

short-term knowledge of the current state of the agent and its interactions with 

the world. Knowledge in long-term procedural memory consists of production 

rules, which are IF-THEN rules. When a rule’s left-hand-side, the IF part, 

matches the current state of WM, that rule fires, and the actions defined by the 

right-hand-side, the THEN side, make changes to WM. The architecture brings 

                                       
 

8 This model was originally called the Standard Model of the Mind by Laird et al. (2017), but 

subsequently a community consensus has renamed it the Common Model of Cognition. 
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perceptual information into WM automatically, and the firing of rules puts 

instructions into WM that initiate retrievals from long-term declarative memory 

or actions to be performed by the motor component. 

 

Perception
Speech Vision

Motor
Speech Motion

Working Memory

Knowledge

Procedural
Long-term Memory

Declarative
Long-term Memory

 

Figure 5-1: General cognitive mechanisms in the CMC (from Laird, Lebiere, et 

al., 2017) 

The figure shows a static diagram of the model. The dynamics come from 

the firing of rules, changes in perception, and retrievals from long-term memory, 

which take place in what is called the cognitive cycle. Research shows (Anderson, 

2007; Newell, 1990) that, in humans, the duration of this cycle is approximately 

50ms. Complex behavior arises from applying knowledge over many cognitive 

cycles. 

5.1.2 The Soar Cognitive Architecture 

Soar has a more complex structure as shown in Figure 5-2 (Laird, 2012). In Soar, 

the symbolic Working Memory (WM) is made up of working memory elements 

(WMEs), each of which has an identifier, a named attribute and a value, which 

may be a constant or another identifier. Typically, a single identifier will have a 

number of WMEs attached to it, thus forming a graph structure. In Soar the 
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number of identifiers and WMEs is unbounded. WM is also organized according 

to a hierarchy of states which can change dynamically. 

 Soar’s procedural long-term memory contains production rules. A rule 

fires when its left-hand-side (LHS) matches the state of WM, and then it makes 

changes to WM according to its right-hand-side (RHS). Soar’s declarative long-

term memory is divided into two parts: semantic memory (smem), which holds 

facts, and episodic memory (epmem), which holds a record of the history of 

episodes of processing. 

 

Figure 5-2: The Soar Cognitive Architecture (from Laird et al., 2017) 

Soar is designed around an idea called the problem space computational 

model (PSCM; Laird, 2012), which grew out of earlier work the General Problem 

Solver (GPS; Newell & Simon, 1961). Computation is organized around problem 

spaces that “provide a framework for organizing knowledge of operators, states, 

and control knowledge.” (Laird & Rosenbloom, 1996, p. 5). In each state in Soar, 

an operator can be selected and applied, changing the system to a new state. 
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The PSCM leads to a cognitive cycle, which in Soar is called a decision 

cycle (DC). During each cycle an operator is selected and applied, often involving 

many rule firings. If the knowledge encoded in rules is insufficient to select or 

apply an operator, an impasse is reached and a new substate is created. This 

cycle has a number of phases, as shown in Figure 5-3. 

 

Figure 5-3: The Soar Decision Cycle 

In the Input (I) phase, external input is added to a special location in WM 

called the input link. In the Proposal (P) phase, rules fire to propose operators. 

There may be several operators proposed, and in the Decision (D) phase, 

preference rules and architectural mechanisms select a single operator to be 

applied in that cycle. This is an important parallel-to-serial decision point. In the 

Apply (A) phase, rules that have knowledge of how to apply the selected operator 

fire, possibly in multiple parallel waves of multiple rules per wave. In the Output 

(O) phase, special locations in WM send commands to the long-term declarative 

memories to initiate retrievals and/or to the Action module to produce motor 

actions. The cycle gathers input from the world, uses parallel processing to both 

propose operators and apply the operator selected, and may send commands to 

long-term memories or output to the world. If operator selection or application 

fails for whatever reason, an impasse is detected and  substate is created. 

5.1.3 ACT-R 

The Lucia theory has not been implemented in ACT-R (Anderson, 2007; Bothell, 

2021), but we present an overview of that architecture because we will compare 

comprehension theories and use of working memory between ACT-R and Soar. 

Figure 5-4 (Laird, Lebiere, et al., 2017) shows the general structure of ACT-R, 

including theories of how its various modules map onto regions of the brain. 

Rather than having working memory in the middle surrounded by other 

modules, this view has the procedural module, which includes long-term 
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procedural memory, in the center surrounded by buffers that connect it with 

various other modules. In effect, the buffers are the working memory of ACT-R, 

since production rules can only match against and change the contents of these 

buffers. This differs from Soar’s unbounded working memory. 

 

Figure 5-4: The ACT-R Cognitive Architecture (from Laird, Lebiere, et al., 2017) 

 Another key difference between ACT-R and Soar is how the cognitive cycle 

works. There are no operators in ACT-R. The Procedural Module simply selects 

a single production rule from its long-term procedural memory that matches the 

contents of the buffers at each cycle, and the selected rule modifies the contents 

of the buffers. Goals are represented in the Goal Buffer, which can affect the flow 

of control like any buffer, but there is nothing that corresponds to Soar’s 

impasses and state hierarchy. Even though the diagrams for Soar and ACT-R 

differ in how they organize the modules, the CMC makes visible the important 

commonalities between these architectures. 
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5.2 Language Comprehension in Cognitive Architectures 

In Chapter 1 we examined a number of AI systems and compared them to Lucia 

on each of the main dimensions of our theory. Of these, there are four that use 

cognitive architectures comparable to the CMC, one in Soar and three in ACT-R. 

(We ignore here the LEIA system (McShane & Nirenburg, 2021) since it does not 

have a comparable architecture.) We look briefly here at how each of these uses 

general cognitive mechanisms for language processing. 

 Allen Newell (1990) suggested an approach to language comprehension 

using his theory of unified theories of cognition in Chapter 8 of his book. Others 

developed this theory further, calling it NL-Soar. Richard L. Lewis (1993) 

describes using Soar for parsing, including an extensive study of modeling 

garden-path and parsing breakdown effects. His algorithm is based on generative 

grammar and X-bar theory, uses Soar’s chunking mechanism to learn 

procedural knowledge for parsing in real time, and gives a theoretical account of 

immediate interpretation (I3P) without fully implementing it. Shortcomings of 

NL-Soar include that it is not embodied and does not do true end-to-end 

comprehension (E3C) in that it does not create a representation used to produce 

internal or external actions by an agent. Although X-bar theory is a composable 

theory for syntax, NL-Soar does not have a composable model of knowledge of 

meaning (CKM) similar to ECG, nor does it include a theory of language 

acquisition from experience (LAE). 

 Lewis and Vasishth (2005; henceforth LV05) pursued a different approach 

for GCM by using ACT-R. As before, their new approach does not do E3C, use 

CKM, or consider LAE. It does employ incremental processing, but without 

grounding to the knowledge of an embodied agent (I3P). At the center of this 

model is the use of cue-based retrievals from ACT-R’s declarative memory, and 

how these are affected by activation levels and interference. ACT-R’s theory 

includes formulas for estimating retrieval times from long-term memory, and the 

LV05 model uses these to make predictions about human reading times. The 

paper reports success in comparing model results to empirical data on five 
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experiments, with an R2 ranging from 0.76 to 0.91 for different data sets of 

human reading times.  

 Jones (2020) points out what he sees as several deficiencies in LV05 and 

similar models. ACT-R only allows production rules to access its small number 

of buffers, and claims that Lewis and Vasishth “assume extra working memory 

capacity in the form of overt or hidden buffers … linked to … a set of assumed 

phrasal categories.” He also criticizes previous models for using only binary 

branching in their tree structures, a weak association between syntactic 

structure and meaning, and unrealistic approaches to resolving ambiguities. He 

then presents his model, which itself adds three additional buffers and a 

“multibuffer” to ACT-R. Some strengths of his model are that it uses basically 

the same algorithm to process sentences in English and Korean, and its 

approach to disambiguation, which includes using prosodics. Jones’s (2020) 

approach does not include an approach to achieving E3C, I3P, or LAE. 

 Ball’s system (J. T. Ball, 2012) is implemented within a “synthetic 

teammate” (J. Ball et al., 2009; Demir et al., 2015), an agent that coordinates 

with two human operators to perform a simulated UAV reconnaissance mission. 

It does a form of E3C as it communicates via text with the human operators 

using a domain-specific subset of English, but does not actually ground to 

knowledge of the physical world. It is based on Ball’s (2004) Double-R theory of 

grammar and comprehension. Its grammar is similar to construction grammar, 

but the way in which it maps form to meaning is not grounded to the physical 

world. It does a form of incremental processing using retrievals from ACT-R’s 

declarative memory, but ACT-R is extended with several additional language-

specific buffers (J. T. Ball, 2013). This is the most complete language 

comprehension system in ACT-R, since it is part of a larger agent that acts in its 

virtual world using language to communicate with humans. 

 NL-Soar and the three ACT-R systems all do sentence processing using a 

cognitive architecture; however, only Ball’s Double-R system (J. T. Ball, 2013; 

Demir et al., 2015) does a form of E3C. They all do incremental processing, but 

without immediate interpretation. All of the ACT-R models require significant 
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extensions to ACT-R’s working memory. In Chapter 6 we analyze in some detail 

Lucia’s use of working memory in comparison to these other systems in cognitive 

architectures. 

5.3 Lucia’s Implementation in Soar 

This section describes the details of the representations and algorithms used to 

implement Lucia in Soar. Lucia is embedded in Rosie’s Soar agent and uses its 

CKM, I3P algorithm knowledge, and Rosie’s world knowledge to transform each 

input sentence into a grounded action message (E3C), as shown in Figure 5-5. 

World Model Ontology

Pick up 
the green 
sphere.

Input 
Words

Grammar 
Knowledge

Processing 
Knowledge

Lucia Comprehender

Action 
Messages

Hand Built

ECG 
Grammar 

Files

Command

action:

object:

op_pick-up1

o15

 

Figure 5-5: Lucia as embedded within Rosie 

The comprehension state, not shown, resides in working memory. 

Grounding is done to Rosie’s World Model in working memory and its Ontology 

in long-term declarative memory. Each sentence is processed incrementally, with 

immediate grounding. An action message for each sentence is added to Soar’s 

WM for the rest of Rosie to act on. The grammar from Chapter 2 (CKM) is 

translated into Soar production rules. Each construction cycle uses operators to 

select, integrate, and ground a new construction. Many rules fire, often in 

parallel, during each decision cycle. Using this approach, Lucia simulates adult 
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skilled comprehension in simulated real time. Chapter 6 discusses an alternative 

version of Lucia, called System B, that uses a declarative representation of CKM 

that can facilitate LAE. 

5.3.1 Knowledge of the meaning of language in Soar 

Lucia’s composable knowledge of meaning (CKM) originates in files containing 

constructions and schemas written in ECG’s formal language. This “grammar” 

is translated into Soar knowledge by ECGtoSoar, a program shown in Figure 5-6. 

ECG ANTLR is the file defining the ECG language for the ANTLR parser (Parr, 

2013), and Soar ST defines the syntax of Soar data. 

Parse Tree ECG Tree Soar Tree

Parse Analyze Translate GenerateGrammar
Soar 
Code

ECG ANTLR Soar ST

 

Figure 5-6: The ECGtoSoar translator 

 The Soar Code produced by ECGtoSoar for the standard version of Lucia 

is a set of Soar production rules. Lucia consists of these rules generated from 

ECG as well as hand-built rules that are, for the most part, not specific to any 

ECG item. The following subsections give detailed examples of the different kinds 

of rules generated by the translator from ECG, as well as representative hand-

built rules. 

5.3.2 Overall control structure 

This subsection gives a high-level view of the flow of control in Lucia’s I3P 

algorithm in Soar, with more detail in the following subsections. The control 

structure uses knowledge both from ECG and hand coding, and follows the 

pattern of Soar’s PSCM theory defined for NL-Soar by Newell (1990) and used by 

Lewis (1993). Discussion of how ambiguity and local repairs follows below. 
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There is a top level comprehend operator that has no apply rules and thus 

creates an impasse and a substate in which all the I3P processing for a sentence 

is done. Each word cycle is made up of a next-word operator and a comprehend-

word operator that also generates a substate. The construction cycles for 

processing an individual word all happen within the comprehend-word state for 

that word. An example sentence illustrates this control flow. 

Case Study 5.1: Control flow for a simple sentence 

B-009 Pick up the green sphere. 

command(op_pick-up1, O10) 

 

Figure 5-7 shows parts of an abbreviated Soar trace for processing this 

sentence. 

 

1: O: O1 (init-agent) 

2: O: O2 (init-comprehender) 

3: O: O18 (comprehend) 

... 

6:     O: O20 (next-word) #1: Pick 

7:     O: O21 (comprehend-word) 

... 

14:    O: O27 (next-word) #2: up 

15:    O: O28 (comprehend-word) 

... 

22:    O: O34 (next-word) #3: the 

23:    O: O35 (comprehend-word) 

... 

27:    O: O38 (next-word) #4: green 

28:    O: O39 (comprehend-word) 

... 

34:    O: O44 (next-word) #5: sphere 

35:    O: O45 (comprehend-word) 

... 

44:    O: O56 (comprehend-done) 

Sentence #1: 

  "Pick up the green sphere." 

45: O: O57 (interpret) 

... 

49: O: O60 (act) 

... 

53: O: O63 (repeat) 

 

Received word #1: Pick 

7:    O: O21 (comprehend-word) 

8:    ==>S: S3 (operator no-change) 

9:       O: O22 (lexical-access) 

10:      O: O23 (match-construction) 

Matched a PickVerb construction. 

11:      O: O25 (lookup-action) 

12:      O: O26 (retrieve-item) 

13:      O: O24 (comprehend-word-done) 

 

 

Received word #5: sphere 

35:    O: O45 (comprehend-word) 

36:    ==>S: S7 (operator no-change) 

37:       O: O46 (lexical-access) 

38:       O: O47 (lookup-property) 

39:       O: O53 (retrieve-item) 

Prefer SpecPropNoun(3) > BareNoun(1). 

40:       O: O50 (match-construction) 

Deleting the lexical option C30. 

Matched a SpecPropNoun construction. 

41:       O: O54 (ground-reference) 

42:       O: O55 (match-construction) 

Matched a TransitiveCommand construction. 

43:       O: O52 (comprehend-word-done) 

Figure 5-7: Soar trace for a simple sentence 
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The left-hand side shows the top-level processing of the complete sentence. 

The numbers at the left of each processing line are sequence numbers of the 

decision cycles, and the ellipses mark gaps where details have been elided. The 

“O:” marks indicate the operator selected in each decision cycle (DC), and 

indentation of these indicates the level of substates involved. Operators O18 and 

O56, at DC’s 3 and 44, bracket the comprehend state for this sentence. 

 After DC 44, there are three more top-level operators, interpret, act, and 

repeat. Interpret and act implement the sentence interpretation process to 

produce the message structure created by Lucia, and repeat resets the system 

to be ready to process the next sentence. 

The right-hand side of the figure shows details of the comprehend-word 

substates for the words Pick and sphere. Here we describe the basic function of 

each operator, and the following subsections give details of the rules used to 

propose and apply these operators for each phase of the construction cycle. 

Each lexical-access operator uses ECG knowledge to perform the 

selection and integration phases of the construction cycle for a new input word. 

The match-construction operators perform these two phases of each composite 

construction cycle. The lookup-xx and retrieve-item operators perform 

grounding for concepts that are grounded to Rosie’s Ontology. A ground-

reference operator grounds a referring expression to an object in Rosie’s World 

Model. If none are found, a create-new-object operator builds a new object 

structure and stores it in the World Model. This is not needed in this particular 

example. The remaining decision cycles for comprehend-word, operator-no-

change, and comprehend-word-done perform the overhead functions needed to 

create and resolve a Soar impasse to implement PSCM processing. 

The functioning of Lucia involves parallel processing punctuated with 

serial selection decisions at several levels. The Soar architecture provides for 

multiple parallel operator proposals and a selection procedure involving 

preference rules to select a single operator for each decision cycle. Lucia uses 

this mechanism to select among multiple match-construction candidates 
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proposed for composite constructions. Multiple lexical items can be proposed in 

parallel on the Soar state with apply rules for lexical-access, multiple operators 

are proposed to process them, and preference rules choose among them based 

on the syntactic context. 

During the apply phase of a typical decision cycle for lexical-access or 

match-construction many rules fire. The ECGtoSoar translator builds the 

knowledge from ECG into construction-specific apply rules for lexical-access, 

proposal and apply rules for match-construction, and rules to construct ECG 

schemas and populate them. Other hand-built rules that are not construction-

specific perform generalization, grounding, and other house-keeping functions. 

Rules fire in a series of parallel waves, as shown in Figure 5-8 for DC 42 in Figure 

5-7 where the TransitiveCommand is built. 

 

    42:       O: O55 (match-construction) 

--- apply phase --- 

--- Firing Productions (PE) For State At Depth 3 --- 

Firing comprehend-word*apply*match-construction*TransitiveCommand 

Matched a TransitiveCommand construction. 

--- Firing Productions (PE) For State At Depth 3 --- 

Firing comprehend-word*apply*match-construction*add-source-and-text*2 

Firing comprehend-word*generalize-cxn*Imperative*simple 

Firing comprehend-word*evoked-schema*ActOnIt*create 

--- Firing Productions (PE) For State At Depth 3 --- 

Firing comprehend-word*evoked-schema*Action*exists 

Firing comprehend-word*TransitiveCommand-constraint*self-m-object*UNIFY*object-m 

Firing comprehend-word*generalize-cxn*VerbWithArguments*simple 

--- Firing Productions (PE) For State At Depth 3 --- 

Firing comprehend-word*apply*match-construction*all-done*clear-ref-resolved 

Firing comprehend-word*TransitiveCommand-constraint*self-m-action*UNIFY*verb-m 

--- Firing Productions (IE) For State At Depth 3 --- 

Retracting comprehend-word*propose*match-construction*TransitiveCommand 

--- output phase --- 

--- input phase --- 

--- propose phase --- 

--- decision phase --- 

    43:       O: O52 (comprehend-word-done) 

Figure 5-8: Inside a match-construction decision cycle 

 The trace in this figure is abbreviated, but it shows multiple parallel waves 

of rule firings, all in the apply phase. Every line starting with “--- Firing 
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Productions” marks the beginning of a new wave, and the rules under it fire 

before the next wave and make changes to working memory in parallel. The 

*apply*match-construction*TransitiveCommand rule instantiates the 

construction and sets it as the new root of the comprehension state in the first 

wave. The next wave generalizes it to an Imperative, creates an evoked ActOnIt 

schema, and annotates the node with text information. The next wave generalizes 

again to VerbWithArguments, sets the value of the object role of ActOnIt, and 

generalizes this schema to an Action. Then another wave sets the value of the 

action role of Action and completes the integration process. 

Case Study 5.2: Control flow for a sentence with local repair 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O15) 

 

In Chapter 4 we analyzed the processing of this sentence, including that 

when block is processed, a complete sentence construction is built, which must 

be discarded later after stove by a local repair to build a RefExpr for the combined 

phrase the green block on the stove. Figure 5-9 shows the sequence of 

constructions selected and their grounding to comprehend this example 

sentence. Operators that initiate and terminate the word cycle are not shown. 

Each numbered rectangle in the figure represents the operation of a single 

Soar operator. The white rectangles on the left are new input words being 

acquired, and each is processed to form a lexical construction. These are then 

combined into composite constructions, with each horizontal line representing 

all the processing done for a single word. 
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Figure 5-9: Construction cycles for a sentence with local repair 

At 15 and 24 we see examples of competing constructions, with the dotted 

one being rejected, as described below for the selection phase. At 27 a local repair 

deletes an already built construction to allow the prepositional phrase to be 

attached to a referring expression, with a new TransitiveCommand finally being 

built at 31. Operator 16 finds three objects in the world model that fit the green 

block, but 25, 29, and 30 use on the stove to select the one that fits the whole 

sentence. The constructions are shown with their most specific identity. Their 

generalizations, for instance that both SpecNoun and RefExprPrepPhrase are 

subcases of RefExpr, are not shown here. 
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5.3.3 The selection phase 

This subsection and the following two, respectively, provide detail on how the 

Soar rules generated by ECGtoSoar, as well as the related hand-built rules, 

perform the processing for the three phases of the construction cycle: selection, 

integration, and grounding. The details given are with respect to this sentence: 

Case Study 5.3: A simple command 

B-054 Go to the kitchen. 

command(op_go-to-location1, to1(L28)) 

 

Each construction cycle adds a new node to the comprehension state as 

described in Chapter 4, so a decision must be made about which of the many 

available constructions should be selected for integration. The selection phase, 

which differs for lexical and composite constructions, selects a single 

construction to add next and creates a skeleton instance of it on the Soar state. 

The integration phase connects this node with the comprehension state and fills 

it out. 

Lexical selection 

A lexical-access operator is proposed and selected at the beginning of each 

word cycle. Lexical constructions are selected in two steps. First, each lexical 

construction in the grammar has an apply rule for lexical-access created by 

ECGtoSoar. Each of these fires to propose a candidate lexical construction if the 

current input word has the orthography (spelling) compiled into that rule, and 

puts a skeleton of a new comprehension node on the Soar state. In some cases, 

multiple candidates with the same orthography but different meanings are 

created, such as the multiple senses of that discussed in Chapter 4. The lexical 

construction for go and the apply rule generated from ECG for it look like this: 

 

construction GO 

  subcase of DriveVerb 

  form 

     constraints 

        self.f.orth <-- "go" 

        self.m.name <-- 

           "go-to-location1" 

IF: 

   problem-space=comprehend-word 

    ∧ operator=lexical-access  ∧ word(“go”) 
THEN: 

  +cxn(name(GO), is.a(GO), 

       +m(<meaning>), 

       subcase-of(DriveVerb)) 
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The ECG is on the left and the rule is on the right. Under IF is a list of 

tests that must all be satisfied for the rule to fire. Under THEN is a list of items 

to be added to or deleted from working memory. A “+” indicates that a WME is 

added to the Soar state with the additional information shown. Every lexical 

construction produces an apply rule like the one shown for GO. For a word with 

multiple senses, multiple cxn nodes are built in parallel. 

Composite selection 

ECGtoSoar generates a match-construction propose rule for each composite 

construction where the constituent types of that construction match the items 

in the top levels of the comprehension state. For example: 

 

construction TheKitchen 

   subcase of SpecifierNP 

      constructional 

      constituents 

         spec : THE 

         noun : KITCHEN 

   meaning: Kitchen 

      constraints 

         self.m.name <--> 

            noun.m.schema-name 

         self.m.category <--> 

            noun.m 

         self.m.givenness <--> 

            spec.m.givenness 

IF: 

   problem-space=comprehend-word 

    ∧ lexical-access(done) 

    ∧ cxn:<noun>(is.a(KITCHEN) 
      ∧ previous:<spec>(is.a(THE) 

        ∧ previous:<previous>)) 

THEN: 

  propose match-construction( 

    type(construction), 

    cxn-name(TheKitchen), 

    noun(<noun>), spec(<spec>), 

    span(2), lexicals(2), 

    previous(<previous>)) 

 

 The LHS of the rule looks for a cxn WME on the Soar state that is a 

KITCHEN construction, preceded by a THE construction. The notation :<x> 

indicates the attachment of a variable name x to this Soar node so that it can be 

referred to later in the same rule, usually on the RHS. In this rule, the RHS 

proposes a match-construction operator with parameters for the operator type, 

the construction name, its noun and spec constituents, and its previous link. 

 The propose rule for TheKitchen also adds two other important 

parameters, called span and lexicals, to the operator it proposes. These are 

used by two general preference rules that determine the selection. The rule for 

span looks like this: 
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IF: 

  match-construction(c1, span(s1)) ∧ match-construction(c2, span(s2)) 

  ∧ s1 > s2 
THEN: 

  prefer match-construction(c1, span(s1)) 

  

This rule says that if two match-construction operators have been 

proposed for two different constructions, and the span for the first is greater than 

the span for the second, then prefer the first over the second. This prefers the 

construction with the greater span, meaning the one that has more constituents 

and thus covers more of the sentence. This is a heuristic that forms an important 

part of Lucia’s selection of composite constructions. A similar rule tests the 

lexicals parameter of constructions and prefers one with more lexical 

constituents. This is a simple heuristic to prefer a construction that is more 

semantically precise. 

Examples of the span preference are shown at DC 40 in Figure 5-7 and at 

items 15 and 24 in Figure 5-9. SpecPropNoun is preferred because it spans three 

items while BareNoun spans only 1. An example of the lexicals preference is 

preferring TheKitchen over SpecNoun in the sentence Go to the kitchen., as 

discussed for this example in Chapter 4. 

5.3.4 The integration phase 

Once a construction has been selected, a new node is constructed and integrated 

into the comprehension state. Chapter 4 gave a list of the steps involved in the 

integration phase of the construction cycle, which is essentially the same for 

both lexical and composite constructions. This subsection gives some details of 

how each of these steps is carried out, using some ECG-generated and some 

hand-built rules. 

8. The selected construction is instantiated by building a data structure 

representing it, with the construction name as the bottom level of its type 

hierarchy. 

This step is done by an ECG apply rule for each construction. For a lexical 

construction, the same apply rule for lexical-access that selected a 
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specific construction also builds a skeleton instance on the Soar state. For 

a composite construction, an apply rule for the specific match-

construction operator that was selected builds a skeleton instance. A 

skeleton instance means a simple data structure with the name, base type, 

and constituents of the construction along with additional flags for 

triggering the later generalization and evocation steps of the integration 

phase. The match-construction apply rule for TheKitchen looks like this: 

IF: 

   problem-space=comprehend-word 

   ∧ operator=match-construction( 

      cxn-name(TheKitchen), is.a(TheKitchen), 

      noun:<noun>, spec:<spec>, previous:<previous>) 

THEN: 

  +cxn(name(TheKitchen), is.a(TheKitchen), 

       noun(<noun>), spec(<spec>), subcase-of(SpecifierNP), 

       +m:<meaning>, +evokes(schema(Kitchen), target(<meaning>))) 

 

9. Based on subcase of specifications, the construction instance is 

generalized by labeling it with the names of all the general constructions 

in the sequence of subcases. 

The following ECG rule applies to any new construction labeled as a 

subcase of DriveVerb, and generalizes the GO construction to a DriveVerb. 

It removes the subcase-of(DriveVerb) WME and, since DriveVerb is a 

subcase of SimpleMotionVerb, adds a new subcase-of label for that. The 

generalization rule for SimpleMotionVerb then fires to add that label. This 

rule also adds an evokes WME, which enables the firing of the rule for the 

ActionDescriptor schema. 

 

general construction DriveVerb 

   subcase of SimpleMotionVerb 

   meaning: ActionDescriptor 

IF: 

   problem-space=comprehend-word  

   ∧ operator=lexical-access OR match-construction 

   ∧ cxn(subcase-of(DriveVerb), m:<meaning>) 

THEN: 

   cxn(-subcase-of(DriveVerb), 

       +subcase-of(SimpleMotionVerb, 

       +evokes(schema(ActionDescriptor), 

               target(<meaning>)) 
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This and similar generalization rules are applied sequentially to generalize 

the nodes for the GO and TheKitchen constructions to look like this: 

 

10. This new node is attached into the tree by making it the new root 

node. 

This happens automatically in comprehend-word when the new node is 

built on the Soar state and then its previous link is connected as described 

in the following two steps. At the end of every word cycle the comprehend-

word-done operator attaches the root of the tree to the Soar superstate for 

comprehend. 

11. A new lexical node gets the previous root node as its previous node. 

The apply rule shown for the GO construction makes this previous link. 

12. For a composite construction, its constituent nodes are linked as its 

children, and whatever was on the stack before its first child is linked as 

its previous node. 

The apply rule shown for TheKitchen makes these links. 

13. Whatever meaning schemas specified by the construction are 

evoked, meaning that they are instantiated and the node is linked to them. 

The generalization rule for DriveVerb shown above creates an evokes link 

on the Soar state with a new node specifying that an ActionDescriptor 

schema should be created and attached to the m:<meaning> node. An ECG 

rule specific to this schema creates an instance of the schema, attaches it 

to the target WME, and removes the evokes link. The rule looks like this: 
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schema ActionDescriptor 

   roles 

      class 

      name 

      modifier 

IF: 

   problem-space=comprehend-word 

   ∧ cxn(evokes:<evokes>( 
       schema(ActionDescriptor), 

       target(<meaning>))) 

THEN: 

   cxn(-evokes(<evokes>), 

      +m:<meaning>( 

         schema-name(ActionDescriptor), 

         is.a(ActionDescriptor), 

         class(nil), name(nil), modifier(nil))) 

 

14. The meaning schemas are populated by using the constraints 

specified in the ECG for the construction and the schemas involved. 

 The GO construction has two constraints: 

  self.f.orth <-- "go" 

  self.m.name <-- "go-to-location1” 

 

These are called ASSIGN constraints since they assign a constant value to 

a slot in a schema. The ECGtoSoar translator creates a rule for each 

constraint, including this rule for the name constraint if GO: 

IF: 

   problem-space=comprehend-word 

   ∧ cxn(is.a(GO), 
       m:<meaning>(name:<target>)) 

THEN: 

   cxn(-m.name(<target>), 

       +m.name(go-to-location1)) 

          

 

The ECG for TheKitchen includes the following constraints: 

         self.m.name <--> noun.m.schema-name 

         self.m.category <--> noun.m 

         self.m.givenness <--> spec.m.givenness 

 

These are called UNIFY constraints since they populate a slot in one 

schema with a value or a pointer in an already existing schema. The ECG 

rule for the givenness constraint looks like this: 

IF: 

   problem-space=comprehend-word 

   ∧ cxn(is.a(TheKitchen), 
       m:<meaning>( 

          givenness:<target>, 

       spec(m(givenness(<value>))) 

THEN: 

   cxn(-m.givenness(<target>), 

       +m.givenness(<value>)) 

          

 

 

After applying generalizations and constraints the schemas look like this:  
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5.3.5 The grounding phase 

Performing immediate interpretation requires grounding each lexical or 

composite construction, except for some function words that help construct the 

syntactic structure without contributing separate semantics. Three basic types 

of grounding are possible: grounding to Rosie’s Ontology, grounding to the World 

Model, or creating a new object. Different operators are used for each type. 

Grounding is always completed before going on to select another construction in 

a new construction cycle. 

Most content words, such as nouns, adjectives, and verbs are grounded to 

Rosie’s Ontology. These are grounded by one of several different lookup-xx 

operators, where -xx indicates the type of item being grounded. These operators 

initiate cue-based queries to semantic memory and are always followed by a 

retrieve-item operator to gather the result in WM. In Figure 5-7, the operators 

applied in DC’s 11-12 find Rosie’s representation of the action called pick or pick 

up in English, and operators applied in 38-39 find Rosie’s definition of the shape 

named by sphere. Items 4 and 12 in Figure 5-9 also are created by retrievals. 

Complete referring expressions, such as the green sphere, are grounded 

with a ground-reference operator, as shown at DC 41 in Figure 5-7. This 

operator gathers all the semantic information stored in the RefDesc schema built 

for that RefExpr construction, including knowledge obtained by retrieving the 

meanings of words like green and sphere, and tries to match that information 

against all the objects in Rosie’s World Model. Any matching objects are posted 

as referents on the RefDesc. If there are multiple matches, usually the sentence 
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will have an additional prepositional phrase or relative clause after this RefExpr 

that will allow Lucia to resolve to a single referent. If this is not possible, as in 

Case Study 5.2:, further language input creates a larger RefExpr and the 

additional information resolves the problem. When this ambiguity is not 

resolved, Rosie can ask the instructor for clarification. 

A third possibility is that none of the objects in the World Model match the 

semantics in the RefDesc. At this point, Lucia looks at Rosie’s knowledge in 

smem about its environment, which includes things like a building map and 

long-term knowledge about the location of people and objects. If this fails, a 

create-new-object operator builds an object representation structure from the 

RefDesc and posts it into the World Model. Such an object is marked with a 

^dialog-object true flag and has a handle of new-object-idn where n is a 

unique integer. In some of our examples we abbreviate these id’s to NO-IDn. These 

are hypothetical objects that Rosie uses, especially with Games, to ground later 

during task execution. See below. 

So far, we have looked at grounding to Rosie’s Ontology and World Model. 

Sentences in the Games corpus require different grounding. When learning 

games and puzzles, Rosie is not operating directly in a physical or simulated 

world but gathering information to develop the knowledge needed to solve the 

puzzle or play the game later. Thus, referring expressions have no World Model 

to ground to. These sentences are processed in what is called hypothetical mode. 

Case Study 5.4: Hypothetical grounding for Games 

G-034 If the volume of a block is more than the volume of an object 

  then the block is larger than the object. 

conditional( 

  if-subclause(action(is1), 

    volume-of(NO-ID1), more-than(volume-of(NO-ID2))), 

  then-subclause(action(is1), larger-than(NO-ID1, NO-ID2))) 

 

In hypothetical mode, Rosie learns a model of how to play the game or 

solve the puzzle based on goals, actions, failure states, etc. Then after the 

instruction is finished Rosie can proceed to solve the puzzle or play the game. 

When operating in Games mode, Rosie has a hypothetical flag set in its top level 
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which tells Lucia to create a new hypothetical object for any indefinite referring 

expression that would otherwise be grounded to the World Model, and these 

objects are stored in the World Model by create-new-object operators. A definite 

RefExpr later can be grounded to one of these. At the end of processing a 

sentence, these objects are deleted from the World Model. 

In this example there are two indefinite referring expressions, a block and 

an object. In hypothetical mode each of these creates a new object, designated 

here by NO-ID1 and NO-ID2. Later in the sentence the definite phrases the block 

and the object are grounded by ground-reference to these objects. In some 

conditional sentences for Games, such new objects are referred to later by it, and 

Lucia keeps track of the subject of a previous subordinate clause to successfully 

resolve these anaphoric references. 

Case Study 5.5: Dynamic grounding for Robot tasks 

The grounding process for sentences in the Robot corpus is complex because, as 

the agent moves around in the environment, objects move in and out of its visual 

perception and may or may not be remembered from prior experience.   As part 

of Rosie's operation, it maintains a world model of not only what it currently 

senses, but also what it has recently perceived, as well as having access to 

episodic and semantic memory to provide information about objects and location 

outside the current environment. Here we look at a few examples that illustrate 

the sort of issues involved. 

 

R-030 Find the fork. 

command(op_find1, NO-ID1) 

R-011 Move the fork onto the table. 

command(move1, O530, on1(O118)) 

 

 If Rosie is in the kitchen and the fork is there but not currently visible nor 

remembered, Lucia has nothing to ground the fork to in R-030. In this case Lucia 

creates a new object id for the fork. Rosie acts on R-030 by scanning around the 

kitchen until it sees the fork on the counter and enters it into the World Model. 

When Lucia is then given R-011, it grounds the fork to that visible object, O530. 
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 Another form of grounding for Robot tasks is grounding to locations in the 

agent’s map of a building or other environment. For Go to the kitchen. for 

example, kitchen is called a KnownObject. When the agent is in the kitchen, a 

representation of it is in the World Model and Lucia easily grounds to it. If it’s 

not there, Lucia retrieves it from Rosie’s map in semantic memory. If it’s not 

there either, then a new object is created. 

 To summarize, the grounding process consists of three different kinds of 

operations: retrieving knowledge from Rosie’s Ontology that defines a word in 

terms of Rosie’s internal perceptual properties or action representations, 

searching in Rosie’s world knowledge for an object to satisfy a referring 

expression, and creating new object representations when no referent is found. 

Referring expressions are grounded in three different modes: in direct mode, 

objects are found in the World Model; in hypothetical mode for Games temporary 

new objects are created for indefinite RefExprs; and in Robot mode objects not 

in the World Model are searched for in Rosie’s environment map in semantic 

memory. 

5.4 Ambiguity and Local Repairs 

Human language in general, and the sentences in Rosie’s corpora in particular, 

have many sentences that are locally ambiguous, require local repairs to do I3P 

processing, or are difficult even for humans to parse. Lucia has several strategies 

for dealing with these issues, many described at a conceptual level in Chapter 4. 

This section gives additional detail of how the Soar architecture and Lucia’s 

production rules solve problems of this sort (Lindes & Laird, 2017a). 

5.4.1 Lexical selection 

Some function words have multiple uses that must be resolved. The word that 

in particular has three senses defined in the grammar, so three lexical 

construction candidates are built in lexical-access: THAT-deictic, THAT-

relative, and THAT-complementizer. A combination of ECG rules and hand-built 

rules selects one of these candidates, and remembers the others as options for 

possible future local repairs. Here are some examples to illustrate. 
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Case Study 5.6: Selection by syntactic context 

B-017 Put that in the pantry. 

command(op_put-down1, O6, in1(L2)) 

B-028 Pick the green block that is small. 

object-description(O7, on1(L3)) 

B-145 The goal is that the box is in the office. 

object-description(concept(goal), subclause(action(is1), O13, in1(L9))) 

 

 During a lexical-access decision cycle, all the integration rules for all 

candidate senses fire, so that each candidate has been generalized and its 

meaning schema has been evoked and populated. At the end of this decision 

cycle, new operators can be proposed that use each of the candidates, possibly 

giving multiple operator proposals. 

Three types of operators are possible: a grounding operator to ground that 

lexical item, a repair operator to initiate a local repair as discussed further below, 

or a match-construction operator to build a new composite construction 

including this lexical item. General preference rules determine that a repair 

operator has top priority, followed by a grounding operator, followed by a match-

construction operator. Based on the proposals and the preferences, Soar selects 

an operator to be applied in the next decision cycle. 

The selected operator always uses one of the lexical candidates, which 

becomes the selected sense of the word. With an operator selected, a lexical-

selection rule fires for each other lexical candidate, removing it from the Soar 

state and remembering it under the selected candidate for possible future use in 

a local repair. There are two lexical-selection rules that can fire here, one if 

the selected operator is a grounding or repair operator, and the other for a match-

construction operator. 

For the word that, one, two, or three operators can be proposed, depending 

on the syntactic context. After Put that in B-017 three operators are proposed: a 

grounding operator called ground-this-n-that for THAT-deictic, and two match-

construction operators to build a TransitiveCommand using each of the 

pronoun senses. Grounding is always preferred, so THAT-deictic is grounded to 

the object the instructor is pointing to and the other two senses are removed. 
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After the grounding, the match-construction for THAT-deictic is selected to build 

a TransitiveCommand with that grounded RefExpr. 

 After Pick the green block that in B-028, a repair operator called attach-

relative-pronoun, is proposed using THAT-relative, along with two match-

construction operators for DiTransitiveCommand using the two pronouns. The 

repair operator seeks to uncover the RefExpr for the green block that has already 

been built into a TransitiveCommand. Since repair operators are always the most 

preferred, that operator is selected. As part of its repair, it discards the 

TransitiveCommand that was built for Pick the green block, the other two lexicals 

are also discarded, and both match-constructions for DiTransitiveCommand are 

retracted. Next a resolve-relative-pronoun operator grounds the THAT-relative 

to the preceding RefExpr to serve as the subject of the subject-relative clause 

that is beginning. (Lucia’s grammar does not handle object-relative clauses, 

since there are none in our corpora. Chapter 6 describes extensions for those.) 

 For B-145, THAT-complementizer is the desired sense after The goal is 

that. It is preceded on the stack by a FiniteToBe for is, in turn preceded by a 

RefExpr for The goal. Three match-construction operators are proposed at this 

point, one for a ConceptIsThat that uses THAT-complementizer and two for 

RefIsRefs that use the two pronoun senses. ConceptIsThat specifies THAT-

complementizer specifically as its third constituent, so the preference rule that 

depends on the number of lexical constituents prefers it over the other two, and 

it is selected. Then lexical-selection rules remove the other senses, and the 

ConceptIsThat construction is integrated into the comprehension state. 

In a similar way in DC 40 on the right of Figure 5-7, once the match-

construction operator for SpecPropNoun has been selected, the lexical-

selection rule for match-construction selects the CommonNoun sense of 

sphere and rejects the PropertyClassName sense. The same strategy resolves 

many other lexical ambiguities. 

 This processing is rather complicated for a simple word like that, but it 

shows how multiple candidate composite constructions are proposed by ECG 
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rules that consider the syntactic context, along with help from a few hand-built 

rules that apply to a number of situations, results in correct selection among 

several senses of the same word. All the grounding in Lucia is done with hand-

built rules and not those generated from ECG. The ECG formalism works well 

for representing syntax mapping it to semantics, but it does not cover grounding. 

5.4.2 Grounding pronouns 

Pronouns such as this, that, me, you, it, and one do not provide properties of an 

object to look for in the world, but rather are referring expressions which require 

looking in the current situation and dialog context to find their referent. Lucia 

has several specific strategies for grounding these words that are explained in 

these examples. 

Case Study 5.7: Sentences with pronouns to be grounded 

B-017 Put that in the pantry. 

command(op_put-down1, O6, in1(L2)) 

B-018 Put it on this. 

command(op_put-down1, O7, on1(O6)) 

B-028 Pick the green block that is small. 

command(op_pick-up1, O13) 

B-065 This one is orange. 

object-description(O6, color(orange1)) 

B-165 Tell me the answer. 

command(initiate-tell1, me, concept(answer1)) 

B-178 If you see some trash then throw it away. 

conditional(if-subclause(agent(R5), action(op_sense1), trash1), 

            then-subclause(action(op_throw1), trash1)) 

G-009 If a location is not below an object then it is clear. 

conditional(if-subclause(action(is1), NO-ID1, below1(NO-ID2)), 

            then-subclause(action(is1), NO-ID1, predicate(clear))) 

 

 As we saw, that as a pronoun can be either THAT-deictic or THAT-relative. 

The deictic form, as in B-017, is grounded by ground-this-n-that to the object 

in the World Model marked as being pointed to by the instructor. The relative 

from, as in B-028, becomes the subject of a subject-relative clause, and as such 

is grounded by resolve-relative-pronoun to the referent of the RefExpr that 

precedes it. The pronoun this is always treated as deictic, as in B-018, and 

grounded in the same way as the deictic form of that. This can also be treated as 
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a specifier in a phrase like this one. Other uses of this are not included in our 

corpora and therefore are not handled by the current Lucia. 

 The pronoun you, as used in our corpora, is always grounded to a special 

object in Rosie’s World Model that represents Rosie itself. The pronoun me is 

rarely used, and it is represented in the final message as simply an object whose 

handle is me. Rosie looks in its situation model to find who me is, based on who 

it is talking to. 

 The pronouns it and one are treated basically the same. A number of 

clausal constructions, including ImperativeWithLocation, RefIsPrepPhrase, 

PropertySetIsPrepPhrase, and PropertySetIsNotPrepPhrase evoke an instance of 

a schema called Salient in addition to their main meaning schema. Each of these 

constructions uses a UNIFY constraint to populate the reference role of this 

schema with the referent from its meaning structure that seems most salient to 

be referred to outside this clause. An apply rule for match-construction puts an 

indication on Soar’s top state of what this salient referent is. Then when the 

resolve-pronoun operator tries to ground it or one, it grounds it to what it finds 

there. A sentence like G-009 is processed in hypothetical mode for Games, and 

in this mode any salient item is deleted at the end of the sentence so that it is 

only used locally within a sentence. This strategy cannot handle many other 

anaphoric or cataphoric references that can appear in English, but it is adequate 

for the limited number of cases in our corpora. 

5.4.3 Local repairs 

Fulfilling the single-path principle requires making choices that may later turn 

out to be incorrect. This subsection examines two such cases. Both sentences 

have an initial part that is syntactically complete but semantically ambiguous, 

followed by either a prepositional phrase or relative clause that resolves the 

ambiguity. However, to resolve the ambiguity, the additional structure must be 

composed with a referring expression that has already been composed into the 

initial syntactically complete sentence. A local repair is required in each case. 

We consider these cases at the level of Soar operators and rules. 



 136 

Case Study 5.8: A prepositional phrase requiring a local repair 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O15) 

 

 Syntactically, Pick up the green block looks like a complete sentence, and 

Lucia builds its structure that way after block. However, there are three green 

blocks in the scene, so this part of the whole sentence is semantically 

ambiguous. The instructor, knowing that, adds the phrase on the stove to resolve 

the ambiguity. Lucia now has the challenge of how to integrate the sentence 

properly. Figure 5-10 shows the three construction cycles involved in addressing 

this challenge, with a “?” over the step that appears problematic. There are three 

possible solutions: the one Lucia uses, a more principled alternative explained 

below, and one requiring the experimental approach described in Chapter 6. 
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Figure 5-10: A prepositional phrase requiring a local repair 

 At cycle 13, the partial sentence has been built up as the C node, which 

precedes the P node for the prepositional phrase on the stack. At this point the 

figure shows two possible new nodes that could be built. A new C node could be 

made up from the C <- P pattern, or a new R node for RefExprPrepPhrase could 

compose the P node with the R node which has already been built into the 

existing C node. A match-construction operator for ImperativeWithLocation is 

proposed for the possible new C node. However, the ECGtoSoar translator does 

not produce match-construction operators that can reach down to match nodes 

that are children of previously composed nodes. To solve this problem, Lucia 

uses a technique modeled after the local repair strategy introduced by Lewis 

(1993) in NL-Soar. Figure 5-11 shows how this is done. 
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Received word #8: stove 

    53:    O: O62 (comprehend-word) 

    54:    ==>S: S10 (operator no-change) 

    55:       O: O63 (lexical-access) 

Prefer >span: SpecNoun(2) > BareNoun(1). 

    56:       O: O65 (match-construction) 

Matched a SpecNoun construction. C51 

    57:       O: O67 (ground-reference) 

    58:       O: O68 (match-construction) 

Matched a SimplePrepPhrase construction. C53 

    59:       O: O71 (attach-prep-phrase) 

Snipping C35 to get to C33 . 

Attach phrase C53 to type verb-object at point C33 . 

    60:       O: O72 (match-construction) 

Matched a RefExprPrepPhrase construction. C55 

    61:       O: O73 (ground-reference) 

    62:       O: O75 (ground-relation) 

    63:       O: O74 (match-construction) 

Matched a TransitiveCommand construction. C57 

    64:       O: O66 (comprehend-word-done) 

    65:    O: O76 (comprehend-done) 

Sentence #1: "Pick up the green block on the stove." 

 Figure 5-11: Using a snip for a local repair 

The key to this solution is an operation called snip. Since no match-

construction operator can, in this case, compose a new R node using the 

existing one on level 3 as a constituent, the tree must be reconfigured. This 

involves deleted the existing C node and restoring its constituents to the stack 

as predecessors of the P node, as shown in 13a. With this done, the regular 

proposal rule for RefExprPrepPhrase fires and we get frame 14. In Lucia this is 

implemented with operator in an additional decision cycle between the 

construction cycles 13 and 14 shown above. Several different operators are used 

to perform snips in different situations. 

 For this particular sentence and some similar ones, the snip is performed 

by an operator called attach-prep-phrase. It has several different propose, 

preference, and apply rules that handle a variety of prepositional phrase 
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attachment situations, some requiring a snip and some not. Several other 

operators perform snips for many syntactic contexts not enumerates here, and 

quite a few of the sentences in the Rosie corpora use one or more snips in Lucia. 

 The snip strategy works to perform many local repairs, but it is somewhat 

dissatisfying since it requires these special-purpose operators. Even though each 

such operator has enough generality to apply to a number of specific sentence 

forms, it would be desirable to have a more principled approach. There is such 

an approach: simply generate two or more match-construction operators for any 

composite construction that might need a snip. An example would be an operator 

that can reach down in the tree to match the possible R construction in frame 

13 above. If such an operator existed, two match-construction operators would 

be proposed in that frame, and a simple preference rule would resolve the 

problem. We call this an implicit snip. 

 We have experimented with additional match-construction propose rules 

for some constructions, and that approach works without the need for an explicit 

snip. If the possible R in frame 13 is selected, the tree is transformed directly to 

the form in frame 14. The erroneous C node is discarded implicitly. Although 

this approach works as a proof of concept, its full implementation would require 

a way to determine which constructions need the extra propose rules, and which 

do not, and a thorough test of the effect over all the sentences in the corpora. 

This remains as future work. Chapter 6 explores a third approach that is 

architecturally based, involving constructions in semantic memory and changes 

to the architecture. 

 With all these solutions, the snip strategy shows the value of making all 

three top levels of the tree, not just the stack, available to participate in selection 

of composite constructions. Section 5.5 examines what happens for sentences 

that would need more than three levels to resolve. 

Case Study 5.9: A relative clause requiring a local repair 

B-028 Pick the green block that is small. 

object-description(O7, on1(L3)) 

 



 139 

 A sentence with a relative clause often requires a similar local repair. This 

sentence has the same semantic ambiguity as the previous one, and a similar 

strategy is used to do a local repair. However, in this case the need for a repair 

comes when the word that is processed rather than after processing the complete 

relative clause. The word that has three lexical senses that must be selected 

from. An operator called attach-relative-pronoun that is selected after 

lexical-access in this syntactic context uses the THAT-relative option. Figure 

5-12 shows the sequence of operators for this case and a diagram of how the 

attach-relative-pronoun operator changes the comprehension state. 
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Received word #5: that 

    35:    O: O47 (comprehend-word) 

    36:    ==>S: S7 (operator no-change) 

    37:       O: O48 (lexical-access) 

    38:       O: O50 (attach-relative-pronoun) 

Deleting the lexical option C34. 

Deleting the lexical option C36. 

Snipping C29 to get to C27 . 

Attach RelativePronoun C35 with type verb-object to point C27 . 

    39:       O: O54 (resolve-relative-pronoun) 

    40:       O: O52 (comprehend-word-done) 

Figure 5-12: A repair combined with lexical selection 

The selection of attach-relative-pronoun causes a lexical-selection 

rule to fire twice, removing the other lexical items. The attachment operator 

matches to the node on level 3 that that should be attached to, the R node that 

was previously composed into a C node similar to the one in frame 13 of in 

previous example. This results in a snip that leaves the THAT-relative at the root, 

preceded by the previous R and A nodes. When is is processed, a 

HeadRelativeClause construction is built, beginning the processing of that is 

small. 
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All-in-all, several processes are combined to fully comprehend this 

sentence after that has been processed by lexical-access after THAT-relative is 

selected. The snip is performed by an attach-relative-pronoun operator. A 

resolve-relative-pronoun operator grounds that to the referent of the green 

block. The rest of the relative clause is built up. A RefExprRelClause construction 

is built for the green block that is small. That whole phrase is grounded to a 

unique object.  A TransitiveCommand for the complete sentence is built and 

grounded. Finally, the sentence is interpreted to form a message to Rosie. 

5.5 Difficult Sentences 

There are sentences that appear to be grammatical based on a careful syntactic 

analysis, but which humans find difficult or impossible to comprehend. Garden-

path sentences are difficult because the first part of a sentence leads the 

comprehender in a direction that later turns out to be incorrect, and for which 

local repairs don’t seem to be possible. Parsing breakdown happens when human 

processing fails completely, often due to a structure called center embedding. 

Human comprehension processing is usually automatic, or without 

conscious deliberation. When standard syntactic and/or semantic analysis fails, 

as with garden-path or parsing-breakdown effects, conscious deliberation 

strategies are sometimes used to find a meaning for such sentences. 

The Rosie corpora have several sentences that have difficulties of these 

kinds. In the development of Lucia, we have used some hand-built, ad-hoc 

techniques to find correct interpretations of these sentences. These techniques 

may roughly model human post-hoc deliberative processing. Lewis (1993) 

presents 100 examples of different types of difficult sentences, along with similar 

ones that are not difficult. This section examines how Lucia’s algorithm deals 

with some difficult sentences from the Rosie corpora, and in Chapter 6 we 

explore examples from Lewis that require grammatical constructions that have 

not been included in Rosie. The original ECG parser (Bryant, 2008) may handle 

these more easily since it does a best-fit global analysis, but this prevents it from 

doing incremental processing.  
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Case Study 5.10: A repair too deep to be local 

B-032 Move the green rectangle to the left of the large green rectangle 

  to the pantry. 

command(op_move1, O47, to1(O68)) 

 

B-032 does not fit the pattern of local repairs explained above. After to the 

left of the large green rectangle it appears this phrase is providing a target for 

Move, so a complete sentence is formed. But after to the pantry, it turns out the 

to the left of phrase was intended to modify the green rectangle and that the 

pantry is the actual target for Move. 

In this case Lucia uses a deliberative strategy that involves setting part of 

the tree aside temporarily, restructuring the remnant, and rebuilding differently. 

Figure 5-13 shows graphs of several steps, along with a Soar trace showing the 

sequence of decision cycles. Because of the complexity of this example, decision 

cycle numbers and the internal Soar identifiers of many nodes have been added 

to the graphs to help correlate them with the Soar trace. The first frame in the 

top row shows the state of the tree after finishing the processing of Move the 

green rectangle to the left of the large green rectangle. (Note that to the left of is 

treated as a single lexical item labeled ttlo.) C74 is an ImperativeWithLocation 

construction that covers what appears to be a whole sentence. More construction 

cycles are needed to process to the pantry, culminating in DC102 where a 

SimplePrepPhrase, C92, is built by match-construction. 

At this point no new constructions are proposed, because there is none 

that can compose the C74 <- C92 pattern. What should happen next is that C28 

and C72 should be composed into a new RefExprPrepPhrase, but by now C28 is 

inaccessible down at level 4. This situation is not a local repair according to our 

theory of processing operating only on the top three levels of the tree. Since a 

local repair is not possible, the normal Lucia algorithm fails at this point, 

conforming to our intuition that this is a garden-path sentence that is difficult 

for a human to understand. To solve this problem, we have implemented a 

solution that violates our normal rules of locality and represents one possibility 

of how humans might do a deliberative repair.  
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Received word #15: pantry 

    97:    O: O102 (comprehend-word) 

    98:    ==>S: S17 (operator no-change) 

    99:       O: O103 (lexical-access) 

Prefer >span: SpecNoun(2) > BareNoun(1). 

   100:       O: O105 (match-construction) 

Matched a SpecNoun construction. C90 

   101:       O: O107 (ground-reference) 

   102:       O: O108 (match-construction) 

Matched a SimplePrepPhrase construction. C92 

   103:       O: O112 (attach-prep-phrase) 

Snipping C74 for verb-with-args-has-loc to attach C72 to C28  . 

Attach phrase C92 to type verb-with-args-has-loc at point nil . 

   104:       O: O113 (match-construction) 

Matched a RefExprPrepPhrase construction. C94 

   105:       O: O114 (ground-reference) 

   106:       O: O116 (ground-relation) 

   107:       O: O115 (match-construction) 

Matched a TransitiveCommand construction. 

   108:       O: O117 (attach-prep-phrase) 

Attach phrase C92 to type verb-with-args at point C96 . 

   109:       O: O119 (match-construction) 

Matched a ImperativeWithLocation construction. C98 

   110:       O: O106 (comprehend-word-done) 

   111:    O: O120 (comprehend-done) 

Sentence #1: "Move the green rectangle to the left of the large green rectangle to the 

              pantry." 

Figure 5-13: A deliberative repair 
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 The attach-prep-phrase operator in DC103 does several things that 

violate Lucia’s normal rules, but could reasonably be part of a deliberative 

process. The first step, since nothing matches the stack as it is, is to remove the 

top node, along with its subtree, from the stack and set it aside for future use. 

This is shown in the graph as the C92 node and its subtree disconnected from 

the main tree and grayed out. C74 is discarded, leaving C72 as the new root of 

the main tree. 

 At this point a normal snip operation, or its equivalent, is possible since a 

RefExprPrepPhrase can match C72 with the C28 RefExpr at level three. Now 

DC104 snips C30 and composes C94, still leaving C92 on the side. After C94 is 

grounded in DC105 and DC106 (not shown in the graph), DC107 builds a new 

TransitiveCommand, C96, for Move the green rectangle to the left of the large 

green rectangle, but this time with the object of Move being the entire phrase the 

green rectangle to the left of the large green rectangle, represented by C94, which 

has been fully grounded. C92 is still on the side. 

 At this point an attach-prep-phrase operator at DC108 restores C92 to 

the top of the stack and the root of the tree, allowing a new 

ImperativeWithLocation construction, C98, to compose the entire sentence with 

the correct structure. 

 Two important steps in this process are clear violations of Lucia’s normal 

algorithm, but reasonable things to do as part of a conscious, deliberative search 

for a complete grammatical comprehension of the sentence. The first is setting a 

node and its subtree aside for several decision cycles. The second is in DC102 

where C74 is discarded, or snipped, without any clear goal for what construction 

could match afterward. At this point the algorithm is just experimenting to see 

if it can find a way out of its dead end. Once C74 has been removed, a second, 

more normal snip is done to allow composing C94. Finally, the deliberation 

restores C92 to its rightful place on the stack in DC108, and normal processing 

takes over from there. This example demonstrates how deliberative processing 

can work in Lucia, but a general deliberation system remains as future work. 
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5.6 Evaluation 

We have shown in the previous chapters that a model of sentence comprehension 

using the ECG form of construction grammar as composable knowledge of 

meaning (CKM) and Lucia’s construction-cycle algorithm for incremental, 

immediate interpretation processing (I3P) can indeed do embodied, end-to end 

comprehension (E3C), at least in a limited domain. This chapter describes how 

the implementation of the Lucia theory using the Soar cognitive architecture to 

represent general cognitive mechanisms (GCM) satisfies E3C, CKM, and I3P. 

 To evaluate the Soar implementation, we review the evidence that it does 

indeed represent CKM, perform I3P, and achieve E3C. We evaluate a metric of 

real-time performance against measures of human speech and reading rates. We 

review limitations of Lucia in Soar, and how future work might alleviate or 

eliminate some of these. 

5.6.1 Basic E3C-CKM-I3P performance 

Chapter 2 and Appendix 1 discuss the three corpora of sentences used for 

teaching ITL tasks to Rosie. The Evaluation section of Chapter 2 describes details 

of how we tested that Lucia does in fact perform correct E3C on these sentences. 

Table 3-1 repeats the summary of test data given there, but showing only the 

data for the sentences that perform the entire E3C function, including grounding 

and sentence interpretation. The generality ratio shown is the ratio of the 

number of sentence forms working to the number used for development to 

achieve that. The ratios defined this way are relatively small due to the fact that 

the sentences were developed to represent unique meanings not encountered 

before. When a new lexical, syntactic, or semantic element is added to the 

grammar, it may be very general and capable of matching a large number of 

sentences. However, few if any such sentences may be found in our corpora. The 

generality ration shown here represents only sentences in our corpora, not the 

full range of generality that is possible. 
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Table 5-1: Results of testing 

Corpus All 

Sentences 

Sentence 

Forms 

Development 

Set 

Forms 

Working 

Generality 

Ratio 

Baseline 207 207 143 207 1.45 

Games 1,104 172 48 51 1.06 

Robot 228 160 60 110 1.83 

Total 1,539 539 251 368 1.47 

 

 These data show how far we have come to date in covering the Rosie 

corpora, with a total of 368 out of 539 distinct sentences producing messages 

that are correct to achieve Rosie’s goals. Given that the model is implemented 

using Soar’s architectural mechanisms as described in this chapter, these data 

show that Lucia in Soar performs E3C for the scope of these sentences. 

 The above sections described in detail how Soar production rules 

generated by the ECGtoSoar translator program represent CKM in the form of 

proposal rules for match-construction operators and apply rules for match-

construction and lexical-access operators. These rules, along with the hand-

built processing rules described, perform Lucia’s construction-cycle algorithm 

for I3P, including resolution of various kinds of ambiguity and making local 

repairs, as shown in the various case studies given above. Taken together, the 

corpus test data and the detailed explanations of how Soar’s mechanisms are 

used to represent CKM and process I3P show that Lucia in Soar implements E3C 

within these constraints of knowledge and processing. 

5.6.2 Real-time performance 

Human adults comprehend sentences at a rate in the range of 150 words/minute 

for speech and up to 250-300 wpm in reading. On a modern computer, Lucia in 

Soar can run at a much higher rate than this; however, our aim is to model 

human performance. To compare Lucia’s processing rate to human performance, 

we use a simulated real time metric. There is a reasonable consensus among 

cognitive architecture researchers that a human cognitive cycle is on the order 

of 50ms (Anderson, 2007; Laird, Lebiere, et al., 2017; Newell, 1990). To calculate 
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the simulated real time for Soar to do certain processing, we count the number 

of decision cycles taken and multiply that by 50ms.  

A run of Lucia on our Baseline corpus takes 10,683 decision cycles, or a 

simulated real time of 534.15 seconds.  In that run 1,150 words were processed, 

yielding an average of 0.464 seconds/word, giving a simulated processing rate 

of 129.2 wpm. This rate indicates that Lucia is slower than human 

comprehension of speech, about 86% of human speech rate. It is around half of 

the human rate for  skilled reading. 

During Lucia’s development, the primary emphasis was on achieving E3C 

performance with a system using CKM to do I3P with GCM. Simulated real time 

performance comparable to humans was a concern, but not the main focus.  

Therefore, once that becomes a criterion for evaluation, more work is needed on 

Lucia’s processing to decrease the number of decisions required for each word, 

which in turn would speed up its simulated wpm. Soar provides a learning 

mechanism called chunking which could possibly replace some decision cycles 

by learning more skilled processing of the comprehend-word operator. Using this 

approach, chunks to speed up processing would be learned gradually over time 

as more and more combinations of words and contexts are encountered. 

For example, it seems reasonable that the entire word cycle for the word 

Pick shown in Figure 5-7 could be reduced to a single decision cycle from the 

seven it takes now. The word cycle for sphere later on, however, could not be 

fully reduced because the grounding to the World Model must remain flexible to 

allow for changes in the external situation and resulting perception. It is not at 

all obvious how to learn new rules in some cases, but not collapse those 

operators that must be sensitive to the immediate unique situation. To discover 

the full impact of chunking would require implementing it fully, measuring its 

effect on a large corpus, and then finding ways to avoid problems caused by 

learned rules that are too general. Unfortunately, this is likely to take a lot of 

work to make sure the learned rules correctly handle the large number of cases 

involved, so this is left for future work. 
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At this time, we can say that Lucia in Soar comprehends language at a  

simulated real-time rate that is close to the rate of human speech, and its 

simulated processing rate could probably be improved to equal human 

processing rates. 

5.6.3 Limitations 

Many other measures of human processing have been made that the current 

Lucia implementation cannot reproduce. The current Lucia does not have a 

mechanism for measuring variable retrieval times for constructions, and 

therefore does not make predictions about word-by-word details of human 

reading times as Lewis and Vasishth (2005) have done. To model this sort of 

thing would require a future version of Lucia with a more nuanced relationship 

between construction cycles and simulated real time. 

Neither can Lucia model the brain measurements Brennan and Hale 

(2019) discuss. They measure EEG data of humans that “listen passively to an 

audiobook story,” and look for correlations with other computational models. 

Their EEG data shows significant events at 400ms and 600ms after word onset, 

which implies there may be overlap between processing one word and the next 

since words come in as often as every 200ms. Little is currently understood 

about mapping brain events onto cognitive architecture cycles, but reproducing 

this sort of overlap would be a challenge for the current Soar architecture 

(Lindes, 2019). 
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Chapter 6 Exploring Grammar, Architecture, and Acquisition 

The previous chapters have explained in detail the theory and implementation of 

Lucia, how it satisfies our E3C, CKM, I3P, and GCM requirements, and a number 

of its limitations. This chapter describes three explorations of ways to extend 

Lucia beyond its current scope and limitations. The first looks at ways to extend 

the ECG grammar to cover event descriptions, object-relative clauses, and 

sentences that are difficult for humans to parse. The second explores what we 

call System B, a version of Lucia that explores a quite different way of using and 

extending the Soar architecture by storing the ECG grammar in Soar’s semantic 

memory rather than in production rules in order to better model human 

comprehension and lay the groundwork for the third exploration. Given the Lucia 

model of comprehension, our third exploration is to develop a theory of how the 

agent could automatically acquire more knowledge of the meaning of language 

through experience. These explorations are experimental, without the full 

implementation that we have done for the version of Lucia described in previous 

chapters, which we call System A. 

6.1 Events and Difficult Sentences 

Chapter 3 lists language phenomena not covered by Lucia’s grammar for Rosie, 

including event descriptions, object-relative clauses, which are English forms 

not used in the corpora with which Rosie was developed. To better model human 

comprehension, Lucia should exhibit coverage and limits of its comprehension 

abilities similar to those of humans. This section explores additions to Lucia’s 

ECG grammar to cover events and object-relative clauses, then how Lucia, with 

this additional grammar, can model the problems humans have in processing 

certain kinds of sentences. As examples we use sentences with the garden-path 

and parsing-breakdown effects analyzed be Lewis (1993) in NL-Soar. 
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6.1.1 Grammar for event descriptions and relative clauses 

Additional grammar is needed for two important grammatical phenomena that 

don’t appear in the Rosie corpora and therefore have not been covered in Lucia’s 

grammar for Rosie: event descriptions and object-relative clauses. Adding these 

to the grammar allows us to examine some sentence structures that are difficult 

for humans to process, which are addressed in the next two subsections. 

Event descriptions are complete declarative sentences that have a subject, 

a verb indicating an action the subject takes, possibly an object, and possibly a 

prepositional phrase indicating a target or location. The general form is shown 

in (1), along with examples. Angle brackets indicate a class of items and square 

brackets indicate something that is optional. A subscript indicates a particular 

sense of a word with multiple senses, in this case the past tense of raced. 

 

(1) a. <subject> <action> [<object>] [<modifier-phrase>] 

 b. The cat ran away. 

 c. The horse raced1. 

 d. The mouse chased the bird. 

 e. The horse raced1 past the barn. 
 

 With the additional constructions summarized in Table 6-1, along with 

some new lexical items, all the sentences in (1) are parsed correctly. (Full 

semantics for these forms have not yet been added.) 

Table 6-1: Grammar for event descriptions 

Construction Constituents 

ActionClause 

  subcase of Declarative 

ref : RefExpr 

verb : ActionVerb 

EventWithLocation 

  subcase of VerbWithArguments 

event: ActionClause 

location: PrepPhrase 

TranstiveClause 

  subcase of Declarative 

subject: RefExpr 

verb: ActionVerbTransitive 

object: RefExpr 

ActionVerbTransitive general construction 
 

 A relative clause is a clause structure that is used to modify a noun phrase. 

Often, they are introduced with a relative pronoun, such as that, which, or who. 
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A relative clause without a pronoun is called reduced. There are two general 

classes of relative clauses: subject-relative clauses where the preceding noun 

phrase serves as the subject of the verb, and object-relative clauses where the 

preceding noun phrase serves as the object of the verb. Lucia’s grammar for 

Rosie covers subject-relative but not object-relative clauses. Here we examine 

both and show the extensions needed to the grammar for the object-relative case.  

General forms with examples of subject-relative clauses are given in (2), with the 

relative clauses italicized. 

 

(2) a. <subject> <relative-pronoun> <finite-to-be> <property> 

 b. the green block that is small 

 c. the green block that is on the stove 

 d. <subject> <relative-pronoun> <action-verb> [<object>] 

 e. the cat that ran away 

 f. the mouse that chased the bird 
 

 These are not complete sentences. The entire structure with an initial 

noun phrase followed by a relative clause makes up a form of referring 

expression. The pronouns seem to be necessary in the subject-relative forms, 

and the verb can just be a <finite-to-be> like is or was with a <property> to be 

attributed to the subject, or an <action-verb> with an optional <object> 

describing something the <subject> is doing or has done. Examples of object-

relative clauses are given in (3), with the past participle sense of raced. 

 

(3) a. <object> [<relative-pronoun>] <subject> <action-verb> 

 b. the bird that the mouse chased 

 c. the cat the bird scared 

 d. the horse that was raced2 

 e. the horse raced2 
 

 Object-relative clauses, none of which are in the Rosie corpora, violate the 

normal English form of subject-verb-object by reversing it to object-subject-verb, 

and, with the pronoun left out, they give the unusual form of two noun phrases 

in a row. This presents challenges for both grammar representation and 

incremental processing. 
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The Lucia grammar for Rosie has grammar for the subject-relative form 

using <finite-to-be>, and additional constructions were added to cover the 

object-relative possibilities. The grammar additions for both event descriptions 

and relative clauses make it possible to address the garden-path and local-repair 

issues addressed in the following subsections. Table 6-2 shows all the 

constructions for relative clauses. 

Table 6-2: Grammar for relative clauses 

Construction Constituents 

HeadRelativeClause pro : RelativePronoun 
tobe : FiniteToBe 

RelativeClauseProperty 

  subcase of RelativeClause 

head : HeadRelativeClause 

prop : Property 

RelativeClausePrepPhrase 

  subcase of RelativeClause 

head : HeadRelativeClause 

prepPhrase: PrepPhrase 

RelativeClause general construction 

RefExprRelClause 

  subcase of RefExpr 

subject : RefExpr 
clause : RelativeClause 

IntransitiveRelativeClause 

  subcase of RelativeClause 

pro : THAT-relative 

verb: ActionVerb 

TransitiveHeadRelativeClause pro : THAT-relative 

verb: ActionVerbTransitive 

TransitiveRelativeClause 

  subcase of RelativeClause 

head : TransitiveHeadRelativeClause 

object: RefExpr 

ObjectRelativeClause that : THAT-relative 

subject: SpecifierNP 

verb: ActionVerbTransitive 

RefExprObjectRelClause 

  subcase of RefExpr 

object: RefExpr 

clause : ObjectRelativeClause 

RefExprReducedORC 

  subcase of RefExpr 

object: RefExpr 

subject: SpecifierNP 

verb: ActionVerbTransitive 

RefExprReducedRelative 

  subcase of RefExpr 

ref : RefExpr 

verb : PassiveVerb 

PassiveVerb general construction 
 

 The top constructions through RefExprRelClause are in the Rosie 

grammar, and the rest were added to handle object-relative clauses. The 

RefExprRelClause construction combines a RefExpr subject with a subject-
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relative clause to form a larger RefExpr. RefExprObjectRelClause and 

RefExprReducedORC represent RefExprs with object-relative clauses, such as 

(3b) and (3c). RefExprReducedRelative handles a case like (3e). 

With this grammar in place, we are ready to look at how Lucia can process 

sentences with event descriptions and object-relative clauses, as well as those 

that are often difficult or impossible for humans to comprehend. Lewis (1993) 

discusses garden-path sentences and human parsing breakdown. His examples 

include both event descriptions and object-relative clauses, as well as both of 

these effects that are difficult for humans. The next two subsections explore how 

Lucia, with the extended grammar just given, can process some of his examples. 

6.1.2 Garden-path sentences 

Humans have trouble with sentences where an early choice leads down a path 

that cannot be easily corrected. These are called garden-path sentences. 

Case Study 6.1: A garden path sentence 

(4) The horse raced past the barn fell. 
 

This is a garden-path sentence discussed by Lewis (1993, p. 28, GP-14). 

The word raced can have two senses, as a simple past tense of race or as a past 

participle. While doing incremental comprehension, humans tend to choose the 

past tense form, since this is more common. However, this produces the 

structure of a complete sentence after barn, and leaves no way to integrate fell. 

Figure 6-1 shows the problem. 
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Figure 6-1: Garden path failure and recovery 
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This diagram shows the whole comprehension tree, including the nodes 

below the accessibility threshold. E stands for an event description. In the left 

panel we see the apparently complete sentence after processing barn. Notice that 

The horse raced1 forms one complete event, but that there is a second meaning 

of raced hidden behind the one that was chosen. The middle panel shows that 

when fell is added to the tree the previous tree is pushed down a level, and the 

ambiguity for senses of raced is now below the water line. As we saw in a previous 

example, a local repair is not possible here. A deliberative repair would have to 

set the node for fell aside, discard both the E nodes marked in red, and reverse 

the choice of senses for raced. With all these changes made, the sentence 

structure could be rebuilt in the new form shown in the right panel. 

A deliberate repair strategy to handle this case has not been implemented 

in Lucia. However, with the added grammar described above, Lucia can parse 

this sentence in two ways, depending on which sense of raced is chosen when it 

is processed. At this point, one preference rule chooses a match-construction 

operator for ActionClause over RefExprReducedRelative, making the lexical-

selection rules choose the normal past-tense form, which we have called raced1. 

With this rule enabled Lucia produces the garden-path effect shown in the 

middle panel. An alternative preference rule makes the opposite choice between 

the two match-construction operators, so that the past-participle, called raced2, 

is selected. With that rule enabled, Lucia produces the full parse shown in the 

right panel. 

Is there a principled way of choosing between these alternative word 

senses? One possibility would be to enable one of the choices based on the 

relative probability of the two different word senses based on statistics from some 

corpus. This has not been implemented in Lucia, but it could be done. The ECG 

formalism allows for probabilities to be assigned to constructions, and Bryant 

(2008) used this for his best-fit analysis parser, without incremental processing. 

These probabilities could be used in Soar by assigning numeric preferences to 

the preference rules. This example, and the demonstration done with these two 
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preference rules, shows that such an approach could be added to Lucia without 

sacrificing I3P. 

There is evidence that humans do use statistics of this sort to address 

word-sense ambiguities like the one in this example. Merlo and Stevenson (2000, 

p. 162) cite the very example sentence we are using here, along with another of 

sentence of the same general form: 

 

(5) The butter melted in the microwave was lumpy. 
 

They argue that both these sentences have exactly the same “main 

verb/reduced relative (MV/RR) ambiguity,” but that (5) is “easily interpreted,” 

and that this supports an “account in which verb-specific frequency information 

is largely responsible for the variability of processing difficulty in this 

construction.” Adding statistical information to Lucia’s I3P processing opens a 

door to a possible direction for future work. 

Lewis (1993, pp. 35–49) discusses garden-path and “unproblematic 

ambiguity” phenomena and theories to explain them. He summarizes with the 

hypothesis that: “Garden path effects are purely a function of differences 

between the syntactic structure of the preferred interpretation, and the syntactic 

structure of the globally correct interpretation.” In a later chapter (pp. 161-193), 

he discusses how NL-Soar deals with these phenomena. We have not attempted 

to apply Lucia to his whole range of examples, but the way the Lucia theory deals 

with these phenomena fits well with both Lewis’s theory and his practice. Lucia 

covers much of this space by using the various techniques we have discussed 

for resolving local ambiguities, performing local repairs, and failing when needed 

repairs are not local and require deliberation, or what Lewis calls “reprocessing.” 

6.1.3 Parsing breakdown 

Lewis (1993) presents other sentences which cause parsing breakdown in 

humans. One type of breakdown arises in sentences that appear grammatically 

correct but are difficult or impossible to parse, such as ones that have center 

embedding, like the two versions this one: 
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Case Study 6.2: A sentence that causes parsing breakdown 

(6) a. The cat that the bird that the mouse chased scared ran away. 

 b. The cat the bird the mouse chased scared ran away. 
 

Sentence (6a) from Lewis (1993, p. 49) has nested relative clauses, in a 

form called center-embedded or self-embedded. Sentence (6b) has the two 

instances of that removed, making the relative clauses reduced. Both sentences 

are virtually impossible for a human to understand, despite the fact that they 

are grammatically correct according to a careful syntactic analysis. We consider 

two possible explanations consistent with Lucia theory for what might cause this 

parsing breakdown. 

Before doing a detailed analysis, it is useful to compare the problematic 

sentences in (6) with other sentences that express the same meaning in a way 

that is easy to understand, along with some shorter sentences that show 

important pieces of these sentences. Several variations are given in (7). 

(7) a. The mouse chased the bird. 

 b. The bird scared the cat. 

 c. The cat ran away. 

 d. The mouse chased the bird and the bird scared the cat. 

 e. The mouse chased the bird and the bird scared the cat and the cat ran 

away. 

 f. The bird that the mouse chased scared the cat. 

 g. The cat the bird scared ran away. 

 h. The mouse chased the bird that scared the cat that ran away. 
 

 All of the sentences in (7) are easy for humans to parse, and Lucia, with 

the additional grammar outlined above, can parse them correctly. (7a) and (7b) 

are simple uses of the TranstiveClause construction, while (7c) uses the simpler 

ActionClause that has no object. (7d) and (7e) use AndDeclarative and 

DeclarativeAndDeclarative constructions to assemble complex clauses with 

conjunctions. (7f) and (7g) both use single relative clauses with constructions 

RefExprObjectRelClause and RefExprReducedORC, respectively. Sentence (7h) 

has two relative clauses, but they are not nested within each other. 
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 The problem comes in (6a) and (6b) because one relative clause is nested, 

or embedded, within another one. It is easy to draw a hierarchical syntax 

diagram for these sentences, so why are they so problematic for humans? We 

suggest two possible explanations, one syntactic and one semantic. 

 We start by examining syntactic processing for (6b), since it is a simpler 

sentence, and the argument is the same for (6a). Figure 6-2 shows the sentence 

at the top and two possible parsing attempts below it. On the left is a parse that 

works with a RefExprReducedORC having another instance of the same 

construction as a constituent. This is an example of the recursion that is possible 

with Lucia’s ECG formalism. Using this recursion, the Lucia parses the sentence 

with no problem. 

 

The cat the bird the mouse chased scared ran away. 

A parse with recursion A parse without recursion 

ActionClause[ 

    The cat the bird the mouse 

    chased scared ran away.] 

  RefExprReducedORC[ 

      The cat the bird the mouse 

      chased scared] 

    SpecNoun[The cat] 

      THE[The] 

      CAT[cat] 

    RefExprReducedORC[ 

        the bird the mouse chased] 

      SpecNoun[the bird] 

        THE[the] 

        BIRD[bird] 

      SpecNoun[the mouse] 

        THE[the] 

        MOUSE[mouse] 

      CHASE-past-tense[chased] 

    SCARE-past-tense[scared] 

  RUN-AWAY-past-tense[ran away.] 

SpecNoun[The cat] 

  THE[The] 

  CAT[cat] 

RefExprReducedORC[ 

    the bird the mouse chased] 

  SpecNoun[the bird] 

    THE[the] 

    BIRD[bird] 

  SpecNoun[the mouse] 

    THE[the] 

    MOUSE[mouse] 

  CHASE-past-tense[chased] 

SCARE-past-tense[scared] 

RUN-AWAY-past-tense[ran away.] 

Figure 6-2: A parse that succeeds and one that fails 
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The parse on the right, however, fails. It succeeds in constructing the inner 

instance of RefExprReducedORC, but fails to parse the outer one because 

recursion has been eliminated. Table 6-3 shows the grammar change: 

Table 6-3: A construction with and without recursion 

Construction Constituents 

RefExprReducedORC 

  subcase of RefExpr 

object: RefExpr 

subject: RefExpr 

verb: ActionVerbTransitive 

RefExprReducedORC 

  subcase of RefExpr 

object: RefExpr 

subject: SpecifierNP 

verb: ActionVerbTransitive 

 

RefExprReducedORC is a subcase of RefExpr, so in the top version both 

its object and subject constituent links are recursive. This version parses (6b) 

correctly as shown on the left in Figure 6-2. In the bottom version, the subject 

link has been changed to SpecifierNP, breaking the recursion by allowing only a 

noun phrase rather than a general referring expression in the subject link. With 

this version of the construction the parse fails, as shown on the right in the 

figure. Making a similar change to the object link makes no difference in the 

results, and it is the same for (6a). 

Why should eliminating recursion in this particular point of the grammar 

cause the parse to fail? As mentioned earlier, there can be some doubt about 

whether human processing truly uses full recursion or not, since certainly 

working memory limits will result in limited depth. Perhaps this is a case where 

humans cannot do recursion. But why? In (6b) the inner relative clause in the 

bird the mouse chased is parsed just fine. However, in the outer relative clause 

in The cat the bird the mouse chased scared, the subject position in the <object> 

<subject> <verb> sequence is the bird the mouse chased, which is a complex 

expression and not a simple noun phrase. For some reason, the human 

processing system fails when trying to do recursion at this point. Perhaps there 

is an explanation in the semantics of these forms. 
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Figure 6-3 is a diagram of the semantic processing required for (6b) at two 

stages of processing, at chased on the left and at scared on the right. In each 

noun phrase, the noun specifies a class of objects and the requires a particular 

one by picking from perception or imagining one. Before grounding the relative 

clause on the left, none of the three NPs have sufficient information to be 

grounded. The grounding must be left in some sense “pending.” 

When processing chased, there are three such pending noun phrases plus 

the verb on the stack. To ground the whole phrase the bird the mouse chased 

requires finding something in the current perceived or imagined scene a 

particular mouse chasing a particular bird. An event description with a 

particular mouse chasing a particular bird is formed. The result of that whole 

phrase then is a RefExpr whose meaning is grounded to the bird. Sentence (7g) 

is a complete sentence with a similar phrase that parses correctly. 

1234

RefExprReducedORC
<object> <subject> <verb>

{find a mouse chasing a bird, pick them}

<object> <subject>

chased

V

the    mouse

{mouse}

{which mouse?}

NP

the     bird

{bird}

{which bird?}

NP

the     cat

{cat}

{which cat?}

NP

scared

V

123

RERORCNP

RefExprReducedORC
<object> <subject> <verb>

{find a bird scaring a ? ...}

<object> <subject>

?

 

Figure 6-3: Semantics of a parsing breakdown 

On the right in Figure 6-3 is the next step with the word scared. The stack 

has the verb at the top, preceded by the RefExpr for the bird the mouse chased 

that was just found, preceded by the pending NP for the cat. The figure assumes 

we allow recursion for the subject of the relative clause. As shown by the shading, 

however, most information about the pending NP appears to have been lost. 

Introspective intuition suggests that, by this time, we have forgotten about 

the poor cat. We conjecture that there is a mechanism in the human mind that 
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can perform grounding for a phrase with two pending noun phrases and a verb, 

but in doing so it forgets any other pending phrases that came before. This 

forgetting makes a sentence with center embedding like this impossible to 

comprehend. Future work will be needed to fully model such a mechanism and 

explore whether it can be supported by human data. 

Lewis (1993, pp. 49–67) provides lists of sentences that cause parsing 

breakdown, including our (6a) and 6(b), and those that show what he calls 

“acceptable embeddings,” similar to those in (7). He describes syntactic theories 

and processing architectures that attempt to explain these phenomena. The best 

explanations are similar to our technique for limiting recursion. He explains (pp. 

139-159) how NL-Soar addresses this issue, again providing a syntactic 

argument that appears equivalent to our limitation of recursion. None of these 

theories look at limits on semantic processing as suggested here. 

These ideas on how to handle garden-path and parsing breakdown effects 

are conjectures. Much future work remains to validate them in comparison to 

other theories in the literature and actual human data. 

6.2 System B: Language Knowledge in Semantic Memory 

The Lucia system described in detail in Chapters 2 through 5, called System A 

here, performs E3C with I3P using GCM, but has limitations with respect to both 

functionality and cognitive plausibility in humans: 1) It does not allow for 

situational context to bias lexical selection. 2) It cannot predict word-by-word 

reading times. 3) There is no support in the Soar architecture for the limit that 

only three levels of the tree are accessible for processing, and explicit hand-built 

operators are required for local repairs. 4) There is no support for a theory of 

language acquisition from experience since all its CKM comes as already built 

skilled procedural knowledge from an external source. 

 This section describes an experimental System B version of Lucia that 

attempts to address these limitations. System B uses the memories of Soar in a 

very different way, and makes extensions to it. It implements only part of the 

Lucia theory,  but shows the viability of an approach toward solving them. 
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6.2.1 Overview of System B 

System B is an experimental system designed to test approaches to improving 

on these limitations, including supporting the theory of language acquisition 

described in the following section by representing knowledge of language as 

declarative knowledge that is gradually compiled into procedural skill. System B 

uses the same ECG grammar as System A, the same structure of the 

comprehension state, and the same conceptual construction-cycle-based 

algorithm for doing incremental comprehension. 

 For System B, the ECG grammar is translated into declarative 

representations that are stored in Soar’s semantic memory, rather than 

procedural knowledge represented as production rules. Hand-built rules that 

know nothing of the specific content of ECG items use the mechanisms of 

semantic memory (smem), including spreading activation, to retrieve this data 

and use it according to the same phases of the construction cycle to build the 

same structure of the comprehension state described in Chapters 4 and 5. A new 

experimental architectural mechanism for attention in working memory (WM) is 

used to modulate the spreading activation, and multiple parallel retrievals from 

semantic memory are allowed. Soar’s chunking mechanism gradually converts 

the interpretation of declarative knowledge of language retrieved from smem into 

procedural knowledge in learned production rules, thus transitioning over time 

from declarative to procedural access of constructions. 

As developed so far for this experiment, System B does not yet implement 

the full algorithm. Some of the hand-built logic in System A, including the 

grounding phase, sentence interpretation, and parts of the logic for local repairs 

are not yet implemented. Because the comprehension state data structures are 

the same as System A, these features can use the same logic. However, the 

control structure, described below, is quite different. As a result, the amount of 

work needed to make this logic work in System B is beyond the scope of this 

exploratory project. These remain for future work. 
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6.2.2 System B control structure 

System A uses a comprehend-word operator that creates an impasse in which the 

word cycle of processing happens, interspersed with next-word operators. Both 

the selection and integration phases of each construction cycle are subsumed 

within either a lexical-access or a match-construction operator, with 

grounding done separately. When this control structure was implemented, the 

theory of the construction cycle had not yet emerged. The simulated processing 

rate of System A is too slow, and one cause is that every word cycle uses three 

decision cycles that are needed to handle the Soar impasse for comprehend-word. 

 For System B, it was decided to eliminate comprehend-word and its impasse 

overhead and instead use an iterative approach based on the construction cycle. 

The construction cycle has three operators: cxn-query that performs the 

selection phase, build-cxn which performs the integration phase, and ground-

cxn which does the grounding phase. Processing in a substate for these operators 

can be proceduralized by Soar’s chunking mechanism to eventually eliminate 

the impasse, as shown above for build-cxn. So far ground-cxn does nothing. 

 Figure 6-4 shows the sequence of decision cycles needed to process the 

word cycle for Go in Go to the kitchen. Those in blue are essential for 

implementing the construction cycles, those in yellow are the overhead for each 

word cycle, and those in gray are operators that could be optimized away in 

System B. Those not highlighted are for retrieving each new input word. 

System A 
 6: O20 (next-word) #1: Go 

 7: O21 (comprehend-word) 

 8: ==>S3 (operator no-change) 

 9:    O22 (lexical-access) GO 

10:    O23 (lookup-action) 

11:    O26 (retrieve-item) 

12:    O24 (match-construction) SimpleAction 

13:    O25 (comprehend-word-done) 

14: O27 (next-word) #2: to 

System B 
111: O147 (next-word) #5: Go 

112: O148 (cxn-query) GO 

113: O150 (build-cxn) 

114: O151 (ground-cxn) 

115: O152 (cxn-done) 

116: O153 (cxn-query) 

117: O155 (build-cxn) SimpleAction 

118: O161 (ground-cxn) 

119: O162 (cxn-done) 

120: O163 (cxn-query) 

121: O168 (partial-match) 

122: O169 (next-word) #6: to 

Figure 6-4: Control sequences for System A and System B 
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A careful analysis of the experimental code shows that many of the 

operators used could be eliminated with some fairly straightforward optimization 

of the code. The optimization shows an 11.8% advantage for System B on this 

entire sentence. This does not seem to justify the change in the control structure. 

In fact, restoring comprehend-word to System B and then working out how to use 

chunking for its substate would probably result in a greater speedup. 

6.2.3 Using semantic memory and spreading activation 

System A does construction selection with rules generated from ECG, along with 

hand-built preference rules for categories of operators. System B uses a cxn-

query operator to retrieve a selected construction from smem using spreading 

activation (SA). For this experiment, the SA algorithm for smem has been 

extended in two ways. An attention mechanism in WM modulates the source of 

spread from WM to smem. Another extension allows for multiple parallel 

retrievals for the same query. The details and benefits of these two extensions 

are explained below. 

 A query to smem is made using a cue, and all smem nodes that match 

that cue become candidates. Then SA begins using nodes in WM that were 

previously retrieved from smem as sources of SA to the items in smem that they 

came from. From those nodes, activation spreads along edges in the smem graph 

to other items. The strength of the source of spread from a node in WM in System 

B is based on the new attention mechanism. Of the candidate nodes, the ones 

with the highest activation are retrieved, based on a parameter to determine how 

many are retrieved. System B uses this SA mechanism for the selection phase of 

each construction cycle to retrieve the representation of a construction from 

smem. Some other features of smem and SA in Soar’s base architecture, 

including base-level activation and allowing spread beyond one step, have been 

turned off for this exploration in order to make the experiment more tractable. 

Resolving word senses from context 

Lexical items are retrieved using a cue with the orthography, or spelling, of the 

item, which match several senses of a word in smem. If nothing in WM sources 
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spread to these candidates, they all have the same activation, and an arbitrary, 

fixed selection is made. SA can favor one or another of these candidates based 

on connections from items in working memory. System B has a mechanism for 

using WM nodes that represent semantic context to spread activation that biases 

these retrievals. We have tested this with the following sentences. 

Case Study 6.3: Sentences for selecting senses of the word bank 

Bank-1 Take the canoe down to the bank. 

Bank-2 Take the check down to the bank. 

Bank-3 Put the plane in a bank. 

Bank-4 Bounce your shot off the bank. 

 

 In these examples there are four different senses of bank (of at least 

fourteen that we have identified), and in each case there is a previous word in 

the sentence that indicates a situational context. In the ECG formalism, the term 

evoke is used for the ECG schemas that are created and populated when a new 

construction is integrated into the comprehension state. In System B, lexical 

items can use the evoke feature in ECG to define their semantic context. During 

the integration phase of a construction cycle, the evoke feature causes an 

instance of an ECG schema to be created as a context. That item in WM can be 

a source of SA that biases the retrieval of subsequent lexical items. 

 Figure 6-5 shows the ECG items in smem relevant to this experiment. On 

the left are the lexical constructions for the senses that we care about of the 

context nouns shot, canoe, check, and plane, while on the right are lexical 

constructions for four noun senses of bank. Each noun has a schema, not 

shown, that defines its basic meaning. There are also a set of schemas called 

contexts, and the lexical constructions for the context nouns in our example 

sentences use the evoke feature to cause retrieval of these context schemas. 

Each context schema also has an edge in the smem graph to the related sense 

of bank. 
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bank
(river)

shot
(billiards)

canoe
(river)

check
(money)

plane
(airplane)

Money 
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Airplane 
Context

Billiards 
Context

River 
Context

bank
(billiards)

bank
(money)

bank
(airplane)

Spreading linkEvocation
 

Figure 6-5: ECG lexical constructions and context concepts 

 System B’s processing of our Bank-1 sentence proceeds as follows. When 

the selection phase performs a retrieval for canoe, it does a cue-based retrieval 

from smem using the spelling of that word. This retrieves the lexical item for 

canoe shown in the figure. In the integration phase, the retrieved item evokes a 

RiverContext schema, using a cue-based retrieval with the name of that schema 

as the cue. Spreading does not influence these two retrievals, since the cues are 

unique. During retrieval for bank, however, all four senses become candidates 

because they all match the cue. Simultaneously, the instance of the RiverContext 

schema in WM sources spread to its base node in smem, which in turn spreads 

activation to the river sense of bank, which then has the highest activation 

among the candidates and is thus retrieved, giving the correct answer. 

Selecting composite constructions 

System A uses a proposal rule generated from ECG for each composite 

construction, along with hand-built preference rules based on properties of the 

constructions to select among competing proposals. For System B, the Rosie 

grammar instead generates composite constructions in smem. The cue used by 

cxn-query for composite constructions makes all of them initial candidates. The 
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nodes in the comprehension state in WM can spread activation to a large number 

of them, including ones that don’t match the current stack. 

 Our experimentation with a few example sentences showed that selecting 

the right composite construction requires extensions to the architecture. All the 

nodes in the comprehension state are sources of spread to smem, whereas the 

correct composition at any moment depends only on the few near the root. If all 

these nodes source an equal amount of spread, many spurious retrievals result. 

The new attention mechanism makes the amount of spread sourced from each 

WM node depend on its distance from the root, so that only the nodes most 

relevant to the current selection produce significant spread in smem. Even then, 

many activated constructions in smem do not match the stack. A mechanism is 

needed to select the one that best matches. Multiple parallel retrievals provide 

an opportunity to do this with rules that fire in parallel. 

Therefore, selection of the right composite construction involves retrieving 

several candidates that have significant activation and then using rules to see 

which of these actually match the stack. For multiple matches, preference rules 

similar to those in System A make the final selection.  The cxn-query operator 

for composite constructions uses several steps, all in a single decision cycle: 

1. Retrieval from smem in Soar requires placing a command on a buffer called 

the smem link to initiate the retrieval. An apply rule places such a retrieval 

command, with an attention pointer to the root node of the comprehension 

state, and a breadth number, N, to specify how many items to retrieve. 

2. The smem retrieval algorithm assigns attention to nodes in WM that can 

source spread to smem. These are the nodes of the comprehension state 

as described in Chapter 4. A value of 1.0 is assigned to the root node, 

moving out from there to other nodes in the WM tree, reducing the value 

by a factor of 0.5 for each step away from the root. 

3. The spreading activation algorithm computes the activation of nodes in 

smem, with the attention value of each node in WM as the source of spread 

coming from that node. 
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4.  Based on the activation levels computed, the top N items in smem are 

retrieved to the smem results link in WM. Retrieving N items is called 

breadth retrieval, and is another new extension to the architecture. 

5. Hand-built proposal rules with general knowledge of composite 

constructions in smem propose a build-cxn operator for each retrieved 

item that fully matches the current comprehension state, and a partial-

match operator for each one that partially matches. 

6. Preference rules rank all the build-cxn operators as in System A for match-

cxn, preferring a larger span and a larger number of lexical constituents. 

7. There are partial-match operators to allow for a future system for 

prediction of subsequent input. Currently, these operators do nothing. 

 At the end of this decision cycle, Soar selects the most preferred build-

cxn operator, if any. If none was found, the word cycle is terminated. Without 

the parallelism provided by the breadth retrieval and the proposal and preference 

rules that fire in parallel, it would be necessary to retrieve and vet one candidate 

at a time. This would take many decision cycles, seriously degrading the system’s 

real-time performance. Consider an example we have seen before. 

Case Study 6.4: Spreading activation for a local repair 

B-020 Pick up the green block on the stove. 

command(op_pick-up1, O15) 

 

 Figure 6-6 shows the last three construction cycles for this sentence. In 

cycle 13, both a C construction and an R construction match the state. Choosing 

the R option to get to cycle 14 involves discarding the previously-built C node. 
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Figure 6-6: Composite selection for a local repair 
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Figure 6-7 shows cycle 13 in more detail, with the nodes annotated with 

the attention values they will get in step 2. An important feature of this figure is 

the way the R construction option reaches down to the other R in the third level 

of the tree. If a build-cxn is selected in this cycle, node 8 with the previous C is 

automatically discarded without any explicit snip operation. 

the

10

stove

11

R

12

on
9

P

13

Root

C

C
8

R
7

A
3

R

0.25 0.25 0.25 0.25
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1.0

 

Figure 6-7: Spread of attention in working memory 

 Given the attention values shown in Figure 6-7, activation spreads to 

many composite constructions in smem in step 3. Table 6-4 shows the results 

for the 10 smem items with the most activation. The Items Match column shows 

how well each one matches in step 5, with green highlighting for the two full 

matches. A build-cxn operator will be proposed for each of these two. 

Table 6-4: Composite selection based on spreading activation 

 WM nodes that source spread   

 1 3 7 8 9 12 13 Total Items 

 0.125 0.250 0.250 0.500 0.500 0.500 1.000 Spread Match 

RefIsPrepPhrase     0.250     0.500 1.000 1.750 1/3 

RefExprPrepPhrase     0.250     0.500 1.000 1.750 2/2 

RefIsNotPrepPhrase     0.250     0.500 1.000 1.750 1/3 

IsObjectRelation     0.250     0.500 1.000 1.750 1/3 

ImperativeWithLocation       0.500     1.000 1.500 2/2 

DiTransitiveCommand     0.250 0.500   0.500   1.250 1/2 

SimplePrepPhrase     0.250   0.500 0.500   1.250 0/2 

TurnObjectOn     0.250   0.500 0.500   1.250 0/3 

SubjectVerb 0.125 0.250 0.250     0.500   1.125 0/2 

TransitiveCommand 0.125 0.250 0.250     0.500   1.125 0/2 
 

 Step 6 must select between the build-cxn for RefExprPrepPhrase, the R 

option, and ImperativeWithLocation, the C option. Although no specific snip is 
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now required, at this point a preference rule is needed that has the knowledge 

that, given the semantics of this sentence, the R option is preferred. Thus System 

B has eliminated the explicit snip, but some knowledge beyond ECG is still 

required in the form of a hand-built preference rules. 

The evaluation subsection below shows how well the new attention 

mechanism and breadth retrieval feature added to the architecture serve for 

comprehending sentences, and what is still missing in this experimental version. 

These mechanisms seem general enough to be useful for any task that involves 

building meaningful hierarchies, such as analyzing any structured sequence of 

events, like music, or even constructing a scene graph from visual input. 

6.2.4 Learning procedural skill 

The next section discusses a theory of language acquisition from experience that 

fits with Lucia. In this theory, the meanings of language forms are derived from 

individual experiences, and these form-meaning mappings are generalized over 

time into declarative knowledge. In processing this declarative knowledge, new 

procedural knowledge is learned, developing an automatic skill to replace the 

declarative knowledge. System B models using declarative knowledge for 

comprehension and converting that knowledge into procedural skill. 

In System A, multiple production rules fire during the decision cycles for 

lexical-access and match-construction to perform the integration phase. The 

integration of each construction cycle is implemented in System B with a build-

cxn operator for both lexical and composite constructions. It creates a substate 

where a number of operators perform specific pieces of the integration. Soar’s 

chunking mechanism then learns production rules to replace these substates. 

 Figure 6-8 illustrates the results of this process, showing parts of a trace 

of the Soar processing for the sentence B-020 discussed above. Some instances 

of build-cxn take many decision cycles, while others take only one. The create-

cxn operators in the substates take the data retrieved from smem and use it to 

create a node in the comprehension state. A subcase-of-query followed by a 

generalize-cxn together perform the generalization of a construction based on 
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subcase of statements in the ECG. A compose-cxn operator removes the 

constituents of a new composite construction from the stack and connects them 

as children of the new composition. 

Soar’s chunking mechanism is turned on in the build-cxn substate, and 

it learns new production rules that replace entire operators. As more processing 

is done, fewer operators are needed for each build-cxn, until there is no substate 

at all. The figure only shows a few examples. In the case of STOVE, for example, 

all the substate operators that were needed for BLOCK have already been 

chunked, and these chunks to all the work for its build-cxn in the apply phase 

for that operator with now need for a substate. 

 

Construction selected: THE 

48: O: O73 (build-cxn) 

49: ==>S: S7 (operator no-change) 

50:    O: O74 (create-cxn) 

51:    O: O75 (subcase-of-query) 

52:    O: O76 (generalize-cxn) 

53:    O: O77 (subcase-of-query) 

54:    O: O78 (generalize-cxn) 

55:    O: O79 (subcase-of-query) 

56:    O: O80 (generalize-cxn) 

57: O: O81 (ground-cxn) 

... 

Construction selected: BLOCK 

74: O: O114 (build-cxn) 

75: ==>S: S9 (operator no-change) 

76:    O: O115 (create-cxn) 

77:    O: O116 (subcase-of-query) 

78:    O: O117 (generalize-cxn) 

79:    O: O118 (subcase-of-query) 

80:    O: O119 (generalize-cxn) 

81: O: O121 (ground-cxn) 

... 

 

Build a SpecPropNoun construction. 

84: O: O125 (build-cxn) 

85: ==>S: S10 (operator no-change) 

86:    O: O128 (create-cxn) 

87:    O: O129 (subcase-of-query) 

88:    O: O131 (generalize-cxn) 

89:    O: O132 (subcase-of-query) 

90:    O: O133 (generalize-cxn) 

91:    O: O130 (compose-cxn) 

92:    O: O134 (build-cxn-done) 

93: O: O135 (ground-cxn) 

... 

Construction selected: THE 

120: O: O174 (build-cxn) 

121: O: O175 (ground-cxn) 

... 

Construction selected: STOVE 

127: O: O191 (build-cxn) 

128: O: O192 (ground-cxn) 

... 

Build a SpecNoun construction. 

131: O: O196 (build-cxn) 

132: O: O198 (ground-cxn) 

Figure 6-8: An example of skill learning 

This process turns relatively slow deliberation into fast, skilled processing. 

It may be possible to apply this approach to the selection and grounding phases 

as well, but so far it has only been implemented for integration. 
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6.2.5 Evaluation of System B 

The implementation of System B to date is limited. It uses the same ECG 

grammar as System A and implements the same conceptual I3P algorithm, but 

with no grounding or sentence interpretation yet. Adding these parts would not 

change the processing described here, and would just involve modifying the 

hand-built code from System A to work in the System B control structure. The 

coding and debugging of System B for the Rosie corpora was based entirely on 

three sentences: 

Go to the kitchen. 

Pick up the green sphere. 

Pick up the green block on the stove. 

 

 These three sentences served to test lexical and composite selection, 

construction integration including skill learning, and the overall control 

structure. Following development with only these three sentences, System B was 

tested on the complete Baseline corpus, with the results shown in  Table 6-5. A 

surprising number of sentences were processed correctly, suggesting that the 

approach developed from those three sentences was pretty general.  

Table 6-5: System B parsing statistics 

Total Baseline sentences 207 100% 

Baseline sentences correct 152 73.4% 

Total lexical failures 40 19.3% 

Total composite failures 15 7.2% 
 

Analysis shows that all the failures are due to features of System A not yet 

transferred to System B. Lexical failures are due to the following three missing 

features: an operator to handle an unknown word not in the grammar; lexical-

selection rules to select among word senses based on syntactic context; and a 

mechanism for handling multi-word lexical items such as to the left of. These 

features could be added to System B by modifying the System A rules to work 

within the System B control structure. Table 6-6 summarizes their effects. 
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Table 6-6: System B lexical failures 

Total Baseline sentences 207 100% 

Lexically correct sentence 167 80.7% 

Total lexical failures 40 19.3% 

    No handling of unknown words l0 4.8% 

    No lexical-selection rules 18 8.7% 

    No multi-word lexicals 12 5.8% 
 

 When a lexical construction failed to be processed correctly, that whole 

sentence failed. The table explains how many lexical failures were caused by 

each of the System A features not yet implemented in System B. 

For the 167 sentences that are lexically correct, successful parsing 

depends on all the composite constructions working properly. Three System A 

features not yet in System B caused failures at this level: a lack of 

implementation of the ECG option to have optional constituents, a pair of 

constructions that violate the convention of having no more than three 

constituents, and the lack of preference rules to handle multiple matching 

constructions. Resolving these three problems will require modifying the 

ECGtoSoar translator and composite selection code to handle optional 

constituents, replacing the two constructions that have four constituents with 

three-constituent alternatives, and modifying the preference rules to work in 

System B. Table 6-7 shows the statistics of these failures. 

Table 6-7: System B composite failures 

Baseline sentences with no lexical failures 167 100% 

Sentences with no composite failures 152 91.0% 

Total composite failures 15 9.0% 

    No handling of optional constituents 4 2.4% 

    Violation of three-level limit 5 3.0% 

    No specific preference rules 6 3.6% 
 

These results were surprisingly good. To understand them further, we did 

some ablation studies. Since the two architectural extensions affect only the 
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selection of composite constructions, we tested these 167 sentences again 

without one of the extensions, as Table 6-8 shows. 

Table 6-8: Results of ablation studies of System B 

 

Configuration 

Number 

correct 

% of 

167 

Full System B 152 91.0 

  Without attention 11 6.6 

  Without breadth retrieval 75 44.9 

 With attention turned off, only 11 of the sentences were parsed correctly. 

Of these, seven are single-word sentences, and the other four have only two 

words. This shows that without focusing attention on the nodes near the root, 

when the tree gets larger than a few nodes SA activates many constructions 

based on nodes throughout the tree. This causes activation and retrieval of many 

candidates that cannot possibly match the state. This interference overwhelms 

the retrieval of the correct composite constructions and the entire algorithm fails. 

 With breadth retrieval turned off, the results are better, but worse than 

with it on. Of the 75 sentences parsed correctly, 63 were from four words long or 

less. This shows that attention by itself makes a significant contribution, but 

still many constructions that do not match the state are retrieved, as Table 6-4 

shows. Without breadth retrieval, it is rare that the correct construction is 

retrieved once a large tree activates many candidates. 

The above results show that System B functions well for syntactic analysis 

of the Baseline corpus. In addition, System B addresses the limitations of System 

A listed at the beginning of this section in several ways: 1) It demonstrates 

contextual bias for lexical selection. 2) A small speedup was achieved, which it 

turns out may not justify the change in the control structure. 3) The new 

attention mechanism provides architectural support for the principle that only 

three levels of the tree need to be accessible for processing, since beyond this 

WM nodes source very little spreading activation. 4) Language knowledge in 

semantic memory, and skill learning based on that knowledge, demonstrate 
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mechanisms that could be useful for parts of a system for language acquisition 

like that described in the following section. 

System B serves as a proof of concept of a model of a general-purpose 

attention mechanism for implementing retrievals from semantic memory based 

on the current state of working memory, and also for a model of transforming 

declarative knowledge of language into a procedural skill. These ideas suggest 

possible future work on both human language comprehension and human 

cognition in general. 

6.3 Language Acquisition from Experience 

We have presented the Lucia theory of language comprehension and some of its 

implications. However, humans’ acquisition of language is ongoing, and ongoing 

learning of new language would be important for how artificial agents can use 

language to collaborate with humans. What is missing is a theory of how the 

knowledge of language can be acquired from experience. 

 Humans learn language gradually over time through individual 

experiences of its use. Any human-like model of language acquisition must 

include an incremental process whereby individual, situated experiences draw 

on prior knowledge, as well as reasoning about the current situation, to produce 

new increments of knowledge of the meaning of language, and modify these 

increments of knowledge from additional experience. 

 Given these requirements, this section addresses the following principle of 

the Lucia theory: 

LAE: Language is Acquired from Experience – Knowledge of how to map 

form to meaning is learned incrementally from individual experiences 

where situational knowledge and reasoning are used to learn 

increments of form-meaning mapping called constructions, and these 

constructions are modified as indicated by further experiences. 

 This section is devoted to understanding how this learning might be done 

computationally, as a basis for future work toward a computational model of 

LAE. Our treatment here is limited, focusing on learning ECG-like constructions 

that Lucia can use to map syntactic forms to their schematic meanings. Learning 
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new lexical items, grounding, sentence interpretation, and knowledge of 

processing are beyond our scope here. The section is divided into three parts: a 

definition of the problem based on how Lucia’s ECG grammar was developed, an 

analysis of related theoretical work that could contribute to developing a 

computational model of acquisition, and the presentation of a theory of how a 

computational model of LAE might be added to Lucia in Rosie. 

6.3.1 Defining the problem 

Lucia’s ECG grammar for Rosie has been developed by hand by a human 

developer. Nevertheless, it shows a model of how an agent might automatically 

learn new constructions. The development process consisted of many specific 

cases of the reasoning needed to add an increment of new knowledge to the 

grammar. Each case involved a particular sentence that failed to parse along 

with its intended meaning, and the developer reasoned over this information to 

discover a new construction that would solve the problem. The overall 

development involved several hundred individual cases, showing that reasoning 

based on individual language experiences in a situational context can be used to 

learn a complex grammar. This experience sheds light on how to address the 

problem of building LAE into an autonomous agent. 

We would like the agent itself to do this learning, with the help of a human 

instructor but not of a code developer. For each case the agent must do reasoning 

based on the situation, perhaps including further interaction with the instructor, 

to make a reasonable hypothesis about the intended meaning. Then further 

reasoning is needed to derive a construction that maps the given form to the 

hypothesized meaning. Over time, multiple similar learning episodes can be 

generalized into more entrenched declarative knowledge of the construction, and 

processing of this declarative knowledge can convert it into procedural skill.  

What is missing is a computational model of how this reasoning and learning 

can be built. 
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6.3.2 Related theoretical work 

A long tradition in generative linguistics is the idea of a Universal Grammar (UG) 

(Chomsky, 1965, 2017), postulating that children are born with an innate 

language faculty, and that a child learns the details of their particular language 

within the constraints of that universal framework. Other researchers strongly 

disagree with this approach (Dąbrowska, 2015). 

In accordance with the computational cognitive modeling approach of this 

thesis, we take a practical approach to developing a model of how a cognitive 

agent could acquire composable knowledge of meaning (CKM) within an 

incremental, immediate interpretation processing (I3P) algorithm capable of 

using general cognitive mechanisms (GCM) to achieve embodied, end-to-end 

comprehension (E3C). This approach is based on acquiring from many individual 

experiences the knowledge that, when added to the mechanisms of general 

cognition, can produce comprehension behavior. We want to acquire, piece by 

piece, increments of knowledge of how to map linguistic forms to meanings, 

represented as constructions and schemas, that are grounded to the world 

knowledge of an agent that can act in the world. This subsection reviews several 

lines of research on language acquisition from a cognitive linguistics viewpoint 

that can help develop such a theory for a computational cognitive model of LAE. 

Acquisition from experience 

The generative approach to acquisition attempts to explain how to learn a set of 

formal rules capable of generating all possible grammatical sentences in a 

language. Chomsky (1980) coined the term “poverty of the stimulus,” arguing 

that the data available to children is insufficient to learn the formal generative 

grammar he assumes we have, since the data includes few negative examples. 

 Constructionist researchers take a usage-based approach. Krashen (1985, 

2003) bases his theory of acquisition on the “input hypothesis,” saying that 

acquisition only happens when the learner receives and processes 

“understandable input.” In such an experience, a person hears an input 

utterance that contains some part of its linguistic form that the person does not 
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yet understand. Given the situational context, and reasoning using non-

linguistic information, the person can infer a likely meaning for the input and 

make a mapping between the previously not understood form and the inferred 

meaning. This supports a  theory that increments of knowledge of language are 

acquired from individual usage-based experiences of understandable input. 

Embodied word learning 

Acquisition of mapping form to meaning often begins with the meanings of 

words. Bloom (2000, p. 1) describes empirical studies of a phenomenon in 

children called fast mapping in which “Young children can grasp aspects of the 

meaning of a new word on the basis of a few incidental exposures.” He cites 

experiments that require simultaneous exposure to a situational context that 

includes sensory input from vision, touch, or other modalities, making 

embodiment important. 

 Trueswell et al. (2013) report on eye-tracking experiments with adults in a 

laboratory setting trying to learn to map novel words to visual images. They 

propose a refinement to the theory of fast mapping they call propose-but-verify. 

They argue that, rather than accumulating statistics over many trials, 

“successful learning in this setting is instead the product of a one-trial procedure 

in which a single hypothesized word-referent pairing is retained across learning 

instances, abandoned only if the subsequent instance fails to confirm the 

pairing.” This work supports the idea of learning from individual experiences. 

 Fincher-Kieffer (2019) presents the idea that “language comprehension is 

grounded in bodily action” and “involves sensorimotor simulations.” Barsalou 

(2008) argues that cognition includes simulation, situated action, and bodily 

states. Bergen (2012) presents data on simulation in the brain during language 

comprehension, and these ideas were an important part of the development of 

the ECG theory of grammar we use in this thesis. 

Acquiring knowledge of structure from language use 

Tomasello (2003) summarizes decades of empirical research on understanding 

the mechanisms children use to learn language. He describes psycholinguistic 
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mechanisms such as shared attention, analogy, and distributional analysis that 

enable children to learn words and constructions for referring expressions and 

verb argument structures. Kuhl (2000) reviews empirical studies of language 

acquisition in young children and concludes in part “infants initially parse the 

basic units of speech allowing them to acquire higher-order units created by their 

combinations.” 

 In addition to this empirical research, work on learning complex 

constructions has been done in the ECG community. Feldman (2006) describes 

a general theory of how complex constructions can be learned and represented. 

Chang (2008) explores “the view that grammar learning is driven by meaningful 

language use in context” by building a “cognitively motivated and 

computationally precise” model using the ECG formalism that integrates 

language learning and use. Mok (2009) “describes a model of child grammar 

learning” using ECG “that demonstrates how the problem of impoverished input 

is alleviated through bootstrapping from the situational context.” Their work 

does not include incremental processing or cognitive modeling, but nevertheless 

can be instructive in developing a theory of LAE in Lucia. Figure 6-9, taken from 

Mok (2009), illustrates schematically the process of learning from a particular 

language use episode as proposed by Feldman, Chang, and Mok. 

 

Figure 6-9: Learning from situated language episodes (from Mok, 2009, p. 8) 
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Generalization 

Tomasello (2003) discusses several psycholinguistic processes that are essential 

to language acquisition, including: schematization and analogy to create abstract 

constructions from specific instances of language use, distributional analysis to 

learn categories of linguistic elements, and entrenchment and competition to 

“constrain their abstractions to those that are conventional in their linguistic 

community.” Goldberg (2019) carries these ideas further and describes in some 

detail how they can be applied to learning word meanings, abstract categories, 

and linguistic conventions. She describes a theory in which instances can 

“cluster together along certain dimensions within our hyper-dimensional 

associative memory.” She describes in some detail how this clustering could 

work computationally, and how entrenchment, competition, and distributional 

analysis work together to learn not only abstract constructions but also arbitrary 

linguistic conventions. However, as far as we know, no actual computational 

models of these theories have been built, yet. 

Acquiring skill 

Suppose we have a computational model that can learn abstract grammatical 

constructions through generalizing over individual language experiences, and 

that this process yields a declarative representation of these constructions. Real-

time performance requires a process for turning this declarative knowledge into 

procedural knowledge, which can be processed much faster. 

 Anderson (2007, p. 94) describes skill acquisition, saying that declarative 

knowledge, accessible to consciousness, has been replaced by “the acquisition 

of new procedures (production rules in ACT-R).” He describes the process of 

production compilation by which procedures are learned, and a series of fMRI 

experiments that confirm his theory of how production compilation works in the 

brain. Laird (2012) describes learning in Soar, centered on a mechanism called 

chunking, which converts a result found in a substate into a production rule. He 

also mentions how Soar’s episodic memory can provide a memory of previous 

experiences to serve as instances for learning mechanisms, thus supporting 
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incremental learning. Young and Lewis (1999) provide a detailed discussion of 

how Soar’s chunking can be used to learn new long-term procedural knowledge. 

Stearns (2021) develops a theory in Soar for combining primitive operators to 

incrementally refine a cognitive model, and relates this to “the three-phase 

learning theory from psychology,” referring to Fitts and Posner (1967). 

6.3.3 Toward a computational cognitive model of LAE 

Given this theoretical background, including much empirical data from 

psychological experiments, linguistic theory, and experience with applying 

cognitive architectures to complex learning tasks, our challenge is to develop a 

computational cognitive theory of how language can be acquired. We propose a 

three-phase theory of how humans might acquire language. This theory is 

hypothetical, it has not been implemented, and we describe it only at a 

conceptual level. However, it is grounded in both our experience with Lucia and 

the related research described above. The three phases of the theory are shown 

schematically in Figure 6-10. 

S IE E GC DK AS PK

Phase 1: 
Interpret 

Experiences

Phase 2: 
Generalize 

Constructions

Phase 3: 
Acquire 

Skill

Situations Episodes
Declarative 
Knowledge

Procedural 
Knowledge

 

Figure 6-10: The three-phase theory of language acquisition 

 Phase 1 deals with processing individual episodes of language experience 

where a learner does not yet have constructions that fit all or part of an input 

utterance. Without sufficient knowledge the agent cannot comprehend that 

utterance using its automatic comprehension process, which corresponds to the 

normal Lucia processing of a sentence. However, typically a person has other 
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knowledge about the current situation, and can use deliberate reasoning to infer 

a likely meaning for that sentence. Of course, this deliberate reasoning will take 

more time than automatic comprehension. 

 Now the agent has both an input utterance and a likely meaning for it. 

This form-meaning pair is saved in episodic memory, and then further 

processing can hypothesize one or more new constructions that would make it 

possible to use normal processing to compute the meaning of the sentence. This 

can be thought of like the propose-but-verify heuristic Trueswell et al. (2013) 

propose, except that it can be used for both lexical and composite constructions. 

 Phase 2 applies once a new construction has been hypothesized. The new 

construction is compared to others already saved as declarative knowledge, 

which, if we follow Goldberg’s (2019) theory, would be stored as clusters of 

previous episodes along with an abstraction over that cluster stored as 

declarative knowledge. If the new construction is similar to an existing cluster, 

it is added to that cluster. Otherwise, a new cluster is created for it. Using the 

processes of entrenchment and competition (Goldberg, 2019; Tomasello, 2003), 

over many episodes a commonly used construction becomes more and more 

solidly entrenched, becoming declarative knowledge in our model. Tomasello 

(2003, p. 139) further describes a sequence of more and more abstract stages of 

children’s understanding of specific linguistic forms. 

 Phase 3 is the process of creating skills which are automatic and 

unconscious through repeated processing using declarative knowledge of 

constructions. Declarative processing is deliberative and slow, involving both 

many operations over time and retrievals from long-term declarative memory. As 

processing of a construction is repeated, the learning mechanisms in a cognitive 

architecture, such as Soar, create procedural knowledge for that construction, 

thus greatly speeding up the process. 

Overall, this theory provides an incremental process whereby individual, 

situated experiences can draw on prior knowledge, as well as reasoning about 

the current situation, to produce new increments of knowledge of language, and 

modify these increments of knowledge from additional experience. Over time and 
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much experience these three phases of processing can lead to adult language 

comprehension ability. Chapter 7 suggests some future work that might be done 

to implement this theory. 
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Chapter 7 Conclusions 

This chapter is a brief summary of what has been accomplished in this thesis, 

the how the Lucia model can be a basis for future research, and some lessons 

learned about how to do research in Artificial Intelligence and Cognitive Science, 

even helping tie these two fields together more. 

7.1 What has been accomplished 

At the beginning of this project, ECG looked like a promising way to represent 

knowledge of the meaning of language, but no theories existed for how to use it 

with single-path incremental processing, for how to ground its meanings to agent 

world knowledge for end-to-end comprehension, or for how to implement its 

comprehension in a cognitive architecture. The preceding chapters have shown 

that, in developing Lucia according to the qualitative goals outlined in Chapter 

1, much has been accomplished to overcome these limitations. 

7.1.1 E3C: Embodied End-to-End Comprehension 

The Lucia comprehension system has been built within the Rosie embodied 

agent, as explained in Chapter 2. It produces internal meaning messages that 

are grounded and actionable for several hundred sentences used for teaching 

Rosie its ITL tasks. These messages have been tested and shown to match a pre-

defined gold standard, and Rosie has in fact performed many of its learned tasks 

using the messages produced by Lucia. From this we have demonstrated that a 

system built around the constraints of CKM, I3P, and GCM can produce 

grounded, actionable sentence meanings in an embodied agent. 

The original work on ECG (Bryant, 2008; Feldman et al., 2009) was not in 

an embodied agent. Later ECG work (Eppe, Trott, & Feldman, 2016; Eppe, Trott, 

Raghuram, et al., 2016) added a back end to Bryant’s ECG parser to drive a 

robot, but the ECG system itself was not embodied and did not do grounding or 
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produce actionable messages. The FCG system (Steels, 2013) does work within 

a robot, but it does not interpret human natural language to produce messages 

that the robot can use to learn and perform new tasks. As far as we know, Lucia 

is the only system that uses some form of construction grammar (CxG) to do full 

E3C as we have defined it here. 

7.1.2 CKM: Composable Knowledge of the Meaning of Language 

Using the Embodied Construction Grammar (ECG) formalism, a grammar has 

been developed to cover all the lexical items, composite constructions, and 

meaning schemas needed to process correctly sentences in the three Rosie 

corpora presented in Appendix 1. This grammar provides mapping of form to 

meaning in increments called constructions. Meanings are defined for 

constructions at all levels of language structure, from words to phrases to 

clauses to complete sentences. Lucia uses these constructions to perform its 

comprehension, using small packages of form-meaning mapping that can be 

composed in many ways. Measures of the generality of the grammar show that 

it can process orders of magnitude more sentences than were used to develop it. 

Previous work on ECG (Bryant, 2008; Dodge, 2010; J. Feldman et al., 

2009) focused on complex verb-argument structures. Instructing Rosie does not 

involve sentences of this sort, but does require complex grammar for referring 

expressions and conditional sentences. Lucia demonstrates that construction 

grammar theory, and ECG in particular, can represent form-meaning mappings 

for the language needed to enable Rosie to learn the tasks that it has been 

applied to. An area for future research would be to determine whether the pre-

existing grammars developed in ECG can transfer to the approach described in 

this thesis.  

7.1.3 I3P: Incremental Immediate Interpretation Processing 

As Tanenhaus et al. (1995) and others have shown, human language processing 

is not only incremental, word-by-word, but also does immediate interpretation 

by immediately grounding references in situated language to observed objects in 

the subject’s visual field or imagined objects in simulation. Other empirical 
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evidence suggests that the mind simulates language meanings during processing 

with activation of perceptual and motor regions of the brain (Bergen, 2012). This 

research implies that humans interpret, or ground, individual words and 

phrases immediately upon processing them, requiring that the comprehension 

process must commit to a single interpretation at each choice point, implying a 

single-path process and the need to make local repairs when choices are later 

shown to be incorrect. 

Neither the ECG, FCG, or other CxG systems we have studied do 

incremental processing with immediate interpretation. Lucia’s processing 

algorithm described in Chapter 4 does do I3P processing, demonstrating that 

this is possible with CxG. This algorithm is built on two important principles 

that seem significant for future research: a comprehension state in working 

memory in the form of a tree structure, and a construction cycle that selects one 

construction at a time, integrates it with the developing comprehension state, 

and performs grounding. This fits well with the independently developed “chunk-

and-pass” theory of Christiansen and Chater (2016).  

 The Lucia processing algorithm includes several mechanisms for 

maintaining a single path at points of ambiguity and for correcting mistaken 

choices when disambiguating information is available soon afterward, whereas 

the previous implementation of ECG (Bryant, 2008) used a global, non-

incremental analysis. Parts of Lucia’s algorithm are modeled after the local repair 

strategy Lewis (1993) used in NL-Soar. This demonstrates that ECG and I3P can 

work together, in an algorithm based on construction cycles and using local 

repair, to produce E3C. 

7.1.4 GCM: General Cognitive Mechanisms 

Human sentence processing is performed by the human mind/brain system. We 

assume that human language processing uses domain-general cognitive 

mechanisms, leading to a model where the mechanisms of a general-purpose 

cognitive architecture, along with knowledge of language, CKM, and how to 

process it, I3P, result in human language comprehension behavior. Lucia is 
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implemented in the Soar cognitive architecture (Laird, 2012), an architecture 

based on Newell’s (1990) Soar theory and several decades of implementation, 

development, and application to a variety of complex tasks. Lewis’s (1993) NL-

Soar model is the main work on sentence processing in Soar published prior to 

the work for this thesis (Lindes, 2018, 2020; Lindes et al., 2017; Lindes & Laird, 

2016, 2017a, 2017b). Lucia has used this architecture to implement grounded, 

actionable sentence comprehension using these two types of knowledge, without 

employing or adding any language-specific mechanisms in the underlying 

architecture. From this we demonstrate that knowledge of language and 

processing in a domain-general architecture can perform grounded, actionable 

language comprehension. 

7.1.5 LAE: Language is Acquired from Experience 

Research on human language acquisition shows a complex process that is based 

on using situational knowledge to derive meanings for linguistic forms not yet 

understood. Lucia does not include an automatic algorithm for doing this 

acquisition. However, as described in Chapter 3, the process of development of 

Lucia’s grammar for Rosie by a human has been very much an incremental 

process based on individual form-meaning examples. Chapter 6 also describes a 

three-phase, research-based theory of acquisition that does reasoning to deduce 

hypotheses from individual experiences, generalizes over these to build 

declarative knowledge of constructions, then learns automatic skill by 

comprehension processing using the declarative knowledge to learn new 

procedural knowledge. An experimental model illustrates the third phase of this 

theory. From this we suggest that Lucia as a comprehension system can form a 

useful basis for future research on human-like language acquisition. 

7.2 The Model as a Basis for Future Research 

Our analysis of the design and performance of the Lucia sentence 

comprehension system, when compared to other related research, leads us to 

suggest that this thesis makes the following contributions to AI and CogSci. 
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7.2.1 A model to build AI systems on 

AI systems designed to interact with humans in real time could benefit greatly 

from a flexible, robust, and general-purpose language comprehension system. 

Lucia can be considered as an early prototype of such a system. Several 

challenging problems need to be addressed to meet this objective. First, a more 

general and consistent system for representing the grounded meanings of 

sentences is needed. Second, a grammar with a much larger vocabulary and 

broader syntactic and semantic coverage is needed. Improvement in this 

direction could come from incorporating linguistic knowledge from systems like 

WordNet (Fellbaum, 1998) or FrameNet (Ruppenhofer et al., 2006). Third, and 

perhaps most important, a robust system for learning new compositional 

knowledge of the meaning of language (CKM) from experience interacting with 

human interlocutors (LAE) is essential. 

 Work along these lines could begin with extending the explorations 

described in Chapter 6. Adding deliberate reasoning triggered by parsing failures 

to the Lucia model could make it possible to learn new constructions, resolve 

garden-path sentences, and learn procedures for performing local repairs. This 

would contribute a great deal to making a Lucia-based system more general, 

robust, and capable of learning additional language from experience. 

7.2.2 A basis for research on human comprehension 

The Lucia model, including System B, postulates several novel mechanisms as 

part of human-like language comprehension: a tree-like structure in working 

memory for representing the comprehension state, limits on how much of this 

tree is accessible to processing and on maximum useful depth of the tree, the 

construction cycle model of I3P processing, the use of spreading activation 

biased by situational context for selection of constructions, and an attention 

mechanism in working memory that modulates spreading activation for 

retrievals from declarative memory. 

 Given these elements of the Lucia model, it could be used in a number of 

ways as a basis for further experimentation and research, particularly to explore 
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whether or not human experiments confirm or disconfirm the conjectures that this 

thesis proposes. Could a model of memory retrieval times be added to allow 

prediction of human reading times along the lines of Lewis and Vasishth (2005)? 

Could this model shed light on analysis of fMRI data on human comprehension 

of the sort done by Bhattsali et al. (2018)? Could the addition of the prediction 

model suggested in Chapter 6 provide a model that would help explain the brain 

data analyzed by Brennan and Hale (Brennan & Hale, 2019)? Can the work on 

garden-path and parsing-breakdown effects described in Chapter 6 be extended 

to show more clearly how working memory limits and the grounding of semantics 

can predict Lewis’s (1993) results on human parsing limitations? Can Lucia’s 

model of working memory and its usage contribute to unifying the many theories 

about human working memory (Baddeley, 2012; Brady et al., 2016; Cowan, 

2017; Isbilen & Christiansen, 2020; Oberauer, 2019; Young & Lewis, 1999)? The 

Lucia model has potential to contribute to research in all these areas. 

7.2.3 A basis for future architecture research 

The System B experiment was surprisingly effective in demonstrating the value 

of using Lucia’s structured model of working memory along with an attention 

mechanism applied to that structure to modulate retrieval from long-term 

declarative memory. It also demonstrated that parallel retrievals combined with 

parallel processing of the results provides a way of sifting through many false 

positives to find the best match without extended sequential processing. Much 

work remains to make System B capable of doing all that System A does, let 

alone expanding to wider coverage and language acquisition. 

 System B is interesting in terms of cognitive architecture research because 

it incorporates a novel way of using a deliberate attention mechanism with 

working memory to bias the access to semantic memory, and this novel way 

involves extensive subsymbolic computation. The selection of constructions 

overlaps the boundary between symbolic and subsymbolic computation, offering 

an opportunity to study this boundary further. In addition to completing System 

B to perform Lucia’s full E3C functions, there is much to do to perfect the details 
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of this model of memory use. Greatly expanding language coverage will certainly 

challenge this approach. Exploring a system for language acquisition from 

experience requires a model of how knowledge of the meaning of language is 

represented, and how that knowledge is processed. Lucia in a perfected version 

of System B provides such a model. 

7.3 Lessons Learned about Doing Research 

Most of this thesis has discussed in great deal the specific system of Lucia 

running as part of the Rosie agent. Now we step back to consider what we have 

learned from a broader and more abstract perspective. The development of Lucia 

has taught us three important lessons about how to go about building AI systems 

that address problems in Cognitive Science. 

7.3.1 A holistic approach to development 

An embodied agent receives input from situations in the world and produces 

output effects to the world. Inside the agent are subsystems, not necessarily 

distinct modules, that process input from sensors to produce internal 

representations, perform reasoning on those representations relative to the 

agent’s goals and knowledge, and perform actions both in the external world and 

internally to update that knowledge. 

The Rosie project, as represented by Kirk (2019), Mininger (2021), this 

thesis, and other published papers,9 has developed an integrated agent that 

learns to perform tasks in the world based on situated interactive instruction 

from a human instructor (Kirk & Laird, 2019; Mininger & Laird, 2018)(Kirk & 

Laird, 2019; Mininger & Laird, 2018). Lucia (Lindes et al., 2017) has been 

developed within the context of this embodied agent. The great strength of the 

Rosie project has been its holistic approach. Rosie is an embodied agent that in 

fact acts in the physical world, possibly in simulation. The necessity to produce 

meaning that Rosie can act on has been essential to the development of Lucia. 

                                       
 

9 See https://soar.eecs.umich.edu/Soar-RelatedResearch 
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7.3.2 The centrality of meaning 

Assume that an embodied, autonomous agent must have subsystems for 

perception, cognition, and action. The cognition subsystem incorporates three 

kinds of information: the agent’s goals, G, the agent’s knowledge and beliefs 

about the world, itself, and the current situation, K, and representations of 

meaning, M, of the current situation in relation to G and K. This representation 

of meaning, M, is central to the cognitive reasoning the agent uses to make 

decisions about what action to take next to move toward its goals based on its 

knowledge and beliefs. 

Many computational approaches to language processing produce 

impressive statistical results while ignoring the grounded, actionable meaning of 

each sentence. For a language comprehension system to be useful within an 

embodied agent that must act in the world based on language input, meaning is 

central. We can think of Rosie as the entire agent and Lucia as the part of the 

perception subsystem that produces meaning from language. Other parts of 

perception produce meaning from vision or other inputs, and Lucia must ground 

the meanings of sentences to the meanings of visual or other inputs. One of the 

great weaknesses of the Rosie/Lucia project has been a lack of sufficient 

attention early on to designing representations of meaning that can be shared 

between Lucia and the reasoning used by the rest of Rosie. This has caused a 

great deal of extra development work and computational overhead for the 

sentence interpretation part of Lucia. 

7.3.3 Modeling human behavior qualitatively 

Much research on cognitive modeling of language processing focuses on 

matching quantitative measures, such as reading times (Lewis & Vasishth, 2005) 

and brain measurements (Brennan & Hale, 2019). The five goals for this thesis 

set out in Chapter 1, E3C, CKM, I3P, GCM, and LAE, are all qualitative measures 

that are characteristics of human processing. Within these qualitative 

constraints, we have implemented a working system that produces concrete, 

quantitative results. The advantage of this approach is that, if the qualitative 
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constraints are chosen well, the results give a more complete system that 

supports both understanding human processing and building AI systems. 

Newell and Simon (1976) argue that “Laws of qualitative structure are seen 

everywhere in science” and “they often set the terms on which a whole science 

operates.” The five qualitative principles that form the basis of this thesis have 

made it possible to solve hundreds of specific problems of language 

comprehension.  With the model we now have based on this approach, we can 

move forward toward refining the model to give better quantitative results while 

still meeting the high-level qualitative goals. 
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Appendix 1 The Rosie Corpora 

 

The sentences used to develop the Lucia comprehension system were taken from 

ITL scripts used to develop the Rosie agent. These scripts and sentences were 

designed by other developers for their work on Rosie, and were not influenced by 

the needs of Lucia. Three corpora are listed here, a Baseline used for initial 

development of Rosie, a Games corpus developed by James Kirk (2019) for 

teaching games and puzzles to Rosie, and a Robot corpus developed by Aaron 

Mininger (2021) teaching navigation and delivery tasks. 

A1.1 The Baseline Corpus 

This section contains a list of the 207 sentences that were used as the Baseline 

corpus for developing Lucia in Rosie. These sentences were not written by the 

Lucia developer, but were taken from a list prepared in 2015 by other researchers 

working on teaching tasks to Rosie. They were chosen from that larger list to use 

with Lucia simply to reflect as wide a range of language phenomena as possible. 

 The following list is ordered in a way that reflects the development of Lucia 

for this corpus. One sentence at a time was added to the Baseline development 

set, and then all changes to the ECG grammar and Soar operators needed to 

make that sentence work in System A were made before going on to the next 

sentence in order. In addition to listing the sentences, the following table gives 

some rough numbers of things that needed to be added or changed to make a 

given sentence work in this development order. The column headings for the 

following table are defined as follows: 

ID Identifier: A unique identifier for this sentence, made up of B for the 

Baseline corpus and the sequence number in this list. This sequence 

number also indicates the order in which these sentences were added to 

the Baseline development set. 
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W Works: A “1” in this column indicates that this sentence simply worked 

without any changes to Lucia or the ECG grammar when this sentence 

was added in order to the development set. 

L Lexical: The number of new lexical constructions added to the ECG 

grammar for this sentence. 

C Composite: The number of new composite, or in some cases general, 

constructions added to the ECG grammar for this sentence. 

HB Hand Built: The number of hand-built Soar code items that had to be 

added or modified to make this sentence work. These items are usually the 

operators for doing grounding and sentence interpretation. Some 

modifications did not add to the number of rules, and in other cases one 

modification might have added several rules. 

 

ID W L C HB Sentence 

B-001 
 

4 4 5 The sphere is green. 

B-002 
 

2 1 4 The medium block is green. 

B-003 
 

3 0 2 The red triangle is clear. 

B-004 
 

1 0 2 The sphere is cooked. 

B-005 
 

4 2 1 The red triangles are on the pantry. 

B-006 
 

2 0 1 The stove is off. 

B-007 
 

0 0 2 The red triangle is on the stove. 

B-008 
 

1 2 1 The red triangle is on the big green block. 

B-009 
 

2 3 3 Pick up the green sphere. 

B-010 
 

1 1 2 Pick this up. 

B-011 
 

2 0 1 Pick up the purple object. 

B-012 
 

1 0 2 Pick it up. 

B-013 
 

1 0 1 Pick the unknown. 

B-014 
 

0 0 1 Pick the red box. 

B-015 
 

2 2 4 Put the green sphere in the pantry. 

B-016 
 

1 0 3 Put the green one in the pantry. 

B-017 
 

1 0 3 Put that in the pantry. 

B-018 
 

0 0 4 Put it on this. 

B-019 
 

1 1 3 Put down the green sphere in the pantry. 

B-020 
 

0 1 5 Pick up the green block on the stove. 

B-021 
 

2 1 6 Store the large green sphere on the red triangle. 

B-022 
 

0 0 3 Put this on the stove. 

B-023 
 

0 0 3 Put it on the stove. 

B-024 
 

0 0 4 Put the sphere in the red triangle. 

B-025 
 

3 2 7 Move the orange triangle on the red triangle to the stove. 

B-026 
 

1 0 5 Put the green sphere in front of the pantry. 

B-027 
 

3 0 6 Move the green sphere to the right of the garbage. 
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B-028 
 

2 2 7 Pick the green block that is small. 

B-029 
 

1 0 5 Pick a green block that is small. 

B-030 
 

0 1 2 Pick the green block that is on the stove. 

B-031 
 

1 0 9 Pick a green block that is larger than the green box. 

B-032 
 

3 0 5 Move the green rectangle to the left of the large green 

rectangle to the pantry. 

B-033 
 

2 1 5 Drive to the wall. 

B-034 
 

2 0 5 Go to the waypoint. 

B-035 
 

2 1 3 Orient north. 

B-036 
 

1 0 2 Stop. 

B-037 
 

1 1 5 Follow the right wall. 

B-038 
 

1 0 4 Forward. 

B-039 
 

0 1 5 Drive forward. 

B-040 
 

2 0 3 Turn around. 

B-041 
 

0 0 3 Turn left. 

B-042 
 

3 2 4 Go until there is a doorway. 

B-043 
 

1 0 1 Yes. 

B-044 
 

2 1 2 Octagon is a shape. 

B-045 
 

2 0 2 Study is a location. 

B-046 
 

2 5 7 If the green box is large then go forward. 

B-047 
 

2 2 2 What is inside the pantry? 

B-048 
 

1 1 5 Where is the red triangle? 

B-049 
 

0 1 6 Is the large orange block a sphere? 

B-050 
 

1 1 3 Is the small orange triangle behind the green sphere? 

B-051 1 0 0 0 Go forward. 

B-052 1 0 0 0 Turn right. 

B-053 1 0 0 0 Follow the left wall. 

B-054 1 0 0 0 Go to the kitchen. 

B-055 1 0 0 0 Drive to the kitchen. 

B-056 1 0 0 0 Pick up the box. 

B-057 1 0 0 0 Put down the box. 

B-058 1 0 0 0 The sphere is red. 

B-059 1 0 0 0 Go to the garbage. 

B-060 1 0 0 0 No. 

B-061 1 0 0 0 What is inside the pantry 

B-062 1 0 0 0 What is on the red triangle? 

B-063 
 

0 0 4 The large one is red. 

B-064 1 0 0 0 This is orange. 

B-065 
 

0 0 2 This one is orange. 

B-066 1 0 0 0 The big triangle is red. 

B-067 1 0 0 0 The red triangle is behind the stove. 

B-068 1 0 0 0 The red triangle is to the left of the stove. 

B-069 1 0 0 0 Store the sphere. 

B-070 1 0 0 0 Put this in the pantry. 
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B-071 1 0 0 0 Put the green sphere next to the pantry. 

B-072 1 0 0 0 Move the green sphere to the left of the garbage. 

B-073 1 0 0 0 This is larger than the green sphere. 

B-074 1 0 0 0 Pick up this. 

B-075 1 0 0 0 Pick up that. 

B-076 1 0 0 0 Store the pantry. 

B-077 1 0 0 0 Is this a sphere? 

B-078 1 0 0 0 Is the green sphere on the table? 

B-079 1 0 0 0 Is the large triangle to the right of the green sphere? 

B-080 1 0 0 0 Pick a green block that is on the stove. 

B-081 1 0 0 0 Pick a green block that is on a stove. 

B-082 
 

0 1 2 Go. 

B-083 
 

1 0 3 Go to the location. 

B-084 
 

0 1 1 Go to waypoint. 

B-085 
 

0 1 3 Follow the right wall until there is a doorway. 

B-086 
 

0 0 1 Store the green block. 

B-087 
 

1 2 2 Green is a color. 

B-088 
 

1 1 1 Mauve is color. 

B-089 
 

1 0 0 Taupe is a color. 

B-090 
 

0 1 1 What color is the large sphere? 

B-091 
 

0 0 3 What shape is this? 

B-092 
 

0 0 2 What size is the red triangle? 

B-093 
 

0 0 1 The medium block is smaller than the large block. 

B-094 
 

0 2 3 This is a big triangle. 

B-095 
 

1 1 3 Turn on the stove. 

B-096 
 

0 1 2 What is this? 

B-097 
 

0 1 2 Is the large sphere green? 

B-098 
 

0 0 2 Is this red? 

B-099 
 

1 3 2 Go down the hall. 

B-100 
 

1 4 1 Orient s. 

B-101 
 

1 1 1 Face east. 

B-102 
 

0 0 1 Face west. 

B-103 
 

1 0 2 Done. 

B-104 
 

1 0 2 The task is done. 

B-105 
 

1 1 1 The task is finished. 

B-106 
 

1 0 1 The task is over. 

B-107 
 

10 0 1 Pick up the stapler. 

B-108 1 0 0 0 Put down the stapler. 

B-109 
 

1 0 1 Find a stapler. 

B-110 
 

3 1 1 Explore until a stapler is visible. 

B-111 
 

1 0 1 You are done. 

B-112 1 0 0 0 You are in the kitchen. 

B-113 
 

1 0 1 Go to the starting location. 
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B-114 
 

1 1 1 Go to your starting location. 

B-115 
 

2 4 8 Drive forward one meter. 

B-116 
 

1 0 2 Deliver the box to the kitchen. 

B-117 
 

1 0 2 Take the box to the kitchen. 

B-118 
 

1 2 6 Drive slowly to the kitchen. 

B-119 
 

1 3 5 Drive until you sense a wall. 

B-120 
 

1 1 2 Drive down the hall until you reach the end. 

B-121 
 

0 0 1 Follow the right wall until you reach the end. 

B-122 
 

3 2 4 Follow the right wall until you see two doors. 

B-123 
 

1 0 2 Pick up the soda. 

B-124 1 0 0 0 Put down the soda. 

B-125 
 

1 0 2 Fetch a soda. 

B-126 
 

0 0 5 The soda is in the kitchen. 

B-127 1 0 0 0 Explore until you see a soda. 

B-128 1 0 0 0 Explore until you see the soda. 

B-129 1 0 0 0 Deliver the box. 

B-130 1 0 0 0 Find the soda. 

B-131 
 

1 1 2 Fetch a soda from the kitchen. 

B-132 
 

1 2 1 Recall a soda in a location. 

B-133 
 

2 2 2 Go forward until you see an intersection. 

B-134 
 

2 0 2 Go to the conference room. 

B-135 
 

1 0 2 Pick up the trash. 

B-136 1 0 0 0 Put down the trash. 

B-137 
 

1 0 1 Patrol. 

B-138 
 

1 0 2 Patrol the building. 

B-139 
 

0 0 1 Fetch the box from the kitchen. 

B-140 
 

1 0 2 Go to the office. 

B-141 
 

1 0 2 Go to the main office. 

B-142 
 

1 0 2 Go to the soar office. 

B-143 1 0 0 0 Deliver the box to the office. 

B-144 1 0 0 0 Put the trash in the garbage. 

B-145 
 

2 2 4 The goal is that the box is in the office. 

B-146 1 0 0 0 The goal is that the soda is in the starting location. 

B-147 1 0 0 0 The goal is that the stapler is in the starting location. 

B-148 1 0 0 0 The goal is that the box is in the kitchen. 

B-149 1 0 0 0 The goal is that the trash is in the garbage. 

B-150 1 0 0 0 The goal is that the soda is in the office. 

B-151 
 

1 0 0 Clean the pantry. 

B-152 
 

1 0 0 Close the pantry. 

B-153 
 

1 0 0 Cook the red triangle. 

B-154 
 

1 0 0 Discard the large green block. 

B-155 1 0 0 0 Clean pantry. 

B-156 
 

1 0 0 Open the pantry. 



 197 

B-157 
 

1 0 0 Organize the pantry. 

B-158 
 

1 0 0 Set the table. 

B-159 
 

1 0 0 Serve the red triangle. 

B-160 
 

2 0 1 Ask the question. 

B-161 1 0 0 0 Say the answer. 

B-162 1 0 0 0 Say the response. 

B-163 1 0 0 0 Say the message. 

B-164 
 

2 1 1 Interrogate Bob. 

B-165 
 

2 1 2 Tell me the answer. 

B-166 1 0 0 0 Tell Bob a message. 

B-167 1 0 0 0 Recall Bob in a location. 

B-168 
 

1 1 0 All the red triangles are in the pantry. 

B-169 1 0 0 0 All of the red triangles are in the pantry. 

B-170 
 

1 1 1 Remember the answer as the question. 

B-171 1 0 0 0 Remember the answer as the message. 

B-172 1 0 0 0 Remember the answer as the response. 

B-173 
 

1 1 1 Turn off the lights. 

B-174 1 0 0 0 If the lights in an empty room are lit then turn off the 

lights. 

B-175 1 0 0 0 Turn off the lights in the conference room. 

B-176 
 

2 0 2 Remember the current location as the starting location. 

B-177 
 

2 2 0 Throw away the trash. 

B-178 
 

1 4 2 If you see some trash then throw it away. 

B-179 1 0 0 0 If you see the soda, pick it up. 

B-180 1 0 0 0 If you see the soda then pick it up. 

B-181 
 

2 1 2 Wait for one minute. 

B-182 1 0 0 0 Wait for two minutes. 

B-183 1 0 0 0 Wait until the sphere is cooked. 

B-184 
 

1 1 0 Rosie, clean the pantry. 

B-185 1 0 0 0 Rosie clean the pantry. 

B-186 
 

1 3 3 The goal is that Bob heard the message. 

B-187 
 

1 1 4 The goal is that you said the response in the starting 

location. 

B-188 
 

0 0 1 The goal is that the lights in the conference room are 

off. 

B-189 
 

0 2 3 The goal is that the box is in the kitchen and the sphere 

is purple. 

B-190 
 

2 2 3 The goal is that you are not holding the box. 

B-191 1 0 0 0 The goal is that the box is in the kitchen and you are not 

holding the box. 

B-192 
 

0 2 1 An orange block is on a small location. 

B-193 
 

1 2 0 A location is not below a red block. 

B-194 1 0 0 0 The purple block is not on a red location. 

B-195 
 

2 1 0 Follow these steps. 

B-196 
 

2 2 2 Check if the conference room is empty. 
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B-197 1 0 0 0 Check if the lights in the conference room are lit. 

B-198 
 

0 4 2 Remember if the lights in the conference room are lit as 

the response. 

B-199 
 

0 1 0 Clean small red triangle. 

B-200 
 

0 1 0 All red triangles are in the pantry. 

B-201 
 

0 1 2 Ask What is the message. 

B-202 1 0 0 0 Ask What is the question? 

B-203 
 

1 0 1 Transport is an action. 

B-204 
 

1 0 1 In-a-row is a relation. 

B-205 
 

0 1 3 Newverb the sphere. 

B-206 
 

0 1 2 Newverb2 the sphere in the pantry. 

B-207 
 

0 1 2 Newverb3 in the pantry. 
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A1.2 The Games Corpus 

This section contains a list of the 172 sentences that were used as the corpus of 

Games scripts for developing Lucia in Rosie. These sentences were not written 

by the Lucia developer. The list was compiled by concatenating all the scripts for 

the 60 games and puzzles, removing duplicates, and then ordering them 

according to the ordering in which they were used for Lucia development. 

 The following list is ordered in a way that reflects the development of Lucia 

for this corpus. One sentence at a time was added to the Games development 

set, and then all changes to the ECG grammar and Soar operators needed to 

make that sentence work in System A were made before going on to the next 

sentence in order. Starting with G-033 an abbreviated, development process was 

used such that most of the sentences from then on parsed correctly but did not 

have the sentence interpretation working correctly. In addition to listing the 

sentences, the following table gives some rough numbers of things that needed 

to be added or changed to make a given sentence work in this development order. 

The column headings for the following table are defined as follows: 

ID Identifier: A unique identifier for this sentence, made up of B for the 

Baseline corpus and the sequence number in this list. This sequence 

number also indicates the order in which these sentences were added to 

the Baseline development set. 

D Dev: A “1” used for development for Games, and it is working. 

W Works: A “1” in this column indicates that this sentence simply worked 

without any changes to Lucia or the ECG grammar when this sentence 

was added in order to the development set. 

 If a row has nothing in either the D or W columns, it is not working yet. 

L Lexical: The number of new lexical constructions added to the ECG 

grammar for this sentence. 

C Composite: The number of new composite, or in some cases general, 

constructions added to the ECG grammar for this sentence. 

 Hand-built rules have not been tabulated for this corpus. 
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ID D W L C Sentence 

G-001 1  3 2 The name of the puzzle is blocks-world. 

G-002 1  1 2 Load init-blocksworld. 

G-003 1  1 1 Ok. 

G-004 1  2 4 You can move a clear block onto a clear object. 

G-005 1   1 If a location is not below an object then it is clear. 

G-006 1    The goal is that a red block is on a green block and the red block is 
below an orange block. 

G-007 
 

1   Done. 

G-008 
 

1   Yes. 

G-009 1  2  The goal is that a blue block is on a purple block and the blue block is 
below a yellow block. 

G-010 
 

1   No. 

G-011 1  6 4 If the number of the locations between a location and a covered location 
is the number of the blocks that are on the covered location then you 
can move it onto the former location. 

G-012 1    If a location is below an object then it is covered. 

G-013 1  910 1 There is six. 

G-014 1    The goal is that all the blocks are on a red location. 

G-015 1  1 3 If the number of the locations between a location and an accessible 
covered location is the number of the blocks that are on the covered 
location then you can move it onto the former location. 

G-016 1   3 A location that is not below a red block is accessible. 

G-017 
 

1   There is five. 

G-018 
 

1   The name of the goal is three-clear. 

G-019 1   1 The goal is that there are three clear locations. 

G-020 1    You can move a block onto a location. 

G-021 1    The goal is that all the red blocks are on a red location and all the blue 
blocks are on a blue location and all the green blocks are on a green 
location. 

G-022 1  3 2 The solution has three steps. 

G-023 1    You can move a clear block onto a clear object that is larger than the 
block. 

G-024 1  2  If the volume of a block is more than the volume of an object then the 
block is larger than the object. 

G-025 
 

1   The goal is that there are two clear green locations. 

G-026 1  1  The name of the game is break-through. 

G-027 1  1  If a red block is under a clear location then you can move the block onto 
the location. 

                                       
 

10 For this sentence, lexical items for three through twelve were all added at once. 
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G-028 1  3 3 If an occupied location is attackable by a red block then you can remove 
a block on the occupied location and move the red block onto the 
occupied location. 

G-029 
 

1   If a location is below a blue block then it is occupied. 

G-030 1  1  If a location is under an object and the location is diagonal with the 
object then the object is attackable by the location. 

G-031 
 

1   The goal is that a red location is below a red block. 

G-032 1  1  If a blue location is occupied then you lose. 

G-033 1  2 1 If a clear location is not above a location then you can move an available 
clear red block onto the clear location. 

G-034 
 

1   If a block is not on a location then it is available. 

G-035 
 

1   If a clear location is above a covered location then you can move an 
available clear red block onto the clear location. 

G-036 
 

1   If four of the occupied locations are in a line then you lose. 

G-037 1  3  If the locations are linear then they are in a line. 

G-038 1  1 1 The goal is that four of captured locations are in a line. 

G-039 
 

1   If a location is below a red block then it is captured. 

G-040 
 

1   You can move an available clear red block onto a clear location. 

G-041 
 

1   The goal is that three of the captured locations are in a line. 

G-042 
 

1   If three of the occupied locations are in a line then you lose. 

G-043 
 

1   If the locations between a clear location and a captured location are 
occupied then you can move an available red block onto the clear 
location. 

G-044 
 

1   The goal is that all locations are covered and the number of captured 
locations is more than the number of occupied locations. 

G-045 
 

1   If all the locations are covered and the number of occupied locations is 
more than the number of captured locations then you lose. 

G-046 1    The name of an action is capture-location. 

G-047 
 

1   You can move a clear available red block onto a clear location. 

G-048 1  1  If all the red blocks are on their locations then you can move a red block 
onto a clear location. 

G-049 1  1  The name of the failure is opponent-three. 

G-050 
 

1   If all the red blocks are on their locations and a red block is next to a 
clear location then you can move the block onto the clear location. 

G-051 1  1  If all the red blocks are on their locations and a red block is adjacent to a 
clear location then you can move the block onto the clear location. 

G-052 1  1 2 If a location is next to an object but it is not diagonal with the object 
then it is adjacent to the object. 

G-053 1  1  If a clear location is adjacent to a red block then you can move the red 
block onto the clear location and move a clear available blue block onto 
a location that was below the red block. 

G-054 
 

1   The solution has eleven steps. 
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G-055 
 

1   The goal is that all locations are covered. 

G-056 1  1  If a clear location is movable from a captured location then you can 
move a red block onto the clear location and move an available clear 
blue block onto the captured location. 

G-057 1  1  If a location that is alongside a captured location is diagonal with an 
object that is not next to the captured location then the object is 
movable from the captured location. 

G-058 
 

1   You can move a clear available block onto a clear location. 

G-059 
 

1   The solution has six steps. 

G-060 
 

1   The name of a failure is place-same-diag. 

G-061 1  2  If two of the placed blocks are cross-diagonal then you lose. 

G-062 
 

1   If a block is on a location then the block is placed. 

G-063 1  4 1 If the difference of the rows of the blocks is equal to the difference of the 
columns of they then they are cross-diagonal. 

G-064 
 

1   The goal is that all blocks are placed. 

G-065 
 

1   The solution has four steps. 

G-066 1  1  If a block is next to another block then you lose. 

G-067 
 

1   The solution has eight steps. 

G-068 1  1  If a block is jumpable by another block then you lose. 

G-069 1    If an object that is alongside a block is diagonal with a location that is 
not next to the block then the location is jumpable by the block. 

G-070 1  3  If two of the blocks are placed and they have the same row then you 
lose. 

G-071 1  1  If two of the blocks are placed and they have the same column then you 
lose. 

G-072 
 

1   The name of the action is slide-block. 

G-073 
 

1   If a block is adjacent to a clear location then you can move the block 
onto the clear location. 

G-074 1    The goal is that there are eight matched locations. 

G-075 1   2 If the color of a location is the color of the block that is on the location 
then the location is matched. 

G-076 1  1  The goal is that there are eight matching locations. 

G-077 1  1 1 If the value of a location is the value of the block that is on the location 
then the location is matching. 

G-078 1  1  The goal is that there are fifteen matching locations. 

G-079 
 

1   The goal is that there are five matched locations. 

G-080 
 

1   If a blue block is adjacent to a clear location then you can move the 
block onto the location. 

G-081 1  1 1 If a covered location is between a clear location and an occupied 
location then you can move a block on the covered location onto the 
clear location plus move a block on the occupied location onto the 
covered location. 

G-082 
 

1   The goal is that a blue block is on a blue location. 
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G-083 
 

1   The goal is that all locations are covered and a red block is adjacent to a 
green location. 

G-084 
 

   You can write a number that is between one and four onto an empty 
location. 

G-085 
 

   If the value of a location is absent then the location is empty. 

G-086 
 

1   If the value of a location is the value of an object that is next to the 
location then you lose. 

G-087 
 

   The goal is that all locations are filled. 

G-088 
 

   If the value of a location is more than zero then the location is filled. 

G-089 
 

   If the row of a location is the row of a location and the value of the 
former location is the value of the latter location then you lose. 

G-090 
 

   If the column of a location is the column of a location and the value of 
the former location is the value of the latter location then you lose. 

G-091 
 

   If the section of a location is the section of a location and the value of 
the former location is the value of the latter location then you lose. 

G-092 
 

   You can write a number that is between one and nine onto an empty 
location. 

G-093 
 

   If two of the green locations are identical and they have the same row 
then you lose. 

G-094 
 

   If the locations have the same value then they are identical. 

G-095 
 

   If two of the green locations are identical and they have the same 
column then you lose. 

G-096 
 

   If the green locations in a file are filled and the sum of the values of the 
file is not the value of a location that is atop the file then you lose. 

G-097 
 

   If the blocks have the same column then they are in a file. 

G-098 
 

   If a block is blue and the column of the block is the column of a location 
then the block is atop the location. 

G-099 
 

   If the green locations in a rank are filled and the sum of the values of 
the rank is not the value of a location that is aside the rank then you 
lose. 

G-100 
 

   If the blocks have the same row then they are in a rank. 

G-101 
 

   If a block is yellow and the row of the block is the row of a location then 
the block is aside the location. 

G-102 
 

   If the locations in a group are filled and the sum of the values of the 
group is not ten then you lose. 

G-103 
 

   If the blocks have the same color then they are in a group. 

G-104 
 

   If the locations in a region are filled and the sum of the values of the 
region is not ten then you lose. 

G-105 
 

   If the blocks have the same section then they are in a region. 

G-106 
 

   If the color of a location is the color of a location and the value of the 
former location is the value of the latter location then you lose. 

G-107 
 

   If the green locations in a file are filled and the sum of the values of the 
file is not the value of a location that is beneath the file then you lose. 
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G-108 
 

   If a block is blue and the column of the block is the column of a location 
then the block is beneath the location. 

G-109 
 

   If the green locations in a rank are filled and the sum of the values of 
the rank is not the value of a location that is beside the rank then you 
lose. 

G-110 
 

   If a block is blue and the row of the block is the row of a location then 
the block is beside the location. 

G-111 
 

   If a covered location is between a clear location and a blue block then 
you can move a block on the covered location onto the clear location 
plus move the blue block onto the covered location. 

G-112 
 

1   The goal is that a red block is on a red location and a green block is on a 
green location. 

G-113 
 

1   If the value of a location is the value of another location then you lose. 

G-114 
 

   If the locations in a grouping are filled and the sum of the values of the 
grouping is not the value of a block that is above the grouping then you 
lose. 

G-115 
 

   If a block is filled and their locations are under the block then they are in 
a grouping. 

G-116 
 

   If the blue locations are filled and the sum of the values of them is not 
ten then you lose. 

G-117 
 

   If the red locations are filled and the sum of the values of them is not 
nine then you lose. 

G-118 
 

   If the green locations are filled and the sum of the values of them is not 
twenty-six then you lose. 

G-119 
 

   You can write a number that is between one and twelve onto an empty 
location. 

G-120 
 

   If the value of a green location is the value of another green location 
then you lose. 

G-121 
 

   You can move a child that is on the current bank and another child that 
is on the current bank and the boat onto the opposite bank. 

G-122 
 

   If an object is below a boat then it is current. 

G-123 
 

   If a location is not below a boat then it is opposite. 

G-124 
 

   You can move the boat and a block on the current bank onto the 
opposite bank. 

G-125 
 

1   The solution has nine steps. 

G-126 
 

   The goal is that all the blocks are on a destination bank. 

G-127 
 

   You can move a boat onto the opposite bank. 

G-128 
 

   If a red block is on an opposite bank and a yellow block is on the 
opposite bank then you lose. 

G-129 
 

   If a green block is on an opposite bank and a yellow block is on the 
opposite bank then you lose. 
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G-130 
 

   You can move a block that is on the current bank and another block that 
is on the current bank and the boat onto the opposite bank. 

G-131 
 

1   The solution has five steps. 

G-132 
 

   If a woman is on a bank and the husband of the woman is not on the 
bank and a man is on the bank then you lose. 

G-133 
 

   If the last-name of a woman is the last-name of a man then the man is 
the husband of the woman. 

G-134 
 

   If a man is on a bank and the wife of the man is not on the bank and 
another woman is on the bank then you lose. 

G-135 
 

   If the last-name of a man is the last-name of a woman then the woman 
is the wife of the man. 

G-136 
 

   You can move the boat and a person on the current bank onto the 
opposite bank. 

G-137 
 

   If an object is a block and it is not a boat then it is a person. 

G-138 
 

   You can move a person that is on the current bank and another person 
that is on the current bank and the boat onto the opposite bank. 

G-139 
 

   If a stranded actor is accompanied by another manager then you lose. 

G-140 
 

   If a person is a star then they are an actor. 

G-141 
 

   If a person is a cylinder then they are a manager. 

G-142 
 

   If an actor is on a bank and the agent of the actor is not on the bank 
then the actor is stranded. 

G-143 
 

   If the color of a manager is the color of an actor then the manager is the 
agent of the actor. 

G-144 
 

   If a person is on a bank and a manager is on the bank then the person is 
accompanied by the manager. 

G-145 
 

   If the number of cannibals on a bank is more than the number of 
missionaries on the bank then you lose. 

G-146 
 

1   If a clear location is jumpable by a block then you can move the block 
onto the clear location. 

G-147 
 

1   The goal is that all the red blocks are on the red locations and all the 
blue blocks are on the blue locations. 

G-148 
 

   If a clear location is to the right of a blue peg then you can move the peg 
onto the location. 

G-149 
 

   If an object is a block then it is a peg. 

G-150 
 

   If a clear location is to the left of a red peg then you can move the peg 
onto the location. 

G-151 
 

   If a red peg is to the right of a peg and the peg is to the right of a clear 
location then you can move the red peg onto the clear location. 

G-152 
 

   If a blue peg is to the left of a peg and the peg is to the left of a clear 
location then you can move the blue peg onto the clear location. 

G-153 1    The solution has twenty-four steps. 
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G-154 
 

   If a clear location is to the right of a toad then you can move the toad 
onto the location. 

G-155 
 

   If an object is blue and the object is a block then it is a toad. 

G-156 
 

   If a clear location is to the left of a frog then you can move the frog onto 
the location. 

G-157 
 

   If an object is red and the object is a block then it is a frog. 

G-158 
 

   If a frog is to the right of a toad and the toad is to the right of a clear 
location then you can move the frog onto the clear location. 

G-159 
 

   If a toad is to the left of a frog and the frog is to the left of a clear 
location then you can move the toad onto the clear location. 

G-160 
 

   You can move a free block onto a clear garbage. 

G-161 
 

   If a block is clear and the position of the block is absent then it is free. 

G-162 
 

   If the value of a free block is one less than the value of a top block then 
you can move the free block onto the top block. 

G-163 
 

   If a block is clear and the position of the block is one then it is top. 

G-164 
 

   If the value of a free block is one more than the value of a top block 
then you can move the free block onto the top block. 

G-165 
 

   The goal is that all blocks are trashed. 

G-166 
 

   If the position of a block is one then it is trashed. 

G-167 
 

   If the color of a clear available block is the color of another clear 
available block then you can move the blocks onto a garbage. 

G-168 
 

1   The goal is that all blocks are on a garbage. 

G-169 
 

   If a peg is between a clear location and a block then you can remove the 
peg plus move the block onto the clear location. 

G-170 
 

1   The goal is that the number of covered locations is one. 

G-171 
 

   If a peg is between a clear location and a block then you can move the 
peg onto a garbage plus move the block onto the clear location. 

G-172 
 

   If the sum of the values of two of the clear available blocks is thirteen 
then you can move it onto a garbage. 
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A1.3 The Robot Corpus 

This section contains a list of the 160 sentences that make up the corpus of 

sentences from the Robot scripts for developing Rosie. These sentences were not 

written by the Lucia developer. The list was compiled by concatenating all the 

scripts for the eight Robot tasks, removing duplicates, and then ordering them 

according to the ordering in which they were used for Lucia development. 

 The following list is ordered in a way that reflects the development of Lucia 

for this corpus. One sentence at a time was added to the Robot development set, 

and then all changes to the ECG grammar and Soar operators needed to make 

that sentence work in System A were made before going on to the next sentence 

in order. In addition to listing the sentences, the following table gives some rough 

numbers of things that needed to be added or changed to make a given sentence 

work in this development order. The column headings for the following table are 

defined as follows: 

ID Identifier: A unique identifier for this sentence, made up of B for the 

Baseline corpus and the sequence number in this list. This sequence 

number also indicates the order in which these sentences were added to 

the Baseline development set. 

 
At this time, unfortunately, the additional data on the Robot sentences 

has not yet been compiled. 
 

ID Sentences 

R-001 Find the fork. 

R-002 Move the fork onto the table. 

R-003 Find Bob. 

R-004 Find Alice. 

R-005 Go to the kitchen. 

R-006 Go to the main office. 

R-007 Go to the current location. 

R-008 Go to the starting location. 

R-009 The only goal is that the fork is on the table. 

R-010 Move the fork into the drawer. 

R-011 Close the drawer. 

R-012 Move the mug into the fridge. 

R-013 Close the fridge. 
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R-014 Store the soda. 

R-015 The only goal is that the soda is in the fridge and the fridge is closed. 

R-016 Store the apple. 

R-017 Go to the copy room. 

R-018 Go to the conference room. 

R-019 Go to Alice's office. 

R-020 Go to Bob's office. 

R-021 Go to Charlie's office. 

R-022 Scan. 

R-023 Turn right. 

R-024 Turn left. 

R-025 Turn around. 

R-026 Turn right twenty-five degrees. 

R-027 Orient north. 

R-028 Orient south. 

R-029 Orient east. 

R-030 Orient west. 

R-031 Drive forward one meter. 

R-032 Drive through the door. 

R-033 Say "What time is the meeting?". 

R-034 Say "Hello there!" to Alice. 

R-035 Pick up the mug. 

R-036 Describe the held object. 

R-037 Describe the grabbed object. 

R-038 Put down the mug. 

R-039 Ask "What drink would you like?". 

R-040 A water. 

R-041 Ask Alice "What drink would you like?". 

R-042 The soda. 

R-043 Ask Bob "Would you like a soda?". 

R-044 Yes. 

R-045 Explore until you see a stapler. 

R-046 Pick up the stapler. 

R-047 Put the stapler on the desk. 

R-048 Open the drawer. 

R-049 Close the pantry. 

R-050 Turn on the lightswitch. 

R-051 Turn off the lightswitch. 

R-052 Permanently remember tea as the preferred drink of Alice. 

R-053 Permanently remember the fridge as the storage location of a drink. 

R-054 Permanently remember the current location as the office of Mary. 
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R-055 Permanently remember the main office as the office of Alice. 

R-056 Permanently remember the bookshelf as the storage location of a book. 

R-057 Permanently remember soda as the desired drink of Mary. 

R-058 Recall the preferred drink of Alice. 

R-059 Recall the storage location of a drink. 

R-060 Recall the office of Mary. 

R-061 Recall the office of Alice. 

R-062 Recall the storage location of a book. 

R-063 Recall the desired drink of Mary. 

R-064 Recall the storage location of a computer. 

R-065 Recall the office of Bob. 

R-066 Pick up the fork. 

R-067 Put the fork on the table. 

R-068 You are done. 

R-069 Move the fork onto the counter. 

R-070 Deliver the apple to Alice. 

R-071 If Alice is a person then the only goal is that Alice is holding the apple. 

R-072 Alice is in Alice's office. 

R-073 Pick up the apple. 

R-074 Put down the apple. 

R-075 Deliver the stapler to Bob's office. 

R-076 If Bob's office is a location then the only goal is that the stapler is in Bob's office. 

R-077 Deliver the stapler to the copy room. 

R-078 Deliver the papers to Mary. 

R-079 Fetch a stapler from the copy room. 

R-080 The only goal is that the stapler is in the starting location. 

R-081 First, remember the current location as the starting location. 

R-082 Fetch a stapler. 

R-083 Fetch a mug. 

R-084 Tell Charlie a message. 

R-085 The only goal is that Charlie heard the message. 

R-086 First, ask "What is the message?". 

R-087 Hello Charlie. 

R-088 Remember the answer as the message. 

R-089 Charlie is in Charlie's office. 

R-090 Tell Bob a message. 

R-091 Serve Mary. 

R-092 The goal is that Mary is holding the desired drink. 

R-093 Ask Mary "What drink would you like?". 

R-094 A soda. 

R-095 Remember the answer as the desired drink. 
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R-096 Serve Mary a desired drink. 

R-097 Permanently remember Alice's office as the office of Alice. 

R-098 Permanently remember Bob's office as the office of Bob. 

R-099 Permanently remember Charlie's office as the office of Charlie. 

R-100 Permanently remember the main office as the storage location of a water. 

R-101 Permanently remember the fridge as the storage location of a juice. 

R-102 Permanently remember water as the preferred drink of Bob. 

R-103 Permanently remember soda as the preferred drink of Mary. 

R-104 Recall the preferred drink of Mary. 

R-105 If there is a preferred drink then ask Mary the preferred drink. 

R-106 If the answer is yes then remember the preferred drink as the desired drink. 

R-107 Permanently remember the desired drink as the preferred drink of Mary. 

R-108 Serve Alice. 

R-109 If nothing was recalled then ask Alice "What drink would you like?". 

R-110 Remember the answered drink as the desired drink. 

R-111 Serve Bob. 

R-112 No. 

R-113 If the answer is nope then ask Bob "What drink would you like?". 

R-114 Serve Charlie. 

R-115 A juice. 

R-116 If the drawer is closed then the goal is that the drawer is opened. 

R-117 The goal is that the fork is in the drawer. 

R-118 Store the fork. 

R-119 If the fork is a utensil then the only goal is that the fork is in the drawer and the 
drawer is closed. 

R-120 If the soda is a drink then the only goal is that the soda is in the fridge and the fridge 
is closed. 

R-121 Store the plate. 

R-122 The only goal is that the plate is in the storage location. 

R-123 The pantry. 

R-124 Remember the answer as the storage location. 

R-125 Store the spoon. 

R-126 Store the juice. 

R-127 Move the plate onto the counter. 

R-128 Fill the green mug with water. 

R-129 If the drink is water then move the green mug into the watercooler. 

R-130 If the drink is water then press the blue button. 

R-131 If the drink is milk then pick up the carton. 

R-132 If the drink is milk then pour the carton into the green mug. 

R-133 Pick up the green mug. 

R-134 Pour the green mug into the sink. 

R-135 Put the green mug onto the counter. 
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R-136 Fill the green mug with milk. 

R-137 Put the carton onto the counter. 

R-138 Fill the blue mug with water. 

R-139 Pick up the blue mug. 

R-140 Pour the blue mug into the sink. 

R-141 Put the blue mug onto the counter. 

R-142 Fill the blue mug with milk. 

R-143 Fill2 the green mug with water. 

R-144 If the drink is water then first pick up the green mug. 

R-145 Put the green mug into the watercooler. 

R-146 Press the blue button. 

R-147 Fill2 the blue mug with milk. 

R-148 If the drink is milk then first pick up the carton. 

R-149 Pour the carton into the blue mug. 

R-150 Fill2 the blue mug with water. 

R-151 Fill2 the green mug with milk. 

R-152 Keep the soda in the fridge. 

R-153 The only goal is that the soda is always in the fridge. 

R-154 Unknown. 

R-155 Monitor the door until the meeting is finished. 

R-156 The only goal is that the door is always closed. 

R-157 The meeting is finished. 

R-158 Go to the Bob's office. 

R-159 Observe Bob for ten minutes. 

R-160 The only goal is that Bob is always visible. 
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Appendix 2 The Lucia ECG Grammar for Rosie 

This appendix is dedicated to display in some detail the entire ECG grammar 

that has been developed for use by Lucia in Rosie. It includes lists and other 

descriptive material for each of the four types of ECG items in the grammar, as 

well as a more structural description of the parts of the grammar that define 

referring expressions, clauses, and sentences. 

 Table A2-9 summarizes the types of ECG items and their quantities in the 

current version11 of the Lucia grammar for Rosie. 

Table A2-9: Numbers or ECG Items 

Type of ECG Item Number in Grammar 

Lexical Constructions 237 

Composite Constructions 118 

General Constructions 69 

Meaning Schemas 146 

Total 570 

A2.1 Lexical Constructions 

Lexical constructions map words and multi-word items to their meanings. 

Each as a form element called orth which defines its orthography, or spelling. 

Multi-word items such as to the left of are treated as single lexical items, almost 

as if they were single words. Each lexical construction can also specify a meaning 

schema to be evoked and/or a set of constraints used to populate that schema. 

Almost all lexical items are subcases of one or more general constructions. 

This has the effect of putting words into more general categories. These 

categories are somewhat analogous to traditional parts of speech, but due to the 

need for semantic precision this Lucia grammar for Rosie has many more 

                                       
 

11 The data for this Appendix was captured on 10/26/2021 and does not include later additions. 
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categories than are usually used for parts of speech. The categories allow words 

to fit into syntactic roles, but with a good deal of semantic precision. 

Table A2-10 lists all the categories for lexical items along with the words 

or multi-word items that are members of each category. The individual items are 

listed in alphabetical order for each category by their orthography. Multi-word 

items have their constituent words listed in order separated by hyphens. Each 

entry in the table has the name of the general construction for the category, the 

number of members it has in parentheses, and the list of items in square 

brackets. 

Table A2-10: Lexical Constructions by Category 

ActionVerb(27) [ask, clean, close, cook, discard, explore, fetch, find, has, heard, 
interrogate, move, open, organize, pick, put, recall, said, say, serve, set, 
store, tell, throw, turn-off, turn-on, wait] 

ActionVerbNeedsTarget(2) [deliver, take] 
Adverb(2) [not, slowly] 
AdverbialPreposition(2) [for, from] 
Agent(5) [alice, bob, rosie, we, you] 
CardinalNumber(13) [eight, eleven, five, four, nine, one, seven, six, ten, three, 

twelve, twenty-five, two] 
CommonNoun(49) [answer, apple, block, blocks, box, building, doors, doorway, 

drawer, end, fork, fridge, game, game, garbage, goal, hall, intersection, 
kitchen, lights, location, locations, message, mug, name, name, object, office, 
pantry, puzzle, puzzle, question, rectangle, response, room, soda, solution, 
sphere, square, stapler, steps, stove, table, task, trash, triangle, triangles, 
wall, waypoint] 

Complementizer(1) [that] 
ConditionalPreposition(1) [until] 
Conjunction(2) [and, as] 
DeicticPronoun(2) [that, this] 
Determiner(3) [a, an, the] 
DiPreposition(1) [between] 
Direction(4) [around, forward, left, right] 
DirectionalPreposition(1) [down] 
Done(3) [done, finished, over] 
DriveVerb(2) [drive, go] 
East(2) [e, east] 
EnablingVerb(1) [can] 
FiniteToBe(2) [are, is] 
FunctionName(2) [the-number-of, the-volume-of] 
InterrogativePronoun(4) [what, when, where, who] 
LoadVerb(1) [load] 
MotionVerb(1) [follow] 
NONE(3) [check, remember, there] 
NPSpecifier(1) [these] 
North(2) [n, north] 
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OnePronoun(1) [one] 
Orient(2) [face, orient] 
Particle(3) [away, down, up] 
PossesivePronoun(1) [your] 
Possessive(3) [alice's, bob's, charlie's] 
Preposition(18) [behind, below, holding, in, in-front-of, inside, into, larger-

than, more-than, next-to, of, of, on, onto, smaller-than, to, to-the-left-of, 
to-the-right-of] 

Pronoun(4) [it, me, we, you] 
ProperName(2) [alice, bob] 
Property(28) [accessible, big, blue, clear, closed, conference, cooked, copy, 

covered, current, empty, former, green, large, lit, main, medium, off, only, 
orange, purple, red, small, soar, square, starting, visible, yellow] 

PropertyClassName(9) [action, color, location, relation, shape, size, sphere, 
square, triangle] 

Quantifier(3) [all, all-of, some] 
RelativePronoun(1) [that] 
SimpleMotionVerb(4) [forward, patrol, scan, stop] 
South(2) [s, south] 
TransitiveSituationVerb(3) [reach, see, sense] 
TurnVerb(1) [turn] 
UnitsName(11) [centimeter, centimeters, degrees, feet, foot, inch, inches, meter, 

meters, minute, minutes] 
West(2) [w, west] 
Word(2) [if, then] 
YesNo(1) [no] 
YesWord(2) [ok, yes] 

 

 Of all the lexical items listed, there are five that have multiple types and 

three that have no types, as shown in TX. 

Table A2-11: Lexical Items with Multiple or No Types 

Multiple Types No Type 
  alice [ProperName, Agent] 

  bob [ProperName, Agent] 

  down [Particle, DirectionalPreposition] 

  we [Pronoun, Agent] 

  you [Pronoun, Agent] 

  check 

  remember 

  there 

 

 There are also three pairs of words that the grammar considers synonyms. 

For each pair there is a separate construction for each orthography but a single 

name for the base type, as follows: 

DRIVE(go) synonym of DRIVE(drive) 

ORIENT(face) synonym of ORIENT(orient) 

YES(ok) synonym of YES(yes) 
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A2.2 Composite Constructions 

Composite constructions are those that compose larger syntactic structures out 

of one or more constituents. Each has a name and a list of constituents. Each 

constituent has a slot name and the name of the type of construction that can 

fill that slot. As with lexical constructions, each composite construction also can 

optionally specify one or more general constructions it is a subcase of, one or 

more meaning schemas to evoke, and one or more constraints used to populate 

the meaning schema(s). 

Table A2-12: Composite Constructions and the Composition Hierarchy 

lists all the composite constructions. The line for each construction starts with 

its name followed by its productivity in angle brackets, its parent types in curly 

brackets, and the types of its constituents in square brackets. The meaning and 

calculation of productivity is explained in Chapter 3. (Note: these numbers need 

to be updated!) 

Table A2-12: Composite Constructions and the Composition Hierarchy 

# Composites processed Wed Jul 14 17:27:21 MDT 2021 

ActAlongDirection<3524264> {Imperative} [SimpleAction, DirectionalPrepPhrase] 

ActAlongDirectionUntil<881067> {Imperative} [ActAlongDirection, UntilClause] 

ActInDirection<8> {Imperative} [SimpleAction, Direction] 

ActInDirectionForDistance<143> {Imperative} [ActInDirection, NumberOfUnits] 

ActInDirectionUntil<881067> {Imperative} [ActInDirection, UntilClause] 

ActionForTimePeriod<6435> {Imperative} [ActionVerb, FOR, NumberOfUnits] 

AlicesOffice<1> {SpecifierNP} [ALICE-S, OFFICE] 

AndDeclarative<1> {} [AND, Declarative] 

AskQuestion<1> {Imperative} [ASK, Question] 

BareNoun<50> {RefExpr} [CommonNoun] 

BetweenPropertySets<1> {PrepPhrase} [DiPreposition, PropertySetAnd, PropertySet] 

BobsOffice<1> {SpecifierNP} [BOB-S, OFFICE] 

CharliesOffice<1> {SpecifierNP} [CHARLIE-S, OFFICE] 

CheckCondition<1804840131> {} [CHECK, IF, Declarative] 

ConceptIsThat<1511366> {} [RefExpr, FiniteToBe, THAT-complementizer] 

ConceptIsThatDeclarative<1> {Declarative} [ConceptIsThat, Declarative] 

DeclarativeAndDeclarative<1> {Declarative} [Declarative, AndDeclarative] 

DiTransitiveCommand<755683> {Imperative} [TransitiveCommand, RefExpr] 

DirectionalPrepPhrase<440533> {} [DirectionalPreposition, RefExpr] 

DoUntil<68011515> {Imperative} [ActionVerb, UntilClause] 

DriveInDirection<4> {Imperative} [DriveVerb, Direction] 

DriveVerbToTarget<15113682> {Imperative} [DriveVerb, PrepPhrase] 

EnabledCommandSentence<-1676782454> {Declarative} [EnablerPhrase, Imperative] 

EnablerPhrase<5> {} [Agent, EnablingVerb] 
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FunctionWithArgument<2> {RefExpr} [FunctionName, RefExpr] 

HeadRelativeClause<2> {} [RelativePronoun, FiniteToBe] 

IfConditionAs<1> {} [IF, Declarative, AS] 

IfConditionCommand<-525289077> {Conditional} [IF, Declarative, Imperative] 

IfConditionThen<1804840131> {} [IF, Declarative, THEN] 

IfConditionThenCommand<-667675751> {Conditional} [IfConditionThen, Imperative] 

IfConditionThenStatement<1804840131> {Conditional} [IfConditionThen, Declarative] 

ImperativeWithLocation<15113682> {Imperative} [Imperative, PrepPhrase] 

ImperativeWithLocationSet<20> {Imperative} [Imperative, PropertySetPrepPhrase] 

IntransitiveVerbDefinitionSentence<15113682> {Imperative} [UNKNOWN-WORD, 

PrepPhrase] 

IsObjectClassQ<69522836> {YesNoQuestion} [FiniteToBe, RefExpr, Property] 

IsObjectPropSetQ<87659228> {YesNoQuestion} [FiniteToBe, RefExpr, PropertySet] 

IsObjectRelation<1669029484> {YesNoQuestion} [FiniteToBe, RefExpr, PrepPhrase] 

LoadWorldFile<1> {Imperative} [LoadVerb, UNKNOWN-WORD] 

ModifiedDriveVerb<2> {DriveVerb} [DriveVerb, Adverb] 

ModifierList<1> {} [ModifierList, Modifier] 

MotionOnObject<3022732> {Imperative} [MotionVerb, RefExpr] 

MoveOnObjectUntil<-1387808300> {Imperative} [MotionOnObject, UntilClause] 

MoveVerb<1> {ActionVerbNeedsTarget} [MOVE] 

NameDefinitionSentence<30227320> {} [TheName, SimplePrepPhrase, FiniteToBe, 

UNKNOWN-WORD] 

NegatedPrepPhrase<1> {PrepPhrase} [NOT, PrepPhrase] 

Negation<2> {} [FiniteToBe, NOT] 

NumberOfThings<650> {SpecifierNP} [CardinalNumber, CommonNoun] 

NumberOfUnits<143> {SpecifierNP} [CardinalNumber, UnitsName] 

PickUp<1> {ActionVerb} [PickVerb, UP] 

PickVerb<1> {ActionVerb} [PICK] 

Properties2<2116> {} [Property, Property] 

Properties2Set<27> {PropertySet} [Determiner, Properties2, PropertyClassName] 

Properties3<97336> {} [Properties2, Property] 

Property1Set<27> {PropertySet} [Determiner, Property, PropertyClassName] 

PropertyDefinitionSentence<116> {} [UNKNOWN-WORD, FiniteToBe, PropertySet] 

PropertyNoun<50> {SpecifierNP} [Property, CommonNoun] 

PropertyRedefinitionSentence<116> {} [Property, FiniteToBe, PropertySet] 

PropertySetAnd<1> {} [PropertySet, AND] 

PropertySetIsNotPrepPhrase<2> {Declarative} [PropertySet, Negation, PrepPhrase] 

PropertySetIsPrepPhrase<2> {Declarative} [PropertySet, FiniteToBe, PrepPhrase] 

PropertySetIsProperty<2> {Declarative} [PropertySet, FiniteToBe, Property] 

PropertySetPrepPhrase<20> {PrepPhrase} [Preposition, PropertySet] 

PropertySetRelClause<4> {PropertySet} [PropertySet, RelativeClause] 

Props2Noun<105800> {SpecifierNP} [Properties2, CommonNoun] 

PutDown<1> {ActionVerbNeedsTarget} [PutVerb, DOWN] 

PutVerb<1> {ActionVerbNeedsTarget} [PUT] 

QuantifiedRefExpr<16> {RefExpr} [Quantifier, RefExpr] 

RefExprPrepPhrase<1> {RefExpr} [RefExpr, PrepPhrase] 

RefExprRelClause<4> {RefExpr} [RefExpr, RelativeClause] 

RefIsNotPrepPhrase<1511366> {Declarative} [RefExpr, Negation, PrepPhrase] 

RefIsPrepPhrase<1511366> {Declarative} [RefExpr, FiniteToBe, PrepPhrase] 

RefIsProperty<3866> {Declarative} [RefExpr, FiniteToBe, Property] 

RefIsRef<-347707758> {Declarative} [RefExpr, FiniteToBe, RefExpr] 
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RelativeClausePrepPhrase<2> {RelativeClause} [HeadRelativeClause, PrepPhrase] 

RelativeClauseProperty<2> {RelativeClause} [HeadRelativeClause, Property] 

RememberConditionasB<755683> {RememberAasB} [REMEMBER, IfConditionAs, RefExpr] 

RememberRefExprasB<1> {RememberAasB} [REMEMBER, RefExpr, AS, RefExpr] 

RosieCommand<34005735> {Imperative} [ROSIE, ActionVerb, RefExpr] 

SimpleAction<8> {Imperative} [SimpleMotionVerb] 

SimplePrepPhrase<15113660> {PrepPhrase} [Preposition, RefExpr] 

SpecNoun<300> {SpecifierNP} [NPSpecifier, CommonNoun] 

SpecPropNoun<13800> {SpecifierNP} [NPSpecifier, Property, CommonNoun] 

SpecProps2Noun<634800> {SpecifierNP} [NPSpecifier, Properties2, CommonNoun] 

StoreVerb<1> {ActionVerbNeedsTarget} [STORE] 

SubjectHas<755683> {} [RefExpr, HAS] 

SubjectHasObject<755683> {Imperative} [SubjectHas, RefExpr] 

SubjectVerb<34005735> {Declarative} [RefExpr, ActionVerb] 

SubjectVerbObject<755683> {Declarative} [SubjectVerb, RefExpr] 

SubjectVerbObjectPP<15113682> {Declarative} [SubjectVerbObject, PrepPhrase] 

THE-Mods-Noun<50> {DefiniteNP} [THE, ModifierList, CommonNoun] 

TheConferenceRoom<1> {SpecifierNP} [THE, CONFERENCE, ROOM] 

TheCopyRoom<1> {SpecifierNP} [THE, COPY, ROOM] 

TheKitchen<1> {SpecifierNP} [THE, KITCHEN] 

TheMainOffice<1> {SpecifierNP} [THE, MAIN, OFFICE] 

TheName<1> {} [THE, NAME] 

TheSoarOffice<1> {SpecifierNP} [THE, SOAR, OFFICE] 

ThereAre<2> {} [THERE, FiniteToBe] 

ThereAreNumber<13> {Declarative} [ThereAre, CardinalNumber] 

ThereAreRefExpr<1> {Declarative} [ThereAre, RefExpr] 

ThisIsAThat<232> {Declarative} [DeicticPronoun, FiniteToBe, PropertySet] 

ThisIsTheThat<3022732> {Declarative} [DeicticPronoun, FiniteToBe, RefExpr] 

ThrowAway<1> {ActionVerb} [THROW, AWAY] 

TransitiveCommand<34005735> {Imperative} [ActionVerb, RefExpr] 

TransitiveCommandParticle<1> {Imperative} [TransitiveCommand, Particle] 

TransitiveSituationClause<-521561637> {SituationClause} [RefExpr, 

TransitiveSituationVerb, RefExpr] 

TransitiveVerbDefinitionSentence<755683> {Imperative} [UNKNOWN-WORD, RefExpr] 

TurnDirection<3> {Imperative} [TurnVerb, Direction] 

TurnDirectionByAngle<143> {Imperative} [TurnDirection, NumberOfUnits] 

TurnObjectOn<755683> {Imperative} [TURN, RefExpr, ON] 

TurnToDirection<3> {Imperative} [TurnVerb, TO, Direction] 

TurnToTheDirection<3> {Imperative} [TurnVerb, TO, THE, Direction] 

UntilDeclarativeClause<1> {UntilClause} [UNTIL, Declarative] 

UntilThereIsClause<1511366> {UntilClause} [UNTIL, ThereAre, RefExpr] 

WhatClassIsObjectQ<87659228> {WhQuestion} [WHAT, PropertySet, FiniteToBe, RefExpr] 

WhatIsObject<1511366> {WhQuestion} [WHAT, FiniteToBe, RefExpr] 

WhatIsPrepPhrase<2> {WhQuestion} [WHAT, FiniteToBe, PrepPhrase] 

WheresWaldo<1511366> {WhQuestion} [WHERE, FiniteToBe, RefExpr] 

WordDefinitionSentence<1511366> {} [RefExpr, FiniteToBe, UNKNOWN-WORD] 

# Total composite constructions: 118. 
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A2.3 General Constructions 

General constructions add additional type information to any construction that 

references a general construction through a “subcase of” reference. Many lexical 

or composite constructions have several levels of generalization. During 

processing, each level provides a label to each instance of the base construction 

that can be referenced for composition by higher-level compositions. This 

provides the combination of a type hierarchy and a compositional hierarchy that 

are necessary to provide semantic precision and syntactic generality 

simultaneously. Table A2-13 lists all the general constructions, showing the 

whole type hierarchy. The format uses “<<{…}” to list the subcases of each general 

construction. 

Table A2-13: General Constructions and the Type Hierarchy 

# Generals processed Fri Jul 16 11:15:45 CDT 2021 

ActionVerb<45> {} <<[ASK, ActionVerbNeedsTarget, CLEAN, CLOSE, COOK, DISCARD, 

EXPLORE, FETCH, FIND, HAS, HEARD, INTERROGATE, LoadVerb, MOVE, OPEN, ORGANIZE, 

PICK, PUT, PickUp, PickVerb, RECALL, SAID, SAY, SERVE, SET, STORE, 

SimpleMotionVerb, TELL, THROW, TURN-OFF, TURN-ON, ThrowAway, WAIT] 

ActionVerbNeedsTarget<6> {ActionVerb} <<[DELIVER, MoveVerb, PutDown, PutVerb, 

StoreVerb, TAKE] 

Adverb<2> {} <<[NOT, SLOWLY] 

AdverbialPreposition<2> {Preposition} <<[FOR, FROM] 

Agent<5> {} <<[ALICE, BOB, ROSIE, WE, YOU] 

Aux<0> {Word, HasVerbFeatures}  

BareSpecifier<2> {RefExpr} <<[DeicticPronoun] 

CardinalNumber<13> {Quantifier} <<[EIGHT, ELEVEN, FIVE, FOUR, NINE, ONE-number, 

SEVEN, SIX, TEN, THREE, TWELVE, TWENTY-FIVE, TWO] 

CommonNoun<50> {Noun} <<[ANSWER, APPLE, BLOCK, BLOCKS, BOX, BUILDING, DOORS, 

DOORWAY, DRAWER, END, FORK, FRIDGE, GAME, GAME-game, GARBAGE, GOAL, HALL, 

INTERSECTION, KITCHEN, LIGHTS, LOCATION-noun, LOCATIONS, MESSAGE, MUG, NAME, 

NAME-name, OBJECT, OFFICE, OnePronoun, PANTRY, PUZZLE, PUZZLE-puzzle, QUESTION, 

RECTANGLE, RESPONSE, ROOM, SODA, SOLUTION, SPHERE-noun, SQUARE-noun, STAPLER, 

STEPS, STOVE, TABLE, TASK, TRASH, TRIANGLE-noun, TRIANGLES, WALL, WAYPOINT] 

Complementizer<1> {} <<[THAT-complementizer] 

Conditional<611875303> {} <<[IfConditionCommand, IfConditionThenCommand, 

IfConditionThenStatement] 

ConditionalPreposition<1> {Word} <<[UNTIL] 

Conjunction<2> {Word} <<[AND, AS] 

Declarative<1804840131> {VerbWithArguments} <<[ConceptIsThatDeclarative, 

DeclarativeAndDeclarative, EnabledCommandSentence, PropertySetIsNotPrepPhrase, 

PropertySetIsPrepPhrase, PropertySetIsProperty, RefIsNotPrepPhrase, 

RefIsPrepPhrase, RefIsProperty, RefIsRef, SituationClause, SubjectVerb, 



 

 219 

SubjectVerbObject, SubjectVerbObjectPP, ThereAreNumber, ThereAreRefExpr, 

ThisIsAThat, ThisIsTheThat] 

DefiniteNP<50> {RefExpr} <<[THE-Mods-Noun] 

DeicticPronoun<2> {Specifier, BareSpecifier} <<[THAT-deictic, THIS] 

Determiner<3> {NPSpecifier} <<[A, AN, THE] 

DiPreposition<1> {Word} <<[BETWEEN] 

Direction<12> {Property} <<[AROUND, East, FORWARD-direction, LEFT, North, RIGHT, 

South, West] 

DirectionalPreposition<1> {Word} <<[DOWN] 

Done<3> {Property} <<[DONE, FINISHED, OVER] 

DriveVerb<4> {SimpleMotionVerb} <<[DRIVE, DRIVE-go, ModifiedDriveVerb] 

East<2> {Direction} <<[E, EAST] 

EnablingVerb<1> {} <<[CAN-verb] 

FiniteToBe<2> {Word, HasVerbFeatures} <<[ARE, IS] 

FunctionName<2> {} <<[THE-NUMBER-OF, THE-VOLUME-OF] 

HasVerbFeatures<3> {} <<[Aux, FiniteToBe, Verb] 

Imperative<-1194349950> {VerbWithArguments} <<[ActAlongDirection, 

ActAlongDirectionUntil, ActInDirection, ActInDirectionForDistance, 

ActInDirectionUntil, ActionForTimePeriod, AskQuestion, DiTransitiveCommand, 

DoUntil, DriveInDirection, DriveVerbToTarget, ImperativeWithLocation, 

ImperativeWithLocationSet, IntransitiveVerbDefinitionSentence, LoadWorldFile, 

MotionOnObject, MoveOnObjectUntil, RememberAasB, RosieCommand, SimpleAction, 

SubjectHasObject, TransitiveCommand, TransitiveCommandParticle, 

TransitiveVerbDefinitionSentence, TurnDirection, TurnDirectionByAngle, 

TurnObjectOn, TurnToDirection, TurnToTheDirection] 

InterrogativePronoun<4> {} <<[WHAT, WHEN, WHERE, WHO] 

LoadVerb<1> {ActionVerb} <<[LOAD] 

MotionVerb<4> {} <<[FOLLOW, TurnVerb] 

NPSpecifier<6> {Word} <<[Determiner, PossesivePronoun, Specifier, THESE] 

North<2> {Direction} <<[N, NORTH] 

Noun<59> {Word} <<[CommonNoun, PropertyClassName] 

OnePronoun<1> {CommonNoun} <<[ONE-pronoun] 

Orient<2> {TurnVerb} <<[ORIENT, ORIENT-face] 

Particle<3> {} <<[AWAY, DOWN, UP] 

PossesivePronoun<1> {NPSpecifier} <<[YOUR] 

Possessive<3> {Property} <<[ALICE-S, BOB-S, CHARLIE-S] 

PrepPhrase<15113682> {} <<[BetweenPropertySets, NegatedPrepPhrase, 

PropertySetPrepPhrase, SimplePrepPhrase] 

Preposition<20> {Word} <<[AdverbialPreposition, BEHIND, BELOW, HOLDING, IN, IN-

FRONT-OF, INSIDE, INTO, LARGER-THAN, MORE-THAN, NEXT-TO, OF, OF-of, ON, ONTO, 

SMALLER-THAN, TO, TO-THE-LEFT-OF, TO-THE-RIGHT-OF] 

Pronoun<4> {RefExpr, Word} <<[IT, ME, WE, YOU] 

ProperName<2> {RefExpr} <<[ALICE, BOB] 

Property<46> {Word} <<[ACCESSIBLE, BIG, BLUE, CLEAR, CLOSED, CONFERENCE, COOKED, 

COPY, COVERED, CURRENT, Direction, Done, EMPTY, FORMER, GREEN, LARGE, LIT, 

MAIN, MEDIUM, OFF, ONLY, ORANGE, PURPLE, Possessive, RED, SMALL, SOAR, SQUARE-

adjective, STARTING, VISIBLE, YELLOW] 

PropertyClassName<9> {Noun} <<[ACTION, COLOR, LOCATION-class, RELATION, SHAPE, 

SIZE, SPHERE-class, SQUARE-class, TRIANGLE-class] 

PropertySet<58> {} <<[Properties2Set, Property1Set, PropertySetRelClause] 

Quantifier<16> {} <<[ALL, ALL-OF, CardinalNumber, SOME] 
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Question<1916893510> {} <<[WhQuestion, YesNoQuestion] 

RefExpr<755683> {} <<[BareNoun, BareSpecifier, DefiniteNP, FunctionWithArgument, 

Pronoun, ProperName, QuantifiedRefExpr, RefExprPrepPhrase, RefExprRelClause, 

RelativePronoun, SpecifierNP] 

RelativeClause<4> {} <<[RelativeClausePrepPhrase, RelativeClauseProperty] 

RelativePronoun<1> {RefExpr, Word} <<[THAT-relative] 

RememberAasB<755684> {Imperative} <<[RememberConditionasB, RememberRefExprasB] 

SimpleMotionVerb<8> {ActionVerb} <<[DriveVerb, FORWARD-verb, PATROL, SCAN, STOP] 

SituationClause<-521561637> {Declarative} <<[TransitiveSituationClause] 

South<2> {Direction} <<[S, SOUTH] 

Specifier<0> {NPSpecifier} <<[DeicticPronoun] 

SpecifierNP<755551> {RefExpr} <<[AlicesOffice, BobsOffice, CharliesOffice, 

NumberOfThings, NumberOfUnits, PropertyNoun, Props2Noun, SpecNoun, 

SpecPropNoun, SpecProps2Noun, TheConferenceRoom, TheCopyRoom, TheKitchen, 

TheMainOffice, TheSoarOffice] 

TransitiveSituationVerb<3> {} <<[REACH, SEE, SENSE] 

TurnVerb<3> {MotionVerb} <<[Orient, TURN] 

UnitsName<11> {} <<[CENTIMETER, CENTIMETERS, DEGREES, FEET, FOOT, INCH, INCHES, 

METER, METERS, MINUTE, MINUTES] 

UntilClause<1511367> {} <<[UntilDeclarativeClause, UntilThereIsClause] 

Verb<0> {Word, HasVerbFeatures}  

VerbWithArguments<1137164380> {} <<[Declarative, Imperative] 

West<2> {Direction} <<[W, WEST] 

WhQuestion<90681962> {Question} <<[WhatClassIsObjectQ, WhatIsObject, 

WhatIsPrepPhrase, WheresWaldo] 

Word<148> {} <<[Aux, ConditionalPreposition, Conjunction, DiPreposition, 

DirectionalPreposition, FiniteToBe, IF, NPSpecifier, Noun, Preposition, 

Pronoun, Property, RelativePronoun, THEN, Verb, YesNo] 

YesNo<3> {Word} <<[NO, YesWord] 

YesNoQuestion<1826211548> {Question} <<[IsObjectClassQ, IsObjectPropSetQ, 

IsObjectRelation] 

YesWord<2> {YesNo} <<[YES, YES-ok] 

# Total general constructions: 69. 

 

A2.4 Meaning Schemas 

The meaning of a construction is represented by a meaning schema, which is a 

structure with roles, or slots, that hold related information. Slots are filled by 

ECG constraints in either the definition of the schema itself or in the 

construction that evoked it. Table A2-14 lists all the meaning schemas. 

Table A2-14: Meaning Schemas 

ActOnIt {Action} [object]  

Action {} [action, direction, location]  

ActionDescriptor {} [class, name, 

modifier]  

Pantry {RosieLocation} []  

PastParticiple {NonFinite} []  

PossessiveProperty {PropertyDescriptor} 

[possessive]  
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ActionForTime {Action} [time]  

AgreementFeatures {} [number, person]  

Alice {RosieObject, KnownObject} [name]  

Answer {Concept} []  

Apple {ObjectNotBlock} []  

AskQuestion {} []  

AskQuestionCommand {ActOnIt} []  

Assertion {} []  

AuxiliaryFeatures {} [type]  

Block {RosieObject} [shape, color, size, 

state]  

Bob {RosieObject, KnownObject} [name]  

Box {RosieObject} [shape, color, size, 

state]  

Building {MapLocation} []  

CheckIt {Action} [condition]  

CompoundAssertion {Assertion} 

[assertion1, assertion2]  

Concept {Entity, PropertyDescriptor} 

[concept-type, concept-handle]  

ConceptIsThatAssertion {Assertion} 

[concept, assertion]  

Condition {} [statement]  

ConferenceRoom {MapLocation} []  

DoItInDirection {Action} [object]  

DoTransfer {ActOnIt} [object2]  

Doorway {SpatialShape} []  

Drawer {ObjectNotBlock} []  

EnabledCommand {} [enabler, command]  

Enabler {} [agent, ability]  

End {SpatialShape} []  

Entity {} [rosie-category]  

EqualComparison {} [value1: RefDesc, 

value2: RefDesc]  

EventDescriptor {} [eventType: Process, 

profiledProcess: Process, 

profiledParticipant, profiledState, 

spatialSetting, temporalSetting, 

speechAct]  

Finite {FiniteOrNonFinite, 

FiniteOrGerund} []  

FiniteOrGerund {FiniteOrNonFinite} []  

FiniteOrNonFinite {} []  

Fork {ObjectNotBlock} []  

Fridge {ObjectNotBlock} []  

Function {} [fn-handle]  

FunctionApplication {RefDesc} [argument: 

RefDesc, predicate]  

Game {Concept} []  

Game {Concept} []  

Garbage {RosieLocation} []  

PrepCore {} [name]  

PrepPhraseAssertion {Assertion} 

[preprel: PrepRelation, target: 

RefDesc, modifier]  

PrepRelation {} [prep: PrepCore, object: 

RefDesc]  

PrepRelation2 {PrepRelation} [object2: 

RefDesc]  

PropertyApplication {Assertion} 

[property: PropertyDescriptor, 

target: RefDesc]  

PropertyClass {} [name]  

PropertyClassDescriptor {} [name]  

PropertyDefinition {} [word, class]  

PropertyDescriptor {} [class, name, 

next]  

PropertyRedefinition {} [word, old, 

class]  

PropertySetDescriptor {} [predicate, 

givenness, property, property2]  

Puzzle {Concept} []  

Puzzle {Concept} []  

Quantification {} [type]  

Question {Concept} []  

Rectangle {Block} []  

RefDesc {} [name, category, givenness, 

modifiers, referent, relation, 

quantified]  

RefExprAssertion {Assertion} [reference]  

Response {Concept} []  

Room {SpatialShape} []  

Rosie {RosieObject} [name]  

RosieLocation {} [rosie-category, name, 

category, root-category]  

RosieObject {Entity} [handle, movable]  

Salient {} [reference]  

SituationDescriptor {} [subject, action, 

object]  

SoarOffice {MapLocation} []  

Soda {ObjectNotBlock} []  

Solution {RosieObject} []  

SpatialShape {RosieObject} [spatial-

shape]  

Sphere {Block} []  

Square {Block} []  

Stapler {RosieObject} [name]  

Steps {RosieObject} [shape]  

Stove {RosieLocation} []  

SubjectActOnIt {ActOnIt} [subject]  

Table {RosieLocation} []  

Task {Concept} []  
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Gerund {NonFinite, FiniteOrGerund} []  

Goal {Concept} []  

Hall {SpatialShape} []  

IfThenCommand {} [condition, command]  

IfThenStatement {} [condition, 

statement]  

Infinitive {NonFinite} []  

Intersection {SpatialShape} []  

IntransitiveAssertion {Assertion} 

[subject, verb]  

IntransitiveVerbDefinition 

{VerbDefinition} [location]  

Kitchen {MapLocation} []  

KnownObject {RefDesc} [handle]  

Lights {KnownObject} [name]  

LoadWorldCommand {} [action, word]  

Location {RosieObject} []  

MainOffice {MapLocation} []  

MapLocation {KnownObject, RosieObject} 

[]  

Measurement {} [units, number]  

Message {Concept} []  

MoveDistance {Action} [distance]  

MoveToIt {Action} []  

Mug {ObjectNotBlock} []  

Name {Concept} []  

Name {Concept} []  

NameDefinition {} [word, relation, name]  

NegatedPrepRelation {PrepRelation} 

[negation]  

NominalAgreementFeatures 

{AgreementFeatures} [case]  

NominalFeatures {} [features: 

NominalAgreementFeatures]  

NonFinite {FiniteOrNonFinite} []  

NumberAssertion {Assertion} [number]  

Object {RosieObject} [shape, color, 

size, state]  

ObjectIsClassQuestion {AskQuestion} 

[object, class]  

ObjectIsRelationQuestion {AskQuestion} 

[object, relation]  

ObjectNotBlock {RosieObject} [shape, 

color, size, category]  

Office {MapLocation} [] 

TerminatedAction {Action} [terminator]  

TerminatedActionOnObject {Action} 

[object, terminator]  

ThisIsAThatAssertion {Assertion} [this: 

RefDesc, that: 

PropertyClassDescriptor]  

ThisIsTheThatAssertion {Assertion} 

[this: RefDesc, that: RefDesc]  

TransitiveAssertion {Assertion} 

[subject, verb, object]  

TransitiveAssertionPrepPhrase 

{Assertion} [subject, verb, object, 

relation]  

TransitiveVerbDefinition 

{VerbDefinition} [object]  

Trash {Block} []  

Triangle {Block} []  

TurnByAngle {Action} [angle]  

TurnToIt {Action} [direction]  

Units {Concept} [type]  

UntilDeclarative {} [assertion]  

UntilSituation {} [situation]  

UntilThereIs {} [object]  

VerbAgreementFeatures 

{AgreementFeatures} [verbform]  

VerbDefinition {} [word]  

VerbFeatures {} [features: 

VerbAgreementFeatures]  

VerbModifier {} [id]  

Volume {Concept} []  

Wall {SpatialShape} []  

Waypoint {SpatialShape} []  

WhatClassIsObjectQuestion {AskQuestion} 

[class, object]  

WhatIsObjectQuestion {AskQuestion} 

[object]  

WhatIsQuestion {AskQuestion} []  

WhatIsRelation {WhatIsQuestion} 

[predicate]  

WhereIsObject {AskQuestion} [object]  

WordDefinition {} [word, object]  

WordForm {} [orth]  

YesNoAnswer {Assertion} [answer] 
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A2.5 Referring Expressions 

Since referring expressions are such an important part of the Lucia grammar for 

Rosie, and this part is so complex, it’s worth looking in detail at the grammar 

hierarchies for this part of the grammar. Table A2-15 shows a hierarchy tree 

beginning at the RefExpr construction and going three levels deep. Under each 

general construction its children in the type hierarchy are shown indented one 

more level. Under each composite construction its constituent constructions are 

shown indented. Lexical constructions are shown by their construction name, 

which is in capitals, and they are list in the constituent lists but not as children. 

Table A2-15: The RefExpr Hierarchy 

# RefExprs processed Wed Jul 14 15:41:01 MDT 2021 

RefExpr<755683> {}  

  BareNoun<50> {RefExpr} [CommonNoun] 

    CommonNoun<50> {Noun}  

      OnePronoun<1> {CommonNoun}  

  BareSpecifier<2> {RefExpr}  

    DeicticPronoun<2> {Specifier,BareSpecifier}  

  DefiniteNP<50> {RefExpr}  

    THE-Mods-Noun<50> {DefiniteNP} [THE, ModifierList, CommonNoun] 

      ModifierList<1> {} [ModifierList, Modifier] 

      CommonNoun<50> {Noun}  

  FunctionWithArgument<2> {RefExpr} [FunctionName, RefExpr] 

    FunctionName<2> {}  

    *RefExpr<755683> {}  

  Pronoun<4> {RefExpr,Word}  

  ProperName<2> {RefExpr}  

  QuantifiedRefExpr<16> {RefExpr} [Quantifier, RefExpr] 

    Quantifier<16> {}  

      CardinalNumber<13> {Quantifier}  

    *RefExpr<755683> {}  

  RefExprPrepPhrase<1> {RefExpr} [RefExpr, PrepPhrase] 

    *RefExpr<755683> {}  

    PrepPhrase<15113682> {}  

      BetweenPropertySets<1> {PrepPhrase} [DiPreposition, PropertySetAnd, 

PropertySet] 

      NegatedPrepPhrase<1> {PrepPhrase} [NOT, PrepPhrase] 

      PropertySetPrepPhrase<20> {PrepPhrase} [Preposition, PropertySet] 

      SimplePrepPhrase<15113660> {PrepPhrase} [Preposition, RefExpr] 

  RefExprRelClause<4> {RefExpr} [RefExpr, RelativeClause] 

    *RefExpr<755683> {}  

    RelativeClause<4> {}  

      RelativeClausePrepPhrase<2> {RelativeClause} [HeadRelativeClause, PrepPhrase] 

      RelativeClauseProperty<2> {RelativeClause} [HeadRelativeClause, Property] 
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  RelativePronoun<1> {RefExpr,Word}  

  SpecifierNP<755551> {RefExpr}  

    AlicesOffice<1> {SpecifierNP} [ALICE-S, OFFICE] 

    BobsOffice<1> {SpecifierNP} [BOB-S, OFFICE] 

    CharliesOffice<1> {SpecifierNP} [CHARLIE-S, OFFICE] 

    NumberOfThings<650> {SpecifierNP} [CardinalNumber, CommonNoun] 

      CardinalNumber<13> {Quantifier}  

      CommonNoun<50> {Noun}  

    NumberOfUnits<143> {SpecifierNP} [CardinalNumber, UnitsName] 

      CardinalNumber<13> {Quantifier}  

      UnitsName<11> {}  

    PropertyNoun<50> {SpecifierNP} [Property, CommonNoun] 

      Property<46> {Word}  

      CommonNoun<50> {Noun}  

    Props2Noun<105800> {SpecifierNP} [Properties2, CommonNoun] 

      Properties2<2116> {} [Property, Property] 

      CommonNoun<50> {Noun}  

    SpecNoun<300> {SpecifierNP} [NPSpecifier, CommonNoun] 

      NPSpecifier<6> {Word}  

      CommonNoun<50> {Noun}  

    SpecPropNoun<13800> {SpecifierNP} [NPSpecifier, Property, CommonNoun] 

      NPSpecifier<6> {Word}  

      Property<46> {Word}  

      CommonNoun<50> {Noun}  

    SpecProps2Noun<634800> {SpecifierNP} [NPSpecifier, Properties2, CommonNoun] 

      NPSpecifier<6> {Word}  

      Properties2<2116> {} [Property, Property] 

      CommonNoun<50> {Noun}  

    TheConferenceRoom<1> {SpecifierNP} [THE, CONFERENCE, ROOM] 

    TheCopyRoom<1> {SpecifierNP} [THE, COPY, ROOM] 

    TheKitchen<1> {SpecifierNP} [THE, KITCHEN] 

    TheMainOffice<1> {SpecifierNP} [THE, MAIN, OFFICE] 

    TheSoarOffice<1> {SpecifierNP} [THE, SOAR, OFFICE] 

 

 This hierarchy is recursive, allowing children in the RefExpr type hierarchy 

to have RefExprs as their constituents. In the figure an occurrence of RefExpr 

under one of its children is marked with an asterisk, and not expanded further. 

A2.6 Sentences 

The Lucia grammar for Rosie has many constructions that form the sentence 

level. These are composed into four general categories: declarative, imperative, 

interrogative, and conditional sentences. The last group is not conventional in 

grammar, but useful in these conditions. The following sequence of tables gives 
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all the constructions in each category, listed in hierarchical form was done for 

referring expressions. 

A2.6.1 Declarative sentences 

Table A2-16: Declarative Sentences 

# Declaratives processed Wed Jul 14 17:10:42 MDT 2021 

Declarative<1804840131> {VerbWithArguments}  

  ConceptIsThatDeclarative<1> {Declarative} [ConceptIsThat, Declarative] 

    ConceptIsThat<1511366> {} [RefExpr, FiniteToBe, THAT-complementizer] 

    *Declarative<1804840131> {VerbWithArguments}  

  DeclarativeAndDeclarative<1> {Declarative} [Declarative, AndDeclarative] 

    *Declarative<1804840131> {VerbWithArguments}  

    AndDeclarative<1> {} [AND, Declarative] 

  EnabledCommandSentence<-1676782454> {Declarative} [EnablerPhrase, Imperative] 

    EnablerPhrase<5> {} [Agent, EnablingVerb] 

    Imperative<-1194349950> {VerbWithArguments}  

  PropertySetIsNotPrepPhrase<2> {Declarative} [PropertySet, Negation, PrepPhrase] 

    PropertySet<58> {}  

    Negation<2> {} [FiniteToBe, NOT] 

    PrepPhrase<15113682> {}  

  PropertySetIsPrepPhrase<2> {Declarative} [PropertySet, FiniteToBe, PrepPhrase] 

    PropertySet<58> {}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    PrepPhrase<15113682> {}  

  PropertySetIsProperty<2> {Declarative} [PropertySet, FiniteToBe, Property] 

    PropertySet<58> {}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    Property<46> {Word}  

  RefIsNotPrepPhrase<1511366> {Declarative} [RefExpr, Negation, PrepPhrase] 

    RefExpr<755683> {}  

    Negation<2> {} [FiniteToBe, NOT] 

    PrepPhrase<15113682> {}  

  RefIsPrepPhrase<1511366> {Declarative} [RefExpr, FiniteToBe, PrepPhrase] 

    RefExpr<755683> {}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    PrepPhrase<15113682> {}  

  RefIsProperty<3866> {Declarative} [RefExpr, FiniteToBe, Property] 

    RefExpr<755683> {}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    Property<46> {Word}  

  RefIsRef<-347707758> {Declarative} [RefExpr, FiniteToBe, RefExpr] 

    RefExpr<755683> {}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    RefExpr<755683> {}  

  SituationClause<-521561637> {Declarative}  

    TransitiveSituationClause<-521561637> {SituationClause} [RefExpr, 

TransitiveSituationVerb, RefExpr] 

  SubjectVerb<34005735> {Declarative} [RefExpr, ActionVerb] 
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    RefExpr<755683> {}  

    ActionVerb<45> {}  

  SubjectVerbObject<755683> {Declarative} [SubjectVerb, RefExpr] 

    SubjectVerb<34005735> {Declarative} [RefExpr, ActionVerb] 

    RefExpr<755683> {}  

  SubjectVerbObjectPP<15113682> {Declarative} [SubjectVerbObject, PrepPhrase] 

    SubjectVerbObject<755683> {Declarative} [SubjectVerb, RefExpr] 

    PrepPhrase<15113682> {}  

  ThereAreNumber<13> {Declarative} [ThereAre, CardinalNumber] 

    ThereAre<2> {} [THERE, FiniteToBe] 

    CardinalNumber<13> {Quantifier}  

  ThereAreRefExpr<1> {Declarative} [ThereAre, RefExpr] 

    ThereAre<2> {} [THERE, FiniteToBe] 

    RefExpr<755683> {}  

  ThisIsAThat<232> {Declarative} [DeicticPronoun, FiniteToBe, PropertySet] 

    DeicticPronoun<2> {Specifier, BareSpecifier}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    PropertySet<58> {}  

  ThisIsTheThat<3022732> {Declarative} [DeicticPronoun, FiniteToBe, RefExpr] 

    DeicticPronoun<2> {Specifier, BareSpecifier}  

    FiniteToBe<2> {Word, HasVerbFeatures}  

    RefExpr<755683> {} 

 

A2.6.2 Imperative sentences 

Table A2-17: Imperative Sentences 

# Imperatives processed Wed Jul 14 17:10:42 MDT 2021 

Imperative<-1194349950> {VerbWithArguments}  

  ActAlongDirection<3524264> {Imperative} [SimpleAction, DirectionalPrepPhrase] 

    SimpleAction<8> {Imperative} [SimpleMotionVerb] 

    DirectionalPrepPhrase<440533> {} [DirectionalPreposition, RefExpr] 

  ActAlongDirectionUntil<881067> {Imperative} [ActAlongDirection, UntilClause] 

    ActAlongDirection<3524264> {Imperative} [SimpleAction, DirectionalPrepPhrase] 

    UntilClause<1511367> {}  

  ActInDirection<8> {Imperative} [SimpleAction, Direction] 

    SimpleAction<8> {Imperative} [SimpleMotionVerb] 

    Direction<12> {Property}  

  ActInDirectionForDistance<143> {Imperative} [ActInDirection, NumberOfUnits] 

    ActInDirection<8> {Imperative} [SimpleAction, Direction] 

    NumberOfUnits<143> {SpecifierNP} [CardinalNumber, UnitsName] 

  ActInDirectionUntil<881067> {Imperative} [ActInDirection, UntilClause] 

    ActInDirection<8> {Imperative} [SimpleAction, Direction] 

    UntilClause<1511367> {}  

  ActionForTimePeriod<6435> {Imperative} [ActionVerb, FOR, NumberOfUnits] 

    ActionVerb<45> {}  

    NumberOfUnits<143> {SpecifierNP} [CardinalNumber, UnitsName] 

  AskQuestion<1> {Imperative} [ASK, Question] 

    Question<1916893510> {}  
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  DiTransitiveCommand<755683> {Imperative} [TransitiveCommand, RefExpr] 

    TransitiveCommand<34005735> {Imperative} [ActionVerb, RefExpr] 

    RefExpr<755683> {}  

  DoUntil<68011515> {Imperative} [ActionVerb, UntilClause] 

    ActionVerb<45> {}  

    UntilClause<1511367> {}  

  DriveInDirection<4> {Imperative} [DriveVerb, Direction] 

    DriveVerb<4> {SimpleMotionVerb}  

    Direction<12> {Property}  

  DriveVerbToTarget<15113682> {Imperative} [DriveVerb, PrepPhrase] 

    DriveVerb<4> {SimpleMotionVerb}  

    PrepPhrase<15113682> {}  

  ImperativeWithLocation<15113682> {Imperative} [Imperative, PrepPhrase] 

    *Imperative<-1194349950> {VerbWithArguments}  

    PrepPhrase<15113682> {}  

  ImperativeWithLocationSet<20> {Imperative} [Imperative, PropertySetPrepPhrase] 

    *Imperative<-1194349950> {VerbWithArguments}  

    PropertySetPrepPhrase<20> {PrepPhrase} [Preposition, PropertySet] 

  IntransitiveVerbDefinitionSentence<15113682> {Imperative} [UNKNOWN-WORD, 

PrepPhrase] 

    PrepPhrase<15113682> {}  

  LoadWorldFile<1> {Imperative} [LoadVerb, UNKNOWN-WORD] 

    LoadVerb<1> {ActionVerb}  

  MotionOnObject<3022732> {Imperative} [MotionVerb, RefExpr] 

    MotionVerb<4> {}  

    RefExpr<755683> {}  

  MoveOnObjectUntil<-1387808300> {Imperative} [MotionOnObject, UntilClause] 

    MotionOnObject<3022732> {Imperative} [MotionVerb, RefExpr] 

    UntilClause<1511367> {}  

  RememberAasB<755684> {Imperative}  

    RememberConditionasB<755683> {RememberAasB} [REMEMBER, IfConditionAs, RefExpr] 

    RememberRefExprasB<1> {RememberAasB} [REMEMBER, RefExpr, AS, RefExpr] 

  RosieCommand<34005735> {Imperative} [ROSIE, ActionVerb, RefExpr] 

    ActionVerb<45> {}  

    RefExpr<755683> {}  

  SimpleAction<8> {Imperative} [SimpleMotionVerb] 

    SimpleMotionVerb<8> {ActionVerb}  

  SubjectHasObject<755683> {Imperative} [SubjectHas, RefExpr] 

    SubjectHas<755683> {} [RefExpr, HAS] 

    RefExpr<755683> {}  

  TransitiveCommand<34005735> {Imperative} [ActionVerb, RefExpr] 

    ActionVerb<45> {}  

    RefExpr<755683> {}  

  TransitiveCommandParticle<1> {Imperative} [TransitiveCommand, Particle] 

    TransitiveCommand<34005735> {Imperative} [ActionVerb, RefExpr] 

    Particle<3> {}  

  TransitiveVerbDefinitionSentence<755683> {Imperative} [UNKNOWN-WORD, RefExpr] 

    RefExpr<755683> {}  

  TurnDirection<3> {Imperative} [TurnVerb, Direction] 

    TurnVerb<3> {MotionVerb}  

    Direction<12> {Property}  
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  TurnDirectionByAngle<143> {Imperative} [TurnDirection, NumberOfUnits] 

    TurnDirection<3> {Imperative} [TurnVerb, Direction] 

    NumberOfUnits<143> {SpecifierNP} [CardinalNumber, UnitsName] 

  TurnObjectOn<755683> {Imperative} [TURN, RefExpr, ON] 

    RefExpr<755683> {}  

  TurnToDirection<3> {Imperative} [TurnVerb, TO, Direction] 

    TurnVerb<3> {MotionVerb}  

    Direction<12> {Property}  

  TurnToTheDirection<3> {Imperative} [TurnVerb, TO, THE, Direction] 

    TurnVerb<3> {MotionVerb}  

    Direction<12> {Property} 

 

 

A2.6.3 Questions 

Table A2-18: Questions 

# Questions processed Wed Jul 14 17:10:42 MDT 2021 

Question<1916893510> {}  

  WhQuestion<90681962> {Question}  

    WhatClassIsObjectQ<87659228> {WhQuestion} [WHAT, PropertySet, FiniteToBe, 

RefExpr] 

    WhatIsObject<1511366> {WhQuestion} [WHAT, FiniteToBe, RefExpr] 

    WhatIsPrepPhrase<2> {WhQuestion} [WHAT, FiniteToBe, PrepPhrase] 

    WheresWaldo<1511366> {WhQuestion} [WHERE, FiniteToBe, RefExpr] 

  YesNoQuestion<1826211548> {Question}  

    IsObjectClassQ<69522836> {YesNoQuestion} [FiniteToBe, RefExpr, Property] 

    IsObjectPropSetQ<87659228> {YesNoQuestion} [FiniteToBe, RefExpr, PropertySet] 

    IsObjectRelation<1669029484> {YesNoQuestion} [FiniteToBe, RefExpr, PrepPhrase] 

 

 

A2.6.4 Conditional sentences 

Table A2-19: Conditional Sentences 

# Conditionals processed Wed Jul 14 17:13:33 MDT 2021 

Conditional<611875303> {}  

  IfConditionCommand<-525289077> {Conditional} [IF, Declarative, Imperative] 

    Declarative<1804840131> {VerbWithArguments}  

    Imperative<-1194349950> {VerbWithArguments}  

  IfConditionThenCommand<-667675751> {Conditional} [IfConditionThen, Imperative] 

    IfConditionThen<1804840131> {} [IF, Declarative, THEN] 

    Imperative<-1194349950> {VerbWithArguments}  

  IfConditionThenStatement<1804840131> {Conditional} [IfConditionThen, Declarative] 

    IfConditionThen<1804840131> {} [IF, Declarative, THEN] 

    Declarative<1804840131> {VerbWithArguments} 
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A2.7 Subordinate Clauses 

As the above tables for sentences show, both Declaratives and Imperatives can 

serve as subordinate clauses in many situations. They can even be used 

recursively, as the tables show. In addition, there are two other kinds of 

subordinate clauses: RelativeClauses and UntilClauses. The next two tables 

show the structures of these clauses. 

Table A2-20: Relative Clauses 

# RelativeClauses processed Wed Jul 14 17:33:02 MDT 2021 

RelativeClause<4> {}  

  RelativeClausePrepPhrase<2> {RelativeClause} [HeadRelativeClause, PrepPhrase] 

    HeadRelativeClause<2> {} [RelativePronoun, FiniteToBe] 

    PrepPhrase<15113682> {}  

  RelativeClauseProperty<2> {RelativeClause} [HeadRelativeClause, Property] 

    HeadRelativeClause<2> {} [RelativePronoun, FiniteToBe] 

    Property<46> {Word} 

 

Table A2-21: Until Clauses 

# UntilClauses processed Wed Jul 14 17:33:02 MDT 2021 

UntilClause<1511367> {}  

  UntilDeclarativeClause<1> {UntilClause} [UNTIL, Declarative] 

    Declarative<1804840131> {VerbWithArguments}  

  UntilThereIsClause<1511366> {UntilClause} [UNTIL, ThereAre, RefExpr] 

    ThereAre<2> {} [THERE, FiniteToBe] 

    RefExpr<755683> {} 
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Appendix 3 Case Studies 

This appendix gives a number of case studies which, along with their details, are 

too lengthy to include in the main chapters. Careful study of these examples 

should provide much insight into how the Lucia comprehension system works. 

 Each of the case studies below is shown with a box with two columns. On 

the left is the ID number for the sentence involved, which refers back to the ID 

numbers given in the corpus listings in Appendix 1. The right side has a list of 

four important data structures for that sentence: the sentence text, the nested 

constructions used to build the syntactic analysis, the nested meaning schemas 

that make up the semantic analysis preceded by “m:”, and the message produced 

to send to Rosie. Usually these data structures have been abbreviated 

substantially to show clearly the main structure and any important aspects for 

this case study. Following the box which gives these main data structures, 

additional information on key points for this case study are given. 

 Some notes on notation. In addition to the names of ECG items, many 

internal symbols used inside Rosie are used to indicate the items that meanings 

are grounded to. A symbol like “op_go-to-location1” is what is called a “handle,” 

which is simply a unique character string used to identify something in memory. 

Often these handles look like English words or phrases, but internally Lucia and 

Rosie only care that they are unique. The English is simply to help developers 

with debugging. A symbol like “O96” or “L94” is a Soar identifier which labels a 

node in Soar’s working memory or semantic memory. A symbol like “NO-ID3” is 

a shorthand used here for a handle in Soar that is actually “new-object-id3” with 

a unique number at the end. These NO-IDs are symbols created by Lucia’s 

grounding logic for objects derived from the language input that do not yet exist 

in Rosie’s WM or LTM data. 
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A3.1: Simple Commands 

Case Study A0.1: A simple command 

B-054 Go to the kitchen. 

DriveVerbToTarget[GO, SimplePrepPhrase[TO, TheKitchen[THE, KITCHEN]]] 

m: MoveToIt[ActionDescriptor[op_go-to-location1], 

            PrepRelation[to1, Kitchen[O96]] 

command(op_go-to-location1, to1(O96)) 

 

Many of the sentences for Rosie are commands. This one is fairly simple, 

just saying to go to a particular known location. We will examine it in great detail. 

Figure A3-1 gives a quick sketch of the constructions and schemas built for this 

sentence. 

Go to the kitchen.

command(op_go-to-location1, to1(O96))

PrepRelation

to1

6

MoveToIt
7

ActionDescriptor

op_go-to-location1

1

DRIVE
1

TO
2

THE
3

KITCHEN
4

TheKitchen
5

SimplePrepPhrase
6

DriveVerbToTarget
7

RefDesc

O96

5

 

Figure A3-1: Analysis of CS-A3.1 

To better understand how ECG works in this case, Table A3-1 shows 

details of all the constructions used for this sentence. The Supercases show the 

type hierarchy, and the Constituents the compositional hierarchy based on the 

types or the orthography for lexical constructions. The generalization process 

may work up several levels, so that KITCHEN, for instance, is also a 

CommonNoun and a Noun. The Meaning column shows any schemas invoked 

plus the meaning constraints used to populate those schemas. 
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Table A3-1: Constructions for CS-A3.1 

Cxn Name Supercases Constituents Meaning 
ActionVerb    

SimpleMotionVerb ActionVerb  ActionDescriptor 

self.m.class <-- @action 

DriveVerb SimpleMotionVerb  ActionDescriptor 

self.m.name <-- 

  "go-to-location1" 

DRIVE DriveVerb “go”  

Preposition   PrepCore 

TO Preposition “to” self.m.name <-- "to1" 

NPSpecifier    

Determiner NPSpecifier   

THE Determiner “the” RefDesc 

self.m.givenness <-- 

  "definite" 

Noun    

CommonNoun Noun   

KITCHEN CommonNoun “kitchen” Kitchen 

RefExpr    

SpecifierNP RefExpr   

TheKitchen SpecifierNP THE, KITCHEN Kitchen 

self.m.name <--> 

  noun.m.schema-name 

self.m.category <--> noun.m 

self.m.givenness <--> 

  spec.m.givenness 

PrepPhrase    

SimplePrepPhrase PrepPhrase prep: 

  Preposition 

object: RefExpr 

PrepRelation 

self.m.prep <--> 

  prep.m.name 

self.m.object <--> object.m 

VerbWithArguments    

Imperative VerbWithArguments   

DriveVerbToTarget Imperative verb: DriveVerb 

target: 

  PrepPhrase 

MoveToIt 

self.m.action <--> verb.m 

self.m.location <--> 

  target.m 

 

 

Table A3-2 shows some details of the related meaning schemas. Notice 

that the generalization process may work up several levels so that Kitchen, for 

instance, will end up having all these types: Kitchen, MapLocation, 
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KnownObject, RosieObject, Entity, and RefDesc, along with all the roles that 

these generalization provide. 

Table A3-2: Schemas for CS-A3.1 

Schema Name Supercases Roles Constraints 
ActionDescriptor  class, name, 

modifier 

 

PrepCore  name  

RefDesc  name, category, 

givenness, 

modifiers, referent, 

relation, quantified 

 

KnownObject RefDesc handle  

Entity  rosie-category  

RosieObject Entity handle, movable  

MapLocation KnownObject, 

RosieObject 

 rosie-category <-- 

  location 

Kitchen MapLocation  handle <-- loc-kitchen1 

PrepRelation  prep, object  

Action  action, direction, 

location 

 

MoveToIt Action direction, location  

 

 Figure A3-2 shows a diagram of the complete meaning structure. 

Go to the kitchen.

command(op_go-to-location1, to1(L28))
Action

MoveToIt
action: location:direction:

nil

7

(L17 ^handle go-to-location1
     ^item-type action
     ^procedural L18)
(L18 ^op_name op_go-to-location1)

ActionDescriptor
class:

name:
modifier:

action:

action
go-to-location1
nil

1

PrepCore
name:

to1

2

RefDesc

name:
category:

givenness:
modifiers:

referent:
relation:

quantified:

nil
nil
definite
nil
nil
nil
nil

3

RefDesc
KnownObject

Entity
RosieObject
MapLocation

Kitchen
name:

category:
givenness:
modifiers:

referent:
relation:

quantified:
handle:

rosie-category:
movable:

nil
nil
nil
nil
nil
nil
nil
loc-kitchen1
location
nil

4

(L28 ^handle loc-kitchen1
     ^root-category kitchen1
     ^waypoint wp01
     ^category kitchen1 room1
               location entity1)

RefDesc
KnownObject

Entity
RosieObject
MapLocation

Kitchen
name:

category:
givenness:
modifiers:

referent:
relation:

quantified:
handle:

rosie-category:
movable:

Kitchen

definite
nil

nil
nil
loc-kitchen1
location
nil

5

PrepRelation
prep: object:

to1

6

 

Figure A3-2: Complete meaning structure for CS-A3.1 
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 An interesting detail here is that the ID of the referent for the kitchen is 

O96 as shown in the case study box and in Figure A3-1. However, in Figure A3-2 

it is L28. Why is this different? Because when Rosie is doing tasks from the Robot 

corpus the grounding is dynamic. At the time when the data for Figure A3-2 was 

captured, Rosie was somewhere else and had to look for the kitchen in its map 

in LTM, and it got L28 as the reference. In Figure A3-1 it had already gotten to 

the kitchen so a representation of the kitchen had been put in the World Model, 

at Lucia grounded to that before looking in the map. 

Case Study A0.2: A transitive command 

B-009 Pick up the green sphere. 

TransitiveCommand[PickUp[PickVerb[PICK], UP], 

  SpecPropNoun[the green sphere]] 

m: ActOnIt[ActionDescriptor[op_pick-up1], RefDesc[O10]] 

command(op_pick-up1, O10) 

 

Pick up the green sphere.

command(op_pick-up1, O10)

RefDesc

O10

8

ActOnIt
9

ActionDescriptor

op_pick-up1

2

PICK
1

UP
3

PickVerb
2

PickUp
4

TransitiveCommand
9

THE
5

GREEN
6

SpecPropNoun
8

SPHERE
7

PropDesc

green1

6
Sphere

sphere1

7

 

Figure A3-3: Structures built for CS-1 

Commands of the type here have an action verb and some object for it to 

act upon. The action verb here is pick up, but its analysis is a bit complicated. 

In the robotics domain sometimes the word pick is used by itself to mean the 

same thing as pick up, so the PickVerb construction recognizes this and evokes 
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an ActionDescriptor schema, which is grounded to Rosie’s symbol for the pick-

up action. After up has been recognized, a PickUp construction composes 

PickVerb and UP and attaches to the ActionDescriptor already built and 

grounded. 

 The object here is the green sphere. The meaning of this phrase is built up 

piece by piece. First the is represented as a determiner, then green evokes a 

PropertyDescriptor (called PropDesc in the figure) defined with a class of color 

and a name of green1. This grounds to Rosie’s perception symbol for the color 

green. The word sphere evokes a schema called Sphere which is a subcase of 

Block that specifies its shape as sphere1, another symbol that connects to 

Rosie’s visual perception. Finally the SpecPropNoun construction, which is a 

subcase of RefExpr, evokes a RefDesc schema (short for ReferentDescriptor) and 

populates its slots with information from its constituents. The resulting RefDesc 

is then grounded to an object in the World Model that is green and of shape 

sphere, which in this case happens to be O10. 

Finally, the TransitiveCommand construction is built from the ActionVerb 

supercase of PickUp and the RefExpr supercase of SpecPropNoun. It then evokes 

an ActOnIt schema, which is composed from the ActionDescriptor and the 

RefDesc meanings of its constituents. Finally the sentence interpretation logic 

produces the message shown. 

A3.2: Complex Referring Expressions 

Case Study A0.3: A local repair 

B-020 Pick up the green block on the stove. 

TransitiveCommand[PickUp[PickVerb[PICK], UP], 

  RefExprPrepPhrase[SpecPropNoun[the green block] 

    SimplePrepPhrase[ON, SpecNoun[the stove]]]] 

m: ActOnIt[ActionDescriptor[op_pick-up1], RefDesc[O8]] 

command(op_pick-up1, O8) 

 

This sentence is similar to B-009 Pick up the green sphere., but has some 

additional complications. The current world has several green blocks of different 

sizes and shapes, and so the grounding of the green block is ambiguous, even 
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though just Pick up the green block appears to be a complete sentence and builds 

a TransitiveCommand. The speaker added the phrase on the stove to resolve this 

ambiguity, but this brings up a second issue: how should this prepositional 

phrase be attached? The solution to this problem requires an operation we call 

a local repair. Figure A3-4: A local repair shows an example. 

 In part a) of the figure we see that node 9 has built a TransitiveCommand 

with its meaning for Pick up the green block, but that the object is ambiguous 

with four options and more words have built up the prepositional phrase in node 

14. To attach the PP two constructions are possible, an ImperativeWithLocation 

to modify the complete command and the other with a RefExprPrepPhrase to 

modify the green block. 
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PickUp
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TransitiveCommand
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Pick up
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b) command(op_pick-up1, O8)
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Figure A3-4: A local repair 
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The ECG formalism does not have a direct mechanism for resolving this 

ambiguity, so additional Soar code is used to decide that the PP should be 

attached to the first RefExpr. However, that first RefExpr in node 8 has already 

been consumed as a constituent of node 9. Following the idea of Lewis (1993), 

we perform an operation called snip to completely discard both the construction 

and the schema for node 9, which allows node 15 to be built and grounded in 

part b) of the figure. With the additional information from on the stove, this 

grounding produces a unique referent of O8. With this in place, a new 

TransitiveCommand is built in node 16 and the sentence can now produce the 

command message shown. 

Although the ECG formalism does not have a specific mechanism for 

making the attachment decision, a more judicious design of the grammar with 

the existing formalism could have resolved this problem. With the sentence as 

is, connecting the PP to the RefExpr is the right solution, but had the verb been 

Put instead of Pick up the other attachment would have been better. Had these two 

verbs been defined with different types, then TransitiveCommand could have been 

written to only work with verbs of the same type as Pick up. Then a different construction 

could have been used for the other type of verb. At the time when the PP had been 

processed, the existing structure would determine the attachment. However, the snip to 

attach the PP to the RefExpr would still have been necessary. 

Case Study A0.4: Double prepositional phrases 

B-032 Move the green rectangle to the left of the large green rectangle 

  to the pantry. 

ImperativeWithLocation[ 

  TransitiveCommand[MoveVerb[Move], 

    RefExprPrepPhrase[SpecPropNoun[the green rectangle], 

      SimplePrepPhrase[TO-THE-LEFT-OF, 

        SpecProps2Noun[the large green rectangle]]]], 

  SimplePrepPhrase[TO, SpecNoun[the pantry.]] 

] 

m: Action[ 

     ActOnIt[ActionDescriptor[move1], 

       RefDesc[RefDesc[O8], PrepRelation[left-of1, RefDesc[O9]]]], 

     PrepRelation[to1, RefDesc[L2]]] 

command(move1, O8, to1(L2)) 
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This sentence illustrates a complicated case which also needs a local 

repair. First note the to the left of is one of the multi-word lexical items that is 

recognized by a single lexical construction and then treated as if it were a single 

preposition. When to the left of the large green rectangle has been processed, this 

PP is attached to Move the green rectangle in the opposite way as in the previous 

example, since move is a verb that requires a target location. Then when another 

PP, to the pantry, comes along, the ImperativeWithLocation that had been built 

is discarded, the first PP is integrated with the first RefExpr, and the second PP 

is used to build a new ImperativeWithLocation. 

Case Study A0.5: A subject relative clause and the word that 

B-028 Pick the green block that is small. 

TransitiveCommand[PickUp[PickVerb[PICK], UP], 

  RefExprRelClause[SpecPropNoun[the green block] 

    RelativeClauseProperty[ 

      HeadRelativeClause[THAT-relative, IS], SMALL]]] 

m: ActOnIt[ActionDescriptor[op_pick-up1], RefDesc[O13]] 

command(op_pick-up1, O13) 

 

This sentence shows an example of what linguists call a subject relative clause: 

that is small. This clause looks like a complete declarative sentence where the 

subject of is is that. The clause relates that to the property small, thus selected 

out of the green blocks in the world only one of small size. This case study shows 

several points about how Lucia does comprehension. Natural language also has 

object relative clauses, but we have none of these in our corpora. We will consider 

an example when we look at parsing breakdown below. Here is a list of several 

sentences in our corpora that all use some form of subject relative clause. 

 

(1) a B-028 Pick the green block that is small. 

 b B-030 Pick the green block that is on the stove. 

 c B-031 Pick a green block that is larger than the green box. 

 d G-016 A location that is not below a red block is accessible. 

 e G-053 If a clear location is adjacent to a red block 
  then you can move the red block onto the clear location 

  and move a clear available blue block onto a location 

  that was below the red block. 
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 f G-011 If the number of the locations between a location 

  and a covered location is the number of the blocks 

  that are on the covered location then you can 
  move it onto the former location. 

 

If we compare (1a) to (1b), they both have the same clause structure, except 

that in (1b) the clause relates that to the fact that it is on the stove, giving an 

alternative way to resolve the ambiguous grounding. Notice that B-030 is the 

same as B-020, our CS-A3.3, except that that is has been added, eliminating the 

ambiguity which required a local repair. Generally speaking, relative clauses 

serve this purpose of eliminating semantic ambiguity. 

The next point is about the way the grammar recognizes these relative 

clauses. A construction called HeadRelativeClause has the constituents THAT-

relative and FiniteToBe. FiniteToBe is a general construction that is a supercase 

of the lexical constructions for is, are, and was in our grammar. We see examples 

of all three of these in (1d-f). The HeadRelativeClause captures greedily the fact 

that that followed by some finite form of to be is a sure signal that a subject 

relative clause is beginning, and that this clause will need to attach to the 

previous referring expression. 

Another point is about the word that. This function word is used in several 

different ways, as shown in these examples. 

 

(2) a B-028 Pick the green block that is small. 

 b B-075 Pick up that. 

 c B-145 The goal is that the box is in the office. 

 

 To handle these cases, Lucia’s grammar has three different lexical 

constructions for that. THAT-relative is a subcase of RelativePronoun and from 

there of Pronoun, THAT-deictic is a subcase of DeicticPronoun and thus 

Pronoun, and THAT-complementizer is a subcase of Complementizer. In (2a) 

RelativePronoun and FiniteToBe are combined to form a HeadRelativeClause, 

which then combines with a Property to form a RelativeClauseProperty, a 

subcase of RelativeClause, which in turn combines with a RefExpr to form a 

RefExprRelClause. In (2b), since Pronoun is a subcase of RefExpr, that simply 
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becomes a RefExpr by itself. In (2c) a ConceptIsThat construction spans The goal 

is that by combining a RefExpr with a FiniteToBe and a THAT-complementizer, 

and this in turn is combined with a Declarative to form a complete sentence with 

ConceptIsThatDeclarative. This way of grouping things together greedily works 

very well for doing incremental comprehension with a construction grammar like 

ECG that assigns meaning structures to every level of syntactic structure and 

that allows for three-way branching of composite constructions. However, these 

structures are very different from those found in generative grammar analyses. 

 Another important point for this case study is that the algorithm must 

decide which sense of that to select. In all cases when lexical access is done for 

that all three options are temporarily posted to the Soar state. Then the following 

operator makes a selection based on the syntactic context. In (2a) the current 

stack has a TransitiveCommand with RefExpr[the green block] as its last 

constituent. An attachment operator recognizes that a RelativePronoun can be 

attached to that RefExpr, snips the TransitiveCommand, and selects the THAT-

relative option, allowing a HeadRelativeClause to be recognized after is. In (2c) 

when the sequence at the top of the stack is RefExpr[The goal] <- FiniteToBe[is] 

<- that, a ConceptIsThat is recognized, and this forces the selection of THAT-

complementizer. In (2b) there is no direct or indirect RefExpr preceding that, nor 

is preceded by a RefExpr and a FiniteToBe, so the algorithm proceeds to try 

grounding that as a RefExpr, and selecting THAT-deictic in the process. In all 

these cases once a lexical sense is selected the others are remembered as 

alternatives for possible use later on with a local repair. 

 One more point about that is about how it is grounded. THAT-deictic in 

(2b) is simply grounded to whatever object in the World Model is currently being 

pointed to by the instructor. The meaning of THAT-relative in (2a) is set to a 

RefDesc which has all the referents that were found for the grounding of the 

RefExpr that that is attached to. This provides the set that the relative clause 

can select from for grounding the RefExprRelClause. THAT-complementizer in 

(2c) serves only a syntactic function and needs no grounding. 
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A3.3: Simple Declaratives 

Case Study A0.6: A declarative statement 

B-067 The red triangle is behind the stove. 

RefIsPrepPhrase[SpecPropNoun[The red triangle], 

  IS, SimplePrepPhrase[behind the stove]] 

m: PrepPhraseAssertion[RefDesc[O7], PrepRelation[behind1, RefDesc[L3]]] 

object-description(O7, behind1(L3)) 

 

This is a simple statement stating a fact about the world that could be 

useful to Rosie in learning a task. It illustrates an interesting point about this 

approach to defining grammar. Notice that the word is, represented by the IS 

construction, has no meaning associated with it. Linguists call is a copula, a verb 

that connects two things together. It can be used in many different ways 

depending on the two things being connected. Some approaches might consider 

that is itself has many different senses for these different situations. Our 

construction grammar approach uses some specific larger construction to 

provide a meaning in context (Goldberg, 2019). Since is can be used in many 

different ways, in this case study we briefly describe a number of examples from 

our baseline corpus. 

Case Study A0.7: Lexical ambiguity:  uses of the word is 

B-001 The sphere is green. 

RefIsProperty[SpecNoun[The sphere], IS, Property[green]] 

m: PropertyApplication[RefDesc[O10], PropertyDescriptor[green1]]  

object-description(O10, predicate(green1)) 

B-007 The red triangle is on the stove. 

RefIsPrepPhrase[SpecPropNoun[The red triangle], IS, 

  SimplePrepPhrase[ON, SpecNoun[the stove]]] 

m: PrepPhraseAssertion[RefDesc[O7], PrepRelation[on1, RefDesc[L3]]]  

object-description(O7, on1(L3)) 

B-044 Octagon is a shape. 

PropertyDefinitionSentence[UNKNOWN-WORD[Octagon], IS, Property1Set[shape]] 

m: PropertyDefinition[PropertySetDescriptor[predicate[shape]], octagon]  

adjective-definition(word(octagon), property(shape)) 

  

The lexical construction IS is a subcase of FiniteToBe, which as we have 

seen is used as a constituent of many larger constructions that really determine 
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what is and its related forms mean in larger contexts such as relative clauses or 

other sentences with subordinate clauses.  

A3.4: Complex Sentences 

Case Study A0.8: Commands with conditions 

B-046 If the green box is large then go forward. 

IfConditionThenCommand[ 

  IfConditionThen[IF, RefIsProperty[the green box is large], THEN], 

  ActInDirection[SimpleAction[go], FORWARD-direction] ] 

m: IfThenCommand[ 

     PropertyApplication[the green box is large], 

     DoItInDirection[op_go-to-location1, forward] ] 

conditional(if-subclause(O13, predicate(large1)), 

            then-subclause(action(op_go-to-location1))) 

 

An Imperative can be preceded by a condition subordinate clause 

introduced with If. This example shows the auxiliary construction 

IfConditionThen which surrounds the Declarative for the condition with IF and 

THEN. The main construction combines this with the Imperative for the then 

clause. 

Case Study A0.9: Commands with terminations 

B-119 Drive until you sense a wall. 

DoUntil[DRIVE, 

  UntilDeclarativeClause[UNTIL, 

    TransitiveSituationClause[YOU, SENSE, SpecNoun[a wall]]] ] 

m: TerminatedAction[op_go-to-location1, 

       UntilDeclarative[RefDesc[R5], sense1, RefDesc[NO-ID1]]] 

command(op_go-to-location1, 

  until-clause(agent(R5), action(sense1), O55)) 

 

An Imperative can also be followed by a conditional subordinate clause 

introduced with until. Here are examples. Many of the Rosie sentences have this 

form of an action to perform and a condition that will terminate the action. In 

this case the termination condition uses you to refer to Rosie itself, which has 

the id R5 in the current World Model. 
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Case Study A0.10: Enabled commands 

G-004 You can move a clear block onto a clear object. 

EnabledCommandSentence[EnablerPhrase[You can], 

  ImperativeWithLocation[move a clear block onto a clear object.]] 

m: EnabledCommand[Enabler[RefDesc[R5], ability[can]], 

     Action[ActOnIt[op_move1, RefDesc[O57]], 

       PrepRelation[on1, RefDesc[O83]]]  

command(agent(R5), action(op_move1), action-modifier(can), O57, on1(O83)) 

 

The Games corpus has many sentences like this starting with You can in 

its scripts to define actions, possibly predicated on the current situation in the 

discourse. These are another example of how the incremental, construction 

grammar approach of Lucia structures sentences differently than what 

traditional theories of grammar will do. A traditional approach would consider 

can as an auxiliary attached to the verb move. Lucia instead combines can with 

the subject You to form what we call an EnablerPhrase which is used like a 

condition to precede the rest of the sentence, which is a complete Imperative all 

by itself. A bit of the traditional approach still survives here in the definition of 

the message structure where can is considered a modifier on the action. 

Case Study A0.11: Learning to comprehend a new sentence structure 

G-004 You can move a clear block onto a clear object. 

EnabledCommandSentence[ 

  EnablerPhrase[You can], 

  ImperativeWithLocation[move a clear block onto a clear object.] 

] 

command(agent(R5), action(move1), action-modifier(can), 

        NO-ID1, on1(NO-ID2)) 

 

A traditional analysis of the syntax of this sentence would probably say 

that can is an auxiliary verb that modifies move and that you is the subject of 

the sentence. The developer of Games apparently was thinking this way when he 

designed the structure of the action message, since can appears as a modifier 

for the action. However, in the Rosie domain, this does not make a lot of sense 

since the whole part move … object is a Rosie command all by itself that Lucia 

already knows how to comprehend. Therefore, leveraging this prior knowledge, 

we decided to analyze the You can at the beginning as a phrase that modifies 
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this whole command to make it an action that Rosie can remember abstractly 

for future use. This is an interesting example of how incremental acquisition may 

produce a very different grammar from one produced by a linguist analyzing the 

language as a whole. 

To comprehend this sentence by this analysis, two new lexical 

constructions were added: CAN-verb for can as a subcase of EnablingVerb, and 

ONTO for onto as a synonym for on and a subcase of Preposition. Two new 

composite constructions were needed: EnablerPhrase with constituents of Agent 

and EnablingVerb and an Enabler schema, and EnabledCommandSentence with 

EnablerPhrase and Imperative constituents and an EnabledCommand schema. 

EnablingVerb is a new general construction with an AuxiliaryFeatures schema, 

and CAN-verb sets the type role of the AuxiliaryFeatures to “can”. Agent is 

another new general construction and the lexicals for you, we, Rosie, and the 

proper names for people were made subcases of Agent. All these new ECG items 

generate a total of 24 new ECG rules. 

These new ECG items gave Lucia the ability to analyze the sentence and 

are used later for many other you can sentences in the Games corpus. In 

addition, several new hand-built rules were needed: 2 rules to snip away an 

EnabledCommandSentence sentence when a later PrepPhrase needs to attach 

to the Imperative that was created after block, 11 new grounding rules to deal 

with issues of hypothetical grounding that had not be addressed before, and 2 

new rules in sentence interpretation to format the message for this type of 

sentence. 

This sentence illustrates aspects of all four of the steps in learning to 

comprehend a new sentence. Most of these new ECG items and hand-built rules 

are used over again for many other sentences, so they provide a good deal of 

generality. In terms of the three-phase LAE theory, this sentence shows how a 

single experience can be reasoned about to produce a lot of new knowledge. 

However, the generalization done here was not done automatically but depended 
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on the insights of the human Lucia developer, so this example does not show an 

easy way to an algorithm for generalization. 

Case Study A0.12: Declaratives with conditions 

G-005 If a location is not below an object then it is clear. 

IfConditionThenStatement[ 

  IfConditionThen[IF, 

    PropertySetIsNotPrepPhrase[a location is not below an object], 

    THEN], 

  RefIsProperty[it is clear] ] 

m: IfThenStatement[ 

     PrepPhraseAssertion[a location is not below an object], 

     PropertyApplication[it is clear] ] 

conditional( 

  if-subclause(action(is1), modifier(negation), 

               below1(NO-ID2)), 

  then-subclause(action(is1), NO-ID1, predicate(clear))) 

 

In the previous example of G-004, the phrase You can refers to some 

hypothetical future situation while solving the puzzle. At this point Rosie is not 

sure what clear means in this context, so it asks the instructor: Please describe 

the meaning of 'clear' in this context. The instructor responds with the definition 

given in G-005. Note that it is an anaphoric reference. This is discussed further 

under grounding in Chapter 5. 

Case Study A0.13: Complex declaratives 

G-006 The goal is that a red block is on a green block and the red 

  block is below an orange block. 

ConceptIsThatDeclarative[ConceptIsThat[The goal is that], 

  DeclarativeAndDeclarative[ 

    RefIsPrepPhrase[a red block is on a green block], 

    AndDeclarative[AND, 

      RefIsPrepPhrase[the red block is below an orange block]]] ] 

m: ConceptIsThatAssertion[RefDesc[The goal], 

     CompoundAssertion[ 

       PrepPhraseAssertion[a red block is on a green block], 

       PrepPhraseAssertion[the red block isbelow an orange block] ] 

object-description(concept(goal), 

  subclause( 

    subclause(action(is1), NO-ID1, on1(NO-ID1)), 

    subclause(action(is1), NO-ID1, below1(NO-ID3))) ) 
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G-006 illustrates a complex sentence with two levels of subordinate 

clauses and two clauses combined with a conjunction. The Games corpus has a 

number of sentences of this type of complexity. 

Case Study A0.14: Declaratives with conditions and functions 

G-024 If the volume of a block is more than the volume of an object 

  then the block is larger than the object. 

IfConditionThenStatement[ 

  IfConditionThen[IF,  

    RefIsPrepPhrase[ 

      FunctionWithArgument[THE-VOLUME-OF, SpecNoun[a block]]], 

      IS, 

      SimplePrepPhrase[MORE-THAN, 

        FunctionWithArgument[the volume of an object]]] 

    THEN], 

  RefIsPrepPhrase[SpecNoun[the block], IS, 

    SimplePrepPhrase[LARGER-THAN, SpecNoun[the object]]] ] 

m: IfThenStatement[ 

     PrepPhraseAssertion[ 

       FunctionApplication[volume, RefDesc[an block]], 

       PrepRelation[more-than1, 

         FunctionApplication[volume, RefDesc[an object]]]], 

    PrepPhraseAssertion[RefDesc[the block], 

      PrepRelation[larger-than1, RefDesc[the object]]] ] 

conditional( 

  if-subclause(action(is1), 

    volume-of(NO-ID1), more-than(volume-of(NO-ID2))), 

  then-subclause(action(is1), larger-than(NO-ID1, NO-ID2))) 

 

G-024 is used to define larger than using hypothetical objects. It also 

illustrates a grammatical form used in many Games sentences called a function, 

in this case the volume of. Notice how the message looks simpler than the 

comprehension structures because the new object id’s are used to represent all 

the properties of an object. 

Case Study A0.15: Yes/No questions 

B-098 Is this red? 

IsObjectClassQ[IS, RefExpr[this], Property[red] ] 

m: ObjectIsClassQuestion[RefDesc[O6], 

     PropertyDescriptor[color, red1] ] 

object-question(O6, color(red1)) 
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B-077 Is this a sphere? 

IsObjectPropSetQ[IS, RefExpr[this], Property1Set[a sphere] ] 

m: ObjectIsClassQuestion[RefDesc[O6], 

     PropertySetDescriptor[shape, sphere1] ] 

object-question(O6, shape(sphere1)) 

B-078 Is the green sphere on the table? 

IsObjectRelation[IS, SpecPropNoun[the green sphere], 

  SimplePrepPhrase[ON, SpecNoun[the table]]] 

m: ObjectIsRelationQuestion[RefDesc[O10],  PrepRelation[on1, L6] ] 

object-question(O10, on1(L6)) 

 

Chapter 3 showed the top-level grammar network for questions, and here 

we give some detailed examples. Notice that there is no “movement” involved, 

and even that the word is is represented in the syntax but its function and 

meaning are absorbed into the sentence-level meaning schema with no further 

trace of the word itself. This illustrates how composite constructions are used to 

represent meaning that is not represented at the lexical level in this theory of 

comprehension. 

Case Study A0.16: Wh- questions 

B-096 What is this? 

WhatIsObject[WHAT, IS, RefExpr[this]] 

m: WhatIsObjectQuestion[RefDesc[O6]] 

what-is-question(O6) 

B-062 What is on the red triangle? 

WhatIsPrepPhrase[WHAT, IS, 

  SimplePrepPhrase[ON, SpecPropNoun[the red triangle]]] 

m: WhatIsRelation[PrepRelation[on1, RefDesc[O7]]] 

what-is-question(predicate(on1, O7)) 

B-090 What color is the large sphere? 

WhatClassIsObjectQ[WHAT, Property1Set[color], IS, 

  SpecPropNoun[the large sphere]] 

m: WhatClassIsObjectQuestion[PropertySetDescriptor[color], RefDesc[O10]] 

predicate-question(O6, predicate(color)) 

B-048 Where is the red triangle? 

WheresWaldo[WHERE, IS, SpecPropNoun[the red triangle]] 

m: WhereIsObject[RefDesc[O7]] 

where-is-question(O7) 

 

Here again we see how complexity in the string of lexical items is absorbed 

by high-level constructions and schemas. 
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Case Study A0.17: Dynamic grounding for Robot tasks 

Most of the sentences used in the Robot corpus for teaching Rosie a variety of 

tasks involving navigation and manipulation of objects in a real environment 

appear refreshingly simple when compared to many of the Games sentences. 

However, the grounding process for these sentences is complex because the 

agent is moving around in the environment and thus objects move in and out of 

its visual perception and may or may not be remembered from prior experience. 

Here we look at a few examples that illustrate the sorts of issues involved. 

 

R-001 Find the fork. 

TransitiveCommand[FIND, SpecNoun[the fork]] 

  m: ActOnIt[op_find1, RefDesc[NO-ID1]] 

command(op_find1, NO-ID1) 

 

 Suppose Rosie is in the kitchen and the instructor wants to tell it to move 

the fork onto the table. However, the fork is in the kitchen but not currently 

visible to the agent. When the instructor says R-001, Find the fork., Lucia has 

nothing to ground the fork to. Lucia handles this by creating a new object id for 

the fork, and passing that new object along in the message produced. 

 

R-002 Move the fork onto the table. 

ImperativeWithLocation[ 

    TransitiveCommand[Move the fork], 

    SimplePrepPhrase[onto the table] ] 

  m: Action[ActOnIt[move1, O530], PrepRelation[on1, O118] ] 

command(move1, O530, on1(O118)) 

 

 Rosie acts on R-001 by scanning around the kitchen until it sees the fork 

on the counter and enters it into the World Model. When Lucia processes R-002, 

it grounds the fork to that visible object, O530 here, and the table to O118. 

 

R-009 The only goal is that the fork is on the table. 

ConceptIsThatDeclarative[ConceptIsThat[The only goal is that], 

    RefIsPrepPhrase[the fork is on the table] ] 

  m: ConceptIsThatAssertion[RefDesc[The only goal], 

       PrepPhraseAssertion[the fork is on the table] ] 

object-description(concept(goal), modifier1(only1), 

  subclause(action(is1), O530, on1(O118)) ) 
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 When teaching this script, Rosie does not yet know what the verb move 

means, so it asks the instructor what the goal is and the instructor answers with 

R-009. The word only is used here because in these tasks there are sometimes 

multiple goals to be considered for the same action. 

 

R-026 Turn right twenty-five degrees. 

TurnDirectionByAngle[TurnDirection[TURN, RIGHT], 

    NumberOfUnits[TWENTY-FIVE, DEGREES] ] 

  m: TurnByAngle[] 

command(action(op_turn1), relative-direction1(right1), 

        number(25), unit(degrees) ) 

 

 R-026 illustrates another area of the grammar to deal with complex verbs 

and measurements using specialized constructions that provide semantic 

precision. TurnDirectionByAngle is a semantically precise subcase of Imperative, 

NumberOfUnits is a precise subcase of SpecifierNP, and TurnByAngle is a precise 

subcase of Action. TWENTY-FIVE is a subcase of CardinalNumber that gives its 

value as 25. Rosie’s operational subsystem knows how to interpret all this and 

physically turn the agent by 25 degrees to the right. 

 

R-008 Go to the starting location. 

DriveVerbToTarget[DRIVE, 

    SimplePrepPhrase[to the starting location] ] 

  m: MoveToIt[op_go-to-location1, 

       PrepRelation[to the starting location] ] 

command(action(op_go-to-location1), 

  predicate(NO-ID1, modifier1(starting1)) ) 

 

R-008 is tricky since the starting location is a phrase whose exact meaning 

is very context dependent. Rosie has to remember where it was when it started 

learning or performing a given task. This information will not be in the World 

Model, so Lucia creates a new object and marks it as having the modifier 

starting1. Then Rosie does some reasoning to find what actual location this 

should refer to. 

A3.5: Sentences That Are Problematic for Humans 

The English language has many sentences that are considered grammatical by 

traditional standards of analysis, but are hard or impossible for humans to 



 

 250 

understand, at least using just automatic processing without a lot of deliberate 

analysis. Lewis (1993) considers a number of these cases. Here we consider two 

sentences from his lists, a garden-path sentence and a center-embedded 

sentence that causes what Lewis calls “parsing breakdown.” We also consider 

one of the several very large sentences in the Games corpus that a normal human 

would have grave difficulty with. All three of these case studies will illustrate how 

the Lucia theory of comprehension based on construction grammar and 

incremental processing using finite cognitive resources gives at least one 

plausible explanation for the difficulty humans have with these sentences. Note 

that the sentences from Lewis have been analyzed using the Lucia theory and 

syntactic parsing, but do not produce grounded action messages. 

Case Study A0.18: A garden-path sentence 

Lewis 

GP-14 

The horse raced past the barn fell. 

See Case Study 6.1 for this sentence. 

Case Study A0.19: Sentences with center embedding 

Lewis 

PB1 

The man that the woman that the dog bit likes eats fish. 

See Case Study 6.2 for a similar sentence. 

Lewis 

PB2 

The man the woman the dog bit likes eats fish. 

See Case Study 6.2 for a similar sentence. 
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Case Study A0.20: A monster sentence 

G-011 If the number of the locations between a location and a covered location 

  is the number of the blocks that are on the covered location 

  then you can move it onto the former location. 

IfConditionThenStatement[ 

  IfConditionThen[IF, 

    RefIsRef[the number of ... the covered location], THEN], 

  EnabledCommandSentence[EnablerPhrase[you can], 

    ImperativeWithLocation[move it onto the former location]] 

m: IfThenStatement 

     EqualComparison[ 

       FunctionApplication[the number of the locations 

                  between a location and a covered location], 

       FunctionApplication[the number of the blocks 

                  that are on the covered location]], 

     EnabledCommand[Enabler[you can], 

       Action[move it onto the former location]] 

conditional( 

  if-subclause(action(is1), 

    number-of(NO-ID1, between(NO-ID2, NO-ID3)), 

    number-of(NO-ID4, on1(NO-ID3))), 

  then-subclause(agent(R5), action(move1), action-modifier(can), NO-ID4, 

    on1(NO-ID2))) 

 

We call this a monster sentence because it is so long and complicated that 

a normal human can’t really understand it without a lot of deliberate effort. 

Nevertheless, it is in the Games corpus, Lucia has been made to comprehend it, 

and Rosie understands how to act on it. 

 One difficulty with this sentence is resolving the anaphoric reference for it. 

The intended coreferent is the blocks, which doesn’t agree by number, and is also 

far away and buried within other phrases so that normal human processing will 

not find it. Therefore, to achieve correct operation of the script in Rosie using 

Lucia, a special Soar rule for handling this particular coreference was added to 

Lucia. Obviously this violates our attempt to keep things as general as possible. 

 In Chapter 5 we discuss the Lucia theory of structured working memory 

and its limits. As mentioned there, this sentence violates the rule that the 

maximum depth of the comprehension state is about 7, while this sentence 

requires a depth of 10. Lucia’s implementation does not actually enforce this 

limit, so Lucia can process the sentence. This violation seems one reasonable 

explanation for why a human cannot process this sentence easily. 
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 Despite these problems, Figure A3-5 shows an abbreviated version of the 

construction hierarchy that Lucia produces for this sentence. Several local 

repairs are needed to build this structure, the sentence uses the function the 

number of in two places. 

IfConditionThen

IF RefIsRef

IS

THEN

RefExprPP

the number of the 
locations between 
a location and a 

covered location

RefExprRelClause

the number of the 
blocks that are on 

the covered location

IfConditionThenStatement

EnabledCommandStatement

EnablerPhrase

YOU CAN

TransitiveCommand

MOVE IT

ImperativeWithLocation

SimplePP

onto the former 

location  

Figure A3-5: Syntactic structure of a monster sentence 

Figure A3-6 shows a very abbreviated version of the semantic hierarchy. 

In this figure the schema nodes are represented as green ovals with simplified 

names of their schemas. Each schema also has one or more blue rectangles 

containing the part of the original text that produced that schema. An important 

observation is that there are several coreferences between pairs of referring 

expressions that refer to the same hypothetical object. For example, obj-7 is an 

object referred to by both phrase 5 a location and phrase 19 the former location. 

Similarly obj-8 represents an object referred to by both phrase 7 a covered 

location and phrase 12 the covered location. A strange case is obj-10, referred to 

by both phrase 10 the blocks and phrase 17 it. This is not grammatical English 

since the number property of these two phrases does not match, and it is very 

hard to see how it refers to the blocks. Both humans and Lucia have a hard time 

with this coreference. A very special custom Soar rule had to be added to Lucia 

to make this connection. 
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If-then
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on
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you
14
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Figure A3-6: Semantic structure of a monster sentence 

 In spite of the challenges of this sentence, it is useful to illustrate some of 

the limits of what humans can process easily. 
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