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ABSTRACT 

 

Trust, the attitude that an agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability (Lee & See, 2004), plays a critical role in 

supervisory control and human-machine teaming. Poor trust calibration, i.e., a lack of 

correspondence between a person’s trust in a system and its actual capabilities, leads to 

inappropriate reliance on, or rejection of the technology. Trust also affects attention management 

and monitoring of increasingly autonomous systems. Overtrust results in excessive neglect time 

(the time the machine agent operates without human intervention) while distrust makes operators 

spend too much time supervising a system at the cost of performing other tasks.  

To address these challenges, this research examined how training and real-time 

information about system confidence can support trust calibration and effective monitoring of 

modern technologies. Specifically, the aims of this research were (1) to compare the 

effectiveness of active, experiential training with more traditional forms of instruction on mental 

model development, trust resolution (i.e. the ability to distinguish contexts when a machine can 

be trusted versus when it requires close supervision), and attention management (experiment 1), 

and (2) to assess how various visual and auditory representations of a machine’s confidence in its 

own ability (experiments 2 and 3) and the framing of a machine’s estimated accuracy as 

confidence or uncertainty (experiment 3) affect trust specificity (i.e. shifts in trust based on 

incremental variations in machine capability over time), monitoring, and reliance on technology. 
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The research was conducted in the context of supervisory control of multiple unmanned aerial 

vehicles (UAVs). 

The first, longitudinal study showed that participants who received experiential training 

had the fewest gaps in their mental model of the multi-UAV system, compared to participants 

who received more traditional training methods. They appropriately lowered their trust and 

monitored a UAV’s health more closely when its environment reduced the UAV’s capabilities. 

Findings from the second and third studies demonstrated that real-time feedback on a machine’s 

estimated accuracy facilitates trust specificity and effective monitoring. Specifically, the second 

study compared visual and auditory representations of system confidence. It showed that the 

choice of display depends on the intended domain of use. Auditory confidence displays are 

preferable to visual indications in environments that suffer from visual data overload as the 

former avoid resource competition and support time sharing. The third study compared two 

different visual representations (hue- versus salience-based) of system confidence and examined 

the impact of framing a machine’s estimated accuracy as confidence or uncertainty. Indicating a 

machine’s uncertainty (rather than confidence) in its performance led to closer monitoring of 

UAVs and smaller trust decrements when the machine’s estimated accuracy was low. Also, 

participants were better able to distinguish between levels of confidence and uncertainty with a 

hue-based representation that employed a familiar color scheme (red-yellow-green), compared 

with a monochrome salience-based representation.  

At a conceptual level, this research adds to the knowledge base in trust, transparency, and 

attention management related to supervisory control and human-machine teaming in high tempo, 

complex environments. This line of research also makes significant contributions to the 

development and validation of subjective and eyetracking-based methods for assessing trust in 
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technology. Finally, from an applied perspective, the findings can inform the design of training 

and interfaces to support the safe adoption and operation of human-machine systems in a wide 

range of safety-critical domains. 
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Chapter 1  

Introduction 

The introduction of robotic technologies to complex, high tempo, and high risk domains 

has been greeted with much enthusiasm. However, the acceptance and utilization of these 

systems have been hindered by the effects of poor trust calibration, i.e., a poor mapping of 

operators’ trust to the actual system capabilities. Trust has been defined in the context of human 

factors as the “attitude that an agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability” (Lee & See, 2004). An incorrect mapping can 

lead to a system being “overtrusted,” i.e., in trust exceeding its capabilities and performance 

marked by misuse. Conversely, a system may be distrusted if trust is below the system’s actual 

capabilities, contributing to disuse of the technology (Parasuraman & Riley, 1997). “Trust 

resolution” and “trust specificity” further describe the mapping between an operator’s trust level 

and a system’s capabilities. A person with high trust resolution can distinguish the contexts when 

a machine can be trusted versus when it requires close supervision, whereas trust specificity 

refers to moment-to-moment adjustments in trust as a machine’s capabilities fluctuate temporally 

(Lee & See, 2004). Trust not only affects the adoption of and reliance on technology; it also 

impacts attention management. Overtrust can lead to an operator failing to monitor and supervise 

a system, while distrust may result in a person overallocating their attention resources to a 

system at the cost of neglecting other tasks (Hergeth, Lorenz, Vilimek, & Krems, 2016; Lu & 

Sarter, 2019; Muir & Moray, 1996). These breakdowns in resource allocation and attention 

control continue to represent a major challenge for creating effective human-machine systems – 
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the ultimate goal in many application domains (such as UAV/UAS control) where currently 2-3 

operators are needed to manage a single machine agent (Chen, Barnes, & Harper-Sciarini, 2011; 

Murphy & Burke, 2010). 

To date, research has examined trust and attention management separately; in contrast, 

this line of research focuses on how trust calibration and attention management interact with 

each other. A better understanding of the mutual shaping of the two phenomena is important to 

support the safe adoption of human-machine systems where machine agents outnumber human 

supervisory controllers. Examples of such systems include Department of Defense concepts for 

manned-unmanned teaming (Mayer, 2020) and commercial drone-based transportation systems 

for people and cargo, both of which task an operator with supervising multiple robots 

simultaneously (Federal Aviation Administration, 2020). Single-operator multi-agent (SOMA) 

operations depend on proper trust calibration so that the human operator can divide their limited 

attention resources as effectively as possible and notice or anticipate when an intervention might 

be required.  

This research project examines how the interaction between trust calibration and attention 

management evolves unaided over a prolonged period of time and how it can be shaped through 

design and training in the interest of improved collaboration and joint system performance. To 

this end, candidate approaches to training and mental model development, as well as interface 

designs that support system transparency and attention guidance, were developed and assessed in 

the context of a multi-UAV control simulation. Eye tracking, as well as traditional trust measures 

such as subjective ratings and performance measures, were used collectively to evaluate the 

efficacy of these interventions. The specific objectives of this research project were: 
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• To investigate and compare the impact of active, experiential training with more 

traditional forms of training on a person’s mental model development, trust 

resolution, attention management, and joint system performance. 

• To assess how various visual and multimodal representations of a machine’s 

confidence in its own ability, and the framing of a machine’s estimated accuracy 

as confidence or uncertainty, shape trust specificity and supports attention 

management and joint system performance. 

This first chapter introduces the concept of trust in human supervisory control. The 

chapter then describes how candidate approaches to operator training and representations of a 

machine’s confidence or uncertainty in its accuracy and abilities may support trust calibration, 

attention management, and joint system performance. 

 

Trust in Human Supervisory Control 

The Machines in Human-Machine Teams 

There has been a growing conversation around whether advanced technologies such as 

artificial intelligence warrant a new approach to trust in human-machine systems. To better 

understand trust between humans and machines, such as robots, automation, and increasingly 

autonomous systems, it can be beneficial to first consider the structure of their relationship in 

safety critical contexts.  

Definitions (and consequently boundaries) of what constitutes a robot continue to be 

debated to today. As noted by Goodrich and Schultz (2007), many cultures, from ancient to 

modern times, have envisioned artificial beings that were created by humans, to act like humans, 

and serve humans. Jordan (2016) reviews a variety of definitions that have been used to describe 
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robots, and he observes that many definitions describe robots as being “human-like.” 

Alternatively, some definitions opt to define robots based on the tasks they perform (e.g. a 

machine that senses, thinks, and acts) (Jordan, 2016, p. 27). Commenting on the lack of 

consensus with regards to the definition of a robot, Jordan (2016, p. 4) quotes Bernard Roth, who 

bridges the gap between the human-qualities and the task-based definition of robots: 

My view is that the notion of a robot has to do with which activities are, at a given time, 

associated with people and which are associated with machines. If a machine suddenly 

becomes able to do what we normally associate with people, the machine can be 

upgraded in classification and classified as a robot. After a while, people get used to the 

activity being done by machines, and the devices get downgraded from “robot” to 

“machine” (B. Roth, 2008). 

A different type of machine, automation, is being conceptualized by the human factors 

community as a system that performs tasks previously performed by people (e.g. Parasuraman 

and Riley, 1997). This characterization of automation is similar to Roth’s definition of a robot. 

Finally, the term “autonomy” is commonly used to describe systems that are non-deterministic, 

adaptable (National Academcy of Engineering, 2014), and can achieve a goal without its internal 

processes being explicitly defined (Hager, Rus, Kumar, & Christensen, 2015). From a technical 

perspective, the juxtaposition of autonomy and automation is to highlight that automation is 

bound to fixed rules and processes for achieving a goal, whereas autonomous systems can both 

learn and extrapolate patterns in its environment to guide its behavior. Like automation, 

autonomy also suggests a design objective to transfer tasks from humans to machines, such as 

“driverless” cars and “unmanned” aerial vehicles. 
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Some researchers worry that referring to machines as “autonomous” misleads the general 

public about their capabilities and inflates the perception that the machines do not need human 

support. The recent National Academies of Engineering report on Human-AI Teaming (National 

Academies of Sciences Engineering and Medicine, 2021) opted to use the term “human-AI 

teams” rather than “human-autonomy teams,” as it was felt that autonomy in the context of 

humans and machines would imply that they both were acting independently (i.e. 

“autonomously”) from each other. While the report’s committee acknowledged that the metaphor 

of a “team” to describe the relationship between a human and a machine might lead to 

expectations that a machine will perform similarly to a human, they felt that the metaphor was 

suitable since it emphasizes the need to consider the interactions and coordination between all 

“team members” that is required to support collective performance.  

The Persistence of Humans in Human-Machine Systems 

Robots, automation, and increasingly autonomous systems are frequently designed to 

perform tasks that people find undesirable or cannot perform with the same precision and 

reliability (Parasuraman, Sheridan, & Wickens, 2000). Machines also have been developed to 

perform tasks that require higher levels of control, planning, and cognitive decision making. 

However, these technologies have many times failed to achieve their goal to fully remove the 

human from the system (Bainbridge, 1983; Parasuraman & Riley, 1997). 

Robots, automation, artificial intelligence agents, and other machines that sense and act 

can be limited in their plans and decision making because they operate in dynamic, partially-

observable, complex, and unanticipated environments (Mason, 2012; Parasuraman & Riley, 

1997; Russell & Norvig, 2009; Woods, Tittle, Feil, & Roesler, 2004). When these machines fall 

short of operational expectations, humans are re-introduced to the system as supervisors that 
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monitor the system and occasionally intervene when necessary (Sheridan & Parasuraman, 2005; 

Sheridan & Verplank, 1978). People are assigned the role of supervisory controller because they 

are perceived to be more resilient and adaptable than machines; also, humans can better ideate 

new solutions to problems when a machine is operated in unfamiliar contexts (Parasuraman & 

Riley, 1997). 

However, this introduces the paradox that systems initially designed to “automate out” 

the human still end up requiring human involvement (Bibby et al., 1975) but now operators are 

typically not provided sufficient support to perform their tasks of monitoring and intervening 

(Bainbridge, 1983). Designers who approach a system with the goal of minimizing the role of a 

human operator many times do not recognize the increased demands for coordination and 

interaction required between the human and the machine (Bainbridge, 1983; Parasuraman & 

Riley, 1997; Parasuraman et al., 2000; Sarter, Woods, & Billings, 1997; Woods et al., 2004). In 

short, human supervisory control does not remove a person from the system but changes the 

relationship and interaction between a person and technology, an often overlooked aspect in 

system design (Dekker & Woods, 2018). 

The issue becomes all the more problematic in operational contexts that place high 

attention demands on the human supervisor, such as single-operator multi-agent systems. Wiener 

(1989) is credited with coining the related term “clumsy automation,” which refers to automation 

that performs at its best for simple, routine tasks that would require little cognitive effort from 

the human operator. However, when a situation arises that imposes considerable mental 

workload and attention demands on the supervisor, the automation adds to the challenge as it 

requires communication and coordination, and creates new pathways to complete tasks (Dekker 

& Woods, 2018; Sarter et al., 1997). Automation that is brittle (Roth, Bennett, & Woods, 1987), 
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meaning its performance can dramatically degrade outside of anticipated, nominal contexts can 

further complicate supervisory control. Automation that is both clumsy and brittle leads to the 

unfortunate predicament that it helps the operator manage tasks that they could easily perform on 

their own (without the automation’s support) but in contexts where the operator could use its 

help, the automation is useless or even adds to the operator’s cognitive load. 

In order for humans and machines to work effectively and efficiently as a team, an 

operator needs to make decisions about when to trust and rely on technology. Trust calibration is 

critical for the proper delegation of tasks, it affects how closely the human monitors the 

machine’s performance, and ultimately determines the joint performance of the human-machine 

system.  

Trust and the Dynamic Nature of a Machine’s Capabilities  

A human supervisor’s task of choosing when to rely upon a machine and how to monitor 

its performance is not trivial. Operators in human-machine systems use trust to cope with 

uncertainty and determine appropriate reliance when total comprehension of a machine’s 

situation and behavior may not be achievable (Lee & See, 2004). Trust must be calibrated so that 

a person’s trust matches a machine’s capabilities (Muir, 1987) or else the system risks eventual 

misuse or disuse (Parasuraman & Riley, 1997).  

Two important aspects of trust are its resolution and its specificity. Trust resolution 

describes the mapping between an operator’s trust level and the range of a system’s capabilities 

(Cohen, Parasuraman, & Freeman, 1998; Lee & See, 2004). In other words, a person with high 

trust resolution can distinguish between the contexts when a machine can be trusted versus when 

it requires close supervision. Trust specificity, on the other hand, includes both “temporal 

specificity” which describes temporally-aligned shifts in trust based on incremental variations in 
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machine capability, and “functional specificity,” which refers to the correspondence of trust to 

the capabilities of subsystems (Lee & See, 2004). In cases of low functional trust specificity, 

localized capability decrements can lead to a “spread” of distrust to other functions in the system 

(Muir & Moray, 1996).  

A wide range of human-related, machine-related and environmental factors have been 

shown to contribute to the development of trust (Hancock et al., 2011; Schaefer, Chen, Szalma, 

& Hancock, 2016). Most research to date has focused on machine-related factors, such as the 

agent’s competence (Chiou & Lee, 2021), dependability and reliability (Hoff & Bashir, 2015; 

Lee & See, 2004), and consistency and predictability (Feltovich, Bradshaw, Clancey, & Johnson, 

2007; Marble, Bruemmer, Few, & Dudenhoeffer, 2004). Less is known about the impact of 

human-related factors (such as expertise and attentional), environmental factors (such as 

multitasking), and the coordination required to support trust.  

The sequence of changes in a machine’s capability also impacts trust. Trust calibration 

develops, in part, during initial training for a new technology. It then continues to evolve over 

time, based on operational experience with the system. Few studies have examined this long-

term development of trust in human-machine systems. They have shown that it is easier to lose 

trust in a system than to regain it, and that events contributing to a loss of trust are more 

impactful than events that increase trust. For example, a decision aid providing invalid 

recommendations was found to experience a loss of trust that was larger than the degree of trust 

it regained with valid recommendations (Yang, Wickens, & Hölttä-Otto, 2016). The timing of 

poor system performance appears to affect the trust development process also. Robot systems 

that exhibited low reliability early in experiments have caused greater losses of trust than when 

low reliability periods arose later in experimental runs (Desai et al., 2012). Therefore, it is 
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important to evaluate how a person’s trust grows, decays, and evolves over longer durations of 

time (and over several sessions of interaction) as a member of a human-machine team in 

dynamic environments. 

 

Mitigation Strategies for Trust Miscalibration 

Training 

A promising way to mitigate breakdowns in trust calibration and attention control is to 

support top-down information processing. Top-down processing refers to the voluntary 

allocation of attention based on goals, knowledge, experience, and expectations (Lee, Wickens, 

Liu, & Boyle, 2017). For example, by facilitating the development of a mental model of a system 

through training and operational experience, an operator can be aided in contextualizing machine 

behavior, anticipating how a machine will react to changes and events in its environment, and 

appropriately allocating their attention when monitoring robot team members.  

Developing and implementing effective training methods to support the formation of 

mental models continues to be a major challenge for manned and unmanned aviation operations 

(see Murphy and Shields, 2012; United States Government Accountability Office, 2017, 2020). 

Two main reasons for this problem are the time available to train operators and current training 

approaches and content. Operators in many domains are taught primarily “how to operate the 

system” (i.e., how to use its interface, interpret video, or control the system) (Goodrich & 

Schultz, 2007), rather than “how the system operates” (i.e., the system’s underlying logic, 

capabilities, and limitations) (e.g., Sarter et al., 1997; Strauch, 2017). 

The study presented in Chapter 2 considers three training methods to prepare operators 

for the task of conducting multi-UAV control during reconnaissance missions. The first method 
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models traditional approaches to training, with a participant receiving instruction on “how to 

operate the system,” i.e., on actions required to perform a task or achieve a given goal. A second 

training method supplements this training by instructing a participant “how the system works” 

based on the review of a PowerPoint presentation. For example, a participant receiving this 

supplemental training learns that a UAV’s target identification algorithms recognize tanks more 

reliably than people because tanks operate at high temperatures and can therefore be seen more 

clearly using a thermal camera. Finally, in a third condition, participants obtain the identical, 

supplemental information but they do so through experiential learning. 

Experiential learning provides trainees the opportunity to actively explore the system. 

One benefit of experiential learning is that it fosters firsthand experience in a range of contexts, 

leading to better memory association and better transfer to the actual performance domain 

(Molesworth, 2005). Additionally, the knowledge acquired through experiential activities is 

more likely to be activated and recalled when needed, compared to the same knowledge gained 

through passive learning and rote memorization (Sarter & Woods, 1997; Strater et al., 2004) 

which results in “inert” knowledge. By providing guided exploration, error management training, 

and critical reflection across a variety of situations (Bell & Kozlowski, 2008; McDermott, 

Gronowski, Carolan, & Fisher, 2013), experiential learning supports improved trust resolution. 

Specifically, in this study, participants experienced a range of prototypical and off-

nominal operational scenarios to help them build up experience with the system, observed its 

performance across a range of circumstances, and learned to recognize situations that are likely 

to challenge the system’s capabilities. Acquiring this knowledge was expected to help operators 

make better decisions about when to rely on the unmanned system and focus on other 
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tasks/vehicles, versus when to carefully monitor its performance and action selections and 

intervene when necessary.  

Furthermore, the impact of a participant’s training on trust resolution was studied over 

the course of four weeks. Earlier work in the area of human-automation has shown that trust 

fluctuates significantly following errors made by systems that are less than 100% reliable (e.g.,  

Lee & Moray, 1992; Muir & Moray, 1996), and the timing of when robot failures or unexpected 

behavior are encountered significantly impacts changes in trust and trust recovery (Desai, 

Kaniarasu, Medvedev, Steinfeld, & Yanco, 2013). However, most research to date has focused 

on the (assessment of the) momentary state of trust (Hancock et al., 2011), rather than its 

evolution over time. Longitudinal studies of trust in human-machine interaction are urgently 

needed to explore a range of issues related to trust development and calibration. 

Visual Representations of Confidence and Uncertainty 

In addition to training, feedback and representations of a system’s inner logic can also 

support trust calibration (Gao & Lee, 2006; Hoff & Bashir, 2015; Schaefer, Straub, Chen, 

Putney, & Evans, 2016; Sheridan, 1989). For example, a mismatch between expected and actual 

robot behavior can result from uncertainty. Uncertainties in a human-machine system may be 

caused by sensing processes, computations and data fusion, and the way information is 

represented to an operator (Chung & Wark, 2016). In order to mitigate potential breakdowns in 

trust and performance due to uncertainties present in a system, McGuirl and Sarter (2006) were 

able to show that pilots using a decision support tool for detecting and handling in-flight icing 

events experienced fewer icing-related stalls if the automated tool provided continuously updated 

information about its confidence in its own performance. Seong and Bisantz (2008) similarly 

demonstrated in an aircraft identification task that meta-information, i.e., feedback qualifying the 
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estimated accuracy of a decision aid’s recommendations, significantly increased performance 

and better supported trust calibration. 

Findings from the few studies that examined the effectiveness of presenting confidence or 

uncertainty information have highlighted that the specific design and implementation of this 

information is critical (Du, Huang, & Yang, 2020; Helldin, Falkman, Riveiro, & Davidsson, 

2013; Mercado et al., 2016; Seong & Bisantz, 2008; Sorkin, Kantowitz, & Kantowitz, 1988; 

Stowers et al., 2020; Wiczorek & Manzey, 2014; Zirk, Wiczorek, & Manzey, 2020). Bisantz 

(2013) and Chung and Wark (2016) provide an extensive review of visualization techniques for 

conveying uncertainty, primarily in contexts without high attention demands. Their review 

highlights that further research is needed to better understand how representations of uncertainty 

may impact trust and attention management – one of the questions addressed in the present 

project. Another important question relates to the effects of framing information about the 

system in terms of uncertainty about, or confidence in, its own performance and abilities. For 

example, framing a decision’s outcome in terms of risks and loses, rather than gains, may cause a 

person to overestimate the risk, and prompt a person to be risk averse by making a decision 

based on an inaccurate perception the consequences (Kahneman & Tversky, 1979; Sheridan, 

2008; Tversky & Kahneman, 1986, 1992). 

To date, a major research focus in the design of confidence and uncertainty (visual) 

representations has been whether there is a natural mapping between the degree of 

uncertainty/confidence and the visual properties of an uncertainty representation. For example, 

blurriness and low levels of brightness and color saturation have been found to effectively 

represent high uncertainty (Bisantz, 2013; Bisantz et al., 2009). However, Bisantz et al. (2009) 

concluded that the mapping between color saturation and uncertainty may depend on the task. In 
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their study, participants were given sets of four colors that had the same hue but varied in 

saturation. Participants were presented with a map that needed to convey highly certain 

information and were tasked with assigning the sets of four colors to regions of the map that had 

been labeled with varying degrees of certainty. This was followed by a similar task to support the 

design of a map that needed to show regions with less certain information; participants assigned 

the sets of four colors with varied saturation to regions of the map that also had been labeled with 

varying degrees of certainty. Trials were completed with maps of two different backgrounds; a 

background map with a very saturated color (that matched the hue of the color set) or a 

background map with a neutral color (e.g. white). The study found that participants would assign 

colors such that the most relevant information would have the greatest contrast with the 

background. If a map was intended to identify which geospatial regions had more certain 

information, participants would assign colors that had the greatest contrast with the background 

to those areas. If a map was intended to identify regions with less certain information, 

participants would also assign colors that had the greatest contrast with the background to those 

areas. These findings suggest that meta-information should be designed such that the information 

that is most relevant to the task should be the most visually salient.  

The findings discovered through the color ranking tasks align with the SEEV model 

(Wickens, Goh, Helleberg, Horrey, & Talleur, 2003), which proposes that the salience and value 

of information (in addition to expectancy and effort) impacts visual scanning and attention 

allocation. However, there remains a need to empirically assess the impact of the salience of 

confidence and uncertainty information on attention management, as well as trust calibration and 

performance, in an operational context. Most of the studies exploring the effectiveness of natural 

mappings to uncertainty were conducted in the absence of time pressure; the ability of an 
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operator to assess system confidence or uncertainty at-a-glance is thus unknown. Finally, there 

have been few studies that have assessed how inaccurate confidence information (such as a robot 

indicating that it has high confidence in its abilities during periods of low reliability) impacts 

operator trust and overall system performance. The study reported in Chapter 4 will address 

those shortcomings. 

Auditory Representations of Confidence 

The literature reviews by Bisantz (2013) and Chung and Wark (2016) highlight that 

further research is needed to determine how uncertainty should be indicated when operators’ 

visual attention is heavily taxed, as is the case in domains such as aviation and medicine.  

Specifically, the efficacy of auditory displays of system confidence remains relatively 

unexplored. Past research has evaluated the sonification of the uncertainty associated with 

position-based data in cartographic applications (Basapur, Bisantz, & Kesavadas, 2003; 

Bearman, 2011; Bearman & Lovett, 2010). For example, a study conducted by Basapur, Bisantz, 

and Kesavadas (2003) tasked participants to create paths through a virtual minefield that 

minimized path length and proximity to mines. Participants could select locations in the virtual 

minefield to trigger a visual, auditory, or haptic cue that represented the probability that a mine 

was present. The researchers found that a visual display of uncertainty information led to faster 

task completion times than auditory and haptic displays. Krygier (1994) describes various 

properties of sound that may be mapped to data, and notes that varying the pitch of a tone is an 

effective way to represent ordinal data; however, there is no consensus on how to map pitch to 

uncertainty, confidence, and other types of meta-information. Fisher (1994) observed that higher 

reliability might be represented by a higher pitched tone, but such a mapping could be at odds 

with a common semantic understanding that interprets high pitch tones to represent warnings. 
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Some studies have represented high uncertainty with a high pitched tone (Bearman, 2011) while 

others have mapped high confidence (i.e. low uncertainty) to a high pitched tone (Basapur, 

Bisantz, & Kesavadas, 2003). 

The study described in Chapter 3 examines the use of auditory representations of 

confidence in the context of human supervisory control. As suggested by Multiple Resource 

Theory (Wickens, 2008) and past research in multimodal displays (Riggs et al., 2017; Wickens, 

2008), distributing information across different sensory channels (in this case, vision and 

hearing) reduces resource competition and allows operators to process more tasks and 

information in parallel, in a given time period. However, the efficacy of auditory confidence 

representations may be hindered by crossmodal interaction effects, such as modality shifting 

(e.g. switching attention from the heavily engaged visual channel to the less used auditory 

channel), and a constrained capacity to maintain auditory information in working memory for a 

prolonged period of time (Wickens et al., 2003). 

 

The Relationship Between Attention Management, Mental Models and Trust Calibration 

There is a considerable body of research on the assessment and evaluation of trust in 

human-machine systems. However, few studies have explored the relationship between trust 

calibration, attention management and operators’ understanding of technology, especially during 

off-nominal conditions and in high-risk domains. Aviation accidents such as Airbus Industrie 

Flight 129 (Lee & See, 2004), Turkish Airlines Flight 1951 (Hoff & Bashir, 2015), and Asiana 

Flight 214 (Hergeth et al., 2016; National Transport Safety Board, 2014) illustrate how an 

operator’s improper trust in a system can lead to machine misuse and disastrous outcomes. These 

accidents exemplify three prototypical contributors to mismatches between an operator’s 
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expectations of a system’s capabilities and the system’s true capabilities, namely a poor mental 

model, low system observability, and highly dynamic and/or nonroutine situations (Sarter & 

Woods, 1995, 1997). In all accidents, the pilots lacked awareness of the active automation state, 

due to poor display design and inadequate attention management, and they did not understand 

the implications of the active mode for automation behavior, due to low trust resolution given 

their flawed mental model of the automation. The result was a breakdown in human-automation 

coordination at a time when the system operated at its safety boundary.  

Figure 1.1 illustrates a conceptual framework of the relationships between trust 

calibration, attention management, mental models and joint system performance. This 

framework guides and forms the basis for the present line of research which seeks to develop and 

evaluate candidate methods to support trust calibration and increase a machine’s transparency in 

a highly dynamic environment. Training was explored as a means to support trust resolution and 

top-down attention allocation through facilitating the development of an operator’s mental 

model. Representations of a machine’s confidence or uncertainty were designed to support 

bottom-up attention management and trust specificity. The link between trust and attention 

management was exploited to measure or infer trust based on eye movements. For example, Lu 

and Sarter (2019) evaluated how system reliability impacted a person’s monitoring behavior and 

trust in a simulated UAV target identification task using eye tracking. They found that several 

eye tracking metrics, such as increased total fixation durations and greater backtrack and 

transition rates, corresponded to periods of lower automation reliability and an operator 

indicating, through ratings, that they had lower trust in the system. Infrequent monitoring was 

also correlated with higher trust in studies of automated driving (Hergeth et al., 2016; Petersen, 
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Robert, Yang, & Tilbury, 2019) and the supervision of an automatic pump in a pasteurization 

plant (Muir & Moray, 1996).  

 

Figure 1.1 
The Relationship Between a Machine's Capability, Trust Calibration, Attention Management, 
and Performance. 

 

 

At the highest level, this line of research aims to improve the safe adoption of, as well as 

appropriate compliance and reliance in human-robot systems in attention-demanding, high risk 

environments. The specific aims of this research were (1) to compare the effectiveness of active, 

experiential training with more traditional forms of instruction on mental model development, 

trust resolution, and attention management (Chapter 2) and (2) to assess how various visual and 

multimodal representations of a machine’s confidence in its own ability (Chapters 3 and 4) and 

the framing of a machine’s estimated accuracy as confidence or uncertainty (Chapter 4) shape 
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operator monitoring of and reliance on technology. A summary of findings and proposals for 

future work are presented in Chapter 5. 
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Chapter 2  

Learning When to Trust: A Longitudinal Study on the Impact of Training on Trust 

Calibration, Attention Management and Joint System Performance 

 

One way to support trust calibration and top-down attention management based on a 

proper mental model of a system is through training, as shown in Figure 2.1. The purpose of this 

study was to assess how well different types of training achieve these goals and how training 

outcomes may be affected by actual operational experience with a system over an extended 

period of time (4 weeks). The experiment complements earlier research which has mostly taken 

‘snapshots’ of trust (over few hours or days) even though the phenomenon is known to take time 

to develop and recover after it is lost due to a system failure or violations of expectations (Desai 

et al., 2013).  

Figure 2.1 
The Study Presented in this Chapter Focuses on the Part of the Conceptual Framework that 
Relates to How Training Supports Trust Resolution and Top-Down Attention Management 
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The study was set in a multi-UAV military target classification simulation. Participants in 

the baseline group were taught “how to work the system”, i.e., how to operate the interface of the 

multi-UAV system to perform a mission. The second group of participants received additional 

training using a set of PowerPoint slides to teach them “how the system works”, i.e., which 

processes and environmental factors affect UAV behavior/performance. The third group received 

the same information through experiential learning, i.e., by providing feedback and coaching to 

participants as they completed interactive training simulations. Note that the second and third 

groups both received the baseline training, in addition to their supplemental training. 

The study’s main expectations were that: 

1. Learning how a highly autonomous system works in an experiential context, versus in 

a more passive instructional context (through viewing PowerPoint slides), would lead to 

improved trust resolution and more timely and appropriate monitoring of UAVs. 

2. Observations of actual UAV performance over the course of the study would further 

improve trust calibration, thus reducing differences in performance seen between training groups 

at the start of the data collection. 

3. During high-workload phases, operators would – by necessity – intervene less often 

and give consent to UAV assessments more quickly, even though their trust ratings may not 

change. 

4. Erroneous target assessments by the UAV at the beginning of the longitudinal study 

would result in larger decrements of trust than when the same errors would occur at the end of 

the study. 
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Method 

Participants 

Twenty-eight University of Michigan students between the ages of 18-30 years old  

(M = 23.3 years old, SD = 2.11) completed the experiment. An Air Force SME confirmed that 

the participants’ age range was comparable to that of Air Force UAV pilots, and that it would be 

appropriate to use students in this study since it simulates a futuristic concept with which current 

Air Force UAV pilots do not have experience. This research complied with the American 

Psychological Association Code of Ethics and was approved by the Institutional Review Board 

at the University of Michigan (UM IRB: HUM00162932). Informed consent was obtained from 

each participant. 

Task and Apparatus 

Participants were tasked with monitoring the simulated video feeds of eight unmanned 

aerial vehicles (UAVs) in a military reconnaissance simulation with the purpose of detecting and 

classifying adversarial tanks and personnel. The simulator interface (shown in Figure 2.2) was 

presented on two side-by-side monitors. Each UAV followed a pre-planned route, shown on a 

map on the right-side monitor. Simulated camera video feeds of the ground from each UAV’s 

vantage point were shown in a 3x3 grid on the simulator’s left monitor. The center window of 

the grid contained a chat room that simulated real-time messages being exchanged with peer 

UAV operators and air traffic controllers. 
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Figure 2.2 
Simulator Interface 

 

 

During each scenario, a UAV’s video feed became highlighted when the UAV reached a 

pre-determined waypoint and the UAV momentarily loitered. The UAV analyzed the field 

directly below it and informed the participant if it had identified either a person, a tank, or 

neither a person nor a tank at the waypoint. The recommended classification of the scene was 

expressed through highlighting the corresponding button (e.g., a button with the icon of a person 

or a button with the icon of a tank; see Figure 2.3). The participant then reviewed the scene and 

pressed the button corresponding to their belief of the correct classification. A participant had 12 

seconds to respond to the recommended classification before the UAV continued to the next 

waypoint. The recommendations provided by the UAV were hard coded into the simulation 

itself, rather than being calculated in real-time, to ensure that there was an overall 

recommendation reliability rate of 80%; past research has suggested that lower levels of 

reliability may cause monitoring, trust, and performance to suffer (Wickens & Dixon, 2006; 

Dixon & Wickens, 2007). 
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Figure 2.3 
The UAV Simulator Recommends a “Person” Classification 

 

 

In addition to the target identification task, participants were asked to monitor two 

chatrooms and provide information when prompted. One chatroom was reserved for simulated 

Air Traffic Control (ATC) communication while the second chatroom represented a simulated 

Mission Room which supported communication between troops, an off-site person known as a 

“Screener” who reviewed and interpreted surveillance footage, and the participant (in the role of 

the UAV ground control station operator). Participants were also responsible for monitoring each 

UAV’s health display (see Figure 2.4), which was comprised of a wing icing warning icon, a 

turbulence warning icon, indicators of the vehicle’s GPS and communication signal strength, and 

fuel and temperature gauges. The identifier of the UAV’s next waypoint and its estimated time of 

arrival (ETA) at the waypoint were included in the health display. During the initial baseline 

training (“how to work the system”), participants were advised how to respond to decrements in 

a UAV’s health. For example, a participant was trained to press a UAV’s “Return to Base Icon” 

when it was low on fuel.  
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Figure 2.4 
UAV Health Display 

 

 

Finally, the map shown on the right monitor (see Figure 2.2) provided an aerial view of 

all waypoints and updated with each UAV’s position in real-time. Participants were advised that 

UAVs would occasionally deviate from their preprogrammed paths. When participants noticed a 

deviation, they were expected to click on the UAV’s icon on the map. The UAV would then 

return to its pre-planned flight path. 

Experiment Design 

The experiment employed a mixed factorial design. The two independent variables were 

(1) training method (3 levels; between-subjects) and (2) operational tempo (two levels; within-

subjects). 

Training Method 

Participants were randomly assigned to one of three groups (baseline, passive training, 

experiential training) that each received a different method of training during the first week of 

the experiment. The baseline group was trained only on how to use the simulator interface “to 

work the system”, i.e., to complete the target classification task, maintain system health 

successfully, and send messages in chat rooms. This group received no guidance, feedback, or 
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interaction from the experimenter while completing training exercises with the simulator. The 

second group of participants reviewed a supplemental PowerPoint presentation that taught them 

“how the system works.” Participants were taught the dependencies, limitations, and inter-

relationships of system components and the operational environment (e.g., how weather limited 

the performance of a sensor which, in turn, could affect the accuracy of automation 

recommendations that were dependent on that sensor). This training method was a form of 

passive learning. The third group learned “how the system works” through experiential learning 

– an active process. In experiential training, participants completed a training scenario while 

receiving guidance and feedback on their actions, learning from the researcher why the system 

behaved in certain ways and how to correctly respond to certain situations. Both the second and 

third group of participants received the baseline training too. Care was taken to ensure that the 

exposure time to UAV operations was the same for all three groups. To this end, all three groups 

completed the second training scenario, but received different (or no) instruction with it. 

Participants in the experiential training group performed a reflection exercise at the 

conclusion of their training, before starting the actual experiment. They were provided a handout 

and asked to complete a concept map (shown in Figure 2.5). The handout showed three 

environmental conditions (fog, turbulence and icing) and 6 operational events, such as "GPS 

Loss." Participants were asked to draw lines between the environmental conditions and the 

operational events to indicate how they believed the environment could affect the UAV's 

performance. The concept map was completed by participants in all three groups at the 

conclusion of the longitudinal study to assess/score and compare their mental models of the 

system. 
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Figure 2.5 
Concept Map Worksheet 

 

 

Operational Tempo 

Operational tempo, which refers to the number of events in a time period, was varied 

within subjects. During a ten-minute high operational tempo period, there were five UAV 

malfunctions (such as flight deviations) and 27 prompts in chatrooms (such as requests from Air 

Traffic Control for UAVs to descend to lower altitudes). Ten-minute low operational tempo 

periods contained two or fewer UAV malfunctions and approximately seven prompts in 

chatrooms. 

Procedure 

Data for each participant was collected over four weeks, with two days of data collection 

occurring each week. During the first week, a participant received training each day, followed by 

a 15-minute training scenario and 30 minutes of actual data collection. A debrief questionnaire 

was completed after each data collection session. During the remaining three weeks, twice each 

week, participants completed a 30-minute scenario with no additional training.  
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Dependent Measures 

The dependent measures in this study included self-reported trust scores, target 

classification compliance and performance, secondary task performance (health monitoring, 

chatroom participation), eye tracking data, and debrief questionnaires. Target classification 

performance (e.g., accuracy, response time, and compliance), as well as responses to health 

monitoring information and chat room messages, were all recorded by the simulator. Eye 

movement data was collected and analyzed using the commercially available Tobii Pro Glasses 2 

and accompanying Tobii Pro Lab software.  

During the experiment, the simulation paused every ten minutes to collect subjective trust 

ratings from the participant. A pop-up window appeared, and participants were prompted to 

provide trust ratings on a scale from 1 (low) to 10 (high). These subjective ratings of the system 

included their overall trust in the system, as well as their trust in each of the eight UAVs. Once 

the ratings were entered, the pop-up window disappeared and the simulation resumed. 

Results 

The performance data and trust ratings were analyzed using linear mixed models with 

random effects. Analyses were performed using the statistics software R, the lme4 package 

(Bates, Maechler, Bolker, & Walker, 2015), and the lmerTest package (Kuznetsova, Brockhoff, 

& Christensen, 2017). Likelihood ratio tests of the model with the examined fixed effect and the 

model without the examined fixed effect were used to obtain p-values. 

Training and Mental Model 

It was expected that participants who received experiential training, as compared to 

passive training, would have a more accurate mental model of the multi-UAV system, leading to 

improved trust resolution and more timely and appropriate monitoring of UAVs (Expectation 1). 
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To assess this expectation, participants’ concept maps (Figure 2.5) were analyzed. Relationships 

between environment factors and UAV health decrements that were not drawn on the concept 

map worksheet suggested a gap in a participant’s mental model. A generalized linear model 

analysis found that participants who received the experiential training had, on average, 73% 

fewer gaps in their concept map than participants in the baseline training group (z = 3.53, 95% 

CI [0.47 0.88], p < 0.001), and an estimated 63% fewer gaps than participants who received the 

passive training (z  = -1.25, 95% CI [0.22 0.84], p = 0.012; see Figure 2.6). The difference in 

missing relationships between the baseline and passive training groups was not significant. 

 

Figure 2.6 
Number of Missing Relationships (Gaps) in Concept Map as a Function of Training 

 

 

If a participant incorrectly associated an environment factor with a UAV health 

decrement, such as drawing a line on the worksheet to incorrectly suggest that fog might lead a 

UAV to run out of fuel faster, this was counted as an “assumed relationship” (similar to a “false 

positive”). Figure 2.7 shows the number of assumed relationships in a participant’s concept map 

as a function of their training. A generalized linear model analysis found that the concept maps 

of participants in the experiential training group included significantly more (approximately 2.4 

*** 
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times as many) assumed relationships than the maps of participants who received just the 

baseline training (z = 2.28, 95% CI [1.2 5.3], p = 0.023). Participants in the passive training 

group assumed approximately twice as many incorrect relationships as the baseline group (z = 

1.83, 95% CI [1.0 4.6], p = 0.067). 

 

Figure 2.7 
Number of Assumed Relationships in Concept Map as a Function of Training 

  

 

Training and Trust 

One way to assess the impact of training on trust resolution is by examining the impact of 

turbulence on a participant’s UAV trust scores. This study simulated that a UAV experiencing 

turbulence would provide less reliable classifications, have higher engine temperatures (leading 

to a UAV’s engine to become too hot), and experience faster fuel burn (causing a UAV to run 

out of fuel). Participants in the passive and experiential training groups were informed of this 

causal relationship as part of their supplemental training which the baseline group did not 

receive. It was anticipated that participants who were aware of the impact of turbulence on UAV 

health and target classification capabilities would provide lower trust scores for a UAV once the 
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turbulence icon became illuminated. Figure 2.8 shows the change in trust scores by training 

group for a UAV before it entered turbulence and after it entered turbulence. 

 

Figure 2.8 
Change in Trust Score in Response to Turbulence Icon Illumination in Sessions 2, 4, and 8 

 

 

A linear model analysis with training as a fixed effect and the data collection session and 

participants as random effects found a marginally significant main effect on the change in trust 

scores for a UAV whose turbulence icon had become illuminated (χ2(2) = 5.62, p = 0.060). Trust 

scores for UAVs significantly dropped more among participants who received experiential 

training than the participants who received the baseline training (M =-0.6, t(36.67) = -2.06,  

p = 0.046) and passive training (M = -0.6, t(37.27) = -2.20, p = 0.034). An additional linear 

model analysis found that the differences in trust decrements between training groups that were 

associated with a UAV’s turbulence icon becoming illuminated did not significantly change over 

the course of the experiment (Expectation 2). 

* 

* 



 
 

36 
 

Training and Monitoring 

Eye tracking data was evaluated to assess the impact of training on how participants 

monitored a system based on their mental model and trust resolution (Expectation 1). Only 

participants in the passive and experiential training groups were informed that a UAV was more 

likely to fail during turbulence due to faster fuel burn and engine temperature increases.  

Figure 2.9 illustrates how participants in all three training groups monitored a UAV’s 

health information (e.g., engine temperature and fuel) when it experienced turbulence.  

 

Figure 2.9  
Total Duration of Visits to Health Information AOI During Turbulence, Aggregated Across All 
Scenarios 

 

 

Training had a significant impact on the total duration of visits to the health information 

display (χ2(2) = 7.87, p = 0.020), and a marginally significant impact on the number of visits to 

the health information display (χ2(2) = 5.26, p = 0.072). On average, participants in the passive 

training group cumulatively spent 44% more time than the baseline group monitoring the health 

information during turbulence (t(36.01) =2.13, p = 0.040), and participants in the experiential 

** 
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training group cumulatively spent 61% more time than the baseline group monitoring a UAV’s 

health information during turbulence (t(34.94) = 2.87, p = 0.007). 

Training and Performance 

The impact of training and observing UAV performance over the course of the study 

(Expectation 2) was assessed by evaluating the accuracy of scene classifications and the time 

required to complete the classification task, as well as participants’ responses to UAV health 

failures. The bar graphs in Figure 2.10 show the percentages of scenes that were correctly 

classified by participants in each training group. Note that a ceiling effect was observed, and the 

y-axis has been zoomed-in to a range of 90% to 100%. A generalized linear model showed that 

the type of training was not a significant predictor of classification accuracy, and accuracy did 

not change significantly over the course of the experiment.  As shown in Figure 2.10, the percent 

of correct classifications was slightly lower in scenarios the contained fog, resulting in a greater 

number of incorrectly recommended classifications and ultimately incorrect classifications 

provided by the joint human-UAV team. 
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Figure 2.10 
Accuracy of Scene Classifications as a Function of Training and Scenario 

 

 

Linear mixed models evaluated the impact of training on participants’ response time to 

flight deviations and on the time required to classify a scene. Only targets that were classified 

correctly by participants were included in the analysis; a scene classified incorrectly and quickly 

would not be a direct comparison of performance if it were compared with a scene that was 

classified correctly and more slowly. Training did not significantly impact the time it took to 

correctly classify targets nor their response time to flight deviations. Additional linear mixed 

effects analyses evaluated the impact of training on a person’s response time to “low fuel” and 

hot “engine" warnings; again, training was not found to have a significant effect on the response 

time to either of these warnings.  

High Tempo Operations 

Expectation 3 predicted that participants would intervene less often and comply with 

UAV classification recommendations more quickly during higher tempo periods (i.e., when 
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workload and attention demands were higher). Participants completed two scenarios which 

included both low tempo and high tempo periods.  

To distinguish between cases when participants complied with a UAV’s recommendation 

due to high operational tempo and high workload, and instances when participants complied with 

a UAV’s recommendation because it was indeed correct, participant compliance in cases when a 

UAV provided incorrect recommendations in high and low tempo periods was evaluated. Figure 

2.11 plots the percentage of scenes that were incorrectly classified by a UAV but were correctly 

classified by participants. It was expected that participants would comply with the UAV 

recommendations and incorrectly classify the scenes when the operational tempo and attention 

demands were high. However, a generalized linear model showed that participants correctly 

intervened and did not comply when a UAV provided incorrect recommendations, regardless of 

operational tempo.  There was no interaction between training and operational tempo.  
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Figure 2.11 
Percentage of Scenes Incorrectly Classified by a UAV but Correctly Classified by Participants 
as a Function of Operational Tempo 

 

Response times to comply (i.e., agree) with correct recommended classifications are 

shown in Figure 2.12. A linear mixed model analyzed the impact of tempo on the response time 

to (correctly) comply with the UAV’s recommended classification. An increase in tempo was 

found to significantly increase the response time (χ2(1) =264.56, p < 0.001) by an average of 864 

milliseconds. 
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Figure 2.12 
Response Time to Comply with a Correct Recommended Classification 

 

 

Longitudinal Evolution of Trust 

The study’s fourth expectation predicted that erroneous target recommendations provided 

by a UAV at the beginning of the longitudinal study would lead to larger trust decrements than 

incorrect target classifications towards the end of the study. This expectation was examined 

using the scenarios performed during the first and last data collection sessions which were 

identical in design; participants were not informed that they were completing the same scenario 

in both sessions. Figure 2.13 shows the difference in a UAV’s trust scores before and after it 

provided an incorrect recommendation as a function of whether the scenario was completed at 

the start or end of the longitudinal study. A linear mixed model analysis was conducted, with the 

timing of the data collection session (i.e. first or final data collection session) as a fixed effect, 

and the participant and the waypoint that was classified as random intercepts. Likelihood ratio 

tests of the model with the fixed effect and the model without the session fixed effect were used 

to obtain p-values. Incorrect recommendations at the beginning of the longitudinal study did not 

*** 
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lead to more significant trust decrements than the same incorrect recommendations at the 

conclusion of the study. A second linear mixed model analysis that also included the training 

group as a fixed effect did not find that there was a statistical difference in trust decrements 

between training groups for incorrect recommendations at the beginning of the study and at the 

conclusion of the study. 

 

Figure 2.13 
Difference in Trust Scores for Incorrect Classification Recommendations Provided by a UAV in 
the Study’s First and Last Data Collection Sessions 

 

 

Previewing 

An unexpected result was that participants took more time to classify targets during high 

tempo operations (with higher attention demands and workload) than during periods with lower 

tempo operations, fewer attention demands, and less workload (Expectation 3, see Figure 2.12). 

Debrief responses and eye tracking data were reviewed to explain this unexpected finding. 

Twenty-five out of the 28 participants who completed the four week study reported in the 

debrief questionnaire that, even though they were not instructed to do so, they referenced a 

countdown clock, which displayed the number of seconds remaining until a UAV arrived at a 
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waypoint, or used the Navigation Map (shown on the right display in Figure 2.2) to anticipate 

when a UAV would arrive at a waypoint. This allowed participants to “preview” and mentally 

classify the scene at a waypoint before the automation’s recommended classification was 

provided. Figure 2.14 shows the total visit duration for a UAV video feed before and after the 

recommended classification was presented. The figure suggests that participants spent more time 

“previewing” the scenes during low tempo periods, whereas participants spent more time 

reviewing the scene after the UAV had arrived at a waypoint during high tempo periods. 

 

Figure 2.14  
Monitoring Behavior, Before and After Waypoint Arrival, as a Function of Operation Tempo 

 

 

Trust Definition 

Since the previous analyses of trust ratings yielded unexpected findings, the trust ratings 

were further examined to assess their validity. Specifically, there was a concern that, as 

participants progressed through the study, they would no longer base their trust ratings on the 

definition of trust provided at the start of the experiment, during training, but rather on their own 

interpretation of the concept prior to or as it evolved throughout the study. 
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While reviewing the self-paced PowerPoint based training on the first day of the 

experiment, all participants were informed that, “In this experiment, trust is defined as the 

attitude that a machine will help achieve a person’s goals in a situation characterized by 

uncertainty and vulnerability.” This was based on Lee and See’s (2004) definition of trust in 

automation. Participants were then prompted every ten minutes in each scenario to rate their trust 

in each individual UAV. After completing the scenarios at the midpoint and at the conclusion of 

the multi-week study, each participant completed a second debrief questionnaire (separate from 

the debrief questionnaire that was completed each day) that asked participants to recall the 

definition of trust in this experiment. 

Only two of the participants could closely recall the trust definition. All other participants 

provided different interpretations of trust. It was also observed that the trust definition presented 

in training was broad and did not refer to specific UAV capabilities. However, the trust 

definitions provided by 14 participants who completed the cumulative debriefs suggest that they 

adopted a narrower definition of trust which reflected only their trust in a UAV’s classification 

abilities; other capabilities, such as a UAV’s ability to manage its health, were not considered in 

their trust scores.  

Effects of Agreement Between Proposed and Actual Target on Attention Management  

Past research has suggested that eye tracking metrics may be an effective method to infer 

a person’s trust in automation technology (Hergeth et al., 2016; Lu & Sarter, 2019). To assess the 

validity of this approach, the eye tracking data was examined to determine whether factors other 

than trust, such as the agreement between automation recommendations and actual target 

presence/type at each waypoint, influenced a person’s gaze behavior. 
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Eye tracking data was recoded to distinguish the four types of pairings between a UAV’s 

recommendation and the type of target a scene contained: 

• Target: The UAV correctly indicated that a target was present at a waypoint. 

• Different Target: A target was present in the video feed, but the UAV indicated 

either that a different target was present or suggested classifying the scene as not 

having a target at all. For example, the UAV suggested that a “tank” classification 

should have been provided, but a person could be seen in the video feed. 

• No Target: The UAV correctly suggested that a “none” classification should be 

provided; there was no target at the waypoint. 

• Target Missing: The UAV indicated that a tank or person classification should 

have been provided, but no target could be seen in the video feed. 

 

The Total Visit Duration and the Number of Fixations for a scene, as a function of the 

congruence between the recommended and actual target, are shown in Figure 2.15 and Figure 

2.16, respectively. 
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Figure 2.15  
Total Visit Duration for a Scene's AOI based on the Congruence between Recommended and 
Actual Target 

 

 

Figure 2.16  
Number of Fixations in a Scene's AOI based on the Congruence between Recommended and 
Actual Target 

 

 

A linear mixed model analysis assessed the impact of the congruence between 

recommended and actual target on the duration of a participant’s visit to a video feed during the 

*** 

*** 

*** 

*** 

*** 
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classification task, and a generalized linear mixed model analyzed the impact of congruence on 

the number of fixations in the video feed. In both models, congruence was a fixed effect and the 

participant was modeled as a random intercept. Likelihood ratio tests found that congruence 

significantly impacted the total visit duration (χ2(3) = 361.88, p < 0.001) and the number of 

fixations (χ2(2) = 73808, p < 0.001) in a video feed when classifying a waypoint’s scene. There 

was no interaction between the type of training and the congruence between the recommended 

and actual target.  Pairwise comparisons further showed that people and tanks that were 

misclassified by a UAV had an average total visit duration that was 334ms (39%) longer than the 

average total visit duration for people and tanks that were classified correctly (t(5605.95) = 

10.23, p < 0.001), and there was a mean increase of 25% more fixations in such cases (z = 9.40, 

p < 0.001). Scenes that were classified correctly as not having any targets had an average 

increase of 31% more fixations (z = 13.39, p < 0.001) and an average total visit duration that was 

449ms (53%) greater than scenes with targets that were classified correctly (t(5605.61) = 15.74, 

p < 0.001). Finally, when a tank or person recommendation was provided for scenes without 

targets, the total visit duration increased by 1178ms (138% increase) and there was an average 

increase of 86% more fixations (z = 9.95, p < 0.001) than instances when a tank or person 

classification was correctly recommended (t(5604.72) = 11.22, p < 0.001).  

Discussion 

This study assessed the effects of training on trust resolution, attention management and 

performance. Participants were assigned to one of three groups that each received a different 

method of training. Participants in all groups, including the baseline group, received instruction 

on how to operate the multi-UAV system to complete the mission’s tasks. Two of the groups 

received additional training that emphasized how a UAV’s environment and internal processes 
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impact a UAV’s performance; one of these groups performed the supplemental training with a 

set of PowerPoint slides (i.e., “passive learning”) while the remaining group was coached and 

asked reflection questions via an interactive training simulation (known as “experiential” or 

“active” learning). Participants completed eight data collection sessions over the course of four 

weeks. Task performance, eye movement data, and self-reported trust in the multi-UAV system 

over the course of the study were evaluated. 

Training and Mental Model Development 

Participants completed a worksheet on the final day of data collection to externalize their 

mental model of the UAV system. Training significantly impacted the quality of a participant’s 

mental model. Specifically, experiential training reduced the number of gaps in the model, 

compared to passive training. Reflection questions that were incorporated into the experiential 

training may have better supported the encoding of information about the UAVs’ internal 

processes into participants’ memory. Also, the experimenter “coached” participants in the 

experiential (but not the passive) training group during the training scenario. This allowed 

participants to become aware of and correct inaccuracies in their mental model. 

At the same time, the experiential training group showed the largest number of 

(incorrectly) assumed relationships in their mental model. This may be explained by the fact that 

the supplemental training they received “revealed” some causal relationships between a UAV’s 

environment and its health, which were not emphasized in the baseline training. This may have 

led participants to wonder if there were additional relationships that they had not been informed 

about.  One way to avoid this problem in future real-world operations may be to gather data from 

UAV operators at the end of their experiential training, using a concept map (like the one in 
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Figure 2.5), to identify common misconceptions and explicitly inform subsequent trainees that 

these relationships do not exist. 

Participants in the baseline training had more gaps in their mental models than 

participants who received experiential training at the start of the experiment. This suggests that 

these participants were not able to infer over time, as a result of operational experience with the 

system, how a UAV’s processes and environment caused its performance to decrease. One 

reason why participants in the baseline group may have had trouble inferring the relationships 

between a UAV’s environment and its performance is that they had to cope with high task 

demands and thus may not have had the attention resources required to engage in hypothesis 

testing to deduce the inner workings of the UAVs.  

Trust Resolution, Monitoring and Trust Scores 

Eye tracking metrics indicated that training also impacted how participants monitored a 

UAV’s health information. Specifically, compared to the baseline group, participants in the 

passive training group and the experiential training group spent more time cumulatively gazing 

at the health information when the turbulence icon for a UAV was illuminated. This can be 

explained by the fact that they were informed during training that turbulence could lead to 

vehicle health failures. Thus, training resulted in better trust resolution leading to more effective 

attention allocation. This improved trust resolution also manifested in more appropriate and 

dynamic trust ratings. Participants in the experiential training group lowered their trust in a UAV 

to a greater extent than the rest of the participants when a UAV experienced turbulence.  

Surprisingly, there were no significant differences in trust between the baseline and 

passive training groups when a UAV entered turbulence. Furthermore, for all training groups, the 

magnitude of trust decrements when a UAV provided an incorrect recommendation was the 
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same independent of whether the incorrect classification was made at the start or towards the end 

of the study. Though it is possible that there were indeed no significant differences in trust, it is 

also worth considering that the limitations of the trust measurement method may have obscured 

changes in a person’s trust. Only two participants could recall the Lee and See (2004) definition 

of trust that was provided at the beginning of the study. Lee and See’s rather broad definition of 

trust was the attitude that a UAV would be helpful; however, half of the participants more 

narrowly defined trust in the debrief questionnaire as an attitude that a UAV’s classification 

capabilities would be helpful. Thus, participants’ trust scores may reflect only their trust in a 

UAV’s classification abilities, and not include their trust in a UAV’s health management 

capabilities. This explanation is further supported by the responses to the concept map worksheet 

(see Figure 2.5); while 57% of the participants in the experiential training group indicated their 

(correct) belief that turbulence would reduce a UAV’s classification capabilities, only 25% of 

participants in the baseline group and 14% of  participants in the passive training group indicated 

this relationship. Therefore, participants in the passive training group may have more closely 

monitored the health information display to detect fuel and engine warnings caused by 

turbulence but did not believe that turbulence warranted adjusting their trust in a UAV’s 

recommended classifications. 

Training and Performance 

Joint human-machine performance on the waypoint classification task was extremely 

high. This ceiling effect meant that no significant differences in accuracy, response time, and 

associated monitoring behavior were observed as a function of training. While extensive pilot 

testing was conducted in advance of the study to ensure that task difficulty was high enough and 

thus a ceiling effect would be avoided, participants in the actual experiment adopted an 
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unexpected strategy. Debrief responses, as well as the eye tracking data, indicate that participants 

began viewing a scene as it entered the edge of the video feed’s display (moments before the 

UAV would arrive at its waypoint, before the scene would appear in the center of the video feed, 

and before the automation’s recommended classification would be provided). Participants would 

then classify the scene on their own before the automation recommended a classification. The 

eye tracking data suggests that participants were able to engage in this behavior when the 

operational tempo was low and there were fewer competing attention demands. While the 

previewing strategy was not expected nor desired from an experiment design perspective, it may 

be an effective strategy in operational contexts when an operator has to cope with high 

competing attention demands in a short period of time.  Previewing may allow operators to 

spread out these demands and better balance their workload so that they can attend to multiple 

tasks over a longer time interval. 

Another reason why performance did not differ as a function of type of training may be 

the low cost of not trusting recommended classifications. Participants needed to just briefly 

glance at the video feed if they did not trust (or wanted to validate) the classifications provided 

by the UAVs.  More involved reviewing and/or response tasks might increase the cost of not 

relying on a machine’s recommendations, leading to greater longitudinal effects and an impact of 

training on performance. 

Contingent Orienting 

Participants’ monitoring behavior was significantly influenced by whether the UAV’s 

recommended classification was correct and matched the imagery seen in the UAV’s video feed. 

The time spent visually scanning the video feed was the shortest when the target identified by the 

UAV was present, followed by instances when a target was present but a different classification 
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was recommended. This suggests that participant gaze behavior was influenced by an attentional 

phenomenon known as “contingent orienting” (Folk, Remington, & Johnston, 1992). Contingent 

orienting refers to the situation where a stimulus captures a person’s attention, highly reliably 

and involuntarily, if it matches the person’s top-down control settings (e.g. Folk et al. (1992)). 

Based on the eye tracking metrics, participants were able to identify targets more quickly if the 

target matched the recommended classification provided by the automation. This suggests that 

participants incorporated the UAV’s recommendations into their decision-making when 

determining how to classify waypoints. 

These results also suggest that incorrect recommendations can have significant 

implications on the monitoring and gaze behavior of an operator when a target (or an expected 

stimulus) is not present. Most notably, participants spent more than twice the amount of time 

inspecting a video feed and had nearly twice as many fixations when a target was missing than 

when the expected target could be found. It is possible that participants conducted a more 

thorough and extensive review of the video feed to ensure that no target was missed. The 

increased allocation of visual attention resources when an expected stimulus is not present needs 

to be further studied in applications with greater attention demands, as it may restrict the ability 

of an operator to sufficiently monitor a system in a high tempo, multi-tasking environment. 

Finally, this study’s observation that gaze behavior is influenced by the accuracy of a 

machine’s recommendation, and by congruence between recommended and actual target, 

complicates the use of eye tracking and response times to measure trust. Future research is 

needed to determine to what extent trust shapes how a person monitors a system differently from 

typical visual search tasks. For example, if a machine sequentially provides a series of inaccurate 

recommendations, will a person visually inspect and review the display more because the person 
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has low trust in the machine? Or could the person still have high trust in the machine and just 

naturally review the display more thoroughly because the expected target stimulus cannot be 

found?  

Conclusion 

Findings from this study suggest that experiential training may facilitate the development 

of an operator’s mental model of a system and thus improve trust calibration. Furthermore, 

results indicate that operational exposure to a system may not be sufficient for an operator to 

successfully infer causal relationships in a system. This might be because a high tempo, high risk 

operational environment like the one simulated in this study does not afford a person the 

opportunity to observe and explore a system’s capabilities, reflect on their experience and thus 

improve their mental model – as can be done in experiential training. Therefore, instructors and 

managers tasked with designing training programs may find experiential training to be more 

beneficial than traditional, simplified training methods to address trust miscalibration and 

breakdowns in attention management.  

Researchers should be aware that participants may adopt different semantic 

understanding of prompts requesting them to self-report their trust in a system, and eye tracking 

measures that are employed to infer trust may be influenced by visual search phenomena (such 

as the congruence between an expected visual target and the stimulus). Accordingly, future 

research might benefit from asking participants to rate their trust through more narrowly defined 

prompts and at a higher frequency. For example, participants might be asked to rate their trust in 

the UAV’s capability to perform one task (rather than a person’s trust in all the UAV’s 

capabilities) or in each situational context. However, limitations and tradeoffs must be 

considered when using subjective ratings to assess trust. Asking participants to rate their trust in 



 
 

54 
 

only a subset of a machine’s capabilities may not provide a complete picture of how a participant 

trusts a machine. Furthermore, more frequent prompts for a participant to rate their trust in a 

machine may disturb a participant’s engagement in the mission, affect short term memory, 

perturb reflective cognitive processes, and degrade joint human-machine performance. 
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Chapter 3  

A Comparison of Auditory and Visual Representations of System Confidence to Support 

Trust Specificity, Attention Management, and Joint Performance in Human-Machine 

Teams 

 

The previous study examined how supporting mental model development in advance of 

operations, through three different training approaches, might improve trust resolution and 

calibration, as well as top-down attention management. The next two studies in this line of 

research focus on the impact of system transparency, i.e. real-time feedback on system 

confidence (or uncertainty) in its own performance, on operators’ trust specificity, monitoring 

behavior and joint system performance; see Figure 3.1. Providing information about moment-to-

moment fluctuations in estimated system accuracy is intended to guide attention in a bottom-up 

fashion, prompting the operator to more closely monitor the automation and review its 

recommendations in instances of low reliability.  
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Figure 3.1 
The Study Presented in this Chapter Focuses on the Part of the Conceptual Framework that 
Relates to How Confidence or Uncertainty Information Supports Trust Specificity and Bottom-
Up Attention Management 

 

 

 

The first of the two studies examined the effects of auditory and visual representations of 

system confidence on trust specificity and attention management in the context of supervision of 

a multiple unmanned aerial vehicle (UAV) target classification system. This system, like many 

other high-risk application domains, imposes significant competing visual attention demands on 

human operators. As suggested by Multiple Resource Theory (Wickens, 2008)  and past research 

in multimodal displays (Lu et al., 2013; Riggs et al., 2017; Sarter, 2013; Wickens, 2008), it is 

beneficial to distribute information across different sensory channels (in this case, vision and 

hearing) in such domains as this reduces resource competition and allows operators to process 
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simultaneously multiple tasks and sources of information. Therefore, auditory representations of 

system confidence were expected to reduce response times, lead to a supervisor noticing the 

recommended classifications more reliably and improve joint system performance across the 

entire task set when compared to visual representations. In general, providing information about 

system confidence was expected to improve trust specificity, with high system confidence 

leading to an operator complying with UAV assessments faster and more often while low 

confidence should lead to slower response times since an operator would allocate more resources 

to monitor and review the automation’s recommendations.  

 

Method 

Participants 

Eighteen engineering students from the University of Michigan, including 9 males and 9 

females between the ages of 18-30 (M = 22.6, SD = 3.79), were recruited for this study via 

school mailing lists. Participants were required to have normal or corrected-to-normal vision 

without color-deficiencies (“color blindness”), and normal hearing abilities. This research 

complied with the American Psychological Association Code of Ethics and was approved by the 

Institutional Review Board at the University of Michigan (UM IRB: HUM00136276). Informed 

consent was obtained from each participant. 

Task and Apparatus 

The task in this experiment was to monitor the simulated video feeds of six UAVs for the 

presence of targets. Participants were informed that automation onboard the UAV would scan 

pre-defined regions to assist with the detection of the target, which was a green sedan. During the 

25-minute scenario, the UAVs followed preplanned trajectories. Simulated camera video feeds 
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of the ground from each UAV’s vantage point were displayed in a 2x3 grid on a single 30” 

monitor display. A UAV’s video feed became highlighted when it had possibly identified a 

desired target. The participant then reviewed the scene and pressed one of two buttons to either 

confirm or reject the presence of a target (see Figure 3.2). In addition, participants needed to scan 

the various UAV video feeds on a continuing basis to make sure all targets were detected.  

 

Figure 3.2 
Simulator Screenshot 

 

 

Design 

This experiment employed a within-subjects 3x2 factorial design. The two independent 

variables were the modality in which confidence information was presented (none, visual, 

auditory) and the confidence with which an object was identified by the UAV (high, low). The 

visual confidence information consisted of a green border that appeared around UAV windows 

containing a potential target. High confidence was represented by a highly saturated border while 

low confidence was represented by a less saturated border. In the auditory condition, a high pitch 

tone represented high confidence that a potential target had been detected, and a low pitch tone 
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corresponded to low confidence. During each block of trials, only one modality (none, visual or 

auditory) was used to present confidence information. In the auditory condition, the respective 

UAV video feed was highlighted to indicate which UAV the tone was associated with. 

Procedure 

Each experiment session started with participants being informed about the goals of the 

experiment. Participants received training on the simulation and the search tasks for five minutes 

before each block of trials.  

A total of three blocks of trials were completed. Each block lasted 25 minutes during 

which system confidence was either not provided, or encoded in visual or auditory form, 

respectively. During each run, the system of UAVs identified a total of 163 potential targets. 

Seventy-eight of the items were identified with high confidence and 85 of the items were 

identified with low confidence. Participants were informed that objects identified as targets with 

high confidence were indeed targets approximately 90% of the time, while objects identified as 

targets with low confidence were actual targets only 60% of the time. The order of blocks was 

counterbalanced, and while not known to the participants, each scenario had the exact same 

events in the same order (and differed only with respect to the modality that confidence 

information was presented in). Pilot testing in advance of the study confirmed that participants 

did not realize that identical scenarios were performed. 

The entire experiment lasted approximately two hours. Participants completed an online 

debrief questionnaire at the conclusion of all trials, and the participants were paid a total of $30 

for compensation. 
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Dependent Measures 

The dependent measures included performance on the target detection task (response 

time and detection rate/accuracy) and subjective trust ratings. Target detection performance was 

captured and recorded by the simulator. During the experiment, the simulation paused once 

every two minutes and participants were prompted to rank their trust in each UAV on a scale 

from 0-9 (with ‘9’ being the highest possible trust rating). Unlike the first study, the UAVs in 

this study performed only the target detection task and did not need to simultaneously manage 

their own health.  Therefore, the trust prompts in this study were not ambiguous with regards to 

which task was being trusted. Once the participants had completed entering their trust ratings, the 

simulation automatically resumed. 

 

Results 

The performance data and trust ratings were analyzed using linear mixed models with 

random effects. Analysis was performed using the statistics software R, the lme4 package (Bates, 

et al., 2015), and the lmerTest package (Kuznetsova et al., 2017). Likelihood ratio tests of the 

model with the examined fixed effect and the model without the examined fixed effect were used 

to obtain p-values. 

Response Times 

The means and standard deviations of response times to system recommendations as a 

function of representation modality and confidence level are shown in Table 3.1. A linear mixed 

model compared the response times between targets identified with high confidence and low 

confidence. Among the trials with visual and auditory representations of confidence, participants 

on average responded 0.08 seconds slower when a UAV had low confidence than high 
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confidence (χ2 (1) = 61.9, p < 0.001). It is interesting to note that objects that were detected with 

high confidence led to faster response times not only with auditory and visual confidence 

representations but also when no confidence information was provided. In an effort to explain 

this outcome, a linear mixed model analyzed the impact of interventions (i.e. when the 

automation incorrectly indicated a target and the participant needed to determine and respond 

that a target was not present) on participant response times. The model included the participant 

response (to comply or reject the recommended detection), the modality of the confidence 

representation, and the confidence level associated with a waypoint (high or low) as fixed 

effects; the participant was considered as a random effect. The results show that the need to 

intervene and reject the UAV recommendation, irrespective of modality and confidence level, 

increased the response time by an average of 0.14 seconds (χ2 (1) = 192.8, p < 0.001); see Figure 

3.3.  

 

Table 3.1 
Response Times 

 Representation Modality 
None Auditory Visual 

C
on

fid
en

ce
 

High M = 1.528s 
SD = 0.363 

M = 1.499s 
SD = 0.386 

M = 1.553s 
SD = 0.380 

Low M = 1.579s 
SD = 0.431 

M = 1.577s 
SD = 0.432 

M = 1.641s 
SD = 0.439 
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Figure 3.3 
Response Time as a Function of Confidence, Modality, and Response Type 

 

 

A linear mixed model assessed whether low confidence auditory representations led to 

longer response times than high confidence auditory representations. Since erroneous detections 

by the automation led to longer participant response times, the full model included both the 

confidence level and the response type (i.e. compliance or intervention) as fixed effects and the 

participant as a random effect. The reduced model excluded the confidence fixed effect and 

showed that low confidence auditory representations increased the response time by 0.046 

seconds (χ2 (1) = 10.0, p = 0.002).  

A linear mixed model compared the response times for each modality. The modality was 

included as a fixed effect and each waypoint and participant as random effects. Modality 

impacted response times with statistical significance (χ2 (2) = 62.7, p < 0.001). Specifically, 

pairwise comparisons showed that auditory representations of confidence resulted in response 

times that were 0.017 seconds faster than no confidence information (t(8223) = -2.22,   

p = 0.026, d = 0.06), and response times for visual representations of confidence were 0.043 

seconds slower than no confidence information (t(8224) = 5.49, p < 0.001, d = 0.15).  A second 



 
 

63 
 

linear model with the modality and confidence level included as fixed effects did not a find a 

significant interaction between the two factors.  

Accuracy 

Accuracy on the detection task was evaluated by summing the number of times that a 

participant correctly complied with the automation’s identification of the target and the number 

of times that the participant correctly intervened and reported that a target was not present at the 

waypoint. Overall, accuracy did not differ significantly as a function of modality (χ2(2) = 4.23,  

p = 0.121). However, during the trial block with visual representations of confidence, 

participants were more likely not to respond to UAV target detections (on average, one 

percentage point more of the waypoints had no responses than the trial with no confidence 

information (t(89) =2.54, p = 0.013)), and they incorrectly complied with the automation’s 

recommended detections at a higher rate (on average, incorrect compliance was 3% higher than 

during the “no confidence representations” trials (t(90) = 1.97, p = 0.051)). 

Trust Ratings 

Trust ratings were collected to determine whether the availability of confidence 

information improved participants’ trust calibration and to examine the relationship between 

subjective trust and monitoring behavior. Since trust is likely more calibrated towards the end of 

a block of trials (based on observed system performance), the analysis compared the median of 

the last three trust scores for each UAV. The UAV and the participant were random effects in the 

linear mixed model. Two hypotheses regarding trust outcome variables were tested using 

Bonferroni adjusted alpha levels of 0.025. Auditory, but not visual, confidence information led to 

a slight but not significant increase in trust (by 0.21 points, on a ten-point scale) over no 

confidence information (χ2 (1) = 4.4527, p = 0.035). While participants were provided the 
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opportunity to rate their trust for each (individual) UAV, half of the participants reported 

equivalent trust scores for all UAVs. 

Debrief Responses 

After completing the study’s three blocks of trials, participants completed a debrief 

questionnaire. Eleven out of 18 participants responded that the information about the 

automation’s confidence affected their own assessment of whether a target was presented. Only 8 

out of 18 participants thought the confidence information impacted how they monitored the 

system. Nine participants considered the auditory confidence representations to be the most 

useful, followed by 7 participants who indicated that the visual representations were most useful, 

and two participants who did not find either the visual or auditory confidence representations 

helpful. Twelve participants felt that high confidence should be represented by a high pitch tone 

whereas two participants thought high confidence should be represented by a low pitch tone; four 

participants had a neutral response when asked how confidence should be mapped to a 

representation’s pitch. 

 

Discussion 

The purpose of this experiment was to determine whether providing information about a 

machine’s confidence in its ability to detect a target would improve trust calibration and attention 

management, as well as overall system performance. In addition, two different representations of 

confidence information - auditory and visual - were compared to assess their effectiveness for 

supporting operators in evaluating a system’s trustworthiness quickly and reliably. 
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The Impact of Confidence on Performance 

The observed difference in response times between high confidence and low confidence 

targets suggests that participants incorporated the confidence information into their signal 

evaluations. Longer response times for the automation’s lower confidence detections indicate 

that participants spent more time inspecting and monitoring the video feeds independently to 

avoid that they incorrectly complied with the automation’s recommendations. For auditory 

representations of confidence, the natural mapping of a high pitch tone to a high level of 

confidence resulted in faster response times, suggesting that participants intuitively and correctly 

mapped the pitch of a tone to the machine’s reliability level, in parallel with performing their 

visual tasks, and then allocated their attentional resources accordingly. 

Task accuracy did not differ significantly as a function of confidence. Low confidence 

detections, while leading to slower response times as they likely prompted more monitoring of 

the respective video feed, did not increase attention demands to the extent that participants were 

less responsive to low confidence detections than high confidence detections.  

Visual Representations of Confidence Added to Attention Demands 

In contrast to Basapur et al. (2003) who observed faster response times to visual 

representations of confidence, the use of this modality in this study led to longer response times 

and more instances where the participant did not respond at all to the automation’s target 

recommendation. This may be explained, in part, by the specific implementation of visual 

confidence information in our experiment. The intent of the design was to allow participants to 

process the information pre-attentively, in peripheral vision, to avoid interference with the visual 

target detection task. However, despite extensive pilot testing of the design, participants’ 

feedback following the actual experiment suggests that the visual cues were not salient enough 
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and actually increased visual processing demands by requiring focal visual attention. The fact 

that visual representations were not salient enough may be related to a limitation of this study. 

We did not perform cross-modal matching, i.e. asking participants to adjust the intensity of the 

visual and auditory cues to match their perceived intensities (Pitts, Riggs, & Sarter, 2016), in 

advance of the experiment.  

The auditory representation of confidence information did not increase response time, 

suggesting that participants were able to successfully attend to both the auditory confidence 

information and the visual detection task at the same time. This finding is in line with Multiple 

Resource Theory, which predicts better time sharing when information is distributed across 

sensory channels, due to reduced competition for attentional resources. 

Providing confidence information did not improve the accuracy of the joint human-

machine team, and statistically significant differences in mean response times were on the 

magnitude of hundredths of seconds and thus had a small effect. Future research might consider 

assessing the impact of confidence representation on performance with a testbed that 

incorporates additional (secondary) tasks and adds more substantial attention demands on a 

participant; this may result in larger effects being observed and better illustrate how the provision 

of confidence information may critically impact performance in high tempo operational contexts. 

Incorrect Detections Led to Longer Response Times 

The same scenario (with different confidence representations) was presented to 

participants in each trial. Unexpectedly, targets that were classified as “high confidence” in the 

visual and auditory conditions led to faster response times even in trials with no confidence 

information. Further analysis revealed that this finding can be explained by the fact that 

participants generally took more time to respond when the automation incorrectly indicated the 
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presence of a target, suggesting that participants may have been concerned that they initially 

missed seeing the target, and spent more time inspecting a video feed when the target was not 

immediately found. 

Multi-UAV Trust Ratings 

It was expected that subjective trust ratings would reflect better trust calibration when 

confidence information was provided. Instead, auditory (but not visual) confidence information 

resulted in slightly higher, but not necessarily more appropriate trust ratings. One possible reason 

why the expected benefit of providing confidence information was not observed is that, in 

contrast to most previous experiments on trust, participants had to provide individual ratings for 

multiple UAVs whose reliability varied throughout the study. Participants reported in the debrief 

questionnaire that it was difficult for them to track and remember the performance of each UAV, 

a challenge that was likely exacerbated by the high tempo of operations. 

Conclusion 

In summary, the findings from this study indicate that providing information about a 

system’s confidence in its own abilities may be an effective technique for improving the 

performance of human-machine teams, especially in high tempo operations with high attentional 

demands. Operators in this experiment showed faster response times when the machine 

identified a target with high confidence and an intervention was not necessary. However, the 

results also highlight that performance effects critically depend on the specific design of 

confidence information. Visual representations increased the demands on an operator’s 

attentional resources which were taxed also by the visual detection task and thus resulted in 

slower response times due to interference. In contrast, auditory representations resulted in faster 

response times as they avoided task interference and employed a natural mapping between high 



 
 

68 
 

pitch tones and high confidence levels. Future research might consider comparing how different 

auditory design methods for representing confidence impact performance. Studies might also 

consider using eye tracking to compare how visual and auditory confidence representations 

impact gaze behavior and system monitoring.  
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Chapter 4  

Comparing the Effectiveness of Hue- Versus Salience-Based Representations of Confidence 

and Uncertainty for Supporting Trust Calibration and Attention Management 

 

The findings from the study described in Chapter 3 suggested that visual confidence 

representations may degrade performance as they compete for attentional resources with 

operators’ visual tasks and therefore result in longer response times to automation classifications. 

However, it is not clear whether this finding was the result of the specific implementation of 

confidence information (i.e., an additive representation with high confidence corresponding to a 

highly saturated border), and whether a different visual representation of confidence might lead 

to a better outcome. Additionally, the attention demands in the study may have been too low, as 

suggested by the ceiling effect for classification accuracy, which may have obscured 

performance benefits of providing confidence information. The study described in this chapter 

therefore compared two different visual representations of confidence-related information in the 

context of more demanding tasks.  

The study also examined how the framing of confidence information as confidence or 

uncertainty may affect trust calibration and attention management, as shown in Figure 4.1. Past 

research has evaluated visualizations of confidence and uncertainty separately to assess how well 

they enable a person to determine a system’s estimated accuracy quickly and accurately. In 

contrast, this experiment directly compared the two framing techniques. Finally, the study 

included both valid and invalid estimates of system performance to examine whether and how 
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inaccurate confidence information affects trust levels and monitoring behavior. The following 

four outcomes were expected: 

1.  Salience-based representations of uncertainty, as opposed to salience-based 

representations of confidence, would capture attention faster and more reliably 

when the estimated accuracy of a classification was low. This prediction was 

because uncertainty representations would become brighter with low assumed 

accuracy while the opposite would happen with confidence information. 

2. Participants would find it easier to distinguish between different levels of 

confidence and uncertainty with hue-based (as opposed to salience-based) 

representations of a machine’s estimated accuracy which, in turn, would lead to 

better attention management and better performance on the classification and 

secondary tasks. 

3. Participants would monitor recommended classifications more closely with 

uncertainty (as opposed to confidence) framing. This expectation was based on 

past research which suggested that a negative framing of impact (i.e. uncertainty) 

can influence attitudes and behavior more than a positive framing of benefits and 

gains (i.e. confidence; Tversky & Kahneman, 1986). In addition, uncertainty 

framing would likely cause a participant to adopt more risk averse behavior 

(Sheridan, 2008), leading to slower classification times, initially lower trust 

scores, better classification accuracy, and worse performance on the mission’s 

secondary tasks, compared to confidence information. 

4. As a corollary to the third expectation, it was anticipated that participants in the 

uncertainty condition would be more likely to notice and subsequently adjust their 
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monitoring and trust in the multi-UAV system when there was a mismatch 

between a system’s true and estimated accuracy (Expectation 4). 

 

Figure 4.1 
The Study Presented in this Chapter Focuses on the Part of the Conceptual Framework that 
Relates to How Confidence or Uncertainty Information Supports Trust Specificity and Bottom-
Up Attention Management 

 

 

Method 

Participants 

Sixty University of Michigan students between the ages of 18-30 years old (M 22.8 years 

old, SD = 2.48) completed the study. An Air Force Subject Matter Expert confirmed that the age 

range of the participants was analogous to that of Air Force UAV pilots. This research complied 

with the American Psychological Association Code of Ethics and was approved by the 
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Institutional Review Board at the University of Michigan (UM IRB: HUM00197449). Informed 

consent was obtained from each participant. 

Task and Apparatus 

Participants supervised eight unmanned aerial vehicles that classified imagery in a 

military reconnaissance task. The experiment’s testbed was an augmented simulator based on the 

Air Force Vigilant Spirit Control Station. The simulator’s interface spanned two monitors (see 

Figure 4.2); the left monitor displayed the video feeds for each of the UAV’s thermal cameras 

and the right monitor displayed an aerial map that depicted the position and health of each UAV 

in real-time. 

 

Figure 4.2 
Simulator Interface 

 

 

Once a UAV reached a target area, it analyzed the field directly below itself and informed 

the participant if it had identified either a person, a tank, or communication equipment in the 

scene. The automation’s classification was expressed through the illumination of an icon of a 

person, a tank, or a radio tower to the right of the video feed (see Figure 4.3). In addition, the 

UAV displayed its confidence or uncertainty in its recommendation via a border that appeared 
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around the entire video feed. The Experiment Design section will provide more detail on the 

various confidence/uncertainty representations. Initially, the infrared imagery at each waypoint 

was too dark to be interpretable by the participant; participants had to either rely on the 

recommended classification or elect to brighten the video feed to inspect the imagery more 

closely before classifying the scene. A participant could either choose to comply with the 

automation’s recommended classification of the scene, select a different classification that they 

believed was correct, or press a button to indicate that they believe no target was present at the 

waypoint. Participants had twelve seconds to classify the scene waypoint arrival before the UAV 

would proceed to its next waypoint. 

 

Figure 4.3 
The UAV Simulator Recommends a “Person” Classification with a Border Indicating that the 
UAV has High Confidence in its Classification 

 

 

In addition to identifying possible targets at each waypoint, participants needed to attend 

to three secondary tasks. They had to monitor and respond to messages from an Air Traffic 

Control chatroom, located in the center of the video feed displays (as shown in Figure 4.2), as 

well as a Mission Room chat room that simulated inquiries from other military personnel about 

how the participant interpreted and classified the video feed imagery. Participants were also 
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tasked with monitoring the aerial map, which displayed the preprogrammed flight path and 

position of each UAV in real-time. During training, participants were cautioned that UAVs 

would occasionally deviate from their preplanned trajectories. They were told to click the 

corresponding UAV icon which would return the vehicle to its route. 

Experiment Design 

This experiment employed a mixed design. The four independent variables were (1) 

framing of estimated accuracy information (3 levels; between-subject), (2) method of 

representing confidence/uncertainty (2 levels; between-subject), (3) operational tempo (2 levels; 

within-subject), and (4) representation accuracy (2 levels; within-subject). 

Framing of Estimated Accuracy Information (Between-Subjects) 

Participants were randomly assigned to one of three groups which were presented with 

either confidence information, uncertainty information, or neither confidence nor uncertainty 

information for each recommended classification.  

Method of Representing Confidence/Uncertainty (Between-Subjects)  

The two groups who received either confidence or uncertainty information were further 

subdivided into two groups each. One group was informed that the border around a video feed 

would stay a constant hue but vary in brightness, such that high uncertainty/confidence 

recommendations were represented with the more salient (i.e. brighter border; see Figure 4.4). 

This additive representation can be considered a form of natural mapping. In the other group, the 

border used a red-yellow-green color scheme, as shown in Figure 4.5. A red border corresponded 

to assumed low accuracy (i.e. low confidence; high uncertainty), a yellow border corresponded 

to a medium level of accuracy (i.e. medium confidence; medium uncertainty) and a green border 

corresponded to high accuracy (i.e. high confidence; low uncertainty). This substitutive mapping 
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tries to exploit conventions and participants’ familiarity with similar color coding (e.g., traffic 

lights, (Wickens & Hollands, 2000, p. 101)). Participants were informed during training that 95% 

of recommendations with high estimated accuracy, 80% of recommendations with medium 

estimated accuracy, and 65% of recommendations with estimated low accuracy were likely 

correct. 

 

Figure 4.4 
A Video Feed Displaying its Level of Confidence or Uncertainty with a Constant-Hue, Varying-
Salience Border 

   

 

Figure 4.5 
A Video Feed Displaying its Level of Confidence or Uncertainty Using a Red-Yellow-Green 
Color Scheme 

       

 

Operational Tempo (Within-Subjects) 

Operational tempo refers to the number of events in each time period. During low tempo 

periods, a UAV arrived at a new waypoint every 18 seconds and there was a flight deviation 

once every five minutes. In addition, participants were prompted to respond to one ATC 
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command each minute. A high tempo period was created by increasing the number of chat 

messages and flight deviations, as well as shortening the periods between waypoint classification 

prompts. During high tempo periods, new imagery at a waypoint had to be classified 

approximately every 14 seconds, there was one flight deviation every three minutes, and 

participants were prompted to respond to three ATC commands each minute. A prompt in the 

Mission Room chat room appeared every minute throughout both high and low operational 

tempo periods. 

Representation Accuracy (Within-Subjects) 

There were two five-minute periods during the last 15 minutes of the scenario where a 

machine overestimated the accuracy of its recommendations; a five-minute period of 

overestimated accuracy was followed by a five-minute period of valid accuracy, which was 

followed by a five-minute period of overestimated accuracy. Outside of these periods, the 

confidence and uncertainty representations were appropriately mapped (e.g. high confidence 

recommendations were correct 95% of the time). 

Procedure 

Participants were trained how to use the multi-UAV simulator and how to interpret the 

confidence/uncertainty representations, according to their randomly assigned group. The training 

included reviewing an instructional PowerPoint and completing a ten-minute training scenario 

that introduced participants to the study’s tasks. At the end of training, participants completed a 

quiz via Google Forms that assessed their ability to recognize targets and interpret 

confidence/uncertainty information correctly; the quiz informed participants about any incorrect 

answers and presented the correct answers. The participant then took a five-minute break before 

the one-hour experiment began. Participants received $30 for their participation in the 
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cumulatively two-hour study. An additional $10 bonus was awarded to the participants with the 

first- and second-best performance scores in each group. 

Dependent Measures 

The dependent measures in this study included target classification performance, 

secondary task performance (chatrooms and monitoring for flight deviations), eye tracking 

metrics, self-reported scores of trust and one’s own monitoring capabilities, and a debrief 

questionnaire. Primary and secondary task performance (response time and accuracy) was 

recorded by the simulator. The commercially available eye tracker Tobii Pro Glasses 2 and the 

software Tobii Pro Lab measured gaze behavior and reported eye tracking metrics for each data 

collection session. A person’s trust was also inferred based on a person’s gaze behavior (Lu & 

Sarter, 2019). 

At seven points during the study, the simulator momentarily paused and participants were 

prompted to rate their agreement with the following statements on a scale of 1 (low) to 10 (high): 

1.  I have enough time to monitor all UAVs as much as I desire 

2. I trust the high confidence recommendations 

3. I trust the low confidence recommendations  

The prompt wording was revised for participants who were provided classification 

recommendations with uncertainty displays (e.g. “I trust the low uncertainty recommendations”). 

Participants in the baseline group, who were not shown any representations of confidence or 

uncertainty, were simply asked whether they generally trusted the classification 

recommendations in lieu of the final two questions. The prompts occurred 10, 20, 40, 45, 50, 55, 

and 60 minutes into the simulation scenario, corresponding to events when either the operational 

tempo or the representational accuracy changed. 
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Results 

The impact of confidence and uncertainty representations on trust calibration, attention 

management, and performance was evaluated in two stages. During the first stage, the potential 

for confounds in subsequent analyses was eliminated. Specifically, the data for participants who 

ignored a task was excluded from later analyses, as their neglect of a task would affect attention 

management and performance across the entire multitask testbed. Also, the study reported in 

Chapter 2 found that gaze behavior and response times were affected by some participants 

visually inspecting a video feed prior to a UAV arriving at a waypoint and prior to a 

recommended classification being displayed (this behavior was referred to as “previewing”). As 

described in more detail below, analyses were conducted during this first stage to evaluate the 

extent of previewing in the present study and identify whether subsequent analyses needed to 

exclude the corresponding data.  

During the second stage, the impact of the two types of visual representations of system 

confidence and uncertainty information on trust specificity and attention management was 

analyzed. This analysis followed Parasuraman, Sheridan, & Wickens' (2000) four-stage model of 

human information processing which includes 1) information acquisition; 2) information 

analysis; 3) decision and action selection; and 4) action implementation. Attention capture 

(Expectation 1) was examined first, followed by assessments of how participants analyzed the 

confidence and uncertainty representations (Expectations 2 and 3). Since it was anticipated that 

(the validity of) representations of confidence or uncertainty would impact whether a person 

would decide to review a UAV’s recommendation, video feed illumination and monitoring was 
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then evaluated (Expectation 4). Finally, classification performance was assessed (Expectations 2 

and 3). 

The statistics software R, and the lme4, (Bates et al., 2015) lmerTest (Kuznetsova et al., 

2017), multcomp (Hothorn, Bretz, & Westfall, 2008), and rstatix (Kassambara, 2021) packages 

were used to analyze the data.  Participants were modeled as random effects in the linear mixed 

models and generalized linear mixed models to distinguish between variation that was 

contributed by fixed effects (e.g. representation of confidence information) and variation 

attributed to an individual person's general ability to multi-task and cope with high attention 

demands (i.e. their attentional capacity). 

Task Adherence 

Since one aim of this study was to assess confidence and uncertainty representations in a 

multi-tasking environment with high attention demands, data for eight participants were 

excluded from the analysis because they ignored one of their tasks. This was done to reduce a 

potential confound where better monitoring and performance on one task might simply be due to 

fewer attention demands. Some of these participants may not have intended to neglect tasks but 

were compelled to do so because the remaining tasks imposed attention demands beyond their 

capacity. This is reflected by participants’ responses to the statement, “I have enough time to 

monitor all UAVs as much as I desire,” after the simulation’s first high tempo period. 

Participants rated their agreement on a scale of 1 (low) to 10 (high), and an independent samples 

t-test was used to compare the group participants who had adhered to all the study’s tasks and the 

group of participants who had neglected one of the study’s tasks. Participants who neglected one 

of the study’s tasks rated their agreement 2.3 points higher than participants who attended to all 

of the study’s tasks (M = 7.9, t(9.65) = 3.92, 95% CI [1.0 3.7], p = 0.003). Participants who 
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attended to all tasks, albeit poorly, were still included in the analysis. Ultimately, the analyses 

included data from eight participants in the group that was not provided confidence or 

uncertainty information, twelve participants in each of the confidence information groups, and 

ten participants in each of the uncertainty information groups. 

Previewing and Monitoring  

This dissertation’s first study found that, ignoring their instructions, participants began 

inspecting a UAV’s video feed as the vehicle approached its waypoint and before the 

recommended classification was provided. While this is an effective strategy for sampling in an 

environment with high attention demands (Wickens & Hollands, 2000), this behavior leads to 

participants mentally classifying the imagery without support of the UAV. To determine whether 

similar behavior occurred in this experiment, a generalized linear model compared the number of 

waypoints previewed by the baseline and four experimental groups. Pairwise comparisons found 

that participants in the baseline group previewed more waypoints than any other group (see 

Figure 4.6 and Table 4.1) and participants who were presented hue-based representations of 

uncertainty previewed waypoints significantly less than all groups (see Table 4.2). 
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Figure 4.6 
Number of Waypoint Images Previewed as a Function of Display Group 

 

Table 4.1 
Pairwise Comparisons of the Previewing Generalized Linear Model to the Baseline Group 

 exp(Estimate) z p 95% CI 
Confidence: Salience 0.73 -4.20 < .001 [0.62 0.84] 
Confidence: Hue 0.76 -3.57 < .001 [0.66 0.88] 
Uncertainty: Salience 0.83 -2.35 0.019 [0.72 0.97] 
Uncertainty: Hue 0.32 -10.90 < .001 [0.27 0.40] 

 

Table 4.2 
Pairwise Comparisons of the Previewing Generalized Linear Model to the Hue-Based 
Uncertainty Group 

 exp(Estimate) z p 95% CI 
Baseline 3.05 10.90 < .001 [2.50 3.73] 
Confidence: Salience 2.21 7.85 < .001 [1.81 2.70] 
Confidence: Hue 2.33 8.42 < .001 [1.92 2.84] 
Uncertainty: Salience 2.54 9.18 < .001 [2.09 3.11] 
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Attention Capture 

Eye tracking data were examined to assess whether salience-based visualizations of 

uncertainty captured attention faster than salience-based visualizations of confidence when a 

recommendation’s estimated accuracy was low (Expectation 1). A linear mixed model analyzed 

the impact of representing confidence or uncertainty recommendations with a salience-based 

visualization method, operational tempo, and their interaction as fixed effects; the participant 

was modeled as a random effect (see Figure 4.7). During high tempo periods, salience-based 

uncertainty representations captured attention, on average, 1.145 seconds faster than salience-

based confidence representations (t(54.64) = -3.14, 95% CI [-1.882 -0.423], p = 0.003). Salience-

based confidence representations also captured attention 1.040 seconds faster in low tempo 

periods than in high tempo periods (t(164.77) = -3.33, 95% CI [-1.656 -0.424], p = 0.001). There 

was no significant difference in attention capture during low tempo periods and for salience-

based uncertainty representation between tempos. 
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Figure 4.7 
Attention Capture of Salience-Based Representations of Low Estimated Accuracy as a Function 
of Framing and Tempo 

 

Interpretations of Confidence and Uncertainty Representations 

Gaze Behavior While Evaluating Representations 

A linear mixed model analysis evaluated the impact of salience-based and hue-based 

representations of a UAV’s estimated accuracy on total visit duration (i.e. the time a participant 

gazed at the representation before choosing to illuminate the video feed; Expectation 2). The 

representation method (hue-based or salience-based representation) and the estimated accuracy 

(i.e. high, medium, or low) were fixed effects and the participant was a random effect. As shown 

in Figure 4.8, salience-based representations led to significantly longer gaze durations of the 

border only when estimated accuracy was low (M = 0.246, t(191.19) = 2.22, 95% CI [0.027 

0.464], p = 0.028).  

 

** 
** 
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Figure 4.8 
Total Visit Duration to Evaluate a Representation of a UAV’s Estimated Accuracy as a Function 
of Representation Method and the Level the Estimated Accuracy 

 

Intuitiveness Rating 

To contextualize the results of Expectations 2 and 3 (i.e. the impact of framing and the 

representation method of a machine’s estimated accuracy on attention management, trust 

calibration, and performance), the debrief questionnaire asked participants to rate their 

agreement with the statement, “the mapping of colors to confidence [or uncertainty (depending 

on the group)] was intuitive.” A score of one indicated strong disagreement and five was 

associated with strong agreement. A linear model (F(3,42) = 5.04, p = 0.005) and pairwise 

comparisons indicated that participants who were presented salience-based trust scores of 

uncertainty provided lower intuitiveness ratings than those in the other groups (M =3.2; see 

Figure 4.9 and Table 4.3) . 

 

* 
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Figure 4.9 
Intuitiveness Rating as a Function of Display Group 

 

Table 4.3 
Pairwise Comparisons of Intuitiveness Ratings to Salience-Based Representations of Uncertainty 

 Estimate (as compared to 
Uncertainty: Salience) 

t p 95% CI 

Confidence: Salience 1.2 3.10 0.003 [0.4 2.0] 
Confidence: Hue 1.2 3.10 0.003 [0.4 2.0] 
Uncertainty: Hue 1.4 3.35 0.002 [0.54 2.2] 

 

How Framing Modulated Trust in High and Low Confidence and Uncertainty 

Representations 

It was expected (Expectation 3) that uncertainty information would initially cause 

participants to report lower trust in the automation than participants who were provided 

confidence information. A linear mixed model assessed the impact of framing and whether 

imagery was classified with a high or low estimated accuracy on the first trust scores provided by 

participants; the model included an interaction, and each participant (participants in the baseline 

group were excluded) was treated as a random effect. As shown in Figure 4.10, high uncertainty 

recommendations initially received trust ratings that were 1.3 points higher (t(84.98) = 2.57, 95% 
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CI [0.3 2.4], p = 0.018) than low confidence recommendations (M = 4.2, SE = 0.3); there was not 

a significant difference between the initial trust ratings for high confidence and low uncertainty 

recommendations. The model also found that participants rated their trust higher for 

classification recommendations with high estimated accuracy than low estimated accuracy for 

both confidence (M = 3.8 points higher, t(44) = 8.56, 95% CI [2.9 4.7], p < 0.001) and 

uncertainty (M = 1.7 points higher, t(44) = 3.36, 95% CI [0.7 2.6], p = 0.001). 

 

Figure 4.10 
The Impact of Framing on Initial Self-Reported Trust Ratings 

 

Video Feed Monitoring 

Video Feed Illumination and Representation Methods 

A generalized linear model analyzed how the display of confidence or uncertainty 

information (i.e. Expectation 3) influenced the number of waypoints illuminated by a participant 

(prior to the final 15 minutes of the scenario when the UAVs made incorrect estimates of their 

classification accuracies). Waypoints that were previewed (i.e. illumination was not determined 

* 

*** 

** 



 

87 
 

based on the estimated accuracy) or unclassified by the participant were excluded from the 

analysis. Pairwise comparisons found that only salience-based representations of high-

confidence led to significantly fewer waypoints being illuminated than the number of waypoints 

illuminated by the baseline group (M = 26%, z = -3.90, 95% CI [12% 32%], p < 0.001). There 

were no statistically significant differences in video feed illumination between the baseline group 

and other representations of high confidence or low uncertainty, as shown in Figure 4.11. 

Furthermore, there were no statistically significant differences in video feed illumination 

between the baseline group and any representation of low confidence or high uncertainty. 

 

Figure 4.11 
Number of Waypoints that were Estimated to have High Accuracy and were Illuminated as a 
Function of Display Group 
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Reviewing Recommended Classifications 

Eye tracking data were analyzed to determine how framing impacted a participant’s 

scanning behavior when reviewing video feed imagery (Expectation 3). A linear mixed model 

analysis evaluated gaze duration for a video feed after it was illuminated (and the imagery could 

be seen clearly), and a generalized linear mixed model was used to analyze the fixation count 

within the video feed. Framing was modeled as a fixed effect and the participants and waypoints 

were modeled as random effects. By analyzing the waypoints as a random effect, the models 

differentiated between effects of framing and effects that were unique to each waypoint (e.g. 

imagery discernability, operational tempo, estimated accuracy of recommendation). 

Overall, images that were classified correctly by the UAV and reviewed by the 

participant had a longer total visit duration with marginal significance (M = 0.243, t(43.90) = 

1.88, 95% CI [-0.015 0.499], p = 0.066) in case of uncertainty (as opposed to confidence) 

framing; the difference in fixations was not significant. Framing did not have a significant 

impact on the total visit duration or fixation count for targets that were classified incorrectly by 

the UAV.  

Mismatch Between Estimated and Actual System Accuracy  

Forty minutes into the scenario, there was a five-minute high tempo period where valid 

accuracy estimates were provided, followed by a second high tempo period where the UAVs 

overestimated the accuracy of their classifications. Next, there was a five-minute low tempo 

period with valid accuracy estimates, followed by a second low tempo period where the UAVs 

again overestimated the accuracy of their classifications. It was expected (i.e. Expectation 4) that 

participants who were presented uncertainty recommendations would better adjust their 

monitoring and trust in the multi-UAV system during periods with invalid accuracy estimates, 
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compared to participants who were presented confidence information. Linear mixed models 

compared how framing (i.e. confidence or uncertainty) and the validity of accuracy estimates 

impacted trust scores (Figure 4.12) and gaze behavior (Figure 4.13). Only scenes that were 

classified by the UAVs correctly were included in this analysis, since incorrect classifications 

have been shown to have a bottom-up effect on gaze behavior, confounding whether longer visit 

durations are due to less trust or a mismatch between actual and expected imagery (see  

Chapter 2). 

 

Figure 4.12 
Gaze Behavior as a Function of Framing, Tempo, and Estimated Accuracy 
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Figure 4.13 
Trust Rating as a Function of Framing, Tempo, and Estimated Accuracy 

 

 

Likelihood ratio tests found that framing did not significantly affect a participant’s gaze 

behavior or trust scores when UAVs overestimated the accuracy of their classifications during 

high tempo operations (the first two periods in Figure 4.12 and Figure 4.13). However, invalid 

accuracy estimates led to a significant increase in the total visit durations to analyze the video 

feed imagery (M = 0.706, t(650.42) = 7.57, 95% CI [0.523 0.890], p < 0.001) and a significant 

decrease in trust scores (M = -1.4, t(44) = -5.74, 95% CI [-1.9 -0.9], p < 0.001). 

Likelihood ratio tests also did not find significant differences in how framing impacted 

gaze behavior and trust scores during the two final low tempo periods when the UAVs began to 

overestimate the accuracy in their classifications (the third and fourth periods in Figure 4.12 and 

Figure 4.13). Overall, participants gazed for longer durations at the imagery (M = 0.310, 

t(554.21) = 3.64, 95% CI [0.143 0.478], p < 0.001) and provided lower trust scores (M = -0.9, 

t(44) = -4.636, 95% CI [-1.2 -0.5], p < 0.001) when the UAVs overestimated their classification 

accuracies in the low tempo periods. 
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Performance 

A likelihood ratio test indicated that a participant’s display group did not significantly 

impact the number of waypoints that the participant ultimately classified correctly. Figure 4.14 

suggests that a ceiling effect may have been observed; on average, participants classified 91.2% 

of waypoints correctly during the hour-long scenario. 

 

Figure 4.14 
Waypoint Classification Accuracy as a Function of Display Group  

The dashed gray line represents the total number of classification tasks in a scenario. 

 

Linear mixed models assessed the extent that display design impacted classification 

times; the display group was a fixed effect and the waypoints were random effects. Classification 

times were measured by the simulator as the total time elapsed from when a UAV arrived at a 

waypoint and displayed its recommended classification, to when the participant provided their 
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classification of the video feed’s imagery. Therefore, classification times included both the 

amount of time that participants spent attending to the primary classification task, as well as the 

time elapsed while the participant attended to other tasks. It is worth noting that classification 

times may have been affected by the congruence between the expected and actual targets, the 

estimated accuracy's magnitude and validity, the operational tempo, and previewing. Therefore, 

the focused analysis evaluated classifications that were performed when there were greater 

attention demands and performance was more critical (i.e. waypoints during high operational 

tempo periods that were not previewed). Since there were relatively fewer instances when the 

UAVs had medium or low estimated accuracy levels, and even fewer cases when the UAVs 

provided wrong classifications, the analysis was restricted to the larger sample size of correct 

classifications that were highly estimated to be accurate. As shown in Figure 4.15 and the 

pairwise comparisons in Table 4.4, hue-based uncertainty representations led to longer 

classification times than the other visualization methods, but the effect was small. 
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Figure 4.15 
Waypoint Classification Time as a Function of Display Group.  

 

Table 4.4 
Pairwise Comparisons of Classification Times to the Hue-Based Uncertainty Group 

 Estimate t df p 95% CI d 
Baseline -0.932 -1.88 51.56 0.065 [-1.920 0.055] 0.078 
Confidence: 
Salience 

-1.375 -3.08 51.22 0.003 [-2.265 -0.485] 0.111 

Confidence: 
Hue 

-0.863 -1.93 51.25 0.058 [-1.754 0.026] 0.070 

Uncertainty: 
Salience 

-0.983 -2.11 51.50 0.039 [-1.915 -0.053] 0.081 

 

Secondary task performance was evaluated by comparing the response times to flight 

deviations and chat messages between display groups. Since the operational tempo may have 

impacted response times, these analyses focused on high tempo operations when performance 

maintenance was more critical. A linear mixed model found that salience-based representations 

of confidence (M = -148.80, t(44.87) = -2.60, 95% CI [-263.69 -34.81], p = 0.012), hue-based 
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representations of confidence (M = -144.89, t(44.87) = -2.54, 95% CI [-259.78 -30.89],  

p = 0.015), and salience-based representations of uncertainty (M = -124.48, t(44.82) = -2.05, 

95% CI [-2642.73 -3.13], p = 0.047) had significantly shorter response times to flight deviations 

than the baseline group (see Figure 4.16). The number of correct responses to ATC chat 

messages during high tempo periods as a function of display group is shown in Figure 4.17. A 

generalized linear model analysis found that only salience-based representations of uncertainty 

had a significantly different quantity (14.1% fewer) of correct responses than the baseline group 

(z = -2.24, p = 0.025).  

Figure 4.16 
Flight Deviation Response Time as Function of Display Group 
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Figure 4.17 
Number of Correct Responses to ATC Chat Messages in High Tempo Operations as a Function 
of Display Group 

 

 

Summary of Findings 

This study assessed the impact of two different visual representations (salience- versus 

hue-based) and two types of framing (confidence versus uncertainty) on trust calibration, 

attention management, and performance. Table 4.5 presents a summary of the study’s main 

expectations and findings.  
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Table 4.5 
Summary of Expectations and Findings 

 
Legend: Supports Expectation  Contradicts expectation  • Partially, but not fully, supports expectation 
Expectations Findings Supported? 
1 - Additive, salience-based 
representations of uncertainty, as opposed 
to salience-based representations of 
confidence, will capture attention faster 
and more reliably when the estimated 
accuracy of a classification is low   

 Salience-based representations of high uncertainty captured attention 
significantly faster than salience-based representations of low 
confidence in high tempo periods (but not low tempo periods). 

() 

2 - Participants will find it easier to 
distinguish between levels of confidence 
and uncertainty with hue-based 
representations (compared to salience-
based) 

  Participants spent significantly longer gazing at salience-based (as 
opposed to hue-based) representations of high uncertainty and low 
confidence before choosing to illuminate a video feed.  

 Participants reported that salience-based representations of 
uncertainty were less intuitive than other visualization methods.  

() 
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3 - Uncertainty framing will cause a 
participant to adopt more risk averse 
behavior, such as more closely 
monitoring and scrutinizing a UAV’s 
recommendations. This will lead to 
slower classification times, initially lower 
trust scores, better classification accuracy, 
and worse performance on the mission’s 
secondary tasks (compared to confidence 
framing). 

 Representations of uncertainty were associated with longer video 
feed gaze durations when UAVs classified imagery correctly. 

  Hue-based representations of uncertainty had slower classification 
times than the other visualization methods. 

 Representations of low confidence led to significantly greater trust 
decrements than high uncertainty. 

 There were no significant differences in the number of waypoints 
illuminated between the confidence and uncertainty framing groups. 

 
•  Participants had significantly greater initial trust in waypoints that 

were classified with a higher estimated accuracy than lower estimated 
accuracy. 

 
 
 

( • ) 

4 - Displays of uncertainty will make it 
more likely that participants notice a 
mismatch between a system’s true and 
estimated accuracy and subsequently 
adjust their monitoring and trust. 

•   Framing did not lead to significant differences in gaze behavior or 
trust scores when UAVs overestimated their accuracy. However, 
participants gazed longer at the video feeds and provided lower trust 
scores during these overestimation periods.  

 

( • ) 
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Discussion 

This study assesses the impact of a system providing real-time feedback regarding its 

confidence in or uncertainty about its own performance on human operators’ trust calibration, 

attention management, and joint system performance. Specifically, the framing of a machine’s 

estimated accuracy as confidence or uncertainty, the method for visualizing the estimated 

accuracy level, and the impact of temporary mismatches between a machine’s estimated and 

actual accuracy were evaluated. 

Representing Confidence and Uncertainty 

During high-tempo operations, when a UAV’s estimated classification accuracy was low, 

salience-based representations of uncertainty (as compared to confidence) captured participants’ 

attention significantly faster. This partially supports our first expectation and may be explained 

by the fact that, when accuracy was low, uncertainty representations were brightest (i.e. high 

uncertainty) whereas confidence representations were at their lowest salience level. In contrast, 

during low-tempo operations, attention capture rates did not differ between the two types of 

framing, confidence or uncertainty. The latter finding qualifies past research conducted by 

Bisantz et al. (2009) on additive representations and reinforces the need for researchers to 

contextually evaluate confidence and uncertainty representations. 

While salience-based representations of uncertainty had the advantage of leading to faster 

attention capture during high-tempo periods, participants considered them to be less intuitive 

than all the other representations of a system’s estimated accuracy in this study. Two participants 

reported that they had trouble making the absolute judgments required to distinguish between the 

different salience levels (and corresponding levels of uncertainty). Another two participants 

expressed that, intuitively, they would have expected greater brightness and salience to 
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correspond with greater certainty, rather than uncertainty. Thus, additive representations of 

uncertainty may have been confusing to participants because an increase in one dimension –

salience– correlated with a decrease in another dimension – certainty or confidence. Unaware 

that participants in other groups were presented a hue-based representation of uncertainty, two 

participants suggested that a red-yellow-green representation of uncertainty would have been 

more intuitive.  

Difficulties with distinguishing salience levels and the unintuitive mapping of salience to 

uncertainty may explain why participants gazed at additive representations of low accuracy for 

significantly longer before illuminating a video feed, compared to substitutive hue-based 

representations. The above findings highlight that, while unfamiliar hue-based palettes may not 

map naturally to the additive dimension of uncertainty (Bisantz et al., 2009), the red-yellow-

green palette employed in this study was effective likely due to the widely familiar symbolic 

meaning of these hues (e.g., their use in alarm design).  

Confidence and Uncertainty Framing 

Representations of a machine’s confidence or uncertainty were both effective methods 

for supporting trust specificity. Prior to gaining substantial experience with the simulator, 

participants at the beginning of the study provided higher trust ratings for recommended 

classifications that were associated with greater estimated accuracy (i.e. high confidence, low 

uncertainty) and lower trust ratings for recommended classifications that had a lower estimated 

accuracy. However, in contrast to Expectation 3, participants provided lower trust scores for low 

confidence recommendations than equivalent high uncertainty recommendations. Participants 

were informed during training that recommendations with a low estimated accuracy were correct 

for 65% of classifications. This should have resulted in a trust score of approximately 6.5. 
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However, low confidence representations received a mean initial trust score of 4.2, and high 

uncertainty representations had a mean initial trust score of 5.5. One explanation for this finding 

might be that, because a confidence orientation focuses on gains, performance decrements 

(“losses”) were perceived more acutely by operators, whereas operators presented with an 

uncertainty framing expected the machine to be imperfect and their trust was both better 

calibrated and more resilient to a machine’s lower capabilities. This finding may also be 

explained by results from a study conducted by Yang, Wickens, & Hölttä-Otto (2016) which 

concluded that the expected validity of automated recommendations may influence the 

magnitude of trust decrements. Since recommendations presented with high uncertainty were 

anticipated to be incorrect, they may not have triggered negative trust feedback loops to the same 

extent as unexpected violations of confidence. Yang et al. (2016) connected their findings to 

prospect theory (Kahneman & Tversky, 1979) which posits that losses are assessed more 

negatively than gains. 

Eye tracking data support our expectation that participants would gaze at a video feed for 

a longer period of time when presented with uncertainty representations, compared to confidence 

representations. This suggests that the uncertainty framing indeed promoted a risk-averse 

mindset and caused participants to review a UAV’s recommendations more closely. The UAV’s 

estimated accuracy level (i.e. high confidence versus low confidence) did not affect how long 

participants reviewed the video feed. While trust scores were sensitive to changes in estimated 

accuracy, the difference between the three reliability levels (15% each) may not have been 

sufficient to affect participants’ reliance and monitoring behavior. In comparison, Lu and Sarter 

(2019) reported longer gaze durations correlated with reliability decrements in their study of a 

system that changed from being 95% reliable to 50% reliable.  
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Salience-based high confidence indications were the only type of representation that led 

to greater reliance on UAV classifications than the baseline condition. As shown in Figure 4.11, 

participants in this group illuminated the video feeds less frequently to check if the 

recommended high confidence classifications were correct. One explanation might be that the 

other display groups drew attention to the UAVs’ classification capabilities being imperfect and 

needing to be monitored, whereas the salience-based confidence representations de-emphasized 

the likelihood that interventions may be necessary. For example, the hue-based confidence and 

uncertainty representations used a red border to indicate when monitoring was needed, and the 

salience-based uncertainty recommendations were brightest when monitoring would have been 

beneficial too. In comparison, salience-based representations of confidence were least salient 

when monitoring would have been beneficial. This may have led to higher expectations of 

reliability, and greater trust (or even overtrust) for salience-based confidence representations. 

Overestimation of Accuracy 

When UAVs overestimated their performance, high confidence and low uncertainty 

recommendations dropped in accuracy from 95% to approximately 30%. Participants noticed this 

drop in performance, lowered their trust in the multi-UAV system’s classifications and gazed at 

the video feed imagery for longer periods of time. This significant difference in gaze behavior 

suggests that eye tracking may be better suited for assessing trust resolution than trust specificity; 

large changes in capabilities led to significant changes in gaze behavior, but the incremental 15% 

difference between each of the three reliability levels (e.g. low, medium and high confidence) 

did not lead to significant changes in monitoring behavior (see also Lu and Sarter (2019) and the 

study described in Chapter 2).  
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 While there were no significant differences in trust score decrements and gaze behavior 

between confidence and uncertainty representations when UAVs overestimated their accuracies, 

gaze durations (but not trust scores) in the uncertainty group were slower to return to their initial 

value when the UAVs accuracy returned to 95% (see Figure 4.12). When participants 

encountered a second period of overestimated accuracies, they lowered their trust scores and 

increased their monitoring again. However, the magnitude of these changes was smaller than 

during the first period of incorrect accuracy estimates. The total visit durations and trust ratings 

shown in the final period of Figure 4.12 and Figure 4.13 suggest that participants approached an 

average level of trust and monitoring as they were increasingly exposed to periods of lower 

system capabilities and learned how to manage both the increased monitoring needs while still 

attending to the secondary task demands.  

Performance 

There was no significant difference in participants’ classification accuracy between 

groups. Note, however, that this may be due to a ceiling effect. During pilot testing in advance of 

the experiment, participants felt that the tasks were sufficiently difficult and that further 

increasing attention demands might cause them to neglect tasks. There was also a concern that 

increasing attention demands beyond a participant’s capacities might compel them to comply 

with a UAV’s recommended classifications because they had no choice due to excessive 

workload, rather than compliance reflecting their trust in the system.  

While differences in classification accuracy were not observed, hue-based representations 

of uncertainty led to slower classification times during high tempo operations, compared to all 

other display groups (including the baseline). This was a small effect, and it may also have been 

a cumulative effect. First, participants who were presented with hue-based representations of 
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uncertainty tended to illuminate the video feeds at more waypoints than the salience-based 

representations groups (see Figure 4.10). This finding may be explained by the fact that salience-

based uncertainty representations were considered the least intuitive, thus potentially leading to 

misinterpretations of system accuracy. With salience-based confidence representations, there was 

a negative correlation between the salience of the signal and the need for monitoring (i.e. high 

salience equals high confidence implying little need for reviewing the video feed). Second, 

participants gazed at video feeds for significantly longer durations when presented with an 

uncertainty (versus confidence) framing, perhaps due to its orientation to the potential for loss 

and violations of a machine’s anticipated accuracy. This highlights a tradeoff between the 

different designs. On the positive side, hue-based representations of uncertainty were considered 

more intuitive by participants, and they led to closer supervision of the UAVs. However, this 

resulted in slower classifications. In a low-tempo environment, or in a context where inaccurate 

classifications can have disastrous consequences, the relatively minor delay of 1-1.5 seconds for 

hue-based representations (see Table 4.4) may make them the design of choice. 

There are indications that participants who were provided information about the UAVs 

confidence or uncertainty were able to better manage attention demands, compared to the 

baseline. Participants in the latter group took more time to respond to the secondary task’s flight 

deviations and previewed waypoints to a significantly greater extent, perhaps because they 

needed to temporarily spread out the demands on their attention since they were not provided 

confidence or uncertainty representations to guide their monitoring. 

Conclusion 

Findings from this study confirm that representing a system’s confidence or uncertainty 

in its recommendations is an effective technique to support trust specificity. Overall, representing 
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levels of uncertainty with a familiar red, yellow, and green palette were found to best support 

trust specificity and attention management. They were also interpreted faster by participants than 

salience-based representations. Additive, salience-based representations of confidence captured 

attention more slowly than salience-based representations of uncertainty when attention demands 

were high, but salience-based representations of uncertainty were counterintuitive to participants. 

Uncertainty representations prompted operators to review imagery more closely. Furthermore, 

classifications that were recommended with high uncertainty corresponded with smaller trust 

decrements, and self-reported trust scores more closely approximated a machine’s true accuracy, 

than when the same classifications were recommended with low confidence. However, while 

hue-based recommendations of uncertainty were found to improve trust specificity and attention 

management, it hurt performance by leading to slower task completion times.  

There are two important design and research implications of the fact that representations 

of uncertainty that employed the hues red, yellow, and green best supported trust specificity and 

attention management. While past research (Bisantz et al., 2009) has suggested that designers 

should avoid using hue-based substitutive representations of uncertainty, an additive variable, 

this study demonstrates that, if a familiar hue-based color palette is used, these representations 

are actually intuitive and effective because they do not interfere with attention management. 

Future research evaluating additional candidate methods to represent confidence and uncertainty 

in human supervisory control might benefit from assessing candidate visualizations in an 

attention-demanding context with eye tracking. Furthermore, while the symbolic palette of red, 

yellow, and green is might be familiar to certain users, operators with color deficiencies (i.e. 

color blindness) might have trouble distinguishing the red and green hues. Additional symbolic 

color palettes that would be accessible to larger proportion of the population should be 
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considered and evaluated. Finally, modern neural networks predominantly qualify their outputs 

by reporting confidence, not uncertainty. Future work is needed to properly map systems that 

might internally estimate their accuracies using confidence to interfaces that display uncertainty 

if trust specificity, attention management, and performance are to be optimized. 
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Chapter 5  

Conclusion 

Modern, and envisioned, robots and increasingly autonomous machines operate in 

complex, partially-observable, and highly dynamic commercial and military environments 

(Mason, 2012; Parasuraman & Riley, 1997; Russell & Norvig, 2009; Woods et al., 2004). They 

are highly reliable but still imperfect as they often draw from ambiguous data or noisy sensors. 

Therefore, human supervisors are tasked with monitoring these machines and intervening when 

necessary to correct plans, decisions, and actions (Sheridan & Parasuraman, 2005; Sheridan & 

Verplank, 1978). Increasingly, one operator is tasked with supervising multiple machines 

simultaneously. This imposes considerable cognitive demands on humans whose limited 

attentional resources require them to decide, at any given point in time, whether to rely or check 

on a machine, often based on their level of trust in the system (Lee & See, 2004; Parasuraman & 

Riley, 1997).  

Lee and See (2004) define trust as the “attitude that an agent will help achieve an 

individual’s goals in a situation characterized by uncertainty and vulnerability.”  Trust 

calibration refers to the proper mapping of an operator’s trust to a machine’s capabilities. Since 

machine capabilities can vary across tasks and operational contexts, two important aspects of 

trust calibration are trust resolution and trust specificity. Trust resolution refers to the mapping 

between an operator’s trust level and the range of a system’s capabilities across contexts (e.g. an 

increasingly autonomous vehicle operating in an environment with good versus poor visibility; 
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Cohen, Parasuraman, & Freeman, 1998;  Lee & See, 2004). Trust specificity, on the other hand, 

describes the tracing of trust to momentary fluctuations in capabilities (Lee & See, 2004).  

This dissertation examined the close and important relationship between trust calibration 

and attention management. A multi-UAV supervisory simulation assessed candidate training 

methods to support mental model development, trust resolution, and top-down attention 

management. A similar testbed was used to evaluate candidate visual and auditory 

representations of a machine’s estimated accuracy in its recommendations and their impact on 

trust specificity and bottom-up attentional guidance. Eye tracking complemented traditional trust 

measures such as behavioral data and subjective ratings. 

Specifically, the goals of this line of research were: 

• To investigate and compare the impact of active, experiential training with more 

traditional forms of training on a person’s mental model development, trust 

resolution, and attention management. 

• To assess how various visual and multimodal representations of a machine’s 

confidence in its own abilities, and the framing of a machine’s estimated accuracy 

as confidence or uncertainty, shape trust specificity and support attention 

management and joint system performance. 

The first experiment in Chapter 2 compared active and passive training methods that 

instructed participants “how the system worked” with training that taught participants only “how 

to work the system.”  Active, experiential training facilitated the development of a better mental 

model of the system (i.e. fewer gaps in their understanding of the system), which supported 

contextually-driven trust resolution and top-down attention allocation. Participants receiving 
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experiential training appropriately lowered their trust and monitored a UAV’s health more 

closely when its environment (e.g. turbulence) reduced the UAV’s capabilities.  

The next two studies in this line of research investigated how real-time feedback on 

system confidence (or uncertainty) in its own performance affect operators’ trust calibration and 

monitoring behavior. The experiment in Chapter 3 focused on how best to present system 

confidence information during high tempo UAV operations involving numerous competing 

attention demands. A comparison of visual and auditory representations of confidence indicated 

that a natural mapping of tonal pitch to a machine’s confidence is intuitive and leads to effective 

allocation of attention. Visual confidence representations appear to interfere with attention 

management unless designed to be processed in peripheral vision; in contrast, an auditory display 

of confidence information supported time sharing with the participants’ visually demanding tasks 

as evidenced by faster task completion times. These results are in line with Multiple Resource 

Theory (Wickens, 2008), which predicts better time sharing when information is distributed 

across sensory channels due to reduced competition for attentional resources.  

Since it was not clear whether the findings from this experiment were the result of the 

specific implementation of visual confidence information (i.e., an additive representation with 

high confidence corresponding to a highly saturated border), different types of visual 

representations as well as framing of confidence (confidence versus uncertainty) were 

investigated in the final study presented in Chapter 4. Both confidence and uncertainty supported 

trust specificity in this study. In other words, high estimates of system accuracy (i.e. high 

confidence or low uncertainty) were associated with high trust ratings and low estimates of 

accuracy were associated with low trust ratings. An uncertainty framing of a machine’s estimated 

accuracy (as compared to a confidence framing) led to both increased monitoring (without 
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sacrificing performance) and also to trust more closely approximating a UAV’s true accuracy. 

Representing a machine’s estimated accuracy with a familiar hue-based palette (i.e. the colors 

red, yellow, and green) was considered intuitive by participants who interpreted this 

representation faster than an additive, salience-based version.  

The second and third studies investigated not only the interpretability of representations 

but also the impact of mappings on attention management. Because additive representations were 

less salient in case of low confidence, they were not as effective at capturing attention when 

supervision and intervention were needed the most. This finding is aligned with the N-SEEV 

model, which identifies salience as one signal feature that influences noticing (Steelman-Allen, 

McCarley, Wickens, Sebok, & Bzostek, 2009; Wickens et al., 2009). According to the model, a 

signal’s static salience (e.g. color contrast) or dynamic salience (e.g. a transient stimulus) will 

affect whether and how fast it captures attention. Since the value of providing confidence and 

uncertainty information in the context of supervisory control materializes only if the indication is 

noticed in the first place, designers need to use mappings that accomplish the goal of attracting 

attention even if that means the mapping would traditionally not be considered ‘natural’ (such as 

high salience associated with low confidence).  

Building on previous research, eye tracking was used in all three studies to evaluate 

attention management, infer trust (Hergeth, Lorenz, Vilimek, & Krems, 2016; Lu & Sarter, 

2019), and explain behavior not captured by performance outcome variables alone. Our findings 

highlight the need for careful use and interpretation of eyetracking data as trust may not be the 

only factor that determines gaze behavior. For example, in the first study, participants quickly 

found an expected target (i.e. the target recommended by the machine) when it was present in an 

image, whereas they spent longer reviewing the image when the expected target was not there. 
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This indicates that gaze behavior is influenced not only by trust, but also by an attentional 

phenomenon known as “contingent orienting” (Folk et al., 1992). The third study analyzed 

imagery that was classified correctly by the UAVs (i.e. the stimulus was the expected target), and 

found that participants gazed longer at the imagery during periods when other images were 

consistently classified incorrectly (i.e. periods with an overall accuracy of 30% instead of 95%). 

By comparing gaze behavior of correctly classified imagery during periods of lower and higher 

reliability, it can be inferred that longer gaze durations were a top-down effect caused by changes 

in a person’s trust. 

Another limitation of using eye tracking to infer trust was observed in the third study 

which found that machine capability differences of 15% did not result in significant changes in 

monitoring behavior; specifically, there was no statistically significant difference in gaze 

durations between high confidence recommendations with a 95% accuracy rate and medium 

confidence recommendations with an 80% accuracy rate. However, when the machine 

overestimated its accuracy and high confidence recommendations dropped from an accuracy rate 

of 95% to 30%, then a noticeable difference in monitoring behavior was observed, which also 

corresponded to changes in trust scores. This finding qualifies that eye tracking may be an 

effective method to infer trust when there are large changes in a machine’s capabilities, but small 

changes in machine capabilities and a supervisor’s trust may not be detected via eye tracking 

metrics. 

Finally, this line of research also provides evidence that participants may not provide 

trust ratings in a consistent manner or in ways that are anticipated by researchers. The first study 

found that – despite being told the definition of trust that was to be used in this study – many 

participants adopted different definitions of trust. While the intent was for participants to rate 
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their general trust in a UAV (to encompass all its capabilities), participants indicated at the end 

of the study that they were rating their trust in a machine’s classification abilities (rather than 

also incorporating the UAV’s health management capabilities). Some of the participants in the 

second study, which also asked participants to rate their trust in each of the system’s eight 

UAVs, reported in the debrief questionnaire that they had trouble remembering the performance 

of each of the vehicles. These observations suggest that researchers must not rely on subjective 

ratings alone but should complement them with additional measures (such as eye tracking or 

performance-based measures) to further investigate trust in human-machine systems.  

In conclusion, this research makes important theoretical and applied contributions to 

supporting trust calibration, attention management, and joint performance in supervisory control. 

It adds to the knowledge base on training by demonstrating the efficacy of active, experiential 

training on supporting the development of a person’s mental model of a system, their trust 

resolution, and attention allocation over traditional training methods. This research project also 

bridges past research in the design of visual and multimodal confidence representations and 

uncertainty representations, and it assesses the effect of employing a natural mapping of 

confidence or uncertainty on attention. In an environment with high attention demands, this 

research suggests that auditory and symbolic, hue-based representations of a machine’s estimated 

accuracy may effectively support trust calibration and attention allocation better than visual, 

salience-based representations. Furthermore, findings support that framing a machine’s estimated 

accuracy as uncertainty, rather than confidence, may lead to better trust calibration and closer 

supervision of the system. Finally, this research makes significant contributions to the 

advancement of research methods to measure trust in human supervisory control by identifying 

ways to mitigate confounds in eye tracking measures and subjective ratings. Cumulatively, this 
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line of research contributes to the safe adoption of machines in supervisory control and human-

machine teams, including multi-agent systems for transportation, defense, search and rescue, 

surveying, and agriculture. 

Future Work 

There are some exciting ways in which future work can build on the findings from this 

research. First, future research might assess how the number of confidence or uncertainty levels 

influences trust specificity, attention management, reliance, and performance. For visual 

indications, for example, a multi-task control room simulation study conducted by Zirk et al. 

(2020) found that four-level likelihood alarms, such as an alarm that used one of four colors to 

encode the relative likelihood of an undesired event, reduced false alarms and misses, compared 

to three-level visual alarms. Future studies might consider whether there is an optimum number 

of levels that should be incorporated into visual and auditory confidence and uncertainty 

representations. It is likely that too few levels might hurt trust resolution and specificity, but as 

the number of levels increase beyond a certain point, operators will find it hard to distinguish 

between degrees of brightness or saturation and associate tones with respective accuracy levels, 

especially if required to make absolute judgments.  

Additionally, the second study demonstrated the general benefits of auditory 

representations of a machine’s estimated accuracy (i.e. intuitive mapping and supporting time 

sharing in visually demanding environments). However, there has been little research and 

specific design guidance on the sonification of confidence or uncertainty. The present research 

evaluated only whether a person could distinguish between and associate two tones – a high 

pitch tone and a low pitch tone – with the machine’s confidence level. Future research might 

explore the auditory analogs of additive and substitutive visual representations.  
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Multimodal representations of confidence and uncertainty might also be extended into the 

tactile domain. In the study reported in Chapter 3, auditory representations of confidence 

informed the participant if a UAV had classified a target with high or low confidence. However, 

the binary, auditory representation was limited in that it did not indicate which UAV had 

classified a target and might need closer review. Rather, using a multimodal approach, when the 

auditory representation was displayed, the video feed for the corresponding UAV brightened to 

provide a visual cue and indicate that auditory confidence information was associated with that 

UAV. However, past studies (Ferris & Sarter, 2008; Riggs & Sarter, 2019) have shown that 

tactile cues may be an effective method to both encode information such as confidence or 

uncertainty while, at the same time, guide a supervisor’s attention to the corresponding UAV, 

without relying on the overburdened visual channel.  

While this line of research studied how a person might calibrate their trust, supervision, 

and reliance based on receiving information about a machine’s confidence in its performance, 

future work needs to consider the opposite case also, i.e., how sharing information about a 

person’s confidence in their own performance with a machine might enable that system to adapt 

to better support joint system performance.  For example, a machine might change the display of 

information or provide additional attention guidance if a person appears to have trouble locating 

a target or interpreting imagery that is captured in a foggy environment.  Ultimately, a better 

understanding of and support for mutual adaptation and coordination will be critical for the 

success of human-machine teams.  

Finally, this line of research demonstrated that trust calibration in human-machine teams 

might benefit from better mental models – a top-down influence on trust resolution that was 

examined in the first study – and the presentation of moment-to-moment information on the 
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trustworthiness of a system – a bottom-up influence on trust specificity that was the focus of the 

second and third studies. Future research might examine the degree of synergy and combined 

impact of these two interventions, possibly combined with longer term operational experience 

with a system.  
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