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ABSTRACT

Large healthcare databases used primarily for billing and payments, such as electronic health
records and insurance claims data, have been increasingly used to conduct comparative effec-
tiveness research (CER) that characterize multiple treatment/intervention strategies for a particular
clinical condition. Estimation of causal treatment effects using such observational data is prone to
bias due to confounders related to both treatment and outcome. Another potential source of bias is
censoring, which occurs when patients drop out of the system or the reporting period ends (starts)
before (after) the occurrence of the event of interest.

Our study is motivated by analysis embedded within the OptumInsight Clinformatics Data Mart,
a database that consists of medical and pharmacy claims from a large national private health in-
surance network with over 83 million insured unique individuals. Our analytic cohort consists of
around 700,000 patients with a claim for prostate cancer diagnosis recorded between 2001-2019.
Interest is in assessing the effects of four common therapies for castration-resistant advanced-stage
prostate cancer, with the adverse outcome being hospitalization and/or admission to the emergency
room within a short time window of treatment initiation.

In Chapter 1, we consider CER from observational data with two or more treatments. Methods
based on propensity scores are routinely used to correct for confounding biases. A large fraction
of propensity score methods in the current literature consider the case of either two treatments
or continuous outcome. There has been extensive literature with multiple treatment or binary
outcome, but interest often lies in the intersection, for which the literature is still evolving. The
contribution of this Chapter is to focus on this intersection and compare across existing methods,
some of which are fairly recent. We assess the relative performance of these methods through a set
of simulation studies and provide recommendations for the practitioners.

In Chapter 2, we take censoring into account and propose a method that directly models the
binary outcome using logistic regression, with confounding and censoring properly accounted for
by weighting. We call the method inverse probability weighted regression-based estimator that ac-
counts for censoring, or CIPWR. The risk of event occurrence (and therefore the average treatment
effect) is estimated based on standardization, which averages the outcome predictions obtained
from the logistic regression model across all subjects. CIPWR estimates the average treatment
effects by averaging the predicted outcomes obtained from a logistic regression model that is fitted
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using a weighted score function. The CIPWR estimator has a double robustness property such that
estimation consistency can be achieved when either the model for the outcome or the models for
both treatment and censoring are correctly specified. We establish the asymptotic properties of the
CIPWR estimator for conducting inference, and compare its finite sample performance with that
of several alternatives through simulation studies. The methods under comparison are applied to
a cohort of prostate cancer patients from an insurance claims database for comparing the adverse
effects of four candidate drugs for advanced stage prostate cancer.

In Chapter 3, we consider a setting where a massive collection of candidate covariates are avail-
able in the data and are potentially related to both treatment and outcome. In addition, the treatment
generating model possibly involves nonlinearity and nonadditivity. In this setting, a key challenge
is to identify variables to be included in the propensity score model from a high-dimensional set of
measured covariates to remove the bias. As in Chapter 2, we also aim to account for censoring at
the same time, where the bias due to censoring is controlled for by applying the inverse probability
of remaining uncensored as weights to the outcome. We focus on estimating the treatment effects
on a binary outcome (that is possibly censored) among multiple treatment groups. We examine an
ensemble of data-driven methods that select the variables to be adjusted for in the treatment model,
including penalized regression and modern machine learning tools based on classification and re-
gression trees (CART). We estimate the causal effects of treatment using the inverse probability
weighting (IPW) estimator. We allow the associations between the outcome and the covariates to
contribute to the variable selection process, and show through simulation studies that leveraging
the information about the outcome-covariate relationship when modeling the propensity scores can
improve statistical efficiency and robustness against model misspecification of propensity score-
based methods, such as IPW. The improvement of precision in the estimates of treatment effects is
also observed in our application to the prostate cancer data.
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CHAPTER 1

A Comparison of Parametric Propensity
Score-Based Methods for Causal Inference with

Multiple Treatments and a Binary Outcome

1.1 Introduction

Comparative effectiveness research (CER) assesses alternative interventions for a particular clini-
cal condition [1]. Randomized clinical trials are the gold standard for CER, but real-world evidence
when drugs are released into the market is increasingly being used to make health care decisions
[2]. CER for such observational data requires statistical methods for causal inference that con-
trol for confounding variables. The current literature on these methods largely focuses on two
treatments and continuous outcomes [3, 4], but often interest lies in comparing more than two
treatments and outcomes are binary, for example, the occurrence of an event [5]. We compare here
causal inference methods when the outcome is binary and there are more than two treatments.

Our motivating study concerns men who used at least one of four commonly prescribed drugs
(docetaxel, abiraterone, enzalutamide, sipuleucel-T) as a first-line therapy for metastatic castration-
resistant prostate cancer (mCRPC). These four drugs have increased survival for mCRPC patients
in individual studies [6, 7, 8, 9]. We are interested in evaluating the possible adverse effects of
these drugs, by comparing patients’ risk of experiencing at least one emergency room visit shortly
after treatment initiation. Data are from the Optum Clinformatics Data Mart, a national private
health insurance network.

In observational studies, the estimation of causal effects is prone to bias due to confounders
related to both treatment and outcome. Methods to correct for this bias can be classified into two
broad categories. The traditional approach is to model the multiple regression of the outcome on
the treatment and measured potential confounders. This approach is vulnerable to misspecification
of the regression model. An alternative approach is to model the propensity score, defined as the
probability of being assigned to the treatment given a set of potential confounders. The treatment
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effect is then estimated by matching [10, 11], weighting [12, 13, 14], stratification [3, 10, 15], or
regression [16, 17] on the estimated propensity scores. This method was introduced by Rosenbaum
and Rubin [10], who showed that propensity scores have a balancing property, such that the condi-
tional distribution of the potential confounders given the balancing scores are the same for treated
and control. This property implies that propensity score methods provide some protection against
misspecification of the outcome models. However, propensity score models are still required to be
correctly specified.

Methods based on the propensity score were initially developed for comparing two treatments
[e.g., 10, 11, 15, 18, 19, 20], and then extended to the case of more than two treatment groups
using generalized propensity scores (GPS) [21, 22], which consist of the vector of conditional
probabilities of being assigned to each treatment. However, propensity score methods become
more complex as the number of compared treatments increases, and the relative performance of
propensity score methods is much less studied than the two-treatment group case [e.g., 13, 23, 24,
25, 26].

Matching is the most common propensity score method for two treatments [27]. There are a
variety of matching algorithms (e.g., nearest neighbor matching, full matching) corresponding to
different causal estimands [28]. With more than two treatments, the number of subjects that can be
matched goes down as the number of treatment groups increases, and the complexity of the match-
ing algorithm increases. Propensity score matching methods for multiple treatment comparison
built upon the framework of conventional matching methods include common-referent matching
[29] and “within-trio” matching [30]. In general, the study population of these methods consists
of those receiving the reference treatment. In contrast, the method of matching with replacement
[24, 25, 31] yields inferences for the overall population (i.e., population of those receiving any of
the treatment under comparison).

Abadie and Imbens [31] proposed a matching procedure that uses a fixed number of matches
and allows each unit to be matched more than once, a method we label AI-type matching. They
derived the large sample properties of the AI-type matching estimators and proposed an estimator
for the asymptotic variance. Yang et al. [24] extended AI-type matching procedures to the multiple
treatment case by matching on a scalar function of the GPS. Applications of these methods to
real studies appear limited [32]. More common applied approaches include combining therapies
with similar features as a single group and then applying propensity score matching developed for
binary treatment [33, 34, 35], or conducting pairwise analysis, ignoring individuals not assigned to
one of the treatment pair being compared [36].

Propensity score weighting methods are more easily extended to the multiple treatment setting.
The asymptotic distributions of the weighting-based estimators can be characterized using the
theory of M-estimation [37], which yields estimated standard errors that incorporate the uncertainty
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associated with the estimation of propensity scores. A common weighting scheme is to weight
units in one group by their inverse probability of being in that group (IPW). Evaluations of IPW
are mainly confined to the two treatment setting, and suggest that the estimator is sensitive to
extreme weights and can have high variability [3, 24, 38].

An important extension of IPW is the augmented inverse probability weighting (AIPW), where
the IPW estimator is augmented using predictions from an outcome regression model. To imple-
ment AIPW method in a multiple treatment setting, one can first obtain the estimated GPS, possibly
from a multinomial logistic regression model, and then the predicted outcomes for each treatment
group from outcome models that describe the conditional expectation of the outcome variable
given measured covariates and treatment status. The resulting estimator is known as having a
double robustness (DR) property such that the estimator remains consistent as long as either the
propensity score model or the outcome model is correctly specified. AIPW estimator is asymptot-
ically efficient within a broad class of estimators that includes the IPW estimator [39]. Lunceford
and Davidian [3] reviewed the theoretical properties of IPW, AIPW, and several other propensity
score weighting estimators in the context of two treatments and continuous outcome. Simulation
studies indicated that weighting-based methods with correct propensity score modeling produced
approximately unbiased point estimates, and AIPW was more precise than IPW for sample sizes
as small as 1000.

Other hybrid methods include outcome regression models weighted by inverse probability [40]
and post-matching sample adjusted using overlap weights [14]. A multiple imputation-based ap-
proach called penalized spline of propensity methods for treatment comparison (PENCOMP), pro-
posed by Zhou et al. [17], estimates causal effects by imputing the missing potential outcomes
from a regression model for the outcome that incorporates splines of propensity scores as predic-
tors. PENCOMP was developed and evaluated in the context of two treatments and a continuous
outcome, but is extended here to the case with multiple treatments and binary outcome.

Studies of comparative effectiveness with continuous outcomes typically report an estimate of
the Average Treatment Effect (ATE), which is the difference in average outcome if individuals
were all assigned the treatment and the average outcome if all the individuals were assigned the
comparator treatment [41]. In this paper, we measure treatment effectiveness by the risk differ-
ence, a measure of the ATE for a binary outcome, where the average outcome is the proportion of
successes.

In Sections 1.2, 1.3, and 1.4, we provide more detail on several of these methods. In Section 1.5,
we describe simulation studies that compare the finite sample performance of these methods. In
Section 1.6, we apply the methods to estimate comparative effectiveness of four common therapies
for mCRPC patients, using claims data from the Optum Clinformatics Data Mart, with the out-
come being admission to the emergency room within a short time window of treatment initiation.
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Conclusions and topics for future research are given in Section 1.7.

1.2 Notation and Setup

1.2.1 Estimands of Interest

Suppose an observational study of J treatments is carried out on a sample of n individuals from
a target population. For individual i, let Yi(z), z = 1, · · · , J , denote the potential outcome if
assigned treatment z, Zi denote the treatment actually assigned, and X i denote a set of baseline
covariates. The hypothetical complete data consist of {Xj, Zi, Yi(1), · · · , Yi(J), i = 1, · · · , n},
the observed data consist of {X i, Zi, Yi(Zi), i = 1, · · · , n}, and the outcomes {Yi(z), z ̸= Zi} are
missing, as in the potential outcome framework [41]. For each pair (z, z′) of treatments, we seek
to estimate the average treatment effect (ATE),

τATE(z, z
′) = E[Y (z′)− Y (z)],

where the expectation is over the population of interest. When Y is binary, the ATE is the risk
difference τATE(z, z

′) = pr{Y (z′) = 1} − pr{Y (z) = 1}.
In addition to risk difference, one can also consider estimands on multiplicative scale for treat-

ment group z, such as causal odds ratio pr{Y (z) = 1}pr{Y (J) = 0}/pr{Y (z) = 0}pr{Y (J) =

1} and relative risk pr{Y (z) = 1}/pr{Y (z) = 0}, where J is the reference group. We focus
on the additive scale primarily for two reasons. The first is that the ratio-scale estimands can be
derived using the counterfactual probabilities we estimate in each treatment group. The second is
that the additive scale is more relevant to evaluating interventions as it directly yields the number
of cases/deaths prevented by using one treatment as opposed to another.

For a study with binary treatments, one quantity of possible interest is the average treatment
effect on the treated (ATT), which refers to the treatment effect averaged across the group of
individuals who received the treatment. When there are more than two treatment groups under
comparison, one common way to define the ATT is to specify a reference group (Z = z∗), possibly
the one with the smallest sample size or of the greatest clinical interest [25]. The ATT is defined
as τATT (z, z

′) = E[Y (z′) − Y (z)|Z = z∗], where z∗ is not necessarily the same as z or z′. This
implies that one can compare any treatment pair (z, z′) on any subpopulation, in this case, those
who received treatment z∗.

A more general form of ATE is the weighted average treatment effect [14, 42]:

τ ∗ATE(z, z
′) =

∫
w(x)E[Y (z′)− Y (z)|X = x]f(x)dx∫

w(x)f(x)dx
,
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where f(x) is the density function of the covariates X and w(x) is a prespecified function of x.
Different choices of w(·) yield the ATE for different target populations, as discussed further in
Section 1.4.2.

Note that τATE(z, z
′) is equivalent to τ ∗ATE(z, z

′) if w(x) = 1, or if the treatment effect condi-
tional on x, E[Y (z′)− Y (z)|X = x], is the same for all x (i.e. homogeneous), an unlikely event.
When the treatment effect is heterogeneous, the ATE should always be defined with respect to a
clearly specified study population.

1.2.2 Assumptions

In an observational study where treatment is not randomly assigned, valid inferences for the ATE
require some standard assumptions:

1. The individuals in the study are randomly sampled from the population.

2. (stable unit treatment value assumption, or SUTVA). For any individual i, i = 1, · · · , n, if
Zi = z, then Yi = Yi(z), for all z ∈ {1, · · · , J}.

3. (strong unconfoundedness). Assignment to treatment Z is strongly unconfounded if Zi ⊥⊥
{Yi(1), · · · , Yi(J)}|X i, for all z ∈ {1, · · · , J}.

4. (overlap). For all values of z and x, 0 < ez(x) < 1, where ez(x) ≡ pr(Zi = z|x) is the
generalized propensity score [21].

SUTVA states that the potential outcomes of one unit are not affected by the treatments received
by other units, and there are no hidden treatment versions [43]. Strong unconfoundedness and
overlap are an extension of the strong ignorability assumption in Rosenbaum and Rubin [10] to the
case of multiple treatments. In some cases, a weaker version of unconfoundedness is sufficient for
identifying the causal effect [21, 24], namely

2.∗ Three (weak unconfoundedness) Assignment to treatment Z is weakly unconfounded if
Di(z) ⊥⊥ Yi(z)|X i, for all z ∈ {1, · · · , J}.

Weak unconfoundedness only requires pairwise independence for each treatment rather than the
independence between treatment assignment and the whole vector of potential outcomes. As com-
mented by Imbens [21], though Assumption 2∗ is more relaxed in its form than Assumption 2, their
difference has limited practical implications. Under these assumptions, the differences in outcomes
among the treatment groups has a causal interpretation with respect to the target population.
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1.3 Generalized Propensity Score and its Estimation

An important tool in comparing causal treatment effects of J treatment groups is the vector of
generalized propensity scores (GPS), denoted as e(X i) ≡ {e1(X i), · · · , e(J−1)(X i)}T , where
ez(x) ≡ pr(Zi = z|x). In an observational study, the treatment assignment mechanism is un-
known, and therefore e(X i) needs to be estimated from the observed data. A common approach
is to fit a multinomial logistic regression model for the treatment received as a function of the
covariates, that is, to assume that

log
pr(Zi = z|X i)

pr(Zi = J |X i)
=XT

i βz, (1.1)

where z = 1, · · · , J − 1, and X i includes an intercept term. The corresponding estimated GPS,
denoted as GLMPS, is then

ez,GLMPS(X i; β̂z) =
exp(X iβ̂z)

1 +
∑J−1

j=1 exp(X
T
i β̂j)

for z = 1, · · · , J−1, where β̂z is the maximum likelihood estimate of βz. For z = J , the reference
group, we replace the numerator by 1.

Even moderate misspecification of the functional form for 1.1 may result in substantial bias
in the estimates of treatment effects [44]. Imai and Ratkovic [45] proposed the Covariate Bal-
ancing Propensity Score (CBPS) for the comparison of two groups and provided an extension
to the multiple treatment case. CBPS exploits the covariate balancing property of the GPS (i.e.,
X i ⊥⊥ Di(z)|ez(X i) for z = 1, · · · , J) by computing generalized method of moments estimates
based on the covariate balancing moment conditions,

E

{
Di(z + 1)X i

ez+1(X i)
− Di(z)X i

ez(X i)

}
= 0

and the moment conditions derived from the score functions of a multinomial logistic model under
the likelihood framework,

E

{
Di(z)

ez(X i)
· ∂ez(X i)

∂βT
z

}
= 0

for z = 1, · · · , J . The CBPS is called just-identified if the model only uses the covariate balancing
conditions and overidentified if both conditions are used in the estimation step. These two types of
CBPS have different asymptotic and finite sample properties, and the authors examined both types
of scores in their simulation studies [45]. They showed that the use of CBPS, regardless of which
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conditions were involved, can improve the precision and reduce bias of some common weighting
estimators (e.g. IPW and AIPW) compared to using propensity score estimated by GLM when both
propensity score and outcome models were misspecified. In our study, we only evaluate the just-
identified CBPS, because of computational limitations. The CBPS method can be implemented
through the R package CBPS [46].

1.4 Methods for Estimating the Average Treatment Effect

1.4.1 Matching methods based on the propensity scores

The AI-type matching methods [31] can be regarded as a group-by-group imputation procedure.
The missing outcome Yi(z), z ̸= Zi, is imputed by the observed outcome Yk(i,z) for one of the
units k(i, z) in the set of units, say S(z), assigned to treatment z. That is, the observed or imputed
outcome for unit i is

Ŷi(z) =

Yi, if Zi = z;

Yk(i,z), if Zi ̸= z.

The matched unit k(i, z) is chosen to be the closest to unit i in S(z) with respect to a matching
metric m based on the values of X . That is, m(X i,Xk(i,z)) ≤ m(X i,X l) for all l ∈ S(z).
The matches are with replacement, so units in the matching set S(z) can be reused. The resulting
estimate of the ATE comparing treatments z and z′ is

τ̂ATE(z, z
′) = n−1

n∑
i=1

{Ŷi(z)− Ŷi(z
′)}

The standard error can be computed using the delta method.
Ideally the matching units would be exact matches, that is, X i = Xk(i,z) for all i, z, which

leads to unbiased estimates of ATEs under the strong unconfoundedness assumption. In practice,
exact matching is rarely possible, especially with continuous covariates. With the Mahalanobis
metric, m(X i,X l) =

√
(X i −X l)TC

−1
X (X i −X l) for l ∈ S(z), where CX is the covari-

ance matrix of X i and X l, we label this method as MCOV. This method may not work well
for high-dimensional X i [28]. An alternative is to match on closeness of the estimated GPS vec-
tor under a postulated model, ê(X i) = {ê1(X i), · · · , êJ−1(X i)}T . The Mahalanobis distance

m(X i,X l) =
√

{ê(X i)− ê(X l)}TC−1
GPS{ê(X i)− ê(X l)}, where CGPS is the covariance ma-

trix of ê(X i) and ê(X l), is one measure of closeness. We label this method MGPSV. The balanc-
ing score property of the propensity score implies that, under strong unconfoundedness, it yields
approximately unbiased estimates of ATEs.
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Yang et al. [24] proposed a method that matches units on the closeness of the corresponding
estimated propensity score for each treatment group (MGPSS). The matching metric for imput-
ing the missing outcomes for treatment z for units assigned to treatments other than z is then
m(X i,X l) = |êz(X i) − êz(X l)|, where l ∈ S(z). The resulting estimate of the ATE is approx-
imately unbiased under the weak unconfoundedness assumption, because the definition of GPS
implies that

τATE(z, z
′) = E{E[Yi|Zi = z′, ez′(X i)]} − E{E[Yi|Zi = z, ez(X i)]}.

There are several differences between AI-type matching estimators and traditional matching esti-
mators in applied research, such as nearest neighbor matching without replacement [28]. Tradi-
tional matching procedures address the issue of confounding by only including matches of high
quality for the subsequent analysis. Normally each unit is only used once, as in a randomized con-
trol trial, and inferences on the matched data set do not account for matching error. On the other
hand, AI-type matching allows reuse of each unit, and does not ensure overlap of covariates unless
combined with methods for dealing with limited overlap, such as trimming [47]. An advantage
of the AI-type matching estimators is that their large-sample distributions can be characterized
[31, 48], permitting calculation of variance estimates that take into account the uncertainty in the
propensity score estimation and matching procedure. MCOV, MGPSV, and MGPSS estimate τATE

while the estimand of traditional matching procedure may deviate from τATE .

1.4.2 Propensity score weighting-based methods

For weighting-based estimators, the problem of estimating τATE or τ ∗ATE can be generalized to
the estimation of the (weighted) average potential outcome νz ≡ E[w(X)Y (z)]/E[w(X)] for
each treatment separately. When w(x) = 1, νz is equivalent to the average potential outcome µz.
Solving the estimating equation

n∑
i=1

{
w(X i)Di(z)(Yi − νz)

êz(X i)

}
= 0, (1.2)

we are able to obtain a consistent estimator assuming correctly-specified GPS model,

ν̂z =

(
n∑

i=1

{
w(X i)Di(z)

êz(X i)

})−1 n∑
i=1

{
w(X iDi(z)Yi)

êz(X i)

}
.

The ATE between treatment z and z′ can then be estimated by ν̂z′ − ν̂z. Different choices of
w(x) result in ATE with respect to different populations. In particular,w(x) = 1 corresponds to the
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inverse probability weighting (IPW) estimator, whose target population is the combined population
all sampled groups. The target population of ATT discussed in section 1.2.1 is represented by units
in a particular treatment group, say treatment J , and can be estimated by setting w(x) to eJ(x).

Li and Greene [12] proposed to specify w(x) as the minimum of the probabilities of receiv-
ing treatment and control in the binary case, which they call matching weights (MW). MW
can be extended to the case with more than two treatments [13] with weights wMW (x) =

min{e1(x), · · · , eJ(x)}. For the three treatment case, the MW estimator uses weights to mimic
the 1:1:1 matching procedure without replacement and yields more efficient estimation of τ ∗ATE

[12, 13]. The MW estimator and the estimator from 1:1:1 matching without replacement have
asymptotically the same estimand [13], and therefore the corresponding target population of the
MW estimator is the “matched” population of units that can be matched in 1:1:1 matching.

Li et al. [14] and Li and Li [26] proposed weighting by the overlap weights (OW), wOW (x) ={∑J
j=1 1/ej(x)

}−1

. We refer to the corresponding population as the overlap population. Both
MW and OW upweight the units whose GPS is in the middle range, which have approximately
equal chances of being assigned to any of the candidate treatments.

Inversely-weighted estimators have a number of issues. The first is that their variance may
be inflated if the weights are highly variable. The second issue is that they rely heavily on the
correct specification of the propensity score model for valid inference. In addition, the inference
for treatment group z is made only based on individuals with Di(z) = 1, with individuals in
other treatment groups not contributing. To improve the robustness to model misspecification and
make more effective use of the available data, augmented versions of these estimators have been
proposed [12, 38]. The estimating equation (1.2) is augmented by an extra term that involves a
function of x. The resulting estimating equation is

n∑
i=1

{
w(X i)Di(z)(Yi − νz)

êz(X i)
− w(X i)[ez(X i)−Di(z)]

ez(X i)
h(X i)

}
= 0

The resulting estimator ν̂z achieves the smallest asymptotic variance when h(X i) = E(Yi −
νz|Zi = z,X i) [39]. We label the augmented versions of IPW, MW, and OW estimators as
AIPW, AMW, and AOW, respectively. Besides asymptotic efficiency, as shown in the original
set of papers [12, 14], for any scalar outcome, the corresponding estimator has the property of
double robustness, which means that only one of the propensity score and outcome models need
to be correctly specified to obtain a consistent estimator for νz. Semiparametric theory shows that
these estimators are asymptotically normal, and variances can be estimated using sandwich-type
estimators or the bootstrap [3, 38].
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1.4.3 Outcome regression model methods

The methods based on outcome regression directly models the relationship between the outcome
and pre-treatment covariates by treatment groups. The unconfoundedness assumption implies that
the ATE can be identified by positing a parametric model for E[Yi|Zi = z′,X i] and E[Yi|Zi =

z,X i], obtaining the predicted values of Yi under each treatment group for each X i, and taking
the average over the observed and predicted values for each treatment. For a binary outcome Yi,
predictions can be based on a logistic regression model:

log
pr(Yi = 1|Zi,X i)

pr(Yi = 0|Zi,X i)
= γ +XT

i α+
J−1∑
z=1

θjDi(z), (1.3)

where treatment J is considered as the reference group. The coefficients θ = (θ1, · · · , θJ−1) and
α can be replaced by maximum likelihood estimates θ̂ and α̂. Many applied studies that use this
conventional covariate-adjustment method report θ̂’s which represent the odds ratios conditional on
x, as the estimated effect measure. Outcome regression (OREG) then estimates the risk difference
between treatment z and z′ as τ̂OREG(z, z

′) = µ̂z′ − µ̂z, where

µ̂z = n−1

n∑
i=1

expit(γ̂ + θ̂z +X
T
i α̂)

for z = 1, · · · , J − 1, and

µ̂z = n−1

n∑
i=1

expit(γ̂ +XT
i α̂)

for z = J . The associated standard error can be estimated via bootstrap.
Utilizing this idea, Zhou et al. [17] proposed PENCOMP, which estimates causal effects com-

paring two treatments for a continuous outcome by imputing unobserved potential outcomes from
the corresponding predictive distributions. PENCOMP incorporates splines of propensity scores
as predictors in the outcome model, which gives it a double robustness property for a continuous
outcome such that the estimator for the marginal mean is consistent if a) the prediction models
are correctly specified, or b) the propensity model and the relationship between the outcome and
the splines are correctly specified. We extend PENCOMP at a single time point to more than two
treatments and a binary outcome, calling the method PEN-GAM. The double robustness property
for PEN-GAM has not yet been theoretically established. However, our simulation studies shed
light on its finite sample performance. The steps for PEN-GAM can be summarized as follows:

(a) Generate a bootstrap sample S(b) for b = 1, · · · , B, stratified on treatment groups, from the
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original data set. For each S(b), repeat steps (b)-(d).

(b) Estimate the GPS, possibly from a multinomial logistic regression model. Denote the es-
timated values as êi =

{
ê1

(
X i; β̂

(b)

1

)
, · · · , êJ−1

(
X i; β̂

(b)

J−1

)}
, where êz

(
X i; β̂

(b)

z

)
=

pr
(
Zi = z|X i; β̂

(b)

z

)
and β̂

(b)

z is the maximum likelihood estimate of βz for sample S(b).

(c) For z = 1, · · · , J , fit a generalized linear regression model

log
pr{Yi(z) = 1|Zi = z,X i,θz,αz}
pr{Yi(z) = 0|Zi = z,X i,θz,αz}

= s(ê∗i |θz) + g(X i, ê
∗
i ;αz), (1.4)

where s(ê∗i |θz) denotes a penalized spline with fixed knots, and g(·) denotes a parametric
function of the covariates and propensity scores and has to be constrained to ensure identifia-
bility. In this case we assume truncated linear basis, namely, s(ê∗i |θz) =

∑J−1
z=1{θ0z+θ1z ê∗iz+∑K

k=1 θ1zk(ê
∗
iz −Qk)+}, where Q1, · · · , QK are fixed knots, and (ê∗iz −Qk)+ = ê∗iz −Qk if

ê∗iz > Qk, and (ê∗iz − Qk)+ = 0 otherwise. Note that following [17], we fit different spline
functions in (1.4) for each treatment level z. For linear regression of Yi(z), the coefficients
in the spline model can be estimated in a linear mixed model framework [49] and imple-
mented using standard statistical software, as was done in [17]. In principal, the coefficients
of a generalized linear model with penalized spline terms as (1.4) can be obtained by fitting
a generalized linear mixed models (GLMM). However, to the best of our knowledge, cur-
rent GLMM implementation in R either does not allow the specification of the structure of
the covariance matrices or will take unreasonable running time. Therefore, we instead fit a
generalized additive model (GAM) using the gam function in the mgcv package in R [50].

(d) For z = 1, · · · , J , impute the values of Y (z) for subjects with D(z) = 0 in the original
dataset with draws from the Bernoulli distribution with predictive probability pr{Yi(z) =

1|Zi = z,X i, θ̂
(b)

z , α̂(b)
z }, where θ̂

(b)

z and α̂(b)
z are estimates for the coefficients θ(b)z and α(b)

z ,
respectively, for the bth bootstrap replicate. For subjects with Di(z) = 1, Yi(z) = Yi.

(e) Derive the estimated treatment effects and associated standard error using Rubin’s Rules
[51].

For all methods discussed in this section, we refer the readers to the corresponding R packages
developed by the authors (Table 1.1). In the cases where there are no R packages available, we
provide accessible code for easier implementation at https://github.com/youfeiyu/multiTreatment.
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1.5 Simulation Studies

We conducted simulation studies to assess the finite sample properties of the twelve estimators
listed in Table 1.1 combined with the two GPS estimation methods (GLMPS and CBPS) discussed
in Section 1.3. We used direct comparison of the proportions of each group as a benchmark, which
is referred to as the naive estimator. We considered two levels of covariate overlap (good and poor),
two functional forms for the true propensity score model (linear and nonlinear in covariates), two
levels of associations for the outcome model (strong and weak), two levels of overall marginal out-
come prevalence (common [0.3] and rare [0.1]) and two sample sizes (300 and 1500). Simulation
results are presented in terms of bias from ATE, empirical standard deviation, average standard
error, root mean squared error (RMSE), average width of 95% confidence intervals (CI), and 95%
coverage rate.

1.5.1 Simulation Design

Each simulated dataset contains six covariates. (Xi1, Xi2, Xi3)
T follows a multivariate normal dis-

tribution with mean (0, 0, 0)T and covariance matrix [(2, 1,−1)T , (1, 1,−0.5)T , (−1,−0.5, 1)T ],
Xi4 ∼ Bernoulli(0.5), Xi5 ∼ Bernoulli{0.75Xi4 + 0.25(1 − Xi4)}, and Xi6 follows a chi-
squared distribution with 1 degree of freedom. Let Xi = (1, Xi1, Xi2, Xi3, Xi4, Xi5, Xi6)

T .
Three treatment groups were compared, and the true GPS model was given by Zi ∼
Multinomial

{
e1(X̃ i), e2(X̃ i), e3(X̃ i)

}
, where X̃ i is a function ofX i that corresponds to a model

specification and
The GPS were estimated in two ways, the first using a multinomial logistic regression and the

second using the CBPS framework that incorporates covariate balancing conditions [45]. Since
PENCOMP is computationally intensive, we only implemented GLMPS (not CBPS) for this
method. We used 10 equally-spaced knots on the logit scale for each GPS component. We used 200
imputed datasets to estimate treatment effects and the associated standard errors and confidence
intervals.

For each scenario, we generated 2000 Monte Carlo datasets for each of two sample sizes, 300
and 1500. The true 1000×ATEs (risk differences) for the estimands τATE(1, 2), τATE(1, 3), and
τATE(2, 3) were respectively 56, 46, and -10 for scenario 3, -1, -24, and -23 for scenario 5, and
234, 76, and -158 for the other three scenarios, which were determined over 106 sample units.

For estimation methods that involve only the GPS or the outcome model (IPW, MW, OW,
MGPSV, MGPSS, and OREG), we studied their performance when the corresponding model is
correctly (c) and incorrectly (m) specified, respectively. For augmented estimators (AIPW, AMW,
AOW, PEN-GAM), we considered the following four cases:
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(1) both GPS and outcome models are correctly specified denoted by (c, c),

(2) the GPS model is correct while the outcome model is incorrect denoted by (c, m),

(3) the outcome model is correct while the GPS model is incorrect denoted by (m, c),

(4) both models are misspecified denoted by (m, m).

For the first three scenarios, the misspecification of both models is caused by removing one of
the confounders, Xi6, from the corresponding models. For scenario 4 where the true GPS model
is nonlinear in X i, the misspecified outcome model omits Xi6, while the incorrect GPS model
incorporates the whole set of covariates (X i) but ignores the higher order and interaction terms.
Similarly, we evaluated the performance of MCOV, which is free of parametric modeling, when
matching on all elements X̃ i, and on a subset of X̃ i, where the subset being the same as the set of
variables adjusted in the GPS model.

The 95% confidence intervals were calculated using: (1) bootstrapped standard errors from 200
bootstrap samples for OREG, IPW, AIPW, MW, AMW, OW, AOW, and CBPS-based MGPSS; (2)
Wald-type confidence interval based on original data for NAIVE; (3) Abadie and Imbens (2006)
confidence interval for MCOV and both GLMPS- and CBPS-based MGPSV [24, 31]; (4) Abadie
and Imbens (2016) confidence interval for GLMPS-based MGPSS [24, 48]; (5) Rubin’s imputation
rule for PEN-GAM [17].

1.5.2 Simulation Results

The main results of the simulation studies for sample size 1500 are summarized in Figures 1.1-1.7.
The complete results are presented in Tables A.3-A.9 for sample size 1500, and Figures A.3-A.9
and Tables A.10-A.16 for sample size 300. In all scenarios, all estimators for τATE with at least
one model correctly specified yielded smaller empirical bias compared to the naive estimator.

Three key takeaways from the simulation studies are summarized below:

1. The improvement in precision was limited for AIPW and PEN-GAM compared to IPW when
a) there was sufficient covariate overlap or b) the prevalence of the outcome was low.

2. With moderate prevalence of the outcome (0.3 in our simulation setting) or relatively poor
covariate overlap, AIPW and PEN-GAM outperformed IPW and AI-type matching algo-
rithms considered in this study in terms of RMSE across the scenarios, as AIPW and PEN-
GAM incorporate the outcome information, which tended to provide efficiency gains over
IPW and AI-type matching.
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3. For a relatively small sample size, PEN-GAM with at least one model being correctly spec-
ified were noted to be slightly biased away from the true risk difference. Moreover, PEN-
GAM tended to show over-coverage and produce wider confidence width than IPW when
the outcome is sparse. One reason is that the fitting of spline models in PEN-GAM is more
unstable with low outcome prevalence and small sample size. The empirical bias and over-
coverage tended to disappear as the outcome prevalence and sample size increased.

Results of RMSE for each of the treatment comparisons averaged over 2000 datasets for sample
size 1500 across all methods that estimate τATE are presented in Figures 1.1-1.3. Note that the
corresponding estimands for MW, AMW, OW, and AOW were in general different from τATE , and
the RMSE for these estimators are shown in Tables A.3 and A.10. We report the ratio of RMSE to
the RMSE of the GLMPS-based IPW estimator with correctly specified GPS model. When both
models were correctly specified and the overlap in covariate distributions was good (Figure 1.1,
scenario 1), OREG, IPW, AIPW, and PEN-GAM had similar RMSE. Matching methods had larger
RMSE than GLMPS-based IPW, with the ratios ranging from 1.1 to 1.2. In this case, AIPW and
PEN-GAM had similar empirical standard deviation (and therefore RMSE) to IPW (Table A.4). A
study conducted by Austin showed similar results that AIPW provided little efficiency gain over
IPW [56].

In the presence of poor covariate overlap (Figure 1.1, scenarios 2-4), OREG had the small-
est RMSE, followed by PEN-GAM and AIPW. We observed 6.3%-16.5% reduction in RMSE for
AIPW and PEN-GAM compared to GLMPS-based IPW when the associations between the out-
come and covariates was weak (scenario 2). Greater reduction (14.1%-40.1%) was noted as the
associations became stronger (scenario 3). When the prevalence of the outcome was low (sce-
nario 5), AIPW barely reduced RMSE compared to IPW, and PEN-GAM had larger RMSE than
IPW. The increased RMSE for PEN-GAM may result from the instability of model fitting with
low prevalence. MGPSS had larger RMSE than MGPSV, which was also observed for the scenario
with good covariate overlap. For all scenarios considered, RMSEs of GLMPS-based estimators
were close to those of their CBPS-based counterparts (Figure 1.1 and Table A.3). One exception is
that for IPW, the use of CBPS tended to reduce RMSE compared with GLMPS when the covariate
overlap was poor.

When only the GPS model was correctly specified (Figure 1.2), PEN-GAM and AIPW in gen-
eral had the lowest RMSEs across the scenarios with moderate prevalence, and the RMSEs for
PEN-GAM were close to or lower than those for AIPW. When only the outcome was modeled
correctly (Figure 1.3), the RMSEs for AIPW and PEN-GAM remained similar to or lower than
those for IPW with correctly specified GPS model. In scenario 4 where the misspecification of the
GPS model was caused by incorrect functional form, the use of GLMPS may lead to substantial
RMSE for IPW (Figure 1.3) and AIPW with misspecified outcome model (Table A.7) due to large
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Figure 1.1: Ratio of RMSE over RMSE of GLMPS-based IPW(c) for sample size 1500 across methods
based on correctly specified outcome and propensity models. The rows represent scenarios and columns
represent pairs of comparison. Results were obtained using 2000 simulated datasets.
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Figure 1.2: Ratio of RMSE over RMSE of GLMPS-based IPW(c) for sample size 1500 across methods
based on a correctly specified propensity model only. The rows represent scenarios and columns represent
pairs of comparison. Results were obtained using 2000 simulated datasets.
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Figure 1.3: Ratio of RMSE over RMSE of GLMPS-based IPW(c) for sample size 1500 across methods
based on a correctly specified outcome model only. The rows represent scenarios and columns represent
pairs of comparison. Results were obtained using 2000 simulated datasets.
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empirical bias, which is consistent with previous findings [44, 45]. The bias was greatly reduced
and became close to zero when GLMPS were replaced by CBPS with misspecified functional
form, which leaded to smaller RMSEs. The RMSEs of the AI-type matching methods (MGPSS,
and MGPSV) were noted to be smaller than those of GLMPS-based IPW in scenario 4, since
the matching methods yielded approximately unbiased estimates of ATE (Table A.7) even when
the GPS model was incorrect but adjusted for the whole set of confounders, which indicates that
matching methods are more robust to the omission of higher order and interaction terms in the GPS
model than IPW.

The empirical coverage rates of 95% confidence interval for sample sizes 1500 with both models
correctly specified and either one of the models misspecified are shown in Figures 1.4 and 1.5,
respectively. The true values for MW, AMW, OW, and AOW were determined using the true GPS
based on 106 sample units and used to evaluate the corresponding coverage rates. In general,
when both models were correctly specified (Figures 1.4), all methods except MCOV had close to
nominal coverage of 95% for moderate prevalence. Coverage for MCOV was far below nominal
in scenarios 2 and 3 with moderate and strong confounding, respectively. This under-coverage was
primarily the result of empirical bias (Tables A.5 and A.6).

With the outcome model being misspecified (Figure 1.5), all of the augmented estimators
showed reasonable coverage. Note that the corresponding estimands of MW, OW, and their aug-
mented versions depend on the actual values of GPS. Therefore, different specifications of GPS
model lead to different estimands, while the estimands based on the true GPS model were used
for evaluating the coverage rates, which explains the under-coverage of AMW and AOW in some
scenarios when the GPS model was misspecified (Figure 1.5). For a small sample size (n = 300)
or sparse outcome (scenario 5), we consistently observed over-coverage for PEN-GAM methods
across all scenarios regardless of the specifications of the models, with some of the CIs achieving
99% coverage (Figures A.6 and A.7, and scenario 5 in Figures 1.4 and 1.5). This finding agrees
with the overestimation of the standard errors for PEN-GAM observed in Tables A.8 and A.11-
A.15. The under-coverage for GLMPS-based MGPSS in scenario 3 (Figure A.6) was caused by
the underestimation of the standard errors using the asymptotic formula provided in Yang et al.
[24]. Such under-coverage was remedied as the sample size increased.

The average 95% CI widths for sample size 1500 are shown in Figures 1.6 and 1.7. When both
models were correctly specified (Figure1.6), the average widths of OREG, AIPW, and PEN-GAM
were close to or smaller than those of GLMPS-based IPW for common outcome. MGPSS and
MGPSV tended to have wider confidence intervals than IPW across all scenarios. The average
widths of CBPS-based estimators tended to be larger than those of their corresponding GLMPS-
based ones. Figure 1.7 displays the results for the augmented estimators with either one of the
models being misspecified. The relative relationships among IPW, AIPW, and PEN-GAM were
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Figure 1.4: 95% Coverage probability for sample size 1500 across methods based on correctly specified
outcome and propensity models. The rows represent scenarios and columns represent pairs of comparison.
Results were obtained using 2000 simulated datasets.

20



Figure 1.5: 95% Coverage probability for sample size 1500 across methods based on a correctly specified
propensity score or outcome model. For methods that involve both models, the first and second letter in the
parentheses correspond to the propensity and outcome model, respectively. The rows represent scenarios
and columns represent pairs of comparison. Results were obtained using 2000 simulated datasets.
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similar to the ones in Figure 1.6 where both models were correct. In general, for all estimators
considered in Figure 1.7, the CIs were wider when the outcome model was misspecified compared
to the case with a misspecified GPS model only. For n = 300, the CIs for PEN-GAM were in
general wider than those of IPW (Figures A.8 and A.9). The average standard errors of PEN-GAM
were greater than their corresponding Monte Carlo standard deviations for all scenarios (Tables
A.11-A.15), suggesting that PEN-GAM tends to be more sensitive to small sample size in terms of
standard error estimation compared to IPW and AIPW.

MW, OW estimators and their augmented version provide stable estimates of τ ∗ATE , regardless
of the overlap status in the covariate distribution of the original population (Tables A.4-A.8 and
A.11-A.15). This is as expected since MW and OW artificially downweight the units with extreme
GPS and upweight the units whose GPS for each treatment are similar, the latter of which tend to
have a common support in their covariate distribution.

1.6 Data Analysis

1.6.1 Data Analysis Methods

We applied the methods in Table 1.1 to claims data of patients with metastatic castration-resistant
prostate cancer (mCRPC), which was obtained from a large national private health insurance net-
work (Optum Clinformatic Data Mart). Our data consisted of a subset of a previously identified
cohort [57, 58, 59], which included patients who had at least one diagnosis of prostate cancer from
January 1, 2010 to September 30, 2016 and used at least one of the six focus drugs (docetaxel,
abiraterone, enzalutamide, sipuleucel-T, cabazitaxel, and radium-233) after the diagnosis. Since
radium-233 were approved by FDA and released to the market later than the other five drugs, we
restricted our cohort to patients who initiated treatment after January 1, 2014 to give them a fair
comparison and make the results more generalizable to the current mCRPC population. We ob-
served that the cabazitaxel and radium-233 groups had much fewer samples (ncabazitaxel = 11 and
nradium = 57) than the other four groups, and therefore we further dropped those patients who
received the two drugs as their first-lines therapy from our analysis. We assessed the safety of
the four remaining drugs for mCRPC with the outcome being the occurrence of post-prescription
emergency room (ER) visits during a fixed period of time. Specifically, we evaluated the risk dif-
ference of ER visits among the four drugs within 180-day time window of the initiation of each
therapy.

Medical and pharmacy claims pertaining to ER visits were identified by procedure code and
type of service variables in the database. In this study, we did not consider treatment sequence
and hence were only interested in ER visits associated with the first drug used. Patients who
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Figure 1.6: Ratio of mean 95% CI width over mean 95% CI width of GLMPS-based IPW(c) for sample
size 1500 across methods based on correctly specified outcome and propensity models. The rows represent
scenarios and columns represent pairs of comparison. Results were obtained using 2000 simulated datasets.
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Figure 1.7: Ratio of mean 95% CI width over mean 95% CI width of GLMPS-based IPW(c) for sample size
1500 across methods based on a correctly specified propensity score or outcome model. For methods that
involve both models, the first and second letter in the parentheses correspond to the propensity and outcome
model, respectively. The rows represent scenarios and columns represent pairs of comparison. Results were
obtained using 2000 simulated datasets.
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switched treatment or dropped out of the insurance plan within 180 days of the first prescription
with no events (i.e. ER visits) occurring during the follow-up period were regarded as being
censored. Censored patients exhibited similar demographic and baseline clinical characteristics
to uncensored ones (Table A.17) and were dropped from the analysis. We first calculated the crude
risks of at least one ER visit for 180-day follow up for each of the four focus drugs, and compared
the risk among the four treatment groups using causal inference methods described in the previous
section.

The GPS for each subject was estimated from a multinomial logistic regression model adjust-
ing for age, race, education level, household income, geographic region, insurance product type,
whether the insurance plan is administrative services only, metastatic status of cancer, year of first
prescription, comorbid conditions, and provider type. All covariates were binary or categorical,
and the categorization was summarized in Table A.18. We observed insufficient overlap among
the four treatment groups in terms of the logit propensity of receiving docetaxel, especially at the
left end of the distribution (Figure A.10A), which indicates that we may not be able to find a good
match in docetaxel users for some patients receiving abiraterone, enzalutamide, or sipuleucel-T.
Similar patterns occurred for the logit propensity of receiving the other three drugs (Figures A.10C,
A.10E and A.10G). One can use trimming methods that discard the tails of propensity score dis-
tributions to remedy the lack of overlap. Several trimming criteria for three or more treatment
groups are discussed in the literature [24, 25, 60]. In our case, we trimmed the data using the
criteria described in Lopez and Gutman [25]. In brief, for each treatment z ∈ {1, 2, 3, 4}, where
lz = max

j
{min

i
(pr(Zi = z|Zi = j,X i))} = and uz = min

j
{max

i
(pr(Zi = z|Zi = j,X i))}, where

pr(Z = z|Z = j,X) is the treatment assignment probability for z among those receiving treat-
ment j. Subjects with ez(x) /∈ [lz, uz] for any z were discarded. GPS were recalculated using the
remaining subjects. One important step in propensity score modeling is balance checking. Ways
to check for balance in covariates and their corresponding results for the methods considered are
described in Section A.1 in the Appendix. The log odds of the outcome was modeled as a linear
combination of the same set of covariates adjusted in the GPS model for each treatment group.
The confidence intervals for each method were obtained in the same way as described in the sim-
ulation studies. Specifically, 200 bootstrap replicates were used for OREG, PEN-GAM, and all
weighting-based methods.

The data that support the findings of this study are available on request from the corresponding
author. The data are not publicly available due to privacy or ethical restrictions.
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1.6.2 Data Analysis Results

A total of 2628 mCRPC patients with at least 180 days of continuous enrollment prior to the
receipt of the first focus drug were identified. The average and median length of the enrollment
period that covers January 1, 2014 is 6.16 and 4.75 years, respectively. Among the 2,628 patients,
670 (25.5%) were censored and 4 (0.2%) had incomplete covariates. We further excluded these
patients from the analysis. The demographic and baseline clinical data of the remaining 1,955
patients are presented in Table A.18. Table 1.2 presents the crude risks of at least one ER visit
during 180-day follow up among uncensored patients for each of the four treatment groups. The
unadjusted risk was the highest in the docetaxel group (51.5%), followed by Sipuleucel-T group
(44.3%). Enzalutamide users had the lowest risk (25.5%) of at least one ER visit within 180 days.

First-line therapy Total number of patients
Number of

uncensored patients
with complete covariates

At least 1 ER visit (%)
within 180 days*

Docetaxel (Taxotere, Decefrez) 728 565 291 (51.5)

Abiraterone (Zytiga) 1039 783 314 (40.1)

Enzalutamide (Xtandi) 639 476 163 (34.2)
Sipuleucel-T (Provenge) 222 131 58 (44.3)

Table 1.2: Emergency room visits following the first prescription (N = 2628). Percentage was calculated
using the number uncensored patients as the denominator.

We observed imbalance in some of the covariates (Table A.1 and Table A.18). For example,
patients who received abiraterone or enzalutamide tend to be older than those receiving docetaxel.
Sipuleucel-T users tend to have more pre-treatment osteoporosis (16.0%) than patients receiving
the other three drugs (5.3% for docetaxel, 8.4% for abiraterone, and 9.0% for enzalutamide).

To improve the covariate overlap among the treatment groups, we applied data trimming with
criteria discussed previously, which left us with 1777 subjects. Results of data analysis are pre-
sented in Figure 1.8 and Table A.19. Direct comparison of the four groups (naive method) revealed
that docetaxel users had significantly higher risk of at least one ER visits within 180 days of follow
up than users of abiraterone (risk difference = 0.130 [0.073, 0.186]), enzalutamide (risk difference
= 0.177 [0.115, 0.239]), and sipuleucel-T (risk difference = 0.099 [0.001, 0.197]). The directions
of the average effects between docetaxel and the other drugs were preserved for the other methods,
though the effect sizes varied. The 95% CIs for the average causal effects between docetaxel and
enzalutamide consistently excluded 0 for all methods. However, for the Sipuleucel-T-docetaxel
comparison, only MCOV showed a significant difference. For the enzalutamide-abiraterone com-
parison, all methods considered indicated a higher risk for enzalutamide, while none of these esti-
mated risk differences were significant. For the sipuleucel-T-abiraterone comparison, PEN-GAM
yielded negative point estimates (indicating higher risk for abiraterone), while the other methods
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indicated a reversed relationship. Again, none of the corresponding CIs excluded 0. In general,
there was a larger uncertainty in regard to the direction and magnitude of the risk differences
that involve the Sipuleucel-T group due to its smaller sample size. Notably, PEN-GAM tended
to have wider CIs than the other methods, which was consistent with the simulation results for
small sample size. The results of MW, AMW, OW, and AOW were close to one another in terms
of point estimates as well as standard errors for all pairwise comparisons, possibly because their
corresponding target populations were similar. This finding aligns with what was observed in the
simulation studies. The results of our data analysis agree well with the clinical evidence in current
literature [57, 58, 59]. The naive method yielded results that were highly consistent with those
of the methods that adjust for potential confounding, suggesting that the treatment effects were
relatively strong compared to the confounding effects.

1.7 Discussion

This paper has reviewed and compared a set of causal inference strategies that account for con-
founding for multiple treatment comparison with a binary outcome variable. Some of these meth-
ods, for example, MGPSS [24] and PENCOMP [17], were recently proposed and less explored
under the setting of binary outcome in current literature. Our simulation studies show that when
there is sufficient overlap in covariate distributions, MGPSS, and in general all AI-type matching
methods, are less efficient than the conventional inverse probability weighted (IPW) estimator. The
gain in precision of AIPW over IPW that has been observed for continuous outcomes [3, 61] was
less evident in our simulations for a binary outcome and good covariate overlap. Thus, while aug-
mentation was still useful for the robustness of estimating the causal effect, it was less useful for
improving efficiency. When there was lack of common support, PEN-GAM and AIPW provided
more precise estimation than IPW. The improvement in precision increased as the associations of
the outcome with baseline covariates became stronger. With moderate outcome prevalence, PEN-
GAM tended to perform better than AIPW in terms of RMSE when only the propensity model was
correctly specified. One possible reason was that when the covariate overlap is poor, the weights
tend to have large variations and some individuals may receive extreme weights, which results in
highly variable estimates. PEN-GAM avoids weights by adjusting for the splines of propensity
scores (in logit scale) in the outcome model. When the outcome model was misspecified, the es-
timates relied more on the use of propensity scores. On the other hand, when the outcome was
sparse, the fitting of the spline models tended to be unstable, which leads to larger RMSE for
PEN-GAM than AIPW.

For propensity score-based methods, correctly modeling the propensity scores is the key to
yielding valid inference. The generalized linear model based on maximum likelihood (GLMPS) is
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Figure 1.8: Differences in 180-day risks of experiencing at least one emergency room visit among the four
focus drugs and the associated 95% confidence intervals. Data were obtained from Optum Clinformative
Data Mart, with the outcome interest being the occurrence of emergency room visit within 180 days of
treatment initiation. Total sample size is N = 1777 (NA = 699, ND = 519, NE = 438, NS = 121). Con-
fidence intervals that exclude zero are highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel;
E, enzalutamide; S, sipuleucel-T.
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sensitive to both unmeasured confounders and misspecified functional form, which tend to lead to
large bias in ATE estimation. Efforts have been made to improve the robustness of propensity score
estimation and the Covariate Balancing Propensity Scores (CBPS), which utilizes the covariate
balancing property of the propensity scores and achieves robustness in the presence of incorrect
functional forms, in one of the examples [45]. In particular, when the GPS model has misspecified
functional form but adjusts for the whole set of confounders, the use of CBPS can reduce the bias
of the ATE estimates compared to using GLMPS. In addition to CBPS, methods based on machine
learning technique have also been proposed for propensity score estimation [62].

Our focus in this paper has remained on simple parametric models. There is extensive literature
on using machine learning methods [63, 64, 65] to capture potential nonlinearities and higher-
order interactions. The relative gain by using such flexible methods depends on the sample size,
the number of predictors, and the true structure of the underlying models (the propensity model or
the outcome model).

The computational time for each of the methods considered in the simulation studies for a
sample size of 1500 and 3 treatment groups is reported in Table A.20. All simulations were run on
an Intel® Xeon® Gold 6138 Processor (2.00 GHz). The average run time of over-identified CBPS
was almost twice as much as that of just-identified CBPS. The average run time of PEN-GAM for
one bootstrap replicate was around 2 seconds. The projected computational time for 200 bootstrap
replicates is approximately 7 minutes.

The methods examined in this study only accounts for the selection bias associated with dif-
ferences in the covariates. However, the outcome of the data we used is also subject to censoring,
which may introduce another layer of selection bias. In particular, approximately 30% of the pa-
tients in our data set were censored due to treatment switch or dropout within 180 days of treatment
initiation. Weighting-based methods have been proposed to achieve unbiased estimation of average
causal effect in the presence of right-censored observations under certain assumptions [66, 67, 68].
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CHAPTER 2

An Inverse Probability Weighted Regression Method
for a Binary Outcome that Accounts for

Right-censoring

2.1 Introduction

Data from observational studies, in which treatments are usually not randomly assigned, have been
increasingly used to evaluate comparative effectiveness of treatments in the real world. Without
randomization, it is difficult to make causal interpretations concerning the effect of a treatment on
an outcome of interest, as the estimation of the average treatment effect tends to be biased by the
presence of confounders. A commonly used tool that controls for confounding is the propensity
score, defined as the conditional probability of treatment given a set of potential confounders [10].
There is a large body of work on propensity score-based methods that adjust for the differences in
baseline covariates among treatment groups, and readers can find some reviews of these methods
in Stuart [28], Hu et al. [63], and Yu et al. [69].

It usually takes some period of follow-up time, which may or may not be the same for all
subjects, to observe the post-treatment outcome of interest after the subjects enter the study. This
type of outcome is sometimes referred to as time-lagged response [68]. One example is whether the
event of interest happens within a pre-specified time window, which results in a binary outcome that
cannot be ascertained if the subject has been censored prior to the end of the window. Censoring
occurs when the information about the response is not completely available due to dropout, study
termination, or treatment switch. Censoring together with confounding arises in many applications,
such as insurance claims databases, where the participants are not randomly enrolled nor randomly
assigned to treatments, and could potentially leave the insurance plan or be switched to another
treatment prior to the occurrence of the event of interest. In this paper, we consider a study that
evaluates the possible adverse effects of four candidate drugs prescribed for metastatic castration-
resistant prostate cancer (mCRPC) using data from Optum Clinformatic Data Mart, a national

30



private health insurance network. Some of these drugs are chemotherapy, while some others are
hormone therapies, and the prior expectation is that the hormone therapies will lead to less acute
adverse events. We separately examine two endpoints: emergency room (ER) visit and all-cause
hospitalization post first-line therapy with one of these drugs. We intend to compare patients’ risks
of experiencing at least one event of interest (i.e., ER visit or hospitalization) within a 180-day,
270-day, and 360-day time window after treatment initiation. Therefore, the outcome we focus on
is binary that is subject to right-censoring.

Leaving out censored observations when conducting a comparative analysis can result in a bi-
ased effect estimate even after proper adjustment for confounding. Special techniques that adjust
for both confounders and censoring are required to make valid inference on the causal effects.
Anstrom and Tsiatis [68] proposed an inverse probability weighted estimator of average treat-
ment effect for the time-lagged response, which can be used to estimate the difference in risks of
event occurrence. To improve the robustness and statistical efficiency of the estimator of Anstrom
and Tsiatis [68], Wang et al. [66] proposed an augmented inverse probability weighted estima-
tor that makes use of the information about the outcome model for censored medical cost data.
The estimator of Wang et al. [66] can conveniently be extended to the case of a binary outcome
by replacing the linear regression model for the outcome with a logistic regression model. Since
one minus the survival function of the event of interest describes the risk of an event over the
duration of follow-up, one can also use methods for time-to-event outcomes. These will include
approaches that model the whole survival curve, and obtain the probability of surviving to the end
of the pre-specified time window. For example, Zhang and Schaubel [67] proposed an estimator
for the cumulative hazard function, which incorporates the information from Cox models for the
time-to-event outcome into the estimating equations. Their method was originally developed for
estimation of restricted mean lifetimes, but can be easily adapted to estimate the average treatment
effect on a possibly censored binary outcome, since one can think of the survival probability at a
given time point as a fixed time ‘snapshot’ of the whole survival curve. The augmented estimators
such as Wang et al. [66] and Zhang and Schaubel [67] are known to possess the double robustness
property, such that the estimator remains consistent as long as either the model corresponding to
the outcome, or the models corresponding to the weights in the estimating equations are correct.
Another line of work in causal inference for censored data involves using pseudo-observations in
replacement of the original outcomes that are possibly incompletely observed [70]. For a binary
outcome, the causal treatment effect is estimated by computing pseudo survival probability for
each subject, followed by standard causal inference method for completely observed outcomes,
such as inverse probability weighting or direct standardization. We leave the details of the afore-
mentioned methods to Section 2.4. Among these approaches that address right-censoring, some
assume conditional independence of the censoring and survival time given treatment only [e.g.,
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66, 68, 70], while others require less restrictive conditions such that censoring and survival times
are independent given treatment and baseline covariates [e.g., 67].

We propose a method that directly models the binary outcome using logistic regression, with
confounding and censoring properly accounted for by weighting. The risk of event occurrence
(and therefore the average treatment effect) is estimated based on standardization, which averages
the outcome predictions obtained from the logistic regression model across all subjects. The treat-
ment assignment and censoring mechanism together can be viewed as a special case of coarsening,
a process that prevents one from observing the desired data structure [71]. We explain how our
problem can be described using the concept of coarsening later in Section 2.3. Coarsening is han-
dled by applying inverse probability of not being coarsened as weights to the score function of the
logistic regression model. We call the method inverse probability weighted regression-based esti-
mator, CIPWR for short, with the letter C highlighting the censoring component. Specifically, three
sets of working models are constructed, one for the treatment assignment, one for the treatment
specific censoring distribution, and the other for the outcome of interest. We show that the CIPWR
estimator is doubly robust in the sense that consistency of the estimator can be achieved if either
the outcome or the coarsening mechanism is correctly modeled. As Zhang and Schaubel [67], this
method makes the less restrictive assumption about censoring than Wang et al. [66], Anstrom and
Tsiatis [68], Andersen et al. [70]. Unlike Wang et al. [66], Zhang and Schaubel [67] that are based
on the general approach of augmented inverse probability weighting, our method is a standard-
ization method. Also, unlike Zhang and Schaubel [67] that estimates the whole survival curve,
this method targets the binary outcome of interest and may lead to improved efficiency in some
situations.

The rest of the paper is organized as follows. In Section 2.2, we introduce the statistical frame-
work and the notations used. In Section 2.3, we describe our proposed method and establish its
asymptotic properties. We compare the finite sample performance of the CIPWR estimator to that
of several alternative approaches through simulation studies and results are presented in Section
2.5. The proposed method is then applied to the prostate cancer treatment comparison example
from the insurance claims database in Section 2.6. Conclusions and discussions for future research
are presented in Section 2.7.

2.2 Notations and Assumptions

For individual i, where i = 1, · · · , n, let X̃ i be a set of baseline variables, and Zi be the treatment
received. We assume that Zi is nominal with J levels, i.e., Zi = j ∈ {1, · · · , J ; J ≥ 2}, and let
Dij ≡ I(Zi = j). Let Ti denote the underlying lag time to the first event of interest, which will
always be observed if there were no censoring. In this study, the outcome of interest, denoted by
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Yi, is whether the event of interest occurs within a pre-specified time window d. By this definition,
Yi = I(Ti < d). We adopt the counterfactual framework to formulate the problem of causal
comparison [41]. Each individual is associated with a set of potential outcomes {Y (1)

i , · · · , Y (J)
i },

where Y (j)
i = I{T (j)

i < d} and T (j)
i is defined as the potentially observed time to the first event of

interest had the patient received treatment j. Under the Stable Unit Treatment Value Assumption
(SUTVA, defined later), only the outcome under the actual treatment received, Yi =

∑J
j=1DijY

(j)
i ,

can be observed.
In practice, the time to event Ti may not be completely observed due to right-censoring, in

which case the outcome variable Yi is therefore subject to coarsening. Let Ci denote the censoring
time and Ri = I {Ci ≥ min(Ti, d)}. Then Yi is observed if the individual has not been censored
before d, i.e., Ri = 1. We further let ∆i = I(Ti ≤ Ci) and Li = min(Ti, Ci, d). Note that
the outcomes Yi of those whose Ti are censored (∆i = 0) are not necessarily missing at time d
(Ri = 0).

Interest lies in estimating the average treatment effect τ (j, j′) = E
{
Y (j′) − Y (j)

}
, which

equals the risk difference pr{Y (j′) = 1} − pr{Y (j) = 1} for a binary outcome. We seek to
estimate E

[
Y (j)

]
separately for j = 1, · · · , J . To connect the counterfactual framework to the

observable data and establish a causal interpretation, we make the following assumptions.

(A1) (Random sampling) The individuals in the study are randomly sampled from the population.

(A2) (Stable Unit Treatment Value Assumption, or SUTVA) For any individual i, i = 1, · · · , n, if
Zi = j, then Yi = Y

(j)
i , for all j = 1, · · · , J .

(A3) (Unconfoundedness) {Y (1)
i , · · · , Y (J)

i } ⊥⊥ Zi|X̃ i.

(A4) (Overlap) For all values of j and x̃, 0 < πj(x̃) < 1, where πj(x̃) = pr(Zi = j|x̃).

(A5) (Censoring at random) Ci ⊥⊥ {T (1)
i , · · · , T (J)

i }
∣∣∣(Zi, X̃ i).

2.3 Proposed Method: Inverse Probability Weighted Regres-
sion that Accounts for Right-Censoring

We note that instead of directly evaluating E{Y (j)
i }, it is theoretically more convenient to work

with the survival function

µj ≡ E[I{T (j)
i ≥ d}] = 1− E{Y (j)

i },

and we let Ỹ (j)
i = I{T (j)

i ≥ d}. The counterfactual parameter µj can be represented using the
observed data, µj = EX [E{Ỹ (j)

i |X̃ i}] = EX [E{Ỹi|X̃ i, Zi = j}], where the second equation
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follows from the unconfoundedness assumption (A3). Had there been no right-censoring, µj could
be estimated by averaging the predicted potential outcomes, µ̂j = n−1

∑n
i=1 Ê(Ỹi|X̃ i, Zi = j), for

j = 1, · · · , J , where Ê(Ỹi|X̃ i, Zi = j) are usually fitted values in a parametric regression model.
For a binary outcome, a logistic regression model is a popular choice to fit Ỹ in group j, specified
as

logit{E(Ỹi|X̃ i, Zi = j)} =XT
i βj, (2.1)

where X i is a vector-valued function of X̃ i with an intercept and possibly interactions and non-
linear terms. For notational convenience, we define mij(βj) = expit(XT

i βj). When the outcome
Y (and therefore Ỹ ) is completely observed for all individuals in the sample, βj is commonly
estimated by solving the score equations

n∑
i=1

X i{Ỹi −mij(βj)} = 0, (2.2)

the solution of which is the maximum likelihood estimator.
From the missing data perspective, the potential outcome Y (j)

i = I{T (j)
i < d} would be missing

at baseline (t = 0) if individual i were assigned to the treatment other than j. When censoring
comes into play, Y (j)

i is subject to missingness at any time 0 < t < d because of censoring. In
this case, we consider the more general notion of coarsening of data [71, 72, 73], which describes
the case where one only gets to observe a many-to-one function of the full data for some of the
individuals in the sample, and different many-to-one functions are allowed for different individuals.
In the context of estimating µj , the full data one would like to observe for individual i is {Y (j)

i , X̃ i}.
When Dij = 0, T (j)

i (and therefore Y (j)
i ) is completely missing, and we only observe X̃ i. When

Dij = 1 and Ci = t < min(T
(j)
i , d), we observe {I(T (j)

i > t), X̃ i}, where t < d. When Dij = 1

and Ci = t ≥ min(T
(j)
i , d), there was no coarsening at all, and we observe the full data {Y (j)

i , X̃ i}.
In summary, there are two layers of missingness in our setting, one due to treatment assignment and
the other due to censoring. Therefore, we can inversely weight the unbiased estimating equations
(2.2) by the probability of not being coarsened to make inference about the target population where
no subjects were coarsened. The weighted estimating equations for βj is given by

n∑
i=1

DijRiX i{Ỹi −mij(βj)}
πij(α) exp{−Λij(Li)}

= 0, (2.3)

where πij(α) = pr(Zi = j|X̃ i) is the propensity score for treatment j, and Λij(t) is the cumulative
hazard function of Ci at t for treatment j. We denote the solution to (2.3) by β̂j . The total weights
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that account for the coarsening mechanism consist of two weighting components. The first is
the propensity of being assigned to treatment j, and the second is (informally) the conditional
probability of not being censored. Therefore, equation (2.3) can be regarded as weighting the
score functions (2.2) by the inverse probability of observing the complete cases. A regression-
based estimator for µj indicated by (2.1) is

µ̂j = n−1

n∑
i=1

expit(XT
i β̂j) = n−1

n∑
i=1

mij(β̂j),

and we call it inverse probability weighted regression-based estimator that accounts for right-
censoring (CIPWR).

In the literature, an outcome that is subject to censoring is sometimes handled using survival
models, such as Cox regression model [67, 74]. CIPWR, on the other hand, directly models the
binary outcome of interest using the logistic regression, which is relatively more intuitive and
straightforward to implement for empirical researchers. Our proposed estimator can be imple-
mented using standard statistical software, such as the glm function in R with the weights argument
being specified.

In practice, πij(α) and Λij(t) in (2.3) are usually unknown and need to be estimated from the
data. We build working models for these two nuisance components. Let V i and W i be vector-
valued functions of X̃ i, which are allowed to be different from X i. We assume that the treatment
assignment mechanism is governed by a multinomial logistic regression model

log
pr(Zi = j|V i)

pr(Zi = J |V i)
= V T

i αj, j = 1, · · · , J − 1,

where J is the reference treatment level. Let α = (α1, · · · ,αJ−1)
T , and its estimated value α̂ can

be obtained through maximum likelihood estimation. With respect to censoring, for each treatment
j = 1, · · · , J , we assume a Cox proportional hazards model, specified as

λij(t|W i,γj) = λ0j(t) exp(W
T
i γj),

where λ0j(t) is an unspecified treatment-specific baseline hazard function of C. The estimates for
γj and Λ0j(t) =

∫ t

0
λ0j(s)ds can be determined by the maximum partial likelihood estimator, γ̂j ,

and the Breslow estimator, Λ̂0j(t), respectively. Then the probability of remaining uncensored at t
for individual i is given by exp{−Λ̂0j(t) exp(W

T
i γ̂j)}. In a typical survival study, one only gets

to observe the minimum of C and T , which is usually referred to as observation time, and the
observed data can be represented as {∆i,min(Ti, Ci)}. However, for our data example, time to
treatment switch or the end of insurance coverage can always be identified from the claims data,
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regardless of whether the event of interest happens or not. In this case, censoring time C is always
available for all subjects, and ∆i = 0 for all i, i = 1, · · · , n. Therefore, one can alternatively
estimate the probability of remaining uncensored by replacing {∆i,min(Ti, Ci)} with {0, Ci}.

2.3.1 Consistency and Double Robustness

Under suitable regularity conditions, α̂, γ̂j , and Λ̂0j converge in probability to well-defined lim-
its, denoted by α∗, γ∗

j , and Λ∗
0j , respectively, which can be different from their corresponding

true values α0, γ0
j , and Λ0

0j [75, 76]. We denote the true values for βj and µj by β0
j and

µ0
j , respectively. For notational convenience, we also define Λ∗

ij(t) = Λ∗
0j(t) exp(W

T
i γ

∗
j) and

Λ0
ij(t) = Λ0

0j(t) exp(W
T
i γ

0
j).

We first show that µ̂j = n−1
∑n

i=1mij(β̂j), a function of β̂j , is consistent when the outcome
model for treatment j is correct. Using the theory of M-estimator, the consistency of β̂j can be
established by showing that the estimating function is unbiased [77], that is,

0 =E

[
DijRiX i{Ỹi −mij(β

0
j)}

πij(α∗) exp{−Λ∗
ij(Li)}

]

=E

[
DijRiX iỸi

πij(α∗) exp{−Λ∗
ij(Li)}

]
(2.4a)

− E

[
DijRiX imij(β

0
j)

πij(α∗) exp{−Λ∗
ij(Li)}

]
. (2.4b)

Applying the law of iterated expectation and using the Assumption (A5),

(2.4a) = E

{
E

[
DijRiX iỸi

πij(α∗) exp{−Λ∗
ij(Li)}

∣∣∣∣∣X i, Zi = j

]}

= E

[
DijX iE {I(Ci > d)|X i, Zi = j}

πij(α∗) exp{−Λ∗
ij(d)}

E(Ỹi|X i, Zi = j)

]
,

where the second equation is derived from the formula RiỸi = I{Ci > min(Ti, d)}Ỹi = I{Ci >

d}Ỹi. Since when Ti > d, Ri/ exp{−Λ∗
ij(Li)} = I(Ci > d)/ exp{−Λ∗

ij(d)}, using similar tech-
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niques,

(2.4b) = E

{
E

[
D(j)RiX imij(β

0
j)

πij(α∗) exp{−Λ∗
ij(Li)}

∣∣∣∣∣X i, Zi = j, Ti > d

]}

= E

{
DijX iE [I(Ci > d)|X i, Zi = j]

πij(α∗) exp{−Λ∗
ij(d)}

mij(β
0
j)

}
.

SinceE(Ỹi|X i, Zi = j) = mij(β
0
j) when the outcome model is correctly specified, the estimat-

ing function is shown to be unbiased, which implies that β̂j obtained by solving (2.3) converges in
probability to the truth β0

j . Therefore, µ̂j = n−1
∑n

i=1mij(β̂j)
p→ E

{
mij

(
β0

j

)}
= µ0

j .
We then show the consistency of µ̂j when the coarsening mechanisms (i.e., treatment and cen-

soring models) are correctly specified, in which case πij(α̂)
p→ πij(α

0) and Λ̂ij(t)
p→ Λ0

ij(t).
Under suitable regularity conditions, β̂j

p→ β∗
j , where β∗

j is a well-defined limit, and then

µ̂j = n−1

n∑
i=1

mij

(
β̂j

)
p→ E

{
mij

(
β∗

j

)}
.

We consider the intercept term inX i and rearrange equation (2.3),

n−1

n∑
i=1

DijRiỸi

πij(α̂) exp{−Λ̂ij(Li)}
= n−1

n∑
i=1

DijRimij(β̂j)

πij(α̂) exp{−Λ̂ij(Li)}
. (2.5)

The left-hand side of (2.5) converges in probability to µ0
j , because

n−1

n∑
i=1

DijRiỸi

πij(α̂) exp{−Λ̂ij(Li)}
p−→ E

[
DijRiỸi

πij(α0) exp{−Λ0
ij(Li)}

]

= E

[
DijE{I(Ci > d)Ỹ

(j)
i |X̃ i, Zi = j}

πij(α0) exp{−Λ0
ij(d)}

]

= E

[
DijE{I(Ci > d)|X̃ i, Zi = j}E{Ỹ (j)

i |X̃ i, Zi = j}
πij(α0) exp{−Λ0

ij(d)}

]
(2.6)

where (2.6) follows from Assumption (A5). With correct specification of the treatment and censor-
ing models,E{I(Ci > d)|X̃ i, Zi = j} = exp{−Λ0

ij(d)} andE(Dij|X̃ i) = πij(α0), and therefore
(2.6) can be reduced to E[E{Ỹ (j)

i |X̃ i, Zi = j}], which is equivalent to µ0
j .

Using similar techniques, one can show that the right-hand side of (2.5) converges in probability
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to E
{
mij(β

∗
j)
}

, since

n−1

n∑
i=1

DijRimij(β̂j)

πij(α̂) exp{−Λ̂ij(Li)}
p−→ E

[
DijRimij(β

∗
j)

πij(α0) exp{−Λ0
ij(Li)}

]
= E

[
Dijmij(β

∗
j)E{I(Ci > d)|X i, Zi = j, Ti > d}
πij(α0) exp{−Λ0

ij(d)}

]
= E

{
mij(β

∗
j)
}
.

It follows that µ0
j = E

{
mij(β

∗
j)
}

, and µ̂j
p→ µ0

j when the treatment and censoring models are
correctly specified. Note that when the stronger independence assumption (C ⊥⊥ T |Z) holds for
survival and censoring times, only the treatment model is required to be correct. We have shown
that the proposed estimator exhibits the so-called double robustness property.

2.3.2 Asymptotic Properties

In this section, we establish the asymptotic properties of our proposed estimator µ̂j . For j =

1, · · · , J , through a Taylor series expansion of µ̂j = n−1
∑n

i=1mij(β̂j) about β∗
j ,

n1/2(µ̂j − µ0
j) = n−1/2

n∑
i=1

{
mij(β

∗
j)− µ0

j

}
+Aj(β

∗
j)n

1/2(β̂j − β∗
j) + op(1), (2.7)

whereAj(β
∗
j) = E

[
XT

i mij(β
∗
j){1−mij(β

∗
j)}
]
.

Equation (2.7) indicates that to characterize the asymptotic distribution of n1/2(µ̂j − µ0
j), one

first needs to identify the asymptotic distribution of n1/2(β̂j − β∗
j), which further depends on the

asymptotic results for the parameters of the treatment and censoring models. Under some suitable
regularity conditions, α̂l

p→ α∗
l for l = 1, · · · , J − 1, and the estimator of the treatment model

parameter is asymptotically normal with

n1/2(α̂l −α∗
l ) =H

−1
l (α∗)n−1/2

n∑
i=1

V i {Dil − πil(α
∗)}+ op(1), (2.8)

whereH l(α
∗) = E

[∑n
i=1 V iV

T
i πil(α

∗) {1− πil(α
∗)}
]

with α∗ = (α∗
1, · · · ,α∗

J−1)
T .

For the asymptotic distributions of the estimators γ̂j and Λ̂ij , we define the relevant notations
s
(q)
j (t;γj) for q = 0, 1, 2,wj(t;γj), dΛ∗

0j(t), and dM∗
ij(t) in section B.1 in Appendix B. We further

denote the counting process byNij(t) = DijI{min(Ti, Ci) ≤ t,∆i = 1} and the at-risk process by
Yij(t) = DijI{min(Ti, Ci) ≥ t}. Let δ be the time point that satisfies P{min(Ti, Ci) ≥ δ} > 0 for
i = 1, · · · , n, which is practically set to the maximum observation time. Lin and Wei [76] showed
that under some regularity conditions, γ̂j

p→ γ∗
j , and n1/2(γ̂j − γ∗

j) converges in distribution to a
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normal distribution

n1/2(γ̂j − γ∗
j) = Ω−1

j (γ∗
j)n

−1/2

n∑
i=1

U ij(γ
∗
j) + op(1), (2.9)

where Ωj(γ
∗
j) =

∫ δ

0

{
s
(2)
j (t;γ∗

j )

s
(0)
j (t;γ∗

j )
−wj(t;γj)

⊗2

}
E{Yij(t)λij(t)}dt and U ij(γ

∗
j) =

∫ δ

0
{W i −

w(t;γ∗
j)}dM∗

ij(t). Using (2.9), one can show that

n1/2{Λ̂ij(t)− Λ∗
ij(t)} =KT

ij(t;γ
∗
j)Ω

−1(γ∗
j)n

−1/2

n∑
i=1

U ij(γ
∗
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+ exp(W T
i γ

∗
j)n

−1/2

n∑
i=1

∫ t

0

dM∗
ij(u)

s(0)(u;γ∗
j)

+ op(1), (2.10)

whereKij(t;γ
∗
j) =

∫ t

0
{W i −wj(t;γ

∗
j)}dΛ∗

ij(u).

By a sequence of Taylor series expansion of n−1
∑n

i=1

DijRiXi{Ỹi−mij(β̂j)}
πij(α̂) exp{−Λ̂ij(Li)}

(see section B.1 in
the Appendix) and combining the results of (2.8), (2.9), and (2.10), it follows that

n1/2(β̂j − β∗
j) = B
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j (β∗

j ,α
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ij)n
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+ op(1). (2.11)

whereBj , F jl, P j , andQj are defined in section B.1 in Appendix B.
Plugging (2.11) into (2.7), we can represent n1/2(µ̂j − µj) as n−1/2

∑n
i=1 ψij + op(1), where
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By the central limit theorem, n−1/2
∑n

i=1 ψij converges in distribution to a normal distribution with
mean 0 and variance E(ψ2

ij).

2.4 Methods under Comparison

We compare our proposed method with several alternative approaches. The first is to leave out
censored subjects and apply standard inverse probability weighted (IPW) method to the data with
completely observed outcome only. The corresponding estimator for the average potential outcome
in treatment group j is given by

µ̂j,IPW = n−1

n∑
i=1

DijRiỸi
πij(α̂)

.

The second approach considered builds on the IPW estimator and, along the line of Anstrom
and Tsiatis [68], further weights the subjects by the inverse probability of not being coarsened,
namely, CIPW estimator

µ̂j,CIPW = n−1

n∑
i=1

DijRiỸi

πij(α̂) exp{−Λ̂ij(Li)}
.

The third is the estimator of [66], which is a doubly robust estimator for average treatment
effect using an augmented inverse probability weighted method, and we label it CAIPW-Wang.
Let hij(ωj) be a posited model, in this case a logistic regression model, for E(Ỹi|Zi = j, X̃ i).
The estimates for the parameter ωj , denoted by ω̂j , are obtained by solving the score functions
weighted by the inverse probability of not being censored. The final estimator is given by

µ̂j,CAIPW-Wang =

(
n∑

i=1

wi

)−1 n∑
i=1

wi

{
DijỸi
πij(α̂)

− Dij − πij(α̂)

πij(α̂)
hij(ω̂j)

}
,

where wi =
∑n

i=1{∆i/
∑J

j=1DijK̂j[min(Ti, Ci)]} and K̂j(t) is the treatment-specific Kaplan-
Meier (KM) estimator.

The fourth is to apply standard causal inference methods, such as IPW, to pseudo-values of the
outcome [70], and we call it Pseudo-IPW. Suppose that the parameter of interest is θ = E{I(Ti ≥
d)}. The pseudo-observation for subject i is defined as θi = nθ̂ − (n − 1)θ̂−i, where θ̂ is the
KM estimator and θ̂−i is the estimator applied to the sample from which subject i is excluded.
The method is implemented using the pseudo package in R [78]. The pseudo-observations can be
viewed as a replacement for the (possibly incompletely observed) outcome variable, and censoring
is taken care of in the computation of pseudo-observations. In this case, the pseudo-observations
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are calculated assuming the independence of T and C given Z.
The fifth is the estimator of Zhang and Schaubel [67], which is originally designed for estimat-

ing the restricted mean lifetimes, and involves modeling the entire survival curve of the event time
using Cox proportional hazards models, rather than focusing on a fixed time point as in the afore-
mentioned approaches and our proposed method. It first estimates the cumulative hazard function
for the event time T for each group j, denoted by Λ̂j(t), by augmenting an inverse probability
weighted estimating equation with additional terms that involve outcome models. Then one can
estimate the survival probability µj(t) at any time point t by µ̂j(t) = e−Λ̂j(t). Therefore, the method
of Zhang and Schaubel [67] can also be used for evaluating the risk at a specific time point d. We
label their approach based on the inverse probability weighted estimating function as CIPW-ZS,
and the augmented version as CAIPW-ZS. CAIPW-ZS is doubly robust under Assumption (A5),
such that the estimator is consistent when either the time-to-event or the coarsening mechanism is
correctly modeled.

The method of Zhang and Schaubel [67] is developed within the general framework of aug-
mented inverse probability weighting, whereas the proposed method is a standardization method.
Another key difference between these two methods is that the former uses the Cox models but
the proposed method uses logistic regression models as working models to improve efficiency of
the treatment effect estimator. If the interest only lies in a binary outcome (i.e., the occurrence
of the event within a specific time period), theoretically one only needs to model the relationship
of the binary outcome with covariates to improve efficiency. The method of Zhang and Schaubel
[67] requires modeling the relationship of the hazard function (equivalently, the survival curve),
not limited to a specific time point, with covariates. This tends to be an overkill for our purpose
and increase the chance of model misspecification. When the Cox model is severely misspecified,
the method of Zhang and Schaubel [67] may provide little efficiency gain for the treatment effect
estimates. We illustrate this point in one of our simulation settings.

We further consider the simple difference in the average outcome of each treatment group,
as a benchmark, and call it the Naive estimator. The Naive estimator ignores both confounding
and censoring. Sample code for the methods described in this section can be found at https:
//github.com/youfeiyu/CIPWR.

Among these methods, Naive and IPW estimators fail to account for censoring. Pseudo-IPW
and AIPW-Wang assume that T and C are independent conditional on Z. CIPW-ZS and CAIPW-
ZS, along with our proposed method CIPWR, rely on a more relaxed assumption that T and C
are independent conditional on Z and X̃ . CAIPW-Wang, CAIPW-ZS, and CIPWR leverage the
information about the outcome model, which asymptotically improves the precision of the esti-
mates. Moreover, the double robustness property of CAIPW-Wang and CAIPW-ZS are provided
by the augmentation terms in the estimating equations, while the proposed CIPWR achieves double
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robustness through standardization of the weighted outcome model.

2.5 Simulation Studies

We compared the finite sample performance of our proposed method to the six alternative ap-
proaches described in Section 2.4 through simulation studies. Specifically, we considered two
settings that varied in degrees of nonproportionality with respect to the hazard functions for our
simulation. The first setting assumed a logistic distribution for the time to event such that the haz-
ard functions did not cross. The second setting concerned hazard functions that crossed at a certain
time point for subjects with different covariate values, in which case Cox proportional hazards
model tended to perform poorly in terms of improving precision.

2.5.1 Simulation Setting I: Non-crossing Hazards

For the first setting, each simulated data set contained five baseline covariates. X1, X2, and X3

were independently sampled from a standard normal distribution. X4 ∼ Bernoulli(0.4) and X5 ∼
Uniform(−2, 2). The treatment assignment Z was simulated from a categorical distribution with
the probability of receiving treatment j being

exp(αj0 + αj1X1 + αj2X2 + αj4X4)∑3
z=1 exp(αz0 + αz1X1 + αz2X2 + αz4X4)

for j = 1, 2, 3. The potential time to event T (j) was sampled from a logistic distribution with mean
function βj0 + βj1X1 + βj2X2 + βj3X3 and scale parameter s = 7. The potential outcome Y (j)

is defined as Y (j) = I{T (j) < d}, where d = 130. We generated the censoring time C using
inverse transform sampling [79]. In particular, we assumed a Cox proportional hazard model with
the baseline hazard following a Weibull distribution,

C(j) = {λ−1 exp(γj0 + γj1X1 + γj2X2 + γj5X5)
−1 log u}1/ν ,

where the scale parameter λ = 0.01, the shape parameter ν = 7, and u was randomly sampled
from a uniform distribution with interval [0,1].

We defined a ‘baseline’ scenario where the outcome was weakly associated with the covariates
and the proportion of being censored by d = 130 was 30%. Then we varied the corresponding pa-
rameters to induce three proportions of being censored by d = 130 (20%, 30%, and 40%) and two
levels of associations with the outcome (strong and weak). We also considered a scenario where
censoring was independent of the covariates, referring to it as the random censoring scenario, with
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30% of the subjects being censored by d = 130. The values of the parameters chosen in Setting I
are listed in Table B.1 in Appendix B. The true values for the estimands E{Y (1)}, E{Y (2)}, and
E{Y (3)} were respectively 0.36, 0.50, and 0.63 for the scenarios of weak outcome associations,
and 0.40, 0.59, and 0.50 when the outcome associations were strong.

The propensity scores were estimated using a multinomial logistic regression model, and the
probability of remaining uncensored at d was estimated by a Cox proportional hazards model. For
the random censoring scenario, the probability of remaining uncensored was also estimated using
the treatment-specific KM estimator. For the scenario with the largest proportion of censored
observations (∼40%), we further considered the case in which the censoring time was observed
for all subjects, as was the case in our data example, and evaluated the performance of CIPWR
based on the observed censoring time (in contrast to the observation time). Across the scenarios,
we considered three sets of model specifications for the CIPWR estimator: (1) correctly specified
models for outcome, treatment, and censoring, (2) correctly specified models for treatment and
censoring only, and (3) a correctly specified outcome model only. The misspecification for each
model was caused by removing the confounder X2. The CAIPW-ZS estimator assumed a Cox
proportional hazard model for the survival time, and therefore the outcome model was always
misspecified in this case. The CAIPW-Wang method only considered an outcome model and a
propensity score model, since the survival function of the censoring time was estimated by the KM
estimator.

2.5.2 Simulation Setting II: Crossing Hazards

Two covariates independently sampled from the standard normal distribution, X1 and X2, were
considered for the setting of crossed hazard functions. We assumed a multiphase model for the
event time, where the effects of risk factors on the hazards differed by phases. The varying effects
over time of risk factors are often seen in the setting of surgery. Specifically, the event time was
generated such that the hazard functions crossed at some time point, and the equations we used to
obtain the event time are listed in section B.3 in Appendix B. The probability of being assigned
to treatment j was exp(αj1X1 + αj2X2)/

∑3
z=1 exp(αz1X1 + αz2X2). Censoring was generated

using C = −λ−1 exp{γ1X1 + γ2X2 + θ1I(Z = 2) + θ2I(Z = 3)}−1 log u. In the first scenario,
we assumed that the treatment assignment and censoring time only depended on X1, such that
α1 = (α11, α12)

T = (0, 0)T , α2 = (α21, α22)
T = (0.2, 0)T , α3 = (α31, α32)

T = (0.3, 0)T , and
(λ, γ1, γ2, θ1, θ2)

T = (0.8, 1, 0, 0.2, 0.4)T . In the second scenario, we let X2 come into play, such
that α1 = (α11, α12)

T = (0, 0)T , α2 = (α21, α22)
T = (0.2, 0.2)T , α3 = (α31, α32)

T = (0.3, 0.3)T ,
and (λ, γ1, γ2, θ1, θ2)

T = (0.7,−0.5, 0.5, 0.4, 0.2)T . The cutoff point d was chosen to be 0.5 and
0.3 for the first and second scenario, respectively, which led to 30.7% and 13.2% of censored
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observations for the corresponding d. The true values for E{Y (1)}, E{Y (2)}, and E{Y (3)} were
0.68, 0.62, and 0.52 for the first scenario, and 0.54, 0.45, and 0.41 for the second scenario.

The models for the treatment assignment and censoring were correctly specified in this setting.
The logistic regression model and the Cox model for the outcome were misspecified such that
squared terms of the covariates and interactions (if applicable) were included in the model.

2.5.3 Evaluation Metrics

For each scenario, we generated 2000 Monte Carlo data sets, each with n = 1500 subjects. For
CIPWR, the standard errors and 95% confidence intervals (CIs) were estimated using the formula
for asymptotic variance derived in Section 2.3.2. For the other methods considered, 200 bootstrap
replicates were used to estimate the standard errors and 95% CI. Simulation results are presented
in terms of bias, empirical standard deviation, root mean squared error (RMSE) and coverage rate
of 95% CI.

2.5.4 Simulation Results

Naive and IPW estimators were expectedly biased away from the true risk differences in all scenar-
ios (Figures B.1 and B.2), as they failed to accommodate censoring. All other methods had close
to zero empirical bias when censoring was unrelated to covariates (Figure B.1). On the other hand,
when censoring depended on the covariates, the bias for Pseudo and CAIPW-Wang, which relied
on the strict assumption C ⊥⊥ T |Z, became non-negligible (Figures B.1 and B.2).

The RMSE results for Setting I are displayed in Figures 2.1 and 2.2. We report the ratio of
RMSE to the RMSE of CIPW with correctly modeled coarsening mechanism. Figure 2.1 sum-
marizes the results for different censoring mechanisms and proportions of being censored. In
general, CAIPW-ZS and CIPWR had the smallest RMSE among the methods considered across
all treatment pair comparisons. As the censoring proportions increased, we observed larger gain
in efficiency for CAIPW-ZS and CIPWR over CIPW. Cox model-based and KM estimator-based
CIPWR yielded similar RMSE in the random censoring scenario (Figure B.6 in Appendix B), with
the former having slightly smaller RMSE than the latter in some cases. This finding suggests that
estimating the probability of remaining uncensored from the data, even if the value is known, may
actually lead to smaller variance for the CIPWR estimator than using the true value, which is con-
sistent with the theoretical results in the literature [71]. Moreover, estimating the probability of
remaining uncensored using observation time tended to reduce the RMSE compared with using
observed censoring time (Figure B.7 in Appendix B). Figure 2.2 displays the RMSE results for
different levels of outcome associations. When the associations between the covariates and the
outcome were weak, we observed 2.6%-3.7% reduction in RMSE for CIPWR and CAIPW-ZS.

44



Greater reduction (7.6%-10.5%) was noted as the associations became stronger. The RMSE re-
sults for Setting II where crossing hazards existed are presented in Figure 2.3. Note that in this
setting both the logistic regression model and the Cox model for the outcome were misspecified.
Again, we observed lower RMSE for CIPWR and CAIPW-ZS compared to CIPW. Furthermore,
CAIPW-ZS produced larger variability (and therefore larger RMSE) than CIPWR when the hazard
functions had a crossing (Figure 2.3 and Table B.7 in Appendix B). For example, the ratios of the
variance of CAIPW-ZS to that of CIPWR ranged from 1 to 1.06 in the first scenario, and from 1.05
to 1.08 in the second scenario.

All methods that were approximately unbiased in the presence of nonrandom censoring (i.e.,
CIPW, CIPW-ZS, CAIPW-ZS, and CIPWR) achieved close to nominal coverage of 95% across all
scenarios considered (Table B.2-B.6).

2.6 Application to Comparison of Treatments for Prostate
Cancer using Medical Claims

2.6.1 Data Analysis Methods

We applied our proposed method to a dataset comprised of patients with metastatic castration-
resistant prostate cancer (mCRPC), which was obtained from a large national private health in-
surance network (Optum Clinformatic Data Mart). The study cohort included patients who used
at least one of the six drugs (docetaxel, abiraterone, enzalutamide, sipuleucel-T, cabazitaxel, and
radium-223) approved to treat mCRPC from January 1, 2014, to December 31, 2019. Among
these drugs, docetaxel and cabazitaxel are chemotherapies, abiraterone and enzalutamide are oral
hormone therapies, sipuleucel-T is an immunotherapy, and radium-223 is a radioactive drug. We
excluded the patients who received cabazitaxel (n = 56) or radium-223 (n = 28) as their first-
line therapy from our analysis, since there were much fewer samples in these two groups than
the other four. We examined the occurrence of ER visits and all-cause hospitalization within 180,
270, and 360 days of treatment initiation, respectively. Patients who switched to another treatment
or dropped out of the insurance plan prior to the event of interest within the pre-specified time
window were considered as being censored.

The treatment was modeled using a multinomial logistic regression adjusting for age, race, edu-
cation level, household income, geographic region, insurance product type, whether the insurance
plan is administrative services only (ASO), metastatic status of cancer, year of first prescription,
comorbid conditions, and provider type [58]. All covariates were binary or categorical. To improve
the common support of the covariate distributions, we followed the criteria discussed in Lopez and
Gutman [25] and discarded the tails of the propensity score distributions. The outcome model
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Figure 2.1: RMSE over RMSE of CIPW with correctly specified propensity and censoring models for dif-
ferent proportions of censoring in Setting I. For CAIPW-Wang, the first letter and second letter denote the
specification of the propensity and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and
second letter in the parentheses correspond to the model for coarsening mechanism and outcome, respec-
tively. The outcome model in CAIPW-ZS is always misspecified, and we use c∗ to denote the case where
the true predictors for the outcome were included in the model. Propensity model is correctly specified for
IPW, Pseudo-IPW, CIPW, and CIPW-ZS. Numbers that fall outside the range of x-axis are labeled in the
figure. Sample size was 1500. Results were obtained using 2000 simulated datasets.
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Figure 2.2: RMSE over RMSE of CIPW with correctly specified propensity and censoring models for differ-
ent levels of outcome associations in Setting I. Censoring depended on covariates and censoring proportion
was 30%. For CAIPW-Wang, the first letter and second letter denote the specification of the propensity
and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and second letter in the parenthe-
ses correspond to the model for coarsening mechanism and outcome, respectively. The outcome model in
CAIPW-ZS is always misspecified, and we use c∗ to denote the case where the true predictors for the out-
come were included in the model. Propensity model is correctly specified for IPW, Pseudo-IPW, CIPW, and
CIPW-ZS. Numbers that fall outside the range of x-axis are labeled in the figure. Sample size was 1500.
Results were obtained using 2000 simulated datasets.
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and the censoring model adjusted for the same set of covariates that were controlled for in the
treatment model. The CIs were obtained using (1) Wald-type CIs based on original data for the
Naive method, and (2) bootstrap standard errors based on 200 bootstrap samples for the rest of the
methods.

2.6.2 Data Analysis Results

Patients who had less than 180 days of continuous enrollment prior to the first prescription, had
missing covariates, or experienced the event of interest on the same day as the first prescription
were removed from the analysis. In the end, we identified 7678 and 7709 mCRPC patients for ER
visit and hospitalization, respectively, and calling them ER visit cohort and hospitalization cohort.
The sample sizes of the two cohorts differed because ER visit and initial treatment prescription
for the first time were more likely to occur on the same day than subsequent hospitalization. The
proportions of overall and cause-specific censoring within each specified time window for the two
outcomes are reported in Table B.8 in Appendix B. In general, hospitalization (24.6%-40.6%) was
associated with greater overall proportion of censored observations than ER visits (20.8%-32.6%).
The proportions of patients being censored and the unadjusted risks ignoring censored patients
for each treatment group are presented in Table B.9 in Appendix B. In particular, Sipuleucel-T
group had larger percentage of censored patients than the other three groups. Docetaxel group
had the highest crude risks of ER visits (53.6%, 64.6%, and 71.8% within 180, 270, and 360-
day time windows, respectively) and hospitalization (41.1%, 52.3%, and 60.2% within 180, 270,
and 360-day time windows, respectively). The baseline demographic and clinical characteristics
of the ER visit cohort stratified by treatment groups are presented in B.10 in Appendix B. The
covariate distributions of the hospitalization cohort were close to those of the ER visit cohort (data
not shown).

To improve the covariate overlap among the treatment groups for the comparative analysis, we
applied data trimming with criteria discussed in Lopez and Gutman [25], which left us with 7003
and 7045 patients for ER visit and hospitalization, respectively.

Figure 2.4 shows the differences in 360-day risks among the four treatment groups for both
outcomes of interest. Results for 180-day and 270-day risks are presented in Figures B.8 and B.9
in Appendix B. When confounding and censoring were both ignored, docetaxel users had signifi-
cantly higher risk of at least one ER visit within 360 days of treatment initiation than users of abi-
raterone, enzalutamide, and sipuleucel-T. Similar directional results for docetaxel vs. abiraterone
and docetaxel vs. enzalutamide comparisons were noted for methods that accounts for both con-
founding and censoring, and the corresponding 95% CIs consistently excluded zero across the
methods. For example, the risk difference estimated by the CIPWR estimator using observation
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time (CIPWR1) was -0.082 (95% CI [-0.118, -0.046]) for docetaxel vs. abiraterone comparison,
and -0.156 (95% CI [-0.198, -0.114]) for docetaxel vs. enzalutamide comparison. These findings
agree with the clinical evidence that oral therapies abiraterone and enzalutamide tend to have fewer
side effects than docetaxel, a chemotherapy [80]. Sipeucel-T was identified to have lower risk of
ER visit than docetaxel, though the differences were not significant for some of the methods (e.g.,
risk difference=-0.158, 95% CI [-0.295, -0.021] for CAIPW-ZS; risk difference=-0.073, 95% CI [-
0.172, 0.025] for CIPWR1). For the two oral drugs, Enzalutamide was identified to have lower risk
of ER visit than Abiraterone within each specified specified period of time when both confound-
ing and censoring were accounted for. The Naive and IPW methods indicated significantly higher
360-day risk of ER visit for Enzalutamide than Siputeucel-T, while the methods that account for
both confounding and censoring showed that there was no significant difference. Similar patterns
were observed for the risks of all-cause hospitalization for each time window considered.

In general, CIPWR based on observed censoring time (CIPWR2) tended to have wider CIs than
CIPWR using observation time (CIPWR1), which is consistent with our simulation results (Figure
B.7 in Appendix B). For example, the ratios of confidence widths of CIPWR1 over CIPWR2 for
360-day hospitalization ranged from 54.9% to 86.9%. Greater differences in the width of CIs
were noted as the duration of time window became longer and the proportion of censored patients
increased (Figures B.8 and B.9 in Appendix B and Figure 2.4). In most cases, CAIPW-ZS and
CIPWR yielded narrower CIs than the CIPW estimator. For example, the percentage of reduction
in width ranged from 58.8% to 92.4% for the risk of ER visits estimated by CIPWR1. CAIPW-ZS
was noted to have wider CIs than CIPWR for treatment pairs that involved Sipuleucel-T for ER
visits (Figure 2.4). Greater differences in point estimates between CAIPW-ZS and CIPWR, the
former of which modeled the entire survival curve over time, was noted as the ending time point
moved farther away from the treatment initiation.

Differences between methods that ignore and account for censoring increased as the time win-
dow was extended. Results for methods that rely on different independence assumptions on the
censoring mechanism were similar. One possible reason is that censoring may only depend on the
treatment in this cohort, and the restrictive version of the assumption is satisfied, as the censored
patients within each time window exhibited similar demographic and baseline clinical character-
istics to uncensored ones (Table B.11 in Appendix B), and most covariates were not significantly
associated with censoring (Table B.12 in Appendix B).

2.7 Discussion

We present an inverse probability weighted regression-based estimator, CIPWR, for average treat-
ment effect for a binary outcome that is subject to right-censoring. This method is based on the
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intuitively simple standardization idea, where we model the binary outcome given the observed
covariates using the familiar logistic regression model for each treatment separately and then aver-
aging predictions for all patients. The CIPWR method improves robustness by accounting for con-
founding due to nonrandomized treatment and censoring using the inverse probability weighting
approach. Therefore, the proposed method is a hybrid of the two general approaches (standard-
ization and weighting) in the missing data and causal inference literature that handle missingness,
confounding and censoring. Like the well-studied augmented inverse probability weighting ap-
proach (e.g., CAIPW-Wang and CAIPW-ZS), the proposed method enjoys a double robustness
property such that the estimator is consistent if either the (binary) outcome, or both treatment as-
signment and censoring are correctly modeled. However, in this method the double robustness and
improvement in efficiency are not through direct augmentation. Instead, it achieves double robust-
ness by combining two approaches in different steps, with each step based on popular models and
the natural ideas of standardization and weighting. The proposed method is conceptually straight-
forward to understand and easy to implement using standard statistical software for practitioners.

Simulation studies show that in finite sample, CIPWR yielded approximately unbiased esti-
mates and close to nominal coverage of 95% across the scenarios considered, particularly when
censoring depends on the covariates. CIPWR also provides efficiency gain over CIPW by exploit-
ing the information from the outcome model. The proposed method was applied to claims data for
comparing the average treatment effects of multiple treatments.

Time-to-event data are often analyzed using approaches that model the whole survival curve
from baseline to the end of follow-up, such as the Cox proportional hazards model used for
CAIPW-ZS [67]. In the case where interest only lies in the risk difference over a pre-specified
period of time (e.g., 180-day risk of ER visit), a method that directly targets the survival function
at the fixed time point can lead to better efficiency than general methods that estimate the whole
survival curve. The problem can be reduced to estimating the marginal expectation of a (possibly
censored) binary indicator of event occurrence, which we propose to solve by utilizing logistic
regression that directly targets the binary outcome. In general, the difficulty of correctly modeling
the time-to-event outcome given observed covariates increases as the time window becomes longer,
and the incorrect model for the survival time tends to result in more severe problems than misspec-
ification of the outcome model at a fixed time point. In our simulation setting where the hazard
functions did not cross, CIPWR, which directly modeled the binary indicator of event occurrence,
performed similarly to CAIPW-ZS, which utilized outcome information accumulated over time, in
terms of RMSE. In the presence of crossing hazards, when both the logistic regression model and
Cox model were misspecified, CIPWR realized more efficiency gain over CIPW than CAIPW-ZS,
as the latter failed to capture the associations between the outcome and covariates. The efficiency
gain of CIPWR over CAIPW-ZS was also observed in the data example, where CAIPW-ZS had
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wider CI than CIPWR for some treatment pairs (Figure 2.4), and the difference in confidence width
increased as the time window became larger (Figure B.8 in Appendix B and Figure 2.4).

In the presence of right censoring, discarding the censored observations may result in biased
estimates for the treatment effects, even if the censoring was completely random, as shown in our
simulation studies (Figure B.1 in Appendix B). In this paper, we assumed the independence of
survival and censoring time conditional on treatment and baseline covariates, and used Cox model
to estimate the probability of remaining uncensored, which was then inverted and used as weights
in the estimating equation. Under the more restrictive conditional independence assumption given
treatment only, it is sufficient to use the non-parametric KM estimator for estimating the probability
of remaining uncensored. However, simulation results showed that when censoring was random,
CIPWR based on Cox model was still unbiased for the treatment effect, and could possibly be
more efficient than CIPWR based on KM estimator.

In this study, we focus on low-dimensional covariates and only consider simple parametric
working models for the outcome and treatment. As researchers gain increasing access to large
databases with a substantial collection of covariates, variable selection techniques for causal infer-
ence has been an emerging topic of interest [e.g., 81, 82]. Another possible extension to our method
is to replace the parametric models with modern machine learning methods that can capture po-
tential nonlinearities and nonadditivities. For example, neural networks and methods based on
recursive partitioning have been suggested as promising alternatives to logistic regression for esti-
mating propensity scores when the true model structure is complex [83, 84]. In addition, treatment
switching was treated in the same way as dropout and study termination. That is, an observa-
tion was considered censored when someone switched treatment, which may not be optimal and
studying treatment sequences will be another challenge.
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Figure 2.3: RMSE over RMSE of CIPW with correctly specified propensity and censoring models in the
presence of crossing hazards in Setting II. The models for the coarsening mechanism were correctly spec-
ified. The outcome model was always misspecified in this setting. Numbers that fall outside the range of
x-axis are labeled in the figure. Sample size was 1500. Results were obtained using 2000 simulated datasets.
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Figure 2.4: Differences in 360-day risks of experiencing at least one emergencyroom visit among the four
focus drugs and the associated 95% confidence intervals. Data were obtained from Optum Clinformative
Data Mart, with the outcome interest being the occurrence of emergency room visit within 180 days of
treatment initiation. Total sample size is N = 7003 (NA = 2458, ND = 2162, NE = 1833, NS =
550). Confidence intervals that exclude zero are highlighted in orange. Abbreviations: A, abiraterone; D,
docetaxel; E, enzalutamide; S, sipuleucel-T.
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CHAPTER 3

Outcome-Adaptive Propensity Methods for Handling
Censoring and High Dimensionality: Application to

Insurance Claims

3.1 Introduction

To obtain an unbiased estimate for the causal effect of a treatment using data from observational
studies, it is important to control for confounding by adjusting for the differences in pre-treatment
baseline covariates between treatment groups. A commonly used tool for confounder adjustment is
the propensity score, defined as the conditional probability of receiving a specific treatment given a
set of covariates [10], which is usually unknown in observational studies and needs to be estimated
from the data. The estimated propensity scores can be used in matching [24, 28], weighting [3],
regression adjustment [17], among others, for estimating the causal treatment effect. Regardless of
the propensity score-based methods chosen, making valid inference on the treatment effect relies
on good estimation for the propensity scores.

There has been a large body of work focusing on the estimation and use of propensity scores
in a low-dimensional setting, where the sample size is far greater than the number of candidate
covariates. In this setting, empirical researchers normally estimate the propensity scores by fit-
ting a logistic regression model for binary treatment, or a multinomial logistic regression model
for more than two treatment groups. In the era of ‘big data’, large databases are increasingly be-
ing used to conduct comparative effectiveness research. For example, insurance claims data were
used to compare the safety of four drugs on the market prescribed for patients with metastatic
castration-resistant prostate cancer [69]. A massive collection of candidate covariates, such as de-
mographics, socioeconomic status, clinical measurements, and diagnosis codes, can be ascertained
from patients’ health care or insurance claims data, and the number of covariates can possibly be
large compared to the sample size in each treatment group. Standard parametric regression models
may become problematic when the dimensionality increases, and a key challenge is to identify
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variables to be included in the propensity score model from a high-dimensional set of measured
covariates. There has been considerable interest in developing methods that perform variable se-
lection for estimating propensity/balancing scores in the high-dimensional setting. For instance,
Schneeweiss et al. [85] proposed the high-dimensional propensity score (hd-PS) algorithm that se-
lects covariates to facilitate high-dimensional propensity score adjustment using health care claims
data. Specifically, they rank each covariate based on its potential for controlling confounding by
assessing the covariate’s prevalence and univariate association with the treatment and outcome,
and then pick the top k covariates for inclusion in the propensity score modeling. Athey et al. [82]
circumvented propensity score modeling and addressed the problem of high dimensionality using
balancing weights. They proposed a two-stage algorithm called approximate residual balancing
(ARB). In the first stage, one fits a regularized linear model, such as elastic net, for the outcome.
In the second stage, one reweighs the first-stage residuals using the weights with minimum vari-
ance that optimize the balance of covariates.

Parametric models requires empirical researchers to impose structures to the models in terms
of variable selected and their functional forms. A practical difficulty is that misspecification of
the model can result in substantial bias of the estimated treatment effect [44]. Machine learning
methods are well-known for their powerful predictive performance and ability to handle complex
and nonlinear relationship between the response and predictors. There has been a growing interest
in using machine learning techniques for propensity score modeling [83, 84, 86, 87]. Setoguchi
et al. [83] compared several data mining techniques that optimize the prediction of treatment sta-
tus, including classification and regression trees (CART), pruned CART, and neural networks, in
the context of propensity score matching with a continuous outcome. Lee et al. [84] extended the
work of Setoguchi et al. [83] to the setting with a binary outcome, and evaluated the performance of
CART, pruned CART, bootstrap aggregated (bagged) CART, random forests, and boosted CART
with regard to propensity score weighting. Both works focused on the low-dimensional setting, and
demonstrated that machine learning methods, such as CART and neural networks, are promising
alternatives to parametric modeling for the estimation of propensity scores in the presence of non-
additivity and/or nonlinearity in the true model. However, numerical evaluations of these machine
learning techniques for high-dimensional covariates remain limited.

These aforementioned approaches only consider the treatment-covariate relationship when
modeling the propensity/balancing scores, and fail to incorporate the outcome models into the
treatment modeling process. Studies illustrate that using covariates that are associated with the
treatment but not the outcome will inflate the variance of the estimators of average treatment ef-
fects (ATE) without reducing the bias [81, 88]. On the other hand, adding covariates explaining
the outcome but not the treatment to the propensity score model can improve the precision of the
treatment effect estimates [81, 89]. These findings suggest that a highly predictive model for treat-

55



ment assignment will not necessarily lead to efficient estimators of treatment effects. Therefore,
standard variable selection methods designed for prediction, which rely only on the relationship
between treatment and covariates, may yield suboptimal results in the context of causal inference.
There is an expanding literature on variable selection methods for causal inference that account
for the information about the outcome-covariate relationship. Shortreed and Ertefaie [81] pro-
posed the Outcome-Adaptive Lasso (OAL) method, which adopts the adaptive lasso framework
[90] and places smaller adaptive weights on the outcome predictors, for selecting covariates to be
included in the propensity score model. As a result, heavier penalties are imposed on variables
relevant to treatment only than variables predictive of outcome only. Other works that allow the
outcome information to contribute to variable selection for propensity score modeling include Out-
come Highly Adaptive Lasso proposed by Ju et al. [91] and Bayesian Adjustment for Confounding
proposed by Zigler and Dominici [92]. However, how information about the outcome-covariate
relationship can be incorporated into tree-based machine learning methods, such as CART, and to
what extent can outcome models contribute to the efficiency gain in high-dimensional data settings
have been less studied.

In this Chapter, we evaluate multinomial logistic regression (combined with lasso penalty) as
well as several popular machine learning algorithms for variable selection and propensity score
estimation in the context of high-dimensional covariates. We estimate the causal treatment ef-
fects using the inverse probability weighting (IPW) estimator, although the estimated propensity
scores considered in this study are applicable to any propensity score-based methodology, such
as propensity score matching. As in Chapter 2, we also aim to account for censoring at the same
time, where the bias due to censoring is controlled for by applying the inverse probability of re-
maining uncensored as weights to the outcome. We focus on estimating the treatment effects on
a binary outcome (that is possibly censored) among multiple treatment groups. To the best of our
knowledge, the literature lying within the intersection of high-dimensionality, complexity of the
associations between treatment and covariates, and outcome-adaptive propensity score modeling
is largely absent.

In Section 3.2, we introduce the notations and basic setup of the problem. Section 3.3 describes
the algorithm we consider for selecting variables to included in the treatment model. Section 3.4
outlines the methods considered for the final treatment model that is used to estimates the propen-
sity scores. Section 3.5 presents simulation studies that compare the methods considered in setting
with high-dimensional covariates and potentially complex underlying treatment model (i.e., model
with nonlinearity and/or nonadditivity). We also consider a setting where censoring exists. We
illustrate the efficiency gain provided by leveraging the information about the outcome-covariate
relationship when estimating the propensity scores. Section 3.6 presents a data example that com-
pares the risks of hospitalization and emergency room (ER) visits of four prostate cancer treatments
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using data from an insurance claims database. The binary outcome of this data example is subject
to censoring, as the follow-up period tended to terminate early due to drop-out or treatment switch.
We conclude with a discussion section.

3.2 Definition of the Problem and Notations

3.2.1 Notations and Assumptions

We consider n independent individuals, indexed by i, with X i being a p-dimensional vector of
covariates measured prior to receiving the treatment Zi, where Zi = j ∈ {1, · · · , J}. We focus on
the context in which the ratio of p to n is relatively large but smaller than 1. We let C, Z , Y , and S be
the indices of confounders (i.e., covariates associated with both treatment and outcome), covariates
predictive of treatment only, covariates predictive of outcome only, and covariates unrelated to both
treatment and outcome (i.e., spurious covariates), respectively. Suppressing the index by i, XC ,
XZ , XY , and XS are mutually exclusive and X i = XC ∪XZ ∪XY ∪XS . We further let |C|,
|Z|, |Y|, and |S| denote the cardinality of the corresponding set. We let Ti be the underlying lag
time to the first event of interest for each individual, and Ci be the censoring time. The outcome
of interest is whether the event of interest occurs before a prespecified time point d, defined by
Yi = I(Ti < d), which results in a possibly censored binary outcome. The information on Yi may
not be completely available due to dropout, study termination, or treatment switch. In the absence
of censoring, Ti (and therefore Yi) would be observed for all individuals, and the set of complete
data is then (X i, Zi, Yi). When the outcome variable is subject to right-censoring, Yi is observed
only if the individual has not been censored before d, and we let Ri = I{Ci ≥ min(Ti, d)} be the
indicator of observing Yi.

Under the potential outcome framework [41], each individual is associated with a set of po-
tential outcomes {Y (1), · · · , Y (J)}, where Y (j) denotes the potential outcome had the individual
received treatment j. The causal parameter of interest is the marginal ATE on the outcome between
j and j′, denoted τ(j, j′) = E{Y (j′)}−E{Y (j)}. The following assumptions are required for valid
inferences on causal effects using the observable data.

(A1) (Random sampling) The individuals in the study are randomly sampled from the population.

(A2) (Stable Unit Treatment Value Assumption, or SUTVA) For any individual i, i = 1, · · · , n, if
Zi = j, then Yi = Y

(j)
i , for all j = 1, · · · , J .

(A3) (Unconfoundedness) {Y (1)
i , · · · , Y (J)

i } ⊥⊥ Zi|X i.

(A4) (Overlap) For all values of j and x, 0 < πj(x) < 1, where πj(x) = pr(Zi = j|x).
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(A5) (Censoring at random) Ci ⊥⊥ {T (1)
i , · · · , T (J)

i }
∣∣∣(Zi,X i).

3.2.2 Underlying Models for Outcome, Treatment, and Censoring, and Es-
timators for Average Treatment Effects

We assume that the true outcome model for Zi = j is a logistic regression model,

logitP (Yi = 1|W i, Zi = j) =W T
i βj

where W i is a pw-dimensional function of (XT
C ,X

T
Y)

T . The treatment assignment mechanism is
governed by a multinomial logistic regression

log
P (Zi = j|V i)

P (Zi = J |V i)
= V T

i αj, j = 1, · · · , J,

where J is the reference level and V i is a pv-dimensional function of (XT
C ,X

T
Z)

T . Both W i and
V i may contain nonlinear terms and interactions. We assume that |C|+|Y| ≪ p and |C|+|Z| ≪ p,
where |C|, |Y|, and |Z| are the numbers of variables in XC , XZ , and XY , respectively. Note that
in practice, XC , XY , and XZ are generally unknown and a common practice is to include all
candidate covariates in the model. In the case where the ratio of p to n is relatively large, traditional
regression models based on maximum likelihood estimation may not converge, and some variable
selection procedure is required for model fitting.

With respect to censoring, we assume a proportional hazard model for treatment j = 1, · · · , J ,

λj(t|U i) = λ0j(t) exp(U iγj),

where, λ0j(t) is the treatment-specific baseline hazard function and U i is a pu-dimensional func-
tion ofX i. The censoring model is assumed to have moderate number of predictors (pu ≪ n) that
are known a priori.

We estimate the ATE using the IPW estimator,

τ̂(j, j′) =

∑n
i=1 ŵiI(Zi = j′)Yi∑n
i=1 ŵiI(Zi = j′)

−
∑n

i=1 ŵiI(Zi = j)Yi∑n
i=1 ŵiI(Zi = j)

where ŵi =
∑J

j=1 1/π̂j(X i) and the propensity scores π̂j(X i), j = 1 · · · , J , are required to be
estimated from the data in an observational study. In the presence of censoring, the outcome is
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further weighted by the inverse probability of remaining uncensored at d,

τ̂(j, j′) =

∑n
i=1 ŵ

′
iRiI(Zi = j′)Yi∑n

i=1 ŵ
′
iRiI(Zi = j′)

−
∑n

i=1 ŵ
′
iRiI(Zi = j)Yi∑n

i=1 ŵ
′
iRiI(Zi = j)

.

The weights ŵ′
i =

∑J
j=1(π̂j(X i) exp {Λij(min(Ti, Ci, d))})−1, where Λij(t) is the cumulative

hazard function of Ci at t for treatment j.

3.3 Variable Selection for Dimensionality Reduction for the
Propensity Score Model

When the dimension of the covariate vector is high, it tends to be infeasible to fit an unrestricted
parametric model, such as a multinomial logistic regression model, for the treatment using all the
available covariates. A practical problem for empirical researchers is to identify a subset of co-
variates to be conditioned on to control for confounding. Typically, in a medical research, a list of
important covariates will be suggested based on the evidence in the literature and/or experts’ opin-
ion. However, as the number of the available covariates increases, it becomes extremely difficult
for human experts the check manually which variables are potential confounders. Alternatively,
one can turn to data-driven variable selection approaches, such as lasso [93], which automatically
select important variables for treatment predictions from all the available covariates. Figure 3.1
displays a flowchart of several possible routes that can be followed to identify the set of covari-
ates to be included in the final treatment model for estimating the propensity scores. A commonly
chosen route is to apply shrinkage methods directly to the original reservoir of covariates (route
[1] in Figure 3.1), and we label the set of covariates All. In this case, variable selection and
propensity score estimation are conducted simultaneously in a single step. As was noted later in
our simulation, following route (1) can result in substantially biased effect estimates. One possible
reason is that large number of noise variables slow down the rate of convergence for the lasso. For
sparse high-dimensional data, large value of tuning parameter is necessary to select a parsimonious
model. However, large penalties at the same time increase the shrinkage of non-zero components,
leading to less optimal estimation [94]. Therefore, reducing the number of spurious covariates
entering the final treatment model through variable selection may help improve the performance
of the propensity score estimation methods.
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Figure 3.1: Flowchart for variable selection and propensity score estimation. Routes [1]-[6] correspond to
different sets of input variables: [1] All, [2] Ysel, [3] YZsel, [4] OP+All, [5] OP+Ysel, [6] OP+YZsel.

3.3.1 Using Outcome Model for Variable Selection

Theoretically, adjusting forXC alone in the treatment model is sufficient to remove the confound-
ing bias, which suggests that one targetsXC when selecting covariates for inclusion in the propen-
sity score. To identify variables in the set XC , we apply a pre-selection procedure to the original
set of covariates (All), where a regularized model (in this case we choose lasso) is fitted separately
for both the outcome and the treatment. Specifically, the model for a binary outcome is specified
as

logitP (Yi = 1|X i) =X
T
i θ, (3.1)

the coefficients of which are estimated based on the lasso penalty

θ̂ = argmin
θ

n∑
i=1

[
{−YiXT

i θ + ln(1 + eX
T
i θ)}+ λ

p∑
k=1

∥θk∥1

]
,

where the tuning parameter λ is chosen using cross-validation. Here we exclude the treatment
variable Z from the outcome model. For the treatment assignment mechanism, we assume a multi-
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nomial logistic regression model,

P (Zi = j|X i) =
exp(XT

i ψj)∑J
l=1 exp(X

T
i ψl)

(3.2)

which is fitted by minimizing the negative penalized log-likelihood

N−1

N∑
i=1

logP (Zi = j|X i) + λ

J∑
j=1

∥ψj∥1,

where the differentψj correspond to the vectors of coefficients for the J different treatment groups
[95]. This penalty function ensures that each variable inX i is selected or excluded for all J levels,
as opposed to each level having its own set of selected variables. We use YZsel to label the
intersection of the two sets of variables selected by Model 3.1 and Model 3.2. In an ideal case,
YZsel is identical to XC . Route [3] in Figure 3.1 corresponds to the case where YZsel is used
as predictors for propensity scores estimation.

Traditional variable selection techniques applied to the treatment model targetsXC ∪XZ , and
variables included in the propensity score models are selected based on the goodness-of-fit for the
treatment mechanism itself. However, it has been shown that the use of XZ for propensity score
modeling may inflate the variance of the estimated ATE. On the other hand, including XY in the
propensity score model can improve the precision of the ATE estimates [81, 89]. Later in our sim-
ulation studies, we also observed that using outcome predictors as input for the propensity score
models yielded smaller variability for the effect estimates than using treatment predictors or con-
founders alone. Therefore, the ideal propensity score model adjusts forXC ∪XY while excluding
XZ . The OAL method proposed by Shortreed and Ertefaie [81] intends to achieve this by fitting
an adaptive lasso for the treatment [90], where the adaptive weights are computed based on the
coefficients from the outcome model, with smaller coefficients corresponding to larger weights.
OAL discouragesXZ from being selected and encourages the inclusion ofXY by imposing heav-
ier penalties on XZ than XY . There are two limitations of the work of Shortreed and Ertefaie
[81]. The first is that the coefficients of the outcome model were estimated using unpenalized lin-
ear regression, which may be fitted for a continuous outcome in the context where the ratio of p to
n is relatively large. However, for a binary outcome as considered in our study, it tends to be more
difficult for a standard logistic regression to converge. We extend their method by considering
a lasso-fitted outcome model to compute the adaptive weights, in which case the coefficients of
covariates not predictive of the outcome can be zero, and therefore the covariates with zero coef-
ficients will be excluded from the treatment model. Another limitation is that this idea cannot be
conveniently extended to machine learning methods that do not rely on regularization.
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OAL incorporates the outcome-covariate associations as adaptive weights when selecting vari-
ables for propensity score estimation. An alternative is to directly include the covariates predictive
of the outcome in the treatment model. We call the set of variables selected by the outcome model
(Model 3.1) Ysel. The treatment can then be modeled as a function of Ysel (route [2] in Fig-
ure 3.1).

One possible problem of using Ysel as input for the final treatment model is that the dimen-
sionality of Ysel can still remain relatively high for sample size n. To improve propensity score
modeling by utilizing the variables predictive of the outcome only while maintaining a reasonable
dimensionality, we propose to incorporate the information contained in XY into the propensity
score estimation process in the form of predicted probabilities of the outcome, Outcome Proba-
bilities (OP) for short, as opposed to directly including those variables in their original form. We
estimate OP for each subject by p̂i = exp(XT

i θ̂)/{1 + exp(XT
i θ̂)}, and the logit scale of p̂i is

denoted p̂∗i = log{p̂i/(1 − p̂i)}. OP summarizes the information about the outcome-covariate re-
lationship and reduces the dimensionality of the outcome predictors to a one-dimensional vector.
After obtaining YZsel which targets XC , we add OP back to the set of input variables to capture
the information in XY (route [6] in Figure 3.1, and we denote the combination OP+YZsel). In
addition to YZsel, as was noted later in the simulation studies, OP can also be combined with all
the available covariates and Ysel as input for the final treatment model in Figure 3.1 to improve
the effect estimates. We denote the combinations OP+All and OP+Ysel, which correspond to
route [4] and route [5] in Figure 3.1, respectively. We discuss how OP can be used as predictors to
estimate the propensity scores for different treatment modeling techniques in Section 3.4, where
we outline several possible choices for the final treatment model.

In summary, both Ysel and YZsel use the outcome model for selecting covariates to account
for confounding. Variable selection and propensity score estimation are conducted separately in
two steps for methods based on Ysel, YZsel, OP+Ysel, and OP+YZsel.

3.4 Possible Choices for the Final Treatment Model for
Propensity Score Estimation

We consider five different methods (Table 3.1) for estimating the propensity score given a set of
candidate predictors. We leave out the OP for now and only consider the alternatives for the final
treatment model for routes [1]-[3] in Figure 3.1. The first is a multinomial logistic regression
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model (LOGIS), specified as

pr(Zi = j|X̃ i) =
exp(X̃

T

i αj)∑J
l=1 exp(X̃

T

i αl)
,

where X̃ i is the set of (possibly selected) variables entering the final treatment model. When
the dimension of X̃ i is sufficiently small, the coefficients can be estimated using the maximum
likelihood estimator. In the case where dimension reduction is needed, the estimates α̂ can be
obtained by minimizing the negative log-likelihood with lasso penalty

N−1

N∑
i=1

logP (Zi = j|X̃ i) + λ

J∑
j=1

∥αj∥1,

which indicates that each covariate in X̃ i is associated with all or none of the J levels.
The second is the classification and regression tree (CART) method which performs recursive

binary splitting on the feature space in a top-down fashion. At each split, CART agnostically
searches for a variable X and a cutpoint such that the response values in each of the resulting
nodes lead to the greatest homogeneity [96]. In that sense, CART intrinsically conduct variable
selection while growing the tree, as variables that are not predictive of the treatment are less likely
to be chosen at each split. We used the Gini index, a measure of the total variance across the J
classes, as the metrics for node splitting. Small value of Gini index indicates that observations
in this node are predominated by a single class. CART tends to overfit the data. To address the
overfitting issue, the common strategy is to first grow a large tree and prune it back in order to
retain only part of the tree, as simpler trees tend to be less sensitive to the noises in the data. This
method is referred to as pruned CART.

The single tree implementation of both CART and pruned CART, sometimes known as weak
learners, may give poor predictions on their own. The ensemble methods, which combine multiple
weak learners into one predictive model, have been developed to enhance the predictions. One ex-
ample is the bootstrap aggregation of the CART algorithm (bagged CART). The bootstrap step of
bagged CART involves randomly drawing n observations (i.e., the same size as the original sam-
ple) with replacement from the original sample and fitting a CART separately for each bootstrap
replicate. The bagging estimates of the probability of subjects being assigned to each class are
obtained by averaging the predicted class probabilities from each of the single trees. Another pop-
ular ensemble method is the random forests. Similar to bagged CART, random forests build trees
based on bootstrap samples of the original observations. What is different from bagged CART is
that random forests only considers a random sample of m predictors (m < p) at each split, and
typically m ≈ √

p is chosen for classification problems in practice [97]. In our simulation studies
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and data example, we choose to grow a relatively large number of trees in order to stabilize the
out-of-bag error rate.

3.4.1 Implementation of Incorporating the Predicted Outcome Probabilities

The methods listed in Table 3.1 can be applied to All, Ysel, and YZsel for estimating the
propensity scores, which are then used to compute the ATE. The OP is employed for propensity
score estimation in different ways for different final treatment models. For the LOGIS method,
the propensity scores are estimated by regressing the treatment variable on the union of the input
covariates (All, Ysel, or YZsel) and p̂∗i . When the regression model is regularized, no penalty
is imposed on p̂∗i . In this way the outcome information is guaranteed to be utilized in the propensity
score model.

For the tree-based machine learning methods such as CART, there is no straightforward way
to force the OP into the tree growing process, where variable selection is intrinsically conducted.
We instead fit a logistic regression model for the treatment as a function of p̂∗i and the propensity
scores obtained in route [1], [2], or [3]:

log
P (Zi = j|X̃ i)

P (Zi = J |X̃ i)
= π̂(X̃ i)

Tηj + ϕp̂∗i , (3.3)

where π̂(X̃ i) = {π̂1(X̃ i), · · · , π̂j−1(X̃ i)}T is the set of propensity scores estimated using the tree-
based methods. The coefficients (ϕ,ηT

1 , · · · ,ηj−1)
T can be estimated using maximum likelihood.

The final propensity scores that take OP into account are then obtained by calculating the predicted
probabilities from model (3.3).

For OP+Ysel (route [5]) and OP+YZsel (route [6]), the associations between the covariates
and the outcome are used twice in the entire estimation process, one for variable selection using
the outcome model, and the other for propensity score estimation using the OP.

Methods for Constructing
the Treatment Model

Simultaneous Variable
Selection and Estimation

Ways to Incorporate OP
into the Estimation Process R package

Logistic regression
(standard or penalized)

Yes for penalized
logistic regression

Used as a regressor for logistic regression.
No penalty is imposed on OP

for penalized logistic regression.
glmnet*, gcdnet

CART Yes
A multinomial logistic regression for the treatment is fitted

as a function of estimated propensity scores and OP rpart*

Pruned CART Yes Same as above rpart*
Bagged CART Yes Same as above ipred*
Random forests Yes Same as above randomForest*, ranger

Table 3.1: Possible choices for the final treatment model.
* R packages used to implement the methods in this paper.
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3.5 Simulation Studies

3.5.1 Implementation of Methods under Comparison

The comparative methods were implemented in R with default parameters unless otherwise spec-
ified. The lasso algorithm was implemented using the R package glmnet. The tuning parameter λ
was determined using 10-fold cross-validation with the lambda.1se criterion for selecting vari-
ables in the pre-selection step, as the goal was to narrow down the number of covariates entering
the final treatment model. For LOGIS based on All, which does not involve the pre-selection
step, the lambda.min criterion was used. CART was implemented using the rpart package with
the complexity parameter (cp) being 0.001, which encourages a large and complex tree structure.
For pruned CART, the cp that corresponded to the smallest 10-fold cross-validated error was used
to determine the best trimmed tree. Bagged CART was implemented using the ipred package with
200 bootstrap replicates. Random forests were implemented using the randomForest package with
1000 bootstrap replicates. The minimum size of terminal nodes (the nodesize parameter) was
set to be 7 in order to make it consistent with the parameters used for CART. For bagged CART
and random forests, propensity scores were estimated based on the out-of-bag predictions.

We also extended the OAL approach to three-treatment comparison. Following Short-
reed and Ertefaie [81], we considered a set of possible values for the tuning parameter λn,
{n−20, n−15, n−10, n−5, n−3, n−1, n−0.75, n−0.5, n−0.25, n0.25, n0.49}, and λn was selected by mini-
mizing a weighted absolute mean difference between treatment groups, a quantity that combines
the weighted difference in covariates and the absolute values of the coefficients corresponding to
the covariates in the outcome model. Since the adaptive weights for the covariates excluded by
the outcome model got inflated to infinity, these covariates were not used to fit the adaptive lasso
for variable selection and propensity score estimation. In that sense, OAL in the high-dimensional
setting is equivalent to a lasso based on Ysel with additional weights imposed on the covariates
for variable selection.

3.5.2 Simulation Setup

For each simulated dataset, J = 3 treatment groups were compared and p = 100 covariates were
considered, with |C| confounders, |Z| related to treatment only, |Y| related to outcome only, and
|S| spurious predictors. CovariatesX i were generated as follows unless otherwise specified. Half
of the covariates (rounded down) in XC , XZ , XY , and XS were generated from a binomial
distribution with a probability of 0.3, and the other half were generated from a multivariate normal
distribution with a p′-dimensional vector of means 0p′ and a covariance matrix Σ, where p′ is the
number of continuous covariates in each subset (XC ,XZ ,XY , orXS) and Σ is an identity matrix.
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We considered three different simulation settings. Our first setting assumes additivity and lin-
earity for the treatment generating model,

Zi ∼ Multinomial{π1(V i), π2(V i), π3(V i)}, (3.4)

where πj(V i) = exp(V T
i αj)/

∑3
l=1 exp(V

T
i αl) is the probability of receiving treatment j, with

V i = (1,XT
C ,X

T
Z)

T . We assumed heterogeneous treatment effects on the outcome, and sampled
the potential outcome Y (j)

i from a binomial distribution with probability

pr{Y (j)
i = 1|W i} = expit{β0j +W T

i βj},

where W i = (XT
C ,X

T
Y)

T , (β01, β02, β03) = (0, 0.6, 0.4), and βj ∝ (1, · · · , 1)T . We considered
three levels of sparsity for the treatment and outcome models, with |C| = |Z| = |Y| = 5, 10, and
20 for the scenarios with sparse, moderately sparse, and dense models, respectively. As a result,
the dimension of αj differed across the scenarios. The parameter α = (αT

1 ,α
T
2 ,α

T
3 )

T was scaled
such that ∥α∥2 = 5. Similarly, the signal strength of the outcome model was scaled such that
∥β1∥ = 3, ∥β2∥ = 2, and ∥β3∥ = 4. The true values for E{Y (1)}, E{Y (2)}, and E{Y (3)}
were 0.61, 0.71, and 0.68 for the ‘sparse’ scenario, 0.69, 0.77, and 0.76 for the ‘moderately sparse’
scenario, and 0.76, 0.83, and 0.83 for the ‘dense’ scenario. To examine the performance as the
sample size increases, we let the sample size n be 500, 1000, and 2000 for the ‘sparse’ scenario.

Our second setting assumed that models were ‘sparse’ (|C| = |Z| = |Y| = 5) and considered a
set of association equations for the treatment assignment that varied in degrees of nonlinearity and
nonadditivity. In this case, V i in (3.4) may contain some transformation of covariates in (XC,XY)

and/or interaction effects. The structure of V i are shown in Table C.1. Specifically, we considered
scenarios with nonlinear main effects and no interactions (NL), linear main and interaction effects
(L-L), nonlinear main effects and linear interactions (NL-L), and nonlinear main and interaction
effects (NL-NL). All confounders were continuous in this setting, and the outcomes were generated
using the same model as was used in the first setting except that (β01, β02, β03) = (0,−0.6, 0.4).

Our third setting also assumed that the models were sparse and let censoring come into play.
Instead of sampling binary outcomes directly from a binomial distribution, we first generated time
to event Ti from a logistic distribution with mean function

β01I(Zi = 1) + β02I(Zi = 2) + β03I(Zi = 3) +W T
i β

and scale parameter s = 6, where W i = (XT
C ,X

T
Y)

T , (β01, β02, β03) = (120, 100, 115) and
β = (5, · · · , 5)T . Then we obtained the outcome such that Yi = I{Ti < 130}. We generated
the censoring time C using inverse transform sampling [79] as a function of U i = (1,XC)

T .
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Specifically, we assumed a Cox proportional hazards model with the baseline hazard following a
Weibull distribution,

C
(j)
i = {λ−1 exp(U iγj)

−1 log u}1/ν ,

with scale parameter λ = 0.01 and shape parameter ν = 7, where u was sampled from a
Uniform(0, 1) distribution. Note that U i was assumed to be known in our simulation settings,
which resembles our data example where censoring is believed to only depend a low-dimensional
set of covariates that can be identified by human experts. The proportion of subject not being
observed for d = 130 was around 22%.

We considered the six routes displayed in Figure 3.1 for propensity score estimation. We also
present the results for three sets of covariates that are usually unknown in practice: confounders
only (XC), treatment predictors (XC ∪XZ), and outcome predictors (XC ∪XY). These results
were used to illustrate the impact of different groups of covariates on the treatment effect estimates.
The ATE were estimated using the IPW method.

3.5.3 Construction of Confidence Intervals

The confidence intervals (CI) were constructed using bootstrap standard errors based on 200 boot-
strap replicates. For the settings without censoring, we considered two possible bootstrap pro-
cedures. The first applies variable selection to each bootstrap replicate and refits the models for
the treatment and outcome using variables selected in each replicate, and we refer to it as usual
bootstrap. The second ignores the variability due to selection for covariates. Instead, for LOGIS
based on All and OP+All and all tree-based methods, OP and propensity scores are directly
bootstrapped from the OP and propensity scores obtained in the original sample, without refitting
the model. For LOGIS based on Ysel, YZsel, OP+Ysel, and OP+YZsel, propensity scores
are obtained by refitting the final treatment model using variables selected in the original data set.
As a result, the usual bootstrap is much more computationally intensive than the modified boot-
strap. A trial simulation study under the scenario of linear sparse models for sample sizes of 500
(Table 3.2) and 1000 (Table C.2) showed that usual bootstrap tended to overestimate the standard
errors and produce overly conservative CIs for the tree-based methods. For example, most of the
coverage rates for the methods that involved OP were above 98%. Over-coverage was also ob-
served for (unpenalized) LOGIS for usual bootstrap. On the other hand, LOGIS based on OP+All
had close to nominal coverage using usual bootstrap at the expense of high computational burden,
and slight over-coverage using modified bootstrap. For the tree-based methods, standard errors
based on modified bootstrap were close to their corresponding Monte Carlo standard deviation. In
this case, modified bootstrap remedied the overestimation of the usual bootstrap by dropping the
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variability due to variable selection. Therefore, we proceed with the modified bootstrap technique
for our simulation studies, which directly samples the estimated propensity scores and OP from
the original simulated data set for each bootstrap replicate. For the third setting where censoring
existed, we again used modified bootstrap, but with the censoring model refitted for each bootstrap
sample. Metrics that were used to compare the various propensity score estimation methods in-
cluded bias, Monte Carlo standard deviations, standard errors, root mean squared error (RMSE),
and coverage rate of 95% CIs. True values were determined using 5× 105 replicates.

Empirical SD SE (usual) Coverage (%; usual) SE (modified) Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

OAL 54 48 51 57 51 53 96.1 96.0 95.7 55 50 52 94.1 95.6 94.2
LOGIS

All 52 51 50 56 54 53 59.4 73.2 93.4 55 55 52 59.8 75.9 93.3
Ysel 57 49 54 94 82 85 100 99.7 99.9 58 51 55 95.4 96.0 94.8

YZsel 58 52 54 80 70 74 99.7 99.1 99.4 58 53 55 95.0 95.5 95.0
OP + All 51 46 50 57 52 54 95.8 96.9 95.5 58 56 56 96.3 97.8 96.9

OP + Ysel 57 49 54 94 82 85 100 99.7 99.9 58 51 55 95.4 96.0 94.8
OP + YZsel 55 48 53 80 69 73 99.8 99.4 99.3 55 49 53 95.2 96.0 94.3

CART
All 79 81 76 95 96 89 78.1 87.4 97.0 78 80 74 63.2 75.9 92.0

Ysel 72 70 67 87 86 82 90.9 94.4 97.5 72 72 69 81.6 88.1 94.0
YZsel 69 66 64 83 83 79 93.1 96.4 99.0 70 68 67 86.2 90.8 94.8

OP + All 80 74 79 101 93 102 98.8 98.6 98.9 79 74 79 93.4 93.8 94.2
OP + Ysel 67 61 65 87 81 88 99.4 99.0 98.7 66 63 66 94.2 94.4 94.8

OP + YZsel 62 58 62 82 77 84 99.3 99.5 99.4 63 59 62 94.3 94.7 94.8
Pruned CART

All 62 63 56 92 92 86 75.3 90.4 99.1 61 61 56 40.1 60.4 90.4
Ysel 63 60 55 85 84 79 87.0 93.2 99.0 60 60 56 61.0 75.5 92.4

YZsel 64 61 55 82 81 76 87.2 93.5 99.3 61 60 57 68.6 80.7 93.0
OP + All 58 53 56 95 87 96 99.8 99.5 99.9 58 52 57 94.3 94.5 94.6

OP + Ysel 56 49 54 83 77 84 100 99.5 99.7 55 50 54 94.2 94.8 94.6
OP + YZsel 54 50 53 78 73 80 99.8 99.6 99.6 55 50 54 95.7 94.9 94.7

Bagged CART
All 54 53 51 45 45 42 28.9 46.9 85.3 56 57 53 44.1 65.5 91.2

Ysel 71 63 63 54 51 49 87.3 88.7 86.2 71 66 67 93.4 95.6 95.4
YZsel 91 82 81 63 59 57 80.0 82.1 80.9 86 79 81 91.6 92.5 94.8

OP + All 53 46 52 86 84 90 100 99.9 99.9 52 47 51 94.2 95.4 94.4
OP + Ysel 50 45 49 80 80 85 100 99.9 100 50 45 50 94.6 95.2 95.0

OP + YZsel 50 45 49 77 77 82 100 99.8 99.9 50 46 50 94.6 95.0 94.6
Random Forests

All 49 50 48 40 40 38 13.4 30.9 80.4 52 53 50 27.1 51.2 90.0
Ysel 57 52 51 41 41 38 68.4 76.2 84.7 59 57 57 84.9 91.2 95.9

YZsel 94 78 79 46 44 41 66.8 75.7 72.0 79 70 75 91.0 91.2 94.5
OP + All 55 47 53 61 56 59 97.5 98.4 97.2 53 48 52 94.8 94.9 94.0

OP + Ysel 51 45 50 70 66 71 99.9 99.5 99.4 51 46 50 94.5 94.8 94.4
OP + YZsel 50 46 50 79 76 82 99.9 99.7 99.9 51 46 50 94.8 95.0 94.7

Table 3.2: Standard errors (SE) and coverage of 95% confidence intervals estimated by usual bootstrap
and modified bootstrap for sample size of 500. The scenario with sparse treatment models was considered.
Results were obtained based on 1000 simulated datasets. For each dataset, 200 bootstrap samples were
generated.
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3.5.4 Simulation Results

We present the box plots of bias for the IPW estimates across the simulation settings in Figures 3.2-
3.4. The numerical results for all evaluation metrics are reported in the Supplementary Materials.

3.5.4.1 Bias

The numerical results for the setting of linear treatment models are presented in Tables C.3-C.9
in the Supplementary Materials. LOGIS that adjusted for confounders (XC), treatment predictors
(XC ∪ XZ), and outcome predictors (XC ∪ XY) had close to zero empirical bias as expected
(e.g., Table C.3). For the CART family methods, using confounders only generally yielded smaller
bias than using treatment predictors, outcome predictors, or All. Methods based on pre-selected
predictors (Ysel and YZsel) tended to yield smaller empirical bias than methods using all the
available predictors as input (Figure 3.2), which indicates that excluding noise variables before
fitting the final treatment model can help remove the bias, though the absolute bias was still greater
than zero for the tree-based methods. One exception was that random forests based on YZsel

resulted in substantial bias in the ‘sparse’ scenario, possibly because there were too few true pre-
dictors at each split for random forests to choose from. The OAL method had similar performance
in terms of bias to LOGIS based on OP+Ysel and OP+YZsel in the ‘sparse’ scenario (Tables
C.3-C.5), while the latter outperformed the former in the ‘moderately sparse’ (Table C.6) and
‘dense’ scenarios (Tables C.8 and C.9).

When the outcome information was not taken into account, LOGIS in general produced less
biased estimates than the tree-based methods for each of the routes [1]-[3] in Figure 3.1. Bias for
All, Ysel, and YZselwere getting closer as the model became ‘denser’ (Figure 3.2). As sample
size increased from 500 to 2000 for the ‘sparse’ scenario (Figure 3.3), the nonzero empirical bias
persisted across the methods considered, which illustrates the slow convergence rate of lasso. The
inclusion of OP greatly reduced the bias of the estimates in the case where methods based on All,
Ysel, or YZsel resulted in larger than zero absolute bias across the simulation settings, which
highlights the robustness of the treatment effect estimator provided by incorporating OP into the
estimation process.

With nonlinearity and nonadditivity in the treatment model, the performance of LOGIS was
not inferior to the tree-based methods in terms of bias (Figure 3.4 and Tables C.10-C.17), possibly
because in this case, LOGIS approximated nonlinear functions reasonably well. The good approx-
imation of linear methods to nonlinear functions was also observed in Tu [87], where multivariable
linear regression yielded smaller bias than bagged CART and random forests in some cases with
nonlinear and nonadditive associations in the treatment models.

When censoring existed, LOGIS based on Ysel, YZsel, OP+Ysel, and OP+YZsel pro-
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duced much lower bias than their CART family counterparts. One exception was YZsel-based
bagged CART, which had close to zero bias (Table C.18).

3.5.4.2 Statistical Efficiency and RMSE

In general, estimates produced by routes [4], [5], and [6] had smaller variability than those re-
sulting from routes [1], [2] and [3], respectively, for each method across all the settings, which
illustrates the advantage of leveraging the information about the outcome model in terms of statis-
tical efficiency.

Methods based on OP+All, OP+Ysel, and OP+YZsel had smaller variabilities and RMSE of
the effect estimates across the simulation settings compared to methods based on All, Ysel, and
YZsel, respectively (Figures B.1-B.3). For example, for the scenario with moderately sparse
models, the percentage of reduction in RMSE ranged from 1.6% to 20.6% for LOGIS based
on OP+YZsel compared to YZsel, and from 26.3% to 41.6% for random forests based on
OP+YZsel compared to YZsel (Table C.6). The variabilities for OP+All, OP+Ysel, and
OP+YZsel were close to one another, and one was not uniformly smaller than the other two. In
general, regardless of whether OP was incorporated, CART had the largest variability and RMSE
among the methods for all scenarios considered.

In the presence of censoring, OAL and LOGIS based on OP+YZsel had the smallest RMSE
among the methods under comparison (Table C.18). The inclusion of OP reduced the variability
of the effect estimates for all method considered. The bias for LOGIS, CART, and pruned CART
decreased when the OP was taken into account, with OP+YZsel resulting in the smallest bias for
each method. However, we still observed residual bias, especially for the CART and pruned-CART.

3.5.4.3 Coverage of 95% CI

For the tree-based methods and unpenalized LOGIS, standard errors obtained using the modified
bootstrap were close to the corresponding Monte Carlo standard deviations in the scenarios with
‘sparse’ models (regardless of whether the treatment models were linear and/or additive). The
modified bootstrap tended to slightly overestimate the variability for LOGIS with lasso penalty.
For example, the ratio of standard errors to Monte Carlo standard deviations ranged from 1.12 to
1.21 for OP+All in the scenario with linear associations and ‘sparse’ representation of the models
for sample size of 500. The tree-based methods achieved close to nominal coverage of 95% for
OP+All, OP+Ysel, and OP+YZsel for most of the scenarios considered. In the case where the
coverage fell below the nominal level, for example the ‘dense’ scenario (Table C.8), the under-
coverage was mainly caused by the empirical bias rather than the underestimation of the standard
errors.
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3.6 Data Analysis

We applied the algorithms considered in Figure 3.1 and the methods considered in Section 3.4 to
the same data set of prostate cancer patients from the Optum Clinformatics Data Mart in Chapter 2
to compare the adverse effects of the four drugs for mCRPC. The inclusion and exclusion criteria
used to identify our analytic cohort is described in Chapter 2. In the previous analysis, the working
model for the outcome was specified as

log
pr(Yi = 1|Ai,Bi)

pr(Yi = 0|Ai,Bi)
= AT

i βA +BT
i βB,

whereAi contained the sociodemographic factors and other relevant covariates, andBi contained
five pre-existing comorbid conditions, including diabetes, hypertension, arrhythmia, congestive
heart failure, and osteoporosis. Specifically, Ai included age, race, education level, household
income, geographic region, insurance product type, whether the insurance plan is administrative
services only (ASO), metastatic status of cancer, year of first prescription, and provider type [58].
In this analysis, we increased the granularity of the comorbid conditions and considered a list of
phenotype codes (phecodes), which are aggregations of the International Classification of Diseases
(ICD) codes that represent clinically meaningful phenotypes [98]. We matched the ICD codes in
the claims data to the list of phecodes and identified 1042 phecodes as the original reservoir of
predictors. These 1042 phecodes represent 16 broad categories of diseases (circulatory system,
congenital anomalies, dermatological diseases, endocrine/metabolic diseases, genitourinary dis-
eases, hematopoietic diseases, infectious diseases, injuries and poisonings, mental disorders, mus-
culoskeletal diseases, neoplasms, neurological diseases, respiratory diseases, sense organs, and
symptoms). The working model for the outcome became

log
pr(Yi = 1|Ai,M i)

pr(Yi = 0|Ai,M i)
= AT

i βA +MT
i βM ,

where M i denotes the list of phecodes of dimension 1042. In the pre-selection step, a lasso was
fitted to select the phecodes that are predictive of the outcome, with the coefficients βA unpenal-
ized. Covariates predictive of the treatment were selected in a similar manner using a multinomial
logistic regression with lasso-type penalty. In other words, covariates inAi (such as age, race, and
household income) are always adjusted for in the treatment and outcome models. The six routes in
Figure 3.1 were followed to obtain six different sets of estimated propensity scores. Note that stan-
dard multinomial logistic regression models adjusting for Ysel and YZsel yielded substantial
standard errors for the estimates of ATE (results not shown). Instead, we fitted the models using
the lasso-type penalty (with βA not being penalized) to reduce the variability of the estimates. For
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censoring, we fitted a Cox model adjusting for Ai and Bi, which was a low-dimensional set of
covariates. All covariates were coded binary, and the covariates with more than two levels were
represented by dummy variables. The standard errors and CIs were constructed using the modified
bootstrap procedure.

3.6.1 Data Analysis Results

The sample sizes for the ER visit cohort and hospitalization cohort were 7678 and 7709, respec-
tively. The descriptive statistics of the data and the proportions of patients being censored for each
treatment group are summarized in Chapter 2. The overall proportions of patients being censored
within 180 days and 360 days were 20.8% and 32.6%, respectively, for ER visits, and 24.6% and
40.6%, respectively, for hospitalization. Sipuleucel-T group had larger percentage of censored
patients than the other three groups.

Propensity scores estimated by different routes in Figure 3.1 were highly correlated for each
treatment level (results not shown). In general, we observed larger correlations among propen-
sity scores estimated by LOGIS than those estimated by the tree-based methods. For example,
correlations between LOGIS based on YZsel and OP+YZsel ranged from 0.97 to 1, while the
correlations between random forests based on YZsel and OP+YZsel ranged from 0.93 to 0.99.

Numbers of phecodes in each disease group selected by the outcome and/or the treatment model
in the pre-selection step for each of the two endpoints are reported in Tables C.19-C.22. For ex-
ample, 54 phecodes were selected by the outcome model and 69 were selected by the treatment
model, with 12 lying in the intersection for ER visits within 180 days. Among the 12 phecodes
predictive of both treatment and outcome, 4 were associated with neoplasm (cancer of prostate,
secondary malignancy of respiratory organs, secondary malignant neoplasm, secondary malignant
neoplasm of liver), 2 were associated with circulatory system (congestive heart failure NOS and
congestive heart failure nonhypertensive), 2 were associated with mental disorders (delirium de-
mentia and amnestic and other cognitive disorders, tobacco use disorder), 1 was associated with
endocrine/metabolic system (type 2 diabetes), 1 was associated with hematopoietic system (lym-
phadenitis), 1 was associated with respiratory system (abnormal findings examination of lungs),
and 1 was associated with symptoms (nausea and vomiting). For hospitalization within 180 days,
63 and 79 phecodes were selected by the outcome and treatment model, respectively, and the inter-
section contained 10 phecodes. Among the 10 phecodes, 7 were overlapped with those identified
for ER visits within 180 days (congestive heart failure NOS, congestive heart failure nonhyper-
tensive, lymphadenitis, cancer of prostate, secondary malignant neoplasm, secondary malignant
neoplasm of liver, and nausea and vomiting), with 3 additional phecodes associated with neoplasm
(cancer of stomach, malignant neoplasm of head, face, and neck, and secondary malignancy of
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respiratory organs). We also note that a number of phecodes for genitourinary system were identi-
fied to be related either to the treatment (e.g., acute cystitis, chronic renal failure [CKD], nephritis,
nephrosis, renal sclerosis, other disorders of the kidney and ureters, renal failure, retention of urine,
and urinary tract infection) or to the outcome (e.g., chronic kidney disease stage IV, functional dis-
orders of bladder, hyperplasia of prostate, lump or mass in breast, other disorders of prostate, and
prostatitis), while the intersection was empty, possibly due to the fine granularity of the phecodes.

Figure 3.5 showed results for (penalized) LOGIS, CART, and Bagged CART for the 180-day
risks differences in ER visits among the four treatment groups. Docetaxel users exhibited signifi-
cantly higher 180-day risks of at least one ER visit than the users of the two oral drugs (abiraterone
and enzalutamide), a finding that is consistent with previous studies [69, 80]. The 180-day risk
differences between abiraterone and enzalutamide users were generally not significant, except that
some of the results yielded by random forests indicated significantly lower risk for the enzalu-
tamide group (Figures 3.5 and B.4). For the 360-day time window, enzalutamide users showed
significantly lower risk of ER visits in most cases (Figures B.5 and B.6).

Similar directional results among the four treatment groups were observed for 180-day and
360-day risks in hospitalization. In particular, patients who received enzalutamide as their first-
line therapy had significantly lower risk of hospitalization than those who received abiraterone,
which is consistent with the findings of a study based on a French insurance system database [99].

As was observed in the simulation studies, bagged CART and random forests using YZsel

as input yielded estimates with large standard errors. In general, incorporating the OP into the
treatment model reduced the variability of the estimates and led to narrower 95% CIs. Greater
efficiency gains were noted for the CART family methods compared to LOGIS. For example, for
the 360-day risk of ER visits, the ratios of CI widths of OP+All over All ranged from 0.98
to 1 and from 0.61 to 0.66 for LOGIS and bagged CART, respectively. When the OP were not
included in the treatment model, the estimates yielded by LOGIS tended to have lower variance
than those produced by CART family methods. For example, for the 360-day risk of ER visits, the
ratios of CI widths of bagged CART over CI widths of LOGIS using All as input ranged from
1.06 to 2.01. Consistent with what was observed in the simulation studies, the point estimates
and confidence widths of OP+Ysel and OP+YZsel were very close across the propensity score
estimation methods.

3.7 Discussion

In this paper, we examined the traditional multinomial logistic regression method and a set of
machine learning techniques for propensity score estimation. We presented how the outcome-
covariate associations can be used for variable selection as well as propensity score estimation for
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the methods considered. The idea of using outcome models to improve the effect estimates has
been extensively explored in the literature. However, the use of OP to improve the propensity
score estimation (and therefore the estimation of average treatment effects) has not been studied
to be best of our knowledge. We conducted simulation studies to evaluate their finite-sample per-
formance in estimating the ATE under the scenarios where the ratio of the number of candidate
covariates to the sample size was relatively large. Simulation studies show that simultaneous vari-
able selection and propensity score estimation (i.e., methods based on All) in a high-dimensional
setting led to substantial bias for the LOGIS method, possibly because of the slow convergence rate
resulting from the large number of noise variables. Similar pattern was observed for the tree-based
methods. We showed that the inclusion of OP can improve the robustness and statistical efficiency
of the treatment effect estimators. If the variable selection step had satisfactory performance in
terms of identifying the set of important confounders and controlling for the bias, then the benefits
of including OP in terms of bias reduction may be minimal. On the other hand, if methods based on
All, Ysel, and YZsel produced biased estimates, then further adjusting for OP in the treatment
model can help reduce the bias. OP alleviates the bias by adding back the information about the
confounders that are potentially missed by the variable selection procedure.

The LOGIS method (both standard and penalized depending on the dimension of the covari-
ates) outperformed the tree-based methods when the association equation for the treatment model
was linear, and performed reasonably well under conditions of nonlinearity and/or nonadditivity,
especially when the OP was used. When only the treatment-covariate relationship was considered,
nonparametric machine learning methods such as bagged CART and random forests can some-
times produce less biased estimates than multinomial logistic regression, which suggests tree-based
methods as promising alternatives to multinomial logistic regression in the presence of interactions
and/or nonlinearity. The performance of tree-based methods may be improved by optimizing the
tuning parameters, such as minimum size of terminal nodes, maximum number of terminal nodes,
and number of trees to grow. In addition, standard cross-validation procedure, which focus on
out-of-sample performance, is often used to optimize tuning parameters for accurate predictive
performance in practice and may not have desired characteristics for selecting tuning parameters
for causal inference (i.e., unbiased treatment effect estimates) [100]. The selection criteria for the
tuning parameters in the context of treatment effect estimation could be a topic of future work.
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Figure 3.2: Box plots of empirical bias for 2000 inverse probability weighted estimates for the ATE under
scenarios with different levels of sparsity. The rows represent scenarios and columns represent treatment
pairs. Each simulated dataset contained 500 samples.
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Figure 3.3: Box plots of empirical bias for 2000 inverse probability weighted estimates for the ATE for
different sample sizes. The scenario with sparse treatment and outcome models was considered. The rows
represent sample sizes and columns represent treatment pairs.
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Figure 3.4: Box plots of empirical bias for 2000 inverse probability weighted estimates for the ATE under
scenarios with various degrees of nonlinearity and nonadditivity in the treatment generating model. The rows
represent scenarios and columns represent treatment pairs. Each simulated dataset contained 500 samples.
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Figure 3.5: Average treatment effects for ER visits within 180 days of treatment initiation for LOGIS,
CART, and bagged CART. Data were obtained from Optum Clinformative Data Mart. Total sample size was
N = 7678 (NA = 2757, ND = 2311, NE = 2043, NS = 567). Confidence intervals that exclude zero are
highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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Figure 3.6: Average treatment effects for hospitalization within 180 days of treatment initiation for LOGIS,
CART, and bagged CART. Data were obtained from Optum Clinformative Data Mart. Total sample size was
N = 7709 (NA = 2766, ND = 2320, NE = 2051, NS = 572. Confidence intervals that exclude zero are
highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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APPENDIX A

Supplement for Chapter I

A.1 Covariate Balance Checking

To check for balance in covariates for PEN-GAM in our case with four treatment groups, we fit a
generalized linear model for each covariate X including splines of generalized propensity scores
and treatment groups as predictors. Then we used a likelihood ratio test to conduct a 3-degree-
of-freedom global test on all of the treatment coefficients being zero. Categorical covariates with
more than two levels were represented with multiple indicator variables, and statistical tests were
conducted on each indicator. P-values before and after adjusting for splines of propensity scores
for each covariate are reported in Table A.1.

Let s2z be the variance of covariateX in treatment group z and X̄p be the mean ofX in the target
population. To conduct balancing checking for weighting-based and matching-based estimators,
we followed Li and Li [26] and inspected the absolute standardized difference in means between
each treatment group and the target population, d = |X̄z − X̄p|/s, where s2 = J−1

∑J
z=1 s

2
z.

For weighting-based estimators (IPW, MW, and OW), X̄z is the weighted average of X from
the zth group, while for matching-based estimators (MCOV, MGPSV, and MGPSS), X̄z is the
group-specific mean of X after imputation. Supplemental Figures 1.1 and 1.2 present the absolute
standardized differences for each covariate for weighting-based and matching-based estimators,
respectively. The results for the naive estimator indicate the presence of large imbalance for some
covariates across treatment groups (e.g., age, provider type, etc.). IPW balanced the covariates
well for docetaxel, abiraterone, and enzalutamide, but not for sipuleucel-T. The absolute standard-
ized differences for MW and OW remained small in general for all treatment groups. Improve-
ment of balance was achieved using matching-based estimators for all treatment groups other than
sipuleucel-T, with MGPSV and MGPSS performing slightly better than MCOV.

A.2 Supplemental Tables
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Covariates Before adjusting After adjusting

Age
<65 0.038 0.997

65-74 <0.001 0.997
≥75 <0.001 0.988

Race
White 0.969 0.998
Black 0.043 0.990
Other 0.322 0.998

Education level
High School Diploma or Less 0.055 0.987

High School Graduate and Less than Bachelor Degree 0.936 0.998
Bachelor Degree Plus 0.360 0.991

Unknown 0.001 0.983
Household income range

<50k <0.001 0.993
50k-100k 0.351 0.987

>100k <0.001 0.956
Unknown 0.006 0.997

Geographic Region
South Atlantic 0.915 0.998
New England 0.510 0.998

Middle Atlantic 0.155 0.953
East North Central 0.693 0.980
East South Central 0.314 0.996

West North Central <0.001 0.916
West South Central 0.767 0.998

Mountain 0.266 0.984
Pacific <0.001 0.994

Product
HMO 0.562 0.993
PPO 0.422 0.970

Other 0.423 0.996
Metastatic (Yes) 0.024 0.968
ASO (Yes) 0.686 0.998
Year of First Prescription

2014 <0.001 0.994
2015 0.053 0.999
2016 0.090 0.999

Diabetes 0.282 0.998
Hypertension 0.462 0.999
Arrhythmia 0.571 0.998
CHF 0.034 0.981
Osteoporosis 0.009 0.950
Provider Type

Medical oncologist <0.001 0.873
Others <0.001 0.873

Table A.1: P-values of likelihood ratio test (3-df) on all treatment coefficients being zero before and after
adjusting for splines of propensity scores in a model of covariate. Categorical covariates with more than
two levels were represented with multiple indicator variables, and statistical tests were conducted on each
indicator.
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Figure A.1: Group-specific absolute standardized differences for weighting-based methods. Levels of co-
variates were sorted by the absolute standardized difference for the naive estimator.
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Figure A.2: Group-specific absolute standardized differences for matching-based methods. Levels of co-
variates were sorted by the absolute standardized difference for the naive estimator.
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Methods Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 44 31 61 157 140 36 252 161 410 170 98 79 66 46 28
OREG (c) 26 25 28 26 24 29 30 32 29 28 23 30 15 15 12
OREG (m) 52 26 46 79 29 66 78 41 100 90 28 75 43 15 37

PEN-GAM (c, c, GLMPS) 25 26 28 30 29 34 33 37 35 32 33 37 17 18 16
PEN-GAM (c, m, GLMPS) 25 25 28 31 29 34 33 37 35 32 33 37 17 18 16
PEN-GAM (m, c, GLMPS) 25 26 28 30 27 32 32 35 34 29 30 35 17 17 15
PEN-GAM (m, m, GLMPS) 51 27 45 92 32 77 93 44 118 29 30 34 50 18 44

IPW (c, GLMPS) 26 26 29 34 31 40 39 53 52 36 45 52 17 17 14
IPW (m, GLMPS) 52 26 46 91 33 77 88 53 117 94 37 116 50 17 45
IPW (c, CBPS) 26 26 29 32 28 34 37 40 37 37 34 45 17 17 14
IPW (m, CBPS) 52 26 46 91 30 79 85 48 111 40 28 45 50 17 45

AIPW (c, c, GLMPS) 26 25 28 29 27 32 32 36 33 34 37 41 17 16 13
AIPW (c, m, GLMPS) 26 25 29 30 29 34 33 42 39 34 37 43 17 16 13
AIPW (m, c, GLMPS) 26 25 28 29 26 32 32 34 32 49 25 49 18 16 15
AIPW (m, m, GLMPS) 52 26 46 94 30 82 91 42 112 65 25 66 51 17 46

AIPW (c, c, CBPS) 26 25 28 29 28 33 32 36 33 34 35 43 17 17 14
AIPW (c, m, CBPS) 26 25 29 30 28 34 33 38 36 37 35 45 17 17 14
AIPW (m, c, CBPS) 26 25 28 29 26 32 32 34 32 31 25 32 18 16 15
AIPW (m, m, CBPS) 52 26 46 93 30 81 91 42 112 31 25 33 51 17 46

MW (c, GLMPS) 30 26 36 50 31 46 53 58 38 50 34 45 35 18 27
MW (m, GLMPS) 52 25 53 65 29 61 55 89 124 33 29 37 36 17 39
MW (c, CBPS) 31 26 38 57 33 51 60 57 43 59 39 52 37 19 28
MW (m, CBPS) 53 25 53 64 29 61 53 91 121 46 31 44 36 18 39

AMW (c, c, GLMPS) 30 26 36 50 30 45 52 57 36 49 34 44 35 18 27
AMW (c, m, GLMPS) 30 26 36 50 30 46 52 57 37 49 34 44 35 18 27
AMW (m, c, GLMPS) 26 27 30 42 29 38 58 65 34 32 37 41 22 19 15
AMW (m, m, GLMPS) 52 25 52 66 29 63 56 88 124 32 38 45 36 17 39

AMW (c, c, CBPS) 30 26 37 53 31 50 54 58 37 52 37 48 36 19 28
AMW (c, m, CBPS) 31 26 37 55 31 50 55 57 38 55 37 50 36 19 28
AMW (m, c, CBPS) 26 27 30 43 29 41 62 70 34 46 29 45 22 19 15
AMW (m, m, CBPS) 52 25 52 65 29 61 54 93 126 43 30 41 36 17 39

OW (c, GLMPS) 27 25 31 42 28 40 42 45 36 53 29 53 30 17 23
OW (m, GLMPS) 52 26 48 72 27 68 67 68 119 35 26 40 39 16 41
OW (c, CBPS) 27 26 32 49 31 43 49 44 44 64 33 61 33 18 25
OW (m, CBPS) 52 26 48 71 28 69 64 69 114 43 28 44 39 16 41

AOW (c, c, GLMPS) 27 25 31 42 29 39 41 43 34 52 29 52 31 18 24
AOW (c, m, GLMPS) 29 26 35 46 29 43 45 45 36 51 30 50 33 18 25
AOW (m, c, GLMPS) 26 25 29 35 28 33 43 47 33 32 31 35 20 18 14
AOW (m, m, GLMPS) 51 26 47 71 28 68 66 67 116 32 32 38 39 16 41

AOW (c, c, CBPS) 27 25 31 45 29 42 43 45 35 56 32 56 33 18 25
AOW (c, m, CBPS) 30 26 37 51 30 47 47 46 38 57 33 56 34 18 26
AOW (m, c, CBPS) 26 25 29 36 28 34 46 50 33 41 27 42 20 18 14
AOW (m, m, CBPS) 51 26 47 71 28 66 64 71 118 42 28 41 38 17 40

MCOV (c) 29 28 32 37 39 37 57 61 100 40 36 38 18 18 15
MCOV (m) 53 28 52 97 41 73 111 65 162 40 35 37 49 19 42

MGPSS (c, GLMPS) 32 31 35 36 33 40 39 45 42 40 43 50 20 20 16
MGPSS (m, GLMPS) 56 31 50 95 36 84 93 49 115 38 37 44 52 20 47
MGPSS (c, CBPS) 31 30 35 37 35 40 40 46 44 40 48 53 20 21 17
MGPSS (m, CBPS) 54 31 49 97 36 84 96 50 117 36 36 42 52 21 47

MGPSV (c, GLMPS) 30 29 32 35 32 38 39 45 44 39 39 45 19 19 15
MGPSV (m, GLMPS) 53 30 49 94 35 81 95 53 127 36 35 41 51 19 45
MGPSV (c, CBPS) 30 29 33 35 33 38 40 45 46 40 42 46 19 20 15
MGPSV (m, CBPS) 53 29 49 95 36 80 96 54 129 36 34 39 51 20 45

Table A.3: Root mean squared error (RMSE) × 1000 for n = 1500. For methods that involve both
models, the first and second letter in the parentheses correspond to the treatment model and outcome model,
respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 35 -19 -54 27 25 29 27 24 28 75 88 53
OREG (c) 0 -1 -1 26 25 28 25 25 28 94 95 94
OREG (m) 45 9 -36 26 25 29 26 24 29 58 93 76

PEN-GAM (c, c, GLMPS) -1 0 1 25 26 28 26 25 27 96 95 94
PEN-GAM (c, m, GLMPS) -1 0 0 25 25 28 26 25 27 96 94 95
PEN-GAM (m, c, GLMPS) -1 -1 0 25 25 28 26 25 27 96 94 95
PEN-GAM (m, m, GLMPS) 44 9 -35 26 25 29 26 25 28 62 92 76

IPW (c, GLMPS) 0 -1 -1 26 26 29 26 25 29 94 94 94
IPW (m, GLMPS) 45 9 -36 26 25 29 26 25 29 58 94 76
IPW (c, CBPS) -1 -1 0 26 26 29 26 25 29 94 94 94
IPW (m, CBPS) 45 9 -36 26 25 29 26 25 29 58 93 76

AIPW (c, c, GLMPS) 0 -1 -1 26 25 28 26 25 28 95 95 94
AIPW (c, m, GLMPS) 0 -1 -1 26 25 29 26 25 28 95 94 94
AIPW (m, c, GLMPS) 0 -1 -1 26 25 28 25 25 28 94 95 94
AIPW (m, m, GLMPS) 45 9 -36 26 25 29 26 24 29 58 93 76

AIPW (c, c, CBPS) 0 -1 -1 26 25 28 25 25 28 95 94 94
AIPW (c, m, CBPS) -1 0 0 26 25 29 26 25 28 94 94 94
AIPW (m, c, CBPS) 0 -1 -1 26 25 28 25 25 28 94 95 94
AIPW (m, m, CBPS) 45 9 -36 26 25 29 26 24 29 58 93 76

MW (c, GLMPS) -15 5 20 26 26 30 26 25 31 95 94 95
MW (m, GLMPS) 45 3 -43 27 25 31 27 25 30 38 94 46
MW (c, CBPS) -16 5 21 27 26 31 27 25 31 95 94 95
MW (m, CBPS) 45 3 -43 27 25 31 27 25 30 39 94 46

AMW (c, c, GLMPS) -15 5 20 26 25 30 26 25 30 95 95 95
AMW (c, m, GLMPS) -15 5 20 26 25 30 26 25 30 95 95 95
AMW (m, c, GLMPS) 0 -7 -7 26 26 30 26 25 29 91 91 85
AMW (m, m, GLMPS) 45 3 -43 27 25 31 27 25 30 39 94 45

AMW (c, c, CBPS) -16 5 21 26 25 30 26 25 30 95 95 95
AMW (c, m, CBPS) -16 5 21 26 25 31 26 25 31 95 95 95
AMW (m, c, CBPS) 0 -7 -7 26 26 30 26 25 29 91 91 84
AMW (m, m, CBPS) 45 3 -43 27 25 31 27 25 30 39 94 45

OW (c, GLMPS) -8 3 11 26 25 29 26 25 29 95 94 94
OW (m, GLMPS) 45 7 -38 26 25 30 26 25 29 49 94 61
OW (c, CBPS) -9 3 12 26 25 29 26 25 29 95 94 94
OW (m, CBPS) 45 7 -38 26 25 30 26 25 29 49 94 61

AOW (c, c, GLMPS) -8 3 11 26 25 29 26 25 29 95 95 95
AOW (c, m, GLMPS) -14 6 20 26 25 29 26 25 29 94 94 94
AOW (m, c, GLMPS) 0 -2 -2 26 25 29 26 25 28 93 94 92
AOW (m, m, GLMPS) 44 7 -37 26 25 29 26 24 29 49 94 61

AOW (c, c, CBPS) -8 3 11 26 25 29 26 25 29 95 95 95
AOW (c, m, CBPS) -15 7 22 26 25 30 26 25 30 94 94 93
AOW (m, c, CBPS) 0 -2 -2 26 25 29 26 25 28 93 94 92
AOW (m, m, CBPS) 44 7 -37 26 25 29 26 24 29 49 94 61

MCOV (c) -2 -2 1 29 28 32 29 28 32 95 95 95
MCOV (m) 44 3 -40 30 28 33 30 28 33 69 94 77

MGPSS (c, GLMPS) 0 0 0 32 31 35 32 30 33 94 94 93
MGPSS (m, GLMPS) 46 9 -36 32 29 34 32 30 34 68 94 82
MGPSS (c, CBPS) 0 -2 -1 31 30 35 32 31 35 95 95 94
MGPSS (m, CBPS) 44 8 -36 31 30 34 32 30 35 72 93 83

MGPSV (c, GLMPS) 0 -1 -1 30 29 32 31 29 33 96 95 95
MGPSV (m, GLMPS) 44 8 -36 30 29 33 31 29 33 69 94 80
MGPSV (c, CBPS) 0 -1 -1 30 29 33 31 29 33 95 95 95
MGPSV (m, CBPS) 44 8 -36 30 28 33 31 29 33 70 94 81

Table A.4: Performance of different causal inference methods in scenario 1 (n = 1500) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 156 137 -19 62 63 69 62 60 69 28 39 94
OREG (c) 0 0 0 64 58 67 61 57 67 93 94 94
OREG (m) 74 14 -59 69 58 72 66 57 71 79 93 85

PEN-GAM (c, c, GLMPS) 3 5 2 30 28 34 32 30 35 96 96 95
PEN-GAM (c, m, GLMPS) 4 5 1 30 28 34 31 30 35 96 96 95
PEN-GAM (m, c, GLMPS) 6 3 -3 29 27 32 31 28 33 96 96 95
PEN-GAM (m, m, GLMPS) 86 17 -69 33 28 35 34 28 36 28 92 53

IPW (c, GLMPS) 0 2 2 34 31 40 32 30 37 94 94 94
IPW (m, GLMPS) 84 17 -67 35 28 39 35 28 38 32 91 55
IPW (c, CBPS) -5 -1 4 31 28 34 30 28 33 93 95 94
IPW (m, CBPS) 84 14 -70 34 27 36 33 27 36 29 92 50

AIPW (c, c, GLMPS) -1 0 1 29 27 32 29 27 31 94 95 94
AIPW (c, m, GLMPS) 0 1 1 30 29 34 30 28 33 94 95 95
AIPW (m, c, GLMPS) -1 0 1 29 26 32 29 26 32 95 95 94
AIPW (m, m, GLMPS) 87 14 -73 36 27 38 34 26 36 26 92 48

AIPW (c, c, CBPS) 0 0 1 29 28 33 29 27 32 95 95 93
AIPW (c, m, CBPS) -4 -1 4 30 28 33 30 28 32 94 95 94
AIPW (m, c, CBPS) -1 0 1 29 26 32 29 26 31 94 95 94
AIPW (m, m, CBPS) 87 14 -72 34 27 36 33 27 35 25 92 47

MW (c, GLMPS) -38 -10 28 33 29 37 33 29 37 95 95 94
MW (m, GLMPS) 56 6 -50 33 28 36 33 29 36 21 91 44
MW (c, CBPS) -44 -12 32 36 30 39 35 31 39 94 96 94
MW (m, CBPS) 54 5 -49 34 29 36 34 30 37 25 92 47

AMW (c, c, GLMPS) -38 -10 28 32 29 36 32 29 37 95 95 94
AMW (c, m, GLMPS) -38 -10 28 33 29 36 33 29 37 95 95 94
AMW (m, c, GLMPS) -28 -10 18 30 27 33 31 28 34 93 95 94
AMW (m, m, GLMPS) 57 6 -51 33 28 36 33 29 36 19 92 42

AMW (c, c, CBPS) -41 -10 31 34 29 39 34 30 39 95 95 94
AMW (c, m, CBPS) -42 -11 31 35 29 39 34 30 39 94 95 94
AMW (m, c, CBPS) -31 -9 22 31 28 34 31 29 35 94 95 95
AMW (m, m, CBPS) 56 7 -49 33 28 36 33 29 37 21 91 46

OW (c, GLMPS) -29 -9 20 31 27 34 31 27 35 95 95 94
OW (m, GLMPS) 65 6 -59 32 27 34 32 27 35 17 92 39
OW (c, CBPS) -36 -12 23 33 28 36 33 29 36 94 95 94
OW (m, CBPS) 63 4 -60 32 27 35 32 28 35 21 92 40

AOW (c, c, GLMPS) -28 -9 19 31 28 34 31 28 35 95 95 94
AOW (c, m, GLMPS) -34 -9 24 32 28 35 32 28 36 94 95 94
AOW (m, c, GLMPS) -19 -10 8 29 27 32 29 27 32 94 95 94
AOW (m, m, GLMPS) 64 5 -58 32 27 34 32 28 35 18 91 40

AOW (c, c, CBPS) -31 -9 23 32 28 36 32 29 36 95 95 94
AOW (c, m, CBPS) -38 -10 28 34 28 37 33 29 38 93 95 93
AOW (m, c, CBPS) -21 -10 11 30 27 32 30 28 33 94 95 95
AOW (m, m, CBPS) 63 6 -56 32 27 35 32 28 35 20 92 43

MCOV (c) 18 24 6 32 30 36 32 30 36 92 88 95
MCOV (m) 91 28 -63 34 30 38 34 30 38 25 86 61

MGPSS (c, GLMPS) 0 1 1 36 33 40 36 32 38 95 95 94
MGPSS (m, GLMPS) 86 15 -71 41 33 44 40 32 42 43 93 59
MGPSS (c, CBPS) 3 4 1 37 34 40 36 34 39 95 95 94
MGPSS (m, CBPS) 88 15 -73 41 33 43 39 32 42 39 93 58

MGPSV (c, GLMPS) 2 3 1 35 32 38 35 33 38 95 95 95
MGPSV (m, GLMPS) 86 16 -70 39 31 41 38 32 40 38 93 59
MGPSV (c, CBPS) 3 5 2 35 32 37 35 33 38 96 95 95
MGPSV (m, CBPS) 87 18 -69 38 31 41 38 32 40 37 92 59

Table A.5: Performance of different causal inference methods in scenario 2 (n = 1500) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 250 -158 -409 31 28 29 30 28 28 0 0 0
OREG (c) -1 -1 0 30 32 29 29 32 29 94 95 94
OREG (m) 71 -24 -94 33 33 32 32 33 32 41 89 16

PEN-GAM (c, c, GLMPS) 5 -6 -12 32 36 34 33 37 37 95 95 97
PEN-GAM (c, m, GLMPS) 6 -6 -12 32 36 33 33 37 37 96 95 97
PEN-GAM (m, c, GLMPS) 7 -5 -12 31 35 32 32 35 36 95 95 96
PEN-GAM (m, m, GLMPS) 86 -26 -112 35 36 36 35 36 39 32 90 14

IPW (c, GLMPS) 0 -4 -4 39 53 52 36 48 46 93 92 93
IPW (m, GLMPS) 79 -29 -108 40 44 46 38 43 43 45 87 30
IPW (c, CBPS) -8 0 8 36 40 36 34 40 35 92 94 92
IPW (m, CBPS) 76 -28 -104 39 39 39 37 39 37 46 88 19

AIPW (c, c, GLMPS) -1 -1 0 32 36 33 31 35 32 95 94 94
AIPW (c, m, GLMPS) -1 -1 -1 33 42 39 32 39 36 94 95 94
AIPW (m, c, GLMPS) -1 -1 0 32 34 32 31 34 31 94 94 93
AIPW (m, m, GLMPS) 83 -23 -105 38 35 38 36 35 36 37 90 16

AIPW (c, c, CBPS) -1 -1 0 32 36 33 31 35 32 95 94 94
AIPW (c, m, CBPS) -3 4 7 33 38 35 32 36 34 94 93 92
AIPW (m, c, CBPS) -1 -1 0 32 34 32 31 34 31 94 94 93
AIPW (m, m, CBPS) 83 -23 -105 37 35 37 35 35 36 36 90 15

MW (c, GLMPS) -36 -42 -6 40 40 37 39 40 37 94 95 94
MW (m, GLMPS) 39 -80 -119 39 39 37 39 40 37 50 85 15
MW (c, CBPS) -41 -35 6 44 44 42 43 44 41 94 94 93
MW (m, CBPS) 33 -81 -114 42 41 39 41 42 39 61 85 22

AMW (c, c, GLMPS) -35 -42 -6 38 38 36 37 38 35 95 95 94
AMW (c, m, GLMPS) -35 -42 -7 39 39 36 38 39 36 95 95 94
AMW (m, c, GLMPS) -45 -53 -8 36 37 33 35 37 33 94 94 94
AMW (m, m, GLMPS) 40 -79 -119 38 38 36 38 38 36 48 84 13

AMW (c, c, CBPS) -36 -42 -6 40 41 36 40 41 36 94 95 94
AMW (c, m, CBPS) -37 -38 -1 41 43 38 40 43 37 95 94 93
AMW (m, c, CBPS) -49 -58 -8 37 38 33 37 39 33 93 93 95
AMW (m, m, CBPS) 37 -84 -120 40 40 36 39 40 36 54 82 12

OW (c, GLMPS) -21 -24 -3 36 37 36 35 38 36 94 95 94
OW (m, GLMPS) 56 -58 -114 37 37 36 36 38 36 44 86 14
OW (c, CBPS) -28 -16 12 40 41 42 39 41 40 93 94 91
OW (m, CBPS) 51 -57 -108 39 39 39 38 39 38 53 87 23

AOW (c, c, GLMPS) -20 -24 -4 35 36 34 35 36 34 94 95 94
AOW (c, m, GLMPS) -25 -26 0 37 37 36 36 37 35 94 95 94
AOW (m, c, GLMPS) -27 -31 -5 34 35 32 33 35 32 94 94 94
AOW (m, m, GLMPS) 55 -56 -111 36 36 35 36 36 35 45 86 14

AOW (c, c, CBPS) -22 -25 -4 37 37 35 36 38 35 95 95 94
AOW (c, m, CBPS) -27 -22 6 38 40 38 38 40 37 94 94 93
AOW (m, c, CBPS) -30 -35 -5 35 36 32 34 36 33 94 94 94
AOW (m, m, CBPS) 52 -60 -112 37 37 35 37 38 35 49 84 14

MCOV (c) 44 -48 -93 35 37 37 35 37 37 76 74 29
MCOV (m) 104 -53 -157 38 38 40 38 39 39 20 72 2

MGPSS (c, GLMPS) 1 -1 -2 39 45 42 38 44 41 94 94 94
MGPSS (m, GLMPS) 82 -23 -105 44 43 46 42 43 45 52 92 36
MGPSS (c, CBPS) 7 0 -6 39 46 43 40 47 44 95 95 95
MGPSS (m, CBPS) 85 -23 -108 45 45 47 43 44 46 50 92 34

MGPSV (c, GLMPS) 6 -11 -17 39 44 41 39 46 42 95 95 95
MGPSV (m, GLMPS) 86 -34 -119 42 41 44 41 43 44 46 90 22
MGPSV (c, CBPS) 9 -12 -21 38 44 41 39 46 42 94 95 94
MGPSV (m, CBPS) 87 -34 -121 42 42 44 41 43 44 45 89 20

Table A.6: Performance of different causal inference methods in scenario 3 (n = 1500) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 167 95 -73 28 26 31 27 27 31 0 6 34
OREG (c) 0 1 1 28 23 30 27 24 29 94 95 94
OREG (m) 85 16 -68 30 23 32 29 24 31 19 89 41

PEN-GAM (c, c, GLMPS) 1 9 8 32 31 36 33 35 39 96 97 96
PEN-GAM (c, m, GLMPS) 2 9 6 32 31 36 33 35 40 96 97 97
PEN-GAM (m, c, GLMPS) 0 8 8 29 29 34 30 33 36 96 97 96
PEN-GAM (m, m, GLMPS) -1 7 8 29 29 34 30 32 35 96 97 96

IPW (c, GLMPS) 2 10 8 36 44 51 35 35 43 94 93 92
IPW (m, GLMPS) -78 25 104 51 27 53 45 28 47 55 85 39
IPW (c, CBPS) -12 2 15 35 34 43 34 32 40 91 95 92
IPW (m, CBPS) -25 6 31 31 27 33 30 28 32 82 94 81

AIPW (c, c, GLMPS) 1 1 0 34 37 41 32 33 38 94 96 94
AIPW (c, m, GLMPS) 1 2 0 34 37 43 33 33 40 94 96 94
AIPW (m, c, GLMPS) 3 1 -1 49 25 49 37 25 38 93 95 93
AIPW (m, m, GLMPS) -38 2 40 53 25 53 48 26 49 86 95 85

AIPW (c, c, CBPS) 1 1 1 34 35 43 33 33 40 94 95 94
AIPW (c, m, CBPS) -12 0 12 35 35 43 34 33 41 92 95 94
AIPW (m, c, CBPS) 1 1 0 31 25 32 30 25 31 94 95 94
AIPW (m, m, CBPS) 3 -1 -4 31 25 32 29 26 31 94 95 94

MW (c, GLMPS) -34 -16 18 37 30 41 36 31 40 94 95 94
MW (m, GLMPS) -4 -9 -5 33 28 37 32 29 36 85 94 90
MW (c, CBPS) -43 -17 26 41 35 45 41 36 44 94 95 93
MW (m, CBPS) -30 -8 22 35 30 39 35 30 38 94 94 94

AMW (c, c, GLMPS) -34 -16 17 36 30 40 35 31 39 94 95 94
AMW (c, m, GLMPS) -33 -16 17 37 30 41 36 31 40 93 95 95
AMW (m, c, GLMPS) -7 -26 -19 32 27 36 32 28 35 86 94 81
AMW (m, m, GLMPS) -1 -27 -26 32 27 36 32 28 36 82 94 76

AMW (c, c, CBPS) -36 -17 19 38 33 44 38 34 43 94 95 94
AMW (c, m, CBPS) -39 -17 22 39 33 45 39 34 44 94 96 94
AMW (m, c, CBPS) -32 -9 23 33 28 38 33 28 37 94 94 94
AMW (m, m, CBPS) -27 -11 16 34 28 38 34 29 37 94 95 94

OW (c, GLMPS) -40 -4 35 35 28 39 34 29 38 93 95 94
OW (m, GLMPS) -16 2 18 31 26 35 31 27 34 88 94 92
OW (c, CBPS) -51 -8 43 39 32 43 38 33 42 93 95 93
OW (m, CBPS) -28 -3 25 33 28 36 32 28 35 93 95 93

AOW (c, c, GLMPS) -39 -4 35 35 29 39 34 30 38 93 95 95
AOW (c, m, GLMPS) -36 -7 29 36 29 40 35 30 39 93 95 94
AOW (m, c, GLMPS) -9 -17 -9 31 26 34 30 27 33 82 92 73
AOW (m, m, GLMPS) -5 -19 -14 32 26 35 31 27 35 80 92 69

AOW (c, c, CBPS) -42 -5 37 37 32 43 37 33 42 94 96 94
AOW (c, m, CBPS) -42 -9 33 39 32 45 39 33 43 94 96 94
AOW (m, c, CBPS) -27 -4 22 31 26 35 31 27 35 93 95 93
AOW (m, m, CBPS) -26 -7 19 33 27 37 33 27 36 92 95 92

MCOV (c) 20 20 0 34 29 38 34 31 38 91 92 95
MCOV (m) 22 20 -1 34 29 37 33 30 37 90 91 95

MGPSS (c, GLMPS) 1 3 1 40 42 50 39 38 44 95 95 94
MGPSS (m, GLMPS) 9 0 -8 37 37 44 36 34 41 94 94 92
MGPSS (c, CBPS) 6 14 7 39 46 52 40 44 50 95 95 94
MGPSS (m, CBPS) -6 -4 2 36 35 42 35 35 40 94 94 94

MGPSV (c, GLMPS) 6 5 -1 39 39 45 38 38 44 94 95 94
MGPSV (m, GLMPS) 5 2 -3 36 35 41 36 35 40 94 96 94
MGPSV (c, CBPS) 11 14 4 38 39 46 39 39 45 94 95 95
MGPSV (m, CBPS) -8 -4 3 36 33 39 35 34 38 94 95 95

Table A.7: Performance of different causal inference methods in scenario 4 (n = 1500) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 63 42 -21 19 17 20 19 18 20 9 33 84
OREG (c) 0 0 0 15 15 12 15 15 13 95 94 97
OREG (m) 38 5 -34 19 15 17 19 15 17 46 93 49

PEN-GAM (c, c, GLMPS) 1 3 3 17 18 16 18 20 18 97 97 98
PEN-GAM (c, m, GLMPS) 1 3 2 17 18 16 18 19 18 97 97 98
PEN-GAM (m, c, GLMPS) 2 2 0 17 17 15 18 18 17 97 97 98
PEN-GAM (m, m, GLMPS) 45 7 -39 22 17 21 23 18 23 50 96 58

IPW (c, GLMPS) 1 1 0 17 17 14 17 16 14 95 95 97
IPW (m, GLMPS) 45 5 -39 23 16 22 22 16 21 49 93 50
IPW (c, CBPS) -1 0 1 17 17 14 17 16 14 95 95 97
IPW (m, CBPS) 45 4 -40 23 16 21 22 16 20 47 93 46

AIPW (c, c, GLMPS) 1 1 0 17 16 13 16 16 13 95 95 97
AIPW (c, m, GLMPS) 1 1 0 17 16 13 16 16 14 95 95 97
AIPW (m, c, GLMPS) 0 0 0 18 16 15 17 16 15 95 95 97
AIPW (m, m, GLMPS) 45 5 -41 24 16 22 22 16 21 48 93 47

AIPW (c, c, CBPS) 1 1 0 17 17 14 16 16 14 95 95 98
AIPW (c, m, CBPS) 0 0 1 17 17 14 16 16 14 95 95 97
AIPW (m, c, CBPS) 0 0 0 18 16 15 17 16 14 94 95 97
AIPW (m, m, CBPS) 45 5 -41 23 16 21 22 16 20 46 93 46

MW (c, GLMPS) -31 -8 23 17 17 14 17 17 14 94 95 95
MW (m, GLMPS) 29 -4 -34 21 17 19 21 17 19 19 93 15
MW (c, CBPS) -32 -8 24 17 17 14 17 17 14 95 95 95
MW (m, CBPS) 29 -5 -34 21 17 19 22 17 20 20 94 16

AMW (c, c, GLMPS) -31 -8 23 17 17 14 16 17 14 95 95 95
AMW (c, m, GLMPS) -30 -8 23 17 17 14 17 17 14 95 95 95
AMW (m, c, GLMPS) -14 -9 5 17 17 14 17 17 14 81 94 74
AMW (m, m, GLMPS) 30 -4 -34 21 17 19 21 17 19 18 93 14

AMW (c, c, CBPS) -32 -8 24 17 17 14 17 17 14 95 95 95
AMW (c, m, CBPS) -32 -8 24 17 17 14 17 17 15 95 95 95
AMW (m, c, CBPS) -15 -9 6 17 17 14 17 17 14 83 94 77
AMW (m, m, CBPS) 29 -4 -33 21 17 19 21 17 20 20 94 16

OW (c, GLMPS) -26 -7 19 16 16 13 15 16 13 94 95 95
OW (m, GLMPS) 33 -3 -36 20 16 19 20 16 19 16 93 13
OW (c, CBPS) -28 -7 21 17 16 14 16 16 14 94 95 95
OW (m, CBPS) 33 -4 -36 21 16 19 21 16 19 18 93 14

AOW (c, c, GLMPS) -26 -7 19 16 16 14 16 16 14 95 95 96
AOW (c, m, GLMPS) -28 -7 21 16 16 14 16 16 14 95 95 95
AOW (m, c, GLMPS) -10 -8 3 16 16 13 16 16 14 82 95 76
AOW (m, m, GLMPS) 33 -3 -36 21 16 19 21 16 19 18 93 14

AOW (c, c, CBPS) -28 -7 21 17 17 14 17 17 14 95 95 96
AOW (c, m, CBPS) -30 -7 22 17 17 14 17 17 14 94 95 95
AOW (m, c, CBPS) -11 -8 3 17 16 14 17 16 14 84 95 79
AOW (m, m, CBPS) 32 -3 -36 21 16 19 21 16 19 19 94 16

MCOV (c) 3 6 3 17 17 15 18 18 16 95 94 97
MCOV (m) 44 7 -37 22 17 21 22 18 21 50 93 58

MGPSS (c, GLMPS) 1 1 0 20 20 16 19 19 16 95 95 97
MGPSS (m, GLMPS) 45 5 -40 26 19 24 26 19 23 58 94 59
MGPSS (c, CBPS) 2 2 0 20 21 17 20 19 16 93 94 96
MGPSS (m, CBPS) 45 5 -40 27 20 25 26 19 24 59 94 60

MGPSV (c, GLMPS) 1 1 1 19 19 15 19 19 15 96 95 97
MGPSV (m, GLMPS) 44 5 -39 25 19 23 25 19 22 57 95 57
MGPSV (c, CBPS) 1 2 1 19 20 15 19 19 16 94 94 97
MGPSV (m, CBPS) 44 5 -39 25 19 23 25 19 22 58 93 59

Table A.8: Performance of different causal inference methods in scenario 5 (n = 1500) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 104 96 99 85 91 83 83 57 62 79 76 72 117 107 144
OREG (c) 98 97 98 82 82 77 80 67 63 77 67 67 91 90 90
OREG (m) 99 96 101 90 83 83 89 69 69 84 67 73 114 90 122

PEN-GAM (c, c, GLMPS) 101 100 96 98 100 93 90 77 82 95 100 92 111 122 129
PEN-GAM (c, m, GLMPS) 101 100 96 98 100 93 90 77 82 97 100 93 110 119 126
PEN-GAM (m, c, GLMPS) 100 99 96 96 94 89 89 73 78 87 93 84 111 112 123
PEN-GAM (m, m, GLMPS) 101 97 99 105 96 98 98 75 85 87 92 84 140 113 163

IPW (c, GLMPS) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IPW (m, GLMPS) 100 97 102 107 94 101 104 91 95 128 78 111 134 97 147
IPW (c, CBPS) 99 99 100 93 94 88 95 83 76 97 92 94 100 100 97
IPW (m, CBPS) 100 96 101 103 91 95 102 81 81 85 79 75 132 98 143

AIPW (c, c, GLMPS) 98 98 98 88 91 84 84 72 69 91 87 84 97 98 96
AIPW (c, m, GLMPS) 99 99 99 92 94 89 88 81 78 95 89 89 100 98 98
AIPW (m, c, GLMPS) 98 97 98 90 88 85 85 70 69 106 71 89 103 96 105
AIPW (m, m, GLMPS) 99 96 101 106 89 98 99 73 79 138 73 115 135 96 147

AIPW (c, c, CBPS) 98 98 98 90 92 85 86 73 69 96 94 94 99 100 98
AIPW (c, m, CBPS) 98 98 99 91 93 87 89 76 73 99 95 96 99 100 98
AIPW (m, c, CBPS) 98 97 98 89 89 84 85 70 68 85 72 73 102 97 103
AIPW (m, m, CBPS) 99 96 101 102 89 95 97 73 78 85 73 73 132 97 144

MW (c, GLMPS) 102 100 107 102 99 99 107 84 81 105 89 94 100 102 100
MW (m, GLMPS) 103 98 106 103 98 98 107 83 80 93 82 86 128 102 138
MW (c, CBPS) 103 100 108 109 105 106 119 93 90 117 101 104 104 107 104
MW (m, CBPS) 103 98 106 106 101 100 114 87 85 100 86 89 131 105 141

AMW (c, c, GLMPS) 101 98 105 100 98 98 103 80 77 102 88 92 99 102 100
AMW (c, m, GLMPS) 101 99 106 101 98 99 105 81 78 103 88 93 100 102 100
AMW (m, c, GLMPS) 101 99 103 94 95 91 98 78 73 91 79 83 101 101 100
AMW (m, m, GLMPS) 102 97 105 102 97 97 106 80 78 92 79 84 128 102 138

AMW (c, c, CBPS) 101 99 106 104 101 104 109 85 78 109 96 101 102 104 104
AMW (c, m, CBPS) 102 99 107 106 102 105 111 89 82 112 97 103 103 104 104
AMW (m, c, CBPS) 101 99 103 96 97 94 102 81 73 96 81 88 102 103 103
AMW (m, m, CBPS) 102 97 105 103 99 100 109 83 79 97 81 88 130 103 141

OW (c, GLMPS) 99 98 101 95 92 93 97 79 78 98 82 89 94 95 95
OW (m, GLMPS) 100 97 102 97 92 93 99 79 79 88 77 81 122 96 134
OW (c, CBPS) 100 98 102 101 98 98 107 86 87 109 94 98 97 99 98
OW (m, CBPS) 100 96 102 100 95 95 106 82 83 93 80 82 125 98 136

AOW (c, c, GLMPS) 99 97 100 96 94 93 96 76 74 98 85 89 98 99 99
AOW (c, m, GLMPS) 100 97 102 99 95 96 100 77 77 102 85 92 98 99 99
AOW (m, c, GLMPS) 99 98 99 91 92 87 91 74 71 88 76 79 98 99 98
AOW (m, m, GLMPS) 100 96 101 99 93 93 100 76 76 91 77 82 125 99 136

AOW (c, c, CBPS) 99 97 101 99 97 98 100 79 76 106 93 98 100 102 103
AOW (c, m, CBPS) 101 97 104 103 98 101 105 83 80 111 94 102 100 102 102
AOW (m, c, CBPS) 99 98 99 93 93 89 94 76 71 91 77 81 100 100 101
AOW (m, m, CBPS) 100 96 101 100 95 95 102 78 77 95 78 84 127 100 138

MCOV (c) 111 109 111 99 102 96 97 78 80 98 87 89 107 109 114
MCOV (m) 115 109 114 106 102 101 104 81 85 96 86 87 136 108 150

MGPSS (c, GLMPS) 123 119 116 110 109 102 105 91 90 111 108 104 116 116 111
MGPSS (m, GLMPS) 122 116 119 123 108 112 117 90 99 105 97 96 155 115 168
MGPSS (c, CBPS) 124 120 121 111 114 106 109 98 96 114 124 118 118 119 116
MGPSS (m, CBPS) 123 117 121 121 108 112 118 93 99 100 98 94 155 115 168

MGPSV (c, GLMPS) 118 116 114 108 110 101 107 95 92 111 108 103 115 116 110
MGPSV (m, GLMPS) 118 113 116 118 108 108 114 91 97 105 99 93 149 114 160
MGPSV (c, CBPS) 118 116 114 108 110 101 107 95 93 111 110 105 115 115 111
MGPSV (m, CBPS) 118 113 116 117 108 108 113 91 97 101 96 90 149 114 161

Table A.9: 100 × Ratio of 95% confidence interval width to 95% confidence interval width of GLMPS
based IPW(c) for n = 1500. For methods that involve both models, the first and second letter in the
parentheses correspond to the treatment model and outcome model, respectively.

91



Methods Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 69 58 83 168 151 72 261 171 416 179 113 101 75 57 48
OREG (c) 57 57 64 64 58 67 68 75 70 62 55 67 35 35 28
OREG (m) 73 56 74 101 60 94 105 81 123 110 57 99 57 35 52

PEN-GAM (c, c, GLMPS) 57 53 62 65 64 76 75 90 99 68 65 80 38 39 36
PEN-GAM (c, m, GLMPS) 57 53 62 65 64 76 75 88 97 68 65 80 38 39 36
PEN-GAM (m, c, GLMPS) 57 53 61 64 62 74 75 87 98 64 66 78 38 39 37
PEN-GAM (m, m, GLMPS) 65 52 70 102 67 91 119 95 163 64 67 79 63 40 58

IPW (c, GLMPS) 58 58 65 76 70 88 86 113 110 82 78 96 39 39 32
IPW (m, GLMPS) 73 57 75 120 69 113 122 108 156 120 70 141 72 38 66
IPW (c, CBPS) 58 58 65 75 70 82 89 98 86 89 79 104 40 39 32
IPW (m, CBPS) 73 56 75 116 67 112 115 98 138 79 68 87 68 38 63

AIPW (c, c, GLMPS) 58 57 64 73 64 79 76 83 81 76 70 89 38 38 31
AIPW (c, m, GLMPS) 57 57 64 75 65 83 79 94 92 80 74 94 40 38 33
AIPW (m, c, GLMPS) 57 57 64 72 62 77 75 81 80 113 59 115 41 37 35
AIPW (m, m, GLMPS) 73 56 74 127 64 121 127 86 145 169 63 171 194 37 192

AIPW (c, c, CBPS) 58 57 64 74 70 80 81 88 82 92 86 108 41 40 34
AIPW (c, m, CBPS) 57 57 64 77 71 83 84 92 88 102 88 116 41 40 34
AIPW (m, c, CBPS) 57 57 64 71 65 77 75 82 78 74 63 78 42 38 35
AIPW (m, m, CBPS) 73 56 74 119 66 113 120 88 139 75 64 80 69 38 64

MW (c, GLMPS) 60 58 70 86 71 91 95 99 86 90 74 95 49 39 39
MW (m, GLMPS) 75 56 79 96 69 99 99 118 147 74 66 84 56 39 56
MW (c, CBPS) 62 58 73 101 78 101 116 105 99 113 89 113 53 42 41
MW (m, CBPS) 75 56 79 96 72 102 103 121 137 90 73 95 57 41 57

AMW (c, c, GLMPS) 60 57 70 85 71 90 92 95 83 88 73 93 50 40 39
AMW (c, m, GLMPS) 59 57 69 85 71 90 93 96 83 89 72 94 49 39 39
AMW (m, c, GLMPS) 59 57 66 78 69 82 92 101 79 73 67 84 42 40 32
AMW (m, m, GLMPS) 75 56 78 96 68 99 99 115 146 73 68 85 56 39 56

AMW (c, c, CBPS) 60 57 71 92 74 99 101 104 86 100 84 107 52 41 42
AMW (c, m, CBPS) 61 57 72 94 75 98 103 104 88 103 85 109 52 41 41
AMW (m, c, CBPS) 59 57 66 81 71 87 100 109 80 85 68 92 43 42 34
AMW (m, m, CBPS) 75 56 78 97 71 101 100 124 150 84 69 90 57 40 57

OW (c, GLMPS) 58 57 67 78 66 84 85 90 83 88 68 95 45 37 36
OW (m, GLMPS) 74 56 76 99 65 101 102 103 143 73 62 83 57 36 56
OW (c, CBPS) 59 57 69 95 74 95 106 97 100 113 84 114 50 39 39
OW (m, CBPS) 74 56 76 97 68 104 102 105 130 86 68 91 57 38 58

AOW (c, c, GLMPS) 58 57 66 79 68 84 84 87 80 87 69 95 47 39 37
AOW (c, m, GLMPS) 58 57 68 82 69 87 87 87 82 89 70 96 47 38 38
AOW (m, c, GLMPS) 58 57 64 73 66 77 82 89 77 71 63 79 40 39 32
AOW (m, m, GLMPS) 73 56 75 99 66 100 101 100 140 72 64 82 57 38 56

AOW (c, c, CBPS) 58 57 67 87 72 93 92 94 83 99 81 108 50 40 40
AOW (c, m, CBPS) 61 57 71 92 72 95 96 95 87 103 82 111 50 40 40
AOW (m, c, CBPS) 58 57 64 76 69 82 89 96 78 80 65 88 41 40 33
AOW (m, m, CBPS) 73 56 75 99 68 101 102 109 144 82 66 89 57 39 57

MCOV (c) 66 64 73 83 84 82 116 114 181 86 76 84 40 41 36
MCOV (m) 81 64 87 127 84 102 155 119 230 87 76 83 65 41 58

MGPSS (c, GLMPS) 71 71 80 85 80 90 93 111 109 89 90 107 46 46 37
MGPSS (m, GLMPS) 85 71 88 128 79 121 134 111 159 81 80 95 74 44 68
MGPSS (c, CBPS) 71 68 78 86 82 96 97 113 114 93 96 111 45 44 40
MGPSS (m, CBPS) 83 69 86 129 80 124 141 111 166 81 83 95 75 44 70

MGPSV (c, GLMPS) 65 66 75 80 75 86 90 103 106 88 82 96 44 44 35
MGPSV (m, GLMPS) 80 65 84 122 76 112 132 108 174 82 77 92 71 43 64
MGPSV (c, CBPS) 66 65 75 83 76 88 95 102 116 90 87 97 43 43 36
MGPSV (m, CBPS) 80 65 84 124 78 112 136 111 180 79 78 90 71 43 64

Table A.10: Root mean squared error (RMSE) × 1000 for n = 300. For methods that involve both
models, the first and second letter in the parentheses correspond to the treatment model and outcome model,
respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 34 -20 -54 60 54 62 60 54 63 91 93 85
OREG (c) -1 -1 0 57 57 64 58 57 64 95 94 94
OREG (m) 44 8 -36 58 55 65 58 55 65 87 94 91

PEN-GAM (c, c, GLMPS) -11 -5 6 56 52 62 63 63 66 97 98 97
PEN-GAM (c, m, GLMPS) -10 -5 6 56 53 62 63 62 66 97 98 96
PEN-GAM (m, c, GLMPS) -13 -7 5 55 52 61 64 63 67 97 98 97
PEN-GAM (m, m, GLMPS) 31 1 -29 57 52 63 64 62 68 95 98 95

IPW (c, GLMPS) 0 0 -1 58 58 65 59 59 66 95 95 95
IPW (m, GLMPS) 45 8 -37 58 56 66 59 56 66 88 94 91
IPW (c, CBPS) -1 0 2 58 58 65 58 57 65 95 94 94
IPW (m, CBPS) 45 8 -37 58 56 65 59 56 66 87 94 91

AIPW (c, c, GLMPS) 0 -1 -1 58 57 64 58 58 64 95 95 94
AIPW (c, m, GLMPS) 1 0 -1 57 57 64 59 59 65 95 95 94
AIPW (m, c, GLMPS) 0 -1 0 57 57 64 58 57 64 95 94 94
AIPW (m, m, GLMPS) 44 8 -36 58 55 65 59 56 65 87 94 91

AIPW (c, c, CBPS) 0 -1 -1 58 57 64 58 57 64 95 94 94
AIPW (c, m, CBPS) -1 1 2 57 57 64 58 57 65 95 94 94
AIPW (m, c, CBPS) 0 -1 0 57 57 64 58 57 64 94 94 94
AIPW (m, m, CBPS) 44 8 -36 58 55 65 59 56 65 87 94 91

MW (c, GLMPS) -15 4 19 58 57 67 61 59 70 96 95 95
MW (m, GLMPS) 45 4 -42 60 56 67 61 57 69 83 94 85
MW (c, CBPS) -18 6 24 59 58 69 63 60 72 96 95 95
MW (m, CBPS) 46 4 -41 60 56 67 62 58 70 83 95 85

AMW (c, c, GLMPS) -14 5 19 58 57 67 60 58 69 95 95 95
AMW (c, m, GLMPS) -14 5 18 58 57 67 61 58 69 96 95 95
AMW (m, c, GLMPS) 0 -5 -5 59 57 66 60 58 67 95 94 93
AMW (m, m, GLMPS) 45 4 -41 60 56 67 61 57 68 83 95 85

AMW (c, c, CBPS) -16 6 22 58 57 68 61 58 70 96 95 95
AMW (c, m, CBPS) -18 5 23 59 57 68 62 59 70 96 95 95
AMW (m, c, CBPS) 0 -6 -5 59 57 66 60 58 67 95 94 93
AMW (m, m, CBPS) 45 4 -41 60 55 67 61 57 69 83 95 85

OW (c, GLMPS) -9 3 12 57 57 65 59 57 66 95 94 95
OW (m, GLMPS) 45 6 -39 58 56 65 59 56 66 85 94 88
OW (c, CBPS) -13 4 17 58 57 67 60 57 68 95 94 95
OW (m, CBPS) 45 7 -39 58 55 66 59 56 66 85 95 88

AOW (c, c, GLMPS) -9 3 12 57 56 65 59 57 66 95 95 94
AOW (c, m, GLMPS) -13 6 19 57 56 66 60 57 67 95 95 95
AOW (m, c, GLMPS) -1 -3 -2 58 57 64 59 57 65 95 95 94
AOW (m, m, GLMPS) 44 6 -38 59 55 65 60 56 66 86 95 88

AOW (c, c, CBPS) -10 4 14 57 56 66 59 57 67 95 95 94
AOW (c, m, CBPS) -18 6 24 58 57 67 61 58 69 95 95 95
AOW (m, c, CBPS) -1 -3 -2 58 57 64 59 57 65 95 95 94
AOW (m, m, CBPS) 44 6 -38 59 55 65 60 56 66 86 95 88

MCOV (c) -4 -5 -1 66 63 73 66 63 72 95 94 94
MCOV (m) 42 -4 -46 69 64 74 68 63 74 90 95 89

MGPSS (c, GLMPS) 2 0 -1 71 71 80 69 66 73 94 92 92
MGPSS (m, GLMPS) 45 7 -37 72 70 80 70 66 75 88 93 91
MGPSS (c, CBPS) 0 -1 -1 71 68 78 73 71 79 95 95 95
MGPSS (m, CBPS) 44 8 -36 71 69 78 72 69 80 90 94 92

MGPSV (c, GLMPS) 0 -1 -1 65 66 75 69 66 75 96 95 94
MGPSV (m, GLMPS) 44 5 -38 67 65 75 69 65 76 91 95 92
MGPSV (c, CBPS) 0 -3 -2 66 65 74 69 66 75 96 95 95
MGPSV (m, CBPS) 44 5 -39 67 65 75 69 65 76 90 95 92

Table A.11: Performance of different causal inference methods in scenario 1 (n = 300) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 156 137 -19 62 63 69 62 60 69 28 39 94
OREG (c) 0 0 0 64 58 67 61 57 67 93 94 94
OREG (m) 74 14 -59 69 58 72 66 57 71 79 93 85

PEN-GAM (c, c, GLMPS) 1 18 16 65 62 74 78 80 91 98 99 98
PEN-GAM (c, m, GLMPS) 3 15 12 65 62 75 78 79 90 97 98 98
PEN-GAM (m, c, GLMPS) 6 13 7 64 61 73 78 76 88 98 99 97
PEN-GAM (m, m, GLMPS) 75 25 -50 68 62 76 79 76 89 88 98 94

IPW (c, GLMPS) 6 7 1 76 70 88 73 67 82 93 94 93
IPW (m, GLMPS) 87 18 -68 82 67 90 77 64 84 76 93 83
IPW (c, CBPS) -11 -4 7 74 70 82 73 68 80 93 94 94
IPW (m, CBPS) 83 12 -71 81 66 86 77 65 82 79 94 83

AIPW (c, c, GLMPS) 2 0 -2 73 64 79 68 66 77 93 95 95
AIPW (c, m, GLMPS) 4 1 -3 75 65 83 76 68 85 94 95 95
AIPW (m, c, GLMPS) 0 1 0 72 62 77 69 62 75 93 95 94
AIPW (m, m, GLMPS) 88 14 -75 91 62 95 80 61 86 80 94 84

AIPW (c, c, CBPS) 2 0 -1 74 70 80 76 72 82 95 96 96
AIPW (c, m, CBPS) -12 -3 9 76 71 82 79 74 86 94 96 96
AIPW (m, c, CBPS) 0 1 1 71 65 77 70 65 76 93 95 94
AIPW (m, m, CBPS) 87 14 -73 81 65 86 78 65 83 79 95 83

MW (c, GLMPS) -37 -10 27 78 70 87 77 69 86 94 94 95
MW (m, GLMPS) 57 5 -52 77 68 84 77 68 84 76 94 83
MW (c, CBPS) -54 -17 37 86 76 95 90 80 97 95 96 95
MW (m, CBPS) 52 0 -52 81 72 88 85 74 92 81 96 85

AMW (c, c, GLMPS) -37 -10 27 77 70 86 76 69 85 93 94 94
AMW (c, m, GLMPS) -35 -10 26 77 70 86 76 69 85 94 94 94
AMW (m, c, GLMPS) -27 -10 18 73 68 80 71 67 80 93 94 94
AMW (m, m, GLMPS) 58 5 -53 77 68 84 76 67 84 75 94 82

AMW (c, c, CBPS) -44 -10 34 81 73 93 84 76 94 95 96 95
AMW (c, m, CBPS) -47 -13 33 82 74 92 85 77 95 95 96 95
AMW (m, c, CBPS) -31 -9 22 75 71 84 76 72 86 95 95 95
AMW (m, m, CBPS) 56 6 -51 79 71 87 81 72 89 77 95 84

OW (c, GLMPS) -28 -8 20 73 66 82 71 64 80 94 94 94
OW (m, GLMPS) 66 6 -60 74 65 81 72 63 80 74 94 81
OW (c, CBPS) -49 -19 30 81 71 90 83 74 91 94 95 94
OW (m, CBPS) 59 -2 -61 78 68 85 79 69 86 79 95 84

AOW (c, c, GLMPS) -28 -9 20 74 68 82 73 66 81 94 95 95
AOW (c, m, GLMPS) -31 -8 23 76 68 84 75 67 83 94 94 95
AOW (m, c, GLMPS) -18 -9 9 70 66 77 69 65 77 93 94 95
AOW (m, m, GLMPS) 64 5 -59 75 66 81 74 65 81 75 94 83

AOW (c, c, CBPS) -36 -9 27 79 71 89 81 74 91 95 96 95
AOW (c, m, CBPS) -44 -12 31 81 71 90 83 75 92 94 96 95
AOW (m, c, CBPS) -22 -9 13 73 68 81 74 69 82 94 95 95
AOW (m, m, CBPS) 62 5 -57 77 68 84 79 69 86 78 95 85

MCOV (c) 37 44 7 74 71 81 73 69 82 92 90 95
MCOV (m) 100 43 -56 79 72 85 76 70 84 71 89 88

MGPSS (c, GLMPS) 5 3 -2 85 80 90 77 69 83 92 92 93
MGPSS (m, GLMPS) 89 17 -72 92 77 98 84 71 90 79 93 83
MGPSS (c, CBPS) 14 9 -4 85 82 95 87 84 100 95 95 96
MGPSS (m, CBPS) 91 18 -73 91 78 101 90 78 99 81 94 86

MGPSV (c, GLMPS) 9 9 -1 79 75 86 80 73 87 94 94 95
MGPSV (m, GLMPS) 87 22 -66 85 73 91 84 73 90 80 94 87
MGPSV (c, CBPS) 15 15 0 82 75 88 79 74 87 93 94 95
MGPSV (m, CBPS) 89 24 -65 86 74 91 84 73 90 80 94 88

Table A.12: Performance of different causal inference methods in scenario 2 (n = 300) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 251 -159 -410 67 61 63 67 61 63 4 27 0
OREG (c) 1 -5 -6 67 74 68 67 78 71 95 96 95
OREG (m) 73 -24 -98 73 76 73 74 78 75 83 95 78

PEN-GAM (c, c, GLMPS) 23 -41 -64 71 80 76 83 97 101 97 96 97
PEN-GAM (c, m, GLMPS) 23 -38 -61 71 80 75 82 96 100 97 97 97
PEN-GAM (m, c, GLMPS) 26 -39 -65 70 78 73 81 92 97 96 96 97
PEN-GAM (m, m, GLMPS) 92 -51 -143 76 80 78 84 91 97 84 94 75

IPW (c, GLMPS) 6 -13 -19 84 110 106 85 104 101 95 93 93
IPW (m, GLMPS) 84 -31 -115 88 100 103 86 98 98 83 92 75
IPW (c, CBPS) -17 -5 12 83 94 86 84 95 84 94 94 93
IPW (m, CBPS) 74 -30 -105 85 89 88 86 90 86 87 93 79

AIPW (c, c, GLMPS) 1 -3 -4 71 81 77 74 89 83 95 97 95
AIPW (c, m, GLMPS) 3 -6 -9 74 90 86 84 107 100 96 96 96
AIPW (m, c, GLMPS) 1 -4 -6 72 79 76 75 83 81 95 96 95
AIPW (m, m, GLMPS) 89 -23 -112 210 81 213 96 84 101 85 95 81

AIPW (c, c, CBPS) 2 -3 -5 77 86 80 82 92 84 96 97 95
AIPW (c, m, CBPS) -10 5 15 79 89 87 87 96 91 96 96 95
AIPW (m, c, CBPS) 2 -4 -6 73 80 76 75 84 79 95 96 95
AIPW (m, m, CBPS) 85 -23 -108 83 82 85 84 85 86 84 95 79

MW (c, GLMPS) -32 -37 -5 90 92 85 91 94 87 95 94 95
MW (m, GLMPS) 43 -76 -119 89 90 83 90 91 86 86 93 75
MW (c, CBPS) -46 -20 26 102 103 97 109 111 102 96 96 94
MW (m, CBPS) 30 -72 -103 96 97 90 102 102 95 91 94 84

AMW (c, c, GLMPS) -31 -37 -6 88 89 80 87 90 83 95 94 95
AMW (c, m, GLMPS) -30 -38 -9 88 89 81 89 91 84 96 94 95
AMW (m, c, GLMPS) -42 -53 -11 83 86 76 83 88 79 95 95 95
AMW (m, m, GLMPS) 44 -75 -119 87 87 81 89 89 83 85 94 73

AMW (c, c, CBPS) -33 -38 -5 95 96 83 99 101 89 96 96 96
AMW (c, m, CBPS) -34 -28 6 94 99 86 101 105 91 97 96 96
AMW (m, c, CBPS) -47 -59 -12 88 90 78 90 94 82 95 95 96
AMW (m, m, CBPS) 41 -82 -123 91 92 83 96 95 86 88 94 74

OW (c, GLMPS) -20 -23 -4 82 87 82 83 88 83 95 94 94
OW (m, GLMPS) 58 -57 -115 82 86 82 83 86 83 85 93 74
OW (c, CBPS) -40 -3 37 94 97 95 99 103 96 95 95 93
OW (m, CBPS) 43 -52 -95 90 91 88 94 95 91 90 94 84

AOW (c, c, GLMPS) -18 -24 -5 82 84 78 82 86 80 95 94 95
AOW (c, m, GLMPS) -21 -25 -4 84 84 80 85 86 82 95 95 95
AOW (m, c, GLMPS) -25 -34 -9 78 82 75 78 84 78 95 95 95
AOW (m, m, GLMPS) 57 -56 -113 82 83 79 84 85 82 85 93 74

AOW (c, c, CBPS) -22 -27 -5 88 90 81 93 95 86 96 96 96
AOW (c, m, CBPS) -27 -18 10 89 93 85 97 100 90 97 96 96
AOW (m, c, CBPS) -31 -41 -10 81 86 76 84 89 80 95 95 95
AOW (m, m, CBPS) 53 -63 -117 85 87 81 91 91 85 88 94 75

MCOV (c) 83 -78 -161 80 82 81 80 79 81 81 82 50
MCOV (m) 131 -81 -212 85 84 86 84 82 84 65 82 30

MGPSS (c, GLMPS) 8 -9 -17 91 109 104 84 97 95 92 90 89
MGPSS (m, GLMPS) 88 -31 -119 97 103 105 91 97 101 81 91 80
MGPSS (c, CBPS) 30 -8 -38 95 112 110 98 120 120 95 97 96
MGPSS (m, CBPS) 101 -25 -126 99 106 108 100 110 114 85 95 82

MGPSV (c, GLMPS) 22 -25 -47 87 100 94 90 101 96 94 93 92
MGPSV (m, GLMPS) 96 -47 -143 91 95 96 93 96 98 83 92 71
MGPSV (c, CBPS) 36 -29 -65 88 98 97 89 100 97 93 94 90
MGPSV (m, CBPS) 102 -49 -150 92 92 96 92 96 98 80 92 68

Table A.13: Performance of different causal inference methods in scenario 3 (n = 300) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 167 93 -74 61 61 70 61 60 68 23 64 80
OREG (c) -2 1 3 61 55 66 62 56 67 95 95 95
OREG (m) 83 16 -67 66 55 71 67 55 71 77 94 84

PEN-GAM (c, c, GLMPS) -1 17 18 68 63 78 82 81 95 98 99 98
PEN-GAM (c, m, GLMPS) 0 16 15 68 63 78 83 80 94 98 99 98
PEN-GAM (m, c, GLMPS) -3 20 24 64 63 75 76 80 90 97 99 98
PEN-GAM (m, m, GLMPS) -3 19 22 64 64 76 76 80 90 97 98 98

IPW (c, GLMPS) 3 19 16 81 77 99 82 74 94 95 94 94
IPW (m, GLMPS) -65 27 93 104 67 109 94 64 99 86 92 81
IPW (c, CBPS) -25 6 31 84 80 100 83 75 93 92 94 91
IPW (m, CBPS) -30 2 32 72 66 80 73 68 80 92 96 92

AIPW (c, c, GLMPS) -2 1 3 73 73 89 88 92 102 96 97 96
AIPW (c, m, GLMPS) 0 3 3 79 77 96 101 96 119 97 97 97
AIPW (m, c, GLMPS) 1 3 2 116 65 120 115 65 120 97 96 96
AIPW (m, m, GLMPS) -45 5 49 161 77 159 205 72 208 99 96 97

AIPW (c, c, CBPS) -1 2 3 91 89 109 91 83 103 95 95 95
AIPW (c, m, CBPS) -34 -1 32 94 90 113 96 85 109 93 95 94
AIPW (m, c, CBPS) 1 3 2 72 63 78 77 67 80 96 97 96
AIPW (m, m, CBPS) -8 0 8 73 64 79 80 69 84 97 97 96

MW (c, GLMPS) -39 -16 23 83 72 93 87 75 94 95 96 95
MW (m, GLMPS) -9 -9 0 73 66 85 76 68 85 94 95 94
MW (c, CBPS) -61 -20 41 97 86 106 107 95 113 96 97 96
MW (m, CBPS) -42 -14 28 81 71 90 88 77 94 97 96 96

AMW (c, c, GLMPS) -37 -16 22 81 71 92 84 73 92 95 96 95
AMW (c, m, GLMPS) -37 -15 22 83 71 93 85 73 93 95 96 95
AMW (m, c, GLMPS) -10 -24 -14 73 64 83 75 66 83 94 95 93
AMW (m, m, GLMPS) -4 -25 -21 73 64 83 75 66 83 93 95 92

AMW (c, c, CBPS) -45 -17 28 91 82 106 98 88 109 96 96 95
AMW (c, m, CBPS) -49 -18 31 92 83 107 100 89 111 96 96 96
AMW (m, c, CBPS) -36 -11 24 77 66 89 83 72 92 96 96 95
AMW (m, m, CBPS) -33 -14 18 78 67 88 84 73 91 96 96 96

OW (c, GLMPS) -43 -6 38 78 67 89 80 68 88 95 95 95
OW (m, GLMPS) -19 1 20 70 62 80 71 63 80 95 95 95
OW (c, CBPS) -70 -17 53 92 81 103 99 88 106 95 96 95
OW (m, CBPS) -44 -11 33 76 66 85 81 71 88 96 96 96

AOW (c, c, GLMPS) -42 -6 36 79 69 89 81 71 89 95 95 95
AOW (c, m, GLMPS) -39 -7 32 82 69 91 84 71 92 95 95 95
AOW (m, c, GLMPS) -12 -17 -5 70 62 79 72 63 79 94 95 92
AOW (m, m, GLMPS) -8 -18 -10 72 62 81 74 64 81 93 95 91

AOW (c, c, CBPS) -49 -9 40 89 80 103 95 86 106 96 96 95
AOW (c, m, CBPS) -51 -12 39 92 82 106 99 87 109 96 96 95
AOW (m, c, CBPS) -32 -7 25 74 64 84 80 69 87 96 96 95
AOW (m, m, CBPS) -32 -10 22 76 65 86 82 70 89 96 96 95

MCOV (c) 39 31 -7 75 68 83 76 68 84 92 92 95
MCOV (m) 41 33 -8 73 69 83 76 68 83 92 92 94

MGPSS (c, GLMPS) 4 8 4 91 92 109 80 72 88 91 90 90
MGPSS (m, GLMPS) 8 4 -4 82 84 96 77 72 87 93 92 92
MGPSS (c, CBPS) 15 18 3 93 97 116 100 100 122 96 96 96
MGPSS (m, CBPS) 3 3 0 80 83 97 85 85 100 96 96 96

MGPSV (c, GLMPS) 16 12 -5 85 82 97 86 80 96 94 94 94
MGPSV (m, GLMPS) 10 5 -4 79 77 88 82 75 90 95 94 95
MGPSV (c, CBPS) 24 27 2 83 83 97 86 81 97 94 94 95
MGPSV (m, CBPS) 4 5 0 77 75 86 80 74 88 95 95 95

Table A.14: Performance of different causal inference methods in scenario 4 (n = 300) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Bias from ATE × 1000 Empirical SD × 1000 Average SE × 1000 95% Coverage Rate (%)

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 62 41 -21 43 39 44 43 39 45 71 81 94
OREG (c) -4 -3 1 35 35 28 38 39 32 97 97 98
OREG (m) 37 2 -34 43 35 39 45 37 41 90 96 90

PEN-GAM (c, c, GLMPS) -1 2 4 37 39 36 55 58 59 100 100 100
PEN-GAM (c, m, GLMPS) -1 5 7 38 38 35 54 58 58 100 100 100
PEN-GAM (m, c, GLMPS) -3 2 5 38 39 37 53 57 57 99 100 100
PEN-GAM (m, m, GLMPS) 42 7 -34 48 40 47 60 57 64 96 100 98

IPW (c, GLMPS) 0 1 1 39 39 32 37 37 31 95 94 96
IPW (m, GLMPS) 44 5 -39 57 38 53 48 36 44 87 94 89
IPW (c, CBPS) -4 -2 2 40 39 32 39 39 31 96 95 97
IPW (m, CBPS) 43 3 -40 53 38 49 49 37 44 87 95 89

AIPW (c, c, GLMPS) -2 -2 1 38 38 31 40 42 34 97 97 98
AIPW (c, m, GLMPS) 0 -1 -1 40 38 33 46 42 38 97 97 98
AIPW (m, c, GLMPS) -4 -2 2 41 37 35 43 40 37 96 97 98
AIPW (m, m, GLMPS) 47 3 -44 188 37 187 61 38 57 90 96 91

AIPW (c, c, CBPS) -2 -1 0 41 40 34 43 44 35 97 98 99
AIPW (c, m, CBPS) -5 -1 4 41 40 34 44 43 37 97 98 98
AIPW (m, c, CBPS) -3 -2 2 41 38 35 42 41 36 96 97 98
AIPW (m, m, CBPS) 43 3 -40 54 38 49 51 39 46 89 97 90

MW (c, GLMPS) -31 -9 22 38 38 32 38 39 32 95 95 98
MW (m, GLMPS) 29 -5 -34 49 38 44 49 38 44 77 95 78
MW (c, CBPS) -34 -10 24 41 40 33 44 45 35 97 97 99
MW (m, CBPS) 27 -7 -34 50 40 46 53 42 48 81 96 83

AMW (c, c, GLMPS) -32 -9 22 38 39 32 40 41 34 96 96 98
AMW (c, m, GLMPS) -30 -9 21 38 38 33 41 40 34 96 96 98
AMW (m, c, GLMPS) -17 -11 6 39 39 32 41 42 35 94 96 94
AMW (m, m, GLMPS) 28 -6 -34 49 39 44 50 40 45 78 96 78

AMW (c, c, CBPS) -34 -10 24 40 40 34 44 45 36 97 97 98
AMW (c, m, CBPS) -33 -10 23 40 40 34 44 44 37 97 97 99
AMW (m, c, CBPS) -18 -11 7 40 40 33 43 44 37 95 97 95
AMW (m, m, CBPS) 28 -6 -34 50 40 46 52 42 47 81 96 81

OW (c, GLMPS) -27 -8 19 36 36 30 36 36 30 95 94 97
OW (m, GLMPS) 32 -4 -36 47 36 43 46 36 42 75 94 76
OW (c, CBPS) -32 -10 22 38 38 32 40 40 33 97 96 98
OW (m, CBPS) 30 -6 -37 48 37 45 50 38 45 80 95 80

AOW (c, c, GLMPS) -28 -9 19 37 38 32 39 40 33 96 97 98
AOW (c, m, GLMPS) -28 -8 20 37 37 32 40 39 34 97 96 98
AOW (m, c, GLMPS) -14 -10 4 38 38 31 40 41 34 94 97 94
AOW (m, m, GLMPS) 31 -5 -36 48 37 43 48 39 44 79 96 79

AOW (c, c, CBPS) -32 -9 22 39 39 33 43 43 36 97 97 98
AOW (c, m, CBPS) -31 -9 22 39 39 33 43 43 36 97 97 99
AOW (m, c, CBPS) -15 -10 5 39 39 33 42 43 36 95 97 95
AOW (m, m, CBPS) 30 -5 -36 49 39 45 51 41 47 82 96 82

MCOV (c) 5 9 4 40 40 35 40 40 37 94 93 96
MCOV (m) 43 9 -34 49 41 46 49 40 46 87 93 89

MGPSS (c, GLMPS) 0 0 0 46 46 37 40 39 32 92 91 96
MGPSS (m, GLMPS) 44 3 -40 59 44 55 52 39 47 86 93 88
MGPSS (c, CBPS) 4 2 -2 45 44 40 46 45 40 95 96 96
MGPSS (m, CBPS) 45 5 -40 60 43 57 57 43 53 88 95 91

MGPSV (c, GLMPS) 0 1 1 44 44 35 42 41 34 94 93 96
MGPSV (m, GLMPS) 43 3 -39 57 43 51 53 41 48 87 94 90
MGPSV (c, CBPS) 2 3 0 43 43 36 42 41 35 94 94 96
MGPSV (m, CBPS) 44 5 -39 56 43 51 53 41 48 87 93 89

Table A.15: Performance of different causal inference methods in scenario 5 (n = 300) of simulation
studies. For methods that involve both models, the first and second letter in the parentheses correspond to
the treatment model and outcome model, respectively.
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Methods Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3 1v2 1v3 2v3
NAIVE 101 93 96 84 90 84 80 59 64 75 83 74 115 106 144
OREG (c) 97 97 97 84 86 81 80 74 71 76 77 72 101 105 104
OREG (m) 98 94 99 91 85 86 87 75 75 82 76 77 120 99 131

PEN-GAM (c, c, GLMPS) 107 108 101 107 120 111 99 95 103 102 113 103 147 160 191
PEN-GAM (c, m, GLMPS) 106 107 100 106 118 109 99 94 102 103 112 102 145 159 189
PEN-GAM (m, c, GLMPS) 108 108 102 106 114 107 98 90 99 94 112 98 144 157 184
PEN-GAM (m, m, GLMPS) 108 106 103 109 114 109 100 88 99 94 111 98 162 155 207

IPW (c, GLMPS) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
IPW (m, GLMPS) 99 96 101 104 96 102 103 94 98 113 88 105 128 96 142
IPW (c, CBPS) 98 98 99 100 102 97 100 92 85 102 103 100 104 105 99
IPW (m, CBPS) 99 95 100 105 97 99 102 87 87 90 94 85 131 100 141

AIPW (c, c, GLMPS) 98 98 98 93 99 93 87 83 80 99 109 103 107 113 109
AIPW (c, m, GLMPS) 100 100 99 104 102 103 97 95 94 115 117 117 122 114 123
AIPW (m, c, GLMPS) 97 97 97 93 92 91 87 79 79 132 85 119 114 108 119
AIPW (m, m, GLMPS) 98 95 99 110 92 104 100 80 88 211 89 186 163 103 182

AIPW (c, c, CBPS) 97 97 97 104 108 99 98 88 84 111 113 110 115 119 114
AIPW (c, m, CBPS) 98 97 98 108 110 105 104 93 91 118 116 116 118 117 118
AIPW (m, c, CBPS) 97 97 97 95 98 92 89 81 79 93 93 85 113 112 116
AIPW (m, m, CBPS) 98 95 99 106 97 101 100 82 86 98 96 90 137 107 149

MW (c, GLMPS) 103 100 106 105 103 104 108 91 88 106 103 102 103 105 102
MW (m, GLMPS) 103 98 105 105 101 102 107 88 86 93 93 91 130 104 142
MW (c, CBPS) 106 102 110 122 120 118 130 108 102 130 131 122 119 121 113
MW (m, CBPS) 104 99 106 116 111 111 121 98 95 108 107 102 142 114 153

AMW (c, c, GLMPS) 101 99 104 103 103 103 104 87 83 102 100 99 108 111 108
AMW (c, m, GLMPS) 102 98 105 104 103 104 106 87 84 104 101 100 108 108 109
AMW (m, c, GLMPS) 101 99 102 97 101 97 98 85 80 91 91 89 109 113 112
AMW (m, m, GLMPS) 103 97 104 104 100 102 105 85 83 92 91 90 133 108 144

AMW (c, c, CBPS) 103 99 106 114 114 115 118 98 89 120 121 117 118 121 116
AMW (c, m, CBPS) 104 100 107 116 115 115 121 102 92 123 123 119 119 120 119
AMW (m, c, CBPS) 101 99 102 104 107 104 107 90 82 101 99 99 116 119 119
AMW (m, m, CBPS) 103 97 104 111 107 108 114 92 87 102 100 99 140 114 152

OW (c, GLMPS) 99 97 101 97 96 97 98 85 84 98 94 95 95 97 96
OW (m, GLMPS) 100 95 101 99 94 97 99 83 84 87 87 86 123 97 135
OW (c, CBPS) 101 98 103 113 110 110 118 100 97 121 120 114 108 110 105
OW (m, CBPS) 100 95 101 108 103 104 111 92 91 99 98 95 132 104 144

AOW (c, c, GLMPS) 99 97 100 99 99 98 97 82 81 99 97 96 105 108 108
AOW (c, m, GLMPS) 100 97 102 102 99 101 100 83 83 102 98 99 106 106 109
AOW (m, c, GLMPS) 99 97 98 94 97 93 92 81 78 88 87 85 106 110 110
AOW (m, m, GLMPS) 100 95 101 101 97 98 100 81 82 90 88 88 130 105 142

AOW (c, c, CBPS) 100 97 102 110 110 110 111 92 86 116 118 114 114 117 115
AOW (c, m, CBPS) 102 98 104 113 112 112 115 96 90 121 120 117 116 116 117
AOW (m, c, CBPS) 99 97 99 100 104 100 100 86 80 97 95 94 112 116 117
AOW (m, m, CBPS) 101 95 101 107 103 105 108 87 85 100 97 96 137 110 150

MCOV (c) 111 107 110 100 103 99 96 77 82 94 94 91 106 108 118
MCOV (m) 114 107 112 103 104 102 100 80 85 93 94 90 132 109 150

MGPSS (c, GLMPS) 117 113 111 105 103 101 100 93 95 97 100 95 107 105 104
MGPSS (m, GLMPS) 118 112 115 115 106 110 108 94 102 94 98 93 140 107 153
MGPSS (c, CBPS) 123 120 120 119 126 121 116 116 120 122 136 130 123 123 127
MGPSS (m, CBPS) 122 117 121 123 117 120 118 107 115 103 117 107 153 117 170

MGPSV (c, GLMPS) 116 113 114 109 110 105 107 99 98 106 111 105 111 111 109
MGPSV (m, GLMPS) 117 111 115 114 109 109 110 93 100 100 103 95 142 111 154
MGPSV (c, CBPS) 116 113 114 108 111 105 106 97 97 105 112 105 112 112 112
MGPSV (m, CBPS) 117 111 115 114 109 109 109 93 99 97 102 94 141 111 154

Table A.16: 100 × Ratio of 95% confidence interval width to 95% confidence interval width of GLMPS
based IPW(c) for n = 300. For methods that involve both models, the first and second letter in the paren-
theses correspond to the treatment model and outcome model, respectively.
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Uncensored Subjects
(N = 1955)

Censored Subjects
(N = 669)

Variable Count (%) Count (%)
Treatment

Docetaxel 565 (28.9) 161 (24.1)
Abiraterone 783 (40.1) 254 (38.0)

Enzalutamide 476 (24.3) 163 (24.4)
Sipuleucel-T 131 (6.7) 91 (13.6)

Age
<65 255 (13.0) 121 (18.1)

65-74 657 (33.6) 231 (34.5)
≥75 1043 (53.4) 317 (47.4)

Race
White 1310 (67.0) 471 (70.4)
Black 249 (12.7) 71 (10.6)
Other 396 (20.3) 127 (19.0)

Education level
High School Diploma or Less 581 (29.7) 187 (28.0)

High School Graduate and Less than Bachelor Degree 970 (49.6) 340 (50.8)
Bachelor Degree Plus 274 (14.0) 102 (15.2)

Unknown 130 (6.6) 40 (6.0)
Household income range

<50k 669 (34.2) 202 (30.2)
50k-100k 613 (31.4) 226 (33.8)

>100k 376 (19.2) 153 (22.9)
Unknown 297 (15.2) 188 (13.2)

Geographic Region
South Atlantic 357 (18.3) 125 (18.7)
New England 100 (4.9) 29 (4.3)

Middle Atlantic 197 (10.3) 74 (11.1)
East North Central 317 (16.2) 119 (17.8)
East South Central 71 (3.6) 26 (3.9)

West North Central 181 (9.3) 55 (8.2)
West South Central 196 (10.0) 63 (9.4)

Mountain 241 (12.3) 76 (11.4)
Pacific 295 (15.1) 102 (15.2)

Product
HMO 599 (30.6) 171 (25.6)
PPO 132 (6.8) 42 (6.3)

Other 1224 (62.6) 456 (68.2)
Metastatic (Yes) 1607 (82.2) 515 (77.0)
ASO (Yes) 238 (12.2) 86 (12.9)
Year of First Prescription

2014 812 (41.5) 235 (35.1)
2015 846 (43.3) 199 (29.7)
2016 297 (15.2) 235 (35.1)

Diabetes 574 (29.4) 191 (28.6)
Hypertension 1432 (73.2) 475 (71.0)
Arrhythmia 489 (25.0) 148 (22.1)
CHF 234 (12.0) 86 (12.9)
Osteoporosis 160 (8.2) 63 (9.4)
Provider Type

Medical oncologist 1196 (61.2) 409 (61.1)
Others 759 (38.8) 260 (38.9)

Table A.17: Characteristics of censored vs. uncensored subjects.
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Total
(N = 1955)

Docetaxel
(N = 565)

Abiraterone
(N = 783)

Enzalutamide
(N = 476)

Sipuleucel-T
(N = 131)

Variable Count (%) Count (%) Count (%) Count (%) Count (%)
Age

<65 255 (13.0) 96 (17.0) 92 (11.7) 49 (10.3) 18 (13.7)
65-74 657 (33.6) 267 (47.3) 216 (27.6) 126 (26.5) 48 (36.6)
≥75 1043 (53.4) 202 (35.8) 475 (60.7) 301 (63.2) 65 (49.6)

Race
White 1310 (67.0) 390 (60.0) 516 (65.9) 318 (66.8) 86 (65.6)
Black 249 (12.7) 49 (8.7) 106 (13.5) 74 (15.5) 20 (15.3)
Other 396 (20.3) 126 (22.3) 161 (20.6) 84 (17.6) 25 (19.1)

Education level
High School Diploma or Less 581 (29.7) 144 (25.5) 260 (33.2) 142 (29.8) 35 (26.7)

High School Graduate and Less than Bachelor Degree 970 (49.6) 277 (49.0) 389 (49.7) 241 (50.6) 63 (48.1)
Bachelor Degree Plus 274 (14.0) 87 (15.4) 101 (12.9) 69 (14.5) 17 (13.0)

Unknown 130 (6.6) 57 (10.1) 33 (4.2) 24 (5.0) 16 (12.2)
Household income range

<50k 669 (34.2) 145 (25.7) 308 (39.3) 174 (36.6) 42 (32.1)
50k-100k 613 (31.4) 161 (28.5) 244 (31.2) 164 (34.5) 44 (33.6)
>100k 376 (19.2) 150 (26.5) 137 (17.5) 66 (13.9) 23 (17.6)

Unknown 297 (15.2) 109 (19.3) 94 (12.0) 72 (15.1) 22 (16.8)
Geographic Region

South Atlantic 357 (18.3) 101 (17.9) 144 (18.4) 87 (18.3) 25 (19.1)
New England 100 (4.9) 33 (5.8) 42 (5.4) 21 (4.4) 4 (3.1)

Middle Atlantic 197 (10.3) 56 (9.9) 65 (8.3) 61 (12.8) 15 (11.5)
East North Central 317 (16.2) 82 (14.5) 131 (16.7) 79 (16.6) 25 (19.1)
East South Central 71 (3.6) 21 (3.7) 26 (3.3) 15 (3.2) 9 (6.9)

West North Central 181 (9.3) 112 (19.8) 42 (5.4) 20 (4.2) 7 (5.3)
West South Central 196 (10.0) 55 (9.7) 83 (10.6) 43 (9.0) 15 (11.5)

Mountain 241 (12.3) 58 (10.3) 95 (12.1) 64 (13.4) 24 (18.3)
Pacific 295 (15.1) 47 (8.3) 155 (19.8) 86 (18.1) 7 (5.3)

Product
HMO 599 (30.6) 162 (28.7) 256 (32.7) 148 (31.1) 33 (25.2)
PPO 132 (6.8) 35 (6.2) 62 (7.9) 26 (5.5) 9 (6.9)

Other 1224 (62.6) 368 (65.1) 465 (59.4) 302 (63.4) 89 (67.9)
Metastatic (Yes) 1607 (82.2) 483 (85.5) 644 (82.2) 365 (76.7) 115 (87.8)
ASO (Yes) 238 (12.2) 66 (11.7) 102 (13.0) 56 (11.8) 14 (10.7)
Year of First Prescription

2014 812 (41.5) 208 (36.8) 383 (48.9) 174 (36.6) 47 (35.9)
2015 846 (43.3) 262 (46.4) 303 (38.7) 222 (46.6) 59 (45.0)
2016 297 (15.2) 95 (16.8) 97 (12.4) 80 (16.8) 25 (19.1)

Diabetes 574 (29.4) 147 (26.0) 228 (29.1) 154 (32.4) 45 (34.4)
Hypertension 1432 (73.2) 402 (71.2) 577 (73.7) 350 (73.5) 103 (78.6)
Arrhythmia 489 (25.0) 128 (22.7) 203 (25.9) 130 (27.3) 28 (21.4)
CHF 234 (12.0) 42 (7.4) 103 (13.2) 75 (15.8) 14 (10.7)
Osteoporosis 160 (8.2) 30 (5.3) 66 (8.4) 43 (9.0) 21 (16.0)
Provider Type

Medical oncologist 1196 (61.2) 321 (56.8) 565 (72.2) 280 (58.8) 30 (22.9)
Others 759 (38.8) 244 (43.2) 218 (27.8) 196 (41.2) 101 (77.1)

Table A.18: Characteristics of uncensored subjects in the four treatment groups of interest.
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Method A – D E – D S – D E – A S – A S – E

NAIVE
-0.130 -0.177 -0.099 -0.047 0.031 0.078

(-0.186, -0.073) (-0.239, -0.115) (-0.197, -0.001) (-0.105, 0.010) (-0.064, 0.126) (-0.020, 0.177)

OREG
-0.128 -0.183 -0.108 -0.055 0.020 0.075

(-0.187, 0.068) (-0.248, -0.118) (-0.231, 0.036) (-0.115, 0.004) (-0.121, 0.161) (-0.069, 0.219)

PEN-GAM
-0.120 -0.174 -0.169 -0.054 -0.049 0.005

(-0.182, -0.058) (-0.241, -0.107) (-0.396, 0.058) (-0.115, 0.007) (-0.277, 0.178) (-0.225, 0.235)

IPW
-0.126 -0.176 -0.058 -0.05 0.068 0.118

(-0.187, -0.066) (-0.243, -0.108) (-0.259, 0.144) (-0.110, 0.011) (-0.129, 0.266) (-0.083, 0.319)

AIPW
-0.125 -0.179 -0.095 -0.055 0.03 0.085

(-0.185, -0.064) (-0.246, -0.113) (-0.263, 0.074) (-0.115, 0.005) (-0.137, 0.196) (-0.084, 0.253)

MW
-0.103 -0.179 -0.091 -0.076 0.011 0.087

(-0.199, -0.007) (-0.272, -0.085) (-0.206, 0.024) (-0.166, 0.014) (-0.101, 0.124) (-0.024, 0.199)

AMW
-0.085 -0.161 -0.079 -0.076 0.006 0.082

(-0.181, 0.012) (-0.256, -0.065) (-0.189, 0.032) (-0.166, 0.014) (-0.099, 0.111) (-0.024, 0.188)

OW
-0.111 -0.174 -0.076 -0.063 0.035 0.098

(-0.189, -0.033) (-0.252, -0.095) (-0.187, 0.035) (-0.137, 0.011) (-0.073, 0.143) (-0.012, 0.207)

AOW
-0.099 -0.163 -0.084 -0.064 0.015 0.080

(-0.178, -0.020) (-0.244, -0.082) (-0.191, 0.024) (-0.139, 0.011) (-0.087, 0.118) (-0.026, 0.185)

MCOV
-0.144 -0.202 -0.149 -0.058 -0.006 0.052

(-0.211, -0.076) (-0.272, -0.131) (-0.291, -0.008) (-0.121, 0.005) (-0.143, 0.132) (-0.087, 0.192)

MGPSS
-0.131 -0.195 -0.019 -0.065 0.112 0.177

(-0.197, -0.064) (-0.272, -0.119) (-0.232, 0.195) (-0.135, 0.005) (-0.100, 0.324) (-0.037, 0.391)

MGPSV
-0.125 -0.164 -0.125 -0.039 0 0.039

(-0.197, -0.053) (-0.240, -0.087) (-0.301, 0.051) (-0.107, 0.029) (-0.173, 0.173) (-0.136, 0.040)

Table A.19: Difference (95% confidence interval) in probability of at least one emergency room visit within
180 days of first prescription across four treatment groups (N = 1776). Abbreviations: A, abiraterone; D,
docetaxel; E, enzalutamide; S, Sipuleucel-T. 95% confidence intervals that exclude 0 are italicized. The 95%
confidence intervals were calculated using: (1) bootstrapped standard errors from 50 bootstrap samples for
OREG, IPW, AIPW, MW, AMW, OW, AOW, and CBPS-based MGPSS; (2) Wald-type confidence interval
based on original data for NAIVE; (3) Abadie and Imbens [31] confidence interval for MCOV and both
GLMPS- and CBPS-based MGPSV; (4) Abadie and Imbens [48] confidence interval for GLMPS-based
MGPSS; (5) Rubin’s imputation rule for PEN-GAM [51]
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Methods Computational time (milliseconds)

Estimation of GPS
GLMPS 19.2

Just-identified CBPS 1423.3
Over-identified CBPS 2460.9
Estimation of ATE

OREG 8.7
IPW 19.9

AIPW 29.3
MW 22.8
OW 23.8

MCOV 218.5
MGPSS 514.6
MGPSV 171.9

PENCOMP 1858.2

Table A.20: Average computational time across 100 simulated datasets for the methods under comparison.
GLMPS was used for propensity-based methods when estimating ATE.
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Figure A.3: Ratio of RMSE over RMSE of GLMPS-based IPW(c) for n = 300 across methods based on
correctly specified outcome and propensity models. The rows represent scenarios and columns represent
pairs of comparison. Results were obtained using 2000 simulated datasets.
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Figure A.4: Ratio of RMSE over RMSE of GLMPS-based IPW(c) for n = 300 across methods based on
a correctly specified propensity model only. The rows represent scenarios and columns represent pairs of
comparison. Results were obtained using 2000 simulated datasets.
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Figure A.5: Ratio of RMSE over RMSE of GLMPS-based IPW(c) for n = 300 across methods based
on a correctly specified outcome model only. The rows represent scenarios and columns represent pairs of
comparison. Results were obtained using 2000 simulated datasets.
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Figure A.6: 95% Coverage probability for n = 300 across methods based on correctly specified outcome
and propensity models. The rows represent scenarios and columns represent pairs of comparison. Results
were obtained using 2000 simulated datasets.
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Figure A.7: 95% Coverage probability for n = 300 across methods based on a correctly specified propen-
sity score or outcome model. For methods that involve both models, the first and second letter in the
parentheses correspond to the propensity and outcome model, respectively. The rows represent scenarios
and columns represent pairs of comparison. Results were obtained using 2000 simulated datasets.
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Figure A.8: Ratio of mean 95% CI width over mean 95% CI width of GLMPS-based IPW(c) for n = 300
across methods based on correctly specified outcome and propensity models. The rows represent scenarios
and columns represent pairs of comparison. Results were obtained using 2000 simulated datasets.
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Figure A.9: Ratio of mean 95% CI width over mean 95% CI width of GLMPS-based IPW(c) for n =
300 across methods based on a correctly specified propensity score or outcome model. For methods that
involve both models, the first and second letter in the parentheses correspond to the propensity and outcome
model, respectively. The rows represent scenarios and columns represent pairs of comparison. Results were
obtained using 2000 simulated datasets.
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Figure A.10: Distribution of the estimated generalized propensity scores in logit scale for the original
(N = 1955) and trimmed samples (N = 1777).
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APPENDIX B

Supplement for Chapter II

B.1 Derivation of the Asymptotic Distribution of µ̂j

B.1.1 Notations

We first list the notations used in the proof. Let i index the subject and j index the treatment
group, with i = 1, · · · , n and j = 1, · · · , J . Same as the notations in the manuscript, X̃ i, Zi, Ti,
and Ci denote the covariates, treatment received, time to event, and censoring time, respectively.
Let ∆i = I(Ti ≤ Ci), Ri = I{Ci ≥ min(Ti, d)}, and Li = min(Ti, Ci, d), where d is a fixed
time point. V i and W i are sets of covariates that are associated with treatment assignment and
censoring, respectively. The conditional hazard function of Ci givenW i and Zi = j is denoted by
λij(t). We define

Dij = I(Zi = j)

Ỹi = I(Ti > d)

S
(q)
j (t;γj) = n−1

n∑
i=1

Yij(t)W
⊗q
i exp(W T

i γj) s
(q)
j (t;γj) = E{S(q)

j (t;γj)}

W j(t;γj) =
S

(1)
j (t;γj)

S
(0)
j (t;γj)

wj(t;γj) =
s
(1)
j (t;γj)

s
(0)
j (t;γj)

mij(βj) = expit(XT
i βj)

πij(α) = exp(V T
i αj)/

J∑
z=1

exp(V T
i αz), where α = (α1, · · · , αJ)

T

dΛ∗
0j(t) =

E{dNij(t)}
s
(0)
j (t;γ∗

j)

dΛ∗
ij(t) = exp(W T

i γ
∗
j)dΛ

∗
0j(t)

dM∗
ij(t) = dNij(t)− Yij(t)dΛ

∗
ij(t)
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with the counting process defined by Nij(t) = DijI{min(Ti, Ci) ≤ t,∆i = 1} and the at-risk
process defined by Yij(t) = DijI{min(Ti, Ci) ≥ t}.

B.1.2 Model for Treatment Assignment

We consider a multinomial logistic regression model for the treatment assignment, specified as

logP (Zi = l|V i)

logP (Zi = J |V i)
= V T

i αl, l = 1, · · · , J − 1.

Under some regularity conditions [75], α̂l converges in probability to a constant vectorα∗
l , denoted

by α̂l
p→ α∗

l , and

n1/2(α̂l −α∗
l ) =H

−1
l (α∗)n−1/2

n∑
i=1

V i {Dil − πil(α
∗)}+ op(1) (B.1)

where
H l(α

∗) = E
{
V iV

T
i πil(α

∗) [1− πil(α
∗)]
}
.

If the model for P (Zi = l|V i), where l = 1, · · · , J − 1, is correctly specified, α∗ equals the truth
α0.

B.1.3 Model for Censoring

We assume a Cox proportional hazard model for the censoring time hazard, given by

λij(t) ≡ λ(t|Zi = j,W i) = λ0j(t) exp
(
W T

i γj

)
, j = 1, · · · , J. (B.2)

Let δ be the time point that satisfies P{min(Ti, Ci) ≥ δ} > 0 for i = 1, · · · , n, which practi-
cally is set to the maximum observation time. Lin and Wei [76] showed that under some regularity
conditions, γ̂j converges in probability to a constant vector γ∗

j , and n1/2(γ̂j−γ∗
j) is asymptotically

normal with

n1/2(γ̂j − γ∗
j) = Ω−1

j (γ∗
j)n

−1/2

n∑
i=1

U ij(γ
∗
j) + op(1), (B.3)

where Ωj(γ
∗
j) =

∫ δ

0

{
s
(2)
j (t;γ∗

j )

s
(0)
j (t;γ∗

j )
−wj(t;γj)

⊗2

}
E{Yij(t)λij(t)}dt and U ij(γ

∗
j) =

∫ δ

0
{W i −

w(t;γ∗
j)}dM∗

ij(t).
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Λ0j(t) can be estimated by the Breslow estimator, specified as

Λ̂0j(t; γ̂j) =

∫ t

0

∑n
i=1 dNij(u)∑n

i=1 Yij(u) exp{W
T
i γ̂j}

(B.4)

We make the following decomposition:

n1/2{Λ̂ij(t)− Λ∗
ij(t)} =n1/2{Λ̂ij(t; γ̂j)− Λ̂ij(t;γ

∗
j)} (B.5)

+ n1/2{Λ̂ij(t;γ
∗
j)− Λ∗

ij(t)} (B.6)

Applying a Taylor series expansion about γ∗
j to (B.5), we have

(B.5) =

∫ t

0

{W i −wj(u;γ
∗
j)}dΛ̂ij(u;γ

∗
j)n

1/2(γ̂j − γ∗
j) + op(1)

=KT
ij(t;γ

∗
j)Ω

−1(γ∗
j)n

−1/2

n∑
i=1

U ij(γ
∗
j) + op(1)

whereKij(t;γ
∗
j) =

∫ t

0
{W i −wj(u;γ

∗
j)}dΛ∗

ij(u).
Plugging (B.4) into (B.6), we can write the second term as

(B.6) = exp(W T
i γ

∗
j)n

1/2{Λ̂0j(t;γ
∗
j)− Λ∗

0j(t)}

= exp(W T
i γ

∗
j)n

−1/2

n∑
i=1

∫ t

0

dM∗
ij(u)

s(0)(u;γ∗
j)

+ op(1)

It follows from the above results that

n1/2{Λ̂ij(t)− Λ∗
ij(t)} =KT

ij(t;γ
∗
j)Ω

−1(γ∗
j)n

−1/2

n∑
i=1

U ij(γ
∗
j)

+ exp(W T
i γ

∗
j)n

−1/2

n∑
i=1

∫ t

0

dM∗
ij(u)

s(0)(u;γ∗
j)

+ op(1).

When the censoring model (B.2) is correctly specified, γ∗
j and Λ∗

0j equals the corresponding truth
γ0
j and Λ0

0j , respectively.

B.1.4 Model for Outcome

The assumed model for the outcome is

logit
{
E(Ỹi|X̃ i, Zi = j)

}
=XT

i βj,
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where estimator for βj , denoted by β̂j , can be obtained by solving the set of estimating equations

0 = n−1

n∑
i=1

DijRiX i{Ỹi −mij(β̂j)}
πij(α̂) exp{−Λ̂ij(Li)}

≡ G
(
β̂j, α̂1, · · · , α̂J−1, Λ̂ij(Li)

)
.

Under suitable regularity conditions, β̂j

p→ β∗
j . To obtain the asymptotic distribution of n1/2(β̂j −

β∗
j), we make the following decomposition:

n1/2G
(
β̂j, α̂1, · · · , α̂J−1, Λ̂ij

)
− n1/2G

(
β∗

j ,α
∗
1, · · · ,α∗

J−1,Λ
∗
ij

)
= n1/2G

(
β̂j, α̂1, · · · , α̂J−1, Λ̂ij

)
− n1/2G

(
β∗

j , α̂1, · · · , α̂J−1, Λ̂ij

)
(B.7)

+ n1/2G
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Considering (B.7), through a Taylor series expansion of β̂j about β∗
j ,

(B.7) = −Bj(β
∗
j ,α

∗,Λ∗
ij)n

1/2(β̂j − β∗
j) + op(1),

where

Bj(β
∗
j ,α

∗,Λ∗
ij) = n−1

n∑
i=1

DijRiX iX
T
i mij(β

∗
j){1−mij(β

∗
j)}

πij(α∗) exp{−Λ∗
ij(Li)}

.

Considering (B.8), using a Taylor series expansion of α̂l about α∗
l for l = 1, · · · , J − 1, and

substituting the results of (B.1), we have

(B.8) = F jl

(
β∗

j ,α
∗,Λ∗

ij

)
H−1

l (α∗)n−1/2

n∑
i=1

V i{Dil − πil(α
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where

F jl(β
∗
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n
−1
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DijRiXiV
T
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il (α∗)}{Ỹi−mij(β
∗
j )}

exp{−Λ∗
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n−1
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DijRiXiV
T
i exp(V T

i α∗
l ){Ỹi−mij(β

∗
j )}

{DiJ+(1−DiJ ) exp(V
T
i α∗

j )} exp{−Λ∗
ij(Li)}

if l ̸= j
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Considering (B.9), by Taylor series expansion of Λ̂ij(Li) about Λ∗
ij(Li), we have

(B.9) = P j(β
∗
j ,α

∗,Λ∗
ij)Ω

−1
j (γ∗

j)n
−1/2
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0

dM∗
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+ op(1),

where
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T
ij(Li;γ

∗
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T
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∗
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∗
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.

B.1.5 Asymptotic Distribution of µ̂j

For j = 1, · · · , J , through a Taylor series expansion of µ̂j = n−1
∑n

i=1mij(β̂j) about β∗
j ,

n1/2(µ̂j − µ0
j) = n−1/2

n∑
i=1

{
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∗
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}
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where µ0
j is the underlying truth, and
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∗
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∗
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Combining the above results, we can represent n1/2(µ̂j − µ0
j) as n−1/2
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,

which is commonly referred to as the ith influence function of µ̂j .
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B.2 Supplemental Tables and Figures
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Group 1 Group 2 Group 3

Outcome (β0j, β1j, β2j, β3j)
Weak (135, 5, 4, 4) (130, 5, 5, 4) (125, 5, 6, -5)

Strong (135, 10, 8, 8) (130, 10, 10, 8) (125, 10, 12, -10)
Censoring (γ0j, γ1j, γ2j, γ5j)

20% (-31.1, 0.3, 0.3, 0.3) (-30.8, -0.2, -0.2, -0.3) (-30.6, 0.4, 0.3, -0.3)
30% (-30.55, 0.3, 0.3, 0.3) (-30.3, -0.2, -0.2, -0.3) (-30.1, 0.4, 0.3, -0.3)
40% (-30.2, 0.3, 0.3, 0.3) (-29.9, -0.2, -0.2, -0.3) (-29.7, 0.4, 0.3, -0.3)

Treatment (α0j, α1j, α2j, α4j)
(0, 0, 0, 0) (0.1, -0.2, -0.2, -0.2) (-0.08, -0.3, -0.3, 0.2)

Table B.1: Parameter configurations for Setting I of the simulation studies

Bias×1000 Empirical SD×1000 RMSE×1000 Coverage

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 65 99 35 37 34 36 74 105 50 46 11 74
IPW (c) 10 15 6 35 35 34 37 38 35 94 92 94
IPW (m) 36 59 23 36 35 35 50 68 42 83 62 90
Pseudo-IPW (c) -1 0 0 35 35 35 35 35 35 95 95 95
Pseudo-IPW (m) 22 37 16 35 35 36 41 51 39 89 80 92
CAIPW-Wang (c,c) 1 2 1 36 37 36 36 37 36 95 94 94
CAIPW-Wang (c,m) 1 2 1 36 37 36 36 37 36 95 94 95
CAIPW-Wang (m,c) 1 3 2 35 37 37 35 37 37 95 94 94
CIPW (c) -1 0 0 34 35 35 34 35 35 94 95 95
CIPW (m) 22 38 16 35 35 36 41 51 39 90 81 92
CIPW-ZS (c) -1 -1 0 34 35 35 34 35 35 94 95 95
CIPW-ZS (m) 21 37 16 35 35 36 41 51 39 90 81 92
CAIPW-ZS (c,c) -1 -1 0 33 34 34 33 34 34 94 94 94
CAIPW-ZS (c,m) -1 -1 0 33 35 34 33 35 34 94 95 94
CAIPW-ZS (m,c) 2 3 1 33 34 34 33 34 34 94 94 94
CIPWR (c,c) -1 0 1 33 34 34 33 34 34 95 96 96
CIPWR (c,m) -1 0 1 34 35 34 34 35 35 95 96 96
CIPWR (m,c) -1 0 1 33 34 34 33 34 34 95 95 96

Table B.2: Simulation results for the scenario of random censoring and weak outcome-covariate associa-
tions (n = 1500) in Setting I. For Pseudo-IPW, (c) denotes a correctly specified propensity model and (m)
denotes a misspecified propensity model. For CAIPW-Wang, the first letter and second letter denote the
specification of the propensity and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and
second letter in the parentheses correspond to the model for coarsening mechanism and outcome, respec-
tively. The outcome model in CAIPW-ZS is always misspecified, and we use c∗ to denote the case where
the true predictors for the outcome were included in the model. Abbreviations: RMSE, root mean squared
error; SD, standard deviation.
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Bias Empirical SD RMSE Coverage

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 37 100 63 33 32 33 50 105 71 76 10 44
IPW (c) 12 23 10 32 33 32 34 40 34 93 89 94
IPW (m) 23 63 40 33 33 33 40 71 52 89 54 78
Pseudo (c) -19 9 28 32 33 33 37 34 43 92 94 86
Pseudo (m) 4 45 41 32 33 34 32 56 53 95 73 77
CAIPW-Wang (c,c) 23 15 -9 32 34 34 39 37 35 88 92 94
CAIPW-Wang (c,m) 23 15 -9 32 34 34 39 37 35 89 91 94
CAIPW-Wang (m,c) 4 20 16 32 34 34 32 39 37 94 90 92
CIPW (c) -1 1 1 32 34 34 32 34 34 95 95 94
CIPW (m) 13 43 30 32 33 34 35 54 46 93 75 86
CIPW-ZS (c) -1 0 0 32 33 34 32 33 34 95 95 94
CIPW-ZS (m) 12 42 30 32 33 34 34 54 45 93 75 85
CAIPW-ZS (c,c) -1 0 1 31 33 33 31 33 33 94 94 94
CAIPW-ZS (c,m) -1 0 1 31 33 33 31 33 33 94 94 94
CAIPW-ZS (m,c) 2 4 2 31 32 32 31 33 32 95 94 94
CIPWR (c,c) -1 0 1 31 33 33 31 33 33 96 95 95
CIPWR (c,m) -1 1 1 31 33 33 31 33 33 96 96 95
CIPWR (m,c) 2 1 -1 31 33 33 31 33 33 95 95 95

Table B.3: Simulation results for the scenario with 20% censoring and weak outcome-covariate associations
(n = 1500). For Pseudo, (c) denotes a correctly specified propensity model and (m) denotes a misspeci-
fied propensity model. For CAIPW-Wang, the first letter and second letter denote the specification of the
propensity and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and second letter in the
parentheses correspond to the model for coarsening mechanism and outcome, respectively. The outcome
model in CAIPW-ZS is always misspecified, and we use c∗ to denote the case where the true predictors
for the outcome were included in the model. Abbreviations: RMSE, root mean squared error; SD, standard
deviation.
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Bias Empirical SD RMSE Coverage

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 28 108 80 36 34 36 46 113 87 80 7 26
IPW (c) 20 34 13 34 36 35 40 49 37 92 84 93
IPW (m) 23 74 50 35 35 35 42 81 61 91 46 70
Pseudo (c) -31 13 44 34 36 36 46 38 56 87 92 76
Pseudo (m) -8 48 56 34 35 36 35 60 67 95 73 65
CAIPW-Wang (c,c) 35 24 -12 35 37 38 49 44 39 82 89 93
CAIPW-Wang (c,m) 36 24 -12 35 37 38 50 44 39 82 89 93
CAIPW-Wang (m,c) 5 30 25 35 37 37 35 48 45 95 87 90
CIPW (c) -1 2 3 34 38 39 34 39 39 95 94 95
CIPW (m) 6 45 39 34 37 38 35 58 54 95 77 81
CIPW-ZS (c) -1 0 1 34 37 37 34 37 37 95 94 95
CIPW-ZS (m) 6 44 39 34 36 37 35 57 54 94 76 81
CAIPW-ZS (c,c) -1 0 1 33 36 36 33 36 36 95 94 94
CAIPW-ZS (c,m) -1 0 1 33 36 37 33 36 37 95 95 94
CAIPW-ZS (m,c) 1 2 2 33 35 35 33 35 35 95 94 94
CIPWR (c,c) -1 1 1 33 36 37 33 36 37 96 95 95
CIPWR (c,m) 0 2 2 33 37 37 33 37 37 96 95 96
CIPWR (m,c) 4 3 -1 33 36 37 33 36 37 95 95 95

Table B.4: Simulation results for the scenario with 30% censoring and weak outcome-covariate associations
(n = 1500). For Pseudo, (c) denotes a correctly specified propensity model and (m) denotes a misspeci-
fied propensity model. For CAIPW-Wang, the first letter and second letter denote the specification of the
propensity and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and second letter in the
parentheses correspond to the model for coarsening mechanism and outcome, respectively. The outcome
model in CAIPW-ZS is always misspecified, and we use c∗ to denote the case where the true predictors
for the outcome were included in the model. Abbreviations: RMSE, root mean squared error; SD, standard
deviation.
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Bias Empirical SD RMSE Coverage

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 23 119 96 40 36 37 46 125 103 82 4 15
IPW (c) 31 48 17 37 38 37 48 61 40 87 76 92
IPW (m) 26 87 61 38 37 37 46 95 72 90 36 62
Pseudo (c) -44 18 61 37 39 39 57 43 73 79 91 65
Pseudo (m) -20 53 73 37 38 39 42 65 83 92 73 53
CAIPW-Wang (c,c) 47 33 -14 38 42 44 60 53 46 78 87 93
CAIPW-Wang (c,m) 47 33 -14 38 42 44 61 53 46 78 86 93
CAIPW-Wang (m,c) 6 41 36 38 41 43 39 58 56 94 83 87
CIPW (c) 0 4 4 36 47 48 36 47 48 94 94 94
CIPW (m) 0 49 49 37 42 44 37 65 66 95 77 77
CIPW-ZS (c) -1 1 2 36 42 43 36 42 43 94 95 94
CIPW-ZS (m) -1 48 49 37 40 42 37 63 64 95 77 77
CAIPW-ZS (c,c) -1 0 0 35 40 42 35 40 42 94 95 95
CAIPW-ZS (c,m) -1 0 1 35 41 42 35 41 42 94 95 95
CAIPW-ZS (m,c) 0 1 0 35 39 40 35 39 40 94 95 94
CIPWR (c,c) 0 2 2 36 41 43 36 41 43 95 95 95
CIPWR (c,m) 0 5 5 36 42 44 36 43 44 95 95 94
CIPWR (m,c) 7 6 -1 35 41 42 36 41 42 95 95 95

Table B.5: Simulation results for the scenario with 40% censoring and weak outcome-covariate associations
(n = 1500). For Pseudo, (c) denotes a correctly specified propensity model and (m) denotes a misspeci-
fied propensity model. For CAIPW-Wang, the first letter and second letter denote the specification of the
propensity and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and second letter in the
parentheses correspond to the model for coarsening mechanism and outcome, respectively. The outcome
model in CAIPW-ZS is always misspecified, and we use c∗ to denote the case where the true predictors
for the outcome were included in the model. Abbreviations: RMSE, root mean squared error; SD, standard
deviation.
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Bias Empirical SD RMSE Coverage

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 37 100 63 33 32 33 50 105 71 76 10 44
IPW (c) 12 23 10 32 33 32 34 40 34 93 89 94
IPW (m) 23 63 40 33 33 33 40 71 52 89 54 78
Pseudo (c) -19 9 28 32 33 33 37 34 43 92 94 86
Pseudo (m) 4 45 41 32 33 34 32 56 53 95 73 77
CAIPW-Wang (c,c) 23 15 -9 32 34 34 39 37 35 88 92 94
CAIPW-Wang (c,m) 23 15 -9 32 34 34 39 37 35 89 91 94
CAIPW-Wang (m,c) 4 20 16 32 34 34 32 39 37 94 90 92
CIPW (c) -1 1 1 32 34 34 32 34 34 95 95 94
CIPW (m) 13 43 30 32 33 34 35 54 46 93 75 86
CIPW-ZS (c) -1 0 0 32 33 34 32 33 34 95 95 94
CIPW-ZS (m) 12 42 30 32 33 34 34 54 45 93 75 85
CAIPW-ZS (c,c) -1 0 1 31 33 33 31 33 33 94 94 94
CAIPW-ZS (c,m) -1 0 1 31 33 33 31 33 33 94 94 94
CAIPW-ZS (m,c) 2 4 2 31 32 32 31 33 32 95 94 94
CIPWR (c,c) -1 0 1 31 33 33 31 33 33 96 95 95
CIPWR (c,m) -1 1 1 31 33 33 31 33 33 96 96 95
CIPWR (m,c) 2 1 -1 31 33 33 31 33 33 95 95 95

Table B.6: Simulation results for the scenario of 30% censoring and strong outcome-covariate associations
(n = 1500). For Pseudo, (c) denotes a correctly specified propensity model and (m) denotes a misspeci-
fied propensity model. For CAIPW-Wang, the first letter and second letter denote the specification of the
propensity and outcome model, respectively. For CIPWR and CAIPW-ZS, the first and second letter in the
parentheses correspond to the model for coarsening mechanism and outcome, respectively. The outcome
model in CAIPW-ZS is always misspecified, and we use c∗ to denote the case where the true predictors
for the outcome were included in the model. Abbreviations: RMSE, root mean squared error; SD, standard
deviation.
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Bias Empirical SD RMSE Coverage

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Scenario 1
Naive -12 -66 -54 34 36 38 36 75 66 88 40 56
IPW -12 -67 -55 34 36 38 36 76 67 93 52 70
Pseudo-IPW -17 -55 -38 36 38 39 40 67 54 92 65 84
CAIPW-Wang -9 -38 -28 32 33 34 33 50 44 92 77 86
CIPW 0 -1 0 37 37 38 37 37 38 95 94 95
CIPW-ZS -1 -2 -1 36 37 38 36 37 38 95 94 94
CAIPW-ZS -1 -2 -1 33 33 34 33 33 34 94 94 95
CIPWR 1 1 0 33 32 34 33 32 34 94 94 94
Scenario 2
Naive -31 -29 3 33 33 34 46 44 34 80 83 93
IPW -23 -24 -1 32 32 32 40 40 32 88 89 94
Pseudo-IPW -7 -12 -4 32 32 32 33 34 32 94 94 94
CAIPW-Wang -5 -4 2 28 28 27 28 28 27 93 95 95
CIPW -1 -1 0 32 32 32 32 32 32 94 95 94
CIPW-ZS -1 -2 0 32 32 31 32 32 31 94 95 94
CAIPW-ZS -1 -1 0 29 29 28 29 29 28 98 98 98
CIPWR -1 -1 0 28 28 28 28 28 28 94 95 94

Table B.7: Simulation results for the setting of crossed hazard functions (Setting II). In this setting, the
models for treatment and censoring were correctly specified. The outcome model was always misspecified.
Abbreviations: RMSE, root mean squared error; SD, standard deviation.

ER visits (N = 7678) All-cause hospitalization (N = 7709)

Overall Due to treatment switch Due to dropout Overall Due to treatment switch Due to dropout

180 days 1595 (20.8%) 716 (44.9%) 879 (55.1%) 1879 (24.6%) 836 (44.1%) 1061 (55.9%)
270 days 2107 (27.4%) 955 (45.3%) 1152 (54.7%) 2585 (33.5%) 1145 (44.3%) 1440 (55.7%)
360 days 2503 (32.6%) 1136 (45.4%) 1367 (54.6%) 3129 (40.6%) 1382 (44.2%) 1747 (55.8%)

Table B.8: Number (%) of patients who were censored by a given time point.
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Figure B.1: Empirical bias for different proportions of censoring. For CAIPW-Wang, the first letter and
second letter denote the specification of the propensity and outcome model, respectively. For CIPWR and
CAIPW-ZS, the first and second letter in the parentheses correspond to the model for coarsening mechanism
and outcome, respectively. The outcome model in CAIPW-ZS is always misspecified, and we use c∗ to
denote the case where the true predictors for the outcome were included in the model. Propensity model is
correctly specified for IPW, Pseudo, CIPW, and CIPW-ZS. Sample size was 1500. Results were obtained
using 2000 simulated datasets. Sample size was 1500. Results were obtained using 2000 simulated datasets.
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Figure B.2: Empirical bias for different levels of outcome-covariate associations. Censoring depended on
covariates and the proportion of censoring at d = 130 was 30%. For CAIPW-Wang, the first letter and
second letter denote the specification of the propensity and outcome model, respectively. For CIPWR and
CAIPW-ZS, the first and second letter in the parentheses correspond to the model for coarsening mechanism
and outcome, respectively. The outcome model in CAIPW-ZS is always misspecified, and we use c∗ to
denote the case where the true predictors for the outcome were included in the model. Propensity model is
correctly specified for IPW, Pseudo, CIPW, and CIPW-ZS. Sample size was 1500. Results were obtained
using 2000 simulated datasets. Sample size was 1500. Results were obtained using 2000 simulated datasets.
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ER visits (N = 7678) Hospitalization (N = 7709)

Within 180 days

First-line therapy Number of patients
Number (%) of

uncensored patients
At least one

ER visit (%)* Number of patients
Number (%) of

uncensored patients
At least one

hospitalization record (%)*
Docetaxel 2311 1877 (81.2) 1006 (53.6) 2320 1797 (77.5) 738 (41.1)

Abiraterone 2757 2261 (82.0) 923 (40.8) 2766 2177 (78.7) 583 (26.8)
Enzalutamide 2043 1586 (77.6) 632 (39.8) 2051 1503 (73.3) 344 (22.9)
Sipuleucel-T 567 359 (63.3) 150 (41.8) 572 335 (58.6) 84 (25.1)

Within 270 days

Docetaxel 2311 1751 (75.8) 1132 (64.6) 2320 1623 (70.0) 849 (52.3)
Abiraterone 2757 2070 (75.1) 1091 (52.7) 2766 1926 (69.6) 703 (36.5)

Enzalutamide 2043 1442 (70.6) 740 (51.3) 2051 1304 (63.6) 407 (31.2)
Sipuleucel-T 567 308 (54.3) 168 (54.5) 572 271 (47.4) 96 (35.4)

Within 360 days

Docetaxel 2311 1651 (71.4) 1186 (71.8) 2320 1489 (64.2) 896 (60.2)
Abiraterone 2757 1924 (69.8) 1230 (63.9) 2766 1731 (62.6) 797 (46.0)

Enzalutamide 2043 1320 (64.6) 810 (61.3) 2051 1129 (55.0) 462 (40.9)
Sipuleucel-T 567 280 (49.4) 186 (66.4) 572 231 (40.4) 106 (45.9)

*Percentage was calculated using the number of uncensored patients as the denominator.

Table B.9: Crude risks of emergency room (ER) visits and hospitalization ignoring censored patients.

Figure B.3: Empirical bias in the setting of nonproportional hazards (Setting II). The models for treatment
assignment and censoring were correctly specified. The logistic regression model and Cox model for the
outcome were always misspecified in this setting. Numbers that fall outside the range of x-axis are labeled
in the figure. Sample size was 1500. Results were obtained using 2000 simulated datasets.
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Total
(N=7678)

Docetaxel
(N=2311)

Abiraterone
(N=2757)

Enzalutamide
(N=2043)

Sipuleucel-T
(N=567)

Variable Count (%) Count (%) Count (%) Count (%) Count (%)

Age
<65 1252 (16.3) 618 (26.7) 404 (14.7) 148 (7.2) 82 (14.5)

65-74 2549 (33.2) 926 (40.1) 835 (30.3) 597 (29.2) 191 (33.7)
≥75 3877 (50.5) 767 (33.2) 1518 (55.1) 1298 (63.5) 294 (51.9)

Race
White 5593 (72.8) 1783 (77.2) 1975 (71.6) 1403 (68.7) 432 (76.2)
Black 1151 (15.0) 294 (12.7) 416 (15.1) 353 (17.3) 88 (15.5)
Other 934 (12.2) 234 (10.1) 366 (13.3) 287 (14.0) 47 (8.3)

Education level
High School Diploma or Less 2165 (28.2) 650 (28.1) 769 (27.9) 613 (30.0) 133 (23.5)

High School Graduate and
Less than Bachelor Degree 4196 (54.6) 1260 (54.5) 1484 (53.8) 1130 (55.3) 322 (56.8)

Bachelor Degree Plus 1317 (17.2) 401 (17.4) 504 (18.3) 300 (14.7) 112 (19.8)
Household income range

<50k 2443 (31.8) 687 (29.7) 856 (31.0) 746 (36.5) 154 (27.2)
50k-100k 3122 (40.7) 929 (40.2) 1133 (41.1) 830 (40.6) 230 (40.6)

>100k 2113 (27.5) 695 (30.1) 768 (27.9) 467 (22.9) 183 (32.3)
Geographic Region

South Atlantic 1917 (25.0) 551 (23.8) 681 (24.7) 548 (26.8) 137 (24.2)
New England 333 (4.4) 108 (4.7) 134 (4.9) 82 (4.0) 9 (1.6)

Middle Atlantic 668 (8.7) 194 (8.4) 235 (8.5) 181 (8.9) 58 (10.2)
East North Central 1242 (16.2) 382 (16.5) 455 (16.5) 307 (15.0) 98 (17.3)
East South Central 278 (3.6) 104 (4.5) 83 (3.0) 62 (3.0) 29 (5.1)

West North Central 626 (8.2) 360 (15.6) 133 (4.8) 86 (4.2) 47 (8.3)
West South Central 781 (10.2) 254 (11.0) 269 (9.8) 194 (9.5) 64 (11.3)

Mountain 791 (10.3) 206 (8.9) 267 (9.7) 238 (11.6) 80 (14.1)
Pacific 1042 (13.6) 152 (6.6) 500 (18.1) 345 (16.9) 45 (7.9)

Product
HMO 10440(13.5) 324 (14.0) 378 (13.7) 309 (14.8) 36 (6.3)
PPO 541 (7.0) 163 (7.1) 205 (7.4) 138 (6.8) 35 (6.2)

Other 6097 (79.4) 1824 (78.9) 2174 (78.9) 1603 (78.5) 496 (87.5)
Metastatic (Yes) 2963 (38.6) 1116 (48.3) 1018 (36.9) 587 (28.7) 242 (42.7)
ASO (Yes) 979 (12.8) 381 (16.5) 364 (13.2) 164 (8.0) 70 (12.3)
Year of First Prescription

2014 969 (12.6) 319 (13.8) 405 (14.7) 165 (8.1) 80 (14.1)
2015 1000 (13.0) 378 (16.4) 313 (11.4) 233 (11.4) 76 (13.4)
2016 1117 (14.5) 419 (18.1) 317 (11.5) 290 (14.2) 91 (16.0)
2017 1461 (19.0) 425 (18.4) 612 (22.2) 318 (15.6) 106 (18.7)
2018 1762 (22.9) 374 (16.2) 805 (29.2) 464 (22.7) 119 (21.0)
2019 1369 (17.8) 396 (17.1) 305 (11.1) 573 (28.0) 95 (16.8)

Diabetes 2248 (29.3) 579 (25.1) 770 (27.9) 740 (36.2) 159 (28.0)
Hypertension 5490 (71.5) 1573 (68.1) 1948 (70.7) 1557 (76.2) 412 (72.7)
Arrhythmia 1754 (22.8) 452 (19.6) 652 (23.6) 545 (26.7) 105 (18.5)
CHF 908 (11.8) 182 (7.9) 334 (12.1) 346 (16.9) 46 (8.1)
Osteoporosis 393 (5.1) 63 (2.7) 144 (5.2) 129 (6.3) 57 (10.1)
Provider Type

Medical oncologist 4707 (61.3) 1389 (60.1) 2017 (73.2) 1177 (57.6) 124 (21.9)
Others 2971 (38.7) 922 (39.9) 740 (26.8) 866 (42.4) 443 (78.1)

Table B.10: Characteristics of patients in the four treatment groups of interest. Abbreviations: ASO, Ad-
ministrative Service Only; REF, reference group; HR, hazard ratio; HMO, Health Maintenance Organiza-
tion; PPO, Preferred Provider Organization; CHF, congestive heart failure.
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Count (%)

180 days 270 days 360 days

Variable
Uncensored
(N=6083)

Censored
(N=1595)

Uncensored
(N=5571)

Censored
(N=2107)

Uncensored
(N=5175)

Censored
(N=2503)

Treatment
Docetaxel 1877 (30.9) 434 (27.2) 1751 (31.4) 560 (26.6) 1651 (31.9) 660 (26.4)

Abiraterone 2261 (37.2) 496 (31.1) 2070 (37.2) 687 (32.6) 1924 (37.2) 833 (33.3)
Enzalutamide 1586 (26.1) 457 (28.7) 1442 (25.9) 601 (28.5) 1320 (25.5) 723 (28.9)
Sipuleucel-T 359 (5.9) 208 (13.0) 308 (5.5) 259 (12.3) 280 (5.4) 287 (11.5)

Age
<65 922 (15.2) 330 (20.7) 824 (14.8) 428 (20.3) 740 (14.3) 512 (20.5)

65-74 2011 (33.1) 538 (33.7) 1834 (32.9) 715 (33.9) 1699 (32.8) 850 (34.0)
≥75 3150 (51.8) 727 (45.6) 2913 (52.3) 964 (45.8) 2736 (52.9) 1141 (45.6)

Race
White 4398 (72.3) 1195 (74.9) 4012 (72.0) 1581 (75.0) 3723 (71.9) 1870 (74.7)
Black 950 (15.6) 201 (12.6) 873 (15.7) 278 (13.2) 810 (15.7) 341 (13.6)
Other 735 (12.1) 199 (12.5) 686 (12.3) 248 (11.8) 642 (12.4) 292 (11.7)

Education level
High School Diploma or Less 1741 (28.6) 424 (26.6) 1605 (28.8) 560 (26.6) 1519 (29.4) 646 (25.8)

High School Graduate
and Less than Bachelor Degree 3316 (54.5) 880 (55.2) 3048 (54.7) 1148 (54.5) 2808 (54.3) 1388 (55.5)

Bachelor Degree Plus 1026 (16.9) 291 (18.2) 918 (16.5) 399 (18.9) 848 (16.4) 469 (18.7)
Household income range

<50k 1981 (32.6) 462 (29.0) 1838 (33.0) 605 (28.7) 1732 (33.5) 711 (28.4)
50k-100k 2476 (40.7) 646 (40.5) 2271 (40.8) 851 (40.4) 2108 (40.7) 1014 (40.5)

>100k 1626 (26.7) 487 (30.5) 1462 (26.2) 651 (30.9) 1335 (25.8) 778 (31.1)
Geographic Region

South Atlantic 1551 (25.5) 366 (22.9) 1433 (25.7) 484 (23.0) 1324 (25.6) 593 (23.7)
New England 263 (4.3) 70 (4.4) 245 (4.4) 88 (4.2) 222 (4.3) 111 (4.4)

Middle Atlantic 524 (8.6) 144 (9.0) 479 (8.6) 189 (9.0) 444 (8.6) 224 (8.9)
East North Central 991 (16.3) 251 (15.7) 901 (16.2) 341 (16.2) 846 (16.3) 396 (15.8)
East South Central 209 (3.4) 69 (4.3) 184 (3.3) 94 (4.5) 170 (3.3) 108 (4.3)

West North Central 503 (8.3) 123 (7.7) 467 (8.4) 159 (7.5) 438 (8.5) 188 (7.5)
West South Central 588 (9.7) 193 (12.1) 535 (9.6) 246 (11.7) 496 (9.6) 285 (11.4)

Mountain 615 (10.1) 176 (11.0) 561 (10.1) 230 (10.9) 517 (10.0) 274 (10.9)
Pacific 839 (13.8) 203 (12.7) 766 (13.7) 276 (13.7) 718 (13.9) 324 (12.9)

Product
HMO 820 (13.5) 220 (13.8) 755 (13.6) 285 (13.5) 701 (13.5) 339 (13.5)
PPO 449 (7.4) 92 (5.8) 418 (7.5) 123 (5.8) 392 (7.6) 149 (6.0)

Other 4814 (79.1) 1283 (80.4) 4398 (78.9) 1699 (80.6) 4082 (78.9) 2015 (80.5)
Metastatic (Yes) 2332 (38.3) 631 (39.6) 2139 (38.4) 824 (39.1) 2005 (38.7) 958 (38.3)
ASO (Yes) 747 (12.3) 232 (14.5) 666 (12.0) 313 (14.9) 602 (11.6) 377 (15.1)
Year of First Prescription

2014 767 (12.6) 202 (12.7) 703 (12.6) 266 (12.6) 658 (12.7) 311 (12.4)
2015 818 (13.4) 182 (11.4) 766 (13.7) 234 (11.1) 726 (14.0) 274 (10.9)
2016 935 (15.4) 182 (11.4) 871 (15.6) 246 (11.7) 831 (16.1) 286 (11.4)
2017 1222 (20.1) 239 (15.0) 1139 (20.4) 322 (15.3) 1082 (20.9) 379 (15.1)
2018 1532 (25.2) 230 (14.4) 1447 (26.0) 315 (15.0) 1376 (26.6) 386 (15.4)
2019 809 (13.3) 560 (35.1) 645 (11.6) 724 (34.4) 502 (9.7) 867 (34.6)

Diabetes 1823 (30.0) 425 (26.6) 1689 (30.3) 559 (26.5) 1586 (30.6) 662 (26.4)
Hypertension 4394 (72.2) 1096 (68.7) 4042 (72.6) 1448 (68.7) 3781 (73.1) 1709 (68.3)
Arrhythmia 1441 (23.7) 313 (19.6) 1346 (24.2) 408 (19.4) 1283 (24.8) 471 (18.8)
CHF 754 (12.4) 154 (9.7) 712 (12.8) 196 (9.3) 684 (13.2) 224 (8.9)
Osteoporosis 307 (5.0) 86 (5.4) 280 (5.0) 113 (5.4) 271 (5.2) 122 (4.9)
Provider Type

Medical oncologist 3788 (62.3) 919 (57.6) 3472 (62.3) 1235 (57.6) 3227 (62.4) 1480 (59.1)
Others 2295 (37.7) 676 (42.4) 2099 (37.7) 872 (41.4) 1948 (37.6) 1023 (40.9)

Table B.11: Characteristics of patients who were censored vs. who were not censored within different
time windows for ER visits. Abbreviations: ASO, Administrative Service Only; REF, reference group;
HR, hazard ratio; HMO, Health Maintenance Organization; PPO, Preferred Provider Organization; CHF,
congestive heart failure.
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Docetaxel Abiraterone Enzalutamide Sipuleucel-T

Variable Log HR p-value Log HR p-value Log HR p-value Log HR p-value
Age (REF: <65)

65-74 -0.29 <0.01 -0.19 0.03 -0.36 <0.01 0.01 0.96
≥75 -0.39 <0.01 -0.21 0.02 -0.49 <0.01 -0.23 0.23

Race (REF: White)
Black 0.18 0.10 -0.11 0.24 -0.29 <0.01 0.17 0.30
Other 0.04 0.74 -0.21 0.04 0.02 0.88 -0.42 0.05

Education level (REF: High School Diploma or Less)
High School Graduate and Less than Bachelor Degree 0.11 0.22 0.04 0.64 0.09 0.27 -0.05 0.74

Bachelor Degree Plus 0.02 0.86 -0.02 0.86 0.19 0.12 0.31 0.13
Household income range

50k-100k -0.12 0.19 0.03 0.68 -0.04 0.58 -0.04 0.78
>100k -0.23 0.03 0.05 0.60 -0.05 0.65 -0.08 0.64

Geographic Region (REF: South Atlantic)
New England -0.05 0.78 0.36 0.05 -0.09 0.68 0.00 1.00

Middle Atlantic 0.13 0.33 0.22 0.06 0.08 0.52 -0.15 0.50
East North Central 0.12 0.28 0.07 0.48 0.17 0.12 0.3 0.10
East South Central 0.13 0.39 0.23 0.17 0.17 0.39 -0.17 0.58

West North Central -0.26 0.04 0.07 0.61 -0.31 0.1 0.26 0.33
West South Central 0.00 0.98 0.01 0.93 0.26 0.03 0.42 0.03

Mountain -0.14 0.32 -0.02 0.85 0.07 0.55 0.41 0.04
Pacific -0.06 0.69 -0.01 0.95 -0.19 0.14 0.17 0.47

Product (REF: HMO)
PPO -0.24 0.18 -0.20 0.22 -0.04 0.84 0.72 0.04

Other -0.22 0.05 -0.18 0.11 -0.13 0.29 0.55 0.04
Metastatic (Yes) 0.19 <0.01 0.03 0.67 0.27 <0.01 0.13 0.35
ASO (Yes) -0.03 0.78 0.20 0.02 0.01 0.97 0.15 0.42
Year of First Prescription (REF: 2014)

2015 -0.03 0.82 -0.30 0.01 0.26 0.12 -0.39 0.09
2016 -0.01 0.92 -0.26 0.03 -0.07 0.67 -0.24 0.27
2017 0.20 0.12 -0.15 0.16 0.26 0.1 0.33 0.13
2018 0.60 <0.01 0.12 0.23 0.58 <0.01 0.14 0.49
2019 1.72 <0.01 1.27 <0.01 2.10 <0.01 0.8 <0.01

Diabetes -0.06 0.50 -0.04 0.62 -0.01 0.90 -0.16 0.23
Hypertension -0.04 0.57 0.02 0.79 0.01 0.88 0.18 0.17
Arrhythmia 0.10 0.32 -0.06 0.50 -0.12 0.17 0.02 0.91
CHF 0.07 0.65 0.24 0.05 -0.06 0.60 -0.13 0.66
Osteoporosis 0.07 0.74 -0.14 0.34 0.05 0.70 -0.24 0.25
Provider Type (REF: Medical oncologist)

Others -0.06 0.46 0.04 0.50 0.11 0.11 -0.24 0.10

Table B.12: Treatment-specific log hazard ratios and associated p-values for each covariate from Cox pro-
portional hazard models on censoring time. Abbreviations: ASO, Administrative Service Only; REF, refer-
ence group; HR, hazard ratio; HMO, Health Maintenance Organization; PPO, Preferred Provider Organiza-
tion; CHF, congestive heart failure.
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Figure B.4: Empirical bias for CIPWR using Cox model or Kaplan-Meier estimator for estimating cen-
soring probability. The first and second letter in the parentheses correspond to the model for coarsening
mechanism and outcome, respectively. Sample size was 1500. Results were obtained using 2000 simulated
datasets.
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Figure B.5: Empirical bias for Cox model-based CIPWR using observed censoring time or observation
time. The first and second letter in the parentheses correspond to the model for coarsening mechanism and
outcome, respectively. Sample size was 1500. Results were obtained using 2000 simulated datasets.
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Figure B.6: RMSE for CIPWR using Cox model over RMSE for CIPWR using Kaplan-Meier estimator
for estimating censoring probability. The first and second letter in the parentheses correspond to the model
for coarsening mechanism and outcome, respectively. Sample size was 1500. Results were obtained using
2000 simulated datasets.
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Figure B.7: RMSE for CIPWR using observed censoring time over RMSE for CIPWR using observation
time for estimating censoring probability. The first and second letter in the parentheses correspond to the
model for coarsening mechanism and outcome, respectively. Sample size was 1500. Results were obtained
using 2000 simulated datasets.
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Figure B.8: Average treatment effects for ER visits and hospitalization within 180 days of treatment ini-
tiation. Data were obtained from Optum Clinformative Data Mart. Total sample size was N = 7003
(NA = 2458, ND = 2162, NE = 1833, NS = 550) for ER visits, and N = 7045 (NA = 2474,
ND = 2172, NE = 1843, NS = 556) for hospitalization. CIPWR1 is based on observation time, and
CIPWR2 is based on observed censoring time. Confidence intervals that exclude zero are highlighted in or-
ange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T; ER, emergency room
visit.
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Figure B.9: Average treatment effects for ER visits and hospitalization within 270 days of treatment ini-
tiation. Data were obtained from Optum Clinformative Data Mart. Total sample size was N = 7003
(NA = 2458, ND = 2162, NE = 1833, NS = 550) for ER visits, and N = 7045 (NA = 2474,
ND = 2172, NE = 1843, NS = 556) for hospitalization. CIPWR1 is based on observation time, and
CIPWR2 is based on observed censoring time. Confidence intervals that exclude zero are highlighted in or-
ange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T; ER, emergency room
visit.
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B.3 Generation of Survival Time with Crossing Hazards

We assumed a three-phase model for the time to event T , and the cumulative hazard function is
specified as follows:

Λ(t|X1, X2) = exp(β1X1 + β2X2)I(t ≤ a)

+
{exp(β1X1 + β2X2)b− exp(α1X1 + α2X2)a

b− a

− exp(β1X1 + β2X2)− exp(α1X1 + α2X2)

b− a
t
}
I(a < t ≤ b)

+ exp(α1X1 + α2X2)I(t > b).

In the first scenario, b = 0.25, a = 0.2, β1 = 2, α1 = −2, β2 = 0, α2 = 0. In the sceond scenario,
b = 0.25, a = 0.2, β1 = 2, α1 = 0, β2 = −2, α2 = −1. In Sections B.3.1 and B.3.2, we list the
equations used to generate the event times.

B.3.1 Scenario 1

Define

termA = {exp(2X1)− exp(−2X1)}/2

termB = −{0.25 exp(2X1)− 0.2 exp(−2X1)}

termC = −0.05 log u+ 0.02{exp(2X1)− exp(−2X1)}

Then let

I1 =
− log u

exp(2X1)

I2 =
−termB +

√
termB2 − 4termA × termC

2termA

I3 =
− log u− 0.225{exp(2X1)− exp(−2X1)}

exp(−2X1)

T ′ = I1I(I1 ≤ 0.2) + I2I(I2 ≤ 0.25)I(I2 > 0.2) + I3I(I3 > 0.25)

The final event time was obtained using

T = T ′I(Z = 1) + (T ′ + 0.1)I(Z = 2) + (T ′ + 0.2)I(Z = 3)
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B.3.2 Scenario 2

Define

termA = {exp(2X1)− exp(−2X1 −X2)}/2

termB = −{0.25 exp(2X1)− 0.2 exp(−2X1 −X2)}

termC = −0.05 log u+ 0.02{exp(2X1)− exp(−2X1 −X2)}

Then let

I1 =
− log u

exp(2X1)

I2 =
−termB +

√
termB2 − 4termA × termC

2termA

I3 =
− log u− 0.225{exp(2X1)− exp(−2X1 −X2)}

exp(−2X1 −X2)

T ′ = I1I(I1 ≤ 0.2) + I2I(I2 ≤ 0.25)I(I2 > 0.2) + I3I(I3 > 0.25)

The final event time was obtained using

T = T ′I(Z = 1) + (T ′ + 0.1)I(Z = 2) + (T ′ + 0.15)I(Z = 3)
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APPENDIX C

Supplement for Chapter III

C.1 Supplementary Tables
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Scenario Predictors for Treatment Generating Model

Linear main effects only (L)∗ (XC1, XC2, XC3, XC4, XC5, XZ1, XZ2, XZ3, XZ4, XZ5)

Nonlinear main effects only (NL)
(XC1(XC1 > 0), exp{XC2}−1/2, |XC3|, log |XC4 + 1|, |XC5|−1/2,

XZ1, XZ2, XZ3, X
2
Z4, log |XZ5|)

Linear main effects
and linear interactions (L-L)

(XC1, XC2, XC3, XC4, XC5,

XZ1, XZ2, XZ3, XZ4, XZ5,

XZ1 ×XZ2, XZ1 ×XZ3, XZ1 ×XZ4, XZ1 ×XZ5,

XZ2 ×XZ3, XZ2 ×XZ4, XZ2 ×XZ5, XZ3 ×XZ4,

XZ3 ×XZ5, XZ4 ×XZ5, XC3 ×XZ1)

Non-linear main effects
and linear interactions (NL-L)

(XC1(XC1 > 0), exp{XC2}−1/2, |XC3|, log |XC4 + 1|, |XC5|−1/2,

XZ1, XZ2, XZ3, X
2
Z4, log |XZ5|,

XZ1 ×XZ2, XZ1 ×XZ3, XZ1 ×XZ4, XZ1 ×XZ5,

XZ2 ×XZ3, XZ2 ×XZ4, XZ2 ×XZ5, XZ3 ×XZ4,

XZ3 ×XZ5, XZ4 ×XZ5, XC3 ×XZ1)

Non-linear main effects
and non-linear interactions (NL-NL)

(XC1(XC1 > 0),
√

exp{XC2}, |XC3|, log |XC4 + 1|,
√
|XC5|,

XZ1, XZ2, XZ3, X
2
Z4, log |XZ5|,

XC1(XC1 > 0)×
√
exp{XC2}, (XC1(XC1 > 0)× |XC3|,

XC1(XC1 > 0)× log |XC4 + 1|, XC1(XC1 > 0)×
√
|XC5|,√

exp{XC2} × |XC3|,
√

exp{XC2} × log |XC4 + 1|,√
exp{XC2} ×

√
|XC5|, |XC3| × log |XC4 + 1|,

|XC3| ×
√
|XC5|, log |XC4 + 1| ×

√
|XC5|

|XC3| ×XZ1

∗ The baseline scenario.

Table C.1: Design matrix for the treatment generating models of various degrees of nonlinearity and/or
nonadditivity.
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Empirical SD SE (usual) Coverage (%; usual) SE (modified) Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

OAL 37 34 36 39 35 37 96.0 94.9 94.5 38 34 36 94.9 94.9 94.9
LOGIS

All 37 37 35 40 37 37 55.5 65.9 92.7 41 40 38 59.8 74.2 94.6
Ysel 38 35 36 48 41 44 98.2 97.3 97.3 39 35 37 95.4 95.0 94.9

YZsel 39 37 38 46 40 43 97.4 96.0 95.9 40 36 38 95.0 95.3 95.4
OP + All 37 35 35 40 36 38 95.3 94.1 95.8 43 40 41 96.6 97.6 97.2

OP + Ysel 38 35 36 48 41 44 98.2 97.3 97.3 39 35 37 95.4 95.0 94.9
OP + YZsel 37 35 36 45 39 42 97.7 96.8 97.0 38 34 37 94.8 95.0 94.8

CART
All 58 58 55 69 69 65 65.8 81.6 95.7 57 58 55 51.0 70.8 91.9

Ysel 50 50 47 63 62 59 87.6 93.5 98.4 52 51 50 78.1 86.8 94.9
YZsel 48 47 46 60 59 56 91.9 95.3 97.4 50 49 48 84.3 89.4 95.1

OP + All 55 52 56 70 65 71 98.2 98.5 98.3 56 52 56 94.0 94.4 94.4
OP + Ysel 45 44 45 61 57 61 98.8 98.6 99.2 46 44 46 94.0 95.1 95.3

OP + YZsel 43 41 43 57 54 58 98.4 98.4 99.4 44 41 44 93.5 95.0 94.7
Pruned CART

All 45 43 38 68 68 63 53.0 80.4 99.1 42 42 39 19.4 40.2 88.6
Ysel 44 43 38 62 61 57 78.6 88.6 98.5 42 42 39 48.4 66.0 92.8

YZsel 46 45 39 60 58 55 80.6 90.7 97.8 43 42 40 60.0 73.4 93.9
OP + All 39 36 38 68 62 68 99.9 100 99.9 40 36 39 94.0 95.0 95.9

OP + Ysel 36 35 37 58 54 59 99.9 99.3 99.5 38 34 37 94.6 94.9 95.6
OP + YZsel 37 35 37 55 52 56 99.1 99.5 99.5 38 35 37 94.8 95.4 95.2

Bagged CART
All 38 38 36 31 31 29 10.1 28.2 79.1 40 40 38 24.4 46.9 91.1

Ysel 52 46 48 39 36 34 84.8 87.0 85.0 52 48 49 94.4 95.8 96.0
YZsel 66 58 59 46 41 39 69.8 74.8 81.0 63 57 60 85.8 86.9 95.2

OP + All 37 34 36 62 62 68 99.9 99.8 100 38 33 37 94.7 95.0 94.7
OP + Ysel 34 32 34 57 60 63 99.9 99.9 100 36 32 35 94.3 95.6 94.7

OP + YZsel 34 32 34 55 57 60 99.3 100 99.9 36 32 35 94.5 95.2 94.6
Random Forests

All 34 35 34 28 28 26 2.5 13.2 73.1 37 38 35 7.0 27.8 88.2
Ysel 44 39 37 30 29 27 69.3 77.2 84.5 43 41 41 86.2 91.4 96.7

YZsel 86 65 63 34 32 29 48.3 57.3 64.3 62 52 58 73.2 78.6 93.5
OP + All 38 35 37 43 39 42 96.6 96.9 96.4 39 34 38 95.3 95.2 94.0

OP + Ysel 35 32 35 50 47 52 98.6 99.5 98.7 36 32 36 94.7 95.2 94.7
OP + YZsel 35 32 35 56 54 59 99.5 99.8 99.8 36 32 36 94.8 95.6 94.7

Table C.2: Standard errors (SE) and coverage of 95% confidence intervals estimated by usual bootstrap
and modified bootstrap for sample size of 1000. The scenario with sparse treatment models was considered.
Results were obtained based on 1000 simulated datasets. For each dataset, 200 bootstrap samples were
generated.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 165 124 -41 50 52 49 172 135 64 50 52 48 9.7 34.1 85.5
OAL 5 5 0 56 50 52 57 50 52 55 50 52 94.1 95.6 94.2
LOGIS

Confounder -1 1 2 58 53 55 58 53 55 57 52 54 94.3 94.3 94.3
Treatment 2 3 1 73 63 65 73 63 65 69 61 62 94.1 94.2 93.4
Outcome -1 0 2 57 49 53 57 49 53 56 50 53 94.5 96.1 94.1

All 95 73 -22 52 51 50 108 89 55 55 55 52 59.8 75.9 93.9
Ysel -6 -3 3 57 49 54 57 49 54 58 51 55 95.4 96.0 94.8

YZsel -6 -3 3 58 51 54 58 52 54 58 53 55 95.0 95.5 95.0
OP + All 16 13 -2 51 46 50 54 48 50 58 56 56 96.3 97.8 96.9

OP + Ysel -6 -3 3 57 46 54 57 59 54 58 51 55 95.4 96.0 94.8
OP + YZsel -5 -2 2 55 48 53 56 48 53 55 49 53 95.2 96.0 94.3

CART
Confounder 55 41 -14 70 66 65 89 78 66 69 68 66 86.7 90.6 94.6

Treatment 94 71 -24 72 72 66 119 101 70 73 72 68 73.8 82.7 93.6
Outcome 68 51 -17 71 67 65 99 84 67 71 70 68 81.0 89.1 94.8

All 123 93 -30 79 81 76 146 123 81 78 80 74 63.2 75.9 92.0
Ysel 72 54 -17 72 71 66 102 89 70 72 72 69 81.6 88.1 94.0

YZsel 60 44 -15 69 66 63 91 79 66 70 68 67 86.2 90.8 94.8
OP + All 10 8 -1 80 74 79 80 76 79 79 74 79 93.4 93.8 94.2

OP + Ysel 12 9 -3 67 61 65 68 62 65 66 63 66 94.2 94.4 94.8
OP + YZsel 15 9 -6 62 58 62 64 59 62 63 59 62 94.3 94.7 94.8

Pruned CART
Confounder 81 61 -20 64 61 55 103 86 59 61 60 57 69.4 81.4 93.3

Treatment 110 83 -27 66 66 58 128 106 64 65 64 59 58.1 72.4 92.3
Outcome 92 69 -22 63 59 54 111 91 59 60 60 56 63.1 77.0 93.0

All 133 100 -32 62 63 56 147 118 66 61 61 56 40.1 60.4 90.4
Ysel 96 72 -24 63 60 55 115 94 60 60 60 56 61.0 75.5 92.4

YZsel 84 63 -20 64 61 55 105 87 59 61 60 57 68.6 80.7 93.0
OP + All -2 1 2 58 53 56 58 52 56 58 52 57 94.3 94.5 94.6

OP + Ysel 1 2 1 56 49 54 56 49 54 55 50 54 94.2 94.8 94.6
OP + YZsel 2 2 0 54 50 53 54 50 53 55 50 54 95.7 94.9 94.7

Bagged CART
Confounder -50 -37 12 93 83 86 105 91 87 88 80 84 90.1 90.0 93.8

Treatment 43 33 -10 81 76 71 92 83 72 79 74 71 89.0 92.0 93.9
Outcome -2 0 2 76 65 70 76 65 70 75 70 71 94.2 96.4 95.0

All 119 90 -30 54 53 51 131 104 59 56 57 53 44.1 65.5 91.2
Ysel 17 14 -3 71 63 63 73 65 63 71 66 67 93.4 95.6 95.2

YZsel -34 -27 7 91 82 81 97 85 82 86 79 81 91.6 92.5 94.8
OP + All -4 -1 4 53 46 52 53 46 52 52 47 51 94.2 95.4 94.4

OP + Ysel -7 -2 5 51 45 49 51 45 50 50 45 50 94.6 95.2 95.0
OP + YZsel -7 -2 5 51 45 49 51 45 49 50 46 50 94.6 95.0 94.6

Random Forests
Confounder -22 -13 9 77 67 71 80 68 71 75 68 72 94.7 95.1 95.0

Treatment 62 48 -14 62 58 57 87 75 58 63 61 59 82.6 89.4 94.8
Outcome 35 28 -7 58 52 54 67 59 54 62 59 59 92.3 95.7 96.2

All 135 102 -33 49 51 48 144 114 58 52 53 50 27.1 51.2 90.0
Ysel 53 41 -11 57 52 51 77 66 53 59 57 57 84.9 91.2 94.5

YZsel -36 -24 13 94 78 79 101 81 82 79 70 75 91.0 91.2 94.0
OP + All -5 -1 4 55 47 53 55 47 52 53 48 52 94.8 94.9 94.0

OP + Ysel -9 -2 6 51 45 50 52 45 50 51 46 50 94.5 94.8 94.4
OP + YZsel -8 -2 5 50 46 50 51 45 50 51 46 50 94.8 95.0 94.7

Table C.3: Simulation results for the scenario with sparse models and sample size of 500. Standard errors
were estimated based on 200 bootstrap replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 165 125 -41 36 37 33 169 130 53 36 37 34 0.5 8.3 78.4
OAL -2 0 2 38 33 36 38 33 36 38 34 36 94.9 94.9 94.9
LOGIS

Confounder -3 0 2 40 36 37 40 36 37 40 36 38 94.5 95.0 95.2
Treatment -2 0 1 50 43 43 50 43 43 49 43 43 94.2 94.7 94.4
Outcome -3 0 2 38 33 36 38 33 36 38 34 37 94.8 95.1 94.9

All 71 55 -16 38 36 35 81 66 38 41 40 38 59.8 74.2 94.6
Ysel -6 -3 3 38 34 36 39 34 36 39 35 37 95.4 95.0 94.9

YZsel -5 -2 3 40 36 37 40 36 37 40 36 38 95.0 95.3 95.4
OP + All 12 11 -1 37 33 35 39 35 35 43 40 41 96.6 97.6 97.2

OP + Ysel -6 -3 3 38 34 36 39 34 36 39 35 37 95.4 95.0 94.9
OP + YZsel -5 -3 3 38 34 36 39 34 36 38 34 37 94.8 95.0 94.8

CART
Confounder 44 32 -12 49 45 43 66 55 45 50 48 48 85.5 90.8 95.3

Treatment 83 63 -21 54 52 48 99 81 52 53 52 50 64.4 77.0 93.2
Outcome 56 42 -15 50 48 45 76 63 47 51 50 49 79.7 86.8 94.8

All 111 82 -29 58 58 54 125 100 62 57 58 55 51.0 70.8 91.9
Ysel 60 43 -17 51 49 46 79 66 49 52 51 50 78.1 86.8 94.9

YZsel 47 35 -13 49 47 44 69 58 46 50 49 48 84.3 89.4 95.1
OP + All 5 4 -1 56 51 56 56 51 56 56 52 56 94.0 94.4 94.4

OP + Ysel 12 7 -5 46 43 45 48 44 45 46 44 46 94.0 95.1 95.3
OP + YZsel 14 8 -6 44 40 42 46 41 43 44 41 44 93.5 95.0 94.7

Pruned CART
Confounder 70 52 -18 49 45 37 85 69 41 43 42 40 59.0 73.6 93.8

Treatment 100 76 -24 50 46 40 112 89 47 46 45 42 42.2 58.4 91.2
Outcome 81 61 -20 47 43 37 94 74 42 42 41 39 51.1 67.7 91.9

All 125 94 -30 46 43 38 133 104 48 42 42 39 19.4 40.2 88.6
Ysel 84 63 -21 47 43 37 96 77 42 42 42 39 48.4 66.0 92.8

YZsel 71 53 -17 48 45 38 86 70 42 43 42 40 60.0 73.4 93.9
OP + All -6 -2 3 40 35 38 40 35 38 40 36 39 94.0 95.0 95.9

OP + Ysel -3 -2 1 38 34 36 38 34 36 38 34 37 94.6 94.9 95.6
OP + YZsel -2 -1 0 38 33 36 38 33 36 38 35 37 94.8 95.4 95.2

Bagged CART
Confounder -64 -51 12 66 59 62 92 78 63 64 58 62 82.3 84.9 94.0

Treatment 27 19 -8 59 54 52 65 57 52 58 53 52 90.2 94.0 93.8
Outcome -21 -14 7 54 47 50 58 49 50 55 50 52 94.0 95.7 95.8

All 107 80 -26 39 37 35 114 89 44 40 40 38 24.4 46.9 91.1
Ysel -4 -3 2 53 46 46 53 46 46 52 48 49 94.4 95.8 96.0

YZsel -53 -42 12 66 59 59 85 73 60 63 57 60 85.8 86.9 95.2
OP + All -6 -1 5 38 33 37 38 33 37 38 33 37 94.7 95.0 94.7

OP + Ysel -9 -3 6 35 31 35 36 31 35 36 32 35 94.3 95.6 94.7
OP + YZsel -8 -3 6 35 31 35 36 31 35 36 32 35 94.5 95.2 94.6

Random Forests
Confounder -43 -31 12 59 49 53 72 58 54 56 49 53 88.3 90.2 95.3

Treatment 50 40 -10 45 41 40 67 57 41 46 43 42 79.0 86.9 95.2
Outcome 19 16 -3 41 37 37 45 40 37 45 42 43 94.1 96.2 96.8

All 125 94 -30 35 35 33 130 101 45 37 38 35 7.0 27.8 88.2
Ysel 31 25 -6 45 39 36 55 46 37 43 41 41 86.2 91.4 96.7

YZsel -74 -52 22 87 66 64 114 83 68 62 52 58 73.2 78.6 93.5
OP + All -6 -1 5 39 33 38 39 33 38 39 34 38 95.3 95.2 94.0

OP + Ysel -9 -3 6 35 31 35 37 31 35 36 32 36 94.7 95.2 94.7
OP + YZsel -9 -3 6 35 31 35 37 31 35 36 32 36 94.8 95.6 94.7

Table C.4: Simulation results for the scenario with sparse models and sample size of 1000. Standard errors
were estimated based on 200 bootstrap replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 167 125 -41 26 27 24 169 128 48 25 26 24 0 0.4 59.9
OAL -1 0 1 27 24 26 27 24 26 27 24 26 95.0 94.7 95.2
LOGIS

Confounder 0 1 1 28 26 27 28 26 27 28 26 27 95.1 94.6 95.2
Treatment 0 0 0 35 31 31 35 31 31 34 30 30 93.8 94.3 94.8
Outcome 0 0 1 27 24 26 27 24 26 27 24 26 94.8 94.7 95.0

All 55 42 -12 28 26 26 61 50 29 30 29 28 55.7 70.4 94.8
Ysel -3 -1 1 27 24 26 27 24 26 27 24 26 95.1 94.8 94.9

YZsel -2 -1 1 28 26 27 28 26 27 28 26 27 95.6 95.1 95.4
OP + All 13 11 -2 28 25 26 30 27 26 31 29 29 95.1 96.5 97.4

OP + Ysel -3 -1 1 27 24 26 27 24 26 27 24 26 95.1 94.9 94.9
OP + YZsel -2 -1 1 27 24 26 27 24 26 27 24 26 95.2 94.8 95.0

CART
Confounder 34 26 -9 33 32 31 48 41 32 35 34 33 85.2 88.7 95.5

Treatment 74 56 -19 38 37 34 84 67 39 38 36 35 49.3 67.3 91.7
Outcome 44 32 -12 35 33 32 56 46 34 36 35 34 77.0 86.5 94.8

All 99 74 -25 42 40 38 108 84 46 41 40 38 32.0 55.2 89.6
Ysel 47 34 -13 36 33 32 59 47 35 37 36 35 74.4 86.0 94.5

YZsel 37 28 -9 34 33 31 51 43 32 35 34 33 82.7 87.4 95.2
OP + All 7 4 -3 37 34 37 38 35 37 38 35 37 94.4 95.2 95.2

OP + Ysel 13 7 -6 31 29 30 34 30 31 32 30 31 94.0 94.8 94.8
OP + YZsel 14 8 -5 30 28 29 33 29 30 30 28 29 93.0 93.8 94.8

Pruned CART
Confounder 62 47 -15 33 31 27 71 56 31 30 29 28 45.6 61.3 91.9

Treatment 94 71 -23 36 33 28 100 78 36 33 32 29 21.1 40.3 87.6
Outcome 72 55 -18 35 32 26 80 63 32 29 29 27 34.8 53.1 90.3

All 116 88 -28 34 32 27 121 93 39 30 30 27 5.7 18.8 80.1
Ysel 75 57 -18 35 32 27 83 65 33 29 29 27 31.6 50.2 89.4

YZsel 65 49 -16 35 31 27 74 58 31 30 29 28 43.9 59.0 90.4
OP + All -3 -2 2 26 25 27 27 25 27 27 25 26 95.3 95.0 95.0

OP + Ysel -2 -1 1 26 24 25 26 24 25 26 24 25 95.6 94.6 95.0
OP + YZsel -1 -1 0 26 24 26 26 24 26 26 24 26 95.2 95.3 94.8

Bagged CART
Confounder -89 -73 16 49 43 47 102 84 50 49 43 47 54.9 59.8 93.6

Treatment 11 6 -5 45 40 40 46 40 40 45 40 39 93.3 94.7 93.9
Outcome -48 -37 11 41 34 38 63 50 39 42 37 39 81.5 84.2 95.6

All 92 69 -23 29 27 26 96 74 35 30 29 28 12.9 33.9 87.9
Ysel -34 -26 8 42 35 36 54 43 37 40 36 38 86.4 89.8 95.3

YZsel -80 -64 16 51 45 45 95 78 48 48 42 46 59.4 65.1 93.8
OP + All -3 2 5 27 24 27 27 24 28 28 24 27 95.1 94.4 94.4

OP + Ysel -6 -1 5 25 23 25 25 23 25 25 23 25 95.2 94.6 94.9
OP + YZsel -6 0 5 24 23 25 25 23 25 25 23 25 95.2 94.8 94.9

Random Forests
Confounder -70 -51 18 46 36 41 83 63 45 44 36 41 64.4 70.8 94.4

Treatment 41 32 -9 33 29 30 53 44 31 33 31 31 75.4 84.5 94.9
Outcome 3 3 0 30 26 27 30 26 27 33 30 31 96.4 96.8 97.3

All 116 88 -28 25 25 24 119 92 37 26 27 25 0.9 8.1 80.6
Ysel 0 1 1 42 35 29 42 35 29 33 30 31 87.1 91.0 96.3

YZsel -123 -91 31 88 68 56 151 114 64 53 42 49 40.2 42.9 91.0
OP + All -3 1 5 29 25 28 29 25 28 29 25 27 94.0 94.8 94.7

OP + Ysel -6 -1 5 25 23 25 25 23 25 26 23 25 95.0 94.8 94.9
OP + YZsel -6 -1 5 25 23 25 25 23 25 25 23 25 95.2 95.2 94.8

Table C.5: Simulation results for the scenario with sparse models and sample size of 2000. Standard errors
were estimated based on 200 bootstrap replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 141 108 -32 49 48 44 149 119 54 48 50 43 17.7 40.6 88.4
OAL 24 19 -5 53 48 48 58 52 48 50 47 47 90.2 92.6 94.1
LOGIS

Confounder 0 2 1 54 48 52 54 48 52 53 49 51 94.4 95.3 95.0
Treatment 1 2 2 64 54 59 64 54 59 64 56 58 95.0 95.3 94.3
Outcome 0 2 1 54 46 52 54 46 52 54 48 52 94.8 95.9 94.4

All 94 73 -20 50 47 46 106 87 50 51 51 47 54.6 70.8 93.2
Ysel 3 3 0 53 47 51 53 48 51 55 50 53 95.2 95.9 95.4

YZsel 31 24 -7 58 51 50 65 56 50 53 50 50 88.4 92.4 94.4
OP + All 21 18 -4 48 44 47 53 47 47 52 51 51 93.6 96.7 96.4

OP + Ysel 3 3 0 53 47 51 53 48 51 55 50 53 95.2 95.9 95.3
OP + YZsel 5 5 -1 52 46 49 52 46 49 50 45 49 94.0 94.8 94.4

CART
Confounder 72 54 -18 65 63 60 97 83 63 65 65 60 79.3 86.5 94.0

Treatment 98 76 -22 71 68 63 121 102 67 68 68 61 68.2 79.7 92.2
Outcome 84 65 -19 67 65 62 108 92 65 66 66 61 73.4 84.4 92.8

All 116 89 -26 75 73 66 138 116 71 72 74 65 62.4 76.6 92.4
Ysel 86 65 -21 67 64 62 109 91 66 67 67 62 73.1 84.2 92.6

YZsel 80 61 -19 65 62 60 103 87 63 64 64 59 73.8 84.7 92.7
OP + All 19 16 -3 72 67 73 75 69 73 72 68 73 92.6 94.6 93.9

OP + Ysel 21 15 -6 64 59 63 67 61 64 63 60 64 92.7 94.2 94.0
OP + YZsel 21 16 -6 60 56 60 64 58 60 59 56 59 92.0 93.1 93.8

Pruned CART
Confounder 91 70 -21 60 57 52 109 90 56 56 56 51 60.1 74.2 91.8

Treatment 111 86 -25 62 58 53 127 104 59 58 58 52 50.9 67.1 90.9
Outcome 101 78 -22 59 55 52 117 96 57 56 56 50 54.3 70.2 91.3

All 124 95 -29 60 58 51 137 111 59 57 58 50 40.6 62.0 90.6
Ysel 103 79 -24 58 55 51 118 96 56 56 56 50 53.1 69.1 91.0

YZsel 95 73 -22 59 54 51 112 91 56 56 56 51 58.7 74.7 91.2
OP + All 13 10 -3 56 51 55 57 52 55 53 49 53 93.0 94.3 94.0

OP + Ysel 13 11 -3 53 48 52 54 49 52 51 47 51 92.8 94.5 94.3
OP + YZsel 15 12 -3 53 48 51 55 49 51 51 47 50 93.1 94.0 94.3

Bagged CART
Confounder 19 15 -4 69 61 64 71 63 64 65 61 62 92.6 94.7 93.7

Treatment 73 57 -17 62 56 55 96 79 57 60 58 54 74.1 85.2 92.2
Outcome 54 41 -12 57 52 53 78 67 55 58 56 54 83.0 90.6 93.7

All 114 88 -26 51 49 46 125 100 53 51 52 47 40.3 61.6 91.4
Ysel 60 45 -15 56 51 52 82 68 54 57 55 53 80.1 89.8 94.5

YZsel 30 23 -7 74 68 69 79 71 69 70 66 65 90.5 93.7 94.2
OP + All 12 10 -2 49 44 47 51 46 47 47 43 46 92.2 94.4 94.5

OP + Ysel 10 9 -1 48 44 46 49 45 46 46 42 46 93.1 94.2 94.8
OP + YZsel 10 9 -1 48 44 47 49 45 47 46 42 46 93.0 93.9 94.7

Random Forests
Confounder 50 39 -11 55 49 50 74 63 52 55 53 52 84.2 90.6 94.7

Treatment 84 66 -19 52 48 47 99 82 51 52 52 48 63.0 77.3 93.4
Outcome 73 57 -16 50 46 46 88 73 49 52 51 48 70.3 83.7 93.7

All 119 92 -27 49 47 44 129 103 52 49 50 45 32.9 55.4 91.3
Ysel 77 60 -18 50 46 46 92 75 49 51 51 48 66.9 81.5 94.0

YZsel 35 29 -6 78 67 64 85 73 64 63 59 59 84.4 90.3 94.7
OP + All 10 9 -1 50 44 48 51 45 48 47 43 47 92.4 94.4 94.4

OP + Ysel 8 8 0 48 44 47 49 44 47 46 42 46 93.1 93.9 94.9
OP + YZsel 8 8 0 49 44 47 50 45 47 46 43 46 92.9 94.2 94.8

Table C.6: Simulation results for the scenario with moderately sparse models and sample size of 500.
Standard errors were estimated based on 200 bootstrap replications. Results were obtained using 2000
simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 142 109 -33 34 35 30 146 114 45 34 35 31 1.5 12.2 81.0
OAL 3 2 -1 35 32 34 35 32 34 36 32 34 95.9 95.3 95.6
LOGIS

Confounder 1 0 -1 36 33 35 36 33 35 37 33 36 95.3 94.8 95.3
Treatment 1 0 -1 43 37 39 43 37 39 43 37 39 94.8 94.3 95.2
Outcome 0 0 0 35 32 34 35 32 34 36 32 35 96.4 95.4 95.8

All 70 54 -16 34 33 32 78 64 36 37 36 34 52.8 69.6 93.7
Ysel -3 -3 0 35 32 35 36 32 35 37 33 36 96.6 95.0 95.9

YZsel 0 0 0 36 33 35 36 33 35 37 34 36 95.6 95.2 96.0
OP + All 12 9 -3 33 31 33 35 32 33 38 36 37 96.2 96.9 96.9

OP + Ysel -3 -3 0 35 32 35 36 32 35 37 33 36 96.6 95.0 95.9
OP + YZsel -2 -2 0 35 32 34 35 32 34 36 32 35 95.9 95.2 95.6

CART
Confounder 66 49 -17 47 46 42 81 67 45 46 46 43 68.8 81.2 93.7

Treatment 94 71 -23 49 49 44 106 86 50 49 49 44 51.0 68.0 91.1
Outcome 76 58 -18 47 46 43 89 74 47 48 48 45 63.8 78.6 93.0

All 111 85 -27 52 54 48 123 101 55 52 53 48 43.4 63.8 90.4
Ysel 81 61 -20 50 48 44 95 77 48 49 49 45 60.8 76.8 92.6

YZsel 71 54 -17 47 45 42 86 71 45 47 47 44 65.7 79.1 94.5
OP + All 6 4 -2 52 48 53 53 48 53 52 48 53 94.2 94.4 94.8

OP + Ysel 10 5 -4 45 42 45 46 42 46 45 42 46 94.5 95.2 94.8
OP + YZsel 12 7 -5 43 40 43 45 41 43 43 40 43 93.7 94.0 95.1

Pruned CART
Confounder 87 66 -21 43 42 35 97 78 41 39 39 36 39.1 59.9 90.6

Treatment 106 81 -25 43 42 37 114 92 44 41 41 36 28.4 48.2 88.4
Outcome 96 73 -23 41 40 35 104 83 42 39 39 35 31.6 52.1 90.0

All 121 93 -28 40 40 34 128 101 45 39 40 35 14.1 35.0 87.0
Ysel 99 75 -24 41 40 34 107 85 42 39 39 35 28.5 49.9 89.1

YZsel 91 69 -22 42 41 35 101 80 41 40 40 36 37.4 57.6 90.6
OP + All 0 0 0 36 33 36 36 33 36 37 33 37 95.5 95.4 95.2

OP + Ysel 1 0 -1 35 33 35 35 33 35 36 33 36 95.1 94.3 95.6
OP + YZsel 3 1 -1 36 33 35 36 33 35 36 33 36 95.4 94.7 95.8

Bagged CART
Confounder 11 7 -3 47 43 44 48 43 44 47 43 44 94.0 95.1 95.1

Treatment 68 52 -16 42 40 37 80 65 40 42 41 38 63.5 75.1 93.3
Outcome 46 34 -11 38 36 36 59 50 38 41 39 38 80.2 87.4 95.5

All 108 83 -26 35 35 31 114 90 40 36 37 33 14.2 38.2 88.6
Ysel 57 43 -14 38 36 34 68 56 37 40 38 37 68.2 80.1 94.6

YZsel 25 19 -6 46 42 41 53 46 41 45 42 42 88.6 91.9 95.7
OP + All -1 0 1 33 31 33 33 31 33 34 30 34 95.7 94.7 95.3

OP + Ysel -3 -1 1 32 30 32 32 30 32 33 30 33 96.1 94.9 95.2
OP + YZsel -2 -1 1 32 30 32 32 30 32 33 30 33 95.9 94.9 95.7

Random Forests
Confounder 44 34 -10 36 35 34 57 49 36 39 37 37 79.4 86.7 95.3

Treatment 79 61 -19 35 35 32 87 70 37 37 37 34 43.1 62.6 92.7
Outcome 66 50 -16 33 33 31 74 60 35 37 36 34 56.5 73.0 94.2

All 115 88 -27 33 34 30 120 94 40 35 35 32 7.6 29.5 87.2
Ysel 76 58 -18 34 33 31 83 67 36 36 36 34 44.4 64.7 94.0

YZsel 47 36 -11 40 37 34 62 52 35 38 37 36 74.4 82.8 95.8
OP + All -1 0 1 34 31 34 34 31 34 35 31 34 95.8 95.0 95.0

OP + Ysel -3 -1 2 32 30 33 33 30 33 33 30 33 96.1 94.6 95.2
OP + YZsel -3 -1 2 33 30 33 33 30 33 33 30 33 96.0 95.0 95.8

Table C.7: Simulation results for the scenario with moderately sparse models and sample size of 1000.
Standard errors were estimated based on 200 bootstrap replications. Results were obtained using 2000
simulated datasets.

144



Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 113 87 -26 44 47 38 121 99 46 44 46 38 27.8 52.5 90.2
OAL 51 37 -14 48 47 41 70 60 43 44 43 41 76.4 84.1 93.4
LOGIS

Confounder 2 1 -1 48 45 47 48 45 47 51 46 50 95.3 95.0 95.0
Treatment 2 1 -2 57 51 54 57 51 54 65 57 61 97.1 96.9 96.9
Outcome 1 0 -1 48 45 48 48 45 48 56 50 54 97.5 96.5 97.2

All 87 66 -20 44 45 39 97 80 44 46 46 41 50.5 70.3 92.5
Ysel 26 18 -8 48 46 43 55 49 44 48 45 46 90.1 91.4 95.5

YZsel 62 46 -17 48 47 41 78 66 44 46 45 41 71.8 82.8 93.5
OP + All 42 30 -12 45 45 40 62 54 42 46 45 43 84.8 89.9 95.5

OP + Ysel 26 18 -8 48 46 43 55 49 44 48 45 46 90.1 91.4 95.5
OP + YZsel 30 20 -10 45 44 41 54 49 42 43 41 41 88.3 90.9 94.2

CART
Confounder 73 55 -17 61 61 56 95 82 59 60 60 54 77.2 84.0 92.4

Treatment 89 67 -22 65 66 56 111 94 60 63 64 55 68.8 80.2 92.2
Outcome 81 62 -19 64 63 58 103 88 61 62 62 55 71.1 82.2 91.5

All 96 74 -23 67 69 59 118 101 63 65 67 57 67.2 78.6 92.2
Ysel 81 60 -21 60 61 54 101 86 58 60 61 54 72.3 82.2 92.8

YZsel 85 63 -22 55 57 50 101 85 55 56 57 51 68.2 80.4 92.8
OP + All 44 32 -12 69 67 65 82 75 66 64 63 62 87.2 89.8 92.9

OP + Ysel 40 28 -12 59 58 55 72 64 57 57 56 56 86.8 90.5 94.1
OP + YZsel 38 25 -14 53 53 52 66 59 53 52 51 52 87.1 91.1 92.7

Pruned CART
Confounder 88 67 -21 53 54 45 103 86 50 50 51 45 56.6 71.8 92.2

Treatment 99 75 -24 53 53 45 112 92 51 52 53 45 50.0 68.3 91.6
Outcome 93 71 -22 52 54 44 107 89 49 51 51 45 52.2 69.8 91.8

All 104 80 -24 52 54 45 116 96 51 51 52 45 45.8 65.6 91.6
Ysel 94 71 -23 50 51 43 107 87 49 49 50 44 51.1 68.8 91.8

YZsel 92 69 -23 50 51 43 104 86 49 50 51 44 53.8 71.4 91.7
OP + All 43 31 -12 54 52 47 70 61 48 49 47 47 82.7 87.6 93.9

OP + Ysel 38 25 -12 48 48 45 61 54 47 46 44 45 86.1 90.0 93.5
OP + YZsel 36 24 -12 47 47 44 59 53 46 45 44 45 87.3 90.0 93.8

Bagged CART
Confounder 51 38 -14 50 49 45 72 62 47 50 50 46 82.7 87.9 93.8

Treatment 80 60 -20 48 49 42 93 78 47 48 49 43 62.1 75.8 92.4
Outcome 71 53 -17 46 46 41 84 71 45 48 48 43 69.7 80.8 93.6

All 94 72 -22 45 47 40 104 86 46 46 47 41 46.8 67.3 91.8
Ysel 64 46 -18 49 49 45 81 67 48 50 50 46 75.0 85.7 93.8

YZsel 57 42 -15 68 69 63 89 81 65 65 63 58 82.1 89.1 93.5
OP + All 41 29 -12 47 46 40 63 55 42 42 41 41 80.8 86.5 94.3

OP + Ysel 36 25 -11 45 44 40 57 50 42 41 40 40 84.9 88.7 93.3
OP + YZsel 34 23 -11 44 43 40 56 49 42 41 40 41 86.0 90.6 94.3

Random Forests
Confounder 68 52 -17 45 46 40 82 69 44 46 46 42 69.2 80.0 93.4

Treatment 86 65 -21 44 46 39 96 80 44 45 46 41 53.0 70.2 92.5
Outcome 81 61 -19 43 45 39 91 76 43 45 46 41 56.7 73.6 93.2

All 97 75 -23 44 46 38 107 88 45 45 46 40 41.0 63.2 91.6
Ysel 72 54 -19 49 49 41 87 73 45 47 47 43 65.4 78.5 93.7

YZsel 49 36 -13 81 81 65 95 88 66 61 59 54 78.9 85.1 93.8
OP + All 37 26 -11 46 46 41 59 52 42 43 41 41 85.2 88.4 93.7

OP + Ysel 35 24 -11 45 44 41 57 51 42 41 40 41 85.2 88.7 93.9
OP + YZsel 33 22 -11 46 44 43 57 50 44 42 40 41 86.7 90.6 94.8

Table C.8: Simulation results for the scenario with dense models and sample size of 500. Standard errors
were estimated based on 200 bootstrap replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 111 87 -24 32 32 27 116 93 36 31 32 27 5.8 21.6 86.3
OAL 12 10 -2 32 30 31 34 31 31 32 30 31 93.2 94.1 94.8
LOGIS

Confounder -1 0 1 33 30 33 33 30 33 34 31 33 94.5 95.1 94.5
Treatment -1 0 0 38 33 36 38 33 36 39 34 36 95.0 95.1 94.3
Outcome -1 0 1 32 29 33 32 29 33 34 30 33 95.4 95.5 94.6

All 61 48 -13 31 30 29 68 57 31 33 33 30 55.4 70.0 94.1
Ysel 1 1 0 32 29 33 32 29 33 34 31 34 96.2 95.8 94.7

YZsel 13 10 -2 33 30 32 36 32 32 34 31 32 93.0 94.1 94.5
OP + All 13 10 -3 30 28 30 33 30 30 34 32 32 95.0 95.8 96.0

OP + Ysel 1 1 0 32 29 33 32 29 33 34 31 34 96.2 95.8 94.7
OP + YZsel 2 2 0 31 29 32 31 29 32 33 29 32 95.3 94.9 94.7

CART
Confounder 68 53 -15 44 43 39 81 68 42 43 43 39 65.0 76.8 92.3

Treatment 85 67 -18 46 45 41 97 81 44 46 46 40 52.4 68.7 92.0
Outcome 76 60 -17 45 46 41 89 75 45 45 45 40 59.4 72.7 92.0

All 93 73 -19 49 48 41 105 88 46 48 48 42 51.1 67.0 92.6
Ysel 77 60 -17 45 45 41 90 75 45 45 46 40 59.0 75.1 92.2

YZsel 72 57 -16 43 43 38 84 71 41 44 44 39 61.8 74.5 93.2
OP + All 11 10 -2 47 43 46 48 44 46 46 43 47 92.5 94.0 94.6

OP + Ysel 13 9 -4 42 40 44 44 41 44 42 40 43 94.2 93.6 93.8
OP + YZsel 13 10 -3 39 38 41 42 39 41 40 38 41 93.8 94.6 94.2

Pruned CART
Confounder 82 65 -17 39 37 31 91 75 36 36 36 31 37.9 54.8 90.6

Treatment 94 74 -20 38 38 32 102 83 38 37 37 32 29.1 47.2 90.0
Outcome 88 69 -19 38 37 32 96 78 37 36 36 31 32.0 48.6 89.3

All 100 78 -22 38 37 31 107 87 38 36 37 31 22.4 42.0 88.8
Ysel 90 70 -20 37 36 32 97 79 37 36 36 31 30.0 48.0 89.6

YZsel 85 67 -18 38 36 32 93 76 37 36 36 32 34.7 53.2 90.3
OP + All 8 7 -1 34 31 33 34 31 33 33 31 33 93.2 94.7 95.0

OP + Ysel 7 6 -1 32 30 33 32 31 33 33 30 33 94.4 94.1 94.8
OP + YZsel 8 7 -2 33 31 33 34 31 33 33 30 33 93.5 94.6 94.7

Bagged CART
Confounder 45 35 -9 34 33 32 56 48 33 35 34 33 75.3 82.8 94.7

Treatment 75 58 -16 34 33 30 82 67 34 34 34 30 42.2 60.6 91.6
Outcome 64 50 -14 32 31 30 72 59 33 34 34 31 52.1 69.2 92.5

All 89 70 -19 32 32 28 95 77 34 33 33 29 22.4 44.6 91.0
Ysel 67 52 -15 32 31 29 74 61 32 34 33 30 49.1 67.3 93.4

YZsel 53 41 -12 35 33 32 63 53 34 36 35 32 68.1 79.1 94.2
OP + All 7 5 -1 29 28 30 30 28 30 30 27 30 93.7 94.1 94.8

OP + Ysel 6 5 -1 29 27 29 29 28 30 29 27 29 94.4 94.5 94.4
OP + YZsel 5 5 -1 29 27 30 29 27 30 29 27 30 94.5 94.6 94.4

Random Forests
Confounder 62 49 -13 32 31 29 70 58 32 33 32 30 52.8 67.6 93.1

Treatment 81 63 -18 31 31 28 87 70 33 32 32 29 29.8 51.9 90.8
Outcome 75 59 -16 30 30 28 81 66 32 32 32 29 35.3 56.5 92.0

All 93 73 -20 31 31 27 98 79 34 32 32 28 16.9 38.1 89.3
Ysel 77 60 -17 31 30 28 83 67 32 32 32 29 33.2 54.7 92.0

YZsel 65 51 -14 32 32 29 73 60 32 33 33 30 48.4 66.3 93.6
OP + All 6 4 -1 30 28 30 30 28 30 30 28 30 94.2 94.2 94.1

OP + Ysel 5 4 0 29 27 30 29 28 30 30 27 30 94.5 94.6 94.6
OP + YZsel 5 4 0 29 27 30 29 28 30 30 27 30 94.5 94.6 94.9

Table C.9: Simulation results for the scenario with dense models and sample size of 1000. Standard errors
were estimated based on 200 bootstrap replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 38 26 -13 53 52 53 65 58 55 54 54 54 90.3 92.4 94.8
OAL 10 3 -7 47 46 47 48 47 48 55 55 55 97.4 97.2 97.2
LOGIS

Confounder 10 7 -3 50 49 49 51 49 49 51 49 50 95.2 94.7 95.7
Treatment -1 0 1 51 49 50 51 49 50 52 50 52 95.7 95.1 95.3
Outcome -1 0 1 48 46 47 48 46 47 49 47 48 95.3 95.8 96.0

All 35 24 -11 52 52 53 63 57 54 55 54 54 91.1 92.7 95.0
Ysel 8 0 -8 47 46 48 48 46 49 56 56 56 98.1 97.8 97.5

YZsel 28 18 -9 53 54 51 60 57 52 54 54 54 92.0 93.8 94.6
OP + All 12 2 -11 45 44 45 47 44 47 55 54 55 98.1 98.2 97.7

OP + Ysel 8 0 -8 47 46 48 48 46 49 48 46 47 94.8 94.6 94.0
OP + YZsel 12 4 -8 46 47 45 48 47 45 46 44 46 94.6 95.4 94.6

CART
Confounder 18 14 -5 68 64 67 70 65 67 70 69 70 94.6 95.6 95.6

Treatment 19 14 -5 72 69 71 75 71 71 73 72 72 94.4 95.0 95.3
Outcome 16 12 -4 69 67 69 71 68 69 72 71 72 94.2 95.5 95.0

All 28 19 -9 81 80 79 85 82 79 80 79 81 92.8 93.1 95.0
Ysel 20 10 -10 70 70 69 72 70 70 73 72 73 95.3 94.9 95.4

YZsel 31 19 -13 63 62 62 70 65 63 65 64 65 91.6 92.7 94.9
OP + All 12 5 -7 73 73 71 74 73 72 75 73 75 94.7 94.3 95.2

OP + Ysel 14 3 -11 64 64 63 65 64 64 66 64 66 94.8 94.2 95.1
OP + YZsel 15 4 -11 57 55 57 59 55 58 56 55 56 92.1 94.9 94.4

Pruned CART
Confounder 22 14 -7 58 56 57 62 58 57 59 59 59 94.2 94.3 95.2

Treatment 26 18 -8 61 58 59 66 61 59 62 60 60 93.1 94.3 95.3
Outcome 24 16 -7 59 56 58 64 58 59 60 59 60 93.0 94.6 94.9

All 32 22 -11 62 62 61 70 65 62 62 61 62 91.9 92.9 94.8
Ysel 27 17 -10 58 57 57 64 59 58 60 59 60 93.2 94.8 95.3

YZsel 31 19 -12 57 56 53 65 59 54 58 58 59 92.1 89.9 93.8
OP + All 11 2 -10 53 53 53 55 53 53 54 52 53 94.4 94.9 94.2

OP + Ysel 12 2 -10 50 50 49 52 50 51 51 50 51 94.8 95.0 94.6
OP + YZsel 15 4 -11 48 48 47 50 48 49 49 48 50 93.8 94.4 94.9

Bagged CART
Confounder 1 0 0 64 64 65 64 64 65 67 66 66 95.6 95.4 94.9

Treatment 7 5 -2 62 60 61 63 60 61 65 63 64 96.1 95.7 95.9
Outcome 3 2 -1 55 54 55 56 54 55 62 61 62 97.2 97.0 97.0

All 29 19 -10 53 52 53 60 55 53 57 56 57 93.8 95.3 96.3
Ysel 13 4 -9 53 51 53 54 52 54 60 60 61 97.6 97.4 97.2

YZsel 11 9 -2 106 103 98 106 104 98 89 90 89 91.0 92.1 91.0
OP + All 12 1 -11 45 44 46 47 44 47 46 45 46 94.8 95.0 93.8

OP + Ysel 12 1 -11 45 44 46 47 44 47 46 45 46 95.2 95.0 94.4
OP + YZsel 15 5 -10 47 47 47 49 48 48 47 46 48 93.3 94.4 94.9

Random Forests
Confounder 11 8 -3 54 54 55 56 54 55 60 59 60 96.6 96.9 96.2

Treatment 15 11 -4 54 52 53 56 53 53 58 57 58 96.2 96.0 96.6
Outcome 13 9 -4 49 48 49 51 49 49 57 57 57 97.4 97.0 97.7

All 32 21 -10 51 51 52 60 55 53 55 54 55 92.9 94.2 95.7
Ysel 20 10 -10 48 48 49 52 49 50 56 56 57 96.9 97.0 97.1

YZsel 9 8 -1 148 144 137 148 144 137 89 88 85 84.3 82.6 86.5
OP + All 12 1 -11 46 45 46 47 45 47 46 45 46 94.6 94.8 93.7

OP + Ysel 12 1 -11 45 44 46 47 44 47 46 45 46 94.8 95.3 94.3
OP + YZsel 13 4 -9 59 59 49 60 59 50 50 48 49 94.9 94.9 94.9

Table C.10: Simulation results for the scenario with nonlinear main effects and no interactions. Each sim-
ulated dataset contained 500 subjects. Standard errors were estimated based on 200 bootstrap replications.
Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 41 27 -15 38 37 38 56 45 41 38 38 38 81.0 89.6 93.8
OAL 6 2 -4 34 32 33 34 32 33 39 38 39 97.4 98.2 98.0
LOGIS

Confounder 13 8 -5 36 34 35 38 35 35 36 34 35 93.7 93.8 94.6
Treatment 2 0 -2 36 34 35 36 34 35 36 35 35 95.0 94.8 95.0
Outcome 1 0 -2 34 32 33 34 32 33 34 32 33 95.2 95.3 94.9

All 35 22 -12 37 36 37 51 42 39 39 38 38 85.9 92.1 94.5
Ysel 5 0 -6 34 32 33 34 32 33 39 38 39 97.8 98.0 97.8

YZsel 21 13 -7 37 35 36 42 37 37 38 38 38 91.5 94.7 95.3
OP + All 9 3 -7 33 31 32 34 31 33 38 38 38 97.4 98.0 98.0

OP + Ysel 5 0 -6 34 32 33 34 32 33 33 32 33 94.7 95.0 94.6
OP + YZsel 8 2 -6 32 30 32 33 30 32 33 31 32 95.4 95.7 95.6

CART
Confounder 18 13 -6 48 47 48 51 49 49 50 49 50 94.1 94.4 96.2

Treatment 23 13 -9 50 48 50 55 50 51 52 51 52 93.9 95.4 95.4
Outcome 16 11 -5 48 46 48 50 48 49 51 51 51 94.8 95.8 95.6

All 32 20 -12 59 57 59 67 60 60 58 57 58 91.0 92.8 93.6
Ysel 19 12 -8 49 48 51 52 49 51 52 51 52 94.3 95.4 95.0

YZsel 24 16 -8 43 42 43 49 45 44 46 46 46 94.9 93.8 95.3
OP + All 10 3 -7 54 52 53 55 52 53 52 51 52 93.4 94.2 94.3

OP + Ysel 11 4 -7 45 44 46 46 44 47 46 45 46 94.4 94.2 94.8
OP + YZsel 10 4 -7 38 36 38 40 36 39 40 39 39 95.1 94.5 94.5

Pruned CART
Confounder 23 15 -8 41 39 40 47 42 41 41 41 41 90.4 94.2 95.1

Treatment 30 20 -11 43 40 41 52 45 43 43 42 42 88.8 93.1 94.7
Outcome 23 14 -9 40 39 40 46 41 41 42 41 41 91.8 94.7 95.3

All 36 23 -13 42 41 43 56 47 44 43 42 42 85.8 91.2 93.4
Ysel 26 16 -10 40 39 40 48 42 42 42 41 41 90.9 93.6 94.8

YZsel 27 17 -10 38 36 38 47 40 39 40 40 40 89.3 93.6 94.7
OP + All 10 3 -8 38 36 37 39 36 37 37 35 36 93.5 94.4 93.7

OP + Ysel 10 3 -7 35 34 35 37 34 36 36 34 35 94.8 94.8 94.6
OP + YZsel 8 2 -6 33 31 33 34 32 34 35 33 34 95.3 95.7 95.1

Bagged CART
Confounder 1 0 -1 44 44 43 44 44 43 46 45 46 96.4 95.6 96.2

Treatment 9 4 -5 44 42 42 45 42 42 46 44 44 95.4 95.9 95.8
Outcome 4 1 -2 38 36 38 38 36 38 43 42 42 96.9 97.0 97.2

All 30 19 -11 37 36 37 48 40 39 40 39 40 90.3 94.4 95.5
Ysel 10 4 -6 37 35 36 38 35 37 42 41 42 96.7 97.6 97.7

YZsel -4 -1 3 75 73 71 75 73 71 65 63 64 91.6 90.4 92.6
OP + All 10 2 -7 33 31 32 34 31 33 33 32 33 93.8 94.8 94.4

OP + Ysel 9 2 -7 33 31 32 34 31 33 33 31 32 94.0 95.0 94.4
OP + YZsel 10 3 -6 32 30 32 34 30 33 33 32 33 94.5 95.9 94.7

Random Forests
Confounder 13 8 -4 38 37 38 41 38 38 42 41 41 95.3 96.1 97.3

Treatment 17 10 -7 38 36 37 41 38 38 41 40 40 94.7 95.6 96.2
Outcome 14 9 -5 35 33 34 37 34 35 40 39 40 95.7 97.8 97.9

All 34 22 -12 37 35 36 50 41 38 39 38 39 87.0 92.7 95.0
Ysel 18 10 -8 34 32 34 39 34 35 40 39 40 95.4 97.6 97.6

YZsel -28 -23 5 106 103 92 110 106 92 71 67 63 79.1 85.2 89.5
OP + All 9 2 -7 33 31 33 34 31 33 33 32 33 94.1 95.2 94.6

OP + Ysel 9 2 -7 33 31 32 34 31 33 33 32 32 94.0 94.9 94.6
OP + YZsel 7 2 -5 35 33 36 36 33 36 34 33 34 95.5 96.1 94.9

Table C.11: Simulation results for the scenario with nonlinear main effects and no interactions. Each sim-
ulated dataset contained 1000 subjects. Standard errors were estimated based on 200 bootstrap replications.
Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 128 62 -66 54 54 53 139 82 84 54 54 54 35.1 78.6 78.0
OAL 33 31 -2 51 48 48 61 57 48 56 55 55 92.4 93.3 96.8
LOGIS

Confounder 8 31 23 52 50 50 52 59 55 53 51 51 95.6 91.1 92.2
Treatment -6 23 29 56 52 53 56 57 60 58 54 54 95.4 94.0 91.1
Outcome -3 24 27 49 46 47 49 52 55 51 48 49 95.6 92.8 91.3

All 95 53 -42 51 52 50 108 75 66 56 55 55 60.5 84.4 90.8
Ysel 7 24 17 49 47 48 50 52 51 56 56 56 97.0 95.5 96.4

YZsel 48 39 -10 58 52 54 75 65 55 55 53 53 83.6 89.9 94.4
OP + All 25 20 -5 46 45 45 52 49 45 56 55 55 96.1 96.6 98.0

OP + Ysel 7 24 17 49 47 48 50 52 51 48 47 47 94.3 91.8 92.2
OP + YZsel 13 22 9 48 46 47 50 51 47 48 46 47 94.8 92.1 94.5

CART
Confounder 47 34 -14 72 68 65 86 76 67 73 72 70 90.0 92.8 95.7

Treatment 61 39 -22 73 73 70 95 82 74 75 73 73 86.9 91.3 94.2
Outcome 50 35 -15 73 70 69 89 78 71 74 73 72 90.1 92.0 94.8

All 89 52 -38 83 81 82 122 96 90 82 81 80 79.7 89.2 91.8
Ysel 56 36 -20 73 71 70 92 80 73 75 74 73 89.1 92.4 94.4

YZsel 70 42 -27 68 65 64 97 77 70 70 69 68 85.4 91.1 94.6
OP + All 29 19 -10 75 73 74 81 76 74 75 74 74 93.0 94.0 94.6

OP + Ysel 32 21 -11 66 64 64 73 68 65 67 66 65 92.7 93.8 94.6
OP + YZsel 29 22 -8 60 57 57 67 61 58 62 60 59 93.1 94.0 94.6

Pruned CART
Confounder 57 37 -20 66 60 59 87 71 63 64 63 62 82.8 91.3 94.1

Treatment 76 44 -32 67 64 62 101 78 70 65 63 63 76.2 87.8 93.0
Outcome 65 40 -25 64 61 59 91 73 64 64 62 62 81.3 88.9 94.0

All 100 54 -46 65 61 63 119 82 78 64 62 62 63.0 85.5 87.8
Ysel 71 42 -29 64 62 60 96 74 67 64 62 61 78.4 88.8 92.6

YZsel 77 45 -33 62 58 57 99 73 66 62 61 60 76.0 89.0 91.7
OP + All 23 19 -4 54 52 52 59 55 52 55 53 53 93.8 93.8 95.0

OP + Ysel 24 20 -4 54 53 51 59 57 51 54 53 52 93.2 93.2 95.0
OP + YZsel 23 20 -3 51 49 49 56 53 50 53 51 50 94.0 92.9 95.3

Bagged CART
Confounder -4 14 18 74 70 69 74 72 71 73 71 70 94.3 94.0 93.4

Treatment 22 30 8 66 62 63 70 69 63 68 65 65 94.2 92.8 95.1
Outcome 12 23 12 61 56 58 62 61 59 65 64 64 95.7 94.9 96.0

All 85 51 -34 52 53 51 99 73 61 58 57 57 70.3 86.6 93.7
Ysel 28 28 0 57 53 54 64 60 54 63 62 62 94.6 95.9 97.0

YZsel 15 22 7 93 88 90 94 91 90 84 81 79 93.2 93.8 92.2
OP + All 20 19 -2 47 45 45 51 49 45 48 46 46 94.1 93.1 95.1

OP + Ysel 21 21 0 47 45 45 51 50 45 48 46 46 94.1 93.4 95.4
OP + YZsel 22 19 -3 47 45 45 52 49 45 48 46 46 93.6 93.2 95.3

Random Forests
Confounder 29 27 -2 59 56 56 66 62 56 63 61 61 94.0 94.4 96.7

Treatment 53 39 -14 55 54 53 76 67 54 59 58 58 87.8 90.4 96.7
Outcome 46 36 -10 52 49 49 69 61 50 58 57 58 89.8 93.8 97.8

All 105 56 -49 52 52 50 117 76 70 55 55 55 52.3 82.9 88.3
Ysel 61 40 -21 50 49 48 79 63 53 57 56 57 84.9 92.6 96.9

YZsel 33 30 -3 102 97 92 108 101 92 74 71 70 90.4 92.0 94.0
OP + All 19 18 -1 47 45 45 51 49 45 48 46 46 94.0 93.0 95.0

OP + Ysel 20 21 1 47 45 45 51 49 45 48 46 46 94.1 93.0 95.0
OP + YZsel 21 19 -2 47 45 45 51 49 45 48 46 46 93.8 92.9 95.3

Table C.12: Simulation results for the scenario with linear main effects and linear interactions. Each sim-
ulated dataset contained 500 subjects. Standard errors were estimated based on 200 bootstrap replications.
Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 128 62 -66 38 38 38 133 73 76 38 38 38 8.7 63.2 59.2
OAL 23 31 8 39 34 36 46 46 36 39 39 39 90.6 90.1 96.6
LOGIS

Confounder 8 33 25 37 36 35 38 48 43 37 36 36 94.4 85.0 88.3
Treatment -7 24 32 39 37 37 40 44 48 40 37 37 94.8 89.2 85.7
Outcome -4 25 29 35 33 33 35 42 44 35 33 34 94.7 88.1 85.6

All 71 47 -24 36 36 35 80 60 42 40 39 39 57.5 78.4 93.4
Ysel 0 25 25 35 33 33 35 42 41 39 39 39 96.9 92.7 93.1

YZsel 16 32 16 40 36 37 43 48 40 37 36 36 91.6 86.9 91.0
OP + All 15 22 7 33 33 32 37 40 33 40 39 39 96.4 94.2 97.2

OP + Ysel 0 25 25 35 33 33 35 42 41 33 33 33 94.0 87.9 87.4
OP + YZsel 3 25 22 35 33 33 35 42 40 35 33 33 94.5 88.2 89.0

CART
Confounder 46 34 -12 52 50 49 69 60 50 53 51 50 86.6 91.0 94.1

Treatment 56 38 -18 54 53 49 78 65 52 55 53 52 82.5 88.2 94.3
Outcome 47 34 -14 52 50 48 70 61 50 54 53 52 86.4 91.0 95.8

All 77 47 -30 59 58 58 97 75 65 60 58 58 74.1 87.1 92.2
Ysel 52 36 -16 53 52 50 74 63 52 55 53 52 85.1 89.7 94.8

YZsel 52 36 -16 51 48 47 73 60 50 52 51 50 83.9 89.3 94.7
OP + All 21 18 -3 52 52 51 57 55 51 53 52 52 93.6 93.4 94.6

OP + Ysel 29 23 -6 47 46 45 55 52 46 48 46 46 90.6 90.8 94.7
OP + YZsel 28 22 -6 45 43 43 53 48 44 45 43 43 90.4 91.4 94.2

Pruned CART
Confounder 53 35 -18 46 43 42 70 55 46 45 44 43 76.2 86.7 93.2

Treatment 70 43 -28 49 45 43 86 62 51 46 44 44 63.5 82.6 89.8
Outcome 58 35 -22 46 42 41 74 55 47 44 43 43 71.6 86.6 91.8

All 92 50 -41 46 43 43 103 66 59 44 42 42 44.0 76.9 82.2
Ysel 63 38 -25 46 43 43 78 57 49 44 43 43 68.4 84.9 90.7

YZsel 60 37 -22 46 42 41 75 56 47 44 43 42 71.0 86.1 92.2
OP + All 15 19 4 37 36 35 40 41 36 37 36 36 93.6 91.3 94.7

OP + Ysel 18 20 2 38 36 36 42 42 36 37 36 36 92.1 90.6 94.8
OP + YZsel 18 20 2 38 36 36 42 41 36 37 36 35 91.7 90.8 94.0

Bagged CART
Confounder -5 12 16 53 51 48 53 52 50 53 51 49 93.9 93.8 94.0

Treatment 19 28 8 46 44 42 50 52 43 48 46 46 93.8 91.2 95.5
Outcome 9 20 11 43 42 39 44 46 41 47 45 45 95.8 94.0 96.2

All 74 48 -26 38 37 36 83 61 45 41 40 40 55.4 79.1 92.2
Ysel 21 25 4 42 41 39 47 48 39 45 44 43 94.2 92.8 96.7

YZsel -1 14 15 55 52 50 55 54 52 55 52 51 94.7 94.3 93.7
OP + All 13 22 9 34 33 33 36 40 34 34 33 33 93.7 89.7 93.6

OP + Ysel 16 22 6 34 33 33 38 40 33 35 33 33 93.3 89.8 94.3
OP + YZsel 16 21 5 34 33 33 38 39 33 35 33 33 92.8 90.5 94.9

Random Forests
Confounder 29 26 -3 42 41 39 51 48 39 44 43 43 91.2 91.1 96.1

Treatment 51 38 -13 39 38 37 64 54 39 42 41 41 78.6 86.2 96.0
Outcome 43 34 -9 36 35 34 56 49 35 41 40 41 85.2 90.3 97.4

All 99 55 -45 37 37 36 106 66 57 39 39 39 26.1 71.3 81.0
Ysel 54 38 -16 36 35 34 65 52 38 40 40 40 75.2 87.3 96.5

YZsel 30 27 -4 47 44 43 56 51 43 46 44 44 90.4 91.7 96.5
OP + All 11 21 10 34 34 33 36 40 34 34 33 33 94.2 89.4 92.7

OP + Ysel 14 22 7 34 34 33 37 40 33 35 33 33 93.3 90.0 93.7
OP + YZsel 15 20 5 34 33 33 37 39 33 35 33 33 93.2 90.5 94.6

Table C.13: Simulation results for the scenario with linear main effects and linear interactions. Each simu-
lated dataset contained 1000 subjects. Standard errors were estimated based on 200 bootstrap replications.
Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 33 16 -18 54 53 53 64 56 55 55 54 53 90.5 94.6 93.8
OAL 10 4 -6 48 47 45 49 47 45 56 55 54 97.6 98.2 97.8
LOGIS

Confounder 9 9 -1 51 50 48 51 51 48 51 51 49 94.9 95.3 95.2
Treatment -1 1 2 51 51 49 51 51 49 53 52 50 95.0 95.3 95.1
Outcome -1 2 2 48 46 45 48 46 45 49 48 47 95.1 96.2 95.6

All 32 15 -17 54 53 52 62 55 55 55 55 53 91.1 95.1 94.2
Ysel 8 1 -6 48 47 45 49 47 46 56 56 55 97.7 98.7 98.2

YZsel 25 13 -12 53 55 56 59 56 57 55 54 53 92.8 96.2 94.5
OP + All 12 1 -11 46 45 43 47 45 44 55 55 54 97.7 98.6 98.2

OP + Ysel 8 1 -6 48 47 45 49 47 46 48 48 46 94.2 96.2 95.8
OP + YZsel 12 4 -8 47 46 47 48 47 48 46 46 44 94.5 96.2 92.8

CART
Confounder 14 9 -5 68 68 64 70 69 64 71 71 69 94.9 95.2 96.0

Treatment 17 9 -8 74 71 69 76 72 69 73 73 71 94.0 94.0 95.5
Outcome 16 8 -8 71 69 67 73 69 68 73 72 71 94.5 95.4 95.3

All 24 12 -11 80 80 77 83 81 78 81 80 79 94.3 94.0 95.2
Ysel 19 9 -10 72 68 68 74 69 69 74 73 72 94.3 95.4 95.5

YZsel 26 15 -11 60 66 63 65 68 63 65 65 63 95.8 95.8 93.8
OP + All 10 1 -9 74 74 69 75 74 70 75 74 73 94.9 95.0 95.7

OP + Ysel 12 1 -10 66 64 62 67 64 63 66 65 64 94.6 95.1 94.9
OP + YZsel 15 5 -10 52 58 54 54 58 55 57 56 54 95.8 95.8 93.8

Pruned CART
Confounder 20 11 -8 61 59 57 64 60 57 61 61 59 93.2 94.8 95.4

Treatment 22 11 -11 62 60 58 66 61 59 62 62 60 93.3 95.2 95.2
Outcome 22 11 -11 60 59 56 64 60 57 61 61 60 93.5 95.0 95.0

All 28 13 -15 62 61 60 69 62 62 62 62 60 92.4 95.0 94.3
Ysel 26 13 -13 60 57 56 65 58 58 61 61 59 93.1 95.9 94.4

YZsel 28 17 -12 55 57 59 62 60 60 59 59 57 92.7 94.8 95.8
OP + All 10 1 -10 54 52 50 55 52 51 54 53 52 94.8 96.4 94.7

OP + Ysel 12 2 -10 52 51 49 53 51 50 53 52 50 94.8 95.8 95.0
OP + YZsel 12 5 -7 48 49 49 50 49 49 51 49 47 94.8 97.9 93.8

Bagged CART
Confounder 4 3 -1 66 64 64 66 64 64 67 67 65 95.2 95.4 95.4

Treatment 6 4 -2 62 61 57 62 61 57 64 64 61 95.2 95.4 95.6
Outcome 5 4 -1 55 53 52 55 54 52 61 62 60 97.1 97.1 97.7

All 25 12 -13 53 53 50 59 54 52 57 57 55 94.3 96.4 96.4
Ysel 13 5 -8 53 53 51 54 53 52 60 60 59 97.5 97.4 97.5

YZsel 15 2 -12 102 102 103 103 102 104 89 90 87 93.8 99.0 93.8
OP + All 12 1 -11 46 45 43 48 45 45 47 46 45 94.2 96.4 95.0

OP + Ysel 12 1 -11 46 45 44 48 45 45 47 46 45 94.4 96.3 94.8
OP + YZsel 14 3 -11 49 49 48 51 49 49 48 47 45 94.8 96.9 93.8

Random Forests
Confounder 11 7 -4 57 55 54 58 55 54 60 60 59 95.5 96.2 96.4

Treatment 14 8 -6 54 53 51 56 54 51 58 58 56 95.5 96.3 96.4
Outcome 13 8 -5 50 49 47 52 50 47 57 57 56 97.5 98.0 98.2

All 28 13 -14 52 52 50 59 53 52 55 55 54 93.2 95.7 95.7
Ysel 18 7 -11 49 48 46 53 49 48 57 57 55 96.4 97.7 97.7

YZsel 16 7 -9 138 139 137 139 139 137 90 92 86 86.5 91.7 93.8
OP + All 12 0 -11 46 45 44 48 45 45 47 46 45 93.6 96.2 94.8

OP + Ysel 11 1 -10 46 45 44 47 45 45 47 46 45 94.6 96.5 94.6
OP + YZsel 7 3 -4 63 58 57 64 58 57 50 50 48 93.8 97.9 93.8

Table C.14: Simulation results for the scenario with nonlinear main effects and linear interactions. Each
simulated dataset contained 500 subjects. Standard errors were estimated based on 200 bootstrap replica-
tions. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 36 17 -19 39 39 38 53 42 42 39 38 38 83.9 92.8 92.8
OAL 6 5 -1 34 34 33 34 34 33 39 39 38 97.3 97.5 97.2
LOGIS

Confounder 12 11 -1 36 36 34 38 38 34 36 36 34 94.2 93.4 94.5
Treatment 2 4 2 37 36 34 37 36 34 36 36 34 95.0 94.6 94.2
Outcome 1 4 2 34 33 33 34 34 33 34 33 32 95.1 94.0 93.7

All 32 15 -17 38 38 37 50 41 40 39 39 38 87.2 92.8 93.8
Ysel 5 3 -2 34 33 33 34 34 33 39 39 38 97.4 97.4 97.0

YZsel 23 12 -10 39 38 37 45 40 38 38 38 38 90.0 92.3 94.3
OP + All 9 4 -5 33 33 32 34 33 33 39 39 38 97.2 97.6 97.0

OP + Ysel 5 3 -2 34 33 33 34 34 33 33 33 32 94.8 94.4 93.2
OP + YZsel 8 7 -2 33 32 31 34 33 31 33 33 31 95.0 93.8 94.3

CART
Confounder 17 12 -5 49 49 47 52 50 48 51 50 49 94.0 94.1 96.0

Treatment 18 11 -7 52 52 50 55 53 50 53 52 51 93.8 93.7 95.3
Outcome 15 8 -6 51 49 47 53 50 48 52 52 50 94.6 95.4 95.5

All 27 15 -13 58 58 55 64 60 56 58 58 57 92.8 93.6 95.0
Ysel 17 9 -8 51 50 49 54 51 50 53 53 51 94.3 95.0 95.3

YZsel 28 15 -13 45 45 44 53 48 46 46 46 45 92.7 95.8 95.2
OP + All 11 5 -6 52 52 51 53 53 51 53 52 51 94.8 94.9 94.3

OP + Ysel 10 4 -6 48 46 46 49 46 46 47 46 45 94.0 95.6 93.4
OP + YZsel 12 7 -4 39 40 38 41 41 38 40 39 38 94.1 96.2 95.2

Pruned CART
Confounder 22 13 -9 44 43 41 49 45 42 44 44 42 91.2 94.0 95.1

Treatment 24 13 -11 45 43 42 51 45 43 44 43 42 90.8 93.4 95.1
Outcome 22 12 -9 44 42 41 49 43 42 44 43 42 91.6 94.4 95.2

All 32 16 -16 44 44 42 54 47 44 43 43 42 87.8 92.8 93.9
Ysel 23 12 -11 43 42 41 49 44 43 43 43 42 91.1 93.9 94.8

YZsel 29 15 -14 41 40 40 50 43 42 41 41 40 91.0 92.7 95.5
OP + All 9 4 -5 37 37 36 38 37 36 37 37 35 94.6 94.8 94.0

OP + Ysel 9 4 -5 39 37 37 40 37 37 38 37 36 94.4 95.3 94.0
OP + YZsel 9 6 -4 34 35 33 35 35 34 35 34 33 95.8 94.5 93.1

Bagged CART
Confounder 5 6 1 46 44 43 46 45 43 47 47 45 95.4 95.6 95.2

Treatment 9 7 -2 43 41 39 44 42 39 45 44 42 95.4 95.9 96.1
Outcome 6 6 -1 38 38 37 39 38 37 43 43 41 97.0 97.2 97.5

All 26 14 -12 38 38 36 46 40 37 40 40 39 92.1 95.0 95.8
Ysel 12 7 -4 37 37 36 39 37 36 42 42 41 96.2 97.3 96.8

YZsel 6 7 1 73 73 73 73 74 73 62 62 60 90.3 91.0 90.0
OP + All 9 4 -5 33 33 32 34 33 33 33 33 32 94.2 94.3 93.3

OP + Ysel 9 4 -4 33 33 33 35 33 33 34 33 32 94.2 94.0 93.3
OP + YZsel 10 6 -4 32 32 32 34 33 32 33 33 32 96.2 95.5 95.5

Random Forests
Confounder 13 10 -4 39 38 38 41 39 38 42 42 41 95.6 96.4 96.3

Treatment 15 9 -6 38 38 36 41 39 36 41 40 39 95.1 96.0 96.0
Outcome 14 9 -5 35 35 34 38 36 35 40 40 39 96.4 97.0 97.2

All 29 15 -14 37 37 35 47 40 38 39 39 38 89.8 94.2 95.2
Ysel 17 9 -8 35 35 34 39 36 35 40 40 39 95.0 96.8 97.4

YZsel -11 -2 9 108 104 95 109 104 96 65 67 55 84.1 89.6 86.2
OP + All 9 4 -5 33 33 32 34 33 33 33 33 32 94.0 94.0 93.4

OP + Ysel 8 4 -4 33 33 33 34 33 33 34 33 32 94.8 94.4 93.6
OP + YZsel 9 4 -5 38 34 38 39 35 38 34 34 33 96.9 96.9 95.2

Table C.15: Simulation results for the scenario with nonlinear main effects and linear interactions. Each
simulated dataset contained 1000 subjects. Standard errors were estimated based on 200 bootstrap replica-
tions. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 62 38 -24 56 54 54 84 67 59 55 54 54 79.0 88.6 92.6
OAL 13 6 -7 50 47 48 52 48 48 56 55 55 96.1 97.2 97.3
LOGIS

Confounder 9 8 -1 52 51 50 53 51 50 52 50 50 94.2 94.0 94.7
Treatment 0 1 1 52 51 51 52 51 51 53 51 51 94.7 93.9 94.5
Outcome 0 2 2 49 47 48 49 47 48 50 47 48 94.0 94.3 94.6

All 48 30 -18 54 53 53 73 61 56 55 54 54 86.2 91.2 93.8
Ysel 8 1 -7 49 47 48 50 47 49 57 56 56 96.9 97.8 97.4

YZsel 21 13 -7 56 52 53 59 54 53 55 54 53 93.2 94.1 94.8
OP + All 14 4 -10 46 45 45 48 45 47 55 54 54 97.0 98.0 97.8

OP + Ysel 8 1 -7 49 47 48 50 47 49 48 47 47 93.4 94.7 93.3
OP + YZsel 11 2 -9 49 46 46 50 46 47 47 45 45 93.6 94.0 95.6

CART
Confounder 23 16 -7 71 68 69 75 70 70 71 70 69 93.7 94.6 94.7

Treatment 22 15 -6 72 69 70 75 71 70 74 72 72 94.2 94.3 94.8
Outcome 23 15 -8 70 68 68 74 69 68 73 72 72 94.0 95.4 95.5

All 34 22 -13 84 81 81 90 84 81 81 80 80 92.0 93.0 93.9
Ysel 27 16 -11 71 69 70 76 71 71 75 73 73 94.2 94.7 94.8

YZsel 28 15 -13 67 64 65 73 65 66 68 67 66 93.9 95.2 95.4
OP + All 13 3 -10 75 74 73 76 75 74 75 73 74 93.8 94.2 94.1

OP + Ysel 14 5 -9 65 64 65 67 64 65 67 65 65 94.8 95.0 94.4
OP + YZsel 18 3 -15 59 56 55 62 56 57 60 58 58 93.9 96.2 95.0

Pruned CART
Confounder 28 19 -10 63 60 59 69 63 60 61 60 59 91.3 93.2 94.0

Treatment 31 20 -11 63 60 59 70 64 60 62 61 60 91.1 93.4 94.5
Outcome 29 19 -11 62 60 58 68 63 59 62 60 59 90.8 93.8 94.4

All 40 26 -15 65 63 61 76 68 63 62 61 60 88.6 92.0 93.3
Ysel 31 20 -12 62 59 60 70 63 61 62 61 60 91.1 93.2 93.8

YZsel 32 20 -13 60 57 56 68 60 58 60 59 57 91.8 93.7 93.9
OP + All 12 3 -9 53 52 52 55 52 52 54 52 52 95.0 94.2 94.4

OP + Ysel 12 3 -9 53 51 52 54 51 53 53 51 51 94.6 93.8 93.8
OP + YZsel 14 3 -11 52 49 48 54 49 49 51 49 49 94.5 96.6 95.2

Bagged CART
Confounder -11 -6 5 76 70 70 76 71 70 74 71 69 94.0 95.4 94.0

Treatment -1 0 0 66 63 61 66 63 61 67 65 63 94.8 95.6 95.2
Outcome -3 0 2 63 60 58 63 60 58 67 65 63 95.6 95.9 96.6

All 37 23 -13 55 53 53 66 58 54 57 57 56 91.4 94.2 95.5
Ysel 9 3 -5 59 56 55 60 56 55 64 62 61 96.2 96.8 97.0

YZsel -21 -13 8 105 99 98 107 100 98 90 88 86 88.0 94.5 92.9
OP + All 13 3 -10 47 45 46 49 46 47 47 45 46 93.4 94.1 94.2

OP + Ysel 12 3 -10 47 46 46 48 46 47 47 45 46 93.8 93.8 93.8
OP + YZsel 15 4 -11 48 45 46 50 45 47 47 45 46 93.5 96.6 95.2

Random Forests
Confounder 11 8 -3 60 57 57 61 58 57 63 61 60 95.0 95.4 95.6

Treatment 20 13 -7 55 53 54 59 55 54 59 58 57 94.5 96.0 95.5
Outcome 18 13 -6 53 50 51 56 52 51 59 58 57 95.8 96.4 97.2

All 49 31 -19 54 52 52 73 61 55 55 55 54 86.4 92.0 94.5
Ysel 28 16 -12 52 49 50 59 52 51 57 57 56 94.8 96.6 97.0

YZsel -20 -15 4 138 131 124 139 132 124 88 86 81 87.8 90.8 93.3
OP + All 13 3 -10 47 46 46 49 46 47 47 45 46 94.2 94.3 93.7

OP + Ysel 12 2 -9 47 46 46 48 46 47 47 45 46 94.0 94.3 94.3
OP + YZsel 15 3 -11 49 46 45 51 46 47 47 45 46 93.7 95.8 95.4

Table C.16: Simulation results for the scenario with nonlinear main effects and nonlinear interactions.
Each simulated dataset contained 500 subjects. Standard errors were estimated based on 200 bootstrap
replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)
Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive 61 38 -23 39 38 39 73 54 45 39 38 38 64.6 82.8 89.3
OAL 3 2 -1 35 33 33 35 33 33 39 39 38 97.2 97.4 97.4
LOGIS

Confounder 8 7 -1 37 35 36 38 36 36 36 35 35 93.8 94.3 94.8
Treatment 0 1 2 37 36 35 37 36 35 37 35 35 95.0 94.4 95.1
Outcome -1 1 1 35 33 33 35 33 33 34 33 33 94.6 95.2 94.3

All 36 24 -13 38 37 38 52 44 40 39 38 38 85.9 91.3 93.4
Ysel 3 0 -3 35 33 33 35 33 34 39 39 38 97.2 97.9 97.2

YZsel 10 8 -2 39 37 38 40 38 38 38 37 37 93.6 94.6 94.6
OP + All 8 3 -5 33 32 32 34 32 33 39 38 38 97.3 98.0 97.9

OP + Ysel 3 0 -3 35 33 33 35 33 34 33 32 32 93.4 95.2 93.9
OP + YZsel 5 2 -3 34 32 33 35 32 33 34 32 32 94.1 95.3 94.0

CART
Confounder 20 13 -7 49 48 48 53 50 49 51 50 49 94.7 95.1 95.2

Treatment 21 15 -6 51 49 50 55 52 50 53 52 51 93.9 94.9 95.6
Outcome 20 14 -6 50 49 49 54 51 50 53 52 51 94.5 94.6 95.3

All 26 18 -9 57 56 58 62 59 58 58 58 57 93.3 94.5 94.8
Ysel 22 13 -9 51 50 50 55 51 51 53 52 52 94.4 95.9 95.1

YZsel 17 11 -6 46 46 46 49 47 46 48 48 47 94.6 95.0 94.5
OP + All 8 3 -4 52 50 52 53 50 52 53 51 51 94.8 94.4 94.2

OP + Ysel 11 4 -7 47 45 46 48 45 47 47 45 46 94.6 95.0 94.1
OP + YZsel 11 4 -6 42 40 40 43 40 41 42 40 40 93.6 95.3 93.9

Pruned CART
Confounder 24 16 -8 42 41 41 48 44 42 43 42 41 90.6 93.2 94.2

Treatment 25 16 -9 43 41 42 50 44 42 43 42 41 91.0 93.0 94.0
Outcome 25 16 -9 42 41 41 49 44 42 42 42 41 91.0 93.0 94.2

All 32 20 -12 44 42 42 54 47 44 43 42 41 88.1 91.8 93.9
Ysel 26 17 -9 42 41 40 49 44 42 42 41 41 90.5 93.2 94.7

YZsel 22 14 -8 41 40 40 47 43 41 41 41 40 92.0 93.8 94.8
OP + All 7 1 -5 37 35 36 38 35 36 36 35 35 94.2 94.8 93.7

OP + Ysel 7 2 -5 37 35 35 37 35 35 36 35 35 94.4 95.2 94.2
OP + YZsel 6 1 -4 36 34 34 36 34 34 35 34 34 94.3 95.7 94.0

Bagged CART
Confounder -14 -7 7 53 50 47 54 50 48 53 51 48 94.2 95.8 94.8

Treatment -4 -1 3 46 44 42 46 44 42 48 46 44 95.3 95.3 95.5
Outcome -6 -3 3 44 41 40 44 41 40 47 46 44 96.2 96.9 96.7

All 26 17 -9 38 37 37 46 40 38 41 40 39 92.2 94.4 95.7
Ysel 2 0 -2 42 40 38 42 40 38 46 44 43 96.9 97.0 97.6

YZsel -35 -21 14 70 65 66 78 69 68 64 62 60 87.9 91.9 91.5
OP + All 7 2 -5 34 32 33 34 32 33 34 32 32 94.0 94.8 94.0

OP + Ysel 6 2 -4 34 32 33 35 32 33 34 32 32 94.3 94.9 94.3
OP + YZsel 8 3 -4 34 32 33 34 32 33 33 32 32 93.4 95.3 93.8

Random Forests
Confounder 9 8 -1 41 39 40 42 40 40 44 43 42 95.9 96.2 96.2

Treatment 17 12 -5 38 37 37 42 39 38 41 41 40 95.5 95.2 96.2
Outcome 16 11 -5 36 35 35 40 36 36 41 41 40 96.0 96.8 97.3

All 45 29 -16 37 36 37 58 46 40 39 39 38 80.8 89.6 93.9
Ysel 23 14 -9 36 34 35 42 37 36 40 40 39 94.2 96.2 97.2

YZsel -34 -25 8 87 79 77 94 83 77 63 60 55 86.6 89.7 92.7
OP + All 6 2 -4 34 32 33 34 32 33 34 32 32 94.3 95.3 94.3

OP + Ysel 6 2 -4 34 32 33 35 32 33 34 32 33 94.4 95.0 94.4
OP + YZsel 7 3 -4 34 32 32 34 32 33 33 32 32 93.8 95.4 94.3

Table C.17: Simulation results for the scenario with nonlinear main effects and nonlinear interactions.
Each simulated dataset contained 1000 subjects. Standard errors were estimated based on 200 bootstrap
replications. Results were obtained using 2000 simulated datasets.
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Bias×1000 MCSD×1000 RMSE×1000 SE×1000 Coverage (%; modified)

Estimators 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3 1 vs 2 1 vs 3 2 vs 3

Naive -217 -38 179 39 46 45 220 60 185 37 38 36 0 78.6 0.5
OAL -24 -14 10 40 47 40 47 49 41 38 46 41 89 93.6 95.2
LOGIS

Confounder -3 3 6 36 46 42 36 46 42 36 46 42 94.7 95.1 94.8
Treatment -3 4 7 46 53 44 46 53 45 43 52 44 93.3 94.6 94.7
Outcome -3 2 5 34 43 40 34 43 40 34 43 40 94.5 95.0 95.2

All -84 -61 23 38 46 42 92 76 48 40 50 46 45.2 78.6 94.0
Ysel -16 -7 10 40 47 41 44 48 42 39 48 42 93.0 94.5 95.3

YZsel -13 -4 8 41 49 42 43 49 43 40 49 43 93.3 94.6 95.3
OP + All -62 -43 19 33 43 40 70 61 44 40 50 46 69.6 89.4 95.9

OP + Ysel -16 -7 10 40 47 41 44 48 42 39 48 42 93.0 94.5 95.3
OP + YZsel -15 -5 9 40 47 41 42 47 42 38 47 42 93.2 94.7 95.0

CART
Confounder -54 -35 19 46 61 56 71 70 59 48 61 56 82.6 91.4 93.6

Treatment -98 -69 29 55 66 61 112 95 67 54 65 61 57.0 82.1 92.8
Outcome -66 -45 21 48 62 56 82 76 60 50 63 59 76.3 89.6 94.6

All -131 -89 42 61 76 71 145 117 82 60 73 69 40.8 76.0 89.8
Ysel -100 -69 31 52 66 63 112 95 70 54 66 62 55.1 82.3 91.6

YZsel -85 -59 26 51 63 59 99 87 64 52 64 59 64.1 85.2 93.2
OP + All -71 -45 26 50 68 64 86 82 69 51 67 63 74.8 90.2 92.1

OP + Ysel -61 -40 22 45 60 57 76 72 61 46 59 56 74.9 89.6 92.2
OP + YZsel -57 -37 20 43 57 54 71 68 58 44 57 53 77.7 91.1 93.2

Pruned CART
Confounder -80 -57 24 50 54 48 94 78 54 43 52 48 54.4 79.1 92.2

Treatment -117 -85 33 53 59 52 129 103 62 48 57 52 32.4 65.2 90.8
Outcome -93 -65 28 49 53 47 105 84 55 43 52 48 42.5 74.8 91.2

All -147 -106 41 49 55 51 155 119 66 45 53 50 12.0 47.5 86.0
Ysel -122 -87 35 50 54 50 132 102 61 45 54 50 26.0 62.5 88.5

YZsel -109 -78 32 51 56 50 121 96 59 46 54 50 35.7 69.0 90.6
OP + All -76 -52 24 37 48 44 84 71 50 36 47 44 44.5 78.4 90.8

OP + Ysel -67 -46 21 37 47 44 76 66 49 37 47 44 55.2 82.3 91.7
OP + YZsel -63 -42 21 38 48 45 73 64 49 37 47 44 61.0 84.8 92.3

Bagged CART
Confounder 67 63 -4 56 69 60 87 93 60 54 68 59 70.5 81.9 95.3

Treatment -33 -18 15 55 63 55 65 66 57 54 63 55 90.9 94.4 95.3
Outcome 17 20 3 46 55 49 49 59 49 48 59 52 93.6 95.5 97.0

All -127 -90 37 39 48 45 133 102 58 42 50 47 11.8 56.6 89.3
Ysel -50 -31 19 51 56 48 72 64 52 48 57 51 80.6 91.6 94.7

YZsel -7 4 10 64 68 56 64 68 57 55 65 56 90.8 93.3 95.4
OP + All -60 -40 20 33 43 40 68 59 44 34 43 40 60.0 85.0 92.2

OP + Ysel -54 -36 18 33 42 39 63 56 43 34 43 40 66.8 86.2 93.2
OP + YZsel -52 -34 17 33 43 39 61 55 43 34 43 40 68.2 86.9 93.2

Random Forests
Confounder 42 39 -3 48 57 50 64 69 50 47 59 52 83.4 89.7 95.4

Treatment -61 -43 18 42 50 46 74 66 49 44 53 48 72.8 89.3 94.8
Outcome -24 -14 10 36 46 42 43 48 43 41 52 47 94.6 96.7 96.8

All -149 -107 42 36 45 44 153 116 60 39 48 46 1.8 37.5 86.4
Ysel -83 -59 25 40 46 42 93 75 49 41 50 47 45.9 80.6 93.7

YZsel -25 -14 11 66 65 48 70 66 49 45 55 49 79.1 90.6 95.3
OP + All -42 -27 15 34 44 40 54 52 42 35 44 40 79.2 90.2 93.3

OP + Ysel -44 -30 14 34 43 39 56 52 42 34 43 40 76.6 89.0 94.0
OP + YZsel -43 -29 14 34 43 39 55 52 42 34 43 40 76.8 89.4 94.0

Table C.18: Simulation results for setting with censored observations. Standard errors were estimated based
on 200 bootstrap replications. Results were obtained using 2000 simulated datasets.
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C.2 Supplementary Figures
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Figure C.1: RMSE for 2000 inverse probability weighted estimates for the average treatment effects under
scenarios with different levels of sparsity. The rows represent scenarios and columns represent treatment
pairs. Each simulated dataset contained 500 samples.
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Figure C.2: RMSE for 2000 inverse probability weighted estimates for the ATE for different sample sizes.
The rows represent scenarios and columns represent treatment pairs.

162



Figure C.3: RMSE for 2000 inverse probability weighted estimates for the ATE under scenarios with
various degrees of nonlinearity and nonadditivity in the treatment generating model. The rows represent
scenarios and columns represent treatment pairs. Each simulated dataset contained 500 samples.
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Figure C.4: Average treatment effects for ER visits within 180 days of treatment initiation for pruned
CART and random forests. Data were obtained from Optum Clinformative Data Mart. Total sample size
was N = 7678 (NA = 2757, ND = 2311, NE = 2043, NS = 567). Confidence intervals that exclude zero
are highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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Figure C.5: Average treatment effects for ER visits within 360 days of treatment initiation for LOGIS,
CART and bagged CART. Data were obtained from Optum Clinformative Data Mart. Total sample size was
N = 7678 (NA = 2757, ND = 2311, NE = 2043, NS = 567). Confidence intervals that exclude zero are
highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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Figure C.6: Average treatment effects for ER visits within 360 days of treatment initiation for pruned
CART and random forests. Data were obtained from Optum Clinformative Data Mart. Total sample size
was N = 7678 (NA = 2757, ND = 2311, NE = 2043, NS = 567). Confidence intervals that exclude zero
are highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.

166



Figure C.7: Average treatment effects for hospitalization within 180 days of treatment initiation for pruned
CART and random forests. Data were obtained from Optum Clinformative Data Mart. Total sample size
was N = 7709 (NA = 2766, ND = 2320, NE = 2051, NS = 572). Confidence intervals that exclude zero
are highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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Figure C.8: Average treatment effects for hospitalization within 360 days of treatment initiation for LOGIS,
CART, and bagged CART. Data were obtained from Optum Clinformative Data Mart. Total sample size was
N = 7709 (NA = 2766, ND = 2320, NE = 2051, NS = 572). Confidence intervals that exclude zero are
highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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Figure C.9: Average treatment effects for hospitalization within 360 days of treatment initiation for pruned
CART and random forests. Data were obtained from Optum Clinformative Data Mart. Total sample size
was N = 7709 (NA = 2766, ND = 2320, NE = 2051, NS = 572). Confidence intervals that exclude zero
are highlighted in orange. Abbreviations: A, abiraterone; D, docetaxel; E, enzalutamide; S, sipuleucel-T.
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