
Improving Mobile Internet Performance with
Cross-Device Network Transport and Cross-Layer

Application Adaptation

by

Xiao Zhu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Professor Z. Morley Mao, Chair
Assistant Professor Mosharaf Chowdhury
Assistant Professor Hessam Mahdavifar
Associate Professor Feng Qian, University of Minnesota

Xiao Zhu

shawnzhu@umich.edu

ORCID iD: 0000-0002-0300-7676

© Xiao Zhu 2022

To my family.

ii

ACKNOWLEDGEMENTS

Five years ago, a lucky guy got a ship boarding pass. He soon realized it was not a

cruise and the sea had a bad temper. He started to get scared, but he didn’t give up. Today,

he finally made it to the other end because he was never alone in this adventure.

I’m deeply indebted to my advisor, Zhuoqing Morley Mao, who provided constant

support during my Ph.D. study. As an expert in many computer science fields, Morley

helped me realize how lessons learned elsewhere can be cleverly applied to specific prob-

lems I was working on. I also could not remember how many times I was impressed by

her brief yet to-the-point comments, which kept refreshing my mind and guided me in the

right direction. It was always a pleasure working with her on each and every one of our

challenging and rewarding research projects.

My dissertation committee member and long-time collaborator, Feng Qian, has been

a mentor and friend. We worked together on most of the projects in this dissertation and

many other exciting projects during my Ph.D. If I’ve learned anything from him, it’s that

research discussions and presentations can be made the most understandable regardless of

the audience’s technical expertise.

I would like to thank my other committee members, Mosharaf Chowdhury and Hessam

Mahdavifar, for their insightful comments and constructive suggestions. This dissertation

iii

won’t be complete without their valuable input.

During my Ph.D., I was fortunate to have not one but two internship experiences.

My internship mentor, Subhabrata (Shubho) Sen at AT&T Labs–Research, opened my

eyes to the video streaming industry. Shubho was very enthusiastic about science and

technologies and always inspired me to examine things behind abstractions. I’m also truly

honored to keep collaborating with him on our live streaming research project as part of

this dissertation after my internship at AT&T. My Uber internship mentors, Yihua Ethan

Guo and Rajesh Mahindra, engaged me in solving real networking problems for ride-

sharing apps. This experience further strengthened my experimental and data analysis

skills.

I would also like to thank Kira Barton, Dawn Tilbury, James Moyne, Yassine Qamsane,

Ilya Kovalenko, and Mu Zhang. We worked together on many creative ideas to improve

cyber-physical system performance and security. I learned a lot from them in how net-

worked computers interact with physical processes and how mathematical models can be

applied to solve systems problems.

I’m grateful to my friends and colleagues at RobustNet and CSE: Yihua Ethan Guo,

Qi Alfred Chen, Ashkan Nikravesh, Mehrdad Moradi, Sanae Rosen, Yunhan Jia, Shichang

Xu, Yuru Shao, David Ke Hong, Yikai Lin, Chao Kong, Jeremy Erickson, Jie You, Sheng-

tuo Hu, Yulong Cao, Jiachen Sun, Xumiao Zhang, Can Carlak, Won Park, Eric Newberry,

Jiwon Joung, Qingzhao Zhang, Ruiyang Zhu, Shuowei Jin, Wenyuan Ma, Junpeng Guo,

Ze Zhang, Di Jin, Kaiyu Yang, Boyu Tian, Yibo Pi, Chun-Yu Chen, Duc Bui, etc. I will

miss the tough and fun times we spent together at BBB. My thanks also go to my room-

mate, Xin Zan, and my other friends at Ann Arbor, in the States, and on the planet. I am

iv

lucky to have them by my side.

Our CSE staff, Ashley Andreae, Karen Liska, Stephen Reger, Zachary Champion,

Steve Crang, etc., have made everything in the department smooth and administrative

things less concerned for me during my Ph.D. study.

Above all, I would like to thank my parents for their unconditional support and love.

Throughout all these years, they sacrificed too much for me. Their positive life attitude

motivates me to keep climbing.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xiii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Characterizing and Improving Wearable Network Transport Man-
agement . 4

1.2 Designing Distributed Multipath Transport for Multiple Mobile
Devices . 5

1.3 Characterizing and Improving Mobile Live Video Upload Rate
Adaptation . 6

1.4 Designing Collaborative Sensing Architecture for Vehicular Ap-
plications . 6

1.5 Thesis Organization . 7

II. Background and Related Work . 8

2.1 Wearable Networking . 8
2.2 Multipath Transport . 10

vi

2.3 Live Video Streaming . 10
2.4 Connected and Autonomous Vehicles 11
2.5 Related Work . 13

III. Understanding the Networking Performance of Wear OS 16

3.1 Introduction . 16
3.2 Background and Methodology 19

3.2.1 Wearable Networking Testbed 20
3.2.2 The Wearable Network Measurement Tools 21

3.3 Impact of Smartphone Proxying 24
3.3.1 Substantial Bufferbloat in CPROXY 24
3.3.2 Identifying the Root Cause 26
3.3.3 Mitigating the CPROXY Bufferbloat 29

3.4 Performance & Energy Impact of Network Selection 31
3.4.1 Impact of Single-path Interface Selection 31
3.4.2 Multipath Performance on Wearables 33

3.5 BT-WiFi Handover Performance 37
3.5.1 Wearable Handovers are Common 38
3.5.2 Poor Wearable Handover Performance 39
3.5.3 Root Cause of the High Handover Delay 41
3.5.4 Reducing the Handover Delay 43

3.6 Summary . 45

IV. MPBond: Efficient Network-level Collaboration among Personal
Mobile Devices . 46

4.1 Introduction . 46
4.2 Motivation . 51

4.2.1 Incentives to Carry Multiple Devices 51
4.2.2 Benefits of Multi-device Collaboration 52
4.2.3 Networking Capability of Wearables 53
4.2.4 Do Existing Network-level Collaboration Schemes

Suffice? . 54
4.3 MPBond Design . 57

4.3.1 Subflow Management 58
4.3.2 Buffer Management and Helper-side Connection Split 59
4.3.3 Pipe-aware Multipath Scheduler 60

vii

4.3.4 User/App Interfaces and Policy Engine 68
4.4 Implementation . 70
4.5 Evaluation . 71

4.5.1 Experimental Setup and Methodology 71
4.5.2 Microbenchmarks 72
4.5.3 Stable Network Conditions 76
4.5.4 Varying Network Conditions 79
4.5.5 Video Streaming Performance 80
4.5.6 Leveraging the Dual Mode 82
4.5.7 Indoor Applicability 82
4.5.8 System Overhead and Energy Concerns 83

4.6 Summary . 84

V. Analyzing the First-Mile Ingest Performance of Live Video Streaming 86

5.1 Introduction . 86
5.2 Background and Motivation . 90

5.2.1 First Mile in Live Video Streaming 90
5.2.2 Design Goals . 92
5.2.3 Limitation of Existing Analysis Approaches 92
5.2.4 Challenges . 93

5.3 The Livelyzer Measurement System 95
5.3.1 Black-box Testing 96
5.3.2 Virtual Video Capture Function 97
5.3.3 Crafting Video Source Files 99
5.3.4 Analyzing Ingest Performance 100

5.4 Using Livelyzer for Live Video Encoding Analysis 104
5.4.1 Encoding Design of Broadcasting Apps 105
5.4.2 Server ABR Transcoding Design 107
5.4.3 QoE Impact . 109

5.5 Using Livelyzer for Network Rate Adaptation Analysis 110
5.5.1 Using Third-party Broadcasting App: OBS 111
5.5.2 Using Browser-based Broadcasting Apps 115
5.5.3 Using Mobile-based Broadcasting Apps 116

5.6 Improving Rate Adaptation Logic 119
5.7 Summary . 123

VI. Harbor: Hybrid Architecture for Collaborative Vehicular Sensing . . 124

viii

6.1 Introduction . 124
6.2 Background and Motivation . 129

6.2.1 Benefits of Collaborative Sensing 129
6.2.2 V2V or V2I? Why Not Both? 129
6.2.3 Challenges . 132

6.3 Harbor Design . 133
6.3.1 Hybrid System Architecture 133
6.3.2 Strategic Helper Assignment 137
6.3.3 Timely Delivery of Detection Results 144
6.3.4 Combining Local and Remote Detection Results . . . 147

6.4 Implementation . 150
6.5 Evaluation . 151

6.5.1 Experimental Setup and Methodology 152
6.5.2 End-to-end Performance 154
6.5.3 Strategic Helper Assignment 158
6.5.4 Timely Detection Result Delivery 159
6.5.5 Detection Results Combination 160

6.6 Summary . 161

VII. Conclusion and Future Work . 162

7.1 Limitations and Future Work 165

BIBLIOGRAPHY . 167

ix

LIST OF FIGURES

Figure

2.1 The wearable networking workflow of Wear OS. 9
2.2 Live video streaming end-to-end workflow. 11
2.3 A LiDAR point cloud example showing the benefits of collaborative

sensing by merging a nearby vehicle’s data (green) to a single vehicle
(blue). 12

3.1 The measurement testbed (middle) and the protocol stacks of the wear-
able, phone, and server (left and right). 20

3.2 E2E delay of bulk transfer and CBR traffic (LG Urbane paired with
Nexus 5X, normal RSSI). 25

3.3 E2E delay breakdown of CBR traffic in CPROXY mode (LG Urbane
with Nexus 5X, normal BT RSSI). 27

3.4 CPROXY bufferbloat mitigation for bulk download and messaging with
competing traffic (LG Urbane, Nexus 5X). 29

3.5 QoE-energy tradeoffs across four real workloads using different inter-
face selection policies (LG Urbane Watch, normal BT RSSI, Good/Fair
WiFi network condition). 32

3.6 BT-WiFi multipath under 2.4/5 GHz WiFi (Nexus 5, normal BT/WiFi
RSSI). 35

3.7 Impact of BT-WiFi handover on QoE of tinyCam app (Huawei Watch,
normal BT/WiFi RSSI). 40

3.8 Reducing the BT-to-WiFi handover delay for tinyCam/RTApp on an LG
Urbane paired with Nexus 5X. 45

4.1 Throughput distributions of different devices (carriers) and their combinations at 3 lo-
cations. (A: LG Urbane Watch 2 with AT&T; T: Pixel 2 smartphone with T-Mobile; S:
Samsung Galaxy S9 phone with Sprint) . 51

x

4.2 WLAN throughput from LG Urbane Watch 2 to Pixel 2 smartphone under different
settings. 51

4.3 System Architecture of MPBond. 58
4.4 Performance of MPBond configured with the minRTT scheduler. 62
4.5 Energy benefits of split under stable network conditions. 73
4.6 Performance and energy benefits of split under changing network conditions. 73
4.7 Performance and energy consumption for different feedback mechanisms. 73
4.8 Dual Mode reduces download time. 73
4.9 Bulk download performance under stable network condition (PS-Path: 8Mbps, HS-

Path: 10Mbps, pipe: 5Mbps): Single device (Pixel2), MPBond/COMBINE w/ 2 de-
vices (Pixel2+Nexus6P), MPBond/COMBINE w/ 3 devices (Pixel2+Nexus6P+LG2),
and kibbutz (Pixel2+Nexus6P). 75

4.10 Energy breakdown of different schemes under stable network condition (PS-Path:
8Mbps, HS-Path: 10Mbps, pipe: 5Mbps): Primary only (P), kibbutz (K), MPBond
(M), COMBINE (C), MPBond w/ 3 devices (M3), COMBONE w/ 3 devices (C3). . . 76

4.11 Energy consumption reduction: MPBond compared to kibbutz. 76
4.12 Performance of MPBond v.s. COMBINE under different BW combinations: PS-Path:

{5, 8, 11, 14}Mbps, HS-Path: 10Mbps, pipe: 5Mbps. 76
4.13 Energy consumption reduction: MPBond compared to kibbutz. 79
4.14 Results of in-the-wild experiments. 80
4.15 Video streaming QoE & energy. (PS-Path: 5Mbps, HS-Path: 10Mbps, pipe:

5Mbps): Single device (Pixel2), MPBond (Pixel2+Nexus6P), MPBond w/ 3 devices
(Pixel2+Nexus6P+LG2), and kibbutz (Pixel2+Nexus6P). 80

5.1 Live video streaming end-to-end workflow. 87
5.2 The system architecture of Livelyzer. 96
5.3 Content complexity measured by spatial information (SI) and temporal

information (TI). 105
5.4 Encoding bitrate measured with different videos. 105
5.5 (a) Bitrate distribution of TAT. (b) Quality of TAT. (c) Broadcasting-app-

to-server delay of segments in TAT. 107
5.6 Video quality of OBS streaming to different services: each network trace

(A-F) is scaled to 60%/90%/120% of the baseline video encoding bitrate 110
5.7 OBS drops frames to adapt to changing network conditions. 110
5.8 Video quality of OBS dynamic bitrate mode streaming to different ser-

vices: each network trace (A-F) is scaled to 60%/90%/120% of the base-
line video encoding bitrate . 110

5.9 OBS-dynamic increases encoding bitrate slowly when bandwidth in-
creases. 110

xi

5.10 Browser-based broadcast to S1. 116
5.11 Browser-based broadcast to S2. 117
5.12 Mobile-based broadcast to S1. 118
5.13 Mobile-based broadcast to S3. 118
5.14 Ingest performance comparison of the default and improved OBS

streaming to S1. 121
5.15 Ingest performance comparison of the default and improved OBS

streaming to S2. 121
5.16 Ingest performance comparison of the default and improved OBS

streaming to S3. 121
5.17 Example run showing the network bandwidth, data rate, video quality,

and encoding bitrate decision evolution over time. 122
6.1 A LiDAR point cloud example showing the benefits of collaborative

sensing by merging a nearby vehicle’s data (green) to a single vehicle
(blue). 130

6.2 An example of joint using V2V and V2I to bridge a disconnected/poor-
performing car (red). 131

6.3 System Architecture of Harbor. 134
6.4 An example of graph-based interference score calculation. 143
6.5 An example showing latency variation across vehicles. 145
6.6 Timeline of Harbor’s vehicle-side and server-side data processing. . . . 145
6.7 Impact of network types on the detection result delivery latency. 146
6.8 Impact of quantization bits on the detection accuracy. 146
6.9 An example for local and remote detection result combination (drivable

areas are marked as blue and occupied areas are marked as red). 148
6.10 Emulation-based experimental results for E2E performance of Harbor

and baseline schemes (an edge cloud is used as the server). 152
6.11 E2E live vehicular experiments. 152
6.12 Case study experiment. 157
6.13 Benefits of Harbor’s region-based grouping. 158
6.14 Comparison of Harbor’s assignment strategy and other assignment

strategies. 158
6.15 Benefits of Harbor’s detection result delivery strategy. 158
6.16 Benefits of Harbor’s combination of local and remote detection results. . 158

xii

LIST OF TABLES

Table

1.1 Summary of dissertation work. 4
3.1 Mobile devices used in our experiments. 21
3.2 Data collected by our measurement toolkit. 24
3.3 Impact of TCP receive buffer size on the severity of CPROXY bufferbloat

on different phones. 28
3.4 BT-to-WiFi handover delay on 3 smartwatches for tinyCam app and

RTApp (normal BT/WiFi RSSI). 43
4.1 Advantages of MPBond compared to existing systems designed for

multi-device network-level collaboration. 54
5.1 Comparison of server ABR transcoding design. 108
6.1 Notations for helper assignment algorithm. 139
6.2 Summary of experiment settings. 154

xiii

ABSTRACT

The mobile Internet is becoming increasingly complex with a wide diversity of end

systems (including wearables and automobiles), the co-presence of multiple devices with

collaboration potential, and the growth of user-generated application traffic fueled by im-

proved mobile sensors and wireless access. As the Internet evolves along with these trends,

the increased complexity of different components and protocol layers makes it more chal-

lenging to achieve high network utilization and meet the diverse QoE requirements for

mobile applications. As a result, despite the richness of various network resources, the

performance of today’s mobile applications still falls behind expectations. To address this

challenge, in this dissertation, I demonstrate that with a better understanding of the various

components and different protocol layers of the increasingly complex mobile Internet, we

can identify unique performance problems and leverage such knowledge to develop net-

work transport protocols with cross-device awareness and application adaptation strategies

with cross-layer considerations for better mobile app performance.

Specifically, to understand the interaction between multiple mobile devices and its im-

pact on end-to-end performance, we conduct an empirical study on wearable networking,

where wearables oftentimes rely on their paired smartphones for Internet access. Based

on our measurement findings, we develop cross-device network transport management so-

xiv

lutions for improving wearable networking performance. To better support multi-device

collaboration in a more general setting, we develop MPBond, a distributed multipath trans-

port system for efficient network-level collaboration among personal mobile devices, with

cross-device connection management and packet scheduling. To explore opportunities on

the mobile application design, we build Livelyzer, a generalized measurement tool for

characterizing commercial live video streaming upstream ingest performance under mo-

bile networks. Based on our measurements, we identify deficiencies in broadcasting app

rate adaptation, and propose network-aware adaptation strategies to improve the same. We

also investigate another emerging mobile application, vehicular sensing for autonomous

driving, where we build Harbor, a cross-layer system architecture for collaborative vehic-

ular sensor data sharing, with adaptive usage of V2V and V2I network resources.

xv

CHAPTER I

Introduction

The Internet has witnessed dramatic changes over the past decade. The worldwide

usage of mobile devices exceeded desktop computers for the first time. Thousands of

mobile apps are being added to the Play Store every day. Various smart devices have

been equipped with mobile OSes and wireless network interfaces. Mobile network traffic

has grown by 17-fold from 2012 to 2017 and is expected to further increase by 7-fold by

2022 [23].

We observed three major trends as the mobile Internet keeps evolving:

• Increased diversity of end systems. Diverse end systems such as wearable devices

and connected vehicles are gaining popularity as fueled by new hardware, OS sup-

port, and applications. This introduces new networking and application paradigms.

For example, instead of directly accessing the Internet with TCP/IP, a wearable de-

vice such as a smartwatch usually speaks Bluetooth and uses its paired smartphone

as a “gateway”. Connected vehicles usually use V2X communications, where each

vehicle can exchange data through either vehicle-to-vehicle (V2V) or vehicle-to-

1

infrastructure (V2I) communications.

• Co-presence of multiple local devices. It is increasingly common that a user pos-

sesses multiple mobile devices. Smart mobile devices are equipped with diverse

network interfaces such as cellular, Wi-Fi, and Bluetooth, making them capable of

communicating with remote Internet servers and other local devices. This grow-

ing trend of multi-device ownership and multi-interface provision creates abundant

wireless resources and enhanced network connectivity for multi-device collabora-

tion. Mobile devices from different users can also collaborate, e.g., connected ve-

hicles in the same area can share each other’s sensor data through V2V or/and V2I

communications.

• Growing upload traffic generated by users. The rise of user-generated content

makes mobile apps more interactive and prevalent. For example, personalized live

streaming services such as Youtube and Facebook Live have gained ubiquitous ac-

cess thanks to the universal coverage of cellular networks and the integration of HD

cameras in commodity mobile devices. Connected and autonomous vehicles gener-

ate high-volume data through local sensors and transfer them to more powerful edge

servers for obstacle detection. These types of applications usually impose a higher

latency requirement to ensure interactivity.

However, as the mobile Internet evolves, the increased complexity of different compo-

nents makes it more challenging to achieve high network utilization and meet the diverse

QoE requirements for mobile applications. End system diversity brings more challenges in

managing the networking stack for different use cases and wireless technologies. The pres-

2

ence of multiple mobile devices creates opportunities to transfer data cooperatively. Still, it

also requires architectural support and strategic scheduling to fully utilize the WWAN and

WLAN resources on different devices. Interactive applications such as live video stream-

ing and analytics usually have a complex pipeline that includes performance-impacting

components at different layers such as the codec and network transport, making it chal-

lenging to satisfy the QoE requirement that desires both high throughput and low latency.

As a result, despite the richness of diverse network resources, the performance of today’s

mobile applications still falls behind expectations. These mobile applications include both

the same versions of common Internet applications running on mobile devices and new

applications enabled by mobile computing.

This dissertation is dedicated to addressing these challenges. The overall goal is to

improve network transport protocol design and application adaptation along with these

trends. Sitting on the top of the Internet stack, the application and transport layers play

crucial roles in determining the end-to-end performance of mobile applications. Tradi-

tionally, the transport layer was designed end-to-end for a single client-server pair over a

single network path. However, the aforementioned trends brought new components to this

end-to-end path, including multiple wireless links and multiple mobile devices in a col-

laboration group, allowing opportunities to extend existing network transport design with

cross-device awareness. The application layer can also benefit from information from

and control at the lower layers (e.g., transport, network, and MAC layers), especially in

wireless networks.

My dissertation demonstrates that: With a better understanding of the various com-

ponents and different protocol layers of the increasingly complex mobile Internet, we

3

Table 1.1: Summary of dissertation work.

Problem scope Project
Characterizing and improving Understanding the Networking

wearable network transport management Performance of Wear OS
Designing distributed multipath transport MPBond: Efficient Network-level Collaboration

for multiple mobile devices among Personal Mobile Devices
Characterizing and improving Livelyzer: Analyzing the First-Mile Ingest

mobile live video upload rate adaptation Performance of Live Video Streaming
Designing collaborative sensing architecture Harbor: Hybrid Architecture for Collaborative

for vehicular applications Vehicular Sensing

can identify unique performance problems and leverage such knowledge to develop

network transport protocols with cross-device awareness and application adaptation

strategies with cross-layer considerations for better mobile app performance. As

summarized in Table 1.1, this dissertation explores this problem along with four use cases.

1.1 Characterizing and Improving Wearable Network Transport

Management

We explore the networking performance on wearable systems that do not always di-

rectly access the Internet with end-to-end TCP/IP and often rely on a paired smartphone

as the gateway. We first identify the limitations of existing networking stacks on wearable

systems by conducting the first in-depth investigation of the networking performance of

Wear OS, one of the most popular OSes for smartwatches and potentially other wearable

systems. Our measurement study reveals that the existing Wear OS suffers from seri-

ous performance issues regarding key aspects that distinguish wearable networking from

smartphone networking. To mitigate the identified performance impairment, we design,

4

implement, and evaluate several readily deployable transport management solutions and

demonstrate that wearable networking performance can be improved with a better under-

standing of the end system diversity and heterogeneous wireless links.

1.2 Designing Distributed Multipath Transport for Multiple Mobile

Devices

Part 1 sheds some light on how a smartphone can play an essential role in wearable net-

working and the complex interactions when there are multiple mobile devices and wireless

links in the end-to-end path. In part 2, we stand on the opposite side and explore the feasi-

bility of leveraging wearables’ network interfaces to bring benefits to smartphones, which

further leads to a more general question: Can we leverage the network interfaces of mul-

tiple nearby mobile devices to improve networking performance? To this end, we propose

MPBond, an efficient system allowing multiple personal mobile devices to collaboratively

fetch content from the Internet. Inspired by the success of multipath TCP (MPTCP), MP-

Bond applies the concept of distributed multipath transport, where multiple subflows can

traverse different devices. We develop device/connection management schemes, a buffer-

ing strategy, a packet scheduling algorithm, and a policy framework tailored to MPBond ’s

architecture to efficiently utilize the heterogeneous network resources. We evaluate MP-

Bond using real-world mobile devices, networks, and applications and demonstrate that a

cross-device transport protocol considering the interaction of multiple mobile devices and

heterogeneous wireless links improves the mobile application performance.

5

1.3 Characterizing and Improving Mobile Live Video Upload Rate

Adaptation

While parts 1 and 2 improve the networking stack design on mobile systems without

modifying the applications, in part 3, we look at the problem from a different perspec-

tive and try to optimize the application design to adapt to varying network conditions to

improve mobile application performance. We focus on the emerging live streaming ap-

plication, which is both bandwidth-intensive and latency-sensitive. We aim to understand

how commercial live streaming broadcast and distribution platforms such as Youtube and

Facebook Live perform over mobile networks. Specifically, we look at the upstream ingest

path from the broadcasting app to the video server, which is responsible for capturing the

video content with a camera, encoding it, and transmitting it over cellular or Wi-Fi up-

links. Delivering high-quality video over mobile uplinks in real time is challenging, and

there exists little related research. To this end, we develop Livelyzer, a tool to analyze the

first-mile ingest path of commercial live streaming, and provide best-practice suggestions

to developers. Our study demonstrates that existing live video upload applications incur

poor coordination between the application decisions and network conditions, and schemes

that better adapt real-time encoding rates to network bandwidths can improve QoE.

1.4 Designing Collaborative Sensing Architecture for Vehicular Ap-

plications

In part 4, we further study the mobile application design by looking at another emerg-

ing live video analytics application: collaborative vehicular perception. Connected and au-

6

tonomous vehicles digest real-time sensor data to understand the physical world. Nearby

vehicles can share each other’s sensor data for collaborative sensing to form a complete

view with a higher resolution. We design Harbor, a hybrid system architecture that lever-

ages both the direct communication between vehicles (V2V) and direct communication

between vehicles and the remote server (V2I) to better utilize the available network and

compute resources. We develop methods for dynamically establishing of different V2V

and V2I channels to better adapt to heterogeneous network resources and an algorithm that

efficiently relays sensor data considering the available V2V and V2I resources. This part

demonstrates that a flexible and adaptive sensor data sharing application architecture con-

sidering the underlying wireless networking protocols improves collaboration perception

performance for autonomous driving.

1.5 Thesis Organization

The rest of the dissertation is organized as follows. We first provide background knowl-

edge and summarize related work in Chapter II. Chapter III presents our experimental

study on the networking performance of Wear OS, where we characterize wearable net-

work transport management and propose design improvements. In Chapter IV, we propose

MPBond, a distributed multiple transport system we develop to realize efficient network-

level collaboration among personal mobile devices. Chapter V describes our study on live

streaming ingest performance, where we characterize and improve the broadcasting app

rate adaptation over mobile uplinks. In Chapter VI, we develop Harbor, a hybrid system

architecture for collaborative vehicular sensing. We conclude this dissertation in Chap-

ter VII.

7

CHAPTER II

Background and Related Work

This chapter introduces the background of these emerging mobile systems and appli-

cations.

2.1 Wearable Networking

Wearable networking is important. Take smartwatches as an example. One may argue

they only incur light traffic, such as push notifications. This might be true for the current

smartwatch ecosystem where traffic flows are mainly small, short, and bursty [103]. How-

ever, we envision that future wearable apps will be more network-intensive by incurring

much heavier network activities fueled by new hardware, OS support, and applications.

For example, recently debuted speaker/LTE-capable watches such as LG Watch Urbane

2nd Edition allow users to directly make hands-free VoIP calls; the latest Wear OS 2.x

allows standalone apps on wearables; also, many emerging wearable applications incur

heavy network traffic such as continuous computer vision on smart glasses [73, 56], re-

mote camera preview [15], real-time screen projection [10], and network-level collabora-

8

Client app

Wear OS proxy

TCP/IP stack

Wear OS proxy

TCP/IP stack TCP/IP stack

Server app

Bluetooth stack Bluetooth stack

Figure 2.1: The wearable networking workflow of Wear OS.

tion between phone and watch [105].

Wearable networking is also different from smartphone networking that has been well-

studied in the past decade. First, most of the time, a wearable transfers data with Bluetooth

(BT), whose many characteristics are different from WiFi and cellular that dominate the

smartphone interface usage. BT has a complex protocol stack and various working modes.

Second, a wearable often does not directly access the Internet; instead, it uses its paired

smartphone as a “gateway”, which, if not carefully designed, may incur additional perfor-

mance degradation. Specifically, since BT by default does not speak TCP/IP, the wearable

OS typically introduces a pair of proxies on the smartphone and the wearable to bridge

TCP/IP and BT, as shown in Figure 2.1. The phone-side proxy maintains TCP connections

to remote servers on behalf of the wearable. The wearable-side proxy also maintains local

TCP connections with client apps. This way, everything becomes transparent to the client

and server applications. Last but not least, due to BT’s short range, network handovers

frequently occur on a wearable: when it moves away from the phone, the BT connectivity

9

will be torn down, and the wearable has to use standalone WiFi or LTE to communicate

with the external world.

2.2 Multipath Transport

Multipath transport is a promising technique that simultaneously leverages multiple

network paths to accelerate data transfers. In mobile networks, most existing research

focuses on the joint use of WiFi and cellular on a single mobile device [112, 72, 113], to

improve the QoE of mobile apps such as video streaming and web browsing.

MPTCP [131], the de facto multipath solution, brings a shim layer between the socket

interface and multiple underlying TCP subflows. Operating at the transport layer, it re-

quires no modifications to both applications and networks. The MPTCP sender distributes

data onto multiple TCP subflows; the receiver reassembles the data into the original byte

stream and transparently delivers it to the application layer.

As the core component of a multipath transport system, a packet scheduler distributes

data onto potentially heterogeneous network paths. MinRTT [118] is the default scheduler

of MPTCP, which selects the path with available space in the congestion window and the

minimum network RTT. There are also studies on innovating the scheduling algorithm

design to improve MPTCP performance [69, 97, 135].

2.3 Live Video Streaming

As shown in Figure 2.2, the live video streaming pipeline consists of the ingest path

and the distribution path. The ingest path is responsible for capturing and encoding a video

10

Video ServerBroadcasting App

Viewers
Upstream
ingest path

Downstream
distribution path

Figure 2.2: Live video streaming end-to-end workflow.

from a broadcasting app on the broadcaster device, transmitting it over the network uplink,

and transcoding the received video stream at the video server into a number of different

adaptive bitrate or ABR tracks. The distribution path delivers these different versions of

the video to different viewers.

The performance of the first-mile ingest path is critical to the end-to-end QoE because

the video delivered on the first mile imposes an upper limit on the quality of ABR tracks

created from it. However, this all-important first mile is largely under-explored, with ex-

isting research primarily focusing on the downstream distribution path.

One important research problem for the ingest path is broadcasting app rate adaptation,

where it needs to determine the encoding rate in real time. The encoding rate choice

impacts the quality and timeliness of the stream received by the video server, especially

under time-varying mobile uplink network conditions, which eventually affects the end

viewer QoE.

2.4 Connected and Autonomous Vehicles

Autonomous vehicles rely on various on-board 3D vision sensors to understand the

physical world consisting of road segments, pedestrians, cyclists, other cars, etc., to make

correct driving decisions. For example, LiDAR (Light Detection and Ranging) [34, 39] is

11

a major on-board vision sensor, which fires laser lights at different angles and measures

how long it takes for the lights to return to the sensor after reflection from objects, based on

which it calculates the distance of these objects and generates 3D point clouds to represent

the surroundings. Different software modules will further process the collected point cloud

data and make appropriate driving decisions.

3 blind spots 2 blind spots eliminated

Single vehicle sensor data Merged view from two vehicles

Figure 2.3: A LiDAR point cloud example showing the benefits of collaborative sensing
by merging a nearby vehicle’s data (green) to a single vehicle (blue).

However, a single vehicle can only sense a limited range, and its view may be fur-

ther restricted due to occlusion. One promising solution to overcome these limitations is

collaborative sensing, where multiple vehicles share sensor data using wireless networks,

given that today’s vehicles are “connected cars”: they are increasingly equipped with WiFi

and cellular interfaces [3, 7, 1]. Collaborative sensing would thus benefit autonomous

driving and Advanced Driving Assistance Systems (ADAS) by merging sensor data from

different vehicles to form a complete view. Video analytics tasks (e.g., drivable space de-

tection [67] and object detection [151, 92]) can then be performed based on the merged

3D data, whose results can finally be shared among all the cars through network commu-

nications. Figure 2.3 shows a concrete example where the point cloud data are generated

from a state-of-the-art autonomous driving simulator [31]. As shown, in a single vehicle’s

12

point cloud data (marked as blue), there are three blind spots caused by occlusion. After

merging this point cloud with another one from a nearby vehicle (marked as green), two

of the three blind spots can be eliminated.

2.5 Related Work

We summarize the related work in several categories below.

Smartwatch systems, energy, and applications. There are a few recent studies on

understanding the smartwatch systems, energy, traffic patterns, and applications. Liu et

al. [100] examined the execution efficiency of Android Wear OS and identified some in-

efficiencies and their root causes. Liu et al. [103] performed an in-depth characterization

of usage patterns, energy consumption, and network traffic of smartwatch usage from real

users in the wild. Kolamunna et al. [86] studied the user behavior and application traf-

fic characteristics for SIM-enabled wearables. Chauhan et al. [50] characterized smart-

watch apps. There also exist studies on other aspects of wearable systems including dis-

play [107], storage [78], user interface [152, 55], and security [147, 106]. Our work [165]

thoroughly looks into the networking stack and its performance on smartwatches under

diverse scenarios, which is not well understood, and proposes new network transport man-

agement schemes for wearables.

Multi-device network-level collaboration. Previous studies have demonstrated the

benefits of leveraging multiple mobile devices to boost network performance. Kib-

butz [111] is a scheme that leverages tethering and MPTCP. PRISM [85] is a system

that uses inverse multiplexing of TCP flows to support collaboration. COMBINE [46]

is a framework that uses HTTP byte-range requests split over multiple devices for band-

13

width aggregation. There are also solutions working in the application layer targeting a

specific type of applications [83, 134]. Our work [168] instead is light-weight and offers

several advantages, including better performance as boosted by its judiciously designed

scheduler, buffer management, and connection split schemes, application transparency,

and more flexibility. Also, none of the above work has been applied to wearables. Besides

network-level collaborations, there also exist systems [115, 44, 116] that share other I/O

resources among multiple mobile devices.

Characterizing live video streaming. Recent studies examined both the techni-

cal aspects [146, 137, 136, 104] and human factors [142, 74] of live video streaming.

There exist studies using service-specific APIs to study Periscope and Facebook Mo-

bile [137, 136, 146]. LIME [104] studied 360-degree live streaming from an open-

source broadcasting software to Facebook and Youtube. Compared to these studies, our

work [167] differs in three significant ways: First, we focus on the upstream ingest path of

the end-to-end live streaming pipeline. Second, their methodologies are based on specific

service features compared to our more general measurement approach. Third, we suggest

and evaluate design best practices for live video upload on the ingest path.

Collaborative vehicular sensing. Various efforts have been made on cooperative ve-

hicular perception. The use of sensor data from multiple sources for vehicular perception

has been shown to be beneficial [117]. Existing data sharing systems either transfer sensor

data between vehicles [128, 52, 90] or directly send each vehicle’s data to an edge or cloud

server [162]. Our work advocates the use of both direct communication between multiple

vehicles (V2V) and direct communication between each vehicle and the server (V2I) to

better adapt to different network connectivity and bandwidth conditions for each vehicle.

14

We develop solutions for the dynamic establishment of V2V and V2I data channels in a

holistic network system to adapt to heterogeneous V2X network resources, as well as algo-

rithms that efficiently assign relay vehicles considering the wireless network and physical

properties.

15

CHAPTER III

Understanding the Networking Performance of Wear OS

This chapter takes a first look at the wearable network stack, especially its transport

management aspects. Through carefully designed controlled experiments conducted in a

cross-device, cross-protocol, and cross-layer manner, we identify serious performance is-

sues of Wear OS, which are unique to wearable networking. We pinpoint their root causes

and quantify their impacts on network performance and application QoE. We further pro-

pose practical suggestions to improve wearable networking performance with cross-device

awareness in transport management.

3.1 Introduction

Smart wearable devices are becoming increasingly popular. Take smartwatches, ar-

guably the most important type of smart wearables, as an example. According to a market

research report published recently [20], the global market value of smartwatches was es-

timated to be $10.2 billion in 2017 and will experience an annual growth rate of 22.3%

from 2018 to 2023.

16

In the literature, several efforts have been made towards understanding and improving

the OS execution performance [100, 99], power management [103], graphics and dis-

play [107], storage [78], and user interface [152, 55] of wearable OSes. In this chapter, we

investigate an important yet underexplored component: the wearable networking stack.

We conduct to our knowledge a first in-depth investigation of the networking performance

of Wear OS, one of the most popular OSes for wearables. Wear OS is a version of Google’s

Android OS tailored to small-screen wearable devices. Used by a wide range of smart-

watches and potentially other wearables, Wear OS is expected to account for 41.8% of the

market share of smartwatch OSes in 2020 [18].

Understanding the networking performance of commercial wearables is challenging,

as it involves multiple devices, networks, and protocols, which incur complex interactions.

The proprietary nature of Wear OS makes it even harder to gain deep visibility into the

wearable networking stack. Note that unlike Android for handheld devices, Wear OS is

not open-source.

To address these challenges, we first build a wearable networking testbed consisting of

commodity Wear OS based smartwatches, off-the-shelf smartphones, commercial wear-

able apps, as well as a series of tools we developed for instrumenting the system and

collecting various types of data. We then leverage the testbed to conduct controlled ex-

periments in a cross-device, cross-protocol, and cross-layer manner. Through judiciously

designed experiments, we demystify the Wear OS networking stack and quantify how it

affects the wearable networking performance. Our key findings consist of the following.

•When acting as a gateway proxy for a wearable, the phone dramatically inflates the end-

to-end (server to wearable) latency to 30+ seconds due to its incurred “bufferbloat”. We

17

then break down the end-to-end latency into various components, and identify the root

cause to be the phone-side TCP receive buffer, whose configuration does not take into

account the path asymmetry between the wearable-phone path and the phone-server path

(§3.3).

• Wearables are equipped with multiple network interfaces such as BT and WiFi. When

multiple networks are available, the Wear OS’s default interface selection policy strictly

prefers one interface (e.g., BT) over others (e.g., WiFi). However, we find that such a

strategy oftentimes leads to suboptimal tradeoffs between performance and energy con-

sumption. In addition, we explore the feasibility of performing multipath transport (simul-

taneously using WiFi and BT) on wearables, and identify potential obstacles such as the

interference between BT and 2.4GHz WiFi (§3.4).

• BT’s short communication range makes handovers occur frequently on wearables. Due

to insufficient protocol support and poor cross-layer coordination, a BT-WiFi handover

may last for more than 60 seconds, leading to significant disruption of the wearable appli-

cation performance. By looking into each phase of a handover, we find that both the OS

and user application are responsible for such unacceptably long handover delays (§3.5).

The above performance inefficiencies are caused by the poorly designed networking

stack of Wear OS. Our identified issues appear on all 8 wearables of heterogeneous vendors

and Wear OS versions (including the latest version as of December 2018) as well as a vari-

ety of paired phones as tested by us using synthetic and real apps. To mitigate the identified

performance impairment, we design, implement, and evaluate several readily deployable

transport management solutions including the following. (1) We develop a simple yet

effective flow control scheme that mitigates the phone-side bufferbloat problem, achiev-

18

ing up to 78x latency reduction with less than 3% of the throughput decrease (§3.3.3),

(2) We design and implement to our knowledge a first multipath transport framework for

wearable devices that enables adaptive interface selection, multi-network bandwidth ag-

gregation (§3.4.2), and smooth handovers between IP and non-IP networks (§3.5.4). For

example, our improved handover scheme reduces the BT-to-WiFi handover delay from

more than 28 seconds to less than 0.6 seconds with negligible energy overhead incurred.

3.2 Background and Methodology

The wearable networking is unique in several aspects, making analyzing its perfor-

mance and resource consumption challenging.

• Instead of accessing the Internet directly, a wearable typically leverages a paired mobile

device such as a smartphone as a gateway.

• Compared to performing pure TCP/IP networking on a regular host, wearable network-

ing involves both BT and TCP/IP. In particular, since BT by default does not speak TCP/IP,

the wearable OS typically introduces a pair of proxies on the smartphone and the wear-

able to bridge TCP/IP and BT. For the phone-side proxy, it maintains TCP connections to

remote servers on behalf of the wearable. It strips off TCP/IP (BT) headers for downlink

(uplink) traffic, and encapsulate the application data into BT (TCP/IP) packets. A reverse

operation is performed at the wearable-side proxy, which also maintains local TCP con-

nections with client apps.

• The BT protocol stack itself is complex. It consists of higher-layer protocols realized in

the host (software) and lower-layer functions implemented in the controller that resides on

the BT chip. The host and controller are bridged by the Host-Controller Interface (HCI).

19

Client app
Wear OS proxy

BT stack

Wear OS
proxy

BT stack

TCP/IP
stack

Server
app

TCP/IP
stack

RFCOMM

Baseband

TCP/IP
stack

L2CAP

Radio

HCI

host

controller
uplink

downlink

Figure 3.1: The measurement testbed (middle) and the protocol stacks of the wearable,
phone, and server (left and right).

The BT performance can thus be affected by multiple factors at different layers as well as

its interplay with TCP/IP and the aforementioned proxying mechanism.

•Wearable OS developers usually keep their implementation proprietary. Unlike Android

for handheld, Wear OS is not open-source.

To address the above challenges, our high-level approach is to develop a holistic

testbed and a suite of measurement tools that comprehensively examine not only each

of the aforementioned components, but also the cross-device, cross-protocol, and cross-

layer interplay on real wearables over real wearable apps’ workload. We next describe our

testbed and measurement toolkit design.

3.2.1 Wearable Networking Testbed

We set up a testbed shown in Figure 3.1 to cover common usage scenarios for a wear-

able to communicate with the external world. They include communicating locally with

the phone over BT, accessing the Internet directly with WiFi/LTE, as well as surfing the

Internet via the smartphone as the gateway (called the CPROXY mode in Wear OS). Our

20

Table 3.1: Mobile devices used in our experiments.

Smartwatch Wear OS Paired Smartphone
Model Version Smartphone Android OS

LG Urbane 1.5 Nexus 5 6.0.1
LG Urbane 2.15 Nexus 5X 7.1.1

LG Urbane 2nd Edition 2.0 Samsung Galaxy S5 5.1.1
LG Urbane 2nd Edition 2.20 Pixel 2 9.0.0

Huawei Watch 2.0 Nexus 6P 7.0.0
Huawei Watch 2 2.9 Nexus 5X 7.1.1
Asus ZenWatch 3 2.0 Nexus 5 6.0.1

LG G Watch R 2.0 Nexus 5 6.0.1

testbed consists of 8 state-of-the-art smartwatches listed in Table 3.1. All of them support

BT and WiFi while some higher-end watches such as LG Urbane 2nd Edition and Huawei

Watch 2 support LTE as well. The OSes we study include the latest release (Wear OS

2.20 released in December 2018) as well as the older Android Wear OSes 2.x and 1.x.

Our measurement findings apply to all OSes unless otherwise mentioned. The Internet

server we use is equipped with a quad-core 3.6GHz CPU and 16GB memory, running

Ubuntu 16.04. We run on the testbed the workload generated by our measurement tools

(described shortly) and real apps that perform bulk data transfer, constant bitrate transfer,

and real-time streaming. We also employ a Samsung SNH-V6414BN SmartCam to stream

real-time video to smartphones and smartwatches.

3.2.2 The Wearable Network Measurement Tools

Given a lack of tools for measuring and analyzing wearable network performance es-

pecially over BT, we also develop a suite of tools to fill this gap. They consist of software

programs for both active and passive measurements. We will use them to conduct carefully

crafted black-box testing without requiring the OS source code. This is to our knowledge

21

the most comprehensive toolkit for wearable networking performance analysis and diag-

nosis.

For active measurements, we develop a custom server application running on the server

and a custom client app running on the wearable. Supporting all aforementioned commu-

nication paradigms, the client and server apps can exchange data using two traffic patterns:

bulk data transfer and constant bitrate over the uplink (from the wearable), downlink (to

the wearable), or both. Our application also allows automatic reconnection upon network

failure for testing the handover support, an important feature needed for wearables due to

their short BT range (§3.5).

For passive measurements, we collect both WiFi and BT traces on multiple entities

(phone/wearable/server). The BT trace is captured at both the host-controller interface

(HCI, using btsnoop log) and the OS (using tcpdump), and contains both the data packets

and the BT control messages. In addition to the network traces, we collect the network

state and signal strength information to understand their impact on network performance.

We also develop a tool that can instrument different components of the packet transmis-

sion/reception pipeline in the OS kernel to identify the performance bottleneck for the

end-to-end data delivery (§3.3.2).

Compared to prior measurement studies, our measurement and instrumentation tech-

niques are comprehensive in that they cover multiple entities (wearable, phone, server),

protocols (BT, WiFi), and instrumented layers (HCI, OS, TCP, App). Note this may

not be the case for many prior works. For instance, some previous studies on smart-

watches [103, 157] collect BT traces only at HCI, incurring various limitations such as

inaccurate goodput measurement (due to lower-layer padding) and not being able to sep-

22

arate individual application streams from the multiplexed traffic captured at HCI. Some

other methods [81, 140, 71] extract the RTT from only one side, and are therefore inca-

pable of inferring the end-to-end RTT when a wearable–server connection is split by a

phone when the CPROXY mode is used. Table 3.2 lists all types of data collected by our

toolkit. The runtime CPU overhead of collecting those types of data is less than 3% on our

wearables.

The collected data will be analyzed offline. Given a lack of tools to decode BT mes-

sages, we follow the BT specification [21] to build a tool that can parse the BT traffic

to extract both the user payload and control messages. In addition, this offline tool can

perform various types of correlation analysis on different data sources, including cross-

technology (e.g., WiFi vs. BT), cross-device (e.g., wearable vs. phone), and cross-layer

(e.g., app performance vs. BT radio state) correlation analysis. Our toolkit is written in

about 3,000 LoC using C++, Java, and Python. We have open-sourced the entire toolkit

on GitHub [25].

Leveraging the above measurement infrastructure, we next answer the following im-

portant research questions.

• How does the smartphone gateway impact the performance?

• How does the network selection policy affect the tradeoff between performance and

energy consumption?

•What is the performance when a network handover occurs?

23

Table 3.2: Data collected by our measurement toolkit.

Category Data Item Method Source

Watch-side

BT HCI trace
Callback

btsnoop log
BT and WiFi packet trace tcpdump

BT RSSI
Poll (0.2s) Wear OS API

BT and WiFi network state

Phone-side

BT HCI trace

Callback

btsnoop log
TCP/IP packet trace tcpdump

kernel packet transmission events Kernel log
BT packet trace Android log

Server-side packet trace Callback tcpdump

3.3 Impact of Smartphone Proxying

As mentioned earlier, a paired smartphone gateway plays a critical role in wearable

networking. In this section, we study the performance impact of the CPROXY . Recall

that typically residing on a paired phone, the CPROXY splits an end-to-end client-server

connection into a server-phone TCP connection and a phone-wearable BT RFCOMM con-

nection, while being transparent to both the wearable-side and server-side apps. Because

of the two heterogeneous links, the CPROXY needs multiple buffers at various layers, such

as the receive buffer in the TCP/IP stack, the app-layer buffer, and the transmission buffers

in the BT RFCOMM stack. These buffers, along with other existing in-network and on-

device buffers, can potentially cause “bufferbloat” that inflates the end-to-end delay. This

is particularly undesired for real-time traffic with low latency requirements.

3.3.1 Substantial Bufferbloat in CPROXY

We begin with characterizing the overall end-to-end latency under the CPROXY mode.

Specifically, we measure the one-way delay (OWD) from the server to the wearable, an

24

 0

 8

 16

 24

 32

 40

 0 40 80 120 160

L
a
te

n
c
y
 (

s
)

Time (s)

Bulk download
CBR/1.5Mbps

CBR/1Mbps
CBR/500kbps

((a)) E2E delay over time.

 0
 4
 8

 12
 16
 20
 24
 28
 32

Bulk
DL

1.5
M

bps

1M
bps

500kb
ps

L
a
te

n
c
y
 (

s
)

((b)) E2E delay distribution.

Figure 3.2: E2E delay of bulk transfer and CBR traffic (LG Urbane paired with Nexus 5X,
normal RSSI).

important performance metric for real-time applications. To emulate the real-time traffic,

we use the CBR traffic with three rates as the workload: 1.5Mbps, 1Mbps, and 500kbps.

For comparison, we also measure the OWD of bulk data download without a rate limit.

For each sending rate, the server sends data to the wearable for at least 160s. The

OWD from the server to the wearable is an important performance metric for real-time

applications. It is continuously measured as the difference between the transmission and

the reception time of each byte. Before each experiment, we connect the wearable through

a USB cable to the server, and use a custom program we developed to synchronize their

clocks.

Figure 3.2 shows the OWD of CBR traffic and the bulk download from the server

to an LG Urbane Watch paired with a Nexus 5X over one representative measurement.

For CBR traffic whose data rate is much lower than the BT bandwidth, we still observe

fluctuating OWD over time, with the standard deviation being 324ms (99ms) for 1Mbps

25

(500kbps). When the CBR rate becomes higher, e.g., at 1.5Mbps, the OWD inflates to

an unacceptably high level, with the median delay being 20.1s (up to 28.6s). For bulk

download, its median OWD further increases to 29.0s. We also observe high delays on

other combinations of watches and phones we have. Recall from §6.1 that many wearable

apps incur high-bitrate real-time traffic, such as real-time camera streaming, HD VoIP, and

real-time screen projection [10]. The high OWD will incur unacceptable QoE for such

apps.

3.3.2 Identifying the Root Cause

We now seek to understand the root cause of the high OWD under the CPROXY mode.

The multiple buffers scattered in the end-to-end data transmission pipeline present a chal-

lenge towards our analysis. We thus dissect the end-to-end (E2E) delay by instrumenting

at multiple entities and layers. Specifically, we use our toolkit (Table 3.2, §3.2) to collect

BT and TCP/IP traces at several locations, and then perform offline analysis to obtain for

each byte various timestamps as illustrated in Figure 3.3. (1) tS: from the tcpdump trace

captured on the server when the data is being transmitted out; (2) tIR from the tcpdump

trace captured on the smartphone when the data is received in the smartphone OS kernel;

(3) tA: from the kernel log captured on the smartphone when the data is copied to the proxy

app’s userspace (by instrumenting tcp input.c); (4) tBS: from the Android log captured

on the smartphone when the proxy app sends the data to the BT stack (by instrumenting

BluetoothSocket.java); (5) tBR: from the tcpdump trace on the wearable when the

data is delivered to wearable OS. The end-to-end latency can thus be broken down into

four parts: the transmission delay from server to phone (d1 = tIR − tS), the buffering

26

d3

tS

tIR

tA

tBS

tBR

d1

d4

Smartphone

App Server

Smartwatch

Ethernet intf Tx

WiFi intf Rx

d2

Data
transmission

flow
TCP/IP

recv

Proxy
app

BT stack Tx

BT stack Rx

((a)) E2E delay breakdown
methodology.

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160
L
a
te

n
c
y
 (

s
)

Time (s)

d1
d2
d3
d4

((b)) Breakdown of E2E delay for CBR traffic
at 1.5Mbps.

Figure 3.3: E2E delay breakdown of CBR traffic in CPROXY mode (LG Urbane with
Nexus 5X, normal BT RSSI).

time in the TCP/IP stack on the phone (d2 = tA − tIR), the buffering time in the proxy

app buffer on the phone (d3 = tBS − tA), and the delay of BT transfer from the phone to

the wearable (d4 = tBR − tBS). Note that d2 is dominated by the delay incurred by the

TCP receive buffer on the smartphone. The IP queueing delay at the qdisc is confirmed

to be very small. Also, we separate d2 and d3, both residing on the smartphone, due to the

difference between their associated buffers: the TCP buffer incurring d2 is maintained at a

per-connection basis, whereas the proxy app buffer incurring d3 is shared by all wearable

app streams, and is therefore more likely to cause potential cross-traffic interference.

Measurement Results. Figure 3.3(b) shows the OWD breakdown for CBR traffic at

27

Table 3.3: Impact of TCP receive buffer size on the severity of CPROXY bufferbloat on
different phones.

Nexus 5X SGS5 Nexus 5
tcp rmem max 8,291,456 4,525,824 2,097,152
rmem max 8,388,608 2,097,152 2,097,152

d2: TCP/IP recv (s) 26.1 ∼ 28.6 4.0 ∼ 5.5 4.1 ∼ 5.7
Total E2E OWD (s) 27.9 ∼ 30.1 5.7 ∼ 6.7 5.9 ∼ 7.0

1.5Mbps for an LG Urbane watch paired with a Nexus 5X, over a representative experi-

ment. We observe that the buffering delay in the TCP/IP stack (d2) accounts for almost

the entire OWD. Recall that d2 is dominated by the delay incurred by the TCP receive

buffer (recvBuf). We thus explicitly confirm how the recvBuf size affects the OWD on

three smartphones in Table 3.3. The effective recvBuf size is determined by the minimum

value of two configurable OS parameters rmem max and tcp rmem max (both are in bytes).

As shown, a phone with a smaller recvBuf indeed experiences a smaller d2 as well as a

lower overall E2E OWD. However, setting the recvBuf to be too small will throttle the

TCP congestion window and hence the throughput – a tradeoff that is difficult to balance.

While the bufferbloat problem has been well studied in different contexts such as

broadband wired network [141], cellular download [81], and cellular upload [71], we high-

light two differences that make bufferbloat in the CPROXY mode a unique problem. First,

due to the highly asymmetric bandwidth of the BT/BLE link and the WiFi/cellular link,

the CPROXY-side bufferbloat will always occur when the WiFi/cellular link throughput

becomes higher than ∼1.1Mbps. The above breakdown analysis indicates that the TCP

recvBuf configuration does not take into account such bandwidth asymmetry. Second, the

lower-layer BT state machine also affects the severity of the bufferbloat. In particular, its

Sniff Mode slows down the BT data transmission and thus causes the proxy-side buffer to

28

 0

 10

 20

 30

Download OWD Download thrput Telegram delay
 0

 1

 2

 3
D

e
la

y
 (

s
)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Default
Bufferbloat Mitigation

Figure 3.4: CPROXY bufferbloat mitigation for bulk download and messaging with com-
peting traffic (LG Urbane, Nexus 5X).

further build up. This is confirmed in Figure 3.3(b) where d4 exhibits periodical spikes,

whose occurrences well match those of entering the Sniff Mode.

3.3.3 Mitigating the CPROXY Bufferbloat

We now consider how to mitigate the CPROXY bufferbloat. In the literature, numer-

ous bufferbloat mitigation solutions have been proposed, but we found it is difficult to

directly apply them in our context due to various practical or fundamental issues. For ex-

ample, blindly reducing the TCP recvBuf may throttle the congestion window and thus

the throughput [71]; delay-based TCP congestion control [49, 101] is not aware of the BT

protocol stack between the phone and the wearable; various Active Queue Management

(AQM) techniques [110, 121] only regulate the qdisc buffering, and may need substantial

modifications for tackling the CPROXY-side bufferbloat.

Developing a full-fledged bufferbloat mitigation solution for wearable networking with

heterogeneous links is beyond the scope of this study. Here, we propose a simple, practical,

yet effective solution to demonstrate the need for coordinating the heterogeneous links as

well as the substantial performance improvement. Note that other (better) solutions may

29

exist.

In our scheme, the phone maintains a virtual queue (shared by all apps) whose size

increases as bytes arrive from the remote server and decreases upon the reception of BT

ACKs. Based on the virtual queue size, our scheme dynamically throttles the connection

between the phone and the server (if needed) to bound the actual buffering delay. Specif-

ically, we maintain two thresholds, an upper bound QUB and a lower bound QLB. The

throttling is enabled when the buffer level exceeds QUB, and is disabled when the buffer

level drops below QLB. QUB is set to BW × (1 − ε)T where BW is the current esti-

mation of the BT link bandwidth, T is the upper bound of the tolerable queueing delay

(configurable based on the app’s QoE requirement), and ε controls the aggressiveness of

our scheme. QLB is set to BW × (1 − 2ε)T so that both thresholds are proportional to

the BT link bandwidth. We empirically use T=1s, ε=0.3, and set the throttling rate to BW
2

.

Note that BW may vary over time.

Evaluation. We implement the above scheme using our toolkit (§3.2) for performance

monitoring and Linux tc for bandwidth throttling. We then conduct controlled experi-

ments to evaluate its effectiveness. We consider two workloads: TCP bulk download and

receiving short messages delivered by the Telegram messaging app [12] when there is an

on-going concurrent transfer. The latter scenario may happen when, for example, a user

receives a message when a media player is performing audio or video streaming in the

background. We repeat both experiments 10 times under a normal network condition (-60

dBm BT RSSI) on an LG Urbane smartwatch paired with a Nexus 5X phone. Figure 3.4

measures the OWD and throughput for the bulk download, as well as the per-message

delivery time for Telegram messaging. As shown, for bulk download, our scheme sub-

30

stantially reduces the packet OWD by 78 times with less than 3% of throughput reduction.

Our scheme also reduces the Telegram message delivery delay by 76%.

3.4 Performance & Energy Impact of Network Selection

Today’s wearables are usually equipped with multiple network interfaces. For exam-

ple, most smartwatches have WiFi and BT/BLE, and advanced editions even have the

cellular interface [87]. Typically, the Wear OS employs a static interface selection policy:

all 7 smartwatches except Huawei Watch 2 use BT (through the CPROXY) when both BT

and WiFi networks are available. At first glance, this simple policy is energy-wise benefi-

cial as BT is known to be more power-efficient than WiFi. Interestingly, Huawei Watch 2,

which uses a custom Wear OS, actually prefers WiFi over BT, leading to potentially high

energy consumption. In this section, we quantitatively analyze how the network selection

policy affects the important tradeoff between performance and energy consumption, using

real-world workload on COTS smartwatches.

3.4.1 Impact of Single-path Interface Selection

We first study the single-path interface selection, i.e., using only one interface at any

given time. We consider four real-world workloads: (a) downloading a wearable app of

16MB from the Google Play Store, (b) streaming a 2-min YouTube video to a watch, (c)

delivering a short message by Telegram, and (d) streaming from an IP-camera in real time

for 150s using the TinyCam app [14]. For these diverse workloads, we employ the app

download time, the video throughput, the message delivery delay, and the real-time data

streaming rate as the QoE metrics, respectively. We calculate the energy consumption

31

 0
 5

 10
 15
 20
 25
 30

 0 60 120 180

Bet
te

r

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(a) App download time(s)
 in Play Store

Static: use BT

 20
 25
 30
 35
 40
 45
 50

 200 400 600

Bet
te

r

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(b) Youtube VOD
throughput(kbps)

Static: use WiFi (Good)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 300 600 900

Bet
te

r

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(c) Message delivery
delay(ms) in Telegram

Static: use WiFi (Fair)
 30

 60

 90

 120

 100 200 300

Bet
te

r

E
ne

rg
y

co
ns

um
pt

io
n

(J
)

(d) Throughput(kbps)
of TinyCam Pro

Adaptive: based on real-time
 throughput dynamics

Figure 3.5: QoE-energy tradeoffs across four real workloads using different interface se-
lection policies (LG Urbane Watch, normal BT RSSI, Good/Fair WiFi network condition).

using the energy model developed by [103]. Regarding the network selection policy, we

consider the following four options: (1) always using BT, assuming a good network condi-

tion (-50 dBm RSSI), (2) always using WiFi, assuming a good network condition (10Mbps

BW, 10ms RTT), (3) always using WiFi, assuming a fair network condition (5Mbps BW,

20ms RTT), and (4) an approach that dynamically switches between BT and WiFi as to be

detailed in §3.4.2.

For each combination of the workload and network selection policy, we repeat the ex-

periment 10 times. We show the results in Figure 3.5 to illustrate the tradeoff between QoE

and energy consumption. Each plot in Figure 3.5 corresponds to a workload; each plot has

four clusters corresponding to the four interface selection policies described above. Ide-

ally, we prefer a cluster to be located in the bottom-left corner with a good QoE (the X

Axis) while incurring a low energy overhead (the Y Axis). Our key observation from Fig-

ure 3.5 is that, depending on the app workload, the preferred interface selection policy

differs. For (a) and (b), given their large data sizes, WiFi offers both lower energy con-

sumption and a better QoE due to its higher throughput and higher energy efficiency (i.e.,

joule per byte) compared to BT. In contrast, for (c), WiFi only marginally reduces the mes-

sage delivery latency while incurring considerably higher energy consumption compared

32

to BT. This is because the small message size and WiFi’s high base power consumption

lead to a higher joule per byte compared to BT. For (d), the workload consists of CBR

traffic that BT can already sustain. This makes BT more energy-efficient than WiFi, which

has a higher base power consumption and bandwidth under-utilization.

The energy results in Figure 3.5 only consider the energy consumed on the wearable.

In addition, using BT incurs additional energy footprint on the paired smartphone that acts

as a proxy forwarding traffic between the wearable and the server. The smartphone needs

to utilize both its WiFi interface (with the server) and BT interface (with the wearable). To

quantify such an energy overhead, we focus on the “static: use BT” scenario in Figure 3.5,

and apply the smartphone WiFi [53] and BT [68] power models to calculate the overall

smartphone-side radio energy consumption to be 121.984 J, 125.76 J, 0.524 J, and 157.2 J,

respectively, for the four workloads. This non-trivial energy overhead on the smartphone

makes it more complex to make interface selection decisions for the wearable.

The above results indicate that the static interface selection policy, which strictly

prefers one interface over another as employed by almost all of today’s smartwatches,

does not always provide a preferred tradeoff between performance and energy consump-

tion. The results suggest the need for a more adaptive interface selection policy. In §3.4.2,

we will describe such an example corresponding to the “Adaptive” cluster in Figure 3.5.

3.4.2 Multipath Performance on Wearables

Multipath transport, which simultaneously uses multiple network interfaces, is becom-

ing popular on smartphones, as fueled by standardized solutions such as MPTCP [8]. De-

spite a lack of prior work, we do believe that multipath transport can also benefit wearable

33

networks in two aspects: (1) enhancing the throughput by aggregating bandwidth, and (2)

facilitating seamless handover or fast interface switch. We examine the first aspect now

and address the second one later.

We consider a common usage scenario involving a WiFi path and a BT path. In the

wearable context, we do not expect multipath to be always used due to energy constraints.

Instead, a wearable can adaptively enable multipath (e.g., enhancing BT using WiFi) to

meet user-specified deadlines or to prevent stalls for multimedia streaming [75]. Note that

maintaining active WiFi connectivity incurs negligible power consumption due to WiFi’s

deep power-saving mode [88, 45, 126].

A Multipath Framework for Wearables. The Wear OS by default does not support

multipath transport. Also, it is difficult to directly use MPTCP because BT does not speak

TCP/IP by default. We thus make a methodological contribution of adding the multipath

transport feature (over WiFi and BT) to the Wear OS. Specifically, we first leverage Con-

nectivityManager in the Wear OS to keep WiFi active when BT is also on. We then use the

Linux socket API and Bluetooth API to build a custom multipath framework. In our frame-

work, each path is a standalone TCP connection. The WiFi path is established directly

between the wearable and the server1, and the other path is wearable–CPROXY–server

where the wearable–CPROXY segment is over BT. On the sender side, the original data

stream is split into data chunks that are distributed onto the paths. We add to each chunk

a custom header containing the metadata such as the size and global sequence number of

the chunk. The receiver side then uses the metadata to reassemble the received chunks into
1In our experiments, to make our multipath framework fully transparent to the original server, we actually
run the server-side code of our framework on an in-cloud proxy. The proxy–server path is verified not to be
the performance bottleneck.

34

 0

 400

 800

 1200

 0 15 30 45 60T
h
ro

u
g
h
p
u
t(

k
b
p
s
)

Time(s)

BT
2.4GHz WiFi

 0

 400

 800

 1200

 0 15 30 45 60T
h
ro

u
g
h
p
u
t(

k
b
p
s
)

Time(s)

5GHz WiFi

Figure 3.6: BT-WiFi multipath under 2.4/5 GHz WiFi (Nexus 5, normal BT/WiFi RSSI).

the original data stream. To provide application transparency, we use netfilter [13] to

transparently intercept application TCP connections on the wearable side. We also imple-

ment three off-the-shelf scheduler algorithms that determine how to distribute the traffic

onto the paths: MPTCP’s default minRTT scheduler [119], a round-robin scheduler, and a

redundant scheduler. The first two schedulers help improve the throughput by aggregating

the bandwidth of all paths; the third scheduler helps reduce the latency by sending dupli-

cate data to all paths. Our system consists of around 10K lines of Java and C/C++ code. It

is also open-sourced on GitHub [24].

Energy Overhead. We measure our multipath framework’s energy overhead using a

Monsoon power monitor [19]. Compared to the base power level of an LG Urbane Watch

with the screen being turned off, our framework incurs only 0.6% of additional device-

level power consumption. Some use cases such as fast interface switch further require our

framework to keep the WiFi interface turned on and maintain a long-lived TCP subflow.

We find that doing so incurs a device-level energy overhead of 6.2% based on an 8-hour

measurement, using a 4-minute keep-alive timer as suggested by the RFC [48].

Performance Aggregation Results on Wearables. Leveraging our wearable multi-

35

path framework, we conduct experiments on an LG Urbane paired with a Nexus 5X to

assess the multipath performance over WiFi and BT. Other watch and phone pairs yield

qualitatively similar performance. We focus on two types of improvements brought by

multipath: the latency reduction when the redundant scheduler is used, and the bandwidth

aggregation when the minRTT scheduler is used. For the latency reduction, we observe

positive results. For example, using the redundant scheduler helps reduce the average

RTT by 29% for CBR traffic at 500kbps (WiFi: 10Mbps BW, 10ms RTT; BT: -50 dBm

RSSI). However, we find that the bandwidth aggregation results are much worse than our

expectation. Ideally, for long-lived data transfers, the aggregated throughput achieved by

multipath should be the sum of all paths’ data rate. In reality, we observe that the band-

width gain from multipath is far less than that. For example, when we throttle the WiFi and

BT path’s bandwidth to both 1Mbps, the multipath bandwidth gain compared to a single

path is only 7%.

We realize the reason for the above unexpected results are multifold and cross-layer.

For example, at the transport layer, we need a better scheduler that takes into account

the heterogeneity between WiFi and BT. Very importantly, we also discover another key

reason rooted deeply at the PHY layer: all our smartwatches support only 2.4 GHz WiFi

that operates at the same frequency band of BT. The WiFi and BT thus cause interference

when simultaneously transmitting data. This is confirmed by the following experiment: a

Nexus 5 smartphone performs bulk data transfers over BT and WiFi at the same time (the

phone supports both 2.4 GHz and 5 GHz WiFi), with the WiFi throughput being capped

at 1Mbps. The left (right) plot in Figure 6.4 shows the BT and 2.4 GHz (5 GHz) WiFi

throughput measured on the phone. As shown, compared to 5 GHz WiFi, when 2.4 GHz

36

WiFi is used, the BT and WiFi throughput drops by 47% and 7%, respectively. Overall,

our findings suggest the need for introducing 5 GHz WiFi on COTS wearables for reducing

the WiFi-BT interference, in order to facilitate multipath transport over BT and WiFi.

Fast Interface Switch on Wearables. Recall from the beginning of this subsection

that another important use case of multipath transport is to support fast interface switch,

which seamlessly and transparently migrates a TCP connection from one path to another

path without requiring re-establishing the connection. We utilize this feature to develop an

adaptive interface selection policy corresponding to the “adaptive” cluster in Figure 3.5.

Specifically, assuming an on-going download (the upload case is similar), our scheme

uses BT over the CPROXY mode by default. Meanwhile, it monitors the number of

bytes buffered at the CPROXY by tracking the incoming and outgoing bytes’ to/from the

CPROXY . When the buffer occupancy level exceeds B bytes for T1 seconds (we empiri-

cally choose B=10KB and T1=500ms), we switch to WiFi as BT does not drain the buffer

fast enough. The switch from WiFi back to BT is triggered by a low WiFi throughput (we

use ≤500kbps) for T2 seconds (we use T2=5 seconds).

We implement this adaptive interface selection strategy using our developed wearable

multipath framework. The experimental results in Figure 3.5 suggest that it outperforms

the static policies over all four workloads. In addition, we will apply multipath to improve

the BT-WiFi handover performance in §3.5.

3.5 BT-WiFi Handover Performance

In previous sections, we consider the scenario where both the wearable and its paired

phone are stationary. In reality, either device can be mobile. Consider a typical mobil-

37

ity scenario where a user wearing a smartwatch walks away from her paired smartphone

placed on a table. As the user walks away, the wearable will lose its BT connectivity. In

this case, ideally the wearable needs a seamless handover from BT to WiFi, an important

feature that is missing on today’s wearables as we will reveal in this section.

3.5.1 Wearable Handovers are Common

Although the theoretical BT range can be up to 100m [21], in real-world scenarios the

range is much shorter due to attenuations incurred by obstructions or vendors’ intentional

reduction of the radio power for saving energy. For example, on the Samsung Galaxy Gear,

the effective BT range is less than 2 meters based on our measurement. Due to such a short

range, network handovers are likely to occur very frequently when a wearable moves away

from the paired smartphone. To understand how often handovers occur “in the wild”, we

conduct an IRB-approved user study involving 10 voluntary users each wearing an LG

Urbane Watch. The 10 participants consist of 4 students, 3 faculty members, and 3 staff

members in a large U.S. university. 5 of them are female. We develop a data collector that

infers handover events by monitoring the network interfaces’ states (the method will be

described in §3.5.2). The user study lasted for two months in 2017. During the daytime (9

AM – 9 PM) across all users, the median handover frequency is once every 1.6 hours. For

some users, handovers can happen as frequently as every 7 minutes. The results suggest

the need for properly handling handovers to provide smooth network switches.

38

3.5.2 Poor Wearable Handover Performance

Motivated by the user study, we quantify the handover performance on state-of-the-art

wearables through controlled experiments.

Monitoring the Network State. A prerequisite for measuring handovers is to monitor

the network state change. We capture the state of each network interface from the Wear

OS’s ConnectivityManager in the background. The state information includes whether the

network interface is up, i.e., available or not, and whether the interface provides actual net-

work connectivity, i.e., connected or not. For example, when a smartwatch is associating

with the WiFi AP, its WiFi is available but not yet connected.

Experimental Setup. Our experiment focuses on understanding handovers from BT

to WiFi (handovers from WiFi back to BT can be studied using similar methods). We

keep both BT and WiFi enabled on the wearable (so both interfaces are available) and

let the Wear OS use the default network management policy. We use two wearable apps

to generate the traffic workload. The first is a simple app developed by us (conveniently

called RTApp). It represents a typical wearable app developer’s best-effort user-space

implementation of the handover logic, which requires the synergy between both the app

and the OS. Our app emulates the same traffic pattern as the tinyCam app (to be detailed

soon), i.e., downloading a data chunk of 3KB every 160ms from our server, generating

150kbps downlink traffic over TCP. When a handover occurs, the old interface (BT) will

lose its connectivity and shortly after that, the connectivity will appear on the new interface

(WiFi). At this time (detected through polling), our RTApp will establish a TCP connection

over the new interface and resume the data transfer.

The second app we test for handover is the tinyCam security camera app [14]. It

39

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 50

 100

 150

 200

 250

 300

P1 P2 P3 P4

BT-to-WiFi handover

Y
1

:
D

e
la

y
 (

s
)

Y
2

:
T

h
ro

u
g

h
p

u
t

(k
b

p
s
)

Frame OWD (Y1)
Bluetooth throughput (Y2)

WiFi throughput (Y2)

No network

Bluetooth conn’ed

WiFi not conn’ed

WiFi conn’ed

 0 20 40 60 80

N
e

tw
o

rk
 s

ta
te

Time (s)

Figure 3.7: Impact of BT-WiFi handover on QoE of tinyCam app (Huawei Watch, normal
BT/WiFi RSSI).

is a popular, professionally designed commercial app that requires continuous network

connectivity to stream real-time video captured from an IP camera to a wearable. We

perform a black-box test for this app to reveal its handover performance. We define two

QoE metrics for the tinyCam app: (1) the frame one-way delay (OWD), which is the time

to transmit a video frame from the security camera to the watch (including the encoding

and rendering time)2, and (2) the downlink throughput on the watch.

Measurement Results. The top plot in Figure 3.7 shows the QoE metrics of the tiny-

Cam app during a typical BT-WiFi handover: the frame OWD, the BT throughput, and

the WiFi throughput. As shown, the app QoE severely degrades during the handover. At

around t = 6s, the app stops receiving the video data from the SmartCam and the BT

throughput drops to zero. The video transmission resumes over WiFi at around 72.5s,

2To measure the frame OWD, we use a phone to display continuously increasing timestamps from a stop-
watch app as the input stream to the SmartCam. The tinyCam app then shows the captured timestamp on
the watch. The frame OWD can thus be calculated by comparing the timestamps when the same stopwatch
frame appears on the phone and watch, whose timestamps are synchronized beforehand.

40

with high frame OWD observed at the beginning. We repeat this experiment for 10 times

and the average “blackout” period during which the app does not receive any video data

is surprisingly 70.0s. We then run the experiment under the same setting for our RTApp,

whose average handover delay is measured to be 38.6s across 10 runs (we will explain the

difference shortly). We further conduct the experiment on three different smartwatches

and observe high handover delays on all of them as shown in Table 3.4. The results show

that handovers are poorly handled by the Wear OS and/or the wearable app.

3.5.3 Root Cause of the High Handover Delay

To understand the root cause of the high handover delay, we break it down into four

phases based on the captured network state information, as shown in the bottom plot in

Figure 3.7: (P1) BT is still connected but the data cannot be actually transmitted due to

poor signal strength, (P2) no network is available, (P3) the WiFi AP association period, i.e.,

WiFi is available but not connected, and (P4) WiFi is connected but there is no application

data transmission. The methodology for the breakdown analysis is as follows. For each

network, our measurement tool (Table 3.2, §3.2) logs whether the network is ready to use

by applications, i.e., available or not, and whether the interface provides actual network

connectivity, i.e., connected or not, through Wear OS APIs. We then group both networks’

logged states as shown in Figure 3.7.

Our analysis reveals two sources of delay that contribute to the overall handover la-

tency: the delay from the Wear OS (P1, P2, and P3), as well as the delay incurred by the

wearable app (P4). We next detail both types.

Delay from the Wear OS. Under the default network management policy of Wear OS

41

based wearables, when BT is connected, WiFi is not available (i.e., its interface is turned

off by the OS) even if the device is under the coverage of both BT and WiFi. In this case,

when the wearable moves away from the BT coverage, the Wear OS needs to: wait until

the BT connectivity is completely lost as its RSSI drops below a threshold (P1), turn on the

WiFi interface (P2), and then perform an AP association (P3). The whole process incurs a

long period of time. Across the 10 runs on an LG Urbane watch, the average duration of

P1, P2 and P3 are 12.9s, 15.5s and 8.3s, respectively, with their total duration accounting

for 52% of the overall handover delay.

Delay Incurred by the Wearable App. We next investigate the wearable app’s behav-

ior during a handover event. In the tinyCam app case, even after WiFi gains its connectivity

(after P3), the app still takes around 33.3s on average before the actual data transfer re-

sumes over WiFi (P4). In contrast, our RTApp only takes 5.6s on average to resume the

data transfer. Such a disparity of the P4 duration causes the two apps’ vastly different

handover duration shown in Table 3.4. In other words, although the handover completes

after P3 from the OS’s perspective, it takes additional time for the app to actually resume

the data transfer (P4). The variation of P4 is very likely attributed to the app logic. Unfor-

tunately, since Wear OS does not provide an API for seamlessly migrating data transfers

between IP-based and non-IP networks, wearable apps need to implement their own data

migration logic at the app layer. Doing so is tedious and challenging for average app

developers.

42

Table 3.4: BT-to-WiFi handover delay on 3 smartwatches for tinyCam app and RTApp
(normal BT/WiFi RSSI).

LG Urbane LG Urbane 2nd HUAWEI Watch
tinyCam 43.1 ± 5.7 s 52.9 ± 8.2 s 70.2 ± 9.7 s
RTApp 28.3 ± 2.6 s 14.3 ± 1.3 s 38.6 ± 5.3 s

3.5.4 Reducing the Handover Delay

We now design and implement a solution that reduces the handover delay. Our basic

idea consists of the following. First, an important reason for Wear OS’s bad handover per-

formance is its reactive nature, i.e., the WiFi connectivity is not established until the BT

connectivity is fully torn down. Our scheme instead predicts a BT-WiFi handover by mon-

itoring the BT channel quality. When the quality drops below a threshold (but BT is still

usable), we proactively establish the WiFi connectivity and perform a handover to WiFi

(assuming the WiFi channel quality is acceptable). Second, we leverage the multipath

framework introduced in §3.4.2 to provide application transparency. Before a BT-WiFi

handover, once the WiFi connectivity is established, the OS adds a new WiFi subflow to

the corresponding TCP connection, and schedules future data to the WiFi subflow. No

modification is needed at the user application, which always sees the same TCP connec-

tion. Third, our scheme further leverages reinjection to facilitate seamless data migration.

Specifically, when it decides to perform a BT-WiFi handover, it also sends all unacknowl-

edged (i.e., “in-flight”) data on the BT path, which may experience long delays due to its

weak channel quality, to the WiFi path. In multipath transport, this is called packet rein-

jection, which trades a small number of redundant bytes for better performance (smoother

handover in our case).

We implement the above design points and integrate them into our wearable multipath

43

framework (§3.4.2). We use the BT RSSI as the BT channel quality metric [143], and

empirically set its threshold for initiating a handover to -66dBm. A future research direc-

tion here is to further leverage the wearable’s motion sensors or acoustic ranging [122]

to precisely track the wearable’s relative position to the phone in order to facilitate more

accurate handover prediction. Using a similar approach, we also implement the handover

mechanism from WiFi back to BT. We take two approaches to prevent oscillations between

BT and WiFi. First, we use the Kalman filter to smooth the RSSI samples [51]. Second,

after a BT-WiFi handover, we require the wearable to stay on WiFi for at least 5 seconds

(a configurable parameter) unless the WiFi connectivity is lost.

Evaluation. We evaluate how our scheme helps accelerate the BT-WiFi handover pro-

cess. The experimental setup is as follows. A user puts her Nexus 5X smartphone in

a typical conference room (5m by 6m) and moves out of the room at a normal walking

speed with a paired LG Urbane smartwatch worn on her wrist. As she walks out of the

smartphone’s BT coverage, the watch will experience a BT-WiFi handover. We use the

two apps introduced in §3.5.2 as the workload: the tinyCam app that streams video con-

tents from our camera in real-time, and our RTApp program that performs CBR streaming

with improved application handover logic. The handover delay is measured using the same

approach for generating Figure 3.7. We compare three handover schemes in Figure 3.8:

“default” is the reactive handover approach used by Wear OS; “on-demand WiFi” corre-

sponds to our proposed scheme where the WiFi connectivity and the multipath subflow are

established in an on-demand fashion based on BT channel quality prediction; “always-on

WiFi” also refers to our scheme, but we always maintain the WiFi connectivity and pre-

establish the WiFi subflow to further speed up the handover. We repeat each experiment 10

44

 0.1

 1

 10

 100

tinyCam RTApp

In
te

rr
u
p
ti
o
n

T
im

e
 (

s
)

Default on-demand WiFi always-on WiFi

Figure 3.8: Reducing the BT-to-WiFi handover delay for tinyCam/RTApp on an LG Ur-
bane paired with Nexus 5X.

times to overcome the randomness incurred by the user’s walking paths. As shown in Fig-

ure 3.8, our scheme is extremely effective: it reduces the handover delay from more than

28s to less than 0.6s (123x and 51x reduction for tinyCam and RTApp, respectively). Note

the Y axis is in log scale. For the “always-on WiFi” variation, the improvement is even

higher (172x and 63x respectively) since the pre-established WiFi subflow allows imme-

diate data transfers, but the cost is a slightly higher radio energy consumption (measured

to be 6.2% as described in §3.4.2) compared to the “on-demand WiFi” variation.

3.6 Summary

This chapter focuses on characterizing and improving the transport management of

wearable networks. Wearable end systems’ recent debut made the mobile Internet more

diverse, bringing new challenges and opportunities for cross-device network transport as

a wearable often relies on a paired mobile phone for Internet access. Experiments on

existing and modified wearable network stacks show that the default Wear OS has network

performance issues, and adding cross-device awareness to network transport management

can improve wearable network performance and application QoE.

45

CHAPTER IV

MPBond: Efficient Network-level Collaboration among

Personal Mobile Devices

This chapter explores how an existing multipath transport protocol, MPTCP, can be

extended to support multiple mobile devices by having cross-device awareness and care-

fully handling the interactions among heterogeneous wireless links facing different mobile

devices. Specifically, we develop MPBond, a distributed multipath transport system that

can be used for efficient network-level collaboration among personal mobile devices such

as smartphones and smartwatches.

4.1 Introduction

It is increasingly common that a user possesses multiple mobile devices. For exam-

ple, despite being a full-fledged computer, a smartwatch naturally needs to pair with a

smartphone; business people oftentimes carry two phones, one for work and the other for

personal tasks [9, 2]; tablets bear large screens and reasonable portability, making them

46

good companions of smartphones.

From the networking perspective, smart mobile devices are equipped with diverse net-

work interfaces such as cellular, WiFi, and Bluetooth (BT), making them capable of com-

municating with remote Internet servers as well as other local devices. We make a key

observation that despite such a mature wireless hardware support, the potential of the de-

vices’ network interfaces that can operate collaboratively is far from being fully exploited.

In this chapter, we bridge this critical gap by bringing networking software innovations to

the smart mobile device ecosystem. Specifically, we develop MPBond, a holistic system

allowing multiple personal mobile devices to collaboratively fetch content from the Inter-

net. MPBond enables a wide range of use cases that today’s mobile/wearable OSes do not

support or provide optimal performance for:

• A smartwatch can assist its paired smartphone with downloading data over cellular

(many COTS smartwatches today have direct cellular access). This leads to a much higher

throughput compared to using a single device.

• WiFi networks offered by public places such as hotels often impose per-interface rate

limit. Such a limit can be naturally overcome by multi-device collaboration since each

participating device has its own WiFi interface.

• Two smartphones can share each other’s LTE bandwidth. In other words, their cellu-

lar interfaces are “combined” by MPBond and can be used by apps as a single virtual

interface.

• Wearables can be placed at a spot with good signal and act as WiFi/LTE “range exten-

ders”. When running low on battery, a smartphone can offload power-hungry LTE access

to a smartwatch paired over an energy-efficient BT link.

47

By closely examining the above use cases, we notice that all of them can be realized

under the multipath transport scheme, where user data can be distributed over multiple

subflows (paths).

Unlike traditional multipath paradigms such as MPTCP [130], MPBond needs to sup-

port distributed multipath where subflows traverse different devices. Specifically, MP-

Bond involves one primary device, where the client app runs, and multiple helper devices,

which boost the primary’s network performance. Without loss of generality, for the first

use case above, the traffic from the primary is intercepted by the MPBond service, which

distributes part of the traffic to the helpers over local wireless links (called pipes), and

transmits the remaining over the primary’s cellular interface. The helpers then forward the

traffic to the remote server through their own cellular interfaces. The reverse (downlink)

direction works in a similar way: the server or an MPBond-capable proxy distributes the

content to the primary and helpers. The primary merges all the received parts and delivers

the content to the client app.

The above scheme provided by MPBond appears to be intuitive. However, we face

numerous challenges when designing and implementing the system. How to properly

manage heterogeneous devices and local wireless links? How to strategically leverage the

helper devices to improve the network performance? How to design a robust multipath

scheduler that considers both remote paths and local pipes, with the latter being unique in

MPBond? How to expose appropriate interfaces to users and applications? How to make

the whole MPBond system transparent to client and server applications? We next highlight

our key design aspects.

• As a distributed multipath transport framework, MPBond allows a subflow to traverse

48

a helper, and enables helpers to exchange data with the primary device over pipes. We

develop a scheme to flexibly manage the pipes using different wireless technologies such

as WiFi and BT. To support distributed multipath and pipes, we extend MPTCP’s control

plane protocol to coordinate the primary and helpers (§4.3.1).

• MPBond splits any subflow into two TCP (sub)flows, one between the primary and the

helper, and the other between the helper and the server. TCP splitting benefits end-to-end

TCP sessions that span heterogeneous networks as the case of MPBond (the Internet and

the pipes). More importantly, doing so allows buffers to be set up between the split flows,

which effectively mitigate the negative performance impact incurred by the fluctuating

network condition on either network. Although TCP splitting is not new [156, 79], we

take this concept a step further by applying it to helper devices in the context of mobile

multipath transport (§4.3.2).

•We develop a Pipe-Aware Multipath Scheduler (PAMS) that strategically distributes traf-

fic onto multiple subflows. Tailored to MPBond, PAMS consists of three key components:

(1) a subflow latency estimation module that considers pipes, helper-side buffering, and

heterogeneous networks; (2) an algorithm that makes judicious scheduling decisions to

ensure low delivery latency for each packet; and (3) a smart reinjection scheme that deals

with fluctuating network conditions and possible failures over pipes (§4.3.3).

•MPBond allows users to flexibly specify various policies such as granting per-app usage

permission, limiting per-device resource consumption, and prioritizing traffic (§4.3.4).

We implement MPBond on commodity mobile devices including Android smart-

phones and smartwatches. We showcase that most of MPBond logic can be implemented

in the user space while maintaining full application transparency and good performance

49

(§6.4). We then systematically evaluate MPBond over real mobile networks. Our key

evaluation results consist of the following (§6.5).

• Compared to kibbutz [111] and COMBINE [46], two state-of-the-art systems, MPBond

reduces the energy consumption by 10%-57% under a wide range of network conditions

with various workloads (file download, video streaming).

• Under varying and in-the-wild network conditions, MPBond reduces the file download

time by 13%-35% compared to kibbutz and COMBINE. The reduced download time also

translates to lower energy consumption.

• We show the need of three collaborative mobile devices to deliver good QoE for

bandwidth-hungry 360-degree video streaming. We also demonstrate the effectiveness

of MPBond’s dual mode.

Overall, MPBond is an efficient and practical system that innovates network-level col-

laboration among personal mobile devices through applying the concept of distributed

multipath. Compared to other cross-device data sharing schemes [111, 46, 134], MPBond

offers several advantages including better performance as boosted by the PAMS scheduler,

application transparency, and more flexibility (§4.2.4). Also none of the above studies has

considered or experimented using wearable devices. Our contributions made in this work

consist of novel use cases, the MPBond design/implementation, and comprehensive eval-

uation in real-world settings. Note that MPBond is open-source on GitHub [29].

50

 0
 10
 20
 30
 40
 50
 60
 70
 80

A T S AT AS TS ATS

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

((a)) Office

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

A T S AT AS TS ATS

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

((b)) Residence

 0

 20

 40

 60

 80

 100

 120

A T S AT AS TSATS

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

((c)) Grocery Store

 0
 5

 10
 15
 20
 25
 30

 0.5m 2m 5m

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Device distance

LOS
NLOS

Figure 4.1: Throughput distributions of different devices (carriers) and
their combinations at 3 locations. (A: LG Urbane Watch 2 with AT&T;
T: Pixel 2 smartphone with T-Mobile; S: Samsung Galaxy S9 phone with
Sprint)

Figure 4.2: WLAN
throughput from LG Ur-
bane Watch 2 to Pixel 2
smartphone under differ-
ent settings.

4.2 Motivation

4.2.1 Incentives to Carry Multiple Devices

It is increasingly prevalent that users possess more than one mobile device [16]. People

oftentimes carry two smartphones due to various reasons. For example, one phone is used

for work and the other is used for personal tasks – such a physical separation minimizes

the likelihood of business data being leaked or compromised [9, 2]. Another important

reason for carrying two phones with different carriers is that the carriers have comple-

mentary coverage [93] so that the user can switch between the devices to enjoy better

performance. This is in particular popular in countries such as India where prepaid plans

are prevalent [11]. People may also carry their old phones as portable WiFi hotspots [22],

or have a second phone with a roaming-friendly sim card [6]. Other reasons for having

two phones include mitigating battery anxiety, preventing theft, providing extra storage,

and backing-up sensitive data locally [4]. Note that people do not explicitly buy two new

phones; instead they typically use their old phones as a second device – around 46% of

51

Americans upgrade their smartphone every two years or less [5].

Compared to carrying two phones, an even more popular trend is to wear a smartwatch

while carrying a smartphone. In particular, many smartwatches such as Apple Watch

Series 4 and Samsung Gear Frontier have built-in sim cards, allowing them to access

cellular data networks as a typical smartphone does. In addition, there are many other

common combinations of dual or triple mobile devices with Internet access capabilities,

such as smartphone+tablet and smartphone+laptop+smartwatch. Despite their prevalence,

the potential of the devices’ network interfaces that are concurrently operational is far from

being fully exploited.

4.2.2 Benefits of Multi-device Collaboration

A network-level collaboration among multiple devices can significantly improve the

network performance. The basic idea is straightforward: when the last-mile wireless hop

is the bottleneck (which is typically the case), having multiple devices download data

simultaneously can effectively improve the overall WWAN-side (wireless wide-area net-

work, i.e., the Internet) throughput. Meanwhile, the content received by individual de-

vices is merged over WLAN (wireless local-area network) and delivered to the application

(§4.2.4).

We now experimentally demonstrate the benefit of WWAN-side throughput aggrega-

tion, by measuring the performance of concurrent multi-device data transfers, in particular

when wearable devices are involved – few prior studies have investigated that to our knowl-

edge. We consider three COTS mobile devices with each using a different cellular carrier,

as detailed in Figure 4.1. We place them side-by-side (0.2 meters apart), and let them

52

perform concurrent bulk download from a nearby server over their own LTE networks for

1 minute. On each device, we sample TCP throughput every 200ms. The experiment was

conducted in three locations: a university office, a residential apartment, and a grocery

store. Figure 4.1 plots the throughput distributions of different devices and their combi-

nations. As we do not consider the WLAN-side merging step in this measurement, the

overall throughput achieved by multiple devices is the sum of that for each individual

device (e.g., “AS” corresponds to the total throughput of A and S).

Figure 4.1 indicates that the three carriers exhibit different performance at the three lo-

cations, with median throughput ranging from 6.2Mbps to 61.8Mbps. Assuming WLAN-

side merging is not the bottleneck, leveraging two interfaces improves the overall through-

put by 15.8% to 474.2%, and simultaneously using three devices boosts the throughput

by 63.1% to 695.4%, compared to using only a single device (interface). The aggregated

throughput can effectively support bandwidth-hungry applications such as UHD video

streaming, mobile VR [91], and mobile holographic communication [124]. We also notice

that there is no device whose network performance constantly outperforms the other two

in all three locations. Therefore, one can also dynamically choose the best device based on

its live network condition in order to satisfy the app’s minimum QoE requirement – this is

supported by MPBond.

4.2.3 Networking Capability of Wearables

The experiment in Figure 4.1 involves an LTE-capable smartwatch. Despite its decent

throughput, it may still raise concerns about its networking capability compared to full-

fledged smartphones and tablets. We therefore experimentally compare the LTE through-

53

Table 4.1: Advantages of MPBond compared to existing systems designed for multi-
device network-level collaboration.

Collaboration System WLAN Application Scheduling Server-side Mobile-side
Scheme Layer Layer Transparency Consideration Deployability Deployability

MPBond
L4

L4 Yes WWAN + WLAN standardized proxy mostly userspace, > 2 mobile
kibbutz [111] L3 Yes bottleneck standardized proxy kernel, up to two mobile
PRISM [85] L3 Yes bottleneck server + new proxy kernel, not available for mobile

COMBINE [46]
L5

L5 No bottleneck HTTP byte-range userspace, > 2 mobile
MicroCast [83] L5 No, video only bottleneck HTTP byte-range userspace, > 2 mobile

Cool-Tether [134] L3 No, web only bottleneck new proxy + byte-range userspace, > 2 mobile

put of two devices: an LG Urbane 2 smartwatch and a Nexus 6P smartphone, both re-

leased in the same year. To ensure fair comparisons, we repeatedly insert the same sim

card (AT&T) into the two devices, and conduct 10 back-to-back TCP bulk download ex-

periments on them over LTE at the same location, to understand the impact of the device

capability on performance. The watch indeed achieves a statistically lower throughput

compared to the phone: the smartwatch’s median throughput (29.9Mbps) is only 53.3%

of the phone’s median throughput (56.1Mbps), likely due to the watch’s small form factor

that limits the antenna’s size and tx/rx power. However, the absolute throughput values

(median: 29.9Mbps, 90-th percentile: 31.4Mbps) indicate that commodity smartwatches’

network interfaces can still contribute considerably to collaborative content delivery in par-

ticular when other devices’ WWAN-side performance is poor. For example, Figure 4.1(a)

and (c) show that the smartwatch (A) yields a higher throughput than the Sprint phone (S).

Another potential concern regarding wearables is energy, which we will assess in §4.5.8.

4.2.4 Do Existing Network-level Collaboration Schemes Suffice?

We summarize existing network-level collaboration schemes in Table 4.1. They suffer

from several limitations as described below.

A Lack of Flexibility. A desired network-level collaboration must be flexible to sup-

54

port different types of applications and require minimal changes to the mobile and network

infrastructure at the same time. From the application’s perspective, a tethered device in

kibbutz [111] performs as a simple layer-3 router, making it difficult to flexibly support

various enhancement and policies at layer-4/5 (§4.3.4). In addition, the tethering subsys-

tem is usually tightly coupled with the OS/kernel, and is therefore difficult to be modified

or extended. In Android, tethering has many practical limitations. For example, (1) teth-

ering to more than one device is not supported, therefore, kibbutz supports at most two

devices; (2) only one tethering connection (either WiFi or Bluetooth, but not both) can be

established, hindering smooth handovers; (3) many carriers and devices lock the tethering

feature or only provide limited data plan for tethering based hotspot. PRISM [85] relies

on modified kernel TCP stack for both the sender and receiver and a custom PRISM proxy

in the network, which incur significant deployment overhead. And its WLAN architecture

relies on WiFi Ad-hoc mode, which is not available for Android and iOS smartphones

and smartwatches. Other schemes including COMBINE [46], MicroCast [83], and Cool-

Tether [134] require modification to the apps at layer-5 and the server must support HTTP

byte-range requests for the network collaboration. Some of them are designed solely for a

particular type of application traffic.

Suboptimal Performance due to Fluctuating Network Conditions. In kib-

butz [111], the tethering approach, an end-to-end path consists of two segments: WLAN

and WWAN. Figure 4.1 shows that the WWAN-side (LTE) throughput is indeed fluctu-

ating. We next experimentally study the WLAN-side performance. Figure 4.2 shows the

WLAN throughput when fetching data from an LG Urbane Watch 2 to a Pixel 2 phone with

their physical distance varying under line-of-sight (LoS) and non-line-of-sight (NLoS) set-

55

tings1. WLAN throughput varies significantly and is oftentimes lower than the WWAN

throughput depicted in Figure 4.1. In other words, due to their heterogeneous link charac-

teristics and complex interactions with the environment, WWAN and WLAN may exhibit

highly different performance and either can become the bottleneck, in a very dynamic

manner. The default tethering mechanism, however, often poorly deals with such hetero-

geneity and dynamics due to its simple layer-2/3 forwarding. For example, in tethering,

the effective data rate is always the minimum of the WWAN and WLAN bandwidth; this

can be improved by properly buffering data at the device that decouples the WWAN and

WLAN. We will revisit this problem when describing MPBond’s solution (§4.3.2). Be-

sides, when making the scheduling decision, existing schemes only consider the perfor-

mance of the bottleneck link between the WWAN and WLAN at a specific time, causing

suboptimal workload distribution and hence the multipath performance.

Excessive Energy Consumption is one of the consequences of the suboptimal net-

work performance. This is in particular an issue for wearable devices with small battery

capacities. Even if the network condition is stable, in the tethering approach the con-

gestion control is end-to-end, so the WWAN (WLAN) would be throttled to the WLAN

(WWAN) bandwidth for data download (upload) when the WLAN (WWAN) is the bot-

tleneck, causing prolonged WWAN (WLAN) radio-on time leading to increased energy

consumption. Solutions that work at the application layer introduce idle network period

between consecutive HTTP byte-range requests, lowering the energy efficiency.

1The distance between two devices can be large, e.g.,, when one device is charging or with another family
member.

56

4.3 MPBond Design

MPBond enables a user to jointly leverage her mobile devices to access the Internet in

an application-transparent manner. As shown in Figure 4.3, MPBond involves two types of

devices: one primary device and one or more helper devices (referred to as “primary” and

“helper(s)” for brevity). We discuss the scenario of multiple primaries in §4.3.4.12. The

client application, such as a file downloader or a video player, only runs on the primary.

TCP traffic from the app is transparently intercepted by the MPBond service and scheduled

to transmit either over primary’s own interface or through helpers with forwarding, i.e.,

different subflows shown in Figure 4.3. The reverse direction works in a similar way by

distributing the traffic over multiple subflows from the MPBond-capable remote server and

merging the content on the primary. To be fully transparent to Internet servers, the system

can introduce an MPBond-capable proxy which hides MPBond from remote servers by

establishing single-path connections with them. In the remainder of this chapter, unless

otherwise noted, the term “server” refers to either an MPBond-capable remote server or

an MPBond proxy. Also, deployed as an OS service on the primary and helpers, MPBond

is transparent to client-side apps as well.

We next describe how we address key design challenges of MPBond: How to properly

manage subflows (§4.3.1)? How to overcome the limitations of the state of the art as

described in §4.2.4 (§4.3.2)? How to intelligently distribute the traffic onto multiple paths

while accounting for the heterogeneity between pipes and HS-Paths (§4.3.3)? How to

properly interface MPBond with upper layers while considering various user-specified

2In this work, we assume the primary and all helpers are mutually trusted – the same assumption that other
collaboration schemes make. Standard security primitives such as encryption and authentication can be
applied to pipes to prevent attacks such as session hijacking and eavesdropping.

57

Primary
ServerProxy

Pipe

Pipe

HS-Path

HS-Path

PS-Path

Helper

WLAN WWAN

 Subflow 1
 Subflow 2
 Subflow 3

Helper

Figure 4.3: System Architecture of MPBond.

policies (§4.3.4)?

4.3.1 Subflow Management

The high-level concept of MPBond subflows is similar to that of MPTCP, except that

(1) the subflows traverse different mobile devices, and (2) the primary and helpers need

to perform local data exchanges to merge the received parts. We call the data channels

between the primary and helpers pipes. We also denote the network paths between helpers

and the server HS-Paths (Helper-server Paths), and the network path between the primary

and the server (without a helper) the PS-Path (Primary-server Path). An end-to-end sub-

flow therefore traverses through either a PS-Path, or an HS-Path and a pipe.

MPBond supports multiple concurrent pipes using different radio technologies such

as WiFi and Bluetooth. The pipe is established by connecting the helper through WLAN

to the primary which acts as a WiFi AP, or pairing the helper to the primary through

Bluetooth. The scheduler dynamically selects a pipe by considering factors including

performance, reliability, and energy efficiency, or simultaneously using multiple pipes to

increase the data rate. We will revisit this feature in §4.3.4. Similar to MPTCP’s subflows,

58

the pipes can be flexibly torn down or established, and they are loosely coupled with a user

TCP connection, allowing seamless migration among pipes without interrupting the data

transfer.

The overall handshake procedure in MPBond to establish a user TCP connection with

subflows between the primary and the server leveraging helpers follows that in MPTCP,

with additional control messages over pipes to coordinate with the helpers. Specifically,

for the subflow involving an HS-Path and a pipe, the primary sends an INIT MP JOIN

(INIT MP) message with the necessary client and server information to the helper, allow-

ing it to establish the second (first) subflow through an MP JOIN (MP CAPABLE) mes-

sage. When the subflow is established, an MP JOIN OK or MP OK message is returned

to the primary as an acknowledgement.

Error Handling. MPBond should be robust to a wide range of errors. Compared to

MPTCP, MPBond needs to further deal with pipes’ failures. For example, on a subflow

traversing through a helper, a failure of either its HS-path or its pipe will cause the subflow

to be torn down and all its pending (unacknowledged) data to be reinjected to another

subflow (§4.3.3.4). This ensures that no application data is lost due to either a WWAN or

WLAN link failure.

4.3.2 Buffer Management and Helper-side Connection Split

MPBond maintains buffers at both end points (the primary and the server) to absorb

network fluctuations and to accommodate the subflows’ heterogeneous characteristics. Be-

sides having these buffers, we make an important design decision of setting up buffers on

helpers. Specifically, MPBond splits any subflow into two TCP (sub)flows, one between

59

the primary and the helper, and the other between the helper and the server. The two flows

thus cover the pipe and the HS-Path, respectively. Although TCP splitting is not a new

idea [156, 79], we take this concept a step further by strategically applying it to helper

devices, in particular wearable devices, in the context of mobile multipath transport.

Recall from §4.2.4 that when a helper is involved, the WWAN and WLAN exhibit

vastly different link characteristics. TCP splitting can effectively improve the performance

in such a scenario by shortening the TCP control loop [123]. More importantly, it allows

buffers to be set up between the two flows. Such buffers effectively mitigate the negative

performance impact caused by the bottleneck shift on a subflow. To illustrate this, con-

sider a simple example where the pipe bandwidth increases due to the helper device being

moved closer to the primary (Figure 4.2), causing the pipe’s throughput (Thpipe) becomes

higher than that of the HS-Path (ThHS). If there is a buffer at the helper, the buffered

data can be transmitted at Thpipe (instead of at ThHS when there is no buffer), leading to a

shorter data transfer time.

4.3.3 Pipe-aware Multipath Scheduler

As a critical component of a multipath transport system, a scheduler determines how

to distribute the traffic onto multiple paths. There are several studies that improve the

scheduler design in wireless settings [93, 112, 72, 97]. However, directly applying them to

MPBond is difficult. First, most existing mobile multipath schedulers only deal with two

paths (WiFi and cellular), and many solutions such as [72] are inherently difficult to scale

to more than two paths, which MPBond needs to handle. Second, none of prior studies

considers the pipes, which are unique in MPBond.

60

We design a Pipe-aware Multipath Scheduler (PAMS) for MPBond. It differs from

existing mobile multipath schedulers in two aspects: PAMS is capable of scheduling an

arbitrary number of subflows, and it takes MPBond’s TCP splitting and helper-side buffer-

ing (§4.3.2) into consideration when performing scheduling.

PAMS can be used by a wide range of applications such as file transfer, video-on-

demand (VoD), web browsing, and cloud synchronization. All these applications involve

transferring data chunks such as a file, a video chunk, an image, and a web page, which

need to be delivered as fast as possible. Besides such chunked transfers, another type of

traffic pattern is real-time data streaming such as live video streaming and low-latency

gaming. Generally speaking, the benefits of multipath transport on these applications

require switching the scheduling algorithm to a latency-favoring one such as [69] and [93],

and blindly applying multipath to them may incur QoE penalty [112]. Designing a full-

fledged scheduler tailored to the MPBond architecture for such latency-sensitive traffic is

beyond the scope of this study. Nevertheless, we provide easy-to-use interfaces (§4.3.4)

for users to specify policies such as letting delay-sensitive traffic use single-path and giving

it higher priority than other traffic so as to prevent potential latency inflation.

4.3.3.1 MinRTT Considered Harmful.

We first demonstrate the performance issue of directly applying the default minRTT

scheduler. The primary establishes two subflows to a nearby server, one directly and the

other through a helper. The downlink bandwidth of the PS-Path, the HS-Path, and the pipe

are configured to be 8Mbps, 10Mbps, and 5Mbps, respectively. The primary downloads

from the server a 10MB file using MPBond configured with minRTT. Figure 4.4 shows

61

 0
 1
 2
 3
 4
 5
 6

 0 1 2 3 4 5 6 7 8 9 10

Buffering on the helper

Unbalanced completion time
T

ra
n
s
fe

re
d
 B

y
te

s
 (

M
B

)

Time (s)

Primary
Helper

Pipe

Figure 4.4: Performance of MPBond configured with the minRTT scheduler.

the download progress. Recall that MPBond maintains a buffer at the helper. As shown,

on the positive side, due to TCP splitting and helper-side buffering, the bandwidth of all

three paths is fully utilized. On the negative side, under the default minRTT scheduler,

the two subflows cannot complete at the same time: the helper subflow finishes about

4.5 seconds later than the direct subflow. Note that in multipath transport, simultaneous

subflow completion is a necessary condition for achieving the optimal download time [72].

This is because in the case where one subflow finishes earlier than the other subflow, the

fast subflow can always “assist” the slow one, leading to an even reduced data transfer

time.

The unbalanced subflow completion in Figure 4.4 is attributed to the fact that the sched-

uler, which runs at the server, only monitors the PS-Path and the HS-Path, and is unaware

of TCP splitting mechanism and the downstream pipe. In other words, minRTT only

tries to balance the completion time of the PS/HS-Path instead of the two end-to-end sub-

flows. In this particular experiment, since the pipe bandwidth is lower than the HS-Path

bandwidth, downlink data will be buffered at the helper and drained slowly over the pipe,

62

leading to highly unbalanced subflow completion time.

A possible way of achieving simultaneous subflow completion is to modify the subflow

availability condition: a helper subflow is considered to be available when the congestion

window (CWND) of both the HS-Path and the pipe have available space (minRTT only

considers the former). We implement this modification and find that it indeed almost

achieves simultaneous subflow completion. However, by requiring an available CWND

space for the pipe, this approach loses the capability of buffering at the helper, a key

feature that MPBond should provide (§4.3.2). Therefore, the key challenge that PAMS

should address is to enable buffering at the helper while achieving simultaneous subflow

completion.

4.3.3.2 Deriving the Pipe-aware Delay (PAD)

We now describe the PAMS algorithm. We focus on the scheduler residing on the

server for downlink traffic. We first derive the end-to-end (E2E) packet delay: at a given

time T , if a packet is scheduled over a given subflow, how long does it take for the packet

to arrive at the receiver (the primary)? Let Bs and Bp be the number of bytes buffered at

the server and the helper, respectively, at T (they include both the TCP send buffer and

the userspace buffer maintained by MPBond); let Thps, Thhs, and Thp be the measured

downlink throughput of the PS-Path, the HS-Path, and the pipe, respectively; let OWDps,

OWDhs, and OWDp be the one-way delay of the corresponding path. Given the above

notions, the E2E delay for a direct subflow is OWDps +
Bs

Thps
, including both the prop-

agation delay and the queuing/transmission delay. A subflow with a helper involves two

buffers. It takes T1 =
Bs

Thhs
to drain the server-side buffer. After T1, the helper-side buffer

63

level changes from Bp to B′
p = max{0, Bp − ThpT1 + Bs}, which needs T2 =

B′
p

Thp
to

deplete. Therefore the overall E2E delay is T1+OWDhs+T2+OWDp. Plugging T1 and

T2 into the above, we can derive the Pipe-Aware Delay (PAD) as:


OWDps +

Bs

Thps
, if i = 1

OWDhs +
Bs+Bp

Thp
+OWDp, if i > 1, Bp

Bs
+ 1 > Thp

Thhs

OWDhs +
Bs

Thhs
+OWDp, if i > 1, Bp

Bs
+ 1 ≤ Thp

Thhs

where i is the index of the subflow (i=1 corresponds to the direct subflow). Thps, Thhs,

and Thp can be estimated as an exponential weighted moving average of the ratio between

CWND and RTT of the corresponding path. In practice, as directly measuring OWD is

difficult, we approximate it using RTT
2

. The second and third case in the above formula

deals with B′
p > 0 and B′

p = 0, the two conditions considered by the max function when

calculating B′
p.

4.3.3.3 The PAMS Algorithm

PAD gives us an estimation of the E2E packet delay of a subflow. Now we consider

how to use it to make scheduling decisions. A possible approach is to modify minRTT

into “minPAD”, i.e., select the subflow with the minimum PAD as long as the subflow is

idle (i.e., the PS-Path or HS-Path has empty CWND space). Although this approach out-

performs minRTT, it still tries to occupy all the HS-Path CWND space, thus may schedule

more data than the subflow’s actual capacity. We next show that it can be further im-

proved through strategically deferring the scheduling to make more judicious scheduling

64

Algorithm 1 The Pipe-Aware Multipath Scheduler (PAMS).
Input: S = A set of N subflows. The algorithm executes when at least one subflow is idle, i.e., its PS-Path

or HS-Path has empty space in CWND.
Output: Packet to transmit on a subflow [packet, subflow].

1 packet← GetNextPacket()
2 Th[1..N]← GetSubflowThroughput()
3 PAD[1..N]← GetP ipeAwareDelay()
4 Idle← GetIdleSubflows()
5 Busy ← GetNonIdleSubflows()
6 target← GetIdleSubflowWithMinPAD()
7 Diff ← 0
8 for each subflow i in Busy do
9 if PAD[i] < PAD[target] then

10 Diff + = (PAD[target]− PAD[i])× Th[i]

11 if Diff > GetUntransmittedSize() then
12 return NULL
13 else
14 return [packet, target]

decisions.

Let us consider two cases that require different scheduling strategies. First, when the

server has a large amount of remaining data in the meta buffer3 to send, it is important

to improve the overall bandwidth utilization (i.e., throughput) by keeping all the subflows

busy. In this case, PAMS applies minPAD: as long as there are any idle subflows, the

one with the minimum PAD will be immediately selected and made busy. The second

case is that when there is only a small amount of remaining data, ensuring low-latency

delivery and simultaneous subflow completion time is more important than maximizing

the throughput. In this case, even when there is an idle subflow, PAMS may skip it (i.e.,

deferring the scheduling) when there are non-idle subflows that can shorten the delivery

latency.

3In multipath transport, the (sender-side) meta buffer stores data passed from the application but is not yet
scheduled. The meta buffer is different from the per-subflow buffer (Bs and Bp), which contains data that
has already been scheduled to a subflow.

65

Following the above idea, we develop the PAMS algorithm listed in Algorithm 1. As

shown, Idle and Busy are the set of idle and non-idle subflows, respectively, and target is

the idle subflow with the minimum PAD. Line 8 to 14 is the core part of the algorithm.

It determines if it is possible to deliver all to-be-scheduled bytes in the meta buffer (or an

application-defined data chunk, see §4.3.4) over currently busy subflows before the target

subflow completes. For a given busy subflow i, its current buffered data will be drained in

PAD[i] time units, so the time budget allowing it to deliver additional unscheduled data

before the target subflow completes is PAD[target] − PAD[i]. The throughput of the

subflow i, Th[i], is the minimum of the HS-Path throughput and pipe throughput when

i > 1. The total number of unscheduled bytes that can be delivered by all busy subflows

before the completion of the target subflow is therefore calculated as Diff (Line 10). If

such bytes are more than the total number of unscheduled bytes, we defer scheduling the

current packet, allowing it to be later scheduled over a currently busy subflow (Line 12).

Doing so will shorten its delivery time and facilitate simultaneous subflow completion.

Otherwise, we immediately schedule the packet over the target subflow to ensure high

bandwidth utilization (Line 14). Note that Algorithm 1 is for the downlink traffic, and the

scheduler for uplink traffic is developed in a conceptually similar manner.

4.3.3.4 Data Reinjection

In multipath transport, reinjection is a mechanism where data that has already been

scheduled over one subflow (A) is “reinjected” into another subflow B. This may occur

when, for example, A experiences unexpected performance drop or failure, or B’s capacity

suddenly increases. MPTCP employs a conservative and fixed reinjection policy where

66

packets are reinjected only when their associated subflow is terminated or the receiver

buffer is full. In MPBond, the involvement of multiple devices, heterogeneous networks,

and helper-side buffering makes the network performance potentially more dynamic and

fluctuating, thus necessitating more judicious reinjection decisions.

We next describe MPBond’s reinjection scheme by detailing when, who, and how to

perform reinjection. Specifically, a reinjection is triggered when there are no unscheduled

bytes and maxPAD−minPAD
minPAD > η, where minPAD and maxPAD are the minimum and maxi-

mum PAD values across all subflows, respectively, and η is a parameter. The rationale is

as follows. Ideally, all subflows’ PAD should be similar, as PAMS implicitly controls the

buffer levels (Bp and Bs) of the subflows to facilitate simultaneous subflow completion

(§4.3.3). When some subflows’ PAD becomes too large or too small, it implies severe

fluctuations of their network performance. It is therefore the right time to launch a reinjec-

tion for promptly rebalancing the subflows. Regarding η, it determines the aggressiveness

of the reinjection: reducing η incurs more frequent reinjections at the cost of increased

bandwidth utilization. We empirically set η to 20%.

When a reinjection is triggered, MPBond moves up to r unacknowledged bytes with

the highest sequence numbers from the subflow with maxPAD back to the meta buffer4.

We calculate r as (maxPAD − minPAD) × B where B is the effective throughput of the

subflow with maxPAD. Intuitively, r is determined in such a way that a slow subflow can

catch up with the fastest subflow in terms of PAD. These r “recalled” bytes are scheduled

again by PAMS.

4Data residing in the user-space buffer can be directly moved; data that stays in the kernel-level buffers will
become redundant.

67

4.3.4 User/App Interfaces and Policy Engine

MPBond provides 2 types of interfaces to users and app developers, respectively. First,

it has a built-in console on the primary. This allows users to pair/unpair with helpers, man-

age the pipes, grant apps permission to use MPBond, monitor the devices’ runtime status,

and configure various policies (see below). In addition, MPBond exposes APIs allowing

3rd-party apps to programmatically use its service. The APIs include device/pipe man-

agement, status query of devices/pipes, callback functions of important events such as a

change of the pipe configuration, and marking the boundaries of application data chunks5.

Note that using such APIs is optional: MPBond is fully transparent to apps; the APIs just

provide more fine-grained manipulation and detailed monitoring of MPBond. For exam-

ple, based on its data rate, an app can dynamically switch between pipes with different

bandwidth (e.g., WiFi vs. Bluetooth), to reduce the energy footprint while meeting the

QoE requirement.

MPBond allows users to flexibly specify various policies. Our current prototype sup-

ports the following policies. (1) per-app whitelist. MPBond takes a “whitelist” approach:

users need to explicitly grant permissions to apps and specify a (super)set of devices/pipes

that the app can access through MPBond. Typically this is a one-time effort, provides good

flexibility, and boosts security. (2) Resource Usage. MPBond allows disabling a device

(either helper or primary) when its battery level drops below a threshold or its monthly

cellular data usage reaches a pre-defined cap. (3) Prioritization. Users can configure rules

5By default, the GetUntransmittedSize() function in Algorithm 1 returns the total size of the to-be-sent data
in the meta buffer. Developers can optionally define application-layer data chunks to make GetUntransmit-
tedSize() return the remaining bytes of the current data chunk. This will expedite the delivery of each data
chunk as opposed to all data in the meta buffer as a whole.

68

that prioritize certain applications.

4.3.4.1 Dual Mode in MPBond

MPBond allows a device to have dual roles of both a primary and helper, and multiple

primary devices may co-exist. We call this the dual mode, which enables the collaborating

devices to better utilize their collective bandwidth in particular when the primary devices

generate traffic at different time. Consider the following use case. Two close friends are

watching different DASH videos, but each one’s individual device may not provide suf-

ficient bandwidth for its own video. To overcome this limitation, the two devices can be

paired up using the dual mode: each device acts as the primary by fetching its own video,

and meanwhile also as the helper by delivering the content for the other device. Since the

two devices usually do not fetch video chunks simultaneously, the video chunks requested

by each device can be downloaded over the two subflows with small probabilities of com-

peting for the bandwidth with video chunks requested by the other device. This leads to

improved QoE for both users.

In our current prototype, we realize the dual mode by running multiple independent

instances of MPBond, as either a primary or a helper, on the same device. A limitation

of this approach is that each MPBond instance independently makes scheduling decisions,

which may be suboptimal due to a lack of global view of the network condition and traffic

patterns. This issue can be addressed by introducing a lightweight “global manager” that

coordinates all MPBond instances [123, 47]. We leave this as future work.

69

4.4 Implementation

We implement MPBond on commodity Android smartphones and Wear OS smart-

watches. To support real-world evaluations with commercial Internet servers that may not

support MPTCP and middleboxes that may block it, we implement a multipath TCP proxy

in C/C++, following the methodology in [72]. Our implementation of MPBond consists

of 8K lines of C/C++ and Java code excluding the base proxy system and is accessible on

GitHub [29].

On the primary, most of the logic lies in a userspace MPBond service. It establishes

the PS-Path (pipe) connections with the MPBond proxy (helpers). To support unmodified

applications, we built a lightweight kernel module using netfilter hooks that intercept and

redirect client application traffic to the MPBond service. WiFi pipes are implemented as

long-lived TCP connections between the primary and helpers. We also implement Blue-

tooth pipes by leveraging the Android BluetoothSocket APIs to establish RFCOMM con-

nections. The MPBond helper module is implemented in the userspace for the ease of

deployment. It establishes HS-Path (pipe) connections with the proxy (primary). For each

subflow, we use a circular queue to buffer packets in the userspace. These buffers work

with the in-kernel send/recv buffers of the HS-Path and pipes together to achieve the per-

formance and energy benefits.

A pipe is a long-lived data channel over which multiple user TCP connections are

multiplexed. To do this, we add a tiny header before the application payload containing

the TCP connection ID, message length, and sequence number to identify individual TCP

connections. PAMS is implemented as a userspace scheduling module plugged into the

MPBond proxy. The PS-Path and HS-Path information is obtained at the server by lever-

70

aging Linux getsockopt API. Pipe throughput is measured on the primary and sent to the

helper through an encapsulated control message. We implement a flexible interface for

a helper or the primary to determine when and which pipe’s information to send to the

proxy. In §4.5.2 we demonstrate how this flexibility can be helpful instead of fixing the

feedback mechanism. Currently we use an out-of-band UDP channel to carry pipe-specific

information over the return path of HS-Path/PS-Path for the sake of prototyping. In the

future we will replace it with TCP options that can be integrated to the HS-Path/PS-Path

ACKs. User-defined policies are enforced at a per-process basis. The MPBond services

on the primary looks up the process name of a given flow by following the methodology

in [125].

4.5 Evaluation

We extensively evaluate MPBond under various network and device settings using syn-

thetic and real apps to show the benefit of network-level collaboration. We examine the

effectiveness of key design choices of MPBond through micro-benchmarks. We quantita-

tively compare MPBond with kibbutz [111] and COMBINE [46], the two major state-of-

the-art solutions in Table 4.1, on network performance, energy consumption and app QoE

using commodity smartphones and smartwatches over real LTE and WiFi networks.

4.5.1 Experimental Setup and Methodology

Our proxy supporting both MPBond and our implementation of kibbutz [111], which

employs tethering-based MPTCP, runs on a commodity Ubuntu 16.04 server with 4-core

3.6GHz CPU and 16GB memory. The proxy uses the decoupled CUBIC as the congestion

71

control algorithm (i.e., each path runs TCP CUBIC independently). The server hosting

files and video contents is in close proximity to the proxy, and the path between them

has very high network bandwidth, not being the bottleneck of the end-to-end paths. For

COMBINE [46], as no proxy is required, multiple mobile devices send HTTP byte-range

requests directly to the server to fetch the chunks of different ranges in the same object.

The requests are scheduled by a work-queue algorithm that sequentially downloads chunks

on each path and returns them to the primary device. For COMBINE, we use a default

chunk size of 256KB. For small file download (e.g., 512KB) we also try two smaller

chunk sizes (128KB and 64KB) and report the best performance. By default, MPBond

uses PAMS as the multipath scheduler.

Our mobile devices include a Pixel 2 phone, a Nexus 6P phone, and an LG Urbane

2 smartwatch. We perform evaluation of MPBond using both emulated and real network

conditions. To emulate certain network conditions, we use Linux tc to throttle the band-

width on real WWAN and WLAN, while capturing the latency dynamics from commer-

cial wireless networks. We also conduct experiments using real LTE networks at different

places. To understand the impact on battery, we use full-fledged energy models [54, 103]

to estimate the energy consumption incurred by network transfers.

4.5.2 Microbenchmarks

We start with examining the key design choices of MPBond. We focus on a two-device

setting where a Pixel 2 with T-Mobile acts as the primary and a Nexus 6P with AT&T acts

as the helper.

Benefit of Helper-side Connection Split. One key design aspect of MPBond is to

72

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 p = 30% p = 50% p = 70% opt. sched

E
n

e
rg

y
 (

J
)

Scheduling decision

MPBond
MPBond w/o split

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

Bet
te

r

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Download time (s)

Split-50%

Split-30%

Split-70%
Split-optimal

Unsplit-50%

Unsplit-30%

Unsplit-70%
Unsplit-optimal

 8
 9

 10
 11
 12
 13
 14
 15

 2.5 3 3.5 4 4.5

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Download time (s)

fixed-always-on

fixed-on-demandflexible

 0

 0.5

 1

 1.5

 2

 2.5

Pixel 6P Pixel/
Dual

6P/
Dual

D
o
w

n
lo

a
d
 t
im

e
 (

s
)

Figure 4.5: Energy ben-
efits of split under stable
network conditions.

Figure 4.6: Perfor-
mance and energy bene-
fits of split under chang-
ing network conditions.

Figure 4.7: Per-
formance and energy
consumption for different
feedback mechanisms.

Figure 4.8: Dual
Mode reduces down-
load time.

decouple the HS-Path and the pipe with a buffer on the helper (§4.3.2), to absorb network

fluctuations and accommodate heterogeneous subflow characteristics. To understand its

impact on energy and performance, we compare MPBond with kibbutz, which does not

incorporate this design, using various fixed scheduling ratio on subflows – transmitting p%

of 4MB file over the PS-Path and 1 − p% over the HS-Path and the pipe. We also derive

the optimal ratio offline from an exhaustive searching of p.

We start with stable network condition where the bandwidth of both PS-Path and pipe

are 5Mbps, and the bandwidth of HS-Path is 10Mbps. Figure 4.5 shows that MPBond

reduces energy consumption by 10%-22% compared to kibbutz using fixed scheduling

ratio, while achieving almost the same download time. This is because helper-side con-

nection split allows the transmission on HS-Path to finish much earlier than that on the

pipe, reducing the LTE radio-on time.

We then study the performance and energy impact under a changing network condi-

tion. We start from the stable profile described above, and after 2s, drop the bandwidth

of HS-Path to 1Mbps. Figure 4.6 shows the download time and energy consumption of

downloading a 4MB file. Both the download time and energy consumption are reduced

when helper-side connection split is in effect. The improvement is much higher when more

data is scheduled to the HS-Path and the pipe at the time of sudden bandwidth drop. This

73

indeed confirms that the buffer between the split flows absorbs the fluctuation of network

condition.

Benefit of Flexible Feedback. MPBond allows pipe information to be shared over

the multiple HS-Paths and/or the PS-Path (§6.4). A simple yet effective policy of sharing

such information for the 2-device case is to send the pipe’s information over both the HS-

Path and the PS-Path, when there’s data transfer on the corresponding path. We call this

policy “flexible” and compare it with sending the pipe feedback over the HS-Path only,

with different timings: (1) when there’s data transfer on either HS-Path or pipe (“fixed-

always”), and (2) when there is data transfer on HS-Path only (“fixed-on-demand”). We

run an experiment of downloading a 4MB file. Initially, PS-Path=5Mbps, pipe=5Mbps,

and HS-Path=10Mbps. After 2s, pipe bandwidth increases to 10Mbps. As Figure 4.7

shows, “fixed-always” inflates the energy consumption since it keeps the helper’s radio

active by sending information feedback even if there is no data transfer on the HS-Path.

“Fixed-on-demand” mitigates the issue by sending the feedback only when there is data

transfer on the HS-Path. However, it still incurs performance degradation as the pipe in-

formation is not up to date. Instead, the “flexible” policy keeps sending feedback over

the PS-Path when there is no transfer on the HS-Path, keeping the pipe information up-

dated without waking up the helper’s radio, thus improving both performance and energy

consumption.

Estimating Pipe Buffering. PAMS estimates the pipe buffering time of a packet based

on the buffered data on the helper and the pipe throughput (Bp

Thp
) (§4.3.3.2), instead of

directly measuring the packet buffering delay incurred by the helper, i.e., the time between

when a packet arrives at the helper and when it comes out, which may not be up-to-date.

74

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0.5 0.6 0.7 0.8

Bet
te

r

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

(a) 512KB file download time (s)

MPBond-Naive

COMBINE (3)

kibbutz

Primary only

MPBond

MPBond (3)

COMBINE

 1.8
 2

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6

 0.8 1 1.2 1.4

Bet
te

r

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

(b) 1MB file download time (s)

MPBond-Naive

COMBINE (3)

kibbutz

Primary only

MPBond

MPBond (3)

COMBINE

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1.2 1.4 1.6 1.8 2 2.2 2.4

Bet
te

r

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

(c) 2MB file download time (s)

MPBond-Naive

COMBINE (3)

kibbutz

Primary only

MPBond

MPBond (3)

COMBINE

Figure 4.9: Bulk download performance under stable network condition (PS-Path: 8Mbps, HS-Path:
10Mbps, pipe: 5Mbps): Single device (Pixel2), MPBond/COMBINE w/ 2 devices (Pixel2+Nexus6P), MP-
Bond/COMBINE w/ 3 devices (Pixel2+Nexus6P+LG2), and kibbutz (Pixel2+Nexus6P).

To demonstrate the advantage of such approach, we conduct file downloads of 4MB under

a stable network condition: the PS-Path and pipe bandwidth are 5Mbps, and the HS-

Path bandwidth is 10Mbps. With the estimation based on the buffered data on the helper

and the pipe throughput, the file downloads take 3.6s on average, compared to 4.4s on

average using direct buffering delay measurements. The suboptimal performance of the

latter approach is due to the fact that the scheduler always receives the stale buffering delay

measurements which are inaccurate, thus making the scheduling decisions suboptimal.

Reinjection Under Changing Network Condition. Reinjection in MPBond helps to

reduce the download time under changing network conditions (§4.3.3.4). To examine the

effectiveness, we download a 4MB file under a changing network condition. At the be-

ginning of transfer, the PS-Path and pipe bandwidth are 5Mbps, the HS-Path bandwidth

is 10Mbps. After 2s, pipe bandwidth drops to 1Mbps. When reinjection is enabled, the

download time is 4.8s, 49% of the download time without reinjection (9.7s). The improve-

ment is attributed to the data on the slower pipe being reinjected to the PS-Path so that the

pipe transmission can catch up.

75

 0

 1

 2

 3

 4

 5

 6

 7

 8

P K M
 512KB

C M3 C3 P K M
 1MB

C M3 C3 P K M
 2MB

C M3 C3

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

Primary Helper 1 Helper 2

Figure 4.10: Energy breakdown of different schemes under stable network condition (PS-Path: 8Mbps,
HS-Path: 10Mbps, pipe: 5Mbps): Primary only (P), kibbutz (K), MPBond (M), COMBINE (C), MPBond
w/ 3 devices (M3), COMBONE w/ 3 devices (C3).

1

5

9

13

6 10 14 18

P
S

-P
a
th

 B
W

 (
M

b
p
s
)

HS-Path BW (Mbps)

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

((a)) 512KB download.

1

5

9

13

6 10 14 18

P
S

-P
a
th

 B
W

 (
M

b
p
s
)

HS-Path BW (Mbps)

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

((b)) 1MB download.

1

5

9

13

6 10 14 18

P
S

-P
a
th

 B
W

 (
M

b
p
s
)

HS-Path BW (Mbps)

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

((c)) 2MB download.
Figure 4.11: Energy consumption reduction: MPBond compared to kibbutz.

 0
 0.2
 0.4
 0.6
 0.8

 1

 512KB 1MB
PS-Path: 5Mbps

 2MB 512KB 1MB
PS-Path: 8Mbps

 2MB

 File Size

 512KB 1MB
PS-Path: 11Mbps

 2MB 512KB 1MB
PS-Path: 14Mbps

 2MB

N
o

rm
a

liz
e

d

d
o

w
n

lo
a

d
 t

im
e MPBond 				COMBINE

Figure 4.12: Performance of MPBond v.s. COMBINE under different BW combinations: PS-Path: {5, 8,
11, 14}Mbps, HS-Path: 10Mbps, pipe: 5Mbps.

4.5.3 Stable Network Conditions

In this section, we evaluate the performance and energy efficiency of MPBond under

stable network conditions. The workload is downloading files with sizes ranging from

512KB to 2MB. We vary the number of mobile devices from 1 to 3 and measure the

76

download time and energy consumption. We also study MPBond-Naive, another variant

of MPBond where the default minRTT scheduler instead of PAMS is used. For each test,

we repeat the download 20 times and report the mean value and the standard deviation.

Figure 4.9 shows the results under a common network bandwidth setting. Each plot

in Figure 4.9 has 7 clusters corresponding to different schemes with different number of

devices. A cluster that is closer to the bottom left has a lower energy consumption and a

shorter download time. Note that when calculating the energy consumption, we consider

all the mobile devices involved. Compared to kibbutz, MPBond reduces the download

time (energy consumption) by 5%-11% (10%-14%), when there are 2 devices. When the

number of devices becomes 3, compared to kibbutz which cannot utilize the extra device

due to its architectural limitation, MPBond improves the download time by 25%-30%

while maintaining a similar total energy consumption. Compared to COMBINE, MPBond

brings even higher improvements in terms of both download time and energy consumption.

With two (three) devices, MPBond improves the download time by 15%-21% (12%-26%),

and reduces the energy consumption by 28%-38% (22%-25%). While MPBond-Naive

has a similar energy consumption compared to MPBond, it sacrifices the performance due

to suboptimal scheduling decisions that lead to imbalanced subflow completion (§4.3.3).

These improvements are attributed to multiple design choices of MPBond including the

system and pipe realization at Layer 4, the helper-side connection split and buffer, as well

as the carefully designed multipath scheduler.

To better understand the impact of using more devices, we further break down the total

energy consumption for different schemes in Figure 4.10. MPBond-Naive is omitted here

for brevity. As shown, using more devices does increase the total energy consumption,

77

and COMBINE even increases the energy of the primary due to its poor scheduler design

that does not distribute the workload in an efficient manner. MPBond instead reduces

the energy on the primary when more devices are used, while keeping a reasonably higher

total energy consumption. Compared to kibbutz, the energy improvement of MPBond goes

mostly to the helper device thanks to its buffering strategy that reduces radio-on times.

To more systematically understand the benefits of MPBond against kibbutz and COM-

BINE, we further carry out experiments under more bandwidth combinations. We focus

on the 2-device case where we use Pixel 2 as the primary and Nexus 6P as the helper,

with the pipe bandwidth limited at 5Mbps. We first examine the energy improvement of

MPBond over kibbutz, with different PS-Path and HS-Path bandwidths. Figure 4.13 plots

the energy saving results. With higher HS-Path bandwidth and lower PS-Path bandwidth,

MPBond’s energy benefit is maximized: for 1Mbps PS-Path and 18Mbps HS-Path, energy

consumption is reduced by 31%, 37% and 47% for 512KB, 1MB, and 2MB download,

respectively, while the download time of MPBond is slightly better than kibbutz. The en-

ergy savings mainly come from the effectiveness of helper-side buffering that reduces the

radio-on time of the faster link under heterogeneous WWAN and WLAN links. We then

compare MPBond with COMBINE by changing the PS-Path bandwidth. Figure 4.12 plots

the download time for both schemes. As shown, MPBond reduces the file download time

by 14%-46%, leading to energy savings of 24%-57%. Overall, as the heterogeneity be-

tween pipe and PS-Path increases, the improvement brought by MPBond becomes larger.

78

 0

 0.2

 0.4

 0.6

 0.8

 1

1MB 4MB

N
o
rm

a
li
z
e
d

d
o
w

n
lo

a
d
 t
im

e

MPBond

kibbutz

COMBINE

((a)) Download time under varying
network condition.

 0
 0.2
 0.4
 0.6
 0.8

 1

1MB 4MB

N
o
rm

a
liz

e
d

e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n MPBond

kibbutz
COMBINE

((b)) Energy consumption under vary-
ing network condition.

Figure 4.13: Energy consumption reduction: MPBond compared to kibbutz.

4.5.4 Varying Network Conditions

We next evaluate how MPBond performs under changing network conditions. We fo-

cus on the 2-device case where Pixel 2 is the primary and Nexus 6P is the helper. We first

replay the real WWAN and WLAN bandwidth profiles we collected in §6.2. Figure 4.13(a)

shows the download time of different schemes. Compared to kibbutz (COMBINE), MP-

Bond reduces the download time by 21%-23% (29%-35%). The corresponding energy

consumption reduction is 18%-25% (16%-23%), as shown in Figure 4.13(b). This again

shows that leveraging helper-side connection split, buffer management, and the judiciously

designed PAMS scheduler helps MPBond to achieve high network utilization under fluc-

tuating network conditions.

In-the-wild Experiments. To further understand the benefits of MPBond, we conduct

field test in real world settings. We focus on comparing MPBond with kibbutz whose per-

formance is closer to MPBond. Specifically, we conduct experiments at two locations by

performing 1-min download for each scheme back-to-back at each place and repeat it for

79

 5

 10

 15

 20

 25

 30

 35

 40

 45

Kibbutz
 Location 1

MPBond Kibbutz
 Location 2

MPBond

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

 200

 250

 300

 350

 400

 450

 500

 550

 3.5 4 4.5

E
n

e
rg

y
 p

e
r

d
e

v
ic

e
 (

J
)

(a) B2 bitrate (Mbps)

MPBond-Naive

kibbutz

Primary only

MPBond

MPBond (3)

 400

 450

 500

 550

 600

 650

 700

 3 5 7 9

E
n

e
rg

y
 p

e
r

d
e

v
ic

e
 (

J
)

(b) T2 bitrate (Mbps)

MPBond-Naive

kibbutz

Primary only

MPBond

MPBond (3)

 400

 450

 500

 550

 600

 650

 700

 3 5 7 9

E
n

e
rg

y
 p

e
r

d
e

v
ic

e
 (

J
)

(c) T6 bitrate (Mbps)

MPBond-Naive

kibbutz

Primary only

MPBond

MPBond (3)

Figure 4.14: Results of
in-the-wild experiments.

Figure 4.15: Video streaming QoE & energy. (PS-Path: 5Mbps,
HS-Path: 10Mbps, pipe: 5Mbps): Single device (Pixel2), MPBond
(Pixel2+Nexus6P), MPBond w/ 3 devices (Pixel2+Nexus6P+LG2), and
kibbutz (Pixel2+Nexus6P).

10 times. We measure the instantaneous throughput every 100ms. Figure 4.14 shows the

throughput distribution of MPBond and kibbutz. At the first location, MPBond improves

the median throughput by 13% compared to kibbutz. At the second one, the improvement

is 23%. MPBond also greatly reduces the low throughput periods, with a 90% improve-

ment of 5th percentile throughput over kibbutz in both locations, due to its buffer manage-

ment and helper-side connection split that exploit the capacity of the fluctuating WWAN

and WLAN links as much as possible (§4.3.2). The energy per byte is improved by 19%

and 24% at the two places respectively (not shown in the figure).

4.5.5 Video Streaming Performance

All experiments so far use bulk file download as the workload. We now examine

how MPBond helps improve the QoE and energy efficiency of video streaming, one of

the applications that dominate mobile network traffic. We stream adaptive bitrate (ABR)

videos using Exoplayer [26] to study the impact of different schemes on video bitrate. We

use three video settings: Big Buck Bunny with 2-second segment duration (B2), Tears

of Steel with 2-second segment duration (T2), and Tears of Steel with 6-second segment

80

duration (T6). Big Buck Bunny has 20 bitrates ranging from 46kbps to 4.2Mbps, while

Tears of Steel has 9 bitrates ranging from 253kbps to 10Mbps. The total video duration

for them are 596s and 734s, respectively.

We focus on the comparison between MPBond and kibbutz, both of which don’t re-

quire modification to the video streaming application. Figure 4.15 shows the video bitrate

and per device energy consumption. With two devices, MPBond reduces the energy con-

sumption by 13%-14% compared to kibbutz, while achieving similar video bitrate. When

the number of devices become three, MPBond improves the video bitrate by 118% com-

pare to kibbutz for two (T2 and T6) of the three settings. The rest one (B2) doesn’t show

much improvement since using two devices can already reach the highest bitrate. Never-

theless, the per device energy consumption in B2 is reduced because of the help of the third

device. We further make two observations in T2 and T6: (1) MPBond-Naive achieves even

lower energy consumption compared to MPBond and kibbutz, but with the cost of a lower

video bitrate. (2) While MPBond helps improve the bitrate as the number of devices in-

creases, the per device energy consumption doesn’t get reduced like bulk download does,

because a higher bitrate corresponds to a larger video segment: this is a classic tradeoff

between QoE and data usage in ABR streaming.

360-degree Video Streaming. 360 degree video streaming has a much higher band-

width requirement compared to regular video streaming and is an ideal use case for MP-

Bond. For our experiment, the video bitrate is fixed at 64 Mbps. Since the mobile devices

we have do not support the decoding of such high definition, we instead employ a video

player emulator to download the video content without rendering it. We employ video stall

ratio (stall time divided by video length) as the QoE metric and vary the number of device

81

from 1 to 3 to study how much improvement MPBond brings. For the single primary de-

vice the stall ratio is as high as 145%, while using a helper helps reduce it to 27%. It’s

further reduced to 3% when three devices are used – this clearly shows that in reality the

fluctuating LTE oftentimes does not always meet the high bandwidth requirement of 360-

degree videos and further motivates the need of MPBond to support more than 2 devices.

4.5.6 Leveraging the Dual Mode

We now evaluate the benefits of dual mode by involving two users, each carrying a

smartphone (Pixel 2/Nexus 6P) with LTE connectivity (T-Mobile/AT&T). Both of their

LTE are capped to 5Mbps. The pipe is unthrottled. To examine how much improvement

MPBond’s dual mode brings, the two users start the following workload at the same time:

sequential 1MB chunks are requested on each smartphone, with the inter-chunk time be-

ing a random number between 1 and 5 seconds, emulating the video streaming traffic.

Figure 4.8 compares the chunk download time in dual mode of MPBond and the down-

load time when each of them download independently without MPBond. As shown, the

download time is improved by 32% and 29% for Pixel 2 and Nexus 6P, respectively.

4.5.7 Indoor Applicability

Above experiments focus on MPBond’s main use case – outdoor cellular network-

ing. Now we consider indoor environments where WiFi infrastructures most likely exist.

When there’s a WiFi infrastructure, MPTCP over WiFi and LTE can be easily applied for

bandwidth aggregation. To understand how MPBond compares to it, we conduct 4MB

82

file download experiments at two different indoor locations to study the performance and

cellular data usage of two schemes: (1) MPBond on a primary and a helper where the

PS-Path and the HS-Path are over LTE, pipe is over WiFi, (2) MPTCP over WiFi and LTE

on the primary. The two locations are with different WiFi network conditions: location A

has a high average WiFi signal strength of -51dBm while location B receives weaker WiFi

signals (-68dBm on average). Across 10 back-to-back runs, the average file download

times of scheme 1 and 2 at location A are 1.5s and 1.0s, respectively. At location B, the

corresponding download times for scheme 1 and 2 are 1.2s and 1.6s, respectively. The cel-

lular data usage of scheme 2 at location A and B are 1.6MB and 3.3MB, respectively. The

results show that (1) MPBond always has a higher cellular data (metered) usage (4MB)

compared to scheme 2, (2) depending on the WiFi network condition, MPBond may either

outperform (e.g., at location B) or underperform (e.g., at location A) scheme 2. In indoor

environments with good WiFi networks such as location A, an MPBond user can choose

to fall back to scheme 2, the regular multipath over WiFi and LTE, e.g., by leveraging

context information [129]. We leave developing a full-fledged context-aware framework

for automatic switching between scheme 1 and 2 as future work.

4.5.8 System Overhead and Energy Concerns

We measure the CPU utilization on the MPBond primary as well as the helper when

running the same workload as kibbutz: downloading a large file from remote server. We

repeat the experiment for 10 times and the average extra CPU utilization compared to

kibbutz is no more than 4% for both the primary and the helper. We also answer the

question left in §4.2.3 to examine the battery drain of a wearable when acting as a helper.

83

We stream a 15-min video and examine the battery drain of a fully charged LG Urbane

2 smartwatch. We repeat it for 10 times and observed no more than 7% average battery

drop: this shows the feasibility of our solution.

The previous energy measurement results in the evaluation section are based on power

models instead of hardware tools. To understand the measurement errors (i.e., model in-

accuracies), we now use a commercial power monitor [19] to measure the real energy

consumption. We employ a Samsung Galaxy S5 smartphone that can to be hooked by the

power monitor. We use it as the helper and a Pixel 2 as the primary. Our workload is

downloading a 4MB file under the following network setting: PS-Path: 8Mbps, HS-Path:

10Mbps, pipe: 5Mbps. The power monitor measures the helper-side energy consumption

with both MPBond and COMBINE. We focus on energy measurement on the helper due

to the limited number of power monitors we have and a helper is usually less powerful and

more energy-constrained (e.g., a wearable). We repeat the experiment 10 times and the

helper on average consumes 2.3J and 3.4J energy for MPBond and COMBINE, respec-

tively. Compared to the absolute energy numbers derived from models (1.9J and 2.6J), the

error can be as high as 24%. However, the difference between model-based (27%) and

power monitor-based (32%) relative energy reductions (MPBond over COMBINE) is as

low as 5%.

4.6 Summary

This chapter provides cross-device connection management and packet scheduling

support for network-level collaboration among personal mobile devices. By developing

and evaluating MPBond, a distributed mobile multipath transport system, we show that

84

network transport can be designed in a cross-device manner to efficiently aggregate het-

erogeneous wireless network resources on multiple mobile devices.

85

CHAPTER V

Analyzing the First-Mile Ingest Performance of Live

Video Streaming

While Chapters §III and §IV improve the transport protocols on mobile systems with-

out modifying the applications. Starting from this chapter, we look at the problem from a

different perspective and optimize the application-layer design to adapt to varying network

conditions in order to improve mobile application performance. This chapter focuses on

the emerging live streaming application, which is both bandwidth-intensive and latency-

sensitive. We demonstrate that existing live video upload applications incur poor coordi-

nation between the application decisions and network conditions, and schemes that better

adapt real-time encoding rates to network bandwidths can improve QoE.

5.1 Introduction

Live video streaming traffic has grown significantly, fueled by improvements in cam-

era technologies, computing power, and wireless resources. The rise of services such as

86

Facebook and Youtube creates global platforms to disseminate user-generated content.

According to a recent industry report [80], live video will account for more than 15% of

the Internet video traffic by 2022.

An end-to-end (E2E) live streaming pipeline consists of the ingest and distribution

paths shown in Figure 5.1. On the upstream ingest path, the video is captured in real time

by a camera, then fed into a Broadcasting App that compresses the video and transmits

it to a remote Video Server owned by some streaming service over a network connection,

typically cellular or Wi-Fi. On receiving the ingest stream, the video server transcodes it

into a number of different ABR tracks (referred to as ABR track ladder), each correspond-

ing to a different encoding quality level and bitrate. Each track consists of several video

segments (usually 2–10 seconds each). Viewers watching the live stream request a mixture

of segments from the video server using adaptive bitrate (ABR) streaming [138] over the

downstream distribution path.

Video ServerBroadcasting App

Viewers
Upstream
ingest path

Downstream
distribution path

Figure 5.1: Live video streaming end-to-end workflow.

Existing studies have focused largely on the last-mile distribution path from the video

server to the viewers. There has been little exploration of the first-mile ingest path from

the broadcasting app to the video server. However, this first mile is critical to the E2E

performance of the pipeline. The quality of the video delivered on this first mile to the

video server imposes an upper limit on the quality of the ABR tracks created from it, and

87

therefore on the quality of experience (QoE) of the viewers of the live stream. In addition

to delivering a good quality video stream to the video server, the first mile also needs to

provide the content with low latency. Any latency on the first mile impacts the overall

E2E latency for the end viewers (see §5.2.1). Improving the ingest performance would

therefore benefit the QoE of all the downstream viewers. However, achieving this goal is

also challenging due to the usually more dynamic and limited wireless uplink resources

(e.g., cellular uplinks) and the complexity of the ingest path.

In this study, we examine the all-important first-mile ingest path in commercial live

streaming platforms to understand their performances and designs. Such insights can assist

developers in identifying deficiencies and creating designs with improved performance

and network providers to better understand and manage the associated traffic [155, 154,

70]. Our goal is to analyze a wide range of commercial live video broadcasting apps and

streaming services from an objective third-party point of view, in a controlled, repeatable,

and fine-grained manner (§5.2.2). This task is made challenging by the complex E2E

pipeline, the proprietary closed-source software components, and the wide diversity of

designs across different live streaming systems. The live nature of the content introduces

further challenges in conducting measurements (see §6.2.3).

In view of these challenges, we develop a generalized black-box measurement method-

ology and tool, Livelyzer, for analyzing the performance of the upstream ingest path for

commercial live streaming systems. Livelyzer enables third parties to conduct active mea-

surements to profile the performance under various network conditions in a repeatable and

controlled manner, thereby gaining insights into the corresponding design. The design of

Livelyzer and its capabilities are detailed in §5.3.

88

We use Livelyzer to study a wide range of broadcasting apps such as third-party,

browser-based, and mobile-based broadcasting apps streaming to commercial services in-

cluding Facebook, Youtube, and Twitch, using different video contents and network con-

ditions. In total, we study seven (broadcasting app, streaming service) combinations. Our

key findings are:

• Different broadcasting apps have very different encoding rate control designs/configura-

tions. Many of them use Constant Bit Rate (CBR) encoding, leading to inefficient use of

bits on the upstream ingest path (§5.4.1).

•Different broadcasting apps behave very differently when the network conditions change.

Our evaluations show that while all the broadcasting apps we study exhibit adaptation to

changing uplink network conditions, they differ widely in the specific adaptation behavior

and resulting ingest performance. Further, our results suggest that the existing adaptation

strategies have limitations and sometimes lead to poor performance. For example, the

Open Broadcaster Software (OBS), by default, drops frames in an inefficient way to cope

with network condition degradation, leading to poor video quality (§5.5.1.1). Although

OBS recently introduced a “dynamic bitrate mode” for encoding rate adjustment, we find

that the scheme can largely under-utilize the newly available network resources due to how

it adapts the encoding bitrate when the network bandwidth increases (§5.5.1.2). Browser-

based (§5.5.2) and mobile-based (§5.5.3) broadcasting apps also exhibit performance is-

sues.

• We leverage Livelyzer to conduct a what-if analysis of the rate adaptation logic usage,

in order to understand the impact of different rate adaptation schemes on the live video

ingest performance (§5.6). We show how even a relatively straightforward adaptation

89

strategy inspired by the findings of Livelyzer can help improve the performance.

• The video server design also has implications for QoE. For example, we find that differ-

ent services choose different segment durations, making the ingest delay variable across

different broadcast settings (§5.4.2).

5.2 Background and Motivation

5.2.1 First Mile in Live Video Streaming

As mentioned in §6.1, an E2E live streaming pipeline consists of the ingest and dis-

tribution paths (Figure 5.1). The E2E QoE of live streaming is fundamentally constrained

by a single video stream delivered over the first-mile ingest path. First, the quality of the

video delivered on this path to the video server imposes an upper limit on the quality of

the ABR tracks created from it, and therefore on the QoE of the viewers of the live stream.

Second, a player can only download a video segment after the corresponding video content

is uploaded to the video server, imposing a latency dependency.

The broadcasting app, a critical component on the ingest path, usually comes in three

different forms [160]:

(1) Third-party broadcasting app: There exists standalone software that captures and

transmits videos to commercial live streaming services. For example, Open Broad-

caster Software (OBS) [139] is a popular broadcasting app that supports live streaming

to many commercial services, which highly recommend the use of it [61, 161, 144].

The widely used OBS software supports RTMP (Real Time Messaging Protocol [43]),

which is also one of the main protocols that commercial video services use.

90

(2) Browser-based broadcasting app: Many services such as Facebook and Youtube

provide GUIs to open cameras to capture and stream real-time content from their web

pages [60, 159].

(3) Mobile-based broadcasting app: Instead of using the browser, smartphone users

may prefer the service’s mobile app, which also includes GUIs to open the camera

and stream videos [59, 158].

Many live broadcasts are originated from mobile devices and transmitted to remote

servers using available connections such as Wi-Fi or cellular. To understand how well to-

day’s mobile uplinks support the needs of live video ingest, we measure the uplink band-

width relative to the live ingest bandwidth requirements of commercial broadcasting apps.

Specifically, we conduct uplink throughput measurements by uploading a large file over

multiple LTE networks, covering various scenarios involving different movement patterns,

signal strengths, and locations. Our measurements indicate that the uplink bandwidth ex-

hibits significant variability and can be lower than the sustained bandwidth requirements

of commercial broadcasting apps (∼1–4Mbps for many live streaming systems). As an

illustration, for each of the ten traces that we collected, the 5th percentile of the bandwidth

values was less than 2.5Mbps. For four traces, the median observed uplink bandwidth was

less than 2.1Mbps. While 5G is expected to further improve the bandwidth, the technology

is not yet widely deployed, and has its own challenges (e.g., directivity and sensitivity to

blockage for mmWave [114]). Therefore, it is important for applications that need to use

uplink cellular connections to be designed appropriately.

91

5.2.2 Design Goals

A sound measurement system for ingest path analysis should be able to meet the fol-

lowing requirements.

G1 Enable interested entities such as a testing service or a network operator (who usually

do not have access to the detailed design of, or the source code for the software) to

conduct third-party measurements of the performance of a live streaming system.

G2 Be generally applicable to different live video broadcast and distribution platforms

instead of targeting a specific setup.

G3 Enable controlled and repeatable experiments.

G4 Be capable of measuring performance dynamics at a fine timescale and enable a tester

to holistically reason about the design of the live ingest pipeline.

5.2.3 Limitation of Existing Analysis Approaches

Existing live streaming analysis tools have several limitations. First, they conduct lim-

ited ingest analysis. [104] focuses on the distribution path, e.g., instead of directly mea-

suring the video quality (§5.3.4), it measures the end-viewer perceived video resolution,

which characterizes the downlink ABR performance instead of the ingest performance. As

§5.5 will show, the same resolution (ABR track) can have very different quality due to the

quality difference of the video delivered on the ingest path. [136, 137] measure the over-

all E2E QoE instead of for the ingest path, making it difficult to distinguish performance

issues on the ingest and distribution paths. They measure different QoE metrics separately

under different settings, making it hard to correlate one metric with another. Besides, they

92

mainly focus on the overall session-level QoE instead of its fine-grained dynamics over

time. [146] focuses on measuring the delay aspect of the QoE. Therefore, they are not able

to meet G4.

Second, existing approaches are either broadcasting app-specific or streaming service-

specific and hard to generalize. [104] only focuses on streaming from OBS, which pro-

vides a user interface to stream local video files, making it hard to generalize to different

commercial broadcast platforms such as browser-based and mobile-based broadcasting

apps. [136, 137] and [146] rely on service-specific APIs to measure the QoE. As a result,

they fail to achieve the aforementioned G2.

Third, they do not meet the G3 requirement for controllable and repeatable measure-

ments. [137] and [146] watch online live streams broadcast by other people, having no

control of the video source and network conditions. [136] shoots videos playing on a

laptop screen as the source, but it suffers from distortion and lighting issues. Although

[104] can guarantee the same input video source, it is hard for it to control the network

conditions under which its data are collected due to its “in-the-wild” nature.

5.2.4 Challenges

Achieving the goals mentioned in §5.2.2 is not straightforward. In addition to the live

nature of the video content, the live streaming pipeline is complex and heterogeneous.

This creates the following challenges that Livelyzer needs to address:

Complex pipeline. Live video ingest involves a complex pipeline. A broadcasting

app captures a video from a camera, encodes it using a codec with an encoding rate con-

93

trol1 scheme, and transmits a sequence of video frames to the remote server over some

network connection. To cope with time-varying network conditions, a broadcasting app

may dynamically adapt its upstream transmission. There can be different ways of adjust-

ing the amount of data to send to the remote server, e.g., dropping frames or reducing the

encoding bitrate. The video server transcodes uploaded video frames into ABR segments.

Each of the above components plays an important role and can impact the E2E QoE. This

complexity makes it challenging to identify, exercise, and understand the key pieces that

impact the QoE.

Heterogeneous design. Different services can have very different designs. Even for

the same service, the broadcaster can choose different broadcasting apps of different de-

signs, such as the service’s web page in a browser, its mobile app, or a broadcasting app

from third parties such as OBS. Unlike the distribution path where HTTP Adaptive Stream-

ing (HAS) is the predominant approach, there is no single de facto delivery solution on

the ingest path. In fact, there exists a wide range of ingest solutions (e.g., RTMP [43],

WebRTC [58], FTL [76], DASH-IF Live Media Ingest [66], etc.) with varying levels of

publicly available specifications. This makes achieving G2 hard for the ingest path.

Proprietary nature of systems. Live streaming systems usually run proprietary

closed-source software. A third party typically does not have visibility into the source

code of broadcasting apps and video servers. The uplink network traffic is also usually

encrypted, e.g., broadcasting apps may use RTMPS [89] or WebRTC with DTLS [132]. In

addition, the increasing use of SSL pinning in mobile applications [136] renders MITM

proxy-based approaches increasingly unusable.

1In video coding, rate control means what an encoder does to determine how many bits to spend for each
frame to reach a target bitrate or quality level for the video.

94

Live nature of content. Unlike video on demand (VoD), where the same content

can be replayed across multiple experimental runs, live streaming contents are generated

in real time. This makes the task of repeating experiments using the same source (G3)

difficult.

Need for suitable performance metrics. An end user watches a video that flows over

both the ingest and distribution paths. While there are well-defined QoE metrics (e.g.,

quality, stall ratio, startup delay) for the distribution path, there are no well-defined or

widely accepted performance metrics for the ingest path. In §5.3.4 we shall define such

metrics of interest.

5.3 The Livelyzer Measurement System

We build Livelyzer, a holistic measurement system that comprehensively examines

the ingest performance of different broadcasting apps streaming to various services. As

shown in Figure 5.2, Livelyzer interacts with the live streaming pipeline by generating

video source contents and uplink traffic control rules (TCR), monitoring the upstream

network packets (NP), and collecting ABR track and manifest information. Livelyzer

consists of components running on a test device and an analysis server. The test device

hosts different broadcasting apps and part of our software that annotates source videos

(§5.3.3), injects them to broadcasting apps (§5.3.2), automates measurement tasks, and

sends local measurement data to our analysis server after measurement sessions. The

analysis server runs the rest of our software, which downloads the top ABR track (TAT)

and video manifests, and later analyzes the ingest performance offline (§5.3.4).

95

Video Server
Broadcasting
App

Player

Video Source
(§5.3.3)

Virtual
Camera
(§5.3.2)

Traffic
Collector

Segment
Downloader
(§5.3.4)

Request
Intercepter

Network
Emulator

Livelyzer

Performance Analysis (§5.3.4)

Output frames (OF)
ABR tracks

Input
frames (IF)

Network
packets (NP)

Top ABR track (TAT)
+

Video manifests

Segments

Requests

Manifest
request (MR)

Traffic control
rules (TCR)

Live streaming pipeline

Test device side Analysis server side

Figure 5.2: The system architecture of Livelyzer.

5.3.1 Black-box Testing

Ideally, we would like to have visibility of every internal point on the ingest path, e.g.,

the encoder output frames of the broadcasting app (OF in Figure 5.2) and the application

data in the network upstream. However, as mentioned in §6.2, commercial streaming

services and broadcasting apps are usually closed systems. Hence, it is hard to access

either the ingest endpoint of the video server to gain visibility into the uploaded frames or

the encoder of the broadcasting app to examine the compressed frames.

Given the lack of such internal visibility, we adopt a black-box analysis approach.

Specifically, we control both the input (i.e., the video content) and the ingest components

(e.g., broadcasting app, streaming service, network condition, etc.), and observe the output

(e.g., quality of TAT). By changing the input or/and the ingest settings (e.g., through issu-

ing different TCR), we can observe how the output would be affected, and reason about

96

the ingest components.

Our method can test a specific broadcasting app streaming to a particular service under

various network conditions in a controlled manner. Specifically, we use a network traf-

fic control tool like Linux tc to replay different network conditions based on real-world

network traces we collect. Livelyzer runs a traffic collector module on the test device to

collect packets on the ingest path. Livelyzer also runs a segment downloader that collects

video server output for performance analysis (§5.3.4). For scalable testing, the broadcast

and playback processes are automated (e.g., through Android UI automation and Sele-

nium [133] for browser automation).

5.3.2 Virtual Video Capture Function

As mentioned in §6.2, we need to do measurements in a repeatable way. This trans-

lates to two requirements: First, we need to be able to feed the same video content to

different broadcasting apps. Second, we need to be able to provide the same video content

to the same broadcasting app across different runs. The first requirement comes from our

need to compare different broadcasting apps and streaming services fairly. The second re-

quirement is because, for the same (broadcasting app, streaming service) setting, we may

want to vary a factor (e.g., network condition) over different runs and keep other factors

including the video source the same to examine the sole impact of this specific factor on

the ingest performance.

One way to address this is to capture the same scene using a real camera. This ap-

proach has several issues: First, it is difficult to provide the same physical scene multiple

times in the real world where time and space cannot be reverted. Second, even if we can

97

provide a “repeatable” physical scene like [136] that plays a pre-recorded video on another

screen, this still makes it hard to keep the captured video the same due to lighting-related

dynamics. Furthermore, the video captured by the camera can contain frames that are a

composite of multiple consecutive source frames in the pre-recorded video. This can be

caused by the exposure time of the camera capture process lining up with the display times

of those frames. Such composites can cause harmful interactions with other components

in Livelyzer, such as source annotation (§5.3.3).

Some broadcasting apps such as OBS support local file input, but not every broad-

casting app supports this mode. For example, browser-based broadcasting apps only sup-

port camera or screen sharing mode, mobile-based broadcasting apps such as the Face-

book and Instagram apps only support camera mode. Screen sharing also introduces non-

deterministic distortions in the screen recording process [153], making the video captured

by a broadcasting app (i.e., the recorded screen) just an approximation of the source video.

To provide a universal interface to commercial broadcasting apps for capturing repeat-

able video contents, we create a virtual camera in Livelyzer. It takes a local video file

as input and behaves like a normal camera device from the perspective of a broadcasting

app. The video source can be fed into the virtual camera at different frame rates. The

virtual video capture function extracts the sequence of frames from an input video file,

and redirects them to the virtual camera. The broadcasting app then captures input frames

(IF in Figure 5.2) by sampling these raw frames based on the broadcasting app’s frame

rate setting. In Linux, a virtual camera can be realized using /dev/videoX. We leverage

v4l2loopback [145] to create such a new virtual video device. To capture video with it,

we use FFmpeg [63] to specify a local video file as the input and the virtual video device

98

as the output.

5.3.3 Crafting Video Source Files

Given the virtual camera, we still need to prepare the input video content. To measure

both frame loss and quality of delivered video on the ingest path, we need to associate

each frame in the received video with its corresponding frame in the source.

Achieving frame alignment in live video ingest is challenging because the frames in

the source and received videos are not naturally aligned for several reasons. First, different

broadcasting apps could capture videos at different frame rates. Second, during transmis-

sion to the remote video server, a broadcasting app may drop frames to adapt to varying

network conditions. Third, depending on when it joins the live event, a player will not nec-

essarily start playing a video from the beginning of a broadcast. Therefore, the first frame

being played may be different from the first frame captured by the broadcasting app. Also,

depending on the extent of time synchronization between when the camera is turned on

and when the broadcaster starts streaming to the remote video server, even the first frame

captured (to be encoded) by the broadcasting app may be different from the first frame that

is seen by the recording camera.

One approach for achieving frame alignment would be to compare every frame in the

received video and every frame in the source based on content similarity. However, the

challenge with this approach is that in the case of a static or a repeating scene, multiple

frames in the source would be visually similar to each other. In this case, a frame in the

received video may be mapped to multiple frames in the source, making unambiguous

frame alignment hard.

99

To achieve frame alignment, we overlay a unique signature to every source frame and

leverage computer vision techniques to detect the signatures from frames in the received

video to match each of them to a source frame. The signature should be robust to com-

pression artifacts (i.e., be still recognizable from low bitrate streams created under poor

network conditions). We leverage the Quick Response (QR) code [150] to create this spe-

cific signature since it is more robust than the approach of overlaying a sequence of digits

(e.g., a frame number) due to the QR code’s use of Reed–Solomon error correction [149].

We empirically verified this when we were researching suitable signature technologies in

the early phase of our study. In addition, we pad the source video with dummy frames

before and after the original video content to make sure that the original video content

gets captured and eventually played regardless of the level of time synchronization among

different components.

5.3.4 Analyzing Ingest Performance

As mentioned in §6.2, we need to define performance metrics on the ingest path that

impact end-user QoE. The metrics we consider are video quality, effective frame rate,

ingest freshness, and ingest smoothness (to be detailed shortly). To facilitate ingest per-

formance analysis, we need to measure the quality and timing of the stream delivered to

the video server. However, extracting video frames in such a stream on the ingest path is

challenging (§6.2.3). Instead, we use the transcoded TAT to approximate the above stream,

easily accessible using standard HTTP APIs from the distribution path. TAT is also more

closely associated with end viewers’ experience as players ultimately need to fetch video

segments from ABR tracks, and TAT represents the best quality encoding any user can

100

receive. Livelyzer runs a segment downloader on its analysis server to fetch ABR tracks.

We parse the corresponding live video manifest for the session to obtain the address in-

formation for the TAT, which is passed to our segment downloader for downloading the

TAT segments. During the live stream, the manifest is periodically updated over time as

new segments are generated at the server. Our segment downloader fetches these updated

versions at regular intervals to extract the information required for computing the various

performance metrics described next.

Video quality. We examine the quality of video segments in the top ABR track (TAT)

created by the video server. TAT represents an upper bound on the video quality experi-

enced by any user served by the video server. The video quality of the TAT depends on

the quality of the content received by the server on the ingest path, which is the cumula-

tive end result of all ingest activities (including broadcasting app encoding and adaptation,

network performance, etc.).

For the specific video quality, we adopt Video Multimethod Assessment Fusion

(VMAF) [102, 98, 95], which is a recently proposed perceptual quality metric and has been

shown to perform much better than traditional video quality metrics that do not accurately

capture human perception, such as Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index (SSIM) [148]. VMAF is a full-reference model allowing us to measure

the perceptual quality of a distorted video by comparing it with regard to a pristine quality

reference of the same content. VMAF was originally designed for evaluating compression

artifacts where the reference and distorted videos have the same frame rate. In contrast,

in the live video ingest use case, the source video and TAT can have different frame rates

(see §5.3.3). Therefore, we first resample the TAT to match its frame rate with the source

101

video using FFmpeg [63]. We then use the frame alignment step (§5.3.3) to align the first

frame in the TAT (t1) with its corresponding frame in the source (s1). Then we calculate

VMAF using the sequence of source frames starting from s1, as the reference sequence,

and the sequence of TAT frames starting from t1, as the distorted sequence. Since we are

particularly interested in the quality of the content consumed by mobile users, we use the

VMAF phone model (designed for small screens [96]) for VMAF calculation. Since we

are interested in measuring video quality at a fine granularity over the video session, we

use the arithmetic mean of the VMAF values of all the frames in a segment as the seg-

ment’s VMAF value, and analyze the distribution of per-segment VMAF values [127, 42]

across the session. Note that while we use VMAF for the reasons stated above, Livelyzer

can easily accommodate other video quality metrics, e.g., PSNR and SSIM.

Effective frame rate. Broadcasting apps may capture frames at a different frame rate

(FPS) and drop frames when the network bandwidth becomes insufficient. Besides, net-

works may drop frames, and video servers may reduce frame rates as well. To quantify the

impact of frame loss, we define effective frame rate (effective FPS, or eFPS), the number

of distinct frames in each second in TAT. eFPS equals FPS when there are no duplicate

frames (i.e., every frame is distinct). However, according to our observations (§5.5.1.1),

video servers may duplicate frames to maintain a constant FPS in ABR tracks when the

frame rate on the ingest path is variable. Therefore, to compute eFPS, we consider only

distinct frames by identifying and removing duplicates using our frame annotation and

alignment methods (§5.3.3).

Ingest freshness. We are also interested in understanding the latency impact of the

ingest path, which affects the E2E broadcaster-to-viewer (B2V) delay (§5.2.1) – a measure

102

of how much a viewer is behind the live event. To characterize ingest freshness, we define

the ingest delay for each ABR segment as the time elapsed from when its first frame is

generated at the source to when all the ABR track ladder variants of that segment become

available at the video server for players to download. This segment-level delay is also

more related to end users’ experience compared to the frame-level delay — a segment2

becomes available for players to download only after all the frames in the segment arrive

at the server and the different ABR track variants for that segment have been created. The

ingest delay for a segment is the sum of the times spent on broadcasting app encoding,

network transmission, and server transcoding. The ingest delay is part of the E2E B2V

delay. Therefore, a longer ingest delay will lead to a longer E2E B2V delay, everything

else remaining the same. For each new updated version of the live manifest, we extract

the time ts that it was updated at the server. We mark the arrival time as ts for all ABR

segments that first appear in the latest version of the manifest and were absent in earlier

versions. The generation time (tb) of the first frame of each segment is recorded at the

virtual camera. The ingest delay, or broadcasting-app-to-server (B2S) delay of a segment,

can thus be calculated as ts − tb.

Ingest smoothness. Once a viewer joins a live event, in order to play a live stream

smoothly without stalls, the player needs to get subsequent ABR segments from the video

server in a timely fashion. This requires the ABR segments to be created and made avail-

able for downstream players in a timely manner. However, during a live stream, if the

ingest delay increases significantly (e.g., because the uplink bandwidth become very low

for some time), the arrival of the video frames at the video server and subsequent creation

2In this chapter, we use segment to refer to the smallest unit of data that can be requested by an end viewer,
e.g., an ABR segment or a CMAF [65] chunk.

103

of the corresponding ABR segments will be delayed, increasing the chance that a player

may not receive some segments in a timely fashion and therefore experience stalls. While

due to live streaming freshness considerations, a player cannot stay far behind the live

edge, for many common use cases, the player can still start several seconds behind the live

edge (we define it as offset) and so can tolerate some variability in the availability time of

the segments. Here, to measure the effect of this variability on user experience, we assume

a player with an X seconds offset behind the live edge (we empirically set X = 10 in our

experiments), and measure the stall behavior due to segment availability time variability.

We define the stall ratio to be the aggregate stall duration as the percentage of the total live

video session duration.

5.4 Using Livelyzer for Live Video Encoding Analysis

We next use Livelyzer to characterize the video encoding design on the live streaming

ingest path, spanning broadcasting apps’ encoding and video servers’ transcoding, both

important QoE-impacting components in the E2E live streaming pipeline (§5.2.1). We

first consider high network bandwidths scenarios to ensure that the observed video outputs

of the two components reflect their inherent application logic and are not caused by any

network bandwidth limits. We shall later use this behavior as a baseline when we explore

more bandwidth-constrained situations in §5.5.

We use three different representative video contents as our broadcast sources: (1) City

– a city view with a lot of detail, (2) Concert – a live show that involves significant move-

ment, (3) Talking – a talking person with an almost static background. The videos are

obtained from Youtube in 1080p and 30fps. We select a 5-minute long sample of each

104

 20

 30

 40

 50

 60

 70

 80 120 160

T
I

SI

City
Concert
Talking

Figure 5.3: Content complexity measured by
spatial information (SI) and temporal infor-
mation (TI).

 0

 1000

 2000

 3000

 4000

City Concert Talking

B
it
ra

te
 (

k
b

p
s
)

OBS
S1-Web
S2-Web

S1-Mobile
S3-Mobile

Figure 5.4: Encoding bitrate mea-
sured with different videos.

for this study. We stream the 720p variant of the content (obtained by downscaling the

1080p reference to 720p) as input to broadcasting apps, in line with industry recommen-

dations [62], and use the original 1080p version as the pristine quality reference when

computing VMAF (§5.3.4). Figure 5.3 depicts the spatial and temporal information [41],

commonly used to characterize scene complexity, for these videos. Each data point in

Figure 5.3 represents an individual segment from the corresponding video.

The three commercial services we examine are denoted as S1, S2, and S3 in the rest of

the chapter. We use the terms Web and Mobile to refer to the browser-based and mobile-

based broadcasting apps, respectively, for each service.

5.4.1 Encoding Design of Broadcasting Apps

We first study the encoding bitrates of videos created by different broadcasting apps

covering common broadcast use cases (§5.2.1). As mentioned earlier, experiments in this

105

section are conducted under high-bandwidth network conditions, so the encoder should

not be constrained by any bandwidth concerns3. This scenario represents the best-case

performance of commercial broadcasting apps - we shall use it as a baseline when studying

the rate adaptation performance of these systems under real-world network conditions

when the upstream network bandwidth is not plentiful and is time-varying (§5.5).

Figure 5.4 shows the encoding bitrate distributions for different contents encoded by

different broadcasting apps. We measure these values from the uplink network traffic by

computing the data sending rates over time. Since we cannot extract the precise Group of

Pictures (GOP) structure used by the different commercial broadcasting apps (e.g., due to

traffic encryption), we use 6 seconds as the interval to compute each bitrate sample. For

OBS, we only present its encoding bitrate distribution when streaming to S1 as the results

for streaming to S2 and S3 are very similar.

We make two main observations. First, different broadcasting apps have very different

outputs with different encoding bitrate distributions even for the same content, suggesting

different encoding settings, e.g., mobile-based broadcasting apps tend to use consistently

higher bitrates than OBS and browser-based broadcasting apps.

Second, different broadcasting apps have very different encoding rate control behav-

iors. The OBS encoding bitrate is tightly concentrated around 2.7Mbps across all the con-

tent, suggesting the use of a CBR encoding independent of the content type. S1-Web, how-

ever, produces encodings with average bitrates and bitrate spreads that differ for different

content – this is more consistent with VBR-like encoding behaviors. Other broadcasting

apps, such as the mobile-based broadcasting apps, exhibit modest bitrate variations: the

3We leverage our source video padding (§5.3.3) to ensure that the bitrate has already “ramped up” when the
actual video content comes.

106

bitrates are within 18% and 8% of the corresponding mean values for S1 and S3’s mobile-

based broadcasting apps, respectively. They exhibit similar bitrate spreads for encoding

the three different video contents.

Above, we observe that many broadcasting apps we study use CBR. Given that VBR

has advantages over CBR, such as being able to achieve higher video quality with the

same average bitrate or provide the same quality with a lower bitrate encoding to better

accommodate to bandwidth constraints [127], one potential research direction is to explore

using VBR encoding in broadcasting apps.

5.4.2 Server ABR Transcoding Design

We now study how different services transcode a received live video stream into ABR

tracks. We focus on the top ABR track (TAT), which represents the highest-quality stream

that end viewers could enjoy. Any quality impairment observed in this track is entirely

caused by the ingest component. We measure the bitrate, duration, frame rate, and ingest

delay of each segment in this track.

 0

 1000

 2000

 3000

 4000

City Concert Talking

B
it
ra

te
 (

k
b
p

s
)

(a)

OBS-to-S1
OBS-to-S2

OBS-to-S2 (Low)
OBS-to-S2 (Ultra)

OBS-to-S3
Web-to-S1

Web-to-S2
Mobile-to-S1

Mobile-to-S3

 40

 60

 80

 100

City Concert Talking

V
M

A
F

(b)

 0

 5

 10

 15

 20

In
g
e
s
t
D

e
la

y
 (

s
)

(c)

Figure 5.5: (a) Bitrate distribution of TAT. (b) Quality of TAT. (c) Broadcasting-app-to-
server delay of segments in TAT.

Figure 5.5(a) shows the bitrate distribution of the TAT created by different services’

107

remote video servers. For OBS streaming to S2, we include three modes that S2 provides

for RTMP ingest: default normal mode, low latency mode (denoted as Low), and ultra-low

latency mode (marked as Ultra). As shown, different video servers also have very different

encoding (transcoding) bitrate distributions for encoding the same content, similar to dif-

ferent broadcasting apps do (§5.4.1). However, here the content dependency compared to

broadcasting apps’ encodings appears to be higher overall: many video servers (e.g., S1’s

video server receiving streams from OBS and S2’s video server receiving streams from S2-

Web) use fewer bits to encode less complex content such as the “Talking” video. Also, we

observe that the “dependence” between broadcasting apps’ encoding bitrates and the ABR

transcoding bitrates differ among services. For example, OBS encoding is very CBR-like

(§5.4.1) while the corresponding S1 video server creates content-dependent VBR encod-

ings. However, for OBS streaming to S3, the bitrate distributions of OBS encoding and

that of S3 server transcoding are very similar (both centered around 2.7Mbps).

Table 5.1 shows the duration and frame rate of segments created by different servers.

As shown, the segment duration can be very different depending on the service and broad-

cast platform. Later we shall see how the segment duration affects the ingest delay.

Table 5.1: Comparison of server ABR transcoding design.

Streaming service Broadcasting app Mode Segment duration Frame rate

S1
OBS N/A 2s 30 fps
S1-Web N/A 2s 30 fps
S1-Mobile N/A 2s 24 fps

S2
OBS

normal 5s 30 fps
low latency 2s 30 fps
ultra-low latency 1s 20-30 fps

S2-Web N/A 1s 20-30 fps

S3
OBS N/A 2s 30 fps
S3-Mobile N/A 5s 30 fps

108

5.4.3 QoE Impact

We next examine how different encoding rate control schemes in broadcasting apps

and video servers affect the end viewer QoE.

Figure 5.5(b) shows the video quality of TAT created by each video server. Usually,

a change of 6 or more VMAF points would be noticeable to a viewer. We observe that

even under unconstrained uplink network conditions, the video quality is not always high.

The “Talking” video has a much higher quality than the other two videos, likely a result of

its relatively lower content complexity. Overall, settings with both high encoding bitrates

at the broadcasting app and server sides (e.g., S1-Mobile and S3-Mobile) also have a high

video quality.

Figure 5.5(c) shows the ingest delay (§5.3.4). Overall we can see a correlation between

the delay and the segment duration shown in Table 5.1: the larger the segment duration,

the higher the ingest delay even though the broadcasting app is not necessarily doing seg-

mented delivery to the server. The reason for the correlation is: (1) The ingest delay of a

segment covers the time between when its first frame is generated at the source and when

its last frame is uploaded to the ingest server, which depends on the segment’s duration, (2)

transcoding a larger segment usually takes longer than transcoding a shorter one. We also

observed differences across services. For instance, both S2 (normal mode) and S3-Mobile

use 5s as the segment duration, while S3-Mobile has a much shorter ingest delay than S2.

109

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((a)) Stream to S1

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((b)) Stream to S2

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((c)) Stream to S3

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b

p
s
) Bandwidth

Tx rate

 0

 20

 40

 60

 80

 100

V
M

A
F

 0
 5

 10
 15
 20
 25
 30

 0 50 100 150 200 250 300

E
ff

e
c
ti
v
e

 F
P

S

Time(s)

Figure 5.6: Video quality of OBS streaming to dif-
ferent services: each network trace (A-F) is scaled to
60%/90%/120% of the baseline video encoding bitrate

Figure 5.7: OBS drops
frames to adapt to chang-
ing network conditions.

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((a)) Stream to S1

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((b)) Stream to S2

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((c)) Stream to S3

 0
 2
 4
 6
 8

 10

B
it
ra

te

(M
b

p
s
) Bandwidth

Tx rate

 0
 25
 50
 75

 100

V
M

A
F

 0
 1
 2
 3

 0 50 100 150 200 250 300

E
n

c
o

d
in

g

b
it
ra

te
 (

M
b

p
s
)	

		

Time(s)

Figure 5.8: Video quality of OBS dynamic bitrate mode
streaming to different services: each network trace (A-F) is
scaled to 60%/90%/120% of the baseline video encoding bi-
trate

Figure 5.9: OBS-
dynamic increases
encoding bitrate
slowly when band-
width increases.

5.5 Using Livelyzer for Network Rate Adaptation Analysis

Next, we study how different broadcasting apps adapt their upstream transmission to

cope with network dynamics, and the resulting impact on performance. As mentioned

in §5.2.1, there can be different ways of adjusting the amount of data to send to the net-

work, e.g., dropping frames or reducing encoding bitrates. To understand the adaptation

behavior, we measure the performance evolution across time and correlate it with the cor-

responding prevailing network bandwidth condition.

We focus on the “Concert” video with a medium content complexity across the three

110

videos we have (Figure 5.3). We leverage the network condition emulation feature of

Livelyzer (§5.3.1) to replay six real-world network bandwidth traces. For each of the six

cellular uplink traces (denoted as A, B, C, D, E, and F, whose coefficients of variation are

1.11, 0.90, 0.84, 0.65, 1.08, and 0.69, respectively), we create three variants as follows for

each broadcasting app. We proportionally scale the per-second bandwidth values in a trace

such that the average bandwidth of the resulting scaled trace becomes either 60%, 90%, or

120% of the average of the encoding bitrate time series output by that app under plentiful

uplink network conditions (§5.4.1). This, in total, creates 6 × 3 = 18 different network

conditions for replay for each broadcasting app.

5.5.1 Using Third-party Broadcasting App: OBS

We start with understanding the third-party OBS broadcasting app. We consider both

the default OBS and OBS with dynamic bitrate adaptation mode enabled (denoted as OBS-

dynamic). Starting with OBS version 24 back in 2019, “dynamic bitrate mode” was added

as an optional scheme to replace the default rate adaptation scheme. We use these two

schemes to stream videos to S1, S2, and S3. For S2, we focus on its default normal stream-

ing mode (§5.4.2).

5.5.1.1 Default OBS

Figure 5.6 overviews the quality of the video streaming from OBS to different services

under the 18 different network conditions described above. For comparison, we also show

the baseline video quality under ideal network conditions measured in §5.4. In general,

the higher the average bandwidth, the higher the video quality we observe. The instanta-

111

neous network bandwidth and its variability over time also also have an impact on video

quality. For example, trace D has the lowest coefficient of variation, leading to a relatively

better video quality than others. Overall, the VMAF values show considerable degrada-

tion compared to the results under no bandwidth constraints (§5.4.2): the (25th percentile,

median) VMAF averaged over the 18 network conditions is decreased by (64%, 31%),

(62%, 28%), and (66%, 34%) compared to the baseline for S1, S2, and S3, respectively.

Besides, we still observe low quality especially in the tail of the distribution (e.g., 5th and

25th percentiles of the VMAF distribution) even when the average network bandwidth for

a network condition is high (e.g., 120% of the encoding bitrate). The average stall ratio

(defined in §5.3.4) across different traces is 3.5%, 1.0%, and 2.1% for S1, S2, and S3,

respectively (not shown in the figures).

To understand the root cause for such performance degradation, we plot the evolution

of network bandwidth, data sending rate, video quality, as well as the effective frame rate

of a typical live video ingest session across time, as shown in Figure 5.7. This figure

shows an example of how OBS performs when the upload bandwidth availability changes

over time according to one trace. As shown, there are still many low-bandwidth periods

even when the average bandwidth is high (120% of the encoding bitrate in this case). In

high-bandwidth periods, even if the bandwidth is higher than the baseline encoding bitrate,

due to the real-time nature of the live video stream, the additional bandwidth availability

cannot be used to further improve the video quality. We also see a relationship among

the network bandwidth, VMAF, and the effective frame rate (effective FPS, defined in

§5.3.4): when the network experiences low-bandwidth periods, the effective FPS in the

top ABR track (TAT) is very low (e.g., zero), leading to low VMAF values and choppy

112

video quality. The measured low effective FPS is likely because some frames get dropped

before reaching the ABR server.

To further explore the above, we instrument the OBS source code4 to collect frame

management information. We find that the default OBS broadcasting app drops frames

when the network bandwidth becomes insufficient to support the configured video encod-

ing bitrate. We also note that the frame drop process is bursty – sequences of consecutive

frames are dropped. Some bursts can be as large as 2s worth of frames, leading to poor

video experience during that time. We also examined the TAT created by different stream-

ing servers. We find that S1 and S2 duplicate frames to maintain a constant high frame rate,

although the effective frame rate (§5.3.4) still remains low. S3 adopts a different strategy

– it does not fill the gaps in the sequence with duplicate frames and uses discontinuous

presentation times (PTS) to indicate the presence of gaps so that the player knows when

to render each frame.

5.5.1.2 OBS dynamic bitrate mode

We now study the performance of this new mode under the same network conditions

as in Figure 5.6. Overall, the video quality is improved compared to the default OBS

rate adaptation (see Figure 5.8). However, there are some scenarios when the quality be-

comes worse, such as when using trace E with its average bandwidth scaled to 60% of the

encoding bitrate. The stall ratio is 4.3%, 0.8%, and 2.1% for S1, S2, and S3, respectively.

To understand why OBS-dynamic sometimes has worse performance than the default

OBS adaptation, we examine the different performance metrics across time. Figure 5.9

4Unlike many other broadcasting apps, OBS is open-source

113

shows an example run for this broadcast setting. We find that the network resource fre-

quently becomes under-utilized: even if during many periods the bandwidth is higher than

the baseline OBS encoding bitrate, the broadcasting app does not leverage the increased

bandwidth to reach the baseline bitrate. The VMAF can stay low even after the network

bandwidth rapidly improves from a low value, e.g., even if the bandwidth is only very low

at a few points, the near-zero poor VMAF lasts more than 30s.

To understand the root cause for the above behavior, we further instrument the corre-

sponding dynamic bitrate adaptation module of OBS. Specifically, we log the encoding

bitrate decision over time, as shown in the bottom subfigure of Figure 5.9. We can see

that the encoding bitrate increases relatively infrequently (every ∼30s), and it increases

very little at each step. By examining its source code, we find that although OBS-dynamic

reduces its encoding bitrate whenever the network condition degrades from good, it only

increases the encoding bitrate very gradually over time, when the network connection

starts recovering from a poor bandwidth condition. Specifically, it reduces the encoding

bitrate when the measured frame buffer occupancy is high and sets the new encoding bi-

trate to the buffer drain rate, which approximates the available network bandwidth. When

the current encoding bitrate is lower than the baseline bitrate, the scheme only checks

whether it is safe to increase encoding bitrate every 30s based on the frame buffer occu-

pancy: if the buffer occupancy is low, it would increases the encoding bitrate. Worse,

every time OBS-dynamic decides to increase the bitrate, it only increases the bitrate by

a fixed amount (maxBitrate
10

) and keeps probing until it reaches maxBitrate, which is the

default encoding bitrate specified by the system/user, regardless of the current network

condition. As a result, even when the network condition already becomes good right after

114

a temporal outage at around 170s, it takes OBS more than 100s to fully recover to the

default encoding bitrate under high network bandwidth conditions. In §5.6, we show how

this rate adaptation logic can be improved by demonstrating our proposed rate adaptation

scheme.

5.5.2 Using Browser-based Broadcasting Apps

We now study the browser-based broadcasting apps, specifically the S1-Web and S2-

Web broadcasting apps. S3 does not support sending streams from a browser and requires

either a third-party broadcasting app or the service’s own mobile app for broadcasting.

5.5.2.1 S1-Web

As shown in Figure 5.10(a), under many settings, S1-Web still has high quality video

encoding despite network bandwidth constraints. However, this leads to high stalls, as

shown in Figure 5.10(b), an example run under trace B scaled to 60% of the original video

encoding bitrate. The average stall over different traces is 11% – the highest stall ratio

across different broadcasting apps that we studied. This suggests that S1-Web tends to

maintain a relatively high data sending rate, which can overshoot the network when the

bandwidth is limited, leading to a high stall ratio despite maintaining a relatively high

video encoding quality.

5.5.2.2 S2-Web

S2-Web has very different behavior from S1-Web. As shown in Figure 5.11(a), most

of the scenarios exhibit low video quality, e.g., even the 95th percentile VMAF values

115

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((a)) Quality distribution

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b

p
s
) Bandwidth

Tx rate

 0

 20

 40

 60

 80

 100

V
M

A
F

 0
 50

 100
 150
 200
 250
 300

 0 50 100 150 200 250 300In
g

e
s
t

P
ro

g
re

s
s
 (

s
)

Time(s)

Stall

((b)) Example run

Figure 5.10: Browser-based broadcast to S1.

of the first six settings are all less than 30. On deeper exploration, we find that once

the bandwidth increases after a period of drops, S2-Web still keeps sending data at a low

rate instead of increasing it to the baseline data rate (∼2Mbps, §5.4.1), as exemplified by

Figure 5.11(b). The average stall ratio (0.7%) is much lower compared to S1-Web.

5.5.3 Using Mobile-based Broadcasting Apps

We next study the S1 and S3 mobile app broadcast performances. The S2 mobile app

broadcast feature requires the streaming account to have more than 1000 subscriptions,

making it difficult to conduct experiments, and is not studied.

5.5.3.1 S1-Mobile

Figure 5.12(a) shows the video quality distribution. We find that the broadcasting

app increases the data sending rate slowly when the network conditions recover, missing

116

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((a)) Quality distribution

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b

p
s
)

Bandwidth
Tx rate

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300

V
M

A
F

Time(s)

((b)) Example run

Figure 5.11: Browser-based broadcast to S2.

opportunities to increase the encoding bitrates and thereby the video quality, similar to

the behavior of OBS-dynamic. Figure 5.12(b) shows such an example: when the network

condition recovers at t ≈ 70s, the broadcasting app’s data sending rate increases very

slowly, making the VMAF recovery slow as well. The stall ratio is 4.2% on average

across different settings.

5.5.3.2 S3-Mobile

We observe relatively high video quality, as shown in Figure 5.13(a). However, we

also observe severe stalls, 6.3% on average. Figure 5.13(b) shows an example run where

a stall occurs when the network bandwidth drops at t ≈ 180s. The video quality decrease

indicates that S3-Mobile does adapt to the network bandwidth reduction by reducing the

encoding bitrate. But the stall keeps occurring, which suggests that S3-Mobile’s rate adap-

tation is sub-optimal and can be improved (in this case, it still overshoots a little, causing

117

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((a)) Quality distribution

 0

 2

 4

 6

 8

 10

B
it
ra

te
 (

M
b

p
s
)

Bandwidth
Tx rate

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300

V
M

A
F

Time(s)

((b)) Example run

Figure 5.12: Mobile-based broadcast to S1.

 0

 20

 40

 60

 80

 100

A B C D E F Ideal

V
M

A
F

60% 90% 120%

((a)) Quality distribution

 0

 2

 4

 6

 8

 10
B

it
ra

te
 (

M
b

p
s
) Bandwidth

Tx rate

 0

 20

 40

 60

 80

 100

V
M

A
F

 0
 50

 100
 150
 200
 250
 300

 0 50 100 150 200 250 300In
g

e
s
t

P
ro

g
re

s
s
 (

s
)

Time(s)

Stall

((b)) Example run

Figure 5.13: Mobile-based broadcast to S3.

an extra stall at t ≈ 275s).

To summarize, our measurements show a vast diversity of performances across differ-

ent scenarios, suggesting different broadcasting apps and services choose different points

118

in the design spaces for the live streaming ingest pipeline. This reinforces the need for

tools like Livelyzer to analyze systems and understand their performance profiles as well

as their strengths and weaknesses.

5.6 Improving Rate Adaptation Logic

It is vital to deliver the content on the first mile at high quality with minimal impair-

ments, as it becomes the source reference used for the ABR track encoding and streaming

delivery to end users, and its quality constrains the end-user QoE (§5.2.1). However, the

limited bandwidth and variability on the first mile make this task difficult, as shown by our

characterization of existing designs (§5.5). In this section, we conduct a what-if analysis

to explore the potential for improving the video quality on the first mile by suitable rate

adaptation to better adapt to network conditions.

For ABR streaming, rate adaptation has been studied extensively on the distribution

path from the server to the client, with the latter dynamically selecting from different

variants over time. On the ingest path, there is a single variant being transmitted, and any

adaptation would involve dynamically changing the encoding bitrate. Conceptually, an

adaptation scheme that tailors the video bitrate to the actual network bandwidth variability

should be able to deliver better video QoE. However, there has been much less research on

the rate adaptation for the live streaming ingest case.

§5.5 shows that while the existing broadcasting apps seem to have rate adaptation

schemes built in, their performances could be further improved. For example, §5.5.1.2

indicates that when the bandwidth increases from a low level, OBS-dynamic’s encoding

bitrate always increases by a fixed delta at 30s intervals, irrespective of the actual network

119

bandwidth, leading to suboptimal performance (e.g., Figure 5.9).

To understand the potential improvements possible with a better adaptation logic, we

design a simple proof-of-concept rate adaptation scheme that better adapts to changes in

the available bandwidth. Our algorithm works as follows. In every epoch, we compute a

new encoding bitrate for the next epoch based on the predicted uplink bandwidth for the

next epoch. The new encoding bitrate is calculated as min{(1− η)×BW,maxBitrate}

where BW is the predicted throughput for the next epoch, η ∈ (0, 1) is a tunable parameter

introduced to control the aggressiveness of the adaptation algorithm in terms of bandwidth

consumption, and maxBitrate is the maximum video encoding bitrate specified by the

system/user.

We implement this new adaptation logic in OBS the open-source broadcasting app.

We denote it as OBS-adapt and compare it with the default OBS and OBS-dynamic adap-

tation schemes. We use the following bandwidth prediction approach. In our network

bandwidth trace-driven experiments, we take the average of the bandwidth values for the

past N epochs as the estimated network bandwidth for the next epoch for input to OBS-

adapt. We empirically set η to 25%, N to 4, and the epoch to be 2s.

Figures 5.14, 5.15, and 5.16 show the video quality associated with streaming from

OBS to S1, S2, and S3, respectively, under the 18 different network conditions described

earlier for OBS. As shown, OBS-adapt noticeably improves the video quality across dif-

ferent network conditions. The (25th percentile, median) VMAF averaged over the 18

network conditions and three services for OBS-adapt improves by (29.9, 21.7) and (14.5,

12.1) compared to OBS and OBS-dynamic, respectively. The average stall ratio is sim-

ilarly low for all three schemes, with OBS-adapt being slightly lower: 2.2%, 2.4%, and

120

1.7%, for OBS, OBS-dynamic, and OBS-adapt, respectively.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 5.14: Ingest performance comparison of the default and improved OBS streaming
to S1.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 5.15: Ingest performance comparison of the default and improved OBS streaming
to S2.

 0

 20

 40

 60

 80

 100

60% 90%
A

120% 60% 90%
B

120% 60% 90%
C

120% 60% 90%
D

120% 60% 90%
E

120% 60% 90%
F

120%

V
M

A
F

OBS
OBS-dynamic

OBS-adapt

Figure 5.16: Ingest performance comparison of the default and improved OBS streaming
to S3.

To better understand the reason for the observed performance improvements, we con-

sider an example experimental run under one bandwidth profile. As shown in Figure 5.17,

OBS-adapt’s VMAF values remain high compared to OBS and OBS-dynamic. Although

121

OBS-dynamic also adjusts its encoding bitrate to cope with the network condition, com-

pared to OBS-adapt, it frequently under-utilizes the available network resources. Specifi-

cally, it selects a much lower encoding bitrate than the available network bandwidth, due

to its specific adaptation logic when the available network bandwidth increases from a

low value (e.g., at t ≈ 70s and t ≈ 155s). In contrast, OBS-adapt is able to better adapt

to the same changing bandwidth conditions, leading to better video quality. The default

OBS adaptation scheme drops frames instead of adjusting the encoding bitrate, leading to

frequent very low quality periods.

 0
 3
 6
 9

B
it
ra

te
 (

M
b

p
s
)

Bandwidth OBS OBS-dynamic OBS-adapt

 0

 50

 100

V
M

A
F

 0
 1
 2
 3

 0 50 100 150 200 250 300

E
n

c
o

d
in

g

b
it
ra

te
 (

M
b

p
s
)	

		
		

Time(s)

Figure 5.17: Example run showing the network bandwidth, data rate, video quality, and
encoding bitrate decision evolution over time.

The above results clearly show that even a relatively straightforward adaptation strat-

egy that fully accounts for network bandwidth changes can significantly improve the de-

livered quality on the ingest path compared to the current state of the art, even under

challenging network conditions. Note that developing an overall optimized adaptation

strategy on the ingest path is not straightforward and involves various challenges, distinct

from the adaptation on the distribution path. We leave the development of a full-fledged

122

ingest adaptation strategy to future work.

5.7 Summary

This chapter explores the first-mile ingest design and performance of live streaming.

We develop Livelyzer, a generalized active measurement and black-box testing framework

for analyzing this component in popular live streaming software and services under con-

trolled settings. We use Livelyzer to characterize the ingest behavior and performance of

several live streaming platforms. We identify broadcasting app rate adaptation design defi-

ciencies that lead to poor ingest performance due to poor coordination between application

policy and network performance, and propose network-aware best practice application de-

sign recommendations to improve the same.

123

CHAPTER VI

Harbor: Hybrid Architecture for Collaborative Vehicular

Sensing

This chapter further studies the mobile application design by looking at an emerging

live video analytics application, edge-assisted vehicular sensing, in a collaborative setting

by having multiple vehicles sending data to a shared edge server for view merging. We

develop a hybrid system architecture adaptable to different vehicle-to-infrastructure (V2I)

and vehicle-to-vehicle (V2V) network connectivity by integrating a set of cross-layer op-

timizations.

6.1 Introduction

Autonomous vehicles leverage various on-board 3D vision sensors (e.g., LiDAR and

stereo cameras) to continuously sense the surrounding environment. Running computer

vision algorithms [120, 92, 164] on their on-board computers to analyze these 3D video

streams, autonomous vehicles are expected to have a better understanding of the physi-

124

cal world than human drivers and improve traffic safety and efficiency by making more

informed driving decisions [17, 28, 27].

However, a single vehicle can only sense a limited range, and its view may be further

restricted due to occlusion. One promising solution to overcome these limitations is collab-

orative sensing, where multiple vehicles share sensor data using wireless networks, given

that today’s vehicles are increasingly equipped with WiFi and cellular interfaces [3, 7, 1].

Collaborative sensing would thus benefit autonomous driving and Advanced Driving As-

sistance Systems (ADAS) by merging sensor data from different vehicles to form a com-

plete view. Video analytics tasks (e.g., drivable space detection [67] and object detec-

tion [151, 92]) can then be performed based on the merged 3D data, whose results can

finally be shared among all the cars through network communications.

There exist a few studies to enable collaborative sensing [162, 128, 90], but they are

not flexible enough to handle dynamic traffic and network conditions, suffering from per-

formance issues (§6.2.2). Most base their design on a vehicle-to-vehicle (V2V) system

architecture, where vehicles exchange data among each other to share sensor data streams.

Despite its autonomous nature without external infrastructure support, the V2V architec-

ture heavily relies on the wireless network established by vehicles, whose capacity needs

to be shared by all vehicles and is likely limited in high-mobility scenarios. V2V was also

shown to suffer from scalability issues [162]. Another limitation of V2V is its inability to

leverage more powerful in-house computation resources, missing opportunities to benefit

from recent technological advancements in cloud and edge computing.

A related line of solutions proposes to leverage a powerful edge or cloud server for

view merging and analytics by letting each vehicle upload its sensor data, without vehicles

125

talking to each other [162]. However, this vehicle-to-infrastructure (V2I) architecture also

has limitations. V2I communication is often unreliable: even cellular networks, currently

the most universal mobile network infrastructure, still have coverage issues, especially in

rural areas. The performance of V2I links can be limited and fluctuates significantly in

high-mobility scenarios [93, 94, 167].

In this chapter, we argue that a hybrid system architecture is needed to cope with

varying wireless network connectivity and resource in high-mobility driving scenarios.

Specifically, we aim to jointly harness the benefit of both V2V and V2I, to better utilize

the available network resources and adapt the system modality dynamically. For example,

in rural areas, one vehicle may not be able to access the server (i.e., a helpee vehicle)

due to the poor coverage of its ISP. The vehicle can leverage V2V to send its sensor data

to another vehicle with V2I access (i.e., a helper vehicle) and ask to forward the data to

the server. The server then performs analytics based on the merged 3D video stream and

sends the video analytics results back to each vehicle, either directly through V2I (for

helper vehicles) or through V2I and V2V forwarding (for helpee vehicles).

The above mechanism seems intuitive. However, we are faced with several challenges

when designing such a hybrid system (§6.2.3). How to efficiently assign helper vehicles

for helpee vehicles in a strategic and balanced manner that improves the overall system

performance? How to balance the quality and timeliness of video analytic tasks, especially

when the links in a hybrid system are highly heterogeneous, and the analytic result can

flow over the same V2V wireless medium shared with sensor data transmission? When a

vehicle receives remote analytic results from the server, how to judiciously combine the

local analytic and remote analytic results to take full advantage of both? We next highlight

126

the key design decisions of our proposed system called Harbor.

• As a hybrid system architecture, Harbor keeps track of the state of each vehicle through

a series of control messages and dynamically establishes and tears down V2V connections

based on the system state. To maintain system connectivity and reduce interruption time

under high vehicular mobility, we periodically adjust the V2V connections and employ

multipath routing to increase V2V connectivity.

• Harbor strategically assigns helper vehicles to helpee vehicles by exploring different

assignments in a simulation-based fashion and estimating the V2V and V2I links’ perfor-

mance on every helpee vehicle’s end-to-end path for each possible assignment to pick the

best one. The assignment decision is made dynamically based on factors that are both

highly correlated with V2V and V2I link performances and easily accessible via operating

systems and networking APIs (§6.3.2).

• To ensure timely delivery of video analytic results in a heterogeneous environment

where different vehicles’ point cloud upload time in a round can differ a lot, Harbor keeps

deadline-awareness to decide when to start the frame merging process and analytic task

on the server, instead of always waiting for frames from all vehicles in the round to ar-

rive. Harbor also leverages MAC-layer prioritization to prevent analytic result messages

from being delayed by the sensor data transmission over the same wireless V2V medium

(§6.3.3).

• Harbor judiciously combines local and remote analytic results by examining for each

area the fidelity of the local and remote point clouds quantified by the point density. It also

leverages the certainty information in the analytic results to choose the side whose analytic

result for a specific area has a higher certainty (§6.3.4).

127

We implement Harbor by integrating the above design decisions in a holistic system

(§6.4), and systematically evaluate its performance by comparing it with a few baseline

mechanisms (§6.5). Our key evaluation results consist of the following.

• Compared to using only V2V or V2I, Harbor reduces the end-to-end drivable space

detection latency by at least 18.6% and up to 45.9%, without sacrificing the detection

accuracy.

• By strategically assigning helper vehicles to helpee vehicles, Harbor reduces the tail

latency by 38.8% (up to 43.8%), compared to naı̈ve assignment schemes.

• By having server-side deadline-awareness and V2V MAC-layer prioritization, Harbor

reduces the tail latency by 25.6% (up to 42.6%) compared to naı̈ve analytics result delivery.

• By combining local and remote detection results, Harbor improves the average driv-

able space detection accuracy by 34.96% (16.02%) compared to using only local (remote)

detection results.

Overall, Harbor is, to our knowledge, the first system that jointly uses V2V and V2I

for collaborative vehicular sensing. Compared to existing collaboration schemes, Harbor

offers several benefits such as more reliable data transfer and combined local and remote

video analytic results. As a hybrid system, Harbor efficiently bridges V2I-disconnected

vehicles by strategically pairing them with V2I-connected vehicles through V2V connec-

tivity. Harbor also leverages server-side deadline awareness and MAC-layer prioritization

to reduce analytic result delivery time.

128

6.2 Background and Motivation

Autonomous vehicles rely on various on-board 3D vision sensors to understand the

physical world consisting of road segments, pedestrians, cyclists, other cars, etc., to make

correct driving decisions. For example, LiDAR (Light Detection and Ranging) [34, 39] is

a major on-board vision sensor, which fires laser lights at different angles and measures

how long it takes for the lights to return to the sensor after reflection from objects, based on

which it calculates the distance of these objects and generates 3D point clouds to represent

the surroundings. Different software modules will further process the collected point cloud

data and make appropriate driving decisions.

6.2.1 Benefits of Collaborative Sensing

As mentioned in §6.1, collaborative sensing would benefit autonomous driving by

merging the point clouds from different vehicles to form a complete view. Figure 6.1

shows a concrete example where the point cloud data are generated from a state-of-the-

art autonomous driving simulator [31]. As shown, in a single vehicle’s point cloud data

(marked as blue), there are three blind spots caused by occlusion. After merging this point

cloud with another one from a nearby vehicle (marked as green), two of the three blind

spots can be eliminated.

6.2.2 V2V or V2I? Why Not Both?

Limitations of V2V. In a V2V system, vehicles exchange data for sharing data

streams [128]. Depending on the specific V2V system design, either all the vehicles re-

ceive all the point cloud data from other vehicles and perform analytics, or only one of the

129

3 blind spots 2 blind spots eliminated

Single vehicle sensor data Merged view from two vehicles

Figure 6.1: A LiDAR point cloud example showing the benefits of collaborative sensing
by merging a nearby vehicle’s data (green) to a single vehicle (blue).

vehicles receives data, performs analytics, and disseminates the analytics result to other ve-

hicles. Despite its autonomous nature without external infrastructure support, V2V heavily

relies on the wireless network established by vehicles, whose capacity needs to be shared

by all cars and is likely limited in high mobility scenarios. While some WiFi standards like

802.11ad can theoretically achieve a bandwidth of up to a few Gbps, they suffer from low

coverage (about 10 meters) that cannot accommodate constantly moving vehicles. Long-

distance wireless communication technologies such as DSRC/802.11p [84] can achieve

3-27 Mbps, and current commercial products tend to achieve up to 6 Mbps, which is not

enough to support a large number of vehicles transmitting their sensor data at the same

time. V2V was also shown to suffer from scalability issues [162]. Another limitation of

V2V is its inability to leverage more powerful cloud/edge computation resources.

Limitations of V2I. V2I systems leverage a powerful edge or cloud server for view

merging and analytics by letting each vehicle upload its sensor data to the server, with-

out vehicles talking to each other [162]. However, V2I communications are not always

reliable everywhere: even cellular networks–currently the most universal mobile network

infrastructure–still have coverage issues [30, 38, 40]. The performance of V2I links can

130

AT&T

Verizo
n

T-Mobile

AT&T

V2V link Verizo
n

Mode
switch

Pure V2I Mode V2V+V2I Mode

Figure 6.2: An example of joint using V2V and V2I to bridge a disconnected/poor-
performing car (red).

often be limited and fluctuates a lot in high-mobility scenarios [93, 94, 167]. According to

our analysis of the measurement data from recent work [108, 162], the LTE uplink band-

width in driving scenarios is lower than 1.5 Mbps (the lowest bandwidth requirement for

uploading compressed point cloud data) during 11% of the time. The percentage of low-

performance periods for the whole V2I system can be further amplified as each vehicle in

the system can experience such limited performance at different times.

Joint Use of V2V and V2I. The limitations of only using either V2V or V2I motivates

us to consider a joint use of both. Figure 6.2 shows an example where in a rural area, the

red car may not be able to access the server due to the poor coverage of its ISP. In this

case, it can leverage V2V to send its sensor data to the black car with direct server access

and ask to forward the data to the server through V2I. In the following sections, we refer

vehicles with direct server access as helper vehicles or helpers, and vehicles with no V2I

connectivity or experiencing temporary disruption on their V2I links as helpee vehicles or

helpees.

131

6.2.3 Challenges

However, designing such a hybrid system architecture that jointly uses V2V and V2I

also involves several challenges.

• As the vehicles are on the move and each may join and leave the collaboration at any

time, the V2V and V2I connections need to be flexibly managed in a dynamic manner.

Also, the system needs to quickly identify disconnected vehicles and pair them with other

cars to forward their sensor data to minimize their network interruption time.

• When a vehicle’s V2I connection gets disconnected, there could be multiple vehicles

that can help forward its sensor data. Each helper may have different levels of abilities in

terms of helping a specific helpee, and there could also be multiple disconnected vehicles.

How to efficiently assign helpers for helpees?

• For a hybrid architecture, helpees’ sensor data and detection results need to go through

both V2V and V2I links. The V2V network is a shared wireless medium, where there is

contention between the analytics result message delivery and the sensor data transmission.

This contention could cause small result messages to be delayed by bulk sensor data trans-

fers. How to eliminate this contention and reduce result message delivery delay without

affecting the sensor data transmission throughput?

• Vehicles’ point cloud data will be sent to the server for view merging and analytics,

and in the meantime, vehicles also perform local analytics on their point cloud. How to

combine the analytics results from both sides?

132

6.3 Harbor Design

We propose Harbor, a hybrid collaborative vehicular sensing system architecture that

enables multiple vehicles to leverage their V2V or/and V2I network access to share their

3D point cloud sensor data. Compared to existing collaborative vehicular sensing systems,

Harbor aims to reduce the 3D vehicular video analytics latency and improve analytics

accuracy in an efficient and scalable manner, especially under dynamic wireless network

and mobility conditions.

We next describe how to address the aforementioned key challenges of Harbor (§6.2.3):

How to flexibly manage V2V and V2I connections in a dynamic manner (§6.3.1)? How

to efficiently assign a helper vehicle for each helpee vehicle (§6.3.2)? How to balance the

quality and timeliness of video analytics tasks (§6.3.3)? When a vehicle receives remote

analytics results from the server, how to combine the local and remote analytics results

(§6.3.4)?

6.3.1 Hybrid System Architecture

Figure 6.3 shows the system architecture of Harbor. Every vehicle in Harbor runs

various vehicle-side modules (e.g., partition, adaptive encoding, etc.), and the server runs

server-side modules. At any specific time, vehicles fall into two disjoint sets: a helper set

and a helpee set. Vehicles in the helper set have V2I connectivity, whereas vehicles in the

helpee set do not. Helpers and helpees form a V2V wireless network so that helpees can

leverage the V2V medium to send their point clouds to the server through helpers’ V2I

links, which also upload helpers’ point clouds.

• Data Plane Operations. As shown in Figure 6.3, before uploading each point cloud

133

V2V Medium

V2I Links

Helpers

Server

Video Analytics Apps
Helper
Assignment
(§6.3.2)

State
Info

Analytics resultsAssignments

Adaptive
Encoding

Result
Combination
(§6.3.4)

Local
Video
Analytics

HelpeesMAC-layer
Prioritization
($6.3.3)

Partition

Helpees’
point clouds

Helpers’
point clouds

Helpees’
state info

Helpers’
state info

Helpee

Helper

Analytics
result

Assignment

Deadline-aware
View Merging
(§6.3.3)

Raw
Point
Clouds

Figure 6.3: System Architecture of Harbor.

frame, partition and encoding are performed to reduce the data size for transmission. On

receiving a round of point clouds from different vehicles1, the server maps each point

cloud frame collected from different positions to a unified coordinate system, harnessing

the vehicles’ sensor position and orientation information reported by vehicles (described

shortly). It then merges these frames and performs video analytics tasks such as object

detection and drivable space detection to generate analytics results. In the rest of the

chapter, we use drivable space detection as an example application given its maturity and

little sensitivity to merged point clouds2. Drivable space detection extracts the road plane

from a point cloud, partitions the plane space into grids, and marks each grid as drivable

1Like existing work [162], we assume timestamps of point cloud capture on different vehicles are synchro-
nized. In reality, point cloud data generation time across vehicles can have slight misalignment, which can
be solved by existing techniques [77].

2Existing 3D object detection models, on the other hand, are designed for a single vehicle, whose perfor-
mances on merged point clouds are poor.

134

or occupied. Finally, the detection result is sent back to vehicles. Meanwhile, each car

continues to produce local detection results3. Upon receiving detection results from the

server, vehicles then strategically fuse the received result with their local detection results

(§6.3.4).

• Control Plane Message Exchanges. Harbor needs to assign helpers to helpees (§6.3.2)

to optimize the network resource allocation for fast vehicular point cloud data uploading.

A naı̈ve way to do this is to let each helpee find a helper in a distributed manner. How-

ever, such distributed pairing lacks a holistic view of the network topology and V2I&V2V

resources in the system. Harbor chooses to use a centralized method, where the server col-

lects vehicle state information (Figure 6.3) to track vehicles’ various statistics and makes

assignment decisions accordingly. Dashed lines in Figure 6.3 show the control plane mes-

sage exchanges in Harbor. Helpers send their state information periodically to the server,

including locations, point cloud data generation timestamps, the computation time for re-

sult combination, V2I bandwidth measurements, and V2V network routing tables stored

in operating systems. Helpees broadcast their state information using the wireless V2V

network and rely on helpers to forward it to the server. The server then computes a best as-

signment using some of the above information (§6.3.2) and informs the concerned helpers.

These helpers get notified that they are assigned to help some of the others, and each of

them informs the helpee it is about to help to establish a V2V connection for point cloud

forwarding. The server detects the helper and helpee set changes by updating the corre-

sponding vehicle state information. Note that helpees in the system will keep probing its

V2I link performance periodically and become helper again when their V2I connectivity

3Local detection is useful because remote detection results can sometimes arrive late and local unencoded
sensor data have high quality.

135

resumes.

• Grouping Vehicles to Scale Better. The complexity of assignment computation/data

forwarding can increase drastically when the number of vehicles increases. To make

Harbor more scalable, we apply a geo-location-based grouping method, where region

boundaries are pre-defined in the map offline, and vehicles inside each region form a

group. Then the vehicles inside each group (rather than all vehicles in the system) per-

form collaborative sensing within the group. Harbor regions are defined as 100m× 100m

grids based on the typical LiDAR sensor range, and typical vehicle number within this area

is small4. More sophisticated region partition (e.g., dividing region based on road sectors)

is left for future work. Such grouping makes Harbor scalable because 1) control messages

(e.g., location/routing) only need to be forwarded by nodes within the group, reducing the

message overhead and 2) computing helper assignment is faster with smaller input size.

• Adaptation to Changing Network Conditions. Harbor leverages V2I and V2V net-

works, both of which can be highly dynamic. In order to cope with fluctuating wireless

network bandwidths and V2V channel congestion, vehicles perform point cloud encoding

adaptation. Harbor first uses existing bandwidth estimation technique for real-time point

cloud streaming [162] to estimate the upload bandwidth for each vehicle. Based on the

estimated upload bandwidth, each vehicle adjusts the encoding level of its next sending

frame, whose bandwidth requirement after encoding is lower than and the closest to the

estimation.

• Handle high mobility of vehicles. As vehicles can move at high speeds, Harbor needs

to update helper assignments to cope with helper performance dynamics and remain ro-

4Based on the average traffic and vehicle speed in city areas in the U.S. [33], in a 100m road, the average
number of vehicles is only 6.

136

bust communications against V2V network topology changes. To make prompt assign-

ment updates, Harbor server periodically computes the best assignment and updates the

assignment to vehicles in the system. Infrequent assignments may fail to capture vehicles’

position change, producing bad assignments that hurt system performance, while doing as-

signments too frequently incurs high computation and communication overhead. To find a

good balance, we set the period to be 200ms because 1) vehicle positions won’t change too

much in each period5 and 2) the computation and communication overhead is small. To

make Harbor robust against V2V network topology change, we leverage multipath routing

(§6.4) to have backup routing paths for nodes in the V2V network. Having a backup rout-

ing path enables the communication between vehicles when the primary path is stale due

to topology change caused by mobility.

• V2V Fallback. Under some extreme cases, all of the vehicles in close regions can

have no V2I connectivity (e.g., due to no cellular deployment in some rural areas or there

is no server available). In such scenarios, Harbor chooses to fall back to a V2V-based

collaboration where one vehicle acts as a server (through a leader election process) for

data aggregation and detect result delivery. Harbor can resume using the hybrid V2V+V2I

mode once some vehicles become helpers (i.e., reconnect to the server) and continue to

perform the collaboration seamlessly.

6.3.2 Strategic Helper Assignment

One crucial question we need to answer is how to efficiently assign helpers for helpees.

This is challenging because different helpers have different V2I and V2V conditions when

5Vehicles at 110 km/h only moves around 6 m during this period.

137

assigned to a specific helpee. In addition, there could be multiple helpees at the same

time, and one of them’s helper selection decision may affect the performance of another’s

helpee-helper pair in such a shared V2V wireless medium. Ideally, we would like to

do the assignment so that the overall performance of the system is maximized, which

in collaborative sensing means the “slowest” vehicle’s point cloud upload time would be

minimized.

We first identify three significant factors that impact the performance of the V2V and

V2I links on each helpee’s end-to-end (E2E) path to the server, which consists of a helpee-

to-helper path and a helper-to-server path.

• Physical distance. In a wireless V2V network, the physical distance between a helpee

and a helper has an impact on the throughput of the helpee-to-helper path, especially when

they are only one hop away from each other. When there are multiple hops between

the helpee and helper, this single indicator of the V2V connection throughput becomes

insufficient, and V2V network interference (described below) would be another indicator.

• V2I network bandwidth. The V2I bandwidth of a helpee’s helper can also impact

the point cloud data upload time, especially when the helpee-to-server path becomes the

bottleneck of the E2E helpee-to-server path. The V2I bandwidth of a helper will also be

shared by itself and one or more helpees.

• V2V network interference. In wireless networks, hosts can experience interference

when multiple surrounding nodes are actively generating network traffic [82]. Scenarios

like multi-hoping between helper and helpee nodes and multiple helpees transmitting data

to the same helper will hurt the performance of a helpee-helper connection.

138

Symbol Meaning
ei Helpee vehicle i
rj Helper vehicle j

ak = (ei, rj) A (helper, helpee) assignment pair
A = {a1, a2, ..., an} An assignment is a set of assignment pairs

P (ak) = ei → ...→ rj The network path for ak (helpee i to helper j)
n Total number of helpees
m Total number of helpers

D(ei, rj) Physical distance between helpee i and helper j
Sdist(A), Sbw(A), Sintf (A) Distance,V2I bandwidth, V2V interference score of assignment A

IC(vi, X) Interference count produced by vertices in graph X to vertex vi
IC(P (ak), X) The sum of interference counts for all vertices in path P (ak)

Table 6.1: Notations for helper assignment algorithm.

6.3.2.1 Assignment Algorithm Design

This section discusses how Harbor optimizes its helper assignment by considering all

three above impacting factors. Overall, Harbor takes a simulation-based approach by ex-

ploring and evaluating different assignments. Specifically, for each possible assignment,

Harbor calculates a score based on the above factors. The assignment with the highest

score would finally be selected to pair helpees with concerned helpers. Harbor assigns

helpers in a way that each helpee only needs one helper6 but one helper can be assigned to

help multiple helpees. Following this rule, given a system with m helpers and n helpees,

there are mn possible assignments in total.

For an assignment A, its score is defined as Eq. 6.1 below. Assuming the total number

of helpees is n, an assignment A = {a1, a2, ..., an} contains one or multiple assignment

pairs from each helpee ei to its helper rj (Table 6.1).

6Assigning multiple helpers for a helpee may sometimes be useful but is complicated to realize and out of
the scope of this study.

139

Score(A) = Sdist(A) + Sbw(A) + Sintf (A) (6.1)

We first calculate the distance, V2I bandwidth, and interference score of each pair and

then aggregate each type of score using an aggregation function f , as shown in Eq. 6.2.

Sfactor(A) = f(Sfactor(a1), ..., Sfactor(an)) (6.2)

While different aggregation functions can be applied, Harbor uses the harmonic mean

to aggregate scores of different assignment pairs, which helps filter out assignments with

low-score assignment pairs to prevent the whole collaboration system being slowed down

by a single “slow” vehicle, as harmonic mean is very sensitive to small-value outliers.

We next elaborate on how to calculate the score for each individual impacting factor,

including distance, V2I bandwidth, and wireless interference. Since distance, bandwidth,

and interference have different units and scales, we design each score function (Sdist, Sbw,

and Sintf) in a way that maps the corresponding factor to a value in [0, 1] to give each fac-

tor/score equal importance. Table 6.1 summarizes the notations used to calculate different

scores of an assignment.

• Distance Score. Intuitively, the wireless throughput is better when two nodes physically

reside closer to each other. Therefore, the assignment should prefer a helper closer to a

specific helpee to forward its data to the server. The distance score for a pair ai = (ei, rj) is

quantified by comparing the physical distance between ei and rj with the longest possible

distance between ei and any other helper in the system. Specifically, for an assignment

140

pair ai = (ei, rj), its distance score is calculated by

Sdist(ai) = 1− D(ei, rj)

max{D(ei, rk)}mk=1

(6.3)

From Eq. 6.3, we can see that with a smaller physical distance between ei and rj ,

the score will be higher, indicating a nearby node is preferred for potential better V2V

bandwidth. Also, the score value lies in between 0 and 1, as we desire. After calculating

Sdist(ai) for all ai in A, the distance score for the assignment can be calculated using Eq.

6.2.

• Bandwidth Score. At high level, a higher V2I bandwidth (after sharing with helpees)

should have a higher score as it can potentially reduce the data upload time. If a helper

rj is assigned to help one (or more) helpee(s), we first calculate its amortized V2I band-

width BW (rj)

1+N(rj)
where N(rj) is the number of assigned helpees to rj . The amortized V2I

bandwidth measures the share of rj’s total V2I bandwidth for each vehicle that uses it this

V2I link. We then consider a low threshold BWlow (i.e., bandwidth lower than BWlow can

hardly support transmitting sensor data) and a high threshold BWhigh (i.e., bandwidth that

is sufficient to transmit data at high quality). Sbw(ai) will reach 0 if BW (rj)

1+N(rj)
< BWlow,

indicating select this helper will congest the network. Similarly, Sbw(ai) will reach 1 if
BW (rj)

1+N(rj)
> BWhigh. When the helper’s amortized V2I bandwidth is in between BWlow and

BWhigh, a linear fit is used to scale the bandwidth score of a connection whose V2I band-

with lies in between the low and high thresholds (Eq. 6.4). We set BWlow = 1.5Mbps

and BWhigh = 12Mbps based on the bandwidth requirement for transmitting point cloud

at 10 fps with different encoding levels7 (§6.3.4).

7A typical point cloud encoded with 8 (12) quantization bits is 18 (140) KB.

141

Sbw(ai) =


0 if BW (rj)

1+N(rj)
< BWlow

1 if BW (rj)

1+N(rj)
> BWhigh

BW (rj)

(1+N(rj))
−BWlow

BWhigh−BWlow
otherwise

(6.4)

• Interference Score. Overall, the interference score is designed so that a higher score

is generated when the assignment’s interference is smaller. To fulfill this, we propose a

graph-based method to quantify the amount of interference by leveraging a simple obser-

vation: senders and receivers will interfere when they are in each others’ coverage range.

Specifically, we define a term called Interference Count, IC, to quantify the interference.

At a high level, IC(vi, X) measures the total number of interfering nodes from a network

topology (represented as a graph) X to a node vertex vi (vi can either be a helper or a

helpee) and IC(ai, X) measures the interference produced by X to a pair ai. To calcu-

late the interference count for ai, we sum over all the interference count for the nodes in

the network path P (ai) for the pair ai, i.e., IC(ai, X) = Σvi∈P (ai)IC(vi, X). The en-

tire graph, including the network paths of all assignment pairs, can be constructed from

the control messages received by the server, which include the routing tables on vehicles

(§6.3.1). When no valid network path exists for ai (i.e., the helpee cannot connect to the

helper through V2V), the total score Score(A) for this assignment is set to 0. If the net-

work paths are valid, then the interference score function maps the interference count for

ai to a value between 0 to 1. The exact formula to calculate the interference score for ai is

shown in Eq. 6.5.

Sintf (ai) = 1− IC(ai, A)− IC(ai, ai)

IC(ai, G)− IC(ai, ai)
(6.5)

142

V2V link

Assignment Path 2
Assignment Path 1
Link with interference

e1 r1

e2 r2 r3

Figure 6.4: An example of graph-based interference score calculation.

In Eq. 6.5, A represents the sub-graph produced by the active transmitting and receiv-

ing nodes in the assignment. G represents the graph formed by assuming all nodes are

actively generating/receiving network traffic. IC(ai, ai) calculates the interference caused

only by the nodes in the network path of ai. Similarly, IC(ai, A) is the interference caused

by the actual assignment A and IC(ai, G) is the maximum possible interference for the

pair ai.

Take Figure 6.4 as an example, there are two assignment pairs in the assignment A =

{a1, a2}, where a1 = (e1, r3) and a2 = (e2, r2). Their network paths are p1 = P (a1) =

e1 → r1 → r3 and p2 = P (a2) = e2 → r2. To calculate IC(a1, A), we sum up all inter-

ference sources for all nodes in the network path p1, i.e., IC(a1, A) = Σvi∈p1IC(vi, A) =

IC(e1, A) + IC(r1, A) + IC(r3, A) = |{e2, r1}| + |{e1}| + |{r1}| = 2 + 1 + 1 = 4.

Similarly, we can calculate IC(a1, a1) = |{r1}| + |{e1}| + |{r1}| = 1 + 1 + 1 = 3 and

IC(a1, G) = |{e2, r1, r2}| + |{e1, r2, r3}| + |{r1, r2}| = 3 + 3 + 2 = 8. Finally we have

the interference score Sintf (a1) = 1 − 4−3
8−3

= 0.8. Similarly, IC(a2, A) can be calculated

and the interference score Sintf (A) can be obtained using Eq. 6.2.

With all the three scores calculated, the score for the assignment A can be obtained

from Eq. 6.1. Among all the possible assignments, Harbor uses brute force search to

select the assignment with the highest score. Note that Harbor only maps the destination

143

helpers to helpees and leaves the network path from helpees to helpers to the routing

algorithm. This destination-only mapping, along with the region-based grouping (§6.3.1)

mechanism, can greatly reduce the search space and make the brute force search solvable

within a short amount of time8.

6.3.3 Timely Delivery of Detection Results

As vehicles need to digest the point cloud data in real time, it is vital to deliver the

remote detection result back to each individual vehicle in time. Stale detection results may

not be useful because the driving environment can change drastically within a few seconds.

To achieve timely delivery of the detection result, Harbor harnesses both application-level

deadline awareness and MAC-layer prioritization.

6.3.3.1 Deadline Awareness

As introduced in §6.3.1, adaptive encoding helps prevent wireless links from being

over-occupied. However, some vehicles’ point cloud frames may still not be uploaded in

time when 1) the V2I/V2V bandwidth is incapable of supporting the lowest bitrate version

of the point cloud or 2) the adaptation algorithm make sub-optimal encoding decisions due

to bandwidth estimation errors. If the server waits for frames from all vehicles (generated

in the same round) to arrive before performing view merging (i.e., an all-or-nothing ap-

proach), it could happen that the E2E latency would be inflated by stragglers whose frame

uploading is too slow. Figure 6.5 shows an example where the upload time of the frames

captured in the same round can differ by more than 0.75s across 6 vehicles due to the

8More sophisticated algorithm-level optimizations (e.g., dynamic programming) may be able to further re-
duce the algorithm complexity, and such optimizations are left as future work.

144

0 25
Frame Number

0.0

0.5

U
pl

oa
d

L
at

en
cy

(s
) min

max

Figure 6.5: An example showing latency
variation across vehicles.

Vehicle Server

t1: Frame sent

t0: Frame captured

t2: Frame received

t6: Vehicle deadline
Time Time

t4: Detection finished

 Local detection

t5: Result received
Result Combination

Remote detection

t3: Server deadline

Figure 6.6: Timeline of Harbor’s vehicle-side
and server-side data processing.

aforementioned reasons. Harbor addresses this latency heterogeneity by incorporating a

deadline by which frame merging and detection must start (even if not receiving the frames

from all the vehicles in this round).

Specifically, Harbor’s server determines this deadline in the following way. Each ve-

hicle has a fixed E2E latency requirement Te2e (§6.4) for each point cloud frame since the

frame is captured from the sensor. Following the timelines in Figure 6.6, the server can

calculate the vehicle-side deadline t6 = t0 + Te2e. Based on a vehicle’s local computation

time Tcomb to combine the detection result, the server further estimates t5 = t6 − Tcomb.

All the vehicle-side timestamps are embedded into control messages sent to the server

(§6.3.1). The server then estimates the downlink one-way delay Towd to get t4 = t5−Towd.

Finally, based on its detection time Tremote, the server computes the deadline timestamp

t3 = t4 − Tcomp at which it must start merging all the currently received sensor data and

doing detection. Since there are multiple vehicles in the system and their time parameters

can have differences, the server uses the minimal t3 as the estimated deadline.

145

single
flow

w/
concurrent

transfer

0.1

0.2
C

on
tr

ol
M

sg
L

at
en

cy
(s

)
P2P WiFi

Cellular

Figure 6.7: Impact of network types on the
detection result delivery latency.

12 11 10 9 8 7
Quantization Bits

0.25

0.50

0.75

D
ri

va
bl

e
S

pa
ce

D
et

ec
ti

on
A

cc
ur

ac
y

Figure 6.8: Impact of quantization
bits on the detection accuracy.

6.3.3.2 MAC-layer Prioritization

Different from previous work [162], where only a cellular V2I downlink is required to

transmit each result message, in a hybrid system that involves both V2V and V2I links,

data messages and result messages compete for transmission from opposite directions in

the same V2V wireless medium. Figure 6.7 illustrates that the latency of light-weight

detection results can be largely inflated if there is concurrent data-intensive transmission

in a peer-to-peer V2V wireless network. This is due to medium contention when multiple

nodes in the same wireless network are trying to transmit data simultaneously. As shown,

in contrast, such drastic tail latency increase is not observed on a cellular link.

To quickly delivery result messages in this challenging situation, prioritization of re-

sult messages should be done at the MAC layer. This is because the traffic coming from

different hosts contend for the shared wireless medium, and the logic to access the shared

medium is controlled by the MAC layer. We propose a MAC-layer message prioritization

146

design, which prioritizes different types of messages using priority queues. For queues

with higher priorities, we adjust the MAC-layer parameters (§6.4) to enable a higher prob-

ability of accessing the medium. This MAC-layer prioritization design allows the light-

weight but latency-sensitive detection result messages to be prioritized over data-intensive

sensor data transmission, achieving lower end-to-end latency while maintaining the net-

work throughput for sensor data transmission.

6.3.4 Combining Local and Remote Detection Results

Upon receiving the remote detection results from the server, each vehicle needs to

effectively combine the remote detection result with its local detection result. Previous

work [162] does not consider how the remote detection result gets fused into the local

detection result. Should the vehicles always accept the remote detection result whenever

there is one?

No, they should not, and here is why. Due to the adaptive encoding of point clouds

(Figure 6.8), the accuracy of detection can drop when the compression level is high (a

small quantization bits value means a high compression level) under poor network condi-

tions. Because different cars can have different network conditions, the frames arriving at

the server in a round may have been encoded with different compression levels. This may

cause the detection accuracy to drop in certain physical areas when merging these frames.

Therefore, blindly accepting the remote detection is not enough.

To further illustrate the need for the detection results from both sides, Figure 6.9 vi-

sualizes a scenario where using neither local detection nor remote detection is sufficient.

Local detection at the yellow vehicle has a large area of occlusion. For the remote detec-

147

Local
Detection

Remote
Detection

Combined
Detection

Blind spots Less accurate
detection

Improved
detectionStreet view

Ground
Truth

Figure 6.9: An example for local and remote detection result combination (drivable areas
are marked as blue and occupied areas are marked as red).

tion, the occlusion is eliminated by fusing data from the green vehicle with its own data.

The results of remote detection for some regions near the yellow vehicle, however, are less

accurate. This can happen when the frame sent by the yellow car is encoded with a high

compression level, causing the merged point cloud at the server to have less resolution,

affecting the detection accuracy on the area nearby. If we combine the local result with

the remote result by taking the local detection result close (< 30m) to the yellow vehicle

and accepting remote detection on other areas, both blind spots and areas with inaccurate

detection are eliminated. However, this mentioned combination is manual and specific to

one frame, and in Harbor we need a generic approach to automatically combine local and

remote detection results to achieve better drivable space detection accuracy.

Motivated by this example, we develop a method showing that strategically combining

local detection with remote detection can improve the overall accuracy for drivable space

detection. Because of the physical property of LiDAR sensors, distant areas will contain

fewer points and information, making the point density at distant areas lower. However,

148

on the server side, after merging sensor data from multiple vehicles, the point density can

be much larger than a single vehicle’s view. Based on this observation, we propose a point

density-based strategy to combine local detection with remote detection. The high-level

idea of the strategy lies in two aspects: 1) use local detection for nearby areas and remote

detection for faraway areas (with higher point density), 2) use remote results if the nearby

areas are occluded.

Specifically, the detection results are occupancy grids where each grid is labeled as

drivable/occupied/unknown (§6.3.1). For each grid, the vehicle can choose to use its lo-

cal/remote detection label. When a vehicle receives the detection result from the server, it

first compares the point density of local points with the remote points9 starting from radius

d = 0m and finds the first ring (d, d + 5) such that the remote point density in this ring is

t% denser than the local points. Then it accepts the remote detection results on the grids

where the distance to the vehicle is larger than the inner radius d0 of the ring. The density

threshold t% is set to 50% to ensure remote detection contains a fair amount of additional

information than the local detection. Besides, for other grids in the detection results whose

distances to the vehicle are smaller than d0, they also accepts the remote detection results

if that region is labeled as “unknown” in local detection, otherwise (i.e., the region labeled

as “known”: either “drivable” or “occupied”), the vehicle keeps its own detection deci-

sion. The intuition behind this is that if a nearby region is labeled as “unknown”, it is very

likely to be caused by occlusions, and accepting remote detection result can gain more in-

formation about the occluded area. Our point density-based technique can be generalized

to other detection apps with some modifications. Take collaborative object detection as an

9The server sends back point density info along with the detection result.

149

example, vehicles can choose to use local/remote bounding boxes if the distances between

objects’ bounding boxes and themselves are smaller/larger than d0.

6.4 Implementation

• Server side performs helper assignment, sensor data merging, and drivable space

detection. Harbor’s drivable space detection uses the Random Sample Consensus

(RANSAC) [64] algorithm to extract the road plane and mark the points on the road plane

as “drivable” (other points are marked as objects). Then it converts the road plane into an

occupancy grid of size 1m × 1m and labels each grid as either “drivable”, “occupied” or

“unknown”. To make Harbor’s assignment scheme more robust to small changes in score,

we introduce a stability threshold θ to decide when we want to switch to a new assignment.

The server will enforce the new assignment only if its score is higher than the old score by

over θ. In our evaluation, we empirically set θ = 0.4.

• Vehicle side. V2V control message exchanges are implemented over UDP due to the

broadcast requirement. V2V sensor data exchanges and V2I communications are imple-

mented over TCP. To cope with the highly dynamic nature of vehicles, we apply multipath

routing upon the Optimized Link State Routing Protocol (OLSR) [57] to provide a backup

path when the primary route is not valid. We use Draco [32] to encode point cloud data,

and encoding adaptation is performed by setting different quantization bits values. We ap-

ply a distance-based partition for data partition: each vehicle partition the point cloud data

within a fixed threshold distance 50m to its location as each vehicle’s sensor data is denser

at places close to its center and contains more information. Our data partition module can

be replaced with more sophisticated data partition algorithms [162] easily. MAC-layer

150

prioritization is implemented in Linux kernel v5.8.0 [35]. Specifically, we create a higher

priority queue for delivering detection results in addition to the normal MAC-layer frame

processing queue (inside Linux mac80211 module). Whenever a packet from the user-

space gets processed at the MAC layer, it checks whether it is a detection result packet and

puts it into the corresponding queue for transmission. We adjust the contention window

(CWmin = 2) and arbitrated inter-frame spacing (AIFS = 1) to increase the probability

of successfully transmitting the packets.

To better understand the latency requirement for collaborative sensing, we derive a

500 ms latency threshold by considering several safety-critical scenarios from previous

work [162, 128]. In an unprotected left turn, the ego-vehicle has to receive the detec-

tion results within 543 ms. In the high-speed overtaking scenario, assuming the LiDAR

range [39] is 80m and drivable space detection results within half LiDAR range will be

useful, the end-to-end detection results need to be delivered within 559 ms. By further

considering a 50 ms processing delay for other modules in the vehicle (e.g., path plan-

ning), we set Te2e = 500 ms as a hard deadline for the detection results (§6.3.3) and mark

results delivered with larger than 500 ms latency as overdue.

6.5 Evaluation

We demonstrate the benefits of Harbor by experimentally evaluating its performance

and comparing it with a few baseline schemes, under realistic traffic scenarios and network

conditions. We quantify improvements in terms of drivable space detection accuracy and

latency by conducting both trace-driven emulation and live vehicular experiments.

151

6.5.1 Experimental Setup and Methodology

0.20.4
Detection Latency (s)

0.7

0.8

D
et

ec
ti

on
A

cc
ur

ac
y

Harbor

V2I
V2V-adapt

V2I-adapt

V2V
Better

a) Better V2I Conditions

0.20.4
Detection Latency (s)

0.725

0.750

0.775

D
et

ec
ti

on
A

cc
ur

ac
y

Harbor

V2I

V2V-adapt

V2I-adaptV2VBetter

b) Similar V2I and V2V Conditions

0.20.4
Detection Latency (s)

0.6

0.7

D
et

ec
ti

on
A

cc
ur

ac
y

Harbor

V2I

V2V-adapt

V2I-adapt

V2V

Better

c) Better V2V Conditions

Figure 6.10: Emulation-based experimental results for E2E
performance of Harbor and baseline schemes (an edge cloud
is used as the server).

0.30.4
Detection Latency (s)

0.60

0.65

D
et

ec
ti

on
A

cc
ur

ac
y

Harbor

V2I-adapt

V2V-adapt

Better

Figure 6.11: E2E live
vehicular experiments.

We consider the following evaluation metrics.

• E2E detection latency: This is the duration between when a point cloud is captured on

a vehicle to when the drivable space detection result is ready for the vehicle to use.

• Detection accuracy: This quantifies the difference between the actual detection result

with ground truth. Specifically, we compare the predicted grid labels with ground-truth

labels. Detection accuracy is defined as Eq. 6.6 where TP (True Positives) is the number of

grids whose prediction and ground-truth are both drivable. Similarly, TN (True Negatives)

is the number of grids whose prediction and ground-truth are both occupied or unknown.

Accuracy =
TP + TN

Total number of grids
(6.6)

We compare Harbor with the following baseline schemes. V2I: each vehicle only uses

V2I and cannot join the collaboration. V2V: all vehicles send sensor data to a single

vehicle for drivable space detection. V2I-adapt: the above V2I scheme with Harbor’s

adaptive encoding (§6.3.1). V2V-adapt: the above V2V scheme with Harbor’s adaptive

152

encoding. In our V2V baseline implementation, one of the vehicles receives data, performs

detection, and disseminates the results to other vehicles.

Trace-driven emulation. Due to the challenge of conducting real-world driving ex-

periments in diverse scenarios, most of our experiments are trace-driven emulation. Our

Traffic traces include vehicle trajectory and LiDAR point cloud data collected from a pho-

torealistic autonomous driving simulator [31] in different driving scenarios (Table 6.2). By

replaying these trajectory traces in Mininet-WiFi [36], the different mobility patterns of

vehicles will help us exercise different V2V network conditions. Our V2I network traces

consist of real LTE and 5G uplink network traces collected by driving vehicles [108, 162]

to emulate various V2I network conditions. The experiments are conducted on a Linux

machine with 16-core 2.6GHz CPU and 32GB memory, running Mininet-WiFi, which

creates different numbers of wireless nodes and a server node. Each wireless node runs a

Harbor vehicle instance and has two network interfaces: one 802.11g WLAN interface for

the communication between vehicles, and another Ethernet interface for the connection

with the server node. We use Linux tc to replay the V2I network traces over this Ethernet

interface to emulate cellular V2I. The point cloud capture rate is configured as 10 fps in

both emulation and live vehicular experiments (described below).

Live vehicular experiments. We also conduct small-scale live vehicular experiments

by driving real vehicles. Each vehicle is equipped with a laptop which runs a Harbor ve-

hicle instance. We also use a powerful server machine with a 32-core Intel Xeon CPU and

128 GB memory to run the Harbor server instance. In this set of experiments, we have two

helpers and one helpee. For each laptop, we tether a smartphone to it. The smartphones

have GPS and each runs an app [37] to read locations (the smartphones tethered to helpers

153

Setting Value
of vehicles 2 - 20

Speed of vehicles 0 - 70.0 km/h
Average V2I bandwidth 5.36 - 55.88 Mbps

Traffic scenes
urban roundabout, urban&rural intersections,
urban&rural road segments, entrance ramp

Point cloud dataset size 157.09 GB

Table 6.2: Summary of experiment settings.

also provide cellular Internet access for V2I communications). The laptops form an ad-

hoc network using their WiFi interfaces for V2V communications. In this setup, although

we still replay sensor data traces due to the cost of installing LiDAR sensors, we use real

networks and create real vehicle movements, which results in more realistic V2V and V2I

network conditions.

6.5.2 End-to-end Performance

We start with showing the E2E performance results. Table 6.2 summarizes the config-

urations such as number of vehicles, mobility patterns, and network conditions for all the

experiments we performed. We measure both the detection accuracy and latency for each

scheme.

Trace-driven emulation. We vary the number of vehicles, mobility patterns, and

V2I network conditions, which in total create 100 different settings. We further categorize

these settings into 3 classes: (1) better V2I conditions, (2) similar V2I and V2V conditions,

and (3) better V2V conditions. The categorization is based on average V2I bandwidth,

V2V distances and the duration of helpee vehicles.

Figure 6.10 shows the E2E performance of Harbor and baseline schemes, for the afore-

154

mentioned three categories of settings. In the aggregated results, we show the mean latency

in the x axis and mean detection accuracy in the y axis. The error bar shows the standard

deviation of each scheme under various settings. Because of the heterogeneous setting

configurations like vehicle mobility and V2I network bandwidth, all baseline schemes ex-

perience large variation across settings. As shown, Harbor greatly improves the detection

latency without sacrificing the detection accuracy. The mean latency is improved by 39.3%

and 36.7% compared to V2V-adapt and V2I-adapt, respectively. The improvements over

V2V and V2I are even higher: 45.9% and 42.0%, respectively.

In fact, Harbor even slightly improves the detection accuracy compared to the base-

lines. Specifically, on average, it improves the accuracy by 5.08%, 7.66%, 3.48%, and

7.76%, compared to V2V, V2I, V2V-adapt, and V2I-adapt, respectively. The reasons are

two-fold. First, Harbor tries to bridge more vehicles together despite their V2I/V2V dis-

connections by jointly using their V2V and V2I links, leading to a more complete aggre-

gate view. Second, Harbor reduces the E2E latency of remote detection results delivery,

making the results more likely to be delivered in time hence utilized.

Field tests with real vehicles. We evaluate Harbor by running experiments driving

three real vehicles on a University campus, following the live vehicular experimental setup

described in §6.5.1. Figure 6.11 shows the experiment results: Harbor outperforms two

baseline schemes, V2I-adapt and V2V-adapt10, by reducing 18.6% and 29.9% of detection

latency and improving 8.0% and 5.78% on detection accuracy. Note that in real-world

driving tests, we have observed that the RTT between commercial cellular network to a

server is 97.4± 1.49ms, which is much longer than a real vehicle-to-edge communication

10We didn’t include the results for V2I and V2V as our emulation results indicate that they already perform
worse than V2I-adapt and V2V-adapt

155

latency (about 20ms [163]). Compared to emulation experiments, Harbor’s improvements

on latency are a bit lower due to higher base V2I communication latency.

Case study. Figure 6.12 shows an example case demonstrating how Harbor adapts

to V2I disconnections and network bandwidth changes. In this case, two vehicles that

initially have V2I connections experience bad V2I conditions and become helpees at dif-

ferent times, and there is another helper with a consistent V2I connection. The first vehicle

disconnects from the server at t≈ 12s, and the second one disconnects at t≈ 22s. Both ve-

hicles only experience a latency spike that lasts for a short duration (<0.25s), and quickly

recover from the disconnection by pairing with the helper. For example, when helpee 0

switches to using the V2V network, its encoding bitrate decreases as the V2V bandwidth

is lower than its previous V2I bandwidth. Similarly, the helper also adapts to the network

condition change by reducing its encoding bitrate, as it now shares part of its uplink band-

width to helpee 0. As a result, both the helper and helpees keep their latency close to where

both had V2I connectivity. We also measure the disruption to the collaborative application

by analyzing how fast Harbor can resume low latency transmission if a vehicle loses its

V2I connectivity. In this case, the latency for consecutive frame transmission resumes to

less than 100 ms within 0.4s, which only affects the next three frames’ detection latency

on a 10fps rate.

Scaling to large-scale deployment. We evaluate how Harbor scales to environments

with a large number of vehicles. We proportionally increase the number of helpees with the

number of total vehicles in the system to keep a consistent disconnection ratio. Figure 6.13

shows the performance of Harbor changes with an increasing number of vehicles. Harbor

outperforms V2V-adapt and V2I-adapt schemes by 38.5%, 54.48% in average detection

156

0 20

0.1

0.2

0.3

H
el

p
ee

0
L

at
en

cy
(s

) V2I Disconnection

0 20
0

20

H
el

p
ee

0
V

2I
B

W
(M

bp
s)

low

medium

high

E
nc

od
in

g
bi

tr
at

e

Switch to V2V

0 20

0.1

0.2

0.3
H

el
p

ee
1

L
at

en
cy

(s
)

V2I Disconnection

0 20
0

20

H
el

p
ee

1
V

2I
B

W
(M

bp
s)

low

medium

high

E
nc

od
in

g
bi

tr
at

e

Switch to V2V

0 20
Time (s)

0.1

0.2

0.3

H
el

p
er

L
at

en
cy

(s
)

0 20
Time (s)

10

20

H
el

p
er

V
2I

B
W

(M
bp

s)

low

medium

high

E
nc

od
in

g
bi

tr
at

e

Help Helpee 0

Figure 6.12: Case study experiment.

latency, and 10.34%, 16.11% in detection accuracy respectively. We observe that apply-

ing a V2I-based scheme is indeed more scalable than a pure V2V scheme, as shown be-

fore [162]. Harbor achieves better scalability compared to V2I by using the V2V medium

for helpees and applying region-based grouping to reduce network message overhead.

Note that for other baselines, the detection accuracy degrades with more vehicles. This is

because the scheme is not scalable enough to support in-time delivery of detection results,

and fewer vehicles can benefit from collaboration. However, as shown in Figure 6.13,

Harbor consistently improves the detection accuracy with more vehicles participating in

the collaboration.

157

12 14 16 18 20
Number of Vehicles

0.2

0.4

D
et

ec
ti

on
L

at
en

cy
(s

)
12 14 16 18 20

Number of Vehicles

0.7

0.8

D
et

ec
ti

on
A

cc
ur

ac
y v2v-adapt

v2i-adapt

Harbor
w/ grouping

Harbor
w/o grouping

Figure 6.13: Benefits of Harbor’s region-based grouping.

0.2 0.4
Detection Latency (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Harbor
Random
minDist
V2I-BW
V2V-intf
Distributed

Figure 6.14: Comparison
of Harbor’s assignment strat-
egy and other assignment
strategies.

0.2 0.4
Detection Latency (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Harbor
Prioritization
DDL-aware
Baseline

Figure 6.15: Benefits of
Harbor’s detection result de-
livery strategy.

local remote naive Harbor
0.00

0.25

0.50

0.75

A
cc

ur
ac

y

Figure 6.16: Benefits of
Harbor’s combination of lo-
cal and remote detection re-
sults.

6.5.3 Strategic Helper Assignment

In this section, we use trace-driven emulation to examine the benefits of one of

Harbor’s key design decisions: strategically assign a helper vehicle for each helpee ve-

hicle. To this end, we randomly sampled 20% of the tested settings. To make a fair

comparison, we enable all other optimization features in Harbor and change only the as-

signment scheduling logic to have five different baseline assignment schemes.

We compare Harbor’s assignment scheme with the following baselines: (1) Random:

randomly assign helpers to helpees; (2) Min-distance: assign helpers by minimizing the

158

total distance between helper-helpee pairs; (3) V2I-BW: assign helpers by selecting the

helpers with higher V2I bandwidths; (4) V2V-interference: assign helpers to helpees by

maximizing the interference score on the V2V wireless network; (5) Distributed: each

helpee broadcasts a “seek-for-helper” message in the V2V network, which will be re-

sponded by received helpers, and selects the helper whose response is delivered first. In

this scheme, vehicles can avoid transmitting some control message (e.g., routing).

Figure 6.14 shows the benefits of Harbor’s strategic helper assignment leveraging dif-

ferent information sources, where it improves the detection latency over all other baseline

assignment schemes. In fact, Harbor’s strategic assignment benefits mostly in reducing tail

latency. The 90th and 95th percentile latency has improved by 43.8% and 38.8%, respec-

tively. As the baseline assignment algorithms often optimize a single factor, they cannot

perform well in all settings. For instance, although the “Distributed” scheme avoids some

overhead by transmitting fewer control messages, its performance is still lags Harbor due

to the lack of a holistic view of the network resources. This reinforces the need for a

centralized method to manage the resources (§6.3.1) by mapping helpees to helpers to re-

alize better performance. By considering all different factors that affect V2I and V2V data

transmission, Harbor becomes more robust under various driving and network conditions,

thus improving the tail latency greatly. In addition to the improvement of the tail latency,

Harbor also achieves a slightly higher detection accuracy than other assignment schemes.

6.5.4 Timely Detection Result Delivery

To showcase the benefits of Harbor’s fast detection result delivery strategy, we exper-

iment under heterogeneous vehicular network settings. We select the 15% of our tested

settings and compare Harbor’s strategy with three baseline strategies: (1) baseline, which

159

is Harbor without the entire fast detection result delivery design (§6.3.3), (2) prioritization,

which adds detection result prioritization at the MAC layer to the baseline. (3) deadline-

aware (DDL-aware), which adds server-side deadline-awareness in frame merging to the

baseline. In our micro-benchmark, we include settings to cover heterogeneous network

conditions in two aspects: (1) V2I bandwidth difference across vehicles and (2) the num-

ber of simultaneous helpees that use V2V medium.

Figure 6.15 shows the benefits of Harbor’s decisions in fast detection result delivery.

As shown, both MAC-layer result message prioritization and server-side deadline aware-

ness reduce the average detection latency by over 19.0%. Harbor achieves a higher latency

improvement of 38.33% by leveraging both techniques. Harbor also improves 90th per-

centile latency by 25.6% and 42.6%, compared to prioritization and DDL-aware. DDL-

aware slightly outperforms prioritization in most experiments because it optimizes result

delivery for all participant vehicles, while MAC-layer message prioritization only reduces

latency for helpees. Harbor also achieves the highest detection accuracy among these four

schemes.

6.5.5 Detection Results Combination

We compare Harbor’s judicious combination of local and remote detection results with

three baselines: 1) using only local detection, 2) using remote detection results whenever

possible, and 3) a naı̈ve combination method, which uses local results if the distance to an

area is within 50% of the LiDAR range and uses remote results otherwise.

Figure 6.16 shows the benefits of Harbor’s point density-based combination of local

and remote detection results (§6.3.4). As expected, remote detection aggregates sensor

160

data from multiple vehicles improves the detection accuracy by eliminating blind spots for

single vehicle sensor data. And combining local and remote data can further improve the

detection accuracy by leveraging high accuracy detection on close areas with high-quality

data in the local detection. Moreover, by further strategically aggregating local and remote

detection, Harbor can consistently achieve better drivable space detection accuracy with

an average increase of 16.02% compared to remote-only detection and improves 6.87%

over the naı̈ve combination method.

6.6 Summary

We propose Harbor, a hybrid system architecture for collaborative vehicular sensing.

The design of Harbor leverages a cross-layer assignment algorithm to allocate vehicles

with V2I connectivity to other vehicles without it. Harbor also optimizes detection result

delivery latency with app-layer deadline awareness and MAC-layer message prioritization

and uses strategic result combination to improve detection accuracy. Evaluation results

show that Harbor reduces the drivable space detection latency by up to 45.9%, without

sacrificing the detection accuracy.

161

CHAPTER VII

Conclusion and Future Work

The mobile Internet has rapidly evolved over the past decade, with an ever-growing

diversity of end systems and applications. However, this increased complexity of differ-

ent components and protocol layers makes it more challenging to achieve high network

utilization and meet the diverse QoE requirements for mobile applications. As a result,

despite the richness of diverse network resources, the performance of today’s mobile ap-

plications still falls behind expectations. My dissertation is dedicated to addressing this

challenge. We demonstrate that with a better understanding of the various entities and

different layers of the increasingly complex mobile Internet, we can identify unique per-

formance problems and leverage such knowledge to develop network transport protocols

with cross-device awareness and application adaptation strategies with cross-layer consid-

erations for better mobile app performance.

Specifically, to understand and solve the new challenges brought by diverse end sys-

tems, we explore wearable networking where a mobile end host does not always directly

access the Internet with end-to-end TCP/IP and oftentimes relies on a paired mobile device

162

as the gateway. We first identify the limitations of existing networking stacks on wearable

systems by conducting the first in-depth investigation of the networking performance of

Wear OS, one of the most popular OSes for smartwatches and potentially other wearable

systems. Our measurement study reveals that the existing Wear OS suffers from seri-

ous performance issues regarding key aspects that distinguish wearable networking from

smartphone networking. To mitigate the identified performance impairment, we design,

implement, and evaluate several readily deployable transport management solutions and

demonstrate that wearable networking performance can be improved with a better under-

standing of the end system diversity and heterogeneous wireless links.

To leverage the opportunity for multi-device provision and jointly use the network in-

terfaces of nearby mobile devices, we propose MPBond, an efficient system allowing mul-

tiple personal mobile devices to collaboratively fetch content from the Internet. Inspired

by the success of MPTCP, MPBond applies the concept of distributed multipath transport,

where multiple subflows can traverse different devices. We develop device/connection

management schemes, a buffering strategy, a packet scheduling algorithm, and a policy

framework tailored to MPBond ’s architecture to efficiently utilize the heterogeneous net-

work resources. We evaluate MPBond using real-world mobile devices, networks, and

applications and demonstrate that a cross-device transport protocol considering the inter-

action of multiple mobile devices and heterogeneous wireless links improves the mobile

application performance.

To optimize the application design to adapt to varying network conditions to im-

prove mobile application performance, we explore the emerging live streaming applica-

tion, which is both bandwidth-intensive and latency-sensitive. We aim to understand how

163

commercial live streaming broadcast and distribution platforms such as Youtube and Face-

book perform over mobile networks. Specifically, we look at the upstream ingest path

from the broadcasting app to the video server, which is responsible for capturing the video

content with a camera, encoding it, and transmitting it over cellular or Wi-Fi uplinks. De-

livering high-quality video over mobile uplinks in real time is challenging, and there exists

little related research. To this end, we develop Livelyzer, a tool to analyze the first-mile

ingest path of commercial live streaming, and provide best-practice suggestions to devel-

opers. Our study demonstrates that existing live video upload apps incur poor coordination

between the application decisions and network conditions, and schemes that better adapt

real-time encoding rates to network bandwidths can improve QoE.

To further explore the optimization spaces for mobile application design, we look at

another emerging live video analytics application: collaborative vehicular sensing. We

design a hybrid system architecture that leverages both the direct communication between

vehicles (V2V) and direct communication between vehicles and the remote server (V2I)

to better utilize the available network and compute resources. We develop methods for the

dynamic establishment of different V2V and V2I channels to better adapt to heterogeneous

network resources, and an algorithm that efficiently relays sensor data considering the

available V2V and V2I resources. We demonstrate that a flexible and adaptive sensor data

sharing application architecture considering the underlying wireless networking protocols

improves collaboration sensing performance for autonomous driving.

164

7.1 Limitations and Future Work

We have learned that cross-device network transport and cross-layer application adap-

tation improve mobile app performance. While we only touched a few networking and

application settings in this dissertation, we encourage future studies to further explore this

guideline with new types of apps, networks, and devices on the increasingly complex mo-

bile Internet.

• New types of apps. Different apps have different traffic patterns and QoE requirements.

As new types of apps such as AR/VR are getting popular, it would be good to have a deep

understanding of their performance over mobile networks and develop transport- and app-

layer optimizations to improve QoE, especially in multi-user settings. These apps are also

computation-intensive, calling for joint considerations of computation and networking for

performance optimization. Besides, there are also UDP-based mobile applications such

as video conferencing, where reacting to packet losses in the transport- and app-layer is a

major challenge, especially over multiple network paths.

• New types of networks. New network technologies such as 5G cellular and 802.11ad

wireless have recently entered the world. Existing studies have shown the challenges in

applying existing transport- and application-layer networking solutions to such millimeter-

wave networks [109, 166]. Redesigning these higher-layer protocols for these networks

would be a future direction, especially in multipath and multi-device settings.

• New types of devices. In this dissertation, we explored a wide range of devices includ-

ing smartphones, smartwatches, and connected vehicles. However, these are just a few

drops in the ocean of IoT. Other devices such as smart glasses, voice controllers, smart

thermostats, and drones need mobile network access for different use cases. Understand-

165

ing their unique networking characteristics is beneficial to the design of suitable transport

protocols and application adaptation strategies.

166

BIBLIOGRAPHY

167

BIBLIOGRAPHY

[1] Tesla Model S software release notes v5.8. https://www.tesla.com/sites/

default/files/blog attachments/software update 5.8.pdf, 2013.

[2] People for Whom One Cellphone Isn’t Enough. https://www.wsj.com/

articles/people-who-use-two-cellphones-1396393393, 2014.

[3] ATT and Audi to Wirelessly Connect all 2016 Model
Year Vehicles. https://about.att.com/story/

att and audi to wirelessly connect all 2016 model year vehicles.

html, 2015.

[4] Doing the Two-Smartphone Shuffle. https://geekdad.com/2015/02/two-

smartphone-shuffle/, 2015.

[5] How Often Does the Average American Replace His or Her Smart-
phone? https://www.fool.com/investing/general/2015/07/15/how-

often-does-the-average-american-replace-his-or.aspx, 2015.

[6] 3 Reasons Why You Should Own A Second Cell Phone. https:

//www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-

why-you-should-own-a-second-cell-phone/#7e3b43595c4c, 2016.

[7] Mercedes-Benz mbrace. https://www.mbusa.com/vcm/MB/DigitalAssets/

pdfmb/mbraceservicebrochures/1527 MBfactsheet 0814 KH v2.pdf, 2016.

[8] MPTCP v0.91 Release. http://multipath-tcp.org/pmwiki.php?n=Main.

Release91, 2016.

[9] 8 Frugal Reasons to Have Two Phones. https://www.thefrugalgene.com/

frugal-phones/, 2017.

[10] Cicret Bracelet. https://cicret.com/wordpress/, 2017.

168

https://www.tesla.com/sites/default/files/blog_attachments/software_update_5.8.pdf
https://www.tesla.com/sites/default/files/blog_attachments/software_update_5.8.pdf
https://www.wsj.com/articles/people-who-use-two-cellphones-1396393393
https://www.wsj.com/articles/people-who-use-two-cellphones-1396393393
https://about.att.com/story/att_and_audi_to_wirelessly_connect_all_2016_model_year_vehicles.html
https://about.att.com/story/att_and_audi_to_wirelessly_connect_all_2016_model_year_vehicles.html
https://about.att.com/story/att_and_audi_to_wirelessly_connect_all_2016_model_year_vehicles.html
https://geekdad.com/2015/02/two-smartphone-shuffle/
https://geekdad.com/2015/02/two-smartphone-shuffle/
https://www.fool.com/investing/general/2015/07/15/how-often-does-the-average-american-replace-his-or.aspx
https://www.fool.com/investing/general/2015/07/15/how-often-does-the-average-american-replace-his-or.aspx
https://www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-why-you-should-own-a-second-cell-phone/#7e3b43595c4c
https://www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-why-you-should-own-a-second-cell-phone/#7e3b43595c4c
https://www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-why-you-should-own-a-second-cell-phone/#7e3b43595c4c
https://www.mbusa.com/vcm/MB/DigitalAssets/pdfmb/mbraceservicebrochures/1527_MBfactsheet_0814_KH_v2.pdf
https://www.mbusa.com/vcm/MB/DigitalAssets/pdfmb/mbraceservicebrochures/1527_MBfactsheet_0814_KH_v2.pdf
http://multipath-tcp.org/pmwiki.php?n=Main.Release91
http://multipath-tcp.org/pmwiki.php?n=Main.Release91
https://www.thefrugalgene.com/frugal-phones/
https://www.thefrugalgene.com/frugal-phones/
https://cicret.com/wordpress/

[11] “Multiple phone personality” is trending. https://hackernoon.com/multiple-
phone-personality-is-trending-2c1670bd7367, 2017.

[12] Telegram for Android Wear 2.0. https://telegram.org/blog/android-wear-
2-0, 2017.

[13] The netfilter.org project. https://www.netfilter.org/, 2017.

[14] tinyCam Monitor PRO. https://play.google.com/store/apps/details?id=
com.alexvas.dvr.pro, 2017.

[15] ZenWatch Remote Camera. https://play.google.com/store/apps/

details?id=com.asus.rcamera2, 2017.

[16] Cisco Visual Networking Index: Forecast and Trends, 2017-2022 White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white-paper-c11-741490.

html, 2018.

[17] How autonomous vehicles could save over 350K lives in the US and millions world-
wide. https://zdnet.com/article/how-autonomous-vehicles-could-

save-over-350k-lives-in-the-us-and-millions-worldwide/, 2018.

[18] Market share of smart wristwear shipments worldwide by operating system from
2015 to 2020. https://www.statista.com/statistics/466563/share-of-

smart-wristwear-shipments-by-operating-system-worldwide/, 2018.

[19] Monsoon Power Monitor. https://www.msoon.com/online-store, 2018.

[20] Smartwatch Market Size, Share, Growth, Industry Report, 2018–2023. https://

www.psmarketresearch.com/market-analysis/smartwatch-market, 2018.

[21] Specifications. The building blocks of all Bluetooth devices. https://www.

bluetooth.com/specifications, 2018.

[22] Using Your Old Smartphone as a Mobile Hotspot. https://www.hellotech.

com/blog/using-old-smartphone-as-mobile-hotspot/, 2018.

[23] Cisco visual networking index: global mobile data traffic forecast update, 2017–
2022. 2019.

[24] MPWear github repository. https://github.com/XiaoShawnZhu/MPWear,
2019.

169

https://hackernoon.com/multiple-phone-personality-is-trending-2c1670bd7367
https://hackernoon.com/multiple-phone-personality-is-trending-2c1670bd7367
https://telegram.org/blog/android-wear-2-0
https://telegram.org/blog/android-wear-2-0
https://www.netfilter.org/
https://play.google.com/store/apps/details?id=com.alexvas.dvr.pro
https://play.google.com/store/apps/details?id=com.alexvas.dvr.pro
https://play.google.com/store/apps/details?id=com.asus.rcamera2
https://play.google.com/store/apps/details?id=com.asus.rcamera2
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://zdnet.com/article/how-autonomous-vehicles-could-save-over-350k-lives-in-the-us-and-millions-worldwide/
https://zdnet.com/article/how-autonomous-vehicles-could-save-over-350k-lives-in-the-us-and-millions-worldwide/
https://www.statista.com/statistics/466563/share-of-smart-wristwear-shipments-by-operating-system-worldwide/
https://www.statista.com/statistics/466563/share-of-smart-wristwear-shipments-by-operating-system-worldwide/
https://www.msoon.com/online-store
https://www.psmarketresearch.com/market-analysis/smartwatch-market
https://www.psmarketresearch.com/market-analysis/smartwatch-market
https://www.bluetooth.com/specifications
https://www.bluetooth.com/specifications
https://www.hellotech.com/blog/using-old-smartphone-as-mobile-hotspot/
https://www.hellotech.com/blog/using-old-smartphone-as-mobile-hotspot/
https://github.com/XiaoShawnZhu/MPWear

[25] WearMan github repository. https://github.com/XiaoShawnZhu/WearMan,
2019.

[26] Exoplayer. https://google.github.io/ExoPlayer, 2019.

[27] Study shows autonomous vehicles can help improve traffic flow. https://phys.

org/news/2018-02-autonomous-vehicles-traffic.html, 2019.

[28] Autonomous vehicles for safety. https://www.nhtsa.gov/technology-

innovation/automated-vehicles-safety, 2020.

[29] MPBond github repository. https://github.com/XiaoShawnZhu/MPBond,
2020.

[30] ATT Maps - Wireless Coverage. https://www.att.com/maps/wireless-

coverage.html, 2021.

[31] Carla: Open-source simulator for autonomous driving research. https://carla.
org/, 2021.

[32] Draco 3D Graphics Compression. https://google.github.io/draco/, 2021.

[33] INRIX Global Traffic Scorecard - Last-Mile Speed. https://inrix.com/

scorecard/, 2021.

[34] Lidar — Wikipedia. https://en.wikipedia.org/wiki/Lidar, 2021.

[35] Linux kernel v5.8. https://github.com/torvalds/linux/tree/v5.8, 2021.

[36] Mininet-wifi: Emulator for software-defined wireless networks. https://github.
com/intrig-unicamp/mininet-wifi, 2021.

[37] Share GPS. http://jillybunch.com/sharegps/, 2021.

[38] T-Mobile Coverage Map. https://www.t-mobile.com/coverage/coverage-

map/, 2021.

[39] Velodyne LiDAR HDL-32E sensor. https://velodynelidar.com/products/

hdl-32e/, 2021.

[40] Verizon Coverage Map. https://www.verizon.com/coverage-map/, 2021.

[41] I.-T. P. 910. Subjective Video Quality Assessment Methods for Multimedia Appli-
cations, 2008.

170

https://github.com/XiaoShawnZhu/WearMan
https://google.github.io/ExoPlayer
https://phys.org/news/2018-02-autonomous-vehicles-traffic.html
https://phys.org/news/2018-02-autonomous-vehicles-traffic.html
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://github.com/XiaoShawnZhu/MPBond
https://www.att.com/maps/wireless-coverage.html
https://www.att.com/maps/wireless-coverage.html
https://carla.org/
https://carla.org/
https://google.github.io/draco/
https://inrix.com/scorecard/
https://inrix.com/scorecard/
https://en.wikipedia.org/wiki/Lidar
https://github.com/torvalds/linux/tree/v5.8
https://github.com/intrig-unicamp/mininet-wifi
https://github.com/intrig-unicamp/mininet-wifi
http://jillybunch.com/sharegps/
https://www.t-mobile.com/coverage/coverage-map/
https://www.t-mobile.com/coverage/coverage-map/
https://velodynelidar.com/products/hdl-32e/
https://velodynelidar.com/products/hdl-32e/
https://www.verizon.com/coverage-map/

[42] A. Abbas. Introducing VMAF percentiles for video quality measurements, 2020.

[43] Adobe. Adobe’s Real Time Messaging Protocol. https://www.adobe.com/

content/dam/acom/en/devnet/rtmp/pdf/rtmp specification 1.0.pdf,
2012.

[44] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: a system solution for
sharing i/o between mobile systems. In MobiSys. ACM, 2014.

[45] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wireless network power
management. Wireless Networks, 11(4):451–469, 2005.

[46] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath, and C. A. Thekkath.
Combine: leveraging the power of wireless peers through collaborative download-
ing. In MobiSys. ACM, 2007.

[47] H. Balakrishnan, H. S. Rahul, and S. Seshan. An integrated congestion management
architecture for internet hosts. ACM SIGCOMM Computer Communication Review,
29(4):175–187, 1999.

[48] R. Braden. Requirements for internet hosts-communication layers. 1989.

[49] L. S. Brakmo and L. L. Peterson. Tcp vegas: End to end congestion avoidance on
a global internet. IEEE Journal on selected Areas in communications, 13(8):1465–
1480, 1995.

[50] J. Chauhan, S. Seneviratne, M. A. Kaafar, A. Mahanti, and A. Seneviratne. Char-
acterization of early smartwatch apps. In PerCom Workshops. IEEE, 2016.

[51] D. Chen, K. G. Shin, Y. Jiang, and K.-H. Kim. Locating and tracking ble beacons
with smartphones. In CoNEXT. ACM, 2017.

[52] Q. Chen, S. Tang, Q. Yang, and S. Fu. Cooper: Cooperative perception for con-
nected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 514–524.
IEEE, 2019.

[53] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smart-
phone energy drain in the wild: Analysis and implications. ACM SIGMETRICS
Performance Evaluation Review, 43(1):151–164, 2015.

171

https://www.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://www.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf

[54] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
energy drain in the wild: Analysis and implications. volume 43, pages 151–164.
ACM New York, NY, USA, 2015.

[55] X. Chen, T. Grossman, D. Wigdor, and G. Fitzmaurice. Duet: Exploring joint
interactions on a smart phone and a smart watch. In ACM CHI, 2014.

[56] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann, and M. Satya-
narayanan. Early implementation experience with wearable cognitive assistance
applications. In WearSys workshop, pages 33–38. ACM, 2015.

[57] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum,
and L. Viennot. Optimized link state routing protocol (olsr). 2003.

[58] G. Developers. Real-time communication for the web. https://webrtc.org,
2020.

[59] Facebook. FB: How to Go Live on Mobile? https://www.facebook.com/

business/help/1884140525218868, 2020.

[60] Facebook. How do I go live from my Facebook Page? https://www.facebook.

com/help/1916203341847533, 2020.

[61] Facebook. How do I set up streaming software to work with Facebook? https:

//www.facebook.com/help/755943624557739, 2020.

[62] Facebook. What are the video format guidelines for live streaming on Facebook?
https://www.facebook.com/help/1534561009906955, 2020.

[63] FFmpeg. A complete, cross-platform solution to record, convert and stream audio
and video, 2021.

[64] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395, 1981.

[65] I. O. for Standardization. Iso/iec 23000-19:2020 information technology — multi-
media application format (mpeg-a) — part 19: Common media application format
(cmaf) for segmented media. https://www.iso.org/standard/79106.html,
2020.

172

https://webrtc.org
https://www.facebook.com/business/help/1884140525218868
https://www.facebook.com/business/help/1884140525218868
https://www.facebook.com/help/1916203341847533
https://www.facebook.com/help/1916203341847533
https://www.facebook.com/help/755943624557739
https://www.facebook.com/help/755943624557739
https://www.facebook.com/help/1534561009906955
https://www.iso.org/standard/79106.html

[66] D. I. Forum. DASH-IF Live Media Ingest Protocol Technical Specification, 26
February 2021. https://dashif-documents.azurewebsites.net/Ingest/

master/DASH-IF-Ingest.html, 2021.

[67] A. Frickenstein, M.-R. Vemparala, J. Mayr, N.-S. Nagaraja, C. Unger, F. Tombari,
and W. Stechele. Binary dad-net: Binarized driveable area detection network for
autonomous driving. In 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2295–2301. IEEE, 2020.

[68] R. Friedman, A. Kogan, and Y. Krivolapov. On power and throughput tradeoffs
of wifi and bluetooth in smartphones. IEEE Transactions on Mobile Computing,
12(7):1363–1376, 2013.

[69] A. Frommgen, T. Erbshäußer, A. Buchmann, T. Zimmermann, and K. Wehrle.
Remp tcp: Low latency multipath tcp. In Communications (ICC), 2016 IEEE Inter-
national Conference on, pages 1–7. IEEE, 2016.

[70] M. Grüner, M. Licciardello, and A. Singla. Reconstructing proprietary
video streaming algorithms. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), 2020.

[71] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen. Understanding on-device
bufferbloat for cellular upload. In IMC. ACM, 2016.

[72] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen. Accelerating multipath
transport through balanced subflow completion. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking, pages 141–153.
ACM, 2017.

[73] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards
wearable cognitive assistance. In MobiSys. ACM, 2014.

[74] O. L. Haimson and J. C. Tang. What makes live events engaging on facebook live,
periscope, and snapchat. In Proceedings of the 2017 CHI conference on human
factors in computing systems, pages 48–60, 2017.

[75] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. Mp-dash: Adaptive video streaming
over preference-aware multipath. In Proceedings of the 12th International on Con-
ference on emerging Networking EXperiments and Technologies, pages 129–143.
ACM, 2016.

173

https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html
https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html

[76] D. T. G. Hao. Mixer’s Faster Than Light streaming protocol ex-
plained. https://dotesports.com/streaming/news/mixers-faster-than-

light-streaming-protocol-explained, 2019.

[77] Y. He, L. Ma, Z. Jiang, Y. Tang, and G. Xing. Vi-eye: semantic-based 3d point
cloud registration for infrastructure-assisted autonomous driving. In Proceedings of
the 27th Annual International Conference on Mobile Computing and Networking,
pages 573–586, 2021.

[78] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale. Weardrive: Fast and
energy-efficient storage for wearables. In USENIX ATC, 2015.

[79] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck.
An in-depth study of lte: effect of network protocol and application behavior on
performance. In SIGCOMM. ACM, 2013.

[80] C. V. N. Index. Forecast and methodology 2017–2022. Cisco: San Jose, CA, USA,
2019.

[81] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling Bufferbloat in 3G/4G Networks.
In IMC. ACM, 2012.

[82] A. Kashyap, S. Ganguly, and S. R. Das. A measurement-based approach to mod-
eling link capacity in 802.11-based wireless networks. In Proceedings of the 13th
annual ACM international conference on Mobile computing and networking, pages
242–253, 2007.

[83] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou. Micro-
cast: Cooperative video streaming on smartphones. In MobiSys. ACM, 2012.

[84] J. B. Kenney. Dedicated short-range communications (dsrc) standards in the united
states. Proceedings of the IEEE, 99(7):1162–1182, 2011.

[85] K.-H. Kim and K. G. Shin. Improving tcp performance over wireless networks with
collaborative multi-homed mobile hosts. In MobiSys. ACM, 2005.

[86] H. Kolamunna, I. Leontiadis, D. Perino, S. Seneviratne, K. Thilakarathna, and
A. Seneviratne. A first look at sim-enabled wearables in the wild. In Proceedings
of the Internet Measurement Conference 2018, pages 77–83, 2018.

[87] H. Kolamunna, I. Leontiadis, D. Perino, S. Seneviratne, K. Thilakarathna, and
A. Seneviratne. A first look at sim-enabled wearables in the wild. In IMC. ACM,
2018.

174

https://dotesports.com/streaming/news/mixers-faster-than-light-streaming-protocol-explained
https://dotesports.com/streaming/news/mixers-faster-than-light-streaming-protocol-explained

[88] R. Krashinsky and H. Balakrishnan. Minimizing energy for wireless web access
with bounded slowdown. In Proceedings of the 8th annual international conference
on Mobile computing and networking, pages 119–130. ACM, 2002.

[89] E. Krings. What is RTMPS and Why is it Important to Secure Streaming?, 2021.

[90] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus. Carspeak: a content-
centric network for autonomous driving. ACM SIGCOMM Computer Communica-
tion Review, 42(4):259–270, 2012.

[91] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering high-quality
immersive virtual reality on today’s mobile devices. In Proceedings of MobiCom
2017, pages 409–421. ACM, 2017.

[92] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpil-
lars: Fast encoders for object detection from point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12697–
12705, 2019.

[93] H. Lee, J. Flinn, and B. Tonshal. Raven: Improving interactive latency for the
connected car. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking, pages 557–572. ACM, 2018.

[94] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen, and R. Mi-
jumbi. A measurement study on multi-path tcp with multiple cellular carriers on
high speed rails. In SIGCOMM, pages 161–175. ACM, 2018.

[95] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara. Toward a practi-
cal perceptual video quality metric, 2016.

[96] Z. Li, C. Bampis, J. Novak, A. Aaron, K. Swanson, A. Moorthy, and J. D. Cock.
Vmaf: The journey continues, 2018.

[97] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. Ecf: An mptcp path
scheduler to manage heterogeneous paths. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies, pages 147–
159. ACM, 2017.

[98] J. Y. Lin, T.-J. Liu, E. C.-H. Wu, and C.-C. J. Kuo. A fusion-based video quality
assessment (fvqa) index. In Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2014 Asia-Pacific, pages 1–5. IEEE, 2014.

175

[99] R. Liu, L. Jiang, N. Jiang, and F. X. Lin. Anatomizing System Activities on Inter-
active Wearable Devices. In APSys, 2015.

[100] R. Liu and F. X. Lin. Understanding the characteristics of android wear os. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Ap-
plications, and Services, pages 151–164, 2016.

[101] S. Liu, T. Başar, and R. Srikant. Tcp-illinois: A loss-and delay-based congestion
control algorithm for high-speed networks. Performance Evaluation, 65(6-7):417–
440, 2008.

[102] T.-J. Liu, Y.-C. Lin, W. Lin, and C.-C. J. Kuo. Visual quality assessment: recent de-
velopments, coding applications and future trends. APSIPA Transactions on Signal
and Information Processing, 2, 2013.

[103] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen. Characterizing
smartwatch usage in the wild. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, pages 385–398, 2017.

[104] X. Liu, B. Han, F. Qian, and M. Varvello. Lime: understanding commercial 360°
live video streaming services. In Proceedings of the 10th ACM Multimedia Systems
Conference, pages 154–164, 2019.

[105] X. Liu, Y. Yao, and F. Qian. Rethink phone-wearable collaboration from the net-
working perspective. In ACM WearSys, 2017.

[106] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang. When good becomes evil: Keystroke
inference with smartwatch. In CCS. ACM, 2015.

[107] H. Miao and F. X. Lin. Tell your graphics stack that the display is circular. In
HotMobile, 2016.

[108] A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu, U. K. Dayalan,
S. Verma, P. Ji, T. Li, et al. Lumos5g: Mapping and predicting commercial mmwave
5g throughput. In Proceedings of the ACM Internet Measurement Conference, pages
176–193, 2020.

[109] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin,
Z. Yang, Z. M. Mao, et al. A variegated look at 5g in the wild: Performance,
power, and qoe implications. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, 2021.

176

[110] K. Nichols and V. Jacobson. Controlling queue delay. Communications of the ACM,
55(7):42–50, 2012.

[111] C. Nicutar, D. Niculescu, and C. Raiciu. Using cooperation for low power low
latency cellular connectivity. In CoNEXT, pages 337–348. ACM, 2014.

[112] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen. An in-depth understanding
of multipath tcp on mobile devices: measurement and system design. In MobiCom.
ACM, 2016.

[113] A. Nikravesh, Y. Guo, X. Zhu, F. Qian, and Z. M. Mao. Mp-h2: A client-only
multipath solution for http/2. In MobiCom. ACM, 2019.

[114] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos. A survey of millimeter wave com-
munications (mmwave) for 5g: opportunities and challenges. Wireless networks,
21(8):2657–2676, 2015.

[115] S. Oh, A. Kim, S. Lee, K. Lee, D. R. Jeong, S. Y. Ko, and I. Shin. Fluid: Multi-
device mobile platform for flexible user interface distribution. In MobiCom. ACM,
2019.

[116] S. Oh, H. Yoo, D. R. Jeong, D. H. Bui, and I. Shin. Mobile plus: Multi-device
mobile platform for cross-device functionality sharing. In MobiSys. ACM, 2017.

[117] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira, and M. Ferreira. The see-
through system: A vanet-enabled assistant for overtaking maneuvers. In 2010 IEEE
Intelligent Vehicles Symposium, pages 123–128. IEEE, 2010.

[118] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental evaluation of
multipath tcp schedulers. In Proceedings of the 2014 ACM SIGCOMM workshop
on Capacity sharing workshop, pages 27–32. ACM, 2014.

[119] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental evaluation of
multipath tcp schedulers. In ACM SIGCOMM Capacity Sharing Workshop (CSWS).
ACM, 2014.

[120] A. Paigwar, Ö. Erkent, D. Sierra-Gonzalez, and C. Laugier. Gndnet: Fast ground
plane estimation and point cloud segmentation for autonomous vehicles. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2150–2156. IEEE, 2020.

177

[121] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and
B. VerSteeg. Pie: A lightweight control scheme to address the bufferbloat problem.
In High Performance Switching and Routing (HPSR), 2013 IEEE 14th International
Conference on, pages 148–155. IEEE, 2013.

[122] C. Peng, G. Shen, and Y. Zhang. Beepbeep: A high-accuracy acoustic-based system
for ranging and localization using cots devices. ACM Transactions on Embedded
Computing Systems, 11(1):4, 2012.

[123] F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and O. Spatscheck. Tm 3: flexible
transport-layer multi-pipe multiplexing middlebox without head-of-line blocking.
In CoNEXT. ACM, 2015.

[124] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward practical volumetric video
streaming on commodity smartphones. In Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications. ACM, 2019.

[125] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Profiling resource
usage for mobile applications: a cross-layer approach. In MobiSys. ACM, 2011.

[126] D. Qiao and K. G. Shin. Smart power-saving mode for ieee 802.11 wireless lans.
In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 3, pages 1573–1583. IEEE,
2005.

[127] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. Abr streaming
of vbr-encoded videos: characterization, challenges, and solutions. In Proceedings
of the 14th International Conference on emerging Networking EXperiments and
Technologies, pages 366–378, 2018.

[128] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. Avr: Augmented vehicular
reality. In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 81–95. ACM, 2018.

[129] V. Radu, P. Katsikouli, R. Sarkar, and M. K. Marina. A semi-supervised learning
approach for robust indoor-outdoor detection with smartphones. In SenSys. ACM,
2014.

[130] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Im-
proving datacenter performance and robustness with multipath tcp. In ACM SIG-
COMM, 2011.

178

[131] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
and M. Handley. How hard can it be? designing and implementing a deployable
multipath tcp. In NSDI. USENIX, 2012.

[132] E. Rescorla, H. Tschofenig, and N. Modadugu. The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3. https://tools.ietf.org/id/draft-

ietf-tls-dtls13-01.html, 2018.

[133] Selenium. Selenium automates browsers, 2021.

[134] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M. Belding. Cool-
tether: energy efficient on-the-fly wifi hot-spots using mobile phones. In CoNEXT.
ACM, 2009.

[135] H. Shi, Y. Cui, X. Wang, Y. Hu, M. Dai, F. Wang, and K. Zheng. Stms: Improving
mptcp throughput under heterogeneous networks. In USENIX ATC, pages 719–730,
2018.

[136] M. Siekkinen, T. Kämäräinen, L. Favario, and E. Masala. Can you see what
i see? quality-of-experience measurements of mobile live video broadcasting.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 14(2s):1–23, 2018.

[137] M. Siekkinen, E. Masala, and T. Kämäräinen. A first look at quality of mobile live
streaming experience: the case of periscope. In Proceedings of the 2016 Internet
Measurement Conference, pages 477–483, 2016.

[138] I. Sodagar. The mpeg-dash standard for multimedia streaming over the internet.
IEEE multimedia, 18(4):62–67, 2011.

[139] O. Studio. Open Broadcast Software. https://obsproject.com/, 2020.

[140] P. Sun, M. Yu, M. J. Freedman, and J. Rexford. Identifying performance bottlenecks
in cdns through tcp-level monitoring. In Proceedings of the first ACM SIGCOMM
workshop on Measurements up the stack, pages 49–54. ACM, 2011.

[141] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and
A. Pescape. Broadband Internet Performance: A View From the Gateway . In
ACM SIGCOMM, 2011.

[142] J. C. Tang, G. Venolia, and K. M. Inkpen. Meerkat and periscope: I stream, you
stream, apps stream for live streams. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pages 4770–4780, 2016.

179

https://tools.ietf.org/id/draft-ietf-tls-dtls13-01.html
https://tools.ietf.org/id/draft-ietf-tls-dtls13-01.html
https://obsproject.com/

[143] D. Tse and P. Viswanath. Fundamentals of wireless communication. Cambridge
university press, 2005.

[144] Twitch. Twitch Recommended Software for Broadcasting. https:

//help.twitch.tv/s/article/recommended-software-for-

broadcasting?language=en US, 2020.

[145] umlaeute. v4l2loopback - a kernel module to create V4L2 loopback devices.
https://github.com/umlaeute/v4l2loopback, 2020.

[146] B. Wang, X. Zhang, G. Wang, H. Zheng, and B. Y. Zhao. Anatomy of a per-
sonalized livestreaming system. In Proceedings of the 2016 Internet Measurement
Conference, pages 485–498, 2016.

[147] H. Wang, T. T.-T. Lai, and R. Roy Choudhury. Mole: Motion leaks through smart-
watch sensors. In MobiCom. ACM, 2015.

[148] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[149] Wikipedia. Reed–Solomon error correction.

[150] Wikipedia. QR code. https://en.wikipedia.org/wiki/QR code, 2020.

[151] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pages 129–137, 2017.

[152] J. Xu, Q. Cao, A. Prakash, A. Balasubramanian, and D. E. Porter. Uiwear: Easily
adapting user interfaces for wearable devices. In ACM MobiCom, 2017.

[153] S. Xu, E. Petajan, S. Sen, and Z. M. Mao. What you see is what you get: measure
abr video streaming qoe via on-device screen recording. In Proceedings of the 30th
ACM Workshop on Network and Operating Systems Support for Digital Audio and
Video, pages 60–66, 2020.

[154] S. Xu, S. Sen, and Z. M. Mao. Csi: inferring mobile abr video adaptation behavior
under https and quic. In Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–16, 2020.

180

https://help.twitch.tv/s/article/recommended-software-for-broadcasting?language=en_US
https://help.twitch.tv/s/article/recommended-software-for-broadcasting?language=en_US
https://help.twitch.tv/s/article/recommended-software-for-broadcasting?language=en_US
https://github.com/umlaeute/v4l2loopback
https://en.wikipedia.org/wiki/QR_code

[155] S. Xu, S. Sen, Z. M. Mao, and Y. Jia. Dissecting vod services for cellular: perfor-
mance, root causes and best practices. In Proceedings of the 2017 Internet Mea-
surement Conference, pages 220–234, 2017.

[156] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govindan. Inves-
tigating transparent web proxies in cellular networks. In International Conference
on Passive and Active Network Measurement, pages 262–276. Springer, 2015.

[157] Y. Yang and G. Cao. Characterizing and optimizing background data transfers on
smartwatches. In 2017 IEEE 25th International Conference on Network Protocols
(ICNP), pages 1–10. IEEE, 2017.

[158] Youtube. Create a live stream on mobile – Android – Youtube Help. https:

//support.google.com/youtube/answer/9228390?hl=en, 2020.

[159] Youtube. Create a live stream via webcam – Youtube Help. https://support.

google.com/youtube/answer/9228389?hl=en&ref topic=9257984, 2020.

[160] Youtube. How to Live Stream On Youtube – How Youtube Works. https://www.
youtube.com/howyoutubeworks/product-features/live/#youtube-live,
2020.

[161] Youtube. YouTube Live verified encoders. https://support.google.

com/youtube/answer/2907883?hl=en&ref topic=9257984#zippy=

%2Csoftware-encoders, 2020.

[162] X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M. Mao. Emp:
Edge-assisted multi-vehicle perception. In ACM MobiCom, 2021.

[163] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju. Arve: Augmented reality
applications in vehicle to edge networks. In Proceedings of the 2018 Workshop on
Mobile Edge Communications, pages 25–30, 2018.

[164] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4490–4499, 2018.

[165] X. Zhu, Y. E. Guo, A. Nikravesh, F. Qian, and Z. M. Mao. Understanding the
networking performance of wear os. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(1):1–25, 2019.

181

https://support.google.com/youtube/answer/9228390?hl=en
https://support.google.com/youtube/answer/9228390?hl=en
https://support.google.com/youtube/answer/9228389?hl=en&ref_topic=9257984
https://support.google.com/youtube/answer/9228389?hl=en&ref_topic=9257984
https://www.youtube.com/howyoutubeworks/product-features/live/#youtube-live
https://www.youtube.com/howyoutubeworks/product-features/live/#youtube-live
https://support.google.com/youtube/answer/2907883?hl=en&ref_topic=9257984#zippy=%2Csoftware-encoders
https://support.google.com/youtube/answer/2907883?hl=en&ref_topic=9257984#zippy=%2Csoftware-encoders
https://support.google.com/youtube/answer/2907883?hl=en&ref_topic=9257984#zippy=%2Csoftware-encoders

[166] X. Zhu, Y. Jin, F. Qian, and Z. M. Mao. Poster: Experimental evaluation of tcp
congestion control over 60ghz wlan. In Proceedings of the 2019 on Wireless of the
Students, by the Students, and for the Students Workshop, pages 18–18, 2019.

[167] X. Zhu, S. Sen, and Z. M. Mao. Livelyzer: analyzing the first-mile ingest perfor-
mance of live video streaming. In Proceedings of the 12th ACM Multimedia Systems
Conference, 2021.

[168] X. Zhu, J. Sun, X. Zhang, Y. E. Guo, F. Qian, and Z. M. Mao. Mpbond: effi-
cient network-level collaboration among personal mobile devices. In Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Ser-
vices, pages 364–376, 2020.

182

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Characterizing and Improving Wearable Network Transport Management
	Designing Distributed Multipath Transport for Multiple Mobile Devices
	Characterizing and Improving Mobile Live Video Upload Rate Adaptation
	Designing Collaborative Sensing Architecture for Vehicular Applications
	Thesis Organization

	Background and Related Work
	Wearable Networking
	Multipath Transport
	Live Video Streaming
	Connected and Autonomous Vehicles
	Related Work

	Understanding the Networking Performance of Wear OS
	Introduction
	Background and Methodology
	Wearable Networking Testbed
	The Wearable Network Measurement Tools

	Impact of Smartphone Proxying
	Substantial Bufferbloat in CPROXY
	Identifying the Root Cause
	Mitigating the CPROXY Bufferbloat

	Performance & Energy Impact of Network Selection
	Impact of Single-path Interface Selection
	Multipath Performance on Wearables

	BT-WiFi Handover Performance
	Wearable Handovers are Common
	Poor Wearable Handover Performance
	Root Cause of the High Handover Delay
	Reducing the Handover Delay

	Summary

	MPBond: Efficient Network-level Collaboration among Personal Mobile Devices
	Introduction
	Motivation
	Incentives to Carry Multiple Devices
	Benefits of Multi-device Collaboration
	Networking Capability of Wearables
	Do Existing Network-level Collaboration Schemes Suffice?

	MPBond Design
	Subflow Management
	Buffer Management and Helper-side Connection Split
	Pipe-aware Multipath Scheduler
	MinRTT Considered Harmful.
	Deriving the Pipe-aware Delay (PAD)
	The PAMS Algorithm
	Data Reinjection

	User/App Interfaces and Policy Engine
	Dual Mode in MPBond

	Implementation
	Evaluation
	Experimental Setup and Methodology
	Microbenchmarks
	Stable Network Conditions
	Varying Network Conditions
	Video Streaming Performance
	Leveraging the Dual Mode
	Indoor Applicability
	System Overhead and Energy Concerns

	Summary

	Analyzing the First-Mile Ingest Performance of Live Video Streaming
	Introduction
	Background and Motivation
	First Mile in Live Video Streaming
	Design Goals
	Limitation of Existing Analysis Approaches
	Challenges

	The Livelyzer Measurement System
	Black-box Testing
	Virtual Video Capture Function
	Crafting Video Source Files
	Analyzing Ingest Performance

	Using Livelyzer for Live Video Encoding Analysis
	Encoding Design of Broadcasting Apps
	Server ABR Transcoding Design
	QoE Impact

	Using Livelyzer for Network Rate Adaptation Analysis
	Using Third-party Broadcasting App: OBS
	Default OBS
	OBS dynamic bitrate mode

	Using Browser-based Broadcasting Apps
	S1-Web
	S2-Web

	Using Mobile-based Broadcasting Apps
	S1-Mobile
	S3-Mobile

	Improving Rate Adaptation Logic
	Summary

	Harbor: Hybrid Architecture for Collaborative Vehicular Sensing
	Introduction
	Background and Motivation
	Benefits of Collaborative Sensing
	V2V or V2I? Why Not Both?
	Challenges

	Harbor Design
	Hybrid System Architecture
	Strategic Helper Assignment
	Assignment Algorithm Design

	Timely Delivery of Detection Results
	Deadline Awareness
	MAC-layer Prioritization

	Combining Local and Remote Detection Results

	Implementation
	Evaluation
	Experimental Setup and Methodology
	End-to-end Performance
	Strategic Helper Assignment
	Timely Detection Result Delivery
	Detection Results Combination

	Summary

	Conclusion and Future Work
	Limitations and Future Work

	BIBLIOGRAPHY

