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ABSTRACT

The increasingly distributed nature of many current and future technologies has introduced

many challenges for devices designed for such settings. Devices operating in such environments,

such as Internet-of-Things (IoT), medical devices, connected vehicles, etc., typically have lim-

ited computational power and rely on batteries to operate. Therefore, efficiency is a paramount

requirement for any algorithm designed to be implemented on these devices. Furthermore, these

devices typically generate and collect huge amounts of extremely sensitive and personal data, such

as health-related data, behavior-related data, etc. As a result, there is a need for security and pri-

vacy protections to guard against various attacks. Additionally, since these devices are typically

resource-constrained, any algorithm or protocol needs to be efficient to enable its implementation

on such devices. Efficient security and privacy solutions are essential to cope with, as well as

enable, high deployment rate of such devices for various sensitive applications.

In this dissertation, efficient solutions for protecting the security and privacy of data gener-

ated by such devices are explored. Low-complexity protocols for generating secret keys in static

environments, along with a formulation of threshold-secure coding with a shared key and corre-

sponding coding schemes are presented. Additionally, algorithms for coded machine unlearning

for regression problems are presented, as well as a new setup and algorithm for federated learning

with opt-out differential privacy are presented and evaluated.

ix



CHAPTER 1

Introduction

1.1 Growth of Edge Devices

The number of wireless edge devices in communication networks has seen incredible growth over

the past decade with no slowdown in sight. This rapid growth is driven by advancements in com-

munication protocols, algorithms, and electronics. These devices are and will be playing a bigger

part in future technologies, such as artificial intelligence applications. Examples of edge devices

include Internet-of-Things (IoT) devices, medical devices, connected vehicles, etc. In fact, IoT

devices overtook non-IoT devices in terms of active connections globally in 2020 and will be

triple the number of non-IoT active connections by the year 2025 [5]. Furthermore, in addition

to the aforementioned devices, personal devices, such as phones, are adopting direct communica-

tion technologies such as device-to-device (D2D) communications in fifth-generation (5G) wire-

less network communication for mobile devices. These technologies, and many others, enable a

massive number of devices to communicate directly rather than communicating through the core

network, presenting many new challenges to existing solutions.

The data generated by connected devices typically include personal, and often extremely sensi-

tive, information. For example, a smartwatch may collect multiple personal health metrics, and a
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smart home sensor may collect patterns of movements of residents. IDC estimates that connected

devices will generate 79.4 zettabytes of data by the year 2025, up from 13.6 zettabytes in 2019 [6].

One of the common characteristics of these devices is their reliance on batteries and limited

computational power. These limitations dictate the requirement of any algorithm intended for

deployment on such devices to be efficient.

The rapid increase in the generation of sensitive data on connected devices and the low-

complexity requirement of algorithms highlight the need for efficient algorithms to preserve the

security and privacy of such data. These challenges have motivated a lot of research efforts to

address such issues and have been an active area of interdisciplinary research over the past decade.

1.2 Key Generation and Secure Coding

Data security has been an instrumental part of communication systems. Generally, the formulation

of secrecy problems is as follows. There are two legitimate parties referred to as Alice and Bob,

and an adversary referred to as Eve. Alice aims to transmit a message m to Bob, such that Bob

reliably retrieves the message while keeping Eve oblivious about the message. In 1949, Claude

Shannon formulated the problem of unconditional secrecy in communication systems in one of

his seminal papers [7] using information-theoretic measures. The formulation assumes Alice and

Bob share a secret key k and Alice encodes the message m using the key k to produce a codeword

c such that Bob can retrieve the message using the key, while Eve gains no information, in an

information-theoretic sense, about m after observing c.

Shannon’s work opened the door for a wide range of research directions examining uncondi-

tional secrecy using information-theoretic measures, a field that is now referred to as information-
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theoretic security. For example, in 1975, Wyner [8] proposed taking advantage of the inherent noise

in communication channels to ensure secrecy rather than relying on a key. The setup, known as

the wiretap channel setup, assumes the channel between Alice and Eve is a degraded version, i.e.,

noisier version, of the channel between Alice and Bob. The wiretap setup has spurred many works

in designing coding schemes for different channels [9, 10, 11]. Another direction of information-

theoretic security is concerned with the generation of common randomness. In 1993, Maurer [12],

followed by Ahlswede and Csiszr [13] soon after, proposed a setup for generating shared secret

random bit sequences between Alice and Bob using a common source of randomness and public

discussion while ensuring Eve’s knowledge about the generated sequence is negligible. This setup

has seen a lot of research efforts and is the basis of many secret key generation protocols.

Another approach to data security is modern cryptography where security is ensured as long as

Eve’s capabilities are bounded, i.e., security conditional on Eve’s resources. Modern cryptography

has grown substantially in the computer era, especially with the advent of public-key cryptography.

Modern cryptography protocols for data security can be split into two groups: symmetric-key cryp-

tography and public-key cryptography. Nowadays, symmetric-key cryptography is typically used

for encryption, e.g., Advanced Encryption Standard (AES) [14], while public-key cryptography is

typically used for key distribution, e.g., DiffieHellman key exchange [15].

1.2.1 Key Generation

Symmetric-key encryption mechanisms require the legitimate parties to share the same key be-

forehand. The current state of key agreement in the modern cryptography literature either employs

key distribution by a central entity beforehand or uses public-key cryptography mechanisms to

3



facilitate the key agreement between devices. Key distribution mechanisms require a central en-

tity to generate keys for each pair of devices in the wireless network and communicate with each

device to share its keys with all other devices. For wireless networks with a massive number of

devices, this process becomes prohibitively expensive and introduces communication and storage

overhead. On the other hand, public-key-based mechanisms provide on-demand key agreement as

needed by devices but typically require computationally expensive mathematical operations. An

alternative to these mechanisms is using the physical layer to generate secret keys following the

common randomness model. Fortunately, each pair of devices operating in a wireless environment

has access to a common randomness source.

The characteristics of the wireless channel between any two users can be used as the source

of common randomness and therefore can be used to generate secret keys. Specifically, Al-

ice and Bob perform channel measurements to acquire n samples h = [h1, h2, h3, ..., hn] and

h̃ = [h̃1, h̃2, h̃3, ..., h̃n], at Alice and Bob, respectively. Alice and Bob, through the exchange of

messages through a public channel, convert such samples to random bit sequences that can be used

for key generation. The reciprocity property of channel coefficients in wireless channels ensures

that the measurements h and h̃ are highly correlated. Moreover, the samples will have inherent

randomness if each sample is collected during a different coherence time slot, which makes the

channel coefficients change randomly as long as some mobility in the surrounding environment

exists. The security of the generated sequences is guaranteed as long as the eavesdropper Eve is

located a certain distance away from both Alice and Bob. Specifically, If Eve is located more than

half a wavelength away from both Alice and Bob, her observations are statistically uncorrelated

with both Alice’s and Bob’s observations. For example, when devices are operating in the 3 GHz

band, the required distance to ensure security is around 5 cm.

4



The aforementioned protocol is suitable for many scenarios where devices exist in highly dy-

namic environments. However, it fails in a scenario where no significant mobility is observed in

the surrounding environments, e.g., IoT devices operating indoors. More specifically, the coher-

ence time in static environments is long, which causes Alice and Bob to observe highly correlated

samples over time, i.e., h1 ≈ h2 ≈ h3 ≈ ... ≈ hn. Although the security condition is still sat-

isfied, the amount of generated secret bits is very limited. To resolve this issue, many works in

the literature have proposed solutions that utilize multiple-input-multiple-output (MIMO) anten-

nas systems, beamforming, deploying friendly jamming, user-introduced randomness, and others

[16, 17, 18, 19, 20]. These works require some complex underlying architectures, e.g., MIMO

transceivers, or unconstrained sources of randomness that are expensive to implement, especially

for devices with limited resources.

1.2.2 Secure Coding

Data security typically has been abstracted from the physical layer and treated as an independent

process at upper layers of communication networks. There have been many efforts to implement

security schemes at the physical layer by taking advantage of the properties of communication

schemes. For example, utilizing properties of orthogonal frequency-division multiplexing (OFDM)

and MIMO to ensure security [21, 22, 23, 19], exploiting the reciprocity of wireless channels to

obfuscate the transmitted signals [24], and many others. Other works have also combined ideas

from cryptography with physical layer encoders for secrecy [25, 26].

Secure coding is not limited to encryption and decryption. For example, secure network cod-

ing is an area of research where the transmitter aims to multicast messages to multiple receivers
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through the network while maintaining an eavesdropper, who has access to some number of links

in the network, oblivious about individual messages [27, 28].

Schemes with relaxed security conditions in specific setups have been presented by assuming

some restrictions on the eavesdropper. One form of relaxation is assuming limited capabilities on

the eavesdropper such as having access to only a limited number of messages, as in the afore-

mentioned secure network coding, secret sharing, and secure distributed storage. In other words,

the security of messages is ensured as long as the eavesdropper only has access to a number of

messages that does not exceed some threshold. Another form of relaxation assumes the existence

of some secret shared knowledge between the legitimate parties such that an eavesdropper observ-

ing the transmitted message cannot retrieve any part of the message of size up to some threshold

without knowledge of the shared secret. This is suitable for scenarios where partial knowledge

of the message does not provide meaningful information about the content of the message itself.

Specifically, successfully deducing meaningful information about the message requires knowledge

of a significant portion of the message if not the entire message. That is suitable for applications

where data is scrambled, hashed, or masked prior to encoding the message. For example, randomly

assigned identification numbers, indices of elements in a dataset, etc.

Implementing secure coding schemes at the physical layer using existing encoders and decoder

provides an efficient alternative to cryptographic schemes by allowing hardware resources to be

shared across multiple tasks, which is suitable for devices whose resources are limited.
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1.3 Privacy and Learning

The increasing amount of generated data by users and devices has enabled the training of very

sophisticated machine learning (ML) models. The training process of a specific ML model utilizes

the training dataset to fine-tune the model parameters such that it performs well on the training

dataset. Training a model requires an iterative process described by an algorithmA(·) that takes the

model parameters θ and the training dataset D as inputs along with some other hyperparameters.

The output of the algorithm is the trained model parameters.

Due to the massive interest in machine learning over the past few years, ML models have been

a subject of extensive research examining their privacy and security. Threats to ML models vary

based on the setup in question. One class of threats is concerned with degrading the model’s

performance by attacking the system during the training process, known as adversarial training.

Examples of such attacks include poisoning the training dataset and generating adversarial samples

depending on the model itself. The other class of threats is concerned with inferring information

about the training dataset itself using the trained model. The latter class of threats compromises

the privacy of users’ data used during training. One attack against the privacy of the training

dataset is known as the membership inference attack, where the adversary uses the model as a

black box to decide with some confidence whether a sample was used in the training of the model.

Another attack is known as the model inversion attack, where an adversary has access to the model

parameters and attempts to create feature vectors that are correlated with the ones used in training

the model. These attacks can reveal a considerable amount of information about samples, see

Figure 1.1 for an example.

Recently, there have been many efforts in several countries around the world to protect users’
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Figure 1.1: An image recovered using a model inversion attack (left) and a training set image of
the victim (right). The attacker is given only the persons name and access to a facial recognition
system that returns a class confidence score [1].

data. For example, the General Data Protection Regulation has been introduced in the European

Union, and California Consumer Privacy Act has been introduced in California. Hence, protecting

users’ privacy is becoming an essential part of any system using ML models. The level of trust

in the central server given by users dictates the appropriate treatment of the privacy requirements.

On top of that, if users trust that their privacy is ensured, they are more inclined to share their data,

enabling the training of better ML models.

1.3.1 Machine Unlearning

The right to be forgotten in the aforementioned regulations gives a person the right to have per-

sonal information removed from internet searches and directories. Deleting data from hard drives

only guarantees their removal from storage units. However, ML models trained on these samples

store traces of information about them in the model parameters as discussed earlier. As a result,

the need to ensure the removal of samples and to satisfy the right to be forgotten requirement has

encouraged efforts to explore this problem for ML models. This type of privacy requirement ap-

pears in scenarios where ML models are trained on huge datasets on a trusted server. For instance,

it shows up when building Machine Learning as a Service (MLaaS) platforms, where models are
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maintained on the server and not disclosed to other parties. In machine unlearning setups, the ad-

versary is modeled as a person who has access to the ML model as a black box only and cannot

copy the model from its owner.

The removal of samples can be guaranteed if the sample is removed from the training dataset

and the ML model is retrained from scratch on the updated training dataset. This becomes quite

expensive to implement, especially as ML models are trained on large datasets. First coined by

[29], machine unlearning refers to the process of efficient removal of a sample from the trained

ML model. Machine unlearning algorithms should be more efficient and maintain comparable

performance as the baseline algorithm that retrains the model from scratch.

Unlearning algorithms are divided into two sets of algorithms. The first set guarantees perfectly

removal of a sample from the ML model [29, 2], while the second only guarantees the removal of

a sample statistically [30, 31, 32]. More specifically, perfect unlearning algorithms output a model

that is a statistical draw from the distribution of models trained on the updated training dataset with

probability 1, while statistical unlearning algorithms output a statistical draw from the distribution

of models trained on the updated training dataset with probability at most 1− δ.

A general unlearning algorithm that guarantees perfect unlearning utilizes a similar setup of

ensemble learning methods to lower the cost of unlearning of a sample [2]. In this algorithm, the

entire training dataset is sharded into small shards with a fixed size, then used to train weak learners

followed by an aggregator. Removing a sample requires only retraining the weak learner where

such sample appears, and its cost is directly related to the number of samples in the shard. This

solution provides a generic framework for many ML architectures that can provide comparable

performance to the single learner setup. Nevertheless, as the shard size becomes smaller, the

unlearning cost is lowered but some degradation in performance can occur. Due to satisfying the
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perfect unlearning condition, solutions to address the degradation in performance in such a setup

are of interest.

1.3.2 Privacy-Preserving Federated Learning

Training an ML model requires clients to upload their datasets to a central server, where training

takes place. Resource-constrained devices generate huge amounts of data every day and uploading

such data to a central server causes heavy communication overhead in addition to being a privacy

risk, making it costly to train models. Federated learning (FL) was introduced in 2016 by [33],

where a framework for clients to collaborative train a model on a central server was presented. In

each round of FL, the server sends the model parameters to available clients, who compute their

local gradients on their datasets and upload them back to the server. The server only collects the

gradients and aggregates them using a specific rule to produce the new global model parameters.

FL setups operate under different assumptions than other learning setups. For example, in FL

there are some assumptions by default on the algorithm, such as partial client participation, non-

independent and identically distributed datasets at each client, the possible existence of malicious

clients, heterogeneous device capabilities, and others. Although the FL framework ensures the

data remains on-device, variations of the aforementioned threats of data privacy are still applicable

and protections against them are desired.

Differential privacy (DP) has been considered the gold standard for mathematical privacy guar-

antees. It provides quantitative guarantees of the amount of information leaked to an adversary

observing the output of a differentially private mechanism. More specifically, DP ensures that the

ratio of the distributions of the outputs of the mechanism on two adjacent datasets differing in only
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one entry is bounded by a constant. Many works in the literature have modified versions of ML

algorithms, such as stochastic gradient descent (SGD), that utilize differential privacy [34]. These

privacy-preserving algorithms limit the amount of leaked information about samples in the train-

ing dataset to the adversary. Typically, utilizing DP causes the performance of the ML model to

drop in a relative manner to the amount of privacy guaranteed by the algorithm, i.e., more privacy

typically causes more performance degradation.

Variations of privacy-preserving FL frameworks using DP have been studied in the literature.

Due to the nature of the FL framework, there are two different types of algorithms depending on

whether the clients trust the central server. More specifically, if the clients do not trust the server,

then each client employs DP during the local update prior to sending the gradients to the central

serve [35, 36, 37]. On the other hand, if the clients employ relaxed constraints against the central

server, then the server employs DP during the global model update step to satisfy the privacy

requirements [38, 39, 40, 41]. The former is referred to as sample-level (local) DP, while the latter

is referred to as client-level (central) DP.

Considering central differential privacy, the server needs to enforce the most strict privacy re-

quirement, dictated by any client, on all clients to meet such privacy guarantees in the baseline

private federated learning. As a result, additional, and possibly useful, information sent by clients

who do not require such level of privacy gets lost in this process needlessly.

1.4 Contributions

This dissertation is largely focused on security and privacy solutions for resource-constrained de-

vices. In the first part of the dissertation, we aim to tackle data security for such devices operating
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in wireless environments. The second part is concerned with data privacy in learning tasks. Next,

we provide descriptions of each chapter and the contributions of the work in this dissertation.

Chapter 2 focuses on the problem of secret key generation in static environments. Two se-

tups are considered for key generation: secret key generation over a direct link, and secret key

generation through an untrusted relay node. To address the issue of low-rate key generation, we

propose low-complexity protocols for generating secret keys in the two scenarios by inducing

locally-generated randomness at the legitimate parties. We explicitly describe the entire process of

generating the key from acquiring samples until converting them into matched secret bit sequences.

We analyze the security and reliability of the proposed protocols by providing upper-bounds on the

probability of a successful eavesdropping attack by the eavesdropper Eve and an upper bound of

the probability of agreeing on mismatched key bits by the legitimate parties, respectively. We pro-

vide simulation results of the performance of the proposed protocols for two channel models: the

fading channel model, and a realistic 5G millimeter wave (mmWave) channel model [42, 43].

Chapter 3 formulates the threshold security condition using information-theoretic metrics. A

general coding scheme for noiseless channels satisfying threshold security based on linear block

codes is described where the threshold security parameter is directly related to the minimum dis-

tance of the linear block code. Moreover, a low-complexity threshold-secure code construction

based on Reed-Muller (RM) codes is described, along with its decoder. Furthermore, the setup

is extended to noisy channels between the legitimate parties, while the eavesdropper observes the

codeword noise-free. A low-complexity, robust, and threshold-secure code construction based on

RM codes is also described [44, 45].

Chapter 4 explores perfect machine unlearning for regression problems. An ensemble learning

setup is used where the data is sharded prior to training the weak learners. Since the cost of un-
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learning is directly proportional to the size of the shard, we propose using a method where datasets

are compressed using random encoders prior to training. We show that the proposed algorithm

satisfies the perfect unlearning condition. Additionally, we conduct experiments to show the trade-

off between performance and unlearning cost of the proposed algorithm potentially outperforming

the baseline uncoded unlearning algorithm. We provide some insights on whether it is expected

to observe a better trade-off for the proposed algorithm for a specific dataset based on some of its

properties [46].

Chapter 5 presents a variation of privacy-preserving federated learning using differential pri-

vacy. We propose a new setup where clients in the federated learning setup desire privacy by

default but are given the option to opt out of it. The server in our setup is aware of the privacy

choices and can use that information to its advantage in terms of providing better performance of

the resulting model. We present the FeO2 learning algorithm, which incurs minimal modifications

to the original differentially private federated averaging algorithm and discuss the hyperparameters

that surface due to the new privacy setup. To demonstrate the algorithm’s viability, we consider the

simple task of federated linear regression and show the success of the algorithm over the vanilla

federated averaging algorithm. Additionally, simulation results on the various synthetic and realis-

tic federated datasets are presented to show the success of the proposed algorithm compared to the

baseline private federated learning algorithm [47].

Finally, Chapter 6 concludes the dissertation by providing a summary of the contributions along

with discussions on possible directions of future work.
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CHAPTER 2

Secret Key Generation

2.1 Introduction

This chapter presents secret key generation protocols for static environments. Secret key generation

protocols in the literature require the environment in which devices operate to be dynamic, which

limits their applications to a few setups. In this chapter, we present two protocols for secret key

generation in static environments. Due to the long channel coherence time, the channel coefficients

remain constant over a long period of time; hence, limiting the amount of randomness that can be

extracted. To overcome this issue, we propose inducing randomness at the legitimate parties over

subcarriers, where Alice and Bob generate random bits, then map them to quadrature amplitude

modulation (QAM) symbols, and send them to each other. Using the received signals and the

locally generated symbols, Alice and Bob are able to generate correlated samples that can be used

to generate symmetric secret keys. Post-processing is performed to generate bit sequences and

verify they match at the legitimate parties. In scenarios where direct channels are not available,

secret key generation through a relay, referred to as Carol, is also presented. In such case, for

networks where devices can be easily hacked, such as IoT networks, it is important to ensure the

amount of leaked information to the relay is minimal.
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Figure 2.1: System model for (a) direct key generation, (b) relay-based key generation.

The proposed protocols overcome the limitations of resource-constrained devices operating in

static environments by not requiring any complex architectures to be implemented on devices.

In addition to the simulations to measure the performance of the protocols, the security evaluation

considers a stricter assumption on the uncorrelatedness of the channels between Alice and Bob and

Alice and Eve. Bounds on the probability of successful attacks are presented to show the protocols’

security. It is worth noting that although the protocol is designed to operate in static channels, it can

also operate in dynamic environments given each two-way exchange is done within a coherence

time slot.

2.2 Proposed Secret Key Generation Protocols

The setup of the considered secret key generation (SKG) system is shown in Figure 2.1a. The

considered wireless channel is assumed to be a fading channel. Suppose that Alice transmits a

signal xAlice(t) to Bob, he receives

yBob(t) = xAlice(t) ~ hab(t) + nb(t), (2.2.1)
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where t denotes the time, ~ denotes the convolution operator, hab(t) denotes the circularly-

symmetric Gaussian-distributed channel response with mean 0 and variance σ2
h/2 in each dimen-

sion, and nb(t) denotes the circularly-symmetric Gaussian-distributed additive noise component

with mean 0 and variance σ2
n/2 in each dimension. In the case of flat fading channels, the convo-

lution converts to multiplication. The same applies when Bob transmits a signal to Alice through

the channel h̃ab, and the channel coefficients are reciprocal, i.e., hab ≈ h̃ab. When Alice and Bob

utilize OFDM, the transmitted signal can be expressed as a vector, whose j-th element is the j-th

symbol, denoted as xAlice(t). The j-th symbol is transmitted over the j-th subcarrier, the received

signal at Bob is expressed as the following vector

yBob(t) = xAlice(t) ◦ hab(t) + nb(t), (2.2.2)

where ◦ denotes the Hadamard product, i.e., the element-wise product. The relay node, i.e., Carol,

employs an amplify-and-forward (AF) function with amplification factor αg, which multiplies the

received signal by αg then transmits it to the intended receiver. Extending the setup to the relay-

based scenario follows straightforwardly.

The proposed secret key generation protocols for both scenarios, i.e., when a direct channel is

available and when communication is only available via a relay, can be partitioned into three stages:

induced randomness exchange, quantization together with reconciliation, and privacy amplification

together with consistency checking. The first stage, i.e., induced randomness exchange, is done

differently in the two considered scenarios, while the remaining stages are similar. For better

readability, we drop the time t and replace it with round index i, since the channel is static over

any two-way exchange. Notations for various vectors in the protocols are summarized in Table
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Table 2.1: Notation Summary for the i-th SKG Session

Symbol Description
ps Known channel probing vector
ra,i Alice’s local randomness
rb,i Bob’s local randomness

hab,i Channel coefficients from Alice to Bob
h̃ab,i Channel coefficients from Bob to Alice

hi Channel coefficients from Alice to the relay
h̃i Channel coefficients from the relay to Alice
gi Channel coefficients from Bob to the relay
g̃i Channel coefficients from the relay to Bob

hae,i Channel coefficients from Alice to Eve
hbe,i Channel coefficients from Bob to Eve
rab,i Alice’s samples used for quantization
r̃ab,i Bob’s samples used for quantization
qa,i Alice’s quantized version of rab,i
qb,i Bob’s quantized version of r̃ab,i
kab,i Alice’s key bits
k̃ab,i Bob’s key bits
chab,i Alice’s check sequence bits
c̃hab,i Bob’s check sequence bits

2.1. Next, we expand on each stage of a single session of the protocol.

2.2.1 Induced Randomness Exchange

In this stage, Alice and Bob aim at creating highly correlated yet random observations by exchang-

ing signals. Assume that Alice and Bob use Nc OFDM subcarriers in this protocol.

2.2.1.1 Direct Induced Randomness Exchange

Alice and Bob exchange randomly generated symbols with each other. In the i-th session, Alice

chooses a vector ra,i of length Nc and Bob also chooses a vector rb,i of length Nc. Each element

of the vectors ra,i and rb,i is chosen independently and uniformly at random from a set of M

symbols in a M -QAM constellation. Then, the symbols are multiplied by a pulse/carrier signal

for transmission. The reason behind choosing the symbols from M -QAM constellation is that

17



�

�

9HULI\�

$OLFH %RE

5HFHLYH

5HFHLYH

Figure 2.2: Direct secret key generation protocol overview of a single session.

the hardware for transmitting and receiving QAM symbols is readily available in many wireless

devices. After the exchange of random symbols, Alice and Bob multiply what they sent with

what they received. This results in random sequences rab,i and r̃ab,i available at Alice and Bob,

respectively, as follows:

rab,i = ra,i ◦ rb,i ◦ h̃ab,i + ra,i ◦ na,i, (2.2.3)

r̃ab,i = ra,i ◦ rb,i ◦ hab,i + rb,i ◦ nb,i. (2.2.4)
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Figure 2.3: Relay-based secret key generation protocol overview of a single session.

These two vectors are randomized and highly correlated, as will be shown, which makes them

suitable for extracting shared secret keys between Alice and Bob.
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2.2.1.2 Relay-Based Induced Randomness Exchange

The relay first transmits a known probing vector ps to Alice and Bob, who receive ya,1,i and yb,1,i,

respectively, specified as follows:

ya,1,i = ps ◦ h̃i + na,1,i, (2.2.5)

yb,1,i = ps ◦ g̃i + nb,1,i. (2.2.6)

Alice and Bob then estimate the channels between themselves and the relay, i.e., h̃i and g̃i, respec-

tively, using their observations. Their estimates are denoted by ĥi and ĝi with estimation errors

defined as nh,i = (hi ◦ h̃i − ĥ◦2i ) and ng,i = (gi ◦ g̃i − ĝ◦2i ), respectively, where (.)◦2 denotes the

element-wise square operation. Alice and Bob utilize their respective channel estimates together

with their respective local randomness to eliminate the self-interference terms and to generate the

correlated samples, to be described next.

Alice and Bob generate, independently and uniformly at random, vectors of length Nc consist-

ing of M -QAM symbols. Let ra,i and rb,i denote Alice’s and Bob’s vectors, respectively. They use

the probing vector ps also for synchronization and, simultaneously, transmit their vectors to the

relay in such a way that the received SNRs at the relay with respect to the received sequences from

Alice and Bob are the same, and equal to a predetermined value. The relay receives

yr,2,i = ra,i ◦ hi + rb,i ◦ gi + nr,2,i. (2.2.7)

Then, it amplifies yr,2,i with an amplification factor αg, which is chosen to meet a specific SNR at

Alice and Bob, and forwards the amplified signal to Alice and Bob who receive ya,3,i and yb,3,i,
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respectively, as follows:

ya,3,i = αg(ra,i ◦ hi + rb,i ◦ gi + nr,2,i) ◦ h̃i + na,3,i, (2.2.8)

yb,3,i = αg(ra,i ◦ hi + rb,i ◦ gi + nr,2,i) ◦ g̃i + nb,3,i. (2.2.9)

The value of the amplification factor αg is assumed to be publicly known. Alice and Bob uti-

lize what they receive from the relay together with their locally generated vectors, their channel

estimates, and αg in order to construct highly correlated samples. More specifically, the self-

interference terms αgra,i ◦ hi ◦ h̃i and αgrb,i ◦ gi ◦ g̃i are cancelled at Alice and Bob, respectively,

using their local randomness and the channel estimates. The results are normalized by αg and then

multiplied by the local randomness, which results in rab,i and r̃ab,i at Alice and Bob, respectively,

as follows:

rab,i = ra,i ◦ rb,i ◦ gi ◦ h̃i + n̂a,3,i, (2.2.10)

r̃ab,i = ra,i ◦ rb,i ◦ g̃i ◦ hi + n̂b,3,i, (2.2.11)

where

n̂a,3,i = r◦2a,i ◦ nh,i + ra,i ◦ nr,2,i ◦ h̃i +
1

αg
ra,i ◦ na,3,i, (2.2.12)

n̂b,3,i = r◦2b,i ◦ ng,i + rb,i ◦ nr,2,i ◦ g̃i +
1

αg
rb,i ◦ nb,3,i, (2.2.13)

are the noise terms. The two vectors rab,i and r̃ab,i observed by Alice and Bob are highly correlated

and randomized at each session, which makes them suitable for extracting secret keys.
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2.2.2 Quantization and Reconciliation

The complex-valued shared sequences rab,i and r̃ab,i need to be quantized into bit streams. The

vectors are sorted into a vector of length 2Nc whose elements are the ordered real and imaginary

parts of the observations. Then, Alice and Bob find the range of sorted data, computed as the

difference between the maximum value and the minimum value of the sorted vector. Then, using

the range and the quantization resolution δq, they identify ∆q = 2δq uniform quantization intervals

and assign a Gray-code sequence to each interval. Finally, they map each sample to its quantized

bit sequence based on the interval it belongs to. The resulting bit sequences for Alice and Bob are

denoted by qa,i and qb,i, respectively.

Due to the noise in the observations vectors rab,i and r̃ab,i, the quantized bit sequences are

expected to have some mismatched bits that need to be corrected. The aim of reconciliation is to

mitigate such mismatches between Alice’s and Bob’s quantized bit sequences. To this end, various

methods, such as error-correcting codes, can be used. In our protocols, we use error-correcting

code-based secure sketch [48], while picking a convolutional code as the underlying code. The

reason to pick convolutional codes is due to the simplicity of the encoding process using shift

registers and the decoding process using Viterbi decoders [49]. A formal definition of a general

secure sketch scheme is as follows:

Definition 2.1 (secure sketch) [50] An (S,m1,m2, dt)-secure sketch scheme consists of a sketch

function SS(·), and a recovery function SR(·) such that the following hold:

1. The sketch function takes an input rs ∈ S and returns a randomized SS(rs) ∈ {0, 1}∗.

2. The recovery function SR(·) takes SS(rs) and r̃s ∈ S , and returns rs with probability one

as long as the distance between rs and r̃s is less than or equal a certain threshold dt.
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3. For any random variable Rs over S with min-entropy m1, an adversary observing SS(Rs)

has an average min-entropy of Rs conditioned on SS(Rs) as H̃∞(Rs|SS(Rs)) > m2.

Note that the min-entropy function of a random variable X is computed as H∞(X) =

− log2(max
x

(Pr(X = x))) and the average min-entropy function of X conditioned on Y is com-

puted as H̃∞(X|Y ) = − log2

(
E

y←Y
[2−H∞(X|Y=y)]

)
.

Next, we describe a construction known as the code-offset secure sketch [48] using convolu-

tional codes. The encoder is chosen in such a way that the length of its output is equal to the

length of qa,i. Once the quantized sequences qa,i and qb,i are available, Alice chooses a bit string t

uniformly at random and encodes it using the convolutional encoder to get Enc(t), which is of the

same length as qa,i. Then, she computes

sk = qa,i ⊕ Enc(t), (2.2.14)

where ⊕ is the addition modulo 2, and transmits the resulting sequence over the noiseless public

channel, either directly as in the first scenario or through the relay as in the second scenario, to

Bob. Then, Bob takes the addition modulo 2 of sk and qb,i, feeds it to the Viterbi decoder to get t̃,

and re-encodes t̃ to get Enc(̃t). He computes the final sequence as

q̃a,i = sk⊕ Enc(Dec(sk⊕ qb,i))

= sk⊕ Enc(̃t). (2.2.15)

A binary linear code of length n and dimension m with minimum distance 2dt + 1 can be used

to build an (An,m1,m1 − (n−m), dt)-secure sketch scheme, where A = {0, 1} for binary codes
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[50]. The error correction capability of the linear code is related to the underlying rate of the code.

This introduces a trade-off between the error correction capability and the security, as higher rates

provide better security but can correct fewer errors, and vice versa. Alice and Bob should start

with an initial high rate code and then reduce it accordingly if they observe several consecutive

unsuccessful attempts of the protocol.

2.2.3 Privacy Amplification and Consistency Checking

Some information about the shared key is leaked to Eve during the exchange of random symbols

and the reconciliation stages. To compensate for such leakage, we exploit universal hash functions

(UHF). In general, UHFs are desired in such scenarios due to their resilience against collisions.

Definition 2.2 (universal hash function) [51] A family of hash functions Hf that maps a set of

inputs U , e.g., binary vectors of length n, to a value in the hash table of size th is called universal

if for any two inputs x, y ∈ U with x 6= y, we have

Pr
h←Hf

(h(x) = h(y)|x 6= y) 6
1

th
. (2.2.16)

Given that h should be chosen randomly from Hf , we need to ensure that Alice and Bob agree

on the same h. We propose a method that guarantees the same choice of h at Alice and Bob if

inputs to the UHF are consistent. Suppose we have a random binary sequences qi of length nh

(This is qa,i for Alice and q̃a,i for Bob). For simplicity, we assume that nh is an even multiple of

some integer mh > 1. We split qi into two sequences of equal length qi = q1,i‖q2,i each of length

nh/2, which is an integer since nh is even. Then, q1,i is used to choose h from Hf , and q2,i is used

as the input to the hash function h. Next, a well-known construction of UHF is described next,
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which we use in our protocol [51]. First, the largest prime p with 2mh−1 < p < 2mh , i.e., its binary

representation consists of mh bits, is chosen, where mh is the length of the output bit sequence

(such a prime number always exist for mh > 1 by Bertrand’s postulate). Then, for i = 1, 2, we

divide q1,i and q2,i into lq parts q1,i,l and q2,i,l for l = 1, 2, . . . , lq, where the length of each part is

less than or equal to mh bits. For ease of notation, let qj,i,l also denote the number with the binary

representation qj,i,l. Finally, the following summation is computed:

hq1,i
(q2,i) =

lq∑
l=1

q1,i,lq2,i,l mod p. (2.2.17)

To be able to use this construction, we need to ensure the randomness of qi. In our protocol,

ra,i and rb,i are chosen uniformly at random for each key generation session. Hence, the value of

qi is also random. Therefore, the hash function is randomized during each session, which will be

verified in the numerical results section. The output of the aforementioned described hash function

is the key bit sequences kab,i for Alice and k̃ab,i for Bob, which are matched with high probability

after using the reconciliation step.

We also use UHFs to check consistency between keys generated by Alice and Bob, without

leaking any information to Eve, as suggested in [52]. Before Alice and Bob are able to use the

key sequences for encryption and decryption, they need to verify the consistency of their keys. To

this end, Alice and Bob hash their key sequences kab,i and k̃ab,i again similar to the previously

described process. The output of this step is their respective check sequences chab,i and c̃hab,i,

which they can use to verify whether or not their keys are consistent. It is worth noting that, in our

protocol, the length of the check sequences, chab,i and c̃hab,i, is half the length of the key.

Theorem 2.2.1 The probability of accepting a mismatched key as consistent by the described pro-
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tocol with hash table size tc for the check sequence is upper bounded as follows:

Pr(chab,i = c̃hab,i|kab,i 6= k̃ab,i) 6
1

tc
. (2.2.18)

Proof: Follows directly from the definition of universal hash functions, specified in (2.2.16),

where the output hash table size is tc.

2.3 Security Evaluation

We evaluate the security of the protocol next. Unlike the typical assumption in the literature,

we evaluate the direct secret key generation rigorously rather than rely on assuming independent

channel coefficients. The relay-based protocol is evaluated assuming an honest but curious relay,

which is due to the fact that relays, such as in IoT scenarios, can be hacked after the key generation

session.

2.3.1 Direct Secret Key Generation

In this scenario, Eve’s best strategy is to acquire ra,i, rb,i and hab,i. When Alice and Bob exchange

signals, Eve receives

e1,i = ra,i ◦ hae,i + ne1,i, (2.3.1)

e2,i = rb,i ◦ hbe,i + ne2,i. (2.3.2)
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If Eve is able to estimate both ra,i and rb,i from her observations in (2.3.1) and (2.3.2) perfectly,

she can only create samples of the following form:

red,1,i = ra,i ◦ rb,i ◦ hae,i + ne3,i, (2.3.3)

red,2,i = ra,i ◦ rb,i ◦ hbe,i + ne4,i. (2.3.4)

Note that she still needs to know hab,i at all different subcarriers in order to obtain rab,i and/or r̃ab,i,

as described in (2.2.3) and (2.2.4). Luckily, this is, almost, not possible for Eve as discussed next.

Generally, the Pearson correlation coefficient ρ of the channel fading coefficients at locations

separated by distance ds is computed as follows [53]:

ρ =
(
J0(kwds)

)2
, (2.3.5)

where J0(.) is the Bessel function of the first kind, and kw is the wavenumber. Therefore, if the

distance between Alice/Bob and Eve ds is larger than half of a wavelength, e.g., 5 cm in 3 GHz band

or 0.54 cm in 28 GHz band, they will experience almost uncorrelated fading channels. Therefore,

the leaked information about the generated secret key to Eve is small and is often assumed to be

negligible in the literature. However, it is fundamentally important to quantitatively measure the

security level, even if the distance between devices is very small and impractical in some settings.

An information-theoretic measure of security is the mutual information between the shared random

sequence, from which the secure key will be generated, and what Eve observes. If we assume that

the effect of quantization is negligible and also assume that Eve can perfectly recover ra,i and rb,i,

this mutual information is equal to the mutual information between hab,i and the pair (hae,i,hbe,i).
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One can assume that Eve is closer to Bob than Alice and hence, only need to consider the mutual

information between hab,i and hae,i, since it is the dominating term. This can be calculated in each

subcarrier as stated in the next lemma.

Lemma 2.3.1 Let hbk and hek denote the fading coefficients of Bob’s and Eve’s channels at the

k-th subcarrier. Also, let ρ denote the correlation coefficient between hbk and hek, specified in

(2.3.5). Then, the mutual information between hbk and hek is given by

I(hbk;hek) = − log(1− ρ2) bits. (2.3.6)

Proof: We have hbk = hbk,I + jhbk,Q, and hek = hek,I + jhek,Q. hbk,I , hbk,Q are indepen-

dent and identically distributed asN (0, σ2
b/2) and hek,I , hek,Q are independent and identically dis-

tributed as N (0, σ2
e/2). The real parts of Bob’s and Eve’s channel coefficients are correlated with

the parameter ρ, and the imaginary parts are also correlated with ρ. Then, we have the following

covariance matrices:

Σ1 =

σ2
b/2 0

0 σ2
b/2

 ,Σ2 =

σ2
e/2 0

0 σ2
e/2

 ,Σ3 =



σ2
b/2 0 ρσbσe

2
0

0 σ2
b/2 0 ρσbσe

2

ρσbσe
2

0 σ2
e/2 0

0 ρσbσe
2

0 σ2
e/2


. (2.3.7)
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The following series of equalities holds:

I(hbk;hek) = I(hbk,I + jhbk,Q;hek,I + jhek,Q)

(a)
= I(hbk,I , hbk,Q;hek,I , hek,Q)

(b)
= Hd(hbk,I , hbk,Q) +Hd(hek,I , hek,Q)−Hd(hbk,I , hbk,Q, hek,I , hek,Q)

(c)
=

1

2
log(det(2πeΣ1)) +

1

2
log(det(2πeΣ2))− 1

2
log(det(2πeΣ3))

= log(πeσ2
b ) + log(πeσ2

e)− log((πeσbσe)
2(1− ρ2))

= − log(1− ρ2), (2.3.8)

where:

(a) holds due to having a one-to-one mapping;

(b) is the expansion of the mutual information expression in terms of differential entropy;

(c) holds by using the well-known expression that the differential entropy of multivariate Gaus-

sian random variables Xn = (X1 , X2 , ..., Xn) with covariance matrix Σi is Hd(Xn) =

1
2

log(det(2πeΣi)); and the rest are simplification steps.

Note that as ρ goes to zero, the mutual information, given by Lemma 2.3.1, also goes to

zero. The next question, which also applies to any physical layer security scheme that utilizes

information-theoretic measures of security, is how to quantitatively characterize the chances of

a successful eavesdropping attack by Eve, i.e., guessing the key, given the leaked information?

The latter is often measured in terms of semantic security, which is a classical notion of security

in cryptosystems [54]. Direct connections between metrics for the information-theoretic security,

based on the mutual information, and cryptographic measures of security, including semantic se-
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curity, are provided in [55]. We use these connections to arrive at the following theorem which

characterizes the security of the proposed protocol from the aforementioned perspective:

Theorem 2.3.2 Let Nc denote the number of subcarriers used in the proposed protocol and δq

denote the quantization resolution. Then, the probability of a successful eavesdropping attack by

Eve is upper bounded as follows:

Pr(Successful attack) <
(
2−2δq +

√
2I(hb;he)

)Nc
+ 2−δqNc , (2.3.9)

where hb and he denote the fading coefficients of Bob’s and Eve’s channels at a subcarrier.

Proof: [55, Theorem 5] relates the mutual information between Bob’s and Eve’s obser-

vations to the increase in the probability of a successful eavesdropping attack by Eve given her

observations. More specifically, the increase in the latter probability is quantified in terms of

the mutual information between Bob’s and Eve’s observations [55, Theorem 5]. Note that the

probability that Eve successfully guesses the bits, with no observations, at a single subcarrier is

2−2δq . In addition to that, by [55, Theorem 5], the probability that Eve can guess the shared ran-

dom bits in a single subcarrier, given her observations in this subcarrier, is increased by at most√
2I(hb;he) compared to the case where she does not have any observation. Therefore, Eve’s prob-

ability of successfully guessing these quantized key bits is upper bounded by 2−2δq +
√

2I(hb;he).

The probability that Eve can recover the shared randomness over all subcarriers is then given by(
2−2δq +

√
2I(hb;he)

)Nc . Note that I(hb;he) is the same across all the subcarriers and is actually

computed in terms of ρ in Lemma 2.3.1. If Eve cannot recover all the shared randomness, the

probability that she can guess the secret key correctly, by the property of hash functions in the
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privacy amplification part of our protocol, is at most 2−δqNc , when using a key sequence of half the

quantized bit sequence length. Utilizing these together with the union bound completes the proof.

Numerical values of the probability of successful attack can be computed using Theorem 2.3.2

together with Lemma 2.3.1. For instance, suppose that the distance between Eve and Bob is at least

half of a wavelength, and is less than the distance between Eve and Alice. Then, the correlation

coefficient ρ is at most 0.09 and by Lemma 2.3.1 the resulting mutual information I(hb;he) is at

most 0.01 bits at any of the subcarriers. Suppose that Nc = 16 and δq = 2, which are also used

in the numerical results provided in the next section. Then, by Theorem 2.3.2, the probability of a

successful attack by Eve given such parameters is at most 2−37 + 2−32 < 2−31.

2.3.2 Relay-based Secret Key Generation

In this scenario, Eve tries to use her observations and the messages transmitted over the public

channel to guess rab,i and/or r̃ab,i, as described in (2.2.10) and (2.2.11). Her best strategy is to find

ra,i, rb,i, gi and hi. When Alice and Bob transmit their induced randomness, Eve receives

re,1,i = ra,i ◦ hae,i + rb,i ◦ gbe,i + ne5,i. (2.3.10)

However, when Carol, the relay, amplifies and forwards the signal from Alice and Bob, Eve re-

ceives

e3,i = αg(ra,i ◦ hi + rb,i ◦ gi + nr,2,i) ◦ hce,i + ne6,i. (2.3.11)
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Since Eve can estimate the channel coefficients hce,i from the relay’s transmission when it transmits

the known probing vector and, also, she knows the value of αg from the messages over the public

channel, she can successfully estimate

re,2,i = ra,i ◦ hi + rb,i ◦ gi + nr,2,i. (2.3.12)

In a worst-case scenario from the legitimate parties’ perspective, Eve has as much information

as the relay has, in addition to her own observations. Note that this coincides with the problem

of securing the shared key against the untrusted relay Carol when Eve is at Carol’s location. In

the remainder of this section, we analyze the probability of a successful eavesdropping attack

assuming that the eavesdropper Eve has all the information available to Carol, in addition to her

own observations.

Note that the computations involving the spatial correlation parameter of the wireless chan-

nels do not help in ensuring security in this scenario as they do in the first scenario with a direct

communication channel. Also, the mutual information between rab,i, as described in (2.2.10), and

the pair (re,1,i, re,2,i), as described in (2.3.10) and (2.3.12), respectively, is expected not to be very

small as it was in the first scenario. For instance, if this mutual information is greater than 0.5, then

using [55, Theorem 5], same as in the proof of Theorem 2.3.2, does not yield a non-trivial upper

bound on the probability of a successful eavesdropping attack. Hence, instead of utilizing semantic

security, we need to use an alternative approach to relate I(rab,i; re,1,i, re,2,i) to the probability of

a successful eavesdropping attack. To this end, we use Fano’s inequality to bound the probability

of successful estimation of the quantized bits qa,i by the eavesdropper in terms of the conditional

entropy of the quantized bits qa,i given the eavesdropper’s observations (re,1,i, re,2,i). Note that the
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latter can be bounded in terms of I(rab,i; re,1,i, re,2,i). The details of this analysis are given next in

the proof of Theorem 2.3.3.

To simplify the expressions in the next theorem, let us consider an arbitrary subcarrier and

denote the corresponding entries of the vectors rab,i, re,1,i, re,2,i, and qa,i as rab, re,1, re,2, and qa,

respectively. Note that the result of Theorem 2.3.3 does not depend on the choice of the subcarrier.

Theorem 2.3.3 Let Nc denote the number of subcarriers used in the proposed protocol and δq

denote the quantization resolution. Then, the probability of a successful eavesdropping attack by

Eve is upper bounded as follows:

Pr(Successful attack) <
(

1− H(qa)− Iab,e − 1

log2(|QA|)

)Nc
+ 2−δqNc , (2.3.13)

where Iab,e denotes I(rab; re,1, re,2),QA denotes the support of qa, and |QA| denotes its cardinality.

Proof: Let C denote the event of correct estimation of qa and E denote the event of erroneous

estimation of qa by the eavesdropper. Then, we have the following

Pr(C) = 1− Pr(E) (2.3.14)

(a)
6 1− H(qa|re,1, re,2)− 1

log2(|QA|)
(2.3.15)

(b)
= 1− H(qa)− I(qa; re,1, re,2)− 1

log2(|QA|)
(2.3.16)

(c)
6 1− H(qa)− I(rab; re,1, re,2)− 1

log2(|QA|)
(2.3.17)

(d)
= 1− H(qa)− Iab,e − 1

log2(|QA|)
, (2.3.18)

where:
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(a) holds by Fano’s inequality [56];

(b) is the expansion of conditional entropy;

(c) follows from the data processing inequality because qa is a deterministic function of rab and

hence, (re,1, re,2), rab, and qa form a Markov chain;

(d) is a change of the notation of I(rab; re,1, re,2) to Iab,e.

Note that the probability of correctly estimating every bit of qa, denoted by Pr(CNc), is equal

to the probability of correctly estimating qa over all the Nc subcarriers, since the computation of

mutual information is the same over all subcarriers. Hence, by using the independence of such

events across the Nc subcarriers, we have

Pr(CNc) 6
(

1− H(qa)− Iab,e − 1

log2(|QA|)

)Nc
. (2.3.19)

If Eve cannot recover all the shared randomness bits in a single session, the probability that she

correctly guesses the secret key, by the property of hash functions in the privacy amplification part

of our protocol, is at most 2−δqNc . This, together with (2.3.19), and using the union bound complete

the proof.

Next, we illustrate how Theorem 2.3.3 can be used in a numerical setup to upper bound the

probability of a successful eavesdropping attack by Eve. Suppose that Alice and Bob use 64-QAM

constellation points to transmit their induced randomness, the received SNR is 23 dB at Alice and

Bob in (2.2.8), the quantization parameter δq is 2, and the number of subcarriers Nc is 16. Eve is

located close to Carol, but at least half a wavelength away from her. Given these parameters the

mutual information Iab,e = I(rab; re,1, we,2) is numerically estimated as Iab,e ≈ 1.39 bits, and the

entropy of the generated key bits is numerically estimated as H(qa) ≈ 3.86 bits. Then, by Theo-
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rem 2.3.3, the probability of successful eavesdropping attack is upper bounded, approximately, by

2−10.57.

2.4 Numerical Results

This section presents simulation results of the proposed protocols using typical key generation

metrics. These metrics are briefly described next:

1. Bit Generation Rate (BGR): This measures the number of bits per packet in the quantized

sequences generated by Alice and Bob, denoted by qa and qb, respectively.

2. Bit Mismatch Rate (BMR): This measures the ratio of the number of bits that are mismatched

between qa and qb. This quantity can be also measured at Eve’s side. Note that the BMR at

Eve should be higher than the BMR measured between Alice and Bob; otherwise, no secret

key can be generated.

3. Bit Error Rate (BER): This measures the ratio of the number of bits that do not match in the

final key generated by Alice and Bob as the output of the protocol. This quantity can be also

measured at Eve’s side, which, ideally, should be close to 50%.

4. Randomness: This indicates whether the final key bit sequence generated by the protocol,

denoted by kab, is indistinguishable from a random binary bit sequence. This is often tested

using the NIST statistical test suite [57].

In addition to the aforementioned metrics, we introduce a new parameter, referred to as ran-

domness efficiency, to measure the length of the shared sequence normalized by the total amount

35



of randomness available to Alice and Bob. Let RQ denote the total number of shared random bits

after quantization. The randomness efficiency, denoted by ER, is defined as

ER
def
=

RQ

H(Ra) +H(Rb)
, (2.4.1)

whereH(Ra) andH(Rb) are the entropy of Alice’s and Bob’s sources of randomness, respectively.

Next, the setups for the simulation results are provided, then we present the numerical results

for each setup.

2.4.1 Setup

2.4.1.1 Direct Secret Key Generation

In this scenario, it is assumed that Alice and Bob communicate over a direct and reciprocal wireless

channel. The constellation size for each subcarrier is M = 16, i.e., the set of 16-QAM symbols is

used as the set from which local randomness is chosen and transmitted by Alice and Bob. Also,

Nc = 16 OFDM subcarriers are assumed to be available in the channel between Alice and Bob.

The quantization is done with δq = 2, i.e., the real and imaginary parts of the received symbol in

each subcarrier are quantized into one of the four possibilities as discussed in Section 2.2.2. Finally,

the remaining steps including secure sketch using a convolutional code with rate 1/2, hashing, and

consistency checking are performed as discussed in Section 2.2.

2.4.1.2 NYUSIM-Based Secret Key Generation

In this scenario, it is assumed that Alice and Bob have a direct reciprocal wireless channel where

the coefficients are generated by the NYUSIM Channel Simulator [58]. They operate in a non-
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line-of-sight (NLOS) urban micro-cellular environment at 20◦C, the operating frequency is 28

GHz, and the distance between Alice and Bob and Alice and Eve is 10 meters. The path contains

1 meter of foliage, and there is an outdoor-to-indoor low loss. Channel coefficients between Alice

and Bob and channel coefficients between Alice and Eve are generated by the NYUSIM Channel

Simulator over Nc = 16 subcarriers. Alice and Bob choose their induced randomness from the set

of 16-QAM symbols, and the quantization is done with δq = 2. The remaining steps follow as in

the first scenario.

2.4.1.3 Relay-Based Secret Key Generation

In this scenario, it is assumed that Alice and Bob have direct and reciprocal wireless channels with

the relay, which can be perfectly estimated. Also, a scenario is considered for eavesdropping, as

discussed in Section 2.3.2, where Eve uses the relay’s observations. Alice and Bob choose their

induced randomness from the set of 64-QAM symbols, and set their power levels in such a way that

the average received SNRs at the relay from both Alice and Bob are equal. Then, the amplification

vector αg is chosen such that the average SNR, which is the one considered in the results, of Alice

and Bob’s correlated observations, (2.2.10) and (2.2.11), respectively, is the same. The remaining

parameters and steps are similar to the previous scenarios.

2.4.2 Results

2.4.2.1 Bit Generation Rate

For all the setups described above, Alice and Bob exchange their induced randomness over Nc =

16 subcarriers, with quantization resolution δq = 2 for the real and imaginary parts separately. Note
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that 16×2×2 = 64 bits are generated by Alice and Bob during each session of the protocol. Hence,

the bit generation rate (BGR) is 64 bits/packet. The length of the final secret key is 64/2 = 32

bits. In order to increase Eve’s bit error rate, we assume that four blocks of keys, generated during

four separate successful sessions, are added together modulo 2 to obtain one final key of length 32

for every four sessions. Such BGR is considered high compared to protocols designed for static

channels setups, which have BGR of 1
4

to 1
2

bits/packet as in [20], or 8 bits/packet as in [59], and

it is comparable with protocols designed for dynamic environments, such as [60] whose BGR is

60− 90 bits/packet.

2.4.2.2 Bit Mismatch Rate and Bit Error Rate

The bit mismatch rate (BMR) and bit error rate (BER) between Alice and Bob, and Alice and

Eve are shown in Figure 2.4 and Figure 2.5, respectively, for the three described setups. For

the bit mismatch rate, in the direct and NYUSIM-based SKG setups we compare Alice’s and

Bob’s quantized sequences of (2.2.3) and (2.2.4), respectively, and Alice’s and Eve’s quantized

sequences of (2.2.3) and (2.3.3), respectively. Also, for the relay-based SKG setup, we compare

Alice’s and Bob’s quantized sequences of (2.2.10) and (2.2.11), respectively, and Alice’s and Eve’s

quantized sequences of (2.2.10) and (2.3.12), respectively. It is worth noting that as the average

SNR increases in the NYUSIM-based SKG setup, Eve’s BMR decreases but the rate of decrease

slows down. It can be observed that an increase of around 3 dB of the average SNR is required in

the relay-based SKG setup to achieve a BMR similar to the first two setups. In comparison with

other protocols for static environments at 20 dB, they have BMR of around 1% as in [20], 4% as in

[59], 4% and 13% for the direct and relay-based setups as in [61].

As for the BER, we compare Alice’s and Bob’s final key sequences and Alice’s and Eve’s final
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Figure 2.4: The bit mismatch rate (BMR) be-
tween Alice’s sequence and Bob’s and Eve’s
sequences versus SNR.
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Figure 2.5: The bit error rate (BER) between
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quences versus SNR.

key sequences. It can be observed that the BER at Bob is extremely low due to the requirement

of the consistency checking step in the protocol, which only allows keys whose consistency is

verified with a high probability to be accepted. Note that the main reason for the average BER

at Eve being around 50% is the privacy amplification step of the protocol. In addition to that,

the cumulative distribution function (CDF) of the BER at Eve’s final key at 20 dB average SNR

for both the direct and NYUSIM-based SKG setups, and 23 dB average SNR for the relay-based

SKG setup is shown in Figure 2.6. Note that the curves for all the setups are similar because

these curves compare the keys which are the addition modulo 2 of four separate outputs of the

hash functions at Alice and Eve. The universal hash function generates a uniformly random output

resulting in the similarity of the curves. Also, it is observed that the probability of accepting a

mismatched key for the aforementioned average SNRs in the direct and relay-based SKG setups

is around 0.0015%, and for the NYUSIM-based SKG setup is around 0.00152%, which are less

than 0.00153% as predicted by Theorem 2.2.1. The aforementioned probability is considered to be
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NYUSIM-based SKG setups. The compared sequences are the modulo 2 addition of the outputs
of four successful key generation sessions.

very low. In comparison, it is far less than the probability of generating mismatched keys of the

protocol proposed for direct SKG in static environments in [62], which is at least 3%. In addition

to that, as discussed in the security evaluation of the protocol, the probability of acquiring the key

perfectly by Eve is, at most, 2−31 and 2−10.57, for the direct and relay-based SKG, respectively. In

comparison, the protocol proposed for direct SKG in static environments in [62] has the probability

of acquiring the key by Eve in the range 0.09%− 0.47%.

2.4.2.3 Randomness

The randomness of the generated final key sequence is examined using the NIST statistical test

suite [57]. The suite consists of 15 tests and generates a probability value, also referred to as p-

value, for each individual test. For each test, a sequence is considered random with 99% confidence

if the corresponding p-value is greater than 0.01. We run the protocol using constant channel

coefficients at 20 dB average SNRs for the direct and NYUSIM-based SKG setups, and 23 dB
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Table 2.2: NIST Statistical Test Results

Test Direct Relay NYUSIM
Monobit 0.8712 0.9968 0.2829

Frequency Block 0.3529 0.7458 0.3172
Runs 0.5347 0.9781 0.4516

Longest Run of Ones 0.7696 0.3552 0.1692
Binary Matrix Rank 0.9263 0.9974 0.3125

DFT 0.6413 0.3469 0.0121
Non-Overlapping Template Matching 1 1 1

Overlapping Template Matching 0.2830 0.3501 0.4043
Maurer’s Universal Statistical 0.9991 1 0.9993

Linear Complexity 0.9909 0.5323 0.0227
Serial 0.2989 0.5852 0.7236

Approximate Entropy 0.4808 0.9160 0.7529
Cumulative Sums 0.7825 0.8392 0.1833

Random Excursion 0.0179 0.2924 0.0925
Random Excursion Variant Test 0.0434 0.0154 0.0615

average SNR for (2.2.10) in the relay-based SKG setup to generate a sequence of length 220 bits

and feed it to the test suite. Since the sequences pass all the tests as shown in Table 2.2, they are

considered random with 99% confidence.

2.4.2.4 Randomness Efficiency

This is computed according to (2.4.1). For the direct and NYUSIM-based SKG setups, Al-

ice and Bob randomly choose induced randomness bit sequences of length 64, and therefore,

H(Ra) = H(Rb) = 64. Note that the length of the quantized bit sequence is 64, therefore,

RQ = 64. This implies that the randomness efficiency is 50%. On the other hand, for the relay-

based SKG setup, Alice and Bob separately induce 96 random bits during each round, resulting in

H(Ra) = H(Rb) = 96, while the length of the quantized bit sequence is RQ = 64. The resulting

randomness efficiency of the relay-based SKG setup is 33%. Roughly speaking, the remaining part

of the available randomness is used to provide security. The exact trade-off between randomness

efficiency and security is an interesting problem.
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Figure 2.7: The bit mismatch rate (BMR) in the direct SKG setup between Alice’s and Bob’s
sequences versus the signal to noise ratio for different values of the correlation coefficient ζ of the
channels experienced at Alice and Bob.

2.4.2.5 Impact of Non-reciprocity

The perfect channel reciprocity feature is assumed to hold throughout the chapter; however, in

some practical scenarios, different factors such as mismatched hardware and synchronization er-

rors may cause the channel coefficients experienced at Alice and Bob to not be perfectly reciprocal

[60, 63, 64]. Such imperfections can be taken into account using the Pearson correlation coef-

ficient, denoted by ζ , between such channel coefficients explained as follows. In general, under

perfect channel reciprocity conditions, we have ζ = 1, while imperfections reduce the value of ζ .

As suggested in [64], a model to describe the relationship between the channel coefficients at a

subcarrier during session i observed at Alice, i.e., h̃ab,i, and Bob, i.e., hab,i, when they observe the

same SNR is as follows:

hab,i = ζh̃ab,i +
√

1− |ζ|2 σhi√
2
ni, (2.4.2)
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where ζ is the correlation coefficient, σ2
hi
/2 is the dimension variance of hab,i and h̃ab,i, and ni

denotes the circularly-symmetric Gaussian-distributed independent noise component with mean

0 and unit dimension variance. In order to illustrate the effect of imperfect reciprocity in the

direct SKG setup, the bit mismatch rate for different values of the correlation coefficient ζ is

shown in Figure 2.7. It can be observed that as the correlation coefficient between the channel

coefficients decreases, the BMR between Alice’s and Bob’s quantized sequences increases causing

the protocol to experience a higher number of unsuccessful sessions. For instance, to achieve a

BMR around 22%, the required SNR is 9 dB for ζ = 1, whereas it is 15 dB for ζ = 0.9. On

the other hand, when comparing the average number of sessions required to agree on a key at 15

dB, it is around 9 sessions for ζ = 1, while it is around 37 sessions for ζ = 0.9. Depending on

the severity of the imperfections, the protocol’s parameters would require certain adjustments to

overcome such degradation. For example, the legitimate parties can decrease the bit generation

rate by using a lower quantization resolution δq, or decrease the rate of the error-correcting code

used for reconciliation which results in an increase in the amount of information leaked to the

eavesdropper.

2.5 Conclusion

This chapter presented two secret key generation protocols for resource-constrained devices oper-

ating in static environments. The protocols utilize the uniqueness of wireless channels, as well as

randomness induced at the legitimate parties, to generate highly correlated observations to be used

to extract secret key bits. The protocols aim to enable high rate key generation in environments

with limited mobility and can be implemented in a low-complexity manner. The protocols’ security
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is evaluated by providing an upper bound of the probability of acquiring the key by an eavesdrop-

per, and their reliability is examined by providing an upper bound of accepting a mismatched key

by the legitimate parties. Numerical results are conducted to show the success of the proposed

protocols as well as show the applicability of the protocol in scenarios where non-reciprocity is

not guaranteed as well as mmWave channel models.
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CHAPTER 3

Threshold Secure Coding

3.1 Introduction

This chapter introduces the formulation and code constructions of threshold-secure coding with a

shared key. Conventional cryptosystems are often designed to be computationally secure by relying

on unproven assumptions of hardness of mathematical problems. Information-theoretic security

methods provide an alternative approach by constructing codes for keyless secure communication,

as in wiretap channels. Typical security schemes aim to secure the entire message block regardless

of the deployment setup. We focus on applications where data is generated such that an eaves-

dropper with partial knowledge of the message cannot deduce any meaningful information about

the message. In other words, the eavesdropper needs to retrieve most or even the entire block of

message symbols to learn meaningful information about the message. We also aim to combine the

processes of security and error correction in the physical layer. Utilizing error-correcting codes to

provide security in the physical layer enables sharing hardware resources between reliability and

security schemes in low-cost devices.

In this chapter, we formulate the threshold security conditions using information-theoretic met-

rics for noiseless communication channels. Furthermore, we propose a general construction of
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Figure 3.1: System setup for the proposed coding scheme.

threshold-secure coding schemes based on linear block codes and show the threshold achievable

by such construction is directly related to the minimum distance of the linear block code. More-

over, the setup is extended to the case where the main channel is noisy, but the eavesdropper’s

channel remains noiseless for which a robust coding scheme is also presented. For both setups,

we provide low-complexity constructions of threshold-secure and robust coding schemes based on

Reed-Muller codes.

3.2 Problem Formulation

We start with a simple setup in terms of communication channels to highlight the threshold security

problem. Consider a system model where Alice wishes to securely communicate with Bob, both

are legitimate parties, through a noiseless channel. The eavesdropper, namely Eve, is tapping into

that channel and observes all the transmitted symbols, as shown in Figure 3.1. Alice and Bob share

a common key sequence k of length k, that can be used for encoding and decoding of the message

m of length m. Assume that both the key and the message symbols are from an alphabet of size

q, where q is a prime power. A certain known permutation π(·) of Alice’s message sequence m

together with the key sequence k is fed as the input to the encoder, denoted by u, i.e., u = π(k,m).

The length of u is n = m+k and is encoded to a codeword c of length m. The entries in k, as well
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as m, are assumed to be independent and uniformly distributed. The codeword c is then transmitted

by Alice to Bob over a noiseless channel. Bob receives the codeword and decodes it using the key

k to retrieve the message m. Eve observes the codeword c and wishes to extract information about

the message m as well as the key k. It is worth noting that Alice and Bob agree on the encoder and

the decoder a priori, which are also publicly known to Eve.

The security condition in this setup is the following. Although parts of input u are disclosed

to Eve, no knowledge, in an information-theoretic sense, about any subset of size up to a certain

threshold parameter t of the input symbols is leaked to Eve. In a sense, we consider a sub-block-

wise measure of information-theoretic security. We aim at designing an encoder and a decoder for

a noiseless channel that utilize a shared key k to encode and decode a message m such that the

following conditions are met:

1. Reliability: Bob is able to decode the message, knowing the key, with probability one, i.e.,

H(m|c,k) = 0. (3.2.1)

2. Key security: the codeword c does not reveal any information about the key k, i.e.,

I(k; c) = 0. (3.2.2)

3. t-threshold security: for any v ⊆ {u1,u2,..., un} with |v| 6 t, we have

H(v|c) = H(v), (3.2.3)
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where t is a design parameter specified later.

A formal definition of a t-threshold secure code is stated next.

Definition 3.1 (threshold-secure code) A code is said to be t-threshold secure if it meets the reli-

ability and security conditions, where t is the maximum cardinality of any v ⊆ {u1,u2,..., un} that

satisfies (3.2.3).

3.2.1 Applications

The considered threshold-type security becomes relevant in applications where the entire message,

or significant portion of it, is needed in order for an eavesdropper to obtain meaningful knowledge

about the content of the message. Next, we briefly expand on one of the applications for the

described threshold security setup.

Consider an authentication system based on users’ biometric information, such as fingerprints,

e.g., as described in [65], where the data is assumed to be hashed prior to encoding. Let us denote

the fingerprint measurement vector as x̃. Also, let us have the following two functions: a feature

extraction function g(·) and a secure hash function h(·). The function g(·) is an arbitrary function

that maps the input vector x̃ to another vector x. The hash function h(·) is a mapping from an input

space of size a to a hash table of size b with the following property:

Pr(h(x1) = h(x2)|x1 6= x2) =
1

b
, (3.2.4)

where x1 and x2 are any input vectors, and the resulting load factor of this hash function is βl = a
b

[66]. In this example, when a user scans their fingerprint, the measurement vector x̃ is processed
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using g(·) to produce the vector x that is hashed using the hash function h(·) to produce the hashed

vector denoted as m, i.e.,

m = h(x) = h(g(x̃)). (3.2.5)

Then the hashed vector m is the input to the threshold-secure encoder together with the key. This

hashed vector is uniformly distributed by the assumption on the hash function h(·) in (3.2.4). The

hashed vector is to be sent to a database that contains the hashed vectors of all authorized users for

authentication. For an eavesdropper that aims to learn the vector x, knowledge of the entire m is

needed. Let us assume that the eavesdropper has access to the hash function h(·). If m is sent as

is, the probability of successfully acquiring x by the eavesdropper is 1
βl

since the eavesdropper can

discard any vector that does not hash to the observed m. However, when using threshold-secure

coding with threshold t, and assuming an alphabet of size q, this probability becomes at most

1
βlqt

which is exponentially decaying with t. This is because the eavesdropper needs to retrieve

the hashed vector m first. Choosing an appropriate parameter t, e.g., in the order of a few tens,

combined with the uniformity of the hash functions, is sufficient to cripple the eavesdropper in a

practical setting.

3.3 Proposed Coding Scheme

With a slight abuse of terminology, we refer to a scheme meeting the reliability and security con-

ditions, as described in the previous section, simply as a coding scheme. The coding scheme

is revealed to all parties, i.e., Alice, Bob, and Eve. When constructing the coding scheme, we
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aim at designing an encoder and a decoder as well as specifying the code. For an input vector

u = π(k,m), the encoder produces a codeword c as follows

c = uH = π(k,m)H, (3.3.1)

where H is an n×m matrix with n = m+ k. In our proposed scheme, the matrix H is chosen as

the transpose of a generator matrix G of a linear block code.

Consider a [n,m, dmin]q linear block code with generator matrix G, i.e., a linear block code

whose elements are from an alphabet of size q, and has rate R = m/n and minimum distance dmin.

We aim at utilizing the generator matrix G of certain linear block codes to construct a matrix H for

our coding scheme such that the reliability and security conditions are met.

One can assume that the length of the key is less than the length of the message. To encode

a message m, let us denote the set of indices of the rows of H that correspond to the message

symbols as A ⊆ [m + k]
def
= {1, 2, ...,m + k}. Then the set of indices of the rows corresponding

to the key symbols is Ac = [m + k] \ A. The matrix HA denotes the submatrix of H with rows

indexed by A, and the matrix HAc denotes the submatrix of H with rows indexed by Ac. The

codeword c is then expressed as follows

c = mHA + kHAc . (3.3.2)

The choice of π(·), which corresponds to the choice of A and Ac, is critical in ensuring security

and reliability conditions. Hence, we have the following definition.

Definition 3.2 (proper codes) A code, as described above, is called proper if its matrix satisfies

50



the following requirements:

1. The resulting submatrix HA is full row rank, i.e., rank(HA) = m.

2. The resulting submatrix HAc is also full row rank, i.e., rank(HAc) = k.

As will be shown throughout the rest of this section, a code that is not proper will result in a

lower equivocation rate for Eve about the message and leads to leakage of information about the

key to Eve.

Next, we show that if a code is proper, then it meets the reliability condition, as specified in

(3.2.1), and the security conditions, as specified in (3.2.2) and (3.2.3). The following lemma shows

that the reliability condition is satisfied.

Lemma 3.3.1 Suppose that the code used in the coding scheme is proper, as defined in Defini-

tion 3.2. Then Bob can recover the message with probability one under maximum a posteriori

(MAP) decoding. In other words,

H(m|c,k) = 0. (3.3.3)

Proof: By using (3.3.2), it can be observed that since Bob has c and k and since HA is

full rank, then Bob can subtract kHAc from c and then retrieve m using HA, which has a unique

solution.

Next, we show that a proper code meets the key security condition, as specified in (3.2.2).

Note that satisfying this condition is critical as even a very small leakage of the key k can lead to

compromising the security of the message.
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Theorem 3.3.2 Suppose that the code used in the coding scheme is proper, as defined in Defini-

tion 3.2. Then the codeword c leaks no information about the key k, i.e.,

I(k; c) = 0. (3.3.4)

Proof: The proof is by observing the following set of equalities:

I(k; c) = H(c)−H(c|k), (3.3.5)

= m log2(q)−H(mHA + kHAc|k), (3.3.6)

= m log2(q)−H(mHA), (3.3.7)

= log2(q)(m− rank(HA)), (3.3.8)

= 0, (3.3.9)

where (3.3.6) holds by (3.3.2) and the uniformity of the key and message symbols, hence the

codewords are uniform, (3.3.7) holds because m and k are independent, (3.3.8) is by noting that

elements of m are uniformly distributed and independent, and (3.3.9) holds because rank(HA) =

m as the code is proper according to Definition 3.2.

The following lemma is well-known. However, it is included here as it is instrumental in char-

acterizing the threshold security of coding schemes based on linear block codes.

Lemma 3.3.3 [67] For an [n,m, dmin]q linear block code with generator matrix G, any submatrix

of G of size m× (n− |E|) obtained by removing columns indexed by elements of E , where E ⊆ [n]
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with |E| = dmin − 1, has full row rank, i.e.,

rank(GEc) = m. (3.3.10)

Characterizing the threshold security of coding schemes based on linear block codes follows.

Theorem 3.3.4 A coding scheme constructed by a matrix H = GT, where G is the generator

matrix of an [n,m, dmin]q linear block code, is t-threshold secure, where t = dmin−1, i.e., we have

H(v|c) = H(v), (3.3.11)

for any v ⊆ {u1, u2, ..., un} with |v| = t, and t is the maximum value for which this condition

holds.

Proof: Let u denote the input to the encoder for the coding scheme, as specified in (3.3.1).

Suppose that v consists of elements of u indexed by B = {i1, i2, ..., it} ⊆ [n], and ṽ consists of

elements of u indexed by Bc = [n] \ B. Then we have the following:

I(v; c) = H(c)−H(c|v), (3.3.12)

= m log2(q)−H(ṽHBc + vHB|v), (3.3.13)

= m log2(q)−H(ṽHBc), (3.3.14)

= log2(q)(m− rank(HBc)), (3.3.15)

= 0, (3.3.16)

where (3.3.13) follows due to codewords being uniformly distributed and expansion of random
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variables, (3.3.14) holds by the independence of v and ṽ, (3.3.15) holds due to the uniformity of

ṽ, and (3.3.16) holds by Lemma 3.3.3 with t = dmin − 1. Since the mutual information I(v; c) is

zero, it implies that the t-threshold security criteria is met for the parameter t = dmin − 1, i.e.,

H(v|c) = H(v), (3.3.17)

for any v with |v| = t, where t = dmin − 1.

Next, we need to show that t = dmin− 1 is the maximum value for which the threshold security

condition holds. Consider a codeword in the codebook generated by G that has the Hamming

weight equal to t + 1 = dmin with non-zero elements at indices denoted by G = {i1, i2, ..., it+1}.

Then we have the following:

H(ui1 , ..., uit+1 |c) = H(ui1 , ..., uit |c) +H(uit+1|c, ui1 , ..., uit), (3.3.18)

= H(ui1 , ..., uit |c), (3.3.19)

6= H(ui1 , ..., uit+1), (3.3.20)

where (3.3.18) follows from the chain rule of entropy, and (3.3.19) holds because there exists

a linear combination of the entries of c = (c1, c2, ..., cm) such that
∑

i∈[m] ιici =
∑

j∈G ojuj .

Hence, the second term becomes zero, since uit+1 is uniquely determined given c and {ui1 , ..., uit}.

Therefore, due to (3.3.20), the threshold security condition does not hold for t+ 1 = dmin.

Maximizing the threshold of the coding scheme is directly related to maximizing the minimum

distance of the linear block code. This provides an upper bound on the achievable threshold, i.e.,

t 6 k. The next theorem states there exists a coding scheme achieving the maximum threshold.
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Theorem 3.3.5 For any message lengthm and key length k, there exists a proper code with thresh-

old t = k, provided that the alphabet size q > m+ k + 1.

Proof: To prove the theorem, we give an example of a code that is shown to be proper

with t = k. We utilize Reed-Solomon (RS) codes, which are a well-known family of codes that

are maximum distance separable (MDS) codes, i.e., dmin = n − m + 1 = k + 1 [67]. For any

[n,m, dmin]q RS code, all we need to show is that the matrix H which is the transpose of the

generator matrix G of the RS code can be used to construct a proper code. One of the properties of

MDS codes is that every set ofm columns of the matrix G are linearly independent [67, Proposition

11.4]. Note that rows of H correspond to columns of G. Hence, any choice of m columns of G

will have rank m, and the remaining k columns of G will also have rank k as it is assumed that

k < m. Therefore, the code generated by H is proper, with threshold t = k.

3.4 Low Complexity Construction

This section focuses on designing binary codes that meet the reliability and security conditions

while providing encoding and decoding algorithms with linear/quasi-linear complexity. To this

end, we consider Reed-Muller codes due to their recursive construction and low-complexity de-

coder. In addition, since they are designed with the objective of maximizing the minimum distance,

we can achieve a reasonably high threshold t for the t-threshold security condition.

3.4.1 Encoder

We start first by describing Reed-Muller codes. An RM(s, r) code is a [2s,
∑r

i=0

(
s
i

)
, 2s−r]2 linear

block code. The generator matrix of the RM(s, r) code, denoted by G(s, r), is obtained by keeping
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the rows with the Hamming weight of at least 2s−r from the matrix ST = (S⊗s2 )T and removing the

remaining rows, where⊗ denotes the Kronecker product, T is the transpose operator, and S2 is the

following kernel matrix

S2 =

1 0

1 1

 . (3.4.1)

This is one of the methods to construct RM codes. This method is chosen so that we can

describe a code construction that satisfies the proper condition of threshold-secure codes. Due to

the recursive structure of S, it can be observed that indices of the rows with the lowest weight,

the second-lowest weight, etc, from S correspond to indices of columns with the highest column

weight, the second-highest weight, etc, from S, respectively. When specifying the matrix G(s, r)

as a sub-matrix of ST we choose the set of indices of the removed rows from ST asAc to assign the

rows of H dedicated for the key, while the indices of the remaining rows are used as the message

indices A.

In the proposed scheme based on RM codes, we have n = 2s,m =
∑r

i=0

(
s
i

)
, for some r > s/2,

and k = n−m < m. Note that the underlying RM code has rate R > 1
2
. By using Theorem 3.3.4

and noting that the minimum distance of the underlying code is 2s−r, the achievable threshold

security parameter t for the RM-based scheme with parameters (s, r) is t = 2s−r− 1. Note that, in

general, for an RM code of constant rate, i.e., R = O(1), we have r = s/2 + O(
√
s). Hence, the

threshold security parameter of the corresponding scheme is t =
√
n exp(O(

√
log n)).

Next, we show the proposed construction results in a proper code.

Proposition 3.4.1 The choice of the sets A, and Ac as mentioned above results in a proper code.
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Proof: To prove this proposition, it suffices to show that HA and HAc are both full row rank.

First, it is shown that HA is full row rank. Note that for a full rank lower-triangular matrix, a

submatrix obtained by removing a subset of columns and rows with the same indices results also

in a full rank lower-triangular matrix. Also, note thatAc is the subset of indices of deleted columns

as well as that of the rows dedicated for the key from S. Hence, the matrix HA is full row rank.

Next, we show that HAc is full row rank. This is done by induction. Note that k < m is assumed,

as mentioned before. Also, to simplify the proof, let us have r′ = s− r, and also re-express k and

m in the remainder of the proof as follows

k =
r′∑
i=0

(
s

i

)
,

and

m =
s∑

i=r′+1

(
s

i

)
,

where we have r′ 6
⌊
s−1

2

⌋
. Note that HAc contains the

∑r′

i=0

(
s
i

)
rows dedicated for the key from

S with the same number of lowest-weight columns removed. Let this matrix be also denoted by

S(s, r′). Let also S′(s, r′) denote the matrix that contains the
∑r′

i=0

(
s
i

)
rows dedicated for the key

from S with only
∑r′−1

i=0

(
s
i

)
lowest weight columns removed. Due to the recursive structure of the

matrix S, S(s, r′) can be expressed as follows:
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S(s, r′) =

S(s− 1, r′ − 1) 0

S′(s− 1, r′) S(s− 1, r′)

 . (3.4.2)

Next, we show that the matrix S(s, r′) is full row rank for the maximum value r′ =
⌊
s−1

2

⌋
and

for s > 2 by induction on s. Then it will be discussed why this also holds for r′ <
⌊
s−1

2

⌋
.

Step 1: The induction basis is for s = 2 and r′ = 0, and for s = 3 and r′ = 1, which can be

easily verified, i.e., for s = 2 and r′ = 0, the rank of S(2, 0) is 1. Also, for s = 3 and r′ = 1, the

rank of S(3, 1) is 4.

Step 2: Suppose that the induction hypothesis holds for s and s is odd. Then we have the

following matrix:

S(s+ 1, r′) =

S(s, r′ − 1) 0

S′(s, r′) S(s, r′)

 . (3.4.3)

We need to show that rank(S(s + 1, r′)) =
∑r′

i=0

(
s+1
i

)
. Note that S(s, r′) is full row rank by

induction hypothesis, i.e., rank(S(s, r′)) =
∑r′

i=0

(
s
i

)
. Then S(s, r′ − 1), which contains a subset

of the rows in S(s, r′), is also full row rank. Hence, we have rank(S(s, r′ − 1)) =
∑r′−1

i=0

(
s
i

)
.
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Therefore,

rank(S(s+ 1, r′)) = rank(S(s, r′ − 1)) + rank(S(s, r′)), (3.4.4)

=
r′−1∑
i=0

(
s

i

)
+

r′∑
i=0

(
s

i

)
, (3.4.5)

=
r′∑
i=0

(
s+ 1

i

)
, (3.4.6)

which is equal to the number of rows in S(s+ 1, r′). Hence, it is full row rank.

For even s with corresponding parameter r′, we need to show the following matrix is full row

rank

S(s+ 1, r′ + 1) =

 S(s, r′) 0

S′(s, r′ + 1) S(s, r′ + 1)

 . (3.4.7)

First, we have rank(S(s, r′)) =
∑r′

i=0

(
s
i

)
by induction hypothesis. Regarding rank(S′(s, r′ + 1)),

we can see that S′(s, r′ + 1) has
∑r′

i=0

(
s
i

)
rows that are also included in S(s, r′). However, when

considering the indices of such rows in [S′(s, r′ + 1) S(s, r′ + 1)], the corresponding rows are

independent from all other rows in [S(s, r′), 0]. Furthermore, there are
(

s
r′+1

)
additional rows in

S′(s, r′ + 1) that are linearly independent from the remaining rows due to the structure of the zero
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blocks in this matrix, similar to (3.4.2). We can then compute the rank of S(s+1, r′+1) as follows

rank(S(s+ 1, r′ + 1)) = rank(S(s, r′)) + rank(S′(s, r′ + 1)), (3.4.8)

=
r′∑
i=0

(
s

i

)
+

r′∑
i=0

(
s

i

)
+

(
s

r′ + 1

)
, (3.4.9)

=
r′+1∑
i=0

(
s+ 1

i

)
. (3.4.10)

Hence, S(s + 1, r′ + 1) is full row rank, and the induction hypothesis holds for s + 1 with the

maximum value of r′. For keys of shorter lengths, it is straightforward to see that for any r′′ < r′,

the matrix S(s, r′′) whose rows are a subset of S(s, r′) with additional columns inserted at different

locations is also full row rank. This completes the proof.

3.4.2 Decoder

In this part, we discuss a low-complexity successive cancellation (SC) decoder to decode the mes-

sage in the RM-based coding scheme while utilizing the shared key. As Reed-Muller codes are

closely related to polar codes [68], a decoder closely related to that of polar codes described in

[68] is natural. However, there are fundamental differences that will be clarified throughout this

section.

The decoder is described in Algorithm 3.1. We first embed erasures within the entries of the

codeword c in order to get a vector of length n, denoted by c̄, by inserting the erasures at locations

indexed byAc. More specifically, c̄ = π1(ek, c) where c is the codeword and ek is an erasure vector

of length k such that the permutation places the erasures at locations denoted by Ac. Note that, as

mentioned before, Ac corresponds to the location of the key bits at the encoder.
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The decoder takes the key bits k, the codeword embedded with erasures c̄ = π1(ek, c),

indices of the key bits Ac and a recursion index j as inputs, and outputs the vector u =

[u1, u2, ..., un] = π(k,m) from which the message can be retrieved m = uA. The high-level

idea of the decoder is as follows. The vector c̄ is divided into two parts; c̄n/21 = [c̄1, c̄2, ..., c̄n/2]

and c̄nn/2+1 = [c̄n/2+1, c̄n/2+2, ..., c̄n], that are decoded successively. As opposed to the SC decoder

of polar codes [68], the second sub-block is processed first, cancelled from the first sub-block,

and then the first sub-block is processed. Each of these sub-blocks is also decoded recursively by

splitting them into two parts and so on.

Remark. When describing the recursive SC decoding process we often use the binary tree termi-

nology in which the input codeword, i.e., c̄, is assigned to the root of the tree and then the first and

the second sub-blocks are assigned to the left child and the right child, respectively. The decisions

are made at the leaves of the tree and then are re-encoded and propagated back through the tree,

see, e.g., [69] for more details.

The following claim verifies that the decoder successfully outputs the message bits with proba-

bility 1 for any key length. Note that since the proof follows by induction, we discard the assump-

tion that k 6 m and simply show the claim for any k 6 n.

Claim 3.4.2 The RM-based coding scheme can be successfully decoded using the SC decoder in

Algorithm 3.1 for any key length k 6 n.

Proof: We use induction on l, where n = 2l, to show that the claim holds.

Step 1: For the induction basis, consider n = 2. We need to show decoding is successful for

k = 0, 1, 2. For k = 0, which corresponds to the case with no erasure, the induction hypothesis

holds trivially as S is non-singular. For k = 1, one needs to show the induction hypothesis for both
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Algorithm 3.1 Successive cancellation decoder (Decoder)
1: Initialization: j = 1.
2: Input: k, c̄n1 = π1(ek, c), Ac, j.
3: Output: bn1 , un1 .
4: if n = 2 then
5: if c̄2 = e then
6: uj = kj
7: else
8: uj = c̄2

9: end if
10: if c̄1 = e then
11: uj−1 = kj−1

12: else
13: uj−1 = uj ⊕ c̄1

14: end if
15: bn1 = [uj−1 ⊕ uj, uj]
16: else
17: b′ ← Decoder(k2, c̄

n
n/2+1,Ac2, 2j)

18: c̃
n/2
1 = b′ ⊕ c̄n/21

19: b′′ ← Decoder(k1, c̃
n/2
1 ,Ac1, 2j − 1)

20: bn1 = [b′′ ⊕ b′, b′]
21: end if
22: return bn1

possible cases forAc. First, let us consider that c̄1 = e and c̄2 = c1, which corresponds to u1 = k1,

and u2 = m1. In this case, the decoder outputs u1 = k1 and u2 = c̄2. For the other case where

c̄1 = c1 and c̄2 = e, which corresponds to u1 = m1 and u2 = k1, the decoder first corrects the

erasure, assigning u2 = k1. It then computes u1 = m1 = u2 ⊕ c̄1 = k1 ⊕ c̄1. Finally, we show it

succeeds for k = 2, where both c̄1 and c̄2 are erased. Then u1 = k1 and u2 = k2 and the decoder is

successful.

Step 2: Now, suppose that the induction hypothesis holds for n = 2l and for any k 6 2l, where

k is the length of the key, regardless of the indices of the key bits. However, note that, as specified

before, the row indices corresponding to the key bits and the column indices corresponding to the

erasures are the same and are both denoted byAc. We now show that the claim is true for n = 2l+1
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and any k 6 2l+1. Let us split the key indices Ac into two sets, Ac1 and Ac2, with sizes |Ac1| = k1

and |Ac2| = k2, where k = k1 + k2, as follows. The set Ac1 consists of the indices of erasures in

c̄
n/2
1 . Also, let k1 denote the corresponding part of the key of size k1. Similarly, Ac2 consists of the

indices of erasures in c̄nn/2+1. Also, let k2 denote the corresponding part of the key of size k2. First,

the right child with input c̄nn/2+1, which has k2 erasures, is processed. Note that there are also k2

known key bits indexed by Ac2 in the second half sub-block unn/2+1. Note that the decoder for the

right child has an input of length n′ = 2l and k′ = k2 erasures as well as key bits k2 indexed by

Ac2. The decoder succeeds by the induction hypothesis. The right child then passes

unn/2+1S⊗l2 ⊕ c̄
n/2
1 = b′ ⊕ c̄n/21 = c̃

n/2
1

to the left child. The decoder is then run on c̃n/21 , which is of length n′ = 2l and has k′ = k1

erasures and key bits k1 indexed by Ac1. The decoder is successful on this node as well by the

induction hypothesis. Hence, the decoder is successful for n = 2l+1 which completes the proof of

the claim.

3.5 Robustness

In this section, we study a natural scenario for extending the considered setup. In particular, it is

assumed that a noisy channel is present between the legitimate parties and the goal is to study the

robustness of the framework and the proposed solution when channel noise is present.

The revised system model, shown in Figure 3.2, is as follows: the channel between Alice and

Bob is no longer noiseless, and it can be a certain type of channel to be studied, e.g., binary
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Figure 3.2: Modified setup for the proposed coding scheme in the presence of a noisy channel.

symmetric channel (BSC), binary erasure channel (BEC), additive-white Gaussian noise channel

(AWGN), etc. However, for the eavesdropper, we still consider a worst-case scenario from the

legitimate parties’ perspective. In other words, it is assumed that Eve receives the transmitted

codeword through a noiseless channel, and hence, she has access to the codeword error-free. Alice

aims to utilize a coding scheme such that the threshold security requirement at Eve is satisfied

while establishing a reliable communication with Bob that is robust in the presence of channel

noise.

Note that the assumption on Eve’s observation here makes it reasonable to keep the conditions

in (3.2.2) and (3.2.3) the same in this revised model. On the other hand, the reliability condition

in (3.2.1) needs to be modified to account for the noisy channel. We do this from a conventional

block coding perspective where reliability is measured in terms of a certain number of errors and

erasures that can be corrected. More specifically, the reliability condition is still stated as

H(m|y,k) = 0, (3.5.1)

provided that the number of erasures and errors introduced in y satisfies a certain condition that

depends on the underlying coding scheme. For instance, consider coding schemes based on linear

block codes. Suppose that the minimum distance of the robustness coding scheme isDmin when the
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key is fixed, which is different from the minimum distance of the threshold security coding scheme,

i.e., dmin. Then the condition on the number of errors and erasures is simply 2τe + ρe 6 Dmin − 1,

where τe is the number of errors and ρe is the number of erasures, same as in conventional block

codes.

In the remainder of this section, we discuss a general method to construct codes for threshold

security and robustness as well as describe an explicit low-complexity construction based on Reed-

Muller codes for binary erasure channels along with an SC decoder.

3.5.1 General construction

A straightforward solution to construct coding schemes for the setting described in this section

is by utilizing the concatenation of two codes. More specifically, a coding scheme, constructed

to guarantee the desired threshold security in the error-free case, would be concatenated with an

inner code, that can be an off-the-shelf block code, to guarantee the desired reliability for the Alice

and Bob communication. Although this solution is straightforward, one needs to ensure that the

threshold security guarantee is not compromised when more redundancy is added through the inner

encoder which will be then revealed to Eve.

In the aforementioned concatenation scheme, the overall encoder and decoder at Alice and

Bob, respectively, are referred to as supercoder and superdecoder, respectively. The construction

of the concatenated scheme is described in more detail next. Consider a proper coding scheme,

that guarantees threshold security requirement, that is obtained from an [n,m, dmin]q linear block

code with the generator matrix HT . Also, consider an error-correcting code, used as an inner code

to guarantee the reliability, that is an [N,m,Dmin]q linear block code with the generator matrix
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denoted by Gr. It is important to note that both codes have the same dimension m.

The encoding process is as follows. First, u = π(k,m) is passed through the outer threshold

security encoder that multiplies u by H. The result is then passed to the inner encoder, which

multiplies its input by Gr. Then the resulting codeword c = uHGr is transmitted to Bob through

the noisy channel. Bob receives a corrupted version of the codeword c, denoted as y, and passes

it through the decoder consisting of an inner decoder and an outer decoder. The inner decoder re-

trieves c′ = uH. Note that we have c′ error-free provided that the number of errors and/or erasures

satisfies the given condition on the reliability guarantee of the inner code. Then c′ together with

the key k are passed through the outer decoder, designed for the threshold security coding scheme;

hence, retrieving m. The following lemma states that this construction does not compromise the

key and threshold security conditions.

Lemma 3.5.1 The aforementioned concatenation coding scheme results in a t-threshold secure

code.

Proof: To show that the lemma holds, we need to have rank(HGr) = m, rank(HAGr) = m,

rank(HAcGr) = k, and rank(HBcGr) = m, where A and Ac are chosen such that the code is

proper, as stated in Definition 3.2, and Bc is as defined in Theorem 3.3.4. It can be observed that

all these equations hold simply because Gr is full row rank.

3.5.2 Low-complexity construction

In this section, we aim at presenting a unified coding scheme, for threshold security and robustness,

that can be decoded using one unified SC decoder. This would potentially result in more efficient

hardware implementation and improved latency compared to the general concatenated scheme.

66



In particular, a scenario with binary symbol erasures is considered, where at most ρe = Dmin−1

erasures are assumed to occur with Dmin being the minimum distance of the underlying code. For

the proposed coding scheme, an encoder is presented together with a superdecoder that simulta-

neously corrects erasures and decodes the message using the key. To this end, the coding scheme

presented for noiseless channels in Section 3.4 is extended to be utilized along with an RM-based

code to handle binary erasures.

3.5.2.1 Encoder

In the considered scheme, the same RM code is used for threshold security and robustness. More

specifically, an RM(s, r) is used, which is as previously described, a [2s,
∑r

i=0

(
s
i

)
, 2s−r]2 with the

generator matrix denoted by G(s, r). The encoder with input u, consisting of both the message

and the key, outputs the codeword c specified as follows:

c = uGT (s, r)G(s, r) = uG̃(s, r), (3.5.2)

where G̃(s, r) is a notation introduced here to denote GT (s, r)G(s, r). Note that the encoder

can be implemented recursively, since G̃(s, r) can be expressed recursively as follows,

G̃(s, r) = GT (s, r)G(s, r), (3.5.3)
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G̃(s, r) =

GT (s−1, r−1) GT (s−1, r)

0 GT (s−1, r)


G(s−1, r−1) 0

G(s−1, r) G(s−1, r)

 , (3.5.4)

=

GT (s−1, r−1)G(s−1, r−1) + GT (s−1, r)G(s−1, r) GT (s−1, r)G(s−1, r)

GT (s−1, r)G(s−1, r) GT (s−1, r)G(s−1, r)

 ,
(3.5.5)

=

G̃(s− 1, r − 1) + G̃(s− 1, r) G̃(s− 1, r)

G̃(s− 1, r) G̃(s− 1, r)

 . (3.5.6)

Note that the encoder described by (3.5.2) utilizes the construction presented in Section 3.4.1,

which achieves threshold security parameter t = 2s−r − 1, and we use the same choice of indices

dedicated for the key and the message that results in a proper code.

3.5.2.2 Decoder

We present a unified SC superdecoder for the coding scheme described above that corrects

ρe 6 Dmin − 1 erasures, where Dmin = 2s−r, and recovers the message given the shared key.

The recursive decoder takes the received bit sequence yn1 , the shared key k, key indices Ac, code

parameters s, r, and a recursion parameter j as inputs. Initially, j = 1. It outputs bn1 , which is equal

to the codeword c provided that ρe 6 Dmin − 1, as well as un1 = π(k,m), which is used to retrieve

the message m, and a recursion index j′ used to track the index of the last decoded bit. Pseudocode

for the decoder is shown in Algorithm 3.2. The following claim shows the success of the described

decoder.
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Algorithm 3.2 Unified SC decoder for binary erasures (DecBE)
1: Input: k, yn1 , Ac, s, r, j.
2: Output: bn1 , un1 , j′.
3: if r = 0 then
4: I = [j, j + 1, ...., j + 2s − 1]
5: i1 ← index of any non-erasure bit in yn1 .
6: for i ∈ Ac do
7: ui = ki
8: end for
9: i′ ∈ I \ Ac

10: ui′ = yi1 ⊕i∈Ac ui
11: bn1 = [yi1 , yi1 , ..., yi1 ]
12: j′ = j + 2s − 1
13: else
14: ȳ = y

n/2
1 ⊕ ynn/2+1

15: b′1, u
n/2
1 , j′1 ← DecBE(k1, ȳ,Ac1, s−1, r−1, j)

16: b′2 = u
n/2
1 G̃(s− 1, r)

17: b′ = [b′1 ⊕ b′2, b′2]
18: ỹn1 = yn1 ⊕ b′ = [ỹ1, ỹ2]
19: l = argmin

j∈1,2
(number of erasures in ỹj)

20: b′′1, unn/2+1, j
′ ← DecBE(k2, ỹl,Ac2, s−1, r, j′1 + 1)

21: b′′ = [b′′1, b′′1]
22: bn1 = b′ ⊕ b′′

23: end if
24: return un1 , bn1 , j′

Claim 3.5.2 The proposed unified RM-based coding scheme together with the unified SC superde-

coder in Algorithm 3.2 successfully retrieves the message as long as ρe 6 Dmin − 1.

Proof: Let the received sequence be denoted by yn1 which has at most ρe erasures. Let

also the key bits be denoted by k which are assigned to entries of u indexed by elements of Ac.

We use induction on the parameter s of the underlying RM code of length 2s to prove the claim.

The induction hypothesis is that the decoder is successful for any RM-based coding scheme of

length 2s with some parameter r 6 s, and a key with size
∑s

i=r+1

(
s
i

)
, assuming there are at most

ρe = 2s−r − 1 erasures. The induction base is s = 0, for which the induction hypothesis is trivial.
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Now, suppose that the induction hypothesis holds for s and we want to show it for s+ 1.

Case 1: r = 0, i.e., we have an RM(s + 1, 0) which becomes a repetition code of length

n = 2s+1. In this case, G̃(s + 1, 0) is the all-ones matrix and the entries of codeword are all

equal to the sum of entries in u. Note that the number of message bits is m =
∑r

i=0

(
s+1
i

)
= 1

and we have 2s+1 − 1 key bits. Also, the maximum number of erasures the code can correct is

2s+1−1. Hence, the decoder successfully retrieves the message bit using the non-erasure symbols,

of which there is at least one, in yn1 . Suppose that the non-erasure bit is indexed by i1. Since

the locations of the key bits are known, we can place them at their respective locations retrieving

ui’s for all i ∈ Ac. Next, the message bit located at i′ is retrieved as ui′ = yi1 ⊕i∈Ac ui, and the

corresponding codeword is also retrieved correctly. Hence, the decoder is successful. Note that

this case corresponds to lines 4-12 of Algorithm 3.2.

Case 2: r > 0. The code length is n = 2s+1 and the key length is
∑s+1

i=r+1

(
s+1
i

)
. We split the

key indices into two parts, namely Ac1 and Ac2, representing the key bits k1 and k2 in the first and

the second half sub-blocks of u, respectively. The lengths of k1 and k2 are |Ac1| =
∑s

i=r

(
s
i

)
and

|Ac2| =
∑s

i=r+1

(
s
i

)
, respectively, due to the aforementioned choice of indices. The decoder first

computes ȳ = y
n/2
1 ⊕ ynn/2+1 which will have at most 2s+1−r − 1 erasures. It then passes this to

the left child, in the binary tree representation terminology discussed earlier, along with k1 and the

set of its corresponding indices Ac1. The left child decodes a codeword of length n′ = 2s using a

code with parameter r′ = r− 1 > 0, which can correct up to 2s−r
′ − 1 = 2s+1−r − 1 erasures, and

retrieves the message bits in un/21 given the key k1 of length
∑s

i=r′+1

(
s
i

)
=
∑s

i=r

(
s
i

)
. The decoder

on the left child is successful by induction hypothesis. It outputs un/21 and b′1. After that, the

decoder computes b′2 = u
n/2
1 G̃(s, r) followed by b′ = [b′1 ⊕ b′2, b′2]. Then, the decoder computes
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ỹn1 = yn1 ⊕ b′ and chooses either ỹn/21 or ỹnn/2+1, whichever has a smaller number of erasures, and

passes it to the right child together with k2 and the corresponding set of indices Ac2. The number

of erasures in what is passed to this child is at most 2s+1−r/2− 1 = 2s−r − 1, and the length of the

key is
∑s

i=r+1

(
s
i

)
. The decoder on this child decodes a codeword of length n′ = 2s using a code

with parameter r′ = r > 0, which can correct up to 2s−r
′ − 1 = 2s−r− 1 erasures and retrieves the

message bits in unn/2+1 using the key k2 of length
∑s

i=r′+1

(
s
i

)
=
∑s

i=r+1

(
s
i

)
. Decoding here is also

successful by induction hypothesis. It outputs unn/2+1 and b′′1. The overall decoder then computes

b′′ = [b′′1, b′′1] and outputs bn1 = b′⊕b′′ and un1 . Hence, un1 is retrieved and the proof is complete.

3.6 Conclusion

This chapter formulated the problem of threshold-secure coding with a shared key based on

information-theoretic measures. The problem of threshold-secure coding includes a threshold pa-

rameter that is to be designed based on the application for such coding schemes. A threshold-secure

coding scheme based on error-correcting linear block codes is presented where the parameter t of

the threshold-secure scheme is shown to be directly related to the minimum distance of the under-

lying linear block code. Furthermore, a coding scheme based on Reed-Muller codes is described.

Its encoder is computed recursively and is shown to satisfy the conditions for a proper code, and

its decoder is a successive cancellation decoder and its success is shown. Moreover, an extended

setup taking into account the noise in the communication channel between legitimate parties is

considered. Then, a robust and threshold-secure coding scheme, based on code concatenation, is

presented for general channels. Also, a unified coding scheme built upon Reed-Muller codes for

both threshold security and robustness in the presence of erasures is described, and its successive

71



cancellation decoder is also presented and its success is shown.
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CHAPTER 4

Coded Machine Unlearning

4.1 Introduction

This chapter presents the coded machine unlearning algorithm. Given the abundance of data,

machine learning has become ubiquitous in the past decade. Once an ML model is trained, some

samples in the training dataset might be required to be unlearned due to various reasons, e.g.,

to satisfy users’ requests of data removal, or due to discovery of corrupt low-quality samples or

adversarially modified samples that are specifically created to adversely affect the performance of

the ML model. As ML models may be arbitrarily complex and may be trained on large datasets, it

is important to devise unlearning methods that are efficient. The problem of efficiently removing

information about a training sample from a trained ML model, referred to as machine unlearning

[29], was recently introduced in the literature. In this scenario, a trustworthy party aims to train

an ML model on a training dataset of raw data with the guarantee that unlearning requests are

satisfied by removing the sample from the training dataset as well as removing any trace of them

in the trained ML model. One straightforward approach to perfectly satisfy this requirement is

to retrain the model from scratch after removing the samples that need to be unlearned from the

training dataset. However, as large training datasets are increasingly available and used in these
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Figure 4.1: Sketch of performance vs unlearning cost trade-off of the baseline uncoded machine
unlearning algorithm proposed in [2].

models, retraining after receiving each unlearning request becomes prohibitively expensive.

This chapter presents an efficient algorithm for perfect machine unlearning in regression prob-

lems. The proposed algorithm builds upon a machine unlearning algorithm that uses ensemble

learning methods to efficiently remove samples from ML models [2]. The baseline algorithm pro-

vides a general framework for perfect unlearning that considers an ensemble learning setup where

a master node shards the training dataset and assigns the shards to non-communicating weak learn-

ers that are trained independently from each other, and then aggregates their models using a certain

aggregation function. The proposed algorithm in this chapter is designed for regression problems

where the server utilizes random coding to encode shards into compressed shards that are then

used to train weak learners. Experimental results are conducted to evaluate the proposed algorithm

against the baseline in terms of performance vs unlearning cost trade-off, which show the superior

performance of the proposed algorithm compared to the baseline.
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4.2 Problem Setup

Consider a setup where the training dataset D is a matrix denoted as [X,y] whose rows are the

independent and identically distributed samples xi along with their responses yi for i = 1, 2, ..., nt,

where xi ∈ X and yi ∈ Y . Denote nt as the total number of samples in the dataset, and d as the

number of features of each sample. Columns of X are referred to as the features while y is referred

to as the response variable, whose elements are of the form

yi = f(xi) + ni, (4.2.1)

where ni is the Gaussian noise term. The training dataset is used to train a learning model to

produce a model, i.e., a function f : X → R, that minimizes a loss function. For regression

problems, the loss function `(·) is a function that measures the goodness of fit of the model f ∈ F

on the training dataset, typically expressed as

`(X,y; f) =
1

nt

nt∑
i=1

(yi − f(xi))2 + Ω(‖f‖F), (4.2.2)

where Ω(·) is a regularization term. The learning model finds a function f ∗ that minimizes the loss

function as follows

f ∗ = argmin
f∈F

`(X,y; f). (4.2.3)

The Representer theorem is a powerful theorem for general regression problems. It states that for

the regularized loss in (4.2.2), when using a a strictly increasing function Ω, and a kernel function
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fk : X × X → R with F as its associated Reproducing Kernel Hilbert Space (RKHS), then the

minimizer f ∗ of the loss function above is expressed in the form [70]

f ∗(·) =
nt∑
i=1

wifk(·, xi), (4.2.4)

where wi ∈ R is to be estimated. This powerful theorem translates any regression problem, even

nonlinear problems, as a linear problem in the RKHS. Hence, the problem can be transformed and

re-expressed to be as follows

y = Fkw + n, (4.2.5)

where Fk is an nt×nt kernel matrix whose elements Fk(i, j) = fk(xi, xj), w is a nt×1 coefficient

vector, and n is a nt × 1 noise vector. The L2-regularized learning model for this kernel problem,

referred to as ridge regression, aims to estimate w that minimizes the loss function

`(Fk,y; w) =
1

nt

nt∑
i=1

(yi − fTk,iw)2 + λwTw, (4.2.6)

where fk,i is the i-th row of Fk, and λ is the regularization parameter. We denote the resulting

model trained on [X,y] when initialized with parameters θ as f ∗ =Mθ(X,y).

These kernel methods suffer greatly in regimes where the size of training datasets is large.

Specifically, for a dataset with a fixed number of features, computations of the elements in the

kernel matrix result in an additional complexity of O(n2
t ) on top of the optimization method used

to solve the problem. One method of resolving this issue is proposed in [71], which suggests using

random projections of the features to a relatively low-dimensional space compared to nt. This
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gives a good approximation of the function f ∗ using random projections to a D-dimensional space

where d < D � nt, which enables efficient linear regression methods to be used to solve the

regression problem. These random projections enable an approximation of the target function f ∗,

denoted as f̂ , expressed as follows

f̂(x) =
D∑
i=1

Θ(xTΦi + ςi)wi + n, (4.2.7)

where Θ(·) is an activation function, Φi and ςi are chosen randomly from some distributions, wi’s

are the coefficients to be estimated, and D is the desired dimension of the projected features [71].

This enables us to apply this transformation of the original feature matrix X into another feature

matrix Xp of size nt ×D, then we have the following

y = Xpw + n, (4.2.8)

where w is the coefficient vector to be estimated of size D × 1.

After the model has been trained, it is used for prediction until a request of unlearning samples

arrives. Once unlearning requests arrive, the model stops processing any prediction requests and

launches the unlearning algorithm. Machine unlearning is formulated as follows: when an unlearn-

ing request of sample [xTu , yu] from the training dataset is received, the model must be immediately

updated to remove any effect of this sample, i.e., unlearn it, fromMθ(X,y). The unlearning al-

gorithm is denoted as U and its output is an updated model denoted as U(Mθ(X,y), [xTu , yu]). We

require U to be a perfect unlearning algorithm defined as follows [2].

Definition 4.1 (perfect machine unlearning) An unlearning algorithm U on modelMθ(X,y) is
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said to be perfect if the output of the unlearning algorithm removing the sample [xTu , yu], denoted

as U(Mθ(X,y), [xTu , yu]), is a statistical draw from the distribution of the models trained on [X \

xu,y \ yu], denoted asMθ(X \ xu,y \ yu), where [X\xu,y\yu] denotes the training dataset [X,y]

after removing the sample [xTu , yu] from it.

Perfect unlearning algorithms ensure the complete removal of samples from the model but may

suffer in terms of their efficiency. Removing the samples from the training dataset and retraining a

model from scratch achieves perfect unlearning. However, the major hurdle of this approach is the

extended delay time required to unlearn a sample as retraining is the process that mainly causes

this delay; hence, it is desirable to design efficient unlearning algorithms that can be used for large

scale datasets.

4.3 Proposed Algorithm

The proposed algorithm is described in two parts, learning and unlearning. In the learning phase,

we present a method for encoding the training dataset prior to training and describe a specific

coding scheme for a regression learning model. After the model has been trained, we transition

into the unlearning phase, we describe an efficient method to process unlearning requests using the

coded training dataset and update the model to perfectly unlearn the desired samples.

4.3.1 Learning

The proposed algorithm introduces the idea of data encoding prior to training the ensemble model

as shown in Figure 4.2. The main learner M, also referred to as the master node, is launched to

learn a regression model whose training dataset is assumed to have been preprocessed. The model
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Figure 4.2: Proposed coded learning setup.

starts by passing the training dataset through an encoder to produce a sharded coded training

dataset that contains nr coded shards. Then, each coded shard j is used to train a weak learner Lj

to produce a model denoted as f ∗j . Once these weak learners are trained, the model is ready for

prediction. When sample x is passed to M, it is directly passed to each of the weak learners to

produce weak predictions f ∗j (x) for j = 1, 2, ..., nr, then M computes the final prediction f ∗(x) by

applying an aggregation function a : Rnr → R, such as averaging, a majority vote, etc, as follows

f ∗(x) = a(f ∗1 (x), f ∗2 (x), ..., f ∗nr(x)). (4.3.1)

For linear regression models, or nonlinear regression models coupled with random projections,

we know that the generated model f ∗j is the corresponding weights w∗j . Once all weak learners

Lj’s have been trained, M produces a matrix W∗ whose columns are the estimated coefficients
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from the weak learners as follows

W∗ = [w∗1,w
∗
2, ...,w

∗
nr ]. (4.3.2)

Once W∗ is available, the model M computes the aggregate prediction weights by computing the

mean of the weight vectors of the weak learners to produce w∗agg, which is directly used at the time

of prediction, bypassing the weak predictions computations. When the sample x is passed as input,

the predicted output is

f ∗(x) = xTw∗agg. (4.3.3)

The encoding of the training dataset is a method to produce a new training dataset with the

goal of reducing learning and unlearning costs. Coding can be viewed as a method to incorporate

multiple samples from the uncoded training dataset into a single sample of the coded training

dataset to enable efficient learning and unlearning. In other words, although we have fewer coded

samples for weak learners, each of these coded samples is created from multiple uncoded samples,

enabling the model to learn these uncoded samples indirectly. First, let us define an encoder as

follows.

Definition 4.2 (encoder) An encoder with rate Rc is defined as a function that transforms the

original training dataset with nt samples into another dataset with nc samples while maintaining

the same number of features. The rate of this encoder is

Rc =
nt
nc
. (4.3.4)
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Algorithm 4.1 Learning (Learn)

1: Input: [X,y], ns, nr, ρG.
2: Output: W∗, {X,y},G.
3: At master node M, do
4: if ns 6= 1 then
5: {X,y},G← LinearEnc([X,y], ns, nr, ρG).
6: else
7: {X,y} = {[X,y]}
8: G = [1]
9: end if

10: Send [Xi,yi] to weak learner Li
11: At weak learner Li, do
12: w∗i ← argminw `([Xi,yi],w)
13: Send w∗i to M
14: At master node M, do
15: W∗ = [w∗1,w∗2, ...,w∗nr ]
16: w∗agg = 1

nr

∑nr
i=1 w∗i

When using shards of equal size, as considered in this work, the rate can also be viewed as the ratio

of the number of uncoded shards to the number of coded shards. The rate and design of the encoder

are now additional parameters of the model that require consideration when training a model. It

is worth noting that the design of the encoder itself for a fixed rate directly affects the unlearning

cost of the overall model as well as the performance, as will be clarified later. Hence, it should be

carefully considered when designing a model.

The proposed coded learning model for linear regression is described in Algorithm 4.1. The

learning algorithm takes the training dataset [X,y] and code parameters ns, nr, ρG as inputs and

outputs the coded training dataset along with the coding matrix and the trained model. The node

M utilizes a linear encoder described in Algorithm 4.2 to encode the training dataset using the

provided code parameters. The linear encoder takes the desired code parameters ns, nr, ρG along

with the training dataset [X,y] as inputs and processes it as follows: [X,y] is divided into ns

disjoint submatrices of equal size, i.e., each has nt = nt
ns

samples, denoted as [Xi,yi] for i =
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Algorithm 4.2 Linear encoder (LinearEnc)

1: Input: [X,y], ns, nr, ρG.
2: Initialization: G = 0ns×nr , {X,y} = empty.
3: Output: {X,y}, G.
4: while G is not full column rank do
5: Set G = 0ns×nr
6: while G has any all-zero rows do
7: G← RandMatrix(ns, nr, ρG)
8: end while
9: end while

10: Split [X,y] into ns submatrices [Xi,yi] of equal size
11: for j in range(nr) do
12: {X,y}.append([(

∑ns
i=1 gijXi), (

∑ns
i=1 gijyi)])

13: end for
14: return {X,y},G

1, 2, ..., ns. These are encoded using a matrix G, described next, to produce [Xj,yj], for j =

1, 2, ..., nr. The output of this encoder is {X,y} whose elements are the coded shards used to train

the corresponding weak learners, i.e., shard j is used to train the j-th weak learner to produce the

corresponding optimum weights w∗j . Note that the code parameters should keep the coded shards

in the original regime of the original dataset; for example, if nt> d, then nt > d.

Random codes have been useful in information theory [72] and random projections in signal

processing [73, 74] and machine learning [71]; hence, we propose to use a random binary matrix

generator (RandMatrix) to generate G. In this algorithm, the matrix G is of size ns×nr and density

0 < ρG 6 1. We desire the matrix G to be a tall matrix, i.e., nr 6 ns, since our goal is to reduce

the number of coded samples used for training; otherwise there will be redundancy of samples in

multiple shards leading to more operations needed to remove a sample. Since nr 6 ns, G needs

to satisfy two conditions: each row of G should have at least one nonzero element, and it should

have full rank. The first condition ensures that all the shards are used in training the model, while

the second condition ensures that every weak learner has a training dataset that is unique from all
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Algorithm 4.3 Unlearning (Unlearn)

1: Input: {X,y}, [Xi,yi], i,G,W∗.
2: Initialization: j = empty.
3: Output: {X̃, ỹ}, W̃∗.
4: At master node M, do
5: Set {X̃, ỹ} = {X,y}
6: Set W̃∗ = W∗

7: for l in range(length(i)) do
8: s′ ← index of the uncoded shard containing [xTl , yl]
9: l′ ← index of [xTl , yl] within shard s′

10: j′ ← indices of nonzero elements in row s′ of G
11: for j′ in j′ do
12: x̃j′i′ = x̃j′i′ − gs′j′xi
13: ỹj′i′ = ỹj′i′ − gs′j′yi
14: end for
15: j.append(j′)
16: end for
17: ju ← unique(j)
18: Send [X̃j, ỹj] to weak learner Lj for all j ∈ ju
19: At weak learner Lj , do
20: w̃∗j ← argminw `(X̃j, ỹj; w)
21: Discard the previous model w∗j
22: Send w̃∗j to M
23: At master node M, do
24: Replace column j of W̃∗ with the updated w̃∗j for all j ∈ ju
25: Set w̃∗agg = 1

nr

∑nr
i=1 w̃∗i

other weak learners. Another consequence of using a code with nr 6 ns is that it lowers the initial

learning cost by a factor of Rc compared to uncoded machine unlearning. For example, for some

ns and nr then we only need to train nr learners each using nt/ns coded samples, compared to ns

learners each with nt/ns uncoded samples in uncoded machine unlearning.

4.3.2 Unlearning

Now that the model has been trained on the coded training dataset, we proceed to describe an

algorithm to unlearn samples from this model. Our goal is to remove such samples from the coded
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shards as well as to remove any trace of such samples from the affected weak learners where such

samples appear. The unlearning algorithm for the aforementioned learning algorithm is described

in Algorithm 4.3. The algorithm’s inputs are the coded dataset {X,y}, the samples to be unlearned

[Xi,yi], their indices i in the uncoded training dataset [X,y], the matrix G, and the original model

estimated coefficients W∗. The algorithm’s outputs are the updated coded dataset {X̃, ỹ}, and the

updated estimated coefficients of the model W̃∗. Essentially, the algorithm needs to identify the

uncoded shards that include the samples with indices i as well as their corresponding coded shards

using the matrix G. The samples first need to be removed from the coded shard by subtracting

them from the corresponding coded samples in all coded shards where they appear to eliminate

their effect from the coded shards. Once all the coded shards are updated, they are then used to

update their corresponding weak learners to unlearn these samples from the weak learner models

followed by updating the final aggregate model using the updated weak learners’ estimates. The

following lemma proves that the algorithm guarantees perfect unlearning.

Lemma 4.3.1 The unlearning algorithm described in Algorithm 4.3 perfectly unlearns the desired

samples from the model in the sense of Definition 4.1.

Proof: Without loss of generality, we consider a single sample [xTi , yi] that is requested to

be unlearned from the model, which appears in [Xj,yj] that is used to train the j-th weak learner

whose model is denoted by Mθ
j (Xj,yj). First, the algorithm updates this training dataset to be

[X̃j, ỹj] by subtracting the sample [xTi , yi] from the corresponding coded sample in order to remove

it from the dataset [Xj,yj]. Then, the j-th weak learner, whose new training dataset is [X̃j, ỹj], is

trained from scratch and the resulting model is denoted as U(Mθ
j (Xj,yj), [x

T
i , yi]). This model is

equivalent to a modelMθ′

j (X̃j, ỹj), where θ′ is chosen randomly. Using the uniqueness property
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of the linear and ridge regression solutions, we have the following:

U(Mθ
j (Xj,yj), [x

T
i , yi]) =Mθ′′

j (Xj \ xi,yj \ yi), (4.3.5)

for some random θ′′. Hence, the desired sample is perfectly unlearned from the j-th weak learner.

The same argument applies to all other affected weak learners after removing the desired samples

from their corresponding training datasets. Therefore, as the resulting models from the affected

weak learners are updated along with re-calculating the aggregation function, the overall updated

model perfectly unlearns the desired samples from the model.

For large-scale problems, we can speed up the unlearning algorithm even more. Using iterative

optimization methods, one can start the optimization problem for the weak learners on the new

training dataset using the solution from their previous model. Specifically, for linear and ridge

regression problems the resulting model will always be the same as the one trained from scratch

since these iterative methods will converge to a unique global minimizer regardless of the initial-

ization. However, this cannot be used for other complex models such as the over-parameterized

neural networks (NN) since the training loss can be zero for these models. Hence, when a sample is

removed and the model is initialized from the previous model, it will immediately converge since

the training loss is already zero, but this solution was reached in part due to the removed sample.

Therefore, this approach in the over-parameterized scenario does not perfectly unlearn the sample.

The last design parameter of the coded learning is the generator matrix G. One of the properties

of the matrix G used in the encoder is its density ρG, and it can be seen in Algorithm 4.3 that the

density of G directly affects the unlearning cost. For example, a sample whose corresponding row

in G is dense requires updating more weak learners than a sample whose corresponding row is
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sparse. Therefore, the design of such a matrix is directly related to the efficiency of unlearning. If

we aim to have the lowest unlearning cost for an encoder with a specific rate, we use the minimum

matrix density that satisfies both of the aforementioned conditions for the matrix G, which is

ρG = 1
nr

. This corresponds to the case where there is only one nonzero element in each row of the

matrix G, i.e., each sample only shows up exactly in one coded shard.

Remark. Since the choice of the encoder in Algorithm 4.1 is independent of the data, it does

not leak any information about the data itself and does not affect the perfect unlearning condition.

However, other types of data-dependent encoders may require additional steps to ensure the re-

moval of the unlearned samples from the encoder itself, which may introduce additional overhead.

An example of such encoders is one that assigns samples to weak learners based on some proper-

ties of the training dataset itself. This leakage of information, even if small, needs to be taken into

account when designing perfect unlearning algorithms.

4.4 Experimental Results

In this section, we present simulation results of some experiments to compare the performance ver-

sus the unlearning cost on realistic and synthetic datasets for two algorithms: the uncoded machine

unlearning algorithm described in [2] and the proposed coded machine unlearning algorithm. The

experiments simulate the unlearning of a sample from the training dataset, where the performance

is measured in terms of the mean squared error and the unlearning cost is measured in terms of the

time required to retrain the affected weak learner.

We utilize the sklearn.linear model package [75], specifically, LinearRegression

or Ridge modules, to produce the simulation results for all the experiments. Since the cost of
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unlearning is related to the size of the shards, we sweep the variable ns while fixing the rate for

the coded scenario and observe the performance. Each point in the plots shows the average of

a number of runs, where each run simulates the experiment on a randomly shuffled dataset that

is then split into training and testing datasets according to the specified sizes. During each run,

after splitting the dataset into training and testing, Algorithm 4.1 is run first using ns and nr for a

specific code with rate Rc = ns
nr

and density ρG = 1
nr

. Once the model is trained, a random sample

from the training dataset is chosen to be unlearned using Algorithm 4.3. After all the runs are

done, the performance is measured as the average mean squared error of the testing dataset, while

the unlearning cost is measured as the average time required to retrain the affected weak learners,

since removing a sample from the dataset has negligible cost.

For the simulations, datasets are preprocessed as follows, each column of the original feature

matrix and the response vector is normalized to be in the range [0, 1]. If the random projections

approximation [71] is used as described in (4.2.7), then the projections are done on the normalized

features using a cosine activation function and the following parameters

Φi ∼ N (0,
1

2d
Id), (4.4.1)

ςi ∼ unif(−π, π). (4.4.2)

4.4.1 Results

We conduct three experiments to evaluate the proposed algorithm on realistic datasets. The first

dataset is known as the Physicochemical Properties of Protein Tertiary Structure dataset [3]. The

goal is to use the 9 original features to estimate the root mean square deviation. This dataset
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Figure 4.3: Performance vs unlearning cost
for different values of λ using the Physico-
chemical Properties of Protein Tertiary Struc-
ture dataset [3], random projections of features
to a 300-dimensional space, and a code of rate
Rc = 5.
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Figure 4.4: Performance vs unlearning cost
for different rates Rc using the Computer Ac-
tivity dataset [4], random projections of fea-
tures to a 25-dimensional space, and λ =
10−3.

includes 45,730 samples, where 42,000 samples are for training, and the rest are for testing. We

consider random projections with D = 300. The results shown in Figure 4.3 show the simulation

results for multiple values of λ = 10−4, 10−5, 10−6 using a code of rate Rc = 5. It can be seen

that coding provides better performance compared to the uncoded machine unlearning at lower

unlearning cost, even when using regularization with different values.

The second dataset is known as the Computer Activity dataset [4]. It is concerned with estimat-

ing the portion of time that the CPU operates in user mode using different observed performance

measures. We consider random projections of the original features to a space with D = 25. The

dataset has 8,192 samples, with 12 original features, of which 7,500 samples are for training while

the rest are for testing. The experiments use a regularization parameter λ = 10−3 and different

code rates Rc = 2, 5 and the results are shown in Figure 4.4. In this figure, we observe that coding

provides better performance compared to the uncoded machine unlearning at a lower unlearning

cost. Additionally, different rates allow for different achievable performance measures as evident
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in the figure. More on the effect of code rates will be discussed later in the experiments on a

large-scale synthetic dataset.

Finally, we experiment on the Combined Cycle Power Plant dataset [3]. The goal is to estimate

the net hourly electrical energy output using different ambient variables around the plant. The

dataset has 9,568 samples, with 4 original features, of which 9,000 samples are for training while

the rest are for testing. We consider random projections with D = 20. The experiments use linear

regression with no regularization and different code rates Rc = 2, 5, and their results are shown

in Figure 4.5. For this case, there is no region of coding to operate in, and intuitively, we do not

expect it to beat the performance of the original learning algorithm with a single uncoded shard.

However, although coding does not provide a better trade-off in this case, it does not exhibit a

worse trade-off either.

The above experiments show results for datasets with relatively small to moderate size and

number of features. It remains to be seen if similar behavior can be observed if the dataset size, as

well as the number of features, become much larger. The following experiment shows simulation

results of a synthetic dataset generated as follows: a total of 600,000 samples are generated, each

with i.i.d. features of size d = 100 drawn from lognormal distribution with parameters µ = 1, σ2 =

4, then passed through a random 3-hidden-layers NN, followed by an output layer with standard

normal noise term to generate the desired response variable. The layers contain 50, 25, 50 nodes,

respectively, with a sigmoid activation function and their weights and biases are i.i.d. drawn from

the standard normal distribution. We use λ = 10−2 and apply random projections on the original

features using the parameters described above and D = 2,000. The dataset is split into 500,000

samples for training and 100,000 for testing. The simulation results are shown in Figure 4.6. Note

that log-scale is used on the x-axis for better showing of the curves for the coded scenarios. It
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can be observed that as we increase the rate of the code, the unlearning cost decreases while the

minimum achievable MSE increases. Hence, in practical settings, one can choose the maximum

code rate that satisfies a performance comparable to the original learning algorithm.

4.4.2 Discussion

The success of the proposed algorithm is prominently seen in cases where the baseline uncoded

machine unlearning algorithm exhibits significant degradation in performance as unlearning cost

decreases. One possible intuition into why this phenomenon occurs is related to the samples used

for training each of the weak learners. Influential samples have been explored in the literature

extensively [76]. As we previously discussed, coding is a method of combining samples into the

coded dataset, including these influential samples.

Let us examine the influence of individual samples on the performance of the trained model.

We take two of the previously considered datasets, the Computer Activity dataset [4] and the

90



Combined Cycle Power Plant dataset [3]. We conduct the following experiment: we randomly

shuffle the data and split it into training and testing datasets with the same sizes as we used before,

then we remove samples from the training dataset according to some criteria, then train a single

learner on the remaining samples and observe its test MSE. We use two criteria of removal, the first

is as follows: remove a sample if any of its original features lie outside certain percentiles. This

criterion removes what we denote as outliers. The other criterion is as follows: remove samples

whose original features lie inside certain percentiles, this removes what we denote as inliers. In

other words, outliers are samples at the tails of the probability distribution function (PDF), and

inliers are the ones close to the median. We vary these percentiles symmetrically on both ends

of the PDF and observe the performance on the testing data for multiple runs then compute the

observed average test MSE. Figure 4.7 shows the experiment results for the dataset with Computer

Activity dataset and Figure 4.8 shows the experiment results for the Combined Cycle Power Plant

dataset. In Figure 4.7, we see a degradation in performance as more outlier samples are removed

which is much more significant and immediate compared to the case where inlier samples are

removed. On the other hand, in Figure 4.8, the performance of the model after removing outliers

and inliers is quite similar until we remove more than 50% of the samples, then a small gap appears

between the two curves that gets larger as the number of removed samples increases.

We believe that one explanation behind the behavior of the uncoded machine unlearning is re-

lated to the existence of these influential samples, i.e., outlier samples. In particular, if influential

samples exist in the dataset, then the uncoded machine unlearning suffers significant degradation

as we increase the number of shards and the proposed algorithm can provide a better performance

vs cost trade-off. On the other hand, if such influential samples do not exist, then the uncoded

machine unlearning does not exhibit any degradation in performance as the number of shards in-
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Figure 4.7: Original learning algorithm’s per-
formance vs percentage of remaining samples
after removal of outliers and inliers from the
Computer Activity dataset [4].
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Figure 4.8: Original learning algorithm’s per-
formance vs percentage of remaining samples
after removal of outliers and inliers from the
Combined Cycle Power Plant dataset [3].

creases, and as shown in the experiment in Figure 4.5, the proposed algorithm does not improve

on the uncoded machine unlearning and does not negatively affect it either. It is worth noting that

these influential samples exist in heavy-tailed distributions which are quite common in a range of

real-world examples such as technology, social sciences and demographics, medicine, etc, where

machine learning is increasingly employed for these applications. In the aforementioned experi-

ments, we observed that if the probability distribution functions of some of the features have heavy

tails, then we have a trade-off for the uncoded machine unlearning and coding provides gain in

such case. However, if there are no heavy tails in the probability distribution functions then we do

not see this trade-off and, hence, coding does not provide improvements nor deterioration.

To verify this observation, we create three synthetic datasets with known feature distribution

and known relationships to the response variable. Each one of the datasets has d = 100 i.i.d.

feature vectors whose elements are drawn from lognormal(µ, σ2) distribution to create the feature

matrix X. Then, we map these features X to a degree 3 polynomial with no interaction terms,
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resulting in the following

Xp = [X,X◦2,X◦3]. (4.4.3)

The response variable is generated using (4.2.8) with i.i.d. elements of w and n drawn from the

standard normal distribution. The lognormal distribution has two parameters, µ and σ2. We fix

µ = 1 and vary σ2. As σ2 increases, the tail becomes heavier; hence, we expect the trade-off to

be more evident. The number of samples in each dataset is 25,000 samples, of which 23,000 are

used for training and the rest are used for testing. The simulated experiments for σ2 = 0.1, 0.5, 0.7

are shown in Figure 4.9, where the code used for all datasets has rate Rc = 5. As can be seen

from the figure, as we increase the value of σ2, the tail becomes heavier and the trade-off becomes

more significant for the uncoded machine unlearning algorithm. Additionally, as the tail becomes

heavier, the gain provided by the proposed algorithm in terms of the trade-off is more significant

compared to the uncoded machine unlearning.

Additionally, we run experiments showing the effect of removing inliers versus removing out-

liers, for these synthetic datasets. We run the inlier and outlier removal process based on the

original features and observe the performance of the trained model’s performance on the testing

dataset. Figure 4.10 shows results of these experiments. Similar to what we observed in the real-

istic dataset experiments, for distributions with heavier tails, removing outlier samples has more

influence than inlier samples in terms of performance.

93



0 0.05 0.1 0.15 0.2 0.25

Average unlearning cost (sec)

0

0.005

0.01

0.015

0.02
A

v
e
ra

g
e
 t
e
s
t 
M

S
E

Uncoded, 
2
=0.1

Coded, 
2
=0.1

Uncoded, 
2
=0.5

Coded, 
2
=0.5

Uncoded, 
2
=0.7

Coded, 
2
=0.70 5 10

0

0.5
2=0.1
2=0.5
2=0.7

Figure 4.9: Performance vs unlearning cost
for synthetic data with lognormal features
with fixed µ = 1 and different values of σ2

used in a polynomial of degree 3. The rate of
the code is Rc = 5. The inset figure shows the
PDFs of the original lognormal features of the
considered datasets with µ = 1 and different
values of σ2.

0% 20% 40% 60% 80% 100%

Percentage of remaining training samples

0

0.05

0.1

0.15

0.2

0.25

A
v
e
ra

g
e
 t
e
s
t 
M

S
E

Inliers removed, 
2
=0.1

Outliers removed, 
2
=0.1

Inliers removed, 
2
=0.5

Outliers removed, 
2
=0.5

Inliers removed, 
2
=0.7

Outliers removed, 
2
=0.7

Figure 4.10: Original learning algorithm’s
performance vs percentage of remaining sam-
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4.5 Conclusion

This chapter presented an efficient machine unlearning algorithm based on random coding. It fo-

cuses on the trade-off between performance and unlearning cost to compare unlearning algorithms.

The proposed algorithm applies an encoding process of samples prior to training an ensemble

learning model for regression problems. A handful of experiments were conducted to examine the

behavior of the proposed algorithm against the uncoded baseline algorithm on multiple synthetic

and realistic datasets. The proposed algorithm succeeds in providing a better trade-off for various

realistic datasets with different values of the underlying parameters. On the other hand, datasets

for which the uncoded machine unlearning algorithm does not exhibit any trade-off between per-

formance and unlearning cost were considered, and it was shown experimentally that coding in

these scenarios maintains performance on par with the uncoded machine unlearning algorithm.

Experiments showed that when using appropriate codes, one can potentially reduce the unlearning
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cost to a fraction of the unlearning cost for a single learner trained on the entire dataset while ob-

serving a comparable performance. Finally, some discussions are provided on whether we should

expect the proposed algorithm to outperform the uncoded machine unlearning algorithm based on

the existence of influential samples in the dataset using properties of the probability distribution

function of the dataset features.
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CHAPTER 5

Federated Learning with Opt-Out Differential

Privacy

5.1 Introduction

The abundance of data and advances in computation infrastructure have enabled the training of

high-quality machine learning models. On the other hand, the data is distributed over many devices

that are typically power-constrained and have limited computational capabilities. To reduce the

amount of data transmission over networks and maintain the privacy of raw data, [33] proposed

the federated learning framework for training a central server-side model using decentralized data

at clients. Federated learning frameworks aim to train a global model iteratively and collaboratively

using clients’ data. During each round, the server has access to a select number of clients, each of

whom has a local dataset. The server broadcasts the current model to such clients, who train the

model by taking gradient steps using their local data on the model and returning the gradient-based

update back to the server. The server then aggregates the updates and produces the new global

model for the next round. Despite the clients’ data being kept on device in federated learning,

the deployed model at the central server is still vulnerable to various privacy attacks, such as
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membership inference attacks, model inversion attacks, and others. Utilizing differential privacy

in federated learning provides a suitable solution to protect the models from privacy attacks.

This chapter considers privacy heterogeneity in federated learning setups. We propose a new

federated learning setup where privacy is enabled by default for all clients, while giving clients the

option to opt out of privacy. Moreover, we present a federated learning algorithm for this setup,

called FeO2, and study its performance compared to the baseline private algorithm. The optimality

of the proposed algorithm in the simplified setup of federated linear regression is shown, where an

incentive for opting out of privacy is also shown. Experiments on real-world and synthetic feder-

ated datasets are conducted to examine the performance of the proposed algorithm and compare it

to the baseline private algorithm where gains in the global model performance, as well as the local

models’ performances, are observed.

5.2 Federated Learning and Privacy

During each communication round t, the server sends the current model state, i.e., θt, to the set of

available clients during that round, denoted by Ct, who train the model on their local datasets to

minimize their local loss functions `i(·). The clients then return the updated model to the server

who aggregates them, e.g., averages them, to produce the next model state θt+1. One approach

to privacy-preserving FL algorithms utilizes differential privacy to provide privacy guarantees.

Differential privacy is a widely studied and accepted mathematical notion that describes privacy-

preserving algorithms where the information leakage of private data is bounded. Differential pri-

vacy is defined as follows

Definition 5.1 (differential privacy (DP) [77]) A randomized algorithmA(·), whose image is de-
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noted as O, is said to be (ε, δ)-DP if for any two inputs D and D′ that differ in just one entry, and

all subsets O ⊆ O the following relationship holds

Pr(A(D) ∈ O) 6 eε Pr(A(D′) ∈ O) + δ. (5.2.1)

In federated learning, instead of targeting the privacy of individual samples of a client, one can

apply client-level differential privacy by having the adjacent datasets describe the case where the

data removed is all the samples associated with a single client [39]. It is worth noting that using

differential privacy in federated learning causes unavoidable degradation in performance relative

to the guaranteed privacy parameters.

We examine heterogeneity in privacy requirements in federated learning setups. We present a

new setup of privacy-preserving federated learning where privacy is enabled by default and the

clients may choose to opt out. We desire to understand the implications of the setting where a

fraction of the clients choose to opt out of privacy, even if they represent a small percentage of

the overall population, to improve the performance of the global model as well as the personalized

local models.

Next, we describe an approach for privacy-preserving federated learning as well as an approach

to personalized federated learning. The proposed algorithm FeO2 employs a version of both ap-

proaches, and they are considered the two baselines against which FeO2 is examined.

5.2.1 Privacy-Preserving Federated Learning: DP-FedAvg

To design privacy-preserving federated learning algorithms using differential privacy, a few mod-

ifications are required to the baseline federated averaging algorithm [39]. Specifically, two mod-
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ifications are introduced: clipping and noising. Considering client-level privacy, the averaging

operation at the server is the target of such modifications. Assume clients are selected each round

with probability qs from the population of all clients of size N . First, each client update is clipped

to have norm at most S, then the average is computed and additive Gaussian noise is added with

mean zero and covariance σ2I = z2( S
qsN

)2I . The variable z is referred to as the noise multiplier,

which dictates the achievable values of (ε, δ)-DP. Training the model via multiple rounds increases

the amount of leaked information, the moment accountant method, introduced by [34], can be used

to provide a tighter estimate of the resulting DP parameters (ε, δ) for the entire training process.

Selecting the clipping threshold, as well as the noise multiplier, is instrumental to getting useful

models with desirable privacy guarantees. During training, the norm of updates can either increase

or decrease, if the norm increases or decreases significantly compared to the clipping norm, the

algorithm may slow down or diverge. Hence, [40] presented a solution to privately and adaptively

update the clipping norm during each round of communication in federated learning based on the

feedback from clients on whether or not their update norm exceeded the clipping norm. This

method produces an effective noise multiplier from which one can compute the privacy loss. We

consider this algorithm as the baseline for privacy-preserving federated learning and refer to it in

the rest of the chapter as DP-FedAvg. The case where no noise is added is the baseline for the

non-private federated learning algorithm, which is referred to simply as non-private.

5.2.2 Personalized Federated Learning: Ditto

There are multiple approaches to personalization in federated learning. In this chapter, we consider

employing a recent work by [78], referred to as Ditto, due to its simplicity and modularity. Ditto is
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a bi-level optimization objective, which does not modify the global FL training process, but adds

a local training task to personalize a model locally with the following local loss function:

`′i(θi,θ
∗) = `i(θi) +

λi
2
‖θi − θ∗‖2, (5.2.2)

where θi is the personalized local model for client ci, λi is the regularization parameter for client ci,

and θ∗ is the global server-side model. As Ditto can simply be added onto the previously described

learning algorithms, we combine it with them to train personalized local models for each client. We

utilize Ditto to train the personalized models for all algorithms in the experimental evaluation to

examine the performance of such algorithms in terms of local models’ performance. In particular,

we demonstrate that FeO2 with a Ditto add-on can learn good personalized local models compared

to DP-FedAvg.

5.3 Federated Learning with Opt-Out Differential

Privacy: FeO2

In this section, we describe the FeO2 algorithm that is designed to take advantage of the afore-

mentioned heterogeneous privacy setup. The proposed algorithm is described in Algorithm 5.1.

As mentioned before, the FeO2 algorithm utilizes differential privacy with adaptive clipping, and

Ditto, optionally, for personalized learning.

First, we provide the notation of the variables in the algorithm. We split the set of clients C into

two subsets containing private and non-private clients denoted by Cp and Cnp, respectively. Assume

the number of private and non-private clients is Np = (1 − ρnp)N and Nnp = ρnpN , where ρnp is
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Algorithm 5.1 FeO2: Federated learning with opt-out DP

Inputs: model parameters θ0, sensitivity S0,
learning rate η, personalized learning rate ηp,
ratio r, noise multipliers z, zb, quantile κ, and
factor ηb.
Outputs: θT , {θj}j∈[N ]

At server:
for round t = 0, 1, 2, ..., T − 1 do
Ct ← Sample N t clients from C
for client cj in Ct in parallel do
4θtj, btj ← ClientUpdate(θt, cj, St)

end for
N t

p ← |Ctp|, N t
np ← |Ctnp|, zt ← z S

t

Nt
p

4θt+1
p ← 1

Nt
p

∑
i∈Ctp
4θti +N (0, (zt)2I)

4θt+1
np ← 1

Nt
np

∑
i∈Ctnp
4θti

θt+1 ← θt + 1
Nt

np+rNt
p
[N t

np4 θt+1
np

+rN t
p 4 θt+1

p ]

St+1 ← Ste−ηb
(

( 1
Nt

∑
i∈Ct b

t
i+N (0,z2b

1
Nt

2
))−κ
)

end for

At client cj:
ClientUpdate(θ0, cj, S):
θ ← θ0

θj ← θ0 (if not initialized)
B ← batch the client’s data Dj

for epoch e = 1, 2, ..., E do
for B in B do
θ ← θ − η∇`j(θ, B)
θj ← θj− ηp(∇`j(θj, B) +λ(θj−θ0))
[Ditto: optional for personalization]

end for
end for
4θ ← θ − θ0

b← 1‖4θ‖26S
return Clip(4θ, S), b to server

Clip(θ, S):
return θ × S

max(‖θ‖2,S)
to client

the fraction of clients who opt out. The rest of the hyperparameters in the algorithm are as follows:

the ratio hyperparameter r, the noise multipliers z, zb, the clipping sensitivity S, the learning rate

at clients η, the personalized learning rate at clients ηp, quantile κ, and factor ηb. The superscript

(·)t is used to denote a parameter during the t-th training round.

During round t of training, no additional steps are required for the clients during model training.

Clients train the received model using their local data then send back their clipped updates ∆θtj

along with their clipping indicator btj to the server. The server collects the updates from clients and

performs a two-step aggregation process to the updates. During the first step, the updates from the

non-private clients are passed through an averaging function to produce4θt+1
np , while the updates

from the private clients are passed through a differentially private-averaging function to produce

4θt+1
p . The second step of the aggregation is combining the outputs of the previous two averaging
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functions to produce the next iteration of the model. In this step, the server performs a weighted

average of the two outputs. The weights for each are chosen based on the number of private and

non-private clients, as well as a ratio hyperparameter r. The output of this step is4θt+1, which is

then added to the previous model state to produce the next model state.

The ratio hyperparameter r is chosen based on multiple factors, which we discuss next. In

general, we desire the value of r be bounded as 0 6 r 6 1 in FeO2 to utilize non-private clients’

updates more meaningfully. The first factor to consider when choosing r is related to the desired

privacy budget, lower privacy budget ε requires more noise to be added, leading to a lower value of

r. This intuition follows from observing Lemma 11 in [79] as will be shown in a simplified example

in the next section. Another factor that is more difficult to quantify is the heterogeneity between the

non-private set of clients and the private set of clients. We give an example to illustrate this idea,

assume the model is being trained on the MNIST dataset where each client has samples of only

one digit. Consider two scenarios: opt-out clients have uniform digits, and opt-out clients have

the same digit. It can be argued that the ratio r, when every other hyperparameter is fixed, should

be higher in the second scenario compared to the first; since contributions from private clients are

more significant to the overall model in the second scenario than the first. An experiment will be

conducted in the experiments section to show this observation.

As for the personalization part, we have the hyperparameter λ. FeO2 differs from Ditto in a

number of major ways. First, The server-side aggregation in Ditto is the vanilla FedAvg; however,

in FeO2 the server-side aggregation is not FedAvg, but rather a new aggregation rule which utilizes

the privacy choices made by clients. Second, Ditto is designed for robustness against malicious

clients; hence, the performance on malicious clients is not measured. That is not the case in FeO2,

where measuring the performance for private and non-private clients is needed, and improving
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both is desired. Third, the server in Ditto is unaware of the status of the clients, i.e., whether or not

they are malicious; while in FeO2 the server is aware of the privacy choices made by clients which

can be used during training to the advantage of the server.

5.4 Analyzing Federated Linear Regression

In this section, we provide some insights into the proposed FeO2 algorithm through a simplified

setup, known as the federated linear regression, inspired by the one proposed by [78]. We first start

by considering the global estimation on the server and show that FeO2 is Bayes optimal when using

the appropriate value of the ratio r. Then we consider personalization using Ditto for both private

and non-private clients and show that combining the optimal FeO2 with Ditto is Bayes optimal for

private and non-private clients when using appropriate values of the regularization parameters λp

and λnp. Finally, we show the gain of opting out in the proposed personalized setup compared to

the baseline.

5.4.1 Setup

Assume the number of samples per client is fixed and the the effect of clipping is negligible. Let us

denote the total number of clients asN , of whomNnp = ρnpN are non-private andNp = (1−ρnp)N

are private. Denote the number of samples held by each client as ms, the samples at client cj as

[Xj,yj], where Xj is the data features matrix, and yj is the response vector. Let us denote the

relationship between yj and Xj as

yj = Xjφj + nj (5.4.1)
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where the observations noise vector nj ∼ N (0, β2Ims), and φj is the vector of length d to be

estimated. The vector φj is described as

φj = φ+ pj (5.4.2)

where pj ∼ N (0, τ 2Id), and φ is the vector to be estimated at the server. τ 2 is a measure of

relatedness, as specified by [78], to denote the non i.i.d. nature in the vectors. The loss function at

client cj is as follows

`j(φ) =
1

ms

‖Xjφ− yj‖2
2 (5.4.3)

Local estimate of φj at client cj that minimizes the loss function given Xj and yj is denoted by φ̂j

and is computed as

φ̂j =
(
XT
j Xj

)−1XT
j yj, (5.4.4)

which is distributed as φ̂j ∼ N
(
φj, β

2(XT
j Xj)

−1
)
. Let us assume that XT

j Xj = nsId, then the loss

function can be translated to

`j(φ) =
1

2

∥∥φ− 1

ns

ns∑
i=1

yj,i
∥∥2

2
, (5.4.5)
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where yj,i’s are the noisy observations of the vector φj at client cj . The updates sent to the server

by client cj are as follows

ψj = φ̂j + lj (5.4.6)

where lj = 0 for non-private clients or lj ∼ N (0, Npγ
2Id). Note that we still consider client-

level privacy; however, we move the noise addition process from the server side to the client

side such that when the server aggregates the private clients updates the resulting privacy noise

covariance is equivalent to the desired value by the server, i.e., γ2. This is done for the simplicity

and clarity of the discussion.

In this setup, the problem becomes a vector estimation problem and the goal at the server is to

estimate the vector φ given the updates from all clients, denoted by {ψi : i ∈ [N ]} as

θ∗ := arg min
θ̂

{
E
[

1

2
‖θ̂ − φ‖2

2

∣∣∣∣ψ1, ...,ψN

]}
. (Global Bayes objective)

On the other hand, client cj’s goal is to estimate the vector φj given their local estimate φ̂j as well

as the updates from all other clients {ψi : i ∈ [N ] \ j} as

θ∗j := arg min
θ̂

{
E
[

1

2
‖θ̂ − φj‖2

2

∣∣∣∣ {ψi : i ∈ [N ] \ j}, φ̂j
]}

. (Local Bayes objective)

Now, considering the value of φ, the covariance matrix of client cj’s update is denoted by Σj
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and is expressed as follows

Σj =


β2(XT

j Xj)
−1 + τ 2Id, if cj ∈ Cnp

β2(XT
j Xj)

−1 + (τ 2 +Npγ
2)Id, if cj ∈ Cp

(5.4.7)

We have XT
j Xj = nsId, and let β

2

ns
= α2, then we have

Σj =


(α2 + τ 2)Id, if cj ∈ Cnp

(α2 + τ 2 +Npγ
2)Id, if cj ∈ Cp

(5.4.8)

=


σ2
cId, if cj ∈ Cnp

σ2
pId, if cj ∈ Cp

(5.4.9)

Next, we discuss the optimality of FeO2 for the specified federated linear regression problem

for the server’s global model as well as the clients’ personalized local models using a variation of

Ditto in our setup.

5.4.2 Global Model On The Server

In the considered federated setup, the server aims to find θ̂
∗

described as follows

θ̂
∗

:= arg min
θ̂

1

2

∥∥∥∥∥∥
∑
i∈[N ]

wiψi − θ̂

∥∥∥∥∥∥
2

2

 . (Global FeO2 objective)

The server’s goal is to combine the client updates such that the estimation error of φ, described

in (Global Bayes objective), is minimized. For the considered setup, the server aims to utilize the

updates sent by clients, i.e., {ψi : i ∈ [N ]}, to estimate the vector φ. The estimate at the server is
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denoted by θ. First, we state an important lemma that will be used throughout this section.

Lemma 5.4.1 (Lemma 2 in [78]) Let φ be drawn from the non-informative uniform prior on Rd.

Also, let {ψi : i ∈ [N ]} denote noisy observations of φ with independent additive zero-mean

independent Gaussian noise and corresponding covariance matrices {Σi : i ∈ [N ]}. Let

Σφ =
( ∑
i∈[N ]

Σ−1
i

)−1

. (5.4.10)

Then, conditioned on {ψi : i ∈ [N ]}, we have

φ = Σφ
∑
i∈[N ]

Σ−1
i ψi + pφ, (5.4.11)

where pφ ∼ N (0,Σφ), which is independent of {ψi : i ∈ [N ]}.

Next, we state the Bayes optimality of the solution to the global FeO2 objective.

Lemma 5.4.2 (Global estimate optimality) The solution to the global FeO2 objective from the

server’s point of view, with weightswj’s chosen below, is Bayes optimal in the considered federated

linear regression problem.

wj =


1

Nnp+Npr∗
, if cj ∈ Cnp

r∗

Nnp+Npr∗
, if cj ∈ Cp

(5.4.12)

where

r∗ =
σ2
c

σ2
c +Npγ2

. (5.4.13)
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Furthermore, the covariance of the estimation error is:

Σs,opt =
1

N

[
σ2
c (σ

2
c +Npγ

2)

σ2
c + ρnpNpγ2

]
Id. (5.4.14)

Proof: First, for the considered setup, Lemma 5.4.1 states that the optimal aggregator at

the server is the weighted average of the client updates. The server observes the updates {ψi :

i ∈ [N ]}, which are noisy observations of φ with zero-mean Gaussian noise with corresponding

covariance matrices {Σi : i ∈ [N ]}. Then, the server computes its estimate θ of φ as

θ = Σθ
∑
i∈[N ]

Σ−1
i ψi + pθ, (5.4.15)

(5.4.16)

where pθ ∼ N (0,Σθ) and

Σθ =
( ∑
i∈[N ]

Σ−1
i

)−1

=
(
Nnp(σ

2
cId)

−1 +Np(σ
2
pId)

−1
)−1

(5.4.17)

=
1

N

[
σ2
c (σ

2
c +Npγ

2)

σ2
c + ρnpNpγ2

]
Id. (5.4.18)

In FeO2, we only have a single hyperparameter to tune, which is the ratio r. To achieve the

same noise covariance as in (5.4.18) we need to choose the ratio r carefully. To this end, setting

r = σ2
c

σ2
c+Npγ2

in FeO2 results in additive noise in the estimate with zero mean and covariance matrix
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Figure 5.1: Server noise variance σ2
s vs the ratio hyperparameter r assuming d = 1. (left) trade-off

for three values of γ2, (right) trade-off for three values of σ2
c .

as follows

Σs,opt =
1

N

[
σ2
c (σ

2
c +Npγ

2)

σ2
c + ρnpNpγ2

]
Id. (5.4.19)

Therefore, the weighted average of the updates using the above weights results in the solution

being Bayes optimal, i.e., produces θ∗.

Next, we simulate the server noise variance σ2
s against the ratio r for d = 1 and different values

of σ2
c and γ2 with N clients and ρnp opt-put fraction. The results are shown in Figure 5.1, and

we can see that the optimal ratio r∗ in Lemma 5.4.2 minimizes the server estimation variance as

expected.

Moreover, the server noise σ2
s vs the fraction of non-private clients ρnp is compared for two

scenarios using d = 1. The first is the baseline FedAvg, and the second is the optimal FeO2. We

can see in Figure 5.2 that FeO2 provides better noise variance at the server compared to FedAvg,
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Figure 5.2: Server noise variance σ2
s vs non-private client fraction ρnp assuming d = 1 for the

baseline FedAvg aggregator and optimal FeO2 aggregator.

and the gain can be significant for some values of ρnp.

It is worth noting that the resulting server noise covariance when FeO2 algorithm is used with

vanilla FedAvg, i.e., r = 1 in the Algorithm 5.1 is

Σs,fedavg =
1

N
(σ2

c + (1− ρnp)Npγ
2)Id, (5.4.20)

hence, we have the following lemma.

Lemma 5.4.3 (Performance gap between baselines and optimal FeO2) The gap in server’s

mean squared error performance between FeO2 with FedAvg and the optimal FeO2, and the gap

between DP-FedAvg and the optimal FeO2 for the federated linear regression problem, specified

above, are as follows

MSEs,fedavg −MSEs,opt =
ρnp(1− ρnp)N

2
p γ

4

N(σ2
c + ρnpNpγ2)

d, (5.4.21)

MSEs,dp-fedavg −MSEs,opt =
Npγ

2ρnp(σ
2
c+Npγ

2)

N(σ2
c + ρnpNpγ2)

d. (5.4.22)
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Note that both (5.4.21) and (5.4.22) are positive. It can be seen that if the number of clients is large

(N →∞), the gap approaches (1− ρnp)
2γ2 and (1− ρnp)γ

2 in (5.4.21) and (5.4.22), respectively.

This is expected since the noise in the observation itself decreases as the number of clients increase.

On the other hand, if ρnp → 0 or ρnp → 1, the gap vanishes as expected. Furthermore, if the noise

added for privacy γ2 is large (γ2 →∞), the gap become increasingly significant.

5.4.3 Local Models On Clients

As mentioned before, FeO2 differs from Ditto in many ways. First, the global model aggregation is

different, i.e., FedAvg was employed in Ditto compared to the 2-step aggregator in FeO2. Second,

in Ditto measuring the performance only considers benign clients, while in FeO2 it is important to

measure the performance of both non-private and private clients, and enhancing both is desired. In

this part, we focus on the personalization part for both sets of clients. The goal at clients is to find

the Bayes optimal solution to the (Local Bayes objective). However, in the considered federated

setup, clients don’t have access to individual updates from other clients, but rather have the global

estimate θ̂
∗
. So, the local FeO2 objective using Ditto is

θ̂
∗
j := arg min

θ̂

{
1

2
‖θ̂ − φ̂j‖2

2 +
λ

2
‖θ̂ − θ̂

∗
‖2

2

}
, (Local FeO2 objective)

where θ̂
∗

is the solution to (Global FeO2 objective).

To assess the quality of this procedure, we first compute the Bayes optimal local estimate θ∗j

of φj for the local objective at client cj . We consider client cj , which can be either private or

non-private, and compute their minimizer of (Local Bayes objective). In this case, the client is

given all other clients’ estimates {ψi : i ∈ [N ] \ j} and has their own local estimate φ̂j . To this
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end, we utilize Lemma 5.4.1 to find the optimal estimate θ∗j . Given the updates by all other clients

{ψi : i ∈ [N ] \ j}, the client can compute the estimate φ\j of the value of φ as

φ\j = Σφ\j
( ∑
i=[N ]\j

Σ−1
i ψi

)
+ pφ\j , (5.4.23)

where pφ\j ∼ N (0,Σφ\j) and

Σφ\j =
( ∑
i=[N ]\j

Σ−1
i

)−1

, (5.4.24)

=
(
m

1

σ2
c

Id + n
1

σ2
p

Id

)−1

, (5.4.25)

=
σ2
cσ

2
p

nσ2
c +mσ2

p

Id, (5.4.26)

where n = Np − 1,m = Nnp if cj is private, or n = Np,m = Nnp − 1 if cj is non-private. Then,

the client uses Σφ\j and φ̂j to estimate θ∗j as

θ∗j = Σθ∗j

(
(Σφ\j + τ 2Id)

−1φ\j + (σ2
c − τ 2)−1φ̂j

)
+ pθ∗j , (5.4.27)

= Σθ∗j

(( nσ2
c +mσ2

p

σ2
cσ

2
p + τ 2(nσ2

c +mσ2
p)

)
φ\j +

1

σ2
c − τ 2

φ̂
∗
j

)
+ pθ∗j , (5.4.28)

where pθ∗j ∼ N (0,Σθ∗j ) and

Σθ∗j =

((σ2
cσ

2
p + τ 2(nσ2

c +mσ2
p)

nσ2
c +mσ2

p

Id

)−1

+ ((σ2
c − τ 2)Id)

−1

)−1

, (5.4.29)

=
(σ2

c − τ 2)
(
σ2
cσ

2
p + τ 2(nσ2

c +mσ2
p)
)

σ2
c

(
nσ2

c + (m+ 1)σ2
p

) Id. (5.4.30)
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We expand (5.4.28) as

θ∗j =
σ2
cσ

2
p + τ 2(nσ2

c +mσ2
p)

σ2
c (nσ

2
c + (m+ 1)σ2

p)
φ̂j+

(σ2
c − τ 2)σ2

p

σ2
c (nσ

2
c + (m+ 1)σ2

p)

∑
i∈Cnp
i 6=j

ψi+
(σ2

c − τ 2)

(nσ2
c + (m+ 1)σ2

p)

∑
i∈Cp
i 6=j

ψi+pθ∗j .

(5.4.31)

This is the Bayes optimal solution to the local Bayes objective optimization problem for client cj

in (Local Bayes objective). Now, recall that in FeO2, the clients do not have access to individual

client updates, but rather the global model. Therefore, the clients solve the FeO2 local objective in

(Local FeO2 objective). Given a value of λj and the global estimate θ̂
∗
, the minimizer θ̂j(λj) of

(Local FeO2 objective) is

θ̂j(λj) =
1

1 + λj

(
φ̂j + λiθ̂

∗)
(5.4.32)

=
1

1 + λj

(
(Nnp +Npr) + λjij

(Nnp +Npr)
φ̂j +

λj
(Nnp +Npr)

∑
i∈Cnp
i 6=j

ψi +
λjr

(Nnp +Npr)

∑
i∈Cp
i 6=j

ψi

)
,

(5.4.33)

where ij = 1 if cj is non-private or ij = r if cj is private. Now, we are ready to state the Bayes

optimality of the local FeO2 objective for optimal values λ∗j for all clients.

Lemma 5.4.4 (Local estimates optimality) The solution to the local FeO2 objective from the

clients’ point of view using λ∗j chosen below, under the assumption of global estimate optimal-
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ity stated in Lemma 5.4.2, is Bayes optimal in the considered federated linear regression problem.

λ∗j =


1

Υ2 , if cj ∈ Cnp

N+Υ2N+Γ2(N−Np)

Υ2(Υ2+1)N+Υ2Γ2(N−Np+1)+Γ2 , if cj ∈ Cp

(5.4.34)

where Υ2 = τ2

α2 and Γ2 = Npγ2

α2 .

Proof: To prove this lemma, as shown in [78], we only need to find the optimal values of λ∗j

that minimize the following

λ∗j = arg min
λ

E
(
‖θ∗j − θ̂j(λ)‖2

2

∣∣φ\j, φ̂j) (5.4.35)

for private and non-private clients. To compute the values of λ∗j , we plug in the values of θ∗j from

(5.4.31) and θj(λ) in (5.4.33), which gives us the following

λ1 =
(Nnp +Npr)

(
nσ4

c +mσ2
cσ

2
p − τ 2(nσ2

c +mσ2
p)
)

(Nnp +Npr)
(
σ2
cσ

2
p + τ 2(nσ2

c +mσ2
p)
)
− ijσ2

c (nσ
2
c + (m+ 1)σ2

p)
, (5.4.36)

λ2 =
(Nnp +Npr)(σ

2
c − τ 2)σ2

p

σ2
c (nσ

2
c + (m+ 1)σ2

p)− (Nnp +Npr)(σ2
c − τ 2)σ2

p

, (5.4.37)

λ3 =
(Nnp +Npr)(σ

2
c − τ 2)

r(nσ2
c + (m+ 1)σ2

p)− (Nnp +Npr)(σ2
c − τ 2)

, (5.4.38)

and λ∗j =
1

3
(λ1 + λ2 + λ3) (5.4.39)

where r = σ2
c

σ2
p
. For non-private client cj ∈ Cnp, we have ij = 1, n = Np and m = Nnp − 1.

Substituting in (5.4.39) gives the desired result in (5.4.34). For private client cj ∈ Cp, we have

ij = r, n = Np − 1 and m = Nnp. Setting Υ2 = τ2

α2 and Γ2 =
Npγ2

α2 , and substituting in (5.4.39)

gives the desired results in (5.4.34). As a result, the resulting θ̂j(λ∗j) is Bayes optimal.
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Next, we provide a few examples of corner cases for both λ∗p and λ∗np for the considered linear

regression setup:

• r → 1, i.e., noise added for privacy is too small, λ∗p → 1
Υ2 and λ∗np = 1

Υ2 , as in Ditto with

FedAvg and no malicious clients.

• Np → N , i.e., all clients are private, as in DP-FedAvg, λ∗p → N
Υ2N+Γ2 .

• α2 → 0, i.e., no observation noise, λ∗p → 0, and λ∗np → 0. The optimal estimator approaches

the local estimator, i.e., θ̂j(λ∗j)→ φ̂j .

• τ 2 → 0, i.e., all clients have IID samples, λ∗p →
N+Γ2(N−Np)

Γ2 and λ∗np →∞.

5.4.4 Optimality of FeO2 in Linear Problems

Next, we show the convergence of the FeO2 algorithm to the FeO2 global and local objectives for

the linear regression problem described above as follows

Lemma 5.4.5 (FeO2 convergence in linear problems) FeO2, with learning rate η = 1 and ηp =

1
1+λj

, converges to the global FeO2 objective and the local FeO2 objective.

Proof: In the considered setup, we denote φ̂j = 1
ns

∑ns
i=1 yj,i at client cj . The client updates

the global estimation θ by minimizing the loss function in (5.4.5). The global estimation update at

the client follows

θ ← θ − η(θ − φ̂j). (5.4.40)

Updating the estimation once with η = 1 results in the global estimation update being φ̂j , adding

the noise results in the same ψj , and hence the global estimate in the next iteration is unchanged.
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As for the local FeO2 estimation, when the client receives the global estimate θ after the first

round, the client updates its estimate θj as

θj ← θj − ηp
(
(θj − φ̂j) + λj(θj − θ)

)
. (5.4.41)

Updating the estimate once with ηp = 1
1+λj

gives θj = 1
1+λj

(φ̂j+λjθ), which is the solution to the

local FeO2 objective in (5.4.32). Hence, FeO2 converges to the global and local FeO2 objectives.

Next, we state the optimality theorem of FeO2 algorithm for the considered setup described

above.

Theorem 5.4.6 (FeO2 optimality in linear problems) FeO2 from the server’s point of view with

ratio r∗ chosen below, is Bayes optimal (i.e., θ converges to θ∗) in the considered federated linear

regression problem.

r∗ =
σ2
c

σ2
c +Npγ2

. (5.4.42)

Furthermore, FeO2 from the clients point of view, with λ∗j chosen below, is Bayes optimal (i.e., θj

converges to θ∗j for each client j ∈ [N ]) in the considered federated linear regression problem.

λ∗j =


1

Υ2 , if cj ∈ Cnp

N+Υ2N+Γ2(N−Np)

Υ2(Υ2+1)N+Υ2Γ2(N−Np+1)+Γ2 , if cj ∈ Cp

. (5.4.43)

Proof: This follows by observing Lemma 5.4.5, which states that the algorithm converges to

the global and local FeO2 objectives, then by Lemma 5.4.2 and Lemma 5.4.4, which state that the
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Figure 5.3: The effect of opting out on the personalized local model estimate for a linear regression
problem as a function of λ when the server employs (left) vanilla FedAvg aggregation and (right)
FeO2 optimal aggregation.

solution to the FeO2 objective is the Bayes optimal solution for both global and local objectives.

5.4.5 Incentive For Opting Out Of DP

In this part, we would like to observe the effect of opting out of privacy on the client’s personal-

ized local model, compared to the one where the client remains private. We show an experiment

comparing Ditto with FeO2, i.e., using r∗, against Ditto with FedAvg, i.e., r = 1 in Algorithm 5.1

for two scenarios. The first is when the client chooses to opt out of privacy, and the second is when

the client chooses to remain private. See Figure 5.3 for the results of such experiment. We can see

that the Ditto with FeO2 outperforms the one with FedAvg, and the gain of opting out is clear in

terms of reducing the loss at the client. Note that in Figure 5.3, FeO2 reduces the minimum loss

by around 18% compared to the FedAvg aggregator. We can see in the figure that when utilizing

117



Ditto with FedAvg, opting out reduces the minimum loss by about 2.5%, while in Ditto with FeO2,

opting out reduces the minimum loss by 1.2%. It is worth noting that even for real-world federated

datasets, such gain can be observed, as will be shown in the next section.

5.5 Experimental Results

In this section, we present the results of a number of experiments to show the gain in performance

of the proposed FeO2 algorithm compared to the baseline DP-FedAvg algorithm. The experiments

show that FeO2 outperforms DP-FedAvg with the right choice of the hyperparameter r in terms of

the global model accuracy, as well as in terms of the average personalized local model accuracy.

5.5.1 Setup

The experiments are conducted on multiple federated datasets, synthetic and realistic. The syn-

thetic datasets are manually created to simulate extreme cases of data heterogeneity often exhib-

ited in federated learning scenarios. The realistic federated datasets are from Tensorflow Federated

(TFF) [80], where such datasets are assigned to clients according to certain criteria. The synthetic

dataset is referred to as the non-IID MNIST dataset, and the number of samples at a client is fixed

across all clients. In this dataset, each client is assigned samples randomly from the subsets of

samples each with a single digit between 0−9. A skewed version of the synthetic dataset is one

where non-private clients are sampled from the clients who only have the digit 7 in their data. In the

non-IID MNIST dataset, we have 2, 000 clients and we randomly sample 5% of them for training

each round. The realistic federated datasets are the federated MNIST (FMNIST) and the federated

extended MNIST (FEMNIST) from TFF datasets. The FMNIST and FEMNIST datasets contain
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3, 383 and 3, 400 clients, respectively, and we sample around 3% of them for training each round.

TensorFlow Privacy (TFP) [81] is used to compute the privacy loss incurred during training.

For all experiments, training is stopped after 500 communication rounds for each experiment.

The server’s test dataset is the test MNIST dataset in the non-IID MNIST experiments, or the

collection of the test datasets of all clients in the FMNIST and FEMNIST datasets. Note that the

experiment of FeO2 with r = 0 denotes the case where the server only communicates with non-

private clients during training and ignores all private clients. We vary the ratio hyperparameter r as

well as the Ditto hyperparameters λp and λnp and observe the results. The setup of each experiment

is shown in Table 5.1, and the description of the models used in each experiment is shown in Table

5.2, while the hyperparameters used in each experiment are shown in Table 5.3. Note that the

hyperparameters used in the non-IID MNIST datasets are the same for both the original dataset

and the skewed dataset.

Table 5.1: Experiments setup: Number of clients is N , approximate fraction of clients per round
is qs.

Dataset N qs Task Model
non-IID MNIST 2,000 5% 10-label classification FC-NN

FMNIST 3,383 3% 10-label classification FC-NN
FEMNIST 3,400 3% 62-label classification CNN

5.5.2 Results

In this part, we provide the results of the experiments on the datasets mentioned above. In these

experiments, we provide results for an opt-out rate of 5% of the total client population. Clients that

opt out are picked randomly from the set of all clients but fixed across all experiments for a fair

comparison. The exception for this assumption is for the skewed non-IID MNIST dataset, where
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Table 5.2: Models used for experiments.

non-IID MNIST, and FMNIST Datasets
Layer Size Activation

Input image 28× 28 -
Flatten 784 -

Fully connected 50 ReLU
Fully connected 10 Softmax

FEMNIST Dataset
Input image 28× 28 -

Convolutional (2D) 28× 28× 16 ReLU
Max pooling (2D) 14× 14× 16 -

Convolutional (2D) 14× 14× 32 ReLU
Max pooling (2D) 7× 7× 32 -

Dropout (25%) - -
Flatten 1568 -

Fully connected 128 ReLU
Dropout (50%) - -
Fully connected 62 Softmax

Table 5.3: Hyperparameters used for each experiment.

Hyperparameter
Dataset non-IID MNIST FMNIST FEMNIST

Batch size 20
Epochs 25 50 25
η, ηp 0.5 0.01 0.02

η, ηp decaying factor 0.9 every 50 rounds N/A
S0 0.5 0.5 2.0
ηb 0.2
κ 0.5

Effective noise multiplier 1.5 4.0 1.0

clients that opt out are sampled from the clients who have the digit 7. All other hyperparameters

are fixed. To evaluate the performance of each algorithm, we measure the following quantities for

each dataset:

1. Accg: the test accuracy on the server’s test dataset using the global model.

2. Accg,p, Accg,np: the average test accuracy of all private and non-private clients using the

global model on their local test datasets, respectively.
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Table 5.4: Experiment results on non-IID MNIST, (ε, δ) = (3.6, 10−4). The variance of the perfor-
mance metric across clients is between parenthesis.

λp = λnp = 0.005
Setup Global model Personalized local models

Algorithm hyperparam. Accg% Accg,p% Accg,np% 4g% Accl,p% Accl,np% 4l%

Non-private - 93.8 - 93.75(0.13) - - 99.98(0.001) -
DP-FedAvg - 88.75 88.64(0.39) - - 99.97(0.002) - -

FeO2 r=0 90.7 90.64(0.68) 91.72(0.5) 1.08 90.64(0.68) 99.94(0.001) 9.2964
FeO2 r=0.001 91.74 91.65(0.39) 92.61(0.27) 0.94 99.94(0.001) 99.95(0.001) 0.0053
FeO2 r=0.01 92.48 92.43(0.30) 93.30(0.21) 0.88 99.94(0.001) 99.94(0.001) −0.002
FeO2 r=0.025 92.36 92.28(0.27) 92.96(0.19) 0.68 99.95(0.001) 99.91(0.001) −0.04
FeO2 r=0.1 90.7 90.59(0.34) 91.31(0.26) 0.73 99.97(0.001) 99.95(0.001) −0.02
FeO2 r=1 87.71 87.55(0.42) 88.35(0.34) 0.8 99.97(0.001) 99.93(0.001) −0.03

λp = λnp = 0.05
Non-private - 93.81 - 93.76(0.13) - - 99.93(0.001) -
DP-FedAvg - 87.98 87.97(0.39) - - 99.84(0.002) - -

FeO2 r=0 91 91.12(0.48) 92.08(0.41) 0.96 91.12(0.48) 99.76(0.002) 8.65
FeO2 r=0.001 92.15 92.10(0.33) 92.88(0.25) 0.78 99.81(0.002) 99.78(0.002) −0.03
FeO2 r=0.01 92.45 92.39(0.33) 93.26(0.25) 0.87 99.81(0.002) 99.78(0.003) −0.03
FeO2 r=0.025 92.14 92.09(0.35) 93.01(0.26) 0.92 99.85(0.002) 99.8(0.002) −0.05
FeO2 r=0.1 90.7 90.82(0.29) 91.55(0.21) 0.73 99.87(0.002) 99.80(0.003) −0.06
FeO2 r=1 89.64 89.50(0.32) 90.55(0.24) 1.05 99.83(0.002) 99.84(0.002) 0.01

λp = λnp = 0.25
Non-private - 93.79 - 93.75(0.13) - - 99.10(0.007) -
DP-FedAvg - 88.26 88.23(0.41) - - 98.23(0.017) - -

FeO2 r=0 90.42 90.41(0.69) 91.41(0.58) 1.0 90.41(0.69) 98.06(0.023) 7.65
FeO2 r=0.001 92.18 92.12(0.34) 92.85(0.26) 0.73 98.47(0.015) 98.08(0.024) −0.39
FeO2 r=0.01 92.41 92.35(0.29) 93.19(0.21) 0.83 98.62(0.015) 98.33(0.019) −0.28
FeO2 r=0.025 92.5 92.42(0.28) 93.19(0.19) 0.77 98.71(0.011) 98.41(0.017) −0.3
FeO2 r=0.1 91.17 91.10(0.32) 91.94(0.24) 0.84 98.71(0.012) 98.60(0.013) −0.11
FeO2 r=1 88.27 88.09(0.49) 89.08(0.4) 0.99 98.14(0.017) 98.13(0.017) −0.01

3. Accl,p, Accl,np: the average test accuracy of all private and non-private clients using their

personalized local models on their local test datasets, respectively.

4. 4g, 4l: the gain in the average performance of non-private clients over the private clients

using the global model and the personalized local models on their local test datasets, respec-

tively; computed as4g = Accg,np − Accg,p and4l = Accl,np − Accl,p.

The results are shown in Tables 5.4-5.7, for each experiment along with their corresponding

hyperparameters. For each experiment, the rows with the parameters that result in the best perfor-

mance are highlighted. If two different sets of parameters result in two different competing results,

such as one with a better global model performance at the server and one with better personalized

local models at the clients, we highlight both.
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Table 5.5: Experiment results on Skewed non-IID MNIST, (ε, δ) = (3.6, 10−4). The variance of the
performance metric across clients is between parenthesis.

λp = λnp = 0.005
Setup Global model Personalized local models

Algorithm hyperparam. Accg% Accg,p% Accg,np% 4g% Accl,p% Accl,np% 4l%

Non-private - 93.67 - 93.62(0.15) - - 99.98(0.001) -
DP-FedAvg - 88.93 88.87(0.35) - - 99.98(0.001) - -

FeO2 r=0 10.27 7.1(6.5) 100(0) 92.9 7.1(6.5) 100(0) 92.9
FeO2 r=0.025 87.11 86.61(1.10) 98.16(0.01) 11.55 99.99(0.001) 99.91(0.001) −0.08
FeO2 r=0.1 90.36 89.96(0.37) 97.45(0.01) 7.49 99.97(0.001) 99.76(0.003) −0.21
FeO2 r=0.5 88.44 88.14(0.36) 93.36(0.03) 5.2 99.98(0.001) 99.93(0.001) −0.05
FeO2 r=0.75 89.14 88.92(0.37) 92.43(0.06) 3.5 99.97(0.001) 99.93(0.001) −0.04
FeO2 r=0.9 87.96 87.69(0.56) 92.97(0.04) 5.28 99.98(0.001) 99.96(0.001) −0.02
FeO2 r=1 88.25 88.05(0.39) 89.98(0.05) 1.93 99.97(0.001) 99.85(0.001) −0.11

λp = λnp = 0.05
Non-private - 93.67 - 93.62(0.15) - - 99.93(0.001) -
DP-FedAvg - 88.78 88.70(0.53) - - 99.83(0.002) - -

FeO2 r=0 10.28 7.1(6.5) 100(0) 92.9 7.1(6.5) 100(0) 92.9
FeO2 r=0.025 87.92 87.45(0.99) 98.1(0.01) 10.65 99.95(0.001) 99.75(0.003) −0.2
FeO2 r=0.1 88.98 88.64(0.52) 96.18(0.02) 7.54 99.9(0.001) 99.47(0.005) −0.43
FeO2 r=0.5 88.22 87.9(0.38) 93.43(0.03) 5.33 99.85(0.002) 99.42(0.008) −0.42
FeO2 r=0.75 88.56 88.37(0.35) 91.33(0.04) 2.94 99.84(0.002) 99.52(0.004) −0.33
FeO2 r=0.9 89.19 88.97(0.4) 92.24(0.03) 3.27 99.88(0.001) 99.58(0.005) −0.3
FeO2 r=1 88.33 88.11(0.46) 91.67(0.04) 3.56 99.87(0.001) 99.61(0.001) −0.26

λp = λnp = 0.25
Non-private - 93.67 - 93.62(0.15) - - 99.09(0.007) -
DP-FedAvg - 87.78 87.71(0.53) - - 98.15(0.02) - -

FeO2 r=0 10.27 7.1(6.5) 100(0) 92.9 7.1(6.5) 100(0) 92.9
FeO2 r=0.025 87.51 87.01(0.9) 98.49(0.01) 11.48 98.69(0.01) 99.09(0.006) −0.4
FeO2 r=0.1 89.05 88.66(0.54) 96.8(0.02) 8.14 98.69(0.012) 98.55(0.008) −0.13
FeO2 r=0.5 88.18 88.11(0.55) 93.43(0.03) 5.32 98.32(0.014) 97.80(0.01) −0.52
FeO2 r=0.75 87.96 87.8(0.33) 92.58(0.03) 4.78 98.25(0.017) 97.5(0.02) −0.75
FeO2 r=0.9 88.26 87.93(0.41) 91.67(0.03) 3.74 98.25(0.02) 97.68(0.02) −0.57
FeO2 r=1 89.4 89.22(0.26) 92.01(0.03) 2.79 98.27(0.02) 97.62(0.03) −0.64

We can see from Tables 5.4-5.7 that FeO2 enables the server to learn better global models, as

well as clients to learn better personalized local models compared to the baseline private FL, i.e.,

DP-FedAvg. For example, the gain due to FeO2 compared to the DP-FedAvg in terms of global

model performance is 3.8% on average and is up to 9.27%. For personalized local models, the

gain in the average accuracy for clients due to FeO2 compared to DP-FedAvg is up to 9.99%. The

average gap in the average performance of personalized local models between DP-FedAvg and

non-private is 3.57%, which is reduced to 0.95% between FeO2 and non-private. Additionally,

we can also see the gain in the average performance in personalized local models between clients

who choose to opt out of privacy and clients who choose to remain private. This demonstrates

the advantage of opting out of privacy, which provides clients with an incentive to opt out of
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Table 5.6: Experiment results on FMNIST, (ε, δ) = (0.6, 10−4). The variance of the performance
metric across clients is between parenthesis.

λp = λnp = 0.005
Setup Global model Personalized local models

Algorithm hyperparam. Accg% Accg,p% Accg,np% 4g% Accl,p% Accl,np% 4l%

Non-private - 89.65 - 89.35(1.68) - - 93.95(0.67) -
DP-FedAvg - 71.76 71.42(2.79) - - 91.01(0.94) - -

FeO2 r=0 81.78 80.73(2.45) 89.35(1.5) 8.62 80.73(2.4) 95.80(0.39) 15.06
FeO2 r=0.01 85.38 84.61(2.05) 89.3(1.26) 4.69 93.26(0.74) 95.94(0.41) 2.67
FeO2 r=0.025 85.7 84.93(1.97) 89.58(1.29) 4.65 93.04(0.76) 95.22(0.54) 2.18
FeO2 r=0.05 85.21 84.68(1.99) 86.22(1.76) 1.54 92.87(0.74) 95.40(0.51) 2.53
FeO2 r=0.1 81.76 81.45(2.45) 81.96(1.84) 0.51 92.47(0.78) 94.83(0.52) 2.36
FeO2 r=0.5 78.19 78.02(2.59) 76.48(3.02) −1.53 91.08(0.94) 92.59(0.83) 1.51
FeO2 r=1 75.87 75.77(2.84) 74.41(2.8) −1.36 90.45(1.02) 92.32(0.8) 1.87

λp = λnp = 0.05
Non-private - 89.65 - 89.35(1.68) - - 94.53(0.59) -
DP-FedAvg - 77.61 77.62(2.55) - - 90.04(1.04) - -

FeO2 r=0 82.61 80.72(2.45) 89.45(1.51) 8.73 80.72(2.45) 95.57(0.38) 14.84
FeO2 r=0.01 86.88 85.36(1.89) 90.02(1.28) 4.66 93.76(0.68) 95.78(0.36) 2.02
FeO2 r=0.025 86.03 84.22(1.98) 88.40(1.68) 4.18 93.53(0.68) 95.11(0.54) 0.52
FeO2 r=0.05 84.65 82.68(2.16) 86.68(1.67) 4.00 92.92(0.76) 95.02(0.55) 2.1
FeO2 r=0.1 82.89 81.72(2.28) 83.68(2.18) 1.96 92.38(0.83) 94.25(0.61) 1.87
FeO2 r=0.5 76.59 78.05(2.60) 78.04(2.66) −0.0041 89.63(1.10) 91.67(0.84) 2.04
FeO2 r=1 72.42 77.14(2.72) 76.28(2.76) −0.86 89.12(1.15) 90.92(0.91) 1.8

λp = λnp = 0.25
Non-private - 89.66 - 89.36(1.69) - - 94.32(0.64) -
DP-FedAvg - 70.1 70.40(2.91) - - 88.38(1.25) - -

FeO2 r=0 81.93 80.85(2.39) 89.71(1.39) 8.86 80.85(2.39) 94.56(0.50) 13.71
FeO2 r=0.01 85.31 84.55(1.98) 89.27(1.54) 4.72 92.76(0.78) 94.77(0.5) 2.01
FeO2 r=0.025 86.17 85.52(1.92) 89.25(1.31) 3.73 92.46(0.85) 94.35(0.57) 1.89
FeO2 r=0.05 83.97 83.5(2.19) 85.4(1.88) 1.9 91.69(0.91) 93.9(0.53) 2.21
FeO2 r=0.1 83.78 83.22(2.11) 84.94(2.12) 1.72 90.9(1.02) 92.62(0.73) 1.72
FeO2 r=0.5 74.64 74.63(3.23) 72.54(2.93) −2.09 88.12(1.34) 88.69(1.28) 0.57
FeO2 r=1 72.67 72.05(2.83) 74.31(2.42) 2.26 87.54(1.34) 87.39(1.23) −0.15

differential privacy if they look to improve their personalized local models. For example, non-

private clients can gain up to 3.49% on average in terms of personalized local model performance

compared to private clients. It is worth mentioning that opting out can also improve the global

model’s performance on clients’ local data. We observe that there is up to 12.4% gain in the

average performance of non-private clients in terms of the accuracy of the global model on the

local data compared to the one of baseline DP-FedAvg.
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Table 5.7: Experiment results on FEMNIST, (ε, δ) = (4.1, 10−4). The variance of the performance
metric across clients is between parenthesis.

λp = λnp = 0.005
Setup Global model Personalized local models

Algorithm hyperparam. Accg% Accg,p% Accg,np% 4g% Accl,p% Accl,np% 4l%

Non-private - 81.56 - 81.72(1.37) - - 73.86(1.5) -
DP-FedAvg - 75.39 76.1(1.73) - - 71.3(1.47) - -

FeO2 r=0 72.77 75.34(2.6) 85.7(1.14) 10.36 75.34(2.6) 72.2(1.22) −3.14
FeO2 r=0.001 73.66 76.22(2.44) 86.04(1.2) 9.82 72.78(1.51) 71.74(1.34) −1.04
FeO2 r=0.01 74.75 77.16(2.26) 86.4(1.07) 9.24 73.24(1.52) 71.49(1.29) −1.76
FeO2 r=0.025 75.37 77.66(2.06) 86.56(1) 8.9 73.11(1.55) 71.62(1.18) −1.49
FeO2 r=0.1 76.47 77.99(1.68) 84.36(1.31) 6.37 72.3(1.5) 69.93(1.15) −2.37
FeO2 r=0.5 76.11 76.69(1.62) 80.82(1.3) 4.13 71.32(1.56) 70.11(1.26) −1.2
FeO2 r=1 74.96 75.6(1.69) 77.84(1.47) 2.24 71.44(1.5) 70.03(1.18) −1.4

λp = λnp = 0.05
Non-private - 81.95 - 82.09(1.38) - - 82.89(1.13) -
DP-FedAvg - 75.42 75.86(1.82) - - 74.69(1.29) - -

FeO2 r=0 72.65 75.9(2.5) 86.19(1.27) 10.29 80.59(1.13) 81.97(0.88) 1.38
FeO2 r=0.001 73.31 75.9(2.5) 86.19(1.27) 10.29 80.59(1.13) 81.97(0.88) 1.38
FeO2 r=0.01 74.68 77.16(2.27) 86.25(1.05) 9.09 80.74(1.06) 82.13(0.98) 1.38
FeO2 r=0.025 75.22 77.43(2.09) 85.95(1.12) 8.52 80(1.16) 80.99(0.92) 1.01
FeO2 r=0.1 76.52 77.91(1.67) 83.9(1.27) 5.99 77.9(1.22) 79.15(0.99) 1.25
FeO2 r=0.5 76.15 76.55(1.68) 80.04(1.62) 3.49 75.43(1.25) 77.13(1.17) 1.7
FeO2 r=1 75.12 75.87(1.65) 78.59(1.58) 2.72 74.67(1.34) 75.95(1.12) 1.28

λp = λnp = 0.25
Non-private - 81.66 - 81.79(1.38) - - 84.46(0.89) -
DP-FedAvg - 75.99 76.56(1.6) - - 73.06(1.46) - -

FeO2 r=0 72.89 75.5(2.56) 86.09(1.28) 10.6 75.5(2.56) 84.77(0.8) 9.28
FeO2 r=0.001 73.41 76.01(2.51) 85.99(1.13) 9.97 80.98(1.06) 84.71(0.83) 3.73
FeO2 r=0.01 74.86 77.31(2.18) 86.73(0.98) 9.42 81.19(1.02) 84.68(0.78) 3.49
FeO2 r=0.025 75.41 77.68(2.1) 86.23(1.03) 8.55 80.01(1.1) 83.2(0.8) 3.19
FeO2 r=0.1 76.62 77.82(1.68) 83.35(1.27) 5.52 76.99(1.24) 78.96(1.04) 1.97
FeO2 r=0.5 75.89 76.71(1.65) 80.01(1.4) 3.3 73.48(1.37) 75.49(1.57) 2.01
FeO2 r=1 75.31 75.67(1.71) 78.88(1.59) 3.21 72.58(1.45) 74.98(1.43) 2.4

5.6 Conclusion

In this chapter, a new aspect of heterogeneity in federated learning setups is considered, namely

heterogeneity in privacy requirements. A new setup is introduced for privacy heterogeneity be-

tween clients where privacy is no longer necessary for all clients, and some clients choose to opt

out of privacy. A new algorithm called FeO2 for the considered setup is proposed. In FeO2, the

aim is to employ differential privacy to maintain the privacy of clients who choose to remain pri-

vate and utilize the additional information from the non-private clients to improve the utility of

the model. Additionally, Ditto is utilized as a personalization scheme to examine whether FeO2

enhances the performance for personalized FL. An analytical treatment for the federated linear
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regression problem and showed the optimality of FeO2 from the server’s point of view as well as

the clients’ point of view, when combined with Ditto. Specifically, the optimal value of the ratio

hyperparameter at the server and the optimal values of the Ditto parameter at clients that achieve

the best performance were computed. Finally, a set of experiments on synthetic and realistic feder-

ated datasets were conducted and showed that FeO2 outperforms the baseline private FL algorithm

in terms of the global model as well as the personalized local models’ performance, and showed

the incentive of becoming non-private compared to remaining private in such scenarios in terms of

the gain in the average performance.
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CHAPTER 6

Conclusion and Future Work

The unprecedented growth of distributed devices, along with the incredible amount of sensitive

data they generate, dictated a set of new challenges to existing algorithms, especially the ones

that are concerned with the security and privacy of data. One of the main challenges is the lim-

ited resources available to such devices, such as limited computational capabilities, batteries, etc.

Therefore, any algorithm needs to be efficient to be implemented on such devices. In Chapter 2,

low-complexity protocols for generating secret keys for devices operating in static environments

are presented, where legitimate parties generate local randomness and exchange it to improve the

key generation rate. The reliability and security of the protocols are characterized for the proposed

protocols by upper-bounding the probability of accepting a mismatched key and the probability of

a successful eavesdropping attack, respectively. Additionally, simulations are provided to evaluate

the performance of the protocols using secret key generation metrics.

The notion of threshold-security is presented in Chapter 3, where the security of the entire

message is not required, but rather the security of all sub-blocks of the message with size up to

a certain threshold is desired. The formulation of such a notion of security using information-

theoretic measures is provided, along with proposing a general coding scheme based on linear

block codes. A low-complexity threshold-secure coding scheme based on Reed-Muller codes for
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noiseless channels is presented along with its successive cancellation decoder. Furthermore, a low-

complexity threshold-secure robust coding scheme based Reed-Muller codes for the binary erasure

main channel, as well as its decoder, are presented.

In Chapter 4, perfect machine unlearning for regression problems is considered. Designed for

ensemble learning setups, an approach utilizing the encoding of training samples using random

linear encoders is presented. This approach enables us to encode the training dataset to a smaller

dataset where the performance of the resulting model outperforms the one of the baseline uncoded

unlearning algorithm in terms of performance vs unlearning cost. Experimental evaluation of the

algorithm is presented to compare its performance to the baseline along with a discussion on the

results.

A new setup for privacy-preserving federated learning is presented in Chapter 5. Privacy het-

erogeneity is proposed for federated learning setups where clients are no longer mandated to be

private, but rather assumed to be private and given the choice to opt out of privacy. A new al-

gorithm is presented to take advantage of the newly introduced setup that maintains the privacy

of clients in the set of private clients and utilizes the additional information from the set of non-

private clients to improve the utility of the model. The algorithm is analyzed in the simplified setup

of federated linear regression and its optimality is shown. Moreover, The proposed algorithm is

compared to the baseline private federated learning algorithm using several synthetic and realistic

datasets, where it is observed that the proposed algorithm outperforms the baseline in terms of the

performance of the global server’s model as well as clients’ local models.
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Future Work

Some interesting directions can be further explored for the secret key generation setups. For ex-

ample, secret key generation protocols are presented for setups where two parties need a shared

key. However, as the number of small devices operating in such environments increases, there may

be a need for multiple devices to generate a secret key that is shared between them to be used for

broadcast messages. Additionally, investigating scenarios where the single passive eavesdropper

has additional capabilities, e.g., employing multiple eavesdroppers or antennas, employing active

jamming to disrupt the key generation process, etc., is also another direction of future work.

Furthermore, efficient threshold-secure coding schemes were presented based on Reed-Muller

codes, which limits the possible code rates, i.e., key and message length. One can further examine

whether a solution based on punctured Reed-Muller codes can be utilized for threshold security,

where ideas from polar codes can be useful. Furthermore, studying additional setups, such as

wiretap channels, with the aim of achieving threshold security is another interesting direction.

Additionally, the coded machine unlearning algorithm proposes a solution for regression prob-

lems. Extending the proposed algorithm to different classes of learning models such as logistic

regression, deep neural networks, etc., as well as utilizing different classes of codes other than

linear random codes is an interesting direction of future work. Moreover, theoretical examina-

tion of the role of coding in machine unlearning and the interplay between influential samples

with random coding, and their impact on the learned model is another possible direction of further

exploration.

There are multiple directions of future work for the federated learning with opt-out differential

privacy setup. For example, further examination of the algorithm to include additional experiments
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on more complex datasets as well as learning models. Additionally, the proposed setup only con-

siders two choices of privacy; however, one can further examine various levels of privacy where

clients can choose the desired values of the privacy parameters rather than the proposed opt-in

opt-out setup. Consequently, modifications to the algorithm need to be done to accommodate this

level of privacy granularity for central differential privacy, or the introduction of local differential

privacy needs to be implemented at clients rather than the server.
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