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Abstract 

 

One of the most significant challenges to current human healthcare is the emergence of 

antigenically variable viruses that evade traditional vaccination approaches. Human 

immunodeficiency virus (HIV) is one such virus that emerged over 30 years ago and still has no 

effective vaccine. Like many other antigenically variable viruses, after infection, HIV quickly 

mutates to evade broadly neutralizing antibodies that bind tightly to key sites to prevent 

infection. Over 250 clinical trials have been performed to date to develop an effective HIV 

vaccine, with only one providing moderate protection; the RV144 Thai trial, estimated to be 31% 

effective but has not been replicated in other populations. Rather than broadly neutralizing 

antibodies, the trial identified IgG antibodies with the capacity to induce Fc effector functions as 

a correlate of protection. These functions are triggered by less specific antibodies that bind HIV 

antigen and Fc receptors on the surface of innate immune cells to form immune complexes to 

activate protective cellular functions. Understanding how to increase the formation of IgG-FcR 

complexes may improve vaccine efficacy, but variation in IgG and FcR features across 

individuals suggests that protective mechanisms need to be understood on a personalized basis. 

There are multiple subclasses of protective IgGs, each having different concentrations and 

affinities to FcRs in different individuals. Genetics can also play a role, with FcR polymorphisms 

changing FcR binding affinity and IgG1 allotypes changing IgG subclass concentrations. 

Mechanistic ordinary differential equation (ODE) modeling of this system offers the opportunity 

to account for these factors on a personalized basis and deconvolve which are most influential 

and determine how to improve protection universally. 

 We developed an ODE model of IgG-FcγRIIIa immune complex formation to elucidate 

how personalized variability in IgG subclass concentration and genetic factors may contribute to 

complex formation after vaccination. We validated the model with RV144 plasma samples and 

used it to discover new mechanisms that underpin complex formation. This enabled the 

identification of genetic and post-translational features that influenced complex formation and 

suggested the best interventions on a personalized basis. For example, although IgG3 was 



 xiv 

associated with protection in RV144 and has the highest affinity to FcγRIIIas, the model 

suggested that IgG1 may play a more essential role, though it also may be highly variable; due to 

high IgG1 concentration variability across individuals. The model identified RV144 vaccinees 

who were predicted to be sensitive, insensitive, or negatively affected by increases in HIV-

specific IgG1, which was validated experimentally with the addition of HIV-specific IgG1 

monoclonal antibodies to vaccine samples. The model also gave important insights into how to 

maximize IgG-FcγRIIIa complex formation in different genetic backgrounds. We found that 

individuals with certain IgG1 allotypes were predicted to be more responsive to vaccine adjuvant 

strategies that increase antibody affinity (e.g., glycosylation modifications) compared to other 

allotypes, which were predicted to be more responsive to vaccine boosting regimens that increase 

IgG1 antibody concentration. Finally, simulations in mixed-allotype populations suggest that the 

benefit of boosting IgG1 concentration versus IgG1 affinity may depend upon the frequency of a 

specific IgG1 allotype (G1m-1,3) in the population. Overall we believe that this approach 

represents a valuable tool that will help understand the role of personalized immune mechanisms 

in response to vaccination and address challenges related to under-represented genetic 

populations in vaccine trials. 



 1 

Chapter 1 Introduction 

1.1 The emerging threat of antigenically variable viruses 

Antigenically variable viruses pose a critical threat to human health as they mutate rapidly and 

evade the immune system and traditional vaccination approaches. The SARS-CoV-2 virus is an 

example that has recently risen to the forefront of public attention during the COVID-19 

pandemic, which has killed nearly 5 million people worldwide over two years and caused 

massive economic shutdowns and psychological damage1. However, this threat has long been 

present as demonstrated by other viruses, including seasonal influenza, which requires annual 

vaccinations and kills 291,000-646,000 people globally each year2 and the human 

immunodeficiency virus (HIV), which has no effective vaccine and has claimed a total of 36.3 

million lives since its emergence in 19813.  

 

Globally, HIV/AIDS is the second most fatal infectious disease4 with 680,000 deaths and 

1,500,000 new infections in 20205. HIV is most often spread through sexual contact but can also 

spread by needle sharing in injecting drug users or parent-to-child through pregnancy, birth, and 

breastfeeding. HIV infection leads to systemic T-cell destruction, which weakens the immune 

system to other opportunistic infections and leaves patients vulnerable to cancers and direct and 

systemic damage to many essential organs such as the heart, brain, and gut6. Clinically, HIV 

infection presents as lymphadenopathy (enlarged lymph nodes) and mononucleosis-like 

symptoms such as fever, diarrhea, and transient meningoencephalitis (inflammation in the brain 

causing cognitive and behavior changes, pains in neck and head, and seizure)6. HIV infection 

progresses to AIDS when a patients’ CD4+ T cell count is below 200, or an AIDS-related 

infection or disease occurs. AIDS induces a gradual and chronic decline in immune system 

function leading to a high risk of contracting life-threatening infections (i.e., SARS-CoV-2) and 

cancers.  
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At the beginning of the global epidemic, AIDS was a death sentence, but now, of the 37,700,000 

people living with HIV/AIDS globally, 73% are receiving treatment in the form of antiretroviral 

therapy (ART)5, which can reduce the chances of transmission to a sexual partner by 96% when 

started within four years7,8. With the introduction and iteration of more effective and less toxic 

antiretrovirals over the last 33 years9–11, AIDS-related deaths have been reduced by 64% since 

their peak in 20045, but there is still no cure. Despite the effectiveness of ART, without a cure, 

prevention is an essential arm in the containment of the virus.  

 

There are two main prevention methods: (1) “treatment as prevention,” where HIV-positive 

patients can protect their HIV-negative sexual partners by keeping their viral loads undetectable 

through treatment, and (2) pre-exposure prophylaxis (PrEP), an oral or topical medication that 

can be taken by HIV-negative people at high risk of infection. As mentioned above, treatment as 

prevention is highly effective in many cases, but 10%-40% of HIV-positive individuals are 

unresponsive to ART treatment12–14, immunological non-responders (INRs)12,15–17, leading to 

more rapid disease progression and death. In these cases, treatment as prevention would have a 

much lower likelihood of protecting partners and preventing spread. In addition, studies have 

suggested that protection requires a 95% adherence rate to ART18, and there are many physical, 

social, and economic reasons why this is difficult, including specific drug side-effects, limited 

doctor-patient time and attention, and family and social pressures19. There are new drug trials 

aimed at reducing the logistical burdens a daily pill can take. For instance, a study on a long-

lasting injectable drug in Spain and the US found that women - traditionally reported to have 

lower adherence - mentioned feeling empowered by this long-term regularly scheduled injection 

over having to remember a daily pill20. All those within the study mentioned work, social 

obligations, exercise, and travel as primary areas of improvement with this long-term option20. 

However, women more often mentioned the mental burden of coordinating these with their 

caretaking duties of children, elderly parents, and ailing partners20.  

 

Researchers have performed clinical trials of oral PrEP in transwomen and men who have sex 

with men (MSM)21,22, heterosexual men and women23,24, and injecting drug users25. Efficacy 

rates are high among MSM, and many public health campaigns for PrEP target MSM, but 

awareness among injecting drug users is of concern26 and highly variable efficacy in women23,24. 
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Many continue to support the global guideline that PrEP is equally effective, over 90%24, in 

women as long as they are adherent, and their low adherence levels cause lower overall 

efficacy27,28. However, in these cited trials, adherence was measured through blood levels of 

PrEP drugs, which does not account for differences in the pharmacokinetics of PrEP in the blood 

and metabolism by microbes in the female reproductive tract29–34. Additionally, this conversation 

in the clinical trial and public health space has neglected women who have sex with women 

(WSW) and women who have sex with both women and men (WSWM)35,36, but a review of the 

impact of stigma for WSW and MSM in sub-Saharan Africa is in preparation37.  

 

The UN’s Joint Program on ending HIV/AIDS (UNAIDS) in 2017 proposed a “90-90-90” target 

to help downgrade the crisis from a global epidemic38. This target would require 90% of HIV-

positive individuals to know their status, 90% of those to be receiving treatment, and 90% of 

those to have undetectable viral loads, meaning 73% of HIV-positive people globally would have 

undetectable viral loads38. However, in 2020 73% of people living with HIV were accessing 

treatment, leaving at least 10,179,000 people living with HIV to continue transmitting the virus5. 

A universal prevention technique is needed to protect HIV-negative people, especially from 

these undiagnosed newly infected individuals. On top of that, only 10% of individuals eligible 

for PrEP use in the US are accessing it, and this percentage is potentially lower in other 

countries39. The cost of treatments alongside the PrEP prevention method should be a significant 

consideration as most people living with HIV live in low- and middle-come countries5. 

Accounting for ART for all those already living with HIV, the new infections expected each 

year, and PrEP for all those at high risk, the estimated cost for low and middle-income countries 

from 2016-2030 is $350 billion40. Promisingly a vaccine that is only 50% effective could reduce 

millions of new infections annually41, and this long-term protection approach would improve 

PrEP’s short-term protection in terms of cost, convenience, and adherence for those willing to 

adhere to it. While this solution will need to be implemented alongside ART and PrEP to achieve 

the broadest reach42 – especially if the vaccine is only 50% effective - it is most likely essential 

to end the global epidemic43. 
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1.2 Only one of many HIV vaccine trials has been moderately protective at 31% efficacy 

The search for a vaccine against HIV began over 30 years ago44, and to date, over 250 clinical 

trials have been run45, with only one trial – RV144 – showing significant efficacy of 60% after 

one year and 31% at 3.5 years post-vaccination46,47. Most successful vaccines that have 

irradicated diseases like measles, mumps, and rubella work by introducing a piece of the 

pathogen, an inactivated virus, or a similar but less dangerous pathogen to the immune system 

and allowing the body to develop antibodies against the pathogen that can be elicited when an 

actual infection arises. In these cases, the antibodies developed are neutralizing antibodies that 

bind tightly to the pathogen on a site that prevents it from infecting the host, such as binding to 

the portion of a virus used to enter a host cell. Inducing broadly neutralizing antibodies that can 

neutralize a wide range of mutated viruses has long been the goal in developing vaccines against 

highly mutagenic viruses like HIV and influenza. The induction of broadly neutralizing 

antibodies has proven problematic in viruses that mutate rapidly and are present in many hosts 

simultaneously, multiplying this mutation probability48, as in influenza, where vaccine efficacy 

rates vary from 19% to 60%49. An added complication in HIV infection is the presence of many 

different mutations of the virus both during transmission as well the acute infection period, 

meaning, for example, that even if a vaccination protects against 90% of the mutants present, the 

other 10% of virions can still thrive and mutate further50.  

 

Three major approaches to vaccinate against HIV have been used: (1) elicit neutralizing 

antibodies with recombinant envelope proteins, (2) use a viral vector to induce CD8+ T cell 

response, and (3) the only successful approach, use a heterologous prime-boost regimen to 

induce humoral and cell-mediated immune responses51. 

 

The phase III VAX trials from 1998-2003 were examples of the first approach, where priming 

and boosting used the same antigens. VAX003 was performed in Thailand, where HIV clades B 

and E are prevalent, and mainly enrolled injecting drug users (IDUs), 93% of whom were male. 

VAX004 was performed primarily in North America, where HIV clade B is prevalent, on MSM. 

Both trials used an AIDSVAX antigen that consists of a recombinant version of the HIV 

envelope protein gp120 (of the HIV subtype prevalent in the region), with boosts at months 1, 6, 

12, 18, 24, and 36. Neither trial showed efficacy, but secondary analysis suggests that boosting 
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may promote IgG2 and IgG4 over IgG1 and IgG3 antibody subclasses, which are the subclasses 

with lower binding to Fc receptors on immune cells52–55. Additionally, these studies found 

antibody-dependent cellular cytotoxicity (ADCC) peaked after 3-4 immunizations and then 

declined after 5-7 immunizations56.  

 

The RV trials in Thailand starting in 2003 exemplify the heterologous prime-boost approach that 

aims to induce humoral and cellular immunity. The RV144 trial ended in 2009 is the only known 

prophylactic HIV vaccine trial proven to protect against infection, with 60.5% efficacy at 12 

months47 and 31% efficacy at 3.5 years46. This trial enrolled 16,402 men and women who were 

primarily heterosexual. Boosting occurred at months 1, 3, and 6, and all four immunizations 

contained ALVAC-HIV (vCP1521) – a live attenuated canarypox virus expressing HIV DNA, 

but the last two also contained the same AIDSVAX B/E in VAX003. The primary factors 

correlated with protection were the binding of IgG to the V1V2 region of the env protein and low 

levels of IgA binding to env57. Secondary analysis suggests that high levels of IgA may interfere 

with protective antibodies because in those vaccinees with lower env-specific IgA, IgG avidity, 

antibody-dependent cellular cytotoxicity (ADCC), neutralizing antibodies, and env-specific 

CD4+ T cells were also correlated with protection57. Additionally, follow-up studies found that 

depletion of env-specific IgG3 reduced Fc effector functions like52. Notably, IgG3 decreased 

over time (>80% at two weeks to 3% by week 52) just as efficacy decreased (60% at one year 

and 31.5% at 3.5 years)57 and other vaccine trials were then designed to replicate results in other 

populations and promote lasting efficacy. 

 

RV305 and RV306 are follow-up phase II trials to induce lasting immunity, which tested further 

boosting regimens after the original RV144 regimen. RV305 enrolled 162 enrollees from RV144 

and boosted them with the same antigens 6 and 8 years after their RV144 regimen58. This 

protocol induced higher humoral responses than after RV144, but they quickly declined and did 

not increase after the second boost58. Secondary analysis suggested that boosting increased C1C2 

specific monoclonal antibodies mediating ADCC, and crystallography showed these antibodies 

were binding to gp120 on the HIV env protein59. RV306 enrolled 367 HIV vaccine naïve 

participants of low risk and split them into four groups60. All groups received the original RV144 

regimen at months 0, 1, 3, and 6. Group 1 received no additional boost. Group 2 received 
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AIDSVAX B/E and ALVAC-HIV (vCP1521) at month 12. Group 3 received AIDSVAX at 

month 12. Group 4a received AIDSVAX & ALVAC-HIV at month 15, and group 4b at month 

18. Analysis for this trial is ongoing, but preliminary results show that all groups with an 

additional boost (2, 3, 4a & 4b) have higher peak plasma IgG binding titers for gp70 V1V2 than 

group 1, and increased polyfunctionality – multiple mechanisms of protection60. Boosting at 

month 12 did not increase gp120 specific antibodies but boosting at months 15 and 18 did 

increase gp120 specific antibody titers, and plasma IgG responses were significantly higher after 

months 15 and 18 boosts as well60. Neither of these studies was testing for efficacy.  

 

Another series of follow-up trials based on RV144 was initiated in South Africa in 2015, starting 

with the phase ½ HVTN100 trial. This trial, which tested for safety and tolerability, enrolled 

low-risk males and females and followed the RV144 regimen at months 0, 1, 3, and 6 with an 

added boost at month 12 of both antigens. The antigens were adapted to express HIV-1 antigens 

from the strain circulating in South Africa (clade C), with ALVAC-HIV [vCP2438] administered 

at every immunization and a bivalent subtype C gp120 recombinant protein co-administered at 

months 3, 6, and 1261. The vaccine adjuvant was also changed from alum to MF59 to increase 

immunogenicity61. Results were promising with all gp120 specific IgG titers being significantly 

higher than in RV144 by 3.6-8.8-fold, and while the IgG response to V1V2 was lower here than 

in RV144 yet still higher than the estimated threshold to give the vaccine 50% efficacy61, though 

efficacy was not explicitly evaluated in this trial. 

 

HVTN702 is the phase III trial testing the efficacy of HVTN100’s regimen. 5,407 HIV vaccine 

naïve men and women were enrolled starting in 2016 and given the same five immunizations 

listed for HVTN100. Surprisingly, after the promise of HVTN100, HVTN702 was stopped on 

January 23rd, 2020, after an interim analysis by an independent safety monitoring board (DSMB) 

found no increase in protection with the vaccine (129 HIV infections in 2694 vaccine recipients 

and 123 infections in the 2689 placebo recipients)62,63. The analysis is ongoing, and data is still 

being collected from all participants already immunized. Follow-up analyses to determine why 

HVTN100 results did not translate into a successful HVTN702 trial are expected.  
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New vaccine approaches like mosaic vaccines based on engineered immunogens that represent 

multiple strains and antigens and mRNA vaccines, which have experienced a recent boost in 

confidence with the success of COVID-19 vaccines, are also being explored. However, none 

have shown efficacy like the heterologous prime-boost regimen as of yet51. 

1.3 Fc-mediated cellular immunity has been linked with protection in HIV vaccine trials   

Although neutralizing antibodies are the most common correlate of protection in regular vaccine 

regimens today64,65,  analysis of HIV vaccines points to the importance of a polyfunctional 

immune response requiring multiple protection mechanisms52. As mentioned above, HIV and 

influenza are viruses that mutate rapidly to escape any highly specific antibodies produced to 

target them64–67, making the induction of neutralizing antibodies more difficult than in more 

stable viruses we have eradicated like smallpox. A polyfunctional antibody response could 

include neutralizing antibodies but does not depend on them alone to protect the vaccinee from 

the virus. Instead, it includes several antibody-mediated mechanisms of protection52,68, most 

notably, antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis 

(ADCP). ADCC works by activating the Fc receptors (FcRs) on natural killer (NK) cells to 

secrete cytotoxic factors, whereas ADCP triggers phagocytosis in macrophages. Fc-mediated 

functions like ADCC and ADCP have been implicated as protective against multiple mutagenic 

viruses like tuberculosis69, Ebola70, influenza71, and HIV72.  

 

Both ADCC and ADCP are triggered by the formation of immune complexes. Whereas a broadly 

neutralizing antibody binds to a specific site on the antigen that can block further infection, the 

antibodies that can trigger Fc-mediated effector functions can bind anywhere on the antigen. This 

lower specificity also means that the immune system does not need prior sensitization to this 

same antigen; cross-reactive antibodies made for other antigens are often similar enough to bind 

some portion of a newer antigen. To carry out antibody-mediated immune functions, first, a 

cross-reactive antibody or one specific to the virus binds to the virus or an infected cell on the 

variable Fab region of the antibody, then the other end of the antibody, the Fc region, binds to 

FcRs on immune cells. When several FcRs are bound and cross-linked on the cell surface, 

signaling cascades trigger Fc effector functions like ADCC. Different FcR types trigger different 

Fc effector functions; for example, FcγRIII triggers ADCC when IgG antibodies in complex with 
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the pathogen bind. There are also different IgG subclasses, IgG1, IgG2, IgG3, and IgG4 (with 

IgG1 being the most abundant) and these subclasses have differing affinities to each FcγR, with 

IgG1 and IgG3 typically having the highest affinities.  

 

Recently developed recombinant FcR dimers can detect FcR complex formation to mimic the 

dimerization on immune cell surfaces73. Complex formation measured with these dimers and 

plasma samples has correlated with in vitro cellular assays measuring ADCC and ADCP74, and 

they are now used for high-throughput analysis in HIV, Influenza, and Malaria75–78. 

 

ADCC and the agents that trigger it have been correlated to protection in HIV vaccines or show 

promise in secondary analyses. In the primary analysis of RV144, vaccinees with lower levels of 

the potential inhibitory HIV-specific IgA antibodies had correlations between protection and 

ADCC activity57. Secondary analyses also showed a specific IgG subclass, IgG3, was correlated 

with lower infection risk and was more prevalent in RV144 than VAX003 and could drive the 

more polyfunctional response52,79. In RV305, the trial boosted a subset of RV144 participants 

years later and saw increases in IgG antibodies specific to gp120 that mediated ADCC59. In 

RV306, where four out of five arms of the study received an additional boost after the RV144 

regimen, they saw increases in polyfunctionality and gp120 specific antibodies titers after 

boosting60. In HVTN 100, the phase ½ trial testing the RV144 regimen plus a boost in South 

Africa, there were increases in gp120 specific IgG titers over the RV144 data61.  

1.4 Systems serology combining diverse datasets has highlighted a relationship between 

ADCC and IgGs in protective vaccine responses 

In addition to primary analyses on correlates of protection, the field of systems serology has 

developed alongside these vaccine trials and has contributed to understanding why RV144 

produced efficacious immune responses. Systems serology uses data-driven or “machine-

learning” techniques to gain a systems-level understanding of how the immune system functions 

in both health and disease states. It has been essential in the last few decades where dataset size 

and complexity have grown considerably, and researchers have needed a method for determining 

which components are essential to the system of interest and how they are related to one another 
68,80. Techniques include principal component analysis (PCA), decision trees, and Bayesian 
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networks. However, one of the more powerful techniques in HIV vaccine research has been 

partial least squares discriminant analysis (PLS-DA) which allows the users to identify unique 

signatures for each group of interest composed of a multitude of datatypes (e.g., proteins, genes, 

and cellular activity data) choosing only the most highly associated components for that group.  

PLS-DA goes beyond traditional statistical methods by identifying components that may not 

have a statistically significant difference, but when considered in the larger picture of the entire 

system, may have an important role to play.  

 

Systems serology analysis of RV144 and other trials has further suggested an essential role for 

ADCC in protection52,68,81,82. A 2015 study on data from four HIV vaccine trials, including 

RV144 and VAX003, was able to identify unique humoral signatures for each vaccine trial that 

pointed to a direct connection between IgG1 and Fc effector functions (ADCC and ADCP)83. 

This challenged the idea that IgG3, the subclass with the highest affinity to FcRs and the one 

connected to protection previously, may be the most important for functional responses79. Recent 

animal studies on the administration of broadly neutralizing antibodies for treating HIV-1 

infection have suggested the Fc effector functions are even essential here, where the antibodies 

themselves are already considered broadly neutralizing84,85. 

 

Although data-driven analysis has expanded our understanding of which humoral components 

and activities are the most essential for protection from HIV, there are limitations. With this 

approach, relationships between factors can be inferred, but these are based on statistical 

correlations and cannot give insight into mechanisms without follow-up experimentation. The 

observation that several variables change together does not give information about cause-effect 

relationships. In the case of HIV vaccine follow-up analysis, the data-driven approach used 

involved grouping participants by vaccine type (i.e., RV144 vs. VAX003, “low risk” vs. “high 

risk,” or case vs. control), which prevents mechanistic understanding of relationships between 

personalized IgG and Fc features and their influence on vaccine response.  

 

The personalized IgG and Fc features involved in immune complex formation affect the antigen, 

IgGs, and FcRs in several ways, making it difficult to predict how to maximize the formation of 

these complexes intuitively. With highly mutagenic viruses, the antigen itself can be changed 
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between individuals and, over time, in a single individual. There are multiple IgG subclasses 

(IgG1, IgG2, IgG3, and IgG4)86 with differing abundances in the plasma, IgG1 being the highest, 

followed by IgG2, IgG3, and IgG4, respectively87. In addition, each IgG subclass has a unique 

affinity to each FcR, with IgG1 and IgG3 generally having a higher affinity than IgG2 and 

IgG488. Different FcR types have different affinity profiles, with the ADCC promoting FcγRIIIa 

having higher affinity to IgG3 than all other IgG subclasses, whereas in the ADCP promoting 

FcγRIIa IgG1 has the highest affinity88. It is well studied that genetic polymorphisms of FcRs 

cause differences in affinities to each subclass88, and recent studies have shown that IgG 

allotypes may also affect affinity to FcRs89. IgG1 allotype has also been shown to alter the 

concentration profile of all vaccine-specific IgG subclasses90. Studies have confirmed that 

differences in IgG subclass concentrations influence FcR activation52 and that these subclasses 

decline over time just as vaccine efficacy does79. Finally, personalized differences in IgG 

subclass concentration profiles are highly variable from person to person and over time, 

alongside genetic and post-translational changes like glycosylation which can also affect binding 

affinity68. 

 

Now that data-driven modeling has provided information about key IgG and FcR species 

involved in cell-mediated functions, mechanistic modeling offers the opportunity to deconvolve 

the complex set of personalized and genetic factors involved in vaccine protection to elucidate 

mechanisms to maximize protection in all vaccinees. 

1.5 Mechanistic modeling will give new insight into personalized differences in Fc-mediated 

vaccine responses 

 Mechanistic or “theory-driven” modeling techniques can use the results of data-driven modeling 

(only the most critical sets of interconnected components) and any prior knowledge of how they 

interact with one another and test mechanistic hypotheses of how interventions and interactions 

may affect the outcome of interest in individual cases. Many techniques fall under theory-driven 

modeling, such as stochastic agent-based modeling (ABM)91,92 and deterministic partial 

differential equation (PDE) modeling93,94,  but one of the most common approaches is ordinary 

differential equation (ODE) modeling95–98. 
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ODE models are constructed using a system of ordinary equations that can quantitatively 

calculate the abundance of different system components over time, based on known interactions. 

Unlike PDEs, which account for spatial aspects of the system and become more complicated, 

ODEs assume a well-mixed system like blood and plasma and primarily utilize concentration 

and affinity data. For example, models of the dynamics of CD4+ T cell depletion were used to 

quantify the difference in dynamics of T cell depletion between different HIV strains99. A recent 

study using ODEs tested different models representing different hypothesized mechanisms to 

explain new dynamics observed in phase I clinical trial testing the administration of broadly 

neutralizing monoclonal antibodies in HIV infected patients100.  

 

A small number of ODE-based models of FcR interactions with antibodies have been developed, 

primarily in cancer treatment settings where the neonatal FcR (FcRn) interacts with therapeutic 

IgGs101–106, and to explore IgG multivalency in the context of cancer107,108. To date, these 

approaches have not been applied to understand personalized differences in Fc-mediated immune 

functions after vaccination.  

 

ODE models are uniquely capable of utilizing personalized concentration data to mechanistically 

represent a system, allowing for in silico hypothesis testing, saving both time and resources. 

Using ODEs to represent Fc-mediated immune complex formation allows for multiple levels of 

complexity in model construction. Model complexity can span the spectrum from representing 

multivalent in vivo complex formation on cells with multiple FcR types 107,108 to representing a 

single monoclonal IgG binding in a cell-free assay depending on the scope of the research 

question. Additionally, the complexity of the model structure can quickly be iterated when model 

predictions are inaccurate, such as adding a competitive species like IgA or removing a less 

influential species like IgG2 that could be causing the noise. Given accurate initial 

concentrations and affinity values, ODE models can quantitatively predict the concentration of 

Fc-mediated immune complexes in various situations, such as in different individuals, and 

projected into different genetic backgrounds. System dynamics can be monitored in each 

individual throughout in silico experiments that capture concentrations of intermediary 

complexes at intervals impossible in vitro, which can help form new mechanistic hypotheses. 

Model simulations can predict how altering each concentration and affinity parameter will 
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quantitatively change complex formation, identifying which are most influential. Finally, in 

silico experimentation can determine which in vitro or in vivo experiments should be performed; 

for instance, when IgG1 is identified as influential, model simulations can quickly test the 

addition of hundreds of different IgG1 concentration boosts and determine which five would be 

beneficial to test experimentally, saving time and resources.   

1.6 Structure of thesis 

On the foundation built by data-driven knowledge, vaccine trial outcomes, and mechanistic 

modeling, I present a dissertation developing a framework for mechanistic ODE modeling of Fc-

mediated immune complex formation and demonstrate its potential to understand personalized 

differences in IgG and Fc receptor features that underly variability in FcR activation after 

vaccination. The approach will allow us to improve current vaccine interventions rationally.  

 

In the following aims, I have developed, validated, and used a model we specifically developed 

to represent the high-throughput assays currently being used to predict ADCC activation in 

personalized vaccine trial samples (Figure 1.1). Our goal was to construct a model as 

approachable by vaccine researchers as possible while representing the complexities that arise 

with multiple IgG subclasses and personalized and genetic differences in both concentration and 

affinity (Figure 1.1). We aimed to use this model to guide follow-up experimentation, vaccine 

design, and future data collection alongside vaccine trials towards the goal of providing 

efficacious and equal vaccine protection in all individual and genetic scenarios. We approached 

this challenge with the following aims: 

 

Aim 1:  Elucidate the effects of personal variability in IgG subclass concentration profiles on 

FcR complex formation 

 Aim 1a: create and validate an ODE model of FcR complex formation 

 Aim 1b: use model to evaluate the effect of variation in IgG subclass concentration 

 

Aim 2:  Isolate host genetic factors affecting IgG subclass concentration profiles and affinity to 

FcR to reveal genetic vulnerabilities in FcR activation 
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Aim 2a: use the model to evaluate the effect of IgG1 allotype (alters IgG subclass 

concentrations) and FcR polymorphisms (alters the affinity of FcR to all IgG subclasses) 

 Aim 2b: determine optimal vaccine interventions for different genetic backgrounds 

 

Completion of these aims will be presented in the following format: Chapter 2 presents 

published work that describes the model structure and validation (aim 1a), the effects of 

personalized variation in IgG subclasses (aim 1b), and how IgG1 allotype affects complex 

formation (aim 2a). The related supplemental materials for this work are presented in Appendix 

A. Chapter 3 presents recently submitted work that utilized the same framework to describe 

how genetic factors (IgG1 allotype and FcR polymorphism) affecting IgG subclass 

concentrations and affinity to FcRs influence FcR complex formation (aim 2a) in addition to 

predicting the optimal intervention approaches needed for each genetic background (aim 2b). 
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Figure 1-1 Mechanistic modeling approach 
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2.1 Abstract 

Immunoglobulin G (IgG) antibodies that activate Fc-mediated immune functions have been 

correlated with vaccine efficacy, but it is difficult to unravel the relative roles of 

multiple IgG and Fc receptor (FcR) features that have the capacity to influence IgG-FcR 

complex formation but vary on a personalized basis. Here, we develop an ordinary differential-

equation model to determine how personalized variability in IgG subclass concentrations 

and binding affinities influence IgG-FcγRIIIa complex formation and validate it with samples 

from the HIV RV144 vaccine trial. The model identifies individuals who are sensitive, 

insensitive, or negatively affected by increases in HIV-specific IgG1, which is validated with the 

addition of HIV-specific IgG1 monoclonal antibodies to vaccine samples. IgG1 affinity to 

FcγRIIIa is also prioritized as the most influential parameter for dictating activation broadly 

across a population. Overall, this work presents a quantitative tool for evaluating personalized 

differences underlying FcR activation, which is relevant to ongoing efforts to improve vaccine 

efficacy. 

2.2 Introduction 

Vaccines are a cornerstone of modern-day global public health interventions, with neutralizing 

antibody (Ab) titers used as the most common correlate of protection64,65. For antigenically 

variable pathogens (including HIV), induction of long-lasting, broadly neutralizing antibodies 

via vaccination has been challenging because they quickly escape the highly specific antibody 

recognition required for neutralization64–67. Instead, a number of recent studies have highlighted 

the importance of cellular Fc effector functions, including Ab-dependent cellular cytotoxicity 

(ADCC) and Ab-dependent cellular phagocytosis (ADCP), which are activated when the Ab Fc 

region forms immune complexes with antigens and Fc receptors on innate immune cells69–72. The 

only human HIV vaccine trial to demonstrate significant efficacy to date (the RV144 Thai trial: 

60% efficacy at 1 year and 31.2% efficacy at 3.5 years after vaccination) did not induce broadly 

neutralizing Abs46,47,57,109. Instead, follow-up analysis identified non-neutralizing Abs with the 

capacity to mediate Fc effector functions, including ADCC, increased Ab avidity to HIV 

envelope protein (env) and tier-1-neutralizing antibodies as correlates of reduced infection risk57. 

These results and others from passive Ab-transfer, macaque studies underscore the importance of 

https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/immunoglobulin-g
https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/fc-receptor
https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/binding-affinity
https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/erdosteine
https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/immunoglobulin-g1
https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/monoclonal-antibody
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Fc effector functions in vaccine-mediated protection against HIV and other antigenically variable 

pathogens84,110. Since RV144, a number of follow-up HIV vaccine trials have been designed to 

improve immunogenicity by including additional vaccine boosts, by varied DNA priming, or by 

changing the vaccine adjuvant, with limited success58–62,111. The inability to replicate RV144 

results and achieve widespread protection in subsequent trials highlights the need to better 

understand the quantitative mechanisms that underpin Fc receptor (FcR) activation after 

vaccination and how those mechanisms may vary across populations of individuals. 

 

The formation of immune complexes that activate Fc effector functions is highly variable in 

individuals and is determined by personalized Ab and FcR features that are modulated by host 

genetics and post-translational alterations (Figure A.S1)68. The relative concentration of 

pathogen-specific immunoglobulin G (IgG) Ab subclasses can vary widely among individuals 

(although generally by rank order IgG1 > IgG2 > IgG3 > IgG4). IgG sub-classes also bind with 

varying affinities to FcγRs (in general, IgG1 and IgG3 engage all FcγRs with comparatively 

greater affinity than do IgG2 or IgG4 [Figure 2.1C; Table A.S1]), and additional affinity 

variation occurs in individuals as a result of genetic and post-translational modifications, such as 

FcR polymorphisms, IgG allotypes, and IgG glycosylation89. Previous studies have confirmed 

that differences in IgG subclass concentrations influence Fc activation and decline with time 

after vaccination52,79. Analysis of RV144 samples indicated that elevated levels of IgG1 and 

IgG3 were associated with an improved Fc-effector profile, and depletion of IgG3 resulted in 

decreased Fc effector functions52. Follow-up analysis of RV144 also revealed that a decrease in 

vaccine efficacy over time (60% at 1 year to 31.5% at 3.5 years after vaccination)57 paralleled a 

rapid decrease in HIV-specific IgG3 levels after vaccination (from >80% at 2 weeks after 

infection52 to 3% by week 52). To combat that decline in pathogen-specific IgGs over time and 

to improve Fc effector functions, vaccine ‘‘boosting’’ regimens (repeated vaccination) have been 

developed. Paradoxically, however, repeated vaccination may have negative effects by skewing 

subclass profiles toward IgG2 and IgG4, which bind FcRs with weaker affinity and induce 

weaker Fc effector functions. VAX003 (a predecessor to RV144) vaccine trials demonstrated 

that repeated vaccine boosting (seven repeated vaccines over 3.5 years) elevated total IgG 

antibody levels but skewed subclass profiles (elevated IgG2 and IgG4) to less-functional Fc 

responses52–55. Overall, these studies suggest that IgG subclass concentration profiles are critical 
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for dictating Fc effector complex formation52, but personalized variability makes it challenging 

to identify which humoral response components elicit optimal Fc activation, especially in the 

context of other factors (such as FcR polymorphisms and IgG glycosylation) that have the 

capacity to influence parallel changes in IgG-FcR binding. 

Antigen-specific antibody FcγR immune complex formation can be detected in vaccine samples 

using recently developed recombinant FcγR dimers, which have been described as a high-

throughput and sensitive method that mimics FcγR engagement at the immunological synapse73. 

Formation of these FcγR immune complexes correlates with a range of in vitro cellular Fc 

effector assays, including ADCC and ADCP, and these complexes are now widely used as 

surrogate high-throughput assays to assess Fc effector functions against a range of diseases, 

including HIV, influenza, and malaria74–78. In parallel, newly developed methodologies in 

systems serology research have employed ‘‘data-driven’’ (also called ‘‘machine learning’’) 

computational approaches to identify unique humoral signatures of IgG and FcR features that 

characterize vaccine responses52,68,81–83. This approach has been valuable for identifying systems 

of antibody and FcR features that are associated with a vaccine response or cellular function, 

although one remaining challenge is that they do not provide mechanistic insight into the 

relationship between personalized differences in IgG and FcR features and vaccine response 

heterogeneity in populations of individuals. Here, we use an ordinary differential equation 

(ODE) approach to elucidate IgG and FcγR features that account for personalized differences in 

IgG-FcγR complex formation and validate a model for HIV target epitopes in human vaccine 

samples. With this model, we are able to identify mechanisms by which individuals may be 

differentially sensitive to the RV144 vaccine, and we validate results experimentally with the 

addition of HIV-specific monoclonal Abs (mAbs) to individual vaccinee samples. Using a 

personalized sensitivity analysis, we also identify parameters that would best influence complex 

formation broadly across a population of individuals. Overall, this approach provides a 

quantitative framework for understanding how personalized differences in IgG and FcR features 

contribute to variability in IgG-FcR complex formation after vaccination. 

2.3 Results 

2.3.1 Model predictions of IgG-FcR complex formation validated in an Fc multiplex assay 
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To gain insight into how IgG and FcR variability in individuals may influence IgG-FcR complex 

formation, we constructed an ODE model to predict total bound, dimeric antigen-IgG-FcγR 

complexes formed at steady state (ant:IgG:IgG:FcγR-FcγR) as a function of concentration and 

binding of IgG1, IgG2, IgG3, and IgG4 to antigen and FcγR(Figure 2.1). The model assumed 

two IgG binding sites per antigen protein to represent the simplest complex that reflects 

activation through FcγR cross-linking. Total ant:IgG:IgG:FcγR-FcγR complex formation was 

chosen as the output because antigen-specific IgG cross-linking of FcγR (engagement and 

clustering of multiple FcγRs) induces the activation of innate immune effector cells to mediate 

Fc functions and can be compared with steady-state experimental values measured using high-

throughput multiplex assays. Importantly, we constructed the model such that it could be applied 

to any target antigen and FcR, although we chose to focus primarily on the HIV env glycoprotein 

120 (gp120) strain A244 (env), one of the proteins used in the RV144 vaccine regimen, and 

FcγRIIIa, the FcγR upstream of ADCC (a correlate of protection in RV144 trial)57. To obtain 

parameters, we measured median fluorescent intensity (MFI) of antigen-specific IgG1, IgG2, 

Figure 2-2 Model schematic 

(A) An example set of reversible reactions describing the sequential binding of IgG1 to antigen (ant) and dimeric FcγR with the 
respective forward (kon) and reverse (koff) reaction rates. 
(B) Ordinary differential equations were used to predict total HIV ant-IgG-FcγR complexes formed as a function of concentration 
and binding affinity of ant, IgG subclasses, and FcγR. The model assumes a single FcγR type. Reversible reactions are 
represented by double-ended arrows. Model output was the sum of all dimeric FcγR complexes formed (boxed in black) at steady 
state. 
(C) The baseline parameters for FcγRIIIa-V158 complex formation with the following sources: αSPR measurement from pooled 
purified IgG from HIV infected individuals. All IgG subtypes share one affinity value (unpublished data). βKeq measured in 
Bruhns et al.88. γThe average estimated IgG concentrations from individuals 1–30 in the RV144 data in this manuscript (see 
STAR Methods for notes on conversion from MFI to mM unit). δConcentrations used in the multiplex experimental protocol. 
(D) Equations describing the example reactions in (A). Reactions follow mass-action kinetics and consist of a forward reaction 
(on rate, kon, multiplied by the concentrations of the substrates) and a reverse reaction (off rate, koff, multiplied by the 
concentration of the product of the forward reaction). Differential equations for change in each complex over time were 
generated for each complex. See also Table A.S1 and Figure A.S1. 

https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/immunoglobulin-g1
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IgG3, and IgG4 in 105 RV144 vaccinee plasma samples and estimated personal concentrations 

based on a reference IgG1 concentration (Figure 2.1C)112. Although not useful for absolute 

concentration predictions, these estimated concentrations allowed for predictions of relative 

complex formation. We approximated baseline affinity parameters for pooled IgG to antigen 

from surface plasmon resonance (SPR) measurements of HIV-infected patient plasma (Figure 

2.1C). Affinity for each antigen-specific IgG subclass to each FcγR was estimated from 

previously published literature (Figure 2.1C; Table A.S1; the low concentration of antigen-

specific IgG subclasses in plasma makes it technically difficult perform SPR on each subclass for 

each individual)88. We used this information to predict relative ant:IgG:IgG:FcγR-FcγR complex 

formation (nM) in each individual and validated it with matched experimental measurements 

(MFI) of dimeric, recombinant, soluble (rsFcγR) complex formation measured in multiplex 

assays (as described above) in a subset of the same individuals (n = 30)74. We validated the 

model for two FcγRIIIa polymorphisms, including higher-affinity FcγRIIIa-V158 (Figures 2.2A 

and A.S2A) and lower-affinity FcγRIIIa-F158 (Figure S2B), along with FcγRIIa-H131 (Figure 

A.S2C), finding good agreement between rank-order model-concentration pre-dictions and 

experimental MFI measurements in a log10-log10 space, in which MFI and concentration are 

expected to have a linear relationship within the dynamic range (Spearman r = 0.92, root-mean-

square error [RMSE] = 246.0; Spearman r = 0.90; Spearman r = 0.89, respectively; all p < 

0.0001). We also performed validation for one other target antigen: HIV clade B gp120 from the 

BaL strain with FcγRIIa-H131, FcγRIIIa-F158, and FcγRIIIa-V158, again, finding good agreement 

between rank-order model predictions and experimental measurements, despite the lower 

concentrations leaving the linear dynamic range (Spearman r = 0.96, r = 0.95 and r = 0.98, 

respectively, for HIV clade B gp120 BaL; all p < 0.0001; Figures A.S2D–A.S2F). Although 

model predictions closely mirrored experimental measurements in most individuals, they were 

moderately less accurate for individuals with higher FcR complex formation. Careful inspection, 

most visibly for FcγRIIIa-F158, revealed that these individuals (especially vaccinees 4, 12, 18, 

and 23; Figures 2.2A and A.S2) were unique in that all had IgG1 concentrations greater than 1 

SD above the group average. We speculate that minor deviations in this group may be due to the 

fact that our baseline model used average binding affinity parameters (for env and FcγRIIIa) that 

do not accurately reflect personalized differences that may arise from glycosylation or Ab Fab 

epitope recognition, which we predict would have a greater influence on individuals with high 
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IgG1 (discussed in greater detail below). These differences may also arise from differences in 

units of model output and experimental measurements (concentration versus median fluorescent 

intensity [MFI], respectively). 

2.3.2 Sensitivity analysis highlights the importance of IgG1 and IgG3 for HIV env activation 

of FcγRIIIa 

Focusing on HIV env gp120 strain A244 (env), the main protein antigen used in RV144, and 

FcγRIIIa, the main FcR involved in natural killer (NK) cell-mediated ADCC, we next performed 

a global uncertainty and sensitivity analysis113 to identify parameters that are key drivers in 

activating the formation of the env-IgG-FcγRIIIa complex. In this analysis, complex formation 

(output) was calculated for 2,000 unique sets of parameter values (i.e., IgG1–4 concentrations 

and binding affinities to env and FcγRIIIa, respectively), sampled from uniform-probability 

density functions tailored to each parameter (Figure 2.1C). Notably, partial rank-correlation 

coefficients (PRCCs) calculated for each parameter (initial concentrations and affinities) 

suggested that IgG1 and IgG3 were the only globally significant subclasses. For these 

parameters, higher PRCC values indicated greater influence on complex formation. IgG1 and 

IgG3 parameters were important in terms of both concentration (PRCC = 0.79 and 0.12, 

respectively) and affinities to FcR (kon PRCC = 0.45 and 0.06, respectively) and HIV (IgG1 kon 

PRCC = 0.08), with IgG1 considerably more sensitive than IgG3 parameters (Figures 2.2B and 

Figure 2-3 Model validation and global sensitivity analysis for HIV env and RV144 samples 

(A) Model predictions for dimeric FcγRIIIa-V158 complex formation were compared with rsFcγRIIIa-V158 multiplex experimental 
measurements for 30 RV144 vaccinee samples (labeled 1–30) (Spearman correlation coefficient of 0.92, p < 0.0001). 
(B and C) A global uncertainty and sensitivity analysis133 of initial concentration (B) and binding parameters (C), in which partial 
rank-correlation coefficient (PRCC) indicates output sensitivity to parameters. kon indicates forward reaction rates, and 
koff indicates reverse reaction rates. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, >∗∗∗p < 0.0001. 
See also Figures A.S2, A.S3, and A.S4. 
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2.2C). This was unsurprising given that both have a high affinity to FcγRIIIa and greater relative 

average plasma concentration compared with other subclasses (Figure 2.1C). The importance of 

IgG1 and IgG3 parameters were also observed for the lower-affinity FcγRIIIa polymorphism 

(FcγRIIIa-F158)(Figure A.S3). The sensitivity analysis also illustrated that IgG1 and IgG3 affinity 

to FcRs was more influential than IgG1 and IgG3 affinity to the HIV env, emphasizing the 

possible greater importance of genetic and post-translation modifications that influence Ab Fc 

region affinity (such as glycosylation and FcR polymorphisms) over modifications that influence 

Fab affinity to the target. Although this analysis was focused on monomeric gp120 because of its 

relevance to RV144, the fact that IgG1 affinity to env was not a critical parameter in the model 

suggests that strain-related differences in affinity would not influence results. Interestingly, FcR 

complex formation was also significantly sensitive to env and FcR concentrations, which has 

implications for variability in FcR complex formation in tissue compartments with different 

levels of FcR expression and virus dissemination. To start with the simplest possible model, IgG 

binding cooperativity was not initially included in the model. To determine whether that could 

influence results, a second model framework was created in which a cooperativity constant (kc) 

was included for every binding interaction of a second IgG114. A global sensitivity analysis for 

each FcR (kc was varied from 0.01 to 100) indicated that the cooperativity constant was not a 

significant parameter in any of the models and, so, was not included in the remaining analysis 

(Figure A.S4). 

2.3.3 Model reveals personalized differences in the benefit of increasing IgG1 

Because IgG1 and IgG3 concentration were both identified as sensitive parameters in the global 

sensitivity analysis and correlated with enhanced Fc functions in the RV144 trial, we used the 

model to further explore the landscape of complex formation as IgG1 and IgG3 concentrations 

were altered together over 2,500 physiologically relevant combinations to predict complex 

formation (Figure 2.3A).  

This analysis predicted a sensitive range of IgG1 concentration between 18 and 252 nM, in 

which small changes in HIV-specific IgG1 would increase complex formation, but insensitivity 

above that range. The model additionally suggested that increases in IgG3 concentration could 

lead to even greater complex formation starting at 4.6 nM, with a steeper slope to indicate more 

sensitivity to smaller increases in IgG3 and a much higher limit. The IgG3 occurred at IgG3 
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levels of 589 nM, 192X the median IgG3 concentration of the vaccinees (Figure A.S5A). 

Unexpectedly, this analysis illustrated how high IgG1 (greater than 252 nM) may negatively 

affect complex formation if IgG3 is also high (greater than 21.6 nM). Inspection revealed that 

this occurred because of a lower IgG1 binding affinity for FcγRIIIa compared with IgG3; 

therefore, at high concentrations, IgG1 can outcompete IgG3 for the env and reduce the overall 

affinity of immune complexes to FcγRIIIa. This effect is also seen in the lower affinity 

polymorphism FcγRIIIa-F158 (Figure A.S5B). Results from the global sensitivity analyses for 

FcγRIIa-H131 and FcγRIIa-R131 suggested that IgG1 parameters were even more dominant 

because of an even lower binding affinity of IgG3 for FcγRIIa compared with FcγRIIIa (Figure 

A.S3). Using experimentally measured values for env A244-specific IgG1 and IgG3 

Figure 2-4 Combined changes in IgG subclass concentrations identifies an optimal range of antigen-specific IgG1 and IgG3 

(A) Model predictions for env:IgG:IgG:FcγRIIIa:FcγRIIIa complex formation at steady state (z axis) for 2,500 simulations 
over a range (0.004×–20×) of the IgG1 and IgG3 baseline initial concentration combinations (x and y axis). Grid colors 
represent complex formation levels, which were determined based on the IgG1 plateau: below the IgG1 plateau (<0.77 nM, 
white), on the IgG1 plateau (0.77–0.98 nM; pink), and above the IgG1 plateau (>0.98 nM, green). RV144 vaccinee samples 
(n = 105) were plotted (black circles) at their corresponding individual env-specific IgG1 and IgG3 concentrations. 
(B) Gradients in the direction of IgG1 and IgG3 were calculated for each individual as a measure of the immediate sensitivity 
of each vaccinee to changes in IgG1 or IgG3 concentration. A two-tailed Wilcoxon matched-pairs signed-rank test indicated 
the IgG1 gradient was significantly greater than that of IgG3; p < 0.0001. 

(C–F) Complex formation level achieved (below IgG1 plateau, white; on IgG1 plateau, pink; above IgG1 plateau, green) at 
baseline and under the following conditions: fold change of either IgG1, IgG3, or both at either 2× (C), 5× (D), 10× (E), or 20× 
(F) the individual baseline concentrations. The data labels on the stacked bar graph indicate the total number of vaccinees that 
achieved that respective activation level and all those below it. 

See also Figure A.S5. 
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concentration in 105 RV144 participants, we plotted each individual on the generated predictive 

surface (Figure 2.3A) and found that unique combinations of IgG1 and/or IgG3 concentrations 

would be required to boost complex formation for each individual. A comparison of the gradient 

(slope) calculated from the surface for each vaccinee in their immediate IgG1 and IgG3 

directions indicated that significantly more vaccinees fell in the IgG1-sensitive region (i.e., 

increasing IgG1 would result in increased complex formation) than in the IgG3-sensitive region 

(Wilcoxon matched-pairs signed-rank test; p < 0.0001; Figure 2.3B). Visual inspection of the 

surface also suggested that some individuals were predicted to be sensitive to both IgG1 and 

IgG3 (Figure 2.3A) and that a few were predicted to have reduced complex formation with 

increases in IgG1 levels also seen with a single negative IgG1 gradient (Figure 2.3B). 

To illustrate this concept more concretely, we used the model to simulate a theoretical vaccine 

boosting regimen that increased HIV-specific IgG1 or IgG3 individually or simultaneously by 

2X, 5X, 10X, and 20X in each individual. We categorized the complex formation achieved in 

relation to the complex formation on the IgG1 plateau by tallying the number of individuals that 

achieved a complex formation ‘‘below IgG1 plateau’’ (<0.77 nM), ‘‘on IgG1 plateau’’ (0.77–

0.98 nM; on IgG1 plateau +10%), or ‘‘above IgG1 plateau’’ (>0.98 nM) in each case (Figures 

2.3C–2.3F). Results illustrated how complex formation on the IgG1 plateau (pink bars; 0.77–

0.98 nM) could be achieved in approximately one-quarter of individuals (27/105) with 2X IgG1 

(Figure 2.3C) and in most (98/105) with 10X IgG1 (Figure 2.3E). Notably, however, complex 

formation above the IgG1 plateau (green bars; 0.98 nM) would require high IgG3 without an 

increase in IgG1. To reach complex formation above the IgG1 plateau, most individuals (72/105) 

would require at least 20X IgG3 (Figure 2.3F). Importantly, these IgG3 additions must occur 

without the addition of IgG1, which significantly decreased the proportion of complex formation 

above the IgG1 plateau in comparison with IgG3 alone in the 20X cases (binomial test; p = 

0.0001; Figure 2.3F). The simulations also illustrated how large additions (20X) of IgG1 and 

IgG3 together could prevent complex formation above the IgG1 plateau because of competition 

between IgG1 and IgG3 to form complexes as described above. Intriguingly, two individuals in 

our population already had the capacity to induce complex formation above the IgG1 plateau at 

baseline; however, simulated boosting with IgG1 alone reduced complex formation on the IgG1 

plateau in those individuals (Figures 2.3E and 2.3F). Although there were a limited number of 

IgG3-high individuals in the RV144 cohort evaluated in this study (n = 105), it is possible that 
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more exist across the entire RV144 study (more than 16,000 participants), as well as in other 

related trials that employed boosting, including RV305 and RV30660. Overall, these results 

suggest that vaccine interventions aimed at increasing HIV-specific IgG1 are expected to 

increase complex formation in most individuals, but reach a limit, and that different individuals 

are predicted to be sensitive to IgG1 based on proximity to that limit. Furthermore, they suggest 

that high concentrations of IgG1 may reduce complex formation in individuals with high levels 

of IgG3. 

2.3.4 Experimental validation of IgG1 sensitivity predictions  

To validate the concept of differential IgG1 sensitivity experimentally, we used the model to 

select a subset of individuals predicted to be insensitive or sensitive to IgG1 concentration and 

added a monoclonal IgG1 Ab to serum samples from those individuals. Because the multiplex 

assay requires high-affinity antibodies to ensure binding to the pathogen, we selected an HIV-

specific IgG1 monoclonal antibody, PGT121, reported to bind with high avidity to clade B HIV-

env proteins84,115,116; however, PGT121 binds comparatively weakly to A244117. We, therefore, 

Figure 2-5 Experimental validation of IgG1 sensitivity 

(A) Measured gp120 BaL-specific initial IgG1 and IgG3 concentrations were used to predict FcγRIIIa-V158 complex formation at 
steady state (z axis) for RV144 vaccinee samples (n = 105; black circles). Individuals were selected based on predicted IgG1 
sensitivity: “responders” (blue circles; vaccinees 9, 15, 18, 19, 24, 26, 27, and 30) and “non-responders” (orange circles; vaccinee 
1, 3, 4, 12, 13, 16, 22, and 29). 
(B and C) Model predictions (circle) and experimental measurements (triangle) of fold change in complex formation for IgG1 
responders (blue) and non-responders (orange) with the addition of either 34 (B) or 140 (C) nM monoclonal PGT121 IgG1. ∗p < 
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, >∗∗∗p < 0.0001, ns indicates p value ≥ 0.05 by ordinary one-way ANOVA. 
See also Figure A.S5. 
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measured clade B HIV BaL gp120-specific IgG subclass concentrations in each individual and 

plotted them on the generated IgG1 and IgG3 surface as described above (Figure 2.4A).  

 

We chose a group of individuals that the model predicted to be sensitive to increases in BaL 

IgG1 (we termed them ‘‘IgG1 responders’’; blue; vaccinees 9, 15, 18, 19, 24, 26, 27, and 30) and 

a group that was predicted to not be sensitive to IgG1 (we termed them ‘‘IgG1 non-responders’’; 

orange; vaccinees 1, 3, 4, 12, 13, 16, 22, and 29; Figure 2.4A) and added an HIV-specific IgG1 

monoclonal Ab to each (34 and 140 nM) before measuring changes in IgG-FcγRIIIa complex 

formation with multiplex assays described above. Overall, model predictions were not 

significantly different than experimental measurements for both responders and non-responders 

at both concentrations (one-way ANOVA with multiple comparisons; non-responders: 34 nM, p 

> 0.9922; 140 nM, p > 0.9996; responders: 34 nM, p = 0.3581; 140 nM, p = 0.9258), and IgG1 

responders demonstrated a significantly higher fold change in complex formation experimentally 

(5-fold and 7-fold) than non-responders did (1.3-fold and 1.3-fold) after addition of 34 and 140 

nM IgG1 (one-way ANOVA with multiple comparisons; p = 0.0004 and p = 0.0150, 

respectively; Figure 2.4B). Model predictions were also significantly correlated with 

experimental measurements for responders and non-responders (Spearman; 34 nM addition: r = 

0.80, p = 0.0003; 140 nM addition: r = 0.84, p = 0.0001; Figures A.S5C and A.S5D). 

2.3.5 IgG1 allotype may significantly influence IgG-FcR complex formation 
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We next used the model to assess whether IgG concentration differences arising from genetic 

background could have significantly reduced FcγR-IgG complex formation in HVTN702 

vaccinees compared with that of RV144. Recent work indicates IgG1 allotype can influence 

vaccine-specific IgG subclass distribution in individuals, with G1m1,3 generally having greater 

IgG1 and IgG3 but less IgG4 than G1m-1,3 and G1m190. These allotypes have been linked to 

ethnicity118, with G1m1,3 allotype likely more prevalent in individuals of Asian ethnicity119, and 

G1m-1,3 and G1m1 allotypes likely more prevalent in white individuals and in those of Black 

African ethnicity118. One key question is whether IgG1 allotype-linked changes in IgG subclass 

concentrations could be sufficient to significantly reduce IgG-FcR complex formation in HVTN 

702 vaccinees compared with RV144. We used IgG subclass distributions previously measured 

in HIV phase I vaccinees with known different allotypes90 to alter IgG1–4 concentrations in each 

RV144 vaccinee according to the other allotypes by calculating a conversion factor (Figure 

2.5A).  

Thus, we were able to ‘‘project’’ RV144 data used in this study (likely high prevalence of 

G1m1,3119) onto the G1m-1,3 and G1m1 allotypes expected to be prevalent in the HVTN 702 

trial performed in South Africa118 (Figure 2.5B). Overall, the model predicted that there would 

be a significant reduction in IgG-FcR complex formation in G1m1 and G1m-1,3 allotypes, likely 

Figure 2-6 IgG1 concentration differences resulting from Gm allotype are predicted to 
significantly alter FcR complex formation 

(A) Conversion factors for each initial IgG concentration from G1m1,3 to indicated 
allotypes. Projections were simulated by multiplying each vaccinee’s initial IgG 
concentrations by the respective conversion factors and performing the simulations 
according to the baseline protocol. 
(B) Model predicted complex formation for FcγRIIIa-V158 in G1m-1,3 (n = 105; black 
circles) and G1m1 (n = 105; white circles) compared with the original data, assumed to 
be G1m1,3 (n = 105; red circles) ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, >∗∗∗p < 0.0001, 
using the Friedman test with Dunn’s multiple comparisons test. 
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because of reductions in IgG1 for G1m1 and G1m-1,3 in comparison with G1m1,3 (rather than 

changes in IgG3 and IgG4). For this reason, the model suggests higher boosts of IgG1 

concentration may be more important in the South African population of the HVTN 702 trial 

than it would be in the Thai population of the RV144 trial. Overall, results illustrate how this 

approach can be used as a hypothesis-testing tool to isolate and evaluate factors that may 

contribute to failed vaccine trials. 

2.3.6 IgG1 binding affinity for FcR is important for increasing FcγRIIIa complex formation 

broadly across a population  

After observing the importance of varying individual sensitivities to two parameters (IgG1 and 

IgG3 concentration), we performed a personalized single-parameter sensitivity analysis for each 

individual in our study, predicting complex formation after altering each parameter over 0.004X 

to 20X baseline values for that person. A sensitivity metric (change in complex formation/change 

in the input parameter) was calculated for each parameter and used to illustrate the resulting 

personalized, single-parameter sensitivities (Figure 2.6A).  
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We then evaluated complex formation ‘‘below IgG1 plateau’’ (<0.77 nM), ‘‘on IgG1 plateau’’ 

Figure 2-7 Personalized, single-parameter sensitivity analysis illustrates universal sensitivity of IgG1 affinity for FcγR 

(A) For each vaccinee (x axis, labeled 1–105), parameters (y axis) were altered individually 0.004×–20× the baseline, and a 
sensitivity metric was calculated by dividing the change in complex formation by the change in the parameter multiplier (color 
bar). 

(B) The number of vaccinees at each activation level (below IgG1 plateau, white: < 0.77 nM below the IgG1 plateau; on IgG1 
plateau, pink: 0.77 – 0.98 nM, on IgG1 plateau +10%; or above IgG1 plateau, green: >0.98 nM, >10% above plateau) for each 
parameter perturbation, based on the maximum complex formation level achieved over the seven simulations from 0.004× to 20× 
for each parameter. The data labels on the stacked bar graph indicate the total number of vaccinees that have achieved that 
respective complex formation level and all those below it. 

See also Figure A.S6. 
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(0.77–0.98 nM; on IgG1 plateau +10%), or ‘‘above IgG1 plateau’’ (>0.98 nM), as described 

above. We observed the same variability in individual sensitivity to IgG1 and IgG3 concentration 

parameters, consistent with the variability in baseline IgG1 and IgG3 concentrations seen in our 

previous analysis (Figure 2.3A). Specifically, most individuals were sensitive to IgG1 

concentration, but sensitivity plateaued in accordance with the IgG1 plateau observed in Figure 

2.3A because 103/105 patients were limited to complex formation on or below the IgG plateau at 

any level of IgG1 concentration 0.004X–20X (Figure 2.6B). Likewise, we saw variability in 

IgG3-related parameters that reflects the small number of individuals within the IgG3-sensitive 

region on Figure 2.3A, with 72 reaching complex formation above the IgG1 plateau, 11 on the 

IgG1 plateau, and 22 below the IgG1 plateau for some IgG3 concentrations of 0.004X–20X 

(Figure 2.6B). All but two individuals (vaccinees 82 and 94, who both had very high IgG4 

levels) were not sensitive to changes in IgG2 and IgG4 parameters, with only 4–8 vaccinees 

reaching complex formation on or above the IgG1 plateau with alterations in these parameters, 

reinforcing the deleterious effect of high IgG4 concentrations seen in the VAX003 trial. Perhaps 

the most interesting outcome of the personalized, single-parameter sensitivity analyses was that 

most all individuals were extremely sensitive to (1) IgG1 Fc affinity to FcR (105/105 reached 

complex formation above the IgG1 plateau with a 0.004X change in the koff; Figure 2.6B); and 

(2) FcR concentration (103/105; Figure 2.6B). Of note, IgG1 Fc affinity and FcR concentration 

remain the most broadly sensitive parameters in personalized, single-parameter sensitivity 

analyses of FcγRIIIa-F158, FcγRIIa-H131, and FcγRIIa-R131, with less IgG3 sensitivity seen in 

FcγRIIa, as expected (Figure A.S6). Overall, there was a significantly higher proportion of 

complex formation above the IgG1 plateau with changes in kon and koff IgG1-FcR than with 

changes in IgG1 concentration (binomial test; p < 0.0001). These results place a high priority on 

physiological or therapeutic alterations that could influence IgG1 affinity for FcR, such as 

glycosylation, and has important implications for individuals with different FcγRIIIa 

polymorphisms (which alters affinity of the FcR for all IgGs). In terms of glycosylation, model 

results predict significant differences are expected to arise from IgG1 Fc glycosylation in the 

RV144 vaccinees we evaluated, but not from Fab glycosylation or from Fc glycosylation of other 

IgG (2–4) subclasses (Figure A.S7A). Model predictions also suggest that significant differences 

would be expected to arise from IgG1 binding-affinity alterations because of FcγRIIIa 

polymorphisms in this population of RV144 vaccinees (Figures A.S7B and A.S7C). 
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2.3.7 The model reveals synergistic effects of combined changes in IgG1 concentration and 

IgG1 FcγRIIIa binding affinity 

Given the variability in individual sensitivity to IgG1 concentration, we next hypothesized that 

IgG and FcR modifications that influence IgG1 affinity for FcγRIIIa (including FcR 

polymorphism and glycosylation) have the potential to have synergistic effects when changed in 

combination with IgG1 concentration. This would mean that IgG1 Fc glycosylation and FcR 

polymorphism would have differential effects on FcγR activation across individuals, depending 

on an individual’s levels of HIV-specific IgG1. To test that idea across a range of perturbations, 

we increased IgG1 concentration and FcγRIIIa binding affinity separately and in combination by 

2X, 5X, and 10X to reflect therapeutically relevant alterations that could be achieved by 

glycoengineering (Figure 2.7A).  

 

We selected these perturbations based on potential concentration changes and previously 

reported affinity changes related to glycosylation of the IgG1 Fc region120–123 (Table A.S2). 

Interestingly, this analysis illustrated how alterations in affinity of IgG1 to FcγRIIIa may be most 

effective for increasing FcγRIIIa complex formation broadly across vaccinated individuals. For 

example, although a 2X increase in IgG1 concentration results in complex formation at the IgG1 

plateau in 26% (27/105) of individuals, a 2X increase in FcγRIIIa binding affinity would be 

predicted to result in a complex formation above the IgG1 plateau in 40% of individuals (42/105) 

(Figure 2.7B). Compellingly, although a 5X increase in concentration results in complex 

formation on the IgG1 plateau in most (75%; 79/105) individuals, a 5X increase in binding 

affinity would result in complex formation above the IgG1 plateau in most (82%; 86/105) 

individuals (affinity change results in significantly more complex formation above the IgG1 

plateau by a binomial test; p < 0.0001; Figure 2.7B). model, the respective median increases are 

predicted to be 0.33 nM and 1.4 nM, for a sum total change of 1.7 nM. However, tuning them 

simultaneously in the model by 5X results in a 2.7 nM increase in complex formation, a 57% 

increase over what would be expected from simple summation. The model predicted that 

combined changes were significant compared to additive individual changes across all conditions 

evaluated (Wilcoxon matched-pairs signed-rank test; all p < 0.0001; Figures 2.7C–2.7E). This 

result suggests that synergistic effects may arise from combinatorial increases in both IgG1 
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concentration and IgG1 FcR affinity that would not be apparent from studying each feature in 

Figure 2-8 Combined changes in IgG1 concentration and IgG1 Fc binding result in synergistic changes in complex formation 

(A) Predicted complex formation for each vaccinee at baseline and when IgG1 concentration and IgG1 binding affinity (kon) are 
increased separately or together. Color bar indicates complex formation. 
(B) The number of vaccinees at each complex formation level (below IgG1 plateau, white; on IgG1 plateau, pink; above IgG1 
plateau, green) for each condition in (A).  

(C–E) Complex formation resulting from (1) simple addition of complex formation predicted from separate initial IgG1 
concentration and IgG1-FcγR affinity parameter perturbations (“Additive”) at 2× (C), 5× (D), or 10× (E); or (2) simultaneous 
perturbations of IgG1 concentration and IgG1-FcγR affinity within the model (“Combined”). Comparison made with a two-tailed 
Wilcoxon matched-pairs signed rank test with α = 0.05. >∗∗∗p < 0.0001. 
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isolation. 

2.4 Discussion 

Here, we present a quantitative approach for understanding how personalized variation in IgG 

and FcγR features may contribute to variability in cellular FcR activation after vaccination. Our 

results have important implications in the context of failed HIV vaccine trials that were modeled 

upon RV144. It is possible that larger numbers of boosts and alternative adjuvants used in other 

trials may have had a limited effect on IgG-FcγRIIIa complex formation because of a plateau in 

the benefit of increasing IgG1. Furthermore, the model suggests that elevated IgG1 induced with 

boosting may even inhibit Fc responses in some individuals that have high IgG3. It is also 

possible that IgG subclass-distribution differences linked to genetic background (IgG1 allotype) 

have the potential to significantly reduce immune complex formation in follow-up RV144 trials 

in which G1m1,3 allotypes are less prevalent than G1m-1,3 and G1m1 (such as HVTN702). 

Given measurements of IgG1, IgG2, IgG3, and IgG4 in plasma samples from other vaccine 

trials, the analysis presented here could be usefully extended to directly address these questions. 

In contrast to highly variable individual responses to IgG subclass concentrations, model results 

highlighted the global importance of IgG1 affinity for FcγRIIIa and suggest that this may be the 

most effective way to increase FcγRIIIa activation broadly across a population. This is especially 

interesting in the context of a number of reported physiologically and therapeutically relevant 

perturbations to the IgG1 Fc region that could influence binding affinity, including FcR 

polymorphisms and glycosylation124,125. Results here suggest that vaccine adjuvants able to 

modulate IgG1 Fc glycosylation may be the most effective way to improve FcγRIIIa complex 

formation in many vaccinees. For example, a 2X increase in IgG1-FcR kon would boost 65% of 

vaccinee samples into at least complex formation on the plateau, whereas a 2X increase in IgG1 

concentration alone would promote complex formation on the plateau in only 28% of vaccinees. 

Furthermore, the model predicted that a 5X increase in IgG1-FcR kon would result in complex 

formation above the IgG1 plateau in 82% of the individuals we evaluated, which was not 

achievable with similar changes in IgG1 and IgG3 concentrations. Importantly, model 

predictions prioritize the importance of IgG1 Fc glycosylation across a multitude of other 

potential glycosylation modifications, including those to IgG2, IgG3, and IgG4 Fc regions as 

well as those that mediate Fab binding in all IgG subclasses. Previous studies have demonstrated 
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that different vaccine strategies induce varied antigen-specific antibody glycosylation126; 

however, specific adjuvant-mediated modulation of Fc-glycosylation is not yet possible. Model 

results may help guide the focus for future experimental measurements of glycosylation in 

vaccine samples. 

 

The approach presented here adds a complementary dimension to previous systems serology 

research, which has been based on data-driven computational approaches52,68,82,83,127–130. 

Although data-driven algorithms have been valuable for identifying signatures of antibodies and 

FcR features associated with vaccines and/or cellular functions, it has been challenging to gain 

insight into mechanisms that underpin heterogeneity across populations of individuals68. Our 

previous systems-serology analysis of the data from HIV vaccine trials (including RV144 and 

VAX003)  

identified important statistical associations between IgG1, IgG3, and Fc-effector functions in the 

RV144 trial but was not able to define mechanisms responsible for heterogeneity in Fc effector 

functions across individuals52,83. The mechanistic model presented here builds on that by 

illustrating how individuals may be differentially sensitive to vaccine regimens that increase 

IgG1 concentration and identifies a mechanism by which some individuals may be negatively 

affected by an increase in IgG1. It also highlights the importance of IgG1 affinity for FcγRIIIa as 

a critical parameter for increasing FcγRIIIa activation and ADCC broadly across populations of 

individuals. Altogether, these results complement information obtained from previous data-

driven analyses. 

 

This model is a simple reconstruction of key events understood to be involved in FcγRIIIa 

activation upstream of ADCC and represents a first step toward the quantitative understanding of 

intercellular IgG-FcR signaling. Our current model only considers FcγRIIIa, a single FcγR type 

believed to be upstream of ADCC, and a single HIV epitope (env) that was central to RV144 

vaccination. Although it provides insight into concepts of personalized mechanisms that may 

limit FcγRIIIa complex formation after RV144 vaccination, predicting vaccine efficacy and the 

full quantitative mechanisms underlying responses to treatment in humans will be more complex. 

Future iterations of this work could include multiple epitopes to assess competition or a range of 
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other infectious diseases, including SARS-CoV-2130, Mycobacterium tuberculosis, and Ebola, or 

even to enhance monoclonal antibody therapeutics69. 

 

Overall, the results of this study resonate with existing literature from HIV vaccine trials and also 

provide insights for maximizing FcγRIIIa complex formation after vaccination across patient 

populations. Especially surprising were quantitative insights that predicted limitations in vaccine 

platforms that induce large increases in HIV-specific IgG1, contrasted with a seemingly 

unlimited benefit of increasing IgG1 FcγRIIIa binding affinity. Computational methods may be 

valuable for accelerating and guiding future vaccine development because these methods can 

predict which component(s) of an Ab (Fab or Fc) have the greatest contribution to Fc effector 

functions and may save time and cost in experimental assays. Importantly, this approach could 

be useful for projecting vaccine trial results from one genetic background to another, providing 

information on the role of genetic parameters, independent of other variations in IgG and FcR 

features that occur across populations. Overall, we believe that this approach could help guide 

the development of future vaccine strategies against antigenically variable pathogens and 

understand personalized mechanisms that underpin FcR activation. 

2.4.1 Limitations of the study 

In this study, model predictions were validated with cell-free multiplex assays, which were 

necessary to overcome challenges associated with low sample volume and to provide a direct 

comparison between model predictions and experimental measurements. Future work involving 

cellular assays represents a critical next step. This will require consideration of FcγR cell-surface 

concentrations and activation thresholds associated with cellular function, which have not yet 

been accessible with the rsFcγR dimer-binding assays (complex formation is measured in MFI 

units). Additionally, linking vaccine efficacy to levels of FcγR complex formation would require 

the use of case-control vaccine-failure samples, which were not available for use in this study but 

could be evaluated in the future. 

2.5 STAR Methods 

2.5.1 Key Resources Table 
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Table 2-1 Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Human HIV-specific IgG1 mAb PGT121 Center for Antibody 

Development and 

Production, Scripts 

Research Institute 

N/A 

Polyclonal Anti-Human Immunodeficiency Virus Immune Globulin, 

Pooled Inactivated Human Sera (HIVIG) 

 

NIH AIDS Reagents 

program 

#3957 

Biological samples 

RV144 phase III clinical trial plasma samples U.S Military HIV Research 

Program (MHRP)58,74  

N/A 

Chemicals, peptides, and recombinant proteins 

HIV-1 Clade AE A244 gp120 NIH AIDS reagents #12569 

HIV-1 Clade B BAL gp120 NIH AIDS reagents #4961 

Influenza Hemagglutinin (HA) protein H3/Switzerland/2013 Sinobiological 11085-V08H 

Dimeric rsFcγR Hogarth lab, Burnet 

Institute73,74 

N/A 

SULFO-NHS-LC-BIOTIN NO-WEIGH 10 x 1mg 

 

Thermo Fisher Scientific A39257 

 

Bio-plex Pro Magnetic COOH Beads XX  

(XX refers to bead region) 

Bio-rad MC100XX-01 

Streptavidin, R-Phycoerythrin Conjugate (SAPE) Life technologies S866 

Deposited data 

De-identified personal RV144 IgG subtype concentration data 

(estimated from MFI measurements) 

This paper; Figshare 10.6084/m9.figshare.148

10397 

Data within Figures 2.2-2.7, A.S3-A.S11 This paper; Figshare 10.6084/m9.figshare.132

29162 

Software and algorithms 

Source code for simulations and analysis This paper; Figshare and 

Github 

10.6084/m9.figshare.132

29177 

Other 

Collection of deposited data and code from this paper This paper; Figshare 10.6084/m9.figshare.c.54

74580 

 

2.5.2 Resource Availability 

https://doi.org/10.6084/m9.figshare.c.5474580
https://doi.org/10.6084/m9.figshare.c.5474580
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Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Kelly Arnold (kbarnold@umich.edu). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

De-identified individual RV144 IgG subtype concentration data (estimated from MFI 

measurements) and all data within figures have been deposited at Figshare and are publicly 

available as of the date of publication. DOIs are listed in the Key resources table. All original 

MATLAB code for running personal simulations, surface simulations, and sensitivity analyses 

has been deposited at GitHub and linked through Figshare and is publicly available as of the date 

of publication. DOIs are listed in the Key resources table. 

Any additional information required to re-analyze the data reported in this paper is available 

from the lead contact upon request.  

2.5.3 Experimental Model and Subject Details 

RV144 samples 

RV144 phase III clinical trial plasma samples58 were provided by the U.S Military HIV Research 

Program (MHRP). Samples from week 26 (2 weeks post-vaccination) RV144 vaccine recipients 

(n = 30; n = 75 from two separate shipments) were evaluated using data from a previously 

published study74. All relevant human research ethics committees approved all experimental 

studies. All plasma samples were provided de-identified of demographics including gender and 

age. 

2.5.4 Method Details 
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Experimental methods 

HIV-specific multiplex IgG subclass, rsFcγR dimer-binding assay 

HIV-specific IgG subclass and recombinant soluble FcγR (rsFcγR) dimer binding multiplex data 

were used from a previously published RV144 study74. Extracted multiplex data included 

previously published IgG1, IgG2, IgG3, IgG4, rsFcγRIIa-H131, rsFcγRIIIa-V158, rsFcγRIIIa-F158 

dimer data from the customized multiplex or ELISA binding assays using HIV-1 Clade AE A244 

gp120 (NIH AIDS reagents catalog#12569), HIV-1 Clade B BAL gp120 (NIH AIDS reagents 

catalog #4961) recombinant protein antigens and Influenza Hemagglutinin (HA) protein 

(H3/Switzerland/2013, Sinobiological) as a positive control antigen, as nearly all individuals 

have previously been exposed to Influenza A virus. 

These dimeric rsFcγR assays have been applied to several HIV and other infectious disease 

studies, which have demonstrated that they correlate with and hence are predictive of in vitro 

cell-based ADCC and ADCP assays73–76,78. All multiplex data was reported as an arbitrary 

Median Fluorescence Intensity (MFI). 

For responder and non-responder IgG1 validation assays, multiplex assays were repeated as 

previously described74 with and without the addition of 5mg or 20mg (ie 34 and 140 nM) of 

human HIV-specific IgG1 mAb PGT121 (purchased from the Center for Antibody Development 

and Production, Scripts Research Institute). 

Surface plasmon resonance 

SPR was conducted as previously described131. Briefly biotinylated gp120 BAL (NIH AIDS 

Reagents) was immobilized onto a SA sensor chip at approximately 300, 500, and 800 response 

units. A blank flow cell with no immobilized ligand was used as a reference flow cell. Injections 

of 60 ml of purified HIV-IgG (NIH AIDS Reagents program) at 1:3 dilutions ranging from 0.5 to 

0.006 mg/ml were passed across flow cells at a flow rate of 20mg/ml, with subsequent 360s 

dissociation time to determine IgG disassociation. Regeneration after each injection used two 

pulses of 10 mM glycine HCl, pH 2.5. SPR measurements were conducted in HBS-EP buffer 

(0.01M HEPES (pH 7.4), 0.15M NaCl, 3mM EDTA, 0.005% [vol/vol]). Kinetic data were 

calculated using the BIA evaluation program, with data being fitted to the simplest 1:1 Langmuir 

binding model. 
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Computational methods 

MFI conversion to mM 

MFI measurements were converted to concentration measurements using a conversion factor 

based on a reference IgG1 concentration of 10,000 ng/mL112. For multiplex readings, when a 

standard is available there is a log-linear relationship between MFI and concentration when 

measurements are within the machine’s dynamic range132. Conversion formulas were based on 

this typical relationship. We assumed that MFI measurements were in the dynamic range and 

that the average IgG1 concentration was 10,000 ng/mL. The conversion factor found for IgG1 

was then applied to the remaining species within that given assay. This method was only used for 

IgG subclass concentrations and not complex formation first because the reference concentration 

is from a similar vaccine trial and is not measured directly from RV144 vaccinees. Furthermore, 

MFI of IgG subclasses and MFI of FcR complex formation were measured in different 

experimental assays, using different fluorescent detector reagents (ie each reagent has different 

relative fluorescence per molecule) such that absolute quantitative comparisons across assays are 

extremely difficult. Given these uncertainties, we are not comfortable converting our 

experimental FcR complex measurements to nM, implying a direct prediction of concentration. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 1 − 105 

𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑘𝑘𝑘𝑘𝑘𝑘 

𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 10,000
𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚

 

𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛/𝑚𝑚𝑚𝑚 

𝑐𝑐𝑐𝑐 =  
𝑙𝑙𝑙𝑙𝑙𝑙10(𝑟𝑟𝑟𝑟𝑟𝑟)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙𝑙𝑙𝑙𝑙10�𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼1�)
 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  10(𝑙𝑙𝑙𝑙𝑙𝑙10(𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛)∗𝑐𝑐𝑐𝑐) 

𝑚𝑚𝑚𝑚𝑛𝑛 =  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑚𝑚𝑚𝑚𝑛𝑛 ∗ 106
 

ODE model 

A system of ODE equations was created to describe the env-IgG-FcγR system in Figure 2.1B. 

We assumed no degradation or production of species over the short time span of the model. 
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Initial concentrations of lgG1, lgG2, lgG3, lgG4 were set for each individual using 

measurements made in sera samples from each vaccinee (see below). The average of these 

personal values for vaccinees 1-30 were used as the baseline measurements for initial IgG 

concentrations in the global sensitivity analysis. The initial concentrations of env (~25 nM) and 

rsFcγR dimer (~20 nM) were set based on multiplex experimental conditions described 

previously and annotated below (Figure 2.1C)74. The initial concentration of each complex was 

set to zero. Binding parameters for lgG1, lgG2, lgG3, lgG4, and FcγR dimers were set based on 

literature values88 while env binding parameters were determined via SPR measurements as 

described below (see Figure 2.1C and Table A.S1). We obtained KAs for each IgG subclass 

binding to FcγRIIIA-V158 from the literature88. We converted these KAs to kons by estimating a 

universal koff from pooled RV144 serum samples (0.01 s-1). We used MATLAB’s ode113 solver 

function to predict the concentration of each complex over 100000 s, with an absolute error 

tolerance of 1e-50, relative tolerance of 1e-10. We assumed sequential IgG antibody binding to 

env prior to engagement of any env-IgG-IgG complex with any FcγR dimer. We assumed no 

cooperativity in IgG binding env (affinity values are independent of the presence of another IgG 

on the same envelope protein). For antigen-IgG complexes containing two of the same IgG 

subclass we used literature values for the reported value of that subclass88. For complexes 

containing two different IgG subclasses, we averaged the two individual IgG subclass affinities. 

All parameters used (and sources) are reported in Figure 2.1C and Table A.S1. 

Sensitivity analysis 

We performed a global uncertainty and sensitivity analysis133 using population averages for 

baseline concentration parameters (Figures 2.2B, 2.2C, A.S3, and A.S4), as well as a 

personalized single-parameter sensitivity analysis, using personalized concentration parameters 

as baseline (Figures 2.6A and A.S6). In the global sensitivity analysis algorithm provided by the 

Kirschner lab at the University of Michigan (Figures 2.2B, 2.2C, A.S3, and A.S4), we assigned 

uniform probability density functions (pdfs) to each parameter (initial concentrations and 

affinities) with a minimum 0.004X of baseline and a max 20X of baseline for all parameters 

except kc (0.01X-100X and base-line = 1)133. These pdfs were sampled using Latin hypercube 

sampling (LHS) to create random combinations of parameter values. The model was evaluated 

under each of the 2,000 sets of random parameter combinations, allowing for a multidimensional 

exploration of the system. Partial rank correlation coefficient (PRCC) calculated within the 
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algorithm determined the correlation between each input variable’s variance throughout the 

multidimensional analysis and the output variable, giving a sensitivity measure for each 

parameter and a statistical significance of its effect on complex formation. 

Combinatorial IgG1 and IgG3 concentration parameter alterations (Figures 2.3 and A.S5) 

2,500 simulations were run with differing combinations of initial IgG1 and IgG3 concentrations. 

All combinations of 50 values were uniformly spaced on a logarithmic scale between 0.004X-

20X baseline concentration for Figures 2.3A and A.S5B and 0.004X-500X for Figure A.S5A for 

both IgG1 and IgG3 and were simulated with FcγRIIIa-V158 affinity parameters for Figures 2.3A 

and A.S5A, and for both polymorphisms in FcγRIIa and FcγRIIIa in Figure A.S5B. Results were 

plotted as a grid surface. We predicted individual complex formation (n = 105) based on IgG 

subclass 1-4 concentrations. Individuals were plotted as circles at their specific IgG1 and IgG3 

initial concentrations with their individually predicted complex formation concentration. 

Complex formation below the IgG1 plateau (< 0.77 nM, white), on the IgG1 plateau (0.77– 0.98 

nM, pink), and above the IgG1 plateau (> 0.98 nM, green) categories were defined based on the 

IgG1 plateau on the grid surface, with complex formation on the IgG1 plateau going from the 

plateau minimum to 10% higher than the plateau’s maximum value. The grid was colored based 

on the minimum threshold value achieved within each square. Simulations of IgG1, IgG3, or 

simultaneous fold changes were performed at 2X, 5X, 10X, and 20X of personal baselines. 

Vaccinees were binned into complex formation below, on, or above the IgG1 plateau under each 

of these conditions based on the previously mentioned thresholds. IgG1 and IgG3 gradients were 

calculated for each surface grid intersection (n = 2,500) using MATLAB’s built-in gradient 

function, which calculated the numerical gradient based on the complex formation data (z-axis) 

and the uniform logarithmically spaced increments of IgG1 and IgG3 concentration (x and y-

axis). Each vaccinee’s gradient (n = 105) was approximated by using the gradient value at the 

nearest grid intersection corresponding to their personalized IgG1 and IgG3 concentrations. 

IgG1 sensitivity validation (Figure 2.4) 

We simulated the addition of either 34 or 140 nM IgG1 to each of the 30 vaccinees we had 

baseline complex formation measurements from to predict 8 IgG1 responders (highest fold 

change in complex formation from baseline) and 8 non-responders (lowest foldchange in 

complex formation from baseline after IgG1 addition). In order to experimentally validate our 
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model and predictions, HIV-specific monoclonal PGT121 IgG1 was added in the specified 

amounts to each plasma sample prior to being assessed for FcγRIIIa dimer binding via multiplex 

assay. Due to the large quantities of monoclonal Ab required for this assay and the need to use a 

monoclonal Ab with described ability to bind FcγRIIIa, we used PGT121 IgG1, which binds 

with high avidity to Clade B HIV envelope proteins, but binds comparatively weakly to A244 

strains84,115–117. Thus we performed these simulations using HIV Clade B gp120 BAL-specific 

IgG1-4 concentrations. Complex formation for each responder and non-responder with each 

addition were captured by the model and measured in the multiplex assay and then converted 

into concentration using the same methods as IgG conversion. 

Allotype simulations (Figure 2.5) 

We projected complex formation into differently allotyped populations by first calculating a 

conversion factor under the assumption that our original dataset is entirely G1m1,3. We used 

time-matched (26 weeks; n = 6) human IgG subtype concentration data from a Phase I study on a 

candidate vaccine containing HIV-1 clade C CN54 gp140 envelope protein112. In collaboration 

with the authors, we grouped vaccinees by allotype (G1m-1,3 n = 3; G1m1,3 n = 1; G1m1 n = 2) 

and took the mean of each IgG subtype for each allotype. We calculated conversion factors for 

each IgG by dividing the given allotype’s mean concentration by G1m1,3s mean concentration 

as follows: 

𝑐𝑐𝑐𝑐𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺1𝑚𝑚𝑚𝑚 

𝑚𝑚𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺1𝑚𝑚𝑚𝑚 

𝑐𝑐𝑐𝑐𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑚𝑚𝐺𝐺1𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝐺𝐺1𝑚𝑚1,3
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�  

To run the simulations to project the RV144 data available to us into G1m-1,3 and G1m1 

populations, we converted each IgG initial concentration for each vaccinee based on the 

respective conversion factor as follows: 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺1𝑚𝑚𝑚𝑚𝑥𝑥 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺1𝑚𝑚𝑚𝑚 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺1𝑚𝑚𝑚𝑚𝑥𝑥 =  𝑐𝑐𝑐𝑐𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺1𝑚𝑚1,3

𝑥𝑥  

With the converted IgG initial concentrations, the simulations were performed as described in the 

ODE model section above. 
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Personalized single-parameter sensitivity analysis (Figures 2.6 and A.S6) 

We altered each parameter (kon and koff for each reaction and initial species concentrations) one 

at a time at three values above and below baseline (0.004X, 0.02X, 0.1X, 1X, 2.5X, 5X, and 

20X) and calculated the predicted complex formation as total env-IgG-FcγR complexes at steady 

state. The sensitivity metric for each parameter was defined based on the following equation: 

𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗 =  sensitivity metric to parameter i for vaccinnee j 

𝑓𝑓𝑓𝑓  =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  [0.004 0.02 0.1 1 2.5 5 20] 

𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗  =  [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓0.004𝑋𝑋_𝑖𝑖,𝑗𝑗 ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓20𝑋𝑋_𝑖𝑖,𝑗𝑗] 

 

𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗 =  
max(𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗) − min(𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗)

max(𝑓𝑓𝑓𝑓)−𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑓𝑓)
=

max(𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗) − min(𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗)
20−0.004

 

 

We summarized the personal sensitivity simulation by binning vaccinees into low medium or 

high activation based on the maximum complex formation they achieve for each parameter when 

altered 0.004X-20X from baseline. 

Individual and combinatorial IgG1 concentration and Fc affinity simulations (Figure 2.7) 

We simulated alterations (2X, 5X, 10X, or 20X from baseline) in either IgG1 concentration, 

IgG1 kon to FcγRIIIa-V158, or both simultaneously. Each vaccinee’s complex formation was 

captured for under each condition and plotted on a heatmap. These results were summarized by 

binning vaccinees into complex formation below, on, or above the IgG1 plateau based on the 

previously mentioned thresholds for each condition. The combinatorial simulation results were 

compared to the additive result, based on the following formula for each alteration to each 

individual: additive complex formation = baseline + ΔIgG1 concentration alone + ΔIgG1-FcγR 

kon alone. 

Glycosylation simulations 

We obtained data on fold change in IgG1-FcγR affinity with each glycosylation type from the 

published literature120. We applied the maximum fold change in affinity (31X) seen in Dekkers et 

al. for FcγRIIIa-V158 to each IgG subtype’s Fc (kon IgGx-FcR) and Fab (kon IgGx-env) region 

individually to compare change in complex formation with the same change in affinity (Figure 

A.S7A). 
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FcγR polymorphism simulations 

We obtained FcγR polymorphism and class specific affinity parameters from the literature, 

calculated values listed in Table A.S188. The affinity values were reported in KA, and we 

converted each KA to a kon using a constant estimated koff of 0.01 s-1. We ran a simulation for 

each vaccinee at each set of FcγR parameters and then compared each polymorphism with a two-

tailed Wilcoxon matched-pairs signed-rank test performed in GraphPad Prism with α = 0.05. 

Software 

ODE modeling, sensitivity analyses, and 3-D plots were completed using MATLAB 2019a 

(MathWorks, Natick, MA). Visualization of the remaining plots, and statistics were completed 

using GraphPad Prism version 8.0.0. Custom MATLAB code is available, as stated in the Key 

resources table, to run the simulations necessary to generate the data (steady-state complex 

formation concentrations) used in this analysis. Additionally, this code will replicate Figures 

2.2A–2.2C, 2.3A, 2.3B, 2.4A, and 2.6A. All other figures can be replicated using the data 

generated by these simulations or by making small alterations to code as indicated in comments. 

Quantification AND Statistical Analysis 

Figures 2.2, A.S3, and A.S4: To evaluate model validation (Figure 2.2A), a two-tailed Spearman 

correlation was performed in GraphPad Prism on the measured MFI and predicted nM complex 

formation values with α = 0.05. The global sensitivity analysis (Figures 2.2B, 2.2C, A.S3, and 

A.S4) and partial rank correlation coefficient (PRCC) calculation method, which has been 

previously published133, uses Latin hyper-cube sampling (LHS) to randomize input parameters 

and calculates PRCC for each parameter by calculating the linear correlation between the 

parameter input and complex formation output while discounting the linear effects of all other 

parameter inputs. The significance of each PRCC value is tested by comparing its T value, which 

accounts for the number of other parameters and number of samples, to a critical t-value giving a 

p-value used to determine if the PRCC is significantly different from zero. Statistical details are 

included in the figure legends.  

 

Figure 2.3: The gradients were compared using a two-tailed Wilcoxon matched-pairs signed-rank 

test performed in GraphPad Prism with α = 0.05. To compare 10X and 20X IgG3 additions, we 

used a binomial test performed in Graphpad prism on the proportion of high versus the 
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combination of medium and low activating individuals with α = 0.05. We used the 10X IgG3 

addition proportions as the expected values (45 above the IgG1 plateau, 60 on or below the IgG1 

plateau) and the 20X proportions as the observed values. To compare IgG1 & IgG3 additions to 

IgG3 alone additions, we used a binomial test performed in Graphpad prism on the proportion of 

individuals with complex formation above the IgG1 plateau versus the combination of 

individuals with complex formation on or below the IgG1 plateau with α = 0.05. We used the 

IgG3 alone addition proportions as the expected values for each respective addition level and the 

IgG1 & IgG3 proportions as the observed values for each respective addition level. Statistical 

details are included in the figure legends. 

 

Figure 2.4: IgG1 addition model and experimental measurements within each addition level 

(34nM or 140nM) were compared using an ordinary one-way ANOVA performed in GraphPad 

Prism with multiple comparisons and the Tukey test with a single pooled variance and no 

matching or pairing (α = 0.05). Only the results between model and experimental results within 

the same condition or responders and non-responders within the same condition are reported in 

the figure. Statistical details are included in the figure legends. 

 

Figure 2.5: Complex formation for each Gm allotype was compared using a Friedman’s test with 

Dunn’s multiple comparison test in GraphPad Prism (α = 0.05). Statistical details are included in 

the figure legends. 

 

Figure 2.6: To compare proportions of complex formation above the IgG1 plateau, we used a 

binomial test performed in Graphpad prism on the proportion of complex formation above the 

IgG1 plateau versus the combination of individuals with complex formation on or below the 

IgG1 plateau with α = 0.05. To compare proportions of individuals with complex formation on 

the IgG1 plateau, we used a binomial test performed in Graphpad prism on the proportion of 

complex formation on the IgG1 plateau versus the combination of individuals with complex 

formation above and below the IgG1 plateau with α = 0.05. We used the IgG1 concentration 

proportions as the expected values when comparing to koff IgG1-FcR, and IgG3 concentration 

proportions as the expected values when comparing to IgG1 concentration proportions. 

Statistical details are included in the figure legends. 



 46 

 

Figure 2.7: The additive and combination complex formations for each fold change (2X, 5X, 

10X) were compared using a two-tailed Wilcoxon matched-pairs signed-rank test performed in 

GraphPad Prism with α = 0.05. To compare proportions of complex formation above the IgG1 

plateau, we used a binomial test performed in Graphpad prism on the proportion of complex 

formation above the IgG1 plateau versus the combination of individuals with complex formation 

on or below the IgG1 plateau with α = 0.05. To compare proportions of complex formation on 

the IgG1 plateau, we used a binomial test performed in Graphpad prism on the proportion of 

complex formation on the IgG1 plateau versus the combination of individuals with complex 

formation above and below the IgG1 plateau with α = 0.05. We used the affinity alone alteration 

proportions as the expected values and the concentration alone alteration proportions as the 

observed values. Statistical details are included in the figure legends. 

Figure A.S2: To further evaluate model validation (Figure A.S2A), we calculated a log-log least-

squares fit of Measured MFIs versus Predicted concentration in GraphPad Prism and captured 

the RMSE. To evaluate model validation (Figures A.S2B–A.S2F), a two-tailed Spearman 

correlation was performed in GraphPad Prism on the measured MFI and predicted nM complex 

formation values from each dataset with α = 0.05. Statistical details are included in the figure 

legends. 

 

Figure A.S5: To evaluate model validation after IgG1 additions (Figure A.S5), a two-tailed 

Spearman correlation was performed in GraphPad Prism on predicted versus measured fold 

change in complex formation with α = 0.05. Statistical details are included in the figure legends. 

 

Figure A.S7: Change in complex formation with glycosylation of Fc or Fab regions of IgG1-4 

were compared using an ordinary one-way ANOVA performed in GraphPad Prism with multiple 

comparisons and the Tukey test with a single pooled variance and no matching or pairing (α = 

0.05). The complex formation in different FcR polymorphisms was compared using a two-tailed 

Wilcoxon matched-pairs signed-rank test performed in GraphPad Prism with α = 0.05. Statistical 

details are included in the figure legends. 
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3.1 Abstract 

Fc-mediated immune functions have been correlated with protection in the RV144 HIV vaccine 

trial and are important for immunity to a range of pathogens. IgG antibodies (Abs) that form 

complexes with Fc receptors (FcRs) on innate immune cells can activate Fc-mediated immune 

functions. Genetic variation in both IgGs and FcRs have the capacity to alter IgG-FcR complex 

formation via changes in binding affinity and concentration. A growing challenge lies in 

unraveling the importance of multiple variations, especially in the context of vaccine trials that 

are conducted in homogenous genetic populations. Here we use an ordinary differential equation 

model to quantitatively assess how IgG1 allotypes and FcγR polymorphisms influence IgG-

FcγRIIIa complex formation in vaccine-relevant settings. Using data from the RV144 HIV 

vaccine trial, we map the landscape of IgG-FcγRIIIa complex formation predicted post-

vaccination for three different IgG1 allotypes and two different FcγRIIIa polymorphisms. 

Overall, the model illustrates how specific vaccine interventions could be applied to maximize 

IgG-FcγRIIIa complex formation in different genetic backgrounds. Individuals with the G1m1 

and G1m1,3 allotypes were predicted to be more responsive to vaccine adjuvant strategies that 

increase antibody FcγRIIIa affinity (e.g. glycosylation modifications), compared to the G1m-1,3 

allotype which was predicted to be more responsive to vaccine boosting regimens that increase 

IgG1 antibody titers (concentration). Finally, simulations in mixed-allotype populations suggest 

that the benefit of boosting IgG1 concentration versus IgG1 affinity may be dependent upon the 

presence of the G1m-1,3 allotype. Overall this work provides a quantitative tool for rationally 

improving Fc-mediated functions after vaccination that may be important for assessing vaccine 

trial results in the context of under-represented genetic populations. 

3.2 Introduction 

Antibodies (Abs) are a vital component of the protective immune response elicited by 

vaccination. Immunoglobulin G (IgG) Abs that activate Fc effector functions are important for 

protection against a number of pathogens69,71,130,134,135 and have been correlated with protection 

in HIV vaccine trials57,83. Antigen bound IgG immune complexes can trigger Fc effector 

functions by the crosslinking of IgG Fc portions with Fc receptors on the surface of innate 

immune cells. Fc functional capacity is directly related to the number of complexes formed, 
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which is regulated by numerous factors including IgG subclass concentrations, availability of 

FcRs and their respective binding properties68. These properties vary in individuals and several 

studies have demonstrated that they are influenced by genetic factors including IgG1 allotypes 

and FcR polymorphisms88,90,136.  

 

Currently, four human IgG1allotypes (G1m1, G1m2, G1m3, G1m17) have been identified86. 

These allotypic determinants are inherited in a Mendelian pattern, i.e. sets of G1m haplotypes are 

inherited. G1m3 and G1m17 allotypes are mutually exclusive and refer to different amino acid 

changes at the same position137. G1m17 allotypes are almost always linked with G1m1 (written 

together as G1m1,17 but hereafter referred to as G1m1 in this text), whereas G1m3 can exist 

with or without G1m1 (e.g. G1m1,3 or G1m-1,3 respectively). Interestingly, common allotypes 

are shared within ethnic or genetic populations. Africans have an enriched prevalence of 

G1m1,17 allotypes, Caucasians have enriched G1m1,17 and G1m-1,3 allotypes while Asians 

have enriched G1m1,17 and G1m1,3 allotypes 118,119. Recent research suggests that IgG1 

allotypic variation is linked with IgG subclass concentrations, potentially due to allotype-linked 

variation in expression and degradation136. Importantly these allotype-linked differences in IgG 

subclass concentrations are also observed in an antigen-specific manner upon vaccination. For 

example a recent phase I HIV vaccine trial112 observed that G1m1 vaccinees (G1m1 & G1m1,3) 

reported to have higher HIV-specific IgG1:IgG2 ratios compared to the G1m-1,3 allotype, 

mainly driven by elevated HIV-specific IgG1 titres in G1m1 individuals90.  

 

In parallel, a range of FcγR polymorphisms have been identified in humans, some of which have 

greater Fc binding affinity and hence are associated with enhanced Fc functional capacity88,138–

140. Individuals carrying the high affinity FcγRIIa H131 polymorphism, most commonly 

associated with enhanced ADCP, have positive outcomes in both cancer 141 and infectious 

diseases, including HIV 142,143. The FcγRIIIa V158 polymorphism, with higher affinity than 

FcγRIIIa F158, has been associated with enhanced ADCC functionality and linked to better 

outcomes within the mAb cancer field144,145. Conversely, this same polymorphism has been 

associated with HIV disease progression146 and the lack of protection in the HIV VAX004 

vaccine trial 125. Though FcR polymorphisms clearly dictate affinity for IgG subclasses, their 
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overall role in FcγR activation is more ambiguous, especially in the context of variability in IgG 

subclass concentrations.  

 

To date, few studies have explored the relative roles of IgG1 allotypes and FcR polymorphisms 

in FcR activation after vaccination, as their distributions are not controlled in vaccine trials. In 

addition, it is difficult to unravel the parallel influences of both subclass concentrations and 

binding affinities that arise from differences in IgG1 allotype and FcγR polymorphism 

combinations. Recently, we computationally assessed the mechanistic underpinnings of IgG-

FcγR complex formation after vaccination and demonstrated that synergistic relationships can 

occur between antibody parameters that regulate FcγR activation, that would not be apparent 

from studying each in isolation 147 multiple immunogenetic changes may also have synergistic 

influences upon FcγR activation, which are greater than those that would be expected from 

simply summing changes evaluated in isolation. These are often too complex to be captured 

experimentally when parameters are examined individually. 

 

Here we use data from the HIV RV144 vaccine trial and a mechanistic computational model to 

assess the relative roles of IgG1 allotypes and FcγR polymorphisms in IgG-FcγRIIIa immune 

complex formation after HIV vaccination. We demonstrate how genetic background may 

influence an individual’s Fc functional response upon vaccination and suggest specific 

interventions that would most effectively improve IgG-FcγRIIIa immune complex formation in 

each allotype/polymorphism combination.  

3.3 Materials and Methods 

We applied an ordinary differential equation (ODE) model as previously published and validated 

with RV144 plasma samples147. The model predicts IgG-FcγR dimer complex formation 

(ant:IgG:IgG:FcγR:FcγR) at steady state as a function of IgG subclass, antigen, and FcR dimer 

concentrations. In the model, two IgG antibodies bind each antigen before forming a complex 

with dimeric FcR. We obtained parameters for the model from literature and with measurements 

made previously147 where median fluorescent intensity (MFI) of HIV env glycoprotein 120 

(gp120) strain A244 (env) specific IgG1, IgG2, IgG3, and IgG4 was measured in the plasma of 

105 RV144 vaccinees74. We converted MFI measurements into a relative concentration 
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measurement based on a reference concentration112 of HIV-specific IgG in a similar vaccine trial. 

The concentrations predicted throughout by the model are thus not to be used as absolute 

measures, but as relative measures.  

 

3.3.1 Evaluating combined IgG1 concentration and affinity parameter changes 

In order to evaluate the relative and combined roles of IgG1 allotype (i.e. IgG subclass changes) 

and FcR affinity ( i.e. FcR polymorphisms), IgG1 affinity for FcγRIIIA-V158 or IgG1 

concentration were held constant at its baseline value (listed in the parameter table in Figure 

3.1C), while the other parameter was varied over 50 values spanning 1.7-256 nM or 2e-6-8e-4 

nm-1s-1. Model outputs from all simulations were subtracted by the baseline complex formation 

to calculate the difference in complex formation for each condition. We simulated 2,500 

different combinations of IgG1 concentration and IgG1 affinity for FcγRIIIA-V158 spanning 1.7-

256 nM or 2e-6-8e-4 nm-1s-1 respectively while holding all other model parameters at baseline. 

We then subtracted each of these values by the model output with both IgG1 affinity and 

Figure 3-1 Model schematic 

(A) An example set of reversible reactions describing the sequential binding of IgG1 to antigen (Ag) and dimeric FcγR with the 
respective forward (kon) and reverse (koff) reaction rates. (B) Ordinary differential equations were used to predict total HIV ant-IgG-
FcγR complexes formed as a function of concentration and binding affinity of ant, IgG subclasses, and FcγR. The model assumes a 
single FcγR type. Reversible reactions are represented by double ended arrows. Model output was the sum of all dimeric FcγR 
complexes formed (boxed in black) at steady state. (C) The baseline parameters for FcγRIIIA-V158 complex formation with the 
following sources: αSPR measurement from pooled purified IgG from HIV infected individuals. All IgG subtypes share one affinity 
value (unpublished data). βKeq measured in Bruhns et al88 . γThe average estimated IgG concentrations from individuals 1-30 in the 
RV144 data in this manuscript (see methods for notes on conversion from MFI to mM unit). δConcentrations used in multiplex 
experimental protocol. (D) Equations describing the example reactions in panel A. Reactions follow mass action kinetics and consist 
of a forward reaction (on rate, kon, multiplied by the concentrations of substrates) and a reverse reaction (off rate, koff, multiplied by 
the concentration of the product of the forward reaction). Differential equations for change in each complex over time were 
generated for each complex. 
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concentration at baseline. To identify regions where synergy between IgG1 concentration and 

IgG1 affinity for FcγR occurred, we used element-wise subtraction of the additive simulations 

(parameters were altered in isolation and added together) from simulations where parameters 

altered together in the model. The range of possible IgG1 concentration values was calculated by 

multiplying the maximum and minimum calculated IgG1 concentrations in the RV144 plasma 

samples147 by each allotype conversion factor and taking the minimum and maximum results 

across all possible allotypes143. Maximum and minimum IgG1 affinity values were selected as 

the highest and lowest affinity glycosylation forms of IgG1 across all FcgRIIIA polymorphisms 
148.  

3.3.2 Evaluating Boosting of IgG1 concentrations in individuals with different FcγRIIIa 

polymorphisms 

In order to model how changes in IgG subclass concentrations (that may occur upon vaccine 

boosting) can influence IgG-FcγR complex formation in individuals with different FcγRIIIa 

polymorphism, we used the model to predict complex formation for each polymorphism by 

altering initial IgG1 and IgG3 concentrations from 0.004X to 20X baseline (post-vaccination 

measurements) in 2,500 different combinations. Affinity values for each FcγRIIIa polymorphism 

to each IgG subclass were used from previously published literature88. We used IgG1 and IgG3 

titers measured in RV144 vaccinees post-vaccination and after a simulated 170% IgG1 boost. 

This boosting value was chosen by using the highest fold change in HIV-specific Ab titers 

recorded in the RV306 follow up trial from 26 weeks (our initial post-vaccination timepoint) and 

after boosting in group 4b with AIDSVAX B/E and ALVAC-HIV at 18.5 months60. A Wilcoxon 

matched pairs signed rank test was used to evaluate the difference in predicted complex 

formation for each individual across the two polymorphisms, both before and after boosting. All 

parameters besides initial IgG1 and IgG3 remained at their baseline value listed in the parameter 

table (Figure 3.1C) for all the above-described simulations. Specific IgG1 and IgG3 values were 

chosen using MATLAB’s log spacing function, logspace(), to give 50 values between 0.004X 

and 20X baseline. 

3.3.3 Simulating IgG1 allotypes and glycosylation 
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Baseline IgG subclass initial concentrations from all 105 RV144 vaccinees were assumed to be 

the G1m1,3119 IgG1 allotype. These were then converted into G1m1 and G1m1,3 for simulations 

based on conversion factors for initial IgG1, IgG2, IgG3 and IgG4 concentration as previously 

published147 estimated using allotyped human plasma samples from previous a Phase I HIV 

vaccine trial112. To predict affinity changes resulting from glycosylation, we estimated those that 

would be expected from afucosylation of IgG1 by taking the highest fold change for affinity of 

IgG1 to FcγRIIIa-V158 (31X; 62*10-3 nM-1s-1) reported in the literature148. This high affinity 

glycosylation (afuscosylation with hyper-galactosylation and bisection) was compared to a 

baseline affinity (2*10-3 nM-1s-1).  

 

In order to evaluate affinity changes resulting from glycosylation, projected upon all vaccinees 

for each of the three allotypes, the IgG-FcR immune complex formation was simulated at 

baseline, and the difference between each individual’s complex formation at baseline and with 

glycosylation for each allotyped population and compared them with a Friedman test with 

Dunn’s multiple comparisons in GraphPad Prism.  

 

Allotype projections were performed as previously published147, by first calculating the 

conversion factor. Under the assumption that the original RV144 data was G1m1,3119, the 

conversion factor was calculated to generate the corresponding IgG subclass concentrations for 

the G1m-1,3 and G1m1 allotypes. To calculate this value, we found the mean concentration for 

each IgG within each allotype from human plasma samples analyzed in Kratochvil et al.112. 

Then, these values were divided by the corresponding mean IgG concentration for samples with 

the G1m1,3 allotype.  

𝑐𝑐𝑐𝑐𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺1𝑚𝑚𝑚𝑚 

𝑚𝑚𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺1𝑚𝑚𝑚𝑚 

𝑐𝑐𝑐𝑐𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑚𝑚𝐺𝐺1𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝐺𝐺1𝑚𝑚1,3
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�  

Each vaccinee’s initial IgG concentrations and baseline initial IgG concentrations were 

converted using the respective conversion factors as follows:  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺1𝑚𝑚𝑚𝑚𝑥𝑥 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺1𝑚𝑚𝑚𝑚 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺1𝑚𝑚𝑚𝑚𝑥𝑥 =  𝑐𝑐𝑐𝑐𝐺𝐺1𝑚𝑚𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺1𝑚𝑚1,3

𝑥𝑥  
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3.3.4 Determining preferred boosting method in IgG1 allotypes  

Simulations as above, projecting all 105 RV144 vaccinees as the three IgG1 allotypes and two 

FcRIIIA polymorphisms (FcγRIIIa-V158 and FcγRIIIa-F158) were calculated, providing 

predictions for six different genetic combinations (Figure 3.5A). In each of these six genotypes 

we then simulated a boost in either IgG1 initial concentration or kon IgG1-FcR (ie IgG1 affinity 

to FcR) by 10%, 25%, 50%, 75%, 100%, 250%, 500%, 750%, or 1000% above their personal 

baseline. The six genotypes were compared at baseline using a Friedman test with Dunn’s 

multiple comparisons in GraphPad Prism 9.  

 

To modify the original parameter to include the boost, a new concentration or affinity was 

calculated using the following formula, where the original parameter is specific to the individual 

and genotype: 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

3.3.5 Evaluating mixed allotype populations 

To determine the importance of affinity and concentration-based interventions within 10 mixed 

allotype populations, simulations were run as described above projecting all 105 RV144 

vaccinees into different allotypes. Within this analysis, 10 mixed allotype populations were 

simulated with varying proportions of individuals assigned to each allotype. Each allotype is 

represented in each population at 100%, 66%, 33%, 17%, or 0% (see Figure 3.6 for specific 

breakdowns). Each vaccinee (n = 105) was randomly assigned an allotype to fulfill the 

population breakdown. In populations where vaccinees couldn’t be evenly split into the 

population’s allotypes, remaining vaccinees were again randomly assigned an allotype (i.e. 70 

vaccinees assigned to G1m1, 18 assigned to G1m1,3 and 17 to G1m-1,3 in Population F). We 

performed this randomized vaccinee allotype assignment 25 times for each population to create a 

more robust and representative population n = 2,625 for each population. All simulations were 

run with FcγRIIIa-V158 affinity values. 
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3.4 Results 

3.4.1 Synergism between IgG1 concentration and IgG1 affinity 

Genetic background has the potential to influence both IgG1 concentration (via IgG1 allotypes) 

and IgG1 binding affinity for FcR (via FcR polymorphisms). In order to better understand the 

relationship between these two parameters and how they influence FcγRIIIa activation, we 

applied an ODE model to predict Antigen-IgG-FcR immune complex formation as both 

parameters were altered simultaneously over a physiological range of 2500 unique parameter 

combinations (Figure 3.2A). The resulting landscape illustrated the interdependence of these 

two parameters, and how simultaneous changes have the potential for a synergistic influence on 

complex formation. Specifically, IgG1 affinity was only effective for increasing complex 

formation, upon IgG1 titers surpassing specific concentration thresholds (around ~10-230 nM 

depending on the affinity value). Likewise, increasing IgG1 concentration had a limited effect, 

which was determined by IgG1 affinity. Furthermore, in situations where both IgG1 

concentration and IgG1 affinity were high (~200 nM and ~7e-4 nM-1s-1, respectively), the model 

predicted non-linear increases in complex formation, beyond what would be predicted from 

adding the changes resulting from both parameters individually.  

 

To illustrate the synergistic result of modulating multiple parameters more clearly, we created a 

second surface that predicted complex formation, if IgG1 concentration and IgG1 affinity were 

altered separately in the model and resulting changes were added together (Figure 3.2B). The 

surface represents what would be expected if changes in IgG1 concentration and affinity were 

considered separately in isolation, and notable features include: 1) the ability of each parameter 

to influence complex formation without the other; and 2) absence of the potential for very high 

complex formation when both parameters are high.  

 

To identify specific parameter ranges where synergisms or anergisms occur (combined changes 

are greater than or less than what would be expected from separate parameter changes added 

together), we next subtracted “additive” (parameters changed separately; Figure 3.2B) surface 

from the “combined” surface (parameters changed simultaneously; Figure 3.2A) to create 

Figure 3.2C. Positive regions of this surface (blue) indicate regions where combined parameters 

Figure 3-2 Landscape illustrating the relationships between IgG1 concentration and IgG1- FcγR affinity across the physiological 
landscape of parameters (2500 unique parameter combinations) 

(A) Model predictions for the change in complex formation from baseline when IgG1 initial concentration (x axis) and kon IgG1- 
FcγR (y axis) were altered individually and the resulting change in complex formation is added together (z axis). Color indicates 
predicted change in complex formation from baseline. (B) Model predictions for the change in complex formation from baseline 
when both parameters are altered simultaneously in the model. Color indicates predicted change in complex formation from 
baseline. (C) The difference between (A) and (B), illustrating parameter combinations where synergy occurs. Blue indicates positive 
synergy, where the combined parameter changes (B) result in greater complex formation compared to was predicted by separate 
changes added together (A), white indicates no synergy, and red indicates anergy; where the combined parameter changes (B) result 
in lower complex formation compared to was predicted by separate changes added together (A). 
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changes are much greater than what would be expected from adding separate changes, whereas 

the negative regions (red) represent parameter combinations where actual changes would be 

much less than what would be expected from  adding individual changes.  This landscape 

indicates the potential for synergistic complex formation (blue) when both concentration and 

affinity are high (102-230 nM, and 2.9e-5-7e-4 nM-1s-1). Interestingly it also illustrates the 

potential to overestimate complex formation when IgG1 affinity is high, but IgG1 concentration 

is low (1.7-102 nM, and 2.9e-5-7e-4 nM-1s-1). Altogether these results have important 

implications for how genetic background (which has the capacity to alter both IgG1 

concentration and IgG1 affinity for FcγR) may influence FcγR activation after vaccination and 

may allow for more rational design of vaccine interventions. 

3.4.2 FcR polymorphism influences FcγR activation after boosting  

One interesting result of the previous simulations in Figure 2 was that there is a limit in the 

effects of increasing IgG1 concentration alone, and at higher IgG1 concentrations, IgG1 affinity 

determines the limit. This result has implications for vaccine boosting in individuals with 

different FcR polymorphisms. We hypothesized that the effect of boosting (large changes in 

IgG1 concentration) would be limited in individuals with the low affinity FcγRIIIa-F158 

polymorphism, whereas it would be much higher in individuals with the higher affinity FcγRIIIa-

V158 polymorphism. Therefore we hypothesized that the differences in immune complex 

formation between the two polymorphisms would become even greater after boosting (compared 

to first vaccination). 
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To test this idea, we ran simulations for the high and low affinity FcγRIIIa polymorphisms by 

changing the affinity for all IgGs to FcγRIIIa according to published values88(FcγRIIIa-V158 light 

pink, and FcγRIIIa-F158 dark pink, respectively; Figure 3.3A) at 2,500 different initial IgG1 and 

IgG3 concentration combinations with all other parameters maintained using baseline values 

(FcγRIIIa-V158 light pink, and FcγRIIIa-F158 dark pink; Figure 3.3B). IgG1 and IgG3 have 

previously been identified as the significant IgG subtypes of importance147 due to IgG1’s high 

initial concentration and IgG3’s high affinity to FcR (Figure 3.1C and 3.3A). The resulting 

profile of both polymorphism surfaces revealed that changes in IgG1 concentration were 

predicted to increase complex formation up to a certain point, illustrated by a plateau around 300 

nM, after which no additional changes in complex formation would be predicted regardless of 

IgG1 increases. Comparing results for the two polymorphisms (light pink vs. dark pink surface) 

revealed that the biggest differences between polymorphisms occur in the plateaus regions, when 

IgG1 concentration is high; specifically, the FcγRIIIa-V158 polymorphism plateau is 66% higher 

than the FcγRIIIa-F158 plateau. 

Based on individual IgG1 and IgG3 initial concentrations measured in the RV144 plasma 

samples (n=105) we plotted each individual on both surfaces at baseline (light orange), and after 

a simulated boost60 in IgG1 concentration (dark orange; Figure 3.3B). After first vaccination, 

many vaccinees were predicted to be in an IgG1 sensitive region, regardless of FcR 

Figure 3-3 FcγR polymorphisms have a greater influence on complex formation after IgG1 boosting. 

(A) Baseline Keq of each IgG subtype to the high affinity FcγRIIIa-V158 polymorphism (light pink) and the low affinity FcγRIIIa-F158 
polymorphism (dark pink) as reported by Bruhns et. al 88. (B) Complex formation (z axis) predicted by the model for 2500 
combinations of initial IgG1 and IgG3 concentration (x and y axes) for FcγRIIIa-V158 (light pink) and FcγRIIIa-F158 (dark pink). 
Each dot represents an RV144 plasma sample (n=105) with respective initial IgG1 and IgG3 concentrations plotted post-vaccination 
(baseline-light orange), and after a simulated 170% (145 nm) boost of IgG1 (dark orange). The simulated boost magnitude was 
estimated based on the highest fold change seen in RV306 between 26 weeks and peak HIV specific IgG titre (2.64X in arm 4b) 60. 
(C) The difference in complex formation predicted between the FcγRIIIa-F158 and FcγRIIIa-V158 polymorphisms post-vaccination 
(light orange) and post-IgG1 boost (dark orange; Wilcoxon matched-pairs signed rank test; **** p-value < 0.0001). 
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polymorphism. However, an increase in antigen-specific IgG1 (similar to the boost applied in 

RV306) moves many vaccinees from the IgG1 sensitive region (30-300 nM) onto or nearing the 

plateau region, where complex formation is highly dependent on FcR polymorphism. Indeed, the 

difference in complex formation between the polymorphisms after boosting was significantly 

greater than it was at baseline (after first vaccination) (Wilcoxon matched-pair rank test, p < 

0.0001; Figure 3.3C).  

3.4.3 The G1m-1,3 IgG1 allotype is not predicted to be sensitive to IgG1 Fc glycosylation 

modifications 

Model results in Figure 3.2 revealed the potential for unexpected interactions between IgG1 

concentration and IgG1 affinity. In a setting with low IgG1 concentration, there is the potential 

that large increases in IgG1 affinity to FcγR will have little to no effect on IgG-FcγR complex 

formation. Conversely, at high IgG1 concentrations, results revealed the potential for non-linear 

increases in complex formation. Based on these observations, we used the model to assess how 

IgG1 concentration differences in IgG1 allotypes may influence sensitivity to FcR affinity 

modifications (e.g. glycosylation).   
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Previous studies suggest that IgG1 allotype alters all four IgG subclass concentrations, hence we 

used these measurements to estimate the median IgG1, IgG2, IgG3 and IgG4 concentrations for 

each allotype (Figure 3.4A) 112. As the G1m1,3 allotype is expected to be prevalent in the 

original RV144 (Thai) population, we assumed all original RV144 vaccinees (n=105) were of the 

G1m1,3 (Figure 3.4A, white bar) allotype 119 which is expected to have higher IgG1 and IgG3 

concentrations, compared to G1m1 (gray bar) and G1m-1,3 (black bar) which have higher IgG4.  

Using results in Figure 2, we plotted each IgG1 allotype on the surface based on expected 

Figure 3-4 Glycosylation differentially impacts IgG1 allotypes. 

(A) Expected IgG1, IgG2, IgG3, and IgG4 concentrations for G1m1,3 (white), G1m1 (gray), and G1m-1,3 (black) allotypes based 
on previously published work  112,147. (B) Model predictions for complex formation as IgG1 concentration and kon IgG1- FcγR are 
altered over physiological ranges (Figure 3.2B). Lines indicate IgG1 concentrations for three different IgG1 allotypes (G1m1,3 
(white), G1m1 (gray), G1m-1,3 (black)), and the affinity change expected from an afucosylation glycosylation modification (purple) 
compared to baseline (light blue). (C) The difference (Figure 3.2C) between the combined parameter change surface (Figure 3.2A) 
and the additive surface (Figure 3.2B). Lines indicate IgG1 concentrations for three different IgG1 allotypes (G1m1,3 (white), G1m1 
(gray), G1m-1,3 (black)), and the affinity change expected from an afucosylation glycosylation modification (dark blue) compared 
to baseline FcgRIIIaV158 (light blue).(D) Change in complex formation from baseline affinity to an afucosylated affinity in each 
allotype, G1m1,3 (white), G1m1 (gray), and G1m-1,3 (black) (Friedman test with Dunn’s multiple comparisons test; **** p-value < 
0.001). 
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median IgG1 concentration (Figure 3.4B-C). Using this same principle, we also added lines 

showing where the baseline affinity measurement is for FcγRIIIa-V158 (light blue, 2e-5 nM-1s-1) 

as well as potential maximal increases in affinity similar to what would be expected with an 

IgG1 Fc afucosylation modification (purple, 62e-5 nM-1s-1) based on values in the published 

literature 148. Results indicate that G1m1,3 and G1m1 allotypes are expected to follow similar 

trajectories, where increases in affinity would considerably increase complex formation after 

~3e-5 nM-1s-1 reaching complex formation levels of 6.5 nM and 5.2 nM respectively. Conversely 

for the G1m-1,3 allotype (lower IgG1 concentration) the model illustrates how similar 

glycosylation modification would result in much lower complex formation (only ~1.8 nM 

complex formation after a high affinity glycosylation modification (Figure 3.4B)).  

 

Plotting the same lines representing IgG1 allotypes and FcRs onto a second surface illustrating 

the differences between combined changes in concentration and affinity and the individually 

changed analysis, we see that at baseline FcγRIIIa-V158 affinity values (Figure 3.4C, light blue) 

the predicted combined effects of IgG concentration changes are not much different between an 

individual and additive method. In contrast, after afucosylation, the additive method would 

overestimate complex formation in G1m-1,3 by 4.3 nM, while it is only slightly different in 

G1m1 (1.1 nM) and G1m1,3 (0.08 nM) (Figure 3.4C). Using the same conversion factors as 

above, we projected every RV144 vaccinee from G1m1,3 into G1m1 and G1m-1,3, and 

simulated each individual’s complex formation after RV144 first vaccination and with the 

afucosylation change in affinity. Unsurprisingly, the change in complex formation with 

afucosylation was significantly different in each allotype following the trend of median IgG1 

concentration (Median change in complex formation: G1m1,3, 6.0 nM; G1m1 4.6 nM; G1m-1,3 

1.9 nM; Friedman test with Dunn’s multiple comparisons, all p<0.0001) (Figure 3.4D).  

3.4.4 IgG1 allotype determines whether vaccine boosts that increase IgG1 concentration vs. 

boost that increase IgG1 affinity would be more effective for improving FcR activation 

Our model results suggest that the effect of changes in IgG1 concentration varies depending on a 

given IgG1 affinity to FcR. One intriguing implication of this result is that individuals with 

different IgG1 allotypes (different baseline IgG1 concentration) could be differentially sensitive 

Click or tap here to enter text. 
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to vaccines that increase antibody titers (IgG1 concentration) vs. adjuvants that modify IgG1 

Figure 3-5 IgG1 allotype determines whether boosting IgG1 concentration or boosting IgG1 affinity (kon IgG1- FcγR) would be most 
effective for increasing complex formation. 

(A) Model predictions for complex formation of RV144 vaccinees (n=105) in two FcγRIIIa polymorphisms, FcγRIIIa-V158 (light 
pink) and FcγRIIIa-F158 (dark pink), and three IgG1 allotypes, G1m1,3 (original RV144 data), G1m1 and G1m-1,3. Polymorphisms 
were simulated by altering the binding affinities of each IgG subtype to FcγR as previously published88 and indicated in Figure 3.3A. 
Allotypes are simulated by multiplying each vaccinee’s IgG1, IgG2, IgG3 and IgG4 initial concentration by its respective conversion 
factor as previously published 147 and indicated in Figure 4A (Friedman test with Dunn’s multiple comparisons test comparing the 
two polymorphisms within each allotype; **** p-value < 0.001). (B) Simulated IgG1 concentration boosting in each allotype 
(G1m1,3, white; G1m1, gray; G1m-1,3 black) and polymorphism (FcγRIIIa-V158, light pink; FcγRIIIa-F158, dark pink) combination. 
Boosts were calculated by multiplying the individual’s baseline initial IgG1 concentration value by the boost levels and then this was 
added on top of each individual’s baseline. Color indicates median change in complex formation for each genetic background. (C) 
Simulated boosting of kon IgG1- FcγR in each allotype (G1m1,3, white; G1m1, gray; G1m-1,3 black) and polymorphism (FcγRIIIa-
V158, light pink; FcγRIIIa-F158, dark pink) combination. Boosts were calculated by multiplying the individual’s baseline kon IgG1- 
FcγR value by the boost levels and then this was added on top of each individual’s baseline. Color indicates median change in 
complex formation for each genetic background and boost as indicated. (D) The ratio of median change in complex formation with a 
boost in IgG1 concentration over median change in complex formation with a boost in kon IgG1-FcγR (affinity) at each boosting 
level. This ratio shows which type of boost is most effective for increasing complex formation (IgG1 concentration, purple; kon 
IgG1-FcγR, green) and when both are equally beneficial (white). 
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affinity via glycosylation. To explore this idea quantitatively, we simulated 6 different genotypes 

(FcγRIIIa-F158 and FcγRIIIa-V158 polymorphisms in the G1m1,3, G1m1 and G1m-1,3 allotypes). 

As expected we found significant differences in complex formation across all 6 genotypes 

(Figure 3.5A).  

 

We then simulated nine different boosts, 10%-1000% above values after first vaccination for 

either IgG1 concentration (Figure 3.5B) or IgG1 affinity (Figure 3.5C) in all vaccinees. We 

used the median change in complex formation for each genetic background and boosting level to 

create heatmaps that illustrate the expected resulting change in complex formation. Intriguingly, 

results illustrated how concentration boosting (increasing antibody titers) has a larger effect on 

the allotypes with lower initial IgG1 concentration (Figure 3.5B) and that affinity boosts have a 

larger effect on the allotypes with higher initial IgG1 concentration (Figure 3.5C).  

 

In order to definitively show which type of boosting is optimal for each boosting level and 

genetic background, we calculated the ratio of change in complex formation with a boost in IgG1 

concentration over change in complex formation with a boost in IgG1 affinity to FcγRIIIa 

(Figure 3.5D). The resulting heat maps illustrates how concentration boosting is predicted to be 

more beneficial than affinity boosting for the G1m-1,3 allotype until 750% (purple). The lower 

starting concentration of IgG1 in G1m-1,3 (median IgG1 25.62 nM) prevents affinity changes 

from improving complex formation until it reaches at least 1e-4 nM-1s-1. Conversely, model 

results indicated that the G1m1,3 and G1m1 allotypes (with higher starting IgG1 concentrations) 

would be most responsive to changes in affinity (Figure 3.5D). Overall, these results suggest 

specific vaccine interventions that may be differentially effective for inducing improved Fc 

effector functions for individuals with different IgG1 allotypes.  

3.4.5 Amount of G1m-1,3 allotype in a population determines whether boosting IgG1 antibody 

titers will be effective 

Given that the model predicts that IgG1 allotype drives the preferred boosting type and that 

many populations worldwide have different allotype distributions, we next simulated boosting in 

mixed allotype populations. These populations were simulated by randomly assigning vaccinees 

to an  
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Figure 3-6 In mixed allotype populations, the benefit of boosting IgG1 concentration vs. IgG1 affinity is dependent on the 
presence of the G1m-1,3 allotype. 

(A) Boosting of initial IgG1 concentration in mixed allotype populations (G1m1,3, white; G1m1, gray; G1m-1,3 black) for 
FcγRIIIa-V158. Color indicates predicted change in complex formation(B) Boosting of kon IgG1- FcγR in mixed allotype 
populations (G1m1,3, white; G1m1, gray; G1m-1,3 black). Color indicates predicted change in complex formation (C) The ratio 
of median change in complex formation with a boost in IgG1 over median change in complex formation with a boost in kon IgG1-
FcγR at each boosting level. This ratio indicates which type of boost is predicted to be most effective for increasing complex 
formation (IgG1 concentration, purple; kon IgG1-FcγR, green). 



 64 

allotype based on the given ratio of allotypes for the indicated population (Populations A-J; 

Figure 3.6). Each individual was then projected into their assigned allotype. To be robust in 

these assignments, this was repeated 25 times for each population and the data was pooled (n = 

2,625 for each population).  

 

We performed both IgG1 concentration and IgG1 affinity boosting as described above (Figure 

3.6). Overall, we found that the populations with majority G1m-1,3 (populations A-D) benefit 

more from concentration boosts, and populations higher in G1m1,3 benefit more from FcR 

affinity boosts (populations G, H, and J) (Figure 3.6A-B). Interestingly, population C, which 

was 50% G1m1,3, and 50% G1m-1,3, only gained minimal benefits from affinity boosts 

compared to populations G, H and J, (Figure 3.6B). When we evaluated the ratio of change in 

complex formation from a concentration boost over change with an affinity boost, we found 

IgG1 concentration boosting to be beneficial for almost all populations at the lowest boosting 

level (10-25%), but only remained beneficial at higher boosting levels in populations with a 

higher prevalence of G1m-1,3 allotypes (Figure 3.6C). Notably the level at which affinity 

boosting becomes more beneficial than concentration boosting seems to closely follow the level 

of G1m-1,3 within the population. Altogether this suggests specific guidelines for rational 

vaccine design to improve FcγRIIIa activation in future trials with mixed allotype populations.  

3.5 Discussion 

Here we identify specific mechanisms by which heterogeneity in FcγR activation after 

vaccination may be linked to IgG1 allotypes and FcγR polymorphisms. Importantly, we found 

that vaccine boosting regimens which increase IgG1 antibody titers may have limited utility in 

some allotypes (G1m1,3 and G1m1) and may be more effective in others (G1m-1,3). Instead, for 

G1m1,3 and G1m1 allotypes, vaccine boosting strategies that modulate IgG1 affinity to FcγR 

(e.g. via adjuvants that modify glycosylation) may be required to improve FcγR activation. The 

model also illustrates how the influence of FcγRIIIa affinity from different FcR polymorphisms 

is predicted to have limited influence upon FcR activation until higher IgG1 antibody titers are 

reached, such as those expected after vaccine boosting. These differences arise from synergistic 

relationships between IgG1 concentration and affinity for FcγR that could not have been 

predicted without a computational model.  
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The computational model also demonstrates how concurrent changes in antigen specific IgG1 

antibody titers and IgG1 affinity for FcγR may have more (synergistic), or less (anergistic) of an 

effect on FcγR activation than previously appreciated. These results suggest that focusing 

vaccine design on either concentration or affinity alone may not have the expected result. The 

model identified specific values for IgG1 affinity to FcγR (~10-4 nM-1s-1 at baseline IgG1 

concentration), that would need to be reached before changes IgG1 concentration will have a 

great effect (Figure 3.2). This can be visualized in Figure 3.2C where predictions of the additive 

effects of changes in affinity and concentration in isolation were often overestimated than the 

actual effects when both were changed in combination.  

 

Perhaps one of the most important outcomes reported here is the potential for differential 

sensitivity of IgG1 allotypes to boosting regimens that increase antibody titers vs. vaccine 

adjuvants that may influence glycosylation profiles (i.e. FcR affinity). The model predicts that 2 

of the 3 allotypes we evaluated would not be sensitive to boosting regimens that increased IgG1 

concentration. This has implications for RV144 and associated follow-up trials, where different 

allotype distributions would be expected depending on geographic location. Though IgG1 

allotype was not measured directly in RV144, the Thai population would likely have a greater 

prevalence of the G1m1,3 allotype compared to other trials conducted in South Africa, which 

have previously been reported to have greater prevalence of G1m1 and G1m-1,3118. Model 

results suggest that while an initial vaccination would be most effective in G1m1,3 (due to high 

baseline IgG1 titers), boosting regimens to increase IgG1 concentration may not improve Fc- 

mediated functions. Indeed RV30560 and RV30658 conducted in Thai populations did increase 

HIV-negative specific IgG titers, but to our knowledge the resulting changes in FcγR activation 

have not yet been evaluated. While the model suggests that FcγR polymorphism is not essential 

in determining which boosting type and boosting level will be most beneficial (Figure 3.6), it 

would still make an impact in individuals with relatively high HIV specific IgG1 titers (G1m1,3 

and G1m1). 

 

A key limitation is the study is the evaluation of only one FcγR type (FcγRIIIa) and one epitope, 

though we would expect similar results for different FcγRs and epitopes147. The model could be 
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easily expanded to explore additional FcRs and to examine multiple FcRs simultaneously. 

Furthermore, this study is based only upon assumed IgG1 allotypic distributions. Future 

experimental vaccine studies using will be needed to be conducted using samples with known 

allotype and FcR polymorphisms to confirm this study. 

 

Overall, thus study illustrates several different scenarios where host genetics is predicted to 

influence Fc effector responses upon vaccine boosting and that different vaccine boosting 

regimens are likely to have varied benefits depending on host genotypes. Given that Fc effector 

functions have been demonstrated to be important for the control and protection of numerous 

other infectious diseases including COVID-19 and influenza where different vaccine boosting 

regimens are currently being administered78,130,149,150, future studies that explore the influence of 

antibody allotypes and FcR polymorphism upon these vaccine boosting strategies are also 

warranted.  
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Chapter 4 Draft Notes on Unpublished Work  

4.1 HIV-specific Antibody Fc Receptor Interactions 

4.1.1 Introduction 

Using the previously published model147 we have performed simulations related to antibody 

decay that occurs post-vaccination, as well as further investigation of allotype’s effect on the 

optimal type of boosting.  

4.1.2 Methods 

See chapter 3, the same model, parameters, and methods were used. The antibody decay 

simulations were performed by uniformly reducing all IgG subtypes by 0-100% in increments of 

10% and taking the median at each point for each genetic background. 

4.1.3 Results 

Figure 4-1 Antibody decay after vaccination reduces complex formation sooner for those with G1m-1,3 allotype. 

(A) Percent of maximum median complex formation for each genetic population with simulated antibody decay. (B) 
Percentage of antibody decay where percentage of maximum complex formation is halved for each genetic population.  
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4.1.4 Limitations 

We do not have access to specific data on antibody decay for our RV144 samples so we had to 

assume uniform decay in all IgG subtypes. Additionally, as stated in chapter 3, we do not have 

specific allotype data on the RV144 cohort so our allotype projections are based IgG subtype 

distributions in a small cohort for a different HIV vaccine trial112. 

4.1.5 Future Directions 

Figure 4-2 Amount of G1m-1,3 allotype in a population determines when an affinity boost is more influential than a 
concentration boost. 

(A) The boosting level at which a boost in affinity of IgG1 to FcR becomes more beneficial than boost in IgG1 concentrations in 
simulated mixed allotype populations. See figure 3-2 for the source data and methods (note: the populatin labels had been 
rearranged). (B-D) Correlations of boost level where affinity is more beneficial than concentration and amount of G1m1 (B), 
G1m-1,3 (C), and G1m1,3 (D) in the population. 
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We plan to use these methods on datasets with known allotypes and potentially multiple 

timepoints to track HIV-specific antibody decay.  

4.2 Non-HIV-specific and HIV-specific Antibody Fc Receptor Interactions 

4.2.1 Introduction 

To investigate the effects of non-HIV specific IgG antibodies on the system, we introduced a 

non-specific IgG (IgGn) that can only bind to the FcRs. This represents all other IgG antibodies 

in the plasma and is several orders of magnitude higher in concentration, leading to competition 

for FcRs. We hypothesized that complex formation in an individual will be significantly effected 

by their non-specific IgG concentration, not just their individual HIV-specific IgG profile.   
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4.2.2 Methods 

Based on the previous model used in chapters 2 and 3, we have added a non-specific IgG (IgGn) 

that binds to FcR only. Additionally we have a smaller model where there is only one HIV-

specific IgG (IgGbulk) reperesenting the bulk HIV-specific IgG measurement. This smaller 

model can also be created by setting IgG2, IgG3 and IgG4 to zero in the larger model and using 

IgG1 as IgGbulk.  

We have used two sets of experimental data when analyzing this model. The first is an HIV+ 

cohort of HIV progressors and viral controllers. For this dataset we have personalized bulk IgG, 

IgG subtype amounts, and complex formation measued in MFI. IgG concentrations were 

calculataed using previous methods with a reference concentration from HIV+ individuals 

Figure 4-3 Model Schematic 

Ordinary differential equations were used to predict total HIV ant-IgG-FcγR complexes formed as a function of concentration 
and binding affinity of ant, IgG subclasses, and FcγR. The model assumes a single FcγR type. Reversible reactions are represented by 
double-ended arrows. Model output was the sum of all dimeric FcγR complexes formed (boxed in black) at steady state. Non-HIV-
specific antibodies are labeled IgGn (A) Model with all four IgG subtypes. (B) A simplified model where bulk HIV-specific IgG 
(IgGbulk) is the only HIV-specific antibody.  
 
 

A B 
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(108,000 ng/mL)151. The second dataset is from pooled plasma samples from HIV – and HIV + 

humans, with and without the addition of a monoclocal HIV IgG (PGT121), and with and 

without washing away all non-specific antibodies.  

 

Table 4-1 Affinity parameters 

Affinities IgG1 IgG2 IgG3 IgG4 IgGn 

Kon IgG-env (nM-1s-1) 10  

Koff IgG-env (s-1) 2*10-4  

Kon IgG-FcR (nM-1s-1) 20 0.7 98 2.5 Weighted avg 
of affinities 
based on 
individual 
IgG subtype 
concentrations 

Koff IgG-FcR (s-1) 1*10-2 

 

Table 4-2 Concentration parameters 

Conc (nM) IgG1 IgGn Env FcR 

Progressors 653 83,800 

25 26 Viral 

Controllers 

807 72,600 

 

4.2.3 Results 

Initial experimental results show that the presence of IgGn does indeed interfere with complex 

formation for all epitopes except A244 (Figure 4-4). For the HIV+ samples with and without 

PGT121 (orange and purple) without IgGn, increasing plasma sample concentrations increased 

complex formation. This is expected since IgGn is removed so the plasma samples only contain 
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FcR complex forming antibodies. When HIV+ with PTG121 group is observed with IgGn still 

remaining in the plasma sample, we see the higher the sample concentration, the lower the 

complex formation. This is due to the higher levels of IgGn in the plasma sample relative to the 

constant PGT121 concentration. 
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Figure 4-4 The presence of non-specific IgG interferes with complex formation in multiple epitopes 

Experimentally measured complex formation in pooled samples from HIV- individuals (blue), HIV+ (orange), HIV- with added 
PGT121 (yellow), and HIV+ with added PGT121 (purple). The concentration of the pooled samples is varied on the x axis but 
the concentration of PGT121 is kept constant. The panels on the left show experimental results when the non-specific IgG (IgGn) 
has been washed away, and the panels on the right are from the same experimental protocol where IgGn remains. Panel titles 
show all HIV epitopes tested. 
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When the model was used to mimic these experiments, most of the general trends matched, but 

the model is underestimating HIV+ samples and overestimating HIV- with PGT121 samples 

(Figure 4-5). 

 

When predicting complex formation with and without IgGn on a personalized basis, we saw 

much larger differences between the two in the model predictions than we did in the 

experiemetal measurements (Figure 4-6). 

Figure 4-5 Model predicted percent of maximum complex formation compared to experimental 

(A) Percent of maximum complex formation without IgGn in both model and experimental conditions for A244 as seen in figure 
4-4. (B) Percent of maximum complex formation with IgGn in both model and experimental conditions for A244 as seen in 
figure 4-4. 
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4.2.4 Limitations 

The model under-estimates HIV+ samples, perhaps because it is underestimating HIV specific 

IgG concentrations or affinity. The model over-estimates HIV- +PGT121 with wash (without 

IgGn) perhaps because the PGT121 is washed out/low efficacy. 

The small difference in complex formation with and without IgGn in the personalized data 

measured experimentally may be due to using older beads that have degraded.  

4.2.5 Future Directions 

We will investigate the differences in the model and experimental results in figure 4-5 by 

studying the code and perhaps rerunning the experiment. 

Figure 4-6 Measured and predicted complex formation with and without IgGn 

(A) Measured complex formation in the viral controllers (VCs) and progressors (Prog) with (blue) and without (orange) IgGn. 
(B) Predicted complex formation. 
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4.3 SARS-CoV-2-specific Antibody Fc Receptor Interactions 

4.3.1 Introduction 

We can use the same model as in chapters 2 & 3 to look at other antigens like SARS-CoV-2 to 

look at personalized FcR complex formation. 

4.3.2 Methods 

Personalized RBD-specific IgG subtype concentrations data were pre-processed by removing the 

assay background and then setting all values below zero to the lowest non-zero value for that 

detector. Concentrations were determined by converting measured MFIs using a reference 

concentration (18.5 ug/mL) from a human study of serum SARS-CoV-2 specific IgG levels in 

COVID-19 convalescent subjects152 using the previously published methods147. 

Affinity values for RBD to antibodies are the median of literature values 153–160.  

 

Figure 4-7 Model schematic 

(A) An example set of reversible reactions describing the sequential binding of IgG1 to antigen (ant) and dimeric FcγR with the 
respective forward (kon) and reverse (koff) reaction rates. 
(B) Ordinary differential equations were used to predict total HIV ant-IgG-FcγR complexes formed as a function of concentration 
and binding affinity of ant, IgG subclasses, and FcγR. The model assumes a single FcγR type. Reversible reactions are 

https://www-sciencedirect-com.proxy.lib.umich.edu/topics/medicine-and-dentistry/immunoglobulin-g1
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represented by double-ended arrows. Model output was the sum of all dimeric FcγR complexes formed (boxed in black) at steady 
state. 
(C) Equations describing the example reactions in (A). Reactions follow mass-action kinetics and consist of a forward reaction 
(on rate, kon, multiplied by the concentrations of the substrates) and a reverse reaction (off rate, koff, multiplied by the 
concentration of the product of the forward reaction). Differential equations for change in each complex over time were 
generated for each complex. 
 
Table 4-3 Parameters 

Parameters IgG1 IgG2 IgG3 IgG4 

kon – RBD (M-1s-1) 5.07*105 153–160 

koff – RBD (s-1) 3.38*10-3 153–160 

KD – RBD (nM) 4.51 153–160 

kon – FcRs (M-1s-1) Same as previously published model88,147 

koff – FcRs (s-1) 

Median Concentration – 

COVID + Samples in 

Healthy vs COVID 

cohort (nM) 

67.8 0.49 2.32 0.05 

Median Concentration – 

DRASTIC (nM) 

105.6 4.77 2.32 1.33 

 

Table 4-4 Sensitivity ranges for parameters 

Ranges used in 

sensitivities and seen in 

literature 

Affinities Concentrations Healthy 

vs COVID cohort 

Concentrations 

DRASTIC 

Low 0.001X 0.001X 6.5*10-5X 

High 10X 50X 150X 

 

4.3.3 Results 
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The model accurately predicts the rank order of complex formation in five different FcRs 

(Figure 4-8). A global sensitivity analysis shows that IgG1 related parameters are significantly 

important along with IgG3 parameters, and that FcR affinities matter much more than affinitites 

to the antigen (Figure 4-9). Additionally IgG1vsIgG3 landscapes for all FcRs were unable to 

separate the data based on gender, hospital location, NIH severitiy score, or oxygen intervention 

(Figure 4-10). This led us to test the input data to see if there were differences between the 

groups to begin with for several different SARS antigens in terms of initial IgG concentrations 

(Figure 4-11) or final measured complex formation (Figure 4-12) and there were very few.  
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Figure 4-8 SARS-CoV-2 initial FcR validations using the DRASTIC cohort 

Measured complex formation compared to predicted complex formation for five different FcRs. 
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Figure 4-10 Global sensitivity 

Global sensitivity analysis results for the overall median of the DRASTIC cohort (black), as well as the median of the ICU 
patients (blue), and the ward patients (red). 

Figure 4-9 IgG1 vs IgG3 initial concentration landscapes 

Complex formation landscapes for all five FcRs with the DRASTIC cohort plotted onto the surfaces colored either by ICU and 
ward (A), NIH severity score (B), oxygen use (C), and gender (D).  
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Figure 4-11 P-values from Mann-Whitney tests of IgG concentration data separating groups 

p-values from Mann-Whitney tests comparing the IgG concentratrion listed in the panel title in the groups listed on the y axis for 
five SARS epitopes on the x axis. 
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o consistent significant differences in the input data between groups.  

Figure 4-12 P-values from Mann-Whitney tests of experimental FcR complex concentration data separating groups 

p-values from Mann-Whitney tests comparing the IgG concentratrion listed in the panel title in the groups listed on the y axis for 
five SARS epitopes on the x axis. 
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4.3.4 Limitations 

The lack of variety or natural separation in the cohort groups to begin with limits the analysis we 

are capable of performing. If we want to determine the mechanisms that drive a more severe 

COVID response, we need data from individuals with more severe responses. The DRASTIC 

cohort data was collected in Australia in the beginning of the pandemic when the disease was 

under control and hospitals had room to treat mild to moderate cases in the ICU meaning our 

data is from mostly individuals with more mild cases so separation is difficult to achieve. 

4.3.5 Future Directions 

We will investigate new COVID datasets with more varied responses as well as apply the 

methods from chapeter 3 to investigate how genetics impacts COVID-19. 

4.4 SARS-CoV-2-specific Neutralizing Antibody Interactions 

4.4.1 Introduction 

Variants of the SARS-CoV-2 virus are rapidly developing and spreading. Monoclonal antibodies 

that may be used to combat the infection bind differently to different variants, and specifically 

have different affinities. We developed a model to rapidly investigate the monoclonal antibody 

interactions that will lead to protection in the case of differing variants.  
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Figure 4-13 Model Schematic 

The model depicts ordinary differential equations that were used to predict total HIV ant-IgG-FcγR complexes formed as a 
function of concentration and binding affinity of RBD antigen, monoclonal IgG antibodies (Ab), and ACE2. Reversible reactions 
are represented by double-ended arrows. Model output was the sum of all protective or infectious complexes formed (boxed in 
green and orange respectively) at steady state. Reactions follow mass-action kinetics and consist of a forward reaction (on rate, 
kon, multiplied by the concentrations of the substrates) and a reverse reaction (off rate, koff, multiplied by the concentration of the 
product of the forward reaction). Differential equations for change in each complex over time were generated for each complex.  
 

4.4.2 Methods 

Table 4-5 Parameter table 

kon Ab-

RBD (M-

1s-1) 

koff Ab-

RBD (s-1) 

kon ACE2-

RBD (M-

1s-1) 

koff ACE2-

RBD (s-1) 

Ab (nM) ACE2 

(nM) 

RBD 

(nM) 

depends on variant 0.78  116 2.7 

 

Table 4-6 ACE2-RBD affinities to different variants 

ACE2-

RBD Wild type N501Y Q483L N439K S494P E484K E484D 

Protection

RBD Ab ACE-2

Infection
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Kon 3.28E-04 1.55E-04 2.46E-04 2.68E-04 2.44E-04 1.97E-04 3.28E-04 

Koff 2.10E-03 3.26E-03 6.20E-03 7.00E-03 9.09E-03 2.18E-02 2.10E-03 

 

Table 4-7 Ab-RBD kon affinities to different variants 

Ab-RBD 

kon (nM-1s-

1) Wild type N501Y Q483L N439K S494P E484K E484D 

COVA2-15 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

COVA1-18 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

MM43 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

REGEN 

10987 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

REGEN 

10933 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

C135 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

C002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

SAD-35 0.001 0 0 0 0 0 0 

CR3022 0.001 0 0 0 0 0 0 

Flu mAb 1 0 0 0 0 0 0 

 

Table 4-8 Antibody-RBD koff affinities to different RBD variants 

Ab-RBD 

koff (s-1) Wild type N501Y Q483L N439K S494P E484K E484D 

COVA2-15 9.04E-04 1.43E-03 1.72E-03 8.43E-04 7.89E-02 2.86E-03 1.46E-03 
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COVA1-18 1.14E-03 1.31E-03 9.31E-04 1.28E-03 1.36E-03 7.41E-02 2.23E-03 

MM43 1.17E-03 1.49E-03 1.59E-03 2.05E-03 1.44E-03 1.79E-03 1.58E-03 

REGEN 

10987 1.06E-03 1.34E-03 1.21E-03 3.49E-03 1.44E-03 1.66E-03 1.47E-03 

REGEN 

10933 7.42E-04 8.86E-04 1.63E-03 6.59E-04 6.78E-04 2.73E-03 1.47E-03 

C135 9.85E-04 1.84E-03 1.13E-03 2.36E-03 1.59E-03 1.39E-03 1.28E-03 

C002 9.37E-04 1.03E-03 6.54E-02 1.20E-03 9.59E-04 2.18E-03 1.94E-03 

SAD-35 7.48E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CR3022 1.43E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Flu mAb 1.64E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 

4.4.3 Results 

The initial validation of the model focuses on the amount of IgG bound, the amount of ACE2 

bound, and the percent inhibition of the ACE2. Currently the model is predicting there is less 

IgG bound than in the assay and the model saturates later (Figure 4-14): 
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Figure 4-14 Model vs experimental results for two neutralizing antibodies. 

(A-B) Model (orange) and experimental (black) IgG binding over various MM43 (A) and SAD-35 (B) antibody 
concentrations. (C-D) Model (orange) and experimental (black) ACE2 binding over various MM43 (C) and SAD-35 (D) 
antibody concentrations. (E-F) Model (orange) and experimental (black) percentage of ACE2 inhibition over various MM43 
(E) and SAD-35 (F) antibody concentrations. Percentage ACE2 inhibition = (binding w/o IgG – w/ IgG)/binding w/o IgG * 
100. 
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4.4.4 Limitations 

The mismatch in data between experimental and model results could be caused by there being 

more IgG in the experiment than we initially measured. There may also be more RBD in the 

assay or a higher affinity if IgG to RBD. 

4.4.5 Future Directions 

We will reinvestigate experimental parameters to determine the flaw is not there. If that does not 

change, we may need to adjust the structure of the model with things like, a change in the 

number of binding sites. 
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Chapter 5 Discussion  

5.1 Scientific contributions 

In this thesis, I present a cohesive framework for mechanistic analysis of immune complex 

formation in the activation of Fc receptors and generate and validate hypotheses on how personal 

and genetic variation affect FcR activation in HIV vaccinees. I constructed an ODE model of 

immune complex formation representing all IgG subclasses that can predict relative complex 

formation on a personalized basis. The computational framework developed utilizes personal 

IgG subclass data from plasma that could be collected in vaccine studies or any biological 

applications where FcR-antibody interactions are of interest. More broadly, this model can be 

utilized in any well-mixed system where complexes form in the given structure (i.e., IgA 

antibodies, other antigens, other dimerized receptors). With currently available data, I used this 

framework to identify IgG subclasses of the most importance and show how individual 

variations in subclass concentrations affected potential intervention outcomes. Additionally, I 

related genetic factors that affect model parameters to identify vulnerable genetic backgrounds. 

With the future collection of more extensive data, this model could predict vaccine efficacy in 

different populations and specific individuals and predict ideal intervention scenarios or 

preferred vaccine recommendations on an individual and population basis. 
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5.2 Model identified effects of personal variability on FcR activation 

Our ODE model, with its ability to take in personal antigen-specific antibody concentrations, 

showed how the variability in initial IgG subclass concentrations affected the FcR complex 

formation, how individual IgG subclasses contributed, and the success of a boosting intervention.  

5.2.1 Importance and limitations of IgG1 concentration 

RV144 follow-up studies identified HIV-specific IgG3 antibodies as correlates of lower infection 

risk and were higher in RV144 than in the failed predecessor trial, VAX003, and they posited 

that IgG3 drove a more polyfunctional immune response thought to be protective52,79. 

Additionally, an experimental analysis revealed that depletion of IgG3 antibodies decreased 

ADCC significantly in a way that mirrored the decrease in IgG3 and protection over time in 

RV144 vaccinees57. IgG3 was identified as the most critical subclass likely due to its high 

affinity to FcγRIIIa, the FcR leading to ADCC88. In contrast, our model brought attention to 

IgG1 as the most universally important subclass, as although it has an affinity to FcR 5X lower 

than IgG3, its concentration is typically 28X higher. In our kinetics-based equations, affinity is 

multiplied by concentration, determining complex formation, and this highlighted the importance 

of the influence IgG1 has through its high concentration.  

 

A possible explanation for the lack of IgG1 focused results previously is perhaps due to the 

location of the sensitive regions for IgG1 and IgG3. Figure 2.3 and A.S5A show a surface of 

complex formation at varying levels of initial IgG1 and IgG3 concentrations. Here there are two 

main sensitive regions: IgG1 sensitivity is seen in the sloped region on the right side where small 

changes in IgG1 initial concentration have a significant effect on complex formation; IgG3 

sensitivity is seen in the sloped region on the left side where small changes in IgG3 concentration 
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have an even more significant effect on complex formation. Notably, when vaccinees were 

evaluated based on their initial IgG concentrations, many were close to, on, or just past the 

region where FcR complex formation was sensitive to IgG1 sensitive. In contrast, only four 

vaccinees were in an IgG3 sensitive region. While this shows that IgG1 sensitivity is more likely 

in a given vaccinee, it also points to more uniformity in IgG1 initial concentration’s effect on 

complex formation in comparison to IgG3.  

 

The steeper slope in the IgG3 dimension means that for those individuals unusually high in IgG3 

initial concentrations, complex formation is dramatically different from those with slightly lower 

IgG3 concentrations. This could easily lead to the conclusion that IgG3 is more important for 

protection because there is a more distinct subpopulation with very high IgG3 levels and very 

high complex formation. However, the statistics that have pulled out this relationship while 

attempting to distinguish between a protective and non-protective response have failed to 

identify IgG1 as a more universally approachable method to improve complex formation in the 

majority population. IgG1’s more universal effect is illustrated in Figures 2.3D and 2.3F, where a 

5X increase in IgG1 alone brought 81 out of 105 vaccinees out of relatively low complex 

formation, but a 20X increase in IgG3 was needed to affect the same number of vaccinees. 

 

While boosts in IgG1 concentration are more likely to bring an individual out of relatively low 

complex formation, they have a limited effect on individuals who already have moderately high 

levels of initial IgG1. This limitation is displayed in a plateau on the surface mentioned above, 

where further increases in IgG1 no longer increase complex formation. We used the model to 

identify eight individuals who would benefit from an IgG1 boost (IgG1 responders) and eight 
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who would not benefit (IgG1 non-responders). Experimentally, we performed two boosts with an 

IgG1 monoclonal antibody at 34nM and 140 nM, and these 16 individuals behaved as predicted, 

with a 5 and 7-fold increase in complex formation in the responders and 1.3 and 1.3-fold change 

non-responders. The non-responders already had initial IgG1 concentrations above 150 nM, 

while the responders had IgG1 concentrations below 32 nM. If these cutoffs were used to 

identify responders and non-responders in our 105 vaccinee population, 33% would be non-

responders and 27% responders. If we assume that our samples represent the general population, 

one-third of people may not benefit from a boost in IgG1 concentration, meaning if a vaccine 

does not already protect these individuals, they will need an intervention that does not rely on 

boosting IgG1. 

 

Lastly, the IgG1 plateau represents a limit on complex formation that cannot be breached without 

an increase in the affinity of IgG1 to FcR (increases height of the plateau) or an IgG3 

concentration above 20 nM, which only 2% of our population has. Additionally, the model 

showed how changes in IgG3 concentration must occur while IgG1 concentrations are 

moderately low since high levels of IgG1 will suppress the positive benefits of high IgG3 

concentration. This surprising and novel mechanism could point to a situation where boosts in 

IgG1 are detrimental in some individuals, especially in boosting situations where IgG3 was high. 

This mechanism could explain the failure in vaccine trials with extended boosting regimens, but 

it is impossible to confirm this without direct experimental measurements from individual 

vaccinees in a trial where boosting was applied. In this case, a model such as the one developed 

here could be valuable for deconvolving the influence of different IgG subclass concentrations, 

including changes in subclass profiles towards IgG2 and IgG4 such as those observed in 
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VAX00352–55. However, since we do not know the threshold of complex formation necessary for 

ADCC or protection, it is unclear whether this IgG1 limit prevents protection or does not 

interfere. 

5.3 Model predicted effects of host genetics on FcR activation 

Host genetics can affect IgG-FcγR complex formation in several ways: IgG1 allotype can alter 

the concentration of all subclasses90,112,136 and has been linked to ethnicity118,119; FcR 

polymorphisms alter the affinity of each IgG subclass to FcRs88. We can easily alter these 

parameters in our model, and in doing so, we were able to gain new insight into the relative role 

of host genetics in IgG-FcγR complex formation. 

5.3.1 Impacts of synergy between IgG1 concentration and affinity to FcR 

The model identified a synergistic relationship between personal IgG subclass concentration and 

genetics not previously appreciated. After the model identified IgG1 concentration and IgG1 

affinity to FcR as critical parameters in complex formation, both affected by genetic and 

personalized factors, we knew the model would be a valuable tool to predict how simultaneous 

changes in both parameters affected the system. Our findings indicated a synergistic relationship 

between concentration and affinity for IgG1 that suggested that the change in one parameter 

affects the level of impact the other parameter can have. When experimentalists and modelers 

choose one of these parameters, such as affinity, to focus on for ease of interpretability, it is easy 

to forget that their conclusions are specifically relevant only for a fixed concentration and vice 

versa. We used the model to computationally simulate all relevant combinations of these two 

parameters to assess the role of host genetics, including FcR polymorphism and IgG1 allotype.  
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FcR polymorphism 

After a boost in IgG1 concentration, the model illustrated how FcR polymorphism becomes more 

impactful, with a more significant difference between complex formation in the high-affinity 

FcR polymorphism (FcγRIIIa-V158) and the low one (FcγRIIIa-F158). Our simulations indicated 

that the higher affinity polymorphism always has higher complex formation than the lower 

affinity polymorphism with any input, but this difference increases with increasing IgG1 

concentrations. For example, in RV306, all five arms of the study received the original RV144 

vaccine regimen, two arms received an additional 12-month booster, one arm a 15-month 

booster, one an 18-month booster, and one no additional boost60. Since they saw increasing HIV-

specific IgG titers with later boosts60, our model suggests that polymorphism in these vaccinees 

will impact their protection outcome more the later the boost in this series. If we had access to 

RV306 plasma samples to measure HIV-specific IgG subclasses, we could test which vaccine 

arms have significant differences between FcR polymorphisms and validate the differences 

experimentally. If case vs. control and FcR polymorphism data were also available, we could 

simulate each individual with their actual genetic profile and group them into case and control to 

help determine how FcR polymorphism contributes to protection mechanisms.  

 

While high-affinity FcRIIIa-V158 has been associated with enhanced ADCC functionality and 

better outcomes within the mAb cancer field144,145, it has also been linked with disease 

progression146 and a lack of vaccine protection in HIV125. The reason for FcγRIIIa-V158’s link to 

the lack of protection in the VAX004 trial is not explained by our model125, perhaps due to its 

all-male cohort, other genetic factors linked to FcR polymorphism (like GM allotype161,162) that 

we are not accounting for, or low overall vaccine efficacy. Our findings, unsurprisingly, do 
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support FcγRIIIa-V158’s association with enhanced ADCC144,145 as one would expect higher 

affinity in all areas to increase complex formation. While polymorphism associations with 

outcomes have been found through statistical analysis, we can use this approach to go beyond 

and predict the effects of polymorphism affinity differences in different vaccine scenarios with 

more targeted analysis.  

IgG1 allotype 

We found that the IgG1 allotype determines whether a boost in IgG1 concentration or affinity to 

FcR will be most beneficial at any given boosting level. IgG1 allotype, having been linked to 

changes in all four IgG subclass concentrations136, is a complex factor to account for intuitively 

when it is challenging to know which if any or all subclasses drive an allotype’s success. 

Accounting for these complexities with allotype and its synergisms with FcR polymorphism, we 

simulated six different genotyped populations with each combination of allotype and 

polymorphism. This data revealed that no matter the FcR polymorphism, concentration boosting 

was more beneficial than affinity boosting in G1m-1,3 populations in most cases, and the 

opposite was true for both G1m1,3 (the highest IgG1 allotype) and G1m1 populations. We 

pinpointed the exact boosting level where affinity became more influential than concentration for 

G1m-1,3, although likely unattainable at 1000%, the tool we have developed can find thresholds 

such as this one. This approach was also able to highlight how FcR polymorphism is not 

essential for determining the best interventions.  

 

Finding that the amount of G1m-1,3 allotype in a given population determines which boosts 

would increase complex formation most suggests that it is low IgG1 concentrations that drive 

these boosting differences. The more G1m-1,3 individuals in a population, the more we predict a 
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concentration boost will be significant. This observation relates to the personalized IgG 

concentration results where lower IgG1 concentrations bring more people into an IgG1 sensitive 

region where small changes in IgG1 have a more significant effect. Additionally, it points to the 

synergy between IgG1 concentration and affinity to FcR as it demonstrates that a boost in 

affinity to FcR is not going to be very beneficial unless a person has reached a high enough IgG1 

concentration.  

 

Allotype alone could be a helpful predictor of a population's success with a particular vaccine 

regimen. It has a known effect on the concentration of subclasses both generally136 and for 

vaccine antigen-specific antibodies112, and it could be tested before vaccination. Knowing the 

allotypes of each person in a population would give an estimate of their antigen-specific IgG 

subclass concentration profile. Whereas if we could only measure antigen-specific IgGs in the 

plasma, we would not get results until after the vaccination has been completed and the regimen 

planned. Using measured allotypes to estimate IgG titers could help determine the number and 

timing of booster immunizations – tuning the increase in IgG1 up to the most beneficial level and 

not past that when it can deter positive effects IgG3.  

 

If individual allotype measurements are not possible and a new vaccine regimen needs to be 

tailored to a new genetic population, links between allotype, ethnicity, and population 

demographics could help estimate vaccine outcomes. Population-based data on which allotypes 

are prevalent in specific communities, countries, or ethnicities have been explored 

previously118,119, but there are gaps in the populations represented and differences in the allotypes 

tested for in each small study. If further data can be collected on allotypes present in a diverse set 
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of populations and shows reliable, consistent connections, we can be more confident that we 

could estimate ideal boosting regimens using population demographics. The utility of this 

method depends on further validation that allotype affects IgG subclass concentration in the HIV 

vaccine trials of the future, which would require the collection of allotype data alongside 

protection and plasma samples. Antigen-specific antibodies can be measured in the plasma 

Allotype results can be grouped to get a more representative estimate of how allotype affects IgG 

subclass concentration in a larger sample size. 

5.3.2 Vulnerable individuals, populations, and interventions 

Our ability to predict the effects of genetics on complex formation allowed us to identify 

genotypes that would not be responsive to increases in IgG1 titers (concentration). We were also 

able to simulate heterogeneous populations and identify vulnerabilities there. As expected, when 

we projected RV144 data into each allotype-polymorphism genotype, we saw significantly 

different complex formation in each population with FcγRIIIa-V158 always having higher 

complex formation than FcγRIIIa-F158 within an allotype, with the high IgG1 allotypes having 

the highest complex formation. At baseline, this leaves G1m-1,3 allotyped individuals at the 

greatest risk regardless of their polymorphism.  

 

We can use this approach to simulate nonhomogeneous populations to make broader 

recommendations for an entire population's protection. While FcR polymorphism will affect the 

total complex formation achieved, in this scenario, a specific threshold of complex formation is 

not the goal; instead, it is any increase in complex formation. Therefore, we can disregard 

polymorphism since it has a limited effect on which parameter boost will most benefit. Testing 

mixed allotype populations, we found that populations with high levels of G1m-1,3 benefit more 
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from a concentration boost, especially at low boosting levels. In addition, the amount of G1m-1,3 

in a population determined the boosting level at which affinity became more beneficial than 

concentration. With knowledge of the magnitude of boosts possible, one could use this method to 

determine which intervention is ideal for increasing complex formation in most of the 

population.  

 

With the caveat that allotype linkage to ethnicity needs further exploration and confirmation, we 

were able to provide predictions relevant to the recent failure of the HVTN 702 trial with 

allotype. HVTN 702 (South Africa) mimicked the regimen of the moderately successful RV144 

trial (Thailand), but they altered the antigens to match the strains circulating in South Africa as 

well as the adjuvant. With multiple alterations to the vaccine itself and the population it was 

administered to, it will require extensive follow-up to determine all failure mechanisms. One 

possible contributing factor between the difference in RV144 and HVTN702 was the allotype of 

the two vaccine populations. Extensive allotype data was not collected in either of these cohorts, 

and demographic data were not published. However, if they follow previous generalized studies 

of allotype118,119 and ethnicity within these countries, RV144 vaccinees likely have high IgG1 

allotypes (G1m1,3), and the low IgG1 allotype (G1m-1,3) is more prevalent in the HVTN 702 

vaccinees118. 

 

The ability to simulate heterogeneous populations is helpful due to the difficulties in enrolling 

and formulating a vaccine in a truly heterogeneous vaccine trial population. In recent COVID-19 

vaccine trials, only 11.4% were enrolling in low-middle income countries, and 80% of 

participants in the Pfizer, Moderna, and AstraZeneca trials were white163. Although demographic 
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data is limited, previous HIV vaccine trials have also been relatively homogenous populations 

due to the demographics of the regions at high risk chosen for the trial and the logistics of 

administering a vaccine to multiple regions. For instance, differing circulating HIV subtypes 

means that the vaccine formulations most likely need to be tailored to each region of interest. 

Additionally, sociological factors, including historical mistrust of the healthcare system due to 

previous inequalities, contribute to willingness to participate in vaccine trials and, even after 

approval, vaccine hesitancy164. The ability to simulate underrepresented genetic populations will 

help expedite the development of optimal vaccines for every population leading to universal and 

equitable protection against HIV. 

5.4 Limitations 

The ODE model we developed has formed a framework for analyzing personalized antigen-

specific antibody data by predicting FcR complex formation while allowing for exploration of 

overall system dynamics in combination with targeted simulations of specific genetic and 

interventional scenarios. The limitations of this approach mainly lie in the availability of data; 

however model itself served as an identifier of necessary data.  

5.4.1 Accuracy of the model 

As discussed in Chapter 2, the ODE model was validated for predicting the rank order of FcR 

complex formation of 30 individuals for two HIV antigens and an influenza antigen.  

Of note is the terminology we were careful to use in our results sections: “FcR complex 

formation” instead of “FcR activation.” This word use is intentional as the measurements we are 

comparing our model results to are not from cellular assays where the FcRs are being activated 

and carrying out ADCC. Our experimental output is just the same as our model output, the 
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number of immune complexes formed in a cell-free environment with antigens, antibodies, and 

FcR dimers. This complex formation is a highly relevant measure in the systems serology field, 

where vaccine trial plasma samples are currently being evaluated using this novel high-

throughput technology75–78. While the dimerized recombinant FcγR and the accompanying assay 

developed have proven to correlate immune complex formation measurements with cell-based 

ADCC assay outputs74, we do not know the mathematical relationship between complex 

formation and functional cell killing. 

 

There are several critical next steps to translate our model output into predicted ADCC 

cytotoxicity: (1) obtain actual concentration measurements for personalized antigen-specific IgG 

subtypes instead of MFIs (2) determine the threshold of complexes formed that would lead to 

ADCC, and (3) potentially alter the model to include cells where the FcRs reside that eventually 

carryout ADCC.  

 

Currently, we are calculating personalized IgG concentrations using MFIs and an HIV-specific 

IgG1 plasma concentration measurement as a reference concentration to calculate a conversion 

factor112,147. Ideally, we would calculate personal HIV-specific IgG subtype concentrations based 

on a standard curve calculated using reagents of known concentration. The experimental 

roadblock preventing this currently is the polyclonal nature of the plasma antibodies being 

measured. A monoclonal antibody could theoretically be used to develop a standard curve in the 

antibody detection assay. Still, the MFI measurements from a monoclonal antibody that bind one 

specific site on the antigen may not align well with a set of polyclonal antibodies that can bind 

several unknown sites of the same antigen. In the future, a standard curve may be developed that 
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uses polyclonal antibodies purified from plasma, but this may still prove to be time-consuming 

and unreliable. 

 

Determining a threshold of complexes that must form before downstream signaling leads to 

ADCC could be accomplished with concurrent cell and cell-free assays where immune complex 

formation in samples is varied and some samples trigger ADCC while others do not. You could 

then find the samples with the lowest complex formation that triggered ADCC and the samples 

with the highest complex formation that did not trigger ADCC and find the threshold or range of 

complex formation measurements (either relative or actual) where ADCC is being triggered. 

 

Finally, if a simple threshold based on the current model structure is not identifiable, we may 

need to expand the model structure to include cells. A valuable tool for this endeavor may be a 

recently developed cellular model of immune complex formation on the surface of cells with 

multiple FcR types by Robinett et al.107. This equilibrium model could be implemented with the 

same input data we have used in addition to data on the FcR makeup of the NK cells used in the 

cellular ADCC assay. With this method, the number of activated FcRs on each cell could be 

counted to determine how many individual cells reach the threshold to trigger ADCC. 

 

Ideally, in the future, we would eventually be able to create a model that would go beyond FcR 

activation and ADCC and predict protection from infection. Currently, we are limited by the lack 

of consensus on which mechanisms or collection of mechanisms protect an individual from 

infection127,165,166. A model encompassing all likely protection mechanisms in the plasma would 

potentially include FcR activation52,68, alongside anti-protective IgA antibodies57, the 
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complement system167, and neutralizing antibodies57. The complexity of this model would 

require a more significant amount of input data, computational power, and the determination of 

what quantitatively leads to protection, which could be an infinite number of combinations of the 

above mechanisms.  

5.4.2 Relative personalized concentrations and antibody decay 

While the model can identify exact quantitative thresholds and ranges of initial IgG subclass 

concentrations, it will require exact personalized input measurements to contextualize them. As 

of now, we are confident in the average affinities input into the model (glycosylation may alter 

these), but the IgG subclass concentrations, as mentioned above, are calculated indirectly. Due to 

this calculation method, we can only predict individuals' relative IgG subclass concentration, 

although we believe them to be in the correct range based on a similar HIV vaccine trial112. 

Additionally, because we know glycosylations affect affinity values, there may be personalized 

affinity measurements due to differential glycosylation patterns that may affect our personalized 

predictions.  

 

While we have detailed relative personalized IgG concentrations, these are from one specific 

timepoint. Antigen-specific antibody titers decay over time 60, and although it would be 

challenging to collect personalized data over long periods with current technology, we can model 

antibody decay. 

5.4.3 Lack of genetic data and affinity interventions 

While we were able to project our data into different genotypes and make predictions on which 

genetic factors are best or most important, these results should be considered preliminary and 
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evidence to support the collection of this genetic data in future vaccine trials. FcR polymorphism 

affinity data is reliable and well-cited88, but it is not easy to make conclusions on how large of 

an effect it has on protection when we do not know how many immune complexes are necessary. 

In conjunction, we do not consider vaccinees who may be heterozygous for FcR polymorphism 

in the current model as we only have one FcR type at a time. Additionally, it is impossible or far 

less accessible to alter an individual’s genetic polymorphism than boost their IgG levels. In this 

case, glycosylation could be induced using different vaccine adjuvants that influence IgG affinity 

to FcRs, but the link between adjuvants and specific glycosylation patterns is not well studied168.  

 

While IgG boosting is more accessible than affinity alterations, the ideal boosting regimen may 

be determined by allotype, which has less reliable associated data. The way that we determined 

our allotype projections was based on a very small sample size (n=6) of individuals in a phase I 

HIV vaccine trial with known allotypes and measured antigen-specific IgG subclasses. Ideally, 

we would need a larger HIV vaccine trial with a heterogenous allotype population where allotype 

and IgG subclass data was collected to determine how that exact vaccine regimen would 

influence antigen-specific IgGs in each allotype. This more reliable data could be used to 

calculate conversion factors for IgG subclasses between allotypes and simulate individual 

genetic cases alongside larger mixed allotype populations. The step from allotyping each 

individual or population specifically to predicting allotype from demographic data needs to be 

considered carefully regarding its accuracy and usefulness. As mentioned above, data linking 

allotype to ethnicity may be tempting to utilize, but the data available as of now needs further 

genetic and regional representation, consistency, and ethical analysis.  
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5.5 Future directions 

5.5.1 Personalized antibodies over time and in competition 

We may be able to collect personalized affinity data and accurate IgG subclass concentration 

data to improve personalized model accuracy in the future. However, we can also explore other 

potential factors like antibody decay and personalized levels of non-antigen-specific antibodies 

with data available now.  

 

Measures of antigen-specific antibody decay were measured in the RV306 trial, which included 

several different boosting regimens that led to further decay profiles 60. We can use these decay 

profiles to estimate how the level of antibody decay at a specific time point would affect 

complex formation and ADCC activation. Individuals and vaccine regimens particularly 

vulnerable to a rapid decay in antigen-specific IgGs could be identified. This RV306 data does 

not differentiate between the IgG subclasses, so we need to assume a uniform decay in all 

subclasses, which may need further revision.  

 

We have also begun to explore how non-antigen-specific antibodies may be interfering with 

complex formation against HIV antigens. Non-antigen-specific antibodies, in this case, would be 

any IgG antibody that is not specific to the HIV epitope of interest, meaning all other antibodies 

in the plasma. These “non-specific” antibodies are much more abundant than HIV-specific 

antibodies and so may be out competing HIV-specific antibodies for FcRs. When a person is 

fighting off an unrelated infection like the common cold or has an autoimmune disease, “non-

specific” antibody concentrations are likely high169,170, possibly to the detriment of the HIV-

specific antibodies. These antibody concentrations also vary on a personalized basis and may 
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need to be accounted for when analyzing mechanisms of vaccine efficacy. We can add these to 

our model using a new species to represent “non-specific” antibodies that can bind to FcRs 

independently. We can then input personalized measurements of IgG titer alongside personalized 

antigen-specific antibodies to monitor the predicted competition and potentially identify 

individuals with beneficial antigen-specific antibody profiles but detrimental non-specific 

antibodies and vice versa and determine which is more important to address on a personalized 

basis. 

5.5.2 More genetic factors and experimental validation 

Without relying on the future collection of allotype and demographic data, the next steps include 

introducing multiple FcR types and polymorphisms, accounting for allotype effects on affinity 

values, validation experiments, and other diseases.  

 

The first step to introducing new FcRs to the model would be the addition of a second FcR 

species into the existing model, which would allow for modeling of vaccinees heterozygous for 

FcR polymorphism. It could also be used to study competition between FcRIIIa and FcRIIa, 

which trigger ADCC and ADCP, respectively. Another method to study multiple FcRs would be 

implementing the multivalent equilibrium model mentioned previously, which can model 

multiple FcR types and polymorphisms on the same cell surface, mimicking different cell 

populations107.  

 

Recent studies indicate that IgG3 allotypes influence binding affinities to FcR89. We could use 

the data presented in the literature to predict the effects of IgG3 allotype alone in just FcγRIIIa-

V158, as well as in combination with different FcR types and polymorphisms. Additionally, we 
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can assess how IgG1 allotype would contribute to complex formation in concert with IgG3 

allotype and FcR polymorphism. 

 

Experimental validation is a critical next step for using genetic data to predict complex formation 

in a genetic scenario. We have already validated the model in multiple FcR polymorphisms, but 

only at baseline, and we validated the predicted variable effects of boosting IgG1, but only in 

FcγRIIIa-V158. One of the most approachable experiments would be to validate our predicted 

boost in IgG1 in both FcγRIIIa-V158 and FcγRIIIa-F158 and show the difference between the two 

using plasma samples and the Luminex based recombinant FcγR based assay used in all previous 

validations. We have not validated our model against results from the cell-based ADCC assays 

using the same plasma samples 73–76,78. Relating our model to cellular assay output may be 

achieved in two different ways: (1) we develop a formula relating complex formation to 

cytotoxicity seen in the cell-based assays, which would need to include some form of complex 

thresholding for ADCC to be triggered as mentioned above, or (2) we implement the equilibrium 

model with multiple FcRs on cell surfaces with simple thresholding based on the number of 

activated FcRs on each cell.  

5.6 Overall conclusions 

Our ODE model was developed in a generalizable format that allows for alterations in 

concentration and affinity input parameters to represent changes in antigen, antigen epitope, 

antibody type, FcR type, personal health status, and disease state. Since we do not account for 

spatial aspects or sizes of molecules in an ODE model, switching between diseases and 

individual scenarios requires only a change in concentration or affinity. We have begun the 

development of this model for use in influenza vaccination, HIV-positive progressors and elite 
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controllers, Sjogren’s syndrome, and SARS-CoV-2, and when data is available, there are many 

other applications for which we can develop personalized immune complex formation models to 

further universal vaccine protection and disease control. 
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Appendix A Supplemental Materials: A systems approach to elucidate personalized 

mechanistic complexities of antibody-Fc receptor activation post-vaccination  
Table A -1 Affinities of IgG subtypes to FcRIIa and FcRIIIa polymorphisms 

related to Figures 2.1, A.S3-5, A.S7, A.S9, and A.S11 

Keq (mM-1) FcγRIIa-H131 FcγRIIa-R131 FcγRIIIa-F158 FcγRIIIa-V158 

Keq-IgG1-FcR 5,200 3,500 1,170 2,000 

Keq-IgG2-FcR 450 100 30 70 

Keq-IgG3-FcR 890 910 7,700 9,800 

Keq-IgG4-FcR 170 210 200 250 

 

Keq values measured in Bruhns et al., 200988. FcγRIIIa V158 values are used for all baseline 

analyses. 
 

Table A-2 Fold change in IgG affinity to FcR with changes in Fc glycosylation, related to Figure 2.7. 

 FcγRIIa-H131 FcγRIIa-R131 FcγRIIIa-F158 FcγRIIIa-V158 

 0.4X123 19.7X123 

 1.5X122 1.73X122 130X122 60X122 

 1.1X121 0.92X121 13.7X121 5.2X121 

 1.5X148 2X148 42X148 31X148 

Max 1.5X 2X 130X 60X 

Avg 1.1X 1.3X 51X 29X 

Min 0.4X 0.4X 13.7X 5.2X 
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Figure A-1 Extracellular IgGs activate Fc effector functions via FcRs 

Related to Figure 2.1. IgGs form activating complexes with antigen (via the Fab region) and FcRs on 
innate immune cells (via the Fc region) to trigger Fc effector functions including ADCC and ADCP. IgG 
subclasses (1-4) engage Fc receptors with varying affinities, and IgG subclass concentration distribution 
varies across individuals. Glycosylation to the IgG Fab and Fc regions may alter binding of IgGs to both 
antigen and FcRs, respectively. FcR polymorphisms alter binding of IgGs to FcRs. 



 113 

 
Figure A-2 Model validation with log-log least-squares fit (A). Model validation for A244 in FcγRIIIa-F158 and FcγRIIa-H131 

(B-C), and BaL in FcγRIIIa-V158, FcγRIIIa-F158 and FcγRIIa-H131 (D-F). 

Related to Figure 2. (A) Model predictions for dimeric FcγRIIIa-V158 complex formation were compared to 

rsFcγRIIIa-V158 multiplex experimental measurements converted from MFIs to nM (see methods) for 30 RV144 

vaccinee samples (labeled 1-30) with an added least-squares fit line (Spearman correlation coefficient of 0.92, 

p<0.0001; log-log least-squares fit, RMSE = 246.0). Model predictions for A244 (B) FcγRIIIa-F158 and (C) FcγRIIa-

H131 complex formation; and BaL (D) FcγRIIIa-V158, (E) FcγRIIIa-F158 and (F) FcγRIIa-H131 complex formation 
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were compared to FcR multiplex experimental measurements in 30 RV144 vaccinee samples (labelled 1-30) 

(Spearman correlation coefficient of 0.90, 0.89, 0.98, 0.95, and 0.96 respectively, p<0.0001 for all). 

 

Figure A-3 Global sensitivity analysis for FcγRIIIa-F158 (A-B), FcγRIIa-H131 (C-D), and FcγRIIa-R131 (E-F) 

Related to Figure 2. Global uncertainty and sensitivity analysis133 of initial concentration for FcγRIIIa-F158 (A), FcγRIIa-H131 (C), 

and FcγRIIa-R131 (E) and binding parameters for FcγRIIIa-F158 (B), FcγRIIa-H131 (D), and FcγRIIa-R131 (F), where partial rank 

correlation coefficient (PRCC) indicates output sensitivity to parameters. 2000 unique parameter sets were created by sampling 
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from uniform pdfs for each parameter ranging from 0.004X to 20X baseline. PRCC and significance were calculated using the 

output from these 2000 simulations. The significance of each PRCC value is tested by comparing its T value, which accounts for 

the number of other parameters and number of samples, to a critical t-value giving a p-value used to determine if the PRCC is 

significantly different from zero. kon indicates forward reaction rates and koff indicates reverse reaction rates (>*** indicates p < 

0.0001, *** indicates p < 0.001, ** indicates p < 0.01, *indicates p < 0.05). 
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Figure A-4 Global sensitivity analysis with a cooperativity constant for FcγRIIIa-V158 (A-B), FcγRIIIa-F158 (C-D), FcγRIIa-

H131 (E-F), and FcγRIIa-R131 (G-H). 

Related to Figures 1 and 2. Global uncertainty and sensitivity analysis with the addition of a cooperativity constant (kc)133 of 

initial concentration for FcγRIIIa-V158 (A), FcγRIIIa-F158 (C), FcγRIIa-H131 (E), and FcγRIIa-R131 (G) and binding parameters for 

FcγRIIIa-V158 (B), FcγRIIIa-F158 (D), FcγRIIa-H131 (F), and FcγRIIa-R131 (H), where partial rank correlation coefficient (PRCC) 

indicates output sensitivity to parameters. 2000 unique parameter sets were created by sampling from uniform pdfs for each 

parameter ranging from 0.01-100 for kc and 0.004X to 20X baseline for all other parameters. The cooperativity constant was 

applied to each reaction where a second IgG was binding to env. PRCC and significance were calculated using the output from 

these 2000 simulations. The significance of each PRCC value is tested by comparing its T value, which accounts for the number 

of other parameters and number of samples, to a critical t-value giving a p-value used to determine if the PRCC is significantly 

different from zero. kon indicates forward reaction rates and koff indicates reverse reaction rates (>*** indicates p < 0.0001, *** 

indicates p < 0.001, ** indicates p < 0.01, *indicates p < 0.05). 
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Figure A-5 Alternative IgG1 vs IgG3 landscapes (A-B), and direct comparison of the predicted and measured fold change in 

complex formation after addition of IgG1 (C-D). 

Related to Figure 3 and 4. (A) Model predictions for env:IgG:IgG:FcγRIIIa:FcγRIIIa complex formation at steady state (z-axis) 

for 2500 simulations over an extended range (0.004X-500X) of IgG1 and IgG3 baseline initial concentration combinations (x and 

y-axis). RV144 vaccinee samples (n=105) were plotted (black circles) at their corresponding individual env-specific IgG1 & 

IgG3, and complex formation concentrations. (B) Model predictions for env:IgG:IgG:FcγRIIIa:FcγRIIIa complex formation at 

steady state (z-axis) for 2500 simulations over a range (0.004X-20X) of IgG1 and IgG3 baseline initial concentration 

combinations (x and y-axis) for FcγRIIIa-V158 (light orange), FcγRIIIa-F158 (dark orange), FcγRIIa-H131 (light purple) and 

FcγRIIa-R131 (dark purple). Model predictions for a change in complex formation after a (C) 34 nM addition and (D) 140 nM 

addition of IgG1 were compared to change in FcR multiplex experimental measurements in 8 RV144 responders (blue) and 8 

non-responders (orange) after the respective addition of IgG (labelled with their respective vaccinee ID) (Spearman correlation 

coefficient of 0.80 and 0.84 respectively, p = 0.0003 and p = 0.0001 respectively). 
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Figure A-6 Personalized single-parameter sensitivity analyses for FcγRIIIa-F158 (A), FcγRIIa-H131 (B), and FcγRIIa-R131 (C). 

Related to Figure 6. For each vaccinee (x-axis, labeled 1-105), we predicted sensitivity to each parameter (y-axis) one at a time 

from 0.004X-20X baseline for FcγRIIIa-F158 (A), FcγRIIa-H131 (B), FcγRIIa-R131 (C). The sensitivity metric was calculated by 

dividing the change in complex formation by the change in the parameter multiplier. A high sensitivity metric (red) indicates a 

large change in complex formation with changes in the given parameter. A low sensitivity metric (purple) indicates very little 

change in complex formation with changes in the given parameter. 
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Figure A-7 Comparison of IgG subtypes and glycosylation regions and complex formation at baseline in different FcγR classes 

and polymorphism. 

Related to Figure 6. (A) The model predicted change in complex formation with glycosylation of each IgG subtype and each 

region (Fc region alters IgG-FcR affinity; Fab region alters IgG-env affinity). Each respective affinity value is multiplied by the 

maximum fold change seen in Dekkers et al. for FcγRIIIa-V158 (31X) individually148. (B) Complex formation in 105 RV144 

vaccinee samples projected into each FcγRIIa polymorphism (FcγRIIa-H131 and FcγRIIa-R131). A two-tailed Wilcoxon matched-
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pairs signed-rank test indicated FcγRIIa-H131 complex formation was significantly greater than FcγRIIa-R131 complex formation; 

p < 0.0001. (C) Complex formation in 105 RV144 vaccinee samples projected into each FcγRIIIa polymorphism (FcγRIIIa-F158 

and FcγRIIIa-V158). A two-tailed Wilcoxon matched-pairs signed-rank test indicated FcγRIIIa-V158 complex formation was 

significantly greater than FcγRIIIa-F158 complex formation; p < 0.0001.
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