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forward understanding of the performance of probabilistic models. . 75

3.20 The first set of examples qualitatively shows that CVAE-H predic-
tions are contextual to spatial features of the environments (i.e., road
topologies). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.21 Continuing demonstrations of spatially contextual outputs from CVAE-
H. In addition, they show that the output predictions are multi-modal. 78

3.22 Qualitative demonstrations of socially contextual CVAE-H outputs. 79

3.23 Continuing qualitative demonstrations of socially contextual predic-
tion outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.24 The first set of examples showing how the number of prediction sam-
ples affects the quality of the predictions. . . . . . . . . . . . . . . . 81

3.25 Continuing examples show that the sample number affects the pre-
diction quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



3.26 Continuing examples reflect more samples corresponds to better chance
of capturing all modes. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 An overview of the proposed planner. . . . . . . . . . . . . . . . . . 85

4.2 Reinforcement learning is modeled using MDP. . . . . . . . . . . . . 102

4.3 The computational efficiency of deterministic shooting quickly de-
creases as the number of planning steps or resolution increase. . . . 111

4.4 The planner network design. . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Example visualizations of the planning results. A visualization de-
picts spatial information (lidar), road-agents’ historical XA∀k

t−2:t and fu-

ture (ground-truth) (XA∀k
t:t+4)gt states, and predicted road-agent states.

The trajectory plan (XAV
t:t+4)? from a planner is overlaid on the top of

the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 The optimality of a trajectory plan is quantified using the expected
return of the illustrated scale. . . . . . . . . . . . . . . . . . . . . . 122

4.7 The sample environments with the goal positioned ahead of the AV. 124

4.8 Two sample curved road environments. The goal is set to validate if
the planner is aware of the spatial characteristics of the environments. 125

4.9 Two sample intersection environments where the goal position was
set to test the planner’s ability to generate left-turn & right-turn
trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.10 Last set of sample environments where the goal position is given in
the vicinity of the initial position of the AV. . . . . . . . . . . . . . 127

4.11 The average optimalities normalized against the DP and the numbers
of failures out of the test set of size 1,030, as presented in Table 4.3. 129

4.12 The box plot of the expected returns over all 1,030 test samples. . . 134

4.13 The violin plot of the expected returns over all 1,030 test samples. . 135

4.14 We place the tested planning methods into a quadrant of performance
and computational efficiency (i.e., the keywords of the scalable planner).136

ix



LIST OF TABLES

Table

3.1 NLL for the experiment depicted in Figure 3.11. Lower values are
better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Differences between the target entropy and recreated pdfs by HCNAF
in terms of cross-entropy and KL divergence for Figure 3.12. . . . . 64

3.3 Differences between the target and generative distributions by CVAE-
H in terms of cross-entropy and KL divergence for Figure 3.13. . . . 65

3.4 PRECOG-CARLA Town01 Test, 1 agent, mean ê . . . . . . . . . . 74
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ABSTRACT

In the past few years, automotive and technology companies have made major

progress towards the real-world deployment of autonomous driving technologies. A

few companies have launched fully autonomous driving technologies for taxi rides in

small geographic areas. With the initial milestone made, the challenge of developing

effective and scalable autonomous driving technologies that can operate in a wide

variety of complex urban environments has never been more important.

I propose a prediction and planning framework for self-driving in urban areas to

address the challenge. With particular attention to the scalability of the approach,

the framework considers unique contexts to each environment and generates effective

trajectory plans for different variations of urban driving scenarios in a computa-

tionally efficient way. The framework consists of two main tasks: prediction of the

environments and planning trajectories of the autonomous vehicle. I mainly lever-

age learning-based techniques, which have experienced significant progress in recent

years, for both prediction and planning tasks.

The prediction task is critical in the framework as accurate predictions of the envi-

ronment states and their uncertainties are vital to safe and optimal decision-making.

To this end, I introduce two powerful conditional generative models, namely HCNAF

and CVAE-H, based on normalizing-flow and variational autoencoder, respectively. I

show that the two algorithms effectively leverage social and spatial sensor information

such as past trajectories of the road-agents and lidar scans of the environment for

forecasting the motions of the road agents in a diverse set of environments. I compare

xiii



my prediction models against state-of-the-art methods using an urban driving dataset

and show both methods achieve improved prediction accuracy.

I design the planner to generate near-optimal action sequences autonomously and

to consider the uncertainties captured in the prediction outputs. The proposed plan-

ner is a model-based random shooting planner with a Gaussian mixture as the back-

bone distribution. The Gaussian mixture is parameterized using a deep neural net-

work and trained using cross-entropy loss and rewards of the sampled trajectories. Ex-

periments confirm that the proposed planner generates contextual trajectories under

various environments in real-time, and the performance compares favorably against

several baseline planners, including a dynamic programming planner.

Lastly, I compare the computational efficiency of two different uncertainty repre-

sentations of the environment. The two representations are (1) trajectory samples of

road agents and (2) probabilistic occupancy map, which encodes occupancy probabil-

ities of the road-agents on a continuous 2D heat map. I examine their performances

and show that the probabilistic occupancy map representation offers faster and more

scalable inference without an excessive sampling of the future states of the road-

agents.

xiv



CHAPTER I

Introduction

Over the last few years, automotive and technology companies have made major

progress towards the real-world deployment of autonomous driving technologies. In

late 2020, Waymo, Google’s self-driving vehicle company, became the first company

that offered commercial autonomous taxi rides to the public in Pheonix, Arizona.

More recently in late 2021, Cruise, another American self-driving car company, re-

ceived a permit from the California Motor Vehicles Department to deploy driverless

taxi rides at a max speed of 30 mph between 10 pm and 6 am in the city of San

Francisco, California.

With the initial milestone for the deployment made, the challenge of developing

effective autonomous driving technologies that can operate in a wide variety of com-

plex urban environments and scale up to different geographic regions has never been

more important. As pointed out by a recent publication from Waymo, generalization

within and between operating regions is crucial to the overall viability of autonomous

driving technologies [1]. Moreover, autonomous vehicles interact with stochastic road

users such as human drivers in different driving scenarios and road topologies. The

presence of multiple stochastic agents creates uncertainties that grow over time, con-

tributing to the increase in the number of variations of the environments and scenarios

that autonomous driving technologies need to handle.
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1.1 Urban Driving Environments

Figure 1.1: (A) Schematics of an urban driving scenario (un-signalized intersection)
and (B, C) are two example variations of the scenario. (B) A 3-way
intersection where agent 1 can either turn left or go straight, but not turn-
right, whereas agent 2 can either go straight or turn left/right. (C) A 4-
way scenario with the different number of lanes. The blue arrows indicate
available modes unique to each lane. In urban driving environments, AVs
need to perform contextual and uncertainty-aware decision-making.

The challenge is especially critical in the decision making in busy urban areas,

where an autonomous vehicle (AV) interacts with multiple stochastic road users in

diverse environments [2, 3, 4]. For example, at an un-signalized intersection environ-

ment as depicted in Figure 1.1, the adjacent human-driven vehicles may slow down,

go straight, turn left, or turn right. They may also change their speeds significantly.

As the number of road agents increases, the environment gets exponentially complex.

Besides, the trajectories may depend on the road topologies (e.g., different shapes,

number of lanes, or allowed turns). These variations in the environments require the

AV to come up with proper decision-making solutions unique to each environment.

2



In this regard, a scalable solution means an approach that is capable of considering

unique contexts to each environment and generating effective plans adaptively for

different scales and variations of the environments without having to significantly

increase computational requirements.

1.2 Motivation and Research Objective

Our main interest is to build scalable prediction and planning algorithms for self-

driving in urban areas. As the term scalability is used throughout the thesis, we

first define scalability as the ability to autonomously produce effective solutions in

computationally efficient ways for various urban driving scenarios. In the following

paragraphs, we explain the three keywords of the scalability in detail.

Effectiveness of the solution refers to the quality of predictions and trajectory

plans generated by the algorithms. The quality of a prediction model is indicated

by the accuracy of the forecasts which can be evaluated using metrics such as mean

squared deviation (MSD) of predicted states from the ground-truth states. Another

metric is the prediction uncertainty which explains the likelihood of the predicted

future states. Access to the prediction uncertainty can be critical for planning in

stochastic environments. Other metrics used to measure the quality of predictions

are described in Chapter 3 in detail. The effectiveness of a planning model, especially

for multi-objective planning problems like ours, is specified by the optimalities of the

planned trajectories. The optimality can be quantified using metrics like cumulative

rewards of state-action sequences in Reinforcement Learning (RL) or costs associated

with the executed trajectories in Optimal Control paradigms.

Computational efficiency represents how much resource an algorithm requires to

produce solutions. We quantify the efficiency using both computation time and mem-

ory requirement. Computation time is the elapsed time for a model to compute the

solutions. Memory requirement means the amount of memory occupied to store the

3



Figure 1.2: A typical autonomy stack of an self-driving car consists of perception,
prediction, planning, and control modules. This dissertation focuses on
the prediction and planning for autonomous driving. In this regard, the
proposed framework takes the perception outputs and produces trajectory
plans for downstream modules.

models and solutions. As modern autonomous vehicles continue to employ more

sensors and larger artificial intelligence models, managing computation resources is

necessary. A computationally in-efficient prediction or planning algorithm could slow

down the entire autonomy stack of autonomous driving software, which typically con-

sists of a multitude of modules such as perception, prediction, planning, and control

modules.

Generalizability is another key to the scalable self-driving solution. Sometimes

referred as robustness in the controls literature, generalizability is the ability to pro-

duce effective solutions in various environments without needing to manually tune

or customize the model. The generalizability is often measured by evaluating the

model’s performance in unseen environments. As the number of variations of urban

driving scenarios is unlimited, the generalizability is essential.

In summary, the main objective of this research is to build a scalable prediction

and planning framework for autonomous driving in urban areas in consideration of

the three keywords introduced above.
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1.3 The Proposed Framework

Figure 1.2 depicts a typical autonomy stack of an AV that consists of perception,

prediction, planning, and control modules. The inputs to the AV are sensor infor-

mation that is obtained using a suite of sensors including camera, lidar, radar, and

ultrasonic. The first module of the autonomy stack is the perception module that

processes the sensor information to perform tasks such as object detection, seman-

tic segmentation, and localization. The prediction module takes the output of the

perception module and predicts a set of future trajectories of road-agents such as

human-driven vehicles and pedestrians, or the occupancies of the road-agents. The

planning module computes a path and trajectory taking account for the prediction.

Lastly, the control module takes the planner output and computes low-level control

signals considering various dynamic constraints. This dissertation concerns the pre-

diction and planning modules. In this sense, we assume that the perception outputs

are provided and our end product is the trajectory plans to the downstream modules.

Recent data-driven techniques such as modern deep learning models have out-

performed various traditional baselines such as heuristics or rule-based methods and

adapt to many different environments or variations of the problems. Rule-based ap-

proaches typically assume simple interactions with the environment and thus have

limited scope and are specific to the intended scenario. Conversely, data-driven ap-

proaches can be used to model complex environments with minimal explicit assump-

tions. The minimal assumptions allow the approach to handle various instances of

the problem and thus to scale up better to the diverse urban driving scenarios.

Considering the stochastic and diverse nature of our problem, we mainly use data-

driven probabilistic methodologies to design our framework and aim to maximize the

performance and generalizability of the solution.

Figure 1.3 portrays the proposed framework which consists of two main problems:

prediction of the environments and planning the trajectory of AV. The methodologies
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Figure 1.3: The two parts of the proposed framework. We assume that perception
outputs (e.g., labeled past trajectories of the road agents, lidars, and map
information) are given to the framework. The framework calls the predic-
tion and planning parts every time new observations become available.

used to tackle each problem mainly comprise of deep learning models, while we also

used a fair amount of the optimal control methodologies to design the planner.

We propose a new scalable approach for urban driving scenarios in accordance with

the research objective. Our framework aims for effective, generalizable, and compu-

tationally efficient predictions and trajectory plannings. To promote the effectiveness

and generalizability of the solutions, we paid special attention to the stochasticity of

the urban driving environments as we believe that capturing the uncertainties of the

environments and using the information for contextual decision-making are the keys.

Our deep-learning forecasting algorithms, HCNAF [5] and CVAE-H [6], effectively

model complex probability density functions (pdf) and allow us to predict the future

states of the environments and gain access to the uncertainties associated with each

prediction. We compare the performance of our prediction models against public

benchmark models built on deep generative models such as variational autoencoders,

generative adversarial networks, and mixture density networks. Moreover, we verify

that the proposed prediction algorithm meets the four desired attributes of the ideal

prediction model; probabilistic, multi-modal, context-driven, and general. These at-
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tributes are discussed in Chapter 3 in detail.

The subsequent planner takes the prediction outcomes and generates trajectories

contextual to the environments for the AV. We model the planner as a mixture of

bivariate Gaussian distributions. We optimize the parameters of the distributions

(means, co-variances, and mode probabilities) using various deep learning and rein-

forcement learning techniques to be elaborated in Chapter 4. During the inference,

we sample various candidate trajectories from the learned planner and execute the

best action sequence for a few steps until new observations arrive. Model predictive

control [7] is leveraged to close the loop, that is, each time we have new observations,

we repeatedly perform the prediction and planning tasks. We conduct planning ex-

periments to evaluate the proposed planner against a number of baselines including

dynamic programming, heuristics, rule-based models, shooting-based methods, and

a behavior cloning model. The results support that the proposed planning algorithm

meets the three requirements of the ideal planner; near-optimal, general, and compu-

tationally efficient.

Figure 1.4: An overview of the solution network. This figure describes the implemen-
tation of the framework presented in Figure 1.3.
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Lastly, to reduce inference latency and computational resource requirements, we

design the prediction and planning algorithms to be non-autoregressive. Furthermore,

our approach employs a unique representation of the uncertainty of the environment

called Probabilistic Occupancy Map (POM) which helps reduce the planning time.

The details about the non-autoregressive approach and analysis of its theoretical

computational complexity are elaborated in Chapter 2.

Figure 1.4 provides an overview of the implementation of the proposed frame-

work. While this section introduced the core ideas of the framework, the theoretical

discussion and implementation details are covered in Chapter 3 - Prediction of the

Environment and 4 - Planning for Autonomous Driving.

1.4 Contribution

We propose a novel approach to the prediction and planning for scalable au-

tonomous driving in urban areas. In the following paragraphs, we summarize the

main contributions of our work.

The first contribution is the two novel prediction models, HCNAF [5] and CVAE-

H [6], which achieve state-of-the-art performance in a public autonomous driving

dataset. We confirmed that both HCNAF and CVAE-H outperforms other deep

generative model benchmarks in several metrics including minimum of mean squared

deviation over k sample predictions (minMSD) and negative log-likelihood (NLL) of

the predictions. Furthermore, HCNAF offers access to the exact probability densities

and allows trajectory planning with POM.

The second contribution is our planning model, which is capable of generating

near-optimal solutions in diverse environments in real-time. The proposed planning

model leverages concepts from deep learning to dramatically reduce the computation

time and learn to generate near-optimal solutions under various sets of road-agents

and geometries.
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The last contribution is the proposed framework, which offers a scalable (i.e., ef-

fective, generalizable, and computationally efficient) solution for the prediction and

planning problems. The scalability of our framework is accredited to the real-time

non-autoregressive solution approach and the use of POM as the uncertainty repre-

sentations, in addition to the highly effective prediction and planning models.

1.5 Organization of the Dissertation

The remainder of the dissertation is organized as follows. We start Chapter 2 by

formulating the problem at a high level and discussing two solution approaches that

correspond to different uses of the prediction and planning models. Then we analyze

their advantages and disadvantages with particular attention to their computational

complexities. We explain the reasons behind pursuing the non-autoregressive solution

approach. Lastly, we introduce the dataset we used to run and evaluate the proposed

framework.

Chapter 3 presents our prediction models. We first elaborate on the four key

requirements of effective probabilistic prediction models for autonomous driving in

urban areas. We propose two models, namely HCNAF and CVAE-H, that satisfy all

of the requirements. A summary of recent prediction models is also provided. Using

qualitative examples, we demonstrate that the two proposed algorithms effectively

leverage spatio-temporal sensor information and produce accurate predictions of the

road agents as well as their uncertainties in diverse environments. We quantitatively

compare our prediction models against state-of-the-art learning-based algorithms and

confirm that both methods outperform the benchmarks in a public dataset.

Chapter 4 discusses the decision-making task. We begin with detailed descriptions

of the planning problem and how the prediction outputs and their uncertainties can be

incorporated into the planner. We survey existing planning approaches which utilize

optimal control & reinforcement learning and discuss the three key requirements of
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the scalable planning algorithm. Leveraging insights from recent advances in model-

based reinforcement learning algorithms and optimal control, we propose a model-

based random shooting planner with a Gaussian mixture as the backbone distribution.

The planner is parameterized using a deep neural network and can produce near-

optimal trajectory plans in various scenarios in real-time. We conduct experiments

to evaluate the proposed planner against a number of baseline planners and show

that it outperforms the baselines in terms of solution optimality, generality, and

computational efficiency. Furthermore, we present the planning results of the two

uncertainty representations of the environment (i.e., trajectory samples and POM).

Chapter 5 is devoted to the summary and discussion of our works. After that, the

thesis concludes with an extended discussion about possible future works.
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CHAPTER II

Solution Approach

This Chapter extends our discussion on the proposed framework to its mathemat-

ical formulation and implementation. Chapter 2 consists of four sections. In Section

2.1, we formulate the problem using Markov decision process. Section 2.2 discusses

different implementations of the proposed framework. Specifically, we introduce Au-

toregressive and Non-autoregressive implementation and compare their advantages

and disadvantages with an emphasis on the computation efficiency. Section 2.3 pro-

vides a brief overview of probabilistic occupancy map (POM) and contrasts POM

and trajectory samples as the uncertainty representation for the planning of AV with

a particular focus on the computation efficiency. Section 2.4 explains the dataset we

used to run and evaluate the proposed framework.

2.1 Problem Formulation

To formulate the problem, we use the Markov decision process (MDP), a common

framework for decision-making under uncertainties [8, 9, 10, 11, 12, 13]. Specifically,

the problem is formulated as an n-th order MDP. In other words, we preserve in-

formation about the past states of the environment for n time-steps and leverage

them in the prediction. As a result, the state transition is represented as a function

of length n tensor with current and previous states and actions. The goal of the
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autonomous vehicle (AV) is to maximize the expected return under uncertain urban

driving environments.

The urban driving environment is assumed to consist of road agents such as human

drivers and contextual spatial information such as map and lidar scans. Specifically,

we denote the state of a road agent as SAkt where the superscript Ak is used to

indicate k-th road agent in the scene and the subscript t represents the time-step.

SAkt = [XAk
t , V Ak

t ] is a collection of positions and speeds of the agent Ak at time t. A

superscript and/or subscript can be omitted for the inclusive definition. For example,

St consists of positions and speeds of all road agents XA∀k
t and V A∀k

t . Trajectory of

a road agent Ak is then defined as XAk
t1:t2 for t1 < t2. We assume that all road agents

reside in a two dimensional surface (i.e., zero-slope) as it is a common practice that

simplifies the problem. Accordingly, X := [x, y] and V := [ẋ, ẏ] follow the Cartesian

coordinate system.

On the other hand, the state of the environment, St, includes Ωt which denotes the

spatial features which correspond to contextual static and dynamic scene information

extracted from map priors (e.g., lane boundaries and stop-signs) and/or perception

modules (e.g., bounding boxes of the road agents overlaid onto a rasterized image of

the scene).

St := [XA∀k
t , V A∀k

t ,Ωt]. (2.1)

It is worth noting that our framework assumes that such spatial features are

provided by an external perception module or HD map. Ωt is typically visualized as

a Bird’s-eye-view (BEV) map.

The action of AV and the k-th road agent at time t are denoted as aAVt and aAkt

respectively. The action represents either at := [ẍt, ÿt] or at := [V̇t, θ̇t] depending on

the dynamic model of the AV. Note that we consider the state transition model for

AV fAV to be approximated by a point-mass model with a first-order hold discrete
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approximation as follows.

XAV
t+1 = fAV (XAV

t , aAVt ) = XAV
t + V AV

t ∆t+ 0.5aAVt ∆t2. (2.2)

The proposed prediction model Pm := Pa(s, s
′) represents the state transition

model for the other road agents excluding AV.

Pm(X
A∀k 6=AV
t+1 |XA∀k

t ) := Pa(s, s
′) = Pr(X

A∀k 6=AV
t+1 = s′|XA∀k

t = s, aAVt = a) (2.3)

In summary, the next state of the AV is obtained by a one-step propagation of the

deterministic system dynamics fAV . In contrast, the next states of other road agents

are sampled using the probabilistic prediction model Pm.

The expected return (i.e., the cumulative discounted rewards) is denoted as r and

obtained by summing over the rewards at each time step rt. The reward consists

of one or more terms related to goal completion, safety, ride comfort, travel time,

and in-violations of traffic rules. That is, the planning problem is a multi-objective

decision-making problem with the reward function described as in Equation 2.4. The

detail of the reward structure is presented in Chapter 4.

r := rgoal + rtime + rinviolation + rcomfort + rsafety (2.4)

Finally, the goal of the planning problem is to obtain the optimal sequence of

actions that maximizes the expected return. As described in Equation 2.5, it is a

function of states of the environment and actions of the AV from the current time t

to the final time T .

aAAVt:T

∗
:= argmax(E[rt:T (SA∀kt:T , aAAVt:T )]). (2.5)
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We aim to achieve the goal by building a probabilistic planner Pπ with the policy

π that generates candidate actions given the state as follows.

aAAVt ∼ Pπ(S0:t, S
Ak 6=AV
t+1 ). (2.6)

2.2 Solution Implementations

This section explains how we tackle the problem defined in the previous section. As

our framework consists of two parts: prediction and planning, our solution approaches

are also comprised of two main steps; (1) prediction of the future states of the road

agents (2) planning optimal action sequences for the AV aAAVt:T . Depending on how we

structure the two main steps, there could be a multitude of different approaches. Two

popular approaches include an end-to-end approach which jointly models and trains

the prediction and planning tasks together [14, 15, 16] and a modular approach which

separately constructs prediction and planning models as part of the modular pipeline

for autonomous driving [17, 18]. A typical modular pipeline consists of localization

and mapping, perception, prediction, planning, and vehicle control. In the scope of

our problem, the modular approach corresponds to training the prediction model first

and using the trained prediction module to generate plausible forecasts of the road-

agents in the scene for training and/or conducting inference of the planning model.

We pursue the modular approach as the end-to-end approach is less interpretable and

more expensive to train.

Two different approaches can be used for the modular approach depending on

how the prediction and planning models are employed. In the following paragraphs,

we briefly discuss the two approaches, namely autoregressive and non-autoregressive

implementations. An autoregressive implementation indicates that the prediction

and planning outputs are produced autoregressively conditional to the previously

generated outputs. Conversely, if the prediction and planning outputs of an approach
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are produced all at once, such an approach is denoted non-autoregressive.

2.2.1 Autoregressive implementation

From t to T , repeatedly perform step 1,2,3:

• Step 1. Prediction of the road agent states : SAKt+∆t ∼ Pm(SAKt+∆t|S0:t), ∀k 6=

AV ,

• Step 2. Decision-making for AV : aAAVt ∼ Pπ(S0:t, S
A∀k 6=AV
t+∆t ),

• Step 3. State-transition for AV : SAAVt+∆t = fAV (SAAVt , aAAVt ).

The autoregressive implementation described above involves repetitions of the

prediction (i.e., step 1) and planning steps (i.e., step 2-3) from the current time t

to the final time T . Step 1 is denoted as the prediction task where the transition

function of the environment (i.e., the learned prediction model) is used to predict

future states of the road agents. The future states are represented as a conditional

distribution of SAKt+∆t given the historical states of the road agents (i.e., S0:t). Step

2 describes the decision-making task where we use the learned planner Pπ to sample

optimal action sequences for the AV, taking into account the historical states of all

agents as well as the predicted next states of all road agents from step 1. Step 3

describes a deterministic state-transition for AV which was introduced in Equation

2.2. Once all three steps are performed, and SA∀kt+∆t are obtained, we go back to step 1

and repeat the three steps to obtain SA∀kt+2∆t. This iteration is repeated until we obtain

SA∀kt:T .

We label this approach as the autoregressive approach as the prediction & planning

outputs are computed jointly. In other words, step 2 at t requires the state predictions

until t and step 1 at t+ ∆t requires the plans until t.

To compute its theoretical time complexity, let us define the following.
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• tpred: time to run the prediction model Pm.

• tplan: time to run the planner Pπ.

• ttransition: time to run the AV’s state-transition fAV .

• H: planning horizon (= T-t).

• ∆t: planning time resolution.

• Tautoregressive: time to run the autoregressive implementation.

• Tnon−autoregressive: time to run the non-autoregressive implementation.

Since the step 1-3 are repeated H times to obtain the trajectory plans SAAVt:T , the

computation time complexity for the autoregressive implementation is as follows.

Tautoregressive = (tpred + tplan) ∗H/∆t, (2.7)

Where we omit ttransition since the step 3 takes much shorter than step 1 and 2.

Equation 2.7 indicates that the inference time (i.e., time to produce the solution)

grows as planning horizon gets longer and time resolution goes finer. This could eas-

ily make autonomous driving infeasible for real-world use as autonomous driving in

urban area typically requires AV to react quickly to changes in the environments. To

take new observations into account, the prediction and planning algorithms are typi-

cally employed in the model predictive control (MPC) scheme [7, 13]. This requires

Tautoregressive to be much shorter than the replanning period treplan.

2.2.2 Non-autoregressive implementation

For a viable solution to autonomous driving in real-time, we propose a non-

autoregressive implementation. The non-autoregressive implementation is designed

to minimize the dependency of the computation time from the planning horizon and
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time resolution by running the prediction and planning steps only once. The resulting

time complexity is then defined as

Tnon−autoregressive = (tpred + tplan). (2.8)

The details of the non-autoregressive implementation are as follows.

• Step 1. The prediction : S
A∀K 6=AV
t+∆t:T ∼ Pm =

T∏
i=t+∆t

Pm(S
A∀k 6=AV
i |S0:t),

• Step 2. The decision-making : aAAVt:T−∆t ∼ Pπ(S0:t, S
A∀k 6=AV
t+∆t:T ),

• Step 3. The state-transition : SAAVt+∆t:T = fAV (SAAVt , aAAVt:T−∆t).

In step 1, the predictions over all time steps are conditionally independent from

each other given the observation of the environment S0:t. This means that Si, t <

i <= T only depends on S0:t (i.e., state observations up to time t) and does not

depend on St:i, hence the name non-autoregressive. The road agent state predictions

from t + ∆t to T are generated all at once. In steps 2 and 3, the entire action

sequence aAAVt:T−∆t is sampled at once and the corresponding trajectory of AV XAAV
t+∆t:T

is computed using aAAVt:T−∆t.

While the non-autoregressive approach might sacrifice long-term accuracy as it

does not consider possible future interactions, the main advantage over the autoregres-

sive approach is computational efficiency. As it only runs the prediction and planning

steps exactly once, the inference time is much shorter. As compared in Equation 2.7

and 2.8, the non-autoregressive implementation takes a total of tpred+ tplan seconds to

run. The autoregressive computation time is Tautoregressive = Tnon−autoregressive∗H/∆t,

which means it takes H/∆t times longer compared to the non-autoregressive imple-

mentation.

As one of our objectives is to construct a scalable algorithm that has high com-

putational efficiency, we implement the non-autoregressive approach.
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2.3 Probabilistic Occupancy Map and Time Complexity

The planning time tplan referred in Equation 2.7 and 2.8 can further break down

into tplan−generate, the time consumed to run the learned planner Pπ and generate

candidate plans, and tplan−select, the time to select the most optimal plan among the

candidates. While tplan−generate is independent of the predictions SA∀K 6=AV , tplan−select

is largely dependent on the predictions. Let us first introduce POM and discuss

two different prediction representations before extending the discussion on how each

representation impact the computation time.

As briefly mentioned in Section 1.3, POM is one of the representations for the

uncertainties in the environment. We define POM as a continuous two-dimensional

map where each coordinate X := (x, y) of the map encodes 0 ≤ P (X) ≤ 1, the

probability density of the coordinate being occupied by road agent(s). Note that∫
X
P (X)dX = 1 for continuous POMs and

∑
X P (X) = 1 for discretized POMs (i.e.,

occupancy grid map). We visualize POM as heat maps (see the right plot of Figure

2.1) in the vicinity of the AV. The certainty of the prediction is captured as P (X)

and multi-modal prediction outcomes are described as the peaks of the probability

heat map.

Figure 2.1: Two different uncertainty representations: (left) distribution of trajecto-
ries, (right) probabilistic occupancy map.

In the common modular workflow of autonomous driving, planners take the out-

puts of the prediction modules as inputs to produce trajectory plans. A popular

output representation of prediction models is trajectory. More precisely, it is either
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distribution of trajectories or a set of trajectory samples obtained by querying the

prediction models. On the other hand, POM is a relatively new representation that

does not involve the sampling procedure as it records probability into the map. In the

following paragraphs, we discuss the advantages and disadvantages of POM compared

to the trajectory-based representation.

The main advantage of the trajectory-based representation includes the following.

First, it is compatible with various types of planners including optimal controller

and RL planners [8, 9, 19, 10, 11]. Second, algorithms that leverage the trajectory

representation have achieved great performances for autonomous driving prediction

and planning problems. The trajectory representation can also encode the complex

and multi-modal nature of road agents in urban driving environments.

However, the major drawback of the trajectory representation is the computational

speed. This is elaborated further as follows.

First, a sampled trajectory is just one of all possible future realizations. In most

urban driving scenarios, especially at intersections, sampling a few trajectories may

not capture all possibilities. Thus, a large number of samples is needed to represent

a diverse set of possible futures; however, it is not easy to know how many trajectory

samples are enough.

Second, querying the model for a multitude of trajectories may involve heavy

computations, which is especially true for large prediction models and models that

recursively expand trajectory branches. In practice, a compromise between the pre-

diction accuracy and computation time is made.

Third, it is not guaranteed that the set of samples includes rare events. As the

number of trajectory samples grows, the possibility that the set includes rare events

increases; however, there is no guarantee. This becomes a severe issue when rare

events are safety-critical.

In summary, enough prediction samples should be secured for decision-making
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to minimize the chance to collide with other road users. Given the number of road

agents K in the scene and the number of the prediction samples per road agent

NAk
pred, the total number of the prediction samples is

∑
∀kN

Ak
pred which is roughly equal

to K · NAk
pred. To check the safety of Ncand candidate plans against the other road

agents, the planner has to run Ncand · K · NAk
pred collision checks in total. That is,

tplan−select ∼ Ncand ·K ·NAk
pred for the trajectory representation.

On the contrary, POM works directly with the uncertainty and depicts a full

picture that captures all possible future, including rare events as probabilistic oc-

cupancies in the map. Instead of excessive sampling, the planner can simply query

the POM, which is the prediction model, for their candidate trajectory coordinates.

Therefore, the time complexity for the collision check is Ncand, which is a magnitude

of K ·NAk
pred smaller than the time complexity of the trajectory representation. Since

the time complexity of the POM presentation remains constant with respect to the

number of sample predictions (i.e., tplan−select ∼ Ncand), it is much more efficient than

the trajectory representation. Since POM is relatively new, the challenges are devel-

oping an effective prediction algorithm that models POM and designing an effective

way of using POM in the planner. These are discussed in Chapter 3 and 4.

2.4 Datasets

Many publicly available large-scale autonomous driving datasets (Argoverse [20],

Lyft Level 5 [21], NuScenes [22], Apolloscape [23], KITTI [24], and PRECOG-Carla

[25]) include various kinds of urban driving scenarios including lane-keeping driving

in straight & curved roads, lane-change, and intersection scenarios. Details of the

dataset survey are presented in Figure 2.2.

There also exist scenario-specific datasets that focus on one or two urban driv-

ing scenarios such as intersections. Multi-Modal Intelligent Traffic Signal Systems

(MMITSS) [26] is a publicly available signalized intersections dataset that includes
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states of traffic lights (i.e., signal phase and timing, in short, SPaT). There exist a few

other private datasets with SPaT, such as Safety pilot model deployment (SPMD)

[27]. However, they either are not public or do not contain enough information to es-

timate the states of the environment. For example, SPMD provides traffic light states

but does not provide any information about surrounding vehicles nor geometric data

about the environments. INTERACTION [28] and inD [29] are datasets which in-

clude un-signalized intersection scenarios, however, they are much smaller compared

to the generic datasets.

Figure 2.2: Autonomous driving datasets.

As our research objective is a scalable algorithm, we evaluate our approach using

various scenarios from the generic datasets rather than the scenario-specific datasets.

More specifically, we select PRECOG-Carla, a publicly available dataset created us-

ing the open-source Carla simulator for autonomous driving research [25], as our main
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dataset. The dataset includes up to five road-agents that are human-driven vehicles

and processed lidar data from three lidar channels (i.e., two channels above ground

and one channel for the ground level inputs). PRECOG-Carla provides several ad-

vantages over other generic datasets. First, it provides cleaner processed perception

information than other datasets with noisy and imperfect data. This is more suit-

able to our research as we assume that clean perception information is given to our

prediction & planning models. This helps us focus on the modeling and minimize

data cleansing which may contribute to performance variances that make it difficult

to compare different prediction and planning models. Second, several public bench-

marks are available. Recent literature [25, 30, 31, 32, 33, 34, 35, 36] leveraged the

PRECOG-Carla dataset to solve the generic autonomous driving prediction problems

and provide valuable benchmarks for validating the performance of our models.
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CHAPTER III

Prediction of the Environment

Chapter 3 is dedicated to the prediction part of the framework described in the

previous chapters. The prediction part spans from taking outputs of perception mod-

ules (e.g., labeled trajectories and processed vision data) and predicting future states

of other road users to feeding them to the subsequent planner as depicted in Figure

3.1.

In Section 3.4 - 3.8, we present prediction models denoted as pm in Figure 3.1. In

Section 3.9 and 3.10, we report the results of the experiments we conducted to evaluate

the performance of the prediction models. Before we elaborate on the proposed

prediction models, we first dedicate Section 3.1 - 3.3 to the literature review and

explaining the motivation behind the design of our prediction models.

3.1 Introduction

We start the chapter by discussing key characteristics of urban driving environ-

ments and the attributes an ideal prediction module should possess.

Autonomous driving in urban areas often involves interactions with stochastic

road-agents. When other road-agents exist, AV needs to predict their locations and

speeds to avoid collisions. Considering that the road agents behave stochastically, the

outputs of the prediction model should not only include bare predictions, but also
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Figure 3.1: An overview of the proposed prediction approach.

their quantified uncertainties.

Another characteristic of urban driving is the diversity of possible trajectories.

For example, a vehicle approaching a 4-way intersection has four possible modes ; go

straight, turn left, turn right, or yield if there is a lead vehicle waiting in the queue.

Whereas a vehicle approaching a 3-way intersection may not have “go straight” or

“turn left” or “turn right” mode available depending on the road geometry. A vehicle

approaching a multi-lane intersection may take the inner or outer lane, depending on

the destinations and available modes tied to the lanes. A vehicle passing through a

crosswalk may slow down or maintain its speed. In other words, there are various

factors that contribute to the diversity of the trajectories. Such factors include the

relative states of dynamic agents, road geometries, and static obstacles in the scene.

To consider these factors, it is important to capture the impact of both social features

(e.g., interactions among road-agents) and spatial features (e.g., lanes, stop signs, and
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crossroads) in the prediction.

Last characteristic of the urban driving environments is that numerous instances

of the environments exist. Road configuration alone is diverse; examples include

un-signalized intersections that are single-lane, two-lanes, 2-way stops, 4-way stops,

u-turns, roundabouts, one-way roads, straight roads with different numbers of lanes,

curved roads, and so on. Even environments with similar road configurations some-

times have different allowable motions depending on the number of lanes and angles

between adjacent outlets. The presence of static objects and dynamic road-agents

diversify the urban environments as well. This means that rule-based or ad-hoc pre-

diction approaches customized to a specific instance of the environment is infeasible

because there are just too many variations. A scalable prediction approach should be

able to adaptively generate predictions in various instances of the environments.

Taking into account the aforementioned important characteristics, we present four

key attributes that an ideal prediction model for autonomous driving in urban envi-

ronments should exhibit:

1. Probabilistic : can infer uncertainties in the predictions,

2. Multi-modal : can capture diverse and distinct sets of possible futures,

3. Context-driven : can leverage both social and spatial information,

4. General : can produce accurate predictions for new (unseen) inputs.

It is not trivial for a prediction model to satisfy all four requirements. First of

all, not all neural-network models and physics-based models are probabilistic unless

they build on one of the following approaches. The first group is the approaches

that explicitly model prediction uncertainties, such as Mixture Density Network [37],

Normalizing-flow models [5, 38, 39, 40], Variational Autoencoder (VAE) [41, 42, 6]).

The second group implicitly works with uncertainties (e.g., Generative Adversarial
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Networks (GAN) [43]) with aids of probabilistic modules such as Monte-Carlo simula-

tions [44] and kernel density estimation [45]. Note that deterministic models typically

make simple assumptions on the dynamics of the environment. The assumptions are

either rule-based (e.g., constant acceleration model departing from a stop and con-

stant velocity model in the middle of straight roads) or heuristics (e.g., Intelligent

Driver Model (IDM) [46]).

Models that are not multi-modal are deterministic models or uni-modal proba-

bilistic models. Deterministic prediction models usually output average behaviors of

an agent (i.e., one realization). Although it is possible for them to produce multiple

realizations, which may be interpreted as the peaks of multi-modal distributions, the

deterministic models are not probabilistic. Uni-modal prediction models may per-

form well for certain simple scenarios like highway lane-keeping since the vehicles on

highways tend to maintain their speeds. However, the uni-modal models are not suit-

able for urban scenarios like intersections where there exist multiple paths a vehicle

can take and the paths are very different from each other (i.e., left-turn, right-turn,

drive-straight trajectories).

In order to satisfy the third requirement, the model should be able to reason how

the contextual information, such as the social and spatial information impacts the

behaviors of road agents. A model that is exclusively based on Convolutional Neural

Network (CNN) [47, 48] may fail to capture social features effectively. Similarly, a

model that relies solely on social features [49, 50, 32, 51] using Recurrent Neural

Network (RNN), attention, or Graph Neural Network (GNN) may not be the best to

capture spatial features that are part of HD Maps, images, and/or lidar point clouds.

Deterministic models are hardly context-driven as they simplify the predictions by

averaging behaviors of road agents and usually do not take into account variations of

the social and spatial information as it is infeasible to model all possible realizations

of the environment.
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Finally, generality, i.e., the ability to work with unseen environments outside the

trained environments, is essential to the ideal prediction model. Models that fix the

number of output modess such as Gaussian Mixture Model (GMM) [52] is a counter-

example. GMM works with the specified number of modes and thus may perform

badly when the number of modes changes. Models that leverage scenario-specific

heuristics or physical knowledge also typically sacrifice generality over the precision

for the targeted scenarios. Relying only on rule-based or heuristic methods requires

manual customization efforts towards different scenarios. This is a labor-intensive

approach that does not scale well. For this reason, we opt for general prediction

models that work and adapt effectively under diverse urban environments.

3.2 Related Works: learning-based prediction models

In this section, we review existing models for the prediction task and categorize

them. All models introduced in this section are generic prediction models (i.e., the

models do not assume a specific environment). It is worth noting that the list is by

no means exhaustive, as the field is growing fast.

The first categorization of the prediction approaches is based on input features

the prediction model utilizes. We group them into (1) ones that only leverage the

social information obtained from trajectories, (2) ones that only utilize the spatial

information, which comes from maps and sensors, and (3) ones that use both social

and spatial information. As per the third requirement of the ideal prediction model,

we look for a model that can leverage both the social and spatial features. In the

following paragraphs, we briefly discuss a number of existing models that belong to

each category.

Models that focus on the social features include Social-LSTM [49], which uses

a pooling layer to capture social interaction of pedestrians, Social-GAN [50], which

models multi-modal pedestrian trajectories considering interactions between pedes-
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trians using GAN, and Trafficpredict [32] that uses a graph-based LSTM prediction

algorithm to model interactions in heterogeneous traffic scenarios. These models in-

troduce effective ways of modelling interactions between dynamic road agents but do

not consider the spatial features.

On the other hand, some models focused on exploiting the spatial features. Ex-

amples include IntentNet [47], which introduces a joint detection-prediction model by

discretizing the state space and predicting one of eight driving maneuvers. Fast and

Furious [48] proposes a deep neural network that jointly solves 3D detection, tracking,

and motion forecasting given data captured by a 3D sensor. These models effectively

capture underlying traffic rules from the road geometry; however, interactions among

road agents are not explicitly modeled.

There are also models that utilize both social and spatial features. DESIRE

[30] is a VAE-based multi-modal model that leverages both social interaction and

spatial context. SoPhie [53] extends social-GAN approach to take contextual scene

information as well as social features. R2P2 [31] takes both social and contextual

information and addresses the diversity-precision trade-off of generative forecasting

models and formulate a symmetric cross-entropy training objective to address it.

PRECOG [25] extends R2P2 and includes both RNNs and CNNs to capture intentions

of agents and spatial contexts. MTP [54] uses social and spatial features to model

multi-agent interactions and their latent goals into the prediction.

The second categorization is based on the core mechanics of the prediction models

as depicted in Figure 3.2, depending on their outputs types, either deterministic or

probabilistic. As briefly explained in Section 3.1, probabilistic models provide means

to interpret the probability of the prediction, either explicitly or implicitly, whereas

deterministic models do not.

Many earlier deterministic models leveraged either physics-based modeling tech-

niques [46] (e.g., constant velocity model, constant acceleration model, car-following
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Figure 3.2: The second categorization is based on whether an algorithm is determin-
istic or probabilistic (generative).

model) or relatively light-weight neural networks such as multi-layer perceptron (MLP),

RNN, and/or CNN [49], while a few recent deterministic models work with larger deep

neural networks [47, 48]. As discussed in the previous section, we look for a proba-

bilistic approach that can estimate the uncertainties of its predictions.

Probabilistic models are commonly categorized into discriminative models and

generative models [55]. Discriminative models directly approximate p(xo|xi) where

xi is the input (i.e., past states of the environment) and xo is the output prediction.

They model p(xo|xi) by assuming functional forms of p(xo|xi) and learning its pa-

rameters. Examples include regression models, support vector machine (SVM), and

neural networks that model the conditional distribution p(xo|xi) directly. On the

other hand, generative models approximate a joint distribution p(xo, xi) by assuming

functional forms of p(xo) and p(xi|xo) and learning their parameters.

Classical generative models include Bayesian networks and Latent Dirichlet allo-

cation; however, the term generative models has been used more broadly after VAE

and GAN were introduced. Trained with the principle of maximum likelihood esti-

mation (MLE), VAE and GAN are popular for generating the data. Unlike classical
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generative models, VAE and GAN model a joint distribution p(xi) using latent vari-

ables z where z is not the output of the model, but rather a variable that encodes

the underlying dynamics of the data distribution. Furthermore, a group of genera-

tive models that are used to model a conditional distribution p(xo|xi) via a latent

variable z are called conditional generative models. Examples include conditional

VAE (CVAE) [56], CGAN [57], and both of our prediction models; HCNAF [5] and

CVAE-H [6].

Modern generative models, including GAN, VAE, Flow, and Mixture Density

Networks (MDN) [37] are popular across several domains of artificial intelligence

and machine learning due to their capacities to approximate complex probability

distributions. Existing prediction approaches built on these generative models are

discussed in the following.

GAN is well-known for producing samples of excellent qualities in computer vision

tasks. GAN has also been used in the prediction task for autonomous driving [50,

53, 58]. Although GAN is a probabilistic model, it does not explicitly model the

probability [55]. This means that GAN has to rely on expensive Monte-Carlo sampling

to approximate the probability distribution of the generated samples to reason the

uncertainties of the predictions. As our probabilistic planning approach requires

assessment of the uncertainties, GAN hardly qualifies as the prediction model for our

problem.

Unlike GAN, VAE is a type of explicit generative model that models probability

density p(x) explicitly. This property allows us to obtain the uncertainties of the

sample predictions directly. Besides, several recent VAE-based models have shown

promising results at predicting trajectories of human-driven vehicles in urban en-

vironments [30, 54, 42, 6]. Although VAE models data distribution p(x) (i.e., the

uncertainty of the prediction sample x) approximately via variational inference [59],

the direct and explicit estimation of the uncertainty is a compelling advantage.
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Normalizing flow, or Flow, is also a type of explicit generative model [55]. Different

from VAE, Flow models probability density p(x) explicitly and exactly. Normalizing

flow began to gain attention in the field of machine learning, especially for density

estimation tasks and applications that require predicting uncertainties. It is a new

type of explicit generative model that requires meticulous designs to obtain access

to the exact probability density [31, 25, 5]. Normalizing flow is one of the main

components of our prediction models.

MDN is another generative model that obtains explicit probability densities. MDN

combines conventional neural networks and a mixture of density models. A common

choice for the density model is a mixture of Gaussians where the neural network

estimates the parameters of the Gaussian mixture, including means, covariances, and

mixture ratios. MDN with Gaussian mixtures have been used for prediction tasks

[52, 32, 60]. Since MDN works with a pre-determined number of modes, it does not

scale well to other environments. For example, an MDN with a mixture of three

uni-modal Gaussians trained to predict a vehicle at an intersection scenario where

each Gaussian is responsible of ‘left-turn’, ‘right-turn’, and ‘driving-straight’ would

not adapt well for a scenario where the vehicle has no forking options.

Figure 3.3 summarizes our discussion in this section by classifying the approaches

using the four requirements of the ideal prediction model: probabilistic, context-

driven, multi-modal, and general. In short, HCNAF and CVAE-H, the two deep

generative models we propose, qualify as the ideal prediction models.

3.3 Related Works: POM

As we utilize the POM representation as an output of the prediction model, rele-

vant literature is reviewed. In the literature, the POM is usually employed in discrete

settings as occupancy grid map (OGM). OGM is the discrete version of the POM and

it has been used in the field of robotics [61, 62] and autonomous driving [63, 64, 65, 66].
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Figure 3.3: The literature reviewed in this section classified based on whether an
approach satisfies our requirements (see Section 3.1).

In robotics, the occupancy grid is used to represent the space occupied by objects

for planning methods such as Probabilistic Road-Maps (PRM) and Rapidly exploring

Random Trees (RRT) to generate collision-free paths.

OGM works under discrete maps as opposed to continuous maps like POM does.

In autonomous driving literature with OGM, the prediction problem is usually for-

mulated as a multi-class classification problem with K different grid cells being the

classes and the prediction model is trained using cross-entropy over the classes. In

[63, 64], an LSTM network was used to produce probabilistic occupancy for discrete

grid cells. A softmax layer was used at the end of the network to produce a probability

distribution over the finite number of candidate cells. Unlike the two aforementioned

studies, [65, 66] worked with multi-dimensional vision data (e.g., map and lidar data).

They leveraged encoder-decoder structure combined with RNN as well as convolu-

tional layers to better use the spatial information for the prediction of OGMs.

While the discrete representation of OGM reduces the number of candidate pre-

diction outputs and can decrease the computation cost, we opt for the continuous

map representation, POM, for the better prediction accuracy, generalizability of con-
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tinuous prediction models, and higher flexibility to work with continuous planners.

3.4 Prediction Algorithm Overview

In Section 3.1, we identified the four key attributes of the ideal prediction model

for autonomous driving in urban environments. In Section 3.2 and 3.3, we reviewed

existing methodologies that have been utilized to solve the prediction task and in-

vestigated their capacities. In this section, we provide a high-level description of our

prediction algorithms as well as their attributes and explain how they meet all four

requirements; probabilistic, multi-modal, context-driven, and general.

Both of our prediction models, HCNAF [5] and CVAE-H [6], consist of two parts,

Explicit density models and Hypernetworks [67]. As introduced in the previous sec-

tion, explicit density models, more precisely the generative models that explicitly

model probability density of the data, satisfy the first attribute of the ideal predic-

tion model by definition (i.e., explicit density models are probabilistic). Secondly, our

prediction models build on VAE (CVAE-H) and Normalizing Flow (HCNAF) and

thus they are capable of approximating arbitrarily complex probability distributions

(i.e., our prediction models are multi-modal).

While VAE and Flow by definition meet the first and second requirements, vanilla

VAE and Flow do not automatically satisfy the third and fourth requirements. The

vanilla version of VAE and Flow approximate the data distribution p(xi) whereas

the goal of the prediction task is to obtain conditional probabilities p(xo|xi), where

xi and xo are inputs and outputs of the prediction model. Therefore, a non-trivial

modification is required. For VAE, a straight-forward solution is to integrate RNN

into the decoder of VAE [68, 69]. However, the same solution does not apply to Flow

as RNN violates the Flow’s network constraints required to maintain the properties

of Normalizing Flow. This is where the second part of our prediction models comes

into play.

33



Figure 3.4: Hyper-network is a neural-network g used to conditionalize another
neural-network f (e.g., vanilla VAE and Flow) by providing network pa-
rameters of the main neural-network θ.

The second part of our prediction models is Hypernetwork [67] described in Figure

3.4. Hypernetwork provides a way to make the unconditional generative models (e.g.,

vanilla VAE and Flow) conditional without the use of RNN. Hypernetwork is another

neural-network that can consist of various types of neural networks modules such

as CNN, RNN, Residual blocks [70] and Attention [71]. One can also use a well-

recognized neural network models such as Inception [72], ResNet [73], or BERT [74]

as the hypernetwork.

In this sense, hypernetworks take diverse types of data including social and spatial

data. The effectiveness of the hypernetworks grows with respect to the capacity

of its backbone neural network. Upon use of CNN blocks (spatial features) and

RNN/Attention modules (social features), the main neural network becomes context-

driven.

Furthermore, hypernetworks offer excellent generalization capability when it is

combined with deep neural networks. This has been demonstrated across diverse

tasks in machine learning [67, 75, 76, 77, 78, 79, 80, 81].

We present two prediction models HCNAF and CVAE-H that are explicit density

models combined with hypernetworks. So far, we have elaborated on how both models
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theoretically satisfy the requirements of the ideal prediction model. Later in this

chapter, we provide empirical evidence that our models qualify as the ideal prediction

model.

Section 3.6-3.8 are dedicated to the architectural details of our prediction models.

But first, we provide theoretical overviews of the deep learning concepts that fabricate

our prediction models.

3.5 Preliminaries

In this section, we review the three deep learning concepts that are keys for our

prediction models; Variational autoencoder, Normalizing flow, and Hypernetwork.

3.5.1 Variational Autoencoder

Variational Autoencoder [41] is a generative model that learns a data distribu-

tion p(X) in an unsupervised way by using an abstract (i.e., latent) variable Z that

captures the underlying dynamics of the data distribution X.

As the name suggest, VAE is an autoencoder model [82] trained using variational

inference [59]. Autoencoder is an unsupervised machine learning model that learns an

identity function fI = fdec(fenc) using an encoder fenc and decoder fdec where fI(X) =

X. The encoder fenc(X) = Z takes the input data X that are high dimensional and

compresses it into a lower dimensional data Z. The decoder fdec(Z) = X then takes

Z and recovers the higher dimensional input X. During the reconstruction of the

original inputs, the autoencoder aims to discover a more efficient lower dimensional

representation of the inputs.

The encoder and decoder of an autoencoder are typically parameterized using neu-

ral networks and learned together to minimize the difference between the original and

reconstructed inputs. Popular loss functions of autoencoders include mean squared

deviation (MSD). Note, the loss function for Variational autoencoder is different from
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that of autoencoders and it is detailed in the following paragraphs.

VAE combines the autoencoder architecture with variational inference and the

Bayesian learning techniques. Instead of mapping the input into a fixed latent vec-

tor, like the autoencoder, VAE maps the input into a probability distribution. Ac-

cordingly, the encoder and decoder are no longer deterministic. Instead, the encoder

and decoder each models the probability distributions p(Z|X) and p(X|Z). As the

compression X → Z and generation Z → X steps become probabilistic, VAE can

be used for generative tasks by sampling Z and passing it through the decoder to

reconstruct (or predict) X.

Let us denote p(Z|X) and pm(Z|X) as the true posterior and model posterior

distributions. Likewise, p(X|Z) and pm(X|Z) are denoted as the true likelihood

and model likelihood. Finally, we denote p(Z) as the prior distribution. With the

introduction of probability distributions, the learning objective becomes maximizing

the likelihood of the training data:

θ∗ = argmax(
N∏
k=1

pm(Xk)), (3.1)

where θ∗ represents the optimal parameters for the encoder and decoder. Using

Bayes rule and the law of total probability, p(Xk) can be expressed follows:

p(Xk) =

∫
Z

p(Xk, Z)dZ =

∫
Z

p(Xk|Z)p(Z)dZ. (3.2)

Equation 3.2 is intractable as the integration over the entire domain of the contin-

uous random variable Z is very expensive. This is where the variational inference [59]

comes into play. Instead of directly maximizing the likelihood, we could maximize

a computable term called Evidence Lower BOund (ELBO) of the likelihood. As the

name indicates, ELBO is a lower bound of the original likelihood, i.e., p(X) ≥ ELBO.

By using Bayes rule and probability lemmas, we can express p(X) using ELBO and
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KL divergence as follows.

log(p(X)) =

∫
Z

pm(Z|Xk)log(p(Xk))dZ,

= EZ∼pm(Z|Xk)

[
log(p(Xk))

]
,

= EZ∼pm(Z|Xk)

[
log(

p(Xk|Z)p(Z)

p(Z|Xk)
)

]
,

= EZ∼pm(Z|Xk)

[
log(

p(Xk|Z)p(Z)

p(Z|Xk)

pm(Z|Xk)

pm(Z|Xk)
)

]
,

= EZ

[
log(p(Xk|Z))

]
− EZ

[
log(

pm(Z|Xk)

p(Z)
)

]
+ EZ

[
log(

pm(Z|Xk)

p(Z|Xk)
)

]
,

= EZ

[
log(p(Xk|Z))

]
−KL(pm(Z|Xk)||p(Z)) +KL(pm(Z|Xk)||p(Z|Xk)),

= ELBO +KL(pm(Z|Xk)||p(Z|Xk)), (3.3)

where ELBO is defined as EZ
[
log(p(Xk|Z))

]
−KL(pm(Z|Xk)||p(Z)). This corre-

sponds to a summation of reconstruction error and negative KL divergence between

the posterior and prior distributions.

Since KL divergence is always non-negative (i.e., KL(·) ≥ 0), Equation 3.3 is

equivalent to log(p(x)) ≥ ELBO. The ELBO is easily computable as long as the pos-

terior, prior, and generative distributions are modeled using explicit density models.

It is a tractable approximation of the original likelihood. Then, the learning objective

of VAE and optimal parameters of the network are expressed as follows.

LV AE(θ) = max(ELBO(θ)).

θ∗ = argminθ

[
− EZ

[
log(pm(Xk|Z; θ))

]
+KL(pm(Z|Xk; θ)||p(Z))

]
.

(3.4)

Note that the expectation term in the loss function assumes that Z is sampled
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using pm(Z|Xk; θ). However, the sampling process does not allow a back-propagation

of the gradient as it is a stochastic process. In order to merge the sampling process

into a gradient-based learning scheme (i.e. optimizing parameters of neural networks

by descending the gradient of the learning objective), the reparameterization trick

[41] is used, which introduces another random variable (i.e., noise) ε ∼ N(0, I). This

trick states that Z follows a normal distribution whose mean and standard deviation

are the outputs of the encoder; Z = µ(X) + σ(X) � ε, where � denotes element-

wise multiplication. This formulation enables the back-propagation of the gradient

as µ and σ are learnable terms that bridge the gradient flow from the encoder to the

decoder.

3.5.2 Normalizing Flow

Flow, or Normalizing flow, is a type of deep generative models and explicit density

models. Flow is also known as invertible (bijective) neural networks. Flow-based

models learn data distribution via the principle of maximum likelihood [55] so as to

generate new data and/or estimate the likelihood of a target distribution.

Normalizing flow transforms a probability density function into another probabil-

ity density function (pdf) via the change of variable theorem. Assume that we would

like to estimate an unknown target distribution p(x). Normalizing flow obtains p(X)

using another distribution p(z) whose pdf is known (e.g., Gaussian distribution) by

constructing an invertible function f(z) = x between the latent variable z and target

variable x.

Once such function f is constructed, then the relationship denoted as change of

variable theorem holds between the two probability distributions p(x) and p(z).

For univariate variables x ∈ R1 and z ∈ R1, the change of variable formula is as

follows.
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p(x) = p(z)

∣∣∣∣dzdx
∣∣∣∣ , (3.5)

which is drawn by differentiating the following probability density definition with

respect to x:

∫
p(x)dx =

∫
p(z)dz = 1. (3.6)

The equation 3.5 states that one can infer p(x) using a known probability density

function (pdf) π(z) and the derivative of the invertible function z = f−1(x).

The multivariate extension (x ∈ RD and z ∈ RD) is similar, except dz
dx

is replaced

by the determinant of the Jacobian of the function f as follows:

p(x) = p(z)

∣∣∣∣detdzdx
∣∣∣∣ = π(f−1(x))

∣∣∣∣∣detdf−1(x)

dx

∣∣∣∣∣ . (3.7)

The invertible function f(z) = x may consist of a sequence of invertible trans-

formations f = f1 ◦ f2 ◦ ... ◦ fN where each invertible transformation fk typically

is modelled using affine coupling layers [83, 38, 84, 85] or linear layers (i.e., MLP)

[39, 40, 86, 5] followed by an invertible activation function (e.g., exponential function,

ReLU, tanh).

In addition to access to the exact probability density, Flow offers data generation

capability by sampling latent variables z ∼ π() and passing it through f . As the ac-

curacy of the approximation f(z) = x increases, the modeled pdf pmodel(x) converges

to the true p(x) and the quality of the generated samples improves.

In contrast to other classes of deep generative models such as VAE [41] and GAN

[43], Flow has the following unique properties:

1. Computation of an exact probability is essential in the uncertainty-aware de-

cision making for autonomous driving, especially for POM-based approaches.

In contrast, VAE infers p(x) using ELBO, which is an estimate for the lower
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bound of p(x). It is unclear how well ELBO actually approximates p(x) and how

ELBO can be utilized for tasks that require exact inference. While GAN was

found to synthesize high-quality samples across different machine learning and

computer vision domains, obtaining the density estimation and/or probability

computation for the generated samples is non-trivial.

2. The expressivity of Flow-based models allows the models to capture complex

data distributions. A recently published AF model called Neural Autoregres-

sive Flow (NAF) [40] unified earlier AF models including [87, 39] by generaliz-

ing their affine transformations to arbitrarily complex non-linear monotonic

transformations. Conversely, the vanilla VAE uses unimodal Gaussians for

the prior and the posterior distributions. In order to increase the expressiv-

ity of VAE, some have introduced more expressive priors [88] and posteriors

[89, 87, 90, 91, 92, 86] that leverage Flow.

The class of invertible neural-net based autoregressive Flows, including NAF [40]

and BNAF [86], can approximate rich families of continuous pdfs. However, NAF

and BNAF do not handle external conditions (e.g. classes in the context of GAN vs

cGAN [57]). In other words, those models are designed to compute p(xt) conditioned

on previous inputs x1:t−1 autoregressively to formulate p(xt|x1:t−1). This formulation

is not suitable for taking arbitrary conditions, except the autoregressive ones. This

limits the extension of NAF to applications that work with conditional probabilities

p(X|C), such as the prediction task for autonomous driving.

cMAF : xd = µ(x1:d−1, C) + σ(x1:d−1, C)zd, (3.8)

MAF and cMAF were proposed in [39] to model affine Flow transformations with

and without additional external conditions. As shown in Equation 3.8, the transfor-

mation between zd and xd is affine and the influence of C over the transformation
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relies on µ, σ, and stacking multiple Flows. These may limit the contributions of C

to the transformation. This explains the need for a conditional autoregressive Flow

that does not have such an expressivity bottleneck.

Other flavor of Normalizing flow methods builds upon invertible convolutions such

as 1 × 1 in (Glow) [84] and d × d in [93]. The work in [85] modified Glow to work

with external conditions for structured output learning, yielding a non-autoregressive

Normalizing flow model.

We resolve the aforementioned limitation of the autoregressive Flow models (e.g.,

NAF and BNAF ) by integrating autoregressive Flow with a hypernetwork. Before

presenting the details of our solutions, we finish reviewing the hypernetwork in the

following subsection.

3.5.3 Hypernetwork

Assume a function that takes two inputs X,C and outputs Y , i.e., f : (X,C)→ Y .

Given that f is a probabilistic mapping, p(Y |X,C) represents a probability distribu-

tion of the output Y conditioned on the two inputs. Learning such f and the corre-

sponding conditional distribution can be achieved using two different approaches; (1)

the embedding and (2) the hypernetwork approach, as depicted in Figure 3.5.

Figure 3.5: Two approaches to model conditional distributions. The embedding ap-
proach on the left and hypernetwork approach on the right are depicted.

As commonly used in machine learning, the embedding approach is a straightfor-

41



ward way of learning f . This approach implies a model that consists of the embedding

modules e1(X) = h(X) and e2(C) = h(C) where the two outputs are concatenated

h := h(X)⊕ h(C) and passed to another network f(h) = Y .

The hypernetwork approach [67] is a less intuitive solution that relies on a hi-

erarchical structure between two models; one called a primary network g produces

weights of the other separate network f . This corresponds to f(X; θ) = Y where

θ = g(C). Observe that the embedding approach uses an embedding network e and

treats C equally to X as part of the input. On the other hand, the hypernetwork

approach models the conditional mapping fC(X) = Y , i.e., learning the contributions

of X to Y via a parameterized function f(X; θ) where the parameters themselves are

the outputs of another network g, which is independent of f .

The ability to effectively learn conditional functions (i.e., model a function that

transforms into different functions depending on the condition C) corresponding to

the property of modularity [81] is a major benefit of the hypernetwork approach. A

recent study [81] showed that hypernetwork exhibits the property of modularity for

a large g and small f . Furthermore, the hypernetwork approach uses much smaller

networks compared to the embedding approach to achieve the same performance in

modeling conditional distributions.

3.6 HCNAF, A Flow Parametrized Using Hypernetwork

In Section 3.4, a high level description about HCNAF and CVAE-H was provided.

Section 3.6 and 3.7 extend Section 3.4 by presenting the mathematical and archi-

tectural details of HCNAF and CVAE-H. In Section 3.8, we elaborate on how we

leverage and customize the two models for solving the prediction problem.

HCNAF (Hyper Conditioned Neural Autoregressive Flow) [5] is a flow-based con-

ditional generative model. Like other Normalizing flow models, HCNAF leverage the

change of variable theorem (see Equation 3.5 and 3.7) to construct a transformation
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between two random variables X = [x1, x2, ..., xD] ∈ RD and Z = [z1, z2, ..., zD] ∈ RD.

The transformation is modeled using an invertible neural network f(X; θ) = Z param-

eterized with θ. The following relationship is then obtained between the probability

densities of the two random variables:

p(X|C) = p(Z|C)

∣∣∣∣det
dZ

dX

∣∣∣∣ = Npdf (f(X; θ); 0, I)

∣∣∣∣det
df(X; θ)

dX

∣∣∣∣ , (3.9)

where Z is a random variable drawn from a standard multivariate normal distri-

bution and Npdf denotes the pdf of Z.

The main difference from other flow-based models is the way HCNAF is condition-

alized. Specifically, the parameters θ are determined by arbitrarily complex conditions

C ∈ RDc via a separate neural network fH(C) = θ previously introduced as Hyper-

network. HCNAF models a conditional joint distribution p(x1, x2, ..., xD|C) autore-

gressively on x1:D, by factorizing it overD conditional distributions
∏D

d=1 p(xd|x1:d−1, C).

Among various normalizing flow models, NAF [40] model is leveraged in HCNAF.

NAF achieved state-of-the-art performances in various density estimation tasks; how-

ever, the vanilla NAF is un-conditional and unable to work with the complex con-

ditions C. HCNAF combines Hyper-network with NAF to make the resulting flow

conditional, hence the name HCNAF (Hyper Conditioned NAF).

NAF [40] and HCNAF both use neural networks but are different in their proba-

bility modeling, conditioner network structure, and Flow transformation as specified

below:

p(x1, x2, ..., xD) =
D∏
d=1

p(xd|x1:d−1),

fc(x1:d−1) = θd,

f(xd; θd) = zd,


NAF (3.10)
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p(x1, x2, ..., xD|C) =
D∏
d=1

p(xd|x1:d−1, C),

fH(C) = θ, θd ∈ θ,

f(xd;x1:d−1, θd) = zd.


HCNAF (3.11)

In Equations 3.10, NAF uses a conditioner network fc to obtain the parameters θd

for the transformation between xd and zd, which is parameterized by autoregressive

conditions x1:d−1. In contrast, in Equations 3.11, HCNAF models the transformation

to be parameterized on both x1:d−1, and an arbitrarily large external conditions C

in non-autoregressive fashion via the hypernetwork fH . For probability modeling,

the difference between the two is analogous to the difference between VAE [41] and

conditional VAE [56], and that between GAN [43] and conditional GAN [57].

Figure 3.6: Schematic of HCNAF

As illustrated in Figure 3.6, HCNAF consists of two modules: 1) a neural-net based

conditional autoregressive Flow (i.e., Hyper-conditioned Flow), and 2) a hypernetwork

that computes the parameters of 1). The modules are detailed in the following sub-

sections.

3.6.1 Hyper-conditioned Flow

The proposed conditional AF is a bijective neural-network f(X; θ) = Z, which

models transformation between random variables X and latent variables Z. The

network parameters θ := [W,B] are determined by the hyper-network fH(C) = θ.
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The main difference between regular neural nets and Flow models is the invertibility

of f−1(Z) = X as regular networks are not typically invertible.

Figure 3.7: HCNAF’s conditional AF model f (i.e., Hyper-conditioned Flow) is a
neural-net whose parameters are determined by a hypernetwork fH .

The detailed architecture of the hyper-conditioned flow is shown in Figure 3.7.

The figure describes a D dimensional conditional AF with n hidden layers with 3

nodes. The dash lines refer to connections from fH to parameters of f . In each

dimension d of the Flow, the bijective transformation between xd and zd are modeled

with a MLP with n hidden layers as follows:

xd ↔ hl1d ↔ hl2d ↔ ...↔ hlnd ↔ zd(= h
ln+1

d ). (3.12)

The connection between two adjacent hidden layers hlkd and h
lk−1

d is defined as:

hlkd = φ(W lk
ddh

lk−1

d +
d−1∑
r=1

(W lk
drh

lk−1
r ) +Blk

d ), (3.13)

where subscript and superscript each denotes Flow number and layer number.

Specifically, hlkd is the hidden layer lk of the d-th Flow. W lk
dr and Blk

d denote the
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weight matrix that defines contributions to the hidden layer lk of the d-th Flow

from the hidden layer lk−1 of the r-th Flow, and the bias matrix that defines the

contributions to the hidden layer lk of the r-th Flow. Finally, φ() is an activation

function.

In Figure 3.7, red lines between adjacent hidden layers h
lk−1

d , hlkd (∀d, 1 ≤ k ≤ n+1)

indicate that W lk
dd is strictly positive. Green lines between layers h

lk−1
a , hlkb in different

Flow dimensions (1 ≤ a < b ≤ D, 1 ≤ k ≤ n + 1) have no such constraint (i.e., W lk
ba

is unconstrained.)

The connection between xd and the first hidden layer, and between the last hidden

layer and zd are defined as:

hl1d = φ(W l1
ddxd +

d−1∑
r=1

(W l1
drxr) +Bl1

d ),

zd = W
ln+1

dd hlnd +
d−1∑
r=1

(W
ln+1

dr hlnr ) +B
ln+1

d .

(3.14)

hlk are the hidden units at the hidden layer lk across all Flow dimensions d = 1 : D

and are expressed as:

hlk = φ(W lkhlk−1 +Blk), (3.15)

where W lk and Blk are the weights and biases matrices at the hidden layer lk

across all Flow dimensions:

W lk =



W lk
11 0 . . . 0

W lk
21 W lk

22 . . . 0

...
...

. . .
...

W lk
D1 W lk

D2 . . . W lk
DD


, Blk =



Blk
1

Blk
2

...

Blk
D


. (3.16)
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Likewise, W and B denote the weights and biases matrices for all Flow dimensions

across all the layers. Specifically, W := {∀k : W lk} and B := {∀k : Blk}.

Finally, Z = f(X) is obtained by computing the terms from Equation 3.15 for all

the network layers, from the first X = hl0 to the last layer, Z = hln+1 .

We designed HCNAF so that the hidden layer units hlk1:D are connected to the

hidden units of previous layers h
lk−1

1:D , inspired by BNAF, as opposed to taking h
l0:n+1

d

as inputs to a separate hyper-network to produce h
l0:n+1

d+1 over d = 1 : D, such as

presented in NAF. This approach avoids running the hyper-network D times; an

expensive operation for large hyper-networks. By designing the hyper-network to

output h
l0:n+1

1:D all at once, we reduce the computation load, while allowing the hidden

states across all layers and all dimensions to contribute to the Flow transformation,

as xd is conditioned not only on x1:d−1, but also on all the hidden layers h
l0:n+1

1:d−1 .

All Flow models must satisfy the following two properties to ensure the invert-

ibility and efficient computations: 1) monotonicity of f(X) = Z for the invertibility,

and 2) tractable computation of the jacobian matrix determinant
∣∣∣det dZdX ∣∣∣.

3.6.2 Invertibility of the Autoregressive Flow

The monotonicity requirement is equivalent to having ∀d : dzd
dxd

> 0, which is

further factorized as:

dzd
dxd

=
dzd

dhlnd

n−1∏
k=1

dh
lk+1

d

dhlkd

dhl1d
dxd

= W
ln+1

dd

n−1∏
k=0

dh
lk+1

d

dhlkd
, (3.17)

where
dh
lk+1
d

dh
lk
d

∀k ∈ {0, ..., n− 1} is expressed as:

dh
lk+1

d

dhlkd
=
dφ(A

lk+1

d )

dA
lk+1

d

dA
lk+1

d

dhlkd
=
dφ(A

lk+1

d )

dA
lk+1

d

W
lk+1

dd . (3.18)

Alkd denotes the pre-activation of hlkd . The invertibility is satisfied by choosing a

strictly increasing activation function φ (e.g. tanh or sigmoid) and a strictly positive
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W lk
dd. W lk

dd is made strictly positive by applying an element-wise exponential to all

entries in ∀d, k : W lk
dd at the end of the hypernetwork, inspired by [86]. Note that the

operation is omitted for the non-diagonal elements of W lk
ij , i 6= j.

3.6.3 Tractable Computation of the Jacobian Determinant

The second requirement for Flow models is to efficiently compute the jacobian

matrix determinant
∣∣∣det dZdX ∣∣∣, where:

dZ

dX
=

dZ

dhln

n−1∏
k=0

dhlk+1

dhlk
= W ln+1

n−1∏
k=0

dφ(Alk+1)

dAlk+1
W lk+1 . (3.19)

Since we designed W lk+1 to be lower-triangular, the product of lower-triangular

matrices, dZ
dX

, is also lower-triangular, whose log determinant is then simply the prod-

uct of the diagonal entries: log
∣∣∣det dZdX ∣∣∣ = log

∣∣∣∏D
d=1

dzd
dxd

∣∣∣ =
∑D

d=1 log( dzd
dxd

), as our

formulation states ∀d : dzd
dxd

> 0. Finally, log( dzd
dxd

) is expressed via Equations 3.17 and

3.18.

log

(
dzd
dxd

)
= log

W ln+1

dd

n−1∏
k=0

dφ(A
lk+1

d )

dA
lk+1

d

W
lk+1

dd

 . (3.20)

Equation 3.20 involves the multiplication of matrices of different sizes; thus cannot

be broken down to a regular log summation. To resolve this issue, we utilize log-sum-

exp operation on logs of the matrices in Equation 3.20 as it is commonly utilized

in the Flow community (e.g. NAF [40] and BNAF [86]) for numerical stability and

efficiency of the computation. This approach to computing the Jacobian determinant

is similar to the one presented in BNAF, as our conditional AF resembles its Flow

model.

As HCNAF is a member of the monotonic neural-net based autoregressive Flow

family, like NAF and BNAF, we rely on the proofs presented in NAF and BNAF to

claim that HCNAF is also a universal distribution approximator.
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3.6.4 Hyper-conditioning and Training

The key point from Equation 3.12 - 3.20 and Figure 3.7 is that HCNAF is

constraint-free when it comes to the design of the hyper-network. The Flow require-

ments from Sections 3.6.2 and 3.6.3 do not apply to the hyper-network. This enables

the hyper-network to grow arbitrarily large and thus scale up to the dimension of

conditions. The hyper-network fH(C) can therefore be an arbitrarily complex neural

network with respect to the conditions C.

We seek to learn the target distribution p(X|C) using HCNAF by minimizing the

negative log-likelihood (NLL) of pmodel(X|C), i.e. the cross-entropy between the two

distributions, as in:

L := −EX∼p(X|C)[logpmodel(X|C)] = H(p, pmodel). (3.21)

Note that minimizing the NLL is equivalent to minimizing the (forward) KL di-

vergence between the data and the model distributions DKL(p(X|C)||pmodel(X|C)),

as H(p, q) = H(p) +DKL(p||q) where H(p) is bounded.

Equation 3.21 can be further expanded the flow transformation of HCNAF (via

Equation 3.9). As a result, the maximum likelihood estimation solution pπMLE
(X|C)

is obtained as follows:

πMLE = argmax
π

EX
[

log pπ(X|C)
]

= argmax
θ

EX

[
logNpdf (f(X; θ); 0, I) + log

∣∣∣∣det
df(X; θ)

dX

∣∣∣∣
]
. (3.22)

3.6.5 HCNAF for Generative Tasks

The generative task denotes the problem of generating (i.e., predicting) the target

variable X at the testing time. As HCNAF models the bijective transformation

between X ∼ p(X|C) and Z ∼ N(0, I) and computes the exact value of p(X|C), the
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generative task can be done in two different ways:

• Inverse operation of the flow: by leveraging the invertibility of the flow trans-

formation, a sequence sample X is obtained using X = f−1(Z; θ) where Z ∼

N(0, I).

• Sampling via density estimation: using that normalizing-flow is capable of

computing the exact probability, one can obtain the probability density of

target variable X via Equation 3.9. The idea is to evaluate the probabili-

ties of all possible realizations of X to formulate a list of probabilities Y :=

[p(X1|C), ..., p(XN |C)] and sample from the list to obtain X ∼ Y .

3.7 CVAE-H, A CVAE Augmented with Hypernetwork

Our second prediction model is CVAE-H (Conditional Variational AutoEncoder

via Hypernetwork) [6], a conditional variational autoencoder that integrates a hyper-

network into a VAE. Similar to HCNAF, the hypernetwork encodes various condi-

tioning information (e.g., social and spatial information) and the VAE utilizes the

encoding as the network parameters and auto-encodes the target variables.

While VAE computes the probability density approximately using the lower bound,

backbone neural networks of VAE are less constrained compared to those of normal-

izing flow since VAE does not enforce the invertibility constraints to the backbone

networks as Flow does. In practice, VAE-based models have demonstrated competi-

tive results for trajectory prediction tasks [30, 54, 42] as well as other machine learning

tasks such as sequence modeling and density estimation.

Hypernetwork conditionalizes the vanilla (unconditional) VAE in a similar fashion

to how hypernetwork transformed NAF into HCNAF (see Section 3.6). As elaborated

in Section 3.5.3, one advantage of hypernetwork over the embedding approach is the

flexibility of hypernetwork (i.e., any differentiable neural network can be used as
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a hypernetwork). Another advantage is that hyper-network can encode conditioning

information with a smaller number of network parameters compared to the embedding

approach [81].

Figure 3.8: Schematic of CVAE-H. The inputs of CVAE-H consist of conditions C
and a target variable x (for training) or sample latent variable z (for
inference). For the prediction problem, we use the following conditions
C := [SA∀k0:t ,Ω] and target variable Xt := [xAVt , yAVt ].

Figure 3.8 illustrates CVAE-H, which largely consists of two modules: 1) a VAE

and 2) a hypernetwork that computes the network parameters of 1). In the following

subsections, the mathematical details of the two modules are presented.

3.7.1 Hyper-conditioning VAE

Conditioning VAE via a hypernetwork involves the following process of condition-

ing the encoder and decoder:

(Encoder) Z = fenc(X; θenc(C))

(Decoder) X = fdec(Z; θdec(C)) (3.23)

where θenc and θdec are obtained via a hypernetwork fH(C), that is, fH(C) =

[θenc, θenc]. If a VAE is conditionalized using the embedding approach, the resulting

equations would instead be Z = fenc(X, g1(C)) and X = fdec(Z, g2(C)). For the

reasons described in Section 3.5.3, we conditionalized the VAE using a hypernetwork.
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The VAE network of CVAE-H can consist of any type of neural network. For

a 1D target variable such as a sequence or a collection of variables, MLP is a good

choice. While we expect CNN to be an effective encoder & decoder structure for a

2D target variable such as an image, we leave the search of proper network for 2D

target variables to the future work because it is out of the scope of this work.

Similar to how p(X) is modeled in an unconditional VAE, a latent variable Z is

introduced to map the inputs X and condition C to the the conditional distribution

p(X|C) as follows: p(X|C) =
∫
Z
p(X|Z,C)p(Z|C)dZ. Here, p(Z|C) and p(X|Z,C)

represent the prior and the generative decoder conditioned on C, respectively. Ideally,

Z should encode abstract features of p(X|C).

Since the integral is intractable, variational inference [59] is used to approximate

the integral with a parameterized posterior qθenc(Z|X,C). This leads to the construc-

tion of ELBO on the log conditional likelihood as follows:

log p(X|C) ≥ Eqθenc (Z|X,C)[log pθdec(X|Z,C)]−KL(qθenc(Z|X,C)||p(Z|C)). (3.24)

We set the prior to be a uni-modal Gaussian with the diagonal covariance whose

entries are equal to one. Different choices of the prior include parameterizing priors

using neural networks and/or domain knowledge [88].

3.7.2 Hypernetwork and Training of CVAE-H

The hypernetwork aims to effectively propagate the conditioning information to

VAE. This is achieved by customizing the backbone neural networks of the hypernet-

work. For sequence models and/or language modelling, a hypernetwork can include

RNN, attention modules, and/or Transformer [71]. For computer vision tasks, a hy-

pernetwork may consist of CNN-based models. The use of hypernetwork for CVAE-H
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is very similar to that for HCNAF (see Section 3.6), except the hypernetwork for

CVAE-H outputs two sets of hyper-parameters [θenc, θdec] each for the encoder and

decoder of VAE, whereas the hypernetwork for HCNAF outputs only θ.

The goal of CVAE-H is to learn the target conditional distribution p(X|C) by

minimizing the negative log-likelihood of model distribution pmodel(X|C). This is

achieved by maximizing the ELBO presented in Equation 3.24. The first term of the

ELBO is the reconstruction error of conditional VAE and can be computed as long

as the estimation of pθdec(X|Z,C) is tractable. For this reason, we design the encoder

to be an explicit density model (e.g., softmax, MDN). The second term of the ELBO

is a KL divergence and can be easily computed as we use Gaussian distributions for

both posterior qθenc(Z|X,C) and prior p(Z|C).

3.7.3 CVAE-H for Generative Tasks

The training and inference processes for CVAE-H are different. During the train-

ing, we have access to the target variable X. By passing X to the encoder Z =

fenc(X; θenc(C)), we obtain the posterior Z. The decoder then takes Z to recover

X = fdec(Z; θdec(C)). During the inference, the encoder is not used because we do

not have access to X. Instead, we leverage the known prior distribution p(Z|C), sam-

ple Z ∼ p(Z|C), and pass C to the hyper-network to compute θdec, which constructs

fdec. Lastly, we pass θdec and Z through the decoder to obtain X = fdec(Z; θdec(C)).

In this sense, we only run the decoder and part of the hypernetwork, which outputs

θdec, for the generation task.

3.8 Forecasting with HCNAF and CVAE-H

In the previous two sections, we presented the fundamentals of HCNAF and

CVAE-H. This section explains how we leverage their attributes to tackle the predic-

tion task for autonomous driving.
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A challenge of the prediction task is that it may involve very large inputs whose

dimensions are in the magnitude of millions. This is because the inputs include social

features (e.g., labeled states for all road-agents in the vicinity of the AV) and spatial

features (e.g., lidar scans, camera images, and/or HD maps) from past to the current

moment. Suppose the inputs consist of a sequence of 128 by 128 rasterized images with

6 channels, or lidar tensors of the same dimension, over 10 past time steps. In that

case, the dimensionality is approximately one million, as in C ∈ RT ·C·H·W≈1,000,000.

Both HCNAF and CVAE-H have high modeling capacity and allow the AV to

operate on the high-dimensional inputs and produce trajectory or POM forecasting

contextual to the large inputs. This is possible because the hypernetworks of HCNAF

and CVAE-H take the inputs as conditions C, effectively encoding them as θ that

captures essential information about the environment. Depending on the architecture

of the hyper-network’s backbone networks, HCNAF and CVAE-H can be customized

to different machine learning tasks. In this regard, the backbone of the hyper-network

for autonomous driving should be designed to best exploit the information that comes

from various sensors of self-driving vehicles.

3.8.1 Hypernetwork Design

Considering the state of environment St := [XA∀k
t , V A∀k

t ,Ωt] defined in Equation

2.1, we design the hypernetwork to include (1) a social module, (2) a spatial module,

and (3) a time module.

The social module fSH(XA∀k
0:t , V

A∀k
0:t ) = hS aims to capture social features among

the road-agents. The module takes past states of road agents including positions and

speeds XA∀k
0:t ∈ Rt×NA×2, V A∀k

0:t ∈ Rt×NA×2 where NA denotes the number of road-

agents and outputs abstract social hidden states hS. Sequence models such as RNN,

attention, Transformers, and graph neural networks (GNN) are possible candidates

to the social module. In this work, we use RNN and attention as the social module.
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Figure 3.9: The hypernetworks of HCNAF and CVAE-H customized to the prediction
task

The spatial module fΩ
H(Ωt) = hΩ aims to capture the spatial contexts into the

prediction. This module takes spatial data Ω ∈ RNC×H×W (NC , H,W that represents

the number of channels, height, width of the bird’s-eye-view (BEV) map) such as

lidar point clouds, camera images, and/or HD maps represented as rasterized BEV

tensors with NC channels. The outputs of the spatial module are abstract spatial

hidden states hΩ. We leverage variants of CNN-based models such as ResNet [94]

along with max-pooling layers, and batch-normalization layers to extract the spatial

features from Ω. We also utilize coordinate convolution (coordconv) layers [95] to

strengthen the association between the two different types of inputs; image (i.e., pixel)

data Ω ∈ RNC×H×W and Cartesian coordinate-based sequence data XA∀k
0:t ∈ Rt×NA×2,

V A∀k
0:t ∈ Rt×NA×2 used in the social module.

The time module fTH(δt) = hT is a relatively simple module that takes the fore-

casting time ∆t ∈ R1 (i.e. time span of the future t away from the reference time t)

and outputs abstract time hidden states hT . The module aims to control the temporal
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trend of the prediction outputs. We apply an MLP for the time module.

After we obtain the abstract features hS, hΩ, hT , they are concatenated and passed

through an MLP to obtain the network parameters of the main network θ, which is

the end product of the hypernetwork.

Figure 3.9 illustrates an example design of the hypernetwork. It is worth noting

that we design the backbone networks for HCNAF and CVAE-H identically. This is

to set the conditioning capability as similar as possible for fair comparisons of the

two models. This is possible because the architectural design of the hypernetworks

of HCNAF and CVAE-H are very similar, as portrayed in Figure 3.6 and 3.8.

3.8.2 Forecasting Trajectories

In this subsection, we describe how we utilize our prediction models to generate

trajectory predictions, which is one of the two prediction representations (see Section

2.3). As defined in Section 2.1, we denote XAk
t:T := [xAkt:T , y

Ak
t:T ] as the trajectory of the

road-agent Ak from t to T .

We obtain trajectory samples by querying the conditional probability p(XAk
t+1:T |C)

that are modeled using HCNAF and CVAE-H as follows:

(Trajectory Forecasting) XAk
t+1:T ∼ p(XAk

t+1:T |C), ∀k 6= AV, (3.25)

where C := S0:t is the environment states defined in Equation 2.1. However

comprehensive, the list of conditions in C is not complete; as additional cues are

introduced to better define road-agents or enhance context, those can be appended

to the conditions.

While HCNAF and CVAE-H are able to model p(xA∀kt:T , y
A∀k
t:T |C) (i.e., the joint

distribution of all road-agents’ trajectories) at once, we instead model them to only

compute p(xAkt:T , y
Ak
t:T |C) (i.e. the distribution of a single road-agent Ak) for every road-

agent except the AV (see non-autoregressive approach discussed in Section 2.2 for
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details). This way, the prediction models can address varying number of road-agents.

The compounding error problem is another factor for the consideration; the computa-

tion of p(xA∀kt:T , y
A∀k
t:T |C) implies the autoregressive formulation p(xA∀ki , yA∀ki |x

A∀k
1:i−1, y

A∀k
1:i−1, C)

over i = t : T . This formulation reasons about the temporal dependencies of the social

features, however, it forces the models to make predictions on xA∀ki , yA∀ki dependent on

unobserved variables xA∀kt:i−1 and yA∀kt:i−1. The uncertainties of the unobserved variables

have the potential to push the forecast xA∀kt:T , y
A∀k
t:T in the wrong direction; hence, the

compounding error problem arises.

The trajectory prediction task is essentially the generative task described in Sec-

tion 3.6.5 and 3.7.3. For this reason, we refer to those sections for the methodological

details.

3.8.3 Forecasting POM

POM is the second prediction representation (see Section 2.3) and can be obtained

using HCNAF or CVAE-H. The following equation describes how POM O ∈ RT×H×W

is defined.

(POM Forecasting) Oi(Xi) := p(Xi|C), t < i ≤ T, (3.26)

where Ot ∈ RH×W denotes the POM at time t and Ot(x, y) = p(xt, yt|C) ∈ R1

represents the probability occupancy at the coordinate (x, y).

Recall that given a coordinate Xt = (xt, yt), our prediction models can estimate

the probability occupancy p(Xt|C) either exactly (HCNAF) or approximately via

ELBO (CVAE-H). For discrete POM, we compute p(Xt|C) for all Xt ∈ SXt to obtain

Ot, where SXt represents a set of target coordinates at t. It is worth noting that in the

experiments elaborated later in this Chapter, we only use HCNAF to obtain POM

since CVAE-H only approximates the lower bounds of the probability occupancy that

are difficult to interpret.
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It should be noted that Ot1 is conditionally independent of Ot2 for {(t1, t2)|t1 6=

t2, t < t1, t2 ≤ T} given C. In other words, we model p(Xt|C) independently at each

time instance (marginal distribution over a single time instance), instead of modelling

the joint distribution p(Xt:T |C) over all time instances for the following reasons:

1. Computing p(Xt:T |C) implies an autoregressive factorization p(Xi|Xt:i−1, C)

over t < i ≤ T . While this formulation reasons about the temporal depen-

dencies between the history and the future, it forces the model to make predic-

tions on Xt dependently on unobserved variables Xt−1. The uncertainties of the

unobserved variables have the potential to push the forecast Xt in the wrong

direction (i.e., the compounding error problem).

2. The decision-making task requires the access to the marginal distribution p(Xt|C).

Suppose we model p(Xt:T |C). Then we need to marginalize the joint distribu-

tion over all other variables Xt from t to T . The marginalization p(Xt|C) =∫∞
−∞ ...

∫∞
−∞ p(Xt, ..., XT−dt)dXt...dXT−dt is practically impossible (i.e., intractable).

In order to adapt HCNAF and CVAE-H to work with Xt ∈ R2, we obtain the

joint probability p(xt, yt|C) = p(yt|xt, C)p(xt|C).

3.9 Evaluation of the Models: Toy Experiments

Before evaluating HCNAF and CVAE-H for the self-driving prediction task, we

first assess them in density estimation and generation tasks often used to evaluate in

the literature [39, 40, 87, 90, 96]. The task of forecasting POM is essentially a density

estimation task. In this sense, density estimation tasks allow us to evaluate how well

HCNAF learns and estimates probability densities of target distributions. Likewise,

the task of forecasting a trajectory is fundamentally a generative task. Therefore,

generative tasks help us evaluate the quality of samples generated from CVAE-H.
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More importantly, the experiments examine the capacity of HCNAF and CVAE-H

as an ideal prediction model introduced in Section 3.1. In other words, we validate if

the models are probabilistic, multi-modal, context-driven, and general using a number

of toy experiments of different complexities. The toy experiments allow us to evaluate

HCNAF and CVAE-H in simpler and more interpretable settings than the self-driving

prediction task. They provide us with better insights regarding the strengths and

weaknesses of HCNAF and CVAE-H.

In this section, two density estimation experiments, namely Gaussian 1 and Gaus-

sian 2 are presented to verify whether HCNAF and CVAE-H have the four attributes

of the ideal prediction model. We train HCNAF for density estimation and CVAE-H

for sample generation. To evaluate the performance of the models, we utilize both

quantitative and qualitative measures. The quantitative measures include NLL and

KL divergence (DKL), which are defined in the following.

NLL = −EX∼p(X|C)[log(pmodel(X|C))],

DKL(p||pmodel) =
∑

X∼p(X|C)

p(X|C)log

(
p(X|C)

pmodel(X|C)

)
.

(3.27)

To evaluate HCNAF and CVAE-H qualitatively, we visualize the outputs of the

models. Recall that HCNAF outputs probability densities p(X|C) and CVAE-H

outputs sample coordinates X ∼ p(X|C). In this regard, the visualizations include

the resulting probability densities from HCNAF and generated samples from CVAE-

H.

Figure 3.10 portrays the HCNAF and CVAE-H network designs customized for

the Gaussian experiments. Note that both HCNAF and CVAE-H leverage hyper-

networks to extract the conditioning information.
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Figure 3.10: HCNAF and CVAE-H network designs customized for the Gaussian
experiments. The inputs to the HCNAF and CVAE-H are a tuple
of target variable X and conditioning information C where X corre-
sponds to the (x, y) coordinates and C corresponds to a set of dis-
crete class variable C ∈ {0, 1, 2} for the Gaussian 1 experiment and
C ∈ {(0, 0), (−4, 4), (−4, 4), (4,−4), (4, 4)} for the Gaussian 2 experi-
ment.

3.9.1 The Gaussian 1 Experiment

The Gaussian 1 experiment is the experiment used in [40] and aims to show

the model’s learning ability for three distinct multi-modal probability distributions

p1(x, y), p2(x, y), p3(x, y) of 2-by-2, 5-by-5, and 10-by-10 Gaussians depicted in Figure

3.11. We compare the results against the recent state-of-the-art density estimator

NAF [40] as well as affine autoregressive flow (AAF). NAF and AAF were both used

as density estimators like HCNAF.

We used the same number of hidden layers (2), hidden units per hidden layer (64),

and batch size (64) across all models, including AAF, NAF, and HCNAF. For NAF,

we utilized the conditioner (transformer) with 1 hidden layer and 16 sigmoid units,

as suggested in [40]. For HCNAF, we modeled the hyper-network with two MLPs,
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each taking a condition C ∈ R1 and outputs θ. Each MLP consists of 1 hidden layer,

a ReLU activation function. For CVAE-H, we used the identical hyper-network as

HCNAF. The encoder and decoder of CVAE-H are both designed using 4-layer MLPs.

The last layer of the decoder outputs parameters (means, variances, and mixing

probabilities) of a Gaussian mixture. The outputs of CVAE-H are generated by

sampling the output Gaussian mixture. All the other parameters were set identically,

including those for the Adam optimizer (the learning rate 5e−3 decays by a factor

of 0.5 every 2,000 iterations with no improvement in validation samples). The NLL

(i.e., pmodel(Xtarget)) values in Table 3.1 were computed using 10,000 samples.

Figure 3.11: Qualitative result of the Gaussian 1 experiment. AAF, NAF, HCNAF
were tested for density estimation and CVAE-H was tested for sample
generation. M and C each denotes model and condition respectably.

In order to reproduce the three distributions, AAF and NAF require three dif-

ferent and separately trained models p1(x, y; θ1), p2(x, y; θ2), p3(x, y; θ3). Conversely,

HCNAF and CVAE-H uses a single model and three conditions. In other words,
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HCNAF and CVAE-H model p(x, y|Ck; θ), k = 1, 2, 3 using one set of parameters θ.

The conditioning information C ∈ {0, 1, 2} where each value represents the class of

the 2-by-2, 5-by-5, and 10-by-10 Gaussians.

Table 3.1: NLL for the experiment depicted in Figure 3.11. Lower values are better.

AAF NAF HCNAF (ours) CVAE-H (ours)

2 by 2 6.056 3.775 3.896 3.895

5 by 5 5.289 3.865 3.966 3.978

10 by 10 5.087 4.176 4.278 4.292

Results from Figure 3.11 and Table 3.1 show that HCNAF and CVAE-H are

both able to reproduce the three nonlinear target distributions, confirming that they

are probabilistic and multi-modal. They also achieve comparable results as NAF,

albeit with a small increase in NLL. It is important to note that our models use

a single model (with a 1-dimensional condition variable) to produce the 3 distinct

pdfs, whereas AAF and NAF used 3 distinctly trained models. One HCNAF or

CVAE-H model p(x, y|Ck; θ), k = 1, 2, 3 is able to accurately reproduce very different

nonlinear conditional target distributions. This confirms that HCNAF and CVAE-H

are context-driven.

We point out that the plots displayed in Figure 3.11 contain results from both den-

sity estimation (for AAF, NAF, and HCNAF) and sample generation (for CVAE-H).

In the density estimation task, we estimate pmodel(x, y|Ck) where (x, y) belongs to a

cell in a discrete 2-dimensional grid. In other words, (x, y) ∈Grid([xmin, ymin], [xmax, ymax]).

In the sample generation task, we first obtain (x, y) ∼ pmodel(x, y|Z,Ck; θ), k = 1, 2, 3

where Z is sampled from the prior. Then, we use a histogram to classify the generated

(x, y) into the 2-dimensional grid. While we report NLLs for HCNAF and CVAE-H

in the same table, we do not make a direct comparison of their NLLs since the density

estimation and generative task are two different tasks. Precisely, the NLL for HC-

NAF was estimated by evaluating pmodel(Xtarget|Ck) whereas the NLL for CVAE-H
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was obtained by computing pmodel(Xtarget|Z,Ck), Z ∼ N(0, I).

3.9.2 The Gaussian 2 Experiment

While the Gaussian 1 experiment is about reproducing the target distributions

that the models were trained on, the Gaussian 2 experiment is designed to evaluate

how HCNAF and CVAE-H can generalize their outputs over unseen inputs. By

assessing the models with a set of conditions beyond what it was trained with, we

validate the models’ capacity to interpolate and extrapolate.

Similar to the Gaussian 1 experiment, we train a single HCNAF model to learn

five distinct pdfs, where each pdf represents a Gaussian distribution with its mean

used as conditions C := (xc, yc) ∈ R2 and an isotropic standard deviation σ of 0.5.

We train the models with five different discrete conditions Ctrain = {C1, ..., C5},

where Ci represents the mean of an isotropic bivariate Gaussian pdf. We then

check how accurately the models (1) reproduce the data distribution p(x, y|Ctrain)

it was trained on and (2) predict new distributions pmodel(x, y|Cunseen), Cunseen :=

{C6, ..., C9} that the models have not seen before.

We used 3 hidden layers, 200 hidden units per hidden layer for the hyper-conditioned

flow. We use the same hypernetwork architecture in Gaussian 2 experiment as the

Gaussian 1 experiment. We trained the model with a batch size of 4. The NLL

values in Table 3.2 and 3.3 were computed using 10,000 test samples from the target

conditional distributions.

The qualitative results presented in Figure 3.12 suggest that HCNAF is capable

of generalizing over unseen conditions, i.e. values in the condition terms that were

intentionally omitted during training.

Table 3.2 provides quantitative results from the cross-entropy H(p, pmodel) and the

KL divergence DKL(p||pmodel). Note that H(p, pmodel) is lower-bounded by H(p) since

H(p, pmodel) = H(p) + DKL(p||pmodel). The differential entropy H(p) of an isotropic
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Figure 3.12: Qualitative results of the Gaussian 2 experiment for density estimation
with HCNAF. (a) data distribution p(x, y|Ctrain), b) the data distribu-
tion reproduced by HCNAF pmodel(x, y|Ctrain), and c) HCNAF’s density
estimation on previously unseen conditions pmodel(x, y|Cunseen).

Table 3.2: Differences between the target entropy and recreated pdfs by HCNAF in
terms of cross-entropy and KL divergence for Figure 3.12.

p(x, y) pHCNAF (x, y|Ci)

C - Ci ∈ Ctrain Ci ∈ Cunseen
H(p) 1.452 - -

H(p, pmodel) - 1.489 1.552

DKL(p||pmodel) - 0.037 0.100

bi-variate Gaussian distribution p(x, y) is computed using: H(p) = 0.5 · ln(2πe(σ)2)2.

Recall that minimization of NLL (i.e., the learning objective) is equivalent to the

minimization of the KL divergence −E(x,y)∼N(Ci,0.25·I)[logpmodel(x, y|Ci)] where Ci is

uniformly sampled from the set of conditions Ctrain := {C1, C2, ..., C5}.

On the other hand, we present the results of the generative task with CVAE-

H qualitatively in Figure 3.13 and quantitatively in Table 3.3, similar to the re-

sults presented for HCNAF. The generative cross-entropy for seen conditions (i.e.,

H(p, pmodel(Xtarget|Z,Cseen))) are very close to the target differential entropy, even

compared to HCNAF’s cross-entropy. However, the generative cross-entropy for un-

seen conditions is relatively higher. This quantification agrees with the generated

pdfs illustrated in Figure 3.13. While CVAE-H is capable of generalizing over unseen
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Figure 3.13: Qualitative results of the Gaussian 2 experiment for the generation task
with CVAE-H. (a) data distribution p(x, y|Ctrain), b) the data distri-
bution reproduced by CVAE-H pmodel(x, y|Z,Ctrain), and c) CVAE-H’s
sample generation in unseen conditions pmodel(x, y|Z,Cunseen).

conditions, HCNAF outperformed CVAE-H in terms of the quality of the generaliza-

tion.

Table 3.3: Differences between the target and generative distributions by CVAE-H in
terms of cross-entropy and KL divergence for Figure 3.13.

p(x, y) pCV AE−H(x, y|Z,Ci)

C - Ci ∈ Ctrain Ci ∈ Cunseen
H(p) 1.452 - -

H(p, pmodel) - 1.480 2.256

DKL(p||pmodel) - 0.028 0.804

In summary, this section presented the results of the toy experiments and empir-

ically verified that both HCNAF and CVAE-H satisfy all four requirements of the

ideal prediction model; probabilistic, multi-modal, context-driven, and general.

3.10 Evaluation of the Models: Generic Urban Driving

In this section, we demonstrate the performance of HCNAF and CVAE-H models

in urban driving scenarios using the PRECOG-Carla dataset.
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3.10.1 Introduction to the Dataset

Figure 3.14: Four examples of the dataset. Each example includes lidar scans of an
environment projected onto a 2D BEV map, the ego-vehicle depicted
in blue, and up to 4 road-agents depicted in yellow, green, purple, and
orange. Each trajectory is 6s long. We use the first 2s (diamond) as the
inputs and forecast the last 4s (square) future positions.

As introduced in Section 2.4, PRECOG-Carla is a publicly available prediction

dataset created using the open-source Carla simulator for autonomous driving re-

search. PRECOG-Carla includes roughly 76,000 urban driving examples each con-

sists of a 6-second scenario, with up to five road-agents (i.e., simulated human-driven

vehicles) driving in urban areas and lidar point clouds of the environment. The lidar

data provides three overhead lidar channels (i.e., two above ground and one ground

level inputs), so the input to the spatial module is the raw lidar data Ω ∈ R3×200×200.

Figure 3.14 describes 4 of the 76,000 cases of the dataset we work with. The
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ground-level lidar data is colored gray and the above-ground level channel is colored

dark red. Each sample spans 6 seconds in total. The first two seconds (i.e., t =

−2 : 0s) are depicted as diamonds and are used as inputs to predict the future 4-

second (i.e., t = 0 : 4s) trajectories of the road-agents and AV. The ground-truth

future trajectories are depicted as squares. Our goal is to produce predictions of the

road-agents in the scene in the form of POM heat maps using HCNAF and trajectory

samples using CVAE-H.

For the multi-agent forecasting with CVAE-H, we apply coordinate transforma-

tions to obtain target-centric coordinates as we found this helps to improve the accu-

racy of the multi-agent forecasting. Specifically, the coordinates of all give vehicles in

the scene are transformed so that Ak, the target vehicle of the prediction, is positioned

at (0,0) at zero heading angle at t = 0. That is, XAk
t=0 := [0, 0] and V Ak

t=0 ·[0, 1] = 0. The

other road-agents’ positions are transformed using the same transformation matrix.

As there exists five road-agents in each example, we create 5 instances with each and

every one of the road-agents to be located at the center (0, 0) at t = 0. That is,

[XA∀k
−2:4s]

Am ,m ∈ 1, 2, 3, 4, 5, where [XA∀k
−2:4s]

Am indicates that XA∀k
−2:4s is transformed in

the Am-centric coordinates.

For the POM forecasting, we did not perform a coordinate transform because

the occupancy forecasting is not dependent on the road-agents. In this regard, we

leverage the AV-centric coordinates for predicting POMs.

The 76,000 clips in the PRECOG-Carla Town01 dataset are split into a training

set (80%), validation set (10%), and test set (10%). Both HCNAF and CVAE-H are

trained on the PRECOG-Carla Town01-train dataset and the progress was validated

over Town01-val dataset. Town01-test dataset is used to evaluate the performance

of the models. It is important to note that all qualitative and quantitative results

presented in this thesis are based on the test set. In other words, the models were

tested with unseen data.
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3.10.2 Hyper-network Design

Figure 3.15: The hypernetwork design for the urban driving dataset.

Figure 3.15 depicts the hypernetwork design customized for the prediction prob-

lem. The hypernetwork takes perception inputs as the condition C, and outputs

a set of network parameters θ. For HCNAF, θ is the network parameters of the

subsequent hyper-conditioned flow f(·; θ) : X ↔ Z ∼ N(0, I2x2). For CVAE-H,

θ = [θenc, θdec] includes network parameters for the encoder Z = fenc(X; θenc) and

decoder X = fdec(Z; θdec).

Specifically, C is formed with (1) the spatial data on a BEV map and (2) the social

data such as states of road-agents. As aforementioned, in POM forecasting, the states

of the road-agents are in AV-centric pixel coordinates. In trajectory forecasting, the

states of the road-agents are in the target-centric coordinates. Technically, the spatial

inputs can come from any sensor outputs (e.g., lidar, camera, or map), but we use

lidar information only since that is what the PRECOG-Carla dataset provides. We

customize hyper-network to consist of three components: (1) a social module, (2) a
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spatial module, and 3) a time module. The outputs of the three modules hS, hΩ, hT

are concatenated and fed into an MLP, which outputs θ, as shown in Figure 3.15.

The social module is designed using Long Short Term Memory (LSTM) [97] or

Attention Modules [71]. The module takes SAkt−τ :t, the historical states of a road-

agent in the scene and encodes temporal dependencies and trends among the state

parameters. We define SAkt := [xAkt , yAkt , sin(θAkt ), cos(θAkt ), vAk ]. We use two LSTM

modules; one for encoding the hidden states of N road-agents (hA∀k 6=AV ) and the other

for encoding the hidden state of AV (hAAV ). This is because AV is positioned at (0,0)

and others somewhere else. Additionally, we use attentions hatn = Attention(SA∀k).

The resulting output is the concatenation of the three; hS = [hAAV ⊕ hA∀k 6=AV ⊕ hatn].

The spatial module takes in the processed spatial data, which is denoted as Ω,

from external perception modules. Our spatial module is based on convolutional

neural networks. We use residual connections to enhance the performance of the

convolutional operation of the CNN. Since the backbone network works with Carte-

sian (x,y) space and pixel (image) space, we use coordinate convolution layers [95]

to strengthen the association between the 1D numerical coordinates and 2D image

data. Overall, the spatial module consists of 4 CNN-based encoder blocks, and each

encoder block consists of 5 coordconv layers with residual connections, max-pooling

layers, and batch-normalization layers. The output latent variable is denoted as hΩ.

Lastly, the time module adds the forecasting time ∆t ∈ R1, i.e. the time differ-

ence between the forecasting time of interest and the present time. To increase the

contribution of the time condition, we apply an MLP that outputs hT .

3.10.3 POM Forecasting Results

In this subsection, we present experimental results for POM forecasting. As men-

tioned earlier, we use HCNAF to produce POM forecasting. CVAE-H is leveraged

for trajectory forecasting, which is presented in the next sub-section. We divide our
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evaluation into qualitative (visualizations) and quantitative evaluations (NLL).

Qualitative results for POM forecasting with HCNAF

Figure 3.16: The first 3 examples of POM forecasts on the town01 testset via HCNAF.
The resulting forecasts indicate that HCNAF is spatially contextual.

Qualitative results are presented in Figure 3.16, 3.17, and 3.18. The figures visu-

alize the resulting POM forecasts on nine samples of the Town01-test dataset. Each

figure consists of four columns. The first column of the figures represents two seconds

history of the road-agent positions (XA∀k
−2:0s) that are used as the input to the models

along with the lidar data. The second, third, and fourth columns depict the POM

outputs of our prediction model for the ego-car depicted as blue. The second and

third columns each depict the POM forecast at t = 2s and t = 4s into the future, with

overlaying ground-truth positions. Since the dataset only has data from t = −2s to

t = 4s, HCNAF was only trained on XA∀k
−2:4s. Although HCNAF was never trained on

XA∀k
t>4s, we test HCNAF’s extrapolation capability by asking HCNAF to output POM

for t = 8s, which is a challenging task for any data-driven methods. We report the
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results in the fourth column of each figure.

Figure 3.16 describes a set of examples that shows HCNAF is spatially contextual.

In example 1 (test-#116), the blue car (i.e., subject of the prediction) enters a 3-way

intersection. HCNAF uses the road topology encoded in the lidar data and correctly

forecasts POM at all times along the road boundaries. In example 2 (test-#344), HC-

NAF is tested if it takes into account the geometry of the curved road. Note that the

input trajectory alone does not contain information about road topology. HCNAF

successfully makes predictions that are strong evidence that HCNAF is spatially con-

textual. Again in example 3 (test-#1121), the input trajectory alone does not inform

spatial contexts to the model. Nevertheless, HCNAF understands the topology of the

3-way intersection captured in lidar data and produces a multi-modal POM; one for

passing through the intersection, and the other for turning right.

Figure 3.17: The second set of POM forecasts. They suggest that the HCNAF is not
only spatially contextual, but also multi-modal.
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Figure 3.17 describes next three examples from the test set. Example 4 (test-

643) depicts a 3-way intersection environment where the blue car is entering the

intersection. POM forecasts capture that there exists two natural options (or modes);

left-turn & right-turn. Example 5 (test-1252) depicts a 4-way intersection. HCNAF

leverages the spatial context and outputs the POM with three modes (left, right,

straight), similar to the example 4. Lastly, example 6 (test-640) is another 3-way

intersection. The difference from the example 4 is that the location of the blue

car. Unlike example 6, the blue car in the example 4 is located at the back of

the intersection and there is another car (yellow) waiting for the queue. HCNAF

recognizes the subtlety and predicts that there are two possible modes for the blue

car. The first is to slow down and yield to the yellow car and the second mode is to

continue to move. All three examples in Figure 3.17 empirically show that HCNAF

predictions are multi-modal.

Figure 3.18: Continuing examples (7 through 9) of the POM forecasts. The predic-
tions suggest that HCNAF is socially contextual.

Figure 3.18 portrays the last three POM forecasts that are used to check whether

HCNAF is socially contextual. Let us pay attention to the difference in the blue car’s
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position in the queue. In example 7 (test-253), the blue car is positioned first in the

queue and freely enters the 3-way intersection. Reflecting on this context, HCNAF

predicts that the blue car will continue to move in relatively fast, either by turning

left or going straight. In example 8 (test-519), the blue car is positioned second in

the queue and will not be able to move immediately. HCNAF accordingly captures

that the blue car may stay idle or move a little. The resulting POM is multi-modal.

In example 9 (test-610), the blue car is positioned third in the queue. Since the two

vehicles ahead of the blue car are stopped, the blue car is unlikely to move for the

next few seconds. HCNAF considers this social situation and successfully predicts

that the blue car is most likely to stay where it is.

Quantitative results for POM forecasting with HCNAF

For the quantitative evaluations of the trained models over all data in the test set,

we use likelihood statistics. To be precise, we use extra nats ê of the perturbed data

distribution, which is lower bounded by zero, instead of NLL, which is unbounded. As

introduced in [25], ê is a normalized likelihood metric defined as ê := [H(p′, pmodel)−

H(η)]/(T · A · D) ≥ 0 (nats/dim), where H(p′, pmodel) represents the cross-entropy

between p′ (data distribution perturbed with an isotropic Gaussian noise) and pmodel.

T,A,D each represents the prediction horizon, number of road-agents, and dimension

of the road-agent position. H(η) denotes the differential entropy of the perturbed data

distribution.

Unlike NLL, ê provides insights on how close the models are to the theoretical

limit that is artificially constructed using the perturbed data distribution. It provides

more straightforward understanding of the performance of probabilistic prediction

models. Note that there is no upper bound of ê as ê ≥ 0. We used the same

η = N(0, 0.012 · I) as cited, whose differential entropy is analytically obtained using

H(η) = 0.5·T ·A·D ·ln(2πe|Σ|). We computed p(xt, yt|C) over all time-steps available

73



in the dataset. The results are presented in Table 3.4 and Figure 3.19.

Table 3.4: PRECOG-CARLA Town01 Test, 1 agent, mean ê

Method Test (ê ≥ 0): Lower is better

PRECOG-ESP, no lidar 0.699

PRECOG-ESP 0.634

CTFP [98] 0.500

OMEN [99] 0.144

HCNAF (ours) 0.114

Ground-truth data distribution 0 (i.e., theoretical limit)

Figure 3.19 provides an in-depth analysis about ê for the two variants of HC-

NAF models described in Table 3.4, compared to the published performance of the

PRECOG-ESP model. AVG indicates the averaged extra nats of a model over all

time-steps nt = 1 : 20 (i.e., Σ20
nt=1ênt/20). Note that the x-axis time steps are 0.2

seconds apart, thus nt = 20 corresponds to 4 seconds into the future. As expected,

the POM forecasts pmodel(X|C) are more accurate (closer to the target distribution

p(X|C)) at earlier time-steps, as the uncertainties grow over time. For all time-steps,

the HCNAF model with lidar approximates the target distribution better than the

HCNAF model without lidar. Both with and without lidar, HCNAF outperforms the

benchmark model, PRECOG-ESP [25], which is a state-of-the-art prediction model

based on Normalizing flow and almost qualifies as an ideal prediction model except

for the multi-modality. PRECOG-ESP partially achieves the multi-modality, through

recursive autoregressive predictions.

It is worth mentioning that there exists works including [54], [100], which used

the PRECOG-Carla dataset. However, most of them only reported trajectory-based

predictions metrics (MSD, MinMSD, etc), which will be compared in the following

section. To the best of our knowledge, the only available benchmark for NLL on the

PRECOG dataset is what is presented in this paper (PRECOG-ESP).
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Figure 3.19: Detailed quantitative results for the PRECOG-Carla dataset. Theoreti-
cally lower bounded by zero, the metric ê provides more straightforward
understanding of the performance of probabilistic models.

We believe that HCNAF performed better than PRECOG-ESP because HCNAF’s

expressivity comes from non-linear flow transformations and the hypernetwork frame-

work where the condition terms affect the hidden states of all layers of the hyper-

conditioned flow. Note, PRECOG utilizes bijective transformations f : X ↔ Z that

is rooted in affine AF, similar to cMAF (See Equation 3.8). We also believe that the

HCNAF’s generalization capability is a contributing factor that explains how HCNAF

is able to estimate probability densities conditioned on previously unseen contexts.

3.10.4 Trajectory Forecasting Results

This subsection shares the results of the experiments for trajectory forecasting

for the PRECOG-Carla dataset. Although HCNAF can generate trajectory samples

through the methods explained in Section 3.6.5, it is not as computationally effi-
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cient as CVAE-H. For this reason, we use CVAE-H in this experiment. Similar to

the previous sub-section, we divide the evaluation into qualitative and quantitative

evaluations.

Qualitative results for trajectory forecasting with CVAE-H

Qualitative results from CVAE-H are presented in Figure 3.20 - 3.26. In Figure

3.20 and 3.21, we show how CVAE-H outputs are contextual to spatial features. In

Figure 3.22 and 3.23, we show how CVAE-H outputs are contextual to social features.

The last set of qualitative examples in Figure 3.24 - 3.26 describe how the number of

trajectory samples affect the quality of predictions.

Recall that our prediction outputs are non-autoregressive. That is, S
A∀K 6=AV
t+∆t:T ∼

Pm =
T∏

i=t+∆t

Pm(S
A∀k 6=AV
i |S0:t) as explained in Section 2.2.2. This explains why we

represent the trajectory predictions as independent points, rather than a sequence of

points.

In each figure, the left column describes 6 seconds long (2s history + 4s future

ground-truth) trajectories of all road-agents and AV. The right column portrays 100

sample predictions per vehicle overlayed with the ground-truth trajectories. As ex-

plained before, we perform multi-agent forecasting for all road-agents. The diamond,

square, and circle each represents the 2s history, future 4s ground-truth, and predic-

tion samples.

Figure 3.20 and 3.21 visualize four examples of how the resulting predictions are

contextual to the spatial features of the environments. The two examples of Figure

3.20, the 329th and 349th example of the town01 test set, portray the 4-second long

multi-agent predictions for four road-agents in the scene excluding the AV (blue).

The top example is a 4-way intersection environment where the orange vehicle is first

in the queue and has three possible modes; left-turn, right-turn, and pass-through. As

shown in the right plot of 3.20, CVAE-H captures all three modes in the prediction.
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Figure 3.20: The first set of examples qualitatively shows that CVAE-H predictions
are contextual to spatial features of the environments (i.e., road topolo-
gies).

The bottom example is a curved-road environment with five cars driving in the corner

of the road. The output prediction for the orange car shows that CVAE-H takes into

account the spatial constraint of the curve and makes accurate predictions.

Figure 3.21 presents the second set of examples and supports that CVAE-H is

spatially contextual. The top example is a 3-way intersection scenario with three

exits located at the left, right, and bottom of the plot. CVAE-H not only accurately

predicts future positions of all vehicles, but also captures the two distinct modes

(left-turn and right-turn) for the purple car. The bottom example is another 4-way

intersection environment where the orange car’s future motion is quite uncertain given

its first 2s history (depicted as diamonds). CVAE-H accounts for this uncertainty and

accurately predicts the three possible modes (left-turn, right-turn, and pass-through).

The examples in this figure show the multi-modality of the output predictions.

CVAE-H considers the social contexts as displayed in Figure 3.22 and 3.23. First,
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Figure 3.21: Continuing demonstrations of spatially contextual outputs from CVAE-
H. In addition, they show that the output predictions are multi-modal.

let us pay attention to the orange and green cars in Figure 3.22 that describes two

4-way intersection environments. In the top example, the orange car is the first in the

queue, whereas the orange car is behind the blue car in the bottom example. CVAE-

H understands this social context and accordingly predicts that the orange car in

the top example may move in the x-direction, as shown in the elongated uncertainty

in the x-direction, whereas the orange car in the bottom is most likely to stay idle.

The green cars in both top and bottom examples are last in the queue; CVAE-H

understands that there are two other vehicles in front and accordingly predicts that

the green car will not move.

Figure 3.23 is the second set of examples, which demonstrates CVAE-H makes

socially contextual predictions. In the top example, the green vehicle is predicted to

stay idle, considering the social situation of the blue car being the first in the queue.

Conversely, the yellow car in the bottom example is predicted to move since there is

no vehicle in front.
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Figure 3.22: Qualitative demonstrations of socially contextual CVAE-H outputs.

The fact that CVAE-H not only outputs predictions, but also the probability

associated with them makes CVAE-H probabilitic. The final output layer of CVAE-H

is a Gaussian mixture and the probabilities of the generated predictions are computed

analytically. We emphasize again that all qualitative examples presented from Figure

3.20 to 3.26 were produced using a single CVAE-H model. This empirically shows

that CVAE-H is general. In this sense, CVAE-H possesses all four attributes of the

ideal prediction model.

Trajectory forecasting v.s. Number of prediction samples

Here, we use three figures to visually show that the quality of the trajectory-based

predictions depends on the number of samples. As discussed in Section 2.3, trajectory-

based prediction models are used for sampling K possible trajectories, implying that

the quality of the prediction largely depends on K. A low K may fail to capture less

probable modes. On the flip side, high K means longer inference time and heavier

memory requirements.
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Figure 3.23: Continuing qualitative demonstrations of socially contextual prediction
outputs.

Figure 3.24 - 3.26 consist of three columns. The left column portrays the 6s

long trajectories (2s history + 4s ground-truth future) of the road-agents and AV.

The middle and right columns are figures with CVAE-H predictions overlayed. The

middle figures only show 3 prediction samples per road-agent, whereas the right figures

include 100 prediction samples per road-agent. One could compare how well possible

modes are covered with respect to the number of samples.

In Figure 3.24, the green car in the top example has three potential modes; left-

turn, right-turn, and pass-through. With 100 prediction samples (i.e., K = 100), all

three modes are captured. However, with K = 3, not all three modes are predicted.

Similarly, the bottom example has three modes. While CVAE-H captures all three

modes with 100 samples, setting K = 3 results in a failure where left-turn mode is

not included in the sample predictions.

For Figure 3.25, let us pay attention to the green car in the top example and

the purple car in the bottom example as their trajectories are uncertain and multi-

modal. In the top example, K = 100 successfully captures the two modes, however,
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Figure 3.24: The first set of examples showing how the number of prediction samples
affects the quality of the predictions.

k = 3 fails to capture the left-turn mode. Similarly in the bottom example, K = 100

predictions include the multi-modes for the purple vehicle, but K = 3 predictions

failed to predict the left-turn mode.

Lastly, Figure 3.26 presents the third set of examples that reflect more samples

(i.e., higher K) means better chance to capture all modes. We draw the same con-

clusion as the previous two sets of examples.

Quantitative results for trajectory forecasting with CVAE-H

For quantitative evaluations, we use the minimum mean squared deviation of

sampled trajectories from the ground-truth (minMSD). MinMSD is a measure of

diversity or multi-modality of the model outputs. It is often used for evaluating self-

driving prediction models, in particular, generative prediction models that construct

probabilistic models with sampling capability [25, 31, 54, 100]. The definition of

MinMSD is as follows.
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Figure 3.25: Continuing examples show that the sample number affects the prediction
quality.

m̂K = mink∈1..K [||Xk −Xgt||2/T ], (3.28)

where K, Xk, Xgt, and T corresponds to the number of trajectory samples, k-th

sample trajectory, ground-truth trajectory, and the prediction horizon, respectively.

While there exist similar metrics like minimum average displacement error (minADE)

and minimum final displace error (minFDE) [54, 100, 101], we report minMSD to

compare our models against the available benchmarks.

Table 3.5 presents the evaluation results against available benchmarks. Our model

outperforms most of these prediction models [30, 50, 31, 25, 100], except MFP [54].

While Table 3.5 presented minMSD averaged over all 5 cars, Table 3.6 shares the

detailed minMSD numbers for all individual vehicles against available benchmarks.
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Figure 3.26: Continuing examples reflect more samples corresponds to better chance
of capturing all modes.

Table 3.5: Quantitative evaluation of the proposed prediction models using MinMSD
with K=12 on PRECOG-Carla town01 testset, averaged over all 5 cars.

Method minMSD(m2) with K=12: Lower is better

DESIRE [30] 2.599

SocialGAN [50] 1.464

R2P2 [31] 0.843

PRECOG-ESP [25] 0.716

MultiPath [100] 0.680

MFP [54] 0.279

CVAE-H (ours) 0.312

Table 3.6: The minMSD evaluation results specified for individual agents.

Method Car 1 (AV) Car 2 Car 3 Car 4 Car 5

DESIRE [30] 2.621 2.422 2.710 2.969 2.391

PRECOG-ESP [25] 0.340 0.759 0.809 0.851 0.828

CVAE-H (ours) 0.151 0.346 0.304 0.355 0.404
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CHAPTER IV

Planning for Autonomous Driving

Chapter 4 elaborates on the planning part of our solution framework described in

Figure 1.3 and 1.4 in Chapter 1 and 2. The planning part corresponds to the second

and third steps of the solution implementation detailed in Section 2.2.

The planning task utilizes future states of the environments generated by our

prediction models and computes plans optimal and contextual to the environment.

We provide an overview of our approach to the planning task in Figure 4.1.

We start this Chapter by discussing important transportation attributes consider-

ing the autonomous vehicle is essentially a form of transportation. We incorporate the

attributes into designing the objectives of the planner (i.e., reward or cost function)

in Section 4.1. Section 4.2 reviews a variety of existing planning algorithms in the

field of machine learning, optimal control, and reinforcement learning. In Section 4.3,

we make comparisons of the existing planning approaches with particular attention

to the scalability of the algorithms in the reflection of our research objective (i.e., de-

velopment of a scalable framework). In Section 4.4, we introduce our learning-based

planner and present its mathematical and architectural details. In Section 4.5, we

report the evaluation results of the proposed planner against a number of baselines.

The evaluation is conducted with respect to the three keywords of the scalability

introduced in Section 1.2; effectiveness, generalizability, and computational efficiency
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Figure 4.1: An overview of the proposed planner.

of the generated trajectory plans. Lastly, in Section 4.6, we perform the planning

task with the POM representation and report the evaluation results in comparison to

the trajectory representation.

4.1 Planning Objectives

The primary goal of transportation is to move passengers and goods from one lo-

cation to another. The same applies to autonomous vehicles. An AV should transport

passengers and goods from point A (origin) to point B (destination). In this regard,

a trajectory planner’s primary job is to compute feasible trajectories that connect A

and B. We denote the ability to move passengers as mobility, which serves as the core
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objective of our planning problem.

A study investigated a number of transportation systems and commuters’ needs

[102]. They found that travel time is the most important attribute that commuters

care about. Therefore, we can expect that the passengers of AV would prefer shorter

travel times. This would be more apparent in urban driving environments where

a significant amount of time is wasted in congested traffics [103]. In this regard,

time-efficiency is an important attribute that AV should possess.

There are several traffic laws all road users should obey. Examples include stop-

ping at red lights, stop signs, and not over-speeding; while a bit of over-speeding is

not necessarily harmful, over-speeding by a large gap from the speed limit is harmful.

It is natural for human drivers to recognize and follow traffic rules, but it may not

be trivial for AV. As training data may contain human driving records that violated

a traffic rule, it is necessary for a data-driven planner to be aware of such violations

and prevent them from happening. For this reason, lawfulness of the autonomous

vehicle is an important attribute.

[104] found that ride comfort is also a factor to commuters besides travel time

and travel cost. A review paper [105] on passenger comfort discusses factors that

create discomforts such as acceleration and deceleration. In this sense, ride-comfort

is another important attribute for autonomous driving.

The four attributes we introduced here matter only when the safety of the trans-

portation is guaranteed. In other words, safety is a hard constraint of any trans-

portation and it must be guaranteed. The same holds for AV; indeed, researchers

have reported that the primary concern of people on autonomous driving is safety

[106]. Guaranteeing safety is one of the most critical challenges for autonomous driv-

ing, especially in urban environments.

The five important attributes, although not exhaustive, of autonomous vehicles

are mobility, time-efficiency, lawfulness, ride-comfort, and safety. In the following,
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we elaborate on how they are considered in designing the objectives of our planning

algorithms.

Often denoted as reward or cost function, the planning objective provides feedback

signals to the AV. As we formulated the research problem using MDP as described

in Chapter 2, we incorporate the aforementioned five attributes into the following

reward definition.

r = rgoal + rtime + rinviolations + rcomfort + rsafety.

Mobility corresponds to rgoal that denotes the goal completion reward and specifies

whether the planned trajectories arrive in the vicinity of the destination over the

planning horizon. As mobility is the essential attribute of autonomous driving, we

prioritize rgoal over other attributes in the training of the planner.

Time-efficiency is quantified using rtime, which describes how long the AV takes

to move from the origin to the destination. The shorter the travel time is, the higher

rtime gets.

lawfulness is quantified using rinviolations, which checks if the traffic rules are obeyed

or not. The planner is strongly discouraged from violating the traffic rule since a

highly negative reward signal is incurred upon such violation.

ride-comfort corresponds to rcomfort that quantifies the degree of ride comfort

using the magnitude of acceleration, deceleration, and jerk.

The last attribute, safety, is quantified by the term rsafety that measures how

safe a trajectory plan is. rsafety is computed either by checking the probability of

AV colliding with an object or evaluating the probabilistic occupancy of the AV’s

trajectory. The mathematical details of the reward are presented later in this Chapter.

The goal of the planning task is to find the optimal sequence of actions, (aAAVt:T )?,

which maximizes the expected sum of the discounted rewards as defined in Equation

4.1.
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(aAAVt:T )? = argmax(E
[
rt:T (SA∀kt:T , aAAVt:T , Ot:T )

]
).

= argmax(E
[
ΣT
i=tγ

i−tri(S
A∀k
i , aAAVi , Oi)

]
), (4.1)

where rt and Ot denote the reward and the POM at time t. γ represents the

discount factor. Maximization of the expected return is equivalent to minimizing the

cost function J as (aAAVt:T )? = argmin(E
[
Jt:T (SA∀kt:T , aAAVt:T , Ot:T )

]
), however, we adhere

to the maximization formulation for the coherence.

Recall that we define a plan as a sequence of actions, i.e., aAAVt:T . Given the initial

state SAAVt , the trajectory of the AV is obtained simply by iterating the determinis-

tic state-transition function fAV (SAAVt , aAAVt ) = SAAVt+1 from t to T as introduced in

Section 2.2.

4.2 Related Works

In this section, we review existing planning algorithms that can be used to solve

Equation 4.1. The review is extended to Section 4.3, where we compare these ap-

proaches with particular attention to the scalability in the reflection of our research

objective. The planning algorithms we discuss here include dynamic programming

(Section 4.2.1), optimal control (Section 4.2.2), monte-carlo tree search (Section

4.2.3), value-based RL (Section 4.2.4), policy gradient methods (Section 4.2.5), imi-

tation learning (Section 4.2.6), and random shooting (Section 4.2.7).

4.2.1 Dynamic Programming

First is dynamic programming (DP) which relies on the Bellman’s optimality

principle [107]. Dynamic programming is the discrete counterpart of Hamilton-Jacobi-

Bellman (HJB) equation which gives a necessary and sufficient condition for the
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optimality of control with respect to a loss function in continuous time [108]. Dynamic

programming solves sequential decision-making problems numerically by discretizing

state-space of the problem, evaluating the values of the discrete states, and selecting

the sequence of the states with the maximum values.

Dynamic programming offers the global optimal solution within the discretized

state-space. DP also handles various constraints and complex objective functions in-

cluding non-convex loss functions. Leveraging the advantages, DP has been utilized

to tackle different planning problems [109]. Microscopic planning problems such as

trajectory planning is the first example. This includes an early work [110] on eco-

driving for tracking a predefined drive cycle, a fleet platooning problem [111], and an

energy-efficient trajectory planning near signalized intersections [112]. A summary

of the applications of DP to eco-driving problems such as eco-cruise control and ap-

proaching traffic lights is provided in [113]. The application of dynamic programming

for macroscopic planning problems includes vehicle routing problem [114] and vehicle

scheduling problem [115].

However, the computation time of DP grows quickly as the state-space gets big-

ger (e.g., higher discretization resolution and/or longer planning horizon). Known

as Curse of Dimensionality [116], dynamic programming suffers from scaling the ap-

proach to the problems with large state-spaces. For this reason, Dynamic program-

ming is usually used for problems with small state-spaces. However, the planning

task in the urban environments involves high planning frequency, long planning hori-

zon, and the presence of multiple static and dynamic objects whose behaviors are

highly stochastic. Due to the large state-space of the planning task, the application

of dynamic programming is limited.
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4.2.2 Optimal Control

Optimal control is a mathematical optimization method that deals with finding a

control for a dynamical system over a period of time such that an objective function is

optimized [109, 117]. Various applications in science and engineering utilize optimal

control to tackle optimization problems. An example is a spacecraft with rocket

thrusters as the control and reaching the moon with minimal fuel consumption as

the objective (cost) function. Optimal control typically is expressed using a set of

equations including differential equations explaining the system dynamics, constraints

on the state and control variables, and cost functions.

Optimal control has been widely used across various sequential decision-making

problems including vehicle planning problems. Early works solved the adaptive cruise

control problem [118], a path-following problem [119] by planning braking and steer-

ing, and an obstacle avoidance problem [120]. Applications of optimal control to

other vehicle planning problems include [121], which developed an energy-efficient

platooning method and [122], which discussed fuel-efficient trajectory planning.

There are various analytical and numerical methods that solve the core optimiza-

tion problems. Examples of analytical methods include Linear Quadratic Regulator

(LQR) for deterministic problems and Linear Quadratic Gaussian (LQG) for stochas-

tic problems. Specifically, LQR and LQG both assume that the state transition,

objective function, and constraints to be linear, quadratic, and linear respectively.

Additionally, LQG assumes that noise (e.g., prediction uncertainty) is normally dis-

tributed. Dynamic programming and Pontryagin Maximum Principle (PMP) can be

utilized to solve LQR and LQG problems and provide access to tractable solutions,

however, the assumptions are often unrealistic. For the problems that the assumptions

do not hold, LQR and LQG can still be deployed, however, they require approxima-

tions of the state transition, system dynamics, objective functions, and forms of the

uncertainties, which may greatly sacrifice the performance.
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Numerical methods such as gradient-based methods, sequential quadratic pro-

gramming (SQP), and interior point methods are typically used to solve complex

optimal control problems. These methods allow optimal control to work with various

degrees and forms of objective functions, constraints, and state transition models.

While the numerical methods make optimal control more scalable and find decent

sub-optimal solutions, they also require a set of assumptions and/or approximations

of the state transitions and objective function to functions of lower degrees. These

assumptions conservatively estimate uncertainties which as a result make the predic-

tions less accurate and induce the compounding error problem.

4.2.3 Monte-carlo Tree Search

Monte-Carlo Tree Search (MCTS) [123], as the name suggests, is a tree-based

search algorithm for discrete decision-making problems. MCTS starts with a top

node of a search tree and expands the tree by sampling the search space randomly to

select promising actions. At each iteration (i.e., at each node of the tree), an action

is selected based on the exploitation and exploration rule of MCTS. Starting from

an empty tree, it iteratively selects an action based on an action selection algorithm,

performs a state transition with learned state transition models to expand the tree,

and evaluates the expected return. Upper Confidence Tree (UCT) [124] is a popular

MCTS algorithm that uses a non-uniform action selection rule which encourages

searching promising nodes with high expected returns. Like random shooting, MCTS

may also involve learning distributions for the action selection process.

MCTS has been notably employed in solving episodic tasks such as Atari games

[125] and board games such as GO [126]. Recently, a number of works [127, 128]

applied MCTS to decision-making problems for autonomous driving. On the other

hand, adoptations of MCTS to continuous problems have been proposed [129, 130].

Extensions to multi-objective MCTS and constrained MCTS also exist [131].
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4.2.4 Value-based RL

Value-based RL algorithms refer to the RL algorithms that mainly leverage value

V (s) or Q value Q(s, a) to obtain the optimal sequence of actions. As an important

concept in MDP, Value estimates how good a state is with respect to the objective of

the planning problem. Likewise, Q estimates the value of taking the action a at the

state s with respect to the objective. Value-based RL algorithms have shown promis-

ing performances across many fields including Atari games [132], robot navigations

and manipulations [133], and self-driving [13].

First proposed by [134], Q learning methods are one of the most widely used value-

based RL algorithm. Modern Q-learning methods leverage deep neural networks

to better approximate Q values. Examples include DQN [132] and double DQN

[135]. Value-based methods nowadays leverage ideas from actor-critic methods [136]

and further improved the performance [137]. Another popular approach includes a

combination of value-based and policy-based RL methods such as DDPG [138] and

SAC [139].

4.2.5 Policy-based RL

Policy-based RL is an example of gradient-based planners, which require the re-

wards and state transition functions to be differentiable in order to obtain the gradi-

ents of the objective function. It involves a complex model that evaluates and selects

the optimal action sequence using a parameterized model. Once the planner model,

or policy π, is learned, the remainder of the planning task is to simply run the policy,

i.e., π(I) = (aAAVt:T )?, where I represents the input to the planner. It is often called

policy gradient RL algorithm and may involve a value function to obtain a better

policy (e.g. actor-critic [140]).

Policy gradient methods [141, 142, 139, 143, 144, 9, 10, 145, 146, 12] can be

divided into model-free and model-based RL algorithms. As opposed to the model-
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based RL algorithms that require access to state-transition models or explicitly learn

them, the model-free RL methods do not use the models and instead learn policies

in trial-and-error fashion. Popular model-free RL algorithms include Natural Policy

Gradient (NPG) [142], Soft Actor-Critic (SAC) [139], which is an off-policy model-

free RL, Proximal Policy Optimization (PPO) [143], and Distributed Distributional

Deep Deterministic Policy Gradient (D4PG) [144].

The aforementioned model-free approaches typically achieve higher rewards than

model-based approaches for complex RL problems in tabular and episodic settings.

However, model-based RL methods are more sample efficient and can take advantage

of physical intuitions about the model (i.e., the dynamical system) by incorporating

the prior knowledge about the environments. While there are model-based RL al-

gorithms based on random shooting methods [9, 19, 10], a number of works utilize

parameterized networks to explicitly model policies for planning tasks in robotics

[145, 146, 12]. For autonomous driving, model-based RL methods are used to tackle

decision-making problems by leveraging known system dynamics or learned state-

transition models (i.e., the prediction models) [13].

4.2.6 Imitation Learning

Most of the optimal control and reinforcement learning methods including value-

based methods, policy gradient methods, actor-critic work under markov decision

process (S, a,R, T ) formulation. The MDP formulation assumes that agents interact

with the environments and receive feedback in the form of rewards. On the other side,

there is an approach denoted as imitation learning which does not involve rewards

(or cost function) and can work independently from the MDP formulation.

Imitation learning (IL) aims to learn a data-driven model by imitating the behav-

ior of an expert such as a human, unlike other sequential decision-making algorithms

that learn from reward signals. Imitation learning models learn optimal policies by
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emulating the demonstrations from the expert. IL is especially useful when it is easier

to obtain the expert’s demonstrations than to design a reward function that specifies

the desired behavior of the agent.

An IL model is typically formulated and trained in the same way that a supervised

learning model is formulated and trained. This is why IL is often denoted as supervised

learning for planning. Given a loss function and a neural network that maps inputs

(e.g., states of the environment) to outputs (e.g., actions), the objective of imitation

learning is to train the neural network to approximate the policy by minimizing the

loss. The simplest form of imitation learning is behavior cloning (BC), which focuses

on learning the expert’s policy using only supervised learning. An example is a self-

driving algorithm that takes sensor information about the environment and learns to

produce appropriate accelerations at a signalized intersection scenario [52].

As pointed out by [147], the naive imitation learning (i.e., behavior cloning) often

falls into the distribution drift problem. In other words, small errors at each step

accumulate over time and the accumulated error may lead the agent to an out-of-

distribution state that the agent never encountered during the training. Agents in

the out-of-distribution states may not behave optimally and potentially cause safety

issues for safety-critical applications like autonomous driving.

There exists a number of resolutions that mitigate the distribution drift problem.

One is model predictive control. By re-planning with new observations, MPC can

reduce the amount of the distribution drift, however, MPC does not fundamentally

solve the problem as the out-of-distribution states remain unchanged. An effective

solution is to leverage heuristics in augmenting the data distribution. [14] tackled a

self-driving steering control problem using imitation learning and the data distribution

was augmented by adding out-of-distribution states and their labels. However, this

approach requires a manual design of the data augmentation which is not scalable.

The most popular resolution is to use DAgger [147] which is an algorithm that
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reduces the discrepancy by continuously expanding the data distribution using the

data synthesized by the model policy. However, this also assumes human labeling

efforts and thus are not suitable for problems with large-size datasets. Instead of

asking humans to label the desirable action, Plato [148] suggests using an optimal

control algorithm to automatically produce labels which could potentially solve the

problem assuming a fast and accurate annotator is available.

4.2.7 Random Shooting

Random shooting, as the name suggests, is a numerical method where candidate

action sequences are randomly sampled from a probability distribution such as a

uniform or Gaussian distribution. The sampled action sequences are then evaluated

on their expected returns to determine the best action sequence with the highest

expected return. As opposed to dynamic programming and optimal control, which

obtain the optimal action sequence by solving the core optimization problems, random

shooting does not formulate such optimization problems and thus obtains the optimal

action sequence in a relatively simple procedure.

Random shooting can be used both in optimal control and reinforcement learning

frameworks. It may run either in an open-loop fashion where the entire optimal action

sequence is executed at once or in an MPC-based closed-loop fashion where only the

first action at of the optimal sequence is executed with the repetition of the entire

process to find subsequent actions.

Similar to Deterministic Shooting that produces deterministic sequences using

heuristics or rules, random shooting may be able to generate solutions that are com-

putationally cheaper than the methods that involve optimization problems such as

DP and optimal controls. Random shooting may involve learning (i.e., gradient-based

training) distributions for the sampling process to increase the performance as well

as computation efficiency. This is especially effective for high-dimensional problems
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with long planning horizons.

Taking advantage of the computational benefit, a number of works utilized random

shooting method for designing planners for robotics [9, 19, 10, 11] and for vehicles

[8]. Classified as model-based RL algorithms, MBMF [9] used random shooting to

solve high-dimensional robotics planning tasks such as Mujoco locomotion planning

problems [149], PDDM [19] solved high-dimensional manipulation tasks, PETS [10]

used an ensemble of random shooting-based planners to tackle various planning tasks

in robotics, and PlaNet [11] showed how a random shooting-based planning method is

effective at solving control problems that take high-dimensional images as inputs. On

the other hand, [8] utilized random shooting as a vehicle planner in a traffic weaving

scenario.

Most of the recent works [9, 19, 10, 11] applied Cross-Entropy Method (CEM)

[150] to refine the sampling distributions parameterized via deep neural networks. As

opposed to vanilla random shooting, CEM continuously updates the distribution to

obtain better action sequences. In this sense, it is closely related to the policy gradient

method introduced earlier in this section, however, random shooting methods are

usually employed in model-based RL settings.

4.3 Comparisons of Planning Approaches

In this section, we investigate the advantages and disadvantages of the approaches

presented in the previous section and select the most suitable approach to our planning

problem. Recall our research objective, which was introduced in Section 1.2, is to

build a scalable prediction and planning framework. In the reflection of the research

objective, we pay special attention to the three keywords of the scalability to find

the most appropriate planner. The first keyword is effectiveness that refers to the

quality (i.e., optimality) of the trajectory plans generated by the planner. The second

keyword is computationally efficiency, which refers to fast inference speed and low
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memory requirements. The third keyword is generalizability that describes an ability

to compute near-optimal actions in a variety of different environments.

4.3.1 Traditional Approaches VS Data-driven Approaches

We first categorize the planning approaches we reviewed in Section 4.2 into two

groups, depending on whether an approach relies on data-driven techniques or not.

The first group is traditional approach which leverage either heuristics or control

theories rather than data-driven techniques.

Heuristic approach is the first example of the traditional approach. This includes

rule-based models such as constant velocity, constant acceleration, and deceleration

model which could be useful for approximating trajectories for vehicles running on

highway, departing from an intersection, and approaching an intersection. Physics

and heuristic-based models are other examples. For instance, Intelligent Driver Model

(IDM) [46], Newell’s car-following model [151], and Gipps’ model [152] are mathe-

matical models which describe the car-following behavior of human-driven vehicles.

While the heuristic approach is computationally very efficient and easily interpretable,

it typically works under strong assumptions about the environments and assumes the

nominal behavior of human drivers. That is, the approach is not generalizable nor

effective for various scenarios of urban driving.

Dynamic programming is another example of the traditional approach. DP finds

the global optimal solutions by solving discrete optimization problems. The compu-

tation time of DP can be reasonably fast when the problem is deterministic and the

state space of the environment is small. However, the computation resource quickly

increases as the problem becomes larger (i.e., Curse of dimensionality [109]). Unfor-

tunately, the presence of uncertainties and a high replanning frequency rate enlarge

the state space of urban driving environments. In this regard, DP is not best suited

for our planning problem.
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We categorize optimal control algorithms as the first group. Optimal control pro-

vides decent sub-optimal solutions and is typically more computationally efficient

than DP. However, it often requires a set of simplifying assumptions to solve the

core optimization problems computationally efficiently. Examples of the simplifying

assumptions include approximating constraints to convex functions and simplifying

uncertainties to simple analytical distributions such as standard normal distribution.

The effectiveness and computational efficiency of the solutions come with the ex-

pense of the accuracy of the model as the simplifying assumptions may inaccurately

approximate the environment and planning objective. Model predictive control could

be employed to prevent the approximation to deviate from the actual system and

environment. However, the generalizability of the solution is still questionable since

optimal control assumes the form of uncertainties and may over-simplify the environ-

ments.

On the other hand, the second group of algorithms primarily utilizes data-driven

techniques (i.e., reinforcement learning). This includes imitation learning, value-

based, policy-based RL, MCTS, and random shooting.

Reinforcement learning algorithms or data-driven methods work with minimal

assumptions & approximations about the environment and are thus usually more

generalizable than the traditional approach. Specifically, RL algorithms are compati-

ble with diverse representations of the environment. RL can work with diverse forms

of uncertainty representations and allows uncertainty-aware decision-making by na-

ture. By leveraging the high representation capability of deep neural networks, RL

algorithms are able to approximate complex environments and/or complex decision-

making models. In addition, many RL algorithms can perform inference in real-time

with the aid of graphic processing units via parallel computing.

The drawbacks of RL algorithms do exist; enforcing hard constraints is achieved

indirectly through a reward function. A standalone RL algorithm does not guarantee
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hard constraint inviolations which could make the system brittle to safety-critical

scenarios, requiring an external safety validation [153] or a backup solution that may

not be near-optimal, but may guarantee the safety. Some RL algorithms such as

policy-based RL and imitation learning may require the differentiability of the model

and objective function, however, they are relatively much softer constraints than as-

suming specific forms of the environment and planning objective. Nevertheless, the

advantages of RL are compelling, especially to our planning task where the environ-

ment is highly complex and stochastic and the reward function is non-convex. In this

regard, reinforcement learning is suitable for diverse urban driving environments.

4.3.2 RL Methods as The Scalable Planner

We discuss the RL algorithms reviewed in the previous section in the perspective

of the scalability to select the most suitable planning model for our research objective

First is monte-carlo tree search. While MCTS has solved complex episodic and

tabular decision-making problems, it has several drawbacks. The first drawback is

that MCTS does not have an explicit evaluation function nor enforce state constraints.

Therefore, MCTS needs a modification to accommodate the reward function (e.g.,

multi-objective MCTS and constrained MCTS [131]). Secondly, MCTS is not as gen-

eralizable as other RL approaches. In other words, MCTS is best suited with a specific

task [127, 128] and/or episodic problem with well-abstracted environments such as

the game of GO [126]. For the non-episodic problems or dynamic problems where the

agent often encounters new environments, the MCTS has to perform explorations to

estimate the values of the new states and find optimal trajectories. Lastly, MCTS

is computationally more expensive than other RL approaches. Unless the states are

abstracted well, MCTS quickly becomes computationally intractable for tasks with

large state space since it consumes a tremendous amount of search to visit and esti-

mate values of the new states. Parallelization of the search is another challenge that
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must be addressed to implement MCTS for any planning problem. For these reasons,

MCTS is not best suited for our planning problem which requires a scalable planner.

Second is value-based RL which mainly consists of Q-learning and its variants such

as DQN [135]. Value-based RL algorithms are uncertainty-aware just like other RL

algorithms which are formulated using MDP which captures the probabilistic nature

of the environment. However, it may not be the most computationally efficient or gen-

eralizable approach. This is because value-based methods assume discrete state-space

whereas our planning problem involves continuous state and action space. Discretiz-

ing the continuous state-space may cause Curse of Dimensionality. While deep neural

networks can serve as functional approximators and mitigate the problem, value-based

RL approaches assume strong models that have interpolation and extrapolation ca-

pabilities, which may be difficult to obtain. Considering that the state space of our

problem changes depending on the environments (or scenarios), value-based methods

may have limited generalizability. Another limitation is that value-based RL meth-

ods require Markovian assumption to be hold. Since our planning problem takes the

high-dimensional input (i.e., the BEV lidar map) and is non-markovian, value-based

RL is not the best option.

Third is policy-based (policy gradient) RL methods that learn a policy directly.

As policy-based RL methods build on action spaces rather than state spaces, they

are more generalizable to new environments with different state spaces but the same

action space (e.g., self-driving in urban areas). Since policy gradient methods handle

continuous action space by nature, they do not require the discretization of state-

space. In this sense, they are computationally efficient. However, model-free policy

gradient methods, especially vanilla policy gradient methods [141, 142], are known

to have high variance and be more sample inefficient than valued-based methods

[154]. There exist different resolutions such as PPO [143] which relies on a clipping in

the objective function. Other solutions such as D4PG [144] and SAC [139] leverage
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parameterized critic networks and thus may have the same limitations as the value-

based RL methods. While recent model-free policy gradient methods perform well in

complex and stochastic problems [143, 139], they are still less data-efficient and more

black-box compared to model-based RL methods.

On the other hand, model-based policy gradient methods can incorporate prior

knowledge about the environments into the learning. Given an accurate model of the

environment obtained either from mathematical modeling or data-driven techniques,

model-based policy gradient methods have shown competitive performances against

other RL methods [10, 11, 19]. In this regard, model-based policy gradient RL best

qualifies as the scalable planner for autonomous driving in urban areas.

Among model-based RL approaches, random shooting approach [9, 10, 19] is ar-

guably the most interpretable and computationally efficient approach. Random shoot-

ing leverages a simple and interpretable distribution such as Gaussian distribution as

the policy. Random shooting obtains desired action sequences by sampling the pol-

icy and selecting top-k action sequences that correspond to the highest expected re-

turns. The fact that the computation is highly parallelizable and cheap makes random

shooting approaches computationally efficient. Besides, it is a gradient-free method,

which allows a more flexible design of the reward function compared to gradient-based

methods. This means that the reward function can incorporate complex and non-

differentiable uncertainties in the environment. A naive random shooting approach

may not be scalable as it may take longer to obtain meaningful action sequences for

different environments. Deep neural networks can be leveraged to parameterize the

random shooting distribution and encode the contextual information about the en-

vironment into the distribution. In addition, cross-entropy method (CEM) [150] can

be applied to optimize the parameterized policy. Upon successful training, random

shooting policy should be uncertainty-aware, effective, and able to generate action

sequences contextual to the environment while enjoying the computational efficiency
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of the vanilla random shooting. For these reasons, we choose the random shooting

approach as our planner.

4.4 Planning Algorithm Overview

In the previous sections, we introduced the planning objective, reviewed existing

planning approaches, and compared them to find the best-suited approach for our

planning problem. In this section, we introduce our learning-based planner, random

shooting via learned Gaussian mixture, and its mathematical and architectural details.

In addition, we describe how the planner fits in the proposed framework described in

Figure 1.3 and 1.4.

4.4.1 Prediction Model as The Simulator

Figure 4.2: Reinforcement learning is modeled using MDP.

As illustrated in Figure 4.2, RL is concerned with how an intelligent agent takes

actions in an environment in order to maximize the feedback (i.e., reward). The same

applies to the planning problem for autonomous driving; the planning algorithm of

AV, which is an intelligent agent, interacts with the stochastic urban driving environ-

ments by taking actions, receiving reward signals, and obtaining new observations of

the environments. The agents are trained through iterations of the interactions with
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the environments.

One could train RL agents in the real world, however, real-world experiments are

often very expensive and time-consuming. Moreover, running a planner in real-world

environments, especially a planner whose performance was not validated, may invoke

safety-critical events. For these reasons, the environment is typically reproduced

using a simulator that approximates the real-world environment. In this regard,

the performance of the intelligent agent is subject to the fidelity of the simulated

environments. The fidelity refers to how close the simulated environments are to the

real world. This is true for most RL approaches excluding non-MDP algorithms like

imitation learning.

As opposed to planning problems with relatively simple environments (e.g., Atari

games), the planning task for autonomous driving involves much more complex en-

vironments. This is why it is challenging to create a simulator that approximates

behaviors of diverse road-agents under various urban driving scenarios to the high fi-

delity. There exist open-source urban driving simulators such as Carla [2] and traffic

simulators like SUMO [155] which provide a convenient way of simulating the urban

driving environments without any safety concerns.

While one can leverage the aforementioned urban driving simulators, they are

not light-weighted enough for our planning problem. To be precise, training an RL

agent in a simulator assumes that the auxiliary tasks and background jobs to run the

simulator are operated in addition to the training. To accelerate the training process,

we instead train our model on a collection of MDP tuples (S,A, P,R). In this regard,

we utilize the collection from the PRECOG-Carla dataset which consists of urban

driving scenarios from Carla simulator [2].

There exists one challenge of this approach for continuous problems. No matter

how large the collection of MDP tuples is, a planner will always visit the states that

were not part of the collection. This is because the collection is finite as opposed to

103



the infinitely large state and action space of the continuous problems. We address

this challenge by building a generative model which can accurately reproduce the

state transition and interpolate & extrapolate into the unseen states and utilizing

it to simulate the environment. Recall that we empirically demonstrated in Section

3.10 that our prediction models accurately approximate the state transitions of the

PRECOG-Carla dataset. In addition, we have shown that our prediction models are

highly expressive and able to interpolate & extrapolate into unseen states in Section

3.9. Indeed, the approach of first building a state-transition model and leveraging it in

the planning task has been utilized in the RL literature [9, 10, 19, 156]. In this regard,

we leverage our prediction models as the simulator to train planning algorithms.

4.4.2 Reward Function

In this subsection, we introduce the mathematical formulation of the reward func-

tion.

Recall that the reward, which was first introduced in Equation 2.4, is expressed

as a function of goal completion, travel time, traffic law inviolation, ride comfort, and

safety (see Section 4.1 for the details). We introduce time t to indicate reward at

time t as rt, which is a function of the environment state and action of AV as follows.

rt(St, a
AAV
t ) = rt,goal + rt,time + rt,inviolation + rt,comfort + rt,safety, (4.2)

where each term of rt corresponds to the followings:

rt,goal = wgoal
[
(XAV

t −Xgoal)2 ≤ Xthres

]
, or

= wgoal
[
min(1, Xthres/(X

AV
t −Xgoal)2)

]
,

rt,time = wtime
[
(ct0 + ct1t)(t < tgoal)

]
,

rt,inviolation = winviolation
[
cvub(v

AV
t > vub) + cvlb(v

AV
t < vlb)

]
,

rt,comfort = wcomfort
[
crc0a

AV
t + crc1(aAVt − a

AAV
t−1 )

]
,

(4.3)
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where wgoal, wtime, winviolation, wcomfort correspond to the weights of goal comple-

tion, travel time, traffic law inviolation, and ride comfort reward terms. All weights

excluding wgoal are non-positive, suggesting that most reward terms are in fact penal-

ties. ct, cvub, cvlb, crc each represents the coefficient for travel time, upper speed limit

violation, lower speed limit violation, and ride comfort terms respectively. rsafety will

be described in the later section as its formulation differs depending on the prediction

representation (POM vs trajectory).

In the following paragraphs, we explain the rationals behind the reward formu-

lation. First is rt,goal where we provide a strong positive reward signal to the AV

for reaching or getting close to the goal location. We use two different formulations.

The first formulation described in the first line of Equation 4.3 is a discrete sparse

signal which determines if the AV reached the goal by checking if the squared eu-

clidean distance between the AV and goal is under a threshold Xthres at any point

(i.e., rgoal = anyt(rt,goal)). The second formulation provides a continuous positive

signal which amplifies as the AV gets closer to the goal where the signal is computed

using the closest distance between the AV and goal (i.e., rgoal = maxt(rt,goal)). We

experiment with both formulations and their performances are reported later in this

chapter. On the other hand, rt,goal could be extended to include goal velocity match

(e.g., (V AV
t −V goal)2 < Vthres), however, we exclude the speed match from the reward

to allow the planner to be more flexible.

The second reward term, rt,time, encourages the AV to arrive at the goal sooner

than later. This is encoded in the fact that the penalty only applied for the time

t < tgoal until the AV reached the goal. Depending on how critical the travel time is

to the planner, one could adjust the coefficient of the constant and linear terms. For

low travel time penalty, ct1 can be set to zero.

The third reward term is rt,inviolation, which penalizes traffic law inviolations. Each

term of rt,violations respectively penalizes over-speeding and under-speeding. This en-
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courages AV to drive in the range of nominal speeds comparable to other road-agents.

If AV exceeds the upper bound of the acceptable speed range or travels slower than

the lower bound, the penalty is applied.

The fourth reward term, ride comfort rt,comfort, is designed as a function of ac-

celeration and jerk (i.e., derivative of acceleration). As we discussed in the previous

section, acceleration and jerk are good metrics of passenger ride comforts. Depending

on how acceleration and jerk are important to the planner, one can tune the weights

and coefficients of the acceleration and jerk penalty terms.

The safety reward term rt,safety is designed to prevent AV to get too close to any

of the road-agents. Recall that there are two different prediction representations:

trajectory and probabilistic occupancy map introduced in Section 2.3. We note that

each representation corresponds to a different formulation of the safety rewards. We

spend two sub-sections for elaborating on the safety rewards.

Planning with Trajectory

The safety reward for the trajectory representation is expressed in the following

equation.

rt,safety = wt,safetyΣi∈NcandΣk∈K
pm(XAk

i,t |C)

(XAk
i,t −XAV

t )2 + ε
, (4.4)

where wt,safety, Ncand, K, pm, C each respectively denotes the safety reward weight,

number of trajectory samples, number of road-agents in the scene, the prediction

model (i.e., CVAE-H), and the conditioning information that pm takes in. As the

AV gets close to a sample prediction of a road-agent, the safety penalty increases.

pm(XAk
i,t |C) implies that our planner is uncertainty-aware; a more probable sampled

trajectory means that a bigger safety penalty is applied. ε is used to prevent the

safety penalty from getting infinitely large when the AV gets close to one of the road-

agents. wt,safety should be carefully selected as a low wt,safety may result in an unsafe
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planner and a high wt,safety may result in an overly conservative planner.

Recall that we generate Ncand prediction samples per road-agent (see Section 2.3),

thus the number of collision checks grows with respect to the number of samples and

road-agents (i.e., NcandK). A large number of prediction samples make the planner

more robust against potential safety-critical events, however, it also increases the

computational time and possibly makes the planner more conservative.

Planning with POM

The safety term for a planner that leverages POM pm(·|C) as the prediction rep-

resentation is defined as follows.

rt,safety = wt,safety
[
cspm(XAV

t |C) + csbΣX
′
t∼n(XAV

t )pm(X
′

t |C)], (4.5)

where pm is a prediction model which outputs POM (e.g., HCNAF) and rt,safety

consists of two terms. The first term cs0pm(XAV
t |C) simply computes the occupancy

probability of the target coordinate (XAV
t . This discourages the AV to move to

coordinates that are highly likely occupied by one or more road-agents in the scene.

On the other hand, the second term ΣX
′
t∼n(XAV

t )pm(X
′
t |C) pays attention to the

occupancy probabilities of the neighboring coordinates (or cells) n(XAV
t ) of the target

coordinate XAV
t , where n(XAV

t ) represents a set of the neighboring coordinates of

XAV
t . An example of n(XAV

t ) is a set of 3x3 adjacent coordinates which altogether

form a square whose center is XAV
t . This acts as a safety buffer, hence the name

of safety buffer coefficient csb. The idea is to encourage AV to avoid potentially

dangerous regions. This becomes useful in a number of instances including when the

target cell is predicted not occupied, however, the neighbors are predicted likely to

be occupied. This also mitigates prediction modeling errors and helps AV to prevent

from falling into the dangerous regions beyond the planning horizon. It should be

noted that csb needs to be tuned properly, as high csb can make the decision-making
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algorithm overly cautious.

We draw an important observation about the computational efficiency of the plan-

ning with POM. Note that the number of collision checks with POM representation

does not scale with respect to number of prediction samples Ncand or number of

road-agents in the scene K. This allows the planner to scale better with respect to

the number of road-agents and degree of uncertainties in the environments since the

computation time remains the same.

4.4.3 Planning with Shooting Planners

In this subsection, we present how a shooting-based planner is leveraged. In our

framework, a shooting planner performs the trajectory planning in the following steps.

1. Predict future environment states; X
Ak 6=AV
t:T (trajectory) or pm(·|C) (POM).

2. Generate Nplan candidate action sequences for AV aAVt:T using a shooting plan-

ner.

3. Compute AV’s state trajectories SAVt:T corresponding to aAVt:T .

4. Evaluate (SAVt:T , a
AV
t:T ) by computing their expected returns and select the top-k

k candidate (aAVt:T )? with the largest return.

5. Execute the first few actions (aAVt:t1 )? (MPC) and obtain new observations St:t1 .

6. Repeat Step 1-5 until the AV arrives at the destination.

Step 1 corresponds to the prediction task presented in Chapter 3. Recall that

the planner works in stochastic environments. For the trajectory representation, this

means that more than one prediction is necessary to cover diverse future possibilities,

as discussed in Section 2.3. Therefore, we predict Ncand trajectory samples for each

road-agent in the scene. In contrast, for POM representation, we simply load the

model pm(·|C) to the memory without generating any sample.
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Step 2 focuses on the generation of action sequences of AV. Recall that the action at

is a two-dimensional vector of acceleration and steering angle. We consider a discrete

sequence of the actions over 4s planning horizon and 0.2s period between each action,

i.e., at:T ∈ R20×2. The frequency and planning horizons can be configured, however,

we use 4s for the horizon and 0.2s as the period to be comparable with the frequency

of the dataset.

In both deterministic and random shooting approaches, a certain number (Nplan)

of action sequences are produced [aAVt:T ]Nplan as candidates. In the deterministic shoot-

ing approach, aAVt:T is systematically or manually generated from a finite set of actions.

An example is to generate candidate action sequences using equidistant grid points

(e.g., aAVt ∈ {−3,−2,−1, 0, 1, 2, 3}(m/s2)). On the contrary, the random shooting

approach obtains candidate action sequences by sampling a continuous distribution

such as uniform or Gaussian distributions (e.g., aAVt ∼ Normal(0, 2m/s2)).

In Step 3, we compute the future states, which are future positions and speeds,

of AV using the candidate action sequences we generated in Step 2. We use the

following vehicle dynamics model (i.e., the deterministic state-transition model fAV

first introduced in Section 2.2) to obtain SAVt , the future states of AV, as follows.

SAVt+1 = A · SAVt +Bt, (4.6)

where SAV =



x

y

vx

vy


, A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


, Bt =



0.5aAVt cos(αAVt )(∆t)2

0.5aAVt sin(αAVt )(∆t)2

aAVt cos(αAVt )∆t

aAVt sin(αAVt )∆t


,

where ∆t denotes the time period between actions. As described, we use the first-

order hold update between the time steps (i.e., Xt+1 = Xt+
(Vt+Vt+1)

2
∆t, Vt+1 = Vt+at).

During the experiments, we used ∆α, a steering angle change, instead of α as the

second component of the action. We found that this stabilizes the training and results
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in more optimal trajectories.

In Step 4, given that the trajectories of AV are obtained, we compute the expected

return of all pairs of candidate trajectories & action sequences using Equation 4.2,

which is detailed in Equation 4.3, 4.4, and 4.5. For the computation of the safety

reward, we use either CVAE-H to output the uncertainties of the generated predictions

(for trajectory representation) or HCNAF to infer the occupancy probabilities of

candidate trajectories SAVt:T as in pm(SAVt:T |C) (for POM representation). Once the

evaluation is done, we select the top-k action sequences that correspond to the highest

top-k expected returns.

Step 5 is the final step of the iteration where we adopt the model predictive

control (i.e., receding horizon control). We execute the first m actions aAVt:t+m∆t of

the best (i.e., top-1) plan (aAVt:T )? and obtain a new observation of the environment

states St:t+m∆t. The receding horizon approach, which recomputes the best plans

by incorporating new observations, helps minimize the compounding error problem.

Once this is completed, it goes back to step 1 again to start a new iteration.

4.4.4 Computational Efficiency of Naive Shooting Planners

The aforementioned procedure works for any deterministic or random shooting

planner. However, the computational efficiency and performance of the procedure

is separate question. In Section 4.3.2, we briefly mentioned that a vanilla shooting

planner can be computationally expensive. In fact, a random shooting planner may

require a large number of samples to find meaningful plans and a deterministic shoot-

ing planner may incur Curse of Dimensionality. In this subsection, we discuss how

critical this problem is and how we resolve this limitation.

Figure 4.3 illustrates how quickly the computational requirements of a naive de-

terministic shooting algorithm grow. Even a very coarse action grid, which has 15

different action choices per time step, and low planning frequency (e.g., 7 steps, 4s
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planning horizon, period 0.2s) is unacceptably slow for real-time use.

Figure 4.3: The computational efficiency of deterministic shooting quickly decreases
as the number of planning steps or resolution increase.

A systematic selection of discrete action and/or state sequences could mitigate the

limitation of deterministic shooting. For instance, in a scenario where the AV cruises

in the middle of a road with no other road-agent present in the scene, candidate ac-

tion sequences can simply be limited to aAVt ∈ {−1, 0, 1}(m/s2) each corresponds to

a moderate break, constant-speed, and moderate acceleration. Another example is a

scenario where the AV departs from a stop with no front vehicle present. Reasonable

candidate actions would be aAVt ∈ {0.5, 1, 2, 3}(m/s2). However, the manual gener-

ation of candidate action sequences is not generalizable since there are simply too

many variants of environments for urban driving scenarios. Addressing every individ-

ual variant of a scenario is not viable. On the other hand, neglecting the subtleties of

each variant and solving a few representative scenarios may risk safety and/or may

not be the most optimal.

On the other side, random shooting has a few advantages over the deterministic

shooting. First, the continuous action samples often find more optimal solutions as

they are not subject to the resolution of a grid. Recall that the deterministic shooting

typically works with coarse grids to reduce the computation load [8]. Second, random

shooting is more comparable with our probabilistic framework. This is because the
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random shooting works with a probability distribution (e.g., Gaussian), which allows

us to leverage machine learning and optimization techniques. Indeed, we leverage the

CEM [150] to train our planner which is based on the random shooting method. While

the naive random shooting can produce near-optimal trajectory plans for diverse

urban driving scenarios provided a large number of sample sequences, it is not the

most effective nor computationally efficient approach. This is because it may take

infinitely many sample sequences to find a working trajectory plan, given the action

space is continuous. We empirically found that naive random shooting typically needs

a large number of samples (e.g., hundreds of thousands of samples) to find a trajectory

even for relatively simple scenarios like turning in the intersection.

4.4.5 Improving Random Shooting Planner with RL

Let us draw attention to an example of a vehicle moving at constant speed in a

stretch of an urban road in free traffic (i.e., no surrounding road-agent is present).

In this scenario, it is obvious that the optimal action sequence would not consist of

continuous brakings or accelerations. For a vehicle that is approaching an intersection

with a stop sign, it is clear that the optimal action sequence will not include excessive

acceleration, but rather mild or hard deceleration depending on the speed and location

of the vehicle. In this sense, if we know which action sequences are more promising

than others based on the contexts of the driving, it will save us the computation

resources and help generate a better trajectory plan with higher optimality.

Imagine that there is an oracle distribution that outputs a near-optimal action

sequence. Let’s assume that the oracle takes the information about the environment.

In other words, the oracle is aware of road-agents present in the scene, road topology,

the goal position, and the AV’s current state. The oracle utilizes these information

to produce a set of safe, comfortable, and lawful trajectory plans contextual to the

environment state. If we have the oracle, we could simply ask it to output the most
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promising trajectories, instead of generating and evaluating a very large amount of

candidate trajectories. The oracle is essentially the planner we aim to build.

To build such a planner, our idea is to leverage deep learning and introduce model-

based RL techniques to the random shooting method. Instead of using a pre-defined

Gaussian or uniform distribution, we build a data-driven conditional distribution

(i.e., policy) pπ(aAV |S) that takes the environment state as the input and outputs

contextual trajectories. We model the policy using a deep neural network and train

the policy using a loss function that consists of expected return and cross-entropy.

4.4.6 The Proposed Planner: Random Shooting with via Learned Gaus-

sian Mixture

The policy of the proposed planner, pπ(aAV |S), is modeled using a mixture density

network (MDN) [37]. We choose the core distribution of MDN to be a mixture of

multi-variate Gaussian distributions whose parameters include means µ, co-variances

Σ, and mixing coefficients φ (
∑
φi = 1). The parameters are modeled using a deep

neural network that consists of MLP, RNN/Attention, and CNN to encode spatial

and social contexts of the environment.

Figure 4.4 illustrates the network design of the backbone deep neural network

of the planner. The input to the planner is a tuple of four tensors SG, SAV , P,Ω.

First, the planner encodes the spatial information about the environment either by

running a CNN to obtain the encoding from Ω or by re-using the encoding tensor Ωenc

provided by the prediction model (i.e., bypassing the CNN). The CNN is designed

using residual connections [70] and coordinate convolution layers [95]. While the

former makes the planner heavier and slow, it may be able to encode information

useful to the planner. The other three components of the input SG, SAV , P are each

passed to different MLP layers to obtain encoding and passed to a self-attention layer

or RNN. Finally, the two hidden tensors are concatenated and go through another
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Figure 4.4: The planner network design.

MLP layer which outputs the parameters of the Gaussian mixture.

The training objective is a weighted combination of the expected returns of top-k

state-action sequences and cross-entropy between the top-k sequences and the model

Gaussian mixture distribution. The cross-entropy maximization between the policy

and top-k candidates is denoted as Cross-Entropy Method (CEM) [150] which has

been used in a number of robotics planning literature [9, 10, 11, 19].

The training procedure is divided into a couple of steps as follows.

1. Initialize the parameters of the policy pπ.

2. Retrieve a training example from the dataset. Generate a prediction of the

environment P (trajectory samples or POM) using the prediction model pm.

3. Given inputs S = (SG, SAAV ,Ω, P ), sample pπ(aAV |S) to generate Nplan can-

didate action sequences
[
aAVt:T

]
Nplan

.

4. Compute AV’s state trajectories
[
SAVt:T

]
Nplan

corresponding to
[
aAVt:T

]
Nplan

.
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5. Evaluate the expected returns for the candidate sequences E
[
rt:T (SAVt:T , a

AAV
t:T , S)

]
.

Select the top-k k candidate
[
aAVt:T

]
k

with the highest returns.

6. Compute the negative log-likelihood of the top-k candidates -logpπ
([
aAVt:T

]
k
|S
)
.

7. Back-propagate the loss = NLL (top-k) + rt:T (top-k). Repeat Step 2-7.

We start the training procedure by defining the policy network and initializing

the parameters using Xavier initialization [157]. As we discussed in Section 4.4.1,

we use our prediction model as the simulator to generate the predictions P . In

step 3, the planner pπ takes the current environment state S and generates Nplan

candidate action sequences. Here, S is a tuple of goal state, start state, spatial data,

and the predictions. In step 4, the AV’s state trajectories
[
SAVt:T

]
Nplan

are simply

computed using fAV defined in Equation 2.2. Step 5-7 describe how the loss function

is computed and back-propagated. The top-k number k and sample plan numbers

Nplan are important parameters that determines the success of the training. We report

how different k and Nplan affect the performance of the planner in the next section. It

is worth mentioning that the MPC-like approach could be applied to the training on

top of the inference. In this case, there would be an additional step where we execute

the first few actions (at:t+∆t)
? of the best action sequence, discard rest of the actions

(a>t+∆t)
?, and obtain new observations at t = t + ∆t. This would create an outer

loop where Step 2-8 are performed multiple times until the MPC horizon ends.

Let us denote p?π = pπθ? as the optimal planner that we seek for. For the training

set of size N , the optimal policy p?π, or the optimal parameters of the policy network

θ? is obtained as follows.

θ? = argmaxθEi∈NEj∈k
[
rt:T
[
aAVt:T

]
j

+ logpπθ(
[
aAVt:T

]
j
|Si)
]
, (4.7)

where the reward computation rt:T is detailed in Section 4.4.2. After the training,

we perform the inference (i.e., generation of the best trajectory) according to the
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following procedure.

1. Retrieve a training example from the dataset. Generate a prediction of the

environment P (trajectory samples or POM) using the prediction model pm.

2. Given inputs S = (SG, SAAV ,Ω, P ), sample p?π(aAV |S) to generate Nplan can-

didate action sequences
[
aAVt:T

]
Nplan

.

3. Compute AV’s state trajectories
[
SAVt:T

]
Nplan

corresponding to
[
aAVt:T

]
Nplan

.

4. Evaluate the expected returns for the candidate sequences E
[
rt:T (SAVt:T , a

AAV
t:T , S)

]
.

Select the top-1 candidate (aAVt:T )? with the highest expected return.

5. (MPC) Execute the first few steps of the top-1 action sequence, i.e., (at:t+∆t)
?.

Repeat Step 2-5 until the AV reaches the goal.

We would like to note that the step 1-3 of the inference procedure are identical to

the step 2-4 of the training procedure. The difference is that we use the top-1 sample

in the inference and do not compute the loss or cross-entropy.

4.5 Evaluation: Generic Urban Driving

In this section, we demonstrate the performance of the proposed planner in the

generic urban driving scenarios of the PRECOG-Carla dataset. We train the proposed

planner on the town01 training set, validate the planner using the validation set, and

evaluate the performance on the test set. We refer readers to Section 3.10.1 for the

details of the dataset.

We start this section by first discussing the evaluation metrics in Section 4.5.1.

Similar to the evaluation of the prediction models, we evaluate the planner qualita-

tively and quantitatively. In Section 4.5.2, we go over the baseline planners that we
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use to compare the performance of our planner. Section 4.5.3 reports the configura-

tion we use to set up the baselines and the proposed planner. Finally, Section 4.5.4

and 4.5.5 present the evaluation results.

4.5.1 Evaluation Metrics

The evaluation of the planner is divided into (1) qualitative evaluation and (2)

quantitative evaluation. For the qualitative evaluation, we share a number of figures

which visually describe the environments and depict the trajectory plans produced

by the proposed planner. An example visualization is illustrated in Figure 4.5.

Figure 4.5: Example visualizations of the planning results. A visualization de-
picts spatial information (lidar), road-agents’ historical XA∀k

t−2:t and future

(ground-truth) (XA∀k
t:t+4)gt states, and predicted road-agent states. The

trajectory plan (XAV
t:t+4)? from a planner is overlaid on the top of the plot.

As described in the labels of Figure 4.5, the best trajectory plan (XAV
t:t+4)? is

depicted as a line of black star markers. The predicted road-agents’ future states are

described using circle markers. Using the visualization, we qualitatively evaluate how

well the planner performs in different scenarios including turning, passing through an

intersection, waiting in a queue of the intersection, and cruising in the middle of a
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road.

On the other side, we use the following three metrics for the quantitative evaluation

of the planner: (1) optimality, (2) generality, and (3) computational efficiency of

the planner. The optimality of the planner is computed using the average of the

expected returns over all test set examples. The generality is quantified separately

from the optimality. Specifically, we make a box plot of the expected returns and

compute the box-plot metrics including the minimum, 25% quartile, and median.

Essentially, a generalizable planner that works across diverse environments should

have high minimum, 25% quartile, and median values. Lastly, the computational

efficiency is measured using the memory requirement and computation time of the

planner.

Recall that our research objective is to build a scalable framework. As we men-

tioned a few times, the three keywords of the scalability are effectiveness, general-

izability, and computational efficiency. We emphasize that the three quantitative

metrics are closely related to the scalability. Precisely, the optimality, generality,

and computational efficiency of the planner each corresponds to the effectiveness,

generalizability, and computation efficiency for the scalable prediction and planning

framework for autonomous driving in urban areas.

4.5.2 Baseline Models

To better evaluate the proposed planner, we test a number of baseline models

and compare their performances against the proposed planner. The baseline mod-

els include dynamic programming, rule-based models, heuristics, naive deterministic

shooting, naive random shooting, and behavior cloning. All baselines and our pro-

posed planner work under the same framework. That is to say, we use the same

prediction models to obtain predictions of the road-agents, same system dynamics for

AV (i.e., identical state-transition model), and the identical reward structures and
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weights (i.e., identical feedback function).

Dynamic programming is arguably the most important baseline as it produces

the global optimal solution for any environment. The optimality of the DP solution

serves as the upper bound of the optimality for any planner. In this sense, we define

the near-optimal planner as a planner whose expected returns of output trajectory

plans are almost as high as the expected returns of the DP solutions. We note that

we were only able to discretize the DP’s state and action space to a certain degree

due to the computation resource limit. To this end, the optimality of the DP solution

is only optimal with respect to the resolution of the state and action space, but not

the true optimum, which is obtained in the continuous space. The resolution of the

grids used to produce DP solution is described in Table 4.1.

Rule-based models are simple baselines that are typically the fastest and most

interpretable. The computation requirements are close to none as they do not in-

volve any complex logic to compute an action sequence. The rule-based policies

we implemented include constant-speed, constant-acceleration, and constant-braking.

The constant-speed refers to a policy pπ(aAV>t |S) = [0(m/s2), 0(rad)] that maintains

the initial speed and heading angle until the end of the planning horizon. The

constant-acceleration and constant-braking each refers to pπ(aAV>t |S) = [0.5, 0] and

pπ(aAV>t |S) = [−0.5, 0]. The rule-based models apply the same actions regardless of

the context of the environment.

Naive shooting methods are another baselines we tested. Due to the deterministic

shooting’s curse of dimensionality (see Section 4.4.4), we only experimented with

random shooting. In the naive random shooting, candidate action sequences are

sampled using a bivariate Gaussian as follows.

aAVt:T ∼ N(µnaive rs,Σnaive rs), (4.8)

where µnaive rs = [2(m/s2), 0(rad)] and Σnaive rs = [[2/3(m/s2), 0], [0, 0.25(rad)]].
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We experimented with different combinations of the mean and covariance of the Gaus-

sian and we found that the above combination was the optimal combination for the

PRECOG-Carla Town01 test set. Since Nplan, which refers to the number of candi-

date trajectory plans, greatly affects the performance of the naive random shooting,

we report the results with different Nplan values.

There are two heuristic-based models we tested. The first is a goal-conditioned

constant acceleration model that we designed to guarantee the goal completion and

minimize the ride-comfort penalty. We design the model to automatically compute an

output trajectory that starts with the initial state, moves towards the goal position

with a constant acceleration, and ends at the goal position precisely at the end of the

planning horizon (i.e., t = 4s). The trajectory and action are computed using the

logic described in Equation 4.9. Note that this model does not guarantee safety as it

does not take the positions of other road-agents into account. Nevertheless, the AV

is guaranteed to reach the goal without creating any jerk and thus, this serves as a

powerful baseline.

∆XAV = V AV
t=0 ∆t+ 0.5aAVt (∆t)2,

aAVt = −2V AV
t=0 /∆t+ 2(Xgoal −XAV

t=0)/(∆t)2,

aAVt = −0.5V AV
t=0 + 0.125(XAV

t=4(= Xgoal)−XAV
t=0).

(4.9)

Intelligent Driver Model (IDM) [46] is another heuristic-based model. IDM is a

mathematical model which describes a nominal car-following behavior. While IDM

also works for free-flow traffic, we found that vanilla IDM does not perform well under

free-flow traffic for our dataset. To improve IDM’s performance, we use the constant-

speed policy when there is no vehicle in front of the AV. In addition, IDM requires

labels of the lead vehicle that the AV is following. Since no such label is available in

our dataset, we manually check all states of road-agents in the scene if any qualifies as

the lead vehicle. The logic which consists of three conditions is described as follows.
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c1 = ẊAk
t • ẊAV

t > 0,

c2 = (XAk
t −XAV

t ) • ẊAV
t > 0,

c3 = Xmin < XAk
t −XAV

t < Xmax,

f lag = c1 ∧ c2 ∧ c3.

(4.10)

Behavior cloning (BC) is the last baseline we tested. We organize the planning

problem as a behavior cloning problem (i.e., supervised learning with a distance met-

ric) and design the backbone network of the BC planner using the CVAE-H network

design. Essentially, the model architecture of the behavior cloning planner is almost

identical to the CVAE-H prediction model, except that we use an autoregressive

version of the CVAE-H architecture, as opposed to the non-autoregressive CVAE-H

prediction model. This is because the planning task requires outputs to be as dy-

namically feasible as possible, as opposed to the prediction task, which can work with

conditionally independent trajectories p(Xt=0:T |C) =
T∏
t=0

p(Xt|C) states rather than

conditionally dependent trajectories p(Xt=0:T |C) =
T∏
t=0

p(Xt|C,X0:t).

Another difference is that its learning objective is different from the prediction

model. Since our dataset is inherently multi-modal, learning the AV’s policy makes

the BC policy to output multi-modal trajectories. In this sense, we generate a large

number of behavior cloning trajectories, find the trajectories with the mode we are

interested in, and select the one with the highest expected return to compute the

optimality. We note that our behavior cloning baseline does not involve any additional

training techniques such as DAgger [147] or Plato [148] used in imitation learning as

most require extensive human labeling efforts or expensive optimal control as a labeler.
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Table 4.1: Resolution of the grids used to run the baselines or proposed planners.

Method Action Speed Position Time

Dynamic Programming 0.5(m/s2) 2.0(m/s) 2.0(m) 0.4s

Heuristic-based Models N/A - continuous 0.2s

Rule-based Models N/A - continuous 0.2s

Naive Random Shooting N/A - continuous 0.2s

Behavior Cloning N/A - continuous 0.2s

Proposed Planner N/A - continuous 0.2s

Figure 4.6: The optimality of a trajectory plan is quantified using the expected return
of the illustrated scale.

4.5.3 Configuration of The Proposed Planner

Recall that the expected return is a sum of discounted rewards at each time step;

rt:T =
∑

i=t:T γiri =
∑

i=t:T γi[rt,goal + rt,time + rt,inviolation + rt,comfort + rt,safety]. In our

experiments, we set γi = 1 to put the equal importance for rewards at all time steps.

Figure 4.6 presents the visual description of the scale of the optimality. We set

100 as the upper bound of the expected return rt:T . The upper bound is achieved

when the AV reaches the goal instantly at t = 0 without violating any traffic law

or jeopardize safety. Thus the upper bound cannot be reached unless the goal state

is exactly the same as the initial state of the AV. Each action that the AV takes,

longer travel time, traffic violations, and collision all reduce the expected return by

a certain amount. Among the four negative terms (travel time, traffic inviolations,

ride comfort, and safety) of rt, the safety and traffic violations penalized the most
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Table 4.2: The weights for the reward terms used in the experiment.

Weight Value

wgoal +100

wtime -5

wcomfort -9 (acceleration), -36 (jerk)

winviolation -100

wsafety -100 (collision or the distance ≤ 1m), or
-0 ∼ -100 (mild safety concern is pro-rated w.r.t. distance).

strictly. Upon such violation, the reward diminishes by 100, making the expected

return always negative regardless of the goal completion. The ride comfort, travel

time, and mild safety concerns (i.e., the AV is close to a road-agent, but not close

enough to cause a collision) also reduce the expected return, however, the amount

of the reduction is relatively small. For example, if the AV successfully reached the

goal at the end of the planning horizon with frequent brakings and accelerations, the

expected return will still be over zero. Of course, if a trajectory plan can get AV to

the goal with minimal use of acceleration & steering, a short travel time, no safety

concerns, or traffic violation, the expected return would be close to 100. Table 4.2

presents the weights of the reward terms.

4.5.4 Qualitative Evaluation

The qualitative results of our planner are presented in Figure 4.7 - 4.10. Each

figure describes different environments with different goal positions. In each figure,

two sample scenarios are described and the output MPC trajectories generated by

our planner are illustrated in 2D BEV maps. Each sample consists of two plots. The

left plots describe the inputs to our framework. The right plots depict the outputs

of the proposed framework, which includes X
A∀k 6=AV
0:4s , which is the predicted positions

of the road-agents in the scene, and XAV
0:4s, which is the top-1 output trajectory from

the planner. A trajectory is essentially a piece-wise linear path constructed from an
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Figure 4.7: The sample environments with the goal positioned ahead of the AV.

initial state and a discrete sequence of actions aAV0:4s ∈ R(20,2) where each action lasts

for ∆t = 0.2s. Note that There exist up to 4 road-agents in the scene and we visualize

12 predictions per road-agent,
[
X
A∀k 6=AV
0:4s

]
1:12

.

Figure 4.7 depicts the simplest examples where the goal is ahead of the AV. These

are arguably the easiest problem among all planning problems in our dataset since a

simple policy such as the constant-speed policy would be able to find a near-optimal

trajectory. In other words, no understanding of the environment such as the road

topology and road-agent states is necessary. The figure suggests that the proposed

planner successfully computed safe trajectories and the AV reached the goal before
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the end of the planning horizon.

Figure 4.8: Two sample curved road environments. The goal is set to validate if the
planner is aware of the spatial characteristics of the environments.

Figure 4.8 illustrates two curved road environment samples. The goal coordinates

were set to check if the planner is aware of the spatial characteristics of the environ-

ment. Our planner produced action sequences that steered the AV properly. The

fact that the output trajectory is curved along the road boundary suggests that the

planner is spatially contextual. It is worth noting that the goal completion is deter-

mined by whether the AV passes through the vicinity of the goal, rather than the

exact coordinates of the goal. We purposely designed the goal completion check in

this way to encourage the planner to output trajectories flexible against uncertainties

from the predictions. In addition, this makes the reward less sparse and thus, helps

the training process to be faster and more stable.

The third set of examples in Figure 4.9 depicts two intersection environments with
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Figure 4.9: Two sample intersection environments where the goal position was set to
test the planner’s ability to generate left-turn & right-turn trajectories.

the goal position set to the other sides of the intersections. These examples check if

the planner can produce left-turn & right-turn trajectories at intersections. For both

the top (4-way intersection) and bottom sample (3-way intersection), our planner

successfully outputs left-turn and right-turn trajectories. We found that the resulting

action sequence incurred a small degree of jerks. This can be addressed by setting

the ride comfort penalty higher or a path smoother could be used.

The last set of qualitative examples is presented in Figure 4.10. This set checks if

the planner remains idle when the goal is given in the vicinity of the initial position

of the AV. The figure shows that our planner was able to find that the optimal action

sequence is to stay idle.
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Figure 4.10: Last set of sample environments where the goal position is given in the
vicinity of the initial position of the AV.

4.5.5 Quantitative Evaluation

In Section 4.5.1, we explained how we perform the quantitative evaluation. This

section presents the quantitative evaluation results with a number of plots that inves-

tigate the scalabilities of the planner against the baseline planners. In other words,

the quantitative evaluation checks the (1) optimality, (2) generality, and (3) compu-

tational efficiency of the planners.

First, we present the performance of all planners in terms of their average expected

returns and number of failures over all 1,030 test samples in Table 4.3 and 4.4. As

explained in Section 4.5.3, a failure corresponds to a negative reward, which means

that the AV either (1) failed to reach the goal, (2) violated one or more traffic laws,

and/or (3) collided with a road-agent.

Table 4.3 is the results obtained against Ncand = 50, which means that the pre-

127



diction model (i.e., CVAE-H) generates 50 prediction samples per road-agent in the

scene and the safety reward is computed against the 50 samples. Table 4.4 describes

the results obtained against Ncand = 100. Higher Ncand indicates that the collision

check is done against more trajectories of the surrounding vehicles and corresponds

to higher safety penalty. By comparing the results of Table 4.3 and 4.4, we can infer

sensitivities of the safety of the planners against the number of prediction samples.

Table 4.3: Average optimality and number of failures of the planners over 1,030 test
samples, with 50 prediction samples per road-agent.

Method Mean Expected
Returns

Failures

Dynamic programming 89.7 0

Proposed planner (1,024 samples) 91.7 0

Naive random shooting (10,240 samples) 69.4 0

Naive random shooting (1M samples) 73.7 0

Behavior cloning (1,024 samples) 81.4 12

Behavior cloning (10,240 samples) 84.2 2

Rule-based 1: Constant speed aAV = 0(m/s2) -37.1 605

Rule-based 2: Constant accel aAV = 0.5(m/s2) -106.8 646

Rule-based 3: Constant brake aAV = −0.5(m/s2) -25.9 850

Heuristics 1: Modified IDM -75.8 649

Heuristics 2: Goal-conditioned acc 85.9 41

Table 4.3 reports the average expected returns and number of failures of the

planners against Ncand = 50. Figure 4.11 normalizes the results presented in Table

4.3 against the average DP optimality (i.e., the global optimality). We draw a number

of observations about the results in the following paragraphs.

Dynamic Programming. Dynamic Programming achieved high a mean expected

return and zero failure. This is anticipated as it produces the global optimal solution

with respect to the resolution of the state-action space. As we discussed in Section

4.5.2, we use DP only for the benchmarking purpose as DP takes a minute to produce a
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Figure 4.11: The average optimalities normalized against the DP and the numbers of
failures out of the test set of size 1,030, as presented in Table 4.3.

single trajectory. As aforementioned, the DP solutions were computed using a coarse

state-action space with a low planning frequency. Due to the coarse resolution of

action and state spaces, the DP solution incurred higher ride comfort penalties on

average and thus scored slightly lower than the proposed planner.

Rule-based Models. All of the rule-based approaches achieved low optimality scores

and failed in most of the test environments. This happened because they either failed

to reach the goal, collided with a road-agent, and/or violated the speed limit in most

of the test examples.

Heuristics 1: Modified IDM. The first heuristic approach, the modified IDM, re-

sulted in low expected returns and failed more than 649 out of 1,030 test examples.

This is because a lot of test examples involve some degrees of steering (i.e., their goal

positions are off the x-axis) and do not have a preceding vehicle to the AV. While

IDM performed moderately well in the specific car-following scenarios where the goal

positions were set along the travel direction of the preceding vehicles, IDM failed to
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reach the goal in all the other scenarios.

Heuristics 2: Goal-conditioned acceleration. The goal-conditioned acceleration

planning is arguably the most powerful baseline. It resulted in the highest average

expected returns among all baselines (less dynamic programming). As we designed

this heuristic to always reach the goal, abide by the traffic rules, and maximize ride

comfort, the resulting trajectory only incurs a small acceleration penalty. However, it

does not consider the positions of the road-agents in the scene, which is safety-critical.

As a consequence, this baseline led the AV to collide into a road-agent and failed 41

test examples.

Naive random shooting. The performance of naive random shooting depends on

Nplan, the number of candidate trajectory plans. As we described in Section 4.4.3, this

is true for all shooting planners that select the top-1 trajectory among all candidate

trajectories. Although a higher Nplan corresponds to a higher optimality, it also

means higher computational time and memory requirement. To quantify the impact

of Nplan, we report the results for Nplan ∈ {10240, 1024000}. We find that it takes

on average 0.7s and 290MB to run the naive random shooting with 1,024,000 (1M)

candidate trajectories. Although the naive random shooting planner achieved decent

optimalities, we argue that Nplan > 1024000(1M) is not suitable for real-time use.

Behavior cloning. Similar to Naive random shooting, the performance of BC

policy depends on the number of samples. This is because the backbone of BC is a

conditional VAE distribution, which generates stochastic outputs. The fact that the

dataset that BC policy was trained on is multi-modal contributes to the performance

dependency on the number of samples. We used Nplan ∈ {1024, 10240} and observed

that the BC policy performs moderately well across various scenarios, however, it

failed in a few environments due to the distribution drift problem [147]. We have

not investigates the number of samples over 10,240 for the computational efficiency

reason that is discussed later in this section.
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The proposed planner. The proposed planner performs the best among all the

baselines in terms of the expected returns and number of failures. While the resulting

trajectory and action sequences involved some degrees of jerks, the proposed planner

had zero failure; this means that it always reached the goal, never collided with a

road-agent in the scene, nor violated a traffic law. Furthermore, it produced near-

optimal solutions whose average expected return is close to 100, and even higher than

the DP. Later in this Section, we show that the proposed planner is not only effective,

but also general and computationally efficient. Similar to Naive random shooting and

behavior cloning methods, the proposed planner is a sampling based method and we

used 1,024 samples to compute the top-1 trajectory plan.

Table 4.4: Average optimality and number of failures of the planners, with 100 pre-
diction samples.

Method Mean Expected
Returns

Failures

Dynamic Programming 89.6 0

Proposed Planner (1,024 samples) 91.6 0

Naive random shooting (10,240 samples) 69.4 0

Naive random shooting (1M samples) 73.7 0

Behavior cloning (1,024 samples) 80.6 21

Behavior cloning (10,240 samples) 83.6 5

Rule-based 1: Constant speed aAV = 0(m/s2) -48.3 610

Rule-based 2: Constant accel aAV = 0.5(m/s2) -117.0 653

Rule-based 3: Constant brake aAV = −0.5(m/s2) -37.8 853

Heuristics 1: Modified IDM -99.6 659

Heuristics 2: Goal-conditioned acc 79.4 44

On the other hand, Table 4.4 reports the results with Ncand = 100. As afore-

mentioned, higher Ncand means higher safety risk. In comparison with the results of

Table 4.3, we see that rule-based and heuristic-based methods all have lower expected

returns and higher numbers of failures with the increase in the number of prediction
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samples (i.e., Ncand = 50 vs 100). In contrast, Ncand has minimal impact on the

proposed and naive random shooting methods. The rule-base and heuristic-based

methods output deterministic trajectories and thus, scale worse than the proposed

method with respect to the number of trajectories of the road-agents in the scene.

Table 4.5: Average computational requirements of the planners.

Method Computation
Time (GPU)

Memory
Consumption

Dynamic Programming 60s 3.0GB

Proposed Planner (1,024 samples) 0.009s+0.03s 0.7GB

Naive RS (10,240 samples) 0.02s+0.03s 0.03GB

Naive RS (1M samples) 0.7s+0.03s 0.4GB

Behavior cloning (1,024 samples) 0.12s+0.03s 0.9GB

Behavior cloning (10,240 samples) 0.61s+0.03s 2.0GB

Rule-based 1: Constant Speed (Cruising) <0.01s <0.01GB

Rule-based 2: Constant Acceleration <0.01s <0.01GB

Rule-based 3: Constant Braking <0.01s <0.01GB

Heuristics 1: Modified IDM 0.01s 0.02GB

Heuristics 2: Goal-conditioned C.Acc <0.01s <0.01GB

Second, we report the results of the analysis on the computational requirements

for the baselines and proposed planner in Table 4.5. We use two metrics; compu-

tation (inference) time and memory consumption. We compute the inference time

by measuring the time to run a planner and obtain the output trajectory. Memory

consumption is simply measured by the amount of the memory occupied by the plan-

ner. All results are measured with GPU as opposed to CPU to allow the planner to

leverage parallel computation techniques.

The computation time that is presented in Table 4.5 is divided into the two sepa-

rate times by the ′+′ sign; (1) the time to produce Nplan candidate trajectories and (2)

the time to compute the top-1 trajectory among the candidates. While the latter is

more or less the same for all sampling-based planners, the former changes drastically
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depending on the planner. The computation time was measured using a single Nvidia

GeForce RTX 2070 SUPER (8GB) GPU on Ubuntu. The memory consumption pri-

marily comes from the parameters of the backbone neural networks of the planners

and the tensors that store candidate trajectories.

As presented in Table 4.5, the proposed planner is much faster than all the other

sampling-based methods. To be specific, it takes less than 0.01s to produce candi-

date trajectories and 0.03s to evaluate the candidates and select the top-1 trajectory.

Compared to the behavior cloning or naive RS planners, the sampling process (i.e.,

generation of candidate trajectories) is orders of magnitudes faster. For the behavior

cloning policy, we found that Nplan > 1024 is not computationally efficient enough

for the planning task. In terms of memory consumption, our planner takes roughly

0.7GB to store the backbone neural network. Considering that a modern personal

GPU memory is around 6-12GB and that an autonomous vehicle typically has one or

more GPUs with higher computation powers, we argue that our planner is computa-

tionally efficient.

Third, we investigate the generalities of the baselines and proposed planner using

a box plot of their optimalities over all 1,030 test samples. In a box plot, the band

inside the box represents the median. The top and bottom edges of the box are the

first and third quartiles. The ends of the whisker extend to the extreme data that

are not considered outliers, and the outliers are indicated by a ’o’.

Figure 4.12 displays the resulting box plot. A generalizable planner should per-

form near-optimal across diverse environments. The box plot metrics including the

minimum, 25% quartile, and median are indicators of the generality of the planners.

The result shows that our metrics outperform all the other planners. The proposed

planner achieves near-optimality in the majority of the environments, except a few

environments where the output trajectories did not favor ride comfort or travel time

much. One noticeable result is that our planner did not fail a single test example.
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Figure 4.12: The box plot of the expected returns over all 1,030 test samples.

While the goal-conditioned constant acceleration policy has good scores for many box

plot metrics, there exist many outliers with negative expected returns. In short, the

proposed method is generalizable.

We share the violin version of the box plot in Figure 4.13. A violin plot is similar

to a box plot in that it includes all the markers and ranges of the box plot, except that

it provides the probability density of the data additionally. The provided probability

density is smoothed by a kernel density estimator. The resulting violin plot agrees

with the results presented in the box plot.

Based on the experiment results, we place the planning methods we tested into the

quadrant depicted in Figure 4.14. The x-axis indicates the computational efficiency

and the y-axis denote the optimality & generality.

In this section, we shared the evaluation results of the proposed planning approach

using both qualitative and quantitative metrics. Our evaluation paid special attention
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Figure 4.13: The violin plot of the expected returns over all 1,030 test samples.

to the scalability of the planner and reported that the proposed planner is near-

optimal, general, and computationally efficient. To this end, we conclude that the

proposed planner is scalable and thus serves as the ideal planner for our framework.

4.6 Trajectory vs Probabilistic Occupancy Map

Recall that the contribution of the thesis is three-fold; the two novel prediction

models detailed in Chapter 3, the novel planner described so far in this Chapter,

and lastly the framework that leverages probabilistic occupancy map as the uncer-

tainty (prediction) representation. We dedicate the last section of Chapter 4 to the

third contribution. In this sense, we re-perform the planning task with the POM

representation this time, evaluate its scalability, and identify its advantages over the

trajectory representations.

As we elaborated in Section 2.3 and 4.4.2, in theory, the POM representation
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Figure 4.14: We place the tested planning methods into a quadrant of performance
and computational efficiency (i.e., the keywords of the scalable planner).

allows the planner to compute the solutions in a shorter time compared to the trajec-

tory representation. In particular, the POM representation has better computational

scalability with respect to the complexity of the environments (e.g., number of road-

agents in the scene). To examine if the theoretical advantage carries over into the

experiments, we investigate the computation time and memory requirements for our

prediction-planning framework with the POM representation.

For the fair comparison, we performed the same experiment presented in Section

4.5. Recall that our prediction-planning framework works the same for the POM

representation. This means that we used the same implementation of the framework

as we aim to minimize biases in pre-processing, post-processing, and performance

evaluation. The only difference is that the POM representation utilizes a HCNAF

model in place of a CVAE-H model as described in Figure 1.4, 3.1, and 4.4. Another

difference is that the safety reward is computed using Equation 4.5 instead of 4.4.

In this regard, the difference in the computation time is explained by the difference

136



in the run-time of HCNAF versus CVAE-H and the safety reward computations.

Similarly, the memory requirement difference originates from the dissimilar memory

requirements of the two prediction models and the safety reward computations.

In order to minimize the computation time, we fully parallelized our implementa-

tion of the framework (e.g., pre-processing pipelines, prediction inference, planning,

and so on). This is done by minimizing iterations and loops and maximizing the

use of the batch computing of PyTorch [158]. For example, the time dimension, pre-

diction sample dimension, and candidate trajectory plan dimension are all cast onto

the batch dimension. While this increases memory usage, it provides a significant

speed-up for tensor computations.

Table 4.6 - 4.8 deliver the resulting computational efficiency measurements of the

two approaches. The two most important parameters are Nplan and Npred, which

represent the number of candidate trajectory plans sampled from the planner and

the total number of trajectory prediction samples from the prediction model (i.e.,

CVAE-H). Based on Equation 4.4, Npred can be computed as follows.

Npred = NcandNTK, (4.11)

where Ncand, NT , and K each indicates the number of trajectory prediction sam-

ples per road-agent in the scene, number of planning steps, and number of road-agents

in the scene. In our experiment, we set NT = 20 and K = 4. Ncand is a tunable hyper-

parameter that determines the degree of safety conservatism (see Section 3.10 and

Equation 4.4 for the detail). For example, Ncand = 100 (i.e., the number of prediction

samples used in Table 4.4) corresponds to Npred = 8000.

We inform that the reported computation time was measured end-to-end (i.e.,

a complete cycle of the framework described in Figure 1.4). This includes pre-

processing, prediction, planning, and post-processing. The memory consumption

indicates the memory size required to run the framework end-to-end.
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Table 4.6: Trajectory vs POM - a comparison of their computational efficiencies.

Method Computation
Time (GPU)

Memory
Consumption

Predict & Plan with Trajectory (CVAE-H)
Nplan=128, Npred=8,000 0.088s 1.5GB

Predict & Plan with POM (HCNAF)
Nplan=128 0.081s 0.4GB

Table 4.6 shows that the POM representation is more computationally efficient

under the nominal hyper-parameters (i.e., Nplan=128, Npred=8,000). When POM is

used as the prediction and uncertainty representation, the run-time of our framework

is roughly 17% is faster compared to our trajectory-based prediction & planning.

Furthermore, the memory consumption is significantly less. Considering that the

prediction models CVAE-H and HCNAF have a similar number of network parameters

around 10 million, the memory consumption comes from the architectural difference

and computational scalability of Npred.

A planner that leverages POM as the prediction representation does not require

a trajectory sample to compute the safety reward. Conversely, a planner with the

trajectory representation requires Nplan ·Npred number of safety checks to compute the

safety reward. Instead of iterating through the safety check (Equation 4.4) Nplan·Npred

times, we fully parallelize the computation. As a result, the check is only performed

once, however, it increases the memory requirement to store the increased batch.

We emphasize that the numbers reported in 4.6 are tied to the hyper-parameters

Nplan=128, Npred=8,000. It is because that the computational efficiency is largely

affected by the hyper-parameters. This is closely related to how the safety rewards

are computed for the trajectory representation (Equation 4.4) and the POM repre-

sentation (Equation 4.5). In the next two tables, we analyze the impact of the two

hyper-parameters on computational efficiency.

Table 4.7 investigates the computational efficiency with respect to Npred, the total
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Table 4.7: The computational efficiency vs number of trajectory samples Npred.

Method Computation
Time (GPU)

Memory
Consumption

Predict & Plan with Trajectory (CVAE-H)
Nplan=128, Npred=960 0.076s 1.0GB
Nplan=128, Npred=8,000 0.088s 1.5GB
Nplan=128, Npred=80,000 0.113s 3.5GB

Predict & Plan with POM (HCNAF)
Nplan=128, Npred=0 0.081s 0.4GB
Nplan=128, Npred=inf 0.081s 0.4GB

number of trajectory prediction samples for the road-agents in the environment. Since

the POM-based planning does not require a trajectory sample, Npred has zero impact.

However, for the trajectory-based implementation, both the computation time and

memory requirement increase with respect to Npred. Since Npred can quickly grow as

the number of road-agents, planning horizon, and resolution increase, this may limit

the computational scalability of the trajectory-based planning especially when Ncand

is not small.

Table 4.8: The computational efficiency vs number of candidate plans Nplan.

Method Computation
Time (GPU)

Memory
Consumption

Predict & Plan with Trajectory (CVAE-H)
Nplan=16, Npred=8,000 0.081s 1.5GB
Nplan=128, Npred=8,000 0.088s 1.5GB
Nplan=1,024, Npred=8,000 0.090s 1.6GB
Nplan=10,240, Npred=8,000 0.113s 3.2GB

Predict & Plan with POM (HCNAF)
Nplan=16 0.068s 0.2GB
Nplan=128 0.081s 0.4GB
Nplan=1,024 0.173s 3.0GB

Table 4.8 describes how the computational efficiencies of the two implementations

change with respect to Nplan. First, the impact of Nplan on the trajectory-based pre-

diction and planning is negligible as the metrics remain similar for all three different
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numbers of Nplan. While Nplan theoretically does affect the number of safety checks,

we found that the influence of Nplan is small when it is under a certain threshold.

This is because Nplan only changes the number of the size of planning-related ten-

sors whereas Npred affects the forward-propagation of the CVAE-H model to obtain

prediction samples and evaluate their uncertainties. In addition, Npred increases the

computational load of all downstream tasks of the prediction module.

Unlike the trajectory-based implementation, the POM-based implementation com-

putational efficiency is not affected by Npred, as shown in Table 4.7. However, both

computational time and memory requirement quickly surge with respect to Nplan.

This is due to the computation of the safety rewards involving Nplan number of prob-

abilistic occupancy evaluations (i.e., forward propagation of the HCNAF model) as

explained in Equation 4.5. In short, the POM-based implementation has limited

computational scalability with respect to the number of total candidate trajectories.

We summarize the comparisons between the trajectory-based and POM-based

implementations presented in Table 4.6 - 4.8 in the following three bullet points.

1. First, the trajectory-based implementation computationally scales poorly with

respect to the number of road-agents in the scene and the number of the pre-

diction samples. This may limit the application of the trajectory-based imple-

mentation in complex environments with large numbers of road-agents that can

create diverse and multi-modal uncertainties in the future.

2. Second, the POM-based implementation scales better with respect to the com-

plexity and stochasticity of the environments as POM is independent of the

number of road-agents.

3. Third, compared to the POM-based implementation, the trajectory-based im-

plementation is more computationally efficient for the planners that sample a

high number of candidate trajectory plans.
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We conclude that the POM-based prediction & planning has higher computa-

tional efficiency compared to the trajectory-based prediction & planning under the

nominal hyper-parameters. Depending on the complexity of the environment, degree

of the uncertainties in the environment, and importance of Nplan, one could make an

informed decision for using either trajectory or POM as the prediction & uncertainty

representation. Since the two hyper-parameters Nplan and Npred influence the qual-

ities of both prediction outputs and trajectory plans, one should make the decision

carefully in consideration of the capacities of the prediction model and planner.
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CHAPTER V

Conclusion

5.1 Summary of The Thesis

This dissertation proposes a scalable prediction and planning approach for au-

tonomous driving in urban driving environments. My approach consists of two main

tasks: (1) probabilistic prediction of the environments and (2) uncertainty-aware and

contextual trajectory planning for AV. A framework that bridges both prediction

and planning tasks is proposed and is implemented using two different prediction

representations; (1) trajectory-based and (2) probabilistic occupancy map-based rep-

resentations. The thesis first investigates the performances of the proposed prediction

module separately and later examines the scalability of the framework with both of

the two prediction representations.

I started the thesis by describing the challenges of self-driving in urban areas in

Chapter 1. I explained how scalability is critical to the success of autonomous driv-

ing and defined the three keywords of the scalability: effectiveness, generalizability,

and computational efficiency. I explained that data-driven (i.e., learning-based) ap-

proaches are great tools for a scalable solution to the problem. Accordingly, a frame-

work that includes deep learning prediction and planning modules was proposed.

Chapter 2 was dedicated to the mathematical formulations of the problem and

solution implementations. Specifically, I argued that the non-autoregressive imple-
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mentation for prediction and planning is more suitable as it is more computationally

efficient compared to the autoregressive implementation. I explained how computa-

tion resources may scale with respect to the two implementations. Furthermore, I

analyzed the two possible prediction representations (trajectory and POM) and com-

pared their advantages. Lastly, I explored a number of publicly available datasets to

select the best-suited dataset for the research.

In Chapter 3, I first defined the four attributes of the ideal prediction model for

autonomous driving in urban areas. I then reviewed existing approaches to the predic-

tion task as well as the preliminary deep learning concepts of the proposed models. In

the middle of the Chapter, I introduced two forecasting algorithms, namely HCNAF

and CVAE-H, that are conditional generative models which approximate complex

probability density functions and generate predictions as well as the uncertainties as-

sociated with each prediction. I elaborated on their mathematical and architectural

details and how the models are adapted for the prediction task with two different

prediction representations; trajectories and POM. Lastly, I conducted experiments

to evaluate the proposed prediction models in terms of the four attributes of the

ideal prediction model and show that they effectively leverage spatio-temporal sensor

information and predict the trajectories of the road agents in diverse environments.

In Chapter 4, the planning task was depicted. I started the chapter by introducing

the objective and goal of the planning task. I then reviewed a number of planning

approaches that are popularly used in the field of robotics and autonomous driving.

I analyzed the advantages and disadvantages of each method and used them as ra-

tionales to design an optimal, generalizable, and computationally efficient planner.

I proposed a planner that autonomously produce action sequences near-optimal to

the state of the environment and design such actions to be aware of the uncertain-

ties captured in the prediction outputs. The proposed planner is a sampling-based

random shooting planner based on a Gaussian mixture distribution. Experiments
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confirm that the proposed planner generates safe and contextual trajectories under

various environments in real-time, and the performance compares favorably against

the dynamic programming results.

Later in Chapter 4, I compared the computational efficiencies of the two solution

implementations with the two uncertainty representations. I examined their compu-

tational efficiencies by running the trajectory-based and POM-based implementations

end-to-end. The results show that under the nominal condition, the probabilistic oc-

cupancy map representation leads to more computationally efficient trajectory gen-

erations as it removes the need for an excessive sampling of future states of the

road-agents. In addition, I analyzed how the two representations computationally

scale with respect to the two hyper-parameters that determine the qualities of the

prediction and planning.

5.2 Future Works

Better Backbone Network for The Prediction Models

The proposed prediction models, HCNAF and CVAE-H, both leverage hyper-

networks which are the backbone of the prediction models. The hyper-networks are

deep neural networks that extract social and spatial information about environments

and provide the encoding of the environments to the main networks so that they can

make contextual predictions. In this regard, the design of the hyper-network greatly

affects the performance of our prediction models. In this thesis, we constructed the

hyper-network using MLP, CNN, RNN, and simple attention models as depicted in

Figure 3.9. However, one could improve the hyper-network architecture by leveraging

other deep learning networks.

Transformer [71] is one example that could better extract social features from the

environments. Transformer builds on multiple stacks of different attention layers and
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outperforms RNN and simple attention-based models. Known as one of the most

successful deep learning models, Transformer has been used across different fields of

artificial intelligence and machine learning such as NLP [159, 160] and Speech [161].

As the autonomous driving prediction problem could be formulated as a sequence

prediction problem, Transformer can help better understand the social contexts of

driving. As a matter of fact, we see Transformer-based prediction models [162] being

used in the literature recently. We expect the utility of Transformer to grow with

respect to the complexity of the environment such as the number of road-agents in

the scene. This makes Transformer a great candidate for the urban driving prediction

problem.

Another example is graph-based models or Graph Neural Network (GNN). GNN

is a type of deep learning model designed to work with data represented using graphs.

Defined as a set of vertex and edges (i.e., G = (V,E)), the graph can model complex

relationships and inter-dependencies between vertices. The graph-based models offer

a powerful way of performing graph-level inferences (macroscopic) as well as node-

level or edge-level inferences (microscopic). For autonomous driving, a graph could

represent the complex interactions between multiple objects in the scene where the

node denotes a road-agent and the edge indicates the interaction between two road-

agents. A number of recent publications have applied this graph-based approach

to self-driving prediction problems and showed promising performances [163, 164].

In this regard, an interesting extension of our work would be adding graph-based

models to our prediction model to better extract social features of urban driving

environments.

Extracting Rewards via Inverse Reinforcement Learning

In section 4.1, we introduced the motivation behind designing the reward function

for training and evaluating the proposed planner. In section 4.4.2, we presented the
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mathematical formulation of the reward function. In short, to construct the reward

function, we used the common knowledge about transportation and our intuitions

about driving. While this approach is intuitive and interpretable, we may have failed

to capture other aspects of driving into the reward. Even if we captured the essen-

tial features of the decision-making, we often do not know the optimal weight ratio

between the reward terms. This could be critical to learning-based planners as the

trajectories produced by the learning-based planners differ significantly depending on

the weights between reward terms. This means that it is inevitable to go through a

tedious tuning process to search for a working set of weights.

We could instead utilize human driving data to infer what constitutes the optimal,

or at least reasonable and safe, decision. This approach is known as Inverse Rein-

forcement Learning (IRL) which is the problem of inferring the reward function of an

intelligent agent, often denoted as an expert, by observing its behavior. A number of

popular methods exist including maximum-entropy IRL [165] and bayesian IRL [166].

The application of IRL to autonomous driving is not a trivial task as it requires a

careful design of the reward approximator neural network, integration to the planner,

and consideration of uncertainties in the environments are necessary. For this reason,

IRL has been an active research area for self-driving [13].

Expanded Planning Objective: Energy-efficiency

Our reward design, which was used for planning, considers several aspects of

transportation such as travel time, safety, and ride comfort. We could expand the

reward to include another important aspect of transportation; energy efficiency. One

of the biggest sources of travel cost is energy consumption. Indeed, traffic congestion

in urban driving environments costs Americans an extra $160 billion worth of fuel

annually [103]. On top of the fuel-saving, energy-efficient driving has environmental

and ecological benefits as it reduces CO2 emissions [167].
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In order to make the AV be energy-efficient and environment-friendly, we would

design an energy consumption reward term, renergy, and include it as a part of the

planning reward. The energy efficiency of a vehicle depends on various factors in-

cluding the use of throttles, brakes, weather, and the vehicle types (either fuel-based

vehicle or electric vehicle). Factors that autonomous driving agents can control in-

clude acceleration, steering, and route choices. A number of studies have shown

that the speed and acceleration profile have significant impacts on fuel consumption

[112, 168] as it is directly related to operations of engines and motors. In this regard,

renergy would be a function of acceleration, speed, and travel time. In this sense,

energy efficiency would be a useful addition to the reward function and help reduce

the operation cost of the AV.

Other Planning Approaches

Our planner can be classified as a model-based RL algorithm and is closely re-

lated to the policy gradient method. This is because we use a Gaussian mixture as

the policy, train the policy using the expected returns, and perform inference by sam-

pling the policy. The difference from typical policy gradient methods is the objective

function that includes the cross-entropy term (see Section 4.4.6).

Considering the similarities between policy-based RL methods and ours, we could

instead use a model-based policy gradient model to solve the planning task. Although

policy gradient methods are less interpretable than our method, policy-based RL

methods are as scalable as our approach. Moreover, recent policy gradient methods

have successfully solved various complex robotics and control tasks [139, 144, 11, 145,

169].

Imitation learning is another approach we could further investigate. Recall that

we have used a behavior cloning planner as one of our baselines. As discussed in

Section 4.2.6, the behavior cloning method has some limitations. There have been
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a number of approaches that addressed the limitations. One of the approaches we

could potentially explore is Plato [148] which leverages an optimal control algorithm

to label roll-outs from the behavior cloning policy. If we were to apply Plato to our

planning problem, we could use our behavior cloning policy as the initial policy and

iteratively update the policy by leveraging the dynamic programming policy as the

labeler.

Extension of Our Approach to Other Datasets

In this thesis, we used the PRECOG-Carla dataset [25] for the evaluation of

the proposed prediction and planning models. As we discussed in Section 2.4, we

intentionally chose it since it provides cleaner and well-processed sensor information

and labels compared to other datasets that are typically more noisy and missing data.

Moreover, the PRECOG-Carla dataset consists of generic urban driving environments

and has a number of benchmarks available to the public. While these advantages

allow us to minimize data cleansing efforts and focus on the designs of prediction and

planning models, the PRECOG-Carla dataset is certainly not the most realistic nor

complex dataset.

In fact, there exist other large-scale datasets such as Argoverse [20], Lyft Level 5

[21], and NuScenes [22]. Similar to the PRECOG-Carla dataset, they all include di-

verse urban driving environments with vision sensor information and trajectory labels

and thus our framework can directly be applied to these datasets. As the datasets

were established using real-world driving examples in urban areas, the datasets are

relatively more complex and realistic.

In this sense, we would like to extend our work to one or more of these datasets.

This means that additional data cleansing processes, data imputation, and/or post-

processing are necessary as they have significant impacts on the performance of the

prediction and planning models. Since each dataset uses a different suite of sensors
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and evaluation metrics, the network architectures would be customized accordingly

to the available sensors such as camera and radar.
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for autonomous driving: A survey. IEEE Transactions on Intelligent Trans-
portation Systems, 2021.

[14] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[15] Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M
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