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ABSTRACT

In 1965, Gordon Moore posited that the number of transistors on an integrated circuit

would double every 18 months. With some adjustments, the prediction largely remained

true for decades and revolutionized technology as we know it. A lesser-known contributor

to Moore’s Law was the “Mead and Conway Revolution” in VLSI, initiated by Carver

Mead and Lynn Conway. Prior to this revolution, integrated circuit design was mostly

done manually and required deep expertise from top-level integration all the way down to

fabrication effects. Mead and Conway transformed this manufacturing knowledge into a

set of design rules which were fit for use in automation. This innovation enabled integrated

circuit design to scale with computers rather than humans, and effectively kick-started the

electronic design automation (EDA) industry.

Moore’s Law is reaching a slow but inevitable end as transistor counts take longer and

longer to double. Because chips can no longer rely on foundry improvements to improve

performance, architectural innovations need to pick up the slack. Certain domains such as

machine learning, genomics, graph processing, drug discovery, financial trading, and others

have turned to hardware acceleration. EDA software has not seen such focus and is at risk

of stagnating chip development. In this dissertation, I discuss key issues limiting the pace of

innovation in hardware design, including complexity of design integration, inaccessibility

of EDA tools, and lagging EDA tool performance. Then, I present three of my works

which address these issues: Celerity, OpenROAD, and SpeEDAr. These works represent a

multi-faceted approach to speed up design innovation by improving design methodologies,

providing open-source EDA tooling, and improving end-to-end EDA tool performance.

x



Celerity addresses the issue of long hardware design schedules and integration of com-

plex systems-on-chip (SoCs). Methodologies are presented which sped up chip develop-

ment to 9 months: approximately half of a normal design schedule. At the time of publi-

cation, the resulting chip design produced a single-chip record 695 Giga RISC-V instruc-

tions/s, a record CoreMark benchmark score of 825,320 and a record CoreMark score/MHz

of 580.25. Celerity outperformed prior manycore works in energy efficiency by 4.2× and

normalized area efficiency by 1.8×.

OpenROAD tackles the long-standing issue of closed-source EDA software. Open-

ROAD is the first and only open-source EDA software capable of producing design-rule-

clean chips in advanced sub-20nm nodes. OpenROAD also includes the OpenROAD De-

sign Suite, a diverse EDA benchmarking suite composed of real-world designs. To date,

OpenROAD has enabled over 100 designs to be taped out, including by many designers

with no prior chip design experience.

Lastly, I present a characterization of OpenROAD. This is the first known full EDA flow

characterization to date. This characterization reveals that the implementation flow runtime

is dominated by detailed routing (40%) and synthesis (30%). I then present SpeEDAr, an

accelerator for detailed routing which accounts for the detailed router’s unique costing

while prior work does not. SpeEDAr achieves a mean 67× speedup on the detailed router’s

graph search, which translates to a mean 1.2× end-to-end flow speedup.
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CHAPTER 1

Introduction

1.1 The Techno-Social Scripted-Process

In 1965, Gordon Moore posited that the number of transistors on an integrated circuit (IC)
would double every 18 months. Transistors are the fundamental building blocks of ICs,
and transistor counts serve as a rough measure of the IC’s complexity and capability. With
some adjustments, Moore’s prediction largely remained true for decades and became im-
mortalized as Moore’s Law. Moore’s Law is now synonymous with the exponential rise
in computing power, as well as computing’s pervasiveness in society.

A lessor known contributor to Moore’s Law was the “Mead and Conway Revolution”,
initiated by Carver Mead1 and Lynn Conway. Prior to this revolution, integrated circuit de-
sign was done mostly manually and required full-stack domain expertise – circuit designers
needed to be knowledgeable of top-level integration all the way down to the minutiae of
fabrication effects on design geometry. Mead and Conway observed that the complexities
of the manufacturing process could be abstracted out into simpler sets of design rules.
Not only did these rules make IC design more accessible, but the rules could be expressed
programmatically and enable many manual aspects to be automated. While designs were
previously limited by the ability and expertise of a human, new designs could use comput-
ers to automate and scale up tasks. This innovation launched the electronic design industry
into a process which Conway calls the “techno-social scripted-process” (Algorithm 1).

Algorithm 1: Conway’s Techno-Social Scripted-Process

Step i
Use design tools on current computers to design chip-sets for more powerful computers;
Print the more powerful chip-sets using foundries’ next-denser fabrication processes;
Use some of those chip-sets to update current computer-design computers and design tools;

Repeat as Step (i+ 1)

1Coincidentally, Carver Mead is credited with coining the term ”Moore’s Law”
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Coupled with Moore’s Law, Conway’s Process enabled steady, generational improve-
ment in the development of integrated circuits, with complex software and processors being
used to develop even more complex software and processors.

In Moore’s own words, however, “no exponential is forever”, and experts generally
agree that Moore’s Law is slowly coming to an end as transistor count growth slows. A
slowing of Moore’s Law entails a slowing of Conway’s Process and vice versa. This pre-
carious situation forms a negative feedback loop that risks stagnating new hardware devel-
opment, and much technological innovation along with it. This problem is not unique to
Conway’s Process, however. Because of the slowing of Moore’s Law, many other computa-
tional domains are experiencing diminished performance, and they have begun developing
their own solutions.

1.2 Adapting to a Post-Moore Era

In this “Post-Moore” era, several phenomena prevent the further scaling of fabrication
processes, such as the end of Dennard Scaling [21], Dark Silicon [22], transistor relia-
bility [15], and thermal limitations. To remedy this, others have proposed architectural
techniques for continued performance scaling [51]. In the near term, it appears that special-

ization is winning out as the predominant solution, as evidenced by the rapid proliferation
of on-chip or on-package accelerators in the past decade [27].

Conceptually, one can imagine a computer chip as a piece of silicon which is divided
into a fixed number of transistors: a “transistor budget”. Computer architects are responsi-
ble for using the budget to provide power and performance improvements to the computer,
while Moore’s Law enables raising the budget on a regular basis. The end of Moore’s Law
means that the regular budget increases are becoming less and less regular, yet demands for
improvements remain high. Specialization may be the most enticing path forward because
specialized circuits improve power and performance while also using fewer transistors than
their general counterparts. Most importantly, these improvements are independent of the
technology the chip is developed on, meaning architects can provide improvements without
relying on Moore’s Law.

One might ask that if specialization can offer technology-independent benefits, why
are such architectures only being pursued now? Specialization has in fact always been a
technique to improve performance of certain operations, such as math co-processors and
graphics processing units (GPUs) of the ’80s and ’90s. The main difference is that in the
post-Moore era, the power, performance, and area of silicon (PPA) gains from technologi-
cal improvements are dwindling, so a much greater focus has been placed on architectures

2



to pick up the slack. Enhancements to an existing architecture are much less complicated in
terms of design and verification than developing an entirely new architecture with a special-
ized accelerator. In the prime of Moore’s Law, this often meant that time spent developing
an accelerator was less efficient than simply creating fast, incremental improvements to ex-
isting architectures to reduce the processor’s time to market. Today, the balance has shifted,
and accelerator development is significantly more favorable than in the past.

As such, specialized hardware has been rapidly developed for certain domains, includ-
ing machine learning, genomics, graph processing, drug discovery, financial trading, and
others. All of these computationally intensive workloads have shown substantial benefit
from specialization. But what about electronic design automation (EDA) tools, the soft-
ware referenced in Conway’s Process? EDA software faces several barriers which cause a
slowdown in Conway’s Process, and in the development of new integrated circuits.

1.3 The Slowing of Conway’s Process

Despite hardware acceleration proliferating among other workloads, EDA software has
not seen the same degree of advancement. While many EDA tools have gradually shifted
to multithreaded or distributed processing, no commercial state-of-the-art tool employs
hardware more specialized than CPUs to date. Even for academic endeavors, very few
works explore the use of hardware acceleration.2 To understand the slowdown in Conway’s
Process, we must understand the barriers facing modern EDA software.

1.3.1 Design Time

Figure 1.1 illustrates the general methodology for designing a digital integrated circuit. The
design cycle is highly iterative, where each iteration consists of:

1. Perform any alterations to the design specification.

2. Implement the new design specification.

3. Verify the implementation satisfies the specification and manufacturing constraints.

This process is iterated until the design satisfies the specification and the finalized de-
sign files are sent to the manufacturer for fabrication. This handoff of design files marks
the end of the design process and is frequently referred to as tapeout. In terms of the real
time / engineering hours consumed by this process, the time for an iteration is referred to

2One notable exception is DREAMPlace [39], which offers GPU-accelerated global placement.
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Figure 1.1: Illustration of an example design schedule

the turnaround time (TAT), and the total time from design inception to tapeout is referred
to as the design schedule.

One significant constraint in IC design is the turnaround time, due to the amount of
time it takes for EDA tools to implement a design from source code. Because changes in
TAT can greatly affect the design schedule, an industry rule of thumb is often to target no
greater than a 24-hour TAT.

A key challenge in creating a more complex design is managing the impact on design
schedule, because it represents the time to market for a new IC product. In Conway’s
Process, the new generation of chips generally enables faster computation and mitigates
some of the increasing design complexity. In the Post-Moore era, however, complexity can
easily outpace computational performance improvements. Without improvements to EDA
tools and design strategies, TAT increases lead to slower design schedules and stagnation
in technological advancement.

1.3.2 Closed Source

Perhaps the largest challenge facing EDA tools is their closed-source nature. While many
other domains of software have free and open-source substrates to build on, EDA tools
are notoriously closed-source and proprietary. EDA tools are dominated by commercial
providers who are incentivized to keep their competitive advantages shrouded in secrecy.
Because of this, very few open-source EDA tools exist in the modern IC design era, and
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none of them offer anywhere near the same feature set nor quality of results (QoR) that
commercial tools provide. In an industry where every percent of PPA improvement matters,
commercial tools are often the only acceptable option. Even in less competitive segments
of the IC market, the lack of necessary features dissuades designers from using free or
open-source tools.

Without any open infrastructures to build from, development of state-of-the-art EDA
tools outside a commercial environment becomes extremely difficult and costly [29]. In
other software communities, perhaps Linux being the most prominent example, open-
source and closed-source developers alike have a state-of-the-art substrate to build inno-
vation on top of. In EDA, such an analogue doesn’t exist. Therefore, creating an incremen-
tal contribution to the state-of-the-art in EDA requires significant costs in re-implementing
common substrates. With increasing barriers to entry in state-of-the-art EDA, many poten-
tial innovations are lost. In the Post-Moore Era where technology-independent innovations
are key to performance improvements, new innovations are key to keeping the improvement
from Conway’s Process alive.

1.3.3 Acceleration Difficulties

Because TAT is a key concern from designers, ensuring that EDA tools run with high effi-
ciency is also a key concern. During the height of Moore’s Law, steady improvements to
CPU performance helped keep the increasing complexity of designs from drastically im-
pacting TAT. As improvements to single-thread performance waned, many EDA algorithms
pivoted to partitioning and parallel algorithms to make use of multicore architectures and
distributed systems. However, EDA tools are a mixed bag of algorithms which are each
important for implementing a chip. Some algorithms are facing severe diminishing returns
on parallelization (e.g., Amdahl’s Law), and others are not amenable to parallelization at
all. This leaves the performance trajectory of EDA tools in a tenuous position, as increasing
the capability of the tools as well as providing them with more complex designs can lead
to a severe slowdown in TAT.

1.4 A Path Forward

The challenges for EDA software listed in Section 1.3 pose a significant risk to innovation
in hardware design. Interestingly, the problem space of EDA slowdown maps very closely
to one of my co-authored works, Sirius3 [25].

3Since renamed to Lucida
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In 2014, intelligent personal assistants (IPAs) were becoming workloads of significant
interest. Assistants such as Apple’s Siri, Google’s Google Now, and Microsoft’s Cortana
offered a natural method of interfacing with mobile devices and search engines. How-
ever, search engines return a list of results from a text query; intelligent personal assistants
process speech inputs from the user, perform a search, and attempt to identify a single
answer. Because of these additional steps, we hypothesized that IPA queries consumed
a much greater amount of computation than the underlying search query alone. Study-
ing IPAs proved difficult because all major IPAs were closed-source. Thus, Sirius’ first
major contribution was to create an open-source platform for benchmarking. An open-
source platform was pivotal in enabling IPA research and performance measuring. Sirius
also created a representative benchmark suite of IPA queries so that performance could be
benchmarked on the platform.

With an open-source platform and benchmark suite, Sirius found that IPA queries con-
sume over 100× the computation of traditional search engine queries; datacenters wouldn’t
be able to scale efficiently if IPA queries supplanted traditional search queries. To address
this computationally intensive workload, Sirius proposed first characterizing the platform

for computationally expensive kernels then surveying hardware accelerators to improve

these kernels’ performance. Sirius identified 7 kernels which comprise 92% of the CPU
time. Then, Sirius surveyed commercially available hardware accelerators including mul-
ticore CPUs, manycore CPUs, GPUs, and field-programmable gate arrays (FPGAs). From
this survey, Sirius found that GPUs and FPGAs can reduce the end-to-end query latency by
10× and 16×, respectively.

In summary, Sirius defined a roadmap for improving performance of intelligent per-
sonal assistants:

1. Create an open-source platform for benchmarking.

2. Create a a representative benchmark suite.

3. Characterize the open-source platform to identify key computational kernels.

4. Survey hardware accelerators to determine speedup for the end-to-end workload.

Returning to the challenges with EDA software, several similarities with IPA software
can be observed: EDA software is closed-source, computationally expensive, and com-
posed by a multi-step flow. Therefore, the roadmap presented by Sirius also maps very
well to the problem space presented by EDA software. One additional problem posed by
Sirius, however, is that accelerator implementation and integration is difficult. Changing
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the computational platform from CPU almost always requires a change in programming
language and/or model, leading to a high implementation overhead.

1.5 Reinvigorating Conway’s Process

In this dissertation, I explore the challenges presented in Section 1.3 and propose solutions
to push Conway’s Process forward in the Post-Moore era. Using the roadmap created by
Sirius (Section 1.4), I present 3 works which address the issues of design time, closed
source, and difficulty in acceleration, respectively.

1.5.1 Celerity

A major challenge encountered with Sirius was the difficulty in implementing specialized
accelerators. Implementing a design in hardware takes orders of magnitude more effort
than implementing it in software. Aside from architecting, optimizing, and verifying the
accelerator, integrating the accelerator into a full system requires further time and effort.

The difficulties experienced in creating Sirius led to the inception of Celerity. Celerity
is a system-on-chip (SoC) with a 496-core manycore array, 10-core low-power array, 5
host cores, digital LDO, and digital PLL. Celerity is one of the most complex single-chip
academic projects to date, but the main innovations of the project were to create design
techniques which drastically reduced the amount of design time to create a complex SoC.
My team, consisting only of grad students, created the chip with in only 9 months in an
advanced FinFET node, whereas the typical SoC design time is on the order of 12-36
months for a team of engineers. This work is presented in Chapter 2.

1.5.2 OpenROAD

Celerity elucidated design techniques which can drastically reduce design time; however,
it also revealed the challenges of working with proprietary electronic design automation
tools and process development kits (PDKs). Restrictive licensing agreements forbid shar-
ing design data and implementation scripts. Tools are inscrutable when they don’t work
as expected. Along with Sirius’ roadmap, it was clear that EDA needed an open-source
platform.

OpenROAD [8, 9, 45] is a fully open-source EDA tool for digital SoCs. In collab-
oration with my co-authors, I created OpenROAD-flow, an open-source implementation
flow with the long-term goal of becoming fully autonomous. OpenROAD enables sharing
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of implementation scripts and flows, community collaboration, and full implementation
of chips without licensing fees. With the open-sourcing of the SkyWater 130nm PDK, it
is now possible to create fully open-source chips from start to finish, as demonstrated by
the Google/Efabless OpenMPW shuttle runs [7] which have enabled over 100 open-source
designs to be taped out to date. This work is presented in Chapter 3.

1.5.3 SpeEDAr

Even with the availability of OpenROAD in place of commercial EDA tools, a major hurdle
stands in the way. The algorithms which power EDA tools are extremely computationally
expensive, and it is common for the turnaround time to consume more than 24 hours on
the best available CPU platforms. OpenROAD presented a huge opportunity, as open-
source code can be profiled and optimized with hardware acceleration (as Sirius was).
In addition, it can be designed with software interoperability in mind – a distinguishing
factor from closed-source software. This leads my work on SpeEDAr, which identifies the
key kernels of computation in OpenROAD and accelerates them with a simulated ASIC
implementation. SpeEDAr targets the search kernel of OpenROAD’s detailed router and
achieves a mean kernel speedup of 74×, which translates to a mean flow speedup of 1.20×.
This work is presented in Chapter 4.
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CHAPTER 2

Celerity

Sirius highlighted a major challenge with incorporating hardware accelerators into systems
(Section 1.4). Implementation of a hardware design requires significantly more effort than
software, and further effort is required to integrate the accelerator into a full system. To
address this challenge, the Celerity project was formed with two primary goals:

1. Architect a system-on-chip (SoC) representative of new, innovative chip designs.

2. Shrink the SoC’s design schedule to half of the typical 12-36 month schedule.

To meet the first goal, Celerity addresses the broad issue of a usability gap. When
a new, computationally expensive software algorithm is introduced, chips typically take
years to employ accelerators for the algorithm. The time gap between when an algorithm
is introduced and when it becomes usable due to hardware acceleration is what forms the
usability gap. As an example, AlexNet [34] from 2012 is one of the seminal works in
machine learning which catapulted the field into everyday use. However, the first dedicated
accelerators for convolutional neural networks such as AlexNet did not appear in consumer
devices until around 2017 with Apple’s Neural Engine and Google’s Pixel Visual Core.

Even when new accelerator architectures are introduced, the accelerator behavior can-
not be easily modified to adapt to changing workload properties. These factors motivate
new architectures which can be rapidly constructed to address new application domains
while still leveraging specialized hardware. In addition, the architectures need to offer high
performance and energy efficiency even as applications evolve post-tapeout.

To meet Celerity’s second goal, the project examined the steps in the design process
which consume the most engineering time. The project targets many different techniques
in order to reduce the total design schedule, which are broken down into 3 categories:
reuse, modularization, and automation. These techniques are used on all stages of the
design cycle, including the design, implementation, and verification.
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2.1 Introduction

To address the usability gap, Celerity proposes a tiered accelerator fabric chip archi-
tecture. This architecture uses different tiers of computation where each tier represents
a tradeoff between energy efficiency and workload flexibility. The tiered accelerator fab-
ric design pattern minimizes time-to-market and allows the chip to maintain high perfor-
mance and energy efficiency on evolving workloads. The Celerity SoC is implemented
in 16nm technology with 3 tiers in the fabric: a general-purpose tier comprised of open-
source Linux-capable RISC-V cores, a massively parallel tier comprised of a RISC-V tiled
manycore array, and a specialization tier that implements an algorithmic neural-network
accelerator. These tiers are tied together with an efficient heterogeneous remote store pro-
gramming model on top of a flexible partial global address space memory system. In this
chapter, I first discuss Celerity’s architecture and how it implements a tiered accelerator
fabric (Section 2.2). The following section, 2.3, discusses the implementation details of
Celerity’s chip. Section 2.4 reports Celerity’s measurements and compares them to prior
work. Lastly, Section 2.5 discusses the design methodologies used throughout the entire
design process in order to meet the project goal of reducing the design schedule by half.

The key contributions of this work are as follows:

• The tiered accelerator fabric is presented as a methodology for rapid, high-efficiency
SoC design. In addition, the design’s entire source base is available at http://
opencelerity.org.

• Celerity presents a novel network-on-chip (NoC) that provides high-bandwidth, low-
latency communication with 61% less area and up to 67% less data overhead than
prior work.

• Celerity’s architecture provides best-in-class performance for energy efficiency and
normalized area efficiency, outperforming prior work by 2.0× and 1.3×, respectively.

• I describe several design methodologies which enabled my team to reduce the SoC
design schedule down to just 9 months.

This work was a large collaboration between many students and professors. My role
was the student lead for the more than 20 students that participated in the project. My
contributions included arranging meetings and organizing the design schedule among all
groups, leading the SoC’s physical design and full-chip integration (including implemen-
tation flow), innovating techniques to reduce design time, and collaborating with the archi-
tecture designers to create an efficient implementation.
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2.2 Celerity Architecture

Celerity’s tiered accelerator fabric has three architectural tiers:

• The general-purpose tier is a set of cores capable of executing operating systems,
networking, control, and other decision-making code.

• The massively parallel tier is composed of scalable and programmable arrays of
small, tightly coupled cores that attain high energy efficiency and flexibility for
evolving workloads.

• The specialization tier is composed of algorithmic accelerators which target compu-
tational kernels with extreme energy-efficiency and performance requirements.

Celerity uses autonomous vision systems as a target application domain due to their
rising prominence as a workload. Thus, the Celerity architecture implements the general-
purpose, massively parallel, and specialization tiers using 5 Linux-capable RISC-V cores,
a 496-core RISC-V manycore array, and a binarized neural network (BNN) accelerator,
respectively. Figure 2.1 shows a block diagram of Celerity with each tier highlighted. To
bind these components together, Celerity supports a heterogeneous remote store program-
ming model that allows cores and accelerators to write to each other’s memories through a
partitioned global address space. Layered upon this model are two novel synchronization
mechanisms: load-reserved, load-on-broken-reservation (LR-LBR), which extends load-
reserved store conditional for efficient producer-consumer synchronization; and the token
queue, which uses LR-LBR to achieve efficient producer-consumer transfer of resource
ownership.

In the remainder of this section, I first discuss the partitioned global address memory
system and how it connects the 3 tiers. Then, the architecture of each tier is discussed.

2.2.1 Partitioned Global Address Space

Communication among accelerators and cores in the three tiers is accomplished through
a partitioned global address space over a unified mesh network-on-chip (NoC). When a
remote store is performed, a wide single-word packet is injected into the NoC, which con-
tains x,y coordinates of the destination core, the local word address at that core, 32 bits of
data to store, and a byte mask. The addressing scheme is illustrated in Section 2.2.3. When
the message arrives at the destination, the address is translated and the store is performed.
Ordering of messages sent from one node to another is maintained. The parameterized NoC
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Figure 2.1: Celerity block diagram. The general-purpose tier (green) has a five-core Rocket
core complex, the specialization tier (blue) has a BNN accelerator, and the massively par-
allel tier (red) has a 496-core tiled manycore array. [18]

in Celerity was configured for 512 coordinates (x = 0..15, y = 0..31) and 22-bit addresses.
The mesh’s cores map one-to-one to all of these addresses except y = 31, which demarcates
the south edge of the manycore. The remaining 16 positions on the south edge are used
for four parallel connections to the BNN and four connections to the Linux-capable Rocket
cores. The remaining connections are unused in this implementation.

While remote loads, such as those found in the Adapteva parallel architecture [42], are
easy to add and could arguably make the system more programmable, they have high round-
trip latency costs and lead users astray by offering a high-convenience, low-performance
mechanism. Remote stores do not incur such a latency penalty because they are pipelined
and can therefore be issued once per cycle.

When a remote store is performed, a local credit counter will be decremented at the
sender. When the store is successful at the remote node, a store credit is placed on the
store network that is routed back to the original tile on a separate 9-bit physical network,
incrementing the counter. A RISC-V fence instruction on either a manycore tile or a Rocket
core is used to detect whether any outstanding remote stores exist, allowing a core to pause
for memory traffic to finish during a barrier.
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2.2.2 The General-Purpose Tier

For the SoC to support complex software stacks, exception handling, and memory manage-
ment, Celerity instantiates five Berkeley RISC-V Rocket cores running the RV64G ISA.
The Rocket core is an open-source [10], five-stage, in-order, single-issue processor with
a 64-bit pipelined floating-point unit and size-configurable, non-blocking caches. Each
Rocket core can run an independent Linux image. This provides the flexibility to run SPEC-
style applications and network stacks like TCP/IP. Four Rocket cores connect directly to
the massively parallel tier using parallel remote store links on the global mesh NoC. One
Rocket core connects directly to the specialization tier through a dedicated Rocket cus-
tom coprocessor (RoCC) interface. These connections are made using the Berkeley RoCC
interface. L1 data and instruction caches are configured at 16 KBs each.

When remote stores are performed to the Rocket cores, they go directly into the four
Rocket cores’ caches, potentially causing cache misses to DRAM. Remote store addresses
are translated using a segment address register that maps the 22-bit address space into the
Rocket’s 40-bit address space. Rocket cores issue remote stores through a single RoCC in-
struction and can, for example, perform remote stores to other Rocket cores, to any many-
core tile, or to any of the BNN input links. Remote stores to manycore tiles are used to
write instruction and data memories, as well as to set configuration registers, such as freeze
registers and arbitration policies for the local data memory.

2.2.3 The Massively Parallel Tier

To achieve massive amounts of programmable energy-efficient parallel computation, Celer-
ity implements a 496-core tiled manycore array [53] that interconnects low-power RISC-V
Vanilla-5 cores using a mesh interconnection network (Figure 2.2). Each tile contains a
simple router and a Vanilla-5 core. The inhouse-developed Vanilla-5 cores are five-stage,
in-order, single-issue processors with 4-KB instruction and data memories that use the
RV32IM ISA. The manycore uses a strict remote store programming model [26], pro-
viding a highly programmable array to maintain high performance as workloads evolve
post-tapeout. A key contribution of this work is to extend the remote store programming
model to incorporate heterogeneous processor types and to support fast producer-consumer
synchronization.

2.2.3.1 NoC Design

The manycore’s mesh NoC design, which facilitates the remote store fabric that ties the
chip together, targets extreme area efficiency using only a single physical network for data
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transfer, no virtual channels, single-word/single-flit packets, deterministic x,y dimension-
ordered routing, and two-element router input buffers. Head-of-line blocking and deadlock
are eliminated because remote stores can always be written to a core’s local memory, re-
moving the word from the network. Connections between neighboring tiles are 80-bit wide
full duplex, allowing address, command, and data information to be routed in a single wide
word, and each hop takes one cycle. To generate packets that go off the array’s south side
to the specialized and general-purpose tiers, a NoC client performs a store to a memory ad-
dress whose x,y coordinate is beyond the coordinates of manycore. Both local and remote
stores use the same standard store word, half-word, and byte instructions from the ISA.

2.2.3.2 Remote Stores

Each time a store is about to be performed, the high bit of the address determines if the
store address is local (0) or remote (1). The local address space uses the remaining 31
bits to determine the memory address. The remote address space uses the next 9 bits as a
destination coordinate (x = 0..15, y = 0..31) of the target core on the NoC. The remaining
22 bits are translated at the destination into a local address, and the store is performed.

2.2.3.3 LBR

The manycore features an extension to the LR store-conditional (LR-SC) atomic instruc-
tions called LR-LBR. LR operates much like in LR-SC by performing a load and then
adding the target address to a reservation register, which is then cleared if an external core
writes to that address. LBR is a new instruction that places the core’s pipeline in a low-
power mode until another core remote stores to that address and breaks the reservation, at
which point the core will wake up and perform a load on the target address. Typically, user
code will load a memory location’s value with LR, branch away if it is satisfied with the
value (a ready flag is set, or a FIFO pointer has sufficiently advanced), and otherwise fall
through to a LBR to wait for it to change, so it can be rechecked.

2.2.3.4 Token Queue

Celerity’s design shows that tight producer-consumer synchronization can be layered on
top of remote store programming. With the LR-LBR instruction extension, Celerity im-
plements a token queue, a software construct used to asynchronously transfer control of
buffer address between producer and consumer tiles. The consumer will allocate a circu-
lar buffer to which tokens can be enqueued and dequeued. A token can be a simple data
value, a pointer to a memory buffer, or identifiers for more abstract resources. Producer
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and consumer can consume different quantities of tokens at each step. By enqueuing a set
of tokens, the producer is transferring read/write ownership of those resources to the con-
sumer. By dequeuing a set of tokens, the consumer is transferring write ownership of the
resource back to the producer. The producer and consumer each have local copies of head
and tail pointers to the circular buffer, but only the producer will modify the head pointers,
and only the consumer will modify the tail pointers. The remote versions of the pointers
will be updated after the local versions, similar to a clock-domain-crossing FIFO.

The producer tile confirms there is enough space in the token queue to enqueue a par-
ticular group of tokens, using LR-LBR to wait in low-power mode for remote updates to
the local tail pointers if there is not enough space in the queue. Then, it will send the corre-
sponding data through remote stores. After completion, the producer will update the head
pointers through local and remote stores.

The consumer confirms that it has enough tokens in the token queue to proceed, using
the LRLBR instructions to wait in low-power mode until the head pointer is updated by the
producer, and checking if enough tokens have been enqueued. When there is enough, the
consumer will wake up and start accessing the data represented by the new tokens in the
buffer. When done, the consumer will dequeue the tokens by updating the tail pointers and
proceeding back to consuming the next set of tokens.

2.2.3.5 Programming Models

Software programs are compiled using a different workflow from shared memory systems.
Because each tile is a RISC-V core, C/C++ programs can be compiled using the standard
RISC-V toolchains. Celerity uses a custom GCC linker script which maps data and in-
structions to separate 4KB segments such that instructions and data may be placed into the
respective instruction and data memories. When compiling, the program must target a sin-
gle tile and fit within a tile’s instruction/data memory. For Single-Program, Multiple-Data
(SPMD) class programs, the same program can simply be replicated across each tile in the
mesh. Larger programs can be constructed by partitioning instructions across tiles and ex-
plicitly passing data between them. For example, a large program can be split into multiple
program segments. Each segment is stored in a different tile’s instruction memory, and data
is passed between tiles. In the case of streaming applications, this works particularly well
for separating consumer and producer functions across tiles and streaming data between
them. Infrastructures have been developed to simplify compiling such workloads, such as
StreamIt [54], an infrastructure to automatically partition programs using annotations, and
bsg manycore lib, my team’s library for sending, receiving, and synchronizing data
across tiles. These infrastructures enable compilers/libraries to orchestrate the data transfer.
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Figure 2.3: BNN CIFAR-10 Network Architecture [18]

2.2.4 The Specialization Tier

Careful consideration is required when deciding which workload kernels to implement in
the specialization tier. Celerity implements a BNN accelerator. This section discusses the
architecture and reasoning for selecting a BNN as the specialization tier.

2.2.4.1 Choosing the Neural Network

Deep convolutional neural networks (CNNs) are now the state of the art for image classi-
fication, detection, and localization tasks. However, using CNN software implementations
for real-time inference in embedded platforms can be challenging due to strict power and
memory constraints. This has sparked significant interest in hardware acceleration for CNN
inference, including my team’s own prior work on FPGA-based CNN accelerators [60].
Given the context of autonomous vision systems, Celerity uses flexible image recognition
as a case study for demonstrating the potential of tiered accelerator fabrics in general, and
this SoC specifically.

Most prior work on CNN accelerators uses carefully hand-crafted digital architectures
and represent the weights and activations in 8- to 16-bit fixed-point precision. Recent work
on BNNs has demonstrated that binarized weights and activations (+1, -1) can, in certain
cases, achieve accuracy comparable to full-precision floating-point CNNs [17]. BNNs’ key
benefit is that the computation in convolutional and dense layers can be realized with simple
exclusive-negated-OR (XNOR) and pop-count operations. This removes the need for more
expensive multipliers and adder trees, saving area and energy. BNNs can also achieve a
substantial reduction (8-16×) in the memory size of weights compared to a fixed-point CNN
using the same network structure, making the model easier to fit on-chip. Additionally,
there is an active body of research on BNNs attempting to further improve classification
performance and reduce training time.

Celerity employs the specific BNN model shown in Figure 2.3 based on Courbariaux
et al. [17]. This model includes six convolutional, three max-pooling, and three dense
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Convolutional layers Dense Layers
1 2 3 4 5 6 1 2 3

In Arrays 3 128 128 256 256 512 8K 1K 1K
Out Arrays 128 128 256 256 512 512 1K 1K 10
Out Dim 32 32 16 16 8 8 1 1 1

Out Size (bits) 128K 128K 64K 64K 32K 32K 1K 1K 10
Weights (bits) 3456 144K 288K 576K 1.1M 2.3M 8.0M 1.0M 10K
Exe. Time (%) 2.1 23.1 12.0 24.0 12.9 25.7 0.2 0.02 0.01

Table 2.1: BNN Algorithm Characterization [18]

(fully connected) layers. The input image is quantized to 20-bit fixed-point, and the first
convolutional layer takes this representation as input. All remaining layers use binarized
weights and activations. BNN-specific optimizations include eliminating the bias, reduc-
ing the batch norm calculation’s complexity, and carefully managing convolutional edge
padding. This network achieves 89.8% accuracy on the CIFAR-10 dataset.

2.2.4.2 Performance Target

The BNN targets ultra-low latency, requiring a batch size of one image and a throughput
target of 60 classifications per second to enable real-time operation.

2.2.4.3 Creating and Optimizing the Specialization Tier

The BNN was implemented using a three-step process to map the application to the tiered
accelerator fabric. First, the algorithm is implemented using the general-purpose tier for
initial workload characterization and to identify key kernels for acceleration. Second, the
algorithm can be accelerated using either the specialization tier or the massively parallel
tier. Finally, performance and/or efficiency can be further improved by cooperatively using
both the specialization tier and the massively parallel tier.

2.2.4.4 Establishing the Functionality of the Specialization Tier

In the first step, the BNN is implemented using the general-purpose tier to characterize the
computational and storage requirements of each layer. Table 2.1 shows the number of bi-
nary weights and binary activations per layer in addition to the execution time breakdown,
assuming a very optimistic embedded microarchitecture capable of sustaining one instruc-
tion per cycle. The total estimated execution time for the BNN software model (estimated
to be around 2 billion instructions) on the general-purpose tier would be approximately
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200× slower than the performance target. Although the binarized convolutional layers re-
quire more than 97% of the dynamic instructions, preliminary analysis suggests that all nine
layers must be accelerated to meet the performance target. The storage requirements for
activations are relatively modest, but the storage requirements for weights are non-trivial
and require careful consideration.

2.2.4.5 Designing the Specialization Tier

In the second step, the BNN is implemented as a configurable application-specific accel-
erator in the specialization tier. This accelerator was designed to integrate with a Rocket
core in the general-purpose tier through the RoCC interface. Although the massively par-
allel tier could be used to implement the BNN at speed, superior energy efficiency could be
attained through specialization. Figure 2.4 shows the BNN accelerator architecture. The
BNN accelerator consisted of modules for fixed-point convolution (first layer), binarized
convolution, dense layer processing, weight and activation buffers, and a DMA engine to
move data in and out of the buffers. The BNN accelerator processes one image layer at a
time and can perform 128 binary multiplications (XNORs) per cycle using two convolvers.
Any non-binarized computation is performed completely within each module to limit the
amount of non-binarized intermediate data stored in the accelerator buffers and/or mem-
ory system. The activation buffers are large enough to hold all activations; however, in
this design, the sizeable binarized weights necessitated off-chip storage using the general-
purpose RoCC memory interface. The binarized convolution unit includes two convolvers
implemented with a flexible line buffer based on Zhao et al. [60].

2.2.4.6 Combining the Massively Parallel and Specialization Tiers

In the third step, the potential for cooperatively using both the specialization tier and the
massively parallel tier is explored. Early analysis suggested that repeatedly loading the
weights from off-chip would significantly impact both performance and energy efficiency.
Celerity implements a novel mechanism that enables cores in the massively parallel tier
to send data directly to the BNN. To classify a stream of images, Celerity first loads all
data memories in the massively parallel tier with the binarized weights. It then repeatedly
executes a small remote-store program on the massively parallel tier; each core takes turns
sending its portion of the binarized weights to the BNN in just the right order. The BNN
can be configured to read its weights from queues connected to the massively parallel tier
instead of from the general-purpose tier.
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Figure 2.4: BNN specialized accelerator architecture [18]
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Runtime Performance Power Efficiency Relative Efficiency
(ms) (images/s) (W) (images/J) vs. GPT vs. mGPU

GPT 4024.0 0.3 0.1 2.5 1.0×
SpT 20.0 50.0 0.2 250.0 100.0×

SpT+MPT 3.2 312.5 0.4 625.0 250.0× 208.3×
mGPU [60] 90.0 11.1 3.6 3.0 1.0×
CPU [60] 14.8 67.6 95.0 0.7 0.2×
GPU [60] 0.7 1428.6 235.0 6.0 2.0×

FPGA [60] 5.9 168.4 4.7 35.8 11.9×

Table 2.2: Performance comparison of optimized BNN implementations on different plat-
forms. GPT = general-purpose tier. SpT = specialization tier with weights stored in GPT
cache. SpT+MPT = specialization tier with weights stored in the massively parallel tier.
mGPU = Nvidia Jetson TK1 embedded GPU board. CPU = Intel Xeon E5-2640. GPU =
Nvidia Tesla K40. FPGA = Xilinx Zynq-7000 SoC [18]

2.2.4.7 The Benefits of HLS

Celerity employed HLS to accelerate the design time and to enable significant design-space
exploration for the BNN algorithm. The BNN model was first implemented in C++ for
rapid algorithmic development, before adding HLS-specific pragmas and cycle-accurate
SystemC interface specifications. Cadence Stratus HLS transformed the SystemC code
into cycle-accurate RTL. Very similar C++ test benches were used to verify the BNN al-
gorithm, the SystemC BNN accelerator, the generated BNN RTL, and the Rocket core
running the BNN accelerator. This HLS-based design methodology enabled three graduate
students with near-zero neural-network experience to rapidly design, implement, and verify
a complex application-specific accelerator.

2.2.4.8 Performance Analysis of the Specialization Tier

Table 2.2 shows the performance and power of optimized BNN implementations on the
Celerity SoC and other platforms. Although each platform uses a different implementation
methodology, technology, and memory system, these results can still provide a rough high-
level comparison. These results suggest that the Celerity SoC can potentially improve en-
ergy efficiency by more than 10× compared to my team’s prior FPGA implementation [60]
and more than 100× compared to a mobile GPU.

In the table, runtimes measure processing a single image from the CIFAR-10 dataset.
The power of GPT, SpT, and SpT + MPT are estimated using post-place-and-route gate-
level simulations. DRAM power is excluded from the power estimates.
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Figure 2.5: Synthesizable PLL architecture

2.2.5 Digital PLL

Three of Celerity’s clock domains are provided by three instances of a custom, fully synthe-
sized, and automatically placed and routed clock generator. The generator operates from
an isolated 0.8 V supply and occupies 5,898 µm2. With a reference frequency of fref =
26 MHz, its output frequency is tunable from 10 MHz to 3.3 GHz with minimum incre-
ments of no more than 2%, and consumes 1.5–3.5 mW at the min and max frequencies,
respectively. The PLL achieves a (simulated worst-case) period jitter of 2.5 ps. Jitter was
obtained using a bit-exact, event-driven simulation which accounts for phase noise. The
simulation forgoes supply noise, as the design was done in parallel to the SoC before sup-
ply characteristics were known. However, the synthesizable architecture was created to
be tolerant of supply noise. The PLL locks both frequency and phase with a simulated
worst-case lock time of 230 µs.

The clock generator’s PLL core (Figure 2.5) consists of a first-order ∆Σ frequency-
to-digital converter [12], an α adder, a frequency-to-phase accumulator, a digital low pass
loop filter, DCO drift compensation logic, DCO control logic, and a bank of 16 DCOs. The
16 DCOs together cover a frequency range of 1.3–3.3 GHz, and only one DCO is enabled
for each output frequency setting. Each DCO (Figure 2.5) is a ring oscillator wherein each
inverting delay element is loaded with a bank of NAND gate frequency control elements
(FCEs) [16]. The PLL targets a 50% frequency range overlap above and below for each
DCO in order to margin against process, voltage, and temperature variation (Figure 2.6).
The DCO drift compensator dynamically controls 37 of the FCEs to compensate for drift of
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the DCO’s center frequency over temperature and supply. The DCO control logic partitions
its input into integer and fractional parts. The integer part drives all but 8 of the remaining
FCEs with an update rate of fref. The fractional part is oversampled by a second-order ∆Σ

modulator followed by a dynamic element matching encoder, the output of which drives
the final 8 FCEs.

Ur Rahman et al. [55] propose a similar architecture to this work, however a key dis-
tinction is that this work uses NAND gates as loading elements to vary node capacitance,
whereas ur Rahman et al. use inverters in parallel to vary drive current. NAND gate loading
is compatible with synthesis tools, whereas parallel driving cells are usually not, due to a
lack of tristate devices in most digital cell libraries.

2.3 Celerity Implementation

Celerity was implemented on a 5×5mm chip in TSMC’s 16nm FFC process using 385
million transistors. The chip has 4 separate clock domains: the source-synchronous I/O,
the manycore, the LDO (from an external clock), and all other components (Rocket, BNN,
low-power array, core logic). Figure 2.7 shows a floorplan diagram of Celerity, Figure 2.8
shows a photomicrograph of the die, and Table 2.3 lists the area consumption and maximum
frequency of each component.
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Figure 2.7: Celerity implementation floorplan

Component Die area (mm2) Max frequency (MHz)
Rocket core 0.202 800

Manycore tile 0.024 1400
Low-power tile 0.024 800

BNN 0.356 800
PLL 0.006 –

LDO (controller) 0.002 –
LDO (decap) 0.074 –

Table 2.3: Celerity component area breakdown
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Figure 2.8: Celerity die photomicrograph after removal of bumps and top metal layer
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2.3.1 Manycore Implementation

Figure 2.9 shows the layout of a single tile, which contains a “Vanilla-5” core and the
routing logic for that node. A core implements the 32-bit RISC-V base instruction set and
the multiply/divide extension (RV32IM) in a 5-stage pipeline. Each tile contains 2× 4KB
SRAMs for instruction/data memories (IMEM/DMEM), and a 32-entry, 32b register file
implemented using two 1r1w latch-based memories. The router is a single-stage design,
allowing it to arbitrate, route, and send flits in a single cycle. In addition to providing low
latency, the area of the router is reduced over a multi-stage design. Because there are no
pipeline registers between nodes, flits take only 1 cycle per hop. Two-element FIFOs are
used at the input for each direction to hold packets in case of congestion. To implement both
rate limiting and memory fences, the router uses a source-controlled credit counter. The
credit counter is decremented on each packet injected into the network from a remote store,
and incremented when a remote store completes. Credits are returned over a separate 9-bit
NoC with the same architecture as in Figure 2.2. The per-module physical area breakdown
is listed in Table 2.9, with the NoC occupying only 1881 µm2 (7.8%) of the tile. The router
supports 80b transfers per cycle, which packages data, address, and commands into a single
flit. The router and core run on the same clock domain up to 1.4 GHz, allowing each tile
to both transfer 750 Gb/s and process 1.4 giga-RISC-V instructions per second (GRVIS).
Several gaps were created between rows of tiles to allow for electrostatic discharge (ESD)
cells and in-cell overlays (ICOVL) as required for fabrication. The total die area of the
manycore is 15.25 mm2 as fabricated with ESD and ICOVL (or 12.03 mm2 without). This
yields an area efficiency of 45.57 GRVIS/mm2 (57.77 GRVIS/mm2).

2.4 Measurements and Comparison to Prior Work

2.4.1 Partitioned Global Address Space

Celerity’s use of a partitioned global address space (Section 2.2.1) enables the manycore
to achieve a high compute density. Figure 2.10 shows the area overhead of a traditional
memory system (directory-based coherent cache) vs. Celerity’s PGAS system, demon-
strating that PGAS offers over a 20× reduction in area overhead. The comparison system
breakdown was extracted from Celerity’s RV64G control cores, with directory area conser-
vatively estimated from Sanchez and Kozyrakis [48]. The cost of removing these structures
is mainly the ease of programming that comes from shared memory. However, streaming
and highly parallel workloads often have well-defined dataflow patterns, which can enable
compilers to manage data movement and mitigate this cost (see Section 2.2.3.5).
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Figure 2.9: A manycore tile die photograph (top) and corresponding floorplan (bottom).
The die photograph has most metal layers removed.

Cell Type Area
(µm2)

%

IMEM 6,691 27.59
DMEM 6,691 27.59
RF 2,008 8.28
Core logic 2,473 10.20

ALU 485 2.00
Div 412 1.70
Mult 301 1.24
Pipeline/other 1,275 5.26

NoC 1,881 7.76
Endpoint FIFO 303 1.25
Credit counter 23 0.09
Router 1,555 6.41

Endcap/welltap 281 1.16
Filler 1,635 6.74
Unutilized 2,591 10.68
Total 24,251 100.00

Table 2.4: Physical area breakdown of each manycore tile
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Figure 2.10: Area breakdown for Celerity’s PGAS memory system (left) vs. a comparable
directory-based coherent cache (right)

2.4.2 Remote Store Programming

The remote store programming model (Section 2.2.3.2) disallows loads from remote mem-
ory to remove a low-performance programming paradigm. A node can freely load or store
to its local memory, but can only perform stores to remote memory. The use of remote store
programming in Celerity enabled a 10% reduction in router area over a router with remote
loads. In addition, pipeline stalls associated with long-latency remote loads are prevented.

2.4.3 Single-Flit Packets

Celerity implements a different flow control scheme compared to prior work. While worm-
hole routing is common due to its relative efficiency, it still has inefficiencies related to
packet ingestion in the network. Most wormhole schemes require head and/or tail flits to
reserve routes and communicate metadata. This results in network overhead, as sending a
single data flit results in 2-3 flits being injected into the network. In addition, wormhole
routing can cause head-of-line blocking when packet route reservations conflict.

Celerity instead implements a single-flit packet protocol, where the command, address,
and data of a packet is contained in a single flit. This flow control scheme offers several
benefits over wormhole routing:

• No head or tail flits – no overhead flits in a packet

• No head-of-line blocking because routes are not reserved (congestion can still occur)

• Small core-to-core latency, especially for adjacent cores

• An in-order pipeline can execute one store per cycle, because a store injects only one
flit into the network
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Work Routing
model

Arbitrary
destination

Head-of-line
blocking

Packet
throughput

Min. latency
(cycles)

Overhead
flit fraction

TILE64[13]
Piton[40]

Wormhole Yes Yes 0.33 / cycle h + n + t + 1 2 / (n + 1)

KiloCore
[14]

Wormhole Yes Yes 0.33 / cycle 2h + n + 1* 2 / (n + 2)
Circuit

switched
No N/A+ Not

Reported
Not

Reported
Not

Reported
Celerity Single-flit

packet
Yes No 1 / cycle h + n - 1 0

h hops, n data flits, t turns in the network path. Core↔router is 1 hop.
∗ KiloCore’s network is GALS and requires synchronization for each hop.
+ KiloCore’s circuit switched NoC can only be reprogrammed during the processor configuration phase.

Table 2.5: Comparison of flow control models

Table 2.5 provides a comparison of the single-flit flow control model versus the related
work, and Figure 2.11 provides an example of each flow control model sending one flit
of data to another node. The model allows the network to outperform prior works in both
packet throughput and latency for small data transfers. The difference in latency between
the models diminishes towards larger data transfers, however data streaming workloads fa-
vor smaller transfer sizes with smaller latency in order to allow processing at the next node
sooner. Critical paths in the design lie in both the core and NoC, although experiments show
that the NoC tends to be the limitation on frequency. In terms of impact on improvement
over related work, the NoC and core architecture both contribute significantly.

2.4.4 Performance

The primary workload used to benchmark the manycore is CoreMark, a computationally in-
tensive benchmark that stresses pipeline performance. CoreMark is ported to the manycore
platform by starting with the “barebones” implementation provided by EEMBC. With this
implementation, a simple linker script is created to identify which functions to distribute
to the manycore tiles versus the functions to run on the host control cores. CoreMark’s
parallelization interface is then used to load the program binaries to all manycore tiles and
run the program. The CoreMark benchmark enumerates the criteria to submit a valid Core-
Mark score, which Celerity adheres to. Unlike previously reported [46], the scores reported
in Section 2.4.4.1 do not use modified core benchmark code. A change in compiler version
and compiler flags allowed my team to fit the benchmark within a single tile’s IMEM, as
well as modestly improve the score.
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2.4.4.1 Experimental Results

To validate the manycore processor, Celerity runs CoreMark distributed across all cores
simultaneously. CoreMark is structured as self-validating benchmark: each iteration de-
pends on the previous iteration and a hash of the final state is used to check correctness.
Figure 2.12 identifies the operating configurations where CoreMark reports a correct result
for all tiles. The processor achieves a max throughput of 695 GRVIS at 1.4GHz and 0.98V –
the highest single-chip RISC-V throughput to date – and a max energy efficiency of 314.89
GRVIS/W at 500MHz and 0.60V. It achieves a record CoreMark score of 825,320, outper-
forming the next best score by more than 2×, as well as my team’s previously reported score
[46] by a small margin. The evaluation uses GRVIS as a measure of performance because
it signifies compliance with the RISC-V ISA. A custom ISA can increase efficiency by
tailoring instructions, but this extricates the architecture from the benefits of open-source
software and toolchains. In the comparison, non-RISC-V performance is quantified with
giga-operations per second (GOPS). For direct comparisons, GRVIS are GOPS, but GOPS
are not GRVIS. Table 2.6 compares Celerity against prior manycore works. In most metrics,
this work compares very favorably against related works. Celerity exceeds all compared
works for normalized NoC area (2.5×-44×), area efficiency (1.8×-160×), and energy effi-
ciency (4.2×-37×). Throughput measurements are normalized to 32-bit operations, under
the optimistic assumption that two 16-bit operations are equivalent to one 32-bit operation.

KiloCore [14] modestly exceeds this work in network aggregate and bisection band-
width, although a majority of its bandwidth comes from the statically-routed, circuit-
switched network. KiloCore also uses only 1.1KB memory per tile, whereas Celerity uses
8KB per tile. In terms of RISC-V performance, Lee et al. [36] report state-of-the-art in
single-chip GRVIS throughput, which Celerity outperforms by 267×.

2.5 Design Methodologies

Celerity was designed under the DARPA Circuit Realization at Faster Timescales (CRAFT)
program, whose goal was to reduce the design time for taping out complex SoCs. My team
designed and taped out Celerity in just nine months from process design kit (PDK) access,
which included:

• Coordinating graduate students spread across four universities

• Developing an implementation flow for an advanced 16nm FinFET node
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Figure 2.12: Shmoo plot of operation points

ISSCC ‘08[13] HPCA ‘18[40] JSSC ‘17[14] ESSCIRC ‘14[36] Celerity
ISA VLIW SPARC V9 RISC RISC-V RISC-V

Datapath Width 32-bit 64-bit 16-bit 64-bit 32-bit
Technology 90nm Planar 32nm SOI 32nm SOI 45nm SOI 16nm FinFET

Voltage 0.90 - 1.30 V 0.80 - 1.20 V 0.67 - 1.10 V 0.65 - 1.20 V 0.60 – 0.98 V
Areaa 232.16 mm2 29.37 mm2 57.41 mm2 3.08 mm2 15.25 (12.03c) mm2

Normalized Areaab 32.65 mm2 14.08 mm2 27.52 mm2 0.69 mm2 15.25 (12.03c) mm2

Normalized NoC
Router Areaab

~82894 µm2

(5x32 bit)
16214 µm2

(3x64 bit)
4784 µm2

(16 + 2x16 bit)
– 1881 µm2

(80 + 9 bit)
Cores (Threads) 64 (64) 25 (50) 1000 (1000)d 2 (2) 496 (496)

Frequency 750 MHz 500 MHz 1770 MHz 200 - 1300 MHz 10 - 1400 MHz
Power 10.8 W 2 W 39.6 Wd 0.96 W 7.47 W

Norm. Throughpute 144 GOPS 5 GOPS 885 GOPS 5.2 GRVIS 695 GRVIS
Network Aggregate

Bandwidthf
33.79 Tb/s 11.33 Tb/s 53.4 Tb/s (wormhole)

335 Tb/s (circuit) – 361 Tb/s

Network Bisection
Bandwidthg 1.92 Tb/s 0.96 Tb/s 0.58 Tb/s (wormhole)

3.65 Tb/s (circuit) – 4.00 Tb/s

Routing Model Wormhole Wormhole Wormhole+circuit – Single-flit packet
Energy Efficiencye 13.33 GOPS/W 2.50 GOPS/W 22.35 GOPS/Wd 5.42 GRVIS/W 93.04 GRVIS/W
Normalized Area

Efficiencyabe
4.41

GOPS/mm2
0.36

GOPS/mm2
32.16

GOPS/mm2
7.54

GRVIS/mm2
45.57 (57.77c)
GRVIS/mm2

a Area only includes die area allocated to tiles
b Area normalized to 16nm based on Contacted Poly Pitch (CPP) scaling
c Excluding ESD and ICOVL area
d KiloCore can only power 160 cores from its package. Power extrapolated to 1000 cores
e Throughput normalized to 32-bit GOPS/GRVIS
f Network Aggregate Bandwidth = (# usable links) * (link bandwidth)
g Network Bisection Bandwidth = (min. # links cut to bisect network) * (link bandwidth)

Table 2.6: Comparison to related works
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• Satisfying the CRAFT program constraints with only $1.3 million USD for non-
recurring engineering costs

To meet the aggressive schedule for Celerity, my team developed three classes of tech-
niques to decrease design time and cost: reuse, modularization, and automation.

2.5.1 Reuse

Reuse for hardware design accelerates both design and implementation time, as well as
testing and verification time. For Celerity, my team made heavy reuse of open-source de-
signs and infrastructures. We leveraged the Berkeley RISC-V Rocket core generator [10] to
implement the SoC’s general-purpose tier, allowing the reuse of Rocket’s testing infrastruc-
ture and the RISC-V toolchain. The same infrastructure was used for the manycore array’s
Vanilla-5 core. Because validation is usually more work than design, inheriting a robust
test infrastructure greatly reduced overall design time. We leveraged the RoCC interface
for all connections to the general-purpose tier. As part of our learning process with RoCC,
my team created the “RoCC Doc,” located at http://opencelerity.org.

Beyond the RISC-V ecosystem, we leveraged the BaseJump open-source hardware
components, which can be found at http://bjump.org. BaseJump provides open-
source infrastructure and frameworks for designing and building SoCs, including the Base-
Jump STL [52] for SystemVerilog, the BaseJump SoC framework, BaseJump Socket, Base-
Jump Motherboard, BaseJump FPGA bridge, and BaseJump FMC bridge, as seen in Fig-
ure 2.13. In Celerity, we built all of the RTL using the Basejump STL and SoC framework’s
pre-validated components and unit testing suite. We ported the BaseJump Socket to the
CRAFT flip-chip package and will use the BaseJump Motherboard for the final chip.

By leveraging the unit testing suite from BaseJump and RISC-V testing infrastructure,
we could focus our verification efforts primarily on integration testing. Using an FPGA
in place of the SoC, the BaseJump infrastructure allows for designs to be simulated in the
same two board environment they will be running in post-tapeout. All firmware and test-
bench code written during simulation will be reused during bring-up once the chip returns
from fabrication, giving us a robust verification and validation suite. Reuse is also enabled
by extensibility and parameterization. Due to the scalable nature of tiled architectures,
BaseJump STL’s parameterization, and the flexibility of our backend flow methodology,
we were able to extend the BaseJump manycore array from 400 cores to 496 to absorb free
die area. By changing just nine lines of code, we could fully synthesize, place, route, and
sign off on the new design in a span of three days.
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Figure 2.13: BaseJump open-source hardware components. The NoC, manycore, and high-
speed off-chip interface were implemented using STL. The fabricated chip conforms to the
socket definition and is placed in the motherboard’s socket. The motherboard connects
through an FMC connector to a ZedBoard hosting RISC-V testing infrastructure. Com-
munication between the motherboard and ZedBoard is handled with the open-source FMC
bridge code.

2.5.2 Modularization

One key challenge for this project was managing design teams spread across four physical
locations. Fine-grained synchronization between teams was not feasible, so we developed
techniques to modularize both our chip design interfaces and our interfaces between teams.

Many techniques we used can be compared to an agile design methodology as it applies
to hardware. We used a bottom-up design flow to build, iterate, and integrate smaller com-
ponents into a larger design. We also used a SCRUM-like task management system, where
we clearly identified and prioritized various tasks and issues, minimized synchronization
issues, and distributed tasks across team members without assigning rigid specialized roles.

We also defined tape-in [37] deadlines. These are simpler designs that were tapeout
ready before the deadline. This allowed us to stress-test our physical design flow early
in the design cycle, in addition to identifying big-picture problems early on, which we
found particularly useful when dealing with an advanced technology node. Each successive
tape-in incorporated an additional IP block, building up to what we see in Celerity. We
performed daily chip builds to ensure no changes broke the overall design and that we
always had a working design to tapeout.

To help modularize the RTL, chip component interfaces were established early. We
selected RoCC early on for on-chip communication and BaseJump for off-chip commu-
nication. Because we used BaseJump STL’s pervasive latency-insensitive interfaces, our
architecture-specific dependencies between components were minimized.
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2.5.3 Automation

CRAFT’s tight time constraints required that we employ higher degrees of automation to
accelerate the design cycle. We developed an abstracted implementation flow to minimize
the changes necessary for different designs to go from synthesis through sign-off. We
combined vendor reference scripts with an integration layer to coalesce implementation
parameters and separate scripts into design-specific and process-specific groups. We could
then quickly identify which scripts needed to be modified between designs.

We also took advantage of emerging tools and methodologies. We used the PyMTL
framework for rapid test-bench development using high-level languages and abstractions
rather than lowlevel SystemVerilog. In our BNN accelerator development, we used HLS to
drastically improve design space exploration and implementation time.

2.6 Conclusions

This research examined the speedy construction of new classes of chips in response to
emerging application domains. The approach was successful due to a heterogeneous archi-
tecture that offers fast construction, scalability, and heterogeneous interoperability through
the remote store programming model and advanced producer-consumer synchronization
methods like LR-LBR and token queues. At the same time, the design methodology
combines HLS for specialized tier accelerator development, open-source technology like
Rocket and BaseJump for key IP blocks, fast motherboard and socket development and
FPGA firmware, and principled SystemVerilog parameterized component libraries like
BaseJump Standard Template Library (STL). Finally, agile chip development techniques
enabled my team of geographically distributed grad students to quickly tape out a 16nm
design. Each approach targets the key goal of creating new classes of chips quickly and
with low budgets.
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CHAPTER 3

OpenROAD

Several academic EDA tools have been released; however, few are used in real tapeouts,
even by other academics. Robust open-source tools require feedback and direction from
users. To this end, OpenROAD employs end-users as internal design advisors who bring
with them the experience of multiple tapeouts and EDA tool flow development. This chap-
ter discusses the OpenROAD my work as a design advisor to bring OpenROAD from a
collection of tools to an end-to-end autonomous design flow. I discuss the design advisors
work to fill in the gaps for a full RTL-to-GDS design flow, assemble a full-flow test suite
reflective of real tapeouts, debug flow-level issues between tools, and bridge the gap be-
tween OpenROAD developers and others in the open-source community. Lastly, I discuss
OpenROAD’s long-term goal to become fully autonomous, and what that means from a
user’s perspective.

3.1 Introduction

Access to high-quality electronic design automation (EDA) tools, required engineering ex-
pertise, and lengthy project schedules have long been a barrier to hardware startups and
hobbyists. Restrictive licensing has also been a massive impediment to the academic com-
munity due to virtually all licenses prohibiting sharing of scripts or results. With this mo-
tivation in mind, The OpenROAD Project aims to create a fully autonomous, open-source
tool chain for full “RTL-to-GDS” digital layout generation. With such a tool, numerous
issues can be addressed, including engineering resources, licensing, collaboration, and re-
producibility [8, 9, 29].

A critical aspect of creating usable open-source software is to receive feedback and
direction from users. As such, OpenROAD employs a group of experienced digital SoC
designers as internal design advisors. Our job is to act as the first users of the OpenROAD
tools and form a quick feedback loop with developers in order to iterate software quickly.
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The original intent of the internal design advisor was to use real-world designs for tool
testing and feedback, as well as provide human intelligence to guide tool development
(similar to application or product engineers). Over the course of the project, however, it
became apparent that key responsibilities for realization of OpenROAD goals [8, 9] did
not fit cleanly into the project’s organization structure. As such, the design advisor role
has evolved to encompass several additional tasks which can be categorized under two
responsibilities:

Flow Development. Even with well-defined OpenROAD tool interfaces, orchestrat-
ing a full RTL-to-GDS flow is a non-trivial task. Since creating the previous iterations of
OpenROAD-flow [8, 9], the advisors have substantially overhauled the flow to transition
from a tool chain of stand-alone binaries to an integrated app. In addition, we are respon-
sible for interjecting flow-level solutions which increase autonomy and reduce burden on
developers. Such solutions act as initial scaffolding to improve autonomy from a user’s
standpoint and allow developers to focus on critical tool features.

Test Infrastructure. The integration of OpenROAD tools into a single app highlighted
the project’s need for continuous integration (CI) infrastructure (as noted by Kahng [29]).
The OpenROAD Project operates in a delicate situation of testing with proprietary com-
mercial data but developing with public infrastructure (e.g. GitHub). In addition, CI infras-
tructure requires maintaining good unit and integration tests for code coverage and metric
tracking. We have set up a Jenkins CI infrastructure to balance these demands and create a
secure but productive CI flow for the tool developers.

In this work, I discuss the background of The OpenROAD Project (Section 3.2), and
the main responsibilities of the internal design advisors (Sections 3.3 & 3.4) in order to
bring OpenROAD from a collection of tools to a full RTL-to-GDS flow. Next, I discuss
OpenROAD’s long-term goals of autonomy and quality, and the roadmap I want from a
user’s perspective (Sections 3.5 & 3.6). I conclude with our key lessons learned and goals
for OpenROAD (Section 3.7).

3.2 Background

The OpenROAD Project was launched in June 2018 within the DARPA IDEA program
to create an open-source, fully autonomous RTL-to-GDS flow. The RTL-to-GDS process
implements a register-transfer-level (RTL) description of a circuit into the Graphic Design
System (GDS) format, representing a mask layout which fabrication facilities use to man-
ufacture chips. This implementation process is broken down into several sequential steps,
generally referred to as a design implementation flow. Flows differ among designers for
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a variety of reasons, but the most basic flows include synthesis, floorplanning, placement,
clock tree synthesis (CTS), optimization, and routing. Verification is also important to
verify that the design is manufacturable and free from critical bugs.

“OpenROAD” or “the OpenROAD app” is a collection of physical design tools which
can take a Verilog netlist and perform placement and routing (PnR) to output a physi-
cal design in the Design Exchange Format (DEF). The OpenROAD app only covers the
PnR portion of the flow (floorplanning to routing1). The other important steps – synthesis,
DEF to GDS conversion, and verification – are performed using third-party open-source
tools (Yosys [58] and KLayout [33]). To fulfill OpenROAD’s RTL-to-GDS commitment,
“OpenROAD-flow” acts as a wrapper around these tools and forms a full design implemen-
tation flow. These tools are all available from github.com/The-OpenROAD-Project.

This past year, The OpenROAD Project has spent significant effort on support for a
commercial 14nm platform. With this milestone coming to a close, OpenROAD is entering
the second phase of the project and ready to focus on additional directions.

3.3 Flow Development

3.3.1 Original Intent

The initial task of the internal design advisors was to test the OpenROAD tools with previ-
ously taped-out designs and provide rapid feedback throughout the development process. It
quickly became apparent that a flow would be required to achieve this task; however, flow
development was not clearly defined at the launch of The OpenROAD Project.

OpenROAD started as a collection of separate tool binaries accomplishing various steps
of a design flow. The tools varied in maturity and some tools/steps were not initially avail-
able. In addition, the interfaces and expectations between tools were not concretely defined.
To address this, we needed a flow able to pass designs through all available steps provided
by the development team. This included the ability to skip or work around flow steps as
necessary. Therefore, the earliest iterations of our flow leveraged commercial tools to gen-
erate “clean” artifacts (DEFs, floorplans, guides, etc.) needed to exercise each tool/step.
The initial iteration of the flow chained steps together using GNU Make, and this flow has
continued to evolve with the maturing tools.

39

https://github.com/The-OpenROAD-Project


Alpha
(Jul '19)

Synthesis

Floorplan

Placement

Routing

STA

GDS

Beta
(Jan '20)

Synthesis

Floorplan

Placement

Current
(Aug '20)

Synthesis

Floorplan

Placement

Routing

STA

GDS

Data Prep Data Prep

DRC+

Supported
nodes

65nm

Supported
nodes

65nm
45nm*

Supported
nodes

65nm
45nm*

130nm

14nm
Interface

File-based
Interface
Database

Interface
Database

45nm*

* NanGate 45nm is a non-fabricable PDK
+ KLayout requires user-provided decks

Flow Flow Flow

LVS+

BEOL Fill

CTS

Routing

STA

GDS

CTS CTS

Figure 3.1: Evolution of OpenROAD-flow

40



3.3.2 Responsibilities

Maintenance of the OpenROAD-flow repository is now the largest and foremost respon-
sibility of the design advisors. While the OpenROAD app offers a collection of PnR
tools, there remains a huge gap between the OpenROAD app and a full RTL-to-GDS flow.
OpenROAD-flow provides wrappers around Yosys, the OpenROAD app, and KLayout to
fulfill this role. Yosys provides synthesis from Verilog RTL to netlist, OpenROAD provides
PnR from netlist to DEF, and KLayout provides DEF to GDS conversion as well as design
rule checking (DRC) and layout-versus-schematic (LVS) checking.

Figure 3.1 shows the evolution of OpenROAD-flow from its initial implementation [8,
9] to the current iteration. The largest improvement to OpenROAD-flow was the shift
from a file-based interface to a unified database interface. The alpha release of Open-
ROAD used separate binaries for each tool and relied on a patchwork of configuration
files and command-line arguments to run each tool. Once the tools were integrated into
a unified app1, all interfaces were also unified into a single binary with a Tcl interface.
OpenROAD-flow has expanded its support to include 14nm FinFET and the newly open-
sourced SkyWater 130nm platform. In addition, open-source DRC and LVS are available
through KLayout; however, very few process development kits (PDKs) have KLayout rule
decks available. Community-sourced decks are available for NanGate45 and are expected
for SkyWater130, but the outlook for other commercial PDKs remains dim.

In addition to adding more flow stages as shown in Figure 3.1, another key responsibil-
ity is simplifying the user’s flow interactions. To this end, the important data preparation
step aims to minimize the number of user adjustments needed to set up a commercial PDK,
such that it is usable by OpenROAD-flow. Optimization, while not explicitly shown, is
embedded in the placement and CTS stages.

3.3.3 Challenges

Developing and maintaining OpenROAD-flow has led to several challenges along the way
to meeting OpenROAD’s development schedule goals. In this section, I discuss some of
the most difficult aspects we faced.

3.3.3.1 Tool Synchronization

One of the main challenges for flow maintenance has been synchronization. OpenROAD-
flow acts as a wrapper on top of OpenROAD and other tools. Therefore, whenever the

1TritonRoute is a separate binary at time of writing, but integration is expected soon.
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underlying tools change, OpenROAD-flow must change as well. This problem bears resem-
blance to software libraries and packaging. However, OpenROAD developers frequently
update the application programming interface (API) or introduce new features, and they
look for feedback within on the order of hours or days. Therefore, synchronization occurs
at a scale that is too fine-grain to rely on software packaging.

Our approach to this problem relies on asynchronous, regular updates to OpenROAD-
flow. The current methodology is shown in Figure 3.2. OpenROAD-flow maintains a
reference to a specific OpenROAD commit (and other tools) via git submodules, which
allows OpenROAD-flow to maintain API synchronization with OpenROAD. When updates
are committed to OpenROAD, we asynchronously update OpenROAD-flow’s submodule
reference, perform API updates, and merge the changes into the master branch. This model
differs from the one described by Kahng [29] in a few regards. In particular, OpenROAD-
flow separates tests into small pipe-cleaning tests and large quality of result (QoR) tests
across separate Jenkins pipelines triggered by separate branches. The main reason for
this strategy is to reduce build server load: if a large QoR test is triggered from every
commit, the build server can quickly become overloaded. We instead use automatically
triggered small tests for every commit to the development branch, and then large tests only
on merges to the “staging” branch. Merges to the staging branch occur at a regular interval
(i.e., nightly), and merges to the master branch are triggered by a successful QoR test.

3.3.3.2 Tool Workarounds

In cases where the root issue resided between tools, the design advisors would often be able
to perform external processing as a workaround for lack of tool support. This allowed de-
velopers to focus on more critical issues. Some previous examples include fixing incorrect
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or inconsistent DEF outputs between tools, fixing technology-dependent tool issues, and
adding partial support for yet-to-be-supported file formats (e.g., interconnect parasitics).

Adding workarounds remain a balancing act, however, as they often add technical debt
which burdens future development. Several of these workarounds have enabled the devel-
opment team to hit our schedule for 14nm node support, but now underlying issues must
be thoroughly investigated to reduce technical debt.

3.3.3.3 Parameter Tuning

Virtually all EDA tools require human input to identify design intent and constraints. While
OpenROAD’s long-term goal is to automate much of this process, OpenROAD developers
today need reasonably selected inputs in order to debug algorithms and identify smaller-
scale problems. The design advisors have often provided the human intelligence to select
and tune design parameters, such as design area and utilization, cell placement padding, and
global routing settings. Parameter tuning is a normal part of designing with EDA tools and
is quite straightforward for experienced designers. The more challenging aspect of param-
eter tuning is trying to identify tool pitfalls to the developers. For example, if decreasing
global placement density and reducing global routing per-layer resource allocations do not
result in reduced routing violations, then the issue may be that the detailed placer is causing
pin access issues for the detailed router. As design advisors, we have to be familiar with
the entire flow and process rules in order to narrow down issues appropriately.

In addition, the challenge becomes more difficult when applying this tuning across plat-
forms. The design advisors are expected to maintain good configurations for each design
across all supported nodes - from 130nm down to 14nm. The diverse routing rules, cell
libraries, metal stacks, etc. across supported nodes dictate separate parameters across plat-
forms, in addition to tuning designs.

3.3.3.4 Generic Node Enablement

Detailed routing for FinFET technology nodes is a significant challenge for academic re-
search. A routing tool must understand all of the hundreds of complex design rules in
order to properly route designs without design rule violations (DRVs). To the best of our
knowledge, no academic detailed router other than OpenROAD’s TritonRoute [6] supports
FinFET (sub-20nm) nodes. Even among commercial tools, few commercial routers suc-
cessfully route FinFET-node designs without DRVs.

As internal design advisors, helping TritonRoute to achieve zero DRVs with limited
time and resources was a significant challenge. Following the “generic node enablement”
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methodology [29], we made and enforced assumptions in routing rules to minimize the
required design rule support:

• Unidirectional and on-track routing. Only on-track routing in the preferred direc-
tion is allowed. Bidirectional routing triggers complex design rules, such as spacing
to convex or concave corners and color-aware design rules for multiple patterning
technology layers.

• Minimum-width routing. Non-default routing (NDR) is not allowed. Wide metals
trigger width-aware spacing rules, via enclosure rules and minimum numbers of vias.

• On-track pins for macro cells. Macro cells, such as SRAMs and other IPs, often
have non-uniform pin widths and shapes. By creating “wrapped LEF” views with
on-track, minimum-width pins, we can provide a view with simplified pin access
without violating the two previous assumptions.

• Routing-friendly P/G distribution. Minimum-width routing is generally not an
option for the power delivery network (PDN). In order to avoid forcing the router
to consider NDRs, OpenROAD’s PDN generator adds routing blockages and uses
on-track, minimum-width stacked vias between power stripes. This allows the router
to perform clean routing without any additional rule support.

3.4 Test Infrastructure

3.4.1 Design Suite

3.4.1.1 Original Intent

A critical aspect of making OpenROAD a usable tool is ensuring it is tested on real-world
design data. The original intent of the design advisors was to curate a suite of test cases
based on previous tapeouts of real designs. We quickly ran into several issues that prevented
us from creating meaningful test cases for the developers.

Candidate designs that we identified for test cases proved too complex, and they over-
whelmed the early OpenROAD tool capabilities. Our initial test cases had many advanced
features not yet supported by OpenROAD, such as dense floorplans, multiple power do-
mains, multiple clocks, etc. Additionally, some designs relied on circuit-level techniques
which were incompatible with OpenROAD’s all-digital design flow, or contained propri-
etary IP which prevented transmission to the developers.
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To address this, we stripped down the test cases to accommodate the tool capabilities,
project milestones and specific features we needed to evaluate. As the tools matured, we
progressively tightened design constraints and added more test cases from both the design
advisors and the open-source community.

Design Description Source Instance
count

Macro
count

RTL
taped out?

gcd Greatest common denominator Authors 250 0 Yes
dynamic node 2D mesh router [11] 8,090 0 Yes

vanilla5 Vanilla-5 CPU core [18, 46] 12,300 4 Yes
ibex Ibex CPU core [4] 14,600 0 Yes
aes AES encryption [2] 15,000 0 Yes

bp fe top Black Parrot CPU front-end [43] 24,400 11 Yes
tinyRocket Rocket generator CPU [10] 25,100 2 No*
bp be top Black Parrot CPU back-end [43] 39,400 10 Yes

jpeg JPEG encoder [1] 52,600 0 Unsure
swerv SweRV EH1 CPU (core only) [3] 82,300 0 Yes

swerv wrapper SweRV EH1 CPU (with macros) [3] 83,900 28 Yes
black parrot Black Parrot CPU core [43] 121,000 24 Yes

ariane Ariane CPU core [59] 150,000 37 Yes
coyote Coyote CPU core [18, 46] 222,000 15 Yes

bp multi top Black Parrot quad-core CPU [43] 852,000 196 Yes
* several chips have been taped out using the Rocket generator, but tinyRocket RTL has not

Table 3.1: OpenROAD-flow design suite. Instance counts are collected post-synthesis from
Yosys with a commercial cell library.

3.4.1.2 Responsibilities

OpenROAD-flow now maintains a suite of designs containing source RTL and multi-
platform constraints. The suite is a combination of open-source designs provided by both
the design advisors and the community (summarized in Table 3.1). This suite provides
several properties critical to maintaining an open-source flow:

• Diverse - The designs range from a few hundred instances to over 400k instances.
Small designs allow developers to pipe-clean and debug tools quickly. In addition,
users can run small designs quickly to validate their tool and flow setup. Large
designs provide more complex developer test cases as well as benchmarks for QoR.

• SoC-level - OpenROAD-flow provides full-chip designs with I/O rings, enabling
developers to test tools at the SoC level rather than only at the block level.2

2A lack of open-source I/O cells limits what can be distributed publicly. The SkyWater130 platform plans
on releasing I/O cells, and we expect to incorporate them shortly thereafter.

45



• Compact - OpenROAD-flow provides a variety of test cases, but not so many that
full regression testing becomes infeasible. The included designs are curated to be
representative of a spectrum of real-world designs.

• Real - Almost all of the included designs have been taped out and are representative
of real-world designs.

• Cross-platform - All designs are platform-independent and can be ported across
processes. Macros must be regenerated for each platform, but the interfaces are
designed to require no source changes.

In addition to design sources, we maintain flow configuration parameters for each de-
sign, including SDC and OpenROAD parameters. As the tools change, changing design
parameters may be warranted. For example, placement density may increase over time
as OpenROAD becomes more capable and can realize the benefits from shorter inter-cell
distances without incurring DRVs.

3.4.1.3 Challenges

The main challenge to maintaining the design suite is likely tool compatibility. Many of
our designs’ sources are in SystemVerilog, which is only partially supported by Yosys.
Our solution was to automatically convert the source to Verilog and maintain the generated
source in the repository. This solution unfortunately loses the semantics and readability
of the original designs, but it satisfied our use case of obtaining a test design. Many new
open-source efforts in SystemVerilog parsing and conversion have arisen since the start of
the OpenROAD Project, and our existing approach may be revisited as these efforts mature.

3.4.2 Continuous Integration

3.4.2.1 Original Intent

Continuous integration was another area which was not clearly enumerated in the original
project task structure. Writing tests is often considered a responsibility of the programmers
who write the code, and it was believed that regression testing could be handled by indi-
vidual developers. Such a structure was sensible at the beginning of the project due to all
of the tools being self-contained programs. However, several issues limited the scalability
of this approach:

• Issue reporting - Even with developers being responsible for unit tests and design
advisors for integration tests, problems are reported for the tool which fails and not
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necessarily the tool which creates the problem. This behavior can create a “hot-
potato” issue where developers have to pass the issue around to figure out the root
cause.

• Delayed feedback - Lag time between introducing a change and receiving design
advisor feedback inherently limits the rate at which developers can commit stable
updates.

• Portability - Some code changes may only be stable in the developer’s environment,
where the code was tested, and unstable elsewhere.

With these problems, it became clear that investment in a continuous integration solu-
tion would be required to move forward. With CI for both unit tests and integration tests,
developers can immediately pin down which code change broke the full-flow tests.

3.4.2.2 Responsibilities

The design advisors are partially responsible for maintaining the Jenkins CI infrastruc-
ture for the whole project, and wholly responsible for maintaining regression tests for the
OpenROAD-flow repository. As mentioned in Section 3.3.3.1, we update the submodule
reference to OpenROAD regularly and perform full-flow regression tests on the tools. Up-
dates which pass all regression tests (which is currently every design in OpenROAD-flow’s
design suite) will be pushed to the master branch and be ready for use by the community.

3.4.2.3 Challenges

OpenROAD’s CI has faced two main challenges.
Test scale. EDA tools are renowned for consuming significant computation time, and

OpenROAD is no different. The largest designs in the OpenROAD-flow design suite can
take more than 12 hours to run, meaning that running the full test suite on every push
is not feasible. Instead, we adopt the approach mentioned in Section 3.3.3.1. A subset
of test cases are triggered on every commit to the development branch, and the full test
suite is only run nightly. The small tests are curated to run in a small amount of time, fail
quickly if a change completely breaks the flow, and include designs both with and without
macros. Our small test currently completes in under 30 minutes and includes gcd, aes, and
tinyRocket. Our large test includes the full design suite and takes approximately 12 hours
when fully parallelized.
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Private tests. Using real, commercial platforms is critical to testing tool correctness.
However, nearly all commercial platforms are regarded as trade secret and require signif-
icant security to ensure their privacy. Therefore, neither typical open-source CI practices
nor closed-source CI practices fit our testing requirements. To maintain security but still
incorporate open development, the private CI server can only test protected branches and
only reports details back to trusted developers.

3.5 Towards Full Autonomy

While The OpenROAD Project has made long strides toward more automation, many com-
plex challenges remain. Our main goals are to (1) focus on improving the user experience
in the short term, and (2) focus on improving autonomy in the long term.

3.5.1 Improving User Experience

Achieving full autonomy is no small feat and we expect it to take a significant amount of
time. In the short term, we aim to improve the user experience so that providing human
input is more intuitive and tool issue resolution is less cumbersome. The following subsec-
tions detail key milestones we want to see from The OpenROAD Project as designers.

3.5.1.1 Improved Documentation

Significant developer effort was invested in achieving a tapeout-ready design in a 14nm
FinFET node. After completing this goal, we propose providing several resources that
users have come to expect from commercial tools:

• Documentation on all required OpenROAD-flow input files/ parameters, and instruc-
tions on how to generate/select them.

• Tutorials for setting up new designs and new platforms.

• Documentation, uniformity, and adjustable filtering for all tool messages (info, warn-
ing, error, and critical).

• Generated documentation for OpenROAD code and APIs.

Common feedback from community members indicates that OpenROAD-flow’s biggest
hurdle is determining the source of errors – whether from user parameters, user designs,
or tool bugs. We believe the points above, particularly the improvement of tool messages,
will enhance users’ abilities to resolve issues themselves.
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3.5.1.2 Improved Access

Open software installation needs to be easy, fast, and widely available. Currently, Open-
ROAD’s only officially supported OS is CentOS 7. We advocate adding official support to
more operating systems, including CentOS 8 and Ubuntu 18, by testing builds in our CI
system. All operating systems which support OpenROAD, KLayout, and Yosys dependen-
cies should be able to build and run OpenROAD-flow, even without official support.

We also advocate making software packages available in the long term. The main diffi-
culty with packaging is that OpenROAD-flow directly depends on OpenROAD’s frequently
changing API, as mentioned in Section 3.3.3.1. The current solution of git submodules only
works well when building from source. Versioning also becomes an issue, as matching a
version of OpenROAD-flow with the corresponding version of OpenROAD would be cum-
bersome and unintuitive. This is currently an open problem, but we believe packaging is
important to simplifying access to OpenROAD.

3.5.2 Reducing Manual Effort

The goal of full autonomy is reducing the number of required user inputs. OpenROAD-flow
is currently in-line with commercial workflows in terms of manually specifying parameters
and fine-tuning a design with human guidance. To reach full autonomy, these human inputs
will need to be replaced with machine intelligence.

OpenROAD-flow currently requires about 50 configuration parameters to be set per-
process, not including the PDN, I/O, or design-specific configurations. For an inexperi-
enced user, setting these parameters correctly can be difficult. We propose aggressively
reducing the number of required manual parameters by replacing them with ones automat-
ically extracted from platform data. This will allow OpenROAD-flow to reduce the level
of experience needed to set up new platforms, while still allowing expert users to manually
tune parameters if desired.

One such example parameter is the target design utilization (cell density). Setting this
parameter can be a difficult task: a utilization target that is too high will blow up tool run-
time and potentially provide an unroutable design; on the other hand, a utilization that is
too low can turn competitive power-performance-area (PPA) results into non-competitive.
The maximum utilization often correlates most strongly to the process, but can also be in-
fluenced by the design. To automate, OpenROAD will need heuristics to select a utilization
which balances runtime with PPA based on process and design characteristics.
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3.6 Towards Improved Results

In contrast to many commercial tools, The OpenROAD Project sees autonomy as a primary
constraint and QoR as secondary. This means that OpenROAD will focus on providing a
clean and manufacturable design, without human intervention, over improvements to PPA.
However, improving QoR is not always orthogonal to autonomy, as improved algorithms
can lead to reductions in design rule violations. Improving QoR is also important for in-
creasing the user base, as low QoR can lead users towards closed-source proprietary tools.

3.6.1 Inter-tool Feedback

OpenROAD’s shift from standalone binaries to an integrated app was a major advancement
due to the common database substrate. This common substrate allows tools to interact with
each other much more easily, but OpenROAD is only beginning to take advantage of this.
We advocate focusing on mechanisms which allow inter-tool feedback to enhance QoR.

For example, the global and detailed placers focus mainly on half-perimeter wire length
and cell displacement as their main optimization metrics. However, pin access is a primary
constraint which can determine whether the router will be able to perform clean routing.
Because of this limitation, users may try to reduce placement density, increase cell padding,
and/or disable use of certain standard cells to avoid DRVs. Yet, macro placements in the
floorplan, or the setup of global routing layer resources, could ultimately turn out to be
“the culprit”. We would like to see OpenROAD incorporate mechanisms to make upstream
tools more aware of downstream problems so that users can save iteration time and achieve
higher QoR. Simple versions of this might see the router’s pin access analysis invoked by
the detailed placer, or the global router being run under the hood of the placer. The common
database substrate could also enable greater empowerments of OpenROAD’s tools – e.g.,
the router curing a pin access-induced DRV by modifying the detailed placement.

3.6.2 Automatic Clock Gating

Automatic clock gating (ACG) is one of the most significant features that OpenROAD-
flow does not yet support. Traditionally, ACG is implemented as part of synthesis, but
Yosys does not currently support ACG. Due to Yosys being a third-party tool with separate
infrastructure, addition of ACG may be difficult in that respect. We believe that the benefits
to power and area are worth pursuing. We advocate that OpenROAD investigate a path
towards implementing ACG, whether by upstreaming changes to Yosys, or by working
within OpenROAD on a post-synthesis netlist.
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3.6.3 Parasitic Extraction

Parasitic extraction is a key step which has been missing from OpenROAD-flow. We
have worked around the issue by (1) extracting per-unit parasitics, (2) multiplying by wire
length, then (3) derating to correlate with extracted parasitics. Parasitic correlation can be
a cumbersome process, and more importantly, still relies on an external golden tool for
accurate data. The project has invested significant effort toward bringing up a parasitic
extraction tool, OpenRCX [5], which is expected to be introduced to OpenROAD soon.

OpenRCX will significantly aid in parasitic calibration as it reduces the trial and error
from per-unit parasitics, but it still faces the issue of calibration from a golden model, which
often uses data in an encrypted, unreadable format [29]. We advocate that OpenROAD
explore two different paths for parasitic extraction:

• Automatic golden correlation - Proprietary golden model use is unavoidable for
most commercial platforms. Commensurate with OpenROAD’s vision, working with
these golden models should be as automated as possible. For example, OpenRCX
creates DEFs to provide to a 3D solver, and the user need only provide the corre-
sponding parasitics (SPEFs) back to OpenRCX.

• Full-stack solution - The release of the open-source SkyWater130 platform provides
a tremendous opportunity for OpenROAD. We advocate that OpenROAD develop a
fully open-source parasitic extraction stack using the PDK.

3.7 Conclusions

The OpenROAD internal design advisors have greatly helped OpenROAD to get off the
ground. Our expectations changed over time as we better understood the challenges facing
open-source EDA flows, and we have learned important lessons along the way:

• EDA is not typical open-source software - Open-source projects typically have
access to open data, whereas EDA must work with proprietary data to be practical.
Proprietary data necessitates additional infrastructure and maintenance.

• Test early and test often - An RTL-to-GDS tool has an extraordinarily high min-
imum viable product of “placed and routed chip”. Breaking down test cases into
appropriate scope and complexity for early testing is incredibly important.

• Expect the unexpected - Even with significant EDA experience across my team,
several unforeseen tasks arose. Project members stepping up to handle tasks outside
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their expertise significantly helped to keep the project moving forward.

We also have an optimistic outlook for OpenROAD’s future, and we have identified
some features that would offer the most benefit from a designer’s perspective:

• Improved user experience - Intuitive, accessible, and documented software is im-
portant for reducing user effort. While full automation is a long-term strategy to
improving the user experience, improving documentation and accessibility can pro-
vide quick returns on investment.

• Improved quality - The easier it is to get high-quality results from OpenROAD,
the easier it will be to get community investment in it. Features such as inter-tool
feedback, automatic clock gating, and accurate parasitic extraction can significantly
improve QoR.
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CHAPTER 4

SpeEDAr

An overarching theme from both Celerity and OpenROAD was that shifting work to auto-
mated tools is frequently more efficient than manual work. This is a fairly evident state-
ment, but it also means automated tools are at times not more efficient than manual work.
Designing hardware is about striking the balance between manual effort and automated ef-
fort to minimize the design schedule. Figure 4.1 illustrates design time and effort with and
without the slowing of Moore’s Law. In this illustration, effort represents the work out-
put of the engineer or automated tool, the combined effort required represents the design
complexity, time represents the total wall time used to achieve that effort, and the design
schedule is determined by the combined engineering and automation time.

In the first scenario, Moore’s Law enables designers to maintain a fixed design schedule
each generation due to offloading the increased complexity to the EDA tools. The expo-
nential increase in complexity is paid with increasing effort from the EDA tools, but with
fixed tool time. In the second scenario, Moore’s Law is slowing. Automation alone can-
not keep up with design complexity without dramatically increasing the design schedule.
Therefore, a new balance is struck between engineering effort, automation effort, and total
complexity. In this instance, some design complexity is sacrificed, some engineering effort
is added, and the time constraint for automated tools is relaxed. The net effect is that with
Moore’s Law slowing, designs take longer with more engineering effort for a relatively less
complex design.

Due to EDA tools’ issue of closed source (See Section 1.3.2), Celerity treated the au-
tomation time and effort as a hard constraint and developed methodologies to minimize the
design schedule. As an example, careful partitioning of the design hierarchy and reusable
scripting enabled our team to extend Celerity’s manycore array from 400 cores to 496 cores
in just 3 days, including verification and signoff.

With the stable release of the OpenROAD app, a platform now exists for full EDA
flow introspection, the likes of which haven’t been available in decades, possibly ever (See
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Figure 4.1: Tool effort

Section 1.3.2). OpenROAD enables examining the automation side of the design sched-
ule for potential improvements. As demonstrated in other fields such as machine learning,
hardware accelerators can be applied to computationally intensive workloads to dramat-
ically reduce computation time over CPU substrates. Thus, OpenROAD can be used to
investigate hardware accelerators for EDA in order to improve automation time/effort.

4.1 Introduction

In Section 1.4, Sirius presented a roadmap for accelerating computationally intensive work-
loads. Chapter 3 presented both OpenROAD, an open-source EDA tool, and OpenROAD
Design Suite, a benchmarking suite for EDA tools. Following the direction of Sirius, Open-
ROAD can be used to characterize the EDA implementation flow. This characterization is
presented in Section 4.2. Using this characterization, I identify the key stages of com-
putation in the end-to-end flow and analyze their feasibility for acceleration. From this
characterization, I select detailed routing (performed by TritonRoute) to examine for hard-
ware acceleration, and I explore the TritonRoute algorithm in more detail in Section 4.2.1.
I then examine prior work in the area of detailed routing hardware acceleration and identify
the insufficiency of prior work to meet the needs of TritonRoute (Section 4.3). Section 4.4
presents SpeEDAr, a hardware accelerator for detailed routing, and Section 4.5 presents
the simulated performance impacts of SpeEDAr on the entire OpenROAD flow.

The key contributions of this work are as follows:

54



CPU Intel Xeon W-2245
Base Frequency 3.9 GHz
Max Frequency 4.7 GHz
Cores (threads) 8 (16)

Cache 16.5 MB
Memory 256 GB

Disk 2 TB NVMe Flash

Table 4.1: OpenROAD benchmark machine specifications

• I characterize OpenROAD-flow, an open-source EDA end-to-end implementation
flow. To the best of my knowledge, this is the first published characterization of
a full state-of-the-art EDA flow.

• The key computational steps of OpenROAD-flow are identified, including the de-
tailed router TritonRoute.

• I examine previous accelerators for detailed routing and identify the disparity be-
tween TritonRoute’s requirements and prior work.

• I present SpeEDAr, an accelerator for TritonRoute’s detailed algorithm. SpeEDAr’s
performance is examined both in the context of detailed routing and in the full flow,
yielding on average 74× and 1.20× speedups, respectively.

4.2 OpenROAD Software Characterization

Section 3.4.1 presented OpenROAD-flow’s built-in design suite, which enables convenient
access for OpenROAD software characterization on real workloads. These designs run out-
of-the-box with OpenROAD-flow with the included open-source PDKs. OpenROAD-flow
also runs with commercial PDKs, provided that the PDK is linked to the flow. For this
software characterization, I use all available benchmark designs for the OpenROAD pub-
lic platforms (nangate45, and asap7) and private platforms (tsmc65lp and gf12)
at the time of writing. Using the CPU platform described in Table 4.1, OpenROAD is
benchmarked with the OpenROAD Design Suite (via OpenROAD-flow’s Makefile). All 16
threads are used for any multithreaded flow steps. The runtimes and breakdowns for each
step are shown in Figure 4.2 and the normalized breakdowns are shown in Figure 4.3.

From these measurements, it is shown that detailed routing and synthesis consume 41%
and 30% on average, while each other workload consumes less than 7% on average. Mean
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Figure 4.2: OpenROAD wall time breakdown for each workload.
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Figure 4.3: OpenROAD normalized wall time breakdown for each workload.

56



values were calculated as the arithmetic mean of the normalized components. From this
characterization, several insights can be realized about the workloads:

• Detailed routing and synthesis are the two most time-consuming workloads

• For more advanced nodes (asap7 and gf12), detailed routing dominates the exe-
cution time. This stands to reason because the routing rules for advanced nodes are
significantly more complicated than older technologies

• For planar nodes (nangate45 and tsmc65lp), synthesis overtakes routing for
the most time consuming. This is mostly due to detailed routing consuming less time
rather than synthesis consuming more time.

• Detailed routing is the only (significant) stage which is multi-threaded, and was char-
acterized with 16 threads in this work. OpenROAD’s synthesis engine, Yosys, is
single-threaded. Parallel logic synthesis algorithms are used by commercial tools,
however Yosys currently does not implement any.

For the remainder of this work, I focus on detailed routing as the primary candidate for
acceleration. Not only is detailed routing the largest time consumption on average, but the
time consumption is significantly greater among designs in advanced nodes.

4.2.1 Detailed Routing Algorithm

OpenROAD uses TritonRoute [30, 32] for its detailed router. TritonRoute is one of the only
steps in OpenROAD which is multi-threaded, yet it still consumes a significant portion of
wall time. TritonRoute consumes on average 40% of the total flow time using 16 threads
on the benchmark machine. In this section, I explore the detailed routing algorithm in more
detail.

TritonRoute is composed of 5 main phases: route guide pre-processing, design rule
lookup table generation, pin access, track assignment, and detailed routing. To avoid con-
fusion with the name of the flow step, TritonRoute’s detailed routing phase will be referred
to as the “search” phase.

4.2.1.1 Route Guide Pre-Processing

Prior to running TritonRoute, the global route step will create a list of guide segments as
input to TritonRoute. A guide segment is a rectangular segment that identifies the sug-
gested region and layer on which to route a net. Groups of adjacent guide segments form
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Figure 4.4: TritonRoute’s guide pre-processing [32]

Figure 4.5: TritonRoute’s LUT entry types: (a) vertical via to jog, (b) horizontal via to jog,
(c) vertical via to via, (d) horizontal via to via, (e) vertical jog to jog, (f) horizontal jog to
jog [32]

a route guide as guidance on how to route a net from source to destination. The minimum
granularity of a route segment is typically 10-15 metal tracks (OpenROAD uses 10 metal3
tracks), referred to as a GCell. The purpose of this step is to simplify the routing problem
by breaking it into separate steps. Global routing seeks to allocate routes such that routing
tracks are not over-congested, and detailed routing performs the actual routing of wires
with the focus of avoiding design rule violations.

As the first phase, TritonRoute pre-processes the guides into a standardized format.
Figure 4.4 from Kahng et al. [32] illustrates this process. The route guides are first split
into segments based on the preferred routing direction of the layer (Figure 4.4b). These
segments are then merged such that adjacent guides along the same preferred direction
form a single route guide (Figure 4.4c). Guide segments in the non-preferred direction are
then moved to an adjacent layer so that the guide is in the preferred direction (Figure 4.4d).
The final guides appear as shown in Figure 4.4e.

4.2.1.2 Design Rule Lookup Table Generation

The second phase of TritonRoute is lookup table (LUT) generation. TritonRoute reads the
routing rules provided by the technology kit and simplifies them into a lookup table. Fig-
ure 4.5 from Kahng et al. [32] shows the list of entries in the LUT, which identify minimum
distances among vias (changes in layer) and jogs (turns in the same layer). TritonRoute uses
the LUT during the search phase to avoid routing violations.
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Figure 4.6: An example of a TritonRoute pin access strategy [31]

4.2.1.3 Pin Access

The third phase is pin access, whereby TritonRoute identifies access points on each pin.
An access point is a potential point where a route can connect to a pin. A group of access
points together form an access strategy. Figure 4.6 from Kahng et al. [31] illustrates one
example of an access strategy. Certain groupings of access points are preferred because
they reduce the likelihood of causing congestion and design rule violations near the pin.
Pin access strategies are formed for each pairing of standard cells to identify candidates
when standard cells abut each other. These pin access points ultimately will form the
source and destination nodes when performing the path search.

4.2.1.4 Track Assignment

TritonRoute performs track assignment during the next phase of the algorithm. Because
the input guides represent multiple tracks that TritonRoute can use to route, it must match
nets to tracks; TritonRoute uses a greedy algorithm to do so. The matching is done to try to
minimize the amount of congestion, that is, the degree to which wires overlap each other
in their track assignment. An example of this process is shown in Figure 4.6.

4.2.1.5 Search (Detailed Routing)

The final phase of TritonRoute is the search phase, illustrated in Figure 4.8. First, Tri-
tonRoute breaks down the chip into groups of GCells, called a route box (Figure 4.8a).
A route box is adjustable in size, but it must be an odd square of GCells (e.g. 3×3, 5×5,
7×7). Larger route boxes can offer better solutions because they offer the search algorithm
more space to find valid routes. On the other hand, larger route boxes also increase runtime
due to the larger search space. TritonRoute uses a 7×7 route box by default as a balance
between search quality and runtime.
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Track 1

Track 2

Track 3

Figure 4.7: An example of track assignment for 7 routes to 3 tracks. Red areas indicate
over-congestion.

Once the route boxes are formed, each one is pushed into a routing queue (Fig-
ure 4.8b). The routing queue is a serial data structure that functions as a work queue for
parallel processing. TritonRoute creates a number of worker threads specified by the user,
and each worker thread atomically pops the routing queue until empty (Figure 4.8c).

Within a worker thread, TritonRoute runs an A* search to search for a path from one
of the source nodes to one of the destination nodes (Figure 4.8d). A key detail about
TritonRoute’s search is that multiple source nodes and destination nodes can exist for a
single path. Each source is assigned an initial cost based on the pin access mentioned in
Section 4.2.1.1, and the search terminates once any of the destination nodes are reached.
TritonRoute notably differs from a true A* search because the design rule costing function
causes it to be inconsistent, therefore a node has the possibility of being revisited. Tri-
tonRoute does not always find the lowest-cost route because it limits the number of times
a given node can be expanded; by default, the limit is two expansions. The authors state
that the reasoning for this limitation is to prevent excessive runtime and searching. After
completing the search, TritonRoute backtraces the path and updates the associated costs for
each node in the route box (Figure 4.8e). This process is repeated for each net within the
route box.

The next step in the algorithm is for TritonRoute to wait and synchronize the worker
threads to ensure all nets have been routed. Then, it performs geometry checking (design
rule checking) on each route box (Figure 4.8f). The route box is bloated slightly to ensure
that shapes outside the route box are accounted for when checking design rules. The graph
is then updated with the DRC costs (Figure 4.8g).

Steps a-f combined form one iteration. TritonRoute continues iterating with updated
costs until the design either reaches 0 violations or the maximum number of iterations.
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Figure 4.8: Flow diagram of TritonRoute’s routing (search) phase.
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4.2.2 Detailed Routing Characterization

With TritonRoute as the primary acceleration candidate, I further examine the computa-
tional breakdown of TritonRoute on the benchmark platform. Profiling with Intel VTune
reveals that FlexGridGraph::search() consumes a significant portion of the run-
time: on average 41%. This function represents the A* search phase of TritonRoute men-
tioned in the previous section. The pre-processing components do not compose a significant
portion of the workload, which follows from being executed only once at the start of Tri-
tonRoute. Additionally, geometry checking composes a significant, albeit smaller, portion
of the execution time at 11.5%.

This characterization demonstrates that the A* search is the key computational ker-
nel underpinning TritonRoute, and it forms a prime target for acceleration. By combining
the flow-level characterization with the TritonRoute characterization, this single function
consumes on average 22% of the total flow runtime. In the next section, I examine Triton-
Route’s particular implementation of A* search, as well as prior work in accelerating this
class of workload.

4.3 Related Work

Although this work is the first (to the best of my knowledge) to characterize an end-to-end
implementation flow and identify the key computational kernels, other works have previ-
ously identified detailed routing as an important workload. However, the most recent work
in this area by Nestor and Lavine [41] dates to 2007, when the most advanced technol-
ogy node commercially available was a 45nm planar process. Routing requirements for
modern finFET nodes (<20 nm) have dramatically increased since then, including a more
than doubling of number of routing rules, double patterning, and more. TritonRoute was
designed to address these modern technology nodes, and as such, differs substantially from
the algorithms targeted by previous hardware accelerators for detailed routing. This section
will discuss previous work and how the requirements for TritonRoute differ.

4.3.1 Lee’s Algorithm Accelerators

The key work that underpins most detailed routing algorithms is Lee’s Algorithm [35].
Lee’s Algorithm describes a breadth-first-search approach to finding a minimum path from
a source node to a destination node on a grid. The greatest strength of the algorithm is
that it finds a shortest path, if one exists. The drawback to this algorithm is that it is
computationally expensive to perform a breadth-first search. As such, derivatives of Lee’s
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Algorithm have been developed to reduce the computational cost of the search, such as the
A* algorithm. The key difference is that the A* algorithm uses a heuristic to estimate cost
to the destination node, which allows the algorithm to prioritize searching in the lowest-cost
direction.

Prior hardware approaches to detailed routing have proposed using multiple processing
elements (PEs) to compute the search expansion in parallel, thus reducing the search time.
Previous full-grid approaches [28, 47] use a PE to represent each node in the graph, whereas
virtual-grid approaches [49, 57, 56] reduce hardware cost by mapping multiple nodes onto
the same PE. In particular, Nestor and Lavine proposed the L4 architecture [41], which is
a virtual-grid approach to accelerating Lee’s algorithm. These architectures rely on several
assumptions that do not apply to TritonRoute:

• TritonRoute uses non-uniform edge costs between nodes. A key assumption of
Lee’s algorithm and prior approaches is that each edge has uniform cost, thus the cost
is equal to the number of edges traversed. Furthermore, this assumption meant that
the shortest path is also the lowest-cost path, which is not the case with TritonRoute.

• TritonRoute does not have hard blockages. Prior approaches assume that blocked
nodes cannot be routed through and therefore do not need to be expanded. Addition-
ally, these approaches can fail to find a path if the destination nodes are completely
blocked. TritonRoute does allow routing through blocked nodes, albeit with higher
cost, and will always return a solution if the input is well-formed.

• TritonRoute has cost history. TritonRoute uses costs from previous iterations to
represent routes, blockages, and design rule violations in order to iterate on the pre-
vious routing solution. Prior solutions do not implement any cost history other than
blockages.

Because of these differences, TritonRoute requires a new solution which is compatible
with its search algorithm.

4.3.2 Potential Platforms

4.3.2.1 Multicore CPUs

TritonRoute is already multithreaded and shows good speedup. On the benchmark plat-
form, TritonRoute shows on average a 6.9× speedup for 16 threads vs. a single-thread
baseline. The key limitation for parallelism in TritonRoute is the synchronization of threads
after every routing iteration. Figure 4.9 shows the cumulative distribution of routes versus
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Figure 4.9: Cumulative distribution of all routes from the OpenROAD Design Suite vs.
their cumulative execution time on the benchmark platform (normalized)

their normalized runtime. The figure shows that 80% of routes consume less than 16%
of the total runtime, whereas the top 5% of routes consume 51% of the runtime. While
TritonRoute can parallelize each route box, the algorithm cannot reduce the latency of an
individual route box because each net must be routed sequentially. Parallel algorithms for
A* search exist, however many of them perform extra work in order to properly terminate
with the lowest-cost path or do not achieve a lowest-cost solution [23]. A solution might
be designed to balance threads between workers and within workers, however this solution
is not considered and left for future exploration.

4.3.2.2 GPU

Prior work has shown that GPUs map very poorly to detailed routing algorithms due to
a) lack of parallelism for each net, b) divergence of computation patterns between nets, and
c) a huge number of random memory accesses [38]. Tangjittaweechai et al. attempted to
accelerate detailed routing using a GPU [50], however their solution only achieved a 25%
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average speedup over a single-thread CPU, which is slower than a multithreaded solution.

4.3.2.3 FPGA/ASIC

The results of prior work show substantial promise. The L4 architecture shows a 29-93×
speedup over the classic Lee Algorithm and 5-19× speedup over the A* algorithm us-
ing a CPU baseline [41]. However, there are many limitations to this study that limit its
usefulness. Firstly, the work is from 2007 and does not consider any advanced-node tech-
nologies. Design constraints have increased substantially, requiring entirely new classes of
rules which do not map well to the L4 architecture. Secondly, the architecture is based off a
custom C implementation of the A* algorithm which is not derived from real detailed rout-
ing software. Thirdly, the implementation was only tested against small micro-benchmarks
which each complete in under 1 second on a CPU. Despite this, the work lays a valid
foundation and demonstrates that FPGA/ASIC is a promising platform for hardware accel-
eration for this problem.

4.4 SpeEDAr Architecture

To address the deficiencies of prior work, I propose SpeEDAr, an architecture designed to
accelerate TritonRoute’s detailed routing algorithm. Figure 4.10 shows the block diagram
for SpeEDAr’s mesh architecture. Similar to prior work, SpeEDAr uses a virtual-grid mesh
of PEs to represent each node in TritonRoute’s grid graph. The mesh is an n × m grid
representing one layer of the grid graph, and each physical node stores the data for all z
layers at its (x, y) location.

4.4.1 Mesh Architecture

Within a PE, SpeEDAr differs greatly from prior work. L4’s PE is a simple finite state
machine which uses an expansion bit from the neighbors to determine when to expand.
SpeEDAr instead receives cost inputs from each direction and computes the new cost for
the node. The cost is calculated the same as TritonRoute by adding the path cost, distance
cost, turn cost, and via spacing cost. These costs are detailed in Table 4.2. The path cost is
the input cost to this node, the distance cost is the physical length between the two nodes,
the turn cost is a penalty added if there is a turn in the path to get to this node, and the via
spacing cost is an additional cost added if the last via (up or down turn) is too close to this
node and is a via.
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Figure 4.12: SpeEDAr processing element block diagram. Cost input signals include path
cost, via distance, and previous direction. The layer finite state machine determines whether
the {north, east} inputs or {south, west} inputs are selected. The {up, down} costs are
passed from the cost of the previous layer. Minimum costs and DRC Costs are indexed by
the layer.

Cost Formula
Path Accumulated cost to previous node
Distance Edge length × GRID COST
Turn Direction != previous direction
Via spacing (Direction == Up || Direction == Down)

&& (distance < min via distance)
Marker Marker cost[current node]
Route Route cost[current node]

Table 4.2: List of SpeEDAr cost calculations as derived from TritonRoute. GRID COST is
a fixed value. Marker and route costs are stored in PE lookup tables.
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Once each of these costs are calculated, the PE selects the minimum cost and direction
and stores them in a register file indexed by the current layer. Up and down inputs differ
from planar inputs because the path cost comes from within the PE. Once the cost for the
current layer is stored, it can be used as the path cost input to the next layer.

As noted in Figure 4.12, there are only 3 cost calculators for the 6 input directions.
SpeEDAr time shares the cost calculations in order to reduce hardware costs and to com-
plement the cost propagation scheme. SpEDAr has a similar wavefront pattern to L4: a
wavefront is started from a point and expands in each direction. SpEDAr starts expansion
from a corner node while L4 starts expansion from the source nodes. While L4 is slightly
faster by expanding from the source nodes first, it requires expansion in 5 directions simul-
taneously (North, South, East, West, and Up) and therefore the associated hardware to do
so. L4 also assumes that the source node is always on the bottom layer, which is not the
case for TritonRoute. L4’s algorithm breaks down if a source is not on the bottom layer,
because it requires expanding up and down simultaneously. By starting expansion from
the corner, SpeEDAr always expands nodes in 3 directions (North, East, and Up). This
provides important hardware savings over the L4 architecture.

SpeEDAr continues cost propagation through each node until it reaches the opposite
corner of the route box (e.g. starting at (0, 0, 0) and ending at (xmax, ymax, zmax)). Prop-
agating the cost from one corner to the opposite corner is considered one propagation.
SpeEDAr then reverses the direction and starts propagating costs backwards (e.g. starting
at (xmax, ymax, zmax) and ending at (0, 0, 0)). When propagating in the reverse direction,
SpeEDAr propagates costs along the West, South, and Down directions. This approach dif-
fers substantially from prior work because prior work stops as soon as a destination node is
reached. However, In TritonRoute, the shortest path is not necessarily the lowest-cost path,
so SpeEDAr continues propagating.

With each propagation, SpeEDAr finds a path with the same or lower cost than the
previous propagation. This approach differs from TritonRoute’s algorithm. Because Tri-
tonRoute uses a DRC costing function, the path search breaks the consistency quality of
the A* algorithm. An ideal algorithm which always finds the minimum-cost path requires
O(n2) complexity, which is why TritonRoute instead allows each node two re-expansions
as a balance between runtime and solution quality. This approach means that SpeEDAr and
TritonRoute both provide approximate solutions. TritonRoute’s solution quality converges
to optimal as more re-expansions are allowed, and SpeEDAr converges to optimal as more
propagations are allowed. Due to difference in implementations, it is not possible to repli-
cate TritonRoute’s approximate solution with SpeEDAr, however it is possible to converge
to an equivalent or lower-cost solution with more propagations.
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If we define a direction domain change as a change in direction from {north, east,
up} to {south, west, down}, SpeEDAr’s algorithm guarantees that the optimal path with
n direction domain changes is found within n + 1 propagations. For example, any path
which consists of a north, east, and south segment has 1 direction domain change (east to
south), and therefore will be found within 2 propagations. A path which contains a north,
east, south, east, up, east, and down segment has 3 direction domain changes (east to south,
south to east, east to down) and will be found within 4 propagations.

4.4.2 Windowing Optimization

One drawback to SpeEDAr’s architecture is that the search time scales with the graph size
(O(n + m)), regardless of the route length. However, because the optimal path usually
lies within the bounding box of the source nodes and destination nodes, a windowing opti-
mization can be applied where the search is limited to this bounding box. Thus the search
time is reduced to O(nw + mw), where nw and mw are the window size. The tradeoff for
this optimization is that optimal routes outside of the bounding box are not found. Other
works which use the windowing optimization rely on window expansion, which bloats the
window if a solution is not found. Because SpeEDAr always finds a solution, my approach
instead relies on the TritonRoute iteration number to determine the window bloat. The
iteration number is a direct representation of the difficulty in finding a clean solution for
a given route box. Therefore, earlier iterations can use a window bloat of 0 while later
iterations use an increased bloat size.

Figure 4.13 displays the cumulative distribution of bloating required for SpeEDAr to
produce to produce the same solution as TritonRoute. This metric for required bloating
provides a conservative estimate for the amount of required bloating for SpeEDAr, because
SpeEDAr is able to find routes that TritonRoute does not within a given window. The
figure shows that a vast majority of routes, 81%, require no bloating to find a clean route.
The next 11% require a bloat of <10, and 7% require a bloat of <100. Only the last
0.05% of routes require a bloat of >100. Therefore SpeEDAr exponentially increases the
window bloat to converge to a window size for a clean route without increasing runtime
dramatically. SpeEDAr uses a bloat size of {0, 10, 50, 100} for detailed routing iterations
0-3. After iteration 3, the bloat size doubles until the mesh size is reached. From testing on
the OpenROAD Design Suite, this strategy enables SpeEDAr to converge to the required
window size within 2 iterations of TritonRoute. These additional iterations contribute a
maximum of 1% computation overhead versus a solution with 0 bloating.
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Figure 4.13: Cumulative distribution of all routes from the OpenROAD Design Suite vs. the
cumulative window bloating required to find the same solution as TritonRoute (normalized)
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Data Size Frequency
x & y edge lengths 8× (x+ y) bits Once per route box

Grid graph xw × yw × lw bits Once per route box
Cost update Varies Each route
Path result 48×#turns bits Each route

Table 4.3: SpeEDAr off-chip communication costs. Subscript w represents that the input
has been windowed.

4.4.3 Backtracing

Because SpeEDAr always finds a solution within 2 propagations, the architecture does not
have any signal to indicate when a destination node is reached. Instead, it terminates after a
predefined number of propagations have completed. The number of propagations is a direct
trade-off between solution quality and runtime. Once the search phase terminates, the pre-
vious directions are shifted 1 column per cycle into an off-mesh backtrace memory. While
prior solutions perform backtracing in-mesh, this approach presents substantial hardware
cost added to each node as well as global signaling to support it. SpeEDAr instead opts for
a dedicated backtrace processor which starts at the destination node and iterates through
the memory until a source node is found. This path is compressed into a list of coordinates
representing each segment in the path, which is then returned as the result from SpeEDAr.

4.4.4 Communication

SpeEDAr simulates a high-speed interconnect to a host machine. In this work, I model
a PCIe 3.0 interface with 8 lanes for communication to the host PC. The required com-
munication to and from SpeEDAr is summarized in Table 4.3. SpeEDAr uses a buffering
scheme to allow incoming data transfers while the current route box is being searched and
backtraced.

4.5 Measurements

SpeEDAr is implemented in SystemVerilog and verified using Synopsys VCS against test
examples from TritonRoute. SpeEDAr matches TritonRoute solutions on trivial routes
but differs on more difficult routes. However, SpeEDAr finds an equivalent or superior
solution to TritonRoute in all cases tested by comparing path costs of the backtraced path.
TritonRoute and SpeEDAr both converge to 0 design rule violations on all cases tested.
SpeEDAr was synthesized to the Global Foundries 12nm PDK to measure the hardware
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Mesh Size 200×200 250×250 300×300 350×350 400×400
Area (mm2) 20.1 31.6 45.8 62.6 82.1

Table 4.4: SpeEDAr mesh logic area for various sizes. Results obtained from synthesis in
Global Foundries’ 12nm node

cost of an ASIC implementation. Table 4.4 shows the area cost of SpeEDAr at various
mesh sizes.

Figure 4.14 shows the speedup obtained by SpeEDAr on the OpenROAD Design Suite
for the grid graph search function over the 16-thread CPU baseline. Figure 4.15 then sim-
ulates the impact of SpeEDAr on the end-to-end flow for the benchmark suite. SpeEDAr
achieves a mean speedup of 74× on the grid graph portion of TritonRoute, and a mean flow
speedup of 1.20×. The results show that the speedup is higher for more advanced nodes
(7/12nm) and lesser for older nodes (45/65nm). This is due to the routing rules and grid
graph sizes being smaller on these nodes. Because more advanced nodes require larger
graph sizes, searches to traverse them take longer. In addition, more complicated design
rules translate to more costing and searching required to find a DRC clean solution.

The overall flow speedup is higher for advances nodes (1.19-1.51×) and lower for older
nodes (1.07-1.20×). This stands to reason because TritonRoute composes a smaller portion
of flow runtime and does not achieve as high speedup on older nodes. However, SpeEDAr
still achieves a worst case flow speedup of 1.08×.

4.6 Conclusions

This chapter characterized and investigated the computational characteristics of Open-
ROAD, an end-to-end open-source EDA flow. My characterization revealed that detailed
routing consumes on average 41% of the flow wall time, and the grid graph search con-
sumes a majority of the detailed routing runtime. Prior work in this area does not map well
to TritonRoute due to its different path and design rule costing. I presented SpeEDAr, a
hardware architecture to accelerate TritonRoute. Simulated ASIC results show that
SpeEDAr improves search performance on average 74×, which translates to a 1.20× av-
erage speed up for the entire OpenROAD implementation flow.
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Figure 4.14: SpeEDAr speedup of TritonRoute grid graph search function over the 16-
thread CPU baseline
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Figure 4.15: SpeEDAr speedup of OpenROAD-flow over 16-thread CPU baseline
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4.7 Future Work

While SpeEDAr presented an accelerator to significantly reduce the automation time used
by EDA tools, there remain many avenues to be more fully explored.

4.7.1 Implementation

While SpeEDAr’s speedup results are very promising, furtherance of this idea requires
implementation of the accelerator and integration with a host CPU platform. Development
of such system will enable more accurate measurement of end-to-end speedup. The main
goals of such a system would be to examine the data transfer overheads and to develop
schemes to minimize the amount of communication required between the accelerator and
host platform.

Another area of focus for implementation would be to optimize the die area of the ar-
chitecture. Currently, a significant portion of each PE is dedicated to storing cost values.
Optimizations schemes such as delta compression may be able to greatly reduce the re-
quired storage in a PE without greatly affecting performance. In theory, there is a maximum
cost difference between nodes on layer n and layer n + 1. If this cost difference is small
enough, it may be possible to store data in a base + offset format where the base is stored
using i bits and the offsets are stored using j bits, where i < j. The overhead cost is the
adders required to decompress the data from base + offset format.

4.7.2 Further Acceleration

As noted by Amdahl’s Law, the maximum speedup for accelerating a program is propor-
tional to the fraction of the program that is sped up. While SpeEDAr provides on average
74× speedup for the grid graph search, this portion of the program constitutes only 55% of
TritonRoute’s runtime, and therefore a limitation of 2.2× speedup for the whole program.
To further accelerate TritonRoute, it is worth exploring extensions of this architecture to
accelerate adjacent portions of TritonRoute. Key functions of interest include grid graph
cost updating and geometry checking. Adding cost updating seems to be a promising ex-
tension of SpeEDAr, because cost updates constitute a majority of the transfers between
SpeEDAr and the host CPU. By adding this functionality on-chip, the required communi-
cation between the host platform and SpeEDAr can be reduced dramatically.

Geometry checking is another function of interest because it composes the other por-
tion of a routing iteration. Routing iterations dominate the total runtime of TritonRoute,
and hardware which accelerates the entire routing iteration bodes promise for increased
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speedup. Incorporating both algorithms on an acceleration platform would require much
less communication to the host platform – data would only need to be synchronized for the
whole route box rather than per route.

4.7.3 Alternate Architectures

SpeEDAr achieves very high speedup over the CPU baseline at the cost of relatively high
area consumption. While SpeEDAr can be synthesized to an FPGA target, current lim-
itations on FPGA sizes mean that only small meshes (<100×100) can fit on the FPGA
fabric. For more accessible acceleration, exploring less area-intensive architectures is war-
ranted. Prior work mainly explores mesh-based architectures wherein Lee’s algorithm and
other breadth-first searches are accelerated. However, TritonRoute uses an A*-based search
which generally has much smaller memory requirements than a full breadth-first search.
Some recent work on A* hardware acceleration shows promising results with a 37-75×
improvement over a CPU baseline [61]. However, this work faces similar pitfalls to prior
Lee’s Algorithm accelerators in terms of their applicability to TritonRoute. Additionally,
significant focus is placed on maintaining an accurate OPEN list of nodes, whereas Triton-
Route allows node revisiting. An A*-based accelerator for TritonRoute could offer signifi-
cant benefits over a full- or virtual-grid accelerator, including accelerator area reduction as
well as solutions more consistent with the TritonRoute software implementation.

4.7.4 Other Workloads

Section 4.2 presented a characterization of the full OpenROAD flow. Detailed routing with
TritonRoute was identified as the most computationally intensive step, however other steps
such as synthesis pose significant time consumption as well. A straightforward step to
reducing total flow time would be to investigate and incorporate hardware acceleration op-
tions into these other steps. Detailed Routing is the only major flow step which incorporates
multithreaded processing; other flow stages run using a single thread. Some workloads
such as global placement have readily-available hardware solutions available and should
be incorporated into OpenROAD [39, 24]. Other workloads such as synthesis have an
abundance of literature on parallel implementations of algorithms [20, 19, 44]; these im-
plementations should be explored to improve CPU utilization over the current single-thread
implementation.
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CHAPTER 5

Conclusions

With the waning of Moore’s Law, new foundry processes cannot be relied upon for per-
formance gains. Many fields such as machine learning, genomics, graph processing, drug
discovery, financial trading, and others have shifted towards designing specialized hard-
ware to continue improving performance. One notable field that has not seen such a shift is
electronic design automation (EDA), the software and algorithms underpinning computer
chip design. The slowing of Moore’s Law is at risk of creating a negative feedback loop:
slowing computer performance leads to slowing chip design which leads to further slowing
of computers.

Section 1.4 presented Sirius, a case study for hardware acceleration of intelligent per-
sonal assistants (IPAs). This case study mapped extremely well to the current EDA land-
scape, because state-of-the-art software is proprietary and closed source. Sirius also posed
a challenge that integrating hardware accelerators into a system remains challenging.

Chapter 2 presented Celerity, which addressed the design and integration of complex
systems-on-chip (SoCs). Celerity presented a complex, tiered accelerator fabric to offer
both highly programmable general computation and highly efficient specialized computa-
tion. Celerity’s manycore array broke several performance records at time of publication,
including 1) single-chip peak RISC-V instruction throughput (695 GRVIS), 2) CoreMark
benchmark raw score (825,320), and 3) CoreMark score/MHz (580.25). Celerity also out-
performed prior manycore works in energy efficiency and normalized area efficiency by
4.2× and 1.8×, respectively.

Even with Celerity’s complexity, the chip itself was designed and taped out in 9 months:
about half the time of a normal chip development cycle. Celerity proposed 3 key design
strategies for reducing the amount of time for chip development: 1) reuse designs and in-
tellectual property (IP), 2) modularize designs and interfaces to enable hierarchical design,
and 3) automate high-cost manual tasks. Reuse may be one of the most powerful strategies
available, because it reduces design time, verification, and integration. These strategies
address and simplify the design integration issues faced in Sirius.
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Chapter 3 presented OpenROAD, a fully open-source RTL-to-GDS flow. Similar to
how Sirius created an open-source platform for studying IPAs, OpenROAD created a plat-
form for studying EDA. I also presented the OpenROAD Design Suite, which hosts a col-
lection of real-world, representative designs for benchmarking and validating OpenROAD.
OpenROAD has had a tremendous impact on the chip design community – 3 multi-project
wafer (MPW) submissions through EFabless’ Open MPW Shuttle program as well as 2
MPW submissions from Efabless’ ChipIgnite program were all enabled by OpenROAD.
In total, hundreds of designs have been taped out using OpenROAD, including a reported
60% from first-time chip designers [7]. OpenROAD succeeded not only in providing a
platform for EDA study, but it has also spurred innovation in hardware design by lowering
the barrier for access.

In Chapter 4, I presented SpeEDAr, an accelerator for detailed routing. With the release
of OpenROAD and the OpenROAD Design Suite, I was now able to characterize an EDA
flow and examine the computationally intensive kernels. Characterization revealed that a
single function in the entire flow, TritonRoute’s grid graph search, composed approximately
22% of the total flow wall time. Prior accelerators for detailed routing lack compatibility
with TritonRoute’s detailed routing algorithm; therefore, I presented SpeEDAr, an acceler-
ator architecture for detailed routing. SpeEDAr achieves a mean speedup of 74× over the
16-thread CPU baseline for grid graph search, and a mean 1.20× end-to-end flow speedup.

In a broad sense, this dissertation examined modern hardware design from multiple dif-
ferent perspectives: design, integration, automation, and tooling. Through each of these
lenses, I presented solutions to speed up hardware design and enable increased complex-
ity. The key techniques behind these works involved making hardware design cheaper,
faster, and more accessible through fast design methodologies, open-source designs, and
open-source software; thus, we move closer toward a vision of free, open, and ubiquitous
hardware design.
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[33] Matthias Köfferlein. 2018. KLayout.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger (Eds.), Vol. 25. Curran Associates,

81

https://doi.org/10.1109/MM.2018.2877839
https://doi.org/10.1109/MM.2018.2877839
https://doi.org/10.1109/TCAD.1986.1270193
https://doi.org/10.1109/TCAD.1986.1270193
https://doi.org/10.1109/ICCAD45719.2019.8942131
https://doi.org/10.1109/DAC18072.2020.9218532


Inc., 9. https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[35] Chin Yang Lee. 1961. An Algorithm for Path Connections and Its Applications.
IRE Transactions on Electronic Computers EC-10, 3 (September 1961), 346–365.
https://doi.org/10.1109/TEC.1961.5219222

[36] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun, Vladimir
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