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Abstract

Limited sensing capabilities pose challenges to autonomous vehicles. Common limitations

can result from a limited sensory range, occlusions, or adverse weather conditions, and hin-

ders the development of both general and safe autonomy in real-world environments. In

the pursuit of safe autonomy under imperfect measurements, an autonomous vehicle must

assess the risk to take safe actions, and actively gather informative data to reduce the un-

certainty. This thesis develops efficient algorithms for risk assessment and noise removal,

specifically with Light Detection And Ranging (LiDAR), to aid the safe navigation of au-

tonomous vehicles.

First, a probabilistic risk assessment algorithm is proposed, which utilizes scene geometry

to quantify the risk imposed by occluded oncoming traffic. Simulations show that the quan-

tified risk can then be used as an objective function of a subsequent planning algorithm to

improve both safety and ride comfort at real-world urban intersections.

Second, the efficiency of the aforementioned algorithm is further enhanced by leverag-

ing reachability analysis to constrain its sensory resources to only regions with potential

collisions. This leads to an algorithm that not only quantifies the risk more efficiently, but

also localizes the risk-inducing traffic participants in an environment. As a result, unlike the

previous approach, the vehicle no longer needs to put equal attention to the entire scene and

could focus only on essential information in collision avoidance.

Lastly, a real-time de-noising algorithm is proposed to remove noise from LiDAR point

clouds corrupted by snow. This reduces uncertainty from adverse weather conditions. The

proposed network outperforms state-of-the-art methods while also running orders of magni-

tude faster. The de-noised point clouds also showpositive impacts on off-the-shelf Simultaneous

Localization And Mapping (SLAM) algorithms, resulting in maps nearly free of noise while

preserving salient information of the scene.

These algorithms are efficient and make safe autonomy feasible in the near future, even

under imperfect LiDAR measurements.
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Chapter 1

Introduction

1.1 Limited Sensing Capabilities

Visible cameras, radars, and LiDARs are widely adopted by modern autonomous vehicles,

as shown in Figure 1.1. These sensors gather information from the environment, and en-

ables an autonomous vehicle to perform tasks, such as object detection, tracking, and mo-

tion planning [1]–[3]. However, all sensors have limitations, and can impact the safety in

autonomous driving.

Visible cameras gather photons in the visible spectrum within their field-of-view, and

produce sequences of images. The resulting images closely represent what a human driver

would see in various driving scenarios, and have been widely used for tasks including 2D

object detection and semantic segmentation. One inherent limitation of visible cameras is

that they are not able to see through opaque objects, like buildings, trees, and other vehicles.

Moreover, they have very limited dynamic range compared to the human visual system, thus

tend to be over/under-exposed in non-ideal lighting conditions.

Radars are standard equipment in many modern vehicles, and have been reliable in prim-

itive collision avoidance systems. Although radars perform consistently in various lighting

and weather conditions, their resolutions are usually too low to be suitable for more com-

plicated tasks [4], [5].

LiDARs, by contrast, provide high-resolution (and usually panoramic) 3D information, and

are more robust to various lighting conditions. Unlike visible cameras, LiDARs can work

at night since they actively illuminate the environment with laser beams in the infrared

spectrum. However, similar to visible cameras, LiDARs still can not see through opaque
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(a) KITTI [1] (b) Waymo [2]

Figure 1.1: The sensor suites on autonomous vehicles.

objects. In addition, they perform poorly in adverse weather conditions such as snow and

heavy rain.

These limitations leave blind spots to an autonomous vehicle, and thus introduce risk

and uncertainty to the system. The purpose of this thesis is to address such limitations,

particularly with LiDARs, and mitigate their impact in order to develop fully autonomous

systems in real-world environments.

1.2 Risk Assessment

A typical pipeline in decision making for an autonomous vehicle is as follows:

1. Gathering raw sensor readings.

2. Estimating the system’s state and evaluating safety, comfort, or efficiency.

3. Taking an action, such as throttling or steering, to achieve the ultimate goal.

Risk assessment comes into play in all three stages. It is a process to quantify the risk for

an event, such as a collision in the future, introduced by the state of the environment and

the action of the ego vehicle.

Previous works tackle such problems by predicting observed agents, and estimating quan-

tities like time-to-collision or the probability of colliding with another agent. However, this

2



scheme alone does not work well in crowded or occluded environments. When dealing with

unobserved agents and shadow regions, traditional algorithms usually assume theworst case

scenario and result in very conservative actions. An autonomous vehicle may slow down

unnecessarily, or even stop completely.

This thesis aims to develop efficient algorithms handling non-ideal sensory information,

for example, occlusions or adverse weather conditions. In particular, the proposed algo-

rithms quantify the risk induced by limited sensing capabilities, and utilize it to navigate

safely and comfortably in a timely manner.

1.3 Reachability Analysis

Reachability analysis has beenwidely used for developing provably-safe control algorithms [6]–

[12]. It involves predicting and analyzing the states of the environment, including the lo-

cations of other agents and the ego vehicle. Such approach first makes prediction of where

others may be in the future, and generates target trajectories to avoid collision. However,

generating the optimal safe trajectory in real-time in a crowded or occluded environment is

often infeasible due to the number of agents and the amount of uncertainty.

Since collisions happen only in regions that the ego vehicle can physically reach in the

future, one can reduce the amount of prediction to achieve significantly better efficiency.

This involves incorporating the backward reachability.

By definition, a collision is an event of multiple agents occupying the same space at the

same time. This implies the ego vehicle needs to focus primarily on its forward reachable set

(FRS), and can backtrack risk-inducing agents that can actually reach the FRS by propagating

their motions backwards in time. Such formulation alleviates the need to predict every agent

in the scene, and results in a real-time risk-assessment algorithm that scales well in complex

real-world environments.

1.4 Adverse Weather Conditions

Many state-of-the-art objection detection algorithms are data-driven, and are trained on

large scale datasets. These datasets enable a deep neural network to capture detailed features

of the input data, and often to perform better than human drivers. However, generalization
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(a) (b) Birds-eye-view of the point cloud
data [13].

Figure 1.2: Autonomous vehicles in snow.

to various weather conditions and domain adaptation remain challenging.

In particular, snow poses challenges to LiDARs. A cloud of ghost points centered at the

ego vehicle appears, as shown in Figure 1.2b, due to the reflection from snowflakes in the air.

Moreover, deflection reduces the number of usable points and thus degrades the performance

of tasks in autonomous driving.

We aim to mitigate such problem by proposing a deep convolutional neural network

(CNN) to remove the ghost measurements in point clouds. The proposed network does not

rely on any label thus can be trained with any noisy point clouds, taking advantage of large-

scale unlabeled datasets. It outperforms current state-of-the-art methods while running 47×
faster.

1.5 Problem Statement

The motivation of the thesis is to tackle limited sensing capabilities in autonomous driving.

In particular, this thesis aims to address the following questions:

1. How to quantify the risk induced by limited sensing capabilities for motion planning?

2. How to improve efficiency of risk assessment algorithms on large-scale and crowded

environments?

4



3. How to mitigate noisy LiDAR data in adverse weather conditions?

1.6 Contributions

The remainder of this thesis is organized into individual chapters addressing each of the

questions above. The specific contributions of this thesis are summarized below:

1. A risk assessment algorithm tailored to occluded urban environments is proposed. It

is probabilistic and can easily be integrated into motion planning algorithms for lower

collision rates and better ride comfort. (Chapter 2)

2. A risk assessment algorithm utilizing bidirectional reachability is proposed. It is effi-

cient and can scale to large and complex environments. (Chapter 3)

3. A real-time de-noising algorithm is proposed to remove noise from point clouds cor-

rupted by snow. (Chapter 4)
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Chapter 2

Occlusion-Aware Risk Assessment for
Autonomous Driving in Urban

Environments

2.1 Introduction

Advancements in sensing technology and algorithmic improvements bring the reality of

everyday autonomous driving closer to fruition. LiDAR sensors enable the construction

of 3D maps [14] and can see tens or hundreds of meters away, even at night [15]. High

definition cameras capture images that can be used for tasks such as semantic segmentation

[16] and object detection [17]. Many tasks can be performed at levels surpassing that of

humans thanks to recent developments in deep neural networks [18].

However, all sensors still have limited sensing capabilities. LiDARs and cameras, for in-

stance, have difficulty identifying objects beyond a certain distance due to finite range, sensi-

tivity, and angular resolution. In addition, both of these sensors can not see through opaque

objects which could results in large unobserved regions. An illustration of such a scenario

is shown in Fig. 2.1.

One of the reasons why human drivers can safely navigate even under occlusions is that

they augment their sensing capabilities by leveraging semantic and geometrical information

of the environment, and anticipate the need to slow down due to the potential risk of collision

that arises due to occlusions [7], [19]. In addition, earlier brakingwould reduce themaximum

deceleration which consequently leads to greater ride comfort.
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Figure 2.1: Ego vehicle (blue box) intends to perform an unprotected left turn to the goal (yellow
star) at an intersection. The irregular shape of the observable polygon (green shaded
region) is caused by 1) limited sensor range and 2) occlusions from other vehicles (red
boxes) and buildings (gray regions.) Our algorithm quantifies the distribution of risk
(red particles) posed by other vehicles including the ones which are outside of the
observable polygon. This is possible under the assumption that we know the geometry
of road layout and the nominal (or worst case) speed of other vehicles at this particular
intersection. Both axes are in meters.

To provide an example from the real-world imagine the following: pulling up to a left turn

next to a tall tree or building, similar to the scenario shown in Fig. 2.1. Typically a driver

leans forward and pulls the car slightly ahead to see into oncoming traffic before completing

the turn. In the driver’s mind, they have a map of the unseen spaces and know that a car

could emerge from beyond the current line of sight. As a result, they proceed cautiously to

try to improve their visibility and do not turn until they can confirm a sufficient gap in the

7



Figure 2.2: Illustration of our algorithm on a (a) partially observed road, where the green shaded
regions are within the sensor’s field-of-view. (b) Firstly, assuming that the map and the
ego vehicle’s location are known, the centerlines of the unobserved road segments (red)

are extracted. (c) Secondly, we sample particles {(𝑠[𝑖], 𝑣[𝑖])}𝑁𝑘
𝑖=1 along the extracted

splines 𝑐𝑘, 𝑘 ∈ {1, 2}, where the location 𝑠 and speed 𝑣 are drawn from uniform dis-
tributions, and propagate each particle forward in time assuming constant speed. (d)
Finally, a random offset perpendicular to each centerline is added to each particle to
incorporate the non-zero size of potentially unobserved vehicles.

traffic.

This chapter presents an algorithm that encodes this form of human driving by quantify-

ing the risk caused by limited sensing capabilities and geometric occlusion. The proposed

algorithm can be used to make autonomous vehicles navigate safely with improved ride

comfort in urban environments, and it is agnostic to how the vehicle makes decisions.

The remainder of this chapter is organized as follows: Section 2.2 reviews related work

in the field of risk assessment and planning under occlusion. Section 2.3 describes how

our algorithm leverages the known road layout to quantify risk in the environment, and

demonstrates how it can be easily integrated with a simple planning algorithm. Section

2.4 introduces a baseline (occlusion-unaware) method and our evaluation methodologies.

Section 2.5 evaluates the proposed occlusion-aware method, and shows that statistically our

algorithm performs significantly better in terms of collision rate and ride comfort on both

synthetic and real-world intersections. Section 2.6 concludes and discusses future directions

of this work.

2.2 Related Work

Most of the previous work on motion prediction and risk assessment can be categorized into

one of two following categories. The first category quantifies the risk as the probability of

having a collision with another vehicle or pedestrian. The second category assesses risk as

the degree of deviation from a nominal set of behaviors (e.g. veering from the lane rapidly). A
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well-organized survey is given in [20]. This chapter addresses the first category of problems

with a specific focus on collisions caused by occluded objects.

Prior work has addressed the issue of occlusion from a tracking perspective. Wyffels and

Campbell [21] keep track of obstacles in occluded areas by utilizing negative information

under the assumption that undetected objects are not likely to appear in visible space. Yu and

LaValle [22] maintain the tracks of targets that move outside the field-of-view by formulating

the problem as a pursuit evasion game. Galceran, Olson, and Eustice [23] augment states of

a standard tracker to estimate occluded states for other agents and provide more robust data

association when the occluded agents reappear in the scene. Although these models keep

tracks of missing targets that enter occluded regions, they all need at least one detection to

start tracking. They do not explicitly handle risks caused by potential incoming traffic which

is occluded or outside the sensor horizon and thus never detected in the first place.

Partially Observable Markov Decision Process (POMDP) is a common approach to tackle

decision making problems under uncertainty and consequently can implicitly handle proba-

bilistic occlusion. Brechtel, Gindele, and Dillmann [24] use Monte Carlo Value Iteration and

Brechtel, Gindele, and Dillmann [25] show it is possible to optimize a continuous POMDP

model. Bouton, Nakhaei, Fujimura, et al. [26] approximate the global solution by solving

a POMDP for each agent independently through utility fusion [27]. The reduction in state

space required to make these approaches tractable limits their applicability, particularly for

real-time high speed driving. The algorithm we present in this chapter differs in both goal

and implementation. We focus on quantifying risk in the environment instead of the risk

associated with the actions of the ego vehicle. Our algorithm is agnostic to planning and so

could be coupled with a POMDP or any other planning or decision making algorithms.

Most closely related to the approach presented here are two risk quantification approaches [7],

[19]. Orzechowski, Meyer, and Lauer [7] over-approximate all possible states of the incom-

ing traffic by considering the leading edges of the visible polygon. Although safety is guaran-

teed, the resulting over-approximated polygons are not probabilistic, whereas our approach

captures the full distribution of risk. Lee, Jo, and Sunwoo [19] perform probabilistic risk as-

sessment by utilizing prebuilt high definition maps. While the results in [19] look promising,

they do not show how their risk assessment could be used for planning to achieve safer driv-

ing. Furthermore, both [7] and [19] show very limited results with only a single additional

vehicle in the scene and it is unclear how these approaches perform in crowded scenes such

as urban intersections. We focus on realistic intersections derived from real map data and
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occupied with many vehicles.

Our approach presents several novel contributions: 1) we present an algorithm which

performs probabilistic risk assessment of both observed and unobserved regions at urban

intersections; 2) the approach is control algorithm agnostic and can be integrated with any

deterministic or probabilistic planning approach; 3) we derive risk assessment from large-

scale map data and extensively evaluate our approach with up to five other vehicles in the

scene, and show significant reduction in collision rate and increase in ride comfort.

2.3 Method

We first describe our method in probabilistic risk assessment in Section 2.3.1. We generate a

distribution over the Cartesian space. In Section 2.3.2 we show how to integrate the risk to

a simple optimization-based planning algorithm and describe the primary cost function.

2.3.1 Risk Assessment Over Cartesian Space

High Definition (HD) maps are used commonly in autonomous driving [19]. These maps

have rich data about intersections and can encode information such as nominal trajectories

and maximum speed of all traffic through a region. Assuming that the map and the location

of the ego vehicle are known, an observable polygon can be generated for a vehicle’s sensor

configuration (maximum range, angular resolution, and field of view) without the actual

sensor returns. Here we focus on LiDARs, but the principles remain the same for other

sensor modalities. The shape of the observable polygon is constrained by occlusions caused

by objects such as other vehicles, trees, and buildings. With the observable polygon, one can

identify free space at the current time. However, the current observable polygon alone can

provide little information about long-term risk.

Current free space estimates are insufficient for planning for the future as vehicles can

suddenly appear from regions outside of the observable polygon. In order to quantify the

risk due to limited sensing in the context of long-term planning, we need to consider vehicles

that are potentially hidden in unobserved regions. We leverage the paradigm of the particle

filter to perform this prediction. Particles are used to represent the distribution of potential

vehicle locations originated from unobserved regions. This approach was selected because

of its simplicity and parallelizablility.
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Consider a scenario with two lanes shown in Fig. 2.2. We represent the lanes of travel by

cubic splines. Each cubic spline 𝑐𝑘 is parameterized by its position 𝑠 along the spline:

𝑐𝑘(𝑠) = [𝑥𝑘(𝑠)
𝑦𝑘(𝑠)] , 𝑠 ∈ [0, 𝑠𝑘]

𝑘 ∈ {1, 2, … , 𝑀}

where [𝑥𝑘(𝑠) 𝑦𝑘(𝑠)]⊤ is the position of a point on 𝑐𝑘 at 𝑠, 𝑀 is the number of lanes in the

scene, and 𝑠𝑘 is the total length of the spline 𝑐𝑘.

We first extract all possible centroids for all valid vehicle positions in all lanes of travel in

the unobserved regions. On each spline 𝑐𝑘, we consider 𝐿𝑘 disjoint unobserved segments. A

set of 𝑁𝑘 particles {(𝑠[𝑖], 𝑣[𝑖])}𝑁𝑘

𝑖=1 are sampled independently from uniform distributions in

these unobserved segments, where 𝑠[𝑖] and 𝑣[𝑖] are the position and speed of the 𝑖-th particle.

The position 𝑠 and speed 𝑣 is distributed as follows:

𝑠 ∼ 𝑈 (
𝐿𝑘

⋃
𝑗=1

[𝑠𝑗, 𝑠𝑗])

𝑣 ∼ 𝑈 ([𝑣𝑘, 𝑣𝑘])

where [⋅, ⋅] is a closed set between two real numbers, 𝑈(⋅) is an uniform distribution on a

set, 𝑠𝑗 and 𝑠𝑗 is the starting and ending position of an unobserved segment 𝑗 on spline 𝑐𝑘,

𝑣𝑘 and 𝑣𝑘 are the minimum and maximum speed of other vehicles, respectively. Assuming

that each particle is traveling with a constant speed, we can then propagate all the particles

forward in time for 𝑇𝑓 seconds:

̂𝑠[𝑖] = 𝑠[𝑖] + 𝑣[𝑖] ⋅ 𝑇𝑓

where ̂𝑠[𝑖] is the position of the 𝑖-th particle after 𝑇𝑓 seconds. This results in a distribution

of particles along the centerline of each lane, as shown in Fig. 2.2c.

To account for the size of vehicles and lateral displacements within the lane, an offset

𝑏[𝑖] is sampled from an uniform distribution and added to each particle in Cartesian space

perpendicular to the spline.

𝑏 ∼ 𝑈 ([−𝑏, 𝑏])

11



𝑢𝑘(𝑠) ∶= [0 −1
1 0 ] ⋅ 𝜕𝑐𝑘

𝜕𝑠 (𝑠)

̂𝑝[𝑖]
𝑘 = 𝑐𝑘 ( ̂𝑠[𝑖]) + 𝑏[𝑖]

∥𝑢𝑘 ( ̂𝑠[𝑖])∥2
⋅ 𝑢𝑘 ( ̂𝑠[𝑖])

where ‖ ⋅ ‖2 is the 2-norm of a vector, 𝑢𝑘 is the unnormalized vector perpendicular to 𝑐𝑘, and

𝑏 is the maximum deviation among all the particles from their corresponding centerline. We

define the set { ̂𝑝[𝑖]
𝑘 }

𝑁𝑘

𝑖=1
to be the distribution of risk over the Cartesian space on lane 𝑘 after

𝑇𝑓 seconds, as shown in Fig. 2.2d.

For observed vehicles, wemodel them as rectangles along valid lanes. To incorporate them

into our proposed formulation, we treat them similarly. For each vehicle, we extract the

spline segments within the corresponding rectangle, and apply the aforementioned method

as if the segments are in the unobserved regions.

The overall distribution of risk { ̂𝑝[𝑖]}𝑁
𝑖=1 is simply the union of all sets.

{ ̂𝑝[𝑖]}𝑁
𝑖=1 =

𝑀
⋃
𝑘=1

{ ̂𝑝[𝑖]
𝑘 }

𝑁𝑘

𝑖=1

where 𝑁 is the total number of particles in the scene on 𝑀 lanes.

This risk over Cartesian space can be easily integrated with any control or planning al-

gorithm as either the primary cost or in conjunction with other costs as an auxiliary cost

function. In addition, it can also be used along with any existing risk assessment method

designed for only observed vehicles. In Section 2.3.2 we show how we can utilize the risk

{ ̂𝑝[𝑖]}𝑁
𝑖=1 as the major cost function of a simple optimization-based planning algorithm.

2.3.2 Planning

In this subsection we demonstrate how the risk described in Section 2.3.1 can be used in

practice. We integrate it into a optimization-based planning algorithm and show improve-

ments in both safety and ride comfort. The rudimentary planner used here can be replaced

by any other cost-based planners as the technique is agnostic to planning approach.

Assuming that at time 𝑡 the ego vehicle travels with speed 𝑣𝑒𝑔𝑜 on the intended route 𝑐𝑒𝑔𝑜,

which is also a cubic spline parameterized by its position 𝑠𝑒𝑔𝑜 along the spline. The planner
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(a) Baseline (b) Ours

Figure 2.3: Comparison between the (a) baseline and (b) proposed method. The baseline method
only predicts distribution of risk (red particles) caused by observed vehicles, whereas
the proposed method also predicts the risk caused by unobserved regions.

first considers the safety cost 𝐽1(𝑎𝑒𝑔𝑜) associated with an acceleration (or deceleration) 𝑎𝑒𝑔𝑜:

𝐽1(𝑎𝑒𝑔𝑜) =
𝑁

∑
𝑖=1

𝑓 [𝑖](𝑎𝑒𝑔𝑜)

where 𝑓 [𝑖] is the potential function of the 𝑖-th particle which is positive when the particle

̂𝑝[𝑖] is within the ego lane and zero otherwise. The function 𝑓 [𝑖] is defined as follows:

𝑓 [𝑖](𝑎𝑒𝑔𝑜) ∶=
⎧{
⎨{⎩

exp(−𝑟[𝑖](𝑎𝑒𝑔𝑜)2

𝜎2 ) , if 𝑑[𝑖] ≤ 𝑏
0 , otherwise

̂𝑠𝑒𝑔𝑜 ∶= 𝑠𝑒𝑔𝑜 + 𝑣𝑒𝑔𝑜 ⋅ 𝑇𝑓 + 1
2𝑎𝑒𝑔𝑜 ⋅ 𝑇 2

𝑓

𝑟[𝑖](𝑎𝑒𝑔𝑜) ∶= ∥𝑐𝑒𝑔𝑜 ( ̂𝑠𝑒𝑔𝑜) − ̂𝑝[𝑖]∥2
𝑑[𝑖] ∶= inf

𝑠
∥𝑐𝑒𝑔𝑜(𝑠) − ̂𝑝[𝑖]∥2

where ̂𝑠𝑒𝑔𝑜 is the future position of the ego vehicle along 𝑐𝑒𝑔𝑜, 𝑟[𝑖](𝑎𝑒𝑔𝑜) is the distance
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between particle ̂𝑝[𝑖] and 𝑐𝑒𝑔𝑜 ( ̂𝑠𝑒𝑔𝑜), 𝑑[𝑖] is the minimum distance between particle ̂𝑝[𝑖] and

the ego vehicle’s intended route 𝑐𝑒𝑔𝑜, and 𝜎 is the bandwidth of the repulsive potential field.

In practice, particles with 𝑟[𝑖](𝑎𝑒𝑔𝑜) ≥ 2𝜎 are discarded to speed up the calculation.

In addition to the safety cost 𝐽1(𝑎𝑒𝑔𝑜), a speed cost 𝐽2(𝑎𝑒𝑔𝑜) is also considered to drive the

ego vehicle to meet the desired speed 𝑣𝑑𝑒𝑠.

𝐽2(𝑎𝑒𝑔𝑜) = ∣𝑣𝑒𝑔𝑜 + 𝑎𝑒𝑔𝑜 ⋅ 𝑇𝑓 − 𝑣𝑑𝑒𝑠∣

where | ⋅ | is the absolute value of a scalar. The optimal acceleration between time 𝑡 and

𝑡 + 𝑇𝑝 can be found by solving the following optimization problem:

min
𝑎𝑒𝑔𝑜

𝐽1(𝑎𝑒𝑔𝑜) + 𝜆 ⋅ 𝐽2(𝑎𝑒𝑔𝑜)

s.t. 𝑣𝑒𝑔𝑜 ≤ 𝑣𝑒𝑔𝑜 + 𝑎𝑒𝑔𝑜 ⋅ 𝑇𝑓 ≤ 𝑣𝑒𝑔𝑜

𝑎𝑒𝑔𝑜 ≤ 𝑎𝑒𝑔𝑜 ≤ 𝑎𝑒𝑔𝑜

where 𝑇𝑝 is the replan time, 𝜆 is the weight affecting how aggressive the ego vehicle behaves,

𝑣𝑒𝑔𝑜 and 𝑣𝑒𝑔𝑜 are the minimum and maximum speed of the ego vehicle, and 𝑎𝑒𝑔𝑜 and 𝑎𝑒𝑔𝑜
are the maximum deceleration and maximum acceleration, respectively. Note that a smaller

𝜆 favors more conservative behaviors. As shown here, the proposed risk assessment method

can be incorporated with any optimization-based planner.

2.4 Evaluation

To demonstrate how safety and comfort can be improved by our algorithm, we compare it

to a baseline approach which only models observed vehicles at intersections. In particular,

we focus on scenarios where the ego vehicle tries to make difficult maneuvers such as an

unprotected left turn.

2.4.1 Simulation

We simulate various random scenarios with five other vehicles in the scene. Each vehicle

travels on a random route at a constant speed ranging from 4 to 12 𝑚/𝑠. A valid combination

of trajectories is generated by rejection sampling so that there is no collision or overlap
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Table 2.1: Parameters for Simulations

Parameter Value
Forecast horizon, 𝑇𝑓 1.5 𝑠
Replan period, 𝑇𝑝 0.1 𝑠
Vehicle length, 𝑙𝑣 4.88 𝑚
Vehicle width, 𝑤𝑣 1.86 𝑚

Number of particles, 𝑁𝑘 ∀𝑘 ≤ 215

Weight, 𝜆 214 ⋅ 10−6

Bandwidth, 𝜎 0.5𝑙𝑣
Max. offset, 𝑏 0.75𝑤𝑣

Desired speed, 𝑣𝑑𝑒𝑠 10 𝑚/𝑠
Min. speed, 𝑣𝑘 = 𝑣𝑒𝑔𝑜 ∀𝑘 0 𝑚/𝑠
Max. speed, 𝑣𝑘 = 𝑣𝑒𝑔𝑜 ∀𝑘 12 𝑚/𝑠
Min. acceleration, 𝑎𝑒𝑔𝑜 −8 𝑚/𝑠2

Max. acceleration, 𝑎𝑒𝑔𝑜 2.5 𝑚/𝑠2

Threshold acceleration, 𝑎𝑡ℎ𝑟𝑒𝑠ℎ 4.0 𝑚/𝑠

among the simulated vehicles.

Here we focus on four-way, un-signaled intersections for compactness and not on T- or Y-

junctions, but the proposed approach conceptually generalizes. The layout of intersections

can be either synthetic or from real-world map data. For the synthetic layout, the roads are

constructed using straight and perpendicular segments. For real-world layouts, we obtain

the geometry information from 73 real-world intersections extracted from OpenStreetMaps

(OSMs) around Ann Arbor, Michigan.

To simulate scenarios with heavy occlusion, buildings are added to the map with a 2 𝑚
buffer from the boundary of the driving surface. The ego vehicle starts 15 𝑚 before the

stopline with initial speed 10 𝑚/𝑠, and tries to perform an unprotected left turn, as shown

in Fig. 2.3. More details of the parameters used in the simulator are listed in Table 2.1.

Note that as length of unobserved segments vary, 𝑁𝑘 is calculated dynamically such that the

density of particles stays constant at 215 particles per 100 𝑚.
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Figure 2.4: Illustration of collision rates overlaid on amapwith 12 intersection. A high-level plan-
ner can plan a route based on the collision rates, taking the route with the lower colli-
sion rates: (2, 0) → (2, 1) → (1, 1) → (0, 1) → (0, 2) → (0, 3).

2.4.2 Baseline

An occlusion-unaware risk assessment method is used as a baseline for comparison. The

baseline method only predicts distribution of risk caused by observed vehicles, as shown in

Fig. 2.3a. The same planning algorithm described in 2.3.2 is used with both the baseline and

proposed method throughout all simulations.

2.4.3 Metrics

We first simulate 2000 random scenarios with the ego vehicle performing an unprotected

left turn at each intersection with the baseline method, then simulate the exact same set of

experiments with identical trajectories with the proposed method. For each intersection, we

calculate its collision rate for both methods as follows:

Collision Rate = # of simulations with collision
Total # of simulations

× 100%

This meta-collision rate for a given intersection can be used by a high-level planner, which

needs to plans a route between two points across a city. Overlaying the collision rates with

associated intersections, a high-level planner can avoid dangerous intersections, as show in

Fig. 2.4.
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Speed and acceleration profiles are also calculated to quantify ride discomfort. However, to

the best of our knowledge, there is no common computational metric in the literature for ride

comfort. Typically, the literature reports thresholds on acceleration and jerk as themetric for

ride comfort[28]. We define the following discomfort score to represent a continuous range

of discomfort.

Discomfort Score = 1
𝑇 ∫

𝑇

0
𝑔(𝑡)𝑑𝑡

where

𝑔(𝑡) =
⎧{{
⎨{{⎩

−𝑎𝑡ℎ𝑟𝑒𝑠ℎ − 𝑎𝑒𝑔𝑜(𝑡) , if 𝑎𝑒𝑔𝑜(𝑡) ≤ −𝑎𝑡ℎ𝑟𝑒𝑠ℎ

−𝑎𝑡ℎ𝑟𝑒𝑠ℎ + 𝑎𝑒𝑔𝑜(𝑡) , if 𝑎𝑒𝑔𝑜(𝑡) ≥ 𝑎𝑡ℎ𝑟𝑒𝑠ℎ

0 , otherwise

and 𝑇 is the duration to reach the goal. Note that the function 𝑔 outputs positive values

when more than half of the braking force is applied and zero otherwise.

2.5 Results

The distributions of both collision rate and discomfort score are discussed in this section,

as shown in Fig. 2.5a and 2.5b as CDFs. In particular, the median and the 95th percentile

are reported. The former describes the nominal behavior, whereas the latter represents the

near-worst case.

2.5.1 Collision Rate

Wefirst evaluate the collision rate of both the baseline and proposedmethod. By utilizing our

algorithm, collision rates drop significantly. At the synthetic intersection, the rate decreases

by 4.1×, from 5.75% to 1.40%. Results at real-world intersections also show similar im-

provements. Among all the 73 real-world intersections, the median collision rate decreases

by 3.7×, from 5.40% to 1.45%, and the 95th percentiles decreases by 4.8×, from 12.64% to

2.61%, as shown in Fig. 2.5a.

The distribution of collision rates of the 73 real-world intersections is overlaid in Fig. 2.6.

This can be added as extra information to a high-level planner to plan a route with lower

collision rates. This enables a vehicle to reason about safety prior to embarking on a journey.
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(a) CDFs of collision rates (b) CDFs of discomfort scores

Figure 2.5: CDFs of (a) collision rates and (b) discomfort scores among all 73 real-world intersec-
tions. Our method outperforms the baseline where the 95th percentile of the collision
rate (vertical dashed lines) decreases from 12.64% to 2.61%, and the 95th percentile of
the discomfort decreases from 0.4925 to 0.1043.

It also enables urban planners and civil engineers to reason about safety of interactions for

autonomous vehicles in a systematic and quantitative way.

2.5.2 Ride Comfort

In addition to safety, which is evaluated as collision rate in Section 2.5.1, another benefit from

our algorithm is more ride comfort. At the synthetic intersection, the median discomfort

score is reduced by 2.9×, from 0.0795 to 0.0271. The 95th percentile of the discomfort score

decreases by 10×, from 0.4687 to 0.0466.
Similarly, the median score among all real-world intersections is reduced by 3×, from

0.0849 to 0.0284, and the 95th percentile of the score decreases by 4.7×, from 0.4925 to

0.1043.
An illustration of the synthetic and real-world intersections are shown in Fig. 2.7. In

both cases, the baseline method has larger variations in both speed and acceleration, which

means that the ego vehicle can abruptly brake only after other vehicles enter the observable

polygon. On the other hand, our method naturally introduces a virtual stop sign, slowing

the ego vehicle down even when there is no other vehicle in the observable polygon, which

generates a consistent behavior across all simulations.
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2.6 Conclusion

We propose a probabilistic risk assessment algorithm for autonomous driving under occlu-

sion. We show how it can be integrated with a simple planning algorithm, and compare the

proposed algorithm with a baseline method which only performs risk assessment for ob-

served vehicles. We evaluate our algorithm in terms of collision rate and ride comfort with

a large number of simulations at one synthetic and 73 real-world intersections. The results

show that the proposed algorithm reduces the collision rate by up to 4.8× and increase com-

fort by up to 10×. Our method shows great potential for improving both safety and comfort

for autonomous driving in urban environments.

Future directions include tackling scenarios with aggressive vehicles hidden in the unob-

served regions, and incorporating information from other vehicles for cooperative planning.
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Figure 2.6: Collision rates of a subset of intersections overlaid on a real-world map. A high-level
planner can utilize this information to avoid dangerous intersection such as the two
yellow ones.
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(a) Synthetic Intersection Layout [m] (b) Synthetic Intersection Results

(c) Real-world Intersection Layout [m] (d) Real-world Intersection Results

Figure 2.7: Speed and acceleration profiles for the baseline and proposed method at both (a) the
synthetic intersection and (c) one of the real-world intersection. The initial location of
the ego vehicle (blue box) and the goal (yellow star) are also shown. The left column
(red) shows the profiles of the baseline (occlusion-unaware) method, and the right col-
umn (blue) shows profiles for the proposed (occlusion-aware) method. The medians
of profiles are shown in solid black lines, and the percentiles are shown in different
shades of colors (from dark to light: 50 ± 15%, 50 ± 30%, 50 ± 45%.) In both synthetic
and real-world intersections, the baseline method shows large variations due to abrupt
braking. In addition, the deceleration can reach down to −8 𝑚/𝑠2, which can be very
uncomfortable. On the other hand, our method predominantly stays above −4 𝑚/𝑠2

and shows smaller variations, which indicates that it performs consistently well across
all simulations.

21



Chapter 3

Risk Assessment and Planning with
Bidirectional Reachability for

Autonomous Driving

3.1 Introduction

Most recent autonomous vehicles are equipped with a full sensor suit, including radars, cam-

eras, and LiDARs [29]. These sensors give the vehicle the ability to perceive the world and to

assess the risk of taking a certain action. The quantified risk can then be passed to a planning

algorithm to eventually take a action. However, it is still challenging for an autonomous ve-

hicle to navigate through complex environments such as occluded urban intersections such

as the one shown in Figure 3.1.

The primary challenge of safely navigation through these occluded scenarios is predict-

ing the behavior of all possible incoming traffic. The challenge arises due to the size of

the state space of all possible incoming traffic from every occluded region which can make

computation intractable.

Traditionally only forward reachability is used for risk assessment. In other words, algo-

rithms make predictions of all other agents’ future trajectories, and select an optimal action

based on collision probability [19] and time-to-collision [30].

In contrast, human drivers can usually handle scenarios like the one in Figure 3.1 even

with relatively limited sensing capabilities, such as a narrow field-of-view. We argue that

this is because human drivers sense the world in a more efficient way: using semantic and
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prior information to focus sensing resources on portions of the scene that are most pertinent.

For instance, when driving normally, drivers focus mostly on the current and future location

of the ego vehicle. We only glimpse to check the rear view mirror when driving forward,

but never focus our attention on it for an extended period of time. This is due to the fact that

we have 1) a semantic understanding of the environment (e.g. road layout, speed limit, etc)

and 2) prior knowledge such as the ability to estimate the reachability of not only for the ego

vehicle but also other agents. As a result, we know to focus our limited sensing resources

on only the regions where the ego vehicle can reach, and properly assess the risk to take an

action.

This chapter proposes an algorithm that leverages this intuition from human driving for

probabilistic risk assessment and planning by utilizing not only forward but also backward

reachability. Since collisions can only happen within the FRS of a vehicle, it is unnecessary

to predict everything in the occluded region. Instead, staring from a location in the FRS of

the ego vehicle, one can backward propagate the motion of other vehicles and eventually get

all possible initial conditions of risky agents. These initial conditions quantifies and spatially

identifies risk-inducing regions and agents, as shown in Figure 3.1. With this information,

we show how this quantified risk can be used for motion planning for safe navigation in

urban environments.

This chapter is organized as follows. Section 3.2 reviews related work in reachability-

based planning and risk assessment under occlusion. Section 3.3 shows our problem for-

mulation and proposed risk assessment and motion planning algorithm based on forward

and backward reachability. Section 3.4 describes two baselines and our evaluation metrics.

Section 3.5 describes the quantitative evaluation of the proposed algorithm and illustrates

that the proposed method is a significant improvement over existing methods. Section 3.6

concludes and discusses future directions of this work.

3.2 Related Work

Risk assessment is the process of predicting and quantifying the risk of taking a certain

action. The proposed method belongs to the category of methods that quantify the risk of

having a collision with another agent in the scene as defined in the well-organized survey

by Lefèvre, Vasquez, and Laugier [20].

Reachability-basedmotion planning iswidely used for autonomous driving [6]–[12]. Manzinger
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and Althoff [6] assume cooperative agents and proposed an algorithm to negotiate conflict-

ing motions. They try to solve a winner determination problem, which is NP-hard, by re-

stricting the set of combinations to a tree structure. This makes the original problem com-

putationally tractable. Orzechowski, Meyer, and Lauer [7] over-approximate the FRS of in-

coming traffic, including those who are occluded, by only considering the leading edge of

the observable polygon and make sure that the ego vehicle does not collide with the FRS.

Koschi and Althoff [8] use forward reachability to predict future both the FRS of the ego

vehicle and the ones of other traffic participants. It performs collision checking of the FRSs

and is evaluated on both urban intersection and highway scenarios. Ahn, Berntorp, and

Di Cairano [9] use both forward and backward reachability, just like the proposed method,

to formulate a discrete decision making problem for autonomous driving. Vaskov, Sharma,

Kousik, et al. [11] propose Reachability-based Trajectory Design (RTD) algorithm for real-

time trajectory planning in a static scene by showing how to utilize a FRS computed offline

during safe online motion planning. Vaskov, Kousik, Larson, et al. [12] later extended the

idea [11] to scenes with dynamics agents.

Our approach differs in the following ways. First of all, we formulate the problem proba-

bilistically, whereas the approaches developed by Orzechowski, Meyer, and Lauer [7], Koschi

and Althoff [8], Ahn, Berntorp, and Di Cairano [9], Vaskov, Sharma, Kousik, et al. [11], and
Vaskov, Kousik, Larson, et al. [12] do not. The proposed algorithm captures the distribution

of risk in both the action space and Cartesian space thus can be more flexible and gives one

to potentially adjust the balance between aggressiveness and effectiveness. Secondly, the

work by Ahn, Berntorp, and Di Cairano [9] is intended to be used as a high-level planner for

switching between behaviors and thus relies on a low-level planner to generate throttle and

steering commands. By contrast, our approach is more like a controller and plans low-level

commands directly. Finally, methods by Manzinger and Althoff [6], Ahn, Berntorp, and Di

Cairano [9], Vaskov, Sharma, Kousik, et al. [11], and Vaskov, Kousik, Larson, et al. [12] do

not consider occlusions or other sensory limitations, whereas our approach is designed to

operate even under occlusions.

The algorithm proposed in this chapter builds upon our previous work [31], which is

also a risk assessment and motion planning algorithm. One weakness of our prior work is

its poor scalability with respect to the size of the environment. The computational cost is

proportional to the area of the occluded regions within the size of the map. The cost of the

new approach proposed in this chapter does not scale with the area of occluded regions and
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has a lower collision rate. Also, our previous approach does not identify where to focus the

sensory resource.

The main contributions of this chapter are as follows:

• We propose a probabilistic risk assessment method which identifies the location of the

risk-inducing agents and regions.

• The proposed method utilizes both forward and backward reachability for efficient risk

assessment.

• We show how the quantified risk can be used for motion planning for navigating safely

in urban environments.

• We evaluate ourmethod on 73 real-world intersections and showquantitative improve-

ment in terms of reduced collision rate when compared to the state of the art.

3.3 Method

We first define both forward and backward reachability in Section 3.3.1. In Section 3.3.2,

we show how to use aforementioned reachability for efficient risk assessment. Finally, in

Section 3.3.3, we demonstrate using the quantified risk for motion planning.

3.3.1 Bidirectional Reachability

Let 𝑡 ∈ ℝ be time, 𝒳 be the state space and 𝒰 be the action space. Let 𝑥(𝑡) ∈ 𝒳 be the

state and 𝑢(𝑡) ∈ 𝒰 be the control input of a dynamic system at time 𝑡. Assume the vehicle’s

dynamics are described as an ordinary differential equation (ODE):

̇𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), (3.1)

where 𝑓 is a Lipschitz continuous function.

The FRS describes a set of all possible states of a system in the future. Given the dynamics

in (3.1), an initial set 𝒳0 and a fixed time horizon 𝑇 , the FRS is defined as

FRS(𝒳0, 𝑇 ) ∶= {𝑥(𝑇 ) ∈ 𝒳 | 𝑥0 = 𝑥(0) ∈ 𝒳0, 𝑢(𝑡) ∈ 𝒰,
̇𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ [0, 𝑇 ]}

(3.2)
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On the other hand, the backward reachable set (BRS) describes all possible initial states

that are able to reach a target set. Given the dynamics in (3.1), a target set 𝒳𝑓 and a fixed

time horizon 𝑇 , the BRS is defined as

BRS(𝒳𝑓 , 𝑇 ) ∶= {𝑥(0) ∈ 𝒳 | 𝑥𝑓 = 𝑥(𝑇 ) ∈ 𝒳𝑓 , 𝑢(𝑡) ∈ 𝒰
̇𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ [0, 𝑇 ]}

(3.3)

Normally, reachable sets are calculated for each observed agent [11], [12]. These methods

usually perform well when only a limited number of agents are presented in a non-occluded

scene. Scenes like urban intersections can still be challenging for these method since pre-

dicting everything, especially in a occluded environment, can computationally intensive in

many cases. Efforts have been made to ease the calculation under occlusion [7], [31], but

the complexity still grows along with either the number of occluded regions [7] or the total

area of the occluded regions [31]. For this reason, in Section 3.3.2 we introduce multiple

stages of our algorithm that utilize both forward and backward reachability for efficient risk

assessment under occlusion. The complexity of proposed method stays constant no matter

how the number or size of the occluded regions grow.

3.3.2 Risk Assessment

For autonomous driving, collisions happen only at the intersections of the FRSs of different

agents. In other words, if another agent (occluded or not) cannot reach where the ego vehicle

can possibly be in the future, 1.5 seconds for example, it does not induce risk to the ego

vehicle. This observation leads to an important insight – it is unnecessary to predict the

behavior of everything in a scene. Instead, we can focus resources on identifying only those

agents who pose a risk to the ego vehicle.

The proposed algorithm, whose behavior is depicted in Figure 3.2, is performed iteratively

every 𝑇𝑟 seconds, and has a forecast horizon of 𝑇𝑓 seconds. It can be broken down into three

stages.

Stage 1 – FRS of the Ego Vehicle

In the first stage, the FRS of the ego vehicle is calculated. In particular, we borrow the idea

of using particles from our previous work [31], [32] to represent the FRS since it makes the
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FRS probabilistic and the calculation parallelizable.

Without loss of generality, let 𝑡 = 0 at the beginning of each iteration. Let the control

inputs be parameterized by some parameters 𝜃𝑒 and 𝜃𝑜 such that

𝑢𝑒(𝑡) = 𝑢𝑒 (𝑡; 𝜃𝑒) ∈ 𝒰 ∀𝑡
𝑢𝑜(𝑡) = 𝑢𝑜 (𝑡; 𝜃𝑜) ∈ 𝒰 ∀𝑡,

(3.4)

where the subscripts 𝑒 and 𝑜 indicate quantities tailored to the ego vehicle and other vehicles,

respectively. Let the 𝑖−th particle, 𝑝[𝑖], be defined as

𝑝[𝑖] ∶= {𝑥[𝑖]
𝑒 (0), 𝜃[𝑖]

𝑒 (𝑡), 𝜃[𝑖]
𝑜 (𝑡), 𝑇 [𝑖]} ∀𝑖 = 1, … , 𝑁, (3.5)

where the superscript [𝑖] indicates 𝑖−th sample of a variable, 𝑥𝑒(0) is ego vehicle’s initial

state, 𝑇 is a fixed time horizon. and 𝑁 is the total number of particles.

In each iteration, we first sample 𝑁 particles from the following distributions:

𝑥𝑒(0) ∼ 𝑈 (𝒳𝑒,0)
𝜃𝑒 ∼ 𝑃 (𝜃+

𝑒 | 𝜃−
𝑒 )

𝜃𝑜 ∼ 𝑃 (𝜃+
𝑜 | 𝜃−

𝑜 )
𝑇 ∼ 𝑈 ([0, 𝑇𝑓 ]) ,

(3.6)

where 𝒳𝑒,0 is the initial set of the ego vehicle, [⋅, ⋅] is a closed interval, 𝑈(⋅) is an uniform

distribution over a set, and 𝑃(⋅+ | ⋅−) is the transition probability of a quantity between

subsequent iterations. The transition probabilities enforces smoothness in the action space

𝒰 which reduces jittery motion. Since the smoothness is enforced on the distribution level

but not directly on the optimal value, actions such as emergency breaking are still allowed.

More details about determining the optimal control input from the distribution are described

in Section 3.3.3.

Now the probabilistic FRS of the ego vehicle can be re-written as

FRS𝑒 ∶= {𝑥𝑒 (𝑇 [𝑖]) ∈ 𝒳 | 𝑥𝑒(0) = 𝑥[𝑖]
𝑒,0 ∈ 𝒳𝑒,0

̇𝑥𝑒(𝑡) = 𝑓𝑒 (𝑡, 𝑥𝑒(𝑡), 𝑢[𝑖]
𝑒 (𝑡))

𝑢[𝑖]
𝑒 (𝑡) ∈ 𝒰, ∀𝑡 ∈ [0, 𝑇 [𝑖]] }

𝑁

𝑖=1

(3.7)
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The set FRS𝑒 can be easily calculated by solving 𝑁 initial value problems (IVPs) in parallel

with a regular ODE solver. Note that FRS𝑒 contains 𝑁 hypotheses of the future states of the

ego vehicle, as shown in Figure 3.2b.

Stage 2 – BRS of Other Agents

In the second stage of the proposed algorithm, we calculate the BRS of other agents in a

similar fashion by setting the target set 𝒳𝑓 to FRS𝑒 such that

BRS𝑜 ∶= {𝑥𝑜(0) ∈ 𝒳 | 𝑥𝑒 (𝑇 [𝑖]) ∈ FRS𝑒

𝒫𝑜 (𝑥𝑜 (𝑇 [𝑖])) = 𝒫𝑒 (𝑥𝑒 (𝑇 [𝑖]))
̇𝑥𝑜(𝑡) = 𝑓𝑜 (𝑡, 𝑥𝑜(𝑡), 𝑢[𝑖]

𝑜 (𝑡))

𝑢[𝑖]
𝑜 (𝑡) ∈ 𝒰, ∀𝑡 ∈ [0, 𝑇 [𝑖]] }

𝑁

𝑖=1
,

(3.8)

where 𝒫𝑜 ∶ 𝒳𝑜 → ℝ2 and 𝒫𝑒 ∶ 𝒳𝑒 → ℝ2 are invertible functions projecting the state spaces

into Cartesian space. We use projections since collisions occur when a subset of the states

(e.g. positions) overlap. In this case, collision happens at one point in the Cartesian space,

while other states such as heading and velocity do not necessary have to be the same and

should be assigned separately.

Unlike the FRS𝑒, the BRS𝑜 set cannot be calculated directly with an ODE solver. In-

stead, we need to first reformulate the final value problem into an equivalent IVP. For Lips-

chitz continuous dynamic systems such as Constant Turn Rate and Velocity (CTRV) model,

Constant Turn Rate and Acceleration (CTRA) model, and the bicycle model, the initial value

𝑥𝑜(0) corresponding to particle 𝑖 can be obtained by solving the following IVP:

̇𝑧(𝑡) = −𝑓𝑜 (𝑡, 𝑧(𝑡), 𝑢[𝑖]
𝑜 (𝑡))

𝑧(0) = 𝑥𝑒 (𝑇 [𝑖])
(3.9)

The set BRS𝑜 can now be obtained by solving (3.9) in parallel with a regular ODE solver,

and the solution 𝑧 (𝑡) is 𝑥𝑜(𝑡) in (3.8), but reversed in time.

BRS𝑜 represents a collection of risky initial conditions of other agents. Each particle cor-

responds to a possible collision between the ego vehicle and another agent by design, since

the target set of BRS𝑜 is chosen to be FRS𝑒. By doing so, this approach can handle occlusion
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in an efficient way. We no longer need to predict all possible agents in the scene. Instead,

the set BRS𝑜 originates only from 𝒳𝑒,0 and tells us directly where the potentially dangerous

agents are, no matter whether they are occluded or not. This step is depicted in Figure 3.2c.

Stage 3 – Consistency with the Observation

BRS𝑜 alone does not quantify the risk associated with a particle. We need to incorporate

sensory systems, such cameras, radars and LiDARs, to identify risky control inputs. A com-

bination of the aforementioned sensors generates a free space around the ego vehicle know

as the observable polygon, 𝒳𝑠, as shown in Figure 3.2d.

If the entire trajectory of 𝑖−th particle, 𝑥[𝑖]
𝑜 (𝑡), ends in 𝒳𝑠, it is considered to be collision-

free; otherwise, it is potentially risky. Quantitatively speaking, a weight 𝑤[𝑖]
𝑠 is assigned to

each particle 𝑖 based on its entire trajectory.

𝑤[𝑖]
𝑠 = 1

𝑇 [𝑖] ∫
𝑇 [𝑖]

0
1 (𝑥[𝑖]

𝑜 (𝑡) ∈ 𝒳𝑠) 𝑑𝑡 (3.10)

where 1(⋅) is an indicator function. As a results, the weight 𝑤[𝑖]
𝑠 renders the likelihood of

the corresponding action 𝑢[𝑖]
𝑒 (𝑡) being collision-free or not.

3.3.3 Motion Planning

Based on the weight 𝑤𝑠 from Section 3.3.2 it is possible to generate a set of safe actions

by resampling. Resampling the particles with 𝑤𝑠 defined in (3.10) filters out actions with

potential collision. However, it is insufficient to use just 𝑤𝑠 during resampling. For example,

in many cases the safest action may be stopping completely before reaching the goal or

getting up to the target speed. The ego vehicle can freeze and never reaches the goal. Hence

we need another factor to promote forward motion of the ego vehicle.

Let 𝑢𝑑 be the desired control input when no risk is presented in the scene. The desired

control input can be from a predefined behavior, such as slowing down gently when ap-

proaching an intersection, or maintaining the target speed, etc. Assume that 𝑢𝑑 is given, we

assign another weight 𝑤𝑑 to each particle.

𝑤[𝑖]
𝑑 ∶= exp(−𝛿[𝑖]2

𝑢
2𝜎2𝑢

) (3.11)
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where

𝛿[𝑖]2
𝑢 ∶= 1

𝑇 [𝑖] ∫
𝑇 [𝑖]

0
(𝑢𝑑(𝑡) − 𝑢[𝑖]

𝑒 (𝑡))
⊤

(𝑢𝑑(𝑡) − 𝑢[𝑖]
𝑒 (𝑡)) 𝑑𝑡

and 𝜎𝑢 is a hyperparameter for scaling. The weight 𝑤𝑑 promotes those control inputs which

are closer to the desired one, and thus is able to drive the ego vehicle forward.

A naive way to utilize both 𝑤𝑠 for safety and 𝑤𝑑 for driving is to interpret them as likeli-

hoods and take their product as the final weight, and resample the particles. However, safe

actions might be suppressed when they are no where near the desired action. So taking the

direct product may end up with an action that is still too risky.

Instead, we calculate the final weight 𝑤[𝑖] in the following way:

𝑤[𝑖] = 𝑤[𝑖]
𝑠 ⋅ (𝜀 ⋅ 𝑤[𝑖]

𝑑 + (1 − 𝜀) ⋅ (1 − min
𝑗

𝑤[𝑗]
𝑠 )) , (3.12)

where 𝜀 is a small number. We set it to 10−4 in this work.

To understand (3.12) intuitively, let us first consider an extreme case. Assume 𝑤[𝑖]
𝑠 = 1 ∀𝑖,

indicating that all the trajectories 𝑥[𝑖]
𝑜 (𝑡) are in the observable polygon 𝒳𝑠 ans thus being

collision-free. The weight 𝑤[𝑖] becomes proportional to 𝑤[𝑖]
𝑑 , so the actions closer to the

desired action 𝑢𝑑(𝑡) will have higher final weights. In this case, resampling with 𝑤[𝑖] makes

the ego vehicle move according to the desired action.

On the other hand, if any of the trajectories shows slight risk (e.g. 1 − min𝑗 𝑤[𝑗]
𝑠 > 10𝜀),

the final weight 𝑤[𝑖] will be approximately proportional to 𝑤[𝑖]
𝑠 . As a result, safer actions get

promoted and the value 𝑤[𝑖]
𝑑 has negligible effect in this case. In short, using (3.12) with a

reasonably small 𝜀 forces the ego vehicle to prioritize safety and to move forward only when

it is risk-free. Resampling with the weight from (3.12) gives us a distribution represented

by a set of ”good” particles. The final step is to select an optimal control input from this

distribution for the ego vehicle to execute.

In general, the distribution can be multi-modal, meaning that there may be multiple con-

trol inputs that are equally good. For instance, if there are two vehicles approaching an

intersection at the same time, two possibly equally good actions for one of the vehicles can

be either 1) being aggressive – accelerating and pass first or 2) being conservative – waiting

until the other one passes. For this reason, we make use of a well-developed clustering algo-

rithm from the machine learning and computer vision community – Density-based spatial

clustering of applications with noise (DBSCAN) [33] – to identify multi-modal distributions
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and select the optimal action.

DBSCAN clusters particles in the action space based on the local density without specify-

ing the number of clusters a priori. It identifies the number of cluster automatically, and the

centroids of clusters are candidates for the optimal control input. We choose to prioritize

safety and make the ego vehicle to be more conservative. So if there are multiple clusters,

we pick the one with the most deceleration. The optimal control input is then executed until

the next iteration.

3.4 Evaluation

This section introduces the baselines for the proposed algorithm to be compared against. We

also define the metrics for evaluation.

3.4.1 Model

Section 3.3.2 only gives a general description of the pipeline for clarity, but to test and imple-

ment the proposed algorithm, we need to pick appropriate models for both the ego vehicle

and other vehicles. Due to its simplicity and tractable dimension, we choose to use the

train-like model, meaning that all the agents travels in their own curvilinear coordinates. A

concrete example of the model is to have a vehicle traveling on a lane without lane changing.

Although we assume no lane changing in this work, it is possible to relax this constraint by

using physics-based model like the bicycle model or other behaviour-based models.

Byworking in curvilinear coordinates, the location of the ego vehicle can be parameterized

by only two numbers: longitudinal position 𝑠𝑒 along the center line and the lateral offset 𝑏𝑒
with respect to the center line. In addition, the heading is completely determined by 𝑠𝑒 thus

is not necessary to be included as a state. The dynamics of the ego vehicle can be written as

̇𝑥𝑒(𝑡) = [0 1
0 0] 𝑥𝑒(𝑡) + [0

1] 𝑢𝑒(𝑡)

𝑥𝑒(𝑡) ∶= [𝑠𝑒(𝑡) ̇𝑠𝑒(𝑡)]
⊤

𝑢𝑒(𝑡) ∶= 𝑎𝑒 ∀𝑡 ≥ 0,

(3.13)

where 𝑎𝑒 is a constant acceleration along the center line. The dynamics of other vehicles is
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written in a similar way, but assumed to have a constant speed 𝑣𝑜 such that

̇𝑥𝑜(𝑡) = 𝑢𝑜(𝑡)
𝑥𝑜(𝑡) ∶= 𝑠𝑜(𝑡)
𝑢𝑜(𝑡) ∶= 𝑣𝑜 ∀𝑡 ≥ 0

(3.14)

If there aremultiple valid lanes for non-ego vehicles, each lane should have its own dynamics.

Here we want to emphasize that more sophisticate models can be substituted in directly,

but at the cost of higher computational complexity. We choose constant speed/acceleration

models because their simplicity and reasonable performance in similar scenarios, as illus-

trated in our previous work [31]. Moreover, since we work in curvilinear coordinates, both

models, (3.13) and (3.14), can be approximated by CTRV and CTRA models, respectively,

when the replanning time 𝑇𝑟 is small. Both CTRV and CTRA are shown to have comparable

performance in prediction in urban environments [34].

The desired action 𝑢𝑑(𝑡) is designed to have a constant deceleration when approaching

the stopline, and to switch to a saturating proportional controller to track a target speed.

3.4.2 Baseline 1

The first baseline is an occlusion-aware algorithm by Orzechowski, Meyer, and Lauer [7].

We recreate and simulate two of the scenarios demonstrated in their paper. The map is a

four-way unsignalized intersection partially occluded by a non-transparent static object.

The first scenario consists of no other agent, and the second one has one other agent com-

ing from the left hand side of the ego vehicle. In both scenarios, the goal is to navigate safely

through the intersection and to reach a target speed of 9 𝑚/𝑠. The geometries of the map

are measured using AutoCAD, and the velocity of the other agent is estimated afterwards.

3.4.3 Baseline 2

The second baseline is another occlusion-aware method from our previous work [31]. We

simulate the same set of 1000 random scenarios with up to five other agents for each scene on

both the proposed method and the second baseline. Each scene is an four-way unsignalized

intersection and the geometries are extracted from OSM. There are 73 real-world intersec-

tions in total. In addition, there is also a synthetic layout where the roads are straight and
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perpendicular to each other.

These maps have significantly more severe occlusion comparing to those in the first base-

line [7]. Buildings are added to the map with a two-meter buffer around the driving surface,

as shown in Figure 3.1 and 2.2. Speed of a non-ego agent is randomly set to a constant be-

tween 4 to 12 𝑚/𝑠. For simplicity, we assume no collision between non-ego agents and they

do not interact with other agents.

3.4.4 Metrics

For the first baseline, we investigate the speed and acceleration profiles for both ride comfort

and efficiency. Ride comfort is evaluated by the number of abrupt breaking and themaximum

deceleration, whereas efficiency is indicated by the terminal speed of the ego vehicle.

Collision rate is evaluated for the second baseline on one synthetic and all the 73 real-

world intersections. This results in 74000 simulations in total for each method.

3.5 Results

3.5.1 Baseline 1

Figure 3.3 shows the behaviors under two scenarios recreated from the first baseline [31].

Both the first baseline and the proposed method enable the ego vehicle to reach to the goal

without collision in either scenario. The ego vehicle slows down when approaching the

intersection, no matter if there is any incoming traffic.

However, they have three key differences. To begin with, in the first scenario the base-

line [7] has a sudden break at 𝑡 = 1.0𝑠, while the proposed method stays roughly at a

constant deceleration. In addition, the maximum breaking (i.e. deceleration) in the second

scenario is 27.5% lower in the proposed method. The reduced breaking and jerk indicate

higher ride comfort. Finally, in the second scenario the ego vehicle creeps forward between

𝑡 = 2.7𝑠 and 𝑡 = 4.3𝑠 in order to get a clearer view, as shown in Figure 3.3h and 3.3j. Once it

gets enough information and thinks it is risk-free, it then proceeds. This behavior leads to a

higher efficiency, meaning that it obtains a 57.9% higher speed at the end of the simulation

all without sacrificing safety.
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median collision rate # of zero-collision intersections

Baseline 2 [31] 1.70% 0 out of 74
Proposed 0.20% 10 out of 74

Table 3.1: Simulation results at 74 intersections.

3.5.2 Baseline 2

Among the 74 intersections, the proposed method obtains a median collision rate of 0.20%,

which is a significant reduction compared to the 1.70% of the second baseline [31], as shown

in Table 3.1. Moreover, the proposed method achieves zero collision at not only the synthetic

layout, but also 9 real-world layouts. In contrast, the baseline [31] has a minimum collision

rate of 0.70% at one of the 74 intersections.

3.6 Conclusion

We propose a probabilistic risk assessment method for motion planning under occlusion in

urban intersections. The proposed algorithm is able to quantify the distribution of risk in

the action space, and can be used to generate low-level control inputs for an autonomous

vehicle to navigate safely. It also identifies spatially where the risk-inducing regions are via

both forward and backward reachability. The proposed method is compared quantitatively

to previous work and shows significant improvement in terms of both efficiency and safety.

Future work include using the proposed method to redirect and focus sensory resources to

further reduce impact on limited sensing, formulating and solving the problem analytically

without sampling to obtain safety guarantees, and deploying it to hardware platforms for

testing in the real-world.
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Figure 3.1: The ego vehicle (blue box) intends to perform an unprotected left turn to the goal (yel-
low star) at an intersection. The green shaded region is the observable polygon and
arises due to the 1) limited sensor range and 2) occlusions from another vehicle (red
box) and buildings (gray regions.) The proposed algorithm quantifies and identifies
the location of risk posed by other vehicles (red particles). Our approach identifies
and focuses its attention on risk-inducing regions in the near future (e.g. 1.5 seconds)
to ensure that it does not waste computational resources predicting everything in the
occluded region. Both axes are in meters.
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(a) (b) (c) (d)

Figure 3.2: Step-by-step illustration of different stages of the proposed algorithm. (a) An intersec-
tion with occlusion and with one other agent (red box) in the scene. The observable
polygon is indicated by the green shaded region, and the goal location is indicated by
the yellow star. (b) State 1: calculating FRS𝑒. The dots are projections of the parti-

cles {𝑥𝑒 (𝑇 [𝑖])}𝑁
𝑖=1 in 2D. (c) Stage 2: calculating BRS𝑜. The dots are projections of

the particles {𝑥[𝑖]
𝑜 (0)}

𝑁

𝑖=1
in 2D. (d) Stage 3: filtering with the observable polygon. The

remaining red dots in the figure indicates spatially the source of risk-inducting regions.
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(a) (b) (c) (d) Baseline 1 [7] (e) Proposed

(f) (g) (h) (i) Baseline 1 [7] (j) Proposed

Figure 3.3: Two scenarios in the first baseline [7]. The first scenario (top row) is in a map with
one static obstacle (gray) and no incoming traffic, and the second scenario (bottom
row) is in the same map with one other vehicle (red) coming from the left. The first
three columns (a-c, f-h) show key frames of the proposed method, and the other two
columns (d,e,i,j) show the speed and acceleration profiles. In the first scenario, the
baseline abruptly breaks at 𝑡 = 1.0𝑠 whereas the proposed method maintains a near
constant deceleration, as shown in (d) and (e). In the second scenario, the baseline
breaks at both 𝑡 = 1.0𝑠 and 𝑡 = 2.8𝑠, whereas the proposed method only breaks once
at 𝑡 = 1.9𝑠, as shown in (i) and (j). In addition our method does not stop completely
in the second scenario. Instead, it creeps forward between 𝑡 = 2.7𝑠 and 𝑡 = 4.3𝑠 to
gather more information. This behavior results in a higher final speed and thus makes
the ego vehicle faster to reach the goal. The fourth column is adopted directly from
Figure 4 in [7].
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Chapter 4

DeSnowNet: Real-time Snow Removal for
LiDAR Point Clouds

4.1 Introduction

LiDARs are classified as active sensors, emitting pulsed light waves and utilizing the return-

ing pulse to calculate the distances between it and the surrounding objects. This makes

LiDARs suitable during both daytime and nighttime, constantly measuring at centimeter-

level accuracy of the environment. Such measurements can be easily found in modern

datasets [35]–[38] as frame-by-frame point clouds, commonly sampled at 10Hz, and has

been used for 3D object detection, semantic segmentation, and SLAM [39].

Though LiDARs providemore actuate 3Dmeasurements compared to radar, they are prone

to adverse weather conditions. Unlike radars, which see through smog, fog, snowflakes and

rain droplets, LiDARs are greatly affected by different sizes of particles in the air. Specifically

during snowfall, the pulsed light waves hit the snowflakes and return to the sensor as ghost
measurements, as shown in Fig. 4.1a and 4.1b. It is crucial to remove such measurements

and unveil the underlying geometry of the scene for applications like SLAM.

Recently, there is an increasing number of large-scale datasets containing adverse weather

conditions. The most noticeable ones are the CADC Dataset [13] and the WADS [40]. De-

noising algorithms [41], [42] have also been developed alongside with them. To the best of

our knowledge, all of the unsupervised de-noising algorithms are based on nearest neigh-

bor search and have difficulty operating in real-time even with a moderate 64−beam LiDAR

(about 100𝑘 points/frame). Therefore, it is critical to introduce an alternative formulation
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which do not rely on nearest neighbor search.

An alternative way to represent point clouds is using range images [43], as shown in Fig.

4.2a and 4.2b. Each range image has two channels, and the pixel values are 1) the Euclidean

distances in the body coordinate and 2) the intensities. With this representation, we can

leverage common algorithms in image processing, including the Fast Fourier Transform

(FFT), the Discrete Wavelet Transform (DWT), and the Difference of Gaussians (DoG) [44].

CNNs with pooling, batch normalization [45] and dropout [46] can also be applied without

any modification. More importantly, these operations can be performed very efficiently on

modern hardware such as GPUs.

However, developing a CNN for de-noising point clouds poses its own challenges. The

most obvious one is that obtaining point-wise labels to isolate snowflakes from the scene

is usually prohibitively expensive on large-scale datasets. Thus the formulation needs to

be either unsupervised or self-supervised to exploit unlabeled data. With this in mind, we

propose a novel network, DeSnowNet, which can be trained with unlabeled point clouds.

Assuming the noise-free range images are sparse in some basis, we design loss functions

that relies purely on quantifying the sparsity of the data. The 𝐿1 norm is used as a proxy

to sparsity, and encourages sparse coefficients during training. In addition, the DWT and

the Inverse Discrete Wavelet Transform (IDWT) are used for down sampling and up scal-

ing within the network instead of pooling and convolution transpose, respectively. The

proposed network is evaluated on a subset of WADS [40], showing similar or superior per-

formance in de-noising compared to other state-of-the-art methods while running 47 times

faster.

This chapter is organized as follows: Section 4.2 lists related work in datasets with adverse

weather conditions, existing de-noising methods, and backgrounds in compressed sensing

with sparse representations. Section 4.3 goes through the formulation of the proposed net-

work and loss functions in detail, including how we train the network in a unsupervised

fashion. Section 4.4 introduces the metrics for comparing the performance of the proposed

network and other methods. Section 4.5 quantitatively shows the results of the aforemen-

tionedmetrics, as well as qualitatively presents the resultingmap from an off-the-shelf SLAM

algorithm. Lastly, Section 4.6 summarizes the contributions and advantages of the proposed

method.
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4.2 Related Work

4.2.1 Datasets

Though large-scale datasets for autonomous driving [35]–[38] becomemore ubiquitous nowa-

days, most of them contain very little or no LiDAR data collected during adverse weather

conditions. However, there are some exceptions.

Heinzler, Piewak, Schindler, et al. [43] collected a dataset with points clouds in a weather-

controlled climate chamber, simulating rain and fog in front of a vehicle. The dataset pro-

vides point-wise labels with three classes: clear, rain, and fog, where the “clear” points are

the ones which are not caused by the adverse weather.

Pitropov, Garcia, Rebello, et al. [13] published the CADC dataset which contains 32754
point clouds under various snow precipitation levels. The point clouds were collected from

a top-mounted HDL-32e and were grouped into sequences where each sequence has about

100 consecutive point clouds. Though a subset of the CADC dataset has 3D bounding boxes

for vehicles and pedestrians, we do not use them in our work as the proposed method is

designed to be unsupervised.

Recently Bos, Chopp, Kurup, et al. [40] released the WADS with only 1828 point clouds

which is significantly smaller than CADC. But unlike CADC, each point cloud in WADS has

point-wise labels. There are 22 classes, including “active falling snow” and “accumulated

snow”.

Since the target application of the proposed network is snow removal, only CADC and

WADS are used for training and evaluation.

4.2.2 De-noising Point Clouds Corrupted by Snow

Similar to the proposed method, the WeatherNet [43] projects point clouds onto a spherical

coordinate as range images, whichwe go into detail in Section 4.3.1. With this representation

and the dataset released alongside with the WeatherNet, they formulated the de-noising

problem as supervised multi-class pixel-wise classification. The network is constructed by a

series of LiLaBlock [47] and is trained with point-wise class labels. The WeatherNet is able

to remove rain and fog, but it is unclear how it performs on snow. Additionally, training the

WeatherNet requires point-wise label. This prevents the WeatherNet from taking advantage

of large-scale unlabeled point cloud dataset such as CADC.
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The Dynamic Radius Outlier Removal (DROR) [41] filter removes the noise by first con-

structing a 𝑘−𝑑 tree, and count the number of neighbors of each point using dynamic search

radii. The idea is that the density of the point clouds from the scene is inversely proportional

to the distance. The search radius of each point is dynamically adjusted by accordingly. If

a point does not have enough number of neighbors within it search radius, it is classified as

an outlier (i.e. snow).

The Dynamic Statistical Outlier Removal (DSOR)[42] filter also rely on nearest neighbor

search, but it calculates the mean and variance of relative distances given a fixed number of

neighbors of each point. In other words, it estimates the local density around each point,

and outliers can then be filtered out. DSOR is shown to be slightly faster than DROR while

having a similar performance in de-noising.

Both DROR and DSOR require nearest neighbor search which prevents them from be-

ing real-time. A moderate LiDAR like the HDL‐64E generates around 10𝑘 points at 10Hz.

Querying this much points with a 𝑘 − 𝑑 tree of this size takes hundreds of milliseconds on

modern hardware. On the other hand, WeatherNet [43] and our method work with image-

like data, which will be discussed later in Section 4.3.1. Common tools in image processing,

such as FFT, DWT, and CNNs, and be applied directly and runs very efficiently on GPUs.

This allows us to develop a real-time de-noising algorithm that runs orders of magnitude

faster than DROR and DSOR.

4.2.3 Sparse Representations

BothDWTand FFT are know to generate sparse representations on real-worldmulti-dimensional

grid data like audio and images, meaning that the Fourier and Wavelet coefficients of nat-

ural signals are mostly zeros. Typically, a signal corrupted by additive noise becomes less

sparse the the underlying clean one, as shown in Fig. 4.2c and 4.2d. In other words, it is

possible to perform de-noising if the underlying clean signal is sufficiently sparse in some

basis. Theoretically this can be done by minimizing the 𝐿1 norm of the coefficients.

Assuming that a noisy signal 𝑣 has a similar sparsity under 𝑚 different transformations

𝒯1, … , 𝒯𝑚, we aim to solve

min
𝑢

𝜆‖𝑢 − 𝑣‖𝑞 + 1
𝑚 ∑

𝒯𝑗

‖𝒯𝑗(𝑢)‖1, (4.1)
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where 𝑢 is the underlying clean signal, ‖ ⋅ ‖𝑞 is the 𝐿𝑞 norm, and 𝜆 ∈ ℝ is the weight keeping

𝑢 close to 𝑣. The value 𝑞 is commonly set to be either 1 or 2, depending on the structure of

the noise.

However, solving Eq. 4.1 directly is computationally intensive for any reasonably sized

signal 𝑣. Thus we propose to use a CNN to approximate the solution and use Eq. 4.1 as the

groundwork of our loss functions. More details can be found in Section 4.3.2 and 4.3.3.

4.3 Method

4.3.1 Preprocessing

The first step is to convert point clouds into range images. Given a point 𝑝 = [𝑥 𝑦 𝑧]
⊤

∈
ℝ3 in the 𝑘−th point cloud and its corresponding intensity value 𝑖 ∈ [0, 1], we calculate the

following values:

𝑑 ∶= ‖𝑝‖2 ∈ ℝ+,
𝜙 ∶= sin−1 (𝑧

𝑑) ∈ [−𝜋
2 , 𝜋

2 ] ,

𝜓 ∶= tan−1 (𝑦
𝑥) ∈ [−𝜋, 𝜋) ,

(4.2)

where 𝑑 is the distance from the LiDAR center, 𝜙 is the inclination angle, and𝜓 is the azimuth

angle. By discretizing the inclination and azimuth angles within the field-of-view (FOV) of

the LiDAR, we project each point within a point cloud onto a spherical coordinate, resulting

a range image 𝐼𝑘 ∈ ℝℎ×𝑤×2
+ , where 𝑘 ∈ ℤ is the frame index, ℎ is the vertical resolution, and

𝑤 is the horizontal resolution. Throughout this chapter ℎ is set to be the number of beams

of the LiDAR and 𝑤 is set to be a constant 2048. The first channel of the range image 𝐼𝑘 is

the distance 𝑑 of each point, and the second channel is the corresponding intensity value 𝑖.
The second step is to squash the range images to a proper scale. A key observation is

that the ghost measurements mainly concentrate within a distance of 25 meters, as shown

in Fig. 4.1, whereas the maximum distance of a LiDAR easily exceeds 150 meters. We scale

the range images 𝐼𝑘 with an element-wise function 𝑔1 ∶ ℝℎ×𝑤×2
+ ↦ ℝℎ×𝑤×2

+ , defined as

𝑔1(𝐼𝑘) ∶= 3√𝐼𝑘, (4.3)
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to amplify the relative importance of points near the ego vehiclewhile preserving its ordering

in distances. The function 𝑔1 also enhances the contrast between the noise and the scene in

the intensity channel, since the intensity values of the snowflakes are almost always 0 and

the scene usually has positive intensity values.

Finally, not every pixel has a value due to the lack of points at certain directions such as the

sky and some transparent surfaces. The void pixels is processed with a series of operations,

collectively denoted as 𝑔2 ∶ ℝℎ×𝑤×2
+ ↦ ℝℎ×𝑤×2

+ , before entering the network. In sequence,

the operations are:

1. 3 × 3 dilation to fill isolated void pixels.

2. Filling with the value (𝜇𝑘 + 𝜎𝑘), where 𝜇𝑘 ∈ ℝℎ×2
+ and 𝜎𝑘 ∈ ℝℎ×2

+ are the row-wise

mean and standard deviation, respectively.

3. Subtraction with a 3 × 3 DoG to reduce the amplitude of isolated noisy pixels.

4. 7 × 7 average pooling to smooth out the image.

Note that 𝑔2 does not modify any pixel with a valid measurement. Only the void pixels

are altered. An example of the a resulting image

̃𝐼𝑘 ∶= (𝑔2 ∘ 𝑔1)(𝐼𝑘) (4.4)

is shown in Fig. 4.2a and 4.2b.

4.3.2 Network Architecture

The proposed network, DeSnowNet 𝑓𝜃 ∶ ℝℎ×𝑤×2
+ ↦ ℝℎ×𝑤×2, is based on the MWCNN [48]

with several keymodifications. First, all convolution layers are replaced by residual blocks [49]

with two circular convolution layers. In addition, a dropout layer is placed after the first

ReLU activation in each residual block to further regularize the network. Lastly, the number

of channels is dramatically reduced – the first level only has 8 channels instead of 160 chan-

nels in MWCNN. The number of channels of the higher levels are also reduced accordingly.

These modifications are critical for processing sparse representations (i.e. FFT and DWT

coefficients) of panoramic range images.

The proposed network is designed to produce the residual image Δ𝑘 ∈ ℝℎ×𝑤×2, satisfying
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Δ𝑘 ∶= 𝑓𝜃 ( ̃𝐼𝑘) ,
̂𝐼𝑘 ∶= ̃𝐼𝑘 − Δ𝑘,

(4.5)

where ̂𝐼𝑘 is the de-noised range image representing the geometry of the underlying scene.

4.3.3 Loss Functions

Let ℱ ∶ ℝℎ×𝑤×2 ↦ ℝℎ×𝑤×2 be the real-valued FFT and 𝒲 ∶ ℝℎ×𝑤×2 ↦ ℝℎ×𝑤×2 be the

DWT with the Haar basis. With the formulation in Eq. 4.1 and 4.5, we designed three novel

loss functions, two of which quantify the sparsity of the range image, while the third one

quantifies the sparsity of the noise.

ℒℱ ∶= 1
𝑁

𝑁
∑
𝑘=1

∥log (∣ℱ ( ̂𝐼𝑘)∣ + 1)∥
1

,

ℒ𝒲 ∶= 1
𝑁

𝑁
∑
𝑘=1

∥𝒲 ( ̂𝐼𝑘)∥
1

,

ℒΔ ∶= 1
𝑁

𝑁
∑
𝑘=1

‖Δ𝑘‖1 ,

(4.6)

where 𝑁 is the number of point clouds in the training set, and |⋅| is the element-wise absolute

value.

Note that ℒℱ uses the log-magnitude of the Fourier coefficients. Since log(1 + 𝜖) ≈ 𝜖 for

some small 𝜖, it prevents the network from focusing too much on the low-frequency part of

the spectrum while pertaining the properties of the 𝐿1 norm. The total loss function ℒ can

thus be constructed as

ℒ ∶= 𝛼 ⋅ ℒℱ + ℒ𝒲
2 + (1 − 𝛼) ⋅ ℒΔ, (4.7)

where 𝛼 ∈ (0, 1) is a hyperparameter balancing the sparsity of the range image and the

sparsity of the residual.
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4.3.4 Prediction

Let Δ𝑑
𝑘 ∈ ℝℎ×𝑤 be the distance channel and Δ𝑖

𝑘 ∈ ℝℎ×𝑤 be the intensity channel of the

residual image Δ𝑘. We define the decision boundary primarily in the residual space. A

point 𝑝 with residuals 𝛿𝑑
𝑘 ∈ Δ𝑑

𝑘 and 𝛿𝑖
𝑘 ∈ Δ𝑖

𝑘 is classified as snow (i.e. positive) if it satisfies

all the following conditions:

• Being the foreground (i.e. 𝑝 is closer than nearby pixels).

𝛿𝑑
𝑘 > 0

• Absorbing most of the energy of LiDAR beams (i.e. 𝑝 is darker than nearby pixels).

𝛿𝑖
𝑘 > 0

• The residuals of 𝑝 are not sparse.

(𝛿𝑑
𝑘)𝑛𝑑 ⋅ (𝛿𝑖

𝑘)𝑛𝑖 > ̄𝛿

where 𝑛𝑑 ∈ ℝ+ and 𝑛𝑖 ∈ ℝ+ are the shape parameters of the primary decision boundary,

and ̄𝛿 ∈ ℝ+ is a threshold value.

4.4 Evaluation

Quantitatively, the proposed network and other two state-of-the-art methods are evaluated

with three common metrics for binary classification on a subset of WADS [40], since it is

the only publicly available dataset containing point-wise labels with snow at the moment of

writing this dissertation.

• Precision: 𝑇 𝑃
𝑇 𝑃+𝐹𝑃

• Recall: 𝑇 𝑃
𝑇 𝑃+𝐹𝑁

• Intersection-over-Union (IoU): 𝑇 𝑃
𝑇 𝑃+𝐹𝑃+𝐹𝑁
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Precision Recall IoU Runtime [ms]

DROR [41] 0.8565 0.9197 0.7957 1229.5
DSOR [42] 0.6370 0.9382 0.6081 319.6

DeSnowNet (ours) 0.9295 0.9008 0.8421 6.8

Table 4.1: De-noising results.

where 𝑇 𝑃 is the number of true positive points, 𝐹𝑃 is the number of false positive points,

and 𝐹𝑁 is the number of false negative points. We also record the average runtime on a

modern desktop computer with a Ryzen 2700X and an RTX 3060.

In addition, qualitative results in SLAM with a sequence of de-noised point clouds are

presented.

4.5 Results

Compared to the two baselines, the proposed network yields similar or superior performance

in de-noising, as shown in TABLE 4.1. The recall is 3.74% lower than DSOR, while the

precision and IoU are noticeably higher than both DROR and DSOR.

More importantly, the proposed network is 47× faster than DSOR and 181× faster than

DROR with about 10𝑘 points per frame. Considering that the sampling rate of LiDARs are

usually at 10Hz, the proposed method is the only one that is truly capable of running at

real-time.

The de-noised point clouds also enable building clean maps using an off-the-shelf SLAM

algorithm like the LeGO-LOAM, as shown in Fig. 4.3. The map with raw point clouds shows

a large number of ghost points above where the ego vehicle traveled. By contrast, resulting

map with de-noise point clouds is much cleaner, containing a minimal amount of noise.

4.6 Conclusions

Wepropose a deepCNN, DeSnowNet, for de-noising point clouds corrupted by snowfall. The

proposed network can be trained without any labeled data, and generalizes well to multiple

datasets. The network processes 100𝑘 points under 10ms while yielding superior perfor-

mance compared to the state-of-the-art method.
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(a) CADC [13] (b) WADS [40]

Figure 4.1: Point clouds corrupted by snowflakes from two datasets, and the de-noised results
using the proposed method. Top to bottom: Raw point clouds, de-noised point clouds,
and the ghost measurements. Both axes are in meters.
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(a) The distance channel.

(b) The intensity channel.

(c) The log-magnitude of the FFT coefficients of the distance channel.

(d) The magnitude of the DWT coefficients of the distance channel.

Figure 4.2: (a), (b): a range image ̃𝐼𝑘 fromWADS [40]. (c), (d): the corresponding sparse coefficients
of the distance channel.

(a) Raw point clouds (b) De-noised point clouds

Figure 4.3: Maps built from (a) raw point clouds and (b) de-noised point clouds from a sequence
in CADC [13]. Both maps use LeGO-LOAM [39]. The colors indicate the height (𝑧) of
the points.

48



Bibliography

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition, IEEE, 2012, pp. 3354–3361.

[2] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y.
Chai, B. Caine, et al., “Scalability in perception for autonomous driving: Waymo open
dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2446–2454.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G.
Baldan, and O. Beijbom, “Nuscenes: A multimodal dataset for autonomous driving,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

[4] H. Lee, H. Chae, and K. Yi, “A geometric model based 2d lidar/radar sensor fusion for
tracking surrounding vehicles,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 130–135, 2019.

[5] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, “Towards a viable
autonomous driving research platform,” in 2013 IEEE Intelligent Vehicles Symposium
(IV), IEEE, 2013, pp. 763–770.

[6] S. Manzinger and M. Althoff, “Tactical decision making for cooperative vehicles us-
ing reachable sets,” in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), 2018, pp. 444–451.

[7] P. F. Orzechowski, A.Meyer, andM. Lauer, “Tackling occlusions & limited sensor range
with set-based safety verification,” arXiv preprint arXiv:1807.01262, 2018.

[8] M. Koschi and M. Althoff, “Spot: A tool for set-based prediction of traffic participants,”
in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1686–1693.

[9] H. Ahn, K. Berntorp, and S. Di Cairano, “Reachability-based decision making for city
driving,” in 2018 Annual American Control Conference (ACC), 2018, pp. 3203–3208.

[10] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An efficient reachability-
based framework for provably safe autonomous navigation in unknown environ-
ments,” arXiv preprint arXiv:1905.00532, 2019.

49



[11] S. Vaskov, U. Sharma, S. Kousik, M. Johnson-Roberson, and R. Vasudevan, “Guaranteed
safe reachability-based trajectory design for a high-fidelity model of an autonomous
passenger vehicle,” in 2019 American Control Conference (ACC), 2019, pp. 705–710.

[12] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. R. Ward, S. Worrall, M. Johnson-Roberson,
and R. Vasudevan, “Towards provably not-at-fault control of autonomous robots in
arbitrary dynamic environments,” CoRR, vol. abs/1902.02851, 2019.

[13] M. Pitropov, D. E. Garcia, J. Rebello,M. Smart, C.Wang, K. Czarnecki, and S.Waslander,
“Canadian adverse driving conditions dataset,” The International Journal of Robotics
Research, vol. 40, no. 4-5, pp. 681–690, 2021.

[14] S. Kammel and B. Pitzer, “Lidar-based lane marker detection and mapping,” in IEEE
Intelligent Vehicles Symposium, 2008, pp. 1137–1142.

[15] P. Sudhakar, K. A. Sheela, andM. Satyanarayana, “Imaging lidar system for night vision
and surveillance applications,” in 4th International Conference on Advanced Computing
and Communication Systems (ICACCS), Jan. 2017, pp. 1–6.

[16] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and A. C. Berg, “SSD:
single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), Washington, DC, USA: IEEE Computer
Society, 2015, pp. 1026–1034.

[19] M. Lee, K. Jo, and M. Sunwoo, “Collision risk assessment for possible collision vehi-
cle in occluded area based on precise map,” in IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), Oct. 2017, pp. 1–6.

[20] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk as-
sessment for intelligent vehicles,” ROBOMECH Journal, vol. 1, no. 1, p. 1, Jul. 2014.

[21] K. Wyffels and M. Campbell, “Negative information for occlusion reasoning in dy-
namic extended multiobject tracking,” IEEE Transactions on Robotics, vol. 31, no. 2,
pp. 425–442, Apr. 2015.

[22] J. Yu and S. M. LaValle, “Shadow information spaces: Combinatorial filters for tracking
targets,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 440–456, Apr. 2012.

[23] E. Galceran, E. Olson, and R.M. Eustice, “Augmented vehicle tracking under occlusions
for decision-making in autonomous driving,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2015, pp. 3559–3565.

50



[24] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic decision-making under uncer-
tainty for autonomous driving using continuous pomdps,” in 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Oct. 2014, pp. 392–399.

[25] S. Brechtel, T. Gindele, and R. Dillmann, “Solving continuous pomdps: Value itera-
tion with incremental learning of an efficient space representation,” in International
Conference on Machine Learning, 2013.

[26] M. Bouton, A. Nakhaei, K. Fujimura, andM. J. Kochenderfer, “Scalable decisionmaking
with sensor occlusions for autonomous driving,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[27] S. Russell and A. L. Zimdars, “Q-decomposition for reinforcement learning agents,” in
Proceedings of the 20th International Conference on International Conference on Machine
Learning, ser. ICML’03, Washington, DC, USA: AAAI Press, 2003, pp. 656–663.

[28] L. L. Hoberock, “A survey of longitudinal acceleration comfort studies in ground trans-
portation vehicles,” Journal of Dynamic Systems, Measurement, and Control, vol. 99,
no. 2, pp. 76–84, 1977.

[29] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An open
approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68, 2015.

[30] S. Ammoun and F. Nashashibi, “Real time trajectory prediction for collision risk esti-
mation between vehicles,” in 2009 IEEE 5th International Conference on Intelligent Com-
puter Communication and Processing, 2009, pp. 417–422.

[31] M. Yu, R. Vasudevan, and M. Johnson-Roberson, “Occlusion-aware risk assessment for
autonomous driving in urban environments,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 2235–2241, 2019.

[32] H. O. Jacobs, O. K. Hughes, M. Johnson-Roberson, and R. Vasudevan, “Real-time certi-
fied probabilistic pedestrian forecasting,” IEEE Robotics and Automation Letters, vol. 2,
no. 4, pp. 2064–2071, 2017.

[33] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” AAAI Press, 1996, pp. 226–231.

[34] R. Schubert, E. Richter, and G.Wanielik, “Comparison and evaluation of advanced mo-
tion models for vehicle tracking,” in 2008 11th International Conference on Information
Fusion, 2008, pp. 1–6.

[35] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
International Journal of Robotics Research (IJRR), 2013.

[36] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou,
Y. Chai, B. Caine, V. Vasudevan,W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M.
Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability
in perception for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

51



[37] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. On-
druska, “One thousand and one hours: Self-driving motion prediction dataset,” CoRR,
vol. abs/2006.14480, 2020.

[38] W. K. Fong, R. Mohan, J. V. Hurtado, L. Zhou, H. Caesar, O. Beijbom, and A. Val-
ada, “Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation
and tracking,” arXiv preprint arXiv:2109.03805, 2021.

[39] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry
and mapping on variable terrain,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2018, pp. 4758–4765.

[40] J. P. Bos, D. Chopp, A. Kurup, and N. Spike, “Autonomy at the end of the Earth: an
inclement weather autonomous driving data set,” in Autonomous Systems: Sensors, Pro-
cessing, and Security for Vehicles and Infrastructure 2020, International Society for Op-
tics and Photonics, vol. 11415, SPIE, 2020, pp. 36–48.

[41] N. Charron, S. Phillips, and S. L. Waslander, “De-noising of lidar point clouds cor-
rupted by snowfall,” in 2018 15th Conference on Computer and Robot Vision (CRV), 2018,
pp. 254–261.

[42] A. Kurup and J. Bos, Dsor: A scalable statistical filter for removing falling snow from
lidar point clouds in severe winter weather, 2021.

[43] R. Heinzler, F. Piewak, P. Schindler, and W. Stork, “Cnn-based lidar point cloud de-
noising in adverse weather,” IEEE Robotics and Automation Letters, 2020.

[44] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal Society
of London. Series B. Biological Sciences, vol. 207, no. 1167, pp. 187–217, 1980.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[46] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representingmodel
uncertainty in deep learning,” in Proceedings of The 33rd International Conference on
Machine Learning, M. F. Balcan and K. Q.Weinberger, Eds., ser. Proceedings ofMachine
Learning Research, vol. 48, New York, New York, USA: PMLR, 2016, pp. 1050–1059.

[47] F. Piewak, P. Pinggera, M. Schäfer, D. Peter, B. Schwarz, N. Schneider, D. Pfeiffer, M.
Enzweiler, and M. Zöllner, Boosting lidar-based semantic labeling by cross-modal train-
ing data generation, 2018.

[48] P. Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level wavelet convolutional neural net-
works,” CoRR, vol. abs/1907.03128, 2019.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

52


	Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1. Introduction
	Limited Sensing Capabilities
	Risk Assessment
	Reachability Analysis
	Adverse Weather Conditions
	Problem Statement
	Contributions

	Chapter 2. Occlusion-Aware Risk Assessment for Autonomous Driving in Urban Environments
	Introduction
	Related Work
	Method
	Risk Assessment Over Cartesian Space
	Planning

	Evaluation
	Simulation
	Baseline
	Metrics

	Results
	Collision Rate
	Ride Comfort

	Conclusion

	Chapter 3. Risk Assessment and Planning with Bidirectional Reachability for Autonomous Driving
	Introduction
	Related Work
	Method
	Bidirectional Reachability
	Risk Assessment
	Motion Planning

	Evaluation
	Model
	Baseline 1
	Baseline 2
	Metrics

	Results
	Baseline 1
	Baseline 2

	Conclusion

	Chapter 4. DeSnowNet: Real-time Snow Removal for LiDAR Point Clouds
	Introduction
	Related Work
	Datasets
	De-noising Point Clouds Corrupted by Snow
	Sparse Representations

	Method
	Preprocessing
	Network Architecture
	Loss Functions
	Prediction

	Evaluation
	Results
	Conclusions

	Bibliography

