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ABSTRACT

Electronic structure calculations have been one of the most successful scientific

fields in the past 50 years. Density functional theory (DFT) with its nice balance

between accuracy and efficiency has now become the standard technique for many

materials research. On the other hand, the size of systems that wavefunction-based

methods can handle has also been improved thanks to the recent developments in

both computation power and more advanced methodologies. However, these methods

are still suffering from the curse of dimensionality. The cubic scaling of a typical

DFT calculation restricts the handleable system size of DFT to only a few thousand

electrons. To this end, tensor-structured techniques provide a route to constructing

a reduced-order algorithm and hence are promising to improve the computational

efficiency. In this dissertation work, we aim at exploring the applications of the

tensor-structured techniques on different aspects of electronic structure calculations.

In the first part of this work, we present a tensor-structured algorithm for efficient

large-scale DFT calculations by constructing a Tucker tensor basis that is adapted

to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach

uses an additive separable approximation to the Kohn–Sham Hamiltonian and an

L1 localization technique to generate the 1-D localized functions that constitute the

Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis

exhibits exponential convergence in the ground-state energy with increasing Tucker

rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic

scaling with system-size for both systems with and without a gap, and involving many

thousands of atoms. This reduced-order scaling has also resulted in the proposed

xii



approach outperforming plane-wave DFT implementation for systems beyond 2000

electrons.

In the second part of this work, we present an acceleration scheme for the pro-

posed tensor-structured algorithm. In the proposed algorithm, the discrete Kohn-

Sham problem is solved using the Chebyshev filtering subspace iteration method that

relies on matrix-matrix multiplications of a sparse symmetric Hamiltonian matrix

and a dense wavefunction matrix, expressed in the localized Tucker tensor basis.

These matrix-matrix multiplication operations, which constitute the most computa-

tionally intensive step of the solution procedure, are GPU accelerated providing 8-fold

GPU-CPU speedup for these operations on the largest systems studied. The com-

putational performance of the GPU accelerated code is presented using benchmark

studies on aluminum nano-particles and silicon quantum dots with system sizes rang-

ing up to 7,000 atoms.

Finally, we present a computation kernel using tensor-structured techniques to

evaluate the one-electron and two-electron integrals, which are the central quantities

to construct the Hamiltonian matrix of a full configuration interaction (FCI) calcula-

tion, for any molecular orbitals projected on a tensor-structured finite-element mesh.

The proposed computation kernel is used to compute the integrals using Hartree-Fock

molecular orbitals, which is subsequently used to perform an FCI calculation. In our

numerical study, the FCI energy using integrals from the proposed computation ker-

nel is confirmed to be consistent with a standard FCI calculation using the same

Hartree-Fock orbitals. The proposed computation kernel provides a useful tool to

investigate the behavior of Kohn-Sham orbitals as a basis for FCI calculations in the

future, which could be a route to construct a reduced-order basis for an FCI calcula-

tion to reduce the computational cost and enable FCI calculation for the previously

computationally inaccessible systems.
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CHAPTER I

Introduction

Electronic structure calculation is one of the most successful fields in scientific

research in the past fifty years. It has since been providing many insights into the

quantum mechanical properties of various materials and has been shown to be incred-

ibly useful. The ubiquitous application of electronic structure calculation methods

includes studying previously unknown material properties with electronic scale res-

olution (e.g. semiconductor band structures [1], DNA charge transport [2], metallic

dislocations [3], structural properties and phase transition of metals [4]), generat-

ing ab initio force field for molecular dynamics type calculations [5], understand-

ing of Lithium-ion batteries for new battery design [6], building a materials genome

database [7] or developing generic algorithm [8] for new materials discovery [9], and

even investigating the crystal structure of iron in the Earth’s core [10].

Density functional theory (DFT) [11, 12], owing to the great balance it provides

between accuracy and computational efficiency, has emerged as the workhorse of

electronic structure calculations [13]. In 2021 alone, there have been more than 46,000

publications on google scholar searches associated with density functional theory.

DFT reduces the Schrödinger equation involving the many-body wavefunction in 3Ne

spatial coordinates (Ne denoting the number of electrons), to an equivalent problem of

non-interacting electrons in a mean-field that is dependent on the electron density—a
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variable in only 3 spatial coordinates, thus substantially reducing the computational

complexity. While DFT is exact in principle, the many-body quantum mechanical

interactions are encapsulated in the exchange-correlation (XC) functional whose form

is unknown, and approximate models are used to model the XC functional. The

development of increasingly accurate XC functionals is an active area of research [14,

15, 16, 17, 18, 19].

Despite the great reduction in the computational complexity in comparison to di-

rectly solving Schrödinger equation and the wide adoption of DFT for electronic struc-

ture calculations, the computational complexity of DFT calculations—conventionally,

O(MN2
e ), where M is the number of the basis functions required to achieve desired

chemical accuracy, and is usually proportional to the number of electrons in the sys-

tem (Ne)—still limits typical DFT calculations to just a few hundred atoms. Thus, to

improve the computational efficiency of DFT calculations and enable accurate DFT

calculations on large-scale systems, it is highly desirable to develop computational

methods that can provide systematic convergence and are scalable to large number

of MPI tasks, yet with a small basis set. The plane-wave basis, which is the most

widely used basis in DFT calculations [20, 21, 22, 23, 24], provides systematic con-

vergence, and is well suited for periodic calculations. However, the global nature of

the plane-wave basis limits the parallel scalability, and its uniform spatial resolution

makes it inefficient for non-periodic systems, such as isolated molecules or clusters.

Among the real-space basis sets, the finite-element basis has been demonstrated to be

highly scalable [25, 26, 3]—with parallel scalability demonstrated on ∼ 200, 000 MPI

tasks. However, the number of basis functions required to achieve chemical accuracy

is typically much higher than the plane-wave basis. On the other hand, while atomic

orbital type basis functions [27, 28, 29, 30] are very efficient—typically involving only

a few tens of basis functions per atom—systematic convergence is often a concern,

especially in metallic systems. Further, the global nature of the basis functions can

2



limit the parallel scalability of calculations.

In an attempt to enable DFT calculations on large-scale systems that are critical

to understanding many aspects of complex materials phenomena, many efforts over

the past three decades have focused on developing reduced-order scaling algorithms

for electronic structure calculations [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. These

approaches have either relied on a localized representation of the single-electron wave-

functions (such as Wannier functions [33]) or the exponential decay of the density-

matrix in real-space, and have been demonstrated to provide close to linear-scaling

complexity for materials with a gap. However, they have not been widely successful

for metallic systems (without a gap) either due to the errors resulting from realizing

locality in the wavefunctions in real-space or due to the higher prefactors that make

these approaches computationally more expensive than the traditional cubic-scaling

algorithms for system-sizes of interest. In the first part of this dissertation work, we

present an alternative direction by using tensor-structured ideas to achieve system-

atically convergent and efficient DFT calculations that exhibit sub-quadratic scaling

for systems with and without a gap over system-sizes spanning many thousands of

atoms.

Recent progress in using tensor-structured techniques for electronic structure cal-

culations has provided a path forward for developing a reduced-order basis that is

systematically improvable, efficient, and exhibits good parallel scalability. In partic-

ular, an analysis of various molecules has revealed that the electronic structure, in

particular the electron density, admits a low-rank Tucker and canonical decomposi-

tion [42, 42, 43]. Further, a posteriori results have shown that the rank required to

approximate the electronic density is only weakly dependent on the system size [44].

Based on these observations, a tensor-structured basis was proposed for systematically

convergent and efficient large-scale DFT calculations [45]. The main ideas included

constructing an additive separable approximation of the Kohn-Sham Hamiltonian,

3



and using the eigenbasis of this approximate Hamiltonian—which has a Tucker ten-

sor format—as a reduced-order basis for DFT calculations. Importantly, being the

eigenbasis of a Hermitian operator, the resulting Tucker tensor basis provides sys-

tematic convergence. Further, being adapted to the Kohn-Sham Hamiltonian, it was

demonstrated to be a more efficient basis than the plane-wave basis, requiring fewer

basis functions than the plane-wave basis to achieve similar accuracy. However, the

global nature of the Tucker tensor basis resulted in a dense Hamiltonian matrix, which

limited the accessible system sizes and parallel scalability of the method.

In order to alleviate this limitation, we proposed an L1 localization approach to

construct a localized Tucker tensor basis as the first part of this dissertation work [46].

In the proposed L1 localization approach, L1 localization is used to overcome the

aforementioned drawbacks, and we demonstrate systematically convergent, efficient,

and reduced-order scaling large-scale DFT calculations using tensor-structured tech-

niques. The L1 localization constructs a series of 1-D functions that are localized yet

closely approximate the function space of interest. The 1-D localized functions that

are a close approximation to the eigensubspace of a suitably constructed additive

separable approximation of the Kohn-Sham Hamiltonian are used to generate the

localized Tucker tensor basis for the DFT problem. The locality of the Tucker tensor

basis results in a sparse discrete Kohn-Sham Hamiltonian matrix, which is exploited

in the solution of the Kohn-Sham equations using the Chebyshev filtering subspace

iteration scheme. The sparsity of the Kohn-Sham Hamiltonian matrix represented in

the localized Tucker tensor basis improves both the computational efficiency and the

memory footprint. Further, as will be demonstrated, the proposed approach has en-

abled sub-quadratic scaling DFT calculations on large-scale systems involving many

thousands of atoms. The approach is generic and treats both systems with and with-

out a gap on an equal footing. Importantly, this translates to substantial speed-ups

over Quantum Espresso, a widely used state-of-the-art plane-wave DFT code [22, 23],

4



with speed-ups of ∼ 8-fold for metallic nano-particles containing ∼ 2, 000 atoms.

In the second part of this dissertation work, we improved the most computationally

expensive part of the proposed tensor-structured algorithm using GPU acceleration.

During the course of solving a Kohn-Sham equation, we noticed that the solution of

Kohn-Sham equations in the localized Tucker tensor basis involves many operations

that are amenable to acceleration using graphics processing units (GPU). In this

work, we optimize various parts of the tensor-structured algorithm using GPUs, and

provide the code base for conducting large-scale DFT calculations using a localized

Tucker tensor basis. In particular, we optimize various computationally intensive

kernels using CUDA library: (i) the matrix-matrix multiplication between the Kohn-

Sham Hamiltonian in the localized Tucker tensor basis and the wavefunction matrix

expressed in this basis, which appear in the Chebyshev filtering procedure to compute

the occupied subspace of the Kohn-Sham Hamiltonian; (ii) the solution of the Kohn-

Sham equations by projecting the problem onto the Chebyshev filtered subspace.

Our numerical study shows that the implementation substantially accelerates the

Chebyshev filtering step—the most time-consuming part in a many-core CPU-based

calculation—by ∼ 7× and substantially reduces the wall-times for DFT calculations.

Further, we demonstrate the capability of conducting large-scale DFT calculations,

with systems as large as ∼ 7, 000 atoms, on GPUs efficiently.

After the exploration of the application of tensor-structured techniques on pro-

viding a reduced-order basis for density functional theory, we shift our focus to the

application of tensor-structured techniques on other domains of electronic structure

calculations. In contrast to density functional theory, wavefunction based methods

provide a hierarchical way for achieving higher accuracy at the price of exponentially

growing computational cost with respect to the level of required accuracy [47]. It is

thus desirable to have reduced-order molecular orbitals for the wavefunction based

methods. To this end, Kohn-Sham orbitals, which intrinsically carry electron correla-
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tion information, are postulated to be a good alternative to commonly used Hartree-

Fock molecular orbitals, which do not have any electron correlation information at

all [48, 49, 50]. However, the applicability of Kohn-Sham orbitals on a full configu-

ration interaction (FCI) calculation still remains unknown due to the high computa-

tional cost of FCI. To look closer into this issue, we first developed a computation

kernel based on tensor-structured techniques for generating one-electron and two-

electron integrals, the central components for constructing matrix for configuration

interaction (CI) calculations, from molecular orbitals projected on a tensor-structured

finite-element mesh. The computed integrals can subsequently be used to perform an

FCI calculation, which can be done using incremental FCI (iFCI) routine [51, 52] in

QChem [27]. In this preliminary work, we used a hydrogen molecule with Hartree-

Fock orbitals as a benchmark calculation. We have confirmed that the FCI energies

of the benchmark system computed using the integrals from the developed compu-

tation kernel and from the resolution of identity (RI) approximation [53, 54], which

is the subroutine for computing the integrals in a standard FCI calculation, are con-

sistent and the difference in energy per atom is within 0.2 mHa/atom. We note

that the proposed computation kernel provides a flexible framework to compute the

one-electron and two-electron integrals from any molecular orbitals projected on a

tensor-structured finite-element mesh. This step is the key to further studying the

efficacy of Kohn-Sham orbitals as a reduced-order basis for FCI calculations in our

future work.

The remainder of this thesis is structured as follows. Chapter II reviews the

theoretical aspects of density functional theory and the Kohn-Sham formulation.

Chapter III introduces the various aspects of tensor decomposition and defines the

tensor notations and nomenclatures used in later chapters. Chapter IV discusses

the tensor-structured algorithm which generates a reduced-order Tucker tensor basis

for Kohn-Sham DFT calculations. The benchmark calculations on the convergence
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property and the performance of the proposed algorithm are also presented in the

same chapter. Chapter V discusses the GPU acceleration procedure for the proposed

tensor-structured algorithm and provides the performance analysis of the accelerated

code. Chapter VI gives an introduction on the wavefunction based methods and

proposed a computation kernel to generate one-electron and two-electron integrals

for any molecular orbitals projected on a tensor-structured finite-element mesh using

tensor-structured techniques. Finally, Chapter VII summarizes this dissertation work

and provides the future direction to pursue.
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CHAPTER II

Density Functional Theory

The underlying physical laws necessary for the mathematical the-

ory of a large part of physics and the whole of chemistry are thus

completely known, and the difficulty is only that the exact application

of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods of

applying quantum mechanics should be developed, which can lead to

an explanation of the main features of complex atomic systems with-

out too much computation. – P.A.M. Dirac, 1929 [55]

Almost a century after P.A.M. Dirac made his remarkable quote, people are still

in quest of a practical approximation which can lead to an explanation of the main

features of complex atomic systems without too much computation. The Schrödinger

equation, by its form, suffers from the combinatorial increase of dimension. A system

soon becomes computationally intractable only after few atoms. Many methods have

since been developed to address the issue raised by Dirac. One of the most promising

method is Density Functional Theory, which reduces the number of variables from

the astronomical 3Ne, where Ne is the number of electrons in the system, associated

with the wavefunction to only three spatial coordinates associated with the electron

density. In this chapter, we will give an overview of the theoretical background of the
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density functional theory. The remainder of this chapter is organized as follows. The

many-body Schrödinger equation is introduced in Section 2.1. Then the Hatree-Fock

method is summarized in Section 2.2. Finally, we introduce the density functional

theory in Section 2.3. The introduction to DFT will be focusing on (1) Hohenberg-

Kohn theorem in Section 2.3.1 to show the existence and the uniqueness of the density

functional and (2) the theoretical formulation of the Kohn-Sham method for DFT in

Section 2.3.2.

2.1 The many-body Shcrödinger equation

Schrödinger equation, since originally proposed by Erwin Shcrödigner [56] in 1926,

has further unraveled the mysteries of our universe. It describes the fundamental

properties of quantum mechanical systems within an elegant and concise expression.

In the context of non-relativistic quantum mechanics, the time-independent many-

body Schrödinger equation is given by

HΨ = εΨ, (2.1)

where H denotes the many-body Hamiltonian operator, ε denotes the eigenvalue

corresponding to the many-body wavefunction Ψ. Using atomic units [57], the many-

body Hamiltonian operator is given by

H =− 1
2

Ne∑
i=1
∇2
i −

Na∑
I=1

1
2MI

∇2
I −

Ne∑
i=1

Na∑
I=1

ZI
|ri −RI |

+
Ne∑
i=1

Ne∑
j<i

1∣∣∣ri − rj
∣∣∣ +

Na∑
I

Na∑
J<I

ZIZJ
|RI −RJ |

, (2.2)

where Ne denotes the number of electrons in the system, Na denotes the number of

nuclei in the system, ∇2
i , ∇2

I denote the Laplacian operator of electrons and atoms

coordinates respectively, MI , RI , and ZI denote the mass, coordinates, and charge
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of the I-th atom respectively, ri denotes the position of i electron in the system.

We emphasize that as electrons are identical and indistinguishable particles, we use i

electron and avoid using i-th electron as a compromise to not specify a specific electron

in the system. As the time-independent schrödinger equation does not vary with time,

it is sometimes also referred to as stationary state Schrödinger equation. The physical

meaning of each term in the Hamiltonian operator in Eq. 2.2 is interpreted as:

the operator corresponding to the kinetic energy of electrons

Te = −1
2

Ne∑
i=1
∇2
i , (2.3)

the operator corresponding to the kinetic energy of nuclei

TN = −
Na∑
I=1

1
2MI

∇2
I , (2.4)

the operator corresponding to the attractive electrostatic interaction between elec-

trons and nuclei

VeN = −
Ne∑
i=1

Na∑
I=1

ZI
|ri −RI |

, (2.5)

the operator corresponding to the repulsive electrostatic interaction between electrons

Vee =
Ne∑
i=1

Ne∑
j<i

1∣∣∣ri − rj
∣∣∣ , (2.6)

and the operator corresponding to the repulsive electrostatic interaction between

nuclei

VNN =
Na∑
I

Na∑
J<I

ZIZJ
|RI −RJ |

. (2.7)

With Eq. 2.3-2.7, a shorthand representation of the Hamiltonian operator is

H = Te + TN + VeN + Vee + VNN . (2.8)
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As can be easily concluded from the expression, Te and Vee are universal for all

identical electrons and remain invariant for different systems. The combination of

the two terms is hence also called the universal operator.

In Eq. 2.1, the many-body wavefunction is a function taking R = (R1,R2, ...,RNa

and x = (x1,x2, ...,xNe), where xi = xi(ri, si) as input variable

Ψ = Ψ(x,R) , (2.9)

where si is the spin of i electron. In quantum mechanics, wavefunction itself is not

an observable and does not carry any physical interpretation. Only the square of

wavefunction

|Ψ(x,R)|2 (2.10)

represents the probability density of findingNe electrons simultaneously in the system.

As aforementioned, electrons are identical particles hence indistinguishable, this leads

to an important statement that interchanging electron coordinates xi and xj should

not change the probability density, or in mathematical expression

|Ψ(x1...xi...xj...xNe ,R)|2 = |Ψ(x1...xj...xi...xNe ,R)|2 . (2.11)

Meanwhile, as electrons are fermions, it has been shown that the spin of an electron is

half integral value si = ±1
2 and the Pauli exclusion principle mandates anti-symmetry

to the wavefunction, i.e. interchanging coordinates of two electrons leads to sign

change of the wavefunction

Ψ(x1...xi...xj...xNe ,R) = −Ψ(x1...xj...xi...xNe ,R). (2.12)

Although this expression seems to imply that electrons are distinguishable, as the

wavefunction is not an observable, electrons are still identical as long as the observ-
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able (i.e. probability density in Eq. 2.11) remains unchanged under the exchange of

coordinates of two electrons.

We note that nuclei are much heavier (e.g. ∼ 1, 800 times heavier for a hydrogen

atom, ∼ 30, 000 times heavier for an oxygen atom) and hence move much slower

than electrons. Electrons can thus be viewed as moving on a potential surface of

frozen nuclei. As a result, the kinetic contribution from nuclei TN can be neglected,

the electrostatic interaction between nuclei VNN is simply a constant, and the R

variables in VeN can be viewed as parameters. This approximation, commonly known

as Born-Oppenheimer approximation or adiabatic approximation1, removes the nuclei

degrees of freedom and significantly reduces the complexity of the system. Under

Born-Oppenheimer approximation, the full many-body Hamiltonian in Eq. 2.2 can

be recast as many-body electron Hamiltonian

Hele = −1
2

Ne∑
i=1
∇2
i −

Ne∑
i=1

Na∑
I=1

ZI
|ri −RI |

+
Ne∑
i=1

Ne∑
j<i

1∣∣∣ri − rj
∣∣∣ + VNN . (2.13)

The full many-body wavefunction is also recast as many-body electron wavefunction

parametrized with the nuclei coordinates R as

Ψele

∣∣∣∣
RI=1...Na

= Ψele(x; R) := Ψele(x). (2.14)

Typically, we choose to normalize the wavefunction to unity

∫
· · ·

∫
|Ψele|2dx1dx2...dxNe = 1, (2.15)

where dxi = dridsi.

The Courant min-max theorem states that the eigenvalue problem Eq. 2.13 can
1Born-Oppenheimer approximation is also called adiabatic approximation because the idea to

treat much slower nuclei as a negligible perturbation is similar to the adiabatic process in thermal
physics. See Ch. 10 in Griffith’s book for a more complete discussion [58].

12



also be recast as a variational problem

εele0 = inf
Ψele′∈S

∫
· · ·

∫
Ψele′∗HeleΨele′dx1dx2...dxNe = inf

Ψele′∈S

〈
Ψele′

∣∣∣Hele
∣∣∣Ψele′

〉
,

S = {Ψ| 〈Ψ |Ψ〉 = 1,Ψ is anti-symmetric},
(2.16)

where Ψele′ is a trial wavefunction, εele0 is the ground-state energy of the system,〈
Ψele′

∣∣∣Hele
∣∣∣Ψele′

〉
uses Dirac bra-ket notation [59, 60]. For the sake of brevity, we

will drop the superscript ele. All quantities mentioned hereafter are presumed to be

under Born-Oppenheimer approximation and nuclei degrees of freedom are treated

as parameters unless otherwise mentioned.

As can be easily seen from the variables of the wavefunction, the computational

cost of solving the Schrödinger equation suffers from the curse of dimensionality. The

dimension of the wavefunction immediately becomes intractable even for a very small

system. For example, a three atoms water molecule has only 3 nuclei and 10 electrons.

Even if the spatial coordinates are just coarsely discretized into 10 grid points in

each direction (assuming the spin-orbital is neglected), it still takes 103×3+3×10 data

points, which is roughly O(1024) petabytes, to simply store the wavefunction. Even

with the Born-Oppenheimer approximation, which eliminates the nuclear degrees of

freedom, the storage cost is still O(1015) petabytes. Furthermore, the cost of storing

the discretized Hamiltonian is quadratic with respect to the size of the discretized

wavefunction. A strategy to recast this calculation of astronomical complexity to a

more tractable problem is therefore desirable.

2.2 Hartree-Fock method

The Hartree-Fock approximation is one of the early attempts to solve the many-

electrons Schrödinger equation and is still being widely used in many applications.

The main idea of the Hartree-Fock method is to search the wavefunction that gives the
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lowest energy in a subset of S in Eq. 2.16. The Hartree-Fock method assumes that the

wavefunction can be written as a linear combination of the product of single-electron

wavefunctions ξi(xj) and has the form

Ψ0 ≈ ΨHF
0 = 1√

Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1(x1) ξ2(x1) · · · ξNe(x1)

ξ1(x2) ξ2(x2) · · · ξNe(x2)
... ... . . . ...

ξ1(xNe) ξ2(xNe) · · · ξNe(xNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.17)

known as a Slater determinant, where the single-electron wavefunction ξi(x) = φi(r)σi(s),

where φi(r) is the spatial part and σ(s) is the spin part of the single-electron wavefunc-

tion. Given the spin function σ(s) defined as α(s) for up-spin or β(s) for down-spin,

the integration of the spin functions is defined by


∫
dsα∗(s)α(s) =

∫
dsβ∗(s)β(s) = 1 ,

∫
dsα∗(s)β(s) =

∫
dsβ∗(s)α(s) = 0 .

(2.18)

The prefactor 1√
Ne!

is the normalization factor for the Slater determinant and it can

be easily shown that the Slater determinant naturally satisfies the anti-symmetry re-

quirement of a wavefunction. Thus, ΨHF
0 ∈ S = {Ψ| 〈Ψ |Ψ〉 = 1,Ψ is anti-symmetric}

in Eq. 2.16 holds. We also introduce a commonly used shorthand notation that will
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be useful for later chapters for the Slater determinant Eq. 2.17 as

|ξ1ξ2 · · · ξNe〉 := 1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1(x1) ξ2(x1) · · · ξNe(x1)

ξ1(x2) ξ2(x2) · · · ξNe(x2)
... ... . . . ...

ξ1(xNe) ξ2(xNe) · · · ξNe(xNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.19)

The Hartree-Fock energy computed using a (trial) wavefunction with the form

Eq. 2.17 is
EHF =

〈
ΨHF

∣∣∣H ∣∣∣ΨHF
〉

=
Ne∑
i

(i|h|i) + 1
2

Ne∑
i

Ne∑
j

{
(ii|jj)− (ij|ji)

}
,

(2.20)

where, using chemists’ notation,

(i|h|i) :=
∫
ξ∗i (x)

{
− 1

2∇
2 −

Na∑
I

ZI
|r−RI |

}
ξi(x)dx (2.21)

is the one-electron term comprising the contribution from the kinetic term and the

electrostatic contribution from nuclei,

(ii|jj) :=
∫ ∫ ξ∗i (x)ξi(x)ξ∗j (x′)ξj(x′)

|r− r′|
dxdx′ (2.22)

is referred to as the Coulomb integral, and

(ij|ji) :=
∫ ∫ ξ∗i (x)ξj(x)ξ∗j (x′)ξi(x′)

|r− r′|
dxdx′, (2.23)

is referred to as the exchange integral.

From Eq. 2.20, it is obvious that EHF is a functional of the single-electron wave-

functions. The Lagrangian of the Hartree-Fock expression subject to the normality
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constraint of the orthogonal single-electron wavefunctions set ξi can thus be written

as

L[{ξi}] = EHF[{ξi}]−
Ne∑
i

εi(〈ξi | ξi〉 − 1). (2.24)

We note that while we only show the case that single-electron wavefunctions are cho-

sen to be orthogonal for the sake of simplicity for presentation, this is not a necessary

requirement. The derivation can be easily generalized to treat non-orthogonality.

More details in the derivation can be found in Ch 3.2 in [61] or refer to Ch. 2.3.2 for

a similar derivation for the Kohn-Sham equation. Now, by setting the first variation

of Eq. 2.24 to zero, we arrive at the Hartree-Fock equation

fξi = εiξi . (2.25)

The Fock operator f in Eq. 2.25 is defined by

fξi(x) =
(
h(x) + vHF(x)

)
ξi(x), (2.26)

where the Hartree-Fock potential vHF is defined by

vHF(x)ξi(x) :=
Ne∑
j

(
Jj(x)−Kj(x)

)
ξi(x) . (2.27)

On the right-hand side of Eq. 2.27, the first term corresponds to the Coulomb operator

Jj(x) acting on ξi(x)

Jj(x)ξi(x) :=
∫ ξ∗j (x′)ξj(x′)

|r− r′|
dx′ξi(x) , (2.28)

and the second term corresponds to the exchange operator Kj(x) acting on ξi(xi)

Kj(x)ξi(x) :=
∫ ξ∗j (x′)ξi(x′)

|r− r′|
dx′ξj(x) . (2.29)
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We note that the non-physical self-interacting term in Eq. 2.27 is automatically can-

celed out in the expression when i = j. The physical interpretation of the Hartree-

Fock potential is an average repulsive potential experienced by electron i induced by

all other Ne − 1 electrons. The Hartree-Fock equation can hence be viewed as a sys-

tem with multiple non-interacting electrons in a mean-field generated from averaging

contribution from all other electrons in the system.

While the Hartree-Fock method provides a good starting point to calculate the

ground-state energy of the many-electrons Schrödinger equation, it approximates the

original many-electrons system as an alternative system with non-interacting electrons

in a mean-field with only Coulomb and exchange contribution from other electrons.

This approximation nicely handles the quantum mechanical effect due to the Pauli

exclusion principle that does not allow electrons with parallel-spin to occupy the same

orbital. However, the Hartree-Fock method does not account for the correlational

effect coming from instantaneous repulsion between electrons. As a result, electrons

in the Hartree-Fock picture tend to be too close to each other and give larger (more

positive) repulsive energy2. Subsequently, the Hartree-Fock ground-state energy εHF
0

(also called the Hartree-Fock limit) is always larger than the exact ground-state energy

εexact0 .

Many wavefunction based methods have since been developed to improve the

Hartree-Fock approximation by introducing the electron correlation, where the elec-

tron correlation is accounted for with multi-determinant wavefunctions. These meth-

ods can generally be categorized into three main branches—configuration interaction

method (CI), many-body perturbation theory (MBPT), and coupled-cluster method
2This electronic correlation is also called dynamic correlation. Total electronic correlation also

includes the non-dynamic correlation (or static correlation). The non-dynamic correlation comes
from the fact that a single Slater determinant fails to approximate the true ground-state properly.
This leads to further discussion and is out of the scope of this introductory piece. We refer to
pp.14-18 in [62] for a brief introduction, [63] for a discussion of this topic in the context of density
functional theory, and [61] for more complete and pedagogical discussion (more in the context of
wavefunction based methods.)
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(CC)—and called post Hartree-Fock methods, wavefunction (based) methods, or elec-

tron correlation methods [47]. On the other hand, density functional theory provides

a completely different way of approaching this issue. Thanks to the remarkable con-

tribution of Hohenberg and Kohn, it has been shown that the ground-state energy is

uniquely determined by the ground-state electron density of the system. The powerful

and elegant statement builds up the foundation of density functional theory, which

has now been ubiquitous in the field of electronic structure calculation.

2.3 Desnity functional theory

Density functional theory has been a workhorse in electronic structure calculation

since the remarkable paper of Pierre Hohenberg and Walter Kohn appeared on Physi-

cal Review in 1964 [11]. The paper lays the cornerstone of the theoretical background

of density functional theory. Later on, Kohn and Sham proposed a strategy to treat

the many-electrons interacting system as a fictitious system consisting of many non-

interacting electrons in an effective mean-field [12]. In the remainder of this section,

we will introduce some basic theoretical background of density functional theory.

2.3.1 Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem proves the existence and the uniqueness of the

density functional [11]. The proof of the Hohenberg-Kohn theorem is provided here

for the sake of completeness, and we refer to the original paper [11] and other text-

books [64, 62] for a more complete discussion on this topic. The theorem is twofold.

2.3.1.1 The first Hohenberg-Kohn theorem

The Hohenberg-Kohn first theorem gives a mathematically sound background that

electron density ρ(r) is the basic variable for a many-body electronic structure cal-

culation, where given the electron density operator (physically can be interpreted as

18



summing over each event that electron i appears at r)

%(r) =
Ne∑
i

δ(r− ri) (2.30)

and recalling the relation x = (r, s), dx = drds and

∫
δ(r− ri)f(xi)dxi =

∫
f(r, si)dsi , (2.31)

the electron density is derived as

ρ(r) =
〈
Ψ(x1,x2, · · · ,xNe)

∣∣ %(r)
∣∣Ψ(x1,x2, · · · ,xNe)

〉
=
〈
Ψ(x1,x2, · · · ,xNe)

∣∣ Ne∑
i

δ(r− ri)
∣∣Ψ(x1,x2, · · · ,xNe)

〉
=
∫

Ψ∗(x1,x2, · · · ,xNe)
Ne∑
i

δ(r− ri)Ψ(x1,x2, · · · ,xNe)dx1dx2 · · · dxNe

=Ne

∫
|Ψ(r,x2, · · · ,xNe)|2ds1dx2 · · · dxNe .

(2.32)

The theorem states that, for a system with non-degenerate ground-state, the ground-

state electron density ρ(r), uniquely determines the external potential vext(r) to within

a constant, and in turn uniquely determines the Hamiltonian. As a result, the full

many body particle ground-state is a unique functional of ρ(r) (direct quote from the

Hohenberg-Kohn 1964 paper [11]).

The proof of the statement uses reductio ad absurdum. To begin with, we assume

that we have two different external potentials v(1)
ext and v(2)

ext differing by more than a

constant shift giving the same electron density ρ(r). This implies that there are two

different Hamiltonian constructed from these two external potentials (the nucleus-

nucleus repulsion terms are dropped because they are simply constants under Born-
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Oppenheimer approximation), viz.

H(1) = T + Vee + V(1)
ext ,

H(2) = T + Vee + V(2)
ext .

(2.33)

Now, we have two ground-state wavefunction Ψ(1) and Ψ(2) correspond to the two

Hamiltonian H(1) and H(2). Similarly, H(1) and H(2) also correspond to different

ground-state energy ε(1)
0 and ε(2)

0 .

By the virtue of variational principle and the definition of the ground-state energy,

we have

ε
(1)
0 =

〈
Ψ(1)

∣∣∣H(1)
∣∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣∣H(1)
∣∣∣Ψ(2)

〉
=
〈
Ψ(2)

∣∣∣H(2)
∣∣∣Ψ(2)

〉
+
〈
Ψ(2)

∣∣∣H(1) −H(2)
∣∣∣Ψ(2)

〉
.

With Eq. 2.33, we have

〈
Ψ(2)

∣∣∣H(1) −H(2)
∣∣∣Ψ(2)

〉
=
〈
Ψ(2)

∣∣∣ T + Vee + V(1)
ext − T − Vee − V

(2)
ext

∣∣∣Ψ(2)
〉
, (2.34)

where, recall Eq. 2.32, the expectation value of the external energy operator Vext =∑Ne
i vext(ri) can also be written as

〈Ψ| Vext |Ψ〉 =
∫
〈Ψ|

Ne∑
i

vext(r)δ(r− ri) |Ψ〉 dr

=
∫
vext(r) 〈Ψ|

Ne∑
i

δ(r− ri) |Ψ〉 dr =
∫
ρ(r)vext(r)dr .

(2.35)

Recall that the two external potentials are giving the same electron density ρ(r), by

cancelling the universal terms in Eq. 2.34, we obtain

〈
Ψ(2)

∣∣∣H(1) −H(2)
∣∣∣Ψ(2)

〉
=
〈
Ψ(2)

∣∣∣V(1)
ext − V

(2)
ext

∣∣∣Ψ(2)
〉

=
∫
ρ(r)

(
v

(1)
ext − v

(2)
ext

)
dr ,
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and hence with
〈
Ψ(2)

∣∣∣H(2)
∣∣∣Ψ(2)

〉
= ε

(2)
0 , we can write

ε
(1)
0 < ε

(2)
0 +

∫
ρ(r)

(
v

(1)
ext − v

(2)
ext

)
dr . (2.36)

Similarly, by computing

ε
(2)
0 =

〈
Ψ(2)

∣∣∣H(2)
∣∣∣Ψ(2)

〉
<
〈
Ψ(1)

∣∣∣H(2)
∣∣∣Ψ(1)

〉
,

we have

ε
(2)
0 < ε

(1)
0 +

∫
ρ(r)

(
v

(2)
ext − v

(1)
ext

)
dr . (2.37)

Adding the two equations (Eq. 2.36+Eq. 2.37), we have the desired contradiction

ε
(1)
0 + ε

(2)
0 < ε

(2)
0 + ε

(1)
0 =⇒ 0 < 0 . �

The proof shows that the ground-state electron density uniquely defined the external

potential up to a constant and subsequently specifies the ground-state energy. This

implies that the ground-state energy (and its individual components) can be written

as the functional of the ground-state electron density, namely

ε0[ρ0] = T [ρ0] + Eee[ρ0] + Eext[ρ0] , (2.38)

where T is the kinetic energy, Eee is the electron-electron repulsion energy, and Eext

is the external energy determined by the system and has the form

Eext[ρ0] =
∫
ρ0(r)vextdr . (2.39)

We note that on the right-hand side of Eq. 2.38, only the last term is dependent on

the actual system. The other two terms are invariant to any systems These two terms
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are also called the Hohenberg-Kohn functional

FHK [ρ0] = T [ρ0] + Eee[ρ0] = 〈Ψ0| Te + Vee |Ψ0〉 , (2.40)

which encapsulates all the non-classical and electronic classical effects in a density

functional theory calculation. As simple as the expression above may appear to

be, the exact form of the Hohenberg-Kohn functional still remains unknown. More

than half-century after Hohenberg and Kohn’s 1964 paper, finding the exact energy

functional of the ground-state electron density is still the holy grail in the study of

density functional theory.

2.3.1.2 The second Hohenberg-Kohn theorem

In the first Hohenberg-Kohn theorem, it has been proven that the ground-state

electron density uniquely determines the external potential hence establishing the

functional relation to the ground-state energy. However, the first theorem does not

say anything about how the energy varies when the electron density is not the exact

ground-state electron density. This gap is then filled with the second theorem.

The second Hohenberg-Kohn theorem reads that for a trial electron density ρ(r),

which satisfies the condition: ρ(r) ≥ 0,
∫
ρ(r)dr = Ne and the density is asso-

ciated with an anti-symmetric wavefunction and some external potential vext (v-

representable), the true ground-state electron density gives the lowest energy, namely

ε0[ρ0] ≤ ε[ρ] = T [ρ] + Eee[ρ] + Eext[ρ] . (2.41)

The proof of the second statement is rather simple. In the first theorem, it has

been shown that the ground-state electron density gives unique external potential.

Meanwhile, as the trial ρ is assumed to be v-representable, the external potential

thus can be written as a functional of the trial electron density, namely, vext = vext[ρ],
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and similarly, the corresponding Hamiltonian and the ground-state wavefunction Ψ =

Ψ[ρ]. Now, we substitute the ground-state wavefunction Ψ corresponding to the trial

electron density ρ(r) into the variational principle in Eq. 2.16,

〈
Ψ[ρ]

∣∣H ∣∣Ψ[ρ]
〉

=
〈
Ψ[ρ]

∣∣ Te + Vee
∣∣Ψ[ρ]

〉
+
∫
ρ(r)vextdr

= T [ρ] + Eee[ρ] +
∫
ρ(r)vextdr = ε[ρ] ≥ ε0[ρ0] = 〈Ψ0|H |Ψ0〉 . �

This shows that any electron density that is not the true ground-state density al-

ways gives an upper-bound to the exact ground-state energy. We note that in this

section, the proof assumes that the ground-state energy is non-degenerate and the

electron density is v-representable. However, the condition for an electron density to

be v-representable has not yet been established. To address this issue, the density

functional theory can be re-formulated to require only n-representable electron den-

sity. In contrast to v-representability, n-representability is a weaker condition that

only requires the electron density to be constructed from an anti-symmetric wavefunc-

tion. The mathematical formulation for an electron density to be n-representable has

been shown to be [65]

ρ(r) ≥ 0 ,
∫
ρ(r)dr = Ne ,

∫
|∇
√
ρ(r)|2dr <∞ . (2.42)

In the subsequent section, we introduce an alternative way of formulating the Hohenberg-

Kohn theorem.

2.3.1.3 The Levy constrained-search approach

Recall that the original many-body Schrödinger equation can be recast as the

optimization problem in Eq. 2.16, where Eq. 2.16 searches admissible wavefunctions

over all space and pick up the one that gives the lowest energy. Similarly, the Levy

constrained-search approach [66, 67] first minimizes the energy over all wavefunctions
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yielding a specific electron density (see Eq 2.32). Then it searches over all electron

densities obtained from the first step for the electron density that gives the lowest

energy. That is

ε0 = min
ρ→Ne

(
min
Ψ→ρ
〈Ψ| T + Vee + Vext |Ψ〉

)
= min

ρ→Ne

(
min
Ψ→ρ
〈Ψ| T + Vee |Ψ〉+

∫
ρ(r)vextdr

)
.

(2.43)

Therein, the second equation comes from the fact that the external potential is a

functional of the electron density. As the first minimization searches over all wave-

functions that give the same electron density, the
∫
ρ(r)vextdr term remains the same

for all admissible wavefunction in the first minimization. Further, by introducing the

universal functional

F [ρ] = min
Ψ→ρ
〈Ψ| Te + Vee |Ψ〉 , (2.44)

Eq. 2.43 can be re-formulated as

ε0 = min
ρ→Ne

(
F [ρ] +

∫
ρ(r)vextdr

)
. (2.45)

Again, we see that the true ground-state electron density delivers the ground-state

energy. We remark that the universal functional F [ρ] is defined for all n-representable

electron densities, therefore the v-representable restriction in the original Hohenberg-

Kohn theorem is loosened. In the case that the electron density is v-representable,

the universal function F [ρ] coincides with the Hohenberg-Kohn functional FHK [ρ]

in Eq. 2.40. Furthermore, if the ground-state is degenerate, the Levy constrained-

search only picks one wavefunction (in the first minimization step) associated with

the ground-state electron density ρ0. The non-degenerate premise in the original

Hohenberg-Kohn theorem is hence also lifted.
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2.3.2 Kohn-Sham method

While the Hohenberg-Kohn theorem has proven that the ground-state energy is

a functional of the ground-state electron density, the exact form of the functional is

still unknown. Some of the attempts have been devoted to constructing a functional

of electron density for kinetic energy. A few of those formulations appear even earlier

than the introduction of density functional theory, e.g. Thomas-Fermi model for

uniform electron gas [68, 69]. These attempts have later been categorized as orbital-

free methods for density functional theory and it is still an open research area [70,

71, 72, 73]. While the orbital-free approach is very fast and is theoretically capable

of achieving linear scaling with system size, the accuracy of the kinetic energy is

regretfully low. The error in the kinetic energy is of the same order as the total

ground-state energy. To address this issue, Kohn and Sham come up with a clever

way to introduce a fictitious system comprised of non-interacting electrons moving

in an effective mean-field [12]. Their method computes the kinetic energy to good

accuracy and approximates the non-classical part, whose error is much smaller than

the kinetic part, using the exchange-correlation energy term. The Kohn-Sham method

has since been of central importance in the density functional calculation. We will

now provide the formulation of the Kohn-Sham method.

Similar to the idea in the Hartree-Fock method shown in Eq. 2.20, Kohn and Sham

introduce Kohn-Sham orbitals ΨKS
i

3 for a fictitious system with non-interacting elec-

trons moving in an effective mean-field to compute the kinetic energy and reformulate

the breakdown of the ground-state energy as

E[ρ] = Ts[ρ] + EH[ρ] + Eext[ρ] + EXC[ρ]. (2.46)
3In the previous section where we discussed the Hartree-Fock method, the orbital is called a

single-electron wavefunction. These two terms will be used interchangeably hereafter.
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Therein, the Ts defined as

Ts = −1
2

Ne∑
i

〈
ΨKS
i

∣∣∣∇2
∣∣∣ΨKS

i

〉
, (2.47)

is the exact kinetic energy of the non-interacting system. We note that the Kohn-

Sham orbitals appear explicitly in the formulation. This is because while Ts must be

a functional of electron density, there is no simple formulation for it. EH[ρ] denotes

the classical Coulomb electrostatic interaction defined as

EH[ρ] =
∫ ∫ ρ(r)ρ(r′)

|r− r′|
dr′dr , (2.48)

which is the only part in Eq. 2.45 that people know the functional expression of

electron density except for the already known external potential term. Finally, the

mysterious exchange-correlation energy term that encapsulates all terms whose func-

tionals are still unknown is defined as

EXC[ρ] = (T [ρ]− Ts[ρ]) + (Eee[ρ]− EH[ρ]) , (2.49)

where T [ρ]− Ts[ρ] is the residual of the true kinetic energy and Eee[ρ]−EH[ρ] is the

non-classical contribution to the electron-electron repulsion.

With the energy functional defined, we now seek to obtain N Kohn-Sham orbitals

that give the lowest energy under the orthonormality constraint. To begin with, the

Lagrangian of this optimization problem is

L[ΨKS
i ] = E[ρ]−

N∑
i

N∑
j

εij

∫ ΨKS
i

∗(x)ΨKS
j (x)dx− δij

 . (2.50)
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Taking variation with ΨKS
i , ΨKS

i
∗, εij respectively and setting them to zero, we have



(
− 1

2∇
2 + veff

)
ΨKS
i = ∑N

j εijΨKS
j(

− 1
2∇

2 + veff
)
ΨKS
i
∗ = ∑N

j εjiΨKS
j
∗

∫
ΨKS
i
∗(x)ΨKS

j (x)dx = δij

. (2.51)

Subtracting the complex conjugate of the second line from the first line in the above

equation, we have
N∑
j

(εij − ε∗ji)ΨKS
j = 0 . (2.52)

As the Kohn-Sham orbitals are linearly independent, the matrix εij is a Hermitian and

hence can be diagonalized by a unitary transformation of the Kohn-Sham orbitals.

Finally, we arrive at the Kohn-Sham equation

(
− 1

2∇
2 + veff

)
ΨKS
i = εiΨKS

i , (2.53)

where veff is the effective potential defined as

veff = δEH

δρ
+ δEext

δρ
+ δEXC

δρ
. (2.54)

Therein, the first term on the right-hand side denotes the Hartree potential vH[ρ]

defined as

vH[ρ] = δEH

δρ
. (2.55)

The second term is simply the external potential vext

vext[ρ] = δEext

δρ
. (2.56)

The third term is called exchange-correlation potential defined directly as the func-
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tional derivative of the exchange-correlation energy with respect to electron density

vXC = δEXC

δρ
. (2.57)

We note that up to this point, the Kohn-Sham method is exact. In the Kohn-Sham

method, if we have the true expression for exchange-correlation functional, the many-

body problem can be solved exactly and many efforts have been devoted to that

direction [18, 19, 74, 75]. The inexactness only comes into play when we approximate

the functional expression of this exchange-correlation term.

In quest of a functional expression for the exchange-correlation term, the local

density approximation (LDA) is a good starting point. The LDA model assumes that

the exchange-correlation energy can be written as

ELDA
XC [ρ] =

∫
ρ(r)εXC(ρ(r))dr , (2.58)

where εXC is the exchange-correlation energy per particle of a uniform electron gas of

electron density that comprises the exchange and the correlation part

εLDAXC (ρ(r) = εLDAX (ρ(r)) + εLDAC (ρ(r)) , (2.59)

and the exchange-correlation potential is formulated as [64]

vLDAXC (ρ(r)) = δELDA
XC
δρ

= εLDAXC (ρ(r)) + ρ(r)∂εXC(ρ(r))
∂ρ(r) . (2.60)

In other words, instead of taking the electron density function over the whole space,

i.e. εXC = εXC[ρ], as a variable, the local density approximation takes only the local

density value, i.e. εXC = εXC(ρ(r)).

In the LDA model, the exchange term εLDAX is known to be the cubic root of the
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electron density up to a constant prefactor. However, the exact form for the correla-

tion term is not known yet. To tackle this, numerical quantum Monte Carlo simula-

tions has been performed to obtain exchange-correlation energy for homogeneous elec-

tron gas with different electron density. The results are then parametrized to provide

a mapping between the local electron density and the exchange-correlation terms [76].

Some efforts have also been applied to improve the parametrization [77, 78, 79].

Besides LDA, many other exchange-correlation functionals with different hierar-

chy are available. A generalized gradient approximation functional, e.g. PBE func-

tional [80], takes both electron density ρ and the gradient of the electron density ∇ρ

as variables, i.e. EGGA
XC = EGGA

XC (ρ,∇ρ). A meta-GGA functional, e.g. M06L [81],

takes ρ, ∇ρ, and ∇2ρ as variables, i.e. Emeta−GGA
XC = Emeta−GGA

XC (ρ,∇ρ,∇2ρ). A

hybrid functional, e.g. B3LYP [82, 83, 84, 85], takes all variables that GGA takes

plus the exact exchange information from the Hartree-Fock theory (cf. Sec. 2.2).

This hierarchical structure of the exchange-correlation functional is usually termed

as Jacob’s ladder in DFT by John Perdew [86].

Finally, while a lot of aspects of density functional theory are omitted in this

introductory piece, we will stop the discussion here. We refer to many well-written

references for more information [62, 64, 87, 88]. To sum up, in this chapter, we briefly

introduced the theoretical background of the density functional theory and the Kohn-

Sham method. We will revisit the real-space formulation of the Kohn-Sham method

that is relevant to this dissertation work in later chapters.
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CHAPTER III

Tensor Decomposition

In this chapter, we introduce various types of tensor decomposition that emerge

in the literature and put emphasis on Tucker tensor representation which constitutes

the core of this dissertation work. The structure of this chapter is as follows. In

Section 3.1, we give an overview of the definitions of basic tensor operations, appli-

cations of tensor techniques and different tensor formats as an introduction to the

concept of tensor. In Section 3.2, we introduce the canonical decomposition of a

tensor. In Section 3.3, we introduce Tucker tensor decomposition. Tucker tensor

decomposition compresses a full tensor into a much smaller core tensor and multi-

ple matrices. Various aspects of Tucker tensor decomposition and the corresponding

algorithm, higher-order singular value decomposition that is used to obtain Tucker

tensor representation in this dissertation work, will be presented. Finally, for the sake

of completeness, we summarize and discuss some other tensor decompositions in the

last section.

3.1 Nomenclature, definition, and introduction

A tensor is an algebraic object defining a multi-dimensional array. In the context

of tensor analysis, a d-dimensional array is also referred to as a d-mode array, d-way

array or a d-th order tensor. We first define a tensor product for uj ∈ FIj , 1 ≤ j ≤ d,
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as  d⊗
j=1

uj

i1i2...id

=
(
u1 ⊗ u2 ⊗ ...⊗ ud

)
i1i2...id

=
d∏
j=1

ujij , (3.1)

where FIj , defined on the field F, denotes a vector space on which uj is defined, d

denotes the dimension, Ij defines a finite index set Ij =
{
ij|ij = 1, 2, ..., nj

}
, ij ∈ N.

A d-way tensor A is defined in a tensor space as

A ∈
d⊗
j=1

FIj = span


d⊗
j=1

uj : uj ∈ FIj
 , (3.2)

where the tensor elements of A are specified as

(A)i1,...,ij ,...,id = ai1...ij ...id . (3.3)

Other notation

A ∈ FI1×I2×...×Id (3.4)

also appears in literatures and can be proved to be equivalent to ⊗d
j=1 FIj by taking

all linear combination of ⊗d
j=1 uj,uj ∈ FIj [89]. The two notations will be used

interchangeably hereafter. We note that for the sake of simplicity and relevance to

this work, we will restrict the discussion to a real-valued tensor unless otherwise

mentioned, namely

A ∈
d⊗
j=1

RIj = span


d⊗
j=1

uj : uj ∈ RIj

 . (3.5)

It is also worth noting that a zeroth-order tensor is simply a scalar. A first-order ten-

sor, namely a one-way or one-dimensional array, defines a vector, and a second-order

tensor defines a matrix. Other than these lower-order tensors, a multi-dimensional

array whose dimension is higher than three(i.e., d ≥ 3) is conventionally referred to

as a higher-order tensor [90].
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For a higher-order tensor, some useful nomenclature, notations, and operations

that will be used later are defined as follows.

Fiber:

A fiber in j-dimension is a vector v ∈ RIj extracted from a tensor with all other

dimensions but j fixed. For example, for a three-dimensional tensor A ∈ RI1×I2×I3 , a

fiber in mode-2 with the indices of the other two modes fixed to ī1 and ī3 is a vector

v defined as (v)i2 = aī1i2 ī3 .

Slice:

A slice in j, k-dimension is a matrix V ∈ RIj×Ik extracted from a tensor with all

other dimensions but j and k fixed. For example, for a three-dimensional tensor

A ∈ RI1×I2×I3 , a slice in mode-1 and mode-2 with the index of mode-3 fixed to ī3 is

a matrix V defined as (V)i1i2 = ai1i2 ī3 .

Norm:

The norm of a tensor A is a higher-order analogue to the Frobenius norm of a matrix.

The definition goes as

‖A‖ :=

√√√√√ I1∑
i1

I2∑
i2

...
Id∑
id

a2
i1...ij ...id

. (3.6)

Hadamard product:

The Hadamard product simply takes the product of the tensor elements element-

wisely. The definition of the Hadamard product for two tensors of the same size

is

(A ∗B)i1i2...id = ai1i2...idbi1i2...id . (3.7)

Rank-one tensor:

A rank-one tensor is also called an elementary tensor [89] because the linear combi-

nation of such tensors spans the tensor space as shown in Eq. 3.2. A rank-one tensor

is defined as

A =
d⊗
j=1

uj = u1 ⊗ u2 ⊗ ...⊗ ud, (3.8)
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where uj ∈ RIj , or in terms of its elements

ai1i2...id = u1
i1u

2
i2 ...u

d
id
, (3.9)

following the definition of tensor product in Eq. 3.1. A schematic of a rank-one tensor

is presented in Fig. 3.1.

Figure 3.1: Schematic of a rank-one tensor.

Tensor matricization:

Tensor matricization is also called tensor unfolding [90]. j-mode tensor matricization

maps the tensor element (i1, i2, ..., id) to the matrix element (ij, k). The transforma-

tion from the index of a tensor element to a matrix element is defined as

ij = ij ,

k = 1 +
d∑

p=1,p 6=j
(ip − 1)

p−1∏
q=1,q 6=j

Iq .
(3.10)

We note that the j-mode matricization of tensor A is hereafter denoted as A(j).

Tensor matrix multiplication on j-mode:

A tensor matrix multiplication on j-mode is also called j-mode product. Following

Kolda and Bader’s notation [90], the tensor matrix multiplication between a tensor
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A ∈ RI1×I2×...×Ij×...×Id and a matrix X ∈ RK×Ij is written as A×j X and defined as

(A×j X)i1i2...ij−1kij+1...id =
Ij∑
ij=1

ai1i2...ij ...idxijk. (3.11)

The operation can also be written as matrix-matrix multiplication in the form of

matricized tensor as

(A×j X)(j) = XA(j). (3.12)

Tensor contraction:

Tensor contraction is also referred to as tensor-tensor product or tensor-tensor mul-

tiplication. It contracts (sums over) one or more given dimensions of two tensors.

For instance, given two tensors A ∈ ⊗5
jA=1 RIjA and B ∈ ⊗4

jB=1 RIjB , the tensor

contraction of A and B along two given modes p and q is defined as

cabcde =
∑
p

∑
q

aabpcqbpdeq. (3.13)

In fact, tensor matrix multiplication in Eq. 3.11 is simply a special case of tensor

contraction on mode-j of a higher-order tensor and a matrix. As tensor contraction

is of central importance in many applications, e.g. machine learning and wavefunction

based methods in quantum chemistry, many computation kernels have thence been

developed to facilitate tensor contraction operations or improve the computational

efficiency of tensor contractions [91, 92, 93, 94, 95].

With the notations defined, we now turn our attention back to tensor decomposi-

tion. The decomposition of a second-order tensor (a matrix) is well-known as singular

value decomposition. The generalization of tensor decomposition to a higher-order

tensor was first introduced by Hitchcock in 1927 [96, 97]. In the first few decades

after being proposed, the concept of tensor decomposition did not receive much at-

tention. It is historically recognized that the application of tensor decomposition
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was first introduced to studies in psychometrics by Tucker in the 1960s [98, 99, 100].

Soon after, it was introduced to the field of chemometrics by Appellof and David-

son in the 1980s [101]. Since then, higher-order tensor decomposition has received

increasing attention in multiple fields. In the field of signal processing and machine

learning, tensor decomposition is used for speech recognition, passive sensing, facial

recognition, identification of people connections on social media [102, 103, 104]. A

special issue on tensor decomposition for signal processing and machine learning was

published by IEEE to highlight the wide applications and importance of tensor de-

composition in that field [105]. In the field of data analysis, tensor decomposition

is used for compressing high dimensional data whose size could easily exceed many

terabytes (TBs) when the dimension of the tensor gets higher. An examination into

the use of tensor decomposition on analysis of combustion direct numerical simulation

data showed that tensor decomposition is capable of compressing data from the order

of terabytes into a few gigabytes, which is handleable by a normal laptop. The data

compression makes it possible to analyze and share the representation of the original

data with reasonable accuracy [106]. This feature is even more useful in an exascale

computing era, where the computed original tensor could be extremely large. The

power of tensor decomposition on data analysis and compression also has significant

applications in many other fields including biomedical imaging [107, 108, 109, 110],

spectroscopy and microscopy [111, 112], environmental modeling [113], and many

more. In the context of electronic structure calculations, using tensor decompo-

sition to improve the computational efficiency is an active area of research. The

capability of tensor decomposition to decompose a high-dimensional tensor as a lin-

ear combination of low-rank/low-dimensional tensor is promising and naturally suit-

able to tackle the lingering curse of dimensionality in electronic structure calcula-

tions [114, 115, 116]. Particularly, tensor decomposition has been used to compute

the convolutional integrals emerging in the evaluation of electrostatic potentials and
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two-electron-integrals in many different quantum mechanical methods [117, 42, 118].

Tensor decomposition techniques have also been used for investigating the property

of electron density in a DFT calculation [44], designing an efficient basis for Kohn-

Sham DFT calculations [45, 46], and many other applications in electronic structure

calculations [115, 119, 120, 121, 122, 123, 124].

While many tensor decomposition techniques are available or under development,

canonical decomposition and Tucker decomposition are generally considered as the

higher-order analog of principal value analysis or matrix singular value decomposition

for a higher-order tensor and therefore receives the most attention and has been

of central importance in the study of tensor analysis and applications. Canonical

decomposition decomposes a full d-dimensional tensor as a sum of multiple rank-one

tensors. On the other hand, Tucker decomposition decomposes a full d-dimensional

tensor as d matrices and a smaller tensor of the same dimension of the full tensor.

Other than canonical decomposition and Tucker decomposition, some other tensor

decomposition techniques are also receiving increasing attention.

Before getting into more details about tensor decomposition, we note that the

term tensor decomposition is used loosely in this work. Strictly speaking, tensor

representation and tensor decomposition have different definitions and can be distin-

guished rigorously [89]. By definition, tensor representation maps certain components

to a d-way tensor. As a result, a tensor representation is not necessarily injective. On

the other hand, tensor decomposition is going in the opposite direction. It injectively

(essentially1) maps a d-way tensor into certain components. For instance, Tucker

representation (cf. Ch. 3.3 and Eq. 3.23) maps a core tensor and d factor matrices to
1By essentially we mean that, by literal definition, it might not be a decomposition in some cases

as some other properties could break the injectivity, but we still regard it as a decomposition. For
instance, in the case of matrix eigenvalue decomposition, when there is k-fold degeneracy (meaning
there are k same eigenvalues), the eigenvectors are not unique, hence eigenvalue decomposition is
non-injective. Any unitary transformation of the k eigenvectors are still eigenvectors and span the
same eigen-subspace of the matrix. By definition, it is not a decomposition, but we still (essentially)
regard it as a decomposition in a looser sense.
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a d-way tensor A ∈⊗d
j=1 RIj

(core tensor, factor matrices) Tucker representation7−−−−−−−−−−−−−−−−−→ A, (3.14)

while Tucker decomposition decomposes a d-way tensor as a core tensor and d factor

matrices

A
Tucker decomposition7−−−−−−−−−−−−−−−−−→ (core tensor, factor matrices). (3.15)

However, many literatures are loose on these two terms. For instance, while Hack-

busch comments that tensor train format (cf. Ch. 3.4) is a more appropriate term

over tensor train decomposition because tensor train format lacks uniqueness (i.e.

no injectivity) [89], Oseledets used tensor train format, tensor train decomposition,

tensor train representation loosely and somewhat interchangeably in his tensor train

decomposition paper [125]. In this dissertation, we do not distinguish strictly between

terms for the sake of ease of presentation. Tensor representation, tensor format, and

tensor decomposition are used interchangeably throughout unless it is necessary to

distinguish and otherwise mentioned. The precise meaning should be clear in the

context.

In the remainder of this chapter, we provide a review of various aspects of canon-

ical and Tucker decomposition followed by some comments on other tensor decom-

position models and their applications in electronic structure calculations. For a

more complete and comprehensive picture of tensor analysis, tensor decomposition,

and applications of tensor analysis and methods in different fields, we refer to many

nicely written books and review articles. Kolda et al.’s 2009 review paper is a good

starting point [90]. It defines notations for commonly used tensor operations and

thoroughly introduces the tensor decomposition models in the canonical and Tucker

family. Smilde et al.’s 2004 book [126] has a longer discussion in tensor decomposition

that is truncated in Kolda et al.’s paper due to limited space and also provides an
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overview to the tensor decomposition application in chemometrics, one of the oldest

applications of tensor decomposition. Hackbusch’s 2012 book [89] has an extensive

discussion on various aspects of tensor representation and builds up a more rigorous

mathematical foundation, albeit a little advanced to read. An overview of appli-

cations of tensor-related methods in quantum mechanical and electronic structure

calculations can be found in Khoromskij and Khoromskaia [127, 116]’s books.

3.2 Canonical decomposition

Canonical decomposition (CANDECOMP) was originally termed the polyadic

form of a tensor when it was first discovered [96]. It was later on also referred to as par-

allel factors (PARAFAC) [128], CANDECOMP [129], CANDECOMP/PARAFAC [130],

canonical polyadic decomposition (CPD) [131], or simply CP decomposition, which,

as a compromise, can be interpreted as initials of CANDECOMP/PARAFAC or an

abbreviation of canonical polyadic decomposition.

For a d-way tensor A ∈⊗d
j=1 RIj , the canonical decomposition of A can be written

as the sum of tensor product of rank-one components

A =
R∑
r=1

d⊗
j=1

ujr, (3.16)

where R is the exact rank of A, ujr is the rank-one components corresponding to the

j-mode. While ujr need not be normalized, canonical decomposition is usually written

in the form that ujr is normalized

A =
R∑
r=1
λr

d⊗
j=1

ûjr, (3.17)

where ûjr is the normalized ujr and λr can be interpreted as the coefficient correspond-

ing to r-th rank-one tensor ⊗d
j=1 ûjr. The exact rank mentioned in Eq. 3.16 is the
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rank such that the equality is held and should not be confused with the (canonical)

rank in low-rank canonical decomposition that will be discussed later. The equality

in Eq. 3.16 becomes an approximation for a low-rank approximation using canonical

decomposition. It is noted that determining the exact rank of a higher-order tensor is

non-trivial. Heretofore, there has not been a perfect algorithm [90]. It has even been

proven that for a given three-dimensional tensor over any finite field F, determining

its exact rank is NP-complete. Furthermore, it is NP-hard for a three-dimensional

tensor over R [132].

For better understanding, we give an example of a real-valued rank-R three-

dimensional tensor A ∈ RI1×I2×I3 of size I1 × I2 × I3 indexed by the set (i1, i2, i3)

as

(A)i1,i2,i3 = ai1i2i3 . (3.18)

The canonical decomposition of A reads

A =
R∑
r=1

u1
r ⊗ u2

r ⊗ u3
r, (3.19)

where ujr ∈ RIj is rank-one components corresponding to the j-mode. A schematic

of the canonical decomposition for a three-dimensional tensor is provided in Fig. 3.2.

Figure 3.2: Schematic of Canonical decomposition.

Now we turn our attention to low-rank approximation of a tensor using canonical

decomposition. In a rank-k low-rank approximation, the equality in Eq. 3.16 is loosen
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to an approximation and the exact rank-R is reduced to rank-k as

A ≈ Ã =
k∑
r=1

d⊗
j=1

ujr, (3.20)

or in the case of a three-dimensional tensor

A ≈ Ã =
k∑
r=1

u1
r ⊗ u2

r ⊗ u3
r. (3.21)

The best rank-k approximation to a tensor minimizes the norm of the difference

between the original tensor and the rank-k approximation

Ã = arg min
A′

‖A− A′‖. (3.22)

Different from the singular value decomposition of a matrix, the rank-one components

of the best rank-k approximation do not necessarily come from the rank-one com-

ponents of the previous rank-1 to rank-(k − 1) approximation. As a result, the best

rank-k canonical decomposition cannot be solved incrementally. Instead, all rank-one

components have to be solved simultaneously [133, 126].

In order to compute the best approximation to a tensor in the form of canonical

decomposition with a given rank k, the alternating least square (ALS) algorithm

is introduced and remains to be the most used algorithm [129, 128]. In the ALS

algorithm, all dimensions are fixed but j-dimension, where j = 1, ..., d. Then the

algorithm finds the factor matrix Uj ∈ RIj×k, whose column vectors are the collection

of all k rank-one components corresponding to j-dimension, that best recover the j-

mode matricization of A for j = 1 : d sequentially. The process is repeated in each

iteration until the norm of the difference between A and A′ is smaller than the given

tolerance or the max iteration is reached. For further details, we point out to pp.

113-118 in Smilde et al. [126] for a more complete description on how to implement
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the algorithm and pp. 262-267 in Hackbusch [89] for discussion in the mathematical

properties of the ALS algorithm.

3.3 Tucker decomposition

Similar to canonical decomposition, Tucker decomposition has also appeared in

literatures by many different names. Originally termed three-mode factor analysis or

Tucker3 decomposition by Tucker and Levin [98, 99, 134] when it was first introduced.

Later on, it was also called three-mode principal component analysis (3MPCA) [135],

N-mode principal component analysis [136], higher-order singular value decomposi-

tion (HOSVD) [137], N-mode singular value decomposition [104].

Tucker tensor decomposition can be regarded as a higher-order generalization of

the singular value decomposition or principal component analysis of a d-dimensional

tensor. For a d-dimensional tensor, defined in Eq. 3.3, its exact Tucker tensor decom-

position can be written as

A =
Rexact

1∑
r1=1

Rexact
2∑
r2=1

...

Rexact
d∑
rd=1

σr1r2...rd

d⊗
j=1

ujrj , (3.23)

if the Tucker rank Rexact
j recovers the original tensor A exactly, or the low-rank Tucker

tensor decomposition which approximates the tensor A with the Tucker rank Rj,

A ≈ Ã =
R1∑
r1=1

R2∑
r2=1

...
Rd∑
rd=1

σr1r2...rd

d⊗
j=1

ujrj , (3.24)

where σr1r2...rd ∈
⊗d

j=1 RIj denotes the core tensor of the Tucker tensor decomposi-

tion. The core tensor can be seen as the coefficients of the corresponding rank-one

components and is typically much more smaller than the original tensor in the case

of a low-rank approximations (i.e., rj � Rj.)
⊗d

j=1 ujrj is a rank-one tensor and

ujrj ∈ RIj is the rj rank-one components corresponding to j-dimension. We note
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that all Rj rank-one components corresponding to j-dimension comprise the mode-j

factor matrix Uj. For Tucker decomposition, the exact n-rank, denoted as rankn(A),

is defined as the column rank of the matricization of the tensor A in n-dimension,

that is,

Rn = rankn(A) = rank(A(n)). (3.25)

We note that, instead of using j as in previous sections, n is used here as the free index

to specify a mode to follow the convention in the literature [138, 137, 90]. A tensor A is

said to be a rank-(R1, R2, ..., Rd) tensor if all rank Rj is the exact n-rank corresponding

to j-dimension. The Tucker decomposition of rank-(R1, R2, ..., Rd) tensor can be easily

computed by computing the matrix singular value decomposition of the matricized

tensor in each dimension. It is worth noting that in the case that one or more

ranks are chosen to be smaller than the n-rank corresponding to that dimension, i.e.

Rj < rankj(A), the decomposition is called truncated Tucker decomposition. We

note that Rj can also be interpreted as the dimension of the vector space spanned by

the column vectors of A(j) and we will simply refer to Rj as mode-j Tucker rank and

Rt = (R1, R2, ...Rd), where the superscript t is an abbreviation for Tucker, as Tucker

rank from now on.

For better understanding and due to the relevance to this dissertation work, we

present Tucker decomposition for a three-dimensional tensor, which is of central in-

terest in this work, in the remainder of this section. The Tucker model for a three-

dimensional tensor is originally referred to as Tucker3 decomposition [99]. For a

three-dimensional tensor A ∈ RI1×I2×I3 , the Tucker3 decomposition with Tucker

rank Rt = (R1, R2, R3) has the form

A ≈ A(Rt) =
R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

σr1r2r3u1
r1 ⊗ u2

r2 ⊗ u3
r3 , (3.26)

where σ ∈ RR1×R2×R3 denotes the core tensor, ujrj ∈ RIj , j ∈ {1, 2, 3} is the rj-th
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rank-one component in j-dimension. We note that the tensor contraction operations

in Eq. 3.26 can also be written as a series of tensor matrix multiplication (defined

in Eq. 3.11) between the core tensor σ and the factor matrices. The j factor matrix

of the decomposition is denoted as Uj and is defined as the collection of all Rj ujrj
vectors as

Uj =
[
uj1 uj2 ... ujRj

]
∈ RIj×Rj . (3.27)

Therefore, Eq. 3.26 can also be written as

A ≈ A(Rt) = σ ×1 U1 ×2 U2 ×3 U3. (3.28)

We note that in the literatures [99], Tucker1 decomposition refers to a special case

that any one of Uj is held as an identity matrix Ij, e.g. if mode-3 is set to an identity,

Tucker1 decomposition has the form

A ≈ A(Rt) = σ ×1 U1 ×2 U2 ×3 I3. (3.29)

Similarly, Tucker2 refers to a special case that any two of Uj are set to identity Ij,

e.g. if mode-2 and mode-3 are set to identities, Tucker2 decomposition gives

A ≈ A(Rt) = σ ×1 U1 ×2 I2 ×3 I3. (3.30)

A graphical illustration of the Tucker decomposition for a general three-dimensional

tensor is presented in Fig. 3.3. It is worth noting that the core tensor can be viewed

as the higher-order generalization of singular values storing the coefficients σr1r2r3 for

each rank-one tensor ur1
1 ⊗ur2

2 ⊗ur3
3 , and urjj can be interpreted as singular vectors in

j-dimension. Accordingly, the mode-j factor matrix can be viewed as a higher-order

analogue of left/right singular matrix in a matrix singular value decomposition.

We note that many approaches have been proposed to obtain the Tucker decom-
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Figure 3.3: Schematic of Tucker decomposition.

position for a given tensor. In this work, we adopt TuckerMethod1, which is later on

referred to and much more known as truncated higher-order singular value decomposi-

tion (HOSVD), for computing rank-(R1, R2, R3) decomposition of the original tensor.

As implied by its name, truncated HOSVD computes the singular value decomposi-

tion of the tensor A unrolled in each dimension and keeps Rj leading singular vectors

of A(j) for each dimension. The algorithm of truncated HOSVD is summarized in

Algorithm 1. While the algorithm is presented in the context of a three-dimensional

tensor, its form can be easily generalized to a d-way tensor. It is also noted that code

development to improve various aspects of Tucker tensor decomposition is still an ac-

tive area of research. In particular, as message passing interface (MPI) is heavily used

for parallelization in this work, we use TuckerMPI library for computing truncated

HOSVD. TuckerMPI is an MPI implementation for parallel Tucker tensor decompo-

sition and various tensor operations in Tucker representation. We refer to [139, 140]

for the library, and details of the implementation.

We note that besides truncated HOSVD, many other algorithms are also available

for computing Tucker tensor decomposition of a given tensor [135, 136, 141, 142, 143].
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Algorithm 1: truncated HOSVD
Input: A, R1, R2 R3
Output: σ, U1, U2, U3

for j=1:3
Uj ← first Rj singular vectors of the A(j)

end
σ ← A×1 U1 ×2 U2 ×3 U3

For example, one of the most used algorithms TuckerALS, also know as higher-order

orthogonal iteration (HOOI), is the alternating least square algorithm for Tucker

tensor decomposition [135]. It uses the solution from truncated HOSVD as an initial

guess and tries to improve the quality of the solution by iteratively minimizing the

residual norm of the original tensor and the tensor in Tucker decomposition form

A(Rt) = arg min
A′=σ′×1U′1×2U′2×3U′3

‖A− σ′ ×1 U′1 ×2 U′2 ×3 U′3‖. (3.31)

After obtaining the Tucker decomposition of a tensor, the full tensor could be needed

in some cases. The process of recovering the full tensor from a tensor decomposition

format is called (Tucker) tensor reconstruction. We caution that while it seems to

be intuitive to compute Tucker tensor reconstruction using for-loop as the multiple

sums in Eq. 3.23 seems to suggest so, the computational cost for this operation is

O(R3I3), where I := max(I1, I2, I3) and R := max(R1, R2, R3), which is actually very

inefficient. A more efficient way is to treat the tensor reconstruction as a series of

tensor-matrix multiplications as shown in Eq. 3.28 and presented in Algorithm 2. The

computational cost for this operation is O(R3I + R2I2 + RI3), which can be orders

of magnitude more efficient than naïvely looping over each summation notation.

Finally, we refer to [90, 144, 89] for more details on the various aspects of Tucker

tensor decomposition and the implementations of various algorithms for obtaining

Tucker tensor decomposition.
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Algorithm 2: Tucker tensor reconstruction
Input: σ, U1, U2, U3

Output: A
P ← σ
for j=1:3

Q← P ×j Uj (done by computing P(j)Uj using optimized kernel, e.g.
dgemm)
P ← Q
end

A← P

3.4 Other tensor decomposition models

Apart from the standard canonical tensor decomposition and Tucker tensor de-

composition, many other decomposition models are developed based on canonical

and Tucker decomposition and have been used in different application cases. Canon-

ical decomposition with linear constraints (CANDELINC) proposed a decomposition

model based on Canonical decomposition [145]. The CANDELINC model finds the

canonical decomposition of a tensor with one or more factor matrices under linear

constraints. It is then also termed Tucker-to-canonical operation [117, 43]. In elec-

tronic structure calculations, it can be used to compute classical potentials emerg-

ing in many-body electronic structure calculations, i.e. the Newton, Yukawa, and

Helmholtz potentials [117]. It is also used to design a multi-grid accelerated tensor

approximation model for approximating function related d-way tensors [43]. Gen-

eralized canonical polyadic decomposition (GCP) is also proposed recently [146]. In

standard canonical decomposition, the loss function is defined by the residual norm

as shown in Eq. 3.22. While in GCP, a loss function other than residual norms is

allowed. The GCP thus provides more flexibility than standard CP to the application

of canonical decomposition model on tensors with some special structures, e.g. find-

ing canonical decomposition of a tensor with missing data, binary tensors, and so on.

Parallel profiles with linear dependencies (PARALIND) combines the ideas of canon-
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ical decomposition and Tucker decomposition. PARALIND decomposes a tensor as a

sum of multiple low-rank Tucker tensor approximations [147]. Individual differences

in scaling (INDSCAL [129], parallel factors for cross products (PARAFAC2) [148],

decomposition into directional components (DEDICOM) [149], shifted Tucker3 (S-

T3) [150], and many more are also available decomposition models. We refer to [90]

and [147] for a comprehensive introduction on these different decomposition models

based on canonical or Tucker decomposition.

Other than the decomposition based on the canonical/Tucker decomposition, ten-

sor train format provides an alternative perspective of representing a tensor. Orig-

inally introduced to quantum physics and later termed as matrix-product systems

(MPS) [151, 152], it was around ten years ago reinvented and referred to as tensor

train or TT format [125, 114]. Tensor train representation for a given tensor has the

form represented by its entries as

ai1i2...id ≈
R1∑
r1

R2∑
r2

...
Rd−1∑
rd−1

g1
i1r1g

2
r1i2r2 ... gd−1

rd−2id−1rd−1
gdrd−1id

, (3.32)

where g denotes an entry in a three-dimensional tensor train core tensor Gj, Rj

denotes the tensor train rank (TT rank).

Finally, as a concluding remark, we note that there have also been other tensor

decomposition schemes having different forms from canonical or Tucker decomposi-

tion. Particularly, tree tensor network (tree TN 2) [153], hierarchical tensor format

(HT) [154, 155, 156] are also available and used in the context of quantum mechan-

ical or electronic structure calculations. We refer to the citations therein for more

details.

2Actually, TT originally refers to tree tensor but later on more commonly used to refer to tensor
train in Eq. 3.32 [89].
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CHAPTER IV

Reduced-Order Tensor-Structured Algorithm for

Kohn-Sham Density Functional Theory

In this chapter, we introduce the tensor-structured techniques to construct a

reduced-order tensor-structured algorithm for Kohn-Sham DFT calculation. We re-

fer to the previous Chapter II for the theoretical background of the DFT calculation

and Chapter III for various aspects of tensor techniques and the nomenclature, espe-

cially Tucker tensor decomposition, that will be used extensively in this chapter. This

chapter is structured as follows. Section 4.1 introduces the Kohn-Sham DFT formu-

lation in the real-space setting that will be used in this work. Section 4.2 proposes

a reduced-order tensor-structured algorithm for Kohn-Sham DFT calculations based

on Tucker tensor basis constructed from L1 localized functions. In Section 4.3, we

further investigate the eigenspace representability of the L1 localized functions to con-

firm that the localized Tucker-tensor basis preserves the same eigenspace. Section 4.4

shows the convergence study for two benchmark systems, fullerene and tris (bipyri-

dine) ruthenium, using the proposed tensor-structured algorithm. Section 4.5 shows

the performance analysis of the proposed tensor-structured algorithm for Kohn-Sham

DFT calculation using aluminum nano-particles and silicon quantum dots. Finally,

we conclude this work in Section 4.6.
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4.1 Real-space Kohn-Sham DFT formulation

Based on the derivation for Kohn-Sham DFT shown in Sec. 2.3.2, we will proceed

to show the real-space formulation for the Kohn-Sham method in a non-periodic

boundary setting. Due to the relevance to this work, we only consider spinless DFT

hereafter unless otherwise specified.

As aforementioned, Kohn-Sham DFT addresses the ground state energy of a

quantum mechanical system with Na atoms and Ne electrons by solving a non-

interacting single-particle Schrödinger equation subjected to a mean-field effective

potential veff(ρ; R)

HKSΨKS
i = εiΨKS

i , i ∈ {1, ..., Norb}

HKS = −1
2∇

2 + veff(ρ; R)
(4.1)

In the above, HKS denotes the Kohn-Sham Hamiltonian, {εi,ΨKS
i } denotes the i-th

eigenstate, Norb denotes the number of eigenstates at the lower end of the spectrum

that are computed (Norb > Ne
2 ), and R denotes the vector with the positions of

atoms. The electron density—the central quantity of interest in DFT— is denoted by

ρ = ρ(x) in real-space with coordinates x = (x1, x2, x3), where the spin dependency

is dropped as aforementioned. We also choose to drop the KS superscript from now

on for the sake of ease of presentation unless otherwise mentioned. We caution that

a single-electron wavefunction Ψ(x) appears in this chapter should not be confused

with the many-body wavefunction Ψ(x1, · · · ,xNe) in Sec. 2.1. The electron density

is related to the Kohn-Sham orbitals by

ρ(x) = 2
Norb∑
i=1

f(εi;µ)
∣∣Ψi(x)

∣∣2 , (4.2)

where f(ε;µ) denotes the orbital occupancy function, and, in the present work, is
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represented by the Fermi-Dirac distribution

f(ε;µ) = 1
1 + exp( ε−µ

kBT
)
. (4.3)

Here, kB is the Boltzmann constant, T is the temperature controlling the smearing

of the orbital occupancy function, and µ is the Fermi energy that is solved using the

the constraint on the total number of electrons given by

2
Norb∑
i=1

f(εi;µ) = Ne . (4.4)

As a quick recap from Eq. 2.54, the effective potential in the Kohn-Sham Hamiltonian,

veff(ρ), is a functional of electron density, and comprises three contributions

veff(ρ) = δEH

δρ
+ δEXC

δρ
+ vext(x; R). (4.5)

EH is the Hartree energy, which represents the classical Coulomb electrostatic inter-

action between electrons and is given by (in a non-periodic setting)

EH = 1
2

∫
R3

∫
R3

ρ(x)ρ(x′)
|x− x′|

dxdx′ =
∫
R3

ρ(x)vH(ρ)dx, (4.6)

where vH(ρ) is the Hartree potential defined by the functional derivative of the Hartree

energy

vH(ρ) = δEH

δρ
=
∫
R3

ρ(x′)
|x− x′|

dx′. (4.7)

EXC is the exchange-correlation energy, which describes all the many-body quantum

mechanical interactions between electrons. The functional derivative of EXC is labeled

as the exchange-correlation potential

vXC(ρ) = δEXC

δρ
, (4.8)
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In this work, the local density approximation (LDA) in the form of Ceperley-Alder

parametrized with Perdew-Zunger data [76, 78] is used for the exchange-correlation

functional. The last term in Eq. (4.5), vext(x; R), is the electrostatic potential acting

on electrons induced by nuclei. Typically, the core electrons do not participate in

chemical reactions, hence a pseudopotential approximation is commonly adopted to

replace the all-electron Coulomb potential by a smoother potential acting only on

valence electrons. The behavior of the pseudopotential operator vext acting on valence

electrons comprises the local part vloc
ext and the non-local part vnl

ext. In this work, the

norm-conserving Troullier-Martin [157] pseudopotential in Kleinman-Bylander [158]

form is used. The real space action of the pseudopotential operator acting on the

Kohn-Sham orbitals is defined as

vext(x; R)Ψ(x) = vloc
ext(x; R)Ψ(x) + vnl

ext(x; R)Ψ(x). (4.9)

vloc
ext(x; R) =

Na∑
J=1

vloc,Jext (x−RJ)Ψ(x), (4.10)

where vloc,Jext (x −RJ) is the corresponding local potential for the J-th atom, and RJ

is the coordinate of the J-th atom.

vnl
ext(x; R) =

Na∑
J

∑
lm

CJ
lmϕ

J
lm(x−RJ)∆vJl (x−RJ), (4.11)

where

CJ
lm =

∫
ϕJlm(x−RJ)∆vJl (x−RJ)Ψ(x)dx∫

ϕJlm(x−RJ)∆vJl (x−RJ)ϕJlm(x−RJ)dx

and

∆vJl (x−RJ) = vJl (x−RJ)− vloc,Jext (x−RJ).

Therein, vJl (x) is the pseudopotential component of the J-th atom corresponding to

the l azimuthal quantum number, ϕJlm(x) is the single atom pseudo-wavefunction of
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the J-th atom corresponding to the azimuthal and magnetic quantum numbers l and

m, respectively.

Finally, upon solving Eq. (4.1), Eq. (4.2), and Eq. (4.4) self-consistently in a

suitable basis, the ground state energy of the given system can be obtained by

Etot = Eband + EXC −
∫
R3

ρvXC(ρ)dx− 1
2

∫
R3

ρvH(ρ)dx + EZZ , (4.12)

where

Eband = 2
Norb∑
i=1

f(εi;µ)εi

is the band energy. Finally,

EZZ =
Na∑
I=1

Na∑
J>I

ZIZJ
|RI −RJ |

,

is the repulsion energy between nuclei, where ZI is the valence charge of the I-th

atom.

4.2 Tensor-structured algorithm using L1 localized one-dimensional

functions

In the previous work [45], it was suggested that an additive separable approxima-

tion to the Kohn-Sham Hamiltonian can be used to construct a Tucker tensor basis

that is systematically convergent. In particular, using a tensor-structured cuboidal

domain Ω spanned by the tensor product of one-dimensional domains ωk=1,2,3, an ad-

ditive separable approximation to the Kohn-Sham Hamiltonian (H1(x1) +H2(x2) +

H3(x3) ≈ H(x) ) retains some features of the Hamiltonian, and thus presents a

useful operator to generate reduced-order basis functions. To this end, the eigenfunc-

tions of the additive separable approximation to the Hamiltonian, which constitute a

Tucker tensor basis formed from the one-dimensional eigenfunctions of the separable
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parts of the Hamiltonian (Hk, k = 1, 2, 3), are used to solve the Kohn-Sham equa-

tions. While an efficient basis, the global nature of the ensuing Tucker tensor basis

limits the computational efficiency of the algorithms to solve the Kohn-Sham equa-

tions. In the proposed work, in place of the one-dimensional eigenfunctions of Hk,

we instead construct compressed modes preserving the subspace spanned by the one-

dimensional eigenfunctions using the L1 localization technique [159]. The obtained

one-dimensional localized functions are then used to generate the three-dimensional

Tucker tensor basis, which is localized in real-space and allows us to exploit the spar-

sity of the Kohn-Sham Hamiltonian represented in this basis for both computational

efficiency and realizing reduced-order scaling in solving the Kohn-Sham equations.

The various aspects of our tensor-structured algorithm are now presented, which in-

clude the computation of Kohn-Sham effective potential using tensor-structured algo-

rithm, generation of the additive separable approximation of the Kohn-Sham Hamil-

tonian, the evaluation of the L1 localized one-dimensional functions, the construction

of the localized Tucker tensor basis, the projection of the Kohn-Sham problem onto

the localized Tucker tensor basis, and the solution of the Kohn-Sham equations.

4.2.1 Computation of Khon-Sham effective potential using tensor-structured

techniques

Here we elaborate the various aspects of utilizing the low-rank tensor decompo-

sition to evaluate and represent the various components of the Kohn-Sham effective

potential. Recall that in Eq. 4.9, the pseudopotential is decomposed as its local and

non-local part. As a result, the effective potential can also be decomposed as

veff(ρ; R) = vloc
eff (ρ; R) + vnl

ext(ρ; R) ,
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where vloc
eff denotes the local part of the Kohn-Sham effective potential and vnl

ext denotes

the non-local part, which is simply the non-local part of the pseudopotential. The

local part includes the Hartree potential vH, the exchange-correlational functional

potential vXC, and the local part of the external pseudopotential vloc
ext, namely

vloc
eff (ρ; R) = vH(ρ) + vXC(ρ) + vloc

ext(ρ; R) . (4.13)

4.2.1.1 Hartree Potential

The Hartree potential vH is computed following the tensor-structured approach

presented in [160, 161]. We recall that the Hartree potential is given by the convolu-

tion integral

vH(ρ) =
∫ ρ(x′)
|x− x′|

dx′ . (4.14)

We first compute a low-rank Tucker decomposition of the electron density as

ρ̃(x) =
Rρ∑

r1,r2,r3=1
gr1r2r3%

r1
1 (x1)%r2

2 (x2)%r3
3 (x3) , (4.15)

In the above, Rρ represents the Tucker rank associated with the low-rank approxima-

tion of the electron density. We note that the approximation error decays exponen-

tially with the Tucker rank. In general, the Tucker rank can be chosen to be different

along the three Cartesian directions. However, for the sake of simplicity, the ideas

are presented here using a uniform rank along the different Cartesian directions.

The kernel 1
|x−x′| in Eq. 4.14 is approximated by a series of Gaussian functions to

take advantage of the tensor-structured nature as

1
|x|
≈

K∑
k=1

wke
−αk(x2

1+x2
2+x2

3) , (4.16)

where wk and αk are coefficients and K is the number of terms used to expand the
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kernel. We will elaborate this part a little bit in the later chapter (Sec. 6.4). We

also refer to prior works [161, 117] for the complete derivation and algorithm. The

pre-computed coefficients can be found on the webpage [162]. Substituting Eq. 4.15

and Eq. 4.16 into Eq. 4.14 , the Hartree potential can be evaluated using a separable

form

ṽH(x) =
K∑
k=1

wk

Rρ∑
r1,r2,r3=1

gr1r2r3

∫
%r1

1 (x′1)e−αk(x1−x′1)2
dx′1

∫
%r2

2 (x′2)e−αk(x2−x′2)2
dx′2

∫
%r3

3 (x′3)e−αk(x3−x′3)2
dx′3

 .
(4.17)

4.2.1.2 Local part of pseudopotential

The local part of the effective potential is then computed by summing the Hartree

potential, exchange-correlation functional and the local part of the external potential.

We next compute the Tucker decomposition of the local part of the effective potential

to exploit the tensor structure in the computation of the Hamiltonian matrix ele-

ments in the Tucker tensor basis (will be elaborated later in Sec. 4.2.5). The Tucker

decomposed effective potential is thus represented as

ṽloc
eff (x) =

RV∑
r1,r2,r3=1

σVr1r2r3u
r1
1 (x1)ur2

2 (x2)ur3
3 (x3) , (4.18)

where RV is the Tucker rank of the local part of the Kohn-Sham effective potential.

4.2.1.3 Non-local projector of pseudopotential

Now, recall that in Eq. 4.9, the norm-conserving Troullier Martin pseudopotential

operator in Kleinmann-Bylander form vext comprises the local part vloc
ext and the non-

local part vnl
ext. The action of the pseudopotential operator on a Kohn-Sham orbital

in real-space is recapitulated here as

vext(x; R)Ψ(x) = vloc
ext(x; R)Ψ(x) + vnl

ext(x; R)Ψ(x) , (4.19)
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vloc
ext(x; R)Ψ(x) =

Na∑
J=1

vloc,Jext (x−RJ)Ψ(x) , (4.20)

where

vnl
ext(x; R)Ψ(x) =

Na∑
J

∑
lm

CJ
lmϕ

J
lm(x−RJ)∆vJl (x−RJ) , (4.21)

and
CJ
lm =

∫
ϕJlm(x−RJ)∆V J

l (x−RJ)Ψ(x)dx∫
ϕJlm(x−RJ)∆V J

l (x−RJ)ϕJlm(x−RJ)dx

= 1
νJlm

∫
ϕJlm(x−RJ)∆V J

l (x−RJ)ϕJlm(x−RJ)dx ,

where

νJlm :=
∫
ϕJlm(x−RJ)∆V J

l (x−RJ)ϕJlm(x−RJ)dx .

In order to efficiently compute the action of non-local projector on the Kohn-Sham

wavefunction, we introduce an intermediate term ΛJ
lm(x) = ϕJlm(x−RJ)∆V J

l (x−RJ)

and compute its Tucker decomposition denoted as

Λ̃J
lm(x) =

Rnl
V∑

r1,r2,r3=1
σ

ΛJlm
r1r2r3φ

ΛJlm,r1
1 (x1)φΛJlm,r2

2 (x2)φΛJlm ,r3
3 (x3), (4.22)

where Rnl
V is the associated Tucker rank, chosen to be the largest among the J atoms

and its corresponding quantum numbers l and m.

The non-local part of the external potential computed with the Tucker decomposed

quantities is denoted as ṽnl
ext(x), and given

ṽnl
ext(x)Ψi(x) =

Na∑
J

∑
lm

C̃J
lmΛ̃J

lm(x) , (4.23)

where

C̃J
lm = 1

νJlm

∫
Λ̃J
lm(x)Ψ(x)dx .
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4.2.2 Construction of separable Hamiltonian

Next, we seek to construct a separable approximation to the Kohn-Sham Hamil-

tonian H1(x1) + H2(x2) + H3(x3) ≈ H(x) based on a rank-1 approximation of the

eigenfunction corresponding to the lowest eigenvalue. To this end, we consider the

rank-1 representation for the eigenfunction as Ψ′(x) = ψ1(x1)ψ2(x2)ψ3(x3). Thus, the

problem of computing the smallest eigenvalue of the Kohn-Sham Hamiltonian using

the rank-1 approximation is given by the variational problem

min
ψk
L(Ψ′) subject to: 〈Ψ′|Ψ′〉 = 1 . (4.24)

The Lagrangian, accounting for the normality constraint with the Lagrange multiplier

λ, is given by

L(Ψ′) =
〈
Ψ′
∣∣∣− 1

2∇
2 + veff(x)

∣∣∣Ψ′〉
=
∫  3∑

`=1

1
2

∣∣∣∣∣dψ`(x`)dx`

∣∣∣∣∣
2 3∏
m 6=`

ψ2
m(xm) +

(
ṽloc

eff (x) + λ
) 3∏
`=1

ψ2
` (x`)

+
3∏
`=1

ψ`(x`)ṽnl
ext(x)

3∏
`=1

ψ`(x`)
 dx .

(4.25)

Taking the variation of the Lagrangian Eq. 4.25 with respect to ψ`, we arrive at the

simultaneous one-dimensional eigenvalue problems

(
−1

2
d2

dx2
k

+ vloc
k (xk;ψl 6=k) + vnl

k (xk;ψl 6=k)
)
ψk(xk) = −(λ+ ak)ψk(xk) ,

k = 1, 2, 3 .
(4.26)

We note that

Hk := −1
2
d2

dx2
k

+ vloc
k (xk;ψl 6=k) + vnl

k (xk;ψl 6=k) (4.27)

and

αk = −(λ+ ak) . (4.28)
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Therein, we write out the one-dimensional quantities in Eq. 4.26

vloc
k (xk;ψl 6=k) = 1

mk

∫
ṽloc

eff

3∏
p=1,p 6=k

ψ2
p(xp)dx̂k , (4.29)

where

dx̂k =
3∏

p=1,p 6=k
dxp , mk =

∫ 3∏
p=1,p 6=k

ψ2
pdx̂k , (4.30)

and

vnl
k (xk;ψl 6=k)ψk(xk) = 1

mk

Na∑
J

∑
lm

C̃J
lm

∫
Λ̃J
lm(x)

3∏
p=1,p 6=k

ψp(xp)dx̂k , (4.31)

ak = 1
2mk

∫ 3∑
p,q=1
p,q 6=k

∣∣∣∣∣dψp(xp)dxp

∣∣∣∣∣
2

ψ2
q (xq)dx̂k . (4.32)

The minimization problem can thus be written into a set of simultaneous one-dimensional

eigenvalue problem, where each eigenvalue problem is parametrized by the solution

of the other two directions. The simultaneous eigenvalue problem can be solved using

a self-consistent iteration procedure.

Upon achieving self-consistency, the one-dimensional Hamiltonians (Hk) we ob-

tain represent the additive separable approximation of the Kohn-Sham Hamiltonian

that we seek. The eigenfunctions of this additive separable approximation to the

Hamiltonian, which can be obtained as the tensor product of the one-dimensional

eigenfunctions of Hk (k = 1, 2, 3), constitute a complete basis, thus providing system-

atic convergence as will be demonstrated subsequently.

We note that the proposed approach represents one possibility of systematically

constructing an additive separable approximation to the Kohn-Sham Hamiltonian,

and other possibilities may exist. We also note that the resulting tensor-structured

basis—the eigenbasis of H1 + H2 + H3—is expected to be better than the plane-

wave basis. To elaborate, the plane-wave basis is the eigenbasis of the Laplace op-
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erator (which is additive separable), whereas the additive separable approximation

obtained via the proposed approach includes both the Laplace operator and an ad-

ditive separable approximation of the Kohn-Sham potential veff , thus retaining some

additional features of the Kohn-Sham Hamiltonian and providing a better basis than

the plane-wave basis. The superior approximation properties of the proposed tensor-

structured basis over the plane-wave basis will be demonstrated subsequently via

numerical benchmark studies in Sec. 4.5.

We further note that as the electron density evolves during the self-consistent

field (SCF) iteration, the Kohn-Sham Hamiltonian changes, and thus the additive

separable approximation to Kohn-Sham Hamiltonian also changes with SCF iteration.

Here, we study the difference in the approximation properties of the adaptive Tucker

tensor basis—one which is constructed as the eiegnbasis of the additive separable

approximation to the Kohn-Sham Hamiltonian in every SCF iteration—with those

of a fixed Tucker tensor basis where the basis is constructed only in the first SCF

iteration (using an input electron density being a superposition of atomic densities)

and held fixed during the course of the SCF iteration. To this end, we consider two

benchmark systems: (i) Al147; (ii) Si220H144. Table 4.1 compares the approximation

properties of the adaptive and the fixed Tucker basis. Notably, the difference in the

ground-state energies computed using the adaptive and fixed Tucker tensor basis for

any given rank is significantly smaller than the basis discretization error corresponding

to the rank. To elaborate, the difference in ground-state energies between the adaptive

and fixed Tucker tensor basis for rank 70 for Al147 is < 1 meV/atom, whereas the basis

discretization error corresponding to this rank is ∼ 8.5 meV/atom (Reference energy

is -56.6274 eV/atom). Similarly, for Si220H144, the difference between the adaptive and

fixed basis is again < 1 meV/atom for rank 80, whereas the basis discretization error

is ∼ 7.5 meV/atom (Reference energy is -71.393 eV/atom). These results suggest that

it suffices to use a fixed Tucker tensor basis.
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rank adaptive 1 scf fixed diff (meV)
50 -56.58066 -56.57687 3.7970
60 -56.60263 -56.60099 1.6432
65 -56.6117 -56.61028 1.4181
70 -56.61869 -56.61798 0.7035
75 -56.62425 -56.62381 0.4384
80 -56.62637 -56.62608 0.2838

(a)
rank adaptive 1 scf fixed diff (meV)
50 -71.05245 -71.04783 4.6163
60 -71.27783 -71.27434 3.4927
70 -71.36808 -71.36661 1.4734
80 -71.38578 -71.38491 0.8699
90 -71.38866 -71.38821 0.4432
100 -71.39145 -71.39101 0.4314
105 -71.39201 -71.39181 0.1990

(b)

Table 4.1: Comparison of the approximation properties of adaptive and fixed Tucker
tensor basis. The per atom ground-state energies are reported in eV for: (a) Al147;
(b) Si220H144.
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4.2.3 Computation of L1 localized functions

The tensor-structured basis computed using the one-dimensional eigenfunctions

of Hk represents an efficient basis. However, the global nature of the basis limits

the computational efficiency and scaling (with system-size) of the solution to the

Kohn-Sham equations. To this end, we use the L1 localization approach [159] to

construct a spatially localized tensor-structured basis that is a close approximation

to the original tensor-structured basis. The localized basis is obtained by solving the

following variational problem (for k = 1, 2, 3)

min
Ψ′
k
∈Rn×Nk

1
µ

∣∣∣Ψ′k∣∣∣+ Tr(Ψ′k
THkΨ′k) s.t. Ψ′k

TΨ′k = I, (4.33)

where Hk is the matrix representation of Hk in a suitable orthogonal basis with di-

mension n, Ψ′k denotes the representation of Nk trial localized functions in the chosen

basis, and µ is a parameter controlling the trade-off between the representability of

the original eigensubspace and the locality of the one-dimensional functions, with |·|

denoting the L1 norm of the matrix.

The variational problem in Eq. 4.33 is solved by the splitting orthogonality con-

straint algorithm (SOC) [163, 159]. The SOC algorithm can be used for finding a

set of localized functions which closely approximate the eigenspace, yet preserving

the orthogonality of the localized functions. We remark that, in this work, the SOC

algorithm is used to construct localized functions that closely approximate the eigen-

subspace of the separable approximation of the Kohn-Sham Hamiltonian. Since the

one-dimensional separable Hamiltonian is computed using a finite-element discretiza-

tion, which in turn results in a generalized eigenvalue problem, the eigenfunctions

are M-orthogonal (M denoting the overlap matrix). The Ψ′k
TΨ′k = I constraint in

Eq. 4.33 should be extended to adapt M-orthogonality as Ψ′k
TMΨ′k = I. We hereby

summarize the SOC algorithm for the M-orthogonality constraint variance.
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Consider the generalized one-dimensional eigenvalue problem along direction k

given by HkΨk = MkΨkΛk, where Ψk ∈ Rn×Nk with n denoting the dimension of

the basis and Nk denoting the number of lowest eigenstates of interest, and Mk is

the overlap matrix of the k-th dimension. Using Cholesky factorization applied on

Mk so that Mk = LTL, the orthogonality constraint is given by (LΨk)T (LΨk) = I.

Thus, the original orthogonality constraint for Ψk is thus replaced by LΨk. The SOC

algorithm for a generalized eigenvalue problem is summarized in Algorithm 3.

Algorithm 3: SOC
Input: Hk, Mk, µ, η, κ, tol
Output: ΨL

k

Chelosky factorization: Mk = LTL
Initialize: P0 = LΨk, Q0 = Ψk, b0 = B0 = 0
while e > tol do

1. Ψi
k =

arg minΨ′
k
Tr(Ψ′TkHkΨ′k)+ η

2‖Ψ
′
k−Qi−1+bi−1‖2

F + κ
2‖LΨ′k−Pi−1+Bi−1‖2

F

2. Qi = arg minQ
1
µ
|Q|+ η

2‖Ψ
i
k −Q + bi−1‖2

F

3. Pi = arg minP ‖LΨi
k −P + Bi−1‖2

F s.t. PTP = I
4. bi = bi−1 + Ψi

k −Qi

5. Bi = Bi−1 + LΨi
k −Pi

6. Ei = 1
µ

∣∣∣Ψi
k

∣∣∣+ Tr(Ψi
k
THkΨi

k)
7. e =

∣∣∣Ei−Ei−1

Ei

∣∣∣
8. if e < tol; then ΨL

k = Ψi
k

end

In Algorithm 3, η and κ are the penalty factors for each constraint, tol is the stop-

ping criteria for the error measure e. ΨL
k is the computed localized one-dimensional

functions. The solution for the three sub-problems 1-3 are

2(Hk + η + κL)Ψi
k = κ(Pi−1 −Bi−1) + η(Qi−1 − bi−1)

Qi = sign(Ψi
k + bi−1) max

(
0,
∣∣∣Ψi

k + bi−1
∣∣∣− 1

ηµ

)

Pi = (LΨi
k + Bi−1)US−

1
2 VT

, (4.34)

where U, V, S are the left singular vectors, the right singular vectors, and the singular
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values for (LΨi
k + Bi−1)T (LΨi

k + Bi−1), respectively.

Finally, upon solving the variational problem Eq. 4.33 for M-orthogonal variance

using Algorithm 3, the minimizer of the variational problem, henceforth denoted as

ΨL
k , provides localized functions whose span closely approximates the eigensubspace of

the lowest Nk eigenfunctions of Hk, as will be demonstrated subsequently in Sec. 4.3.

4.2.4 Computation of the three-dimensional localized Tucker tensor basis

The one-dimensional localized functions whose span is a close approximation to the

subspace spanned by the one-dimensional eigenfunctions of Hk are subsequently used

to construct the three-dimensional Tucker tensor basis. Denoting the one-dimensional

localized functions as ψL
1,i1(x1), ψL

2,i2(x2), ψL
3,i3(x3), the three-dimensional localized

tensor-structured basis functions T L
I are given by

T L
I = ψL

1,i1(x1)ψL
2,i2(x2)ψL

3,i3(x3), (4.35)

where 1 ≤ id ≤ Rd and I is the composite index I = (i1, i2, i3)1≤id≤Rd . The rank of the

Tucker tensor basis is given by (R1, R2, R3) which denotes the number of localized one-

dimensional functions in each direction. The space spanned by the three-dimensional

localized tensor-structured basis functions is denoted as TL.

4.2.5 Projection of the Kohn-Sham Hamiltonian onto localized Tucker

tensor space

The Kohn-Sham Hamiltonian is projected onto TL, the localized Tucker tensor

space, spanned by the three-dimensional tensor-structured localized basis functions.

We note that the Kohn-Sham effective potential veff is a functional of the electron-

density ρ, and is comprised of a local-part vloc
eff (local in real-space) and a non-local part

vnl
ext. vloc

eff includes the Hartree potential (vH), the exchange-correlation potential and
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the local-part of the pseudopotential, whereas vnl
ext comprises of the non-local projec-

tors of the pseudopotential as shown in Sec. 4.2.1. The convolution integral involved

in the evaluation of vH can be efficiently computed using a low-rank Tucker tensor de-

composition of the electron-density (Rρ denoting the rank of the decomposition) and

approximating the Coulomb integral by a series of Gaussian functions [160, 161] (cf.

Sec. 4.2.1.1). Subsequently, a low-rank Tucker tensor approximation of vloc
eff and vnl

ext

is utilized, with RV and Rnl
V denoting the corresponding ranks, respectively. Denoting

the low-rank Tucker approximation of the effective potential veff by ṽeff , whose ap-

proximation error decays exponentially with the Tucker rank [160, 42], the projection

of the Kohn-Sham Hamiltonian onto TL is given by

H̃L
I,J =

〈
T L
I

∣∣∣− 1
2∇

2 + ṽeff(ρ; R)
∣∣∣T L
J

〉
. (4.36)

We note that the low-rank representation ṽeff reduces the integrals involved in

Eq. (4.36) to tensor products of one-dimensional integrals, thereby facilitating the

efficient evaluation of Hamiltonian matrix elements. Using the effective potential

decomposed into the Tucker tensor format, the computation of the projected Hamil-

tonian is elaborated here for clarity.

Substituting the decomposed quantities Eq. 4.18, Eq. 4.23 into Eq. 4.36, the entries

of the Hamiltonian matrix in the localized Tucker tensor basis are given by

H̃L
I,J =

〈
T L
I

∣∣∣− 1
2∇

2 + ṽloc
eff + ṽnl

ext

∣∣∣T L
J

〉
=1

2

∫
∇T L

I · ∇T L
J dx +

∫
T L
I ṽ

loc
eff T

L
J dx +

∫
T L
I ṽ

nl
extT

L
J dx .

(4.37)

Recall that T L
I = ψL

1,i1(x1)ψL
2,i2(x2)ψL

3,i3(x3) has a tensor structure, and thus each term

in Eq. 4.37 can be computed using one-dimensional integrals as follows:
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∫
∇T L

I · ∇T L
J dx =

∫
∇(ψL

1,i1ψ
L
2,i2ψ

L
3,i3) · ∇(ψL

1,j1ψ
L
2,j2ψ

L
3,j3) dx

= Gdx1
i1j1G

x2
i2j2G

x3
i3j3 +Gx1

i1j1G
dx2
i2j2G

x3
i3j3 +Gx1

i1j1G
x2
i2j2G

dx3
i3j3 ,

(4.38)

where

Gdxd
idjd

=
∫ dψL

d,id
(xd)

dxd

dψL
d,jd

(xd)
dxd

dxd ,

and

Gxd
idjd

=
∫
ψL
d,id

(xd)ψL
d,jd

(xd)dxd .

∫
T L
I ṽ

loc
eff T

L
J dx =

∫ {
ψL

1,i1(x1)ψL
2,i2(x2)ψL

3,i3(x3) RV∑
r1,r2,r3=1

σVr1r2r3u
r1
1 (x1)ur2

2 (x2)ur3
3 (x3)


ψL

1,j1(x1)ψL
2,j2(x2)ψL

3,j3(x3)
}
dx

=
RV∑

r1,r2,r3=1

(
σVr1r2r3

∫
ψL

1,i1(x1)ur1
1 (x1)ψL

1,i1(x1)dx1

∫
ψL

2,i2(x2)ur2
2 (x2)ψL

2,i2(x2)dx2∫
ψL

3,i3(x3)ur3
3 (x3)ψL

3,i3(x3)dx3

)
.

(4.39)

For the non-local part of the effective potential, we first consider the expression

∫
T L
I v

nl
ext(x)T L

J dx

=
Na∑
J

∑
lm

1
νJlm

∫
ψL

1,i1ψ
L
2,i2ψ

L
3,i3ΛJ

lm(x)dx
∫

ΛJ
lm(x)ψL

1,j1ψ
L
2,j2ψ

L
3,j3dx .

(4.40)

We note that the right-hand side of equation Eq. 4.40 is a matrix operation QTQ,

where

QJlm,i1i2i3 =
∫
ψL

1,i1(x1)ψL
2,i2(x2)ψL

3,i3(x3)ΛJ
lm(x)dx . (4.41)
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Using the low-rank Tucker decomposition of ΛJ
lm(x) in Eq. 4.22,

Λ̃J
lm(x) =

Rnl
V∑

r1,r2,r3=1
σ

ΛJlm
r1r2r3φ

ΛJlm,r1
1 (x1)φΛJlm,r2

2 (x2)φΛJlm,r3
3 (x3) ,

QJlm,i1i2i3 can be computed in a tensor decomposed form using Λ̃J
lm as

Q̃Jlm,i1i2i3 =
Rnl
V∑

r1,r2,r3

(
σ

ΛJlm
r1r2r3

∫
φ

ΛJlm,r1
1 (x1)ψL

1,i1(x1)dx1

∫
φ

ΛJlm,r2
2 (x2)ψL

2,i2(x2)dx2∫
φ

ΛJlm,r3
3 (x3)ψL

3,i3(x3)dx3

)
.

Thus, the non-local part of the projected Hamiltonian in the three-dimensional local-

ized tensor-structured format with ṽnl
ext is given by

∫
T L
I ṽ

nl
ext(x)T L

J dx = 1
νJlm

Q̃T Q̃ . (4.42)

The projected Kohn-Sham Hamiltonian matrix elements have now been computed.

We also note that a truncation tolerance is introduced to zero out the Hamiltonian

matrix elements below the tolerance. This truncation is performed in every SCF it-

eration, which improves the sparsity of the Hamiltonian matrix and thereby reducing

the memory footprint of the calculation. Furthermore, the sparsity of the Hamilto-

nian matrix also reduces the computational complexity of the algorithm employed to

solve the Kohn-Sham equations, which is discussed subsequently. We present data

to quantify the error introduced by this truncation in the computed ground-state en-

ergy. To this end, we again consider the two benchmark problems: (a) Al147 and (b)

Si220H144. Table 4.2 provides the ground-state energies for various values of the trun-

cation tolerance, computed using the three-dimensional localized Tucker tensor basis

with Tucker rank 70 for Al147 and rank 80 for Si220H144. Firstly, we note that there

is a systematic decrease in the error with decreasing truncation tolerance. Notably,

a truncation tolerance of 1e-4 results in a ∼ 1 meV/atom error, which is significantly
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Truncation tolerance Matrix Sparsity E/atom (eV)
difference with
no truncation
(meV/atom)

no truncation N/A -56.61893288 0
1.00E-16 0.294987723 -56.61886453 0.068350
1.00E-12 0.652828618 -56.61858753 0.345342
1.00E-09 0.875758917 -56.61833460 0.598280
1.00E-06 0.983255385 -56.61806465 0.868228
1.00E-04 0.996135765 -56.61791358 1.019299
1.00E-03 0.999547258 -56.61543244 3.500435

(a)

Truncation tolerance Matrix Sparsity E/atom (eV)
difference with
no truncation
(meV/atom)

no truncation N/A -71.38538743 0
1.00E-16 0.375215542 -71.38521376 0.17367
1.00E-12 0.743421981 -71.38493422 0.45321
1.00E-09 0.927431159 -71.38472245 0.66497
1.00E-06 0.992731562 -71.38462106 0.76637
1.00E-04 0.999817424 -71.38409125 1.29617
1.00E-03 0.999932175 -71.38269574 2.69168

(b)

Table 4.2: The effect of truncation tolerance on ground-state energy and sparsity of
HL for: (a) Al147; (b) Si220H144.

lower than the basis discretization error and the desired accuracy, but provides ex-

cellent sparsity in HL. Thus, a truncation tolerance of 1e-4 has been adopted in

benchmark studies on aluminum nano-particles and silicon quantum dots.

4.2.6 Computation of occupied eigenstates

The discretized Kohn-Sham problem, corresponding to Eq. 4.1, in the localized

orthonormal tensor-structured basis is given by the standard eigenvalue problem

HLΨi = εiΨi , i ∈ {1, . . . , N} (4.43)
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where HL denotes the truncated sparse Kohn-Sham Hamiltonian matrix. We use

the Chebyshev filtering based subspace iteration (ChFSI) [164] to efficiently solve the

Kohn-Sham equations. The ChFSI method has been demonstrated to be efficient

with good parallel scalability for real-space implementations of DFT [25, 26, 3]. In

the ChFSI method, in each SCF iteration, a suitably constructed Chebyshev filter

using HL is employed to construct a close approximation to the relevant eigensub-

space of the occupied states. The action of the Chebyshev filter on a given subspace

can be cast as a recursive iteration involving matrix-vector multiplications between

HL and vectors obtained during the course of recursive iteration. Since HL is sparse,

the computational complexity of the Chebyshev filtering operation scales as O(R3N),

where R = max{R1, R2, R3}. In ChFSI, the Chebyshev filtered vectors are orthog-

onalized using a Gram-Schmidt orthogonalization procedure, and subsequently the

Kohn-Sham eigenstates are computed by projecting HL onto the Chebyshev filtered

subspace and diagonalizing this projected Hamiltonian. The computational complex-

ity of the orthogonalization procedure and the subspace projection scales as O(R3N2)

while the diagonalization cost scales as O(N3). As demonstrated in Table 4.4 and Ta-

ble 4.6, Chebyshev filtering, which scales linearly with N , remains the dominant cost

even at 25,000 electrons for the various benchmark examples considered in this work.

We note that, at even larger system sizes, other costs that exhibit quadratic-scaling

(orthogonalization and subspace projection) and cubic-scaling (diagonalization) with

N can start to compete. However, at such a point, explicit diagonalization can be

avoided, and already developed ideas [41] of localizing the Chebyshev filtered vectors

in conjunction with Fermi-operator expansion can be adopted to retain the reduced-

order scaling for systems with or without a gap. We will give a more complete

discussion of Chebyshev filtered subspace iteration method in the next chapter that

present the GPU acceleration aspect of the tensor-structured algorithm.
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4.3 Eigenspace representability of the L1 localized functions

We now demonstrate the ability of the L1 localized functions to closely approxi-

mate the eigensubspace of Hk using Al147 nano-particle with icosahedral symmetry.

We compute the additive separable approximation of the Kohn-Sham Hamiltonian

for this nano-particle, and, then compute the lowest 70 eigenstates of Hk. We subse-

quently use the L1 localization approach to compute the localized functions that are

a close approximation to the eigensubspace. For the ease of presentation, we show

the lowest 5 eigenfunctions of H1 (one of the one-dimensional separable Hamiltonian)

(top) and the corresponding one-dimensional localized functions (bottom) in Fig-

ure 4.1. An illustration of all 70 eigenstates and the corresponding one-dimensional

localized functions is presented in Fig. 4.2 for readers’ reference. It is evident that,

while the eigenfunctions are global in nature, the functions obtained from the L1

localization approach are localized in real-space. This locality is key to the sparsity

of the Kohn-Sham Hamiltonian matrix in the Tucker tensor basis, and the resulting

computational efficiency.

In order to demonstrate the accuracy of the L1 localization approach in closely

approximating the eigensubspace of the separable Hamiltonian, we consider the first

70 eigenstates of H1 and the eigenvalues of the matrix Kij =
〈
ψL

1,i

∣∣∣H1

∣∣∣ψL
1,j

〉
, 1 ≤

i, j,≤ 70. Figure 4.3 shows the eigenvalues of H1 and the eigenvalues of Kij. It is

interesting to note that the eigenvalues of the first 65 states are almost identical,

with only slight deviations for the higher states. This demonstrates that the space

spanned by the localization functions obtained using the L1 localization approach is

a close approximation to the eigensubspace of Hk. We also note here that better

accuracy can be achieved, when necessary, by simply increasing the size of Nk to be

solved for in Eq. 4.33. In order to assess the accuracy afforded by the localization

procedure in the ground-state energy, we computed the ground-state energy of Al147

using the three-dimensional localized basis with rank 70, and compared that with the
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Figure 4.1: One-dimensional functions for separable Hamiltonian. one-dimensional
functions in x1 direction constructed from the additive separable approximation of
the Kohn-Sham Hamiltonian for Al147 nano-particle. Top: Lowest five eigenfunctions
of H1. Bottom: The corresponding L1 localized one-dimensional functions.

energy obtained using the eigenbasis of H1 +H2 +H3 (i.e., without localization) of

the same rank. The energy obtained without localization is -56.61882 eV per atom

in comparison to -56.61893 eV per atom obtained using localization. Thus, the error

introduced due to localization is ∼0.1meV per atom, which is substantially smaller

than the basis discretization error of ∼8.5 meV per atom corresponding to rank 70

(reference energy is -56.6274 eV per atom; cf. Table 4.3).

4.4 Convergence study

We next investigate the convergence properties of the three-dimensional Tucker

tensor basis constructed from the one-dimensional localized functions. For the con-

vergence study we consider two benchmark problems: (i) C60 (fullerene) molecule;

(ii) tris (bipyridine) ruthenium, a transition metal complex. We note that these sys-

tems have no tensor structure symmetry and serve as stringent benchmarks to assess
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Figure 4.3: Representability of the one-dimensional localized functions. Compar-
ison of the eigenvalues of the one-dimensional separable Hamiltonian in x1 di-
rection of Al147 nano-particle (marked with blue circle) with the eigenvalues of
Kij =

〈
ψL

1,i

∣∣∣Hk

∣∣∣ψL
1,j

〉
(marked with red cross and labeld as SOC).
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the convergence and accuracy afforded by the proposed Tucker tensor basis. The

ground-state energy for these molecules is computed for various Tucker tensor ranks

R (R1 = R2 = R3 = R), with the three-dimensional Tucker tensor basis getting

systematically refined with increasing R. In this study, Rρ, RV and Rnl
V are chosen

stringently such that the resulting errors are significantly smaller than the basis dis-

cretization errors, and they are held fixed for increasing R. In particular, we used

Rρ = 45, RV = 65 and Rnl
V = 20 for fullerene, and Rρ = 80, RV = 55 and Rnl

V = 20 for

tris (bipyridine) ruthenium. The basis discretization error (convergence with respect

to R) is measured with respect to a well-converged Quantum Espresso result. The

converged Quantum Espresso ground-state energies for fullerene molecule is taken to

be -155.1248 eV per atom (Ecut = 60 Ha) and that of tris (bipyridine) ruthenium is

taken to be -118.2128 eV per atom (Ecut = 65 Ha).

Figure 4.4 (a) and Fig. 4.4 (b) show the relative error in the ground-state energy

for the various ranks of the Tucker tensor basis. It is evident from these results that

the Tucker tensor basis constructed using our approach provides an exponential con-

vergence in the ground-state energy with increasing Tucker rank. The convergence

study of these molecules suggests that the proposed tensor-structured technique pro-

vides systematic convergence with high accuracy and is capable of handling generic

materials systems, including those involving transition metals.

4.5 Performance benchmark

To study the performance and scaling with system-size of the proposed tensor-

structured approach for DFT calculations, we consider two classes of benchmark

systems: (i) Aluminum nano-particles of various sizes ranging from 13 atoms to 6,525

atoms; (ii) Silicon quantum dots with system-sizes ranging from 26 atoms to 7,355

atoms. These benchmark systems constitute materials systems with and without a

gap, thus allowing us to assess the system-size scaling for both classes of materials.
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(a) Fullerene

(b) Tris (bipyridine) ruthenium

Figure 4.4: Convergence with respect to the Tucker rank. The electron-density iso-
contours are provided in the inset.
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In order to compare the efficiency of the proposed tensor-structured approach with

the widely used plane-wave DFT calculations, we also conducted the DFT calcu-

lations using Quantum Espresso wherever possible. For the sake of estimating the

computational efficiency, the energy cut-off for Quantum Espresso and the Tucker

rank are chosen such that the ground-state energy is converged to within 10 meV

per atom measured with respect to a highly converged reference calculation. The

reference ground-state energies are obtained from Quantum Espresso (using a high

energy cut-off) for smaller systems and the DFT-FE code [26]—a massively parallel

real-space code for large-scale DFT calculations—for larger system-sizes. The cell size

for plane-wave calculations is chosen such that each atom is at least 10 Bohr away

from the boundary, which was needed to obtain the desired accuracy.

In these benchmark calculations, the additive separable approximation to the

Kohn-Sham Hamiltonian is computed only in the first SCF iteration and the result-

ing three-dimensional Tucker basis is held fixed for subsequent SCF iterations. We

note that the approximation properties of an adaptive Tucker basis (where the basis

is regenerated for every SCF iteration) and the fixed Tucker basis are similar, with the

differences in the accuracy being substantially smaller than the basis discretization

error for a given Tucker rank. We refer to Table 4.2 which provides data support-

ing this observation. In the tensor-structured calculations reported subsequently,

all the numerical parameters—ranks for approximating electron-density and effective

Kohn-Sham potential (Rρ, RV, R
nl
V) in H̃L, and the truncation tolerance adopted in

computing HL—are chosen such that the resulting errors are substantially smaller

than the basis discretization error in the ground-state energy associated with the

Tucker rank R of the localized three-dimensional Tucker tensor basis and the desired

chemical accuracy. In particular, for the Aluminum nano-particles we used Rρ = 40,

RV = 50 and Rnl
V = 25. In the case of Silicon quantum dots, we used Rρ = 55,

RV = 55 and Rnl
V = 25. The truncation tolerance in computing HL was chosen to be
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10−4 Ha for all the calculations, which provides excellent sparsity for HL, and, im-

portantly, the sparsity is either steady or improves with increasing system-size. The

error in ground-state energy associated with this choice of truncation tolerance is ∼ 1

meV per atom, as opposed to the targeted accuracy in this study of being within 10

meV per atom of reference energies.

4.5.1 Aluminum nano-particles

The computational efficiency afforded by the proposed tensor-structured approach

in comparison to Quantum Espresso for the various aluminum nano-particles with

icosahedral symmetry considered in this work is provided in Table. 4.3. We note

that the Tucker rank required to achieve the desired accuracy only grows slowly

with increasing system-size. Importantly, we note that the number of basis functions

needed to achieve the desired accuracy using the localized Tucker basis is smaller than

the plane-wave basis. As previously discussed, this is a consequence of the superior

approximation properties of the Tucker tensor basis generated as the eigenbasis of

an additive separable approximation of the Kohn-Sham Hamiltonian that in addition

to the Laplace operator retains some characteristics of the Kohn-Sham potential, as

opposed to the plane-wave basis which corresponds to the eigenbasis of the Laplace

operator.

In terms of the computational time, while Quantum Espresso is more efficient for

the smaller system-sizes, the tensor-structured approach starts to substantially out-

perform for larger system-sizes. Notably, for Al2057, the tensor-structured approach

is 8-fold more efficient.

Furthermore, using the computational times, the scaling of the proposed tensor-

structured approach is estimated to be around O(N1.78
e ) with Ne denoting the number

of electrons (cf. Fig. 4.5 a). Notably, the scaling with system-size is sub-quadratic

for this metallic system over system-sizes spanning many thousands of atoms, as
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Tucker QE
Nano
particle rank

# basis/
atom

E/atom time
#basis/
atom

E/atom time
Reference

Energy/atom

Al13 40 4923 -55.9965 0.00067 12403 -55.9993 0.00022 -56.0034*
Al147 70 2333 -56.6179 0.069 5078 -56.6198 0.028 -56.6274*
Al561 85 1095 -56.8119 0.69 4490 -56.8122 1.24 -56.8191*
Al2057 120 840 -56.9192 7.96 5015 N/A 66.68 -56.9284†

Al6525 150 517 -57.0013 55.08 N/A N/A N/A -57.0090†

Table 4.3: Comparison of the computational performance for Aluminum nano-
particles. Comparison of the computational performance of the tensor-structured
approach with Quantum Espresso (QE) for the benchmark aluminum nano-particles
systems. All energies are reported in eV, and the computational times are reported in
node-hrs per SCF iteration. The plane-wave cut-off employed for QE calculations to
target the desired accuracy is 25 Ha. Full ground-state calculations were performed
using the tensor-structured approach for all systems. In the case of QE, full-ground-
state calculations were performed for the systems where the ground-state energies are
provided, whereas for Al2057 only a few SCF iterations were performed to compute
the stable SCF time due to significantly increased computational cost. Al6525 system
was beyond reach using QE. The reference energies are computed using QE (*) with
higher plane-wave cut-off 55 Ha for smaller systems. The reference energies for the
larger systems are obtained using DFT-FE (†).

opposed to the cubic-scaling complexity for plane-wave DFT calculations. We note

that this is a consequence of the slow growth of the Tucker rank with system-size that

results in a sub-linear growth of the total number of basis functions with system-size.

The breakdown of the computational costs for the various steps of the calculation is

provided in Table 4.4.

4.5.2 Silicon quantum dots

Table 4.5 compares the computational performance of the proposed tensor-structured

approach with Quantum Espresso for a wide range of silicon quantum dots passivated

with hydrogen. As in the case of aluminum nano-particles, the Tucker tensor basis

is more efficient than the plane-wave basis in terms of the number of basis functions

to attain the desired accuracy. In terms of computational time, the proposed tensor-

structured approach starts competing with Quantum Espresso beyond a few hundred
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# atoms # e-
Density
fraction

Time/scf
(node-hrs)

ChF
(node-hrs)

Orth
(node-hrs)

Sub proj
(node-hrs)

Others
(node-hrs)

Al13 13 39 2.54e-03 6.69e-04 2.65e-04 1.76e-04 4.41e-05 1.84e-04
Al147 147 441 3.86e-03 6.86e-02 4.67e-02 3.89e-04 6.53e-03 1.50e-02
Al561 561 1683 7.57e-04 0.693 0.443 0.012 0.052 0.186
Al2057 2057 6171 8.16e-04 7.964 4.974 0.461 0.593 1.936
Al6525 6525 19575 6.33e-04 55.077 32.606 12.681 4.108 5.682

Table 4.4: Breakdown of computational times for the various steps in the solution of
the Kohn-Sham equations in the localized Tucker tensor basis using the Chebyshev
filtering based subspace iteration. The benchmark system considered is aluminum
nano-particles.

atoms, and significantly outperforms for larger systems. The breakdown of the com-

putational costs for the various steps of the calculation is provided in Table 4.6.

Moreover, the scaling with system-size for the tensor-structured algorithm, for

a range of system-sizes with the largest containing 7,355 atoms, is estimated to be

O(N1.8
e ) (cf. Fig. 4.5 b). Notably, this scaling is similar to that obtained for aluminum

nano-particles as the algorithm treats systems with and without a gap on a similar

footing.

Figure 4.5: Computational complexity of the tensor-structured approach. (a) Alu-
minum nano-particles O(1.78); (b) Silicon quantum dots O(1.8).
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Tucker QE
Si quantum

dots rank
# basis/
atom

E/atom time
# basis/
atom

E/atom time
Reference

Energy/atom

Si10H16 45 3505 -51.0271 0.0065 7048 -51.0279 0.00014 -51.0339*
Si220H144 80 1407 -71.3841 0.094 2534 -71.3839 0.096 -71.3930*
Si525H276 90 910 -76.1182 0.96 2251 -76.1194 1.12 -76.1279*
Si1214H504 100 582 -80.8627 3.85 2132 N/A 20.01 -80.8717†

Si6047H1308 140 373 -91.5659 67.49 N/A N/A N/A -91.5741†

Table 4.5: Comparison of the computational performance for Silicon quantum dots.
Comparison of the computational performance of the tensor-structured approach with
Quantum Espresso (QE) for the benchmark Silicon quantum dots systems. All en-
ergies are reported in eV, and the computational times are reported in node-hrs per
SCF iteration. The plane-wave cut-off employed for QE calculations to target the
desired accuracy is 20 Ha. Full ground-state calculations were performed using the
tensor-structured approach for all systems. In the case of QE, full-ground-state calcu-
lations were performed for the systems where the ground-state energies are provided,
whereas for Si1214H504 only a few SCF iterations were performed to compute the sta-
ble SCF time due to significantly increased computational cost. Si6047H1308 system
was beyond reach using QE. The reference energies are computed using QE (*) with
higher plane-wave cut-off 50 Ha for smaller systems. The reference energies for the
larger systems are obtained using DFT-FE (†).

# atoms # e-
Density
fraction

Time/scf
(node-hrs)

ChF
(node-hrs)

Orth
(node-hrs)

Sub proj
(node-hrs)

Others
(node-hrs)

Si10H16 26 56 7.38e-03 6.54e-03 1.67e-03 7.88e-04 2.04e-04 3.88e-03
Si220H144 364 1024 1.83e-04 9.37e-02 5.94e-02 2.26e-03 7.11e-03 2.49e-02
Si525H276 801 2376 6.58e-04 0.964 0.609 0.033 0.081 0.241
Si1214H504 1718 5360 4.16e-04 3.853 2.674 0.292 0.319 0.568
Si6047H1308 7355 25496 7.38e-04 67.492 43.211 13.800 5.579 4.902

Table 4.6: Breakdown of computational times for the various steps in the solution of
the Kohn-Sham equations in the localized Tucker tensor basis using the Chebyshev
filtering based subspace iteration. The benchmark system considered is silicon quan-
tum dots.
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4.6 Summary

In this chapter, we have presented a tensor-structured algorithm, where the Tucker

tensor basis is constructed as a tensor product of localized one-dimensional functions

whose span closely approximates the eigensubspace of a suitably constructed addi-

tive separable approximation to the Kohn-Sham Hamiltonian. The resulting local-

ized Tucker tensor basis, that is adapted to the Kohn-Sham Hamiltonian, provides a

systematically convergent basis as evidenced by the exponential convergence of the

ground-state energy with increasing Tucker rank. Our numerical studies on the com-

putational performance suggest that the proposed approach exhibits sub-quadratic

scaling (with system-size) over a wide range of system-sizes with the largest involving

many thousands of atoms. Importantly, sub-quadratic scaling is realized for both

systems with and without a gap, as the algorithm treats both metallic and insulating

systems on an equal footing. Further, comparing the computational efficiency of the

proposed approach with Quantum Espresso, we observe significant outperformance

for system-sizes beyond 5,000 electrons.

We note that the sub-quadratic scaling is a consequence of the slow growth of the

Tucker rank with system-size, with the resulting number of basis functions growing

sub-linearly with system-size even for systems containing many thousands of atoms.

By combining the proposed approach with reduced-order scaling techniques that ex-

ploit the locality of the wavefunctions in real-space, there is further room to reduce

the scaling with system-size and is a useful future direction to pursue. Further, the

proposed tensor-structured approach is amenable to GPU acceleration that can fur-

ther substantially enhance the computational efficiency of the approach, and will be

presented in the next chapter. We note that the benchmark systems presented here

were restricted to non-periodic calculations as the proposed tensor-structured ap-

proach was implemented in a non-periodic setting as a first step of an ongoing effort.

However, we remark that the ideas presented here are generic and can be extended
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to periodic calculations.
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CHAPTER V

GPU Acceleration for Tensor-Structured

Algorithm

In this chapter, we seek to improve the computational efficiency of the proposed

tensor-structured algorithm for Kohn-Sham density functional calculation presented

in the previous chapter. To this end, we utilize graphic processing unit (GPU) which

provides extreme computing power, especially in linear algebra operation, to improve

the efficiency of the matrix-matrix multiplication kernel that is the most computa-

tionally expensive part in the tensor-structured algorithm for Kohn-Sham DFT calcu-

lation. The structure of this chapter is as follows. An introduction to the motivation

and implementation of this work is presented in Section 5.1. The idea and algorithm

of the Chebyshev filtering subspace iteration method is presented in Section 5.2 to

facilitate the later discussion. Various aspects regarding GPU acceleration including

data layout and the algorithm are presented in Section 5.3. The benchmark compar-

ison between pure CPU code and GPU accelerated code is provided in Section 5.4.

Finally, we summarize this work in Section 5.5.
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5.1 Introduction

In the solution of the Kohn-Sham equations using the localized Tucker tensor

basis, the Chebyshev filtering step in each SCF iteration is the most computationally

expensive step for even systems comprising of ∼ 10, 000 electrons. The main kernel in

the Chebyshev filtering is the sparse-dense matrix-matrix multiplication, and a GPU

acceleration of this kernel can result in substantial reductions in the wall-times of the

DFT calculation.

To this end, the Hamiltonian matrix HL and the wavefunction matrix X are

partitioned row-wise (in contrast to Ψ, we use X to specify the (wavefunction)

matrix against which the Hamiltonian matrix HL multiplies because essentially, X

changes during the course of Chebyshev filtering process and need not be the true

solution to the Kohn-Sham equation.) We note that this work takes advantage of

band-parallelism to reduce the communication costs and improve parallel scalability,

where a subset of wavefunctions are assigned to each group of MPI tasks via sub-

communicators. Thus, each GPU owns multiple rows of the Hamiltonian matrix and

the wavefunction matrix corresponding to the sub-group. The details of the data

layout for the Hamiltonian matrix and the wavefunction matrix are elaborated in

following sections. We also remark that the sparsity pattern of HL is such that the

matrix has less sparsity around the diagonal, whereas the sparsity increases away

from the diagonal. This structure is due to the spatial locality of the L1 localized

Tucker tensor basis. We take advantage of this structure to develop an efficient imple-

mentation of the matrix-matrix multiplication kernel in the Chebyshev filtering step.

Further, we take advantage of the fact that HL is symmetric to reduce communication

costs.

The remainder of this chapter will firstly introduce the Chebyshev filtering sub-

space iteration method and provide the skeleton to the algorithm for readers’ refer-

ence. In the following section, we present our implementation of the various aspects
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of the tensor-structured algorithm code for Kohn-Sham DFT calculation that have

been GPU accelerated, which include: (ii) the details of the data layout for the Kohn-

Sham Hamiltonian matrix HL and the wavefunction matrix X, (ii) the algorithm for

matrix-matrix multiplication of HLX based on GPU, and (iii) applying the matrix-

matrix multiplication kernel for the subspace projection HL
F = XT

FHLXF . Finally,

we will present the computational benchmark and summarize this work.

5.2 Chebyshev filtered subspace iterative (ChFSI) method

The standard eigenvalue problem in Eq. 4.43 is solved using the Chebyshev filter-

ing subspace iteration (ChFSI) method [165]. The ChFSI method has been demon-

strated to be an effective method for large-scale real-space DFT calculations [26, 3].

In every SCF iteration, the ChFSI method seeks to compute a good approximation

to the subspace spanned by the occupied states of the Kohn-Sham Hamiltonian. This

is realized by taking advantage of the property of Chebyshev polynomials that are

bounded in the interval [−1, 1], but grow rapidly outside this interval. As shown in

the plot of m degree Chebyshev polynomial in Fig. 5.1, the values out of the bounded

interval ([−1, 1]) are amplified rapidly, while the values inside the bounded interval

are nicely dampened. We also not that as the Chebyshev polynomial degree increases

from m = 6 to m = 10, the values out of the bounded interval are much more

amplified as shown in the y-axis of Fig. 5.1 (a) and Fig. 5.1 (b). For the sake of com-

pleteness, we remark that, while neither used nor necessary in this work, we direct

readers to [166] for an algorithm to determine the Chebyshev polynomial degree m

when the search space of the Chebyshev polynomial degree m is large and the cost

for determining a good m is high.

To utilize this nice rapidly growing-dampening property of Chebyshev polynomials

to compute the occupied states of the Kohn-Sham Hamiltonian, the discrete Kohn-

Sham Hamiltonian is scaled and shifted such that the unwanted spectrum maps to
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(a) Chebyshev polynomial degree m = 6 (b) Chebyshev polynomial degree m = 10

Figure 5.1: Chebyshev polynomial with the polynomial degree m = 6 and m = 10.
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[−1, 1] and the desired spectrum of the occupied and partially occupied states maps

to (−∞,−1). Thus, the application of a Chebyshev polynomial filter, constructed

from the scaled-and-shifted Hamiltonian, on a set of vectors provides a subspace that

is a close approximation to the desired occupied eigenspace. The Chebyshev filtered

vectors are orthogonalized using the Gram-Schmidt orthogonalization procedure, and

the Kohn-Sham eigenvalue problem (Eq. 4.36) is solved by projecting the problem

onto the Chebyshev filtered subspace.

Algorithm 4: ChFSI [164]
Input: HL, X, m, ε0, εwub, εuwub
Output: Ψ, diag (Λ)
1. Chebyshev filtering process

Initialize:
e = 1

2 (εuwub − εwub); c = 1
2 (εuwub + εwub); σ = e

ε0−c

σ1 = σ; γ = 2
σ1
; X̃ = σ1

e

(
HLX− cX

)
;

for i = 2 : m
σ2 = 1

γ−σ ;
X̃new = 2σ2

e

(
HLX̃− cX̃

)
− σσ2X;

X = X̃;
X̃ = X̃new;
σ = σ2;

end for
2. Orthonormalize the Chebyshev filtered basis functions, and denote by
XF = Orth(X)
3. Perform subspace projection: HL

F = XT
FHLXF

4. Diagonalize HL
F with eigen-decomposition HL

FQ = QΛ
5. Rotate the basis Ψ = XQ

The ChFSI method is outlined in Algorithm 4. In Algorithm 4, m denotes the

Chebyshev polynomial degree; ε0 and εwub are the lower and upper bound of the wanted

spectrum, respectively; εuwub is the upper bound of the unwanted spectrum; X is the

input wavefunction matrix; Ψ is the output wavefunction.

We note that Algorithm 4 is a scaled version of the Chebyshev filtering subspace

iteration method. To elaborate, given the iterative sequence in a non-scaled Cheby-
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shev polynomial subspace iteration procedure

X̃new = 2
e

(
HLX̃− cX̃

)
−X ,

we can recast the above expression as a matrix


X̃new

X̃

 =


2
e

(
HL − cI

)
−I

I 0




X̃

X

 .

It can be shown that the eigenvalues for the middle square matrix are complex with

modulus one except those corresponding to the eigenvalues of HL that is smaller than

the upper bound of the wanted spectrum [164]. During the course of the Chebyshev

filtering process, the eigenvalues of the Hamiltonian HL within the wanted spectrum

are mapped to greater than one eigenvalues (in magnitude) in 2
e

(
HL − cI

)
. Hence,

similar to a standard power iteration, it can readily be seen that the largest eigenvalue

in 2
e

(
HL − cI

)
grows rapidly and could hence increase the condition number of the

matrix and subsequently influence the stability of the algorithm. To this end, follow-

ing the suggestion from the work by Zhou et al. [164], we use the lower bound of the

wanted spectrum to introduce a further scaling to prevent X from overflowing during

the Chebyshev filtering process. We also refer to [164, 165, 167] for more complete

discussion.

Finally, we remark that, in the first SCF iteration, X is typically set to either

a random full-rank matrix or represented by atomic orbitals, and the Chebyshev

filtering is performed using higher polynomial degree m [168]. In the subsequent

iterations, X is set to be the resultant Ψ from the previous SCF iteration, which

provides a good guess and thus does not need a large m. For the various benchmark

systems studied in this work, m is chosen to be 10− 20.
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5.3 Data layout for GPU acceleration

In Algorithm 4, the most computationally expensive part lies in the matrix-matrix

multiplication when repeatedly applying the Chebyshev polynomial to the wavefunc-

tion matrix. To this end, we port this calculation to GPU to improve the computa-

tional performance. In this section, we will show the data layout for the matrices and

the algorithm for performing the matrix-matrix multiplication.

5.3.1 Data layout for HL and X

Figure 5.2 provides a schematic of the data layout of the sparse Kohn-Sham Hamil-

tonian matrix HL in the localized Tucker tensor basis. The ownership of the rows of

the Hamiltonian matrix is distributed as evenly as possible so that each GPU shares

similar working load. Particularly, given the Hamiltonian matrix HL of size M ×M ,

the matrix is distributed across N GPUs labeled from 0 to N−1 as shown in Fig. 5.2.

Let τ be the quotient of M divided by N , then block of the Hamiltonian matrix HL

residing on the k-th GPU owns the kτ -th to the ((k+ 1)τ − 1)-th rows of the Hamil-

tonian matrix, and is of size τ ×M . In the case that M is not divisible by N , and

ν be the remainder of M divided by N , the local block of the Hamiltonian matrix of

the first ν GPUs are adjusted to be of size (τ + 1)×M .

We remark that the sparsity pattern of HL is such that most of the non-zero

entries of the matrix are concentrated on and around the diagonal of the matrix,

owing to the spatial locality of the L1 localized Tucker tensor basis. Thus, in a tiling

of the matrix, the diagonal blocks are much denser compared to the off-diagonal

blocks. Thus, the non-zero terms in the diagonal blocks could easily exceed 5%,

which is the suggested minimal sparsity for sparse algorithm to be efficient [169], and

deteriorate the overall performance. To this end, the diagonal blocks and the off-

diagonal blocks of the Hamiltonian matrix are stored as dense and sparse matrices,

respectively. The proposed data layout for the row-wise partitioned matrix on the

88



Figure 5.2: Schematic of the distribution of the projected Hamiltonian HL on each
GPU. The HL

k (k = 0, 1, . . . N−1) partition of the projected Kohn-Sham Hamiltonian
is assigned to the k-th GPU.

0-th GPU is illustrated in Fig. 5.3. The diagonal dense square matrix part of HL
k

is denoted as HL(D)
k and the off-diagonal sparse matrix is denoted as HL(OD)

k . The

two parts of HL
k will then be treated using dense and sparse linear algebra library

for the matrix-matrix multiplication kernel, respectively. We note that the number

of rows owned by each GPU is chosen to be ∼30,000 in the current implementation

so that the density of the diagonal block of the matrix exceeds 5%, yet fits in the

GPU memory. Above the 5% threshold, the dense algorithm is generally considered

to outperform the sparse algorithm.

The wavefunction matrix X is of size M × Norb, where Norb is the number of

computed Kohn-Sham orbitals. Owing to double occupancy of the orbitals for spin-

independent Hamiltonian, Norb is usually chosen to be slightly larger than Ne/2,

typically ∼10-15% larger. The rows of the wavefunctions are distributed consistently

with the row-ownership of the Hamiltonian matrix HL. We note that during the

computation of X′ = HLX, regardless of the implementation, collective communica-
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Figure 5.3: Schematic of the data layout of the row-wise partitioned Hamiltonian
matrix HL on the 0-th GPU.

tion over either X or X′ will be needed. The cost for the collective communication

is proportional to the number of processors and the data to be communicated within

the (sub-)communicator [170, 171]. In a GPU calculation, this also requires data to

be transferred from the device memory to the host memory and communication to

other processors. Thus, this step will substantially increase the communication cost

and deteriorate the overall performance. It is thus desirable to reduce this commu-

nication cost. To this end, in addition to the row-wise parallelization, columns of

the wavefunction matrix X are further partitioned into groups (bands) labeled as

Gp=0...P−1, and this is referred to as band parallelization henceforth in keeping with

the nomenclature of DFT literature. In the present implementation, the Hamilto-

nian matrix HL is stored on each GPU group. Hence, each group will perform the

matrix-matrix multiplication corresponding to the band of wavefunctions, and the

collective communication after the matrix-matrix multiplication is only within the

processors in the group. The number of processors to be communicated will thus be

reduced by a factor P by using band-parallelism. Thus, the communication burden

is significantly alleviated, and the overall performance of the Chebyshev filtering step

is improved. A schematic illustration of the data layout for the wavefunction matrix

X is provided in Fig. 5.4, where Xk is the portion of the wavefunction matrix having

the same row-ownership of the Hamiltonian matrix HL
k in Fig. 5.2. XGi

k is the portion

of the wavefunction matrix Xk belonging to the Gi processor group. The data layout
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for the Hamiltonian matrix HL and the wavefunction matrix X are then used to im-

plement the sparse-dense matrix-matrix multiplication kernel, which is subsequently

discussed.

Figure 5.4: Schematic of the data layout of the wavefunction matrix X.

5.3.2 HL ×X implementation

As noted previously, the Hamiltonian matrix is distributed row-wisely across

GPUs in each group Gi. In the matrix-matrix multiplication, each HL
k ×XGi , where

XGi of size M × Norb
P

is the collection of all XGi
k (k = 0, 1, . . . , N − 1), yields (HLX)Gik

on the k-th GPU in the group Gi. The evaluation of each (HLX)Gik requires commu-

nication of the off-diagonal block of the Hamiltonian matrix HL(OD)
k to all processors

other than k, as well as collecting information back from those processors. This com-

munication also involves data transfer between the host and the device memory of

GPUs, and can severely diminish the performance of the sparse-dense matrix-matrix

multiplication kernel.

In order to avoid the aforementioned communication of HL(OD)
k , the matrix-matrix

multiplication kernel is recast by taking advantage of the symmetric nature of HL.

We note that as HL is real and symmetric,

HL
(:,a:b) =

(
HL

(a:b,:)

)T
. (5.1)
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Eq. 5.1 states that a column block of the Hamiltonian matrix HL
(:,a:b), which is a matrix

containing the a-th to b-th columns of HL, is equivalent to the transpose of a row block

HL
(a:b,:) comprising the a-th to b-th rows of HL. Further, we note that the evaluation

of a matrix-matrix product C = AB, where A and B are m×n and n×m matrices,

is given by cij = ∑n
k=1 aikbkj with aij, bij and cij denoting the matrix elements of A,

B and C, respectively. The expression∑n
k=1 aikbkj can also be viewed as a summation

over k of the outer product of the k-th column vector of A with the k-th row vector

of B. Thus, using this interpretation of the matrix-matrix multiplication as a sum

of the outer product of column and row vectors of the constituent matrices, we can

write

HLX =
N−1∑
k=0

b:=(k+1)τ−1∑
ξ=a:=kτ

HL
(:,ξ)X(ξ,:)

:=
N−1∑
k=0

HL
(:,a:b)X(a:b,:)

=
N−1∑
k=0

(
HL

(a:b,:)

)T
X(a:b,:)

=
N−1∑
k=0

(
HL
k

)T
Xk .

(5.2)

In the above, τ = M
N

follows the definition in Sec. 5.3.1, HL
k and Xk follow the

notation in Fig. 5.2 and Fig. 5.4. A schematic for
(
HL
k

)T
Xk on the 0-th GPU is

illustrated in Fig. 5.5. As shown in the figure, the multiplication involves (HL
0 )T of

size M × τ and XGi
0 of size τ × Norb

P
, resulting in matrix (HL

0 )TXGi
0 of size M × Norb

P
.

The final outcome HLXGi can then be obtained by summing over k using Allreduce

communication with MPI, as evident from the last equality of Eq. 5.2. We note that

both (HL
k )T and Xk are locally stored on the k-th GPU. Thus, for each matrix-matrix

multiplication call during the Chebyshev filtering step, this approach avoids the MPI

communications and overheads associated with transferring data between the device

and the host memory for the off-diagonal block of the Hamiltonian matrix.

To understand the improvement in the efficiency by avoiding communicating the
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off-diagonal block of the Hamiltonian matrix, we present a performance comparison

by computing HLX using the proposed algorithm and using the method with off-

diagonal block communication (henceforth referred to as the general method). On

the i-th processor, the general method is implemented by sending the off-diagonal

blocks of the Hamiltonian matrix to all j-th (j 6= i) processors whose row-ownership

coincide with the columns of the off-diagonal blocks. The off-diagonal block is then

multiplied by the locally owned block of wavefunction matrix on the j-th processor and

the result is reduced back to the i-th processor. To ensure the representability of this

comparison, we choose the Hamiltonian matrix of Al147, the benchmark system used

for performance analysis in the later sections, to run this calculation. This benchmark

calculation is run on the GreatLakes HPC cluster with each node comprising 2 Intel

Xeon Gold 6148 CPUs with 40 physical cores per node. In this numerical experiment,

the general method takes 481.92 cpu-secs and our proposed approach takes 232.18 cpu-

secs. The ∼ 2× improvement resulting from the communication efficiency, validates

the use of the proposed approach.

Next, we turn our attention to leveraging the sparsity structure of HL to further

optimize the matrix-matrix multiplication kernel. As we noted earlier, the density of

the diagonal square block HL(D)
k can be large making sparse linear algebra operations

inefficient [169]. To this end, we use different linear algebra libraries to treat the dense

and the sparse blocks of the Hamiltonian matrix separately. As shown in Fig. 5.3,

the diagonal blocks HL(D)
k are stored as a dense matrix and the off-diagonal blocks

HL(OD) are stored as a sparse matrix. Further, the matrix-matrix multiplication

operation depicted in Fig. 5.5 is further split into a dense-dense multiplication for the

diagonal block
((

HL(D)
k

)T
XGi
k

)
and a sparse-dense multiplication for the off-diagonal

block
((

HL(OD)
k

)T
XGi
k

)
. The dense-dense multiplication kernel is implemented using

cublasDgemm provided by cuBLAS [172], NVIDIA GPU-accelerated implementation

for basic linear algebra subroutines (BLAS). On the other hand, the sparse-dense
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multiplication kernel is computed with cusparseDcsrmm provided by cuSPARSE [169],

NVIDIA GPU-accelerated implementation for sparse basic linear algebra subroutines.

The two libraries are available in CUDA Toolkit [173] or NVIDIA High performance

computing software development kit (NVIDA HPC SDK [174]). Once the computation

is completed for the dense-dense and the sparse-dense matrix multiplication, the

resultant matrices are assembled as
(
HL
k

)T
XGi
k (see Fig. 5.5 for a schematic plot for

the 0-th processor). The assembled matrix
(
HL
k

)T
XGi
k is transferred back to the

host memory. On the host memory, summation over k in Eq. 5.2 is completed using

MPI_Allreduce within the wavefunction group.

5.3.3 Subspace projection: Evaluation of HL
F

In the Chebyshev filtering subspace iteration algorithm, upon computing the

Chebyshev filtered vectors that represent a close approximation to the eigen-subspace

of interest, the Kohn-Sham eigenvalue problem is projected onto the Chebyshev fil-

tered subspace to solve the eigenvalue problem in this subspace. This entails the

evaluation of HL
F = XT

FHLXF (step 3 in Algorithm 4), where XF is comprised of the

orthonormalized Chebyshev filtered vectors. The evaluation of HL
F includes a matrix-

matrix multiplication between HL and XF . Thus, it is natural to adopt the strategy

discussed in Sec. 5.3.2 in evaluating HLXF . Upon evaluating HLXF , this matrix is

transferred back to the host memory and left-multiplied with XT using MPI-based

matrix-matrix multiplication kernel from PETSc library [175, 176, 177].

5.4 Results

The systematic convergence, accuracy, and efficacy of the Tucker tensor basis and

the tensor-structured algorithm for DFT calculations have been established in prior

works [45, 46]. In particular, it was demonstrated that the Tucker tensor basis was

systematically improvable and the basis discretization error decreased exponentially
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with increasing Tucker rank [45, 46], thus providing spectral convergence similar to

plane-wave discretization. We refer to [46] for a comprehensive numerical study of

the approximation properties of the localized Tucker tensor basis in DFT calcula-

tions. Further, a comparative study of the computational efficiency of the localized

Tucker tensor basis with a plane-wave basis has revealed that the Tucker tensor ba-

sis is not only more efficient in terms of the number of basis functions required to

achieve chemical accuracy, but also provides significant computational savings owing

to the reduced-order scaling with system size. Benchmark calculations on both sys-

tems with and without a gap have revealed that the solution of the DFT problem in

the Tucker tensor basis is substantially more efficient than the plane-wave basis for

systems beyond 2,000 electrons, with up to 8× improvement in computational effi-

ciency (measured in node-hrs) over plane-wave calculations conducted using Quantum

Espresso (cf. [46]).

In the present work, we focus on optimizing the most computationally expen-

sive part of the calculation—the repetitive matrix-matrix multiplication kernel called

during the Chebyshev filtering step—and further using GPU acceleration to improve

the computational efficiency of the calculations. In order to assess the optimization

realized, we use the benchmark systems from our previous work [46] comprising of

aluminum nano-particles and silicon quantum dots of various sizes. The aluminum

nano-particles ranging from Al13 to Al6525 are constructed using icosahedral symme-

try. The silicon quantum dots are constructed by rounding the diamond-structured

silicon crystal and passivating the surface with hydrogen atoms. The silicon quantum-

dots considered here range from Si10H16 to Si6047H1308. Ball and stick models for the

two smallest clusters of both systems are depicted in Fig. 5.6 and Fig. 5.7. In order

to conduct a performance analysis, we ran the benchmark calculations by solely using

CPUs and compared with the acceleration obtained by utilizing GPUs for the matrix-

matrix multiplication kernel in the Chebyshev filtering and subspace projection steps.
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Further, to ensure the accuracy of the code with GPU acceleration, we compare the

ground-state energies obtained via CPU-only and CPU-GPU calculations of the two

smallest clusters for both systems.

The numerical parameters used in the present study follow the previously con-

verged CPU-based calculations of the benchmark systems [46]. In this work, we

use local density approximation (LDA) for exchange-correlation functional [76, 79,

78] and a norm-conserving Troullier-Martin pseudopotential in Kleinmann-Bylander

form [157, 158]. The Fermi-Dirac smearing temperature is set to T = 500K for com-

puting the fractional occupancy of the orbitals. The Chebyshev polynomial degree

is chosen to be 10 − 20 for various materials systems. The Tucker decomposition

ranks [46] in the evaluation of the Hartree potential (RH), in the representation of

local part of the effective Kohn-Sham potential (RV ) and the non-local part of the ef-

fective potential (Rnl
V ) are chosen to be RH = 40, RV = 50, Rnl

V = 25 for all aluminum

nano-particles system and RH = 55, RV = 55 and Rnl
V = 25 for all silicon quantum

dots system. The prescribed truncation tolerance for the Kohn-Sham Hamiltonian is

set to 10−4 Ha for both aluminum nano-particles and silicon quantum dots according

to the previous error analysis in [46]. The numerical parameters used are consistent

for both the CPU- and GPU-based calculations in the performance analysis.

The performance benchmarks have been conducted on the Summit supercomputer,

with each node comprising of 2 IBM Power 9 CPUs (with 42 physical cores) and 6

NVIDIA Tesla V100 GPUs. We note that the number of nodes used to conduct the

calculations is chosen such that the calculation is within the good parallel-scaling

regime to obtain a representative measure of computational efficiency. In particular,

for the larger systems considered in this work, the number of nodes are chosen such

that the number of rows of HL—the Kohn-Sham Hamiltonian matrix in the localized

Tucker tensor basis—owned by each GPU is around 30,000, which maintains a good

balance between memory limitation and parallel scaling efficiency.
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(a) Al13 (b) Al147

Figure 5.6: Schematics of the benchmark aluminum nano-particles.

(a) Si10H16 (b) Si220H144

Figure 5.7: Schematics of the benchmark silicon quantum dots.
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5.4.1 Accuracy analysis of CPU and GPU implementation

In this section, we perform full ground-state calculations for the smaller bench-

mark systems of both aluminum nano-particles and silicon quantum dots to verify

that the GPU implementation provides the same results as the CPU implementation.

For the aluminum nano-particles, we choose Al13 and Al147. The ball and stick model

for the systems are provided in Fig. 5.6 (illustrated with VESTA [178]). For the sili-

con quantum dots, Si10H16 and Si220H144 are investigated. The ball and stick model

for the silicon quantum dots are illustrated in Fig. 5.7. The converged results are tab-

ulated in Table 5.1. We note that the results from the CPU-based and GPU-based

calculations are identical up to the chemical accuracy of interest, with the differences

at O(10−8) eV in the ground-state energy per atom. This small difference is possibly

a result of the round-off error accumulations during the course of the ground-state

calculation.

Al13 Al147 Si10H16 Si220H144

CPU -55.996571 -56.617932 -51.027192 -71.384192
GPU -55.996571 -56.617932 -51.027192 -71.384192
|Error| 8.97× 10−9 4.35× 10−8 9.26× 10−9 1.21× 10−8

Table 5.1: Accuracy comparison of CPU and GPU implementation in ground state
energy per atom (eV) for Al13, Al147, Si10H16, and Si220H144.

5.4.2 Performance analysis

In order to assess the computational efficiency derived from GPU acceleration, we

compare the single SCF execution time in node-hours for the CPU-based implemen-

tation with that of the GPU acceleration. The computational times (in node-hours)

for the various benchmark systems are provided in Table 5.2 and Table 5.3 for the

aluminum nano-particles and silicon quantum dots, respectively. In particular, the

breakdown of the single SCF computational time is provided for all the major steps
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of Algorithm 4: (i) ChF: Chebyshev filtering step; (ii) Orth: Orthogonalization of

the Chebyshev filtered vectors; (iii) Sub proj: Projection of the Kohn-Sham Hamilto-

nian matrix onto the Chebyshev filtered subspace; (iv) Others: all other costs in the

SCF, including solution of the eigenvalue problem in the Chebyshev filtered subspace.

The total computational cost for a single SCF iteration and the speedup from GPU

acceleration is also provided.

5.4.2.1 Aluminum nano-particles

Table 5.2 shows the single SCF breakdown of the computational times of the

CPU-based calculations and that of the GPU accelerated calculations for aluminum

nano-particles of various sizes. We remark that the main focus of this work is to op-

timize the matrix-matrix multiplication kernel in the Chebyshev filtering step—the

most expensive step in each SCF iteration—using GPU acceleration with the ap-

proach proposed in Sec. 5.3.2. Thus, the orthogonalization of the Chebyshev filtered

vectors and other parts of in the calculations are essentially done on CPUs, which are

identified using * in the table. For the smallest benchmark system considered (Al13),

we note that the calculation using GPU acceleration is slower than the CPU-based

calculation, and the performance is comparable for Al147. This is due to the overhead

costs for transferring data between the host and the device memory that are compet-

ing in small system sizes with the arithmetic efficiency gained from GPU acceleration.

However, for all the other systems, we obtain overall GPU acceleration in the Cheby-

shev filtering step and the subspace projection step—the two parts of the algorithm

that are affected by the GPU acceleration of the matrix-matrix multiplication kernel.

In particular, for the largest system size considered, Al6525 nano-particle, we obtain

∼ 7.8× and ∼ 8.2× computational efficiency in the Chebyshev filtering step and the

subspace projection step, respectively, due to the GPU acceleration. This, in turn,

provides a ∼ 3.1× improvement in the computational efficiency for the SCF iteration
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ChF
(node-hrs)

Orth*
(node-hrs)

Sub proj
(node-hrs)

Others*
(node-hrs)

Time/SCF
(node-hrs)

GPU
CPU

Al13
CPU 1.87E-04 8.70E-05 3.57E-05 1.42E-04 4.52E-04 0.85
GPU 2.34E-04 7.24E-05 3.12E-05 1.92E-04 5.30E-04

Al147
CPU 3.21E-02 2.14E-04 5.32E-03 1.12E-02 4.88E-02 1.39
GPU 2.19E-02 2.02E-04 3.21E-03 9.80E-03 3.51E-02

Al561
CPU 0.331 0.008 0.047 0.156 0.542 1.75
GPU 0.135 0.009 0.013 0.152 0.309

Al2057
CPU 3.724 0.228 0.482 1.327 5.761 2.97
GPU 0.513 0.212 0.099 1.119 1.943

Al6525
CPU 30.119 6.192 3.422 4.132 43.865 3.12
GPU 3.872 5.871 0.415 3.891 14.049

Table 5.2: Breakdown of single-SCF computational times (in node-hours) for CPU-
based and GPU-based calculations for the benchmark systems comprising of Al nano-
particles. The columns marked with asterisk * are computed on the host (CPU)
without GPU optimization.

step that is representative of the full ground-state calculation. We note that with

possible GPU acceleration of the orthogonalization step, the potential improvement

in the computational efficiency by using GPU acceleration can even be greater.

5.4.2.2 Silicon quantum dots

Table 5.3 shows the single SCF breakdown of computational times of CPU-based

and GPU-accelerated calculations for various sizes of silicon quantum dots. Similar to

the aluminum nano-particles, the benefits of GPU acceleration improve with system

size. Notably, for the largest quantum dot system Si6047H1308 which contains 6355

atoms, the computational efficiency gain by using GPU acceleration is ∼ 7.2× in

Chebyshev filtering step and ∼ 6.8× for the subspace projection step. The computa-

tional efficiency gain for the full SCF iteration is ∼ 3.4×.
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ChF
(node-hrs)

Orth*
(node-hrs)

Sub proj
(node-hrs)

Others*
(node-hrs)

Time/SCF
(node-hrs)

GPU
CPU

Si10H16
CPU 1.37E-03 5.99E-04 1.83E-04 2.42E-03 4.57E-03 1.02
GPU 1.52E-03 5.87E-04 1.79E-04 2.21E-03 4.50E-03

Si220H144
CPU 6.12E-02 1.10E-03 6.99E-03 2.33E-02 9.26E-02 1.72
GPU 2.79E-02 1.21E-03 4.62E-03 2.01E-02 5.38E-02

Si525H276
CPU 0.515 0.018 0.067 0.214 0.814 1.9
GPU 0.203 0.017 0.028 0.180 0.428

Si1214H504
CPU 2.132 0.132 0.258 0.552 3.074 2.47
GPU 0.611 0.127 0.087 0.422 1.247

Si6047H1308
CPU 38.511 6.525 4.259 3.515 52.810 3.36
GPU 5.385 6.473 0.629 3.223 15.710

Table 5.3: Breakdown of single-SCF computational times (in node-hours) for CPU-
based and GPU-based calculations for the benchmark systems comprising of silicon
quantum dots. The columns marked with asterisk * are computed on the host (CPU)
without GPU optimization.

5.5 Summary

We have presented the GPU accelerated algorithm used for accelerating the main

compute intensive kernels of the calculation with GPU. In particular, the GPU ac-

celerated tensor-structured algorithm for Kohn-Sham DFT calculation is based on

using a systematically convergent localized basis that is generated from an additive

separable approximation of the Kohn-Sham Hamiltonian [46]. The solution to the

discrete Kohn-Sham problem is computed via Chebyshev filtering subspace iteration

method [165]. The compute intensive kernels in this GPU accelerated code that

involve matrix-matrix multiplication of a symmetric sparse matrix (Hamiltonian ma-

trix) and a dense matrix (wavefunction matrix) have been GPU accelerated. The

benchmark studies show a substantial improvement for the GPU-accelerated steps of

the algorithm—∼ 8× for the largest system sizes—which improves the overall com-

putational efficiency of the calculation. We note that, as shown in Chapter IV, the

tensor-structured Kohn-Sham DFT algorithm can substantially outperform plane-

wave implementations for large-scale systems [46], owing to the reduced-order scaling
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with system size. The present GPU-based tensor-structured Kohn-Sham DFT code

is a further step towards enabling systematically convergent and computationally

efficient large-scale DFT calculations.

We note that upon GPU accelerating the compute intensive kernels, the main

computational bottleneck in the tensor-structured algorithm for Kohn-Sham DFT

calculation has now shifted to the step involving orthogonalization of the Chebyshev

filtered vectors. Developing an efficient GPU implementation of the orthogonaliza-

tion procedure and GPU porting other parts of the code can further improve the

performance of the tensor-structured Kohn-Sham DFT code, and is a useful direction

to pursue.
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CHAPTER VI

Application of Tensor-Structured Techniques on

Two-Electron Integrals

In the previous chapters, we have concluded our work on applying tensor-structured

techniques on constructing the algorithm for generating an efficient basis for Kohn-

Sham DFT calculation to achieve reduced-order scaling. In this chapter, we seek

to further extend the use of tensor-structured techniques to other aspects of elec-

tronic structure calculation. We hence shift our focus to applying tensor-structured

techniques to compute quantities appearing in wavefunction based methods. In par-

ticular, we set up a computation kernel for computing one-electron integrals and

two-electron integrals appearing in a full configuration interaction (FCI) calculation

using tensor-structured techniques. We note that the developed computation kernel

could potentially enable us to develop a reduced-order basis for FCI computation

using Kohn-Sham type orbitals in future work.

The remainder of this chapter is structured as follows. Section 6.1 gives an intro-

duction to the basic nomenclature of the wavefunction based methods and previous

attempts of using Kohn-Sham orbitals as an alternative molecular orbitals (MOs) to

Hartree-Fock orbitals. Section 6.2 summarizes the derivation of the quantities ap-

pearing in the CI matrix. Section 6.3 and Section 6.4 discuss the implementation of

the computation kernel for computing one-electron and two-electron quantities in a
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CI matrix respectively. Section 6.5 and Section 6.6 present the computation results

and summarize this work.

6.1 Introduction

As presented in the previous chapters, density functional theory provides an effi-

cient way to compute the ground-state energy, hence other ground-state properties,

by using electron density as the basic variable. However, density functional theory,

to this date, lacks a systematically improvable functional for higher accuracy. On

the other hand, wavefunction based methods use multi-determinant wavefunctions

or perturbation theory to account for the electron correlation. The wavefunction

methods generally can be categorized into three main types and their variances. The

three types of electron correlation methods include configuration interaction methods

(CI methods), many-body perturbation theory (MBPT, usually Møller-Plesset per-

turbation theory, or MP methods), and coupled-cluster methods (CC methods). We

note that the details of these methods are out of the scope of this work and refer to

Jensen [47] and Szabo & Ostlund [61] for a more complete introduction. Typically, in

wavefunction based methods, the accuracy can be routinely improved at the expense

of exponentially growing computational costs. To clarify, we summarize the putative

scaling of different methods in Table 6.1. Therein, N denotes a system size measure,

which is almost always proportional to the number of electrons in the system or the

number of the basis functions used. The appended number in the column of MP

methods specifies the order of correction used for MP methods. The S, D, T , Q

letters in the columns of the CI Methods and the CC Methods indicate what ex-

cited Slater determinants are used in that method. The letter respectively stands for

Singles (S-type, singly excited), Doubles (D-type, doubly excited), Triples (T -type,

triply excited), and Quadruples (Q-type, quadruply excited). An example schematic

of a system with three occupied orbitals and three virtual orbitals is shown in Fig. 6.1,
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Scaling CI Methods MP Methods CC Methods Others
N3 KS-DFT
N4 HF†, DFT+Hybrid Functional
N5 CIS MP2 CC2
N6 CISD MP3 CCSD
N7 MP4 CC3, CCSD(T)
N8 CISDT MP5 CCSDT
N9 CISDT MP6
N10 CISDTQ MP7 CCSDTQ

N2mex+2 full CI

Table 6.1: Putative scaling of different computational quantum chemistry methods.
mex is the number of excited states used for the full CI calculation, † denotes that
the practical scaling of Hartree-Fock method is N2.

where the leftmost specifies the Hartree-Fock configuration that no electron is excited.

It is clear in Table 6.1 that as the level of accuracy increases, the computational

complexity grows exponentially. Therefore, it is desirable to use an efficient basis set

for the wavefunction based calculations to reduce the computational cost. To this

end, we remark that, as all of the wavefunction based methods are based on Hartree-

Fock approximation, it is intuitive and has been a common practice to construct

the excited Slater determinants in the wavefunction based methods using molecular

orbitals obtained from a Hartree-Fock calculation as shown in Fig. 6.1. On the other

hand, recall that in Sec. 2.2 and Sec. 2.3.2, it has been shown that the Hartree-

Fock method shares a similar formulation with the Kohn-Sham method. In both

approaches, the original many-body Hamiltonian is re-formulated as a Hamiltonian

representing a system with many non-interacting electrons moving in an effective

mean-field generated from the contribution of all other electrons in the system. The

only difference is being in that the Hartree-Fock method does not account for the

correlation effect at all. This gives a hint that Kohn-Sham orbitals could carry more

physical information and have better properties than Hartree-Fock orbitals. Some
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Figure 6.1: Different configurations of excited Slater determinant. Each arrow denotes
an electron with spin and each bar denotes an orbital.

reports have even shown that the Kohn-Sham orbitals provide better shape for virtual

orbitals and hence could be an ideal basis for molecular excitations [179, 180]. As a

result, it is now reasonable to ask the question: would Kohn-Sham orbitals be a better

basis to account for electron correlation in a high-level wavefunction based method

calculation than Hartree-Fock orbitals?

This question is still an active area of research and, to some extent, has been

partially answered. It has been shown that Kohn-Sham orbitals could be a better

alternative to Hartree-Fock orbitals for some types of wavefunction based methods.

For a CCSD(T) calculation, is has been shown that BLYP [82, 83, 84] Kohn-Sham

orbitals can be a less expensive alternative to Hartree-Fock type orbitals [181, 48].

Some studies use exchange-only optimized effective potential [182, 183] under Krieger-

Li-Iafrate approximation [184, 185] show that Kohn-Sham orbitals require smaller

active space to achieve similar accuracy than Hartree-Fock orbitals in CIS and CISD
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calculations [50, 186]. Even a recent study that doubts that Kohn-Sham orbitals

would be more beneficial than Hartree-Fock orbitals in a CC type calculation in

terms of energy convergence with respect to the full configuration interaction limit

suggests that Kohn-Sham orbitals could still be used in the case that Hartree-Fock

SCF calculations are hard to converge [49].

With all the evidence that Kohn-Sham orbitals could be a potential reduced-

order alternative, or at least a useful alternative, to Hartree-Fock orbitals in many

wavefunction based electron correlation methods, the applicability of the Kohn-Sham

orbital to a full configuration interaction (FCI) calculation has not yet been discussed

due to the high computational cost of FCI. It is thus desirable to set up a framework

to investigate the applicability of Kohn-Sham orbitals on an FCI calculation. To

this end, we propose to use DFT-FE [26, 3], a massively parallelized finite-element

based DFT calculation, to obtain the Kohn-Sham orbitals. Subsequently, the Kohn-

Sham orbitals computed on an adaptive finite element mesh should be interpolated

to a tensor-structured mesh. On the tensor-structured mesh, we compute the one-

electron and two-electron integrals, the central quantities for constructing the matrix

element for an FCI calculation. The computationally expensive convolution integrals

in the two-electron integral evaluation are computed using efficient tensor-structured

techniques. Finally, the FCI calculation is done using the recently proposed incre-

mental full configurational interaction (iFCI) method, which is shown to recover the

correlation energy with relatively low cost by dividing the full configuration inter-

action into n-body interaction terms and approximately solves for each incremental

energy [52, 51].

As a preliminary step, we seek to set up a workflow for the proposed framework.

To this end, we need a universal computation kernel to generate the one-electron and

two-electron integrals for CI matrix elements computation from any molecular orbitals

projected on a tensor-structured finite-element mesh. In this work, we aim at setting
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up this computation kernel for computing the one-electron and two-electron integrals

from a mesh generated from DFT-FE and validating the consistency of the computed

quantities with the FCI code. Therefore, an FCI computation is first performed

for a hydrogen molecule using Hartree-Fock orbitals. We then construct a tensor-

structured finite-element mesh from the DFT-FE code and interpolate the Hartree-

Fock orbitals onto this mesh. Next, the one-electron and two-electron integrals are

computed with these Hartree-Fock orbitals using the developed computation kernel.

We then compare the residual norm of the two-electron integral tensor computed

using the proposed computation kernel and the one generated intrinsically during the

FCI calculation. The computed quantities are also passed to the FCI code to confirm

the consistency of the computation kernel in terms of the CI energy with the normal

FCI calculation.

6.2 CI matrix elements

Recall the electronic many-body Hamiltonian in Eq. 6.1 (the nuclei-nuclei repul-

sion is a constant under the Born-Oppenheimer approximation and omitted here for

the sake of brevity)

H = −1
2

Ne∑
i=1
∇2
i −

Ne∑
i=1

Na∑
I=1

ZI
|ri −RI |

+
Ne∑
i=1

Ne∑
j<i

1∣∣∣ri − rj
∣∣∣ . (6.1)

The CI wavefunction constructed from the linear combination of excited Slater de-

terminant has the form

ΨCI = a0ΨS
0 +

∑
i

aiΨS
i , (6.2)

where ΨS
0 is the 0-th Slater determinant of occupied orbitals, ΨS

i is a Slater deter-

minant corresponding to different excitation, and ai is the coefficient of that excited

Slater determinant. Writing out the Lagrangian of the CI energy subject to the
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normality constraint with the Lagrange multiplier ε as

L =
〈
ΨCI

∣∣∣H ∣∣∣ΨCI
〉
− ε

(〈
ΨCI

∣∣∣ΨCI
〉
− 1

)
(6.3)

and set the derivative with respect to the coefficient to zero, we arrive at the CI

secular equation
∂L
∂ai

= 2
∑
j

aj
〈
ΨS
i

∣∣∣H ∣∣∣ΨS
j

〉
− 2εai = 0

HCIa = εa ,
(6.4)

where
(HCI)ij = HCI

ij =
〈
ΨS
i

∣∣∣H ∣∣∣ΨS
j

〉
(a)i = ai

.

Now, consider the molecular orbitals ψMO used to construct the Slater determinant

are orthonormalized, it can be easily shown that only Slater determinants differing

by less or equal to 2 molecular orbitals will give non-zero HCI
ij entry. This result

is called Slater-Condon rules [187, 188]. For example, using the shorthand notation

introduced in Eq. 2.19, if we have two determinants differing by three MOs (can be

Hartree-Fock orbitals or Kohn-Sham orbitals)

∣∣∣ΨCI
1

〉
=
∣∣∣ψMO

1 ψMO
2 ψMO

3

〉
∣∣∣ΨCI

2

〉
=
∣∣∣ψMO

4 ψMO
5 ψMO

6

〉 ,

the matrix element corresponding to these two wavefunctions is

〈
ΨCI

1

∣∣∣H ∣∣∣ΨCI
2

〉
=
∫ ∫ ∫ ψMO

1 (r1)∗ψMO
2 (r2)∗ψMO

3 (r3)∗

−1
2

3∑
i=1
∇2
i −

3∑
i=1

Na∑
I=1

ZI
|ri −RI |

+
3∑
i=1

3∑
j<i

1∣∣∣ri − rj
∣∣∣


ψMO
4 (r1)ψMO

5 (r2)ψMO
6 (r3)

dr1dr2dr3 + ...

.
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Therein, it is obvious that each term in this expression has an overlap integral of MOs

from both Slater determinants. One of the intermediate term in the above derivation

is ∫ ∫ ψMO
1 (r1)∗ψMO

2 (r2)∗
−1

2∇
2
1 −

Na∑
I=1

ZI
|r1 −RI |

+ 1
|r1 − r2|


ψMO

4 (r1)ψMO
5 (r2)

dr1dr2

∫
ψMO

3 (r3)∗ψMO
6 (r3)dr3

.

Due to the orthogonality of MO orbitals, it is obvious that the overlapping term∫
ψMO

3 (r3)∗ψMO
6 (r3)dr3 is zero, and subsequently, the whole term is zero. As a result,

only Slater determinants differing by 0, 1, 2 MOs will contribute non-zero elements

to the Hamiltonian matrix.

Finally, as shown in the above discussion, the non-zero terms in the CI Hamil-

tonian matrix involve only one-electron and two-electron integrals, where the one-

electron integral is defined as

(i|h|j) :=
∫
ψMO
i

∗(r)
{
− 1

2∇
2 −

Na∑
I

ZI
|r−RI |

}
ψMO
j (r)dr , (6.5)

and the two-electron integral is defined as

(ij|kl) :=
∫ ∫

ψMO
i

∗(r)ψMO
j

∗(r) 1
|r− r′|

ψMO
k (r′)ψMO

l (r′)drdr′ . (6.6)

We remark that there is 4-fold symmetry in Eq. 6.6, namely

(ij|kl) = (ji|lk) = (kl|ij)∗ = (lk|ji)∗ . (6.7)

If the MOs are real-valued functions, which is the case in this work, the symmetry

becomes 8-fold
(ij|kl) = (ij|lk) = (ji|lk) = (ji|kl)

=(kl|ij) = (lk|ij) = (lk|ji) = (kl|ji)
. (6.8)
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Hence, instead of computing all N4 two-electron integrals, only ∼ N4

8 terms need to

be computed. We also note that, as the orbitals with different spin will be integrated

out due to orthogonality, the spin degrees of freedom are omitted here. For the next

two sections, we will discuss the design of our computation kernel for computing the

one-electron and two-electron integrals in this work. Besides, as a side note, the

dimension of these two quantities is the same as the energy dimension, and the unit

is Hartree if the atomic unit is used.

6.3 One-electron integrals computation

In this work, an MO orbital is computed on a tensor-structured finite-element

mesh. On the mesh, the MO orbitals can be expressed as in the finite-element basis

ψMO
i (r) =

M∑
j

N j(r)ψMO,j
i , (6.9)

where M is the number of finite-element basis used, N j(r) is the finite-element basis

function, or called the shape function, and ψMO,j
i denotes the coefficients of the finite-

element basis, or the function value of the MO on the spatial nodes. We note that

the mesh used in the current work is constructed to be tensor-structured. The three-

dimensional shape function corresponding to the mesh hence has tensor structure and

can be written as the tensor product of one-dimensional shape functions as

N j(r) = N j1
1 (x1)N j2

2 (x2)N j3
3 (x3) , (6.10)

where j = (j1, j2, j3) is a composite index of three dimensions. In this work, the

conventional Lagrange polynomial is used to construct the one-dimensional shape

function as

N i(x) =
M∏
j 6=i

x− xj
xi − xj

, (6.11)
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and its first order derivative is

dN i(x)
dx

:= N i(x)′ =
∑
k 6=i

1
xi − xk

M∏
j 6=i,j 6=k

x− xj
xi − xj

. (6.12)

The MOs are then interpolated onto the Gauss-Lobatto-Legendre (GLL) quadra-

ture points using the finite-element basis expansion in Eq. 6.9. The external potential∑Na
I

ZI
|r−RI |

is also computed analytically on the GLL quadrature points. Finally, a

simple inner product of the three fields, ψMO
i (r), ∑Na

I
ZI
|r−RI |

, ψMO
j (r) on quadrature

points gives the external part of the one-electron integral. We note that a full intro-

duction to the finite-element methods and the Gauss-Lobatto-Legendre integration

is beyond the scope of this discussion. We refer to [189] for a complete picture of

finite-element methods.

Next, we turn our focus to the kinetic part of the one-electron integral. The

expression of the kinetic part can be written as

(i| − 1
2∇

2|j) = −
∫
ψMO
i

∗(r)1
2∇

2ψMO
j (r)dr . (6.13)

To facilitate the evaluation of Eq. 6.13, using integration by part technique, the

integral can be re-formulated as

−1
2

∫
ψMO
i

∗(r)∇2ψMO
j (r)dr =1

2

∫
∇ψMO

i

∗(r) · ∇ψMO
j (r)dr

− 1
2

∫
ψMO
i

∗(r)∇ψMO
j (r) · n̂d∂r

, (6.14)

where n̂ is the normal vector on the boundary ∂r. We note that the second term on

the right-hand side vanishes as MO vanishes on the boundary. Hence, we have

−1
2

∫
ψMO
i

∗(r)∇2ψMO
j (r)dr = 1

2

∫
∇ψMO

i

∗(r) · ∇ψMO
j (r)dr . (6.15)

Now, substituting Eq. 6.9—Eq. 6.11 into Eq. 6.15, we arrive at the expression of the
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kinetic part in finite-element basis

−1
2

∫
ψMO
i

∗(r)∇2ψMO
j (r)dr = 1

2
∑

a1,a2,a3

∑
b1,b2,b3

{
ψMO,a1a2a3
i

∗
ψMO,b1b2b3
i( ∫

Na1
1 (x1)′N b1

1 (x1)′dx1

∫
Na2

2 (x2)N b2
2 (x2)dx2

∫
Na3

3 (x3)N b3
3 (x3)dx3

+
∫
Na1

1 (x1)N b1
1 (x1)dx1

∫
Na2

2 (x2)′N b2
2 (x2)′dx2

∫
Na3

3 (x3)N b3
3 (x3)dx3

+
∫
Na1

1 (x1)N b1
1 (x1)dx1

∫
Na2

2 (x2)N b2
2 (x2)dx2

∫
Na3

3 (x3)′N b3
3 (x3)′dx3

)}
,

(6.16)

where ψMO,a1a2a3
i is the coefficient of the a-th three-dimensional finite-element basis,

where a = (a1, a2, a3) is a composite index. Meanwhile, the ψMO,a1a2a3
i term can also

be viewed as the MO function value at r = (xa1
1 , x

a2
2 , x

a3
3 ). Furthermore, since the

finite-element mesh employed here is tensor structured, the ψMO,a
i is also a tensor

indexed by (a1, a2, a3). We also note that the one-dimensional integral terms

∫
Nad
d (rd)′N bd

d (rd)′drd

and ∫
Nad
d (rd)N bd

d (rd)drd ,

where d = 1, 2, 3 denotes the dimension, are precomputed. With the one-dimensional

terms precomputed, the evaluation of Eq. 6.16 is simply a sparse matrix multiplication

with a vector and a vector inner product. Hence, the computation can be very efficient

using shell matrix approach or many highly optimized sparse numerical linear algebra

computation kernels.
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6.4 Two-electron integrals computation using tensor-structured

techniques

To evaluate the two-electron integrals in Eq. 6.6, we utilize the approach employed

in Sec. 4.2.1.1, where we used the tensor-structured approach to compute the convo-

lution integrals for Hartree potential vH evaluation. To elaborate a little bit more,

consider the Gauss error function

2√
π

∞∫
0

e−t
2
dt = lim

z→∞
erf(z) = lim

z→∞

2√
π

z∫
0

e−t
2
dt = 1 , (6.17)

by change of variables t = αr, we have

2√
π

∞∫
0

e−(αr)2
d(αr) = 2r√

π

∞∫
0

e−(αr)2
dα = 1 . (6.18)

Simply by moving r from the middle expression to the rightmost one and apply the

relation r =
√
x2

1 + x2
2 + x3

3 to the r in the integrand, we have

1
r

= 2√
π

∞∫
0

e−(αr)2
dα = 2√

π

∞∫
0

e−α
2(x2

1+x2
2+x2

3)dα . (6.19)

The integration can be written in the quadrature form as shown in Eq. 4.16

1
r
≈

K∑
k=1

wke
−αk(x2

1+x2
2+x2

3) , (6.20)

where αk is the value of α2 on the quadrature point k and wk is the weight of the

quadrature point k. While usual GLL quadrature rule can also be used to evaluate

this integration, the infinite right integral boundary and varying r during convolution

integrals evaluation make it hard to a priori determine the optimal quadrature points.

To this end, it has been shown that ∀r ∈ [a, b] ⊆ (0,∞], ∃ unique best approximation
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of the form Eq. 6.20 for f(r) = 1
r
[190]1. The coefficients wk and αk that give the

best approximation can be obtained from the Remez algorithm [192]. In this work,

we use the coefficients precomputed by Hackbusch that can be found on [162].

Now, we shift our focus back to the two-electron integrals. As the mesh on which

the molecular orbitals are represented is tensor-structured, the molecular orbitals are

also tensors. In the evaluation of the two-electron integral (ij|kl), we first compute

the Hadamard product (cf. Eq. 3.7) of the i, j pair and the k, l pair

ψij
∗ = ψMO

i

∗ ∗ ψMO
j

∗

ψkl = ψMO
k ∗ ψMO

j

, (6.21)

and compute the Tucker tensor decomposition of ψkl as

ψ̃kl(r) =
Rklψ∑

r1,r2,r3=1
σklr1r2r3φ

kl
r1(x1)φklr2(x2)φklr3(x3) . (6.22)

We note that Eq. 6.20 is a series of Gaussian functions, which is actually of the

form of canonical representation (cf. Eq. 3.17). The 1
r
kernel hence has the desirable

separable structure for applying tensor-structured techniques to efficiently compute

the convolution integrals. Now, combining Eq. 6.20 and Eq. 6.22, we then compute

∫ ψ̃kl(r′)
|r− r′|

dr′ =
K∑
k=1

wk

Rklψ∑
r1,r2,r3=1

σklr1r2r3

∫
φklr1(x′1)e−αk(x1−x′1)2

dx′1

∫
φklr2(x′2)e−αk(x2−x′2)2

dx′2

∫
φklr3(x′3)e−αk(x3−x′3)2

dx′3


, (6.23)

on the quadrature points, namely, r = (x1, x1, x3) are on the quadrature points.

Finally, we again interpolate ψij∗ onto the quadrature points and compute the

inner product of ψij∗ (on quadrature points) and
∫ ψ̃kl(r′)
|r−r′| dr

′, which is essentially a
1The cited chapter actually shows the proof for the more general γ-polynomial, where the kernel

e−αx used for approximating 1√
x
is just a special case. Similar discussions specifically for 1

x and 1√
x

can be found in earlier chapter in the same literature, [191, 161], or pp.273–274 in [89].
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numerical integration using GLL quadratures, to obtain the two-electron integral

(ij|kl). As the MOs used in this work are real, we note again that, due to the

symmetry shown in Eq. 6.8, only ∼ N4

8 terms need to be computed. Furthermore,

we note that the convolution integrals are the most computationally expensive part

for evaluating the two-electron integrals. While has not yet been implemented in the

current scheme, we remark that this cost can be significantly reduced by carefully

re-formulating the computation procedure so that the convolution term
∫ ψ̃kl(r′)
|r−r′| dr

′

can be reused and only ∼ N2

2 convolution integrals need to be computed.

6.5 Results

Having the computation kernel set up, we now seek to validate the two-electron

integrals computation. To this end, we use hydrogen molecule at its equilibrium

bond length as the benchmark system. The coordinates of the hydrogen molecule is

provided below in atomic unit

x y z
(0.000000000000, 0.000000000000, 0.000000000000)
(0.000000000000, 0.000000000000, 1.398397231500)

.

To begin with, we present the two-electron integrals computed with Hartree-Fock

molecular orbitals in a minimal Gaussian basis in Table 6.2 (unit: Hartree). The top

part specifies the index of the computed two-electron integrals in each blank. The

middle part is the values of the two-electron integral tensors T 2e
RI computed internally

during the FCI calculation using the resolution of identity approximation (RI) [53, 54].

The bottom part is the values of two-electron integral tensor T 2e
tensor computed using

the tensor-structured technique described in Sec. 6.4. It can readily be seen that all

terms match to the third decimal place. To further compare the two calculations, we

compute the norms of the two-electron integral tensor T 2e
RI and T 2e

tensor (cf. Sec. 3.1

for the definition of tensor norm). The norm is 1.3995426 for RI approximation and
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1.3999828 for tensor techniques, respectively. Also, the relative residual norm defined

by

Tensor relative residual norm := ‖T
2e
RI − T 2e

tensor‖
‖T 2e

RI‖
(6.24)

is 3.1700 × 10−4, which shows that the two-electron integral tensor computed using

the two methods are satisfactorily close and our two-electron integrals computation

kernel passed the sanity check. We note that the difference could be a combination

of error from mesh discretization, 1
r
kernel approximation, and the intrinsic error in

the RI approximation itself.

Index
(00|00) (00|01) (00|10) (00|11) (01|00) (01|01) (01|10) (01|11)
(10|00) (10|01) (10|10) (10|11) (11|00) (11|01) (11|10) (11|11)

RI
0.67469887 0.00000000 0.00000000 0.66438368 0.00000000 0.18149731 0.18149731 0.00000000
0.00000000 0.18149731 0.18149731 0.00000000 0.66438368 0.00000000 0.00000000 0.69923143

Tensor techniques
0.67494529 0.00000000 0.00000000 0.66459772 0.00000000 0.18153657 0.18153657 0.00000000
0.00000000 0.18153657 0.18153657 0.00000000 0.66459772 0.00000000 0.00000000 0.69942717

Table 6.2: The indices (top) and values for each two-electron integral tensor element
computed using RI approximation (middle) and using tensor techniques (bottom).

Using the same hydrogen molecule system, we next examine the FCI computed

energy using the internal RI approximation routine and the tensor techniques. The

FCI energies are computed for the integrals using the first 5, 10, 15, and 20 Hartree-

Fock orbitals spanned by a 92 Gaussian basis, respectively, from a Hartree-Fock

calculation. As a sanity check, we again compute the tensor norms and the relative

residual norms of the two-electron integral tensors using RI approximation and the

proposed tensor techniques. The norms are summarized in Table 6.3. These integrals

are provided as inputs to the FCI computation routine to obtain the energies tabulated

in Table 6.4.

As shown in Table 6.3, the relative residual norms are at the order of 10−2, which
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RI Tensor techniques Residual
5 1.13056 1.13361 1.69505E-02
10 2.05697 2.05897 1.61560E-02
15 3.32841 3.33877 1.53256E-02
20 4.69748 4.70746 1.59274E-02

Table 6.3: Tensor norms and residual norms of the two-electron integral tensors from
RI approximation and tensor techniques using 5, 10, 15, 20 Hartree-Fock orbitals.

ERI,FCI (Ha) Etensor,FCI (Ha) Error (mHa/atom)
5 -1.13460797 -1.13422915 0.189
10 -1.13602973 -1.13565113 0.189
15 -1.14093061 -1.14055086 0.190
20 -1.14378636 -1.14340782 0.189

Table 6.4: The FCI computed energy using 5, 10, 15, 20 Hartree-Fock orbitals. The
CI matrix quantities are computed with RI approximation and tensor techniques
respectively as denoted in the table.

is still quite close. The slightly larger relative residual norm, in comparison to the

relative residual norm when using only two Hartree-Fock orbitals spanned by a smaller

basis set presented in Table 6.2, could be because the higher states are more oscillatory

and more diffused. As a result, the mesh might have to be more refined to achieve

similar accuracy than the two Hartree-Fock orbitals case does. On the other hand,

Table 6.4 shows that the energy per atom differences between FCI calculations using

CI matrix components from RI approximation and tensor techniques are consistently

below 0.2 mHa/atom for using 5, 10, 15, 20 Hartree-Fock orbitals calculations. This

result suggests that the current mesh could be enough if the 0.2 mHa/atom accuracy

in energy is satisfactory. Finally, we note that these investigations for the proposed

computation kernel check that the proposed computation kernel in this work gives

consistent CI matrix components. The proposed workflow should now be ready to be

used to study the efficacy of Kohn-Sham orbitals for an FCI calculation.
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6.6 Summary

In this chapter, we proposed a computation kernel based on tensor-structured

techniques to generate the one-electron and two-electron integrals—central quantities

for constructing the CI matrix—from any molecular orbitals projected on a tensor-

structured finite-element mesh. We have shown that the two-electron integral tensors

computed with the proposed computation kernel and the RI approximation used

internally in the FCI code are consistent with the residual norm at the order of 10−2

for all 5–20 Hartree-Fock orbitals calculations. Furthermore, the difference in FCI

computed energy using both methods for all 5–20 Hartree-Fock orbitals are within

0.2 mHa/atom.

The results confirm that the developed computation kernel correctly reproduces

the one-electron and two-electron integrals computed internally inside of the FCI

code. At the same time, the computation kernel can handle any real-valued molecular

orbitals projected on the tensor-structured finite-element mesh. This provides more

flexibility on the choice of molecular orbitals. Therefore, the Hartree-Fock orbitals

used in this sanity check can be replaced by Kohn-Sham orbitals. The computation

kernel is hence useful for studying the applicability of Kohn-Sham orbitals on an FCI

type calculation and is currently being pursued.
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CHAPTER VII

Conclusions

7.1 Summary

In this dissertation, our contribution is three-fold. The first part of this disserta-

tion work developed a reduced-order tensor-structured algorithm for large-scale Kohn-

Sham DFT calculations. The second part improved the computational efficiency of

the tensor-structured algorithm for Kohn-Sham DFT using GPU acceleration. The

third part of this dissertation work developed a computation kernel to generate one-

electron and two-electron integrals with the flexibility to use any molecular orbitals

projected on a tensor-structured finite-element mesh using tensor-structured tech-

niques.

In the first part, we developed a tensor-structured algorithm for reduced-order

large-scale Kohn-Sham DFT calculations. In the proposed algorithm, we first con-

struct an additive separable approximation to the Kohn-Sham Hamiltonian by min-

imizing the energy functional of the Kohn-Sham equation with respect to the wave-

function in the rank-1 tensor space subjected to the orthonormality constraint. The

minimizers of the energy functional ψ1, ψ2, ψ3 are provided to the Kohn-Sham equa-

tion to obtain a set of one-dimensional Hamiltonians which are the additive sepa-

rable approximation to the Kohn-Sham Hamiltonian, that is H ≈ H1 + H2 + H3.

Subsequently, the splitting orthogonal constraint algorithm is applied to the one-
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dimensional Hamiltonians to obtain a set of one-dimensional localized functions whose

span closely approximates the eigensubspace of the additive separable Hamiltonians.

The outer product of the localized one-dimensional functions hence gives the desired

localized Tucker tensor basis.

The convergence study for the fullerene and tris (bipyridine) ruthenium molecules,

which have no tensor structure symmetry and serve as stringent benchmark systems,

suggests that the proposed localized Tucker tensor basis converges exponentially with

respect to the Tucker rank. The performance analysis for (1) aluminum nano-particles

ranging from 13 to 6525 atoms and (2) silicon quantum dots ranging from 26 to

7715 atoms shows that the sub-quadratic scaling with respect to the system size is

achieved by the localized Tucker tensor basis constructed from the proposed tensor-

structured algorithm for both systems with and without a band gap. Furthermore, the

efficiency comparison with Quantum Espresso, the state-of-the-art plane-wave based

code, shows that the proposed localized Tucker tensor basis outperforms Quantum

Espresso significantly for system-sizes beyond 5,000 electrons.

In the second part of this dissertation work, we improved the computational effi-

ciency of the proposed Tensor-structured algorithm by GPU acceleration. During the

course of solving the Kohn-Sham equation, the breakdown of computational times

suggests that the Chebyshev filtering process, which involves heavy matrix-matrix

multiplication between the sparse Hamiltonian and the dense wavefunction matrices,

occupies the most computational time in the pure CPU code. This computationally

expensive matrix-matrix multiplication is GPU accelerated using the CUDA library.

Our performance analysis shows that the matrix-matrix multiplication is accelerated

by ∼8x in comparison to the pure CPU code. We note that in combination with the

previous results that the tensor-structured algorithm provides reduced-order scaling

for large-scale Kohn-Sham DFT, this acceleration is a step further towards enabling

systematically convergent and computationally efficient large-scale DFT calculations.
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In the third part, we developed a computation kernel for one-electron and two-

electron integrals using tensor-structured techniques. The computation kernel pro-

vides a flexible framework to compute the integrals for any molecular orbitals pro-

jected on a tensor-structured finite-element mesh. In this preliminary work, we used

Hartree-Fock orbitals as molecular orbitals for a hydrogen molecule at its equilibrium

bond length as a benchmark system to verify the computed two-electron integrals and

the resulting full configuration interaction (FCI) energy of the proposed computation

kernel. Our numerical results show that the residual norms of the two-electron inte-

gral tensors computed using the proposed computation kernel and the resolution of

identity (RI) approximation, which is the internal subroutine for computing the two-

electron integrals in FCI code, respectively are at the order of 10−2. Furthermore, the

difference in the resulting FCI energy is within 0.2 mHa/atom for various numbers of

molecular orbitals.

7.2 Future directions

In this dissertation work, we have developed a tensor-structured algorithm for

reduced-order scaling large-scale Kohn-Sham DFT calculations and accelerated the

algorithm with GPU. Meanwhile, we developed a flexible computation kernel using

tensor-structured techniques to provide the one-electron and two-electron integrals

for FCI calculations. Based on these results, we summarize some useful directions

being pursued or to pursue in the future as follows.

Further GPU acceleration for tensor-structured algorithm for Kohn-Sham

DFT

In the present GPU acceleration for the tensor-structured algorithm for Kohn-

Sham DFT, we focused on accelerating the previously computationally expensive

spare-dense matrix-matrix multiplication kernel for the sparse Hamiltonian and the
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dense wavefunction matrices during the Chebyshev filtering process. As shown in

Table 5.2 and Table 5.3, the bottleneck has now shifted to the orthogonalization of

the filtered Chebyshev vectors. It will hence be useful to develop an efficient GPU

implementation for the orthogonalization procedure and GPU port other parts of

the code, which will be a step forward to enabling DFT calculations for currently

computationally prohibitive systems.

Computation of one-electron and two-electron integrals using Kohn-Sham

orbitals

In Chapter VI, a computation kernel with the flexibility to generate one-electron

and two-electron integrals for any molecular orbitals projected on a tensor-structured

finite-element mesh is proposed. This computation kernel can be used to provide

the one-electron and two-electron integrals using Kohn-Sham orbitals obtained from

DFT-FE, a massively parallelized finite-element based DFT code. These integrals

can subsequently be used to compute FCI energy and investigate the feasibility of

Kohn-Sham orbitals as a reduced-order basis for FCI calculations. This framework

can potentially reduce the computational cost of FCI calculation and serves as the key

step towards enabling calculations for larger systems with an FCI level of accuracy.

Larger-scale FCI calculations for more accurate exchange-correlation func-

tional

With a reduced-orbital basis for FCI calculations, it is possible to perform the

ground-state calculation with FCI level of accuracy for previously computationally

inaccessible systems. This ground state can be used to compute the electron den-

sity and serves as a training dataset for machine learning to generate a more accurate

exchange-correlational functional, e.g. using the scheme proposed in [74]. This frame-

work could be a step forward to a more affordable DFT calculation with a higher level
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of accuracy.
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