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ABSTRACT

Machine learning is a key application driver of new computing hardware. Design-

ing high-performance machine learning hardware requires a large number of opera-

tions and a high memory bandwidth. The energy efficiency of the hardware is often

limited by the data movement and the memory access bottleneck. As the machine

learning models evolve to become even larger and more complex over time, it is also

a constant challenge to meet the computational requirements of these new models.

In this work, we investigate processing in memory (PIM) approaches to overcome

the memory access bottleneck and a chiplet-based integration approach to efficiently

scale up machine learning hardware by reusing chiplets.

DNN model size and complexity growths have already outpaced the DNN chip

upgrades. Making monolithic chips to keep up with the model evaluations is chal-

lenging. We demonstrate a chiplet-based approach to designing DNN hardware. The

proposed chiplet is called NetFlex – a modular design that can be connected together

to build larger DNN hardware. NetFlex is designed to support various layers, includ-

ing convolutional layer, deconvolutional layer, and fully connected layer, and multiple

configurations. The deconvolution dataflow is optimized by removing computation

of both row-wise and element-wise 0s. In the PE arrays, spatial processing with

three dimensional parallelism is implemented for data reuse and temporal processing

is chosen to adapt to different kernel sizes. The processing scheduling and memory

mapping are designed for streaming activations without extra data rearrangement.

The chiplets are connected to form a ring topology and can be gated by the skip-

ping module to reduce the computation and memory accesses of simple scenes for
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perception. An Advanced Interface Bus (AIB) and an Advanced eXtensuble Inter-

face (AXI)-compatible protocol enable data streaming from one chiplet to another

chiplet. The chiplets are integrated on the interposer using a 2.5D fan-out wafer level

packaging (FOWLP) technology. NetFlex is compared with recent silicon prototypes

for perception application. The multi-chiplet system is evaluated and compared with

recent chiplet-based designs. The results shows NetFlex achieves a higher throughput

with competitive energy and area efficiency and can potentially expand to larger-scale

systems.

PIM approach has gained significant attention due to its potential of high en-

ergy efficiency for DNN workloads. However, key challenges remain: the overhead of

high-resolution ADCs and degraded sensing margin when a large number of bitcells

are activated together. We propose adaptive-range PIM (AR-PIM) to take advan-

tage of sparsity to relax the need for high-resolution ADCs and improve the sensing

margin. The evaluations, performed using a commercial 7nm FinFET PDK, show

that AR-PIM increases the energy efficiency by 1.7× and reduces the area by 4.3×

over a baseline PIM architecture for DNN workloads while maintaining the inference

accuracy.

PIM is a concept to enable massively parallel dot products while keeping one set

of operands in memory. PIM is ideal for computationally demanding deep neural

networks (DNNs) and recurrent neural networks (RNNs). Processing in resistive

RAM (RRAM) is particularly appealing due to RRAM’s high density and low energy.

A key limitation of PIM is the cost of multi-bit analog-to-digital (A/D) conversions

that can defeat the efficiency and performance benefits of PIM. We demonstrate the

CASCADE architecture that connects multiply-accumulate (MAC) RRAM arrays

with buffer RRAM arrays to extend the processing in analog and in memory: dot

products are followed by partial-sum buffering and accumulation to implement a

complete DNN or RNN layer. Design choices are made and the interface is designed to

x



enable a variation-tolerant, robust analog dataflow. A new memory mapping scheme

named R-Mapping is devised to enable the in-RRAM accumulation of partial sums;

and an analog summation scheme is used to reduce the number of A/D conversions

required to obtain the final sum. CASCADE is compared with recent in-RRAM

computation architectures using state-of-the-art DNN and RNN benchmarks. The

results demonstrate that CASCADE improves the energy efficiency by 3.5× while

maintaining a competitive throughput.

These three parts, NetFlex, AR-PIM and CASCADE demonstrate more energy-

efficient and scalable solutions for future machine learning hardware designs.
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CHAPTER I

Introduction

Machine learning algorithms demonstrate remarkable successes in recent years and

open a new era of artificial intelligence (AI). The supervised learning is conducted

with the labeled inputs and the unsupervised learning for non-labeled inputs. The

advances in hardware such as GPUs to deal with the large amount of computations

boost the growth of the field. The other hardware options including CPUs, FPGAs,

and ASICs are also proposed for different use cases. However, key bottlenecks and

challenges still persist. One is the memory wall bottleneck that limits the performance

and processing efficiency improvement. The other is the scalability of the current

hardware in handling fast evolving model of larger sizes as shown in Figure 1.1.

1.1 Deep Neural Networks

Neural networks are one subset of machine learning algorithms, and they have

evolved to be one primary workload for new computing hardware. A neural network

layer consists of the input layer, the hidden layers, and the output layer. In a fully

connected layer, the neurons of one layer are fully connected to all neurons of previous

layer. The weights of each layer are trained using gradient descent. The error of the

last layer from forward propagation and the label is required for backpropagation

during training. The weights can be used to predict the classification class of the

1



Figure 1.1: Complexity represented by circles and operations of DNN models [1].

unseen data during inference.

A convoluational layer can be represented in 3D volumes of neurons in 3 dimen-

sions, width, height, and depth. Only a small number of neurons in one layer are

connected to the layer before it. Convolutional neural networks (CNNs), and gen-

erally deep neural networks (DNNs), typically have convolution layers, ReLU layers

which apply the non-linearity, pooling layers, and fully-connected layer. DNN com-

putation consists of a large number of matrix multiplication operations with plenty

of opportunities to compute in parallel.

Data compression, data sparsity, and quantization are well-known approaches to

reduce the computation cost and alleviate the memory bottleneck in the DNN hard-

ware. Processing in memory (PIM) is another approach that promises to remove the

memory bottleneck entirely, but PIM has been restricted to small research prototypes

and practical PIM systems are often limited by the interface circuitry that performs
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the analog to digital conversion.

To address the scalability challenge, larger chips are being built every year in

newer process nodes to handle new generations of neural network models, but the

design effort and cost are also increasing rapidly. GPU, CPU and FPGA are more

flexible platforms, but their energy efficiency and normalized cost are out-of-reach

for many practical applications. Recently, chiplet-based systems [5, 6] have started

to emerge. The chiplet technology offers a path to more easily scale up hardware to

support newer and larger models, but the a modular chiplet and a standard interface

are required.

1.2 Perception Processing

Autonomous systems have gained lots of attention in recent years including un-

manned aerial vehicles (UAV), autonomous driving cars, and intelligent robots etc.

An autonomous system consists of sensing, navigation, planning, and control [7]. The

input data from the camera, inertial sensors, LiDAR, RADAR, or other sensors are

sent to the navigation for localization and object detection and tracking for scene

understanding. The planning is the decision making for motion planning, obstacle

avoidance, etc. The control is responsible for giving commands to the actuator for

acceleration, braking, or steering.

Ego-motion estimation is an important task for a vehicle to know its 3D motion

and location within the environment and used for augmented reality (AR) and virtual

reality (VR) [8]. The simultaneous localization and mapping (SLAM) algorithms

[9, 10] is used to build the map and estimate the location for vehicles/robots.

More DNN based perception [11, 12, 13] and hybrid DNN and SLAM perception

[14] algorithms have come up in recently years. The advantage of the DNN-based

perception is the use of training to adapt to different environments and sensors,

replacing the large number of tuning parameters in the SLAM algorithms.
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The perception task involves a large amount of data processing from many sensors

and the map is also growing. These can present computation bottlenecks. The other

challenge for mobile robots is the limited power budget.

1.3 Chiplet Technology

With increasing cost of advanced technologies, modular chips become one of the

promising candidates to address the challenge in semiconductor scaling. Compared

to a large-scale monolithic system, a 2.5D system can provide the flexibility in pack-

age level and a new set of masks is not required for changing a subset of the circuit

functions. It can provide integration with different technology nodes for each compo-

nent such as digital component, memory component, analog component. The place

and route time can be manageable and better isolation between components can be

obtained.

Several technology leaders have recently demonstrated advanced 2.5D or system-

on-chip (SoC) package solutions with a physical layer (PHY) interface to enable het-

erogeneous integration. Intel demonstrated Embedded Multi-die Interconnect Bridge

(EMIB) that utilizes a thin silicon bridge with multi-layer interconnects embedded

in a substrate. TSMC demonstrated Chip-on-Wafer-on-Substrate (CoWoS) and the

chiplets are integrated using silicon interposer and through silicon vias (TSVs) to

connect µbumps and C4 bumps [15]. Chiplets on top of the silicon interposer are

connected using µbumps and the package below silicon interposer is connected us-

ing C4 bumps. The Low-voltage-In-Package-INterCONnect (LINPINCON) was in-

troduced as the PHY interface. NVIDIA implemented an organic substrate with

ground-referenced signaling (GRS) links for chip-to-chip communication [5]. AMD’s

Zeppelin implemented an organic substrate with serializer-deserializer (SerDes) links

between chips. The infinity fabric (IF) is used as the PHY interface [16].
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Figure 1.2: The performance gap between processor and memory [2].

1.4 Processing In Memory

With the semiconductor scaling, processor speed improves with Moore’s Law.

However, memory speed improves around 7% per year which is less than processor

speed of around 55% per year as shown in Figure 1.2. This creates the processor

memory performance gap and the gap grows around 50% per year. The memory

latency would become a huge bottleneck in computing performance.

Conventional von Neumann architectures start to gain less efficiency as the pro-

cessor frequency increases because the processing unit and memory unit share the

same common bus of limited bandwidth. Data access is a bottleneck for data-centric

applications, and data movements from off-chip to on-chip consume considerable en-

ergy.

PIM was proposed to address the limited communication bandwidth between pro-

cessing unit and memory unit [17, 18, 19]. The idea is to perform computation in or

near the data. PIM enables the memory unit to compute to avoid the large amount

of data movements and improve the energy efficiency.

PIM utilizes the analog property to perform matrix-vector or matrix-matrix op-

eration that is massively parallel. Processing near memory uses 3D-stacked memory

technology to increase the memory bandwidth and decrease the memory latency to

the logic.
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The choices of memory include non-volatile memory such as resistive random

access memory (RRAM), magnetic random access memory (MRAM), phase-change

memory (PCRAM), ferroelectric random access memory (FeRAM), flash and volatile

memory such as static random access memory (SRAM) and dynamic random access

memory(DRAM). Non-volatile memory provides data storage even when the power

supply is turned off, a higher memory capacity, a lower cost per bit but slower speed

compared to volatile memory in the memory hierarchy.

1.5 Thesis Outline

The thesis contributes to the development of energy-efficient PIM architectures

for machine learning applications and scalable ASICs using 2.5D technology for au-

tonomous navigation. The thesis presents three works as follows.

In Chapter II, the NetFlex chip is presented for perception processing in au-

tonomous navigation applications. With 2.5D technology and Advanced Interface

Bus (AIB), the chiplets can be used to form a streaming system for large DNN work-

loads to improve the throughput and support layer skipping to achieve a better energy

efficiency.

In Chapter III, an SRAM-based PIM architecture is presented to utilize the run-

time bit-level sparsity of data. The comparison between digital and analog NN hard-

ware showcases the PIM design space and trade-offs. The adaptive resolution ar-

chitecture with runtime density detection and threshold selection provide a higher

energy efficiency.

In Chapter IV, an energy-efficient RRAM based PIM architecture is presented to

reduce a large portion of the energy consumption of analog-to-digital conversion. The

design employs a novel mapping method and summation scheme to support practical

design choices for the DNN computation.
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CHAPTER II

NetFlex: Flexible Chiplet-Based System for

Perception Nets

2.1 Introduction

Autonomous navigation has risen in its importance because of the needs for robots,

unmanned aerial vehicles (UAVs), and self-driving cars. Navigation involves the tasks

of perception, motion planning, and control. The perception step is for robots or

vehicles to localize themselves and understand the scene. The motion planning step is

to find a path to the destination. The control step involves steering and accelerating.

The computation bottleneck is perception [20] among these steps of autonomous

navigation. In the past few years, most of the perception computations are executed

on GPUs, CPUs, or FPGAs. Some recent work including [20, 21] implemented the

perception processing on ASICs to further save the computation power.

There are two major categories of algorithms for perception tasks. One approach

is based on Simultaneous Localization and Mapping (SLAM) [9, 10] and the other is

based on Convolutional Neural Network (CNN) [11, 12, 13]. The combined SLAM

and CNN approach is also proposed [14] to fuse the depth measurements from direct

monocular SLAM and CNN-predicted dense depth maps to improve the accuracy

in image locations. A SLAM-based approach can involve hundreds of configurable
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parameters for adapting to various environments and sensors. The kernel operations

include matrix operations, Cholesky factorization, etc. The intermediate operations

also require high precision floating point arithmetic and complex finite state machine

(FSM) [20]. With an end-to-end CNN-based approach, the need for manual synchro-

nization and manual calibration between the camera and the inertial measurement

unit (IMU) is eliminated. The kernel operations in a CNN-based approach include

matrix operations, activation functions, pooling, etc. The number of parameters is

reduced and the dataflow and operations are more regular and unified, making it

hardware-friendly.

However, a CNN-based approach is compute-intensive. Mapping all convolutional

layers of a practical network requires a large amount of memory and meeting the real-

time performance requires a large number of processing arrays. These lead to building

large chips that are costly in dollars and engineering effort. A chiplet-based approach

[5, 6] was proposed to use multiple instances of a modular chip, called chiplets, to

construct a large-scale system in a package to support applications needing large

workloads.

A CNN-based approach for perception processing utilizes an encoder-decoder ar-

chitecture with additional links between network layers. The encoder part extracts

features and the decoder part reestablishes the original resolution by deconvolutional

layers. The deconvolutional layers upsample to the input dimensions for depth es-

timation. The decovolutional layers involve processing many inserted 0s, making

existing CNN accelerators inefficient.

We propose NetFlex, a scalable design that utilizes chiplets to construct large-scale

systems for perception processing, the computation-intensive part of a navigation

system. We exploit the dataflow in CNN and connect the chiplets in a ring for

streaming processing among layers to ensure a low latency and a high energy efficiency.

Compared to a common mesh topology, a ring topology eliminates complex routers
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and their associated overhead. Furthermore, chiplets can be gated by the skipping

module to support layer skipping. To support the streaming processing, a process

scheduling for activations is designed to remove extra data reorganization for the

streaming input buffer. The streaming dataflow is designed to overlap input loading

and computation for a lower latency and reduced data buffering.

In Section 2.2, we provide a background of Structure from Motion (SfM) Learner

algorithm. In Section 2.3, we illustrate the hardware architecture design and the

dataflow. In Section 2.4, we present the chip performance measurement and compare

it with other related perception hardware designs. In Section 2.5, we present an

evaluation of the performance of a 4-chiplet package and compare it with other chiplet-

based systems. In Section 2.6, we conclude this work.

2.2 Background

2.2.1 DNN-Based SfM Learner

The SfM Learner framework [13] consists of 2 networks, depth net and pose net.

The depth net estimates a pixel-wise depth map D̂t from the current image (It). The

pose net takes the current image (referred to as the target view) plus the neighboring

images (referred to as nearby/source views) in the video sequence. That is, the

input comprises the current image (It) plus the previous (It−1) and next (It+1) image.

The pose net infers the camera’s ego-motion from the video sequences, denoted as

T̂t→t−1 and T̂t→t+1 respectively. The estimated pose along with the estimated depth

map is then used to reconstruct a view of current time Ît by warping nearby views.

The depth net and the pose net are coupled by photometric reconstruction loss to

jointly train the depth net and pose net. This view synthesis serves as supervision to

learn the ego-motion and depth map without ground truth from the labeled image

sequences. Although the networks are jointly trained, the networks can be executed

9



independently during inference.

Depth Net. The depth net is structured as an encoder-decoder with skip connec-

tions and multi-scale side predictions, which is adopted from the DispNet architecture

[22]. The depth net only takes a single view at a time as input and generates an es-

timated depth map for each pixel as the output. A convolution layer with the stride

of 2 in the encoder part is followed by a pairing convolution layer with the stride of

1, resulting in the same output size. The intermediate results are concatenated with

decovolutional layers in the decoder part to estimate the per-pixel depth maps in mul-

tiple scales. All convolutional layers except for the prediction layers are followed by

ReLU activation. For the prediction layer, the activation of 1/(10×sigmoid(x)+0.1)

is used to constrain the predicted depth to be always positive within a reasonable

range. The detailed network configuration is summarized in Table 2.1.

Pose Net. The input of the pose net comprises multiple images in the video

sequence. The current image and neighboring images are concatenated in the color

(RGB) channels direction, which results in an input depth of 3× of the original depth.

The outputs of the pose net are the estimates of relative poses of the current image

and neighboring image, i.e. T̂t→t−2, T̂t→t−1, T̂t→t+1 and T̂t→t+2. Here each relative

pose of the source view consists of 3 Euler angles and 3-D translation, which results

in an output depth of 6× 4 = 24.

The pose net consists of 7 convolutional layers (cnv1 to cnv7) with the stride of 2,

followed by a 1×1 convolution (pose pred). Finally, predictions at all spatial locations

are aggregated by applying global average pooling. All convolutional layers except

for the last layer are followed by ReLU. For the last layer, no nonlinear activation is

applied. The detailed network configuration is summarized in Table 2.2.
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Layer Kernal Input Output
Name Size Number Stride Size Size Channel Size Size Channel
cnv1 7 32 2 416 128 3 208 64 32
cnv1b 7 32 1 208 64 32 208 64 32
cnv2 5 64 2 208 64 32 104 32 64
cnv2b 5 64 1 104 32 64 104 32 64
cnv3 3 128 2 104 32 64 52 16 128
cnv3b 3 128 1 52 16 128 52 16 128
cnv4 3 256 2 52 16 128 26 8 256
cnv4b 3 256 1 26 8 256 26 8 256
cnv5 3 512 2 26 8 256 13 4 512
cnv5b 3 512 1 13 4 512 13 4 512
cnv6 3 512 2 13 4 512 7 2 512
cnv6b 3 512 1 7 2 512 7 2 512
cnv7 3 512 2 7 2 512 4 1 512
cnv7b 3 512 1 4 1 512 4 1 512
upcnv7 3 512 2 4 1 512 8 2 512
icnv7 3 512 1 7 2 1024 7 2 512
upcnv6 3 512 2 7 2 512 14 4 512
icnv6 3 512 1 13 4 1024 13 4 512
upcnv5 3 256 2 13 4 512 26 8 256
icnv5 3 256 1 26 8 512 26 8 256
upcnv4 3 128 2 26 8 256 52 16 128
icnv4 3 128 1 52 16 256 52 16 128
disp4 3 1 1 52 16 128 52 16 1
upcnv3 3 64 2 52 16 128 104 32 64
icnv3 3 64 1 104 32 129 104 32 64
disp3 3 1 1 104 32 64 104 32 1
upcnv2 3 32 2 104 32 64 208 64 32
icnv2 3 32 1 208 64 65 208 64 32
disp2 3 1 1 208 64 32 208 64 1
upcnv1 3 16 2 208 64 32 416 128 16
icnv1 3 16 1 416 128 17 416 128 16
disp1 3 1 1 416 128 16 416 128 1

Table 2.1: The detailed configuration of depth net.
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Layer Kernel Input Output
Name Size Number Stride Size Size Channel Size Size Channel
cnv1 7 16 2 416 128 15 208 64 16
cnv2 5 32 2 208 64 16 104 32 32
cnv3 3 64 2 104 32 32 52 16 64
cnv4 3 128 2 52 16 64 26 8 128
cnv5 3 256 2 26 8 128 13 4 256
cnv6 3 256 2 13 4 256 7 2 256
cnv7 3 256 2 7 2 256 4 1 256

pose pred 1 24 1 4 1 256 4 1 24

Table 2.2: The detailed configuration of pose net.

2.2.2 Adaptive Layer Skipping for Easy Scenes

The middle layers of the encoder-decoder structure of the depth net are costly with

a large number of weights. Several heavy layers in the middle of the network can be

selectively skipped for easy scenes with fewer objects to save 12% of computation and

75% of memory access with negligible accuracy loss. The chiplet-based system can

support the layer skipping of heavy layers in the middle of the network by a simple

chiplet controller and the skipped chiplet can be power-gated to save energy in the

proposed hardware.

2.2.3 Hardware Implementation Challenges

The perception task for mobile robots including UAVs and autonomous cars is

battery powered. Hence, an energy-efficient hardware system is required. In addition,

a flexible hardware is needed to process the pose and depth estimation, and a low

computation latency is critical for fast reaction to changing environments.

Processing the NN layers of SfM Learner requires large amounts of computation

and memory storage. The pose net and depth net contribute a total of 5G MAC

operations. A hardware architecture needs to exploit multiple dimensions of paral-

lelism, data reuse, and dataflow optimization to obtain low latency, high throughput,

and energy efficiency. The pose net requires 3.05 MB and 2.32 MB of memory to
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Figure 2.1: The NetFlex block diagram.

store the weights and inputs. The depth net require 60.25 MB and 13.06 MB of

memory to store the weights and inputs. The large memory size makes it difficult to

store all the weights using on-chip SRAMs. Even if a large chip size is allowed, the

clock distribution and power delivery are still challenging across a large chip and can

potentially introduce significant overhead and design time.

2.3 NetFlex Architecture

2.3.1 Accelerator Architecture

Figure 2.1 shows the NetFlex block diagram including NN accelerator, control

for different dataflows of PEs according to different layer shapes, digitally controlled

oscillator (DCO) for clock generation, UART interface, and AIB interface. 1

NN Accelerator. Figure 2.2 shows the convolver design inside the NN acceler-

ator. The convolver supports three dimensions of parallelism including convolution

XY parallelism of 8, input channel C parallelism of 16, and output channel K par-

allelism of 8 for a total of 1024x parallelism. Each of the 1024 PEs is responsible for

a MAC operation of a 16b input and a 16b weight. The input activations are shared

among K PE arrays and each PE array stores its own weights and its corresponding

output channel. Within a PE array, the weights are buffered and broadcast along

1The modules for data transfer including UART and AIB interface were implemented by Wei
Tang and Chester Liu.
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Figure 2.2: The convolver design. The zoom in view on the left shows the adder tree
design. The zoom in view on the right shows the convolution operation over cycles.

rows, one per input channel. The convolution is processed temporally to adapt to

kernel sizes of 3, 5, and 7 to maintain high utilization among different layers. Each

convolution operation takes 9, 25, 49 cycles for kernel sizes 3, 5, and 7 respectively.

The convolver can process 8 inputs in each row at the same time and the 8 inputs

are left-shifted by shift registers for the next cycle. This forms the 1D convolution

processing. The convolver then takes the 8 inputs of the subsequent row, followed by

left-shifting, and so on. The horizontal and vertical shifting produce 2D convolution

results. The shift registers enable the input activation reuse to save energy of mem-

ory accesses. Finally, all the dot product results of input activations and weights are

collected and added up along a column of PEs for the input channel reduction. The

channel reduction along a column of the PE array is done by a pipelined adder tree

for each PE array. The pipelined adder tree sums 4 dot product results at a time and

it takes 4 cycles to sum C = 16 values.

Convolution Layer. Figure 2.3 shows the detailed convolution operation of

the convolver over cycles for the 3×3 kernel with the stride of 1. The CONV = 8

convolution operations are processed at the same time. Figure 2.4 shows the case

of the 3×3 kernel with the stride of 2. In this case, the input left-shifted by shift

registers as the case of the stride of 1 but only PEs in odd columns accumulate the
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Figure 2.3: A convolution operation example of the convolver over cycles for the 3×3
kernel with the stride 1.

Figure 2.4: A convolution operation example of the convolver over cycles for the 3×3
kernel with the stride 2.
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Figure 2.5: A deconvolution operation example of the convolver over cycles for the
3×3 kernel.

dot product results.

Deconvolutional Layer. The deconvolution operation is used extensively for

semantic segmentation in DNNs. The well-known examples that use deconvolutional

layers are fully-convolutional network (FCN) [23] and generative adversarial network

(GAN) [24]. The deconvolution operation is also known as the transposed convolution.

In the case of the decovolution operation with the stride of 2, the input is inserted

with a zero between each activation both horizontally and vertically. Processing

involving 0s needs to be removed for energy saving and latency improvement. [25]

exploit the property of deconvolution operation by reorganizing the flow of data to

remove computation of input rows consisting of all 0s. However, there are still 0s

in input rows that are not all 0s. NetFlex not only removes the row-wise 0s but

also element-wise 0s for non-all-zero rows to accelerate the deconvolution operation.

Figure 2.5 shows the detailed deconvolution operation of the convolver over cycles for

the 3×3 kernel with the stride of 2. We reorganize the processing dataflow to squeeze

out the 0 operands as shown in Figure 2.6.
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Figure 2.6: A re-organized deconvolution operation example of the convolver over
cycles for the 3×3 kernel.

Fully Connected Layer. Fully connected layers require the accumulation of

more dot-product results. The pipelined adder tree in each PE array for 16 elements

addition can be reconfigured to connect to each other to form another adder tree

hierarchy for 8-element addition. The design allows 8×16 additions than only 16

additions.

Star Topology. The NetFlex Chip uses a star topology with 8 leaf nodes for

output channel parallelism as shown in Figure 2.7. The input memory module is

Figure 2.7: The star topology of the core accelerator.
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located in the center since the input activations are shared among K = 8 output

channels. The input memory module is responsible for receiving the data from the

AIB interface and then distributing the data to PE arrays. The weight memory

module is located on each leaf of the star topology and stores the weights of each

output channel K. The PEs are in between the input memory module and the

weight memory module for receiving both input activations and weights. The star

topology reduces the wire routing congestion. The natural sharing property of neural

network layers and the star topology remove the need for arbiters for the shared

memory modules.

Memory Modules. A two-port SRAM is used for the input memory module

to support streaming mode. The input memory module receives activations from

AIB and sends the activations to PEs. The input memory module is implemented

as a first-in-first-out (FIFO) and it handles the data transfer with two pointers, one

for read operation and the other for write operation. The read pointer and write

pointer are used to check the FIFO condition of full and empty to prevent data from

being overwritten before read. The weight memory module is composed of single-port

SRAMs for reading weights. The output memory module is composed of single-port

SRAMs for writing the output activations.

Process Scheduling. In order to support direct streaming, the input memory

module acts as the line buffer and the depth-first processing is chosen for finishing

an activation as fast as possible. Figure 2.8 illustrates the IA fetching schedule and

IA memory mapping. If an NN layer has more than 16 input channels, the convolver

follows the process scheduling of depth-first, then width, and finally the height of the

input activations. Each row of the IMEM is 2048b and composed of the 8 width×16

channels×16b. Figure 2.9 illustrates the weight fetching schedule and weight memory

mapping. The weights are accessed in the channel direction first, then width, then

height, and finally the kernel number. Each row of the WMEM is 2048b and composed
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Figure 2.8: IA memory mapping.

Figure 2.9: Weight memory mapping.
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Figure 2.10: The OA order from the convolver output.

of the 8 kernel numbers×16 channels×16b. The corresponding output activations

order of the convolver output is shown in Figure 2.10. The process scheduling is

designed to align the OA order with the IA order. In this scheduling, the activations

are computed with no extra indexing rearrangement for the streaming processing to

the next layer.

UART Interface. The universal asynchronous receiver transmitter (UART)

interface of the NetFlex chip is used for chip testing. An OpalKelly FPGA board is

configured in the master mode and the chip is configured in the slave mode during

chip testing. The UART interface includes two modules. One module of the UART

with a set of TX and RX is responsible for configuring the registers of the NN layer

parameters. The other module of the UART with 4 sets of TX and RX for faster

data uploading and downloading is responsible for data read from or written to the

input memory module, weight memory module, or output memory module.

AIB Interface. The AIB interface of the NetFlex chiplet has 8 AIB channels

and is responsible for communication to FPGA chiplet or other NetFlex chiplets.

Each AIB channel includes the parallel AIB I/Os and the AIB adaptor and consists

of 96 signal and 42 power and ground µpins. [4]. Each AIB signal has a potential
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clock rate of 1GHz in double data rate (DDR) for up to 2Gb/s. The high bandwidth

interface provides the possibility of scaling up a system to support larger workloads.

The AIB interface is used for streaming input activations between layers to save the

on-chip storage. The bus protocol can support two modes including master mode

and slave mode. In the slave mode, the external signals are received by multiple AIB

channels. The bus controller is responsible for aggregating outputs from multiple

AIB channels which will be organized into a bus format of address and data. In the

master mode, the signals from the core are sent to multiple AIB channels. The bus

controller is responsible for distributing addresses and data to multiple AIB channels.

The address is defined to be 32 bits and the data is defined to be 512 bits. There are

8 AIB channels in the AIB interface of the NetFlex chiplet and can be individually

configured in master mode or slave mode according to the I/O bandwidth requirement

for different applications.

2.3.2 System Architecture

Ring Topology. Multiple NetFlex chiplets can form a ring topology with the

AIB interface for data streaming. Compared to the common mesh topology, the

ring topology is simpler since data only travel in two directions and it costs less for

implementation because of the elimination of complex routers. Without complicated

NoC arbitration, the performance is improved. Although the ring topology has the

drawback of a larger hop count with more nodes in the network, the mapping of a

layer per chiplet for DNN inference naturally enforces the communication is between

the neighboring chiplets, and it avoids multi-hop latency overhead.

Direct Streaming and Layer-by-Layer Processing. The NetFlex chiplet

supports direct streaming as well as layer-by-layer processing. For direct stream-

ing, the line-buffered depth-first processing is implemented [26]. The first 3, 5, or 7

rows depending on the kernel sizes will be buffered in a chiplet of the next layer for
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Figure 2.11: The 4 chiplet streaming topology in the normal mode.

Figure 2.12: The 4 chiplet streaming topology in the bypass mode.

depth-first processing. The next layer will start once the line buffer collects enough

activations. By doing so, every layer can process a convolution operation once the

previous layer generates one output activation. When each layer processes the acti-

vations at the same speed, depending on the depth of the layers, the direct streaming

can better scale with more layers. In the case of mismatching speed for processing

the activations between the layers, a chiplet can detect the line buffer of the current

layer is full and temporarily stop the processing of the previous layer. However, this

will result in pipeline stalls because of the back pressure from the slow-speed chiplet.

For layer-by-layer processing, it requires an extra output memory module compared

to direct streaming.
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Figure 2.13: Die photo.

Layer Skipping. NetFlex supports layer skipping as discussed previously. Fig-

ure 2.11 shows the 4 chiplet streaming topology in the normal mode. Each chiplet

includes the core processing unit and a bypass block to bypass the core processing

unit. Figure 2.12 shows the bypass mode for the second and third chiplet for example.

2.4 Chip Measurement

The NetFlex chip was fabricated using Intel 22nm FinFET Low Power (22FFL)

technology. The chip is integrated with Intel Stratix 10 in a 2.5D multi-chip package

(MCP) through the embedded multi-die interconnect bridge (EMIB). The core ac-

celerator occupies 7.8mm2 as shown in Figure 2.13. An OpalKelly XEM-6310 FPGA

board is used for chip testing. The chip achieves 2.65TOPS/W and 0.141TOPS/mm2

at the supply voltage of 0.89V, running at the clock frequency of 506.9MHz at room

temperature.

Figure 2.14 shows the voltage scaling performance of the chip from 0.45V to 1.05V

with the clock frequency from 33.57MHz to 616.87MHz and power consumption from
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Figure 2.14: Frequency and power consumption with the voltage scaling.

Operation Convolution Deconvolution

Configuration
ksize 3,
stride 1

ksize 3,
stride 2

ksize 5,
stride 1

ksize 5,
stride 2

ksize 7,
stride 1

ksize 7,
stride 2

ksize 3,
stride 2

Voltage (V) 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Frequency (MHz) 492.31 492.31 492.31 492.31 492.31 492.31 492.31

Power (mW) 499.824 541.12 304.024 532.309 304.914 533.644 445.623

Table 2.3: Measurement results for various configurations.

10.14mW to 701.40mW.

Table 2.3 shows the measured results of convolution operation and deconvolution

operation with different kernel size and stride configurations.

Table 2.4 presents the performance of the NetFlex chip compared with prior de-

signs for perception processing. The NetFlex chip achieves competitive energy effi-

ciency and higher area efficiency for a single chiplet. NetFlex is a chiplet-based system

that can further scale to a larger system to obtain a higher frame rate and support

various DNNs workloads flexibly.
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VLSI 2016 [20] ISSCC 2019 [21] This Work

Type
Harris feature +
visual SLAM

CNN feature +
visual SLAM

End-to-end CNN

Technology 65nm 28nm 22nm
Area 20mm2 10.92mm2 7.8mm2

Memory Size 854kB 1126kB 2492kB
Voltage 1.2V 0.9V 0.89V

Frequency 83.3MHz 215MHz 492.3MHz
Power 24mW + IMU power 243.6mW 499.8mW
TOPS 0.059 0.879 1.07

TOPS/W 2.46 3.61 1.36
TOPS/mm2 0.003 0.080 0.096
Dataset EuRoC KITTI KITTI

Image Size 752×480 640×480 416×128
Throughput 90fps 80fps 108fps

Scalability
No

stand alone accelerator
No

stand alone accelerator
Yes

2.5D integration system

Table 2.4: Comparison with prior works for perception.

Figure 2.15: Package photo of the 4-chiplet system.
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Figure 2.16: A face to back connection of 4 chiplets.

2.5 System Evaluation of 4-Chiplet Package

Figure 2.15 shows the 4-chiplet package prototype. The 2.5D integration of Net-

Flex chiplets is fabricated using redistribution layers (RDLs) using a fan-out wafer

level packaging (FOWLP) technology. The bottom layer is connected to PCB with

bottom vias and solder balls. The next 5 layers from the bottom are reserved for

routing AIB signals and for distributing power and ground network. The metal lines

for routing the AIB signals have a minimum spacing of 2µm and a cross section of

2µm×2µm. The top layer is connected to the under bump metallization (UBM) layer

with top vias. The chiplets are flipped and attached to the UBM layer [27]. The

package size is 13.5mm×13.5mm.

The modular chiplet design provides flexibility for various connections between

multiple chiplets. An example of a 4-chiplet system is shown in Figure 2.16. Here

we define the side with AIB signal as the face side and the opposite side to be the

back side. The AIB channels are assigned to 2 groups with channel 0 to channel 3

as a group and channel 4 to channel 7 as the other group. The AIB channels can be

configured to master mode or slave mode that provides more flexibility for the place

and route of AIB signals.

Table 2.5 summarizes the microarchitecture parameters of NetFlex. The area is
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Package

Number of Chiplets 4
Size 13.5mm×13.5mm

Core Voltage 0.89V
Interconnect Clock Frequency 1GHz
Inter-chiplet Interconnect AIB
Interconnect Bandwidth 10GB/s/Channel
Interconnect Latency <5ns
Interconnect Energy 0.83pJ/bit

Chiplet

Number of PE arrays (K) 8
Area 11.1mm2

Technology 22nm FinFET
Voltage 0.89V

PE Clock Frequency 0.5GHz
Bus Bandwidth 32GB/s

Weight Buffer Size 2360kB
Line Buffer Size 132kB

PE array

Depth Parallelism (C) 16
Convolution Parallelism (CONV) 8

Dataflow Weight Stationary
Input/Weight Precision 16b
Partial-Sum Precision 20b

Table 2.5: Microarchitecture parameters of NetFlex. The package-level results are
from [4]

VLSI 2019 [5] VLSI 2021 [6] This Work
Technology 16nm 40nm 22nm

Area 6mm2 29.2mm2 7.8mm2 + 3.3mm2

Precision INT8 INT8, FP16 INT 16

Memory Size 752KB
0.5MB +

2MB RRAM
2492kB

Voltage 0.42-1.2V 1.1V 0.89V
Frequency 161-2000MHz 200MHz 492.3MHz
Power 30-4160mW 126mW 499.8mW + 287.7mW
TOPS 0.32-4 0.92 1.07

TOPS/W 0.2-9.1 2.2 1.36
TOPS/mm2 0.053-0.666 0.031 0.096

Package Substrate Organic substrate PCB Silicon interposer
I/O Design High speed serial Slow speed Moderate speed parallel

Table 2.6: Comparison of chiplet-based prototypes.
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Figure 2.17: Energy consumption of SfM depth net.

made of the 7.8mm 2 core accelerator and the 3.3mm2 AIB I/Os and the AIB adaptor.

Table 2.6 shows the performance comparison of chiplet-based systems. Compared to

state-of-the-art works, NetFlex can achieve higher energy and area efficiency from the

co-optimization of the system and the accelerator architecture as well as the seamless

pipelining between the core processing unit and the communication unit.

Figure 2.17 shows the processing, communication, and memory energy consump-

tion of SfM depth net as a large workload example. Most of the energy is consumed

by PE processing rather than AIB communication. The shape of the NN layer makes

the first few and the last few layers computation-dominant with more activations and

more MAC operations and the middle layers parameter-dominant with more weights.

NetFlex can support both computation-dominant layers and parameter-dominant lay-

ers by configuring the chiplet to the direct streaming mode or the layer-by-layer mode

depending on the layer property and the skip connections in the network.

2.6 Summary

As more DNN-based perception approaches and algorithms are proposed for nav-

igation, more flexible hardware becomes more crucial. This work presents a scalable

NetFlex accelerator for reconfigurable NN layers. The spatial processing and the

temporal processing in the PE arrays are implemented to facilitate data reuse and
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provide adaptation to different kernel sizes. The optimized dataflow for deconvolu-

tion operations removes the computation of 0s that exist in the decoder part. Process

scheduling and memory mapping are designed for data streaming without extra in-

dexing overhead. The modular chiplets are connected to form a ring topology to

support large DNN workloads and can be gated by the skipping module to reduce

the energy of computation and memory accesses. A NetFlex chip is fabricated and

it achieves a higher throughput with competitive energy efficiency and higher area

efficiency compared to the other silicon prototypes for perception application.

NetFlex can potentially support larger DNN-based perception applications by

2.5D integration. The parallel AIB and the ring topology contribute to a low latency

overhead for streaming processing because of the simplicity of the parallel data in-

terface and the ring topology. A 4-chiplet package demonstrates an example of the

chiplet-based system. Compared to prior chiplet-based systems, NetFlex can achieve

higher energy and area efficiency because of its co-optimization of the system and the

accelerator architecture.
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CHAPTER III

AR-PIM: PIM with Adaptive Range

3.1 Introduction

Deep neural network (DNN) has achieved exceptional success in many applica-

tion domains. DNN has also become one primary workload for modern computing

hardware. GPU, CPU, FPGA, and digital ASIC hardware [28, 29, 30, 31, 32, 33, 34]

have demonstrated substantial accelerations for DNN workloads. In mobile and IoT

devices, the energy budget is severely limited, requiring a higher energy efficiency

to enable DNN processing. DNN model compression has emerged to be an effective

technique. Sparse DNN hardware architectures have been created to support com-

pressed models by storing compressed weights and eliminating redundant operations

[35, 36]. However, unstructured pruning [35, 37] introduces irregularity, and extra

control overhead is needed to handle the irregular data flow. Structured pruning [38]

reduces the overhead, but it may sacrifice accuracy.

From the circuit level, processing in memory (PIM) is the ideal candidate for

DNN inference computation for improving performance and energy efficiency. The

DNN computation is easily parallelizable and can be directly mapped to PIM. More

importantly, PIM removes the memory wall by eliminating data movement between

memory units and processing units. However, PIM peripheral circuits need to be

considered as an integral part of the evaluations. These include digital-to-analog
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converters (DACs) for converting the digital inputs and analog-to-digital converters

(ADCs) for digitizing the outputs. The peripheral circuits are known to overtake the

memory device as the dominant part of PIM’s energy consumption, especially when

the required resolution is high [17]. Reducing the resolution relaxes the converter

requirements, but will sacrifice the accuracy. Maintaining the same resolution with

the reduced number of rows will sacrifice the compute density.

Choosing the right PIM memory device is not obvious. Nonvolatile memory

(NVM) devices such as resistive RAM (RRAM), magnetoresistive RAM (MRAM),

phase-change RAM (PCRAM), ferroelectric RAM (FeRAM), are suitable for PIM

thanks to their nonvalitility, low standby power, and high density. However, the

commercially available NVM devices are still at 22nm [39, 40, 41, 42], significantly

lagging the scaling of logic devices. The process, voltage, temperature (PVT) varia-

tions of the NVM devices also require a diligent control. Even though both SRAM

and NVM suffer from variability, SRAM has no extra process cost, no drift issues,

infinite endurance, and always leads technology scaling. 7nm and 5nm SRAM are

already commercially available [43]. SRAMs in an even more advanced process is

upcoming. Comparing a 7nm SRAM to a 22nm RRAM or MRAM, a 7nm SRAM

offers a higher density, lower access energy, and higher access speed. A 7nm SRAM is

an even better candidate for PIM for its higher compute density and energy efficiency

if nonvalitility is not of primary consideration.

In this work, we investigate PIM based on a 7nm SRAM and explore practical ana-

log PIM design choices. The investigation points to a promising direction of utilizing

data sparsity in an adaptive design to relax the high-resolution ADC requirements.

After introducing the challenges behind SRAM PIM architectures in Section 3.2, we

present the contributions of this work, which are briefly summarized below:

1. An analysis of the practical design choices for 7nm SRAM PIM, accounting for

the noise and non-idealities derived from the intrinsic nature of the SRAM cell
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and analog accumulation in the bitline (Section 3.3).

2. Runtime range detection and adaptive-range PIM (AR-PIM) to relax the high-

resolution ADC requirements (Section 3.4).

AR-PIM is benchmarked using DNN workloads with MNIST and ImageNet datasets

to demonstrate energy efficiency and area improvements.

In Section 3.2, we provide a background of PIM using SRAM. In Section 3.3,

we evaluate the PIM design choices using 7nm SPICE simulation. In Section 3.4,

we propose the AR-PIM architecture and present a new runtime density detection

mechanism and energy minimization strategy. In Section 3.5, we evaluate the AR-

PIM architecture and compare with the reference architecture for DNN benchmarks.

In Section 3.6, we conclude this work.

3.2 SRAM-Based PIM

PIM designs usually adopt a weight-stationary approach, where the weights are

stored in a memory array and the input activations are passed to the array to perform

computation. By keeping the weights in memory, the data movement is avoided. The

weights are stored bit-parallel across columns as in [44, 45, 46]. In computation, a

vector of inputs is driven, one per wordline (WL). The cells along a column are turned

on, and the currents are summed on the bitline (BL), accomplishing the dot product

between the input vector and the vector stored on the column of the memory array.

Across the columns, dot products are conducted in parallel, essentially realizing a

vector-matrix multiplication (VMM).

An SRAM bitcell stores a value and its complement. When its WL turns on, the

stored value drives BL and the complement drives BLB. In SRAM-based PIM, either

BL or BLB can be taken as the output as in Figure 3.1. In this work, BL is taken as

the output. The key design parameters are considered below.
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Figure 3.1: The PIM mapping of the convolution operation where R × S is the
kernel size, C is the input channel and K is the output channel. The 2b weight in
the example is stored in two columns. The zoom-in view shows the 6T SRAM and
current IDS discharged by each bitcell. Both baseline PIM and AR-PIM adopt this
mapping for convolution operation.
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Figure 3.2: The multi-bit (2b in the example) input representation of (a) WL pulse
level and (b) WL pulse train.

Array Size. Using a larger array, more cells can be computed in parallel, provid-

ing a higher performance; and the row and column peripheral circuits are amortized

more effectively, leading to a higher compute density. A drawback of a larger array

is the lower utilization in mapping smaller VMMs, leaving unused cells. A larger

array also presents a higher capacitive loading on WL and BL, resulting in a longer

delay. Finally, a larger array implies the potential activation of more cells to add their

currents to the same BL, and thus the accumulation of more noise that may degrade

the signal-to-noise ratio (SNR) making it impossible to discriminate the LSB.

Input Encoding. The input activations can be encoded in two forms as shown

in Figure 3.2: (a) pulse level or (b) pulse train, i.e, each bit of the multi-bit input

is represented by a 1b pulse. The pulse train is more linear compared to pulse level

or width, and it can be better controlled [43], but the latency increases with the bit

width. Past designs have combined pulse level and pulse train [17, 18, 19].

BL Resolution. The BL resolution depends on the WL resolution (bWL), the

memory cell resolution and the number of activated memory cells (Ncells) in a column.

Since SRAM is a digital (1b) memory, the BL resolution is bBL = bWL+log2Ncells. A

higher BL resolution requires a higher-resolution ADC, which in turn significantly

impacts power and area [17, 3]. A higher BL resolution also exacerbates PIM’s

variation and reduces the capability of error tolerance [47].

ADC Sharing. The ADC area can be significantly larger compared to the bitcell

pitch. Placing one ADC per BL is difficult due to the physical layout constraint.
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Figure 3.3: ADC energy consumption with effective number of bits (ENOB) from [3].

Since the conversion time of ADC can be much shorter than the time it takes for the

SRAM BL current to develop, sharing an ADC between BLs becomes a necessity,

e.g., 1 ADC is shared by 4 BLs in [43]. ADC sharing requires extra circuits such

as sample and hold [17] or weighted capacitors [43] to store the BL value before the

conversion starts.

3.3 7nm SRAM PIM Design Considerations

The evaluations are based on SPICE simulations on a 128×128 SRAM array in

7nm FinFET CMOS technology. 1 The ADC energy is extracted from [3]. The array

size of 128 achieves the highest utilization for DNN workloads as indicated in [48].

3.3.1 Input Encoding

Input encoding choices are investigated. If the input activations are 1b, they can

be encoded in 1b WL pulses. Since a BL is connected to 128 bitcells, the BL resolution

is bWL = 8. An 8b ADC consumes 96% of the total energy (Figure 3.4), significantly

higher than the energy due to memory access or the 1b DAC. For a 2b input activation,

two input encoding options are available: 1b pulses over 2 cycles (with partial sums

1This section is collaborated with Arm Research.
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Figure 3.4: Energy efficiency of 1b, 2b, 4b, 8b input activation. The different input
encoding for each configuration is implemented by DAC bits and DAC cycles with
the corresponding ADC resolution.

scaled and added digitally post-ADC) or a single-cycle 2b pulse, resulting in 8b and

9b BL resolution, respectively. A 9b ADC consumes 35% more energy than an 8b

ADC (Figure 3.3). Hence, two 8b analog-to-digital (A/D) conversions with [DAC bits,

DAC Cycles] = [1, 2] result in 49% higher energy than one 9b A/D conversion with

[DAC bits, DAC Cycles] = [2, 1], so the single-cycle 2b pulse encoding is preferable

in terms of energy (Figure 3.4).

Moving to 4b and 8b input activations, more input encoding options are avail-

able. The 2b-pulse encoding was found to be the sweet spot in energy consumption.

However, regardless of the input encoding choice, the ADC dominates the energy con-

sumption. A WL resolution of higher than 2b is not practical due to the significant

escalation of ADC energy.

3.3.2 BL Resolution

If a bitcell storing a 1 is activated, the bitcell discharges one unit of current

from BL. However, process variations complicate the picture. As more discharging

36



(a) (b)

Figure 3.5: SRAM BL current levels from SPICE simulation for WL voltage of (a)
0.8V and (b) 0.6V. Each Gaussian distribution represents one output level. The less
overlap between two distributions means the better sensing margin for distinguishing
two output levels.

bitcells are activated, the distribution of current gets wider (Figure 3.5a). The wide

distribution makes it challenging to decode as few as 16 current levels. This insight

suggests that the degradation of SNR due to process variations may make using a

very high-resolution ADC inconsequential.

As the WL voltage level is reduced, e.g., in supporting WL pulse-level input

encoding, the current level boundaries are further obscured as seen in Figure 3.5b. If

the PVT is considered, the effective BL resolution will be further reduced.

3.3.3 ADC Resolution and ADC Sharing

For this investigation, a reference SRAM-based PIM design is adopted: a 128×128

SRAM array; the input is provided bit serially; WL is encoded in 1b pulses. For

example, an 8b input activation is passed to WL by a 1b DAC in 8 cycles. An 8b

weight is stored in 8 SRAM bitcells in a row. Therefore, the full resolution required

at each BL is 8b. A weight-stationary digital design was synthesized using an array of

multiply-accumulates (MACs) with weight storage to mimic PIM. The partial sums

are accumulated along a column of MACs. The digital design also follows the same

bitwidth as the PIM design for comparison at the MAC level.
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Figure 3.6: The energy efficiency comparison for synthesized digital design and PIM
design with different BL resolutions and 3 Input Activation (IA) and Weight (W)
bitwidth combinations.

(a) (b)

Figure 3.7: Area comparison between synthesized digital design and PIM design for
(a) 1 ADC per BL and (b) 1 ADC shared by 2 BLs.

The energy efficiency of the PIM design is compared to the digital design in

Figure 3.6, assuming one ADC per BL. PIM achieves the best energy efficiency when

the activation and weight bitwidth are low. Also, note that PIM with an ADC that

supports the full BL resolution fares worse than the digital design. For PIM’s energy

efficiency to be competitive, the ADC resolution needs to be reduced to 3b or 4b

below the full BL resolution.

The area of the synthesized digital design is compared to PIM in Figure 3.7 for

one ADC per BL. Due to the relatively large area of ADC, especially a high-resolution
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ADC, the area of PIM easily exceeds the digital design. When the ADC resolution is

reduced to 3b below the full BL resolution, the area becomes comparable. Figure 3.7b

shows the configurations of one ADC shared by 2 BLs to reduce the PIM area. The

results highlight the importance of reducing the ADC resolution and ADC sharing in

keeping PIM more area efficient than a digital design.

3.3.4 Necessity to Control Resolution

The above sections highlight the challenges behind a high BL resolution and its

feasibility due to the sensing margin and reducing the ADC resolution is a must to

make PIM more competitive in energy efficiency and area.

To control the BL resolution, WL resolution can be reduced by employing 1b-pulse

encoding over multiple cycles, and activating only a subset of rows at a time such

as in [49], which requires more cycles to complete the computation. We propose an

additional approach to leverage data sparsity in controlling the BL range in runtime.

This approach can prevent sacrificing the classification accuracy incurred by direct

truncation on BL values with the reduced ADC resolution.

3.4 The AR-PIM Architecture

For a bitcell to contribute to the BL current and increase the BL range, the bitcell

needs to store a 1 and it needs to be activated. This implies that both the weight

value and the input activation value are 1 (at bit level). If either the weight value

or the input activation value is 0, the bitcell does not contribute to the BL current

or the BL range. Therefore, the BL resolution quoted in the previous sections is the

maximum resolution, while the effective BL range can be lower.

The presence of 0s in weights and input activations are known as weight and input

sparsity. Sparsity exists even in unpruned models, especially with the popular rectified

linear unit (ReLU) as the activation function that produces 0s in activations. The
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Figure 3.8: AR-PIM architecture with BL detection circuitry.

sparsity can be further increased in pruned models, where some weights are removed

by pruning algorithms. In addition to word-level sparsity, plenty of bit-level sparsity

exists in both weights and input activations as identified by [50].

In DNN inference, a model is given and the weight sparsity is static. However, the

activation sparsity is dynamic, namely input dependent and determined at runtime.

As a result, when the computation of the DNN inference is mapped to PIM, the BL

range can vary due to the dynamic activation sparsity. We propose a technique to

detect the runtime sparsity (or density). If the density is low, an energy-inexpensive

low-resolution ADC can be used; and if the density is high, the BL range can be

adjusted by activating only a portion of the bitcells.

3.4.1 Runtime Density Detection

The runtime density detection can be implemented by reusing the SRAM sense

amplifier (SA) in the readout circuitry and a reference column as shown in Figure 3.8.

The reference column stores a preset number of 1s to correspond to a given density

level, e.g., 25% of the reference column storing 1 to represent a density of 25%. Prior
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Figure 3.9: Example of runtime density detection and adaptation.

to detection, a readout from the reference column is performed by applying unit pulses

on all WLs. The reference column’s BL current is integrated on a sampling capacitor

as the threshold voltage to represent a 25% density.

The density detection is done by an SRAM readout. The BL current is integrated

on a sampling capacitor to be the BL voltage. The SA compares the BL voltage to

the threshold voltage generated by the reference column. If the BL voltage is below

the threshold voltage, the density of the column is higher than the reference density,

and the SA signals EN = 1 to the controller.

The controller checks all BLs’ SA outputs. If at least one SA signals EN = 1,

the controller activates only 50% of the WLs and another round of SRAM readout

follows. In the next round, if at least one EN = 1, the controller activates just 25%

of the WLs in subsequent SRAM readouts. The process continues until the density

is reduced to the reference level or below, thereby controlling the BL range.

Figure 3.9 illustrates BL range control. Assume that prior to the detection, the

threshold voltage is set to represent a 25% density. In the example, in cycle 0, the

first and the second BL density exceed the 25% threshold, and the controller only

activates 50% of the rows in the subsequent cycle 1 and cycle 2. In cycle 1, the first
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Figure 3.10: Energy of AR-PIM for IA/W density from 5% to 95% with conditions of
ADC ENOB r-1, r, r+1 (top) and ADC ENOB r for IA/W density from 5% to 95%.

BL density still exceeds the threshold, and the controller activates only 25% of the

rows in the subsequent cycle 3 and cycle 4. By actively limiting the density below

25%, the BL resolution is reduced by 2b. The proposed range control adapts to the

effective BL resolution by activating more or fewer bitcells, i.e., tuning the range of

BL currents. Thus we name it AR-PIM.

3.4.2 Energy Minimization

To reduce the ADC resolution and improve the sensing margin, low-resolution

ADCs are necessary. When adopting low-resolution ADCs, only a portion of WLs at

a time can be activated and the BL values are read out sequentially. Therefore, it

may result in more processing cycles, which in turn costs more energy and a longer

latency.

To amortize this overhead, AR-PIM exploits the lower effectual BL range in run-

time originating from data density levels of input activations and weights.

The lowest energy is investigated by sweeping the activation and weight density

from 5% to 95%. If the ADC resolution is set based on the effective BL range (using

the IA/W density levels as the proxy indicator), the number of processing cycles and
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Model LeNet AlexNet
Dataset MNIST ImageNet
Layer CONV1 CONV2 CONV1 CONV2 CONV3 CONV4 CONV5

BL Value Mean 0.383 4.630 27.957 14.478 6.932 2.945 2.764
BL Value Std 1.038 4.277 17.429 12.804 6.123 2.977 2.999

Model VGG11
Dataset ImageNet
Layer CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV7 CONV8

BL Value Mean 6.420 9.030 9.906 5.907 6.798 3.905 3.463 2.925
BL Value Std 4.250 9.604 8.650 5.468 5.710 3.750 3.420 3.110

Table 3.1: Mean and standard deviation of BL density numbers. (The maximum BL
density is 128 for a 128×128 array.)

energy consumption can be minimized. Figure 3.10 shows the result of choosing the

appropriate ADC resolution represented as ENOB for optimal energy consumption.

We develop a strategy to minimize the energy cost with respect to ADC resolution

and data density. The product of an input bit and the bitcell value follows a Bernoulli

distribution with p being the probability of 1 and q = 1 − p being the probability

of 0. Here p reflects the activation and weight density. Adding n products on a BL,

where n is the array size, produces the sum that follows a Binomial distribution of

mean np and variance npq (effectual BL range). Let k be the density number, i.e.,

the number of 1s being summed up on the BL. The CDF of the binomial distribution

can be written as:

F (k, n, p) =
k∑

j=0

n!

j!(n− j)!
pj(1− p)n−j.

Let ADC resolution t be an integer value ranging from 0 to log2n and the threshold

is set as kt = 2t. The total energy EAR−PIM can be written as the sum of energy of

each PIM step EPIM , taking into account the need for more steps when the density

exceeds the threshold as shown in Figure 3.9. EPIM(t, n) represents the sum of ADC,

DAC, other peripheral circuits, and memory energy for a MAC operation.

43



EAR−PIM(kt, n, p) = EPIM(t, n) · F (kt, n, p)

+ EPIM(t, n) · 2 · [ F (2kt, n, p)− F (kt, n, p) ] + ...

+ EPIM(t, n) · n

2t
· [ F (n, n, p)− F (

n

2
, n, p) ]

= EPIM(t, n) · [
n

2t
· F (n, n, p) +

log2n−t−1∑
i=0

(2i − 2i+1) · F (2ikt, n, p) ].

Substituting F (n, n, p) = 1, we get

EAR−PIM(kt, n, p)

= EPIM(t, n) · [
n

2t
−

log2n−t−1∑
i=0

2i · F (2ikt, n, p) ].

AR-PIM minimizes energy consumption by jointly considering the data density p

and appropriate ADC resolution t utilizing the runtime BL density detection tech-

nique.

3.5 Evaluation

3.5.1 Energy Consumption and Performance

The energy consumption of the AR-PIM architecture is evaluated using three

DNN workloads based on the bit-level sparsity of activations and weights. The DNN

workloads include LeNeT using MNIST dataset, AlexNet, and VGG11 using Ima-

geNet dataset. The energy of AR-PIM is highly dependent on two factors including

the runtime data sparsity and the ADC resolution.

Using LeNet with MNIST dataset, both activations and weights are quantized

to 8b in the evaluations. Table 3.1 shows the average density numbers of BLs when

running inference in the first and the second convolution layers. Each layer is mapped

44



to a 128×128 PIM module [17]. The first layer consists of six 3×3 kernels. Each kernel

is mapped to 8 columns (one bit per column) for a total of 48 columns. Note that

the utilization of each column of cells is relatively low, at 9/128 or 7%. The second

layer consists of sixteen 3×3×6 kernels. Each kernel is mapped to 8 columns (one bit

per column) for a total of 128 columns. The utilization of each column of cells is at

54/128 or 42%.

In both layers, the average BL densities stay below 10%, making AR-PIM suitable

as the effective BL range is low and consistent between columns.

Figure 3.11a shows the normalized energy with different ADC resolution settings

for the first convolution layer and the second convolution layer of LeNet. In the first

convolution layer, a lower ADC resolution reduces the energy consumption. The low

utilization of cells, or 9/128, along each column leads to a consistent low effective BL

range. The low average BL density and the narrow distribution (Table 3.1) allow the

setting of a low ADC resolution to aggressively reduce the BL resolution to save the

most energy.

In the second convolution layer, a different trend is observed: when the ADC

resolution is too low, the energy consumption increases. Different from the first

layer, the utilization in the second layer of mapping is higher, at 54/128. The higher

utilization results in a broader BL density distribution (Table 3.1). The lowest ADC

resolution could result in a large number of extra cycles and more energy. The energy-

optimal ADC resolution can be set to capture most of the BLs, leaving only a small

number of extra cycles to capture the remaining BLs.

Figure 3.11b shows the latency implications of different ADC resolution settings.

Generally speaking, the lower the ADC resolution, the higher the latency. The energy-

optimal points tend to be low-resolution points where the latency does not increase

excessively.

Figure 3.11c and Figure 3.11d shows the normalized energy and latency of AR-PIM
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with different ADC resolution settings for the first, middle, and the last convolutional

layers in AlexNet using the ImageNet dataset. The activations and weights are quan-

tized to 16b and 12b in the evaluations while maintaining the inference accuracy.

The mean of BL density numbers decreases and the distributions get narrow in deep

layers as shown in Table 3.1.

Similar behavior can be observed in VGG11 as shown in Figure 3.11e and Fig-

ure 3.11f. Across different DNN workloads, AR-PIM can minimize the energy con-

sumption while maintaining the inference accuracy over the baseline with full 7b

ADC resolution. As a result, the AR-PIM architecture improves the energy gain up

to 3.2× over the baseline PIM in the deep layers as the BL density decreases. In

latency constrained applications, AR-PIM can still provide up to 1.7× higher energy

efficiency.

3.5.2 Discussion

Latency Overhead. AR-PIM exploits the runtime data sparsity of multiple

BLs in an array. Each BL is detected and checked whether the BL value overflows

or not. Since the BLs within an array share the same input, the latency overhead

will emerge for waiting for other BLs to resolve the dot product result. The proposed

AR-PIM benefits more with consistent BL values. If the BL values within an array

are consistently high in the same cycle, then every BL of the array takes longer cycles

together. If the BL values within an array are consistently low, then the array can

be early terminated together. So the span of BL values within an array matters

more. Figure 3.12a shows the BL distribution of 128 columns for the first layer of

AlexNet workload. It is observed from the box plot that for the same time step the

difference between BL values is not exceeding 30% of 128. Figure 3.12b shows the

BL distribution of 128 columns for the last layer of AlexNet workload. The BL value

difference for the same time step becomes even smaller. The BL distributions of the
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first and the last layer show that the BL difference is not large so the latency overhead

is within the acceptable range.

3.6 Summary

This work explores the design boundary for analog PIM using SRAM in a 7nm

process. The input encoding, BL resolution, ADC resolution, and ADC sharing are

studied to analyze their impacts on the energy efficiency and the area cost of analog

PIM. From the analyses, we conclude that low-bitwidth NNs are more suitable to

be deployed on the analog PIM to save energy on power-constrained mobile devices.

Addressing the challenges behind the deployment of multi-bit matrices in analog ac-

celerators, the AR-PIM architecture is presented with a runtime BL density detection

mechanism to adapt to a lower effective BL range.

The AR-PIM architecture eliminates the need for high-resolution ADCs and re-

duces the energy consumption of the ADC proportion. By reducing the BL range,

AR-PIM also enhances the variation tolerance capability and the sensing margin. By

considering the energy gain and latency overhead together, our evaluations show that

AR-PIM provides 1.7× higher energy efficiency over the baseline PIM with 4.3× area

reduction while maintaining the inference accuracy.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Energy consumption and latency of AR-PIM compared and normalized
to the baseline PIM with 7b ADC resolution (the rightmost bar in each figure) for each
layer running (a)(b) LeNeT using MNIST dataset, (c)(d) AlexNet using ImageNet
dataset, and (e)(f) VGG11 using ImageNet.
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(b)

Figure 3.12: Latency overhead.
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CHAPTER IV

CASCADE: Chaining PIM in Analog Dataflow

4.1 Introduction

In recent years, machine learning is becoming the dominant workload for the next-

generation computation systems. As one of the most important machine learning

kernels, deep neural networks (DNNs) and recurrent neural networks (RNNs) are

now being widely deployed in tasks from image analysis to speech recognition.

DNN workloads are typically highly vectorized with well-defined dataflow pat-

terns. A large number of digital DNN accelerators [33, 32, 34, 35, 36] have been de-

signed to achieve high performance and high efficiency. With the continued increase

in DNN complexity and the growing demand for faster and lower power machine

learning use cases, we see the need of power efficient chips that can be employed in a

wide range of applications including autonomous driving and mobile devices. In such

edge applications, an advanced nonvolatile memory, such as resistive RAM (RRAM),

can play an important role thanks to its high storage density, low leakage power and

fast wake-up from sleep [51].

Beyond high-density storage, recent work started looking into in-RRAM com-

putation, a form of processing in memory (PIM), to enable massively parallel dot

products in an RRAM crossbar array without moving the stored operands. The core

computation of a DNN layer can be easily mapped to an RRAM crossbar array: the
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input activations of a DNN layer are applied to the wordlines (WL) of an RRAM

crossbar as voltage pulses, and the weights are stored as conductances of the RRAM

crossbar. A dot product is obtained from the bitline (BL) of each column of the

RRAM crossbar by the physics of Ohm’s law for multiplication and Kirchhoff’s law

for accumulation. The simple and elegant in-RRAM dot product has been projected

to achieve impressive performance and efficiency [52, 53, 54, 55, 56, 57].

In-RRAM dot product is a form of analog computation. When used as a part of a

digital system, the digital inputs to the RRAM crossbar need to be converted to volt-

age pulses using digital-to-analog converters (DACs), and the outputs of the RRAM

crossbar in the form of analog currents need to be integrated and digitized using

analog-to-digital converters (ADCs). In-RRAM computation pushes the resolution

requirement of analog computation to accommodate tens or hundreds of products of

multi-bit WL pulses with multi-bit RRAM conductances that are summed together.

High-resolution ADCs are required, adding a significant overhead. As RRAM cross-

bar size and device resolution continue to increase, the required ADC resolution also

increases. It would not be surprising to see that analog-to-digital (A/D) conversion

will eventually dominate the area and energy consumption of in-RRAM computation

to an extent that renders in-RRAM computation impractical.

A survey of recent work on in-RRAM computation highlights the overhead of A/D

conversion as a severe limitation. As a full-fledged DNN acclerator in RRAM, ISAAC

[17] employs 8-bit ADCs that are estimated to cost 58% of the power and 31% of the

silicon area. PRIME [18] uses sense amplifiers (SAs) instead of conventional ADCs

to reduce area. However, an SA is only capable of resolving one bit at a time. To

obtain a 6-bit digital output, the SA uses up to 26 cycles in decision time, resulting

in a long latency that is exponentially dependent on the resolution. The SA interface

limits the throughput for demanding applications.

The second limitation of in-RRAM computation is that even a single layer in a
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state-of-the-art DNN or RNN can be too large to fit on a practical RRAM crossbar.

The reason is twofold. First, despite the rapid progress in RRAM technology develop-

ment, most RRAM crossbars demonstrated are of sizes from 64×64 to 256×256 [58],

allowing up to 64 to 256 partial sums to be accumulated on each BL. In comparison,

a single point in the output feature map (fmap) of a fully-connected (FC) layer in

AlexNet [59] requires up to 9,216 partial sum accumulations, and a single point in the

output fmap of a convolutional layer in GoogLeNet [60] requires up to 1,728 partial

sum accumulations, both easily exceeding the number of analog accumulations that

can be done in a practical RRAM crossbar. Therefore, one kernel computation needs

to be separated and mapped to multiple RRAM crossbars. The resulting partial sums

from multiple crossbars need to be digitized and accumulated in the digital domain.

Second, it is impractical to assume that a 16-bit or even a 8-bit weight value can be

reliably stored in one RRAM cell. Multi-level cell (MLC) requires the use of more

complex DACs and ADCs, and can be more easily affected by noise and process vari-

ation. It is more practical to map a multi-bit weight value to multiple RRAM cells.

Similarly, it is more practical to separate an input to units of 1 or 2 bits and apply

them serially to simplify the circuitry and reduce the noise and variation uncertainty.

It is also more practical to activate a subset of WLs, instead of all WLs, in a large

RRAM crossbar. All of these practical approaches lead to more partial sums that

need to be digitized and digitally accumulated.

In essence, in-RRAM computation consists of at least three parts: in-RRAM dot

products, A/D conversion, and digital accumulation of partial sums. Currently, only

the first part is done in RRAM, while the second and the third part are done by

conventional CMOS circuits. Besides the aforementioned overhead of high-resolution

A/D conversion, we estimate that the energy and area of digital partial-sum accumu-

lation can surpass in-RRAM dot products to yield the core in-RRAM computation

insignificant.
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In this work, we present CASCADE, an in-RRAM computation architecture for

DNNs and RNNs, to specifically address the problems of high-cost A/D conversion

and digital partial sum accumulation associated with the current in-RRAM compu-

tation approach. The contributions of this work are as follows:

1. We choose more practical and robust in-memory dot products by reducing effec-

tive BL resolution to ensure noise and variation tolerance. Only low-resolution

analog outputs can be reliably cascaded. We analyze the trade-off between reso-

lution and inference accuracy, and show that only by lowering the BL resolution,

a good accuracy can be reliably achieved.

2. We propose R-Mapping scheme to use a buffer RRAM to perform in-RRAM

partial sum accumulation, replacing digital partial sum accumulation. The

analog summation bypasses the A/D conversions of low-order sums, reducing

the number of A/D conversions.

3. We connect MAC RRAMs to buffer RRAMs by using the transimpedance ampli-

fiers (TIAs) as the interface to convert MAC RRAMs’ BL outputs from analog

current to analog voltage that can directly feed to buffer RRAMs as inputs.

Cascading MAC RRAMs with buffer RRAMs not only enables the “analog”

dataflow to meet the computation requirement of a DNN or RNN layer, but

also keeps all intermediate values in analog and in memory to obtain the high-

est possible energy efficiency and performance.

In Section 4.2, we provide a background of PIM using RRAM. In Section 4.3, we

illustrate the CASCADE architecture and present a new memory mapping scheme

that is R-Mapping and an analog summation scheme. In Section 4.4, we evaluate

the CASCADE architecture and compare with ADC-based and SA-based reference

architectures for the 10 DNN and 1 RNN benchmarks. In Section 4.5, we conclude

this work.
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Figure 4.1: (a) A dot product implemented in an RRAM crossbar. (b) Parallel dot
products implemented in an RRAM crossbar array. The input vector is converted to
voltage pulses by DACs and the weights are stored in the RRAM crossbar. The BL
currents are sampled and held (S&H) and converted to digital values.

4.2 RRAM-Based PIM

An RRAM cell is a metal-insulator-metal (MIM) device that stores information via

its programmable conductance. Typical RRAM devices are constructed in a crossbar

array to provide dense storage to fulfill the growing demand of low-power nonvolatile

memory. In addition to storage, an RRAM crossbar array can be used to perform

parallel dot products.

Figure 4.1 shows examples of a dot product and parallel dot products using RRAM

crossbars. In Figure 4.1(b), a 4×4 weight matrix is stored on the RRAM crossbar

as conductances. A 1×4 input vector is sent to four DACs to be converted to read

voltage pulses and applied to the WLs of the crossbar. A read voltage pulse over
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an RRAM cell’s conductance produces a current that represents the product of the

voltage input with the conductance. The currents through RRAM cells along a

column are aggregated on the BL to complete a dot product.

As illustrated in the above example, a read voltage pulse is applied to a WL that

drives a row of RRAM cells. Activating multiple or all of the WLs in the RRAM

crossbar enables the second dimension of parallelism. Throughout the dot product

operation, one set of operands, e.g., the 4×4 weight matrix in the above example, is

kept in memory, saving significant time and energy in data movement.

In addition to dot products, an RRAM device supports accumulation in a write

process. Applying consecutive write pulses, i.e., set or reset pulses, to an RRAM cell

increases or decreases its conductance [61, 62]. The benefit of in-RRAM accumulation

can be significant, as a typical n-step digital accumulation requires n reads from

memory to fetch the temporary sum, and n writes to memory to update the sum,

which are all eliminated by in-RRAM accumulation.

4.2.1 Workloads and Mapping to RRAM

DNNs and RNNs have emerged to be one of the most important machine learning

workloads. A DNN consists of layers of convolution (CONV), pooling, normalization,

and fully-connected (FC) layers. CONV and the FC layers are the most computation-

intense and memory-intense layers.

A CONV layer is shown in Figure 4.2. An input activation sized W × H of C

channels is convolved with K kernels sized R×S of C channels to produce an output

fmap sized X × Y of K channels (X = W −R+ 1 and Y = H − S + 1). The kernels

(weights) are learned through a training algorithm. A point (x, y, k) of the output

fmap, f out(x, y, k), is calculated as follows:

f out(x, y, k) = σ(
C∑
c=1

R∑
r=1

S∑
s=1

f in(x+ r, y + s, c)× wk(r, s, c)), (4.1)
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Figure 4.2: Mapping of convolution operation on an RRAM crossbar array.
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where f in(x, y, c) is the input activation at (x, y, c), wk(r, s, c) is the weight value of

kth kernel at (r, s, c), and σ is the activation function.

Each elementary step of the computation involves the product of a pair of input

activation and weight. To compute each point in the output fmap, (4.1) describes

three layers of loops over R, S, and C, involving accumulation of R × S × C partial

sums. To increase throughput, the three layers of loops can be unrolled or partially

unrolled. To complete one entire output fmap, there are three additional outer loops

over X, Y , and K.

An FC layer can be viewed as a special case of CONV layer with W = R and

H = S, i.e., the dimensions of the input activations and kernels are matched. The

R× S for a FC layer is typically larger than a CONV layer. Since the dimensions of

the input activations and weights are matched, an output fmap is sized 1× 1×K.

To perform inference, the weights w of a CONV or a FC layer remain static as

the input activations f in are streamed in. Therefore, it is advantageous to store

the weights in RRAM, reuse the weights as new input activations are applied. One

efficient way of storing weights in an RRAM crossbar array is shown in Figure 4.2,

where one R × S × C kernel is stored in R × S × C cells as conductances in one

column, and K kernels are stored across K columns. The illustration in Figure 4.2

assumes that the RRAM array consists of at least R×S×C rows and K columns, and

each RRAM device provides a sufficient resolution to store a weight value. Following

this mapping, R × S × C partial sums are accumulated on one BL to complete the

computation of one point in the output fmap.

Practical RRAM arrays may not provide nearly as many rows or columns. The

R × S × C of a layer in a state-of-the-art DNN or RNN can easily exceed 10,000.

Furthermore, a practical RRAM cell may not provide enough distinguishing levels

to store a 16-bit or even an 8-bit weight value. The technology limitation requires a

weight value to be stored in multiple RRAM cells, and the R×S×C accumulations to
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be separated and performed on multiple BLs of one RRAM array or multiple arrays.

Each BL is digitized by an ADC or an SA, and the final accumulation is done in the

digital domain.

The underlying computation in an RNN can be mapped in the same manner.

For example, consider the long short-term memory (LSTM) [63, 64], a kind of RNN.

Given an input sequence X = (x1, x2, ..., xT ), where xt is the input at time step t,

t ∈ {1, ..., T}, a typical LSTM layer is defined as follow.

Input gate : it = σ(W i
xxt + U i

hht−1) (4.2)

Forget gate : ft = σ(W f
x xt + U f

hht−1) (4.3)

Output gate : ot = σ(W o
xxt + U o

hht−1) (4.4)

Candidate memory : c̃t = tanh(W c
xxt + U c

hht−1) (4.5)

Memory cell : ct = ft ⊙ ct−1 + it ⊙ c̃t (4.6)

Hidden state : ht = ot ⊙ tanh(ct), (4.7)

where W j and U j, j = {i, f, o, c}, are parameters learned through a training algo-

rithm, ⊙ denotes element-wise multiplication, σ is the sigmoid function, and tanh is

the hyperbolic tangent function. Both σ and tanh are element-wise nonlinear activa-

tion functions. The computation intensive part is the matrix-vector product in (4.2)

to (4.5), which can be rewritten as:



W i
x U i

x

W f
x U f

x

W o
x U o

x

W c
x U c

x


 xt

ht−1

 (4.8)

Using this formulation, the dot products in an LSTM can be implemented in RRAM

following the same approach.
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ISAAC [17] PRIME [18] PipeLayer [19] CASCADE

Input bitwidth 16
6

w/ fraction encoding
16 16

Input bits per cycle (bWL) 1 3 1 1

Weight bitwidth 16
8

w/ fraction encoding
16 16

Cell resolution (bcell) 2 4 4 1

Array size (Nrows ×Ncols) 128×128 256×256 128×128 64×64

BL resolution (bBL) 9 15 11 7

Output bitwidth
8

w/ encoding
6

w/ truncation
N/A

6
w/ encoding

Output interface ADC SA Spiking integrate and fire TIA

Table 4.1: In-RRAM MAC architecture comparison.

4.2.2 In-RRAM Computation

ISAAC [17], PRIME [18] and PipeLayer [19] are three recently published architec-

tures for implementing DNN and RNN through in-RRAM computation. There are

also examples of in-SRAM computation [44, 45, 46] and in-DRAM computation [65]

that follow the same concept. A comparison of key aspects of ISAAC, PRIME and

PipeLayer is shown in Table 4.1.

Row circuitry. PRIME applies both width- and level-modulation to each WL.

A 6-bit input is converted to one of 8 voltage levels over two pulse periods. Providing

8 precise voltage levels is challenging, complicating the DAC circuits. ISAAC streams

inputs in a bit-serial fashion: a binary input is sent to the WL driver one bit at a time,

and a voltage pulse is produced and passed onto the WL. A 1-bit driver is simpler to

design and the read process is also better controlled. PipeLayer also adopts ISAAC’s

bit-serial input streaming.

BL resolution. In-RRAM computation can produce a high BL resolution.

PRIME uses 4 bits per RRAM cell and a 256-row RRAM array, resulting in a BL

resolution of 15 bits. The outputs are truncated to 6 bits to be practical. ISAAC uses

bit-serial input streaming, stores 2 bits per cell, and uses a 128-row array to reduce the

BL resolution to 9 bits. The bit-serial input streaming is also adopted by PipeLayer.

However, PipeLayer stores 4 bits per cell, leading to a 11-bit BL resolution.
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Column circuitry. PRIME uses an SA for each BL. The SA takes up to 2n

cycles to perform 2n comparisons to produce a n-bit output, where n is the output

bitwidth. ISAAC uses an 8-bit ADC, which can be costly in terms of power and area.

The ADC is shared among 128 BLs in an array to amortize the cost. PipeLayer uses

an integrate-and-fire component for each BL to generate spikes. The serial integration

is slow and the latency scales with 2n.

Physical implementation challenges. State-of-the-art PIM chips demonstrate

the challenges in designing peripheral circuitry to support a high BL resolution. To

be realistic, the resolution of inputs and weights are often lowered, and only a subset

of WLs are activated. The latest PIM chips, including the ones based on SRAM [44,

45, 46] and the ones based on RRAM [66], chose to digitize only the most significant

bits (MSBs) to reduce the cost of A/D conversion. In particular, 1-bit output was

used in [44]. Doing so severely limits the application of PIM. In [49], only 9 WLs are

activated per column. Since high-resolution PIM can be affected by process, voltage

and temperature (PVT) variations [47], it is critical to take variations and noise into

account in PIM designs.

4.2.3 A/D Conversion for In-RRAM Computation

A/D conversion is an integral part of in-RRAM computation, and it contributes

about 60% of the power consumption based on the latest work [17]. Common A/D

conversion choices are ADC or SA. An ADC’s complexity and power consumption

depend on its sampling rate and resolution. In-RRAM computation has a relatively

relaxed sampling rate, due to the intrinsic RC delay of WL and BL propagation.

However, in-RRAM computation can require a high resolution that depends on the

the resolution of the analog read pulse bWL, the resolution of RRAM cell bcell, and

the number of rows that are activated in parallel Nrows. With the growing desire of

using multi-level cell (MLC) RRAM and a higher degree of parallelism by activating
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more rows in parallel, the A/D resolution is constantly raised. Since the area and

energy consumption of A/D conversion scale exponentially with the resolution [67, 17],

designing the A/D conversion for in-RRAM computation is a main challenge.

An SA is commonly found in the peripheral circuitry of single-level cell (SLC)

memories such as SRAM or DRAM. An SA can be viewed as a 1-bit ADC that

compares BL voltage with a reference voltage to produce a 1-bit output. An SA can

serve as a multi-bit ADC by sweeping the reference voltages, i.e., a reference voltage

ramp, and keeping track of when the SA output flips using a counter [18]. The SA

circuitry is simple and compact, but using SA for multi-bit A/D conversion can cost

a high latency of up to 2n cycles, where n is the resolution.

4.3 The CASCADE Architecture

The CASCADE in-RRAM computation architecture targets inference in edge/IoT

devices with a stringent energy and area envelope. A CASCADE chip is made of

analog processing units (APUs) that each consists of a number of RRAM crossbar

arrays, as shown in Figure 4.3. An RRAM array can be tasked with performing in-

memory dot products, buffering or in-memory accumulation. CASCADE executes a

DNN or RNN model layer by layer as in [34]. The trained weights in a layer are first

loaded to the APUs from main memory. The weights and inputs are assumed to be

16 bits, and the dot products are quantized to 16 bits.

Compared to ISAAC, PRIME or PipeLayer, CASCADE uses an efficient analog

dataflow with a TIA interface at the output of a multiply-accumulate (MAC) RRAM

to convert the analog current to voltage. The voltage is applied to a buffer RRAM

directly to accomplish partial-sum accumulation. The results are sent to summing

amplifiers and ADCs to convert to digital values, followed by activation, normalization

and pooling. The outputs are stored in main memory for the next layer of processing.

Cascading MAC RRAMs with buffer RRAMs realizes the core computation of a
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Figure 4.3: Illustration of the CASCADE architecture. The bold lines indicate the
proposed dataflow. The zoom-in view shows an analog processing unit (APU).
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CONV or FC layer in analog and in RRAM. Since A/D conversion occurs in the very

end of the computation, redundant conversions of intermediate values are saved.

4.3.1 Input Streaming and Weight Mapping in MAC RRAM

In designing CASCADE, we adopt the bit-serial streaming of input (bWL = 1)

to a MAC RRAM. Each 16-bit input (η = 16) is streamed from LSB to MSB as 16

WL pulses. A 1-bit WL driver is simpler to design, more compact and consumes less

power than a multi-bit DAC.

The weight values are stored in a MAC RRAM using bcell bits per cell. A 16-bit

weight value (ω = 16) is mapped to ω/bcell RRAM cells. To limit the BL resolution

and the impact of variation and noise, we use 1-bit weight mapping (bcell = 1) and

moderate-sized RRAM array of 64×64 (Nrows = 64, Ncols = 64). In this way, the BL

resolution is kept to 7 bits, lower than all the previous work as shown in Table 4.1.

Following the encoding in [17], the BL resolution is further reduced from 7 to 6 bits.

With bit-serial input streaming and binary weight mapping in a MAC RRAM, only

two voltage references are needed, one for read and one for write, simplifying routing

and driver circuitry.

In CASCADE, a 16-bit weight is stored in 16 cells in a row; and a 64×64 MAC

RRAM stores 4 16-bit weights per row and 256 weights in total. The 64×64 MAC

RRAM can be effectively divided into 4 64×16 subsections, each subsection represents

a 64×1 16-bit weight vector. The MAC RRAM performs the dot products of a 1×64

input bit vector with four 64×1 16-bit weight vectors at a time.

4.3.2 Buffering of Partial Sums in Buffer RRAM

After in-RRAM dot products, the BLs of the MAC RRAM carry the analog partial

sums associated with every bit of the weights. Using bit-serial input streaming, every

new input bit vector produces a new set of analog partial sums that need to be aligned
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and accumulated.

Partial sum accumulation is also needed due to the mapping of wide dot products

on multiple MAC RRAMs. As discussed previously, in the case of large R×S×C, a

wide dot product needs to be separated and mapped to multiple MAC RRAMs or one

MAC RRAM through time-multiplexing. The partial sums need to be accumulated

to obtain the final result.

Digital Accumulation. In previous work [17, 18, 19], the accumulation of partial

sums is done in the digital domain. The dataflow is illustrated in Figure 4.4, and it

follows the steps below for every input bit vector:

1. Convert the BL outputs of a MAC RRAM to digital partial sums using ADCs

or SAs;

2. Read out the temporary sums stored in SRAM or registers;

3. Shift and accumulate the partial sums by S+A;

4. Truncate the LSBs of the sum to maintain a given bitwidth;

5. Write back the updated sum to SRAM or registers;

As illustrated in Figure 4.4, for a 16-bit input, the partial-sum accumulation

incurs 16 A/D conversions and data movement in and out of SRAM or registers,

which significantly worsens the energy efficiency and performance. Some of the A/D

conversions are wasteful due to the LSB truncation in Step (4).

Analog in-RRAM Buffering and Accumulation. The CASCADE archi-

tecture employs analog buffering and in-RRAM accumulation by cascading a MAC

RRAM with two buffer RRAMs via TIA interface, as shown in Figure 4.3. The

dataflow is illustrated in Figure 4.4, and it follows the steps below for every input bit

vector:

1. Convert the BL outputs of MAC RRAM to analog voltages using TIAs;
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Figure 4.4: Comparison of (a) in-RRAM MAC and digital accumulation of partial
sums, and (b) in-RRAM MAC and in-RRAM buffering and accumulation of partial
sums. The dashed lines indicate D/A and A/D boundaries. The inner loop is high-
lighted in blue.
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Figure 4.5: Illustration of R-Mapping for 4-bit weights and 4-bit inputs. The inputs
are serially streamed in with LSB first. The MAC RRAM stores two sets of 4-bit
weights Wa and Wb. The arrows indicate the align and store of partial sums through
TIAs and input drivers. The partial sum Pi,j is stored in the ith row and jth column
in cycle i of the buffer RRAM.

2. Align the voltages as inputs to buffer RRAMs to store the analog partial sums;

Since the MAC RRAM’s BL resolution is 6 bits, we propose to use 6-bit MLC

RRAM [68] for the buffer RRAMs. After the serial streaming of the 16-bit inputs are

complete, the analog partial sums stored in the buffer RRAM are accumulated before

the final A/D conversions.

To support in-RRAM accumulation of partial sums, we propose R-Mapping scheme

as illustrated in Figure 4.5. Consider LSB-first bit-serial input streaming and a 64×16

subsection of a MAC-RRAM that stores a 16-bit weight vector. First, the dot prod-

ucts are computed for the input bit vector 0 and the 16-bit weight vector. The outputs

are 16 analog partial sums (one per BL). These 16 analog partial sums are written to

a buffer RRAM at address i. Next, the dot products are computed for the input bit
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Figure 4.6: Normalized energy consumption of digital partial-sum accumulation and
analog in-RRAM partial-sum buffering and accumulation.

vector 1 and the 16-bit weight vector. The outputs of 16 analog partial sums are left-

shifted by 1 and written to the buffer RRAM at address i+1, as shown in Figure 4.5.

At the completion of the bit-serial input streaming, the partial sums are stored in 16

rows and 31 columns of the buffer RRAM (or 15 rows and 30 columns if the inputs

are signed numbers). The R-Mapping scheme allows the final accumulation to be

done in one read of the buffer RRAM described in Section 4.3.4.

In CASCADE, we assume signed inputs, and the partial sums computed by a

64×16 subsection of a MAC RRAM are written to 15 rows and 30 columns of a buffer

RRAM. We connect one 64×64 MAC RRAM to two 15×30 buffer RRAMs, as shown

in Figure 4.3, so each buffer RRAM stores the partial sums from two subsections of

the MAC RRAM.

Figure 4.6 shows the energy breakdown of the digital accumulation of partial sums

and the analog in-RRAM buffering and accumulation. The analog in-RRAM buffering

and accumulation is estimated to use 7.59× less energy than the digital partial-sum
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accumulation. The significant savings are mainly attributed to the elimination of

repeated SRAM read and write accesses required by the digital approach.

With analog in-RRAM buffering and accumulation, the A/D conversion is only

exercised after the final partial-sum accumulation, as illustrated in Figure 4.4. In

addition, the number of A/D conversions is limited to the number bits needed for the

final output, eliminating redundant conversions of intermediate values.

Buffer RRAM Write Consideration. A standard RRAM write uses a rel-

atively high voltage. It costs high energy and is the primary reason for the lim-

ited endurance [69]. In this work, we propose to use a lower voltage to write to

buffer RRAMs, and 1T1R RRAM with a transistor to control the write current [70].

These lead to improved endurance and lower energy. Low-voltage write to RRAM

can be non-deterministic [71]. In simulation, the errors and variations due to non-

deterministic write are incorporated as part of the noise analysis in Section 4.3.5. We

allocate one clock period for write to avoid pipeline stalling.

4.3.3 TIA Interface between MAC RRAM and Buffer RRAM

A TIA is used to convert an input current to a proportional output voltage.

A conventional TIA is constructed using an operational transconductance amplifier

(OTA) with a resistor in the feedback connection. The conventional design can be

slow in settling, and consume a large on-current. It is also difficult to set the output

voltage range appropriate for driving the buffer RRAM.

We design a new TIA circuit as shown in Figure 4.7(a) to convert MAC RRAM’s

BL current to voltage, and holds the voltage for driving the buffer RRAM. 1 The

TIA circuit operates in two phases: sensing and transfer. In the sensing phase, SW0

and SW1 are closed to enable a feedback loop to convert the BL current to voltage

on Camp; SW2 is open and SW3 is closed to detach Cout and precharge it to VDD.

1The TIA circuit was implemented by Jacob Botimer.
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Figure 4.7: (a) Schematic of TIA for converting an input current to a proportional
output voltage; (b) simulation waveforms of the TIA designed in a 65nm CMOS
technology and the charge leakage of the output capacitor over 25ns of the buffer
RRAM write period; and (c) zoom-out view of the TIA sensing and transfer phase.

After the sensing phase, SW0 and SW1 are open to detach the BL from the TIA;

and SW3 is open to complete the precharge. In the transfer phase, SW2 is closed to

allow the sampled voltage on Camp to drive the NMOS to reproduce the BL current

to discharge Cout. After the transfer is complete, SW2 opens and the voltage is held

on Cout for driving the buffer RRAM.

Compared to the conventional TIA design, the proposed TIA offers a faster settling

time, lower energy per conversion, and flexibility in setting the output voltage range

for driving the next stage. The TIA circuit is designed and simulated as shown in

Figure 4.7(b) to obtain realistic parameters for system evaluations. We used metal-

oxide-metal capacitor for Cout. The simulation shows that the leakage on Cout results

in a negligible voltage drop of 756nV over the 25ns RRAM write period as shown in

Figure 4.7(c).

4.3.4 Final Accumulation and A/D Conversion

Following the R-Mapping scheme, analog partial sums from one subsection of a

MAC SRAM are stored in 15 rows and 30 columns of a buffer RRAM. After summed

together, 10 A/D conversions are needed with resolutions ranging from 6 to 10 bits.

The final accumulation is illustrated in Figure 4.8. The 30 BLs can be divided
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Figure 4.8: (a) Illustration of the final accumulation; and (b) schematic of a summing
amplifier.

into groups to efficiently obtain the output of a required resolution. For example, if

a 16-bit output is required, the 9 BLs in the MSB group directly contribute to the

required 16-bit output resolution, and they are digitized by suitable 6-bit to 10-bit

ADCs. The BLs in the LSB group are connected to analog summing amplifiers as

shown in in Figure 4.8(b), with each BL current appropriately scaled before summing.

The analog sum of a low-order group is fed as the input to the next high-order group.

In this way, the low-order groups are compressed to one carry-in to the MSB group.

The digital values are then added together to produce the final sum.

With the analog accumulation scheme, the number of A/D conversions is reduced,

and the number of digital summations is also reduced. The low-order accumulations

are done more efficiently in the analog domain. Although analog accumulation can be

less precise than digital accumulation, it produces only a carry-in to the MSB group

and the imprecision becomes negligible. With fewer A/D conversions, we can choose

an ADC of a lower sampling frequency to reduce the energy per conversion step [3].

Fewer number of A/D conversions also makes it possible to share ADCs to reduce
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area.

4.3.5 Noise Tolerance

Since the CASCADE architecture connects MAC RRAMs with buffer RRAMs,

and relies on the analog dataflow from MAC RRAMs to buffer RRAMs, it is critical

to check the variation and noise tolerance of the end-to-end system. Analytically, we

can lump the variation, noise and non-idealities of analog circuits as effective noise on

the MAC RRAM BL, and measure the signal-to-noise ratio (SNR). The SNR affects

the classification accuracy as shown in Figure 4.9. In this example, we used a 2-layer

MLP as the workload. Different system configurations require different levels of SNR.

A higher SNR means a lower margin for noise tolerance.

Suppose we aim at a 90% classification accuracy, a 6-bit BL resolution (e.g., 1

input bit/cycle, 1-bit MAC RRAM cell, and 64-row MAC RRAM as in CASCADE)

requires a minimum SNR of 25 dB, while a 11-bit BL resolution (e.g., 1 input bit/cycle,

4-bit MAC RRAM cell, and 128-row MAC RRAM as in PipeLayer [19]) requires a

minimum SNR of 35 dB. The noise tolerance of the PipeLayer configuration is 10

dB lower than the CASCADE configuration. The CASCADE architecture adopts a

6-bit BL resolution to ensure the robustness of the end-to-end analog and in-memory

computation.

4.4 Evaluation

We first establish the reference architectures based on ISAAC and PRIME. We

then provide an exploration of the CASCADE design space to show the capabilities

of the architecture as well as its limitations. Finally, an instance of the CASCADE

architecture is evaluated using realistic workloads with comparisons made against the

references.
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Figure 4.9: (a) Two-layer MLP classification accuracy for different configurations
noted by [bWL, bcell, Nrows, bBL], and (b) AlexNet top-5 classification accuracy for
CASCADE and configurations based on ISAAC and PipeLayer.
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CASCADE ADC-based SA-based

In-RRAM
dot product

Input: 16 bits, bit-serial streaming
Weight: 16 bits, binary mapping

RRAM array size: 64× 64
Partial-sum
accumulation

Analog
in-RRAM

Digital sum
SRAM

Digital sum
SRAM

A/D
resolution

10 bits 6 bits 6 bits

A/D
activity

10 times
per 16 cycles

256 times
per 16 cycles

256 times
per 16 cycles

A/D
normalized latency

1 1 26

Number of
ADCs

7 ADCs
per 80 arrays

80 ADCs
per 80 arrays

80×64 SAs
per 80 arrays

Table 4.2: Configurations of the CASCADE, ADC-based and SA-based reference
architectures.

4.4.1 Methodology

Reference Architectures. We use two reference architectures: 1) an ADC-

based architecture adapted from ISAAC [17] and an SA-based architecture adapted

from PRIME [18]. To make a fair comparison, the architectures all employ RRAM

crossbar arrays of the same size, and all utilize bit-serial input streaming and binary

weight mapping.

Table 4.2 summarizes the three architectures for comparison. The key difference

is that CASCADE performs in-RRAM buffering and accumulation, while the two ref-

erence architectures perform digital accumulation after converting the analog partial

sums using ADCs and SAs. With an efficient TIA interface and analog buffering and

accumulation, CASCADE reduces the number of A/D conversions from 256 per 16

cycles to 10 per 16 cycles.

Component Models. Our evaluations were done using a 65nm technology and a

65nm RRAM model from [49]. The SRAM model is constructed based on the results

obtained from a memory compiler. We adopted most of the circuit component models

from ISAAC [17] and scaled them to 65nm. The analog components including ADC,

SA, summing amplifier and S&H were obtained from recent literature and scaled to
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AlexNet VGG-A VGG-B VGG-C MSRA-A MSRA-B MSRA-C DeepFace NeuralTalk
11× 11, 96/4 (1) 3× 3, 64 (1) 3× 3, 64 (2) 3× 3, 64 (2) 7× 7, 96/2 (1) 7× 7, 96/2 (1) 7× 7, 96/2 (1) 11× 11, 32 (1) FC-2400
5× 5, 256 (1) 3× 3, 128 (1) 3× 3, 128 (2) 3× 3, 128 (2) 9× 9, 16/2 (1) FC-8791
3× 3, 384 (1) 3× 3, 256 (2) 3× 3, 256 (3) 3× 3, 256 (4) 3× 3, 256 (5) 3× 3, 256 (6) 3× 3, 384 (6) 9× 9, 16 (1)
3× 3, 384 (1) 3× 3, 512 (2) 3× 3, 512 (3) 3× 3, 512 (4) 3× 3, 512 (5) 3× 3, 512 (6) 3× 3, 768 (6) 7× 7, 16/2 (1)
3× 3, 256 (1) 3× 3, 512 (2) 3× 3, 512 (3) 3× 3, 512 (4) 3× 3, 512 (5) 3× 3, 512 (6) 3× 3, 896 (6) 5× 5, 16 (1)

FC-4096 FC-4096
FC-4096 FC-4030
FC-1000

Table 4.3: Benchmarks for evaluation. Convolution layers are denoted as R×S,K/D
(L), where R, S and K correspond to the notations used in Figure 4.2, and L denotes
the number of such layers.

Figure 4.10: Computation density across the design space. A notation, e.g., H64-
T32-A7 R80, represents 80 64×64 RRAM arrays with 32 TIAs per array and 7 ADCs
shared by the arrays.
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65nm. In particular, we used the successive approximation (SAR) ADC from [72],

same as in ISAAC. The area and energy of a SAR ADC and the resolution scaling

follow [67]. The SA model was adapted from [73]. The summing amplifier was from

[74]. The TIA was designed in a 65nm CMOS technology and simulated in Cadence

Spectre to obtain power, latency and variation.

Benchmarks. We used 11 benchmarks including 10 DNNs and 1 RNN to evaluate

the CASCADE architecture and compare it with the references. The details of the

DNNs and RNN are listed in Table 4.3. We used ImageNet image classification

dataset for AlexNet [59], ResNet [75], 3 types of VGG [76], GoogLeNet [60], and 3

types of MSRA [77], face recognition for DeepFace [78], and image captioning for

NeuralTalk [79].

4.4.2 CASCADE Design Space Exploration

The CASCADE architecture is parameterized by 4 variables: 1) the size of the

RRAM array H×H, simply denoted by H; 2) the number of RRAM arrays, denoted

by R; 3) the number of TIAs per array, denoted by T ; and 4) the number of ADCs,

denoted by A. We assume that the total weight storage capacity is 40KB × 80 blocks

= 3.2MB and a DDR4 I/O bandwidth of 25.6GB/s between the CASCADE chip and

external memory.

The computation density measured in GOPs/s/mm2 is shown in Figure 4.10. In

general, using larger RRAM arrays provides a higher computation density due to the

more dot products and accumulations that can be performed in RRAM arrays at the

same time. However, the larger the array size, the higher the I/O bandwidth, the

ADC resolution, and the cost of interface circuitry, including S&Hs, TIAs, summing

amplifiers, and ADCs. The optimal number of RRAM arrays in one APU and the

optimal number of APUs are limited by the I/O bandwidth. The peak performance

of 101 GOPs/s/mm2 can be achieved by 80 64×64 RRAM arrays, 32 TIAs per array
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Figure 4.11: (a) Energy consumption of CASCADE compared to reference architec-
tures running DNN and RNN benchmarks; (b) Throughput of CASCADE compared
to reference architectures running DNN and RNN benchmarks.

and 7 central ADCs (denoted by H64-T32-A7 R80).

4.4.3 Performance and Energy Consumption

We use 80 APU blocks to evaluate the energy and performance for comparison

with the references. Each APU block contains 80 64×64 RRAM arrays with 32 TIAs

per array and 7 ADCs shared by the arrays.

Figure 4.11(a) shows the energy consumption of CASCADE compared to the two

reference architectures for the 10 DNN and 1 RNN benchmarks. The CASCADE

architecture achieves an average 3.5× lower energy than the ADC-based architecture

and 11.0× lower energy than the SA-based architecture across all benchmarks. Fig-

ure 4.12 shows the energy breakdown for the three architectures to shed light on the

competitive advantages of CASCADE. The input buffer and in-RRAM dot products

consume the same amount of energy across all three architectures. However, CAS-
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Figure 4.12: Energy breakdown of CASCADE and two reference architectures.

CADE’s TIA interface consumes 77.5× lower energy than the ADC interface and

325.4× lower energy than the SA interface. The latter is due to the long latency of

the SA-based A/D conversion.

Figure 4.11(b) shows the throughput of CASCADE compared to the two reference

architectures for the 10 DNN and 1 RNN benchmarks. In average, the CASCADE

architecture achieves 1.86× higher throughput than the ADC-based architecture, and

17.83× higher throughput than the SA-based architecture due to the long latency of

A/D conversion.

In summary, CASCADE improves upon the ADC-based architecture in energy.

As an example of the ADC-based architecture, ISAAC [17] has already demonstrated

improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computation

density over DaDianNao [34]. The 64-chip DaDianNao has demonstrated 450.65×

speedup and 150.31× lower energy than an NVIDIA K20M GPU. Therefore, we

expect that the benefits of CASCADE will be on top of the previously demonstrated

gains over an ASIC chip or a GPU.
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4.4.4 Extension to Spiking Neural Networks

The CASCADE architecture can be adapted to support spiking neural networks

(SNNs). The TIA output capacitor can be used as the integration capacitor. A

comparator can be added to generate spikes if the voltage on the integration capacitor

exceeds a threshold, following the approach in [80, 81, 82, 83]. To implement a SNN,

we only need the MAC RRAMs, TIAs, and additional comparators. The buffer

RRAMs can be bypassed.

4.5 Summary

This work presents CASCADE, an architecture that connects MAC RRAMs for

computing dot products with buffer RRAMs for in-RRAM buffering and accumulat-

ing partial sums through an efficient TIA interface. Dot products and partial-sum

accumulations are the essential operations for implementing a DNN or RNN. Keep-

ing both parts in RRAM and in analog ensures a high energy efficiency by removing

the overhead of A/D conversion and digital accumulation. We demonstrate a new

R-Mapping scheme to efficiently accumulate partial sums, and an analog summation

approach to bypass the A/D conversions of low-order bits. As a result, the CASCADE

architecture minimizes the number of A/D conversions and keeps the A/D conversions

at the very end of the entire computation. The CASCADE architecture is pipelined

to achieve a high performance, and it consumes 3.5× lower energy than an ADC-

based in-RRAM computation architecture in processing DNN and RNN workloads.

Built on realistic RRAM technology constraints, the CASCADE architecture offers

a higher SNR margin for variation and noise tolerance while keeping a light-weight

CMOS periphery circuitry.
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CHAPTER V

Conclusion

The dissertation presents the design techniques for accelerating machine learning

applications with efficiency and scalability. The performance gap between memory

and processor results in the memory bottleneck and it is becoming more difficult

especially for DNN accelerators with a large amount of data traveling between pro-

cessing and memory unit. With the approaching to the semiconductor scaling limit,

it is challenging because of the high cost and more design time for a chip in 2nm and

beyond. In order to address these questions, we studied deep neural networks and

perception algorithms and optimized the processing in algorithm, architecture, and

circuit perspectives. The proposed two architectures and one silicon prototype were

implemented to demonstrate the performance.

The first NetFlex chip is implemented to support CNN-based perception flexibly

using the 2.5D technology. The reconfigurable PE designs, process scheduling, and

memory mapping allow the chip to connect and form a ring topology for streaming

processing. The optimized dataflow for deconvolution operations and skipping module

for gating the chiplets provides more energy saving to the system. NetFlex is measured

in the 22nm technology and achieves a high throughput for perception workloads.

The NetFlex 4-chiplet system demonstrates high energy and area efficiency as well as

design scalability.
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The second AR-PIM architecture is presented to utilize the SRAM in a 7nm pro-

cess and exploit the low effective BL range considering the bit-level sparsity of weight

and dynamic input activation jointly for DNN. The runtime BL density detection

mechanism is proposed to adapt to the low effective BL range. The design reduces

the energy portions of ADCs and enhances the sensing margin and capability of varia-

tion tolerance. AR-PIM architecture is evaluated and improves energy efficiency and

area efficiency.

The third CACSCADE architecture is proposed to use the RRAM-based PIM

approach for DNN or RNN to reduce the data movement. The extended analog

dataflow through an efficient TIA minimizes the number of A/D conversions and keeps

the dot products and partial-sum accumulation in RRAM. CASCADE architecture

is evaluated using a 65nm technology and achieves higher energy efficiency.
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