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ABSTRACT

Genetic sequences carry a wealth of information. Scientists and statisticians have utilized genetic
variation data to answer a wide range of questions in evolutionary biology and epidemiology. With
the advent of high throughput sequencing, the availability of genetic sequence data has exploded
this century. While the unprecedented amount of genetic data available presents an opportunity to
garner a deeper understanding about viruses and humans, making use of large volumes of genetic
data is still a challenging problem.

In what is to follow, we present three methods that tackle various problems analyzing genetic
variation data. First, we introduce the framework known as the sequentially Markov coalescent
(SMC), which enables likelihood based inference using hidden Markov models (HMMs) where
the latent variables represent genealogies. While genealogies are continuous, HMMs are discrete,
requiring SMC based methods to discretize genealogies. This discretization often leads to biased
and noisy estimates of the population size history. We introduce a method that avoids the need
for discretization leading to Bayesian and frequentist inference procedures that are faster and less
biased than its predecessors.

Additionally, while coalescent HMMs based on SMC can be decoded in linear time, there does
not yet exist a linear time EM algorithm for coalescent HMMs based on SMC’, the more accurate
approximation. We present a linear time EM algorithm based on SMC’. Advantages of this method
include increased accuracy, computation time, uncertainty quantification, and ability to incorporate
regularization.

Lastly, we present a new approach for estimating transmission and recovery rates of viruses
using genetic sequence data. With the outbreak of the SARS-CoV-2, there are millions of genomic
sequences available to analyze, but few methods to exploit the information contained in these se-
quences. By integrating recent advances in Bayesian inference and differentiable programming
with phylodynamics, we provide a method capable of estimating transmission, recovery, and sam-
pling of pathogens using thousands of sequences. We apply our method to SARS-CoV-2 data and
find that our estimates of the effective reproductive number closely match other estimates from
methods based on public health data.
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CHAPTER 1

Introduction

For decades, genetic sequence data has proven to be an invaluable resource for scientists and
statisticians in evolutionary biology and epidemiology. Researchers have utilized this data to ex-
tract knowledge about evolutionary processes such as natural selection (Fariello et al., 2013; Stern
et al., 2021; Dilber and Terhorst, 2022), migration (Cann et al., 1987; Petkova et al., 2016; Al-
Asadi et al., 2019), and recombination (Li and Stephens, 2003; Chan et al., 2012; Kamm et al.,
2016). Human sequence data have even helped scientists link diseases to different genetic variants
(Sun et al., 2022) and illuminate why lactose intolerance is more prevalent in Asia than in Europe
(Sahi, 1994; Anguita-Ruiz et al., 2020).

Additionally, viral sequence data have been useful in dating epidemic and pandemic origins
(Fraser et al., 2009; Lemey et al., 2006) as well as infection transmissions (Volz et al., 2013a);
estimating the reproductive number in hepatitis C (Pybus et al., 2001), HIV (Volz et al., 2009), and
influenza (Müller et al., 2020); and lending insight into the efficacy of interventions (Drummond
et al., 2001; Stadler et al., 2013). Clearly, scientists have uncovered a large amount of knowl-
edge with the available genetic data, yet there are still many questions in population genetics and
phylodynamic inference that remain unanswered.

Today, due to the rapid development in sequencing technology, the world is awash in se-
quence data. The UK Biobank is a massive data set containing genotype data from approximately
500,000 individuals from the UK (Bycroft et al., 2018). There exists an even larger repository of
SARS-CoV-2 sequences, GISAID, which contains 7.5 million sequences and counting (Elbe and
Buckland-Merrett, 2017; van Dorp et al., 2021). Moreover, there are over a billion sequences from
thousands of different species available on Genbank (Benson et al., 2012). To leverage the rapid
influx of data available in order to further understand the evolutionary processes of humans and
viruses, there is a need for scalable and accurate methods capable of extracting information from
that data.

In this thesis, we present three new contributions to the fields of population genetics and phylo-
dynamic inference that increase our ability to analyze genetic sequence data quickly and accurately.
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In the remainder of the chapter, we give a brief overview of the problems in population genetics
and phylodynamic inference that we investigate later in the main text. We expound on the differ-
ences between human and viral sequence data, illuminating the unique challenges of working with
each type of data.

1.1 The Sequentially Markov Coalescent

Regardless of whether we are analyzing viral data or human data (or data from other organisms), at
the most basic level, the aim is to understand the underlying biological processes and evolutionary
dynamics that govern that data. To that end, probabilistic models of evolution play a central role
in analyzing genetic sequence data of all types. Coalescent theory is a mathematical theory of
ancestry that serves as the foundation for many probabilistic models in both population genetics
and viral phylodynamics.

Kingman (1982) showed that the coalescent model is the limiting process for the Wright-Fisher
and Moran models, among others. The coalescent traces the ancestral lineage (the series of ances-
tors of each gene back through time). The event that two lineages find their most recent common
ancestor (MRCA) and merge by finding a common ancestor is called a coalescent event. Each time
a coalescent event occurs, the number of lineages decreases. This process repeats until there is just
a single lineage left. Given a random sample of n genes, there will be n− 1 coalescent events. All
this information can be encoded in a bifurcating tree where samples are represented as leaves and
coalescence events as internal nodes. The branch lengths connecting the trees represent the time to
the most recent common ancestor (TMRCA) or the time it took the nodes to coalesce.

If there are i lineages, the waiting time for any pair of lineages to coalesce, Ti, is exponentially
distributed with rate parameter

(
i
2

)
. In the case where there are only two lineages, T2 is exponen-

tially distributed with rate 1. In the coalescent model, time is measured in units of 1/(2Ne) where
Ne is the effective population size. Clearly this means the rate of coalescence and the effective
population size are inversely proportional: for large populations, the rate of coalescence is small
and for small populations, the rate of coalescence is large. Different from the census population
size, the effective population size is the size of an idealized population that has the same value of
some parameter (usually genetic drift) in the population of interest. In order for a population to
be ideal, there must be an equal number of males and females, individuals must be equally likely
to produce offspring, and mating must be random. Of course since most real populations deviate
from this ideal model of populations, there will be discrepancies between the census population
size and the effective population size. Even still, the effective population size is an important pa-
rameter to study as it is not only intrinsically interesting, but is also necessary to understand other
evolutionary processes such as selection or migration.
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If we could link our sample of sequences to the space of trees encoding the ancestry of our sam-
ples we could reliably recover the effective population size of the population over time. This can
be easily done under the model described above, but in its basic form, the coalescent framework
does not account for many of the biological processes found in real data including recombination.
Recombination is the exchange of genetic material between two chromosomes from the parents
that leads to the offspring having a hybrid chromosome containing genetic material from different
sources. As a consequence, various segments of the genome will have distinct ancestral histories.
The ancestral history of the sample can longer be encoded in a single gene tree, but instead must
be captured in a graph structure known as the ancestral recombination graph (ARG) which encap-
sulates both coalescence and recombination events (Hudson et al., 1990; Griffiths and Marjoram,
1997).

Because the complexity of ARGs explodes with both the number of sequences and the length
of the sequences, the likelihood of function of coalescent models of recombinant sequence data is
difficult to calculate and computationally intractable. This makes ARG-based inference of chro-
mosome data extremely challenging. To circumvent this issue, the sequentially Markov coalescent
(SMC) is a widely used approximation which allows for efficient calculation of the likelihood
(McVean and Cardin, 2005; Marjoram and Wall, 2006). The idea behind SMC is to view the full
genealogy as a process along the chromosome rather than a process through time. In place of an
ARG, we instead now have a sequence of trees where each tree corresponds to a particular locus
along the chromosome, and the distribution of a tree depends only on the previous tree of the se-
quence. Stretches of loci will share a tree until a recombination event occurs, after which the next
stretch of loci will then have a new tree until another recombination event occurs. This framework
naturally lends itself to likelihood-based inference using a hidden Markov model (HMM) formu-
lation where the observed sequence is the observed alleles at each locus along the sequence, and
the hidden process is the sequence of trees relating the relating the samples at those loci.

While there has been much success in population genetics using coalescent HMMs to infer the
effective population size, Ne, over time (Li and Durbin, 2011; Sheehan et al., 2013; Schiffels and
Durbin, 2014; Terhorst et al., 2017), they require the hidden state to be discrete. Since genealogies
are naturally continuous, this requires discretizing the space of trees. There is no salient way to
enforce this discretization, and often the choice of discretization can lead to bias in downstream
inference. In Chapter 2, we propose a method enabling SMC-based inference that evades the need
for discretization and the biases that come with such an approximation. Compared to existing
methods ours is faster and more accurate.

In Chapter 4, we propose a solution to a similar problem. In addition to bias, the required
discretization of time in coelescent HMMs can also lead to noisy estimates of the population size
history. We present a method that uses regularization that encourages smoothness in population
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size history estimates. Our method takes advantage of a linear time decoding algorithm to allow for
bootstrapping for uncertainty quantification and an automated cross validation procedure to select
the correct level of regularization.

1.2 Bayesian Inference in Viral Phylodynamics

Much like other organisms, we can use methods in population genetics to study the evolutionary
processes of viruses. However, viruses are unique in that they have short generation times, so
evolutionary and ecological processes occur on the same time scale. This suggests that insight
into the evolutionary processes about viruses can lend insight into the epidemiological processes
(Pybus and Rambaut, 2009). Thus one application of viral phylogenetics is to infer epidemiological
parameters such as the effective reproductive numberR. The study of how these processes together
impact the patterns of viral genetic variation is called phylodynamic inference.

Like in population genetics, phylodynamic inference usually begins with the reconstruction of
a tree. For many problems in population genetics, if we were to know the true gene tree that
generated the data, estimation of many parameters in interest would follow easily. One caveat
is that confounding processes like natural selection, migration, and population structure can bias
these results (Chikhi et al., 2018; Mazet et al., 2016). For viruses this limitation is stronger, as the
number and effect of confounding processes is larger than for humans. Even if we were to know the
true phylogeny of our sample, there is a many-to-one mapping of evolutionary and epidemiological
processes that could have resulted in the phylogeny (Volz et al., 2013b). Another issue that arises
in phylogenetics is that multiple reconstructions of the phylogeny can explain the data equally
well. To account for this, Bayesian methods have been popular in viral phylodynamics as they can
integrate out this so called phylogenetic uncertainty (Drummond et al., 2005; Kühnert et al., 2011).

Bayesian phylogenetic inference procedures typically use Markov chain Monte Carlo (MCMC)
algorithms to sample from the posterior. Due to the discrete nature of tree topologies, the state
space of tree topologies grows astronomically with the number of tips making sampling difficult.
Even with several advancements that have accelerated MCMC, to our knowledge, there are no
Bayesian phylogenetic methods that can analyze thousands, let alone the millions of sequences
at our disposal. Variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008) is an
alternative to MCMC that has been relatively unexplored in phylogenetics. The main idea behind
variational inference is frame estimation the posterior as an optimization problem; instead of trying
to sample from the posterior, we instead approximate the posterior by finding the distribution that
minimizes the Kullback-Leibler divergence from a well known family of distributions that are
tractable.

Motivated by the vast amount of SARS-CoV-2 sequences since the inception of the pandemic,
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we present a new method in Chapter 3 using variational inference with the ability to rapidly analyze
tens of thousands of viral sequences to infer epidemiological parameters to address the limitations
of MCMC based Bayesian phylogenetic methods. We conduct a simulation study to demonstrate
our method is faster than the current state of the arts tool for Bayesian phylogenetic inference,
BEAST, without sacrificing accuracy. We apply our method to SARS-CoV-2 data and find that our
method agrees with external estimates of the reproductive number using public health data.
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CHAPTER 2

Exact decoding of a sequentially Markov coalescent
model in genetics

2.1 Introduction

Probabilistic models of evolution have played a central role in genetics since the inception of
the field a century ago. Beginning with foundational work by Ronald Fisher and Sewall Wright,
and continuing with important contributions from P.A.P. Moran, Motoo Kimura, J.F.C. Kingman,
and many others, a succession of increasingly sophisticated stochastic models were developed to
describe patterns of ancestry and genetic variation found in a population. Statisticians harnessed
these models to analyze genetic data, initially with the now quaint-seeming goal of understanding
the evolution of a single gene. More recently, as next-generation sequencing has enabled the
collection of genome-wide data from millions of people, interest has risen in methods for studying
evolution using large numbers of whole genomes.

In this article, we study a popular subset of those methods which are likelihood-based; that is,
these methods work by inverting a statistical model that maps evolutionary parameters to a prob-
ability distribution over genetic variation data. As we will see, exact inference in this setting is
impossible owing to the need to integrate out a high-dimensional latent variable which encodes
the genome-wide ancestry of every sampled individual. Consequently, a number of approximate
methods have been proposed, which try to strike a balance between biological realism and compu-
tational tractability.

We focus on one such approximation known as the sequentially Markov coalescent (SMC). The
sequential or “spatial” formulation of the coalescent was first derived by Wiuf and Hein (1999),
and based on their ideas McVean and Cardin (2005) described an efficient Markovian algorithm
for performing inference under a coalescent model with recombination. Although the term SMC
is often used to refer to McVean and Cardin’s original algorithm, there are actually many methods
in the literature that are simultaneously a) sequential, b) Markov, and c) approximations of the
coalescent with recombination (McVean and Cardin, 2005; Marjoram and Wall, 2006; Carmi et al.,
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2014; Hobolth and Jensen, 2014). In this paper, we therefore use SMC more generally to refer to
any method that meets these criteria. In particular, both the influential haplotype copying model
of Li and Stephens (2003) and the popular program PSMC (Li and Durbin, 2011) for inferring
population history are in the family of SMC methods under this definition (Paul and Song, 2010).

SMC models lead quite naturally to the use of hidden Markov models (HMMs) to analyze
genetic sequence data. However, in order to bring the HMM machinery to bear on this problem,
additional and somewhat awkward assumptions are needed. The latent variable in an HMM must
have finite support, whereas the latent variable in SMC is a continuous tree. Therefore, the space
of trees must be discretized, and, in some cases, restrictions must also be placed on the topology
of each tree. In applications, the user must select a discretization scheme, a non-obvious choice
which nonetheless has profound consequences for downstream inference (Parag and Pybus, 2019).

The main message of our paper is that this is not necessary: it is possible to solve a form of the
sequentially Markov coalescent exactly, in its natural setting of continuous state space. We accom-
plish this by slightly modifying the canonical SMC model of McVean and Cardin (2005), in a way
that does not greatly impact inference, but renders the problem theoretically and computationally
much easier. In particular, this modification allows us to leverage recent innovations in change-
point detection, leading to algorithms which not only have less bias than existing approaches, but
also outperform them computationally. Of course, some tradeoffs are necessary in order to achieve
this feat: we must place some restrictions on the types of priors that can be used to model the
instantaneous rate of coalescence, and, in contrast to existing approaches, the asymptotic running
time of our algorithm is not known to us exactly. These restrictions, and their implications for
inference, are explored in greater detail below.

The rest of the paper is organized as follows. In Section 2.2 we formally define our data and
model, introduce notation, and survey related work. In Section 2.3 we derive our main results: ex-
act and efficient Bayesian and frequentist algorithms for inferring genealogies from genetic varia-
tion data. In Section 2.4 we thoroughly benchmark our method, compare it to existing approaches,
and provide an application to real data analysis. We provide concluding remarks in Section 2.5.

2.2 Background

In this section we introduce notation, formalize the problem we want to solve, and survey earlier
work. We presume some familiarity with standard terminology and models in genetics; introduc-
tory texts include Hein et al. (2005) and Durrett (2008).
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2.2.1 Motivation

Our method aims to infer a sequence of latent genealogies using genetic variation data. To motivate
our interest in this, consider first a related problem with a more direct scientific application: given
a matrix of DNA sequence data Y ∈ {A,C,G,T}H×N from H > 1 homologous chromosomes
each N base pairs long, and an evolutionary model ϕ hypothesized to have generated these data,
find the likelihood p(Y | ϕ). This generic formulation encompasses a wide variety of inference
problems in genetics and evolutionary biology; if we could easily solve it, important new scientific
insights would result.

Unfortunately, this is not possible using current methods. The difficulty lies in the fact that the
relationship between the data Y and the scientifically interesting quantity ϕ is mediated through a
complex, latent combinatorial structure known as the ancestral recombination graph (ARG; Grif-
fiths and Marjoram, 1997), which encodes the genealogical relationships between every sample
at every position in the genome. The ARG is sufficient for ϕ: evolution generates the ARG, and
conditional on it, the data contain no further information about ϕ. Thus, the likelihood problem
requires the integration

p(Y | ϕ) =

∫
A∈A

p(Y | A)p(A | ϕ), (2.1)

whereA denotes an ARG, andA denotes the support set of ARGs for a sample ofH chromosomes.
This is a very challenging integral; although a method for evaluating it is known (Griffiths and
Marjoram, 1996), it only works for small data sets. That is because, for large N and H , there
are a huge number of ARGs that could have plausibly generated a given data set, such that the
complexity of A explodes as N and H grow. Indeed, (2.1) cannot be computed for chromosome-
scale data even for the simplest case H = 2.

The sequentially Markov coalescent addresses this problem by decomposing the ARG into
a sequence of marginal gene trees X1, . . . , XN , one for each position in the chromosome, and
supposing that this sequence is Markov. Then, we have

p(Y | ϕ) ≈
∫
X1,...,XN

π(X1 | ϕ)p(Y1 | X1)
N∏
n=2

p(Yn | Xn)p(Xn | Xn−1, ϕ), (2.2)

where π(· | ϕ) is a stationary distribution for the Markov chain X1, . . . , XN , p(Xn | Xn−1, ϕ) is
a transition density, and [Y1 | · · · | YN ] = Y are the data at each site. If the Xi have discrete
support, then this represents a hidden Markov model, whence (2.2) can be efficiently evaluated
using the forward algorithm. For estimating ϕ, EM type algorithms are generally preferred, and
these require computing the posterior distribution p(X1, . . . , XN | Y, ϕ).
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2.2.2 Demographic inference

To make this problem more concrete, in this paper we focus specifically on computing (2.1) when
the chromosomes evolve under selective neutrality, and φ represents historical fluctuations in pop-
ulation size. In this case, we can identify φ with a function Ne : [0,∞) → (0,∞), such that
Ne(t) is the coalescent effective population size t generations before the present (Durrett, 2008,
§4.4). This function governs the marginal distribution of coalescence time at a particular locus in
a sample of two chromosomes. Specifically, setting η(t) = 1/Ne(t), the density of this time is

π(t) = η(t)e−
∫ t
0 η(s) ds. (2.3)

Note that η(t) = 1 recovers the well-known case of Kingman’s coalescent, π(t) = e−t, which we
treat as the default prior in what follows.

Apart from intrinsic interest in learning population history, it is important to get a sharp estimate
of Ne(t) as unmodeled variability in Ne(t) confound attempts to study other evolutionary phenom-
ena such as natural selection, or mutation rate variation. Estimation of this function is known in
the literature as demographic inference (Spence et al., 2018). For the remainder of the paper we
will focus on this application. To simplify the notation, we suppress explicit dependence on Ne(t)

and capture it implicitly through the function π, and we even suppress dependence on π when it is
clear from context.

A number of methods have been proposed for performing demographic inference, using var-
ious underlying models and sources of data. One class (Gutenkunst et al., 2009; Bhaskar et al.,
2015; Jouganous et al., 2017; Kamm et al., 2017, 2020) infers demographic history using so-called
site frequency spectrum data, which is a low-dimensional summary statistic that is computed from
mutation data assuming free recombination between markers. A second class of models, which
includes ours, are designed to analyze whole-genome sequence data, and extract additional demo-
graphic signal from patterns of linkage disequilibrium. These methods are usually based on some
form of the sequentially Markov coalescent (Li and Durbin, 2011; Sheehan et al., 2013; Rasmussen
et al., 2014; Terhorst et al., 2017; Schiffels and Durbin, 2014; Steinrücken et al., 2019). Another
recent development is the emergence of algorithms for inferring complete ancestral recombina-
tion graphs using large amounts of sequence data (Speidel et al., 2019; Kelleher et al., 2019),
from which the demographic history can be estimated. Finally, there has been significant parallel
work in phylogenetics on so-called skyline models, which are Bayesian procedures designed to
infer population history under the assumption of a nonrecombining genealogy (Pybus et al., 2000;
Drummond et al., 2005; Minin et al., 2008; Gill et al., 2013).
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2.2.3 Our contribution

As discussed in Section 2.1, discretizingXi is unnatural and results in bias. In this work, we derive
efficient methods for computing the posterior distribution p(X1, . . . , XN | Y), or its maximum a

posteriori estimate
arg max
X1,...,XN

p(X1, . . . , XN | Y)

when each Xi is a tree with continuous branch lengths. (To simplify the formulas, we suppress
dependence on the evolutionary model ϕ until turning to inference in Section 2.4.4.) That is,
unlike existing methods, we do not assume that the set of possible Xi is discrete or finite. For the
important case of H = 2 chromosomes, our method is “exact” in the sense that it is devoid of
further approximations (beyond the standard ones which we outline in the next section). In this
case, the gene tree Xi is completely described by the coalescence time of the two chromosomes.
For H > 2 our method makes additional assumptions about the topology of each Xi, but still
retains the desirable property of operating in continuous time.

2.2.4 Notation and model

We now fix necessary notation and define the model that is used to prove our results. For ease
of exposition, our results focus on the simplest possible case of analyzing a pair of chromosomes
(H = 2 in the notation of the previous section). In Section 2.3.4 we describe how to extend our
results to larger sample sizes

Assume that that we have sampled a pair of homologous chromosomes each consisting of N
non-recombining loci. Meiotic recombination occurs between loci with rate ρ per unit time, and
does not occur within each locus. The number generations backwards in time until the two chro-
mosomes meet at a common ancestor (TMRCA) at locus i is denoted Xi ∈ R>0. The number of
positions where the two chromosomes differ at locus i is denoted by Yi. Under a standard assump-
tion known as the infinite sites model (Durrett, 2008, §1.4), Yi has the conditional distribution

Yi | Xi ∼ Poisson(θXi),

where θ is the mutation rate. We assume that both θ and ρ are small. In particular, some of our
proofs rely on the fact that ρ� 1. These are fairly mild assumptions which hold in many settings
of interest. For example, in humans, the population-scaled rates of mutation and recombination per
nucleotide areO(10−4). Conversely, if recombinations are frequent, then there is little advantage in
employing the methods we describe here, which depend on the presence of linkage disequilibrium
between nearby loci.

The sequentially Markov coalescent is a generative model for the sequence X1, . . . , XN , which
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we abbreviate asX1:N henceforth (and similarly for Y1:N ). SMC characterizes how shared ancestry
changes when moving from one locus to the next. Assuming there is at most one recombination
between adjacent loci, and we can specify an SMC model by the conditional density

fXn+1|Xn(t | s) := p(Xn+1 ∈ (t, t+ dt) | Xn = s) = δ(t− s)e−ρs + (1− e−ρs)q(t | s), (2.4)

where δ(·) is the Dirac delta function, and q(t | s) is the conditional density of t given that a
recombination occurred and that the existing TMRCA equals s. Various proposals for q(t | s)
exist in the literature, each with slightly different properties (McVean and Cardin, 2005; Marjoram
and Wall, 2006; Paul et al., 2011; Li and Durbin, 2011; Carmi et al., 2014). Importantly, they share
the common feature that (2.4) is (approximately, in the case of Li and Durbin, 2011) reversible
with respect to the coalescent. That is,

π(s)fXn+1|Xn(t | s) = π(t)fXn+1|Xn(s | t), (2.5)

where π is the stationary measure in equation (2.3). This can be verified in each of the above
models by checking the detailed balance condition (Hobolth and Jensen, 2014).

2.2.5 Connection to changepoint detection

Our work is motivated by the observation that (2.4) is essentially a changepoint model. Indeed,
SMC can be viewed as a prior over the space of piecewise constant functions spanning the interval
[0, N); conditional on realizing one such function, say ξ : [0, N) → [0,∞), each Xi = ξ(i − 1),
and the data is hypothesized to have been realized from independent Poisson draws with mean
E(Yi | Xi) = θXi. In genetics, each contiguous segment where Xi = Xi+1 = · · · = Xi+k−1 = τ ,
say, is known as an identity by descent (IBD) tract, with time to most recent common ancestor (TM-
RCA) τ ; the flanking positions where Xi−1 6= Xi and Xi+k 6= Xi+k−1 are called recombination

breakpoints. In changepoint detection, these are called segments, segment heights (or just heights),
and changepoints, respectively. In what follows, we use these terms interchangeably depending on
what is most descriptive in a given context.

A standard assumption in changepoint detection is that neighboring segment heights are in-
dependent, which is to say that Xi ⊥ Xi+1 for any i such that Xi 6= Xi+1. As we will see,
this enables fast and accurate algorithms for inferring the sequence X1:N . SMC violates this
assumption through the conditional density q(t | s): the correlation between t and s in (2.4)
makes the problem non-standard from a changepoint perspective. It is tempting to simply ig-
nore it. Indeed, if q(t | s) were replaced by some function π(t) which did not depend on s,
then (2.4) would become a so-called product partition model (PPM; Barry and Hartigan, 1992).
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In a PPM, a sequence of observations y1, . . . , yn is randomly partitioned into disjoint blocks
(y1, . . . , yb1), (yb1+1, . . . , yb2), . . . , (ybk−1+1, . . . , ybk), such that the observations in each block are
independent of all others. In the identity-by-descent problem described above, each block corre-
sponds to an IBD segment, and the random partition has break points wherever recombinations
occurred. PPMs are well-understood, and efficient methods have been developed to analyze them
in both Bayesian (Barry and Hartigan, 1993; Fearnhead, 2006) and frequentist (Jackson et al.,
2005; Killick et al., 2012) settings.

2.2.6 A renewal approximation

In biological applications, the orientation of the data sequence Y1:N is arbitrary; we could equiv-
alently work with the reversed sequence YN , YN−1, . . . , Y1 instead. Additionally, both theoretical
and empirical evidence overwhelmingly support that Kingman’s coalescent is a robust and accu-
rate description of ancestry at a particular gene. For these reasons, it is important that any SMC
model maintain the detailed balance condition (2.5). Given this desideratum, the obvious choice
for π becomes

π(t) ∝ tπ(t), (2.6)

leading to the modified transition density

fRXn+1|Xn(t | s) = δ(t− s)e−ρs + (1− e−ρs)π(t). (2.7)

Checking the detailed balance condition (2.5), we obtain

π(s)(1− e−ρs)tπ(t)
?
= π(t)(1− e−ρt)sπ(s), s 6= t. (2.8)

Though (2.8) is not true in general, equality holds when both sides are expanded to first-order in ρ,
which suffices for the applications we consider here.

The renewal approximation preserves an important piece of prior information concerning the
nature of identity-by-descent: an IBD tract with TMRCA x experiences recombination at rate ρx,
so more recent tracts are longer, a familiar fact to geneticists. On the other hand, prior information
on the correlation between neighboring segment heights is dropped. We hypothesized that, for
inference, it is more important that the prior capture the former effect than the latter. This is sim-
ilar to the observation in changepoint detection that identifying changepoint locations tends to be
harder than identifying the corresponding segment heights. Conditional on a given segmentation,
finding the most likely segment heights is usually trivial, with a solution that depends mostly on
the data and very little on the prior. Thus, it seems most important to encode prior information
about the nature of the segmentation itself.
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2.2.7 Prior work

The Markov chain defined by (2.7) was previously studied by Carmi et al. (2014), who coined the
term renewal approximation. Carmi et al. derived theoretical results and performed simulations
to study identity-by-descent patterns produced by SMC models. They found that the renewal
approximation is comparable to other variants of SMC with some inaccuracy mainly in the tails of
the IBD distribution. Importantly, these results pertain to the accuracy of these methods as priors;
they do not necessarily imply that the renewal approximation is inferior for inference. Indeed,
generally one hopes that “the data overwhelm the prior,” so that inferences do not depend strongly
on the choice of prior model.

There have been a few papers specifically devoted to improving the efficiency of SMC. Harris
et al. (2014) and Palamara et al. (2018) derived O(MN) decoding algorithms for certain SMC
models, where M is the number of hidden states (time discretizations) used in the underlying
hidden Markov model. Separately, Lunter (2019) recently showed that MAP estimation can be
performed for the Li and Stephens model inO(N) time irrespective of the sizeH of the underlying
copying panel, after a preprocessing step that costs O(HN) time (Durbin, 2014).

Interpreted broadly, many other lines of research are related to our work, because SMC plays
such a fundamental inferential role in genetics. Haplotype copying models (Li and Stephens, 2003)
have been used to study natural selection (Voight et al., 2006), ancestry (Price et al., 2009), pop-
ulation structure (Lawson et al., 2012), and population history (Gay et al., 2007); and to perform
haplotype phasing and imputation (Scheet and Stephens, 2006; Marchini et al., 2007; Howie et al.,
2009). Similarly, PSMC and related methods for inferring population size history (Li and Durbin,
2011; Schiffels and Durbin, 2014; Terhorst et al., 2017; Steinrücken et al., 2019) are now a standard
component of population genetic analysis, and have been cited in thousands of papers.

2.3 Methods

In this section we derive exact representations for the sequence of marginal posterior distributions
p(Xn | Y1:N), n = 1, 2, . . . , N , and efficient algorithms for sampling paths from the posterior
density p(X1:N | Y1:N) and for computing the MAP path

X∗1:N = arg max
X1:N

p(X1:N | Y1:N).

To save space, proofs are deferred to Appendices 2.6.1–2.6.4 in the supplementary material. For
the reader’s convenience, the various notations introduced in this section are listed in Table 2.4.
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2.3.1 Exact marginal posterior

In what follows, we write f(x) ∈ MΓ(K) to signify a the probability density f is a mixture of
K gamma distributions, with the mixing weights, scale and shape parameters left unspecified. By
abuse of notation, we also write X ∼MΓ(K) to signify that the random variable X is distributed
according to such a mixture.

Let α(Xn) = p(Xn | Y1:n) denote the (rescaled) forward function from the standard forward-
backward algorithm for inferring hidden Markov models (Bishop, 2006, §13.2.4). Our first result
shows that, under the renewal approximation, α(Xn) is a mixture of gamma distributions.

Proposition 1. Suppose that π(x) ∈MΓ(K). Then α(Xn) = p(Xn | Y1:n) ∈MΓ(nK).

Using this result, we can derive a representation for the marginal posterior distribution.

Proposition 2. If π(x) ∈MΓ(K) then there exists f(Xn) ∈MΓ(Kn) and g(Xn) ∈MΓ(K(N −
n)) such that

p(Xn | Y1:N) =
f(Xn)g(Xn)

π(Xn)
. (2.9)

We can also derive exact expressions for the mixing proportions, shape, and scale parameters
for p(Xn | Y1:n), and by extension, the exact algebraic expression for p(Xn | Y1:N). This requires
substantial additional notation and is deferred to Appendix 2.6.5.

2.3.2 Efficient posterior sampling

The exact posterior formula derived in Proposition 2 is useful for visualization, or numerically
evaluating functionals (e.g., the posterior mean) of the posterior distribution. However, it is less
suited to sampling since the denominator does not divide the numerator except when K = 1;
and even then, sampling requires expanding the numerator in (2.18) into (as many as) O(K2N2)

mixture components.
Instead, we provide an algorithm for efficiently sampling entire paths from p(X1:N | Y1:N).

This idea is due to Fearnhead (2006) (and essentially to Barry and Hartigan 1992), with necessary
modifications to accommodate our model’s dependence between segment length and height.

Let Rv denote the event that a new IBD segment begins at position v, let Ru:v :=
(⋃v−1

i=u+1Ri

)C
denote the event that there is not a recombination event between positions u and v (exclusive), and
set Ȳu:v :=

∑v
i=u Yi. The joint likelihood of the data Yu:v and the event that an IBD segment starts

at position u and extends ∆ = v − u+ 1 positions before terminating at position v is

p(Yu:v, Ru:v, Rv) =

∫
x

x1{u>1}π(x)ρxe−ρ∆x

v∏
i=u

e−θx(θx)Yi/Yi! =: P (u, v). (2.10)
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A special case for u = 1 is necessary because the initial segment height is sampled from the station-
ary distribution π, while successive segments heights are distributed according to π; cf. equations
2.2 and 2.7.

For the last segment, we know only that it extended past position N , so we make the special
definition

P−1(u,N) = p(Yu:N , Ru:N) =

∫
x

x1{u>1}π(x)e−ρ∆x

N∏
i=u

e−θx(θx)Yi/Yi!. (2.11)

This algorithm can be used whenever (2.10) can be efficiently evaluated, in particular when π(t) is
a gamma mixture.

Defining Q(u) = p(Yu:N | Ru) and integrating over the location v where the segment originat-
ing at position u terminates, we have (Fearnhead, 2006, Theorem 1)

Q(u) =
N−1∑
v=u

P (u, v)Q(v + 1) + P−1(u,N) (2.12)

which can be solved by dynamic programming starting from v = N − 1 in O(N2) time. When
v − u is large, P (u, v) tends to be extremely small, so the summation in (2.12) can be truncated
without loss of accuracy to obtain an algorithm which is effectively linear inN . Except when noted
otherwise, we followed Fearnhead’s original suggestion, and truncated the summation as soon as
P (u, v)Q(v + 1) was less than 10−4.

To sample the next recombination breakpoint τ ′ from the posterior given that the previous break-
point occurred at location τ , note that

p(τ ′ | τ, Y1:N) =
p(Y1:N , Rτ , Rτ ′ , Rτ,τ ′)

p(Y1:N , Rτ )

=
p(Y1:τ−1, Rτ )p(Yτ :τ ′−1, Rτ ′ , Rτ :τ ′ | Rτ )Q(τ ′)

p(Y1:τ−1, Rτ )Q(τ)

= P (τ, τ ′ − 1)Q(τ ′)/Q(τ)

for τ ′ = τ + 1, . . . , N − 1, with the remaining probability mass placed on the event that there are
no more changepoints. If sampling the first changepoint we set τ = 1.

Having sampled a segmentation 0 < τ1, . . . , τK < N from the posterior, we then sample heights
conditional on this segmentation. Given that observations u, u+ 1, . . . , v− 1, v are all on the same
segment and are flanked by recombinations, the joint probability of the data Yu:v, the segment
length ∆, and the segment height x, is the integrand in (2.10). Hence, the posterior distribution of
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the segment height x conditional on the underlying segmentation is

p(x | Y u:v, Ru:v, Rv) ∝ x1{u>1}π(x)ρxe−ρ∆xe−θxx
∑v
i=u Yi . (2.13)

If π(x) is a gamma (mixture), then (2.13) is also a gamma mixture, and hence easy to sample.

2.3.3 Exact frequentist inference

To complement the Bayesian results in the preceding section, we also derive an efficient frequentist
method for inferring the maximum a posteriori (MAP) hidden state path,

X∗1:N := arg max
X1:N

p(X1:N , Y1:N). (2.14)

When X1, . . . , XN ∈ X have discrete support, |X | = M , the MAP path can be found in O(NM2)

time using the Viterbi algorithm (Bishop, 2006), and in some cases in O(NM) time by exploit-
ing the special structure of the SMC (Harris et al., 2014; Palamara et al., 2018). Our goal is to
efficiently solve the the optimization problem (2.14) when X = R>0.

To accomplish this, we start by defining the recursive sequence of functions

V1(t) = log π(t) + e1(t)

Vn(t) = max
s
Vn−1(s) + φ(t | s) + en(t), n ≥ 2

V ∗n = max
t
Vn(t)

where ei(t) = log p(Yi | Xi = t), and

φ(t | s) = log p(Xi+1 = t | Xi = s)

=

−ρt, t = s

log(1− e−ρs) + log π(t), otherwise

≈

−ρt, t = s

log(ρs) + log π(t), otherwise,
(ρ� 1)

This is the usual Viterbi dynamic program, but defined over a continuous instead of discrete do-
main. By standard arguments (Bishop, 2006, §13.2.5), we have

X∗N = V ∗N = arg max
XN

[
max
X1:N−1

p(X1:N , Y1:N)
]
,
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and the full path X∗1:N can be recovered by backtracing.
Thus, if we could calculate Vn(t) then the optimization problem (2.14) would be solved. In gen-

eral, it is not obvious how to accomplish this, since Vn(t) is a function, i.e. an infinite-dimensional
object which cannot be represented by a computer program. However, our next theorem shows
that, in fact, each Vn(t) has a finite-dimensional representation.

Definition 1. Let VK be the space of all functions f : [0,∞)→ R which can be piecewise defined
by K functions of the form t 7→ at + b log t + c. That is, f ∈ VK if and only if there exists there
exists an integer K, a vector τ ∈ RK+1 satisfying

0 = τ1 < τ2 < · · · < τK+1 =∞,

and vectors a,b, c ∈ RK such that

f = akt+ bk log t+ ck, t ∈ [τk−1, τk).

Proposition 3. Suppose thatNe(t) ∈ VK is piecewise constant. Then for each n = 1, . . . , N, there

exists Kn <∞ such that Vn(t) ∈ VKn .

The proof of the theorem (Appendix 2.6.3) shows that in order to efficiently compute Vn(t) we
need to be able to take the pointwise maximum between any two functions in VK . We provide an
O(K) procedure for doing this in Appendix 2.6.6.

Our next result establishes the functional form of Vn(t). Each piece of Vn(t) comprises an
interval I ⊂ R where, conditional on the TMRCA at position n being t ∈ I, the most probable
recombination event occurred a certain number of positions ago. In the statement and proof of the
theorem, we use double brackets, J·K, to refer to individual entries of subscripted vectors.

Proposition 4. For each Vn(t), with breakpoints τn ∈ RKn+1, there exists vectors in ∈ ZKn≥0 and

Cn ∈ RKn such that, for t ∈ [τnJkK, τnJk + 1K),

Vn(t) = CnJkK + log π(t) + ȲinJkK:n log(θt)− t(θ + ρ)(n− inJkK)− θt.

Hence, up to the constant CnJkK, Vn(t) equals the log-likelihood of ȲinJkK:n given that the most

recent recombination event occurred at position inJkK and XinJkK = · · · = Xn = t.

Complete pseudocode for our algorithm, based on Propositions 3 and 4, is given in the supple-
ment (Algorithm 1).

In Section 2.4.2, it will be seen that the posterior distribution is sometimes not centered over
the MAP path: the latter tends to oversmooth, missing many changepoints, whereas the posterior
mode/mean is generally close to the truth (Figure 2.7). This is a known feature of the Viterbi
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decoding of a hidden Markov model, and is not specific to our problem setting (Yau and Holmes,
2013; Lember and Koloydenko, 2014). In Appendix 2.6.7 we derive a generalization of Proposition
3 which allows us to efficiently compute other paths which are suboptimal with respect to (2.14),
but have better pointwise accuracy, thus enabling a range of possible decodings.

2.3.4 Extension to larger sample sizes

The preceding sections focused on inferring the sequence of TMRCAs in a pair of sampled chro-
mosomes. In modern applications where hundreds or thousands of samples have been collected,
methods that can analyze larger sample sizes are desirable.

We can generalize the problem of decoding the pairwise TMRCA amongst two chromosomes
by treating one of the chromosomes as a fixed genealogy, and considering where the other chromo-
some joins onto this genealogy at each position. Then, more generally, given a “panel” of H ≥ 1

chromosomes, we can ask where at each position an additional “focal” chromosome joins onto the
panel genealogy.

Extending sequentially Markov coalescent methods to larger sample sizes is not trivial for the
simple reason that there is more than one possible tree topology to consider when n > 2. Instead
of inferring a sequence of numbers X1:N (representing the height of a tree with two leaves), as in
the preceding sections, one must consider as hidden states the space of edge-weighted binary trees
on n leaves. To circumvent this difficulty, we employ a so-called trunk approximation (Paul and
Song, 2010), which supposes that the underlying ancestral recombination graph is a disconnected
forest of H trunks extending infinitely far back into the past. The state space of this model is
{1, . . . , H} ×R>0, where the first, discrete coordinate describes the panel haplotype onto which a
focal haplotype is currently coalesced, and the second, continuous coordinate gives them time at
which that coalescence occurrred. Although the trunk assumption is strong, it has proved useful in
a variety of settings (Sheehan et al., 2013; Spence et al., 2018; Steinrücken et al., 2019).

Modifying our methods to utilize the trunk approximation is straightforward and amounts to,
essentially, replacing the coalescence measure p(X ∈ [t, t + dt)) = π(t) dt with the product
measure p((X, h) ∈ ([t, t + dt), {i})) = π(Ht) dt in all of our formulas. (Note that this measure
is properly normalized.) In other words, coalescence occurs with each haplotype at rate 1, and
conditional on coalescence, it occurs uniformly onto each haplotype.

2.4 Results

In this section we compare our method to existing ones, benchmark its speed and accuracy, and
conclude with some applications.
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2.4.1 Insensitivity of the posterior to the prior

As described in the introduction, our initial hypothesis was that posterior inferences for the hap-
lotype decoding problem are relatively insensitive to the choice of prior model on the way that
the sequentially Markov coalescent transitions from one position to the next. Here we confirm
this hypothesis. To study the relationship between the posterior and prior, we compared the the
renewal model developed above to the conditional Simonsen-Churchill (CSC) model of Hobolth
and Jensen (2014). The CSC is the most accurate sequentially Markovian model known in the
literature, and other models such as SMC (McVean and Cardin, 2005) and SMC’ (Marjoram and
Wall, 2006) are further approximations of it. Hence, CSC and the renewal model can be viewed as
the least and most approximative SMC methods, respectively.

We compared the CSC and renewal prior under both constant population size and varying pop-
ulation size, as well as when the recombination rate is equal to the mutation rate and when it is
lower. Taking all the combinations of the different population size histories and the recombination
rate gives us a total of 4 scenarios. Scenarios 1 and 3 have constant population size, and scenarios 2
and 4 have the variable population size. Scenarios 1 and 2 have recombination rate r = 10−9, and
scenarios 3 and 4 have recombination rate r = 1.4× 10−8 per base-pair per generation. We buck-
eted consecutive base pairs into groups of size w = 100 and assume that the recombinations occur
between these groups. Additional details of our simulation can be found in Appendix 2.6.8.1.

Supplemental Figures 2.3 and 2.4 show the Viterbi path and the posterior heatmap for one run
of each scenario of the simulation. From Figure 2.3, there is little difference in the Viterbi plot
between the CSC and renewal priors. Both priors produce a Viterbi path very similar to the true
sequence of TMRCAs. When the recombination rate increases, the Viterbi paths produced by the
two priors fail to capture all the recombination events, but are still very similar in their outputs. We
performed a similar analysis for the posterior decoding (Figure 2.4). Again, it is hard to discern
any meaningful difference in all scenarios between the two priors. This is especially the case in
scenarios 1 and 2 where the recombination rate is lower.

Confirming these qualitative observations, Table 2.5 shows the average absolute error for the
two priors over the 25 simulations. In terms of absolute error, the renewal prior does as well as the
more correct CSC prior. In fact, the renewal prior outperforms CSC under scenarios 3 and 4, the
scenarios with higher recombination rate. Table 2.6 shows that CSC is slightly better in relative
error. However, in general the differences are minor, and both the tables confirm our hypothesis
that the posterior is fairly insensitive to the choice of prior.

Next, we studied the extent to which the demographic prior π(t) affects the resulting estimates.
We simulated data under three different demographic models and then measured the resulting
accuracy of the posterior when each model was used as a prior to infer TMRCAs on data generated
from the other models (details in Appendix 2.6.8.2).
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We display the posterior of one pair of chromosomes for all 9 pairs of demographies used as
data generation and demographic priors in Figure 2.6. The plots show that regardless of which
demographic prior was used, the resulting posteriors all had the same shape. Table 2.10 shows
that in terms of mean absolute error, all three demographic models perform similarly when used
as prior, regardless of which one of them in fact generated the data. Relative error measurements
(Table 2.11) tell a similar story. Given the large differences between the three demographic mod-
els (Figure 2.5), if the posterior were sensitive to the demographic model we would expect each
column in the table to be quite different from one another. However, this does not seem to be the
case; using the correct prior results in an average improvement of a few percent in most cases.

In conclusion, our results suggest that, as long as the chosen prior is not pathological, its effect
on inference will be limited.

2.4.2 Comparison of Bayesian and frequentist inferences

In Section 2.3 we derived various methods for inferring tree heights. Here we compare the
Bayesian method where we sample from the posterior and the frequentist method where we take
the MAP path. We apply these two methods to the same simulated data from the first simulation
in Section 2.4.1. For the Bayesian method we sample 200 paths from the posterior and take the
median to compare against the MAP path.

Figure 2.7 shows the results of running the two methods on one set of simulated chromosomes
under each scenario. The top two panels of the figure show that when the recombination rate is
an order of magnitude lower than the mutation rate, both methods give a faithful approximation
of the true sequence of TMRCAs. However, the bottom two panels where the recombination rate
is larger displays the key difference between the two methods: the MAP path fails to detect many
recombination events, whereas the posterior median is an average over many paths so it can detect
recombination events that the MAP path cannot.

We use the same measures of absolute and relative we used in the previous sections. For this
simulation, we look at the error at each position so N/w = N. The results in Tables 2.12 and
2.13 show that the posterior median dominates the MAP path. Again, since the MAP path is the
most likely single path whereas in the Bayesian method we take the pointwise median of many
paths, the MAP path has inferior pointwise accuracy. This result is expected, but it should be noted
that when compared to Tables 2.5 and 2.6, the MAP path performs similarly to, and the Bayesian
method outperforms, the posterior decoding of the discretized SMC models used in Section 2.4.1.
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2.4.3 Empirical time complexity

In Section 2.3.2, we suggested that by pruning the state space of our methods in certain ways, their
running time could be effectively linear in the number of decoded positions. In this section we
confirm this by simulations.

We benchmarked our methods on simulated sequences of length N = 104 to N = 108. For
each length, we simulated 10 pairs of chromosomes. Figure 2.8 confirms that there is a linear
relationship between chromosome length and running time for both the Bayesian sampler method
and the MAP decoder. Note that, if decoding against a larger panel of chromosomes (cf. Section
2.3.4), the amount of work performed by our algorithms scales linearly in the panel size H . We
further verified (Figure 2.9) that the scaling is linear in both panel size (H) and chromosome length
(N ); in Figure 2.10, we tracked the quantityKn defined in Proposition 3, that is the average number
of pieces needed to represent the function Vn(t) for each 1 ≤ n ≤ N , and found that it too appears
to be bounded on average.

We confirmed a similar empirical scaling for the Bayesian algorithm by tracking the number of
summands considered in summation (2.12) before the truncation threshold was met (Figure 2.11).
On average, the number seems to be bounded by a small constant as the dynamic program (2.12)
proceeds from u = N to u = 1. It is possible that this truncation strategy could perform poorly
for closely related haplotypes which are cosanguineous over long intervals. To investigate this,
we simulated 50 chromosomes and selected the two most closely-related pairs of haplotypes in
terms of overall IBD sharing. We benchmarked the accuracy and runtime of our sampler using
various settings for the truncation cutoff. The results (Table 2.14) suggest that absolute accuracy
is fairly unaffected, but relative accuracy does continue to decline as we decrease the threshold
from 10−2 to 10−6. This is attributable to the fact that we the TMRCA between two closely-related
chromosomes is small on average, which inflates relative error.

Taken together, these simulations suggest the amount of work performed by our algorithms
scales linearly with the number of decoded haplotypes, and, crucially, does not grow with the
length of the decoded sequenceN . Based on these results, we conjecture that the average case time
complexity of our methods is O(HN), which would match the running time of the most efficient
existing methods for decoding the SMC (Harris et al., 2014; Palamara et al., 2018). Proving this
assertion rigorously appears difficult, and is left to future work.

2.4.4 Applications

We tested our method on the two most common real-world applications of the sequentially Markov
coalescent.
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2.4.4.1 Exact SMC

The pairwise sequentially Markov coalescent (PSMC; Li and Durbin, 2011) is a method for infer-
ring the historical population size (i.e., the function Ne(t) defined in Section 2.2.2) using genetic
variation data from a single diploid individual. Although in some settings PSMC has been super-
seded by more advanced methods which can analyze larger sample sizes (Schiffels and Durbin,
2014; Terhorst et al., 2017), it remains very widely used in many areas of genetics, ecology and bi-
ology, because it is fairly robust, and does not require phased data, which can be difficult to obtain
for species that have not been studied as intensively as humans. SMC++ (Terhorst et al., 2017) is
a generalization of PSMC that does not require phased data which scales to larger sample sizes.
Additionally, SMC++ utilizes the more accurate CSC model (cf. Section 2.4.1), whereas PSMC is
based on SMC.

As noted in Section 2.1, both PSMC and SMC++ use an HMM to infer a discretized sequence
of genealogies. The discretization grid is a tuning parameter which is challenging to set properly—
finer grids inflate both computation time and the variance of the resulting estimate, and for a fixed
level of discretization, the optimal grid depends on the unknown quantity of interest Ne(t). A
poorly chosen discretization can have serious repercussions for inference (Parag and Pybus, 2019).
One potential solution to this problem is to employ general algorithms designed to perform infer-
ence in continuous state-spaces. Particle filtering is one such example. The sequential Monte Carlo
for the sequentially Markov coalescent (SMCSMC; Henderson et al., 2021) is another method that
performs demographic inference using particle filtering. However, a potential downside is that it
is simulation-based, and potentially very computationally intensive.

Our method proceeds differently from either of these approaches. Recalling equation (2.3),
we see that inference of Ne(t) is tantamount to estimating (the reciprocal of) η(t). In survival
analysis, η is known as the hazard rate function, and a variety of methods have been developed
to infer it (Wang, 2014). Thus, if we could somehow sample directly from π, then inference of
Ne(t) would reduce to a fairly well-understood problem. While this is impossible in practice, the
simulated results shown in the preceding sections inspire us to believe that samples drawn from
the posterior p(X1:N | Y1:N) could serve the same purpose. Concretely, we suppose that a random
sample x1, . . . , xk drawn from the product measure

p(Xi1 | Y1:N)× p(Xi2 | Y1:N)× · · · × p(Xik | Y1:N), (2.15)

where the index sequence i1, . . . , ik ∈ [N ] is sufficiently separated to minimize correlations be-
tween the posteriors, is distributed as k i.i.d. samples from coalescent density. We then use a
kernel-smoothed version of Nelson-Aalen estimator (Wang, 2014) in order to estimate N̂e(t). As a
hyperprior on the coalescent intensity function, we simply used Kingman’s coalescent, π(t) = e−t.
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Figure 2.1: Comparison of XSMC, PSMC, SMCSMC, SMC++ on various simulated size histories.

We first compared the performance of our method with PSMC, SMC++, and SMCSMC on
simulated data. Figure 2.1 compares the results of running our method, which we call XSMC
(eXact SMC), and the three competing methods on data simulated from three size history functions
(plotted as dashed grey lines). We simulated a chromosome of length N = 5× 107 base pairs for
25 diploid individuals (total of 50 chromosomes), and then ran both methods on all 25 pairs. For
XSMC, we drew 100 random paths from the posterior distribution, and then sampled marginal
TMRCAs from each path according to (2.15) with 50,000 base pair spacing between sampling
locations. The plots show the pointwise median, with the interquartile range (distance between
the 25th and 75th percentiles) plotted as an opaque band around the median. For the first two
simulations we assumed that the mutation and recombination rates were equal, µ = r = 1.4×10−8

per base pair per generation. For reasons discussed below, we assumed in the third simulation that
r = 10−9. Both methods were run with their default parameters and provided with the true ratio
r/µ used to generate the data.

The left column of the figure (“Constant”) depicts the most basic scenario, where the population
size is unchanged over time. While all methods do an acceptable job, PSMC and XSMC exhibit
less bias. For PSMC, there is clear bias from the piecewise-constant model class it uses to perform
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Table 2.1: Total running time of XSMC, PSMC, SMCSMC, and SMC++ in minutes of 75 total
simulations on various simulated size histories.

Method Minutes

SMC++ 519.865721
SMCSMC 1840.547969
XSMC 0.891570
PSMC 1.401326
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Figure 2.2: Result of fitting XSMC to 1000 Genomes data. For each superpopulation, 20 samples
were chosen. Solid line denotes the median across all samples, and shaded bands denote the
interquartile range.

estimation. (We note that with its default settings, PSMC actually initializes to the true model in
this scenario.) XSMC has a slight downward bias in the recent past, but is otherwise centered over
the true values Ne = 104. Both methods appear slightly biased in the period 103-104 generations,
though in opposite directions. On the other hand, while SMCSMC does a great job estimating after
103 generations, it hallucinates a massive increase towards the present. SMC++ exhibits a slight
downward bias towards the recent past and also incorrectly estimates a population crash further
back in time.

In the center column (“Growth”), we simulated a cartoon model of recent expansion, in which
the population experiences a brief bottleneck from 2,000–1,000 generations ago, before suddenly
increasing in size by two hundredfold. This model is more difficult to correctly infer using only
diploid data, because the large recent population size prevents samples from coalescing during
this time, depriving methods of the ability to learn size history in the recent past. Nevertheless,
XSMC does an acceptable job of showing that the population experienced a dip followed by a sharp
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increase, though the estimates are oversmoothed. In contrast, PSMC estimates size history that is
nearly flat, with no acknowledgement of the bottleneck. SMC++ estimates a similar trajectory as
XSMC, but is slightly more downward biased at all points in time. At an initial glance, SMCSMC
looks to have most faithfully estimated the population size history. However, the results from the
other two scenarios indicate that SMCSMC tends to infer a recent growth in population whether
or not it actually occurred. Even so, without considering this feature of the model, SMCSMC
returns a similar result to XSMC. This result also illustrates another benefit of the nonparametric
approach: XSMC only returns an answer where it actually observes data. Because no coalescence
times were observed before ∼ 103 generations when sampling from the posterior, our method
does not plot anything outside of that region. This compares favorably with PSMC and related
parametric methods (e.g., Schiffels and Durbin, 2014; Terhorst et al., 2017; Steinrücken et al.,
2019), which have to model Ne(t) over all 0 ≤ t <∞ in order to perform an analysis, even when
the data contain no signal outside of a limited region.

Lastly, in the right-hand column we examined a difficult demography known in the literature
as the zigzag model (Schiffels and Durbin, 2014). This is a pathological model of repeated expo-
nential expansions and contractions, and is designed to benchmark various demographic inference
procedures. We found that with the default setting ρ = θ used in the preceding two examples, the
methods failed to produce good results on the zigzag. We therefore lowered the rate of recombi-
nation to r = 10−9/bp/generation in order to create more linkage disequilibrium for the methods
to exploit. Here, a fairly substantial difference emerges between the two methods. XSMC does
the best job of inferring this difficult size history, with accurate results to almost 102 generations
in the past, and almost no discernible bias. It is also the only method to successfully infer the final
population crash in the recent past. In contrast, PSMC and SMC++ return similar results where the
methods are able to recover the true value accurately after 103 generations. SMCSMC also returns
similar results to PSMC and SMC++, but again the method incorrectly infers a population increase
both towards the present and further back in the past.

Table 2.1 displays the total running time in minutes of the four methods of the 75 total simula-
tions across the three different demographies. Each method was parallelized across the simulations
and run on a 32-core machine. XSMC and PSMC completed the simulations significantly faster
than SMC++ and SMCSMC, and between the two methods, XSMC outperformed PSMC compu-
tationally by a relatively large margin. The simulation results show that XSMC can deliver high
quality estimates of demography more quickly than competing methods.

Encouraged by these results, we next turned to analyzing real data. We performed a simple
analysis where we analyzed whole genome data from 20 individuals from each of the five super-
populations (African, European, East Asian, South Asian, and Admixed American) in the 1000
Genomes dataset (The 1000 Genomes Project Consortium, 2015). Results are shown in Fig-
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ure 2.2. Broadly speaking, our method agrees with other recently-published estimates (Li and
Durbin, 2011; Terhorst et al., 2017), and succeeds in capturing major recent events in human
history such as an out-of-Africa event 100-200kya, a bottleneck experienced by non-African pop-
ulations, and explosive recent growth beginning around 20kya. These estimates could probably
be improved with fine-tuning and the use of additional data, but we did not attempt this, the mes-
sage being that our method has moderate data requirements and produces reasonable results with
minimal user intervention. Finally, we note that our method is highly efficient: to analyze all
20× 5× (3× 109Mbp) ≈ 300Gbp of sequence data took approximately 40 minutes on a 12-core
workstation. A single human genomes (all 22 autosomes) can be analyzed in about 30 seconds.

2.4.4.2 Phasing and Imputation

The Li and Stephens (2003) haplotype copying model (hereafter, LS) is an approximation to the
conditional distribution of a “focal” haplotype (e.g., a chromosome) given a set of other “panel”
haplotypes. It supposes that the focal haplotype copies with error from different members of
panel, occasionally switching to a new template due to recombination. Genealogically, this can be
interpreted as finding the local genealogical nearest neighbor (GNN) of the focal haplotype within
the panel. LS has been used extensively in applications, for example phasing diploid genotype data
into haplotypes (Stephens and Scheet, 2005) and imputing missing data (Scheet and Stephens,
2006; Marchini et al., 2007; Howie et al., 2009). The method’s undeniable success is actually
somewhat surprising, since it assumes an extremely simple genealogical relationship between the
focal and panel haplotypes which ignores time completely (Paul and Song, 2010). Hence, while
we motivated XSMC as a fast and slightly more approximate SMC prior, it can also be seen as a
more biologically faithful version of LS.

We wondered whether our method could be used to improve downstream phasing and imputa-
tion. Fully implementing a phasing or imputation pipeline is beyond the scope of this paper, so
we settled for checking in simulations whether decoding results produced by XSMC were more
genealogically accurate than those obtained using LS. We simulated data using realistic models of
human chromosomes 10 and 13 (Adrion et al., 2019). We chose these two because chromosome 10

is estimated to have an average ratio of recombination to mutation slightly above 1 (ρ/θ = 1.07),
while in chromosome 13 the ratio is slightly below 1 (ρ/θ = 0.87). The ratio of recombina-
tion to mutation affects the difficulty of phasing and imputation, with higher ratios leading to less
linkage disequilibrium and thus less accurate results. We also explored the effects of varying the
size of the haplotype panel. For each chromosome, we simulated 10 data sets with panels of size
H = 2, 4, 10, 25, 100.

As a proxy for phasing and imputation accuracy, we studied which method identified a ge-
nealogical nearer neighbor on average. The GNN at a given position is defined to be any panel
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haplotype that shares the earliest common ancestor with the focal haplotype. In other words, any
panel haplotype that has the smallest TMRCA with the focal haplotype is a GNN. (Note that there
may be more than one GNN.) For purposes of accurate phasing and imputation, it is desirable to
identify the GNN as closely as possible.

For each simulation we computed the Viterbi path from XSMC and LS, as well as the posterior
modal haplotype, and studied the proximity of those paths to the true GNN at each segregating site.
Table 2.2 shows the proportion of segregating sites where XSMC and LS both estimated the same
haplotype to be the GNN. For the MAP path, there is a high level of agreement, 80-90%, between
the two methods for both small and large panel sizes. When the panel size is small (H = 2),
there are few possible choices, and when the panel size is large (H = 100) the decoding consists
mostly of long, recent stretches of IBD which are fairly easy to estimate. Disagreement is highest
for intermediate values H = 4, 10, 25 where neither of these effects dominates. At sample size
H = 10 the methods only agree at about half of segregating sites. The posterior mode appears to
be less stable, with the agreement between the two methods decreasing monotonically as the panel
size increases, down to agreement at only abouth 1/3rd of sites when H = 100.

At the 10-66% of sites where the methods disagree, the results indicate a statistically significant
gain for XSMC compared to LS. Table 2.3 shows that conditional on the two methods inferring
different haplotypes as the GNN at that site, XSMC finds a genealogical nearer neighbor more
often except in one case (chromosome 10, H = 10, MAP path.) Using MAP estimation, the
advantage of using XSMC increases, as the panel size increases, up to a roughly 6-10% advantage
on chromosome H = 100. For the posterior mode, the methods perform more comparably, and
the largest difference is on the order of a few percentage points. The performance difference is
significantly different from equal odds in almost every case.

2.5 Conclusion

In this article, we studied the sequentially Markov coalescent, a framework for approximating
the likelihood of genetic data under various evolutionary models. We proposed a new inference
method which supposes that the heights of neighboring identity-by-descent segments are indepen-
dent. We showed that this led to decoding algorithms which are faster and have less bias than
existing algorithms.

There are several possible extensions to our work. It is straightforward to extend our techniques
to allow for position-specific rates of recombination and mutation, which could then be used to
infer spatial or motif-specific variation in these processes.

Although we focused here on analyzing data from a single, panmictic population, we can also
use posterior samples or MAP estimates to infer more complicated models of population structure.

27



Table 2.2: Proportion of segregating sites where XSMC and LS agree on the GNN using the MAP
path or posterior mode.

Chromosome 10 Chromosome 13
Panel Size

MAP 2 0.9129 (0.0073) 0.9166 (0.0070)
4 0.8473 (0.0014) 0.8533 (0.0015)
10 0.8365 (0.0021) 0.8440 (0.0027)
25 0.8423 (0.0032) 0.8413 (0.0033)
100 0.8619 (0.0044) 0.8468 (0.0067)

Mode 2 0.8435 (0.0128) 0.8457 (0.0128)
4 0.5989 (0.0025) 0.6006 (0.0024)
10 0.4102 (0.0015) 0.4083 (0.0014)
25 0.3564 (0.0013) 0.3557 (0.0020)
100 0.3362 (0.0014) 0.3381 (0.0019)

Table 2.3: Proportion of segregating sites that XSMC finds the more closely related haplotype than
LS conditional on the two methods inferring different haplotypes at that site, using the MAP path
or posterior mode.

Chromosome 10 Chromosome 13
Panel Size

MAP 2 0.5258 (0.0031) 0.5653 (0.0035)
4 0.5056 (0.0027) 0.5383 (0.0039)
10 0.4842 (0.0045) 0.5036 (0.0070)
25 0.5068 (0.0052) 0.5411 (0.0072)
100 0.5990 (0.0152) 0.5682 (0.0101)

Mode 2 0.5326 (0.0045) 0.5393 (0.0034)
4 0.5298 (0.0053) 0.5302 (0.0068)
10 0.5435 (0.0024) 0.5442 (0.0030)
25 0.5320 (0.0021) 0.5292 (0.0044)
100 0.5161 (0.0023) 0.5189 (0.0036)
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It is also possible to extend some of our techniques to other priors which model correlations be-
tween adjacent IBD segments. For the Viterbi decoder, we were able to implement a version of the
algorithm in Section 2.3.3 which works for McVean and Cardin’s original SMC model. This could
be useful, for example, if analyzing data from a structured population, to the extent that adjacent
segments of identity by descent are more likely to derive from members of the same subpopulation.
However, the resulting procedure is much more complicated. The Viterbi function Vn(t) no longer
has the tractable form derived in Proposition 3. Consequently, we cannot use a simple method
like the one in Appendix 2.6.6 to perform the pointwise maximization in equation (2.19). Instead,
numerical optimization must be used instead, resulting in a slower algorithm.

Another interesting possibility is to use our method to estimate ancestral recombination graphs.
Recently, there has been a resurgence of interest in inferring ARGs using large samples of cos-
mopolitan genomic data (Kelleher et al., 2019; Speidel et al., 2019). Although these represent an
impressive breakthrough, they rely on heuristic estimation procedures that do not directly model
the underlying genealogical process that generates ancestry. Our method provides a new possibil-
ity for ARG estimation, by iteratively adding samples onto a sequence of estimated genealogies,
but without the need to discretize those genealogies. These and other extensions are the subjects
of ongoing work.

Supplement to ”Exact Decoding of the Sequential Markov Coalescent: In the supplement we
present supporting lemmas, proofs of the theorems, and additional plots and tables. (pdf)

Code: All of the data analyzed in this paper are either simulated, or publicly available. A Python
package implementing our method is available at https://terhorst.github.io/
xsmc. Code which reproduces all of the figures and tables in this manuscript is available at
https://terhorst.github.io/xsmc/paper.

Acknowledgements: This research was supported by the National Science Foundation grant num-
ber DMS-2052653, and a Graduate Research Fellowship.
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2.6 Appendix

2.6.1 Proof of Proposition 1

The proof requires only a few simple facts from Bayesian analysis.

Fact 1. If X ∼ Γ(a, b) and Y | X ∼ Poisson(θX), then X | Y ∼ Γ(a+ Y, b+ θ).

Fact 2. If X ∼MΓ(K) and Y | X ∼ Poisson(X), then X | Y ∼MΓ(K).

Fact 3. If Xn | Yn ∼ MΓ(nK) and π ∈ MΓ(K), then under the renewal approximation (2.7),
Xn+1 | Yn ∼MΓ((n+ 1)K).

The first two facts are well-known consequences of conjugacy. To establish the third, note that

p(Xn+1 | Yn) =

∫
Xn

fRXn+1|Xn(Xn+1 | Xn)p(Xn|Yn)

=

∫
Xn

[δ(Xn −Xn+1)e−ρXn + (1− e−ρXn)π(Xn+1)]p(Xn|Yn)

= p(Xn = Xn+1 | Yn)e−ρXn+1︸ ︷︷ ︸
∈MΓ(nK)

+π(Xn+1)

∫
Xn

(1− e−ρXn)p(Xn|Yn)︸ ︷︷ ︸
=constant

(2.16)

∈MΓ((n+ 1)K).

Proof of Proposition. By induction on n. The case n = 1 follows from Facts 1 and 2. And, if the
claim holds for n = i, then Xi+1 | Y1:i ∼MΓ((i+ 1)K) by Fact 3. Since Yi+1 ⊥ Y1:i | Xi+1, Fact
2 implies

(Xi+1 | Y1:i) | Yi+1 = Xi+1 | Y1:i+1 ∈MΓ((i+ 1)K). (2.17)

2.6.2 Proof of Proposition 2

Define −→α (Xn) = p(Xn | Y1:n) to be the quantity derived in Proposition 1, and let ←−α (Xn+1)

be obtained by running the forward algorithm from that proposition on the reversed sequence
(YN , YN−1, . . . , Yn+1). By reversibility,←−α (Xn+1) = p(Xn+1 | Yn+1:N) and hence

p(Xn | Y1:N) ∝ −→α (Xn)p(Yn+1:N | Xn)

∝
−→α (Xn)p(Xn | Yn+1:N)

π(Xn)

=

−→α (Xn)
∫
Xn+1

p(Xn | Xn+1)←−α (Xn+1)

π(Xn)
. (2.18)
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By Proposition 1, −→α (Xn) ∈ MΓ(Kn) and←−α (Xn+1) ∈ MΓ(K(N − n − 1)). Finally, using the
same argument that established equation (2.17),∫

Xn+1

p(Xn | Xn+1)←−α (Xn+1) ∈MΓ(K(N − n)).

Remark. Instead of the reversibility argument used to prove Proposition 2, we could have used
ideas from the proof of Proposition 1 to derive a sum-of-gammas representation for the rescaled
backward function

β(Xn) = p(Yn+1:N | Xn)/p(Yn+1:N | Y1:n),

whence p(Xn | Y1:N) = α(Xn)β(Xn). We experimented with this approach, but found that
it was numerically unstable for long sequences: whereas the mixture coefficients of α(Xn) live
in the simplex, the backwards function β(Xn) is not a probability distribution in Xn, and we
observed that the mixture coefficients tended to diverge when N was large. It seems that the
rational representation (2.9) has superior numerical properties.

2.6.3 Proof of Proposition 3

To prove the result we need a few lemmas. We omit the trivial proofs of the first two.

Lemma 1. VK contains all piecewise constant and piecewise linear functions with K pieces. For

all i, Vi ⊂ Vi+1. If c ∈ R and f ∈ Vi, g ∈ Vj , then cf ∈ Vi, f + g ∈ Vi+j and max{f, g} ∈ Vi+j.

Lemma 2. Let en(t) := log p(Yn | Xn = t). Then

en(t) = −θt+ Yn log(θt)− log Yn! ∈ V1.

Lemma 3. Suppose that Ne(t) ∈ VK is piecewise constant. Then log π(t), log π(t) ∈ VK .

Proof. If Ne(t) is piecewise constant then so too is log η(t) = − logNe(t). Also, R(t) :=∫ t
0
η(s) ds ∈ VK is piecewise linear on the same set of breakpoints. Hence,

log π(t) = log η(t)−R(t).

By Lemma 1, log π(t) ∈ VK . Similarly,

log π(t) = const. + log t+ log π(t),

and log π(t) ∈ VK using Lemma 1.
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Proof of Proposition. By induction on n. From Lemma 3 we have that log π(t) ∈ VK , and from
Lemma 2 we have that e1(t) ∈ V1. Thus, for n = 1,

V1(t) = log π(t) + e1(t) ∈ VK

as claimed. Again when Ne(t) is piecewise constant then so too is R(t) :=
∫ t

0
η(s) ds. So, For the

inductive step, we have

Vn+1(t) = en+1(t) + max
{
−ρt+ Vn(t)︸ ︷︷ ︸

(A)

, log π(t) + maxs6=tVn(s) + log(ρs)︸ ︷︷ ︸
(B)

}
. (2.19)

By the induction hypothesis and Lemmas 1-3, both (A) and (B) are in Vk1 for some k1. Then,
another application of the lemmas shows that in fact the entire right-hand side of (2.19) is in Vk2

for some (possibly larger) k2.

2.6.4 Proof of Proposition 4

Proof. In view of equation (2.19), note that for fixed t, we can unwind the recursion Vn+1(t) =

en+1(t) − ρt + Vn(t) until we reach an index i where (A) < (B). By continuity, this index is the
same for all t ∈ [τnJkK, τnJk+1K). Denote the vector of such indices associated with each interval
by in, and let

CnJkK = max
s 6=t

VinJkK(s) + log(ρs)−
n∏

i=inJkK

log Yn!.

Then

Vn(t) = CnJkK +
n∏

i=inJkK

log Yn! + log π(t) +
n∑

i=inJkK

ei(t)− tρ(n− inJkK),

so the claim follows by using Lemma 2 to expand the sum.

2.6.5 Forward recursion constants

In this section we derive the exact mixing weights and scale/shape parameters for the mixture
representation proved in Proposition 2. Define γ(x; a, b) to be the PDF of the gamma distribution
with mean a/b and variance a/b2,

γ(x; a, b) =
xa−1e−bx

Γ(a)ba
.

32



To conserve notation, in this section we use the following array-based conventions for vector ex-
pressions:

• Scalar functions operate on vectors in a component-wise manner. For example, if x,y, z ∈
Rk then

2xey/z = 〈2x1e
y1/z1, . . . , 2xne

yn/zn〉 .

In particular, for vectors α, a,b ∈ Rn,

αγ(·; a,b) = 〈α1γ(·; a1, b1), . . . , αnγ(·; an, bn)〉 .

• A binary operation between a scalar and a vector “broadcasts” the scalar to the dimension of
the vector. For example, 1 + x = 〈1 + x1, . . . , 1 + xn〉.

• To refer to individual entries of subscripted vectors, we will use the notation xnJiK. A sub-
vector (“slice”) of xn of length i ≤ n is denoted xnJ1 : iK = 〈xnJ1K,xnJ2K, . . . ,xnJiK〉 .

• The sum of all the entries of x is denoted
∑

x =
∑n

i=1 xi.

Additionally, we define the following function for later use:

f(a, b, c, y) =
θyba

(b+ c)a+y

Γ(a+ y)

Γ(a)Γ(1 + y)
. (2.20)

We prove the following theorem in the case where π is a gamma distribution. Extending the
proof to gamma mixtures requires no new ideas, only notation; details are left to the reader.

Theorem 1. Suppose that π(x) = γ(x; a0, b0). For each n ∈ [N ] let an,bn ∈ Rn be defined by

anJiK = 1 + a0 +
n∑
j=1

Yj

bnJiK = 1 + θ + (n− i)(θ + ρ),

and define α0
n,αn ∈ Rn and Cn ∈ R by the recursions

α1 = 1

α0
nJ1 : n− 1K = αn−1f(an−1,bn−1, θ + ρ, Yn)

α0
nJnK = f(a0, b0, θ, Yn) (1−∑αn−1 [bn−1/(bn−1 + ρ)]an−1)

Cn =
∑
α0
n

αn = α0
n/Cn.
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Then

p(Xn | Y1:n) =
∑
αnγ(x; an,bn), (2.21)

and additionally Cn = p(Yn | Y1:n−1).

Proof. By induction on n. The base case p(X1 | Y1) follows from conjugacy of the gamma and
Poisson distributions (cf. Fact 1 in Appendix 2.6.1.) For the general case, assume that p(Xn | Y1:n)

has the form shown in (2.21). Then

p(Xn+1 | Y1:n+1) ∝
∫
Xn

p(Yn+1, Xn+1, Xn | Y1:n), (2.22)

= p(Yn+1 | Xn+1)

∫
Xn

p(Xn+1 | Xn)p(Xn | Y1:n),

where the constant of proportionality Cn+1 = p(Yn+1 | Y1:n) does not depend on Xn+1. Using the
transition rule (2.4), this implies∫

Xn

p(Xn+1 | Xn)p(Xn | Y1:n)

=

∫
Xn

[δ(Xn −Xn+1)e−ρXn + (1− e−ρXn)π(Xn+1)]p(Xn | Y1:n)

= e−ρXn+1p(Xn = Xn+1 | Y1:n) + π(Xn+1)

∫
Xn

(1− e−ρXn)p(Xn | Y1:n)

= e−ρXn+1p(Xn = Xn+1 | Y1:n) + π(Xn+1)

[
1−

∫
Xn

e−ρXnp(Xn | Y1:n)

]
.

Now, by the inductive hypothesis and the identity

γ(x; a, b)xce−dx = ba(b+ d)−(a+c) Γ(a+ c)

Γ(a)
γ(x; a+ c, b+ d) (2.23)

we obtain, for α′n = αn [bn/(bn + ρ)]an ,∫
Xn

p(Xn+1 | Xn)p(Xn | Y1:n) =
∑
α′nγ(Xn+1; an,bn + ρ) + (1−∑α′n) π(Xn+1).

Multiplying through by

p(Yn+1 | Xn+1) = e−θXn+1(θXn+1)Yn+1/Yn+1!
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yields

p(Xn+1 | Y1:n+1) ∝∑
αn f(an,bn, θ + ρ, Yn+1)︸ ︷︷ ︸

(A)

γ(Xn+1; an + Yn+1,bn + θ + ρ)

+ f(a0, b0, θ, Yn+1) (1−∑α′n)︸ ︷︷ ︸
(B)

γ(Xn+1; 1 + a0 + Yn+1, b0 + θ), (2.24)

by (2.20) and (2.23). If we make the additional definitions

an+1J1 : nK = an + Yn+1 (2.25)

an+1Jn+ 1K = 1 + a0 + Yn+1 (2.26)

bn+1J1 : nK = θ + ρ+ bn (2.27)

bn+1Jn+ 1K = 1 + θ (2.28)

C−1
n+1 =

∑
A +B (2.29)

αn+1J1 : nK = C−1
n+1A (2.30)

αn+1Jn+ 1K = C−1
n+1B (2.31)

then (2.24) can be written as

p(Xn+1 | Y1:n+1) =
∑
αn+1γ(Xn+1; an+1,bn+1),

completing the proof. The recursive definition for αn+1 follows from (2.30) and (2.31), and the
representations for an+1 and bn+1 follow from (2.25)–(2.28). Finally, note that Cn+1 is precisely
the constant of proportionality in (2.22) and therefore equals the conditional evidence p(Yn+1 |
Y1:n).

2.6.6 Optimization in VK
In this section we derive procedures for finding the pointwise maximum max{f, g} when f, g ∈
VK , as well as max(f) when f is in that class.

2.6.6.1 Computing the maximum

Maximizing (or minimizing) any individual function f ∈ VK is easily accomplished since the
derivative of f is of the form f ′(t) = a+ b/t over each interval. Hence there is at most one critical
point at t = −b/a at which the function attains an extreme value; otherwise the maximum occurs
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at one of the end points of the interval. We can therefore consider the function value at all possible
critical points, as well as the values at the interval endpoints, in order to locate the maximum. This
requires O(K) time.

2.6.6.2 Computing the pointwise maximum

Turning to the problem of maximizing/minimizing pairs of functions, by enlarging K if necessary,
we can without loss of generality assume that f and g are defined on the same set of breakpoints.
Then it suffices to show how to find the zeros (if any) of the function h = f − g ∈ VK over any
given interval.

Accordingly, let h(t) = at + b log t + c for τ ∈ I := [τ1, τ2). By the change of variables
− log t → u it is equivalent, and slightly simplifies the math, to find the zeros of h(u) = ae−u −
bu + c over an arbitrary interval I . Since interchanging the roles of f and g does not change the
result, we may also assume that a ≥ 0, and if a = 0 then we may assume that b ≥ 0.

Let w = −aec/b/b. If w ≥ 0 then h(u) has a single real root u0 = W0(w)− c/b, where W0(x)

denotes the principal branch of the Lambert W function (DLMF, §4.13). If −1/e ≤ w0 < 0 then
h(u) has two real roots, one at u0 and the other at u1 = W−1(w)−c/b whereW−1 is the−1 branch
of the Lambert W function.

We will use repeatedly the fact that a trivial solution exists whenever h can be shown to be
globally decreasing, since:

• If h(τ2) ≥ 0 then the function is non-negative over I , so the maximum is f .

• If h(τ1) < 0 then the function is negative over I , so the maximum is g.

• Else the function has a single root u0 ∈ I , so the maximum is f on [τ1, u0) and g on [u0, τ2).

To find the zeros of h(u), we proceed by cases:

• If b = 0:

– If a = 0 then h = c, so the maximum over I is either f or g depending on the sign of c.

– Else (a ≥ 0, b = 0):

* If c ≥ 0 then h = f − g ≥ 0 so the maximum over I is f .

* Else, we have h′ = −uae−u + c < 0 so the function is decreasing.

• If a = 0 then we assume that b ≥ 0. Then h′(u) = −b ≤ 0, so h is decreasing.

• Else (a > 0, b 6= 0):

– If b > 0 then h′(u) = −ae−u − b < 0 so h is decreasing.

36



– Else we have h′′(u) = ae−u > 0 so the function is convex with a global minimum at
u∗ = log(−a/b):

* If h(u∗) > 0 then the function is non-negative so the maximum is f .

* Otherwise, h is convex with

lim inf
u→−∞

h(u) = lim inf
u→∞

h(u) =∞,

so it has two real roots u0 and u1. Without loss of generality assume u0 ≤ u1.
There are

(
4
2

)
cases to consider depending on the ordering of u0, u1, τ1, τ2. For

example, if τ1 < u0 < u1 < τ2 then h is positive on [τ1, u0), negative on [u0, u1)

and positive on [u1, τ2), leading to a pointwise maximum function which takes
on the values f, g, f on those three intervals. The other five cases are handled
similarly, and we omit the details.

The running time of this procedure is O(1) assuming we can evaluate Wn(w) in constant time.
Thus, to find the pointwise maximum of f and g when both have are defined on K pieces takes
O(K) time.

2.6.7 Non-MAP paths

The MAP path XMAP
1:N solves the optimization problem

XMAP
1:N = arg max

Z1:N

p(X1:N = Z1:N | Y1:N)

= arg min
Z1:N

EX1:N |Y1:N
1{X1:N 6= Z1:N}, (2.32)

so the Viterbi algorithm can be interpreted as minimizing risk with respect to the loss function
`MAP(x, y) = 1{x 6= y}, where x, y are paths, and x = y if they are equal at every position. This
loss function is “global” in that paths incur equal loss irrespective of whether they mismatch the
true path at one position or all of them; there is no benefit to improving the match at a particular
position.

On the opposite end of the spectrum, the pointwise posterior mode

XPM
1:N := (arg max

Z1

p(X1 = Z1 | Y1:N), . . . , arg max
Zn

p(Xn = Zn | Y1:N)

= arg min
Z1:N

n∑
i=1

EXi|Y1:N
1{Xi 6= Zi}
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is “local”, placing no emphasis on paths that are continuous from one position to the next. Indeed,
from Theorem 1 and Appendix 2.6.5, we can see that arg max p(Xi | Y1:N) 6= arg max p(Xi+1 |
Y1:N) almost surely for all i, so that XPM

1:N has a changepoint at every position and thus vanishingly
small prior probability for large N .

For ordinary HMMs, it is possible to algorithmically interpolate between these these two ex-
tremes, resulting in paths that achieve better pointwise accuracy than XMAP

1:N and higher prior like-
lihood than XPM

1:N Yau and Holmes (2013); Lember and Koloydenko (2014). However, these algo-
rithms assume a discrete state space, and it is unclear whether they can be extended to our setting.
Instead, we propose a simple modification of our method which has a straightforward interpretation
as penalized changepoint detection.

To build the connection, note that we can write the optimization in (2.14) equivalently by rep-
resenting X1:N by the locations and heights of each segment, τ ,x ∈ RK , such that

1 = τ1 < · · · < τK < τK+1 = N + 1

Xτk = Xτk+1 = · · · = Xτk+1−1 = xi, k = 1, . . . , K.

Then, we can rewrite the complete likelihood as

p(X1:N , Y1:N) = p(τ ,x, Y1:N) =
K∏
k=1

p(Yτk:τk+1−1, τ ,x) (2.33)

where

p(Yτk:τk+1−1 | τ ,x) = x
1{k>1}
k π(xk)(ρxk)

1{k<K}
e−(ρ+θ)∆kxk∏τk+1−1

i=τk
Yi!

(θxk)
Ȳτk:τk+1−1 .

and ∆k = τk+1 − τk. Under the renewal approximation, for fixed τ , (2.33) separates into a series
of simpler one-dimensional optimization problems:

max
τ ,x

p(τ ,x, Y1:N) = max
τ

max
x

p(τ ,x, Y1:N)

= max
τ

|τ |∏
k=1

max
xk

p(Yτk:τk+1−1, τk, τk+1, xk). (2.34)

where we abused notation to write |τ | for the dimension of (i.e. the number of changepoints in) τ .
Taking the log of equation (2.34), we have that the MAP path equivalently solves

min
τ

|τ |∑
k=1

Ck(Yτk:τk+1−1) + β|τ | (2.35)
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where we defined β = − log ρ and

Ck(Ys:t) = min
x
−
{

(1{k>1} + 1{k<K}) log x+ log π(x)− (ρ+ θ)∆kx+ Ȳs:t log(θx)
}
.

Hence, β penalizes segmentations with many changepoints. Above we showed that with β =

− log ρ, the optimum of (2.35) is exactly XMAP
1:N , which is also optimal for (2.32). Other settings

of β result in paths which are suboptimal with respect to this objective, but potentially superior by
other metrics. In particular, we observed that by setting β lower than − log ρ, thus encouraging
the algorithm to find paths with more changepoints than the MAP path, the paths are pointwise
superior to XMAP

1:N in the sense of the preceding paragraph.

2.6.8 Simulation Details

In this section, we outline the details of our two simulations regarding the insensitivity of the prior
to the posterior.

2.6.8.1 Differences between different SMC models

Under the constant size simulations, the effective population size was set to Ne(t) = 20, 000 for
all t. In the varying case,

Ne(t) =


20, 000, t ≥ 3162

10, 000, 1000 ≤ t < 3162

2, 000, 000, t < 1000

.

We discretized time into 32 epochs by selecting time points t0 = 0 < t1 < · · · < t32 =∞ and
setting epoch Iε = [tε, tε−1). After setting the first time point as 0 and the final time point (t32) as
∞, we set t1, t2, . . . , t31 as the sequence of 31 evenly log-spaced numbers between 10 and 100, 000

including the endpoints.
In what follows we measure the accuracy of the discretized SMC posterior with respect to the

true (simulated) TMRCA at each position. To do this, we assume that coalescence events occur
at the expected time of coalescence given that coalescence occurred in that epoch. To perform a
fair comparison, even though we know how to solve the renewal model exactly, in this section we
compare the time-discretized versions of it and the Markovian model. (See Appendix 2.6.8.3 for a
precise description of our metric.)

For each scenario, we used msprime Kelleher et al. (2016) to simulate N = 5×106 base pairs
of sequence data for 25 pairs of chromosomes, for a total of N/w = 5 × 104 loci. The sequences
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were simulated with a per generation mutation rate of µ = 1.4×10−8. Note that in scenarios 3 and
4, µ = r. We calculate the posterior probabilities for the Markovian and renewal approximation
using their corresponding transition probabilities. To assess the accuracy of the two priors we
measured both absolute and relative error, defined respectively as

ErrA(x̂,x) =
1

N/w

N/w∑
i=1

Ex̂i |x̂i − xi|

ErrB(x̂,x) =
1

N/w

N/w∑
i=1

Ex̂i

∣∣∣∣ log10

(
x̂i
xi

)∣∣∣∣
where xi is the true TMRCA of the tree at position i and x̂i is time to coalescence distributed
according to the posterior.

To further understand the difference between the priors, we stratified this analysis by quartiles
of the true TMRCA. We denote the minimum and maximum TMRCAs as q0 and q4, and the first,
second, and third quartiles as q1, q2, and q3. We then recalculate the absolute error in quarter j as

ErrA(x̂,x, j) =

∑N/w
i=1 Ex̂i |x̂i − xi|1[qj−1,qj)(xi)∑N/w

i=1 1[qj−1,qj)(xi)

with relative error defined similarly. Due to the length bias of IBD tracts, the number of loci in
quarter j will be smaller than the number of loci in quarter j − 1. The number of loci in each
quarter under the various scenarios is displayed in Table 2.9.

Table 2.7 contains the mean absolute error over the 25 simulations after stratification. Under
scenarios 1 and 2 where the recombination rate is lower, again we see virtually no difference
between the two priors across all quarters. Under scenarios 3 and 4 where the recombination rate
is higher, we see that in the first and second quarters, the renewal prior outperforms the Markov
approximation by a large margin. The results are reversed in the third and fourth quarters where the
Markov approximation is more accurate than the renewal prior. This trend is mostly mirrored in
Table 2.8 with the mean relative errors. The renewal prior does just slightly worse than the Markov
prior under scenarios 1 and 2 across all quarters. Under scenarios 3 and 4 as the underlying true
TMRCA increases, so too does the difference in ErrB. The large difference in quarter 4 is expected
as under the Markov prior, the distribution of tree height of the current segment conditioned on the
tree height of the previous segment, q(t | s) is approximately uniform in t for large s. I.e. q(t |
s) ≈ 1/s when s � t. In contrast, the distribution under the renewal prior π(t) = e−t is more
dense for smaller values of t.

In general, outside of the large difference between the methods in quarter 4, the two approxi-
mations are comparable, with neither one clearly dominating the other. When the underlying true
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TMRCA is smaller, ErrA is the better measure of accuracy, so despite the Markov approximation
outperforming the renewal prior in all quarters in terms of ErrB, the renewal prior actually out-
performs the Markov approximation in quarters 1 and 2. We conclude from these results that our
choice of prior is justified.

2.6.8.2 Effect of the demographic prior

We simulated data under three different demographic models and then analyzed the posterior when
each model was used as a prior to infer TMRCAs on data generated from the other models. The
standard library for population genetic simulation models, stdpopsim Adrion et al. (2019), pro-
vides a demographic model of the human population in Africa available as Africa 1T12 and the
zig-zag demography previously mentioned in Section 2.4.4.1 available as Zigzag 1S14.

In addition to these two models, we use a model with a constant population size of 2 × 104.

We modeled the two non-constant population size history, Africa and zig-zag, using a piecewise
constant function of 64 segments instead of a continuous function. The three models are plotted
in Supplemental Figure 2.5. The set of time breakpoints used to approximate the size history is
also the same set of points we used to discretize time into epochs. Here we discretized time into
64 epochs setting t0 = 0, t64 = ∞, and the sequence t1 < · · · < t63 as the sequence 63 evenly
log-spaced numbers between 10 and 106 including the endpoints.

We then simulated 25 pairs of chromosomes for each model with msprime using the human
chromosome 20 model with the default flat recombination and mutation maps in conjunction with
the demographic models. The per generation per base pair mutation rate and recombination rate
for chromosome 20 given by stdpopsim are µ = 1.29×10−8 and r = 1.718×10−8 respectively.
After simulating the data, for each pair of chromosomes generated under each of the models, we
used each demographic size history as a demographic prior to calculate the posterior distribution
of the TMRCA using the renewal approximation.

2.6.8.3 Expected time to coalescence

In this section we describe how to calculate the expected time to coalescence which we use in the
simulations discussed in this Appendix. Suppose we have discretized time into the following set of
m+ 1 times points t0 = 0 < t1 < · · · < tm =∞. Precisely, the distribution of time to coalescence
within epoch Iε = [tε−1, tε) is

Cε ∼ tε−1 + Zε
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where Zε is a truncated exponential in the interval [0, tε − tε−1) with parameter ηε = 1/Ne(tε−1).

The expectation of Zε is

E(Zε) =

∫ δ
0
zηεe

ηεzdz

1− e−ηεδ =
1− e−ηεδ − ηεδe−ηεδ

ηε(1− e−ηεδ)
=

1

ηε
+

δ

1− e−ηεδ

where δ = tε − tε−1.

Finally, with some algebra we have that

E(Cε) = tε +
1

ηε
+

δ

e−ηεδ − 1
.

The final epoch Im = [tm−1, tm) = [tm−1,∞) is not bounded above, so the time to coalescence
simply follows an exponential random variable with parameter ηm−1 without truncation. Thus the
expected time to coalescence is simply given by

E(Cm) = tm−1 +
1

ηm
.
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Additional figures
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Figure 2.3: Comparison of Viterbi path between conditional Simonsen-Churchill and renewal ap-
proximations.
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Figure 2.4: Comparison of posterior heatmap between conditional Simonsen-Churchill and re-
newal approximations. The top panel in each group is the posterior given by the CSC prior and the
bottom panel is the posterior given by the renewal prior.
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Figure 2.5: The population trajectory under the three models used in the simulation.
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Figure 2.6: Comparison of posterior using different demographic priors. The first three panels
were generated by the Africa demography model, the second three by the zigzag model, and
the last three by a constant size model. Within each grouping of three, the panels are ordered
Africa/zigzag/constant by the demographic prior assumed. The red line is the true TMRCA.
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Figure 2.7: Comparison of Bayesian and frequentist method on simulated data. The light purple
lines represent sample paths drawn from the posterior.
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Figure 2.8: Mean running time of Bayesian sampler and MAP decoder over various chromosome
lengths on a log-log scale. The bands represent the standard error of the runs.
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Figure 2.9: Mean running time of MAP decoder over various chromosome lengths and sample
sizes on a log-log scale. We simulated chromosomes of indicated lengths and counted the amount
of time needed to compute the MAP path for various sample sizes. We repeated this experiment
ten times for each setting. In each experiment, the population-scale rates of mutation and recom-
bination were set to θ = ρ = 4× 10−4.
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Figure 2.10: Average number of pieces in the piecewise decomposition of Proposition 3. Experi-
mental settings were the same as in Figure 2.9.
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Figure 2.11: Average number of summands considered before truncation in exact Bayesian sam-
pler. We simulated a chromosome of length 107 base pairs and counted the number of terms
that were evaluated in (2.12) before we reached the truncation condition indicated in the main
text. We repeated this experiment ten times over three different settings of the recombination rate:
ρ = {.1, 1, 10}θ where θ = 4 × 10−4 was the scale mutation rate. The plots are shown using a
smoothed moving average (window size 500) for clarity.
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Table 2.4: List of Symbols

Symbol Interpretation

Y Matrix of sequence data
H Number of chromosomes
N Number of base pairs
A ARG
A Support set of ARGs
ϕ Evolutionary model
φ,Ne Effective population size
s, t, x Generations in the past
Xi TMRCA (Marginal gene tree)
Yi Number of differences at locus i between two chromosomes
π(t) Marginal distribution of coalescence time
q(t | s) Conditional density of t given recombination occurred
π(t) Density of t given recombination occurred dropping dependence on s
M Number of hidden states
MΓ(K) Mixture of K gamma distributions
u, v Position along chromosome
Rv Event that IBD segment begins at position v
Ru:v Event that there is not a recombination event between positions u and v
τ Recombination breakpoints
h Panel chromosome

Additional tables

Table 2.5: Mean absolute error (ErrA) over 25 runs under each scenario. Standard error in paren-
theses.

Scenario 1 2 3 4

CSC 5686.79 (198.96) 5201.35 (228.23) 12207.96 (316.49) 11949.15 (146.20)
Renewal 5683.52 (192.43) 5212.97 (226.64) 11660.02 (303.80) 11427.61 (147.19)
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Table 2.6: Mean relative error (ErrB) over 25 runs under each scenario. Standard error in paren-
theses.

Scenario 1 2 3 4

CSC 0.1320 (0.0034) 0.1271 (0.0018) 0.3037 (0.0013) 0.2990 (0.0013)
Renewal 0.1393 (0.0024) 0.1357 (0.0021) 0.3437 (0.0046) 0.3406 (0.0015)

Table 2.7: Mean absolute error (ErrA) over 25 runs under each scenario stratified by quartile.
Standard error in parentheses.

Scenario 1 2 3 4

CSC Q1 2676.74 (115.50) 2271.89 (126.87) 6932.49 (242.41) 6550.15 (118.46)
Renewal Q1 2714.53 (117.88) 2330.01 (127.42) 5365.78 (184.23) 5168.37 (77.63)
CSC Q2 5961.49 (111.73) 6263.63 (159.11) 13407.48 (60.54) 13255.75 (45.30)
Renewal Q2 6061.91 (98.98) 6289.53 (147.09) 11575.83 (44.20) 11549.62 (29.92)
CSC Q3 9679.44 (148.74) 9770.56 (259.23) 18853.84 (41.04) 18811.84 (58.56)
Renewal Q3 9569.68 (156.41) 9673.67 (283.39) 19620.79 (71.97) 19470.72 (52.02)
CSC Q4 15833.47 (265.34) 15968.86 (426.23) 33105.92 (170.73) 33412.66 (200.11)
Renewal Q4 15439.84 (322.81) 15760.62 (527.12) 40368.10 (208.78) 39760.70 (241.19)

Table 2.8: Mean relative error (ErrB) over 25 runs under each scenario stratified by quartile. Stan-
dard error in parentheses.

Scenario 1 2 3 4

CSC Q1 0.1414 (0.0049) 0.1277 (0.0025) 0.3206 (0.0025) 0.3053 (0.0026)
Renewal Q1 0.1490 (0.0036) 0.1375 (0.0029) 0.3278 (0.0056) 0.3093 (0.0020)
CSC Q2 0.1212 (0.0021) 0.1328 (0.0036) 0.2746 (0.0015) 0.2866 (0.0014)
Renewal Q2 0.1307 (0.0022) 0.1409 (0.0038) 0.3278 (0.0018) 0.3491 (0.0016)
CSC Q3 0.1272 (0.0022) 0.1297 (0.0045) 0.2795 (0.0016) 0.2857 (0.0019)
Renewal Q3 0.1333 (0.0024) 0.1362 (0.0048) 0.3743 (0.0021) 0.3853 (0.0020)
CSC Q4 0.1216 (0.0021) 0.1221 (0.0026) 0.3162 (0.0017) 0.3169 (0.0019)
Renewal Q4 0.1258 (0.0025) 0.1271 (0.0031) 0.4546 (0.0020) 0.4542 (0.0022)

Table 2.9: Mean counts of loci in each quarter for under each scenario across 25 simulations.
Standard error in parentheses.

Scenario 1 2 3 4

Q1 24995.32 (1060.60) 28273.56 (1186.73) 27371.08 (585.02) 27766.12 (370.51)
Q2 12780.96 (830.11) 10312.52 (636.41) 11182.48 (270.56) 10906.12 (213.53)
Q3 8024.28 (480.42) 7304.80 (495.50) 7380.76 (235.32) 7292.56 (167.61)
Q4 4199.44 (323.59) 4109.12 (351.86) 4065.68 (132.49) 4035.20 (111.07)
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Table 2.10: Mean absolute error (ErrA) over 25 runs under each scenario. Standard error in paren-
theses.

Africa Zigzag Constant

Africa 10133.60 (26.40) 10351.75 (29.07) 10651.29 (27.02)
Zigzag 5566.70 (130.60) 5013.63 (118.82) 5762.65 (135.27)
Constant 11624.13 (262.00) 11803.59 (265.48) 11934.81 (269.02)

Table 2.11: Mean relative error (ErrB) over 25 runs under each scenario. Standard error in paren-
theses.

Africa Zigzag Constant

Africa 0.3287 (0.0004) 0.3931 (0.0004) 0.3545 (0.0004)
Zigzag 0.3669 (0.0041) 0.3538 (0.0044) 0.3776 (0.0039)
Constant 0.3489 (0.0068) 0.3949 (0.0058) 0.3671 (0.0064)

Table 2.12: Mean absolute error (ErrA) over 25 runs. Standard error in parenthesis.

Scenario 1 2 3 4

MAP 6022 (234) 5041 (183) 11916 (293) 12060 (123)
Bayesian 4423 (174) 3846 (140) 8637 (198) 8532 (79)

Table 2.13: Mean relative error (ErrB) over 25 runs. Standard error in parenthesis.

Scenario 1 2 3 4

MAP 0.1332 (0.0048) 0.1224 (0.0041) 0.3388 (0.0035) 0.3447 (0.0029)
Bayesian 0.1098 (0.0052) 0.1112 (0.0034) 0.2584 (0.0067) 0.2278 (0.0012)

Table 2.14: Mean absolute error (ErrA), mean relative error (ErrB), and mean running time over 25
runs varying the truncation cutoff. Standard error in parenthesis.

Truncation Cutoff ErrA ErrB Time

10−2 3219.74 (608.23) 0.6706 (0.1296) 0.0835 (0.0062)
10−3 2979.61 (567.86) 0.5708 (0.1042) 0.1242 (0.0074)
10−4 2905.50 (557.24) 0.4799 (0.0825) 0.1525 (0.0085)
10−5 2877.94 (553.02) 0.4004 (0.0691) 0.1998 (0.0076)
10−6 2864.44 (551.67) 0.3268 (0.0477) 0.3320 (0.0123)
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Additional algorithms

Algorithm 1 Exact Viterbi decoding

Require: log(π(x)) ∈ VK . piecewise coalescent prior
Require: M ∈ ZN×H . number of mismatches to panel haplotype h as position n
V ← vector(H) . initialize log likelihoods
bt← vector(N) . backtracking array
for all 1 ≤ h ≤ H do

V [h]← log(π)(x)
ibd[h](x)← 0 . length of spanned IBD tract

end for
for all 1 ≤ n ≤ N do . outer loop over each position

for all 1 ≤ h ≤ H do . add log-emission probability
y ←M [n, h]
V [h] = V [h] + θ + ρ+ yt+ log Γ(1 + y)− y log θ
ibd[h]← ibd[h] + 1

end for
h∗ = arg min1≤h≤H supx V [h](x) . Computed via Section 2.6.6.1
b∗ = supx V [h∗](x)
bt[n]← (h, V [h∗], ibd[h](b∗)) . highest probability segment for recombination
for all 1 ≤ h ≤ H do

V [h](x) = max(V [h](x), log(π(x)) + b∗) . Computed via Section 2.6.6.2
for all x : V [h](x) = log(π(x)) + b∗ do

ibd[h](x)← 0 . reset IBD counter for recombinants
end for

end for
end for
return BACKTRACK(bt) . Algorithm 2
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Algorithm 2 Backtracking algorithm
function BACKTRACK(bt)

h, V (x), ibd = bt[N]
pos = N − ibd
ret← [(h, arg maxx V (x))]
while pos > 0 do

h, V (x), ibd = bt[pos]
ret.append((h, arg maxx V (x)))
pos = pos− ibd

end while
return ret

end function
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CHAPTER 3

Variational phylodynamic inference using
pandemic-scale data

3.1 Introduction

The COVID-19 pandemic has demonstrated an important supporting role for phylogenetics in epi-
demiology and public health, while also creating unforeseen technical and methodological chal-
lenges. As the first global public health event to occur in an era of ubiquitous gene sequencing
technology, the pandemic has resulted in a data explosion of unprecedented proportions. GISAID,
a worldwide repository of SARS-CoV-2 genomic data, currently has over 7.5M samples, with con-
tributions from almost every country (Elbe and Buckland-Merrett, 2017; van Dorp et al., 2021). A
phylogenetic representation of this database is believed to be the largest ever constructed (Turakhia
et al., 2021a). Existing phylogenetic methods, which were developed and tested on datasets orders
of magnitude smaller, are inadequate for pandemic-scale analysis, resulting in missed opportuni-
ties to improve our surveillance and response capabilities (Hodcroft et al., 2021; Ye et al., 2021;
Morel et al., 2021).

These shortcomings have spurred new research initiatives into phylogenetic inference methods
capable of analyzing millions of samples. In particular, there has been significant recent progress in
estimating and/or placing novel sequences onto very large phylogenies (Minh et al., 2020; Turakhia
et al., 2021a; Aksamentov et al., 2021; Ye et al., 2022a,b). Accurate estimation of the underlying
phylogeny has numerous downstream applications, including contact tracing (e.g., Lam-Hine et al.,
2021; McBroome et al., 2022), surveillance (e.g., Abe and Arita, 2021; Klink et al., 2021), and
improved understanding of pathogen biology (e.g. Majumdar and Sarkar, 2021; Turakhia et al.,
2021b).

Another area of active research in phylogenetics, distinct from tree inference, is so-called phy-

lodynamics, which seeks to understand how immunological, epidemiological, and evolutionary
forces interact to shape viral phylogenies (Volz et al., 2013b). Here, the quantity of interest is
typically a low-dimensional parameter vector characterizing the underlying phylodynamic model,
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while the phylogeny itself is a nuisance parameter. Of particular interest for the current pandemic
are methods that can estimate effective population size and reproduction number of the pathogen
from viral genetic data (e.g. Zhou et al., 2020; Lai et al., 2020; Volz et al., 2021; Campbell et al.,
2021). Compared to phylogeny estimation, less progress has been made on so-called “phylody-
namic inference” at the pandemic scale. This absence motivates the present study.

Bayesian methods are often preferred for phylodynamic inference because there are usually
many trees which explain the data equally well. Hence, downstream quantities of interest possess
a potentially significant amount of “phylogenetic uncertainty” which is not reflected in frequentist
point estimates. Unfortunately, Bayesian phylogenetic procedures inherently scale very poorly: the
space of phylogenetic trees grows rapidly, and there are an astronomical number of possible trees
to consider, even for relatively small samples. Consequently, on large problems, the workhorse
algorithm of field, Markov chain Monte Carlo (MCMC), tends to either conservatively explore
very limited regions of tree space, or liberally propose large moves that are often rejected (Whidden
and Matsen IV, 2015; Zhang and Matsen IV, 2019).

Even before the pandemic, awareness of the scalability issues surrounding Bayesian phyloge-
netics was growing (Höhna and Drummond, 2012; Whidden and Matsen IV, 2015; Aberer et al.,
2016; Dinh et al., 2017). As a scalable alternative to MCMC, variational inference (VI) has recently
garnered some attention in phylogenetics. VI is a general method for sampling approximately
from a posterior distribution using techniques from optimization (Jordan et al., 1999). Fourment
et al. (2020) used VI to accelerate computation of the marginal likelihood of a fixed tree topol-
ogy. Fourment and Darling (2019) used the probabilistic programming language STAN to perform
variational inference of the Bayesian skyline model (Pybus et al., 2000). Both of the preceding
methods only analyze a fixed tree topology, so they cannot account for phylogenetic uncertainty.
Simultaneously, Zhang and Matsen IV (2018, 2019); Zhang (2020) have made progress on a full
variational approach which includes optimization over the underlying topology. Although these
innovations represent significant advances in terms of performance, they still cannot come close to
exploiting all of the information contained in a pandemic-scale data set.

3.2 New Approaches

Inspired by these works, and responding to the need for better tooling to study the ongoing pan-
demic, we devised a method capable of providing accurate and calibrated estimates of the rates of
transmission and recovery for COVID-19 using data from tens of thousands of viral genomes. Our
approach unites several threads of research in phylogenetics and scalable Bayesian inference. We
build on aforementioned advances in variational phylogenetic inference (Fourment and Darling,
2019; Zhang, 2020), as well as recent progress in phylodynamic modeling of infectious diseases
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(Stadler et al., 2013), Bayesian stochastic optimization (Hoffman et al., 2013), and differentiable
programming (Bradbury et al., 2018). To achieve this level of scalability, our method makes sev-
eral tradeoffs and approximations which are detailed below. Briefly, we adopt a divide-and-conquer
strategy where distant subtrees of a very large phylogeny are assumed to evolve approximately in-
dependently, and we further assume that topological estimates of these subtrees are an accurate
reflection of their distribution under the prior. We argue that these reasonable approximations in
the context of an ultralarge, global phylogeny, and that their combined effect appears to be benign:
the resulting estimates closely agree with the existing state of the art on simulated data, and ex-
hibit a remarkable level of concordance with ground-truth estimates on real data, while taking just
minutes to produce.

3.3 Results

In this section, we test our method on both simulated and real data, and compare it to the existing
implementation of the birth-death skyline model in BEAST.

3.3.1 Simulation

First, we performed a simulation study to evaluate how well VBSKY approximates the posterior
distribution compared to BEAST. We studied four different scenarios:

1. Constant: the effective reproductive number stays constant through time;

2. Decrease: there is a sharp drop in the effective reproductive number;

3. Increase: there is a sharp increase in the effective reproductive number; and

4. Zigzag: the effective reproductive number goes through a series of decreases and increases.

We simulated transmission trees using the R package TreeSim (Stadler, 2011) and generated se-
quences data along each tree using the program Seq-Gen (Rambaut and Grass, 1997).

Across all scenarios, the rate of becoming uninfectious, δ is held constant at δ(t) = 4 for all
t. The sampling rate is also held constant at s(t) = 0.25. Only R is allowed to vary. Under the
constant scenario, R(t) = 1.3 for all t. In the decrease scenario,

R(t) =

2.25, t ≤ 1

0.75, t > 1.
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In the increase scenario,

R(t) =

1, t ≤ 3

2.5, t > 3.

In the zigzag scenario,

R(t) =

2.0, t ∈ [0, 1] ∪ (2, 3]

0.75, t ∈ (1, 2] ∪ (3, 4].

Each simulation was run for four time units, and ten trees were generated under each scenario.
Because the sampling process is stochastic in this model, the size of the simulated tree varied from
run to run. The minimum (maximum) number of samples in each under the constant, decrease, in-
crease, and zigzag scenarios was 175 (1553), 117 (590), 124 (1075), and 161 (1852), respectively.

We compared the performance of our method to the current state-of-the-art for Bayesian phy-
logenetic analysis, BEAST (Bouckaert et al., 2019). BEAST allows for the birth-death skyline
model to be used as a tree prior, facilitating direct comparison with VBSKY. Because BEAST uses
MCMC to estimate the posterior, the number of sequences it can analyze is limited. Therefore, for
each simulation, we randomly sampled 100 sequences for BEAST to analyze. We allowed BEAST
to run long enough that the effective sample size exceeded 1000 for each evolutionary parameter.
Since VBSKY is not limited by sample size, we analyzed all sequences in each simulation, as
follows: We set the size of each random subsample to be b = 100 tips. The number of trees in
the ensemble was set to be the smallest integer such that the number of trees multiplied by 100
was larger than the number of sampled sequences. Under this scheme, each sequence was sampled
once on average.

The results of the simulation study are shown in Figures 3.1 and 3.2. Figure 3.1 displays
the median of the medians and 95% equal-tailed credible intervals of the simulations under each
scenario using BEAST to analyze the data. Figure 3.2 shows the same for VBSKY. Besides a
few minor differences, the estimates given using VBSKY are similar to those given by BEAST;
both BEAST and VBSKY adequately capture the true value of the effective reproductive number.
The credible intervals given by BEAST are wider than those of VBSKY, and do a better job of
covering the true model in some cases; we return to this point in Section 3.4. In the decrease
scenario, VBSKY is better able to capture the larger value of R earlier in time, while BEAST
appears to revert to the prior at times earlier than t = 0.5. Because VBSKY allows for more
sequences to be analyzed, the method is able to detect transmission events further back in time.

Even though in some cases we analyzed hundreds more sequences using VBSKY than when we
used BEAST, the run-time of VBSKY was 71.75 seconds on average for each simulation whereas
BEAST took 20 minutes to perform 10,000,000 MCMC steps. The simulation results show that
VBSKY is able to get comparable results as BEAST with a much shorter run-time, and in some
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Figure 3.1: Median of the medians and the
equal-tailed 95% credible intervals of the pos-
teriors of the effective reproductive number
over time of the 10 simulations for each sce-
nario using BEAST. The dotted red line is the
true effective reproductive number over time.
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Figure 3.2: Median of the medians and the
equal-tailed 95% credible intervals of the pos-
teriors of the effective reproductive number
over time of the 10 simulations for each sce-
nario using VBSKY. The dotted red line is the
true effective reproductive number over time.

cases like the decrease scenario, VBSKY can produce more accurate estimates than BEAST.

3.3.2 Analysis of the global pandemic

We tested our method on a large, serially-sampled COVID-19 dataset from the GISAID initiative
(Elbe and Buckland-Merrett, 2017). At the time this analysis was performed, there were 6.5M
SARS-CoV-2 sequences in the database. In addition to the raw nucleotide data, GISAID provides
sample time and location information. The collection dates of the sequences range from January
3rd, 2020 to December 8th, 2021.

For our analysis, we chose to study the transmission of COVID-19 of Michigan, Florida, and
the entire USA. It is important to study the epidemiology of COVID-19 at the sub-national level
as many public health policies such as mask mandates, stay at home orders, vaccine distribution,
and other social distancing measures are enforced at the state level. Policies or decisions made
in one state may not be detected studying national data. Due to the differences in health policies
across states and the reduced frequency of travel during the pandemic, we expect the incidence and
prevalence of COVID-19 to vary from state to state. On the other hand, policies are sometimes
made at the national level, and more recently travel especially around the holidays has become
widespread, so understanding trends at a national level is equally vital.

After filtering the sequences by location, the number of sequences were 81,375, 34,978, and
1,280,563 for Florida, Michigan, and the USA respectively. We noticed that the number of con-
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firmed cases increased or decreased based on the day of the week, likely because fewer cases are
reported over the weekend. To correct for any inaccuracies in the sample time distribution, we set
all sequences sampled in the same calendar week to have the same sample time. We used a fixed
molecular clock model with substitution rate 1.12× 10−3/bp/year which is the estimate given by
the World Health Organization (WHO) (Koyama et al., 2020).

3.3.2.1 Hyperparameter Tuning

Before proceeding to the analysis, we sought to better understand how the various tuning param-
eters of our method affected the results. VBSKY has two main tuning parameters that can be
adjusted: the number of tips in each subsample (denoted b in the preceding section), and the num-
ber of subsamples of the overall dataset D (denoted S in the preceding section). Increasing either
enables us to analyze more sequences, but at the expense of additional computation time.

To understand the effect of the number of trees, we examined the posterior of the effective
reproductive number and the sampling rate of Florida and the USA while fixing the number of tips
and varying the number of trees. We set the number of tips to be 200 and examined the posterior
for each number of trees in the set {10, 25, 50, 100, 150}. Patients with mild bouts of COVID-19
are generally not infectious after 10 days of symptom onset (Arons et al., 2020; Bullard et al.,
2020). The rate of becoming uninfectious is the inverse of the number of infectious days. As one
unit of time corresponds to one year, the estimated value for δ is given by 1/10 × 365 = 36.5.

Using this, we fixed the uninfectious rate to be 36.5 to avoid nonidentifiability issues since we
cannot estimate R, δ, and s simultaneously (Stadler, 2009; Louca and Pennell, 2020). For the
GMRF smoothing prior, we chose a relatively uninformative hyperprior distribution with large
variance for the parameters of the smoothing prior. In particular, we selected a gamma distribution
distribution with parameters a = b = 0.001, giving a mean of 1 and variance of 1000. As a rough
estimate of the sampling rate, we also chose the prior for s to be a Beta(0.02, 0.98) distribution with
expectation 0.02, as the ratio of sampled sequences to the number of cumulative cases is around
0.02. The remaining priors are shown in the first line of Table 3.1.

Figure 3.3 shows the posterior of R for both Florida and the USA when varying the number
of trees. Figure 3.4 shows the posterior for s. The figures indicate a larger difference when the
number of trees is 10 compared to any greater number of trees. The median and credible interval
for R was much smaller and the median and credible interval for s was much larger closer to the
present when the number of trees was 10. The credible intervals when the number of trees was
10 was also much wider. A closer inspection showed that this also seems to be the case when the
number of trees is 25, albeit to a smaller degree. When we increased the number of trees to 50, this
difference mostly disappeared.

We performed a similar study to understand the effect of varying the number of tips. We fixed
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Figure 3.3: Posterior of R while varying the number of trees. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

the number of trees as 50 and adjust the number of tips to values in the set {50, 100, 200, 400}, and
examined the posteriors of R and s while holding δ fixed. Similar to above, varying the number of
tips does not appear to have a large effect on the results. Using only 50 tips per tree resulted in a
wider credible interval for Florida and the USA for both R and s. Figure 3.5 shows that using 50
tips also leads to flatter estimates for R further back in the past. This is likely the result of trees
with fewer tips having fewer transmission events further back in the past which can be used to
estimate R.

When comparing the posteriors when the number of tips is 100 or 200, only minor differences
appeared. Using 200 tips did seem to lead to better detection of changes in R and s further back in
the past. Looking at Figure 3.5, using 400 tips per tree led to a sharper decrease in R towards the
present. Figure 3.6 shows that using 400 tips generally led to slightly larger estimates of s at all
points in time.

Overall, regardless of the number of tips or trees used, the posterior estimates of both R and s
for both Florida and the USA are similar. However, increasing the number of trees decreases the
variances in posterior estimates of R and s, and also results in more accurate estimates of both
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Figure 3.4: Posterior of s while varying the number of trees. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

parameters towards the present. This improvement seems to plateau after increasing the number
of trees to 50. Similarly, increasing the number of tips can increase the power to detect changes in
R and s further back in the past, but using too many tips can lead to more erratic estimates of the
parameters towards the present.

Keeping this in mind while also noting that increasing the number of trees and tips can incur
large computational costs, using 50 trees with 200 tips leads to sharper estimates of the posterior
without requiring excessive computation.

3.3.2.2 Results

Based on the results from the previous section, we ran VBSKY with 50 subsamples of 200 se-
quences for a total of 104 sequences. We estimated the epidemiological parameters for Florida,
Michigan, and the overall USA. State-level results were compared to a “ground truth” estimator of
the effective reproductive number which is derived from orthogonal (i.e. non-genetic) public health
data sources (Shi et al., 2021). The prior and hyperprior settings for all of the scenarios described
below are shown in Table 3.1.
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Figure 3.5: Posterior of R while varying the number of tips. Solid lines represent the median and
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We first analyzed the data using the same uninformative smoothing hyperpriors as in the hy-
perparameter study in the previous section (“Uninformative Smoothing” in Table 3.1). Figure 3.7
displays the posterior of R over time for each region for the uninformative smoothing analysis.
For Florida (top panel), we see that the estimates for R over time produced by VBSKY matches
the results using surveillance data in the recent past. However, earlier in the pandemic, VBSKY
does not seem to be able to capture the rise and fall of R but instead provides a flat estimate of the
parameter.

In the middle panel (Michigan), we see the VBSKY posterior is very similar to the posterior
given by the surveillance data method even looking further back in the past. Looking at the top

Table 3.1: Prior Distributions used in Analyses.

Analysis R s τR τs x1

Uninformative Smoothing LogN(1,1) Beta(.02, .98) Gamma(.001, 0.001) Gamma(.001, 0.001) LogN(-1.2, 0.1)
Less Smoothing LogN(1,1) Beta(20, 980) Gamma(10, 100) Gamma(10, 100) LogN(-1.2, 0.1)
Biased Sampling LogN(1,1) Beta(20, 980) Gamma(.001, 0.001) Gamma(.001, 0.001) -
Multistrain LogN(1,1) Beta(.02, .98) Gamma(10000, 0.01) Gamma(.001, 0.001) LogN(-1.2, 0.1)
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Figure 3.6: Posterior of s while varying the number of tips. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

panel (USA), similar to the results for Florida, the posterior for R is very flat further back in the
past. Given that we have seen large rises and falls in the number of cases over time (Figure 3.14),
it seems unlikely that the actual value of R is as flat as the method suggests.

One explanation for this performance discrepancy is that the prior may be oversmoothing the
estimates of R further back in the past for some of the data sets. Figure 3.13 shows the distribution
of sample times for Florida, Michigan, and the USA. Michigan has a larger proportion of sequences
sampled early in the pandemic compared to either Florida or the overall USA. Oversmoothing may
occur because a lack of samples further back in the past causes the prior to overwhelm the data.

To investigate this, we reran the analysis with stronger hyperpriors designed to reduce the over-
all amount of smoothness (“Less Smoothing” in Table 3.1). Figure 3.8 shows the posterior when
we set the prior of the smoothing parameter to be a gamma distribution with a = 10 and b = 100,

giving a mean of 0.1 and variance 0.001. Looking at the top panel (Florida) of Figure 3.8, we see
that the posterior median of R for VBSKY is no longer flat and instead oscillates to better match
the results using surveillance data. The bottom panel (USA) also shows the estimates for R for the
entire USA are also no longer completely flat further back in the past. The middle panel (Michi-
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gan) shows that even with less smoothing, the results for VBSKY in Michigan match well with
the surveillance data. When the sample time distribution is unbalanced, as with Florida and the
USA, imposing less smoothing can help better capture the signal where the sampling may be more
sparse. However, it also widens the credible intervals.

In addition to decreasing the amount of smoothing, we explored the use of a biased sampling
scheme to yield sharper estimates further back in the past. The algorithm described in Section
3.5 generates an ensemble of trees by sampling the data randomly without replacement. Hence, if
most of the samples were collected in the recent past, most of the trees in the ensemble will have
tips from near the present, making it difficult to estimate transmission events further back in time.
To verify this, we split the data by the quarter in which the sequence was sampled, where the first
quarter of each year was defined to be the first three months (January, February, March) of the year,
and so on. Then, instead of randomly sampling to generate the ensemble of trees, for each tree the
tips were restricted to only one quarter. We also enforced the number of trees per quarter to be
approximately equal. One caveat is that this stratified sampling approach could bias the estimates
of the sampling rate.

Figure 3.9 shows the results using the biased sample approach. For this final analysis we re-
verted some of the smoothing prior changes (“Biased Sampling” in Table 3.1). (Because of con-
vergence issues encountered during model fitting, for this scenario we fixed the origin to 0.3 years
prior to the earliest sample date; therefore, no prior on x1 is listed in the table.) There is a sur-
prisingly close match between our model output and the ground-truth, which we reiterate was
estimated using a completely different source of data. The estimates using the biased sampling
approach improve the estimates of R further back in the past especially for Florida. Using less
smoothing, VBSKY was able to capture the shape of estimates using surveillance data, but the
biased sampling approach results in a much closer estimate of R further back in the past. The
credible bands produced by VBSKY tend to be narrower, which could reflect either differences in
the underlying data or violations of the modeling assumptions described in Section 3.5. Interest-
ingly, both methods appear unable to reject the null hypothesis R = 1 except for very early in the
pandemic (winter 2020) and very recently (spring-summer 2021). One drawback of the stratified
sampling approach is that the estimates of R towards the present seem to be further away from
the estimates using surveillance data. While using the biased sampling approach can improve es-
timates within time periods where sampling is sparse, it can also bias the estimates where sparse
sampling is not an issue.

In this section we focused on estimating the effective reproduction number R. A parallel set of
estimates for the sampling fraction s are shown in Figures 3.15–3.17.

65



3.3.2.3 Comparison to BEAST

We ran BEAST on the same data set as in the previous section. BEAST was incapable of analyzing
the same number of samples as VBSKY, so to facilitate comparison, we limited the number of
sequences we analyzed with BEAST. Both the sample size and the sampling scheme can affect
the results of the analysis as well as the mixing time, so we compared how BEAST performed
with different combinations of sample sizes and sampling schemes. We ran BEAST with both
100 and 500 sequences. For each sample size, we sampled the most recent sequences by date
(contemporary sampling), and we also sampled uniformly at random without any regard to the
sample time (random sampling). The XML configuration files we used to run BEAST are included
in the supplementary data.

Even after greatly reducing the number of sequences analyzed, accurately sampling from the
posterior may still take longer than using VBSKY. We performed both a “short” run for BEAST,
where the MCMC sampler is only allowed to run for as long as it took VBSKY to analyze the full
data, as well as a “long” run where BEAST was allowed to perform 100 MCMC million iterations,
or run for 24 hours, whichever was shorter.

The estimates of the effective reproductive number of the short run for Florida, Michigan, and
the USA are displayed in Figures 3.10, 3.18, and 3.19 respectively. The estimates for the long runs
are shown in Figures 3.11, 3.20, and 3.21.

For the short runs, depending on the number of samples and the sampling scheme, the results
varied widely. Under a short time constraint, the posteriors using 500 tips and both sampling
schemes for Florida, 500 tips and recent sampling for Michigan and 500 tips and recent sampling
for the USA were mostly flat centered close to 1. The posteriors did not reflect the rise and fall in
R that is exhibited in both the surveillance data and VBSKY estimates. In most cases, BEAST is
unable to capture any signal further back in the past, and the posterior provided by BEAST does
not track the estimates provided by the surveillance data as well as VBSKY.

In the long runs, the issue of completely flat posteriors when using 500 tips mostly disappeared.
However, BEAST is only capable of producing comparable results to VBSKY and the surveil-
lance method when analyzing 100 tips sampled uniformly at random, presumably because mixing
occurred more rapidly in the time allotted. The long runs also illustrate that uniform random sam-
pling performs better than most-recent sampling when running BEAST. This indicates that having
samples throughout time may help infer more transmission events further back in the past rather
than having only contemporary sequences. The discrepancy between using 100 tips and 500 tips
exists only when the sampling scheme is random. When using contemporary sequences, BEAST
is able to complete 100 million iterations. But when random sampling is used, because the MCMC
sampler mixes more slowly, BEAST was unable to complete 100 million MCMC moves within 24
hours.
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In summary, BEAST performed fairly well when we randomly sample 100 tips, though there
was considerable variation between data sets and scenarios. The main difference between VBSKY
and BEAST is that the latter was usually unable to capture signal far back in the past. Analyzing
more sequences could help, but the computational difficulties that would ensue imply that it is
not practical to completely resolve this issue if time is a constraint. Overall, our results indicate
that efficiently analyzing thousands of sequences, even using an approximate inference method,
generally leads to a sharper posterior which is closer to the ground truth.

3.3.2.4 Strain Analysis

As a supplement to our main analysis, we further investigated the history of different COVID-19
variants. Using GISAID-annotated variant information, we split our data set of Florida, Michigan,
and USA sequences into smaller data sets specific to the Alpha and Delta variant and fit our model
to each variant.1 Except for a minor adjustment to the prior on the origin time, we used all the
same hyperparameters and priors as in the preceding section. For the GMRF smoothing prior, we
chose a hyperior for τR to have large expectation to increase smoothing.

The results of our analysis are shown in Figure 3.12 for R and Figure 3.22 for s. The Alpha
variant of COVID-19, also known as lineage B.1.1.7, originated in England and was first reported
in the USA in early 2021. Using surveillance data, Volz et al. (2021) showed that at the time, the
Alpha variant had a transmission advantage over other variants, which is why it came to dominate
in the USA in early 2021. There are no samples for the Alpha variant beyond summer 2021,
so the estimates for Alpha are truncated at various points during that period depending on the
region considered. As shown in Figure 3.14, the number of cases in Michigan, Florida, and the
USA all dropped after the first third of the year, corresponding to a decrease in R below one
for the Alpha variant. At the same time, the Delta variant was rising in prevalence, such that
R is estimated greater than one in all cases until about the third quarter of 2021. Analysis of
the sampling fraction over time (Figure 3.22) also shows some interesting trends, for example
sampling of the Delta variant in Michigan seems to have been extremely low compared to other
areas and strains. Finally, we also explored using other hyperparameter settings to analyze these
data, but found that they produced suboptimal results. In particular, without additional smoothing,
our model unrealistically estimated that R increased for the Alpha variant throughout the second
quarter of 2021, although the credible intervals generally place substantial posterior probability
on the event R < 1 (Figures 3.23 and 3.24). We noticed that for the Alpha variant, the number
of available samples drops severely near the point of truncation. The absence of data would lead
to the prior dominating the posterior samples of R. By increasing smoothing, we were able to

1At the time this manuscript was written, there were no available sequences from the Omicron variant.
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circumvent this issue.

3.4 Discussion

In this paper, we presented the variational Bayesian skyline, a method designed to infer evolution-
ary models from large phylogenetic datasets. Our method works by fitting a variational Bayesian
posterior distribution to a certain approximation of the phylogenetic birth-death model. We showed
that, under some simplifying heuristic assumptions, it can be used for posterior inference of epi-
demiologically relevant quantities such as the effective reproduction number and sampling fraction.
We demonstrated that our estimates adhere reasonably closely to alternative approaches such as
MCMC, while being significantly faster and therefore able to incorporate large numbers of obser-
vations. On real data, we showed how our model corroborates public health surveillance estimates,
and could work to fill in the gaps when such data are unavailable.

One shortcoming of our model is that it tends to be overconfident, in the sense that it produces
credible intervals which are narrower compared to other methods, and not as well calibrated in
simulations. Generally, it is preferable for a method to overcover since this is inferentially more
conservative. We believe this behavior is attributable to the heuristics that underlie our approach:
since they ignore certain forms of dependence in the data, they create the illusion of a larger
sample size than actually exists. We suggest that the credible intervals produce by our method are
best interpreted relatively, as showcasing portions of time where the estimates are especially sharp
or loose.

Our method could be extended in several ways. Currently, it estimates the tree topology and
the continuous variables separately, relying on a distance-based method infer the topology. While
faster, distance-based methods are less accurate than likelihood-based methods for tree reconstruc-
tion (Kuhner and Felsenstein, 1994). Our method could be potentially extended to unify the esti-
mating procedure for tree topologies and other variables under one variational framework allowing
(Zhang and Matsen IV, 2019). We also take random subsamples of data to accelerate our infer-
ence. However, the subsampling approach we adopt is very naive, and future work could include
developing an improved way strategy for subsampling in phylogenetic problems.

The variational inference scheme we used makes a standard but highly simplified mean-field
assumption about the dependence structure of the variational approximating family. We also exper-
imented with other, recent approaches such as normalizing flows (Rezende and Mohamed, 2015),
but observed that, consistent with earlier findings (Fourment and Darling, 2019), they did not
measurably improve the results and occasionally caused the algorithm to fail to converge. If our
approach is adapted to more complex problems, it could be advantageous to revisit this modeling
choice.
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Currently, our method is restricted to using a strict molecular clock model. Additionally, the
substitution models in our method do not currently allow for rate heterogeneity across sites. Al-
lowing for more flexible and complex substitution and clock models could aid in the application
of our method to other data sets that evolve differently than COVID-19, when the time scale of the
epidemic is much larger.

3.5 Materials and Methods

In this section, we derive our method, which we call variational Bayesian skyline (VBSKY). As
the name suggests, VBSKY descends from a lineage of earlier methods designed to infer evolu-
tionary rate parameters from phylogenetic data (Pybus et al., 2000; Drummond et al., 2005; Minin
et al., 2008; Gill et al., 2013). Our running example will be inferring the epidemiological his-
tory of the COVID-19 pandemic, but the method applies generally to any evolving system that is
aptly modeled using a phylogenetic birth-death or coalescent process and approximately meets the
assumptions described below.

3.5.1 Notation and model

The data consists of a matrix of aligned sequences D = {A,C,G, T,N}n×L, where n is the
number of viral sequences and L is the number of sites, and a vector of times when each sample
was collected y = (y1, . . . , yn) where y1 ≤ · · · ≤ yn. Row j of D corresponds to a sequenced viral
genome collected from an infected host at time yj . Subsamples of rows of D are denoted by Di ∈
{A,C,G, T,N}b×L, with corresponding sample times y(i) = (y

(i)
1 , . . . , y

(i)
b ), where b is the size of

the subsample. We occasionally abuse notation and write Di ⊂ D to denote a subsample, and |D|
to denote the number of samples contained in a dataset (so e.g. |Di| = b above). Phylogenetic trees
are denoted by T = (T topo, T br), which we decompose into a discrete topological component
and continuous branch length component. Given n sampled taxa, the topological component T topo

lives in the space of rooted, labeled bifurcating trees on n leaves, and the branch length component
lives in the non-negative orthant R2n−1

≥0 and gives the length of each edge of the tree (including an
edge from crown to origin).

The data are assumed to be generated according to a phylogenetic birth-death skyline model
(Nee et al., 1994; Morlon et al., 2011). In this model, samples are related by an unobserved
“transmission tree” that records every infection event that occurred during the pandemic. Leaf
nodes in the transmission tree represent sampling events, and internal nodes represent events where
the virus was transmitted from one host to another. Edges denote periods during which the virus
evolved within a particular host, with the length proportional to the amount of evolutionary time
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that elapsed between the parent and child nodes. The distribution of the infection tree depends on
three fundamental parameters, usually denoted µ(t), λ(t), and ρ, which are respectively the time-
varying per-capita rates at which extant lineages in the phylogeny go extinct and speciate, and the
fraction of the extant population that was sampled at the present.

Further generalizations (Stadler et al., 2013) incorporate both random and deterministic sam-
pling across time, and it was also shown how phylogenetic BD model can be used for parame-
ter estimation in the susceptible-infected-recovered model (Kermack and McKendrick, 1927) that
forms the foundation of quantitative epidemiology. Let ψ(t) denote the rate at which each extant
lineage is sampled in the phylogeny. (Henceforth we suppress dependence on time, but all parame-
ters are allowed to be time-varying.) If we assume that sampling is tantamount to recovery (a valid
assumption when positive testing leads to quarantine, as is generally the case during the current
pandemic), then the overall rate of becoming uninfectious is δ = µ+ψ; the average time to recov-
ery is 1/δ; the sampling proportion is s = ψ/δ; and the effective reproduction number is R = λ/δ.
Using prior knowledge, it is also common to specify an origin time t0 when the pandemic began.

Let ζ = (R, δ, s, t0) denote the vector of epidemiological parameters of interest. The hyperprior
on ζ is denoted π(ζ). The latent transmission tree describing the shared evolutionary history of
all of the sampled pathogens is denoted by T = (T topo,T br). We assume a simple “strict clock”
model, with known rates of substitution, so that no additional parameters are needed to complete
the evolutionary model.

We desire to sample from the posterior distribution of ζ given the phylogenetic dataset D. Let
p(T | ζ) denote the likelihood of the transmission tree given the evolutionary model. An expres-
sion for p(T | ζ) can be found in Stadler et al. (2013, Theorem 1), and is reproduced in Appendix
3.6.1 for completeness. The data depend on ζ only through T , so that p(D | T , ζ) = p(D | T ).
Here p(D | T ) denotes the “phylogenetic likelihood”, which can be efficiently evaluated using the
pruning algorithm (Felsenstein, 1981). Putting everything together, the posterior distribution over
the unobserved model parameters is

p(ζ,T | D) ∝ p(D | T )p(T | ζ)π(ζ). (3.1)

3.5.2 Scalable inference

The constant of proportionality in (3.1) is p(D), the marginal likelihood after integrating out all
(hyper)parameters and the unobserved tree T . In large phylogenetic data sets, exact evaluation of
the marginal likelihood is impossible due to the need to enumerate all possible trees, a set whose
cardinality explodes in the number of taxa (Alfaro and Holder, 2006). In practice, methods such as
Markov chain Monte Carlo (e.g., Drummond and Rambaut, 2007) which do not require evaluating
p(D) are utilized.
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Since current phylogenetic MCMC algorithms cannot scale up to pandemic-sized datasets, we
propose to modify the inference problem (3.1) using a few heuristics in order to make progress. Let
D1,D2, . . . ,DS ⊂ D be subsamples of b1, . . . , bS rows from the full dataset. If the subsamples are
temporally and geographically separated, and bi � n, then it is reasonable to suppose that these
subsamples are approximately independent conditional on the underlying evolutionary model.

Heuristic 2. In a very large phylogenetic dataset D, small subsets D1,D2 ⊂ D with |D1|, |D2| �
|D| that are sufficiently separated in space and/or time are approximately independent: p(D1,D2 |
ζ) ≈ p(D1 | ζ)p(D2 | ζ).

True independence holds, for example, when the clades corresponding to D1,D2 are so distant
that a reversible substitution process reaches stationarity on the edge connecting them. While we
do not expect this to occur in real data, it seems like a reasonable approximation for studying distant
subclades in a large, dense phylogeny which are evolving under a common evolutionary model. An
example of the subsampling scheme we have in mind is when D = “all of the samples collected
in Florida” (n ≈ 81, 000), D1 = “all of the samples collected in Florida during June, 2020”
(b1 ≈ 300), and D2 = “all of the samples collected in Florida during June, 2021” (b2 ≈ 5, 100).

Though incorrect, Heuristic 2 furnishes us with a useful formalism for performing large-scale
inference, as we now demonstrate. Using the heuristic, we can approximate the posterior distribu-
tion (3.1) as

p(ζ, T1:S | D1:S) ∝ π(ζ)
S∏
i=1

p(Di | Ti)p(Ti | ζ), (3.2)

where we used the array notation T1:S ≡ (T1, . . . , TS) to streamline the presentation. Sampling
from (3.2) is easier than sampling from the full posterior (3.1) since it decomposes into independent
subproblems, and each subtree Ti is much smaller than the global phylogeny T . However, the
normalizing constant in (3.2) remains intractable even for small trees, so naive sampling would
still require expensive MCMC algorithms.

To work around this, we start by rewriting the last term in (3.2) as

p(Ti | ζ) = p(T br
i | T topo

i , ζ)p(T topo
i | ζ).

As noted in the introduction, the primary difficulty in Bayesian phylogenetic inference is navigat-
ing regions of topological tree space that have high posterior probability. If we could efficiently
sample T̂ topo

i ∼ p(T topo
i | ζ), then the approximate posterior

p̂(ζ, T br
1:S | T̂ topo

1:S ,D1:S) ∝ π(ζ)
S∏
i=1

p(Di | T br
i , T̂ topo

i )p(T br
i | T̂ topo

i , ζ) (3.3)
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would have the property that

ET̂ topo
1:S

p̂(ζ, T br
1:S | T̂ topo

1:S ,D1:S) = p(ζ, T br
1:S | D1:S). (3.4)

This leads to our second heuristic.

Heuristic 3. Fitted tree topologies T̂ topo
1:S obtained from subsets D1, . . . ,Dm pairwise satisfying

Heuristic 2 are independent and approximately distributed as p(T topo | ζ).

By “fitted trees” we mean trees estimated using any method, including fast heuristic algo-
rithms such as UPGMA, or its extension to serially-sampled time trees (sUPGMA; Drummond
and Rodrigo, 2000); maximum likelihood; or simply extracting subtrees from a high-quality, pre-
computed reference phylogeny (e.g., Lanfear, 2020). The heuristic can fail in various ways: in
reality, tree reconstruction algorithms do not necessarily target the correct/any evolutionary prior,
and there could be dependence between different trees if they are jointly estimated as part of a
larger phylogeny. Also, our current implementation uses the data twice, once to estimate each
tree, and again during model fitting to evaluate its phylogenetic likelihood. The tree inference
procedure we used to analyze data in this paper is described more fully in the supplement (Sec-
tion 3.6.2). Note that we only utilize the topological information from these procedures; we still
perform posterior inference over the branch lengths T br as detailed below.

Setting these caveats aside, the point of Heuristic 3 is to endow our posterior estimates with
some measure of phylogenetic uncertainty, without resorting to full-blown MCMC in tree space.
By (3.4), the approximate likelihood (3.3) is unbiased for p(ζ, T br

1:S | D1:S), and the latter quantity
correctly accounts for phylogenetic variance in the posterior. However, since (3.3) conditions on
T̂ topo

1:S , all of the remaining parameters to be sampled are continuous, and the problem becomes
much easier.

Finally, we point out that our method is not capable generating useful samples from the posterior
distribution p(T | D), that is of the overall transmission tree given the original dataset D. But, as
noted above, in skyline-type models the main object of interest is the evolutionary posterior p(ζ |
D). In Section 3.3, we demonstrate that the heuristic, subsampling-based approach developed here
yields a fairly sharp posterior on ζ , while still utilizing a large amount of information from D.

3.5.2.1 Stochastic variational inference

Since (3.3) is a distribution over continuous, real-valued parameters, it is amenable to variational
inference (Jordan et al., 1999). As noted in the introduction, variational Bayesian phylogenetic
inference has previously been studied by Zhang and Matsen IV (2019); Zhang (2020) and Four-
ment and Darling (2019). Our approach is most related to the latter since we do not optimize over
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the topological parameters of our model in any way. Because we are operating in a different data
regime than either of these two pre-pandemic papers, we further incorporated recent advances in
large-scale Bayesian inference in order to improve the performance of our method.

Given a Bayesian inference problem consisting of data x and model parameters z, traditional
VI seeks to minimize the Kullback-Leibler (KL) divergence between the true posterior of interest
and family of tractable approximating distributions Q:

q∗(z) = arg min
q(z)∈Q

KL(q(z) ‖ p(z | x)).

We cannot carry out this minimization as the KL divergence still requires evaluating the intractable
quantity p(x). However,

KL(q(z) ‖ p(z | x)) = E(log q(z))− E(log p(z | x))

= E(log q(z))− E(log p(x, z)) + log p(x)

= −ELBO(q(z)) + const.

(3.5)

where the expectations are with respect to the variational distribution q, and

ELBO(q(z)) := Ez∼q(z) [log p(x, z)− log q(z)] (3.6)

is known as the evidence lower bound. Hence, minimizing the divergence between the true and
variational posterior distributions is equivalent to maximizing the ELBO.

For VI involving complex (non-exponential family) likelihoods, the ELBO is generally approx-
imated by replacing the first term in (3.6) by a Monte Carlo estimate:

Ez∼q(z) log p(x, z) ≈ 1

B

B∑
i=1

log p(x, zi); z1, . . . ,zB ∼ q(z) i.i.d. (3.7)

where B = 1 is a common choice. Each evaluation of the complete likelihood log p(x, z) requires
a full pass over the data, which can be prohibitive when the data are large. Stochastic variational in-
ference (SVI; Hoffman et al., 2013) addresses this problem through stochastic optimization. Many
Bayesian models naturally factorize into a set of shared, global hidden variables, and sets of local
hidden variables which are specific to each observation. Each observation is conditionally inde-
pendent of all others given its local parameters. Hoffman et al. show how models of this form are
well suited to stochastic gradient descent. Specifically, they derive an unbiased gradient estimator
of the ELBO (3.6) which operates on a single, randomly sampled data point at each iteration. The
algorithm tends to make better progress in early stages when the variational approximation to the
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shared global parameters is still quite inaccurate (Hoffman et al., 2013).
By design, the model we derived above is suited to SVI. In equation (3.3), the evolutionary

parameters ζ are shared among all datasets, while the branch length parameters T br
i are specific to

the ith datasetDi. We therefore refer to ζ as the global parameter, and the vectors of dataset-specific
branch lengths T br

1:S as local parameters. Our algorithm proceeds by iteratively sampling a single
dataset Di and taking a noisy (but unbiased) gradient step. Note that, because our model is not in
the exponential family, we cannot employ the elegant coordinate-ascent scheme originally derived
by Hoffman et al.. Instead, we numerically optimize the ELBO using differentiable programming
(see below).

3.5.2.2 Model parameterization

It remains to specify our model parameterization and the class of distributions Q that are used to
approximate the posterior. Recall from Section 3.5.1 that the global parameter ζ includes the effec-
tive reproduction number R(t), rate of becoming uninfectious δ(t), and sampling fraction s(t). We
follow earlier work (Gill et al., 2013) in assuming that these rate functions are piecewise constant
over time, with changepoints whose location and number are fixed a priori. The changepoints are
denoted t = (t1, . . . , tm) satisfying 0 = t0 < t1 < · · · < tm < tm+1 =∞. Thus,

R(t) =
m+1∑
i=1

Ri1{t∈[ti−1,ti)}(t),

where the transmission rates in each time interval are denotedR = (R1, . . . , Rm) ∈ Rm
>0. The rate

of becoming uninfectious and sampling fraction are similarly denoted by δ ∈ Rm
>0 and s ∈ [0, 1]m,

respectively. Finally, a Gaussian Markov random field (GMRF) smoothing prior is used to penalize
consecutive differences in the log rates (Minin et al., 2008). To account for the fact that each rate
parameter may have varying degrees of smoothness and also could be on different scales, each rate
parameter has a corresponding precision hyperparameter τR, τδ, and τs.

An extension of the BDSKY model allows for additional sampling efforts at each time tk.
Infected individuals are sampled with probability ρk at time tk. When all sequences are sampled
serially without the added sampling effort, ρk = 0 for 1 ≤ k ≤ m. When all sequences are
sampled contemporaneously, ψ = 0, ρk = 0 for 1 ≤ k ≤ m − 1, and ρm > 0. For our work, we
only consider cases where ρk = 0 for 1 ≤ k ≤ m − 1. We define bs as the number of sequences
sampled serially, and bm to be the number of sequences sampled at time tm. In other words, bm
is the number of contemporaneously sampled sequences at time tm. Note that b = bm + bs. The
sample times of the bs serially sampled sequences are denoted by ỹ(i) = (y

(i)
1 , . . . , y

(i)
bs

). Because
the sequences sampled at tm have the largest sample time, ỹ(i) is just a truncated version of y(i).
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When all sequences are sampled serially, y(i) = ỹ(i). To conserve notation, from this point onward,
we will use y(i) to refer to ỹ(i).

The final remaining global parameter is the epidemic origin time t0. In order for the model to
be well defined, this must occur earlier than the earliest sampling time in any of the S subsamples.
Therefore, we set t0 + x1 = ymin, where ymin is the earliest sampling time across all subsamples,
and place a prior on x1 > 0 as detailed below.

Given the sampling times and estimated tree topology T̂ topo
i , we can identify each local param-

eter T br
i with a vector h(i) ∈ Rb−1

>0 giving the height of each internal node when enumerated in
preorder. Hence the height of the root node is h(i)

1 . We follow the parameterizations set forth by
Fourment and Darling (2019). In order for a sampled tree to be valid, we must have h(i)

j < h
(i)
pa(j)

for every j. Here pa(j) denotes the parent node of node j. This constraint can be met by setting
the height of internal node j as h(i)

j = p
(i)
j (h

(i)
pa(j) − h

(i)
d(j)) where d(j) is the earliest sampled tip

from the set of descendants of j and p(i)
j ∈ [0, 1]. Finally, let x(i)

1 denote the distance of the root
node from the origin measured forward in time. We must have t0 < x

(i)
1 < y

(i)
1 since the root node

of Ti has to be between the origin and the earliest sample time. Therefore we set x(i)
1 − t0 = r(i)y

(i)
1

for some r(i) ∈ [0, 1], and calculate the root height h(i)
1 from it. Under this parameterization, the set

of local variables z(i) = (p
(i)
1 , . . . , p

(i)
b−1, r

(i)) ∈ [0, 1]b is a set of proportions, with transformations
to switch between parameterizations for BDSKY and the observed data likelihood.

3.5.2.3 Variational approximating family

We make a standard mean field assumption, which posits that members of Q completely factorize
into a product of independent marginals. Letting ζ = (R1, . . . , Rm, δ1, . . . , δm, s1, . . . , sm) denote
the collection of all global parameters defined above, and recalling the definition of z(i) in the
preceding paragraph, we assume that

q(ζ, z(1), . . . ,z(m)) =
∏
i

q(ζi | πi)
∏
j

∏
k

q(z
(k)
j | φ(k)

j ), (3.8)

where we have introduced variational parameters πi and φ(k)
j corresponding to each marginal dis-

tribution. The distributions q(ζi | πi) and q(z(k)
j | φ(k)

j ) are (suitably transformed) Gaussians, so
that πi, φ

(k)
j ∈ R × R≥0 each comprises a real location parameter and non-negative scale parame-

ter. In our model, all latent parameters, local or global, are constrained to be positive (e.g., R, δ)
or in the unit interval (e.g., s, z(i)). For each parameter we take q to be an appropriately trans-
formed normal distribution. For positive parameters we use an exponential transformation, and for
parameters constrained to be in (0, 1) we use an expit (inverse logistic) transformation.
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3.5.2.4 Implementation using differentiable programming

Our Python software implementation uses automatic differentiation in order to efficiently optimize
the variational objective function (Kucukelbir et al., 2017; Bradbury et al., 2018). We sample from
the variational distribution and estimate the gradient of the (3.7) objective function with respect to
the variational parameters π and φ using Monte Carlo integration (cf. eqn. 3.7). Gradients of the
phylogenetic likelihood are computed in linear time using the recent algorithm of Ji et al. (2020).
The complete fitting algorithm is shown in Algorithm 3.

Algorithm 3 Variational Bayesian Skyline (VBSKY)

Require: Data set D ∈ {A,C,G, T,N}n×L
Sampling times y ∈ Rn

≥0

Fixed parameters m,S, b . Number of intervals, number of trees, subsample size
Step size α
for all 1 ≤ i ≤ S do

Sample with replacement b times from the data to get subsample Di,y(i)

Estimate the tree topology T̂ topo
i

end for
Initialize π,φ randomly.
while not converged do

for all 1 ≤ i ≤ S do
Draw M samples z(i) ∼ q(· | φ(i)), ζ ∼ q(· | π)
Approximate∇φ(i)L and ∇πL using MC integration
φ(i) ← φ(i) + α∇φ(i)L
π ← π + α∇πL

end for
end while
return π,φ . Algorithm 3
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3.6 Appendix

3.6.1 Birth Death Skyline

In this section we review the birth-death skyline (BDSKY) model of Stadler et al. (2013). BD-
SKY is a forward time model which begins with a single individual at time t0 and ends at tm.
Throughout this section, we will refer to the start of the process as the origin. As with other sky-
line methods, the parameters of the model are allowed to vary over time. Specifically, given a
vector t = (t0, t1, . . . , tm) satisfying 0 < t1 < · · · < tm, parameters are fixed between each tk
and tk−1, and allowed to vary m times. The transmission rates are denoted by the vector λ ∈ Rm

>0.

Similarly, the death rates are given by the vector µ and the sampling rates by the vector ψ where
each µk > 0 and ψk > 0. In the interval [tk−1, tk), every infected individual transmits at rate λk,
recovers at rate µi, and is sampled at rate ψk. For ease of notation, we denote λ(t), µ(t), and ψ(t)

as the transmission rate, uninfectious rate, and sampling rate at time t. We assume that after sam-
pling, the individual can no longer transmit. This assumption holds in reality for many viruses as
sampling is often followed by treatment or changes in behavior that would curb or limit spread.
For example, those sampled with HIV would undergo antiretroviral therapy or those sampled with
COVID-19 would quarantine themselves.

As described in the main text, the BDSKY model also allows for additional sampling efforts at
each time tk. For the reader’s convenience we reproduce the notation here. All infected are sampled
with rate ρk at time tk. When all sequences are sampled serially without the added sampling effort,
ρk = 0 for 1 ≤ k ≤ m. When all sequences are sampled contemporaneously, ψ = 0, ρk = 0

for 1 ≤ k ≤ m − 1, and ρm > 0. For our work, we only consider cases where ρk = 0 for
1 ≤ k ≤ m − 1. We define bs as the number of sequences sampled serially, and bm to be the
number of sequences sampled at time tm. In other words, bm is the number of contemporaneously
sampled sequences at time tm. Note that b = bm + bs. The sample times of the bs serially sampled
sequences are denoted by ỹ(i) = (y

(i)
1 , . . . , y

(i)
bs

). Because the sequences sampled at tm have the
largest sample time, ỹ(i) is just a truncated version of y(i).When all sequences are sampled serially,
y(i) = ỹ(i). To conserve notation, from this point onward, we will use y(i) to refer to ỹ(i). The b−1

transmission event times are denoted by x(i) = (x
(i)
1 , . . . , x

(i)
b−1) where 0 < x

(i)
1 < · · · < x

(i)
b−1.

The number of lineages that began before tk and are extant at tk is nk. Any tree Ti induced by
the BDSKY model is described by its tree topology T topo

i , the transmission times x(i), and the
sampling times y(i). Letting S be the event that at we observe at least one sample, the probability
density of a tree under the BDSKY model is

p(Ti | λ,µ,ψ,ρ, t, S) =
q1(0)ρbmm
1− p1(0)

b−1∏
k=1

λ
I(x

(i)
k )
q
I(x

(i)
k )

(x
(i)
k )

ns∏
k=1

ψ
I(y

(i)
k )

q
I(y

(i)
k )

(y
(i)
k )

m∏
k=1

qk+1(tk)
nk , (3.9)
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where I(t) = k if tk−1 ≤ t < tk, and for k = 1, . . . ,m and tk−1 ≤ t < tk,

Ak =
√

(λk − µk − ψk)2 + 4λkψk

Bk =
(1− 2(1− ρk)pk+1(ti))λk + µk + ψk

Ak

pk(t) =
λk + µk + ψk − Ak e

Ak(tk−t)(1+Bk)−(1−Bk)

eAk(tk−t)(1+Bk)+(1−Bk)

2λk

qk(t) =
4e−Ak(t−tk)

(e−Ak(t−tk)(1 +Bk) + (1−Bk))2
,

and pm+1(tm) = 1.

3.6.2 Estimating the tree topology

In this section we explain how we estimate the tree topology T̂ topo
i for each subsample Di. We

employed a simple heuristic method by fitting serial-sample unweighted pair grouping method with
arithmetic means (sUPGMA) (Drummond and Rodrigo, 2000). As the name alludes to, sUPGMA
is a tree reconstruction algorithm based on the unweighted paired group method with arithmetic
means (UPGMA) (Sneath and Sokal, 1973).

We first describe the UPGMA algorithm followed by the sUPGMA algorithm. Both algorithms
require a pairwise distance matrix. Taking the sequences of our subsample,Di ∈ {A,C,G, T}b×L,
we simply take the Hamming distance between all

(
b
2

)
pairs of sequences. That is for a given pair

of sequences s, t ∈ Di, the distance is d(s, t) =
∑L

k=1 1(sk 6=tk). For clusters, the mean distance
between each element in the clusters. That is

d(A,B) =
1

|A||B|
∑
s∈A

∑
t∈B

d(s, t),

where A and B both represent clusters. At each step the two clusters with the smallest distance
between them are combined into a new cluster, and the distances are recalculated between the
newly formed cluster and the other clusters. Clusters can be made up of a single sequence. We
start with b clusters initially and reduce the number of clusters by one at each step. This is repeated
until there is only one single cluster.

While we could naively use UPGMA to get our tree topologies, because UPGMA does not
account for sample times, it is possible the algorithm would give us topologies that are impossible
given the sample times. We use sUPGMA to ensure that the estimated topology is not only possi-
ble, but realistic. Consider our subsample of sample times y(i) = {y(i)

1 , y
(i)
2 , . . . , y

(i)
b }. Let d(ui, vj)

be the distance between ith sequence with sample time y(i)
u and the jth sequence with sample time
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yv.We assume that u < v. and model d(ui, vj) by its expectation, E(d(ui, vj)) = Θu+ω(y
(i)
v −y(i)

u ),

where Θu is the expected average distance between any two sequences at time y(i)
u , and ω is the

expected number of substitutions per unit time. The procedure for sUPGMA is as follows.

1. Estimate the set of parameters {Θ1, . . . ,Θq, ω} using regression:

d(ui, vj) =

q∑
k=1

ΘkXk + ω(y(i)
v − y(i)

u ) + ε,

where Xk = 1 if k = u and k = 0 otherwise.

2. Correct the original pairwise distances

c(ui, vj) = d(ui, vj) + ω(y(i)
u + y(i)

v − 2y
(i)
1 ).

3. Cluster using the UPGMA algorithm as described earlier.

We note that while the complete sUPGMA algorithm returns both the tree topology and the
branch lengths, we only use this procedure to obtain the tree topology. As branch lengths are
continuous variables, we will estimate those using stochastic variational inference. Although there
are maximum likelihood based tree reconstruction methods we could use such as IQ-TREE (Minh
et al., 2020), since we are only concerned with the topology rather than the entire tree, we prioritize
the faster algorithm.
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Figure 3.7: Posterior of R for Florida, Michigan, and the USA using an uninformative smoothing
prior. VBSKY estimates are in blue. The orange estimates are derived from surveillance data. For
each method the posterior median and equal-tailed 95% credible interval are shown. The dotted
red line is R = 1.
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Figure 3.8: Posterior of R for Florida, Michigan, and the USA using less smoothing. VBSKY
estimates are in blue. The orange estimates are derived from surveillance data. For each method
the posterior median and equal-tailed 95% credible interval are shown. The dotted red line is
R = 1.
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Figure 3.9: Posterior of R for Florida, Michigan, and the USA using biased sampling and a strong
prior on s. VBSKY estimates are in blue. The orange estimates are derived from surveillance
data. For each method the posterior median and equal-tailed 95% credible interval are shown. The
dotted red line is R = 1.
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Figure 3.10: The posterior median and equal-tailed 95% credible interval ofR for Florida given by
BEAST. The top panel contains randomly sampled data, while the bottom contains the most recent
available samples. The sampler was allowed to run as long as it VBSKY to analyze the Florida
data. This is referred to as the short run in the text.
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Figure 3.11: The posterior median and equal-tailed 95% credible interval of R for Florida given
by BEAST. The sampler was allowed to run for 100 million steps or 24 hours to analyze the data.
This is referred to as the long run in the text.
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Figure 3.12: The posterior median and equal-tailed 95% credible interval of R for the Alpha and
Delta variants.
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Figure 3.13: Distribution of sample times for Florida, Michigan, and the USA.
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Figure 3.14: Daily new cases of COVID-19 over time for Florida, Michigan, and the USA.
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Figure 3.15: The posterior median and equal-tailed 95% credible interval of s for Florida, Michi-
gan, and the USA using an uninformative smoothing prior.
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Figure 3.16: The posterior median and equal-tailed 95% credible interval of s for Florida, Michi-
gan, and the USA using less smoothing.
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Figure 3.17: The posterior median and equal-tailed 95% credible interval of s for Florida, Michi-
gan, and the USA using biased sampling.
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Figure 3.18: The posterior median and equal-tailed 95% credible interval of R for Michigan given
by BEAST. The sampler was allowed to run as long as it VBSKY to analyze the Michigan data.
This is referred to as the short run in the text.
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Figure 3.19: The posterior median and equal-tailed 95% credible interval of R for the USA given
by BEAST. The sampler was allowed to run as long as VBSKY to analyze the USA data. This is
referred to as the short run in the text.
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Figure 3.20: The posterior median and equal-tailed 95% credible interval of R for Michigan given
by BEAST. The sampler was allowed to run for 100 million steps or 24 hours. This is referred to
as the long run in the text.
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Figure 3.21: The posterior median and equal-tailed 95% credible interval of R for the U.S. given
by BEAST. The sampler was allowed to run for 100 million steps or 24 hours. This is referred to
as the long run in the text.
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Figure 3.22: The posterior median and equal-tailed 95% credible interval of s for the Alpha and
Delta variants.
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Figure 3.23: The posterior median and equal-tailed 95% credible interval of R for the Alpha and
Delta variants.
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Figure 3.24: The posterior median and equal-tailed 95% credible interval of s for the Alpha and
Delta variants.
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CHAPTER 4

Inference of population size histories with the fused
lasso

4.1 Introduction

The estimation of population size histories using genome variation data has been an important av-
enue of research in population genetics and has a range of applications. Inference of population
size histories can help unravel questions concerning historical events such as the human migration
out of Africa and is also paramount to understanding selection. A large class of methods devel-
oped with the goal of estimating population size histories are rooted in coalescent theory. Exact
models of the coalescent with recombination are computationally intractable as they require in-
tegrating over the high dimensional graph structure known as the ancestral recombination graph
(ARG; Hudson et al., 1990; Griffiths and Marjoram, 1997). Because of this, approximations to
the ARG are necessary to analyze chromosome scale data. Wiuf and Hein (1999) provided the
first approximation of the coalescent with recombination as a process along the genome instead
of through time; each locus has a local genealogy, and alterations to successive genealogies only
occur when a recombination occurs.

Thereafter McVean and Cardin (2005) extended this process with the sequentially Markov co-
alescent (SMC); as the name implies, after a recombination event the new local genealogy only
depends on the genealogy at the previous locus. The Markovian structure of SMC renders the ap-
proximation computationally tractable, allowing for likelihood based inference of the population
size history without having to integrate over a high-dimensional latent variable by way of hidden
Markov models (HMMs). These so-called “coalescent HMMs” have become a fixture in the field
of demographic inference (Dutheil et al., 2009; Li and Durbin, 2011; Schiffels and Durbin, 2014;
Sheehan et al., 2013; Terhorst et al., 2017). In coalescent HMMs, generally the observed process
is the data at each locus and the hidden process is the unobserved genealogy (or an approximation
of the genealogy) hypothesized to have generated the observed data at each locus.
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Perhaps the most popular coalescent HMM is the Pairwise Sequentially Markov Coalescent
(PSMC; Li and Durbin, 2011) which has been used to great success to estimate population size
histories in many species (Prado-Martinez et al., 2013; Prüfer et al., 2014; Ekblom et al., 2018).
Using only diploid genotype information from a single individual (or, more generally, a pair of
phased haplotypes), PSMC returns an estimate of the effective population size through time. Since
its development a decade ago, several coalescent HMMs have been developed increasing the num-
ber of sequences that can be analyzed. Still PSMC remains a useful method particularly in small
sample size situations and has even outperformed the current state of the art SMC based inference
method SMC++ (Terhorst et al., 2017) in that regime (Patton et al., 2019). While PSMC is a stan-
dard model in demographic inference, it is not without its drawbacks. First, PSMC implements the
basic SMC model when more accurate approximations, namely SMC’ (Marjoram and Wall, 2006),
exist. Second, PSMC cannot consistently recover accurate changes in the recent path. Third, the
runtime of PSMC is quadratic in the number of states.

The first two issues were addressed by another method known as Multiple Sequentially Marko-
vian Coalescent (MSMC; Schiffels and Durbin, 2014) and its successor MSMC2 (Malaspinas et al.,
2016; Schiffels and Wang, 2020) which use transitions based on SMC’. MSMC can analyze more
than a pair of haplotypes, but only tracks the first coalescence time between any pair of haplotypes
in the sample. This adaptation gives MSMC the power to detect changes in the population size
in the recent past. However, MSMC cannot estimate the the effective population size reliably in
very ancient times as it only looks at the first coalescence time across the entire sample. MSMC2
shores up this weakness by modeling the coalescence time of each pair in the sequence with its own
HMM. In doing so, MSMC2 is using coalescence time information from all pairs of sequences en-
abling it to estimate the effective population size both near the present and further back in the past.
However, both MSMC and MSMC2 fail to address the final issue using PSMC. Additionally, in-
cluding PSMC, none of the three aforementioned methods have a formal procedure for uncertainty
quantification. Bootstrapping to estimate confidence intervals is possible, but without improving
the run-time of these methods, any bootstrap procedure will be slow.

There are of course other limitations with coalescent HMMs not unique to the methods already
mentioned. HMMs require the state space of the latent variables to be discrete, so in order to use
HMMs for likelihood based inference, time must be discretized. Within each discrete time inter-
val, population sized histories inferred from coalescent HMMs are often assumed to be constant.
This discretization can lead to a biased and noisy reconstruction of the population size history.
Neighboring epochs may have drastically different values of the effective population size which
could suggest demographic events that may not have happened. This is especially the case in time
periods where we may not be able to infer many coalescent rates such as when we are only looking
at a pair of chromosomes in the recent past. Clearly the time discretization scheme can have large
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impact on the estimates of the coalescence rate, yet in practice it is not obvious how to set the
discretization and it is often not changed from the default settings in studies that use such methods
(Mather et al., 2020).

To rectify these issues we introduce here a new coalescent HMM, QTND, that is both accurate
and efficient. Our model QTND takes a pair of haplotypes as input, and tracks the genealogy of
a pair of chromosomes as PSMC does. However, like MSMC2, our method can analyze multiple
pairs of sequences simultaneously giving it more power to detect changes in population size in the
recent past than PSMC. Similar to MSMC and MSMC2, our method uses the SMC’ approximation
but has a run time that is linear in the number of hidden states. This speedup gives QTND the
capacity for fast uncertainty quantification using bootstrap. We also incorporate regularization via
the fusion penalty encouraging smoothness between neighboring intervals of time. This should
limit the effect of stochastic error from the discretization grid in the estimates of the effective
population size. In the rest of the paper, we present the linear time EM algorithm for our coalescent
HMM based on SMC’ and the explain the regularization in detail.

4.2 Background

The first linear-time inference algorithm for SMC was derived by Harris et al. (2014). They showed
that by augmenting the state space of a coalescent HMM to include information on the recom-
bination and back-coalescence process, it was possible to reduce the running times of both the
forward-backward and expectation-maximization (EM) algorithms to have linear time complexity
in the number of hidden states. The standard algorithms for hidden Markov models has quadratic
time complexity in the number of hidden states because of the need to integrate over all possible
pairs of transitions between hidden states 1 ≤ i, j ≤M , where M is the overall number of hidden
states.

Subsequently it was shown (Wilton et al., 2015; Terhorst et al., 2017) that the SMC’ model
of Marjoram and Wall is a more accurate approximation to the ancestral recombination graph
compared to the original SMC model of McVean and Cardin. Palamara et al. (2018) derived a
linear time forward-backward algorithm for SMC’ by exploiting some symmetries and numerical
properties of the SMC’ transition matrix. However, they did not a provide corresponding linear-
time EM algorithm, nor is it obvious how to do so using their approach.

Here we follow the probabilistic approach of Harris et al., which can be extended to SMC’.
We adopt the notations from their paper throughout this chapter. Table 4.6 provides a summary of
the notation used. For example, P(Ri, C>i | T < i) denotes the probability that a recombination
occurs in interval i, and the recombinant lineage “floats” back to an earlier interval, given that the
existing time to most common recent ancestor (TMRCA) is beneath interval i.
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The distinguishing feature of SMC’ is that the probability P(C>j | C>j−1) is not independent of
the current TMCRA T : if T > j then the recoalescence process happens at twice the rate as when
T < j, but half of the resulting recombinations are silent. In order to account for this fact, we
derive suitable expanded systems of recursions which are generalizations of the results of Harris
et al..

4.3 The linear-time forward-backward algorithm

In this section we derive a forward-backard algorithm for coalescent HMMs under the SMC’
model. As noted above, such an algorithm is already known, but the extension to a linear-time EM
algorithm requires additional recursive quantities which were not considered by Palamara et al.,
whose main interest was in performing posterior decoding. Our algorithm is also differs from the
original Harris et al. (2014) algorithm in that it recurses only on rescaled probability distributions,
whose entries are always O(1) (cf. Bishop, 2006, §13.2.4). While mathematically uninteresting,
this feature matters in applications, since the joint probability distributions considered by Harris
et al.—e.g., P(x1:`, T` = i)—will underflow when ` is large.

Throughout this section and the next, we use the hat notation to denote quantities which are
conditioned on the data, and suppress this conditioning for notational convenience. For example,
the forward probability at position ` is denoted

f̂(T` = i) ≡ P(T` = i | x1:`),

where x1:` denotes the data observed at positions 1 through ` (inclusive). Similarly, the backward
probability at position `+ 1 is

b̂(T`+1 = i) ≡ P(x`+1:L | T`+1 = i)

P(x`+1:L | x1:`)
. (4.1)

4.3.1 Forward recursion

Using the above conventions, we can write

f̂(T`+1 = i) ∝ ξ(x`+1 | T`+1)×
{

f̂(T` = i)
[
P(R̄ | T = i) + P(Rs

<i | T = i) + P(R≤i, Ci | T = i)
]

+ f̂(R<i, Ci, T` < i) +
1

2
f̂(T` > i)P(R≤i, Ci | T > i)

+ f̂(T` = i)P(R≤i, Ci | T = i)
}

(4.2)
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which extends equation (7) of Harris et al. (2014) by partitioning the event {R≤j, Cj} according to
the state of T`, and accounting for the possibility of silent recombinations. A recursion for the term
f̂(R<i, Ci, T` < i) is obtained by partitioning the event {T` < i} = {T` = i− 1} ∪ {T` < i− 1}:

f̂(R<i, Ci, T` < i) = f̂(R<i, Ci, T` = i− 1) + f̂(R<i, Ci, T` < i− 1).

For the first term of the recursion,

f̂(R<i, Ci, T` = i− 1) = f̂(T` = i− 1)P(R≤i−1, Ci | T` = i− 1).

= f̂(T` = i− 1)P(R≤i−1, C>i−1 | T` = i− 1)P(Ci | C>i−1, T < i).

For the second term, we have

f̂(R<i, Ci, T` < i− 1) = f̂(R<i−1, Ci, T` < i− 1)

= f̂(R<i−1, C>i−1, T` < i− 1)P(Ci | C>i−1, T < i),

which can be solved recursively since

f̂(R≤i−1, C>i−1, T` < i) =

f̂(R≤i−1, C>i−1, T` = i− 1) + f̂(R≤i−2, C>i−1, T` < i− 1)

= f̂(T` = i− 1)P(R≤i−1, C>i−1 | T` = i− 1)+

f̂(R≤i−2, C>i−2, T` < i− 1)P(C>i−1 | C>i−2, T < i− 1),

with base case f(R≤0, C>0, T` < 1 | x1:`) = 0.

4.3.2 The backward algorithm

To compute the rescaled backwards probabilities (equation 4.1 above), we follow the suggestion of
Harris et al. (2014) and exploit the fact that the sequentially Markov coalescent can be arbitrarily
oriented with respect to the direction of the sequence. Hence the probability of the data and the as-
sociated conditional probabilities are same regardless of whether we run the model in the standard
(i.e., 5′ → 3′) direction, or in the reverse.

Define the reversed sequence xrev by the identity xrev
i = xL−i+1, and let f̂ rev(T` = i) denote the
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result of running the forward algorithm derived above on the reversed sequence. Then

b̂(x`+1:L) =
P(T` = i | x`+1:L)P(x`+1:L)

P(T` = i)

∝ f̂ rev(TL−`+1 = i)

P(T` = i)P(x` | T` = i)
, (4.3)

where the constant of proportionality in the last line is P(x`+1:L). To compute this constant, we
note that

1 =
d∑
i=1

f̂(T` = i | x1:`)b̂(T` = i)

so that P(x`+1:L) equals the inner product of the rescaled forwards and backwards probabilities at
position `.

4.3.3 Comparison to the algorithm of Palamara et al.

Palamara et al. (2018) also derived a linear time posterior decoding algorithm for the SMC’ model.
Their algorithm works by modifying the standard recursions for the rescaled backwards pass (e.g.,
Bishop 2006 §13.2.4), noting that the the below-diagonal entries of the SMC’ transition matrix
are constant across rows, while the above-diagonal entries have a constant ratio between columns.
We observed in practice that the approach of using the “reversed forwards” algorithm outlined in
the preceding section tended to be more numerically stable during parameter inference. This is
because the rescaled forward algorithm recurses on a probability distribution—namely, the filter-
ing distribution P(T` = i | x1:`)—whereas the standard backward pass recurses on the conditional

probability distribution shown in equation (4.1). Consequently, the entries of the forward/filtering
distribution are always O(1), while no such guarantee exists for the backwards probabilities. We
observed that numerical issues sometimes arose with the linear-time backward algorithm of Pala-
mara et al. during parameter inference, where a numerical optimizer could pass in extreme param-
eter values, whereas the approach described above appeared to be more robust. Note that this issue
was not encountered by Palamara et al., likely because they did not perform parameter inference
in their paper.

4.4 Linear time EM algorithm for SMC’

In the preceding section, we derived a posterior decoding algorithm for the SMC’ model which
is linear in the number of hidden states. However, to use this model for parameter inference, we
must also employ the EM algorithm. As already noted by Harris et al. (2014), computing the
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expected complete log-likelihood for a hidden Markov model scales quadratically in the number
of hidden states, even when the forward and backward algorithms have linear time complexity.
This is because of the need to compute the expected number of transitions between all pairs of
hidden states conditional on the data.

A linear-time EM algorithm analogous to the one provided by Harris et al. (2014) for the SMC
model is also possible for SMC’. It is derived in a similar manner, by conditioning on the interval
in which a recombination first occurred, and tracking the back-coalescence process as it proceeds
from interval to interval. However, the possibility of silent recombination events in the SMC’
model makes these calculations somewhat more involved. To account for this phenomenon, we
introduce another auxiliary variable T ∗`+1 denoting the interval into which back-coalescence occurs
conditional on a recombination at a given position. Under SMC’, we have that T ∗`+1 = T`+1 with
probability one conditional on T ∗`+1 ≥ T`, but this probability is only one-half when T ∗`+1 < T`,
since silent recombination, i.e. T`+1 = T`, is equally probable.

We begin by decomposing P(Ri, T`+1 = k, T ∗`+1 = h | T` = j), the probability distribution
of the TMRCA height across a recombination event, similar to equation (3) of Harris et al. This
probability depends on the relationship between h, i, j, and k. Under the SMC’ model there are
a total of six cases to consider, and they are listed in Table 4.1. Compared to SMC, each decom-
posed term incorporates additional conditioning to account for the dependence of the coalescent
probabilities on the position of the current TMRCA. For example, the first row of the table asserts
that

P(Ri, T`+1 = T ∗`+1 = i | T` = i) = P(Ri, Ci | T = i);

in words, the probability that a recombination in interval i leads to no change in the TMRCA
equals the probability of recombining and back-coalescing (either silently or visibly) in i. The
most complicated entry of the table is the last row, i < j < h = k, where it is the case that a) a
recombination occurs in interval i, which is strictly beneath the height of the current TRMCA j;
b) the recombinant lineage floats backwards in time past j, and c) continues to float until it reaches
interval k. Because the recombination is non-silent, resulting in a change in TMRCA between
positions ` and `+ 1, it must be the case that h = k.

Next, we rewrite the each of the terms in Table 4.1 according to the interval where they must
occur. For example, from the last three lines of the table, it can be seen that the likelihood contains
a term of the form P(Ri, C>i | T > i) whenever i < min(h, j). These relations are collected in
Table 4.2 (for recombination events), and Table 4.3 (for back-coalescence events).

Finally, to compute the expected log-likelihood, we need to compute the expected number of
positions, conditional on the data, where each of the events identified in the left-hand columns of
Tables 4.2 and 4.3 occurred. This is equal to the the sum, over all positions, of the posterior prob-
ability of each event. These expectations are collected in Tables 4.4 and 4.5, which correspond,
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Condition P(Ri, T`+1 = k, T ∗`+1 = h | T` = j)

h = i = j = k P(Ri, Ci | T = i)

h = i = k < j
h = i < j = k

1
2
P(Ri, Ci | T > i)

i = j < k = h
P(Ri, C>i | T = i)×

k−1∏
m=i+1

P(C>m | C>m−1, T < m)

× P(Ck | C>k−1, T < k)

i < h < j = k
i < h = k < j

P(Ri, C>i | T > i)×
k−1∏

m=i+1

P(C>m | C>m−1, T > m)

× 1

2
P(Ck | C>k−1, T > k)

i < h = j = k
P(Ri, C>i | T > i)×

k−1∏
m=i+1

P(C>m | C>m−1, T > m)

× P(Ck | C>k−1, T = k)

i < j < h = k

P(Ri, C>i | T > i)×
j−1∏

m=i+1

P(C>m | C>m−1, T > m)

× P(C>j | C>j−1, T = j)×
k−1∏

m=j+1

P(C>m | C>m−1, T < m)

× P(Ck | C>k−1, T > k)

Table 4.1: The probability of recombining with to a new TMRCA conditional on the existing
TMRCA. The event T ∗`+1 = h denotes that back-coalescence occurred in interval h.

Event: Ri and . . . Contribution to loglik

i = T` = T`+1 = T ∗`+1 P(Ri, Ci | T = i)
i = T`+1 = T ∗`+1 < T`
i = T ∗`+1 < T` = T`+1

1
2
P(Ri, Ci | T > i)

i = T` < T`+1 = T ∗`+1 P(Ri, C>i | T = i)
i < min(T`, T

∗
`+1) P(Ri, C>i | T > i)

Table 4.2: The probability of recombining with to a new TMRCA conditional on the existing
TMRCA. The event T ∗`+1 = h denotes that back-coalescence occurred in interval h.
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Event: R<i and . . . Contribution to loglik

i < T ∗`+i < T` P(C>i | C>i−1, T > i)
i = T` < T ∗`+1 P(C>i | C>i−1, T = i)
T` < i < T ∗`+1 P(C>i | C>i−1, T < i)
i = T ∗`+1 < T` P(Ci | C>i−1, T > i)
i = T ∗`+1 = T` P(Ci | C>i−1, T = i)
T` < i = T ∗`+1 P(Ci | C>i−1, T < i)

Table 4.3: The probability of recombining with to a new TMRCA conditional on the existing
TMRCA. The event T ∗`+1 = h denotes that back-coalescence occurred in interval h.

respectively, to the interval where a recombination event occurred; and the intervals beneath which
a recombination occurred, and the recombinant lineage either floats past the interval under consid-
eration, or coalesces into it. (Note that there is an implicit summation over ` in each entry of the
table.)

There is one event which is slightly more difficult to compute: when i < min(T`, T
∗
`+1), it is not

true that the data x`+1:L are conditionally independent of x1:` conditional only on i < T`. Hence
the argument used to derive the other rows of both tables does not work in this case. To deal with
this case, we directly compute the probability of the event {Ri, T` > i, T`+1 > i}, conditioned on
the data, using another recursion. First, we write

P(Ri, T` > i, T`+1 > i) = P(T` > i)P(Ri, C>i|T > i)P(T`+1 > i | T` > i,C>i),

where to simplify notation we omit the conditioning on the data. Then we consider a recursion for
the last term:

P(T`+1 > i, T` > i | C>i) =

P(C>i+1 | C>i, T > i)P(T`+1 > i+ 1, T` > i+ 1 | C>i+1)+

P(T` = i+ 1, T`+1 > i+ 1 | C>i) + P(T` > i+ 1, T`+1 = i+ 1 | C>i).

For the first term in the last line, we have

P(T` = i, T`+1 > i | C>i−1) = f̂(T` = i)b̂(T`+1 > i)P(C>i | C>i−1, T = i)

and for the second,

f̂(T` > i+ 1)P(Ci+1 | C>i, T > i+ 1)b̂(T`+1 = i+ 1).

104



Event: Ri and . . . Expected number of positions:
∑

` · · ·
i = T` = T`+1 = T ∗`+1 f̂(T` = i | x1:`)P(Ri, Ci | T = i)b̂(x`+1:L | T`+1 = i)

i = T`+1 = T ∗`+1 < T`
1
2
f̂(T` > i | x1:`)P(Ri, Ci | T > i)b̂(x`+1:L | T`+1 = i)

i = T ∗`+1 < T` = T`+1
1
2
P(Ri, Ci | T > i)

∑
j>i f̂(T` = j | x1:`)b̂(x`+1:L | T`+1 = j)

i = T` < T`+1 = T ∗`+1 f̂(T` = i | x1:`)P(Ri, C>i | T = i)b̂(x`+1:L | T`+1 > i)
i < min(T`, T

∗
`+1) See text

Table 4.4: The probability of recombining with to a new TMRCA conditional on the existing
TMRCA. The event T ∗`+1 = h denotes that back-coalescence occurred in interval h.

Event: R<i and . . . Expected number of positions:
∑

` · · ·
i < min(T ∗`+i, T`) See text
i = T` < T ∗`+1 f̂(T` = i | x1:`)P(R<i, C>i | T = i)b̂(x`+1:L | T`+1 > i)

T` < i < T ∗`+1 f̂(R≤i−1, C>i−1, T` < i | x1:`)P(C>i | C>i−1, T < i)b̂(x`+1:L | T`+1 > i)

i = T ∗`+1 < T`

P(R<i, Ci | T > i)×
[
f̂(T` > i | x1:`)b̂(x`+1:L | T`+1 = i)

+
∑
j>i

f̂(T` = j | x1:`)b̂(x`+1:L | T`+1 = j)
]

i = T ∗`+1 = T` f̂(T` = i | x1:`)P(R<i, Ci | T = i)b̂(x`+1:L | T`+1 = i)

T` < i = T ∗`+1 f̂(R≤i−1, C>i−1, T` < i | x1:`)P(Ci | C>i−1, T < i)b̂(x`+1:L | T`+1 = i)

Table 4.5: The probability of recombining with to a new TMRCA conditional on the existing
TMRCA. The event T ∗`+1 = h denotes that back-coalescence occurred in interval h.
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4.5 Fused Lasso

In this section, we explain in detail how take advantage of our linear time EM algorithm to incor-
porate regularization. The parameters of our model are the scaled mutation rate θ, recombination
rate ρ, and coalescence rates c = (c1, . . . , cT ). The coalescence rates are naturally ordered by
the discretization interval they belong to. It is reasonable to assume in the absence of a popula-
tion expansion or bottleneck, coalescence rates in neighboring intervals will be more similar than
coalescence rates in intervals that are further apart. The fusion regularization term penalizes dif-
ferences between successive coalescence rates which can reduce the effect of the discretization
scheme on the estimation of the population size history. Formally, if we take Q(c, θ, ρ) to be the
usual function we maximize in the M step of the EM algorithm, we optimize over the following
function

c∗ = arg min
c∈RT≥0

Q(c) + α
T−1∑
i=1

|ci+1 − ci|,

where α is the regularization parameter. The fusion penalty has the added benefit that changes in
the population size are less likely to be due to overfitting whereas in PSMC and other coalescent
HMMs it can sometimes be difficult to distinguish between real changes in population size and
noise from the model.

We select the best value for α using a cross-validation scheme. We split the data into training
and test sets and find the optimal parameters ci, θi, ρi using the training set for each value of the
regularization parameter αi we would like to try. We then score each αi by the likelihood of model
using estimated parameters and the test set, and select the αi that provides the largest likelihood.
Regularization has been used previously for demographic inference in SMC++ (Terhorst et al.,
2017) as well as in an allele frequency method (DeWitt et al., 2021). However in these methods
regularization requires manual tuning, and there is no built in procedure to find the optimal tuning
parameter. Because the EM algorithm for QTND is linear in the number of hidden states, we can
try several values of the regularization parameter relatively quickly.

4.6 Appendix

4.6.1 Transition Probabilities

In this section we write out how to recover the probabilities needed to compute transition events.
We haveM total hidden states where each state is the discretized interval within which coalescence
occurs. State i is defined as the interval of coalescence [ti, ti+1). We first begin by defining a
Markov chain of the states of a lineage of two loci. The four states are no recombination, floating,
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visible recoalescence, silent recoalescence in that order. The rate matrix of this Markov chain is
then given by

Qi =


−ρ ρ 0 0

0 −2ci ci ci

0 0 0 0

0 0 0 0

 , (4.4)

where ρ is the recombination rate and ci is the coalescence rate in the interval [ti, ti+1). We write

Wi =

∫ ti+1

ti

e(t−ti)Qif(t | t ∈ [ti, ti+1))dt

Zi =

∫ ti+1

ti

e(t−ti)Qif(t | t ∈ [ti, ti+1))e−(ti+1−ti)cidt,

where f(t | t ∈ [ti, ti+1)) is the conditional probability of coalescing at time t given coalescence
occurs in [ti, ti+1). These integrals can be computed in closed form because the eigendecomposi-
tion is known in closed form. We also define

Ei = e(tj+1−tj)Qi

Hi =
i−1∏
j=1

Ej

Gi = HiWi.

Note that each Wi, Zi, Ei, Hi, Gi are all 4× 4 matrices.
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The various components of the transition probabilities described in the main text are as follows:

P(C>i | C>i−1, T < i) = e−(ti−ti−1)/ci

P(Ci | C>i−1, T < i) = 1− e−(ti−ti−1)/ci

P(Ci | C>i−1, T = i) = Wi,1,2 +Wi,1,3 +Wi,1,1 − Zi,1,1
P(C>i | C>i−1, T = i) = Zi,1,1

P(Ci, V | C>i−1, T > i) = Ei,1,2

P(Ci, S | C>i−1, T > i) = Ei,1,3

P(C>i | C>i−1, T > i) = Ei,1,1

P(R̄ | T = i) = Gi,0,0

P(Rs
i | T = i) = Gi,0,3

P(Rs
<i | T = i) = P(Rs

<i | T > i) = Hi,0,3

P(Ri, Ci | T = i) = Hi,0,0(Wi,0,2 +Wi,0,3 +Wi,0,1 − Zi,0,1)

P(Ri, C>i | T = i) = Hi,0,0Zi,0,1

P(R<i, C>i | T = i) = Hi,0,1Zi,1,1

P(R<i, Ci | T = i) = Hi,0,1P(Ci | C>i−1, T = i)

P(Ri, Ci, V | T > i) = Hi,0,0Ei,0,2

P(Ri, Ci, S | T > i) = Hi,0,0Ei,0,3

P(Ri, C>i | T > i) = Hi,0,0Ei,0,1

P(R<i, Ci, V | T > i) = Hi,0,1Ei,1,2

P(R<i, Ci, S | T > i) = Hi,0,1Ei,1,3

P(R<i, C>i | T > i) = Hi,0,1Ei,1,1.

Now we turn to the stationary probabilities:

P(C>i) = e−
∑i
j=1 ci(ti+1−ti)

PCi = P(C>i)− P(C>i−1)

P(C<i) = 1− PCi − P(C>i).
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CHAPTER 5

Conclusion

In this thesis, we discussed a handful of challenges in analyzing genetic variation data and pre-
sented methods that successfully overcome these problems. The challenges discussed are rooted
in analyzing genetic data at scale. For analyzing chromosome data, the length of the data renders
exact inference under the coalescent with recombination impossible. For viral data, the length of
the sequences are much shorter, but there are no current methods that can make use of the large
amount of pathogen sequences available. In the rest of this chapter, we summarize and contextual-
ize the contributions of this thesis towards addressing these challenges. We also look towards the
future and discuss extensions to the work in this thesis as well as other important, related future
directions of research.

Sequentially Markov coalescent

In Chapter 2, we first introduced XSMC, a new method for estimating population size histories.
XSMC follows a line of methods based on the sequentially Markov coalescent. SMC is an approx-
imation the coalescent with recombination that balances biological realism with computational
tractability. By modeling the coalescent with recombination as a process along the sequence, the
approximation naturally lends itself to a hidden Markov model framework. To date there are sev-
eral methods that have used the SMC based HMM framework in order to infer population size
histories (Dutheil et al., 2009; Li and Durbin, 2011; Schiffels and Durbin, 2014; Sheehan et al.,
2013; Terhorst et al., 2017).

Unlike previous SMC based methods, XSMC removes the need to discretize genealogies and
allows inference of the latent sequence of trees in their natural continuous state. The key insight
behind XSMC is that SMC can almost be cast as a change point detection model. To cast our
method as a change point model, instead of modeling transitions based on the SMC approximation,
we instead use transitions based on the renewal approximation. This permits XSMC to use the
already well-established machinery used in change point detection problems.
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Rather than fixing a parametric function class, XSMC uses a nonparametric estimator to es-
timate the effective population size history. Because XSMC uses a nonparametric approach, it
does not provide estimates of the effective population size where a coalescence event is not ob-
served. This means that XSMC will only provide estimates after the first inferred coalescence
event. Methods like PSMC which are parametric will return an estimate of the effective population
even when coalescence events may not have been observed. Another advantage of the nonpara-
metric approach is that it reduces the burden of user to make optimal modeling choices such as
selecting the best time discretization for their set of data. Thus, in addition to being accurate and
fast, XSMC is also easy to use. However, in general nonparametric approaches require more data
than their parametric counterpart. While empirically our survival analysis estimator works well,
future work could be done to show what happens when the sequence length is shorter and we can
observe less coalescence events.

We showed via simulation how under a range scenarios, XSMC can produce better estimates of
the effective population size under a range of different scenarios when compared to other methods.
However, this is all under the assumption that the data is from a single, panmictic population. In
cases where we have a structured population, it may be prudent to actually allow for correlations in
neighboring IBD segments. Extensions to XSMC to allow for this are possible, but computational
performance would suffer. Further research should be done to see how robust the method is to this
assumption, and how to exactly balance computational performance with accuracy in this setting.

Beyond estimating population size histories, another potential application of our method is
downstream phasing and imputation. Many methods for phasing and imputation (Li and Abecasis,
2006; Das et al., 2016; Loh et al., 2016; Browning et al., 2018; Rubinacci et al., 2020) are based on
the Li and Stephens (2003) haplotype copying model. We presented some results that demonstrate
that XSMC may be more favorable for this type of application than LS. These results are prelim-
inary as we used an approximate metric to substitute phasing and imputation accuracy. So while
our initial results are promising, it will be important in the future to actually implement phasing
and imputation pipelines using XSMC and compare against the methods that use LS to perform
those procedures.

One assumption our method makes is the infinite sites model as it renders likelihood compu-
tation easier. Many of the results of our method rely on the fact that the number of positions that
differ at a particular locus conditioned on the TMRCA at that locus follows a Poisson distribution.
Admittedly while this assumption is standard in population genetics, it is not always grounded in
biological realism. It remains an important task to understand how robust our method is to vio-
lations of this assumption and under what scenarios we would need to use a more realistic model
of mutations. Under a (biallelic) recurrent mutation model, the number of mutations observed at
each nonrecombining locus no longer has a Poisson distribution, since an even number of muta-
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tions at a given site will result in that site possessing the ancestral state. This poses challenges for
XSMC, which gains speed by exploiting the conjugate nature of the gamma and Poisson distribu-
tions. New methods to accommodate those settings would have to be developed. Creating models
of demographic inference with more complex models of mutation while maintaining scalability is
a difficult but nonetheless important task.

Another drawback of XSMC and many other SMC based methods is the assumption of con-
stant recombination and mutation rates across the genome. Even though these methods are robust
and can produce accurate estimates of the population size history when the recombination rate is
misspecified, it would still be prudent to extend these methods to allow for variable recombination
and mutation rates. We also know that the processes that generate real data do not have constant
rates of mutation and recombination. Extending XSMC to allow for position specific recombina-
tion and mutation rates is straightforward. Doing so could improve our ability to accurately infer
population size histories. Additionally we could use this extension to learn spatial or motif specific
variation in mutation and recombination rates which has been studied in the past (Harris, 2015;
Carlson et al., 2018). This in turn would increase our knowledge about the human genome and
possibly provide further insight into the evolutionary process of humans.

In addition to XSMC, we presented the theory behind a new coalescent HMM in Chapter 4.
Previously Harris et al. (2014) provided an EM algorithm for their coalescent HMM based on
SMC that has linear time complexity on the number of hidden states. We extended this result to
provide a linear time EM algorithm for SMC’. This new coalescent HMM which we call QTND
tackles many of the issues found in PSMC and other coalescent HMMs. We also equipped QTND
with a fusion penalty to encourage smoothness among estimates for the effective population size
in neighboring epochs. The fast implementation of the model allows for a quick automated cross-
validation procedure helping users select the best regularization parameter for the most accurate
inference.

Like XSMC, QTND does not account for population structure in any way. As such analyzing
sequences generated in the presence of structure or migration would require these methods to be
extended. In particular, augmenting the coalescent HMM of QTND to account for more complex
demographic models is important as we will often want to study populations beyond the basic sin-
gle, panmictic setting. Lastly, we lack a strong theoretical understanding of how coalescent HMMs
behave. Many of the insights we insights we have learned about coalescent HMMs is through ac-
tually using the methods. For example, we know that PSMC is robust under misspecification of
the recombination rate because of experiments. Answering basic theoretical questions about coa-
lescent HMMs could tell how to better use the methods we already have, why some work better,
and how to improve them in the future.
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Viral Phylogenetics

In Chapter 3, we discussed an important direction of research in Bayesian phylogenetics. Because
the state space of tree topologies explodes with the number of taxa, nearly all Bayesian phyloge-
netic methods rely on MCMC algorithms as they circumvent the need to calculate the marginal
likelihood of the data integrating out these trees. These MCMC algorithms are computationally
expensive and difficult to accelerate. Thus, the rate at which we are able to gather new genetic
variation data of viruses far outpaces our ability to analyze the influx of new data.

VBSKY is a method that seeks to bridge that gap by combining recent work in scalable
Bayesian inference, differentiable programming, and phylogenetic analysis that allows for fast
phylodynamic inference of thousands of sequences. VBKSY transforms the problem of estimating
the posterior from a difficult and laborious sampling procedure to a quicker optimization proce-
dure using variational inference. To do this, VBSKY relies on heuristics to estimate the posterior
of the epidemiological parameters without needing to perform posterior inference on the discrete
topologies while still accounting for phylogenetic inference.

As stated previously, our method treats the overall phylogeny as a nuisance parameter. While
phylogeny estimation is not the primary goal of inference using skyline models, a logical extension
of this method would be to coestimate tree topologies along with the branch lengths and epidemio-
logical parameters. There has already been progress in developing variational inference procedures
that can estimate entire phylogenies including the topology (Zhang and Matsen IV, 2018, 2019).
Additionally Karcher et al. (2021) have taken a divide and conquer approach to reconstruct the
original supertree using a variational inference framework. Integrating this line of research with
VBSKY would provide a way to perform tree inference along with the skyline parameters. This
has potential to not only improve accuracy but would also obviate the need to rely on heuristics to
approximately sample tree topologies.

While variational procedures are gaining popularity within the field of viral phylogenetics, us-
ing ideas from machine learning like variational inference is a relatively unexplored area in viral
phylogenetics. For VBSKY, we can already incorporate ideas like normalizing flows (Rezende
and Mohamed, 2015) to allow for correlation between parameters and potentially get more ac-
curate posteriors and better uncertainty quantification. Further, it is clear that if we are to fully
make use of the ever increasing available sequence data, new scalable methods are needed. To that
end, discovering new and useful ways to integrate scalable ideas from machine learning into viral
phylogenetics will be an important line of research.

Instead of using a divide and conquer approach or borrowing ideas from machine learning
as we do in VBSKY, another direction to improve inference is to analyze data in real-time. As
discussed earlier, there has been recent progress in adding new sequences to already built large
phylogenies (Minh et al., 2020; Turakhia et al., 2021a; Aksamentov et al., 2021; Ye et al., 2022a,b).
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These methods generally rely on heuristics in order to reduce computation. Less progress has been
made on developing similar methods for phylodynamic inference where we can update parameter
estimates of a model using new data points. Of course doing so could eliminate the need to rerun
computationally expensive methods in the presence of new data. Gill et al. (2020) introduced a
method for online inference for phylodynamic models, but the method still relies on MCMC, and
thus cannot be used with pandemic scale datasets. From the perspective of planning interventions,
quick, accurate, and up-to-date inferences from online phylodynamic inference can ensure that
decisions concerning public health can be made with enough information available and in a timely
manner.

In our study, we applied VBSKY to SARS-CoV-19 sequences from Michigan, Florida, and the
entire United States and found that the estimates of the effective reproductive number given by
VBSKY closely align with those given by a method using public health data. While the results
from our analysis demonstrate the efficacy of our method, one drawback is that users have to make
several modeling decisions that could potentially impact downstream inference. We found that
adjusting the smoothing prior and taking different sampling approaches could affect the parameter
estimates especially further back in time towards the beginning of the pandemic when the avail-
ability of sequences was lower. In addition, we showed results where changing hyperparameters
such as the number of trees and tips used could impact the inferred posterior of the parameters.

In Chapter 3, we justified our choice of hyperparameters and studied the difference in various
smoothing and sampling schemes through experiments by running multiple analyses. Thus far any
claims or justifications about these choices have only been empirical. There is already interest in
scrutinizing phylogenetic birth death models through a theoretical lens (Louca and Pennell, 2020;
Legried and Terhorst, 2021), but further research is needed to not only understand how robust
our method is to model misspecification when the assumption underlying the heuristics prescribed
are not met, but also how sensitive the method is to the choice of priors and hyperparameters.
Supplementing our results with a theoretical justification of the empirical findings would both
improve estimation of parameters in applications and unlock insights on how to further improve
the method.

We also ran an additional analyses subsetting SARS-CoV-2 sequences by the strain they be-
longed to. This application of our method illustrates the one advantage that phylodynamic methods
have over methods that only rely on surveillance data: because SARS-CoV-2 variants are charac-
terized by their mutations, this strain split analysis is much easier to perform with phylodynamic
methods. Moreover, we can use genetic data to make inference in cases where surveillance data
is not available or data is sparse as we can infer transmission and recovery events without hav-
ing to actually observe them. As our ability to gather sequences and characterize variants of not
only SARS-CoV-2 but future diseases increase, this application of our method will continue to be
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important.
On a related note, there is a many to one mapping between evolutionary and epidemiological

processes to the inferred phylogeny. For this reason, it is important to consider other sources of data
that can lend insight into which process generated the phylogeny governing the data. Integrating
genetic data with spatiotemporal data and other epidemiological data is an active area of research
(Morelli et al., 2012; Lemey et al., 2014; Mate et al., 2015; Dudas et al., 2017; Kraemer et al.,
2021). Our divide and conquer stochastic variational inference approach can be used with any
model that relates transmission trees inferred from sequences to a set of parameters. In the future,
our method can be extended to various other methods that incorporate other types of data to either
inform the underlying tree or the set of parameters.

While each chapter in this thesis represents a step forward for various research problems, there
still remains many open problems and unexplored research topics in population genetics and viral
phylodynamics adjacent to the work presented.
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Denise Kühnert, Chieh-Hsi Wu, and Alexei J Drummond. Phylogenetic and epidemic modeling of
rapidly evolving infectious diseases. Infection, genetics and evolution, 11(8):1825–1841, 2011.

Alessia Lai, Annalisa Bergna, Carla Acciarri, Massimo Galli, and Gianguglielmo Zehender. Early
phylogenetic estimate of the effective reproduction number of SARS-CoV-2. Journal of medical
virology, 92(6):675–679, 2020.

Tracy Lam-Hine, Stephen A McCurdy, Lisa Santora, Lael Duncan, Russell Corbett-Detig, Beatrix
Kapusinszky, and Matthew Willis. Outbreak associated with SARS-CoV-2 B.1.617.2 (delta)
variant in an elementary school—Marin County, California, May–June 2021. Morbidity and
Mortality Weekly Report, 70(35):1214, 2021.

Rob Lanfear. A global phylogeny of SARS-CoV-2 sequences from GISAID, November 2020.
URL https://doi.org/10.5281/zenodo.4289383.

D.J. Lawson, G. Hellenthal, S. Myers, and D. Falush. Inference of population structure using dense
haplotype data. PLoS Genetics, 8(1):e1002453, 2012.

Brandon Legried and Jonathan Terhorst. A class of identifiable birth-death models. bioRxiv, 2021.

Jüri Lember and Alexey A Koloydenko. Bridging Viterbi and posterior decoding: a generalized
risk approach to hidden path inference based on hidden Markov models. The Journal of Machine
Learning Research, 15(1):1–58, 2014.

Philippe Lemey, Andrew Rambaut, and Oliver G Pybus. Hiv evolutionary dynamics within and
among hosts. Aids Rev, 8(3):125–140, 2006.

Philippe Lemey, Andrew Rambaut, Trevor Bedford, Nuno Faria, Filip Bielejec, Guy Baele,
Colin A Russell, Derek J Smith, Oliver G Pybus, Dirk Brockmann, et al. Unifying viral genetics
and human transportation data to predict the global transmission dynamics of human influenza
h3n2. PLoS pathogens, 10(2):e1003932, 2014.

Heng Li and Richard Durbin. Inference of human population history from individual whole-
genome sequences. Nature, 475:493–496, 2011.

122

https://doi.org/10.5281/zenodo.4289383


N. Li and M. Stephens. Modeling linkage disequilibrium and identifying recombination hotspots
using single-nucleotide polymorphism data. Genetics, 165:2213–2233, 2003.

Y. Li and G. R. Abecasis. Mach 1.0: Rapid haplotype reconstruction and missing genotype infer-
ence. Am. J. Hum. Genet., S79:2290, 2006.

Po-Ru Loh, Petr Danecek, Pier Francesco Palamara, Christian Fuchsberger, Yakir A Reshef, Hi-
lary K Finucane, Sebastian Schoenherr, Lukas Forer, Shane McCarthy, Goncalo R Abecasis,
et al. Reference-based phasing using the haplotype reference consortium panel. Nature genet-
ics, 48(11):1443–1448, 2016.

Stilianos Louca and Matthew W Pennell. Extant timetrees are consistent with a myriad of diversi-
fication histories. Nature, 580(7804):502–505, April 2020. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-020-2176-1.

Gerton Lunter. Haplotype matching in large cohorts using the li and stephens model. Bioinformat-
ics, 35(5):798–806, 2019.

Swagata Majumdar and Rakesh Sarkar. Mutational and phylogenetic analyses of the two lineages
of the omicron variant. Journal of medical virology, 2021.

Anna-Sapfo Malaspinas, Michael C Westaway, Craig Muller, Vitor C Sousa, Oscar Lao, Isabel
Alves, Anders Bergström, Georgios Athanasiadis, Jade Y Cheng, Jacob E Crawford, et al. A
genomic history of aboriginal australia. Nature, 538(7624):207–214, 2016.

Jonathan Marchini, Bryan Howie, Simon R Myers, Gil McVean, and Peter Donnelly. A new
multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet,
39(7):906–13, 2007.

Paul Marjoram and Jeffrey D Wall. Fast “coalescent” simulation. BMC Genet, 7:16, 2006.

Suzanne E Mate, Jeffrey R Kugelman, Tolbert G Nyenswah, Jason T Ladner, Michael R Wiley,
Thierry Cordier-Lassalle, Athalia Christie, Gary P Schroth, Stephen M Gross, Gloria J Davies-
Wayne, et al. Molecular evidence of sexual transmission of ebola virus. New England Journal
of Medicine, 373(25):2448–2454, 2015.

Niklas Mather, Samuel M Traves, and Simon YW Ho. A practical introduction to sequentially
markovian coalescent methods for estimating demographic history from genomic data. Ecology
and evolution, 10(1):579–589, 2020.

Olivier Mazet, Willy Rodrı́guez, Simona Grusea, Simon Boitard, and Lounès Chikhi. On the
importance of being structured: instantaneous coalescence rates and human evolution—lessons
for ancestral population size inference? Heredity, 116(4):362–371, 2016.

Jakob McBroome, Jennifer Martin, Adriano de Bernardi Schneider, Yatish Turakhia, and Russell
Corbett-Detig. Identifying SARS-CoV-2 regional introductions and transmission clusters in real
time. medRxiv, 2022.

123



Gilean AT McVean and Niall J Cardin. Approximating the coalescent with recombination. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 360(1459):1387–1393, 2005.

Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Woodhams,
Arndt Von Haeseler, and Robert Lanfear. Iq-tree 2: New models and efficient methods for
phylogenetic inference in the genomic era. Molecular biology and evolution, 37(5):1530–1534,
2020.

Vladimir N Minin, Erik W Bloomquist, and Marc A Suchard. Smooth skyride through a rough
skyline: Bayesian coalescent-based inference of population dynamics. Molecular biology and
evolution, 25(7):1459–1471, 2008.

Benoit Morel, Pierre Barbera, Lucas Czech, Ben Bettisworth, Lukas Hübner, Sarah Lutteropp,
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