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ABSTRACT 

Adolescence is a key developmental period that is marked by rises in death and disease 

predominately from behavioral sources. Contemporary neurodevelopment models associate the 

changes in risk-taking behaviors with the development of socioemotional and cognitive control 

processes during adolescence. While these neurodevelopmental models have identified 

adolescent specific change, their generalizability and reliability in prediction of risk-taking have 

been mixed. The goal of this dissertation is to evaluate how neurodevelopmental models 

generalize in a sample of high risk and average/low risk-taking adolescents completing a 

monetary incentive delay (MID) task during functional magnetic resonance imaging (fMRI), and 

how methodological techniques may influence the underlying interpretations. To evaluate the 

generalizability of the neurodevelopmental models as it relates to risk-taking behaviors during 

late adolescence, Study 1 examined whether differences in neural activity of a priori regions of 

interest (ROI) and whole brain analyses during a Big Win versus Neutral reward contrast 

differed across adolescents with high risk versus average/low risk-taking profiles. In the ROI 

analyses, there were no significant differences in activation in pre-selected regions during the 

anticipation of Big Win versus Neutral cues in the task between high risk versus average/low 

risk-taking profiles. While the whole brain analyses during the same contrast did reveal 

differences in neural activity between the two risk-taking profiles, the differences were in brain 



 

 

 

xv 

regions that were outside of regions hypothesized by the neurodevelopmental models. The 

methodological issue in these findings may in part relate to the selected contrast, Big Win versus 

Neutral. Some researchers may operationalize the experimental contrast of reward differently. 

Study 2 evaluated how the ambiguous operationalization of the reward contrasts during the MID 

task may impact the underlying brain-behavior associations. In mean-level activation maps, there 

was evidence for greater similarity in the neural activity of reward regions between Big Win and 

Big Loss cues than is proposed in the reward literature. Moreover, the magnitude and direction 

of brain-behavior associations were inconsistent across theoretically related behaviors, such as 

sensation seeking, externalizing and substance use, and regions, such as ventral striatum and 

insula. The inconsistency in these mean-based approaches may in part be related to the 

individual differences among adolescents, which may contribute to unique characterization of the 

underlying neural connectivity that are important to socioemotional and cognitive control 

processes. Study 3 evaluated group-, subgroup-, and individual-level characteristics of 

adolescent neural networks of socioemotional and cognitive networks using a data-driven 

person-specific network connectivity approach. Using this approach, I evaluated how subgroup 

features in functional connectivity, and connection magnitude and direction were associated with 

self-reported sensation seeking. Two distinct subgroups were uncovered for each timeseries from 

the MID runs that tapped a presumed state of motivational processing. During the first run, 

subgroups were significantly related to self‐reported sensation seeking. However, this effect was 

attenuated in the second run and opposite in direction for the combined runs. Some of these 

differences may relate to habituation or reliability over time and power across methods. These 

findings highlight the importance that analytic decisions play when mapping brain-behavior 

associations that are salient to adolescent risk-taking behaviors. This dissertation provides 
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evidence regarding generalizability and variability in researcher decisions that may be of concern 

when testing key hypotheses of the neurodevelopmental models and considers steps to bridge the 

gap between developmental neuroscience and measurement to improve our understanding of 

adolescent motivational processing.  
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Chapter 1 : Importance and Purpose of Adolescence Research 

Preventable population health burdens are detrimental to the productivity and longevity of 

the members of its society (Baltes, 1987; Belsky, 2016). A major focus of life-span research and 

funding for the National Institutes of Health is to reduce disease burden, early mortality, and 

control associated costs (Belsky et al., 2015). Adolescence is a key developmental period that is 

marked by rises in death and disease (Kann et al., 2018), over 70% of which stem from preventable 

causes such as risk-taking behaviors (Casey et al., 2008). Since adolescents make up over 1.2 

billion of the world’s population, the influx of preventable death and disease rates observed in this 

age group is of particular interest to researchers and policy makers alike (Kann et al., 2018; 

Sheehan et al., 2017; Steinberg & Icenogle, 2019). During the initial decades of the 21st century, 

theoretical models of neurodevelopment have focused on changes in socioemotional and cognitive 

control processes that are often linked to changes in risk-taking behaviors (Dahl et al., 2018). While 

these neurodevelopmental models have identified adolescent-specific change (Casey, 2015), their 

generalizability and reliability in prediction of risk-taking have been mixed. 

The purpose of this dissertation is to consider 1) how the neurodevelopmental models 

generalize to a sample of risk-taking adolescents and 2) to evaluate the degree to which analytic 

choice (i.e., contrasts) and models (e.g., mean-based activation versus person-specific 

connectivity) impacts the interpretation in the brain-behavior findings. First, to evaluate the 
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generalizability of the models, in Study 1 (Chapter 3), I compare the neural activation of late 

adolescents that are recruited across two distinct risk-taking profiles: high and average/low. Then, 

to interpret the degree to which these findings are impacted by analytic choices or a researcher’s 

degrees of freedom in operationalizing variables, in Study 2 (Chapter 4), I consider how the range 

of contrasts in a reward paradigm alter the associations among different brain regions and 

behaviors. In Study 3 (Chapter 5), I report the results of a person-specific approach that models 

the unique individual patterns of functional connectivity rather than the group averages that are 

often used in the field (and are used in Study 1 and Study 2). Given that I have previously evaluated 

the utility of self-report and neurocognitive measures as they relate to risk-taking behaviors 

(Demidenko et al., 2019), the emphasis in this dissertation is on the neural measures used in task-

based functional magnetic resonance imaging (fMRI). Nevertheless, the self-report, 

neurocognitive performance and neural measures tapping the constructs of reward are discussed 

together in this chapter. 

Neural constructs provide researchers with the opportunity to draw inferences (Flake et al., 

2021), however, assumptions in how risk-taking behaviors and reward constructs are defined may 

result in findings that are misleading (described in greater detail in Chapter 4). By using the same 

sample and fMRI task (described in Chapter 2), I can drill-down and consider where in a 

nomological network each pattern of relationships is represented and whether this is consistent 

with what some contemporary neurodevelopmental models would hypothesize. I provide an 

expanded definition and description for this nomological network in Chapter 6 but, simply put, the 

network reflects relationships that constitute a theory which allow researchers to make specific 

hypotheses about constructs and their measured phenomenon (Cronbach & Meehl, 1955). The 
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network proposes links among different measures, biological processes, and behaviors that 

researchers rely on when generating hypotheses.  

In the next section, I discuss constructs that are central to the contemporary 

neurodevelopmental models, how they are often measured and their associated limitations. 

Specifically, I briefly summarize the phenomena during the early part of the 21st century that 

have been central in the research literature on adolescent neurodevelopment and risk-taking 

behaviors.  

Neurodevelopmental Models: Phenomena and Limitations 

Over the course of the last two decades, self-report, neurocognitive, and neural measures 

have played a prominent role in specifying developmental shifts during adolescence that may 

explain risk-taking behaviors, which has informed both policy and interventions (Steinberg & 

Icenogle, 2019). These distinct measures have specifically focused on tapping two latent 

constructs: reward sensitivity and self-regulation. These two constructs are core to the 

neurodevelopmental models that propose to explain the influx in risk-taking as a function of the 

increased motivation toward rewards (i.e. socioemotional processing), and decreased goal-

oriented decision-making, as a function of not yet mature self-regulation (i.e. cognitive control). 

Both of which have been observed to significantly change from early to late adolescence 

(Shulman et al., 2016, Dahl, 2004). Reward sensitivity is subsumed by the socioemotional 

system that increases an adolescent’s motivation toward pleasurable experiences, such as going 

to a party and drinking or speeding in a car with friends. Self-regulation is subsumed by the 

cognitive control system and the immature development of self-regulatory processes. This is 

often exhibited by adolescents being unable (or unwilling) to inhibit risk-taking behaviors, such 

as not pausing to think through the consequences of an action like texting while driving. The 
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unobserved nature of these constructs has placed the onus on researchers to approximate them 

both in and out of the lab setting. 

  Given the unobservable nature of reward sensitivity and self-regulatory processes, 

researchers have had to define and designate measures to attain numerical values of this 

phenomenon (Flake & Fried, 2020). To attain a comprehensive numerical representation of 

reward sensitivity and self-regulation, researchers have measured the constructs using the three 

approaches mentioned above: self-report, neurocognitive performance, and neural activation. By 

measuring at multiple levels, researchers can fill the nomological space of the phenomenon and 

demonstrate consistent theorized links in the observed relationships among the latent phenomena 

and the associated behaviors. Moreover, by using more than one type of method to capture 

reward sensitivity in the network, such as self-report and neurocognitive tasks of reward 

sensitivity, researchers can also lessen concerns relating to method bias (Shadish et al., 2002). To 

date, the self-report, neurocognitive, and neural empirical evidence have been incorporated into 

the neurodevelopmental models and considered important to risk-taking behaviors (Shulman et 

al., 2016).  

Before considering how self-report and neurocognitive measures are related to the neural 

processes from the perspective of the neurodevelopmental models, it is helpful to consider what 

hypothesized processes these two types of measures were designed to capture. First, self-report 

measures of sensation-seeking are postulated to capture an individual’s explorative/novelty 

seeking tendencies. While the construct of reward seeking is difficult to capture objectively, 

through well-crafted measures, like the brief sensation seeking scale (BSSS), researchers 

quantify this phenomenon via a set of questions that include: “I would like to explore strange 

places”, “I prefer friends who are excitingly unpredictable”, or “I would like to try bungee 
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jumping” (Hoyle et al., 2002). Measures of sensation seeking, such as the BSSS, are considered 

to express an underlying construct of reward/approach behaviors (or trait reward sensitivity).  

BSSS is interchangeably used with other self-report measures, such as the behavioral inhibition 

system/behavioral approach system scale (i.e., BIS/BAS; Carver & White, 1994). Second, 

whereas self-report measures may capture a 

dimension of trait reward sensitivity, 

neurocognitive tasks tap into a related 

dimension of reward sensitivity that relates 

to a state of the self-reported measure(s). For 

example, the Balloon Analogue Risk Task 

(BART) measures reward sensitivity and 

risk propensity under variable levels of 

uncertainty (Lejuez et al. 2002). Participants pump a balloon to accumulate money, but each 

pump risks the balloon popping and losing unbanked money. Continued inflation increases the 

risk of loss and so behavioral parameters (e.g., average adjusted pump counts) from the task are 

used to estimate a participant’s level of reward sensitivity compared to other participants that 

completed the task. Together, the self-report and neurocognitive measures provide a multi-

method measure of the construct of reward sensitivity that may holistically describe an 

adolescent’s decision making strategy when exposed to a salient environment (Chein et al., 2011; 

Crone & van der Molen, 2004).  

With respect to the underlying biological process, self-report and neurocognitive 

measures are theorized to share a mechanism that reflect the bidirectional association among the 

reward sensitivity measured using different phenomena in the nomological net. In Figure 1.1, I 

Figure 1.1. Bidirectional Associations: Self-report, 

Neurocognitive, and Neural Measures 
Colored Regions - Blue = cognitive control; Green: 

Approach; Red: Salience. See Figure 1.2 for specific labels 
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express the postulated interrelations between self-report, neurocognitive, and neural regions that 

are involved in reward-relevant decision making. Reward-relevant decision making is theorized 

to be characterized by approach-sensitive striatal regions in the brain that are inundated with 

dopamine (DA) receptors, such as the Ventral Striatum (VS)/Nucleus Accumbens (NAcc) (Ernst 

& Spear, 2009; M. Zuckerman, 1979). DA is hypothesized to play a major role in motivational 

processes (Berridge, 2007). Therefore, DA-rich reward regions are considered to underpin trait 

and state reward processes (Ernst & Spear, 2009). Adolescents that evoke increased activation in 

VS/NAcc regions to rewarding stimuli, without the optimal activation in cognitive control 

regions, may be more likely to engage in real-world risk-taking behaviors. This distinction 

between reward and cognitive control regions results in risk-taking is a central hypothesis of 

neurodevelopmental models (Casey et al., 2008; Ernst et al., 2006; Luna & Wright, 2016; 

Steinberg, 2010). However, it is worth noting that the field continues to debate whether the 

increase or decrease in the response of DA receptors (Samaha et al., 2021) or the activation in 

DA-rich reward regions contributes to approaching motivational stimuli (Galván, 2010). 

Changes in self-report and neurocognitive measures of reward sensitivity and self-

regulation are presumed to reflect 

the etiology of socioemotional and 

cognitive control regions. 

Specifically, the 

neurodevelopmental models 

(explained in more detail in 

Chapter 3) highlight the disparate 

developmental trajectories of 

Figure 1.2. Examples of Current Neurodevelopmental Heuristics 
Note: Amygdala is presented laterally, for representation, but is located 

closer to the medial wall.  

Colored Regions – Blue: cognitive control; Green: Approach; Red: 

Salience 
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increased activation in the early developing VS/NAcc and the late maturing prefrontal cortex 

(PFC). The hypothesis is that the imbalance between the overactive NAcc and immature PFC has 

consequential impact on decision making during adolescence. Over the course of the last 15 years, 

four neurodevelopment models have been proposed that have several overlapping features but 

differ in important features (Figure 1.2). These neurodevelopment models have led to an expansive 

portfolio of adolescent studies focused on the neurodevelopment of risk-taking behaviors (Casey 

et al., 2008; Ernst et al., 2006; Luna & Wright, 2016; Steinberg, 2008).  

To date, this portfolio of research has provided evidence that relates the measured 

phenomena of reward sensitivity and self-regulation to risk-taking tendencies (Shulman et al, 

2016). However, studies have not yielded generalizable results in the prediction of real-world risk-

taking behaviors (Demidenko et al., 2019; Sherman et al., 2018). This has made it challenging to 

define the relationships of measured phenomena and adolescent behavior in a nomological 

network and to make inferences about real-world risk-taking behaviors.  

In some cases, variability in the literature may be attributed to the lack of exploration of 

the hidden or unexpressed assumptions about constructs central to the neurodevelopmental 

models (Fried, 2020). For example, neurocognitive measures of reward often serve as proxy 

measures of risk-taking behaviors (Qu et al., 2015), which are then interpreted as interchangeable 

with real-word risk-taking behavior in brain-behavior studies from which broad conclusions are 

derived. Same can be said regarding the methodology used to ascribe phenomena to neural 

activation in fMRI. In fMRI, not only can the techniques for mathematical preprocessing differ 

among research labs, but how “reward” is defined may also impact interpretations on the behalf 

of researchers (Botvinik-Nezer et al., 2020b). In some ways, the flexibility in how constructs are 

defined and what measures are used by researchers may tangentially relate to what the late 
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Walter Mischel referred to as the “Toothbrush Problem” (Mischel, 2008): researchers treat 

others’ and their own preferred self-report, neurocognitive, and fMRI task contrasts differently, 

often preferring their own. While there is often merit in these decisions, without understanding 

how these decisions fit into a specified nomological network, drawing generalizable inferences 

across studies becomes quite challenging. 

In other cases, support for some of the neurodevelopmental models may fail to appreciate 

the degree of implicit bias towards the models. Despite the widespread use and acceptance of the 

neurodevelopmental models (as of January 2022, combined citations exceeding 8000; see Casey 

et al., 2008; Ernst, 2014; Ernst et al., 2006; Luna & Wright, 2016; Steinberg, 2008, 2010), it is 

increasingly apparent that convergence among similarly measured constructs, that are central to 

these models, is often weak, or one may argue even non-existent, such as between self-report and 

neurocognitive performance (Demidenko et al., 2019; Eisenberg et al., 2019). Similarly, the 

predictive utility is often variable, or one may argue even non-existent, when it comes to real-

world behaviors for neurocognitive and neural measures (Demidenko et al., 2019; Sherman et 

al., 2018). In some literature, the lack of similarity among measures is briefly mentioned but the 

overarching utility of the constructs is preserved to justify the importance of the heuristic in 

developmental research. For example, in a large cross-cultural analysis, researchers stated,  “We 

recognize that […], it is common to find weak correlations between self-report and behavioral 

measures of putatively similar constructs […] but we believe that the overarching categories 

provide helpful heuristics.” (Steinberg et al., 2018, p. 2). After this statement, the authors 

reported <1% variance explained in neurocognitive constructs of reward/self-regulation by 

domain-similar self-report measures. While evaluating the importance of effect sizes that occur 

over time is a complex and delicate issue (Funder & Ozer, 2019), combining these measures and 
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making developmental inferences relies on trust in the conceptual aspect of the theory rather than 

the empirical evidence for the postulate. 

It was recently pointed out that psychologists have altered labels of constructs (or 

theories) to conceal their genesis and increase the seeming novelty of findings (Proulx & Morey, 

2021). This is not to say that the evidence for the neurodevelopmental models is not 

representative of the data. Rather, there are scenarios where some phenomena are not distinct 

from those generated in the past. To appreciate the preference for the modern-day 

neurodevelopment models, it is worthwhile to consider a brief history of adolescent research. In 

the next section, I consider some historically retained perspectives of adolescence that will be 

relevant to the discussion of theoretical gaps in the section thereafter. 

Historical Overview of Adolescence 

To put the modern-day postulates of adolescent risk-taking behaviors and certain 

underlying ideologies into perspective, it is important to consider a brief history of research on 

adolescence. In the review in this section, I maintain the focal point of this dissertation which 

relates to neurodevelopmental models that emphasize adolescents’ increased propensity to 

engage in risk-taking behaviors (expanded on in the next section). Hence, the context of this 

historical review will prioritize topics pertaining to the reward sensitivity/novelty seeking 

during adolescence.  

Before plunging into the historical overview of the adolescent literature, it is worthwhile 

to consider the difficulty in defining this developmental period. At the start of the 20th century, 

adolescence was broadly characterized as the age between 14 to 24 years (Sawyer et al., 2018). 

Later, it was defined by some as approximately 11 to 16 years using the Tanner Stages of 

pubertal development, which varies between males and females. Subsequently, the World 
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Health Organization (WHO) defined adolescence as 10 to 20 years. Since then, expanded 

definitions of adolescence have included ages 10 to 25 years (Ledford, 2018). Nevertheless, this 

expand range may be debated by adolescent researchers given that the latter years, 19 to 25, are 

considered as emerging adulthood, which is characterized as neither adolescence nor adulthood 

given the social differences (Arnett, 2000). In fact, the difficulty in defining adolescence has 

posed issues when researchers have used discrete age cut-offs, such as early-, mid-, and late-

adolescents, for group comparisons in neurodevelopmental research (Galván, 2010). Taking all 

these perspectives into account, I will retain the expanded 10 to 25 year definition of 

adolescence, which is approximately characterized by the onset of puberty and the offset of 

cortical development (Bethlehem et al., 2021).  

Within the last decade, a large proportion of research considered the adolescent period to 

be in an imbalance, or susceptible to social and rewarding stimuli (Baker et al., 2020; Casey et 

al., 2008; Courtney et al., 2020; Shulman et al., 2016; Steinberg, 2008). In some instances, 

youth were characterized as ‘all gas and no brakes’ (Bell & McBride, 2010; Payne, 2011, p. 8) – 

unable to quell their motivation towards rewarding stimuli. Although considered a poor 

stereotype (Payne, 2011), this contemporary perspective is not far removed from the storm and 

stress hypothesis from the early 20th century (Hall, 1904a), and the role of the self-fulfilling 

prophecy providing credence to theories about adolescent behavior in the mid-20th century 

(Bandura, 1964).  

Several perspectives were formative in what we now know and think of adolescence, but 

none more so than the early pioneering work by G. Stanley Hall. A fair proportion of the two 

volumes written in 1904 (Hall, 1904a, 1904b) cover the physical changes of the body, such as 

height, weight, and muscle development. The rich cross-cultural tabulated data, after accounting 
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for secular trends, is consistent with today’s reviews of the physical changes that occur during 

adolescence (Dahl et al., 2018). Then, relating to the marked increase of the sensitivity towards 

rewards during adolescence, Hall referred to the plasticity of the mind, the influx of sensitivity to 

rewarding experiences, or “strong emotions” (Hall, 1891), increasing importance of peer and 

social influences (Hall, 1904b), and the heightened engagement in criminal behavior (Hall, 

1904a). Citing data from Italy, Germany, Russia, England, Austria, and the United States, Hall 

presented a drastic rise in criminal behavior during adolescence. He attributed these changes to 

multiple factors including heredity, the environment, and the nature of criminals to act 

impulsively, which he indicated was a trait of adolescents (Hall, 1904b). Despite Hall’s 

technological limitations, he associated some of these adolescent behaviors with the neural 

changes that occurred during this developmental period, noting the connections of the fibers in 

the brain (Arnett, 2006).  

When Hall brought adolescent research to the forefront, he made references to emotional 

and neural features that are still being studied today. For example, Hall stated that the “… 

cerebral elements may connect different brain areas, and thereby to establish psychic unity 

among discrete factors of our personality…”. He described adolescence as being a “nascent 

period” which is “…without government and regulative function…” (Hall, 1904a, pp. 323–324). 

Hall reiterated that this perspective of youth dated back to Aristotle, who proclaimed that “…for 

the young are heated by nature as drunken men by wine... For the same reason they are easily 

deceived, as being quick to hope.” (cited in Hall, 1904, p. 522). In these writings, there are 

striking similarities between the work presented by Hall (1904a, 1904b) and contemporary 

neurodevelopmental models (Shulman et al., 2016). For instance, contemporary models describe 
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the important changes in the connectivity between cortical and subcortical brain regions that 

coincide with emotional development during adolescence (Casey et al., 2019). 

Nonetheless, there is evidence that work by Hall retained ideologies and prejudices that 

stemmed from perspectives of the late 19th and early 20th century (Arnett, 2006; Hall, 1882, 

1891). For example, it is understood that Hall’s work is rooted in Lamarckism (Arnett, 2006), 

which is a theme exhibited by publications on evolution in the 19th century. Not yet familiar with 

the nascent field of genetic heritability, Hall grounded aspects of animal’s history in man through 

‘mental heredity’, whereby individual differences occurred through the interaction with the 

environment and instinctual feelings (such as pleasure) that comprised the ‘comprehensive of the 

whole human race’ (Hall, 1904b, p. 61). This formulated the ancestral (automatic) systems, 

which can be modified via the adaptive (plastic) systems that are influenced by others. 

According to Hall, and perhaps comparable to the bottom-up systems today, adolescence was a 

physiological second birth when ‘morbid ancestral traits and features appear” which excites 

behaviors that are rich in emotion (Hall, 1891, p. 205). Hall’s work also embraced his early 

religious convictions. He emphasized the normal and universal (non-religious) process of 

conversion that should occur during adolescence for ‘…moral, existential, and psychological’ 

reasons (Arnett, 2006, p. 194), arguing that religious beliefs and morality strengthened the 

character but science during early adolescent development may make the mind dry (Hall, 1891). 

A review of Hall’s early work exhibits the ideologies of its time, a distinction that is based on 

transitory knowledge (Arnett, 2006).  

Hall paved many paths, establishing psychology in the US, which helped promote fields 

of thought throughout the 20th century on the topic of adolescence (Bringmann et al., 1992). His 

evolutionary and genetic perspectives influenced the literature on education, child rearing, labor, 
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religious training, and vocational guidance (Rogers, 1969). Then, by virtue of Hall’s invitation of 

Sigmund Freud to the US in the early 20th century, two major schools of thought of adolescent 

behaviors eventually emerged: Psychodynamic and Psychosocial Theories (Miller, 2009). Since 

Erik Erikson trained under Freud, by the 1960’s both Psychodynamic and Psychosocial theories 

were used by psychologists and psychiatrists to explain adolescent behaviors (Erikson, 1968; 

Group for the Advancement of Psychiatry Committee on Adolescence, 1968). Like Hall, who 

discussed the disease of the mind and the instinctual drives that contributed to behavioral 

problems during adolescence, Freud and Erikson contributed their own ideas on instinctual 

behaviors.  

Psychodynamics emphasized the importance of intrapsychic processes like instinctual, 

sexual, aggressive, intellectual, and intrinsic valuations (Group for the Advancement of 

Psychiatry Committee on Adolescence, 1968). Psychodynamics postulates that the intrapsychic 

processes are characterized by the onset of adolescence, whereby adolescents use different 

methods to cope with puberty, and the offset of adolescence, whereby the ‘intrapsychic forces 

stabilize’, reducing poor behaviors (Group for the Advancement of Psychiatry Committee on 

Adolescence, 1968, p. 63). The intrapsychic processes lead the adolescent through the experience 

of individuation which is independent judgement that strikes a balance between not disagreeing 

or agreeing with parents (Steinberg & Cauffman, 1996). Not far removed from Freud’s 

intrapsychic dynamics, Erikson’s Psychosocial theory highlighted that the crisis during 

adolescence was related to the identity that the adolescent developed or that the adolescent was 

in the process of developing (Erikson, 1968; Steinberg & Cauffman, 1996). By navigating the 

identity crisis appropriately, an adolescent would emerge without the influx of behavioral 

problems that they may have been at risk to develop.  
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Psychodynamic and Psychosocial theories were not accepted universally in the 1960’s as it 

was argued that the portrayal of a crisis during adolescence was a remnant of Freudian thought 

(Rogers, 1969). Behaviorists, social cognitive psychologists, and theorists emphasized that the 

environment provides information that is important to developing behavioral or social 

expectations that can be incorporated into a working model of the environment (Ferster & 

Skinner, 1957; Rogers, 1969). Rather than overemphasizing biological factors, as seen in 

behaviorism, social cognitive theories emphasized the variability in adolescent behavior as a 

function of cross-cultural and mass-media sensationalism. Their position was that the deviant 

adolescent excites more attention than the average adolescent, serving as a self-fulfilling 

prophecy which promotes ideological biases that all adolescents are “deviant” or “impulsive” 

(Rogers, 1969). Despite best efforts to move away from Freudian constraints, Freudian thought 

continued to influence the nomenclatures of measures until the end of the 20th century, as seen in 

reference to impulsivity as “ego-undercontrolling” (White et al., 1994, p. 194). 

Over the course of the 20th century, the field slowly divorced itself from the school of 

thought that adolescents were ‘maladjusted’ or ‘second-rate students’ (Rogers, 1969, p. 27). By 

the late 20th century, developmental psychologists began to consider the dynamic interplay of 

biological and environmental factors (Bronfenbrenner & Morris, 2007; Lynch & Cicchetti, 1998; 

Sameroff, 2010). New perspectives considered the mechanisms that may underly delinquent 

behaviors and whether some adolescents had early predispositions or adolescent-limited 

behaviors (Casey, 2015; Moffitt, 1993). Researchers considered the psychosocial issues of 

adolescent behaviors (Cromer & Stager, 2000), contending that development does not occur in a 

vacuum and therefore the interplay of different factors may cause some adolescents to be either 

at-risk or resilient to behavioral problems (Burt, 2002). This perspective helped influence 
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strategies to intervene on adolescents who were at highest risk. To characterize the mechanism 

for individuals who are more (or less) susceptible during adolescence to behavioral problems, 

Dahl (2004) pressed for multidisciplinary efforts to explain the paradox of cognitively capable 

youth engaging in maladaptive behaviors.  

From the late 19th to early 21st century, there was a clear change in the subject content of 

adolescent research, whereby behavior and neural measures increased in the field. In part, this 

ideological shift towards the end of the 20th century and early part of the 21st century can be 

explained by the American Psychological Association’s (APA) promotion of the “Decade of the 

Brain” in the 1990’s (McGaugh, 1990) and subsequent “Decade of Behavior” in the 2000’s 

(Higgins & Bickel, 2000; Science, 1998). These shifts motivated the use of self-report, 

neurocognitive performance, and neural measures of adolescent development (described earlier). 

Consequently, this expanded research on the brain, and behavior that was used to characterize 

adolescent development, is outlined in contemporary neurodevelopmental models (Casey et al., 

2008, 2019; Ernst et al., 2006; Steinberg, 2008, 2010).  

The consensus, across a century of perspectives on adolescent development, has been that 

adolescence is an important developmental period with unique changes in affective and 

behavioral processes. In fact, evidence over a century of research consistently demonstrates that 

adolescents exhibit increased rates in internalizing problems (Cyranowski et al., 2000; Hall, 

1904b; Solmi et al., 2021), risk-taking and externalizing behaviors (Hall, 1904a; Johnston et al., 

2020; Kann et al., 2018), and criminal behavior (Hall, 1904a; Puzzanchera, 2021). These distinct 

shifts in affect and behavior have motivated the pursuit of empirical evidence to help inform 

interventions and policy decisions. To date, findings have already had a major impact on the 

United Nations' decisions to enact policies to protect individuals under 18 years old from 
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violence, exploitation (Ruck et al., 2016), as well as several decisions by the U.S. Supreme Court 

regarding life sentences without parole (Steinberg, 2013, 2017). 

Yet, the seemingly time-locked theories of adolescent behavior and development 

represent several ideological shifts. In research, ideological issues are believed to permeate most 

areas in psychology (Cowles, 1989; Shadish et al., 2002) and, in some cases, reflect explanations 

that stem from contemporary social or political undertones (Smith & Pollak, 2020). As 

mentioned earlier, to fit the modern narrative, psychologists may conceal the labels in their work 

to appear more novel (Proulx & Morey, 2021). The social and political ideologies are evident in 

the description of adolescents used across time: Youth are heated by nature in the ancient Greek 

philosophy; youth have no regulative governance to control impulses or “storm and stress” at the 

beginning of the 20th century (Hall, 1904a); youth’s impulsive outbursts result from primitive 

behaviors and desires per the psychodynamic perspective (Group for the Advancement of 

Psychiatry Committee on Adolescence, 1968); youth navigate the identity crisis or role 

confusion per the psychosocial perspective (Erikson, 1968); youth’s deviance explains behaviors 

and political activism (Rogers, 1969); the rise in crime is due to youth who are labeled as 

“superpredators” (Blumstein, 2002); youth are ‘all gas and no brakes’ (Bell & McBride, 2010; 

Payne, 2011, p. 8); or in the present day, youth are sensitive to reward and are ‘imbalanced’ until 

they reach neurodevelopmental maturity (Casey et al., 2008, 2019).  

Hall’s time-locked ideologies are of notable significance. For example, Hall painted 

adolescents, especially female adolescents, in a dismissive light with statements such as “An 

ideal or typical male is hard to define, but there is a standard ideal woman. Because her mind is, 

more than that of man, essentially an organ of heredity…” (1904b, p. 567). Furthermore, some of 

Hall’s views were biased by views about eugenics that were widespread during the 19th and 20th 
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centuries (Briggs, 2021). For example, in the Scientific Monthly Hall wrote, “Some are born to 

be hewers of wood and drawers of water, and are fortunate if they can be made self-supporting; 

practical slavery under one name or another must always be their lot”, when discussing 

democratic issues at the time (1924, p. 466).  

Most ironic of the political ideologies that indirectly gave rise to the research on 

adolescence is rooted in G. Stanley Hall’s work. Hall’s research on adolescence branched out of 

the field of child-rearing and moral problems. These two fields were, in part, driven by broad 

nationalism in the 1820’s when Americans decided that British books were no longer suitable for 

teaching (Demos & Demos, 1969). Given the examples of time-specific ideologies that may be 

social and political, it is imperative to unearth hidden assumptions and any lingering ideologies 

in modern theories to appropriately characterize both adolescent development and behaviors. 

When examined under a microscope, researchers may discover that old concepts may have been 

repackaged as new, something that Keating and colleagues elaborated on elsewhere (Keating et 

al., in press).  

Given the hidden assumptions and layers of ideologies in the history of adolescent 

research, I leverage the limitations discussed in the previous section and the history from this 

section to identify the theoretical gaps in the next section. These theoretical gaps are central to 

the empirical investigations that are the focus of Chapters 3, 4 and 5.  
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Theoretical Gaps  

As described in the last section, a theme that may be conveyed across adolescent 

literature from the 19th through to the 21st century is that adolescents are increasingly sensitive to 

rewards and often lack the ability to make goal-oriented decisions when environmental cues are 

especially salient (Dahl, 2004; Hall, 1904a; Rogers, 1969; Shulman et al., 2016). This theme has 

informed neurodevelopmental frameworks, such as the Dual Systems Model (Steinberg, 2010), 

Driven Dual System Model (Luna & Wright, 2016), Imbalance Model (Casey et al., 2008), and 

Triadic Model (Ernst et al., 2006), that rely on both inductive and deductive properties. In the 

context of induction, observations rely on measuring a proposed phenomenon, such as reward 

sensitivity via self-reported 

sensation seeking, which relate to 

an overarching construct within 

the theory (Figure 1.3). The 

measures serve as a numerical 

representation of an attribute or 

phenomenon that a researcher is interested in quantifying (Briggs, 2021). In the case of reward 

sensitivity, the inductive reasoning is that adolescent should exhibit greater reward sensitivity 

(especially those that engage in the highest risk-taking behaviors) than children or adults. For 

example, if measuring the construct of reward using neurocognitive performance from the 

BART, greater sensitivity to rewards would be reflected in higher adjusted pump counts on the 

measure. By collecting this neurocognitive performance data from a sample of 8- to 30-year-old 

adolescents, a researcher may find that between 16-20 there is peak in reward sensitivity on the 

BART task. From this, the researcher may conclude that there is empirical evidence for the 

Figure 1.3. Flowchart from Postulated Theory to Observations 
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theory that mid-to-late adolescence coincides with increased reward sensitivity. The reverse is 

true, too, in deductive reasoning. The theory can inform constructs that inform measured 

phenomena, which then inform a set of hypotheses and represent observations in the lab or real-

world. In this scenario, the theory is that adolescents are more motivated by rewards. Therefore, 

a researcher may identify a set of measures to tap the construct of reward and capture a 

participant’s reward sensitivity, like self-reported sensation seeking (e.g., BSSS) or neural 

activation of reward regions during fMRI task motivational processes (e.g., Monetary Incentive 

Delay (MID) task). Within constraints of sampling and measurement error, this would allow the 

researcher to attempt to generalize the broader neurodevelopmental models in their respective 

sample(s) and determine whether there are development differences within these measures of the 

reward constructs. Hence, the theory helps structure the hypothesized observation: an adolescent 

will show greater activity in reward regions in response to salient stimuli than an adult or child 

during an fMRI task (Muthukrishna & Henrich, 2019).  

While the broader theory serves as a useful heuristic to explain neurodevelopmental 

changes of reward systems, an inability to interpret results may arise when there is discordance 

between the sub-theories relating to the constructs and measured phenomena (or auxiliary 

theories; Meehl (1990)). For example, the neurodevelopmental models may have merit but 

relationships among the measures of the constructs, such as neurocognitive performance on the 

BART and neural substrates of reward during the MID task within the hypothesized nomological 

network, may be unverified. When testing hypotheses, the disagreement can materialize at the 

level of: a) the proposed construct, when the construct doesn’t measure the domain we intended 

to measure, b) the theory or postulate, for instance the deduction that all adolescents (or select 

adolescents) are more sensitive to rewards than other age groups, may be an overly broad 
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mischaracterization, or c) the design of the study, such as considering only a single 

operationalization of reward or a static process of reward that may, in fact, be dynamic 

(Cronbach & Meehl, 1955). Often, there is widespread acceptance of reasoned assumptions that 

are templated as ‘self-evident truths’ (Hull, 1952, p. 14) and generalizations of theories that are 

beyond the measured phenomena (Lerner, 2006).  

Not knowing whether failure occurs at the theory, construct, measured phenomena, or 

design level presents a paradox for researchers that can neither confirm nor deny the theory or its 

constructs (Cronbach & Meehl, 1955). This has been especially true of neurodevelopmental 

models since the perspectives have received criticism with respect to inconsistencies in findings 

(Crone & Dahl, 2012; Meisel et al., 2019; Pfeifer & Allen, 2012; Romer et al., 2017), a lack of 

convergence across key components of the models and precisions in the test (Pfeifer & Allen, 

2016; Sherman et al., 2018), and overgeneralizations of findings that may not be true for the 

typical adolescent (Bjork & Pardini, 2015; Romer et al., 2017; Willoughby et al., 2013). An 

example of this can be found in Steinberg and colleagues (2018) that was highlighted in a prior 

section. The authors took non-zero positive correlations between measured phenomena of reward 

sensitivity and self-regulatory constructs as evidence for the benefits of the theoretical 

constructs, an approach that is at odds with construct validation (Flake et al., 2017) and a major 

limitation of theory building in psychology (Grahek et al., 2021). This level of ambiguity and 

lack of precision raises several issues for the postulates of the neurodevelopmental models. 

Moreover, the level of ambiguity and complexity is concerning to the theoretical framework 

because a theory should be testable, falsifiable, parsimonious, and make few assumptions 

(Oberauer & Lewandowsky, 2019). 
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The central premise that developmental change in reward sensitivity coincides with an 

influx in risk-taking behaviors has not generalized well in studies on adolescent 

neurodevelopment. Several national studies demonstrate that risk-taking behaviors, such as 

substance use, increase significantly from mid-to-late adolescence (Centers for Disease Control 

and Prevention, 2020; Johnston et al., 2020; Kann et al., 2018; Substance Abuse and Mental 

Health Services Administration., 2020). However, a review of the neurodevelopmental findings 

on reward activity and reward sensitivity reported that there is minimal evidence for a link 

between the neural activation and risk-taking behaviors during adolescence (Sherman et al., 

2018). One reason for the lack of association may stem from the fact that many studies often 

focus on samples before the 18-23-year peak in risk-taking, which precedes the peak in mortality 

rates from unintentional injuries and substance use behaviors (Bjork & Pardini, 2015; Johnston et 

al., 2020; Willoughby et al., 2013). This is relevant to neurodevelopmental frameworks, given 

that earlier work highlights, in part, deaths resulting from unintentional injuries, substance use 

and drinking and driving behaviors during adolescence (Casey et al., 2008). Sherman and 

colleagues (2018) examined 22 studies in which only 41% of the studies included adolescents 

that are older than 17 years. When older adolescents were included in the studies, this was often 

within a sample that included a broad age range, such as 10 to 26 years (Braams et al., 2016) or 8 

to 26 years (Van Leijenhorst, Gunther Moor, et al., 2010). While these younger samples and 

broad age ranges answer valuable developmental questions about early onset behaviors or broad 

developmental changes, they lack the precision to evaluate hypotheses about the neural 

differences that exist between adolescents who do and don’t engage in risk-taking when these 

behaviors peak (Pfeifer & Allen, 2016). Thus, it becomes challenging to pinpoint neural 

substrates that coincide with peaks in risk-taking.  
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A second issue that may contribute to the lack of association between neural activation 

and real-world risk-taking behaviors stems from fMRI studies that heavily rely on 

neurocognitive tasks as proxies of risk-taking (Chein et al., 2011; Qu et al., 2015). While reward 

tasks have been reported to elicit robust activation in reward related regions (Bartra et al., 2013), 

some of the tasks used during fMRI research of adolescents often have limited associations with 

real-world risk-taking (Demidenko et al., 2019; Duell & Steinberg, 2020; Eisenberg et al., 2019). 

This suggests that studies of neural substrates of risk-taking should include measures of real-

world risk-taking behaviors rather than solely relying on task parameters from risk proxies if 

researchers intend to make conclusions about real-world risk-taking and/or decision making.  

The third and final problem is that discerning evidence for and against neurodevelopment 

models becomes especially difficult given the large number of tasks that are used in task-based 

fMRI. Neurodevelopmental research of reward processing employs a wide range of fMRI tasks 

and contrasts which add to analytic flexibility (Flannery et al., 2020; Richards et al., 2013; 

Sherman et al., 2018). This is helpful in obtaining a broad characterization of reward processing 

across different conditions. However, in cases when there is some support for postulates of the 

neurodevelopmental models, such as the NAcc predicting substance use behaviors, there is often 

substantial heterogeneity in task designs and contrasts used (Tervo-Clemmens et al., 2020). The 

flexibility and ambiguous decisions (Simmons et al., 2011) in task-based fMRI contribute to 

increased numbers of ‘researcher degrees of freedom’ (Gelman & Loken, 2014) and may add to 

false positives (Hong et al., 2019). Given the hidden assumptions in task-based fMRI contrasts 

(Caplan, 2007), the underappreciation of construct validity in fMRI (Poldrack & Yarkoni, 2016) 

may incidentally contribute to the ambiguity in findings pertaining to the neurodevelopmental 

models. In a biased scenario, researchers will prefer one contrast over others (as discussed earlier 
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in the context of the “Toothbrush Problem”) for the benefit of the theoretical position (Grahek et 

al., 2021). This limits our ability to see whether different constructs do or do not align with the 

phenomena that is proposed in the nomological network. 

Given the acknowledged issues in neurodevelopmental research, it is critical to understand 

the neural substrates of real-world risk-taking and to consider how methodological approaches 

impact findings. If the hypotheses derived from neurodevelopmental models of adolescent risk-

taking generalize, we would expect to see higher risk-takers exhibit greater activation in reward 

regions during reward processing than adolescents that engage in lesser risk-taking. However, if 

neural substrates are not found to be reliably associated with self-report risk-taking behaviors, 

which is a central hypothesis, then neurodevelopment research would benefit from considering 

how analytic decisions (e.g., task contrast type, or selection of parcels to assess for neural 

activation) may impact brain-behavior associations in task-based fMRI. Spanning the contrast 

space may provide some patterns in brain-behavior associations that are proposed by the 

neurodevelopmental models, something a single contrast may fail to reveal. However, if consistent 

patterns are not evident in the range of contrasts, modeling dynamic relationships of the brain may 

be an appropriate alternative to traditional univariate techniques since mean-based approaches may 

simply be inadequate in capturing the interplay of brain regions (Beltz, 2018). Novel methods of 

time-series fMRI consider the coactivation among brain regions for a given individual (Casey et 

al., 2019; Lydon-Staley & Bassett, 2018). This may capture the coactivation between 

socioemotional and cognitive control brain regions that are central to neurodevelopmental models, 

consider how they interact during a reward paradigm, and whether the person-specific network 

dynamics differ among levels of other measures which tap a related construct, such as self-reported 

novelty seeking.   
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As mentioned at the start of this chapter, the purpose of this dissertation is to evaluate some 

of the relationships from the nomological network that are proposed by neurodevelopmental 

models. Specifically, I evaluate the neural substrates of adolescent behavior and the effect of 

analytic decisions on these results across three investigations. In Chapter 2, I begin by describing 

the recruitment strategy for the sample that is the basis for these investigations and a description 

of the fMRI task and acquisition techniques employed. In Chapter 3 (Study 1), I consider whether 

the neurodevelopmental models postulate that neural activation in socioemotional and/or cognitive 

control regions differentiate high and low risk-taking late adolescents. Given the decisions that go 

into the analytic choice in Study 1, in Chapter 4 (Study 2), I examine the similarities and 

differences of the positive and negative valence contrasts in the MID task during fMRI. I also 

evaluate whether the contrast definitions alter brain-behavior associations in a direction that a 

theory of the reward construct would indicate. In Chapter 5 (Study 3), I go beyond traditional 

mean-based fMRI analyses to consider whether subgroups of adolescents demonstrate variation in 

their dynamic connections between regions in cognitive control, salience, and approach brain 

regions (Figure 1.2) during a reward task. Then, I consider how this functional connectivity in 

brain regions is meaningfully related to self-reported sensation seeking. Finally, in Chapter 6, I 

cover how the findings from Study 1, Study 2, and Study 3 fit into a nomological network of 

findings, the implications of these findings, and future directions from the nomological network 

perspective. 
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Chapter 2 : Adolescent Health Risk Behavior Study: Sample Recruitment, Design and 

Characteristics 

All three studies of this dissertation will utilize data from the Adolescent Health Risk 

Behavior (AHRB) study. The AHRB study was designed to characterize the behavioral, 

cognitive and neural basis of adolescent health risk behaviors. For this study, 10th and 12th 

graders (N = 2,017) from southeastern Michigan were enrolled to participate. The study is 

comprised of two phases, a longitudinal survey (Phase 1) and longitudinal brain imaging phase 

(Phase 2). This dissertation leverages both the self-report data from Phase 1 and neuroimaging 

data from Phase 2.  

Recruitment Phase 1 & Phase 2 

During Phase 1, the longitudinal survey, participants completed several self-report 

measures and a battery of neurocognitive tasks across three waves (Figure 2.1). During Wave 1 

(W1), participants completed surveys during high school class periods. These were administered 

using computer assisted self-interviewing (CASI) and computerized neurocognitive tasks within 

one-week of survey administration. Surveys assessed engagement in 15-health risk behaviors 

(described below) and a range of related psychosocial constructs, such as self-reported sensation 

seeking and impulsivity. The neurocognitive tasks assessed reward processing/sensitivity (via 

Balloon Analogue Risk Task and Iowa Gambling Task), self-regulation/impulsivity (via Go/No-



 

 

 

26 

go and Delay Discounting Task), and memory (via Digit Span). During W2-W3, participants 

were re-

administered the 

self-report surveys 

and neurocognitive 

tasks using web-

based assisted 

interviews that 

they completed on their own time. Of the 2,017 W1 enrolled participants, 56% of the participants 

completed two or more waves of data collection and 45% completed W2 or W3 (Table 2.1), 

respectively. Recruitment of participants was conducted at the school and/or school district level, 

using a quota sampling 

approach. Specifically, 

schools were recruited 

to maximize sample 

diversity on 

socioeconomic status 

(SES) and 

race/ethnicity, with 

replacements sought 

for schools that 

declined participation 

(almost always for 

Table 2.1. Demographic characteristics for Phase 1: Longitudinal Survey 

  

Wave 1 Wave 2 Wave 3 

(N=2017) (N=913) (N=913) 

 M (SD) 

Age (Years) 16.7 (1.1) 18.3 (1.2) 19.3 (1.2) 

Grade 11.0 (1.0) 12.5 (1.2) 13.5 (1.3) 

Sex, Female n (%) 1114 (55.2) 542 (59.4) 560 (61.3) 

Race, n (%)    

White Non-Hispanic 1100 (54.5) 556 (60.9) 548 (60.0) 

Black or African American, 

Non-Hispanic 449 (22.3) 162 (17.7) 185 (20.3) 

Hispanic, All Races 159 (7.9) 54 (5.9) 59 (6.5) 

Other 299 (14.8) 128 (14.0) 121 (13.3) 

Parental Education, n (%)    

High School or Less 487 (24.1) 183 (20.0) 171 (18.7) 

Some College 567 (28.1) 227 (24.9) 234 (25.6) 

College 559 (27.7) 272 (29.8) 287 (31.4) 

Beyond College 327 (16.2) 194 (21.2) 198 (21.7) 

 

Wave 1 (W1) Wave 3 (W2) Wave 3 (W3) 

Figure 2.1. AHRB Study Wave 1 – Wave 3: participant’s Associated 

Counties/Census Tracts in Southeastern Michigan During Study 
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internal scheduling reasons). The recruitment strategy was intended to approximate the 

demographic characteristics of the population in Michigan, whereby 81% identified as White, 

15.2% as Black or African American, and 5.1% as Hispanic or Latino (of any race) in the 2019 

American Community Survey (U.S. Census Bureau, 2019). 

 One of the aims of the longitudinal multi-phase design was to characterize neural 

differences of risk-taking behaviors. Hence for the neuroimaging phase (Phase 2), participants 

were recruited based on Phase 1 W1 (P1W1) self-reported risk behaviors. During P1W1 

participants self-reported on their engagement in 15-risk behaviors that are comparable to those 

collected in the Monitoring the Future survey (Johnston et al., 2020) and Center for Disease 

Control and Prevention’s Youth Risk Behavior Surveillance Survey (Kann et al., 2018). Specific 

health risk-taking behaviors include the use of cigarettes, e-cigarettes, alcohol, marijuana, 

amphetamines, narcotics, sedatives or streets drugs, and texting while driving, drowsy driving, 

driving while under the influence of alcohol, riding with an alcohol-impaired driver, having 

unprotected sex, physical fighting, and risking serious injury to self. To characterize an overall 

engagement in risk-taking behaviors, confirmatory factor analysis was used to create a 

Behavioral Misadventure Scale (BMS) latent factor of the 15-health risk behaviors.  

Phase 2 participants were recruited based on a high (≥ 75th) and low/average (20th to 60th) 

percentile score on the BMS from the full P1W1 sample. The decision to recruit ≥75th percentile 

on the BMS for the “high” risk group was to ensure that there was a sufficiently high-risk 

engagement as compared to other adolescents in the full sample. Furthermore, the 75th percentile 

was a balance between ensuring that adolescents with high-risk engagement were represented but 

also allowing a large enough pool of adolescents to obtain diversity across several demographic 

characteristics. The reason that the average/low risk profile group was based on the 20th to 60th 
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percentile on the BMS was two-fold: first, the lead investigators wanted to ensure that we 

recruited enough adolescents, and second, the lead investigators didn’t want to recruit 

adolescents that engaged in an abnormally low number of risk behaviors as this may capture a 

different, 

risk-averse 

adolescent 

profile. For 

Phase 2 

W1 

(P2W1), 

115 

adolescents 

were recruited (Table 2.2). As expected, the only demographic characteristics that the P2W1 

risk-groups (high versus average/low) differed on were age (Table 2.2). In other words, 

participants in the high risk-taking group were older (Mean = 19.9) than participants in the 

average/low risk-taking group (Mean = 19.0) during their scan visit. 

Description of fMRI Task, Acquisition and Preprocessing 

For P2W1, participants completed the neuroimaging protocol on average 30.9 months 

(SD = 5.0) after completing the P1W1 survey (see Appendix A, Figure A1). During the P2W1 

protocol, participants reviewed study activities with research staff, completed necessary consent 

documentation, and practiced tasks that were administered during the functional magnetic 

resonance imaging (fMRI) session. Research staff explicitly notified participants of the possible 

$30 compensation that would be contingent on their in-scan performance during the Monetary 

Table 2.2. Demographic characteristics for Phase 2: Neuroimaging 

  

Low/Average High Total 
Effect Size 

(N=73) (N=42) (N=115) 

 M (SD)  

Age (years) 19.0 (1.2) 19.9 (1.2) 
19.3 (1.3) 

Range: 17-21 d = .75*** 

BMS -0.27 (0.12) 0.84 (0.54) 0.14 (0.64) d = 2.83*** 

Sex, Female n (%) 45 (61.6) 22 (52.4) 67 (59.3) φ = -.09 

Race, n (%)    φ = .22 

White Non-Hispanic 46 (63.0) 34 (81.0) 80 (69.6)  
Black or African 

American, Non-

Hispanic 16 (21.9) 4 (9.5) 20 (17.4)  

Hispanic, All Races 6 (8.2) 3 (7.1) 9 (7.8)  

Other 5 (6.8) 1 (2.4) 6 (5.2)   
BMS = Behavioral Misadventure; d = Cohen’s D. 
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Incentive Delay (MID) task. After the pre-scan activities were completed, participants completed 

a one-hour scan protocol that consisted of: structural MRI, one run of the Emotional Faces task 

and two runs of the MID task, and one run of resting state fMRI and diffusion tensor imaging.  

In this dissertation, I use the MID task which is designed to elicit robust activation of 

reward regions that are central to substance use behaviors and that are a primary component of 

the BMS (Balodis & Potenza, 2015; Bartra et al., 2013; Diekhof et al., 2012). The MID task is a 

reward paradigm (Knutson et al., 2000) that has been shown to evoke robust activation of reward 

regions (discussed more in-depth in Chapter 4). While the task does not tap self-regulatory 

systems, the MID task is an appropriate task to evaluate key reward mechanisms that are 

pertinent to adolescent risk behavior models (Shulman et al., 2016) as the task has been 

repeatedly shown to elicit activation in key reward regions, such as the VS, insular cortex and 

medial prefrontal cortex (mPFC)(Knutson & Greer, 2008). The ventral striatum (VS) and insular 

cortex are engaged during the anticipatory phase and the mPFC is engaged during the feedback 

phase of the task. 

Neurodevelopmental studies (as discussed in Chapter 1) converge on the hypothesis that 

adolescence is marked by the increased motivation towards rewarding stimuli due to changes in 

reward circuitry (Galván, 2010). Changes in dopamine receptors within reward regions, such as 

the VS, and the tonic phase of dopamine (Luciana & Collins, 2012) may be a key vulnerability to 

Figure 2.2. ABCD Monetary Incentive Delay Task Schematic. 
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substance use during adolescents (Ernst & Luciana, 2015). These differences in reward circuitry 

are believed to contributed to the reactivity to novel and rewarding stimuli, which leads to 

engagement in substance use behaviors. Given the prominent role of role of motivation (or 

anticipation of reward) in the MID task and the critical role of dopamine in anticipation 

(“wanting”) and not feedback (“liking”) (Berridge & Kringelbach, 2015), this task is a 

reasonable design to model to motivation towards approaching rewarding stimuli. As described 

in the Adolescent Brain Cognitive Development (ABCD) study design, the MID is sensitive to 

developmental and addiction-related effects (Casey et al., 2018) 

The MID task design used in the AHRB (Figure 2.2) is comparable to the task design 

used in the ABCD study (Casey et al., 2018). Each trial of the task starts with the anticipatory 

phase that consists of five cue types: Win $5, Win $0.20, Lose $5, Lose $0.20 and ‘No Money 

At Stake’. These cues indicate the reward type for the duration of that trial. The cue phase lasts 

for 2000ms and is then followed by a fixation cross (1500-4000ms). Followed by the fixation 

cross is the probe phase that requires a participant button press within a predefined window 

(based on their average mean response time (MRT)).  The probe phase is followed by the 

feedback phase (1500-1800ms) that indicates the outcome of that trial (e.g., “Correct! You earn 

$5”). The task is a performance contingent reward design (Richards et al., 2013), so if the 

participant responds within the probe window they will receive the reward as indicated by the 

cue type at the beginning of the trial (e.g., “Win $5” or “Lose $5”). Using the MRT plus two 

standard deviations on correct trials, the MID task individualizes the difficulty to reach around 

60% accuracy rate by adjusting the difficulty, that is, making the probe duration wider or 

narrower. In this version of the task, for each MID run, the task includes 50 trials (10 for each 

cue type), for a combined 100 total trials (20 for each cue type) across the two runs. Although the 
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57% overall accuracy during the task was slightly below the 60% target (see Appendix A, Table 

A1 and Figure A2), accuracy was highest for the Win $5 and Lose $5 reward cues, 63% and 

60%, respectively, as expected.  The only distinction between the MID task used in the AHRB 

and ABCD study is that the AHRB study uses an earlier version which does not register mean 

response times for missed trials. 

To model the blood-oxygen-level-dependent (BOLD) signal during MID task, both high 

resolution and functional data were acquired using a GE Discovery MR750 3.0 Tesla scanner with 

a standard adult-sized coil (Milwaukee, WI). A full-brain high-resolution T1 SPGR PROMO scan 

was acquired that is used in preprocessing (TR = 7000ms, TE = 2900ms, flip angle = 8°, FOV = 

25.6 cm, slice thickness = 1 mm, 208 sagittal slices; matrix = 256 x 256). Before the MID task, a 

fieldmap was acquired using spin-echo EPI (TR = 7400ms, TE = 80 ms, FOV = 21.6 cm, 90x90 

matrix) with opposite phase encoding polarity (A→P, P→A). Two functional T2*-weighted 

BOLD MID runs were acquired in the axial plane using a multiband EPI sequence (MB factor=6) 

of 60 contiguous axial 2.4 mm slices (TR = 800ms, TE = 30 ms, flip angle = 52°, FOV = 21.6 cm, 

90x90 matrix, volumes = 407).  

FMRI data: (1) were reconstructed; (2) had realignment and field map correction applied 

in SPM12; and (3) had physiological noise removed using RETROICOR (Glover et al., 2000). 

Preprocessing was then completed using FSL (FMRIB’s Software Library, 

www.fmrib.ox.ac.uk/fsl) FEAT (FMRI Expert Analysis Tool) Version 6.00. This included: (4) 

registration to high resolution structural and standard space MNI 152 image using FLIRT using a 

Full search 12 DOF (Jenkinson & Smith, 2001; Jenkinson, Bannister, Brady, & Smith, 2002); (5) 

motion correction using MCFLIRT (Jenkinson et al., 2002); (6) non-brain removal using BET 

(S. M. Smith, 2002); (7) spatial smoothing using a Gaussian kernel of FWHM 5mm; (8) grand-

http://www.fmrib.ox.ac.uk/fsl
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mean intensity normalization of the entire 4D dataset by a single multiplicative factor; and (9) 

highpass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma=50.0s). 

Preface for Study Chapters 3 to 5 

As mentioned earlier, for each study in this dissertation (Study 1 to Study 3) I use the 

MID task fMRI data. Of the 115 

participants eligible for inclusion, 11 

participants were excluded for the following 

reasons: Seven participants were not safe to 

magnetic resonance imaging (MRI), and 

four participants completed the scan but 

were excluded from analyses due to non-

recoverable artifacts in the images (n = 3) or 

failing to respond during the MID task (n = 1). After data were reconstructed and quality control 

checks were performed, a sample of N = 104 (Table 2.3) had available MID task fMRI data. The 

final fMRI subsample (N = 104; Age Mean = 19.3, SD = 1.3; Female 57%) did not differ from 

the full sample in age, sex, or time from the original survey. Due to the recruitment strategy 

described above, this sample consists of two distinct risk profiles based on the BMS, high and 

low/avg. In Figure 2.3, I plot the distribution, the raw data points, and the boxplot representing 

the means and standard deviations of the risk-taking profiles from the sample that are based on 

the BMS. The cluster at the high end of low/avg risk-takers does not overlap with the high-risk 

profiles that are more variable given different rates and types of risk-taking engagement. The 

distinction between the low/avg and high risk-takers in Figure 2.3 is central to testing the 

Table 2.3. Demographics for P2W1 sample with 

MID Data 

 n = 104 

 

Age 19.3 (1.3)  

BSSS 3.31 (0.4) 

Sex, Female n (%) 59 (56.7) 

Race, n (%)  

Black, non-Hispanic 15 (14.4) 

White, non-Hispanic 74 (71.2) 

Other 6 (5.7) 

Hispanic/Latinx 9 (8.7) 

  
BSSS = Brief Sensation Seeking  
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hypothesis in Chapter 3 (Study 1). To 

avoid redundancies, the information 

provided above is not repeated in 

subsequent chapters. The description of 

the sample, task design, task 

administration, fMRI acquisition and 

preprocessing that is described above is 

consistent for studies in Chapter 3 to 

Chapter 5. Therefore, in each chapter 

the reader is referred to this chapter for 

this information. When necessary, such 

as fitting the general linear models for fMRI data, contrast selection, or modeling the timeseries 

data, this information is expanded and supplemented in the respective chapter.  

Each chapter will focus on slightly different self-reported behaviors from Phase 1 that’ll 

help address the core question in that study. For example, Study 1 uses the BMS and self-

reported risk-taking behaviors to evaluate whether brain activation differs across risk-taking 

profiles when substance use and mortality from unintentional injuries peak (Centers for Disease 

Control and Prevention, 2020; Willoughby et al., 2013). Then, Study 2 uses a set of substance 

use and psychological characteristics (e.g., sensation seeking, externalizing, impulsivity) to 

identify links between theoretically related self-reported items and constructs of reward as 

defined by reasonable MID contrasts. Finally, Study 3 uses self-reported sensation seeking to 

evaluate the association between a trait measure of motivation toward positive experiences and 

person-specific brain coactivation during a state of motivational processing. 

Figure 2.3. Separation of Behavioral Misadventure scores 

of Risk Groups for P2W1  
BMS = Behavioral Misadventure Score.  



 

 

 

34 

Chapter 3 : Cortical and Subcortical Response to the Anticipation of Reward in High and 

Average/Low Risk-taking Adolescents.1 

As elaborated on in Chapter 1, adolescence is one of the highest health risk-behavior 

periods in human development, whereby adolescents are characterized as having the highest rates 

of preventable mortality and morbidity stemming from risk-taking (Kann et al., 2018). An 

overwhelming 70% of adolescent deaths in the United States are related to preventable causes, 

such as suicide, homicide, risky driving, risky sex, and substance use (Casey et al., 2008; Kann et 

al., 2018). Although it is recognized that these risk-taking behaviors contribute to increased rates 

of morbidity and mortality in adolescence, many programs that have been developed to reduce 

these risky behaviors have been minimally effective (Ferdinand et al., 2015; Hale et al., 2014; 

Steinberg, 2008). This makes it paramount to understand biological change and developmental 

variation underlying adolescent risk-taking (Dahl, 2004). In particular, knowledge about 

adolescent neurodevelopment has the potential to inform both policy-making and interventions for 

those at highest risk  (Dahl et al., 2018). As described in Chapter 1, several neurodevelopmental 

models (Casey et al., 2008; Ernst et al., 2006; Luna & Wright, 2016; Steinberg, 2008) have 

ascribed changes in socioemotional and cognitive control systems to the increase in risk-taking 

during adolescence. However, the generalizability of these findings remains unclear. 

 
1 Chapter 3 corresponds to Demidenko et al. (2020), published in Developmental Cognitive Neuroscience 
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Neurodevelopmental Models: Differences and Similarities 

 Despite broad similarities across current neurodevelopmental models in the function of 

socioemotional and cognitive systems, there are several key differences (see Figure 1.2 in Chapter 

1). The Triadic model (Ernst et al., 2006) focuses on the balance between the regulatory, approach 

and avoidance systems. The regulatory, or cognitive control system, which is critical in monitoring 

and adaptation, functions as a conductor to facilitate behaviors by balancing information across 

multiple systems (Ernst et al., 2006; Richards et al., 2013). Then, the approach system, which has 

positive valence, focuses on rewarding stimuli that drives an organism to engage in novel 

behaviors. The avoidance system, which has negative valence, focuses on harm to help notify the 

organism of whether a stimulus should (or should not) be approached. Together, the approach and 

avoidance systems are conceptually related to the brain regions part of the socioemotional system. 

However, in the Triadic model each system has its own associated brain regions. Specifically, the 

regulatory system involves the ventrolateral PFC (vlPFC), dorsolateral prefrontal cortex (dlPFC), 

and anterior cingulate cortex (ACC; Richards et al., 2013); the approach system involves both the 

orbital frontal cortex (OFC) and ventral striatum (VS); and the avoidance system involves the 

amygdala (central nucleus for operant behavior and lateral/basolateral for conditioning stimuli) 

and insula. Combined, these regions exchange information and perform the goal-oriented decision 

making. 

 As opposed to the balance across three systems in the Triadic model, the Maturational 

Imbalance (Casey et al., 2008), Dual Systems (Steinberg, 2008), and Driven Dual Systems (Luna 

& Wright, 2016) models emphasize the role of the cognitive control system in suppressing 

inappropriate (or salient) thoughts and actions associated with the socioemotional system in favor 

of goal-oriented behaviors, reducing the effect of reward sensitivity. The Maturational Imbalance 
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model (Casey et al., 2008) explains that the inability to behave in a goal-oriented manner reflects 

the immature development of the cognitive control system, supported by the vlPFC, which reduces 

the influence of reward sensitivity, supported by the Nucleus Accumbens (NAcc). In contrast, the 

Dual Systems Model (Steinberg, 2008) contends that decisions are a clash between cognitive 

control (mPFC/OFC/dlPFC) and social-emotional (Amygdala and VS) regions. The post-pubertal 

maturation of reward regions leads to increased reward seeking, especially in the context of peers, 

as a function of rising dopamine-rich receptors in the NAcc and declining dopamine autoreceptors 

in the PFC, which function as a negative feedback loop reducing the PFC’s ability to suppress 

inappropriate thoughts and actions. Similarly, the Driven Dual Systems model (Luna & Wright, 

2016) contends that cognitive control is the key system in governing appropriate goal-oriented 

actions. However, in contrast to the Imbalance and Dual System models, the Driven Dual System 

model proposes that cognitive control systems are largely developed by late childhood/early 

adolescence and focused instead on the hyperactivation of the reward regions (VS) due to the 

proliferation of DA receptors that increase the appetitive/motivation systems and, in turn, drive 

riskier behaviors. 

Each of these neurodevelopmental models emphasizes the importance of early sensitization 

of dopamine systems in reward regions of the brain following puberty. While changes in the 

socioemotional system increase sensitivity in reward regions, which heighten the likelihood in 

engaging in risk-taking behaviors, the alteration in cognitive control contributes to improved 

cognitive capacity to reduce these risk-taking behaviors. Together, these discrete systems interact 

as adolescents are exposed to salient stimuli in their environments. Notably, in the three models, 

there is overlap across the brain regions that underlie socioemotional (approach/avoidance) and 

cognitive control systems, such that approach processing largely involves areas of the VS and 
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OFC; avoidance processing is supported by the amygdala and mPFC; and cognitive control is 

attributed to regions of the dlPFC, ACC, OFC, and/or vlPFC. 

In line with the neurodevelopmental models, a review on adolescent neural activation 

during reward processing has identified a similar set of brain regions (Silverman et al., 2015). On 

average, adolescents exhibit greater activation in the VS, OFC, amygdala, ACC, insula (region 

involved ascribing valences), and the posterior parietal cortex (region involved in self-regulation) 

than adults. These brain regions often play a central role in the literature that assess the associations 

between risk-taking and neural activation during processing of reward and emotional stimuli. In 

many instances, the VS is hypothesized to underlie substance use and alcohol related problems 

during adolescence (Ernst & Luciana, 2015; Galván, 2013; Heitzeg et al., 2014; Tervo-Clemmens 

et al., 2020). In fact, studies have shown that activation in the VS during the anticipation of rewards 

is associated with susceptibility to future substance use (Cope et al., 2019; Büchel et al., 2017), 

effects resulting from substance use (Martz et al., 2016), and a genetic precursor to alcohol 

problems (Heitzeg et al., 2014).  

Variability in Neural Activation & Risk-taking Studies 

Reviews that have examined neural predictors of risk-taking behaviors in adolescents 

report substantial variability across studies, providing only mixed support for the 

neurodevelopmental models with respect to risk-taking. Multiple reviews report that comparison 

groups have varied greatly in categorizing children, adolescents, and adults (Crone & Dahl, 2012; 

Galván, 2010). Furthermore, tasks have often utilized different analytic strategies, baseline 

conditions, and magnitudes (or probabilities) of reward. A recent review by Sherman et al. (2018) 

reported that risk-taking is indexed by different neural substrates across studies, categorized, for 

example, by lab-based measures of risk in tasks, generalized sensation seeking, or perceptions of 
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risks. Critical to spurious effects issues in fMRI (Button et al., 2013; Yarkoni, 2009), 70% of the 

studies that were reviewed were substantially underpowered (N < 50). Oftentimes, researchers 

solely used region of interest (ROI) approaches, which focused attention where findings were 

expected, and overlooked alternative brain regions posited by competing neurodevelopmental 

models.  

While much of this early work is poised to ask important questions about developmental 

differences that contribute to a sparse literature, different age criteria, targeted sampling, and 

measurements of risk across studies may have contributed to mixed findings (Braams et al., 2015, 

2016; Büchel et al., 2017; Cope et al., 2019). As noted in Chapter 1, some studies have used 

samples with mixed age ranges (Braams et al., 2016) or ages that are outside of a window when 

risk behaviors peak (Bjork & Pardini, 2015), such as restricting survey data to age 14 and imaging 

data to age 16 (Büchel et al., 2017). Other studies use recruitment strategies that focus on 

estimating the effects of puberty (Braams et al., 2016; Peper et al., 2013) or populations in 

disadvantaged communities (Cope et al., 2019), making it difficult to discern neural substrates of 

risk-taking behaviors in a normative adolescent population. These studies may be useful in 

answering questions about broad developmental differences and neural differences preceding risk. 

However, when risk-taking behaviors are recorded at different ages across studies, this can 

complicate conclusions related to the neurodevelopmental models. For instance, reward processing 

is associated with substance use in Cope et al. (2019) but not in Braams et al. (2016) and only 

under the condition of high sensation seeking in Büchel et al. (2017).  

One way to answer the question of whether neural activation during reward processing 

differentiates risk-taking behaviors is to be more precise about the design and prediction of the 

model (Pfeifer & Allen, 2016). If the core question is, “What neural activation during reward 
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processing differentiates risk-takers?”, one approach is to use a normative sample during the 

developmental peak in risk-taking behaviors and reward processing. In which case, the 18-23 age 

range would be an appropriate developmental peak of risk-taking (Bjork & Pardini, 2015; 

Steinberg et al., 2018; Willoughby et al., 2013), which renders a more precise inference about risk-

taking and reward processing during adolescence. 

Current Study 

In the current study, a large and diverse population of typically developing high school 

adolescents were recruited (10th and 12th graders, N = 2017 in the full sample). Adolescents 

provided self-reports on real-world risk behaviors in multiple categories. To address previous 

limitations of broad age ranges (Pfeifer & Allen, 2016), sampling, and insufficient proxies of real-

world risk (Sherman et al., 2018), as described in Chapter 2, a targeted subsample (N = 104) was 

recruited from the full sample representing two distinct risk-taking profiles during late 

adolescence. So that we can appropriately compare risk-taking profiles, the subsample of 

adolescents were classified as high (75th percentile and above) and average/low risk groups (20th 

– 60th percentile) based on the Behavioral Misadventure Scale (BMS). This subsample completed 

a neuroimaging protocol to evaluate differences in neural activity that are associated with risk-

taking behaviors. We utilized both whole brain and a priori brain regions (ROIs) from an empirical 

consensus based on the research literature in our analyses (Galván, 2010; Sherman et al., 2018). 

In a subsequent comparison, high and average/low risk groups’ neural activation profiles were 

assessed based on the longitudinal stability of their BMS risk profiles over time, which has not 

been previously studied. The stable risk-taking profile may capture differences in a consistent 

pattern of risk-taking behavior that may be more relevant to vulnerability in long-term negative 

outcomes. 
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In these analyses, the Monetary Incentive Delay (MID) task (Knutson et al., 2000; 

described in Chapter 2 and discussed in depth in Chapter 3) was used to model neural activation 

of reward. Although this task is used to evaluate the prevailing neurodevelopmental hypothesis 

that greater activation in reward regions is associated with increased risk-taking behaviors, the task 

is not designed to answer questions about activity in cognitive control regions. Nevertheless, given 

the prevailing hypothesis that adolescents are motivated to approach rewards, this analysis focused 

on a Big Win versus Neutral cue anticipation contrasts in the MID task (Galván, 2010). While 

alternative contrasts have been used to model anticipation of reward in prior studies (Büchel et al., 

2017; Cope et al., 2019; Heitzeg et al., 2014), the decision to use this contrast was two fold. First, 

this contrast was selected given prior research reporting a significant difference in activation in 

reward systems between adolescents and adults (Bjork et al., 2010). Second, this contrast was 

selected because it provides an equally weighted comparison of trials in the two conditions (i.e., 

20 of Big Win and 20 of Neutral cue trials). Taken together, if the neurodevelopmental hypothesis 

generalizes to this sample and design, it is hypothesized that adolescents in the high-risk group 

will demonstrate greater activation in socioemotional regions during the anticipation of reward, 

especially in the VS, compared to the participants who have a low/average risk profile. 

Alternatively, adolescents in the low/average risk group should show decreased activation in the 

VS region and increased activation in the cognitive control regions, especially the dlPFC, 

compared to the high-risk group. 
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Methods 

Participants 

Participants in this study are a Phase 2 subsample (N = 104; MAge = 19.3; SDAge = 1.3; 57% 

Female; 71% White, 14% Black, non-Hispanic, 6% Hispanic/Latinx) of adolescents from the 

Adolescent Health Risk Behavior (AHRB) study, as described in Chapter 2. 

Risk Group Classification: Behavioral Misadventure 

 A questionnaire assessed participants’ self-reported engagement in 15 risk behaviors in the 

last 12 months. Risk behaviors included: using substances such as 1) cigarettes, 2) e-cigarettes, 3) 

alcohol, 4) marijuana, 5) amphetamines, 6) narcotics, 7) sedatives or 8) street drugs (including 

cocaine, heroin, ecstasy, and LSD); 9) distracted driving (e.g., texting while driving); 10) drowsy 

driving; 11) driving while under the influence of alcohol; 12) riding with an alcohol-impaired 

driver; 13) having unprotected sex; 14) physical fighting; and 15) other risks resulting in serious 

injury to oneself (e.g., riding a bicycle without a helmet). To summarize the overall engagement 

in risk-taking behavior, and to give adequate weighting for low frequency but high health impact 

risk behaviors that could be used in identifying health risk profiles, the sample was randomized 

into two halves to conduct a principal component analysis (PCA) with the first half and a 

confirmatory factor analysis (CFA) with the remaining half. A behavioral misadventure factor 

score (BMS), on which all the risk-taking behaviors loaded significantly, was saved for the entire 

sample and used in subsequent analyses (Cronbach α = .78). Based on this latent factor score, a 

high risk group was classified based on a 75th percentile cutoff, and an average/low risk group 

based on falling within the 20th to 60th percentile from the full Wave 1 sample (N = 2,017). As 

described in Chapter 2, this produced distinct groups that were non-overlapping (see Figure 2.3 in 

Chapter 2). The BMS variable had a strong association with a factor-derived score of substance 
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use (self-reported 12-month marijuana, alcohol, e-cigarettes, cigarettes, and illicit drug use; 

RMSEA: .08; CFI: .97; TLI: .95; SRMR: .03), r = .94, and the number of past 12-month self-

reported health risk behaviors, r = .89 during Wave 1. 

fMRI Task 

To evaluate the neural activation of reward processing, the MID task (Knutson et al., 2000) 

was used to model the neural signatures of the anticipation of monetary reward (Bjork et al., 2010). 

For more information on the design, please refer to Chapter 2. As noted in Chapter 2, participants 

were explicitly told that their performance on the task during the scan (for example, $5 Win Cue 

was associated with an opportunity to win $5 and a $5 Lose cue was associated with an opportunity 

to not lose $5) would be associated with the compensation they can get for their cumulative 

earnings during the MID (Maximum $30).  

In these analyses, we focused on the contrast of the anticipatory Big Win versus Neutral 

cue. As discussed in Chapter 2, neurodevelopmental frameworks (Shulman et al., 2016) describe 

the marked increase in motivation towards rewarding stimuli during adolescents. The motivation 

towards rewarding stimuli may, in part, lead to increased engagement in risk-taking behaviors, 

such as substance use. The anticipation phase during the MID task (as expanded on in Chapter 4) 

captures a “wanting” processes that is a key component of dopamine (Berridge & Kringelbach, 

2015), making is a reasonable phase to model for capture adolescent reward sensitivity. 

fMRI Data Acquisition 

FMRI data was acquired using the protocol described in Chapter 2. 

Analyses 

fMRI Data Analyses 

FMRI data was preprocessed using the sequence of steps that are described in Chapter 2.  
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First-level analyses were performed by using FEAT. To control for the temporal effect of 

motion of the BOLD signal, we used the command fsl_motion_outliers to generate an additional 

confound list censoring frame displacement (FD) volumes that exceeded FD > .9. To average 

across the two runs, a second-level model was defined for each participant using fixed-effect 

analysis in FEAT.  

Whole Brain 

 Group-level analyses were performed using non-parametric permutation tests to create 

null non-parametric distributions and control type 1 error rates (Eklund et al., 2016), with cluster 

correction performed using Threshold-Free Cluster Enhancement (TFCE) in order to differentiate 

both focal and broad level activation that may be lost using standard parametric models (Smith & 

Nichols, 2009; Winkler et al., 2014). As described in Pfeifer et al. (2019), non-parametric models 

reduce assumptions about spatial distributions of noise within fMRI and reduce false positive rates.  

Regions of Interest 

 A priori regions of interest (ROI) from Neurosynth (www.neurosynth.org) were used to 

evaluate differences of mean signal intensity for reward anticipation in high versus average/low 

risk groups (Appendix B, Table B1). These regions were selected based on overlap in original 

descriptions of the dual systems models (Casey et al., 2008; Ernst, 2014; Steinberg, 2008) and 

from 18 studies, Appendix B, Table B2 (totaling 70 coordinates, with overlap; see Appendix B, 

Figure B1) described in two reviews of adolescent neurodevelopment and risk behavior findings 

(reviewed in Galván, 2010; Sherman et al., 2018).  

To control the type 1 error rate and to consider relationships among ROI’s that may 

differentiate risk and age profiles, a Multivariate analysis of variance (MANOVA) was performed. 

Subsequently, to examine the association between risk profile and mean signal intensity of each 

http://www.neurosynth.org/
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ROI, fourteen multiple regression models were performed, controlling for age. False Discovery 

Rate (FDR) was used to control for multiple comparisons (14 multiple regression models), and 

adjusted p-values were reported where significant differences arise (Benjamini & Yekutieli, 2001; 

Noble, 2009).  

Post-hoc Analyses 

 To evaluate the effects of stable, multi-wave risk profiles, a combination of self-report 

measures of risk-taking behaviors across W1-W3 was used to define ‘stable high’ (that is, 75th 

percentile or higher on two waves of survey responses) and ‘stable average/low’ (20th-60th 

percentile on two waves of survey responses) risk profiles. These profiles were used to re-examine 

the ROI and whole brain analyses to determine whether there were significant differences between 

the stable high versus stable average/low risk behavior profiles used to predict neural activation.  

Results 

Descriptive and Behavioral 

There were no significant group differences between overall performance (accuracy and 

response times) in the high and average/low risk groups (p > .05) during MID trials nor for Big 

Win or Neutral trials (Table 3.1). The accuracy scores were derived from adaptive testing to 

ensure an approximate success rate of 60%, which was achieved, indicating that the 

manipulation worked. The absence of an accuracy difference should not be interpreted as a 

meaningful finding. Notably, as described in Chapter 2 and Appendix A, response times were 

collected by E-Prime only for accurate trials. Finally, there were no significant differences in 

time before Phase 1 Wave 1 and Phase 2 Wave 1 scan 1, sex, or parental education between 

groups (p > .05; Appendix A, Figure A1). 
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Table 3.1. Demographic characteristics and behavioral performance of full sample completing the 

Monetary Incentive Delay Task by Risk Profile 

 Average/low 

n = 63 

High 

n = 41 

Total 

n = 104 
Effect Size 

Sex, Female n (%) 37 (58.7) 22 (53.7) 59 (56.7) Ф = .02 

Race, n (%)     

Black, non-Hispanic 12 (19.0) 3 (7.3) 15 (14.4)  

White, non-Hispanic 40 (63.5) 34 (82.9) 74 (71.2)  

Other 5 (8.0) 1 (2.4) 6 (5.7)  

Hispanic/Latinx 6 (9.5) 3 (7.3) 9 (8.7)  

 M (SD) M (SD) M (SD)  

Age 19.0 (1.2) 19.8 (1.3) 19.3 (1.3)  d = .64** 

Parental Education 4.4 (1.1) 4.1 (1.2) 4.3 (1.2) d = .26 

BMS -0.28 (0.1) 0.83 (0.8) 0.16 (0.6) d = 1.95*** 

Overall Acc. % 57.4 (3.2) 56.2 (3.1) 56.9 (3.2) d = .38 

Win Big 63.7 (9.2) 61.2 (9.1) 62.7 (9.2) d = .27 

Win Small 56.8 (9.5) 59.3 (9.7) 57.8 (9.6) d = .26 

Neutral 49.8 (14.2) 44.5 (14.5) 47.7 (14.5) d = .37 

Lose Small 56.3 (9.5) 56.5 (7.7) 56.4 (8.8) d = .02 

Lose Big 60.2 (10.5) 59.4 (10.4) 59.9 (10.4) d = .08 

BMS = Behavioral Misadventure Score; WASI IQ = Wechsler Abbreviated Scale of Intelligence; Parental 

Education: 1 = grade school or less, 2 = Some High School, 3 = Completed High School, 4 = some college, 5 = 

completed college, 6 = graduate or professional school. Acc = Accuracy; d = Cohen’s d (Small = .2; Medium = .5, 

large = .8) 

p < .05*, p < .01**, p < .001*** 

As expected, high risk (N = 41) and average/low risk (N = 63) groups varied with respect 

to age. Specifically, those in the high risk group were significantly older (p < .01, d = .64; M = 

19.8, SD = 1.3) than those in the average/low risk group (M = 19.0, SD = 1.2; see Table 3.1). 

Due to the significant age-related difference found in sensitivity to reward processing in previous 

studies (Bjork et al., 2010; Dhingra et al., 2019), age was covaried out in the subsequent 



 

 

 

46 

analyses. Age was significantly related with risk groups (r = .30) and the continuous BMS 

variable (r = .39). 

Region of Interest (ROI) Analyses 

To examine the association between reward anticipation and adolescent risk behaviors, 

we used hypothesis-driven a priori ROIs to examine recent theoretical models (Appendix B, 

Table B1). Among the 14 ROIs, the MANOVA revealed no significant activation difference 

between risk profiles (average/low versus high), Wilk’s lamba = .83 F(14, 87) = 1.26, p = .25, 

nor an interactive effect of risk group (high versus average/low) and age, Wilk’s lamba = .93 

F(14, 87) = 0.93, p = .53. This indicated that there were no adjusted-mean differences in reward 

anticipation activation among the 14 ROIs that are associated with age or self-reported risk.  In 

the multiple regression models examining the association between risk profile (high versus 

average/low risk) and activation to the anticipation of Big Win versus Neutral trials among the 

14 ROI’s, controlling for age, there were no significant associations when correcting for multiple 

comparisons (Appendix B, Table B3, for corrected and uncorrected values).  

Whole Brain Analyses 

 Consistent with prior work using the MID task, the task used in this study evoked robust 

activation of the reward regions during reward anticipation as hypothesized (Appendix B, Figure 

B3). To examine whether Wave 1 high risk (N = 41) and Wave 1 average/low risk (N = 63) 

groups differed in neural activation during reward anticipation, we conducted a nonparametric 

whole brain analysis (adjusted for age). Contrary to the hypothesized neurodevelopmental 

models, and reflecting inconsistencies in recent literature, there were no significant group 

differences in activation in brain regions specified in the neurodevelopmental models (e.g, 

aforementioned a priori ROI’s). Moreover, the high risk group (N = 41) did not exhibit greater 
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activation in any voxels/clusters when compared to the average/low risk group (N = 63). 

However, consistent with recent evidence (Sherman et al., 2018), in a direct contrast between 

groups, the average/low risk group exhibited several significant clusters in the whole brain 

analysis when compared to the high risk group that were outside of the regions specified in the 

neurodevelopmental models. Specifically, the average/low risk group had greater activation (p < 

.05; FWE-Corrected) in the dorsal striatal, precuneus, posterior parietal, primary visual cortex, 

primary motor cortex, and cerebellar regions (see Table 3.2; Figure 3.1).  
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Table 3.2. Whole Brain Analyses: significant differences in activation for Average/low versus High 

Risk group adolescents to anticipation of Big Win versus Neutral contrast 

Wave 1 Average/low (N= 63) > High (N = 41) Risk-taking 

Cluster Indexa 
Cluster peak 

x, y, z 
# of Voxels Cluster Label b p * 

14 -15, -3, 16 722 Left-Caudate  .03 

13 22, -62, -16 208 Right Cerebellar  .03 

12 16, -82, 4 129 Right Primary Visual   .04 

11 -22, -72, 2 70 Left Primary Visual .04 

10 -17, 23, 12 44 cLeft-Caudate Nucleus .04 

9 6, -74, 10 36 Right Primary Visual .04 

8 -10, -60, 50 36 Left Precuneus .04 

7 18, -36, 34 25 c Posterior Cingulate  .04 

6 -16, -50, -8 22 Left-Secondary Visual  .04 

5 34, -30, 28 19 c Left-Parahippocampal < .05 

4 4, -40, 42 17 Posterior Cingulate < .05 

3 -4, -32, 62 11 Primary Motor < .05 

2 -4, -72, -2 10 Left Visual < .05 

Longitudinally Stable Average/low (N = 37) > Stable High (N = 33) Risk-Taking 

Cluster Indexa Cluster peak 

x, y, z 

# of Voxels Cluster Label b p # 

4 30, 32, 34 181 Right Dorsolateral 

Prefrontal Cortex 

 .052 

3 -8, -60, 48 17 Left Precuneus .071 

2 4, 20, 40 15 Paracingulate Gyrus .074 

a Cluster index identified using fsl command cluster that identified peak clusters in volume, index 1 not 

reported due to number of voxels = < 3, clusters plotted on MNI brain in Figure 3.1 and Figure 3.2.  

b To identify region for cluster label, we used a combination of reverse inference on neurosynth.org/locations 

to identify top association with cluster activation and cross-referenced with FSL Harvard-Oxford Cortical 

Structural Atlas  
c Implies regional association, due to peak being in white matter. 
* Probability  < .05 used to threshold results of TFCE output from randomise 
# Lowered  < .08 used to threshold results of TFCE output from randomise (< .05, results null) 
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Figure 3.1. Whole Brain Permutation Wave 1: Average/low Risk > High Risk Profile during 

(FWE-corrected) anticipation of Big Win versus Neutral contrast, thresholded p < .05 
Non-permutation test includes 5000 permutations, using FSL randomise with threshold-free cluster 

enhancement. Statistical maps thresholded at lower value .05 – clusters selected from Table 3.2  
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Post-hoc Analysis of Adolescents with Stable-Risk Group Membership 

 For the multi-wave comparison of risk profiles, reward anticipation for stable high and 

stable average/low were compared. As expected, based on the age effects noted above, there was 

a significant difference in the number of adolescents that moved to the high risk group versus 

moved to the average/low risk group (2(3) = 94.6, p < .001,  = .98), whereby 23 adolescents 

(Mean Age = 18.6, SD = 1.1) moved from the average/low risk group to the high risk group and 

five adolescents (Mean Age = 19.0, SD = 1.4) moved from the high risk group to the 

average/low risk group. Participants that moved into high risk or average/low risk groups across 

waves did not significantly differ in age, sex, or parental education (p > .05). After excluding 

adolescents that transitioned to different risk groups (N = 27) and those that did not complete a 

questionnaire in a subsequent wave (N = 6), 71 adolescents had longitudinally stable risk 

profiles: 37 stable average/low risk (M Age = 19.0, SD = 1.3) and 34 stable high risk (Mean Age 

= 19.8, SD = 1.3). Analyses between the stable high risk and average/low risk groups provided a 

more stringent test of this individual difference. 

Post-hoc Region of Interest Analyses  

The post-hoc analyses, evaluating ROI differences in stable high risk versus stable 

average/low risk groups, demonstrated comparable results to the wave 1 risk profile. 

Specifically, the analysis of variance among the 14 ROIs, MANOVA revealed no significant 

association between risk profiles (average/low versus high), Wilk's lamba = .67 F(14, 53) = 1.82, 

p = .06, and no interactive effect of risk group (high versus avg/low) with age, Wilk's lamba = 

.85 F(14, 53) = 0.64, p = .81. Like Wave 1 risk profiles, stability of profiles over time did not 

reveal a relationship among the 14 ROI’s.  Moreover, the 14 multiple regression models revealed 

comparable results to the Wave 1 risk groups. In the multiple regression models, when corrected 



 

 

 

51 

for multiple comparisons, there were no significant associations between risk-taking profiles and 

the mean activation during Big Win versus Neutral contrast (Appendix B, Table B3, for 

corrected and uncorrected values).  

Post-hoc Analyses Whole Brain Analyses 

 The post-hoc analysis, evaluating the whole brain activation to the anticipation of Big 

Win versus Neutral condition in stable high risk versus stable average/low risk groups, 

demonstrated different results from that of the Wave 1 sample-defined risk profiles. Specifically, 

the nonparametric TFCE analysis revealed no significant clusters that surpassed the  < .05. At a 

lower threshold of  < .08, in a direct contrast between groups, significant clusters were revealed 

(see Table 3.2; Figure 3.2). Specifically, greater activation was shown in the Left Precuneus (p = 

.07) in average/low risk versus high risk groups. Likewise, at a lower threshold (p < .08), 

average/low risk-takers demonstrated greater activation in the Right dlPFC (p = .05) and the 

Paracingulate Gyrus (p = .07). These results suggest slight convergence with, in addition to 

variability between, the single versus multiple wave assessment of risk profiles in whole brain 

activation that necessitates increased power. Notably, using the Euclidean distance between peak 

coordinates 

√(𝑥𝑤ℎ𝑜𝑙𝑒 𝑏𝑟𝑎𝑖𝑛 − 𝑥𝑅𝑂𝐼)2 + (𝑦𝑤ℎ𝑜𝑙𝑒 𝑏𝑟𝑎𝑖𝑛 − 𝑦𝑅𝑂𝐼)2 + (𝑧𝑤ℎ𝑜𝑙𝑒 𝑏𝑟𝑎𝑖𝑛 − 𝑧𝑅𝑂𝐼)2  (3.1) 

used by Hong et al. (2019, pp. 387), when comparing the peak location of dlPFC in the whole 

brain results to that of the a priori dlPFC coordinate, there was a 64.5mm distance between 

peaks, suggesting difference in the location of peak activation. Furthermore, like the stable 

profile subsample (N = 71) and the full sample (N = 104), activation in the Right dlPFC was 

present only at a lower threshold, p = .05 and p = .06, respectively. Statistical maps of tests and 
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presentations of ROIs from meta-analysis coordinates are available on Neurovault 

(neurovault.org/collections/6282/). 

 

Sensitivity Analyses 

To examine whether there was a continuous effect of BMS and/or from Wave 1 on brain 

activation during Big Win versus Neutral anticipation phase during the MID task, we created a 

nonparametric model (FSL randomise) to test the continuous variables of BMS, age and brain. 

The continuous BMS model, covaried for age, demonstrated no significant associations (p > .05) 

between BMS and brain. However, at a lower bound threshold (p < .08), comparable clusters 

were found in the continuous BMS model (Appendix B, Table B4) and the dichotomous 

comparison of high versus average/low risk groups (Table 3.2). This reduced effect in the 

Figure 3.2. Whole Brain 

Permutation Longitudinally Stable 

Average/low > High Risk groups 

during anticipation of Big win 

versus Neutral contrast, 

thresholded p < .08 (FWE-

corrected) 

 
DLPFC = Dorsolateral prefrontal 

cortex.  

Non-permutation test includes 5000 

permutations, using FSL randomise 

with threshold-free cluster 
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continuous model may be explained by the increased association between BMS and age (15%) 

versus risk group and age (9%). Meanwhile, no significant effect of age (continuous) on brain 

was present, with or without the covariate of the BMS in the non-parametric model. 

Discussion 

 Over the last 15 years, several neurodevelopmental models have been proposed to 

explain, in part, the rise in risk-taking behaviors during mid-to-late adolescence. Despite a strong 

commitment to exploring the neural differences in socioemotional and cognitive control 

processing across a broad age-range, inconsistencies in definitions of age and risk-taking have 

led to mixed interpretations (Crone & Dahl, 2012). Furthermore, proxies of risk-taking behaviors 

and a priori ROI analyses have contributed to heterogeneous results that have not replicated the 

postulates from theoretical models (Sherman et al., 2018). To our knowledge, this study is the 

first to use several ecological measures to derive high risk and average/low risk profiles among 

adolescents, as well as longitudinally stable profiles of high risk versus average/low risk, to 

explore prospective neurodevelopmental differences using both a priori ROI and whole brain 

analyses. The variability in results and lack of generalizability of neurodevelopmental models in 

this and prior studies may be related to sample sizes, independent variable and parameter 

selection, ROI identification, and an assumption of homogeneity in adolescents. 

 Using prior literature and predefined ROIs based on neurodevelopmental models, there 

was little evidence for increased recruitment of reward neurocircuitry in high risk versus 

average/low risk profile adolescents during the anticipation of rewards. Although frequently 

researched regions, specifically the ‘hot spots’ of reward processing (Woo et al., 2017) like the 

ventral striatum, produced the predicted robust activation in statistical maps during the 

anticipation of a big monetary reward compared to a neutral cue, this activation did not 
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differentiate risk-taking profiles among adolescents. In some ways, the latter finding supports the 

notion evoked by Sherman et al. (2018), whereby studies have not consistently found differences 

across risk-taking behaviors that are often cited by neurodevelopmental models.  

 To avoid constraining interpretations to a priori ROIs and behavioral properties of the 

task, a nonparametric analysis on the whole brain was conducted that revealed both significant 

and non-significant results. In the initial comparison of high risk versus average/low risk profiles 

from Wave 1, the comparison revealed increased activation in the high risk group across a broad 

range of brain regions. These included the dorsal striatal, primary visual, primary motor, 

precuneus, posterior cingulate, and cerebellar regions. However, when using more than one wave 

of self-report risk-taking behaviors to quantify stable high risk and average/low risk profiles, the 

activation differed from the Wave 1 whole brain analysis. Specifically, neither of the clusters of 

activation based on Wave 1 analysis were represented in the stable high risk and stable 

average/low risk analysis at a p < .05 level. Taken together, the findings indicate differences in 

independent variable and parameter selection, whereby power and the heterogeneity across 

subjects alters results.  

 Recent inconsistencies in findings in the neurodevelopmental literature can be attributed 

to multiple sources, such as sample sizes (Button et al., 2013; Cremers et al., 2017) and non-

independent analyses which can contribute to ‘voodoo’ correlations (Vul et al., 2009). It has 

been noted in recent reviews that neuroimaging studies suffer from small sample sizes, where the 

average sample size in adolescent risk behavior literature is <50 participants (Galván, 2010; 

Sherman et al., 2018). Cremers et al. (2017) argued that small samples, such as N = 30, are one 

source of misleading results. A review of early fMRI research demonstrated that a frequent 

strategy used was to compute separate correlations of voxels/clusters with behavior that 
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exceeded a threshold in a group-level map. This led to brain and behavior correlations that, on 

occasion, exceeded even the intraclass correlations of the brain regions of interest (Vul et al., 

2009). Some of these correlations are attributable to extremely small samples that systematically 

inflate correlation between neural activation and behavior (Yarkoni, 2009).  

Equally as important, the differences in tasks and contrasts between studies are often 

overlooked. For example, in the 23 studies of adolescent risk-taking reviewed by Sherman et al. 

(2018), it is evident that several different tasks are administered in the literature, such as the 

MID, Stoplight signal, Wheel of Fortune, Iowa Gambling, and Coin-flip task. While attempting 

to model associations with risk-taking behaviors, these tasks likely vary in the cognitive 

processes they engage (Richards et al., 2013). These between-study differences of tasks make it 

difficult to discern the generalizability of neural associations with behavior. Animal models have 

demonstrated that learning what to approach and what not to approach is variable. While some 

circuits are related to prediction error, others may be related to goal-oriented models (Eshel & 

Steinberg, 2018). For instance, the Balloon Analogue Risk Task (BART), MID, or Wheel of 

Fortune tasks may relate to distinct circuits that play an important part for learning the action and 

event values through trial and error. Whereas affective and peer paradigms may relate to efferent 

working models that make decisions regarding future events which may impact goal-directed 

choice. In the latter decision-based tasks, values are estimated with each action using inferences 

based on costs, benefits, and some forms of neural signals’ ability to generalize to new situations 

(Rangel & Hare, 2010; Schultz, 2015).  

Distinctions in how decisions are made may be critical as there are heterogeneities in 

animal behaviors, whereby some rely on trial-and-error and others on goal-directed choice (Eshel 

& Steinberg, 2018). With respect to neural properties, such intricacies may impact the region of 
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activation. Although the VS/NAcc dominate the core locations of risk/reward processing in the 

neurodevelopmental models, neural processing may depend on different aspects, such as the type 

of learning (or encoding paradigm). If this is the case, differences between designs may depend 

on whether the processing relates to afferent or efferent systems, whether a reward is contingent 

on action, and/or whether a stimulus is related to a primary or secondary reward (Haber & 

Behrens, 2014; Padoa-Schioppa & Conen, 2017; Szczepanski & Knight, 2014). These 

distinctions are critical in assessing whether results do (or do not) converge across studies and 

have a similar predictive utility.  

Studies evaluating the central tenets of the neurodevelopmental models have largely 

interpreted the task activation of the VS/NAcc to reflect approach (or motivation to act) which 

may be associated with risky behaviors. Approach systems, however, may also be related to 

attentional processes and thus be difficult to disentangle using abstract task contrasts. There is 

growing evidence that the VS (which includes the NAcc) is actively involved in effort and 

intrinsic motivation (Schouppe et al., 2014), which can be associated with value (Inzlicht et al., 

2018). Therefore, activity during task performance in some brain regions, such as the VS/NAcc 

and dorsal striatum, may reflect an interactive effect of reward and attention (Breckel et al., 

2011; Krebs et al., 2012). If this is the case, reward and attention may arise from similar neural 

mechanisms (Westbrook & Braver, 2016), making it difficult to derive an accurate assessment of 

reward using abstract methods of subtraction in task-based fMRI (Poldrack & Yarkoni, 2016). 

This is a core issue that I elaborate on in Chapter 4 as it relates to the MID task and in Chapter 6 

as it relates to evaluating the nomological network. To derive improved estimates of reward or 

risky decision making in task-based fMRI, increased attention should be given to the construct 

validity of tasks and their hypothesized estimates of cognitive processes.   
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 Outside the domain of neural estimates, there is substantial heterogeneity in the 

behavioral definition of risk-taking behaviors. Research on normative samples often utilizes 

variables that may not be ecologically valid proxies of real-world risk behavior. While some use 

psychological characteristics such as sensation seeking (Bjork et al., 2008b; Kahn et al., 2015), 

general measures of risky behaviors (Op de Macks et al., 2016; Saxbe et al., 2015), substance use 

(Bjork et al., 2011; Chung et al., 2015), or the likelihood of engaging in future risk (Galvan et al., 

2007), several studies associate neural activation as a function of a task parameter of risk. For 

example, studies use parameters from risky driving (Cascio et al., 2015), probability, or 

gambling tasks (Eshel et al., 2007; Op de Macks et al., 2016; Qu et al., 2015; Telzer et al., 2015). 

These proxy-based measures of risky behavior may be inappropriate as laboratory tasks since 

they require larger samples to capture small effects (Sherman et al., 2018), show limited 

evidence for age-related differences (Defoe et al., 2015), and often serve as weak predictors of 

real-world risk behaviors in normative adolescent populations (Demidenko et al., 2019).  

For neurodevelopmental models to be used as indicators of sensation seeking and risk 

behaviors, it is important to acknowledge that adolescent behavior is heterogeneous and that this 

behavior should be modeled as such (Bjork & Pardini, 2015; Sherman et al., 2018). With respect 

to the dynamic system of the brain, the assumption that individuals are homogenous is often 

violated (Beltz et al., 2016). Thus, it is important to identify unique and similar patterns in the 

individuals which, in turn, may be used to more effectively explain behavioral change (Beltz & 

Gates, 2017). This alternative technique may be more appropriate in identifying networks, which 

have been proposed in earlier reviews (Pfeifer & Allen, 2012), that may offer some stability of 

measurement within and between participants, as opposed to the mean-level task effects that 

often have weak test-retest reliability (Elliott et al., 2019). Since the location of activation in a 
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particular region may vary between samples (or individuals; see Hong et al., 2019), response-

patterns or heterarchical systems may be an alternative method to model differences in location, 

timing, or interactions of neural activation (Haxby et al., 2011; Pessoa, 2017). Moving forward, a 

measure that accounts for the brain being a dynamic and plastic system may be more appropriate 

to speculate about the interaction of neural systems, how these systems change across tasks and 

time, and what the underlying neural signatures of risk-taking may entail. I address this topic 

further in Chapter 6. 

Study Considerations 

Although this study attempts to quantify risk behaviors in developing adolescents, the 

limitation of the analyses is that some of the parameters vary from previous studies. Prior work 

that evaluated risk-taking behaviors and neural activation incorporated cross-sectional and 

longitudinal analyses differed in the definitions of risk and task parameters. For example, in 

cross-sectional samples, while Benningfield et al. (2014) examined the association between 

discounting (as measured by Monetary Choice Questionnaire) and differences in activation to 

big, small, and neutral rewards, Claus et al. (2018) examined the moderating effect of substance 

use on the association between brain activation and risk-taking tendencies during the BART. In 

longitudinal analyses of adolescent risk behaviors, Qu et al. (2015) explored the mediating effect 

of the VS activation on the association between parent-child relationships and risk-taking during 

the BART. In a separate longitudinal analyses, Braams, van Duijvenvoorde, Peper, & Crone 

(2015) examined associations between changes in the NAcc response during a Two Choice task 

(heads or tails) and risk performance as captured by the BART as well as self-report measure of 

the Behavior Inhibition System/Behavior Action System. Not surprisingly, due to variability in 
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definition of risk and parameters, results varied from study to study. In Chapter 3, I will 

elaborate on this variability as it arises within task contrasts, such as the MID.   

 Importantly, this study focused on individual differences among adolescents. Thus, the 

results do not capture age-related change that is represented in the neurodevelopmental models. 

Instead, this study focused on variation across risk profiles, both cross-sectionally and 

longitudinally, to determine whether the variability in risk-taking behavior among adolescents, at 

or near the developmental peak of risk-taking, can be explained by neural activation that has 

been posited by previous models. Although age-related effects were not present here, the age-

related trends may still be evident in the models but the heuristics may not necessarily provide 

the evidence necessary to explain differences between adolescents who do and do not engage in 

risk behaviors, as was previously suggested (Spear, 2000). 

Conclusion 

 This is the first study to our knowledge that examines differences in neural activation 

across real-world risk profiles (from multiple waves) at a focal-age range when risk behaviors peak 

during adolescence. The results in this study demonstrate that the previously hypothesized models 

did not explain the variation in risk profiles and whole brain differences may depend on how risk 

profiles are defined. Moreover, common hot spots of reward related research, such as the VS, do 

not differentiate general risk profiles among adolescents, even though the task elicited a robust 

activation pattern that replicates prior research. The lack of generalizability suggests researchers 

should reassess how individual differences in risk are measured and modeled in the developing 

adolescent brain, and how these measurement differences influence reproducibility of results, 

predictive utility, and interpretation for future interventions.  
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Chapter 4 : Methodological and Interindividual Variability: How Monetary Incentive 

Delay (MID) Task Contrast Maps Vary and Impact Associations with Behavior2 

Due to the hypothesized role of reward systems in wanting, liking, and learning about 

rewarding stimuli, neural measurements of reward processing have become a central focus in the 

study of various psychopathologies and problem behaviors (Berridge & Robinson, 2003; Ernst & 

Luciana, 2015). The Monetary Incentive Delay (MID) task, which was introduced in Chapter 2 

and used in Study 1, specifically, has been frequently used to measure neural substrates of 

approach and avoidance mechanisms during reward processing (Knutson et al., 2000). Univariate 

contrasts that index neural activation during different stages of the MID task, have been 

employed to study dysfunction in reward related processes and various maladaptive behaviors 

(Balodis & Potenza, 2015; Dugré et al., 2018). More recently, the task has been incorporated into 

large scale longitudinal studies (Casey et al., 2018; Schumann et al., 2010) to index 

developmental changes in reward mechanisms and their links with negative behavioral 

outcomes. Despite frequent use of univariate contrasts from this task, there are relatively few 

studies that have examined how methodological choices made by investigators (e.g., researcher 

degrees of freedom), such as contrast choice, may impact their results and interpretations about 

their findings. Therefore, this study aims to clarify the interaction between methodological and 

 
2 Chapter 4 corresponds to Demidenko et al. (2021), published in Brain & Behavior 
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interindividual variability in MID task contrast maps, and how these interactions affect their 

associations with psychological measures including substance use and socioemotional 

functioning. These analytic choices may in part propose an explanation for the variability in 

findings between studies as described in Chapter 1 and Chapter 3. 

The MID task and Theories of Reward Processing 

As of this publication, the MID task has been used in functional magnetic resonance 

imaging (fMRI) research for 20 years and is considered a robust measure of incentive motivation 

(Knutson et al., 2000; Knutson & Greer, 2008). The instrumental-reward task delivers rewards 

that are contingent on performance involving a timed button response (Richards et al., 2013), 

whereby different neural regions are recruited depending on whether the reward is being 

anticipated (i.e., wanted) or consumed (i.e., liked) (Haber & Knutson, 2010).The task was 

designed to localize reward-related brain activation in substance use populations (Knutson & 

Heinz, 2015) and identify correlates of individual differences in positive and negative arousal 

(Wu et al., 2014). A central assumption of the task, inspired in part by the literature on Pavlovian 

conditioning (Pavlov, 1927) and dopamine responses to positive cues (Schultz, 1998), is that 

there are brain regions responsible for anticipating and responding to salient stimuli that have 

positive or negative valence. Projections from the dopamine (DA) rich ventral tegmental area 

(VTA) are thought to enhance activation in striatal regions that respond to reward anticipation 

(e.g., tones or cues that predict incentives) and in mesial prefrontal regions that respond to 

reward outcomes (Breiter et al., 1996; Knutson et al., 2000). The task allows a comparison of 

valence (winning, positive valence, or losing, negative valence, big or small rewards) and 

temporal phase (anticipation or outcome).  
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Activation patterns within anticipation and outcome phases would be expected to align 

with recent theories of reward processing. For instance, the first stage during cue presentation 

(prior to probe, or response phase), may be modeled as a ‘wanting’ phase, eliciting motivation 

(or saliency of the reward/cue). This anticipation phase should evoke robust activation in striatal 

regions as DA has been shown to have robust effects on wanting (or incentive salience) in both 

animals and humans in the ventral striatum (VS) and ventral pallidum (Berridge, 2007, 2019; 

Berridge & Kringelbach, 2015). Conversely, when modeling the outcome phase (or liking), one 

would expect less activation of VS (as only ~10% of neurons in NAcc facilitate pleasure) in 

response to the pleasure of reward. Hedonic ‘hot-spots’ are more likely to be represented in the 

insula and OFC (Berridge & Kringelbach, 2015) which are reported to be modulated by opioid 

receptors (Berridge et al., 2010; Buchel et al., 2018; Korb et al., 2020).  

It is notable that the specific univariate contrasts used to index reward-related 

psychological constructs often vary considerably between studies. In cases of wanting rewards, 

reward anticipation is operationalized using contrasts such as: All Win versus Neutral (Bourque 

et al., 2017; Martz et al., 2018; Xu et al., 2017), Big Win versus Neutral (Cao et al., 2019; Cope 

et al., 2019; Papanastasiou et al., 2018) or Big Win versus Small Win cues (Stevens et al., 2018; 

van Hulst et al., 2015). Likewise, in the case of reward consumption, reward feedback is 

operationalized using contrasts such as: Reward Hit versus Neutral Hit (Chan et al., 2016; Mikita 

et al., 2016; Swartz et al., 2019) or Reward Hit versus Reward Miss cues (Mikita et al., 2016; 

Navas et al., 2018; Richards et al., 2016). The use of different contrasts to probe the same 

reward-related constructs is one major source of variability in the MID literature. 

The vast majority of fMRI analyses using the MID task focus on specific, unmodulated 

phases of the task. However, previous work suggests that modulators based on formal models of 
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reinforcement learning may be important to incorporate into the task to account for individual 

variability not captured in standard subtraction analysis (Bjork et al., 2010; Oldham et al., 2018). 

Although reinforcement learning models have been successfully applied to the MID task (Cao et 

al., 2019), the utility of prediction error is still debated (Berridge & O’Doherty, 2014) and it 

remains to be seen how expected value and prediction error model parameters (positive or 

negative) modulate the signal in the anticipation and outcome phases. Such modulators may be 

critical in accounting for individual level variation that drives performance and learning values 

that may be represented in subcortical and cortical neural signatures (Balleine & O’Doherty, 

2010). As contingencies in the MID are based on performance, and therefore relatively uncertain, 

the task differs from traditional RL paradigms used to investigate prediction-errors. Nonetheless, 

previous work has recommended the use of modulators in the MID task (Bjork et al., 2010; 

Oldham et al., 2018), and recent studies have found that prediction error was positively related to 

activation in the bilateral VS (Cao et al., 2019) and substance use problems in young adults (Cao 

et al., 2020). 

Differential use and Researcher Degrees of Freedom in MID Task 

Although the MID task has been used extensively to study dysfunctional reward 

processing in populations with substance use disorders (Balodis & Potenza, 2015), it has also 

been incorporated into other studies of neurodevelopment and broader psychopathology. In 

addition to the use of predicting health risk behaviors of adolescents (see Chapter 3), various 

versions of the MID task have been used to investigate reward related changes as a function of 

age (Bjork et al., 2010; Dhingra et al., 2019), social vs non-social rewards (Schwartz et al., 

2019), psychosocial characteristics of impulsivity and sensation seeking (Büchel et al., 2017; 

Cao et al., 2019; Joseph et al., 2016), early adversity (Boecker et al., 2014; Gonzalez et al., 
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2016), substance use (Aloi et al., 2019; Cope et al., 2019; Karoly et al., 2015; Nestor et al., 2019; 

Sauder et al., 2016; Swartz et al., 2019), depression (Chan et al., 2016; Colich et al., 2017; 

Landes et al., 2018; Mori et al., 2016), and other psychiatric symptoms (Bourque et al., 2017; 

Lancaster et al., 2016; Maresh et al., 2019; Mikita et al., 2016; Papanastasiou et al., 2018; 

Stevens et al., 2018; Urošević et al., 2016; Veroude et al., 2016; von Rhein et al., 2015; Xu et al., 

2017). Across these studies, a wide range of brain-behavior effects are reported. In addition to 

using different versions of the MID task, the studies cited above often used different univariate 

contrasts to derive activation maps. For example, the contrasts of choice in Chapter 3 was Big 

Win versus Neutral cue anticipation, but how different would the conclusions be if the All Win 

versus Neutral cue anticipation contrasts had been selected, as some prior neurodevelopmental 

studies have done (Heitzeg et al., 2014; Martz et al., 2018)? This raises the question: To what 

extent do analytic methods, such as variation in univariate contrast selection, inform differences 

and/or similarities in conclusions about psychological characteristics? 

Empirical evidence suggests that analytic decisions may result in substantially different 

interpretations of fMRI analyses. Carp (2012) demonstrated that the analytic flexibility in fMRI 

can generate thousands of statistical maps that can be used in subsequent analyses. As shown by 

Botvinik-Nezer et al. (2020), the level of flexibility in task-based fMRI analyses can produce 

different outcomes even when using identical data and hypotheses. Specifically, seventy 

different teams analyzed identical fMRI data with pre-defined hypotheses regarding risky 

decision making. Despite the similarities across data and hypotheses, between-lab differences in 

contrast selection and region of interest specification substantially altered the interpretation of 

results. Thus, without a clear understanding of how analytic decisions impact our results and 
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interpretations, the flexibility of fMRI analyses (e.g., “researcher’s degrees of freedom”) may 

result in an unacceptable number of false positives (Gelman & Loken, 2014).  

In the MID task, it is not well understood how investigators’ analytic choice of contrasts 

(for example, defining anticipation of reward as: $5 Win Cue vs Neutral Cue, or both Win Cues 

($5 & $0.20) vs Neutral Cue) may impact their inferences about the association between the 

neural response to reward and reward-relevant behavior. FMRI activation maps differ as a 

function of reward type/magnitude (Bjork et al., 2010) and recent reviews offer examples of the 

variability across studies in the techniques used to derive such maps (Balodis & Potenza, 2015; 

Dugré et al., 2018; Oldham et al., 2018). Contrast selection is important to the interpretation of 

the reported effect because experimental and baseline conditions are hypothesized to reveal 

cognitive processing components that are reflected in neural activation (Caplan, 2007). Yet, 

different reward contrasts, such as Big Win versus Neutral (as deployed in Chapter 3) or Big 

Win versus Small Win cues, may be used interchangeably in the literature. Combined with 

publication biases, the diverse sets of analyses may contribute to underreported contrasts and 

associations with behavior that may relate to the arbitrary decisions in the analytic pipeline 

(Simmons et al., 2011). Therefore, it is important to quantify how univariate contrast-related 

variation in activation maps within a given sample influences the relative utility of these maps 

for predicting behavioral outcomes. This would demonstrate whether there is a) stability within 

estimates of activation at each phase of the task (anticipation or outcome); b) consistency 

between conceptually-related contrasts in the level of activation in specific regions of interest 

(ROI; such that there is higher correlation within win than between win and loss anticipation); 

and c) whether choice between contrasts that, in theory, probe a shared cognitive process, such as 
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anticipating rewards, alter associations between neural activation and a psychological 

characteristic.  

This would be difficult to deduce from a meta-analysis for several reasons. First, meta-

analyses typically assess spatial overlap between contrasts and/or assess relations between 

different contrast activations and external covariates (e.g., behavioral scales or clinical 

disorders), but do not assess whether activations from these contrasts represent distinct versus 

largely overlapping individual difference dimensions. Second, most empirical studies report a 

constrained number of MID contrasts, while in some cases making post-hoc justifications for 

why a particular contrast, or set of contrasts, was included in the paper. Hence, conclusions from 

meta-analyses obfuscate the influence of researcher degrees of freedom linked to contrast choice 

and selective reporting. 

Current Study 

Previous reviews of the MID task have evaluated general utilization of the task in studies 

of reward responsiveness (Lutz & Widmer, 2014), between-study, temporal, and phase-related 

differences in MID activation effects (Oldham et al., 2018), dynamics of reward versus loss 

(Dugré et al., 2018), and influences of substance use (Balodis & Potenza, 2015) and psychosis 

profiles (Radua et al., 2015) on activation differences. However, the extent to which contrast 

choice contributes to variability in activation maps, impacts the measurement of behaviorally 

relevant individual difference dimensions, and alters conclusions about associations between 

neural responses and behavior, is still unclear. The current study leverages a community sample 

of late adolescents/emerging adults to examine variability across various univariate contrast 

activation maps in the MID task. 
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To delineate variability across contrast types (which is difficult to evaluate between 

samples/studies), we performed multiple common analyses that focus on the anticipation, 

outcome, and prediction error parameters, with data from the same individuals. Due to the a) 

prominent role of motivation (or anticipation of reward) in this task; b) the critical role of 

dopamine in anticipation (“wanting”) and not feedback (“liking”) (Berridge & Kringelbach, 

2015); c) difficulty to temporally differentiate the outcome phase (Bjork et al., 2010); and d) the 

drop in power during the outcome phase as each anticipatory trial is split into “hit” or “miss” 

trial outcome, 50% of contrasts focused on the anticipation phase of the MID task. These 

activation maps are thresholded to compare the degree to which statistical maps from ten 

contrasts a) vary within a phase (for example, anticipation Big Win > Neutral contrast) and b) 

vary between phases of the task (for example, anticipation vs outcome). The degree of variability 

is assessed at the individual- and group-level to assess the general pattern in overlap of active 

voxels between two given contrast’s activation maps. Then, mean signal intensity values for key 

regions from previous reviews, such as the insula, mPFC, OFC, and VS (Balodis & Potenza, 

2015; Dugré et al., 2018; Oldham et al., 2018) are extracted to evaluate whether activation in 

these ROIs from different contrasts index convergent or divergent dimensions of cognitive 

processing (such as reward anticipation). Finally, correlations between these ROI activations and 

self-reported measures are assessed to determine the impact of contrast choice on the prediction 

of psychological measures including substance use, psychosocial, and socioemotional 

functioning.  

 While meta-analyses have proposed region specific activations for positive and negative 

values across fMRI tasks (Bartra et al., 2013), a recent review of the MID yielded overlapping 

networks across positive and negative values (Oldham et al., 2018). Given the within-sample 
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comparison of contrasts, instead of testing specific hypotheses within a null hypothesis 

significance test framework in these analyses, similarities and differences are presented as an 

index of overlap (Jaccard’s similarity coefficient), and statistical association across ROIs and 

behavior (Pearson’s r coefficient; heat maps of r point estimates for inter-ROI relationships and 

posterior distributions of r values for associations of ROIs with behavioral covariates).  

The broad goal is to improve the field’s understanding of how and where there is within-

task variability as a function of MID task contrast choice, and, in doing so, to inform the 

interpretation of existing MID studies and better guide researchers’ a priori decisions about 

which specific contrasts on which the hypotheses are based in future studies. This exploratory 

analysis can provide inferences about how contrast selection, which typically precedes the 

reporting of results and increases researcher degrees of freedom, affect the activation maps. Due 

to the exploratory nature of the analyses, the background, methods, and analytic plan were 

preregistered on the Open Science Framework (https://osf.io/xh7bz).  

Based on neurodevelopmental work on substance use, externalizing and sensation 

seeking, several brain-behavior hypotheses are proposed based on how they may fit into a 

nomological network. Neurodevelopmental studies (as discussed in Chapter 1 and Chapter 3) 

converge on the hypothesis that adolescence is marked by the motivation towards rewarding 

stimuli due to changes in reward circuitry (Galván, 2010). Differences in reward circuitry are 

believed to result in reactivity to novel and rewarding stimuli, which leads to engagement in 

substance use behaviors. However, given that not all adolescents develop substance use 

problems, it is hypothesized that externalizing symptoms is another pathway to substance use 

problems (Hardee et al., 2018). Genetic variants that are associated with externalizing 

psychopathology have been shown to be positively related to VS activity during the anticipation 
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of rewards (Heitzeg et al., 2014). In the same line of work, the VS activity is reported to 

positively relate to subsequent alcohol problems. Furthermore, sensation seeking is a 

subcategory of externalizing that is also considered as a pathway to substance use behaviors 

(Hardee et al., 2018). Drawing across these three psychological characteristics and their 

interrelations, it is reasonable to hypothesize that activation in key reward circuitry, such as the 

VS, during the anticipation of reward versus neutral cues will be positively related to these 

characteristics. While the effects may be strengthened or attenuated across other anticipatory 

reward contrasts, it is expected that the direction of the effects should be comparable across these 

psychological characteristics. That is to say, brain-behavior correlations between VS and 

substance use, externalizing, and sensation seeking should be consistent in the direction of the 

effect. It is well understood, that this point-null, or non-zero hypothesis, would be weak support 

for the aforementioned postulates that fill the nomological network (Grahek et al., 2021; Meehl, 

1967). However, this work would be a first pass at attempting to test these hypotheses that would 

lay the groundwork for more precise tests of the theory. 

Methods 

Participants in this study are a Phase 2 subsample (N = 104; MAge = 19.3; SDAge = 1.3; 

57% Female; 71% White, 14% Black, non-Hispanic, 6% Hispanic/Latinx) of adolescents from 

the Adolescent Health Risk Behavior (AHRB) study, as described in Chapter 2. The bulk of code 

used in the subsequent analyses have been made available online 

(https://github.com/demidenm/MIDContrasts). 

Self-Reported Psychological Measures 

Substance Use. Substance use behaviors (marijuana and alcohol) are assessed via the item: 

“On how many occasions (if any) have you [used marijuana or hashish/had any alcoholic 
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beverage to drink—more than just a few sips] during the last 12 months?” Responses are 

reported on a seven-point scale ranging from 1 = “0 occasions” to 7 = “40 or more occasions”. 

Substance use items are identical to those used in the annual, national Monitoring the Future 

surveys (Johnston et al., 2019). Marijuana and alcohol scores were z-scored, and then a 

substance use aggregate measure was created by averaging the z-scored items across Wave 1 – 

Wave 3.  

Impulsivity. The Barratt Impulsiveness Scale-Brief (BIS-B) is an 8-item, unidimensional 

measure of impulsiveness (Steinberg et al., 2013) based on a reduced item set obtained from the 

Barratt Impulsiveness Scale (BIS), 11th revision. Items were rated on a 4-point Likert-type scale: 

rarely/never (1), occasionally (2), often (3), and almost always/always (4). A mean score was 

computed (range: 1 – 4), higher scores indicated lower self-reported impulsivity (α = .79). BIS-B 

items were z-scored and then aggregated by averaging scores across Wave 1 – Wave 3. 

Sensation Seeking. The Brief Sensation Seeking Scale (BSSS) is an 8-item self-report 

measure of sensation seeking (Hoyle et al., 2002) based on a reduced item set of the Zuckerman 

Sensation Seeking Scale (SSS). The items measure dimensions of sensation seeking: experience 

seeking, boredom susceptibility, thrill and adventure seeking, and disinhibition. Responses were 

on a 5-point Likert-scale: strongly disagree (1), disagree (2), neither disagree nor agree (3), agree 

(4), and strongly agree (5). A mean score was computed (range: 1–5), with higher scores 

indicated higher self-reported sensation seeking (α = .78). BSSS items were z-scored and then 

aggregated by averaging scores across Wave 1 – Wave 3. 

Socioemotional problems. Socioemotional problems were assessed using the Youth Self-

Report (YSR; Achenbach & Rescorla, 2001) to characterize externalizing and internalizing 

problems. The YSR is a widely utilized, 112-item self-report measure assessing emotional and 
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behavioral difficulties in 11-18-year-olds. The YSR includes two broadband scales: internalizing 

problems (e.g., withdrawn/depressed) and externalizing problems (e.g. attentional 

deficit/hyperactivity problems, oppositional defiant problems). Raw scores are normalized to 

provide a common metric with higher scores indicating greater psychopathology. Validity and 

reliability of the YSR broadband, syndrome, and DSM-oriented scales are well documented 

(Achenbach & Rescorla, 2001; Achenbach & Rscorla, 2003) with adequate internal consistency 

(α = .70 - .86) and test-retest reliability (α = .67 - .88). An aggregate score was created from 

population-standardized z-scores for internalizing and externalizing by averaging scores across 

Wave 1 – Wave 3. In the present study, Cronbach’s alphas of .91 and .88 were obtained for the 

internalizing and externalizing scales, respectively. 

fMRI Task 

To evaluate the neural activation of reward processing, the MID task reward (Knutson et 

al., 2000) was used to model the neural signatures of the anticipation of monetary reward (Bjork 

et al., 2010). For more information on the design, please refer to Chapter 2. As noted in Chapter 

2, participants were explicitly told that their performance on the task during the scan (for example, 

$5 Win Cue was associated with an opportunity to win $5 and a $5 Lose cue was associated with 

an opportunity to not lose $5) would be associated with the compensation they can get for their 

cumulative earnings during the MID (Maximum $30).  

The modified version in this study is currently being employed in the national Adolescent 

Brain Cognitive Development (ABCD) study to measure the development of adolescent reward 

processing (Casey et al., 2018). Identical to the task described in Casey et al. (2018), the task in 

this study consists of three phases: anticipation, probe and outcome (that is, feedback). A key 

difference between the current version of the MID (and the one used in the ABCD study) and 
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that used in the IMAGEN sample (Cao et al., 2019), is the IMAGEN study only includes Win 

and Neutral trials, excluding Loss trials. Furthermore, in the IMAGEN, study performance was 

rewarded with “points” that were exchanged for M&M’s/candies. 

fMRI Data Acquisition 

FMRI data was acquired using the same protocol as described in Chapter 2. 

Analyses 

fMRI Data Analyses 

FMRI data were preprocessed using the same sequences of steps that are described in 

Chapter 2.  

Subjects were to be excluded from analyses if a subject’s mean framewise displacement 

(FD) values exceeded > .9 within any given run. All subjects mean post FD were < .9, thus there 

were no exclusions on this criterion. We focused on commonly used contrasts (Table 4.1) from a 

recent review (Oldham et al., 2018) and those from the review of studies using the MID 

(PubMed 2015 – 2019; see Appendix C, Table C1), such as reward anticipation (such as Big Win 

or Lose ($5), Small Win or Lose ($0.20) versus Neutral anticipation, Win outcome (such as $5 or 

$0.20) versus Neutral outcome, loss conditions (such as $5 or $0.20) and alternative contrasts 

Table 4.1. Contrast Modeled in the Monetary Incentive Delay Task 

Contrasts Phases of MID Modeled 

Contrast 1 (A1) - Ant Win (W; $5 & $0.20) > Neutral (N) (W>N) 

Contrast 2 (A2) - Ant Big Win (BW; $5) > Neutral (N) (BW>N) 

Contrast 3 (A3) - Ant Big Win (BW; $5) > Small Win (SW; ($0.20) (BW>SW) 

Contrast 4 (A4) - Ant Big Win (BW; $5) > Implicit Baseline (BW>IB) 

Contrast 5 (A5) - Ant Big Loss (BL; $5) > Neutral (N) (BL>N) 

Contrast 6 (F6) – Out Big Win (BW; $5) Hit > Neutral (N) Hit (BWH>NH) 

Contrast 7 (F7) – Out  Big Loss (BW; $5) Hit > Neutral (N) Hit (BWH>NH) 

Contrast 8 (P8) - PE Expected Value – BW & SM Modulated (EV) 

Contrast 9 (P9) - PE Positive Prediction Error (PE) - BW & SM Modulated (PPE) 

Contrast 10 (P10) - PE Negative Prediction Error (PE) - BL & SL Modulated (NPE) 
Ant = Anticipation; Out = Outcome; P = Prediction Error; Individual contrasts modeled in FSL 
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that may be comparable to test for similarities within a group, for example, win or big win 

conditions. It should be noted that using anticipation vs outcome phase yields estimates that are 

often powered differently, as a function of the target accuracy of the task (60%), leading to 

individual variation in hit/miss trials. Furthermore, since the outcome phase is often difficult to 

deconvolve, or the separation from the spatiotemporal hemodynamics of proximal task events 

(Hinrichs et al., 2000), in the task, and modeled in various ways, we include one type of outcome 

contrast focusing on gain and loss, as it is not a central focus of these analyses and often not the 

focus in contrasts in the literature. 

First-level analyses were performed by using FEAT. Time-series statistical analysis was 

carried out using FILM with local autocorrelation correction (Woolrich et al., 2001). Similar to 

other studies (Cao et al., 2019; Hagler et al., 2019; Lamm et al., 2014), both anticipation and 

outcome events were modeled (15 explanatory variables) and modulated prediction error signal 

of EV, PPE, and NPE, in addition to six motion parameters (translations and rotations in x, y, z 

directions) and the derivatives of the motion parameters. We included prediction error 

explanatory variables based on a recent review suggesting the MID is considered to be an 

implicit reinforcement learning (RL) paradigm (Balodis & Potenza, 2015), and others 

recommending use of modulators (Bjork et al., 2010; Oldham et al., 2018). However, as noted in 

the introduction, the MID is not a true RL design but only a proxy. To incorporate these 

recommendations, the RL modulators included: Expected Value (EV) and Prediction Error (PE). 

To derive estimates of EV and PE for this task, the behavioral data were modeled for each 

participant (100 trials – trial-by-trial) to calculate parametric modulators (EV for anticipation; PE 

for Received Reward (RR); pGain = probability gain,  = learning rate (0.7)). Similar to Cao et 
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al. (2019), we used a RL model (equation 2) trained by reward cues and outcomes (Rescorla & 

Wagner, 1972): 

𝐸𝑉𝑡 =  𝑝𝐺𝑎𝑖𝑛𝑡  ×  𝐶𝑢𝑒𝑡 

 𝑃𝐸𝑡 =  𝑅𝑅𝑡  ×  𝐸𝑉𝑡  (4.1) 

𝑝𝐺𝑎𝑖𝑛𝑡+1 =  𝑝𝐺𝑎𝑖𝑛𝑡 + ( ×
𝑃𝐸𝑡

𝐶𝑢𝑒𝑡
)  

 

To average across the two runs that are used in subsequent stages, a second-level model 

was defined for each participant for each of the ten contrasts using fixed effect analysis in FEAT. 

A group-level analysis was performed using FMRIB’s Local Analysis of Mixed Effects 

(FLAME 1) to generate a mean level activation across subjects for a given contrast. Considering 

the large array of contrasts that are modeled, abbreviations from the first column of Table 2.1 are 

referred to when referencing contrasts henceforth.  

To provide a direct observation of the BOLD signal and signal-to-noise information of 

subcortical regions, we include complementary post-hoc analyses evaluating raw BOLD signal. 

We extract the mean signal for VS and mPFC in the timeseries for VS and plot it for 15 TRs. 

Likewise, for cortical mPFC and subcortical VS we extract and present the distribution of the 

signal-to-noise ratios (SNR) for each individual and run to confirm that SNR is within an 

acceptable range. 

Individual Level and Group Estimates  

To compare overlap between thresholded activation maps for each contrast at the 

individual and group level, we thresholded activation maps produced by the second level and 

group level analyses. For the individual level, subjects' second level maps (zstat) for each 

contrast are thresholded at p < .01 (z = 2.3) and group level contrasts are thresholded at p < .001 

(z = 3.1). We selected a lower threshold for individual maps due to more variability in estimates 

within an individual map that may substantially alter the Jaccard’s Similarity Indices. These 
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thresholded maps are binarized (using fsl -bin) and compared to derive Jaccard’s Similarity 

Indices (described below). 

Calculating Similarity 

One of the aims for this study is to compare similarity, or spatial overlap, between 

different activation maps of the MID task within individuals and at the group level. This is to 

provide an easy-to-interpret index of how similar (or different) activations are across contrast 

types. Similar to a previous work (Grady et al., 2020), we calculate a percent overlap using 

Jaccard’s similarity index (JSI) (Maitra, 2010) between contrasts. The JSI calculates the number 

of voxels that overlap across two thresholded statistical maps. One of the major advantages of 

using the JSI is that the percent overlap results obtained from this technique are intuitive and 

physically interpretable (Maitra, 2010).  

As we used JSI point estimates to evaluate activated voxels across different thresholded 

contrasts, we propose a bootstrapping based confidence interval calculation for identifying the 

95% confidence intervals of the overlap measures across all subjects in this sample (DiCiccio & 

Efron, 1996). The bootstrapped JSI would provide reliable estimates of the range and shape of 

the distribution of percent overlap and a physical interpretation of the JSI obtained across all of 

the subjects. Although the thresholded maps are impacted by power in the design, similarity can 

be assessed within phases, such as anticipation or outcome, given the number of trials is 

comparable within each phase (with the exception of the all win contrast). 

Region of Interest and Behavioral Associations 

Central voxel coordinates from Neurosynth.org for a priori ROIs are used to create 

10mm-diameter spheres: bilateral insula, OFC, VS, mPFC, and ACC, (see Appendix C for table 

with MNI coordinates, in Table C2, and spheres on MNI Glass Brain, in Figure C1). For each 
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ROI, the voxels from each contrast mask (using z-statistics produced by Feat Second Level) are 

averaged to create a mean signal intensity value and extracted using fslmeants. Correlations 

(point estimates of Pearson’s r) across ROIs were analyzed in R version 3.6.1 (R Core Team, 

2019) and were visualized using a heatmap.  

ROI mean level signal intensity values across ten contrast types (described above), were 

used to assess associations between neural activity and self-reported aggregate z-scores of a) 

substance use, b) sensation seeking, c) impulsivity, d) externalizing, and e) internalizing 

problems. Bayesian correlation analyses implemented in JASP (JASP Team, 2019; Ly et al., 

2018) were used to estimate posterior distributions for the Pearson’s r value of each predictive 

association. Default, non-informative priors (uniform distributions spanning the values from -1 

to 1) were used for all correlation analyses. Median values of the posterior distribution, which 

indicate the most likely r value, and 95% credible intervals, which represent the lower and upper 

bounds of the range which has a .95 probability of containing the r value, are reported below to 

quantify the strength of, and uncertainty about, these predictive associations. As analyses are not 

intended to be formal tests of hypotheses, we refrain from reporting either Bayes factors or 

frequentist p-values.  

Bayesian analyses are used here to give a more precise estimate of the data and report a 

confidence interval that is directly interpretable. Here a uniform prior was used because there 

was no prior belief about probabilities regarding where the effect may lie. In other words, I posed 

directional hypotheses based on prior belief about the direction of the parameter estimates, but I 

did not constrain the a priori range of effects (Kruschke & Liddell, 2018; Serlin & Lapsley, 

1985). Hence a uniform prior was used, where there was an equal probability of the effect being 

between 0 and 1. Bayesian correlations with a uniform prior provide a more precise estimate of 
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the r and surrounding 95% that is easily interpretable (Cleophas & Zwinderman, 2018). 

Specifically, the intent of this project is to interpret what is the most probable effect across the 

brain-behavior measures. Unlike tradition null-hypothesis frameworks where the confidence 

interval is related to the p-value, Bayes analysis allows for interpreting what is the most probable 

estimate in the data is (Kruschke & Liddell, 2018) and the confidence interval around the most 

likely r indicates a more precise range of where the estimated r value would fall with 95% 

confidence (Cleophas & Zwinderman, 2018). 

Results 

Demographics, Task Behavior and General Overview 

The demographic characteristics for the full sample (n = 104) are provided in Chapter 2, 

Table 2.3. For the anticipation phase (A1-A5) and prediction error models (P8-P10), all 104 

individuals were included (cf. Table 2.1 for contrast descriptions). However, for the feedback 

phase (F6 & F7), four subjects were excluded due to underpowered conditions resulting in 

anomalies in the estimated [First & Second Level] statistical maps, resulting in N = 100 for the 

feedback contrasts. The behavioral performance statistics from the MID task are summarized in 

Appendix A, in Table A1-A2 and in Figure A2-A3. Although the average accuracy for the task, 

57%, was below the targeted 60%, as noted in Chapter 3, the Big Win ($5) and Big Loss ($5) 

conditions were at or above the target, 62% and 60% accuracy, respectively. As expected, 

accuracy was lower (48%) and more variable during the neutral condition. Mean response times 

are not reported, as the E-Prime data was not collected for incorrect (‘miss’) trials during the 

MID task. 
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 JSI similarity 

matrices and activation 

maps are displayed in 

Appendix C, in Figure 

C2, and Figure 4.1, 

respectively. Associations 

between individual 

differences in ROI mean-

level activation from each 

contrast are reported at 

https://osf.io/a5wem/ and 

in Figure 4.2 and are 

selectively reported 

below for clarity. 

Correlations between ROI 

activation estimates and 

behavioral criterion 

measures are reported in 

Figure 4.2 (subset of four 

regions, five anticipatory 

contrasts across the five 

Figure 4.1. Mean level 

activation and deactivation 
maps for A1-A5 & O6-O7, 

one-sample t-test. 
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measured behaviors; full figure reported in Appendix C, Figure C3) and available at 

https://osf.io/d9k3v/. There were four notable patterns present in these results: 1) Win and Loss 

anticipation demonstrate comparable striatal/insula activation and task-negative deactivation (see 

NeuroVault statistical map: https://neurovault.org/images/359858); 2) outcome phase contrasts 

consistently imply deactivation of striatal regions (potentially due to artifact related to signal 

spill-over); 3) the Big versus Small Win contrast appears less meaningful than, and unrelated to, 

other anticipation phase contrasts; and 4) individual differences in ROI activation, across 

different contrasts, demonstrate relatively weak associations with behavior. The aforementioned 

are expanded in greater detail below. Notably, the activation maps of the prediction error models 

were extremely variable in activation and relatively weak in their associations with mean ROI 

activation from other contrasts, they are not discussed below. However, results for all contrast 

maps are available online and results presented in Figure 4.2 for and in Appendix C, in Figure 

C3. 

Big Win and Loss Anticipation Engage Similar Neural Systems 

The thresholded masks (p < .001) of A2:BW>N and A5:LB>N group maps had a Jaccard’s 

similarity Coefficient of .16 (Appendix C, in Figure C2). This similarity is also apparent in the 

group level activation maps, demonstrated by shared patterns of activation (Figure 4.1). 

Although the peak left striatal activation in the A2:BW>N is greater than in the A5:BL>N (based 

on magnitude of z-statistic in activation maps), in their direct comparison the difference is 

relatively small (https://neurovault.org/images/359858/). The greatest difference between these 

two contrasts was increased activation in the mPFC in A2:BW>N as compared to A5:LB>N. 

Furthermore, contrasts A2:BW>N and A5:BL>N show similar activation of supplementary 

motor area (SMA), the insular cortex, thalamus and cerebellar regions. Similar to the shared 
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positive activation of these contrasts, they, too, share comparable deactivation in the task-

negative, angular gyrus, an effect that is not seen in the A3:BW>SM (Figure 4.1). This activation 

in the striatal regions and deactivation in task negative regions is comparable to a recent meta-

analysis (open source activation maps: https://neurovault.org/collections/4258/) showing similar 

robust patterns of activation and deactivation in both win and loss anticipation (Wilson et al., 

2018).  

Figure 4.2. Pearson correlation matrix of 10 contrasts by 8 ROI’s.  
Color bar represents the associated Pearson’s r value between the 10mm ROI across 10 contrasts. See Table 4.1 

for associated contrasts information. R = Right; L = Left; VS = Ventral Striatum; OFC = Orbitofrontal Cortex; 

mPFC = media Prefrontal Cortex; ACC = Anterior Cingulate Cortex 
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Consistent with these similarity analyses in group level activation, correlations of mean 

signal intensity values from ROIs across A2:BW>N and A5:BL>N (Figure 4.2, full matrix 

available at https://osf.io/a5wem/) also suggested that neural responses from these contrasts 

index similar individual difference dimensions. Positive correlations in neural responses between 

the contrasts were identified (Figure 4.2) in the anterior cingulate cortex (ACC; r = .58), medial 

prefrontal cortex (mPFC; r = .26), bilateral Insula (Right: r = .57; Left: r = .44), bilateral 

orbitofrontal cortex (OFC; Right: r = .43, Left: r = .50), and bilateral ventral striatum (VS; 

Right: r = .57, Left: r = .49). The similarity between A2:BW>N and A5:BL>N is consistent with 

a recent meta-analyses (Oldham et al., 2018). 

Reward and Loss Outcome is Paradoxically Linked to Striatal Deactivation  

Contrary to past work focused on striatal activation during win conditions, the contrasts 

during the outcome phase, F6:BWH>NH & F7:BLH>NH, demonstrated a deactivation of the 

striatal regions. Based on the Jaccard’s similarity Coefficient, .34, the regions that were 

deactivated were comparable in F6:BWH>NH and F7:BLH>NH (Figure 4.1 and Appendix C, in 

Figure C2). Although the mean level deactivation of the striatal region in the F6:BWH>NH 

contrast was relatively weak (t = -2.68), in the F7:BLH>NH condition the deactivation was 

relatively robust (t = -5.8). As a control comparison in change of activation, we reference the 

angular gyrus, which has a relatively weak mean level activation in both F6:BWH>NH and 

F7:BLH>NH, demonstrating that there is a more profound change in activation in the striatal 

region between the anticipation and outcome phase (see Figure 4.1). In a direct comparison of 

F6:BWH>NH & F7:BLH>NH (https://neurovault.org/images/359858/), F6:BWH>NH 

demonstrates greater activation in the left parahippocampal (z = 4.3) and right nucleus 

accumbens (z = 3.4). These two feedback contrasts demonstrated some associations (Figure 4.2) 
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in individual differences analyses of mean signal intensity in the ACC (r = .33), mPFC (r =.55), 

and bilateral VS (Left r = .45; Right r = .46). Notably, this deactivation is likely to be a function 

of the spill-over from the anticipatory phase given the short interval between anticipation and 

outcome stimuli, as can be observed in the BOLD signal change in Appendix C, in Figure C5. 

Anticipation Big Win versus Small Win Contrast Is Distinct from other Anticipation Contrasts 

Despite its variable use in the literature, A3:BW>SM was unique when compared to 

other contrasts in anticipation phase (Figure 4.1). The A3:BW>SM had the lowest Jaccard 

Coefficient with other contrasts modeling the anticipation phase, <.02 (Appendix C Figure C2). 

Further, in the group-level activation, compared to A1:W>N, A2:BW>N, and A5:BL>N 

anticipation phases, the A3:BW>SM had the weakest group-level striatal and insular activation, 

and no task-negative activation. The task-negative activation difference is unique, as all of the 

other contrasts demonstrate this profile of task-negative activation in the anticipation phase.  

However, with respect to individual differences in ROI mean-level activation, depending 

on the contrast, there are similarities between A3:BW>SM and other contrasts. For example, the 

mean-level activation between A1:W>N and A3:BW>SM is negligible: ACC (r = .15), mPFC (r 

= -.05), bilateral insula (Left r = .07; Right r = .08), bilateral OFC (Left r = .02; Right = .06) and 

bilateral VS (Left r = .06; Right = .15). Yet, there is a strong association between A2:BW>N and 

A3:BW>SM in the ACC (r = .64), mPFC (r = .65), bilateral insula (Left r = .63; Right r = .58), 

OFC (Left r = .60; Right r = .62), and bilateral VS (Left r = .59; Right = .66). Despite the 

similarity discussed between A2:BW>N and A5:BL>N above, there is a negligible association 

between ROI’s in A3:BW>SM and A5:BL>N (r = -.11 to .19). This suggests that the similarities 

between A2:BW>N and A3:BW>SM may arise from the shared Big Win cue in the subtraction. 
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Across Contrasts, Activations Show Only Weak to Negligible Correlational Relationships with 

Behavioral Criterion Measures 

 The aggregated scores for the self-reported psychological and behavioral characteristics 

in this sample were associated in the direction expected (Appendix C, in Table C3). More 

specifically, there was a strong positive association between internalizing and externalizing 

problems (r = .51), sensation seeking and impulsivity (r = .44), externalizing and substance use 

(r = .51), and substance use and sensation seeking (r = .38) and impulsivity (r = .24).  

Figure 4.3 shows a subset of correlational relationships between ROI activation estimates 

and behavioral criterion measures (for complete figure, see Appendix C Figure C3). It shows 

posterior medians and 95% credible intervals (CIs) of Pearson’s r values, which represent the 

most likely r value and range in which there is a .95 probability that the r value falls, respectively 

Figure 4.3. Forest plots displaying the most likely Pearson’s r value (black diamonds) and 95% Bayesian 

credible internal (black lines) for correlation relationships between ROI activation estimates from each 

anticipatory contrast and behavioral criterion measure.  
Red, blue, and green lines denote “small” (r = .10), “moderate” (r = .30), and “large” (r = .50) effect sizes. 1-5 = 

Five contrasts listed in Table 4.1. L = Left; R = Right; Ins = Insula; VS = Ventral Striatum; SubUse = Substance Use 

composite measure; BIS-B = Barratt Impulsiveness Scale-Brief; BSSS = Brief Sensation Seeking Scale. Behavioral 

items are z-scored. 
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(full results available at https://osf.io/d9k3v/; complimentary bootstrapped values are provided at 

https://osf.io/dr5y2/). Although the interpretation of individual associations is complicated by the 

large number of tests reported in Appendix C, in Figure C3, several general patterns are 

apparent. First, 72% of the most likely r values fell at or well below the threshold for what is 

typically considered a “small-sized” effect, |r| = .10 (Appendix C, in Table C4). Similarly, the 

bulk of most CIs also fell in this general range. In fact, there was not a single association for 

which the most likely r value indicated a “moderately-sized” effect (|r| >= .30), and few CIs 

overlapped with this “moderate” criterion. It is also notable that only a handful of CIs (less than 

5%) did not overlap with 0, suggesting that even these cases, which might be interpreted as 

showing promising evidence for a non-negligible effect, are likely due to multiple testing rather 

than reflecting true relationships. Indeed, as typical Bayesian CIs do not take into account the 

probability that the null (r = 0) is true (van den Bergh et al., 2019), the effect size estimates we 

report are, if anything, likely to be overestimates. Hence, consistent with other emerging findings 

from large, diverse neuroimaging data sets (Nees et al., 2012; Paulus et al., 2019; Paulus & 

Thompson, 2019), these patterns of results suggest that direct associations of MID task 

activations with relevant behavioral criterion measures are less robust than previously thought, 

and that even if these associations exist, effect sizes are likely to be small.  

Second, coupled with the small effects, decisions in contrasts can weaken or alter the 

brain-behavior results and thus the underlying interpretation. For instance, as can be observed in 

Figure 3, the median r for the relation between anticipatory win activation in the ventral striatum, 

and sensation seeking flips from negative to positive between A1:W>N (Right r = -.10) and 

A3:BW>SW (Right r = .12). This example, and the high degree of variability in median r 

between ROI and behaviors presented in Figure 3, indicates that caution should be taken when 
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selecting contrasts as they may invariably change interpretations even in the context of these 

small effects. 

Post-Hoc Analyses 

In light of prior meta-analytical comparisons of base contrasts within individuals, such as 

gain versus outcome phases (Knutson & Greer, 2008; Wilson et al., 2018), we compared these 

differences in the anticipation phase, A2:BW>N versus A5:BL>N; outcome phase, 

F6:BWH>NH versus F7:BLH>NH; win anticipation versus win outcome, A2:BW>N versus 

F6:BWH>NH; and loss anticipation versus loss gain outcome, A5:BL>N versus F7:BLH>NH. 

We provide these for reference online https://neurovault.org/collections/JVXLTPHC/. Notably, 

in a direct comparison of the A2: BW>N versus A5: BL>N signal we find no substantial 

differences in VS or Insula as a function of reward and loss. 

Due to recent concerns that some multiband sequences may alter the BOLD signal in 

subcortical regions (Risk et al., 2018), signal-to-noise ratios and plotted time-series from the VS 

to provide a direct observation of signal for each anticipation condition are provided. With 

Figure 4.4. Direction observation of BOLD signal locked to cue onset for Big Win (Lgreward) and 

Neutral (Triangle) for 15 TRs (12 s) after cue onset.  
mPFC = medial Prefrontal Cortex; VS = Ventral Striatum; Error bars = bootstrapped 90% confidence interval.  

p < .05*; p < .01**; p < .001*** 
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respect to the direct observation of the BOLD signal, we find appropriate separation in 

anticipation of Big Win and Neutral cues (Figure 4.4) and signal-to-noise ratio in the VS region 

(Appendix C, in Figure C4). With respect to the anticipation phase, we see the expected peak in 

BOLD separation between Big Win and Neutral cues around 7-8seconds after cue onset (Figure 

4.2), such that this separation is significant from TR 6 (p < .01) to TR 11 (p < .001) in the Right 

VS, and TR 6 (p < .001) to TR 10 (p < .001) in the Left VS, before the undershoot at TR 14. This 

separation, as expected, does not occur in the mPFC. The nature of the anticipation signal 

bleeding into the feedback phase is apparent in the bilateral VS when the anticipation cues are 

locked to the feedback phase (Appendix C, in Figure C8).  

Discussion 

In this study of the MID task, we performed an evaluation of similarities and differences 

between commonly used univariate contrasts, focusing on spatial overlap, individual differences 

in mean ROI signal intensity, and correlations between ROI activations and behavioral criterion 

measures. After identifying ten candidate contrasts that have precedent in the previous literature, 

this study provides the first detailed within-study comparison of these common MID task 

contrasts. The findings demonstrate similarity between positively and negatively arousing 

anticipation cues, apparent deactivation of striatal regions during the outcome phase, 

dissimilarity between Big Win > Small Win anticipation and other anticipation effects, and 

relatively weak associations between MID task activations and self-reported behaviors. These 

findings are generally consistent with previously reported MID task-specific conceptual findings 

(Bjork et al., 2010; Oldham et al., 2018) and also have implications for task-general theoretical 

problems (Hedge et al., 2018; Price & Friston, 1997).  
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 A relatively similar pattern of group-level activation was observed during the Big Win 

anticipation and the Big Loss anticipation phase. A direct comparison of Big Win and Big Loss 

anticipation phases revealed negligible differences between the activation in the NAcc and insula 

in the group level activation maps, and only a small Win-related increase in activation in the 

mPFC. This similarity in activation profiles during anticipation of both positive and negative 

stimuli is consistent with a recent meta-analysis demonstrating that approach and avoidance 

behavior have considerable overlap in activation (Oldham et al., 2018), and other studies 

reporting similar activation patterns in young adults (Joseph et al., 2016; Murray et al., 2020) and 

populations at risk to substance use (Bjork et al., 2008a). The similarity in the neural activation 

to the anticipation of Big Win and Loss cues is also consistent with the hypothesis that certain 

regions may display roughly equivalent activation at the extreme ends of value (Bartra et al., 

2013). This may suggest alternative cognitive processes (such as attention or motivation) that 

may be involved during the anticipation phase (Abler et al., 2006; Breckel et al., 2011; Krebs et 

al., 2012; Schouppe et al., 2014), as the NAcc may facilitate detection and attention to cues 

(Peters et al., 2011) as it serves as a limbic-motor interface that converts signals into action 

(Floresco, 2015). The overlap between win and loss group-level activation suggests the 

activation maps are more comparable than different which may correspond to shared cognitive 

processing (Price & Friston, 2005).  

  There was one notable instance, however, in which the analysis revealed dissimilarity 

between contrasts in the anticipation. Although the Big Win versus Small Win contrast activated 

striatal regions, the contrast demonstrated a limited association with other contrasts in the 

anticipation phase. Specifically, in group-level activation, there was much greater similarity 

between Big Win versus Neutral and Big Loss versus Neutral contrasts than the similarity 
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between Big Win versus Neutral and Big Win versus Small Win contrasts. Given that the MID 

task activates a broad set of regions involved in effortful initiation and anticipation (Suzuki et al., 

2020), subtraction of cues with lower effort and greater variability (e.g., neutral stimuli) from 

higher effort and lower variability (e.g., Big Win), versus with those with slightly more effort 

(e.g., Small Win), may change the amount of preparatory signal subtracted from the contrast 

map. It is likely that beyond the cognitive process of ‘wanting’, there are co-occurring cognitive 

processes in these cues which may violate assumptions when using subtraction to infer reward 

sensitivities (Caplan, 2007).  

The comparison of positively and negatively valenced reward feedback revealed 

widespread deactivation throughout the brain during the outcome phase. These patterns were 

counter to a recent meta-analysis, using activation likelihood estimation (based on nine studies), 

that reported increased activation in reward outcome (Oldham et al., 2018). Oldham et al. (2018) 

reported increased activation during the outcome phase in the reward hit versus reward miss or 

reward hit versus neutral contrasts (see Table 2 in Oldham et al., 2018, p. 3404). However, the 

deactivation results differed from Oldham et al. (2018) in that these analyses focused on the 

reward hit versus neutral hit feedback contrast. The observed deactivation of the reward hit 

versus neutral hit contrast during the feedback phase is likely the spill-over BOLD signal from 

the anticipatory phase which captures the undershoot (Buxton, 2012). In direct plots of BOLD of 

outcome within-condition (e.g., Big Win hit and Big Win miss signal) this undershoot is still 

apparent. Although comparing within condition outcomes, or more complicated contrasts (Bjork 

et al., 2011a; Veroude et al., 2016), are more appropriate when modeling the outcome phase, 

researchers should remain cognizant that these trials are still unbalanced (e.g., more hit versus 

miss trials) and underpowered (anticipation trial is bifurcated during outcome). Given the 
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undershoot, if the neural process of interest is specific to the outcome phase, designs that 

temporally separate the outcome phase should be considered (Bjork et al., 2010; Murray et al., 

2020).  

 Bearing in mind that this sample is at the developmental peak of sensation seeking 

(Romer, 2010; Steinberg et al., 2018), a phenomenon that is hypothesized to be central to the 

motivation towards reward (Casey, 2015; Ernst & Luciana, 2015; Spear, 2011), it is worth to 

consider how the association between neural activation and sensation seeking changes across 

anticipatory contrasts. While we found a negligible association between sensation seeking and 

bilateral VS activation during Big Win versus Neutral contrast (r < |.03|), Big Loss versus 

Neutral has a notable negative association with sensation seeking. (r = -.09-.10). In the latter 

case, this may be consistent with the hypothesis that higher sensation seekers would be less 

motivated by negative rewards (e.g., loss). Meanwhile, in the context of the right VS, activation 

during Big Win versus Small Win contrasts and sensation seeking are positively associated (r = 

12). The difference in association with sensation seeking across Big Win versus neutral and Big 

Win versus Small Win is not consistent with the hypothesis that sensation seekers are more 

sensitive to larger rewards elicited by this contrast. However, while these distinctions may be 

well reasoned from a neurodevelopmental perspective (Casey, 2015) and other work reporting 

neural associations with sensation seeking (Cservenka et al., 2013; Hawes et al., 2017; Tapia 

León et al., 2019), the similarity in the negative association between right VS activity and 

sensation seeking across the All Win versus Neutral (r = .10) and Big Loss versus Neutral (r 

=.09) makes it difficult discern what the key distinguishing factor is in this brain-behavior 

association. Considered from a nomological network perspective, the interrelationships are not as 

clear as one would expect them to be. Although the examples refer to the most probable r-values, 
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it is important to remember that the 95% confidence interval in all cases crossed zero, and thus in 

some samples the association may include results in the opposite observed direction, which 

should limit the confidence in the interpretation. 

 When the interrelations among sensation seeking, substance use, and externalizing are 

considered, the evidence is again inconsistent. The original hypothesis was that the brain-

behavior correlations between VS and substance use, externalizing, and sensation seeking would 

be consistent in their direction as these criterion measures all reward-relevant behaviors. As 

expected, the magnitude in association between the behaviors are moderate-to-large. However, 

the patterns in the direction of associations are more variable. While there is similarity in the 

direction of effects between externalizing and sensation seeking for the right VS and 

externalizing and sensation seeking for the left Insula across anticipatory contrasts, there were 

distinct differences between externalizing/sensation seeking and substance use for right VS and 

externalizing/substance use and sensation seeking for the left Insula across anticipatory contrasts. 

These relationships were also variable for the left VS and right Insula. These differences make it 

difficult to clearly establish where the findings would fit into a nomological network and 

building theoretical frameworks that are easily interpretable across behaviors. In fact, the 

variability poses more questions than answers about construct validity in fMRI. 

Since the task is used in a broad clinical and behavioral literature, these results indicate 

that it is critical to consider how patterns of activation across task phases/conditions relate to 

different behaviors. In the analysis using psychosocial and clinical criterion measures, we found 

limited evidence for associations with activations across different phases and conditions. 

Specifically, over 95% of associations between neural activation during the MID task and 

behavior were relatively small or negligible. As the original task design focused on clinical 
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populations (Knutson & Heinz, 2015) and reviews suggest a robust role of limbic regions in 

substance use (Balodis & Potenza, 2015) and psychosis (Radua et al., 2015), this may in part 

explain the weak effects found in the young adult community sample used here. Although it 

cannot be ruled out that this lack of robust associations with behavior may have been due to 

features of the sample or measures in this study, it stands in stark contrast to the large array of 

previous studies reporting associations of MID task activations with various real-world outcomes 

(Boecker et al., 2014; Büchel et al., 2017). Further, the findings are broadly consistent with 

recent work that has reported a distinct contrast between the effects found in studies with and 

without preregistration (median r = .16 versus .36; Schäfer & Schwarz, 2019) and with findings 

in large, diverse data sets which indicate that neuroimaging markers often explain only very 

small portions of the variance in behavioral outcomes of interest (Marek et al., 2020; Nees et al., 

2012; Paulus et al., 2019; Paulus & Thompson, 2019). This has led some to suggest that small 

effects are the “new normal” in clinical neuroscience research (Paulus & Thompson, 2019) and 

that MRI studies require especially large sample sizes (>2000) to identify meaningful effects in 

brain-behavior associations (Marek et al., 2020). However, this issue needs to be explored 

further, as some proposed sample sizes of >160 in univariate fMRI analyses appear to yield 

reasonable results (Grady et al., 2020).  

One reason for discrepancy between the results reported here and prior reports of more 

robust MID task associations with behavior is that effect sizes may have been overestimated in 

previous studies with smaller samples. Some studies have reported relatively moderate to large 

effect sizes (r > .25) with respect to brain-behavior associations (Cope et al., 2019; Karoly et al., 

2015), but despite the numerous brain-behavior tests performed here that focused on related 

behavior constructs, the effect sizes were consistently substantially lower (97% out of 400 
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observations r < .20). Until recently, neuroimaging studies of individual differences have 

frequently been underpowered (Cremers et al., 2017; Yarkoni, 2009), with a median sample size 

of < 50 (Szucs & Ioannidis, 2020), which tends to cause the size and replicability of effects to be 

dramatically overestimated due to a combination of noise in small samples and the “statistical 

significance filter” (Gelman & Loken, 2014; Vasishth et al., 2018). These findings suggest that 

researchers should be prepared for relationships between MID task activations and clinical or 

real-world outcomes of interest to be of small size and design their studies accordingly. The use 

of large data sets from collaborative efforts (e.g., ABCD: Casey et al., 2018) may be preferable 

to smaller samples collected by individual labs (Beltz & Weigard, 2019; Paulus & Thompson, 

2019), and would be valuable in reexamining the results presented here to understand how 

effects change.  

Beyond the possibility that effect sizes in previous MID studies may have been inflated 

by small sample sizes and flexible selection of contrasts, the lack of relationships may also be 

attributed to problematic validity of fMRI-based tasks and the underlying assumptions about the 

cognitive processes involved, such as positive or negative valence. A large proportion of tasks in 

fMRI are experiment based, whereby conditions are manipulated to evoke excitation of a specific 

cognitive process (Price & Friston, 1997). Although the MID task evokes distinct neural 

processes that are consistent with current conceptualizations of the mesolimbic system (Knutson 

& Greer, 2008), the classic metric of validity is that a test measures the psychological trait that it 

claims to measure (Cronbach & Meehl, 1955; Kelley, 1927), and this criterion appears to be 

underexplored in some contemporary research. In fMRI studies of individual variation, such as 

behavioral differences that may be associated with neural measures of reward, the combination 

of experimental and correlational methods is required, work that arises from two distinct 
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traditions in psychology (Cronbach, 1957). Correlational approaches attempt to increase between 

individual variation, whereas experimental research attempts to limit the between-individual 

variation; the latter methodological practice has been argued to contribute to the poor predictive 

effect of cognitive measures in correlational research (Dang et al., 2020). A pattern that has been 

previously observed in the relationship of cognitive processes and cognitive ability (Keating et 

al., 1985). Together, the weak predictive effect of cognitive tasks and poor test re-test of fMRI 

(Elliott et al., 2020) can contribute to the unreliable estimates of different task contrasts and the 

interchangeable use of contrasts will inevitably result in playing ‘20 questions with nature’ 

(Newell, 1973). 

The inferential processes in task-based fMRI pose conceptual challenges. It has been 

argued that the standard approaches in task-based fMRI that utilize the technique of subtracting 

conditions are fundamentally flawed in achieving the isolation of the neural substrates of specific 

mental functions (for discussion, see: Cacioppo et al., 2003; Caplan, 2007; Price & Friston, 

2005). Poldrack & Yarkoni (2016) suggest that there are basic conceptual difficulties within 

subtraction applied in task-based fMRI ‘that remain widely underappreciated within the 

neuroimaging community’ (pg. 589). This is observed in the MID task, as conceptually the 

subtraction intends to measure approach and avoidance of positive and negative conditions 

(Knutson & Greer, 2008), but this is not consistent in the activation patterns of valence (insula) 

and approach (NAcc) structures that, at the group-level, are activated similarly in both conditions 

(Murray et al., 2020; Oldham et al., 2018). Although using monetary value allows control of 

magnitude, probability, and timing (Knutson & Greer, 2008), adding a discrete step with positive 

or negative monetary cues (i.e., “pure insertion assumption”; Price & Friston, 1997) may not be 

sophisticated enough to identify valence and approach over and above processes of attention 
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and/or motivation within an individual. While the MID task measures distinct positive and 

negative valenced systems in two distinct phases, the nature to which these phenomena vary or 

are consistent across specific behaviors has not been well characterized. And in fact, this work in 

a community sample of young adults suggests that they may not significantly differ in terms of 

the structures that are involved. This highlights a need to precisely define the nomological 

network of reward designs and consider whether the predicted associations reflect the observed 

patterns, which is elaborated on in Chapter 6. 

Although the findings suggest a high level of variability between contrast choices and 

behavioral associations, several measures can be taken that may improve the generalizability of 

results in the MID task literature. First, an immediate step that can be taken by researchers is 

increasing sample sizes in task-based fMRI research. Currently, a large proportion of fMRI 

studies are substantially underpowered for finding the effect they are testing (Szucs & Ioannidis, 

2017, 2020). Second, researchers would benefit from assessing how the MID contrast values fit 

in a larger nomological network of neural and behavioral constructs (Poldrack & Yarkoni, 2016), 

beyond an abstract subtraction processes that presumes a process of motivation or consumption 

of reward, and preregister these hypotheses in advance. Third, multivariate methods, such as 

dimensionality reduction and cross-validated predictive modeling, may help with the 

reproducibility of theorized neural substrates of cognitive processes (Hong et al., 2019). 

Multivariate, cross-validated analyses can provide a priori activation patterns and locations that 

can be confirmed out of sample, reducing the possibility of exploring multiple hypotheses. 

Finally, if the goal is to characterize individual variability in neural function, researchers should 

implement functional organization techniques to explain changes in behavior and cognitive 

processes (Beltz et al., 2016; Yip et al., 2019; Zhang et al., 2019). Network models of task-based 
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fMRI may be particularly helpful for uncovering the neural architecture of cognitive processes 

(Greene et al., 2018; Medaglia et al., 2015). By using individual and group level estimates of 

connectivity patterns (Beltz et al., 2016), task-based analyses may improve the identification and 

replication of neural signatures that will aid researchers studying developmental and clinical 

differences (Yip et al., 2019; Zhang et al., 2019). I address these concerns surrounding individual 

variability discussed here in Chapter 6 and in the following chapter, Chapter 5. 

Study Considerations 

 Although the findings here pose significant implications, there are a number of 

limitations. First, the findings are tested only in a modified version of MID task that was 

administered in a young adult sample, so the implications should be considered and confirmed in 

separate samples to determine which effects converge between samples and which are limited to 

a sample. Future work should examine these associations in a larger sample and at different 

developmental stages using, for example, the ABCD study data. Second, the correlates between 

ROI activation and self-reported behavior may be underestimated, such that behavior that is 

collected contemporaneously with the scan acquisition or in the nature that the brain predicts 

behavior may produce different effects. Moreover, due to a combination of increased number of 

voxels and alternative methods for controlling the false positive rate, the whole brain statistical 

analyses exploring brain-behavior associations may reveal findings that an ROI constrained 

analysis may overlook. Third, only a subset of common a priori contrasts were selected from the 

literature. Alternative contrasts, such as the linear combination of winning or alternative 

contrasts during the outcome phase, should be considered in future work. Since the anticipation 

and outcome phase in this task were not jittered, we could not directly contrast these phases at 

the individual level (only group level), due to risk of collinearity. Finally, due to the outcome 
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phase containing variable number of trials as a function of 60% accuracy rate, the activation 

patterns may be influenced by the surprise of the event(s) (Vassena et al., 2020), which should be 

considered in future work. 

It is worth noting that some of the differences between positive and negative cues in this 

and previous studies may depend on age-related factors and sample characteristics. For instance, 

while the results here did not demonstrate a meaningful difference in the activation of the VS or 

insula between Big Win and Big Lose anticipation phases, age related differences have been 

previously reported using this task, such that increases in activation during Big Win anticipation 

trials were greater in older adults (Bjork et al., 2010), and reduced activation in response to Big 

Lose anticipation in 9-12 year old’s (Cope et al., 2019). This suggests patterns of activation 

during the MID task within and between sample comparisons has been considered when age-

related effects are present, as qualitative differences between some contrasts may not be readily 

apparent. Furthermore, whereas these analyses focus on a community-recruited young adult 

sample, previous reviews focused on clinical populations (Balodis & Potenza, 2015; Radua et al., 

2015), and these results should be considered in the future within a clinical population to assess 

how associations would change in light of clinical factors. 

Conclusion 

Although univariate fMRI contrasts from the MID task are often used to measure neural 

substrates of reward processing, modeling techniques have varied substantially between studies. 

The structure of the task has been proposed to separately measure the constructs of arousal and 

valence. However, it is still unclear whether these dimensions are easily separable using different 

task contrasts, and whether findings from different contrasts can be easily generalized between 

studies. This within-sample comparison of MID contrasts during multiband fMRI revealed more 
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similarities than differences between positive and negative cues during the anticipation contrast, 

dissimilarity of the specific Big Win versus Small Win contrast during the anticipation phase, a 

robust deactivation effect in the outcome phase, and behavioral associations that are less robust 

than previously thought. These findings point to the need for caution in future work that make 

attempts at generalization and encourage researchers to power their studies for effects that may 

be smaller than previously hypothesized. 
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Chapter 5 : Neural Heterogeneity Underlying Late Adolescent Motivational Processing is 

Linked to Individual Differences in Behavioral Sensation Seeking3 

Adolescent risk-taking behavior, including sensation seeking, has been a central focus for 

developmental research, interventions, and policy largely because it is responsible for heightened 

death and disease seen during an otherwise healthy period of life (Kann et al., 2018). 

Neuroscience research has provided critical insights (Casey, 2015). As discussed in Chapter 1 

and Chapter 3, there are varying degrees of support for a related set of models contending that 

normative changes in the cognitive control system (e.g., dorsolateral prefrontal cortex) and 

socioemotional system (e.g., ventral striatum and amygdala) during adolescence predispose 

youth to sensation seeking that most will outgrow with continued neural development (Casey et 

al., 2008; Ernst et al., 2006; Shulman et al., 2016; Steinberg, 2008). Although the implications of 

these models have been far-reaching, there is continued debate about their accuracy and 

applicability to all youth, potentially owing to their focus on functional localization and 

quantitative methods that are averaged across variable youth (Beltz, 2018; Bjork & Pardini, 

2015; Willoughby et al., 2013). The goal of this study is to begin to fill that knowledge gap by 

creating adolescent-specific networks of the socioemotional and cognitive control systems during 

 
3 Chapter 5 corresponds to Demidenko et al. (2022), published in Journal of Neuroscience Research 
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a motivational mental state presumed to occur in a reward processing task and examining their 

associations with sensation seeking behavior. 

Neural Connectivity and Adolescent Reward Processing 

There is certainly variability, but most neurodevelopmental models of adolescent risk-

taking behavior (Casey et al., 2008; Ernst et al., 2006; Steinberg, 2008) broadly concern the 

interplay between brain regions implicated in: (a) cognitive control, such as the anterior cingulate 

cortex (ACC) and dorsolateral prefrontal cortex (DLPFC); and (b) socioemotional processing, 

which can be broken down into the reward and salience subsystems. The reward subsystem 

facilitates approach behaviors, and includes the ventral striatum (VS), orbitofrontal cortex 

(OFC), and ventromedial PFC (vmPFC) (Haber & Behrens, 2014; Haber & Knutson, 2010). The 

salience subsystem detects the valence of stimuli, and includes the amygdala and insula (Knutson 

& Greer, 2008; Posner et al., 2005). Early studies evaluted differences in mean-level activation 

of regions thought to contribute to sensation seeking behavior during reward processing showed 

developmental differences between adults and adolescents (reviewed in Silverman et al., 2015), 

such that adolescents had greater activation than adults in the VS and insula when receiving 

rewards (Galván & McGlennen, 2012), but less activation than adults in the ACC and VS when 

anticipating rewards (Bjork et al., 2010). Some early studies also examined the associations 

between regional mean-level activations and risk-related behaviors, such that risk engagement 

and VS activation were more strongly positively related in adolescents and adults (Galvan et al., 

2007).   

Although informative, these early studies generally do not consider functional integration 

among the multiple regions that constitute each system or network (Pessoa, 2017), and they 

rarely consider individual differences in activation. Connectivity studies, however, have the 
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potential to map patterns among integrated neural networks (Beltz, 2018; Lydon-Staley & 

Bassett, 2018). Specifically, connectivity analyses overcome limitations of functional 

localization by evaluating the covariation, or functional dynamics, among regional activations, 

which is emphasized in most theories of the neural underpinnings of adolescent risk-taking 

behavior (Beltz, 2018; Meisel et al., 2019). While prior studies have used connectivity analyses, 

methods have often averaged across adolescents in an attempt to describe normative 

development. Person-specific connectivity takes an individual differences approach, though, by 

modeling at the subgroup, or even at the individual, level. This is important because there is 

growing evidence of extreme individual differences in both neural function (Becht & Mills, 

2020; Gordon et al., 2017; Finn et al., 2017; Poldrack, 2017) and in adolescent brain 

development (Lydon-Staley & Bassett, 2018).  

To date, several studies have considered the relation between mean (or group-level) 

connectivity and sensation seeking. For instance, connectivity between the amygdala and the 

OFC during resting state using seed-based functional connectivity (i.e., detecting associations 

between a candidate region and all other brain regions) have been shown to be inversely related 

to sensation seeking (Crane et al., 2018). Also, connectivity between VS and motor areas during 

incentivized trials during a task using psychophysiological interaction (i.e., combining seed-

based correlations and task regressors) have been shown to be positively related to sensation 

seeking (Crane et al., 2018; Weiland et al., 2013). Finally, mean-level connectivity patterns in 

the OFC and ACC using correlations matrices (i.e., Pearson’s correlations) from resting state 

data were reported to reliably predict (r = .30) sensation seeking in adults (Wan et al., 2020). 

Together, these studies suggest that there are links between neural connectivity and sensation 

seeking.  
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Nonetheless, significant questions remain about the association between connectivity and 

sensation seeking during adolescence, as participants in the studies reviewed above ranged in age 

from 18 to 85 years (Crane et al., 2018) or only included young-to-mid adults aged 21 to 35 

years (Wan et al., 2020). Questions about adolescent-specific motivational processes and 

behavior are important to answer because the developmental peak in sensation seeking seems to 

be between ages 14 to 20 (Harden & Tucker-Drob, 2011; Romer, 2010). Although one study 

examined functional connectivity patterns and sensation seeking in an adolescent sample (18 to 

22 years old), the study only looked at mean-level connectivity in a sample of adolescents 

exposed to higher rates of adversity (Weiland et al., 2013). This is important, but it is unclear the 

extent to which those findings generalize to other samples. Thus, there is empirical evidence for 

meaningful associations between functional connectivity and sensation seeking, but there 

remains a need for research on adolescents that captures individual differences. 

Person Specific Connectivity  

One promising way to accurately capture individual differences in the neural networks 

underlying adolescent motivational processing is to use a person-specific connectivity approach 

that avoids assumptions about uniformity (Beltz, 2018; Lydon-Staley & Bassett, 2018). Given 

the heterogeneity of functional networks (Finn et al., 2017) and adolescent behaviors (Bjork & 

Pardini, 2015), modeling person-specific covariation among regional activations may capture 

effects that are stronger (or present) for one subset of individuals than another or even that are 

unique to an individual (see Beltz & Gates, 2017).  

Group Iterative Multiple Model Estimation (GIMME; Gates & Molenaar, 2012) is one 

such modeling approach. GIMME creates sparse person-specific networks specifying data-driven 

connections (or edges) among brain regions of interest (ROIs) that can occur at multiple levels: 
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group, subgroup and individual (Beltz & Gates, 2017; Gates et al., 2017). First, GIMME 

estimates group-level connections that are meaningful for at least 75% of individuals. Second, 

subgroups are identified using the Walktrap community detection algorithm (Orman & Labatut, 

2009), which clusters into a community individuals based on the similarity of their group-level 

connection magnitudes (Gates et al., 2016), and then subgroup-level connections that are 

meaningful for only individuals in the same subgroup are estimated. Third, individual-level 

connections that are unique to a person (and estimated after group- and subgroup-level 

connections, which improves their reliability; Gates et al., 2017) are estimated. While the final 

networks characterize both homogeneity (in the group-level connections – without averaging 

across individuals) and heterogeneity (in the individual-level connections) in a sparse network, 

subgroup-level connections represent both homogeneity and heterogeneity. Simulation studies 

have demonstrated that GIMME effectively identifies the presence of connections between ROIs 

and is an accurate method for modeling network patterns in functional timeseries data, especially 

compared to other approaches when participants are heterogeneous (Gates et al., 2017; Mumford 

& Ramsey, 2014; Smith et al., 2011).  

GIMME has been successfully used to delineate person-specific networks in 

developmental and clinical research (reviewed in Beltz & Gates, 2017; Beltz & Weigard, 2019). 

For instance, during an alcohol-related inhibition task in young adults, the number of 

connections within the cognitive control system changed across the transition to college in 

accord with alcohol use behaviors (Beltz et al. 2013). Moreover, during resting state, network 

connectivity patterns in subgroups effectively delineated communities of children with different 

clinical diagnoses (e.g., autism spectrum disorder and attention deficit hyperactivity disorder) 

and healthy controls (Henry et al., 2019), such that children with diagnoses were characterized 
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by connections between the default mode, salience and ventral attention networks, whereas 

controls were largely characterized by within-network connections. Likewise, resting state 

network connectivity patterns revealed subgroups of adolescents who varied in levels of 

childhood violence exposure (Goetschius et al., 2020), which is particularly noteworthy because 

it illustrates how GIMME can differentiate - in adolescence - brain networks of children with 

certain experiences of adversity in a purely data-driven fashion. The ability to capture both 

neural homogeneity and heterogeneity in neural network features is critical in the study of 

adolescent sensation seeking because risk-taking tendencies may only represent a subset of youth 

and not all adolescents (Bjork & Pardini, 2015).  

Current Study 

In the current study, we examine whether person-specific network connectivity during a 

motivational processing task meaningfully relates to individual differences in self-reported 

sensation seeking behaviors. Given our interest in modeling the dynamic complexity of the brain 

and the precedent in prior studies using GIMME with task fMRI (Beltz et al., 2013; Duffy et al., 

2021; Hillary et al., 2014; Weigard et al., 2018), we do not consider modulating effects of task 

regressors but rather focus on comprehensively evaluating connectivity during a motivational 

state, or a state of being continuously engaged in a task in which possible gains and losses are 

evaluated and received. In other words, we uniquely capture relations among a broad set of ROIs 

to understand systems-level neural integration during continuous motivational processing, but we 

do not explicitly estimate contrasts (e.g., gain > loss) as in traditional analyses of the Monetary 

Incentive Delay (MID) task; thus, our GIMME networks may not reflect reward processing per 

se (Balodis & Potenza, 2015; Dugré et al., 2018).  
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Specifically, we applied GIMME to two separate runs of the MID task (Knutson et al., 

2000) in a sample of late adolescents, focusing on 12 ROIs that reflect the cognitive control, 

reward and salience networks (e.g., bilateral OFC, DLPFC, Insula, Amygdala, VS, and ACC and 

vmPFC). As described above and in the neurodevelopmental literature (Demidenko et al., 2020; 

Sherman et al., 2018; Silverman et al., 2015; Steinberg, 2010), we focus on these ROIs given 

evidence for the role of DLPFC and ACC in cognitive control processes (Apps et al., 2016; 

Szczepanski & Knight, 2014); the role of VS, OFC and vmPFC in motivational processes and 

economic decision making (Haber & Behrens, 2014; Knutson et al., 2014; Padoa-Schioppa & 

Conen, 2017; Roy et al., 2012); and the role of the insula and amygdala in valence and affective 

processing (Knutson et al., 2014; Posner et al., 2005). Although we use network labels, such as 

cognitive control, reward and salience, as heuristics, brain regions are rarely localized to specific 

networks (Rolls, 2014) or affective processes (Berridge, 2019); instead, they play a dynamic part 

in a complex interacting system (Pessoa, 2021). Thus, these network labels are intended to serve 

as conceptual links to the neurodevelopmental models from which the hypotheses below are 

derived (Casey et al., 2008; Ernst, 2014; Steinberg, 2010). 

We implement GIMME’s subgroup community detection algorithm to uncover potential 

communities of adolescents who share neural features during motivational processing, and then 

we examine how these features relate to adolescent sensation seeking behavior. Given that 

reported poor within-participant reliability in task-based fMRI may be attributed to habituation 

(Elliott et al., 2020), or waning vigilance or novelty in reward systems triggered by fMRI tasks 

(Ekhtiari et al., 2020; Plichta et al., 2012), we also consider the network connectivity during the 

combined and individual MID run time-series. 
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Our study is comprised of three aims. In Aim 1, we map person-specific connectivity in 

reward processing regions separately for each run of the MID task, exploring whether there are 

data-driven subgroups during a presume motivational state. In Aim 2, we examine whether there 

are meaningful associations between network features (such as subgroup membership and 

connection strength) and sensation seeking separately by run. In Aim 3, we compare estimated 

connections between Run 01 and Run 02 to detect potential habituation across runs and repeat 

Aims 1 and 2 for the combined runs to evaluate the robustness of findings from the individual 

runs for the combined time-series. We expect to find substantial individual differences in 

motivational processing, evidenced by person-specific networks, but given the novelty of this 

approach, we do not have expectations about whether data-driven subgroups will exist. 

Nevertheless, we do hypothesize that connectivity strength between reward and cognitive control 

ROIs will be related to sensation seeking based on common neurodevelopmental models that 

implicate regions, including the VS, OFC, vmPFC and/or DLPFC, in the relationship to 

sensation seeking (Casey et al., 2008; Casey et al., 2019; Ernst et al., 2006; Shulman et al., 2016; 

Steinberg, 2008).  

Methods 

Participants 

Participants in this study are a Phase 2 subsample (N = 104; MAge = 19.3; SDAge = 1.3; 

57% Female; 71% White, 14% Black, non-Hispanic, 6% Hispanic/Latinx) of adolescents from 

the Adolescent Health Risk Behavior (AHRB) study, as described in Chapter 2.  

Procedures  

All study procedures were approved by the University of Michigan Institutional Review 

Board. Upon arrival for Phase 2 neuroimaging, research staff reviewed instructions of the MID 
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task. Participants were informed of the cue-related outcomes and completed a practice trial. 

Participants were explicitly informed that their performance, or cumulative earnings during the 

MID (maximum of $30), would be associated with the compensation they received at the end of 

the visit. 

Measures 

Sensation Seeking: Participants completed the Brief Sensation Seeking Scale (BSSS) at 

Wave 3, which is an 8-item self-report measure of novelty seeking behaviors (Hoyle et al., 

2002). Participants responded on a 5-point Likert-scale for 8 items: (1) “strongly disagree” to (5) 

“strongly agree.” Example items are “I would like to explore strange places” or “I would like to 

try bungee jumping”. The BSSS is a revised version of the earlier SSS (Horvath & Zuckerman, 

1993; M. S. Zuckerman et al., 1978) that updates behavioral descriptions and language, and that 

removes similar items (e.g., related to alcohol) (Arnett, 1994; Hoyle et al., 2002). The composite 

variable is the average of the 8 items, such that higher scores reflect higher sensation seeking.  

In order to leverage the longitudinal sensation seeking data from Phase 1 of this study, 

growth curves were used to estimate behavior at Wave 3 (most proximal to the scan) for all 

participants. Specifically, SAS 9.4 PROC NLMIXED (SAS Institute Inc., Cary, NC) was used to 

fit mixed-effects growth curve models to the three waves of BSSS data treating the intercept as a 

random effect and using an unstructured error covariance matrix; the intercept was calculated at 

Wave 3. Across the three waves, 100% (N = 104; M = 3.29, SD = .76), 77% (N = 80; M = 3.26, 

SD = .72) and 89% (N = 93; M = 3.33, SD = .56) of participants provided BSSS data. Full 

information maximum likelihood (FIML) estimation was used in combination with empirical 

Bayes estimates to provide intercepts for all 104 participants in the sample (Rubin, 1976). As 
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expected, the individual BSSS intercept estimates were highly correlated with the observed 

Wave 3 self-reported BSSS, r = .82.  

FMRI Task: The MID task (Knutson et al., 2000) was used to measure brain activity during 

a motivational state that comprised both monetary gains and losses. For more information on the 

design, please refer to Chapter 2. As noted in Chapter 2, participants were explicitly told that their 

performance on the task during the scan (for example, $5 Win Cue was associated with an 

opportunity to win $5 and a $5 Lose cue was associated with an opportunity to not lose $5) would 

be associated with the compensation they can get for their cumulative earnings during the MID 

(Maximum $30). Two MID runs were administered; each lasted 5:42 min and consistent of 407 

volumes. 

fMRI Data Acquisition 

FMRI data was acquired using the same protocol that is described in Chapter 2. 

Analyses 

fMRI Data Analyses 

FMRI data were preprocessed 

using the same sequences of steps that are 

described in Chapter 2.  

Several steps were completed to 

extract the timeseries data for GIMME 

analyses. First, central coordinates for 12 

ROIs (see Figure 5.1; Appendix D, in 

Table D1, for specific MNI coordinates) 

were selected using Neurosynth 

Figure 5.1. Twelve ROI coordinates projected onto an 

MNI glass brain. 
Blue = Ventral Striatum; Green = Ventromedial Prefrontal 

Cortex; Pink = Anterior Cingulate Cortex; Yellow = 

Orbitofrontal Cortex; Red = Insula; Cyan = Amygdala;  

Black = Dorsolateral Prefrontal Cortex  
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(Neurosynth.org) based on previous literature (Galvan, 2010; Sherman et al., 2018). These 

regions belong to three networks: the cognitive control network, which consists of the bilateral 

DLPFC, and ACC; the reward network, which consists of the bilateral VS, vmPFC and OFC; 

and the salience network, which consists of the bilateral amygdala and insula. For each ROI, a 

10mm sphere around the central coordinate was used to extract the mean signal intensities at 

each volume for each of the two runs. For Aims 1-2, the timeseries from each separate run was 

used, but for Aim 3, the concatenated timeseries across the two runs was used. Due to the rapid 

volume acquisition (800ms), each run was down-sampled (retaining every other volume) after 

preprocessing, as has been suggested (Beltz & Gates, 2017) and used in other fast-acquisition 

methods, such as functional near-infrared spectroscopy (Pinti et al., 2019).  

GIMME Analyses  

GIMME version 0.6-0 in R version 3.6.1 (R Core Team, 2020) was used to estimate 

time-lagged (t-1) and contemporaneous (t) network connections in unified structural equation 

models (uSEM), which combine vector autoregressions and structural equation models, 

respectively, for each individual within a grouping algorithm that contains subgrouping via 

community detection. GIMME estimates network connections through a data-driven search 

process that uses Lagrange multiplier tests to select connections at the group, subgroup and 

individual level that most improve model fit. The sequential steps of the GIMME search process 

are summarized in Figure 5.2. At the beginning of these steps, we estimate autoregressive 

connections as part of a “null” model, as this search strategy has been demonstrated to improve 

recovery of other connections in temporally dense data (Lane et al., 2019). Then, starting with 

this null model, group-level connections that best improve fit for the at least 75% of the sample 

are iteratively estimated for all participants. After the estimation of the group-level connections, 
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GIMME uses this a priori model to inform subgroup detection. Subgroups are estimated using a 

data-driven community detection technique to cluster individuals with common sets of 

interconnected ROIs via Walktrap. For each subgroup, connections that improve fit for at least 

50% of individuals in the subgroup are iteratively estimated for all participants in the subgroup 

(Gates et al., 2017). After subgroup detection and connection estimation are complete, the group 

and subgroup a priori models are used in the iterative data-driven estimation of individual-level 

connections that uniquely characterize participants and improve their model fit. At each of these 

three steps, the algorithm stops its search when: a) the model fits well according to two out of 

four fit statistics: Comparative Fit Index (CFI) ≥ .95, Non-Normed Fit Index (NNFI) ≥ .95, 

Standardized Root Mean Square Residual (SRMR) ≤ .05 and Root Mean Square Error of 

Approximation (RMSEA) ≤ .05; or b) modification indices indicate no additional connections 

will significantly improve fit– whichever comes first. The former is a stopping rule implemented 

to avoid overfitting. Given that the connections are inferred through the data-driven process from 

Figure 5.2. GIMME Model Flow Chart.  
Lines represent: Group connections= Black; Subgroup connections = Green; Individual connections = Grey;  

Solid = Contemporaneous; Dashed = Lagged; Green = Subgroup 1; Red = Subgroup 2 
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the temporal information in the fMRI data, the final maps reflect estimates of directed functional 

connectivity (Beltz & Gates, 2017; Friston et al., 2013). 

To characterize individual differences in GIMME-derived networks, we focus on 

subgroup membership and individual coefficients from the networks when examining links to 

sensation seeking behavior. Subgroups are identified in GIMME (if they exist) and reflect neural 

network similarities among some sets of participants during the MID continuous motivational 

state. Each subgroup is characterized by a set of unique network connections, and each has a 

person-specific beta estimate that reflects its strength and magnitude. These individual subgroups 

and connection estimates can be examined in relation to the BSSS.  

2.8 Analysis Plan 

Event-related designs are often insufficiently powered to estimate the effects of specific 

task conditions (e.g., anticipation or feedback in the MID) on neural connectivity (see Beltz, 

2018; Di & Biswal, 2017). This is especially true for rapid event-related designs, such as the 

current study’s design, because the HRF is longer than the inter-stimulus interval. It is also borne 

out by simulations using GIMME on task data (Duffy et al., 2021; Gates et al., 2011) and in 

empirical studies that modeled task regressors in GIMME and found little evidence for their 

substantial modulating effects on connectivity (Hillary et al., 2014; Price et al., 2020). Given this 

evidence, we focus on the connectivity among regions during a motivational state rather than 

modeling modulation by specific task phases (e.g., during individual gain or loss events).  

To test Aim 1, which was to examine whether there are data-driven subgroups during 

motivational processing, we use GIMME to map person-specific connectivity in reward ROIs 

separately for each run of the MID task, and then examine whether data-driven subgroups are 

identified. If subgroups are found, we will proceed to Aim 2.  
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To test Aim 2, which was to examine whether there are meaningful associations between 

network features (e.g., subgroup membership and connection strength) and sensation seeking, we 

use logistic regression to evaluate whether BSSS (i.e., Wave 3 empirical Bayes intercepts from 

the growth curve models) is significantly (p < .05) associated with the subgroups detected from 

the first and second runs, separately. Specifically, we predict subgroup membership from BSSS, 

controlling for age, sex, and head motion (mean framewise displacement, or FD). To determine 

which subgroup connections may be driving links with sensation seeking, significant 

associations are followed-up with exploratory multiple regression analyses – conducted within 

each subgroup separately – to examine associations between specific connection strengths that 

are meaningful to the subgroup and BSSS.  

Finally, to test Aim 3, we i) compare estimated connections between Run 01 and Run 02 

to detect potential habituation across runs and ii) repeat Aims 1 and 2 for the concatenated time-

series to evaluate the robustness of neural connectivity and its BSSS associations in the full time-

series. Specifically, we: (a) examine whether data-driven subgroups are identified, and then if 

subgroups are identified, we (b) use logistic regression to evaluate whether BSSS is significantly 

(p < .05) associated with the subgroups and evaluate which subgroup connections may be driving 

links with BSSS with follow-up multiple regression analyses, as we did in Aim 2. 

We set the alpha cut-off (p < .05) that is conventionally used in null-hypothesis 

significance testing for each of the regression analyses because of the novelty of these analyses. 

This is consistent with recommendations for new analyses and recent perspectives on multiple 

comparison corrections (e.g., Rubin, 2021; Thompson et al., 2020). 
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Results 

Demographic characteristics, task accuracy in Appendix D and in-scanner motion during 

the MID task for participants are reported in Appendix D, in Tables D2-D5, respectively. No 

participants had mean head motion (Post FD) greater than .20, and so based on prior 

recommendations (Park et al., 2018), no participants are excluded from analyses for this reason; 

specifically, maximum mean FD was .07 (M = .02, SD = .01) for Run 01 and .11 (M = .02, SD = 

.01) for Run 02. Furthermore, BSSS was not significantly associated with mean post FD for Run 

01, r(102) = .02, or Run 02, r(102) = - .05. 

Aim 1: Person-specific Connectivity Networks by Run  

For all 104 participants, GIMME networks fit the data well (see Appendix D, Table D5), 

and a summary of the final networks is shown in Figure 5.3. Specifically, network connections 

for the group (black), subgroup (Subgroup01 = red; Subgroup02 = green) and individual (grey) 

connections are presented for each run of the MID in Figure 5.3. Solid lines represent 

Figure 5.3. GIMME Connectivity Networks for Each Run. 
Black = Group connection; Red = Subgroup01 connections; Green = Subgroup02 connections; Solid = 

Contemporaneous; Dashed = Lagged (t – 1); dlPFC = dorsolateral prefrontal cortex; OFC = orbitofrontal cortex; 

vmPFC = ventromedial PFC; VS = ventral striatum 
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contemporaneous connections, dash lines represent lagged connections, and the weight of each 

line reflects the proportion of participants with that connection. 

There were some similarities and some differences in the GIMME group-level networks 

for each run. For instance, there were consistent connections among the bilateral VS, amygdala 

and insula regions, L VS and ACC, L insula and L DLPFC, and R insula and ACC regions of 

reward, salience and cognitive control networks, but different connections between ACC and R 

DLPFC regions of cognitive control network at the group-level. The GIMME community 

detection algorithm also identified two subgroups in each run of the MID, but the number of 

participants in each subgroup and the subgroup-level connections differed.  

For Run 01, 61 participants were in Subgroup01 and 43 participants were in Subgroup02. 

For Run 02, 56 participants were in Subgroup01 and 48 participants were grouped into 

Subgroup02. For each run, the more homogeneous subgroup, Subgroup02, was represented by 

dense within-reward network connections and a greater number of connections between 

cognitive control, reward and salience networks than the heterogeneous subgroup, Subgroup 01, 

which had few subgroup connections. With respect to subgroup connections, patterns were 

relatively consistent across runs. Participants in heterogeneous subgroup, Subgroup01, had three 

subgroup-level connections during each run; two were the same and one differed, such that R 

OFC → vmPFC and vmPFC → ACC connections reoccurred across the two runs, but L DLPFC 

→ L Amygdala was unique to Run 01 and ACC → R DLPFC was unique to Run 02. Participants 

in the more homogeneous subgroup, Subgroup02, had nine and eight connections per run, 

respectively; they were similar except L Insula → L Amygdala, R DLPFC → L Amygdala, R 

and OFC → R VS only occurred in Run 01 and R OFC → L OFC, L DLPFC → L Amygdala 

only occurred in Run 02 (see Appendix D Table D8). 
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Aim 2: Subgroup and Connection Strength Associations with Sensation Seeking  

For Aim 2, we evaluated whether the subgroups identified in Aim 1 were related to 

BSSS. In a logistic regression model, there was a significant association between subgroup and 

self-reported BSSS for Run 01 (b = 1.1), OR = 3.1 (see Table 5.1), such that a unit increase in 

BSSS was associated with 3.1 odds 

increase in the likelihood of being in 

Subgroup02, which is represented by 

several subgroup level connections 

among reward and salience regions. 

The model that included BSSS (AIC 

= 126.9) fit the data significantly 

better than the model without BSSS 

(AIC = 131.4), 2(1) = 4.7, p = .03. 

Subgroups did not differ in age or 

sex, but they did differ in FD, such that there was greater motion observed for participants in 

Subgroup02 (p < .01). This effect is unchanged with (Table 5.1) and without the covariate of 

motion (e.g., mean Post FD) in the model (Appendix D Table D9).  

There was not, however, a significant association between subgroup and self-reported 

BSSS from Run 02 (b = .58), OR = 1.8 (see Table 7), such that the model that included BSSS 

(AIC = 135.1) did not fit the data significantly better than the model without BSSS (AIC 136.4), 

2(1) = 1.3, p = .25. Even though the direction of the effect was the same as in Run 01, such 

that sensation seeking was greater in Subgroup02, the size of the effect was attenuated in Run 02. 

Subgroups also did not differ in age, sex, or FD.  

Table 5.1 Logistic Regression: Sensation seeking associated 

with GIMME-derived subgroup from MID task data, by 

run, with and without Post FD (N = 104) 

Run 01 Run 02 

 b SE p b SE p 

Age - .18 .17 .28 - .11 .16 .48 

Sex .28 .43 .52 .80 .42 .06 

PostFD 48.8 18.24 .008 29.4 15.84 .06 

BSSS 1.1 .55 .04 .58 .51 .26 

PostFD = Post Preprocessing Framewise Displacement; BSSS = 

Brief Sensation Seeking Scale 
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Given the significant prediction of subgroup classification from BSSS in Run 01, with 

Subgroup02 being linked to increased BSSS, we explored whether BSSS was associated with 

person-specific beta weights (i.e., connection strength) of subgroup-level connections in 

Subgroup02 for Run 01. 

Exploratory multiple 

regression analyses 

revealed that the strengths 

of the vmPFC → R OFC 

connection, b = .21, p = 

.02, and the R OFC → R 

VS connection, b = -27, p 

= .01, (see Figure 5.4 and 

Appendix D, Table D11) 

were significantly associated with BSSS. Hence, increased self-reported sensation seeking was 

positively associated with connectivity strength between the vmPFC and R OFC (Figure 5.4B), 

and sensation seeking was negatively associated with connectivity strength between R OFC and 

R VS (Figure 5.4C) – which are regions that are associated with reward processing.  

Aim 3: Subgroup Associations with Sensation Seeking in Combined MID Runs 

We compared and contrasted GIMME results between the runs with GIMME results from 

the combined MID runs. Regarding comparisons between Run 01 and Run 02, there were 

notable differences (Figure 5.3). Although the group-level connections do not appear completely 

disparate between the two runs, only 55% of the group-level contemporaneous connections 

(solid black lines) re-occurred across both runs. Then, the number of participants classified into a 

Figure 5.4. Meaningful associations between connection strength and 

sensation seeking in Subgroup02 during Run 01.  
(+) = sig. positive association; (-) = sig. negative association. 
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Subgroup01 and Subgroup02 are statistically significant between runs, (1) = 18.1, p < .001,  = 

.41, such that 72% (N = 44) of the participants were consistently grouped into Subgroup01, and 

72% (N = 31) of participants were consistently grouped into Subgroup02 (Appendix D, D6).  

Regarding analyses of the combined runs, the GIMME networks fit the data well for all 

participants except one (see Appendix D, Table D12 and Figure D2). For this participant, the 

model did not converge. As for the analyses conducted separately per run, two subgroups were 

identified. The number of participants differed across each subgroup, with 34 in Subgroup01 and 

69 in Subgroup02. Subgroups were comparable in the number of subgroup-level connections 

estimated for Subgroup01 and Subgroup02, with 19 and 16 connections, respectively. Both 

Subgroup01 and Subgroup02 had connections within the reward and salience networks as well as 

dense between reward, salience and cognitive control network connections. When examining 

whether self-reported BSSS predicted subgroup membership, there was not a significant effect (b 

= -51; Appendix D Table D13), such that the model that included BSSS (AIC = 129.6) did not fit 

the data significantly better than the model without BSSS (AIC 130.5), 2(1) =0.9, p = .33. This 

suggests that the positive association between sensation seeking and subgroups that was present 

for Run 01 was not observed when the runs were combined. 

Discussion 

We used a person-specific network connectivity approach, GIMME (Gates & Molenaar, 

2012), to evaluate a central question in adolescent risk-taking: Do individual differences in 

neural network connectivity during a continuous motivational processing task meaningfully 

relate to self-reported sensation seeking behavior? Specifically, we examined whether and how 

connectivity during two runs of a commonly used reward task (i.e., Monetary Incentive Delay; 

Knutson et al., 2000) differed between data-derived subgroups of late adolescents in ways related 
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to sensation seeking (calculated as the endpoint intercept of a 3-wave behavioral trajectory 

across adolescence). To examine possible habituation effects, we considered how neural 

subgrouping and behavioral associations varied across runs and across analyses that combined 

the runs. We found that there were two data-derived subgroups in each run, and that subgroup 

network connections were meaningfully associated with sensation seeking, although inferences 

depended on how the runs were modeled. To my knowledge, this is the first investigation of 

adolescent-specific network connectivity mapping during a motivational state with significant 

links to risk-relevant behavior.  

In light of evidence for the neural habituation to reward across time (Plichta et al., 2012; 

Ekhtiari et al., 2020), we examined person-specific connectivity during continuous motivational 

processing separately for runs of the MID task in a sparse network of 12 ROIs representing 

cognitive control, reward processing, and salience networks. We found that the majority of 

group-level connections reoccurred across runs reflecting some level of stability across 

connections meaningful to all individuals. Then, for each MID run the GIMME algorithm 

identified two subgroups. Specifically, Subgroup01 had greater heterogeneity (only three 

subgroup connections during each run) than the more homogeneous Subgroup02, which had nine 

and eight connections across Run 01 and Run 02, respectively. This suggests that while there is 

heterogeneity in adolescent brain activity during motivational processing, there are also some 

meaningful commonalities across groups of adolescents. 

With respect to sensation seeking, when modeling each run separately, we found a 

significant association between community-based subgroups and self-reported sensation seeking. 

Specifically, these analyses revealed that the more homogenous subgroup, Subgroup02, had 

significantly higher sensation seeking than Subgroup01. However, this effect was significant 
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only during the first run, suggesting that changes in subgroup membership across the runs may 

have impacted associations with sensation seeking. Similar to prior work that found associations 

between OFC connectivity and reward traits (Crane et al., 2018; Wan et al., 2020), we found a 

significant positive association in connectivity strength between vmPFC—Right OFC and 

sensation seeking, and a negative association in connectivity strength between Right OFC—

Right VS and sensation seeking for Subgroup02 during Run 01, but not Run 02. This suggests 

that the OFC, which is important for stimulus-value representations, tracking internal values, and 

goal-directed and affective behavior (Haber & Behrens, 2014; Padoa-Schioppa & Conen, 2017; 

Szczepanski & Knight, 2014), may in part be relevant for individual differences in reward 

seeking. It also has implications for the potential that habituation may have to impact findings, 

when the total experimental exposure time is substantial. However, given the exploratory nature 

of this finding, it requires further exploration and replication in future work. 

There were important differences across runs. Although 72% of participants maintained 

their subgroup assignments across runs (i.e., were in the homogeneous subgroup in both runs or 

the heterogeneous subgroup in both runs), the differences between runs were meaningful because 

the association with sensation seeking decreased from the first to the second. This is consistent 

with recent findings, indicating that some of this decrease may be attributable to habituation 

(Elliott et al., 2020; Plichta et al., 2012), which is especially relevant to reward regions modeled 

here (Ekhtiari et al., 2020). Specifically, motivation towards approaching and receiving rewards 

may be attenuated with repeated runs due to strategic changes in attentional processes (Failing & 

Theeuwes, 2018); this might be reflected in the dynamics of reward, salience and cognitive 

control networks that consequently decrease the association with reward-relevant behaviors.  
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When the analyses were repeated using the combined MID runs, we found changes in 

subgroup memberships (reflecting homogeneity and heterogeneity) as well as with subgroup 

associations with sensation seeking. While two subgroups were detected in combined runs, these 

two subgroups were both more homogeneous and represented by more connections between 

reward, salience and cognitive control networks than when the runs were analyzed separately. 

Moreover, the subgroup association with sensation seeking was not significant, and in fact was 

negative; this is a striking deviation from the significant and positive association in Run 01 and 

even the positive (but non-significant) association in Run 02. This stark difference might reflect 

methodological artifacts, such as signal quality or stability with a longer duration scan (Gordon 

et al., 2017) or the limitations of task-based fMRI, as test-retest reliability is underwhelming 

(Elliott et al., 2020). Differences across runs could reflect meaningful individual differences. For 

example, connectivity patterns have been shown to reflect some variability in individuals across 

runs in both static and dynamic networks (Fong et al., 2019). Moreover, it is tenable that the 

variability across runs may have influenced both subgroup partitioning (Gates et al., 2016; Pons 

& Latapy, 2005) and the association between network connectivity and sensation seeking. Future 

work should reconsider these associations in the context of test-retest of network connectivity 

metrics (Beck & Jackson, 2020), the features and assumptions of GIMME, and the effect of 

different fMRI protocols, such as non-multiband data, different head motion corrections, and 

alternative reward, salience and cognitive control ROI coordinates.   

An important consideration in study is that participants were in a presumed general 

motivational state during the MID task, in which neural mechanisms involved in the processing 

of both gains and losses were consistently engaged, with potentially overlapping neural 

perturbations. Our reported estimates of directed functional connectivity during the MID task is 
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therefore distinct from the field’s common focus on average contrasts of anticipatory or outcome 

reward cues or the comparison of neural activation during gain versus loss trials (Demidenko et 

al., 2021b; Dugré et al., 2018; Oldham et al., 2018). Thus, the ways in which our specific 

findings map onto established findings in the field regarding reward processing is currently 

unclear. It is important, however, to highlight that there is empirical support for examining 

motivational processing as we did because gain and loss cues in the MID design exhibit 

substantial overlap in neural activation (Murray et al., 2020; Oldham et al., 2018), and brain 

function involves continuous time-lagged brain states (Munn et al., 2021), with “carryover” 

effects that are often assumed to be random (e.g., if jitter is implemented correctly) – but this is 

rarely examined. Nevertheless, the complex issue of reward circuitry and motivational 

processing during task-based fMRI requires careful theoretical and empirical future work to 

understand and disentangle. 

In addition to generalizing the results reported here, future work should consider how the 

variability in task length, number of runs and task type impact findings. Some researchers have 

proposed that increasing the amount of data, or task length (Gordon et al., 2017), and 

aggregating across modalities (Elliott et al., 2019) may improve reliability and generalizability. 

Although these suggestions certainly have merit, there may be an inherent trade-off between the 

possible measurement improvements to reliability that result from increasing the length of a task, 

and possible measurement decrements that occur due to habituation or other state-related 

changes linked to longer tasks. Furthermore, cognitive states induced by different tasks have 

been shown to be characterized by different connectivity patterns explaining different amounts of 

variance in behavior (Greene et al., 2018). Hence, considering how group-, subgroup- and 
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individual-level network patterns may vary across reward tasks and its impact in explaining 

variation in sensation seeking may increase understanding of adolescent risk-taking.  

Study Considerations 

The findings reported here are not without limitations. First, major issue in fMRI is the 

effect of head motion on the quality of the underlying neural signal (Parkes et al., 2018; Power et 

al., 2014; Siegel et al., 2014). Although we used standard task-based fMRI motion correction 

(Park et al., 2018), motion may still have impacted the underlying signal. This is especially of 

concern given that head motion was significantly related to the Subgroups identified. However, 

we compared our models with and without the covariate of head motion and the moderating 

effect of motion on the association between sensation seeking and subgroups and found our 

interpretations did not meaningfully change. Nonetheless, future work should consider how 

different head motion correction strategies may influence the estimation of person-specific 

networks.  

Second, although the main sample used here is two times greater than the median sample 

used in neuroimaging studies (Szucs & Ioannidis, 2020), the analyses focused on the brain-

behavior associations for Subgroup02 were smaller, and therefore, may be less robust than 

results involving the full sample. Given the issues of reliability and power in fMRI analyses 

(Button et al., 2013; Elliott et al., 2020; S. Noble et al., 2019; Szucs & Ioannidis, 2017), we 

cannot extrapolate our exploratory analyses examining the association between specific 

connection strengths and BSSS. As such, these results warrant replication in an independent 

sample. The issue of power was also critical to consider when weighing the pros and cons of 

modeling the coactivation of brain regions during a motivational state rather than the modulating 

effect of specific task regressors. Ultimately, choosing not to model task regressors during 
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functional connectivity sacrifices the knowledge about the effects of different phases of reward 

processing. However, as in most analyses, we had to consider the conceptual and statistical 

trades-offs of our decision. Our goal was to assess the dynamic engagement of respective brain 

regions during motivational processes that are important to neurodevelopmental heuristics 

(Casey et al., 2019). Our related, statistical goal was to model coactivation among regions in a 

way that was informed by prior literature and adequately powered. Although task regressors are 

included in psychophysiological interaction analyses (PPI; McLaren et al., 2012), it has been 

reported that most modulating effects are small and statistically noisy, and therefore, require 

substantial power accomplished through task lengths and sample sizes in fMRI studies (Di & 

Biswal, 2017). Consistent with these group-level analyses in PPI, simulation studies of GIMME 

demonstrate that issues of power can prevent the detection of small task modulating effects, 

especially in rapid event-related designs like that used in the current study (Duffy et al., 2021; 

Gates et al., 2011). Thus, we encourage future studies to build on our empirical findings by 

considering the effect of task modulation in designs that are well powered to do so, such as 

through the creation and implementation of a slow-event-related MID task. 

Third, the networks are based on several key a priori ROIs. Although GIMME 

simulations have demonstrated that omission of variables (i.e., the third variable problem) does 

not greatly impact recovery of connections (Gates et al., 2017), future work should consider how 

subgrouping and connection strength are altered when using different combinations of regions. 

Fourth, due to some missing sensation seeking data, we used full information maximum 

likelihood to estimate a sensation seeking score at Wave 3 (closest to when neuroimaging was 

conducted) for all individuals. This strategy may have introduced additional noise into our 

models, especially if missingness was related to an unaccounted variable. However, the strategy 
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also allowed us to maximize our sample size (i.e., by not excluding participants with missing 

Wave 3 data), and our estimated intercept was significantly related to the observed data 

increasing our confidence in the observed associations.  

Although our study is based on a tenet of the imbalance hypothesis and we found a 

significant brain-behavior relation, findings cannot be seamlessly extrapolated to other datasets, 

modeling sequences, or to real-world risk-taking behavior and age-related differences without 

further research. This is because we used a partially data-driven approach when fitting neural 

networks and did not have a second, similar dataset available for cross-validation. Indeed, recent 

evidence in fMRI demonstrates that brain parcellations (Bryce et al., 2021), analytic pipelines 

(Botvinik-Nezer et al., 2019; X. Li et al., 2021) and other potentially subjective researcher 

decisions (Bloom et al., 2021; Steegen et al., 2016) impact results; hence, it is imperative that 

future work replicates these results in other adolescent samples, with other tasks that probe 

motivational processing, and using other preprocessing pipelines. Second, associations between 

self-reported sensation seeking and real-world risk-taking are often small-to-medium in 

adolescent samples (Demidenko et al., 2019). Instead, our findings represent the link between 

brain function during motivational processing and a psychological trait hypothesized to relate to 

real-world risk-taking behaviors. While there were not meaningful associations between age and 

connectivity patterns in this work, prior work has reported developmental differences in 

connectivity patterns (Marek et al., 2015; Oldham & Fornito, 2019) which future studies should 

consider. Moreover, while both habituation and reliability issues are plausible explanations for 

the difference in the association between subgroups and sensation seeking across runs, we cannot 

delineate which is more probable, given that this version of the MID task did not capture all 

mean response times and the reliability of fMRI connectivity (generally) and GIMME 
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(specifically) are still being evaluated. This will be an important consideration in future work 

modeling functional connectivity across multiple runs of reward tasks. 

Conclusions 

This study is among the first to evaluate a central tenant of the imbalance hypothesis (and 

related hypotheses) using a data-driven person-specific network connectivity approach that 

contains group-, subgroup- and individual-level connections. In a sparse network of cognitive 

control and socioemotional ROIs during motivational processing, two subgroups were uncovered 

– one “homogenous” with a greater number of shared connections, and one “heterogeneous” 

with fewer shared connections – with the homogeneous group having higher self-reported 

sensation seeking than the heterogeneous group. Further, the strengths of select homogeneous 

subgroup connections, such as the Right OFC-Right VS and vmPFC-Right OFC, were negatively 

and positively associated with self-reported sensation seeking, respectively. This implies that 

reward-related behaviors are meaningfully related to connectivity patterns derived from person-

specific networks. However, brain-behavior relations varied by experimental trial run, such that 

connectivity between reward regions was only significantly related to sensation seeking during 

the first run, but not the second run, nor when the runs were combined. These findings 

underscore that young adults whom report greater sensation seeking may share unique patterns 

of network connectivity during motivational processing, and that these patterns may attenuate 

with repeated exposure. 
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Chapter 6 : Findings, Limitations, and Future Directions: A Nomological Network 

Perspective 

As discussed at the end of Chapter 1, the goal of this dissertation is to evaluate different 

relationships in a nomological network that are postulated by the neurodevelopmental models. 

Across the three studies (summarized below), I evaluated three issues that are salient to the 

network: (1) How well does the hypothesis that risk takers have increased activation in reward 

regions generalize; (2) how analytic flexibility of task contrasts alters the observed associations 

among neural activation and behaviors; and (3) whether novel functional connectivity 

approaches help reconcile limitations of traditional univariate approaches (discussed in Chapter 

5). For example, in the first study (Chapter 3), I evaluated the core postulate of the 

neurodevelopmental framework that risk-taking during adolescence is driven by heightened 

activation in response to rewarding stimuli in reward-relevant neural regions. The empirical 

evidence in that chapter demonstrated that the relationship postulated by a nomological network 

is not supported. This brings a critical problem, noted in Chapter 1, to the forefront. How do we 

explain why this hypothesis from the neurodevelopmental model did not generalize? 

Theoretical models often suffer from well-reasoned assumptions (Hull, 1952) and 

generalize beyond what is being measured (Lerner, 2006). The neurodevelopmental models are 

no exception. Similar to other psychological theories (Eronen & Bringmann, 2021), the 
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neurodevelopmental models lack precision which make it difficult to test and falsify the 

postulated phenomena (Pfeifer & Allen, 2016). In this regard, it is difficult to say whether the 

hypothesis in Study 1 (Chapter 3) was not supported because a) the deduction that risk-taking 

adolescents are more sensitive to rewards is a mischaracterization; b) the chosen measure of the 

phenomenon quantifying the construct of reward sensitivity did not appropriately capture the 

domain in the nomological space; or c) it was a failure in the analytic approach, whereby a static 

process is measured in Study 1 (as in most reported investigations in the research literature), but 

a dynamic process is hypothesized by neurodevelopmental models like the Imbalance Model 

(Casey et al., 2008). While this dissertation cannot answer these questions in full, the findings 

from the three studies provide substantial evidence that researchers should give greater attention 

to issues of generalizability, validity, and reliability when it comes to the methods used to 

measure brain, behavior, and brain-behavior associations.  

In this concluding chapter, I will discuss more holistically the findings from the studies 

presented in Chapter 3 to Chapter 5 and propose ways to evaluate the associations among 

postulated constructs. I will contextualize the issues and findings using the nomological network 

framework (Cronbach & Meehl, 1955; Pfeifer & Allen, 2016) that takes into account the 

topology of validity (Cook & Campbell, 1979; Shadish et al., 2002). While a brief definition for 

the nomological network framework was provided in Chapters 1, 3, and 4, I start this chapter by 

providing a detailed description of the nomological network framework. Within the scope of this 

definition, I then revisit and consider the findings presented in Chapter 3 to Chapter 5. I discuss 

the implications of these findings and their limitations given that “every solution to a problem 

tends to create new problems” (Shadish et al., 2002, p. 35). Considering that this dissertation 

focuses specifically on the aspects of neural activation derived from task-based fMRI measures 
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of reward processing, I discuss several issues in task-based fMRI and propose some future 

directions that are consistent with the nomological network framework. 

Nomological Network: Definition and Description 

Science is a method that allows researchers to systematically interpret observations from 

nature (Cowles, 1989). The accumulation of observations gives rise to theories that help give 

structure to interrelated constructs (Muthukrishna & Henrich, 2019) and propose an integral set 

of postulates, or hypotheses, that express relationships among phenomena in the natural world 

(Miller, 2009; Oberauer & Lewandowsky, 2019). Once we have a theory that we can articulate, 

it becomes possible to systematically test and falsify that theory which is rooted in the measured 

attributes and observations. By measuring the underlying phenomena, the relationships among 

the constructs can be embedded within a nomological network (Pfeifer & Allen, 2016). The 

nomological network can be viewed as “a metaphor to emphasize the structure of the system” 

(Meehl, 1978, pp. 813–814), whereby the nodes of the network represent the postulated 

theoretical components (e.g., neurocognitive measures of reward), which are connected to other 

nodes in the network via strands that constitute the relationships (e.g., association between 

neurocognitive measures of reward and substance use). The network is comprised of interlocked 

relationships that constitute a theory (Cronbach & Meehl, 1955).  

From the neurodevelopmental models discussed throughout this dissertation, such as the 

Maturation Imbalance Model (Casey et al., 2008; see Figure 1.2 in Chapter 1), several properties 

can be deduced from a nomological network (Figure 6.1). Importantly, while the 

neurodevelopmental models are often labeled as ‘heuristics’ or ‘frameworks’ for interpreting 

findings, the information within the models gives structure to findings and observations which 

may be thought of as constituting a theory or, as some would label it, a “soft-theory” (Fried, 
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2020; Meehl, 1990). 

Nevertheless, using the 

neurodevelopmental 

model framework, we can 

postulate relations 

between observations and 

phenomena or different 

measures of phenomenon 

within a construct, by the 

nodes and strands from 

the nomological network. 

The network may relate 

observations to one another, such as adolescents engaging in greater substance use and higher 

reward seeking at a certain age. It can also relate theoretical measures of phenomena to 

observations, such as performance on a reward task or neural activation in the nucleus 

accumbens (NAcc) to self-reported substance use. Then, in the nomological network, a 

researcher can relate a specific construct measured via distinct phenomenon, such as 

performance on two different reward tasks or reward seeking measures. The confidence among 

the relationships (i.e., strands) between units of measurement or observations (i.e., nodes) is 

heavily influenced by the underlying measures and their underlying theories (Cronbach & 

Meehl, 1955). In some instances, the strands that emphasize postulated relationships, such as the 

operationalization of the construct of reward sensitivity via a measure like the BART task, may 

be problematic as they are susceptible to interpretation (Meehl, 1978) and may empirically 

Figure 6.1. Abbreviated Example of Nomological Network for 

Maturational Imbalance Model 
Solid lines = theory implied relationships among nodes.  

Dashed lines = construct implied relationships among nodes. 
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demonstrate poor construct validity (Demidenko et al., 2019; Eisenberg et al., 2019). In scenarios 

where construct validity is poor, interpolating and extrapolating findings is quite challenging 

because the basis for the relationships is unclear. Therefore, it is difficult to know what is, in 

fact, being measured or related (Shadish et al., 2002). 

Clark Hull argued that, “The typical procedure in science is to adopt a postulate 

tentatively, deduce one or more of its logical implications concerning observable phenomena, 

and then check the validity of the deductions by observation. If the deduction is in genuine 

disagreement with the observation, the postulate must be either abandoned or so modified.” 

(1952, p. 15). The discordance between the postulate and observation can be caused by issues of 

construct validity, the theoretical network, or the design (Cronbach & Meehl, 1955). The former 

issue, construct validity, imposes major constraints on interpretations of relationships in the 

nomological network (Shadish et al., 2002) both in traditional measures within psychology 

(Flake et al., 2017; Flake & Fried, 2020) and measures within cognitive neuroscience (Pfeifer & 

Allen, 2016; Poldrack & Yarkoni, 2016). As described in Flake & Fried (2020), a construct (or 

measure) can be “any approach that researchers take to create a number to represent a variable 

under study” (p. 458). Because constructs are not directly measurable, such as reward sensitivity 

or self-regulation, measures of the phenomena, such as self-reported sensation seeking or neural 

activation during reward tasks, serve as the primary indirect measure of the construct. Given the 

abstract nature of many constructs in adolescent research, such as how we define reward 

sensitivity during the MID task, errors in constructs have major implications as they “can 

mislead both theory and practice” (Shadish et al., 2002, p. 65). For example, if I believe I am 

explicitly measuring neural substrates of reward anticipation during the MID task in the NAcc 

(Figure 6.1) but that process is confounded by interrelated components, such as attention, this 
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can impact my conclusions. This confounding variable may impact both the theoretically implied 

associations (Figure 6.1: solid lines) and measurement-implied nodes (Figure 6.1: dashed lines). 

When the goal is to use the correlational design to generalize from the narrow-to-broader 

population of adolescents (Cronbach, 1957), and when the relationships among constructs in the 

nomological network fail to materialize, it becomes onerous to generalize about what the 

measured neural process of reward means and how it relates in the broader network. With this in 

mind, it is imperative to understand the limitations of constructs and the narrow-to-broader 

generalizations for the neurodevelopmental models (Shadish et al., 2002). While researchers 

proclaim the importance of construct validity and cite research on construct validity at an 

exceeding rate (Fiske & Campbell, 1992), they often give it little attention in their work (Proulx 

& Morey, 2021). 

 The nomological network may help us structure and answer these very important 

questions about our theories. The network helps contextualize how theoretically similar 

constructs are interconnected in the system and how findings may generalize across persons, 

measurement variables, and settings. Shadish, Cook & Campbell (2002) describe several threats 

to construct validity that can cause the strands of the network to break down. For instance, (1) 

constructs can be defined in a manner that is incongruent with the phenomenon (i.e., approaching 

substances may be incongruent with anticipation of monetary reward during the MID task; see 

for example, Modak et al. (2021)); (2) constructs may be confounded by other processes which 

are often operationalized using single measures of constructs containing irrelevant information 

(i.e., MID task measure of reward is confounded with attention; see Caplan (2007)); and (3) in 

most scenarios, only single, abstract components of a construct may be studied, which makes the 

traditional psychometric approach more difficult for disaggregating relevant and irrelevant 
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processes in the measures (Campbell & Fiske, 1959). These three issues interact with elements of 

the study (e.g., normative or atypical populations), differences in outcomes (e.g., alcohol 

initiation or retrospective alcohol use), or congruency in effect sizes (e.g., similar magnitude or 

direction of effects).  Thus, understanding constructs is difficult but it is an essential part of 

research (Shadish et al., 2002) that helps expand the nomological network (Cronbach & Meehl, 

1955). In fact, construct validation is considered by Flake and colleagues (2021) as a major step 

towards assuaging the generalizability crises that permeates psychology (Yarkoni, 2020). As 

these issues are discovered, researchers will have to face the complexities of psychological 

measures and wrestle with the lack of precision in their theories (Proulx & Morey, 2021). 

 In the next section, I will synthesize and elaborate the empirical work in Studies 1, 2, and 

3 and expand on the nomological network.   

Chapter 3 to Chapter 5: Findings and Limitations 

The purpose of the studies in this dissertation (Chapter 3 to Chapter 5) are to drill-down 

into the nomological network, particularly the neural component, and consider where and why 

deviations from the broader neurodevelopmental models may arise. In this section, I describe 

how one may test the network of relationships postulated by the Maturational Imbalance model, 

synthesize the findings from the context of the nomological network, and provide some 

limitations that were not already discussed in Chapter 3 to Chapter 5. 

One way to assess an existing nomological network is to start with a theory or a 

framework, such as the Maturational Imbalance model. This framework can be simplified into its 

nodes, such as self-report risk-taking behaviors and neural substrates of reward (Figure 6.1). 

Then, it can be deduced that the postulated strands of the theory are apparent in the observations. 

If one (or more) of the postulates in the network do not generalize, it is worth considering 
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whether the failure is attributable to an alternative definitions of the construct (Cronbach & 

Meehl, 1955; Shadish et al., 2002) or an issue with the analytic design. This is especially true in 

task-based fMRI where cognitive processes are implied and rarely confirmed. Moreover, 

traditional experimental designs may not appropriately test the postulates of a theory. For 

example, tests of the neurodevelopmental models that place too much emphasis on one-to-one 

mapping of brain regions (Pfeifer & Allen, 2016) and group averages (Beltz, 2018), rarely 

consider the dynamics, or interplay, among brain regions as discussed in those models. In which 

case, alternative designs may be appropriate to consider the support for the strands in the 

nomological network.  

The purpose of Study 1 (Chapter 3) was to evaluate whether there was a strand in the 

broader neurodevelopmental framework associating neural substrates of reward with risk-taking 

behaviors. Instead of spanning multiple decades of development, the emphasis was placed on the 

developmental peak in risk-taking that occurs during mid-to-late adolescence (Bjork & Pardini, 

2015; Willoughby et al., 2013) to make a more precise prediction (Pfeifer & Allen, 2016). If the 

postulate of neurodevelopmental models holds true—adolescents that have greater motivation 

towards reward will report increased risk-taking tendencies (Galván, 2010)—this would be 

evident in a sample of adolescents that were specifically sampled to differentiate high risk and 

average/low risk-taking profiles. This would evaluate the central strand that connects neural 

substrates and behavioral nodes in the nomological network (Figure 6.1). Despite the narrow 

sampling of adolescents during the developmental peaks in risk-taking and using a reward task 

that is employed by major consortium studies to measure reward processing (Casey et al., 2018; 

Schumann et al., 2010), there was no empirical evidence in the study to support the Maturational 

Imbalance model’s postulate of adolescent neurodevelopment. We found no significant 
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association between Wave 1 or multi-wave risk-taking profiles (e.g., high risk versus 

average/low risk) and activation in pre-selected neural regions during the anticipation of large 

rewards in the MID task. While this study used both a whole brain and ROI analysis, the 

analyses were restricted to a single construct of reward. Thus, failure to generalize may be a 

function of how reward was characterized during the MID task. For instance, the decision was to 

opt for the Big Win versus Neutral cue contrast. While this decision was based on prior research, 

it was not always congruent with contrasts that were used to operationalize reward during 

previous use of the MID task (Büchel et al., 2017; Cope et al., 2019; Schwartz et al., 2019). 

The purpose of Study 2 (Chapter 4) was to evaluate how the arbitrary operationalization 

of the reward construct during the MID task may have impacted the underlying findings in Study 

1. If the construct was defined incorrectly in Study 1, thus being inconsistent with the 

phenomenon being measured, this may systematically alter the observed relationships that are 

postulated by the neurodevelopmental models. While there are numerous reward tasks that can 

tap the construct of reward during task-based fMRI (Richards et al., 2013), there are also several 

ways that a construct can be defined within a given task. In Study 2, ten different constructs of 

reward were evaluated within the MID task, spanning anticipation, feedback, and prediction 

error. In addition to testing the patterns of the whole brain activation during different contrasts, 

relevant to the nomological network, the systematic associations (strands) among select contrast 

and psychological characteristics (nodes) were also examined. As previously reported (Marek et 

al., 2020), results from similar studies suggest that most brain-behavior effects are likely to be 

small. Relevant to the nomological network, in Study 2, there was little-to-no consistent 

empirical evidence for relationships among constructs of reward and psychological 

characteristics that are theoretically linked. For instance, while self-reported substance use and 
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sensation seeking and substance use and externalizing were strongly associated in the adolescent 

sample, there were few, if any, consistent patterns among the associations between these 

behavioral characteristics and the neural constructs of reward that were modeled. The findings 

from Study 2 suggest that there may have been differences in neural activation across risk-taking 

profiles in Study 1 if the construct of reward were defined differently. This difference, however, 

would not have been easily interpretable. This raises the concern that there are likely to be 

construct misidentifications in task-based fMRI that mislead interpretations (Shadish et al., 

2002), and, in some scenarios, rationalization may be used in place of appropriate construct 

validation (Cronbach & Meehl, 1955) which likely results in vague definitions of reward. 

Characteristic of the broader neurodevelopmental literature, both Study 1 and Study 2 

utilized a traditional univariate approach which may not necessarily be an appropriate design to 

examine the neural strands of this nomological network. As discussed in Chapter 5, adolescent 

neurodevelopment and behavior is not uniform. Furthermore, traditional univariate analyses use 

one-to-one mappings that do not address the dynamics of brain function that the 

neurodevelopmental models, such as the Maturational Imbalance model, refer to (see Casey et 

al., 2019). If neural function in brain regions is averaged across individuals that are 

heterogeneous in their development and behaviors, the theoretical association (strand) between 

brain and behavior (nodes) may be hindered.  

The purpose of Study 3 (Chapter 5) was to use an empirical design that would be more 

reflective of the Maturational Imbalance model. Unlike Study 1 and Study 2 that averaged neural 

activation of brain regions, Study 3 evaluated the neural coactivation (or dynamics) of brain 

regions that would approximate the hypothesis posed by the Maturational Imbalance model (see 

Chapter 1, Figure 1.2). Consistent with Study 1 and Study 2, Study 3 evaluated the theoretical 
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association (strand) between self-reported sensation seeking and neural coactivation during the 

MID task (nodes). The findings in Study 3 illustrate that there was empirical evidence supporting 

the theoretical association (strand) between self-reported sensation seeking and person-specific 

connectivity among reward regions (nodes) during motivational processing. However, the 

strength of these associations waned as a function of how the fMRI time-series data was modeled 

(perhaps reflecting habituation and/or reliability) and due to the length of the time-series 

(reflecting power). While the first run during the MID task reflected the strongest associations 

between brain and behavior, the association during the second run was attenuated, although 

similar in direction. While this study demonstrated some theoretical support for relationships 

within a networking of findings, similar to Study 2, there are distinct differences that must be 

considered in the context of the MID task, such as attention, attenuation of reward, reliability, 

and power to model an effect. Ultimately, these concerns may impact the underlying 

interpretation(s).   

When considering the neurodevelopmental frameworks from a nomological network 

perspective, it is important to acknowledge the difference in using the person-specific approach 

in Study 3 and group average approach in Study 1. When testing the nomological network as it 

relates to the Maturational Imbalance model, the associations are based on group averages. As 

presented in Figure 1.2 in Chapter 1, the neurodevelopmental framework’s assertion is that there 

is an average trajectory of when reward regions are sensitized during mid-adolescence. 

However, as mentioned in previously, adolescent development and behaviors are heterogeneous. 

While adolescence is marked by the onset of puberty, it is well recognized that the onset of 

puberty differs in age between males (~12 years old) and females (~10 years old; Dahl et al., 

2018). This suggests that males and females may have unique neurodevelopmental trajectories as 
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a result of the “social re-orientation of adolescence” that may contribute to the rise in 

engagement in rewarding experiences (Forbes & Dahl, 2010, p. 67). Hence, instead of an 

average trajectory there may be a multitude of trajectories that reflect different onsets and tempos 

of development in motivational processing. Thus, the use of group averages in Study 1 may be 

more equipped to answer the strand between brain-behavior as it relates to the average but the 

person-specific analysis may inform new strands that relate to an individual and not adolescent 

development in aggregate. Person-specific approaches, whether across weeks, months or years, 

that model trajectories of an individual may provide insights as to why mortality from 

unintentional injuries rise substantially higher during mid-to-late adolescence in males than in 

females (Centers for Disease Control and Prevention, 2020). Ernst (2022), the curator of the 

Triadic model in 2006, recently suggested a prediction based approach that may bridge both the 

group and person-specific models. In essence, Dr. Ernst argued that if we define key features of 

neurodevelopmental models, such as brain activation in key brain regions, connectivity between 

brain regions and self-report measures of key psychological characteristics, perhaps researchers 

may be able to predict which individuals engage in risk-taking behaviors. Such an approach 

would be agnostic to the age along the developmental trajectory but instead focus on the 

predictive features of the model in the context of behaviors.  

The three studies summarized here provide an example of how a “drill-down” approach 

can be used within a sample to illustrate what strands may be supported within a nomological 

network. By using the identical sample and task, subtle modifications to the construct (e.g., 

contrasts used during the MID task, such as in Study 2) and the empirical design (e.g., traditional 

univariate versus a dynamic model, such as in Study 3) allow for a comprehensive understanding 

of the strands and nodes of a nomological network for the prevailing neurodevelopmental models 
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(Chapter 1, Figure 1.2). While using a different sample and task for each study would have 

allowed for comparisons across populations and tasks, the differences between persons, settings, 

and measurement variables would have made it difficult to discern the reason for the differences 

(Shadish et al., 2002). For instance, it would be difficult to determine whether the association 

between neural activation of reward and behavior in the network is attributable to the abstract 

decision at each definition or analytic step, or to differences in sampling and measurement 

characteristics that arise when using different samples. Across three studies, this dissertation 

tested distinct limitations of the neurodevelopmental framework by evaluating brain-behavior 

associations for a specific subset of the population. For the initial phase of this work, 

constraining the potential sources of empirical differences was the logical approach. In future 

iterations (proposed below), multiple samples and tasks may help build on these findings. 

While taking a single sample and task to drill-down into a network is informative, there 

are several limitations that should be considered. Referring to the sampling characteristics and 

interview design discussed in Chapter 2, there are explicit decisions made in the design that 

could introduce sampling biases that are present in each of the three studies due to the “drilling 

down” approach. These decisions carry similar implications as the “researcher degrees of 

freedom” discussed in Chapter 3. I will discuss five of these limitations and their implications 

below. 

First, across the three studies in this dissertation, there are a number of research degrees 

of freedom in deciding which self-report measures to use. For example, Study 1 used the BMS 

scale as metric of risk-taking, Study 2 used self-reported substance use and several psychology 

characteristics (e.g., sensation seeking and externalizing symptoms) and Study 3 used sensation 

seeking. In general, for Study 1 and Study 3, the literature highlights that risk-taking peaks 
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between 18-23 (Bjork & Pardini, 2015; Willoughby et al., 2013) and sensation seeking – which 

is moderately related to substance use (Demidenko et al., 2019) –  peaks between 14-20 (Harden 

& Tucker-Drob, 2011) or 18-20 (Steinberg et al., 2018), depending on the sample and 

operationalism of the variable. The decision to focus on risk-taking in Study 1 was to measure 

the neurodevelopmental model’s generalizability to real-world risk-taking in the focal age range, 

however, the focus on sensation seeking in Study 3 was to measure the association of trait level 

motivational towards rewards and coactivation during a presumed state of motivational 

processing. It is apparent from the brain-behavior variability between substance use and 

sensation seeking in Study 2, that differences in whole brain and ROI activation across risk-

taking in Study 1 (which is strongly related to substance use) would likely differ from sensation 

seeking. While we did not analyze differences in brain coactivation during motivational 

processing across risk-taking profiles in Study 3, the results would likely vary given sensation 

seeking demonstrates only a moderate correlation with risk-taking in the full sample (Demidenko 

et al., 2019). This further supports the need for research studies to test different theoretical 

strands of the nomological network to gain a nuanced understanding for brain-behavior 

associations as they relate to neurodevelopmental models. 

Second, the imaging sample was recruited to test distinct differences in behavioral and 

cognitive associations of risk-taking behaviors. Thus, the subsample selected to maximize risk-

taking individual differences would not reflect a typical adolescent population, as the prevalence 

in risk-taking behaviors in this sample is higher than a fully representative adolescent population 

(Johnston et al., 2019). Likewise, the distinction made in this recruitment strategy was to sample 

categories of high risk and average/low risk-taking profiles based on a latent factor score of 

several risk-taking measures. While this approach is recommended in a prior review (Sherman et 
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al., 2018), this study may not fully capture the history of exposure to substance use (Bjork, 2020) 

or family history (Cope et al., 2019) that may be relevant to the neural underpinnings of reward 

or motivational processing. Nevertheless, these sampling procedures for high risk and 

average/low risk-taking profiles were necessary to make the appropriate comparisons and were 

derived from a larger sample that was consistent with the population from which it was drawn. 

Third, the recruitment strategy may misappropriate the cause and effect that is postulated 

in the neurodevelopmental models. The neurodevelopmental models propose that the sensitivity 

to rewarding stimuli increases adolescents’ motivation to approach salient behaviors that often 

incur risk. This view may suggest that increased activation in reward regions would 

prospectively predict risk-taking tendencies. The samples for all three studies utilized self-

reported behaviors that were retrospective and proximal to the scan. Self-reported data was not 

available to evaluate whether activation was prospectively associated with self-reported risk-

taking behaviors. While this is a limitation of each of the study’s conclusions, retrospective and 

cross-sectional analyses of neurodevelopmental models are common in the field, and so this 

remains an unresolved issue (Sherman et al., 2018).  

Nevertheless, the retrospective nature of self-reported measures is especially important in 

the context of substance use. For example, the neurodevelopmental models hypothesize that 

adolescence is marked by the increased sensitivity of reward regions which may increase 

engagement in risk-taking behaviors, however, research has reported that the reward systems, in 

particular the NAcc, are blunted in response to reward in problematic drug use (Volkow et al., 

2010) and more normative marijuana use (Martz et al., 2016). This argument was posed in 

response to Study 1 by Bjork (2020). However, the evidence from Study 2 suggests a more 

nuanced understanding in which task and what contrast this occurs and why. This is especially 
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important given the fact that animal and human studies of drug self-administration converge on 

the finding that the dopamine response increases rather than a decreases in to drug cues (Samaha 

et al., 2021). 

Fourth, a major tenant of the neurodevelopmental models is the difference in neural 

activation that occurs across development. Reviews often compare differences in activation to 

rewards in adults, adolescents, and children (Galván, 2010; Silverman et al., 2015) to derive 

adolescent emergent characteristics that coincide with risk-taking behaviors (Casey, 2015). The 

purpose of our studies was to ask a more precise question within a narrow developmental range 

regarding the neural substrates of risk-taking. While there was a lack of generalizability (Study 

1) and increased variability (Study 2) in the findings that did not provide empirical support for 

certain strands of the nomological network, the theoretical strand specific to the developmental 

trajectory may still hold true. In this case, the nomological network encompassing the theory 

may be retained, however, some hypothetical links (strands) of the network may need to be 

modified. 

Fifth, there are ongoing discussions in fMRI related to power and reliability that the work 

here cannot fully evade. As discussed in Chapter 4, the work here has the strength in using a 

sample size (N = 104) that is substantially larger than the median sample size (N < 50) that is 

common in fMRI (Szucs & Ioannidis, 2020). Marek and colleagues (2022) have argued that 

sample sizes of N > 2000 may be necessary to uncover meaningful brain-behavior effects and 

multivariate approaches would be better powered than traditional univariate methods. Similarly, 

Grady and colleagues (2022) have reported that multivariate methods may be more sensitivity to 

brain-behavior effects than univariate methods. Unlike the findings in Marek and colleagues 

(2022), Grady and colleagues (2020) report that brain-behavior correlations may be inflated at 
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smaller sample sizes but multivariate correlations between brain-behavior stabilized at N > 80. 

With respect to Study 1, the sample size we used here is superior to the some of the prior work 

but may still incur rates of Type II errors given the lack of power to find significant mean 

differences between groups based on self-reported behavior. Nevertheless, the issue of power is 

not unique to this study as the early neuroimaging that provided evidence for the 

neurodevelopmental models were often severely underpowered. For example, one study 

estimated the neural correlates of risk-taking in 26 participants that ranged in age from 7 to 29 

years (Galvan et al., 2007). Notably, the focal age range used in the studies in this dissertation 

increases the precision with which the hypotheses may be answered in Study 1 over prior work 

that used samples with broad age ranges which limit the datapoints per age group. Conversely, in 

the case of Study 2, the sample may be sufficiently sized to reflect the stability of correlations as 

Grady and colleagues (2020) suggest that univariate methods may perform marginally worse 

than multivariate methods. But the field continues to grapple with issues relating to power and 

reliability, so more evidence is needed.  

For example, Elliott and colleagues (2020) reported poor test-retest reliability across a 

number of fMRI tasks that used univariate methods. A commentary on this work argued that 

multivariate methods may provide biomarkers that in some cases may be more reliable in 

prediction modeling (Kragel et al., 2021). The latter perspective converges with the opinions in 

Marek and colleagues (2022) that fMRI studies may benefit from moving to brain-wide 

association studies (BWAS) which is similar to the shifts observed in genomic research that uses 

genome-wide association studies (GWAS; Witte, 2010). Nevertheless, more work is necessary to 

understand the issues of power and reliability in fMRI studies examining the associations 

between the brain and psychological characteristics. While some task-based fMRI studies have 
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been reported to have poor test-retest reliability, the strength of this work is the use of the MID 

task which has been reported to have reasonable test-retest reliability in the NAcc that is central 

to motivational processing (Wu et al., 2014). Moving forward, more research using larger 

samples, numerous runs and sessions will help appreciate the test-retest reliability in the MID 

task. 

I applaud recent calls for increased reliability in task-based fMRI (Elliott, Knodt, Caspi, 

et al., 2021). Reliability for brain-behavior research, however, is necessary but not be sufficient. 

At the heart of all these procedures is the question: What does the neural activation mean? I 

elaborate on this and propose some recommendations in the next section. 

Implications to Neurodevelopmental fMRI Research 

 Neurodevelopmental models play a pivotal role in how we think about adolescent neural 

and socioemotional development. Nevertheless, as references throughout this dissertation have 

made clear, there are prevailing issues in psychological measures (Flake et al., 2017, 2021; Flake 

& Fried, 2020; Hussey & Hughes, 2020; McNeish, 2018; Muthukrishna & Henrich, 2019; 

Shadish et al., 2002), cognitive neuroscience (Baker et al., 2021; Caplan, 2007; Price & Friston, 

2005), and task-based fMRI (Elliott et al., 2020; Elliott, Knodt, & Hariri, 2021; Poldrack, 2010; 

Snow & Culham, 2021). These issues make it difficult to interpret accumulating findings and 

make sound predictions about adolescent behaviors.  

Given the large number of reward measures used in the neurodevelopmental literature 

(Flannery et al., 2020; Richards et al., 2013) and the tendency to use proxies of stimuli and 

behaviors in fMRI (Baumeister et al., 2007; Snow & Culham, 2021), there is often too much 

heterogeneity between reward and cognitive control tasks to aggregate across studies. While 

meta-analytic clustering techniques are helpful (Flannery et al., 2020), the highlighted 
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discrepancies in Study 2 pose several conceptual challenges as they relate to noisy measures of 

brain and behavior. This aligns with the commentary that task-based fMRI must pay greater 

attention to psychometric properties, particularly reliability (Elliott, Knodt, Caspi, et al., 2021). 

However, as mentioned earlier, I would argue that resolving reliability is only one component of 

moving fMRI forward in brain-behavior research. Of course, it is crucial that researchers can 

reliability measure neural activation in fMRI research but there needs to be sound evidence for 

both reliability and validity for us to produce relationships that are meaningfully interpretable 

(Clifton, 2020). 

 Currently, there is an assumption in task-based fMRI studies that misappropriates 

traditions from experimental designs to correlational research. For instance, in Chapter 2, I 

discussed that the MID task is an experimental design that taps reward specific regions. As such, 

it is not a robust approach to testing cognitive control in risk-taking behaviors. This locationist 

perspective (Lindquist et al., 2012) distinguishes which neural regions are explicitly tapped by 

functionally relevant processes in a task-based fMRI experimental design. This convention is 

used in fMRI research to distinguish relevant brain regions for different tasks (Casey et al., 2018; 

Elliott et al., 2020) and is often the primary justification for the utility of the task when studying 

a particular behavior (as in the studies reported here). How can we claim that the elicited neural 

activation during the task represents an attribute that is both latent and in the domain of interest? 

This technique of validating a construct for brain-behavior research suffers from similar 

limitations, such as using internal consistency (i.e., Cronbach’s α) in social psychology studies to 

reflect a measure’s validity (Flake et al., 2017).  

Currently, the common method used to determine what an fMRI task measures can be 

defined as content or face validity (Clifton, 2020), which may be adequate for experimental but 
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not correlational research. Traditionally, to define mean-activation of a construct during task-

based fMRI, such as the MID task, a one-sample t-test is often performed to identify where 

“robust” activation is present. In experimental designs, the goal is to control or reduce the source 

of variance (Dang et al., 2020) and increase the signal (or activation) in task-relevant brain 

regions. However, as stated by Paul Meehl, “one psychologist’s subject matter is another’s error 

term” (1967, p. 808). In correlational research, the variability in task-irrelevant regions not 

shown during mean-level activation in a one-sample t-test, such as cognitive control regions 

during the MID task, does not necessarily preclude them from being assessed in brain-behavior 

associations. The covariation is, in fact, the central component of the measured effect in 

correlational research, such as Pearson’s correlation. Furthermore, integrative neuroscience 

perspectives would argue that these task-irrelevant brain regions may still play a role in dynamic 

processes (Pessoa, 2017) and so they do not lay dormant. Cognitive neuroscientists are 

reconsidering traditional sequence processes using an interactive framework, whereby processes 

such as decision making include neural feedforward and neural feedback steps since participants 

are “not simple stimulus-response devices” (Pessoa et al., 2022, p. 8). Therefore, simple mean-

level activation maps in experimental designs may not be adequate to define the construct of 

interest. 

 Experimental designs in task-based fMRI are effective at eliciting neural function for pre-

specified experimental conditions. However, the way in which they have been used to date in 

correlational research provides little information about the similarity in constructs within a 

nomological network. A recent meta-analysis assessed task-based fMRI to determine whether 

there is consistent spatial location and direction for the hypothesis that hyperactivation in reward 

regions and hypoactivation in cognitive control regions is associated with substance use 
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behaviors (Tervo-Clemmens et al., 2020). Across the 22 studies that the authors evaluated, they 

found a large range of reward and cognitive control tasks that reflected the dominating 

neurodevelopmental theories. In their meta-analysis of 190 foci, they found evidence that 

activation in striatal regions relates to substance use but only during motivational/reward 

processing. While this evidence provides support for the prevailing hypothesis of hyperactivation 

in reward regions, the authors noted, “the specific components indexed by the contrasts were 

quite diverse (e.g., winning rewards – neutral condition; risky – safe decisions…)” (Tervo-

Clemmens et al., 2020, p. 8). This doesn’t necessarily provide support for the theory, given that 

there is limited evidence linking these measures in fMRI (Pfeifer & Allen, 2016). Like the results 

suggest in Study 2 (Chapter 4), the associations across these different designs and contrasts may 

not be theoretically meaningful. In fact, when convergent validity of comparable constructs was 

evaluated outside of fMRI, there was little support for links in the nomological network 

(Eisenberg et al., 2019). This suggests that task-based fMRI would benefit from attending more 

to psychometric issues, such as construct validity, to allow for intuitively clear brain-behavior 

associations. In other words, the focus on internal validity, that is the hallmark of experimental 

approaches, and the focus on external validity, that is the hallmark of correlational approaches 

(Cronbach, 1957), must both be honored in order to provide valid assessments of brain-behavior 

associations.   

 The American Psychology Association (APA) recommended that construct validity be a 

part of the scientific process in the 1950s to improve the interpretability of findings (Cronbach & 

Meehl, 1955). Historically, the measurement of attributes has been a complex matter (Briggs, 

2021). Publications since have highlighted the importance of establishing relevant and irrelevant 

properties of constructs (Campbell & Fiske, 1959; Edwards & Bagozzi, 2000; Eronen & 
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Bringmann, 2021; Grahek et al., 2021; Shadish et al., 2002; Strauss & Smith, 2009), risks 

(Shadish et al., 2002) and trade-offs in validity (Clifton, 2020), and questionable measurement 

practices (Flake & Fried, 2020). Psychometric properties, such as construct validity, help 

establish a belief that “an instrument reflects a particular construct to which a meaning is 

attached” (Cronbach & Meehl, 1955, p. 290). Without establishing adequate construct validity, 

what we can conclude, especially when using noisy fMRI data, is appropriately summarized by 

Dr. Patrick Curran, “If you blow construct validity, dude, you’re done. […] There is individual 

variability in developmental trajectories of crap. Let’s slap some lipstick on this pig and get it 

out the door.” (Curran & Hancock, 2021, 53:44).  While this comment was said in jest during the 

recording of a podcast, there is a level of candor to the statement that is relevant to both 

psychology and task-based fMRI.  

Support for the neurodevelopment models is comprised of constructs that appear to be 

loosely defined given the empirical findings from literature reviews (Richards et al., 2013; 

Sherman et al., 2018) and meta-analyses (Tervo-Clemmens et al., 2020). To date, affective 

paradigms in task-based fMRI are in jeopardy of surface similarities (Shadish et al., 2002), or the 

“jingle fallacy” (Flake & Fried, 2020). Two tasks that have similar names or share a domain, 

such as the MID task or the Wheel of Fortune (WoF) task, are assumed to be comparable given 

the monetary stimuli or the regions that they activate (e.g., NAcc). Evidence from a contrast in 

the WoF task can be used to corroborate or contradict findings from a contrast in the MID task, 

as was recently published (Del Giacco et al., 2021). Likewise, different contrasts within a similar 

task, such as the MID task, can be used in a similar fashion and depending on the reader, this 

approach may incur less caution. Study 2 shows that, even within a study where all other factors 

are held constant, subtle differences in how the phenomenon of the motivation towards rewards 
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is measured, such as Big Win versus Neutral and Big Win versus Small Win, can produce brain-

behavior relationships that are notably different. What this means for the field more broadly is 

still unclear. 

If task-based fMRI continues to be used in correlational research, it will be of utmost 

importance to work towards improving its psychometric properties. In addition to improving 

test-retest reliability (Elliott et al., 2020) and using appropriately large sample sizes (Szucs & 

Ioannidis, 2020), I argue that the task-based fMRI literature would significantly benefit from a 

comprehensive understanding of the underlying constructs. While fMRI may show promise in 

correlational research, until all of these issues are understood, it’s best seen as a biomarker 

(Kragel et al., 2021) with properties that are not fully defined.  

In addition to reliability, there are several important questions that need to be addressed 

with respect to construct validation. How do contrasts differ within a task? Do they differ in a 

meaningful way that is specific to the phenomenon being measured? Are convergence and 

divergence present across tasks that are postulated to belong to a shared nomological network? 

Most importantly, how do these different elements impact brain-behavior associations? The 

nomological network consists of a number of stages, such as a theory, construct, or phenomenon, 

and these have imbedded assumptions and auxiliary theories that impact their reliability (Meehl, 

1967). Although large consortium studies like the IMAGEN and the ABCD are equipped to 

answer some of these questions, they may be unable to answer important questions relating to 

construct validity. Specifically, the types and quantity of fMRI tasks are limited in the studies 

mentioned here. Oftentimes, the fMRI tasks are constrained to select reward and cognitive 

domains due to valid reasons, such as cost and participant burden. Because consortium 

differences in tasks will limit the tests of construct validity, alternative studies and analytic 
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techniques may have to be used. I propose two potentially fruitful approaches to address some of 

the construct validity concerns in the next section. 

Futures Directions via the Nomological Network 

 There are several paths that may help researchers improve construct validity in task-based 

fMRI that are not solely dependent on surface similarity (Shadish et al., 2002). I will put forth 

two approaches: one that can be adopted by using existing data and another that is an emerging 

area of research that leverages “dense-sampling”. As noted earlier, “every solution to a problem 

tends to create new problems” (Shadish et al., 2002, p. 35) so the proposals suggested here will 

not resolve the underlying issues. However, I hope they may serve as a path forward to 

understand both constructs and individuals during task-based fMRI in a comprehensive manner 

that increased power alone will not resolve. 

  In Chapter 4, I noted that “… some suggest that small effects are the “new normal” in 

clinical neuroscience research (Paulus & Thompson, 2019) and that MRI studies require 

especially large sample sizes (>2000) to identify meaningful effects in brain-behavior 

associations (Marek et al., 2020).” When this problem is considered solely from a null-

hypothesis framework, it is somewhat misguided (Cohen, 1994) given the weak signal-to-noise 

ratio in brain-behavior effects. During the last half century, Paul Meehl stated that, “everything 

in the brain is connected with everything else” (1967, p. 110) and “everything correlates to some 

extent with everything else” (1990, p. 204), so it is highly unlikely that experimental effects 

would show no effect on psychological phenomena. This is especially true in noisy data, such as 

fMRI. If we continue to increase the sample size, as a function of the “crud factor”, trivial 

significant (i.e., p < .05) correlations will emerge in task-based fMRI (Cohen, 1994).  
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In large brain imaging samples, such as the ABCD study (N > 11,000; Volkow et al., 

2018) or the UK Biobank study (N > 100,000; Alfaro-Almagro et al., 2018), the issues 

surrounding small effects or the population parameters that reflect meaningful importance will 

become a critical point of discussion. In the ABCD data, it has been reported that the effect sizes 

are small by traditional standards (Dick et al., 2020) and that brain-behavior relationships are 

likely to be smaller (Marek et al., 2020). Yet, increasing power will not help us understand the 

relationships being observed in the data because small effects that are observed in the brain-

behavior correlations may stem from some systematic error which is central to measurement 

concerns (Clifton, 2020). In adolescent research, there are perspectives that suggest conceptual 

relationships can override weak empirical support (Steinberg et al., 2018). To avoid ad hoc 

explanations using an existing theoretical framework, researchers should place an emphasis on 

construct validity in task-based fMRI to understand what constructs are being measured. This is 

not to say that large datasets, such as the UK Biobank study, will not meaningfully inform our 

understanding of the brain. In fact, the results coming out of the UK Biobank study are beginning 

to inform age-related standards for MRI research (Bethlehem et al., 2021). Instead, we need to 

develop and systematically evaluate theoretical frameworks to guide our interpretations. This is 

especially true in regards to small effects, as described by Davis-Stober and Regenwetter, “if a 

small effect is simply a ‘prediction with many exceptions,’ then we need to worry about the 

degree to which exceptions accumulate across multiple predictions.” (2019, p. 870). 
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Fortunately, a theoretical framework exists for domains of approach and valence systems 

in affective processing that can be put to the test using a nomological network approach. 

Approach and valence systems have been proposed to underlie core aspects of the motivation 

system which can modify the rate of engagement in risk-taking behaviors during adolescence, 

including substance use (Steinberg, 2008; Zuckerman, 1979). These two systems are organized 

across a multidimensional plane (Figure 6.2) where the 

motivational response (e.g. whether to approach or 

avoid) for a given stimuli can be judged on its a) 

valence, whether a stimulus is good or bad, and b) 

arousal, whether stimuli causes a state of high or low 

alertness (Posner et al., 2005). A stimulus that elicits 

positive valence and high arousal triggers an approach 

state in the organism resulting in engagement of the 

salient behavior. These processes are believed to be evoked by cues that signal monetary value 

(Knutson et al., 2014; Knutson & Greer, 2008) and affective stimuli, such as emotional words 

and faces (Russell & Bullock, 1985; Stevenson et al., 2007). Theories of reward and affective 

stimuli suggest that the anticipation of winning money is marked by activation in the NAcc and 

losing money by the insula (Knutson et al., 2014; Knutson & Greer, 2008). Fearful and happy 

faces are marked by the amygdala, disgust by the insula, anger by the orbitofrontal cortex (OFC) 

and sadness by the anterior cingulate cortex (ACC)(Lindquist et al., 2012). Be that as it may, 

recent meta-analyses have reported that similar brain functional parcels are involved in winning 

and losing rewards (Oldham et al., 2018) and processing positive and negative affective stimuli 

Figure 6.2. Multidimensional scale of 

valence and approach systems  
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(Lindquist et al., 2012), which gives rise to the question: When and how do brain regions 

converge on comparable constructs when engaged during different states? 

 For task-based fMRI, general linear models utilize traditional subtraction techniques to 

generate hypothetical measures of approach or avoidance in neural activation within domains of 

reward and affective processing. When abstract subtraction techniques are used, it is difficult to 

conclude whether overarching constructs exist within domains of reward and/or affective 

processes. Furthermore, if these constructs do exist, it is unclear how stable they are across 

samples. Research has shown that certain cues ($5 win) elicit a certain activation (increased 

NAcc) during the MID, but it is unclear whether an approach and avoidance construct is 

distinguishable across the many combinations of arousal (Big ($5), Small ($0.20), or No gain 

cues) and valence (win and loss). Despite reward and affective processing sharing a hypothesized 

multidimensional scale (Figure 6.2), it remains to be seen whether there is convergence and 

divergence between high approach reward states and high approach affective states across neural 

regions in the directions that a nomological network would propose.  
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 One way to answer part of this question is to identify existing samples that share at least 

two tasks that represent a phenomenon of reward and affective processing. The AHRB study 

(described in Chapter 2), the ABCD study (Casey et al., 2018), and the Michigan Longitudinal 

Study (MLS; Zucker et al., 2000) are adolescent samples that include monetary and emotional 

processing paradigms (Figure 

6.3) that offer a preliminary 

attempt to ask several construct 

validity questions. The MID 

tasks and multiple versions of 

affective processing allow 

several definitions for constructs 

of approach and avoidance to 

test the construct validation 

between reward and affective 

processing. The traditional 

subtraction approach in task-

based fMRI can generate 

multiple definitions of approach 

and avoidance, both of which 

can be used in the evaluation of 

the underlying construct. Then, 

by using the resulting neural 

signal, it is possible to consider how the signal in specified ROIs are related within and between 

Figure 6.3. FMRI Tasks from Adolescent Brain Cognitive 

Development (ABCD), Michigan Longitudinal Study (MLS) & 

Adolescent Health Risk Behavior study (AHRB) 
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different domains. Ultimately, this can fill the nomological space and theoretical models can be 

used to explain the associations.  

Although Study 2 showed that approach activation in the MID task revealed variability 

across contrasts, it is unknown what the resulting convergence and divergence is between two 

tasks that measure both approach and avoidance constructs, and how this effect changes across 

multiple developmental samples. With this data, it is possible to ask several construct validation 

questions. First, how do different contrasts tap domains that are conceptually related using a 

multidimensional framework (Figure 6.2)? Second, do these relationships significantly differ 

across samples that would require updating the nomological network? Third, by using 

comparable psychological characteristics from each sample, do brain-behavior relationships 

remain stable or do they change across developmental samples for a given construct? 

 This approach is a feasible first step that takes advantage of already collected data to 

evaluate the associations among postulated constructs within studies and changes across studies. 

While the way that construct validity is tested is not consistent with traditional multimethod-

multitrait methods (Campbell & Fiske, 1959), it does offer insights into the fluctuation of 

covariance matrices among task fMRI and behavioral measures that can inform what 

assumptions researchers can make when they adopt conclusions from other studies to corroborate 

their own findings. Nonetheless, to understand the nuance of these differences, future efforts 

would require data collection that permits a comprehensive assessment of the constructs within 

individuals. 

 A more comprehensive approach would be to evaluate construct validity of task-based 

fMRI within individuals. As discussed above, traditional fMRI analyses, such as the univariate 

methods used in Study 1 and Study 2, analyze a group of participants by transforming their 
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brains into a standard space from which brain-behavior relationships are probed. Increasing 

attention has been given to the analysis of individual brains, such as dense-sampling, that would 

account for measurement error and within-subject variability (Laumann et al., 2015). Dense-

sampling collects longer durations and repeated measures of fMRI data on participants to 

evaluate changes in the neural architecture of each individual brain. Original work using dense-

sampling of a single subject used network analyses to provide a reference for how connectivity 

patterns changed across visits due to self-reported behaviors, experiences, and biological factors 

(Poldrack et al., 2015). While this work generated interesting new hypotheses, given the 

minimum sample size (N = 1) and issues of test-retest reliability of functional connectivity (S. 

Noble et al., 2019), larger samples sizes would be necessary to meaningfully answer specific 

construct validity questions. Since then, the Midnight Scan Club (MSC) has provided evidence 

of functional connectivity using the dense-sampling approach (Gordon et al., 2017). The MSC 

study recruited ten study participants and collected five hours of resting state and six hours of 

task-based fMRI data for each participant. Their work informed two sources of measurement 

issues in fMRI: reliability and validity. The authors reported that a larger quantity of data (>30-

minute scans) improves test-retest reliability of network features in fMRI. The authors also 

demonstrated that there is correspondence in person-specific functional connectivity between 

resting state and some fMRI tasks, such as motor and perceptual processing. The information on 

reliability and validity from the MSC study have been highlighted as an exemplary step towards 

scientific measurement in fMRI (Poldrack, 2017).  

Future efforts can build on the dense-sampling approach from the MSC study to inform a 

nomological network using different constructs in task-based fMRI. The MSC study collected a 

large amount of data on three distinct tasks for ten participants, but the constructs were not 
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sampled strategically from domains that are hypothesized to exhibit convergent or discriminant 

processes. Future efforts should sample participants for repeated durations using a rich dataset of 

fMRI tasks. By including tasks from each domain, such as reward, cognitive control, emotional, 

spatial, and/or working memory tasks, researchers can build matrices that can satisfy a traditional 

multimethod-multimethod matrix in order to evaluate construct validity (Campbell & Fiske, 

1959). By including more than one task from each domain, researchers can alleviate issues 

stemming from the mono-operation bias (Shadish et al., 2002), or single measures that 

underrepresent or contain irrelevant properties for a given construct.  

Relevant to neurodevelopmental models, researchers can strategically sample the 

proposed domains to include neurocognitive and psychological characteristics that have different 

representations of constructs, which would avoid monomethod/method covariance issues 

(Shadish et al., 2002). Examples of these efforts have been previously proposed by cognitive 

researchers, such as Dr. Molly Simmonite and Dr. Thad Polk at the University of Michigan and 

Dr. Russell Poldrack at Stanford University. At this time, the National Institute of Mental Health 

has funded a project that is collecting this type of data. Dr. Poldrack’s study, “Characterizing 

cognitive control networks using a precision neuroscience approach”, is in the process of 

collecting fMRI data where, over a six-month period, each of the 55 participants will complete 

12 hours of fMRI. To answer construct-related questions, Dr. Poldrack is collecting eight tasks 

that span several domains within cognitive control. This work may provide meaningful 

information about similarities and differences between tasks and promote more research on 

measurement issues in fMRI. 
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Concluding Remarks 

 I hope this dissertation has stimulated some important issues pertaining to the modern 

neurodevelopmental models, tools, and methods used to test current postulates. I hope, too, that I 

provided justification as to why we must revisit rather than ignore traditional measurement 

questions in task-based fMRI. Historically, descriptive trends of adolescent development and 

behavior have remained fairly stable (Casey, 2015; Hall, 1904a; Kann et al., 2018; Rogers, 

1969). However, the cause-and-effect relationship between neurobiological changes and health 

risk behaviors remains elusive. The neurodevelopmental models have been important to the field 

of development psychology and resonate century-old heuristics. In some ways, the field has 

progressed rapidly without careful consideration of major limitations of measurement in fMRI 

and their implications in predicting adolescent risk-taking behaviors. Notably, psychology 

researchers using fMRI have acknowledged issues of spurious correlations in brain-behavior 

studies (Vul et al., 2009), problems relating to test-retest reliability (Elliott et al., 2020; Noble et 

al., 2019), and repeated publications commenting on issues stemming from small sample sizes  

(Button et al., 2013; Szucs & Ioannidis, 2017, 2020; Varoquaux, 2018; Yarkoni, 2009).  

Nevertheless, more work needs to be done with regards to construct validity to effectively 

generalize about adolescent populations and have a comprehensive understanding of cause-and-

effect relationships between neural activation and health risk behaviors. It is inevitable that 

different studies will produce results that may contradict one another. Davis-Stober and 

Regenwetter (2019) argue that a framework’s inability to predict individual behaviors 

consistently is a paradox of the framework and is immune to falsification. I do agree that 

heuristics, similar to the neurodevelopmental models, have been immune to falsification. 

However, the lack of convergence across studies is an opportunity to understand the nuance of 
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our constructs and measures that are central to the neurodevelopmental literature. If we cannot be 

certain about what we are measuring using an fMRI task and do not have a precise mapping of 

how brain activation during a reward task relates to other phenomena in the nomological 

network, the conclusions we draw may be jeopardized. 

 Perhaps one way forward is for neurodevelopmental researchers to step back and 

incorporate these concerns into future research. As expressed in a recent opinion piece, the 

publish or perish climate has negative effects on both the researcher and research (Frith, 2019). 

The pressure to publish, or more specifically the pressure to publish novel findings (Proulx & 

Morey, 2021), might produce more publications but not necessarily quality publications. Perhaps 

by restricting the output of publications, the reduced pressure to publish may enable researchers 

to increase collaborative efforts with other researchers from different disciplines, different 

perspectives, and different expertise on methods/topics. This is especially critical for 

neurodevelopmental science which often attempts to bridge methods and theories from 

developmental science, psychometrics, cognitive neuroscience, biopsychology, and statistics. 

Having to bridge all these areas may, in part, explain why measurement issues have not been 

thoroughly considered—the level of training in each area isn’t always clear. Over time, some 

suspect that, in addition to coding (Juavinett, 2022) and computational methods, theory will 

become critical in neuroscience research (Poldrack, 2019). As the emphasis on theory unfolds, 

perhaps there will be developments in psychometrics that will help inform the nomological 

networks of neurodevelopmental models. If the goal in neurodevelopmental psychology is to 

understand why adolescents engage in health risk behaviors at a higher rate than any other age 

group, having a better understanding of how we measure these behaviors will help reduces 

bumps along the way. 
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Appendix A : Phase 2 Wave 1 Sample and fMRI Task Performance 

 This appendix consists of information pertaining to the duration between P1W1 and 

P2W1 visits, behavioral performance (accuracy and mean response times), and head motion 

information during the Monetary Incentive Delay Task.  

 
Figure A.1 Distribution of months for Average and High-risk adolescents between P1W1 completion and 

P2W1 Scan Date. 
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There was no significant difference (p > .05) between months since Wave 1 and Scan Date competition between 

High (Mean = 31.8, SD = 4.8) and Low/Average Risk (Mean 30.4, SD = 5.1). 

 
 

Table A.1 MID Accuracy 

 M (SD) 

Overall Acc. % 56.9 (3.2) 

Win Big 62.7 (9.2) 

Win Small 57.8 (9.6) 

Neutral 47.7 (14.5) 

Lose Small 56.4 (8.8) 

Lose Big 59.9 (10.4) 

 

 
 The mean response times in the Table A2 and Figure A3 are limited as a function of a 

flaw in the E-prime design. Mean response times (MRT) were NOT logged by E-Prime for early 

or late responses, therefore, reported are only MRTs collected by E-Prime for ‘hit’ (correct) 

responses. This is a limitation of these behavioral data. 

 

Table A.2 Mean response times of full sample completing the MID task 

 M (SD) 

MRT (ms) 296.5 (24.4) 

Win Big 293.4 (22.9) 

Win Small 296.4 (26.4) 

Neutral 300.4 (28.3) 

Lose Small 296.1 (24.5) 

Lose Big 296.8 (23.7) 

MRT = Mean response time; ms = milliseconds 
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Figure A.2 Distribution of accuracy by condition for the MID task 
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Figure A.3 Distribution of response times by condition for the MID task 

 
Table A.3 Motion: Mean Framewise Displacement (FD) 

 M (SD) 

Run 01 – Pre FD .11 (.05) 

Run 02 – Pre FD .11 (.06) 

Run 01 – Post FD .02 (.01) 

Run 02 – Post FD .02 (.01) 

  



 

 

 

163 

Appendix B :  Supplemental Information for Study 1 (Chapter 3) 

 
 This appendix includes information pertaining to study one in Chapter 3. It includes 

several tables and figures that summarize: the non-exhausting ROI meta-analysis of studies used 

to derive a list of a priori coordinates, the ROI and whole brain masks used in the FSL analyses, 

whole brain one-sample t-test activation for all participants (N = 104), the nonparametric whole 

brain activation for the high risk (N = 41) and average/low risk (N = 63), and the results from the 

ROI and continuous BMS sensitivity analyses. 

Defining Regions of Interest and Literature Search of Brain Regions 

 

Table B.1 A prior MNI coordinates based on Neurosynth peaks and those 

Region of Interest 

MNI Coordinate 

(x, y, z) 

Right Ventral Striatum 15 8 -9 

Left Ventral Striatum -12 8 -8 

Ventromedial Prefrontal Cortex 2 40 -8 

Left Amygdala -22 -5 -19 

Right Amygdala 26 -4 -18 

Anterior Cingulate Cortex 3 29 21 

Left Orbitofrontal Cortex -22 34 -14 

Right Orbitofrontal Cortex 32 33 -14 

Right Dorsolateral Prefrontal Cortex 43 37 29 

Left Dorsolateral Prefrontal Cortex -42 34 28 

Right Insula 38 13 -4 

Left Insula -38 12 -9 
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Right Posterior Parietal Cortex 19 -65 54 

Left Posterior Parietal Cortex -23 -64 59 

 

Table B.2 Coordinates information from 18 studies evaluating risk and reward processing in adolescents 

Publication (year) 
Left/R

ight 

Region 

associated with 

coordinate 

MNI  

x,y,z 

Type of Behavior 

Assessed 

Bjork et al. (2004) Left VS -9 13 -4 Age differences 

(adolescents/young adults); 

and excitement for cue 

(button box rating (one to 

four) feeling when seeing 

cues on Likert scale - (e.g., 

how “happy,” “tired,” or 

“tense” each cue made 

them feel) (p. 1794) 

 

Bjork et al. (2004) Right VS 12 15 -4 

Bjork et al. (2004)  mPFC 2 59 -5 

May et al. (2004) Left lOFC -44 40 -10 Main effect of cue in 

adolescents 
May et al. (2004)  mOFC -3 51 -8 

May et al. (2004) Left VS -10 9 -10 

Ernst et al. (2005) Right NAcc 10 4 -6 Age differences 

(adults/adolescents); 

ratings of 

satisfaction/dissatisfaction 

in outcome in WOF task 

(5-pt self-rating) scale;  

Ernst et al. (2005) Left NAcc -12 12 -6 

Ernst et al. (2005) Right Amygdala 20 -2 -14 

Ernst et al. (2005) Left Amygdala -14 -4 -8 

Galvan et al. (2006) Right VS 7 8 -6 Age differences between 

children, adolescents and 

adults in activation on two-

choice task. 

Galvan et al. (2006) Left VS -8 9 -6 

Galvan et al. (2006) Right OFC 48 34 -3 

van Leijenhorst et 

al. (2010a) Right Insula 30 27 0 

Age differences, 

preadolescents, 

adolescents, young adults; 

anticipation, receipt and 

omission of rewards on 

child-friendly Slot 

Machine Task. 

van Leijenhorst et 

al. (2010a) Right Insula 30 15 -15 

van Leijenhorst et 

al. (2010a) Left NAcc -9 9 -3 

van Leijenhorst et 

al. (2010a) Right ACCg 3 30 15 

Bjork et al. (2008) Right VS 15 6 -12 Adolescents of alcohols 

and adolescent health 

control; differences in 

activation to reward 

magnitudes on MID task 

and affect-by-cue self-

report ratings 

Bjork et al. (2008)  Left VS -10 11 -9 

Bjork et al. (2008) Right VS 8 14 -7 

Bjork et al. (2008)  mPFC 3 51 -5 

Nees et al. (2012) Left Caudate -4 16 2 Adolescent SEM model of: 

factors personality 

(novelty seeking, 

impulsivity, sensation 

Nees et al. (2012)  Right Amygdala 18 -1 -14 

Nees et al. (2012) Left Insula -30 -20 11 
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Nees et al. (2012) Right VS 11 11 0 seeking, extraversion), 

behavior (delay aversion, 

risk adjustment, risk-taking 

on Cambridge Gambling 

Task), and brain (MID 

task) activation (NAcc, 

PFC, amygdala, insula, 

nucleus caudatus, putamen, 

cerebellar vermis, 

thalamus) predictors of 

alcohol intake. Nees et al. (2012)  dACC 5 42 12 

Braams et al. 

(2016) Right Putamen 15 11 -5 

Age related differences in 

adolescents and adults; 

activation on heads/tails 

gambling task in NAcc and 

testosterone with average 

glass per night, total 

glasses last month and 

lifetime classes of alcohol 

consumption   

Braams et al. 

(2016) Left Caudate -9 15 -5 

Braams et al. 

(2016) Left ACC 0 50 -2 

Galvan, et al. 

(2007) Right VS 7 8 -6 

Age related differences, 

children, adolescents and 

young adults. Activation 

during two choice task 

(NAcc) association with 

self-reported likelihood in 

engaging in risky behavior 

(Cognitive Appraisal of 

Risk Activities), and 

Benthin Risk Perception 

Measure  

Galvan et al. (2007) Left VS -8 9 -6 

Galvan et al. (2007) Right OFC 48 34 -3 

Galvan et al. (2007) Right dlPFC 45 32 26 

Galvan et al. (2007)  vmPFC 2 36 -2 

Galvan et al. (2007)  ACC 6 29 36 

Kahn et al. (2015) Right VS 3 6 3 Adolescents completed 

Stoplight Task; risk 

measured by risks made on 

task; brain activation 

during Stop > Go decisions 

& Go > Stop contrasts, 

extracted ROI and 

correlated with self-

reported Sensation-seeking 

and Sensitivity to 

Punishment and Sensitivity 

to Reward Questionnaire  Kahn et al. (2015) Right vlPFC 45 30 9 

Cservenka et al. 

(2015) Right VS 13 -6 -14 

Adolescent naïve recent 

binge drinking (Wave1) 

brain predictors (WOF 

task) of Wave 2 self-

reported binge drinking. 

Cservenka et al. 

(2015) Left VS -12 -8 -8 

Pfeifer et al. (2011) Left VS -6 16 0 Developmental transition 

from early childhood (10 

years) to early adolescent 

(13 years) during Faces 

task predicting Resistance 

to Peer Influence scale and 

Positive Youth 

Development survey  Pfeifer et al. (2011)  vmPFC -8 54 -6 
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Qu et al. (2015) Left vlPFC -27 59 -8 Longitudinal changes  

during adolescents related 

to parent-child 

relationships, risk-taking 

(BART) and brain 

activation to rewards 

during risk (BART) 

Qu et al. (2015) Right vlPFC 30 56 10 

Qu et al. (2015) Left dlPFC -33 41 38 

Qu et al. (2015) Right dlPFC -33 41 38 

Qu et al. (2015) Left VS -9 8 -2 

Qu et al. (2015) Right VS 15 11 -8 

Qu et al. (2015) Left Insula -36 11 1 

Qu et al. (2015) Right Insula 33 20 4 

Qu et al. (2015)  ACC -6 8 28 

Eshel et al. (2007) Left vlPFC -38 22 4 Differences in adolescent 

and adult risk-taking 

during task (WOF task) 

and brain activation. 

Eshel et al. (2007) Right vlPFC 52 24 -4 

Eshel et al. (2007) Right ACC 2 36 20 

Eshel et al. (2007) Left dlPFC -26 24 46 

van Leijenhorst et 

al. (2010b)  dmPFC -12 51 18 

Age differences children, 

adolescents, and young 

adults; and High risk and 

low risk choices in a 

gambling task, Cake 

Gambling Task. 

van Leijenhorst et 

al. (2010b)  vmPFC -6 60 -6 

van Leijenhorst et 

al. (2010b) Right dlPFC 39 24 36 

van Leijenhorst et 

al. (2010b)  mPFC -3 45 -6 

van Leijenhorst et 

al. (2010b) Left NAcc -9 9 -9 

McCormick & 

Telzer (2017)  dACC -6 20 31 

Adolescent sensitivity to 

positive versus negative 

feedback in decision 

making during risk-taking 

context (BART); brain 

activation with positive 

versus negative feedback, 

and self-reported risk-

taking behavior (Mod. 

Adolescent Risk-Taking 

Scale – frequency engaged 

in variety of risk 

behaviors). 

McCormick & 

Telzer (2017) Left Insula -45 11 -5 

McCormick & 

Telzer (2017) Right Insula 54 11 -2 

McCormick & 

Telzer (2017) Left VS -21 14 -5 

McCormick & 

Telzer (2017) Right VS 21 11 -2 

Telzer et al. (2015) Left Insula -24 24 -5 Adolescent peer 

relationships 

(support/conflict; Wave 1 

& Wave 2) and brain 

during risk-taking (BART; 

Wave 3) and self-reported 

risk-taking behavior 

(Adolescent Risk-Taking 

Scale; Wave 3) 

Telzer et al. (2015) Right Insula 38 20 0 

Telzer et al. (2015) Left VS -10 5 -10 

Cascio et al. (2015)  vmPFC 5 53 -20 Peer influences on 

adolescent driving in 

driving simulation, and 

relationships with brain 

Cascio et al. (2015) Left Putamen -21 21 4 

Cascio et al. (2015) Left Caudate -13 21 6 



 

 

 

167 

response inhibition during 

Go/Nogo  

 

 

 
Figure B.1 Representation of overlap of ROIs from 18 studies along x = 0 
A. Seventy ROIs from Table S1 were created using 10mm spheres and added into a single aggregated mask. The 

thresholding represents number of studies that had overlapping coordinates. The majority of spheres were 

represented one time, shown in red, with increasing numbers representing a greater intensity of yellow. VS/NAcc 

were most frequently represented, Right NAcc = 10, with vmPFC represented four times.  

B. As a result of variability in both 18 studies and Neurosynth coordinates defining the vmPFC, Neurosynth NIFTI 

files were extracted and thresholded at 95th percentile, that were overlayed with bin ROIs from 20 studies, that 

presented a critical peak in the ventral/rostral section.   

  

A. 
 

A. 

B.

 
 

B.

 

Left 

 
Left 

Left 

 
Left 



 

 

 

168 

Results 

 

The group level mask was derived by the FEAT higher-level analysis GUI calculating a 

similar mask that would be included in an alternative FSL analysis using FLAME. The mask 

excludes portions of the superior sagittal sinus, and areas of extensive sinus dropout, such as the 

ventral-caudal portion of the vmPFC. Parcellations of the cerebral spinal fluid from mask were 

not excluded as the BOLD signal is represented in these boundaries for regions in the medial 

walls that include the motor areas, cingulate and prefrontal regions. 

 
Figure B.2 Group level mask input to the randomise nonparametric analysis 
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Whole Brain Map  

 
Figure B.3 Mean level activation to anticipation of Big Reward vs Neutral contrast for 104 

subjects, One-sample T-test 
Mean level maps produced using FSL Feat, Mixed Effects Flame1. Activation is presented as z-statistics, 

thresholded at p < .001, range 3.1 to 9.0.  Robust activation is present in areas previously referenced with this task 

and anticipation contrasts (Bjork et al., 2011b; Büchel et al., 2017) 

z 

 
z 
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Figure B.4 Overall activation to anticipation of Big Reward vs Neutral contrast for (A) High Risk One-

sample t-test (N = 41) and (B) Average Risk One-sample t-test (N = 63) adolescents 
Activation is represented as the output of TFCE output image overlayed on MNI 152 2mm brain, thresholding 

output maps at minimum activation (p = .01) to maximum (p = .0002). Maximum threshold is constrained to the 

upperbound  for 5000 permutations (1/5000 = .0002)  
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Table B.3 Risk profile (High vs average) predicting Region of Interest during anticipation of Big win vs 

Neutral contrast for Wave 1 and Multi-wave stable risk profile 

Region of Interest p Uncorrected p FDR 

 Wave 1: High vs Average Risk-Taking Profile 

Anterior Cingulate Cortex .29 0.80 

Ventromedial Prefrontal Cortex .80 0.86 

Left Orbitofrontal Cortex .45 0.86 

Right Orbitofrontal Cortex .67 0.86 

Left Dorsolateral Prefrontal 

Cortex .02 0.14 

Right Dorsolateral Prefrontal 

Cortex .13 0.61 

Left Posterior Parietal Cortex .51 0.86 

Right Posterior Parietal Cortex .02 0.14 

Left Insula .27 0.80 

Right Insula .37 0.86 

Left Ventral Striatum .78 0.86 

Right Ventral Striatum .76 0.86 

Left Amygdala .96 0.96 

Right Amygdala .66 0.86 

 

Longitudinally Stable Profiles:  

High vs Average Risk-Taking  

Anterior Cingulate Cortex .68 0.85 

Ventromedial Prefrontal Cortex .98 0.98 

Left Orbitofrontal Cortex .77 0.85 

Right Orbitofrontal Cortex .40 0.85 

Left Dorsolateral Prefrontal 

Cortex .13 0.51 

Right Dorsolateral Prefrontal 

Cortex .04 0.35 

Left Posterior Parietal Cortex .48 0.85 

Right Posterior Parietal Cortex .007 0.09 

Left Insula .66 0.85 

Right Insula .34 0.85 

Left Ventral Striatum .94 0.98 

Right Ventral Striatum .75 0.98 

Left Amygdala .35 0.85 

Right Amygdala .79 0.85 
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Sensitivity Analyses: In a post-hoc comparison, the continuous variability of brain and 

Behavioral Misadventure (Wave 1) was evaluating using FSL randomise. When using the 

continuous score of BMS, there was not significant association (p < .05) between brain activation 

(positive or negative) and individual BMS scores. However, the nature of activation was 

comparable to that Table 3.2 in the manuscript at a lower bound threshold. 

 

Table B.4 Whole Brain Analyses: Negative association in activation between Behavioral Misadventure 

(continuous) and anticipation of big reward versus neutral contrast (Nonparametric, 5000 Permutations 

with Threshold-Free Cluster Enhancement) 

Wave 1 Brain Negative Association with BMS (p < .08) 

Cluster Indexa 
Cluster peak 

x, y, z 
# of Voxels Cluster Label b p  

8 -13, -3, 17 680 Left-Caudate .06 

7 16, -82, 6 43 Right Primary Visual .07 

6 20, -61, -14 28 Right Cerebellar .08 

5 50, -72,20 18 c Right Angular Gyrus .07 

4 -32, -34, -24 10 Left-Parahippocampal .07 

3 -22, -72, 2 4 Left Primary Visual .08 

Clusters obtained using FSL’s cluster on TFCE activation maps from randomise, threshold .92 (i.e., .08) 
a Cluster index identified using fsl command cluster that identified peak clusters in volume, index 1 not 

reported due to number of voxels = < 3, clusters plotted on MNI brain in Figure 3.2.   

b To identify region for cluster label, we used a combination of reverse inference on neurosynth.org/locations 

to identify top association with cluster activation and cross-referenced with FSL Harvard-Oxford Cortical 

Structural Atlas  
c Cluster unique to this tresholded map, region not represented in Table 3.2. 
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Appendix C : Supplemental Information for Study 2 (Chapter 4) 

 

Region of Interest Identification & Definition 

The below table summarizes the studies from the meta-analysis of contrasts for published 

work on PubMed from 2015-2010 using the MID. This type of contrasts the proportion of studies 

using these contrasts are noted below the table. 

Table C.1 Paradigm Contrast Reviews PubMed 2015-2019 

Study N 
age 

ranges 
Paper Focus 

Target 

% Acc 

Type of Contrast  

(Anticipation = Ant; 

Feedback = FB) 

MID version 

(Dhingra et 

al., 2019)  54 22-74 

Age related effect 

of reward 

activation 67% 

Ant: Big Win v. Neutral,  

Big Win vs Small Win,  

Small Win vs Neutral 

modified 

MID 

(Schwartz et 

al., 2019)  15 

15.29 

(2.4) 

Social vs non-

social reward 66% 

Ant : Reward vs No 

Reward  

Youth 

friendly - 

MID - 

Pinata task 

(non-social) 

(Swartz et al., 

2019)  262 

16.8 

(.58) 

Mexican origin, 

alcohol - 

Ant:  Reward v. Neutral  

FB: Reward  Hit v. 

Neutral hit   MID  

(Maresh et al., 

2019)  99 13-19 

EEG-Bipolar 

Disorder 70% Average each trial  MID  

(Nestor et al., 

2019)  36 

16.2 

(most 

male) 

cannabis 

dependence 50% Ant: Win v.  Neutral MID  

(Aloi et al., 

2019)  150 

16.1 

(1.1) 

Diff. in alcohol and 

marij. Exposure 66% 

Modulator: reward value 

outcome and win vs loss 

Altered 

version, 

trails: Neut 

12; Win 48; 

Loss 48  

(Cope et al., 

2019) 

 34 

children 

(10.5)  16 

substance use --  

eternalizing and FH 60% 

Ant: Big Win v. Neutral 

 Large Loss v. Neutral 

MID - 

modified 

Mich. Long. 

Study 
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(Cao et al., 

2019) 1510 14yr 

sensation seeking, 

reward 

anticipation. 

[Reward = candy] 66% 

Ant: Big reward v. 

Neutral  

FD: Big Reward Hit v. No 

Reward;  Big Reward Hit 

> Neut Reward Hit  

MID 

[IMAGEN] 

-- No loss 

cue 

(Stevens et al., 

2018)  151 12-18 ADHD 66% 

Ant: Big Win v. Small 

Win 

Modified 

Knutson 

($0, $1, $5) 

(Papanastasiou 

et al., 2018)  298 

14 & 

19 

psychotic like 

experiences  Ant: Big Win v.  Neutral 

Knutson? 

Not 

specified…. 

(Landes et al., 

2018)  54 12-17 

major depressive 

disorder-ERP/EEG 50% Average each trial  altered MID  

(Martz et al., 

2018)  57 ~20 

psychosocial/neural 

resilience in FH SU 60% Ant: Win v.  Neutral 

MID - 

modified 

Mich. Long. 

Study 

(Chronaki et 

al., 2017) 32 10-16 

Reinforcement 

effects 66% Average each trial  

modified 

versoin, 

shapes, 

colors. 

(Navas et al., 

2018)  68 

16.5 

(1.5) Body fat NR 

Anticipation linear: 

big>medium>low>neutral.  

FB: Win Hit vs Win Miss 

modified 

colors, 

shapes, etc. 

(Garrison et 

al., 2017)  14 & 28 

17 

(1.3) Smoking Behavior 66% 

Ant: Win v. Implicit 

Baseline 

  Loss v. Implicit Baseline  

Modified 

Knutson 

MID -- no 

paradigm 

example 

(Colich et al., 

2017)  

76  

(38 

pairs) 9-15 Risk for depression 75% 

Ant: Win v. Neutral  

Loss v. Neutral 

modified - 

Kid MID 

task 

(replaced 

money w/ 

points of 

Knutson 

2008 version 

(Xu et al., 

2017)  1129 

14.4 

(.4) ADHD 66% Ant: Win v. Neutral  

MID 

[IMAGEN] 

-- No loss 

cue 

(Bourque et 

al., 2017)  

246 & 

1196 

14.3 

(.4) -  

Symptoms at 16 - 

Psychotic like 

experi. 66% Ant: Win v. Neutral 

MID 

[IMAGEN] 

-- No loss 

cue 

(Duka et al., 

2017)  1299 

14.4 

(.4) 

gene & brain 

response correlates 66% Ant: Big Win v. Neutral 

MID 

[IMAGEN] 

-- No loss 

cue 

(Gonzalez et 

al., 2016)  83 ~25 

Neighborhood 

quality on brain 66% Ant: Win v. Neutral 

MID (27 

reward, 27 

punish, 18 

neutral cues) 

https://reader.elsevier.com/reader/sd/pii/S0006322314006520?token=9A0DEB5A34F300DF7F5E144E1C1E05C7E5518FE9A88033F71E11280C14B0F7D36C9E6B78249E4C571166AC175247529B
https://reader.elsevier.com/reader/sd/pii/S0006322314006520?token=9A0DEB5A34F300DF7F5E144E1C1E05C7E5518FE9A88033F71E11280C14B0F7D36C9E6B78249E4C571166AC175247529B
https://reader.elsevier.com/reader/sd/pii/S0006322314006520?token=9A0DEB5A34F300DF7F5E144E1C1E05C7E5518FE9A88033F71E11280C14B0F7D36C9E6B78249E4C571166AC175247529B
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(Büchel et al., 

2017)  144 

14 (16 

f/u) 

Novelty seeking 

and substace use 66% 

Ant: Big Win v. Small 

Win  

MID 

[IMAGEN] 

-- No loss 

cue 

(Veroude et 

al., 2016)  328 

17.6 

(3.3) 

Callous-

unemotional, 

ADHD, 

oppositional 

defiant 33% 

Ant: Win v. Neutral 

FB: {reward hit.- reward 

miss} > {non-reward hit-

non_reward miss} 

MID 

modified - 

colored cues 

(green/red), 

NO LOSS 

condition 

(Mikita et al., 

2016)  1472 14.4 Autism 66% 

Ant: Big Win v. Neutral 

FD: Big Win Miss v. Miss 

Neutral;  

Big Win Hit v. Neutral Hit 

MID 

[IMAGEN] 

-- No loss 

cue 

(Urošević et 

al., 2016)  47 

13 - 

19 bipolar disorder 70% 

anticipation: gain vs 

neutral; large gain > small  

[compensated $ for 10% 

of winnings] 

MID - 60 

trials 

(Richards et 

al., 2016)  429  

Plasticity genes & 

social 

environments  33% 

Ant: Win v. No Reward.  

FD: Reward Hit v. 

Reward Miss 

Red = no 

reward 

squared; 

green = 

reward 

screen (no 

loss 

condition) 

(Joseph et al., 

2016)  

27 & 51 

(78 

total) 

11-14 

& 18-

25 

personality 

(impulsivity, 

avoidance, 

approach 

tendencies)  66% 

Contrasts are the 

demeaned versions of 

contrasts [1, 0.1, 0, .1, 1] 

and [− 1, 0.1, 0, 0.1, − 1] 

Modified 

MID  

(Martz et al., 

2016)  108 

21-23 

(3 

fMRI 

scans) 

Parental History 

SUD 66%% 

Ant: Big Win v. Small 

Win 

modified 

MID - MLS 

(van Hulst et 

al., 2015)  18 

9.5-

14.5 

Pilot Child 

Friendly MID NR 

Ant: Big Win v. Smal 

Win 

Big Win v. Neutral 

Child 

Friendly 

MID 

(Mori et al., 

2016)  30 18-19 Depression NR 

Ant: Big Win v. No Gain,  

Large Loss  v. No Loss  

MID (40 

gain, 40 

loss, 10 

neutral trils) 

(Z. Li et al., 

2015)  26 

18.7 

(1.4) DCM of MID 66% 

Ant: Win vs Neutral 

 Loss v. Neautral, 

all vs neutral used in 

DCM) 

Modified 

MID 60 

total trials 

(20, 20, 20) 

(Chan et al., 

2016)  28 

18.9 

(1.8) 

Social & Monetary 

Process, Anhedonia 66% 

Ant: Win v. Neutral,  

Lose v. Neutral.  

FB: Win Hit v. Neutral 

Hit 

Loss miss v. Neutral Miss.  

Modified 

MID 60 

total trials 

(20, 20, 20) 

(Karoly et al., 

2015)  138 14-18 Substance Use 66% 

Ant: Win v. Neutral 

Lose v. Neutral 

modified 

MID from 

Filbey et al. 

2013 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061470
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061470
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061470
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061470
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(Sauder et al., 

2016)  38 13-19 Self-injury NR 

Ant: Reward v. Neutral - 

factorial design of reward 

magnitude x group. MID  

(von Rhein et 

al., 2015)  350 17.8 ADHD 33%  

Ant: Win v. Neutral  

FB: Win Hit v. Neutral 

Hit 

modified 

MID 25 

reward and 

25 neutral 

experimental 

trials 

(LeMoult et 

al., 2015) 

38  

(21/17) 

11.2 

(1.2) 

& 

13.3 

(1.4) 

Menarche on 

diurnal cortisol 

production 75% Ant: Gain -- unclear 

KID MID 

task- 100 

trials 

(Nees et al., 

2015)  530 

W1. 

14.3 

& 

W2. 

16.2 

BDNF and reward 

in early substance 

use 66% 

Ant & FB w/ subj 

specific regressors 

MID - 

IMAGEN 

study 

(Boecker et 

al., 2014)  162 24/4 Early life adversity NR Ant: Win v. No Win mod. MID 

Note. Median sample size (N = 91; min: 15 max: 1510).  

Across 37 studies 61 modeled contrasts:    

Anticipation (n = 43, 70%):  

49% - All Win > Neutral 

16% Big Win > Neutral 

14% Big Win > Small Win 

12% Loss > Neutral 

9% others (Big Loss > Neutral; Small Win > Neutral; Win (or Loss) > Implicit 

Baseline) 

Feedback (n = 8, 13%):   

34% Reward Hit > Neutral Hit  

  25% Big Win Hit > Big Win Miss 

 38% others (Big Win Hit > Neutral Hit; Big Win Miss > Neutral Miss; Loss Miss 

> Neutral Miss) 

Others (n = 10, 16%):  

Demeaned contrasts, complex feedback contrast, linear model of anticipation 

cues, average of each trial, and other modulators. 
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Regions of interest: Below are the MNI coordinates for regions used in theses analyses, 

and a representation of regions on a glass brain representing the location (Figure C2). 

  
Table C.2 A prior MNI coordinates pulled from Neurosynth 

Region of Interest 

Index 

Glass 

Brain 

Index 

MNI Coordinate 

(x, y, z) 

Right Ventral Striatum  R_VS 
Blue 

15 8 -9 

Left Ventral Striatum L_VS -12 8 -8 

Medial Prefrontal Cortex mPFC Green 2 40 -8 

Anterior Cingulate Cortex ACC Pink 3 29 21 

Left Orbitofrontal Cortex L_OFC 
Yellow 

-22 34 -14 

Right Orbitofrontal Cortex R_OFC 32 33 -14 

Right Insula R_Insula 
Red 

38 13 -4 

Left Insula L_Insula -38 12 -9 

 

 

  

Figure C.1 MNI Glass Brain Representing Location of Regions of Interest used in Analyses 
Note: Index of colors in available in Table C2; Lateral and Axial Views of Left & Right Hemisphere 
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Results 

 

Similarity Matrices  
The percent overlap between any two activation maps is defined from a set theoretical 

point of view, where the overlap 𝐽(𝐴, 𝐵) is defined by the well-known relation as: 

𝐽(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 + 𝐵 − 𝐴 ∩ 𝐵 
 

The relation calculates the ratio of common pixels that are activated across two activation maps, 

to the total number of pixels present in the two maps. For example, the Anticipation Win > 

Neutral and Anticipation Big Win > Neutral have 38% of pixels that overlap in their thresholded 

statistical activation group level maps (see Table 1 in manuscript for description of contrasts).  

 
Figure C.2 Similarity Matrix for thresholded individual and Group Level Maps 
Note: Bolded values are group level similarity values and italicized are individual level similarities values from 

second level analysis 

 

 

Correlations between Psychological Characteristics: Correlations among aggregated self-

reported items (Wave 1 – Wave 3). BSSS = Brief Sensation Seeking Scale; BIS = Barratt 

Impulsivity Scale – Brief  

Table C.3 Correlations Between self-reported items (z-scored) 

 
1 2 3 4 5 

1. Internalizing - 
    

2. Externalizing .51 - 
   

3. Substance Use .04 .51 - 
  

4. BIS .30 .57 .23 - 
 

5. BSSS .09 .46 .36 .44 - 
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Brain-behavior Estimates Across complete set of contrasts (10), regions (8) and behaviors (5)  

 
Figure C.3 : Forest plots displaying the most likely Pearson’s r value (black diamonds) and 95% Bayesian credible interval (black lines) for 

correlational relationships between ROI activation estimates from each contrast and behavioral criterion measures.  
Red, blue and green lines denote “small” (r=.10), “moderate” (r=.30) and “large” (r=.50) effect sizes. 1-10 = Ten contrasts listed in Table 4.1, Chapter 4; ACC = 

anterior cingulate cortex; mPFC = medial prefrontal cortex; Ins = insula; OFC = orbitofrontal cortex; VS = ventral striatum; L = left; R = right; SubUse = 

substance use composite measure; BISB = Barratt Impulsiveness Scale-Brief; BSSS = Brief Sensation Seeking Scale 
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Interpretation of the BOLD plots:  

We expand here on the interpretation of the BOLD response. The nature of the anticipation signal bleeding into the feedback 

phase is apparent in the bilateral VS when the anticipation cues are locked to the feedback phase (Figure S8). There is significant 

separation for the first 4-5 TRs (or 3-4 sec) in the feedback phase in the Big Win as compared to the Neutral phase, until they reverse 

by TR 10. Since the signal is not appropriately deconvolved in the feedback phase, one approach is to model based on combinations of 

Hit/Miss trials. In our main feedback contrasts, F6 and F7, we modeled the Big Win versus Neutral Hit, which still demonstrates poor 

deconvolution in the VS regions (Figure S6), which likely stems from the between contrast spill-over HRF from the anticipatory phase 

(Figure S5). One alternative approach, which we did not model in the whole brain contrasts, is the contrast of Big Win/Loss Hit versus 

Big Win/Loss Miss. However, direct observation of the BOLD signal (Figure S7) demonstrates that for Big Win Hit and Big Win 

Miss, there is a higher signal for hit versus miss trials, however, these are nearly identical in the VS BOLD signal. However, whereas 

the mPFC demonstrates peak separation at TR 14 (~11 sec), this is occurring well into the subsequent trial, it is unclear what this 

change represents. Overall, we find appropriate peaks in direct BOLD signal after anticipation cue onset, but a complicated picture 

forms in the outcome phase with respect to bilateral VS and mPFC. 

 

 

Proportion of effect sizes across 400 brain-behavior estimates 

All values are absolute values of the reported effect sizes |r| 

 
Table C.4 Count/Proportion across Pearson r standard effect sizes, out of 400 observations (10 

contrasts x 8 ROIs x 5 behaviors) 

 Count (n) Proportion (%) 

Small (r: .00 - .20) 388 97% 

Medium (r: .20 - .30) 12 3% 

Large (r < .30 - .50) 0 0% 
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Table C.5 Count/Proportion across |.05| intervals in effect sizes, out of 400 observations (rounded, may 

not add up exactly to 100%) 

 Count (n) Proportion (%) 

r = 0.00 to 0.049 164 41% 

r = 0.05 to 0.099 123 31% 

r = 0.10 to 0.149 72 18% 

r = 0.15 to 0.199 29 7% 

r = 0.20 to 0.249 11 3% 

r = 0.25 to 0.299 1 < 1% 
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Signal-to-Noise Ratio for mPFC and bilateral VS 

SNR is calculated using the 3dTstat command below. mPFC here is the mPFC peak cluster from Neurosynth for “ventromedial 

prefrontal” search term. For references, the nonbrain of SNR table is for the ROI created in a non-brain region (will contain some 

smoothed signal) as our filter_func_data had bet extracted, so it was most reasonable for comparison. The signal to noise is 

calculated by run (two runs) 

$3dTstat -prefix <output_snr_file>  -cvarinv  <filter_func_data inputfile> 

 
Figure C.4 Comparison of signal-to-noise ratio for subcortical (VS) and 

cortical regions (mPFC) 
R_VS = Right Ventral Striatum; L_VS = Left Ventral Striatum; mPFC = medial 

Prefrontal cortex 
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Direct observation of the BOLD signal extracted for each cortical (mPFC) and subcortical (VS) regions.  
 Several steps were taken to plot the peak BOLD signal for Anticipation/Feedback onset in the VS and mPFC. First, the mean 

signal was calculated of the preprocessed functional timeseries (t) using the calculation: 

% 𝑆𝑖𝑔𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑡 =  
𝑡 − 𝑡𝜇

𝑡 ∗  100
 

using fslmaths (fslmaths <filtered_func_data> -sub <mean_func> -div <mean_func> -mul 100 <output_name>) for each run, 

extracting the timeseries percent signal change for the mPFC (10mm sphere) and bilateral VS (10mm sphere). Second, the behavioral 

onset files (100 trials) were expanded to match their occurrence in the 651.2 second length of the task across two runs (407 volumes 

per run = 814 total volumes. 814 * .8sec TR = 651.2 sec). Then, the TR matched behavioral files were merged with the extracted mean 

percent signal changed for each ROI, and from each locked onset, 15 subsequent TRs were extracted to reflect a BOLD signal change 

across 12 seconds (reflecting the delayed response). For each cue onset and subsequent TR, the mean and 90% Confidence Interval 

was bootstrapped to get a robust estimate of the signal change across 104 subjects for phase (anticipation or feedback) and condition 

type (Big Win, Big Loss or Neutral). 

 First we present the anticipation phase compare Big Win (LgPun) and Big Loss (LgReward) conditions. Which demonstrate 

small differences between valence, Win and Loss cues. 

  

Figure C.5 Anticipation Phase BOLD Signal change across 15 TRs. 
LgPun = $5 Loss Cue; LgReward = $5 Win Cue; Error bars represent 90% Confidence Interval;  p < .05 * ; p < .01**, p < .001*** 
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Next, we plot the signal with respect to the feedback phase. We examine this at multiple levels: comparing Gain Hit Versus 

Neutral Hit (Figure S7); gain/loss Hit versus Miss (Figure S8); and general signal change for each Anticipation cue type to observe 

how much of the BOLD signal from the anticipation cue bleeds into the feedback phase (Figure S9). 

 

 

 

 

 

 

 

 

Figure C.6 BOLD Signal Locked to Feedback onset and subsequent 15 TRs, Gain Hit versus Neutral Hit 
LgReward Hit [Red] = Big Win Hit; Triangle_Hit [Blue] = Neutral Hit. VS = Ventral Striatum; mPFC = medial prefrontal cortex.  

Error bars represent 90% Confidence Interval; p < .05 * ; p < .01**, p < .001*** 
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A 
 

B 
 

Figure C.7 BOLD Signal Locked to Feedback onset and subsequent 15 TRs, Hit versus Miss 
A: LgReward Hit [Red] = Big Win Hit; Lgreward_Miss [Blue] = Big Win Miss. B: LgPun Hit [Red] = Big Loss Hit; 

LgPun_Miss [Blue] = Big Loss Miss. VS = Ventral Striatum; mPFC = medial prefrontal cortex.  

Error bars represent 90% Confidence Interval;  p < .05 * ; p < .01**, p < .001*** 
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A 
 

B 
 

Figure C.8 BOLD Signal Locked to Feedback onset and subsequent 15 TRs, by Anticipation Cue. 
A: LgReward [Red] = Big Win ($5) Anticipation Cue Triangle [Blue] = Neutral Anticipation Cue. B: LgPun [Red] = Big Loss ($5) 

Anticipation Cue; LgReward [Blue] = Big Win ($5) Anticipation Cue. VS = Ventral Striatum; mPFC = medial prefrontal cortex.  

Error bars represent 90% Confidence Interval; p < .05 * ; p < .01**, p < .001*** 
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Appendix D : Supplemental Information for Study 3 (Chapter 5) 

 
Region of Interest Identification & Timeseries Extractions 

ROIs were selected based on most common coordinates referenced in the literature (see 

supplemental table in Demidenko et al., 2020). in reviews (see Sherman et al 2018; Galvan, 

2010) and overlapping referenced regions in imbalance models (Steinberg, 2008; Casey et 

al., 2008; Ernst, 2014). Each ROI uncovered in this review was entered into 

www.Neurosynth.org → Meta-analyses → Terms → <ROI>, then the ROI, such as ventral 

striatum, was selected and peak coordinate was defined. 

 
Table D.1 A priori MNI coordinates pulled from Neurosynth 

Region of Interest 
Index Index 

MNI Coordinate 

(x, y, z) 

Right Ventral Striatum  R_VS 
Blue 

15 8 -9 

Left Ventral Striatum L_VS -12 8 -8 

ventromedial Prefrontal Cortex vmPFC Green 3 27 -17 

Anterior Cingulate Cortex ACC Pink 3 29 21 

Left Orbitofrontal Cortex L_OFC 
Yellow 

-22 34 -14 

Right Orbitofrontal Cortex R_OFC 32 33 -14 

Right Insula R_Insula 
Red 

38 13 -4 

Left Insula L_Insula -38 12 -9 

Right Amygdala R_Amyg 
Cyan 

26 -4 -18 

Left Amygdala L_Amyg -22 -5 -19 

Right Dorsolateral Prefrontal Cortex R_DLPFC 
Black 

43 37 29 

Left Dorsolateral Prefrontal Cortex L_DLPFC -42 34 28 
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Results 

Below are tables reporting information for demographics for the full sample overall and by 

run, and MID accuracy performance during the task. Then, by run, information regarding 

motion, GIMME fit statistics. 
 

Table D.2 Demographics Overall and By Run for Aim 1/Aim 2 

 Overall Run 01 Run 02 

 n = 104 

 

Subgrp01 

n = 61 

Subgrp02 

n = 43 

Subgrp01 

n = 56 

Subgrp02 

n = 48 

Age at Scan  19.3 (1.3)  19.2 (1.3) 19.5 (1.3) 19.4 (1.3) 19.2 (1.4) 

BSSS 3.3 (0.4) 3.2 (0.3) 3.4 (0.4) 3.3 (0.4) 3.4 (0.5) 

Sex, Female n (%) 59 (56.7) 36 (59.0) 23 (53.4) 36 (64.3) 23 (47.9) 

Race, n (%)      

White, non-Hispanic 74 (71.2) 47 (77.0) 27 (62.8) 41 (73.2) 33 (68.8) 

Black, non-Hispanic 15 (14.4) 8 (13.1) 7 (16.3) 8 (14.3) 7 (14.6) 

Hispanic/Latinx 9 (8.7) 2 (3.3) 7 (16.3) 5 (8.9) 4 (8.3) 

Other 6 (5.8) 4 (6.6) 2 (4.7) 2 (3.6) 4 (8.3) 
BSSS = Brief Sensation Seeking  

 
Table D.3 MID Accuracy 

 M (SD) 

Overall Acc. % 56.9 (3.2) 

Win Big 62.7 (9.2) 

Win Small 57.8 (9.6) 

Neutral 47.7 (14.5) 

Lose Small 56.4 (8.8) 

Lose Big 59.9 (10.4) 

 
Table D.4 Motion: Mean Framewise Displacement (FD) 

 Pre/Post Preprocessing 

 M (SD) 

Run 01 – Pre FD .11 (.05) 

Run 02 – Pre FD .11 (.06) 

Run 01 – Post FD .02 (.01) 

Run 02 – Post FD .02 (.01) 
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Person-specific Connectivity Differences Across Runs 

 

Table D5 reports GIMME fit statistics Table S6 reports the crosstabulation of subgroups (2) 

across the runs (2). Table D7 reports differences in demographic characteristics for each group, 

summarized for Run 1 and Run 2. 

 
Table D.5 Four fit statistics from GIMME model 

 M (SD) 

 RMSEA SRMR NNFI CFI 

Run 01  .05 (.01) .05 (.01) .93 (.01) .96 (.01) 

Run 02 .05 (.01) .05 (.00) .93 (.01) .96 (.01) 

 
Table D.6 Crosstabs of subgrouping across runs (N = 104) 

 Subgroup 01 

(Run 02) 

Subgroup 02 

(Run 02) 

Total  

Run 01 

Subgroup 01 

(Run 01) 
44 17 61 

Subgroup 02 

(Run 01) 
12 31 43 

Total Run 02 56 48 104 

 (1) = 18.1, p < .001,  = .41 

 
Table D.7 Demographics Characteristics of participant’s subgroup labels that are  

stable or changed across Run 01 and Run 02 

  
Stable Changed 

(N=75) (N=29) 
 M (SD) 

Age (Years) 19.4 (1.34) 19.0 (1.17) 

Sensation Seeking 3.30 (0.41) 3.33 (0.43) 
 N (%) 

Sex    

Female 39 (52.0%) 20 (69.0%) 

Male 36 (48.0%) 9 (31.0%) 

Race/Ethnicity    

White, Non-

Hispanic 
54 (72.0%) 20 (69.0%) 

Black, Non-

Hispanic 
11 (14.7%) 4 (13.8%) 

Hispanic/Latinx 6 (8.0%) 3 (10.3%) 

Other 4 (5.3%) 2 (6.9%) 
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Below we present the connectivity paths that were fit at the group-level (for N subjects) 

and the subgroup level (for N subjects). We present thing information for both subgroups across 

each run. Beige colored rows represent connectivity paths that were not fit for both runs. Paths 

consistent across runs are represented by the binary column (1/0), and calculate the total overall 

between group and subgroup level paths 

. 
Table D.8 Overlap in paths opened for Group, Subgroup02 and Subgroug02 across runs 

Run 01 Group level 

connections 
N 

Run 02 Group level 

connections 
N   

Exist in 

both 

Runs? 

R_dlPFC ← ACC 104           0 

R_VS ← ACC 104 R_VS ← ACC 104  1 

R_Amygdala ← L_Amygdala 104           0 

L_Insula ← L_dlPFC 104 L_Insula ← L_dlPFC 104  1 

R_Insula ← L_Insula 104 R_Insula ← L_Insula 104  1 

L_dlPFC ← R_dlPFC 104 L_dlPFC ← R_dlPFC 104  1 

ACC ← R_Insula 104 ACC ← R_Insula 104  1 

L_OFC ← R_OFC 104           0 

L_VS ← R_VS 104 L_VS ← R_VS 104  1 

        L_Amygdala ← R_Amygdala 104   0 

        R_Amygdala ← R_dlPFC 104   0 

          Overlap  55% 

             

Run 01 Subgroup1 level 

connections 
Run 02 Subgroup1 level connections 

 

Exist in 

both? 

L_Amygdala ← L_dlPFC 61           0 

vmPFC ← R_OFC 61 vmPFC ← R_OFC 56  1 

ACC ← vmPFC 61 ACC ← vmPFC 56  1 

        R_dlPFC ← ACC 56   0 

          Overlap  50% 

             

Run 01 Subgroup2 level 

connections 
Run 02 Subgroup2 level connections  Exist in 

both? 

vmPFC ← ACC 43 vmPFC ← ACC 48  1 

ACC ← L_Insula 43 ACC ← L_Insula 48  1 

L_Amygdala ← L_Insula 43           0 

L_OFC ← L_VS 43 L_OFC ← L_VS 48  1 

L_Amygdala ← R_dlPFC 43           0 

R_dlPFC ← R_Insula 43 R_dlPFC ← R_Insula 48  1 

R_OFC ← R_Insula 43 R_OFC ← R_Insula 48  1 
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R_VS ← R_OFC 43           0 

R_OFC ← vmPFC 43 R_OFC ← vmPFC 48  1 

        L_OFC ← R_OFC 48   0 

        L_Amygdala ← L_dlPFC 48   0 

                Overlap  55% 

* Bold, Predicted by        

 
Subgroup and connection strength associations with sensation seeking across runs 

 
Table D.9 Logistic Regression: Sensation seeking associated with GIMME-derived subgroup from MID 

task data, by run, without PostFD (N = 104) 

Run 01 Run 02 

 b SE p b SE P 

Age - .18 .16 .25 - .11 .16 .49 

Sex .15 .41 .72 .66 .41 .11 

BSSS 1.1 .53 .03 .55 .50 .29 

 
 

Table D.10 Logistic Regression: Moderating Effect of Motion on association between BSSS 

  Run 01 Run 02 

 b SE p b SE p 

PostFD -82.5 170.4 0.63 122.8 156.5 0.43 

BSSS 1.1 0.54 0.04 0.59 0.5 0.24 

BSSS*PostFD 39.3 51.2 0.44 0.58 46.7 0.54 
PostFD: Post mean Framewise Displacement; BSSS: Brief Sensation Seeking Scale 
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Table D.11 Multiple Regression: Individual traits of sensation seeking associated with GIMME FC Path 

strength in Subgroup 2 during MID task, by run 

vmPFC → R OFC 

  Run 01   Run 02  

 b β SE p b β SE p 

Age -.02 -.12 .02 .40 .02 .11 .03 .48 

Sex -.04 -.10 .06 .49 -.02 -.04 .07 .81 

Post FD -4.5 -.29 2.2 .05 -.17 .23 2.4 .94 

BSSS .21 .36 .08 .02 .02 .02 .08 .86 

R OFC → R VS 

  Run 01   Run 02  

 B β SE p b β SE p 

Age -.00 -.02 .03 .87 

Algorithm did not open path for all 

subjects. See Table S8 

Sex .07 .13 .07 .38 

Post FD -.85 -.05 2.69 .75 

BSSS -.27 .40 .10 .01 

L dlPFC → L Amyg 

  Run 01   Run 02  

 b β Se p b β SE  

Age 

Algorithm did not open path for all 

subjects. See Table S8 

-.05 -.30 .02 .01 

Sex .01 .02 .05 .85 

Post FD -6.4 -.51 1.5 .0001 

BSSS .15 .32 .05 .009 
Sex: 1 = Male, 0 = Female. BSSS = Brief Sensation Seeking; Post FD = mean Framewise displacement post-

preprocessing 

 

Beta weights from connectivity estimates from Run 01 and Run 2, and subgroup 2 

associations with self-reported sensation seeking. For Run 02, Subgroup02, only the L dlPFC → 

L Amyg path was meaningfully associated with sensation seeking, b = .15, p = .009. R OFC → 

R VS path in Subgroup 2 Run 02 was not meaningful for everyone in the subgroup, therefore 

most subjects did not have this path estimated. Likewise, L DLPFC → L Amyg was not 

meaningful for Run 01, therefore most subjects did not have this path estimated (see Figure D3 
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Figure D.1 Connectivity Strength and Sensation Seeking raw plots for participants in Subgroup 2, by Run 

01 (N = 43) and Run 02 (N = 48) 

 

Group-level Map for Combined Run Model 

 
Table D.12 Four fit statistics from GIMME model, Combined Runs 

 M (SD) 

 RMSEA SRMR NNFI CFI 

Combined .09 (.01) .04 (.01) .93 (.01) .96 (.01) 
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Figure D.2 GIMME Full Model Connectivity Network, Combined MID Runs 
Black = Group Paths; Red = Subgroup01 connections; Green = Subgroup02 connections; Grey = Individual Paths. 

Solid = Contemporaneous; Dashed = Lagged (t – 1). Weight is the proportion of subjects with the connection. 

 

Table D13 –  

 
Table D.13 Logistic Regression Model Predicting 

Subgroup Labels: Combined MID Runs and BSSS (N = 

103) 

 Combined 

 b p 

Age - .04 .80 

Sex .12 .77 

Post FD 1.02 .95 

BSSS -.51 .34 
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