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ABSTRACT

During the past several decades metamaterials and metastructures research has provided

a valuable set of tools for designing devices with extreme control over electromagnetic

wavefronts. Both metamaterials and metastructures use subwavelength features to control

the electromagnetic response, but they require different design methodologies. Metamate-

rials are composed of subwavelength scatterers with subwavelength spacings that can be

characterized using effective material properties. Design methods for metamaterial-based

devices typically rely on equivalent material properties that are locally periodic (possess

slowly varying subwavelength features) to perform field transformations. Metastructures,

on the other hand, share many of the same features as metamaterials, but they do not require

the existence of an equivalent effective medium. As such, metastructured devices require

design methods that model individual scattering elements and are capable of modeling de-

vices with local aperiodicity and fast variations in subwavelength features. This makes

the development of practical and accurate design methods for metastructures a challenging

task.

This dissertation presents recent developments in methods for modeling and designing

metamaterial devices and metastructures using concepts from microwave network theory.

The presented modeling and design approaches build on earlier work in TL, or circuit-

based metamaterials, that were used to realize guided-wave negative index metamaterials,

hyperbolic metamaterials, and transformation optics designs. In the first part of this work,

the range of effective material properties in circuit-based metamaterials is extended to in-

clude 2D omega bianisotropic responses. In the second part, an efficient computational in-

verse design tool is developed that utilizes the large degrees of freedom that metastructures

xvi



provide to design multi-input multi-output metastructures. The efficiency of the design

procedure is enhanced through the use of a fast forward problem solver and the adjoint

variable method. The fast forward problem solver avoids the use of full-wave solutions

through the use of reduced-order models and circuit theory. The adjoint variable method

enables efficient gradient calculations in the large design variable space that metastructures

provide.

The design procedure is then verified experimentally through the realization of a printed-

circuit beamformer for a multi-beam antenna system operating at 10 GHz. The multi-beam

antenna system produces nine orthogonal radiation patterns that are excited from nine input

ports that are impedance match and isolated. Two examples of beamformers are designed.

The first design exhibits positive refraction and the second exhibits negative refraction. The

measured antenna system fed by the positive refraction beamformer has a minimum return

loss of 18.1 dB, a minimum input isolation of 19.2 dB and a radiation efficiency of −2.7 dB

at the frequency of operation. The measured antenna system fed by the negative refraction

beamformer has a minimum return loss of 11.6 dB, a minimum input isolation of 21.3 dB

and a radiation efficiency of −2.8 dB at the frequency of operation.
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CHAPTER 1

Introduction

In recent years metamaterials and metastructures have provided engineers and scien-
tists with new tools for designing devices with extreme control over electromagnetic wave-
fronts, [1–7]. Metamaterials are periodic structures composed of subwavelength scatterers
with subwavelength spacings where a one-to-one relationship can be established between
the homogenized electromagnetic response and a set of effective material properties, [8].
Metastructures on the other hand share many of the same properties as metamaterials, such
as subwavelength features, but they do not require a one-to-one relationship with a set of
effective material properties.

In both metamaterial and metastructured devices, their subwavelength features are used
to manipulate electromagnetic wave propagation. However, metastructures can be com-
posed of unit cells where there isn’t an obvious medium equivalent. This can be advanta-
geous, but it requires different design methodologies that don’t rely on equivalent material
properties such as transformation optics [9, 10] or gradient-index based designs [11, 12].
One promising alternative is computational inverse design, where optimization routines are
paired with forward problem solvers to retrieve the required characteristics of the metas-
tructure to perform field transformations, [13–18].

This thesis presents recent developments in methods for modeling and designing metas-
tructures and metamaterial devices with asymmetric unit cells. The developed metamaterial
and metastructure modeling and design approaches build on earlier work in TL, or circuit-
based metamaterials, that were used to model negative index media [19], hyperbolic ma-
terials [20], anisotropic materials [21, 22], and 1D omega bianisotropic materials [23]. In
the first part, the range of effective material properties in circuit-based metamaterials are
extended to include 2D omega bianisotropic responses. In the second part, an efficient
computational inverse design tool is developed that utilizes all the degrees of freedom that
metastructures provide to design MIMO metastructures. The design procedure gains its
efficiency through the use of an efficient forward problem solver and the adjoint variable
method. The forward problem solver avoids the use of full-wave solutions though the use
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of reduced-order models and circuit theory. The forward problem solver is then paired with
a gradient-based optimization routine, and due to the large number of design variables that
metastructures contain the adjoint variable method is employed to efficiently calculate the
gradient.

1.1 Background

1.1.1 Bianisotropic Media

The discussion of reciprocal bianisotropic media in this section is based largely on the
presentation of bianisotropic media found in [24]. Throughout this section a harmonic time
dependence ejωt is assumed and suppressed. The time-harmonic Maxwell equations in
point form are,

∇× E = −jωB (1.1)

∇×H = jωD + J (1.2)

∇ ·D = ρ (1.3)

∇ ·B = 0 (1.4)

Which relate the electric (E) and magnetic (H) field intensities at any point in space to the
electric (D) and magnetic (B) flux densities, current density (J) and charge density (ρ) at
the same point. The electric and magnetic flux densities are also directly related to the field
intensities through the constitutive relations, which express how the fields interact with the
materials they exist in. The constitutive relations for the most general linear medium can
be written as,

D = ε ·E + a ·H (1.5)

B = µ ·H + b ·E (1.6)

where ε is the permittivity, µ is the permeability, a is the magneto-electric coupling, and b

is the electro-magnetic coupling. In materials where a and b are both zero the electric flux
density depends only on the electric field intensity and the magnetic flux density depends
only on the magnetic field intensity. In this scenario, the materials are called isotropic if
ε = εI and µ = µI where I is the identity operator; otherwise, the medium is referred to as
anisotropic. If a or b are non-zero then the electric and magnetic flux densities are coupled
to both the electric and magnetic field intensities, and in this case the medium is considered
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to be bianisotropic.
The bianisotropic constitutive relations (1.6) can represent materials with a wide range

electromagnetic responses that are reciprocal or non-reciprocal, passive or active, lossless
or lossy. However, the bianisotropic materials discussed in this work are lossless and re-
ciprocal. Enforcing the materials to be reciprocal restricts the material properties to be of
the form,

ε = ε
T (1.7)

µ = µ
T (1.8)

b = −a
T
, (1.9)

and a = b = 0 at zero frequency, so the materials are necessarily dispersive. If the materials
are also assumed to be lossless then ε, µ are purely real and a, b are purely imaginary. This
allows for constitutive relations to be re-expressed in terms of a single magneto-electric
coefficient that is purely real,

D = ε ·E + jκ ·H (1.10)

B = µ ·H − jκ
T ·E (1.11)

This form is useful for exploring the characteristics of the magneto-electric term that lead
to different classifications of reciprocal bianisotropic materials. In general, κ can be split
into three components,

κ = κI + P + Ω (1.12)

where P is symmetric (P = P
T

) and Ω is anti-symmetric (Ω = −Ω
T

). Additionally, P is
defined as such that tr(P ) = 0, which means that P is unitarily equivalent, i.e. equivalent
through rotation, to a possibly non-diagonal matrix with all diagonal entries equal to zero.
The classification of the different types of reciprocal bianisotropic media based on these
coupling terms is shown in Table 1.1.

Of the classifications described in Table 1.1 there has recently been significant interest
in two of the material classes: isotropic chiral and omega responses. Isotropic chiral ma-
terials have κ ̸= 0, P = 0, Ω = 0. These materials are referred to as chiral because
chiral particles, i.e. particles that lack mirror-symmetry shown in Fig. 1.1a, give rise to a
non-zero κ. The non-zero κ in these materials produces a medium that supports elliptically
polarized eigenwaves, resulting in a rotation of the polarization state for linearly polarized
waves propagating through a chiral medium. Omega materials have κ = 0, P = 0, Ω ̸= 0

which produces a medium that supports linearly polarized eigenwaves. This means that the
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Coupling parameters Classification
κ ̸= 0, P = 0, Ω = 0 Isotropic Chiral
κ ̸= 0, P ̸= 0, Ω = 0 Anisotropic Chiral
κ = 0, P ̸= 0, Ω = 0 Pseudochiral
κ = 0, P = 0, Ω ̸= 0 Omega
κ ̸= 0, P = 0, Ω ̸= 0 Chiral Omega
κ = 0, P ̸= 0, Ω ̸= 0 Pseudochiral Omega
κ ̸= 0, P ̸= 0, Ω ̸= 0 General reciprocal bi-anisotropic

Table 1.1: Classification of reciprocal bianisotropic media based on the components of the
magneto-electric coupling term shown in (1.12).

(a) (b)

Figure 1.1: (a) Example of a chiral particle illuminated by a plane wave. The blue arrow
indicates the impinging magnetic field and the red arrow indicates the scattered electric
field due to the induced current. (b) Example of a omega particle illuminated by a plane
wave. The blue arrow indicates the impinging magnetic field and the red arrow indicates
the scattered electric field due to the induced current.

polarization state of a linearly polarized wave is conserved in the medium. These materials
are referred to as omega since omega shaped particles, i.e. particles that lack directional-
symmetry [23, 25–27] shown in Fig. 1.1b, give rise to a non-zero Ω. The work presented
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in this thesis focuses on applications that require conservation of polarization. Therefore,
the modeling and synthesis methods found in this thesis focus on structures that exhibit
directional asymmetry or omega-type bianisotropic responses.

1.1.2 Circuit-based Modeling of Metamaterials

Since Heaviside introduced the lumped element transmission line model in the late 19th
century periodic circuit networks have been used to model electromagnetic wave propaga-
tion. The transmission line model represents the transmission line with a periodic network
of two-port circuits that have an infinitesimal length. Traditionally, the lumped element
unit cells are L-networks with a series inductance and shunt capacitance, shown in Fig.
1.2a. Then by applying Kirchoff’s current law (KCL) and Kirchoff’s voltage law (KVL)
on the unit cell and taking the infinitesimal limit results in the well known Telegrapher’s
equations,

∂v(z, t)

∂z
= −L′∂i(z, t)

∂t
(1.13)

∂i(z, t)

∂z
= −C ′∂v(z, t)

∂t
. (1.14)

Where v(z, t) and i(z, t) represent the voltage and current as a function of position and
time within the periodic network, and L′ and C ′ represent per unit length inductance and
capacitance, respectively. Assuming time-harmonic fields the wave equations for current
and voltage are,

d2V (z)

dz2
− k2V (z) = 0 (1.15)

d2I(z)

dz2
− k2I(z) = 0 (1.16)

Which result in the following propagation constant and characteristic impedance for a wave
propagating in the periodic network,

k = ω
√
L′C ′ (1.17)

Z0 =

√
L′

C ′ . (1.18)

Using field theory, analogous expressions for the Telegrapher’s equations, propagation con-
stant, and characteristic impedance can be derived for specific TL geometries that support
TEM waves, [28]. In this way a link between wave propagation on a transmission line and
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(a)

(b)

(c)

Figure 1.2: (a) Heaviside’s lumped element model of a TL. Where L is the inductance
and C is the capacitance of a unit cell, and d represents the length of a single unit cell in
the TL model. (b) TL characterized by a per-unit-length inductance (L′) and capacitance
(C ′). (c) A TEM propagating in an isotropic medium characterized by a permittivity ϵ and
permeability µ.

propagation in a periodic circuit network is established, see Fig. 1.2b. In a similar manner,
a TEM wave propagating in an unbounded medium and a TEM mode on a transmission
line can be related to connect unguided waves in continuous media to guided waves on
circuit networks. This can be seen by considering an x-polarized TEM wave propagating
along the z-direction in an unbounded medium characterized by an isotropic permittivity ϵ
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and permeability µ. In this scenario Faraday’s and Ampere’s laws (1.4) become,

dEx(z)

dz
= −jωµHy (1.19)

dHy(z)

dz
= −jωϵEx. (1.20)

These can then be solve for the wave equation,

d2Ex(z)

dz2
− k2Ex(z) = 0 (1.21)

d2Hy(z)

dz2
− k2Hy(z) = 0 (1.22)

Which, result in the following propagation constant and wave impedance for the TEM
wave,

k = ω
√
µϵ (1.23)

η =

√
µ

ϵ
. (1.24)

By comparing (1.18) and (1.24) a one-to-one relationship can be established to link a wave
propagating in a continuous medium to a wave propagating in a transmission line or pe-
riodic network. These links provided by the transmission line model inspired artificial
transmission lines used in telephonic transmission applications [29]. The model has also
been used in numerical electromagnetics forming the basis of the transmission line ma-
trix (TLM) method, [30].

In the early 2000’s the introduction of 1-D circuit-based or TL metamaterials renewed
interest in circuit analogies of electromagnetic media [19, 31, 32]. This work allowed for
the synthesis of a wide range of effective material properties including a negative index
using the unit cell shown in Fig. 1.3. This enabled several of the phenomena predicted by
Veselago, [33], to be observed [2,31]. Following the introduction of 1-D TL metamaterials,
isotropic 2-D TL metamaterials followed [34, 35], allowing for the verification of sub-
diffraction imaging using a negative index lens, [5]. Subsequently, it was demonstrated
that TL metamaterials can provide anisotropic [36] and tensor material responses, aiding
in the realization of a wide range of transformation optics designs [21,22,37]. In [23], 1-D
bianisotropic metamaterials with an omega response were introduced using asymmetric 1-
D circuit networks. However, a circuit-based equivalent to 2-D bianisotropic metamaterials
possessing an omega response had not been developed previously.
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Figure 1.3: Circuit-based unit cell used to model a negative index medium.

1.1.3 Multi-input Multi-output (MIMO) Metastructures

1.1.3.1 MIMO Metastructures and Their Design

Metastructures are often designed to perform a single function such as a polarization
transformation [38, 39], refraction [40, 41] or focusing [42–44]. However, there are many
applications where it is desirable for a metastructure to be able to perform multiple func-
tions; such as generating multiple phase masks for imaging [4], performing multiple field
transformations for antenna beamforming [11, 45–47], or performing mathematical func-
tions [15] or classification tasks [48] for analog computing. Designing metastructures for
these applications requires synthesis methods that allow for the multiple functions to be
specified and the necessary device characteristics to achieve those functions be determined.

One way that metastructures, capable of performing multiple functions, have been re-
alized is through reconfigurability [49–51]. Reconfigurable metastructures utilize arrays of
tunable unit cells that can be tailored to produce different responses. Using tunable unit
cells is versatile but also has its drawbacks. They tend to have increased losses, possess
finite switching times, and require bias circuitry and control logic. Therefore, for appli-
cations that require a finite set of predetermined functions, metastructures composed of
static unit cells that are capable of multiple functions, multi-input multi-output (MIMO)
metastructures see Fig. 1.4, are an attractive alternative. MIMO metastructures don’t re-
quire tunability nor control/bias circuitry, and they can be realized using low-loss unit cells.
However, efficient methods for designing MIMO metastructures are still needed. One route
that is particularly promising for realizing high-performance MIMO metastructures is com-
putational inverse design [11,13–18,48,52–55]. However, there is still significant room for
improvements in the development of accelerated forward problem solvers and modeling
methods that produce practical devices.
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Figure 1.4: Example of a MIMO metastructure can be used to perform multiple field trans-
formations. The metastructure is designed to behave as an antenna beamformer and steers
the beam by switching between the input ports.

1.1.3.2 Relationship to MIMO Systems

In high-data throughput communication systems MIMO systems are often used to lever-
age the carrying capacity, i.e. the degrees of freedom, of a communication channel, [56].
This is often done with spatial multiplexing techniques that allow for multiple signals to
exist with in the same space without interfering with each other at the receiver. One way
that this can be achieved is by designing antennas that are composed of decoupled elements
where the amplitude and phase of each element can be controlled. Then by using signal
processing techniques such as, direction of arrival algorithms, the desired and interfering
signals can identified and a radiation pattern can be formed that nulls out the interferer and
maximizes the received power from the desired signal. Then if there are multiple receivers
in the area multiple communication channels can be established in the space allowing for
increased data throughput.

MIMO metastructures are similar in that they leverage the large degrees of freedom
in metastructures. Leveraging these degrees of freedom allows for the design of metas-
tructures that are capable of multiple field transformations. These types of metastructures
could potentially be used in MIMO systems in a manner similar to the antenna discussed
above by designing a metastructure that produces orthogonal beams pointed in different
directions that are excited using orthogonal (isolated) input field profiles. This results in
decoupled radiation patterns that can be used in a manner analogous to the decoupled ele-
ments in the previous example of a MIMO system. Using the individual beams produced
by the metastructure, directions of arrival could be identified and beam synthesis methods,
like the Woodward-Lawson synthesis method, [57], could be used to shape the beam to
select a desired signal in a crowded channel.
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1.2 Motivation

1.2.1 Omega Bianisotropic Metamaterials

In the design of metamaterial or metasurface devices that operate in transmission, like
lenses or antenna beamformers, it is often desirable to maximize the transmitted power and
reduce reflections. To achieve zero reflections and maximize the transmitted power the de-
vice should impedance match the incident wavefront to the desired transmitted wavefront
while also providing the necessary phase transformation to shape the transmitted field. This
requires control over the real and imaginary part of input impedance of the metasurface as
well as the transmission phase, see Appendix A. This indicates that the device should have
a minimum of three degrees of freedom to control the propagation characteristics. Lossless
materials with purely electric and magnetic responses only possess two degrees of free-
dom and support propagating waves with purely real wave impedances and wave numbers.
On the other hand, lossless omega bianisotropic media possess complex wave impedances
that provide an additional degree of freedom, making them better suited for impedance
matching. This property has been exploited in bianisotropic metasurfaces that perform re-
flectionless field transformations, [6, 7, 39, 58], and wideband impedance matching [59].
These metasurfaces locally conserve the normal power density across their surface, i.e. in
a pointwise manner, limiting these metasurfaces to control over transmission phase.

The ability to control the transmission phase enables a wide range of field transforma-
tions but many applications require the ability to control that amplitude and phase, such
as speckle-free holography [60] or antenna beamforming [11, 45–47]. Precise control over
the transmitted amplitude and phase across a metasurface is challenging though because it
requires the ability to redistribute power over extremely small distances. However, ampli-
tude control can be achieved using a pair of metasurfaces with an electrically large spacing
between them to reshape the power density profile, [60,61]. The drawback of these designs
are that they still require conservation of normal power density across each constitutive
metasurface and are electrically large. Another method to achieve discontinuities in nor-
mal power density is to convert a propagating wave to a surface wave. This can be achieved
with either a reflective metasurface that couples to a surface wave in the same region as the
incident wave [62], or a bianiostropic metasurface that locally conserves normal power
denisty and couples to a surface wave in the transmitted region [63].

Typically, omega-type metasurfaces like those discussed above are realized with cas-
caded impedance sheets [39, 64]. Local conservation of normal power density (neglecting
transverse coupling) necessitates extremely sub-wavelength spacings between the sheets
or metallic walls to isolate neighboring unit cells. However, if transverse coupling is ac-
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counted for in the design of metasurfaces, the incident and transmitted power density pro-
files could be made different. Metasurfaces that utilize transverse coupling could offer
greater design freedom and eliminate the need to isolate neighboring unit cells which often
leads to designs that are impractical or extremely difficult to manufacture.

In [65], it was established that tangential polarizabilities are sufficient to establish any
transmission phase without reflection. However, designs with only tangential polarizabil-
ities can exhibit significantly degraded performance when compared to equivalent realiza-
tions utilizing normal polarizabilites. Previously, it was shown that a material with tangen-
tial and normal polarizabilities (an inhomogeneous 2-D anisotropic medium) can control
phase and power flow to perform field transformations [66]. However, these devices were
electrically large because impedance matching and controlling transmission phase is not
possible with an anisotropic medium. The complex wave impedance of 2-D omega media
could be used to reduce the size of the these devices, providing a route to design electrically
thin layers that do not require local conservation of normal power density.

There are two major challenges associated with designing a 2-D omega metamaterial:
(a) synthesis of the necessary 2-D omega material parameters and (b) simulating the omega
material design. This work aims to address these issues through the development of a
circuit-based model for omega media. A circuit model will allow for the materials to
be fabricated as 2-D transmission line networks and simulated using commercial circuit
solvers.

1.2.2 Inverse Design of MIMO Metastructures

In the early 2000’s research in metamaterials, or homogenizable electromagnetic com-
posites with material properties not found in nature, gained interest when Pendry demon-
strated the theoretical possibility of a superlens using negative index media [1] and a neg-
ative index metamaterial was experimentally realized [67]. This initial work inspired en-
gineers and scientists to pursue alternative methods for synthesizing negative index media
to enable the realization of a superlens. Ultimately, resulting in many novel methods for
synthesizing metamaterials with arbitrary material properties.

Then in 2006 transformation optics was introduced which demonstrated the full con-
trol over electromagnetic waves that metamaterials could provide, [9, 10]. Transformation
optics exploits the form invariance of Maxwell’s equations to develop mappings between
material parameters and coordinate transformations to control electromagnetic wave prop-
agation in a region. However, transformation optics does have some drawbacks. One issue
is that it does not provide a meanings limiting the range of material properties necessary

11



to realize the desired functionality. This often results in highly anisotropic material param-
eters that can be difficult to manufacture or negative permeabilities and permittivities that
are typically dispersive when realized in practice. It also does not provide a way to design
MIMO devices or include the possibility of bianisotropic material parameters. Alternative
design methods have been proposed to overcome some of these shortcomings that uses
computational inverse design, [13, 15, 16, 48, 52].

However, these inverse design methods have their shortcomings. The design methods
in [13, 15, 16, 52] rely on full-wave solutions to Maxwell’s equations, which can be com-
putationally prohibitive for electrically large devices with complex unit cells. When the
unit cells used to realize the pattern structure contain fine features they typically assume
local periodicity to characterize them as effective materials [52] or reflectionless phase
shifters [48]. Due to spatial dispersion and violations of local periodicity this approach
can lead to degraded performance that may require full-wave optimization of the patterned
structure to achieve satisfactory performance.

In [48], a method that avoided the use of full-wave solutions during the optimization
procedure was provided. There a design method for stacks of metasurfaces with MIMO
functionality was introduced. The design method used scalar diffraction theory to propa-
gate fields forward through the stack of metasurfaces and calculate the transmitted fields.
However, this method required large spacings between the metasurfaces to validate the
paraxial approximation and neglected multiple interactions between the metasurfaces, lead-
ing to devices that may be larger than necessary. Chapters 3-4 of this thesis aim to address
some of these issues through the use of reduced-order models and a circuit-network solver
to solve the forward problem. By solving the forward problem this way, full-wave solu-
tions are avoided during the optimization process but multiple interactions are accounted
for between the metastructure’s unit cells.

1.3 Thesis Outline

This thesis presents recent developments in methods for modeling and designing meta-
materials and metastructures with asymmetric unit cells. The modeling and design ap-
proaches described in this thesis build on earlier work in TL, or circuit-based, metama-
terials that were used to realize guided-wave metamaterials with a negative index, hyper-
bolic dispersion relations, and anisotropic material properties for transformation optics de-
signs. Here, similar concepts are used to expand the range of material parameters available
in circuit-based metamaterials and enable a computational inverse design procedure for
MIMO metastructures.
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In the second chapter, a method for modeling 2D omega bianisotropic materials is pur-
sued to aid in the design of compact reflectionless metamaterial devices with amplitude and
phase control. Earlier work that utilized omega bianisotropy to perform field transforma-
tions neglects transverse coupling between the metasurface’s unit cells [6,62,63], resulting
in devices that lacked the ability to reshape amplitude profiles and were difficult to realize
in practice. However, by modeling the device as a metamaterial with transverse coupling
practical devices that are compact and possess amplitude and phase control can be real-
ized. Here, an asymmetric unit cell for a 2D periodic circuit network is introduced that is
used to extend the achievable range of material properties in 2D circuit-based metamateri-
als to include omega bianisotropy. The circuit-based metamaterials is then used to design
a electrically-thin reflectionless metamaterial slab that controls the normal phase delay and
power flow across the slab. Demonstrating that 2D omega bianisotropy can be used to
provide impedance matching while controlling the amplitude and phase of a transmitted
wavefront.

The third chapter introduces a new design method for metamaterials and metastructures
that overcomes some of the limitations and drawbacks associated with transformation op-
tics and other computational inverse design procedures. Transformation optics [9, 10] was
the first inverse design method that demonstrated the extent to which metamaterials can
be used to control electromagnetic wave propagation. However, the designs produced by
transformation optics typically possessed highly anisotropic material parameters as well as
negative permeabilities and permittivities that are dispersive when realized in practice. It
also does not provide a way to design arbitrary MIMO devices, or include bianisotropic
material parameters.

An alternative to transformation optics is to use computational inverse design to retrieve
the spatially varying material parameters necessary to produce the desired field transforma-
tions. These design procedures have been introduced to address many of the drawbacks of
transformation optics, [14–16, 52, 55]. However, these methods often rely on full-wave
solutions to Maxwell’s equations which can be computationally expensive for electrically-
large spatially varying metamaterials and metastructures. As such, they often require an
additional step to go from effective material properties to a patterned structure (which of-
ten requires additional full-wave optimization) or use very simple unit cells with limited
degrees of freedom (resulting in devices that may be larger than necessary). In this chapter
these issues are addressed by introducing a circuit-based forward problem solver that en-
ables a computational inverse design procedure for MIMO devices. The forward problem
solver uses reduced order models of the patterned structure, which allows for a unit cell
with a large number of degrees of freedom to be included and doesn’t require an additional
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step to pattern the device.
The fourth chapter presents an experimental realization of a multi-beam antenna that

uses the computational inverse design procedure developed in the third chapter. The an-
tenna is composed of a 3D printed tapered aperture antenna and a metastructured microstrip
beamformer. The beamformer is composed of asymmetric units whose spatially varying
characteristics are determined using the computational inverse design procedure in Chap-
ter 3. The multi-beam antenna system is then experimentally characterized and shown to be
in good agreement with the predicted performance. Providing verification that the design
procedure can be used to realize practical devices with arbitrary control over the amplitude
and phase of the output fields for multiple input excitations.
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CHAPTER 2

Circuit-based Modeling of 2D Omega
Bianisotropic Media

2.1 Introduction

The introduction of 1-D circuit-based or TL metamaterials in the early 2000’s created
renewed interest in circuit analogies of electromagnetic media [19, 31, 32]. This work
allowed for a wide range of effective material properties to be synthesized including a
negative index. These negative index TL metamaterials enabled several of the phenom-
ena predicted by Veselago, [33], to be observed [2, 31]. The initial success of 1-D TL
metamaterials motivated researchers to develop isotropic 2-D TL metamaterials [34, 35],
allowing for the verification of sub-diffraction imaging using a negative index lens, [5].
It was subsequently demonstrated that TL metamaterials can provide anisotropic [36] and
tensor material responses, aiding in the realization of a wide range of transformation optics
designs [21,22,37]. In [23], 1-D bianisotropic metamaterials with an omega response were
introduced using asymmetric 1-D circuit networks. However, prior to this work a circuit-
based equivalent to 2-D bianisotropic metamaterials possessing an omega response had not
been reported.

Lossless bianisotropic media with an omega response (omega media) have complex
wave impedances, making them well suited for impedance matching. This property has
been exploited in bianisotropic metasurfaces that perform reflectionless field transforma-
tions, [6, 7, 39, 58], and wideband impedance matching [59]. These metasurfaces locally
conserve the normal power density across their surface, i.e. in a pointwise manner, limiting
these metasurfaces to control over transmission phase.

Typically, omega-type metasurfaces are realized with cascaded impedance sheets [39,
64]. An example of how three impedance sheets can be used to design omega-type meta-
surfaces is in Appendix A where a discussion regarding their quality factor and bandwidth
is provided as well. Local conservation of normal power density (neglecting transverse
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coupling) necessitates extremely sub-wavelength spacings between the sheets or metallic
walls to isolate neighboring unit cells. However, if transverse coupling is accounted for
in the design of metasurfaces, the incident and transmitted power density profiles could
be made different. Metasurfaces that utilize transverse coupling could offer greater design
freedom and eliminate the need to isolate neighboring unit cells.

Previously, it was shown that a material with tangential and normal polarizabilities
(an inhomogeneous 2-D anisotropic medium) can control phase and power flow to per-
form field transformations [66]. However, these devices were electrically large because
impedance matching and controlling transmission phase is not possible with an anisotropic
medium. The complex wave impedance of 2-D omega media could be used to reduce the
size of the these devices, providing a route to design electrically thin layers that do not
require local conservation of normal power density.

There are two major challenges associated with designing a 2-D omega metamaterial:
(a) synthesis of the necessary 2-D omega material parameters and (b) simulating the omega
material design. This work aims to address these issues through the development of a
circuit-based model for omega media. A circuit model will allow for the materials to
be fabricated as 2-D transmission line networks and simulated using commercial circuit
solvers. The circuit model is analyzed as a general 2-D periodic circuit network composed
of 1-D asymmetric circuit networks. The dispersion relation and wave impedance are then
taken in the homogeneous limit to establish an equivalence with a 2-D reciprocal and loss-
less omega medium. This circuit equivalent is then used to design a 2-D omega slab that
acts as an impedance matching layer. The impedance matching layer provides a desired
phase delay and translates the power density profile of the incident wavefront.

2.2 1D Omega Bianisotropic Media

The constitutive relations for a bianisotropic medium are,

D = ε ·E + a ·H (2.1)

B = µ ·H + b ·E (2.2)

If the medium has an omega response, the magneto-electric dyadics are anti-symmetric:

a = −a
T and b = −b

T
. Further, if it is lossless ε and µ are purely real and a and b are

purely imaginary. Additionally, reciprocity requires ε = ε
T , µ = µ

T , and b = −a
T .

In [23], the equivalence between TEM propagation along a lossless, reciprocal, omega
medium and propagation in a 1-D periodic circuit network was established. The dispersion
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relation and wave impedance for a lossless and reciprocal 1-D omega medium are,

k±2
= ω2(µε+ a2) (2.3)

η± =
ωµ

k± − ωa
(2.4)

where the permeability, µ, and permittivity, ε, are purely real, the magneto-electric cou-
pling, a, is purely imaginary, and the wavenumber is k± = ±k

′ − jk
′′ . The ± superscripts

are included to differentiate between forward and reverse propagating waves.
Performing Bloch analysis on a periodic network with period d, composed of a lossless

and reciprocal electrical network represented by a transmission (ABCD) matrix (see Fig.
2.1), yields the following dispersion relation and Bloch impedance

sin2 k±
Bd = −BC +

(
j
D − A

2

)2
(2.5)

Z±
B =

−jB

sin k±
Bd− jD−A

2

(2.6)

where the Bloch wavenumber k±
B = ±k

′
B − jk

′′
B, [28]. Since the network is lossless, A and

D are purely real while B and C are purely imaginary. Further, reciprocity requires that

AD −BC = 1. (2.7)

In the homogeneous limit, |k±
Bd| ≪ 1, so (2.5) and (2.6) become,

(k±
Bd)

2 = −BC +
(
j
D − A

2

)2
(2.8)

Z±
B =

−jB

k±
Bd− jD−A

2

(2.9)

Comparing (2.3) with (2.8), and (2.5) with (2.9), reveals the following equivalency between
the asymmetric network (A ̸= D) and an omega medium,

µ = −j
B

ωd
, ε = −j

C

ωd
, a = j

D − A

2ωd
(2.10)

It should be noted that although these expressions are different from those presented in [23],
they are equivalent.
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Figure 2.1: Transmission (ABCD) matrix representing a unit cell of a one-dimensional
periodic circuit network.

2.3 2D Omega Bianisotropic Media

2.3.1 Field Theory

There are two major classes of reciprocal bianisotropic media: chiral and omega. This
work focuses on TE polarized plane waves in a lossless bianisotropic omega-type medium,
i.e. a reciprocal bianisotroic medium with an omega response. To maintain a TE polar-
ization it is assumed that the medium preserves polarization. That is, induced magnetic
flux densities are along the same axes as the magnetic field and the induced electric flux
densities are along the same axes as the electric field. For a TE plane wave propagating
in the x-z plane, its wavevector is k = kxx̂ + kz ẑ, and the relevant fields are, E = Eŷ

and H = Hxx̂ + Hz ẑ. The permittivity, ε, has one relevant entry, εyy, and the remaining
relevant material parameters are,

µ =

[
µxx 0

0 µzz

]
(2.11)

a = b =

 0 −jaxy 0

jaxy 0 jazy

0 −jazy 0

 (2.12)

For an ejωt time convention and TE plane wave propagation in the x-z plane, Faraday and
Ampere’s laws can be written as the following system of equations,

− kz
Ey

Hx

= ω(µxx − jaxy
Ey

Hx

) (2.13)

kx
Ey

Hz

= ω(µzz − jazy
Ey

Hz

) (2.14)
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kz
Hx

Ey

− kx
Hz

Ey

= −ω(εyy + jaxy
Hx

Ey

+ jazy
Hz

Ey

) (2.15)

Solving (2.13)–(2.15), the dispersion relation and wave impedances along the principal
axes of the medium can be written,

k±
x
2
+ (ωazy)

2

ωµzz

+
k±
z
2
+ (ωaxy)

2

ωµxx

= ωεyy (2.16)

η±x =
Ey

Hz

=
ωµzz

k±
x + jωazy

(2.17)

η±z = −Ey

Hx

=
ωµxx

k±
z − jωaxy

(2.18)

where k±
x = ±k

′
x − jk

′′
x and k±

z = ±k
′
z − jk

′′
z . The ± superscripts differentiate between

the forward and reverse propagating fields.

2.3.2 Circuit Theory

For comparison with a 2-D omega medium, a 2-D periodic circuit network with the
unit cell depicted in Fig. 2.2 will be analyzed. It is composed of four branches of 1-D
constituent circuit networks. The two constituent networks along a single direction (x or
z) are the same. It is important to note that if the constituent networks are asymmetric
the overall unit cell is asymmetric. The propagation characteristics of this network can
be determined using the analysis procedure presented in [35]. The dispersion relation and
Bloch impedances for the network in Fig. 2.2 are,

sin2 k±Bxd

2
+
(
A1−D1

2

)2
jB1

(
jC1

A1+D1
+ jC2

A2+D2

)
(A1 +D1)

+
sin2 k±Bzd

2
+
(
D2−A2

2

)2
jB2

(
jC1

A1+D1
+ jC2

A2+D2

)
(A2 +D2)

= 1 (2.19)

Z±
Bx =

−j 2B1

A1+D1

tan
k±Bxd

2
+ j
(
A1−D1

A1+D1

) (2.20)

Z±
Bz =

−j 2B2

A2+D2

tan
k±Bzd

2
− j
(
D2−A2

A2+D2

) (2.21)

where, k±
Bx = ±k

′
Bx − jk

′′
Bx and k±

Bz = ±k
′
Bz − jk

′′
Bz, and A1,2, B1,2, C1,2, and D1,2

satisfy the lossless and reciprocal conditions for an ABCD matrix given by (2.7). Two con-
straints are imposed on electrical lengths within the circuit network. One constraint is on
the electrical lengths of the constituent networks and the second is on the electrical lengths
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Figure 2.2: ABCD matrix representation of a two-dimensional periodic circuit network
with common constituent networks along each axis.

of the overall unit cell, which are not necessarily equivalent conditions. The first constraint
reduces spatial dispersion within the unit cell, while the second constraint allows for ho-
mogenization of the unit cell. The first constraint can be satisfied by observing from 1-D
periodic analysis that the electrical length, kB1,2

d
2
, of each constitutive network is given by

cos(kB1,2

d
2
) = (A1,2 +D1,2)/2. Therefore, requiring the circuit networks to be electrically

small is equivalent to mandating that A1,2 +D1,2 ≈ 2, since cos(x) ≈ 1 as x → 0. Taking
the homogeneous limit, i.e. (k′′

Bx,zd, k
′
Bx,zd ≪ 1), assuming the constituent networks are

electrically small, and C1 + C2 ̸= 0, (2.19)–(2.21) become,

(k±
Bxd)

2 +
(
A1 −D1

)2
j2B1

+
(k±

Bzd)
2 +

(
D2 − A2

)2
j2B2

= j2(C1 + C2) (2.22)

Z±
Bx =

−j2B1

k±
Bxd+ j(A1 −D1)

(2.23)

Z±
Bz =

−j2B2

k±
Bzd− j(D2 − A2)

(2.24)

Comparing these expressions to those from field theory reveals a one-to-one relationship
between (2.16)–(2.18) and (2.22)–(2.24). Therefore, if the 1-D constitutive networks are
electrically small, and the unit cell can be homogenized, the 2-D network shown in Fig. 2.2
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behaves like an omega medium with material parameters,

µxx = −j
2B2

ωd
, µzz = −j

2B1

ωd
, εyy = −j

2(C1 + C2)

ωd

axy =
D2 − A2

ωd
, azy =

A1 −D1

ωd

(2.25)

For a simpler comparison between the 1-D and 2-D effective material parameters, con-
sider the situation where the ABCD parameters in all of the constitutive networks are
halved, then (2.25) becomes,

µxx = −j
B2

ωd
, µzz = −j

B1

ωd
, εyy = −j

(C1 + C2)

ωd

axy =
D2 − A2

2ωd
, azy =

A1 −D1

2ωd

(2.26)

Comparing (2.26) to (2.10) reveals that the relationship between a 1-D circuit network’s
ABCD-parameters and its effective material parameters is the same as a 2-D network’s with
the exception of the permittivity. The effective permittivity is the sum of the permittivities
of the constituent networks, as previously observed in isotropic TL grids [19].

A notable feature of both (2.10) and (2.25) is that the magneto-electric response is
proportional to the difference between A and D. Therefore, if there is no asymmetry in
the constituent networks the magneto-electric response disappears. This is consistent with
the fact that asymmetry gives rise to magneto-electric effects in omega-type bianisotropic
media, [23, 27].

2.4 Asymmetry in 2-D Periodic Circuit Networks

As previously noted, bianisotropic responses arise in periodic circuit networks if their
unit cells are asymmetric. In this section, different types of asymmetries and their effects
on the general 2-D unit cell composed of four constituent networks, shown in Fig. 2.3,
will be studied. The unit cell is asymmetric in the x-direction if: (a) B1 ̸= B3 or (b)
D1 ̸= A3. Due to reciprocity, the condition C1 ̸= C3 is not a sufficient condition to make
the unit cell asymmetric if neither (a) or (b) is satisfied. Similar conditions hold for the z-
direction. To gain understanding on the effects of these asymmetries, the periodic network’s
dispersion relation and Bloch impedances will be studied for different conditions placed on
the networks ABCD parameters. The dispersion relation and Bloch impedances for the
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Figure 2.3: ABCD matrix representation of a generalized two-dimensional periodic circuit
network where all constituent networks are different.

network shown in Fig. 2.3 are,

4 sin2 k±Bxd

2
+
(
D1−A3√
A3D1

)2
j(B1A3 +B3D1)

+
4 sin2 k±Bzd

2
+
(
A4−D2√
A4D2

)2
j(B2A4 +B4D2)

= j
A3C1 +D1C3

A3D1

+ j
A4C2 +D2C4

A4D2

(2.27)

Z±
Bx =

−j
(
ΣB13 +

( ∆B13√
ΣB13

)2
tan2 k±Bxd

2

)
ΣB13

B3D1+B1A3

2 tan
k±Bxd

2
− j
(
∆13 +

∆B13

ΣB13
Σ13 tan

2 k±Bxd

2

)
ΣB13

B3D1+B1A3

(2.28)

Z±
Bz =

−j
(
ΣB24 +

( ∆B24√
ΣB24

)2
tan2 k±Bzd

2

)
ΣB24

B4D2+B2A4

2 tan
k±Bzd

2
− j
(
∆24 +

∆B24

ΣB24
Σ42 tan

2 k±Bzd

2

)
ΣB24

B4D2+B2A4

(2.29)

where ΣBij
= Bi+Bj , ∆Bij

= Bi−Bj , ∆13 = D1−A3, Σ13 = D1+A3, ∆24 = D2−A4,
and Σ42 = A4 +D2. In this generalized form, there is no medium equivalence. However,
the effects of the different types of asymmetry can be understood. By comparing (2.17)
to (2.28) one notices that the asymmetry introduced by setting B1 ̸= B3 requires spatially
dispersive material parameters if the wave impedance is to match that of an omega medium.
This is due to the fact that terms proportional to k±

Bxd, occur in (2.28) when B1 ̸= B3.
The same effect occurs in the z-directed wave impedance when B2 ̸= B4. To eliminate
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such spatial dispersion, the following conditions are imposed on the constituent networks:
B1 = B3 and B2 = B4. Under these constraints (2.27)–(2.29) become,

4 sin2 k±Bxd

2
−
(
j D1−A3√

A3D1

)2
jB1(A3 +D1)

+
4 sin2 k±Bzd

2
−
(
j A4−D2√

A4D2

)2
jB2(A4 +D2)

= j
A3C1 +D1C3

A3D1

+ j
A4C2 +D2C4

A4D2

(2.30)

Z±
Bx =

−j 4B1

A3+D1

2 tan
k±Bxd

2
− j2D1−A3

A3+D1

(2.31)

Z±
Bz =

−j 4B2

A4+D2

2 tan
k±Bzd

2
− j2D2−A4

A4+D2

(2.32)

If it is further assumed that the constituent networks and the unit cells are electrically small,
it can be shown that the unit cell in Fig. 2.2 is required for a one-to-one relationship to
exist between (2.16)–(2.18) and (2.30)–(2.32). Therefore, to limit spatial dispersion in the
periodic network the asymmetric unit cell in Fig. 2.2 was used rather than that in Fig. 2.3.

2.5 Characterization of a Lumped Element Unit Cell

The equivalency between omega media and the proposed circuit network in Fig. 2.2 is
verified by comparing the simulated dispersion characteristics of the circuit network with
the analogous medium’s. Isofrequency contours (the intersection of a constant frequency
plane with the surface described by the dispersion relation) are used to compare the analo-
gous medium, (2.16), and the circuit network at a fixed frequency. In order to simulate the
proposed unit cell, Fig. 2.2, a suitable unit cell is chosen such that the asymmetry of the
unit cell can be easily tailored. Lumped element T-networks and π-networks are suitable
building blocks (see Fig. 2.4), since they provide asymmetric responses whenever Z1 ̸= Z2

or Y1 ̸= Y2. This can be seen by examining the ABCD parameters of the π and T-networks
shown in Fig. 2.4, [

Aπ Bπ

Cπ Dπ

]
=

[
1 + ZY2 Z

Y1 + Y2 + ZY1Y2 1 + ZY1

]
(2.33)

[
AT BT

CT DT

]
=

[
1 + Z1Y Z1 + Z2 + Z1Z2Y

Y 1 + Z2Y

]
(2.34)
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Figure 2.4: (a) A lumped element π-network (b) A lumped element T-network.

Element Value Element Value
Lx 3.53 nH Lz 2.43 nH
Cx1 0.58 fF Cz1 0.94 fF
Cx2 3 fF Cz2 2.64 fF

Table 2.1: The inductor and capacitor values necessary to synthesize a medium with the ef-
fective material parameters: εyy = 2ε0, µxx = 5µ0, µzz = 7µ0, axy = −ayx = j0.1

√
µ0ε0,

and azy = −ayz = −j0.2
√
µ0ε0 at a frequency of 10 GHz.

In both cases, if Z1 ̸= Z2 or Y1 ̸= Y2 then A ̸= D and the network is asymmetric. The
π-network will be examined because it results in the simplest overall unit cell. To construct
the 2-D network, shown in Fig. 2.2, each constituent network is an asymmetric π-network
resulting in the unit cell shown in Fig. 2.5. It can be further simplified by combining all the
shunt elements at the central node, as shown in Fig. 2.6.

Since C1 and C2 from Fig. 2.2 appear in (2.25) only as a sum they can be set equal
without any loss of generality. Additionally, they only appear in the expression for εyy so,
it is equivalent to setting the permittivity of the two constitutive networks equal. Using
(2.25) and C1 = C2, or Yx1 + Yx2 + Yx1Yx2Zx = Yz1 + Yz2 + Yz1Yz2Zz, the equivalent
material parameters in terms of the circuit elements are,

ωµxxd = −2jZz, ωµzzd = −2jZx ωεyyd = −4j(Yx1 + Yx2 + Yx1Yx2Zx),

ωaxyd = Zz(Yz1 − Yz2), ωazyd = Zx(Yx2 − Yx1)
(2.35)

Generally this unit cell produces a dispersive omega medium. However, by choosing
the magneto-electric coupling to satisfy |axy| ≪

√
µxxεyy and |azy| ≪

√
µzzεyy, the π-

networks are low-pass circuits, thereby reducing the effects of dispersion below the cutoff
frequency of the π-network: ωc = 2/

√
Lk(Ck1 + Ck2); where, Z = jωLk and Y1 = jωCk1

and Y2 = jωCk2 in Fig. 2.4 (a). Let’s consider a medium with the following material
parameters at 10 GHz: εyy = 2ε0, µxx = 5µ0, µzz = 7µ0, axy = −ayx = j0.1

√
µ0ε0, and

azy = −ayz = −j0.2
√
µ0ε0. To satisfy the homogeneous limit assumption, the maximum
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Figure 2.5: A representation of the 2-D lumped element unit cell representing a 2-D omega
medium composed of 1-D asymmetric π-networks comprising each constituent network.

Figure 2.6: A representation of the 2-D unit cell used to implement a 2-D omega medium
composed of 1-D asymmetric π-networks in each constituent network. It is constructed by
combining the central elements in Fig. 2.5, Y = Yx1 + Yx2 + Yz1 + Yz2.

phase delay for on axis propagation is kBxd = π/5 rad at f0 = 10 GHz (d = 0.8 mm).
Using (2.35) the lumped elements of the unit cell in Fig. 2.5 are,

Zx = jω0Lx = j222 Ω, Yx1 = jω0Cx1 = j36.6 µS, Yx2 = jω0Cx2 = j188 µS

Zz = jω0Lz = j159 Ω, Yz1 = jω0Cz1 = j59.3 µS, Yz2 = jω0Cz2 = j166 µS
(2.36)

where ω0 = 2πf0. These impedances and admittances are implemented with the inductors
and capacitors in Table 2.1. Substituting (2.36) into (2.35) yields the following effective
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material parameters,

µxx = 2
Lz

d
= 5.03µ0, µzz = 2

Lx

d
= 7.02µ0,

εyy =
4

d
(Cx1 + Cx2 − ω2Cx1Cx2Lx) = (2.02− ω2(3.5× 10−24 s2))ε0,

axy = −ω
Lz(Cz1 − Cz2)

d
= ω(1.61× 10−12 s)

√
µ0ε0,

azy = −ω
Lx(Cx2 − Cx1)

d
= −ω(3.2× 10−12 s)

√
µ0ε0

(2.37)

Considering the form of the material parameters in (2.37), the permeability is non-dispersive
and the permittivity does not exhibit significant dispersion if,

ω ≪ min
( 1√

Lx(Cx1 + Cx2)
,

1√
Lz(Cz1 + Cz2)

)
(2.38)

due to the low-pass nature of the design. However, the magneto-electric terms exhibit a
linear frequency dispersion: axy ∝ ω and azy ∝ ω. Therefore, even at low frequencies
there will be appreciable frequency variation in the magneto-electric terms.

The equivalent material parameters for the unit cell with circuit elements given in Table
2.1 are plotted in Fig. 2.7a, 2.7b over a frequency range from 0 to 15 GHz. The permittivity
and permeability show no dispersion over this frequency range, but there is dispersion
in the magneto-electric terms, as expected. Due to the relatively small magnitude of the
magneto-electric terms, compared to √

µxxεyy and √
µzzεyy, the dispersion curves will not

diverge significantly from the desired omega materials response below 10 GHz. However,
dispersion in the magneto-electric term has significant effects on the imaginary part of the
wave impedance. At 9 GHz it has been reduced to 90% of its value at 10 GHz. This will
ultimately place bandwidth limitations on devices designed with these structures.

Using Keysight’s Advanced Design System (ADS), isofrequency contours were com-
puted for the unit cell at 8, 9, and 10 GHz. The dispersion of the unit cell was characterized
by terminating its ports in the appropriate Bloch impedances given by (2.20) and (2.21).
The input terminals were driven in the x and z-directions with voltage sources Vx and
Vz such that a plane wave was established in the periodic network. The necessary rela-
tionship between the voltage sources to produce a plane wave with a given wave vector
kB = kBxx̂ + kBz ẑ in the periodic network is provided in [35]. The simulation was per-
formed by setting Vx to 1V and the input terminal in the z-direction was driven with [35],

Vz(kBxd) =
A1 +D1

A2 +D2

cos(kBzd/2)

cos(kBxd/2)
ej

kBz−kBx
2

d (2.39)

26



(a)

(b)

Figure 2.7: Material parameters of the unit cell shown in Fig. 2.6, composed of the el-
ements given in Table 2.1 up to 15 GHz. (a) Relative permittivity and permeabilities (b)
Normalized magneto-electric coefficients, ayz/

√
µ0ε0 and ayx/

√
µ0ε0.

The voltage excitation’s were defined to provide a desired kBxd and the resulting kBzd

was retrieved from the simulation. This was done using the full dispersion relationship for
the network, (2.19), and expressing kBzd in terms of the network parameters and kBxd.
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Figure 2.8: Isofrequency contours at 8 GHz (inner), 9 GHz (middle), and 10 GHz (outer)
for the unit cell shown in Fig. 2.6 with elements given in Table 2.1. The black circles are
the dispersion characteristics extracted from an ADS simulation of the unit cell. The red
solid lines are calculated using (2.16) for the equivalent omega medium.

Therefore, (2.39) can be expressed solely in terms of the network parameters and kBxd. To
obtain the isofrequency contours kBxd was swept from −π/5 to π/5 rad while measuring
kBzd across the unit cell. The results are shown in Fig. 2.8. There is close agreement
between the simulated isofrequency contours and the analogous omega medium’s isofre-
quency contours. Thus, indicating that the propagation characteristics match that of the
omega medium within this frequency range.

2.6 Impedance Matched Beamshifting Slab with Phase Con-
trol

In [59], a 1-D propagation model was used to impedance match a normally incident
plane wave with a Huygens’ bianisotropic metasurface separating two regions of dielec-
tric. Further, it was shown that an omega-type response could be used to control the normal
phase delay. In this section, a 2-D circuit-based omega medium will be used to design an
impedance matching layer that provides a desired normal phase delay but also translates
the incident power density profile of a wavefront. The impedance matching condition and
desired transmission phase are controlled with the tangential polarizabilities in the layer
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(a)

(b)

Figure 2.9: (a) Lumped element unit cell used to implement a 2-D isotropic medium, con-
sisting of two identical symmetric branches along the principal axes (x and z directions).
(b) Lumped element unit cell used to implement anisotropic medium, consisting of two
different symmetric branches along the principal axes.

and the direction of power flow is controlled by the normal polarizabilites.
To demonstrate this functionality, the circuit simulator ADS is used to simulate two

isotropic half spaces of different materials separated by an omega medium slab with thick-
ness d. The slab is infinite in the x-y plane and has finite extent in the z-direction. Therefore,
ẑ is normal to the slab while x̂ and ŷ are tangential to the surface of the slab. The simula-
tion domain consists of three regions: medium 1, the omega slab, and medium 2. The two
isotropic regions (medium 1 and 2) are implemented using the isotropic lumped element
unit cells shown in Fig. 2.9a, and the unit cell shown in Fig. 2.6 was used to realize the
omega slab. At the edges of the domain, each region is terminated in appropriate Bloch
impedances to emulate an unbounded medium, as shown in Fig. 2.10.
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Figure 2.10: A circuit network representation of two different isotropic half spaces sep-
arated by a slab of omega medium. The slab acts as a matching layer which provides a
desired phased delay ϕd in the z-direction. The omega impedance matching layer is shown
(in blue) between the two isotropic grids. The boundary of the domain is terminated in the
appropriate Bloch impedances to emulate an unbounded structure. The excitation is set by
the voltage sources on the boundary. In medium 1 and 2, the amplitudes (Vx1 and Vx2) and
phases of the voltage sources are set by the desired incident and transmitted fields. The
source connected to the slab provides the amplitude (VxΩ) and phase necessary to emulate
the standing wave that exists in the infinite slab.

To design the slab, an omega medium separating two dielectrics illuminated by a TE
wave propagating in the x-z plane is analyzed. The slab is designed to impedance match
the two regions, provide a transmission phase, ϕd, in the ẑ (normal) direction and support
a prescribed angle of power flow, θS . A plane wave is incident from the first medium at an
angle, θi (relative to the z-axis). The angle of incidence sets the normal wave impedance in
medium 1, ηz1. Phase-matching sets the tangential wavenumber in the slab, as well as in
medium 2. This determines the normal wave impedance in medium 2, ηz2. The phase delay
ϕd determines the necessary normal wavenumber, kz. The normal wave impedance, ηz, in
the omega medium is determined by ηz1 and ηz2. The design equations are calculated using
1-D TL analysis (see Fig. 2.11). By setting the input impedance of the transmission line
equal to the incident wave impedance, Zin = η1, and specifying the normal phase delay, ϕd,
across the transmission line, a system of equations can be written. If ϕd ̸= nπ for n ∈ Z
then the system of equations can be solved for the wavenumber and wave impedance of the
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omega medium as follows,

tan kzd =

√
4ηz1ηz2 tan

2 ϕd − (ηz2 − ηz1)2

ηz1 + ηz2
(2.40)

η′z =

√
4ηz1ηz2 tan

2 ϕd − (ηz2 − ηz1)2

2 tanϕd

(2.41)

η′′z =
ηz2 − ηz1
2 tanϕd

(2.42)

There exist real solutions to (2.40) and (2.41) if the following inequality is satisfied,

| cosϕd| ≤
√
ηz1ηz2

(ηz1 + ηz2)/2
(2.43)

The time-averaged Poynting vector for a TE plane wave propagating in a lossless, recipro-
cal omega medium in the x-z plane is given by,

S = Sxx̂+ Sz ẑ =
|Ey|2

2
(
ηx
|ηx|2

x̂+
ηz
|ηz|2

ẑ) (2.44)

The angle of power flow, θS , is defined as the angle that the time-averaged Poynting vector
makes with the z-axis. This angle θS can be expressed in terms of the wave impedances
along the principal axes as follows,

tan θS =
ℜ(Sx)

ℜ(Sz)
=

η′x
η′z

(η′z2 + η′′z
2

η′x
2 + η′′x

2

)
(2.45)

where ηi = η′i + jη′′i for i = x, z. From (2.45), it is clear that controlling power flow
in the omega medium and impedance matching in the x and z-directions is not possible.
Specifying the direction of power flow and impedance matching in the normal direction
leaves only one degree of freedom in (2.45). As a result either the real or the imaginary
part of the transverse wave impedance, ηx can be matched, while the other is determined
by (2.45). Solving (2.16)–(2.18) for the material parameters in terms of kx, kz, η′x, η′′x, η′z,
and η′′z yields,

εyy =
1

ω
(
kz
η′z

+
kx
η′x

), µxx =
kz
ω

η′z
2 + η′′z

2

η′z
, µzz =

kx
ω

η′x
2 + η′′x

2

η′x
,

axy =
kz
ω

η′′z
η′z

, azy = −kx
ω

η′′x
η′x

(2.46)

Therefore, an impedance matching omega slab that provides a desired phase delay and
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Figure 2.11: Front face: TL analogy for analyzing propagation through a slab separating
two half spaces characterized by their wave impedances η1 and η2. Top face: Definition
of the angles θi, θS , and θt in the corresponding regions: medium 1 (right), omega slab
(center), or medium 2 (left).

power flow direction can be designed in the following manner. First, phase-matching is
applied at the two boundaries of the slab then (2.40)–(2.42) and (2.45) are solved for the
necessary normal wavenumber and wave impedances in the slab. Next, (2.46) is used
to determine the necessary omega material parameters as a function of either the real or
imaginary part of the transverse wave impedance. While the other component is given by
(2.45).

As an example, an impedance matching omega slab is designed for a TE plane wave
propagating from medium 1 into medium 2. The wave is incident on the slab separating
the two regions of non-magnetic dielectrics. Medium 1 has εr = 10 and medium 2 is free
space. The angle of incidence is θi = 10◦. The normal wave impedance in media 1 and
2 are ηz1 = 121 Ω and ηz2 = 451 Ω, respectively. To limit spatial dispersion in all three
regions, the unit cell dimension is chosen to be d = λ0

10
√
10

= 0.95 mm at 10 GHz. This
results in the following lumped elements for the two isotropic grids (see Fig. 2.9a),

Zi1 = j38.71 Ω, Yi1 = j4.93 mS (2.47a)

Zi2 = j37.55 Ω, Yi2 = j0.52 mS (2.47b)

where Zi1 and Yi1 refer to medium 1 and Zi2 and Yi2 to medium 2. In the design of the
impedance matching slab the imaginary part of the tangential wave impedance, η′′x, is a free
variable and is chosen to be zero. In this case the real part of the transverse wave impedance,
or equivalently µzz, is used to control the direction of power flow. In this example, the
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direction of the Poynting vector is selected to demonstrate extreme redirection of power to
an unbound propagating wave in the second medium. Using the design procedure outlined
earlier in this section, the slab is designed to provide a normal phase delay of ϕd = 36◦ and
support a Poynting vector at θS = 89.5◦ relative to the z-axis. These conditions result in
the following material parameters for the slab: εyy = 28.6ε0, µxx = 1.8µ0, µzz = 0.013µ0,
axy = −ayx = −2.9

√
µ0ε0, and azy = −ayz = 0. From (2.35), the necessary lumped

impedances and admittances to implement the slab, using Fig. 2.6, are calculated,

Zx = j0.47 Ω, Yx1 = j1.89 mS, Yx2 = j1.89 mS

Zz = j68.9 Ω, Yz1 = −j2.80 mS, Yz2 = j5.51 mS
(2.48)

For comparison, an anisotropic slab with the same power flow angle and phase delay is de-
signed. The necessary normal wavenumber, kz, and wave impedance, ηz, for the anisotropic
slab is also determined using 1-D TL analysis, as shown in Fig. 2.11 with η′′z = 0. Solving
for the normal wavenumber in terms of the normal phase delay yields,

tan kzd =
ηz2
ηz

tanϕd (2.49)

In order to minimize reflections, the normal wave impedance of the slab is optimized
since impedance matching with an arbitrary phase delay is not possible with an anisotropic
medium. The normal wave impedance is optimized by solving for the magnitude of the re-
flection coefficient as a function of the normal wave impedance in the anisotropic medium,
|Γ(ηz)|. By applying the first and second derivative tests to |Γ(ηz)|, the wave impedance is
found in terms of the normal phase delay, impedance of the incident wave (ηz1), and load
impedance (ηz2). This procedure yields the following optimal wave impedance,

ηz =
| sinϕd|ηz2√

(cos2 ϕd + (ηz2
ηz1

)2 sin2 ϕd)1/2 − cos2 ϕd

(2.50)

Using the optimal normal wave impedance, ηz, for the anisotropic medium, and the
wavenumber from (2.49), the following material properties are calculated for the anisotropic
medium: εyy = 9.4ε0, µxx = 2.8µ0, µzz = 26.4µ0. The anisotropic slab was implemented
using the lumped element unit cell shown in Fig. 2.9b with the following lumped elements,

Zx = j987.93 Ω, Zz = j67.17 Ω, Y = j7.0 mS (2.51)

The anisotropic and omega slabs were simulated in Keysight’s ADS using a grid similar
to Fig. 2.10. The results are shown in Fig. 2.12a and 2.12b, for a domain where each
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(a)

(b)

Figure 2.12: Simulation results using Keysight’s ADS for the instantaneous voltage (elec-
tric field) when a TE wave is incident at θi = 10◦ on either the (a) anisotropic or (b) omega
slab. The slabs are designed to provide a phase delay ϕd = 36◦ in the z-direction and sup-
ports a Poynting vector directed at θS = 89.5◦. The anistropic slab provides the appropriate
phase delay, but suffers from significant reflections even for an optimized impedance value.
In contrast to the anisotropic slab, the omega slab provides the desired phase delay and is
reflectionless.
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isotropic region is 25x51 unit cells and the slabs are 1x51 unit cells. In both cases there is a
phase delay of 36◦. Since the optimal wave impedance for the anisotropic slab results in a
reflectance of |Γ|2 = 0.13, there are appreciable reflections present in Fig. 2.12a. However,
there are no reflections for the omega slab, as shown in Fig. 2.12b.

To verify the direction of power flow within the omega slab, the slab was illuminated
by a Gaussian beam with a beam waist, w0 = 5.4λ0. The incident and transmitted power
densities across the slab were simulated in Keysight’s ADS for a 3x601 grid, similar to Fig.
2.10, where all three regions are composed of 1x601 unit cell grids. In Fig. 2.13, it is ob-
served that the beam is laterally shifted by 0.63λ0 over a distance of approximately 0.03λ0.
This lateral shift does not correspond to an angle of 89.5◦. This is due to the presence of
forward and reverse traveling waves in the impedance matching omega slab, resulting in
a different net power flow angle. The theoretical net power flow angle across the slab is
calculated by determining the total fields in the slab and finding the average transverse and
normal power densities to calculate the average Poynting vector. This procedure results in
a theoretical average power flow angle of 87.9◦ if θS = 89.5◦ in the slab. The simulated
direction of power flow was found to be 87.3◦, which is in close agreement with the theo-
retical value. The 0.6◦ difference is likely due to the fact that the Gaussian beam is not a
plane wave and the theoretical value assumes a plane wave illumination.

2.7 Summary

A circuit-based approach to synthesizing and simulating 2-D omega materials was pre-
sented. A 2-D periodic circuit network, composed of four 1-D asymmetric transmission
(ABCD) matrices (constituent networks) was analyzed. Then an equivalency between the
periodic circuit network and an omega medium was established in the homogeneous limit.
For validation, the propagation characteristics of a lumped element unit cell emulating an
omega medium was simulated in the commercial circuit solver Keysight ADS. These re-
sults were in close agreement with those of the analogous omega medium.

Additionally, a 2-D omega medium was used to design an impedance matching layer
that utilizes normal polarizabilities to control power flow. The impedance matching layer
provides a desired normal phase delay and laterally translates an incident beam’s power
density profile. The impedance matching layer illustrates the extreme control over phase
and power that 2-D omega media offer while remaining electrically small. This capability
makes them a promising candidate to reduce the size of beamforming networks.
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Figure 2.13: The incident and transmitted normal power density profiles along the bound-
aries of the omega matching layer with a Gaussian illumination, w0 = 5.4λ0, simulated
using Keysight’s ADS. The incident power density (dashed line) profile is shifted in the
transverse direction. The lateral shift of the peak in transmitted power density (solid line)
profile corresponds to a lateral displacement of 0.63λ0 over a distance of 0.03 λ0. Note
that the total power across the slab is conserved. The broadening of the transmitted profile
accounts for the observed decrease in peak amplitude, so it is lossless and reflectionless as
expected.
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CHAPTER 3

Inverse Design of Multi-input Multi-output
Metastructures

3.1 Introduction

In the previous chapter, a method for modeling 2D omega bianisotropic media using
a circuit-based unit cell was provided. There it was shown that 2D omega bianisotropic
metamaterials can be used to design reflectionless devices that provide control over the
transmission phase and direction of power flow. However, it did not provide a method
for designing devices that are capable of performing arbitrary sets of field transformations.
In this chapter, a synthesis method for metastructures that are capable of multiple field
transformations is introduced.

The need for electromagnetic devices that can perform multiple field transformations,
or exhibit MIMO functionality, arises in many applications such as in antenna beamform-
ing, mode conversion, and recently for analog signal processing [15, 48, 68]. A promising
route to the realization of these devices is through metastructured, or subwavelength tex-
tured, devices. Metastructured devices provide large degrees of freedom allowing for a
single device to perform multiple field transformations. However, the design of MIMO
metastructured devices requires the solution of an inverse design problem. This entails
the determination of a set of unknown device characteristics, such as its geometry or ma-
terial parameters, from a set of known inputs and outputs. Inverse design problems like
these often lack direct solution methods and require heuristic or optimization-based meth-
ods to be solved. Heuristic methods can significantly simplify the design problem making
it analytically tractable. However, they often impose limitations on the possible inputs and
outputs, and have inherent errors associated with them. To avoid the limitations of heuristic
methods an optimization-based approach is adopted in this work to design MIMO metas-
tructured devices.
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Previous work in the design of MIMO metastructured devices has included optimization-
based design procedures that have been used to realize beamforming networks [16, 52],
and analog signal processors, [15, 48]. The design procedures in [15, 16, 52] use full-wave
solutions to Maxwell’s equations to solve the forward problem at every step of the opti-
mization routine. This imposes a high computational cost on these design methods and
places practical limitations on their ability to produce large, complex device’s. In [48], a
method to reduce the computational cost of the forward problem was introduced that used
a combination of full-wave solutions and the paraxial approximation to design a cascade of
metasurfaces with MIMO functionality. However, only amplitude control of the transmit-
ted field profiles was considered. The aim of this work is to provide an optimization-based
procedure for designing MIMO metastructured devices with control over both the ampli-
tude and phase of the transmitted fields.

Optimization-based inverse design of metastructured devices presents a computational
challenge for two main reasons: (1) The large number of forward problems that need to be
solved with different design parameters. (2) The multi-scale nature of the forward prob-
lem: subwavelength features in the unit cells and a multi-wavelength device size. The first
difficulty is unavoidable so the forward problem solver must be fast. The second difficulty
makes the forward problem solver slower, particularly when full-wave solutions are used.
Here, these issues are addressed using a fast 2-D circuit network solver that uses reduced-
order models for the unit cells of the metastructured device.

The design procedure implemented in this work poses the input-output relationship of
a MIMO metastructured device as an optimization problem over the design variables. To
realize the devices, the optimization problem is solved using a fast 2-D circuit network
solver in conjunction with a gradient-based optimization routine that uses the adjoint vari-
able method to efficiently calculate the gradient [14, 48, 54]. The utility of the proposed
design procedure is demonstrated through the design of a planar beamformer and an ana-
log signal processor for aperture field decomposition.

3.2 Design approach

3.2.1 2-D Circuit Network Solver

In this section, a frequency domain solver for 2-D structures supporting either transverse
electric (TE) or transverse magnetic (TM) polarized fields is introduced. Numerical so-
lutions to these types of problems typically use full-wave methods like finite-difference
frequency-domain, finite element methods, or the method of moments. These solution
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Figure 3.1: A metastructure (computational domain) consisting of an MxN grid of four-
port admittance matrices. The boundary conditions are imposed using lumped element
impedances and voltage sources. The voltages at all nodes are solved for by enforcing
current conservation (KCL) at each node in the network.

methods are very accurate, however, for electrically-large aperiodic metastructures they
are computationally expensive and are impractical to use in their inverse design. Since
full-wave solutions are restrictive, alternative solution methods are required to reduce the
computational cost of solving the forward problem. Here, this is done by approximating the
full-wave solution using reduced-order models of the unit cells and modeling the unit cell
interactions with circuit theory, similar to [20]. Solving for the device response this way
is particularly useful when dealing with port-fed problems like guided-wave structures. In
these scenarios, the unit cells can be characterized in isolation to produce good reduced-
order models, and the coupling between the unit cells is primarily through their ports. The
combination of these attributes allows for the response of complex large structures to be
predicted with good accuracy.

To derive the system of equations that govern the 2-D circuit network solver a unit cell
is selected and the device (computational domain) is discretized. Since circuit theory is
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used to model the unit cell coupling a natural representation for a 2-D unit cell is a general
four port network. These four port networks can be represented by scattering matrices,
wave matrices, or impedance/admittance matrices, but admittance matrices are used here.
Discretizing the computational domain into an MxN grid with unit cells defined by four-
port admittance matrices results in the overall circuit shown in Fig. 3.1. It produces a
staggered grid of nodal voltages that is organized into two sub-grids: the Vx and Vz grids.
The Vx grid represents propagation along the x-direction, and these nodal voltages are
referred to as V ij

x . The Vz grid represents propagation along the z-direction, and these
nodal voltages are referred to as V ij

z . Since the computational domain is finite in size, the
periphery of the grid is truncated using voltage sources connected in series with lumped
impedances. They are used to excite the device and enforce desired boundary conditions.

To solve for the voltages in the network, Kirchoff’s Current Law (KCL) is imposed
at every node in the network. This produces a sparse linear system whose solution is the
voltage at every node in the network.

v = Q
−1

s (3.1)

In (3.1), Q characterizes all of the interactions between the unit cells in the network, v is
a vector containing all of the nodal voltages, and s is a vector containing the source terms.
To determine the structure of Q and s, a grid with M unit cells in the x-direction and N unit
cells in the z-direction is considered. There are six types of nodes that need to be accounted
for: interior nodes on the Vx grid, interior nodes on the Vz grid, and the nodes on the four
boundaries. The two different types of interior nodes and the boundary nodes along the
input plane are shown in Fig. 3.2. The three other boundary nodes can be formed in a
manner analogous to Fig. 3.2 (c).

The elements of Q and s in (3.1) are found in the following manner. For a general
interior node V ij

x on the Vx grid, shown in Fig. 3.2 (a), KCL leads to the following equation,

V ij
x (Y ij

11 + Y
(i−1)j
33 ) + V (i−1)j

x Y
(i−1)j
31 + V (i+1)j

x Y ij
13

+ V ij
z Y ij

12 + V (i−1)j
z Y

(i−1)j
32 + V (i−1)(j+1)

z Y
(i−1)j
34

+ V i(j+1)
z Y ij

14 = 0

(3.2)

Applying KCL at a general interior node V ij
z on the Vz grid, shown in Fig. 3.2 (b), leads to
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Figure 3.2: (a) An internal node on the x-grid. (b) An internal node on the z-grid. (c) A
boundary node along the input plane in Fig. 3.1. The other boundaries can be obtained in
a manner analogous to (c).

the following equation,

V ij
z (Y ij

22 + Y
i(j−1)
44 ) + V i(j−1)

z Y
i(j−1)
42 + V i(j+1)

z Y ij
24

+ V ij
x Y ij

21 + V (i+1)j
x Y ij

23 + V (i+1)(j−1)
x Y

i(j−1)
43

+ V i(j−1)
x Y

i(j−1)
41 = 0

(3.3)

Applying KCL at the four types of boundary nodes (see Fig. 3.1) produces the following
equations: the left boundary V i1

z (shown in Fig. 3.2 (c)),

V i1
z (Y i1

22 +
1

Zi1
z

) + V i2
z Y i1

24 + V i1
x Y i1

21 + V (i+1)1
x Y i1

23 =
V i1
zs

Zi1
z

(3.4)

the right boundary V
i(N+1)
z ,

V i(N+1)
z (Y iN

44 +
1

Zi2
z

) + V iN
z Y iN

42 + V iN
x Y iN

41

+ V (i+1)N
x Y iN

43 =
V i2
zs

Zi2
z

(3.5)
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the bottom boundary V 1j
x ,

V 1j
x (Y 1j

11 +
1

Z1j
x

) + V 2j
x Y ij

13 + V 1j
z Y 1j

12 +V 1(j+1)
z Y 1j

14

=
V 1j
xs

Z1j
x

(3.6)

the top boundary V
(M+1)j
x ,

V (M+1)j
x (Y Mj

33 +
1

Z2j
x

) + V Mj
x Y Mj

31 + V Mj
z Y Mj

32

+ V M(j+1)
z Y Mj

34 =
V 2j
xs

Z2j
x

.

(3.7)

Expressing KCL at every node in the network using (3.2)-(3.7) forms a linear system of
2MN+M+N equations shown in (3.1). The matrix Q can be quite large as its dimensions
are (2MN +M +N)× (2MN +M +N). However, there are a maximum of seven non-
zero terms in each row of Q. Therefore, when its dimensions are large it is sparse. This
sparsity allows for the total device response, v, of large aperiodic metastructured devices to
be rapidly evaluated once the admittance matrices of its unit cells are characterized.

The major advantage of solving for the device response this way is that it can maintain
a high-level of accuracy if good models of the unit cells are developed while avoiding full-
wave solutions at run time. Eliminating full-wave solutions reduces the computational cost
of solving the forward problem significantly, making the circuit network solver useful for
the optimization-based inverse design of large aperiodic metastructures. The solver does
come with limitations though. One limitation is the requirement that the unit cells can
be represented as a four port networks. This means that the problem of interest’s unit cells
must have an equivalent guided wave representation, which is not always possible if there is
a continuous spectrum of propagating waves. Another limiting assumption is that all of the
interactions between the unit cells can be captured using a single guided mode. Meaning
that mutual coupling between the unit cells and higher-order modes excited by inclusions
or discontinuities are neglected. If these interactions become significant this assumption
can be relaxed, and multi-modal Y-matrices or wave matrices can be used to capture these
effects, [69, 70]. Using higher-order modes is not always necessary and does increase the
computational cost, which is why they were not used here.
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3.2.2 MIMO Inverse Design Procedure

The fast 2-D circuit network solver introduced in the previous section solves for the
output of a device given an input and all of the unit cell’s admittance parameters. How-
ever, in a MIMO inverse-design problem the unit cell’s admittance parameters are solved
for given a set of desired inputs and outputs. In this section, an optimization-based inverse
design procedure is described that achieves this goal. The desired MIMO functionality is
realized by formulating the design objectives as an optimization problem that can be solved
using the 2-D circuit network solver in conjunction with an off-the-shelf optimization rou-
tine. The design procedure is outlined in Fig. 3.3, and the details of how the optimization
problem is formulated and solved is provided in the following subsections.

3.2.2.1 Optimization Problem

The design of a multi-input multi-output device begins with a set of inputs and outputs
that describe its functionality. Here, these inputs and outputs are voltage distributions along
the input and output planes of the device, see Fig. 3.1. These voltage distributions will be
referred to as {vk

in} for the inputs and {vk
out} for the outputs where, k ∈ {1, 2, ..., K} and K

is the total number of input-output pairs. Here, the term input-output pair refers to an input
voltage distribution and its associated output voltage distribution, (vk

in, vk
out). Specifically,

vk
out are the observed voltages when the network is excited by vk

in. To realize the MIMO
network described by {vk

in} and {vk
out} using optimization, the device’s performance for

each input-output pair must be represented by a single real number. This can be done with
the following cost function for the kth input-output pair,

gk(p) =
1

2
(vk(p)− vk

out)
HG(vk(p)− vk

out) (3.8)

where p is a vector containing all of the design variables in the network, the vector vk(p)
contains the voltages in the network (subject to the design variables) when it is excited
by vk

in, and the superscript H indicates the conjugate transpose. The matrix G is diagonal
and positive-semidefinite. It is used to select and scale the elements of vk(p) − vk

out. The
performance of the device over all of the input-output pairs is determined by summing (3.8)
over k to produce the total cost function,

g(p) =
K∑
k=1

gk(p) (3.9)
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Framing the problem in this way reduces the design of the multi-input multi-output network
to finding the design that minimizes the total cost, i.e. the minimizer p∗, of (3.9). This goal
is represented by the following optimization problem,

argmin
p

g(p)

subject to : plb ⪯ p ⪯ pub

(3.10)

where plb and pub are vectors containing the lower and upper bounds of the design variables,
respectively.

Now that the optimization problem (3.10) has been posed an appropriate optimization
algorithm needs to be selected to solve it. Since the optimization problem is in general non-
convex, local optimization or gradient-based algorithms are not guaranteed to find globally
optimal solutions. However, global optimization algorithms do not tend to perform well
in high-dimensional design spaces like the design space of a metastructured device. In
high-dimensional spaces, local methods tend to outperform global methods when they use
gradient information to navigate the design space. However, if the gradient cannot be
expressed explicitly in closed form and the dimensions of the design space are large the
computational cost of calculating the gradient can become prohibitive. To avoid this issue
the adjoint variable method [14, 48, 54] can be used to calculate the gradient at a reduced
computational cost. For these reasons, a gradient-based optimization routine utilizing the
adjoint variable method is chosen to solve (3.10). Since it is a local method there is no
guarantee of convergence to a globally optimal solution, i.e. the solution of (3.10). How-
ever, this is not a problem since the globally optimal design is not required. The required
design is just one that meets the design specifications so, a solution to (3.10) is considered
any design that satisfies the design specifications.

3.2.2.2 Adjoint Variable Method

As discussed in the previous section, the optimization problem, (3.10), will be solved
using an off-the-shelf gradient-based optimization routine. Here, MATLAB’s constrained
optimization routine fmincon() is used. To improve the performance of the algorithm on
large-scale problems, a user defined gradient is implemented that is calculated using the
adjoint variable method. To motivate the use of the adjoint variable method, a comparison
between calculating the gradient using it and using finite-differences is considered. Con-
sider the design of a device with P design variables and K input-output pairs. Calculating
the gradient of (3.9) using finite-differences requires (P + 1) × K forward solutions to
(3.1). When P becomes large this is not a practical means of determining the gradient
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Figure 3.3: Flowchart depicting the inverse-design procedure.

especially if the dimensions of Q are also large. On the other hand, if the adjoint variable
method is used only 2×K forward solutions are required. This reduction in the number of
forward problem solutions significantly accelerates the optimization routine, and is critical
to enabling the inverse design of electrically-large aperiodic metastructures.

The implementation of the adjoint variable method presented here is a quasi-analytical
technique for calculating the gradient of (3.9). It requires solutions to the forward problem,
(3.1) and an adjoint problem associated with (3.9), [71]. The adjoint problem associated
with (3.9) is formed by observing that the gradient of (3.8) can be expressed as,

∇p(gk(p)) = −ℜ{(vk − vk
out)

HG Q
−1

k V
k

p} (3.11)
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where V
k

p is the following matrix,

V
k

p = (
∂Qk

∂p1
vk|∂Qk

∂p2
vk|∂Qk

∂p3
vk| . . . |∂Qk

∂pP
vk) (3.12)

This matrix can be solved for analytically if expressions for the derivatives of the admit-
tance matrix (Y-matrix) elements in Qk, the Q matrix for the kth input-output pair, are
available to determine ∂Qk

∂pi
. Otherwise, it can be obtained using finite-differences to ap-

proximate ∂Qk

∂pi
at a low computational cost. The efficiency of calculating the gradient using

(3.11) can be improved by observing that the product on the right hand side of (3.11),
excluding V

k

p, forms a vector, λH
k , that can be solved for independently,

λH
k = (vk − vk

out)
HG Q

−1

k (3.13)

Rearranging this expression yields the adjoint problem associated with (3.8),

Q
H

k λk = G(vk − vk
out). (3.14)

This allows for the adjoint variable λk to be computed at the cost of solving a forward
problem of equal complexity to the original problem (3.1). Using (3.13) in (3.11) yields,

∇p(gk(p)) = −ℜ{λH
k V

k

p} (3.15)

Expressing (3.11) in this way provides a means of obtaining the gradient of the kth cost
function, (3.8), at the computational expense of effectively two forward problem solutions.
The gradient of (3.9) is then obtained by summing (3.15) over k,

∇p(g(p)) = −
K∑
k=1

ℜ{λH
k V

k

p}. (3.16)

Therefore, in a problem containing P design variables the gradient can be determined with
2 × K forward problem solutions using (3.16). Rather than the (P + 1) × K forward
problem solutions required by finite-differences.
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Figure 3.4: A block diagram of a multi-beam antenna system. It is composed of an an-
tenna array and a reciprocal beamformer that can produce K beams simultaneously. The
upper left block of the beamformer’s S-matrix is 0KxK indicating that its input ports are
impedance matched and decoupled. The block SKxM

io determines the aperture field pro-
duced by exciting each of the input ports. The elements of SMxM

oo are free variables, and
are neglected in the design of the beamformer.
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3.3 Design Examples

3.3.1 Planar Metastructured Beamformer

To demonstrate the effectiveness of the design procedure presented in Section III the
multi-beam antenna beamformer shown in Fig. 3.4 is designed. The beamformer designed
using this framework provides several advantages over Butler matrices and quasi-optical
beamformers such as the Rotman lens, [72], the Luneburg lens, [73], or beamformers based
on transformation optics [74]. The advantage of the proposed design procedure is that it
allows for perfect control of both the amplitude and phase of every aperture field. In con-
trast, a Rotman lens lacks amplitude control and provides perfect phasing for a maximum
of three aperture fields. The Luneburg lens produces identical aperture fields for all scan
angles but the amplitude pattern cannot be controlled. To control amplitude, the design
method reported in [74] can be used. However, this design method allows for perfect phas-
ing and amplitude control of only one aperture field. Butler matrices provide an alternative
to quasi-optical beamformers, and they can theoretically produce an arbitrary number of
perfectly phased uniform amplitude aperture fields, [75]. However, Butler matrices are
limited to uniform aperture fields for single port excitations. Whereas beamformers de-
signed using the procedure presented in Section III have no inherent restrictions on the
possible aperture fields, and could be advantageous when designing beamformers for an-
tenna arrays with deeply subwavength element spacings and high input impedances like
tightly coupled or connected arrays, [76].

3.3.1.1 Design Specifications

The beamforming region is assumed to be lossless and reciprocal and is designed to
produce nine beams that are each associated with a different input port. It will operate at
10 GHz and is intended for use with an aperture antenna that has a width of Wap = 8λ0.
To produce a close approximation to a continuous aperture field the spacing between the
output ports is chosen to be λ0/10. This determines the discretization of the beamforming
region and thus the unit cell size. The width of the beamformer is the same as the width
of the aperture antenna, 8λ0, and the depth is chosen to be 2.4λ0. This depth was selected
to provide sufficient distance to spread out the input power without utilizing cavity effects
from the edges of the beamformer. Therefore, the overall dimensions of the beamformer
are 8λ0 × 2.4λ0. This corresponds to a network with M = 80 unit cells in the transverse
direction and N = 24 in the longitudinal direction.

The nine inputs to the network are 70 Ω port excitations located along the input plane,
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shown in Fig. 3.1. The inputs are spaced by 0.8λ0 starting from the center line of the
beamformer. This spacing aids in isolating the input ports from each other: a requirement
for the simultaneous excitation of the beams. The requirement of isolation between the
input ports and losslessness mandate that the radiated fields are orthogonal over a period of
the radiation pattern [77]. This restricts the possible aperture fields and must be considered
when selecting the desired radiation patterns of the aperture antenna. A well known set
of functions that satisfy mutual orthogonality are sinc functions with appropriate angular
spacings. For this reason, the aperture fields are chosen to have uniform amplitude with
linear phase gradients corresponding to the following tangential wavenumbers,

kn =
2πn

Md
, n ∈ {0,±1,±2, ...,±(M − 1)}. (3.17)

In (3.17), d is the spacing between the output ports and M is the total number of output
ports. In this design the nine beams correspond to n = 0,±1,±2,±3,±4. Since d = λ0/10

and M = 80, these correspond to beams at θn = 0◦,±7.18◦,±14.48◦,±22.02◦,±30◦. The
output terminations are given by the input impedance of the aperture antennas ports. The
input impedance for each port is 140 Ω at broadside so, the output terminations for each
of the n excitations are given by 140 Ω/ cos θn. The remaining ports in Fig. 3.1 along the
top and bottom of the beamformer, as well as the unused ports along the input plane are
terminated in open circuits. Alternatively, the exact termination presented by each antenna
at the output ports could be included directly in the design process. This would only require
a slight modification to the forward problem solver. An M -port termination at the output
plane would need to be included altering (3.5). Then an M -port admittance matrix of the
antenna could be characterized and included in the design process.

3.3.1.2 Unit Cell Design

In order to use the design procedure presented in Section III, a suitable unit cell must
be chosen and characterized. The unit cell should contain the maximum number of degrees
of freedom to allow for extreme field transformations with a compact design, be easy to
tile in a plane, and provide a broadband response. For ease of tiling a square unit cell,
with dimensions dxd where d = 3 mm, is chosen. A TL unit cell is selected to ensure a
broadband response and that the designed beamformer can be manufactured using a stan-
dard printed-circuit board (PCB) process. To determine how many design variables should
be included, consider that an arbitrary lossless and reciprocal four-port admittance matrix
has a maximum of ten degrees of freedom. However, due to field averaging arguments,
the degrees of freedom are reduced to effective material parameters in electrically-small
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Figure 3.5: The microstrip unit cell used in the design of the metastructured beamformer
and the analog signal processor. The square unit cell has dimensions dxd. It possesses six
degrees of freedom, W1, W2, l1, l2, l3, and l4 that can be varied to realize a variety of
four-port admittance matrices. The microstrip lines at the input ports, central junction, and
the lines corresponding to l1, l2, l3, and l4 have a constant width of w0.

structures, [78, 79]. The beamformer can be viewed as a lossless, reciprocal, polarization
conserving medium supporting a TE wave in the x-z plane. The most general medium sup-
porting this type of propagation is a 2-D omega medium that conserves polarization, i.e. a
medium with the following material properties,

µ =

(
µxx µxz

µxz µzz

)
, εyy, a = b = j

 0 axy 0

−axy 0 azy

0 −azy 0


where, a and b are the magneto-electric and electro-magnetic tensors, respectively. This
perspective provides some guidance for designing the unit cell. It points to the fact that
a maximum of six design variables should be included in the unit cell. Additional de-
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Figure 3.6: Plot of the cost function behavior for the planar metastructured beamformer
design.

Figure 3.7: The patterned metastructured beamformer produced by the proposed inverse-
design procedure. There are nine input ports that each produce unique voltage distributions
across the 80 output ports to form the desired aperture fields. These aperture fields pro-
duce beams at θn = 0◦,±7.18◦,±14.48◦,±22.02◦,±30◦. The beamformer is designed
to work at 10 GHz and is composed of 1920 unit cells. The width of the aperture is
Wap = 8λ0 (24cm) and the beamformer has a depth of h = 2.4λ0 (7.2 cm).
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Figure 3.8: Radiation from an aperture antenna excited by the output voltages of the beam-
forming network: dashed lines correspond to the radiation pattern from the desired voltages
and the solid lines correspond to the voltages calculated using the circuit network solver.
For clarity, only beams corresponding to positive scan angles are shown since the beams
corresponding to negative scan angles are identical due to symmetry.

sign variables will only complicate the characterization of the unit cell without producing
observable degrees of freedom in the response. It also provides information on what char-
acteristics of the unit cell the design variables should affect. The design variables should
control: (1) The path lengths in the x and z directions, as well as coupling between the two
directions to change µ. (2) The TL widths to change εyy. (3) The asymmetry in the x and z
directions changes the bianisotropic response, a.

For these reasons the unit cell depicted in Fig. 3.5 is selected. It is composed of four
branches of microstrip TLs meeting at a cross junction in the center. To avoid parasitic
effects when interconnecting the unit cells, the TL width at all of the ports is a constant
value of w0 = 0.25 mm. There are six degrees of freedom in the unit cell: four lengths and
two widths. Each branch contains one of the four length variables. While one of the width
variables is in the x-directed branches and the other width variable is in the the z-directed
branches.

To design the beamformer, the unit cell admittance parameters need to be available
as continuously differentiable functions of the lengths and widths. Here, this is achieved
by constructing a reduced-order model of the unit cell from a database of full-wave sim-
ulations. The unit cells in the database were characterized in isolation using Keysight’s
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Figure 3.9: Radiation from an aperture antenna excited by the output voltages of the beam-
forming network: solid lines correspond to the radiation pattern from the voltages calcu-
lated using the circuit network solver and the dot-dashed lines correspond to the voltages
calculated using the full-wave results. For clarity, only beams corresponding to positive
scan angles are shown since the beams corresponding to negative scan angles are identical
due to symmetry.

Momentum, and a model of Rogers RO5880 substrate neglecting dissipative losses was
used. The substrate has a height of h = 0.787 mm and a relative permittivity εr = 2.2. The
design variables for each unit cell in the database are chosen to form a uniformly spaced
grid of the allowable lengths and widths in the design space. The allowable range of widths
is 0.2 ≤ W1,2 ≤ 0.8 mm and the lengths are allowed to vary between 0 ≤ li ≤ lmax

i . Where
lmax
i = d/2−w0/2−W and W corresponds to the width of the line which is connected to
li for i ∈ {1, 2, 3, 4}. The lower bound on the width is chosen to avoid thin, lossy TLs and
the upper bound is chosen to allow for sufficient variation in the length variables for all the
width values. The admittance parameters from the database were then spline interpolated
using MATLAB’s gridded data interpolation function griddedInterpolant() using the mod-
ified Akima method. This results in a unit cell model that is C1 differentiable with respect
to the length and width variables, which is suitable for use in a Quasi-Newton optimization
procedure.
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3.3.1.3 Optimization and Results

Since the beamformer produces symmetric beams, the beamformer should be symmet-
ric as well. For this reason symmetry is imposed across the center line in the forward prob-
lem solver. This results in the device having 5,760 design variables. The design variables
are solved for by providing the optimization routine with the input and output terminations,
the model of the unit cell, and an initial guess of uniform lengths and widths for the design
variables. The algorithm then searched the design space to find a set of design variables
that produce the desired input field profiles (impedance matched and isolated input ports)
and output field profiles. The algorithm converged on a satisfactory design after 400 iter-
ations (approximately 6 hours of execution) on a personal computer with an i7-9700 CPU
@ 3GHz w/8 cores and 64GB RAM. The convergence of the cost function is shown in Fig.
3.6, and the layout of the design is shown in Fig. 3.7.

To evaluate the performance of the beamformer, the radiation pattern from an ideal
aperture antenna fed by the beamformer is computed using MATLAB. The calculation
assumes that the aperture has width of Wap = 8λ0, a height of Hap = 1λ0, and the electric
field across the aperture has a piece-wise uniform amplitude and phase. The equivalent
magnetic currents are then determined and the total radiated electric field is calculated.
The radiation patterns resulting from the circuit network solver (forward problem solver)
are in excellent agreement with the desired beams, as shown in Fig. 3.8. The lowest
aperture efficiency is ea = 0.99 occurring for the broadside beam (n = 0). The beamformer
inputs have a worst case isolation of 24.5 dB and a worst case reflectance of −31.5 dB
for the broadside excitation. These results are then compared to a full-wave simulation
of the beamformer performed in Keysight Momentum using the Green’s function for an
infinite substrate that possesses the same characteristics as the unit cells. The simulation,
the equivalent of one forward problem solution using Momentum, took approximately 98
hours on a high-performance computing cluster with access to 15 cores and 600 GB RAM.
The results of the simulation are shown in Fig. 3.9. Due to slight variations in the observed
voltages at the beamformer ports, there are small shifts and a slight broadening of the
beams. Resulting in a worst case aperture efficiency of ea = 0.945 for excitation n =

±4. The isolation and input impedance match are slightly degraded as well. There is a
worst case isolation of 13.47 dB and a maximum reflectance of −15.2dB for the broadside
excitation. However, the overall agreement is quite good between the full-wave and circuit
network solver results.

To characterize the bandwidth of the beamformer, simulations were performed in Keysight
Momentum at 9.75, 9.875, 10.125, and 10.25 GHz. From these simulations it was deter-
mined that the beamformer’s impedance bandwidth is greater than 5%. While its 3-dB
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(a) (b)

(c) (d)

Figure 3.10: Plots of the simulated radiation patterns calculated from the full-wave results
for the beamformer at: (a) 9.75 GHz (b) 9.875 GHz (c) 10.125 GHz (d) 10.25 GHz. The
dashed lines indicate the simulated results and the solid lines indicate the targeted radiation
patterns at 10 GHz. The maximum decrease in the directivity for each of the desired beam-
pointing directions (θn) at each frequency is: (a) 3.77 dB for n = -4 (b) 1.64 dB for n = -4
(c) 1.07 dB for n = -4 (d) 4.55 dB for n = -3 .

directivity bandwidth is between 2.5 − 5%. The range of 2.5 − 5% is provided since the
frequencies at which the directivity was reduced by 3 dB were not determined exactly but,
lie between 9.75−9.875 GHz and 10.125−10.25 GHz, shown in Fig. 3.10a - 3.10d. These
results indicate that the beamformer is relatively narrowband. However, the bandwidth was
not considered during the design process, by altering the cost function to include the per-
formance at multiple frequencies the bandwidth of the beamformer could be improved.
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Figure 3.11: A depiction of the analog signal processor that performs aperture field de-
composition. It has K readout ports and M input ports that can interface with an aperture
antenna. The upper left block of the analog signal processor’s S-matrix is 0KxK indicating
that its input ports are impedance matched and decoupled. The block SKxM

io performs the
inner product of the aperture field with each of the aperture basis functions, and produces
the weighting coefficients at each of the readout ports. The elements of SMxM

oo are free
variables, and are neglected in the design.

3.3.2 Analog Signal Processor

In this section, an analog signal processor is designed to demonstrate the design method’s
ability to realize a variety of aperture fields. The analog signal processor samples an inci-
dent aperture field at its input ports and decomposes it into a set of aperture basis functions,
and outputs the complex-valued weighting coefficient for each basis function, see Fig. 3.11.
The coefficients are extracted from the network by observing the amplitude and phase of
the voltage present at the readout port associated with each basis function. The extracted
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Figure 3.12: The eleven aperture basis functions (first eleven regularized Gram polynomi-
als) used in the analog signal processor. The Gram polynomials have been normalized and
plotted on a common scale. The solid red lines are the ideal Gram polynomials, the blue
circles are the realized voltages using the circuit network solver, and the green dashed line
are from the full wave simulation.

weighting coefficients can then be used to numerically reconstruct the aperture field using
the known aperture basis functions.

The aperture basis functions used in this example are a set of discrete orthogonal poly-
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Figure 3.13: Comparison of the incident field profile to its approximation using the first
eleven Gram polynomials with the idealized weighting coefficients and the weighting co-
efficients from the planar microstrip network (metastructure) computed using the circuit
network solver and from the full-wave simulation. The incident aperture field is given by
(3.18).

nomials with equal Euclidean norm (ensures conservation of power). Specifically, the basis
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Figure 3.14: Comparison of the incident field profile to its approximation using the first
eleven Gram polynomials with the idealized weighting coefficients and the weighting coef-
ficients from the planar microstrip network (metastructure) using the circuit network solver
and from the full-wave simulation. The incident aperture field is given by (3.19).

functions are a regularized version of the first eleven Gram or discrete Chebyshev poly-
nomials. The Gram polynomials are selected since they are close approximations to the
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minimax polynomials used for approximating functions with finite sets of polynomials.
The aperture basis functions are produced using the Discrete Orthogonal Polynomial tool-
box in MATLAB [80], and are depicted in Fig. 3.12. Here, eleven basis functions are
used, and it is demonstrated that eleven basis functions are sufficient to approximate some
non-trivial aperture fields. However, if more accuracy is needed for highly oscillatory or
aperture fields with discontinuities additional basis functions can be included by making
the network larger or adjusting the spacings between the readout ports.

3.3.2.1 Design Specifications

The analog signal processor is implemented as a planar microstrip network. It can
interface with an aperture antenna that operates at 10 GHz and has a width of Wap =

9.1λ0 = 27.3 cm. The network has the same width as the antenna aperture and has a depth
of h = 3λ0 = 9 cm. The microstrip unit cell shown in Fig. 3.5 is used to design the
network. The unit cell size is d = λ0/10 = 3 mm, and the corresponding grid has the
following dimensions, N = 91 and M = 30. Each of the eleven aperture basis functions
are assigned to a 50 Ω readout port. The readout ports are located along the input plane,
shown in Fig. 3.1, and are spaced by 0.7λ0, starting from the center line of the device.
To ensure that each aperture basis function is associated with one readout port, all of the
readout ports are required to be isolated from each other. The aperture field input ports,
which interface with the aperture antenna, are located along the output plane, shown in Fig.
3.1. Similar to the beamformer example, the aperture antenna’s input ports have an input
impedance of 140 Ω at broadside so, the aperture field input ports are matched to 140 Ω for
each basis function. All of the remaining ports besides the readout and aperture field input
ports are open-circuited during the design process.

3.3.2.2 Optimization and Results

To design the network, the optimization routine is provided with the desired inputs
(aperture basis functions) and readout voltages (single port excitations), the unit cell model,
the terminations, and a initial set of 16,380 design variables. The design process took ap-
proximately 10 hours on a personal computer (i7-9700 CPU @ 3GHz w/8 cores with 64GB
RAM) to produce a satisfactory design. The designed network’s aperture basis functions
are shown in Fig. 3.12. Excellent agreement between the desired and realized aperture
basis functions is observed. The readouts are well matched with a maximum reflectance of
−19.2 dB for the seventh polynomial’s readout port. The worst case isolation between the
readout ports is 28.8 dB, occurring between the readout port for the first polynomial and
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the readout port for the fifth polynomial.
Two different incident aperture fields are used to test the analog signal processor’s abil-

ity to decompose an incident field. The first aperture field is given by,

Vap(x) = 0.5 sinc(20x)e−jk0 sin(π/6)x V (3.18)

and the second incident aperture field is given by,

Vap(x) = 9.7 cos5(πx/Wap)(x− 0.009)e−j0.87k0x2

(3.19)

where x is the position along the aperture in meters and k0 is the free space wavenumber at
10 GHz. The network is tested by solving for the complex weighting coefficients produced
by the network for each incident aperture field using the circuit network solver. This is done
by terminating the readout ports in 50 Ω and the input ports in 140 Ω, and exciting the input
ports with either (3.18) or (3.19). The reconstructed fields are calculated in MATLAB using
the complex weighting coefficients produced by the network and the ideal aperture basis
functions, and are shown in Fig. 3.13 for (3.18) and Fig. 3.14 for (3.19). They are compared
to the exact aperture fields as well, as idealized approximations of the aperture field. The
weighting coefficients for the idealized approximation are computed by taking the inner
product of the incident field with the first eleven Gram polynomials. The amplitude and
phase of the reconstructed aperture fields show good agreement in both cases. The largest
errors between the reconstructed and the exact amplitude and phase profiles occur near
discontinuities or where the derivative changes sign. In these regions the reconstructed and
idealized approximations of the aperture field show good agreement. Indicating that these
errors are largely due to the number of basis functions used rather than issues with the
design itself.

For full-wave verification of the analog signal processor’s performance, it is simulated
in Keysight Momentum. The full-wave simulation took ∼ 250 hours to complete and
the results for the aperture basis functions are shown in Fig. 3.12. Some variations in
the aperture basis functions are observed but, overall the performance matches the circuit
network solver quite well. The readouts are well matched with a maximum reflectance of
−12.7 dB for the fifth polynomial’s readout port. The worst case isolation between the
readout ports is 22 dB, occurring between the readout port for the fourth polynomial and
the readout port for the sixth polynomial. The full-wave solution for the device’s scattering
matrix is then used to reconstruct the aperture fields given by (3.18) and (3.19) and the
results are shown in Fig. 3.13 and Fig. 3.14, respectively. Again the results match quite
well but, some errors are observed due to the errors in the aperture basis functions. The
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largest error is seen in the reconstructed amplitude of (3.14) around the position 2λ0. This
is largely due to errors present in the full-wave results for the fourth aperture basis function
around this position since, (3.19) has a significant component along this basis function.

3.4 Summary

In this paper, an inverse-design procedure for multi-input multi-output (MIMO) metas-
tructured devices was provided. The design procedure uses a fast 2-D circuit network solver
in conjunction with a gradient-based optimization routine to produce devices with desired
MIMO functions. Since the gradient must be calculated at every step of the optimization
routine, and metastructures have a large number of design variables, the adjoint variable
method is used to calculate the gradient. The computational efficiency gained by using the
fast 2-D circuit-based solver and the adjoint variable method enables the design procedure
to realize electrically large aperiodic MIMO metastructures.

The efficacy of the design procedure was then demonstrated through the design of a pla-
nar antenna beamformer and an analog signal processor for aperture field decomposition.
The beamformer supports the simultaneous excitation of nine beams, contains approxi-
mately 6000 design variables, and took approximately six hours to design. The analog
signal processor uses eleven orthogonal aperture basis functions to decompose incident
field profiles. It contains approximately 16,400 design variables and took approximately
10 hours to design. Both of the devices were implemented in microstrip technology and
their performances were verified using the Keysight method of moments solver Momen-
tum.
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CHAPTER 4

Experimental Realization of a Multi-beam
Antenna

4.1 Introduction

In this chapter, the focus is on using the computational inverse design procedure in-
troduced in the previous chapter to design a particular type of MIMO metastructure: a
metastructured antenna beamformer. The inverse design procedure provided in Chapter 3
is used over other design procedures, like those provided in [11, 15, 16, 48, 52], because
it is better suited to the design of guided-wave devices that are electrically large, contain
many subwavelength features, and possess a large number of design variables. It performs
well on these types of problems because it circumvents full-wave simulations during the
optimization process through the use of a circuit network solver, and utilizes the adjoint
variable method to efficiently calculate gradients.

To understand the potential benefits of using MIMO metastructures over more conven-
tional methods for beamforming such as Rotman lenses, planar Luneburg lenses, or Butler
matrices consider the following comparisons. Note that the following comparisons assume
that the beamformers are implemented on microwave substrates, with ϵr < 3, and are used
to feed an antenna that is 8λ0 wide. Rotman lenses provide broadband performance but
they have curved interfaces and are relatively large in both their transverse and longitudinal
dimensions (4 − 8λ0). Additionally, they provide a maximum of three perfectly phased
aperture fields and have no control over the aperture field’s amplitude [72]. Planar Luneb-
urg lenses are also broadband and produce identical aperture fields for all scan angles but,
again there is no control over the amplitude pattern [81]. They also possess curved inter-
faces and are quite large with a diameter of at least 8λ0. An alternative to quasi-optical
beamformers are Butler matrices which, can theoretically produce an arbitrary number of
perfectly phased aperture fields [75]. However, Butler matrices are typically narrowband,
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lossy, and have limited control over the amplitude of the aperture fields. They are also rel-
atively large with a depth greater than 4λ0. The advantage of using MIMO metastructures
is that they can provide amplitude and phase control for all output fields, have planar in-
terfaces which may be easier to integrate into various platforms, reduce the overall size of
the beamforming region and have the potential to operate over wide bandwidths as demon-
strated in [11].

This work reports the experimental realization of a metastructured beamformer that
has been integrated with a 3D printed aperture antenna. The metastructured beamformer
is designed using the computational inverse design procedure proposed in [53], which is
briefly reviewed and then applied. Measurements of the antenna’s radiation patterns, return
loss, and isolation demonstrate that the proposed design method can be used to design
practical devices.

4.2 Design approach

The antenna beamformer for the multi-beam antenna system, shown in Fig. 4.2, is
designed using the computational inverse design procedure for MIMO metastructures pro-
vided in [53]. The main advantage of this design procedure is its computational efficiency,
which enables the rapid synthesis of electrically large devices with multiple functionalities.
This is achieved by avoiding full-wave simulations during run-time by using a 2-D circuit
network solver, and the adjoint variable method to evaluate gradients in the quasi-newton
optimization procedure. This section contains a brief review of the design procedure for
the details refer to [53].

4.2.1 2-D Circuit Network Solver

Designing metastructures through computational inverse design requires the selection
of a forward problem solver to evaluate device responses. To make the design of electrically
large MIMO devices tractable, the forward problem solver should be able to evaluate device
responses quickly and accurately. Full-wave solvers provide a high level of accuracy but
when devices are electrically large and contain many subwavelength features, which is
common in metastructured devices, they consume significant computational resources and
are prohibitively slow. Therefore, it is desirable to avoid the use of full-wave solutions
during the optimization process, if possible. For 2-D metastructures supporting guided
waves, this can be achieved by representing the device as a 2-D circuit network composed
of four-port admittance matrices (representing the unit cells) tiled in the x-z plane, as shown
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Figure 4.1: A metastructure consisting of an MxN grid of four-port admittance matrices.
The admittance matrices represent the metastructure’s unit cells. Lumped impedances and
voltages along the boundaries are used to excite the metastructure and produce the desired
boundary conditions.

in Fig. 4.1. By representing the problem in this way, macroscale or device level effects are
accounted for by modeling the interactions between neighboring unit cells using circuit
theory, and microscale or unit cell level effects are accounted for by using a reduced-order
model of the unit cell’s admittance matrix. The accuracy of these models can be maintained
by using full-wave simulations to generate the reduced-order models. Accuracy is then
only limited by the number of accessible modes that are accounted for by the admittance
matrices [69]. If all of the accessible modes at the ports of the unit cell are included in the
model, then it is a perfect representation of the unit cell’s response. However, if the unit
cell supports a single propagating mode and all other modes are well below their cut-off
frequency then a single guided mode can be used to obtain satisfactory results, as is shown
here.
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4.2.2 Optimization procedure

Here, the design of MIMO metastructures is posed as an optimization problem over
the unit cell’s characteristics (design variables). The design procedure starts with a set of
excitations (inputs) and their desired responses (outputs). Since a circuit network solver
is used, the excitations are specified as voltage distributions along the input plane and the
desired responses are voltage distributions along the boundaries of the network, see Fig.
4.1. The inputs are referred to as {vk

in} and the outputs as {vk
out}, where k ∈ {1, 2, 3, ..., K}

and K is the total number of input-output pairs. An ”input-output pair” refers to an input
voltage distribution and its associated output voltage distribution. The cost function is
formed by defining a cost function gk(p) that captures the error in the output for each
input-output pair,

gk(p) =
1

2
(vk(p)− vk

out)
HG(vk(p)− vk

out) (4.1)

where p is a vector containing all of the design variables in the network, the vector vk(p)
contains the voltages in the network (subject to the design variables) when it is excited by
vk

in, and the superscript H indicates the conjugate transpose. The matrix G acts as a mask
and is used to select and scale the elements of vk(p)− vk

out. The total cost function is then
formed by summing over all of the input-output pairs as follows,

g(p) =
K∑
k=1

gk(p). (4.2)

Using (4.2) the following optimization problem can be defined to design MIMO devices,

argmin
p

g(p)

subject to : plb ⪯ p ⪯ pub

(4.3)

where plb and pub are vectors containing the lower and upper bounds of the design variables,
respectively. To solve (4.3) a quasi-newton optimization routine is employed that uses the
adjoint variable method to calculate the gradient. Further details regarding the optimization
procedure are provided in Chapter 3.

4.3 Multi-beam Antenna Design

In this section, a multi-beam antenna system that produces nine switched beams and
operates at 10 GHz is designed. The multi-beam antenna system consists of a printed-
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Figure 4.2: A picture of the multi-beam antenna system. It is composed of a printed-circuit
beamformer and a 3D printed aperture antenna.

circuit beamformer that is integrated with a 3-D printed aperture antenna. The printed-
circuit beamformer is designed using a TL unit cell in the design procedure outlined in
Section II. A TL unit cell is selected because it provides a wideband response and is planar,
compact, low-cost, and amenable to printed-circuit processes. The aperture antenna is
then designed to be integrated with the beamformer and provides broadband impedance
matching for all nine excitations.

4.3.1 Microstrip Beamformer Design

4.3.1.1 Positive Refraction Beamformer

The printed-circuit beamformer is designed to feed an aperture antenna, designed in
Section III B (see Fig. 4.2), and is patterned on a Roger’s RT/Duroid RO5880 substrate,
ϵr = 2.2 and tan δ = 0.0009, with a substrate thickness of h = 0.787 mm and a copper
thickness of 35 µm. The width of the beamformer is chosen to match the width of the
antenna’s input aperture, i.e. W = 24 cm (8λ0), and the depth of the beamformer is chosen
to be D = 6 cm (2λ0). This depth is chosen to minimize the size of the beamforming
network while allowing for the power distribution at the aperture to be shaped without
utilizing cavity effects from the edges of the beamformer.

Since the design procedure outlined in Section II is used, the following steps are re-

67



quired to properly define the problem: (1) the beamforming region must be discretized, (2)
a unit cell topology must be selected, (3) a model of the unit cell needs to be developed, (4)
the design goals need to be stated in terms of an output voltage profile for each input. First,
the beamforming region is discretized into square unit cells with a side length of d = 3 mm
(λ0/10). This discretization corresponds to a grid of unit cells modeled with admittance
matrices, see Fig. 4.1. The grid has 80 unit cells in the x-direction (M = 80) and 20 unit
cells in the z-direction (N = 20). Next, the microstrip unit cell topology, shown in Fig.
4.3, is selected. The unit cell has six degrees of freedom: two TL widths and four TL
lengths. The variable width lines are allowed to vary from 0.2 mm to 0.8 mm and have a
length of 0.875 mm. The variable length lines have a width of w0 = 0.25 mm and their
lengths are allowed to vary from 0 to lmax

i . The variable lmax
i = d/2 − w0/2 −Wj and Wj

corresponds to the variable width line connected to li for i ∈ {1, 2, 3, 4}. This is the same
unit cell used in [53]. It was chosen to balance the unit cell’s complexity with the number
of degrees of freedom, as well as the variables’ ability to control the unit cell’s admittance
parameters. To create a differentiable model of the unit cell a database of 15, 625 unit
cells were simulated in the commercial method of moments solver Keysight Momentum.
For these simulations, the substrate and conductors were assumed to be lossless, and the
conductors had no thickness or surface roughness. The database of simulated admittance
parameters were then spline interpolated to generate a model of the unit cell for use in the
design procedure, for the details see Chapter 3.

To state the design goals in terms of output voltage profiles along the boundaries of
the grid, the desired characteristics of the beamformer need to be specified. The beam-
former is designed to operate at 10 GHz and produce nine beams that are excited by nine
different 50 Ω input ports. The input ports are impedance matched and isolated from each
other to allow for the beams to be simultaneously excited. During the design process the
beamformer is assumed to be lossless which, combined with the condition of isolated input
ports, requires the antenna’s radiation patterns to be mutually orthogonal [77]. For this
reason, the radiation patterns are chosen to be sinc functions with beampointing directions
corresponding to the following tangential wave numbers,

kn =
2πn

Md
, n ∈ {0,±1,±2,±3,±4}. (4.4)

In (4.4), d is the physical spacing between the beamformer output ports, and M is the num-
ber of output ports. For M and d in this design, the wavenumbers given by (4.4) correspond
to the following beampointing directions: θB = 0◦,±7.18◦,±14.48◦,±22.02◦,±30◦. The
aperture fields corresponding to these radiation patterns are uniform amplitude with linear
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Figure 4.3: Example of a microstrip unit cell used to design the metastructured beamformer.
The unit cell is parameterized using six design variables: W1, W2, l1, l2, l3, and l4. The
microstrip lines all have a width of w0 = 0.25 mm except for the lines with widths W1 or
W2.

phase gradients given by (4.4). These aperture fields are the target output voltage profiles
along the output plane of the beamformer, shown in Fig. 4.1. To ensure that the input ports
are isolated and reduce reflections from the edges of the beamformer the desired output
voltages at the remaining nodes along the boundary of the beamformer, besides those cor-
responding to the active input port, are set to zero. The voltages at the nodes corresponding
to the active input port are used to ensure impedance matching. Since the nodes are termi-
nated by a matched impedance and excited by a voltage Vn, the desired output voltage is
Vn/2 to ensure that the port is impedance matched.

The two remaining considerations before designing the beamformer are determining
how to excite the beamforming region and how to terminate the grid of admittance matrices.
The beamforming region will be excited along the input plane by exciting pairs of nodes
starting from the center line of the beamformer. Each of the pairs is separated by 1.2 cm,
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Figure 4.4: The layout of the positive refraction metastructured beamformer. The beam-
former is fed by nine input ports and is terminated in a parallel-plate waveguide. The beam-
former’s input ports are labeled n = 0,±1,±2,±3,±4 which, produce aperture fields with
phase gradients that correspond to transverse wavenumbers given by (4.4).

see Fig. 4.4. Exciting pairs of nodes serves two purposes: (1) it maintains symmetry
in the beamformer (2) it makes impedance matching the microstrip lines with width w0

(Z0 ≈ 147 Ω) at the unit cell’s ports to 50 Ω easier. It makes impedance matching easier
because it reduces the input impedance of the combined lines to 73.5 Ω. Practically, the
ports are combined by terminating the grid in microstrip lines with Z0 = 147 Ω and then
using a T-junction to combine them in parallel, as shown in Fig. 4.4. Each pair of lines is
then impedance matched to 50 Ω using a tapered-impedance microstrip line with a length
of 2 cm. Therefore, in the circuit network solver, the input ports are terminated by 147 Ω

lumped impedances.
The output plane of the admittance matrix grid should be impedance matched to the

parallel-plate waveguide that the beamformer is terminated in. Since each of the output
ports excite a section of the parallel-plate waveguide that is d = 3 mm wide, the output ter-
minations correspond to the following TE wave impedances for each of the beampointing
directions θB,

Zout =
η0√

ϵr cos θB

h

d
=

66.7 Ω

cos θB
, (4.5)

where η0 is the free-space wave impedance and ϵr is the dielectric constant of the substrate.
The terminations for the remaining ports along the input plane and the sides of the beam-
former are assumed to be open-circuits. Combined with the target of zero voltage at these
nodes allows the cost function to select designs with lower reflections from the edges of
the beamformer.
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Figure 4.5: The analytically calculated co-polarized H-plane radiation patterns produced by
an aperture antenna fed by the metastructured beamformer. The solid lines are calculated
using the simulated voltages from the circuit network solver. The dot-dashed lines are
calculated using the simulated voltages from the full-wave (Momentum) simulation. For
clarity only the positive scan angles are shown. The negative scan angles are identical due
to symmetry.

With the design goals and terminations defined, the beamforming region can now be
designed. However, before designing the beamformer, symmetries can be exploited to
reduce the number of variables and improve convergence. Symmetry of the aperture fields
and excitations across the center line of the metastructure allows for the number of design
variables to be reduced from 9600 to 4800. This is achieved by mirroring the admittance
matrices across the center line. After enforcing symmetry in the circuit network solver, the
beamformer is designed by providing the optimization routine with the unit cell model, the
excitations (input voltage profiles) and desired outputs (output voltage profiles), along with
a seed of uniform lengths and widths for the design variables. The algorithm was run on
a personal computer with an i7-9700 CPU @ 3 GHz w/8 cores and 64 GB of RAM, and
was set to terminate after 400 iterations. After approximately 5.5 hours of execution the
design shown in Fig. 4.4 was produced. The design has a minimum return loss of 26.4 dB
for ports n = ±4, a minimum isolation of 21 dB between ports n = ±2 and n = ±3, and
produces the radiation patterns shown in Fig. 4.5. These radiation patterns are calculated
analytically assuming the aperture field is piece-wise uniform in amplitude and phase.

To verify the performance of the beamformer, a full-wave simulation was performed
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in the commercial electromagnetics solver Keysight Momentum. As in the unit cell simu-
lations, the substrate and conductors were assumed to be lossless, and the conductors had
no thickness or surface roughness. It took approximately 94 hours to complete on a high-
performance computing cluster with access to 15 cores and 600 GB of RAM. The full-wave
results show good agreement, showing only a slight degradation in performance. The min-
imum return loss is 19.1 dB for ports n = ±1, the minimum isolation is 18.3 dB between
ports n = −2 and n = 2, and the voltages at the output of the beamformer produce the
radiation patterns shown in Fig. 4.5. Again, these radiation patterns are calculated analyt-
ically assuming the aperture field is piece-wise uniform in amplitude and phase. Overall,
the performance is in good agreement with that predicted by the circuit network solver.

4.3.1.2 Negative Refraction Beamformer

To demonstrate that a metastructured beamformer has the ability to produce extreme
phase transformations a beamformer that exhibits behavior analogous to negative refraction
is designed. Again, the beamformer will be patterned on a Roger’s RT/Duroid RO5880
substrate, ϵr = 2.2 and tan δ = 0.0009, with a substrate thickness of h = 0.787 mm and a
copper thickness of 35 µm; and, the same unit cell from the previous section is used again,
see Fig. 4.3. The width of the beamformer is chosen to match the width of the antenna’s
input aperture, i.e. W = 24 cm (8λ0), and the depth of the beamformer is chosen to be the
same as the positive refraction design, D = 6 cm (2λ0).

The beamformer is designed to operate at 10 GHz and produce nine beams that are
excited by nine different 50 Ω input ports. The input ports are impedance matched and
isolated from each other to allow for the beams to be simultaneously excited. During
the design process the beamformer is assumed to be lossless. As a result, the radiation
patterns must be orthogonal and the radiation patterns are chosen to be sinc functions with
beampointing directions corresponding to the following tangential wave numbers,

kn = −2πn

Md
, n ∈ {0,±1,±2,±3,±4}. (4.6)

In (4.4), d is the physical spacing between the beamformer output ports, and M is the num-
ber of output ports. For M and d in this design, the wavenumbers given by (4.4) correspond
to the following beampointing directions: θB = 0◦,∓7.18◦,∓14.48◦,∓22.02◦,∓30◦. The
aperture fields corresponding to these radiation patterns are uniform amplitude with linear
phase gradients given by (4.6) which, are the negative of the positive refraction example.
These aperture fields are the target output voltage profiles along the output plane of the
beamformer, shown in Fig. 4.1. The target voltages along the input plane and edges of the
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Figure 4.6: The layout of the negative refraction metastructured beamformer. The beam-
former is fed by nine input ports and is terminated in a parallel-plate waveguide. The beam-
former’s input ports are labeled n = 0,±1,±2,±3,±4 which, produce aperture fields with
phase gradients that correspond to transverse wavenumbers given by (4.4).

Figure 4.7: The analytically calculated co-polarized H-plane radiation patterns produced by
an aperture antenna fed by the metastructured beamformer. The solid lines are calculated
using the simulated voltages from the circuit network solver. The dot-dashed lines are
calculated using the simulated voltages from the full-wave (Momentum) simulation. For
clarity only the positive scan angles are shown. The negative scan angles are identical due
to symmetry.

beamformer are the same as the positive refraction case.
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The beamformer is designed for the same excitations and termination conditions as the
positive refraction case, and symmetry is enforced to reduce the number of design variables
from 9600 to 4800. The beamformer is then designed by providing the optimization routine
with the unit cell model, the excitations (input voltage profiles) and desired outputs (output
voltage profiles), along with a seed of uniform lengths and widths for the design variables.
The algorithm was run on a personal computer with an i7-9700 CPU @ 3 GHz w/8 cores
and 64 GB of RAM, and was set to terminate after 400 iterations. After approximately 5.2

hours of execution the design shown in Fig. 4.6 was produced. The design has a minimum
return loss of 21.5 dB for ports n = ±2, a minimum isolation of 21.4 dB between ports
n = ±5 and n = ±4, and produces the radiation patterns shown in Fig. 4.7. These radiation
patterns are calculated analytically assuming the aperture field is piece-wise uniform in
amplitude and phase.

To verify the performance of the beamformer, a full-wave simulation was performed
in the commercial electromagnetics solver Keysight Momentum. As in the unit cell simu-
lations, the substrate and conductors were assumed to be lossless, and the conductors had
no thickness or surface roughness. It took approximately 94 hours to complete on a high-
performance computing cluster with access to 15 cores and 600 GB of RAM. The full-wave
results show good agreement, showing only a slight change in performance. The minimum
return loss is 23.2 dB for ports n = ±2, the minimum isolation is 19.2 dB between ports
n = −1 and n = 1, and the voltages at the output of the beamformer produce the radia-
tion patterns shown in Fig. 4.7. Again, these radiation patterns are calculated analytically
assuming the aperture field is piece-wise uniform in amplitude and phase. Overall, the
performance is in good agreement with that predicted by the circuit network solver.

4.3.2 Antenna Design

The 3-D printed flared aperture antenna has a center frequency of 10 GHz and is de-
signed to operate over a broad bandwidth. It is fed by a parallel-plate waveguide and
transitions waves propagating in the TEM mode to radiated waves in free-space. The an-
tenna interfaces with the printed-circuit beamformer designed in Section II A. Therefore,
the parallel-plate waveguide feeding the antenna is a copper clad substrate. In this partic-
ular design, it is a 24 cm wide piece of a Roger’s RT/Duroid RO5880 substrate, εr = 2.2

and tan δ = 0.0009, with a substrate thickness of h = 0.787 mm and a copper thickness of
35 µm. The antenna’s input aperture has the same dimensions as the parallel-plate waveg-
uide feed, i.e. Win = 24 cm and hin = 0.787 mm, and the aperture is tapered in the E-plane
to the final dimensions Wap = 24 cm and hap = 5 cm, see Fig. 4.8.
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The antenna is impedance matched to the parallel-plate waveguide feed using an E-
plane taper and a piece of substrate that is extended into the antenna’s aperture, shown in
Fig. 4.8. To allow for broadband impedance matching the height of the aperture is tapered
exponentially from hin to hap over a length of Ltaper = 7.5 cm. To avoid an impedance
mismatch at the junction between the dielectric-filled parallel-plate waveguide feed and the
air-filled parallel-plate waveguide at the antenna’s input, a piece of substrate with length
Lsub = 3 cm is extended into the antenna. The substrate allows for the dielectric filling
fraction within the antenna to be slowly tapered. This tapers the wave impedance and
avoids large reflections at the interface. Alternatively, the height of the air-filled waveguide
could have been reduced to hin = 0.53 mm to match the impedance of the two waveguides.
However, for ease of fabrication the former method for impedance matching was chosen.

The two lengths Ltaper = 7.5 cm and Lsub = 3 cm were chosen by performing para-
metric sweeps in Ansys HFSS simulations. First, a 3 mm wide section of the antenna was
simulated in a periodic environment and Lsub = 3 cm was swept to find the minimum
length such that |S11| did not decrease with an increase in Lsub. Next, the same periodic
simulation was ran and Ltaper was swept until |S11| was less than −10 dB between 8 and
12 GHz for all scan angles.

The full antenna structure, shown in Fig. 4.8, was then simulated in Ansys HFSS to
verify its performance. The antenna was then excited using the simulated output voltages of
both beamformers for each scan angle, and the H-plane radiations patterns are shown in Fig.
4.9 for the positive refraction beamformer and Fig. 4.10. The antenna was manufactured
with a Stratasys J750 Polyjet 3D printer using Verowhite material, and the tapered aperture
was metalized using copper tape. A picture of the manufactured antenna is shown in Fig.
4.12.

4.4 Measurement Results

In this section, measurement results for the multi-beam antenna are reported. The multi-
beam antenna was assembled by inserting the parallel-plate waveguide at the end of the
patterned substrates into the aperture at the antenna’s input. The antenna was then fastened
to the beamformers with nylon screws, as shown in Fig. 4.11. In the following subsections,
measurement results for the antenna’s return loss, input isolation, and radiation patterns are
provided when it is fed by the positive and negative refraction beamformers.
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Figure 4.8: A rendering of the 3D printed aperture antenna and its dimensions. A depiction
of the piece of substrate, with length Lsub, that is extended into the antenna’s aperture for
impedance matching is shown in the top right.

4.4.1 Impedance Match and Isolation

In this section, the following nomenclature for the ports is adopted. The ports are
numbered from left to right such that port 1 corresponds to n = 4 and port 9 corresponds
to n = −4. The performance of the input ports were measured using a Keysight E8361A
PNA Network Analyzer. To characterize the return loss for each port Sii, i ∈ {1, 2, ..., 9},
was measured from 8 to 12 GHz while terminating all other ports with broadband 50 Ω

loads.
The results for all of the ports are shown in Fig. 4.13 for the positive refraction beam-

former. A return loss greater than 10 dB was measured over a bandwidth of 1.5 GHz. Next,
the port-to-port isolation was characterized from 8 to 12 GHz by connecting all possible
pairs of ports one at a time and measuring Sij , i, j ∈ {1, 2, ..., 9}, while the remaining
ports were terminated in 50 Ω loads. By inspecting Sii and Sij for all of the ports, a fre-
quency shift is observed in the beamformers performance. The frequency that maximizes
the minimum return loss and isolation for all of the ports is 10.2 GHz. This indicates that
the beamformer’s operating frequency has shifted to 10.2 GHz. The values for the return
loss and isolation at this frequency are reported in Table. 4.1 and Table. 4.3, respectively.
Where a good impedance match and high isolation are observed for all of the antenna’s
input ports.
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Figure 4.9: Full-wave simulation results of the co-polarized H-plane radiation patterns
from the 3D printed aperture antenna. The plots are produced by exciting the simulated
antenna (Ansys HFSS) with the output voltages from the full-wave simulation (Keysight
Momentum) of the positive refraction metastructured beamformer. For clarity only the
positive scan angles are shown. The negative scan angles are identical due to symmetry.

Port Simulated (10 GHz) Measured (10.2 GHz)
1 25.9 dB 18.1 dB
2 27.0 dB 26.6 dB
3 20.7 dB 18.9 dB
4 19.1 dB 19.4 dB
5 25.5 dB 19.8 dB
6 19.1 dB 19.3 dB
7 20.7 dB 19.5 dB
8 27.0 dB 27.1 dB
9 25.9 dB 20.9 dB

Table 4.1: Input Return Loss (Positive Refraction Beamformer)

The results for all of the ports are shown in Fig. 4.14 for the negative refraction beam-
former. A return loss greater than 10 dB was measured over a bandwidth of 0.5 GHz. The
degradation in the impedance match is due to the fact that lower quality SMA connectors
were used for this design rather than a fundamental issue with the negative refraction de-
sign. Next, the port-to-port isolation was characterized from 8 to 12 GHz by connecting
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Figure 4.10: Full-wave simulation results of the co-polarized H-plane radiation patterns
from the 3D printed aperture antenna. The plots are produced by exciting the simulated
antenna (Ansys HFSS) with the output voltages from the full-wave simulation (Keysight
Momentum) of the negative refraction metastructured beamformer. For clarity only the
positive scan angles are shown. The negative scan angles are identical due to symmetry.

Figure 4.11: A picture of the patterned metastructured beamformer connected to the 3-D
printed aperture antenna.

all possible pairs of ports one at a time and measuring Sij , i, j ∈ {1, 2, ..., 9}, while the
remaining ports were terminated in 50 Ω loads. By inspecting Sii and Sij for all of the
ports, a frequency shift is observed in the beamformers performance. The frequency that
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Figure 4.12: A picture of the 3D printed tapered aperture antenna. The aperture of the 3D
printed part has been coated with copper tape to make it conductive.

Port Simulated (10 GHz) Measured (10.24 GHz)
1 24.0 dB 11.7 dB
2 34.7 dB 12.3 dB
3 23.2 dB 12.3 dB
4 24.0 dB 14.0 dB
5 27.2 dB 16.3 dB
6 24.0 dB 14.5 dB
7 23.2 dB 11.9 dB
8 34.7 dB 13.0 dB
9 24.0 dB 11.6 dB

Table 4.2: Input Return Loss (Negative Refraction Beamformer)

maximizes the minimum return loss and isolation for all of the ports is 10.24 GHz. This
indicates that the beamformer’s operating frequency has shifted to 10.24 GHz. The values
for the return loss and isolation at this frequency are reported in Table. 4.2 and Table. 4.3,
respectively. Where a good impedance match and high isolation are observed for all of the
antenna’s input ports.

4.4.2 Radiation Patterns

The antenna’s far-field radiation patterns were measured with both beamformers in an
anechoic chamber using a HP-83592A signal generator and an HP-8592L spectrum ana-
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i \j 2 3 4 5 6 7 8 9
1 26.5 28.5 28.7 38.1 33.9 33.8 31.2 25.2
2 - 24.3 27.5 28.3 32.6 44.9 25.5 33.2
3 - - 22.9 30.8 33.7 21.7 39.7 36.3
4 - - - 27.3 19.2 38.4 31.3 33.2
5 - - - - 28.1 35.1 29.0 45.9
6 - - - - - 23.3 26.9 30.0
7 - - - - - - 23.8 28.5
8 - - - - - - - 31.2

Table 4.3: Input Isolation for positive refraction beamformer (i and j refer to the port
indices. All values are in dB.)

i \j 2 3 4 5 6 7 8 9
1 24.9 28.5 40.9 25.8 35.4 21.6 24.2 23.2
2 - 27.6 31.8 26.7 26.6 43.0 21.3 23.4
3 - - 27.9 31.3 24.6 25.8 36.9 22.1
4 - - - 30.0 23.7 26.0 24.9 40.1
5 - - - - 37.3 31.6 26.6 24.9
6 - - - - - 28.4 31.1 36.5
7 - - - - - - 27.3 29.1
8 - - - - - - - 24.8

Table 4.4: Input Isolation for negative refraction beamformer (i and j refer to the port
indices. All values are in dB.)

lyzer. Measured results for the radiation patterns are shown for f = 10.2 GHz for the
positive refraction beamformer and f = 10.24 GHz for the negative refraction beamformer
rather than f = 10 GHz. It should be noted that the beamformer was not optimized for
bandwidth; and the sidelobe performance is narrowband. As noted in Section IV. A, the
measurement frequency was determined by selecting the frequency that maximized the
minimum return loss and isolation of all of the input ports. The co-polarized (co-pol) and
cross-polarized (x-pol) H-Plane radiation patterns were measured for all nine beams.

The results for the co-polarized measurement are shown in Fig. 4.15a for the positive
refraction design (plots of the individual radiation patterns can be found in Appendix D).
Good agreement is shown with the simulated patterns in terms of the main beam and first
sidelobes. The largest discrepancy is in the outer sidelobes for the beams at θB = ±30◦

which are approximately 3 dB greater than the simulated value. The elevated sidelobes
are most likely due to amplitude errors resulting from loss and manufacturing errors in
the beamformer, and warping in the antenna that degrades the contact between the an-
tenna and the parallel-plate waveguide on the PCB. The cross-polarized measurements are
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Figure 4.13: Plots of the measured reflection coefficient magnitudes (|Sii|) for the positive
refraction beamformer the multi-beam antenna’s input ports from 9 to 11 GHz.

shown in Fig. 4.15b, verifying that the cross-polarized radiation is low. Additionally, the
co-polarized and cross-polarized E-plane radiation patterns are measured for the n = 0

(broadside) beam. The radiation pattern for these measurements are shown in Fig. 4.16a
and Fig. 4.16b. The co-polarized E-plane radiation pattern shows good agreement with the
simulated result between −25◦ and 15◦. The discrepancies between the measured and sim-
ulated radiation patterns outside of this range of angles is most likely a result of warping in
the surface of the manufactured antenna’s aperture.

The results for the co-polarized measurement are shown in Fig. 4.17a for the negative
refraction design (plots of the individual radiation patterns can be found in Appendix D).
Good agreement is shown with the simulated patterns in terms of the main beam and first
sidelobes. The largest discrepancy is for the beams at θB = ±30◦ where higher sidelobes
occur at the angle θ = ∓33◦ for the main. The elevated sidelobes are most likely due
to amplitude errors resulting from manufacturing errors and loss in the beamformer, and
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Figure 4.14: Plots of the measured reflection coefficient magnitudes (|Sii|) for the negative
refraction beamformer the multi-beam antenna’s input ports from 9 to 11 GHz.

warping in the antenna that degrades the contact between the antenna and the parallel-
plate waveguide on the PCB. The cross-polarized measurements are shown in Fig. 4.17b,
verifying that the cross-polarized radiation is low. Additionally, the co-polarized and cross-
polarized E-plane radiation patterns are measured for the n = 0 (broadside) beam. The
radiation pattern for these measurements are shown in Fig. 4.18a and Fig. 4.16b. The
co-polarized E-plane radiation pattern shows good agreement with the simulated result
between −25◦ and 15◦. The discrepancies between the measured and simulated radiation
patterns outside of this range of angles is most likely a result of warping in the surface of
the manufactured antenna’s aperture.

Using the 3-dB beamwidths of the E and H-plane radiation patterns for the broadside
beam, the maximum directivity of the measured antenna is approximated using formulas
from [82] and [83]. These values are compared to approximations of the simulated an-
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Simulated (+) Measured (-) Measured
[82] 22 dB 22 dB 21.5 dB
[83] 18.4 dB 18.2 dB 17.1 dB

Actual 20.6 dB - -

Table 4.5: Approximate Directivity for the Broadside Excitation (The (+) indicates the
positive refraction design and the (-) indicates the negative refraction design.)

n (+) Gain (-) Gain
−4 16.1 dB 15.4 dB
−3 16.8 dB 16.2 dB
−2 17.5 dB 17.0 dB
−1 17.9 dB 16.8 dB
0 17.9 dB 17.3 dB
1 17.6 dB 16.9 dB
2 17.6 dB 17.3 dB
3 17.1 dB 16.6 dB
4 15.8 dB 15.3 dB

Table 4.6: Measured Gain (The (+) indicates the positive refraction design and the (-)
indicates the negative refraction design.)

tenna’s directivity using the 3-dB beamwidths of its E and H-planes. As seen in Table 4.5
the measured values are in close agreement with those from the simulation for the positive
refraction case whereas, there is more of a discrepancy for the negative refraction case.
This discrepancy is due to the distortion in the measured E-plane radiation pattern for the
negative refraction beamformer. This indicates that the actual directivity of the manufac-
tured antenna fed by the positive refraction beamformer should be close to the simulated
directivity of D0 = 20.6 dB. This allows for the efficiency of the antenna to be character-
ized by comparing the measured gain to simulated gain. The gain for each scan angle was
measured using a standard gain horn and the gain-transfer method, [57]. The measured
gain for all nine beams are shown in Table 4.6. Comparing these values to the simulated
directivity indicates that there is approximately 2.7 dB of loss in the positive refraction
beamformer. Since the measured and simulated approximation for the directivity of the
antenna fed by the negative refraction beamformer do not agree as well the loss cannot be
characterized in the same manner. However, an estimate of the loss can be obtained by
comparing the results to the those obtained with the positive refraction beamformer. Since
the directivity is reduced by approximately 0.5 dB and the gain is reduced by 0.6 dB for
the n = 0 excitation when using the negative refraction beamformer, the loss is around
2.7− 2.8 dB for the negative refraction beamformer.
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(a)

(b)

Figure 4.15: (a) A comparison of the measured and simulated normalized co-polarized
H-plane radiation pattern from the positive refraction for all nine inputs. The measured
radiation patterns are the solid lines and the simulated radiation patterns are the dot-dashed
lines. (b) The measured cross-polarized H-plane radiation pattern for all nine inputs, nor-
malized by the maximum of the co-polarized radiation pattern for the same input.
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(a)

(b)

Figure 4.16: (a) A comparison of the measured and simulated normalized co-polarized E-
plane radiation pattern from the positive refraction for the broadside beam (n = 0). (b)
The measured cross-polarized E-plane radiation pattern from the positive refraction for the
broadside beam, normalized by the maximum of the co-polarized radiation pattern for the
same input.
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To characterize beamformers bandwidth the co-polarized H-plane radiation pattern, for
the n = 0 and n = −4 ports, was measured at 0.1 GHz steps above and below the center
frequency for each of the beamformers. Only the n = 0 and n = −4 ports are measured
because the performance of the other beams lies in between these two. The results of
these measurements are shown in Fig. 4.19a-4.19d. In these figures some of the measured
frequencies are excluded for clarity. The bandwidth of the positive refraction beamformer
is determined using Fig. 4.19a and 4.19b. Here, it is observed that the reduction in gain
for both ports is less than 3-dB from 10.1− 10.5 GHz, and the bandwidth is limited by the
n = 0 input where a reduction in gain of approximately 4.25 dB is observed at 10 GHz and
10.6 GHz. Therefore, the positive refraction beamformer has a bandwidth of approximately
4%. The bandwidth of the negative refraction beamformer is determined using Fig. 4.19c
and 4.19d. Here, it is observed that the reduction in gain for both inputs is less than 3-
dB from 10.04 − 10.34 GHz, and the bandwidth is limited by the n = −4 input where a
reduction in gain of approximately 3 dB is observed at 10.04 GHz and 4.5 dB at 10.44 GHz.
Therefore, the negative refraction beamformer has a bandwidth of approximately 3%.

4.5 Summary

A multi-beam antenna system using metastructured beamformers integrated with a 3D
printed aperture antenna were reported. A previously reported computational inverse de-
sign procedure for MIMO metastructures was used to design the beamformer. The design
procedure uses a fast, forward solver that leverages circuit theory to circumvent the use
full-wave simulations, and the adjoint variable method to calculate gradients. This ap-
proach significantly reduces the computational cost of designing MIMO metastructures
that are electrically-large and aperiodic, like antenna beamformers.

To validate the design procedure, the metastructured beamformer was patterned on a
microwave substrate and integrated with a 3D printed aperture antenna. The measured per-
formance of the antenna system was shown to be in good agreement with the simulated
results, after accounting for a frequency shift in the manufactured beamformer. The work
demonstrates that the design procedure is able to design devices that can be realized in
practice. Including devices that perform extreme field transformations like negative refrac-
tion.

The reported beamformers demonstrate MIMO metastructures capability to maintain
planar interfaces, control the amplitude and phase of all aperture fields and reduce the size
of beamformers. Future work will tackle the beamformer’s narrow bandwidth and mitigate
amplitude and phase errors present in the aperture fields. Potential methods for improving
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the bandwidth are the inclusion of multiple frequencies in the cost function and introducing
lossy terminations to mitigate reflections. Accuracy of the aperture fields could potentially
be improved by using better models of the unit cells. This could be achieved by modeling
the unit cells more accurately using multi-modal admittance matrices to capture higher-
order coupling between the unit cells.
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(a)

(b)

Figure 4.17: (a) A comparison of the measured and simulated normalized co-polarized
H-plane radiation pattern from the negative refraction for all nine inputs. The measured
radiation patterns are the solid lines and the simulated radiation patterns are the dot-dashed
lines. (b) The measured cross-polarized H-plane radiation pattern for all nine inputs, nor-
malized by the maximum of the co-polarized radiation pattern for the same input.
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(a)

(b)

Figure 4.18: (a) A comparison of the measured and simulated normalized co-polarized
E-plane radiation pattern from the negative refraction beamformer for the broadside beam
(n = 0). (b) The measured cross-polarized E-plane radiation pattern from the negative re-
fraction for the broadside beam, normalized by the maximum of the co-polarized radiation
pattern for the same input.
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(a) (b)

(c) (d)

Figure 4.19: Plots of the measured co-polarized H-plane radiation patterns of the multi-
beam antenna fed by the two beamformers: positive refraction design (a) n = 0 (b) n = -4,
negative refraction design (c) n = 0 (d) n = -4. The dashed black line indicates a decrease
of 3 dB in the gain relative to the center frequency of the beamformer. From (a) and (b) it is
seen that the positive refraction beamformer has a fractional bandwidth of approximately
4% and (c) and (d) indicate that the negative refraction beamformer has a fractional band-
width of approximately 3%.

90



CHAPTER 5

Conclusion

5.1 Summary of Contributions

Since the early days of metamaterials research, researchers have used microwave circuit
concepts to develop models that provide physical insight and enable the design of metama-
terial devices such as leaky-wave antennas [32, 84] and beamformers [11, 74]. This thesis
focused on recent advances in the use of microwave circuit concepts for modeling and de-
signing metamaterials and metastructures. The first part of this thesis, Chapter 2, used these
concepts to develop a model for wave propagation in 2D omega bianisotropic media. Then
in the second part, Chapters 3 and 4, they were leveraged to develop a fast forward problem
solver to enable a computational inverse design procedure for MIMO metastructures.

In Chapter 2, a circuit-based unit cell for modeling 2-D omega bianisotropic materials
was introduced. In previous work, circuit-based methods for modeling arbitrary electric
and magnetic material responses had been provided. However, circuit-based models for 2-
D wave propagation in materials with magneto-electric responses were not available. Here,
a circuit-based unit cell composed of four constitutive microwave networks connected in
a cross-junction was proposed to model 2-D wave propagation in an omega bianisotropic
medium. It was then shown that when all four of the constituent networks are different the
unit cell becomes spatially dispersive. To limit this effect the condition that the constituent
networks along the two principal axes should be the same was imposed on the unit cells.
Therefore, if the constituent networks are symmetric the unit cell would also symmetric
precluding the possibility of an omega bianisotropic response. Therefore, to model omega
type magneto-electric responses the constituent networks must themselves contain asym-
metries. A lumped element propagation model was then provided where the constituent
networks were composed of π-networks. The propagation model was verified by synthe-
sizing a omega bianisotropic medium and simulating its isofrequency contours in Keysight
ADS. Finally, a design example was provided to demonstrate that 2-D omega bianisotropic
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media have the potential to realize devices with amplitude and phase control. An exam-
ple of an electrically-thin impedance matched slab that provides a desired phase delay and
translates the normal power density profile of a Gaussian beam was designed and verified
in Keysight ADS.

In Chapter 3, a computational inverse design procedure was introduced for the design of
guided-wave metastructures. Two significant difficulties are encountered when designing
metastructures with optimization-based approaches are: (1) the large-scale optimization
problem posed by metastructures (2) the computational cost of the solution to the forward
problem. The first problem is a result of the large number of degrees of freedom found
in metastructures, typically greater than 103 design variables, which presents a large-scale
optimization problem that can be difficult to solve. The second results from the fact that
metastructures present a multi-scale simulation problem because, the metastructures are
themselves wavelength scale devices but are composed of unit cells with deeply subwave-
length features. Both of these issues significantly increase the computational effort, often
making inverse design impractical when the devices are electrically-large. The large-scale
optimization problem was addressed in this work by adopting the adjoint variable method to
calculate derivatives. The multi-scale simulation problem was addressed by using a circuit-
network solver to model the wavelength scale devices behavior and reduced-order models
to capture the effects of the subwavelength features in the unit cells. In this way, compu-
tationally expensive full-wave solutions to the device responses could be avoided during
the optimization routine while maintaining good accuracy. The validity of this modeling
approach was then established by designing a metastructured beamformer and an analog
signal processing network whose performance were verified through full-wave simulations
in Keysight Momentum.

There are two main advantages of this inverse design approach: (1) its computational
efficiency and (2) it models the exact patterned unit cells. The first advantage was already
discussed above however, the second has not been addressed yet. There are several distinct
advantages of modeling the exact structure over using effective medium theory and full-
wave solvers to design MIMO metastructures. Even when the full-wave solvers produce
linear systems of similar size and structure to the circuit network solver (finite element or
finite-difference frequency-domain). One advantage is that the unit cells do not require the
existence of a medium equivalence, as in the case of the asymmetric unit cell discussed
in Chapter 2. In fact, the unit cells do not even need to be homogenizable. Therefore,
there are no restrictions on the size or types of inclusions that can be modeled. Another
advantage is that by modeling the patterned unit cells the design procedure produces the
layout of the patterned structure. This avoids the need for an additional patterning step,
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which often requires additional full-wave optimization to account for spatial dispersion
that is neglected in the design procedure. Whereas, this design method accounts for any
spatial dispersion in device and can produce a device with good performance without any
full-wave optimization.

In Chapter 4, it was experimentally verified that the inverse design procedure, intro-
duced in Chapter 3, could be used to realize practical devices. This chapter outlined the
design of a multi-beam antenna system composed of a metastructured beamformer and a
tapered aperture antenna. The tapered aperture antenna was additively manufactured us-
ing a commercially available 3D printer and the aperture was metalized using copper tape.
To verify the design procedure the antenna was fed by two different metastructured beam-
formers: one that exhibited positive refraction and another that exhibited negative refrac-
tion. The positive refraction example takes advantage of the natural phase delays that are
produced along the output of the beamformer by the different inputs. Whereas the negative
refraction version reverses the natural phase delays, demonstrating the extreme field trans-
formations that metastructures can provide in compact regions. The two beamformers were
designed using the inverse design procedure, with no additional full-wave optimization, and
patterned on a Rogers/RT Duroid 5880 substrate. The multi-beam antenna system was then
characterized using measurements of its input impedance match, isolation, and far-field ra-
diation patterns. This work demonstrated that the inverse design procedure is capable of
accurately modeling spatially varying metastructures, and can be used to realize practical
devices with arbitrary control over multiple field transformations.

5.2 Future Work

The first part of this thesis introduced a circuit-based method for modeling TE wave
propagation in a 2-D omega bianisotropic medium. A model composed of lumped element
π-networks was used, which could potentially be used in low-frequency applications to
realize effective media with omega bianisotropic responses. However, different physical
structures with 2-D omega responses are necessary to realize practical microwave devices
that possess 2-D omega bianisotropy. Potentially, practical structures with these material
responses could be realized as printed-circuit structures, additively manufactured structures
composed of omega-particles, [24], or a media composed of loaded loops and dipoles sim-
ilar to [85].

Here, polarization conserving media were considered however, the circuit network
model could include more general material responses by extending Kron’s work, [86], to
include material with bianisotropic responses. This could be accomplished by developing
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a dual network for TM propagation in an analogous manner to this work. By coupling
the network presented in this work to the dual network, polarization conversion could be
achieved allowing for the design of devices with phase, amplitude and polarization control.
Another limitation of this model is that it can only model propagation in a medium where
its principal axes are aligned with axes of the periodic circuit network, i.e. diagonal perme-
ability tensors. However, this precludes the ability to redirect the power flow of normally
incident waves. This requires off-diagonal elements in the material’s permeability tensor.
To allow for the design of devices that can redirect the power of normally incident waves,
the unit cell would need to be modified to include off-diagonal elements in the permeabil-
ity tensor. This could potentially be achieved by using a model similar to those presented
in [21] to realize full-tensor circuit-based omega bianisotropic metamaterials.

The second part of this thesis introduced an inverse design procedure to realize guided
wave metastructured devices. The design procedure used port-fed circuit models to rep-
resent the unit cells of the device. Which, allowed for accurate solutions to the device
response without using full-wave simulations during the optimization routine. However,
the results from the full-wave solver and circuit network solver did not match exactly. In-
dicating that the accuracy of the circuit network solver could potentially be improved if
the error sources were isolated and modeled. One possible error source is that the current
model only considers unit cells supporting a single guided mode at each port face. This
carries with it the underlying assumption that there is only one accessible mode at its ports.
This assumption is valid if two conditions are met: (1) there is only one propagating mode
supported by the waveguide and (2) any discontinuities in the waveguide are far enough
away from the port faces such that the amplitude of any evanescent modes that are excited
are sufficiently decayed. If both of these conditions are not met then the model’s accuracy
degrades and the solutions can become unreliable.

Since metastructures unit cells are deeply subwavelength it is rare that the port faces will
be sufficiently far away from discontinuities (inclusions) such that no evanescent modes are
accessible at the port faces. In fact, these conditions were not strictly met in the designs
presented in this work, which is likely the cause of the discrepancy between the device’s
response calculated using the circuit network solver and the full-wave solver. Therefore,
the accuracy of the solver could be improved by considering multiple modes at the port
faces to account for higher-order wave coupling between the unit cells, [69]. This would
result in a slower forward problem solver, as the size of the matrices grows proportionate
to the square of the number of modes included. Therefore, there is a trade-off between
accuracy and computational efficiency that needs be accounted for when developing the
circuit network solver for a given design problem.
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Recently, there has been significant interest in analog and hybrid beamforming meth-
ods that are suitable for millimeter, terahertz and optical systems [87–89]. In chapter 4,
the advantages of metastructured beamformers were discussed and some of these advan-
tages were demonstrated in the beamformers designed in this thesis. However, the designed
beamformers were relatively narrowband with a fractional bandwidth of 4% for the positive
refraction beamformer and 3% for the negative refraction beamformer. In order to design
beamformers that can be used in communication and radar systems the bandwidth of these
devices needs to be improved. Therefore, methods for modifying the inverse design pro-
cedure to allow for broadband devices to be designed could be investigated. One possible
method would to be to characterize the unit cells at multiple frequencies and to form a cost
function at several frequencies as in [90].

If metastructured beamformers are designed to be broadband, as in [11], they could be
well suited for use in millimeter, terahertz and optical systems where phased arrays and
digital beamforming techniques are more complicated and expensive to realize. If the de-
sign procedure presented in this work can be modified to allow for the design of wideband
devices it could potentially be used to realize metastructured beamformers for these sys-
tems. However, there are several other challenges that would need to be overcome such as
the development of low-loss cells that provide enough variation and methods to accurately
model them. Low-loss unit cells with a large amount of variation could potentially be real-
ized using all-metal unit cells at millimeter-wave frequencies and could be modeled using
multiple modes similar to [69]. On the other hand, all-dielectric unit cells are most likely
needed for optical devices which, could prove more challenging to model and design with
enough variation in the response to realize compact beamformers. One possible method
could be to use multiple modes to model unit cells composed of high-index anisotropic
inclusions embedded in dielectric waveguides similar to, [91].
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APPENDIX A

Three-Sheet Metasurfaces: Bandwidth and
Quality Factor

In practice, bi-isotropic metasurfaces typically rely on resonant structures to produce
the strong field interactions required to perform desired field transformations. However,
the use of resonances places inherent limitations on the bandwidth. In this section, the
relationship between matching networks and bi-isotropic metasurfaces is considered, and
the quality factor of a metasurface realized using three impedance sheets is defined. We
demonstrate that the quality factor can be used as a metric to predict the metasurface band-
width and identify unit cells that degrade the performance of inhomogeneous metasurfaces.

To understand the relationship between impedance matching networks and bi-isotropic
metasurfaces, we consider the following example. Suppose there is a planar interface be-
tween air and alumina (εr = 9.4), as in Fig. A.1, and the goal is to maximize the power
transferred across the interface. Since the intrinsic wave impedances of the media are real,
this amounts to minimizing the amplitude of the reflected wave. To do this, the input
impedance of the metasurface must be equal to the wave impedance of the incident wave,
Zin. Since the two media have different wave impedances the metasurface must transform
the wave impedance of the transmitted wave, ZL, to that of the incident wave, Zin. In
this scenario, the metasurface acts as an impedance matching layer. Here, the impedance
matching layer is analogous to an impedance matching network from circuit theory like an
L or T-network, shown in Fig. A.2. From circuit theory, it is known that a complex load
impedance can be matched to complex source impedance using either an L-network, T- or
π-network. The L-network contains two degrees of freedom allowing for the real and imag-
inary components of the input impedance to be matched. For an L-network, the solution
is unique (all degrees of freedom are used) and no other characteristics of the impedance
match, such as it’s bandwidth or the transmission phase, can be controlled. Adding a third
degree of freedom to the L-network produces a T- or π-network. This additional degree
of freedom can be used to control the bandwidth or the transmission phase. Bi-isotropic
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Figure A.1: A metasurface at the interface between air and alumina half-spaces. The meta-
surface is used to impedance match a normally incident plane wave travelling from the
region of air into the alumina.

Figure A.2: L and T circuit network topologies used for impedance matching in circuit
theory.

metasurfaces are like T-matching networks for fields. They have three degrees of freedom
that allow impedance matching with phase or bandwidth control [59]. To illustrate this
idea, we consider a metasurface that impedance matches a normally incident plane wave
on an air-alumina (εr = 9.4) interface over a maximum bandwidth, as shown in Fig. A.1.

To design the impedance matching metasurface, recall that a bi-isotropic metasurface
can be viewed as a two-port network that controls one scattering amplitude and two scat-
tering phases, [92]. Therefore, designing a lossless, reflectionless, bi-isotropic metasurface
is equivalent to designing a lossless two-port impedance matrix (Z-matrix) that impedance
matches a load impedance ZL = |ZL|ejϕL to a source impedance Zi = |Zin|ejϕin with an
arbitrary transmission phase ϕ21 [40]. To determine the Z-matrix that provides the desired
functionality, consider a general lossless two-port Z-matrix,(

V1

V2

)
= j

(
X11 X12

X21 X22

)(
I1

I2

)
(A.1)

Imposing the impedance boundary conditions and enforcing power conservation on (A.1)
produces the following system of equations,
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Figure A.3: Bi-isotropic metasurface realized using three impedance sheets separated by
dielectric spacers with thickness d.

(
1

rve
jϕ21

)
= j

(
X11 X12

X21 X22

)(
1

−rve
jϕ21

)
(A.2)

where r2v = ZL

Zin

∣∣∣ cosϕin

cosϕL

∣∣∣ and ϕ21 = ∠V2 − ∠V1. Splitting (A.2) into its real and imaginary
components allows for the elements of the Z-matrix to be solved for in terms of ZL, Zin

and ϕ21,

(
X11 X12

X21 X22

)
=

(
|Zin| cos(ϕ21 − ϕL) |Zin|rv cos(ϕL)

|Zin|rv cos(ϕL) |ZL| cos(ϕ21 + ϕin)

)
csc(ϕ21+ϕin−ϕL) (A.3)

From (A.3), it is clear that the required two-port network is reciprocal since X12 = X21,
and has three degrees of freedom. As in [39], three cascaded sheet impedances, shown in
Fig. A.3, can be used to realize a metasurface with a Z-matrix given by (A.3).

Expressing Fig. A.3 in terms of it’s Z-matrix, and solving for the necessary impedance
sheets, results in the following expressions for the sheets in terms of the elements of (A.3),

Zs1 = −j
Z0 sin(βd)

cos(βd) + (X12+X22

detZ
)Z0 sin(βd)

(A.4)

Zs2 = −j
Z2

0 sin
2(βd)X12

detZ +X12Z0 sin(2βd)
(A.5)

Zs3 = −j
Z0 sin(βd)

cos(βd) + (X12+X11

detZ
)Z0 sin(βd)

, (A.6)

where detZ is the determinant of the Z-matrix and β and Z0 are the wavenumber and wave
impedance of the dielectric spacers, respectively. Once the input and load impedances,
spacer thickness, and the transmission phase is specified, (A.3) can be used to determine
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the necessary impedance sheets to implement the metasurface.
To maximize the bandwidth of the impedance match, a method is needed for compar-

ing the metasurface bandwidth for different transmission phases. Here, an expression of
the metasurface quality factor as a function of the transmission phase is derived for this
purpose. The quality factor of the three sheet metasurface is defined as,

Q = ω0
2We

Pd

, (A.7)

where ω0 is the angular resonant frequency, We is the average electric energy stored in
the network at ω0, and Pd is the power dissipated in the network. To calculate the quality
factor using (A.7), the impedance sheets (A.4)-(A.6) are expressed in terms of lumped
capacitances and inductances. The dielectric spacers in the metasurface are assumed to be
electrically thin, so they can be modelled as lumped π-networks. Therefore, if the dielectric
spacers are electrically thin and the source and load impedances are purely real, then the
quality factor of the metasurface can be expressed as

Q =
ω0

2

(
Zin(Cs1 +

βd

4ω0Z0

) +Rint(Cs2 +
βd

2ω0Z0

) + ZL(Cs3 +
βd

4ω0Z0

)

)
, (A.8)

where, Rint =
Zin+ZL+

√
ZinZL cosϕ21

sin2 ϕ21

(Z0 sinβd)2

ZinZL
, and Csi is the capacitance of the ith impedance

sheet (if the sheet is inductive then Csi = 0). If the load impedances are not purely real,
the imaginary part of the load can be absorbed into either Zs1 or Zs3, and (A.8) can still be
used. The quality factor, Q, of the metasurface will be used to approximate the fractional
bandwidth, FBW = BW/f0, where BW is the 3 dB bandwidth of each unit cell. How-
ever, due to the presence of multiple resonances this approximation is only valid when the
resonances are well separated in frequency.

The quality factor expression (A.8) can be used to maximize the bandwidth of an
impedance matching bi-isotropic metasurface. For a normally incident plane wave, the
relevant impedance is Zin = 377 Ω. Let’s assume that ZL = 123 Ω, and the spacers are
free-space with a thickness d = λ0/20. Using (A.8) to calculate the quality factor and
the fractional bandwidth versus transmission phase, produces Fig. A.4. Fig A.4 (b) shows
that the maximum bandwidth occurs at a transmission phase of ϕ21 = −68.5◦. Fig A.4 (a)
plots (A.8) and predicts that this transmission phase maximizes the bandwidth, as shown in
Fig. A.4 (c). The metasurface with this transmission phase is composed of the following
impedance sheets: Zs1 = 1/(jωCs1) = −j468.9 Ω, Zs2 = 1/(jωCs2) = −j641.9 Ω,
and Zs3 = jωLs3 = j38.5 kΩ. The metasurface performance is simulated in Ansys
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Figure A.4: The quality factor, fractional bandwidth, and the magnitude of the frequency
response for metasurfaces that provide impedance matching with six different transmission
phases. (a) The quality factor is minimized when the transmission phase is −68.5◦ (red
circle). (b) The fractional bandwidth is maximized at −68.5◦ (red circle). (c) Plots of the
transmission amplitude over frequency for several transmission phases and the maximum
bandwidth is observed when the transmission phase is −68.5◦ as predicted by the quality
factor.

HFSS using dispersive impedance sheets that correspond to the following lumped elements:
Cs1 = 33.9 fF, Cs2 = 24.8 fF, and Ls3 = 612.7 nH. The transmission magnitudes from
this simulation are shown in Fig. A.5, where they are compared to a quarter-wave trans-
former and the bare interface without any impedance matching. The metasurface has a size
and bandwidth comparable to a quarter-wave transformer. However, it doesn’t require the
realization of a medium with the dielectric constant εr =

√
9.4, which can be heavy and

challenging to manufacture.
In addition to bandwidth information, the quality factor also provides information that

can guide the design of inhomogeneous metasurfaces where local periodicity is assumed.
Obtaining good performance from a metasurface designed assuming local periodicity re-
quires that neighboring unit cells produce fields that are approximately the same i.e. the
fields vary smoothly along the surface without large discontinuities in amplitude or phase.
In this work, it has been found that the quality factor and its first derivative with respect
to transmission phase can help the designer select unit cells that satisfy the assumption of
local periodicity.

The quality factor, given by (A.8), is divergent at transmission phases near ϕ21 =

0◦,−180◦, and −360◦, indicating that the unit cells required to achieve these transmission
phases possess large quality factors. Large quality factors are associated with strong reso-
nances which are sensitive to perturbations in the surrounding environment and are lossy
when realized in practice. Therefore, these unit cells should be avoided. Additionally, areas
where (A.8) is not smooth (i.e. points where the first derivative is discontinuous or unde-
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Figure A.5: Plots of the transmission and reflection magnitudes for the interface with the
metasurface (ϕ21 = −68.5◦), a quarter-wave transformer, and with no impedance matching
(bare interface). The simulations of the metasurface were performed in Ansys HFSS. The
metasurface has a bandwidth that is comparable to a quarter-wave transformer.

fined) indicate transmission phases where the reactance of at least one of the impedance
sheets changes sign. These points should also be avoided because they identify transmis-
sion phases where the required reactance values display asymptotic behavior. This intro-
duces rapid variations in the values of the impedance sheets and fields in the metasurface
that invalidate the assumption of local periodicity.

To see how this information can be used, consider a metasurface embedded in free-
space that refracts a normally incident plane wave to 70◦ at a frequency of f0 = 10 GHz.
This requires a gradient metasurface: an inhomogeneous metasurface that imposes a linear
phase gradient on an impinging wave-front to produce reflection or refraction into a desired
direction [93]. Refraction requires the metasurface to alter the transverse wavenumber
of an incident plane wave (ki = k sin(θi)) to produce the desired refracted wavenumber
(kt = k sin(θt)), where k is the wavenumber in the surrounding medium. Therefore, the
metasurface must impart transverse momentum equal to ∆k = kt − ki. Practically, this
is realized by discretizing the metasurface into N sub-wavelength unit cells of size D =

2π
N max(ki,kt)

, each possessing a transmission phase ϕj such that ∆ϕ = ϕj+1 − ϕj = −∆kD.
Each unit cell must be reflectionless to maximize the transmitted power into the refracted
wave. This means impedance matching and phase control are required, so (A.4)-(A.6) can
be used to design the unit cells of the metasurface.

For this example, the metasurface will have 10 unit cells per transverse wavelength (in
free-space) and the spacers will be assumed to be free-space with a thickness d = λ0/25.
As a first pass at the design, the metasurface is designed to impose a linear phase gradient
with the unit cell transmission phases shown in Table A.1. The required sheet impedances,
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Figure A.6: (a) Depiction of an inhomogeneous, bi-isotropic metasurface implemented as a
three sheet cascade in free-space. (b) Plots of the sheet reactances for different transmission
phases. The solid circles indicate the values used for the linear phase gradient and the
empty squares indicate the sheet values used for the perturbed phase gradient. (c) Full-
wave simulation results for the real part of the electric field using the metasurface with a
linear phase gradient. (d) Full-wave simulation results for the real part of the electric field
using the metasurface with a perturbed phase gradient.

shown in Fig. A.6 (b), are solved for using (A.4)-(A.6) and one period (10 unit cells) of the
metasurface is simulated in COMSOL using periodic boundary conditions. The results are
shown in Fig. A.6 (c).

The metasurface designed using this phase gradient exhibits significant reflections and
the transmitted wave is not purely refracted. A slight perturbation of the linear phase gra-
dient can be used to improve the performance. The appropriate perturbed phase gradient
can found using the quality factor and its first derivative with respect to transmission phase.
To find problematic transmission phases in the original design, plots of the quality factor
and its first derivative are shown in Fig. A.8. By inspecting the plots, four unit cells with
problematic transmission phases are identified: 1, 5, 6, and 10. Unit cells 1, 5, and 6 are
problematic because they are near points where (A.8) is not smooth, and unit cell 10 is
problematic due to its large quality factor. To improve the performance of the metasurface,
the problematic transmission phases are adjusted as shown in Table A.1. These phase shifts
reduce the maximum unit cell quality factor by approximately 10 and force the reactance
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Unit cell ϕ21 (original) ϕ21 (perturbed)
1 −18◦ −31◦

2 −54◦ −54◦

3 −90◦ −90◦

4 −126◦ −126◦

5 −162◦ −147◦

6 −198◦ −216◦

7 −234◦ −234◦

8 −270◦ −270◦

9 −306◦ −306◦

10 −342◦ −330◦

Table A.1: Unit cell transmission phases (ϕ21) used in the design of the gradient metasur-
face for plane wave refraction. The original phase gradient corresponds to the linear phase
gradient. The perturbed phase gradient corresponds to the adjusted phases used to improve
the performance of the metasurface.

of the impedance sheet’s to change sign only once at ϕ21 = −180◦.
The metasurface is redesigned with the modified transmission phases and the required

sheet impedances are shown in Fig. A.6 (b). Ten unit cells of the metasurface are again
simulated in COMSOL using periodic boundary conditions, and the results are shown in
Fig. A.6 (d). We see that the redesigned metasurface performs significantly better than the
analytical design. This indicates that avoiding transmission phases which require a large
quality factor or exist near non-smooth or asymptotic regions of Q(ϕ21) can improve the
performance of gradient metasurfaces designed using the local periodicity assumption.

Violations of local periodicity (like those discussed above) can present challenges when
realizing inhomogeneous metasurfaces where local periodicity has been assumed. Issues
arising from these violations have been handled implicitly in the literature in a variety of
ways. Such as in [64], where the phase gradient was altered to improve the metasurface’s
performance by reducing transmission losses. On the other hand, [40,60,61] made the sheet
spacers extremely thin d < λ/40. This generally increases the quality factor of the unit cells
but, it has the benefit of shifting the transmission phases where all three impedance sheets
transition from capactive to inductive to occur at the same point. This means that shrinking
the spacings makes it easier to select transmission phases that avoid regions where (A.8)
is not smooth. As a result, extremely thin spacings can improve the design performance
at the expense increasing manufacturing difficulties and producing higher quality factors:
lower bandwidths. Alternatively, PEC [63] or PMC [94] baffles have been used to eliminate
inter-cell coupling to validate the assumption of local periodicity. However, in practice the
use of PEC baffles presents a manufacturing challenge and PMC baffles cannot be realized.
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Figure A.7: Comparison of the transmission phases used for the original and perturbed
phase gradients. The solid black circles indicate the transmission phases used for the linear
phase gradient. The empty red squares indicate the transmission phases used for the per-
turbed phase gradient

Figure A.8: (a) The quality factor of the metasurface unit cells versus transmission phase.
(b) The first derivative of the quality factor with respect to transmission phase. The solid
black circles indicate values corresponding to the linear phase gradient and the hollow red
squares indicate the adjusted values used for the perturbed phase gradient.

104



These examples indicate a design trade-off between manufacturability and performance
when realizing inhomogeneous metasurfaces. Using the quality factor as shown in this
section provides an alternative way to improve design performance. It can be used to
systematically identify problematic unit cells and adjust them where possible to allow for
the trade-off between performance and manufacturability to be balanced. An alternative to
this approach is to avoid the assumption of local periodicity and model interactions between
unique unit cells using homogenization and integral equations as reported in, [95].
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APPENDIX B

Derivation of the Mask Matrix

The matrix G is used as a mask in the cost function,

g(p) =
1

2

K∑
k=1

(vk(p)− vk
out)

HG(vk(p)− vk
out), (B.1)

to select the nodal voltages that are relevant to the design goals. It is necessary because the
vector vk(p) that is solved for by the the circuit network solver,

Qk(p)vk(p) = s, (B.2)

returns the value of all 2MN + M + N nodal voltage in the network, indicated by the
red circles in Fig. B.1. However, the majority of these voltages are not pertinent to design
goals. Therefore to form a cost function over the pertinent voltages a transformation is
required to project into the subspace of nodal voltages that are relevant,

ṽk(p) = Tvk(p) (B.3)

For the designs considered in this thesis the relevant voltages were located on the periphery
of the network shown as the blue lines in Fig. B.1. Therefore, the necessary transformation
is from a 2MN + M + N dimensional space to a 2(M + N) dimensional subspace that
can be represented by a 2(M + N) × (2MN + M + N) matrix. For clarity, consider an
example with M = 3 and N = 1 then the matrix is 8 × 10 and would have the following
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Figure B.1: Top: Schematic drawing of the voltages solved for by the circuit network
solver (red circles) and the voltages selected by the G matrix (blue line). Bottom: Blue line
indicates location of the voltages on the metastructured beamformer example.
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Figure B.2: Schematic of the circuit network used in the example in the appendix. The
numbered red circles represent node voltages that are solved for by the circuit network
solver and the blue line intersects the selected voltages.
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form,

T =



a 0 0 0 0 0 0 0 0 0

0 b 0 0 0 0 0 0 0 0

0 0 c 0 0 0 0 0 0 0

0 0 0 d 0 0 0 0 0 0

0 0 0 0 e 0 0 0 0 0

0 0 0 0 0 f 0 0 0 0

0 0 0 0 0 0 g 0 0 0

0 0 0 0 0 0 0 0 0 h


(B.4)

where rows correspond to the number of the node number as shown in Fig. B.2, and the
letters a − f represent non-negative numbers whose value depends on the importance of
each nodal voltage.

The cost function can then be formed over ṽk(p) as follows,

g(p) =
1

2

K∑
k=1

(ṽk(p)− ṽk
out)

H(ṽk(p)− ṽk
out). (B.5)

Then by defining,
ṽk

out = Tvk
out, (B.6)

and substituting (B.3) and (B.6) into (B.5),

g(p) =
1

2

K∑
k=1

(vk(p)− vk
out)

HT
T
T (vk(p)− vk

out), (B.7)

the original cost function (B.1) can be recovered by defining G = T
T
T .
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APPENDIX C

Derivation of the Adjoint Problem

This appendix provides a detailed derivation of the adjoint problem used to calculate
the derivative of the cost function used in Chapter 3,

g(p) =
K∑
k=1

gk(p) =
1

2

K∑
k=1

(vk(p)− vk
out)

HG(vk(p)− vk
out). (C.1)

In (C.1), p = (p1, p2, ..., pP )
T represents the P variables of the function and G is Hermitian.

The adjoint problem associated with (C.1) is formed by taking its derivative with respect to
the ith variable,

∂g(p)
∂pi

=
K∑
k=1

∂gk(p)
∂pi

(C.2)

and the term ∂gk(p)
∂pi

is given by,

∂gk(p)
∂pi

= (
∂vk(p)
∂pi

)HG(vk(p)− vk
out) + (vk(p)− vk

out)
HG

∂vk(p)
∂pi

(C.3)

=
(
(vk(p)− vk

out)
HG

H ∂vk(p)
∂pi

)H
+ (vk(p)− vk

out)
HG

∂vk(p)
∂pi

. (C.4)

Noting that G is Hermitian and both terms are scalars (C.4) is equal to,

∂gk(p)
∂pi

=
(
(vk(p)− vk

out)
HG

∂vk(p)
∂pi

)∗
+ (vk(p)− vk

out)
HG

∂vk(p)
∂pi

(C.5)

∂gk(p)
∂pi

= 2ℜ
{
(vk(p)− vk

out)
HG

∂vk(p)
∂pi

}
. (C.6)

The only term left to calculate is ∂vk(p)
∂pi

which is given by the solution to,

Qk(p)vk(p) = s. (C.7)
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Taking the implicit derivative of the above equation and solving for ∂vk(p)
∂pi

yields,

∂vk(p)
∂pi

= −Qk(p)−1∂Qk(p)
∂pi

vk(p). (C.8)

Then by combining (C.6) and (C.8) for all pi, suppressing the dependence on the variables
p, the gradient can be expressed as,

∇p(gk(p)) = (
∂gk
∂p1

,
∂gk
∂p2

, ...,
∂gk
∂pP

) = −ℜ{(vk − vk
out)

HG Q
−1

k V
k

p} (C.9)

where V
k

p is the following matrix,

V
k

p = (
∂Qk

∂p1
vk|∂Qk

∂p2
vk|∂Qk

∂p3
vk| . . . |∂Qk

∂pP
vk) (C.10)

This matrix can be solved for analytically if differentiable expressions for the admittance
matrix (Y-matrix) elements in Qk are available. Otherwise, it can be approximated using
finite-differences. The efficiency of calculating the gradient can be improved by observing
that the product on the RHS of (C.9), excluding V

k

p, forms a vector, λH
k , that can be solved

for independently,
λH

k = (vk − vk
out)

HG Q
−1

k (C.11)

Right multiplying both sides by Qk and taking the Hermitian transpose yields the adjoint
problem associated with the kth cost function in (C.1),

Q
H

k λk = G(vk − vk
out). (C.12)

Using (C.12), the adjoint variable λk can be calculated at the same cost as solving the for-
ward problem (C.7). Using (C.11) in (C.9) yields the following expression for the gradient
of the kth cost function,

∇p(gk(p)) = −ℜ{λH
k V

k

p} (C.13)

The expression (C.9) provides a means of obtaining the gradient of the kth cost function at
the computational expense of effectively two forward problem solutions. To form the full
gradient of (C.1) the gradient for each input-output pair, (C.13), is summed over k,

∇p(g(p)) = −
K∑
k=1

ℜ{λH
k V

k

p}. (C.14)

111



APPENDIX D

Additional Simulation and Measurement Results
for the Metastructured Beamformer

In this appendix additional plots for the performance of the positive and negative re-
fraction beamformers are provided. Plots of the normalized radiation patterns for each of
the excitations are shown for the beamformer exhibiting positive refractive behavior in Fig.
D.1a-D.1i and for the beamformer exhibiting negative refractive behavior in Fig. D.2a-
D.2i. These plots demonstrate that each of the beams are well formed with good agreement
in the main beam and first sidelobe for each beam.

Additionally, plots of the realized gain are shown for the beamformer exhibiting positive
refractive behavior in Fig. D.3a and for the beamformer exhibiting negative refractive
behavior in Fig. D.3b. The plots in Fig. D.3a show that the beams are well formed but
there is roughly 2.7 dB of loss in each of the beams when compared to the simulated results
for the positive refraction beamformer. The plots in Fig. D.3b show that the beams are well
formed but the gain is down by about 3.3 dB in each beam compared to the simulated
results for the negative refraction beamformer. However, the loss is difficult to determine
due to the fact that the measured and simulated directivities do not agree as well as they did
for the positive refraction case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure D.1: A comparison of the measured and simulated normalized co-polarized H-plane
radiation pattern for the positive refraction beamformer: (a) n = -4 (b) = -3 (c) n = -2 (d) n
= -1 (e) n = 0 (f) n = 1 (g) = 2 (h) n = 3 (i) n = 4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure D.2: A comparison of the measured and simulated normalized co-polarized H-plane
radiation pattern for the negative refraction beamformer: (a) n = -4 (b) = -3 (c) n = -2 (d) n
= -1 (e) n = 0 (f) n = 1 (g) = 2 (h) n = 3 (i) n = 4.
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(a)

(b)

Figure D.3: (a) Plot of the simulated and measured realized gain for the positive refraction
beamformer. (b) Plot of the simulated and measured gain for the negative refraction beam-
former.
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[25] A. Alù, “First-principles homogenization theory for periodic metamaterials,”
Phys. Rev. B, vol. 84, p. 075153, Aug 2011. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevB.84.075153

[26] R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative
permeability and left-handed metamaterials,” Phys. Rev. B, vol. 65, p. 144440, Apr
2002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.65.144440

[27] A. Shaltout, V. Shalaev, and A. Kildishev, “Homogenization of bi-anisotropic
metasurfaces,” Opt. Express, vol. 21, no. 19, pp. 21 941–21 950, Sep 2013. [Online].
Available: http://www.osapublishing.org/oe/abstract.cfm?URI=oe-21-19-21941

[28] D. M. Pozar, Microwave Engineering, 4th ed. John Wiley & Sons, Inc., 2011.

[29] G. A. Campbell, “Xxx. on loaded lines in telephonic transmission,” London, Edin-
burgh, Dublin Philos. Mag. J. Sci., vol. 5, no. 27, pp. 313–330, 1903.

[30] P. Johns and R. Beurle, “Numerical solution of 2-dimensional scattering problems
using a transmission-line matrix,” Proc. Inst. Electr. Eng, vol. 118, pp. 1203–
1208(5), September 1971. [Online]. Available: https://digital-library.theiet.org/
content/journals/10.1049/piee.1971.0217

[31] C. Caloz and T. Itoh, “Application of the transmission line theory of left-handed (lh)
materials to the realization of a microstrip ”lh line”,” in 2002 IEEE Antennas and
Propag. Soc. Int. Symp. (APSURSI), vol. 2, 2002, pp. 412–415 vol.2.

[32] A. Grbic and G. Eleftheriades, “A backward-wave antenna based on negative refrac-
tive index l-c networks,” in 2002 IEEE Antennas and Propag. Soc. Int. Symp. (AP-
SURSI), vol. 4, 2002, pp. 340–343 vol.4.

[33] V. Veselago, “The electrodynamics of substances with simultaneously negative values
of epsilon and mu,” Sov Phys Uspekhi, vol. 10, pp. 509–514, January 1968.

[34] G. Eleftheriades, A. Iyer, and P. Kremer, “Planar negative refractive index media
using periodically l-c loaded transmission lines,” IEEE Trans. Microw. Theory Tech.,
vol. 50, no. 12, pp. 2702–2712, 2002.

[35] A. Grbic and G. Eleftheriades, “Periodic analysis of a 2-d negative refractive index
transmission line structure,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2604–
2611, 2003.

118

https://doi.org/10.1063/1.4869655
https://link.aps.org/doi/10.1103/PhysRevB.84.075153
https://link.aps.org/doi/10.1103/PhysRevB.84.075153
https://link.aps.org/doi/10.1103/PhysRevB.65.144440
http://www.osapublishing.org/oe/abstract.cfm?URI=oe-21-19-21941
https://digital-library.theiet.org/content/journals/10.1049/piee.1971.0217
https://digital-library.theiet.org/content/journals/10.1049/piee.1971.0217


[36] K. Balmain, A. Luttgen, and P. Kremer, “Power flow for resonance cone phenomena
in planar anisotropic metamaterials,” IEEE Trans. Antennas Propag., vol. 51, no. 10,
pp. 2612–2618, 2003.

[37] D.-H. Kwon and C. D. Emiroglu, “Non-orthogonal grids in two-dimensional
transmission-line metamaterials,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp.
4210–4218, 2012.

[38] D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs
based on transformation optics,” Opt. Express, vol. 16, no. 23, pp. 18 731–18 738,
Nov 2008. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=
oe-16-23-18731

[39] C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization
control: Analysis and synthesis,” Phys. Rev. Applied, vol. 2, p. 044011, Oct 2014.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.2.044011

[40] J. P. S. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refract-
ing metasurfaces,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1293–1296,
2016.

[41] C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts
with reflectionless sheets,” Phys. Rev. Lett., vol. 110, p. 197401, May 2013. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.110.197401

[42] P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl,
Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength
metasurface focusing lens,” Opt. Express, vol. 22, no. 21, pp. 26 212–26 221,
Oct 2014. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=
oe-22-21-26212

[43] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso,
“Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength
resolution imaging,” Science, vol. 352, no. 6290, pp. 1190–1194, 2016. [Online].
Available: https://science.sciencemag.org/content/352/6290/1190

[44] Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine,
“Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,”
Nano Letters, vol. 18, no. 12, pp. 7529–7537, 2018, pMID: 30394751. [Online].
Available: https://doi.org/10.1021/acs.nanolett.8b03017

[45] D. González-Ovejero, G. Minatti, G. Chattopadhyay, and S. Maci, “Multibeam by
metasurface antennas,” IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 2923–2930,
2017.

[46] O. e. Quevedo-Teruel, “Roadmap on metasurfaces,” J. Opt., vol. 21, no. 7, p. 073002,
2019. [Online]. Available: https://doi.org/10.1088/2040-8986/ab161d

119

http://www.opticsexpress.org/abstract.cfm?URI=oe-16-23-18731
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-23-18731
https://link.aps.org/doi/10.1103/PhysRevApplied.2.044011
https://link.aps.org/doi/10.1103/PhysRevLett.110.197401
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-21-26212
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-21-26212
https://science.sciencemag.org/content/352/6290/1190
https://doi.org/10.1021/acs.nanolett.8b03017
https://doi.org/10.1088/2040-8986/ab161d


[47] O. Quevedo-Teruel, H. Chen, A. Dı́az-Rubio, G. Gok, A. Grbic, G. Minatti,
E. Martini, S. Maci, G. V. Eleftheriades, M. Chen, N. I. Zheludev, N. Papasimakis,
S. Choudhury, Z. A. Kudyshev, S. Saha, H. Reddy, A. Boltasseva, V. M.
Shalaev, A. V. Kildishev, D. Sievenpiper, C. Caloz, A. Alù, Q. He, L. Zhou,
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