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Abstract

Let K be a nonarchimedian local field with a ring of integers R and prime ideal p.

Let G be the group of K-points of a connected reductive algebraic group defined over

K with Lie algebra g. In one of DeBacker’s papers, he established a range of validity

for the Harish-Chandra–Howe local expansion for characters of admissible irreducible

representations of G under some conditions, and he established an analogous homo-

geneity result on the Lie algebra of G, again with some restrictions. These restrictions

are, essentially, restrictions on the characteristic of the residue field k of K. While

the hope of removing the characteristic restriction for G in general is not bright, in

the case where G = GLn we can be more positive. Our primary goal here is to move

towards a proof of a special type of case for a certain key step which plays a promi-

nent role for the homogeneity result of GLn without restrictions on the characteristic.

Finally, in the end, we provide a full written proof of the homogeneity result for GL3.

vii



CHAPTER I

Introduction

1.1 Introduction

1.1.1 Basic Notation

Suppose K is a nonarchimedian local field with ring of integers R and prime ideal

p =$R, where $ is a uniformizer. We will also let Fq ≃ R/p be the residue field. Let K̄

denote a separable closure of K and let Kun denote the maximal unramified extension

of K in K̄. We let vK denote a valuation on K normalized so that vK(K) = Z. We

fix an additive character, Λ, on K that is trivial on p and nontrivial on R.

Let G be a connected reductive group defined over K with Lie algebra Lie(G). Let

G = G(K) be the group of K rational points of G, and denote the Lie Algebra of G by

g. Since our main focus will be GLn, we will often abuse notation and not distinguish

between G and G.

The main focus of this paper is the general linear group GLn. For a commutative

ring S, we will denote by GLn(S) the set of n × n invertible matrices with entries in

S, and by Mn(S) the set of n × n matrices with entries in S. We will also denote by

Z the center of GLn(K), and by z the center of Mn(K) = gl(K).
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We will also use the floor function ⌊⋅⌋ and the ceiling function ⌈⋅⌉; when they are

applied to a number x, the floor function outputs the largest integer less than or

equal to x, and the ceiling function outputs the smallest integer that is greater than

or equal to x.

Let Ad be the Adjoint representation of G on g, and ad be the adjoint representation

of g on g inherited from Ad. For g ∈ G, X ∈ g, we will write gX for Ad(g)X. For

g ∈ G, S ⊆ g, we will set gS = {gX ∣X ∈ S}.

Suppose X ∈ g, we will denote the centralizer of X in G by CG(X), and the centralizer

of X in g by Cg(X).

Let X∗(G) denote the set of cocharacters or, to say, the set of 1−parameter subgroups

of G defined over K, and let X∗(G) denote the set of characters defined over K, so

X∗(G) = Hom(GL1,G)Gal(K̄/K) and X∗(G) = Hom(G,GL1)Gal(K̄/K). An element

X ∈ g is said to be nilpotent if there exists λ ∈X∗(G), such that limt→0
λ(t)X = 0, and

we will denote the set of nilpotent elements in g by N . Note that in the case of GLn,

N can be also defined as the set of all the elements in g for which the Zariski closure

of their G-orbits contains zero (see [Kempf (1978)]).

Let dg denote a fixed Haar measure on G, and let C∞
c denote the space of complex-

valued, locally constant, compactly supported functions on G. Suppose (π,V ) is an

admissible representation of G. That is, V is a complex vector space and for all

compact open subgroups K of G we have that V K , the space of K-fixed vectors in V ,

is finite dimensional. We let Θπ denote the distribution character of π, that is, the

map C∞
c → C given by Θπ(f) ∶= tr(π(f)), where π(f) is the operator on V given by

π(f)v ∶= ∫
G
f(g)π(g)vdg
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for v ∈ V .

When G is of rank r, we say an element g ∈ G is regular semisimple provided that

the coefficient of tr in (det(t − 1 + Ad(g))) is non zero, and we denote the regular

semisimple elements of G by Greg, similarly, we denote the set of regular semisimple

elements of g by greg.

Note that in this paper, we will make no assumption on the (prime) residual charac-

teristic of K.

1.1.2 Apartments, Bruhat-Tits building, and related notations

Let T be a maximal K-split torus in G and recall that there is a perfect pairing

<,>∶ X∗(T) ×X∗(T) → Z. Fix a minimal parabolic subgroup subgroup P∅ of G so

that T ⊆ P∅. Let T = T(K) and P∅ = P∅(K).

The choice of T, P∅, and G gives us:

• An irreducible reduced root system Φ = Φ(T,G) ⊂ X∗(T) ⊗ R. The parabolic

P∅ determines a basis ∆ and a set of positive roots to be denoted Φ
+
.

• A family of morphisms (Uα)α∈Φ such that for each ordering Φ
+ = (αi)i=1,2,...,n,

the natural map:

T × ∏
i=1,...,n

Ga

id×∏i=1,2,...n UαiÐÐÐÐÐÐÐÐÐ→ P∅

is an isomorphism.

• For each α ∈ Φ(T,G), n ∈ Z, we can define an affine root αn ∶ X∗(T) ⊗R → R

by the affine functional given by

αn ∶ v ⊗ r ↦ r < α, v > +n

3



and we will denote the set of affine roots by Φ = Φ(G,T, ν).

With the above definition, we can define the standard apartment A as X∗(T) ⊗Z R,

and the hyperplane Hψ ∶= {v ∈ A∣ψ(v) = 0} for ψ ∈ Φ. These hyperplanes partition

the apartment into facets, which are poly-simplicial. For any facet F ⊂ A, we will

denote by GF the parahoric attached to the facet F , and its pro-unipotent radical

will be denoted by G+
F . For x ∈ A, we will denote the parahoric subgroup as Gx, and

it pro-unipotent radical as G+
x. The quotient Gx,0 ∶= Gx/G+

x is the group of Fq-points

of a connected reductive Fq-group Gx.

One has the following theorem:

Theorem 1.1.1 (Goldman-Iwahori[Goldman and Iwahori(1963)],

Iwahori-Matsumoto[Iwahori and Matsumoto(1965)], Bruhat-Tits[Bruhat and Tits(1967)]).

One can associate a polysimplicial complex B(G) = B(G,K) to G, called the Bruhat-

Tits building of G, with the following properties:

1. There exists a proper continuous action of G on B(G) and ∀g ∈ G, the action

of g on B(G) is a polysimplicial isomorphism.

2. B(G) is contractable and finite dimensional.

3. B(G) is locally finite(i.e. each simplex is adjacent to finitely many neighbor

simplices).

When there is no possibility for confusion, let B denote the Bruhat-Tits building of G,

and we will refer readers to [BT1], [BT2] for further details. One of the more concrete

definitions is to define B as the set B(G,K) = G×A/ ∼, where the equivalence relation

is given by (g, x) ∼ (h, y) if there exists n ∈ NG(T ) such that nx = y and g−1hn ∈ Gx.
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1.1.3 Moy-Prasad Filtration

Following [Prasad and Moy(1994)], [Prasad and Moy(1996)], for each point x ∈ B(G,K),

we can associate a parahoric group Gx that is a subgroup of the stablizer of this point,

we also denote the Lie algebra of Gx by gx = gx,0.

Moy and Prasad then introduced filtrations of these parahoric groups denoted Gx,r

and gx,r for r ≥ 0. Note Gx,r ⊴ Gx,0 ∶= Gx and gx,r ⊴ gx,0.

Moreover, since Gx,s ⊆ Gx,r for s > r, we can define

Gx,r+ = ⋃
s>r
Gx,s, and gx,r+ = ⋃

s>r
gx,s,

and Gx,r+ is a normal subgroup of Gx,r. So it makes sense for us to consider quotient

groups. Specifically, recall that for r = 0, we have that

Gx,0 = Gx = Gx,0/Gx,0+

is the group of Fq points of a a reductive Fq-group Gx that is defined over the residue

field. For r > 0, we have the quotient groups given by

Gx,r/Gx,r+ ≅ gx,r/gx,r+ = gx,r.

Let (π,V ) denote an irreducible admissible representation of G, and we denote the

depth of the representation (π,V ) by

ρ(π) ∶= inf{r ∈ R≥0∣V Gx,r+ ≠ 0 for some x ∈ B(G)}.

5



For r ≥ 0, we define:

gr = ⋃
x∈B(G)

gx,r and Gr = ⋃
x∈B(G)

Gx,r

These objects have been well studied, and they are G-domains, which means that

they are G-invariant, open and closed subset of g (or G, respectively). Futhermore, if

we denote the set of nilpotent elements in g as N and the set of unipotent elements

in G as U , we have

gr = ⋂
x∈B(G)

gx,r +N and Gr = ⋂
x∈B(G)

Gx,r ⋅ U .

Similarly, we also define

gr+ = ⋃
x∈B(G)

gx,r+ and Gr+ = ⋃
x∈B(G)

Gx,r+

1.2 History and Introduction

In Howe’s paper [Howe(1973a)], he proposed two finiteness conjectures which are now

what people call Howe’s conjectures. One of them, which is Howe’s conjecture for the

Lie Algebra, states the following:

dimC resCc(g/L) J(ω) < ∞.

Here ω is any compactly generated, invariant and closed subset of g, J(ω) is the

space of invariant distributions on g supported on ω, and resCc(g/L) J(ω) denotes the

restriction of J(ω) to the subspace of C∞
c consisting of locally constant functions that

are translation invariant by the lattice L in g. Howe proved the conjecture for GLn

in the 1970s.
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On the other hand, Harish-Chandra proved that for an admissible representation

(π,V ) of G, the distribution character Θπ can be represented by a locally constant

function Fπ on the set of regular elements Greg, which is to say,

Θπ(f) = ∫
G
f(g)Fπ(g)dg, ∀f ∈ C∞

c (Greg).

Note that throughout this paper, we will abuse notation and denote both the distri-

bution character and the function representing it by Θπ.

Suppose now we have G = GLn(K) or K has characteristic zero and we have a nice

map e from g to G in a neighborhood of zero (we can take the exponential map in

the later case). Generalizing Howe’s work for GLn (in [Howe(1974)]), Harish-Chandra

showed (Theorem 16.3 in [Harish-Chandra et al.(1999)Harish-Chandra, DeBacker, and Sally ])

that Θπ is a linear combination of Fourier transforms of nilpotent orbits in a suffi-

ciently small neighborhood of zero in g, i.e. there exist constants cO(π) for each

nilpotent orbit O in g respectively, such that

Θπ(e(X)) = ∑
O∈O(0)

cO(π)µ̂O(X).

This asymptotic expansion is valid for all regular semisimple element X in the Lie

algebra of g that are sufficiently close enough to 0. Moreover, the sum here is taken

over the set of nilpotent orbits O in g, µ̂O is the locally constant integrable function

associated to the Fourier Transform of the orbital integral µO and the functions µ̂O

are independent of the representation. For GLn, the Fourier transform of f ∈ C∞
c is

defined by

f̂(X) = ∫
g
f(Y )Λ(tr(XY ))dY

where dY is a fixed G-invariant measure on g.

7



This asymptotic expansion is referred to as the Harish-Chandra-Howe local expan-

sion. Much information about the representation π can be obtained from the Harish-

Chandra-Howe local character expansion, both qualitatively and quantatively. For

example, when π is a discrete series representation, denoting the Steinberg Represen-

tation by St, we have the formal degree of π is given by (−1)rc0(π), where c0(π) =
(−1)r deg(π)

deg(St) is the zero orbit coefficient in the local character expansion and r is the split

rank of G overK([Harish-Chandra et al.(1999)Harish-Chandra, DeBacker, and Sally ]

and [Rogawski(1980)]).

At this point, a natural question arises. The expansion gives a qualitive result, and

does not mention the size of the neighborhood in g on which the local character

expansion is valid.

Since many questions in harmonic analysis in G will need a quantitive result, it

would be good to have more information about where the expansion is valid. A

conjecture of Thomas Hales, Allen Moy, and Gopal Prasad (at the end of §1 in

[Prasad and Moy(1994)]) states that the Harish-Chandra-Howe local character ex-

pansion should be valid on a region that depends on the depth, ρ(π), of the repre-

sentation π. For example, in the case where (π,V ) is of depth zero, it means that

there exists a parahoric subgroup H ⊆ G, such that V H+ ≠ {0}, where H+ is the

pro-unipotent radical of H.

Conjecture 1.2.1. (Hales-Moy-Prasad)

Given an irreducible admissible representation (π,V ) of G, the Harish-Chandra-Howe

local character expansion is valid on Greg⋂Gρ(π)+.

Under some hypothesis on the group and the base field, J.-L. Walspurger ([Waldspurger(1993)],

[Waldspurger(1995)]) proved this conjecture for integral depth representations of

“classical unramified groups.” Stephen DeBacker ([DeBacker(2002)]) verified the

8



conjecture for general G under some hypotheses.

1.2.1 Notation and the analogous conjectures

We let R be the ring of integers of K and $ a uniformizer so that p =$R where p is

the prime ideal.

We realize GLn(K) as the group of n × n invertible matrices with entries in K.

Moreover, we define A to be the diagonal subgroup of GLn(K).

We denote by g the Lie algebra of GLn(K), which is the vector space of n×n matrices

with the normal bracket operation, and we denote the nilpotent matrices in g by N .

Then we have that GLn(K) acts on N and we let O(0) denote the corresponding set

of nilpotent orbits.

Recall that B is the reduced Bruhat-Tits building of GLn(K), and let A ⊆ B be the

apartment associated to the torus A. Also, we associate to every x ∈ B and r ∈ R a

lattice gx,r, and for r ≥ 0, we associated a compact open subgroup Gx,r which, in the

case of GL(n,K), can be realized as Gx,0 = g×x,0 when r = 0 and Gx,r = 1 + gx,r for

r > 0. Note that $gx,r = gx,r+1 and gx,s ⊆ gx,r for s > r.

Conjecture 1.2.2. Recall that

gr = ⋃
z∈B(G)

gz,r = ⋂
y∈B(G)

(gy,r +N).

Consider Dr = ∑z∈B(G)Cc(g/gz,r), we conjecture that

resDrJ(gr) = resDrJ(N),

for GLn(K) in all characteristic and for r = 0,1/n, . . . , (n − 1)/n. Here J(ω), for

9



ω = N or gr, is defined to be the invariant distributions with support in the closed

G-invariant subset ω ⊂ G.

Conjecture 1.2.3. The stronger statement

resDr J̃r+ = resDrJ(N)

holds. Here, we denote

J̃x,s,r+ = {T ∈ J(g)∣∀f ∈ C(gx,s/gx,r+),gs+ ∩ supp(f) = Ø Ô⇒ T (f) = 0},

and

J̃r+ = ⋂
x∈B
⋂
s≤r
J̃x,s,r+ .

Note that J(N) ⊆ J̃r+.

10



CHAPTER II

Moy-Prasad Filtrations

2.1 Generalized r-facets

Recall that in subsection 1.1.3, we introduced the Moy-Prasad filtration subgroups

and lattices attached to a point x ∈ B(G) and r ∈ R≥0. We denoted them as

Gx,r ⊆ Gx,0 = Gx and gx,r ⊆ gx,0,

and we also defined

Gx,r+ = ⋃
s>r
Gx,s, and gx,r+ = ⋃

s>r
gx,s.

In this subsection we will partition the points in B into r-facets that are defined

in [DeBacker(2004)] using the information above, and we will give some of their

properties that will be used later.

Definition 2.1.1. For x ∈ B(G) and r ∈ R, we define a generalized r-facet by

F ∗(x) ∶= {y ∈ B(G)∣gx,r = gy,r and gx,r+ = gy,r+}

= {y ∈ B(G)∣Gx,∣r∣ = Gy,∣r∣ and Gx,∣r∣+ = Gy,∣r∣+}.

11



and we denote

F(r) ∶= {F ∗(x)∣x ∈ B(G)},

this is the set of generalized r-facets.

Moreover, since gx,r, gx,r+ , Gx,∣r∣, Gx,∣r∣+ depend only on the facet F ∗ that contains x,

if x ∈ F ∗ ∈ F(r) we can define

gF ∗ ∶= gx,r, g
+
F ∗ ∶= gx,r+

GF ∗ ∶= Gx,∣r∣, G
+
F ∗ ∶= Gx,∣r∣+

gF ∗,−r ∶= gx,−r, VF ∗ ∶= gx,r/gx,r+

Remark 2.1.2. Following [DeBacker(2004)], the generalized r-facets satisfy the fol-

lowing properties:

Given F ∗
1 , F

∗
2 ∈ F(r):

1.

NG(GF ∗1 ) ∩NG(G+
F ∗1

) = stabG(F ∗
1 ).

NG(gF ∗1 ) ∩NG(g+F ∗1 ) = stabG(F
∗
1 ).

2. If F ∗
1 ∩ F ∗

2 ≠ ∅, then

F ∗
1 ⊂ F ∗

2

.

3. If F ∗
1 ⊂ F ∗

2 ≠ ∅, then

g+F ∗1
⊂ g+F ∗2

⊂ gF ∗2 ⊂ gF ∗1

and

G+
F ∗1

⊂ G+
F ∗2

⊂ GF ∗2 ⊂ GF ∗1 .

12



2.2 Chain orders and fundamental strata

2.2.1 Lattices

Let V be a K-vector space of finite dimension n. An R-lattice in V is a finitely

generated R-submodule L of V such that the K-linear span KL of L is V .

In particular, we can find a K-basis {x1, x2, . . . , xn} of V such that

L =
n

∑
i=1

Rxi.

And, moreover, an R-lattice L is a compact open subgroup of V and the set of all

such lattices give a fundamental system of open neighbourhoods of 0 in V .

More generally, we can define a lattice in V to be a compact open subgroup of V ,

and for any lattice L, we can always find R-lattices L1 and L2 such that L1 ⊆ L ⊆ L2.

Note that in the case that this note is going to be dealing with, we have that GLn(R) ⊆

GLn(K) is the unique, up to GLn(K)-conjugacy, maximal compact open subgroup

of G.

2.2.2 Lattice Chain

We now can define R-lattice chains. Take V =Kn, then we have that G = GLn(K) =

AutK(V ) and that g = EndK(V ) = gln(V ).

Now define an R-lattice chain to be a non-empty set L consisting of R-lattices in

V that is linearly ordered under inclusion and is stable under multiplication by K×.

13



Moreover, we can enumerate the elements of L such that

L = {Li ∶ i ∈ Z}, Li ⊋ Li+1,

and, furthermore, the stability condition implies that there exist an integer eL such

that xLi = Li+eL∗vK(x) for all i ∈ Z and x ∈K×.

Moreover, lattice chains are relatively easy to completely describe, as we can exhaust

all the cases through direct computation.

We have the following proposition.

Proposition 2.2.1. (See [Bushnell and Kutzko(1993)]) Let L = {Li}i∈Z be an R−lattice

chain in V = Kn. Defining eL to be the integer such that Li+eL = Li for any Li ∈ L,

then we have that eL can be taken from 1,2, . . . n, and, moreover, we can categorize

all the lattice chains up to a left action of g ∈ G for some g, so that the equivalence

classes bijectively correspond to the partitions of n.

Example 2.2.2. In the case of GL3, there are only three partitions up to left actions.

Therefore, there are only three types of lattice chains of interest.

1. [1,1,1].

A lattice chain that corresponds to this partition is

L = {. . . ⊆ [
p
p
p
] ⊆ [Rp

p
] ⊆ [RR

p
] ⊆ [RR

R
] ⊆ . . .}

2. [2,1].

A lattice chain that corresponds to this partition is

L = {. . . ⊆ [
p
p

p2
] ⊆ [Rp

p
] ⊆ [RR

p
] ⊆ . . .}.
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3. [3].

A lattice chain that corresponds to this partition is

L = {. . . ⊆ [
p
p
p
] ⊆ [RR

R
] ⊆ . . .}.

Definition 2.2.3. By inclusion, we can form a partially ordered set with all chains

of lattices in V , which we will denote as ∆̂.

Moreover, we will denote a frame of V to be a collection of < vi >, the 1-dimensional

K-subspaces spanning V , where i ∈ {1,2, . . . , n}. Moreover, we denote the subcomplex

Σ̂(v1, . . . , vn) to be the set of all chains with (v1, . . . , vn) as basis.

Note that it is well known that ∆̂ is an affine building of GLn(K), with the system of

apartments given by Σ̂(v1, . . . , vn) that runs through all frames of V , and one can asso-

ciate the facets of the affine building with the lattices[Garrett(1997)][Bruhat and Tits(1984)].

Moreover, the stablizer group of a lattice chain L contains a maximal (in the stabilizer)

parahoric subgroup, and we denote this parahoric by gL.

Up to conjugacy there are only three conjugacy classes of gL:

1. g[3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R R R

R R R

R R R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∩GL3(K).

2. g[2,1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R R R

R R R

p p R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∩GL3(K).
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3. g[1,1,1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R R R

p R R

p p R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∩GL3(K).

One can furthermore associate the barycenters of these facets of the affine building

with the lattices and we can write down the Moy-Prasad filtration subgroups of these

points, we denote these subgroups by gL,r and gL,r+ .

[3] [2,1] [1,1,1]
0 [R R R

R R R
R R R

] [R R R
R R R
p p R

] [
R R R
p R R
p p R

]

0+ [
p p p
p p p
p p p

] [
p p R
p p R
p p p

] [
p R R
p p R
p p p

]

1/3+ [
p p R
p p p

p2 p p
]

1/2+ [
p p p
p p p

p2 p2 p
]

2/3+ [
p p p

p2 p p

p2 p2 p
]

Table 2.1: (gl3)x,r, x in the standard alcove.

We exhibit the Moy-Prasad filtration lattices gx,r for GL3, up to translation by w̃ and

conjugation, in the following figure. The figure illustrate how the lattices gx,r vary as

x and r vary for x near 0.

Since the apartment to which x belongs to can be interpreted as a copy of R2, we

can thus present the figure as a picture in R3. Here the dotted hyperplanes are the

graphs of r = α(x) for an affine root α ∈ Ψ. We only present five cross sections here

corresponding to r = 0, 1
3 ,

1
2 ,

2
3 .

The hyperplanes here divide R3 into polyhedrons, and we color the polyhedrons that

corresponds to different lattices with different colors.
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r=0

r=1/3

r=1/2

r=2/3

r=1

Figure 2.1: (gl3)x,r, x in the standard alcove.
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2.2.3 Waldspurger type result

Recall thatDr+ ∶= ∑x∈B(G)Cc(g/gx,r+). We defineDr
r+ ⊂Dr+ byDr

r+ ∶= ∑x∈B(G)Cc(gx,r/gx,r+).

The main result of this thesis is, either (1) under a specific conjecture or (2) in the

case of GL3:

Theorem 2.2.4. For GLn(F ), resDr+ J̃r+ = resDr+ J(N).

More specifically, this result follows from the statements below:

1. resDr+ J̃r+ is completely determined by resDr
r+
J̃r+.

2. dimC(resDr+)J̃r+ ≤ ∣O(0)∣.

Proof. We assume that (1) and (2) hold to show the main statement holds.

Since (1) and (2) are true, we have

∣O(0)∣ = dimC(resDr+J(N)) ≤ dimC resDr+ J̃r+ ≤ dimC resDr
r+
J̃r+ ≤ ∣O(0)∣.

where the first equality is true thanks to Howe [Howe(1974)]. The second equality

follows from the fact that J(N) ⊂ J̃r+ and the other two inequalities follow from (1)

and (2) respectively.

Since J(N) ⊂ J̃r+ , this forces the inequalities to be equalities and we have our desired

result: resDr+ J̃r+ = resDr+ J(N).
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CHAPTER III

Homogeneity result

3.1 Descent and recovery

3.1.1 Nice Elements

To prove Theorem 2.2.4, we first state and prove several results that we will use in

the proof of the theorem.

Recall that our choice of G is GLn and thus g = gln =Mn(K).

Given x ∈ B(G) and s ∈ R, we define gx,s,s+ = gx,s ∖ gx,s+ . Moreover, for r ≥ 0, and

X ∈ gx,r,r+ ∩N , there is a maximal K-split torus T and λ ∈X∗(T ) such that x ∈ A(T )

and λ(t)X → 0, where X is the image of X in gx,r/gx,r+ and λ is the image of λ in

X∗(T0/T +
0 ) ⊆X∗(Gx,0). Let Φ(T ) denote the affine roots of G with respect to T and

the valuation v. Recall that Φ(T ) denotes the roots of G with respect to T .

We define the set of affine roots of level r with respect of x, by Φ(T, r, x) = {ψ ∈

Φ(T ) ∣ ψ(x) = r}. Moreover, since G = GLn, we can, without lost of generality, fix

the torus T to be the group of diagonal elements in GLn(K). We then have that the
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set of simple roots is given by

∆ = {α1, α2, . . . , αn−1} where αj(Diag(a1, . . . , an)) =
aj
aj+1

.

Let x0 be the vertex in A such that Gx0,0 = GLn(R). With this notation, a basis for

Φ(T ) is given by {α1 + 0, α2 + 0, . . . , αn−1 + 0,−h+ 1}, where h = ∑n−1
i=1 αi is the highest

root. We denote the elements of this basis by ψ1, ψ2, . . . , ψn where

ψi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αi + 0 0 < i < n

−h + 1 i = n
,

and ψi(x0) = 0 for 0 < i < n and ψn(x0) = 1.

We denote by C̊ the open hull of the fundamental alcove in GL(n) defined by this

choice of simple basis. That is, C̊ is, as a set, {x ∣ ψi(x) > 0, ∀i ∈ {1,2, . . . , n}}. Note

that x0 is in the closure of C̊.

Definition 3.1.1. For W ∈ gx,r, denote by W the image of W in gx,r/gx,r+, which we

identify in the natural way with a vector subspace of Mn(Fq). We can then define

r∗(W ) ∶= rank(W ) = rankFq(W ). Let also n∗(W ) denote the number of non-zero

entries in the matrix representation of W .

Remark 3.1.2. Note that if X ∈ gx,r ∩ N , then 0 ≤ r∗(X) < n. Now we define an

element M ∈ gx,r to be nice provided that r∗(X) = n∗(X). For a nice matrix M ,

there is at most one nontrivial entry in each column or row of M .

Proposition 3.1.3. Suppose X ∈ N ∩gx,r, where x is in C̊. Then X is nice. In other

words, X does not have more than one non-zero entry in any row or column.

We need some preliminary work before proving Proposition 3.1.3.

Proposition 3.1.4. If x ∈ C̊, then ∣Φ(T,x, r)∣ ≤ n.
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Proof. Suppose there are n+ 1 elements in Φ(T,x, r), which we denote by φi where i

runs from 1 to n + 1. Without loss of generality, we may assume 0 ≤ r < 1.

Since a basis for Φ(T ) is given by {ψi}i=1,2,...n and 0 ≤ r < 1, we have φi = ∑n
j=1αi,jψj

for some αi,j ∈ {0,1}.

Moreover, since φi has φ̇i ∈ Φ(T ), we have that ∃ka,i, kb,i ∈ Z such that 1 ≤ ka,i ≤ n

and ka,i ≤ kb,i ≤ 2n, and αi,ka,i = αi,ka,i+1 = . . . = αi,kb,i = 1, and αi,j = 0 otherwise. Here

k ∈ {1,2,3, . . . , n} is congruent to k mod n.

For example, consider the case φi = ψ1 + ψ3 for GL3. Then kl,i = 3 and kr,i = 4 in this

case.

To complete the proof, it will be enough to show that if there exist φi1 , φi2 ∈ {φ ∈

Φ(T ) ∣ φ(x) = r} with ka,i1 = ka,i2 , then φi1 = φi2 .

If φi1 = φi2 , there is nothing to prove. So suppose φi1 ≠ φi2 .

We know that for for some t ∈ Z ∩ [1, n], φi1 = ∑n
j=1αi1,jψj and φi2 = ∑n

j=1αi2,jψj,

with αi1,t ≠ αi2,t. Since we are assuming kb,i1 ≠ kb,i2 , without loss of generality, we can

assume kb,i1 < kb,i2 , and then

φ̃ = φi2 − φi1 =
n

∑
j=1

βjψj,

with βj ≥ 0 for all j ∈ {1,2, . . .} and

φ̃(x) = (φi2 − φi1)(x) = φi2(x) − φi1(x) = r − r = 0.

Since x is in C̊, we have ψj(x) > 0 for all j ∈ {1, . . . , n} and therefore, βj = 0 for all

j ∈ {1, . . . , n}.

Corollary 3.1.5. If φ1, φ2, . . . , φm ∈ Φ(T, r, x) are distinct, then m ≤ n.
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We actually know more than the above. Using the same idea as above, we prove:

Proposition 3.1.6. Recall the definition of kb,i in the proof of Proposition 3.1.4. If

∃i1, i2 ∈ Z, such that for φi1 , φi2 ∈ {φ ∈ Φ(T ) ∣ φ(x) = r} we have kb,i1 = kb,i2, then

φi1 = φi2.

Proof. If φi1 = φi2 , there is nothing to prove. So suppose φi1 ≠ φi2 , we know that

αi1,t ≠ αi2,t for some t ∈ Z ∩ [1, n], and thus since kb,i1 = kb,i2 , we conclude that

ka,i1 ≠ ka,i2 .

Without lost of generality, we can assume ka,i1 > ka,i2 , and then

φ̃ = φi2 − φi1 =
n

∑
j=1

βjψj,

with βj ≥ 0 for all j ∈ {1,2, . . .} and

φ̃(x) = (φi2 − φi1)(x) = φi2(x) − φi1(x) = r − r = 0.

Since x ∈ C̊, we have ψj(x) > 0 for all j ∈ {1, . . . , n} and therefore, βj = 0 for all

j ∈ {1, . . . , n}.

Corollary 3.1.7. Suppose x is in C̊. Recall from the proof of Proposition 3.1.4 that

for φi = ∑n
j=1αi,jψj ∈ Φ(T, r, x), there exists ka,i, kb,i ∈ Z such that 1 ≤ ka,i ≤ n and

ka,i ≤ kb,i ≤ 2n, and αi,ka,i = αi,ka,i+1 = . . . = αi,kb,i = 1, and αi,j = 0 otherwise. Suppose

Φ(T, r, x) = {φ1, φ2, . . . , φm} and to each φk ∈ Φ(T, r, x) we denote the associated root

group by Rφk . Then for all X ∈ gx,r,r+, we can write X = ∑m
k=1Xφk mod gx,r+, where

Xφk ∈ Rφk ∩ gx,r.

The set {Xφk} defines a set of pair of integers by (ik, jk) ∶= (ka,k, kb,k mod n). Given

k, k′ ∈ {1,2, . . . , n}, we have
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• ik = ik′ Ô⇒ φk = φk′.

• jk = jk′ Ô⇒ φk = φk′.

Example 3.1.8. Let us consider an example of the case where x ∈ C̊ is in a sufficiently

small ε1 neighborhood of the origin of A(T ). We have gx,0 = gx,ε2 = [
p R R
p p R
p p p

] and

gx,ε+2 ≠ [
p R R
p p R
p p p

], for some small ε2 > 0.

Since x ∈ C̊, there are only three possibilities for what gx,ε+2 can be. gx,ε+2 = [ p p R
p p p
p p p

]

or gx,ε+2 = [ p R R
p p p
p p p

] or gx,ε+2 = [
p p R
p p R
p p p

], thus gx,ε2,ε+2 = [
0 R∖p 0
0 0 R∖p
0 0 0

] + gx,ε+2 or gx,ε2,ε+2 =

[ 0 R∖p 0
0 0 0
0 0 0

] + gx,ε+2 or gx,ε2,ε+2 = [ 0 0 0
0 0 R∖p
0 0 0

] + gx,ε+2 respectively.

Since X ∈ N ∩ gx,ε2,ε+2 , we see that X will have to satisfies the conclusion of Corol-

lary 3.1.7.

We can now prove Proposition 3.1.3:

Proof. By Corollary 3.1.7 we have that for X ∈ N ∩ gx,r,r+ , where x is in C̊, X is a

nice matrix, and we can thus assume our X is nice.

3.1.2 Descent and Recovery

Now that we have the above results, we may proceed dealing with only the nice

elements X.

Proposition 3.1.9. Suppose x is in C̊ and X is a nice nilpotent element X = ∑φXφ

in gx,r/gx,r+, with each Xφ /∈ gx,r+ for φ ∈ Φ(T, r, x) and Xφ ∈ Rφ, the root group

corresponding to φ.

There’s a way to define a one parameter subgroup λ of a torus T such that:
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(a) we have that < λ,φ >= 2 for the φ occurring in the sum,

(b) Suppose ψ ∈ Φ(T ), the set of affine roots of G with respect to T and v. If ψ(x) > r,

Yψ ∈ gψ ∖ gψ+ and < λ,ψ >> 0, then there exists C ∈ gx,0+ such that [C,X] = Yψ

mod gψ+.

Note that this is equivalent to the statement that if < ψ̇, λ >> 0, gψ ∖ gψ+ ⊂

[X,gx,0+] ∖ gx,ψ+ ⊆ gx,r+.

Before starting the proof, I want to define a more general version of Jordan block

notation that will be used in the proof of the main proposition.

Definition 3.1.10. Given X a nice nilpotent matrix in Mn(K), we can define a

Jordan chain as follows:

Consider the space Kn, where K is the base field. For t ∈ N, we define

kert(X) = {v ∈Kn∣X t(v) = 0}

and we let dt denote the dimension of kert(X). We know that kera(X) ⊆ kerb(X) if

a ≤ b and we have a chain V of vector space maps of length L ≤ n, where L is the

minimum integer k such that Xk = 0:

0↪ ker1(X) ↪ ker2(X) ↪ . . .↪ kerL−1(X) ↪ kerL(X) ≅Kn.

Note that for A ∈ kera(X) ∖ kera−1(X), we have X(A) ∈ kera−1(X) ∖ kera−2(X).

We look at sub-filtrations U of V of the form {0} = U0 ⫋ U1 ⫋ . . . ⫋ Us such that

for 1 ≤ t ≤ s we have Ut ⊆ kert(X), Ut/Ut−1 ≃ K, and X(Ut+1) = Ut. We also

require that each Ut be spanned by a t element subset of the standard basis of Kn,

denoted by Ut = span < ewt , . . . , ew1 >. We call such a sub-filtration U a Jordan chain

provided that the only sub-filtration of V that contains U and has these properties
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is the chain U itself. We can associate to the sub-filtration U the ordered datum

[U] = [w1,w2, . . . ,ws], note that the wi are positive integers.

Remark 3.1.11. There will be at most finitely many Jordan chains associated to X,

and thus we can enumerate them as U1,U2,U3, . . . ,UM(X).

With this definition, we can associate to any integer N ∈ {1,2 . . . , n} a unique Jordan

Chain U i indexed by i ∈ I = {1,2, . . . ,M(X)} ⊂ N, with length si, and a unique

c ∈ {1,2, . . . , si}, such that N = wi,c ∈ [U i].

Note that if X happens to be in Jordan block form, then the set of Jordan chains is

giving us exactly the same information that the Jordan blocks of X carry.

Moreover, we can associate a Young tableau to a Jordan Chain of the matrix X.

A Young tableau is a Young diagram of size n filled with integers in the range

{1,2, . . . , n}. We fill the i-th row of the Young Tableau with datum [U i] in order, as

illustrated in the following example.

Example 3.1.12. Suppose

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that, in this case, there are only two Jordan chains, namely [U1] = [1,2,3,4,5,6]

and [U2] = [7], which correspond to the two Jordan Blocks. We also have w1,1 = 1,

w1,2 = 2, w1,3 = 3, w1,4 = 4, w1,5 = 5, w1,6 = 6 and w2,1 = 7.
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Recall that every Jordan block can be denoted Jλ,d where d is its dimension, and λ is

the corresponding eigenvalue. We can denote the Jordan block that corresponds to

U1 by J0,6 =
⎡⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎦
and the one that corresponds to U2 by J0,1 = [ 0 ].

In this case, the corresponding Young Tableau is:

1 2 3 4 5 6

7

Example 3.1.13. Suppose

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 $ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that there is only one Jordan chain here, namely the chain attached to the

datum [1,3,5,2,4].

In this case, the corresponding Young Tableau is:

1 3 5 2 4
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Example 3.1.14. Suppose

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 $ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that, there are two Jordan chains here, namely [U1] = [1,3,5] and [U2] =

[6,2,4]. Note that we also have [U2] is not [4,2,6] as order matters in the definition,

and ker1(X) = span < e1, e6 >. We also have:

w1,1 = 1, w1,2 = 3, w1,3 = 5, and w2,1 = 6, w2,2 = 2, w2,3 = 4.

In this case, the corresponding Young Tableau is:

1 3 5

6 2 4

Definition 3.1.15. Fix X that is nice. From X we have Jordan chains [U i] =

[wi,1, . . . ,wi,si] for i ∈ I = {1,2, . . .M(X)} with ∑k
i=1 sk = n. Recall that for each

N ∈ {1, . . . , n}, we can associate a unique i ∈ I and a unique c ∈ {1,2, . . . , si} such that

N = wi,c.

We use this to define λ = (λ1, . . . , λn) ∶ GL1 →Diagn ↪ GLn by

λj(t) = λwi,c(t) = tsi−2c+1
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for 0 ≤ j ≤ n.

Example 3.1.16. Suppose

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 $ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The λ that is associated to this element is

λ ∶ t↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t4 0 0 0 0

0 t−2 0 0 0

0 0 t2 0 0

0 0 0 t−4 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There is only one Jordan chain here, namely the one with associated datum [1,3,5,2,4],

and thus λ(t) = Diag[t4, t−2, t2, t−4,0], ∑M(X)
k=1 sk = s1 = n = 5.

Example 3.1.17. Suppose

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 $ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The λ that is associated to this element is

λ ∶ t↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 t−2 0 0

0 0 0 0 t−2 0

0 0 0 0 0 t2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that here there are two chains, namely [1,3,5] and [6,2,4], and we have that

n = 6 = s1 + s2 = 3 + 3.

We now prove Proposition 3.1.9.

Proof. Since X is a nice nilpotent element, we can define λ using Definition 3.1.15.

By the definition of λ, we have < λ,φ >= 2. This proves (a).

Fix ψ ∈ Φ(T ) such that < λ,ψ >> r.

Since X is a nice nilpotent element, we can denote X = [Xi,j], where

Xi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u$v(gx,r,i,j) u ∈ R× and i = wĩ,c, j = wĩ,c+1

for some ĩ ∈ I = {1,2, . . .M(X)} and wi,c ≠ wi,c+1,

0 else.

Here v(gx,r,i,j) ∶=min({v(Xi,j) ∣X ∈ gx,r}).
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We will now prove (b): Take C = ∆i,j = [akl], where

akl =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

$⌊ψ(x)−r⌋ i = k, j = l

0 else

and we are going to prove that, fixing Yψ ∈ gψ ∖gψ+ , we can find C such that [C,X] =

Yψ.

Without loss of generality, this is equivalent to the following claim: For any Q ∈

{1,2, . . . , n}, let ΛQ = ordt(λ(t)Q,Q) ∈ Z, the order of the Q-th diagonal entry of λ(t).

Now, for any O,P ∈ {1,2, . . . , n}, if ΛO−ΛP > 0, then there exists a matrix C that is in

the form ∆i,j such that [C,X]`,m ≠ 0 if and only if ` = O and m = P . Moreover, if the

gradient of ψ corresponds to the root space indexed by (O,P ), then [C,X] ∈ gψ ∖g+ψ.

To prove this claim, we first prove two lemmas.

Lemma 3.1.18. If C = ∆i,j, then using the notation δf,g =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 f = g

0 else

, we have that

[C,X]O,P =$⌊ψ(x)−r⌋(δi,OXj,P −XO,iδP,j)

for 1 ≤ O,P ≤ n.

Proof. Since C = ∆i,j from the definition of X we have,

[C,X]O,P = ∑
m

(CO,mXm,P −XO,mCm,P )

= CO,jXj,P −XO,iCi,P .

The result follows.
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Recall that for any N ∈ {1,2, . . . , n} we can find appropriate i, c, so that N = wi,c. Now

we denote i by iN and c by cN so we can denote ΛO = siO−2cO+1 and ΛP = siP −2cP +1,

but then since ΛO > ΛP , we have that siO − 2cO + 1 > siP − 2cP + 1 ⇐⇒ siO − siP >

2(cO − cP ). Notice that here we have 1 ≤ cO ≤ siO and 1 ≤ cP ≤ siP .

Lemma 3.1.19. Suppose 1 ≤ O,P ≤ n and ΛO > ΛP . We have O ≠ wiO,siO or

P ≠ wiP ,1.

Proof. Suppose we have O = wiO,siO for some iO ∈ I and P = wiP ,1.

Recall that for each N ∈ {1, . . . , n}, we can associate i ∈ I, c ∈ {1,2, . . . , si}, such that

N = wi,c, and ΛN = Λwi,c = si − 2c + 1.

Therefore, we have ΛO = siO − 2siO + 1 = 1 − siO and ΛP = siP − 2 + 1 = siP − 1, and so

we have 1 − siO ≤ 0 ≤ siP − 1 since sĩ > 0 for all ĩ ∈ I, and thus a contradiction of the

assumption ΛO > ΛP .

We complete the proof of Proposition 3.1.9:

Note that since X is nice, to show that [C,X]`,m ≠ 0 if and only if ` = O and m = P ,

it is enough to show that [C,X]O,P ≠ 0. As a result of Lemma 3.1.19, either Xj,P ≠ 0

or XO,i ≠ 0 for some i and j. So we can take C = ∆wiO,cO+1,P in the first case and

C = ∆O,wiP ,cP −1 in the second case. Since XO,i ≠ 0 in the first case and Xj,P ≠ 0 in the

second case, we conclude that [C,X]O,P ≠ 0. The element C has been chosen so that

[C,X]O,P lies in the proper lattice.
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Example 3.1.20. Let’s go back to one of the examples above:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 $ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall that we can define the λ that is associated to this element by

λ ∶ t↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t2 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 t−2 0 0

0 0 0 0 t−2 0

0 0 0 0 0 t2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

And we will have the weight spaces:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 4 4 0

−2 0 0 2 2 −2

−2 0 0 2 2 −2

−4 −2 −2 0 0 −4

−4 −2 −2 0 0 −4

0 2 2 4 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Recall that here are two chains, namely [1,3,5] and [6,2,4]. Note that if

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 a b 0 0 ew−1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 d4 c 0

0 0 0 d d5 0

f g h 0 0 d6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then we have

[C,X] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e d1 a b 0

0 0 0 −d4 −c 0

0 0 0 −d −d5 0

0 0 0 0 0 0

0 0 0 0 0 0

0 d6w f g h 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, by choosing the entries of C in the appropriate lattices in K, we can recover

gψ for all ψ ∈ Φ for which ψ(x) > r and ⟨ψ̇, λ⟩ > 0.

Now that we proved Proposition 3.1.9, we may now prove a version of descent and

recovery and then prove the theorem.

We begin by unraveling the definitions.

Let us consider f ∈Dr+ with f = ∑i fi where fi ∈ CC(g/gxi,r+). Using the linearity of T ,

without loss of generality, we can assume f ∈ CC(g/gx,r+) for some x ∈ B(G). We can

then write f = ∑Z∈g/gx,0+
cZ[Z + gx,0+], where we have [Z + gx,0+] is the characteristic

function on the corresponding cosets and all but finitely many cZ = 0. Since T is

linear, we can assume, without loss of generality, that f ∶= [Z + gx,r+].
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Now that Z + gr,r+ ⊂ gx,s ∖ gx,s+ , for some s < r. Since we have T ∈ resD+
0
J̃0+ , we have

T (f) = 0 if supp(f) ∩ (gx,s+ +N) = ∅, and thus T (f) = 0 unless (Z + gr,s+) ∩N ≠ ∅.

Therefore, without loss of generality, we may assume Z =X + Y with X ∈ N ∩ (gx,s ∖

gx,s+) and Y ∈ gx,s+ .

Theorem 3.1.21. (Descent and Recovery) Given G = GLn. Recall that we have

x ∈ B(G), and x is in the interior of the standard alcove. Suppose s < r. Suppose

X ∈ N ∩ (gx,s ∖ gx,s+). In the case where X is nice, there exists λ ∈ Xk
∗(S) such that

for all sufficiently small ε > 0 we have:

1. X ∈ gx+ε⋅λ,s+ for sufficiently small ε > 0.

2. ∀Y ′ ∈ gx,s+, X + Y ′ + gx+ελ,r+ ⊂ Gx,r−s(X + Y ′ + gx,r+).

Remark 3.1.22. Notice that we know that X is nice from Proposition 3.1.3, thus we

know that the result holds for the interior of the fundamental alcove C.

Proof. From the definition of the Moy-Prasad lattices, for sufficiently small ε > 0, we

have gx,s+ ⊂ gx+ε⋅λ,s+ . Choose λ as in Proposition 3.1.9. Note that X = ∑φXφ and

< λ,φ >= 2 for all such φ, and we have

φ(x + ε ⋅ λ) = φ(x) + ε⋅ < φ̇, λ >= s + 2ε > s.

Therefore, we have X ∈ gx+ε⋅λ,s+ for ε > 0.

For the second statement, we know by definition that Gx,(r−s)Y ′ ⊂ Y ′ + gx,r+ . We now
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take C ∈ gx,r−s, 1 +C ∈ Gx,r−s, and compute

1+CX = (1 +C)X(1 −C +C2 −C3 + . . .)

= 1 + [C,X] + (X,C2) + . . .

≡ 1 + [C,X] mod gx,r+

Thus it suffices to show X + gx+ε⋅λ,r+ ⊂X + [X,gx,r−s] + gx,r+ .

By Proposition 3.1.9, we have that if φ ∈ Φ(x, r), and φ(x + ε ⋅ λ) = r + 2ε > r ⇐⇒ <

φ̇, λ >> 0, then X + gφ ⊂ X + [X,gx,r−s]. Since φ(x + ελ) > r if and only if ⟨φ,λ⟩ > 0,

we conclude

X + gx+ε⋅λ,r+ ⊂X + [X,gx,r−s] + gx,r+

as needed.

Conjecture 3.1.23. Theorem 3.1.19 holds not only for x such that x is in the open

hull of the standard alcove C̊, but also for x on the boundary of C.

If Conjecture 3.1.23 holds, then we can replace Lemma 2.3.1 in [DeBacker(2002)] with

this conjecture, and, with the same proof developed in section 2.4 in [DeBacker(2002)],

one can show that resDr+ J̃r+ is completely determined by resDr
r+
J̃r+ . Thus one can

complete the proof of Theorem 2.2.4, which is the desired homogeneity result.

3.2 Homogeneity Results for GL3

We will prove the complete homogeneity result in the case of GL3.

The study of homogeneity for GL3 was initiated by Stephen DeBacker in his Ph.D.

thesis [DeBacker(1997)]. However, few details were provided. I will fill in the details
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that are not in his thesis.

3.2.1 Conventions and notation for Section 3.2

We adopt the following notation and conventions.

We will consistently use u, v to denote elements that are from R×.

Let Tm denote the subgroup of T where each diagonal entry lies in 1 + ℘m. For

1 ≤ i ≠ j ≤ 3 and m ∈ Z we let Uij(℘m) denote the subgroup of GL3 consisting of

matrices with entries from ℘m in the ijth entry, ones on the diagonal, and zeros in all

other entries. For example, U21(℘m) is the group consisting of matrices of the form

[ 1 0 0
z 1 0
0 0 1

] with z ∈ pm.

We use the following computation frequently during the process, and we record it

here to reduce the length of the exposition.

For a ∈ R, b ∈ R, and m ∈ Z>0 we have

1 +$ma

1 +$mb
mod $m+1 = (1 +$ma)(1 −$mb) mod $m+1

= 1 + (a − b)$m mod $m+1.

3.2.2 Two results

There are two propositions that we need to prove before discussing the calculation

phase of our proof.

Proposition 3.2.1. For G = GLn, resDr J̃r+ = resDr+ε J̃r+ε+ and resDr
r+
J̃r+ = resDr+ε

r+ε+
J̃r+ε+

unless r = k
m , where k,m,n ∈ Z and 0 ≤ k < m < n, where in the case of GL3, these r

values are from {0, 1
3 ,

1
2 ,

2
3}.

36



Proof. We want to first simplify the problem, so that the only points we have to

consider are the barycenters of the facets.

Proposition 3.2.2. Without loss of generality, resDr
r+
J̃r+ can be determined by look-

ing at functions supported at barycenters.

Proof. Let us first recall the definition of optimal points. To our fixed alcove C ⊂

A(T ), we can associate a basis ΣC of our affine roots Φ by

ΣC = {ψ ∈ Φ ∣ ∀x ∈ C,0 ≤ ψ(x) ≤ 1}.

Given any nonempty subset Ξ ⊂ ΣC , we define the function fΞ∶C → R, by fΞ(x) =

min{ψ(x)∣ψ ∈ Ξ}. Then the set of optimal points in C are the set of points

{xΞ ∈ C ∣ ∅ ≠ Ξ ⊂ ΣC and fΞ attains its maximum value at xΞ }.

Recall that by Moy and Prasad [Prasad and Moy(1996)], the set

O ∶= {x ∈ C ∣x is the barycenter of a facet}

is the set of optimal points in the case of type An. Moreover, for z ∈ C and r ∈ R

there exists x, y ∈ O, such that gx,r ⊂ gz,r ⊂ gy,r and gx,r+ ⊃ gz,r+ ⊃ gy,r+ , which means

gr = ⋃x∈O(Ggx,r) and gr+ = ⋃x∈O(Ggx,r+). It also means

Dr+ = ∑
z∈G⋅O

Cc(g/gz,r+)

and

C(gz,r/gz,r+) ⊂ C(gy,r/gy,r+).
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Since for GLn we have that the set O is in bijective correspondence with the set of

optimal points, we have that resDr
r+
J̃r+ and resDr+ J̃r+ can be determined by looking

at functions supported at the barycenters of the facets of C.

Since gx,r ≠ gx,r+ for x that are barycenters of facets only if r = k
m , where k,m,n ∈ Z

and 0 ≤ k <m < n, Proposition 3.2.1 follows.

3.2.3 On depth r = 0+

We will begin our discussion with the case where r = 0.

Proposition 3.2.3.

resD0+ J̃0+ = resD0
0+
J̃0+ .

Proof. Fix f ∈ D0+ with f = ∑i fi such that fi ∈ CC(g/gxi,0+). Since T is linear,

without loss of generality we can assume f ∈ CC(g/gx,0+) for some x ∈ B. Therefore,

we can write

f = ∑
Z∈g/gx,0+

cZ[Z + gx,0+],

where we have [Z + gx,0+] is the characteristic function on the corresponding coset

and all but finitely many cZ = 0. Since T is linear, we can assume, without loss of

generality, that f ∶= [Z + gx,0+].

Choose s so that Z + gx,0+ ⊂ gx,s ∖ gx,s+ . Since T ∈ J̃0+ , we have T (f) = 0 if supp(f) ∩

(gx,s+ +N) = ∅, and thus T (f) = 0 unless

(Z + gx,s+) ∩N ≠ ∅.

Therefore, without loss of generality, we may assume Z =X + Y with X ∈ N ∩ (gx,s ∖
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gx,s+) and Y ∈ gx,s+ .

Up to conjugacy, we need only those three cases where f is invariant with respect to

g[1,1,1],0+ = [
p R R
p p R
p p p

], g[2,1],0+ = [
p p R
p p R
p p p

], or g[3],0+ = [
p p p
p p p
p p p

]. These three cases correspond

to the three conjugacy classes of barycenters of facets.

We will examine these three cases here.

1. Lx = [3]. In this case, we are looking at the coset X + Y + gx,0+ , where x is

the corner of C corresponding to [3] as on page 17, X ∈ N ∩ (gx,s ∖ gx,s+) with

s < 0, and Y ∈ gx,s+ . Note that we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m, for

m ∈ Z>0.

Since T is G-invariant, after conjugating by stabGL3(x) we can assume that X

is $−m[ 0 u 0
0 0 v
0 0 0

] or $−m[ 0 0 u
0 0 0
0 0 0

].

(a) Suppose X =$−m[ 0 u 0
0 0 v
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] = 1

q3 ∑
t̄∈Tm/Tm+1

T [t(X + Y ) + [
p p p
p p p
p p p

]]

= 1

q2 ∑
α,β∈R/p

T [(X + [ 0 α 0
0 0 β
0 0 0

] + Y ) + [
p p p
p p p
p p p

]]

= 1

q2
T [X + Y + [

p R p
p p R
p p p

]]

= 1

q3 ∑
ū∈U12(pm)/U12(pm+1)

T [uX + Y + [
p R p
p p R
p p p

]]

= 1

q3
T [X + Y + [

p R R
p p R
p p p

]].

Note that X + Y + [
p p p
p p p
p p p

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p p
p p p
p p p

]] in terms of T evaluated at [X +Y +[
p R R
p p R
p p p

]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.
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(b) Suppose X =$−m[ 0 0 u
0 0 0
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] =1

q
∑

ū∈U21(℘m)/U21(℘m+1)
T [uX + Y + [

p p p
p p p
p p p

]]

=1

q
∑
α∈R/p

T [X + Y + [ 0 0 0
0 0 α
0 0 0

] + [
p p p
p p p
p p p

]]

=1

q
T [X + Y + [

p p p
p p R
p p p

]].

Therefore, we have

T [X + Y + [
p p p
p p p
p p p

]] = 1

q4 ∑
t̄∈Tm/Tm+1

T [tX + Y + [
p p p
p p R
p p p

]]

= 1

q2 ∑
β∈R/p

T [X + Y + [ 0 0 β
0 0 0
0 0 0

] + [
p p p
p p R
p p p

]]

= 1

q2
T [X + Y + [

p p R
p p R
p p p

]].

Note that X + Y + [
p p p
p p p
p p p

] ⊂ $−m[
p p R
p p R
p p p

] = g[2,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p p
p p p
p p p

]] in terms of T evaluated at [X +Y +[
p p R
p p R
p p p

]],

which has support closer to the origin with respect to the [2,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

2. Lx = [2,1]. In this case, we are looking at the coset X +Y +gx,0+ , where x is the

barycenter of an edge of C and X ∈ N ∩ (gx,s ∖ gx,s+) with s < 0 and Y ∈ gx,s+ .

Note that we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m + 1/2 or s = −m, for

m ∈ Z>0.

(a) Suppose s = −m. Since T is G-invariant, after conjugating by stabGL3(x)
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we can assume that X is $−m[ 0 u 0
0 0 0
0 0 0

]. We have

T [X + Y + [
p p R
p p R
p p p

]] = 1

q3 ∑
t̄∈Tm/Tm+1

T [tX + Y + [
p p R
p p R
p p p

]]

=1

q
∑
α∈R/p

T [X + [ 0 α 0
0 0 0
0 0 0

] + [
p p R
p p R
p p p

]]

=1

q
T [X + Y + [

p R R
p p R
p p p

]].

Note that X + Y + [
p p R
p p R
p p p

] ⊂$−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p R
p p R
p p p

]] in terms of T evaluated at [X +Y +[
p R R
p p R
p p p

]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p R
p p R
p p p

]] had with respect to the [2,1]-filtration.

(b) Suppose s = −m+1/2. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 0 u
0 0 0
0 v$ 0

].

i. Assume that X is $−m[ 0 0 u
0 0 0
0 0 0

]. We then have

T [X + Y + [
p p R
p p R
p p p

]] =1

q
∑

ū∈U32(℘m)/U32(℘m+1)
T [uX + Y + [

p p R
p p R
p p p

]]

=1

q
T [X + Y + [

p R R
p p R
p p p

]].

Note that X+Y +[
p p R
p p R
p p p

] ⊂$−m[
p p R
p p p

p2 p p
] = g[1,1,1],s+ . Thus, we expressed

T evaluated at [X + Y + [
p p R
p p R
p p p

]] in terms of T evaluated at [X + Y +

[
p R R
p p R
p p p

]], which has support closer to the origin with respect to the

[1,1,1]-filtration than [X +Y +[
p p R
p p R
p p p

]] had with respect to the [2,1]-

filtration.
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ii. Assume that X is $−m[ 0 0 u
0 0 0
0 v$ 0

]. We have

T [X + Y + [
p p R
p p R
p p p

]] =1

q
∑

ū∈U32(℘m)/U32(℘m+1)
T [uX + Y + [

p p R
p p R
p p p

]]

=1

q
T [X + Y + [

p R R
p p R
p p p

]].

Note that X+Y +[
p p R
p p R
p p p

] ⊂$−m[
p p R
p p p

p2 p p
] = g[1,1,1],s+ . Thus, we expressed

T evaluated at [X + Y + [
p p R
p p R
p p p

]] in terms of T evaluated at [X + Y +

[
p R R
p p R
p p p

]], which has support closer to the origin with respect to the

[1,1,1]-filtration than [X +Y +[
p p R
p p R
p p p

]] had with respect to the [2,1]-

filtration.

3. Lx = [1,1,1]. In this case we are looking at the coset X + Y + gx,0+ , where x is

the barycenter of C and X ∈ N ∩ (gx,s ∖ gx,s+) with s < 0 and Y ∈ gx,s+ . Note

that N ∩ (gx,s ∖ gx,s+) = ∅ unless s = 1/3 −m or s = 2/3 −m, for m ∈ Z>0.

(a) Suppose s = 1/3−m. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 u 0
0 0 0
0 0 0

] or $−m[ 0 u 0
0 0 v
0 0 0

]. In both cases we have

T [X + Y + [
p R R
p p R
p p p

]] = ∑
α∈p/p2

T [X + Y + [ 0 0 0
0 0 0
α 0 0

] + [
p R R
p p R

p2 p p
]].

Note that [
p R R
p p R

p2 p p
] = g[

p p R
p p R
p p p

]g−1 where g = [ 0 1 0
0 0 1
$ 0 0

]. Note that [ 0 0 0
0 0 0
α 0 0

] ∈

[
R R p−1
p R R
p p R

] while Y ∈ [
p p R
p p p

p2 p p
] and X ∈ $−m[

p R R
p p R

p2 p p
]. Therefore, X + Y +

[ 0 0 0
0 0 0
α 0 0

] ⊂$−m[
p R R
p p R

p2 p p
] = gg[2,1],s+ . Thus, we expressed T evaluated at [X +

Y + [
p R R
p p R
p p p

]] in terms of T evaluated at [X +Y + [ 0 0 0
0 0 0
α 0 0

] + [
p R R
p p R

p2 p p
]], which

has support closer to the origin with respect to the g ⋅ [2,1]-filtration than

[X + Y + [
p R R
p p R
p p p

]] had with respect to the [1,1,1]-filtration.

(b) Suppose s = 2/3−m. Since T isG-invariant, after conjugating by stabGL3(x)
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we can assume that X is $−m[ 0 0 0
u$ 0 0
0 0 0

] or $−m[ 0 0 u
v$ 0 0
0 0 0

]. In both cases we

have

T [X + Y + [
p R R
p p R
p p p

]] = 1

q3 ∑
α,β,γ∈R/p

T [X + [ 0 α 0
0 0 0
β$ γ$ 0

] + Y + [
p p R
p p R

p2 p2 p
]].

Note that [
p p R
p p R

p2 p2 p
] = g[

p p p
p p p
p p p

]g−1 where g = [ 0 1 0
0 0 1
$ 0 0

]. Moreover [ 0 α 0
0 0 0
β$ γ$ 0

] ∈

[
R R p−1
R R p−1
p p R

], while Y ∈$−m[
p p p

p2 p p

p2 p2 p
] ⊆$−m[

p p R
p p R

p2 p2 p
] and X ∈$−m[

p p R
p p R

p2 p2 p
].

Therefore, X +Y + [ 0 α 0
0 0 0
β$ γ$ 0

] ⊂$−m[
p p R
p p R

p2 p2 p
] = gg[3],s+ . Thus, we expressed

T evaluated at [X + Y + [
p R R
p p R
p p p

]] in terms of T evaluated at [X + Y +

[ 0 α 0
0 0 0
β$ γ$ 0

] + [
p p R
p p R

p2 p2 p
]], which has support closer to the origin with respect

to the g ⋅ [3]-filtration than [X + Y + [
p R R
p p R
p p p

]] had with respect to the

[1,1,1]-filtration.

3.2.4 On depth r = 1/3+

Proposition 3.2.4. For GL3, resD1/3+ J̃1/3+ = resD1/3+J(N).

Proof. Fix f ∈ D1/3+ with f = ∑i fi such that fi ∈ CC(g/gxi,1/3+). Since T is linear,

without loss of generality we can assume f ∈ CC(g/gx,1/3+) for some x ∈ B.

Therefore, we can write

f = ∑
Z∈g/gx,1/3+

cZ[Z + gx,1/3+],

where [Z + gx,1/3+] is the characteristic function on the corresponding cosets and all

but finitely many cZ = 0. Since T is linear, we can assume, without loss of generality,

that f ∶= [Z + gx,1/3+].

Choose s so that Z +gx,1/3+ ⊂ gx,s ∖gx,s+ . Since T ∈ resD+
1/3 J̃1/3+ , T (f) = 0 if supp(f)∩
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(gx,s+ +N) = ∅, and thus T (f) = 0 unless

(Z + gx,s+) ∩N ≠ ∅.

Therefore, without loss of generality we may assume Z =X + Y with X ∈ N ∩ (gx,s ∖

gx,s+) and Y ∈ ggx,s+ .

In addition to the three cases that correspond to the conjugacy classes of barycenters

of facets, we need to take up a fourth case (indexed by z which is introduced in (3(a)i)

on page 46 below).

We now examine the four cases.

1. Lx = [3]. In this case, we are looking at the coset X + Y + gx,1/3+ , where x is at

a vertex of C and X ∈ N ∩ (gx,s ∖ gx,s+) with s < 1
3 and Y ∈ gx,s+ . Note that we

have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m, for m ∈ Z≥0.

Since T is G-invariant, after conjugating by stabGL3(x) we can assume that X

is $−m[ 0 u 0
0 0 v
0 0 0

] or $−m[ 0 0 u
0 0 0
0 0 0

].

(a) X =$−m[ 0 u 0
0 0 v
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] = 1

q3 ∑
t̄∈Tm/Tm+1

T [t(X + Y ) + [
p p p
p p p
p p p

]]

= 1

q2 ∑
α,β∈R/p

T [(X + [ 0 α 0
0 0 β
0 0 0

] + Y ) + [
p p p
p p p
p p p

]]

= 1

q2
T [X + Y + [

p R p
p p R
p p p

]]

= 1

q3 ∑
ū∈U12(pm)/U12(pm+1)

T [uX + Y + [
p R p
p p R
p p p

]]

= 1

q3
T [X + Y + [

p R R
p p R
p p p

]].
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Note that X + Y + [
p p p
p p p
p p p

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p p
p p p
p p p

]] in terms of T evaluated at [X +Y +[
p R R
p p R
p p p

]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

(b) X =$−m[ 0 0 u
0 0 0
0 0 0

]. We have

T ([X + Y + [
p p p
p p p
p p p

]]) = 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p
p p p
p p p

]]

= 1

q
∑
α∈R/p

T [X + Y + [ 0 0 α
0 0 0
0 0 0

] + [
p p p
p p p
p p p

]])

= 1

q
T ([X + Y + [ p p R

p p p
p p p

]])

= 1

q
∑

β∈p/p2
T ([X + Y + [ 0 0 0

0 0 0
β 0 0

] + [
p p R
p p p

p2 p p
]]).

Note that X + Y + [ 0 0 0
0 0 0
β 0 0

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p p
p p p
p p p

]] in terms of T evaluated at [X +Y +[
p p R
p p p

p2 p p
]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

2. Lx = [2,1].

In this case, we are looking at the coset X+Y +gx,1/3+ , where x is the barycenter

of an edge of C, X ∈ N ∩ (gx,s ∖ gx,s+) with s < 1
3 , and Y ∈ gx,s+ .

Note that we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m + 1/2 or s = −m, for

m ∈ Z≥0.

(a) Suppose s = −m. Since T isG-invariant, thus after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 u 0
0 0 0
0 0 0

]. Then:

T (X + Y + [
p p R
p p R
p p p

]) = 1

q2 ∑
α,β∈R/p

T ([X + Y + [ 0 0 0
0 0 α
$β 0 0

] + [
p p R
p p p

p2 p p
]).
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Note that Y ∈ $−m[
p p R
p p R
p p p

] ⊆ $−m[
p R R
p p R
p p p

] and X ∈ $−m[
p R R
p p R
p p p

] as well.

Thus X + Y + [ 0 0 0
0 0 α
β$ 0 0

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p R
p p R
p p p

]] in terms of T evaluated at [X +Y +[
p R R
p p R
p p p

]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p R
p p R
p p p

]] had with respect to the [2,1]-filtration.

(b) Suppose s = −m+1/2. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 0 u
0 0 0
0 v$ 0

]. We have

T (X + Y + [
p p R
p p R
p p p

]) = 1

q2 ∑
α,β∈R/p

T [X + Y + [ 0 0 0
0 0 α
β$ 0 0

] + [
p p R
p p p

p2 p p
]].

Note that Y ∈ $−m[
p p p
p p p

p2 p2 p
] ⊆ $−m[

p p R
p p p

p2 p p
] and X ∈ $−m[

p p R
p p p

p2 p p
] as well.

Thus X + Y + [ 0 0 0
0 0 α
β$ 0 0

] ⊂ $−m[
p p R
p p p

p2 p p
] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p R
p p R
p p p

]] in terms of T evaluated at [X +Y +[
p p R
p p p

p2 p p
]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p R
p p R
p p p

]] had with respect to the [2,1]-filtration.

3. Lx = [1,1,1]. In this case, we are looking at the coset X +Y +gx,1/3+ , where x is

the barycenter of C, X ∈ N ∩ (gx,s ∖ gx,s+) with s < 1
3 , and Y ∈ gx,s+ . Note that

we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = 1/3 −m or s = 2/3 −m, for m ∈ Z≥0.

(a) Suppose s = 1/3−m. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 0 0
0 0 0
u$ 0 0

] or $−m[ 0 0 0
0 0 u
v$ 0 0

].

i. X =$−m[ 0 0 0
0 0 0
u$ 0 0

]. We have

T [X + Y + [
p p R
p p p

p2 p p
]] = 1

q3 ∑
t̄∈Tm/Tm+1

T [tX + Y + [
p p R
p p p

p2 p p
]]

= 1

q
T [X + Y + [ p p R

p p p
p p p

]].
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There is a unique point, call it z, on the geodesic between the barycen-

ter of C and the vertex corresponding to [3] such that

gz,2/3 = gz,1/2+ ⊊ gz,1/2 = gz,1/3+

and

gz,1/2+ = [
p p p
p p p

p2 p p
]

while

gz,1/2 = [ p p R
p p p
p p p

].

Note that Y ∈ $−m[
p p R
p p p

p2 p p
] ⊆ $−m[ p p R

p p p
p p p

], and we also have X =

$−m[ 0 0 0
0 0 0
u$ 0 0

] ∈$−m[ p p R
p p p
p p p

]. Thus X +Y ∈$−m[ p p R
p p p
p p p

] = gz,s+ = gz,1/2−m.

Thus, we expressed T evaluated at [X + Y + [
p p R
p p p

p2 p p
]] in terms of T

evaluated at [X + Y + gz,1/3+], which has support closer to the origin

with respect to the z-filtration than [X+Y +[
p p R
p p p

p2 p p
]] had with respect

to the [1,1,1]-filtration.

ii. X =$−m[ 0 0 0
0 0 u
v$ 0 0

]. We have

T [X + Y + [
p p R
p p p

p2 p p
]] = 1

q3 ∑
t̄∈Tm/Tm+1

T [tX + Y + [
p p R
p p p

p2 p p
]]

= 1

q
T [X + Y + [

p p R
p p R
p p p

]].

Thus X+Y ⊂$−m[
p p R
p p R
p p p

] = g[2,1],s+ . Thus, we expressed T evaluated at

[X + Y + [
p p R
p p p

p2 p p
]] in terms of T evaluated at [X + Y + [

p p R
p p R
p p p

]], which

has support closer to the origin with respect to the [2,1]-filtration

than [X + Y + [
p p R
p p p

p2 p p
]] had with respect to the [1,1,1]-filtration.

(b) Suppose s = 2/3−m. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X =$−m[ 0 0 0
v$ 0 0
0 0 0

] or X =$−m[ 0 0 0
u$ 0 0
0 v$ 0

]
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i. X =$−m[ 0 0 0
v$ 0 0
0 0 0

]. We have

T ([X + Y + [
p p R
p p p

p2 p p
]]) = 1

q
∑

ū∈U32(℘m)/U32(℘m+1)
T ([uX + Y + [

p p R
p p p

p2 p p
]])

= 1

q
T ([X + Y + [ p p R

p p p
p p p

]])

= 1

q2 ∑
α∈R/p

T ([X + Y + [ 0 0 α
0 0 0
0 0 0

] + [
p p p
p p p
p p p

]]).

In this, we have that Y ∈$−m[
p p p

p2 p p

p2 p2 p
] ⊆$−m[

p p p
p p p
p p p

] andX ∈$−m[
p p p
p p p
p p p

].

Thus X +Y +[ 0 0 α
0 0 0
0 0 0

] ⊂$−m[
p p p
p p p
p p p

] = g[3],s+ . Thus, we expressed T eval-

uated at [X +Y +[
p p R
p p p

p2 p p
]] in terms of T evaluated at [X +Y +[

p p p
p p p
p p p

]],

which has support closer to the origin with respect to the [3]-filtration

than [X + Y + [
p p R
p p p

p2 p p
]] had with respect to the [1,1,1]-filtration.

ii. X =$−m[ 0 0 0
u$ 0 0
0 v$ 0

]. We have

T ([X + Y + [
p p R
p p p

p2 p p
]]) = 1

q
∑

t∈[
1 0 0
0 1 0
0 p−m/p−m+1 1

]

T ([tX + Y + [
p p R
p p p

p2 p p
]])

= 1

q
T ([X + Y + [ p p R

p p p
p p p

]])

= 1

q2 ∑
α∈R/p

T ([X + Y + [ 0 0 α
0 0 0
0 0 0

] + [
p p p
p p p
p p p

]]).

In this, we have that Y ∈$−m[
p p p

p2 p p

p2 p2 p
] ⊆$−m[

p p p
p p p
p p p

] andX ∈$−m[
p p p
p p p
p p p

].

Thus X +Y +[ 0 0 α
0 0 0
0 0 0

] ⊂$−m[
p p p
p p p
p p p

] = g[3],s+ . Thus, we expressed T eval-

uated at [X +Y +[
p p R
p p p

p2 p p
]] in terms of T evaluated at [X +Y +[

p p p
p p p
p p p

]],

which has support closer to the origin with respect to the [3]-filtration

than [X + Y + [
p p R
p p p

p2 p p
]] had with respect to the [1,1,1]-filtration.

4. The point z. In this case, we are looking at the coset X +Y + gz,1/3+ , where z is
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as in (3(a)i) on page 46 above, X ∈ N ∩ (gx,s ∖ gx,s+) with s < 1
3 , and Y ∈ gx,s+ .

From (3(a)i) we know we are only interested in the case when s = −m + 1/2 for

m ∈ Z>0. So, we assume we are in this situation. Since T is G-invariant, after

conjugating by stabGL3(x) we can assume that X is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 u 0
0 0 0
v$ 0 0

].

(a) X =$−m[ 0 0 u
0 0 0
0 0 0

]. We have

T (X + Y + [
p p R
p p R
p p p

]) = ∑
α∈R/p

T ([X + Y + [ 0 0 0
0 0 0
$α 0 0

] + [
p p R
p p p

p2 p p
]).

Note that X +Y ∈X +$−m[
p p p
p p p

p2 p p
] ⊆$−m[

p p R
p p p

p2 p p
] = g[1,1,1],s+ . Thus X +Y +

[ 0 0 0
0 0 0
α$ 0 0

] ⊂ g[1,1,1],s+ . Thus, we expressed T evaluated at [X +Y +[ p p R
p p p
p p p

]] in

terms of T evaluated at [X +Y + [ 0 0 0
0 0 0
α$ 0 0

] + g[1,1,1],1/3+], which has support

closer to the origin with respect to the [1,1,1]-filtration than [X + Y +

[ p p R
p p p
p p p

]] had with respect to the z-filtration.

(b) X =$−m[ 0 0 0
0 0 0
v$ 0 0

]. We have

T (X + Y + [ p p R
p p p
p p p

]) = ∑
α∈R/p

T [X + Y + [ 0 0 α
0 0 0
0 0 0

] + [
p p p
p p p
p p p

]].

Note that X + Y ∈ X +$−m[
p p p
p p p

p2 p p
] ⊆ $−m[

p p p
p p p
p p p

] = g[3],s+ . Thus X + Y +

[ 0 0 α
0 0 0
0 0 0

] ⊂ g[3],s+ . Thus, we expressed T evaluated at [X + Y + [ p p R
p p p
p p p

]] in

terms of T evaluated at [X+Y +[ 0 0 α
0 0 0
0 0 0

]+g[3],1/3+], which has support closer

to the origin with respect to the [3]-filtration than [X + Y + [ p p R
p p p
p p p

]] had

with respect to the z-filtration.

3.2.5 On depth r = 1/2+

Proposition 3.2.5. For GL3, resD1/2+ J̃1/2+ = resD1/2+J(N).
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Proof. Fix f ∈ D1/2+ with f = ∑i fi such that fi ∈ CC(g/gxi,1/2+). Since T is linear,

without loss of generality we can assume f ∈ CC(g/gx,1/2+) for some x ∈ B. Therefore,

we can write

f = ∑
Z∈g/gx,1/2+

cZ[Z + gx,1/2+],

where we have [Z + gx,1/2+] is the characteristic function of the corresponding coset

and all but finitely many cZ = 0. Since T is linear, we can assume, without loss of

generality, that f ∶= [Z + gx,1/2+].

Now, we can choose Z + gx,1/2+ ⊂ gx,s ∖ gx,s+ . Since T ∈ J̃1/2+ , we have T (f) = 0 if

supp(f) ∩ (gx,s+ +N) = ∅, and thus T (f) = 0 unless

(Z + gx,s+) ∩N ≠ ∅.

Therefore, without loss of generality we may assume Z =X + Y with X ∈ N ∩ (gx,s ∖

gx,s+) and Y ∈ ggx,s+ .

Up to conjugacy, we need to consider four cases. These include the usual three cases

where f is invariant with respect to g[1,1,1],1/2+ = [
p p R
p p p

p2 p p
], g[2,1],1/2+ = [

p p p
p p p

p2 p2 p
], or

g[3],1/2+ = [
p p p
p p p
p p p

] and an additional case for the-filtration associated to z (introduced

in (3(a)i) on page 46).

We now consider these three cases.

1. Lx = [3]. In this case, we are looking at the coset X + Y + gx,1/2+ , where x

is a vertex of C, X ∈ N ∩ (gx,s ∖ gx,s+) with s < 1
2 , and Y ∈ gx,s+ . Note that

N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m, for m ∈ Z≥0.

Since T is G-invariant, after conjugating by stabGL3(x) we can assume that X

is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 u 0
0 0 v
0 0 0

].
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(a) X =$−m[ 0 0 u
0 0 0
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] = 1

q2 ∑
α,β∈p/p2

T [X + Y + [ 0 0 0
0 0 0
α β 0

] + [
p p p
p p p

p2 p2 p
]].

Thus X + Y + [ 0 0 0
0 0 0
α β 0

] ⊂ $−m[
p p R
p p R
p p p

] = g[2,1],s+ . Thus, we expressed T eval-

uated at [X + Y + [
p p p
p p p
p p p

]] in terms of T evaluated at [X + Y + [
p p p
p p p

p2 p2 p
]],

which has support closer to the origin with respect to the [2,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

(b) X =$−m[ 0 u 0
0 0 v
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] = ∑
α∈p/p2

T [X + Y + [ 0 0 0
0 0 0
α 0 0

] + [
p p p
p p p

p2 p p
]]

=1

q
∑

ū∈U12(℘m)/U12(℘m+1)
T [uX + Y + [ 0 0 0

0 0 0
α 0 0

] + [
p p p
p p p

p2 p p
]]

=1

q
T [X + Y + [ 0 0 0

0 0 0
α 0 0

] + [
p p R
p p p

p2 p p
]].

Note that X + Y + [ 0 0 0
0 0 0
α 0 0

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T

evaluated at [X +Y +[
p p p
p p p
p p p

]] in terms of T evaluated at [X +Y +[
p p R
p p p

p2 p p
]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

2. Lx = [2,1]. In this case, we are looking at the coset X + Y + gx,1/2+ , where x is

the barycenter of an edge in C, X ∈ N ∩ (gx,s ∖ gx,s+), and Y ∈ gx,s+ . Note that

we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m + 1/2 or s = −m, for m ∈ Z≥0.

(a) Suppose s = −m. Since T is G-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 u 0
0 0 0
0 0 0

]. We have
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T [X + Y +[
p p p
p p p

p2 p2 p
]]

= 1

q2 ∑
ū∈U23(℘m)/U23(℘m+1)

∑
v̄∈U31(℘m)/U31(℘m+1)

T ([uvX + Y + [
p p p
p p p

p2 p2 p
]]

= 1

q2
T ([X + Y + [

p p R
p p p

p2 p p
]].

Note that Y ∈ $−m[
p p R
p p R
p p p

] ⊆ $−m[
p R R
p p R
p p p

] and X ∈ $−m[
p R R
p p R
p p p

]. Thus

X + Y + [ 0 0 0
α 0 0
0 0 0

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T evaluated

at [X +Y + [
p p R
p p p

p2 p2 p
]] in terms of T evaluated at [X +Y + [

p p R
p p p

p2 p p
]], which

has support closer to the origin with respect to the [1,1,1]-filtration than

[X + Y + [
p p R
p p p

p2 p2 p
]] had with respect to the [2,1]-filtration.

(b) Suppose s = −m+1/2. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 0 u
0 0 0
0 v$ 0

].

i. X =$−m[ 0 0 u
0 0 0
0 v$ 0

]. We have

T ([X + Y + [
p p p
p p p

p2 p2 p
]]) = 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p
p p p

p2 p2 p
]])

=1

q
T ([X + Y + [

p p R
p p p

p2 p p
]]).

Note that Y ∈$−m[
p p p
p p p

p2 p2 p
] ⊆ [

p p R
p p p

p2 p p
], and X ∈$−m[

p p R
p p p

p2 p p
]. Thus X+

Y + [ 0 0 0
α 0 0
0 0 0

] ⊂ $−m[
p p R
p p p

p2 p p
] = g[1,1,1],s+ . Thus, we expressed T evaluated

at [X+Y +[
p p p
p p p

p2 p2 p
]] in terms of T evaluated at [X+Y +[

p p R
p p p

p2 p p
]], which

has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p p
p p p

p2 p2 p
]] had with respect to the [2,1]-filtration.

ii. X =$−m[ 0 0 u
0 0 0
0 0 0

]. Recall the point z of C that was introduced in (3(a)i
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on page 46). We have

T ([X + Y + [
p p p
p p p

p2 p2 p
]]) = 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p
p p p

p2 p2 p
]])

= 1

q2
T ([X + Y + [

p p R
p p p

p2 p2 p
]]).

Let Π = [ 0 1 0
0 0 1
$ 0 0

]. Note thatX+Y ∈$−m[
p p R
p p p

p2 p2 p
] = gΠz,s+ and [

p p R
p p p

p2 p2 p
] =

gΠz,1/2+ . Thus, we expressed T evaluated at [X +Y +[
p p p
p p p

p2 p2 p
]] in terms

of T evaluated at [X + Y + gΠz,1/2+], which has support closer to the

origin with respect to the Πz-filtration than [X + Y + [
p p p
p p p

p2 p2 p
]] had

with respect to the [2,1]-filtration.

3. Lx = [1,1,1]. In this case, we are looking at the coset X + Y + gx,1/2+ , where x

is the barycenter of C, X ∈ N ∩ (gx,s ∖ gx,s+), and Y ∈ gx,s+ with s ≤ 1/2. Note

that we have N ∩(gx,s ∖ gx,s+) = ∅ unless s = 1/3−m for m ∈ Z≥0 or s = 2/3−m,

for m ∈ Z>0.

(a) Suppose s = 1/3−m. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 0 0
0 0 0
u$ 0 0

] or $−m[ 0 0 0
0 0 u
v$ 0 0

]. In both cases we

have

T ([X + Y + [
p p R
p p p

p2 p p
]]) = ∑

α∈R/p,β∈p/p2
T ([X + Y + [ 0 0 α

0 0 0
0 β 0

] + [
p p p
p p p

p2 p2 p
]]).

Note X + Y ⊂ $−m[
p p R
p p R
p p p

] = g[2,1],s+ . Thus, we expressed T evaluated at

[X + Y + [
p p R
p p p

p2 p p
]] in terms of T evaluated at [X + Y + [

p p p
p p p

p2 p2 p
]], which

has support closer to the origin with respect to the [2,1]-filtration than

[X + Y + [
p p R
p p p

p2 p p
]] had with respect to the [1,1,1]-filtration.

(b) Suppose s = 2/3−m. In this case, since T is G-invariant, after conjugating

by stabGL3(x) we can assume that X is $−m[ 0 0 0
u$ 0 0
0 0 0

] or $−m[ 0 0 0
v$ 0 0
0 u$ 0

]
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i. X =$−m[ 0 0 0
u$ 0 0
0 0 0

]. We have

T ([X + Y + [
p p p

p2 p p

p2 p2 p
]])

= 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p

p2 p p

p2 p2 p
]])

=1

q
T ([X + Y + [

p p p
p p p

p2 p2 p
]]).

Note that X + Y ⊂ $−m[
p p p
p p p

p2 p2 p
] = g[2,1],s+ . Thus, we expressed T

evaluated at [X + Y + [
p p p

p2 p p

p2 p2 p
]] in terms of T evaluated at [X + Y +

[
p p p
p p p

p2 p2 p
]], which has support closer to the origin with respect to the

[2,1]-filtration than [X+Y +[
p p p

p2 p p

p2 p2 p
]] had with respect to the [1,1,1]-

filtration.

ii. X =$−m[ 0 0 0
v$ 0 0
0 u$ 0

]. We have

T ([X + Y + [
p p p

p2 p p

p2 p2 p
]]) = 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p

p2 p p

p2 p2 p
]])

= 1

q2
T ([X + Y + [

p p p
p p p

p2 p p
]])

= 1

q3 ∑
ū∈U21(℘m)/U21(℘m+1)

T ([uX + Y + [
p p p
p p p

p2 p p
]])

= 1

q3 ∑
α∈R/p

T ([X + Y + [
p p p
p p p
p p p

]]).

Note that X+Y ⊂$−m[
p p p
p p p
p p p

] = g[3],s+ . Thus, we expressed T evaluated

at [X+Y +[
p p p

p2 p p

p2 p2 p
]] in terms of T evaluated at [X+Y +[

p p p
p p p
p p p

]], which

has support closer to the origin with respect to the [3]-filtration than

[X + Y + [
p p p

p2 p p

p2 p2 p
]] had with respect to the [1,1,1]-filtration.

(c) The point z. From (2(b)ii) we need only handle the case where s is chosen

such that

g[1,1,1],2/3+ = gz,s+ ⊊ gz,s = gz,1/2+ .
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Since T is G-invariant, after conjugating by stabGL3(z) we can assume that

X is $−m[ 0 0 0
u$ 0 0
0 0 0

] or $−m[ 0 0 0
v$ 0 0
0 u$ 0

]. In either case we have

T ([X + Y + [
p p p
p p p

p2 p p
]]) =1

q
∑

ū∈U32(pm)/U32(pm+1)
T (uX + Y + [

p p p
p p p

p2 p p
]])

=1

q
T (X + Y + [

p p p
p p p
p p p

]]).

Note that X + Y ⊂ $−m[
p p p
p p p
p p p

] = g[3],s+ . Thus, we expressed T evaluated

at [X + Y + +gz,1/2+] in terms of T evaluated at [X + Y + [
p p p
p p p
p p p

]], which

has support closer to the origin with respect to the [3]-filtration than

[X + Y + +gz,1/2+] had with respect to the z-filtration.

3.2.6 On depth r = 2/3+

Proposition 3.2.6. For GL3, resD2/3+ J̃2/3+ = resD2/3+J(N).

Proof. Fix f ∈ D2/3+ with f = ∑i fi such that fi ∈ CC(g/gxi,2/3+). Since T is linear,

without loss of generality we can assume f ∈ CC(g/gx,2/3+) for some x ∈ B. Therefore,

we can write

f = ∑
Z∈g/gx,2/3+

cZ[Z + gx,2/3+],

where we have [Z + gx,2/3+] is the characteristic function of the corresponding coset

and all but finitely many cZ = 0. Since T is linear, we can assume, without loss of

generality, that f ∶= [Z + gx,2/3+].

Now, we can choose Z + gx,2/3+ ⊂ gx,s ∖ gx,s+ . Since T ∈ J̃2/3+ , we have T (f) = 0 if

supp(f) ∩ (gx,s+ +N) = ∅, and thus T (f) = 0 unless

(Z + gx,s+) ∩N ≠ ∅.
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Therefore, without loss of generality we may assume Z =X + Y with X ∈ N ∩ (gx,s ∖

gx,s+) and Y ∈ ggx,s+ .

Up to conjugacy, we need only those three cases where f is invariant with respect

to g[1,1,1],2/3+ = [
p p p

p2 p p

p2 p2 p
], g[2,1],2/3+ = [

p p p
p p p

p2 p2 p
], or g[3],2/3+ = [

p p p
p p p
p p p

]. These three cases

correspond to the three conjugacy classes of barycenters of facets.

We now consider these three cases.

1. Lx = [3]. In this case, we are looking at the coset X + Y + gx,2/3+ , where x

is a vertex of C, X ∈ N ∩ (gx,s ∖ gx,s+) with s < 2
3 , and Y ∈ gx,s+ . Note that

N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m, for m ∈ Z≥0.

Since T is G-invariant, after conjugating by stabGL3(x) we can assume that X

is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 u 0
0 0 v
0 0 0

].

(a) X =$−m[ 0 0 u
0 0 0
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] = 1

q2 ∑
α,β∈p/p2

T [X + Y + [ 0 0 0
0 0 0
α β 0

] + [
p p p
p p p

p2 p2 p
]].

Thus X + Y + [ 0 0 0
0 0 0
α β 0

] ⊂ $−m[
p p R
p p R
p p p

] = g[2,1],s+ . Thus, we expressed T eval-

uated at [X + Y + [
p p p
p p p
p p p

]] in terms of T evaluated at [X + Y + [
p p p
p p p

p2 p2 p
]],

which has support closer to the origin with respect to the [2,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

(b) X =$−m[ 0 u 0
0 0 v
0 0 0

]. We have

T [X + Y + [
p p p
p p p
p p p

]] = ∑
α,β,γ∈p/p2

T [X + Y + [
0 0 0
γ 0 0
α β 0

] + [
p p p

p2 p p

p2 p2 p
]].

Thus X + Y + [
0 0 0
γ 0 0
α β 0

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T
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evaluated at [X +Y +[
p p p
p p p
p p p

]] in terms of T evaluated at [X +Y +[
p p p

p2 p p

p2 p2 p
]],

which has support closer to the origin with respect to the [1,1,1]-filtration

than [X + Y + [
p p p
p p p
p p p

]] had with respect to the [3]-filtration.

2. Lx = [2,1]. In this case, we are looking at the coset X + Y + gx,2/3+ , where x is

the barycenter of an edge in C, X ∈ N ∩ (gx,s ∖ gx,s+), and Y ∈ gx,s+ . Note that

we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = −m + 1/2 or s = −m, for m ∈ Z≥0.

(a) Suppose s = −m. Since T is G-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 u 0
0 0 0
0 0 0

]. We have

T [X + Y + [
p p p
p p p

p2 p2 p
]] = ∑

α∈p/p2
T ([X + Y + [ 0 0 0

α 0 0
0 0 0

] + [
p p p

p2 p p

p2 p2 p
]]).

Note that Y ∈ $−m[
p p R
p p R
p p p

] ⊆ $−m[
p R R
p p R
p p p

], and X ∈ $−m[
p R R
p p R
p p p

]. Thus

X + Y + [ 0 0 0
α 0 0
0 0 0

] ⊂ $−m[
p R R
p p R
p p p

] = g[1,1,1],s+ . Thus, we expressed T evaluated

at [X +Y + [
p p R
p p p

p2 p2 p
]] in terms of T evaluated at [X +Y + [

p p p

p2 p p

p2 p2 p
]], which

has support closer to the origin with respect to the [1,1,1]-filtration than

[X + Y + [
p p R
p p p

p2 p2 p
]] had with respect to the [2,1]-filtration.

(b) Suppose s = −m+1/2. Since T isG-invariant, after conjugating by stabGL3(x)

we can assume that X is $−m[ 0 0 u
0 0 0
0 0 0

] or $−m[ 0 0 u
0 0 0
0 v$ 0

]. In both cases we have

T ([X + Y + [
p p p
p p p

p2 p2 p
]]) = ∑

α∈p/p2
T ([X + Y + [ 0 0 0

α 0 0
0 0 0

] + [
p p p

p2 p p

p2 p2 p
]]).

Note that Y ∈ $−m[
p p p
p p p

p2 p2 p
] ⊆ [

p p R
p p p

p2 p p
], and X ∈ $−m[

p p R
p p p

p2 p p
]. Thus X +

Y + [ 0 0 0
α 0 0
0 0 0

] ⊂ $−m[
p p R
p p p

p2 p p
] = g[1,1,1],s+ . Thus, we expressed T evaluated at
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[X + Y + [
p p p
p p p

p2 p2 p
]] in terms of T evaluated at [X + Y + [

p p p

p2 p p

p2 p2 p
]], which

has support closer to the origin with respect to the [1,1,1]-filtration than

[X + Y + [
p p p
p p p

p2 p2 p
]] had with respect to the [2,1]-filtration.

3. Lx = [1,1,1]. In this case, we are looking at the coset X + Y + gx,2/3+ , where x

is the barycenter of C, X ∈ N ∩ (gx,s ∖ gx,s+), and Y ∈ gx,s+ with s ≤ 2/3. Note

that we have N ∩ (gx,s ∖ gx,s+) = ∅ unless s = 1/3 −m for m ∈ Z≥0 or s = 2/3 −m

for m ∈ Z>0.

(a) Suppose s = 1/3 −m. Since T is G-invariant, thus after conjugating by

stabGL3(x) we can assume that X is $−m[ 0 0 0
0 0 0
u$ 0 0

] or $−m[ 0 0 0
0 0 u
v$ 0 0

]. In both

cases we have

T ([X + Y + [
p p p

p2 p p

p2 p2 p
]]) =1

q
∑

ū∈U23(℘m)/U23(℘m+1)
T ([uX + Y + [

p p p

p2 p p

p2 p2 p
]])

=1

q
T ([X + Y + [

p p p
p p p

p2 p2 p
]]).

Note X + Y ⊂ $−m[
p p R
p p R
p p p

] = g[2,1],s+ . Thus, we expressed T evaluated at

[X + Y + [
p p p

p2 p p

p2 p2 p
]] in terms of T evaluated at [X + Y + [

p p p
p p p

p2 p2 p
]], which

has support closer to the origin with respect to the [2,1]-filtration than

[X + Y + [
p p p

p2 p p

p2 p2 p
]] had with respect to the [1,1,1]-filtration.

(b) Suppose s = 2/3−m. In this case, since T is G-invariant, after conjugating

by stabGL3(x) we can assume that X is $−m[ 0 0 0
u$ 0 0
0 0 0

] or $−m[ 0 0 0
v$ 0 0
0 u$ 0

]

i. X =$−m[ 0 0 0
u$ 0 0
0 0 0

]. We have

T ([X + Y + [
p p p

p2 p p

p2 p2 p
]])

= 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p

p2 p p

p2 p2 p
]])

=1

q
T ([X + Y + [

p p p
p p p

p2 p2 p
]]).
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Note that X + Y ⊂ $−m[
p p p
p p p

p2 p2 p
] = g[2,1],s+ . Thus, we expressed T

evaluated at [X + Y + [
p p p

p2 p p

p2 p2 p
]] in terms of T evaluated at [X + Y +

[
p p p
p p p

p2 p2 p
]], which has support closer to the origin with respect to the

[2,1]-filtration than [X+Y +[
p p p

p2 p p

p2 p2 p
]] had with respect to the [1,1,1]-

filtration.

ii. X =$−m[ 0 0 0
v$ 0 0
0 u$ 0

]. We have

T ([X + Y + [
p p p

p2 p p

p2 p2 p
]]) = 1

q3 ∑
t̄∈Tm/Tm+1

T ([tX + Y + [
p p p

p2 p p

p2 p2 p
]])

= 1

q2
T ([X + Y + [

p p p
p p p

p2 p p
]])

= 1

q3 ∑
ū∈U21(℘m)/U21(℘m+1)

T ([uX + Y + [
p p p
p p p

p2 p p
]])

= 1

q3 ∑
α∈R/p

T ([X + Y + [
p p p
p p p
p p p

]]).

Note that X+Y ⊂$−m[
p p p
p p p
p p p

] = g[3],s+ . Thus, we expressed T evaluated

at [X+Y +[
p p p

p2 p p

p2 p2 p
]] in terms of T evaluated at [X+Y +[

p p p
p p p
p p p

]], which

has support closer to the origin with respect to the [3]-filtration than

[X + Y + [
p p p

p2 p p

p2 p2 p
]] had with respect to the [1,1,1]-filtration.

3.2.7 Counting

To complete the proof of the homogeneity result for GL3, we need to show that

statement 2 of Theorem 2.2.4 holds for GL3. By the definition of J̃r+ , it is enough to

show that an element T ∈ J̃r+ is determined by its values on at most three functions

of the form [X + gx,r+] where X ∈ N ∩ gx,r. It is enough to show that this is true for

x ∈ {[1,1,1], [2,1], [3]} and r ∈ {0,1/3,1/2,2/3}.

1. The case when r = 1/3 or r = 2/3. Here the only point we need to consider is
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[1,1,1] and, as we have seen above, up to conjugacy there are two nontrivial

functions of the form [X + g[1,1,1],r+] and one trivial one.

2. The case when r = 0. Since

C(g[1,1,1],0/g[1,1,1],0+) ⊂ C(g[3],0/g[3],0+)

and

C(g[2,1],0/g[2,1],0+) ⊂ C(g[3],0/g[3],0+),

it is enough to consider functions in C(g[3],0/g[3],0+). Since GL3(Fq) has exactly

three nilpotent orbits in its Lie algebra, the result follows.

3. The case when r = 1/2. Here the only point we need to consider is [2,1] and, as

we have seen above, up to conjugacy there are two nontrivial functions of the

form [X + g[1,1,1],r+] and one trivial one.
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sur un corps local, Proceedings of a Conference on Local Fields, p. 23–36, doi:

10.1007/978-3-642-87942-5 3.

[Bruhat and Tits(1972)] Bruhat, F., and J. Tits (1972), Groupes réductifs sur un
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