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ABSTRACT

In this dissertation, we develop three new statistical methods and estimating proce-

dures in survival analysis with restricted mean survival time and in evaluating the

optimal treatment decision rules by involving patient preference.

Restricted mean survival time (RMST) is a clinically interpretable and meaningful

survival metric defined as the patient’s mean survival time up to a pre-specified time

horizon of interest, denoted as L. No existing RMST regression method allows for

the covariate effects to be expressed as functions over time, which is a considerable

limitation in light of the many hazard regression models that do accommodate such

effects. To address this void in the literature, in the first project of my dissertation, we

propose an inference framework for directly modeling RMST as a continuous function

of L. We apply our method to kidney transplant data obtained from the Scientific

Registry of Transplant Recipients (SRTR).

The second and third projects of my dissertation consider personalized treatment

decision strategies in the management of chronic diseases, such as end stage renal

disease, which typically consists of sequential and adaptive treatment decision mak-

ing. This can be formulated through a dynamic treatment regime (DTR) framework,

where the goal is to tailor treatment to each individual given their medical history

in order to maximize a desirable health outcome. We develop a new method, Aug-

mented Patient Preference incorporated Reinforcement Learning (APP-RL), to in-

xi



corporate a patient’s latent preferences through data augmentation into a tree-based

reinforcement learning method to estimate optimal dynamic treatment regimes for

multi-stage, multi-treatment settings. For each patient at each stage, we derive their

posterior distribution of preferences given responses to a questionnaire, and then

subsequently weight multiple outcomes with the estimated preferences to identify the

optimal stage-wise personalized decision. APP-RL is robust, efficient, and leads to

interpretable DTR estimation.

We further extend the APP-RL ideas into the survival setting with censored data

in the last project. We investigate a two-stage treatment setting where patients

have to decide between quality of life and survival restricted at maximal follow-up.

We successfully develop a method that incorporates the latent patient preference

into a weighted utility function that balances between quality of life and survival

time, in a Q-learning model framework. We further propose a corresponding m-

out-of-n Bootstrap procedure to accurately make statistical inferences and construct

confidence intervals on the effects of tailoring variables, whose values can guide the

personalized treatment strategies.

xii



CHAPTER I

Introduction

Statistical formulation of decision making requires two critical components: a pre-

cisely defined and estimable outcome, and the determination of decision making rules

that result in said desired outcome. We illustrate this decision making trajectory

using chronic kidney disease (CKD) as an example. Management of chronic progres-

sive diseases such as CKD is often a titration exercise requiring multiple sequential

visits and management decisions that tailor to an individual’s history, current status,

and personal values and preferences. This requires an complex interplay between the

physician, the standard of care knowledge, and the patient and his/her willingness

to engage in the proposed treatment plan in order to obtain the most optimal care.

If the patient’s disease progresses, decisions must be made with respect to a new

selection of treatment options. Finally, when the patient reaches end stage renal dis-

ease (ESRD), dialysis and transplantation become the main treatment options, and

patients commonly want to know expected outcomes based on their current situa-

tion. The goal of this dissertation is to follow the patient through such a chronic

disease trajectory course, providing both methodological advancements in determin-

ing the decision rules for managing the chronic disease, as well as methodological

improvements for estimating a final outcome.

A commonly used outcome of interest in the transplantation is the restricted mean

1



survival time (RMST). A clinically meaningful and interpretable metric defined as the

mean survival time up to a fixed time, L, the RMST can be thought of as a L−year

life expectancy. Originally proposed in 1949 by Irwin (Irwin, 1949), the RMST was

originally meant as a substitute for the overall mean, which can be difficult to observe

due to a long-tail of the survival distribution and a limited follow-up time. In time,

however, the RMST has gained intellectual and practical interest for being a mean-

ingful measure of its own right, especially as certain chronic diseases have important

milestones (e.g. 5-year cancer free survival). Despite the dominance of the cox pro-

portional hazards model (Cox , 1972) for doing analysis with covariate adjustment

and using the hazard ratio (HR) as the summary measure, the RMST provides an

attractive alternative, especially when the proportional hazards (PH) assumption is

violated (Struthers and Kalbfleisch (1986), Wei and Schaubel (2008), Schaubel and

Wei (2011), Royston and Parmar (2011)). In addition to its practical interpretation

and its avoidance of the PH assumption, Royston and Parmar (2013), Tian et al.

(2017), and Huang and Kuan (2018) found that under PH scenarios, RMST-based

tests and log-rank tests perform similarly, while RMST-based tests perform better

under non-PH scenarios, making it a highly efficient alternative to the HR.

In recent years, many methods have been proposed to directly estimate RMST (An-

dersen et al. (2004), Tian et al. (2014),Wang and Schaubel (2018)). However, no cur-

rent method in the literature allows for covariate effects to be expressed as functions

over time, a considerable limitation in light of the many hazard regression methods

that do accommodate such effects. In Chapter II, we propose an inference framework

for directly modeling of the RMST as a continuous function of L. We apply our

method to kidney transplant data obtained from the Scientific Registry of Transplant

Recipients (SRTR).

In Chapters III and IV, we turn our attention from deriving an efficient and robust

2



estimator to deriving the decision making regimen required for managing a chronic

disease, for both continuous and survival outcome contexts. The mathematical for-

mulation of this problem is the main goal of the dynamic treatment regime (DTR) re-

search community (Chakraborty and Moodie (2013), Chakraborty and Murphy (2014),

Murphy (2003)). In recent years, a large number of methods have been proposed on

how to find the optimal dynamic regime, including Q- and A-learning (Schulte et al.,

2014), G-estimation of structural nested mean models (Robins , 2004), Bayesian likeli-

hood based methods (Thall et al., 2007), and machine learning based methods (Laber

and Zhao (2015), Tao et al. (2018), Tao and Wang (2017), Zhang et al. (2018)).

Despite the abundance of flavor and approaches, most of these approaches optimize

a single desired outcome. In reality, clinical decisions, especially ones that address

chronic illnesses that stretch out across time horizons, are multidimensional and often

affect a whole cohort of outcomes, often in conflicting directions of desirability. One

example can be found in hand surgery – patients often have to weigh the benefits

and risks of taking a certain medication. Taking stronger pain medication might pro-

vide quicker and stronger pain relief, but might have higher risks of addiction and

side effects. Finding the right balance often requires patient input, which reflects

on patient values and needs. Despite recognition by the medical community of the

importance of patient input(Barry and Edgman-Levitan (2012), Basu and Meltzer

(2007)), the shared-decision making movement lacks a systematic optimization ap-

proach and is difficult to implement. In Chapter III, we develop a method where we

model patient preference as a latent variable, which we then estimate it through an

item response approach (Embretson and Reise, 2013). Our method incorporates a

patient’s latent preferences through data augmentation into a tree-based reinforce-

ment learning method to estimate optimal dynamic treatment regimes for multi-stage,

multi-treatment settings. For each patient at each stage, we derive their posterior

distribution of preferences given responses to a questionnaire, and then subsequently

3



weight multiple outcomes with the estimated preferences to identify the optimal stage-

wise personalized decision. Our proposed method, named Augmented Patient Pref-

erence incorporated Reinforcement Learning (APP-RL) is robust, efficient, and leads

to interpretable DTR estimation.

In Chapter IV, we extend the APP-RL ideas in Chapter III into the survival setting

of Chapter I. We look at the two-stage setting where patients have to decide between

quality of life and survival length (Torrance and Feeny , 1989). Patients often receive a

first treatment and is followed up after a short time to determine if the treatment needs

to be adjusted. The patient is then followed until death or a certain maximal follow-

up time. The presence of censored data complicates our scenario as compared to

Chapter III. In this case, as in Chapter III, our primary goal is to estimate the optimal

treatment regime that would maximize a patient preference weighted combination of

quality of life and survival time. Our secondary objective is to provide an inference

framework for more confident decision making, focusing on tailoring variables.

Inference in DTR methods is a known challenge with current active research. Due to

the nonsmoothness caused by maximization when going through backward induction,

the asymptotic distribution of the true coefficient oscillates between two asymptotic

distributions, thus resulting in asymptotic bias and poor Wald-type confidence in-

tervals. Even bootstrap-type estimators rely on smoothness and are also affected

(Chakraborty et al., 2010). Multiple approaches have been proposed to deal with

the nonsmoothness, with varying degrees of adjustment. Chakraborty et al. (2010)

proposed hard threshold and soft threshold estimators, while (Laber et al., 2014)

proposed an adaptive confidence interval for the first stage parameters by utilizing

regular, uniformly convergent lower and upper bounds for the asymptotic distribu-

tion of interest, and later bootstrapping for the confidence set. Shao (1994) proposed

an m-out-of-n bootstrap approach to adjust for general nonsmoothness, which was

4



adapted to the DTR setting by (Chakraborty et al., 2013). Our proposed method in

Chapter IV is an amalgamation of the ideas of the Chapter III with specific improve-

ments towards censoring and inference. We show that our method is promising in

simulation studies through evaluating metrics like the accuracy rate of predicting the

optimal treatment and inference coverage probabilities and measures of confidence.
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CHAPTER II

Restricted Mean Survival Time as a Function of

Restriction Time

2.1 Introduction

For time to event data with right censoring, the proportional hazards model (Cox ,

1972) has long been the default for doing analysis with covariate adjustment. The

principal summary measure that results from Cox regression is the hazard ratio (HR),

which is routinely used to quantify between-group differences. This line of analysis

relies on proportional hazards (PH), which is the assumption that the ratio of the two

hazards are constant over time. Although the approach is convenient to implement,

the PH assumption is frequently violated, leading to difficulties with interpretation

(Struthers and Kalbfleisch, 1986; Wei and Schaubel , 2008).

A number of authors have advocated for using summary statistics beyond the haz-

ard ratio in both clinical trial and observational data analyses, especially when the

proportional hazards assumption has been called into doubt (Royston and Parmar ,

2011; Schaubel and Wei , 2011; Royston and Parmar , 2013; Uno et al., 2014; Uno

et al., 2015). In particular, the restricted mean survival time (RMST) has been

suggested. Defined as the mean survival time up to a prespecified time horizon of

6



interest, L, in a given population, the RMST can simply be thought of as a L-year life

expectancy. Mathematically, it is written as the area under the survival curve up to

time L (see Figure 2.1 for a schematic). First proposed in Irwin (1949), RMST was

initially meant as a substitute for the overall mean, for settings where the presence

of censoring prevented the estimation of the latter. More recently, it has come to

be known as an interesting measure in its own right. Simulation studies have com-

pared RMST treatment effect estimation and statistical power with HR-based tests

both under proportional hazards and non-proportional hazards scenarios. Royston

and Parmar (2013), Tian et al. (2017), and Huang and Kuan (2018) found that un-

der PH scenarios, RMST-based and log-rank tests perform similarly (with a slight

advantage for the log-rank test), while RMST performs better in non-PH scenarios.

Hence, RMST is a clinically relevant and interpretable measure that does not depend

on the PH assumption and requires little sacrifice in statistical power even when the

PH assumption holds.

Most existing methods estimate RMST indirectly by integrating under an estimate

of the survival curve. Irwin (1949) used the actuarial estimator for the survival

probability and approximated the area under the curve using numerical quadrature

methods. More recent methods that extend those of Irwin (1949) by incorporating

covariates tend to proceed initially through hazard regression. Karrison (1987) in-

troduced covariate adjustment for the RMST using a piece-wise exponential hazard

model, assuming covariates affect the hazard in a multiplicative manner just as in the

Cox model, subsequently obtaining the piecewise cumulative hazard, survival prob-

ability curve, and the restricted mean. Zucker (1998) followed a similar protocol,

using a stratified Cox model instead. Even more recent approaches still require 4-5

sequential steps to obtain the restricted mean: estimate the regression parameter

(e.g., through a Cox model); estimate the cumulative baseline hazard; transforming

the subject-specific cumulative hazard, then integrate it to obtain the restricted mean

7



Figure 2.1: Schematic of two RMST curves
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(Chen and Tsiatis , 2001; Zhang and Schaubel , 2011). This process is cumbersome

and computationally expensive in large data sets, especially to obtain asymptotic

standard errors. Furthermore, through the use of Cox model, this process also re-

lies on the proportional hazards assumption, which, if untrue, can also lead to bias,

inefficient estimation, and a challenging interpretation.

Hence, several authors have suggested to directly model the RMST itself. Ander-

sen et al. (2004) and Andersen and Pohar Perme (2010) used imputation based on

pseudo-observations to model the RMST directly using generalized linear models.

Tian et al. (2014) employed a different but similarly direct approach by constructing

estimating equations for RMST based on Inverse Probability of Censoring Weighting

(Robins and Rotnitzky , 1992; Robins , 1993; Robins and Finkelstein, 2000), similar to

the approach of Zhao et al. for quality adjusted life (Zhao and Tsiatis , 1997; Zhao

and Tsiatis , 1999). Wang and Schaubel (2018) employed a similar modeling strategy,

but further extended the method to accommodate dependent censoring.

To the best of our knowledge, no existing regression methods have been proposed for

modeling RMST as a continuous function of the restriction time, L. Zhao et al. 2016

make a strong case for by looking at the entire RMST curve, in order to obtain a

complete temporal picture, much like the survival function. We extend this concept to

the regression setting, which has two important analytic implications. First, through

our proposed approach, one can obtain RMST predictions for various restriction times

through a single model. Second and much more importantly, models fitted though

our proposed methods yield time-varying covariate effects. The second property is

essential for RMST regression to be on more equal footing with hazard regression,

since the latter is currently the strong default analysis when time-varying covariate

effects are an objective.

The remainder of this report is organized as follows. In Section 2.2, we describe
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the proposed methods, formulating the notation, data structure, and list out the

assumptions made. In Section 2.3, we present the derived asymptotic properties.

In Section 2.4, we present results from simulation studies to evaluate the accuracy

of the proposed methods. In Section 2.5, we apply the method to the Scientific

Registry of Transplant Recipients (SRTR) kidney transplant data, illustrating the use

of our method. We conclude this report in Section 2.6 with a discussion. Asymptotic

derivations are provided in the Supplementary Materials.

2.2 Method for Estimation of RMST as a Function of L

Let Di be the survival time for subject i, where i = 1, . . . , n. Let Ci be the cen-

soring time, assumed to be independent of Di conditional on the baseline covariates.

The observation time for subject i is Xi = Di ∧ Ci, where a ∧ b = min{a, b}. The

at-risk indicator is denoted by Ri(t) = I(Xi ≥ t), and the event and censoring in-

dicators are ∆D
i = I(Di ≤ Ci) and ∆C

i = I(Ci < Di), respectively. We denote

covariates predicting Di and Ci by ZD
i and ZC

i , respectively. Stacking these covari-

ates and removing redundancy, we obtain Zi. Our observed data are then given by

{Xi,∆
D
i ,∆

C
i ,Zi : i = 1, . . . , n}.

Let τ = max{Xi : i = 1, . . . , n} be the end of follow-up time, and Lmax be a pre-

specified maximal value of L after which estimation becomes potentially unstable

and of little interest. Naturally, it is required that τ ≥ Lmax. Let L be a vector

of length K where L = (L1, L2, . . . , LK)′ values sorted in ascending order. For a

particular element of L, say Lk, the restricted observation time is Yik = Xi ∧Lk, and

the corresponding observed-event indicator is ∆ik = I(Di ∧ Lk ≤ Ci). Note that ∆ik

is analogous to a complete-case indicator, taking the value 1 if subject i either dies

before (Ci ∧ Lk) or lives (and remains uncensored) past Lk.

In general, for any arbitrary value of L, we are interested in the average survival time
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up to L, modeled through an individual’s covariates:

µi(L) := E
{
Di ∧ L|ZD

i

}
.

As in Wang and Schaubel (2018), we assume the same direct relationship between

the RMST and the baseline covariates. However, in addition, we assume that the

covariate effects vary as a function of L in the following equation:

g [µi(L)] ≡ g
[
E
{
Di ∧ L|ZD

i

}]
= β′D(L)ZD

i , (2.1)

where g is a strictly monotone link function with a continuous derivative within an

open neighborhood BD(L) of βD(L). Some conventional examples of g(x) could be

the identity link, log link, or logistic link. Without any adjustments, Equation (2.1)

is an infinite dimensional problem and would generally be inconvenient to estimate.

Instead, we address the problem by assuming that βD(L), a vector of continuous and

monotonic functions, is able to be parametrically modeled as a function of L. For

example, denote this parametric model of L as βD(L) = α0L0(L) + . . .+αmLm(L),

where L0(L), L1(L), . . . , Lm(L) are functions of L, i.e. parametric or spline functions.

Let Zi = (1, Zi1, . . . , Zip)
′ and L(L) = (L0(L), L1(L), . . . , Lm(L))′. Then we can

re-express the covariate vector as follows:

Z̃D
i (L) = Zi ⊗L(L)

where⊗ denotes the Kronecker product. Correspondingly, letα0 = (α00, . . . , α0m)′, . . . ,αp =
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(αp0, . . . , αpm)′, such that the new parameter vector can be written as

β̃D =



α0

α1

...

αp


.

Hence, we can rewrite Equation (2.1) as:

g [µi(L)] ≡ g
[
E
{
Di ∧ L|ZD

i

}]
= β′D(L)ZD

i = β̃′DZ̃
D
i (L). (2.2)

This parametrization in effect reduces an infinite dimensional problem to a finite

dimensional one, thereby making it more convenient to estimate the regression pa-

rameter. The specific parametrization of βk(L) requires careful consideration and

should be supported by graphical evidence. For relationships that do not seem to be

simply linear, the authors recommend fitting a spline as an initial choice. The knots

of the spline should be pre-selected and evenly span across the represented data to

ensure a comprehensive fit. Further exploration of this issue is given in Section 6.

Based on Equation (2.2), in the absence of censoring, we can derive the following

estimating equation:

1

n

n∑
i=1

K∑
k=1

Z̃D
i (Lk)[Yik − g−1{β̃′Z̃D

i (Lk)}] = 0. (2.3)

In effect, this is a stacked version of the estimating equation presented in Wang and

Schaubel (2018), where each new iteration of the data (for each value of Lk) is stacked

to make a complete vector of responses. Each individual is now represented in the

data set K times through its relationship with individual Lks. The complete response

vector is then used to fit a model that incorporates each Lk as part of the covariate
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information. The fitted model is a generalized estimating equation (GEE). To retain

flexibility and robustness, we utilize a working independence correlation structure for

each individual.

As in most survival data, we are unlikely to observe Di for all patients due to cen-

soring. In this report, we will focus on independent censoring and make the standard

assumption that Ci ⊥ Di|Zi. We further assume that the hazard for censoring time

Ci follows a proportional hazards model (Cox , 1972),

λCi (t) = λC0 (t) exp(β′CZ
C
i ). (2.4)

Then, each subject-specific cumulative hazards is given by ΛC
i (t) =

∫ t
0
λCi (u)du for

i = 1, . . . , n. In the presence of censoring, E(Z̃D
i (Lk)[Yik − g−1{β̃′Z̃D

i (Lk)}]) 6= 0,

but we can show that the IPCW weighted expectation E(Z̃D
i (Lk)∆ikW

C
i (Yik)[Yik −

g−1{β̃′Z̃D
i (Lk)}]) = 0, where WC

i (t) = exp{ΛC
i (t)}.

We then present the following estimating equation, proven in the Appendix to be

unbiased for β̃′D:

Φ∗(β̃) :=
1

n

n∑
i=1

K∑
k=1

Z̃D
i (Lk)∆ikW

C
i (Yik)[Yik − g−1{β̃′Z̃D

i (Lk)}] = 0. (2.5)

Because the cumulative censoring hazard is usually not known in real data settings,

the following empirical estimating equation substitutes for ΛC
i (t) using the standard

partial likelihood (Cox , 1975) and Breslow-Aalen (Breslow , 1972) estimator,

Φ(β̃) :=
1

n

n∑
i=1

K∑
k=1

Z̃D
i (Lk)∆ikŴ

C
i (Yik)[Yik − g−1{β̃′Z̃D

i (Lk)}] = 0. (2.6)

The solution to Equation (2.6) is shown to provide for consistent estimation of β̃D,

and asymptotic properties are discussed in Section 2.3.

13



2.3 Asymptotic Properties

We specify the following regularity conditions (1)-(7):

1. {Xi,∆
D
i ,∆

C
i ,Zi}, i = 1, 2, . . . , n are independently and identically distributed.

2. P{Ri(t) = 1} > 0 for t ∈ (0, τ), i = 1, . . . , n

3. |Zik|< MZ <∞ for i = 1, . . . , n, where Zik is the kth component of Zi

4. ΛC
i (τ) <∞ and ΛC

i (t) is absolutely continuous for t ∈ (0, τ ].

5. There exist neighborhoods BC of βC such that for k = 0, 1, 2,

sup
t∈(0,τ ], β∈βC

∥∥∥∥∥ 1

n

n∑
i=1

exp(β′ZC
i )Ri(t)Z

C⊗k
i − r(k)

C (t;β)

∥∥∥∥∥ p−→ 0,

where v⊗0 = 1,v⊗1 = v,v⊗2 = v′v, and

r
(k)
C (t;β) = E[exp(β′ZC

i )Ri(t)Z
C⊗k
i ].

6. Define h(x) = ∂g−1(x)/∂x, where h exists and is continuous in an open neigh-

borhood BD(L) of β̃D(L).

7. Matrices A(β̃D),ΩC(βC) are both positive definite, and are defined below:

A(β̃D) = E

[
K∑
k=1

Z̃D
i (Lk)

⊗2h{β̃′DZ̃D
i (Lk)}

]

ΩC(βC) = E

[∫ τ

0

{
r

(2)
C (t;βC)

r
(0)
C (t;βC)

− z̄C(t;βC)⊗2

}
dNC

i (t)

]
,
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where

z̄C(t;β) =
r

(1)
C (t;β)

r
(0)
C (t;β)

.

Condition (1) could be relaxed, but additional technical developments would be

needed to compensate. Condition (2) is required for identifiability. Conditions (3)

- (6) are required for the convergence of stochastic integrals in several proofs. In

(7), matrices A(β̃D),ΩC(βC) are at least non-negative definite and will be positive-

definite provided the covariate vectors are specified sensibly.

The main asymptotic results are presented below, in Theorems (2.1) and (2.2). The

proofs are presented in the supplementary appendix.

Theorem 2.1. Under regularity conditions (1)-(7), as n→∞,
√
nΦ(β̃D) converges

in distribution to Normal(0,B(β̃D)), where

Bi(β̃) =
∑K

k=1{εik(β̃) +ΩC(βC)−1UC
i (βC)KC(β̃)} and B(β̃) ≡ E{Bi(β̃)⊗2}, where

we define:

εik(β̃D) = Z̃D
i (Lk)∆ikW

C
i (Yik)[Yik − g−1{β̃′DZ̃D

i (Lk)}]

UC
i (βC) =

∫ τ

0

{ZC
i − z̄C(u;βC)}dMC

i (u)

DC
i (t) =

∫ t

0

{ZC
i − z̄C(u;βC)}dΛC

i (u)

KC(β̃) ≡ E[εik(β̃)DC
i (Yik)

′].

Proof of Theorem 2.1 uses results presented in Zhang and Schaubel (2011). Mainly,

we borrow techniques for expressing the asymptotic empirical weight in terms of the

true weight for independent censoring times. Theorem 2.1 sets the stage for the next

theorem.
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Theorem 2.2. Under regularity conditions (1)-(7), as n → ∞, β̂D converges in

probability to β̃D, and
√
n(β̂D − β̃D) converges in distribution to

Normal(0,A(β̃D)−1B(β̃D)A(β̃D)−1).

The proof of consistency follows from the use of the Inverse Function Theorem (Foutz ,

1977). The asymptotic normality and variance follows from combination of Theorem

2.1 and a sequence of Taylor expansions.

We propose a variance estimator that is computationally more convenient than that

derived in Theorem 2. Specifically, the weight function is treated as known, such the

middle matrix involves only εik(β), which implies the following variance estimator,

V̂ (β̂D) = Â(β̃D)−1B̂∗(β̃D)Â(β̃D)−1, (2.7)

where B̂∗(β) = Ê{(
∑K

k=1 εik(β))⊗2}. Treating the IPCW weights as fixed has a long

history, dating back at least to the works of Robins et al. (2000). Moreover, Wang

and Schaubel (2018) demonstrated through simulation that there was no practical

difference between standard errors that treated the weights as fixed versus random.

The asymptotic standard error (ASE) estimator given in Equation (2.7) will be used

in Sections 2.4 and 2.5. Computationally, Equation (2.7) can be quickly computed

with built-in commands in standard software (e.g., R, SAS), using any function that

can handle weighted GEE data structures.

2.4 Simulation Study

For each subject, i = 1, . . . , n, we first generated a baseline covariate with two ele-

ments, Zi = (Zi1, Zi2)′, with each element generated from a Unif(-1,1) distribution.
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The death time, Di, was then generated from an exponential distribution with

E[Di|Zi] = g−1(α0 + α1Zi1 + α2Zi2). (2.8)

Parameter settings were chosen to cover a wide variety of realistic scenarios. For

g(x) = x, we set α = [4, 2.5,−2.5]′ for the ‘strong’ covariate effect scenario, and set

α = [4, 0.75,−0.75]′ to represent weaker covariate effects. Note that Cox regression

under the ‘strong’ scenario yields hazard ratios of HR1 ≈ 0.45 and HR1 ≈ 2.15

for Zi1 and Zi2, respectively; the ‘weak’ covariate setting lines up with HR1 ≈ 0.80

and HR2 ≈ 1.20. For g(x) = log(x), we set α = [1.25, log(2),− log(2)]′ and α =

[1.25, log(1.25),− log(1.25)]′ for the strong and weak covariate effect scenarios, re-

spectively. For the log link, the strong setting yields hazard ratios HR1 ≈ 0.5 and

HR2 ≈ 2.0, while the weak setting corresponds to HR1 ≈ 0.80 and HR2 ≈ 1.25.

Although we did not directly generate the restricted mean survival time (Di ∧ L),

we can induce its relationship with the two covariates through Monte Carlo methods

(with population size 10 million for each configuration).

With respect to censoring, we examined scenarios with low (15% censored), moderate

(30%) and high (45%) proportion censored. Independent censoring time, Ci, was

generated from the following hazard,

λCi (t) = λC0 exp(βC1Zi1 + βC2Zi2).

For all settings, βC1 = log(1.5) and βC2 = − log(1.5). We varied λC0 in order to

generate the desired percent censored; censoring parameters are given in the table

captions.

We present the results for sample size n = 1000, under low, moderate and high

censoring scenarios. For each setting, we generated 1000 iterations. In Tables 2.1 and
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2.2, we present results for the strong covariate setting for the linear and log links,

respectively. For illustrative purposes, we will select L = {5, 7.5, 10}. Tables 2.1 and

2.2 contain the true values, bias, empirical standard deviation (ESD), the asymptotic

standard error (ASE), and empirical coverage probabilities (CP) corresponding to the

asymptotic 95% confidence intervals.

The general conclusion from Tables 2.1 and 2.2 is that, in moderate samples, the

proposed estimator is approximately unbiased. Furthermore, the ESDs matched the

ASEs very closely, supporting the accuracy of the derivations, and that treating the

inverse probability censoring weights as known is adequate for maintaining estimation

accuracy of the standard errors. The empirical coverage probabilities are similarly

very close to the nominal level.

Figure 2.2 displays plots comparing β̂(L) with β(L) from the 30% censoring scenario

shown in Table 2.1. The proposed estimator is quite accurate across all L values

plotted, as evidenced by the fact that ‘estimated’ and ‘true’ lines are practically

indistinguishable.

Additional simulation results are provided in the Appendix section of this chapter. In

particular, we show results for weak covariate effects in Tables 2.3 and 2.4. Results are

very similar those afore-described for Tables 2.1 and 2.2. We show results for smaller

sample sizes (n = 500 and n = 250) in Tables 2.5 and 2.6. Results are acceptable,

although residual bias is greater than that shown in Tables 2.1 and 2.2, and CP is a

bit lower, as one would expect. In Tables 2.7 and 2.8, we compare the efficiency of

the proposed methods with that of Wang and Schaubel (2018); efficiency is shown to

be approximately equal for the two approaches. Finally, we evaluated the impact of

increasing the number of k values (i.e., the number of stacked data sets) in Tables 2.9

and 2.10. It appears that slight gains in efficiency can be achieved by increasing K.
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Table 2.1: Simulation results: linear link, strong covariate effect. Data were gen-
erated using βD = [4, 2.5,−2.5]. True βD are given by [2.621, 1.006,−1.006] for
L = 5, [3.140, 1.440,−1.440] for L = 7.5, and [3.453, 1.753,−1.756] for L = 10. For
low censoring (15%), λC0 =0.025, βC = [− log(1.5), log(1.5)]. For moderate censoring
(30%), λC0 =0.1, βC = [− log(1.5), log(1.5)]. For high censoring (45%), λC0 = 0.225,
βC = [− log(1.5), log(1.5)].

L Censor % Parameter BIAS ESD ASE CP

β0 -0.001 0.053 0.055 0.960
15 β1 -0.004 0.098 0.095 0.944

β2 -0.009 0.100 0.095 0.940

β0 -0.003 0.056 0.062 0.976
5 30 β1 0.004 0.101 0.106 0.958

β2 0.003 0.107 0.106 0.942

β0 -0.002 0.064 0.079 0.982
45 β1 -0.004 0.121 0.131 0.964

β2 -0.001 0.123 0.132 0.956

β0 -0.005 0.073 0.078 0.964
15 β1 -0.011 0.138 0.136 0.944

β2 -0.008 0.141 0.136 0.958

β0 -0.009 0.081 0.094 0.974
7.5 30 β1 -0.003 0.145 0.160 0.964

β2 0.009 0.160 0.160 0.944

β0 -0.009 0.099 0.133 0.988
45 β1 -0.017 0.194 0.220 0.974

β2 0.003 0.195 0.220 0.968

β0 -0.005 0.089 0.097 0.968
15 β1 -0.009 0.170 0.171 0.950

β2 -0.009 0.173 0.170 0.964

β0 -0.011 0.104 0.124 0.970
10 30 β1 -0.005 0.197 0.213 0.978

β2 0.008 0.210 0.211 0.954

β0 -0.016 0.132 0.197 0.992
45 β1 -0.037 0.290 0.323 0.982

β2 -0.011 0.287 0.323 0.964
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Table 2.2: Simulation results: log link, strong covariate effect. Data were generated
using βD = [1.25, log(2),− log(2)]. True βD are given by [0.923, 0.359,−0.359] for
L = 5, [1.074, 0.451,−0.451] for L = 7.5, and [1.148, 0.515,−0.515] for L = 10. For
low censoring (15%), λC0 = 0.025, βC = [− log(1.5), log(1.5)]. For moderate censoring
(30%), λC0 = 0.1, βC = [− log(1.5), log(1.5)]. For high censoring (45%), λC0 = 0.225,
βC = [− log(1.5), log(1.5)].

L Censor % Parameter BIAS ESD ASE CP

β0 -0.001 0.022 0.023 0.946
15 β1 0.001 0.035 0.036 0.956

β2 -0.004 0.034 0.036 0.964

β0 -0.001 0.023 0.026 0.974
5 30 β1 0.001 0.041 0.041 0.956

β2 0.001 0.037 0.041 0.974

β0 -0.001 0.028 0.034 0.986
45 β1 0.001 0.047 0.053 0.978

β2 -0.001 0.050 0.054 0.958

β0 -0.003 0.026 0.027 0.952
15 β1 0.000 0.041 0.043 0.948

β2 -0.004 0.041 0.043 0.954

β0 -0.002 0.028 0.033 0.970
7.5 30 β1 0.002 0.049 0.051 0.974

β2 0.005 0.046 0.051 0.968

β0 -0.005 0.039 0.048 0.980
45 β1 0.004 0.066 0.073 0.960

β2 0.002 0.072 0.074 0.960

β0 -0.003 0.029 0.029 0.956
15 β1 -0.000 0.045 0.048 0.962

β2 -0.005 0.047 0.048 0.948

β0 -0.001 0.031 0.039 0.976
10 30 β1 0.003 0.058 0.061 0.966

β2 0.007 0.056 0.061 0.956

β0 -0.008 0.052 0.062 0.966
45 β1 0.006 0.089 0.093 0.956

β2 0.001 0.096 0.095 0.952
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Figure 2.2: Comparison between true covariate values and estimated covariate values
as a function of L for linear link. Data were generated using βD = [4, 2.5,−2.5].
Censoring was generated at (30%), with λC0 = 0.1, βC = [− log(1.5), log(1.5)].
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2.5 Application to USRDS Renal Transplantation Data

We applied our proposed method to estimating time to graft failure in kidney-

transplantation recipients. The data was obtained from the Scientific Registry of

Transplant Recipients (SRTR). The SRTR data system includes data on all donors,

wait-listed candidates and transplant recipients in the U.S., as submitted by members

of the Organ Procurement and Transplantation Network (OPTN), and has been de-

scribed elsewhere. The Health Resources and Services Administration (HRSA), U.S.

Department of Health and Human Services provides oversight to the activities of the

OPTN and SRTR contractors.

The study population includes end stage renal disease patients who received a kid-

ney transplant between January 01, 2000 and December 31, 2014. For this analysis,

we included only those who received deceased donor kidneys, excluded all recipi-

ents younger than 18 years of age and those who have received a previous kidney

transplants. Graft failure, our main event of interest, is defined as the minimum of

death, transplant failure (return to dialysis), and re-transplantation. This is consis-

tent with the majority of previous kidney transplant literature (Zhong et al., 2019).

Each patient was followed from the date of transplant to the earliest of graft failure or

censoring date, or the end of observation period of December 31, 2014. Independent

censoring occurred through a loss of follow-up or administrative censoring. For this

analysis, a total of n = 127, 082 patients were included in the study population. A

total of 45, 516(35.8%) patients experienced graft failure. Of these, 48.6% of them

died, 50.6% experienced transplant failure, and 0.8% had a re-transplant.

To illustrate our method, we chose a set of five baseline recipient covariates: age,

gender, height, weight, and log of the kidney donor recipient index (log-KDRI) (Rao

et al., 2009). Age, height, weight, and log-KDRI are continuous, while gender is

binary. We selected our L = [1, 2, 3, . . . , 10]′ years. In this case, the Lmax is set to
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be 10 years. The data were replicated and assorted into an expanded dataset, with

Yik = Yi ∧ Lk, k = 1, 2, . . . , 10. The same L was also used to fit the model, using

individual L′ks as knots in the parametric spline. Although we opted to use the same

vector both to create the expanded data set as well as to fit the parametric spline

model, the two could be chosen separately if desired.

In Figure 2.3, we plot time-varying effects for some of the more prominent covariates.

Due to our having shifted continuous covariates, the intercept (top left panel) pertains

to a 40-year old male who is 170cm tall, weighs 80kg, receives a kidney transplant

from a deceased donor with KDRI=1 (approximately the 60th percentile of donor

quality, per Zhong et al. (2019).

We chose here to use the linear link for its easy interpretability, but other link func-

tions could also be used if desired. To find β̂Zk(L) for a particular covariate Zk using

this spline parametrization, we follow the following formula:

β̂Zk(L) = α̂k0L+ α̂k1(L− 1)+ + α̂k2(L− 2)+ + α̂k3(L− 3)+ + α̂k4(L− 4)+

+α̂k5(L− 5)+ + α̂k6(L− 6)+ + α̂k7(L− 7)+ + α̂k8(L− 8)+

+α̂k9(L− 9)+,

where a+ = max{a, 0}.

Similarly, we can obtain V̂ {β̂Zk(L)} by requesting the standard robust variance-

covariance matrix from GEE software/functions. Since the spline terms are constant

(zero variance), one can simply obtain the variance using relevant elements in the

variance-covariance matrix and summing through the sum of variance formula.

In Figure 2.4 we present RMST predictions for various covariate patterns. Covariate

sets 1 and 3 represent lower-risk patients, while 2 and 4 correspond to patients that are
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Figure 2.3: Analysis of SRTR data. Estimated covariate effects as a function of time
since transplant
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higher-risk. Contrasts between the predicted RMST values across patients generally

become more pronounced as L increases. Note that, due to the use of spline terms,

this pattern is not forced by the model.

2.6 Discussion and Conclusions

In this report, we developed a method for modeling restricted mean survival time as

a function of the restriction time. Unlike existing methods, the proposed methods

allow covariate effects to depend on restriction time. The methods also permit the

analyst to obtain RMST predictions for several time horizons through a single model.

Our method requires specifying a maximum ‘reasonable’ restriction time, Lmax, after

which RMST is then modeled as a parametric function of L on (0, Lmax]. Our method

amounts to developing a “super-model”, through stacking data sets defined by Lk

values which map out a grid over (0, Lmax]. Through our methods, one can create a

flexible and temporal picture of covariate effects as a function of L. The proposed

variance estimator is convenient to implement and was shown to work well in moderate

samples. Furthermore, computational feasibility in larger data sets is implied by our

method having easily been able to handle national organ transplant registry data.

The proposed methods allow the covariate effects to depend on time, which is a major

advantage over Wang and Schaubel (2018). The flexibility to use time-varying effects

is well-accepted and frequently utilized in the context of hazard regression. Moreover,

the work of Zhao et al. (2016) underscores the importance of viewing RMST as

a function of restriction time in comparing groups nonparametrically. The major

advantage of our work over Zhao et al. is that our proposed methods utilize regression,

while Zhao et al. (2016) uses nonparametric comparisons. Zhao et al. (2018) would

generally not be applicable to observational studies requiring simultaneous estimation

of many predictors and/or when some predictors are continuous; e.g., the transplant
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Figure 2.4: Predicted RMST projections by covariate pattern and time. Covariate Set
1 refers to a 65 year old female who received an organ with KDRI of 0.75. Covariate
Set 2 is a 45 year old female who received an organ with KDRI of 1.35. Covariate Set
3 refers to a 30 year old male who received an organ with KDRI of 0.75. Covariate Set
4 refers to a 40 year old male who received an organ with KDRI of 1.5. All recipients
were assumed to be 170cm in height and 80kg in weight.
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registry study we analyzed in Section 2.5.

The proposed methods require IPCW, which is generally known to be subject to

instability. It should be noted that small remaining-uncensored probabilities are less

of an issue in RMST modeling, provided that a sensible value of L (or, in our case,

Lmax) is chosen. It is not necessary to compute the weight function too far into

the tail of the observation time distribution, hence avoiding scenarios where there

are very few subjects remaining at-risk (which leads to large and unstable weights).

We illustrate this phenomenon in Figure 2.5, which shows box plots of the IPCW

weight function versus L for the SRTR data analyzed in Section 2.5. The plot reveals

that variability in the weight function increases as L increases, as does the maximum

weight. However, unrealistically large weights are not observed, as the maximum

weight observed is 27 at L = 10, and the vast majority of weights at L = 10 were less

than three, which is very reasonable for a dataset with sample size of 127,082. In the

event that unduly large weights did occur, one could cap the weight function.

In addition to choosing Lmax, the two other main decisions involved in our method

are the vector components of L used to create the expanded data-set, and the precise

parametric model (including specification of knots, if appropriate) used to fit the

expanded data-set. In our experience, for the first question, it is generally important

to create a well spread out grid that includes copies of the data both smaller and

larger than L′s of interest. For the second question, we propose that investigators fit

separate models at a grid of L values to preliminarily determine the functional form of

covariate effects and use that as a guide to determine the specific parametrization. For

example, in the SRTR data set, it was clear after this step that a simple linear model

would be deficient. On both of these topics, further research would help elucidate the

pros and cons of particular approaches.

Finally, to illustrate our method, we applied it to kidney transplantation data to
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study post-transplant outcomes. To our knowledge, this is the first paper to provide

a temporal model of RMST in the kidney transplantation setting.

2.7 Appendix

2.7.1 Asymptotic Properties of the Proposed Estimator

2.7.1.1 Notations

Here are the notations needed for further discussion:

i: subject index, i ∈ {1, 2, ..., n}

Di: death time

Ci: Independent censoring time

τ : end of follow up time

Lk: one pre-specified time point of interest, Lk ≤ τ

L: vector of selected values of L sorted in ascending order, i.e. L1, L2, ..., LK

K: length of vector L

Lmax: a maximal value of L beyond which estimation becomes difficult

Xi = Di ∧ Ci: observation time

Yik = Xi ∧ Lk: restricted observation time by Lk

∆ik = I(Di ∧ Lk ≤ Ci): indicator for restricted survival time Di ∧ Lk

∆D
i = I(Di ≤ Ci): death indicator

∆C
i = I(Ci < Di): independent censoring indicator
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ZD
i : covariates that predict death Di

ZC
i : covariates that predict independent censoring Ci

Zi: a covariate set that stacks ZD
i and ZC

i together and removes redundacy

λCi (t): hazard rate for independent censoring Ci

ΛC
i (t) =

∫ t
0
λCi (u)du: cumulative hazard rate for independent censoring Ci

ND
i (t) = I(Xi ≤ t,∆D

i = 1): counting process for death

NC
i (t) = I(Xi ≤ t,∆C

i = 1): counting process for independent censoring

Ri(t) = I(Xi ≥ t): at risk process

dMC
i (t) = dNC

i (t)−Ri(t)dΛC
i (t): zero mean process for independent censoring

Zi1, Zi2, ..., Zip: covariates for ith individual

L0(L), L1(L), ...Lm(L): functions of L that estimate βD(L)

2.7.1.2 Model Assumptions

We have made these assumptions in our paper:

1. Assume restricted mean lifetime conditional on covariates µi(L) := E{Di ∧

L|ZD
i } follows the model structure as below,

g[µi(L)] ≡ g
[
E{Di ∧ L|ZD

i }
]

= β′D(L)ZD
i

where g(∗) is a given smooth and strictly monotone link function and βD(L) is

our primary interest.
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2. We assume that βD(L), a vector of continuous and monotonic functions, can be

parametrically modeled as a function of L. For example, denote this parametric

model of L as βD(L) = α0L0(L) + ...+αmLm(L), where L0(L), L1(L), ...Lm(L)

are functions of L, i.e. parametric or spline functions.

3. Assume Cox proportional hazards model for independent censoring time Ci:

λCi (t) = λC0 (t) exp(β′CZ
C
i )

4. Assume independent censoring time is independent of death time given covari-

ates; i.e., Ci ⊥ Di|Zi.

2.7.1.3 Infinite to Finite Dimensional

As before,

g[µi(L)] ≡ g[E{Di ∧ L|ZD
i }] = β′D(L)ZD

i

is an infinite dimensional problem. We can in general say that βk(L) is a linear

combination of functions of m different functions of L denoted L0(L), ..., Lm(L). We

would have:

β(L) =



β0(L)

β1(L)

...

βp(L)


=



α00L0(L) + α01L1(L) + ...+ α0mLm(L)

α10L0(L) + α11L1(L) + ...+ α1mLm(L)

...

αp0L0(L) + αp1L1(L) + ...+ αpmLm(L)
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Then we can rewrite the model in the following way:

g[µi(L)] ≡ g[E{Di ∧ L|ZD
i }] = β′D(L)ZD

i

=

[
β0(L) β1(L) . . . βp(L)

]


1

Zi1
...

Zip



=



α00L0(L) + ...+ α0mLm(L)

α10L0(L) + ...+ α1mLm(L)

...

αp0L0(L) + ...+ αpmLm(L)



T 

1

Zi1
...

Zip



=

[
α00 . . . α0m α10 . . . α1m . . . αp0 . . . αpm

]



L0(L)

L1(L)

...

Lm(L)

L0(L)Zi1

L1(L)Zi1
...

Lm(L)Zi1
...

L0(L)Zip

L1(L)Zip
...

Lm(L)Zip
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Denote our new covariate vector as

Z̃D
i (L) = Zi ⊗L(L)

where ⊗ denotes the Kronecker product. Similarly, let α0 = (α00, . . . , α0m)′, . . . ,αp =

(αp0, . . . , αpm)′. Then the new coefficient vector can be written as

β̃D =



α0

α1

...

αp



Hence, we can rewrite assumption 1 as:

g[µi(L)] ≡ g[E{Di ∧ L|ZD
i }] = β′D(L)ZD

i = β̃′DZ̃
D
i (L)

2.7.1.4 Regularity Conditions

We specify the necessary regularity conditions (1)-(7) as below.

1. {Xi,∆
D
i ,∆

C
i ,Zi}, i = 1, 2, . . . , n are independently and identically distributed.

2. P (Ri(t) = 1) > 0 for t ∈ (0, τ), i = 1, ..., n

3. |Zik|< MZ <∞ for i = 1, ..., n, where Zik are the kth components of Zi

4. ΛC
i (τ) <∞ and is absolutely continuous for t ∈ (0, τ ].
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5. There exist neighborhoods BC of βC such that for k = 0, 1, 2,

sup
t∈(0,τ ], β∈βC

∥∥∥∥∥ 1

n

n∑
i=1

exp(β′ZC
i )Ri(t)Z

C⊗k
i − r

(k)
C (t;β)

∥∥∥∥∥ p−→ 0,

where v⊗0 = 1,v⊗1 = v,v⊗2 = v′v, and

r
(k)
C (t;β) = E[exp(β′ZC

i )Ri(t)Z
C⊗k
i ]

6. Define h(x) = ∂g−1(x)/∂x, where h exists and is continuous in an open neigh-

borhood BD of β̃D.

7. Matrices A(β̃D),ΩC(βC) are both positive definite, and are defined below:

A(β̃D) = E[
K∑
k=1

Z̃D
i (Lk)

⊗2h{β̃′DZ̃D
i (Lk)}]

ΩC(βC) = E[

∫ τ

0

{r
(2)
C (t;βC)

r
(0)
C (t;βC)

− z̄C(t;βC)⊗2}dNC
i (t)]

where z̄C(t;β) =
r
(1)
C (t;β)

r
(0)
C (t;β)

.

2.7.1.5 Estimating Equations

We can estimate with the following estimating equations.

Φ∗(β̃) :=
1

n

n∑
i=1

K∑
k=1

Φ∗i (β̃) :=
1

n

n∑
i=1

K∑
k=1

Z̃D
i (Lk)∆ikW

C
i (Yik)[Yik−g−1{β̃′Z̃D

i (Lk)}] = 0
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The empirical version:

Φ(β̃) :=
1

n

n∑
i=1

K∑
k=1

Φi(β̃) :=
1

n

n∑
i=1

K∑
k=1

Z̃D
i (Lk)∆ikŴ

C
i (Yik)[Yik−g−1{β̃′Z̃D

i (Lk)}] = 0

We are looking for the β̂ that would zero out the empirical estimating equation.

2.7.1.6 Unbiased Estimating Equation

Lemma 2.3. Under regularity conditions (1)-(7) and for a given value of L, the

estimating equation (2.7.1.5) is unbiased at the true value of βD(L).

From the reasoning above, we know that the true value, βD(L) corresponds to a

specific extended vector, denote as β̃D. We want to show that the estimating equation

is zero at the true value of β̃D.

Proof. Let εik(β̃D) = Z̃D
i (Lk)∆ikW

C
i (Yik)[Yik − g−1{β̃′DZ̃D

i (Lk)}]. Then we would

like to show that E[εik(β̃D)] = 0.
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E[εik(β̃D)|Z̃D
i (Lk)] = Z̃D

i (Lk)E[∆ikW
C
i (Yik)Yik|Z̃D

i (Lk)]

− Z̃D
i (Lk)g

−1{β̃DZ̃D
i (Lk)}E[∆ikW

C
i (Yik)|Z̃D

i (Lk)]

= Z̃D
i (Lk)E[E{∆ikW

C
i (Yik)Yik|Di}|Z̃D

i (Lk)]

− Z̃D
i (Lk)g

−1{β̃DZ̃D
i (Lk)}E[E{∆ikW

C
i (Yik)|Di}|Z̃D

i (Lk)]

= Z̃D
i (Lk)E[E{ I(Di ∧ Lk ≤ Ci)

P (Di ∧ Lk ≤ Ci)
(Ci ∧Di ∧ Lk)|Di}|Z̃D

i (Lk)]

− Z̃D
i (Lk)g

−1{β̃DZ̃D
i (Lk)}E[E{ I(Di ∧ Lk ≤ Ci)

P (Di ∧ Lk ≤ Ci)
|Di}|Z̃D

i (Lk)]

= Z̃D
i (Lk)E[E{ I(Di ∧ Lk ≤ Ci)

P (Di ∧ Lk ≤ Ci)
(Di ∧ Lk)|Di}|Z̃D

i (Lk)]

− Z̃D
i (Lk)g

−1{β̃DZ̃D
i (Lk)}E[E{ I(Di ∧ Lk ≤ Ci)

P (Di ∧ Lk ≤ Ci)
|Di}|Z̃D

i (Lk)]

= Z̃D
i (Lk)E[Di ∧ Lk|Z̃D

i (Lk)]− Z̃D
i (Lk)g

−1{β̃DZ̃D
i (Lk)}

= Z̃D
i (Lk)[E[Di ∧ Lk|Z̃D

i (Lk)]− g−1{β̃DZ̃D
i (Lk)}]

= Z̃D
i (Lk)[E[Di ∧ Lk|Z̃D

i ]− g−1{β̃DZ̃D
i (Lk)}]

= 0 by assumption 1

Averaging over individual terms whose expectations are 0, we obtain that the esti-

mating equation is 0 at β̃D.

Theorem 2.1. Under regularity conditions (1)-(7), as n→∞,
√
nΦ(β̃D) converges

in distribution to Normal(0,B(β̃D)).

Proof. First we begin by defining a few terms:

UC
i (βC) =

∫ τ

0

{ZC
i − z̄C(u;βC)}dMC

i (u)

DC
i (t) =

∫ t

0

{ZC
i − z̄C(u;βC)}dΛC

i (u)
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For independent censoring time Ci, we can derive the following for the weights (Zhang

and Schaubel, 2011):

√
n{ŴC

i (t)−WC
i (t)} = 1√

n
WC
i (t){DC

i (t)′ΩC(βC)−1
∑n

j=1 UC
j (βC)}+ op(1)

Then let us rearrange the estimating equation in the following way:

√
nΦ(β̃)

=
1√
n

n∑
i=1

K∑
k=1

∆ik[Yik − g−1{β̃′Z̃D
i (Lk)}]Z̃D

i (Lk)[W
C
i (Yik) + {ŴC

i (Yik)−WC
i (Yik)}]

=
1√
n

n∑
i=1

K∑
k=1

∆ik[Yik − g−1{β̃′Z̃D
i (Lk)}]Z̃D

i (Lk)W
C
i (Yik)

+
1√
n

n∑
i=1

K∑
k=1

∆ik[Yik − g−1{β̃′Z̃D
i (Lk)}]Z̃D

i (Lk){ŴC
i (Yik)−WC

i (Yik)}

We know that the first part is just 1√
n

∑K
k=1

∑n
i=1 εik(β̃).

The second equation can be written as

1√
n

n∑
i=1

K∑
k=1

∆ik[Yik − g−1{β̃′Z̃D
i (Lk)}]Z̃D

i (Lk){ŴC
i (Yik)−WC

i (Yik)}

=
1

n1.5

n∑
i=1

K∑
k=1

εik(β̃){DC
i (Yik)

′ΩC(βC)−1

n∑
j=1

UC
j (βC)}+ op(1)

=
1

n1.5

n∑
i=1

K∑
k=1

n∑
j=1

εik(β̃){DC
i (Yik)

′ΩC(βC)−1UC
j (βC)}+ op(1)

=
1√
n

n∑
j=1

{ 1

n

n∑
i=1

K∑
k=1

εik(β̃)DC
i (Yik)

′}ΩC(βC)−1UC
j (βC) + op(1)

If we define KC(β̃) ≡ E[εik(β̃)DC
i (Yik)

′], then we have

1√
n

∑n
j=1

∑K
k=1 KC(β̃)ΩC(βC)−1UC

j (βC) + op(1).
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Putting the first and second parts together, we obtain

√
nΦ(β̃)

=
1√
n

n∑
i=1

K∑
k=1

εik(β̃) +
1√
n

n∑
i=1

K∑
k=1

ΩC(βC)−1UC
i (βC)KC(β̃) + op(1)

=
1√
n

n∑
i=1

K∑
k=1

{εik(β̃) + ΩC(βC)−1UC
i (βC)KC(β̃)}+ op(1)

Let Bi(β̃) =
∑K

k=1{εik(β̃) + ΩC(βC)−1UC
i (βC)KC(β̃)} and define

B(β̃) ≡ E{Bi(β̃)⊗2}.

Then,
√
nΦ(β̃) = 1√

n

∑n
i=1 Bi(β̃) + op(1).

Then, by the central limit theorem, we have
√
nΦ(β̃D)

D−→ Normal(0,B(β̃D)).

2.7.1.7 Consistency

Theorem 2.2(a). Under regularity conditions (1)-(7), n −→∞, β̂D
p−→ β̃D.

Proof. We will make use of the Inverse Function Theorem (Foutz , 1977) by first

verifying the following conditions:

1. ∂Φ(β̃)/∂β̃′ exists and is continuous in an open neighborhood B̃D of β̃D. We can

show that ∂Φ(β̃)/∂β̃′ = − 1
n

∑n
i=1

∑K
k=1 Z̃

D
i (Lk)

⊗2∆ikW
C
i (Yik)h{β̃′Z̃D

i (Lk)},

where h(x) = ∂g−1(x)/∂x

2. −∂Φ(β̃)/∂β̃′|β̃=β̃D
is positive definite with probability 1 as n −→∞.

3. −∂Φ(β̃)/∂β̃′ converges in probability to a fixed function uniformly in an open

neighborhood B̃D of β̃D.

4. The estimating function is asymptotically unbiased, i.e. Φ(β̃D)
p−→ 0.
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Verification of conditions:

1. The first condition is satisfied automatically because h(x) is assumed to exist

and be continuous in an open neighborhood B̃D of β̃D.

2. For the second condition,

− ∂Φ(β̃)

∂β̃′
|β̃=β̃D

= E[
K∑
k=1

∆ikW
C
i (Yik)h{β̃′DZ̃D

i (Lk)}Z̃D
i (Lk)

⊗2] + op(1)

= E[E{
K∑
k=1

∆ikW
C
i (Yik)h{β̃DZ̃D

i (Lk)}Z̃D
i (Lk)

⊗2|Di, Z̃
D
i (Lk)}] + op(1)

= E[
K∑
k=1

E{∆ikW
C
i (Yik)|Di, Z̃

D
i (Lk)}h{β̃′DZ̃D

i (Lk)}Z̃D
i (Lk)

⊗2] + op(1)

= E[
K∑
k=1

E{ I(Ci ≥ Di ∧ Lk)
P (Ci ≥ Di ∧ Lk)

|Di, Z̃
D
i (Lk)}h{β̃′DZ̃D

i (Lk)}Z̃D
i (Lk)

⊗2] + op(1)

= E[
K∑
k=1

h{β̃′DZ̃D
i (Lk)}Z̃D

i (Lk)
⊗2] + op(1)

≡ A(β̃D) + op(1)

We have previously assumed that A(β̃D) is positive definite, so the second

condition holds as n→∞.

3. The third condition holds by the law of large numbers.

4. Since we have proven
√
nΦ(β̃D)

D−→ Normal(0,B(β̃D)), this statement follows

by Chebyshev’s inequality.

Hence, having verified these conditions, we conclude that β̂D
p−→ β̃D from the Inverse

Function Theorem.
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2.7.1.8 Asymptotic Distribution

Theorem 2.2(b). Under regularity conditions, as n→∞,

√
n(β̂D − β̃D)

D−→ Normal(0,A(β̃D)−1B(β̃D)A(β̃D)−1).

Proof. We do Taylor expansion of the estimating equation Φ(β̂D) around β̃D and get

0 = Φ(β̂D) = Φ(β̃D) + ∂Φ(β)

∂β̃′
|β̃=β̆(β̂D − β̃D), where β̆ lies between β̂D and β̃D.

Then we have:

−Φ(β̃D) =

{
∂Φ(β̃)

∂β̃
|β̃=β̆(β̂D − β̃D)

}

⇒ −Φ(β̃D)

{
∂Φ(β̃)

∂β̃
|β̃=β̆

}−1

= β̂D − β̃D

⇒
√
nΦ(β̃D)

{
−∂Φ(β̃)

∂β̃
|β̃=β̆

}−1

=
√
n(β̂D − β̃D)

⇒
√
nΦ(β̃D)A(β̆)−1 =

√
n(β̂D − β̃D)

⇒
√
n(β̂D − β̃D) = A(β̃D)−1

√
nΦ(βD) + op(1)

Bringing in theorem 2, we have
√
n(β̂D−β̃D)

D−→ Normal(0,A(β̃D)−1B(β̃D)A(β̃D)−1)

2.7.2 Computation of Standard Errors

2.7.2.1 Variance Calculations

The above formula gives the variance-covariance matrix of β̃. We want to obtain the

variance of β̂(L).
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For example, if we were interested in the k-th covariate, β̂k(L),

V ar(β̂k(L)) = V ar(αk0L0(L) + ...+ αkmLm(L))

= V ar(αk0)L0(L) + ...+ V ar(αkm)Lm(L) +
∑
i 6=j

2Cov(αki, αkj)Li(L)Lj(L)

We can obtain both corresponding variances and covariances from matrix

1
n
Â(β̂D)−1B̂(β̂D)Â(β̂D)−1.

Computationally, we can obtain both V ar(αki) and Cov(αki, αkj), where i, j are ar-

bitrary indexes for enumerating coefficients, directly from GEE model outputs.
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2.7.3 Supplementary Tables and Figures

Figure 2.5: Boxplots of Inverse Probability Censoring Weights by restriction time, L
for the SRTR kidney transplantation data analysis. The numbers below the boxplots
indicate maximum weight.
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Table 2.3: Simulation results: linear link, weak covariate effect. Data were generated
using βD = [4, 0.75,−0.75].

L Censor % Parameter BIAS ESD ASE CP

β0 -0.001 0.058 0.059 0.956
15 β1 0.003 0.099 0.101 0.960

β2 0.001 0.098 0.101 0.960

β0 -0.001 0.060 0.067 0.976
5 30 β1 0.001 0.116 0.115 0.940

β2 -0.001 0.111 0.115 0.958

β0 -0.004 0.069 0.081 0.978
45 β1 0.004 0.131 0.143 0.952

β2 -0.002 0.133 0.143 0.968

β0 -0.005 0.083 0.084 0.952
15 β1 0.004 0.139 0.145 0.966

β2 0.005 0.136 0.145 0.958

β0 -0.006 0.089 0.103 0.978
7.5 30 β1 0.002 0.170 0.178 0.954

β2 -0.000 0.167 0.179 0.966

β0 -0.017 0.113 0.142 0.984
45 β1 0.013 0.223 0.246 0.960

β2 -0.002 0.237 0.248 0.962

β0 -0.004 0.101 0.104 0.952
15 β1 0.003 0.172 0.179 0.966

β2 0.003 0.167 0.179 0.960

β0 -0.006 0.112 0.138 0.988
10 30 β1 -0.003 0.221 0.237 0.978

β2 -0.004 0.224 0.239 0.956

β0 -0.040 0.153 0.210 0.970
45 β1 0.036 0.347 0.356 0.950

β2 -0.034 0.379 0.356 0.908
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Table 2.4: Simulation results: log link, weak covariate effect. Data were generated
using βD = [1.25, log(1.25),− log(1.25)].

L Censor % Parameter BIAS ESD ASE CP

β0 -0.001 0.022 0.023 0.952
15 β1 0.001 0.037 0.039 0.964

β2 0.000 0.036 0.039 0.968

β0 -0.001 0.023 0.026 0.970
5 30 β1 0.001 0.044 0.045 0.954

β2 -0.001 0.043 0.045 0.958

β0 -0.003 0.028 0.034 0.982
45 β1 0.002 0.052 0.058 0.958

β2 -0.001 0.053 0.058 0.968

β0 -0.003 0.026 0.027 0.950
15 β1 0.002 0.045 0.047 0.962

β2 0.000 0.044 0.046 0.964

β0 -0.003 0.029 0.035 0.984
7.5 30 β1 -0.000 0.056 0.059 0.966

β2 0.000 0.055 0.059 0.956

β0 -0.011 0.040 0.050 0.974
45 β1 0.009 0.079 0.084 0.960

β2 -0.005 0.084 0.085 0.942

β0 -0.002 0.029 0.031 0.960
15 β1 0.001 0.050 0.053 0.968

β2 0.001 0.049 0.053 0.968

β0 -0.004 0.034 0.043 0.988
10 30 β1 0.000 0.066 0.072 0.970

β2 -0.000 0.068 0.072 0.952

β0 -0.021 0.054 0.067 0.950
45 β1 0.018 0.112 0.109 0.920

β2 -0.012 0.117 0.109 0.918
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Table 2.5: Comparison between n=250 vs. n=500: linear link, strong covariate effect,
moderate censoring. Data were generated using βD = [4, 2.5,−2.5]. Censoring was
generated at (30%).

L n Parameter BIAS ESD ASE CP

5

β0 0.006 0.118 0.125 0.958
250 β1 0.006 0.210 0.212 0.948

β2 -0.010 0.189 0.213 0.960

β0 0.002 0.084 0.088 0.958
500 β1 0.006 0.146 0.150 0.962

β2 -0.009 0.148 0.150 0.938

7.5

β0 0.001 0.171 0.188 0.962
250 β1 0.001 0.305 0.319 0.950

β2 -0.005 0.285 0.320 0.960

β0 -0.003 0.119 0.133 0.968
500 β1 0.002 0.209 0.226 0.964

β2 -0.010 0.212 0.226 0.962

10

β0 -0.006 0.219 0.247 0.970
250 β1 0.003 0.401 0.422 0.954

β2 -0.011 0.390 0.422 0.974

β0 -0.003 0.150 0.175 0.978
500 β1 -0.001 0.273 0.301 0.966

β2 -0.008 0.273 0.300 0.972
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Table 2.6: Comparison between n=250 vs. n=500: log link, strong covariate effect,
moderate censoring. Data were generated using βD = [1.25, log(2),− log(2)]. Cen-
soring was generated at (30%).

L n Parameter BIAS ESD ASE CP

5

β0 -0.006 0.049 0.052 0.976
250 β1 -0.001 0.079 0.083 0.946

β2 -0.003 0.081 0.083 0.954

β0 -0.002 0.032 0.037 0.976
500 β1 0.007 0.054 0.059 0.974

β2 0.000 0.057 0.059 0.950

7.5

β0 -0.011 0.058 0.065 0.972
250 β1 0.003 0.097 0.102 0.948

β2 -0.001 0.097 0.102 0.950

β0 -0.006 0.039 0.046 0.982
500 β1 0.007 0.069 0.072 0.968

β2 0.000 0.070 0.072 0.958

10

β0 -0.013 0.068 0.076 0.960
250 β1 0.003 0.118 0.118 0.940

β2 0.000 0.116 0.119 0.944

β0 -0.008 0.044 0.054 0.978
500 β1 0.006 0.082 0.085 0.954

β2 -0.005 0.081 0.085 0.966

Table 2.7: Simulation results comparing proposed method to Wang and Schaubel 2018 for

linear link. Data were generated using βD = [4, 2.5,−2.5]. Censoring was generated at a

moderate level (30%).

L = 5 L = 7.5 L = 10

Method Parameter BIAS ESD
√
MSE BIAS ESD

√
MSE BIAS ESD

√
MSE

Proposed
β0 -0.003 0.062 0.062 -0.004 0.089 0.089 -0.009 0.113 0.113

β1 -0.007 0.105 0.105 -0.014 0.154 0.154 -0.018 0.198 0.199

β2 0.007 0.111 0.111 0.007 0.164 0.164 0.005 0.214 0.214

W and S
β0 -0.003 0.062 0.062 -0.004 0.089 0.089 -0.009 0.113 0.113

β1 -0.007 0.105 0.105 -0.014 0.155 0.155 -0.018 0.198 0.199

β2 0.007 0.111 0.111 0.008 0.165 0.165 0.005 0.214 0.214
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Table 2.8: Simulation results comparing proposed method to Wang and Schaubel 2018 for

log link. Data were generated using βD = [1.25, log(2),− log(2)]. Censoring was generated

at a moderate level (30%).

L = 5 L = 7.5 L = 10

Method Parameter BIAS ESD
√
MSE BIAS ESD

√
MSE BIAS ESD

√
MSE

Proposed
β0 -0.001 0.025 0.025 -0.002 0.029 0.029 -0.004 0.032 0.032

β1 0.000 0.039 0.039 0.001 0.046 0.046 0.002 0.054 0.054

β2 0.001 0.040 0.040 0.000 0.049 0.049 0.002 0.058 0.058

W and S
β0 -0.001 0.025 0.025 -0.002 0.029 0.029 -0.004 0.032 0.032

β1 0.000 0.039 0.039 0.000 0.047 0.047 0.002 0.054 0.054

β2 0.001 0.040 0.040 0.000 0.049 0.049 0.002 0.058 0.058

Table 2.9: Simulation results comparing efficiency between stacking k = 10 vs k = 20
datasets for linear link. Data were generated using βD = [4, 2.5,−2.5]. Censoring
was generated at a moderate level (30%).

Number of stackings Parameter L=5
√
MSE L=7.5

√
MSE L=10

√
MSE

β0 0.062 0.089 0.113
k=10 β1 0.105 0.154 0.199

β2 0.111 0.163 0.214

β0 0.058 0.084 0.106
k=20 β1 0.100 0.151 0.200

β2 0.105 0.147 0.190

Table 2.10: Simulation results comparing efficiency between stacking k = 10 vs k =
20 datasets for log link. Data were generated using βD = [1.25, log(2),− log(2)].
Censoring was generated at a moderate level (30%).

Number of stackings Parameter L=5
√
MSE L=7.5

√
MSE L=10

√
MSE

β0 0.025 0.029 0.032
k=10 β1 0.039 0.046 0.054

β2 0.040 0.049 0.058

β0 0.023 0.028 0.033
k=20 β1 0.039 0.046 0.054

β2 0.040 0.048 0.057
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CHAPTER III

Augmented Patient Preference Incorporated

Reinforcement Learning to Estimate the Optimal

Dynamic Treatment Regime

3.1 Introduction

Personalized health care aims to predict patients’ responses to targeted therapy us-

ing patient characteristics through a multifaceted approach (Hamburg and Collins ,

2010). Instead of one-size-fits-all, personalized medicine hopes to concentrate ther-

apeutic interventions on “those who will benefit, sparing expense and side effects

for those who will not” (Council et al., 2011). Patient responses to treatments may

vary due to different levels of heterogenities, such as genetics, environmental factors,

and the interplay between the two. Because of this, an appropriately personalized

treatment plan needs to be sensitive and adaptive to a patient’s evolving condition,

especially in the case of chronic diseases. Dynamic treatment regimes (DTRs) are

sequences of treatment decision rules, in which treatment decisions are adapted over

time in response to an individual’s treatment response and trajectory (Chakraborty

and Moodie (2013), Chakraborty and Murphy (2014), Murphy (2003)). A data-driven

adaptation of the reinforcement learning problem (Sutton and Barto, 2018), DTRs
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play an important role in evidence based medicine by mathematically formulating

the complicated problem of making multiple decisions at multiple stages in order to

maximize a clinically meaningful outcome (Moodie et al., 2012).

A large number of methods have been proposed to evaluate the optimal DTR, in-

cluding Q- and A-learning (Murphy (2003), Schulte et al. (2014)), marginal struc-

tural model with inverse probability weighting (IPW) (Robins , 2000), G-estimation

of structural nested mean models (Robins , 2004), and other likelihood based methods

(Thall et al., 2007). In more recent years, machine learning flavored methods have

joined the arsenal of available methods for optimizing DTRs, including tree-based

methods (Laber and Zhao (2015), Tao and Wang (2017), Tao et al. (2018)), and

list-based method (Zhang et al., 2018). Despite the abundant selection of methods

to find optimal DTRs, all stated methods rely on pre-specifying a single metric of

interest (e.g. survival time, adjusted quality of life, tumor response, etc), thereby

forcibly simplifying complex medical scenarios in the formulation of the problem.

Evidence based optimization of one outcome further ignores an important and per-

sonalizable part of a patient’s experience. In reality, clinical decisions often result in

a plethora of outcomes, often in competing directions of desirability to the patient.

The hand surgery field provides an illustrative example. In light of the current opioid

epidemic, surgical specialties are re-examining current post-operative opioid prescrip-

tion habits. Patients have to weigh between the benefits (strong pain relief) and

risks (addiction, side effects, etc) of using opioid medications vs non-opioid pain relief

(weaker pain relief, but potentially fewer risks). In this case, patient preference could

help guide whether to prescribe opioid medications. Similarly, we can illustrate the

challenges with another example from neurology. Anti-epileptic drugs (AEDs) often

come with side effects such as sedation, somnolence, distractibility, insomnia, and

dizziness (Ortinski and Meador , 2004). Even with all of these side effects, patients
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might willingly tolerate their AEDs if these drugs control their seizures sufficiently

such that they could retain more autonomy, (i.e. by maintaining driving privileges)

(Krumholz , 2009). In this case, patients have to balance between value for autonomy

(i.e. lower risk of seizures but higher burden of side effects) with their need for mental

clarity (higher risk of seizures, but more mental clarity). This example illustrates a

complex system of pros and cons that patients need to navigate using their value

system, previous experience, and changing needs. A college student in an urban col-

lege environment might be willing to forgo his driving privileges in return for mental

acuity to meet the demands of school, only to reverse the decision after moving to the

suburbs, while a patient with a history of opioid addiction might opt for non-opioid

pain medications for fear of relapse. In both of these cases, optimizing one outcome

(pain relief or risk of seizure) fits neatly within the evidence based paradigm, but

the inclusion of patient preference to coordinate between multiple outcomes does not.

Appropriate coordination using patient preference then necessitates the search for

another framework.

In recent decades, the medical community has also recognized this gap and has

shifted from a paternalistic approach to advocating for patient input through a shared

decision-making (SDM) framework (Barry and Edgman-Levitan (2012), Basu and

Meltzer (2007)). Augmentation with patient preferences and values into decision

making contributes to a more holistic approach to patient care. A survey of SDM

literature shows that patient input has a positive correlation with satisfaction scores

and quality of life outcomes (Kashaf and McGill (2015), Shay and Lafata (2015)).

SDM has also been shown to reduce costs with unnecessary procedures (Oshima Lee

and Emanuel , 2013), thus making it an actionable policy for reducing cost. Despite

these documented benefits from the literature, physicians have struggled to prac-

tice shared decision making, partly because preference is challenging to quantify and

incorporate. Current popular shared decision making approaches include using deci-
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sion aids and increased communication between the clinician and patient (Barry and

Edgman-Levitan, 2012). Diverse approaches cited here are difficult to model, making

it challenging to draw conclusions from data methodically.

We propose a modeling approach to incorporate patient preference. To properly

optimize an outcome representative of patient preference, accurate estimation of the

preference itself is paramount. We endorse modeling preference as a latent variable

and estimating it through an item response approach (Embretson and Reise, 2013).

Patients could communicate their preference through responses on a questionnaire.

These questions may ask patients to rate their agreement with certain statements, or

ask patients to rate the importance of certain activities in their lives. Butler et al.

(2018) used this approach to estimate patient preference from surveys with binary

{0, 1} responses. Their method, designed to select the optimal treatment between two

potential choices at one decision time point, combined estimated preferences along

with Q-learning to find the optimal individualized treatment regime (ITR).

For our scenario, chronic diseases require treatment plans to adapt to patient tra-

jectories over a changing disease course. Furthermore, as the number of treatment

stages increases, the number of treatment options often also increases, making two

treatment options limiting for realistic settings. As of writing, the authors are un-

aware of methods in the literature that are able to accommodate multiple stages with

multiple treatment options. In this paper, we propose a method that augments the

combination of two potentially competing outcomes with estimated patient prefer-

ence. As an illustrative example, we will consider competing outcomes of efficacy

and toxicity. Our proposed method accommodates the selection between more than

two treatments per stage, and allows patient preference to evolve through the stages.

Finally, we propose modeling preference through a polytomous latent variable model

(Moustaki and Knott , 2000; Bartholomew et al., 2011), which allows us to estimate
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preferences more precisely through questions with categorical responses, an exten-

sion from binary responses in Butler et al. (2018). We combine competing outcomes

with a linear utility function weighted by estimated patient preferences, and seek

for the treatment decision that would provide the largest patient satisfaction using

a tree-based reinforcement learning (T-RL) method. The remainder of this report is

organized as follows. In Section 3.2, we introduce the notation, problem and goal. In

Section 3.3, we describe our estimation procedure and required assumptions. In Sec-

tion 3.4, we describe the implementation details. We evaluate our method in Section

3.5 through simulations of multiple scenarios. Finally, we conclude with discussions

and ideas for future directions in Section 3.6.

3.2 Patient Preference Incorporated Dynamic Treatment

Regimes

Let T denote the number of treatment stages, and let Kj be the number of treatment

options at the jth stage. Let Aij be the treatment indicator for the ith patient at the

jth stage, with the observed treatment denoted by aij. Note that when referring to

a specific treatment, we will drop the subscript i, i.e. treatment aj. Let Xij denote

patient characteristics prior to treatment assignment at stage j. In addition, we

assume that each patient will have an evolving preference hij, which can be derived

from answers Wij to a questionnaire at stage j. Finally, we assume that each patient

will have two observed outcomes at each stage, efficacy Fij and toxicity Sij. In general,

we denote all history, or history up to stage K for a given variable with an overhead

bar (i.e., Wi and WiK , respectively).

We will assume a utility of the form U(F, S;h) = Φ(h)F + {1−Φ(h)}S to designate

the utility function at each stage, where Φ(·) denotes the cumulative distribution

function of a normal random variable. The choice of utility function is flexible, but
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assuming a linear weighted sum utility function is a common approach in multiob-

jective optimization (Marler and Arora (2004), Lizotte et al. (2012)). This utility is

also intuitive in that a patient with preference h cares Φ(h)/{1− Φ(h)} more about

F than about S. Let the overall outcome of interest that we would like to optimize

be Y = f(U1, . . . , UT ), where f(·) is a pre-specified function. We assume that Y is

bounded, and that higher values are more desirable. Going forward, we will proceed

with f(·) as the sum, i.e. the sum: Y = U1 + . . .+ UT , although other functions of f

could also be optimized in a similar manner.

Let gj(Xij,Wij) be a function that maps from covariate and survey history to the

domain of treatment assignment Aij. The expected potential reward of stage specific

decision rule gj(Xij,Wij) for patient i is therefore defined as

E
[∑Kj

aj=1{Φ(hij)F
∗
ij(aj) + [1− Φ(hij)]S

∗
ij(aj)}I{gj(Xij,Wij) = aj}

]
, where F ∗ij(aj) =

F ∗ij(Ai1, . . . , Ai,j−1, aj) denotes the counterfactual outcome where the patient is as-

sumed to have taken treatment aj at stage j, conditional on previous treatment

decisions Ai1, . . . , Ai,j−1, and equivalently for S∗ik(aj). Our goal is to find a sequence

of individualized decision rules, g(Xi,Wi) = (g1(Xi1,Wi1), . . . , gT (XiT ,WiT )), that

optimize the potential outcome of Yi. For the sake of brevity going forward, let us

abbreviate gj(Xij,Wij) with gj and drop the patient index i when there is no room

for confusion.

3.3 Optimization of g using proposed iterative Augmented

Patient Preference incorporated Reinforcement Learning

(APP-RL)

3.3.1 Bridging the counterfactual framework to the observational data

Stage T
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At stage T , the counterfactual potential reward under decision rule gT and con-

ditional on previous treatments (A1, . . . , AT−1) is R∗T (gT ) = Φ(HT )F ∗T (gT ) + {1 −

Φ(HT )}S∗T (gT ), where F ∗T (gT ) =
∑KT

aT=1 F
∗
T (aT )I(gT = aT ) and

S∗T (gT ) =
∑KT

aT=1 S
∗
T (aT )I(gT = aT ). The performance of gT is measured by the

expected counterfactual outcome E{R∗T (gT )}. The optimal rule, goptT , then satisfies

E{R∗T (goptT )} ≥ E{R∗T (gT )}∀ gT ∈ GT , where GT is the class of all potential regimes.

In order to relate the observed data to counterfactual outcomes (Murphy et al. (2001),

Orellana et al. (2010), Robins and Hernán (2009)), we make the following assump-

tions.

1. Consistency: the observed outcome is the same as the counterfactual outcome

under a patient’s received treatment, i.e., FT =
∑KT

aT=1 F
∗
T (aT )I{AT = aT} and

ST =
∑KT

aT=1 S
∗
T (aT )I{AT = aT}

2. No unmeasured confounding: treatment AT is randomly assigned with proba-

bility possibly dependent on XT and WT , i.e.,

{F ∗T (1), . . . , F ∗T (KT )} ⊥ AT |XT ,WT , and {S∗T (1), . . . , S∗T (KT )} ⊥ AT |XT ,WT

3. Positivity: There exists constants 0 < c0 < c1 such that, with probability 1, the

propensity score πaT (XT ,WT ) = Pr(AT = aT |XT ,WT ) ∈ (c0, c1)

4. Latent variable independence: HT ⊥ (AT , F
∗
T (aT ), S∗T (aT ))|XT ,WT

The first three assumptions are standard assumptions in causal inference used to con-

nect observed data with counterfactual framework. The last assumption is proposed

to facilitate separate modeling of preference and outcomes, but can be weakened at

the expense of more complicated models and estimation procedure (Butler et al.,

2018).
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Notice that

E [R∗T (gT )] = ET

[
KT∑
aT=1

[
E
{

Φ(HT )|XT ,WT

}
µFT,aT (XT ,WT )

+ E
{

1− Φ(HT )|XT ,WT

}
µST,aT (XT ,WT )

]
I{gT = aT}

]
, (3.1)

where µFT,aT (XT ,WT ) = E(FT |AT = aT ,XT ,WT ), and likewise µST,aT (XT ,WT ) =

E(ST |AT = aT ,XT ,WT ). Note that the left hand side (LHS) of Equation (3.1) is

expectation of potential outcome, which can be estimated using only observed data

as shown by the right hand side (RHS). Furthermore, note that we can separately

model preference and outcomes using assumption (4). To find the optimal regime,

we want to find goptT = arg maxgT∈GT
RHS of Equation(3.1).

Stage j

At stage j, T − 1 ≥ j ≥ 1, goptj can be derived from the observed data via backward

induction. Following presumption of maximizing the summation of stage-specific

rewards from stage j onward, we define the following stage j reward, which is a

cumulative sum of stage j to T utility functions:

R∗j (aj) = Φ(Hj+)⊗ F∗j+(aj) + {1−Φ(Hj+)} ⊗ S∗j+(aj), where

Φ(Hj+) = [Φ(Hj),Φ(Hj+1), . . . ,Φ(HT )], F∗j+(aj) = [F ∗j (aj) F ∗j+1(aj) . . . F ∗T (aj)],

S∗j+(aj) = [S∗j (aj) S
∗
j+1(aj) . . . S∗T (aj)], and ⊗ denotes the dot product. Note that

for k = j, F ∗k (aj) and S∗k(aj) are as defined previously and for k > j, F ∗k (aj) =

F ∗k (A1, . . . , Aj−1, aj, g
opt
j+1, . . . , g

opt
k ) denotes a counterfactual outcome given future op-

timized treatments and conditional on A1, . . . , Aj−1 and taking treatment aj at stage

j (similarly for S∗k(aj)). Then the optimal regime at stage j satisfies E{R∗j (g
opt
j )} ≥

E{R∗j (gj)} for all gj ∈ Gj, where Gj is the class of all potential regimes at stage j.
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For stage j < T , we define a stage-specific APP-pseudo-outcome as

Fj(A1, . . . , Aj−1, Aj, g
opt
j+1, . . . , g

opt
T ), and similarly Sj(A1, . . . , Aj−1, Aj, g

opt
j+1, . . . , g

opt
T ).

Note that the difference between the APP-pseudo-outcome and the future optimized

counterfactual outcome defined previously is that the future optimized counterfactual

outcome assumes the patient takes specific treatment aj during stage j, while the

APP-pseudo-outcome is the observed data equivalent of FT but future optimized for

stages after stage j. However, note that the future optimized component makes the

expectation of APP-pseudo-outcome an estimable but unobserved entity.

Again we make the following assumptions to link observed data to their counterfactual

versions:

1. Consistency:

Kj∑
aj=1

F ∗k (aj)I{Aj = aj} =


Fk when k = j

Fk(A1, . . . , Aj, g
opt
j+1, . . . , g

opt
k ) when k > j

Kj∑
aj=1

S∗k(aj)I{Aj = aj} =


Sk when k = j

Sk(A1, . . . , Aj, g
opt
j+1, . . . , g

opt
k ) when k > j

2. No unmeasured confounding:

{F ∗k (1), . . . , F ∗k (Kj)} ⊥ Aj|Xj,Wj and {S∗k(1), . . . , S∗k(Kj)} ⊥ Aj|Xj,Wj,

where k ≥ j. Furthermore, {Xj+1, . . . ,XT ,Wj+1, . . . ,WT} ⊥ Aj|Xj,Wj

3. Positivity: πaj(Xj,Wj) = Pr(Aj = aj|Xj,Wj) is bounded away from zero and

one, where k ≥ j

4. Latent variable independence: Hk ⊥ (Aj, F
∗
k (aj), S

∗
k(aj))|Xk,Wk, where k ≥ j
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Combining all these above,

E[R∗j (gj)] =

Ej

[ Kj∑
aj=1

[
E
{

Φ(Hj)|Xj ,Wj

}
µFj,aj (Xj ,Wj) + E

{
1− Φ(Hj)|Xj ,Wj

}
µSj,aj (Xj ,Wj)

]
I{gj = aj}

]

+

T∑
t=j+1

Et

 Kj∑
aj=1

[
E{Φ(Ht)|Xt,Wt}µFt,aj (Xj ,Wj) + E{1− Φ(Ht)|Xt,Wt}µSt,aj (Xj ,Wj)

]
I{gj = aj}

 ,
(3.2)

where µFj,aj(Xj,Wj) = E(Fj|Aj = aj,Xj,Wj) and µFt,aj(Xj,Wj) denotes

E
[
Ft(A1, . . . , Aj, g

opt
j+1, . . . , g

opt
t )|Aj = aj,Xj,Wj

]
(equivalently for µSj,aj(Xj,Wj) and

µSt,aj(Xj,Wj)). Notice again that the RHS can be estimated from observed data only

and is a combination of separately estimated preference and outcomes. Under these

assumptions, the optimization problem at stage j, among all potential regimes Gj,

can be written as goptj = arg maxgj∈Gj RHS of Eqn (3.2).

3.3.2 APP-RL to solve observational data based optimization

Our proposed method, named Augmented Patient Preference incorporated Reinforce-

ment Learning (APP-RL), is summarized as follows. Through iteration and sequential

estimation, APP-RL is able to combine elements of patient preference and observed

outcomes to get the optimal decision rules for each stage. APP-RL first uses survey

information from each stage to estimate patient preferences through an expectation

maximization algorithm. APP-RL then combines estimated preferences with observed

outcomes of toxicity and side effects into previously mentioned utility function and

uses a tree-based reinforcement learning method to find the optimal decision rule for

that stage. Finally, APP-RL moves backwards through the stages, obtaining optimal

decision rule first for stage T , next for stage T − 1, etc, and lastly for stage 1. Esti-

mated decision rules for j-th stage are used in the estimation of earlier (j − 1) stage
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in a backward induction manner.

Although the tree-based reinforcement learning component is similar to traditional

CART methods, there are important differences that separate the two. Traditional

CART methods are supervised learning methods that repeatedly split a parent node

into child nodes, generally resulting in purer (fewer misclassification) nodes. Com-

monly used purity measures include the Gini index, information gain, and least

squares deviation (Breiman, 2017). In this framework, each observation carries a

label, and the goal of the CART method is to use covariates to correctly classify

each subject with its observed label. In contrast, the estimation target of dynamic

treatment regime problem, the optimal treatment, is not observed (a patient often

does not get the most optimal treatment). Rather, the optimal treatment needs to be

inferred indirectly from other patients’ treatments and response trajectories. Instead

of trying to classify correctly each patient to their assigned treatment, our goal is to

optimize the counterfactual mean outcome for the every patient. Aligned with this

goal, we propose to use an augmented inverse probability weighted (AIPW) estimator

for the counterfactual outcome to be used within our purity measure.

3.3.2.1 APP-AIPW estimators

We assume that the K treatment options are of arbitrary missing data patterns. Our

APP-AIPW estimator based off of the AIPW estimator (Rotnitzky et al., 1998), a

doubly robust and consistent estimator which in our case takes into account both

observed outcome and estimated patient preference.

For stage T , the APP-AIPW estimator for E{R∗T (gT )} =

Pn
[

I(AT=gT )

π̂T,AT (XT ,WT )
RT + {1− I(AT=gT )

π̂T,AT (XT ,WT )
}µ̂T,gT (XT ,WT )

]
, where RT = Φ(ĥT )FT +

{1 − Φ(ĥT )}ST , where ĥT is the estimated preference. µ̂T,gT (XT ,WT ) can be any

model of RT as a function of observed covariates and survey data accumulated by
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stage T . Under previously listed causal assumptions, if either the propensity model

πT,AT (XT ,WT ) or the conditional model µT,gT (XT ,WT ) are correctly specified, then

this estimator is a consistent estimator for E{R∗T (gT )}.

For stage j < T , the stage-specific APP-pseudo-outcome analog of the stage j reward

is P̃Oj = Rj(A1, . . . , Aj−1, Aj, g
opt
j+1, . . . , g

opt
T ), which is a weighted combination of

stage-specific pseudo-outcomes summed across stages j to T . In this formulation, we

add the observed value of stage j (including an estimated value of hj), and follow

the convention in Huang et al. (2015), where instead of only using the model-based

values under optimal future treatments, we use actual observed outcomes adjusted

by expected future loss due to non-optimal treatment. This approach prevents bias

accumulation from stage to stage as compared to only using model based estimates.

We can estimate the APP-pseudo-outcome recursively as

P̃Oj = U(Fj, Sj;hj) +
T∑

t=j+1

{U(Ft, St;ht) + µ̂t,goptt
(Xt,Wt)− µ̂t,At(Xt,Wt)} (3.3)

where µ̂t,goptt
(Xt,Wt) − µ̂t,At(Xt,Wt) is the expected cumulative loss from stage j

onwards of not following the optimal regime during stage t. Both µ̂t,goptt
(Xt,Wt) and

µ̂t,At(Xt,Wt) can come from the same prediction model, which can take many forms,

commonly parametric regression or random forests. Then, the proposed APP-AIPW

estimator for E{R∗j (gj)} is Pn
[

I(Aj=gj)

π̂j,Aj (Xj ,Wj)
P̃Oj + {1− I(Aj=gj)

π̂j,Aj (Xj ,Wj)
}µ̂j,gj(Xj,Wj)

]
,

where P̃Oj takes the place of RT from stage T and µ̂j,gj(Xj,Wj) can be any model

of P̃Oj that uses accumulated information up to stage j.

The propensity score πj,aj(Xj,Wj) for all stages j can be estimated via multinomial

logistic regression. In the above estimating equations, each Rj requires an estimated

hj. Although for the sake of generality we suggest that π and µ functions can be
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functions of both Xj and Wj, we envision that Wj will mostly contribute through its

effect hj. We will discuss our proposed method to estimate hj in the next subsection.

3.3.2.2 Implementation to obtain APP-weights

We assume going forward that information given by Wj will dominate information

obtained from previous surveys (i.e. Wj−1), and other covariate information (Xj).

Hence, following Butler et al. (2018), we assume here that Hj ⊥ Xj|Wj. This as-

sumption can be weakened at the sake of more complicated models, which would be

more burdensome to implement but follow an identical approach. Furthermore, we

assume a latent traits model (Moustaki and Knott , 2000) and that latent patient pref-

erences are connected to items on the questionnaire through modified Rasch model

(Rasch (1961), Rasch (1960)).

We assume the underlying generating form for a binary response is logit{P (Wjl =

1|Hj = hj)} = αl0 + αl1hj where j is for stage and l for the question number. If we

wanted to relax the assumption that Hj does not depend on Xj given Wj, we can for

example use the model logit{P (Wjl = 1|Hj = hj,Xj = xj)} = αl0+αl1hj+γ
T
l xj, giv-

ing explicit dependence on covariate information. For cases where questions had more

than two possible responses (e.g. three per question), assuming the first category is the

reference (i.e. coefficients are 0), we use the generating model log(πlb(hj)/πla(hj)) =

αlb0 + αlb1hj, and log(πlc(hj)/πla(hj)) = αlc0 + αlc1hj.
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Algorithm 1: EM algorithm for estimating patient preference ĥj
Result: Obtain p(hj |wj) for patient i

Guess initial value of hj for all subjects to estimate an initial guess of α0,α1;

while not reached convergence do

Using MH, get an updated estimate of p(hj |wj);

Approximate likelihood integral using Gauss-Hermite quadrature with k abscissae

ht and weights p(ht);

Solve likelihood equations using Newton-Raphson to get updated estimates of

α0,α1;

end

Algorithm 1 outlines the algorithm for estimating patient preference ĥj. The APP-

weights we propose are Φ(ĥj). Essentially, the Expectation-Maximization algorithm

(Moon, 1996) iterates between estimates of α, the questionnaire coefficients, and

hj, individual patient preferences at stage j. In the process of derivation, we will

use Gauss-Hermite quadrature to approximate the integral numerically, and estimate

P (hj|Wj) ∝ P (Wj|hj)P (hj) through the Metropolis Hastings algorithm.

3.3.2.3 APP-purity measure

The APP-purity measure that we propose is the following: Pj(Ω, ω) =

maxa1,a2∈AjPn
[∑Kj

aj=1 µ̂
AIPW
j,aj

(Xj,Wj)I{gj,ω,a1,a2(Xj,Wj) = aj}I{Xj ∈ Ω}
]
. The node

Ω here is the space that divides each individual in our dataset, and can be a factor

of all observed data (in our case, Ω will depend on patient covariates X). For a given

partition ω and ωc of node Ω, gj,ω,a1,a2 denotes the decision rule that assigns treat-

ment a1 to subjects in ω and treatment a2 to subjects in ωc at stage j(T ≤ j ≤ 1).

Then, the two treatments a1 and a2 that yield the largest purity measure are selected

to constitute the purity measure. Finally, the APP-RL algorithm uses this purity

measure at each node to decide whether to split the tree.
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3.4 Algorithmic Implementation

As previously mentioned, Pj(Ω, ω) is the APP-purity measure of a potential split

assigning treatment a1 to patients in ω, and a2 to patients in ωc. Equivalently, Pj(Ω)

is the APP-purity measure when everyone in the node is assigned the single best

treatment. The difference between Pj(Ω, ω) and Pj(Ω) will provide primary guidance

on if and how the node of the tree should split.

To prevent overfitting, λ is given to represent threshold for practical significance,

and n0 is given as minimal node size. The choice of λ can be obtained through

cross-validation or using domain knowledge, and n0 could be selected a priori.

Under this set-up, we propose the following stopping rules:

1. If node size is less than 2n0, the node will not be split

2. If all possible splits of a node result in a child node with size smaller than n0,

the node will not be split

3. If maximum purity improvement Pj(Ω, ŵopt)−Pj(Ω) is less than λ, where ŵopt =

arg maxω
[
Pj(Ω, ω) : min{nPnI(Xj ∈ ω), nPnI(Xj ∈ ωc)} ≥ n0

]
, the node will

not be split.

4. If the current tree depth reaches the user-specified maximum depth, the tree

growing process will stop

5. Finally, if none of the stopping rules were triggered, split Ω into ω and ωc.

This process is repeated at each node Ω, until all of the potential nodes are terminated

by a stopping rule. Note that Pj(Ω) at each terminal node is also the expected

counterfactual utility outcome (or expected APP-pseudo-outcome for stage j < T ),

which takes into account our chosen utility, observed toxicity and side effects, weighted
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by patient preference. The final tree will therefore use patient characteristics to assign

each patient to a terminal node, which will determine their optimal stage specific

decision that maximizes the preference weighted counterfactual utility outcome.
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Algorithm 2: APP −RL Algorithm Implementation

Result: gopt = (gopt1 , . . . , goptT )

Initialize stage j = T ;

while Stage j ≥ 1 do

Estimate ĥj for each patient from Wj (all patients) using EM (See Alg. 1);

if j = T then

Combine ĥT , FT , ST into RT ;

Obtain π̂T,aT (XT ,WT ), µ̂T,gT (XT ,WT ) and combine with RT to obtain

µ̂AIPWT,aT
(XT ,WT ) ;

Set m = 1 at root node ΩT,m ;

At node ΩT,m, evaluate the Stopping Rules. If stop, assign the best treatment

argmaxaT∈AT Pn
[
µ̂AIPWT,aT

(XT ,WT )I{XT ∈ ΩT,m}
]
. Otherwise, split ΩT,m

into child nodes ΩT,2m and ΩT,2m+1 by ω̂opt ;

Set m = m+ 1 and repeat until all nodes are terminal −→ Obtain goptT ;

else

Combine ĥj , Fj , Sj into Rj ;

Estimate π̂j,aj (Xj ,Wj). Using goptj+1, . . . , g
opt
T estimated previously, estimate

µ̂j,gj (Xj ,Wj) and P̃Oj . Combine together to obtain µ̂AIPWj,aj
(Xj ,Wj) ;

Set m = 1 at root node Ωj,m ;

At node Ωj,m, evaluate the Stopping Rules. If stop, assign the best treatment

argmaxaj∈Aj Pn
[
µ̂AIPWj,aj

(Xj ,Wj)I{Xj ∈ Ωj,m}
]
. Otherwise, split Ωj,m into

child nodes Ωj,2m and Ωj,2m+1 by ω̂opt ;

Set m = m+ 1 and repeat until all nodes are terminal −→ Obtain goptj ;

end

Set j = j − 1;

end

Algorithm 2 provides a pseudo-code schematic for the layout of the entire algorithm.

As we can see, the algorithm follows a backward induction strategy. At each stage,
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the algorithm updates patient preference estimates to those most recent and combines

with observed outcomes of that stage into an APP-AIPW estimator of the expected

counterfactual reward for each stage. The APP-AIPW estimator is then fed into the

tree-based reinforcement learning algorithm to get the stage specific optimal rule.

3.5 Numerical Demonstration

We conduct simulation studies to investigate the performance of our proposed method.

We first consider a single-stage scenario with two treatments to facilitate comparison

with Butler et al. (2018) in Section 3.5.1. Then, we also simulate a one-stage with

three treatments in Section 3.5.2 to evaluate how sensitive the performance of our

proposed method depends on the number of treatment options, and a multi-stage with

three treatments per stage in Section 3.5.3 to assess the performance of the proposed

method in multiple stage case. For all scenarios, we generate five independent baseline

covariates X1, . . . , X5 ∼ N(0, 1).

We simulate questionnaire responses as well as efficacy and side-effect outcomes for

each individual. We then estimate both the patient preferences and optimal dynamic

treatment from these responses and outcomes. For one stage, we obtain the per-

centage of subjects correctly classified to their true optimal treatment as %opt. For

multi-stage, %opt represents the percentage of subjects correctly classified to their

true optimal regime (correct treatment for all stages).

3.5.1 Scenario 1: T = 1 and K = 2

In Scenario 1, we consider one-stage, two treatment options, and sample sizes of 300,

500, and 1000. The observed treatment A was generated from a Bernoulli(π), where

π = exp(0.5X1 + 0.5X4)/(1 + exp(0.5X1 + 0.5X4)). The true underlying optimal rule
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is defined by:

gopt(H)


1, X1 > −0.25, X2 ≤ 0.5

0, otherwise

We generate the observed outcomes for efficacy and side effect (F and S, respectively)

as F = 1+X4+qf ∗(gopt == A)+ε1, and S = 1+X5+qs∗(gopt == A)+ε2. To ensure

that the distributions of F and S are similar, a Bernoulli(0.5) random variable was

used to determine whether qs or qf would be simulated first and set to 3X3. The latter

was set to (−Φ(h)∗qf/(1−Φ(h)))+(1/(1−Φ(h))) or ((Φ(h)−1)∗qs/Φ(h)+(1/Φ(h))

for qs and qf , respectively, where Φ(·) is the cumulative density distribution of a

standard normal variable. This complicated form for qf, qs simply ensures that the

overall reward R = Φ(h)F + {1−Φ(h)}S is greater by 1 when the correct treatment

is chosen. The concordance between optimal regime for F and S was approximately

25−30%, indicating that for over 75% of cases, there is a trade-off between side-effect

and efficacy.

We looked at the performance of our method under two different patient preference

distribution settings. Patient preferences were generated from either the Uniform(−1, 1)

or 0.5Normal(X2, SD = 0.2) distribution, where preference depended on an under-

lying covariate. Each patient answered a questionnaire of ten questions, and each

question allowed a binary {0, 1} response. For each question l we assume a latent

traits model, where Wjl ∼ Bernoulli{expit(αl0 + αl1Hj)}. The coefficients for each

of the questions for Scenario 1 is below:

In calculating the APP-purity measure, we specified the π−model with covariates

X1 and X4 used to assign the treatment. Similarly, we specified the µ−model in the

augmentation term using a linear regression framework with R = Φ(ĥ)F+{1−Φ(ĥ)}S

as the outcome, and treatment indicator A, patient characteristics X1, . . . , X5 and
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Table 3.1: Scenario 1 questionnaire coefficients for the latent traits model

l α0 α1

1 -0.25 0.92
2 -0.84 0.64
3 -1.64 2.35
4 -0.78 0.82
5 -0.89 1.10
6 0.42 0.16
7 1.27 2.96
8 -0.61 0.56
9 0.09 0.30

10 -0.40 1.35

their interaction terms with A as covariates. Table 3.2 shows results of simulation

for the methods in Scenario 1. We compared our method against that proposed in

Butler et al. (2018). As suggested in their paper, we fit linear working models with

all covariates, questionnaire responses, and their interaction terms with treatment.

For n = 300 and when h followed an uniform distribution, APP-RL method was

able to select 87.1% of optimal treatment, which increased to 96.6% when n = 1000.

In contrast, the Q-learning method lags behind in accuracy by over 15%, at 70.6%

and 77.3% respectively. However, both methods saw reduction in standard errors as

sample size increased. The patterns are similar when patient preference was generated

with a normal distribution.

3.5.2 Scenario 2: T = 1 and K = 3

In this scenario, we consider one-stage with three treatment options. We again

investigate sample sizes of 300, 500, and 1000. In this case, treatment A could

take values in {0, 1, 2} generated from Multinomial(π), where π = [π0, π1, π2] =

[1/(1+exp(0.5X4+0.5X1)+exp(0.5X5−0.5X1)), exp(0.5X4+0.5X1)/(1+exp(0.5X4+

0.5X1) + exp(0.5X5 − 0.5X1)), 1− π0 − π1].

66



Table 3.2: % optimal chosen for 1-stage, 2 treatment, binary re-
sponses, 200 iterations. Setting 1 refers to h ∼ U(−1, 1), and
Setting 2 refers to h ∼ 0.5N(X2, SD = 0.2)

n=300 n=500 n=1000

% opt (sd) % opt (sd) % opt (sd)

Setting 1 APP-RL 87.06 (9.70) 92.65 (6.88) 96.56 (4.76)
Q-learning 70.64 (4.12) 73.75 (3.63) 77.26 (2.20)

Setting 2 APP-RL 87.86 (10.45) 90.65 (8.57) 96.44 (5.35)
Q-learning 71.12 (5.62) 73.71 (4.49) 75.82 (3.74)

APP-RL: Augmented Patient Preference incorporated Reinforce-
ment Learning. Q-learning refers to the method by Butler et al.
(2018)

The true underlying optimal rule is defined by:

gopt(H)


0, X1 ≤ 0, X2 ≤ 0.5

2, X1 > 0, X3 ≤ 0.5

1, otherwise

F and S were generated in the same way as in Scenario 1, but the first of qf or qs

was set to 2X3 − (1.25X2)2. The second variable (qs/qf) was generated similarly to

that of stage 1 to ensure an advantage of 1.5 on the reward if the optimal treatment

was chosen.

Patient preferences were likewise generated from either an uniform Uniform(−1, 1)

or a 0.5Normal(X2, SD = 0.2) distribution, and each patient answered ten ques-

tions with three categorical responses in a survey. For each question l, assuming the

first category is the reference (i.e. coefficients are 0), we used the generating model

log(πlb(h)/πla(h)) = αlb0 + αlb1h, and log(πlc(h)/πla(h)) = αlc0 + αlc1h. Hence, the

vector of probabilities we feed into a multinomial random generator to generate Wl
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is:

πl(h) = [πla(h), πlb(h), πlc(h)], where

πla(h) = 1/{1 + exp(αlb0 + αlb1h) + exp(αlc0 + αlc1h)},

πlb(h) = {exp(αlb0 + αlb1h)}/{1 + exp(αlb0 + αlb1h) + exp(αlc0 + αlc1h)}, and

πlc(h) = {exp(αlc0 + αlc1h)}/{1 + exp(αlb0 + αlb1h) + exp(αlc0 + αlc1h)}. For each

person and each question, we generate Wl ∼Multinomial(πla(h), πlb(h), πlc(h)).

The exact coefficients for each of the questions for Scenario 2 is shown below:

Table 3.3: Scenario 2 questionnaire coefficients for the latent traits model

l αb0 αb1 αc0 αc1

1 0.19 1.61 0.15 1.76
2 0.01 -0.51 -0.47 3.12
3 -0.77 2.87 0.38 2.49
4 0.68 1.08 0.83 1.74
5 -0.77 -0.30 0.74 0.84
6 -0.48 0.24 0.49 0.72
7 0.23 2.26 0.83 1.48
8 0.91 0.33 0.89 2.01
9 0.72 -0.12 -0.56 0.70

10 0.88 0.84 -0.30 0.66

We estimated the working models in an equivalent way to Scenario 1. Table 3.4

showcases results from our APP-RL method. Because the Q-learning based method

of Butler et al. (2018) is unable to handle more than two treatments and more than

two responses per question, it was not possible to directly compare with our method.

In general, we see that the algorithm does better at selecting the optimal regime given

a smaller range of patient preference (i.e. the uniform distribution), but the difference

is small. We can also see that both accuracy and efficiency increases as sample size

increases, with over 83% selected as optimal for n = 300, and over 95% for n = 1000.
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Table 3.4: % optimal chosen for 1-stage, 3 treatment,
3-responses per question, 200 iterations.

n=300 n=500 n=1000

% opt (sd) % opt (sd) % opt (sd)

Setting 1 85.26 (13.72) 92.74 (7.81) 97.48 (4.47)
Setting 2 82.72 (15.79) 90.04 (11.39) 95.18 (7.94)

Setting 1 refers to h ∼ U(−1, 1), and Setting 2 refers to
h ∼ 0.5N(X2, SD = 0.2)

3.5.3 Scenario 3: T = 2 and K1 = K2 = 3

In this scenario, we consider a two-stage set-up, with three treatment options at each

stage and 3-category response per question on the survey. We simulated sample sizes

of 1000 and 2000. The outcome to be maximized is the sum of expected rewards of

each stage. As in scenario 2, treatment A1 could take values in {0, 1, 2} generated from

Multinomial(π), where π = [π0, π1, π2] = [1/(1 + exp(0.5X4 + 0.5X1) + exp(0.5X5−

0.5X1)), (exp(0.5X4+0.5X1)/(1+exp(0.5X4+0.5X1)+exp(0.5X5−0.5X1)), 1−π0−π1].

For this scenario, we looked at two forms of true underlying rules, tree-type and

non-tree type. The stage 1 tree-type optimal regime is defined by gopt1 = I(X1 >

−0.65){I(X2 > −0.75) + I(X2 > 0.1)}, while the non-tree type is defined by gopt1 =

I(X1 > −0.3){1 + I(X1 + X2 > 0.3)}. We also investigated performance under

both equal (where selection of the optimal treatment guarantees a uniform reward

advantage over the other two treatment options) and varying penalty setting (where

selection of the optimal treatment has differing reward advantages as compared to

the other treatments selected). For the equal penalty setting, F1 = 1 +X4 + 0.7X1 +

qf · I(A1 6= gopt1 ) + ε1 and S1 = 1 +X5 + 0.7X1 + qs · I(A1 6= gopt1 ) + ε2. For the varying

penalty scenario, F1 = 1 + X4 + 1.3X1 + qf ·
∣∣A1 − gopt1

∣∣ + ε1 and S1 = 1 + X5 +

1.3X1 + qs ·
∣∣A1 − gopt1

∣∣+ ε2. As before, the first of qs and qf to be simulated was set

to 2X3+(1+2X5)2, and the latter was set to −φ(h1)∗qf/(1−φ(h1)−(2.25/(1−φ(h1))
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and (φ(h1)− 1) ∗ qs/φ(h1)− 2.25/φ(h1), for qs and qf respectively, where φ(·) is the

cumulative density distribution for a N(0, SD = 3) random variable.

Stage 2 parameters followed the same pattern as those from stage 1. Treatment A2

could take values in {0, 1, 2} generated from Multinomial(γ), where γ = [γ0, γ1, γ2] =

[1/(1 + exp(0.2U1 − 0.5) + exp(0.5X2)), (exp(0.2U1 − 0.5)/(1 + exp(0.2U1 − 0.5) +

exp(0.5X2)), 1 − γ0 − γ1], where U1 is the utility of stage 1. The stage 2 tree-type

optimal rule is defined by gopt2 = I(X2 > −0.5){I(U1 > −7) + I(U1 > 0)}, while

the non-tree type is defined by gopt1 = I(X2 > 0.15){1 + I(X2 + U1 > 1.25)}. For

the equal penalty setting, F2 = 1 + 1.5X3 + qf · 0.7I(A2 6= gopt2 ) + ε1 and S2 =

1+1.5X3 +qs ·0.7I(A2 6= gopt2 )+ε2. For the varying penalty setting, F2 = 1+1.5X3 +

qf ·
∣∣A2 − gopt2

∣∣ + ε1 and S2 = 1 + 1.5X3 + qs ·
∣∣A2 − gopt2

∣∣ + ε2. As before, the first

of qs and qf to be simulated was set to 1.25X4 + (1.7X1)2, and the latter was set to

−φ(h2)∗qf/(1−φ(h2))−(1.5/(1−φ(h2)) and (φ(h2)−1)∗qs/(φ(h2))−(1.5/(1−φ(h2)),

for qs and qf respectively.

For both stages, the concordance between F and S was approximately 17 − 20%,

indicating for vast majority of cases, the best treatment for maximizing efficiency

was not the same as the best treatment for minimizing toxicity.

Patient preferences at stage 1 was generated from a Normal(0, SD = 0.5) distribution

for all subjects. Stage 2 preferences were generated from 0.3Normal(U1, SD = 0.4)

distribution, thereby assuming that stage 2 preferences are influenced by stage 1

outcomes and satisfaction levels. We assume the same latent model for questionnaire

parameters as in scenario 2. The first stage coefficients are identical to those in

scenario 2, and the stage 2 questionnaire coefficients are below:

Model specification for stage 2 involves specifying the π2-model using Û1 and X2. The

µ2− model in the augmentation term also uses Û2 as the outcome, and A1, A2 and
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Table 3.5: Stage 2 questionnaire coefficients for the latent traits model

l αb0 αb1 αc0 αc1

1 -0.09 1.10 -0.00 -0.28
2 -0.52 0.85 -1.64 -0.62
3 -1.69 1.76 -0.43 -0.52
4 1.86 1.74 0.45 1.20
5 -2.08 1.36 0.07 -2.95
6 2.18 1.32 0.52 1.01
7 0.73 1.38 -0.84 -3.07
8 -0.60 2.14 -1.93 -1.30
9 0.69 0.86 0.67 -1.62

10 -0.29 1.08 -1.81 -2.20

patient characteristics X1, . . . , X5, Û1, and the interaction terms between A2 and all

the rest of the terms as covariates. This set up allows us to obtain the optimal decision

tree for stage 2. The π1-model uses X1, X4, and X5 as covariates. In calculating the

pseudo-outcome P̃O1 = Û1 + Û2 + µ̂2,gopt2
(X2)− µ̂2,A2(X2), we obtain both µ̂2,gopt2

(X2)

and µ̂2,A2(X2) through predictions obtained through a random forest model with

A1, A2, X1, . . . , X5, Û1 as covariates, and Û2 as the outcome. Finally, the µ1-model

in the first stage augmentation term used A1, X1, . . . , X5 and the interaction terms

between A1 and the patient characteristics as covariates.

Figure 3.1 shows simulation results for each of the settings in this scenario. In all

settings, our method was able to select the correct regimen (the correct treatment

for both Stage 1 and for Stage 2) over 80% of the time, much higher than that could

have been gotten by random chance (approximately (1/3)2 = 1/9). Furthermore,

we can see that when the underlying distribution is tree-based, the method does

∼ 10% better than when the underlying optimal regime is not tree-based. Finally, we

can see that generally increased sample size improves accuracy and reduces variation

for tree-based distribution, but the improvement is less obvious with non-tree based

distribution.
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Figure 3.1: Results for 2-stage, 200 iterations. We looked at the case where the true
underlying reward structure follows a tree and non-tree structure, as well as the equal
and varying penalty settings for the reward.

Figure 3.2 shows the observed rewards as compared with predicted rewards, where a

patient hypothetically follows the predicted optimal treatments obtained through our

algorithm. Both rewards are calculated using true patient preferences but predicted

optimal treatment assignments were obtained using estimated patient preferences. In

aggregate across the four scenarios, the median difference between predicted optimal

reward and observed true reward is 2.722, and over 85% of patients on average derived

benefit from following the predicted optimal treatment as compared to their observed

treatment.

3.6 Discussion

In this report, we propose a method that estimates an optimal dynamic treatment

regime that maximizes a patient preferred utility function using a tree-based reinforce-

ment learning approach. The vast majority of dynamic treatment regime methods

72



Figure 3.2: Comparison of observed cumulative reward vs predicted cumulative re-
ward if following APP-RL’s treatment predictions for the case of n = 1000. Both
rewards are calculated using simulated true preferences.
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in the literature optimize a single outcome. The main published method that the

authors are aware of with an endpoint that incorporates patient preference is work by

Butler et al. (2018). However, the authors wish to highlight a few key differences be-

tween the our proposed method and (Butler et al., 2018). First, the method in Butler

et al. (2018) is for single stage scenarios and is not designed to handle multiple stage

decision making. Secondly, their method is designed to select between two poten-

tial treatments, which is clinically limiting. Thirdly, their method estimates patient

preference from a survey of questions with binary choices, which we have extended to

surveys with categorical choices. In summary, our method brings in patient preference

incorporation into the chronic disease, multi-stage, multiple treatment option setting.

Furthermore, incorporation of APP-AIPW into the purity measure endows our model

with the doubly robust feature, providing a safety net against model misspecification.

As shown in Table 3.2, our algorithm has strong performance across the board for

both one-stage, binary treatment settings and outperforms traditional Q-learning ap-

proaches when the underlying functional form for benefit follows a tree-based struc-

ture. Similarly, we show promising results in Table 3.4 for the one stage, three

treatment options, where we obtain over 80% for all settings. In both of these tables,

we can see that the prediction accuracy of APP-RL increases with sample size and its

associated variance decreases with increasing sample size. For the two-stage scenario,

Figure 3.1 shows that our method does best when the underlying distribution is tree-

type, which is unsurprising given the algorithmic architecture. However, it still does

respectively well even when the underlying distribution is not tree-type, indicating

that our method is generally robust and applicable to more than one setting. In

general, equal penalty seems to be associated with smaller variability, but the type of

penalty seems to slightly influence the prediction accuracy of our method. In general,

no matter the type of underlying distribution or type of penalty, the expected increase

in rewards show similar patterns across the board, with the vast majority of cases
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gaining improved reward by following APP-RL’s recommended treatment sequence.

In summary, the numerical demonstration results indicate that APP-RL is a robust,

efficient algorithm that is able to predict the optimal treatment in a myriad number

of settings.

There are a number of potential improvements and extensions that we could explore in

future studies. Generalizing our method and researching potential utility functions to

accommodate more than two competing outcomes would be one improvement. Even

more ambitious would be to move this augmentation patient preference framework

into multi-objective optimization, where we could directly optimize in n-dimensional

space. Instead of obtaining an unique solution, the goal would be to produce a set of

non-dominated (where no one solution is better than the others in all ways) solutions.

More precise and efficient ways of estimating patient preference would be of value,

as the reliance on questionnaire and subsequent sampling and numerical methods

are both labor and time intensive. Finally, the incorporation of continuous stages

(i.e. mobile health interventions) which are heavily influenced by personal decisions

would be of interest in this work, as it would bring together instantaneous preference

estimation and decision making for more general and timely clinical scenarios.
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CHAPTER IV

Augmented Patient Preference Incorporated

Reinforcement Learning in Survival Settings

4.1 Introduction

For chronic illnesses, patients often have to navigate a series of treatment decisions.

Increasingly, there is recognition that due to patient heterogeneities due to genetics,

environmental factors, and various other factors and interplay between the factors, a

good treatment plan needs to be both personalized and adaptive to a patient’s chang-

ing clinical course. Dynamic treatment regimes (DTRs) are algorithmic solutions to

this clinical problem. The treatment rules obtained through DTR algorithms adapt

over time in response to an individual’s response and trajectory.

A large number of methods have been proposed for the evaluation of the optimal

DTR. Some of the earlier and foundational work include marginal structural model

with inverse probability weighting (IPW) (Robins , 2000), G-estimation of structural

nested mean models (Robins , 2004), Q-learning (Murphy (2003), Murphy (2005),

Moodie et al. (2012)) and A-learning (Schulte et al., 2014). More recently, along

with the development of data science, machine learning flavored methods were also

developed for DTR estimation, including tree-based and list-based methods (Laber
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and Zhao (2015), Tao and Wang (2017), Tao et al. (2018), Zhang et al. (2018)), and

classification type methods (Zhao et al. (2012), Zhang and Zhang (2018)).

Despite the large number of methods that can be used to calculate the optimal DTR,

the majority of methods rely on pre-specifying a single endpoint of interest. Often

times, a single clinical decision can affect multiple outcomes, often in opposing di-

rections of desirability. The classic example in this case is toxicity vs. efficacy. A

newly introduced drug that is highly efficacious might come with a larger burden of

undesirable side effects. In recent years, a few proposed methods have tackled the

delicate balance between multiple outcomes of a proposed treatment. Butler et al.

(2018) balances treatment efficacy and toxicity using patient derived preference using

a Q-learning approach, while Zhao et al. (2009) assigned differing rewards based on

survival status, wellness (a measure of toxicity) and tumor size (a measure of drug

efficacy) at each stage.

The particular scenario that we would like to address in this work is a delicate balance

of quality vs quantity, a dilemma commonly encountered for patients at the end of life

(Torrance and Feeny , 1989). Patients often receive a first treatment and is followed

up after a short time to determine if the treatment needs to be adjusted. The patient

is then followed until death or a certain maximal follow-up time. Our primary goal is

to estimate the optimal treatment regime that would maximize a patient preference

weighted combination of quality of life and survival time. Secondly, we would like to

provide an inference framework for more confident decision making. Although similar

in flavor to the above-mentioned works, our scenario brings with it a unique set of

distinct technical challenges.

The main challenge in this scenario is the presence of censored data. Because of the

long tail of survival distributions, and because of other logistical reasons (patients

move, dropout due to deteriorating health, etc), it is common to not observe the
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outcomes of a significant fraction of the population. However, partially observed

information from censored subjects can still contribute important information and

give power to the analysis if analyzed correctly.

An enormous body of work has been developed to estimate the optimal rule or regime

in the presence of censoring. A non-exhaustive and overlapping list includes methods

for single stage (Cui et al. (2017), Zhu and Kosorok (2012), Zhao et al. (2015)),

methods for multiple stages (Goldberg and Kosorok (2012), Hager et al. (2018), Zhao

et al. (2018), Jiang et al. (2017a)), inverse probability weighted censoring (IPCW)

adjustment methods (Goldberg and Kosorok (2012), Zhao et al. (2018), Zhao et al.

(2015)), Q-learning based methods (Goldberg and Kosorok (2012), Zhao et al. (2018)),

tree-based methods (Zhu and Kosorok (2012), Cui et al. (2017)), survival probability

based methods (Jiang et al. (2017a)), accelerated failure time (AFT) based models

(Huang and Ning (2012), Huang et al. (2014)), and doubly robust methods (Zhang

and Schaubel (2012), Hager et al. (2018), Jiang et al. (2017b)), just to name some of

the numerous ways these methods differ in scope and direction.

A secondary but equally important goal of our method is to provide inference on stage

specific parameters, particularly for tailoring variables. Inference in DTR methods

is challenging due to the known issue of nonregularity caused by non-smooth func-

tions that get carried forward through backward induction (Chakraborty et al., 2010).

When the degree of nonregularity is large (in other words, a larger fraction of co-

variate space doesn’t have a treatment effect), the asymptotic distribution of the

true coefficient oscillates between two asymptotic distributions, resulting in asymp-

totic bias and poor Wald-type confidence intervals. In the same paper, Chakraborty

et al. (2010) proposed hard-threshold estimator and soft-threshold estimator to adjust

for this poor coverage. Laber et al. (2014) proposed an adaptive confidence interval

for first stage parameters by utilizing regular, uniformly convergent lower and up-
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per bounds for the asymptotic distribution of interest, and later bootstrapping for

the confidence set. Chakraborty et al. (2013) proposed an adaptive bootstrap based

method that adjusts for the bias and coverage by adjusting the bootstrap sample size.

In this work, we explored, synthesized, and adapted existing methods in the litera-

ture to create a method for estimating optimal treatment regimen and stage-specific

confidence intervals that fits our scenario. We utilize IPCW to enable a complete

data analysis and used the Q-learning framework to estimate the optimal treatment

regimen. We further adapted the m-out-of-n bootstrap to accommodate censoring in

order to obtain the covariate specific confidence intervals for inference. We illustrate

the performance of our method through simulation studies.

4.2 Set up and notation

We look at a two-stage setting where a patient, upon diagnosis, receives a stage 1

treatment. Shortly after at a scheduled follow-up time, the patient will be assessed

for stage 2 treatment. Following stage 2 treatment, the patient is at risk of death,

denoted by time Di. Furthermore, patient information might be lost to follow-up,

either due to administrative censoring (surpassed maximal follow-up time) or due to

patient factors.

Let T1i, T2i denote the times of treatment for stage 1, 2, respectively. Let τ be the

maximal administrative follow-up time. Let S1i and S2i denote the amount of time

survived in each stage, i.e. S1i = T2i − T1i, and S2i = Di − T2i. We assume that per

protocol, everyone’s S1i should be the same (i.e. routine assessment following stage 1

treatment at a prespecified time interval). Let Kj be the number of treatment options

in the jth stage, j = 1, 2. Let Aij denote the treatment indicator for ith patient in

the jth stage, with aij denoting the observed treatment. Let Xij denote patient

characteristics prior to treatment assignment at stage j. In addition, we assume that
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Figure 4.1: Schematic of clinical progression timeline

each patient will have an evolving preference hij, which can be derived from answers

Wij to a questionnaire at stage j.

At each stage, we assume that each patient i will have two observed outcomes, qij for

the average quality of life during stage j, and Sij, the amount of time spent in stage

j. qij allows us to calculate Quij = qij ∗ Sij, the quality adjusted life years during

stage j. However, since Quij is dependent on Sij, it is also subject to censoring at

stage 2.

We assume a utility function of the form Qu+{1−Φ(h)}|S−Qu|, where Φ(·) denotes

the cumulative distribution function of a normal random variable. Intuitively, this

utility function is a sliding scale between S and Qu, and a patient’s preference would

dictate where he/she would fall. Let the overall outcome of interest that we would

like to optimize be R1i + R2i, where Rij = Quij + {1 − Φ(hij)}|Sij − Quij|. This is

a cumulative preference adjusted quality of life years experienced on a given regime.

If one’s preference is such that Φ(hi) = 0 for both stages, then R1i + R2i is the total

survival time. Similarly, if a patient has preference Φ(hi) = 1 for both stages, then

R1i + R2i would be the total quality adjusted life years. In general, we denote all

history, or history up to stage K for a given variable with an overhead bar (i.e., Wi

and WiK , respectively).
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Let gj(Xij,Wij) be a function that maps from covariate and survey history to the

domain of treatment assignment Aij. At stage j, the expected potential reward of

following decision rule gj(Xij,Wij) for patient i is defined as

E
[∑Kj

aj=1

[
Qu∗ij(aj) + {1− Φ(hij)}|S∗ij(aj)−Qu∗ij(aj)|

]
I{gj(Xij,Wij) = aj}

]
, where

S∗ij(aj) = S∗ij(Ai1, . . . , Ai,j−1, aj) and Qu∗ij(aj) = Qu∗ij(Ai1, . . . , Ai,j−1, aj) denotes the

counterfactual survival outcome and quality adjusted survival, respectively, where

the patient is assumed to have taken treatment aj at stage j, conditional on pre-

vious treatment decisions Ai1, . . . , Ai,j−1. In our case, our primary goal is to find a

sequence of individualized decision rules, g(Xi,Wi) = (g1(Xi1,Wi1), g2(Xi2,Wi2)),

that optimize the potential outcome of R1i +R2i.

A second but equally important objective is to conduct inference on coefficients, with

particular emphasis on tailoring variables (variables that interact with treatment

selection). Inference on tailoring variables is important because it obviates the need

to collect data for covariates that have no evidence of significant deviation from

zero. Furthermore, inference allows us to know when there is insufficient evidence to

support one treatment over another so that treatment decisions could be made using

other factors important to the patient. In this work, along with stage-specific decision

rules, we present a censoring adapted method of obtaining confidence intervals for the

covariates in both stages of the model. For the sake of brevity going forward, let us

abbreviate gj(Xij,Wij) with gj and drop the patient index i when there is no room

for confusion.

4.3 Censoring adapted Q-learning

4.3.1 Traditional Q-learning

First, we introduce traditional Q-learning, a form of approximate dynamic program-

ming originally proposed by Murphy (2003). Q-learning estimates the optimal DTR
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by postulating regression models for Q-functions and subsequently taking the solu-

tions that would yield largest rewards. The Q-functions for the two stages are defined

as:

Q2(X2, A2) = E[R2|X2, A2]

Q1(X1, A1) = E[R1 + maxa2 Q2(X2, a2)|X1, A1]

The decision rules can be written as dj(Xj) = arg maxajQj(Xj, aj). Generally, we

do not know the true Q-functions and so we consider linear working models for Q-

functions of the form Qj(Xj, Aj;βj,ψj) = βTj Zj,0 + (ψT
j Zj,1)Aj, where Zj,0 and Zj,1

possibly contain different components of the history Xj.

The 2-stage Q-learning algorithm works as follows:

1. Stage 2 regression is obtained by

(β̂2, ψ̂2) = arg minβ2,ψ2

∑n
i=1(R2 −Q2(X2, A2;β2,ψ2))2

2. Stage 1 pseudo-outcome is given by P̃O1 = R1 + maxa2Q2(X2, a2; β̂2, ψ̂2), i =

1, . . . , n

3. Stage 1 regression: (β̂1, ψ̂1) = arg minβ1,ψ1

∑n
i=1(P̃O1 −Q1(X1, A1;β1,ψ1))2

The decision rules can be simplified to be

dj(Xj) = arg maxajQj(Xj, aj; β̂j, ψ̂j) = sign(ψ̂T
j Zj,1) when we have the particular

case that Aj ∈ {−1, 1}. We will assume that we have binary treatment options for

both stages for convenience, although this can be relaxed with further assumptions.

4.3.2 Censoring adapted Q-learning

Our stage 2 optimization objective is complicated by the fact that some S2 may

be unobserved due to censoring. Let C denote time of censoring, which started

from time of stage 2 treatment. We assume that S2 ⊥ C|A2,X2,W2 (conditional
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independence).

4.3.2.1 Stage 2

Let S∗2(a2) be the counterfactual outcome of survival starting from stage 2 treatment

conditional on previous treatment A1. Correspondingly S∗2(g2) is the counterfactual

outcome under decision rule g2, i.e. S∗2(g2) =
∑K2

a2=1 S
∗
2(a2)I{g2(X2,W2) = a2}.

Similarly, we can obtain Qu∗2(a2) through q∗2(a2) and S∗2(a2).

Using the linear utility function defined in Section 4.2 and conditional on previous

treatment A1, R∗2(a2) = Qu∗2(a2) + {1− Φ(H2)}|S∗2(a2)−Qu∗2(a2)|.

Correspondingly,

R∗2(g2) = Qu∗2(g2) + {1− Φ(H2)}|S∗2(g2)−Qu∗2(g2)|

is the counterfactual utility, conditional on previous treatments A1 under decision

rule g2.

The optimal regime, gopt2 , satisfies E{R∗2(gopt2 )} ≥ E{R∗2(g2)}∀ g2 ∈ G2, where G2 is

the class of all potential decision rules for stage 2.

We make the following assumptions to connect the counterfactual outcomes with

those observed in our data:

1. Consistency:

S2 =
∑K2

a2=1 S
∗
2(a2)I{A2 = a2} and q2 =

∑K2

a2=1 q
∗
2(a2)I{A2 = a2}

2. No unmeasured confounding:

Treatment A2 is randomly assigned with probability possibly dependent on

X2 and W2, i.e., {S∗2(1), . . . , S∗2(K2)} ⊥ A2|X2,W2 and {q∗2(1), . . . , q∗2(K2)} ⊥
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A2|X2,W2

3. Positivity:

There exists constants 0 < c0 < c1 such that, with probability 1, the propensity

score πa2(X2,W2) = Pr(A2 = a2|X2,W2) ∈ (c0, c1).

4. Latent variable independence:

H2 ⊥ (A2, Qu
∗
2(a2), S∗2(a2))|X2,W2

The first three assumptions are standard assumptions in causal inference. The last

assumption facilitates separate modeling of outcomes and preferences and can be

weakened at the expense of more complicated models (Butler et al., 2018).

We denote the marginal expectation with respect to Xt,Wt (EXt,Wt
) as Et. Further-

more let us denote µS2,a2(X2,W2) ≡ E
{
S2|A2 = a2,X2,W2

}
and

µq2,a2(X2,W2) ≡ E
{
q2|A2 = a2,X2,W2

}
. As in traditional Q-learning, we assume

linear working models for each of our outcomes of interest (i.e. q2, S2 can be generated

through underlying models of predictive and tailoring variables βT2 Z20 + (ψT
2 Z21)A2,

where Z20 and Z21 are some possibly different components of X2 and W2).

Using causal assumptions above, we link observed data to their counterfactual out-

comes:

E [R∗2(g2)] = E2

[ ∑
a2∈{−1,1}

[
µq2,a2(X2,W2)µS2,a2(X2,W2)

+E
{

1− Φ(H2)|X2,W2

}
|µS2,a2(X2,W2)−µq2,a2(X2,W2)µS2,a2(X2,W2)|

]
I{g2 = a2}

]
,

(4.1)
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where the separate modeling of preference and outcomes is allowed by the fourth as-

sumption, µS2,a2(X2,W2) = E(S2 |A2 = a2,X2,W2), and µq2,a2(X2,W2) = E(q2 |A2 =

a2,X2,W2).

With censoring, it is unlikely that all S2 will be observed. We propose the following es-

timator that re-weights observed complete data using inverse probability of censoring

weighting (IPCW):

argmin
β2,ψ2

Pn

([
R2 − E(R2(X2,W2, A2;β2,ψ2))

]2 ∆

P̂ r{∆ = 1|X2,W2, A2}

)
,

where E(R2(X2,W2, A2;β2,ψ2)) denotes the model estimate for R2 using observed

data and covariates. ∆ = I(S2 < C) is the event indicator and P̂ r{∆ = 1|X2,W2, A2}

is a working estimator of the probability that the individual has not been censored

by their event time.

Denote our Q-function here to be Q2(X2,W2, A2) = E[R2|X2,W2, A2]. The derived

treatment rule is ĝopt2 (X2,W2) = argmaxa2 Q2(W2,X2, A2; β̂2, ψ̂2) = sign(ψ̂T
2 Z21),

where Z21 represent tailoring variables in the stage 2 model.

4.3.2.2 Stage 1

gopt1 (X1,W1) can be derived from the observed data using backward induction. As-

suming that stage-specific rewards have been maximized after stage 1, we define the

following stage 1 reward:

R∗1(a1) = q∗1(a1)S∗1(a1) + {1−Φ(H1)}|S∗1(a1)− q∗1(a1)S∗1(a1)|+

q∗2(a1)S∗2(a1) + {1−Φ(H2)}|S∗2(a1)− q∗2(a1)S∗2(a1)|. For stage 1, S∗1(a1) is as defined

previously and for stage 2, S∗2(a1) = S∗2(a1, g
opt
2 ) denotes a counterfactual outcome

given future optimized treatments and taking treatment a1 at stage 1 (and similarly
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for q∗1/2(a1)). The optimal regime at stage 1 satisfies E{R∗1(gopt1 )} ≥ E{R∗1(g1)} for

all g1 ∈ G1, where G1 is the class of all potential regimes at stage 1.

Again we make the following three standard assumptions to link observed data to

their counterfactual versions (we use S1 as an example, but we assume the same for

q1):

1. Consistency:

K1∑
a1=1

S∗k(a1)I(A1 = a1) =


S1 when k = 1

Sk(A1, g
opt
2 ) when k = 2

2. No unmeasured confounding:

{S∗1(1), . . . , S∗1(K1)} ⊥ A1|X1,W1 and {S∗2(1), . . . , S∗2(K1)} ⊥ A1|X2,W2. Fur-

thermore, {X2,W2} ⊥ A1|X1,W1

3. Positivity: πa1(X1,W1) = Pr(A1 = a1|X1,W1) is bounded away from zero and

one

4. Latent variable independence: H1 ⊥ (A1, S
∗
k(a1), Qu∗k(a1)|Xk,Wk where k =

1, 2

By linking counterfactual outcomes to those observed,

E[R∗1(g1)] = E1

[ ∑
a1∈{−1,1}

[
µq
1,a1

(X1,W1)µS
1,a1

(X1,W1) + E
{

1− Φ(H1)|X1,W1

}
×

|µS
1,a1

(X1,W1)− µq
1,a1

(X1,W1)µS
1,a1

(X1,W1)|
]
I{g1 = a1}

]

+ E2

[ ∑
a1∈{−1,1}

[
µq
2,a1

(X1,W1)µS
2,a1

(X1,W1) + E{1− Φ(H2)|X2,W2}×

|µS
2,a1

(X1,W1)− µq
2,a1

(X1,W1)µS
2,a1

(X1,W1)|
]
I{g1 = a1}

]
(4.2)
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where µS1,a1(X1,W1) = E(S1|A1 = a1,X1,W1), µS2,a1(X1,W1) denotes

E
[
S2(A1, g

opt
2 )|A1 = a1,X1,W1

]
, and similarly for the equivalents of q. Notice again

that the RHS can be completely estimated from observed data. Under these assump-

tions, the optimization problem at stage 1, among all potential regimes G1, can be

written as gopt1 = arg maxg1∈G1 RHS of Equation 4.3.2.2.

We maximize the stage 1 outcome through a pseudo-outcome defined as:

P̃O1 = q1S1 + {1− Φ(H1)}|S1 − q1S1|+ max
a2

Q2(W2,X2, a2; β̂2, ψ̂2)

Our proposed estimator for (β̂1, ψ̂1) is argminβ1,ψ1
Pn
(
P̃O1 −Q1(X1,W1, A1;β1,ψ1)

)2

,

where Q1(X1,W1, A1;β1,ψ1) can be modeled with βT1 Z10 + (ψT
1 Z11)A1. The first

stage estimated optimal rule is given by ĝopt1 = argmaxa1 Q1(X1,W1, a1; β̂1, ψ̂1) =

sign(ψ̂T
1 Z11), where Z11 represent tailoring variables in the stage 1 model.

4.3.3 Inference

In addition to obtaining the optimal stage-specific decisions, our second goal is to

do inference on each stage’s covariates. Particular emphasis was placed on tai-

loring variables. To that end, we propose using an censoring adjusted version of

the m-out-of-n method presented by Chakraborty et al. (2013). Inference for dy-

namic treatment regime type problems is challenging due to the problem of non-

regularity (Chakraborty et al., 2010). In stage-1 optimization, the pseudo-outcome

P̃O1 = q1S1 + {1− Φ(H1)}|S1 − q1S1|+β̂T2 Z20 + |ψ̂T
2 Z21| is a nonsmooth function of

ψ̂2. In particular, if P [Z21 : ψT
2 Z21 = 0] = 0, then first stage covariates will con-

verge to a normal distribution. However, if P [Z21 : ψT
2 Z21 = 0] > 0, the estimator

ψ̂1 oscillates between the two asymptotic distributions across samples (Chakraborty

et al., 2010). Hence, direct estimation results in asymptotically biased estimator and
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poor performance of usual Wald type confidence intervals. Even bootstrap-based

approaches suffer from underlying nonsmoothness.

The m-out-of-n bootstrap was developed to address the bootstrap inconsistency due

to nonsmoothness (Shao, 1994). Although conceptually very similar to the original

bootstrap, the resample size m (which needs to depend on n, tends to infinity with

n, and m = o(n)) is selected to be a smaller order than n. The general idea is

that asymptotically, the empirical distribution can then tend to the true generative

distribution at a faster rate than the bootstrap empirical distribution can tend to

the empirical distribution. If the empirical distribution reaches its limit first, then

bootstrapped empirical distributions would essentially be sampling from the true

generative distribution. Chakraborty et al. (2013) showed through simulation studies

that their m-out-of-n approach obtained desirable coverage probabilities for the two-

stage DTR problem for first stage tailoring variables. Because censoring reduces

the size of observed stage 2 data in our scenario, we further adapted the m-out-of-n

algorithm to accommodate censoring. Our algorithm works as follows.

We adopted the functional form of m as presented in Chakraborty et al. (2013),

m = n
1+ξ(1−p̂)

1+ξ (4.3)

Let n be the total number of subjects in the dataset (including those who were

censored). For stage 2, we create a bootstrap sample of size n and fit a regression

model using the complete data weighted by IPC-weights within the bootstrapped

sample to obtain stage 2 coefficient estimates. Stage 2 95% confidence intervals are

obtained after getting l̂2 and û2, the α/2 ×100 and (1 − α/2)×100 percentiles of

√
n(θ̂

(b)
2,n− θ̂2,n), where α is the desired significance level, θ̂

(b)
2,n is the bootstrap estimate

of stage 2 coefficients with bootstrap specific re-estimated censoring weights, and
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θ̂2,n is the plug-in estimator obtained using weighted regression from the empirical

dataset. The confidence interval is given by (θ̂2,n − û2/
√
n, θ̂2,n − l̂2/

√
n). For stage

1, we first generate bootstrap samples of size m, which is calculated using Equation

4.3 after calculating a sample specific p̂. We further use each bootstrap sample to

re-estimate IPC-weights, and fit a weighted lm model to obtain a bootstrap specific

stage 2 estimate. The stage 2 coefficients from each bootstrap sample were then

used to calculate pseudo-outcomes, which were then used to fit a stage 1 model to

obtain θ̂
(b)
1,m̂. As in stage 1, we obtain the l̂1 and û1, the α/2 ×100 and (1−α/2)×100

percentiles of
√
m̂(θ̂

(b)
1,m̂ − θ̂1,n), where θ̂1,n is the plug-in estimator obtained using the

complete empirical dataset, while θ̂
(b)
1,m̂ is the estimate obtained from each bootstrap

sample of size m. The confidence set is given by (θ̂1,n − û1/
√
m̂, θ̂1,n − l̂1/

√
m̂).

We further selected the value of ξ to be 0.01, which provided stable coverage in

simulations with complete data. The calculation of p̂ = PI{n[ZT
21ψ̂2,n]2 ≤ τn(Z21)}

relies on a selection of τn(Z21). We opted to use the plug-in estimator for τn(Z21) =

(ZT
21Σ̂21Z21) · χ2

1,1−ν just as in Chakraborty et al. (2013), where Σ̂21 is the plug-in

sandwich estimator of nCov(ψ̂2,n, ψ̂2,n), and ν = 0.01.

4.3.4 SAPP-weights

Going forward, we assume that information in the lastest stage survey will override

information from previous stages as well as other covariate information (i.e. Wj

will override Wj−1 and Xj). To model survey information as a function of latent

preference, we assume a latent traits model (Moustaki and Knott , 2000). We further

assume that the latent preferences are related to survey responses through a modified

Rasch model (Rasch, 1961, Rasch, 1960).

For our scenario, we assume we have numQ questions on a survey, each soliciting

binary answer choices from the patient. For each binary response, we assume that the
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underlying generating form is of the form logit{P (Wjk = 1|Hj = hj)} = α0,k +α1,khj

where j indicates the stage and k the question number.

Algorithm 3: EM algorithm for estimating patient preference ĥj

Result: Obtain p(hj|wj) for patient i

Guess initial value of hj for all subjects to estimate an initial guess of α0,α1;

while not reached convergence do

Using MH, get an updated estimate of P (hj|wj);

Approximate likelihood integral using Gauss-Hermite quadrature with k

abscissae ht and weight p(ht);

Solve likelihood equations using Newton-Raphson to get updated estimates

of α0,α1;

end

Algorithm 3 outlines the algorithm for estimating patient preference ĥj. The APP-

weights are the transformed estimated preferences Φ(ĥij). Essentially, we use the

Expectation-Maximization algorithm (Moon, 1996) to iterate between estimates of α,

the questionnaire coefficients, and hj, individual patient preferences at stage j. We

use Gauss-Hermite quadrature to numerically approximate the integral, and estimate

P (hj|Wj) ∝ P (Wj|hj)P (hj) using the Metropolis Hastings algorithm.

4.4 Numerical Demonstration

We conduct simulation studies to investigate the performance of our proposed method.

We look at two scenarios, differing by degree of nonregularity (the estimated proba-

bility that stage 2 treatment does not provide a significant difference), p. The first

scenario is an example of low nonregularity, where approximately for 25% of peo-

ple will get similar results with both treatment. Scenario 2 is an example of higher

nonregularity, where approximately 75% of patients could get similar results with
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Table 4.1: Coefficients for the latent model used to solicit preferences. α10 and α11

are the coefficients for stage 1 questionnaires, while α20 and α21 are for stage 2
coefficients

α10 α11 α20 α21

Q1 1.00 1.00 0.90 0.72
Q2 0.00 -1.00 -0.19 1.82
Q3 -1.64 2.35 1.47 -1.63
Q4 0.54 -2.35 -0.50 2.11
Q5 -0.88 -1.10 1.30 1.69
Q6 0.75 1.25 -0.40 -1.69
Q7 1.27 2.96 0.04 2.37
Q8 -1.50 2.00 -1.27 1.60
Q9 0.09 -1.50 0.62 -1.17

Q10 -0.55 1.35 -0.23 2.00

either stage 2 treatments. The true value of p was estimated through complete data

(assuming no censoring) and true preferences.

For both scenarios, we generate baseline covariates X1, X2 ∼ N(0, 1), censoring time

C, quality of life q1, q2 and survival times S1, S2. Preferences of both stages were

generated from N(0, SD = 0.5) distribution, and ten binary preference derived ques-

tionnaire responses W1,W2 were generated according to our latent model with coef-

ficients as in Table 4.1.

The two scenarios differ in terms of Stage 2 parameters but share common stage

1 settings. Stage 1 treatment assignment A1 was randomly assigned with prob-

ability 0.5. The stage 1 quality of life outcome q1 ∈ [0, 1] was generated from

N(α0 +α1X1 +α2A1 +α3X1A1, σ
2), where α = [0.55, 0.03, 0.06,−0.09], and σ = 0.03.

As mentioned previously, S1 for everyone indicates a routine follow-up time of 30

days. The outcome of stage 1 is the weighted combination of q1 and S1 through

the equation R1 = q1S1 + (1 − Φ(h1))|S1 − q1S1|, which can be interpreted as an

quality of life weighted survival during the initial follow-up time. Although the true
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R1 is not observed, the true R1 was used to assign treatment A2, where if someone

had a high R1, they were more likely to remain on the same treatment as A1, i.e.

Bernoulli({exp(−3+R1/3)}/{1+exp(−3+R1/3)}). In this simulation setting, Φ(h)

represents the cumulative distributive function of a standard normal variable.

Using these simulated datasets, we estimate patient preferences, the optimal dynamic

treatment regime, and the confidence intervals of estimated DTR coefficients from

these responses and outcomes. We evaluate each scenario through measures of bias,

coverage probability, optimal mean response, and the percent of subjects correctly

classified to their true optimal treatment %opt.

4.4.1 Scenario 1: Low nonregularity (p=0.25)

We generated stage 2 outcome q2 ∼ N(β0 + β1X2 + β2X2A2, SD = 0.03), where β =

[0.5, 0.07, 0.06]. Similarly, we generated S2 ∼ N(γ0 + γ1R1 + γ2(R1 − c)A2, SD = 5),

where γ = [50, 10,−2.5] and c = 20. q2 and S2 disagreed on the optimal stage 2

treatment approximately half the time, indicating that half of all patients had to

made a choice between quality and quantity of life. In a randomly generated dataset,

treatment 1 gave 73.4% of patients a better stage 1 reward, while treatment 1 gave

31% of patients a better stage 2 reward. The range of S2 varied from 169 to 361 days.

Unlike stage 1, stage 2 survival times could be subject to censoring time C. We

generated censoring C ∼ exp(log λC0 + X2βC), where βC = 0.01 and λC0 = 0.00058

for 15% censoring and λC0 = 0.0013 for 30% censoring. τ was set to be a year after

initiation of stage 2 treatment.

Because S2 and q2 are functions of X2, A2, and R1, the reward combination can be
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rearranged as

R2 = q2S2 + {1− Φ(h2)}(S2 − q2S2)

= γ0 + (β0γ0 − γ0)Φ(h2)

+ {γ1 + (β0γ1 − γ1)Φ(h2)}R1

+ {(β1γ0 − β2γ2c)Φ(h2)}X2

+ {(β1γ1 + β2γ2)Φ(h2)}X2R1

+ {(γ2c− β0γ2c)Φ(h2)− γ2c}A2

+ {γ2 + (β0γ2 − γ2)Φ(h2)}R1A2

+ {(β1γ2 + β2γ1)Φ(h2)}R1X2A2

+ {(β2γ0 − β1γ2c)Φ(h2)}X2A2

Hence, stage 2 regression of the reward on covariates contains eight terms (intercept,

R1, X2, X2R1, A2, R1A2, R1X2A2, X2A2). On the other hand, stage 1 coefficients are

obtained by regressing a pseudo-outcome, R1+β̂T2 Z20+|ψ̂T
2 Z21| on X1, A1, and X1A1,

so stage 1 regression has four covariate terms (including intercept). We obtain both

true stage 1 and stage 2 coefficients by performing Monte Carlo sampling regressions

on a sample size of 10 million.

Tables 4.2 and 4.3 lists the true covariate values, bias of our estimates, the empirical

standard deviations, the mean bootstrap standard deviations, mean widths of confi-

dence interval, and the coverage probabilities of our method. The coverage probabil-

ities ranged from 0.86 to 0.96, with the majority between 0.92 to 0.96. Furthermore,

we see general agreement between the empirical SD and the average bootstrap SD.

In terms of trends, we see slightly larger ESD, mean bootstrap SD, and mean width

when censoring is increased from 15% to 30%, while we see a reduction in all three
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Table 4.2: Stage 2 simulation results for Scenario 1 (p=0.25). True parameters are
[7.49, 3.23, 37.58, 0.28,−1.88, 3.21, 0.21]

n % Censor Parameter Bias ESD AvgBootSD MeanWidth CP

500

R1 -0.32 0.48 0.50 1.94 0.92
X2 0.16 11.94 12.18 47.75 0.96
A2 -4.93 11.72 11.57 45.17 0.92

15 R1 : X2 -0.01 0.52 0.52 2.04 0.96
R1 : A2 0.22 0.50 0.50 1.94 0.92
X2 : A2 0.38 12.51 12.20 47.68 0.93
R1 : X2 : A2 -0.01 0.54 0.52 2.04 0.94

R1 -0.31 0.54 0.55 2.15 0.93
X2 0.38 13.39 13.57 53.19 0.95
A2 -4.83 13.03 12.80 50.05 0.92

30 R1 : X2 -0.02 0.58 0.58 2.28 0.94
R1 : A2 0.21 0.56 0.55 2.15 0.93
X2 : A2 0.06 13.56 13.57 53.12 0.95
R1 : X2 : A2 0.00 0.58 0.58 2.28 0.95

1000

R1 -0.29 0.36 0.34 1.34 0.86
X2 -0.14 8.23 8.34 32.64 0.95
A2 -4.73 8.38 8.01 31.26 0.88

15 R1 : X2 0.01 0.35 0.36 1.40 0.95
R1 : A2 0.21 0.36 0.34 1.34 0.88
X2 : A2 0.10 8.55 8.34 32.59 0.94
R1 : X2 : A2 0.00 0.37 0.36 1.39 0.94

R1 -0.28 0.40 0.38 1.49 0.87
X2 0.04 9.38 9.25 36.17 0.96
A2 -4.94 8.95 8.85 34.58 0.90

30 R1 : X2 0.00 0.40 0.40 1.55 0.96
R1 : A2 0.22 0.39 0.38 1.48 0.89
X2 : A2 0.44 9.67 9.24 36.11 0.94
R1 : X2 : A2 -0.02 0.41 0.40 1.55 0.94
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Table 4.3: Stage 1 simulation results for Scenario 1 (p=0.25). True parameters are
[3.77, 8.17,−12.37]

n % Censor Parameter Bias ESD AvgBootSD MeanWidth CP

500

X1 -0.10 0.93 0.98 3.84 0.95
15 A1 -0.30 1.05 1.07 4.18 0.93

X1 : A1 0.41 1.21 1.23 4.78 0.94

X1 -0.10 0.93 1.00 3.93 0.96
30 A1 -0.29 1.07 1.11 4.34 0.94

X1 : A1 0.40 1.28 1.29 5.05 0.94

1000

X1 -0.04 0.67 0.68 2.66 0.96
15 A1 -0.20 0.73 0.74 2.90 0.94

X1 : A1 0.31 0.85 0.85 3.32 0.92

X1 -0.04 0.68 0.69 2.71 0.95
30 A1 -0.21 0.75 0.77 2.99 0.94

X1 : A1 0.31 0.88 0.90 3.49 0.94

when we increase n from 500 to 1000. Using covariate A2 as an example, the ESD

for n = 500 and 15% censoring is 11.72, which increased to 13.03 when censoring

increased to 30% but decreased to 8.38 when n increased to 1000. We can see similar

patterns with the average bootstrap SD and mean width of confidence interval.

We further investigated the distributions of the observed total reward, as well as the

predicted optimal reward of one randomly selected simulation, which we illustrate in

Figure 4.2. Aggregating means across the four sub-scenarios (based on sample size and

censoring), the average observed reward is 233.77, while the average predicted optimal

reward is 254.19, indicating an expected increase of 20.42 reward when everyone

follows the regime assigned to them by our algorithm. It is also evident in the figure

that the variability of the observed rewards is significantly larger than the variability

of the predicted optimal reward. Aggregated SD of all observed rewards in this

scenario is 39.2, while aggregated SD of all predicted rewards is 5.66.
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Figure 4.2: Comparison of Observed Reward and Predicted Optimal Reward for
Scenario 1 (p=0.25).
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4.4.2 Scenario 2: High nonregularity (p=0.75)

Baseline covariates, preferences, treatment assignment mechanisms, stage 1 quality

of life and S1 were generated as in scenario 1. We generated stage 2 outcome q2 ∼

N(β0 + β1X2 + β2X2A2, SD = 0.03), where β = [0.5, 0.07, 0.021], and S2 ∼ N(γ0 +

γ1R1 + γ2(R1− c)A2, SD = 5), where γ = [135, 8,−0.5] and c = 20. We adjusted the

coefficients such that the magnitude of γ2 and β2 (which influence the effect of A2),

are smaller compared to Scenario 1. q2 and S2 also disagreed on the optimal stage 2

treatment approximately half the time. In a randomly generated dataset, treatment

1 gave 74.8% of patients a better stage 1 reward, while treatment 1 gave 41.6% of

patients a better stage 2 reward. The range of S2 varied from 235 to 368 days.

Stage 2 survival times are similarly subject to censoring time C. Censoring was

generated with model C ∼ exp(log λC0 + X2βC), where βC = 0.01 and λC0 = 0.00048

for 15% censoring and λC0 = 0.0011 for 30% censoring. As before, τ was set to be a

year after initiation of stage 2 treatment.

Tables 4.4 and 4.5 lists the equivalent information as for Scenario 1. As with before,

the coverage probabilities range from 0.86 to 0.97, with most hovering around 95%.

We further see decreases in mean width, SD, and mean bootstrap SD with decreasing

censoring and increasing sample size. Again using A2 as an example, the ESD across

simulations of its coefficient was 12.38 when n = 500 and censoring was at 15%, which

increased to 13.85 when censoring increased to 30%, and decreased to 8.84 when n

increased to 1000.

As in Section 4.4.1, we investigated the distribution of the observed total reward and

the predicted optimal reward of one random simulation in Figure 4.3. Aggregated

means across the four sub-scenarios (based on sample size and censoring), the average

observed reward is 263.62, while the average predicted reward is 275.35, indicating
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Table 4.4: Stage 2 simulation results for Scenario 2 (p=0.75). True parameters are
[6.00, 4.74, 7.53, 0.28,−0.38, 1.66, 0.07]

n % Censor Parameter Bias ESD AvgBoot SD MeanWidth CP

500

R1 -0.33 0.51 0.52 2.05 0.92
X2 0.31 12.42 12.83 50.29 0.97
A2 -3.47 12.38 12.27 47.86 0.93

15 R1 : X2 -0.01 0.54 0.55 2.14 0.96
R1 : A2 0.16 0.53 0.52 2.05 0.94
X2 : A2 0.17 12.99 12.84 50.18 0.95
R1 : X2 : A2 -0.01 0.55 0.55 2.14 0.95

R1 -0.31 0.56 0.58 2.27 0.93
X2 0.41 13.92 14.32 56.06 0.95
A2 -3.35 13.85 13.60 53.13 0.92

30 R1 : X2 -0.02 0.60 0.61 2.39 0.95
R1 : A2 0.15 0.59 0.58 2.28 0.91
X2 : A2 -0.08 14.13 14.31 55.97 0.94
R1 : X2 : A2 0.00 0.60 0.61 2.39 0.95

1000

R1 -0.30 0.39 0.36 1.42 0.86
X2 -0.10 8.69 8.78 34.34 0.95
A2 -3.52 8.84 8.51 33.24 0.91

15 R1 : X2 0.00 0.37 0.37 1.47 0.96
R1 : A2 0.16 0.38 0.36 1.42 0.90
X2 : A2 0.08 8.99 8.78 34.27 0.94
R1 : X2 : A2 0.00 0.38 0.37 1.46 0.94

R1 -0.29 0.42 0.40 1.57 0.88
X2 0.24 9.79 9.75 38.13 0.95
A2 -3.76 9.46 9.40 36.69 0.93

30 R1 : X2 -0.01 0.42 0.42 1.63 0.94
R1 : A2 0.17 0.41 0.40 1.57 0.93
X2 : A2 0.37 10.25 9.73 38.04 0.93
R1 : X2 : A2 -0.02 0.44 0.42 1.62 0.94
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Table 4.5: Stage 1 simulation results for Scenario 2 (p=0.75). True parameters are
[3.19, 6.39,−9.61]

n % Censor Parameter Bias ESD AvgBootSD MeanWidth CP

500

X1 -0.33 0.83 0.91 3.54 0.94
15 A1 -0.42 0.95 1.01 3.94 0.94

X1 : A1 0.61 1.14 1.19 4.63 0.92

X1 -0.35 0.83 0.93 3.62 0.94
30 A1 -0.42 0.99 1.05 4.11 0.94

X1 : A1 0.60 1.20 1.26 4.91 0.93

1000

X1 -0.22 0.61 0.63 2.46 0.95
15 A1 -0.33 0.68 0.70 2.75 0.93

X1 : A1 0.48 0.80 0.83 3.25 0.92

X1 -0.23 0.62 0.64 2.50 0.94
30 A1 -0.34 0.69 0.73 2.86 0.93

X1 : A1 0.49 0.84 0.88 3.43 0.92

an increase of 11.73 reward when everyone follows the regime assigned to them by

our algorithm. Aggregated SD of observed rewards is 37.77, while aggregated SD of

all predicted rewards is 4.39.

4.4.3 Optimality

Besides looking at performance of inference, we also looked at the number of times

our algorithm chose the correct treatment for each patient at each stage, across the

scenarios we have visited (n = 500, 1000 across two levels of censoring at 15%, 30%).

Table 4.6 shows the simulation results. In this table we also included the average

stage 1 bootstrap resample sizes for each sub-scenario. As expected from Equation

4.3, increasing p indicates increasing nonregularity, and decreases m. We can see

that for Scenario 1 (p = 0.25), the algorithm chose the optimal treatment for stage 1

over 93% of the time, and over 83% of the time for stage 2. Our algorithm was able

to assign the correct regime to a patient over 78% across all both sample sizes and
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Figure 4.3: Comparison of Observed Reward and Predicted Optimal Reward for
Scenario 2 (p=0.75).

Table 4.6: Simulation results for percent optimal treatment chosen

Scenario n % Censor Stage1 %opt (sd) Stage2 %opt (sd) Overall %opt (sd)

p=0.25

500 15 0.936 (0.012) 0.839 (0.020) 0.785 (0.022)
500 30 0.936 (0.012) 0.837 (0.022) 0.783 (0.023)
1000 15 0.939 (0.008) 0.844 (0.012) 0.793 (0.013)
1000 30 0.939 (0.008) 0.843 (0.013) 0.792 (0.014)

p=0.75

500 15 0.935 (0.014) 0.667 (0.051) 0.623 (0.050)
500 30 0.934 (0.014) 0.662 (0.053) 0.618 (0.051)
1000 15 0.938 (0.009) 0.687 (0.029) 0.644 (0.028)
1000 30 0.938 (0.009) 0.682 (0.033) 0.640 (0.032)
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censoring levels. This is significantly higher than the random guess approach, which

would have landed us around 25%.

In contrast, Scenario 2’s performance was weaker, coming in at over 93% for stage 1,

around 66−69% for stage 2, and with an overall correct regime assignment percentage

of between 61− 65%. In this scenario, we could also see a general increase in SD as

compared to Scenario 1, indicating higher uncertainty in our decision making process.

4.5 Discussion

In this report we proposed a method that estimates the optimal regimen for a two-

stage treatment scenario subject to censoring. We propose to treat the balance be-

tween quality of life and quantity using a sliding scale function adjusted using patient

preference. Through simulation studies, we have shown that our proposed method is

capable of choosing the optimal treatment and regime a majority of the time, as well

as provide convincing confidence intervals for each of the coefficients in question.

The simulation results of Scenarios 1 and 2 are notable in the following ways. Most

importantly, we can see that the coverage probabilities mostly hover around 95%,

showing that our confidence interval has the combination of adequate width and min-

imal bias required for a good coverage probability. The general congruence between

the empirical SE and the mean bootstrap SE is further support that our method

is sampling at the appropriate width. Generally, there is a slight increase in ESD

and mean bootstrap SD when increasing censoring from 15% to 30%, indicating the

decreased certainty, but the difference is slight (e.g. for parameter A2 in Scenario 1,

ESD increased from 11.72 to 13.03). The decrease in ESD is more significant between

n = 500 and n = 1000, where for Scenario 1 and 15% censoring, the ESD of the

estimated coefficient for parameter A2 decreased from 11.72 to 8.38. In the boxplots

in Figures 4.2 and 4.3, we can see much larger variability in the observed rewards as
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compared to the predicted rewards. This is expected for two reasons. First, observed

rewards contain an error component that is not present in expected (predicted) re-

wards. Secondly, observed rewards includes individuals who have by chance obtained

their optimal reward, as well as those who did not. Variability invariably reduces

when more individuals are predicted to their optimal reward. As expected, the dis-

tribution of the predicted optimal rewards can be mapped to the upper part of the

observed rewards. The same general patterns are observed for Scenario 2.

The difference in simulation results between Scenario 1 and Scenario 2 illustrates

a few interesting points. Our adapted Q-learning algorithm chose over 78% of the

correct regime in Scenario 1, but this decreased to around 65% for the various cases

in Scenario 2, with the decrease particularly prominent in choosing the correct stage

2 decision. This is unsurprising, since a higher value of p indicates exactly that the

exact choice of A2 is less important for those in Scenario 2, making it more difficult

for our algorithm to pick up the best decision. This hesitancy is further supported

by the larger SDs seen for Scenario 2 as compared to Scenario 1. Again using A2

as an example, for n = 500 and 15% censoring, the ESD in Scenario 1 is 11.72

while the ESD in Scenario 2 is 12.38. Finally, the increased difficulty in selecting the

optimal regime when p increases is further illustrated in Figures 4.2 and 4.3, where

the mean expected increases are much smaller in Scenario 2 (11.73) as compared to

Scenario 1 (20.42). While the mean of the predicted optimal rewards are at the top

whisker of observed rewards in Figure 4.2, they are slightly lower with respect to the

distribution of observed rewards in Figure 4.3. This relative decrease in predicted

increased rewards can be explained by the lower percentage of patients selected to

their optimal regime.

One main challenge in this work, as is the case in Chakraborty et al. (2013), is the

selection of m, which is a crucial factor in determining the coverage probability and
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confidence interval. In our current approach, we selected parameters ν and ξ us-

ing background knowledge and reference simulation results and used Equation 4.3 to

select m. This approach is recommended by Chakraborty et al. (2013) and is straight-

forward and easy to implement, but risks inappropriate values of m if either ν or ξ

are selected inadequately. Hence, one area of improvement would be to explore ap-

proaches for selection of m that are less reliant on tuning parameters. One approach

that can be adapted towards our scenario is the double bootstrap procedure, where

we take our empirical dataset estimator as the truth, and build confidence intervals

using nested bootstrap samples of size m from empirical bootstrap samples of size n.

We could then look across a range of m and select the one providing desired cover-

age. Similarly, another potential idea to further improve coverage across all covariates

could be to select distinct values of m for each covariate. Preliminary simulation stud-

ies are underway for both of these directions, and adaptations of these approaches

could potentially yield more intuitive and robust approaches for the selection of m.

The authors are aware of two works in the literature that balance between two out-

comes and would like to highlight certain differences at this time. Zhao et al. (2009)

looks at the dosage effect of a cancer drug on tumor size and toxicity. Each reward

function is separated into three parts: survival status, wellness, and tumor size ef-

fects. In simulation studies, the reward was assigned to be -60 if the patient died,

15 if the patient’s tumor shrunk to zero, and 5 or -5 if tumor size/wellness improved

and deteriorated, respectively. The method of assigning rewards is particular to the

example they proposed, and there is no clear indication of how to perform inference

using this method.

The comparison between our method and Butler et al. (2018) is a bit more direct.

Their work uses patient preference estimation to weigh between toxicity and efficacy,

both continuous outcomes. There are definite similarities between this work and
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Butler et al. (2018), especially in terms of preference estimation and the common

Q-learning framework. However, most importantly, Butler et al. (2018) would not

accommodate censored data, nor did it provide any framework for inference, both

important contributions of this work.

This work can be improved in a couple of directions for increased generalizability

and impact. First, the vast amount of methods for survival data is one indication

of the complexity of generalizing the various time to event scenarios. One main

direction for extension would be to accommodate multiple stages, with potential

censoring and event times that could happen at any stage, similar to the set up

of Goldberg and Kosorok (2012). Another realistic directions could be allowing the

subset of treatments to change depending on patient outcomes, as in Hager et al.

(2018). Generalizing binary treatment options to a continuous version (i.e. dosage),

or increasing the number of outcomes we balance are both meaningful directions for

future extensions.
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CHAPTER V

Summary and Future Work

In this dissertation, we explored improvements to methods that follow a patient tra-

jectory and estimate predicted outcomes using available covariates, as well as make

preference driven patient decisions for different types of clinical scenarios.

In Chapter II, we developed a method for modeling the restricted mean survival time

as a function of the restriction time. Our method comes with a simulation supported

inference framework. Different from other methods in the literature, our method

allows any researcher interested in the RMST to obtain a longitudinal time profile

of the entire scenario, as well as how each covariate effect and significance changes

as a function of time. This obviates the need to do multiple RMST analysis at each

time point of interest, which requires a somewhat arbitrary selection of cutoff-times

as well as a risk of multiple testing if there are many points of interest. In Chapter

III, we proposed a method that augments two potentially competing outcomes with

preference estimated through a latent variable model in order to find the optimal

dynamic treatment regime. Our biggest contribution in this work is the incorporation

of patient preference into the multiple stage setting, which is more fitting for a chronic

clinical course. Patients with chronic disease often are faced with more potential

choices than those in more acute medical scenarios. Hence, our method expands

upon previous methods that allow only binary decision choices to accommodate more
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potential decisions. In Chapter IV, we bring patient preference into the realm of

survival setting, where patients often have to choose between quality of life or length

of time before an event. The major challenges addressed in this setting are the

technical difficulties that come with the presence of censored data. Our method also

provides a process for inference, which addresses both the complications caused by

censoring as well as the nonregularity which affects all DTR type methods.

Each of these chapters naturally lends itself to future research ideas and challenges. In

Chapter II, we currently approximate the time profile curve of the RMST as a function

of the cut off time with parametric splines. One interesting advancement would be

modeling using a nonparametric approach so that the RMST curve would be more

sensitive to actual data perturbations. In addition, it would be useful to expand this

method to accommodate dependent censoring in addition to independent censoring.

Chapter IV could be improved by moving to more than two stages and allowing

for censoring and event times to happen before the last stage, greatly complicating

the number of scenarios the method needs to accommodate. We showed through

simulation studies that our method works well with specific values of hyperparameters.

It would be worthwhile, however, to investigate an approach that would allow for

systemic recommendations of values of m, similar to the double bootstrap approach

suggested in Chakraborty et al. (2013), but which was computationally intractable

in our situation. Further general extensions and improvements would apply to both

Chapters III and IV. Both chapters could move into the realm of multi-objective

optimization, where the optimization would take place in n-dimensional space, where

instead of identifying a single best solution, the goal would be to produce a set of non-

dominated solutions. Another audacious direction of interest would be the area of

mobile health. While a phone application can easily interact with its owner, mobile

health is highly reliant on preference on how much and when to engage with the
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application. Hence, a marriage between patient preference estimation and mobile

health methods, which essentially reshapes the DTR treatment time horizon into a

continuous one, would be an interesting and potentially very impactful and practical

direction.
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